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P R E F A C E

It is a pleasure to welcome Professor Masoud Salehi as a coauthor to the fifth edition
of Digital Communications. This new edition has undergone a major revision and
reorganization of topics, especially in the area of channel coding and decoding. A new
chapter on multiple-antenna systems has been added as well.

The book is designed to serve as a text for a first-year graduate-level course for
students in electrical engineering. It is also designed to serve as a text for self-study
and as a reference book for the practicing engineer involved in the design and analysis
of digital communications systems. As to background, we presume that the reader has
a thorough understanding of basic calculus and elementary linear systems theory and
prior knowledge of probability and stochastic processes.

Chapter 1 is an introduction to the subject, including a historical perspective and
a description of channel characteristics and channel models.

Chapter 2 contains a review of deterministic and random signal analysis, including
bandpass and lowpass signal representations, bounds on the tail probabilities of random
variables, limit theorems for sums of random variables, and random processes.

Chapter 3 treats digital modulation techniques and the power spectrum of digitally
modulated signals.

Chapter 4 is focused on optimum receivers for additive white Gaussian noise
(AWGN) channels and their error rate performance. Also included in this chapter is
an introduction to lattices and signal constellations based on lattices, as well as link
budget analyses for wireline and radio communication systems.

Chapter 5 is devoted to carrier phase estimation and time synchronization methods
based on the maximum-likelihood criterion. Both decision-directed and non-decision-
directed methods are described.

Chapter 6 provides an introduction to topics in information theory, including
lossless source coding, lossy data compression, channel capacity for different channel
models, and the channel reliability function.

Chapter 7 treats linear block codes and their properties. Included is a treatment
of cyclic codes, BCH codes, Reed-Solomon codes, and concatenated codes. Both soft
decision and hard decision decoding methods are described, and their performance in
AWGN channels is evaluated.

Chapter 8 provides a treatment of trellis codes and graph-based codes, includ-
ing convolutional codes, turbo codes, low density parity check (LDPC) codes, trel-
lis codes for band-limited channels, and codes based on lattices. Decoding algo-
rithms are also treated, including the Viterbi algorithm and its performance on AWGN

xvi
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Preface xvii

channels, the BCJR algorithm for iterative decoding of turbo codes, and the sum-product
algorithm.

Chapter 9 is focused on digital communication through band-limited channels.
Topics treated in this chapter include the characterization and signal design for band-
limited channels, the optimum receiver for channels with intersymbol interference and
AWGN, and suboptimum equalization methods, namely, linear equalization, decision-
feedback equalization, and turbo equalization.

Chapter 10 treats adaptive channel equalization. The LMS and recursive least-
squares algorithms are described together with their performance characteristics. This
chapter also includes a treatment of blind equalization algorithms.

Chapter 11 provides a treatment of multichannel and multicarrier modulation.
Topics treated include the error rate performance of multichannel binary signal and
M-ary orthogonal signals in AWGN channels; the capacity of a nonideal linear filter
channel with AWGN; OFDM modulation and demodulation; bit and power alloca-
tion in an OFDM system; and methods to reduce the peak-to-average power ratio in
OFDM.

Chapter 12 is focused on spread spectrum signals and systems, with emphasis
on direct sequence and frequency-hopped spread spectrum systems and their perfor-
mance. The benefits of coding in the design of spread spectrum signals is emphasized
throughout this chapter.

Chapter 13 treats communication through fading channels, including the charac-
terization of fading channels and the key important parameters of multipath spread and
Doppler spread. Several channel fading statistical models are introduced, with empha-
sis placed on Rayleigh fading, Ricean fading, and Nakagami fading. An analysis of the
performance degradation caused by Doppler spread in an OFDM system is presented,
and a method for reducing this performance degradation is described.

Chapter 14 is focused on capacity and code design for fading channels. After intro-
ducing ergodic and outage capacities, coding for fading channels is studied. Bandwidth-
efficient coding and bit-interleaved coded modulation are treated, and the performance
of coded systems in Rayleigh and Ricean fading is derived.

Chapter 15 provides a treatment of multiple-antenna systems, generally called
multiple-input, multiple-output (MIMO) systems, which are designed to yield spatial
signal diversity and spatial multiplexing. Topics treated in this chapter include detection
algorithms for MIMO channels, the capacity of MIMO channels with AWGN without
and with signal fading, and space-time coding.

Chapter 16 treats multiuser communications, including the topics of the capacity
of multiple-access methods, multiuser detection methods for the uplink in CDMA
systems, interference mitigation in multiuser broadcast channels, and random access
methods such as ALOHA and carrier-sense multiple access (CSMA).

With 16 chapters and a variety of topics, the instructor has the flexibility to design
either a one- or two-semester course. Chapters 3, 4, and 5 provide a basic treatment of
digital modulation/demodulation and detection methods. Channel coding and decoding
treated in Chapters 7, 8, and 9 can be included along with modulation/demodulation
in a one-semester course. Alternatively, Chapters 9 through 12 can be covered in place
of channel coding and decoding. A second semester course can cover the topics of
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communication through fading channels, multiple-antenna systems, and multiuser com-
munications.
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Introduction

In this book, we present the basic principles that underlie the analysis and design
of digital communication systems. The subject of digital communications involves the
transmission of information in digital form from a source that generates the information
to one or more destinations. Of particular importance in the analysis and design of
communication systems are the characteristics of the physical channels through which
the information is transmitted. The characteristics of the channel generally affect the
design of the basic building blocks of the communication system. Below, we describe
the elements of a communication system and their functions.

1.1
ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM

Figure 1.1–1 illustrates the functional diagram and the basic elements of a digital
communication system. The source output may be either an analog signal, such as an
audio or video signal, or a digital signal, such as the output of a computer, that is discrete
in time and has a finite number of output characters. In a digital communication system,
the messages produced by the source are converted into a sequence of binary digits.
Ideally, we should like to represent the source output (message) by as few binary digits
as possible. In other words, we seek an efficient representation of the source output
that results in little or no redundancy. The process of efficiently converting the output
of either an analog or digital source into a sequence of binary digits is called source
encoding or data compression.

The sequence of binary digits from the source encoder, which we call the informa-
tion sequence, is passed to the channel encoder. The purpose of the channel encoder
is to introduce, in a controlled manner, some redundancy in the binary information
sequence that can be used at the receiver to overcome the effects of noise and inter-
ference encountered in the transmission of the signal through the channel. Thus, the
added redundancy serves to increase the reliability of the received data and improves

1
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FIGURE 1.1–1
Basic elements of a digital communication system.

the fidelity of the received signal. In effect, redundancy in the information sequence
aids the receiver in decoding the desired information sequence. For example, a (trivial)
form of encoding of the binary information sequence is simply to repeat each binary
digit m times, where m is some positive integer. More sophisticated (nontrivial) encod-
ing involves taking k information bits at a time and mapping each k-bit sequence into
a unique n-bit sequence, called a code word. The amount of redundancy introduced by
encoding the data in this manner is measured by the ratio n/k. The reciprocal of this
ratio, namely k/n, is called the rate of the code or, simply, the code rate.

The binary sequence at the output of the channel encoder is passed to the digital
modulator, which serves as the interface to the communication channel. Since nearly
all the communication channels encountered in practice are capable of transmitting
electrical signals (waveforms), the primary purpose of the digital modulator is to map
the binary information sequence into signal waveforms. To elaborate on this point, let
us suppose that the coded information sequence is to be transmitted one bit at a time at
some uniform rate R bits per second (bits/s). The digital modulator may simply map the
binary digit 0 into a waveform s0(t) and the binary digit 1 into a waveform s1(t). In this
manner, each bit from the channel encoder is transmitted separately. We call this binary
modulation. Alternatively, the modulator may transmit b coded information bits at a
time by using M = 2b distinct waveforms si (t), i = 0, 1, . . . , M − 1, one waveform
for each of the 2b possible b-bit sequences. We call this M-ary modulation (M > 2).
Note that a new b-bit sequence enters the modulator every b/R seconds. Hence, when
the channel bit rate R is fixed, the amount of time available to transmit one of the M
waveforms corresponding to a b-bit sequence is b times the time period in a system
that uses binary modulation.

The communication channel is the physical medium that is used to send the signal
from the transmitter to the receiver. In wireless transmission, the channel may be the
atmosphere (free space). On the other hand, telephone channels usually employ a variety
of physical media, including wire lines, optical fiber cables, and wireless (microwave
radio). Whatever the physical medium used for transmission of the information, the
essential feature is that the transmitted signal is corrupted in a random manner by a



Proakis-27466 book September 25, 2007 11:6

Chapter One: Introduction 3

variety of possible mechanisms, such as additive thermal noise generated by electronic
devices; man-made noise, e.g., automobile ignition noise; and atmospheric noise, e.g.,
electrical lightning discharges during thunderstorms.

At the receiving end of a digital communication system, the digital demodulator
processes the channel-corrupted transmitted waveform and reduces the waveforms to
a sequence of numbers that represent estimates of the transmitted data symbols (binary
or M-ary). This sequence of numbers is passed to the channel decoder, which attempts
to reconstruct the original information sequence from knowledge of the code used by
the channel encoder and the redundancy contained in the received data.

A measure of how well the demodulator and decoder perform is the frequency with
which errors occur in the decoded sequence. More precisely, the average probability
of a bit-error at the output of the decoder is a measure of the performance of the
demodulator–decoder combination. In general, the probability of error is a function of
the code characteristics, the types of waveforms used to transmit the information over
the channel, the transmitter power, the characteristics of the channel (i.e., the amount
of noise, the nature of the interference), and the method of demodulation and decoding.
These items and their effect on performance will be discussed in detail in subsequent
chapters.

As a final step, when an analog output is desired, the source decoder accepts the
output sequence from the channel decoder and, from knowledge of the source encoding
method used, attempts to reconstruct the original signal from the source. Because of
channel decoding errors and possible distortion introduced by the source encoder,
and perhaps, the source decoder, the signal at the output of the source decoder is an
approximation to the original source output. The difference or some function of the
difference between the original signal and the reconstructed signal is a measure of the
distortion introduced by the digital communication system.

1.2
COMMUNICATION CHANNELS AND THEIR CHARACTERISTICS

As indicated in the preceding discussion, the communication channel provides the con-
nection between the transmitter and the receiver. The physical channel may be a pair of
wires that carry the electrical signal, or an optical fiber that carries the information on a
modulated light beam, or an underwater ocean channel in which the information is trans-
mitted acoustically, or free space over which the information-bearing signal is radiated
by use of an antenna. Other media that can be characterized as communication channels
are data storage media, such as magnetic tape, magnetic disks, and optical disks.

One common problem in signal transmission through any channel is additive noise.
In general, additive noise is generated internally by components such as resistors and
solid-state devices used to implement the communication system. This is sometimes
called thermal noise. Other sources of noise and interference may arise externally to
the system, such as interference from other users of the channel. When such noise
and interference occupy the same frequency band as the desired signal, their effect
can be minimized by the proper design of the transmitted signal and its demodulator at
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the receiver. Other types of signal degradations that may be encountered in transmission
over the channel are signal attenuation, amplitude and phase distortion, and multipath
distortion.

The effects of noise may be minimized by increasing the power in the transmitted
signal. However, equipment and other practical constraints limit the power level in
the transmitted signal. Another basic limitation is the available channel bandwidth.
A bandwidth constraint is usually due to the physical limitations of the medium and
the electronic components used to implement the transmitter and the receiver. These
two limitations constrain the amount of data that can be transmitted reliably over any
communication channel as we shall observe in later chapters. Below, we describe some
of the important characteristics of several communication channels.

Wireline Channels
The telephone network makes extensive use of wire lines for voice signal transmission,
as well as data and video transmission. Twisted-pair wire lines and coaxial cable are
basically guided electromagnetic channels that provide relatively modest bandwidths.
Telephone wire generally used to connect a customer to a central office has a bandwidth
of several hundred kilohertz (kHz). On the other hand, coaxial cable has a usable
bandwidth of several megahertz (MHz). Figure 1.2–1 illustrates the frequency range of
guided electromagnetic channels, which include waveguides and optical fibers.

Signals transmitted through such channels are distorted in both amplitude and
phase and further corrupted by additive noise. Twisted-pair wireline channels are also
prone to crosstalk interference from physically adjacent channels. Because wireline
channels carry a large percentage of our daily communications around the country and
the world, much research has been performed on the characterization of their trans-
mission properties and on methods for mitigating the amplitude and phase distortion
encountered in signal transmission. In Chapter 9, we describe methods for designing
optimum transmitted signals and their demodulation; in Chapter 10, we consider the
design of channel equalizers that compensate for amplitude and phase distortion on
these channels.

Fiber-Optic Channels
Optical fibers offer the communication system designer a channel bandwidth that is
several orders of magnitude larger than coaxial cable channels. During the past two
decades, optical fiber cables have been developed that have a relatively low signal atten-
uation, and highly reliable photonic devices have been developed for signal generation
and signal detection. These technological advances have resulted in a rapid deploy-
ment of optical fiber channels, both in domestic telecommunication systems as well as
for transcontinental communication. With the large bandwidth available on fiber-optic
channels, it is possible for telephone companies to offer subscribers a wide array of
telecommunication services, including voice, data, facsimile, and video.

The transmitter or modulator in a fiber-optic communication system is a light
source, either a light-emitting diode (LED) or a laser. Information is transmitted by
varying (modulating) the intensity of the light source with the message signal. The light
propagates through the fiber as a light wave and is amplified periodically (in the case of
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FIGURE 1.2–1
Frequency range for guided wire
channel.

digital transmission, it is detected and regenerated by repeaters) along the transmission
path to compensate for signal attenuation. At the receiver, the light intensity is detected
by a photodiode, whose output is an electrical signal that varies in direct proportion
to the power of the light impinging on the photodiode. Sources of noise in fiber-optic
channels are photodiodes and electronic amplifiers.

Wireless Electromagnetic Channels
In wireless communication systems, electromagnetic energy is coupled to the prop-
agation medium by an antenna which serves as the radiator. The physical size and
the configuration of the antenna depend primarily on the frequency of operation. To
obtain efficient radiation of electromagnetic energy, the antenna must be longer than
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1
10 of the wavelength. Consequently, a radio station transmitting in the amplitude-
modulated (AM) frequency band, say at fc = 1 MHz [corresponding to a wavelength
of λ = c/ fc = 300 meters (m)], requires an antenna of at least 30 m. Other important
characteristics and attributes of antennas for wireless transmission are described in
Chapter 4.

Figure 1.2–2 illustrates the various frequency bands of the electromagnetic spec-
trum. The mode of propagation of electromagnetic waves in the atmosphere and in

FIGURE 1.2–2
Frequency range for wireless electromagnetic channels. [Adapted from Carlson (1975), 2nd
edition, c© McGraw-Hill Book Company Co. Reprinted with permission of the publisher.]
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FIGURE 1.2–3
Illustration of ground-wave propagation.

free space may be subdivided into three categories, namely, ground-wave propagation,
sky-wave propagation, and line-of-sight (LOS) propagation. In the very low frequency
(VLF) and audio frequency bands, where the wavelengths exceed 10 km, the earth
and the ionosphere act as a waveguide for electromagnetic wave propagation. In these
frequency ranges, communication signals practically propagate around the globe. For
this reason, these frequency bands are primarily used to provide navigational aids from
shore to ships around the world. The channel bandwidths available in these frequency
bands are relatively small (usually 1–10 percent of the center frequency), and hence the
information that is transmitted through these channels is of relatively slow speed and
generally confined to digital transmission. A dominant type of noise at these frequen-
cies is generated from thunderstorm activity around the globe, especially in tropical
regions. Interference results from the many users of these frequency bands.

Ground-wave propagation, as illustrated in Figure 1.2–3, is the dominant mode of
propagation for frequencies in the medium frequency (MF) band (0.3–3 MHz). This is
the frequency band used for AM broadcasting and maritime radio broadcasting. In AM
broadcasting, the range with ground-wave propagation of even the more powerful radio
stations is limited to about 150 km. Atmospheric noise, man-made noise, and thermal
noise from electronic components at the receiver are dominant disturbances for signal
transmission in the MF band.

Sky-wave propagation, as illustrated in Figure 1.2–4, results from transmitted sig-
nals being reflected (bent or refracted) from the ionosphere, which consists of several
layers of charged particles ranging in altitude from 50 to 400 km above the surface of
the earth. During the daytime hours, the heating of the lower atmosphere by the sun
causes the formation of the lower layers at altitudes below 120 km. These lower layers,
especially the D-layer, serve to absorb frequencies below 2 MHz, thus severely limiting
sky-wave propagation of AM radio broadcast. However, during the nighttime hours, the
electron density in the lower layers of the ionosphere drops sharply and the frequency
absorption that occurs during the daytime is significantly reduced. As a consequence,
powerful AM radio broadcast stations can propagate over large distances via sky wave
over the F-layer of the ionosphere, which ranges from 140 to 400 km above the surface
of the earth.

FIGURE 1.2–4
Illustration of sky-wave propagation.
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A frequently occurring problem with electromagnetic wave propagation via sky
wave in the high frequency (HF) range is signal multipath. Signal multipath occurs
when the transmitted signal arrives at the receiver via multiple propagation paths at dif-
ferent delays. It generally results in intersymbol interference in a digital communication
system. Moreover, the signal components arriving via different propagation paths may
add destructively, resulting in a phenomenon called signal fading, which most people
have experienced when listening to a distant radio station at night when sky wave is
the dominant propagation mode. Additive noise in the HF range is a combination of
atmospheric noise and thermal noise.

Sky-wave ionospheric propagation ceases to exist at frequencies above approx-
imately 30 MHz, which is the end of the HF band. However, it is possible to have
ionospheric scatter propagation at frequencies in the range 30–60 MHz, resulting from
signal scattering from the lower ionosphere. It is also possible to communicate over
distances of several hundred miles by use of tropospheric scattering at frequencies in
the range 40–300 MHz. Troposcatter results from signal scattering due to particles
in the atmosphere at altitudes of 10 miles or less. Generally, ionospheric scatter and
tropospheric scatter involve large signal propagation losses and require a large amount
of transmitter power and relatively large antennas.

Frequencies above 30 MHz propagate through the ionosphere with relatively little
loss and make satellite and extraterrestrial communications possible. Hence, at fre-
quencies in the very high frequency (VHF) band and higher, the dominant mode of
electromagnetic propagation is LOS propagation. For terrestrial communication sys-
tems, this means that the transmitter and receiver antennas must be in direct LOS with
relatively little or no obstruction. For this reason, television stations transmitting in the
VHF and ultra high frequency (UHF) bands mount their antennas on high towers to
achieve a broad coverage area.

In general, the coverage area for LOS propagation is limited by the curvature of
the earth. If the transmitting antenna is mounted at a height h m above the surface of
the earth, the distance to the radio horizon, assuming no physical obstructions such
as mountains, is approximately d = √

15h km. For example, a television antenna
mounted on a tower of 300 m in height provides a coverage of approximately 67 km.
As another example, microwave radio relay systems used extensively for telephone and
video transmission at frequencies above 1 gigahertz (GHz) have antennas mounted on
tall towers or on the top of tall buildings.

The dominant noise limiting the performance of a communication system in VHF
and UHF ranges is thermal noise generated in the receiver front end and cosmic noise
picked up by the antenna. At frequencies in the super high frequency (SHF) band above
10 GHz, atmospheric conditions play a major role in signal propagation. For example,
at 10 GHz, the attenuation ranges from about 0.003 decibel per kilometer (dB/km) in
light rain to about 0.3 dB/km in heavy rain. At 100 GHz, the attenuation ranges from
about 0.1 dB/km in light rain to about 6 dB/km in heavy rain. Hence, in this frequency
range, heavy rain introduces extremely high propagation losses that can result in service
outages (total breakdown in the communication system).

At frequencies above the extremely high frequency (EHF) band, we have the in-
frared and visible light regions of the electromagnetic spectrum, which can be used
to provide LOS optical communication in free space. To date, these frequency bands
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have been used in experimental communication systems, such as satellite-to-satellite
links.

Underwater Acoustic Channels
Over the past few decades, ocean exploration activity has been steadily increasing.
Coupled with this increase is the need to transmit data, collected by sensors placed
under water, to the surface of the ocean. From there, it is possible to relay the data via
a satellite to a data collection center.

Electromagnetic waves do not propagate over long distances under water except at
extremely low frequencies. However, the transmission of signals at such low frequencies
is prohibitively expensive because of the large and powerful transmitters required. The
attenuation of electromagnetic waves in water can be expressed in terms of the skin
depth, which is the distance a signal is attenuated by 1/e. For seawater, the skin depth
δ = 250/

√
f , where f is expressed in Hz and δ is in m. For example, at 10 kHz, the

skin depth is 2.5 m. In contrast, acoustic signals propagate over distances of tens and
even hundreds of kilometers.

An underwater acoustic channel is characterized as a multipath channel due to
signal reflections from the surface and the bottom of the sea. Because of wave mo-
tion, the signal multipath components undergo time-varying propagation delays that
result in signal fading. In addition, there is frequency-dependent attenuation, which is
approximately proportional to the square of the signal frequency. The sound velocity
is nominally about 1500 m/s, but the actual value will vary either above or below the
nominal value depending on the depth at which the signal propagates.

Ambient ocean acoustic noise is caused by shrimp, fish, and various mammals.
Near harbors, there is also man-made acoustic noise in addition to the ambient noise.
In spite of this hostile environment, it is possible to design and implement efficient and
highly reliable underwater acoustic communication systems for transmitting digital
signals over large distances.

Storage Channels
Information storage and retrieval systems constitute a very significant part of data-
handling activities on a daily basis. Magnetic tape, including digital audiotape and
videotape, magnetic disks used for storing large amounts of computer data, optical
disks used for computer data storage, and compact disks are examples of data storage
systems that can be characterized as communication channels. The process of storing
data on a magnetic tape or a magnetic or optical disk is equivalent to transmitting
a signal over a telephone or a radio channel. The readback process and the signal
processing involved in storage systems to recover the stored information are equivalent
to the functions performed by a receiver in a telephone or radio communication system
to recover the transmitted information.

Additive noise generated by the electronic components and interference from ad-
jacent tracks is generally present in the readback signal of a storage system, just as is
the case in a telephone or a radio communication system.

The amount of data that can be stored is generally limited by the size of the disk
or tape and the density (number of bits stored per square inch) that can be achieved by
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the write/read electronic systems and heads. For example, a packing density of 109 bits
per square inch has been demonstrated in magnetic disk storage systems. The speed at
which data can be written on a disk or tape and the speed at which it can be read back
are also limited by the associated mechanical and electrical subsystems that constitute
an information storage system.

Channel coding and modulation are essential components of a well-designed digital
magnetic or optical storage system. In the readback process, the signal is demodulated
and the added redundancy introduced by the channel encoder is used to correct errors
in the readback signal.

1.3
MATHEMATICAL MODELS FOR COMMUNICATION CHANNELS

In the design of communication systems for transmitting information through physical
channels, we find it convenient to construct mathematical models that reflect the most
important characteristics of the transmission medium. Then, the mathematical model for
the channel is used in the design of the channel encoder and modulator at the transmitter
and the demodulator and channel decoder at the receiver. Below, we provide a brief
description of the channel models that are frequently used to characterize many of the
physical channels that we encounter in practice.

The Additive Noise Channel
The simplest mathematical model for a communication channel is the additive noise
channel, illustrated in Figure 1.3–1. In this model, the transmitted signal s(t) is corrupted
by an additive random noise process n(t). Physically, the additive noise process may
arise from electronic components and amplifiers at the receiver of the communication
system or from interference encountered in transmission (as in the case of radio signal
transmission).

If the noise is introduced primarily by electronic components and amplifiers at the
receiver, it may be characterized as thermal noise. This type of noise is characterized
statistically as a Gaussian noise process. Hence, the resulting mathematical model
for the channel is usually called the additive Gaussian noise channel. Because this
channel model applies to a broad class of physical communication channels and because
of its mathematical tractability, this is the predominant channel model used in our
communication system analysis and design. Channel attenuation is easily incorporated
into the model. When the signal undergoes attenuation in transmission through the

FIGURE 1.3–1
The additive noise channel.
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FIGURE 1.3–2
The linear filter channel with
additive noise.

channel, the received signal is

r (t) = αs(t) + n(t) (1.3–1)

where α is the attenuation factor.

The Linear Filter Channel
In some physical channels, such as wireline telephone channels, filters are used to en-
sure that the transmitted signals do not exceed specified bandwidth limitations and thus
do not interfere with one another. Such channels are generally characterized mathemat-
ically as linear filter channels with additive noise, as illustrated in Figure 1.3–2. Hence,
if the channel input is the signal s(t), the channel output is the signal

r (t) = s(t) � c(t) + n(t)

=
∫ ∞

−∞
c(τ )s(t − τ ) dτ + n(t)

(1.3–2)

where c(t) is the impulse response of the linear filter and � denotes convolution.

The Linear Time-Variant Filter Channel
Physical channels such as underwater acoustic channels and ionospheric radio chan-
nels that result in time-variant multipath propagation of the transmitted signal may be
characterized mathematically as time-variant linear filters. Such linear filters are charac-
terized by a time-variant channel impulse response c(τ ; t), where c(τ ; t) is the response
of the channel at time t due to an impulse applied at time t − τ . Thus, τ represents the
“age” (elapsed-time) variable. The linear time-variant filter channel with additive noise
is illustrated in Figure 1.3–3. For an input signal s(t), the channel output signal is

r (t) = s(t) � c(τ ; t) + n(t)

=
∫ ∞

−∞
c(τ ; t)s(t − τ ) dτ + n(t)

(1.3–3)

FIGURE 1.3–3
Linear time-variant filter channel with
additive noise.
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A good model for multipath signal propagation through physical channels, such as
the ionosphere (at frequencies below 30 MHz) and mobile cellular radio channels, is a
special case of (1.3–3) in which the time-variant impulse response has the form

c(τ ; t) =
L∑

k=1

ak(t)δ(τ − τk) (1.3–4)

where the {ak(t)} represents the possibly time-variant attenuation factors for the L
multipath propagation paths and {τk} are the corresponding time delays. If (1.3–4) is
substituted into (1.3–3), the received signal has the form

r (t) =
L∑

k=1

ak(t)s(t − τk) + n(t) (1.3–5)

Hence, the received signal consists of L multipath components, where the kth compo-
nent is attenuated by ak(t) and delayed by τk .

The three mathematical models described above adequately characterize the great
majority of the physical channels encountered in practice. These three channel models
are used in this text for the analysis and design of communication systems.

1.4
A HISTORICAL PERSPECTIVE IN THE DEVELOPMENT
OF DIGITAL COMMUNICATIONS

It is remarkable that the earliest form of electrical communication, namely telegraphy,
was a digital communication system. The electric telegraph was developed by Samuel
Morse and was demonstrated in 1837. Morse devised the variable-length binary code
in which letters of the English alphabet are represented by a sequence of dots and
dashes (code words). In this code, more frequently occurring letters are represented by
short code words, while letters occurring less frequently are represented by longer code
words. Thus, the Morse code was the precursor of the variable-length source coding
methods described in Chapter 6.

Nearly 40 years later, in 1875, Emile Baudot devised a code for telegraphy in which
every letter was encoded into fixed-length binary code words of length 5. In the Baudot
code, binary code elements are of equal length and designated as mark and space.

Although Morse is responsible for the development of the first electrical digital
communication system (telegraphy), the beginnings of what we now regard as modern
digital communications stem from the work of Nyquist (1924), who investigated the
problem of determining the maximum signaling rate that can be used over a telegraph
channel of a given bandwidth without intersymbol interference. He formulated a model
of a telegraph system in which a transmitted signal has the general form

s(t) =
∑

n

ang(t − nT ) (1.4–1)
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where g(t) represents a basic pulse shape and {an} is the binary data sequence of {±1}
transmitted at a rate of 1/T bits/s. Nyquist set out to determine the optimum pulse shape
that was band-limited to W Hz and maximized the bit rate under the constraint that the
pulse caused no intersymbol interference at the sampling time k/T, k = 0, ±1, ±2, . . . .

His studies led him to conclude that the maximum pulse rate is 2W pulses/s. This rate
is now called the Nyquist rate. Moreover, this pulse rate can be achieved by using
the pulses g(t) = (sin 2πW t)/2πW t . This pulse shape allows recovery of the data
without intersymbol interference at the sampling instants. Nyquist’s result is equivalent
to a version of the sampling theorem for band-limited signals, which was later stated
precisely by Shannon (1948b). The sampling theorem states that a signal of bandwidth
W can be reconstructed from samples taken at the Nyquist rate of 2W samples/s using
the interpolation formula

s(t) =
∑

n

s
(

n

2W

)
sin[2πW (t − n/2W )]

2πW (t − n/2W )
(1.4–2)

In light of Nyquist’s work, Hartley (1928) considered the issue of the amount
of data that can be transmitted reliably over a band-limited channel when multiple
amplitude levels are used. Because of the presence of noise and other interference,
Hartley postulated that the receiver can reliably estimate the received signal amplitude
to some accuracy, say Aδ . This investigation led Hartley to conclude that there is a
maximum data rate that can be communicated reliably over a band-limited channel
when the maximum signal amplitude is limited to Amax (fixed power constraint) and
the amplitude resolution is Aδ .

Another significant advance in the development of communications was the work
of Kolmogorov (1939) and Wiener (1942), who considered the problem of estimating a
desired signal waveform s(t) in the presence of additive noise n(t), based on observation
of the received signal r (t) = s(t) + n(t). This problem arises in signal demodulation.
Kolmogorov and Wiener determined the linear filter whose output is the best mean-
square approximation to the desired signal s(t). The resulting filter is called the optimum
linear (Kolmogorov–Wiener) filter.

Hartley’s and Nyquist’s results on the maximum transmission rate of digital in-
formation were precursors to the work of Shannon (1948a,b), who established the
mathematical foundations for information transmission and derived the fundamental
limits for digital communication systems. In his pioneering work, Shannon formulated
the basic problem of reliable transmission of information in statistical terms, using
probabilistic models for information sources and communication channels. Based on
such a statistical formulation, he adopted a logarithmic measure for the information
content of a source. He also demonstrated that the effect of a transmitter power con-
straint, a bandwidth constraint, and additive noise can be associated with the channel
and incorporated into a single parameter, called the channel capacity. For example,
in the case of an additive white (spectrally flat) Gaussian noise interference, an ideal
band-limited channel of bandwidth W has a capacity C given by

C = W log2

(
1 + P

W N0

)
bits/s (1.4–3)
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where P is the average transmitted power and N0 is the power spectral density of the
additive noise. The significance of the channel capacity is as follows: If the information
rate R from the source is less than C(R < C), then it is theoretically possible to achieve
reliable (error-free) transmission through the channel by appropriate coding. On the
other hand, if R > C , reliable transmission is not possible regardless of the amount of
signal processing performed at the transmitter and receiver. Thus, Shannon established
basic limits on communication of information and gave birth to a new field that is now
called information theory.

Another important contribution to the field of digital communication is the work
of Kotelnikov (1947), who provided a coherent analysis of the various digital commu-
nication systems based on a geometrical approach. Kotelnikov’s approach was later
expanded by Wozencraft and Jacobs (1965).

Following Shannon’s publications came the classic work of Hamming (1950) on
error-detecting and error-correcting codes to combat the detrimental effects of channel
noise. Hamming’s work stimulated many researchers in the years that followed, and a
variety of new and powerful codes were discovered, many of which are used today in
the implementation of modern communication systems.

The increase in demand for data transmission during the last four decades, coupled
with the development of more sophisticated integrated circuits, has led to the develop-
ment of very efficient and more reliable digital communication systems. In the course
of these developments, Shannon’s original results and the generalization of his results
on maximum transmission limits over a channel and on bounds on the performance
achieved have served as benchmarks for any given communication system design. The
theoretical limits derived by Shannon and other researchers that contributed to the de-
velopment of information theory serve as an ultimate goal in the continuing efforts to
design and develop more efficient digital communication systems.

There have been many new advances in the area of digital communications follow-
ing the early work of Shannon, Kotelnikov, and Hamming. Some of the most notable
advances are the following:

• The development of new block codes by Muller (1954), Reed (1954), Reed and
Solomon (1960), Bose and Ray-Chaudhuri (1960a,b), and Goppa (1970, 1971).

• The development of concatenated codes by Forney (1966a).
• The development of computationally efficient decoding of Bose–Chaudhuri-

Hocquenghem (BCH) codes, e.g., the Berlekamp–Massey algorithm (see Chien,
1964; Berlekamp, 1968).

• The development of convolutional codes and decoding algorithms by Wozencraft
and Reiffen (1961), Fano (1963), Zigangirov (1966), Jelinek (1969), Forney (1970b,
1972, 1974), and Viterbi (1967, 1971).

• The development of trellis-coded modulation by Ungerboeck (1982), Forney et al.
(1984), Wei (1987), and others.

• The development of efficient source encodings algorithms for data compression, such
as those devised by Ziv and Lempel (1977, 1978), and Linde et al. (1980).

• The development of low-density parity check (LDPC) codes and the sum-product
decoding algorithm by Gallager (1963).

• The development of turbo codes and iterative decoding by Berrou et al. (1993).
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1.5
OVERVIEW OF THE BOOK

Chapter 2 presents a review of deterministic and random signal analysis. Our primary
objectives in this chapter are to review basic notions in the theory of probability and
random variables and to establish some necessary notation.

Chapters 3 through 5 treat the geometric representation of various digital modula-
tion signals, their demodulation, their error rate performance in additive, white Gaussian
noise (AWGN) channels, and methods for synchronizing the receiver to the received
signal waveforms.

Chapters 6 to 8 treat the topics of source coding, channel coding and decoding, and
basic information theoretic limits on channel capacity, source information rates, and
channel coding rates.

The design of efficient modulators and demodulators for linear filter channels with
distortion is treated in Chapters 9 and 10. Channel equalization methods are described
for mitigating the effects of channel distortion.

Chapter 11 is focused on multichannel and multicarrier communication systems,
their efficient implementation, and their performance in AWGN channels.

Chapter 12 presents an introduction to direct sequence and frequency hopped spread
spectrum signals and systems and an evaluation of their performance under worst-case
interference conditions.

The design of signals and coding techniques for digital communication through
fading multipath channels is the focus of Chapters 13 and 14. This material is especially
relevant to the design and development of wireless communication systems.

Chapter 15 treats the use of multiple transmit and receive antennas for improv-
ing the performance of wireless communication systems through signal diversity and
increasing the data rate via spatial multiplexing. The capacity of multiple antenna
systems is evaluated and space-time codes are described for use in multiple antenna
communication systems.

Chapter 16 of this book presents an introduction to multiuser communication
systems and multiple access methods. We consider detection algorithms for uplink
transmission in which multiple users transmit data to a common receiver (a base
station) and evaluate their performance. We also present algorithms for suppressing
multiple access interference in a broadcast communication system in which a transmit-
ter employing multiple antennas transmits different data sequences simultaneously to
different users.

1.6
BIBLIOGRAPHICAL NOTES AND REFERENCES

There are several historical treatments regarding the development of radio and telecom-
munications during the past century. These may be found in the books by McMahon
(1984), Millman (1984), and Ryder and Fink (1984). We have already cited the classi-
cal works of Nyquist (1924), Hartley (1928), Kotelnikov (1947), Shannon (1948), and
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Hamming (1950), as well as some of the more important advances that have occurred
in the field since 1950. The collected papers by Shannon have been published by IEEE
Press in a book edited by Sloane and Wyner (1993) and previously in Russia in a
book edited by Dobrushin and Lupanov (1963). Other collected works published by
the IEEE Press that might be of interest to the reader are Key Papers in the Development
of Coding Theory, edited by Berlekamp (1974), and Key Papers in the Development of
Information Theory, edited by Slepian (1974).
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2

Deterministic and Random Signal Analysis

In this chapter we present the background material needed in the study of the following
chapters. The analysis of deterministic and random signals and the study of different
methods for their representation are the main topics of this chapter. In addition, we
also introduce and study the main properties of some random variables frequently
encountered in analysis of communication systems. We continue with a review of
random processes, properties of lowpass and bandpass random processes, and series
expansion of random processes.

Throughout this chapter, and the book, we assume that the reader is familiar with
the properties of the Fourier transform as summarized in Table 2.0–1 and the important
Fourier transform pairs given in Table 2.0–2.

In these tables we have used the following signal definitions.

�(t) =

⎧⎪⎨
⎪⎩

1 |t | < 1
2

1
2 t = ± 1

2

0 otherwise

sinc(t) =
{

sin(π t)
π t t �= 0

1 t = 0

and

sgn(t) =

⎧⎪⎨
⎪⎩

1 t > 0

−1 t < 0

0 t = 0

�(t) = �(t) � �(t) =

⎧⎪⎨
⎪⎩

t + 1 −1 ≤ t < 0

−t + 1 0 ≤ t < 1

0 otherwise

The unit step signal u−1(t) is defined as

u−1(t) =

⎧⎪⎨
⎪⎩

1 t > 0
1
2 t = 0

0 t < 0

We also assume that the reader is familiar with elements of probability, random
variables, and random processes as covered in standard texts such as Papoulis and Pillai
(2002), Leon-Garcia (1994), and Stark and Woods (2002).

17
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TABLE 2.0–1

Table of Fourier Transform Properties

Property Signal Fourier Transform

Linearity αx1(t) + βx2(t) αX1( f ) + β X2( f )

Duality X (t) x(− f )

Conjugacy x∗(t) X∗(− f )

Time-scaling (a �= 0) x(at) 1
|a| X

(
f
a

)
Time-shift x(t − t0) e− j2π f t0 X ( f )

Modulation e j2π f0 t x(t) X ( f − f0)

Convolution x(t) � y(t) X ( f )Y ( f )

Multiplication x(t)y(t) X ( f ) � Y ( f )

Differentiation dn

dtn x(t) ( j2π f )n X ( f )

Differentiation in frequency tn x(t)
(

j
2π

)n dn

d f n X ( f )

Integration

∫ t

−∞
x(τ ) dτ

X ( f )
j2π f + 1

2 X (0)δ( f )

Parseval’s theorem

∫ ∞

−∞
x(t)y∗(t) dt =

∫ ∞

−∞
X ( f )Y ∗( f ) d f

Rayleigh’s theorem

∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X ( f )|2 d f

2.1
BANDPASS AND LOWPASS SIGNAL REPRESENTATION

As was discussed in Chap. 1, the process of communication consists of transmission
of the output of an information source over a communication channel. In almost all
cases, the spectral characteristics of the information sequence do not directly match the
spectral characteristics of the communication channel, and hence the information signal
cannot be directly transmitted over the channel. In many cases the information signal
is a low frequency (baseband) signal, and the available spectrum of the communication
channel is at higher frequencies. Therefore, at the transmitter the information signal is
translated to a higher frequency signal that matches the properties of the communication
channel. This is the modulation process in which the baseband information signal is
turned into a bandpass modulated signal. In this section we study the main properties
of baseband and bandpass signals.

2.1–1 Bandpass and Lowpass Signals

In this section we will show that any real, narrowband, and high frequency signal—
called a bandpass signal—can be represented in terms of a complex low frequency
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TABLE 2.0–2

Table of Fourier Transform Pairs

Time Domain Frequency Domain

δ(t) 1

1 δ( f )

δ(t − t0) e− j2π f t0

e j2π f0 t δ( f − f0)

cos(2π f0t) 1
2 δ( f − f0) + 1

2 δ( f + f0)

sin(2π f0t) 1
2 j δ( f − f0) − 1

2 j δ( f + f0)

�(t) sinc( f )

sinc(t) �( f )

�(t) sinc2( f )

sinc2(t) �( f )

e−αt u−1(t), α > 0 1
α+ j2π f

te−αt u−1(t), α > 0 1
(α+ j2π f )2

e−α|t |(α > 0) 2α
α2+(2π f )2

e−π t2
e−π f 2

sgn(t) 1
jπ f

u−1(t) 1
2 δ( f ) + 1

j2π f

1
2 δ(t) + j 1

2π t u−1( f )

δ′(t) j2π f

δ(n)(t) ( j2π f )n

1
t − jπ sgn( f )

∞∑
n=−∞

δ(t − nT0) 1
T0

∞∑
n=−∞

δ

(
f − n

T0

)

signal, called the lowpass equivalent of the original bandpass signal. This result makes
it possible to work with the lowpass equivalents of bandpass signals instead of directly
working with them, thus greatly simplifying the handling of bandpass signals. That is
so because applying signal processing algorithms to lowpass signals is much easier due
to lower required sampling rates which in turn result in lower rates of the sampled data.

The Fourier transform of a signal provides information about the frequency content,
or spectrum, of the signal. The Fourier transform of a real signal x(t) has Hermitian
symmetry, i.e., X (− f ) = X∗( f ), from which we conclude that |X (− f )| = |X ( f )| and
� X∗( f ) = −� X ( f ). In other words, for real x(t), the magnitude of X ( f ) is even and
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W

X( f )

f

FIGURE 2.1–1
The spectrum of a real-valued lowpass
(baseband) signal.

its phase is odd. Because of this symmetry, all information about the signal is in the
positive (or negative) frequencies, and in particular x(t) can be perfectly reconstructed
by specifying X ( f ) for f ≥ 0. Based on this observation, for a real signal x(t), we
define the bandwidth as the smallest range of positive frequencies such that X ( f ) = 0
when | f | is outside this range. It is clear that the bandwidth of a real signal is one-half
of its frequency support set.

A lowpass, or baseband, signal is a signal whose spectrum is located around the
zero frequency. For instance, speech, music, and video signals are all lowpass signals,
although they have different spectral characteristics and bandwidths. Usually lowpass
signals are low frequency signals, which means that in the time domain, they are slowly
varying signals with no jumps or sudden variations. The bandwidth of a real lowpass
signal is the minimum positive W such that X ( f ) = 0 outside [−W, +W ]. For these
signals the frequency support, i.e., the range of frequencies for which X ( f ) �= 0, is
[−W, +W ]. An example of the spectrum of a real-valued lowpass signal is shown in
Fig. 2.1–1. The solid line shows the magnitude spectrum |X ( f )|, and the dashed line
indicates the phase spectrum � X ( f ).

We also define the positive spectrum and the negative spectrum of a signal x(t) as

X+( f ) =

⎧⎪⎪⎨
⎪⎪⎩

X ( f ) f > 0
1
2 X (0) f = 0

0 f < 0

X−( f ) =

⎧⎪⎪⎨
⎪⎪⎩

X ( f ) f < 0
1
2 X (0) f = 0

0 f > 0

(2.1–1)

It is clear that X+( f ) = X ( f )u−1( f ), X−( f ) = X ( f )u−1(− f ) and X ( f ) = X+( f ) +
X−( f ). For a real signal x(t), since X ( f ) is Hermitian, we have X−( f ) = X∗

+(− f ).
For a complex signal x(t), the spectrum X ( f ) is not symmetric; hence, the signal

cannot be reconstructed from the information in the positive frequencies only. For
complex signals, we define the bandwidth as one-half of the entire range of frequencies
over which the spectrum is nonzero, i.e., one-half of the frequency support of the signal.
This definition is for consistency with the definition of bandwidth for real signals. With
this definition we can state that in general and for all signals, real or complex, the
bandwidth is defined as one-half of the frequency support.

In practice, the spectral characteristics of the message signal and the communication
channel do not always match, and it is required that the message signal be modulated
by one of the many different modulation methods to match its spectral characteristics to
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X( f )

X�( f ) X�( f )

f
f0�f0

FIGURE 2.1–2
The spectrum of a real-valued bandpass signal.

the spectral characteristics of the channel. In this process, the spectrum of the lowpass
message signal is translated to higher frequencies. The resulting modulated signal is a
bandpass signal.

A bandpass signal is a real signal whose frequency content, or spectrum, is located
around some frequency ± f0 which is far from zero. More formally, we define a bandpass
signal to be a real signal x(t) for which there exists positive f0 and W such that the
positive spectrum of X ( f ), i.e., X+( f ), is nonzero only in the interval [ f0 − W/2, f0 +
W/2], where W/2 < f0 (in practice, usually W � f0). The frequency f0 is called the
central frequency. Obviously, the bandwidth of x(t) is at most equal to W. Bandpass
signals are usually high frequency signals which are characterized by rapid variations
in the time domain.

An example of the spectrum of a bandpass signal is shown in Figure 2.1–2. Note
that since the signal x(t) is real, its magnitude spectrum (solid line) is even, and its phase
spectrum (dashed line) is odd. Also, note that the central frequency f0 is not necessarily
the midband frequency of the bandpass signal. Due to the symmetry of the spectrum,
X+( f ) has all the information that is necessary to reconstruct X ( f ). In fact we can write

X ( f ) = X+( f ) + X−( f ) = X+( f ) + X∗
+(− f ) (2.1–2)

which means that knowledge of X+( f ) is sufficient to reconstruct X ( f ).

2.1–2 Lowpass Equivalent of Bandpass Signals

We start by defining the analytic signal, or the pre-envelope, corresponding to x(t) as
the signal x+(t) whose Fourier transform is X+( f ). This signal contains only positive
frequency components, and its spectrum is not Hermitian. Therefore, in general, x+(t)
is a complex signal. We have

x+(t) = F
−1 [X+( f )]

= F
−1 [X ( f )u−1( f )]

= x(t) �

(
1

2
δ(t) + j

1

2π t

)

= 1

2
x(t) + j

2
x̂(t)

(2.1–3)
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Xl( f ) � 2X�( f � f0 )

f

FIGURE 2.1–3
The spectrum of the lowpass equivalent of the
signal shown in Figure 2.1–2.

where x̂(t) = 1
π t � x(t) is the Hilbert transform of x(t). The Hilbert transform of x(t) is

obtained by introducing a phase shift of −π
2 at positive frequency components of x(t)

and π
2 at negative frequencies. In the frequency domain we have

F
[
x̂(t)

] = − jsgn( f )X ( f ) (2.1–4)

Some of the properties of the Hilbert transform will be covered in the problems at the
end of this chapter.

Now we define xl(t), the lowpass equivalent, or the complex envelope, of x(t), as
the signal whose spectrum is given by 2X+( f + f0), i.e.,

Xl( f ) = 2X+( f + f0) = 2X ( f + f0)u−1( f + f0) (2.1–5)

Obviously the spectrum of xl(t) is located around the zero frequency, and therefore it is
in general a complex lowpass signal. This signal is called the lowpass equivalent or the
complex envelope of x(t). The spectrum of the lowpass equivalent of the signal shown
in Figure 2.1–2 is shown in Figure 2.1–3.

Applying the modulation theorem of the Fourier transform, we obtain

xl(t) = F
−1[Xl( f )]

= 2x+(t)e− j2π f0t

= (x(t) + j x̂(t))e− j2π f0t (2.1–6)

= (x(t) cos 2π f0t + x̂(t) sin 2π f0t)

+ j(x̂(t) cos 2π f0t − x(t) sin 2π f0t) (2.1–7)

From Equation 2.1–6 we can write

x(t) = Re
[
xl(t)e

j2π f0t] (2.1–8)

This relation expresses any bandpass signals in terms of its lowpass equivalent. Using
Equations 2.1–2 and 2.1–5, we can write

X ( f ) = 1
2

[
Xl( f − f0) + X∗

l (− f − f0)
]

(2.1–9)

Equations 2.1–8, 2.1–9, 2.1–5, and 2.1–7 express x(t) and xl(t) in terms of each other
in the time and frequency domains.

The real and imaginary parts of xl(t) are called the in-phase component and the
quadrature component of x(t), respectively, and are denoted by xi (t) and xq (t). Both
xi (t) and xq (t) are real-valued lowpass signals, and we have

xl(t) = xi (t) + j xq (t) (2.1–10)
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Comparing Equations 2.1–10 and 2.1–7, we conclude that

xi (t) = x(t) cos 2π f0t + x̂(t) sin 2π f0t

xq (t) = x̂(t) cos 2π f0t − x(t) sin 2π f0t
(2.1–11)

Solving Equation 2.1–11 for x(t) and x̂(t) gives

x(t) = xi (t) cos 2π f0t − xq (t) sin 2π f0t

x̂(t) = xq (t) cos 2π f0t + xi (t) sin 2π f0t
(2.1–12)

Equation 2.1–12 shows that any bandpass signal x(t) can be expressed in terms of
two lowpass signals, namely, its in-phase and quadrature components.

Equation 2.1–10 expresses xl(t) in terms of its real and complex parts. We can
write a similar relation in polar coordinates expressing x(t) in terms of its magnitude
and phase. If we define the envelope and phase of x(t), denoted by rx (t) and θx (t),
respectively, by

rx (t) =
√

x2
i (t) + x2

q (t) (2.1–13)

θx (t) = arctan
xq (t)

xi (t)
(2.1–14)

we have

xl(t) = rx (t)e jθx (t) (2.1–15)

Substituting this result into Equation 2.1–8 gives

x(t) = Re
[
rx (t)e j(2π f0t+θx (t))] (2.1–16)

resulting in

x(t) = rx (t) cos (2π f0t + θx (t)) (2.1–17)

A bandpass signal and its envelope are shown in Figure 2.1–4.

FIGURE 2.1–4
A bandpass signal. The dashed curve denotes the envelope.
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It is important to note that xl(t)—and consequently xi (t), xq (t), rx (t), and θx (t)—
depends on the choice of the central frequency f0. For a given bandpass signal x(t),
different values of f0—as long as X+( f ) is nonzero only in the interval [ f0−W/2, f0+
W/2], where W/2 < f0—yield different lowpass signals xl(t). Therefore, it makes
more sense to define the lowpass equivalent of a bandpass signal with respect to a
specific f0. Since in most cases the choice of f0 is clear, we usually do not make this
distinction.

Equations 2.1–12 and 2.1–17 provide two methods for representing a bandpass
signal x(t) in terms of two lowpass signals, one in terms of the in-phase and quadrature
components and one in terms of the envelope and the phase. The two relations given in
Equations 2.1–8 and 2.1–12 that express the bandpass signal in terms of the lowpass
component(s) define the modulation process, i.e., the process of going from lowpass to
bandpass. The system that implements this process is called a modulator. The structure
of a general modulator implementing Equations 2.1–8 and 2.1–12 is shown in Fig-
ure 2.1–5(a) and (b). In this figure double lines and double blocks indicate complex
values and operations.

Similarly, Equations 2.1–7 and 2.1–11 represent how xl(t), or xi (t) and xq (t), can
be obtained from the bandpass signal x(t). This process, i.e., extracting the lowpass
signal from the bandpass signal, is called the demodulation process and is shown in
Figure 2.1–6(a) and (b). In these block diagrams the block denoted by H represents
a Hilbert transform, i.e., an LTI system with impulse response h(t) = 1

π t and transfer
function H ( f ) = − jsgn( f ).

xl(t) x(t)

�

�

�
xl(t) x(t)

xi(t)

xq(t)

cos 2�f0t

�sin 2�f0t

�
xl(t)

2x�(t)

x(t)
Re(·)

f0

Modulator

(a) (b)

(c)

e j2�f0t

FIGURE 2.1–5
A complex (a) and real (b) modulator. A general representation for a modulator is
shown in (c).
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x(t) xl(t)

f0

Demodulator

(a) (b)

(c)

xi(t)

xq(t)

x(t)

cos 2�f0t

�sin 2�f0t

�

�

�
sin 2�f0t

cos 2�f0t

�

�

�

�

�
xl(t)x(t)

e�j2�f0t

2x�(t)
�

��
x̂(t)

j
x̂(t)

FIGURE 2.1–6
A complex (a) and real (b) demodulator. A general representation for a demodulator is
shown in (c).

2.1–3 Energy Considerations

In this section we study the relation between energy contents of the signals introduced
in the preceding pages. The energy of a signal x(t) is defined as

E x =
∫ ∞

−∞
|x(t)|2 dt (2.1–18)

and by Rayleigh’s relation from Table 2.0–1 we can write

Ex =
∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X ( f )|2 dt (2.1–19)

Since there is no overlap between X+( f ) and X−( f ), we have X+( f )X−( f ) = 0,
and hence

Ex =
∫ ∞

−∞
|X+( f ) + X−( f )|2 d f

=
∫ ∞

−∞
|X+( f )|2 d f +

∫ ∞

−∞
|X−( f )|2 d f

= 2
∫ ∞

−∞
|X+( f )|2 d f

= 2Ex+

(2.1–20)
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On the other hand,

Ex = 2
∫ ∞

−∞
|X+( f )|2 d f

= 2
∫ ∞

−∞

∣∣∣∣ Xl( f )

2

∣∣∣∣
2

d f

= 1

2
Exl

(2.1–21)

This shows that the energy in the lowpass equivalent signal is twice the energy in the
bandpass signal.

We define the inner product of two signals x(t) and y(t) as

〈x(t), y(t)〉 =
∫ ∞

−∞
x(t)y∗(t) dt =

∫ ∞

−∞
X ( f )Y ∗( f ) d f (2.1–22)

where we have used Parseval’s relation from Table 2.0–1. Obviously

Ex = 〈x(t), x(t)〉 (2.1–23)

In Problem 2.2 we prove that if x(t) and y(t) are two bandpass signals with lowpass
equivalents xl(t) and yl(t) with respect to the same f0, then

〈x(t), y(t)〉 = 1

2
Re [〈xl(t), yl(t)〉] (2.1–24)

The complex quantity ρx,y , called the cross-correlation coefficient of x(t) and y(t), is
defined as

ρx,y = 〈x(t), y(t)〉√ExEy
(2.1–25)

and represents the normalized inner product between two signals. From Exl = 2Ex and
Equation 2.1–24 we can conclude that if x(t) and y(t) are bandpass signals with the
same f0, then

ρx,y = Re (ρxl ,yl ) (2.1–26)

Two signals are orthogonal if their inner product (and subsequently, their ρ) is
zero. Note that if ρxl ,yl = 0, then using Equation 2.1–26, we have ρx,y = 0; but the
converse is not necessarily true. In other words, orthogonality in the baseband implies
orthogonality in the pass band, but not vice versa.

E X A M P L E 2.1–1. Assume that m(t) is a real baseband signal with bandwidth W, and
define two signals x(t) = m(t) cos 2π f0t and y(t) = m(t) sin 2π f0t , where f0 > W .
Comparing these relations with Equation 2.1–12, we conclude that

xi (t) = m(t) xq (t) = 0

yi (t) = 0 yq (t) = −m(t)
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or, equivalently,

xl(t) = m(t)

yl(t) = − jm(t)

Note that here

ρxl ,yl = j
∫ ∞

−∞
m2(t) = jEm

Therefore,

ρx,y = Re (ρxl ,yl ) = Re ( jEm) = 0

This means that x(t) and y(t) are orthogonal, but their lowpass equivalents are not
orthogonal.

2.1–4 Lowpass Equivalent of a Bandpass System

A bandpass system is a system whose transfer function is located around a frequency
f0 (and its mirror image − f0). More formally, we define a bandpass system as a system
whose impulse response h(t) is a bandpass signal. Since h(t) is bandpass, it has a
lowpass equivalent denoted by hl(t) where

h(t) = Re
[
hl(t)e

j2π f0t] (2.1–27)

If a bandpass signal x(t) passes through a bandpass system with impulse response
h(t), then obviously the output will be a bandpass signal y(t). The relation between the
spectra of the input and the output is given by

Y ( f ) = X ( f )H ( f ) (2.1–28)

Using Equation 2.1–5, we have

Yl( f ) = 2Y ( f + f0)u−1( f + f0)

= 2X ( f + f0)H ( f + f0)u−1( f + f0)

= 1

2
[2X ( f + f0)u−1( f + f0)] [2H ( f + f0)u−1( f + f0)]

= 1

2
Xl( f )Hl( f ) (2.1–29)

where we have used the fact that for f > − f0, which is the range of frequencies of
interest, u2

−1( f + f0) = u−1( f + f0) = 1. In the time domain we have

yl(t) = 1

2
xl(t) � hl(t) (2.1–30)

Equations 2.1–29 and 2.1–30 show that when a bandpass signal passes through a
bandpass system, the input-output relation between the lowpass equivalents is very
similar to the relation between the bandpass signals, the only difference being that for
the lowpass equivalents a factor of 1

2 is introduced.
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2.2
SIGNAL SPACE REPRESENTATION OF WAVEFORMS

Signal space (or vector) representation of signals is a very effective and useful tool in
the analysis of digitally modulated signals. We cover this important approach in this
section and show that any set of signals is equivalent to a set of vectors. We show that
signals have the same basic properties of vectors. We study methods of determining an
equivalent set of vectors for a set of signals and introduce the notion of signal space
representation, or signal constellation, of a set of waveforms.

2.2–1 Vector Space Concepts

A vector v in an n-dimensional space is characterized by its n components v1 v2 · · · vn .
Let v denote a column vector, i.e., v = [v1 v2 · · · vn]t , where At denotes the transpose
of matrix A. The inner product of two n-dimensional vectors v1 = [v11 v12 · · · v1n]t

and v2 = [v21 v22 · · · v2n]t is defined as

〈v1, v2〉 = v1 · v2 =
n∑

i=1

v1iv
∗
2i = vH

2 v1 (2.2–1)

where AH denotes the Hermitian transpose of the matrix A, i.e., the result of first
transposing the matrix and then conjugating its elements. From the definition of the
inner product of two vectors it follows that

〈v1, v2〉 = 〈v2, v1〉∗ (2.2–2)

and therefore,

〈v1, v2〉 + 〈v2, v1〉 = 2 Re [〈v1, v2〉] (2.2–3)

A vector may also be represented as a linear combination of orthogonal unit vectors
or an orthonormal basis ei , 1 ≤ i ≤ n, i.e.,

v =
n∑

i=1

vi ei (2.2–4)

where, by definition, a unit vector has length unity and vi is the projection of the vector
v onto the unit vector ei , i.e., vi = 〈v, ei 〉. Two vectors v1 and v2 are orthogonal if
〈v1, v2〉 = 0. More generally, a set of m vectors vk , 1 ≤ k ≤ m, are orthogonal if
〈vi , v j 〉 = 0 for all 1 ≤ i, j ≤ m, and i �= j . The norm of a vector v is denoted by ‖v‖
and is defined as

‖v‖ = (〈v, v〉)1/2 =
√√√√ n∑

i=1

|vi |2 (2.2–5)

which in the n-dimensional space is simply the length of the vector. A set of m vec-
tors is said to be orthonormal if the vectors are orthogonal and each vector has a
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unit norm. A set of m vectors is said to be linearly independent if no one vector can be
represented as a linear combination of the remaining vectors. Any two n-dimensional
vectors v1 and v2 satisfy the triangle inequality

‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖ (2.2–6)

with equality if v1 and v2 are in the same direction, i.e., v1 = av2 where a is a positive
real scalar. The Cauchy–Schwarz inequality states that

|〈v1, v2〉| ≤ ‖v1‖ · ‖v2‖ (2.2–7)

with equality if v1 = av2 for some complex scalar a. The norm square of the sum of
two vectors may be expressed as

‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2 + 2 Re [〈v1, v2〉] (2.2–8)

If v1 and v2 are orthogonal, then 〈v1, v2〉 = 0 and, hence,

‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2 (2.2–9)

This is the Pythagorean relation for two orthogonal n-dimensional vectors. From matrix
algebra, we recall that a linear transformation in an n-dimensional vector space is a
matrix transformation of the form v′ = Av, where the matrix A transforms the vector
v into some vector v′. In the special case where v′ = λv, i.e.,

Av = λv

where λ is some scalar, the vector v is called an eigenvector of the transformation and
λ is the corresponding eigenvalue.

Finally, let us review the Gram–Schmidt procedure for constructing a set of or-
thonormal vectors from a set of n-dimensional vectors vi , 1 ≤ i ≤ m. We begin by
arbitrarily selecting a vector from the set, say, v1. By normalizing its length, we obtain
the first vector, say,

u1 = v1

‖v1‖ (2.2–10)

Next, we may select v2 and, first, subtract the projection of v2 onto u1. Thus, we obtain

u′
2 = v2 − (〈v2, u1〉)u1 (2.2–11)

Then we normalize the vector u′
2 to unit length. This yields

u2 = u′
2

‖u′
2‖

(2.2–12)

The procedure continues by selecting v3 and subtracting the projections of v3 into u1

and u2. Thus, we have

u′
3 = v3 − (〈v3, u1〉)u1 − (〈v3, u2〉)u2 (2.2–13)

Then the orthonormal vector u3 is

u3 = u′
3

‖u′
3‖

(2.2–14)
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By continuing this procedure, we construct a set of N orthonormal vectors, where
N ≤ min(m, n).

2.2–2 Signal Space Concepts

As in the case of vectors, we may develop a parallel treatment for a set of signals. The
inner product of two generally complex-valued signals x1(t) and x2(t) is denoted by
〈x1(t), x2(t)〉 and defined as

〈x1(t), x2(t)〉 =
∫ ∞

−∞
x1(t)x∗

2 (t) dt (2.2–15)

similar to Equation 2.1–22. The signals are orthogonal if their inner product is zero.
The norm of a signal is defined as

‖x(t)‖ =
(∫ ∞

−∞
|x(t)|2 dt

)1/2

=
√
Ex (2.2–16)

where Ex is the energy in x(t). A set of m signals is orthonormal if they are orthogonal
and their norms are all unity. A set of m signals is linearly independent if no signal can
be represented as a linear combination of the remaining signals. The triangle inequality
for two signals is simply

‖x1(t) + x2(t)‖ ≤ ‖x1(t)‖ + ‖ x2(t)‖ (2.2–17)

and the Cauchy–Schwarz inequality is

|〈x1(t), x2(t)〉| ≤ ‖x1(t)‖ · ‖x2(t)‖ =
√
Ex1Ex2 (2.2–18)

or, equivalently,∣∣∣∣
∫ ∞

−∞
x1(t)x∗

2 (t) dt

∣∣∣∣ ≤
∣∣∣∣
∫ ∞

−∞
|x1(t)|2 dt

∣∣∣∣
1/2 ∣∣∣∣

∫ ∞

−∞
|x2(t)|2 dt

∣∣∣∣
1/2

(2.2–19)

with equality when x2(t) = ax1(t), where a is any complex number.

2.2–3 Orthogonal Expansions of Signals

In this section, we develop a vector representation for signal waveforms, and thus we
demonstrate an equivalence between a signal waveform and its vector representation.
Suppose that s(t) is a deterministic signal with finite energy

Es =
∫ ∞

−∞
|s(t)|2 dt (2.2–20)

Furthermore, suppose that there exists a set of functions {φn(t), n = 1, 2, . . . , K } that
are orthonormal in the sense that

〈φn(t), φm(t)〉 =
∫ ∞

−∞
φn(t)φ∗

m(t) dt =
{

1 m = n

0 m �= n
(2.2–21)
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We may approximate the signal s(t) by a weighted linear combination of these func-
tions, i.e.,

ŝ(t) =
K∑

k=1

skφk(t) (2.2–22)

where {sk, 1 ≤ k ≤ K } are the coefficients in the approximation of s(t). The approx-
imation error incurred is

e(t) = s(t) − ŝ(t)

Let us select the coefficients {sk} so as to minimize the energy Ee of the approximation
error. Thus,

Ee =
∫ ∞

−∞
|s(t) − ŝ(t)|2 dt (2.2–23)

=
∫ ∞

−∞

∣∣∣∣∣s(t) −
K∑

k=1

skφk(t)

∣∣∣∣∣
2

dt (2.2–24)

The optimum coefficients in the series expansion of s(t) may be found by differentiating
Equation 2.2–23 with respect to each of the coefficients {sk} and setting the first deriva-
tives to zero. Alternatively, we may use a well-known result from estimation theory
based on the mean square error criterion, which, simply stated, is that the minimum
of Ee with respect to the {sk} is obtained when the error is orthogonal to each of the
functions in the series expansion. Thus,

∫ ∞

−∞

[
s(t) −

K∑
k=1

skφk(t)

]
φ∗

n (t) dt = 0, n = 1, 2, . . . , K (2.2–25)

Since the functions {φn(t)} are orthonormal, Equation 2.2–25 reduces to

sn = 〈s(t), φn(t)〉 =
∫ ∞

−∞
s(t)φ∗

n (t) dt, n = 1, 2, . . . , K (2.2–26)

Thus, the coefficients are obtained by projecting the signal s(t) onto each of the
functions {φn(t)}. Consequently, ŝ(t) is the projection of s(t) onto the K -dimensional
signal space spanned by the functions {φn(t)}, and therefore it is orthogonal to the error
signal e(t) = s(t) − ŝ(t), i.e., 〈e(t), ŝ(t)〉 = 0. The minimum mean-square approxima-
tion error is

Emin =
∫ ∞

−∞
e(t)s∗(t) dt (2.2–27)

=
∫ ∞

−∞
|s(t)|2 dt −

∫ ∞

−∞

K∑
k=1

skφk(t)s∗(t) dt (2.2–28)

= Es −
K∑

k=1

|sk |2 (2.2–29)
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which is nonnegative, by definition. When the minimum mean square approximation
error Emin = 0,

Es =
K∑

k=1

|sk |2 =
∫ ∞

−∞
|s(t)|2 dt (2.2–30)

Under the condition that Emin = 0, we may express s(t) as

s(t) =
K∑

k=1

skφk(t) (2.2–31)

where it is understood that equality of s(t) to its series expansion holds in the sense that
the approximation error has zero energy.

When every finite energy signal can be represented by a series expansion of the
form in Equation 2.2–31 for which Emin = 0, the set of orthonormal functions {φn(t)}
is said to be complete.

E X A M P L E 2.2–1. TRIGONOMETRIC FOURIER SERIES: Consider a finite energy real sig-
nal s(t) that is zero everywhere except in the range 0 ≤ t ≤ T and has a finite number
of discontinuities in this interval. Its periodic extension can be represented in a Fourier
series as

s(t) =
∞∑

k=0

(
ak cos

2πkt

T
+ bk sin

2πkt

T

)
(2.2–32)

where the coefficients {ak, bk} that minimize the mean square error are given by

a0 = 1

T

∫ T

0
s(t) dt

ak = 2

T

∫ T

0
s(t) cos

2πkt

T
dt, k = 1, 2, 3, . . .

bk = 2

T

∫ T

0
s(t) sin

2πkt

T
dt, k = 1, 2, 3, . . .

(2.2–33)

The set of functions {1/
√

T ,
√

2/T cos 2πkt/T ,
√

2/T sin 2πkt/T } is a complete
set for the expansion of periodic signals on the interval [0, T ], and, hence, the series
expansion results in zero mean square error.

E X A M P L E 2.2–2. EXPONENTIAL FOURIER SERIES: Consider a general finite energy sig-
nal s(t) (real or complex) that is zero everywhere except in the range 0 ≤ t ≤ T and
has a finite number of discontinuities in this interval. Its periodic extension can be
represented in an exponential Fourier series as

s(t) =
∞∑

n=−∞
xn e j2π n

T t (2.2–34)

where the coefficients {xn} that minimize the mean square error are given by

xn = 1

T

∫ ∞

−∞
x(t)e− j2π n

T t dt (2.2–35)
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The set of functions {√1/T e j2π n
T t } is a complete set for expansion of periodic signals

on the interval [0, T ], and, hence, the series expansion results in zero mean square
error.

2.2–4 Gram-Schmidt Procedure

Now suppose that we have a set of finite energy signal waveforms {sm(t), m = 1, 2, . . . ,

M} and we wish to construct a set of orthonormal waveforms. The Gram-Schmidt
orthogonalization procedure allows us to construct such a set. This procedure is similar
to the one described in Section 2.2–1 for vectors. We begin with the first waveform
s1(t), which is assumed to have energy E1. The first orthonormal waveform is simply
constructed as

φ1(t) = s1(t)√E1
(2.2–36)

Thus, φ1(t) is simply s1(t) normalized to unit energy. The second waveform is con-
structed from s2(t) by first computing the projection of s2(t) onto φ1(t), which is

c21 = 〈s2(t), φ1(t)〉 =
∫ ∞

−∞
s2(t)φ∗

1 (t) dt (2.2–37)

Then c21φ1(t) is subtracted from s2(t) to yield

γ2(t) = s2(t) − c21φ1(t) (2.2–38)

This waveform is orthogonal to φ1(t), but it does not have unit energy. If E2 denotes
the energy of γ2(t), i.e.,

E2 =
∫ ∞

−∞
γ 2

2(t) dt

the normalized waveform that is orthogonal to φ1(t) is

φ2(t) = γ2(t)√E2
(2.2–39)

In general, the orthogonalization of the kth function leads to

φk(t) = γk(t)√Ek
(2.2–40)

where

γk(t) = sk(t) −
k−1∑
i=1

ckiφi (t) (2.2–41)

cki = 〈sk(t), φi (t)〉 =
∫ ∞

−∞
sk(t)φ∗

i (t) dt, i = 1, 2, . . . , k − 1 (2.2–42)

Ek =
∫ ∞

−∞
γ 2

k (t) dt (2.2–43)
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Thus, the orthogonalization process is continued until all the M signal waveforms
{sm(t)} have been exhausted and N ≤ M orthonormal waveforms have been con-
structed. The dimensionality N of the signal space will be equal to M if all the signal
waveforms are linearly independent, i.e., none of the signal waveforms is a linear
combination of the other signal waveforms.

E X A M P L E 2.2–3. Let us apply the Gram-Schmidt procedure to the set of four wave-
forms illustrated in Figure 2.2–1. The waveform s1(t) has energy E1 = 2, so that

φ1(t) =
√

1

2
s1(t)

Next we observe that c21 = 0; hence, s2(t) and φ1(t) are orthogonal. Therefore, φ2(t) =
s2(t)/

√
E2 =

√
1
2 s2(t). To obtain φ3(t), we compute c31 and c32, which are c31 = √

2
and c23 = 0. Thus,

γ3(t) = s3(t) −
√

2φ1(t) =
{−1 2 ≤ t ≤ 3

0 otherwise

Since γ3(t) has unit energy, it follows that φ3(t) = γ3(t). Determining φ4(t), we find
that c41 = −√

2, c42 = 0, and c43 = 1. Hence,

γ4(t) = s4(t) +
√

2φ1(t) − φ3(t) = 0

Consequently, s4(t) is a linear combination of φ1(t) and φ3(t) and, hence, φ4(t) = 0.
The three orthonormal functions are illustrated in Figure 2.2–1(b).

Once we have constructed the set of orthonormal waveforms {φn(t)}, we can express
the M signals {sm(t)} as linear combinations of the {φn(t)}. Thus, we may write

sm(t) =
N∑

n=1

smnφn(t), m = 1, 2, . . . , M (2.2–44)

Based on the expression in Equation 2.2–44, each signal may be represented by the
vector

sm = [sm1 sm2 · · · sm N ]t (2.2–45)

or, equivalently, as a point in the N -dimensional (in general, complex) signal space with
coordinates {smn, n = 1, 2, . . . , N }. Therefore, a set of M signals {sm(t)}M

m=1 can be
represented by a set of M vectors {sm}M

m=1 in the N -dimensional space, where N ≤ M .
The corresponding set of vectors is called the signal space representation, or con-
stellation, of {sm(t)}M

m=1. If the original signals are real, then the corresponding vector
representations are in R

N ; and if the signals are complex, then the vector representations
are in C

N . Figure 2.2–2 demonstrates the process of obtaining the vector equivalent
from a signal (signal-to-vector mapping) and vice versa (vector-to-signal mapping).

From the orthonormality of the basis {φn(t)} it follows that

Em =
∫ ∞

−∞
|sm(t)|2 dt =

N∑
n=1

|smn|2 = ‖sm‖2 (2.2–46)
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�1(t) �3(t)

�2(t)

(b)

(a)

FIGURE 2.2–1
Gram-Schmidt orthogonalization of the signal {sm(t), m = 1, 2, 3, 4} and the corresponding
orthonormal basis.

The energy in the mth signal is simply the square of the length of the vector or, equiv-
alently, the square of the Euclidean distance from the origin to the point sm in the
N -dimensional space. Thus, any signal can be represented geometrically as a point in
the signal space spanned by the orthonormal functions {φn(t)}. From the orthonormality
of the basis it also follows that

〈sk(t), sl(t)〉 = 〈sk, sl〉 (2.2–47)

This shows that the inner product of two signals is equal to the inner product of the
corresponding vectors.
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FIGURE 2.2–2
Vector to signal (a), and signal to vector (b) mappings.

E X A M P L E 2.2–4. Let us obtain the vector representation of the four signals shown in
Figure 2.2–1(a) by using the orthonormal set of functions in Figure 2.2–1(b). Since
the dimensionality of the signal space is N = 3, each signal is described by three
components. The signal s1(t) is characterized by the vector s1 = (

√
2, 0, 0)t . Similarly,

the signals s2(t), s3(t), and s4(t) are characterized by the vectors s2 = (0,
√

2, 0)t ,
s3 = (

√
2, 0, 1)t , and s4 = (−√

2, 0, 1)t , respectively. These vectors are shown in
Figure 2.2–3. Their lengths are ‖s1‖ = √

2, ‖s2‖ = √
2, ‖s3‖ = √

3, and ‖s4‖ = √
3,

and the corresponding signal energies are Ek = ‖sk‖2, k = 1, 2, 3, 4.

We have demonstrated that a set of M finite energy waveforms {sm(t)} can be rep-
resented by a weighted linear combination of orthonormal functions {φn(t)} of dimen-
sionality N ≤ M . The functions {φn(t)} are obtained by applying the Gram-Schmidt
orthogonalization procedure on {sm(t)}. It should be emphasized, however, that the
functions {φn(t)} obtained from the Gram-Schmidt procedure are not unique. If we
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�2

�3

�1

FIGURE 2.2–3
The four signal vectors represented as points in
three-dimensional space.

alter the order in which the orthogonalization of the signals {sm(t)} is performed, the
orthonormal waveforms will be different and the corresponding vector representation
of the signals {sm(t)} will depend on the choice of the orthonormal functions {φn(t)}.
Nevertheless, the dimensionality of the signal space N will not change, and the vectors
{sm} will retain their geometric configuration; i.e., their lengths and their inner products
will be invariant to the choice of the orthonormal functions {φn(t)}.

E X A M P L E 2.2–5. An alternative set of orthonormal functions for the four signals in
Figure 2.2–1(a) is illustrated in Figure 2.2–4(a). By using these functions to expand
{sn(t)}, we obtain the corresponding vectors s1 = (1, 1, 0)t , s2 = (1, −1, 0)t , s3 =
(1, 1, −1)t , and s4 = (−1, −1, −1)t , which are shown in Figure 2.2–4(b). Note that
the vector lengths are identical to those obtained from the orthonormal functions {φn(t)}.

�1(t) �2(t) �3(t)

�2

�1

�3

(a)

(b)

FIGURE 2.2–4
An alternative set of orthonormal functions for the four signals in Figure 2.2–1(a) and the
corresponding signal points.
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Bandpass and Lowpass Orthonormal Basis
Let us consider the case in which the signal waveforms are bandpass and represented as

sm(t) = Re
[
sml(t)e

j2π f0t], m = 1, 2, . . . , M (2.2–48)

where {sml(t)} denotes the lowpass equivalent signals. Recall from Section 2.1–1 that if
two lowpass equivalent signals are orthogonal, the corresponding bandpass signals are
orthogonal too. Therefore, if {φnl(t), n = 1, . . . , N } constitutes an orthonormal basis
for the set of lowpass signals {sml(t)}, then the set {φn(t), n = 1, . . . , N } where

φn(t) =
√

2 Re
[
φnl(t)e

j2π f0t] (2.2–49)

is a set of orthonormal signals, where
√

2 is a normalization factor to make sure each
φn(t) has unit energy. However, this set is not necessarily an orthonormal basis for
expansion of {sm(t), m = 1, . . . , M}. In other words, there is no guarantee that this set
is a complete basis for expansion of the set of signals {sm(t), m = 1, . . . , M}. Here our
goal is to see how an orthonormal basis for representation of bandpass signals can be
obtained from an orthonormal basis used for representation of the lowpass equivalents
of the bandpass signals.

Since we have

sml(t) =
N∑

n=1

smlnφnl(t), m = 1, . . . , M (2.2–50)

where

smln = 〈sml(t), φnl(t)〉, m = 1, . . . , M, n = 1, . . . , N (2.2–51)

from Equations 2.2–48 and 2.2–50 we can write

sm(t) = Re

[(
N∑

n=1

smlnφnl(t)

)
e j2π f0t

]
, m = 1, . . . , M (2.2–52)

or

sm(t) = Re

[
N∑

n=1

smlnφnl(t)

]
cos 2π f0t − Im

[
N∑

n=1

smlnφnl(t)

]
sin 2π f0t (2.2–53)

In Problem 2.6 we will see that when an orthonormal set of signals {φnl(t), n =
1, . . . , N } constitutes an N -dimensional complex basis for representation of {sml(t),
m = 1, . . . , M}, then the set {φn(t), φ̃n(t), n = 1, . . . , N }, where

φn(t) =
√

2 Re
[
φnl(t)e

j2π f0t] =
√

2φni (t) cos 2π f0t −
√

2φnq (t) sin 2π f0t

φ̃n(t) = −
√

2 Im
[
φnl(t)e

j2π f0t] = −
√

2φni (t) sin 2π f0t −
√

2φnq (t) cos 2π f0t
(2.2–54)

constitutes a 2N -dimensional orthonormal basis that is sufficient for representation of
M bandpass signals

sm(t) = Re
[
sml(t)e

j2π f0t] , m = 1, . . . , M (2.2–55)



Proakis-27466 book September 25, 2007 13:9

Chapter Two: Deterministic and Random Signal Analysis 39

In some cases not all basis functions in the set of basis given by Equation 2.2–54 are
necessary, and only a subset of them would be sufficient to expand the bandpass signals.
In Problem 2.7 we will further show that

φ̃(t) = −φ̂(t) (2.2–56)

where φ̂(t) denotes the Hilbert transform of φ(t).
From Equation 2.2–52 we have

sm(t) = Re

[(
N∑

n=1

smlnφnl(t)

)
e j2π f0t

]

=
N∑

n=1

Re
[
(smlnφnl(t)) e j2π f0t]

=
N∑

n=1

[
s(r )

mln√
2

φn(t) + s(i)
mln√

2
φ̃n(t)

]
(2.2–57)

where we have assumed that smln = s(r )
mln + js(i)

mln . Equations 2.2–54 and 2.2–57 show
how a bandpass signal can be expanded in terms of the basis used for expansion of its
lowpass equivalent. In general, lowpass signals can be represented by an N -dimensional
complex vector, and the corresponding bandpass signal can be represented by 2N -
dimensional real vectors. If the complex vector

sml = (sml1, sml2, . . . , sml N )t

is a vector representation for the lowpass signal sml(t) using the lowpass basis {φnl(t),
n = 1, . . . , N }, then the vector

sm =
(

s(r )
ml1√

2
,

s(r )
ml2√

2
, . . . ,

s(r )
ml N√

2
,

s(i)
ml1√

2
,

s(i)
ml2√

2
, . . . ,

s(i)
ml N√

2

)t

(2.2–58)

is a vector representation of the bandpass signal

sm(t) = Re
[
sml(t)e

j2π f0t]
when the bandpass basis {φn(t), φ̃n(t), n = 1, . . . , N } given by Equations 2.2–54 and
2.2–57 is used.

E X A M P L E 2.2–6. Let us assume M bandpass signals are defined by

sm(t) = Re
[

Am g(t)e j2π f0t
]

(2.2–59)

where Am’s are arbitrary complex numbers and g(t) is a real lowpass signal with energy
Eg . The lowpass equivalent signals are given by

sml(t) = Am g(t)

and therefore the unit-energy signal φ(t) defined by

φ(t) = g(t)√
Eg

is sufficient to expand all sml(t)’s.
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We have

sml(t) = Am

√
Eg φ(t)

thus, corresponding to each sml(t) we have a single complex scalar Am
√
Eg =(

A(r )
m + j A(i)

m

) √
Eg; i.e., the lowpass signals constitute one complex dimension (or,

equivalently, two real dimensions). From Equation 2.2–54 we conclude that

φ(t) =
√

2

Eg
g(t) cos 2π f0t

φ̃(t) = −
√

2

Eg
g(t) sin 2π f0t

can be used as a basis for expansion of the bandpass signals.
Using this basis and Equation 2.2–57, we have

sm(t) = A(r )
m

√
Eg

2
φ(t) + A(i)

m

√
Eg

2
φ̃(t)

= A(r )
m g(t) cos 2π f0t − A(i)

m g(t) sin 2π f0t

which agrees with the straightforward expansion of Equation 2.2–59. Note that in the
special case where all Am’s are real, φ(t) is sufficient to represent the bandpass signals
and φ̃(t) is not necessary.

2.3
SOME USEFUL RANDOM VARIABLES

In subsequent chapters, we shall encounter several different types of random variables.
In this section we list these frequently encountered random variables, their probability
density functions (PDFs), their cumulative distribution functions (CDFs), and their
moments. Our main emphasis will be on the Gaussian random variable and many
random variables that are derived from the Gaussian random variable.

The Bernoulli Random Variable
The Bernoulli random variable is a discrete binary-valued random variable taking values
1 and 0 with probabilities p and 1 − p, respectively. Therefore the probability mass
function (PMF) for this random variable is given by

P [X = 1] = p P [X = 0] = 1 − p (2.3–1)

The mean and variance of this random variable are given by

E [ X ] = p

VAR [X ] = p(1 − p)
(2.3–2)
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The Binomial Random Variable
The binomial random variable models the sum of n independent Bernoulli random
variables with common parameter p. The PMF of this random variable is given by

P [X = k] =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n (2.3–3)

For this random variable we have

E [X ] = np

VAR [X ] = np(1 − p)
(2.3–4)

This random variable models, for instance, the number of errors when n bits are trans-
mitted over a communication channel and the probability of error for each bit is p.

The Uniform Random Variable
The uniform random variable is a continuous random variable with PDF

p(x) =
{

1
b−a a ≤ x ≤ b
0 otherwise

(2.3–5)

where b > a and the interval [a, b] is the range of the random variable. Here we have

E [X ] = b − a

2
(2.3–6)

VAR [X ] = (b − a)2

12
(2.3–7)

The Gaussian (Normal) Random Variable
The Gaussian random variable is described in terms of two parameters m ∈ R and
σ > 0 by the PDF

p(x) = 1√
2πσ 2

e− (x−m)2

2σ2 (2.3–8)

We usually use the shorthand form N (m, σ 2) to denote the PDF of Gaussian random
variables and write X ∼ N (m, σ 2). For this random variable

E [X ] = m

VAR [X ] = σ 2
(2.3–9)

A Gaussian random variable with m = 0 and σ = 1 is called a standard normal. A
function closely related to the Gaussian random variable is the Q function defined as

Q(x) = P [N (0, 1) > x] = 1√
2π

∫ ∞

x
e− t2

2 dt (2.3–10)
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(a) (b)

FIGURE 2.3–1
PDF and CDF of a Gaussian random variable.

The CDF of a Gaussian random variable is given by

F(x) =
∫ x

−∞

1√
2πσ 2

e− (t−m)2

2σ2 dt

= 1 −
∫ ∞

x

1√
2πσ 2

e− (t−m)2

2σ2 dt

= 1 −
∫ ∞

x−m
σ

1√
2π

e− u2

2 du

= 1 − Q
(

x − m

σ

)

(2.3–11)

where we have introduced the change of variable u = (t − m)/σ . The PDF and the
CDF of a Gaussian random variable are shown in Figure 2.3–1.

In general if X ∼ N (m, σ 2), then

P [X > α] = Q
(

α − m

σ

)

P [X < α] = Q
(

m − α

σ

) (2.3–12)

Following are some of the important properties of the Q function:

Q(0) = 1

2
Q(∞) = 0 (2.3–13)

Q(−∞) = 1 Q(−x) = 1 − Q(x) (2.3–14)

Some useful bounds for the Q function for x > 0 are

Q(x) ≤ 1

2
e− x2

2

Q(x) <
1

x
√

2π
e− x2

2

Q(x) >
x

(1 + x2)
√

2π
e− x2

2

(2.3–15)
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FIGURE 2.3–2
Plot of Q(x) and its upper and lower bounds.

From the last two bounds we conclude that for large x we have

Q(x) ≈ 1

x
√

2π
e− x2

2 (2.3–16)

A plot of the Q function bounds is given in Figure 2.3–2. Tables 2.3–1 and 2.3–2 give
values of the Q function.

TABLE 2.3–1

Table of Q Function Values

x Q(x) x Q(x) x Q(x) x Q(x)

0 0.500000 1.8 0.035930 3.6 0.000159 5.4 3.3320×10−8

0.1 0.460170 1.9 0.028717 3.7 0.000108 5.5 1.8990×10−8

0.2 0.420740 2 0.022750 3.8 7.2348×10−5 5.6 1.0718×10−8

0.3 0.382090 2.1 0.017864 3.9 4.8096×10−5 5.7 5.9904×10−9

0.4 0.344580 2.2 0.013903 4 3.1671×10−5 5.8 3.3157×10−9

0.5 0.308540 2.3 0.010724 4.1 2.0658×10−5 5.9 1.8175×10−9

0.6 0.274250 2.4 0.008198 4.2 1.3346×10−5 6 9.8659×10−10

0.7 0.241960 2.5 0.006210 4.3 8.5399×10−6 6.1 5.3034×10−10

0.8 0.211860 2.6 0.004661 4.4 5.4125×10−6 6.2 2.8232×10−10

0.9 0.184060 2.7 0.003467 4.5 3.3977×10−6 6.3 1.4882×10−10

1 0.158660 2.8 0.002555 4.6 2.1125×10−6 6.4 7.7689×10−11

1.1 0.135670 2.9 0.001866 4.7 1.3008×10−6 6.5 4.0160×10−11

1.2 0.115070 3 0.001350 4.8 7.9333×10−7 6.6 2.0558×10−11

1.3 0.096800 3.1 0.000968 4.9 4.7918×10−7 6.7 1.0421×10−11

1.4 0.080757 3.2 0.000687 5 2.8665×10−7 6.8 5.2309×10−12

1.5 0.066807 3.3 0.000483 5.1 1.6983×10−7 6.9 2.6001×10−12

1.6 0.054799 3.4 0.000337 5.2 9.9644×10−8 7 1.2799×10−12

1.7 0.044565 3.5 0.000233 5.3 5.7901×10−8 7.1 6.2378×10−13
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TABLE 2.3–2

Selected Q Function
Values

Q(x) x

10−1 1.2816
10−2 2.3263
10−3 3.0902
10−4 3.7190
10−5 4.2649
10−6 4.7534
10−7 5.1993

0.5×10−5 4.4172
0.25×10−5 4.5648

0.667×10−5 4.3545

Another function closely related to the Q function is the complementary error
function, defined as

erfc(x) = 2√
π

∫ ∞

x
e−t2

dt (2.3–17)

The complementary error function is related to the Q function as follows:

Q(x) = 1

2
erfc

(
x√
2

)

erfc(x) = 2Q(
√

2x)

(2.3–18)

The characteristic function† of a Gaussian random variable is given by

�X (ω) = e jωm− 1
2 ω2σ 2

(2.3–19)

Problem 2.21 shows that for an N (m, σ 2) random variable we have

E
[
(X − m)n] =

{
1 × 3 × 5 × · · · × (2k − 1)σ 2k = (2k)!σ 2k

2k k! for n = 2k
0 for n = 2k + 1

(2.3–20)
from which we can obtain moments of the Gaussian random variable.

The sum of n independent Gaussian random variables is a Gaussian random variable
whose mean and variance are the sum of the means and the sum of the variances of the
random variables, respectively.

†Recall that for any random variable X , the characteristic function is defined by �X (ω) = E[e jωX ].
The moment generating function (MGF) is defined by �X (t) = E[et X ]. Obviously, �(t) = �(− j t) and
�(ω) = �( jω).
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The Chi-Square (χ2) Random Variable
If {Xi , i = 1, . . . , n} are iid (independent and identically distributed) zero-mean
Gaussian random variables with common variance σ 2 and we define

X =
n∑

i=1

X2
i

then X is a χ2 random variable with n degrees of freedom. The PDF of this random
variable is given by

p(x) =
{

1
2n/2�( n

2 )σ n x
n
2 −1e− x

2σ2 x > 0

0 otherwise
(2.3–21)

where �(x) is the gamma function defined by

�(x) =
∫ ∞

0
t x−1e−t dt, (2.3–22)

The gamma function has simple poles at x = 0, −1, −2, −3, . . . and satisfies the
following properties. The gamma function can be thought of as a generalization of the
notion of factorial.

�(x + 1) = x�(x),

�(1) = 1

�

(
1

2

)
= √

π

�

(
n

2
+ 1

)
=

{( n
2

)
! n even and positive√

π n(n−2)(n−4)...3×1

2
n+1

2
n odd and positive

(2.3–23)

When n is even, i.e., n = 2m, the CDF of the χ2 random variable with n degrees
of freedom has a closed form given by

F(x) =

⎧⎪⎨
⎪⎩

1 − e− x
2σ2

m−1∑
k=0

1

k!

(
x

2σ 2

)k

x > 0

0 otherwise

(2.3–24)

The mean and variance of a χ2 random variable with n degrees of freedom are given by

E [X ] = nσ 2

VAR [X ] = 2nσ 4
(2.3–25)

The characteristic function for a χ2 random variable with n degrees of freedom is
given by

�(ω) =
(

1

1 − 2 jωσ 2

) n
2

(2.3–26)
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The special case of aχ2 random variable with two degrees of freedom is of particular
interest. In this case the PDF is given by

p(x) =
{

1
2σ 2 e− x

2σ2 x > 0
0 otherwise

(2.3–27)

This is the PDF of an exponential random variable with mean equal to 2σ 2.
The χ2 random variable is a special case of a gamma random variable. A gamma

random variable is defined by a PDF of the form

p(x) =
{

λ(λx)α−1e−λx

�(α) x ≥ 0

0 otherwise
(2.3–28)

where λ, α > 0. A χ2 random variable is a gamma random variable with λ = 1
2σ 2 and

α = n
2 .

Plots of the χ2 random variable with n degrees of freedom for different values of
n are shown in Figure 2.3–3.

The Noncentral Chi-Square (χ2) Random Variable
The noncentral χ2 random variable with n degrees of freedom is defined similarly to a
χ2 random variable in which Xi ’s are independent Gaussians with common variance
σ 2 but with different means denoted by mi . This random variable has a PDF of the form

p(x) =
{

1
2σ 2

( x
s2

) n−2
4 e− s2+x

2σ2 I n
2 −1

( s
σ 2

√
x
)

x > 0
0 otherwise

(2.3–29)
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FIGURE 2.3–3
The PDF of the χ2 random variable for different values of n. All plots are shown for σ = 1.
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where s is defined as

s =
√√√√ n∑

i=1

m2
i (2.3–30)

and Iα(x) is the modified Bessel function of the first kind and order α given by

Iα(x) =
∞∑

k=0

(x/2)α+2k

k! �(α + k + 1)
, x ≥ 0 (2.3–31)

where �(x) is the gamma function defined by Equation 2.3–22. The function I0(x) can
be written as

I0(x) =
∞∑

k=0

(
xk

2k k!

)2

(2.3–32)

and for x > 1 can be approximated by

I0(x) ≈ ex

√
2πx

(2.3–33)

Two other expressions for I0(x), which are used frequently, are

I0(x) = 1

π

∫ π

0
e±x cos φ dφ

I0(x) = 1

2π

∫ 2π

0
ex cos φ dφ

(2.3–34)

The CDF of this random variable, when n = 2m, can be written in the form

F(x) =
{

1 − Qm

(
s
σ
,

√
x

σ

)
x > 0

0 otherwise
(2.3–35)

where Qm(a, b) is the generalized Marcum Q function and is defined as

Qm(a, b) =
∫ ∞

b
x

(
x

a

)m−1

e−(x2+a2)/2 Im−1(ax) dx

= Q1(a, b) + e−(a2+b2)/2
m−1∑
k=1

(
b

a

)k

Ik(ab)

(2.3–36)

In Equation 2.3–36, Q1(a, b) is the Marcum Q function defined as

Q1(a, b) =
∫ ∞

b
xe− a2+x2

2 I0(ax) dx (2.3–37)

or

Q1(a, b) = e− a2+b2

2

∞∑
k=0

(
a

b

)k

Ik(ab), b ≥ a > 0 (2.3–38)
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This function satisfies the following properties:

Q1(x, 0) = 1

Q1(0, x) = e− x2

2

Q1(a, b) ≈ Q(b − a) for b � 1 and b � b − a

(2.3–39)

For a noncentral χ2 random variable, the mean and variance are given by

E [X ] = nσ 2 + s2

VAR [X ] = 2nσ 4 + 4σ 2s2
(2.3–40)

and the characteristic function is given by

�(ω) =
(

1

1 − 2 jωσ 2

) n
2

e
jωs2

1−2 jωσ2 (2.3–41)

The Rayleigh Random Variable
If X1 and X2 are two iid Gaussian random variables each distributed according to
N (0, σ 2), then

X =
√

X2
1 + X2

2 (2.3–42)

is a Rayleigh random variable. From our discussion of the χ2 random variables, it is
readily seen that a Rayleigh random variable is the square root of a χ2 random variable
with two degrees of freedom. We can also conclude that the Rayleigh random variable
is the square root of an exponential random variable as given by Equation 2.3–27. The
PDF of a Rayleigh random variable is given by

p(x) =
{

x
σ 2 e− x2

2σ2 x > 0
0 otherwise

(2.3–43)

and its mean and variance are

E [X ] = σ

√
π

2

VAR [X ] =
(

2 − π

2

)
σ 2

(2.3–44)

In general, the nth moment of a Rayleigh random variable is given by

E
[
Xk] = (2σ 2)k/2�

(
k

2
+ 1

)
(2.3–45)

and its characteristic function is given by

�X (ω) = 1 F1

(
1,

1

2
; −1

2
ω2σ 2

)
+ j

√
π

2
ωσe− ω2σ2

2 (2.3–46)
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where 1 F1 (a, b; x) is the confluent hypergeometric function defined by

1 F1 (a, b; x) =
∞∑

k=0

�(a + k)�(b)xk

�(a)�(b + k)k!
, b �= 0, −1, −2, . . . (2.3–47)

The function 1 F1 (a, b; x) can also be written as the integral

1 F1 (a, b; x) = �(b)

�(b − a)�(a)

∫ 1

0
ext ta−1(1 − t)b−a−1 dt (2.3–48)

In Beaulieu (1990), it is shown that

1 F1

(
1,

1

2
; −x

)
= −e−x

∞∑
k=0

xk

(2k − 1)k!
(2.3–49)

The CDF of a Rayleigh random variable can be easily found by integrating the
PDF. The result is

F(x) =
{

1 − e− x2

2σ2 x > 0
0 otherwise

(2.3–50)

The PDF of a Rayleigh random variable is plotted in Figure 2.3–4.
A generalized version of the Rayleigh random variable is obtained when we have

n iid zero-mean Gaussian random variables {Xi , 1 ≤ i ≤ n} where each Xi has an
N (0, σ 2) distribution. In this case

X =
√√√√ n∑

i=1

X2
i (2.3–51)

has a generalized Rayleigh distribution. The PDF for this random variable is given by

p(x) =
⎧⎨
⎩

xn−1

2
n−2

2 σ n�( n
2 )

e− x2

2σ2 x ≥ 0

0 otherwise
(2.3–52)

p(x)

x

�1 � �

�

�2 � �

FIGURE 2.3–4
The PDF of the Rayleigh random variable
for three different values of σ .
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For the generalized Rayleigh, and with n = 2m, the CDF is given by

F(x) =
⎧⎨
⎩

1 − e− x2

2σ2
∑m−1

k=0
1
k!

(
x2

2σ 2

)k
x ≥ 0

0 otherwise
(2.3–53)

The kth moment of a generalized Rayleigh for any integer value of n (even or odd) is
given by

E
[
Xk] = (2σ 2)

k
2

�
( n+k

2

)
�

( n
2

) (2.3–54)

The Ricean Random Variable
If X1 and X2 are two independent Gaussian random variables distributed according to
N (m1, σ

2) andN (m2, σ
2) (i.e., the variances are equal and the means may be different),

then

X =
√

X2
1 + X2

2 (2.3–55)

is a Ricean random variable with PDF

p(x) =
{

x
σ 2 I0

( sx
σ 2

)
e− x2+s2

2σ2 x > 0
0 otherwise

(2.3–56)

where s =
√

m2
1 + m2

2 and I0(x) is given by Equation 2.3–32. It is clear that a Ricean

random variable is the square root of a noncentral χ2 random variable with two degrees
of freedom.

It is readily seen that for s = 0, the Ricean random variable reduces to a Rayleigh
random variable. For large s the Ricean random variable can be well approximated by
a Gaussian random variable.

The CDF of a Ricean random variable can be expressed as

F(x) =
{

1 − Q1
( s

σ
, x

σ

)
x > 0

0 otherwise
(2.3–57)

where Q1(a, b) is defined by Equations 2.3–37 and 2.3–38.
The first two moments of the Ricean random variable are given by

E [X ] = σ

√
π

2
1 F1

(
−1

2
, 1, − s2

2σ 2

)

= σ

√
π

2
e− K

2

[
(1 + K )I0

(
K

2

)
+ K I1

(
K

2

)]

E
[
X2] = 2σ 2 + s2

(2.3–58)

where K is the Rice factor defined in Equation 2.3–60.
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In general, the kth moment of this random variable is given by

E
[
Xk] = (2σ 2)

k
2 �

(
1 + k

2

)
1 F1

(
−k

2
, 1; − s2

2σ 2

)
(2.3–59)

Another form of the Ricean density function is obtained by defining the Rice factor
K as

K = s2

2σ 2
(2.3–60)

If we define A = s2 + 2σ 2, the Ricean PDF can be written as

p(x) =
⎧⎨
⎩

2(K+1)
A xe− K+1

A (x2+ AK
K+1 ) I0

(
2x

√
K (K+1)

A

)
x ≥ 0

0 otherwise
(2.3–61)

For the normalized case when A = 1 (or, equivalently, when E
[
X2

] = s2 + 2σ 2 = 1)
this reduces to

p(x) =
{

2(K + 1)xe−(K+1)(x2+ K
K+1 ) I0

(
2x

√
K (K + 1)

)
x ≥ 0

0 otherwise
(2.3–62)

A plot of the PDF of a Ricean random variable for different values of K is shown
in Figure 2.3–5.

Similar to the Rayleigh random variable, a generalized Ricean random variable
can be defined as

X =
√√√√ n∑

i=1

X2
i (2.3–63)

1.4

1.8

1

1.6

K � 10

K � 1

K � 0.1

2

1.2

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2 2.5 3

FIGURE 2.3–5
The Ricean PDF for different values of K . For small K this random variable reduces to a
Rayleigh random variable, and for large K it is well approximated by a Gaussian random
variable.
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where Xi ’s are independent Gaussians with mean mi and common variance σ 2. In this
case the PDF is given by

p(x) =
⎧⎨
⎩

x
n
2

σ 2s
n−2

2
e− x2+s2

2σ2 I n
2 −1

( xs
σ 2

)
x ≥ 0

0 otherwise
(2.3–64)

and the CDF is given by

F(x) =
{

1 − Qm
( s

σ
, x

σ

)
x ≥ 0

0 otherwise
(2.3–65)

where

s =
√√√√ n∑

i=1

m2
i

The kth moment of a generalized Ricean is given by

E
[
Xk] = (2σ 2)

k
2 e− s2

2σ2
�

( n+k
2

)
�

( n
2

) 1 F1

(
n + k

2
,

n

2
; s2

2σ 2

)
(2.3–66)

The Nakagami Random Variable
Both the Rayleigh distribution and the Rice distribution are frequently used to describe
the statistical fluctuations of signals received from a multipath fading channel. These
channel models are considered in Chapters 13 and 14. Another distribution that is
frequently used to characterize the statistics of signals transmitted through multipath
fading channels is the Nakagami m distribution. The PDF for this distribution is given
by Nakagami (1960) as

p(x) =
{

2
�(m)

(m
�

)m
x2m−1e−mx2/� x > 0

0 otherwise
(2.3–67)

where � is defined as

� = E
[
X2] (2.3–68)

and the parameter m is defined as the ratio of moments, called the fading figure,

m = �2

E
[(

X2 − �
)2

] , m ≥ 1

2
(2.3–69)

A normalized version of Equation 2.3–67 may be obtained by defining another
random variable Y = X/

√
� (see Problem 2.42). The nth moment of X is

E
[
Xn] = �

(
m + n

2

)
�(m)

(
�

m

)n/2

(2.3–70)
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The mean and the variance for this random variable are given by

E [X ] = �
(
m + 1

2

)
�(m)

(
�

m

)1/2

VAR [X ] = �

⎛
⎝1 − 1

m

(
�

(
m + 1

2

)
�(m)

)2
⎞
⎠

(2.3–71)

By setting m = 1, we observe that Equation 2.3–67 reduces to a Rayleigh PDF.
For values of m in the range 1

2 ≤ m ≤ 1, we obtain PDFs that have larger tails than a
Rayleigh-distributed random variable. For values of m > 1, the tail of the PDF decays
faster than that of the Rayleigh. Figure 2.3–6 illustrates the Nakagami PDF for different
values of m.

FIGURE 2.3–6
The PDF for the Nakagami m distribution, shown with � = 1. m is the fading figure.
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The Lognormal Random Variable
Suppose that a random variable Y is normally distributed with mean m and variance σ 2.
Let us define a new random variable X that is related to Y through the transformation
Y = ln X (or X = eY ). Then the PDF of X is

p(x) =
{

1√
2πσ 2 x

e−(ln x−m)2/2σ 2
x ≥ 0

0 otherwise
(2.3–72)

For this random variable

E [X ] = em+ σ2

2

VAR [X ] = e2m+σ 2
(

eσ 2 − 1
) (2.3–73)

The lognormal distribution is suitable for modeling the effect of shadowing of the
signal due to large obstructions, such as tall buildings, in mobile radio communications.
Examples of the lognormal PDF are shown in Figure 2.3–7.

Jointly Gaussian Random Variables
An n × 1 column random vector X with components {Xi , 1 ≤ i ≤ n} is called a
Gaussian vector, and its components are called jointly Gaussian random variables or

0.5

m � 0

m � 1

m � 2

m � 3

0.7

0.6

0.4

0.3

0.2

0.1

0
0 5 10 15

FIGURE 2.3–7
Lognormal PDF with σ = 1 for different values of m.
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multivariate Gaussian random variables if the joint PDF of Xi ’s can be written as

p(x) = 1

(2π )n/2(det C)1/2
e− 1

2 (x−m)t C−1(x−m) (2.3–74)

where m and C are the mean vector and covariance matrix, respectively, of X and are
given by

m = E [X]

C = E
[
(X − m)(X − m)t] (2.3–75)

From this definition it is clear that

Ci j = COV
[
Xi , X j

]
(2.3–76)

and therefore C is a symmetric matrix. From elementary probability it is also well
known that C is nonnegative definite.

In the special case of n = 2, we have

m =
[

m1

m2

]

C =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

] (2.3–77)

where

ρ = COV [X1, X2]

σ1σ2

is the correlation coefficient of the two random variables. In this case the PDF
reduces to

p(x1, x2) = 1

2πσ1σ2

√
1 − ρ2

e
−

(
x1−m1

σ1

)2
+
(

x2−m2
σ2

)2
−2ρ

(
x1−m1

σ1

)(
x2−m2

σ2

)
2(1−ρ2) (2.3–78)

where m1, m2, σ
2
1 and, σ 2

2 are means and variances of the two random variables and ρ

is their correlation coefficient. Note that in the special case when ρ = 0 (i.e., when the
two random variables are uncorrelated), we have

p(x1, x2) = N (
m1, σ

2
1

) × N (
m2, σ

2
2

)
This means that the two random variables are independent, and therefore for this case
independence and uncorrelatedness are equivalent. This property is true for general
jointly Gaussian random variables.

Another important property of jointly Gaussian random variables is that linear
combinations of jointly Gaussian random variables are also jointly Gaussian. In other
words, if X is a Gaussian vector, the random vector Y = AX , where the invertible
matrix A represents a linear transformation, is also a Gaussian vector whose mean and
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covariance matrix are given by

mY = AmX

CY = AC X At (2.3–79)

This property is developed in Problem 2.23.
In summary, jointly Gaussian random variables have the following important

properties:

1. For jointly Gaussian random variables, uncorrelated is equivalent to independent.
2. Linear combinations of jointly Gaussian random variables are themselves jointly

Gaussian.
3. The random variables in any subset of jointly Gaussian random variables are jointly

Gaussian, and any subset of random variables conditioned on random variables in
any other subset is also jointly Gaussian (all joint subsets and all conditional subsets
are Gaussian).

We also emphasize that any set of independent Gaussian random variables is jointly
Gaussian, but this is not necessarily true for a set of dependent Gaussian random
variables.

Table 2.3–3 summarizes some of the properties of the most important random
variables.

2.4
BOUNDS ON TAIL PROBABILITIES

Performance analysis of communication systems requires computation of error proba-
bilities of these systems. In many cases, as we will observe in the following chapters,
the error probability of a communication system is expressed in terms of the probability
that a random variable exceeds a certain value, i.e., in the form of P [X > α]. Unfortu-
nately, in many cases these probabilities cannot be expressed in closed form. In such
cases we are interested in finding upper bounds on these tail probabilities. These upper
bounds are of the form P [X > α] ≤ β. In this section we describe different methods
for providing and tightening such bounds.

The Markov Inequality
The Markov inequality gives an upper bound on the tail probability of nonnegative
random variables. Let us assume that X is a nonnegative random variable, i.e., p(x) = 0
for all x < 0, and assume α > 0 is an arbitrary positive real number. The Markov
inequality states that

P [X ≥ α] ≤ E [X ]

α
(2.4–1)
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To see this, we observe that

E [X ] =
∫ ∞

0
xp(x) dx

≥
∫ ∞

α

xp(x) dx

≥ α

∫ ∞

α

xp(x) dx

= α P [X ≥ α]

(2.4–2)

Dividing both sides by α gives the desired inequality.

Chernov Bound
The Chernov bound is a very tight and useful bound that is obtained from the Markov
inequality. Unlike the Markov inequality that is applicable only to nonnegative random
variables, the Chernov bound can be applied to all random variables.

Let X be an arbitrary random variable, and let δ and ν be arbitrary real numbers
(ν �= 0). Define random variable Y by Y = eνX and constant α by α = eνδ . Obviously,
Y is a nonnegative random variable and α is a positive real number. Applying the
Markov inequality to Y and α yields

P
[
eνX ≥ eνδ

] ≤ E
[
eνX

]
eνδ

= E
[
eν(X−δ)] (2.4–3)

The event {eνX ≥ eνδ} is equivalent to the event {νX ≥ νδ} which for positive or
negative values of ν is equivalent to {X ≥ δ} or {X ≤ δ}, respectively. Therefore we
have

P [X ≥ δ] ≤ E
[
eν(X−δ)] , for all ν > 0 (2.4–4)

P [X ≤ δ] ≤ E
[
eν(X−δ)] , for all ν < 0 (2.4–5)

Since the two inequalities are valid for all positive and negative values of ν, re-
spectively, it makes sense to find the values of ν that give the tightest possible bounds.
To this end, we differentiate the right hand of the inequalities with respect to ν and
find its root; this is the value of ν that gives the tightest bound. From this point on,
we will consider only the first inequality. The extension to the second inequality is
straightforward.

Let us define function g(ν) to denote the right side of the inequalities, i.e.,

g(ν) = E
[
eν(X−δ)]

Differentiating g(ν), we have

g′(ν) = E
[
(X − δ)eν(X−δ)] (2.4–6)

The second derivative of g(ν) is given by

g′′(ν) = E
[
(X − δ)2 eν(X−δ)]
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It is easily seen that for all ν, we have g′′(ν) > 0 and hence g(ν) is convex and g′(ν) is
an increasing function, and therefore can have only one root. In addition, since g(ν) is
convex, this single root minimizes g(ν) and therefore results in the the tightest bound.
Putting g′(ν) = 0, we find the root to be obtained by solving the equation

E
[
XeνX] = δ E

[
eνX]

(2.4–7)

Equation 2.4–7 has a single root ν∗ that gives the tightest bound. The only thing that
remains to be checked is to see whether this ν∗ satisfies the ν∗ > 0 condition. Since g′(ν)
is an increasing function, its only root is positive if g′(0) < 0. From Equation 2.4–6 we
have

g′(0) = E [X ] − δ

therefore ν∗ > 0 if and only if δ > E [X ].
Summarizing, from Equations 2.4–4 and 2.4–5 we conclude

P [X ≥ δ] ≤ e−ν∗δ E
[
eν∗ X

]
, for δ > E [X ] (2.4–8)

P [X ≤ δ] ≤ e−ν∗δ E
[
eν∗ X

]
, for δ < E [X ] (2.4–9)

where ν∗ is the solution of Equation 2.4–7. Equations 2.4–8 and 2.4–9 are known as
Chernov bounds. Finding optimal ν∗ by solving Equation 2.4–7 is sometimes difficult.
In such cases a numerical approximation or an educated guess gives a suboptimal
bound. The Chernov bound can also be given in terms of the moment generating
function (MGF) �X (ν) = E

[
eνX

]
as

P [X ≥ δ] ≤ e−ν∗δ�X (ν∗), for δ > E [X ] (2.4–10)

P [X ≤ δ] ≤ e−ν∗δ�X (ν∗), for δ < E [X ] (2.4–11)

E X A M P L E 2.4–1. Consider the Laplace PDF given by

p(x) = 1

2
e−|x | (2.4–12)

Let us evaluate the upper tail probability P [X ≥ δ] for some δ > 0 from the Chernov
bound and compare it with the true tail probability, which is

P [X ≥ δ] =
∫ ∞

δ

1

2
e−x dx = 1

2
e−δ (2.4–13)

First note that E [X ] = 0, and therefore the condition δ > E [X ] needed to use the
upper tail probability in the Chernov bound is satisfied. To solve Equation 2.4–7 for ν∗,
we must determine E

[
XeνX

]
and E

[
eνX

]
. For the PDF in Equation 2.4–12, we find

that E
[
XeνX

]
and E

[
eνX

]
converge only if −1 < ν < 1, and for this range of values

of ν we have

E
[
XeνX

] = 2ν

(ν + 1)2(ν − 1)2

E
[
eνX

] = 1

(1 + ν)(1 − ν)

(2.4–14)
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Substituting these values into Equation 2.4–7, we obtain the quadratic equation

ν2δ + 2ν − δ = 0

which has the solutions

ν∗ = −1 ± √
1 + δ2

δ
(2.4–15)

Since ν∗ must be in the (−1, +1) interval for E
[
XeνX

]
and E

[
eνX

]
to converge, the

only acceptable solution is

ν∗ = −1 + √
1 + δ2

δ
(2.4–16)

Finally, we evaluate the upper bound in Equation 2.4–8 by substituting for ν∗ from
Equation 2.4–16. The result is

P [X ≥ δ] ≤ δ2

2(−1 + √
1 + δ2)

e1−√
1+δ2

(2.4–17)

For δ � 1, Equation 2.4–17 reduces to

P(X ≥ δ) ≤ δ

2
e−δ (2.4–18)

We note that the Chernov bound decreases exponentially as δ increases. Consequently,
it approximates closely the exact tail probability given by Equation 2.4–13.

E X A M P L E 2.4–2. In performance analysis of communication systems over fading chan-
nels, we encounter random variables of the form

X = d2 R2 + 2Rd N (2.4–19)

where d is a constant, R is a Ricean random variable with parameters s and σ represent-
ing channel attenuation due to fading, and N is a zero-mean Gaussian random variable
with variance N0

2 representing channel noise. It is assumed that R and N are indepen-
dent random variables. We are interested to apply the Chernov bounding technique to
find an upper bound on P [X < 0]. From the Chernov bound given in Equation 2.4–5,
we have

P [X ≤ 0] ≤ E
[
eνX

]
, for all ν < 0 (2.4–20)

To determine E
[
eνX

]
, we use the well-known relation

E [Y ] = E [E [Y |X]] (2.4–21)

from elementary probability. We note that conditioned on R, X is a Gaussian random
variable with mean d2 R2 and variance 2R2d2 N0. Using the relation for the moment
generating function of a Gaussian random variable from Table 2.3–3, we have

E
[
eνX |R] = eνd2 R2+ν2d2 N0 R2 = eνd2(1+N0ν)R2

(2.4–22)
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Now noting that R2 is a noncentral χ2 random variable with two degrees of freedom,
and using the characteristic function for this random variable from Table 2.3–3, we
obtain

E
[
eνX

] = E
[
E

[
eνX |R]]

= E
[
eνd2(1+N0ν)R2

]

= 1

1 − 2νd2(1 + N0ν)σ 2
e

νd2(1+N0ν)s2

1−2νd2(1+N0ν)σ2

(2.4–23)

where we have used Equation 2.4–21. From Equations 2.4–20 and 2.4–23 we conclude
that

P [X ≤ 0] ≤ min
ν<0

1

1 − 2νd2(1 + N0ν)σ 2
e

νd2(1+N0ν)s2

1−2νd2(1+N0ν)σ2 (2.4–24)

It can be easily verified by differentiation that in the range of interest (ν < 0), the right-
hand side is an increasing function of λ = νd2(1 + N0ν), and therefore the minimum
is achieved when λ is minimized. By simple differentiation we can verify that λ is
minimized for ν = − 1

2N0
, resulting in

P [X ≤ 0] ≤ 1

1 + d2

2N0
σ 2

e
−

d2
4N0

s2

1+ d2
2N0

σ2
(2.4–25)

If we use Equation 2.3–61 or 2.3–62 for the Ricean random variable, we obtain the
following bounds:

P [X ≤ 0] ≤ K + 1

K + 1 + A2d2

4N0

e
−

A2 K d2
4N0

K+1+ d2 A2
4N0 (2.4–26)

and

P [X ≤ 0] ≤ K + 1

K + 1 + d2

4N0

e
−

K d2
4N0

K+1+ d2
4N0 (2.4–27)

For the case of Rayleigh fading channels, in which s = 0, these relations reduce to

P [X ≤ 0] ≤ 1

1 + d2

2N0
σ 2

(2.4–28)

Chernov Bound for Sums of Random Variables
Let {Xi }, 1 ≤ i ≤ n, denote a sequence of iid random variables and define

Y = 1

n

n∑
i=1

Xi (2.4–29)



Proakis-27466 book September 25, 2007 13:9

62 Digital Communications

We are interested to find a bound on P [Y > δ], where δ > E [X ]. Applying the Chernov
bound, we have

P [Y > δ] = P

[
n∑

i=1

Xi > nδ

]

≤ E
[

eν
(∑n

i=1
Xi −nδ

)]

= [
E

[
eν(X−δ)]]n

, ν > 0

(2.4–30)

To find the optimal choice of ν we equate the derivative of the right-hand side to
zero

d

dν

[
E

[
eν(X−δ)]]n = n

[
E

[
eν(X−δ)]]n−1

E
[
(X − δ)eν(X−δ)] = 0 (2.4–31)

The single root of this equation is obtained by solving

E
[
XeνX] = δ E

[
eνX]

(2.4–32)

which is exactly Equation 2.4–7. Therefore, for the sum of iid random variables we
find the ν∗ solution of Equation 2.4–7, and then we use

P [Y > δ] ≤
[
E

[
eν∗(X−δ)

]]n = e−nν∗δ
[
E

[
eν∗ X

]]n
(2.4–33)

E X A M P L E 2.4–3. The Xi ’s are binary iid random variables with P [X = 1] = 1 −
P [X = −1] = p, where p < 1

2 . We are interested to find a bound on

P

[
n∑

i=1

Xi > 0

]

We have E [X ] = p− (1− p) = 2p−1 < 0. Assuming δ = 0, the condition δ > E [X ]
is satisfied, and the preceding development can be applied to this case. We have

E
[
XeνX

] = peν − (1 − p)e−ν (2.4–34)

and Equation 2.4–7 becomes

peν − (1 − p)e−ν = 0 (2.4–35)

which has the unique solution

ν∗ = 1

2
ln

1 − p

p
(2.4–36)

Using this value, we have

E
[
eν∗ X

] = p

√
1 − p

p
+ (1 − p)

√
p

1 − p
= 2

√
p(1 − p) (2.4–37)

Substituting this result into Equation 2.4–33 results in

P

[
n∑

i=1

Xi > 0

]
≤ [4p(1 − p)]

n
2 (2.4–38)
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Since for p < 1
2 we have 4p(1 − p) < 1, the bound given in Equation 2.4–38 tends to

zero exponentially.

2.5
LIMIT THEOREMS FOR SUMS OF RANDOM VARIABLES

If {Xi , i = 1, 2, 3, . . . } represents a sequence of iid random variables, then it is intu-
itively clear that the running average of this sequence, i.e.,

Yn = 1

n

n∑
i=1

Xi (2.5–1)

should in some sense converge to the average of the random variables. Two limit
theorems, i.e., the law of large numbers (LLN) and the central limit theorem (CLT),
rigorously state how the running average of the random variable behaves as n becomes
large.

The (strong) law of large numbers states that if {Xi , i = 1, 2, . . . } is a sequence of
iid random variables with E [X1] < ∞, then

1

n

n∑
i=1

Xi −→ E [X1] (2.5–2)

where the type of convergence is convergence almost everywhere (a.e.) or convergence
almost surely (a.s.), meaning the set of points in the probability space for which the
left-hand side does not converge to the right-hand side has zero probability.

The central limit theorem states that if {Xi , i = 1, 2, . . . } is a sequence of iid
random variables with m = E [X1] < ∞ and σ 2 = VAR [X1] < ∞, then we have

1
n

∑n
i=1 Xi − m

σ√
n

−→ N (0, 1) (2.5–3)

The type of convergence in the CLT is convergence in distribution, meaning the CDF
of the left-hand side converges to the CDF of N (0, 1) as n increases.

2.6
COMPLEX RANDOM VARIABLES

A complex random variable Z = X + jY can be considered as a pair of real random
variables X and Y . Therefore, we treat a complex random variable as a two-dimensional
random vector with components X and Y . The PDF of a complex random variable is
defined to be the joint PDF of its real and complex parts. If X and Y are jointly
Gaussian random variables, then Z is a complex Gaussian random variable. The PDF
of a zero-mean complex Gaussian random variable Z with iid real and imaginary parts
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is given by

p(z) = 1

2πσ 2
e− x2+y2

2σ2 (2.6–1)

= 1

2πσ 2
e− |z|2

2σ2 (2.6–2)

For a complex random variable Z , the mean and variance are defined by

E [Z ] = E [X ] + j E [Y ] (2.6–3)

VAR [Z ] = E
[|Z |2] − |E [Z ]|2 = VAR [X ] + VAR [Y ] (2.6–4)

2.6–1 Complex Random Vectors

A complex random vector is defined as Z = X + jY , where X and Y are real-valued
random vectors of size n. We define the following real-valued matrices for a complex
random vector Z.

C X = E
[
(X − E[X]) (X − E[X])t] (2.6–5)

CY = E
[
(Y − E[Y ]) (Y − E[Y ])t] (2.6–6)

C XY = E
[
(X − E[X]) (Y − E[Y ])t] (2.6–7)

CY X = E
[
(Y − E[Y ]) (X − E[X])t] (2.6–8)

Matrices C X and CY are the covariance matrices of real random vectors X and Y ,
respectively, and hence they are symmetric and nonnegative definite. It is clear from
above that CY X = C t

XY .
The PDF of Z is the joint PDF of its real and imaginary parts. If we define the

2n-dimensional real vector

Z̃ =
[

X

Y

]
(2.6–9)

then the PDF of the complex vector Z is the PDF of the real vector Z̃. It is clear that
C Z̃, the covariance matrix of Z̃, can be written as

C Z̃ =
[

C X C XY

CY X CY

]
(2.6–10)

We also define the following two, in general complex-valued, matrices

C Z = E
[
(Z − E[Z]) (Z − E[Z])H ]

(2.6–11)

C̃ Z = E
[
(Z − E[Z]) (Z − E[Z])t] (2.6–12)

where At denotes the transpose and AH denotes the Hermitian transpose of A (A is
transposed and each element of it is conjugated). C Z and C̃ Z are called the covariance
and the pseudocovariance of the complex random vector Z, respectively. It is easy to
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verify that for any Z, the covariance matrix is Hermitian† and nonnegative definite. The
pseudocovariance is skew-Hermitian.

From these definitions it is easy to verify the following relations.

C Z = C X + CY + j (CY X − C XY ) (2.6–13)

C̃ Z = C X − CY + j (C XY + CY X ) (2.6–14)

C X = 1

2
Re [C Z + C̃ Z] (2.6–15)

CY = 1

2
Re [C Z − C̃ Z] (2.6–16)

CY X = 1

2
Im [C Z + C̃ Z] (2.6–17)

C XY = 1

2
Im [C̃ Z − C Z] (2.6–18)

Proper and Circularly Symmetric Random Vectors
A complex random vector Z is called proper if its pseudocovariance is zero, i.e., if
C̃ Z = 0. From Equation 2.6–14 it is clear that for a proper random vector we have

C X = CY (2.6–19)

C XY = −CY X (2.6–20)

Substituting these results into Equations 2.6–13 to 2.6–18 and 2.6–10, we conclude
that for proper random vectors

C Z = 2C X + 2 j CY X (2.6–21)

C X = CY = 1

2
Re [C Z] (2.6–22)

CY X = −C XY = 1

2
Im [C Z] (2.6–23)

C Z̃ =
[

C X C XY

−C XY C X

]
(2.6–24)

For the special case of n = 1, i.e., when we are dealing with a single complex
random variable Z = X + jY , the conditions for being proper become

VAR [X ] = VAR [Y ] (2.6–25)

COV [X, Y ] = −COV [Y, X ] (2.6–26)

which means that Z is proper if X and Y have equal variances and are uncorrelated. In
this case VAR [Z ] = 2 VAR [X ]. Since in the case of jointly Gaussian random variables
uncorrelated is equivalent to independent, we conclude that a complex Gaussian random

†Matrix A is Hermitian if A = AH. It is skew-Hermitian if AH = −A.
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variable Z is proper if and only if its real and complex parts are independent with equal
variance. For a zero-mean proper complex Gaussian random variable, the PDF is given
by Equation 2.6–2.

If the complex random vector Z = X + jY is Gaussian, meaning that X and Y
are jointly Gaussian, then we have

p(z) = p( z̃) = 1

(2π )n(det C Z̃)
1
2

e− 1
2 ( z̃−m̃)t C Z̃

−1( z̃−m̃) (2.6–27)

where

m̃ = E
[
Z̃

]
(2.6–28)

It can be shown that in the special case where Z is a proper n-dimensional complex
Gaussian random vector, with mean m = E [Z] and nonsingular covariance matrix C Z,
its PDF can be written as

p(z) = 1

πn det C Z
e− 1

2 (z−m)†C Z
−1(z−m) (2.6–29)

A complex random vector Z is called circularly symmetric or circular if rotating the
vector by any angle does not change its PDF. In other words, a complex random vector
Z is circularly symmetric if Z and e jθ Z have the same PDF for all θ . In Problem 2.34
we will see that if Z is circular, then it is zero-mean and proper, i.e., E [Z] = 0 and
E

[
ZZt

] = 0. In Problem 2.35 we show that if Z is a zero-mean proper Gaussian
complex vector, then Z is circular. In other words, for complex Gaussian random
vectors being zero-mean and proper is equivalent to being circular.

In Problem 2.36 we show that if Z is a proper complex vector, then any affine
transformation of it, i.e., any transform of the form W = AZ + b, is also a proper
complex vector. Since we know that if Z is Gaussian, so is W , we conclude that if Z is
a proper Gaussian vector, so is W . For more details on properties of proper and circular
random variables and random vectors, the reader is referred to Neeser and Massey
(1993) and Eriksson and Koivunen (2006).

2.7
RANDOM PROCESSES

Random processes, stochastic processes, or random signals are fundamental in the study
of communication systems. Modeling information sources and communication chan-
nels requires a good understanding of random processes and techniques for analyzing
them. We assume that the reader has a knowledge of the basic concepts of random
processes including definitions of mean, autocorrelation, cross-correlation, stationar-
ity, and ergodicity as given in standard texts such as Leon-Garcia (1994), Papoulis and
Pillai (2002), Stark and Woods (2002). In the following paragraphs we present a brief
review of the most important properties of random processes.
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The mean m X (t) and the autocorrelation function of a random process X (t) are
defined as

m X (t) = E [X (t)] (2.7–1)

RX (t1, t2) = E
[
X (t1)X∗(t2)

]
(2.7–2)

The cross-correlation function of two random processes X (t) and Y (t) is defined by

RXY (t1, t2) = E
[
X (t1)Y ∗(t2)

]
(2.7–3)

Note that RX (t2, t1) = R∗
X (t1, t2), i.e., RX (t1, t2) is Hermitian. For the cross-correlation

we have RY X (t2, t1) = R∗
XY (t1, t2).

2.7–1 Wide-Sense Stationary Random Processes

Random process X (t) is wide-sense stationary (WSS) if its mean is constant and
RX (t1, t2) = RX (τ ) where τ = t1 − t2. For WSS processes RX (−τ ) = R∗

X (τ ). Two
processes X (t) and Y (t) are jointly wide-sense stationary if both X (t) and Y (t) are
WSS and RXY (t1, t2) = RXY (τ ). For jointly WSS processes RY X (−τ ) = R∗

XY (τ ). A
complex process is WSS if its real and imaginary parts are jointly WSS.

The power spectral density (PSD) or power spectrum of a WSS random process
X (t) is a functionSX ( f ) describing the distribution of power as a function of frequency.
The unit for power spectral density is watts per hertz. The Wiener-Khinchin theorem
states that for a WSS process, the power spectrum is the Fourier transform of the
autocorrelation function RX (τ ), i.e.,

SX ( f ) = F [RX (τ )] (2.7–4)

Similarly, the cross spectral density (CSD) of two jointly WSS processes is defined as
the Fourier transform of their cross-correlation function.

SXY ( f ) = F [RXY (τ )] (2.7–5)

The cross spectral density satisfies the following symmetry property:

SXY ( f ) = S∗
Y X ( f ) (2.7–6)

From properties of the autocorrelation function it is easy to verify that the power
spectral density of any real WSS process X (t) is a real, nonnegative, and even function of
f . For complex processes, power spectrum is real and nonnegative, but not necessarily
even. The cross spectral density can be a complex function, even when both X (t) and
Y (t) are real processes.

If X (t) and Y (t) are jointly WSS random processes, then Z (t) = aX (t) + bY (t) is
a WSS random process with autocorrelation and power spectral density given by

RZ (τ ) = |a|2 RX (τ ) + |b|2 RY (τ ) + ab∗ RXY (τ ) + ba∗ RY X (τ ) (2.7–7)

SZ ( f ) = |a|2SX ( f ) + |b|2SY ( f ) + 2 Re [ab∗SXY ( f )] (2.7–8)
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In the special case where a = b = 1, we have Z (t) = X (t) + Y (t), which results in

RZ (τ ) = RX (τ ) + RY (τ ) + RXY (τ ) + RY X (τ ) (2.7–9)

SZ ( f ) = SX ( f ) + SY ( f ) + 2 Re [SXY ( f )] (2.7–10)

and when a = 1 and b = j , we have Z (t) = X (t) + jY (t) and

RZ (τ ) = RX (τ ) + RY (τ ) + j (RY X (τ ) + RXY (τ )) (2.7–11)

SZ ( f ) = SX ( f ) + SY ( f ) + 2 Im [SXY ( f )] (2.7–12)

When a WSS process X (t) passes through an LTI system with impulse response
h(t) and transfer function H ( f ) = F [h(t)], the output process Y (t) and X (t) are
jointly WSS and the following relations hold:

mY = m X

∫ ∞

−∞
h(t) dt (2.7–13)

RXY (τ ) = RX (τ ) � h∗(−τ ) (2.7–14)

RY (τ ) = RX (τ ) � h(τ ) � h∗(−τ ) (2.7–15)

mY = m X H (0) (2.7–16)

SXY ( f ) = SX ( f )H∗( f ) (2.7–17)

SY ( f ) = SX ( f )|H ( f )|2 (2.7–18)

The power in a WSS process X (t) is the sum of the powers at all frequencies, and
therefore it is the integral of the power spectrum over all frequencies. We can write

PX = E
[|X (t)|2] = RX (0) =

∫ ∞

−∞
SX ( f ) d f (2.7–19)

Gaussian Random Processes
A real random process X (t) is Gaussian if for all positive integers n and for all
(t1, t2, . . . , tn), the random vector (X (t1), X (t2), . . . , X (tn))t is a Gaussian random vec-
tor; i.e., random variables {X (ti )}n

i=1 are jointly Gaussian random variables. Similar
to jointly Gaussian random variables, linear filtering of Gaussian random processes
results in a Gaussian random process, even when the filtering is time-varying.

Two real random processes X (t) and Y (t) are jointly Gaussian if for all positive
integers n, m and all (t1, t2, . . . , tn), and (t ′

1, t ′
2, . . . , t ′

m), the random vector

(X (t1), X (t2), . . . , X (tn), Y (t ′
1), Y (t ′

2), . . . , Y (t ′
m))t

is a Gaussian vector. For two jointly Gaussian random processes X (t) and Y (t), being
uncorrelated, i.e., having

RXY (t + τ, t) = E [X (t + τ )] E [Y (t)] for all t and τ (2.7–20)

is equivalent to being independent.
A complex process Z (t) = X (t) + jY (t) is Gaussian if X (t) and Y (t) are jointly

Gaussian processes.
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White Processes
A process is called a white process if its power spectral density is constant for all
frequencies; this constant value is usually denoted by N0

2 .

SX ( f ) = N0

2
(2.7–21)

Using Equation 2.7–19, we see that the power in a white process is infinite, indicating
that white processes cannot exist as a physical process. Although white processes are not
physically realizable processes, they are very useful, closely modeling some important
physical phenomenon including the thermal noise.

Thermal noise is the noise generated in electric devices by thermal agitation of
electrons. Thermal noise can be closely modeled by a random process N (t) having the
following properties:

1. N (t) is a stationary process.
2. N (t) is a zero-mean process.
3. N (t) is a Gaussian process.
4. N (t) is a white process whose power spectral density is given by

SN ( f ) = N0

2
= kT

2
(2.7–22)

where T is the ambient temperature in kelvins and k is Boltzmann’s constant, equal
to 38 × 10−23 J/K.

Discrete-Time Random Processes
Discrete-time random processes have similar properties to continuous time processes.
In particular the PSD of a WSS discrete-time random process is defined as the discrete-
time Fourier transform of its autocorrelation function

SX ( f ) =
∞∑

m=−∞
RX (m)e− j2π f m (2.7–23)

and the autocorrelation function can be obtained as the inverse Fourier transform of the
power spectral density as

RX (m) =
∫ 1/2

−1/2
SX ( f )e j2π f m d f (2.7–24)

The power in a discrete-time random process is given by

P = E
[|X (n)|2] = RX (0) =

∫ 1/2

−1/2
SX ( f ) d f (2.7–25)
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2.7–2 Cyclostationary Random Processes

A random process X (t) is cyclostationary if its mean and autocorrelation function are
periodic functions with the same period T0. For a cyclostationary process we have

m X (t + T0) = m X (t) (2.7–26)

RX (t1 + T0, t2 + T0) = RX (t1, t2) (2.7–27)

Cyclostationary processes are encountered frequently in the study of communi-
cation systems because many modulated processes can be modeled as cyclostationary
processes. For a cyclostationary process, the average autocorrelation function is defined
as the average of the autocorrelation function over one period

RX (τ ) = 1

T0

∫ T0

0
RX (t + τ, t) dt (2.7–28)

The (average) power spectral density for a cyclostationary process is defined as the
Fourier transform of the average autocorrelation function, i.e.,

SX ( f ) = F
[

RX (τ )
]

(2.7–29)

E X A M P L E 2.7–1. Let {an} denote a discrete-time WSS random process with mean
ma(n) = E [an] = ma and autocorrelation function Ra(m) = E

[
an+ma∗

n

]
. Define the

random process

X (t) =
∞∑

n=−∞
ang(t − nT ) (2.7–30)

for an arbitrary deterministic function g(t). We have

m X (t) = E [X (t)] = ma

∞∑
n=−∞

g(t − nT ) (2.7–31)

This function is obviously periodic with period T . For the autocorrelation function we
have

RX (t + τ, t) =
∞∑

n=−∞

∞∑
m=−∞

E
[
ana∗

m

]
g(t + τ − nT )g∗(t − mT ) (2.7–32)

=
∞∑

n=−∞

∞∑
m=−∞

Ra(n − m)g(t + τ − nT )g∗(t − mT ) (2.7–33)

It can readily be verified that

RX (t + τ + T, t + T ) = RX (t + τ, t) (2.7–34)

Equations 2.7–31 and 2.7–34 show that X (t) is a cyclostationary process.
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2.7–3 Proper and Circular Random Processes

For a complex random process Z (t) = X (t) + jY (t), we define the covariance and the
pseudocovariance, similar to the case of complex random vectors, as

CZ (t + τ, t) = E [Z (t + τ )Z∗(t)] (2.7–35)

C̃Z (t + τ, t) = E [Z (t + τ )Z (t)] (2.7–36)

It is easy to verify that similar to Equations 2.6–13 and 2.6–14, we have

CZ (t + τ, t) = CX (t + τ, t) + CY (t + τ, t) + j (CY X (t + τ, t) − CXY (t + τ, t))
(2.7–37)

C̃Z (t + τ, t) = CX (t + τ, t) − CY (t + τ, t) + j (CY X (t + τ, t) + CXY (t + τ, t))
(2.7–38)

A complex random process Z (t) is proper if its pseudocovariance is zero, i.e.,
C̃Z (t + τ, t) = 0. For a proper random process we have

CX (t + τ, t) = CY (t + τ, t) (2.7–39)

CY X (t + τ, t) = −CXY (t + τ, t) (2.7–40)

and

CZ (t + τ, t) = 2CX (t + τ, t) + j2CY X (t + τ, t) (2.7–41)

If Z (t) is a zero-mean process, then all covariances in Equations 2.7–35 to
2.7–41 are substituted with auto- or cross-correlations. When Z (t) is WSS, all auto-
and cross-correlations are functions of τ only. A proper Gaussian random process is a
random process for which, for all n and all (t1, t2, . . . , tn), the complex random vector
(Z (t1), Z (t2), . . . , Z (tn))t is a proper Gaussian vector.

A complex random process Z (t) is circular if for all θ , Z (t) and e jθ Z (t) have the
same statistical properties. Similar to the case of complex vectors, it can be shown
that if Z (t) is circular, then it is both proper and zero-mean. For the case of Gaussian
processes, being proper and zero-mean is equivalent to being circular. Also similar to
the case of complex vectors, passing a circular Gaussian process through a linear (not
necessarily time-invariant) system results in a circular Gaussian process at the output.

2.7–4 Markov Chains

Markov chains are discrete-time, discrete-valued random processes in which the current
value depends on the entire past values only through the most recent values. In a j th-
order Markov chain, the current value depends on the past values only through the most
recent j values, i.e.,

P [Xn = xn

∣∣Xn−1 = xn−1, Xn−2 = xn−2, . . . ]

= P [Xn = xn

∣∣Xn−1 = xn−1, Xn−2 = xn−2, . . . , Xn− j = xn− j ] (2.7–42)
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It is convenient to consider the set of the most recent j values as the state of the
Markov chain. With this definition the current state of the Markov chain,
i.e., Sn = (Xn, Xn−1, . . . , Xn− j+1), depends only on the most recent state Sn−1 =
(Xn−1, Xn−2, . . . , Xn− j ). That is,

P [Sn = sn |Sn−1 = sn−1, Sn−2 = sn−2, . . . ] = P [Sn = sn |Sn−1 = sn−1 ] (2.7–43)

which represents a first-order Markov chain in terms of the state variable Sn . Note that
with this notation, Xn is a deterministic function of state Sn . We can generalize this
notion to the case where the state evolves according to Equation 2.7–43 but the output—
or the value of the random process Xn—depends on state Sn through a conditional
probability mass function

P [Xn = xn |Sn = sn ] (2.7–44)

With this background, we define a Markov chain† as a finite-state machine with
state at time n, denoted by Sn , taking values in the set {1, 2, . . . , S} such that Equation
2.7–43 holds and the value of the random process at time n, denoted by Xn and taking
values in a discrete set, depends statistically on the state through the conditional PMF
P [Xn = xn |Sn = sn ].

The internal development of the process depends on the set of states and the proba-
bilistic law that governs the transitions between the states. If P [Sn |Sn−1 ] is independent
of n (time), the Markov chain is called homogeneous. In this case the probability of
transition from state i to state j , 1 ≤ i, j ≤ S, is independent of n and is denoted
by Pi j

Pi j = P [Sn = j |Sn−1 = i ] (2.7–45)

In a homogeneous Markov chain, we define the state transition matrix, or one-
step transition matrix, P as a matrix with elements Pi j . The element at row i and
column j denotes the probability of a direct transition from state i to state j . P is a
matrix with nonnegative elements, and the sum of each row of it is equal to 1. The
n-step transition matrix gives the probabilities of moving from i to j in n steps. For
discrete-time homogeneous Markov chains, the n-step transition matrix is equal to Pn .
All Markov chains studied here are assumed to be homogeneous.

The row vector p(n) = [p1(n) p2(n) · · · , pS(n)], where pi (n) denotes the prob-
ability of being in state i at time n, is the state probability vector of the Markov chain
at time n. From this definition it is clear that

p(n) = p(n − 1)P (2.7–46)

and

p(n) = p(0)Pn (2.7–47)

†Strictly speaking, this is the definition of a finite-state Markov chain (FSMC), which is the only class of
Markov chains studied in this book.



Proakis-27466 book September 25, 2007 13:9

Chapter Two: Deterministic and Random Signal Analysis 73

If limn→∞ Pn exists and all its rows are equal, we denote each row of the limit by
p, i.e.,

lim
n→∞ Pn =

⎡
⎢⎢⎢⎢⎣

p

p
...

p

⎤
⎥⎥⎥⎥⎦ (2.7–48)

In this case

lim
n→∞ p(n) = lim

n→∞ p(0)Pn = p(0)

⎡
⎢⎢⎢⎢⎣

p

p
...

p

⎤
⎥⎥⎥⎥⎦ = p (2.7–49)

This means that starting from any initial probability vector p(0), the Markov chain
stabilizes at the state probability vector given by p, which is called the steady-state,
equilibrium, or stationary state probability distribution of the Markov chain. Since after
reaching the steady-state probability distribution these probabilities do not change, p
can be obtained as the solution of the equation

pP = p (2.7–50)

that satisfies the conditions pi ≥ 0 and
∑

i pi = 1 (i.e., it is a probability vector). If a
Markov chain starts from state p, then it will always remain in this state, because pP =
p. Some basic questions are the following: Does pP = p always have a solution that is
a probability vector? If yes, under what conditions is this solution unique? Under what
conditions does limn→∞ Pn exist? If the limit exists, does the limit have equal rows?

If it is possible to move from any state of a Markov chain to any other state in a
finite number of steps, the Markov chain is called irreducible. The period of state i of a
Markov chain is the greatest common divisor (GCD) of all n such that Pii (n) > 0. State
i is aperiodic if its period is equal to 1. A finite-state Markov chain is called ergodic if
it is irreducible and all its states are aperiodic.

It can be shown that in an ergodic Markov chain limn→∞ Pn always exists and
all rows of the limit are equal, i.e., Equation 2.7–48 holds. In this case a unique sta-
tionary (steady-state) state probability distribution exists and starting from any initial
state probability vector, the Markov chain ends up in the steady-state state probability
vector p.

E X A M P L E 2.7–2. A Markov chain with four states is described by the finite-state dia-
gram shown in Figure 2.7–1. For this Markov chain we have

P =

⎡
⎢⎢⎢⎣

1
2

1
3 0 1

6
1
2 0 1

2 0

0 1
4 0 3

4
5
6 0 1

6 0

⎤
⎥⎥⎥⎦ (2.7–51)
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4

1

3

2

P12 � 13

P11 � 12

P21 � 12

P43 � 16

P34 � 34

P14 � 16P41 � 56P32 � 14P23 � 12

FIGURE 2.7–1
State transition diagram for a FSMC.

It is easily verified that this Markov chain is irreducible and aperiodic, and thus ergodic.
To find the steady-state probability distribution, we can either find the limit of Pn as
n → ∞ or solve Equation 2.7–50. The result is

p ≈ [0.49541 0.19725 0.12844 0.17889] (2.7–52)

2.8
SERIES EXPANSION OF RANDOM PROCESSES

Series expansion of random processes results in expressing the random processes in
terms of a sequence of random variables as coefficients of orthogonal or orthonormal
basis functions. This type of expansion reduces working with random processes to work-
ing with random variables, which in many cases are easier to handle. In the following
we describe two types of series expansions for random processes. First we describe the
sampling theorem for band-limited random processes, and then we continue with the
Karhunen-Loeve expansion of random processes, which is a more general expansion.

2.8–1 Sampling Theorem for Band-Limited Random Processes

A deterministic real signal x(t) with Fourier transform X ( f ) is called band-limited if
X ( f ) = 0 for | f | > W , where W is the highest frequency contained in x(t). Such a
signal is uniquely represented by samples of x(t) taken at a rate of fs ≥ 2W samples/s.
The minimum rate fN = 2W samples/s is called the Nyquist rate. For complex-
valued signals W is one-half of the frequency support of the signal; i.e., if W1 and W2
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are the lowest and the highest frequency components of the signal, respectively, then
2W = W2 − W1. The signal can be perfectly reconstructed from its sampled values if
the sampling rate is at least equal to 2W . The difference, however, is that the sampled
values are complex in this case, and for specifying each sample, two real numbers are
required. This means that a real signal can be perfectly described in terms of 2W real
numbers per second, or it has 2W degrees of freedom or real dimensions per second.
For a complex signal the number of degrees of freedom is 4W per second, which is
equivalent to 2W complex dimensions or 4W real dimensions per second.

Sampling below the Nyquist rate results in frequency aliasing. The band-limited
signal sampled at the Nyquist rate can be reconstructed from its samples by use of the
interpolation formula

x(t) =
∞∑

n=−∞
x

(
n

2W

)
sinc

[
2W

(
t − n

2W

)]
(2.8–1)

where {x(n/2W )} are the samples of x(t) taken at t = n/2W , n = 0, ±1, ±2, . . . .
Equivalently, x(t) can be reconstructed by passing the sampled signal through an ideal
lowpass filter with impulse response h(t) = sinc(2W t). Figure 2.8–1 illustrates the
signal reconstruction process based on ideal interpolation. Note that the expansion of
x(t) as given by Equation 2.8–1 is an orthogonal expansion and not an orthonormal
expansion since∫ ∞

−∞
sinc

[
2W

(
t − n

2W

)]
sinc

[
2W

(
t − m

2W

)]
dt =

{
1

2W n = m
0 n �= m

(2.8–2)

A stationary stochastic process X (t) is said to be band-limited if its power spec-
tral density SX ( f ) = 0 for | f | > W . Since SX ( f ) is the Fourier transform of the
autocorrelation function RX (τ ), it follows that RX (τ ) can be represented as

RX (τ ) =
∞∑

n=−∞
RX

(
n

2W

)
sinc

[
2W

(
τ − n

2W

)]
(2.8–3)

where {RX (n/2W )} are samples of RX (τ ) taken at τ = n/2W , n = 0, ±1, ±2, . . . .
Now, if X (t) is a band-limited stationary stochastic process, then X (t) can be repre-
sented as

X (t) =
∞∑

n=−∞
X

(
n

2W

)
sinc

[
2W

(
t − n

2W

)]
(2.8–4)

x(t) Sample of x(t) FIGURE 2.8–1
Sampling and reconstruction from
samples.
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where {X (n/2W )} are samples of X (t) taken at t = n/2W , n = 0, ±1, ±2, . . . . This is
the sampling representation for a stationary stochastic process. The samples are random
variables that are described statistically by appropriate joint probability density func-
tions. If X (t) is a WSS process, then random variables {X (n/2W )} represent a WSS
discrete-time random process. The autocorrelation of the sample random variables is
given by

E
[

X
(

n

2W

)
X∗

(
m

2W

)]
= RX

(
n − m

2W

)

=
∫ W

−W
SX ( f )e j2π f n−m

2W d f

(2.8–5)

If the process X (t) is filtered white Gaussian noise, then it is zero-mean and its power
spectrum is flat in the [−W, W ] interval. In this case the samples are uncorrelated, and
since they are Gaussian, they are independent as well.

The signal representation in Equation 2.8–4 is easily established by showing that
(Problem 2.44)

E

⎡
⎣

∣∣∣∣∣X (t) −
∞∑

n=−∞
X

(
n

2W

)
sinc

[
2W

(
t − n

2W

)]∣∣∣∣∣
2
⎤
⎦ = 0 (2.8–6)

Hence, equality between the sampling representation and the stochastic process X (t)
holds in the sense that the mean square error is zero.

2.8–2 The Karhunen-Loève Expansion

The sampling theorem presented above gives a straightforward method for orthogonal
expansion of band-limited processes. In this section we present the Karhunen-Loève
expansion, an orthonormal expansion that applies to a large class of random processes
and results in uncorrelated random variables as expansion coefficients. We present only
the results of the Karhunen-Loève expansion. The reader is referred to Van Trees (1968)
or Loève (1955) for details.

There are many ways in which a random process can be expanded in terms of a
sequence of random variables {Xn} and an orthonormal basis {φn(t)}. However, if we
require the additional condition that the random variables Xn be mutually uncorrelated,
then the orthonormal bases have to be the solutions of an eigenfunction problem given
by an integral equation whose kernel is the autocovariance function of the random
process. Solving this integral equation results in the orthonormal basis {φn(t)}, and
projecting the random process on this basis results in the sequence of uncorrelated
random variables {Xn}.

The Karhunen-Loève expansion states that under mild conditions, a random process
X (t) with autocovariance function

CX (t1, t2) = RX (t1, t2) − m X (t1)m∗
X (t2) (2.8–7)
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can be expanded over an interval of interest [a, b] in terms of an orthonormal basis
{φn(t)}∞n=1 such that the coefficients of expansion are uncorrelated. The φn(t)’s are
solutions (eigenfunctions) of the integral equation

∫ b

a
CX (t1, t2) φn(t2) dt2 = λnφn(t1), a < t1 < b (2.8–8)

with appropriate normalization such that
∫ b

a
|φn(t)|2 dt = 1 (2.8–9)

The Karhunen-Loève expansion is given by

X̂ (t) =
∞∑

n=1

Xn φn(t), a < t < b

with the following properties:

1. Random variables Xn denoting the coefficients of the expansion are projections of
the random process X (t) on the basis functions, i.e.,

Xn = 〈X (t), φn(t)〉 =
∫ b

a
X (t) φ∗

n (t) dt (2.8–10)

2. Random variables Xn are mutually uncorrelated. Moreover, the variance of Xn

is λn .

COV [Xn, Xm] =
{

λn n = m
0 n �= m

(2.8–11)

3. We have

E[X̂ (t)] = E[X (t)] = m X (t), a < t < b (2.8–12)

4. X̂ (t) is equal to X (t) in the mean square sense

E [|X (t) − X̂ (t)|2] = 0, a < t < b (2.8–13)

5. The covariance CX (t1, t2) can be expanded in terms of the bases and the eigenvalues
as given in Equation 2.8–14. This is result is known as Mercer’s theorem.

CX (t1, t2) =
∞∑

n=1

λnφn(t1)φn(t2), a < t1, t2 < b (2.8–14)

6. The eigenfunctions {φn(t)}∞n=1 form a complete basis for expansion of all signals
g(t) which have finite energy in the interval [a, b]. In other words, if g(t) is such
that ∫ b

a
|g(t)|2 dt < ∞
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then we can expand it in terms of {φn(t)} as

g(t) =
∞∑

n=1

gnφn(t), a < t < b (2.8–15)

where

gn = 〈g(t), φn(t)〉 =
∫ b

a
g(t)φ∗

n (t) dt (2.8–16)

Equation 2.8–13, which states the Karhunen-Loève expansion, is usually written
in the form

X (t) =
∞∑

n=1

Xn φn(t), a < t < b (2.8–17)

where it is understood that the equality is in the mean square sense. The {φn(t)} are
obtained by solving Equation 2.8–8 and normalizing the solutions, and the coefficients
{Xn} are obtained by using Equation 2.8–10.

It is worthwhile noting that the Karhunen-Loève expansion applies to both WSS and
nonstationary processes. In the special case where the process is zero-mean, the autoco-
variance function CX (t1, t2) is substituted with the autocorrelation function RX (t1, t2).
If the process X (t) is a Gaussian process, {Xn} are independent Gaussian random
variables.

E X A M P L E 2.8–1. Let X (t) be a zero-mean white process with power spectral density
N0
2 . To derive the Karhunen-Loève expansion for this process over an arbitrary interval

[a, b], we have to solve the integral equation∫ b

a

N0

2
δ(t1 − t2)φn(t2) dt2 = λnφn(t1), a < t1 < b (2.8–18)

where N0
2 δ(t1 − t2) is the autocorrelation function of the white process. Using the sifting

property of the impulse function, we have

N0

2
φn(t1) = λnφn(t1), a < t1 < b (2.8–19)

From this equation we see that φn(t) can be any arbitrary function. Therefore, any
orthonormal basis can be used for expansion of white processes, and all coefficients of
the expansion Xn will have the same variance of N0

2 .

2.9
BANDPASS AND LOWPASS RANDOM PROCESSES

In general, bandpass and lowpass random processes can be defined as WSS processes
X (t) for which the autocorrelation function RX (τ ) is either a bandpass or a lowpass
signal. Recall that the autocorrelation function is an ordinary deterministic function
with a Fourier transform which represents the power spectral density of the random
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process X (t). Therefore, for a bandpass process the power spectral density is located
around frequencies ± f0, and for lowpass processes the power spectral density is located
around zero frequency.

To be more specific, we define a bandpass (or narrowband) process as a real, zero-
mean, and WSS random process whose autocorrelation function is a bandpass signal.

Inspired by Equations 2.1–11, we define the in-phase and quadrature components
of a bandpass random process X (t) as

Xi (t) = X (t) cos 2π f0t + X̂ (t) sin 2π f0t

Xq (t) = X̂ (t) cos 2π f0t − X (t) sin 2π f0t
(2.9–1)

We will now show that

1. Xi (t) and Xq (t) are jointly WSS zero-mean random processes.
2. Xi (t) and Xq (t) have the same power spectral density.
3. Xi (t) and Xq (t) are both lowpass processes; i.e., their power spectral density is

located around f = 0.

We also define the lowpass equivalent process Xl(t) as

Xl(t) = Xi (t) + j Xq (t) (2.9–2)

and we will derive an expression for its autocorrelation function and power spectral
density. In addition we will see that Xl(t) is a proper random process.

Since X (t) by assumption is zero-mean, so is X̂ (t), its Hilbert transform. This is
obvious since the Hilbert transform is just a filtering operation. From this observation,
it is clear that Xi (t) and Xq (t) are both zero-mean processes.

To derive the autocorrelation function of Xi (t), we have

RXi (t + τ, t) = E [Xi (t + τ )Xi (t)]

= E [(X (t + τ ) cos 2π f0(t + τ ) + X̂ (t + τ ) sin 2π f0(t + τ ))

× (X (t) cos 2π f0t + X̂ (t) sin 2π f0t)]

(2.9–3)

Expanding this relation, we have

RXi (t + τ, t) = RX (τ ) cos 2π f0(t + τ ) cos 2π f0t

+ RX X̂ (t + τ, t) cos 2π f0(t + τ ) sin 2π f0t

+ RX̂ X (t + τ, t) sin 2π f0(t + τ ) cos 2π f0t

+ RX̂ X̂ (t + τ, t) sin 2π f0(t + τ ) sin 2π f0t

(2.9–4)

Since the Hilbert transform is the result of passing the process through an LTI sys-
tem, we conclude that X (t) and X̂ (t) are jointly WSS and therefore all the auto- and
cross-correlations in Equation 2.9–4 are functions of τ only. Using Equations 2.7–17
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and 2.7–18, we can easily show that (see Problem 2.56)

RX X̂ (τ ) = −R̂X (τ )

RX̂ X (τ ) = R̂X (τ )

RX̂ X̂ (τ ) = RX (τ )

(2.9–5)

Substituting these results into Equation 2.9–4 and using standard trigonometric
identities yield

RXi (τ ) = RX (τ ) cos(2π f0τ ) + R̂X (τ ) sin(2π f0τ ) (2.9–6)

Similarly, we can show that

RXq (τ ) = RXi (τ ) = RX (τ ) cos(2π f0τ ) + R̂X (τ ) sin(2π f0τ ) (2.9–7)

RXi Xq (τ ) = −RXq Xi (τ ) = RX (τ ) sin(2π f0τ ) − R̂X (τ ) cos(2π f0τ ) (2.9–8)

These relations show that Xi (t) and Xq (t) are zero-mean jointly WSS processes with
equal autocorrelation functions (and thus equal power spectral densities).

To derive the common power spectral density of Xi (t) and Xq (t) and their cross
spectral density, we derive the Fourier transforms of Equations 2.9–7 and 2.9–8. We
need to use the modulation property of the Fourier transform and the fact that the Fourier
transform of R̂X (τ ) is equal to − jsgn( f )SX ( f ). Given these facts, it is straightforward
to derive

SXi ( f ) = SXq ( f ) =
{
SX ( f + f0) + SX ( f − f0) | f | < f0

0 otherwise
(2.9–9)

SXi Xq ( f ) = −SXq Xi ( f ) =
{

j[SX ( f + f0) − SX ( f − f0)] | f | < f0

0 otherwise
(2.9–10)

Equation 2.9–9 states that the common power spectral density of the in-phase and
quadrature components of X (t) is obtained by shifting the power spectral density of X (t)
to left and right by f0 and adding the results and then removing all components outside
[− f0, f0]. This result also shows that both Xi (t) and Xq (t) are lowpass processes.
From Equation 2.9–10 we see that if SX ( f + f0) = SX ( f − f0) for | f | < f0, then
SXi Xq ( f ) = 0 and consequently, RXi Xq (τ ) = 0. Since Xi (t) and Xq (t) are zero-mean
processes, from RXi Xq (τ ) = 0 we conclude that under this condition Xi (t) and Xq (t)
are uncorrelated. One of the cases where we haveSX ( f + f0) = SX ( f − f0) for | f | < 0
occurs when SX ( f ) is symmetric around f0, in which case the in-phase and quadrature
components will be uncorrelated processes.

We define the complex process Xl(t) = Xi (t) + j Xq (t) as the lowpass equivalent
of X (t). Since Xi (t) and Xq (t) are both lowpass processes, we conclude that Xl(t) is
also a lowpass process. Comparing Equations 2.9–7 and 2.9–8 with Equations 2.7–39
and 2.7–40, we can conclude that Xl(t) is a proper random process, and therefore, from
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Equation 2.7–41, we have

RXl (τ ) = 2RXi (τ ) + 2 j RXq Xi (τ ) (2.9–11)

= 2[RX (τ ) + j R̂X (τ )]e− j2π f0t (2.9–12)

where we have used Equations 2.9–7 and 2.9–8. Comparing Equations 2.9–12 and
2.1–6, we observe that RXl (τ ) is twice the lowpass equivalent of RX (τ ). In other words,
the autocorrelation function of the lowpass equivalent process Xl(t) is twice the lowpass
equivalent of the autocorrelation function of the bandpass process X (t).

Taking Fourier transform of both sides of Equation 2.9–12, we obtain

SXl ( f ) =
{

4SX ( f + f0) | f | < f0

0 otherwise
(2.9–13)

and consequently,

SX ( f ) = 1

4
[SXl ( f − f0) + SXl (− f − f0)] (2.9–14)

We also observe that if X (t) is a Gaussian process, then Xi (t), Xq (t), and Xl(t) will
be jointly Gaussian processes; and since Xl(t) is Gaussian, zero-mean, and proper, we
conclude that Xl(t) is a circular process as well. In this case ifSX ( f + f0) = SX ( f − f0)
for | f | < f0, then Xi (t) and Xq (t) will be independent processes.

E X A M P L E 2.9–1. White Gaussian noise with power spectral density of N0
2 passes

through an ideal bandpass filter with transfer function

H ( f ) =
{

1 | f − f0| < W
0 otherwise

where W < f0. The output, called filtered white noise, is denoted by X (t). This process
has a power spectral density of

SX ( f ) =
{ N0

2 | f − f0| < W
0 otherwise

Since SX ( f + f0) = SX ( f − f0) for | f | < f0, and the process is Gaussian, Xi ( f ) and
Xq ( f ) are independent lowpass processes. Using Equation 2.9–9, we conclude that

SXi ( f ) = SXq ( f ) =
{

N0 | f | < W
0 otherwise

and from Equation 2.9–13, we conclude that

SXl ( f ) =
{

2N0 | f | < W
0 otherwise
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2.10
BIBLIOGRAPHICAL NOTES AND REFERENCES

In this chapter we have provided a review of basic concepts and definitions in signal
analysis, the theory of probability, and stochastic processes. An advanced book on signal
analysis that covers most of the material presented here in detail is the book by Franks
(1969). The texts by Davenport and Root (1958), Davenport (1970), Papoulis and Pillai
(2002), Peebles (1987), Helstrom (1991), Stark and Woods (2002), and Leon-Garcia
(1994) provide engineering-oriented treatments of probability and stochastic processes.
A more mathematical treatment of probability theory may be found in the text by Loève
(1955). Finally, we cite the book by Miller (1964), which treats multidimensional
Gaussian distributions.

PROBLEMS

2.1 Prove the following properties of Hilbert transforms:
a. If x(t) = x(−t), then x̂(t) = −x̂(−t).
b. If x(t) = −x(−t), then x̂(t) = x̂(−t).
c. If x(t) = cos ω0t , then x̂(t) = sin ω0t .
d. If x(t) = sin ω0t , then x̂(t) = − cos ω0t .
e. ˆ̂x(t) = −x(t)

f.

∫ ∞

−∞
x2(t) dt =

∫ ∞

−∞
x̂2(t) dt

g.

∫ ∞

−∞
x(t)x̂(t) dt = 0

2.2 Let x(t) and y(t) denote two bandpass signals, and let xl (t) and yl (t) denote their lowpass
equivalents with respect to some frequency f0. We know that in general xl (t) and yl (t) are
complex signals.
1. Show that ∫ ∞

−∞
x(t)y(t) dt = 1

2
Re

[∫ ∞

−∞
xl (t)y∗

l (t) dt

]

2. From this conclude that Ex = 1
2Exl , i.e., the energy in a bandpass signal is one-half the

energy in its lowpass equivalent.

2.3 Suppose that s(t) is either a real- or complex-valued signal that is represented as a linear
combination of orthonormal functions { fn(t)}, i.e.,

ŝ(t) =
K∑

k=1

sk fk(t)

where ∫ ∞

−∞
fn(t) f ∗

m(t) dt =
{

1 m = n

0 m �= n
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Determine the expressions for the coefficients {sk} in the expansion ŝi (t) that minimize the
energy

Ee =
∫ ∞

−∞
|s(t) − ŝ(t)|2 dt

and the corresponding residual error Ee.

2.4 Suppose that a set of M signal waveforms {slm(t)} is complex-valued. Derive the equations
for the Gram-Schmidt procedure that will result in a set of N ≤ M orthonormal signal
waveforms.

2.5 Carry out the Gram-Schmidt orthogonalization of the signals in Figure 2.2–1(a) in the order
s4(t), s3(t), s1(t), and thus obtain a set of orthonormal functions { fm(t)}. Then determine
the vector representation of the signals {sn(t)} by using the orthonormal functions { fm(t)}.
Also determine the signal energies.

2.6 Assuming that the set of signals {φnl (t), n = 1, . . . , N } is an orthonormal basis for rep-
resentation of {sml (t), m = 1, . . . , M}, show that the set of functions given by Equa-
tion 2.2–54 constitutes a 2N orthonormal basis that is sufficient for representation of M
bandpass signals given in Equation 2.2–55.

2.7 Show that

φ̃(t) = −φ̂(t)

where φ̂(t) denotes the Hilbert transform and φ and φ̃ are given by Equation 2.2–54.

2.8 Determine the correlation coefficients ρkm among the four signal waveforms {si (t)} shown
in Figure 2.2–1 and their corresponding Euclidean distances.

2.9 Prove that sl (t) is generally a complex-valued signal, and give the condition under which
it is real. Assume that s(t) is a real-valued bandpass signal.

2.10 Consider the three waveforms fn(t) shown in Figure P2.10.

FIGURE P2.10
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a. Show that these waveforms are orthonormal.
b. Express the waveform x(t) as a linear combination of fn(t), n = 1, 2, 3, if

x(t) =
⎧⎨
⎩

−1 0 ≤ t < 1
1 1 ≤ t < 3
−1 3 ≤ t < 4

and determine the weighting coefficients.

2.11 Consider the four waveforms shown in Figure P2.11.
a. Determine the dimensionality of the waveforms and a set of basis functions.
b. Use the basis functions to represent the four waveforms by vectors s1, s2, s3, and s4.
c. Determine the minimum distance between any pair of vectors.

FIGURE P2.11

2.12 Determine a set of orthonormal functions for the four signals shown in Figure P2.12.

FIGURE P2.12

2.13 A random experiment consists of drawing a ball from an urn that contains 4 red balls
numbered 1, 2, 3, 4 and three black balls numbered 1, 2, 3. The following events are
defined.
1. E1 = The number on the ball is even.
2. E2 = The color of the ball is red, and its number is greater than 1.
3. E3 = The number on the ball is less than 3.
4. E4 = E1 ∪ E3

5. E5 = E1 ∪ (E2 ∩ E3)
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Answer the following questions.
1. What is P(E2)?
2. What is P(E3|E2)?
3. What is P(E2|E4 E3)?
4. Are E3 and E5 independent?

2.14 In a certain city three car brands A, B, C have 20%, 30% and 50% of the market share,
respectively. The probability that a car needs major repair during its first year of purchase
for the three brands is 5%, 10%, and 15%, respectively.
1. What is the probability that a car in this city needs major repair during its first year of

purchase?
2. If a car in this city needs major repair during its first year of purchase, what is the

probability that it is made by manufacturer A?

2.15 The random variables Xi , i = 1, 2, . . . , n, have joint PDF p(x1, x2, . . . , xn). Prove that

p(x1, x2, x3, . . . , xn) = p(xn|xn−1, . . . , x1)p(xn−1|xn−2, . . . , x1) · · · p(x3|x2, x1)p(x2|x1)p(x1)

2.16 A communication channel with binary input and ternary output alphabets is shown in
Figure P2.16. The probability of the input being 0 is 0.4. The transition probabilities are
shown on the figure.

A

0

1

1�4

1�3

1�3

1�3

1�2

1�4

B

C

FIGURE P2.16

1. If the channel output is A, what is the best decision on channel input that minimizes
the error probability? Repeat for the cases where channel output is B and C.

2. If a 0 is transmitted and an optimal decision scheme (the one derived in part 1) is used
at the receiver, what is the probability of error?

3. What is the overall error probability for this channel if the optimal decision scheme is
used at the receiver.

2.17 The PDF of a random variable X is p(x). A random variable Y is defined as

Y = a X + b

where a < 0. Determine the PDF of Y in terms of the PDF of X .

2.18 Suppose that X is a Gaussian random variable with zero mean and unit variance. Let

Y = a X3 + b, a > 0

Determine and plot the PDF of Y.
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2.19 The noise voltage in an electric circuit can be modeled as a Gaussian random variable with
mean equal to zero and variance equal to 10−8.
1. What is the probability that the value of the noise exceeds 10−4? What is the probability

that it exceeds 4 × 10−4? What is the probability that the noise value is between −2 ×
10−4 and 10−4?

2. Given that the value of the noise is positive, what is the probability that it exceeds 10−4?

2.20 X is a N (0, σ 2) random variable. This random variable is passed through a system whose
input-output relation is given by y = g(x). Find the PDF or the PMF of the output random
variable Y in each of the following cases.
1. Square-law device, g(x) = ax2.
2. Limiter,

g(x) =
⎧⎨
⎩

−b x ≤ −b

b x ≥ b

x |x | < b

3. Hard limiter,

g(x) =
⎧⎨
⎩

a x > 0
0 x = 0
b x < 0

4. Quantizer, g(x) = xn for an ≤ x < an+1, 1 ≤ n ≤ N , where xn lies in the interval
[an, an+1] and the sequence {a1, a2, . . . , aN+1} satisfies the conditions a1 = −∞,
aN+1 = ∞ and for i > j we have ai > a j .

2.21 Shows that for an N (m, σ 2) random variable we have

E [(X − m)n] =
{

1 × 3 × 5 × · · · × (2k − 1)σ 2k = (2k)!σ 2k

2k k! for n = 2k

0 for n = 2k + 1

2.22 a. Let Xr and Xi be statistically independent zero-mean Gaussian random variables with
identical variance. Show that a (rotational) transformation of the form

Yr + jYi = (Xr + j Xi )e
jφ

results in another pair (Yr , Yi ) of Gaussian random variables that have the same joint
PDF as the pair (Xr , Xi ).

b. Note that [
Yr

Yi

]
= A

[
Xr

Xi

]

where A is a 2 × 2 matrix. As a generalization of the two-dimensional transformation
of the Gaussian random variables considered in (a), what property must the linear
transformation A satisfy if the PDFs for X and Y , where Y = AX, X = (X1 X2 · · · Xn),
and Y = (Y1Y2 · · · Yn) are identical?

2.23 Show that if X is a Gaussian vector, the random vector Y = AX , where the invertible
matrix A represents a linear transformation, is also a Gaussian vector whose mean and
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covariance matrix are given by

mY = AmX

CY = AC X At

2.24 The random variable Y is defined as

Y =
n∑

i=1

Xi

where the Xi , i = 1, 2, . . . , n, are statistically independent random variables with

Xi =
{

1 with probability p

0 with probability 1 − p

a. Determine the characteristic function of Y .
b. From the characteristic function, determine the moments E(Y ) and E(Y 2).

2.25 This problem provides some useful bounds on Q(x).

1. By integrating e− u2+v2

2 on the region u > x and v > x in R
2, where x > 0, then

changing to polar coordinates and upper bounding the integration region by the region

r >
√

2x in the first quadrant, show that Q(x) ≤ 1
2 e− x2

2 for all x ≥ 0.
2. Apply integration by parts to

∫ ∞

x
e− y2

2
dy

y2

and show that

x√
2π (1 + x2)

e− x2

2 < Q(x) <
1√
2πx

e− x2

2

for all x > 0.
3. Based on the result of part 2 show that, for large x ,

Q(x) ≈ 1

x
√

2π
e− x2

2

2.26 Let X1, X2, X3, . . . denote iid random variables each uniformly distributed on [0, A],
where A > 0. Let Yn = min{X1, X2, . . . , Xn}.
1. What is the PDF of Yn?
2. Show that if both A and n go to infinity such that n

A = λ, where λ > 0 is a constant,
the density function of Yn tends to an exponential density function. Specify this density
function.

2.27 The four random variables X1, X2, X3, X4 are zero-mean jointly Gaussian random
variables with covariance Ci j = E(Xi X j ) and characteristic function �X (ω1, ω2, ω3, ω4).
Show that

E(X1 X2 X3 X4) = C12C34 + C13C24 + C14C23
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2.28 Let

�X (t) = E
[
et X

]
denote the moment generating function of random variable X .
1. Using the Chernov bound, show that

ln P [X ≥ α] ≤ − max
t≥0

(αt − ln �X (t))

2. Define

I (α) = max
t≥0

(αt − ln �X (t))

as the large-deviation rate function of the random variable X , and let X1, X2, . . . , Xn

be iid. Define Sn = (X1 + X2 + · · · + Xn)/n. Show that for α ≥ E [X ]

1

n
ln P [Sn ≥ α] ≤ −I (α)

or equivalently

P [Sn ≥ α] ≤ e−nI (α)

Note: It can be shown that for α ≥ E [X ], we have P[Sn ≥ α] = e−nI (α)+o(n), where
o(n) → 0 as n → ∞. This result is known as the large-deviation theorem.

3. Now assume the Xi ’s are exponential, i.e.,

pX (x) =
{

e−x x ≥ 0
0 otherwise

Using the large-deviation result, show that

P [Sn ≥ α] = αne−n(α−1)+o(n)

for α ≥ 1.

2.29 From the characteristic functions for the central chi-square and noncentral chi-square
random variables given in Table 2.3–3, determine their corresponding first and second
moments.

2.30 The PDF of a Cauchy distributed random variable X is

p(x) = a/π

x2 + a2
, −∞ < x < ∞

a. Determine the mean and variance of X .
b. Determine the characteristic function of X .

2.31 Let R0 denote a Rayleigh random variable with PDF

fR0 (r0) =
{

r0
σ 2 e− r2

0
2σ2 r0 ≥ 0

0 otherwise
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and R1 be Ricean with PDF

fR1 (r1) =
{

r1
σ 2 I0

(
μr1
σ 2

)
e− r2

1
+μ2

2σ2 r1 ≥ 0
0 otherwise

Furthermore, assume that R0 and R1 are independent. Show that

P(R0 > R1) = 1

2
e− μ2

4σ2

2.32 Suppose that we have a complex-valued Gaussian random variable Z = X + jY , where
(X, Y ) are statistically independent variables with zero mean and variance E

[
X2

] =
E

[
Y 2

] = σ 2. Let R = Z + m, where m = mr + jmi and define R as R = A + j B.
Clearly, A = X + mr and B = Y + mi . Determine the following probability density
functions:
1. pA,B(a, b)
2. pU,�(u, φ), where U = √

A2 + B2 and � = tan−1 B/A
3. pU (u)
Note: In part 2 it is convenient to define θ = tan−1(mi/mr ) so that

mr =
√

m2
r + m2

i cos θ, mi =
√

m2
r + m2

i sin θ

Furthermore, you must use Equation 2.3–34, defining I0(·) as the modified Bessel function
of order zero.

2.33 The random variable Y is defined as

Y = 1

n

n∑
i=1

Xi

where Xi , i = 1, 2, . . . , n, are statistically independent and identically distributed random
variables each of which has the Cauchy PDF given in Problem 2.30.
a. Determine the characteristic function of Y.
b. Determine the PDF of Y.
c. Consider the PDF of Y in the limit as n → ∞. Does the central limit theorem hold?

Explain your answer.

2.34 Show that if Z is circular, then it is zero-mean and proper, i.e., E [Z] = 0 and E
[

ZZt
] = 0.

2.35 Show that if Z is a zero-mean proper Gaussian complex vector, then Z is circular.

2.36 Show that if Z is a proper complex vector, then any transform of the form W = AZ + b
is also a proper complex vector.

2.37 Assume that random processes X (t) and Y (t) are individually and jointly stationary.
a. Determine the autocorrelation function of Z (t) = X (t) + Y (t).
b. Determine the autocorrelation function of Z (t) when X (t) and Y (t) are uncorrelated.
c. Determine the autocorrelation function of Z (t) when X (t) and Y (t) are uncorrelated

and have zero means.
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2.38 The autocorrelation function of a stochastic process X (t) is

RX (τ ) = 1

2
N0δ(τ )

Such a process is called white noise. Suppose x(t) is the input to an ideal bandpass filter
having the frequency response characteristic shown in Figure P2.38. Determine the total
noise power at the output of the filter.

FIGURE P2.38

2.39 A lowpass Gaussian stochastic process X (t) has a power spectral density

S( f ) =
{

N0 | f | < B

0 otherwise

Determine the power spectral density and the autocorrelation function of Y (t) = X2(t).

2.40 The covariance matrix of three random variables X1, X2, and X3 is
⎡
⎣

C11 0 C13

0 C22 0

C31 0 C33

⎤
⎦

The linear transformation Y = AX is made where

A =
⎡
⎣

1 0 0

0 2 0

1 0 1

⎤
⎦

Determine the covariance matrix of Y .

2.41 Let X (t) be a stationary real normal process with zero mean. Let a new process Y (t) be
defined by

Y (t) = X2(t)

Determine the autocorrelation function of Y (t) in terms of the autocorrelation function of
X (t). Hint: Use the result on Gaussian variables derived in Problem 2.27.

2.42 For the Nakagami PDF, given by Equation 2.3–67, define the normalized random variable
X = R/

√
�. Determine the PDF of X .

2.43 The input X (t) in the circuit shown in Figure P2.43 is a stochastic process with E[X (t)] = 0
and RX (τ ) = σ 2δ(τ ); i.e., X (t) is a white noise process.
a. Determine the spectral density SY ( f ).
b. Determine RY (τ ) and E[Y 2(t)].
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FIGURE P2.43

2.44 Demonstrate the validity of Equation 2.8–6.

2.45 Use the Chernoff bound to show that Q(x) ≤ e−x2/2.

2.46 Determine the mean, the autocorrelation sequence, and the power density spectrum of the
output of a system with unit sample response

h(n) =

⎧⎪⎪⎨
⎪⎪⎩

1 n = 0
−2 n = 1
1 n = 2
0 otherwise

when the input x(n) is a white noise process with variance σ 2
x .

2.47 The autocorrelation sequence of a discrete-time stochastic process is R(k) = (
1
2

)|k|
.

Determine its power density spectrum.

2.48 A discrete-time stochastic process X (n) ≡ X (nT ) is obtained by periodic sampling of a
continuous-time zero-mean stationary process X (t), where T is the sampling interval; i.e.,
fs = 1/T is the sampling rate.
a. Determine the relationship between the autocorrelation function of X (t) and the auto-

correlation sequence of X (n).
b. Express the power density spectrum of X (n) in terms of the power density spectrum of

the process X (t).
c. Determine the conditions under which the power density spectrum of X (n) is equal to

the power density spectrum of X (t).

2.49 The random process V (t) is defined as

V (t) = X cos 2π fct − Y sin 2π fct

where X and Y are random variables. Show that V (t) is wide-sense stationary if and only
if E(X ) = E(Y ) = 0, E(X2) = E(Y 2), and E(XY ) = 0.

2.50 Consider a band-limited zero-mean stationary stochastic process X (t) with power density
spectrum

SX ( f ) =
{

1 | f | ≤ W

0 otherwise

X (t) is sampled at a rate fs = 1/T to yield a discrete-time process X (n) ≡ X (nT ).
a. Determine the expression for the autocorrelation sequence of X (n).
b. Determine the minimum value of T that results in a white (spectrally flat) sequence.
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c. Repeat (b) if the power density spectrum of X (t) is

SX ( f ) =
{

1 − | f |/W | f | ≤ W

0 otherwise

2.51 Show that the functions

fk(t) = sinc

[
2W

(
t − k

2W

)]
, k = 0, ±1, ±2, . . .

are orthogonal over the real line, i.e.,

∫ ∞

−∞
fk(t) f j (t) dt =

{
1/2W k = j

0 otherwise

Therefore, the sampling theorem reconstruction formula may be viewed as a series expan-
sion of the band-limited signal s(t), where the weights are samples of s(t) and the { fk(t)}
are the set of orthogonal functions used in the series expansion.

2.52 The noise equivalent bandwidth of a system is defined as

Beq = 1

G

∫ ∞

0
|H ( f )|2 d f

where G = max |H ( f )|2. Using this definition, determine the noise equivalent bandwidth
of the ideal bandpass filter shown in Figure P2.38 and the low-pass system shown in
Figure P2.43.

2.53 Suppose that N (t) is a zero-mean stationary narrowband process. The autocorrelation
function of the equivalent lowpass process Z (t) = X (t) + jY (t) is defined as

RZ (τ ) = E
[

Z∗(t)Z (t + τ )
]

a. Show that

E [Z (t)Z (t + τ )] = 0

b. Suppose Rz(τ ) = N0δ(τ ), and let

V =
∫ T

0
Z (t) dt

Determine E
[
V 2

]
and E

[|V |2].

2.54 Determine the autocorrelation function of the stochastic process

X (t) = A sin(2π fct + �)

where fc is a constant and � is a uniformly distributed phase, i.e.,

p(θ ) = 1

2π
, 0 ≤ θ ≤ 2π
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2.55 Let Z (t) = X (t) + jY (t) be a complex random process, where X (t) and Y (t) are real-
valued, independent, zero-mean, and jointly stationary Gaussian random processes. We
assume that X (t) and Y (t) are both band-limited processes with a bandwidth of W and a
flat spectral density within their bandwidth, i.e.,

SX ( f ) = SY ( f ) =
{

N0 | f | ≤ W

0 otherwise

1. Find E[Z (t)] and RZ (t + τ, t), and show that Z (t) is WSS.
2. Find the power spectral density of Z (t).
3. Assume φ1(t), φ2(t), . . . , φn(t) are orthonormal, i.e.,

∫ ∞

−∞
φ j (t)φ

∗
k (t) dt =

{
1 j = k

0 otherwise

and all φ j (t)’s are band-limited to [−W, W ]. Define random variables Z j as the pro-
jections of Z (t) on the φ j (t)’s, i.e.,

Z j =
∫ ∞

−∞
Z (t)φ∗

j (t) dt, j = 1, 2, . . . , n

Determine E[Z j ] and E[Z j Z∗
k ] and conclude that the Z j ’s are iid zero-mean Gaussian

random variables. Find their common variance.
4. Let Z j = Z jr + j Z ji , where Z jr and Z ji denote the real and imaginary parts, respec-

tively, of Z j . Comment on the joint probability distribution of the 2n random variables

(Z1r , Z1i , Z2r , Z2i , . . . , Znr , Zni )

5. Let us define

Ẑ (t) = Z (t) −
n∑

j=1

Z jφ j (t)

to be the error in expansion of Z (t) as a linear combination of φ j (t)’s. Show that
E[Ẑ (t)Z∗

k ] = 0 for all k = 1, 2, . . . , n. In other words, show that the error Ẑ (t) and all
the Zk’s are uncorrelated. Can you say Ẑ (t) and the Zk’s are independent?

2.56 Let X (t) denote a (real, zero-mean, WSS) bandpass process with autocorrelation function
RX (τ ) and power spectral density SX ( f ), where SX (0) = 0, and let X̂ (t) denote the
Hilbert transform of X (t). Then X̂ (t) can be viewed as the output of a filter, with impulse
response 1

π t and transfer function − jsgn( f ), whose input is X (t). Recall that when X (t)
passes through a system with transfer function H ( f ) and the output is Y (t), we have
SY ( f ) = SX ( f )|H ( f )|2 and SXY ( f ) = SX ( f )H∗( f ).
1. Prove that RX̂ (τ ) = RX (τ ).
2. Prove that RX X̂ (τ ) = −R̂X (τ )
3. If Z (t) = X (t) + j X̂ (t), determine SZ ( f ).
4. Define Xl (t) = Z (t)e− j2π f0t . Show that Xl (t) is a lowpass WSS random process, and

determine SXl ( f ). From the expression for SXl ( f ), derive an expression for RXl (τ ).
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2.57 A noise process has a power spectral density given by

Sn( f ) =
{

10−8
(
1 − | f |

108

) | f | < 108

0 | f | > 108

This noise is passed through an ideal bandpass filter with a bandwidth of 2 MHz centered
at 50 MHz.
1. Find the power content of the output process.
2. Write the output process in terms of the in-phase and quadrature components, and find

the power in each component. Assume f0 = 50 MHz.
3. Find the power spectral density of the in-phase and quadrature components.
4. Now assume that the filter is not an ideal filter and is described by

|H ( f )|2 =
{ | f |

106 − 49 49 MHz < | f | < 51 MHz
0 otherwise

Repeat parts 1, 2, and 3 with this assumption.
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3

Digital Modulation Schemes

The digital data are usually in the form of a stream of binary data, i.e., a sequence
of 0s and 1s. Regardless of whether these data are inherently digital (for instance, the
output of a computer terminal generating ASCII code) or the result of analog-to-digital
conversion of an analog source (for instance, digital audio and video), the goal is to re-
liably transmit these data to the destination by using the given communication channel.
Depending on the nature of the communication channel, data can suffer from one or
more of certain channel impairments including noise, attenuation, distortion, fading, and
interference. To transmit the binary stream over the communication channel, we need to
generate a signal that represents the binary data stream and matches the characteristics
of the channel. This signal should represent the binary data, meaning that we should be
able to retrieve the binary stream from the signal; and it should match the characteristics
of the channel, meaning that its bandwidth should match the bandwidth of the channel,
and it should be able to resist the impairments caused by the channel. Since different
channels cause different types of impairments, signals designed for these channels can
be drastically different. The process of mapping a digital sequence to signals for trans-
mission over a communication channel is called digital modulation or digital signaling.
In the process of modulation, usually the transmitted signals are bandpass signals suit-
able for transmission in the bandwidth provided by the communication channel. In this
chapter we study the most commonly used modulation schemes and their properties.

3.1
REPRESENTATION OF DIGITALLY MODULATED SIGNALS

The mapping between the digital sequence (which we assume to be a binary sequence)
and the signal sequence to be transmitted over the channel can be either memoryless or
with memory, resulting in memoryless modulation schemes and modulation schemes
with memory. In a memoryless modulation scheme, the binary sequence is parsed into
subsequences each of length k, and each sequence is mapped into one of the sm(t),

95
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sm(t)Modulator10...1 00...1

k kk

01...0...

FIGURE 3.1–1
Block diagram of a memoryless digital modulation scheme.

1 ≤ m ≤ 2k , signals regardless of the previously transmitted signals. This modulation
scheme is equivalent to a mapping from M = 2k messages to M possible signals, as
shown in Figure 3.1–1.

In a modulation scheme with memory, the mapping is from the set of the current
k bits and the past (L − 1)k bits to the set of possible M = 2k messages. In this case
the transmitted signal depends on the current k bits as well as the most recent L − 1
blocks of k bits. This defines a finite-state machine with 2(L−1)k states. The mapping that
defines the modulation scheme can be viewed as a mapping from the current state and
the current input of the modulator to the set of output signals resulting in a new state of
the modulator. If at time instant �−1 the modulator is in state S�−1 ∈ {1, 2, . . . , 2(L−1)k}
and the input sequence is I� ∈ {1, 2, . . . , 2k}, then the modulator transmits the output
sm�

(t) and moves to new state S� according to mappings

m� = fm(S�−1, I�) (3.1–1)

S� = fs(S�−1, I�) (3.1–2)

Parameters k and L and functions fm(·, ·) and fs(·, ·) completely describe the modula-
tion scheme with memory. Parameter L is called the constraint length of modulation.
The case of L = 1 corresponds to a memoryless modulation scheme.

Note the similarity between Equations 3.1–1 and 3.1–2 on one hand and Equa-
tions 2.7–43 and 2.7–44 on the other hand. Equation 3.1–2 represents the internal
dynamics of a Markov chain where the future state depends on the current state and
the input I� (which is a random variable), and Equation 3.1–1 states that the output
m� depends on the state through random variable I�. Therefore, we can conclude that
modulation systems with memory are effectively represented by Markov chains.

In addition to classifying the modulation as either memoryless or having memory,
we may classify it as either linear or nonlinear. Linearity of a modulation method re-
quires that the principle of superposition apply in the mapping of the digital sequence
into successive waveforms. In nonlinear modulation, the superposition principle does
not apply to signals transmitted in successive time intervals. We shall begin by describ-
ing memoryless modulation methods.

As indicated above, the modulator in a digital communication system maps a
sequence of k binary symbols—which in case of equiprobable symbols carries k bits of
information—into a set of corresponding signal waveforms sm(t), 1 ≤ m ≤ M , where
M = 2k . We assume that these signals are transmitted at every Ts seconds, where Ts is
called the signaling interval. This means that in each second

Rs = 1

Ts
(3.1–3)
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symbols are transmitted. Parameter Rs is called the signaling rate or symbol rate. Since
each signal carries k bits of information, the bit interval Tb, i.e., the interval in which
1 bit of information is transmitted, is given by

Tb = Ts

k
= T

log2 M
(3.1–4)

and the bit rate R is given by

R = k Rs = Rs log2 M (3.1–5)

If the energy content of sm(t) is denoted by Em , then the average signal energy is
given by

Eavg =
M∑

m=1

pmEm (3.1–6)

where pm indicates the probability of the mth signal (message probability). In the case
of equiprobable messages, pm = 1/M , and therefore,

Eavg = 1

M

M∑
m=1

Em (3.1–7)

Obviously, if all signals have the same energy, then Em = E and Eavg = E . The average
energy for transmission of 1 bit of information, or average energy per bit, when the
signals are equiprobable is given by

Ebavg = Eavg

k
= Eavg

log2 M
(3.1–8)

If all signals have equal energy of E , then

Eb = E
k

= E
log2 M

(3.1–9)

If a communication system is transmitting an average energy of Ebavg per bit, and
it takes Tb seconds to transmit this average energy, then the average power sent by the
transmitter is

Pavg = Ebavg

Tb
= REbavg (3.1–10)

which for the case of equal energy signals becomes

P = REb (3.1–11)

3.2
MEMORYLESS MODULATION METHODS

The waveforms sm(t) used to transmit information over the communication channel can
be, in general, of any form. However, usually these waveforms are bandpass signals
which may differ in amplitude or phase or frequency, or some combination of two
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or more signal parameters. We consider each of these signal types separately, begin-
ning with digital pulse amplitude modulation (PAM). In all cases, we assume that the
sequence of binary digits at the input to the modulator occurs at a rate of R bits/s.

3.2–1 Pulse Amplitude Modulation (PAM)

In digital PAM, the signal waveforms may be represented as

sm(t) = Am p(t), 1 ≤ m ≤ M (3.2–1)

where p(t) is a pulse of duration T and {Am, 1 ≤ m ≤ M} denotes the set of M possible
amplitudes corresponding to M = 2k possible k-bit blocks of symbols. Usually, the
signal amplitudes Am take the discrete values

Am = 2m − 1 − M, m = 1, 2, . . . , M (3.2–2)

i.e., the amplitudes are ±1, ±3, ±5, . . . , ±(M −1). The waveform p(t) is a real-valued
signal pulse whose shape influences the spectrum of the transmitted signal, as we shall
observe later.

The energy in signal sm(t) is given by

Em =
∫ ∞

−∞
A2

m p2(t) dt (3.2–3)

= A2
mEp (3.2–4)

where Ep is the energy in p(t). From this,

Eavg = Ep

M

M∑
m=1

A2
m

= 2Ep

M

(
12 + 32 + 52 + · · · + (M − 1)2)

= 2Ep

M
× M(M2 − 1)

6

= (M2 − 1)Ep

3

(3.2–5)

and

Ebavg = (M2 − 1)Ep

3 log2 M
(3.2–6)

What we described above is the baseband PAM in which no carrier modulation is
present. In many cases the PAM signals are carrier-modulated bandpass signals with
lowpass equivalents of the form Am g(t), where Am and g(t) are real. In this case

sm(t) = Re
[
sml(t)e

j2π fct] (3.2–7)

= Re
[
Am g(t)e j2π fct] = Am g(t) cos(2π fct) (3.2–8)
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where fc is the carrier frequency. Comparing Equations 3.2–1 and 3.2–8, we note that
if in the generic form of PAM signaling we substitute

p(t) = g(t) cos(2π fct) (3.2–9)

then we obtain the bandpass PAM. Using Equation 2.1–21, for bandpass PAM we have

Em = A2
m

2
Eg (3.2–10)

and from Equations 3.2–5 and 3.2–6 we conclude

Eavg = (M2 − 1)Eg

6
(3.2–11)

and

Ebavg = (M2 − 1)Eg

6 log2 M
(3.2–12)

Clearly, PAM signals are one-dimensional (N = 1) since all are multiples of the
same basic signals. Using the result of Example 2.2–6, we get

φ(t) = p(t)√Ep
(3.2–13)

as the basis for the general PAM signal of the form sm(t) = Am p(t) and

φ(t) =
√

2

Eg
g(t) cos 2π fct (3.2–14)

as the basis for the bandpass PAM signal given in Equation 3.2–8. Using these basis
signals, we have

sm(t) = Am

√
Ep φ(t) for baseband PAM

(3.2–15)

sm(t) = Am

√
Eg

2
φ(t) for bandpass PAM

From above the one-dimensional vector representations for these signals are of the
form

sm = Am

√
Ep, Am = ±1, ±3, . . . , ±(M − 1) (3.2–16)

sm = Am

√
Eg

2
, Am = ±1, ±3, . . . , ±(M − 1) (3.2–17)

The corresponding signal space diagrams for M = 2, M = 4, and M = 8 are shown
in Figure 3.2–1.

The bandpass digital PAM is also called amplitude-shift keying (ASK). The map-
ping or assignment of k information bits to the M = 2k possible signal amplitudes may
be done in a number of ways. The preferred assignment is one in which the adjacent
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(a)

(b)

(c)

FIGURE 3.2–1
Constellation for PAM signaling.

signal amplitudes differ by one binary digit as illustrated in Figure 3.2–1. This mapping
is called Gray coding. It is important in the demodulation of the signal because the most
likely errors caused by noise involve the erroneous selection of an adjacent amplitude
to the transmitted signal amplitude. In such a case, only a single bit error occurs in the
k-bit sequence.

We note that the Euclidean distance between any pair of signal points is

dmn =
√

‖sm − sn‖2 (3.2–18)

= |Am − An|
√
Ep (3.2–19)

= |Am − An|
√

Eg

2
(3.2–20)

where the last relation corresponds to a bandpass PAM. For adjacent signal points
|Am − An| = 2, and hence the minimum distance of the constellation is given by

dmin = 2
√
Ep =

√
2Eg (3.2–21)

We can express the minimum distance of an M-ary PAM system in terms of its Ebavg

by solving Equations 3.2–6 and 3.2–12 for Ep and Eg, respectively, and substituting the
result in Equation 3.2–21. The resulting expression is

dmin =
√

12 log2 M

M2 − 1
Ebavg (3.2–22)

The carrier-modulated PAM signal represented by Equation 3.2–8 is a double-
sideband (DSB) signal and requires twice the channel bandwidth of the equivalent
lowpass signal for transmission. Alternatively, we may use single-sideband (SSB) PAM,
which has the representation (lower or upper sideband)

sm(t) = Re
[
Am (g(t) ± j ĝ(t)) e j2π fct] , m = 1, 2, . . . , M (3.2–23)
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(a)

(b)

FIGURE 3.2–2
Example of (a) baseband and (b) carrier-modulated PAM signals.

where ĝ(t) is the Hilbert transform of g(t). Thus, the bandwidth of the SSB signal is
one-half that of the DSB signal.

A four-amplitude level baseband PAM signal is illustrated in Figure 3.2–2(a). The
carrier-modulated version of the signal is shown in Figure 3.2–2(b).

In the special case of M = 2, or binary signals, the PAM waveforms have the
special property that s1(t) = −s2(t). Hence, these two signals have the same energy
and a cross-correlation coefficient of −1. Such signals are called antipodal. This case
is sometimes called binary antipodal signaling.

3.2–2 Phase Modulation

In digital phase modulation, the M signal waveforms are represented as

sm(t) = Re
[
g(t)e j 2π (m−1)

M e j2π fct
]
, m = 1, 2, . . . , M

= g(t) cos
[

2π fct + 2π

M
(m − 1)

]

= g(t) cos
(

2π

M
(m − 1)

)
cos 2π fct − g(t) sin

(
2π

M
(m − 1)

)
sin 2π fct

(3.2–24)
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where g(t) is the signal pulse shape and θm = 2π (m − 1)/M , m = 1, 2, . . . , M , is
the M possible phases of the carrier that convey the transmitted information. Digital
phase modulation is usually called phase-shift keying (PSK). We note that these signal
waveforms have equal energy. From Equation 2.1–21,

Eavg = Em = 1

2
Eg (3.2–25)

and therefore,

Ebavg = Eg

2 log2 M
(3.2–26)

For this case, instead of Eavg and Ebavg we use the notation E and Eb.
Using the result of Example 2.1–1, we note that g(t) cos 2π fcT and g(t) sin 2π fct

are orthogonal, and therefore φ1(t) and φ2(t) given as

φ1(t) =
√

2

Eg
g(t) cos 2π fct (3.2–27)

φ2(t) = −
√

2

Eg
g(t) sin 2π fct (3.2–28)

can be used for expansion of sm(t), 1 ≤ m ≤ M , as

sm(t) =
√

Eg

2
cos

(
2π

M
(m − 1)

)
φ1(t) +

√
Eg

2
sin

(
2π

M
(m − 1)

)
φ2(t) (3.2–29)

therefore the signal space dimensionality is N = 2 and the resulting vector representa-
tions are

sm =
⎛
⎝

√
Eg

2
cos

(
2π

M
(m − 1)

)
,

√
Eg

2
sin

(
2π

M
(m − 1)

)⎞
⎠ , m = 1, 2, . . . , M

(3.2–30)

Signal space diagrams for BPSK (binary PSK, M = 2), QPSK (quaternary PSK,
M = 4), and 8-PSK are shown in Figure 3.2–3. We note that BPSK corresponds to
one-dimensional signals, which are identical to binary PAM signals. These signaling
schemes are special cases of binary antipodal signaling discussed earlier.

As is the case with PAM, the mapping or assignment of k information bits to the
M = 2k possible phases may be done in a number of ways. The preferred assignment
is Gray encoding, so that the most likely errors caused by noise will result in a single
bit error in the k-bit symbol.

The Euclidean distance between signal points is

dmn =
√

‖sm − sn‖2

(3.2–31)

=
√
Eg

[
1 − cos

(
2π

M
(m − n)

)]
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FIGURE 3.2–3
Signal space diagrams for BPSK, QPSK,
and 8-PSK.

and the minimum distance corresponding to |m − n| = 1 is

dmin =
√
Eg

(
1 − cos

2π

M

)
=

√
2Eg sin2 π

M
(3.2–32)

Solving Equation 3.2–26 for Eg and substituting the result in Equation 3.2–32 result in

dmin = 2

√(
log2 M × sin2 π

M

)
Eb (3.2–33)

For large values of M , we have sin π
M ≈ π

M , and dmin can be approximated by

dmin ≈ 2

√
π2 log2 M

M2
Eb (3.2–34)

A variant of four-phase PSK (QPSK), called π
4 -QPSK, is obtained by introducing

an additional π/4 phase shift in the carrier phase in each symbol interval. This phase
shift facilitates symbol synchronization.

3.2–3 Quadrature Amplitude Modulation

The bandwidth efficiency of PAM/SSB can also be obtained by simultaneously impress-
ing two separate k-bit symbols from the information sequence on two quadrature carriers
cos 2π fct and sin 2π fct . The resulting modulation technique is called quadrature PAM



Proakis-27466 book September 25, 2007 13:13

104 Digital Communications

or QAM, and the corresponding signal waveforms may be expressed as

sm(t) = Re
[
(Ami + j Amq )g(t)e j2π fct]

(3.2–35)
= Ami g(t) cos 2π fct − Amq g(t) sin 2π fct, m = 1, 2, . . . , M

where Ami and Amq are the information-bearing signal amplitudes of the quadrature
carriers and g(t) is the signal pulse. Alternatively, the QAM signal waveforms may be
expressed as

sm(t) = Re
[
rme jθm e j2π fct]

(3.2–36)
= rm cos (2π fct + θm)

where rm =
√

A2
mi + A2

mq and θm = tan−1(Amq/Ami ). From this expression, it is
apparent that the QAM signal waveforms may be viewed as combined amplitude (rm)
and phase (θm) modulation. In fact, we may select any combination of M1-level PAM and
M2-phase PSK to construct an M = M1 M2 combined PAM-PSK signal constellation.
If M1 = 2n and M2 = 2m , the combined PAM-PSK signal constellation results in the
simultaneous transmission of m + n = log2 M1 M2 binary digits occurring at a symbol
rate R/(m + n).

From Equation 3.2–35, it can be seen that, similar to the PSK case, φ1(t) and φ2(t)
given in Equations 3.2–27 and 3.2–28 can be used as an orthonormal basis for expansion
of QAM signals. The dimensionality of the signal space for QAM is N = 2. Using this
basis, we have

sm(t) = Ami

√
Eg

2
φ1(t) + Amq

√
Eg

2
φ2(t) (3.2–37)

which results in vector representations of the form

sm = (sm1, sm2)
(3.2–38)

=
⎛
⎝Ami

√
Eg

2
, Amq

√
Eg

2

⎞
⎠

and

Em = ‖sm‖|2 = Eg

2

(
A2

mi + A2
mq

)
(3.2–39)

Examples of signal space diagrams for combined PAM-PSK are shown in
Figure 3.2–4, for M = 8 and M = 16.

The Euclidean distance between any pair of signal vectors in QAM is

dmn =
√

‖sm − sn‖2

(3.2–40)

=
√

Eg

2

[
(Ami − Ani )2 + (Amq − Anq )2

]
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FIGURE 3.2–4
Examples of combined PAM-PSK constellations.

In the special case where the signal amplitudes take the set of discrete values
{(2m − 1 − M), m = 1, 2, . . . , M}, the signal space diagram is rectangular, as shown
in Figure 3.2–5. In this case, the Euclidean distance between adjacent points, i.e., the
minimum distance, is

dmin =
√

2Eg (3.2–41)

which is the same result as for PAM. In the special case of a rectangular constellation
with M = 22k1 , i.e., M = 4, 16, 64, 256, . . . , and with amplitudes of ±1, ±3, . . . ,

±(
√

M − 1) on both directions, from Equation 3.2–39 we have

Eavg = 1

M

Eg

2

√
M∑

m=1

√
M∑

n=1

(
A2

m + A2
n

)

= Eg

2M
× 2M(M − 1)

3
(3.2–42)

= M − 1

3
Eg

FIGURE 3.2–5
Several signal space diagrams for rectangular
QAM.
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from which

Ebavg = M − 1

3 log2 M
Eg (3.2–43)

Using Equation 3.2–41, we obtain

dmin =
√

6 log2 M

M − 1
Ebavg (3.2–44)

Table 3.2–1 summarizes some basic properties of the modulation schemes dis-
cussed above. In this table it is assumed that for PAM and QAM signaling, the ampli-
tudes are ±1, ±3, . . . , ±(M −1) and the QAM signaling has a rectangular

√
M ×√

M
constellation.

From the discussion of bandpass PAM, PSK, and QAM, it is clear that all these
signaling schemes are of the general form

sm(t) = Re
[
Am g(t)e j2π fct] , m = 1, 2, . . . , M (3.2–45)

where Am is determined by the signaling scheme. For PAM, Am is real, generally equal
to ±1, ±3, . . . , ±(M − 1), for M-ary PSK, Am is complex and equal to e j 2π

M (m−1);
and finally for QAM, Am is a general complex number Am = Ami + jAmq . In this
sense it is seen that these three signaling schemes belong to the same family, and
PAM and PSK can be considered as special cases of QAM. In QAM signaling, both
amplitude and phase carry information, whereas in PAM and PSK only amplitude
or phase carries the information. Also note that in these schemes the dimensionality
of the signal space is rather low (one for PAM and two for PSK and QAM) and is
independent of the constellation size M . The structure of the modulator for this general
class of signaling schemes is shown in Figure 3.2–6, where φ1(t) and φ2(t) are given by
Equation 3.2–27. Note that the modulator consists of a vector mapper, which maps each
of the M messages onto a constellation of size M , followed by a two-dimensional (or
one-dimensional, in case of PAM) vector to signal mapper as was previously shown in
Figure 2.2–2.

�

�

�
Am

sm(t)
1 � m � M

Ami

Amq

�1(t)

�2(t)

Mapper

FIGURE 3.2–6
A general QAM modulator.
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3.2–4 Multidimensional Signaling

It is apparent from the discussion above that the digital modulation of the carrier
amplitude and phase allows us to construct signal waveforms that correspond to two-
dimensional vectors and signal space diagrams. If we wish to construct signal wave-
forms corresponding to higher-dimensional vectors, we may use either the time domain
or the frequency domain or both to increase the number of dimensions. Suppose we
have N -dimensional signal vectors. For any N , we may subdivide a time interval of
length T1 = N T into N subintervals of length T = T1/N . In each subinterval of
length T , we may use binary PAM (a one-dimensional signal) to transmit an element
of the N -dimensional signal vector. Thus, the N time slots are used to transmit the
N -dimensional signal vector. If N is even, a time slot of length T may be used to
simultaneously transmit two components of the N -dimensional vector by modulating
the amplitude of quadrature carriers independently by the corresponding components.
In this manner, the N -dimensional signal vector is transmitted in 1

2 N T seconds ( 1
2 N

time slots). Alternatively, a frequency band of width N� f may be subdivided into N
frequency slots each of width � f . An N -dimensional signal vector can be transmitted
over the channel by simultaneously modulating the amplitude of N carriers, one in each
of the N frequency slots. Care must be taken to provide sufficient frequency separation
� f between successive carriers so that there is no cross-talk interference among the
signals on the N carriers. If quadrature carriers are used in each frequency slot, the N -
dimensional vector (even N ) may be transmitted in 1

2 N frequency slots, thus reducing
the channel bandwidth utilization by a factor of 2. More generally, we may use both
the time and frequency domains jointly to transmit an N -dimensional signal vector.
For example, Figure 3.2–7 illustrates a subdivision of the time and frequency axes into
12 slots. Thus, an N = 12-dimensional signal vector may be transmitted by PAM or
an N = 24-dimensional signal vector may be transmitted by use of two quadrature
carriers (QAM) in each slot.

Orthogonal Signaling
Orthogonal signals are defined as a set of equal energy signals sm(t), 1 ≤ m ≤ M , such
that

〈sm(t), sn(t)〉 = 0, m 
= n and 1 ≤ m, n ≤ M (3.2–46)

FIGURE 3.2–7
Subdivision of time and frequency axes into distinct slots.
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With this definition it is clear that

〈sm(t), sn(t)〉 =
{E m = n

0 m 
= n 1 ≤ m, n ≤ M (3.2–47)

Obviously the signals are linearly independent and hence N = M . The orthonormal
set {φ j (t), 1 ≤ i ≤ N } given by

φ j (t) = s j (t)√
E

, 1 ≤ j ≤ N (3.2–48)

can be used as an orthonormal basis for representation of {sm(t), 1 ≤ m ≤ M}. The
resulting vector representation of the signals will be

s1 = (
√
E, 0, 0, . . . , 0)

s2 = (0,
√
E, 0, . . . , 0)

... = ...

sM = (0, 0, . . . , 0,
√
E)

(3.2–49)

From Equation 3.2–49 it is seen that for all m 
= n we have

dmn =
√

2E (3.2–50)

and therefore,

dmin =
√

2E (3.2–51)

in all orthogonal signaling schemes. Using the relation

Eb = E
log2 M

(3.2–52)

we conclude that

dmin =
√

2 log2 M Eb (3.2–53)

Frequency-Shift Keying (FSK) As a special case of the construction of orthogonal
signals, let us consider the construction of orthogonal signal waveforms that differ in
frequency and are represented as

sm(t) = Re
[
sml(t)e j2π fct

]
, 1 ≤ m ≤ M, 0 ≤ t ≤ T

=
√

2E
T

cos (2π fct + 2πm � f t)
(3.2–54)

where

sml(t) =
√

2E
T

e j2πm� f t , 1 ≤ m ≤ M, 0 ≤ t ≤ T (3.2–55)
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The coefficient
√

2E
T is introduced to guarantee that each signal has an energy equal to

E . This type of signaling, in which the messages are transmitted by signals that differ
in frequency, is called frequency-shift keying (FSK). Note a major difference between
FSK and QAM signals (of which ASK and PSK can be considered as special cases). In
QAM signaling the lowpass equivalent of the signal is of the form Am g(t) where Am is
a complex number. Therefore the sum of two lowpass equivalent signals corresponding
to two different signals is of the general form of the lowpass equivalent of a QAM
signal. In this sense, the sum of two QAM signals is another QAM signal. For this
reason, ASK, PSK, and QAM are sometimes called linear modulation schemes. On the
other hand, FSK signaling does not satisfy this property, and therefore it belongs to the
class of nonlinear modulation schemes.

By using Equation 2.1–26, it is clear that for this set of signals to be orthogonal,
we need to have

Re
[∫ T

0
sml(t)snl(t) dt

]
= 0 (3.2–56)

for all m 
= n. But

〈sml(t), snl(t)〉 = 2E
T

∫ T

0
e j2π (m−n)� f t dt

= 2E sin(πT (m − n)� f )

πT (m − n)� f
e jπT (m−n)� f

(3.2–57)

and

Re [〈sml(t), snl(t)〉] = 2E sin (πT (m − n)� f )

πT (m − n)� f
cos (πT (m − n)� f )

= 2E sin (2πT (m − n)� f )

2πT (m − n)� f
(3.2–58)

= 2Esinc (2T (m − n)� f )

From Equation 3.2–58 we observe that sm(t) and sn(t) are orthogonal for all m 
= n
if and only if sinc (2T (m − n)� f ) = 0 for all m 
= n. This is the case if � f = k/2T
for some positive integer k. The minimum frequency separation � f that guarantees
orthogonality is � f = 1/2T . Note that � f = 1

2T is the minimum frequency separation
that guarantees 〈sml(t), snl(t)〉 = 0, thus guaranteeing the orthogonality of the baseband,
as well as the bandpass, frequency-modulated signals.

Hadamard signals are orthogonal signals which are constructed from Hadamard
matrices. Hadamard matrices Hn are 2n × 2n matrices for n = 1, 2, . . . defined by the
following recursive relation

H0 = [1]

Hn+1 =
[

Hn Hn

Hn −Hn

]
(3.2–59)



Proakis-27466 book September 25, 2007 13:13

Chapter Three: Digital Modulation Schemes 111

With this definition we have

H1 =
[

1 1

1 −1

]

H2 =

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎤
⎥⎥⎥⎥⎦

H3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2–60)

Hadamard matrices are symmetric matrices whose rows (and, by symmetry, columns)
are orthogonal. Using these matrices, we can generate orthogonal signals. For instance,
using H2 would result in the set of signals

s1 = [
√
E

√
E

√
E

√
E ]

s2 = [
√
E −√

E
√
E −√

E ]

s3 = [
√
E

√
E −√

E −√
E ]

s4 = [
√
E −√

E −√
E

√
E ]

(3.2–61)

This set of orthogonal signals may be used to modulate any four-dimensional orthonor-
mal basis {φ j (t)}4

j=1 to generate signals of the form

sm(t) =
4∑

j=1

smjφ j (t), 1 ≤ m ≤ 4 (3.2–62)

Note that the energy in each signal is 4E , and each signal carries 2 bits of information,
hence Eb = 2E .

Biorthogonal Signaling
A set of M biorthogonal signals can be constructed from 1

2 M orthogonal signals by
simply including the negatives of the orthogonal signals. Thus, we require N = 1

2 M
dimensions for the construction of a set of M biorthogonal signals. Figure 3.2–8 illus-
trates the biorthogonal signals for M = 4 and 6. We note that the correlation between
any pair of waveforms is ρ = −1 or 0. The corresponding distances are d = 2

√
E or√

2E , with the latter being the minimum distance.
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�2(t) �2(t)

�1(t)

�3(t)

�1(t)

FIGURE 3.2–8
Signal space diagram for M = 4 and M = 6 biorthogonal signals.

Simplex Signaling
Suppose we have a set of M orthogonal waveforms {sm(t)} or, equivalently, their vector
representation {sm}. Their mean is

s̄ = 1

M

M∑
m=1

sm (3.2–63)

Now, let us construct another set of M signals by subtracting the mean from each of
the M orthogonal signals. Thus,

s′
m = sm − s̄, m = 1, 2, . . . , M (3.2–64)

The effect of the subtraction is to translate the origin of the m orthogonal signals to
the point s̄. The resulting signal waveforms are called simplex signals and have the
following properties. First, the energy per waveform is

‖s′
m‖2 = ‖sm − s̄‖2

= E − 2

M
E + 1

M
E

= E
(

1 − 1

M

) (3.2–65)

Second, the cross-correlation of any pair of signals is

Re [ρmn] = s′
m · s′

n

‖s′
m‖‖s′

n‖
= −1/M

1 − 1/M
= − 1

M − 1

(3.2–66)

Hence, the set of simplex waveforms is equally correlated and requires less energy, by
the factor 1 − 1/M , than the set of orthogonal waveforms. Since only the origin was
translated, the distance between any pair of signal points is maintained at d = √

2E ,
which is the same as the distance between any pair of orthogonal signals. Figure 3.2–9
illustrates the simplex signals for M = 2, 3, and 4. Note that the signal dimensionality
is N = M − 1.
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2E

2E
E

2E

2E

�2(t) �2(t)

�2(t)

�1(t) �1(t)

�1(t)

�3(t)

M � 4

FIGURE 3.2–9
Signal space diagrams for M-ary simplex
signals.

Note that the class of orthogonal, biorthogonal, and simplex signals has many
common properties. The signal space dimensionality in this class is highly dependent
on the constellation size. This is in contrast to PAM, PSK, and QAM systems. Also,
for fixed Eb, the minimum distance dmin in these systems increases with increasing M .
This again is in sharp contrast to PAM, PSK, and QAM signaling. We will see later in
Chapter 4 that similar contrasts in power and bandwidth efficiency exist between these
two classes of signaling schemes.

Signal Waveforms from Binary Codes
A set of M signaling waveforms can be generated from a set of M binary code words
of the form

cm = [cm1 cm2 · · · cm N ], m = 1, 2, . . . , M (3.2–67)

where cmj = 0 or 1 for all m and j . Each component of a code word is mapped into an
elementary binary PSK waveform as follows:

cmj = 1 =⇒
√

2Ec

Tc
cos 2π fct, 0 ≤ t ≤ Tc

cmj = 0 =⇒ −
√

2Ec

Tc
cos 2π fct, 0 ≤ t ≤ Tc

(3.2–68)

where Tc = T/N and Ec = E/N . Thus, the M code words {cm} are mapped into a set
of M waveforms {sm(t)}. The waveforms can be represented in vector form as

sm = [sm1 sm2 · · · sm N ], m = 1, 2, . . . , M (3.2–69)
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�2(t) �2(t)

�1(t)

�1(t)

�3(t)

FIGURE 3.2–10
Signal space diagrams for signals generated from binary codes.

where smj = ±√
E/N for all m and j . Also N is called the block length of the code, and

it is the dimension of the M waveforms. We note that there are 2N possible waveforms
that can be constructed from the 2N possible binary code words. We may select a subset
of M < 2N signal waveforms for transmission of the information. We also observe that
the 2N possible signal points correspond to the vertices of an N -dimensional hypercube
with its center at the origin. Figure 3.2–10 illustrates the signal points in N = 2 and 3
dimensions. Each of the M waveforms has energy E . The cross-correlation between any
pair of waveforms depends on how we select the M waveforms from the 2N possible
waveforms. This topic is treated in detail in Chapters 7 and 8. Clearly, any adjacent
signal points have a cross-correlation coefficient

ρ = E(1 − 2/N )

E = N − 2

N
(3.2–70)

and a corresponding distance of

dmin =
√

2E(1 − ρ) =
√

4E/N (3.2–71)

The Hadamard signals described previously are special cases of signals based on
codes.

3.3
SIGNALING SCHEMES WITH MEMORY

We have seen before that signaling schemes with memory can be best explained in
terms of Markov chains and finite-state machines. The state transition and the outputs
of the Markov chain are governed by

m� = fm(S�−1, I�)

S� = fs(S�−1, I�)
(3.3–1)
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FIGURE 3.3–1
Examples of baseband signals.

where I� denotes the information sequence and m� is the index of the transmitted
signal sm�

(t).
Figure 3.3–1 illustrates three different baseband signals and the corresponding data

sequence. The first signal, called NRZ (non-return-to-zero), is the simplest. The binary
information digit 1 is represented by a rectangular pulse of polarity A, and the binary
digit 0 is represented by a rectangular pulse of polarity −A. Hence, the NRZ modulation
is memoryless and is equivalent to a binary PAM or a binary PSK signal in a carrier-
modulated system. The NRZI (non-return-to-zero, inverted) signal is different from the
NRZ signal in that transitions from one amplitude level to another occur only when
a 1 is transmitted. The amplitude level remains unchanged when a 0 is transmitted.
This type of signal encoding is called differential encoding. The encoding operation is
described mathematically by the relation

bk = ak ⊕ bk−1 (3.3–2)

where {ak} is the binary information sequence into the encoder, {bk} is the output se-
quence of the encoder, and ⊕ denotes addition modulo 2. When bk = 1, the transmitted
waveform is a rectangular pulse of amplitude A; and when bk = 0, the transmitted
waveform is a rectangular pulse of amplitude −A. Hence, the output of the encoder is
mapped into one of two waveforms in exactly the same manner as for the NRZ signal.
In other words, NRZI signaling can be considered as a differential encoder followed
by an NRZ signaling scheme.

The existence of the differential encoder causes memory in NRZI signaling. Com-
parison of Equations 3.3–2 and 3.3–1 indicates that bk can be considered as the state
of the Markov chain. Since the information sequence is assumed to be binary, there are
two states in the Markov chain, and the state transition diagram of the Markov chain is
shown in Figure 3.3–2. The transition probabilities between states are determined by
the probability of 0 and 1 generated by the source. If the source is equiprobable, all
transition probabilities will be equal to 1

2 and

P =
[ 1

2
1
2

1
2

1
2

]
(3.3–3)

Using this P , we can obtain the steady-state probability distribution as

p = [ 1
2

1
2

]
(3.3–4)
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FIGURE 3.3–2
State transition diagram for NRZI signaling.

FIGURE 3.3–3
The trellis diagram for NRZI signaling.

We will use the steady-state probabilities to determine the power spectral density of
modulation schemes with memory later in this chapter.

In general, if P [ak = 1] = 1 − P [ak = 0] = p, we have

P =
[

1 − p p

p 1 − p

]
(3.3–5)

The steady-state probability distribution in this case is again given by Equation 3.3–4.
Another way to display the memory introduced by the precoding operation is by

means of a trellis diagram. The trellis diagram for the NRZI signal is illustrated in
Figure 3.3–3. The trellis provides exactly the same information concerning the signal
dependence as the state diagram, but also depicts a time evolution of the state transitions.

3.3–1 Continuous-Phase Frequency-Shift Keying (CPFSK)

In this section, we consider a class of digital modulation methods in which the phase of
the signal is constrained to be continuous. This constraint results in a phase or frequency
modulator that has memory.

As seen from Equation 3.2–54, a conventional FSK signal is generated by shifting
the carrier by an amount m � f, 1 ≤ m ≤ M , to reflect the digital information that is
being transmitted. This type of FSK signal was described in Section 3.2–4, and it is mem-
oryless. The switching from one frequency to another may be accomplished by having
M = 2k separate oscillators tuned to the desired frequencies and selecting one of the M
frequencies according to the particular k-bit symbol that is to be transmitted in a signal
interval of duration T = k/R seconds. However, such abrupt switching from one oscil-
lator output to another in successive signaling intervals results in relatively large spectral
side lobes outside of the main spectral band of the signal; consequently, this method re-
quires a large frequency band for transmission of the signal. To avoid the use of signals
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having large spectral side lobes, the information-bearing signal frequency modulates
a single carrier whose frequency is changed continuously. The resulting frequency-
modulated signal is phase-continuous, and hence, it is called continuous-phase FSK
(CPFSK). This type of FSK signal has memory because the phase of the carrier is con-
strained to be continuous. To represent a CPFSK signal, we begin with a PAM signal

d(t) =
∑

n

Ing(t − nT ) (3.3–6)

where {In} denotes the sequence of amplitudes obtained by mapping k-bit blocks of
binary digits from the information sequence {an} into the amplitude levels ±1, ±3, . . . ,

±(M − 1) and g(t) is a rectangular pulse of amplitude 1/2T and duration T seconds.
The signal d(t) is used to frequency-modulate the carrier. Consequently, the equivalent
lowpass waveform v(t) is expressed as

v(t) =
√

2E
T

e j
[

4πT fd

∫ t

−∞ d(τ ) dτ+φ0

]
(3.3–7)

where fd is the peak frequency deviation and φ0 is the initial phase of the carrier. The
carrier-modulated signal corresponding to Equation 3.3–7 may be expressed as

s(t) =
√

2E
T

cos [2π fct + φ(t; I) + φ0] (3.3–8)

where φ(t; I) represents the time-varying phase of the carrier, which is defined as

φ(t; I) = 4πT fd

∫ t

−∞
d(τ ) dτ

= 4πT fd

∫ t

−∞

[∑
n

Ing(τ − nT )

]
dτ

(3.3–9)

Note that, although d(t) contains discontinuities, the integral of d(t) is continuous.
Hence, we have a continuous-phase signal. The phase of the carrier in the interval
nT ≤ t ≤ (n + 1)T is determined by integrating Equation 3.3–9. Thus,

φ(t; I) = 2π fd T
n−1∑

k=−∞
Ik + 2π fdq(t − nT )In

= θn + 2πhInq(t − nT )

(3.3–10)

where h, θn , and q(t) are defined as

h = 2 fd T (3.3–11)

θn = πh
n−1∑

k=−∞
Ik (3.3–12)

q(t) =

⎧⎪⎨
⎪⎩

0 t < 0
t

2T 0 ≤ t ≤ T
1
2 t > T

(3.3–13)
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We observe that θn represents the accumulation (memory) of all symbols up to time
(n − 1)T . The parameter h is called the modulation index.

3.3–2 Continuous-Phase Modulation (CPM)

When expressed in the form of Equation 3.3–10, CPFSK becomes a special case of
a general class of continuous-phase modulated (CPM) signals in which the carrier
phase is

φ(t; I) = 2π

n∑
k=−∞

Ikhkq(t − kT ), nT ≤ t ≤ (n + 1)T (3.3–14)

where {Ik} is the sequence of M-ary information symbols selected from the alphabet
±1, ±3, . . . , ±(M − 1), {hk} is a sequence of modulation indices, and q(t) is some
normalized waveform shape. When hk = h for all k, the modulation index is fixed
for all symbols. When the modulation index varies from one symbol to another, the
signal is called multi-h CPM. In such a case, the {hk} are made to vary in a cyclic
manner through a set of indices. The waveform q(t) may be represented in general as
the integral of some pulse g(t), i.e.,

q(t) =
∫ t

0
g(τ ) dτ (3.3–15)

If g(t) = 0 for t > T , the signal is called full-response CPM. If g(t) 
= 0 for t > T , the
modulated signal is called partial-response CPM. Figure 3.3–4 illustrates several pulse
shapes for g(t) and the corresponding q(t). It is apparent that an infinite variety of CPM
signals can be generated by choosing different pulse shapes g(t) and by varying the
modulation index h and the alphabet size M . We note that the CPM signal has memory
that is introduced through the phase continuity.

Three popular pulse shapes are given in Table 3.3–1. LREC denotes a rectangular
pulse of duration LT , where L is a positive integer. In this case, L = 1 results in a
CPFSK signal, with the pulse as shown in Figure 3.3–4(a). The LREC pulse for L = 2
is shown in Figure 3.3–4(c). LRC denotes a raised cosine pulse of duration LT . The
LRC pulses corresponding to L = 1 and L = 2 are shown in Figure 3.3–4(b) and (d),
respectively. For L > 1, additional memory is introduced in the CPM signal by the
pulse g(t).

The third pulse given in Table 3.3–1 is called a Gaussian minimum-shift keying
(GMSK) pulse with bandwidth parameter B, which represents the −3-dB bandwidth
of the Gaussian pulse. Figure 3.3–4(e) illustrates a set of GMSK pulses with time-
bandwidth products BT ranging from 0.1 to 1. We observe that the pulse duration
increases as the bandwidth of the pulse decreases, as expected. In practical applications,
the pulse is usually truncated to some specified fixed duration. GMSK with BT = 0.3
is used in the European digital cellular communication system, called GSM. From
Figure 3.3–4(e) we observe that when BT = 0.3, the GMSK pulse may be truncated
at |t | = 1.5T with a relatively small error incurred for t > 1.5T .
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FIGURE 3.3–4
Pulse shapes for full-response CPM (a, b) and partial-response CPM (c, d), and GMSK (e).

TABLE 3.3–1

Some Commonly Used CPM Pulse Shapes

LREC g(t) =
{

1
2LT 0 ≤ t ≤ LT

0 otherwise

LRC g(t) =
{

1
2LT

(
1 − cos 2π t

LT

)
0 ≤ t ≤ LT

0 otherwise

GMSK g(t) = Q(2π B(t− T
2 ))−Q(2π B(t+ T

2 ))√
ln 2



Proakis-27466 book September 25, 2007 13:13

120 Digital Communications

FIGURE 3.3–5
Phase trajectory for binary CPFSK.

It is instructive to sketch the set of phase trajectories φ(t; I) generated by all
possible values of the information sequence {In}. For example, in the case of CPFSK
with binary symbols In = ±1, the set of phase trajectories beginning at time t = 0 is
shown in Figure 3.3–5. For comparison, the phase trajectories for quaternary CPFSK
are illustrated in Figure 3.3–6.

These phase diagrams are called phase trees. We observe that the phase trees
for CPFSK are piecewise linear as a consequence of the fact that the pulse g(t) is
rectangular. Smoother phase trajectories and phase trees are obtained by using pulses
that do not contain discontinuities, such as the class of raised cosine pulses. For example,
a phase trajectory generated by the sequence (1, −1, −1, −1, 1, 1, −1, 1) for a partial-
response, raised cosine pulse of length 3T is illustrated in Figure 3.3–7. For comparison,
the corresponding phase trajectory generated by CPFSK is also shown.

The phase trees shown in these figures grow with time. However, the phase of the
carrier is unique only in the range from φ = 0 to φ = 2π or, equivalently, from φ = −π

to φ = π . When the phase trajectories are plotted modulo 2π , say, in the range (−π, π ),
the phase tree collapses into a structure called a phase trellis. To properly view the phase
trellis diagram, we may plot the two quadrature components xi (t; I) = cos φ(t; I) and
xq (t; I) = sin φ(t; I) as functions of time. Thus, we generate a three-dimensional plot
in which the quadrature components xi and xq appear on the surface of a cylinder of
unit radius. For example, Figure 3.3–8 illustrates the phase trellis or phase cylinder
obtained with binary modulation, a modulation index h = 1

2 , and a raised cosine pulse
of length 3T .

Simpler representations for the phase trajectories can be obtained by displaying
only the terminal values of the signal phase at the time instants t = nT . In this case,
we restrict the modulation index of the CPM signal to be rational. In particular, let us
assume that h = m/p, where m and p are relatively prime integers. Then a full-response
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FIGURE 3.3–6
Phase trajectory for quaternary CPFSK.

CPM signal at the time instants t = nT will have the terminal phase states

	s =
{

0,
πm

p
,

2πm

p
, · · · ,

(p − 1)πm

p

}
(3.3–16)

when m is even and

	s =
{

0,
πm

p
,

2πm

p
, · · · ,

(2p − 1)πm

p

}
(3.3–17)
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FIGURE 3.3–7
Phase trajectories for binary CPFSK (dashed) and binary, partial-response CPM based on
raised cosine pulse of length 3T (solid). [Source: Sundberg (1986), c© 1986 IEEE]

FIGURE 3.3–8
Phase cylinder for binary CPM with h = 1

2 and a raised
cosine pulse of length 3T . [Source: Sundberg (1986),
c© 1986 IEEE]

when m is odd. Hence, there are p terminal phase states when m is even and 2p states
when m is odd. On the other hand, when the pulse shape extends over L symbol intervals
(partial-response CPM), the number of phase states may increase up to a maximum of
St , where

St =
{

pM L−1 even m
2pM L−1 odd m

(3.3–18)

where M is the alphabet size. For example, the binary CPFSK signal (full-response,
rectangular pulse) with h = 1

2 has St = 4 (terminal) phase states. The state trellis for
this signal is illustrated in Figure 3.3–9. We emphasize that the phase transitions from
one state to another are not true phase trajectories. They represent phase transitions for
the (terminal) states at the time instants t = nT .

An alternative representation to the state trellis is the state diagram, which also
illustrates the state transitions at the time instants t = nT . This is an even more
compact representation of the CPM signal characteristics. Only the possible (terminal)
phase states and their transitions are displayed in the state diagram. Time does not
appear explicitly as a variable. For example, the state diagram for the CPFSK signal
with h = 1

2 is shown in Figure 3.3–10.
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FIGURE 3.3–9
State trellis for binary CPFSK with h = 1

2 .

FIGURE 3.3–10
State diagram for binary CPFSK with h = 1

2 .

Minimum-Shift Keying (MSK)
MSK is a special form of binary CPFSK (and, therefore, CPM) in which the modulation
index h = 1

2 and g(t) is a rectangular pulse of duration T . The phase of the carrier in
the interval nT ≤ t ≤ (n + 1)T is

φ(t; I) = 1

2
π

n−1∑
k=−∞

Ik + π Inq(t − nT )

= θn + 1

2
π In

(
t − nT

T

)
, nT ≤ t ≤ (n + 1)T

(3.3–19)

and the modulated carrier signal is

s(t) = A cos
[

2π fct + θn + 1

2
π In

(
t − nT

T

)]

= A cos
[

2π

(
fc + 1

4T
In

)
t − 1

2
nπ In + θn

]
, nT ≤ t ≤ (n + 1)T

(3.3–20)

Equation 3.3–20 indicates that the binary CPFSK signal can be expressed as a
sinusoid having one of two possible frequencies in the interval nT ≤ t ≤ (n + 1)T . If
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we define these frequencies as

f1 = fc − 1

4T

f2 = fc + 1

4T

(3.3–21)

then the binary CPFSK signal given by Equation 3.3–20 may be written in the form

si (t) = A cos
[

2π fi t + θn + 1

2
nπ (−1)i−1

]
, i = 1, 2 (3.3–22)

which represents an FSK signal with frequency separation of � f = f2 − f1 = 1/2T .
From the discussion following Equation 3.2–58 we recall that � f = 1/2T is the mini-
mum frequency separation that is necessary to ensure the orthogonality of signals s1(t)
and s2(t) over a signaling interval of length T . This explains why binary CPFSK with
h = 1

2 is called minimum-shift keying (MSK). The phase in the nth signaling interval is
the phase state of the signal that results in phase continuity between adjacent intervals.

Offset QPSK (OQPSK)
Consider the QPSK system with constellation shown in Figure 3.3–11. In this system
each 2 information bits is mapped into one of the constellation points. The constellation
and one possible mapping of bit sequences of length 2 are shown in Figure 3.3–11.

Now assume we are interested in transmitting the binary sequence 11000111. To
do this, we can split this sequence into binary sequences 11, 00, 01, and 11 and transmit
the corresponding points in the constellation. The first bit in each binary sequence
determines the in-phase (I ) component of the baseband signal with a duration 2Tb, and
the second bit determines the quadrature (Q) component of it, again of duration 2Tb.
The in-phase and quadrature components for this bit sequence are shown in Figure 3.3–
12. Note that changes can occur only at even multiples of Tb, and there are instances at
which both I and Q components change simultaneously, resulting in a change of 180◦
in the phase, for instance, at t = 2Tb in Figure 3.3–12. The possible phase transitions
for QPSK signals, that can occur only at time instances of the form nTb, where n is
even, are shown in Figure 3.3–13.

Μ � 4

10

11

00

01

−√E/2

−√E/2

√E

√E/2

√E/2

FIGURE 3.3–11
A possible mapping for QPSK signal.
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dQ (t)

t
d1 d5 d7

d3

dl (t)

t
d0 d6

d2 d4

dk (t)

t
d0 d1 d5 d6 d7

d2 d3 d4

Tb 2Tb 3Tb 4Tb 5Tb 6Tb 7Tb 8Tb

FIGURE 3.3–12
The in-phase and quadrature components for QPSK.

FIGURE 3.3–13
Possible phase transitions in QPSK signaling.

To prevent 180◦ phase changes that cause abrupt changes in the signal, resulting
in large spectral side lobes, a version of QPSK, known as offset QPSK (OQPSK),
or staggered QPSK (SQPSK), is introduced. In OQPSK, the in-phase and quadrature
components of the standard QPSK are misaligned by Tb. The in-phase and quadrature
components for the sequence 11000111 are shown in Figure 3.3–14. Misalignment of
the in-phase and quadrature components prevents both components changing at the
same time and thus prevents phase transitions of 180◦. This reduces the abrupt jumps
in the modulated signal. The absence of 180◦ phase jump is, however, offset by more
frequent ±90◦ phase shifts. The overall effect is that, as we will see later, standard
QPSK and OQPSK have the same power spectral density. The phase transition diagram
for OQPSK is shown in Figure 3.3–15.

The OQPSK signal can be written as

s(t) = A

[( ∞∑
n=−∞

I2ng(t − 2nT )

)
cos 2π fct

+
( ∞∑

n=−∞
I2n+1g(t − 2nT − T )

)
sin 2π fct

] (3.3–23)



Proakis-27466 book September 25, 2007 13:13

126 Digital Communications
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Tb 2Tb 3Tb 4Tb 5Tb 6Tb 7Tb 8Tb

FIGURE 3.3–14
The in-phase and quadrature components for OQPSK signaling.

FIGURE 3.3–15
Phase transition diagram for OQPSK signaling.

with the lowpass equivalent of

sl(t) = A

[ ∞∑
n=−∞

I2ng(t − 2nT )

]
− j

[ ∞∑
n=−∞

I2n+1g(t − 2nT − T )

]
(3.3–24)

MSK may also be represented as a form of OQPSK. Specifically, we may express
(see Problem 3.26 and Example 3.3–1) the equivalent lowpass digitally modulated
MSK signal in the form of Equation 3.3–24 with

g(t) =
{

sin π t
2T 0 ≤ t ≤ 2T

0 otherwise
(3.3–25)

Figure 3.3–16 illustrates the representation of an MSK signal as two staggered
quadrature-modulated binary PSK signals. The corresponding sum of the two quadra-
ture signals is a constant-amplitude, frequency-modulated signal.

It is also interesting to compare the waveforms for MSK with offset QPSK in which
the pulse g(t) is rectangular for 0 ≤ t ≤ 2T , and with conventional QPSK in which the
pulse g(t) is rectangular for 0 ≤ t ≤ 2T . Clearly, all three of the modulation methods
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(a)

(b)

(c)

FIGURE 3.3–16
Representation of MSK as an OQPSK signal with
a sinusoidal envelope.

result in identical data rates. The MSK signal has continuous phase; therefore, there
exist no jumps in its waveform. However, since it is essentially a frequency modulation
system, there are jumps in its instantaneous frequency. The offset QPSK signal with
a rectangular pulse is basically two binary PSK signals for which the phase transi-
tions are staggered in time by T seconds. Thus, the signal contains phase jumps of
±90◦ that may occur as often as every T seconds. OQPSK is a signaling scheme with
constant frequency, but there exist jumps in its waveform. On the other hand, the con-
ventional four-phase PSK signal with constant amplitude will contain phase jumps of
±180◦ or ±90◦ every 2T seconds. An illustration of these three signal types is given in
Figure 3.3–17.

QPSK signaling with rectangular pulses has constant envelope, but in practice
filtered pulse shapes like the raised cosine signal are preferred and are more widely
employed. When filtered pulse shapes are used, the QPSK signal will not be a constant-
envelope modulation scheme, and the 180◦ phase shifts cause the envelope to pass
through zero. Nonconstant envelope signals are not desirable particularly when used
with nonlinear devices such as class C amplifiers or TWTs. In such cases OQPSK is a
useful alternative to QPSK.

In MSK the phase is continuous—since it is a special case of CPFSK—but the
frequency has jumps in it. If these jumps are smoothed, the spectrum will be more com-
pact. GMSK signaling discussed earlier in this chapter and summarized in Table 3.3–1
is a signaling scheme that addresses this problem by shaping the lowpass binary signal
before being applied to the MSK modulator and therefore results in smoother transi-
tions in frequency between signaling intervals. This results in more compact spectral
characteristics. The baseband signal is shaped in GMSK, but since the shaping occurs
before modulation, the resulting modulated signal will be of constant envelope.
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(a)

(b)

(c)

FIGURE 3.3–17
MSK, OQPSK, and QPSK signals.

Linear Representation of CPM Signals
As described above, CPM is a nonlinear modulation technique with memory. However,
CPM may also be represented as a linear superposition of signal waveforms. Such a
representation provides an alternative method for generating the modulated signal at the
transmitter and/or demodulating the signal at the receiver. Following the development
originally given by Laurent (1986), we demonstrate that binary CPM may be represented
by a linear superposition of a finite number of amplitude-modulated pulses, provided
that the pulse g(t) is of finite duration LT , where T is the bit interval. We begin with
the equivalent lowpass representation of CPM, which is

v(t) =
√

2E
T

e jφ(t;I), nT ≤ t ≤ (n + 1)T (3.3–26)

where

φ(t; I) = 2πh
n∑

k=−∞
Ikq(t − kT ), nT ≤ t ≤ (n + 1)T

= πh
n−L∑

k=−∞
Ik + 2πh

n∑
k=n−L+1

Ikq(t − kT )

(3.3–27)
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and q(t) is the integral of the pulse g(t), as previously defined in Equation 3.3–15. The
exponential term exp[ jφ(t; I)] may be expressed as

exp[ jφ(t; I)] = exp

(
jπh

n−L∑
k=−∞

Ik

)
L−1∏
k=0

exp { j2πhIn−kq [t − (n − k)T ]} (3.3–28)

Note that the first term on the right-hand side of Equation 3.3–28 represents the cu-
mulative phase up to the information symbol In−L , and the second term consists of a
product of L phase terms. Assuming that the modulation index h is not an integer and
the data symbols are binary, i.e., Ik = ±1, the kth phase term may be expressed as

exp { j2πhIn−kq [t − (n − k)T ]} = sin πh

sin πh
exp { j2πhIn−kq [t − (n − k)T ]}

= sin{πh − 2πhq[t − (n − k)]T }
sin πh

+ exp( jπhIn−k)
sin{2πhq[t − (n − k)T ]}

sin πh
(3.3–29)

It is convenient to define the signal pulse s0(t) as

s0(t) =

⎧⎪⎪⎨
⎪⎪⎩

sin 2πhq(t)
sin πh 0 ≤ t ≤ LT

sin[πh−2πhq(t−LT )]
sin πh LT ≤ t ≤ 2LT

0 otherwise

(3.3–30)

Then

exp[ jφ(t; I)] = exp

(
jπh

n−L∑
k=−∞

Ik

)
L−1∏
k=0

{s0[t + (k + L − n)T ]

+ exp( jπhIn−k)s0[t − (k − n)T ]} (3.3–31)

By performing the multiplication over the L terms in the product, we obtain a sum
of 2L terms, where 2L−1 terms are distinct and the other 2L−1 terms are time-shifted
versions of the distinct terms. The final result may be expressed as

exp[ jφ(t; I)] =
∑

n

2L−1−1∑
k=0

e jπh Ak,n ck(t − nT ) (3.3–32)

where the pulses ck(t), for 0 ≤ k ≤ 2L−1 − 1, are defined as

ck(t) = s0(t)
L−1∏
n=1

s0[t+(n+Lak,n)T ], 0 ≤ t ≤ T ×min
n

[L(2−ak,n)−n] (3.3–33)

and each pulse is weighted by a complex coefficient exp ( jπh Ak,n), where

Ak,n =
n∑

m=−∞
Im −

L−1∑
m=1

In−mak,m (3.3–34)
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and the {ak,n = 0 or 1} are the coefficients in the binary representation of the index k,
i.e.,

k =
L−1∑
m=1

2m−1ak,m, k = 0, 1, . . . , 2L−1 − 1 (3.3–35)

Thus, the binary CPM signal is expressed as a weighted sum of 2L−1 real-valued pulses
{ck(t)}.

In this representation of CPM as a superposition of amplitude-modulated pulses,
the pulse c0(t) is the most important component, because its duration is the longest
and it contains the most significant part of the signal energy. Consequently, a simple
approximation to a CPM signal is a partial-response PAM signal having c0(t) as the
basic pulse shape.

The focus for the above development was binary CPM. A representation of M-ary
CPM as a superposition of PAM waveforms has been described by Mengali and Morelli
(1995).

E X A M P L E 3.3–1. As a special case, let us consider the MSK signal, for which h = 1
2

and g(t) is a rectangular pulse of duration T . In this case,

φ(t; I) = π

2

n−1∑
k=−∞

Ik + π Inq(t − nT )

= θn + π

2
In

(
t − nT

T

)
, nT ≤ t ≤ (n + 1)T

and

exp[ jφ(t; I)] =
∑

n

bnc0(t − nT )

where

c0(t) =
{

sin π t
2T 0 ≤ t ≤ 2T

0 otherwise

and

bn = e jπ A0,n/2 = e jπ (θn+In )/2

The complex-valued modified data sequence {bn} may be expressed recursively as

bn = jbn−1 In

so that bn alternates in taking real and imaginary values. By separating the real and the
imaginary components, we obtain the equivalent lowpass signal representation given
by Equations 3.3–24 and 3.3–25.
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3.4
POWER SPECTRUM OF DIGITALLY MODULATED SIGNALS

In this section we study the power spectral density of digitally modulated signals.
The information about the power spectral density helps us determine the required
transmission bandwidth of these modulation schemes and their bandwidth efficiency.
We start by considering a general modulation scheme with memory in which the current
transmitted signal can depend on the entire history of the information sequence and
then specialize this general formulation to the cases where the modulation system has a
finite memory, the case where the modulation is linear, and when the modulated signal
can be determined by the state of a Markov chain. We conclude this section with the
spectral characteristics of CPM and CPFSK signals.

3.4–1 Power Spectral Density of a Digitally Modulated Signal with Memory

Here we assume that the bandpass modulated signal is denoted by v(t) with a lowpass
equivalent signal of the form

vl(t) =
∞∑

n=−∞
sl(t − nT ; In) (3.4–1)

Here sl(t; In) ∈ {s1l(t), s2l(t), . . . , sMl(t)} is one of the possible M lowpass equiva-
lent signals determined by the information sequence up to time n, denoted by In =
(. . . , In−2, In−1, In). We assume that In is stationary process. Our goal here is to deter-
mine the power spectral density of v(t). This is done by first deriving the power spectral
density of vl(t) and using Equation 2.9–14 to obtain the power spectral density of v(t).

We first determine the autocorrelation function of vl(t).

Rvl (t + τ, t) = E
[
vl(t + τ )v∗

l (t)
]

=
∞∑

n=−∞

∞∑
m=−∞

E
[
sl(t + τ − nT ; In)s∗

l (t − mT ; Im)
] (3.4–2)

Changing t to t + T does not change the mean and the autocorrelation function of vl(t),
hence vl(t) is a cyclostationary process; to determine its power spectral density, we
have to average Rvl (t + τ, t) over one period T . We have (with a change of variable of
k = n − m)

R̄vl (τ ) = 1

T

∞∑
k=−∞

∞∑
m=−∞

∫ T

0
E

[
sl(t + τ − mT − kT ; Im+k)s∗

l (t − mT ; Im)
]

dt

(a)= 1

T

∞∑
k=−∞

∞∑
m=−∞

∫ −(m−1)T

−mT
E

[
sl(u + τ − kT ; I k)s∗

l (u; I0)
]

du

= 1

T

∞∑
k=−∞

∫ ∞

−∞
E

[
sl(u + τ − kT ; I k)s∗

l (u; I0)
]

du

(3.4–3)
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where in (a) we have introduced a change of variable of the form u = t − mT and we
have used the fact that the Markov chain is in the steady state and the input process {In}
is stationary. Defining

gk(τ ) =
∫ ∞

−∞
E

[
sl(t + τ ; I k)s∗

l (t; I0)
]

dt (3.4–4)

we can write Equation 3.4–3 as

R̄vl (τ ) = 1

T

∞∑
k=−∞

gk(τ − kT ) (3.4–5)

The power spectral density of vl(t), which is the Fourier transform of Rvl (τ ), is
therefore given by

Svl ( f ) = 1

T
F

[∑
k

gk(τ − kT )

]

= 1

T

∞∑
k=−∞

Gk( f )e− j2πk f T

(3.4–6)

where Gk( f ) denotes the Fourier transform of gk(τ ). We can also express Gk( f ) in the
following form:

Gk( f ) = F

[∫ ∞

−∞
E

[
sl(t + τ ; I k)s∗

l (t; I0)
]

dt
]

=
∫ ∞

−∞

∫ ∞

−∞
E

[
sl(t + τ ; I k)s∗

l (t; I0)
]

e− j2π f τ dt dτ

= E
[∫ ∞

−∞

∫ ∞

−∞
sl(t + τ ; I k)e− j2π f (t+τ ) s∗

l (t; I0)e j2π f t dt dτ

]

= E
[
Sl( f ; I k)S∗

l ( f ; I0)
]

(3.4–7)

where Sl( f ; I k) and Sl( f ; I0) are Fourier transforms of sl(t; I k) and sl(t; I0),
respectively.

From Equation 3.4–7, we conclude that G0( f ) = E
[|Sl( f ; I0)|2] is real, and

G−k( f ) = G∗
k ( f ) for k ≥ 1. If we define

G ′
k( f ) = Gk( f ) − G0( f ) (3.4–8)

we can readily see that

G ′
−k( f ) = G

′∗
k ( f )

G ′
0( f ) = 0

(3.4–9)
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Equation 3.4–6 can be written as

Svl ( f ) = 1

T

∞∑
k=−∞

(Gk( f ) − G0( f )) e− j2πk f T + 1

T

∞∑
k=−∞

G0( f )e− j2πk f T

= 1

T

∞∑
k=−∞

G ′
k( f )e− j2πk f T + 1

T 2

∞∑
k=−∞

G0 ( f ) δ

(
f − k

T

)

= 2

T
Re

[ ∞∑
k=1

G ′
k( f )e− j2πk f T

]
+ 1

T 2

∞∑
k=−∞

G0

(
k

T

)
δ

(
f − k

T

)

= S (c)
vl

( f ) + S (d)
vl

( f )

(3.4–10)

where we have used Equation 3.4–9 and the well-known relation
∞∑

k=−∞
e j2πk f T = 1

T

∞∑
k=−∞

δ

(
f − k

T

)
(3.4–11)

S (c)
vl

( f ) and S (d)
vl

( f ), defined by

S (c)
vl

( f ) = 2

T
Re

[ ∞∑
k=1

G ′
k( f )e− j2πk f T

]

S (d)
vl

( f ) = 1

T 2

∞∑
k=−∞

G0

(
k

T

)
δ

(
f − k

T

) (3.4–12)

represent the continuous and the discrete components of the power spectral density
of vl(t).

3.4–2 Power Spectral Density of Linearly Modulated Signals

In linearly modulated signals, which include ASK, PSK, and QAM as special cases,
the lowpass equivalent of the modulated signal is of the form

vl(t) =
∞∑

n=−∞
Ing(t − nT ) (3.4–13)

where {In} is the stationary information sequence and g(t) is the basic modulation
pulse. Comparing Equations 3.4–13 and 3.4–1, we have

sl(t, In) = Ing(t) (3.4–14)

from which

Gk( f ) = E
[
Sl( f ; I k)S∗

l ( f ; I0)
]

= E
[
Ik I ∗

0 |G( f )|2]
= RI (k)|G( f )|2

(3.4–15)
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where RI (k) represents the autocorrelation function of the information sequence {In},
and G( f ) is the Fourier transform of g(t). Using Equation 3.4–15 in Equation 3.4–6
yields

Svl ( f ) = 1

T
|G( f )|2

∞∑
k=−∞

RI (k)e− j2πk f T

= 1

T
|G( f )|2SI ( f )

(3.4–16)

where

SI ( f ) =
∞∑

k=−∞
RI (k)e− j2πk f T (3.4–17)

represents the power spectral density of the discrete-time random process {In}.
Note that two factors determine the shape of the power spectral density as given in

Equation 3.4–16. The first factor is the shape of the basic pulse used for modulation.
The shape of this pulse obviously has an important impact on the power spectral density
of the modulated signal. Smoother pulses result in more compact power spectral den-
sities. Another factor that affects the power spectral density of the modulated signal is
the power spectral density of the information sequence {In} which is determined by the
correlation properties of the information sequence. One method to control the power
spectral density of the modulated signal is through controlling the correlation proper-
ties of the information sequence by passing it through an invertible linear filter prior
to modulation. This linear filter controls the correlation properties of the modulated
signals, and since it is invertible, the original information sequence can be retrieved
from it. This technique is called spectral shaping by precoding.

For instance, we can employ a precoding of the form Jn = In + α In−1, and by
changing the value of α, we can control the power spectral density of the resulting
modulated waveform. In general, we can introduce a memory of length L and define a
precoding of the form

Jn =
L∑

k=0

αk In−k (3.4–18)

and then generate the modulated waveform

vl(t) =
∞∑

k=−∞
Jk g(t − kT ) (3.4–19)

Since the precoding operation is a linear operation, the resulting power spectral
density is of the form

Svl ( f ) = 1

T
|G( f )|2

∣∣∣∣∣
L∑

k=0

αke− j2πk f T

∣∣∣∣∣
2

SI ( f ) (3.4–20)

Changing αk’s controls the power spectral density.

E X A M P L E 3.4–1. In a binary communication system In = ±1 with equal probability,
and the In’s are independent. This information stream linearly modulates a basic pulse
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of the form

g(t) = �

(
t

T

)

to generate

v(t) =
∞∑

k=−∞
Ik g(t − kT )

The power spectral density of the modulated signal will be of the form

Sv( f ) = 1

T
|T sinc(T f )|2SI ( f )

To determine SI ( f ), we need to find RI (k) = E
[
In+k I ∗

n

]
. By independence of the {In}

sequence we have

RI (k) =
{

E
[|I |2] = 1 k = 0

E [In+k] E
[
I ∗
n

] = 0 k 
= 0

and hence

SI ( f ) =
∞∑

k=−∞
RI (k)e− j2πk f T = 1

Thus,

Sv( f ) = T sinc2(τ f )

A precoding of the form

Jn = In + α In−1

where α is real would result in a power spectral density of the form

Sv( f ) = T sinc2(T f )
∣∣1 + αe− j2π f T

∣∣2

or

Sv( f ) = T sinc2(T f )
(
1 + α2 + 2α cos(2π f T )

)
Choosing α = 1 would result in a power spectral density that has a null at frequency
f = 1

2T . Note that this spectral null is independent of the shape of the basic pulse g(t);
that is, any other g(t) having a precoding of the form Jn = In + In−1 will result in a
spectral null at f = 1

2T .

3.4–3 Power Spectral Density of Digitally Modulated Signals
with Finite Memory

We now focus on a special case where the data sequence {In} is such that In and In+k are
independent for |k| > K , where K is a positive integer representing the memory in the
information sequence. With this assumption, Sl( f ; I k) and S∗

l ( f ; I0) are independent
for k > K , and by stationarity have equal expected values. Therefore,

Gk( f ) = |E [Sl( f ; I0)]|2 = G K+1( f ), for |k| > K (3.4–21)
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Obviously, G K+1( f ) is real. Let us define

G ′′
k ( f ) = Gk( f ) − G K+1( f ) = Gk( f ) − |E [Sl( f ; I0)]|2 (3.4–22)

It is clear that G ′′
k ( f ) = 0 for |k| > K and G ′′

−k( f ) = G
′′∗
k ( f ). Also note that

G ′′
0( f ) = G0( f ) − G K+1( f ) = E

[|Sl( f ; I0)|2] − |E [Sl( f ; I0)]|2 = VAR [Sl( f ; I0)]
(3.4–23)

In this case we can write Equation 3.4–6 in the following form:

Svl ( f ) = 1

T

∞∑
k=−∞

(Gk( f ) − G K+1( f )) e− j2πk f T + 1

T

∞∑
k=−∞

G K+1( f ) e− j2πk f T

= 1

T

K∑
k=−K

G ′′
k ( f ) e− j2πk f T + 1

T 2

∞∑
k=−∞

G K+1 ( f ) δ

(
f − k

T

)

= 1

T
VAR [Sl( f ; I0)] + 2

T
Re

[
K∑

k=1

G ′′
k ( f ) e− j2πk f T

]

+ 1

T 2

∞∑
k=−∞

G K+1

(
k

T

)
δ

(
f − k

T

)

= S (c)
vl

( f ) + S (d)
vl

( f )

(3.4–24)

The continuous and discrete components of the power spectral density in this case
can be expressed as

S (c)
vl

( f ) = 1

T
VAR [Sl( f ; I0)] + 2

T
Re

[
K∑

k=1

G ′′
k ( f ) e− j2πk f T

]

S (d)
vl

( f ) = 1

T 2

∞∑
k=−∞

G K+1

(
k

T

)
δ

(
f − k

T

) (3.4–25)

Note that if G K+1
( k

T

) = 0 for k = 0, ±1, ±2, . . . , the discrete component of the
power spectrum vanishes. Since G K+1 ( f ) = |E [Sl( f ; I0)]|2, having E [sl(t; I0)] = 0
guarantees a continuous power spectral density with no discrete components.

3.4–4 Power Spectral Density of Modulation Schemes
with a Markov Structure

The power spectral density of modulation schemes with memory was derived in Equa-
tions 3.4–6, 3.4–7, and 3.4–10. These results can be generalized to the general class of
modulation systems that can be described in terms of a Markov chain. This is done by
defining

In = (Sn−1, In) (3.4–26)
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where Sn−1 ∈ (1, 2, . . . , K ) denotes the state of the modulator at time n − 1 and In is
the nth output of the information source. With the assumption that the Markov chain is
homogeneous, the source is stationary, and the Markov chain has achieved its steady-
state probabilities, the results of Section 3.4–1 apply and the power spectral density
can be derived.

In the particular case where the signals generated by the modulator are determined
by the state of the Markov chain, the derivation becomes simpler. Let us assume that
the Markov chain that determines signal generation has a probability transition matrix
denoted by P . Let us further assume that the number of states is K and the signal
generated when the modulator is in state i, 1 ≤ i ≤ K , is denoted by sil(t). The steady-
state probabilities of the states of the Markov chain are denoted by pi , 1 ≤ i ≤ K , and
elements of the matrix P are denoted by Pi j , 1 ≤ i, j ≤ K . With these assumptions
the results of Section 3.4–1 can be applied, and the power spectral density may be
expressed in the general form (see Tausworth and Welch, 1961)

Sv( f ) = 1

T 2

∞∑
n=−∞

∣∣∣∣∣
K∑

i=1

pi Sil

(
n

T

)∣∣∣∣∣
2

δ

(
f − n

T

)
+ 1

T

K∑
i=1

pi |S′
il( f )|2

+ 2

T
Re

⎡
⎣ K∑

i=1

K∑
j=1

pi S
′∗
il ( f )S′

jl( f )Pi j ( f )

⎤
⎦

(3.4–27)

where Sil( f ) is the Fourier transform of the signal waveform sil(t) and

s ′
il(t) = sil(t) −

K∑
k=1

pkskl(t) (3.4–28)

Pi j ( f ) is the Fourier transform of n-step state transition probabilities Pi j (n), defined as

Pi j ( f ) =
∞∑

n=1

Pi j (n)e− j2πn f T (3.4–29)

and K is the number of states of the modulator. The term Pi j (n) denotes the probability
that the signal s j (t) is transmitted n signaling intervals after the transmission of si (t).
Hence, {Pi j (n)} are the transition probabilities in the transition probability matrix Pn .
Note that Pi j (1) = Pi j , the (i, j)th entry in P .

When there is no memory in the modulation method, the signal waveform transmit-
ted on each signaling interval is independent of the waveforms transmitted in previous
signaling intervals. The power density spectrum of the resultant signal may still be ex-
pressed in the form of Equation 3.4–27, if the transition probability matrix is replaced by

P =

⎡
⎢⎢⎢⎢⎣

p1 p2 · · · pK

p1 p2 · · · pK

...
...

. . .
...

p1 p2 · · · pK

⎤
⎥⎥⎥⎥⎦ (3.4–30)

and we impose the condition that Pn = P for all n ≥ 1. Under these conditions, the
expression for the power density spectrum becomes a function of the stationary state
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probabilities {pi } only, and hence it reduces to the simpler form

Svl ( f ) = 1

T 2

∞∑
n=−∞

∣∣∣∣∣
K∑

i=1

pi Sil

(
n

T

)∣∣∣∣∣
2

δ

(
f − n

T

)

+ 1

T

K∑
i=1

pi (1 − pi )|Sil( f )|2

− 2

T

K∑
i=1

K∑
j=1
i< j

pi p j Re
[

Sil( f )S∗
jl( f )

]
(3.4–31)

We observe that when
K∑

i=1

pi Sil

(
n

T

)
= 0 (3.4–32)

the discrete component of the power spectral density in Equation 3.4–31 vanishes. This
condition is usually imposed in the design of digital communication systems and is
easily satisfied by an appropriate choice of signaling waveforms (Problem 3.34).

E X A M P L E 3.4–2. Let us determine the power density spectrum of the baseband-
modulated NRZ signal described in Section 3.3. The NRZ signal is characterized by
the two waveforms s1(t) = g(t) and s2(t) = −g(t), where g(t) is a rectangular pulse
of amplitude A. For K = 2, Equation 3.4–31 reduces to

Sv( f ) = (2p − 1)2

T 2

∞∑
n=−∞

∣∣∣G ( n

T

)∣∣∣2
δ
(

f − n

T

)
+ 4p(1 − p)

T
|G( f )|2 (3.4–33)

where

|G( f )|2 = (AT )2sinc2( f T )

Observe that when p = 1
2 , the line spectrum vanishes and Sv( f ) reduces to

Sv( f ) = 1

T
|G( f )|2 (3.4–34)

E X A M P L E 3.4–3. The NRZI signal is characterized by the transition probability matrix

P =
[

1
2

1
2

1
2

1
2

]

Notice that in this case Pn = P for all n ≥ 1. Hence, the special form for the
power density spectrum given by Equation 3.4–33 applies to this modulation format
as well. Consequently, the power density spectrum for the NRZI signal is identical to
the spectrum of the NRZ signal.

3.4–5 Power Spectral Densities of CPFSK and CPM Signals

In this section, we derive the power density spectrum for the class of constant-amplitude
CPM signals described in Sections 3.3–1 and 3.3–2. We begin by computing the auto-
correlation function and its Fourier transform.
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The constant-amplitude CPM signal is expressed as

s(t; I) = A cos[2π fct + φ(t; I)] (3.4–35)

where

φ(t; I) = 2πh
∞∑

k=−∞
Ikq(t − kT ) (3.4–36)

Each symbol in the sequence {In} can take one of the M values {±1, ±3, . . . ,

±(M − 1)}. These symbols are statistically independent and identically distributed
with prior probabilities

Pn = P(Ik = n), n = ±1, ±3, . . . , ±(M − 1) (3.4–37)

where
∑

n Pn = 1. The pulse g(t) = q ′(t) is zero outside of the interval [0, LT ],
q(t) = 0, t < 0, and q(t) = 1

2 for t > LT .
The autocorrelation function of the equivalent lowpass signal

vl(t) = e jφ(t;I) (3.4–38)

is

Rvl (t + τ ; t) = E

[
exp

(
j2πh

∞∑
k=−∞

Ik[q(t + τ − kT ) − q(t − kT )]

)]
(3.4–39)

First, we express the sum in the exponent as a product of exponents. The result is

Rvl (t + τ ; t) = E

[ ∞∏
k=−∞

exp { j2πhIk[q(t + τ − kT ) − q(t − kT )]}
]

(3.4–40)

Next, we perform the expectation over the data symbols {Ik}. Since these symbols are
statistically independent, we obtain

Rvl (t + τ ; t) =
∞∏

k=−∞

⎛
⎜⎝

M−1∑
n=−(M−1)

n odd

Pn exp{ j2πhn[q(t + τ − kT ) − q(t − kT )]}

⎞
⎟⎠

(3.4–41)

Finally, the average autocorrelation function is

R̄vl (τ ) = 1

T

∫ T0

0
Rvl (t + τ ; t) dt (3.4–42)

Although Equation 3.4–41 implies that there are an infinite number of factors in
the product, the pulse g(t) = q ′(t) = 0 for t < 0 and t > LT , and q(t) = 0 for t < 0.
Consequently only a finite number of terms in the product have nonzero exponents.
Thus Equation 3.4–41 can be simplified considerably. In addition, if we let τ = ξ +mT ,
where 0 ≤ ξ < T and m = 0, 1, . . . , the average autocorrelation in Equation 3.4–42
reduces to

R̄vl (ξ + mT ) = 1

T

∫ T

0

m+1∏
k=1−L

⎛
⎜⎝

M−1∑
n=−(M−1)

n odd

Pne j2πhn[q(t+ξ−(k−m)T )−q(t−kT )]

⎞
⎟⎠dt (3.4–43)
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Let us focus on R̄vl (ξ +mT ) for ξ +mT ≥ LT . In this case, Equation 3.4–43 may
be expressed as

R̄vl (ξ + mT ) = [�I (h)]m−L λ(ξ ), m ≥ L , 0 ≤ ξ < T (3.4–44)

where �I (h) is the characteristic function of the random sequence {In}, defined as

�I (h) = E [e jπhIn ]

=
M−1∑

n=−(M−1)
n odd

Pne jπhn (3.4–45)

and λ(ξ ) is the remaining part of the average autocorrelation function, which may be
expressed as

λ(ξ ) = 1

T

∫ T

0

0∏
k=1−L

⎛
⎜⎝

M−1∑
n=−(M−1)

n odd

Pn exp
{

j2πhn
[

1

2
− q(t − kT )

]}⎞
⎟⎠

×
m+1∏

k=m−L

⎛
⎜⎝

M−1∑
n=−(M−1)

n odd

Pn exp[ j2πhnq(t + ξ − kT )]

⎞
⎟⎠ dt, m ≥ L

(3.4–46)

Thus, R̄vl (τ ) may be separated into a product of λ(ξ ) and �I (h) as indicated in Equa-
tion 3.4–44 for τ = ξ + mT ≥ LT and 0 ≤ ξ < T . This property is used below.

The Fourier transform of R̄vl (τ ) yields the average power density spectrum as

Svl ( f ) =
∫ ∞

−∞
R̄vl (τ )e− j2π f τ dt

= 2 Re
[∫ ∞

0
R̄vl (τ )e− j2π f τ dτ

] (3.4–47)

But
∫ ∞

0
R̄vl (τ )e− j2π f τ dτ =

∫ LT

0
R̄vl (τ )e− j2π f τ dτ

+
∫ ∞

LT
R̄vl (τ )e− j2π f τ dτ

(3.4–48)

With the aid of Equation 3.4–44, the integral in the range LT ≤ τ < ∞ may be
expressed as

∫ ∞

LT
R̄vl (τ )e− j2π f τ dτ =

∞∑
m=L

∫ (m+1)T

mT
R̄vl (τ )e− j2π f τ dτ (3.4–49)
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Now, let τ = ξ + mT . Then Equation 3.4–49 becomes
∫ ∞

LT
R̄vl (τ )e− j2π f τ dt =

∞∑
m=L

∫ T

0
R̄vl (ξ + mT )e− j2π f (ξ+mT ) dξ

=
∞∑

m=L

∫ T

0
λ(ξ )[�I (h)]m−Le− j2π f (ξ+mT ) dξ

=
∞∑

n=0

�n
I (h)e− j2π f nT

∫ T

0
λ(ξ )e− j2π f (ξ+LT )dξ

(3.4–50)

A property of the characteristic function is |�I (h)| ≤ 1. For values of h for which
|�I (h)| < 1, the summation in Equation 3.4–50 converges and yields

∞∑
n=0

�n
I (h)e− j2π f nT = 1

1 − �I (h)e− j2π f T
(3.4–51)

In this case, Equation 3.4–50 reduces to∫ ∞

LT
R̄vl (τ )e− j2π f τ dt = 1

1 − �I (h)e− j2π f T

∫ T

0
R̄vl (ξ + LT )e− j2π f (ξ+LT ) dξ

(3.4–52)

By combining Equations 3.4–47, 3.4–48, and 3.4–52, we obtain the power density
spectrum of the CPM signal in the form

Svl ( f ) = 2 Re
[∫ LT

0
R̄vl (τ )e− j2π f τ dτ + 1

1 − �I (h)e− j2π f T

∫ (L+1)T

LT
R̄vl (τ )e− j2π f τ dτ

]

(3.4–53)

This is the desired result when |�I (h)| < 1. In general, the power density spectrum
is evaluated numerically from Equation 3.4–53. The average autocorrelation function
R̄vl (τ ) for the range 0 ≤ τ ≤ (L + 1) T may be computed numerically from Equa-
tion 3.4–43.

For values of h for which |�I (h)| = 1, e.g., h = K , where K is an integer, we can
set

�I (h) = e j2πν, 0 ≤ ν < 1 (3.4–54)

Then the sum in Equation 3.4–50 becomes
∞∑

n=0

e− j2πT ( f −ν/T )n = 1

2
+ 1

2T

∞∑
n=−∞

δ

(
f − ν

T
− n

T

)
− j

1

2
cot πT

(
f − ν

T

)

(3.4–55)

Thus, the power density spectrum now contains impulses located at frequencies

fn = n + ν

T
, 0 ≤ ν < 1, n = 0, 1, 2, . . . (3.4–56)

The result in Equation 3.4–55 can be combined with Equations 3.4–50 and 3.4–48 to
obtain the entire power density spectrum, which includes both a continuous spectrum
component and a discrete spectrum component.
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Let us return to the case for which |�I (h)| < 1. When symbols are equally proba-
ble, i.e.,

Pn = 1

M
for all n (3.4–57)

the characteristic function simplifies to the form

�I (h) = 1

M

M−1∑
n=−(M−1)

nodd

e jπhn

= 1

M

sin Mπh

sin πh

(3.4–58)

Note that in this case �I (h) is real. The average autocorrelation function given by
Equation 3.4–43 also simplifies in this case to

R̄vl (τ ) = 1

2T

∫ T

0

[τ/T ]∏
k=1−L

1

M

sin 2πhM[q(t + τ − kT ) − q(t − kT )]

sin 2πh[q(t + τ − kT ) − q(t − kT )]
dt (3.4–59)

The corresponding expression for the power density spectrum reduces to

Svl ( f ) = 2
[∫ LT

0
R̄vl (τ ) cos 2π f τ dτ

+ 1 − �I (h) cos 2π f T

1 + �2
I (h) − 2�I (h) cos 2π f T

∫ (L+1)T

LT
R̄vl (τ ) cos 2π f τ dτ

− �I (h) sin 2π f T

1 + �2
I (h) − 2�I (h) cos 2π f T

∫ (L+1)T

LT
R̄vl (τ ) sin 2π f τ dτ

]
(3.4–60)

Power Spectral Density of CPFSK
A closed-form expression for the power density spectrum can be obtained from Equa-
tion 3.4–60 when the pulse shape g(t) is rectangular and zero outside the interval
[0, T ]. In this case, q(t) is linear for 0 ≤ t ≤ T . The resulting power spectrum may be
expressed as

Sv( f ) = T

[
1

M

M∑
n=1

A2
n( f ) + 2

M2

M∑
n=1

M∑
m=1

Bnm( f )An( f )Am( f )

]
(3.4–61)

where

An( f ) = sin π [ f T − 1
2 (2n − 1 − M)h]

π [ f T − 1
2 (2n − 1 − M)h]

Bnm( f ) = cos(2π f T − αnm) − � cos αnm

1 + �2 − 2� cos 2π f T

αnm = πh(m + n − 1 − M)

� ≡ �(h) = sin Mπh

M sin πh

(3.4–62)
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The power density spectrum of CPFSK for M = 2, 4, and 8 is plotted in Fig-
ures 3.4–1 to 3.4–3 as a function of the normalized frequency f T , with the modulation
index h = 2 fd T as a parameter. Note that only one-half of the bandwidth occupancy
is shown in these graphs. The origin corresponds to the carrier fc. The graphs illustrate
that the spectrum of CPFSK is relatively smooth and well confined for h < 1. As h
approaches unity, the spectra become very peaked, and for h = 1 when |�| = 1, we
find that impulses occur at M frequencies. When h > 1, the spectrum becomes much

(a) (b)

(c) (d)

FIGURE 3.4–1
Power spectral density of binary CPFSK.
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(a)

(c)

(b)

FIGURE 3.4–2
Power spectral density of quaternary CPFSK.

broader. In communication systems where CPFSK is used, the modulation index is
designed to conserve bandwidth, so that h < 1.

The special case of binary CPFSK with h = 1
2 (or fd = 1/4T ) and � = 0

corresponds to MSK. In this case, the spectrum of the signal is

Sv( f ) = 16A2T

π2

(
cos 2π f T

1 − 16 f 2T 2

)2

(3.4–63)

where the signal amplitude A = 1 in Equation 3.4–62. In contrast, the spectrum
of four-phase offset (quadrature) PSK (OQPSK) with a rectangular pulse g(t) of
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(a) (b)

FIGURE 3.4–3
Power spectral density of octal CPFSK.

duration T is

Sv( f ) = A2T
(

sin π f T

π f T

)2

(3.4–64)

If we compare these spectral characteristics, we should normalize the frequency
variable by the bit rate or the bit interval Tb. Since MSK is binary FSK, it follows
that T = Tb in Equation 3.4–63. On the other hand, in OQPSK, T = 2Tb so that
Equation 3.4–64 becomes

Sv( f ) = 2A2Tb

(
sin 2π f Tb

2π f Tb

)2

(3.4–65)

The spectra of the MSK and OQPSK signals are illustrated in Figure 3.4–4. Note
that the main lobe of MSK is 50 percent wider than that for OQPSK. However, the side
lobes in MSK fall off considerably faster. For example, if we compare the bandwidth
W that contains 99 percent of the total power, we find that W = 1.2/Tb for MSK
and W ≈ 8/Tb for OQPSK. Consequently, MSK has a narrower spectral occupancy
when viewed in terms of fractional out-of-band power above f Tb = 1. Graphs for
the fractional out-of-band power for OQPSK and MSK are shown in Figure 3.4–5.
Note that MSK is significantly more bandwidth-efficient than QPSK. This efficiency
accounts for the popularity of MSK in many digital communication systems.

Even greater bandwidth efficiency than MSK can be achieved by reducing the
modulation index. However, the FSK signals will no longer be orthogonal, and there
will be an increase in the error probability.

Spectral Characteristics of CPM
In general, the bandwidth occupancy of CPM depends on the choice of the modulation
index h, the pulse shape g(t), and the number of signals M . As we have observed
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FIGURE 3.4–4
Power spectral density of MSK and OQPSK. [Source: Gronemeyer and McBride (1976);
c© IEEE.]

FIGURE 3.4–5
Fractional out-of-band power (normalized
two-sided bandwidth = 2W T ). [Source:
Gronemeyer and McBride (1976);
c© IEEE.]

for CPFSK, small values of h result in CPM signals with relatively small bandwidth
occupancy, while large values of h result in signals with large bandwidth occupancy.
This is also the case for the more general CPM signals.
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FIGURE 3.4–6
Power spectral density for binary CPM with h = 1

2 and
different pulse shapes. [Source: Aulin et al. (1981);
c© IEEE.]

The use of smooth pulses such as raised cosine pulses of the form

g(t) =
{

1
2LT

(
1 − cos 2π t

LT

)
0 ≤ t ≤ LT

0 otherwise
(3.4–66)

where L = 1 for full response and L > 1 for partial response, results in smaller band-
width occupancy and hence greater bandwidth efficiency than in the use of rectangular
pulses. For example, Figure 3.4–6 illustrates the power density spectrum for binary CPM
with different partial-response raised cosine (LRC) pulses when h = 1

2 . For comparison,
the spectrum of binary CPFSK is also shown. Note that as L increases, the pulse g(t)
becomes smoother and the corresponding spectral occupancy of the signal is reduced.

The effect of varying the modulation index in a CPM signal is illustrated in Fig-
ure 3.4–7 for the case of M = 4 and a raised cosine pulse of the form given in
Equation 3.4–66 with L = 3. Note that these spectral characteristics are similar to the

FIGURE 3.4–7
Power spectral density for M = 4 CPM with 3RC and
different modulation indices. [Source: Aulin et al. (1981);
c© IEEE.]
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ones illustrated previously for CPFSK, except that these spectra are narrower due to
the use of a smoother pulse shape.

3.5
BIBLIOGRAPHICAL NOTES AND REFERENCES

The digital modulation methods introduced in this chapter are widely used in digital
communication systems. Chapter 4 is concerned with optimum demodulation tech-
niques for these signals and their performance in an additive white Gaussian noise
channel. A general reference for signal characterization is the book by Franks (1969).

Of particular importance in the design of digital communication systems are the
spectral characteristics of the digitally modulated signals, which are presented in this
chapter in some depth. Of these modulation techniques, CPM is one of the most impor-
tant due to its efficient use of bandwidth. For this reason, it has been widely investigated
by many researchers, and a large number of papers have been published in the techni-
cal literature. The most comprehensive treatment of CPM, including its performance
and its spectral characteristics, can be found in the book by Anderson et al. (1986). In
addition to this text, the tutorial paper by Sundberg (1986) presents the basic concepts
and an overview of the performance characteristics of various CPM techniques.

The linear representation of CPM was developed by Laurent (1986) for binary
modulation. It was extended to M-ary CPM signals by Mengali and Morelli (1995).
Rimoldi (1988) showed that a CPM system can be decomposed into a continuous-phase
and a memoryless modulator. This paper also contains over 100 references to published
papers on this topic.

There are a large number of references dealing with the spectral characteristics of
CPFSK and CPM. As a point of reference, we should mention that MSK was invented
by Doelz and Heald in 1961. The early work on the power spectral density of CPFSK
and CPM was done by Bennett and Rice (1963), Anderson and Salz (1965), and Bennett
and Davey (1965). The book by Lucky et al. (1968) also contains a treatment of the
spectral characteristics of CPFSK. Most of the recent work is referenced in the paper
by Sundberg (1986). We should also cite the special issue on bandwidth-efficient mod-
ulation and coding published by the IEEE Transactions on Communications (March
1981), which contains several papers on the spectral characteristics and performance of
CPM. The generalization of MSK to multiple amplitudes was investigated by Weber et
al. (1978). The combination of multiple amplitudes with general CPM was proposed by
Mulligan (1988) who investigated its spectral characteristics and its error probability
performance in Gaussian noise with and without coding.

PROBLEMS

3.1 Using the identity
n∑

i=1

i2 = n(n + 1)(2n + 1)

6
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show that

12 + 32 + 52 + · · · + (M − 1)2 = M(M2 − 1)

6

and derive Equation 3.2–5.

3.2 Determine the signal space representation of the four signals sk(t), k = 1, 2, 3, 4, shown
in Figure P3.2, by using as basis functions the orthonormal functions φ1(t) and φ2(t). Plot
the signal space diagram, and show that this signal set is equivalent to that for a four-phase
PSK signal.

E E

E

E

�2(t)�1(t)

FIGURE P3.2

3.3 π/4-QPSK may be considered as two QPSK systems offset by π/4 rad.
1. Sketch the signal space diagram for a π/4-QPSK signal.
2. Using Gray encoding, label the signal points with the corresponding data bits.

3.4 Consider the octal signal point constellations in Figure P3.4.
1. The nearest-neighbor signal points in the 8-QAM signal constellation are separated

in distance by A units. Determine the radii a and b of the inner and outer circles,
respectively.

2. The adjacent signal points in the 8-PSK are separated by a distance of A units. Determine
the radius r of the circle.

r 45�

8-PSK 8-QAM

a

b

FIGURE P3.4
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3. Determine the average transmitter powers for the two signal constellations, and compare
the two powers. What is the relative power advantage of one constellation over the other?
(Assume that all signal points are equally probable.)

3.5 Consider the 8-point QAM signal constellation shown in Figure P3.4.
1. Is it possible to assign 3 data bits to each point of the signal constellation such that the

nearest (adjacent) points differ in only 1 bit position?
2. Determine the symbol rate if the desired bit rate is 90 Mbits/s.

3.6 Consider the two 8-point QAM signal constellations shown in Figure P3.6. The minimum
distance between adjacent points is 2A. Determine the average transmitted power for each
constellation, assuming that the signal points are equally probable. Which constellation is
more power-efficient?

(a) (b)

FIGURE P3.6

3.7 Specify a Gray code for the 16-QAM signal constellation shown in Figure P3.7.

7

5

3

1

�1
�1�7 �5 �3 1 753

�3

�5

�7

FIGURE P3.7

3.8 In an MSK signal, the initial state for the phase is either 0 or π rad. Determine the terminal
phase state for the following four input pairs of input data:
1. 00
2. 01
3. 10
4. 11

3.9 Determine the number of states in the state trellis diagram for
1. A full-response binary CPFSK with h = 2

3 or 3
4 .

2. A partial-response L = 3 binary CPFSK with h = 2
3 or 3

4 .
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3.10 A speech signal is sampled at a rate of 8 kHz, and then encoded using 8 bits per sample.
The resulting binary data are then transmitted through an AWGN baseband channel via
M-level PAM. Determine the bandwidth required for transmission when
1. M = 4
2. M = 8
3. M = 16

3.11 The power density spectrum of the cyclostationary process

v(t) =
∞∑

n=−∞
Ing(t − nT )

can be derived by averaging the autocorrelation function Rv(t + τ, t) over the period T
of the process and then evaluating the Fourier transform of the average autocorrelation
function. An alternative approach is to change the cyclostationary process into a stationary
process v�(t) by adding a random variable �, uniformly distributed over 0 ≤ � < T , so
that

v�(t) =
∞∑

n=−∞
Ing(t − nT − �)

and defining the spectral density of v(t) as the Fourier transform of the autocorrelation
function of the stationary process v�(t). Derive the result in Equation 3.4–16 by evaluating
the autocorrelation function of v�(t) and its Fourier transform.

3.12 Show that 16-QAM can be represented as a superposition of two four-phase constant-
envelope signals where each component is amplified separately before summing, i.e.,

s(t) = G(An cos 2π fct + Bn sin 2π fct) + (Cn cos 2π fct + Dn sin 2π fct)

where {An}, {Bn}, {Cn}, and {Dn} are statistically independent binary sequences with
elements from the set {+1, −1} and G is the amplifier gain. Thus, show that the resulting
signal is equivalent to

s(t) = In cos 2π fct + Qn sin 2π fct

and determine In and Qn in terms of An, Bn, Cn , and Dn .

3.13 Consider a four-phase PSK signal represented by the equivalent lowpass signal

u(t) =
∑

n

Ing(t − nT )

where In takes on one of the four possible values
√

1
2 (±1 ± j) with equal probability. The

sequence of information symbols {In} is statistically independent.
1. Determine and sketch the power density spectrum of u(t) when

g(t) =
{

A 0 ≤ t ≤ T

0 otherwise

2. Repeat Part 1 when

g(t) =
{

A sin(π t/T ) 0 ≤ t ≤ T

0 otherwise
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3. Compare the spectra obtained in Parts 1 and 2 in terms of the 3-dB bandwidth and the
bandwidth to the first spectral zero.

3.14 A PAM partial-response signal (PRS) is generated as shown in Figure P3.14 by exciting
an ideal lowpass filter of bandwidth W by the sequence

Bn = In + In−1

at a rate 1/T = 2W symbols/s. The sequence {In} consists of binary digits selected
independently from the alphabet {1, −1} with equal probability. Hence, the filtered signal
has the form

v(t) =
∞∑

n=−∞
Bng(t − nT ), T = 1

2W

G( f )

FIGURE P3.14

1. Sketch the signal space diagram for v(t), and determine the probability of occurrence
of each symbol.

2. Determine the autocorrelation and power density spectrum of the three-level sequence
{Bn}.

3. The signal points of the sequence {Bn} form a Markov chain. Sketch this Markov chain,
and indicate the transition probabilities among the states.

3.15 The lowpass equivalent representation of a PAM signal is

u(t) =
∑

n

Ing(t − nT )

Suppose g(t) is a rectangular pulse and

In = an − an−2

where {an} is a sequence of uncorrelated binary-valued (1, −1) random variables that occur
with equal probability.
1. Determine the autocorrelation function of the sequence {In}.
2. Determine the power density spectrum of u(t).
3. Repeat (2) if the possible values of the an are (0, 1).
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3.16 Use the results in Section 3.4–4 to determine the power density spectrum of the binary
FSK signals in which the waveforms are

si (t) = sin ωi t, i = 1, 2, 0 ≤ t ≤ T

where ω1 = nπ/T and ω2 = mπ/T, n 
= m, and m and n are arbitrary positive integers.
Assume that p1 = p2 = 1

2 . Sketch the spectrum, and compare this result with the spectrum
of the MSK signal.

3.17 Use the results in Section 3.4–4 to determine the power density spectrum of multitone FSK
(MFSK) signals for which the signal waveforms are

sn(t) = sin
2πnt

T
, n = 1, 2, . . . , M, 0 ≤ t ≤ T

Assume that the probabilities pn = 1/M for all n. Sketch the power spectral density.

3.18 A quadrature partial-response signal (QPRS) is generated by two separate partial-response
signals of the type described in Problem 3.14 placed in phase quadrature. Hence, the QPRS
is represented as

s(t) = Re
[
v(t)e j2π fc t

]
where

v(t) = vc(t) + jvs(t) =
∑

n

Bng(t − nT ) + j
∑

n

Cng(t − nT )

and Bn = In + In−1 and Cn = Jn + Jn−1. The sequences {Bn} and {Cn} are independent,
and In = ±1, Jn = ±1 with equal probability.
1. Sketch the signal space diagram for the QPRS signal, and determine the probability of

occurrence of each symbol.
2. Determine the autocorrelations and power spectral density of vc(t), vs(t), and v(t).
3. Sketch the Markov chain model, and indicate the transition probabilities for the QPRS.

3.19 The information sequence {an}∞n=−∞ is a sequence of iid random variables, each taking
values +1 and −1 with equal probability. This sequence is to be transmitted at baseband
by a biphase coding scheme, described by

s(t) =
∞∑

n=−∞
ang(t − nT )

where g(t) is shown in Figure P3.19.

FIGURE P3.19

1. Find the power spectral density of s(t).
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2. Assume that it is desirable to have a zero in the power spectrum at f = 1/T . To this
end, we use a precoding scheme by introducing bn = an + kan−1, where k is some
constant, and then transmit the {bn} sequence using the same g(t). Is it possible to
choose k to produce a frequency null at f = 1/T ? If yes, what are the appropriate
values and the resulting power spectrum?

3. Now assume we want to have zeros at all multiples of f0 = 1/4T . Is it possible to have
these zeros with an appropriate choice of k in the previous part? If not, then what kind
of precoding do you suggest to achieve the desired result?

3.20 The two signal waveforms for binary FSK signal transmission with discontinuous phase
are

s0(t) =
√

2Eb

Tb
cos

[
2π

(
fc − � f

2

)
t + θ0

]
, 0 ≤ t < T

s1(t) =
√

2Eb

Tb
cos

[
2π

(
fc + � f

2

)
t + θ1

]
, 0 ≤ t < T

where � f = 1/T � fc, and θ0 and θ1 are independent uniformly distributed random
variables on the interval (0, 2π ). The signals s0(t) and s1(t) are equally probable.
1. Determine the power spectral density of the FSK signal.
2. Show that the power spectral density decays as 1/ f 2 for f � fc.

3.21 The elements of the sequence {In}+∞
n=−∞ are independent binary random variables taking

values of ±1 with equal probability. This data sequence is used to modulate the basic pulse
u(t) shown in Figure P3.21(a). The modulated signal is

X (t) =
+∞∑

n=−∞
Inu(t − nT )

0

u( t)

T

A

t

FIGURE P3.21(a)

1. Find the power spectral density of X (t).
2. If u1(t), shown in Figure P3.21(b), were used instead of u(t), how would the power

spectrum in part 1 change?
3. In part 2, assume we want to have a null in the spectrum at f = 1

3T . This is done by a
precoding of the form bn = In + α In−1. Find the value of α that provides the desired
null.
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0

u1( t)

2T

A

t

FIGURE P3.21(b)

4. Is it possible to employ a precoding of the form bn = In + ∑N
i=1 αi In−i for some finite

N such that the final power spectrum will be identical to zero for 1
3T ≤ | f | ≤ 1

2T ? If
yes, how? If no, why? (Hint: Use properties of analytic functions.)

3.22 A digital signaling scheme is defined as

X (t) =
∞∑

n=−∞
[anu(t − nT ) cos(2π fct) − bnu(t − nT ) sin(2π fct)]

where u(t) = �(t/2T ),

�(t) =
⎧⎨
⎩

t + 1 −1 ≤ t ≤ 0
−t + 1 0 ≤ t ≤ 1
0 otherwise

and each (an, bn) pair is independent from the others and is equally likely to take any of
the three values (0, 1), (

√
3/2, −1/2), and (−√

3/2, −1/2).
1. Determine the lowpass equivalent of the modulated signal. Determine the in-phase and

quadrature components.
2. Determine the power spectral density of the lowpass equivalent signal; from this deter-

mine the power spectral density of the modulated signal.
3. By employing a precoding scheme of the form

{
cn = an + αan−1

dn = bn + αbn−1

where α is in general a complex number, and transmitting the signal

Y (t) =
∞∑

n=−∞
[cnu(t − nT ) cos(2π fct) − dnu(t − nT ) sin(2π fct)]

we want to have a lowpass signal that has no dc component. Is it possible to achieve
this goal by an appropriate choice of α? If yes, find this value.

3.23 A binary memoryless source generates the equiprobable outputs {ak}∞k=−∞ which take
values in {0, 1}. The source is modulated by mapping each sequence of length 3 of the
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source outputs into one of the eight possible {αi , θi }8
i=1 pairs and generating the modulated

sequence

s(t) =
∞∑

n=−∞
αng(t − nT ) cos(2π f0t + θn)

where

g(t) =
⎧⎨
⎩

2t/T 0 ≤ t ≤ T/2
2 − 2t/T T/2 ≤ t ≤ T

0 otherwise

1. Find the power spectral density of s(t) in terms ofα2 = ∑8
i=1 |αi |2 andβ = ∑8

i=1 αi e jθi .
2. For the special case of αodd = a, αeven = b, and θi = (i − 1)π/4, determine the power

spectral density of s(t).
3. Show that for a = b, case 2 reduces to a standard 8-PSK signaling scheme, and

determine the power spectrum in this case.
4. If a precoding of the form bn = an ⊕ an−1 (where ⊕ denotes the binary addition) were

applied to the source outputs prior to modulation, how would the results in parts 1, 2,
and 3 change?

3.24 An information source generates the ternary sequence {In}∞n=−∞. Each In can take one of
the three possible values 2, 0, and −2 with probabilities 1/4, 1/2, and 1/4, respectively.
The source outputs are assumed to be independent. The source outputs are used to generate
the lowpass signal

v(t) =
∞∑

n=−∞
Ing(t − nT )

1. Determine the power spectral density of the process v(t), assuming g(t) is the signal
shown in Figure P3.24.

2. Determine the power spectral density of

w(t) =
∞∑

n=−∞
Jng(t − nT )

where Jn = In−1 + In + In+1.

g(t)

t

2

1

T�2 T

FIGURE P3.24
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3.25 The information sequence {an} is an iid sequence taking the values −1, 2, and 0 with
probabilities 1/4, 1/4, and 1/2. This information sequence is used to generate the baseband
signal

v(t) =
∞∑

n=−∞
an sinc

(
t − nT

T

)

1. Determine the power spectral density of v(t).
2. Define the sequence {bn} as bn = an + an−1 − an−2 and generate the baseband signal

u(t) =
∞∑

n=−∞
bn sinc

(
t − nT

T

)

Determine the power spectral density of u(t). What are the possible values for the bn

sequence?
3. Now let us assume w(t) is defined as

w(t) =
∞∑

n=−∞
cn sinc

(
t − nT

T

)

where cn = an + jan−1. Determine the power spectral density of w(t).
(Hint: You can use the relation

∑∞
m=−∞ e− j2π f mT = 1

T

∑∞
m=−∞ δ( f − m/T ).)

3.26 Let {an}∞n=−∞ denote an information sequence of independent random variables, taking
values of ±1 with equal probability. A QPSK signal is generated by modulating a rectan-
gular pulse shape of duration 2T by even and odd indexed an’s to obtain the in-phase and
quadrature components of the modulated signal. In other words, we have

g2T (t) =
{

1 0 ≤ t < 2T

0 otherwise

and we generate the in-phase and quadrature components according to

xi (t) =
∞∑

n=−∞
a2ng2T (t − 2nT )

xq (t) =
∞∑

n=−∞
a2n+1g2T (t − 2nT )

Then xl (t) = xi (t) + j xq (t) and x(t) = Re
[
xl (t)e j2π f0t

]
.

1. Determine the power spectral density of xl (t).
2. Now let xq (t) = ∑∞

n=−∞ a2n+1g2T [t − (2n + 1)T ]; in other words, let the quadrature
component stagger the in-phase component by T . This results in an OQPSK system.
Determine the power spectral density of xl (t) in this case. How does this compare with
the result of part 1?

3. If in part 2 instead of g2T (t) we employ the following sinusoidal signal

g1(t) =
{

sin
(

π t
2T

)
0 ≤ t < 2T

0 otherwise
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the resulting modulated signal will be an MSK signal. Determine the power spectral
density of xl (t) in this case.

4. Show that in the case of MSK signaling, although the basic pulse g1(t) does not have
a constant amplitude, the overall signal has a constant envelope.

3.27 {an}∞n=−∞ is a sequence of iid random variables each taking 0 or 1 with equal probability.
1. The sequence bn is defined as bn = an−1 ⊕ an where ⊕ denotes binary addition

(EXCLUSIVE-OR). Determine the autocorrelation function for the sequence bn and
the power spectral density of the PAM signal

v(t) =
∞∑

n=−∞
bng(t − nT )

where

g(t) =
{

1 0 ≤ t < T

0 otherwise

2. Compare the result in part 1 with the result when bn = an−1 + an .

3.28 Consider the signal constellation shown in Figure P3.28.

45� r1 r2

FIGURE P3.28

The lowpass equivalent of the transmitted signal is represented as

sl (t) =
∞∑

n=−∞
ang(t − nT )

where g(t) is a rectangular pulse defined as

g(t) =
{

1 0 ≤ t < T

0 otherwise

and the an’s are independent and identically distributed (iid) random variables that can
assume the points in the constellation with equal probability.
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1. Determine the power spectral density of the signal sl (t).
2. Determine the power spectral density of the transmitted signal s(t), assuming that the

carrier frequency is f0 (assuming f0 � 1
T ).

3. Determine and plot the power spectral density of sl (t) for the case when r1 = r2 (plot
the PSD as a function of f T ).

3.29 Determine the autocorrelation functions for the MSK and offset QPSK modulated signals
based on the assumption that the information sequences for each of the two signals are
uncorrelated and zero-mean.

3.30 Sketch the phase tree, the state trellis, and the state diagram for partial-response CPM with
h = 1

2 and

g(t) =
{

1/4T 0 ≤ t ≤ 2T

0 otherwise

3.31 Determine the number of terminal phase states in the state trellis diagram for
1. A full-response binary CPFSK with h = 2

3 or 3
4 .

2. A partial-response L = 3 binary CPFSK with h = 2
3 or 3

4 .

3.32 In the linear representation of CPM, show that the time durations of the 2L−1 pulses {ck(t)}
are as follows:

c0(t) = 0, t < 0 and t > (L + 1)T

c1(t) = 0, t < 0 and t > (L − 1)T

c2(t) = c3(t) = 0, t < 0 and t > (L − 2)T

c4(t) = c5(t) = c6(t) = c7(t) = 0, t < 0 and t > (L − 3)T
...

c2L−2 (t) = · · · = c2L−1 (t) = 0, t < 0 and t > T

3.33 Use the result in Equation 3.4–31 to derive the expression for the power density spectrum
of memoryless linear modulation given by Equation 3.4–16 under the condition that

sk(t) = Iks(t), k = 1, 2, . . . , K

where Ik is one of the K possible transmitted symbols that occur with equal probability.

3.34 Show that a sufficient condition for the absence of the line spectrum component in Equa-
tion 3.4–31 is

K∑
i=1

pi si (t) = 0

Is this condition necessary? Justify your answer.
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4

Optimum Receivers for AWGN Channels

In Chapter 3, we described various types of modulation methods that may be used to
transmit digital information through a communication channel. As we have observed,
the modulator at the transmitter performs the function of mapping the information
sequence into signal waveforms. These waveforms are transmitted over the channel,
and a corrupted version of them is received at the receiver.

In Chapter 1 we have seen that communication channels can suffer from a variety
of impairments that contribute to errors. These impairments include noise, attenuation,
distortion, fading, and interference. Characteristics of a communication channel deter-
mine which impairments apply to that particular channel and which are the determining
factors in the performance of the channel. Noise is present in all communication chan-
nels and is the major impairment in many communication systems. In this chapter we
study the effect of noise on the reliability of the modulation systems studied in Chap-
ter 3. In particular, this chapter deals with the design and performance characteristics
of optimum receivers for the various modulation methods when the channel corrupts
the transmitted signal by the addition of white Gaussian noise.

4.1
WAVEFORM AND VECTOR CHANNEL MODELS

The additive white Gaussian noise (AWGN) channel model is a channel whose sole
effect is addition of a white Gaussian noise process to the transmitted signal. This
channel is mathematically described by the relation

r (t) = sm(t) + n(t) (4.1–1)

where sm(t) is the transmitted signal which, as we have seen in Chapter 3 is one of
M possible signals; n(t) is a sample waveform of a zero-mean white Gaussian noise
process with power spectral density of N0/2; and r (t) is the received waveform. This
channel model is shown in Figure 4.1–1.

160
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Channel

Received
r(t) � sm(t) � n(t)

Transmitted
signal
sm(t)

Noise
n(t)

�

FIGURE 4.1–1
Model for received signal passed through
an AWGN channel.

The receiver observes the received signal r (t) and, based on this observation, makes
the optimal decision about which message m, 1 ≤ m ≤ M , was transmitted. By an
optimal decision we mean a decision rule which results in minimum error probabil-
ity, i.e., the decision rule that minimizes the probability of disagreement between the
transmitted message m and the detected message m̂ given by

Pe = P [m̂ �= m] (4.1–2)

Although the AWGN channel model seems very limiting, its study is beneficial
from two points of view. First, noise is the major type of corruption introduced by many
channels. Therefore isolating it from other channel impairments and studying its effect
results in better understanding of its effect on all communication systems. Second,
the AWGN channel, although very simple, is a good model for studying deep space
communication channels which were historically one of the first challenges encountered
by communication engineers.

We have seen in Chapter 3 that by using an orthonormal basis {φ j (t), 1 ≤ j ≤ N },
each signal sm(t) can be represented by a vector sm ∈ R

N . It was also shown in
Example 2.8–1 that any orthonormal basis can be used for expansion of a zero-mean
white Gaussian process, and the resulting coefficients of expansion will be iid zero-
mean Gaussian random variables with variance N0/2. Therefore, {φ j (t), 1 ≤ j ≤ N },
when extended appropriately, can be used for expansion of the noise process n(t). This
observation prompts us to view the waveform channel r (t) = sm(t) + n(t) in the vector
form r = sm + n where all vectors are N -dimensional and components of n are iid
zero-mean Gaussian random variables with variance N0/2. We will give a rigorous
proof of this equivalence in Section 4.2. We continue our analysis with the study of the
vector channel introduced above.

4.1–1 Optimal Detection for a General Vector Channel

The mathematical model for the AWGN vector channel is given by

r = sm + n (4.1–3)

where all vectors are N -dimensional real vectors. The message m is chosen according
to probabilities Pm from the set of possible messages {1, 2, . . . , M}. The noise compo-
nents n j , 1 ≤ j ≤ N , are iid, zero-mean, Gaussian random variables each distributed
according to N (0, N0/2). Therefore, the PDF of the noise vector n is given by

p(n) =
(

1√
π N0

)N

e−
∑N

j=1
n2

j

2σ2 =
(

1√
π N0

)N

e− ‖n‖2

N0 (4.1–4)
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Channel
p(r�sm)

sm r
FIGURE 4.1–2
A general vector channel.

We, however, study a more general vector channel model in this section which is
not limited to the AWGN channel model. This model will later be specialized to an
AWGN channel model in Section 4.2. In our model, vectors sm are selected from a set
of possible signal vectors {sm, 1 ≤ m ≤ M} according to prior or a priori probabilities
Pm and transmitted over the channel. The received vector r depends statistically on the
transmitted vector through the conditional probability density functions p(r|sm). The
channel model is shown in Figure 4.1–2.

The receiver observes r and based on this observation decides which message was
transmitted. Let us denote the decision function employed at the receiver by g(r), which
is a function from R

N into the set of messages {1, 2, . . . , M}. Now if g(r) = m̂, i.e.,
the receiver decides that m̂ was transmitted, then the probability that this decision is
correct is the probability that m̂ was in fact the transmitted message. In other words,
the probability of a correct decision, given that r is received, is given by

P [correct decision |r ] = P [m̂ sent |r ] (4.1–5)

and therefore the probability of a correct decision is

P [correct decision] =
∫

P [correct decision |r ]p(r) d r

=
∫

P [m̂ sent |r ]p(r) d r

(4.1–6)

Our goal is to design an optimal detector that minimizes the error probability or,
equivalently, maximizes P [correct decision]. Since p(r) is nonnegative for all r , the
right-hand side of Equation 4.1–6 is maximized if for each r the quantity P [m̂ |r ] is
maximized. This means that the optimal detection rule is the one that upon observing
r decides in favor of the message m that maximizes P [m |r ]. In other words,

m̂ = gopt(r) = arg max
1≤m≤M

P [m |r ] (4.1–7)

The optimal detection scheme described in Equation 4.1–7 simply looks among all
P [m |r ] for 1 ≤ m ≤ M and selects the m that maximizes P [m |r ]. The detector then
declares this maximizing m as its best decision. Note that since transmitting message
m is equivalent to transmitting sm , the optimal decision rule can be written as

m̂ = gopt(r) = arg max
1≤m≤M

P [sm |r ] (4.1–8)

MAP and ML Receivers
The optimal decision rule given by Equations 4.1–7 and 4.1–8 is known as the max-
imum a posteriori probability rule, or MAP rule. Note that the MAP receiver can be
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simplified to

m̂ = arg max
1≤m≤M

Pm p(r|sm)

p(r)
(4.1–9)

and since p(r) is independent of m and for all m remains the same, this is equivalent to

m̂ = arg max
1≤m≤M

Pm p(r|sm) (4.1–10)

Equation 4.1–10 is easier to use than Equation 4.1–7 since it is given in terms of the
prior probabilities Pm and the probabilistic description of the channel p(r|sm), both
directly known.

In the case where the messages are equiprobable a priori, i.e., when Pm = 1
M for

all 1 ≤ m ≤ M , the optimal detection rule reduces to

m̂ = arg max
1≤m≤M

p(r|sm) (4.1–11)

The term p(r|sm) is called the likelihood of message m, and the receiver given by
Equation 4.1–11 is called the maximum-likelihood receiver, or ML receiver. It is im-
portant to note that the ML detector is not an optimal detector unless the messages are
equiprobable. The ML detector, however, is a very popular detector since in many cases
having exact information about message probabilities is difficult.

The Decision Regions
Any detector—including MAP and ML detectors—partitions the output space R

N into
M regions denoted by D1, D2, . . . , DM such that if r ∈ Dm , then m̂ = g(r) = m, i.e.,
the detector makes a decision in favor of m. The region Dm, 1 ≤ m ≤ M , is called
the decision region for message m; and Dm is the set of all outputs of the channel that
are mapped into message m by the detector. If a MAP detector is employed, then the
Dm’s constitute the optimal decision regions resulting in the minimum possible error
probability. For a MAP detector we have

Dm = {
r ∈ R

N : P [m |r ] > P [m ′ ∣∣r ], for all 1 ≤ m ′ ≤ M and m ′ �= m
}

(4.1–12)

Note that if for some given r two or more messages achieve the maximum a posteriori
probability, we can arbitrarily assign r to one of the corresponding decision regions.

The Error Probability
To determine the error probability of a detection scheme, we note that when sm is trans-
mitted, an error occurs when the received r is not in Dm . The symbol error probability
of a receiver with decision regions {Dm, 1 ≤ m ≤ M} is therefore given by

Pe =
M∑

m=1

Pm P [r /∈ Dm |sm sent ]

=
M∑

m=1

Pm Pe|m

(4.1–13)
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where Pe|m denotes the error probability when message m is transmitted and is given by

Pe|m =
∫

Dc
m

p(r|sm) d r

=
∑

1≤m ′≤M
m′ �=m

∫
Dm′

p(r|sm) d r
(4.1–14)

Using Equation 4.1–14 in Equation 4.1–13 gives

Pe =
M∑

m=1

Pm

∑
1≤m ′≤M

m′ �=m

∫
Dm′

p(r|sm) d r (4.1–15)

Equation 4.1–15 gives the probability that an error occurs in transmission of a symbol or
a message and is called symbol error probability or message error probability. Another
type of error probability is the bit error probability. This error probability is denoted by
Pb and is the error probability in transmission of a single bit. Determining the bit error
probability in general requires detailed knowledge of how different bit sequences are
mapped to signal points. Therefore, in general finding the bit error probability is not easy
unless the constellation exhibits certain symmetry properties to make the derivation of
the bit error probability easy. We will see later in this chapter that orthogonal signaling
exhibits the required symmetry for calculation of the bit error probability. In other cases
we can bound the bit error probability by noting that a symbol error occurs when at
least one bit is in error, and the event of a symbol error is the union of the events of the
errors in the k = log2 M bits representing that symbol. Therefore we can write

Pb ≤ Pe ≤ k Pb (4.1–16)

or

Pe

log2 M
≤ Pb ≤ Pe (4.1–17)

E X A M P L E 4.1–1. Consider two equiprobable message signals s1 = (0, 0) and s2 =
(1, 1). The channel adds iid noise components n1 and n2 to the transmitted vector each
with an exponential PDF of the form

p(n) =
{

e−n n ≥ 0

0 n < 0

Since the messages are equiprobable, the MAP detector is equivalent to the ML
detector, and the decision region D1 is given by

D1 = {
r ∈ R

2 : p(r|s1) > p(r|s2)
}

Noting that p(r|s = (s1, s2)) = p(n = r − s), we have

D1 = {
r ∈ R

2 : pn(r1, r2) > pn(r1 − 1, r2 − 1)
}
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r2

r1

D1

D2

FIGURE 4.1–3
Decision regions D1 and D2.

where

pn(n1, n2) =
{

e−n1−n2 n1, n2 > 0

0 otherwise

From this relation we conclude that if either r1 or r2 is less than 1, then the point r
belongs to D1, and if both r1 and r2 are greater than 1, we have e−r1−r2 < e−(r1−1)−(r2−1)

and r belongs to D2.
Note that in this channel neither r1 nor r2 can be negative, because signal and noise

are always nonnegative. Therefore,

D2 = {
r ∈ R

2 : r1 ≥ 1, r2 ≥ 1
}

and

D1 = {
r ∈ R

2 : r1, r2 ≥ 0, either 0 ≤ r1 < 1 or 0 ≤ r2 < 1
}

The decision regions are shown in Figure 4.1–3. For this channel, when s2 is transmitted,
regardless of the value of noise components, r will always be in D2 and no error will
occur.

Errors will occur only when s1 = (0, 0) is transmitted and the received vector
r belongs to D2, i.e., when both noise components exceed 1. Therefore, the error
probability is given by

Pe = 1

2
P [r ∈ D2 |s1 = (0, 0) sent ]

= 1

2

∫ ∞

1
e−n1 dn1

∫ ∞

1
e−n2 dn2

= 1

2
e−2 ≈ 0.0068

Sufficient Statistics
Let us assume that at the receiver we have access to a vector r that can be written in
terms of two vectors r1 and r2, i.e., r = (r1, r2). We further assume that sm , r1, and
r2 constitute a Markov chain in the given order, i.e.,

p(r1, r2|sm) = p(r1|sm)p(r2|r1) (4.1–18)
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Under these assumptions r2 can be ignored in the detection of sm , and the detection
can be based only on r1. The reason is that by Equation 4.1–10

m̂ = arg max
1≤m≤M

Pm p(r|sm)

= arg max
1≤m≤M

Pm p(r1, r2|sm)

= arg max
1≤m≤M

Pm p(r1|sm)p(r2|r1)

= arg max
1≤m≤M

Pm p(r1|sm)

(4.1–19)

where in the last step we have ignored the positive factor p(r2|r1) since it does not
depend on m. This shows that the optimal detection can be based only on r1.

When the Markov chain relation among sm , r1, and r2 as given in Equa-
tion 4.1–18 is satisfied, it is said that r1 is a sufficient statistic for detection of sm .
In such a case, when r2 can be ignored without sacrificing the optimality of the re-
ceiver, r2 is called irrelevant data or irrelevant information. Recognizing sufficient
statistics helps to reduce the complexity of the detection process through ignoring a
usually large amount of irrelevant data at the receiver.

E X A M P L E 4.1–2. Let us assume that in Example 4.1–1, in addition to r , the receiver
can observe n1 as well. Therefore, we can assume that r = (r1, r2) is available at the
receiver, where r1 = (r1, n1) and r2 = r2. To design the optimal detector, we notice
that having access to both r1 and n1 uniquely determines sm1 at the receiver; and since
s11 = 0 and s21 = 1, this uniquely determines the message m, thus making r2 = r2
irrelevant. The optimal decision rule in this case becomes

m̂ =
{

1 if r1 − n1 = 0

2 if r1 − n1 = 1
(4.1–20)

and the resulting error probability is zero.

Preprocessing at the Receiver
Let us assume that the receiver applies an invertible operation G(·) on the received
vector r . In other words instead of supplying r to the detector, the receiver passes r
through G and supplies the detector with ρ = G(r), as shown in Figure 4.1–4.

Since G is invertible and the detector has access to ρ, it can apply G−1 to ρ to obtain
G−1(ρ) = G−1(G(r)) = r . The detector now has access to both ρ and r; therefore the

Channel Detector
sm r � m̂

G(r)

FIGURE 4.1–4
Preprocessing at the receiver.
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optimal detection rule is

m̂ = arg max
1≤m≤M

Pm p(r, ρ|sm)

= arg max
1≤m≤M

Pm p(r|sm)p(ρ|r)

= arg max
1≤m≤M

Pm p(r|sm)

(4.1–21)

where we have used the fact that ρ is a function of r and hence, when r is given, ρ

does not depend on sm . From Equation 4.1–21 it is clear that the optimal detector based
on the observation of ρ makes the same decision as the optimal detector based on the
observation of r . In other words, an invertible preprocessing of the received information
does not change the optimality of the receiver.

E X A M P L E 4.1–3. Let us assume the received vector is of the form

r = sm + n

where n is a nonwhite (colored) noise. Let us further assume that there exists an
invertible whitening operator denoted by matrix W such that ν = Wn is a white
vector. Then we can consider

ρ = W r = W sm + ν

which is equivalent to a channel with white noise for detection without degrading the
performance. The linear operation denoted by W is called a whitening filter.

4.2
WAVEFORM AND VECTOR AWGN CHANNELS

The waveform AWGN channel is described by the input-output relation

r (t) = sm(t) + n(t) (4.2–1)

where sm(t) is one of the possible M signals {s1(t), s2(t), . . . , sM (t)}, each selected
with prior probability Pm and n(t) is a zero-mean white Gaussian process with power
spectral density N0

2 . Let us assume that using the Gram-Schmidt procedure, we have
derived an orthonormal basis {φ j (t), 1 ≤ j ≤ N } for representation of the signals and,
using this set, the vector representation of the signals is given by {sm, 1 ≤ m ≤ M}.
The noise process cannot be completely expanded in terms of the basis {φ j (t)}N

j=1.
We decompose the noise process n(t) into two components. One component, denoted
by n1(t) is part of the noise process that can be expanded in terms of {φ j (t)}N

j=1, i.e.,
the projection of the noise onto the space spanned by these basis functions; and the
other part, denoted by n2(t), is the part that cannot be expressed in terms of this basis
function. With this definition we have

n1(t) =
N∑

j=1

n jφ j (t), where n j = 〈n(t), φ j (t)〉 (4.2–2)
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and

n2(t) = n(t) − n1(t) (4.2–3)

Noting that

sm(t) =
N∑

j=1

smjφ j (t), where smj = 〈sm(t), φ j (t)〉 (4.2–4)

and using Equations 4.2–2 and 4.2–3, we can write Equation 4.2–1 as

r (t) =
N∑

j=1

(smj + n j )φ j (t) + n2(t) (4.2–5)

By defining

r j = smj + n j (4.2–6)

where

r j = 〈sm(t), φ j (t)〉 + 〈n(t), φ j (t)〉 = 〈sm(t) + n(t), φ j (t)〉 = 〈r (t), φ j (t)〉 (4.2–7)

we have

r (t) =
N∑

j=1

r jφ j (t) + n2(t), where r j = 〈r (t), φ j (t)〉 (4.2–8)

From Example 2.8–1 we know that n j ’s are iid zero-mean Gaussian random variables
each with variance N0

2 . This result can also be directly shown, by noting that the n j ’s
defined by

n j =
∫ ∞

−∞
n(t)φ j (t) dt (4.2–9)

are linear combinations of the Gaussian random process n(t), and therefore they are
Gaussian. Their mean is given by

E [n j ] = E
[∫ ∞

−∞
n(t)φ j (t) dt

]

=
∫ ∞

−∞
E [n(t)] φ j (t) dt

= 0

(4.2–10)

where the last equality holds since n(t) is zero-mean, i.e., E [n(t)] = 0.
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We can also find the covariance of ni and n j as

COV [ni n j ] = E [ni n j ] − E [ni ]E [n j ]

= E
[∫ ∞

−∞
n(t)φi (t) dt

∫ ∞

−∞
n(s)φ j (s) ds

]

=
∫ ∞

−∞

∫ ∞

−∞
E [n(t)n(s)] φi (t)φ j (s) dt ds

= N0

2

∫ ∞

−∞

[∫ ∞

−∞
δ(t − s)φi (t) dt

]
φ j (s) ds

= N0

2

∫ ∞

−∞
φi (s)φ j (s) ds

=
{

N0
2 i = j

0 i �= j

(4.2–11)

where we have used the facts that ni and n j are zero-mean, and since n(t) is white,
its autocorrelation function is N0

2 δ(τ ). In the last step we applied the orthonormality of
{φ j (t)}. Equation 4.2–11 shows that for i �= j , ni and n j are uncorrelated and since they
are Gaussian, they are independent as well. It also shows that each n j has a variance
equal to N0

2 .
Now we study the properties of n2(t). We first observe that since the n j ’s are

jointly Gaussian random variables, the process n1(t) is a Gaussian process and thus
n2(t) = n(t) − n1(t), which is a linear combination of two jointly Gaussian processes,
is itself a Gaussian process. At any given t we have

COV [n j n2(t)] = E [n j n2(t)]

= E [n j n(t)] − E [n j n1(t)]

= E
[

n(t)
∫ ∞

−∞
n(s)φ j (s) ds

]
− E

[
n j

N∑
i=1

niφi (t)

]

= N0

2

∫ ∞

−∞
δ(t − s)φ j (s) ds − N0

2
φ j (t)

= N0

2
φ j (t) − N0

2
φ j (t)

= 0

(4.2–12)

where we have used the fact that E [n j ni ] = 0, except when i = j , in which case
E [n j n j ] = N0/2.

Equation 4.2–12 shows that n2(t) is uncorrelated with all n j ’s, and since they are
jointly Gaussian, n2(t) is independent of all n j ’s, and therefore it is independent of n1(t).

Since n2(t) is independent of sm(t) and n1(t), we conclude that in Equation 4.2–8,
the two components of r (t), namely,

∑
j r jφ j (t) and n2(t), are independent. Since the
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first component is the only component that carries the transmitted signal, and the sec-
ond component is independent of the first component, the second component cannot
provide any information about the transmitted signal and therefore has no effect in the
detection process and can be ignored without sacrificing the optimality of the detector.
In other words n2(t) is irrelevant information for optimal detection.

From the above discussion it is clear that for the design of the optimal detector, the
AWGN waveform channel of the form

r (t) = sm(t) + n(t), 1 ≤ m ≤ M (4.2–13)

is equivalent to the N -dimensional vector channel

r = sm + n, 1 ≤ m ≤ M (4.2–14)

4.2–1 Optimal Detection for the Vector AWGN Channel

The additive AWGN vector channel is the vector equivalent channel to the waveform
AWGN channel and is described by Equation 4.2–14 in which the components of the
noise vector are iid zero-mean Gaussian random variables with variance N0

2 . The joint
PDF of the noise vector is given by Equation 4.1–4. The MAP detector for this channel
is given by

m̂ = arg max
1≤m≤M

[Pm p(r|sm)]

= arg max
1≤m≤M

Pm [pn(r − sm)]

= arg max
1≤m≤M

[
Pm

(
1√
π N0

)N

e− ‖r−sm ‖2

N0

]

(a)= arg max
1≤m≤M

[
Pm e− ‖r−sm ‖2

N0

]

(b)= arg max
1≤m≤M

[
ln Pm − ‖r − sm‖2

N0

]

(c)= arg max
1≤m≤M

[
N0

2
ln Pm − 1

2
‖r − sm‖2

]

= arg max
1≤m≤M

[
N0

2
ln Pm − 1

2

(‖r‖2 + ‖sm‖2 − 2r · sm
)]

(d)= arg max
1≤m≤M

[
N0

2
ln Pm − 1

2
Em + r · sm

]

(e)= arg max
1≤m≤M

[ηm + r · sm]

(4.2–15)

where we have used the following steps in simplifying the expression:

(a):
(

1√
π N0

)N
is a positive constant and can be dropped.

(b): ln(·) is an increasing function.
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(c): N0
2 is positive and multiplying by a positive number does not affect the result of

arg max.
(d): ‖r‖2 was dropped since it does not depend on m and ‖sm‖2 = Em .
(e): We have defined

ηm = N0

2
ln Pm − 1

2
Em (4.2–16)

as the bias term.

From Equation 4.2–15, it is clear that the optimal (MAP) decision rule for an
AWGN vector channel is given by

m̂ = arg max
1≤m≤M

[ηm + r · sm]

ηm = N0

2
ln Pm − 1

2
Em

(4.2–17)

In the special case where the signals are equiprobable, i.e., Pm = 1/M for all m,
this relation becomes somewhat simpler. In this case Equation 4.2–15 at step (c) can
be written as

m̂ = arg max
1≤m≤M

[
N0

2
ln Pm − 1

2
‖r − sm‖2

]

= arg max
1≤m≤M

[−‖r − sm‖2]

= arg min
1≤m≤M

‖r − sm‖

(4.2–18)

where we have used the fact that maximizing −‖r − sm‖2 is equivalent to minimizing
its negative, i.e., ‖r − sm‖2, which is equivalent to minimizing its square root ‖r − sm‖.

A geometric interpretation of Equation 4.2–18 is particularly convenient. The re-
ceiver receives r and looks among all sm to find the one that is closest to r using standard
Euclidean distance. Such a detector is called a nearest-neighbor, or minimum-distance,
detector. Also note that in this case, since the signals are equiprobable, the MAP and the
ML detector coincide, and both are equivalent to the minimum-distance detector. In this
case the boundaries of decisions Dm and Dm ′ are the set of points that are equidistant
from sm and sm ′ , which is the perpendicular bisector of the line connecting these two
signal points. This boundary in general is a hyperplane. For the case of N = 2 the
boundary is a line, and for N = 3 it is a plane. These hyperplanes completely deter-
mine the decision regions. An example of a two-dimensional constellation (N = 2)
with four signal points (M = 4) is shown in Figure 4.2–1. The solid lines denote the
boundaries of the decision regions which are the perpendicular bisectors of the dashed
lines connecting the signal points.

When the signals are both equiprobable and have equal energy, the bias terms
defined as ηm = N0

2 ln Pm − 1
2Em are independent of m and can be dropped from

Equation 4.2–17. The optimal detection rule in this case reduces to

m̂ = arg max
1≤m≤M

r · sm (4.2–19)
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s2

s1

s4

s3

D2

D1

D4

D3

FIGURE 4.2–1
The decision regions for equiprobable signaling.

In general, the decision region Dm is given as

Dm = {
r ∈ R

N : r · sm + ηm > r · sm ′ + ηm ′, for all 1 ≤ m ′ ≤ M and m ′ �= m
}

(4.2–20)

Note that each decision region is described in terms of at most M − 1 inequalities. In
some cases some of these inequalities are dominated by the others and are redundant.
Also note that each boundary is of the general form of

r · (sm − sm ′) > ηm ′ − ηm (4.2–21)

which is the equation of a hyperplane. Therefore the boundaries of the decision regions
in general are hyperplanes.

From Equation 2.2–47, we know that

r · sm =
∫ ∞

−∞
r (t)sm(t) dt (4.2–22)

and

Em = ‖s‖2 =
∫ ∞

−∞
s2

m(t) dt (4.2–23)

Therefore, the optimal MAP detection rule in an AWGN channel can be written in the
form

m̂ = arg max
1≤m≤M

[
N0

2
ln Pm +

∫ ∞

−∞
r (t)sm(t) dt − 1

2

∫ ∞

−∞
s2

m(t) dt
]

(4.2–24)
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and the ML detector has the following form:

m̂ = arg max
1≤m≤M

[∫ ∞

−∞
r (t)sm(t) dt − 1

2

∫ ∞

−∞
s2

m(t) dt
]

(4.2–25)

At this point it is convenient to introduce three metrics that we will use frequently
in the future. We define the distance metric as

D(r, sm) = ‖r − sm‖2

=
∫ ∞

−∞
(r (t) − sm(t))2 dt

(4.2–26)

denoting the square of the Euclidean distance between r and sm . The modified distance
metric is defined as

D′(r, sm) = −2r · sm + ‖sm‖2 (4.2–27)

and is equal to the distance metric when the term ‖r‖2, which does not depend on m,
is removed. The correlation metric is defined as the negative of the modified distance
metric and is given by

C(r, sm) = 2r · sm − ‖sm‖2

= 2
∫ ∞

−∞
r (t)sm(t) dt −

∫ ∞

−∞
s2

m(t) dt
(4.2–28)

It is important to note that using the term metric is just for convenience. In general,
none of these quantities is a metric in a mathematical sense. With these definitions the
optimal detection rule (MAP rule) in general can be written as

m̂ = arg max
1≤m≤M

[N0 ln Pm − D(r, sm)]

= arg max
1≤m≤M

[N0 ln Pm + C(r, sm)]
(4.2–29)

and the ML detection rule becomes

m̂ = arg max
1≤m≤M

C(r, sm) (4.2–30)

Optimal Detection for Binary Antipodal Signaling
In a binary antipodal signaling scheme s1(t) = s(t) and s2(t) = −s(t). The probabilities
of messages 1 and 2 are p and 1 − p, respectively. This is obviously a case with
N = 1, and the vector representations of the two signals are just scalars with s1 = √Es

and s2 = −√Es , where Es is energy in each signal and is equal to Eb. Following
Equation 4.2–20, the decision region D1 is given as

D1 =
{

r : r
√
Eb + N0

2
ln p − 1

2
Eb > −r

√
Eb + N0

2
ln(1 − p) − 1

2
Eb

}

=
{

r : r >
N0

4
√Eb

ln
1 − p

p

}

= {r : r > rth}

(4.2–31)
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s2 s1

D2 D1

rth0�√Eb √Eb

FIGURE 4.2–2
The decision regions for antipodal signaling.

where the threshold rth is defined as

rth = N0

4
√Eb

ln
1 − p

p
(4.2–32)

The constellation and the decision regions are shown in Figure 4.2–2.
Note that as p → 0, we have rth → ∞ and the entire real line becomes D2;

and when p → 1, the entire line becomes D1, as expected. Also note that when
p = 1

2 , i.e., when the messages are equiprobable, rth = 0 and the decision rule reduces
to a minimum-distance rule. To derive the error probability for this system, we use
Equation 4.1–15. This yields

Pe =
2∑

m=1

Pm

∑
1≤m ′≤2

m′ �=m

∫
Dm′

p (r |sm ) d r

= p
∫

D2

p
(

r
∣∣∣s =

√
Eb

)
dr + (1 − p)

∫
D1

p
(

r
∣∣∣s = −

√
Eb

)
dr

= p
∫ rth

−∞
p

(
r

∣∣∣s =
√
Eb

)
dr + (1 − p)

∫ ∞

rth

p
(

r
∣∣∣s = −

√
Eb

)
dr

= p P
[
N

(√
Eb,

N0

2

)
< rth

]
+ (1 − p) P

[
N

(
−

√
Eb,

N0

2

)
> rth

]

= pQ

⎛
⎝

√Eb − rth√
N0
2

⎞
⎠ + (1 − p)Q

⎛
⎝rth + √Eb√

N0
2

⎞
⎠

(4.2–33)

where in the last step we have used Equation 2.3–12. In the special case where p = 1
2 ,

we have rth = 0 and the error probability simplifies to

Pe = Q

⎛
⎝

√
2Eb

N0

⎞
⎠ (4.2–34)

Also note that since the system is binary, the error probability for each message is equal
to the bit error probability, i.e., Pb = Pe.

Error Probability for Equiprobable Binary Signaling Schemes
In this case the transmitter transmits one of the two equiprobable signals s1(t) and
s2(t) over the AWGN channel. Since the signals are equiprobable, the two decision
regions are separated by the perpendicular bisector of the line connecting s1 and s2.
By symmetry, error probabilities when s1 or s2 is transmitted are equal, therefore
Pb = P [error |s1 sent ]. The decision regions and the perpendicular bisector of the line
connecting s1 and s2 are shown in Figure 4.2–3.

Since we are assuming that s1 is sent, an error occurs if r is in D2, which means the
distance between the projection of r − s1 on s2 − s1, i.e., point A, from s1 is larger than
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s1

s2

D2

D1

n

r

A

FIGURE 4.2–3
Decision regions for binary equiprobable signals.

d12
2 , where d12 = ‖s2 − s1‖. Note that since s1 is sent, n = r − s1, and the projection of

r − s1 on s2 − s1 becomes equal to n·(s2−s1)
d12

. Therefore, the error probability is given by

Pb = P
[

n · (s2 − s1)

d12
>

d12

2

]
(4.2–35)

or

Pb = P

[
n · (s2 − s1) >

d2
12

2

]
(4.2–36)

We note that n · (s2 − s1) is a zero-mean Gaussian random variable with variance d2
12 N0

2 ;
therefore, using Equation 2.3–12, we obtain

Pb = Q

(
d2
12
2

d12

√
N0
2

)

= Q
(√

d2
12

2N0

) (4.2–37)

Equation 4.2–37 is very general and applies to all binary equiprobable signaling
systems regardless of the shape of the signals. Since Q(·) is a decreasing function, in
order to minimize the error probability, the distance between signal points has to be
maximized. The distance d12 is obtained from

d2
12 =

∫ ∞

−∞
(s1(t) − s2(t))2 dt (4.2–38)

In the special case that the binary signals are equiprobable and have equal energy,
i.e., when Es1 = Es2 = E , we can expand Equation 4.2–38 and get

d2
12 = Es1 + Es2 − 2〈s1(t), s2(t)〉 = 2E(1 − ρ) (4.2–39)

where ρ is the cross-correlation coefficient between s1(t) and s2(t) defined in
Equation 2.1–25. Since −1 ≤ ρ ≤ 1, we observe from Equation 4.2–39 that the binary
signals are maximally separated when ρ = −1, i.e., when the signals are antipodal. In
this case the error probability of the system is minimized.
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D1

s1

s2

D2

√Eb

√Eb

FIGURE 4.2–4
Signal constellation and decision regions for
equiprobable binary orthogonal signaling.

Optimal Detection for Binary Orthogonal Signaling
For binary orthogonal signals we have

∫ ∞

−∞
si (t)s j (t) dt =

{
E i = j

0 i �= j
1 ≤ i, j ≤ 2 (4.2–40)

Note that since the system is binary, Eb = E . Here we choose φ j (t) = s j (t)√
Eb

for j = 1, 2,
and the vector representations of the signal set become

s1 = (√Eb, 0
)

s2 = (
0,

√Eb
) (4.2–41)

The constellation and the optimal decision regions for the case of equiprobable signals
are shown in Figure 4.2–4.

For this signaling scheme it is clear that d = √
2Eb and

Pb = Q

⎛
⎝

√
d2

2N0

⎞
⎠ = Q

⎛
⎝

√
Eb

N0

⎞
⎠ (4.2–42)

Comparing this result with the error probability of binary antipodal signaling given in
Equation 4.2–34, we see that a binary orthogonal signaling requires twice the energy
per bit of a binary antipodal signaling system to provide the same error probability.
Therefore in terms of power efficiency, binary orthogonal signaling underperforms
binary antipodal signaling by a factor of 2, or equivalently by 3 dB.

The term

γb = Eb

N0
(4.2–43)

which appears in the expression for error probability of many signaling systems is
called the signal-to-noise ratio per bit, or SNR per bit, or simply the SNR of the
communication system. Plots of error probability as a function of SNR/bit for binary
antipodal and binary orthogonal signaling are shown in Figure 4.2–5. It is clear from
this figure that the plot for orthogonal signaling is the result of a 3-dB shift of the plot
for antipodal signaling.
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FIGURE 4.2–5
Error probability for binary antipodal and binary
orthogonal signaling.

4.2–2 Implementation of the Optimal Receiver for AWGN Channels

In this section we present different implementations of the optimal (MAP) receiver for
the AWGN channel. All these structures are equivalent in performance and result in
minimum error probability. The underlying relation that is implemented by all these
structures is Equation 4.2–17 which describes the MAP receiver for an AWGN channel.

The Correlation Receiver
An optimal receiver for the AWGN channel implements the MAP decision rule given
by Equation 4.2–44.

m̂ = arg max
1≤m≤M

[ηm + r · sm], where ηm = N0

2
ln Pm − 1

2
Em (4.2–44)

However, the receiver has access to r (t) and not the vector r . The first step to implement
Equation 4.2–44 at the receiver is to derive r from the received signal r (t). Using the
relation

r j =
∫ ∞

−∞
r (t) φ j (t) dt (4.2–45)

the receiver multiplies r (t) by each basis function φ j (t) and integrates the result to
find all components of r . In the next step it finds the inner product of r with each
sm, 1 ≤ m ≤ M , and finally adds the bias terms ηm and compares the results and
chooses the m that maximizes the result. Since the received signal r (t) is correlated
with each φ j (t), this implementation of the optimal receiver is called a correlation
receiver.

The structure of a correlation receiver is shown in Figure 4.2–6.
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FIGURE 4.2–6
The structure of a correlation receiver with N correlators.

Note that in Figure 4.2–6, ηm’s and sm’s are independent of the received signal
r (t); therefore they can be computed once and stored in a memory for later access. The
parts of this diagram that need constant computation are the correlators that compute
r · sm for 1 ≤ m ≤ M .

Another implementation of the optimal detector is possible by noting that the
optimal detection rule given in Equation 4.2–44 is equivalent to

m̂ = arg max
1≤m≤M

[
ηm +

∫ ∞

−∞
r (t)sm(t) dt

]
, where ηm = N0

2
ln Pm − 1

2
Em

(4.2–46)
Therefore, r · sm can be directly found by correlation r (t) with sm(t)’s. Figure 4.2–7
shows this implementation which is a second version of the correlation receiver.

Note that although the structure shown in Figure 4.2–7 looks simpler than the
structure shown in Figure 4.2–6, since in most cases N < M (and in fact N � M), the
correlation receiver of Figure 4.2–6 is usually the preferred implementation method.

The correlation receiver requires N or M correlators, i.e., multipliers followed
by integrators. We now present an alternative implementation of the optimal receiver
called the matched filter receiver.

The Matched Filter Receiver
In both correlation receiver implementations we compute quantities of the form

rx =
∫ ∞

−∞
r (t)x(t) dt (4.2–47)

where x(t) is either φ j (t) or sm(t). If we define h(t) = x(T − t), where T is arbitrary,
and consider a filter with impulse response h(t), this filter is called a filter matched to
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FIGURE 4.2–7
The structure of the correlation receiver with M correlators.

x(t), or a matched filter. If the input r (t) is applied to this filter, its output, denoted by
y(t), is the convolution of r (t) and h(t) and is given by

y(t) = r (t) 
 h(t)

=
∫ ∞

−∞
r (τ )h(t − τ ) dτ

=
∫ ∞

−∞
r (τ )x(T − t + τ ) dτ

(4.2–48)

From Equation 4.2–48 it is clear that

rx = y(T ) =
∫ ∞

−∞
r (τ )x(τ ) dτ (4.2–49)

In other words, the output of the correlator rx can be obtained by sampling the output
of the matched filter at time t = T . Note that the sampling has to be done exactly at
time t = T , where T is the arbitrary value used in the design of the matched filter. As
long as this condition is satisfied, the choice of T is irrelevant; however from a practical
point of view, T has to be selected in such a way that the resulting filters are causal;
i.e, we must have h(t) = 0 for t < 0. This puts a practical limit on possible values of
T . A matched filter implementation of the optimal receiver is shown in Figure 4.2–8.

Another matched filter implementation with M filters matched to {sm(t), 1 ≤
m ≤ M} similar to the correlation receiver shown in Figure 4.2–7 is also possible.

Frequency Domain Interpretation of the Matched Filter The matched filter to any
signal s(t) has an interesting frequency-domain interpretation. Since h(t) = s(T − t),
the Fourier transform of this relationship, using the basic properties of the Fourier
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FIGURE 4.2–8
The structure of a matched filter receiver with N correlators.

transform, is

H ( f ) = S∗( f )e− j2π f T (4.2–50)

We observe that the matched filter has a frequency response that is the complex conju-
gate of the transmitted signal spectrum multiplied by the phase factor e− j2π f T , which
represents the sampling delay of T . In other words, |H ( f )| = |S( f )|, so that the mag-
nitude response of the matched filter is identical to the transmitted signal spectrum. On
the other hand, the phase of H ( f ) is the negative of the phase of S( f ) shifted by 2π f T .

Another interesting property of the matched filter is its signal-to-noise maximizing
property. Let us assume that r (t) = s(t) + n(t) is passed through a filter with impulse
response h(t) and frequency response H ( f ), and the output, denoted by y(t) = ys(t) +
ν(t), is sampled at some time T . The output consists of a signal part, ys(t), whose
Fourier transform is H ( f )S( f ) and a noise part, ν(t), whose power spectral density is
N0
2 |H ( f )|2. Sampling these components at time T results in

ys(T ) =
∫ ∞

−∞
H ( f )S( f )e j2π f t dt (4.2–51)

and a zero-mean Gaussian noise component, ν(T ), whose variance is

VAR [ν(T )] = N0

2

∫ ∞

−∞
|H ( f )|2 d f = N0

2
Eh (4.2–52)

where Eh is the energy in h(t). Now let us define the SNR at the output of the filter
H ( f ) as

SNRo = y2
s (T )

VAR [ν(T )]
(4.2–53)
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From the Cauchy-Schwartz inequality given in Equation 2.2–19, we have

ys(T ) =
∫ ∞

−∞
H ( f )S( f )e j2π f t dt

≤
∫ ∞

−∞
|H ( f )|2 d f ·

∫ ∞

−∞
|S( f )e j2π f T |2 d f

= Eh Es

(4.2–54)

with equality if and only if H ( f ) = αS∗( f )e− j2π f T for some complex constant α.
Using Equation 4.2–54 in 4.2–53, we conclude that

SNRo ≤ EsEh
N0
2 Eh

= 2Es

N0
(4.2–55)

This shows that the filter H ( f ) that maximizes the signal-to-noise ratio at its output
must satisfy the relation H ( f ) = S∗( f )e− j2π f T ; i.e., it is the matched filter. It also
shows that the maximum possible signal-to-noise ratio at the output is 2Es

N0
.

E X A M P L E 4.2–1. M = 4 biorthogonal signals are constructed from the two orthogonal
signals shown in Figure 4.2–9(a) for transmitting information over an AWGN channel.
The noise is assumed to have zero mean and power spectral density 1

2 N0. Let us
determine the basis functions for this signal set, the impulse responses of the matched
filter demodulators, and the output waveforms of the matched filter demodulators when
the transmitted signal is s1(t).

s

� �

s

A A

(a)

(b)

(c)

FIGURE 4.2–9
Basis functions and matched filter response for Example 4.2–1.
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The M = 4 biorthogonal signals have dimensions N = 2. Hence, two basis
functions are needed to represent the signals. From Figure 4.2–9(a), we choose φ1(t)
and φ2(t) as

φ1(t) =
{√

2/T 0 ≤ t ≤ 1
2 T

0 otherwise

φ2(t) =
{√

2/T 1
2 T ≤ t ≤ T

0 otherwise

(4.2–56)

The impulse responses of the two matched filters are

h1(t) = φ1(T − t) =
{√

2/T 1
2 T ≤ t ≤ T

0 otherwise

h2(t) = φ2(T − t) =
{√

2/T 0 ≤ t ≤ 1
2 T

0 otherwise

(4.2–57)

and are illustrated in Figure 4.2–9(b).
If s1(t) is transmitted, the (noise-free) responses of the two matched filters are as

shown in Figure 4.2–9(c). Since y1(t) and y2(t) are sampled at t = T , we observe that

y1s(T ) =
√

1
2 A2T and y2s(T ) = 0. Note that 1

2 A2T = E , the signal energy. Hence,
the received vector formed from the two matched filter outputs at the sampling instant
t = T is

r = (r1, r2) = (
√
E + n1, n2) (4.2–58)

where n1 = y1n(T ) and n2 = y2n(T ) are the noise components at the outputs of the
matched filters, given by

ykn(T ) =
∫ T

0
n(t)φk(t) dt, k = 1, 2 (4.2–59)

Clearly, E [nk] = E [ykn(T )] = 0. Their variance from Equation 4.2–52 is

VAR [nk] = N0

2
Eφk = 1

2
N0 (4.2–60)

Observe that the SNR for the first matched filter is

SNRo = (
√
E)2

1
2 N0

= 2E
N0

(4.2–61)

which agrees with our previous result.

4.2–3 A Union Bound on the Probability of Error of Maximum
Likelihood Detection

In general, to determine the error probability of a signaling scheme, we need to use
Equation 4.1–13. In the special case where the messages are equiprobable, Pm = 1/M
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and maximum likelihood detection is optimal. The error probability in this case becomes

Pe = 1

M

M∑
m=1

Pe|m

= 1

M

M∑
m=1

∑
1≤m ′≤M

m′ �=m

∫
Dm′

p(r|sm) d r
(4.2–62)

For an AWGN channel the decision regions are given by Equation 4.2–20. Therefore,
for AWGN channels we have

Pe|m =
∑

1≤m ′≤M
m′ �=m

∫
Dm′

p(r|sm) d r

=
∑

1≤m ′≤M
m′ �=m

∫
Dm′

pn(r − sm) d r

=
(

1√
π N0

)N ∑
1≤m ′≤M

m′ �=m

∫
Dm′

e− ‖r−sm ‖2

N0 d r

(4.2–63)

For very few constellations, decision regions Dm ′ are regular enough that the integrals
in the last line of Equation 4.2–63 or Equation 4.2–62 can be computed in a closed
form. For most constellations (for example, look at Figure 4.2–1) these integrals cannot
be put in a closed form. In such cases it is convenient to have upper bounds for the error
probability. There exist many bounds on the error probability under ML detection. The
union bound is the simplest and most widely used bound which is quite tight particularly
at high signal-to-noise ratios.

We first derive the union bound for a general communication channel and then
study the AWGN channel as a special case. First we note that in general the decision
region Dm ′ under ML detection can be expressed as

Dm ′ = {
r ∈ R

N : p(r|sm ′) > p(r|sk), for all 1 ≤ k ≤ M and k �= m ′} (4.2–64)

Let us define Dmm ′ as

Dmm ′ = {p(r|sm ′) > p(r|sm)} (4.2–65)

Note that Dmm ′ is the decision region for m ′ in a binary equiprobable system with
signals sm and sm ′ . Comparing the definitions of Dm ′ and Dmm ′ , we obviously have

Dm ′ ⊆ Dmm ′ (4.2–66)

hence ∫
Dm′

p(r|sm) d r ≤
∫

Dmm′
p(r|sm) d r (4.2–67)

Note that the right-hand side of this equation is the error probability of a binary
equiprobable system with signals sm and sm ′ when sm is transmitted. We define the
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pairwise error probability, denoted by Pm→m ′ as

Pm→m ′ =
∫

Dmm′
p(r|sm) d r (4.2–68)

From Equations 4.2–63 and 4.2–67 we have

Pe|m ≤
∑

1≤m ′≤M
m′ �=m

∫
Dmm′

p(r|sm) d r

=
∑

1≤m ′≤M
m′ �=m

Pm→m ′
(4.2–69)

and from Equation 4.2–62 we conclude that

Pe ≤ 1

M

M∑
m=1

∑
1≤m ′≤M

m′ �=m

∫
Dmm′

p(r|sm) d r

= 1

M

M∑
m=1

∑
1≤m ′≤M

m′ �=m

Pm→m ′

(4.2–70)

Equations 4.2–70 is the union bound for a general communication channel.
In the special case of an AWGN channel, we know from Equation 4.2–37 that the

pairwise error probability is given by

Pm→m ′ = Pb = Q

⎛
⎝

√
d2

mm ′

2N0

⎞
⎠ (4.2–71)

By using this result, Equation 4.2–70 becomes

Pe ≤ 1

M

M∑
m=1

∑
1≤m ′≤M

m′ �=m

Q

⎛
⎝

√
d2

mm ′

2N0

⎞
⎠

≤ 1

2M

M∑
m=1

∑
1≤m ′≤M

m′ �=m

e−
d2

mm′
4N0

(4.2–72)

where in the last step we have used the upper bound on the Q function given in
Equation 2.3–15 as

Q(x) ≤ 1

2
e− x2

2 (4.2–73)

Equation 4.2–72 is the general form of the union bound for an AWGN channel. If
we know the distance structure of the constellation, we can further simplify this bound.
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Let us define T (X ), the distance enumerator function for a constellation, as

T (X ) =
∑

dmm′=‖sm−sm′ ‖
1≤m,m′≤M

m �=m′

Xd2
mm′

=
∑

all distinct d’s

ad Xd2

(4.2–74)

where ad denotes the number of ordered pairs (m, m ′) such that m �= m ′ and ‖sm −
sm ′ ‖ = d. Using this function, Equation 4.2–72 can be written as

Pe ≤ 1

2M
T (X )∣∣∣

X=e
− 1

4N0

(4.2–75)

Let us define dmin, the minimum distance of a constellation, as

dmin = min
1≤m,m ′≤M

m �=m′

‖sm − sm ′ ‖ (4.2–76)

Since Q(·) is decreasing, we have

Q

⎛
⎝

√
d2

mm ′

2N0

⎞
⎠ ≤ Q

⎛
⎝

√
d2

min

2N0

⎞
⎠ (4.2–77)

Substituting in Equation 4.2–70 results in

Pe ≤ (M − 1)Q

⎛
⎝

√
d2

min

2N0

⎞
⎠ (4.2–78)

Equation 4.2–78 is a looser form of the union bound in terms of the Q function and
dmin which has a very simple form. Using the exponential bound for the Q function we
have the union bound in the simple form

Pe ≤ M − 1

2
e− d2

min
4N0 (4.2–79)

The union bound clearly shows that the minimum distance of a constellation has
an important impact on the performance of the communication system. A good con-
stellation should be designed such that, within the power and bandwidth constraints, it
provides the maximum possible minimum distance; i.e., the points in the constellation
should be maximally separated.

E X A M P L E 4.2–2. Let us consider the 16-QAM constellation shown in Figure 4.2–10.
We assume that the distance between any two adjacent points on the constellation is
dmin. From Equation 3.2–44 we have

dmin =
√

6 log2 M

M − 1
Ebavg =

√
8

5
Ebavg (4.2–80)

Close observation of this constellation shows that from a total of 16 × 15 = 240
possible distances between any two points in the constellation, 48 are equal to dmin,
36 are equal to

√
2 dmin, 32 are 2dmin, 48 are

√
5 dmin, 16 are

√
8 dmin, 16 are 3dmin, 24 are√

10 dmin, 16 are
√

13 dmin, and finally 4 are
√

18 dmin. Note that each line connecting
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dmin
FIGURE 4.2–10
16-QAM constellation.

any two points in the constellation is counted twice. Therefore, the distance enumerator
function for this constellation is given by

T (X ) = 48Xd2 +36X2d2 +32X4d2 +48X5d2 +16X8d2 +16X9d2 +24X10d2 +16X13d2 +4X18d2

(4.2–81)

where for ease of notation we have substituted dmin by d. The union bound becomes

Pe ≤ 1

32
T

(
e− 1

4N0

)
(4.2–82)

A looser, but simpler, form of the union bound is obtained in terms of dmin as

Pe ≤ M − 1

2
e− d2

min
4N0 = 15

2
e− 2Ebavg

5N0 (4.2–83)

where in the last step we have used Equation 4.2–80.
In the case when d2

min is large compared to N0, i.e., when SNR is large, the first
term is the dominating term in Equation 4.2–82. In this case we have

Pe �
48

32
e− d2

min
4N0 = 3

2
e− 2Ebavg

5N0 (4.2–84)

It turns out that for this constellation it is possible to derive an exact expression for
the error probability (see Example 4.3–1), and the expression for the error probability
is given by

Pe = 3Q

(√
4Ebavg

5N0

)
− 9

4

[
Q

(√
4Ebavg

5N0

)]2

(4.2–85)

Plots of the exact error probability and the upper bounds given by Equations 4.2–83
and 4.2–84 are shown in Figure 4.2–11.

A Lower Bound on the Probability of Error
In an equiprobable M-ary signaling scheme, the error probability is given by

Pe = 1

M

M∑
m=1

P [Error |m sent ]

= 1

M

M∑
m=1

∫
Dc

m

p(r|sm) d r

(4.2–86)
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FIGURE 4.2–11
Comparison of the exact error probability and two upper bounds for rectangular 16-QAM.

From Equation 4.2–66 we have Dc
m ′m ⊆ Dc

m ; hence,

Pe ≥ 1

M

M∑
m=1

∫
Dc

m′m

p(r|sm) d r

= 1

M

M∑
m=1

∫
Dmm′

p(r|sm) d r

= 1

M

M∑
m=1

Q
(

dmm ′√
2N0

)
(4.2–87)

Equation 4.2–87 is valid for all m ′ �= m. To derive the tightest lower bound, we
need to maximize the right-hand side. Therefore we can write

Pe ≥ 1

M

M∑
m=1

max
m ′ �=m

Q
(

dmm ′√
2N0

)
(4.2–88)
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Since the Q function is a decreasing function of its variable, choosing m ′ that maximizes

Q
(

dmm′√
2N0

)
is equivalent to finding m ′ such that dmm ′ is minimized. Hence,

Pe ≥ 1

M

M∑
m=1

Q
(

dm
min√
2N0

)
(4.2–89)

where dm
min denotes the distance from m to its nearest neighbor in the constellation, and

obviously dm
min ≥ dmin. Therefore,

Q
(

dm
min√
2N0

)
≥

{
Q

(
dmin√
2N0

)
if there exists at least one signal at distance dmin from sm

0 otherwise
(4.2–90)

By using Equation 4.2–90, Equation 4.2–89 becomes

Pe ≥ 1

M

∑
1≤m≤M

∃m′ �=m:‖sm −sm′ ‖=dmin

Q
(

dmin√
2N0

)
(4.2–91)

Denoting by Nmin the number of the points in the constellation that are at the distance
from dmin from at least one other point in the constellation, we obtain

Pe ≥ Nmin

M
Q

(
dmin√
2N0

)
(4.2–92)

From Equations 4.2–92 and 4.2–78, it is clear that

Nmin

M
Q

(
dmin√
2N0

)
≤ Pe ≤ (M − 1)Q

(
dmin√
2N0

)
(4.2–93)

4.3
OPTIMAL DETECTION AND ERROR PROBABILITY
FOR BAND-LIMITED SIGNALING

In this section we study signaling schemes that are mainly characterized by their low
bandwidth requirements. These signaling schemes have low dimensionality which is
independent from the number of transmitted signals, and, as we will see, their power
efficiency decreases when the number of messages increases. This family of signaling
schemes includes ASK, PSK, and QAM.

4.3–1 Optimal Detection and Error Probability for ASK or PAM Signaling

The constellation for an ASK signaling scheme is shown in Figure 4.3–1. In this con-
stellation the minimum distance between any two points is dmin which is given by
Equation 3.2–22 as

dmin =
√

12 log2 M

M2 − 1
Ebavg (4.3–1)
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dmin.  .  . .  .  . 
FIGURE 4.3–1
The ASK constellation.

The constellation points are located at
{± 1

2 dmin, ± 3
2 dmin, . . . ,± M−1

2 dmin
}

.
We notice there exist two types of points in the ASK constellation. There

are M − 2 inner points and 2 outer points in the constellation. If an inner point is
transmitted, there will be an error in detection if |n| > 1

2 dmin. For the outer points, the
probability of error is one-half of the error probability of an inner point since noise can
cause error in only one direction. Let us denote the error probabilities of inner points
and outer points by Pei and Peo, respectively. Since n is a zero-mean Gaussian random
variable with variance 1

2 N0, we have

Pei = P
[
|n| >

1

2
dmin

]
= 2Q

(
dmin√
2N0

)
(4.3–2)

and for the outer points

Peo = 1

2
Pei = Q

(
dmin√
2N0

)
(4.3–3)

The symbol error probability is given by

Pe = 1

M

M∑
m=1

P [error |m sent ]

= 1

M

[
2(M − 2)Q

(
dmin√
2N0

)
+ 2Q

(
dmin√
2N0

)]

= 2(M − 1)

M
Q

(
dmin√
2N0

)
(4.3–4)

Substituting for dmin from Equation 4.3–1yields

Pe = 2
(

1 − 1

M

)
Q

⎛
⎝

√
6 log2 M

M2 − 1

Ebavg

N0

⎞
⎠

≈ 2Q

⎛
⎝

√
6 log2 M

M2 − 1

Ebavg

N0

⎞
⎠ for large M

(4.3–5)

Note that the average SNR/bit Ebavg

N0
is scaled by 6 log2 M

M2−1 . This factor goes to 0 as M
increases, which means that to keep the error probability constant as M increases, the
SNR/bit must increase. For large M , doubling M—which is equivalent to increasing
the transmission rate by 1 bit per transmission—would roughly need the SNR/bit to
quadruple, i.e., an increase of 6 dB, to keep the performance the same. In other words,
as a rule of thumb, for increasing the transmission rate by 1 bit, one would need 6 dB
more power.

Plots of the error probability of baseband PAM and ASK as a function of the
average SNR/bit for different values of M are given in Figure 4.3–2. It is clear that
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FIGURE 4.3–2
Symbol error probability for baseband PAM and ASK.

increasing M deteriorates the performance, and for large M the distance between curves
corresponding to M and 2M is roughly 6 dB.

4.3–2 Optimal Detection and Error Probability for PSK Signaling

The constellation for an M-ary PSK signaling is shown in Figure 4.3–3. In this con-
stellation the decision region D1 is also shown. Note that since we are assuming the
messages are equiprobable, the decision regions are based on the minimum-distance
detection rule. By symmetry of the constellation, the error probability of the system is
equal to the error probability when s1 = (

√
E, 0) is transmitted. The received vector r

is given by

r = (r1, r2) = (
√
E + n1, n2) (4.3–6)
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s2

s1
D1

sM

FIGURE 4.3–3
The constellation for PSK signaling.

It is seen that r1 and r2 are independent Gaussian random variables with variance
σ 2 = 1

2 N0 and means
√
E and 0, respectively; hence

p(r1, r2) = 1

π N0
e− (r1−√

E)2+r2
2

N0 (4.3–7)

Since the decision region D1 can be more conveniently described using polar
coordinates, we introduce polar coordinates transformations of (r1, r2) as

V =
√

r2
1 + r2

2

 = arctan
r2

r1

(4.3–8)

from which the joint PDF of V and  can be derived as

pV,(v, θ ) = v

π N0
e− v2+E−2

√
E v cos θ

N0 (4.3–9)

Integrating over v, we derive the marginal PDF of  as

p(θ ) =
∫ ∞

0
pV,(v, θ ) dv

= 1

2π
e−γs sin2 θ

∫ ∞

0
v e− (v−

√
2γs cos θ)2

2 dv

(4.3–10)
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FIGURE 4.3–4
The PDF of  for γs = 1, 2, 4, and 10.

in which we have defined the symbol SNR or SNR per symbol as

γs = E
N0

(4.3–11)

Figure 4.3–4 illustrates p(θ ) for several values of γs . Note that p(θ ) becomes nar-
rower and more peaked about θ = 0 as γs increases.

The decision region D1 can be described as D1 = {θ : −π/M < θ ≤ π/M};
therefore, the message error probability is given by

Pe = 1 −
∫ π/M

−π/M
p(θ ) dθ (4.3–12)

In general, the integral of p(θ ) does not reduce to a simple form and must be
evaluated numerically, except for M = 2 and M = 4.

For binary phase modulation, the two signals s1(t) and s2(t) are antipodal, and
hence the error probability is

Pb = Q

⎛
⎝

√
2Eb

N0

⎞
⎠ (4.3–13)
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When M = 4, we have in effect two binary phase-modulation signals in phase quadra-
ture. Since there is no crosstalk or interference between the signals on the two quadrature
carriers, the bit error probability is identical to that in Equation 4.3–13. On the other
hand, the symbol error probability for M = 4 is determined by noting that

Pc = (1 − Pb)2 =
⎡
⎣1 − Q

⎛
⎝

√
2Eb

N0

⎞
⎠

⎤
⎦

2

(4.3–14)

where Pc is the probability of a correct decision for the 2-bit symbol. Equation 4.3–14
follows from the statistical independence of the noise on the quadrature carriers. There-
fore, the symbol error probability for M = 4 is

Pe = 1 − Pc

= 2Q

⎛
⎝

√
2Eb

N0

⎞
⎠

⎡
⎣1 − 1

2
Q

⎛
⎝

√
2Eb

N0

⎞
⎠

⎤
⎦ (4.3–15)

For M > 4, the symbol error probability Pe is obtained by numerically integrating
Equation 4.3–12. Figure 4.3–5 illustrates this error probability as a function of the SNR
per bit for M = 2, 4, 8, 16, and 32. The graphs clearly illustrate the penalty in SNR per
bit as M increases beyond M = 4. For example, at Pe = 10−5, the difference between
M = 4 and M = 8 is approximately 4 dB, and the difference between M = 8 and
M = 16 is approximately 5 dB. For large values of M , doubling the number of phases

P
e

FIGURE 4.3–5
Probability of symbol error for PSK signals.
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requires an additional 6 dB/bit to achieve the same performance. This performance is
similar to the performance of ASK signaling discussed in Section 4.3–1.

An approximation to the error probability for large values of M and for large SNR
may be obtained by first approximating p(θ ). For E/N0 � 1 and |θ | ≤ 1

2π , p(θ ) is
well approximated as

p(θ ) ≈
√

γs

π
cos θ e−γs sin2 θ (4.3–16)

By substituting for p(θ ) in Equation 4.3–12 and performing the change in variable
from θ to u = √

γs sin θ , we find that

Pe ≈ 1 −
∫ π/M

−π/M

√
γs

π
cos θ e−γs sin2 θ dθ

≈ 2√
π

∫ ∞
√

2γs sin(π/M)
e−u2

du

= 2Q
(√

2γs sin
(

π

M

))

= 2Q

(√
(2 log2 M) sin2

(
π

M

) Eb

N0

)
(4.3–17)

where we have used the definition of the SNR per bit as

Eb

N0
= E

N0 log2 M
= γs

log2 M
(4.3–18)

Note that this approximation† to the error probability is good for all values of M .
For example, when M = 2 and M = 4, we have Pe = 2Q(

√
2γb) which compares

favorably with the exact probabilities given by Equations 4.3–13 and 4.3–15.
For the case when M is large, we can use the approximation sin π

M ≈ π
M to find

another approximation to error probability for large M as

Pe ≈ 2Q

⎛
⎝

√
2π2 log2 M

M2

Eb

N0

⎞
⎠ for large M (4.3–19)

From Equation 4.3–19 it is clear that doubling M reduces the effective SNR per bit
by 6 dB.

The equivalent bit error probability for M-ary PSK is rather tedious to derive due to
its dependence on the mapping of k-bit symbols into the corresponding signal phases.
When a Gray code is used in the mapping, two k-bit symbols corresponding to adjacent
signal phases differ in only a single bit. Since the most probable errors due to noise
result in the erroneous selection of an adjacent phase to the true phase, most k-bit

†A better approximation of the error probability at low SNR is given in the paper by Lu et al. (1999).
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symbol errors contain only a single-bit error. Hence, the equivalent bit error probability
for M-ary PSK is well approximated as

Pb ≈ 1

k
Pe (4.3–20)

Differentially Encoded PSK Signaling
Our treatment of the demodulation of PSK signals assumed that the demodulator had
a perfect estimate of the carrier phase available. In practice, however, the carrier phase
is extracted from the received signal by performing some nonlinear operation that
introduces a phase ambiguity. For example, in binary PSK, the signal is often squared in
order to remove the modulation, and the double-frequency component that is generated
is filtered and divided by 2 in frequency in order to extract an estimate of the carrier
frequency and phase φ. These operations result in a phase ambiguity of 180◦ in the
carrier phase. Similarly, in four-phase PSK, the received signal is raised to the fourth
power to remove the digital modulation, and the resulting fourth harmonic of the carrier
frequency is filtered and divided by 4 to extract the carrier component. These operations
yield a carrier frequency component containing the estimate of the carrier phase φ, but
there are phase ambiguities of ± 90◦ and 180◦ in the phase estimate. Consequently, we
do not have an absolute estimate of the carrier phase for demodulation.

The phase ambiguity problem resulting from the estimation of the carrier phase φ

can be overcome by encoding the information in phase differences between successive
signal transmissions as opposed to absolute phase encoding. For example, in binary
PSK, the information bit 1 may be transmitted by shifting the phase of the carrier by
180◦ relative to the previous carrier phase, while the information bit 0 is transmitted
by a zero phase shift relative to the phase in the previous signaling interval. In four-
phase PSK, the relative phase shifts between successive intervals are 0◦, 90◦, 180◦,
and −90◦, corresponding to the information bits 00, 01, 11, and 10, respectively. The
generalization to M phases is straightforward. The PSK signals resulting from the
encoding process are said to be differentially encoded. The encoding is performed by
a relatively simple logic circuit preceding the modulator.

Demodulation of the differentially encoded PSK signal is performed as described
above, by ignoring the phase ambiguities. Thus, the received signal is demodulated
and detected to one of the M possible transmitted phases in each signaling inter-
val. Following the detector is a relatively simple phase comparator that compares
the phases of the demodulated signal over two consecutive intervals to extract the
information.

Coherent demodulation of differentially encoded PSK results in a higher probability
of error than the error probability derived for absolute phase encoding. With differen-
tially encoded PSK, an error in the demodulated phase of the signal in any given interval
will usually result in decoding errors over two consecutive signaling intervals. This is
especially the case for error probabilities below 0.1. Therefore, the probability of error
in differentially encoded M-ary PSK is approximately twice the probability of error for
M-ary PSK with absolute phase encoding. However, this factor-of-2 increase in the
error probability translates into a relatively small loss in SNR.
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4.3–3 Optimal Detection and Error Probability for QAM Signaling

In optimal detection of QAM signals, we need two filters matched to

φ1(t) =
√

2

Eg
g(t) cos 2π fct

φ2(t) = −
√

2

Eg
g(t) sin 2π fct

(4.3–21)

The output of the matched filters r = (r1, r2) is used to compute C(r, sm) =
2r · sm − Em , and the largest is selected. The resulting decision regions depend on
the constellation shape, and in general the error probability does not have a closed
form.

To determine the probability of error for QAM, we must specify the signal point
constellation. We begin with QAM signal sets that have M = 4 points. Figure 4.3–6
illustrates two four-point signal sets. The first is a four-phase modulated signal, and the
second is a QAM signal with two amplitude levels, labeled A1 and A2, and four phases.
Because the probability of error is dominated by the minimum distance between pairs of
signal points, let us impose the condition that dmin = 2A for both signal constellations
and let us evaluate the average transmitter power, based on the premise that all signal
points are equally probable. For the four-phase signal, we have

Eavg = 2A2 (4.3–22)

For the two-amplitude, four-phase QAM, we place the points on circles of radii A and√
3A. Thus, dmin = 2A, and

Eavg = 1

4

[
2(3A2) + 2A2] = 2A2 (4.3–23)

which is the same average power as the M = 4-phase signal constellation. Hence, for all
practical purposes, the error rate performance of the two signal sets is the same. In other
words, there is no advantage of the two-amplitude QAM signal set over M = 4-phase
modulation.

Next, let us consider M = 8-QAM. In this case, there are many possible signal
constellations. We shall consider the four signal constellations shown in Figure 4.3–7,
all of which consist of two amplitudes and have a minimum distance between signal
points of 2A. The coordinates (Amc, Ams) for each signal point, normalized by A, are
given in the figure. Assuming that the signal points are equally probable, the average

(b)(a)

FIGURE 4.3–6
Two four-point signal constellations.
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(a) (b)

(c) (d)

FIGURE 4.3–7
Four eight-point signal constellations.

transmitted signal energy is

Eavg = 1

M

M∑
m=1

(
A2

mc + A2
ms

)

= A2

M

M∑
m=1

(
a2

mc + a2
ms

) (4.3–24)

where (amc, ams) are the coordinates of the signal points, normalized by A.
The two signal sets (a) and (c) in Figure 4.3–7 contain signal points that fall on a

rectangular grid and have Eavg = 6A2. The signal set (b) requires an average transmitted
energy Eavg = 6.83A2, and (d) requires Eavg = 4.73A2. Therefore, the fourth signal set
requires approximately 1 dB less energy than the first two and 1.6 dB less energy than
the third, to achieve the same probability of error. This signal constellation is known
to be the best eight-point QAM constellation because it requires the least power for a
given minimum distance between signal points.

For M ≥ 16, there are many more possibilities for selecting the QAM signal points
in two-dimensional space. For example, we may choose a circular multiamplitude
constellation for M = 16, as shown in Figure 3.2–4. In this case, the signal points at a
given amplitude level are phase-rotated by 1

4π relative to the signal points at adjacent
amplitude levels. This 16-QAM constellation is a generalization of the optimum 8-QAM
constellation. However, the circular 16-QAM constellation is not the best 16-point QAM
signal constellation for the AWGN channel.

Rectangular QAM signal constellations have the distinct advantage of being easily
generated as two PAM signals impressed on the in-phase and quadrature carriers. In
addition, they are easily demodulated. Although they are not the best M-ary QAM
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signal constellations for M ≥ 16, the average transmitted power required to achieve
a given minimum distance is only slightly greater than the average power required for
the best M-ary QAM signal constellation. For these reasons, rectangular M-ary QAM
signals are most frequently used in practice.

In the special case where k is even and the constellation is square, it is possible to
derive an exact expression for the error probability. This particular case was previously
studied in Section 3.2–3 in Equations 3.2–42 to 3.2–44. In particular, the minimum
distance of this constellation is given by

dmin =
√

6 log2 M

M − 1
Ebavg (4.3–25)

Note that this constellation can be considered as two
√

M-ary PAM constellations in
the in-phase and quadrature directions. An error occurs if either n1 or n2 is large enough
to cause an error in one of the two PAM signals. The probability of a correct detection
for this QAM constellation is therefore the product of correct decision probabilities for
constituent PAM systems, i.e.,

Pc,M-QAM = P2
c,

√
M-PAM

=
(

1 − Pe,
√

M-PAM

)2
(4.3–26)

resulting in

Pe,M-QAM = 1 −
(

1 − Pe,
√

M-PAM

)2

= 2Pe,
√

M-PAM

(
1 − 1

2
Pe,

√
M-PAM

) (4.3–27)

But, from Equation 4.3–4,

Pe,
√

M-PAM = 2
(

1 − 1√
M

)
Q

(
dmin√
2N0

)
(4.3–28)

in which we need to substitute dmin from Equation 4.3–25 to obtain

Pe,
√

M-PAM = 2
(

1 − 1√
M

)
Q

⎛
⎝

√
3 log2 M

M − 1

Ebavg

N0

⎞
⎠ (4.3–29)

Substituting Equation 4.3–29 into Equation 4.3–27 yields

Pe,M-QAM = 4
(

1 − 1√
M

)
Q

⎛
⎝

√
3 log2 M

M − 1

Ebavg

N0

⎞
⎠

×
⎛
⎝1 −

(
1 − 1√

M

)
Q

⎛
⎝

√
3 log2 M

M − 1

Ebavg

N0

⎞
⎠

⎞
⎠

≤ 4Q

⎛
⎝

√
3 log2 M

M − 1

Ebavg

N0

⎞
⎠

(4.3–30)
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P e
FIGURE 4.3–8
Probability of a symbol error for QAM.

For large M and moderate to high SNR per bit, the upper bound given in Equa-
tion 4.3–30 is quite tight. Figure 4.3–8 illustrates plots of message error probabil-
ity of M-ary QAM as a function of SNR per bit. Although Equation 4.3–30 is obtained
for square constellations, for large M it gives a good approximation for general QAM
constellations with M = 2k points which are either in the shape of a square (when k
is even) or in the shape of a cross (when k is odd). These types of constellations are
illustrated in Figure 3.2–5.

Comparing the error performance of M-ary QAM with M-ary ASK and MPSK
given in Equations 4.3–5 and 4.3–19, respectively, we observe that unlike PAM and
PSK signaling in which in the penalty for increasing the rate was 6 dB/bit, in QAM
this penalty is 3 dB/bit. This shows that QAM is more power efficient compared
with PAM and PSK. The advantage of PSK is, however, its constant-envelope
properties.

E X A M P L E 4.3–1. QPSK can be considered as 4-QAM with a square constellation.
Using Equation 4.3–30 with M = 4, we obtain

P4 = 2Q

(√
2Eb

N0

) [
1 − 1

2
Q

(√
2Eb

N0

)]

≤ 2Q

(√
2Eb

N0

) (4.3–31)
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which is in agreement wit Equation 4.3–15. For 16-QAM with a rectangular constel-
lation we obtain

P16 = 3Q

(√
4

5

Ebavg

N0

) [
1 − 3

4
Q

(√
4

5

Ebavg

N0

)]

≤ 3Q

(√
4

5

Ebavg

N0

) (4.3–32)

For nonrectangular QAM signal constellations, we may upper-bound the error
probability by use of the union bound as

PM ≤ (M − 1)Q

⎛
⎝

√
d2

min

2N0

⎞
⎠ (4.3–33)

where dmin is the minimum Euclidean distance of the constellation. This bound may be
loose when M is large. In such a case, we may approximate PM by replacing M − 1 by
Nmin, where Nmin is the largest number of neighboring points that are at distance dmin

from any constellation point. More discussion on the performance of general QAM
signaling schemes is given in Section 4.7.

It is interesting to compare the performance of QAM with that of PSK for any
given signal size M , since both types of signals are two-dimensional. Recall that by
Equation 4.3–17, for M-ary PSK, the probability of a symbol error is approximated as

PM ≈ 2Q

(√(
2 log2 M

)
sin2

(
π

M

) Eb

N0

)
(4.3–34)

For M-ary QAM, we may use the expression 4.3–30. Since the error probability is
dominated by the argument of the Q function, we may simply compare the arguments
of Q for the two signal formats. Thus, the ratio of these two arguments is

RM =
3

M−1

2 sin2 (
π
M

) (4.3–35)

For example, when M = 4, we have RM = 1. Hence, 4-PSK and 4-QAM yield com-
parable performance for the same SNR per symbol. This was noted in Example 4.3–1.
On the other hand, when M > 4, we find that RM > 1, so that M-ary QAM yields bet-
ter performance than M-ary PSK. Table 4.3–1 illustrates the SNR advantage of QAM
over PSK for several values of M . For example, we observe that 32-QAM has a 7-dB
SNR advantage over 32-PSK.

TABLE 4.3–1

SNR Advantage of M-ary
QAM over M-ary PSK

M 10 log RM

8 1.65
16 4.20
32 7.02
64 9.95
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4.3–4 Demodulation and Detection

ASK, PSK, and QAM have one- or two-dimensional constellations with orthonormal
basis of the form

φ1(t) =
√

2

Eg
g(t) cos 2π fct

φ2(t) = −
√

2

Eg
g(t) sin 2π fct

(4.3–36)

for PSK and QAM and

φ1(t) =
√

2

Eg
g(t) cos 2π fct (4.3–37)

for ASK. The optimal detector in these systems requires filters matched to φ1(t) and
φ2(t). Since both the received signal r (t) and the basis functions are high frequency
bandpass signals, the filtering process, if implemented in software, requires high sam-
pling rates.

To alleviate this requirement, we can first demodulate the received signal to obtain
its lowpass equivalent signal and then perform the detection on this signal. The process
of demodulation was previously discussed in Section 2.1–2 and the block diagram of
the demodulator is repeated in Figure 4.3–9.

�

�

�

�

�

�

�

r(t)

(a) (b)

(c)

ri(t)

rq(t)
sin 2� f0t

cos 2� f0t

cos 2� f0t

�sin 2� f0t

r̂(t)

�

� �

�

r(t)

2r�(t)

rl(t)

e
�j2�f0t

r̂(t)

j

rl(t)r(t)

f0

Demodulator

FIGURE 4.3–9
Complex (a) and real (b) demodulators. A general representation for a demodulator is shown
in (c).
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It is important to note that the demodulation process is an invertible process. We
have seen in Section 4.1–1 that invertible preprocessing does not affect optimality
of the receiver. Therefore, the optimal detector designed for the demodulated signal
performs as well as the optimal detector designed for the bandpass signal. The benefit of
the demodulator-detector implementation is that in this structure the signal processing
required for the detection is done on the demodulated lowpass signal, thus reducing the
complexity of the receiver.

Recall from Equations 2.1–21 and 2.1–24 that Ex = 1
2Exl and 〈x(t), y(t)〉 =

1
2 Re [〈xl(t), yl(t)〉]. From these relations the optimal detection rule

m̂ = arg max
1≤m≤M

(
r · sm + N0

2
ln Pm − 1

2
Em

)
(4.3–38)

can be written in the following lowpass equivalent form

m̂ = arg max
1≤m≤M

(
Re [r l · sml] + N0 ln Pm − 1

2
Eml

)
(4.3–39)

or, equivalently,

m̂ = arg max
1≤m≤M

(
Re

[∫ ∞

−∞
rl(t)s

∗
ml(t) dt

]
+ N0 ln Pm − 1

2

∫ ∞

−∞
|sml(t)|2 dt

)
(4.3–40)

The ML detection rule is obviously

m̂ = arg max
1≤m≤M

(
Re

[∫ ∞

−∞
rl(t)s

∗
ml(t) dt

]
− 1

2

∫ ∞

−∞
|sml(t)|2 dt

)
(4.3–41)

Equations 4.3–39 to 4.3–41 are baseband detection rules after demodulation.
The implementation of Equations 4.3–39 to 4.3–41 can be done either in the form

of a correlation receiver or in the form of matched filters where the matched filters
are of the form s∗

ml(T − t) or φ∗
jl(T − t). Figure 4.3–10 shows the schematic diagram

for a complex matched filter, and Figure 4.3–11 illustrates the detailed structure of a
complex matched filter in terms of its in-phase and quadrature components. Note that
for ASK, PSK, and QAM we have sml(t) = Am g(t), where Am is in general a complex
number (real for ASK). Therefore φ1(t) = g(t)/

√Eg serves as the basis function, and
the signal points are represented by complex numbers of the form Am

√Eg. Also note
that for PSK detection the last term in Equation 4.3–41 can be dropped.

Throughout this discussion we have assumed that the receiver has complete knowl-
edge of the carrier frequency and phase. This requires full synchronization between the

t � T

s*
ml(T � t) rl(t)s

*
ml(t) dt

rl(t) �

��

FIGURE 4.3–10
Complex lowpass equivalent matched filter.



Proakis-27466 book September 25, 2007 14:41

Chapter Four: Optimum Receivers for AWGN Channels 203

smi(T � t)

t � T

�

�

�

ri (t)
smq(T � t)

rq (t)

Re

smq(T � t)

�

�

�

smi(T � t)

Im

[ ]rl(t)s
*
ml(t) dt�

��

[ ]rl(t)s
*
ml(t) dt�

��

FIGURE 4.3–11
Equivalent lowpass matched filter.

transmitter and the receiver. In Section 4.5 we will study the case where the carrier
generated at the receiver is not in phase coherence with the transmitter carrier.

4.4
OPTIMAL DETECTION AND ERROR PROBABILITY
FOR POWER-LIMITED SIGNALING

Orthogonal, biorthogonal, and simplex signaling is characterized by high dimensional
constellations. As we will see in this section, these signaling schemes are more power-
efficient but less bandwidth-efficient than ASK, PSK, and QAM. We begin our study
with orthogonal signaling and then extend our results to biorthogonal and simplex
signals.

4.4–1 Optimal Detection and Error Probability for Orthogonal Signaling

In an equal-energy orthogonal signaling scheme, N = M and the vector representation
of the signals is given by

s1 = (√E, 0, . . . , 0
)

s2 = (
0,

√
E, . . . , 0

)
... = ...

sM = (
0, . . . , 0,

√
E)

(4.4–1)
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For equiprobable, equal-energy orthogonal signals, the optimum detector selects
the signal resulting in the largest cross-correlation between the received vector r and
each of the M possible transmitted signal vectors {sm}, i.e.,

m̂ = arg max
1≤m≤M

r · sm (4.4–2)

By symmetry of the constellation and by observing that the distance between any pair of
signal points in the constellation is equal to

√
2E , we conclude that the error probability

is independent of the transmitted signal. Therefore, to evaluate the probability of error,
we can suppose that the signal s1 is transmitted. With this assumption, the received
signal vector is

r = (√E + n1, n2, n3, . . . , nM
)

(4.4–3)

where
√
E denotes the symbol energy and n1, n2, . . . , nM are zero-mean, mutually

statistically independent Gaussian random variables with equal variance σ 2
n = 1

2 N0.
Let us define random variables Rm, 1 ≤ m ≤ M, as

Rm = r · sm (4.4–4)

With this definition and from Equations 4.4–3 and 4.4–1, we have

R1 = E + √
E n1

Rm = √
E nm, 2 ≤ m ≤ M

(4.4–5)

Since we are assuming that s1 was transmitted, the detector makes a correct decision
if R1 > Rm for m = 2, 3, . . . , M . Therefore, the probability of a correct decision is
given by

Pc = P [R1 > R2, R1 > R3, . . . , R1 > RM |s1 sent ]

= P
[√

E + n1 > n2,
√
E + n1 > n3, . . . ,

√
E + n1 > nM

∣∣∣s1 sent
] (4.4–6)

Events
√
E+n1 > n2,

√
E+n1 > n3, . . . ,

√
E+n1 > nM are not independent due

to the existence of the random variable n1 in all of them. We can, however, condition
on n1 to make these events independent. Therefore, we have

Pc =
∫ ∞

−∞
P

[
n2 < n +

√
E, n3 < n +

√
E, . . . , nM < n +

√
E

∣∣∣s1 sent, n1 = n
]

pn1 (n) dn

=
∫ ∞

−∞

(
P

[
n2 < n +

√
E

∣∣∣s1 sent, n1 = n
])M−1

pn1 (n) dn

(4.4–7)

where in the last step we have used the fact that nm’s are iid random variables for
m = 2, 3, . . . , M . We have

P
[
n2 < n +

√
E

∣∣∣s1 sent, n1 = n
]

= 1 − Q

⎛
⎝n + √

E√
N0
2

⎞
⎠ (4.4–8)
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Hence,

Pc =
∫ ∞

−∞

1√
π N0

⎡
⎣1 − Q

⎛
⎝n + √

E√
N0
2

⎞
⎠

⎤
⎦

M−1

e− n2

N0 dn (4.4–9)

and

Pe = 1 − Pc = 1√
2π

∫ ∞

−∞

[
1 − (1 − Q(x))M−1] e−

(
x−

√
2E
N0

)2

2 dx (4.4–10)

where we have introduced a new variable x = n+√
E√

N0
2

. In general, Equation 4.4–10 cannot

be made simpler, and the error probability can be found numerically for different values
of the SNR.

In orthogonal signaling, due to the symmetry of the constellation, the probabilities
of receiving any of the messages m = 2, 3, . . . , M , when s1 is transmitted, are equal.
Therefore, for any 2 ≤ m ≤ M ,

P [sm received |s1 sent ] = Pe

M − 1
= Pe

2k − 1
(4.4–11)

Let us assume that s1 corresponds to a data sequence of length k with a 0 at the first
component. The probability of an error at this component is the probability of detecting
an sm corresponding to a sequence with a 1 at the first component. Since there are 2k−1

such sequences, we have

Pb = 2k−1 Pe

2k − 1
= 2k−1

2k − 1
Pe ≈ 1

2
Pe (4.4–12)

where the last approximation is valid for k � 1.
The graphs of the probability of a binary digit error as a function of the SNR per

bit, Eb/N0, are shown in Figure 4.4–1 for M = 2, 4, 8, 16, 32, and 64. This figure
illustrates that, by increasing the number M of waveforms, one can reduce the SNR
per bit required to achieve a given probability of a bit error. For example, to achieve
Pb = 10−5, the required SNR per bit is a little more than 12 dB for M = 2; but if M
is increased to 64 signal waveforms (k = 6 bits per symbol), the required SNR per
bit is approximately 6 dB. Thus, a savings of over 6 dB (a factor-of-4 reduction) is
realized in transmitter power (or energy) required to achieve Pb = 10−5 by increasing
M from M = 2 to M = 64. This property is in direct contrast with the performance
characteristics of ASK, PSK, and QAM signaling, for which increasing M increases
the required power to achieve a given error probability.

Error Probability in FSK Signaling
From Equation 3.2–58 and the discussion following it, we have seen that FSK signaling
becomes a special case of orthogonal signaling when the frequency separation � f is
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FIGURE 4.4–1
Probability of bit error for orthogonal signaling.

given by

� f = l

2T
(4.4–13)

for a positive integer l. For this value of frequency separation the error probability of
M-ary FSK is given by Equation 4.4–10.

Note that in the binary FSK signaling, a frequency separation that guarantees
orthogonality does not minimize the error probability. In Problem 4.18 it is shown that
the error probability of binary FSK is minimized when the frequency separation is of
the form

� f = 0.715

T
(4.4–14)

A Union Bound on the Probability of Error in Orthogonal Signaling
The union bound derived in Section 4.2–3 states that

Pe ≤ M − 1

2
e− d2

min
4N0 (4.4–15)

In orthogonal signaling dmin = √
2E , therefore,

Pe ≤ M − 1

2
e− E

2N0 < Me− E
2N0 (4.4–16)
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Using M = 2k and Eb = E/k, we have

Pe < 2ke− kEb
2N0 = e− k

2

( Eb
N0

−2 ln 2
)

(4.4–17)

It is clear from Equation 4.4–17 that if

Eb

N0
> 2 ln 2 = 1.39 ∼ 1.42 dB (4.4–18)

then Pe → ∞ as k → ∞. In other words, if the SNR per bit exceeds 1.42 dB, then
reliable communication† is possible.

One can ask whether the condition SNR per bit > 1.42 dB is necessary, as well as
being sufficient, for reliable communication. We will see in Chapter 6 that this condition
is not necessary. We will show there that a necessary and sufficient condition for reliable
communication is

Eb

N0
> ln 2 = 0.693 ∼ −1.6 dB (4.4–19)

Thus, reliable communication at SNR per bit lower than −1.6 dB is impossible. The
reason that Equation 4.4–17 does not result in this tighter bound is that the union bound
is not tight enough at low SNRs. To obtain the −1.6 dB bound, more sophisticated
bounding techniques are required. By using these bounding techniques it can be shown
that

Pe ≤

⎧⎪⎨
⎪⎩

e− k
2

( Eb
N0

−2 ln 2
)

Eb
N0

> 4 ln 2

2e
−k

(√
Eb
N0

−√
ln 2

)2

ln 2 ≤ Eb
N0

≤ 4 ln 2

(4.4–20)

The minimum value of SNR per bit needed for reliable communication, i.e., −1.6 dB,
is called the Shannon limit. We will discuss this topic and the notion of channel capacity
in greater detail in Chapter 6.

4.4–2 Optimal Detection and Error Probability for Biorthogonal Signaling

As indicated in Section 3.2–4, a set of M = 2k biorthogonal signals is constructed
from 1

2 M orthogonal signals by including the negatives of the orthogonal signals.
Thus, we achieve a reduction in the complexity of the demodulator for the biorthogonal
signals relative to that for orthogonal signals, since the former is implemented with
1
2 M cross-correlators or matched filters, whereas the latter requires M matched filters,
or cross-correlators. In biorthogonal signaling N = 1

2 M , and the vector representation

†We say reliable communication is possible if we can make the error probability as small as desired.



Proakis-27466 book September 25, 2007 14:41

208 Digital Communications

for signals are given by

s1 = −sN+1 = (
√
E, 0, . . . , 0)

s2 = −sN+2 = (0,
√
E, . . . , 0)

... = ... = ...

sN = −s2N = (0, . . . , 0,
√
E)

(4.4–21)

To evaluate the probability of error for the optimum detector, let us assume that the
signal s1(t) corresponding to the vector s1 = (

√
E, 0, . . . , 0) was transmitted. Then the

received signal vector is

r = (
√
E + n1, n2, . . . , nN ) (4.4–22)

where the {nm} are zero-mean, mutually statistically independent and identically dis-
tributed Gaussian random variables with variance σ 2

n = 1
2 N0. Since all signals are

equiprobable and have equal energy, the optimum detector decides in favor of the
signal corresponding to the largest in magnitude of the cross-correlators

C(r, sm) = r · sm, 1 ≤ m ≤ 1

2
M (4.4–23)

while the sign of this largest term is used to decide whether sm(t) or −sm(t) was
transmitted. According to this decision rule, the probability of a correct decision is
equal to the probability that r1 = √

E + n1 > 0 and r1 exceeds |rm | = |nm | for
m = 2, 3, . . . , 1

2 M . But

P [|nm | < r1 |r1 > 0] = 1√
π N0

∫ r1

−r1

e−x2/N0 dx

= 1√
2π

∫ r1√
N0/2

− r1√
N0/2

e− x2

2 dx
(4.4–24)

Then the probability of a correct decision is

Pc =
∫ ∞

0

⎛
⎝ 1√

2π

∫ r1√
N0/2

− r1√
N0/2

e− x2

2 dx

⎞
⎠

M/2−1

p(r1) dr1 (4.4–25)

from which, upon substitution for p(r1), we obtain

Pc = 1√
2π

∫ ∞

−√
2E/N0

(
1√
2π

∫ v+√
2E/N0

−(v+√
2E/N0)

e− x2

2 dx

)M/2−1

e− v2

2 dv (4.4–26)

where we have used the PDF of r1 as a Gaussian random variable with mean equal to√
E and variance 1

2 N0. Finally, the probability of a symbol error Pe = 1 − Pc. Pc, and
hence, Pe may be evaluated numerically for different values of M from Equation 4.4–26.
The graph shown in Figure 4.4–2 illustrates Pe as a function of Eb/N0, where E = kEb,
for M = 2, 4, 8, 16, and 32. We observe that this graph is similar to that for orthogonal
signals (see Figure 4.4–1). However, in this case, the probability of error for M = 4
is greater than that for M = 2. This is due to the fact that we have plotted the symbol
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P e
FIGURE 4.4–2
Probability of symbol error for biorthogonal
signals.

error probability Pe in Figure 4.4–2. If we plotted the equivalent bit error probability,
we should find that the graphs for M = 2 and M = 4 coincide. As in the case of
orthogonal signals, as M → ∞ (or k → ∞), the minimum required Eb/N0 to achieve
an arbitrarily small probability of error is −1.6 dB, the Shannon limit.

4.4–3 Optimal Detection and Error Probability for Simplex Signaling

As we have seen in Section 3.2–4, simplex signals are obtained from a set of orthogonal
signals by shifting each signal by the average of the orthogonal signals. Since the signals
of an orthogonal signal are simply shifted by a constant vector to obtain the simplex
signals, the geometry of the simplex signal, i.e., the distance between signals and the
angle between lines joining signals, is exactly the same as that of the original orthogonal
signals. Therefore, the error probability of a set of simplex signals is given by the same
expression as the expression derived for orthogonal signals. However, since simplex
signals have a lower energy, as indicated by Equation 3.2–65 the energy in the expression
for error probability should be scaled accordingly. Therefore the expression for the error
probability in simplex signaling becomes

Pe = 1 − Pc = 1√
2π

∫ ∞

−∞

[
1 − (1 − Q(x))M−1] e−

(
x−

√
M

M−1
2E
N0

)2

2 dx (4.4–27)

This indicates a relative gain of 10 log M
M−1 over orthogonal signaling. For M = 2, this

gain becomes 3 dB; for M = 10 it reduces to 0.46 dB; and as M becomes larger, it
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becomes negligible and the performance of orthogonal and simplex signals becomes
similar. Obviously, for simplex signals, similar to orthogonal and biorthogonal signals,
the error probability decreases as M increases.

4.5
OPTIMAL DETECTION IN PRESENCE OF UNCERTAINTY:
NONCOHERENT DETECTION

In the detection schemes we have studied so far, we made the implicit assumption that
the signals {sm(t), 1 ≤ m ≤ M} are available at the receiver. This assumption was in
the form of either the availability of the signals themselves or the availability of an
orthonormal basis {φ j (t), 1 ≤ j ≤ N }. Although in many communication systems this
assumption is valid, there are many cases in which we cannot make such an assumption.

One of the cases in which such an assumption is invalid occurs when transmission
over the channel introduces random changes to the signal as either a random attenuation
or a random phase shift. These situations will be studied in detail in Chapter 13. Another
situation that results in imperfect knowledge of the signals at the receiver arises when the
transmitter and the receiver are not perfectly synchronized. In this case, although the
receiver knows the general shape of {sm(t)}, due to imperfect synchronization with
the transmitter, it can use only signals in the form of {sm(t − td )}, where td represents
the time slip between the transmitter and the receiver clocks. This time slip can be
modeled as a random variable.

To study the effect of random parameters of this type on the optimal receiver
design and performance, we consider the transmission of a set of signals over the
AWGN channel with some random parameter denoted by the random vector θ . We
assume that signals {sm(t), 1 ≤ m ≤ M} are transmitted, and the received signal r (t)
can be written as

r (t) = sm(t; θ ) + n(t) (4.5–1)

where θ is in general a vector-valued random variable. By the Karhunen-Loeve expan-
sion theorem discussed in Section 2.8–2, we can find an orthonormal basis for expansion
of the random process sm(t; θ ) and by Example 2.8–1, the same orthonormal basis can
be used for expansion of the white Gaussian noise process n(t). By using this basis, the
waveform channel given in Equation 4.5–1 becomes equivalent to the vector channel

r = sm,θ + n (4.5–2)

for which the optimal detection rule is given by

m̂ = arg max
1≤m≤M

Pm p(r|m)

= arg max
1≤m≤M

Pm

∫
p(r|m, θ )p(θ ) dθ

= arg max
1≤m≤M

Pm

∫
pn(r − sm,θ )p(θ ) dθ

(4.5–3)
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Equation 4.5–3 represents the optimal decision rule and the resulting decision
regions. The minimum error probability, when the optimal detection rule of Equa-
tion 4.5–3 is employed, is given by

Pe =
M∑

m=1

Pm

∫
Dc

m

(∫
p(r|m, θ )p(θ ) dθ

)
dr

=
M∑

m=1

Pm

M∑
m ′=1
m′ �=m

∫
Dm′

(∫
pn(r − sm,θ )p(θ ) dθ

)
dr

(4.5–4)

Equations 4.5–3 and 4.5–4 are quite general and can be used for all types of uncertainties
in channel parameters.

E X A M P L E 4.5–1. A binary antipodal signaling system with equiprobable signals
s1(t) = s(t) and s2(t) = −s(t) is used on an AWGN channel with noise power spectral
density of N0

2 . The channel introduces a random gain of A which can take only non-
negative values. In other words the channel does not invert the polarity of the signal.
This channel can be modeled as

r (t) = A sm(t) + n(t) (4.5–5)

where A is a random gain with PDF p(A) and p(A) = 0 for A < 0. Using Equa-
tion 4.5–3, and noting that p(r|m, A) = pn(r − Asm), D1, the optimal decision region
for s1(t) is given by

D1 =
{

r :
∫ ∞

0
e− (r−A

√
Eb )2

N0 p(A) d A >

∫ ∞

0
e− (r+A

√
Eb )2

N0 p(A) d A

}
(4.5–6)

which simplifies to

D1 =
{

r :
∫ ∞

0
e− A2Eb

N0

(
e

2r A
√

Eb
N0 − e− 2r A

√
Eb

N0

)
p(A) d A > 0

}
(4.5–7)

Since A takes only positive values, the expression inside the parentheses is positive if
and only if r > 0. Therefore,

D1 = {r : r > 0} (4.5–8)

To compute the error probability, we have

Pb =
∫ ∞

0

(∫ ∞

0

1√
π N0

e− (r+A
√

Eb )2

N0 dr

)
p(A) d A

=
∫ ∞

0
Q

(
A

√
2Eb

N0

)
p(A) d A

= E

[
Q

(
A

√
2Eb

N0

)]
(4.5–9)
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where the expectation is taken with respect to A. For instance, if A takes values 1
2 and

1 with equal probability, then

Pb = 1

2
Q

(√
2Eb

N0

)
+ 1

2
Q

(√
Eb

2N0

)

It is important to note that in this case the average received energy per bit is Ebavg =
1
2Eb + 1

2 ( 1
4Eb) = 5

8Eb. In Problem 6.29 we show that Pb ≥ Q

(√
2Ebavg

N0

)
.

4.5–1 Noncoherent Detection of Carrier Modulated Signals

For carrier modulated signals, {sm(t), 1 ≤ m ≤ M} are bandpass signals with lowpass
equivalents {sml(t), 1 ≤ m ≤ M} where

sm(t) = Re
[
sml(t)e

j2π fct] (4.5–10)

The AWGN channel model in general is given by

r (t) = sm(t − td ) + n(t) (4.5–11)

where td indicates the random time asynchronism between the clocks of the transmitter
and the receiver. It is clearly seen that the received random process r (t) is a function of
three random phenomena, the message m, which is selected with probability Pm , the
random variable td , and finally the random process n(t).

From Equations 4.5–10 and 4.5–11 we have

r (t) = Re
[
sml(t − td )e j2π fc(t−td )] + n(t)

= Re
[
sml(t − td )e− j2π fctd e j2π fct] + n(t)

(4.5–12)

Therefore, the lowpass equivalent of sm(t −td ) is equal to sml(t −td )e− j2π fctd . In practice
td � Ts , where Ts is the symbol duration. This means that the effect of a time shift of
size td on sml(t) is negligible. However, the term e− j2π fctd can introduce a large phase
shift φ = −2π fctd because even small values of td are multiplied by large carrier
frequency fc, resulting in noticeable phase shifts. Since td is random and even small
values of td can cause large phase shifts that are folded modulo 2π , we can model φ as
a random variable uniformly distributed between 0 and 2π . This model of the channel
and detection of signals under this assumption is called noncoherent detection.

From this discussion we conclude that in the noncoherent case

Re
[
rl(t)e

j2π fct] = Re
[(

e jφsml(t) + nl(t)
)

e j2π fct] (4.5–13)

or, in the baseband

rl(t) = e jφsml(t) + nl(t) (4.5–14)

Note that by the discussion following Equation 2.9–14, the lowpass noise process nl(t)
is circular and its statistics are independent of any rotation; hence we can ignore the
effect of phase rotation on the noise component. For the phase coherent case where
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the receiver knows φ, it can compensate for it, and the lowpass equivalent channel will
have the familiar form of

rl(t) = sml(t) + nl(t) (4.5–15)

In the noncoherent case, the vector equivalent of Equation 4.5–15 is given by

r l = e jφ sml + nl (4.5–16)

To design the optimal detector for the baseband vector channel of Equation 4.5–16,
we use the general formulation of the optimal detector given in Equation 4.5–3 as

m̂ = arg max
1≤m≤M

Pm

2π

∫ 2π

0
pnl (r l − e jφ sml) dφ (4.5–17)

From Example 2.9–1 it is seen that nl(t) is a complex baseband random process with
power spectral density of 2N0 in the [−W, W ] frequency band. The projections of this
process on an orthonormal basis will have complex iid zero-mean Gaussian components
with variance 2N0 (variance N0 per real and imaginary components). Therefore we can
write

m̂ = arg max
1≤m≤M

Pm

2π

1

(4π N0)N

∫ 2π

0
e− ‖rl −e jφ sml ‖2

4N0 dφ (4.5–18)

Expanding the exponent, dropping terms that do not depend on m, and noting that
‖sml‖2 = 2Em , we obtain

m̂ = arg max
1≤m≤M

Pm

2π
e− Em

2N0

∫ 2π

0
e

1
2N0

Re[r l ·e jφ sml] dφ

= arg max
1≤m≤M

Pm

2π
e− Em

2N0

∫ 2π

0
e

1
2N0

Re[(r l ·sml )e− jφ] dφ

= arg max
1≤m≤M

Pm

2π
e− Em

2N0

∫ 2π

0
e

1
2N0

Re[|r l ·sml |e− j(φ−θ )] dφ

= arg max
1≤m≤M

Pm

2π
e− Em

2N0

∫ 2π

0
e

1
2N0

|r l ·sml | cos(φ−θ ) dφ

(4.5–19)

where θ denotes the phase of r l · sml . Note that the integrand in Equation 4.5–19 is a
periodic function of φ with period 2π , and we are integrating over a complete period;
therefore θ has no effect on the result. Using the relation

I0(x) = 1

2π

∫ 2π

0
ex cos φ dφ (4.5–20)

where I0(x) is the modified Bessel function of the first kind and order zero, we obtain

m̂ = arg max
1≤m≤M

Pm e− Em
2N0 I0

( |r l · sml |
2N0

)
(4.5–21)
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In general, the decision rule given in Equation 4.5–21 cannot be made simpler.
However, in the case of equiprobable and equal-energy signals, the terms Pm and Em

can be ignored, and the optimal detection rule becomes

m̂ = arg max
1≤m≤M

I0

( |r l · sml |
2N0

)
(4.5–22)

Since for x > 0, I0(x) is an increasing function of x , the decision rule in this case
reduces to

m̂ = arg max
1≤m≤M

|r l · sml | (4.5–23)

From Equation 4.5–23 it is clear that an optimal noncoherent detector first demod-
ulates the received signal, using its nonsynchronized local oscillator, to obtain rl(t), the
lowpass equivalent of the received signal. It then correlates rl(t) with all sml(t)’s and
chooses the one that has the maximum absolute value, or envelope. This detector is
called an envelope detector. Note that Equation 4.5–23 can also be written as

m̂ = arg max
1≤m≤M

∣∣∣∣
∫ ∞

−∞
rl(t)s

∗
ml(t) dt

∣∣∣∣ (4.5–24)

The block diagram of an envelope detector is shown in Figure 4.5–1. Detailed block
diagrams for the demodulator and the complex matched filters shown in this figure are
given in Figures 4.3–9 and 4.3–11, respectively.

rl(t)r(t)
Demodulator

s*
1l(T � t)

s*
2l(T � t)

	�	

	�	

	�	s*
Ml (T � t)

Max

t � T

rl � s1l

rl � s2l

rl � sMl

. . . 

. . . 

m̂

FIGURE 4.5–1
Block diagram of an envelope detector.
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4.5–2 Optimal Noncoherent Detection of FSK Modulated Signals

For equiprobable FSK signaling, the signals have equal energy and the optimal detection
rule is given by Equation 4.5–23. Assuming that frequency separation between signals
is � f , the FSK signals have the general form

sm(t) = g(t) cos (2π fct + 2π (m − 1)� f t)

= Re
[
g(t)e j2π (m−1)� f t e j2π fct] , 1 ≤ m ≤ M

(4.5–25)

Hence,

sml(t) = g(t)e j2π (m−1)� f t (4.5–26)

where g(t) is a rectangular pulse of duration Ts and Eg = 2Es , where Es denotes
the energy per transmitted symbol. At the receiver, the optimal noncoherent detector
correlates rl(t) with sm ′l(t) for all 1 ≤ m ′ ≤ M . Assuming sm(t) is transmitted, from
Equation 4.5–24 we have∣∣∣∣

∫ ∞

−∞
rl(t)s

∗
m ′l(t) dt

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
(sml(t) + nl(t)) s∗

m ′l(t) dt

∣∣∣∣
=

∣∣∣∣
∫ ∞

−∞
sml(t)s

∗
m ′l(t) dt +

∫ ∞

−∞
nl(t)s

∗
m ′l(t) dt

∣∣∣∣
(4.5–27)

But ∫ ∞

−∞
sml(t)s

∗
m ′l(t) dt = 2Es

Ts

∫ Ts

0
e j2π (m−1)� f t e− j2π (m ′−1)� f t

= 2Es

Ts

∫ Ts

0
e j2π (m−m ′)� f t dt

= 2Es

Ts

1

j2π (m − m ′)� f

[
e j2π (m−m ′)� f Ts − 1

]

= 2Es e jπ (m−m ′)� f Ts sinc
[
(m − m ′)� f Ts

]

(4.5–28)

From Equation 4.5–28 we see that if and only if � f = k
Ts

for some integer k, then
〈sml(t), sm ′l(t)〉 = 0 for all m ′ �= m. This is the condition of orthogonality for FSK
signals under noncoherent detection. For coherent detection, however, the detector
uses Equation 4.3–41, and for orthogonality we must have Re [〈sml(t), sm ′l(t)〉] = 0.
But from Equation 3.2–58

Re
[∫ ∞

−∞
sml(t)s

∗
m ′l(t) dt

]
= 2Es cos

(
π (m − m ′)� f Ts

)
sinc

[
(m − m ′)� f Ts

]

= 2Es sinc
[
2(m − m ′)� f Ts

] (4.5–29)

Obviously, the condition for orthogonality in this case is � f = k
2Ts

. It is clear from the
above discussion that orthogonality under noncoherent detection guarantees orthogo-
nality under coherent detection, but not vice versa.
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The optimal noncoherent detection rule for FSK signaling follows the general rule
for noncoherent detection of equiprobable and equal-energy signals and is implemented
using an envelope or a square-law detector.

4.5–3 Error Probability of Orthogonal Signaling with Noncoherent Detection

Let us assume M equiprobable, equal-energy, carrier modulated orthogonal signals are
transmitted over an AWGN channel. These signals are noncoherently demodulated at
the receiver and and then optimally detected. For instance, in coherent detection of
orthogonal FSK signals we encounter a situation like this. The lowpass equivalent of
the signals can be written as M N -dimensional vectors (N = M)

s1l = (√
2Es, 0, 0, . . . , 0

)
s2l = (

0,
√

2Es, 0, . . . , 0
)

(4.5–30)
... = ...

sMl = (
0, 0, . . . , 0,

√
2Es

)
Because of the symmetry of the constellation, without loss of generality we can

assume that s1l is transmitted. Therefore, the received vector will be

r l = e jφ s1l + nl (4.5–31)

where nl is a complex circular zero-mean Gaussian random vector with variance of each
complex component equal to 2N0 (this follows from the result of Example 2.9–1). The
optimal receiver computes and compares |r l · sml |, for all 1 ≤ m ≤ M . This results in

|r l · s1l | = |2Ese jφ + nl · s1l |

|r l · sml | = |nl · sml |, 2 ≤ m ≤ M
(4.5–32)

For 1 ≤ m ≤ M , nl · sml is a circular zero-mean complex Gaussian random variable
with variance 4Es N0 (2Es N0 per real and imaginary parts). From Equation 4.5–32 it is
seen that

Re [r l · s1l] ∼ N (2Es cos φ, 2Es N0)

Im [r l · s1l] ∼ N (2Es sin φ, 2Es N0)

Re [r l · sml] ∼ N (0, 2Es N0), 2 ≤ m ≤ M

Im [r l · sml] ∼ N (0, 2Es N0), 2 ≤ m ≤ M

(4.5–33)

From the definition of Rayleigh and Ricean random variables given Chapter 2 in
Equations 2.3–42 and 2.3–55, we conclude that random variables Rm , 1 ≤ m ≤ M ,
defined as

Rm = |r l · sml |, 1 ≤ m ≤ M (4.5–34)
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are independent random variables, R1 has a Ricean distribution with parameters s = 2Es

and σ 2 = 2Es N0, and Rm , 2 ≤ m ≤ M , are Rayleigh random variables† with parameter
σ 2 = 2Es N0. In other words,

pR1 (r1) =
⎧⎨
⎩

r1

σ 2
I0

( sr1
σ 2

)
e− r2

1
+s2

2σ2 r1 > 0

0 otherwise
(4.5–35)

and

pRm (rm) =
⎧⎨
⎩

rm
σ 2 e− r2

m
2σ2 rm > 0

0 otherwise
(4.5–36)

for 2 ≤ m ≤ M . Since by assumption s1l is transmitted, a correct decision is made at the
receiver if R1 > Rm for 2 ≤ m ≤ M . Although random variables Rm for 1 ≤ m ≤ M
are statistically independent, the events R1 > R2, R1 > R3, . . . , R1 > RM are not
independent due to the existence of the common R1. To make them independent, we
need to condition on R1 = r1 and then average over all values of r1. Therefore,

Pc = P [R2 < R1, R3 < R1, . . . , RM < R1]

=
∫ ∞

0
P [R2 < r1, R3 < r1, . . . , RM < r1 |R1 = r1 ]pR1 (r1) dr1

=
∫ ∞

0
(P [R2 < r1])M−1 pR1 (r1) dr1

(4.5–37)

But

P [R2 < r1] =
∫ r1

0
pR2 (r2) dr2

= 1 − e− r2
1

2σ2

(4.5–38)

Using the binomial expansion, we have(
1 − e− r2

1
2σ2

)M−1

=
M−1∑
n=0

(−1)n

(
M − 1

n

)
e− nr2

1
2σ2 (4.5–39)

Substituting into Equation 4.5–37, we obtain

Pc =
M−1∑
n=0

(−1)n

(
M − 1

n

) ∫ ∞

0
e− nr2

1
2σ2

r1

σ 2
I0

(
sr1

σ 2

)
e− r2

1
+s2

2σ2 dr1

=
M−1∑
n=0

(−1)n

(
M − 1

n

) ∫ ∞

0

r1

σ 2
I0

(
sr1

σ 2

)
e− (n+1)r2

1
+s2

2σ2 dr1

=
M−1∑
n=0

(−1)n

(
M − 1

n

)
e
− ns2

2(n+1)σ2

∫ ∞

0

r1

σ 2
I0

(
sr1

σ 2

)
e− (n+1)r2

1
+ s2

n+1
2σ2 dr1

(4.5–40)

†To be more precise, we have to note that φ is itself a uniform random variable; therefore to obtain the PDF
of Rm , we need to first condition on φ and then average with respect to the uniform PDF. This, however,
does not change the final result stated above.
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By introducing a change of variables

s ′ = s√
n + 1

r ′ = r1

√
n + 1

(4.5–41)

the integral in Equation 4.5–40 becomes
∫ ∞

0

r1

σ 2
I0

(
sr1

σ 2

)
e− (n+1)r2

1
+ s2

n+1
2σ2 dr1 = 1

n + 1

∫ ∞

0

r ′

σ 2
I0

(
r ′s ′

σ 2

)
e− s′2+r ′2

2σ2 dr ′

= 1

n + 1

(4.5–42)

where in the last step we used the fact that the area under a Ricean PDF is equal to 1.

Substituting Equation 4.5–42 into Equation 4.5–40 and noting that s2

2σ 2 = 4E2
s

4Es N0
= Es

N0
,

we obtain

Pc =
M−1∑
n=0

(−1)n

n + 1

(
M − 1

n

)
e− n

n+1
Es
N0 (4.5–43)

Then the probability of a symbol error becomes

Pe =
M−1∑
n=1

(−1)n+1

n + 1

(
M − 1

n

)
e− n log2 M

n+1
Eb
N0 (4.5–44)

For binary orthogonal signaling, including binary orthogonal FSK with noncoher-
ent detection, Equation 4.5–44 simplifies to

Pb = 1

2
e− Eb

2N0 (4.5–45)

Comparing this result with coherent detection of binary orthogonal signals for which
the error probability is given by

Pb = Q

⎛
⎝

√
Eb

N0

⎞
⎠ (4.5–46)

and using the inequality Q(x) ≤ 1
2 e−x2/2, we conclude that Pbnoncoh ≥ Pbcoh, as ex-

pected. For error probabilities less than 10−4, the difference between the performance
of coherent and noncoherent detection of binary orthogonal is less than 0.8 dB.

For M > 2, we may compute the probability of a bit error by making use of the
relationship

Pb = 2k−1

2k − 1
Pe (4.5–47)

which was established in Section 4.4–1. Figure 4.5–2 shows the bit error probability
as a function of the SNR per bit γb for M = 2, 4, 8, 16, and 32. Just as in the case
of coherent detection of M-ary orthogonal signals (see Figure 4.4–1), we observe that
for any given bit error probability, the SNR per bit decreases as M increases. It will
be shown in Chapter 6 that, in the limit as M → ∞ (or k = log2 M → ∞), the
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FIGURE 4.5–2
Probability of a bit error for noncoherent
detection of orthogonal signals.

probability of a bit error Pb can be made arbitrarily small provided that the SNR per
bit is greater than the Shannon limit of −1.6 dB. The cost for increasing M is the
bandwidth required to transmit the signals. For M-ary FSK, the frequency separation
between adjacent frequencies is � f = 1/Ts for signal orthogonality. The bandwidth
required for the M signals is W = M � f = M/Ts .

4.5–4 Probability of Error for Envelope Detection
of Correlated Binary Signals

In this section, we consider the performance of the envelope detector for binary,
equiprobable, and equal-energy correlated signals. When the two signals are corre-
lated, we have

sml · sm ′l =
{

2Es m = m ′

2Esρ m �= m ′ m, m ′ = 1, 2 (4.5–48)

where ρ is the complex correlation between the lowpass equivalent signals. The detector
bases its decision on the envelopes |r l ·s1l | and |r l ·s2l |, which are correlated (statistically
dependent). Assuming that s1(t) is transmitted, these envelopes are given by

R1 = |r l · s1l | = |2Ese jφ + nl · s1l |

R2 = |r l · s2l | = |2Esρe jφ + nl · s2l |
(4.5–49)



Proakis-27466 book September 25, 2007 14:41

220 Digital Communications

We note that since we are interested in the magnitudes of 2Ese jφ +nl ·s1l and 2Esρe jφ +
nl · s2l , the effect of e jφ can be absorbed in the noise component which is circular, and
such a phase rotation would not affect its statistics. From above it is seen that R1 is
a Ricean random variable with parameters s1 = 2Es and σ 2 = 2Es N0, and R2 is a
Ricean random variable with parameters s2 = 2Es |ρ| and σ2 = 2Es N0. These two
random variables are dependent since the signals are not orthogonal and hence noise
projections are statistically dependent.

Since R1 and R2 are statistically dependent, the probability of error may be obtained
by evaluating the double integral

Pb = P(R2 > R1) =
∫ ∞

0

∫ ∞

x1

p(x1, x2) dx1 dx2 (4.5–50)

where p(x1, x2) is the joint PDF of the envelopes R1 and R2. This approach was first
used by Helstrom (1955), who determined the joint PDF of R1 and R2 and evaluated
the double integral in Equation 4.5–50.

An alternative approach is based on the observation that the probability of error
may also be expressed as

Pb = P
(

R2 > R1
) = P

(
R2

2 > R2
1

) = P
(

R2
2 − R2

1 > 0
)

(4.5–51)

But R2
2 − R2

1 is a special case of a general quadratic form in complex-valued Gaussian
random variables, treated later in Appendix B. For the special case under consideration,
the derivation yields the error probability in the form

Pb = Q1(a, b) − 1

2
e− a2+b2

2 I0(ab) (4.5–52)

where

a =
√

Eb

2N0

(
1 −

√
1 − |ρ|2

)

b =
√

Eb

2N0

(
1 +

√
1 − |ρ|2

) (4.5–53)

and Q1(a, b) is the Marcum Q function defined in Equations 2.3–37 and 2.3–38 and
I0(x) is the modified Bessel function of order zero. Substituting Equation 4.5–53 into
Equation 4.5–52 yields

Pb = Q1(a, b) − 1

2
e− Eb

2N0 I0

( Eb

2N0
|ρ|

)
(4.5–54)

The error probability Pb is illustrated in Figure 4.5–3 for several values of |ρ|;
Pb is minimized when ρ = 0, that is, when the signals are orthogonal. For this case,
a = 0, b = √

Eb/N0, and Equation 4.5–54 reduces to

Pb = Q1

⎛
⎝0,

√
Eb

N0

⎞
⎠ − 1

2
e−Eb/2N0 (4.5–55)
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FIGURE 4.5–3
Probability of error for noncoherent detection of binary FSK.

From the properties of Q1(a, b) in Equation 2.3–39, it follows that

Q1

⎛
⎝0,

√
Eb

N0

⎞
⎠ = e− Eb

2N0 (4.5–56)

Substitution of these relations into Equation 4.5–54 yields the desired result given

previously in Equation 4.5–45. On the other hand, when |ρ| = 1, a = b =
√

Eb
2N0

and

by using Equation 2.3–38 the error probability in Equation 4.5–52 becomes Pb = 1
2 ,

as expected.

4.5–5 Differential PSK (DPSK)

We have seen in Section 4.3–2 that in order to compensate for phase ambiguity of
2π
M , which is a result of carrier tracking by phase-locked loops (PLLs), differentially
encoded PSK is used. In differentially encoded PSK, the information sequence deter-
mines the relative phase, or phase transition, between adjacent symbol intervals. Since
in differential PSK the information is in the phase transitions and not in the absolute
phase, the phase ambiguity from a PLL cancels between the two adjacent intervals and
will have no effect on the performance of the system. The performance of the system
is only slightly degraded due to the tendency of errors to occur in pairs, and the overall
error probability is twice the error probability of a PSK system.

A differentially encoded phase-modulated signal also allows another type of de-
modulation that does not require the estimation of the carrier phase. Therefore, this type
of demodulation/detection of differentially encoded PSK is classified as noncoherent
detection. Since the information is in the phase transition, we have to do the detection
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over a period of two symbols. The vector representation of the lowpass equivalent of
the mth signal over a period of two symbol intervals is given by

sml = (√
2Es

√
2Ese jθm

)
, 1 ≤ m ≤ M (4.5–57)

where θm = 2π (m−1)
M is the phase transition corresponding to the mth message. When

sml is transmitted, the vector representation of the lowpass equivalent of the received
signal on the corresponding two-symbol period is given by

r l = (r1 r2) = (√
2Es

√
2Ese jθm

)
e jφ + (n1l n2l) , 1 ≤ m ≤ M (4.5–58)

where n1l and n2l are two complex-valued, zero-mean, circular Gaussian random
variables each with variance 2N0 (variance N0 for real and imaginary components)
and φ is the random phase due to noncoherent detection. The key assumption in this
demodulation-detection scheme is that the phase offset φ remains the same over ad-
jacent signaling periods. The optimal noncoherent receiver uses Equation 4.5–22 for
optimal detection. We have

m̂ = arg max
1≤m≤M

|r l · sml |
= arg max

1≤m≤M

√
2Es

∣∣r1 + r2e− jθm
∣∣

= arg max
1≤m≤M

∣∣r1 + r2e− jθm
∣∣2

= arg max
1≤m≤M

(|r1|2 + |r2|2 + 2 Re
[
r∗

1 r2e− jθm
])

= arg max
1≤m≤M

Re
[
r∗

1 r2e− jθm
]

= arg max
1≤m≤M

|r1r2| cos (� r2 − � r1 − θm)

= arg max
1≤m≤M

cos ( � r2 − � r1 − θm)

= arg min
1≤m≤M

|� r2 − � r1 − θm |

(4.5–59)

Note that α = � r2 − � r1 is the phase difference of the received signal in two adjacent
intervals. The receiver computes this phase difference and compares it with θm =
2π
M (m − 1) for all 1 ≤ m ≤ M and selects the m for which θm is closest to α, thus
maximizing cos(α − θm). A differentially encoded PSK signal that uses this method for
demodulation detection is called differential PSK (DPSK). This method of detection
has lower complexity in comparison with coherent detection of PSK signals and can
be used in situations where the assumption that φ remains constant over two-symbol
intervals is valid. As we see below, there is a performance penalty in employing this
detection method.

The block diagram for the DPSK receiver is illustrated in Figure 4.5–4. In this
block diagram g(t) represents the baseband pulse used for phase modulation, Ts is the
symbol interval, the block with the � symbol is a phase detector, and the block with Ts

introduces a delay equal to the symbol interval Ts .

Performance of Binary DPSK In binary DPSK the phase difference between
adjacent symbols is either 0 or π , corresponding to a 0 or 1. The two lowpass equivalent
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FIGURE 4.5–4
The DPSK receiver.

signals are

s1l = (√
2Es

√
2Es

)
s2l = (√

2Es − √
2Es

) (4.5–60)

These two signals are noncoherently demodulated and detected using the general ap-
proach for optimal noncoherent detection. It is clear that the two signals are orthogonal
on an interval of length 2Ts . Therefore, the error probability can be obtained from
the expression for the error probability of binary orthogonal signaling given in Equa-
tion 4.5–45. The difference is that the energy in each of the signals s1(t) and s2(t) is
2Es . This is seen easily from Equation 4.5–60 which shows that the energy in lowpass
equivalents is 4Es . Therefore,

Pb = 1

2
e− 2Es

2N0

= 1

2
e− Eb

N0

(4.5–61)

This is the bit error probability for binary DPSK. Comparing this result with coherent
detection of BPSK where the error probability is given by

Pb = Q

⎛
⎝

√
2Eb

N0

⎞
⎠ (4.5–62)
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FIGURE 4.5–5
Probability of error for binary PSK and DPSK.

we observe that by the inequality Q(x) ≤ 1
2 e−x2/2, we have

Pb,coh. ≤ Pb,noncoh (4.5–63)

as expected. This is similar to the result we previously had for coherent and noncoherent
detection of binary orthogonal FSK. Here again the difference between the performance
of BPSK with coherent detection and binary DPSK at high SNRs is less than 0.8 dB.
The plots given in Figure 4.5–5 compare the performance of coherently detected BPSK
with binary DPSK.

Performance of DQPSK Differential QPSK is similar to binary DPSK, except that
the phase difference between adjacent symbol intervals depends on two information
bits (k = 2) and is equal to 0, π

2 , π , and 3π
2 for 00, 01, 11, and 10, respectively,

when Gray coding is employed. Assuming that the transmitted binary sequence is 00,
corresponding to a phase shift of zero in two adjacent intervals, the lowpass equivalent
of the received signal over two-symbol intervals with noncoherent demodulation is
given by

r l = (r1 r2) = (√
2Es

√
2Es

)
e jφ + (n1 n2) (4.5–64)

where n1 and n2 are independent, zero-mean, circular, complex Gaussian random vari-
ables each with variance 2N0 (variance N0 per real and complex components). The
optimal decision region for 00 is given by Equation 4.5–59 as

D00 =
{

r l : Re
[
r∗

1 r2
]

> Re
[
r∗

1 r2e− j mπ
2

]
, for m = 1, 2, 3

}
(4.5–65)
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where r1 = √
2Ese jφ + n1 and r2 = √

2Ese jφ + n2. We note that r∗
1 r2 does not depend

on φ. The error probability is the probability that the received vector r l does not belong
to D00. As seen from Equation 4.5–65, this probability depends on the product of two
complex Gaussian random variables r∗

1 and r2. A general form of this problem, where
general quadratic forms of complex Gaussian random variables are considered, is given
in Appendix B. Using the result of Appendix B we can show that the bit error probability
for DQPSK, when Gray coding is employed, is given by

Pb = Q1(a, b) − 1

2
I0(ab)e− a2+b2

2 (4.5–66)

where Q1(a, b) is the Marcum Q function defined by Equations 2.3–37 and 2.3–38,
I0(x) is the modified Bessel function of order zero, defined by Equations 2.3–32 to
2.3–34, and the parameters a and b are defined as

a =
√√√√2Eb

N0

(
1 −

√
1

2

)

b =
√√√√2Eb

N0

(
1 +

√
1

2

) (4.5–67)

Figure 4.5–6 illustrates the probability of a binary digit error for two- and four-phase
DPSK and coherent PSK signaling obtained from evaluating the exact formulas derived
in this section. Since binary DPSK is only slightly inferior to binary PSK at large SNR,

FIGURE 4.5–6
Probability of bit error for binary and four-phase
PSK and DPSK.
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and DPSK does not require an elaborate method for estimating the carrier phase, it
is often used in digital communication systems. On the other hand, four-phase DPSK
is approximately 2.3 dB poorer in performance than four-phase PSK at large SNR.
Consequently the choice between these two four-phase systems is not as clear-cut. One
must weigh the 2.3-dB loss against the reduction in implementation complexity.

4.6
A COMPARISON OF DIGITAL SIGNALING METHODS

The digital modulation methods described in the previous sections can be compared
in a number of ways. For example, one can compare them on the basis of the SNR
required to achieve a specified probability of error. However, such a comparison would
not be very meaningful, unless it were made on the basis of some constraint, such as
a fixed data rate of transmission or, equivalently, on the basis of a fixed bandwidth.
We have already studied two major classes of signaling methods, i.e., bandwidth and
power-efficient signaling in Sections 4.3 and 4.4, respectively.

The criterion for power efficiency of a signaling scheme is the SNR per bit that
is required by that scheme to achieve a certain error probability. The error probability
that is usually considered for comparison of various signaling schemes is Pe = 10−5.
The γb = Eb

N0
required by a signaling scheme to achieve an error probability of 10−5 is

a criterion for power efficiency of that scheme. Systems requiring lower γb to achieve
this error probability are more power-efficient.

To measure the bandwidth efficiency, we define a parameter r , called the spectral
bit rate, or the bandwidth efficiency, as the ratio of bit rate of the signaling scheme to
the bandwidth of it, i.e.,

r = R

W
b/s/Hz (4.6–1)

A system with larger r is a more bandwidth-efficient system since it can transmit at a
higher bit rate in each hertz of bandwidth. The parameters r and γb defined above are
the two criteria we use for comparison of power and bandwidth efficiency of different
modulation schemes. Clearly, a good system is the one that at a given γb provides the
highest r , or at a given r requires the least γb.

The relation between γb and the error probability for individual systems was dis-
cussed in detail for different signaling schemes in the previous sections. From the
expressions for error probability of various systems derived earlier in this chapter, it is
easy to determine what γb is required to achieve an error probability of 10−5 in each
system. In this section we discuss the relation between the bandwidth efficiency and
the main parameters of a given signaling scheme.

4.6–1 Bandwidth and Dimensionality

The sampling theorem states that in order to reconstruct a signal with bandwidth W ,
we need to sample this signal at a rate of at least 2W samples per second. In other
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words, this signal has 2W degrees of freedom (dimensions) per second. Therefore,
the dimensionality of signals with bandwidth W and duration T is N = 2W T . Al-
though this intuitive reasoning is sufficient for our development, this statement is not
precise.

It is a well-known fact, that follows from the theory of entire functions, that the
only signal that is both time- and bandwidth-limited is the trivial signal x(t) = 0. All
other signals have either infinite bandwidth and/or infinite duration. In spite of this fact,
all practical signals are approximately time- and bandwidth-limited. Recall that a real
signal x(t) has an energy Ex given by

Ex =
∫ ∞

−∞
x2(t) dt =

∫ ∞

−∞
|X ( f )|2 d f (4.6–2)

Here we focus on time-limited signals that are nearly bandwidth-limited. We assume
that the support of x(t), i.e., where x(t) is nonzero, is the interval [−T/2, T/2]; and
we also assume that x(t) is η-bandwidth-limited to W , i.e., we assume that at most
a fraction η of the energy in x(t) is outside the frequency band [−W, W ]. In other
words,

1

Ex

∫ W

−W
|X ( f )|2 d f ≥ 1 − η (4.6–3)

The dimensionality theorem stated below gives a precise account for the number
of dimensions of the space of such signals x(t).

The Dimensionality Theorem Consider the set of all signals x(t) with support
[−T/2, T/2] that are η-bandwidth-limited to W . Then there exists a set of N orthonor-
mal signals† {φ j (t), 1 ≤ j ≤ N } with support [−T/2, T/2] such that x(t) can be
ε-approximated by this set of orthonormal signals, i.e.,

1

Ex

∫ ∞

−∞

⎛
⎝x(t) −

N∑
j=1

〈x(t), φ j (t)〉φ j (t)

⎞
⎠

2

dt < ε (4.6–4)

where ε = 12η and N = �2W T + 1�.
From the dimensionality theorem we can see that the relation

N ≈ 2W T (4.6–5)

is a good approximation to the dimensionality of the space of functions that are roughly
time-limited to T and band-limited to W .

The dimensionality theorem helps us to derive a relation between bandwidth and
dimensionality of a signaling scheme. If the set of signals in a signaling scheme consists
of M signals each with duration Ts , the signaling interval, and the approximate band-
width of the set of signals is W , the dimensionality of the signal space is N = 2W Ts .

†Signals φ j (t) can be expressed in terms of the prolate spheroidal wave functions.
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Using the relation Rs = 1/Ts , we have

W = Rs N

2
(4.6–6)

Since R = Rs log2 M , we conclude that

W = RN

2 log2 M
(4.6–7)

and

r = R

W
= 2 log2 M

N
(4.6–8)

This relation gives the bandwidth efficiency of a signaling scheme in terms of the
constellation size and the dimensionality of the constellation.

In one-dimensional modulation schemes (ASK and PAM), N = 1 and r =
2 log2 M . PAM and ASK can be transmitted as single-sideband (SSB) signals.

For two-dimensional signaling schemes such as QAM and MPSK, we have N = 2
and r = log2 M . It is clear from the above discussion that in MASK, MPSK, and
MQAM signaling schemes the bandwidth efficiency increases as M increases. As we
have seen before in all these systems, the power efficiency decreases as M is increased.
Therefore, the size of constellation in these systems determines the tradeoff between
power and bandwidth efficiency. These systems are appropriate where we have limited
bandwidth and desire a bit rate–to–bandwidth ratio r > 1 and where there is sufficiently
high SNR to support increases in M . Telephone channels and digital microwave radio
channels are examples of such band-limited channels.

For M-ary orthogonal signaling, N = M and hence Equation 4.6–8 results in

r = 2 log2 M

M
(4.6–9)

Obviously in this case as M increases, the bandwidth efficiency decreases, and for
large M the system becomes very bandwidth-inefficient. Again as we had seen before
in orthogonal signaling, increasing M improves the power efficiency of the system,
and in fact this system is capable of achieving the Shannon limit as M increases. Here
again the tradeoff between bandwidth and power efficiency is clear. Consequently,
M-ary orthogonal signals are appropriate for power-limited channels that have suffi-
ciently large bandwidth to accommodate a large number of signals. One example of
such channels is the deep space communication channel.

We encounter the tradeoff between bandwidth and power efficiency in many com-
munication scenarios. Coding techniques treated in Chapters 7 and 8 study various
practical methods to achieve this tradeoff.

We will show in Chapter 6 that there exists a fundamental tradeoff between band-
width and power efficiency. This tradeoff between r and Eb/N0 holds as Pe tends to
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zero and is given by (see Equation 6.5–49)

Eb

N0
>

2r − 1

r
(4.6–10)

Equation 4.6–10 gives the condition under which reliable communication is possi-
ble. This relation should hold for any any communication system. As r tends to 0 (band-
width becomes infinite), we can obtain the fundamental limit on the required Eb/N0 in
a communication system. This limit is the −1.6 dB Shannon limit discussed before.

Figure 4.6–1 illustrates the graph of r = R/W versus SNR per bit for PAM, QAM,
PSK, and orthogonal signals, for the case in which the error probability is PM = 10−5.
Shannon’s fundamental limit given by Equation 4.6–10 is also plotted in this figure.
Communication is, at least theoretically, possible at any point below this curve and is
impossible at points above it.

E

FIGURE 4.6–1
Comparison of several modulation schemes at Pe = 10−5 symbol error probability.
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4.7
LATTICES AND CONSTELLATIONS BASED ON LATTICES

In band-limited channels, when the available SNR is large, large QAM constellations
are desirable to achieve high bandwidth efficiency. We have seen examples of QAM
constellations in Figures 3.2–4 and 3.2–5. Figure 3.2–5 is particularly interesting since
it has a useful grid-shaped repetitive pattern in two-dimensional space. Using such
repetitive patterns for designing constellations is a common practice. In this approach
to constellation design, a repetitive infinite grid of points and a boundary for the con-
stellation are selected. The constellation is then defined as the set of points of the
repetitive grid that are within the selected boundary. Lattices are mathematical struc-
tures that define the main properties of the repetitive grid of points used in constellation
design. In this section we study properties of lattices, boundaries, and the lattice-based
constellations.

4.7–1 An Introduction to Lattices

An n-dimensional lattice is defined as a discrete subset of R
n that has a group structure

under ordinary vector addition. By having a group structure we mean that any two
lattice points can be added and the result is another lattice point, there exists a point in
the lattice denoted by 0 that when added to any lattice point x the result is x itself, and
for any x there exists another point in the lattice, denoted by −x, that when added to
x results in 0.

With the lattice definition given above, it is clear that Z, the set of integers, is a one-
dimensional lattice. Moreover, for any α > 0, the set � = αZ is a one-dimensional lat-
tice. In the plane, Z

2, the set of all points with integer coordinates, is a two-dimensional
lattice. Another example of a two-dimensional lattice, called the hexagonal lattice, is the

set of points shown in Figure 4.7–1. These points can be written as a(1, 0)+b
(

1
2 ,

√
3

2

)
,

where a and b are integers. The hexagonal lattice is usually denoted by A2.
In general, an n-dimensional lattice � can be defined in terms of n basis vectors

gi ∈ R
n, 1 ≤ i ≤ n, such that any lattice point x can be written as a linear combination

FIGURE 4.7–1
The two-dimensional hexagonal
lattice.
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of gi ’s using integer coefficients. In other words, for any x ∈ �,

x =
n∑

i=1

ai gi (4.7–1)

where ai ∈ Z for 1 ≤ i ≤ n. We can also define � in terms of an n × n generator
matrix, denoted by G, whose rows are {gi , 1 ≤ i ≤ n}. Since the basis vectors can be
selected differently, the generator matrix of a lattice is not unique. With this definition,
for any x ∈ �,

x = aG (4.7–2)

where a ∈ Z
n is an n-dimensional vector with integer components. Equation 4.7–2

states that any n-dimensional lattice � can be viewed as a linear transformation of Z
n

where the transformation is represented by matrix G. In particular, all one-dimensional
lattices can be represented as αZ for some α > 0.

The generator matrix of Z
2 is I2, the 2×2 identity matrix. In general the generator

matrix of Z
n is In . The generator matrix of the hexagonal lattice is given by

G =
[

1 0
1
2

√
3

2

]
(4.7–3)

Two lattices are called equivalent if one can be obtained from the other by a
rotation, reflection, scaling, or combination of these operations. Rotation and reflection
operations are represented by orthogonal matrices. Orthogonal matrices are matrices
whose columns constitute a set of orthonormal vectors. If A is an orthogonal matrix,
then AAt = At A = I . In general, any operation of the form αG on the lattice, where
α > 0 and G is orthogonal, results in an equivalent lattice. For instance, the lattice with
the generator matrix

G =
[ √

2
2

√
2

2

−
√

2
2

√
2

2

]
(4.7–4)

is obtained from Z
2 by a rotation of 45◦; therefore it is equivalent to Z

2. Note that
GGt = I . If after rotation the resulting lattice is scaled by

√
2, the overall generator

matrix will be

G =
[

1 1

−1 1

]
(4.7–5)

This lattice is the set of points in Z
2 for which the sum of the two coordinates is even.

This lattice is also equivalent to Z
2. Matrix G in Equation 4.7–5, which represents a

rotation of 45◦ and a scaling of
√

2, is usually denoted by R. Therefore, RZ
2 denotes

the lattice of all integer coordinate points in the plane with an even sum of coordinates.
It can be easily verified that R2

Z
2 = 2Z

2.
Translating (shifting) a lattice by a vector c is denoted by � + c, and the result, in

general, is not a lattice because under a general translation there is no guarantee that 0
will be a member of the translated lattice. However, if the translation vector is a lattice
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FIGURE 4.7–2
QAM constellation.

point, i.e., if c ∈ �, then the result of translation is the original lattice. From this we
conclude that any point in the lattice is similar to any other point, in the sense that all
points of the lattice have the same number of lattice points at a given distance. Although
translation of a lattice is not a lattice in general, the result is congruent to the original
lattice with the same geometric properties. Translation of lattices is frequently used to
generate energy-efficient constellations. Note that the QAM constellations shown in
Figure 4.7–2 consist of points in a translated version of Z

2 where the shift vector is( 1
2 , 1

2

)
; i.e., the constellation points are subsets of Z

2 + ( 1
2 , 1

2

)
.

In addition to rotation, reflection, scaling, and translation of lattices, we introduce
the notion of the M-fold Cartesian product of lattice �. The M-fold Cartesian product
of � is another lattice, denoted by �M , whose elements are (Mn)-dimensional vectors
(λ1, λ2, . . . , λM ) where each λ j is in �. We observe that Z

n is the n-fold Cartesian
product of Z.

The minimum distance dmin(�) of a lattice � is the minimum Euclidean distance
between any two lattice points; and the kissing number, or the multiplicity, denoted by
Nmin(�), is the number of points in the lattice that are at minimum distance from a
given lattice point. If n-dimensional spheres with radius dmin(�)

2 are centered at lattice
points, the kissing number is the number of spheres that touch one of these spheres. For
the hexagonal lattice dmin(A2) = 1 and Nmin(A2) = 6. For Z

n , we have dmin(Zn) = 1
and Nmin(Zn) = 2n. In this lattice the nearest neighbors of 0 are points with n − 1 zero
coordinates and one coordinate equal to ±1.

The Voronoi region of a lattice point x is the set of all points in R
n that are closer to

x than any other lattice point. The boundary of the Voronoi region of a lattice point x
consists of the perpendicular bisector hyperplanes of the line segments connecting x to
its nearest neighbors in the lattice. Therefore, a Voronoi region is a polyhedron bounded
by Nmin(�) hyperplanes. The Voronoi region of the point 0 in the hexagonal lattice is
the hexagon shown in Figure 4.7–3. Since all points of the lattice have similar distances
from other lattice points, the Voronoi regions of all lattice points are congruent. In
addition, the Voronoi regions are disjoint and cover R

n; hence the Voronoi regions of
a lattice induce a partition of R

n .
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FIGURE 4.7–3
The Voronoi region in the hexagonal lattice.

The fundamental volume of a lattice is defined as the volume of the Voronoi region
of the lattice and is denoted by V (�). Since there exists one lattice point per fundamental
volume, we can define the fundamental volume as the reciprocal of the number of lattice
points per unit volume. It can be shown (see the book by Conway and Sloane (1999))
that for any lattice

V (�) = |det(G)| (4.7–6)

We notice that V (Zn) = 1 and V (A2) =
√

3
2 .

Rotation, reflection, and translation do not change the fundamental volume, the
minimum distance, or the kissing number of a lattice. Scaling a lattice � with generator
matrix G by α > 0 results in a lattice α� with generator matrix αG, hence

V (α�) = |det(αG)| = αn V (�) (4.7–7)

The minimum distance of the scaled lattice is obviously scaled by α. The kissing
number of the scaled matrix is equal to the kissing number of the original lattice.

The Hermite parameter of a lattice is denoted by γc(�) and is defined as

γc(�) = d2
min(�)

[V (�)]
2
n

(4.7–8)

This parameter has an important role in defining the coding gain of the lattice. It is
clear that γc(Zn) = 1 and γc(A2) = 2√

3
≈ 1.1547.

Since 1/V (�) indicates the number of lattice points per unit volume, we conclude
that among lattices with a given minimum distance, those with a higher Hermite pa-
rameter are denser in the sense that they have more points per unit volume. In other
words, for a given dmin, a lattice with high γc packs more points in unit volume. This is
exactly what we need in constellation design since dmin determines the error probability
and having more points per unit volume improves bandwidth efficiency. It is clear from
above that A2 can provide 15% higher coding gain than the integer lattice Z

2.
Some properties of γc(�) are listed below. The interested reader is referred to the

paper by Forney (1988) for details.

1. γc(�) is a dimensionless parameter.
2. γc(�) is invariant to scaling and orthogonal transformations (rotation and reflection).
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3. For all M , γc(�) is invariant to the M-fold Cartesian product extension of the lattice;
i.e., γc(�M ) = γc(�).

Multidimensional Lattices
Most lattice examples presented so far are one- or two-dimensional. We have also
introduced the n-dimensional lattice Z

n which is an n-fold Cartesian product of Z. In
designing efficient multidimensional constellations, sometimes it is necessary to use
lattices different from Z

n . We introduce some common multidimensional lattices in
this section.

We have already introduced the two-dimensional rotation and scaling matrix R as

R =
[

1 1

−1 1

]
(4.7–9)

This notion can be generalized to four dimensions as

R =

⎡
⎢⎢⎢⎣

1 1 0 0

−1 1 0 0

0 0 1 1

0 0 −1 1

⎤
⎥⎥⎥⎦ (4.7–10)

It is seen that R2 = 2I4. Extension of this notion from 4 to 2n dimensions is straightfor-
ward. As a result, for any 2n-dimensional lattice � we have R2� = 2�. In particular
R2

Z
4 = 2Z

4. Note that RZ
4 is a lattice whose members are 4-tuples of integers in

which the sum of the first two coordinates and the sum of the last two coordinates are
even. Therefore RZ

4 is a sublattice of Z
4. In general, a sublattice of �, denoted by

�′, is a subset of points in � that themselves constitute a lattice. In algebraic terms, a
sublattice is a subgroup of the original lattice.

We already know that V (Z2) = 1. From Equation 4.7–6, we have V (RZ
4) =

| det(R)| = 4. From this it is clear that one-quarter of the points in Z
4 belong to RZ

4.
This can also be seen from the fact that only one-quarter of points in Z

n have the sum of
the first and the last two components both even. Therefore, we conclude that Z

4 can be
partitioned into four subsets that are all congruent to RZ

4. We will discuss the notion
of lattice partitioning and coset decomposition of lattices in Chapter 8 in the discussion
of coset codes.

Another example of a multidimensional lattice is the four-dimensional Schläfli
lattice denoted by D4. One generator matrix for this lattice is

G =

⎡
⎢⎢⎢⎣

2 0 0 0

1 0 0 1

0 1 0 1

0 0 1 1

⎤
⎥⎥⎥⎦ (4.7–11)

This lattice represents all 4-tuples with integer coordinates in which the sum of the four
coordinates is even, similar to RZ

2 in a plane. For this lattice V (D4) = | det(G)| = 2,
and the minimum distance is the distance between points (0, 0, 0, 0) and (1, 1, 0, 0),
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thus dmin(D4) = √
2. It can be easily seen that the kissing number for this lattice is

Nmin(D4) = 24 and

γc(D4) = d2
min(D4)

[V (D4)]
2
n

= 2

2
2
4

=
√

2 ≈ 1.414 (4.7–12)

This shows that D4 is approximately 41% denser than Z
4.

Sphere Packing and Lattice Density

For any n-dimensional lattice �, the set of n-dimensional spheres of radius dmin(�)

2
centered at all lattice points constitutes a set of nonoverlapping spheres that cover a
fraction of the n-dimensional space. A measure of denseness of a lattice is the fraction
of the n-dimensional space covered by these spheres. The problem of packing the space
with n-dimensional spheres such that the highest fraction of the space is covered, or
equivalently, packing as many possible spheres in a given volume of space, is called
the sphere packing problem.

In the one-dimensional space, all lattices are equivalent to Z and the sphere packing
problem becomes trivial. In this space, spheres are simply intervals of length 1 centered
at lattice points. These spheres cover the entire length, and therefore the fraction of the
space covered by these spheres is 1.

In Problem 4.56, it is shown that the volume of an n-dimensional sphere with radius
R is given by Vn(R) = Bn Rn , where

Bn = π
n
2

�
( n

2 + 1
) (4.7–13)

The gamma function is defined in Equation 2.3–22. In particular, note that from Equa-
tion 2.3–23 we have

�

(
n

2
+ 1

)
=

{( n
2

)
! n even and positive

√
π n(n−2)(n−4)...3×1

2
n+1

2
n odd and positive

(4.7–14)

Substituting Equation 4.7–14 into 4.7–13 yields

Bn =

⎧⎪⎪⎨
⎪⎪⎩

π
n
2( n

2

)
!

n even

2nπ
n−1

2 ( n−1
2 )!

n! n odd

(4.7–15)

Therefore,

Vn(R) =

⎧⎪⎪⎨
⎪⎪⎩

π
n
2( n

2

)
!

Rn n even

2nπ
n−1

2 ( n−1
2 )!

n! Rn n odd

(4.7–16)
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FIGURE 4.7–4
The volume of an n-dimensional sphere with radius 1.

Clearly, Bn denotes the volume of an n-dimensional sphere with radius 1. A plot of Bn

for different values of n is shown in Figure 4.7–4. It is interesting to note that for large
n the value of Bn goes to zero, and it has a maximum at n = 5.

The volume of the space that corresponds to each lattice point is V (�), the fun-
damental volume of the lattice. We define the density of a lattice �, denoted by �(�),
as the ratio of the volume of a sphere with radius dmin(�)

2 to the fundamental volume of
the lattice. This ratio is the fraction of the space covered by the spheres of radius dmin(�)

2
and centered at lattice points. From this definition we have

�(�) =
Vn

(
dmin(�)

2

)
V (�)

= Bn

V (�)

(
dmin(�)

2

)n

(4.7–17)

= Bn

2n

(
d2

min(�)

V
2
n (�)

) n
2

= Bn

2n
γ

n
2

c (�)

where we have used the definition of γc(�) given in Equation 4.7–8.

E X A M P L E 4.7–1. To obtain the density of Z
2, we note that for this lattice n = 2,

dmin = 1, and V (Z2) = 1. Substituting in Equation 4.7–17, we obtain

�(Zn) = Bn

V (�)

(
dmin(�)

2

)n

= π

(
1

2

)2

= π

4
= 0.7854 (4.7–18)
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For A2 we have n = 2, dmin = 1, and V (A2) =
√

3
2 . Therefore,

�(A2) = Bn

V (�)

(
dmin(�)

2

)n

= π
√

3
2

(
1

2

)2

= π

2
√

3
= 0.9069 (4.7–19)

This shows that A2 is denser than Z
2.

It can be shown that among all two-dimensional lattices, A2 has the highest density.
Therefore the hexagonal lattice provides the best sphere packing in the plane.

E X A M P L E 4.7–2. For D4, the Schläfli lattice, we have n = 4, dmin(D4) = √
2, and and

V (D4) = 2. Therefore,

�(A2) = Bn

V (�)

(
dmin(�)

2

)n

= π2

16
= 0.6169 (4.7–20)

4.7–2 Signal Constellations from Lattices

A signal constellation C can be carved from a lattice by choosing the points of a
lattice, or a shifted version of it, that are within some region R. The signal points
are therefore the intersection of the lattice points, or its shift, and region R, i.e.,
C(�,R) = (� + a) ∩ R, where a denotes a possible shift in lattice points. For
instance, in Figure 4.7–2, the points of the constellation belong to Z

2 + ( 1
2 , 1

2

)
, and

the region R is either a square or a cross-shaped region depending on the constella-
tion size. For M = 4, 16, 64, R is a square; and for M = 8, 32 it has a cross shape.
The constellation size M is the number of lattice (or shifted lattice) points within the
boundary. Since V (�) is the reciprocal of the number of lattice points per unit volume,
we conclude that if the volume of the region R, denoted by V (R), is much larger than
V (�), then

M ≈ V (R)

V (�)
(4.7–21)

The average energy of a constellation with equiprobable messages is

Eavg = 1

M

M∑
m=1

‖xm‖2 (4.7–22)

For a large constellation we can use the continuous approximation by assuming that the
probability is uniformly distributed on the region R, and by finding the second moment
of the region as

E(R) = 1

V (R)

∫
R

‖x‖2 dx (4.7–23)

For large values of M , E(R) is quite close to Eavg. Table 4.7–1 gives values of E(R) and
Eavg for M = 16, 64, 256 for a square constellation. The last column of this table gives
the relative error in substituting the average energy with the continuous approximation.
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TABLE 4.7–1

Average Energy and Its Continuous Approximation
for Square Constellations

M Eavg E(R) E(R)−Eavg

E(R)

16
5

2

8

3
0.06

64
21

2

32

3
0.015

256
85

2

128

3
0.004

To be able to compare an n-dimensional constellation C with QAM, we define the
average energy per two dimensions as

Eavg/2D(C) = 2

n
Eavg = 2

nM

∑
m∈C

‖xm‖2 (4.7–24)

Using the continuous approximation, the average energy per two dimensions can be
well approximated by

Eavg/2D ≈ 2

nV (R)

∫
R

‖x‖2 dx (4.7–25)

Error Probability and Constellation Figure of Merit
In a lattice-based constellation, each signal point has Nmin nearest neighbors; therefore
at high SNRs we have

Pe ≈ Nmin Q

⎛
⎝

√
d2

min

2N0

⎞
⎠ (4.7–26)

An efficient constellation provides large dmin at a given average energy. To study and
compare the efficiency of different constellations, we express the error probability as

Pe ≈ Nmin Q

(√
d2

min

2Eavg/2D
· Eavg/2D

N0

)
(4.7–27)

The term Eavg/2D

N0
represents the average SNR per two dimensions and is denoted by

SNRavg/2D. The numerator of SNRavg/2D is the average signal energy per two dimensions,
and its denominator is the noise power per two dimensions. If we define the constellation
figure of merit (CFM) as

CFM(C) = d2
min(C)

Eavg/2D(C)
(4.7–28)



Proakis-27466 book September 25, 2007 14:41

Chapter Four: Optimum Receivers for AWGN Channels 239

where Eavg/2D(C) is given by Equation 4.7–24, we can express the error probability from
Equation 4.7–27 as

Pe ≈ Nmin Q

⎛
⎝

√
CFM(C)

2
· Eavg/2D

N0

⎞
⎠ = Nmin Q

⎛
⎝

√
CFM(C)

2
· SNRavg/2D

⎞
⎠

(4.7–29)

Clearly the constellation figure of merit determines the coefficient by which theEavg/2D(C)
is scaled in the expression of error probability.

For a square QAM constellation from Equation 3.2–41 we have

d2
min = 6Eavg

M − 1
(4.7–30)

Therefore,

CFM = 6

M − 1
(4.7–31)

Note that from Equation 4.3–30 we have

Pe ≈ 4Q

⎛
⎝

√
3

M − 1

Eavg

N0

⎞
⎠ = 4Q

⎛
⎝

√
CFM

2

Eavg

N0

⎞
⎠ (4.7–32)

which is in agreement with Equation 4.7–29. Also note that in a square QAM constel-
lation, for large M we can write

CFM ≈ 6

M
= 6

2k
(4.7–33)

where k denotes the number of bits per two dimensions.

Coding and Shaping Gains
In Problem 4.57 we consider a constellation C based on the intersection of the shifted
lattice Z

n + ( 1
2 , 1

2 , . . . , 1
2

)
and the boundary region R defined as an n-dimensional

hypercube centered at the origin with side length L . In this problem it is shown that
when n is even, and L = 2� is a power of 2, the number of bits per two dimensions,
denoted by β, is equal to 2� + 2, and CFM(C) is approximated by

CFM(C) ≈ 6

2β
(4.7–34)

which is equal to what we obtained for a square QAM. Since the Z
n with the cubic

boundary is the simplest possible n-dimensional constellation, its CFM is taken as the
baseline CFM to which the CFMs of other constellations are compared. This base-
line constellation figure of merit is denoted by CFM0. Note that in an n-dimensional
constellation of size M , the number of bits per two dimensions is

β = 2

n
log2 M (4.7–35)
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Hence,

2β = M
2
n (4.7–36)

From this and Equation 4.7–21, we have

2β ≈
[

V (R)

V (�)

] 2
n

(4.7–37)

Using this result in Equation 4.7–34 gives the value of the baseline constellation figure
of merit as

CFM0 = 6

2β
≈ 6

[
V (�)

V (R)

] 2
n

(4.7–38)

From Equations 4.7–28 and 4.7–38 we have

CFM(C)

CFM0
≈ d2

min

[V (�)]
2
n

× [V (R)]
2
n

6Eavg/2D
(4.7–39)

Now we define the shaping gain of region R as

γs(R) = [V (R)]
2
n

6Eavg/2D

≈ n[V (R)]1+ 2
n

12
∫

R
‖x‖2 dx

(4.7–40)

where in the last step we used Equation 4.7–25. It can be shown that the shaping gain
is independent of scaling and orthogonal transformations of the region R. It can also
be shown that γs

(RM
) = γs (R), where RM denotes the M-fold Cartesian product of

the boundary region R. From these, and the properties of γc(�), it is clear that scaling,
orthogonal transformation, and Cartesian product of � and R have no effect on the
figure of merit of the constellation based on � and R.

From Equation 4.7–39 we have

CFM(C) ≈ CFM0 · γc(�) · γs(R) (4.7–41)

This relation shows that the relative gain of a given constellation over the baseline
constellation can be viewed as the product of two independent terms, namely, the fun-
damental coding gain of the lattice, denoted by γc(�) and given by Equation 4.7–8, and
the shaping gain of regionR, denoted by γs(R) and given in Equation 4.7–40. The fun-
damental coding gain depends on the choice of the lattice. Choosing a dense lattice with
high coding gain that provides large minimum distance per unit volume, or, equivalently,
requires low volume for a given minimum distance, is highly desirable and improves the
performance. Similarly, the shaping gain depends only on the choice of the boundary of
the constellation, and choosing a region R with high shaping gain improves the power
efficiency of the constellation and results in improved performance of the system.

In Problem 4.57 it is shown that if R is an n-dimensional hypercube centered at
the origin, then γs(R) = 1.
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E X A M P L E 4.7–3. For a circle of radius r , we have V (R) = πr2 and∫∫
x2+y2≤r2

(x2 + y2) dx dy =
∫ 2π

0

∫ r

0
z2 z dz dθ

= π

2
r4

(4.7–42)

Therefore,

γs(R) = n [V (R)]1+ 2
n

12
∫
R

‖x‖2 dx

= 2(πr2)2

6πr4

= π

3
≈ 1.0472 ∼ 0.2 dB

(4.7–43)

Recall that γc(A2) ≈ 1.1547 ∼ 0.62 dB; therefore a hexagonal constellation with a
circular boundary is capable of providing an asymptotic overall gain of 0.82 dB over
the baseline constellation.

E X A M P L E 4.7–4. As a generalization of Example 4.7–3, let us consider the case where
R is an n-dimensional sphere of radius R and centered at the origin. In this case∫

R
‖x‖2 dx =

∫ R

0
r2 dVn(r )

=
∫ R

0
r2 d(Bnrn)

= Bn

∫ R

0
nrn+1 dr

= nBn

n + 2
Rn+2

= n

n + 2
R2Vn(R)

(4.7–44)

Substituting this result into Equation 4.7–40 yields

γs(R) = n + 2

12

⎛
⎝ V

1
n

n (R)

R

⎞
⎠

2

(4.7–45)

Note that V
1
n

n (R) is the length of the side of an n-dimensional cube that has a volume
equal to an n-dimensional sphere of radius R. Substituting for Vn(R) from Equa-
tion 4.7–16 results in

γs(R) = (n + 2)π

12
[
�

(
n
2 + 1

)] 2
n

(4.7–46)

A plot of γs(R) for an n-dimensional sphere as a function of n is shown in Figure 4.7–5.
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FIGURE 4.7–5
The shaping gain for an n-dimensional sphere.

It can be shown that among all possible boundaries in an n-dimensional space,
spherical boundaries are the most efficient. As the dimensionality of the space in-
creases, spherical boundaries can provide an asymptotic shaping gain of πe

6 which is
approximately 1.423 equivalent to 1.533 dB. Therefore, 1.533 dB is the maximum gain
that shaping can provide. Getting close to this bound requires high dimensional con-
stellations. For instance, increasing the dimensionality of the space to 100 will provide
a shaping gain of roughly 1.37 dB, and increasing it to 1000 provides a shaping gain
of 1.5066 dB.

Unlike shaping gain, the coding gain can be increased indefinitely by using high
dimensional dense lattices. However, such lattices have very large kissing numbers.
The effect of large kissing numbers dramatically offsets the effect of the increased
coding gain, and the overall performance of the system will remain within the bounds
predicted by Shannon and discussed in Chapter 6.

4.8
DETECTION OF SIGNALING SCHEMES WITH MEMORY

When the signal has no memory, the symbol-by-symbol detector described in the pre-
ceding sections of this chapter is optimum in the sense of minimizing the probability
of a symbol error. On the other hand, when the transmitted signal has memory, i.e., the
signals transmitted in successive symbol intervals are interdependent, then the optimum
detector is a detector that bases its decisions on observation of a sequence of received sig-
nals over successive signal intervals. In this section, we describe a maximum-likelihood
sequence detection algorithm that searches for the minimum Euclidean distance path
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through the trellis that characterizes the memory in the transmitted signal. Another pos-
sible approach is a maximum a posteriori probability algorithm that makes decisions
on a symbol-by-symbol basis, but each symbol decision is based on an observation
of a sequence of received signal vectors. This approach is similar to the maximum a
posteriori detection rule used for decoding turbo codes, known as the BCJR algorithm,
that will be discussed in Chapter 8.

4.8–1 The Maximum Likelihood Sequence Detector

Modulation systems with memory can be modeled as finite-state machines which can
be represented by a trellis, and the transmitted signal sequence corresponds to a path
through the trellis. Let us assume that the transmitted signal has a duration of K symbol
intervals. If we consider transmission over K symbol intervals, and each path of length
K through the trellis as a message signal, then the problem reduces to the optimal
detection problem discussed earlier in this chapter. The number of messages in this case
is equal to the number of paths through the trellis, and a maximum likelihood sequence
detection (MLSD) algorithm selects the most likely path (sequence) corresponding to
the received signal r (t) over the K signaling interval. As we have seen before, ML
detection corresponds to selecting a path of K signals through the trellis such that the
Euclidean distance between that path and r (t) is minimized. Note that since

∫ K Ts

0
|r (t) − s(t)|2 dt =

K∑
k=1

∫ kTs

(k−1)Ts

|r (t) − s(t)|2 dt (4.8–1)

the optimal detection rule becomes

(
ŝ(1), ŝ(2), . . . , ŝ(K )) = arg min

(s(1),s(2),...,s(K ))∈ϒ

K∑
k=1

‖r (k) − s(k)‖2

= arg min
(s(1),s(2),...,s(K ))∈ϒ

K∑
k=1

D
(
r (k), s(k))

(4.8–2)

where ϒ denotes the trellis. The above argument applies to all modulation systems with
memory.

As an example of the maximum-likelihood sequence detection algorithm, let us
consider the NRZI signal described in Section 3.3. Its memory is characterized by the
trellis shown in Figure 3.3–3. The signal transmitted in each signal interval is binary
PAM. Hence, there are two possible transmitted signals corresponding to the signal
points s1 = −s2 = √Eb, where Eb is the energy per bit.

In searching through the trellis for the most likely sequence, it may appear that
we must compute the Euclidean distance for every possible sequence. For the NRZI
example, which employs binary modulation, the total number of sequences is 2K .
However, this is not the case. We may reduce the number of sequences in the trellis
search by using the Viterbi algorithm to eliminate sequences as new data are received
from the demodulator.
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FIGURE 4.8–1
Trellis for NRZI signal.

The Viterbi algorithm is a sequential trellis search algorithm for performing ML
sequence detection. It is described in Chapter 8 as a decoding algorithm for convo-
lutional codes. We describe it below in the context of the NRZI signal detection. We
assume that the search process begins initially at state S0. The corresponding trellis is
shown in Figure 4.8–1.

At time t = T , we receive r1 = s(m)
1 + n from the demodulator, and at t = 2T , we

receive r2 = s(m)
2 + n2. Since the signal memory is 1 bit, which we denote by L = 1,

we observe that the trellis reaches its regular (steady-state) form after two transitions.
Thus, upon receipt of r2 at t = 2T (and thereafter), we observe that there are two signal
paths entering each of the nodes and two signal paths leaving each node. The two paths
entering node S0 at t = 2T correspond to the information bits (0, 0) and (1, 1) or,
equivalently, to the signal points (−√Eb, −

√Eb) and (
√Eb, −

√Eb), respectively. The
two paths entering node S1 at t = 2T correspond to the information bits (0, 1) and
(1, 0) or, equivalently, to the signal points (−√Eb,

√Eb) and (
√Eb,

√Eb), respectively.
For the two paths entering node S0, we compute the two Euclidean distance metrics

D0(0, 0) = (r1 + √Eb)2 + (r2 + √Eb)2

D0(1, 1) = (r1 − √Eb)2 + (r2 + √Eb)2
(4.8–3)

by using the outputs r1 and r2 from the demodulator. The Viterbi algorithm compares
these two metrics and discards the path having the larger (greater-distance) metric.†

The other path with the lower metric is saved and is called the survivor at t = 2T . The
elimination of one of the two paths may be done without compromising the optimality
of the trellis search, because any extension of the path with the larger distance beyond
t = 2T will always have a larger metric than the survivor that is extended along the
same path beyond t = 2T .

Similarly, for the two paths entering node S1 at t = 2T , we compute the two
Euclidean distance metrics

D1(0, 1) = (r1 + √Eb)2 + (r2 − √Eb)2

D1(1, 0) = (r1 − √Eb)2 + (r2 − √Eb)2
(4.8–4)

†Note that, for NRZI, the reception of r2 from the demodulator neither increases nor decreases the relative
difference between the two metrics D0(0, 0) and D0(1, 1). At this point, one may ponder the implications
of this observation. In any case, we continue with the description of the ML sequence detection based on
the Viterbi algorithm.
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by using the outputs r1 and r2 from the demodulator. The two metrics are compared, and
the signal path with the larger metric is eliminated. Thus, at t = 2T , we are left with two
survivor paths, one at node S0 and the other at node S1, and their corresponding metrics.
The signal paths at nodes S0 and S1 are then extended along the two survivor paths.

Upon receipt of r3 at t = 3T , we compute the metrics of the two paths entering
state S0. Suppose the survivors at t = 2T are the paths (0, 0) at S0 and (0, 1) at S1.
Then the two metrics for the paths entering S0 at t = 3T are

D0(0, 0, 0) = D0(0, 0) + (r3 + √Eb)2

D0(0, 1, 1) = D1(0, 1) + (r3 + √Eb)2
(4.8–5)

These two metrics are compared, and the path with the larger (greater-distance) metric
is eliminated. Similarly, the metrics for the two paths entering S1 at t = 3T are

D1(0, 0, 1) = D0(0, 0) + (r3 − √Eb)2

D1(0, 1, 0) = D1(0, 1) + (r3 − √Eb)2
(4.8–6)

These two metrics are compared, and the path with the larger (greater-distance) metric
is eliminated.

This process is continued as each new signal sample is received from the demodu-
lator. Thus, the Viterbi algorithm computes two metrics for the two signal paths entering
a node at each stage of the trellis search and eliminates one of the two paths at each
node. The two survivor paths are then extended forward to the next state. Therefore,
the number of paths searched in the trellis is reduced by a factor of 2 at each stage.

It is relatively easy to generalize the trellis search performed by the Viterbi algo-
rithm for M-ary modulation. For example, consider a system that employs M = 4 sig-
nals and is characterized by the four-state trellis shown in Figure 4.8–2. We observe that
each state has two signal paths entering and two signal paths leaving each node. The
memory of the signal is L = 1. Hence, the Viterbi algorithm will have four survivors
at each stage and their corresponding metrics. Two metrics corresponding to the two
entering paths are computed at each node, and one of the two signal paths entering the

FIGURE 4.8–2
One stage of trellis diagram for delay modulation.
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node is eliminated at each state of the trellis. Thus, the Viterbi algorithm minimizes the
number of trellis paths searched in performing ML sequence detection.

From the description of the Viterbi algorithm given above, it is unclear how
decisions are made on the individual detected information symbols given the surviving
sequences. If we have advanced to some stage, say K , where K � L in the trellis,
and we compare the surviving sequences, we shall find that with high probability all
surviving sequences will be identical in bit (or symbol) positions K − 5L and less. In
a practical implementation of the Viterbi algorithm, decisions on each information bit
(or symbol) are forced after a delay of 5L bits (or symbols), and hence the surviving
sequences are truncated to the 5L most recent bits (or symbols). Thus, a variable delay
in bit or symbol detection is avoided. The loss in performance resulting from the sub-
optimum detection procedure is negligible if the delay is at least 5L . This approach to
implementation of Viterbi algorithm is called path memory truncation.

E X A M P L E 4.8–1. Consider the decision rule for detecting the data sequence in an NRZI
signal with a Viterbi algorithm having a delay of 5L bits. The trellis for the NRZI
signal is shown in Figure 4.8–1. In this case, L = 1; hence the delay in bit detec-
tion is set to 5 bits. Hence, at t = 6T , we shall have two surviving sequences, one
for each of the two states and the corresponding metrics μ6(b1, b2, b3, b4, b5, b6) and
μ6(b′

1, b′
2, b′

3, b′
4, b′

5, b′
6). At this stage, with probability nearly equal to 1, bit b1 will

be the same as b′
1; that is, both surviving sequences will have a common first branch.

If b1 �= b′
1, we may select the bit (b1 or b′

1) corresponding to the smaller of the two
metrics. Then the first bit is dropped from the two surviving sequences. At t = 7T ,
the two metrics μ7(b2, b3, b4, b5, b6, b7) and μ7(b′

2, b′
3, b′

4, b′
5, b′

6, b′
7) will be used to

determine the decision on bit b2. This process continues at each stage of the search
through the trellis for the minimum-distance sequence. Thus the detection delay is fixed
at 5 bits.†

4.9
OPTIMUM RECEIVER FOR CPM SIGNALS

We recall from Section 3.3–2 that CPM is a modulation method with memory. The
memory results from the continuity of the transmitted carrier phase from one signal
interval to the next. The transmitted CPM signal may be expressed as

s(t) =
√

2E
T

cos[2π fct + φ(t; I)] (4.9–1)

where φ(t; I) is the carrier phase. The filtered received signal for an additive Gaussian
noise channel is

r (t) = s(t) + n(t) (4.9–2)

†One may have observed by now that the ML sequence detector and the symbol-by-symbol detector that
ignores the memory in the NRZI signal reach the same decision. Hence, there is no need for a decision
delay. Nevertheless, the procedure described above applies in general.
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where

n(t) = ni (t) cos 2π fct − nq (t) sin 2π fct (4.9–3)

4.9–1 Optimum Demodulation and Detection of CPM

The optimum receiver for this signal consists of a correlator followed by a maximum-
likelihood sequence detector that searches the paths through the state trellis for the
minimum Euclidean distance path. The Viterbi algorithm is an efficient method for
performing this search. Let us establish the general state trellis structure for CPM and
then describe the metric computations.

Recall that the carrier phase for a CPM signal with a fixed modulation index h may
be expressed as

φ(t; I) = 2πh
n∑

k=−∞
Ikq(t − kT )

= πh
n−L∑

k=−∞
Ik + 2πh

n∑
k=n−L+1

Ikq(t − kT )

= θn + θ (t; I), nT ≤ t ≤ (n + 1)T

(4.9–4)

where we have assumed that q(t) = 0 for t < 0, q(t) = 1
2 for t ≥ LT , and

q(t) =
∫ t

0
g(τ ) dτ (4.9–5)

The signal pulse g(t) = 0 for t < 0 and t ≥ LT . For L = 1, we have a full response
CPM, and for L > 1, where L is a positive integer, we have a partial response CPM
signal.

Now, when h is rational, i.e., h = m/p where m and p are relatively prime positive
integers, the CPM scheme can be represented by a trellis. In this case, there are p phase
states

s =
{

0,
πm

p
,

2πm

p
, . . . ,

(p − 1)πm

p

}
(4.9–6)

when m is even, and 2p phase states

s =
{

0,
πm

p
, . . . ,

(2p − 1)πm

p

}
(4.9–7)

when m is odd. If L = 1, these are the only states in the trellis. On the other hand, if
L > 1, we have an additional number of states due to the partial response character
of the signal pulse g(t). These additional states can be identified by expressing θ (t; I)
given by Equation 4.9–4 as

θ (t; I) = 2πh
n−1∑

k=n−L+1

Ikq(t − kT ) + 2πhInq(t − nT ) (4.9–8)
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The first term on the right-hand side of Equation 4.9–8 depends on the information
symbols (In−1, In−2, . . . , In−L+1), which is called the correlative state vector, and rep-
resents the phase term corresponding to signal pulses that have not reached their final
value. The second term in Equation 4.9–8 represents the phase contribution due to
the most recent symbol In . Hence, the state of the CPM signal (or the modulator) at
time t = nT may be expressed as the combined phase state and correlative state,
denoted as

Sn = {θn, In−1, In−2, . . . , In−L+1} (4.9–9)

for a partial response signal pulse of length LT , where L > 1. In this case, the number
of states is

Ns =
{

pM L−1 (even m)

2pM L−1 (odd m)
(4.9–10)

when h = m/p.
Now, suppose the state of the modulator at t = nT is Sn . The effect of the new

symbol in the time interval nT ≤ t ≤ (n + 1)T is to change the state from Sn to Sn+1.
Hence, at t = (n + 1)T , the state becomes

Sn+1 = (θn+1, In, In−1, . . . , In−L+2)

where

θn+1 = θn + πhIn−L+1

E X A M P L E 4.9–1. Consider a binary CPM scheme with a modulation index h = 3/4
and a partial response pulse with L = 2. Let us determine the states Sn of the CPM
scheme and sketch the phase tree and state trellis.

First, we note that there are 2p = 8 phase states, namely,

s = {
0, ± 1

4π, ± 1
2π, ± 3

4π, π
}

For each of these phase states, there are two states that result from the memory of the
CPM scheme. Hence, the total number of states is Ns = 16, namely,

(0, 1), (0, −1), (π, 1), (π, −1),
(

1
4π, 1

)
,
(

1
4π, −1

)
,
(

1
2π, 1

)
,
(

1
2π, −1

)
,(

3
4π, 1

)
,
(

3
4π, −1

)
,
(− 1

4π, 1
)
,
(− 1

4π, −1
)
,
(− 1

2π, 1
)
,
(− 1

2π, −1
)
,(− 3

4π, 1
)
,
(− 3

4π, −1
)

If the system is in phase state θn = − 1
4π and In−1 = −1, then

θn+1 = θn + πhIn−1

= − 1
4π − 3

4π = −π

The state trellis is illustrated in Figure 4.9–1. A path through the state trellis corre-
sponding to the sequence (1, −1, −1, −1, 1, 1) is illustrated in Figure 4.9–2.
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FIGURE 4.9–1
State trellis for partial response (L = 2) CPM
with h = 3

4 .

In order to sketch the phase tree, we must know the signal pulse shape g(t). Figure
4.9–3 illustrates the phase tree when g(t) is a rectangular pulse of duration 2T , with
initial state (0, 1).

Having established the state trellis representation of CPM, let us now consider the
metric computations performed in the Viterbi algorithm.

Metric Computations
By referring to the mathematical development for the derivation of the maximum like-
lihood demodulator given in Section 4.1, it is easy to show that the logarithm of the
probability of the observed signal r (t) conditioned on a particular sequence of trans-
mitted symbols I is proportional to the cross-correlation metric

C Mn(I) =
∫ (n+1)T

−∞
r (t) cos[ωct + φ(t; I)] dt

= C Mn−1(I) +
∫ (n+1)T

nT
r (t) cos[ωct + θ (t; I) + θn] dt

(4.9–11)
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FIGURE 4.9–2
A single signal path through the trellis.

FIGURE 4.9–3
Phase tree for L = 2 partial response CPM
with h = 3

4 .
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The term C Mn−1(I) represents the metrics for the surviving sequences up to time nT ,
and the term

vn(I; θn) =
∫ (n+1)T

nT
r (t) cos[ωct + θ (t; I) + θn] dt (4.9–12)

represents the additional increments to the metrics contributed by the signal in the
time interval nT ≤ t ≤ (n + 1)T . Note that there are M L possible sequences
I = (In, In−1, . . . , In−L+1) of symbols and p (or 2p) possible phase states {θn}. There-
fore, there are pM L (or 2pM L ) different values of vn(I, θn) computed in each sig-
nal interval, and each value is used to increment the metrics corresponding to the
pM L−1 surviving sequences from the previous signaling interval. A general block di-
agram that illustrates the computations of vn(I; θn) for the Viterbi decoder is shown in
Figure 4.9–4.

Note that the number of surviving sequences at each state of the Viterbi decod-
ing process is pM L−1 (or 2pM L−1). For each surviving sequence, we have M new
increments of vn(I; θn) that are added to the existing metrics to yield pM L (or 2pM L )
sequences with pM L (or 2pM L ) metrics. However, this number is then reduced back
to pM L−1 (or 2pM L−1) survivors with corresponding metrics by selecting the most
probable sequence of the M sequences merging at each node of the trellis and discarding
the other M − 1 sequences.

4.9–2 Performance of CPM Signals

In evaluating the performance of CPM signals achieved with maximum-likelihood
sequence detection, we must determine the minimum Euclidean distance of paths
through the trellis that separate at the node at t = 0 and remerge at a later time at
the same node. The distance between two paths through the trellis is related to the
corresponding signals as we now demonstrate.

Suppose that we have two signals si (t) and s j (t) corresponding to two phase
trajectories φ(t; I i ) and φ(t; I j ). The sequences I i and I j must be different in their
first symbol. Then, the Euclidean distance between the two signals over an interval of

I

I

I

FIGURE 4.9–4
Computation of metric increments
vn(I; θn).
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length N T , where 1/T is the symbol rate, is defined as

d2
i j =

∫ N T

0
[si (t) − s j (t)]

2 dt

=
∫ N T

0
s2

i (t) dt +
∫ N T

0
s2

j (t) dt − 2
∫ N T

0
si (t)s j (t) dt

= 2NE − 2
2E
T

∫ N T

0
cos[ωct + φ(t; I i )] cos[ωct + φ(t; I j )] dt

= 2NE − 2E
T

∫ N T

0
cos[φ(t; I i ) − φ(t; I j )] dt

= 2E
T

∫ N T

0
{1 − cos[φ(t; I i ) − φ(t; I j )]} dt

(4.9–13)

Hence the Euclidean distance is related to the phase difference between the paths in the
state trellis according to Equation 4.9–13.

It is desirable to express the distance d2
i j in terms of the bit energy. Since E =

Eb log2 M , Equation 4.9–13 may be expressed as

d2
i j = 2Ebδ

2
i j (4.9–14)

where δ2
i j is defined as

δ2
i j = log2 M

T

∫ N T

0
{1 − cos[φ(t; I i ) − φ(t; I j )]} dt (4.9–15)

Furthermore, we observe that φ(t; I i ) − φ(t; I j ) = φ(t; I i − I j ), so that, with ξ =
I i − I j , Equation 4.9–15 may be written as

δ2
i j = log2 M

T

∫ N T

0
[1 − cos φ(t; ξ )] dt (4.9–16)

where any element of ξ can take the values 0, ±2, ±4, . . . ,±2(M − 1), except that
ξ0 �= 0.

The error rate performances for CPM is dominated by the term corresponding to
the minimum Euclidean distance, and it may be expressed as

PM = Kδmin Q

(√
Eb

N0
δ2

min

)
(4.9–17)

where Kδmin is the number of paths having the minimum distance

δ2
min = lim

N→∞
min

i, j
δ2

i j

= lim
N→∞

min
i, j

{
log2 M

T

∫ N T

0
[1 − cos φ(t; I i − I j )] dt

} (4.9–18)

We note that for conventional binary PSK with no memory, N = 1 and δ2
min =

δ2
12 = 2. Hence, Equation 4.9–17 agrees with our previous result.

Since δ2
min characterizes the performance of CPM, we can investigate the effect on

δ2
min resulting from varying the alphabet size M , the modulation index h, and the length

of the transmitted pulse in partial response CPM.
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First, we consider full response (L = 1) CPM. If we take M = 2 as a beginning,
we note that the sequences

I j = +1, −1, I2, I3

I j = −1, +1, I2, I3
(4.9–19)

which differ for k = 0, 1 and agree for k ≥ 2, result in two phase trajectories that merge
after the second symbol. This corresponds to the difference sequence

ξ = {2, −2, 0, 0, . . .} (4.9–20)

The Euclidean distance for this sequence is easily calculated from Equation 4.9–16,
and provides an upper bound on δ2

min. This upper bound for CPFSK with M = 2 is

d2
B(h) = 2

(
1 − sin 2πh

2πh

)
, M = 2 (4.9–21)

For example, where h = 1
2 , which corresponds to MSK, we have d2

B( 1
2 ) = 2, so that

δ2
min

( 1
2

) ≤ 2.
For M > 2 and full response CPM, it is also easily seen that phase trajectories

merge at t = 2T . Hence, an upper bound on δ2
min can be obtained by considering the

phase difference sequence ξ = {α, −α, 0, 0, . . .} where α = ±2, ±4, . . . ,±2(M − 1).
This sequence yields the upper bound for M-ary CPFSK as

d2
B(h) = min

1≤k≤M−1

{
(2 log2 M)

(
1 − sin 2kπh

2kπh

)}
(4.9–22)

The graphs of d2
B(h) versus h for M = 2, 4, 8, 16 are shown in Figure 4.9–5.

It is apparent from these graphs that large gains in performance can be achieved by
increasing the alphabet size M . It must be remembered, however, that δ2

min(h) ≤ d2
B(h).

That is, the upper bound may not be achievable for all values of h.

FIGURE 4.9–5
The upper bound d2

B as a function of the
modulation index h for full response CPM
with rectangular pulses. [From Aulin and
Sundberg (1984). c© 1984 John Wiley Ltd.
Reprinted with permission of the publisher.]
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The minimum Euclidean distance δ2
min(h) has been determined, by evaluating

Equation 4.9–16, for a variety of CPM signals by Aulin and Sundberg (1981). For
example, Figure 4.9–6 illustrates the dependence of the Euclidean distance for binary
CPFSK as a function of the modulation index h, with the number N of bit obser-
vation (decision) intervals (N = 1, 2, 3, 4) as a parameter. Also shown is the upper
bound d2

B(h) given by Equation 4.9–21. In particular, we note that when h = 1
2 ,

δ2
min

( 1
2

) = 2, which is the same squared distance as PSK (binary or quaternary) with
N = 1. On the other hand, the required observation interval for MSK is N = 2
intervals, for which we have δ2

min

( 1
2

) = 2. Hence, the performance of MSK with a
Viterbi detector is comparable to (binary or quaternary) PSK as we have previously
observed.

We also note from Figure 4.9–6 that the optimum modulation index for binary
CPFSK is h = 0.715 when the observation interval is N = 3. This yields δ2

min(0.715) =
2.43, or a gain of 0.85 dB relative to MSK.

Figure 4.9–7 illustrates the Euclidean distance as a function of h for M = 4 CPFSK,
with the length of the observation interval N as a parameter. Also shown (as a dashed
line where it is not reached) is the upper bound d2

B evaluated from Equation 4.9–22.
Note that δ2

min achieves the upper bound for several values of h for some N . In particular,
note that the maximum value of d2

B , which occurs at h ≈ 0.9, is approximately reached
for N = 8 observed symbol intervals. The true maximum is achieved at h = 0.914
with N = 9. For this case, δ2

min(0.914) = 4.2, which represents a 3.2-dB gain over
MSK. Also note that the Euclidean distance contains minima at h = 1

3 , 1
2 , 2

3 , 1, etc.
These values of h are called weak modulation indices and should be avoided. Similar
results are available for larger values of M and may be found in the paper by Aulin and
Sundberg (1981) and the text by Anderson et al. (1986).

FIGURE 4.9–6
Squared minimum Euclidean distance as a function
of the modulation index for binary CPFSK. The
upper bound is d2

B . [From Aulin and Sundberg
(1981), c© 1981 IEEE.]
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FIGURE 4.9–7
Squared minimum Euclidean distance as a
function of the modulation index for
quaternary CPFSK. The upper bound is d2

B .
[From Aulin and Sundberg (1981), c© 1981
IEEE.]

Large performance gains can also be achieved with maximum-likelihood sequence
detection of CPM by using partial response signals. For example, the distance bound
d2

B(h) for partial response, raised cosine pulses given by

g(t) =

⎧⎪⎨
⎪⎩

1

2LT

(
1 − cos

2π t

2LT

)
0 ≤ t ≤ LT

0 otherwise

(4.9–23)

is shown in Figure 4.9–8 for M = 2. Here, note that, as L increases, d2
B also achieves

higher values. Clearly, the performance of CPM improves as the correlative memory
L increases, but h must also be increased in order to achieve the larger values of d2

B .
Since a larger modulation index implies a larger bandwidth (for fixed L), while a larger
memory length L (for fixed h) implies a smaller bandwidth, it is better to compare the
Euclidean distance as a function of the normalized bandwidth 2W Tb, where W is the 99
percent power bandwidth and Tb is the bit interval. Figure 4.9–9 illustrates this type
of comparison with MSK used as a point of reference (0 dB). Note from this figure
that there are several decibels to be gained by using partial response signals and higher
signaling alphabets. The major price to be paid for this performance gain is the added
exponentially increasing complexity in the implementation of the Viterbi detector.
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FIGURE 4.9–8
Upper bound d2

B on the minimum
distance for partial response (raised
cosine pulse) binary CPM. [From
Sundberg (1986), c© 1986 IEEE.]

FIGURE 4.9–9
Power bandwidth tradeoff for partial
response CPM signals with raised cosine
pulses. W is the 99 percent inband power
bandwidth. [From Sundberg (1986), c©
1986 IEEE.]
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The performance results shown in Figure 4.9–9 illustrate that a 3–4 dB gain relative
to MSK can be easily obtained with relatively no increase in bandwidth by the use of
raised cosine partial response CPM and M = 4. Although these results are for raised
cosine signal pulses, similar gains can be achieved with other partial response pulse
shapes. We emphasize that this gain in SNR is achieved by introducing memory into
the signal modulation and exploiting the memory in the demodulation of the signal. No
redundancy through coding has been introduced. In effect, the code has been built into
the modulation and the trellis-type (Viterbi) decoding exploits the phase constraints in
the CPM signal.

Additional gains in performance can be achieved by introducing additional redun-
dancy through coding and increasing the alphabet size as a means of maintaining a fixed
bandwidth. In particular, trellis-coded CPM using relatively simple convolution codes
has been thoroughly investigated and many results are available in the technical litera-
ture. The Viterbi decoder for the convolutionally encoded CPM signal now exploits the
memory inherent in the code and in the CPM signal. Performance gains of the order of
4–6 dB, relative to uncoded MSK with the same bandwidth, have been demonstrated
by combining convolutional coding with CPM. Extensive numerical results for coded
CPM are given by Lindell (1985).

Multi-h CPM
By varying the modulation index from one signaling interval to another, it is possible
to increase the minimum Euclidean distance δ2

min between pairs of phase trajectories
and, thus, improve the performance gain over constant-h CPM. Usually, multi-h CPM
employs a fixed number H of modulation indices that are varied cyclically in successive
signaling intervals. Thus, the phase of the signal varies piecewise linearly.

Significant gains in SNR are achievable by using only a small number of different
values of h. For example, with full response (L = 1) CPM and H = 2, it is possible to
obtain a gain of 3 dB relative to binary or quaternary PSK. By increasing H to H = 4,
a gain of 4.5 dB relative to PSK can be obtained. The performance gain can also be
increased with an increase in the signal alphabet. Table 4.9–1 lists the performance

TABLE 4.9–1

Maximum Values of the Upper Bound d2
B for Multi-h Linear Phase CPMa

dB gain
compared

M H Max d2
B with MSK h1 h2 h3 h4 h

2 1 2.43 0.85 0.715 0.715
2 2 4.0 3.0 0.5 0.5 0.5
2 3 4.88 3.87 0.620 0.686 0.714 0.673
2 4 5.69 4.54 0.73 0.55 0.73 0.55 0.64
4 1 4.23 3.25 0.914 0.914
4 2 6.54 5.15 0.772 0.772 0.772
4 3 7.65 5.83 0.795 0.795 0.795 0.795
8 1 6.14 4.87 0.964 0.964
8 2 7.50 5.74 0.883 0.883 0.883
8 3 8.40 6.23 0.879 0.879 0.879 0.879

aFrom Aulin and Sundberg (1982b).
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FIGURE 4.9–10
Upper bounds on minimum squared
Euclidean distance for various M and H
values. [From Aulin and Sundberg
(1982b), c© 1982 IEEE.]

gains achieved with M = 2, 4, and 8 for several values of H . The upper bounds on the
minimum Euclidean distance are also shown in Figure 4.9–10 for several values of M
and H . Note that the major gain in performance is obtained when H is increased from
H = 1 to H = 2. For H > 2, the additional gain is relatively small for small values of
{hi }. On the other hand, significant performance gains are achieved by increasing the
alphabet size M .

The results shown above hold for full response CPM. One can also extend the
use of multi-h CPM to partial response in an attempt to further improve performance.
It is anticipated that such schemes will yield some additional performance gains, but
numerical results on partial response, multi-h CPM are limited. The interested reader
is referred to the paper by Aulin and Sundberg (1982b).

4.9–3 Suboptimum Demodulation and Detection of CPM Signals

The high complexity inherent in the implementation of the maximum-likelihood
sequence detector for CPM signals has been a motivating factor in the investigation of
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reduced-complexity detectors. Reduced-complexity Viterbi detectors were investigated
by Svensson (1984), Svensson et al. (1984), Svensson and Sundberg (1983), Aulin et
al. (1981), Simmons and Wittke (1983), Palenius and Svensson (1993), and Palenius
(1991). The basic idea in achieving a reduced-complexity Viterbi detector is to design a
receiver filter that has a shorter pulse than the transmitter. The receiver pulse gR(t) must
be chosen in such a way that the phase tree generated by gR(t) is a good approximation
of the phase tree generated by the transmitter pulse gT (t). Performance results indicate
that a significant reduction in complexity can be achieved at a loss in performance of
about 0.5 to 1 dB.

Another method for reducing the complexity of the receiver for CPM signals is to
exploit the linear representation of CPM, which can be expressed as a sum of amplitude-
modulated pulses as given in the papers by Laurent (1986) and Mengali and Morelli
(1995). In many cases of practical interest the CPM signal can be approximated by a
single amplitude-modulated pulse or, perhaps, by a sum of two amplitude-modulated
pulses. Hence, the receiver can be easily implemented based on this linear representa-
tion of the CPM signal. The performance of such relatively simple receivers has been
investigated by Kawas-Kaleh (1989). The results of this study indicate that such sim-
plified receivers sacrifice little in performance but achieve a significant reduction in
implementation complexity.

4.10
PERFORMANCE ANALYSIS FOR WIRELINE AND RADIO
COMMUNICATION SYSTEMS

In the transmission of digital signals through an AWGN channel, we have observed that
the performance of the communication system, measured in terms of the probability of
error, depends solely on the received SNR, Eb/N0, where Eb is the transmitted energy
per bit and 1

2 N0 is the power spectral density of the additive noise. Hence, the additive
noise ultimately limits the performance of the communication system.

In addition to the additive noise, another factor that affects the performance of a
communication system is channel attenuation. All physical channels, including wire
lines and radio channels, are lossy. Hence, the signal is attenuated as it travels through
the channel. The simple mathematical model for the attenuation shown in Figure 4.10–1
may be used for the channel. Consequently, if the transmitted signal is s(t), the received
signal, with 0 < α ≤ 1 is

r (t) = αs(t) + n(t) (4.10–1)

FIGURE 4.10–1
Mathematical model of channel with
attenuation and additive noise.
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Then, if the energy in the transmitted signal is Eb, the energy in the received signal
is α2Eb. Consequently, the received signal has an SNR α2Eb/N0. Hence, the effect of
signal attenuation is to reduce the energy in the received signal and thus to render the
communication system more vulnerable to additive noise.

In analog communication systems, amplifiers called repeaters are used to pe-
riodically boost the signal strength in transmission through the channel. However,
each amplifier also boosts the noise in the system. In contrast, digital communication
systems allow us to detect and regenerate a clean (noise-free) signal in a transmission
channel. Such devices, called regenerative repeaters, are frequently used in wireline
and fiber-optic communication channels.

4.10–1 Regenerative Repeaters

The front end of each regenerative repeater consists of a demodulator/detector that
demodulates and detects the transmitted digital information sequence sent by the pre-
ceding repeater. Once detected, the sequence is passed to the transmitter side of the
repeater, which maps the sequence into signal waveforms that are transmitted to the
next repeater. This type of repeater is called a regenerative repeater.

Since a noise-free signal is regenerated at each repeater, the additive noise does
not accumulate. However, when errors occur in the detector of a repeater, the errors are
propagated forward to the following repeaters in the channel. To evaluate the effect of
errors on the performance of the overall system, suppose that the modulation is binary
PAM, so that the probability of a bit error for one hop (signal transmission from one
repeater to the next repeater in the chain) is

Pb = Q

⎛
⎝

√
2Eb

N0

⎞
⎠

Since errors occur with low probability, we may ignore the probability that any one bit
will be detected incorrectly more than once in transmission through a channel with K
repeaters. Consequently, the number of errors will increase linearly with the number
of regenerative repeaters in the channel, and therefore, the overall probability of error
may be approximated as

Pb ≈ KQ

⎛
⎝

√
2Eb

N0

⎞
⎠ (4.10–2)

In contrast, the use of K analog repeaters in the channel reduces the received SNR by
K , and hence, the bit-error probability is

Pb ≈ Q

⎛
⎝

√
2Eb

KN 0

⎞
⎠ (4.10–3)

Clearly, for the same probability of error performance, the use of regenerative repeaters
results in a significant saving in transmitter power compared with analog repeaters.



Proakis-27466 book September 25, 2007 14:41

Chapter Four: Optimum Receivers for AWGN Channels 261

Hence, in digital communication systems, regenerative repeaters are preferable. How-
ever, in wireline telephone channels that are used to transmit both analog and digital
signals, analog repeaters are generally employed.

E X A M P L E 4.10–1. A binary digital communication system transmits data over a wire-
line channel of length 1000 km. Repeaters are used every 10 km to offset the effect of
channel attenuation. Let us determine the Eb/N0 that is required to achieve a proba-
bility of a bit error of 10−5 if (a) analog repeaters are employed, and (b) regenerative
repeaters are employed.

The number of repeaters used in the system is K = 100. If regenerative repeaters
are used, the Eb/N0 obtained from Equation 4.10–2 is

10−5 = 100Q

(√
2Eb

N0

)

10−7 = Q

(√
2Eb

N0

)

which yields approximately 11.3 dB. If analog repeaters are used, the Eb/N0 obtained
from Equation 4.10–3 is

10−5 = Q

(√
2Eb

100N0

)

which yields Eb/N0 ≈ 29.6 dB. Hence, the difference in the required SNR is about
18.3 dB, or approximately 70 times the transmitter power of the digital communication
system.

4.10–2 Link Budget Analysis in Radio Communication Systems

In the design of radio communication systems that transmit over line-of-sight
microwave channels and satellite channels, the system designer must specify the size
of the transmit and receive antennas, the transmitted power, and the SNR required to
achieve a given level of performance at some desired data rate. The system design
procedure is relatively straightforward and is outlined below.

Let us begin with a transmit antenna that radiates isotropically in free space at a
power level of PT watts as shown in Figure 4.10–2. The power density at a distance d
from the antenna is PT /4πd2 W/m2. If the transmitting antenna has some directivity in

FIGURE 4.10–2
Isotropically radiating antenna.
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a particular direction, the power density in that direction is increased by a factor called
the antenna gain and denoted by GT . In such a case, the power density at distance d is
PT GT /4πd2 W/m2. The product PT GT is usually called the effective radiated power
(ERP or EIRP), which is basically the radiated power relative to an isotropic antenna,
for which GT = 1.

A receiving antenna pointed in the direction of the radiated power gathers a portion
of the power that is proportional to its cross-sectional area. Hence, the received power
extracted by the antenna may be expressed as

PR = PT GT AR

4πd2
(4.10–4)

where AR is the effective area of the antenna. From electromagnetic field theory, we
obtain the basic relationship between the gain G R of an antenna and its effective area
as

AR = G Rλ2

4π
m2 (4.10–5)

where λ = c/ f is the wavelength of the transmitted signal, c is the speed of light
(3 × 108 m/s), and f is the frequency of the transmitted signal.

If we substitute Equation 4.10–5 for AR into Equation 4.10–4, we obtain an
expression for the received power in the form

PR = PT GT G R

(4πd/λ)2
(4.10–6)

The factor

Ls =
(

λ

4πd

)2

(4.10–7)

is called the free-space path loss. If other losses, such as atmospheric losses, are
encountered in the transmission of the signal, they may be accounted for by intro-
ducing an additional loss factor, say La . Therefore, the received power may be written
in general as

PR = PT GT G R Ls La (4.10–8)

As indicated above, the important characteristics of an antenna are its gain and its
effective area. These generally depend on the wavelength of the radiated power and
the physical dimensions of the antenna. For example, a parabolic (dish) antenna of
diameter D has an effective area

AR = 1
4π D2η (4.10–9)

where 1
4π D2 is the physical area and η is the illumination efficiency factor, which falls

in the range 0.5 ≤ η ≤ 0.6. Hence, the antenna gain for a parabolic antenna of diameter
D is

G R = η

(
π D

λ

)2

(4.10–10)
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(a) (b)

FIGURE 4.10–3
Antenna beamwidth and pattern.

As a second example, a horn antenna of physical area A has an efficiency factor of 0.8,
an effective area of AR = 0.8A, and an antenna gain of

G R = 10A

λ2
(4.10–11)

Another parameter that is related to the gain (directivity) of an antenna is its
beamwidth, which we denote as B and which is illustrated graphically in Figure
4.10–3. Usually, the beamwidth is measured as the −3 dB width of the antenna pattern.
For example, the −3 dB beamwidth of a parabolic antenna is approximately

B = 70(λ/D)◦ (4.10–12)

so that GT is inversely proportional to 2
B . That is, a decrease of the beamwidth by a

factor of 2, which is obtained by doubling the diameter D, increases the antenna gain
by a factor of 4 (6 dB).

Based on the general relationship for the received signal power given by Equation
4.10–8, the system designer can compute PR from a specification of the antenna gains
and the distance between the transmitter and the receiver. Such computations are usually
done on a power basis, so that

(PR)dB = (PT )dB + (GT )dB + (G R)dB + (Ls)dB + (La)dB (4.10–13)

E X A M P L E 4.10–2. Suppose that we have a satellite in geosynchronous orbit (36,000
km above the earth’s surface) that radiates 100 W of power, i.e., 20 dB above 1 W (20
dBW). The transmit antenna has a gain of 17 dB, so that the ERP = 37 dBW. Also,
suppose that the earth station employs a 3-m parabolic antenna and that the downlink
is operating at a frequency of 4 GHz. The efficiency factor is η = 0.5. By substituting
these numbers into Equation 4.10–10, we obtain the value of the antenna gain as 39 dB.
The free-space path loss is

Ls = 195.6 dB

No other losses are assumed. Therefore, the received signal power is

(PR)dB = 20 + 17 + 39 − 195.6

= −119.6 dBW
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or, equivalently,

PR = 1.1 × 10−12 W

To complete the link budget computation, we must consider the effect of the
additive noise at the receiver front end. Thermal noise that arises at the receiver front
end has a relatively flat power density spectrum up to about 1012 Hz, and is given as

N0 = kB T0 W/Hz (4.10–14)

where kB is Boltzmann’s constant (1.38×10−23 W-s/K) and T0 is the noise temperature
in Kelvin. Therefore, the total noise power in the signal bandwidth W is N0W .

The performance of the digital communication system is specified by the Eb/N0
required to keep the error rate performance below some given value. Since

Eb

N0
= Tb PR

N0
= 1

R

PR

N0
(4.10–15)

it follows that

PR

N0
= R

( Eb

N0

)
req

(4.10–16)

where (Eb/N0)req is the required SNR per bit. Hence, if we have PR/N0 and the required
SNR per bit, we can determine the maximum data rate that is possible.

E X A M P L E 4.10–3. For the link considered in Example 4.10–2, the received signal power
is

PR = 1.1 × 10−12 W (−119.6 dBW)

Now, suppose the receiver front end has a noise temperature of 300 K, which is typical
for a receiver in the 4-GHz range. Then

N0 = 4.1 × 10−21 W/Hz

or, equivalently, −203.9 dBW/Hz. Therefore,

PR

N0
= −119.6 + 203.9 = 84.3 dB Hz

If the required SNR per bit is 10 dB, then, from Equation 4.10–16, we have the available
rate as

RdB = 84.3 − 10

= 74.3 dB (with respect to 1 bit/s)

This corresponds to a rate of 26.9 megabits/s, which is equivalent to about 420 PCM
channels, each operating at 64,000 bits/s.

It is a good idea to introduce some safety margin, which we shall call the link
margin MdB, in the above computations for the capacity of the communication link.
Typically, this may be selected as MdB = 6 dB. Then, the link budget computation for
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the link capacity may be expressed in the simple form

RdB =
(

PR

N0

)
dB Hz

−
( Eb

N0

)
req

− MdB

= (PT )dBW + (GT )dB + (G R)dB

+ (La)dB + (Ls)dB − (N0)dBW/Hz −
( Eb

N0

)
req

− MdB

(4.10–17)

4.11
BIBLIOGRAPHICAL NOTES AND REFERENCES

In the derivation of the optimum demodulator for a signal corrupted by AWGN, we
applied mathematical techniques that were originally used in deriving optimum receiver
structures for radar signals. For example, the matched filter was first proposed by
North (1943) for use in radar detection, and it is sometimes called the North filter. An
alternative method for deriving the optimum demodulator and detector is the Karhunen–
Loeve expansion, which is described in the classical texts by Davenport and Root
(1958), Helstrom (1968), and Van Trees (1968). Its use in radar detection theory is
described in the paper by Kelly et al. (1960). These detection methods are based on
the hypothesis testing methods developed by statisticians, e.g., Neyman and Pearson
(1933) and Wald (1947).

The geometric approach to signal design and detection, which was presented in
the context of digital modulation and which has its roots in Kotelnikov (1947) and
Shannon’s original work, is conceptually appealing and is now widely used since its
use in the text by Wozencraft and Jacobs (1965).

Design and analysis of signal constellations for the AWGN channel have received
considerable attention in the technical literature. Of particular significance is the perfor-
mance analysis of two-dimensional (QAM) signal constellations that has been treated
in the papers of Cahn (1960), Hancock and Lucky (1960), Campopiano and Glazer
(1962), Lucky and Hancock (1962), Salz et al. (1971), Simon and Smith (1973),
Thomas et al. (1974), and Foschini et al. (1974). Signal design based on multidimen-
sional signal constellations has been described and analyzed in the paper by Gersho
and Lawrence (1984).

The Viterbi algorithm was devised by Viterbi (1967) for the purpose of decod-
ing convolutional codes. Its use as the optimal maximum-likelihood sequence detec-
tion algorithm for signals with memory was described by Forney (1972) and Omura
(1971). Its use for carrier modulated signals was considered by Ungerboeck (1974) and
MacKenchnie (1973). It was subsequently applied to the demodulation of CPM by
Aulin and Sundberg (1981), Aulin et al. (1981), and Aulin (1980).

Our discussion of the demodulation and detection of signals with memory refer-
enced journal papers published primarily in the United States. The authors have recently
learned that maximum-likelihood sequential detection algorithms for signals with mem-
ory (introduced by the channel through intersymbol interference) were also developed
and published in Russia during the 1960s by D. Klovsky. An English translation of
Klovsky’s work is contained in his book coauthored with B. Nikolaev (1978).
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PROBLEMS

4.1 Let Z (t) = X (t) + jY (t) be a complex-valued, zero-mean white Gaussian noise process
with autocorrelation function RZ (τ ) = N0δ(τ ). Let fm(t), m = 1, 2, . . . , M , be a set of
M orthogonal equivalent lowpass waveforms defined on the interval 0 ≤ t ≤ T . Define

Nmr = Re

[∫ T

0
Z (t) f ∗

m(t) dt

]
, m = 1, 2, . . . , M

1. Determine the variance of Nmr .
2. Show that E[Nmr Nkr ] = 0 for k �= m.

4.2 The correlation metrics given by Equation 4.2–28 are

C(r, sm) = 2
N∑

n=1

rnsmn −
N∑

n=1

s2
mn, m = 1, 2, . . . , M

where

rn =
∫ T

0
r (t) φn(t) dt

and

smn =
∫ T

0
sm(t) φn(t) dt

Show that the correlation metrics are equivalent to the metrics

C(r, sm) = 2

∫ T

0
r (t) sm(t) dt −

∫ T

0
s2

m(t) dt

4.3 In the communication system shown in Figure P4.3, the receiver receives two signals r1

and r2, where r2 is a “noisier” version of r1. The two noises n1 and n2 are arbitrary—
not necessarily Gaussian, and not necessarily independent. Intuition would suggest that
since r2 is noisier than r1, the optimal decision can be based only on r1; in other words,
r2 is irrelevant. Is this true or false? If it is true, give a proof; if it is false, provide a
counterexample and state under what conditions this can be true.

� �

n1 n2

r1

r2

s � {√E,�√E } 

FIGURE P4.3
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4.4 A binary digital communication system employs the signals

s0(t) = 0 0 ≤ t ≤ T
s1(t) = A 0 ≤ t ≤ T

for transmitting the information. This is called on-off signaling. The demodulator cross-
correlates the received signal r (t) with s(t) and samples the output of the correlator at
t + T .
a. Determine the optimum detector for an AWGN channel and the optimum threshold,

assuming that the signals are equally probable.
b. Determine the probability of error as a function of the SNR. How does on-off signaling

compare with antipodal signaling?

4.5 A communication system transmits one of the three messages m1, m2, and m3 using signals
s1(t), s2(t), and s3(t). The signal s3(t) = 0, and s1(t) and s2(t) are shown in Figure P4.5.
The channel is an additive white Gaussian noise channel with noise power spectral density
equal to N0/2.

s1(t)

T�3 T
t

A

�A

s2(t)

T�3 T
t

2A

�2A

FIGURE P4.5

1. Determine an orthonormal basis for this signal set, and depict the signal constellation.
2. If the three messages are equiprobable, what are the optimal decision rules for this

system? Show the optimal decision regions on the signal constellation you plotted in
part 1.

3. If the signals are equiprobable, express the error probability of the optimal detector in
terms of the average SNR per bit.

4. Assuming this system transmits 3000 symbols per second, what is the resulting trans-
mission rate (in bits per second)?

4.6 Suppose that binary PSK is used for transmitting information over an AWGN with a power
spectral density of 1

2 N0 = 10−10 W/Hz. The transmitted signal energy is Eb = 1
2 A2T ,

where T is the bit interval and A is the signal amplitude. Determine the signal amplitude
required to achieve an error probability of 10−6 when the data rate is
1. 10 kilobits/s
2. 100 kilobits/s
3. 1 megabit/s

4.7 Consider a signal detector with an input

r = ±A + n
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where +A and −A occur with equal probability and the noise variable n is characterized
by the (Laplacian) PDF shown in Figure P4.7.
1. Determine the probability of error as a function of the parameters A and σ .
2. Determine the SNR required to achieve an error probability of 10−5. How does the SNR

compare with the result for a Gaussian PDF?

FIGURE P4.7

4.8 The signal constellation for a communication system with 16 equiprobable symbols is
shown in Figure P4.8. The channel is AWGN with noise power spectral density of N0/2.

3A

A

�A

�3A

�3A �A A 3A

�2

�1

FIGURE P4.8

1. Using the union bound, find a bound in terms of A and N0 on the error probability for
this channel.

2. Determine the average SNR per bit for this channel.
3. Express the bound found in part 1 in terms of the average SNR per bit.
4. Compare the power efficiency of this system with a 16-level PAM system.

4.9 A ternary communication system transmits one of three equiprobable signals s(t), 0,
or −s(t) every T seconds. The received signal is rl (t) = s(t) + z(t), rl (t) = z(t),
or rl (t) = −s(t) + z(t), where z(t) is white Gaussian noise with E[z(t)] = 0 and
Rz(τ ) = E [z(t)z∗(τ )] = 2N0δ(t − τ ). The optimum receiver computes the correlation
metric

U = Re

[∫ T

0
rl (t)s

∗(t) dt

]
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and compares U with a threshold A and a threshold −A. If U > A, the decision is made
that s(t) was sent. If U < −A, the decision is made in favor of −s(t). If −A < U < A,
the decision is made in favor of 0.
1. Determine the three conditional probabilities of error: Pe given that s(t) was sent, Pe

given that −s(t) was sent, and Pe given that 0 was sent.
2. Determine the average probability of error Pe as a function of the threshold A, assuming

that the three symbols are equally probable a priori.
3. Determine the value of A that minimizes Pe.

4.10 The two equivalent lowpass signals shown in Figure P4.10 are used to transmit a binary
information sequence. The transmitted signals, which are equally probable, are corrupted
by additive zero-mean white Gaussian noise having an equivalent lowpass representation
z(t) with an autocorrelation function

RZ (τ ) = E
[
z∗(t) z (t + τ )

] = 2N0δ(τ )

1. What is the transmitted signal energy?
2. What is the probability of a binary digit error if coherent detection is employed at the

receiver?
3. What is the probability of a binary digit error if noncoherent detection is employed at

the receiver?

FIGURE P4.10

4.11 A matched filter has the frequency response

H ( f ) = 1 − e− j2π f T

j2π f

1. Determine the impulse response h(t) corresponding to H ( f ).
2. Determine the signal waveform to which the filter characteristic is matched.

4.12 Consider the signal

s(t) =
{

(A/T )t cos 2π fct 0 ≤ t ≤ T

0 otherwise

1. Determine the impulse response of the matched filter for the signal.
2. Determine the output of the matched filter at t = T .
3. Suppose the signal s(t) is passed through a correlator that correlates the input s(t) with

s(t). Determine the value of the correlator output at t = T . Compare your result with
that in part 2.

4.13 The two equivalent lowpass signals shown in Figure P4.13 are used to transmit a bi-
nary sequence over an additive white Gaussian noise channel. The received signal can be
expressed as

rl (t) = si (t) + z(t), 0 ≤ t ≤ T, i = 1, 2
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where z(t) is a zero-mean Gaussian noise process with autocorrelation function

RZ (τ ) = E
[
z∗(t)z(t + τ )

] = 2N0δ(τ )

1. Determine the transmitted energy in s1(t) and s2(t) and the cross-correlation coeffi-
cient ρ12.

2. Suppose the receiver is implemented by means of coherent detection using two matched
filters, one matched to s1(t) and the other to s2(t). Sketch the equivalent lowpass impulse
responses of the matched filters.

FIGURE P4.13

3. Sketch the noise-free response of the two matched filters when the transmitted signal
is s2(t).

4. Suppose the receiver is implemented by means of two cross-correlators (multipliers
followed by integrators) in parallel. Sketch the output of each integrator as a function
of time for the interval 0 ≤ t ≤ T when the transmitted signal is s2(t).

5. Compare the sketches in parts 3 and 4. Are they the same? Explain briefly.
6. From your knowledge of the signal characteristics, give the probability of error for this

binary communication system.

4.14 A binary communication system uses two equiprobable messages s1(t) = p(t) and s2(t) =
−p(t). The channel noise is additive white Gaussian with power spectral density N0/2.
Assume that we have designed an optimal receiver for this channel, and let the error
probability for the optimal receiver be Pe.
1. Find an expression for Pe.
2. If this receiver is used on an AWGN channel using the same signals but with the noise

power spectral density N1 > N0, find the resulting error probability P1 and explain how
its value compares with Pe.

3. Let Pe1 denote the error probability in part 2 when an optimal receiver is designed for
the new noise power spectral density N1. Find Pe1 and compare it with P1.

4. Answer parts 1 and 2 if the two signals are not equiprobable but have prior probabilities
p and 1 − p.

4.15 Consider a quaternary (M = 4) communication system that transmits, every T seconds,
one of four equally probable signals: s1(t), −s1(t), s2(t), −s2(t). The signals s1(t) and
s2(t) are orthogonal with equal energy. The additive noise is white Gaussian with zero
mean and autocorrelation function Rz(τ ) = N0/2δ(τ ). The demodulator consists of two
filters matched to s1(t) and s2(t), and their outputs at the sampling instant are U1 and U2.
The detector bases its decision on the following rule:

U1 > |U2| ⇒ s1(t) U1 < −|U2| ⇒ −s1(t)

U2 > |U1| ⇒ s2(t) U2 < −|U1| ⇒ −s2(t)

Since the signal set is biorthogonal, the error probability is given by (1 − Pc), where
Pc is given by Equation 4.4–26. Express this error probability in terms of a single inte-
gral, and thus show that the symbol error probability for a biorthogonal signal set with
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M = 4 is identical to that for four-phase PSK. Hint: A change in variables from U1 and
U2 to W1 = U1 + U2 and W2 = U1 − U2 simplifies the problem.

4.16 The input s(t) to a bandpass filter is

s(t) = Re
[
s0(t) e j2π fc t

]
where s0(t) is a rectangular pulse as shown in Figure P4.16(a).
1. Determine the output γ (t) of the bandpass filter for all t ≥ 0 if the impulse response

of the filter is

g(t) = Re
[
h(t)e j2π fc t

]
where h(t) is an exponential as shown in Figure P4.16(b).

2. Sketch the equivalent lowpass output of the filter.
3. When would you sample the output of the filter if you wished to have the maximum

output at the sampling instant? What is the value of the maximum output?
4. Suppose that in addition to the input signal s(t), there is additive white Gaussian noise

n(t) = Re
[
z(t)e j2π fc t

]
where Rz(τ ) = 2N0δ(τ ). At the sampling instant determined in part 3, the signal sample
is corrupted by an additive Gaussian noise term. Determine its mean and variance.

5. What is the signal-to-noise ratio γ of the sampled output?
6. Determine the signal-to-noise ratio when h(t) is the matched filter to s(t), and compare

this result with the value of γ obtained in part 5.

(a) (b)

FIGURE P4.16

4.17 Consider the equivalent lowpass (complex-valued) signal sl (t), 0 ≤ t ≤ T , with energy

E =
∫ T

0
|sl (t)|2 dt

Suppose that this signal is corrupted by AWGN, which is represented by its equivalent
lowpass form z(t). Hence, the observed signal is

rl (t) = sl (t) + z(t), 0 ≤ t ≤ T

The received signal is passed through a filter that has an (equivalent lowpass) impulse
response hl (t). Determine hl (t) so that the filter maximizes the SNR at its output (at
t = T ).

4.18 In Section 3.2–4 it was shown that the minimum frequency separation for orthogonality
of binary FSK signals with coherent detection is � f = 1/2T . However, a lower error
probability is possible with coherent detection of FSK if � f is increased beyond 1/2T .
Show that the optimum value of � f is 0.715/T , and determine the probability of error for
this value of � f .

4.19 The equivalent lowpass waveforms for three signal sets are shown in Figure P4.19. Each
set may be used to transmit one of four equally probable messages over an additive white
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Gaussian noise channel. The equivalent lowpass noise z(t) has zero-mean and autocorre-
lation function Rz(τ ) = 2N0δ(τ ).
1. Classify the signal waveforms in sets I, II, III. In other words, state the category or class

to which each signal set belongs.
2. What is the average transmitted energy for each signal set?
3. For signal set I, specify the average probability of error if the signals are detected

coherently.
4. For signal set II, give a union bound on the probability of a symbol error if the detection

is performed (i) coherently and (ii) noncoherently.
5. Is it possible to use noncoherent detection on signal set III? Explain.
6. Which signal set or signal sets would you select if you wished to achieve a spectral bit

rate (r = R/W ) of at least 2? Explain your answer.

FIGURE P4.19

4.20 For the QAM signal constellation shown in Figure P4.20, determine the optimum decision
boundaries for the detector, assuming that the SNR is sufficiently high that errors occur
only between adjacent points.

FIGURE P4.20
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4.21 Two quadrature carriers cos 2π fct and sin 2π fct are used to transmit digital information
through an AWGN channel at two different data rates, 10 kilobits/s and 100 kilobits/s.
Determine the relative amplitudes of the signals for the two carriers so that Eb/N0 for the
two channels is identical.

4.22 When the additive noise at the input to the demodulator is colored, the filter matched
to the signal no longer maximizes the output SNR. In such a case we may consider the
use of a prefilter that “whitens” the colored noise. The prefilter is followed by a filter
matched to the prefiltered signal. Toward this end, consider the configuration shown in
Figure P4.22.
1. Determine the frequency response characteristic of the prefilter that whitens the noise,

in terms of sn( f ), the noise power spectral density.
2. Determine the frequency response characteristic of the filter matched to s̃(t).
3. Consider the prefilter and the matched filter as a single “generalized matched filter.”

What is the frequency response characteristic of this filter?
4. Determine the SNR at the input to the detector.

FIGURE P4.22

4.23 Consider a digital communication system that transmits information via QAM over a
voice-band telephone channel at a rate of 2400 symbols/s. The additive noise is assumed
to be white and Gaussian.
1. Determine the Eb/N0 required to achieve an error probability of 10−5 at 4800 bits/s.
2. Repeat part 1 for a rate of 9600 bits/s.
3. Repeat part 1 for a rate of 19,200 bits/s.
4. What conclusions do you reach from these results?

4.24 Three equiprobable messages m1, m2, and m3 are to be transmitted over an AWGN channel
with noise power spectral density 1

2 N0. The messages are

s1(t) =
{

1 0 ≤ t ≤ T

0 otherwise
s2(t) = −s3(t) =

⎧⎪⎨
⎪⎩

1 0 ≤ t ≤ 1
2 T

−1 1
2 T < t ≤ T

0 otherwise

1. What is the dimensionality of the signal space?
2. Find an appropriate basis for the signal space.
3. Draw the signal constellation for this problem.
4. Derive and sketch the optimal decision regions R1, R2, and R3.
5. Which of the three messages is most vulnerable to errors and why? In other words,

which of P(error |mi transmitted), i = 1, 2, 3, is largest?

4.25 A QPSK communication system over an AWGN channel uses one of the four equiprobable
signals si (t) = A cos(2π fct + iπ/2), where i = 0, 1, 2, 3, fc is the carrier frequency,
and the duration of each signal is T . The power spectral density of the channel noise is
N0/2.
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1. Express the message error probability of this system in terms of A, T , and N0 (an
approximate expression is sufficient).

2. If Gray coding is used, what is the bit error probability in terms of the same parameters
used in part 1?

3. What is the minimum (theoretical minimum) required transmission bandwidth for this
communication system?

4. If, instead of QPSK, binary FSK is used with s1(t) = B cos 2π fct and x2(t) =
B cos(2π fc + � f )t where the duration of the signals is now T1 and � f = 1

2T1
, deter-

mine the required T1 and B in terms of T and A to achieve the same bit rate and the
same bit error probability as the QPSK system described in parts 1–3.

4.26 A binary signaling scheme over an AWGN channel with noise power spectral density of
N0
2 uses the equiprobable messages shown in Figure P4.26 and is operating at a bit rate of

R bits/s.

s1(t)

t

2

2
T T

1

s2(t)

t

2

2
T T

1

FIGURE P4.26

1. What is Eb
N0

for this system (in terms of N0 and R)?
2. What is the error probability for this system (in terms of N0 and R)?
3. By how many decibels does this system underperform a binary antipodal signaling

system with the same Eb
N0

?
4. Now assume that this system is augmented with two more signals s3(t) = −s1(t)

and s4(t) = −s2(t) to result in a 4-ary equiprobable system. What is the resulting
transmission bit rate?

5. Using the union bound, find a bound on the error probability of the 4-ary system
introduced in part 4.

4.27 The four signals shown in Figure P4.27 are used for communication of four equiprobable
messages over an AWGN channel. The noise power spectral density is N0

2 .
1. Find an orthonormal basis, with lowest possible N , for representation of the signals.
2. Plot the constellation, and using the constellation, find the energy in each signal. What

is the average signal energy and what is Ebavg?
3. On the constellation that you have plotted, determine the optimal decision regions for

each signal, and determine which signal is more probable to be received in error.
4. Now analytically (i.e., not geometrically) determine the shape of the decision region

for signal s1(t), i.e., D1, and compare it with your result in part 3.
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s1(t)

t
3

1

s3(t)
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1

1

s4(t)

t
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1

1

s2(t)

t
3

�1

1

2

s1(t)

FIGURE P4.27

4.28 Consider the four-phase and eight-phase signal constellations shown in Figure P4.28.
Determine the radii r1 and r2 of the circles such that the distance between two adjacent
points in the two constellations is d. From this result, determine the additional transmitted
energy required in the 8-PSK signal to achieve the same error probability as the four-phase
signal at high SNR, where the probability of error is determined by errors in selecting
adjacent points.

FIGURE P4.28

4.29 Digital information is to be transmitted by carrier modulation through an additive Gaus-
sian noise channel with a bandwidth of 100 kHz and N0 = 10−10 W/Hz. Determine the
maximum rate that can be transmitted through the channel for four-phase PSK, binary
FSK, and four-frequency orthogonal FSK, which is detected noncoherently.

4.30 A continuous-phase FSK signal with h = 1

2
is represented as

s(t) = ±
√

2Eb

Tb
cos

(
π t

2Tb

)
cos 2π fct ±

√
2Eb

Tb
sin

(
π t

2Tb

)
sin 2π fct, 0 ≤ t ≤ 2Tb

where the ± signs depend on the information bits transmitted.
1. Show that this signal has constant envelope.
2. Sketch a block diagram of the modulator for synthesizing the signal.
3. Sketch a block diagram of the demodulator and detector for recovering the information.
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4.31 Consider a biorthogonal signal set with M = 8 signal points. Determine a union bound
for the probability of a symbol error as a function of Eb/N0. The signal points are equally
likely a priori.

4.32 Consider an M-ary digital communication system where M = 2N , and N is the dimension
of the signal space. Suppose that the M signal vectors lie on the vertices of a hypercube
that is centered at the origin. Determine the average probability of a symbol error as a
function of Es/N0 where Es is the energy per symbol, 1

2 N0 is the power spectral density of
the AWGN, and all signal points are equally probable.

4.33 Consider the signal waveform

s(t) =
n∑

i=1

cl p(t − iTc)

where p(t) is a rectangular pulse of unit amplitude and duration Tc. The {ci } may be
viewed as a code vector c = (c1 c2 · · · cn), where the elements ci = ±1. Show that the
filter matched to the waveform s(t) may be realized as a cascade of a filter matched to
p(t) followed by a discrete-time filter matched to the vector c. Determine the value of the
output of the matched filter at the sampling instant t = nTc.

4.34 A Hadamard matrix is defined as a matrix whose elements are ±1 and whose row vectors
are pairwise orthogonal. In the case when n is a power of 2, an n × n Hadamard matrix is
constructed by means of the recursion given by Equation 3.2–59.
1. Let ci denote the i th row of an n × n Hadamard matrix. Show that the waveforms

constructed as

si (t) =
n∑

k=1

cik p (t − kTc), i = 1, 2, . . . , n

are orthogonal, where p(t) is an arbitrary pulse confined to the time interval 0 ≤ t ≤ Tc.
2. Show that the matched filters (or cross-correlators) for the n waveforms {si (t)} can be

realized by a single filter (or correlator) matched to the pulse p(t) followed by a set of
n cross-correlators using the code words {ci }.

4.35 The discrete sequence

rk =
√
Eck + nk, k = 1, 2, . . . , n

represents the output sequence of samples from a demodulator, where ck = ±1 are elements
of one of two possible code words, c1 = [1 1 · · · 1] and c2 = [1 1 · · · 1 −1 · · · −1].
The code word c2 has w elements that are +1 and n − w elements that are −1, where w

is some positive integer. The noise sequence {nk} is white Gaussian with variance σ 2.
1. What is the optimum maximum-likelihood detector for the two possible transmitted

signals?
2. Determine the probability of error as a function of the parameters (σ 2, E, w).
3. What is the value of w that minimizes the error?
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4.36 In on-off keying of a carrier modulated signal, the two possible signals are

s0(t) = 0, s1(t) =
√

2Eb

Tb
cos 2π fct, 0 ≤ t ≤ Tb

The corresponding received signals are

r (t) = n(t), 0 ≤ t ≤ Tb

r (t) =
√

2Eb

Tb
cos (2π fct + φ) + n(t), 0 ≤ t ≤ Tb

where φ is the carrier phase and n(t) is AWGN.
1. Sketch a block diagram of the receiver (demodulator and detector) that employs non-

coherent (envelope) detection.
2. Determine the PDFs for the two possible decision variables at the detector corresponding

to the two possible received signals.
3. Derive the probability of error for the detector.

4.37 This problem deals with the characteristics of a DPSK signal.
1. Suppose we wish to transmit the data sequence

1 1 0 1 0 0 0 1 0 1 1 0

by binary DPSK. Let s(t) = A cos (2π fct + θ ) represent the transmitted signal in any
signaling interval of duration T . Give the phase of the transmitted signal for the data
sequence. Begin with θ = 0 for the phase of the first bit to be transmitted.

2. If the data sequence is uncorrelated, determine and sketch the power density spectrum
of the signal transmitted by DPSK.

4.38 In two-phase DPSK, the received signal in one signaling interval is used as a phase reference
for the received signal in the following signaling interval. The decision variable is

D = Re (Vm V ∗
m−1)

“1”
≷
“0”

0

where

Vk = 2Ee( jθk−φ) + Nk

represents the complex-valued output of the filter matched to the transmitted signal u(t);
Nk is a complex-valued Gaussian variable having zero mean and statistically independent
components.
1. Writing Vk = Xk + jYk , show that D is equivalent to

D =
[

1

2
(Xm + Xm−1)

]2

+
[

1

2
(Ym + Ym−1)

]2

−
[

1

2
(Xm − Xm−1)

]2

−
[

1

2
(Ym − Ym−1)

]2

2. For mathematical convenience; suppose that θk = θk−1. Show that the random variables
U1, U2, U3, and U4 are statistically independent Gaussian variables, where U1 =
1
2 (Xm + Xm−1), U2 = 1

2 (Ym + Ym−1), U3 = 1
2 (Xm − Xm−1), and U4 = 1

2 (Ym − Ym−1).
3. Define the random variables W1 = U 2

1 + U 2
2 and W2 = U 2

3 + U 2
4 . Then

D = W1 − W2
“1”
≷
“0”

0

Determine the probability density functions for W1 and W2.
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4. Determine the probability of error Pb, where

Pb = P(D < 0) = P(W1 − W2 < 0) =
∫ ∞

0
P(W2 > w1|w1)p(w1) dw1

4.39 Assuming that it is desired to transmit information at the rate of R bits/s, determine the
required transmission bandwidth of each of the following six communication systems, and
arrange them in order of bandwidth efficiency, starting from the most bandwidth-efficient
and ending at the least bandwidth-efficient.
1. Orthogonal BFSK
2. 8PSK
3. QPSK
4. 64-QAM
5. BPSK
6. Orthogonal 16-FSK

4.40 In a binary communication system over an additive white Gaussian noise channel, two
messages represented by antipodal signals s1(t) and s2(t) = −s1(t) are transmitted. The
probabilities of the two messages are p and 1 − p, respectively, where 0 ≤ p ≤ 1/2. The
energy content of the each message is denoted by E , and the noise power spectral density
is N0

2 .
1. What is the expression for the threshold value rth such that for r > rth the optimal detector

makes a decision in favor of s1(t)? What is the expression for the error probability?
2. Now assume that with probability of 1/2 the link between the transmitter and the receiver

is out of service and with a probability of 1/2 this link remains in service. When the
link is out of service, the receiver receives only noise. The receiver does not know
whether the link is in service. What is the structure of the optimal receiver in this case?
In particular, what is the value of the threshold rth in this case? What is the value of the
threshold if p = 1/2? What is the resulting error probability for this case (p = 1/2)?

4.41 A digital communication system with two equiprobable messages uses the following
signals:

s1(t) =

⎧⎪⎨
⎪⎩

1 0 ≤ t < 1

2 1 ≤ t < 2

0 otherwise

s2(t) =

⎧⎪⎨
⎪⎩

1 0 ≤ t < 1

−2 1 ≤ t < 2

0 otherwise

1. Assuming that the channel is AWGN with noise power spectral density N0/2, determine
the error probability of the optimal receiver and express it in terms of Eb/N0. By how
many decibels does this system underperform a binary antipodal signaling system?

2. Assume that we are using the two-path channel shown in Figure P4.41

Modulator
m sm(t)

�

n1(t)

�

n2(t)

r1(t)

r2(t)

FIGURE P4.41
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in which we receive both r1(t) and r2(t) at the receiver. Both n1(t) and n2(t) are inde-
pendent white Gaussian processes each with power spectral density N0/2. The receiver
observes both r1(t) and r2(t) and makes its decision based on this observation. Deter-
mine the structure of the optimal receiver and the error probability in this case.

3. Now assume that r1(t) = Asm(t) + n1(t) and r2(t) = sm(t) + n2(t), where m is the
transmitted message and A is a random variable uniformly distributed over the interval
[0, 1]. Assuming that the receiver knows the value of A, what is his optimal decision
rule? What is the error probability in this case? (Note: This last question, regarding the
error probability, is asked from you, and you do not know the value of A.)

4. If the receiver does not know the value of A, what is his optimal decision rule?

4.42 Two equiprobable messages m1 and m2 are to be transmitted through a channel with input
X and output Y related by Y = ρX + N , where N is a zero-mean Gaussian noise with
variance σ 2 and ρ is a random variable independent of the noise.
1. Assuming an antipodal signaling scheme (X = ±A) and a constant ρ = 1, what is the

optimal decision rule and the resulting error probability?
2. With antipodal signaling, if ρ takes ±1 with equal probability, what will be the optimal

decision rule and the resulting error probability?
3. With antipodal signaling, if ρ takes 0 and 1 with equal probability, what will be the

optimal decision rule and the resulting error probability?
4. Assuming an on-off signaling (X = 0 or A) and ρ taking ±1 with equal probability,

what will be the optimal decision rule?

4.43 A binary communication scheme uses two equiprobable messages m = 1, 2 corresponding
to signals s1(t) and s2(t), where

s1(t) = x(t)
s2(t) = x(t − 1)

and x(t) is shown Figure P4.43.

x(t)

t
1 3 4

1

FIGURE P4.43

The power spectral density of the noise is N0/2.
1. Design an optimal matched filter receiver for this system. Carefully label the diagram

and determine all the required parameters.
2. Determine the error probability for this communication system.
3. Show that the receiver can be implemented using only one matched filter.
4. Now assume that s1(t) = x(t) and

s2(t) =
{

x(t − 1) with probability 0.5

x(t) with probability 0.5
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In other words, in this case for m = 1 the transmitter always sends x(t), but for m = 2
it is equally likely to send either x(t) or x(t − 1). Determine the optimal detection rule
for this case, and find the corresponding error probability.

4.44 Let X denote a Rayleigh distributed random variable, i.e.,

fX (x) =
⎧⎨
⎩

x

σ 2
e− x2

2σ2 x ≥ 0

0 x < 0

1. Determine E [Q(β X )], where β is a positive constant. (Hint: Use the definition of the
Q function and change the order of integration.)

2. In a binary antipodal signaling, let the received energy be subject to a Rayleigh dis-
tributed attenuation; i.e., let the received signal be r (t) = αsm(t) + n(t), and therefore,

Pb = Q
(√

2α2Eb
N0

)
, where α2 denotes the power attenuation and α has a Rayleigh PDF

similar to X . Determine the average error probability of this system.

3. Repeat part 2 for a binary orthogonal system in which Pb = Q
(√

α2Eb
N0

)
.

4. Find approximations for the results of parts 2 and 3 with the assumption that σ 2 Eb
N0

� 1,

and show that in this case both average error probabilities are proportional to 1
SNR

where

SNR = 2σ 2 Eb
N0

.

5. Now find the average of e−βα2
, where β is a positive constant and α is a random variable

distributed as fX (x). Find an approximation in this case when βσ 2 � 1. We will later
see that this corresponds to the error probability of a noncoherent system in fading
channels.

4.45 In a binary communication system two equiprobable messages s1 = (1, 1) and s2 =
(−1, −1) are used. The received signal is r = s + n, where n = (n1, n2). It is assumed
that n1 and n2 are independent and each is distributed according to

f (n) = 1

2
e−|n|

Determine and plot the decision regions D1 and D2 in this communication scheme.

4.46 Two equiprobable messages are transmitted via an additive white Gaussian noise channel
with noise power spectral density of N0

2 = 1. The messages are transmitted by the following
two signals

s1(t) =
{

1 0 ≤ t ≤ 1

0 otherwise

and s2(t) = s1(t − 1). It is intended to implement the receiver by using a correlation-type
structure, but due to imperfections in the design of the correlators, the structure shown
in Figure P4.46 has been implemented. The imperfection appears in the integrator in the
upper branch where instead of

∫ 1
0 we have

∫ 1.5
0 . The decision device, therefore, observes r1

and r2 and based on this observation has to decide which message was transmitted. What
decision rule should be adopted by the decision device for an optimal decision?
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r(t)

r1

r2

Decision
device

1.5

0

2

1

m̂

FIGURE P4.46

4.47 A baseband digital communication system employs the signals shown in Figure P4.47(a)
for transmission of two equiprobable messages. It is assumed the communication problem
studied here is a “one-shot” communication problem; i.e., the above messages are transmit-
ted just once, and no transmission takes place afterward. The channel has no attenuation,
and the noise is AWG with power spectral density N0

2 .
1. Find an appropriate orthonormal basis for the representation of the signals.
2. In a block diagram, give the precise specifications of the optimal receiver using matched

filters. Label the block diagram carefully.
3. Find the error probability of the optimal receiver.
4. Show that the optimal receiver can be implemented by using just one filter (see block

diagram shown in Figure P4.47(b)). What are the characteristics of the matched filter
and the sampler and decision device?

s1(t)

t

A

0 T
2

s2(t)

t

A

0 T
2

T

(a)

(b)

Modulator
Input Output

�

AWGN

Matched
filter

Sampler and
decision

h(t)

FIGURE P4.47
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5. Now assume the channel is not ideal, but has an impulse response of c(t) = δ(t) +
1
2δ(t − T

2 ). Using the same matched filter you used in part 4, derive the optimal decision
rule.

6. Assuming that the channel impulse response is c(t) = δ(t) + aδ(t − T
2 ), where a is

a random variable uniformly distributed on [0, 1], and using the same matched filter,
derive the optimal decision rule.

4.48 A binary communication system uses antipodal signals s1(t) = s(t) and s2(t) = −s(t)
for transmission of two equiprobable messages m1 and m2. The block diagram of the
communication system is given in Figure P4.48.

Transmitter
m � {m1, m2}

p1 � p2 � 1�2

si(t)

si(t)

si(t)

r1(t)

r2(t)

i � 1, 2

�

n1(t)

�

n2(t)

S

Receiver m̂

FIGURE P4.48

Message si (t) is transmitted through two paths to a single receiver, and the receiver
makes its decision based on the observation of both received signals r1(t) and r2(t). How-
ever, the upper channel is connected by a switch S which can either be closed or open.
When the switch is open, r1(t) = n1(t); i.e., the first channel provides only noise to the
receiver. The switch is open or closed randomly with equal probability, but during the
transmission it will not change position. Throughout this problem, it is assumed that the
two noise processes are stationary, zero-mean, independent, white and Gaussian processes
each with a power spectral density of N0/2.
1. If the receiver does not know the position of the switch, determine the optimal decision

rule.
2. Now assume that the receiver knows the position of the switch (the switch is still equally

likely to be open or closed). What is the optimal decision rule in this case, and what is
the resulting error probability?

3. In this part assume that both the transmitter and the receiver know the position of the
switch (which is still equally likely to be open or closed). Assume that in this case the
transmitter has a certain level of energy that it can transmit. To be more specific, assume
that in the upper arm αsi (t) and in the lower arm βsi (t) is transmitted, where α, β ≥ 0
and α2 + β2 = 2. What is the best power allocation strategy by the transmitter (i.e.,
what is the best choice for α and β), what is the optimal decision rule at the receiver,
and what is the resulting error probability?

4.49 The block diagram of a two-path communication system is shown in Figure P4.49. In
the first path noise n1(t) is added to the transmitted signal. In the second path the signal
is subject to a random amplification A and additive noise n2(t). The random variable A
takes values ±1 with equal probability. The transmitted signal is binary antipodal, and
the two messages are equiprobable. Both n1(t) and n2(t) are zero-mean, white, Gaussian
noise processes with power spectral densities N1/2 and N2/2, respectively. The receiver
observes both r1(t) and r2(t).
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r1(t)

r2(t)

�

n1(t)

s(t)

�

n2(t)

�

A

FIGURE P4.49

1. Assuming that the two noise processes are independent, determine the structure of the
optimum receiver and find an expression for the error probability.

2. Now assume N1 = N2 = 2 and E[n1n2] = 1/2, where n1 and n2 denote the projections
of n1(t) and n2(t) on the unit signal in the direction of s(t) (obviously the two noise
processes are dependent). Determine the structure of the optimum receiver in this case.

3. What is the structure of the optimal receiver if the noise processes are independent
and the receiver has access to r (t) = r1(t) + r2(t) instead of observing r1(t) and r2(t)
separately?

4. Determine the optimal decision rule if the two noise processes are independent and A
can take 0 and 1 with equal probability [receiver has access to both r1(t) and r2(t)].

5. What is the optimal detection rule in part 4 if we assume that the upper link is similar
to the lower link but with A substituted with random variable B where B = 1 − A (the
lower link remains unchanged)?

4.50 A fading channel can be represented by the vector channel model r = asm + n, where a
is a random variable denoting the fading, whose density function is given by the Rayleigh
distribution

p (a) =
{

2ae−a2
a ≥ 0

0 a < 0

1. Assuming that equiprobable signals, binary antipodal signaling, and coherent detection
are employed, what is the structure of the optimal receiver?

2. Show that the bit error probability in this case can be written as

Pb = 1

2

(
1 −

√
Eb/N0

1 + Eb/N0

)

and for large SNR values we have

Pb ≈ 1

4Eb/N0

3. Assuming an error probability of 10−5 is desirable, determine the required SNR per bit
(in dB) if (i) the channel is nonfading and (ii) the channel is a fading channel. How much
more power is required by the fading channel to achieve the same bit error probability?
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4. Show that if binary orthogonal signaling and noncoherent detection are employed, we
have

Pb = 1

2 + Eb/N0

4.51 A multiple access channel (MAC) is a channel with two transmitters and one receiver.
The two transmitters transmit two messages, and the receiver is interested in correct de-
tection of both messages. A block diagram of such system in the AWGN case is shown in
Figure P4.51.

Modulator 1

Receiver

s1(t)

s2(t)

n(t)

r(t)
�

m1

Modulator 2m2

(m̂1, m̂2)

FIGURE P4.51

The messages are independent binary equiprobable random variables, and both modu-
lators use binary antipodal signaling schemes. We have s1(t) = ±g1(t) and s2(t) = ±g2(t)
depending on the values of m1 and m2, and g1(t) and g2(t) are two unit energy pulses each
with duration T (g1(t) and g2(t) are not necessarily orthogonal). The received signal is
r (t) = s1(t) + s2(t) + n(t), where n(t) is a white Gaussian process with a power spectral
density of N0/2.
1. What is the structure of the receiver that minimizes P(m̂1 �= m1) and P(m̂2 �= m2)?
2. What is the structure of the receiver that minimizes P((m̂1, m̂2) �= (m1, m2))?
3. Between receivers designed in parts 1 and 2, which would you label as the real optimal

receiver? Which has a simpler structure?
4. What are the minimum error probabilities p1 and p2 for the receiver in part 1 and p12

for the receiver in part 2?

4.52 The constellation for an MPSK modulation system is shown in Figure P4.52. Only point
s1 and its decision region are shown here. The shaded area (extended to infinity) shows
the error region when s1 is transmitted.
1. Express R in terms of E , θ , and M .
2. Using the value of R and integrating over the gray area, show that the error probability

for this system can be written as

Pe = 1

π

∫ π− π
M

0
e− E

N0

sin2 π
M

sin2 θ dθ

3. Find the error probability for M = 2, and by equating it with the error probability of
BPSK, conclude that Q(x) can be expressed as

Q(x) = 1

π

∫ π
2

0
e− x2

2 sin2 θ dθ
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�
M

�

R

√E

FIGURE P4.52

4.53 A communication system employs M signals {sm(t)}M
m=1 for transmission of M equiproba-

ble messages. The receiver has two antennas and receives two signals r1(t) = sm(t)+n1(t)
and r2(t) = sm(t) + n2(t) by these antennas. Both n1(t) and n2(t) are white Gaussian
noises with power spectral densities N01/2 and N02/2, respectively. The receiver makes
its optimal detection based on the observation of both r1(t) and r2(t). It is further assumed
that the two noise processes are independent.

Transmitter
Optimum
receiver

m

�

�

n1(t)

n2(t)

r1(t) � sm(t) � n1(t)

r2(t) � sm(t) � n2(t)

sm(t) m̂

FIGURE P4.53

1. Determine the optimal decision rule for this receiver.
2. Assuming N01 = N02 = N0, determine the optimal receiver structure.
3. Show that under the assumption of part 2, the receiver needs to know only r1(t) + r2(t).
4. Now assume the system is binary and employs on-off signaling (i.e., s1(t) = s(t) and

s2(t) = 0), and show that the optimal decision rule consists of comparing r1 +αr2 with
a threshold. Determine α and the threshold (in this part you are assuming noise powers
are different).
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5. Show that in part 4, if noise powers are equal, then α = 1, and determine the error
probability in this case. How does this system compare with a system that has only one
antenna, i.e., receives only r1(t)?

4.54 A communication system employs binary antipodal signals with

s1(t) =
{

1 0 < t < 1

0 otherwise

and s2(t) = −s1(t). The received signal consists of a direct component, a scattered com-
ponent, and the additive white Gaussian noise. The scattered component is a delayed
version of the basic signal times a random amplification A. In other words, we have
r (t) = s(t) + As(t − 1) + n(t), where s(t) is the transmitted message, A is an exponential
random variable, and n(t) is a white Gaussian noise with a power spectral density of N0/2.
It is assumed that the time delay of the multipath component is constant (equal to 1) and
A and n(t) are independent. The two messages are equiprobable and

f A(a) =
{

e−a a > 0

0 otherwise

1. What is the optimal decision rule for this problem? Simplify the resulting rule as much
as you can.

2. How does the error probability of this system compare with the error probability of a
system which does not involve multipath? Which one has a better performance?

4.55 A binary communication system uses equiprobable signals s1(t) and s2(t)

s1(t) =
√

2Eb φ1(t) cos(2π fct)

s2(t) =
√

2Eb φ2(t) cos(2π fct)

for transmission of two equiprobable messages. It is assumed that φ1(t) and φ2(t) are
orthonormal. The channel is AWGN with noise power spectral density of N0/2.
1. Determine the optimal error probability for this system, using a coherent detector.
2. Assuming that the demodulator has a phase ambiguity between 0 and θ (0 ≤ θ ≤ π )

in carrier recovery, and employs the same detector as in part 1, what is the resulting
worst-case error probability?

3. What is the answer to part 2 in the special case where θ = π/2?

4.56 In this problem we show that the volume of an n-dimensional sphere with radius R, defined
by the set of all x ∈ R

n such that ‖x‖ ≤ R, is given by Vn(R) = Bn Rn , where

Bn = π
n
2

�
(

n
2 + 1

)
1. Using change of variables, show that

Vn(R) =
∫ ∫

. . .

∫
x2

1 +x2
2 +···+x2

n ≤R2

dx1 dx2 . . . dxn = Bn Rn

where Bn is the volume on an n-dimensional sphere of radius 1, i.e., Bn = V (1).
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2. Consider n iid Gaussian random variables Yi , i = 1, 2, . . . , n, each distributed accord-
ing to N (0, 1). Show that the probability that Y = (Y1, Y2, . . . , Yn) would lie in the
area between two spheres of radii R and R − ε, where ε > 0 is very small such that
ε
R � 1

n , can be approximated as

P [R − ε ≤ ‖Y‖ ≤ R] = p( y) [Vn(R) − Vn(R − ε)]

≈ εn Rn−1 Bn

(2π )n/2
e− R2

2

3. Note that p( y) is a function of ‖ y‖. From this show that we can also approximate
P [R − ε ≤ |Y‖ ≤ R] as

P [R − ε ≤ ‖Y‖ ≤ R] ≈ p‖Y‖ (R)ε

where p‖Y‖ (·) denoted the PDF of ‖Y‖.
4. From parts 2 and 3 conclude that

p‖Y‖ (r ) = nrn−1 Bn

(2π )n/2
e− r2

2

5. Using the fact that p‖Y‖ (r ) is a PDF and therefore its integral over the positive real line
is equal to 1, conclude that

nBn

(2π )n/2

∫ ∞

0
rn−1 e− r2

2 dr = 1

6. Using the definition of the gamma function given by Equation 2.3–22 as

�(x) =
∫ ∞

0
t x−1e−t dt, x > 0

show that ∫ ∞

0
rn−1 e− r2

2 dr = 2( n
2 −1)�

(n

2

)

and conclude that

Bn = π
n
2

�
(

n
2 + 1

)

4.57 Let Z
n + (

1
2 , 1

2 , . . . , 1
2

)
denote the n-dimensional integer lattice shifted by 1/2, and let

R be an n-dimensional hypercube centered at the origin with side length L which defines
the boundary of this lattice. We further assume that n is even and L = 2� is a power of 2;
the number of bits per two dimensions is denoted by β, and we consider a constellation C
based on the intersection of the shifted lattice Z

n +(
1
2 , 1

2 , . . . , 1
2

)
and the boundary region

R defined as an n-dimensional hypercube centered at the origin with side length L .
1. Show that β = 2� + 2.
2. Show that for this constellation the figure of merit is approximated by

CFM(C) ≈ 6

2β

Note that this is equal to the CFM for a square QAM constellation.
3. Show the shaping gain of R is given by γs(R) = 1.
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4.58 Recall that MSK can be represented as a four-phase offset PSK modulation having the
lowpass equivalent form

v(t) =
∑

k

[Iku(t − 2kTb) + j Jku(t − 2kTb − Tb)]

where

u(t) =
{

sin (π t/2Tb) 0 ≤ t ≤ 2Tb

0 otherwise

and {Ik} and {Jk} are sequences of information symbols (±1).
1. Sketch the block diagram of an MSK demodulator for offset QPSK.
2. Evaluate the performance of the four-phase demodulator for AWGN if no account is

taken of the memory in the modulation.
3. Compare the performance obtained in part 2 with that for Viterbi decoding of the MSK

signal.
4. The MSK signal is also equivalent to binary FSK. Determine the performance of non-

coherent detection of the MSK signal. Compare your result with parts 2 and 3.

4.59 Consider a transmission line channel that employs n − 1 regenerative repeaters plus the
terminal receiver in the transmission of binary information. Assume that the probability of
error at the detector of each receiver is p and that errors among repeaters are statistically
independent.
1. Show that the binary error probability at the terminal receiver is

Pn = 1

2

[
1 − (1 − 2p)n

]

2. If p = 10−6 and n = 100, determine an approximate value of Pn .

4.60 A digital communication system consists of a transmission line with 100 digital (regener-
ative) repeaters. Binary antipodal signals are used for transmitting the information. If the
overall end-to-end error probability is 10−6, determine the probability of error for each
repeater and the required Eb/N0 to achieve this performance in AWGN.

4.61 A radio transmitter has a power output of PT = 1 W at a frequency of 1 GHz. The
transmitting and receiving antennas are parabolic dishes with diameter D = 3 m.
1. Determine the antenna gains.
2. Determine the EIRP for the transmitter.
3. The distance (free space) between the transmitting and receiving antennas is 20 km.

Determine the signal power at the output of the receiving antenna in decibels.

4.62 A radio communication system transmits at a power level of 0.1 W at 1 GHz. The trans-
mitting and receiving antennas are parabolic, each having a diameter of 1 m. The receiver
is located 30 km from the transmitter.
1. Determine the gains of the transmitting and receiving antennas.
2. Determine the EIRP of the transmitted signal.
3. Determine the signal power from the receiving antenna.

4.63 A satellite in synchronous orbit is used to communicate with an earth station at a distance
of 40,000 km. The satellite has an antenna with a gain of 15 dB and a transmitter power



Proakis-27466 book September 25, 2007 14:41

Chapter Four: Optimum Receivers for AWGN Channels 289

of 3 W. The earth station uses a 10-m parabolic antenna with an efficiency of 0.6. The
frequency band is at f = 1 GHz. Determine the received power level at the output of the
receiver antenna.

4.64 A spacecraft located 100,000 km from the earth is sending data at a rate of R bits/s. The
frequency band is centered at 2 GHz, and the transmitted power is 10 W. The earth station
uses a parabolic antenna, 50 m in diameter, and the spacecraft has an antenna with a gain
of 10 dB. The noise temperature of the receiver front end is T0 = 300 K.
1. Determine the received power level.
2. If the desired Eb/N0 = 10 dB, determine the maximum bit rate that the spacecraft can

transmit.

4.65 A satellite in geosynchronous orbit is used as a regenerative repeater in a digital commu-
nication system. Consider the satellite-to-earth link in which the satellite antenna has a
gain of 6 dB and the earth station antenna has a gain of 50 dB. The downlink is operated
at a center frequency of 4 GHz, and the signal bandwidth is 1 MHz. If the required Eb/N0

for reliable communication is 15 dB, determine the transmitted power for the satellite
downlink. Assume that N0 = 4.1 × 10−21 W/Hz.
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5

Carrier and Symbol Synchronization

We have observed that in a digital communication system, the output of the demod-
ulator must be sampled periodically, once per symbol interval, in order to recover the
transmitted information. Since the propagation delay from the transmitter to the re-
ceiver is generally unknown at the receiver, symbol timing must be derived from the
received signal in order to synchronously sample the output of the demodulator.

The propagation delay in the transmitted signal also results in a carrier offset, which
must be estimated at the receiver if the detector is phase-coherent. In this chapter, we
consider methods for deriving carrier and symbol synchronization at the receiver.

5.1
SIGNAL PARAMETER ESTIMATION

Let us begin by developing a mathematical model for the signal at the input to the re-
ceiver. We assume that the channel delays the signals transmitted through it and corrupts
them by the addition of Gaussian noise. Hence, the received signal may be expressed as

r (t) = s(t − τ ) + n(t)

where

s(t) = Re
[
sl(t)e

j2π fct] (5.1–1)

and where τ is the propagation delay and sl(t) is the equivalent low-pass signal.
The received signal may be expressed as

r (t) = Re
{[

sl(t − τ )e jφ + z(t)
]
e j2π fct} (5.1–2)

where the carrier phase φ, due to the propagation delay τ , is φ = −2π fcτ . Now, from
this formulation, it may appear that there is only one signal parameter to be estimated,
namely, the propagation delay, since one can determine φ from knowledge of fc and τ .
However, this is not the case. First of all, the oscillator that generates the carrier signal

290
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for demodulation at the receiver is generally not synchronous in phase with that at the
transmitter. Furthermore, the two oscillators may be drifting slowly with time, perhaps
in different directions. Consequently, the received carrier phase is not only dependent
on the time delay τ . Furthermore, the precision to which one must synchronize in time
for the purpose of demodulating the received signal depends on the symbol interval
T . Usually, the estimation error in estimating τ must be a relatively small fraction of
T . For example, ±1 percent of T is adequate for practical applications. However, this
level of precision is generally inadequate for estimating the carrier phase, even if φ

depends only on τ . This is due to the fact that fc is generally large, and, hence, a small
estimation error in τ causes a large phase error.

In effect, we must estimate both parameters τ and φ in order to demodulate and
coherently detect the received signal. Hence, we may express the received signal as

r (t) = s(t; φ, τ ) + n(t) (5.1–3)

where φ and τ represent the signal parameters to be estimated. To simplify the notation,
we let θ denote the parameter vector {φ, τ }, so that s(t; φ, τ ) is simply denoted by
s(t; θ ).

There are basically two criteria that are widely applied to signal parameter esti-
mation: the maximum-likelihood (ML) criterion and the maximum a posteriori proba-
bility (MAP) criterion. In the MAP criterion, the signal parameter vector θ is modeled
as random and characterized by an a priori probability density function p(θ). In the
maximum-likelihood criterion, the signal parameter vector θ is treated as deterministic
but unknown.

By performing an orthonormal expansion of r (t) using N orthonormal functions
{φn(t)}, we may represent r (t) by the vector of coefficients (r1 r2 · · · rN ) ≡ r . The joint
PDF of the random variables (r1 r2 · · · rN ) in the expansion can be expressed as p(r|θ ).
Then, the ML estimate of θ is the value that maximizes p(r|θ ). On the other hand,
the MAP estimate is the value of θ that maximizes the a posteriori probability density
function

p(θ |r) = p(r|θ )p(θ )

p(r)
(5.1–4)

We note that if there is no prior knowledge of the parameter vector θ , we may
assume that p(θ ) is uniform (constant) over the range of values of the parameters. In
such a case, the value of θ that maximizes p(r|θ ) also maximizes p(θ |r). Therefore,
the MAP and ML estimates are identical.

In our treatment of parameter estimation given below, we view the parameters φ and
τ as unknown, but deterministic. Hence, we adopt the ML criterion for estimating them.

In the ML estimation of signal parameters, we require that the receiver extract
the estimate by observing the received signal over a time interval T0 ≥ T , which is
called the observation interval. Estimates obtained from a single observation interval are
sometimes called one-shot estimates. In practice, however, the estimation is performed
on a continuous basis by using tracking loops (either analog or digital) that continuously
update the estimates. Nevertheless, one-shot estimates yield insight for tracking loop
implementation. In addition, they prove useful in the analysis of the performance of ML
estimation, and their performance can be related to that obtained with a tracking loop.
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5.1–1 The Likelihood Function

Although it is possible to derive the parameter estimates based on the joint PDF of the
random variables (r1 r2 · · · rN ) obtained from the expansion of r (t), it is convenient to
deal directly with the signal waveforms when estimating their parameters. Hence, we
shall develop a continuous-time equivalent of the maximization of p(r|θ ).

Since the additive noise n(t) is white and zero-mean Gaussian, the joint PDF p(r|θ )
may be expressed as

p(r|θ ) =
(

1√
2πσ

)N

exp

{
−

N∑
n=1

[rn − sn(θ )]2

2σ 2

}
(5.1–5)

where

rn =
∫

T0

r (t)φn(t) dt
(5.1–6)

sn(θ ) =
∫

T0

s(t; θ )φn(t) dt

where T0 represents the integration interval in the expansion of r (t) and s(t; θ ).
We note that the argument in the exponent may be expressed in terms of the signal

waveforms r (t) and s(t; θ ), by substituting from Equation 5.1–6 into Equation 5.1–5.
That is,

lim
N→∞

1

2σ 2

N∑
n=1

[rn − sn(θ )]2 = 1

N0

∫
T0

[r (t) − s(t; θ )]2 dt (5.1–7)

where the proof is left as an exercise for the reader (see Problem 5.1). Now, the max-
imization of p(r|θ ) with respect to the signal parameters θ is equivalent to the maxi-
mization of the likelihood function.

�(θ ) = exp
{

− 1

N0

∫
T0

[r (t) − s(t; θ )]2 dt
}

(5.1–8)

Below, we shall consider signal parameter estimation from the viewpoint of maximizing
�(θ ).

5.1–2 Carrier Recovery and Symbol Synchronization
in Signal Demodulation

Symbol synchronization is required in every digital communication system which trans-
mits information synchronously. Carrier recovery is required if the signal is detected
coherently.

Figure 5.1–1 illustrates the block diagram of a binary PSK (or binary PAM) signal
demodulator and detector. As shown, the carrier phase estimate φ̂ is used in generating
the reference signal g(t) cos(2π fct + φ̂) for the correlator. The symbol synchronizer
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FIGURE 5.1–1
Block diagram of a binary PSK receiver.

controls the sampler and the output of the signal pulse generator. If the signal pulse is
rectangular, then the signal generator can be eliminated.

The block diagram of an M-ary PSK demodulator is shown in Figure 5.1–2. In this
case, two correlators (or matched filters) are required to correlate the received signal
with the two quadrature carrier signals g(t) cos(2π fct + φ̂) and g(t) sin(2π fct + φ̂),
where φ̂ is the carrier phase estimate. The detector is now a phase detector, which
compares the received signal phases with the possible transmitted signal phases.

The block diagram of a PAM signal demodulator is shown in Figure 5.1–3. In this
case, a single correlator is required, and the detector is an amplitude detector, which

FIGURE 5.1–2
Block diagram of an M-ary PSK receiver.
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FIGURE 5.1–3
Block diagram of an M-ary PAM receiver.

compares the received signal amplitude with the possible transmitted signal amplitudes.
Note that we have included an automatic gain control (AGC) at the front end of the
demodulator to eliminate channel gain variations, which would affect the amplitude
detector. The AGC has a relatively long time constant, so that it does not respond to the
signal amplitude variations that occur on a symbol-by-symbol basis. Instead, the AGC
maintains a fixed average (signal plus noise) power at its output.

Finally, we illustrate the block diagram of a QAM demodulator in Figure 5.1–4.
As in the case of PAM, an AGC is required to maintain a constant average power signal

FIGURE 5.1–4
Block diagram of a QAM receiver.
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at the input to the demodulator. We observe that the demodulator is similar to a PSK
demodulator, in that both generate in-phase and quadrature signal samples (X, Y ) for
the detector. In the case of QAM, the detector computes the Euclidean distance between
the received noise-corrupted signal point and the M possible transmitted points, and
selects the signal closest to the received point.

5.2
CARRIER PHASE ESTIMATION

There are two basic approaches for dealing with carrier synchronization at the receiver.
One is to multiplex, usually in frequency, a special signal, called a pilot signal, that
allows the receiver to extract and, thus, to synchronize its local oscillator to the carrier
frequency and phase of the received signal. When an unmodulated carrier component
is transmitted along with the information-bearing signal, the receiver employs a phase-
locked loop (PLL) to acquire and track the carrier component. The PLL is designed
to have a narrow bandwidth so that it is not significantly affected by the presence of
frequency components from the information-bearing signal.

The second approach, which appears to be more prevalent in practice, is to derive
the carrier phase estimate directly from the modulated signal. This approach has the
distinct advantage that the total transmitter power is allocated to the transmission of
the information-bearing signal. In our treatment of carrier recovery, we confine our
attention to the second approach; hence, we assume that the signal is transmitted via
suppressed carrier.

In order to emphasize the importance of extracting an accurate phase estimate,
let us consider the effect of a carrier phase error on the demodulation of a double-
sideband, suppressed carrier (DSB/SC) signal. To be specific, suppose we have an
amplitude-modulated signal of the form

s(t) = A(t) cos(2π fct + φ) (5.2–1)

If we demodulate the signal by multiplying s(t) with the carrier reference

c(t) = cos(2π fct + φ̂) (5.2–2)

we obtain

c(t)s(t) = 1
2 A(t) cos(φ − φ̂) + 1

2 A(t) cos(4π fct + φ + φ̂)

The double-frequency component may be removed by passing the product signal
c(t)s(t) through a low-pass filter. This filtering yields the information-bearing signal

y(t) = 1
2 A(t) cos(φ − φ̂) (5.2–3)

Note that the effect of the phase error φ − φ̂ is to reduce the signal level in voltage
by a factor cos(φ − φ̂) and in power by a factor cos2(φ − φ̂). Hence, a phase error of
10◦ results in a signal power loss of 0.13 dB, and a phase error of 30◦ results in a signal
power loss of 1.25 dB in an amplitude-modulated signal.
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The effect of carrier phase errors in QAM and multiphase PSK is much more
severe. The QAM and M-PSK signals may be represented as

s(t) = A(t) cos(2π fct + φ) − B(t) sin(2π fct + φ) (5.2–4)

This signal is demodulated by the two quadrature carriers

ci (t) = cos(2π fct + φ̂) (5.2–5)

cq (t) = − sin(2π fct + φ̂)

Multiplication of s(t) with ci (t) followed by low-pass filtering yields the in-phase
component

yI (t) = 1
2 A(t) cos(φ − φ̂) − 1

2 B(t) sin(φ − φ̂) (5.2–6)

Similarly, multiplication of s(t) by cq (t) followed by low-pass filtering yields the
quadrature component

yQ(t) = 1
2 B(t) cos(φ − φ̂) + 1

2 A(t) sin(φ − φ̂) (5.2–7)

The expressions 5.2–6 and 5.2–7 clearly indicate that the phase error in the demodulation
of QAM and M-PSK signals has a much more severe effect than in the demodulation
of a PAM signal. Not only is there a reduction in the power of the desired signal
component by a factor cos2(φ − φ̂), but there is also crosstalk interference from the
in-phase and quadrature components. Since the average power levels of A(t) and B(t)
are similar, a small phase error causes a large degradation in performance. Hence, the
phase accuracy requirements for QAM and multiphase coherent PSK are much higher
than for DSB/SC PAM.

5.2–1 Maximum-Likelihood Carrier Phase Estimation

First, we derive the maximum-likelihood carrier phase estimate. For simplicity, we
assume that the delay τ is known and, in particular, we set τ = 0. The function to be
maximized is the likelihood function given in Equation 5.1–8. With φ substituted for θ ,
this function becomes

�(φ) = exp
{

− 1

N0

∫
T0

[r (t) − s(t; φ)]2 dt
}

= exp
{

− 1

N0

∫
T0

r2(t) dt + 2

N0

∫
T0

r (t)s(t; φ) dt − 1

N0

∫
T0

s2(t; φ) dt
}

(5.2–8)

Note that the first term of the exponential factor does not involve the signal parameter φ.
The third term, which contains the integral of s2(t; φ), is a constant equal to the signal
energy over the observation interval T0 for any value of φ. Only the second term, which
involves the cross correlation of the received signal r (t) with the signal s(t; φ), depends
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on the choice of φ. Therefore, the likelihood function �(φ) may be expressed as

�(φ) = C exp
[

2

N0

∫
T0

r (t)s(t; φ) dt
]

(5.2–9)

where C is a constant independent of φ.
The ML estimate φ̂ML is the value of φ that maximizes �(φ) in Equation 5.2–9.

Equivalently, the value φ̂ML also maximizes the logarithm of �(φ), i.e., the log-
likelihood function

�L (φ) = 2

N0

∫
T0

r (t)s(t; φ) dt (5.2–10)

Note that in defining �L (φ) we have ignored the constant term ln C .

E X A M P L E 5.2–1. As an example of the optimization to determine the carrier phase,
let us consider the transmission of the unmodulated carrier A cos 2π fct . The received
signal is

r (t) = A cos(2π fct + φ) + n(t)

where φ is the unknown phase. We seek the value φ, say φ̂ML, that maximizes

�L (φ) = 2A

N0

∫
T0

r (t) cos(2π fct + φ) dt

A necessary condition for a maximum is that

d�L (φ)

dφ
= 0

This condition yields ∫
T0

r (t) sin(2π fct + φ̂ML) dt = 0 (5.2–11)

or, equivalently,

φ̂ML = − tan−1

[∫
T0

r (t) sin 2π fct dt

/∫
T0

r (t) cos 2π fct dt

]
(5.2–12)

We observe that the optimality condition given by Equation 5.2–11 implies the use of a
loop to extract the estimate as illustrated in Figure 5.2–1. The loop filter is an integrator
whose bandwidth is proportional to the reciprocal of the integration interval T0. On the
other hand, Equation 5.2–12 implies an implementation that uses quadrature carriers
to cross-correlate with r (t). Then φ̂ML is the inverse tangent of the ratio of these two
correlator outputs, as shown in Figure 5.2–2. Note that this estimation scheme yields
φ̂ML explicitly.

FIGURE 5.2–1
A PLL for obtaining the ML estimate of the phase of an
unmodulated carrier.
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FIGURE 5.2–2
A (one-shot) ML estimate of the phase of an
unmodulated carrier.

This example clearly demonstrates that the PLL provides the ML estimate of the
phase of an unmodulated carrier.

5.2–2 The Phase-Locked Loop

The PLL basically consists of a multiplier, a loop filter, and a voltage-controlled os-
cillator (VCO), as shown in Figure 5.2–3. If we assume that the input to the PLL is
the sinusoid cos(2π fct + φ) and the output of the VCO is sin(2π fct + φ̂), where φ̂

represents the estimate of φ, the product of these two signals is

e(t) = cos(2π fct + φ) sin(2π fct + φ̂) (5.2–13)

= 1
2 sin(φ̂ − φ) + 1

2 sin(4π fct + φ + φ̂)

The loop filter is a low-pass filter that responds only to the low-frequency compo-
nent 1

2 sin(φ̂ − φ) and removes the component at 2 fc. This filter is usually selected to
have the relatively simple transfer function

G(s) = 1 + τ2s

1 + τ1s
(5.2–14)

where τ1 and τ2 are design parameters (τ1 � τ2) that control the bandwidth of the loop.
A higher-order filter that contains additional poles may be used if necessary to obtain
a better loop response.

The output of the loop filter provides the control voltage v(t) for the VCO. The
VCO is basically a sinusoidal signal generator with an instantaneous phase given by

2π fct + φ̂(t) = 2π fct + K
∫ t

−∞
v(τ ) dτ (5.2–15)

FIGURE 5.2–3
Basic elements of a phase-locked loop (PLL).
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FIGURE 5.2–4
Model of phase-locked loop.

where K is a gain constant in rad/V. Hence,

φ̂(t) = K
∫ t

−∞
v(τ ) dτ (5.2–16)

By neglecting the double-frequency term resulting from the multiplication of the input
signal with the output of the VCO, we may reduce the PLL into the equivalent closed-
loop system model shown in Figure 5.2–4. The sine function of the phase difference
φ̂ − φ makes this system non-linear, and, as a consequence, the analysis of its perfor-
mance in the presence of noise is somewhat involved, but, nevertheless, it is mathemat-
ically tractable for some simple loop filters.

In normal operation when the loop is tracking the phase of the incoming carrier,
the phase error φ̂ − φ is small and, hence,

sin(φ̂ − φ) ≈ φ̂ − φ (5.2–17)

With this approximation, the PLL becomes linear and is characterized by the closed-
loop transfer function

H (s) = KG(s)/s

1 + KG(s)/s
(5.2–18)

where the factor of 1
2 has been absorbed into the gain parameter K . By substituting

from Equation 5.2–14 for G(s) into Equation 5.2–18, we obtain

H (s) = 1 + τ2s

1 + (τ2 + 1/K )s + (τ1/K )s2
(5.2–19)

Hence, the closed-loop system for the linearized PLL is second-order when G(s) is
given by Equation 5.2–14. The parameter τ2 controls the position of the zero, while K
and τ1 are used to control the position of the closed-loop system poles. It is customary
to express the denominator of H (s) in the standard form

D(s) = s2 + 2ζωns + ω2
n (5.2–20)

where ζ is called the loop damping factor and ωn is the natural frequency of the loop. In
terms of the loop parameters, ωn = √

K/τ1, and ζ = ωn(τ2 + 1/K )/2, the closed-loop
transfer function becomes

H (s) =
(
2ζωn − ω2

n/K
)
s + ω2

n

s2 + 2ζωns + ω2
n

(5.2–21)
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FIGURE 5.2–5
Frequency response of a second-order loop. [From Phaselock Techniques, 2nd edition, by F. M.
Gardner, c© 1979 by John Wiley and Sons, Inc. Reprinted with permission of the publisher.]

The (one-sided) noise-equivalent bandwidth (see Problem 2.52) of the loop is

Beq = τ 2
2 (1/τ 2

2 + K/τ1)

4(τ2 + 1/K ) (5.2–22)

= 1 + (τ2ωn)2

8ζ/ωn

The magnitude response 20 log |H (ω)| as a function of the normalized frequency
ω/ωn is illustrated in Figure 5.2–5, with the damping factor ζ as a parameter and
τ1 � 1. Note that ζ = 1 results in a critically damped loop response, ζ < 1 produces
an underdamped response, and ζ > 1 yields an overdamped response.

In practice, the selection of the bandwidth of the PLL involves a tradeoff between
speed of response and noise in the phase estimate, which is the topic considered below.
On the one hand, it is desirable to select the bandwidth of the loop to be sufficiently
wide to track any time variations in the phase of the received carrier. On the other hand,
a wideband PLL allows more noise to pass into the loop, which corrupts the phase
estimate. Below, we assess the effects of noise in the quality of the phase estimate.

5.2–3 Effect of Additive Noise on the Phase Estimate

In order to evaluate the effects of noise on the estimate of the carrier phase, let us assume
that the noise at the input to the PLL is narrowband. For this analysis, we assume that
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the PLL is tracking a sinusoidal signal of the form

s(t) = Ac cos[2π fct + φ(t)] (5.2–23)

that is corrupted by the additive narrowband noise

n(t) = x(t) cos 2π fct − y(t) sin 2π fct (5.2–24)

The in-phase and quadrature components of the noise are assumed to be statistically
independent, stationary Gaussian noise processes with (two-sided) power spectral den-
sity 1

2 N0 W/Hz. By using simple trigonometric identities, the noise term in Equation
5.2–24 can be expressed as

n(t) = ni (t) cos[2π fct + φ(t)] − nq (t) sin[2π fct + φ(t)] (5.2–25)

where

ni (t) = x(t) cos φ(t) + y(t) sin φ(t)
(5.2–26)

nq (t) = −x(t) sin φ(t) + y(t) cos φ(t)

We note that

ni (t) + jnq (t) = [x(t) + j y(t)]e− jφ(t)

so that the quadrature components ni (t) and nq (t) have exactly the same statistical
characteristics as x(t) and y(t).

If s(t) + n(t) is multiplied by the output of the VCO and the double-frequency
terms are neglected, the input to the loop filter is the noise-corrupted signal

e(t) = Ac sin 	φ + ni (t) sin 	φ − nq (t) cos 	φ
(5.2–27)= Ac sin 	φ + n1(t)

where, by definition 	φ = φ̂ − φ is the phase error. Thus, we have the equivalent
model for the PLL with additive noise as shown in Figure 5.2–6.

When the power Pc = 1
2 A2

c of the incoming signal is much larger than the noise
power, we may linearize the PLL and, thus, easily determine the effect of the additive
noise on the quality of the estimate φ̂. Under these conditions, the model for the

FIGURE 5.2–6
Equivalent PLL model with additive noise.
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FIGURE 5.2–7
Linearized PLL model with additive noise.

linearized PLL with additive noise is illustrated in Figure 5.2–7. Note that the gain
parameter Ac may be normalized to unity, provided that the noise terms are scaled by
1/Ac, i.e., the noise terms become

n2(t) = ni (t)

Ac
sin 	φ − nq (t)

Ac
cos 	φ (5.2–28)

The noise term n2(t) is zero-mean Gaussian with a power spectral density N0/2A2
c .

Since the noise n2(t) is additive at the input to the loop, the variance of the phase error
	φ, which is also the variance of the VCO output phase, is

σ 2
φ̂

= N0

2A2
c

∫ ∞

−∞
|H ( f )|2 d f

= N0

A2
c

∫ ∞

0
|H ( f )|2 d f (5.2–29)

= N0 Beq

A2
c

where Beq is the (one-sided) equivalent noise bandwidth of the loop, given in Equation
5.2–22. Note that σ 2

φ̂
is simply the ratio of total noise power within the bandwidth of

the PLL divided by the signal power. Hence,

σ 2
φ̂

= 1

γL
(5.2–30)

where γL is defined as the signal-to-noise ratio

SNR ≡ γL = A2
c

N0 Beq
(5.2–31)

The expression for the variance σ 2
φ̂

of the VCO phase error applies to the case where
the SNR is sufficiently high that the linear model for the PLL applies. An exact analysis
based on the non-linear PLL is mathematically tractable when G(s) = 1, which results
in a first-order loop. In this case, the probability density function for the phase error
may be derived (see Viterbi, 1966) and has the form

p(	φ) = exp(γL cos 	φ)

2π I0(γL )
(5.2–32)

where γL is the SNR given by Equation 5.2–31 with Beq being the appropriate noise
bandwidth of the first-order loop, and I0(·) is the modified Bessel function of order zero.
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FIGURE 5.2–8
Comparison of VCO phase variance for exact and approximate
(linear model) first-order PLL. [From Principles of Coherent
Communication, by A. J. Viterbi; c©1966 by McGraw-Hill Book
Company. Reprinted with permission of the publisher.]

From the expression for p(	φ), we may obtain the exact value of the variance for
the phase error on a first-order PLL. This is plotted in Figure 5.2–8 as a function of
1/γL . Also shown for comparison is the result obtained with the linearized PLL model.
Note that the variance for the linear model is close to the exact variance for γL > 3.
Hence, the linear model is adequate for practical purposes.

Approximate analyses of the statistical characteristics of the phase error for the non-
linear PLL have also been performed. Of particular importance is the transient behavior
of the PLL during initial acquisition. Another important problem is the behavior of PLL
at low SNR. It is known, for example, that when the SNR at the input to the PLL drops
below a certain value, there is a rapid deterioration in the performance of the PLL.
The loop begins to lose lock and an impulsive type of noise, characterized as clicks, is
generated which degrades the performance of the loop. Results on these topics can be
found in the texts by Viterbi (1966), Lindsey (1972), Lindsey and Simon (1973), and
Gardner (1979), and in the survey papers by Gupta (1975) and Lindsey and Chie (1981).

Up to this point, we have considered carrier phase estimation when the carrier
signal is unmodulated. Below, we consider carrier phase recovery when the signal
carries information.

5.2–4 Decision-Directed Loops

A problem arises in maximizing either Equation 5.2–9 or 5.2–10 when the signal s(t; φ)
carries the information sequence {In}. In this case we can adopt one of two approaches:
either we assume that {In} is known or we treat {In} as a random sequence and average
over its statistics.

In decision-directed parameter estimation, we assume that the information se-
quence {In} over the observation interval has been estimated and, in the absence of
demodulation errors, Ĩn = In , where Ĩn denotes the detected value of the information
In . In this case s(t; φ) is completely known except for the carrier phase.

To be specific, let us consider the decision-directed phase estimate for the class of
linear modulation techniques for which the received equivalent low-pass signal may
be expressed as

rl(t) = e− jφ
∑

n

Ing(t − nT ) + z(t) = sl(t)e
− jφ + z(t) (5.2–33)
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where sl(t) is a known signal if the sequence {In} is assumed known. The likelihood
function and corresponding log-likelihood function for the equivalent low-pass signal
are

�(φ) = C exp
{

Re
[

1

N0

∫
T0

rl(t)s
∗
l (t)e jφdt]

]}
(5.2–34)

�L (φ) = Re
{[

1

N0

∫
T0

rl(t)s
∗
l (t) dt

]
e jφ

}
(5.2–35)

If we substitute for sI (t) in Equation 5.2–35 and assume that the observation interval
T0 = K T , where K is a positive integer, we obtain

�L (φ) = Re

{
e jφ 1

N0

K−1∑
n=0

I ∗
n

∫ (n+1)T

nT
rl(t)g

∗(t − nT ) dt

}

(5.2–36)

= Re

{
e jφ 1

N0

K−1∑
n=0

I ∗
n yn

}

where, by definition

yn =
∫ (n+1)T

nT
rl(t)g

∗(t − nT ) dt (5.2–37)

Note that yn is the output of the matched filter in the nth signal interval. The ML estimate
of φ is easily found from Equation 5.2–36 by differentiating the log-likelihood

�L (φ) = Re

(
1

N0

K−1∑
n=0

I ∗
n yn

)
cos φ − Im

(
1

N0

K−1∑
n=0

I ∗
n yn

)
sin φ

with respect to φ and setting the derivative equal to zero. Thus, we obtain

φ̂M L = − tan−1

[
Im

(
K−1∑
n=0

I ∗
n yn

) /
Re

(
K−1∑
n=0

I ∗
n yn

)]
(5.2–38)

We call φ̂ML in Equation 5.2–38 the decision-directed (or decision-feedback) carrier
phase estimate. It is easily shown (Problem 5.10) that the mean value of φ̂ML is φ, so that
the estimate is unbiased. Furthermore, the PDF of φ̂ML can be obtained (Problem 5.11)
by using the procedure described in Section 4.3–2.

The block diagram of a double-sideband PAM signal receiver that incorporates
the decision-directed carrier phase estimate given by Equation 5.2–38 is illustrated in
Figure 5.2–9.

Another implementation of the PAM receiver that employs a decision-feedback
PLL (DFPLL) for carrier phase estimation is shown in Figure 5.2–10. The received
double-sideband PAM signal is given by A(t) cos(2π fct + φ), where A(t) = Am g(t)
and g(t) is assumed to be a rectangular pulse of duration T . This received signal is
multiplied by the quadrature carriers ci (t) and cq (t), as given by Equation 5.2–5, which
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FIGURE 5.2–9
Block diagram of double-sideband PAM signal receiver with decision-directed carrier phase
estimation.

are derived from the VCO. The product signal

r (t) cos(2π fct + φ̂) = 1
2 [A(t) + ni (t)] cos 	φ

− 1
2 nq (t) sin 	φ + double-frequency terms

(5.2–39)

is used to recover the information carried by A(t). The detector makes a decision on
the symbol that is received every T seconds. Thus, in the absence of decision errors,
it reconstructs A(t) free of any noise. This reconstructed signal is used to multiply the
product of the second quadrature multiplier, which has been delayed by T seconds
to allow the demodulator to reach a decision. Thus, the input to the loop filter in the
absence of decision errors is the error signal

e(t) = 1
2 A(t){[A(t) + ni (t)] sin 	φ − nq (t) cos 	φ}
+ double-frequency terms

= 1
2 A2(t) sin 	φ + 1

2 A(t)[ni (t) sin 	φ − nq (t) cos 	φ]
+ double-frequency terms

(5.2–40)

FIGURE 5.2–10
Carrier recovery with a decision-feedback PLL.
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FIGURE 5.2–11
Block diagram of QAM signal receiver with decision-directed carrier phase estimation.

The loop filter is low-pass and, hence, it rejects the double-frequency term in e(t).
The desired component is A2(t) sin 	φ, which contains the phase error for driving the
loop.

The ML estimate in Equation 5.2–38 is also appropriate for QAM. The block dia-
gram of a QAM receiver that incorporates the decision-directed carrier phase estimate
is shown in Figure 5.2–11.

In the case of M-ary PSK, the DFPLL has the configuration shown in Figure 5.2–12.
The received signal is demodulated to yield the phase estimate

θ̂m = 2π

M
(m − 1)

which, in the absence of a decision error, is the transmitted signal phase θm . The
two outputs of the quadrature multipliers are delayed by the symbol duration T and
multiplied by cos θm and sin θm to yield

r (t) cos(2π fct + φ̂) sin θm

= 1
2 [A cos θm + ni (t)] sin θm cos(φ − φ̂)

− 1
2 [A sin θm + nq (t)] sin θm sin(φ − φ̂)

+ double-frequency terms (5.2–41)

r (t) sin(2π fct + φ̂) cos θm

= − 1
2 [A cos θm + ni (t)] cos θm sin(φ − φ̂)

− 1
2 [A sin θm + nq (t)] cos θm cos(φ − φ̂)

+ double-frequency terms
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FIGURE 5.2–12
Carrier recovery for M-ary PSK using a decision-feedback PLL.

The two signals are added to generate the error signal

e(t) = − 1
2 A sin(φ − φ̂) + 1

2 ni (t) sin(φ − φ̂ − θm) (5.2–42)

+ 1
2 nq (t) cos(φ − φ̂ − θm) + double-frequency terms

This error signal is the input to the loop filter that provides the control signal for the
VCO.

We observe that the two quadrature noise components in Equation 5.2–42 appear
as additive terms. There is no term involving a product of two noise components as
in an M th-power law device, described in the next section. Consequently, there is no
additional power loss associated with the decision-feedback PLL.

This M-phase tracking loop has a phase ambiguity of 360◦/M , necessitating the
need to differentially encode the information sequence prior to transmission and differ-
entially decode the received sequence after demodulation to recover the information.

The ML estimate in Equation 5.2–38 is also appropriate for QAM. The ML estimate
for offset QPSK is also easily obtained (Problem 5.12) by maximizing the log-likelihood
function in Equation 5.2–35, with sl(t) given as

sl(t) = ∑
n Ing(t − nT ) + j

∑
n Jng(t − nT − 1

2 T ) (5.2–43)

where In = ±1 and Jn = ±1.
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Finally, we should also mention that carrier phase recovery for CPM signals can
also be accomplished in a decision-directed manner by use of a PLL. From the optimum
demodulator for CPM signals, which is described in Section 4.3, we can generate an
error signal that is filtered in a loop filter whose output drives a PLL. Alternatively, we
may exploit the linear representation of CPM signals and, thus, employ a generalization
of the carrier phase estimator given by Equation 5.2–38, in which the cross correlation
of the received signal is performed with each of the pulses in the linear representation.
A comprehensive description of carrier phase recover techniques for CPM is given in
the book by Mengali and D’Andrea (1997).

5.2–5 Non-Decision-Directed Loops

Instead of using a decision-directed scheme to obtain the phase estimate, we may treat
the data as random variables and simply average �(φ) over these random variables
prior to maximization. In order to carry out this integration, we may use either the
actual probability distribution function of the data, if it is known, or, perhaps, we may
assume some probability distribution that might be a reasonable approximation to the
true distribution. The following example illustrates the first approach.

E X A M P L E 5.2–2. Suppose the real signal s(t) carries binary modulation. Then, in a
signal interval, we have

s(t) = A cos 2π fct, 0 ≤ t ≤ T

where A = ±1 with equal probability. Clearly, the PDF of A is given as

p(A) = 1
2δ(A − 1) + 1

2δ(A + 1)

Now, the likelihood function �(φ) given by Equation 5.2–9 may be considered as
conditional on a given value of A and must be averaged over the two values. Thus,

�̄(φ) =
∫ ∞

−∞
�(φ)p(A) d A

= 1
2 exp

[
2

N0

∫ T

0
r (t) cos(2π fct + φ) dt

]

+ 1
2 exp

[
− 2

N0

∫ T

0
r (t) cos(2π fct + φ) dt

]

= cosh

[
2

N0

∫ T

0
r (t) cos(2π fct + φ) dt

]

and the corresponding log-likelihood function is

�̄L (φ) = ln cosh

[
2

N0

∫ T

0
r (t) cos(2π fct + φ) dt

]
(5.2–44)

If we differentiate �̄L (φ) and set the derivative equal to zero, we obtain the ML estimate
for the non-decision-directed estimate. Unfortunately, the functional relationship in
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Equation 5.2–44 is highly non-linear and, hence, an exact solution is difficult to obtain.
On the other hand, approximations are possible. In particular,

ln cosh x =
{

1
2 x2 (|x | � 1)

|x | (|x | � 1)
(5.2–45)

With these approximations, the solution for φ becomes tractable.

In this example, we averaged over the two possible values of the information
symbol. When the information symbols are M-valued, where M is large, the averaging
operation yields highly non-linear functions of the parameter to be estimated. In such
a case, we may simplify the problem by assuming that the information symbols are
continuous random variables. For examples, we may assume that the symbols are zero-
mean Gaussian. The following example illustrates this approximation and the resulting
form for the average likelihood function.

E X A M P L E 5.2–3. Let us consider the same signal as in Example 5.2–2, but now we
assume that the amplitude A is zero-mean Gaussian with unit variance. Thus,

p(A) = 1√
2π

e−A2/2

If we average �(φ) over the assumed PDF of A, we obtain the average likelihood �̄(φ)
in the form

�̄(φ) = C exp

{[
2

N0

∫ T

0
r (t) cos(2π fct + φ) dt

]2
}

(5.2–46)

and the corresponding log-likelihood as

�̄L (φ) =
[

2

N0

∫ T

0
r (t) cos(2π fct + φ) dt

]2

(5.2–47)

We can obtain the ML estimate of φ by differentiating �̄L (φ) and setting the derivative
to zero.

It is interesting to note that the log-likelihood function is quadratic under the Gaus-
sian assumption and that it is approximately quadratic, as indicated in Equation 5.2–45
for small values of the cross correlation of r (t) with s(t; φ). In other words, if the cross
correlation over a single interval is small, the Gaussian assumption for the distribution
of the information symbols yields a good approximation to the log-likelihood function.

In view of these results, we may use the Gaussian approximation on all the symbols
in the observation interval T0 = K T . Specifically, we assume that the K information
symbols are statistically independent and identically distributed. By averaging the like-
lihood function �(φ) over the Gaussian PDF for each of the K symbols in the interval
T0 = K T , we obtain the result

�̄(φ) = C exp

{
K−1∑
n=0

[
2

N0

∫ (n+1)T

nT
r (t) cos(2π fct + φ) dt

]2
}

(5.2–48)
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FIGURE 5.2–13
Non-decision-directed PLL for carrier phase estimation of PAM signals.

If we take the logarithm of Equation 5.2–48, differentiate the resulting log-likelihood
function, and set the derivative equal to zero, we obtain the condition for the ML esti-
mate as

K−1∑
n=0

∫ (n+1)T

nT
r (t) cos(2π fct + φ̂) dt

∫ (n+1)T

nT
r (t) sin(2π fct + φ̂) dt = 0 (5.2–49)

Although this equation can be manipulated further, its present form suggests the tracking
loop configuration illustrated in Figure 5.2–13. This loop resembles a Costas loop,
which is described below. We note that the multiplication of the two signals from the
integrators destroys the sign carried by the information symbols. The summer plays the
role of the loop filter. In a tracking loop configuration, the summer may be implemented
either as a sliding-window digital filter (summer) or as a low-pass digital filter with
exponential weighting of the past data.

In a similar manner, one can derive non-decision-directed ML phase estimates for
QAM and M-PSK. The starting point is to average the likelihood function given by
Equation 5.2–9 over the statistical characteristics of the data. Here again, we may use the
Gaussian approximation (two-dimensional Gaussian for complex-valued information
symbols) in averaging over the information sequence.

Squaring loop The squaring loop is a non-decision-directed loop that is widely
used in practice to establish the carrier phase of double-sideband suppressed carrier
signals such as PAM. To describe its operation, consider the problem of estimating the
carrier phase of the digitally modulated PAM signal of the form

s(t) = A(t) cos(2π fct + φ) (5.2–50)

where A(t) carries the digital information. Note that E[s(t)] = E[A(t)] = 0 when the
signal levels are symmetric about zero. Consequently, the average value of s(t) does
not produce any phase coherent frequency components at any frequency, including
the carrier. One method for generating a carrier from the received signal is to square
the signal and, thus, to generate a frequency component at 2 fc, which can be used to
drive a PLL tuned to 2 fc. This method is illustrated in the block diagram shown in
Figure 5.2–14.
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FIGURE 5.2–14
Carrier recover using a square-law device.

The output of the square-law device is

s2(t) = A2(t) cos2(2π fct + φ) (5.2–51)

= 1
2 A2(t) + 1

2 A2(t) cos(4π fct + 2φ)

Since the modulation is a cyclostationary stochastic process, the expected value of
s2(t) is

E[s2(t)] = 1
2 E[A2(t)] + 1

2 E[A2(t)] cos(4π fct + 2φ) (5.2–52)

Hence, there is power at the frequency 2 fc.
If the output of the square-law device is passed through a band-pass filter tuned to the

double-frequency term in Equation 5.2–51, the mean value of the filter is a sinusoid with
frequency 2 fc, phase 2φ, and amplitude 1

2 E[A2(t)]H (2 fc), where H (2 fc) is the gain of
the filter at f = 2 fc. Thus, the square-law device has produced a periodic component
from the input signal s(t). In effect, the squaring of s(t) has removed the sign information
contained in A(t) and, thus, has resulted in phase-coherent frequency components at
twice the carrier. The filtered frequency component at 2 fc is then used to drive the PLL.

The squaring operation leads to a noise enhancement that increases the noise power
level at the input to the PLL and results in an increase in the variance of the phase error.

To elaborate on this point, let the input to the squarer be s(t) + n(t), where s(t) is
given by Equation 5.2–50 and n(t) represents the band-pass additive Gaussian noise
process. By squaring s(t) + n(t), we obtain

y(t) = s2(t) + 2s(t)n(t) + n2(t) (5.2–53)

where s2(t) is the desired signal component and the other two components are the sig-
nal × noise and noise × noise terms. By computing the autocorrelation functions and
power density spectra of these two noise components, one can easily show that both
components have spectral power in the frequency band centered at 2 fc. Consequently,
the band-pass filter with bandwidth Bbp centered at 2 fc, which produces the desired si-
nusoidal signal component that drives the PLL, also passes noise due to these two terms.



Proakis-27466 book September 25, 2007 14:49

312 Digital Communications

Since the bandwidth of the loop is designed to be significantly smaller than the
bandwidth Bbp of the band-pass filter, the total noise spectrum at the input to the PLL
may be approximated as a constant within the loop bandwidth. This approximation
allows us to obtain a simple expression for the variance of the phase error as

σ 2
φ̂

= 1

γL SL
(5.2–54)

where SL is called the squaring loss and is given by

SL =
(

1 + Bbp/2Beq

γL

)−1

(5.2–55)

Since SL < 1, S−1
L represents the increase in the variance of the phase error caused by

the added noise (noise × noise terms) that results from the squarer. Note, for example,
that when γL = Bbp/2Beq, the loss is 3 dB.

Finally, we observe that the output of the VCO from the squaring loop must be
frequency-divided by 2 to generate the phase-locked carrier for signal demodulation.
It should be noted that the output of the frequency divider has a phase ambiguity of
180◦ relative to the phase of the received signal. For this reason, the data must be
differentially encoded prior to transmission and differentially decoded at the receiver.

Costas loop Another method for generating a properly phased carrier for a double-
sideband suppressed carrier signal is illustrated by the block diagram shown in
Figure 5.2–15. This scheme was developed by Costas (1956) and is called the Costas
loop. The received signal is multiplied by cos(2π fct + φ̂) and sin(2π fct + φ̂), which
are outputs from the VCO. The two products are

yc(t) = [s(t) + n(t)] cos(2π fct + φ̂)

= 1
2 [A(t) + ni (t)] cos 	φ + 1

2 nq (t) sin 	φ

+ double-frequency terms (5.2–56)

ys(t) = [s(t) + n(t)] sin(2π fct + φ̂)

= 1
2 [A(t) + ni (t)] sin 	φ − 1

2 nq (t) cos 	φ

+ double-frequency terms

FIGURE 5.2–15
Block diagram of Costas loop.
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where the phase error 	φ = φ̂ − φ. The double-frequency terms are eliminated by the
low-pass filters following the multiplications.

An error signal is generated by multiplying the two outputs of the low-pass filters.
Thus,

e(t) = 1
8 {[A(t) + ni (t)]2 − n2

q (t)} sin(2	φ)
(5.2–57)− 1

4 nq (t)[A(t) + ni (t)] cos(2	φ)

This error signal is filtered by the loop filter, whose output is the control voltage that
drives the VCO. The reader should note the similarity of the Costas loop to the PLL
shown in Figure 5.2–13.

We note that the error signal into the loop filter consists of the desired term
A2(t) sin 2(φ̂ − φ) plus terms that involve signal × noise and noise × noise. These
terms are similar to the two noise terms at the input to the PLL for the squaring method.
In fact, if the loop filter in the Costas loop is identical to that used in the squaring loop,
the two loops are equivalent. Under this condition, the probability density function of
the phase error and the performance of the two loops are identical.

It is interesting to note that the optimum low-pass filter for rejecting the double-
frequency terms in the Costas loop is a filter matched to the signal pulse in the
information-bearing signal. If matched filters are employed for the low-pass filters,
their outputs could be sampled at the bit rate at the end of each signal interval, and the
discrete-time signal samples could be used to drive the loop. The use of the matched
filter results in a smaller noise into the loop.

Finally, we note that, as in the squaring PLL, the output of the VCO contains a
phase ambiguity of 180◦, necessitating the need for differential encoding of the data
prior to transmission and differential decoding at the demodulator.

Carrier estimation for multiple phase signals When the digital information is
transmitted via M-phase modulation of a carrier, the methods described above can
be generalized to provide the properly phased carrier for demodulation. The received
M-phase signal, excluding the additive noise, may be expressed as

s(t) = A cos
[

2π fct + φ + 2π

M
(m − 1)

]
, m = 1, 2, . . . , M (5.2–58)

where 2π (m−1)/M represents the information-bearing component of the signal phase.
The problem in carrier recovery is to remove the information-bearing component and,
thus, to obtain the unmodulated carrier cos(2π fct + φ). One method by which this
can be accomplished is illustrated in Figure 5.2–16, which represents a generalization
of the squaring loop. The signal is passed through an M th-power-law device, which
generates a number of harmonics of fc. The band-pass filter selects the harmonic
cos(2π M fct + Mφ) for driving the PLL. The term

2π

M
(m − 1)M = 2π (m − 1) ≡ 0 (mod 2π ), m = 1, 2, . . . , M

Thus, the information is removed. The VCO output is sin(2π M fct + Mφ̂), so this
output is divided in frequency by M to yield sin(2π fct + φ̂), and phase-shifted by 1

2π
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FIGURE 5.2–16
Carrier recovery with M th-power-law device for M-ary PSK.

rad to yield cos(2π fct+φ̂). These components are then fed to the demodulator. Although
not explicitly shown, there is a phase ambiguity in these reference sinusoids of 360◦/M ,
which can be overcome by differential encoding of the data at the transmitter and
differential decoding after demodulation at the receiver.

Just as in the case of the squaring PLL, the M th-power PLL operates in the presence
of noise that has been enhanced by the M th-power-law device, which results in the
output

y(t) = [s(t) + n(t)]M

The variance of the phase error in the PLL resulting from the additive noise may be
expressed in the simple form

σ 2
φ̂

= S−1
ML

γL
(5.2–59)

where γL is the loop SNR and S−1
ML is the M-phase power loss. SML has been evaluated

by Lindsey and Simon (1973) for M = 4 and 8.
Another method for carrier recovery in M-ary PSK is based on a generalization

of the Costas loop. That method requires multiplying the received signal by M phase-
shifted carriers of the form

sin
[

2π fct + φ̂ + π

M
(k − 1)

]
, k = 1, 2, . . . , M

low-pass–filtering each product, and then multiplying the outputs of the low-pass filters
to generate the error signal. The error signal excites the loop filter, which, in turn,
provides the control signal for the VCO. This method is relatively complex to implement
and, consequently, has not been generally used in practice.

Comparison of decision-directed with non-decision-directed loops We note that
the decision-feedback phase-locked loop (DFPLL) differs from the Costas loop only in
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the method by which A(t) is rectified for the purpose of removing the modulation. In
the Costas loop, each of the two quadrature signals used to rectify A(t) is corrupted by
noise. In the DFPLL, only one of the signals used to rectify A(t) is corrupted by noise.
On the other hand, the squaring loop is similar to the Costas loop in terms of the noise
effect on the estimate φ̂. Consequently, the DFPLL is superior in performance to both
the Costas loop and the squaring loop, provided that the demodulator is operating at
error rates below 10−2 where an occasional decision error has a negligible effect on φ̂.
Quantitative comparisons of the variance of the phase errors in a Costas loop to those
in DFPLL have been made by Lindsey and Simon (1973), and show that the variance
of the DFPLL is 4–10 times smaller for signal-to-noise ratios per bit above 0 dB.

5.3
SYMBOL TIMING ESTIMATION

In a digital communication system, the output of the demodulator must be sampled
periodically at the symbol rate, at the precise sampling time instants tm = mT +τ , where
T is the symbol interval and τ is a nominal time delay that accounts for the propagation
time of the signal from the transmitter to the receiver. To perform this periodic sampling,
we require a clock signal at the receiver. The process of extracting such a clock signal
at the receiver is usually called symbol synchronization or timing recovery.

Timing recovery is one of the most critical functions that is performed at the receiver
of a synchronous digital communication system. We should note that the receiver must
know not only the frequency (1/T ) at which the outputs of the matched filters or
correlators are sampled, but also where to take the samples within each symbol interval.
The choice of sampling instant within the symbol interval of duration T is called the
timing phase.

Symbol synchronization can be accomplished in one of several ways. In some
communication systems, the transmitter and receiver clocks are synchronized to a
master clock, which provides a very precise timing signal. In this case, the receiver
must estimate and compensate for the relative time delay between the transmitted and
received signals. Such may be the case for radio communication systems that operate
in the very low frequency (VLF) band (below 30 kHz), where precise clock signals are
transmitted from a master radio station.

Another method for achieving symbol synchronization is for the transmitter to
simultaneously transmit the clock frequency 1/T or a multiple of 1/T along with
the information signal. The receiver may simply employ a narrowband filter tuned to
the transmitted clock frequency and, thus, extract the clock signal for sampling. This
approach has the advantage of being simple to implement. There are several disadvan-
tages, however. One is that the transmitter must allocate some of its available power to
the transmission of the clock signal. Another is that some small fraction of the available
channel bandwidth must be allocated for the transmission of the clock signal. In spite
of these disadvantages, this method is frequently used in telephone transmission sys-
tems that employ large bandwidths to transmit the signals of many users. In such a case,
the transmission of a clock signal is shared in the demodulation of the signals among
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the many users. Through this shared use of the clock signal, the penalty in the transmitter
power and in bandwidth allocation is reduced proportionally by the number of users.

A clock signal can also be extracted from the received data signal. There are a num-
ber of different methods that can be used at the receiver to achieve self-synchronization.
In this section, we treat both decision-directed and non-decision-directed methods.

5.3–1 Maximum-Likelihood Timing Estimation

Let us begin by obtaining the ML estimate of the time delay τ . If the signal is a baseband
PAM waveform, it is represented as

r (t) = s(t; τ ) + n(t) (5.3–1)

where

s(t; τ ) =
∑

n

Ing(t − nT − τ ) (5.3–2)

As in the case of ML phase estimation, we distinguish between two types of timing
estimators, decision-directed timing estimators and non-decision-directed estimators.
In the former, the information symbols from the output of the demodulator are treated as
the known transmitted sequence. In this case, the log-likelihood function has the form

�L (τ ) = CL

∫
T0

r (t)s(t; τ ) dt (5.3–3)

If we substitute Equation 5.3–2 into Equation 5.3–3, we obtain

�L (τ ) = CL

∑
n

In

∫
T0

r (t)g(t − nT − τ ) dt

(5.3–4)
= CL

∑
n

In yn(τ )

where yn(t) is defined as

yn(τ ) =
∫

T0

r (t)g(t − nT − τ ) dt (5.3–5)

A necessary condition for τ̂ to be the ML estimate of τ is that

d�L (τ )

dτ
=

∑
n

In
d

dτ

∫
T0

r (t)g(t − nT − τ ) dt

(5.3–6)
=

∑
n

In
d

dτ
[yn(τ )] = 0

The result in Equation 5.3–6 suggests the implementation of the tracking loop
shown in Figure 5.3–1. We should observe that the summation in the loop serves as
the loop filter whose bandwidth is controlled by the length of the sliding window in
the summation. The output of the loop filter drives the voltage-controlled clock (VCC),
or voltage-controlled oscillator, which controls the sampling times for the input to the
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FIGURE 5.3–1
Decision-directed ML estimation of timing for baseband PAM.

loop. Since the detected information sequence {In} is used in the estimation of τ , the
estimate is decision-directed.

The technique described above for ML timing estimation of baseband PAM signals
can be extended to carrier modulated signal formats such as QAM and PSK in a
straightforward manner, by dealing with the equivalent low-pass form of the signals.
Thus, the problem of ML estimation of symbol timing for carrier signals is very similar
to the problem formulation for the baseband PAM signal.

5.3–2 Non-Decision-Directed Timing Estimation

A non-decision-directed timing estimate can be obtained by averaging the likelihood ra-
tio �(τ ) over the PDF of the information symbols, to obtain �̄(τ ), and then differentiat-
ing either �̄(τ ) or ln �̄(τ ) = �̄L (τ ) to obtain the condition for the maximum-likelihood
estimate τ̂M L .

In the case of binary (baseband) PAM, where In = ±1 with equal probability, the
average over the data yields

�̄L (τ ) =
∑

n

ln cosh[Cyn(τ )] (5.3–7)

just as in the case of the phase estimator, Since ln cosh x ≈ 1
2 x2 for small x , the

square-law approximation

�̄L (τ ) ≈ 1
2 C2 ∑

n y2
n (τ ) (5.3–8)

is appropriate for low signal-to-noise ratios. For multilevel PAM, we may approximate
the statistical characteristics of the information symbols {In} by the Gaussian PDF,
with zero-mean and unit variance. When we average �(τ ) over the Gaussian PDF, the
logarithm of �̄(τ ) is identical to �̄L (τ ) given by Equation 5.3–8. Consequently, the
non-decision-directed estimate of τ may be obtained by differentiating Equation 5.3–8.
The result is an approximation to the ML estimate of the delay time. The derivative of
Equation 5.3–8 is

d

dτ

∑
n

y2
n (τ ) = 2

∑
n

yn(τ )
dyn(τ )

dτ
= 0 (5.3–9)

where yn(τ ) is given by Equation 5.3–5.
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FIGURE 5.3–2
Non-decision-directed estimation of timing for binary baseband PAM.

An implementation of a tracking loop based on the derivative of �̄L (τ ) given
by Equation 5.3–7 is shown in Figure 5.3–2. Alternatively, an implementation of a
tracking loop based on Equation 5.3–9 is illustrated in Figure 5.3–3. In both structures,
we observe that the summation serves as the loop filter that drives the VCC. It is
interesting to note the resemblance of the timing loop in Figure 5.3–3 to the Costas
loop for phase estimation.

Early–late gate synchronizers Another non-decision-directed timing estimator
exploits the symmetry properties of the signal at the output of the matched filter or
correlator. To describe this method, let us consider the rectangular pulse s(t), 0 ≤ t ≤ T ,
shown in Figure 5.3–4a. The output of the filter matched to s(t) attains its maximum
value at time t = T , as shown in Figure 5.3–4b. Thus, the output of the matched filter
is the time autocorrelation function of the pulse s(t). Of course, this statement holds
for any arbitrary pulse shape, so the approach that we describe applies in general to
any signal pulse. Clearly, the proper time to sample the output of the matched filter for
a maximum output is at t = T , i.e., at the peak of the correlation function.

In the presence of noise, the identification of the peak value of the signal is generally
difficult. Instead of sampling the signal at the peak, suppose we sample early, at t = T −δ

and late at t = T + δ. The absolute values of the early samples |y[m(T − δ)]| and the
late samples |y[m(T + δ)]| will be smaller (on the average in the presence of noise)

FIGURE 5.3–3
Non-decision-directed estimation of timing for baseband PAM.
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FIGURE 5.3–4
Rectangular signal pulse (a) and its
matched filter output (b).

than the samples of the peak value |y(mT )|. Since the autocorrelation function is even
with respect to the optimum sampling time t = T , the absolute values of the correlation
function at t = T −δ and t = T +δ are equal. Under this condition, the proper sampling
time is the midpoint between t = T − δ and t = T + δ. This condition forms the basis
for the early–late gate symbol synchronizer.

Figure 5.3–5 illustrates the block diagram of an early–late gate synchronizer. In
this figure, correlators are used in place of the equivalent matched filters. The two
correlators integrate over the symbol interval T , but one correlator starts integrating
δ seconds early relative to the estimated optimum sampling time and the other in-
tegrator starts integrating δ seconds late relative to the estimated optimum sampling
time. An error signal is formed by taking the difference between the absolute values
of the two correlator outputs. To smooth the noise corrupting the signal samples, the
error signal is passed through a low-pass filter. If the timing is off relative to the op-
timum sampling time, the average error signal at the output of the low-pass filter is
nonzero, and the clock signal is either retarded or advanced, depending on the sign
of the error. Thus, the smoothed error signal is used to drive a VCC, whose output
is the desired clock signal that is used for sampling. The output of the VCC is also
used as a clock signal for a symbol waveform generator that puts out the same basic
pulse waveform as that of the transmitting filter. This pulse waveform is advanced and
delayed and then fed to the two correlators, as shown in Figure 5.3–5. Note that if the
signal pulses are rectangular, there is no need for a signal pulse generator within the
tracking loop.

FIGURE 5.3–5
Block diagram of early–late gate synchronizer.
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We observe that the early–late gate synchronizer is basically a closed-loop control
system whose bandwidth is relatively narrow compared to the symbol rate 1/T . The
bandwidth of the loop determines the quality of the timing estimate. A narrowband loop
provides more averaging over the additive noise and, thus, improves the quality of the
estimated sampling instants, provided that the channel propagation delay is constant
and the clock oscillator at the transmitter is not drifting with time (or drifting very
slowly with time). On the other hand, if the channel propagation delay is changing
with time and/or the transmitter clock is also drifting with time, then the bandwidth of
the loop must be increased to provide for faster tracking of time variations in symbol
timing.

In the tracking mode, the two correlators are affected by adjacent symbols. How-
ever, if the sequence of information symbols has zero-mean, as is the case for PAM and
some other signal modulations, the contribution to the output of the correlators from
adjacent symbols averages out to zero in the low-pass filter.

An equivalent realization of the early–late gate synchronizer that is somewhat easier
to implement is shown in Figure 5.3–6. In this case the clock signal from the VCC is
advanced and delayed by δ, and these clock signals are used to sample the outputs of
the two correlators.

The early–late gate synchronizer described above is a non-decision-directed es-
timator of symbol timing that approximates the maximum-likelihood estimator. This
assertion can be demonstrated by approximating the derivative of the log-likelihood
function by the finite difference, i.e.,

d�̄L (τ )

dτ
≈ �̄L (τ + δ) − �̄L (τ − δ)

2δ
(5.3–10)

FIGURE 5.3–6
Block diagram of early–late gate synchronizer—an alternative form.
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If we substitute for �̄L (τ ) from Equation 5.3–8 into Equation 5.3–10, we obtain the
approximation for the derivative as

d�̄L (τ )

dτ
= C2

4δ

∑
n

[
y2

n (τ + δ) − y2
n (τ − δ)

]

≈ C2

4δ

∑
n

{[∫
T0

r (t)g(t − nT − τ − δ) dt
]2

(5.3–11)

−
[∫

T0

r (t)g(t − nT − τ + δ) dt
]2

}

But the mathematical expression in Equation 5.3–11 basically describes the functions
performed by the early–late gate symbol synchronizers illustrated in Figures 5.3–5
and 5.3–6.

5.4
JOINT ESTIMATION OF CARRIER PHASE AND SYMBOL TIMING

The estimation of the carrier phase and symbol timing may be accomplished separately
as described above or jointly. Joint ML estimation of two or more signal parameters
yields estimates that are as good and usually better than the estimates obtained from
separate optimization of the likelihood function. In other words, the variances of the
signal parameters obtained from joint optimization are less than or equal to the variance
of parameter estimates obtained from separately optimizing the likelihood function.

Let us consider the joint estimation of the carrier phase and symbol timing. The
log-likelihood function for these two parameters may be expressed in terms of the
equivalent low-pass signals as

�L (φ, τ ) = Re
[

1

N0

∫
T0

r (t)s∗
l (t; φ, τ ) dt

]
(5.4–1)

where sl(t; φ, τ ) is the equivalent low-pass signal, which has the general form

sl(t; φ, τ ) = e− jφ

[∑
n

Ing(t − nT − τ ) + j
∑

n

Jnw(t − nT − τ )

]
(5.4–2)

where {In} and {Jn} are the two information sequences.
We note that, for PAM, we may set Jn = 0 for all n, and the sequence {In} is real.

For QAM and PSK, we set Jn = 0 for all n and the sequence {In} is complex-valued.
For offset QPSK, both sequences {In} and {Jn} are nonzero and w(t) = g(t − 1

2 T ).
For decision-directed ML estimation of φ and τ , the log-likelihood function

becomes

�L (φ, τ ) = Re

{
e jφ

N0

∑
n

[
I ∗
n yn(τ ) − j J ∗

n xn(τ )
]}

(5.4–3)
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where

yn(τ ) =
∫

T0

r (t)g∗(t − nT − τ ) dt

(5.4–4)
xn(τ ) =

∫
T0

r (t)w∗(t − nT − τ ) dt

Necessary conditions for the estimates of φ and τ to be the ML estimates are

∂�L (φ, τ )

∂φ
= 0,

∂�L (φ, τ )

∂τ
= 0 (5.4–5)

It is convenient to define

A(τ ) + j B(τ ) = 1

N0

∑ [
I ∗
n yn(τ ) − j J ∗

n xn(τ )
]

(5.4–6)

With this definition, Equation 5.4–3 may be expressed in the simple form

�L (φ, τ ) = A(τ ) cos φ − B(τ ) sin φ (5.4–7)

Now the conditions in Equation 5.4–5 for the joint ML estimates become

∂�L (φ, τ )

∂φ
= −A(τ ) sin φ − B(τ ) cos φ = 0 (5.4–8)

∂�L (φ, τ )

∂τ
= ∂ A(τ )

∂τ
cos φ − ∂ B(τ )

∂τ
sin φ = 0 (5.4–9)

From Equation 5.4–8, we obtain

φ̂ML = − tan−1
[

B(τ̂ML)

A(τ̂ML)

]
(5.4–10)

The solution to Equation 5.4–9 that incorporates Equation 5.4–10 is
[

A(τ )
∂ A(τ )

∂τ
+ B(τ )

∂ B(τ )

∂τ

]
τ=τ̂ML

= 0 (5.4–11)

The decision-directed tracking loop for QAM (or PSK) obtained from these equa-
tions is illustrated in Figure 5.4–1.

Offset QPSK requires a slightly more complex structure for joint estimation of φ

and τ . The structure is easily derived from Equations 5.4–6 to 5.4–11.
In addition to the joint estimates given above, it is also possible to derive non-

decision-directed estimates of the carrier phase and symbol timing, although we shall
not pursue this approach.

We should also mention that one can combine the parameter estimation problem
with the demodulation of the information sequence {In}. Thus, one can consider the
joint maximum-likelihood estimation of {In}, the carrier phase φ, and the symbol timing
parameter τ . Results on these joint estimation problems have appeared in the technical
literature, e.g., Kobayashi (1971), Falconer (1976), and Falconer and Salz (1977).
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O

FIGURE 5.4–1
Decision-directed joint tracking loop for carrier phase and symbol timing in QAM and PSK.

5.5
PERFORMANCE CHARACTERISTICS OF ML ESTIMATORS

The quality of a signal parameter estimate is usually measured in terms of its bias
and its variance. In order to define these terms, let us assume that we have a sequence
of observations (x1 x2 x3 · · · xn) = x, with PDF p(x|φ), from which we extract an
estimate of a parameter φ. The bias of an estimate, say φ̂(x), is defined as

bias = E[φ̂(x)] − φ (5.5–1)

where φ is the true value of the parameter. When E[φ̂(x)] = φ, we say that the estimate
is unbiased. The variance of the estimate φ̂(x) is defined as

σ 2
φ̂

= E{[φ̂(x)]2} − {E[φ̂(x)]}2 (5.5–2)

In general σ 2
φ̂

may be difficult to compute. However, a well-known result in pa-
rameter estimation (see Helstrom, 1968) is the Cramér–Rao lower bound on the mean
square error defined as

E{[φ̂(x) − φ]2} ≥
{

∂

∂φ
E[φ̂(x)]

}2
/

E
{[

∂

∂φ
ln p(x|φ)

]2
}

(5.5–3)

Note that when the estimate is unbiased, the numerator of Equation 5.5–3 is unity and
the bound becomes a lower bound on the variance of σ 2

φ̂
of the estimate φ̂(x), i.e.,

σ 2
φ̂

≥ 1

/
E

{[
∂

∂φ
ln p(x|φ)

]2
}

(5.5–4)
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Since ln p(x|φ) differs from the log-likelihood function by a constant factor inde-
pendent of φ, it follows that

E

{[
∂

∂φ
ln p(x|φ)

]2
}

= E

{[
∂

∂φ
ln �(φ)

]2
}

(5.5–5)

= −E

{
∂2

∂φ2
ln �(φ)

}

Therefore, the lower bound on the variance is

σ 2
φ̂

≥ 1

/
E

{[
∂

∂φ
ln �(φ)

]2
}

= −1

/
E

[
∂2

∂φ2
ln �(φ)

]
(5.5–6)

This lower bound is a very useful result. It provides a benchmark for comparing
the variance of any practical estimate to the lower bound. Any estimate that is unbiased
and whose variance attains the lower bound is called an efficient estimate.

In general, efficient estimates are rare. When they exist, they are maximum-
likelihood estimates. A well-known result from parameter estimation theory is that
any ML parameter estimate is asymptotically (arbitrarily large number of observa-
tions) unbiased and efficient. To a large extent, these desirable properties constitute the
importance of ML parameter estimates. It is also known that an ML estimate is asymp-
totically Gaussian distributed (with mean φ and variance equal to the lower bound given
by Equation 5.5–6.)

In the case of the ML estimates described in this chapter for the two signal param-
eters, their variance is generally inversely proportional to the signal-to-noise ratio, or,
equivalently, inversely proportional to the signal power multiplied by the observation
interval T0. Furthermore, the variance of the decision-directed estimates, at low error
probabilities, are generally lower than the variance of non-decision-directed estimates.
In fact, the performance of the ML decision-directed estimates for φ and τ attain the
lower bound.

The following example is concerned with the evaluation of the Cramér–Rao lower
bound for the ML estimate of the carrier phase.

E X A M P L E 5.5–1. The ML estimate of the phase of an unmodulated carrier was shown
in Equation 5.2–11 to satisfy the condition∫

T0

r (t) sin(2π fct + φ̂ML) dt = 0 (5.5–7)

where

r (t) = s(t; φ) + n(t)

= A cos(2π fct + φ) + n(t)
(5.5–8)

The condition in Equation 5.5–7 was derived by maximizing the log-likelihood function

�L (φ) = 2

N0

∫
T0

r (t)s(t; φ) dt (5.5–9)



Proakis-27466 book September 25, 2007 14:49

Chapter Five: Carrier and Symbol Synchronization 325

The variance of φ̂ML is lower-bounded as

σ 2
φML

≥
{

2A

N0

∫
T0

E[r (t)] cos(2π fct + φ) dt

}−1

≥
{

A2

N0

∫
T0

dt

}−1

= N0

A2T0

≥ N0/T0

A2
= N0 Beq

A2

(5.5–10)

where the factor 1/T0 is simply the (one-sided) equivalent noise bandwidth of the ideal
integrator and N0 Beq is the total noise power.

From this example, we observe that the variance of the ML phase estimate is
lower-bounded as

σ 2
φ̂ML

≥ 1

γL
(5.5–11)

where γL is the loop SNR. This is also the variance obtained for the phase estimate from
a PLL with decision-directed estimation. As we have already observed, non-decision-
directed estimates do not perform as well due to losses in the non-linearities required
to remove the modulation, e.g., the squaring loss and the M th-power loss.

Similar results can be obtained on the quality of the symbol timing estimates
derived above. In addition to their dependence on the SNR, the quality of symbol
timing estimates is a function of the signal pulse shape. For example, a pulse shape that
is commonly used in practice is one that has a raised cosine spectrum (see Section 9.2).
For such a pulse, the rms timing error (στ̂ ) as a function of SNR is illustrated in
Figure 5.5–1, for both decision-directed and non-decision-directed estimates. Note the
significant improvement in performance of the decision-directed estimate compared
with the non-decision-directed estimate. Now, if the bandwidth of the pulse is varied,
the pulse shape is changed and, hence, the rms value of the timing error also changes. For
example, when the bandwidth of the pulse that has a raised cosine spectrum is varied,

FIGURE 5.5–1
Performance of baseband symbol timing estimate
for fixed signal and loop bandwidths. [From
Synchronization Subsystems: Analysis and Design,
by L. Franks, 1981. Reprinted with permission of the
author.]
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FIGURE 5.5–2
Performance of baseband symbol timing estimate for fixed
SNR and fixed loop bandwidths. [From Synchronization
Subsystems: Analysis and Design, by L. Franks, 1981.
Reprinted with permission of the author.]

the rms timing error varies as shown in Figure 5.5–2. Note that the error decreases as
the bandwidth of the pulse increases.

In conclusion, we have presented the ML method for signal parameter estimation
and have applied it to the estimation of the carrier phase and symbol timing. We have
also described their performance characteristics.

5.6
BIBLIOGRAPHICAL NOTES AND REFERENCES

Carrier recovery and timing synchronization are two topics that have been thoroughly
investigated over the past three decades. The Costas loop was invented in 1956 and the
decision-directed phase estimation methods were described in Proakis et al. (1964) and
Natali and Walbesser (1969). The work on decision-directed estimation was motivated
by earlier work of Price (1962a,b). Comprehensive treatments of phase-locked loops
first appeared in the books by Viterbi (1966) and Gardner (1979). Books that cover
carrier phase recovery and time synchronization techniques have been written by Stiffler
(1971), Lindsey (1972), Lindsey and Simon (1973), Meyr and Ascheid (1990), Simon
et al. (1995), Meyr et al. (1998), and Mengali and D’Andrea (1997).

A number of tutorial papers have appeared in IEEE journals on the PLL and on time
synchronization. We cite, for example, the paper by Gupta (1975), which treats both
analog and digital implementation of PLLs, and the paper by Lindsey and Chie (1981),
which is devoted to the analysis of digital PLLs. In addition, the tutorial paper by Franks
(1980) describes both carrier phase and symbol synchronization methods, including
methods based on the maximum-likelihood estimation criterion. The paper by Franks
is contained in a special issue of the IEEE Transactions on Communications (August
1980) devoted to synchronization. The paper by Mueller and Muller (1976) describes
digital signal processing algorithms for extracting symbol timing and the paper by
Bergmans (1995) evaluates the efficiency of data-aided timing recovery methods.

Application of the maximum-likelihood criterion to parameter estimation was
first described in the context of radar parameter estimation (range and range rate).
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Subsequently, this optimal criterion was applied to carrier phase and symbol timing
estimation as well as to joint parameter estimation with data symbols. Papers on these
topics have been published by several researchers, including Falconer (1976), Mengali
(1977), Falconer and Salz (1977), and Meyers and Franks (1980).

The Cramér–Rao lower bound on the variance of a parameter estimate is derived
and evaluated in a number of standard texts on detection and estimation theory, such
as Helstrom (1968) and Van Trees (1968). It is also described in several books on
mathematical statistics, such as the book by Cramér (1946).

PROBLEMS

5.1 Prove the relation in Equation 5.1–7.

5.2 Sketch the equivalent realization of the binary PSK receiver in Figure 5.1–1 that employs
a matched filter instead of a correlator.

5.3 Suppose that the loop filter (see Equation 5.2–14) for a PLL has the transfer function

G(s) = 1

s + √
2

a. Determine the closed-loop transfer function H (s) and indicate if the loop is stable.
b. Determine the damping factor and the natural frequency of the loop.

5.4 Consider the PLL for estimating the carrier phase of a signal in which the loop filter is
specified as

G(s) = K

1 + τ1s

a. Determine the closed-loop transfer function H (s) and its gain at f = 0.
b. For what range of values of τ1 and K is the loop stable?

5.5 The loop filter G(s) in a PLL is implemented by the circuit shown in Figure P5.5. Determine
the system function G(s) and express the time constants τ1 and τ2 in terms of the circuit
parameters.

FIGURE P5.5

5.6 The loop filter G(s) in a PLL is implemented with the active filter shown in Figure P5.6.
Determine the system function G(s) and express the time constants τ1 and τ2 in terms of
the circuit parameters.
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FIGURE P5.6

5.7 Show that the early–late gate synchronizer illustrated in Figure 5.3–5 is a close approxi-
mation to the timing recovery system illustrated in Figure P5.7.

FIGURE P5.7

5.8 Based on an ML criterion, determine a carrier phase estimation method for binary on–off
keying modulation.

5.9 In the transmission and reception of signals to and from moving vehicles, the transmitted
signal frequency is shifted in direct proportion to the speed of the vehicle. The so-called
Doppler frequency shift imparted to a signal that is received in a vehicle traveling at a
velocity v relative to a (fixed) transmitter is given by the formula

fD = ±v

λ

where λ is the wavelength, and the sign depends on the direction (moving toward or moving
away) that the vehicle is traveling relative to the transmitter. Suppose that a vehicle is
traveling at a speed of 100 km/h relative to a base station in a mobile cellular communication
system. The signal is a narrowband signal transmitted at a carrier frequency of 1 GHz.
a. Determine the Doppler frequency shift.
b. What should be the bandwidth of a Doppler frequency tracking loop if the loop is de-

signed to track Doppler frequency shifts for vehicles traveling at speeds up to 100 km/h?
c. Suppose the transmitted signal bandwidth is 2 MHz centered at 1 GHz. Determine the

Doppler frequency spread between the upper and lower frequencies in the signal.

5.10 Show that the mean value of the ML estimate in Equation 5.2–38 is φ, i.e., that the estimate
is unbiased.

5.11 Determine the PDF of the ML phase estimate in Equation 5.2–38.

5.12 Determine the ML phase estimate for offset QPSK.
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5.13 A single-sideband PAM signal may be represented as

um(t) = Am[gT (t) cos 2π fct − ĝT (t) sin 2π fct]

where ĝT (t) is the Hilbert transform of gT (t) and Am is the amplitude level that conveys the
information. Demonstrate mathematically that a Costas loop cannot be used to demodulate
the SSB PAM signal.

5.14 A carrier component is transmitted on the quadrature carrier in a communication system
that transmits information via binary PSK. Hence, the received signal has the form

r (t) = ±
√

2Ps cos(2π fct + φ) +
√

2Pc sin(2π fct + φ) + n(t)

where φ is the carrier phase and n(t) is AWGN. The unmodulated carrier component is
used as a pilot signal at the receiver to estimate the carrier phase.
a. Sketch a block diagram of the receiver, including the carrier phase estimator.
b. Illustrate mathematically the operations involved in the estimation of the carrier phase φ.
c. Express the probability of error for the detection of the binary PSK signal as a function

of the total transmitted power PT = Ps + Pc. What is the loss in performance due to
the allocation of a portion of the transmitted power to the pilot signal? Evaluate the loss
for Pc/PT = 0.1.

5.15 Determine the signal and noise components at the input to a fourth-power (M = 4) PLL
that is used to generate the carrier phase for demodulation of QPSK. By ignoring all noise
components except those that are linear in the noise n(t), determine the variance of the
phase estimate at the output of the PLL.

5.16 The probability of error for binary PSK demodulation and detection when there is a carrier
phase error φe is

P2(φe) = Q

(√
2Eb

N0
cos2 φe

)

Suppose that the phase error from the PLL is modeled as a zero-mean Gaussian random
variable with variance σ 2

φ � π . Determine the expression for the average probability of
error (in integral form).

5.17 Determine the ML estimate of the time delay τ for the QAM signal of the form

s(t) = Re[sl (t; τ )e j2π fc t ]

where

sl (t; τ ) =
∑

n

Ing(t − nT − τ )

and {In} is a sequence of complex-valued data.

5.18 Determine the joint ML estimate of τ and φ for a PAM signal.

5.19 Determine the joint ML estimate of τ and φ for offset QPSK.
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An Introduction to Information Theory

This chapter deals with fundamental limits on communications. By fundamental
limits we mean the study of conditions under which the two fundamental tasks in
communications—compression and transmission—are possible. In this chapter we will
see that for some important source and channel models, we can precisely state the limits
for compression and transmission of information.

In Chapter 4, we considered the optimal detection of digitally modulated signals
when transmitted through an AWGN channel. We observed that some modulation meth-
ods provide better performance than others. In particular, we observed that orthogonal
signaling waveforms allow us to make the probability of error arbitrarily small by let-
ting the number of waveforms M → ∞, provided that the SNR per bit γb > −1.6 dB.
However, if γb falls below −1.6 dB, then reliable communication is impossible. The
value of −1.6 dB is an example of a fundamental limit for communication systems.

We begin this chapter with a study of information sources and source coding.
Communication systems are designed to transmit the information generated by a source
to some destination. Information sources may take a variety of different forms. For
example, in radio broadcasting, the source is generally an audio source (voice or music).
In TV broadcasting, the information source is a video source whose output is a moving
image. The outputs of these sources are analog signals and, hence, the sources are
called analog sources. In contrast, computers and storage devices, such as magnetic or
optical disks, produce discrete outputs (usually binary or ASCII characters), and hence
are called discrete sources.

Whether a source is analog or discrete, a digital communication system is designed
to transmit information in digital form. Consequently, the output of the source must be
converted to a format that can be transmitted digitally. This conversion of the source
output to a digital form is generally performed by the source encoder, whose output
may be assumed to be a sequence of binary digits.

In the second half of this chapter we focus on communication channels and trans-
mission of information. We develop mathematical models for important channels and
introduce two important parameters for communication channels—channel capacity
and channel cutoff rate—and elaborate on their meaning and significance.

330
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Later in Chapters 7 and 8, we consider signal waveforms generated from either
binary or nonbinary sequences. We shall observe that, in general, coded waveforms
offer performance advantages not only in power-limited applications where R/W < 1,
but also in bandwidth-limited systems where R/W > 1.

6.1
MATHEMATICAL MODELS FOR INFORMATION SOURCES

Any information source produces an output that is random; i.e., the source output is
characterized in statistical terms. Otherwise, if the source output were known exactly,
there would be no need to transmit it. In this section, we consider both discrete and ana-
log information sources, and we postulate mathematical models for each type of source.

The simplest type of a discrete source is one that emits a sequence of letters selected
from a finite alphabet. For example, a binary source emits a binary sequence of the form
100101110 · · · , where the alphabet consists of the two letters {0, 1}. More generally, a
discrete information source with an alphabet of L possible letters, say {x1, x2, . . . , xL},
emits a sequence of letters selected from the alphabet.

To construct a mathematical model for a discrete source, we assume that each letter
in the alphabet {x1, x2, . . . , xL} has a given probability pk of occurrence. That is,

pk = P [X = xk] , 1 ≤ k ≤ L

where
L∑

k=1

pk = 1

We consider two mathematical models of discrete sources. In the first, we assume
that the output sequence from the source is statistically independent. That is, the current
output letter is statistically independent of all past and future outputs. A source whose
output satisfies the condition of statistical independence among output letters is said
to be memoryless. If the source is discrete, it is called a discrete memoryless source
(DMS). The mathematical model for a DMS is a sequence of iid random variables {Xi }.

If the output of the discrete source is statistically dependent, such as English text,
we may construct a mathematical model based on statistical stationarity. By definition,
a discrete source is said to be stationary if the joint probabilities of two sequences of
length n, say, a1, a2, . . . , an and a1+m, a2+m, . . . , an+m , are identical for all n ≥ 1 and
for all shifts m. In other words, the joint probabilities for any arbitrary length sequence
of source outputs are invariant under a shift in the time origin.

An analog source has an output waveform x(t) that is a sample function of a
stochastic process X (t). We assume that X (t) is a stationary stochastic process with
autocorrelation function RX (τ ) and power spectral density S X ( f ). When X (t) is a
band-limited stochastic process, i.e., SX ( f ) = 0 for | f | ≥ W , the sampling theorem
may be used to represent X (t) as

X (t) =
∞∑

n=−∞
X

(
n

2W

)
sinc

[
2W

(
t − n

2W

)]
(6.1–1)
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where {X (n/2W )} denote the samples of the process X (t) taken at the sampling
(Nyquist) rate of fs = 2W samples/s. Thus, by applying the sampling theorem, we
may convert the output of an analog source to an equivalent discrete-time source. Then
the source output is characterized statistically by the joint PDF p(x1, x2, . . . , xm) for
all m ≥ 1, where Xn = X (n/2W ), 1 ≤ n ≤ m, are the random variables corresponding
to the samples of X (t).

We note that the output samples {X (n/2W )} from the stationary sources are gen-
erally continuous, and hence they cannot be represented in digital form without some
loss in precision. For example, we may quantize each sample to a set of discrete values,
but the quantization process results in loss of precision, and consequently the original
signal cannot be reconstructed exactly from the quantized sample values. Later in this
chapter, we shall consider the distortion resulting from quantization of the samples
from an analog source.

6.2
A LOGARITHMIC MEASURE OF INFORMATION

To develop an appropriate measure of information, let us consider two discrete random
variables X and Y with possible outcomes in the alphabets X and Y , respectively.
Suppose we observe some outcome Y = y and we wish to determine, quantitatively,
the amount of information that the occurrence of the event Y = y provides about
the event X = x . We observe that when X and Y are statistically independent, the
occurrence of Y = y provides no information about the occurrence of the event X = x .
On the other hand, when X and Y are fully dependent such that the occurrence of
Y = y determines the occurrence of X = x , then the information content is simply that
provided by the event X = x . A suitable measure that agrees with the intuitive notion
of information is the logarithm of the ratio of the conditional probability

P [X = x |Y = y ] � P [x |y ]

divided by the probability

P [X = x] � P [x]

That is, the information content provided by the occurrence of the event Y = y about
the event X = x is defined as

I (x; y) = log
P [x |y ]

P [x]
(6.2–1)

I (x; y) is called the mutual information between x and y. The mutual information
between random variables X and Y is defined as the average of I (x; y) and is given by

I (X; Y ) =
∑
x∈X

∑
y∈Y

P [X = x, Y = y] I (x; y)

=
∑
x∈X

∑
y∈Y

P [X = x, Y = y] log
P [x |y ]

P [x]

(6.2–2)
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The units of I (X; Y ) are determined by the base of the logarithm, which is usually
selected as either 2 or e. When the base of the logarithm is 2, the units of I (X; Y ) are
bits; and when the base is e, the units of I (X; Y ) are called nats (natural units). (The
standard abbreviation for loge is ln.) Since

ln a = ln 2 log2 a = 0.69315 log2 a

the information measured in nats is equal to ln 2 times the information measured in
bits.

Some of the most important properties of the mutual information are given below.
Some of these properties are proved in problems at the end of this chapter.

1. I (X; Y ) = I (Y ; X )
2. I (X; Y ) ≥ 0, with equality if and only if X and Y are independent
3. I (X; Y ) ≤ min{|X |, |Y |} where |X | and |Y | denote the size of the alphabets

When the random variables X and Y are statistically independent, P [x |y ] = P [x]
and hence I (X; Y ) = 0. On the other hand, when the occurrence of the event Y = y
uniquely determines the occurrence of the event X = x , the conditional probability in
the numerator of Equation 6.2–1 is unity, hence

I (x; y) = log
1

P [X = x]
= − log P [X = x] (6.2–3)

and

I (X; Y ) = −
∑
x∈X

∑
y∈Y

P [X = x, Y = y] log P [X = x]

= −
∑
x∈X

P [X = x] log P [X = x]
(6.2–4)

The value of I (X; Y ) under this condition, which is denoted H (X ) and is defined by

H (X ) = −
∑
x∈X

P [X = x] log P [X = x] (6.2–5)

is called the entropy of the random variable X and is a measure of uncertainty or
ambiguity in X . Since knowledge of X completely removes uncertainty about it, H (X )
is also a measure of information that is acquired by knowledge of X , or the information
content of X per source output. The unit for entropy is bits (or nats) per symbol, or per
source output. Note that in the definition of entropy, we define 0 log 0 = 0. It is also
important to note that both entropy and mutual information depend on the probabilities
of the random variables and not on the values the random variables take.

If an information source is deterministic, i.e., for one value of X the probability
is equal to 1 and for all other values of X the probability is equal to 0, the entropy of
the source is equal to zero, i.e., there is no ambiguity in this source, and the source
does not convey any information. In Problem 6.3 we show that for a DMS source with
alphabet size |X |, the entropy is maximized when all outputs are equiprobable. In this
case H (X ) = log |X |.
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Hb( p)

Probability p

FIGURE 6.2–1
The binary entropy function.

The most important properties of the entropy functions are as follows:

1. 0 ≤ H (X ) ≤ log |X |
2. I (X; X ) = H (X )
3. I (X; Y ) ≤ min{H (X ), H (Y )}
4. If Y = g(X ), then H (Y ) ≤ H (X )

E X A M P L E 6.2–1. For a binary source with probabilities p and 1 − p we have

H (X ) = −p log p − (1 − p) log(1 − p) (6.2–6)

This function is called the binary entropy function and is denoted by Hb(p). A plot of
Hb(p) is shown in Figure 6.2–1.

Joint and Conditional Entropy
The entropy of a pair of random variables (X, Y ), called the joint entropy of X and Y ,
is defined as an extension of the entropy of a single random variable as

H (X, Y ) = −
∑

(x,y)∈X ×Y

P [X = x, Y = y] log P [X = x, Y = y] (6.2–7)

When the value of random variable X is known to be x , the PMF of Y becomes
P [Y = y |X = x ] and the entropy of Y under this condition becomes

H (Y |X = x) = −
∑
y∈Y

P [Y = y |X = x ] log P [Y = y |X = x ] (6.2–8)

The average of this quantity over all possible values of X is denoted by H (Y |X ) and is
called the conditional entropy of Y given X .

H (Y |X ) =
∑
x∈X

P [X = x] H (Y |X = x)

= −
∑

(x,y)∈X ×Y

P [X = x, Y = y] log P [Y = y |X = x ]
(6.2–9)
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From Equations 6.2–7 and 6.2–9 it is easy to verify that

H (X, Y ) = H (X ) + H (Y |X ) (6.2–10)

Some of the important properties of joint and conditional entropy are summarized
below.

1. 0 ≤ H (X |Y ) ≤ H (X ), with H (X |Y ) = H (X ) if and only if X and Y are indepen-
dent.

2. H (X, Y ) = H (X ) + H (Y |X ) = H (Y ) + H (X |Y ) ≤ H (X ) + H (Y ), with equality
H (X, Y ) = H (X ) + H (Y ) if and only if X and Y are independent.

3. I (X; Y ) = H (X ) − H (X |Y ) = H (Y ) − H (Y |X ) = H (X ) + H (Y ) − H (X, Y ).

The notion of joint and conditional entropy can be extended to multiple random
variables. For joint entropy we have

H (X1, X2, . . . , Xn) = − ∑
xx ,x2,...,xn

P [X1 = x1, X2 = x2, . . . , Xn = xn]

× log P [X1 = x1, X2 = x2, . . . , Xn = xn−1]
(6.2–11)

The following relation between joint and conditional entropies is known as the chain
rule for entropies.

H (X1, X2, . . . , Xn) = H (X1) + H (X2|X1) + H (X3|X1, X2)
+ · · · + H (Xn|X1, X2, . . . , Xn−1) (6.2–12)

Using the above relation and the first property of the conditional entropy, we have

H (X1, X2, . . . , Xn) ≤
n∑

i=1

H (Xi ) (6.2–13)

with equality if Xi ’s are statistically independent. If Xi ’s are iid, we clearly have

H (X1, X2, . . . , Xn) = nH (X ) (6.2–14)

where H (X ) denotes the common value of the entropy of Xi ’s.

6.3
LOSSLESS CODING OF INFORMATION SOURCES

The goal of data compression is to represent a source with the fewest bits such that best
recovery of the source from the compressed data is possible. Data compression can be
broadly classified into lossless and lossy compression. In lossless compression the goal
is to minimize the number of bits in such a way that perfect (lossless) reconstruction
of the source from compressed data is possible. In lossy data compression the data
are compressed subject to a maximum tolerable distortion. In this section we study
the fundamental bounds for lossless compression as well as some common lossless
compression algorithms.
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6.3–1 The Lossless Source Coding Theorem

Let us assume that a DMS is represented by independent replicas of random variable
X taking values in the set X = {a1, a2, . . . , aN } with corresponding probabilities
p1, p2, . . . , pN . Let x denote an output sequence of length n for this source, where
n is assumed to be large. We call this sequence a typical sequence if the number of
occurrences of each ai in x is roughly npi for 1 ≤ i ≤ N . The set of typical sequences
is denoted by A.

The law of large numbers, reviewed in Section 2.5, states that with high probability
approaching 1 as n → ∞, outputs of any DMS will be typical. Since the number of
occurrences of ai in x is roughly npi and the source is memoryless, we have

log P [X = x] ≈ log
N∏

i=1

(pi )
npi

=
N∑

i=1

npi log pi

= −nH (X )

(6.3–1)

Hence,

P [X = x] ≈ 2−nH (X ) (6.3–2)

This states that all typical sequences have roughly the same probability, and this common
probability is 2−nH (X ).

Since the probability of the typical sequences, for large n, is very close to 1, we
conclude that the number of typical sequences, i.e., the cardinality of A, is roughly

|A| ≈ 2nH (X ) (6.3–3)

This discussion shows that for large n, a subset of all possible sequences, called
the typical sequences, is almost certain to occur. Therefore, for transmission of source
outputs it is sufficient to consider only this subset. Since the number of typical sequences
is 2nH (X ), for their transmission nH (X ) bits are sufficient, and therefore the number of
required bits per source output, i.e., the transmission rate, is given by

R ≈ nH (X )

n
= H (X ) bits per transmission (6.3–4)

The informal argument given above can be made rigorous (see the books by Cover
and Thomas (2006) and Gallager (1968)) in the following theorem first stated by
Shannon (1948).

SHANNON’S FIRST THEOREM (LOSSLESS SOURCE CODING THEOREM) Let X denote a
DMS with entropy X . There exists a lossless source code for this source at any rate R
if R > H (X ). There exists no lossless code for this source at rates less than H (X ).

This theorem sets a fundamental limit on lossless source coding and shows that the
entropy of a DMS, which was defined previously based on intuitive reasoning, plays a
fundamental role in lossless compression of information sources.
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Discrete Stationary Sources
We have seen that the entropy of a DMS sets a fundamental limit on the rate at which the
source can be losslessly compressed. In this section, we consider discrete sources for
which the sequence of output letters is statistically dependent. We limit our treatment
to sources that are statistically stationary.

Let us evaluate the entropy of any sequence of letters from a stationary source.
From the chain rule for the entropies stated in Equation 6.2–12, the entropy of a block
of random variables X1 X2 · · · Xk is

H (X1 X2 · · · Xk) =
k∑

i=1

H (Xi |X1 X2 · · · Xi−1) (6.3–5)

where H (Xi |X1 X2 · · · Xi−1) is the conditional entropy of the i th symbol from the
source, given the previous i − 1 symbols. The entropy per letter for the k-symbol block
is defined as

Hk(X ) = 1

k
H (X1 X2 · · · Xk) (6.3–6)

We define the entropy rate of a stationary source as the entropy per letter in Equa-
tion 6.3–6 in the limit as k → ∞. That is,

H∞(X ) � lim
k→∞

Hk(X ) = lim
k→∞

1

k
H (X1 X2 · · · Xk) (6.3–7)

The existence of this limit is established below.
As an alternative, we may define the entropy rate of the source in terms of the con-

ditional entropy H (Xk |X1 X2 · · · Xk−1) in the limit as k approaches infinity. Fortunately,
this limit also exists and is identical to the limit in Equation 6.3–7. That is,

H∞(X ) = lim
k→∞

H (Xk |X1 X2 · · · Xk−1) (6.3–8)

This result is also established below. Our development follows the approach in Gallager
(1968).

First, we show that

H (Xk |X1 X2 · · · Xk−1) ≤ H (Xk−1|X1 X2 · · · Xk−2) (6.3–9)

for k ≥ 2. From our previous result that conditioning on a random variable cannot
increase entropy, we have

H (Xk |X1 X2 · · · Xk−1) ≤ H (Xk |X2 X3 · · · Xk−1) (6.3–10)

From the stationarity of the source, we have

H (Xk |X2 X3 · · · Xk−1) = H (Xk−1|X1 X2 · · · Xk−2) (6.3–11)

Hence, Equation 6.3–9 follows immediately. This result demonstrates that
H (Xk |X1 X2 · · · Xk−1) is a nonincreasing sequence in k.

Second, we have the result

Hk(X ) ≥ H (Xk |X1 X2 · · · Xk−1) (6.3–12)
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which follows immediately from Equations 6.3–5 and 6.3–6 and the fact that the last
term in the sum of Equation 6.3–5 is a lower bound on each of the other k − 1 terms.

Third, from the definition of Hk(X ), we may write

Hk(X ) = 1

k
[H (X1 X2 · · · Xk−1) + H (Xk |X1 · · · Xk−1)]

= 1

k
[(k − 1)Hk−1(X ) + H (Xk |X1 · · · Xk−1)]

≤ k − 1

k
Hk−1(X ) + 1

k
Hk(X )

(6.3–13)

which reduces to

Hk(X ) ≤ Hk−1(X ) (6.3–14)

Hence, Hk(X ) is a nonincreasing sequence in k.
Since Hk(X ) and the conditional entropy H (Xk |X1 · · · Xk−1) are both nonnegative

and nonincreasing with k, both limits must exist. Their limiting forms can be established
by using Equations 6.3–5 and 6.3–6 to express Hk+ j (X ) as

Hk+ j (X ) = 1

k + j
H (X1 X2 · · · Xk−1)

+ 1

k + j

[
H (Xk |X1 · · · Xk−1) + H (Xk+1|X1 · · · Xk)

+ · · · + H (Xk+ j |X1 · · · Xk+ j−1)
]

(6.3–15)

Since the conditional entropy is nonincreasing, the first term in the square brackets
serves as an upper bound on the other terms. Hence,

Hk+ j (X ) ≤ 1

k + j
H (X1 X2 · · · Xk−1) + j + 1

k + j
H (Xk |X1 X2 · · · Xk−1) (6.3–16)

For a fixed k, the limit of Equation 6.3–16 as j → ∞ yields

H∞(X ) ≤ H (Xk |X1 X2 · · · Xk−1) (6.3–17)

But Equation 6.3–17 is valid for all k; hence, it is valid for k → ∞. Therefore,

H∞(X ) ≤ lim
k→∞

H (Xk |X1 X2 · · · Xk−1) (6.3–18)

On the other hand, from Equation 6.3–12, we obtain in the limit as k → ∞

H∞(X ) ≥ lim
k→∞

H (Xk |X1 X2 · · · Xk−1) (6.3–19)

which establishes Equation 6.3–8.
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From the discussion above the entropy rate of a discrete stationary source is de-
fined as

H∞(X ) = lim
k→∞

H (Xk |X1, X2, . . . , Xk−1) = lim
k→∞

1

k
H (X1, X2, . . . , Xk) (6.3–20)

It is clear from above that if the source is memoryless, the entropy rate is equal to the
entropy of the source.

For discrete stationary sources, the entropy rate is the fundamental rate for compres-
sion of the source such that lossless recovery is possible. Therefore, a lossless coding
theorem for discrete stationary sources, similar to the one for discrete memoryless
sources, exists that states lossless compression of the source at rates above the entropy
rate is possible, but lossless compression at rates below the entropy rate is impossible.

6.3–2 Lossless Coding Algorithms

In this section we study two main approaches for lossless compression of discrete
information sources—the Huffman coding algorithm and the Lempel-Ziv algorithm.
The Huffman coding algorithm is an example of a variable-length coding algorithm,
and the Lempel-Ziv algorithm is a fixed-length coding algorithm.

Variable-Length Source Coding
When the source symbols are not equally probable, an efficient encoding method is
to use variable-length code words. An example of such encoding is the Morse code,
which dates back to the nineteenth century. In the Morse code, the letters that occur more
frequently are assigned short code words, and those that occur infrequently are assigned
long code words. Following this general philosophy, we may use the probabilities of
occurrence of the different source letters in the selection of the code words. The problem
is to devise a method for selecting and assigning the code words to source letters. This
type of encoding is called entropy coding.

For example, suppose that a DMS with output letters a1, a2, a3, a4 and correspond-
ing probabilities P(a1) = 1

2 , P(a2) = 1
4 , and P(a3) = P(a4) = 1

8 is encoded as
shown in Table 6.3–1. Code I is a variable-length code that has a basic flaw. To see the
flaw, suppose we are presented with the sequence 001001 · · · . Clearly, the first symbol
corresponding to 00 is a2. However, the next 4 bits are ambiguous (not uniquely decod-
able). They may be decoded either as a4a3 or as a1a2a1. Perhaps, the ambiguity can be

TABLE 6.3–1

Variable-Length Codes.

Letter P [ak] Code I Code II Code III

a1
1
2 1 0 0

a2
1
4 00 10 01

a3
1
8 01 110 011

a4
1
8 10 111 111
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FIGURE 6.3–1
Code tree for code II in Table 6.3–1.

resolved by waiting for additional bits, but such a decoding delay is highly undesir-
able. We shall consider only codes that are decodable instantaneously, i.e., without any
decoding delay. Such codes are called instantaneous codes.

Code II in Table 6.3–1 is uniquely decodable and instantaneous. It is convenient to
represent the code words in this code graphically as terminal nodes of a tree, as shown
in Figure 6.3–1. We observe that the digit 0 indicates the end of a code word for the first
three code words. This characteristic plus the fact that no code word is longer than three
binary digits makes this code instantaneously decodable. Note that no code word in this
code is a prefix of any other code word. In general, the prefix condition requires that
for a given code word ck of length k having elements (b1, b2, . . . , bk), there is no other
code word of length l < k with elements (b1, b2, . . . , bl) for 1 ≤ l ≤ k − 1. In other
words, there is no code word of length l < k that is identical to the first l binary digits
of another code word of length k > l. This property makes the code words uniquely
and instantaneously decodable.

Code III given in Table 6.3–1 has the tree structures shown in Figure 6.3–2. We
note that in this case the code is uniquely decodable but not instantaneously decodable.
Clearly, this code does not satisfy the prefix condition.

Our main objective is to devise a systematic procedure for constructing uniquely
decodable variable-length codes that are efficient in the sense that the average number
of bits per source letter, defined as the quantity

R̄ =
L∑

k=1

nk P(ak) (6.3–21)

is minimized. The conditions for the existence of a code that satisfies the prefix condition
are given by the Kraft inequality.

The Kraft Inequality
The Kraft inequality states that a necessary and sufficient condition for the existence
of a binary code with code words having lengths n1 ≤ n2 ≤ · · · ≤ nL that satisfy the
prefix condition is

L∑
k=1

2−nk ≤ 1 (6.3–22)

FIGURE 6.3–2
Code tree for code III in Table 6.3–1.
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First, we prove that Equation 6.3–22 is a sufficient condition for the existence of
a code that satisfies the prefix condition. To construct such a code, we begin with a
full binary tree of order n = nL that has 2n terminal nodes and two nodes of order k
stemming from each node of order k − 1, for each k, 1 ≤ k ≤ n. Let us select any
node of order n1 as the first code word c1. This choice eliminates 2n−n1 terminal nodes
(or the fraction 2−n1 of the 2n terminal nodes). From the remaining available nodes of
order n2, we select one node for the second code word c2. This choice eliminates 2n−n2

terminal nodes (or the fraction 2−n2 of the 2n terminal nodes). This process continues
until the last code word is assigned at terminal node n = nL . Since, at the node of order
j < L , the fraction of the number of terminal nodes eliminated is

j∑
k=1

2−nk <

L∑
k=1

2−nk ≤ 1 (6.3–23)

there is always a node of order k > j available to be assigned to the next code word.
Thus, we have constructed a code tree that is embedded in the full tree of 2n nodes
as illustrated in Figure 6.3–3, for a tree having 16 terminal nodes and a source output
consisting of five letters with n1 = 1, n2 = 2, n3 = 3, and n4 = n5 = 4.

To prove that Equation 6.3–22 is a necessary condition, we observe that in the code
tree of order n = nL , the number of terminal nodes eliminated from the total number
of 2n terminal nodes is

L∑
k=1

2n−nk ≤ 2n (6.3–24)

Hence,
L∑

k=1

2−nk ≤ 1 (6.3–25)

and the proof of Kraft inequality is complete.
The Kraft inequality may be used to prove the following version of the lossless

source coding theorem, which applies to codes that satisfy the prefix condition.

FIGURE 6.3–3
Construction of binary tree code embedded in a full tree.
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SOURCE CODING THEOREM FOR PREFIX CODES Let X be a DMS with finite entropy
H (X ) and output letters ai , 1 ≤ i ≤ N , with corresponding probabilities of occurrence
pi , 1 ≤ i ≤ N . It is possible to construct a code that satisfies the prefix condition and
has an average length R̄ that satisfies the inequalities

H (X ) ≤ R̄ < H (X ) + 1 (6.3–26)

To establish the lower bound in Equation 6.3–26, we note that for code words that have
length ni , 1 ≤ i ≤ N , the difference H (X ) − R̄ may be expressed as

H (X ) − R̄ =
N∑

i=1

pi log2
1

pi
−

N∑
i=1

pi ni

=
N∑

i=1

pi log2
2−ni

pi

(6.3–27)

Use of the inequality ln x ≤ x − 1 in Equation 6.3–27 yields

H (X ) − R̄ ≤ (log2 e)
N∑

i=1

pi

(
2−ni

pi
− 1

)

≤ (log2 e)

(
N∑

i=1

2−ni − 1

)
≤ 0

(6.3–28)

where the last inequality follows from the Kraft inequality. Equality holds if and only
if pi = 2−ni for 1 ≤ i ≤ N .

The upper bound in Equation 6.3–26 may be established under the constraint that
ni , 1 ≤ i ≤ N , are integers, by selecting the {ni } such that 2−ni ≤ pi < 2−ni +1. But if
the terms pi ≥ 2−ni are summed over 1 ≤ i ≤ N , we obtain the Kraft inequality, for
which we have demonstrated that there exists a code that satisfies the prefix condition.
On the other hand, if we take the logarithm of pi < 2−ni +1, we obtain

log pi < −ni + 1 (6.3–29)

or, equivalently,

ni < 1 − log pi (6.3–30)

If we multiply both sides of Equation 6.3–30 by pi and sum over 1 ≤ i ≤ N , we
obtain the desired upper bound given in Equation 6.3–26. This completes the proof of
Equation 6.3–26.

We have now established that variable-length codes that satisfy the prefix condition
are efficient source codes for any DMS with source symbols that are not equally
probable. Let us now describe an algorithm for constructing such codes.

The Huffman Coding Algorithm
Huffman (1952) devised a variable-length encoding algorithm, based on the source
letter probabilities P(xi ), i = 1, 2, . . . , L . This algorithm is optimum in the sense
that the average number of binary digits required to represent the source symbols is a
minimum, subject to the constraint that the code words satisfy the prefix condition, as
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defined above, which allows the received sequence to be uniquely and instantaneously
decodable. We illustrate this encoding algorithm by means of two examples.

E X A M P L E 6.3–1. Consider a DMS with seven possible symbols x1, x2, . . . , x7 having
the probabilities of occurrence illustrated in Figure 6.3–4. We have ordered the source
symbols in decreasing order of the probabilities, i.e., P(x1) > P(x2) > · · · > P(x7).
We begin the encoding process with the two least probable symbols x6 and x7. These two
symbols are tied together as shown in Figure 6.3–4, with the upper branch assigned
a 0 and the lower branch assigned a 1. The probabilities of these two branches are
added together at the node where the two branches meet to yield the probability 0.01.
Now we have the source symbols x1, . . . , x5 plus a new symbol, say x ′

6, obtained by
combining x6 and x7. The next step is to join the two least probable symbols from
the set x1, x2, x3, x4, x5, x ′

6. These are x5 and x ′
6, which have a combined probability

of 0.05. The branch from x5 is assigned a 0 and the branch from x ′
6 is assigned a 1.

This procedure continues until we exhaust the set of possible source letters. The result
is a code tree with branches that contain the desired code words. The code words are
obtained by beginning at the rightmost node in the tree and proceeding to the left. The
resulting code words are listed in Figure 6.3–4. The average number of binary digits
per symbol for this code is R̄ = 2.21 bits per symbol. The entropy of the source is
2.11 bits per symbol.

We make the observation that the code is not necessarily unique. For example, at
the next to the last step in the encoding procedure, we have a tie between x1 and x ′

3,
since these symbols are equally probable. At this point, we chose to pair x1 with x2. An
alternative is to pair x2 with x ′

3. If we choose this pairing, the resulting code is illustrated
in Figure 6.3–5. The average number of bits per source symbol for this code is also
2.21. Hence, the resulting codes are equally efficient. Secondly, the assignment of a 0
to the upper branch and a 1 to the lower (less probable) branch is arbitrary. We may

FIGURE 6.3–4
An example of variable-length source
encoding for a DMS.

Letter Probability Self-information Code

x1 0.35 1.5146 00
x2 0.30 1.7370 01
x3 0.20 2.3219 10
x4 0.10 3.3219 110
x5 0.04 4.6439 1110
x6 0.005 7.6439 11110
x7 0.005 7.6439 11111

H (X ) = 2.11 R̄ = 2.21
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FIGURE 6.3–5
An alternative code for the DMS in Example
6.3–1.

Letter Code

x1 0
x2 10
x3 110
x4 1110
x5 11110
x6 111110
x7 111111

R̄ = 2.21

simply reverse the assignment of a 0 and 1 and still obtain an efficient code satisfying
the prefix condition.

E X A M P L E 6.3–2. As a second example, let us determine the Huffman code for the
output of a DMS illustrated in Figure 6.3–6. The entropy of this source is H (X ) =
2.63 bits per symbol. The Huffman code as illustrated in Figure 6.3–6 has an average
length of R̄ = 2.70 bits per symbol. Hence, its efficiency is 0.97.

FIGURE 6.3–6
Huffman code for Example 6.3–2.

Letter Code

x1 00
x2 010
x3 011
x4 100
x5 101
x6 110
x7 1110
x8 1111

H (X ) = 2.63 R̄ = 2.70
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TABLE 6.3–2

Huffman code for Example 6.3–3

Letter Probability Self-information Code

x1 0.45 1.156 1
x2 0.35 1.520 00
x3 0.20 2.330 01

H (X ) = 1.513 bits/letter
R̄1 = 1.55 bits/letter
Efficiency = 97.6%

The variable-length encoding (Huffman) algorithm described in the above exam-
ples generates a prefix code having an R̄ that satisfies Equation 6.3–26. However, in-
stead of encoding on a symbol-by-symbol basis, a more efficient procedure is to encode
blocks of J symbols at a time. In such a case, the bounds in Equation 6.3–26 become

J H (X ) ≤ R̄J < J H (X ) + 1, (6.3–31)

since the entropy of a J -symbol block from a DMS is J H (X ), and R̄J is the average
number of bits per J -symbol blocks. If we divide Equation 6.3–31 by J , we obtain

H (X ) ≤ R̄J

J
< H (X ) + 1

J
(6.3–32)

where R̄J /J ≡ R̄ is the average number of bits per source symbol. Hence R̄ can be
made as close to H (X ) as desired by selecting J sufficiently large.

E X A M P L E 6.3–3. The output of a DMS consists of letters x1, x2, and x3 with probabili-
ties 0.45, 0.35, and 0.20, respectively. The entropy of this source is H (X ) = 1.513 bits
per symbol. The Huffman code for this source, given in Table 6.3–2, requires R̄1 = 1.55
bits per symbol and results in an efficiency of 97.6 percent. If pairs of symbols are en-
coded by means of the Huffman algorithm, the resulting code is as given in Table 6.3–3.
The entropy of the source output for pairs of letters is 2H (X ) = 3.026 bits per symbol

TABLE 6.3–3

Huffman code for encoding pairs of letters

Letter pair Probability Self-information Code

x1x1 0.2025 2.312 10
x1x2 0.1575 2.676 001
x2x1 0.1575 2.676 010
x2x2 0.1225 3.039 011
x1x3 0.09 3.486 111
x3x1 0.09 3.486 0000
x2x3 0.07 3.850 0001
x3x2 0.07 3.850 1100
x3x3 0.04 4.660 1101

2H (X ) = 3.026 bits/letter pair
R̄2 = 3.0675 bits/letter pair

1
2 R̄2 = 1.534 bits/letter

Efficiency = 98.6%
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pair. On the other hand, the Huffman code requires R̄2 = 3.0675 bits per symbol pair.
Thus, the efficiency of the encoding increases to 2H (X )/R̄2 = 0.986 or, equivalently,
to 98.6 percent.

In summary, we have demonstrated that efficient encoding for a DMS may be done
on a symbol-by-symbol basis using a variable-length code based on the Huffman algo-
rithm. Furthermore, the efficiency of the encoding procedure is increased by encoding
blocks of J symbols at a time. Thus, the output of a DMS with entropy H (X ) may be
encoded by a variable-length code with an average number of bits per source letter that
approaches H (X ) as closely as desired.

The Huffman coding algorithm can be applied to discrete stationary sources as
well as discrete memoryless sources. Suppose we have a discrete stationary source
that emits J letters with HJ (X ) as the entropy per letter. We can encode the sequence
of J letters with a variable-length Huffman code that satisfies the prefix condition by
following the procedure described above. The resulting code has an average number of
bits for the J -letter block that satisfies the condition

H (X1 · · · X J ) ≤ R̄J < H (X1 · · · X J ) + 1 (6.3–33)

By dividing each term of Equation 6.3–33 by J , we obtain the bounds on the average
number R̄ = R̄J /J of bits per source letter as

HJ (X ) ≤ R̄ < HJ (X ) + 1

J
(6.3–34)

By increasing the block size J , we can approach HJ (X ) arbitrarily closely, and in the
limit as J → ∞, R̄ satisfies

H∞(X ) ≤ R̄ < H∞(X ) + ε (6.3–35)

where ε approaches zero as 1/J . Thus, efficient encoding of stationary sources is
accomplished by encoding large blocks of symbols into code words. We should em-
phasize, however, that the design of the Huffman code requires knowledge of the joint
PDF for the J -symbol blocks.

The Lempel–Ziv Algorithm
From our preceding discussion, we have observed that the Huffman coding algorithm
yields optimal source codes in the sense that the code words satisfy the prefix condition
and the average block length is a minimum. To design a Huffman code for a DMS,
we need to know the probabilities of occurrence of all the source letters. In the case
of a discrete source with memory, we must know the joint probabilities of blocks of
length n ≥ 2. However, in practice, the statistics of a source output are often unknown.
In principle, it is possible to estimate the probabilities of the discrete source output by
simply observing a long information sequence emitted by the source and obtaining the
probabilities empirically. Except for the estimation of the marginal probabilities {pk},
corresponding to the frequency of occurrence of the individual source output letters,
the computational complexity involved in estimating joint probabilities is extremely
high. Consequently, the application of the Huffman coding method to source coding
for many real sources with memory is generally impractical.
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In contrast to the Huffman coding algorithm, the Lempel–Ziv source coding
algorithm does not require the source statistics. Hence, the Lempel–Ziv algorithm be-
longs to the class of universal source coding algorithms. It is a variable-to-fixed-length
algorithm, where the encoding is performed as described below.

In the Lempel–Ziv algorithm, the sequence at the output of the discrete source is
parsed into variable-length blocks, which are called phrases. A new phrase is introduced
every time a block of letters from the source differs from some previous phrase in the
last letter. The phrases are listed in a dictionary, which stores the location of the existing
phrases. In encoding a new phrase, we simply specify the location of the existing phrase
in the dictionary and append the new letter.

As an example, consider the binary sequence

10101101001001110101000011001110101100011011

Parsing the sequence as described above produces the following phrases:

1, 0, 10, 11, 01, 00, 100, 111, 010, 1000, 011, 001, 110, 101, 10001, 1011

We observe that each phrase in the sequence is a concatenation of a previous phrase with
a new output letter from the source. To encode the phrases, we construct a dictionary as
shown in Table 6.3–4. The dictionary locations are numbered consecutively, beginning
with 1 and counting up, in this case to 16, which is the number of phrases in the sequence.
The different phrases corresponding to each location are also listed, as shown. The code
words are determined by listing the dictionary location (in binary form) of the previous
phrase that matches the new phrase in all but the last location. Then, the new output
letter is appended to the dictionary location of the previous phrase. Initially, the location
0000 is used to encode a phrase that has not appeared previously.

TABLE 6.3–4

Dictionary for Lempel-Ziv algorithm

Dictionary location Dictionary contents Code word

1 0001 1 00001
2 0010 0 00000
3 0011 10 00010
4 0100 11 00011
5 0101 01 00101
6 0110 00 00100
7 0111 100 00110
8 1000 111 01001
9 1001 010 01010

10 1010 1000 01110
11 1011 011 01011
12 1100 001 01101
13 1101 110 01000
14 1110 101 00111
15 1111 10001 10101
16 1011 11101
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The source decoder for the code constructs an identical copy of the dictionary at
the receiving end of the communication system and decodes the received sequence in
step with the transmitted data sequence.

It should be observed that the table encoded 44 source bits into 16 code words of
5 bits each, resulting in 80 coded bits. Hence, the algorithm provided no data com-
pression at all. However, the inefficiency is due to the fact that the sequence we have
considered is very short. As the sequence is increased in length, the encoding procedure
becomes more efficient and results in a compressed sequence at the output of the source.

How do we select the overall length of the table? In general, no matter how large
the table is, it will eventually overflow. To solve the overflow problem, the source
encoder and source decoder must use an identical procedure to remove phrases from
the respective dictionaries that are not useful and substitute new phrases in their place.

The Lempel–Ziv algorithm is widely used in the compression of computer files.
The “compress” and “uncompress” utilities under the UNIX c© operating system and
numerous algorithms under the MS-DOS operating system are implementations of
various versions of this algorithm.

6.4
LOSSY DATA COMPRESSION

Our study of data compression techniques thus far has been limited to discrete infor-
mation sources. For continuous-amplitude information sources, the problem is quite
different. For perfect reconstruction of a continuous-amplitude source, the number of
required bits is infinite. This is so because representation of a general real number
in base 2 requires an infinite number of digits. Therefore, for continuous-amplitude
sources lossless compression is impossible, and lossy compression through scalar or
vector quantization is employed. In this section we study the notion of lossy data com-
pression and introduce the rate distortion function which provides the fundamental limit
on lossy data compression. To introduce the rate distortion function, we need to gen-
eralize the notions of entropy and mutual information to continuous random variables.

6.4–1 Entropy and Mutual Information for Continuous Random Variables

The definition of mutual information given for discrete random variables may be ex-
tended in a straightforward manner to continuous random variables. In particular, if X
and Y are random variables with joint PDF p(x, y) and marginal PDFs p(x) and p(y),
the average mutual information between X and Y is defined as

I (X; Y ) =
∫ ∞

−∞

∫ ∞

−∞
p(x)p(y|x) log

p(y|x)p(x)

p(x)p(y)
dx dy (6.4–1)

Although the definition of the average mutual information carries over to continuous
random variables, the concept of entropy does not. The problem is that a continu-
ous random variable requires an infinite number of binary digits to represent it ex-
actly. Hence, its self-information is infinite, and, therefore, its entropy is also infinite.
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Nevertheless, we shall define a quantity that we call the differential entropy of the
continuous random variable X as

H (X ) = −
∫ ∞

−∞
p(x) log p(x) dx (6.4–2)

We emphasize that this quantity does not have the physical meaning of self-information,
although it may appear to be a natural extension of the definition of entropy for a discrete
random variable (see Problem 6.15).

By defining the average conditional entropy of X given Y as

H (X |Y ) = −
∫ ∞

−∞

∫ ∞

−∞
p(x, y) log p(x |y) dx dy (6.4–3)

the average mutual information may be expressed as

I (X; Y ) = H (X ) − H (X |Y ) (6.4–4)

or, alternatively, as

I (X; Y ) = H (Y ) − H (Y |X ) (6.4–5)

In some cases of practical interest, the random variable X is discrete and Y is
continuous. To be specific, suppose that X has possible outcomes xi , i = 1, 2, . . . , n,
and Y is described by its marginal PDF p(y). When X and Y are statistically dependent,
we may express p(y) as

p(y) =
n∑

i=1

p(y|xi ) P [xi ] (6.4–6)

The mutual information provided about the event X = xi by the occurrence of the event
Y = y is

I (xi ; y) = log
p(y|xi ) P [xi ]

p(y) P [xi ]

= log
p(y|xi )

p(y)

(6.4–7)

Then the average mutual information between X and Y is

I (X; Y ) =
n∑

i=1

∫ ∞

−∞
p(y|xi ) P [xi ] log

p(y|xi )

p(y)
dy (6.4–8)

E X A M P L E 6.4–1. Suppose that X is a discrete random variable with two equally prob-
able outcomes x1 = A and x2 = −A. Let the conditional PDFs p(y|xi ), i = 1, 2, be
Gaussian with mean xi and variance σ 2. That is,

p(y|A) = 1√
2πσ

e−(y−A)2/2σ 2

p(y|−A) = 1√
2πσ

e−(y+A)2/2σ 2

(6.4–9)
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The average mutual information obtained from Equation 6.4–8 becomes

I (X; Y ) = 1

2

∫ ∞

−∞

[
p(y|A) log

p(y|A)

p(y)
+ p(y|−A) log

p(y|−A)

p(y)

]
dy (6.4–10)

where

p(y) = 1

2
[p(y|A) + p(y|−A)] (6.4–11)

Later in this chapter it will be shown that the average mutual information I (X; Y ) given
by Equation 6.4–10 represents the channel capacity of a binary-input additive white
Gaussian noise channel.

6.4–2 The Rate Distortion Function

An analog source emits a message waveform x(t) that is a sample function of a stochastic
process X (t). When X (t) is a band-limited, stationary stochastic process, the sampling
theorem allows us to represent X (t) by a sequence of uniform samples taken at the
Nyquist rate.

By applying the sampling theorem, the output of an analog source is converted
to an equivalent discrete-time sequence of samples. The samples are then quantized
in amplitude and encoded. One type of simple encoding is to represent each discrete
amplitude level by a sequence of binary digits. Hence, if we have L levels, we need
R = log2 L bits per sample if L is a power of 2, or R = �log2 L�+1 if L is not a power
of 2. On the other hand, if the levels are not equally probable and the probabilities of
the output levels are known, we may use Huffman coding to improve the efficiency
of the encoding process.

Quantization of the amplitudes of the sampled signal results in data compression,
but it also introduces some distortion of the waveform or a loss of signal fidelity. The
minimization of this distortion is considered in this section. Many of the results given
in this section apply directly to a discrete-time, continuous-amplitude, memoryless
Gaussian source. Such a source serves as a good model for the residual error in a
number of source coding methods.

In this section we study only the fundamental limits on lossy source coding given
by the rate distortion function. Specific techniques to achieve the bounds predicted
by theory are not covered in this book. The interested reader is referred to books and
papers on scalar and vector quantization, data compression, waveform, audio and video
coding referenced at the end of this chapter.

We begin by studying the distortion introduced when the samples from the in-
formation source are quantized to a fixed number of bits. By the term distortion, we
mean some measure of the difference between the actual source samples {xk} and the
corresponding quantized values {x̂k} which we denote by d(xk, x̂k). For example, a
commonly used distortion measure is the squared-error distortion, defined as

d(xk, x̂k) = (xk − x̂k)2 (6.4–12)

If d(xk, x̂k) is the distortion measure per letter, the distortion between a sequence
of n samples xn and the corresponding n quantized values x̂n is the average over the n
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source output samples, i.e.,

d(xn, x̂n) = 1

n

n∑
k=1

d(xk, x̂k) (6.4–13)

The source output is a random process, and hence the n samples in Xn are random
variables. Therefore, d(Xn, X̂n) is a random variable. Its expected value is defined as
the distortion D, i.e.,

D = E
[
d(Xn, X̂n)

] = 1

n

n∑
k=1

E
[
d(Xk, X̂k)

] = E
[
d(X, X̂ )

]
(6.4–14)

where the last step follows from the assumption that the source output process is
stationary.

Now suppose we have a memoryless source with a continuous-amplitude output X
that has a PDF p(x), a quantized amplitude output alphabet X̂ , and a per letter distortion
measure d(x, x̂). Then the minimum rate in bits per source output that is required to
represent the output X of the memoryless source with a distortion less than or equal to
D is called the rate distortion function R(D) and is defined as

R(D) = min
p(x̂ |x):E[d(X,X̂ )]≤D

I (X; X̂ ) (6.4–15)

where I (X; X̂ ) is the mutual information between X and X̂ . In general, the rate R(D)
decreases as D increases, or conversely R(D) increases as D decreases.

As seen from the definition of the rate distortion function, R(D) depends on the
statistics of the source p(x) as well as the distortion measure d(x, x̂). A change in either
of these two would change R(D). We also mention here that for many source statistics
and distortion measures there exists no closed form for the rate distortion function
R(D).

The rate distortion function R(D) of a source is associated with the following
fundamental source coding theorem in information theory.

SHANNON’S THIRD THEOREM [SOURCE CODING WITH A FIDELITY CRITERION —

SHANNON (1959)] A memoryless source X can be encoded at rate R for a distortion
not exceeding D if R > R(D). Conversely, for any code with rate R < R(D) the
distortion exceeds D.

It is clear, therefore, that the rate distortion function R(D) for any source represents
a lower bound on the source rate that is possible for a given level of distortion.

The Rate Distortion Function for a Gaussian
Source with Squared-Error Distortion

One interesting model of a continuous-amplitude, memoryless information source is the
Gaussian source model. For this source statistics and squared-error distortion measure
d(x, x̂) = (x − x̂)2, the rate distortion function is known and is given by

Rg(D) =
{

1
2 log σ 2

D 0 ≤ D ≤ σ 2

0 D > σ 2 (6.4–16)
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FIGURE 6.4–1
Rate distortion function for a continuous-amplitude,
memoryless Gaussian source.

where σ 2 is the variance of the source. Note that Rg(D) is independent of the mean
E[X ] of the source. This function is plotted in Figure 6.4–1.

We should note that Equation 6.4–16 implies that no information need be trans-
mitted when the distortion D ≥ σ 2. Specifically, D = σ 2 can be obtained by using
m = E [X ] in the reconstruction of the signal.

If in Equation 6.4–16 we reverse the functional dependence between D and R, we
may express D in terms of R as

Dg(R) = 2−2Rσ 2 (6.4–17)

This function is called the distortion rate function for the discrete-time, memoryless
Gaussian source.

When we express the distortion in Equation 6.4–17 in decibels, we obtain

10 log Dg(R) = −6R + 10 log σ 2 (6.4–18)

Note that the mean square error distortion decreases at the rate of 6 dB/bit.
Explicit results on the rate distortion functions for general memoryless non-

Gaussian sources are not available. However, there are useful upper and lower bounds
on the rate distortion function for any discrete-time, continuous-amplitude, memoryless
source. An upper bound is given by the following theorem.

THEOREM: UPPER BOUND ON R(D) The rate distortion function of a memoryless,
continuous-amplitude source with zero mean and finite variance σ 2with respect to
the mean square error distortion measure is upper-bounded as

R(D) ≤ 1

2
log2

σ 2

D
, 0 ≤ D ≤ σ 2

x (6.4–19)

A proof of this theorem is given by Berger (1971). It implies that the Gaussian
source requires the maximum rate among all other sources with the same variance
for a specified level of mean square error distortion. Thus the rate distortion function
R(D) of any continuous-amplitude memoryless source with finite variance σ 2 satisfies
R(D) ≤ Rg(D). Similarly, the distortion rate function of the same source satisfies the
condition

D(R) ≤ Dg(R) = 2−2Rσ 2 (6.4–20)
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A lower bound on the rate distortion function also exists. This is called the Shannon
lower bound for a mean square error distortion measure and is given as

R∗(D) = H (X ) − 1

2
log2 2πeD (6.4–21)

where H (X ) is the differential entropy of the continuous-amplitude, memoryless source.
The distortion rate function corresponding to Equation 6.4–21 is

D∗(R) = 1

2πe
2−2[R−H (X )] (6.4–22)

Therefore, the rate distortion function for any continuous-amplitude, memoryless
source is bounded from above and below as

R∗(D) ≤ R(D) ≤ Rg(D) (6.4–23)

and the corresponding distortion rate function is bounded as

D∗(R) ≤ D(R) ≤ Dg(R) (6.4–24)

The differential entropy of the memoryless Gaussian source is

Hg(X ) = 1

2
log2 2πeσ 2 (6.4–25)

so that the lower bound R∗(D) in Equation 6.4–21 reduces to Rg(D). Now, if we express
D∗(R) in terms of decibels and normalize it by setting σ 2 = 1 (or dividing D∗(R) by
σ 2), we obtain from Equation 6.4–22

10 log D∗(R) = −6R − 6[Hg(X ) − H (X )] (6.4–26)

or, equivalently,

10 log
Dg(R)

D∗(R)
= 6[Hg(X ) − H (X )] dB

= 6[Rg(D) − R∗(D)] dB
(6.4–27)

The relations in Equations 6.4–26 and 6.4–27 allow us to compare the lower bound
in the distortion with the upper bound which is the distortion for the Gaussian source.
We note that D∗(R) also decreases at −6 dB/bit. We should also mention that the
differential entropy H (X ) is upper-bounded by Hg(X ), as shown by Shannon (1948b).

Rate Distortion Function for a Binary Source with Hamming Distortion
Another interesting and useful case in which a closed-form expression for the rate
distortion function exists is the case of a binary source with p = P [X = 1] = 1 −
P [X = 0]. From the lossless source coding theorem, we know that this source can be
compressed at any rate R that satisfies R > H (X ) = Hb(p) and can be recovered
perfectly from the compressed data. However if the rate falls below Hb(p), errors will
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occur in compression of this source. A measure of distortion that represents the error
probability is the Hamming distortion, defined as

d(x, x̂) =
{

1 x �= x̂
0 x = x̂

(6.4–28)

The average distortion, when this distortion measure is used, is given by

E
[
d(X, X̂ )

] = 1 × P
[
X �= X̂

] + 0 × P
[
X = X̂

]
= P

[
X �= X̂

]
= Pe

(6.4–29)

It is seen that the average of Hamming distortion is the error probability in reconstruction
of the source.

The rate distortion function for a binary source and with Hamming distortion is
given by

R(D) =
{

Hb(p) − Hb(D) 0 ≤ D ≤ min{p, 1 − p}
0 otherwise

(6.4–30)

Note that as D → 0, we have R(D) → Hb(p) as expected.

E X A M P L E 6.4–2. A binary symmetric source is to be compressed at a rate of 0.75 bit
per source output. For a binary symmetric source we have p = 1

2 and Hb(p) = 1. Since
the compression rate, 0.75, is lower than the source entropy, error-free compression
is impossible and the best error probability is found by solving R(D) = 0.75, where
D is Pe because we employ the Hamming distortion. From Equation 6.4–30 we have
R(Pe) = Hb(p)−Hb(Pe) = 1−Hb(Pe) = 0.75. Therefore, Hb(Pe) = 1−0.75 = 0.25,
from which we have Pe = 0.04169. This is the minimum error probability that can be
achieved using a system of unlimited complexity and delay.

6.5
CHANNEL MODELS AND CHANNEL CAPACITY

In the model of a digital communication system described in Chapter 1, we recall that
the transmitter building blocks consist of the discrete-input, discrete-output channel
encoder followed by the modulator. The function of the discrete channel encoder is to
introduce, in a controlled manner, some redundancy in the binary information sequence,
which can be used at the receiver to overcome the effects of noise and interference
encountered in the transmission of the signal through the channel. The encoding process
generally involves taking k information bits at a time and mapping each k-bit sequence
into a unique n-bit sequence, called a codeword. The amount of redundancy introduced
by the encoding of the data in this manner is measured by the ratio n/k. The reciprocal
of the ratio, namely k/n, is called the code rate and denoted by Rc.

The binary sequence at the output of the channel encoder is fed to the modulator,
which serves as the interface to the communication channel. As we have discussed, the
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modulator may simply map each binary digit into one of two possible waveforms; i.e.,
a 0 is mapped into s1(t) and a 1 is mapped into s2(t). Alternatively, the modulator may
transmit q-bit blocks at a time by using M = 2q possible waveforms.

At the receiving end of the digital communication system, the demodulator pro-
cesses the channel-corrupted waveform and reduces each waveform to a scalar or a
vector that represents an estimate of the transmitted data symbol (binary or M-ary).
The detector, which follows the demodulator, may decide whether the transmitted bit
is a 0 or a 1. In such a case, the detector has made a hard decision. If we view the
decision process at the detector as a form of quantization, we observe that a hard deci-
sion corresponds to binary quantization of the demodulator output. More generally, we
may consider a detector that quantizes to Q > 2 levels, i.e., a Q-ary detector. If M-ary
signals are used, then Q ≥ M . In the extreme case when no quantization is performed,
Q = ∞. In the case where Q > M , we say that the detector has made a soft decision.

The quantized output from the detector is then fed to the channel decoder, which
exploits the available redundancy to correct for channel disturbances.

In the following sections, we describe three channel models that will be used to
establish the maximum achievable bit rate for the channel.

6.5–1 Channel Models

In this section we describe channel models that will be useful in the design of codes.
A general communication channel is described in terms of its set of possible in-
puts, denoted by X and called the input alphabet; the set of possible channel out-
puts, denoted by Y and called the output alphabet; and the conditional probabil-
ity that relates the input and output sequences of any length n, which is denoted by
P [y1, y2, . . . , yn |x1, x2, . . . , xn ], where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
represent input and output sequences of length n, respectively. A channel is called
memoryless if we have

P [ y |x ] =
n∏

i=1

P [yi |xi ] for all n (6.5–1)

In other words, a channel is memoryless if the output at time i depends only on the
input at time i .

The simplest channel model is the binary symmetric channel, which corresponds
to the case with X = Y = {0, 1}. This is an appropriate channel model for binary
modulation and hard decisions at the detector.

The Binary Symmetric Channel (BSC) Model
Let us consider an additive noise channel and let the modulator and the demodu-
lator/detector be included as parts of the channel. If the modulator employs binary
waveforms and the detector makes hard decisions, then the composite channel, shown
in Figure 6.5–1, has a discrete-time binary input sequence and a discrete-time binary
output sequence. Such a composite channel is characterized by the set X = {0, 1} of
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FIGURE 6.5–1
A composite discrete input, discrete output channel formed by including the modulator and the
demodulator as part of the channel.

possible inputs, the set of Y = {0, 1} of possible outputs, and a set of conditional
probabilities that relate the possible outputs to the possible inputs. If the channel noise
and other disturbances cause statistically independent errors in the transmitted binary
sequence with average probability p, then

P [Y = 0 |X = 1] = P [Y = 1 |X = 0] = p

P [Y = 1 |X = 1] = P [Y = 0 |X = 0] = 1 − p
(6.5–2)

Thus, we have reduced the cascade of the binary modulator, the waveform channel,
and the binary demodulator and detector to an equivalent discrete-time channel which
is represented by the diagram shown in Figure 6.5–2. This binary input, binary output,
symmetric channel is simply called a binary symmetric channel (BSC). Since each
output bit from the channel depends only on the corresponding input bit, we say that
the channel is memoryless.

The Discrete Memoryless Channel (DMC)
The BSC is a special case of a more general discrete input, discrete output channel. The
discrete memoryless channel is a channel model in which the input and output alphabets
X and Y are discrete sets and the channel is memoryless. For instance, this is the case
when the channel uses an M-ary memoryless modulation scheme and the output of
the detector consists of Q-ary symbols. The composite channel consists of modulator-
channel-detector as shown in Figure 6.5–1, and its input-output characteristics are
described by a set of M Q conditional probabilities

P [y |x ] for x ∈ X , y ∈ Y (6.5–3)

The graphical representation of a DMC is shown in Figure 6.5–3.

FIGURE 6.5–2
Binary symmetric channel.
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FIGURE 6.5–3
Discrete memoryless channel.

In general, the conditional probabilities {P [y |x ]} that characterize a DMC can be
arranged in an |X |×|Y | matrix of the form P = [pi j ], 1 ≤ i ≤ |X |, 1 ≤ j ≤ |Y |.
P is called the probability transition matrix for the channel.

The Discrete-Input, Continuous-Output Channel
Now, suppose that the input to the modulator comprises symbols selected from a finite
and discrete input alphabet X , with |X | = M , and the output of the detector is
unquantized, i.e., Y = R. This leads us to define a composite discrete-time memoryless
channel that is characterized by the discrete input X , the continuous output Y , and the
set of conditional probability density functions

p(y|x), x ∈ X , y ∈ R (6.5–4)

The most important channel of this type is the additive white Gaussian noise (AWGN)
channel, for which

Y = X + N (6.5–5)

where N is a zero-mean Gaussian random variable with variance σ 2. For a given X = x ,
it follows that Y is Gaussian with mean x and variance σ 2. That is,

p(y|x) = 1√
2πσ 2

e− (y−x)2

2σ2 (6.5–6)

For any given input sequence Xi , i = 1, 2, . . . , n, there is a corresponding output
sequence

Yi = Xi + Ni , i = 1, 2, . . . , n (6.5–7)

The condition that the channel is memoryless may be expressed as

p(y1, y2, . . . , yn|x1, x2, . . . , xn) =
n∏

i=1

p(yi |xi ) (6.5–8)
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The Discrete-Time AWGN Channel
This is a channel in which X = Y = R. At each instant of time i , an input xi ∈ R is
transmitted over the channel. The received symbol is given by

yi = xi + ni (6.5–9)

where ni ’s are iid zero-mean Gaussian random variables with variance σ 2. In addition,
it is usually assumed that the channel input satisfies a power constraint of the form

E [X2] ≤ P (6.5–10)

Under this input power constraint, for any input sequence of the form x = (x1, x2, . . . ,

xn), where n is large with probability approaching 1, we have

1

n

n∑
i=1

x2
i = 1

n
‖x‖2 ≤ P (6.5–11)

The geometric interpretation of the above constraint is that the input sequences to the
channel are inside an n-dimensional sphere of radius

√
n P centered at the origin.

The AWGN Waveform Channel
We may separate the modulator and the demodulator from the physical channel, and
we consider a channel model in which the inputs are waveforms and the outputs are
waveforms. Let us assume that such a channel has a given bandwidth W , with ideal
frequency response C( f ) = 1 within the frequency range [−W, +W ], and the signal
at its output is corrupted by additive white Gaussian noise. Suppose that x(t) is a
band-limited input to such a channel and y(t) is the corresponding output. Then

y(t) = x(t) + n(t) (6.5–12)

where n(t) represents a sample function of the additive white Gaussian noise process
with power spectral density of N0

2 . Usually, the channel input is subject to a power
constraint of the form

E [X2(t)] ≤ P (6.5–13)

which for ergodic inputs results in an input power constraint of the form

lim
T →∞

1

T

∫ T/2

−T/2
x2(t) dt ≤ P (6.5–14)

A suitable method for defining a set of probabilities that characterize the channel
is to expand x(t), y(t), and n(t) into a complete set of orthonormal functions. From the
dimensionality theorem discussed in Section 4.6–1, we know that the dimensionality of
the space of signals with an approximate bandwidth of W and an approximate duration
of T is roughly 2W T . Therefore we need a set of 2W dimensions per second to expand
the input signals. We can add adequate signals to this set to make it a complete set
of orthonormal signals that, by Example 2.8–1, can be used for expansion of white



Proakis-27466 book September 25, 2007 14:54

Chapter Six: An Introduction to Information Theory 359

processes. Hence, we can express x(t), y(t), and n(t) in the form

x(t) =
∑

j

x jφ j (t)

n(t) =
∑

j

n jφ j (t)

y(t) =
∑

j

y jφ j (t)

(6.5–15)

where {y j }, {x j }, and {n j } are the sets of coefficients in the corresponding expansions,
e.g.,

y j =
∫ ∞

−∞
y(t)φ j (t) dt

=
∫ ∞

−∞
(x(t) + n(t)) φ j (t) dt

= x j + n j

(6.5–16)

We may now use the coefficients in the expansion for characterizing the channel.
Since

y j = x j + n j (6.5–17)

where n j ’s are iid zero-mean Gaussian random variables with variance σ 2 = N0
2 , it

follows that

p(y j |x j ) = 1√
π N0

e− (y j −x j )2

N0 , i = 1, 2, . . . (6.5–18)

and by the independence of n j ’s

p(y1, y2, . . . , yN |x1, x2, . . . , xN ) =
N∏

j=1

p(y j |x j ) (6.5–19)

for any N . In this manner, the AWGN waveform channel is reduced to an equivalent
discrete-time channel characterized by the conditional PDF given in Equation 6.5–18.
The power constraint on the input waveforms given by Equation 6.5–14 can be written as

lim
T →∞

1

T

∫ T/2

−T/2
x2(t) dt = lim

T →∞
1

T

2W T∑
j=1

x2
j

= lim
T →∞

1

T
× 2W T E [X2]

= 2W E [X2]

≤ P

(6.5–20)

where the first equality follows from orthonormality of the {φ j (t), j = 1, 2, . . . , 2W T },
the second equality follows from the law of large numbers applied to the sequence
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{x j , 1 ≤ j ≤ 2W T }, and the last inequality follows from Equation 6.5–14. From
Equation 6.5–20 we conclude that in the discrete-time channel model we have

E [X2] ≤ 2
P

W
(6.5–21)

From Equations 6.5–19 and 6.5–21 it is clear that the waveform AWGN channel
with bandwidth constraint W and input power constraint P is equivalent with 2W uses
per second of a discrete-time AWGN channel with noise variance of σ 2 = N0

2 and an
input power constraint given by Equation 6.5–21.

6.5–2 Channel Capacity

We have seen that the entropy and the rate distortion function provide the fundamental
limits for lossless and lossy data compression. The entropy and the rate distortion
function provide the minimum required rates for compression of a discrete memoryless
source subject to the condition that it can be losslessly recovered, or can be recovered
with a distortion not exceeding a specific D, respectively. In this section we introduce
a third fundamental quantity called channel capacity that provides the maximum rate
at which reliable communication over a channel is possible.

Let us consider a discrete memoryless channel with crossover probability of p. In
transmission of 1 bit over this channel the error probability is p, and when a sequence
of length n is transmitted over this channel, the probability of receiving the sequence
correctly is (1 − p)n which goes to zero as n → ∞. One approach to improve the per-
formance of this channel is not to use all binary sequences of length n as possible inputs
to this channel but to choose a subset of them and use only that subset. Of course this
subset has to be selected in such a way that the sequences in it are in some sense “far
apart” such that they can be recognized and correctly detected at the receiver even in
the presence of channel errors.

Let us assume a binary sequence of length n is transmitted over the channel. If n is
large, the law of large numbers states that with high probability np bits will be received
in error, and as n → ∞, the probability of receiving np bits in error approaches 1. The
number of sequences of length n that are different from the transmitted sequence at np
positions (np an integer) is (

n

np

)
= n!

(np)!(n(1 − p))!
(6.5–22)

By using Stirling’s approximation that states for large n we have

n! ≈
√

2πn nne−n (6.5–23)

Equation 6.5–22 can be approximated as(
n

np

)
≈ 2nHb(p) (6.5–24)
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This means that when any sequence of length n is transmitted, it is highly probable
that one of the 2nHb(p) that are different from the transmitted sequence in np positions
will be received. If we insist on using all possible input sequences for this channel, errors
are inevitable since there will be considerable overlap between the received sequences.
However, if we use a subset of all possible input sequences, and choose this subset
such that the set of highly probable received sequences for each element of this subset
is nonoverlapping, then reliable communication is possible. Since the total number of
binary sequences of length n at the channel output is 2n , we can have at most

M = 2n

2nHb(p)
= 2n(1−Hb(p)) (6.5–25)

sequences of length n transmitted without their corresponding highly probable received
sequences overlapping. Therefore, in n uses of the channel we can transmit M messages,
and the rate, i.e., the information transmitted per each use of the channel, is given by

R = 1

n
log2 M = 1 − Hb(p) (6.5–26)

The quantity 1 − Hb(p) is the maximum rate for reliable communication over a binary
symmetric channel and is called the capacity of this channel. In general the capacity of
a channel, denoted by C , is the maximum rate at which reliable communication, i.e.,
communication with arbitrary small error probability, over the channel is possible.

For an arbitrary DMC the capacity is given by

C = max
p

I (X; Y ) (6.5–27)

where the maximization is over all PMFs of the form p =
(

p1, p2, . . . , p|X |

)
on the

input alphabet X . The pi ’s naturally satisfy the constraints

pi ≥ 0 i = 1, 2, . . . , |X |
|X |∑
i=1

pi = 1
(6.5–28)

The units of C are bits per transmission or bits per channel use, if in computing I (X; Y )
logarithms are in base 2, and nats per transmission when the natural logarithm (base e)
is used. If a symbol enters the channel every τs seconds, the channel capacity is C/τs

bits/s or nats/s.
The significance of the channel capacity is due to the following fundamental the-

orem, known as the noisy channel coding theorem.

SHANNON’S SECOND THEOREM—THE NOISY CHANNEL CODING THEOREM (SHANNON 1948)

Reliable communication over a discrete memoryless channel is possible if the commu-
nication rate R satisfies R < C , where C is the channel capacity. At rates higher than
capacity, reliable communication is impossible.

The noisy channel coding theorem is of utmost significance in communication
theory. This theorem expresses the limit to reliable communication and provides a
yardstick to measure the performance of communication systems. A system performing
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near capacity is a near optimal system and does not have much room for improvement.
On the other hand a system operating far from this fundamental bound can be improved
mainly through coding techniques described in Chapters 7 and 8. Although we have
stated the noisy channel coding theorem for discrete memoryless channels, this theorem
applies to a much larger class of channels. For details see the paper by Verdu and Han
(1994).

We also note that Shannon’s proof of the noisy channel coding theorem is noncon-
structive and employs a technique introduced by Shannon called random coding. In
this technique instead of looking for the best possible coding scheme and analyzing its
performance, which is a difficult task, all possible coding schemes are considered and
the performance of the system is averaged over them. Then it is proved that if R < C ,
the average error probability tends to zero. This proves that among all possible coding
schemes there exists at least one code for which the error probability tends to zero. We
will discuss this notion in greater detail in Section 6.8–2.

E X A M P L E 6.5–1. For a BSC, due to the symmetry of the channel, the capacity is
achieved for a uniform input distribution, i.e., for P [X = 1] = P [X = 0] = 1

2 . The
maximum mutual information is given by

C = 1 + p log 2p + (1 − p) log 2(1 − p) = 1 − H (p) (6.5–29)

This agrees with our earlier intuitive reasoning. A plot of C versus p is illustrated
in Figure 6.5–4. Note that for p = 0, the capacity is 1 bit/channel use. On the other
hand, for p = 1

2 , the mutual information between input and output is zero. Hence, the
channel capacity is zero. For 1

2 < p ≤ 1, we may reverse the position of 0 and 1 at the
output of the BSC, so that C becomes symmetric with respect to the point p = 1

2 . In
our treatment of binary modulation and demodulation given in Chapter 4, we showed
that p is a monotonic function of the SNR per bit. Consequently when C is plotted as
a function of the SNR per bit, it increases monotonically as the SNR per bit increases.
This characteristic behavior of C versus SNR per bit is illustrated in Figure 6.5–5 for
the case where the binary modulation scheme is antipodal signaling.

The Capacity of the Discrete-Time Binary-Input AWGN Channel We consider
the binary-input AWGN channel with inputs ±A and noise variance σ 2. The transition
probability density function for this channel is defined by Equation 6.5–6 where x =
±A. By symmetry, the capacity of this channel is achieved by a symmetric input PMF,
i.e., by letting P [X = A] = P [X = −A] = 1

2 . Using these input probabilities, the

FIGURE 6.5–4
The capacity of a BSC.
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FIGURE 6.5–5
The capacity plot versus SNR per bit.

capacity of this channel in bits per channel use is given by

C = 1

2

∫ ∞

−∞
p(y|A) log2

p(y|A)

p(y)
dy + 1

2

∫ ∞

−∞
p(y|−A) log2

p(y|−A)

p(y)
dy (6.5–30)

The capacity in this case does not have a closed form. In Problem 6.50 it is shown that
the capacity of this channel can be written as

C = 1

2
g

(
A

σ

)
+ 1

2

(
− A

σ

)
(6.5–31)

where

g(x) =
∫ ∞

−∞

1√
2π

e− (u−x)2

2 log2
2

1 + e−2ux
du (6.5–32)

Figure 6.5–6 illustrates C as a function of the ratio Eb
N0

. Note that C increases monoton-
ically from 0 to 1 bit per symbol as this ratio increases. The two points shown on this
plot correspond to transmission rates of 1

2 and 1
3 . Note that the Eb

N0
required to achieve

these rates is 0.188 and −0.496, respectively.

Capacity of Symmetric Channels It is interesting to note that in the two channel
models described above, the BSC and the discrete-time binary-input AWGN channel,
the choice of equally probable input symbols maximizes the average mutual infor-
mation. Thus, the capacity of the channel is obtained when the input symbols are
equally probable. This is not always the solution for the capacity formulas given in
Equation 6.5–27, however. In the two channel models considered above, the channel
transition probabilities exhibit a form of symmetry that results in the maximum of
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FIGURE 6.5–6
The capacity of binary input AWGN channel.

I (X; Y ) being obtained when the input symbols are equally probable. A channel is
called a symmetric channel when each row of P is a permutation of any other row
and each column of it is a permutation of any other column. For symmetric channels,
input symbols with equal probability maximize I (X; Y ). The resulting capacity of a
symmetric channel is

C = log2 |Y | − H ( p) (6.5–33)

where p is the PMF given by any row of P . Note that since the rows of P are permuta-
tions of each other, the entropy of the PMF corresponding to each row is independent
of the row. One example of a symmetric channel is the binary symmetric channel for
which p = (p, 1 − p) and |Y | = 2, therefore C = 1 − Hb(p).

In general, for an arbitrary DMC, the necessary and sufficient conditions for the
set of input probabilities {P [x]} to maximize I (X; Y ) and, thus, to achieve capacity on
a DMC are that (Problem 6.52)

I (x; Y ) = C for all x ∈ X with P [x] > 0

I (x; Y ) ≤ C for all x ∈ X with P [x] = 0
(6.5–34)

where C is the capacity of the channel and

I (x; Y ) =
∑
y∈Y

P [y |x ] log
P [y |x ]

P [y]
(6.5–35)
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Usually, it is relatively easy to check if the equally probable set of input symbols
satisfies the conditions given in Equation 6.5–34. If they do not, then one must determine
the set of unequal probabilities {P [x]} that satisfies Equation 6.5–34.

The Capacity of Discrete-Time AWGN Channel with an Input Power Constraint
Here we deal with the channel model

Yi = Xi + Ni (6.5–36)

where Ni ’s are iid zero-mean Gaussian random variables with variance σ 2 and input X
is subject to the power constraint

E [X2] ≤ P (6.5–37)

For large n, the law of large numbers states that

1

n
‖ y‖2 → E [X2] + E [N 2] ≤ P + σ 2 (6.5–38)

Equation 6.5–38 states that the output vector y is inside an n-dimensional sphere of
radius

√
n(P + σ 2). If x is transmitted, the received vector y = x + n satisfies

1

n
‖ y − x‖2 = 1

n
‖n‖2 → σ 2 (6.5–39)

which means if x is transmitted, with high probability y will be in an n-dimensional
sphere of radius

√
nσ 2 and centered at x. The maximum number of spheres of radius√

nσ 2 that can be packed in a sphere of radius
√

n(P + σ 2) is the ratio of the volumes
of the spheres. The volume of an n-dimensional sphere is given by Vn = Bn Rn , where
Bn is given by Equation 4.7–15. Therefore, the maximum number of messages that can
be transmitted and still be resolvable at the receiver is

M =
Bn

(√
n(P + σ 2)

)n

Bn

(√
nσ 2

)n =
(

1 + P

σ 2

) n
2

(6.5–40)

which results in a rate of

R = 1

n
log2 M = 1

2
log2

(
1 + P

σ 2

)
bits/transmission (6.5–41)

This result can be obtained by direct maximization of I (X; Y ) over all input PDFs
p(x) that satisfy the power constraint E [X2] ≤ P . The input PDF that maximizes
I (X; Y ) is a zero-mean Gaussian PDF with variance P . A plot of the capacity for this
channel versus SNR per bit is shown in Figure 6.5–7. The points corresponding to
C = 1

2 and C = 1
3 are also shown on the figure.

The Capacity of Band-Limited Waveform AWGN Channel with an Input Power
Constraint As we have seen by the discussion following Equation 6.5–21, this channel
model is equivalent to 2W uses per second of a discrete-time AWGN channel with input
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FIGURE 6.5–7
The capacity of a discrete-time AWGN channel.

power constraint of P
2W and noise variance of σ 2 = N0

2 . The capacity of this discrete-time
channel is

C = 1

2
log2

(
1 +

P
2W
N0
2

)
= 1

2
log2

(
1 + P

N0W

)
bits/channel use (6.5–42)

Therefore, the capacity of the continuous-time channel is given by

C = 2W × 1

2
log2

(
1 + P

N0W

)
= W log2

(
1 + P

N0W

)
bits/s (6.5–43)

This is the celebrated equation for the capacity of a band-limited AWGN channel with
input power constraint derived by Shannon (1948b).

From Equation 6.5–43, it is clear that the capacity increases by increasing P , and
in fact C → ∞ as P → ∞. However, the rate by which the capacity increases at
large values of P is a logarithmic rate. Increasing W , however, has a dual role on the
capacity. On one hand, it causes the capacity to be increased because higher bandwidth
means more transmissions over the channel per unit time. On the other hand, increasing
W decreases the SNR defined by P

N0W . This is so because increasing the bandwidth
increases the effective noise power entering the receiver. To see how the capacity
changes as W → ∞, we need to use the relation ln(1 + x) → x as x → 0 to get

C∞ = lim
W→∞

W log2

(
1 + P

N0W

)
= (

log2 e
) P

N0
≈ 1.44

P

N0
bits/s (6.5–44)

It is clear that the having infinite bandwidth cannot increase the capacity indefinitely,
and its effect is limited by the amount of available power. This is in contrast to the



Proakis-27466 book September 25, 2007 14:54

Chapter Six: An Introduction to Information Theory 367

effect of having infinite power that, regardless of the amount of available bandwidth,
can increase the capacity indefinitely.

To derive a fundamental relation between the bandwidth and power efficiency of a
communication system, we note that for reliable communication we must have R < C
which in the case of a band-limited AWGN channel is given by

R < W log2

(
1 + P

N0W

)
(6.5–45)

Dividing both sides by W and using r = R/W , as previously defined in Equation 4.6–1
as the bandwidth efficiency, we obtain

r < log2

(
1 + P

N0W

)
(6.5–46)

Using the relation

Eb = E
log2 M

= PTs

log2 M
= P

R
(6.5–47)

we obtain

r < log2

(
1 + Eb R

N0W

)
= log2

(
1 + r

Eb

N0

)
(6.5–48)

from which we have
Eb

N0
>

2r − 1

r
(6.5–49)

This relation states the condition for reliable communication in terms of bandwidth
efficiency r and Eb

N0
which is a measure of power efficiency of a system. A plot of

this relation is given in Figure 4.6–1. The minimum value of Eb
N0

for which reliable
communication is possible is obtained by letting r → 0 in Equation 6.5–49, which
results in

Eb

N0
> ln 2 ≈ 0.693 ∼ −1.6 dB (6.5–50)

This is the minimum required value of Eb
N0

for any communication system. No system
can transmit reliably below this limit and in order to achieve this limit we need to let
r → 0, or equivalently, W → ∞.

6.6
ACHIEVING CHANNEL CAPACITY WITH ORTHOGONAL SIGNALS

In Section 4.4–1, we used a simple union bound to show that, for orthogonal signals,
the probability of error can be made as small as desired by increasing the number M
of waveforms, provided that Eb/N0 > 2 ln 2. We indicated that the simple union bound
does not produce the smallest lower bound on the SNR per bit. The problem is that the
upper bound used in Q(x) is very loose for small x .
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An alternative approach is to use two different upper bounds for Q(x), depending
on the value of x . Beginning with Equation 4.4–10 and using the inequality (1 − x)n ≥
1 − nx , which holds for 0 ≤ x ≤ 1 and n ≥ 1, we observe that

1 − [1 − Q(x)]M−1 ≤ (M − 1)Q(x) < Me−x2/2 (6.6–1)

This is just the union bound, which is tight when x is large, i.e., for x > x0, where x0

depends on M . When x is small, the union bound exceeds unity for large M . Since

1 − [1 − Q(x)]M−1 ≤ 1 (6.6–2)

for all x , we may use this bound for x < x0 because it is tighter than the union bound.
Thus Equation 4.4–10 may be upper-bounded as

Pe <
1√
2π

∫ x0

−∞
e−

(
x−

√
2γ

)2
/2 dx + M√

2π

∫ ∞

x0

e−x2/2e−
(

x−
√

2γ

)2
/2 dx (6.6–3)

where γ = E
N0

.
The value of x0 that minimizes this upper bound is found by differentiating the

right-hand side of Equation 6.6–3 and setting the derivative equal to zero. It is easily
verified that the solution is

ex2
0 /2 = M (6.6–4)

or, equivalently,

x0 =
√

2 ln M = √
2 ln 2 log2 M =

√
2k ln 2 (6.6–5)

Having determined x0, we now compute simple exponential upper bounds for the
integrals in Equation 6.6–3. For the first integral, we have

1√
2π

∫ x0

−∞
e−

(
x−

√
2γ

)2
/2 dx = 1√

π

∫ −
(√

2γ−x0

)
/
√

2

−∞
e−u2

du

= Q
(√

2γ − x0
)
, x0 ≤ √

2γ

< e−
(√

2γ−x0

)2
/2

, x0 ≤ √
2γ

(6.6–6)

The second integral is upper-bounded as follows:

M√
2π

∫ ∞

x0

e−x2/2e−
(

x−
√

2γ
)2

/2 dx = M√
2π

e−γ /2
∫ ∞

x0−
√

γ /2
e−u2

du

<

⎧⎨
⎩

Me−γ /2 x0 ≤ √
γ /2

Me−γ /2e−
(

x0−
√

γ /2
)2

x0 >
√

γ /2

(6.6–7)

Combining the bounds for the two integrals and substituting ex2
0 /2 for M , we obtain

Pe <

⎧⎨
⎩

e−
(√

2γ−x0

)2
/2 + e(x2

0 −γ )/2 0 ≤ x0 ≤ √
γ /2

e−
(√

2γ−x0

)2
/2 + e(x2

0 −γ )/2e−
(

x0−
√

γ /2
)2 √

γ /2 < x0 ≤ √
2γ

(6.6–8)
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In the range 0 ≤ x0 ≤ √
γ /2, the bound may be expressed as

Pe < e(x2
0 −γ )/2

(
1 + e−

(
x0−

√
γ /2

)2)
< 2e(x2

0 −γ )/2, 0 ≤ x0 ≤ √
γ /2 (6.6–9)

In the range
√

γ /2 ≤ x0 ≤ √
2γ , the two terms in Equation 6.6–8 are identical. Hence,

Pe < 2e−
(√

2γ−x0

)2
/2

,
√

γ /2 ≤ x0 ≤ √
2γ (6.6–10)

Now we substitute for x0 and γ . Since x0 = 2 ln M = √
2k ln 2 and γ = kγb, the

bounds in Equations 6.6–9 and 6.6–10 may be expressed as

Pe <

⎧⎨
⎩

2e−k(γb−2 ln 2)/2 ln M ≤ 1
4γ

2e−k
(√

γ b−
√

ln 2
)2

1
4γ ≤ ln M ≤ γ

(6.6–11)

The first upper bound coincides with the union bound presented earlier, but it is loose
for large values of M . The second upper bound is better for large values of M . We
note that Pe → 0 as k → ∞ (M → ∞) provided that γb > ln 2. But ln 2 is the
limiting value of the SNR per bit required for reliable transmission when signaling
at a rate equal to the capacity of the infinite-bandwidth AWGN channel, as shown in
Equation 6.5–50. In fact, when the substitutions y0 = √

2k ln 2 = √
2RT ln 2 and

γ = E/N0 = T P/N0 = T C∞ ln 2, which follow from Equation 6.5–44, are made into
the two upper bounds given in Equations 6.6–9 and 6.6–10, the result is

Pe <

⎧⎨
⎩

2 × 2−T ( 1
2 C∞−R) 0 ≤ R ≤ 1

4 C∞

2 × 2−T
(√

C∞−√
R
)2

1
4 C∞ ≤ R ≤ C∞

(6.6–12)

Thus we have expressed the bounds in terms of C∞ and the bit rate in the channel.
The first upper bound is appropriate for rates below 1

4 C∞, while the second is tighter
than the first for rates between 1

4 C∞ and C∞. Clearly, the probability of error can
be made arbitrarily small by making T → ∞ (M → ∞ for fixed R), provided that
R < C∞ = P/(N0 ln 2). Furthermore, we observe that the set of orthogonal waveforms
achieves the channel capacity bound as M → ∞, when the rate R < C∞.

6.7
THE CHANNEL RELIABILITY FUNCTION

The exponential bounds on the error probability for M-ary orthogonal signals on an
infinite-bandwidth AWGN channel given by Equation 6.6–12 may be expressed as

Pe < 2 × 2−T E(R) (6.7–1)
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FIGURE 6.7–1
Channel reliability function for the infinite-bandwidth
AWGN channel.

The exponential factor

E(R) =
⎧⎨
⎩

1
2 C∞ − R 0 ≤ R ≤ 1

4 C∞(√
C∞ − √

R
)2

1
4 C∞ ≤ R ≤ C∞

(6.7–2)

in Equation 6.7–2 is called the channel reliability function for the infinite-bandwidth
AWGN channel. A plot of E(R)/C∞ is shown in Figure 6.7–1. Also shown is the
exponential factor for the union bound on Pe, given by Equation 4.4–17, which may be
expressed as

Pe ≤ 1

2
× 2−T ( 1

2 C∞−R), 0 ≤ R ≤ 1

2
C∞ (6.7–3)

Clearly, the exponential factor in Equation 6.7–3 is not as tight as E(R), due to the
looseness of the union bound.

The bound given by Equations 6.7–1 and 6.7–2 has been shown by Gallager (1965)
to be exponentially tight. This means that there does not exist another reliability func-
tion, say E1(R), satisfying the condition E1(R) > E(R) for any R. Consequently, the
error probability is bounded from above and below as

Kl2
−T E(R) ≤ Pe ≤ Ku2−T E(R) (6.7–4)

where the constants have only a weak dependence on T in the sense that

lim
T →∞

1

T
ln Kl = lim

T →∞
1

T
ln Ku = 0 (6.7–5)

Since orthogonal signals are asymptotically optimal for large M , the lower bound
in Equation 6.7–4 applies for any signal set. Hence, the reliability function E(R) given
by Equation 6.7–2 determines the exponential characteristics of the error probability
for digital signaling over the infinite-bandwidth AWGN channel.

Although we have presented the channel reliability function for the infinite-
bandwidth AWGN channel, the notion of channel reliability function can be applied to
many channel models. In general, for many channel models, the average error proba-
bility over all the possible codes generated randomly satisfies an expression similar to
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Equation 6.7–4 of the form

Kl2
−nE(R) ≤ Pe ≤ Ku2−nE(R) (6.7–6)

where E(R) is positive for all R < C . Therefore, if R < C , it is possible to arbitrarily
decrease the error probability by increasing n. This, of course, requires unlimited de-
coding complexity and delay. The exact expression for the channel reliability function
can be derived for just a few channel models. For more details on the channel reliability
function, the interested reader is referred to the book by Gallager (1968).

Although the error probability can be made small by increasing the number of
orthogonal, biorthogonal, or simplex signals, with R < C∞, for a relatively modest
number of signals, there is a large gap between the actual performance and the best
achievable performance given by the channel capacity formula. For example, from
Figure 4.6–1, we observe that a set of M = 16 orthogonal signals detected coherently
requires an SNR per bit of approximately 7.5 dB, to achieve a bit error rate of Pe = 10−5.
In contrast, the channel capacity formula indicates that for a C/W = 0.5, reliable
transmission is possible with an SNR of −0.8 dB, as indicated in Figure 6.5–7. This
represents a rather large difference of 8.3 dB/bit and serves as a motivation for searching
for more efficient signaling waveforms. In this chapter and in Chapters 7 and 8, we
demonstrate that coded waveforms can reduce this gap considerably.

Similar gaps in performance also exist in the bandwidth-limited region of
Figure 4.6–1, where R/W > 1. In this region, however, we must be more clever in
how we use coding to improve performance, because we cannot expand the bandwidth
as in the power-limited region. The use of coding techniques for bandwidth-efficient
communication is treated in Chapters 7 and 8.

6.8
THE CHANNEL CUTOFF RATE

The design of coded modulation for efficient transmission of information may be divided
into two basic approaches. One is the algebraic approach, which is primarily concerned
with the design of coding and decoding techniques for specific classes of codes, such as
cyclic block codes and convolutional codes. The second is the probabilistic approach,
which is concerned with the analysis of the performance of a general class of coded
signals. This approach yields bounds on the probability of error that can be attained for
communication over a channel having some specified characteristic.

In this section, we adopt the probabilistic approach to coded modulation. The
algebraic approach, based on block codes and on convolutional codes, is treated in
Chapters 7 and 8.

6.8–1 Bhattacharyya and Chernov Bounds

Let us consider a memoryless channel with input alphabet X and output alphabet Y

which is characterized by the conditional PDF p(y|x). By the memoryless assumption
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of the channel

p( y|x) =
n∏

i=1

p(yi |xi ) (6.8–1)

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are input and output sequences of
length n. We further assume that from all possible input sequences of length n, a subset of
size M = 2k denoted by x1, x2, . . . , xM and called codewords is used for transmission.
Let us represent by Pe|m the error probability when xm is transmitted and a maximum-
likelihood detector is employed. By the union bound and using Equations 4.2–64 to
4.2–67 we can write

Pe|m =
M∑

m ′=1
m ′ �=m

P [ y ∈ Dm ′ |xm sent ]

≤
M∑

m ′=1
m ′ �=m

P [ y ∈ Dmm ′ |xm sent ]

(6.8–2)

where Dmm ′ denotes the decision region for m ′ in a binary system consisting of xm and
xm ′ and is given by

Dmm ′ = { y : p( y|xm ′) > p( y|xm)}

=
{

y : ln
p( y|xm ′)

p( y|xm)
> 0

}

= { y : Zmm ′ > 0}
(6.8–3)

in which we have defined

Zmm ′ = ln
p( y|xm ′)

p( y|xm)
(6.8–4)

As in Section 4.2–3, we denote P [ y ∈ Dmm ′ |xm sent ] by Pm→m ′ and call it pairwise
error probability, or PEP. It is clear from Equation 6.8–3 that

Pm→m ′ = P [Zmm ′ > 0 |xm ]

≤ E
[
eλZmm′ |xm

] (6.8–5)

where in the last step we have used the Chernov bound given by Equation 2.4–4, and
the inequality is satisfied for all λ > 0. Substituting for Zmm ′ from Equation 6.8–4, we
obtain

Pm→m ′ ≤
∑
y∈Y n

eλ ln
p( y|xm′ )

p( y|xm ) p( y|xm)

=
∑
y∈Y n

pλ( y|xm ′)p1−λ( y|xm) λ > 0
(6.8–6)
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This is the Chernov bound for the pairwise error probability. A simpler form of this
bound is obtained when we put λ = 1

2 . In this case the resulting bound

Pm→m ′ ≤
∑
y∈Y n

√
p( y|xm)p( y|xm ′) (6.8–7)

is called the Bhattacharyya bound. If the channel is memoryless, the Chernov bound
reduces to

Pm→m ′ ≤
n∏

i=1

[∑
yi ∈Y

pλ(yi |xm ′i )p1−λ(yi |xmi )

]
λ > 0 (6.8–8)

The Bhattacharyya bound for a memoryless channel is given by

Pm→m ′ ≤
n∏

i=1

∑
yi ∈Y

√
p(yi |xm ′i )p(yi |xmi ) (6.8–9)

Let use define two functions 	(λ)
x1→x2

and 	x1,x2 , called Chernov and Bhatacharyya
parameters, respectively, as

	(λ)
x1→x2

=
∑
y∈Y

pλ(y|x2)p1−λ(y|x1)

	x1,x2 =
∑
y∈Y

√
p(y|x1)p(y|x2)

(6.8–10)

Note that 	(λ)
x1→x1

= 	x1,x1 = 1 for all x1 ∈ X . Using these definitions, Equations 6.8–8
and 6.8–9 reduce to

Pm→m ′ ≤
n∏

i=1

	(λ)
xmi →xm′ i λ > 0 (6.8–11)

and

Pm→m ′ ≤
n∏

i=1

	xmi ,xm′ i (6.8–12)

E X A M P L E 6.8–1. Assume xm and xm ′ are two binary sequences of length n which
differ in d components; d is called the Hamming distance between the two sequences.
If a binary symmetric channel with crossover probability p is employed to transmit xm
and xm ′ , we have

Pm→m ′ ≤
n∏

i=1

	xmi ,xm′ i

=
n∏

i=1
xmi �=xm′ i

√
p(1 − p) + (1 − p)p

=
(√

4p(1 − p)
)d

(6.8–13)

where we have used the fact that if xmi = xm ′i , then 	xmi ,xm′ i = 1.
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If, instead of the BSC, we use BPSK modulation over an AWGN channel, in which
0 and 1 in each sequence are mapped into −√

Ec and +√
Ec and Ec denotes energy per

component, we will have

Pm→m ′ ≤
n∏

i=1

	xmi ,xm′ i

=
n∏

i=1
xmi �=xm′ i

∫ ∞

−∞

√
1

π N0
e− (y−

√
Ec )2

N0 e− (y+
√

Ec )2

N0 dy

=
n∏

i=1
xmi �=xm′ i

(
e− Ec

N0

∫ ∞

−∞

1√
π N0

e− y2

N0 dy

)

=
(

e− Ec
N0

)d

(6.8–14)

In both cases the Bhattacharyya bound is of the form 	d , where for the BSC

	 = √
4p(1 − p) and for an AWGN channel with BPSK modulation 	 = e− Ec

N0 . If
p �= 1

2 and Ec > 0, in both cases 	 < 1 and therefore as d becomes large, the error
probability goes to zero.

6.8–2 Random Coding

Let us assume that instead of having two specific codewords xm and xm ′ , we generate
all M codewords according to some PDF p(x) on the input alphabet X . We assume
that all codeword components and all codewords are drawn independently according
to p(x). Therefore, each codeword xm = (xm1, xm2, . . . , xmn) is generated according
to

∏n
i=1 p(xmi ). If we denote the average of the pairwise error probability over the set

of randomly generated codes by Pm→m ′ , we have

Pm→m ′ =
∑

xm∈X n

∑
xm′ ∈X n

Pm→m ′

≤
∑

xm∈X n

∑
xm′ ∈X n

n∏
i=1

(
p(xmi )p(xm ′i )	

(λ)
xmi →xm′ i

)

=
n∏

i=1

⎛
⎝ ∑

xmi ∈X

∑
xm′ i ∈X

p(xmi )p(xm ′i )	
(λ)
xmi →xm′ i

⎞
⎠

=
(∑

x1∈X

∑
x2∈X

p(x1)p(x2)	(λ)
x1→x2

)n

λ > 0

(6.8–15)
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Let us define

R0(p, λ) = − log2

[∑
x1∈X

∑
x2∈X

p(x1)p(x2)	(λ)
x1→x2

]

= − log2

[
E

[
	

(λ)
X1→X2

]] λ > 0 (6.8–16)

where X1 and X2 are independent random variables with joint PDF p(x1)p(x2). Using
this definition, Equation 6.8–15 can be written as

Pm→m ′ ≤ 2−n R0(p,λ) λ > 0 (6.8–17)

We define Pe|m as the average of Pe|m over the set of random codes generated using
p(x). Using this definition and Equation 6.8–2, we obtain

Pe|m ≤
M∑

m ′=1
m ′ �=m

Pm→m ′

≤
M∑

m ′=1
m ′ �=m

2−n R0(p,λ)

= 2−n(R0(p,λ)−Rc) λ > 0

(6.8–18)

We have used the relation M = 2k = 2n Rc , where Rc = k
n denotes the rate of the code.

Since the right-hand side of the inequality is independent of m, by averaging over m
we have

Pe ≤ 2−n(R0(p,λ)−Rc) λ > 0 (6.8–19)

where Pe is the average error probability over the ensemble of random codes generated
according to p(x). Equation 6.8–19 states that if Rc ≤ R0(p, λ), for some input PDF
p(x) and some λ > 0, then for n large enough, the average error probability over
the ensemble of codes can be made arbitrarily small. This means that among the set
of codes generated randomly, there must exist at least one code for which the error
probability goes to zero as n → ∞. This is an example of the random coding argument
first introduced by Shannon in the proof of the channel capacity theorem.

The maximum value of R0(p, λ) over all probability density functions p(x) and all
λ > 0 gives the quantity R0, known as the channel cutoff rate, defined by

R0 = max
p(x)

sup
λ>0

R0(p, λ)

= max
p(x)

sup
λ>0

− log2

[
E

[
	

(λ)
X1→X2

]] (6.8–20)

Clearly if either X or Y or both are continuous, the corresponding sums in the devel-
opment of R0 are substituted with appropriate integrals.
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For symmetric channels, the optimal value of λ that maximizes the cutoff rate is
λ = 1

2 for which the Chernov bound reduces to the Bhattacharyya bound and

R0 = max
p(x)

− log2

[
E

[
	X1,X2

]]

= max
p(x)

− log2

⎡
⎣∑

y∈Y

(∑
x∈X

p(x)
√

p(y|x)

)2
⎤
⎦ (6.8–21)

In addition to these channels, the PDF maximizing R0(p, λ) is a uniform PDF; i.e.,
if Q = |X |, we have p(x) = 1

Q for all x ∈ X . In this case we have

R0 = − log2

⎡
⎣ 1

Q2

∑
y∈Y

(∑
x∈X

√
p(y|x)

)2
⎤
⎦

= 2 log2 Q − log2

⎡
⎣∑

y∈Y

(∑
x∈X

√
p(y|x)

)2
⎤
⎦

(6.8–22)

Using the inequality (∑
x∈X

√
p(y|x)

)2

≥
∑
x∈X

p(y|x) (6.8–23)

and summing over all y, we obtain

∑
y∈Y

(∑
x∈X

√
p(y|x)

)2

≥
∑
x∈X

∑
y∈Y

p(y|x)

= Q

(6.8–24)

Employing this result in Equation 6.8–22 yields

R0 = 2 log2 Q − log2

⎡
⎣∑

y∈Y

(∑
x∈X

√
p(y|x)

)2
⎤
⎦

≤ log2 Q

(6.8–25)

as expected.
For a symmetric binary-input channel, these relations can be further reduced. In

this case

	x1,x2 =
{

	 x1 �= x2

1 x1 = x2
(6.8–26)

where 	 is the Bhattacharyya parameter for the binary input channel. In this case
Q = 2 and we obtain

R0 = − log2
1 + 	

2
= 1 − log2 (1 + 	)

(6.8–27)

Since reliable communication is possible at all rates lower than the cutoff rate, we
conclude that R0 ≤ C . In fact, we can interpret the cutoff rate as the supremum of the
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rates at which a bound on the average error probability of the form 2−n(R0−Rc) is possible.
The simplicity of the exponent in this bound is particularly attractive in comparison
with the the general form of the bound on error probability given by 2−nE(Rc), where
E(Rc) denotes the channel reliability function. Note that R0 − Rc is positive for all
rates less than R0, but E(Rc) is positive for all rates less than capacity. We will see in
Chapter 8 that sequential decoding of convolutional codes is practical at rates lower
than R0. Therefore, we can also interpret R0 as the supremum of the rates at which
sequential decoding is practical.

E X A M P L E 6.8–2. For a BSC, with crossover probability p we have X = Y = {0, 1}.
Using the symmetry of the channel, the optimal λ is 1

2 and the optimal input distribution
is a uniform distribution. Therefore,

R0 = 2 log2 2 − log2

∑
y=0,1

( ∑
x=0,1

√
p(y|x)

)2

= 2 log2 2 − log2

[(√
1 − p + √

p
)2

+
(√

p +
√

1 − p
)2

]

= 2 log2 2 − log2

(
2 + 4

√
p(1 − p)

)

= log2
2

1 + √
4p(1 − p)

(6.8–28)

We could also use the fact that 	 = √
4p(1 − p) and use Equation 6.8–27 to obtain

R0 = 1 − log2(1 + 	) = 1 − log2

(
1 +

√
4p(1 − p)

)
(6.8–29)

A plot of R0 versus p is shown in Figure 6.8–1. The capacity of this channel C =
1 − Hb(p) is also shown on the same plot. It is observed that C ≥ R0, for all p.
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FIGURE 6.8–1
Cutoff rate and channel capacity plots for a binary symmetric channel.
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If the BSC channel is obtained by binary quantization of the output of an AWGN
channel using BPSK modulation, we have

p = Q

(√
2Ec

N0

)
(6.8–30)

where Ec denotes energy per component of x. Note that with this notation the total
energy in x is E = nEc; and since each x carries k = log2 M bits of information, we
have Eb = E

k = n
k Ec, or Ec = RcEb, where Rc = k

n is the rate of the code. If the rate of
the code tends to R0, we will have

p = Q
(√

R0γb

)
(6.8–31)

where γb = Eb/N0. From the pair of relations

p = Q
(√

R0γb

)

R0 = log2
2

1 + √
4p(1 − p)

(6.8–32)

we can plot R0 as a function of γb. Similarly, from the pair of relations

p = Q
(√

R0γb

)

C = 1 − Hb(p)
(6.8–33)

we can plot C as a function of γb. These plots that compare R0 and C as functions of γb
are shown in Figure 6.8–2. From this figure it is seen that there exists a gap of roughly
2–2.5 dB between R0 and C .
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FIGURE 6.8–2
Capacity and cutoff rate for an output quantized BPSK scheme.
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E X A M P L E 6.8–3. For an AWGN channel with BPSK modulation we have X = {±√
Ec}.

The output alphabet Y in this case is the set of real numbers R. We have

∫ ∞

−∞

⎛
⎝ ∑

x∈{−√
Ec,

√
Ec}

√
p(y|x)

⎞
⎠

2

dy =
∫ ∞

−∞

⎛
⎝

√
1√
π N0

e− (y+
√

Ec)2

N0 +
√

1√
π N0

e− (y−
√

Ec)2

N0

⎞
⎠

2

dy

= 2 + 2
1√
π N0

∫ ∞

−∞
e− y2+Ec

N0 dy

= 2 + 2e− Ec
N0

(6.8–34)

Finally, using Equation 6.8–22, we have

R0 = 2 log2 2 − log2

(
2 + 2e− Ec

N0
)

= log2
2

1 + e− Ec
N0

= log2
2

1 + e−Rc
Eb
N0

(6.8–35)

Here 	 = e−Ec/N0 and using Equation 6.8–27 will result in the same expression for R0.
A plot of R0, as well as capacity for this channel which is given by Equation 6.5–31,
is shown in Figure 6.8–3.

In Figure 6.8–4 plots of R0 and C for BPSK with continuous output (soft decision)
and BPSK with binary quantized output (hard decision) are compared.
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FIGURE 6.8–3
Cutoff rate and channel capacity plots for an AWGN channel with BPSK modulation.
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FIGURE 6.8–4
Capacity and cutoff rate for a hard and soft decision decoding of a BPSK scheme.

Comparing the R0’s for hard and soft decisions, we observe that soft decision has
an advantage of roughly 2 dB over hard decision. If we compare capacities, we observe
a similar 2-dB advantage for soft decision. Comparing R0 and C , we observe that in
both soft and hard decisions, capacity has an advantage of roughly 2–2.5 dB over R0.
This gap is larger at lower SNRs and decreases to 2 dB at higher SNRs.

6.9
BIBLIOGRAPHICAL NOTES AND REFERENCES

Information theory, the mathematical theory of communication, was founded by
Shannon (1948, 1959). Source coding has been an area of intense research activity
since the publication of Shannon’s classic papers in 1948 and the paper by Huffman
(1952). Over the years, major advances have been made in the development of highly
efficient source data compression algorithms. Of particular significance is the research
on universal source coding and universal quantization published by Ziv (1985), Ziv and
Lempel (1977, 1978), Davisson (1973), Gray (1975), and Davisson et al. (1981).

Treatments of rate distortion theory are found in the books by Gallager (1968),
Berger (1971), Viterbi and Omura (1979), Blahut (1987), and Gray (1990). For practical
applications of rate distortion theory to image and video compression, the reader is
referred to the IEEE Signal Processing Magazine, November 1998, and to the book by
Gibson et al. (1998). The paper by Berger and Gibson (1998) on lossy source coding
provides an overview of the major developments on this topic over the past 50 years.

Over the past decade, we have also seen a number of important developments
in vector quantization. A comprehensive treatment of vector quantization and signal
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compression is provided in the book of Gersho and Gray (1992). The survey paper by
Gray and Neuhoff (1998) describes the numerous advances that have been made on the
topic of quantization over the past 50 years and includes a list of over 500 references.

Pioneering work on channel characterization in terms of channel capacity and
random coding was done by Shannon (1948a, b; 1949). Additional contributions were
subsequently made by Gilbert (1952), Elias (1955), Gallager (1965), Wyner (1965),
Shannon et al. (1967), Forney (1968), and Viterbi (1969). All these early publications are
contained in the IEEE Press book entitled Key Papers in the Development of Information
Theory, edited by Slepian (1974). The paper by Verdú (1998) in the 50th Anniversary
Commemorative Issue of the Transactions on Information Theory gives a historical
perspective of the numerous advances in information theory over the past 50 years.

The use of the cutoff rate parameter as a design criterion was proposed and devel-
oped by Wozencraft and Kennedy (1966) and by Wozencraft and Jacobs (1965). It was
used by Jordan (1966) in the design of coded waveforms for M-ary orthogonal signals
with coherent and noncoherent detection. Following these pioneering works, the cutoff
rate has been widely used as a design criterion for coded signals in a variety of different
channel conditions.

For comprehensive study of the ideas introduced in this chapter, the reader is
referred to standard texts on information theory including Gallager (1968) and Cover
and Thomas (2006).

PROBLEMS

6.1 Prove that ln u ≤ u − 1 and also demonstrate the validity of this inequality by plotting ln u
and u − 1 on the same graph.

6.2 X and Y are two discrete random variables with probabilities

P(X = x, Y = y) ≡ P(x, y)

Show that I (X; Y ) ≥ 0, with equality if and only if X and Y are statistically independent.
Hint: Use the inequality ln u ≤ u − 1, for 0 < u < 1, to show that −I (X; Y ) ≤ 0.

6.3 The output of a DMS consists of the possible letters x1, x2, . . . , xn , which occur with
probabilities p1, p2, . . . , pn , respectively. Prove that the entropy H (X ) of the source is at
most log n. Find the probability density function for which H (X ) = log n.

6.4 Let X be a geometrically distributed random variable, i.e.,

P(X = k) = p(1 − p)k−1, k = 1, 2, 3, . . .

1. Find the entropy of X .
2. Given that X > K , where K is a positive integer, what is the entropy of X?

6.5 Two binary random variables X and Y are distributed according to the joint distribu-
tions P(X = Y = 0) = P(X = 0, Y = 1) = P(X = Y = 1) = 1

3 . Compute
H (X ), H (Y ), H (X |Y ), H (Y |X ), and H (X, Y ).
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6.6 Let X and Y denote two jointly distributed, discrete-valued random variables.
1. Show that

H (X ) = −
∑
x,y

P(x, y) log P(x)

and

H (Y ) = −
∑
x,y

P(x, y) log P(v)

2. Use the above result to show that

H (X, Y ) ≤ H (X ) + H (Y )

When does equality hold?
3. Show that

H (X |Y ) ≤ H (X )

with equality if and only if X and Y are independent.

6.7 Let Y = g(X ), where g denotes a deterministic function. Show that, in general, H (Y ) ≤
H (X ). When does equality hold?

6.8 Show that, for statistically independent events,

H (X1 X2 · · · Xn) =
n∑

i=1

H (Xi )

6.9 Show that

I (X3; X2|X1) = H (X3|X1) − H (X3|X1 X2)

and that

H (X3|X1) ≥ H (X3|X1 X2)

6.10 Let X be a random variable with PDF pX (x), and let Y = a X + b be a linear transforma-
tion of X , where a and b are two constants. Determine the differential entropy H (Y ) in
terms of H (X ).

6.11 The outputs x1, x2, and x3 of a DMS with corresponding probabilities p1 = 0.45, p2 =
0.35, and p3 = 0.20 are transformed by the linear transformation Y = a X + b, where
a and b are constants. Determine the entropy H (Y ) and comment on what effect the
transformation has had on the entropy of X .

6.12 A Markov process is a process with one-step memory, i.e., a process such that

p(xn|xn−1, xn−2, xn−3, . . .) = p(xn|xn−1)

for all n. Show that, for a stationary Markov process, the entropy rate is given by

H (Xn|Xn−1)
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6.13 A first-order Markov source is characterized by the state probabilities P(xi ), i =1, 2, . . . , L ,
and the transition probabilities P(xk |xi ), k = 1, 2, . . . , L , and k �= i . The entropy of the
Markov source is

H (X ) =
L∑

k=1

P(xk)H (X |xk)

where H (X |xk) is the entropy conditioned on the source being in state xk . Determine the
entropy of the binary, first-order Markov source shown in Figure P6.13, which has the
transition probabilities P(x2|x1) = 0.2 and P(x1|x2) = 0.3. Note that the conditional
entropies H (X |x1) and H (X |x2) are given by the binary entropy functions Hb(P(x2|x1))
and Hb(P(x1|x2)), respectively. How does the entropy of the Markov source compare with
the entropy of a binary DMS with the same output letter probabilities P(x1) and P(x2)?

P(x1�x2)

P(x2�x1)

1 � P(x1�x2)1 � P(x2�x1)

x1 x2

FIGURE P6.13

6.14 Show that, for a DMC, the average mutual information between a sequence X1, X2, . . . , Xn

of channel inputs and the corresponding channel outputs satisfies the condition

I (X1 X2 · · · Xn; Y1Y2 · · · Yn) ≤
n∑

i=1

I (Xi ; Yi )

with equality if and only if the set of input symbols is statistically independent.

6.15 Determine the differential entropy H (X ) of the uniformly distributed random variable X
with PDF

p(x) =
{

a−1 0 ≤ x ≤ a

0 otherwise

for the following three cases:
1. a = 1
2. a = 4
3. a = 1

4
Observe from these results that H (X ) is not an absolute measure, but only a relative
measure of randomness.

6.16 A DMS has an alphabet of five letters xi , i = 1, 2, . . . , 5, each occurring with probability
1
5 . Evaluate the efficiency of a fixed-length binary code in which
1. Each letter is encoded separately into a binary sequence.
2. Two letters at a time are encoded into a binary sequence.
3. Three letters at a time are encoded into a binary sequence.

6.17 Determine whether there exists a binary code with codeword lengths (n1, n2, n3, n4) =
(1, 2, 2, 3) that satisfy the prefix condition.
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6.18 Consider a binary block code with 2n codewords of the same length n. Show that the Kraft
inequality is satisfied for such a code.

6.19 A DMS has an alphabet of eight letters xi , i = 1, 2, . . . , 8, with probabilities 0.25, 0.20,
0.15, 0.12, 0.10, 0.08, 0.05, and 0.05.
1. Use the Huffman encoding procedure to determine a binary code for the source output.
2. Determine the average number R of binary digits per source letter.
3. Determine the entropy of the source and compare it with R.

6.20 A discrete memoryless source produces outputs {a1, a2, a3, a4, a5, a6}. The corresponding
output probabilities are 0.7, 0.1, 0.1, 0.05, 0.04, and 0.01.
1. Design a binary Huffman code for the source. Find the average codeword length.

Compare it to the minimum possible average codeword length.
2. Is it possible to transmit this source reliably at a rate of 1.5 bits per source symbol?

Why?
3. Is it possible to transmit the source at a rate of 1.5 bits per source symbol employing

the Huffman code designed in part 1?

6.21 A discrete memoryless source is described by the alphabet X = {x1, x2, . . . , x8}, and
the corresponding probability vector p = {0.2, 0.12, 0.06, 0.15, 0.07, 0.1, 0.13, 0.17}.
Design a Huffman code for this source; find L̄ , the average codeword length for the
Huffman code; and determine the efficiency of the code defined as

η = H (X )

L̄

6.22 The optimum four-level nonuniform quantizer for a Gaussian-distributed signal amplitude
results in the four levels a1, a2, a3, and a4, with corresponding probabilities of occurrence
p1 = p2 = 0.3365 and p3 = p4 = 0.1635.
1. Design a Huffman code that encodes a single level at a time, and determine the average

bit rate.
2. Design a Huffman code that encodes two output levels at a time, and determine the

average bit rate.
3. What is the minimum rate obtained by encoding J output levels at a time as J → ∞?

6.23 A discrete memoryless source has an alphabet of size 7, X = {x1, x2, x3, x4, x5, x6, x7},
with corresponding probabilities {0.02, 0.11, 0.07, 0.21, 0.15, 0.19, 0.25}.
1. Determine the entropy of this source.
2. Design a Huffman code for this source, and find the average codeword length of the

Huffman code.
3. A new source Y = {y1, y2, y3} is obtained by grouping the outputs of the source X as

y1 = {x1, x2, x5}
y2 = {x3, x7}
y3 = {x4, x6}

Determine the entropy of Y .
4. Which source is more predictable, X or Y ? Why?
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6.24 An iid source . . . , X−2, X−1, X0, X1, X2, . . . has the pdf

f (x) =
{

e−x x ≥ 0
0 otherwise

This source is quantized using the following scheme:

X̂ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.5 0 ≤ X < 1
1.5 1 ≤ X < 2
2.5 2 ≤ X < 3
3.5 3 ≤ X < 4
6 otherwise

1. Design a Huffman code for the quantized source X̂ .
2. What is the entropy of the quantized source X̂?
3. If the efficiency of the Huffman code is defined as the ratio of the entropy to the average

codeword length of the Huffman code, determine the efficiency of the Huffman code
designed in part 1.

4. Now let X̃ = i + 0.5, i ≤ X < i + 1, for i = 0, 1, 2, . . . . Which random variable has
a higher entropy, X̂ or X̃? (There is no need to compute entropy of X̃ , just give your
intuitive reasoning.)

6.25 A stationary source generates outputs at a rate of 10,000 samples. The samples are inde-
pendent and are uniformly distributed on the interval [−4, 4]. Throughout this problem
the distortion measure is assumed to be squared-error distortion.
1. If perfect (distortion-free) reconstruction of the source at the destination is required,

what is the required transmission rate from the source to the destination?
2. If the transmission rate from the source to the destination is zero, what is the minimum

achievable distortion?
3. If a five-level uniform quantizer is designed for this source and the quantizer output is

entropy-coded using a Huffman code designed for single-source outputs, what is the
resulting transmission rate and distortion?

4. In part 3 if the Huffman code is designed for very large blocks of source outputs rather
than single source outputs, what is the resulting transmission rate and distortion?

6.26 A memoryless source has the alphabet A = {−5, −3, −1, 0, 1, 3, 5}, with corresponding
probabilities {0.05, 0.1, 0.1, 0.15, 0.05, 0.25, 0.3}.
1. Find the entropy of the source.
2. Assuming that the source is quantized according to the quantization rule

⎧⎨
⎩

q(−5) = q(−3) = −4
q(−1) = q(0) = q(1) = 0
q(3) = q(5) = 4

find the entropy of the quantized source.

6.27 Design a ternary Huffman code, using 0, 1, and 2 as letters, for a source with output alpha-
bet probabilities given by {0.05, 0.1, 0.15, 0.17, 0.18, 0.22, 0.13}. What is the resulting
average codeword length? Compare the average codeword length with the entropy of the
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source. (In what base would you compute the logarithms in the expression for the entropy
for a meaningful comparison?)

6.28 Two discrete memoryless information sources X and Y each have an alphabet with
six symbols, X = Y = {1, 2, 3, 4, 5, 6}. The probabilities of the letters for X are
1/2, 1/4, 1/8, 1/16, 1/32, and 1/32. The source Y has a uniform distribution.
1. Which source is less predictable and why?
2. Design Huffman codes for each source. Which Huffman code is more efficient? (Effi-

ciency of a Huffman code is defined as the ratio of the source entropy to the average
codeword length.)

3. If Huffman codes were designed for the second extension of these sources (i.e., two
letters at a time), for which source would you expect a performance improvement
compared to the single-letter Huffman code and why?

4. Now assume the two sources are independent and a new source Z is defined to be the
sum of the two sources, i.e., Z = X + Y . Determine the entropy of this source, and
verify that H (Z ) < H (X ) + H (Y ).

5. How do you justify the fact that H (Z ) < H (X ) + H (Y )? Under what circumstances
can you have H (Z ) = H (X ) + H (Y )? Is there a case where you can have H (Z ) >

H (X ) + H (Y )? Why?

6.29 A function g(x) is convex on (a, b) if for any x1, x2 ∈ (a, b) and any 0 ≤ λ ≤ 1

g(λx1 + (1 − λ)x2) ≤ λg(x1) + (1 − λ)g(x2)

The function g(x) is convex if its second derivative is nonnegative in the given interval. A
function g(x) is called concave if −g(x) is convex.
1. Show that Hb(p), the binary entropy function, is concave on (0, 1).
2. Show that Q(x) is convex on (0, ∞).
3. Show that if X is a binary-valued random variable with range in (a, b) and g(X ) is

convex on (a, b), then

g (E [X ]) ≤ E [g(X )]

4. Extend the result of part 3 to any random variable X with range in (a, b). This result is
known as Jensen’s inequality.

5. Use Jensen’s inequality to prove that if X is a positive-valued random variable, then

E [Q(X )] ≥ Q (E [X ])

6.30 Find the Lempel Ziv source code for the binary source sequence

000100100000011000010000000100000010100001000000110100000001100

Recover the original sequence back from the Lempel Ziv source code. Hint: You require
two passes of the binary sequence to decide on the size of the dictionary.

6.31 A continuous-valued, discrete-time, iid (independent and identically distributed) infor-
mation source . . . , X−2, X−1, X0, X1, X2, . . . has the probability density function (PDF)
given by

f (x) =
{

1
2 e− x

2 x ≥ 0
0 otherwise
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This source is quantized to source X̂ using the following quantization rule:

X̂ =

⎧⎪⎪⎨
⎪⎪⎩

0.5 0 ≤ X < 1
1.5 1 ≤ X < 2
2.5 2 ≤ X < 3
6 otherwise

1. What is the minimum required rate for lossless transmission of the nonquantized source
X?

2. What is the minimum required rate for lossless transmission of the quantized source
X̂?

3. Let X̃ be another quantization of X given by X̃ = i + 0.25 if i ≤ X < i + 1 for
i = 0, 1, 2, . . . . Which random variable has a higher entropy, X̂ or X̃? (There is no
need to compute entropy of X̃ , just give your intuitive reasoning.)

4. Let us define a new quantization rule as Y = X̂ + X̃ . Which of the three relations given
below are true (if any)?
(a) H (Y ) = H (X̂ ) + H (X̃ )
(b) H (Y ) = H (X̂ )
(c) H (Y ) = H (X̃ )
Give your intuitive reason in one short paragraph; no computation is required.

6.32 Find the differential entropy of the continuous random variable X in the following cases:
1. X is an exponential random variable with parameter λ > 0, i.e.,

p(x) =
{

1
λ

e−x/λ x > 0
0 otherwise

2. X is a Laplacian random variable with parameter λ > 0, i.e.,

p(x) = 1

2λ
e−|x |/λ

3. X is a triangular random variable with parameter λ > 0, i.e.,

p(x) =
⎧⎨
⎩

(x + λ)/λ2 −λ ≤ x ≤ 0
(−x + λ)/λ2 0 < x ≤ λ

0 otherwise

6.33 It can be shown that the rate distortion function for a Laplacian source p(x) = (2λ)−1e−|x |/λ
with an absolute value of error distortion measure d(x, x̂) = |x − x̂ | is given by

R(D) =
{

log(λ/D) 0 ≤ D ≤ λ

0 D > λ

(see Berger, 1971).
1. How many bits per sample are required to represent the outputs of this source with an

average distortion not exceeding 1
2λ?

2. Plot R(D) for three different values of λ, and discuss the effect of changes in λ on these
plots.
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6.34 Three information sources X , Y , and Z are considered.
1. X is a binary discrete memoryless source with p(X = 0) = 0.4. This source is to be

reproduced at the receiving end with an error probability not exceeding 0.1.
2. Y is a memoryless Gaussian source with mean 0 and variance 4. This source is to be

reproduced with a squared-error distortion not exceeding 1.5.
3. Z is a memoryless source and has a distribution given by

fZ (z) =
⎧⎨
⎩

1/5 −2 ≤ z ≤ 0
3/10 0 < z ≤ 2
0 otherwise

This source is quantized using a uniform quantizer with eight quantization levels to
get the quantized source Ẑ . The quantized source is required to be transmitted with no
errors.

In each of the three cases, determine the absolute minimum rate required per source symbol
(i.e., you can use systems of arbitrary complexity).

6.35 It can be shown that if X is a zero-mean continuous random variable with variance σ 2,
its rate distortion function, subject to squared-error distortion measure, satisfies the lower
and upper bounds given by the inequalities

H (X ) − 1

2
log(2πeD) ≤ R(D) ≤ 1

2
log

σ 2

2

where H (X ) denotes the differential entropy of the random variable X (see Cover and
Thomas, 2006).
1. Show that, for a Gaussian random variable, the lower and upper bounds coincide.
2. Plot the lower and upper bounds for a Laplacian source with σ = 1.
3. Plot the lower and upper bounds for a triangular source with σ = 1.

6.36 A DMS has an alphabet of eight letters xi , i = 1, 2, . . . , 8, with probabilities given in
Problem 6.19. Use the Huffman encoding procedure to determine a ternary code (using
symbols 0, 1, and 2) for encoding the source output. (Hint: Add a symbol x9 with probability
p9 = 0, and group three symbols at a time.)

6.37 Show that the entropy of an n-dimensional Gaussian vector X = (x1x2 · · · xn) with zero
mean and covariance matrix C is

H (X) = 1

2
log(2πe)n|C|

6.38 Evaluate the rate distortion function for an M-ary symmetric source under Hamming
distortion (probability of error) given as

R(D) = log M + D log D + (1 − D) log
1 − D

M − 1

for M = 2, 4, 8, and 16.

6.39 Consider the use of the weighted mean square error (MSE) distortion measure defined as

dw(X, X̃) = (X − X̃)t W (X − X̃)
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where W is a symmetric, positive-definitive weighting matrix. By factorizing W as W =
P ′ P , show that dw(X, X̃) is equivalent to an unweighted MSE distortion measure d2(X ′, X̃

′
)

involving transformed vectors X ′ and X̃
′
.

6.40 A discrete memoryless source produces outputs {a1, a2, a3, a4, a5}. The corresponding
output probabilities are 0.8, 0.1, 0.05, 0.04, and 0.01.
1. Design a binary Huffman code for the source. Find the average codeword length.

Compare it to the minimum possible average codeword length.
2. Assume that we have a binary symmetric channel with crossover probability ε = 0.3.

Is it possible to transmit the source reliably over the channel? Why?
3. Is it possible to transmit the source over the channel employing Huffman code designed

for single source outputs?

6.41 A discrete-time memoryless Gaussian source with mean 0 and variance σ 2 is to be trans-
mitted over a binary symmetric channel with crossover probability ε.
1. What is the minimum value of the distortion attainable at destination? (Distortion is

measured in mean squared error.)
2. If the channel is discrete-time memoryless additive Gaussian noise with input power P

and noise power σ 2
n , what is the minimum attainable distortion?

3. Now assume that the source has the same basic properties but is not memoryless. Do
you expect that the distortion in transmission over the binary symmetric channel to be
decreased or increased? Why?

6.42 An additive white Gaussian noise channel has the output Y = X + N , where X is the
channel input and N is the noise with probability density function

p(n) = 1√
2πσn

e−n2/2σ 2
n

If X is a white Gaussian input with E(X ) = 0 and E(X2) = σ 2
X , determine

1. The conditional differential entropy H (X |N )
2. The mutual information I (X; Y )

6.43 For the channel shown in Figure P6.43, find the channel capacity and the input distribution
that achieves capacity.

A

B

C

1

2
1
2

1
2

1
2

1
2

FIGURE P6.43

6.44 A discrete memoryless source produces outputs {a1, a2, a3, a4, a5, a6, a7, a8}. The corre-
sponding output probabilities are 0.05, 0.07, 0.08, 0.1, 0.1, 0.15, 0.2, and 0.25.
1. Design a binary Huffman code for the source. Find the average codeword length.

Compare it to the minimum possible average codeword length.
2. What is the minimum channel capacity required to transmit this source reliably? Can

this source be reliably transmitted via a binary symmetric channel?



Proakis-27466 book September 25, 2007 14:54

390 Digital Communications

3. If a discrete memoryless zero-mean Gaussian source with σ 2 = 1 is to be transmitted
via the channel of part 2, what is the minimum attainable mean squared distortion?

6.45 Find the capacity of channels A and B as shown in Figure P6.45. What is the capacity of
the cascade channel AB? (Hint: Look carefully at the channels, avoid lengthy math.)

A a

bB

C

Channel A

1
2

1
2

a� A�

B�b�

C�

Channel B

1
2

1
2

FIGURE P6.45

6.46 Each sample of a Gaussian memoryless source has a variance equal to 4, and the source
produces 8000 samples per second. The source is to be transmitted via an additive white
Gaussian noise channel with a bandwidth equal to 4000 Hz, and it is desirable to have a
distortion per sample not exceeding 1 at the destination (assume squared-error distortion).
1. What is the minimum required signal-to-noise ratio of the channel?
2. If it is further assumed that, on the same channel, a BPSK scheme is employed with

hard decision decoding, what will be the minimum required channel signal-to-noise
ratio?

Note: the signal-to-noise ratio of the channel is defined by P
N0W .

6.47 A communication channel is shown in Figure P6.47.

a

c

b

A

C

D

B

FIGURE P6.47

1. Show that, regardless of the contents of the probability transition matrix of the channel,
we have

C ≤ log2 3 ≈ 1.585. bits per transmission

2. Determine one probability transition matrix under which the above upper bound is
achieved.
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3. Assuming that a Gaussian source with variance σ 2 = 1 is to be transmitted via the
channel in part 2, what is the minimum achievable distortion? (Mean squared distortion
is assumed throughout.)

6.48 X is a binary memoryless source with P(X = 0) = 0.3. This source is transmitted over a
binary symmetric channel with crossover probability p = 0.1.
1. Assume that the source is directly connected to the channel; i.e., no coding is employed.

What is the error probability at the destination?
2. If coding is allowed, what is the minimum possible error probability in the reconstruc-

tion of the source?
3. For what values of p is reliable transmission possible (with coding, of course)?

6.49 Two discrete memoryless information sources S1 and S2 each have an alphabet with six
symbols, S1 = {x1, x2, . . . , x6} and S2 = {y1, y2, . . . , y6}. The probabilities of the letters
for the first source are 1/2, 1/4, 1/8, 1/16, 1/32, and 1/32. The second source has a
uniform distribution.
1. Which source is less predictable and why?
2. Design Huffman codes for each source. Which Huffman code is more efficient?

(Efficiency of a Huffman code is defined as the ratio of the source entropy to the
average codeword length.)

3. If Huffman codes were designed for the second extension of these sources (i.e., two
letters at a time), for which source would you expect a performance improvement
compared to the single-letter Huffman code and why?

6.50 Show that the capacity of a binary-input, continuous-output AWGN channel with input-
output relation

yi = xi + ni

where xi = ±A and noise components ni are iid zero-mean Gaussian random variables
with variance σ 2 as given by Equations 6.5–31 and 6.5–32.

6.51 A discrete memoryless channel is shown in Figure P6.51.

1
2

1
2

1
2

1
2

FIGURE P6.51

1. Determine the capacity of this channel.
2. Determine R0 for this channel.
3. If a discrete-time memoryless Gaussian source with a variance of 4 is to be transmitted

by this channel, and for each source output, two uses of channel are allowed, what is
the absolute minimum to the achievable squared-error distortion?
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6.52 Show that the following two relations are necessary and sufficient conditions for the set of
input probabilities {P(x j )} to maximize I (X; Y ) and, thus, to achieve capacity for a DMC:

I (x j ; Y ) = C for all j with P(x j ) > 0

I (x j ; Y ) ≤ C for all j with P(x j ) = 0

where C is the capacity of the channel, Q = |Y |, and

I (x j ; Y ) =
Q−1∑
i=0

P(yi |x j ) log
P(yi |x j )

P(yi )

6.53 Figure P6.53 illustrates a M-ary symmetric DMC with transition probabilities P(y|x) =
1 − p when x = y = k for k = 0, 1, . . . , M − 1, and P(y|x) = p/(M − 1) when x �= y.
1. Show that this channel satisfies the condition given in Problem 6.52 when P(xk) =

1/M .
2. Determine and plot the channel capacity as a function of p.

FIGURE P6.53

6.54 Determine the capacities of the channels shown in Figure P6.54.

(a) (b) (c)

FIGURE P6.54

6.55 Consider the two channels with the transition probabilities as shown in Figure P6.55.
Determine if equally probable input symbols maximize the information rate through the
channel.
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(a) (b)

FIGURE P6.55

6.56 A telephone channel has a bandwidth W = 3000 Hz and a signal-to-noise power ratio of
400 (26 dB). Suppose we characterize the channel as a band-limited AWGN waveform
channel with Pav/W N0 = 400. Determine the capacity of the channel in bits per second.

6.57 Consider the binary-input, quaternary-output DMC shown in Figure P6.57.
1. Determine the capacity of the channel.
2. Show that this channel is equivalent to a BSC.

FIGURE P6.57

6.58 Determine the capacity for the channel shown in Figure P6.58.

FIGURE P6.58

6.59 Consider a BSC with crossover probability of p. Suppose that R is the number of bits in
a source codeword that represents one of 2R possible levels at the output of a quantizer.
1. Determine the probability that a codeword transmitted over the BSC is received

correctly.
2. Determine the probability of having at least one bit error in a codeword transmitted

over the BSC.
3. Determine the probability of having ne or fewer bit errors in a codeword.
4. Evaluate the probabilities in parts 1, 2, and 3 for R = 5, p = 0.1, and ne = 5.
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6.60 Figure P6.60 illustrates a binary erasure channel with transition probabilities P(0|0) =
P(1|1) = 1 − p and P(e|0) = P(e|1) = p. The probabilities for the input symbols are
P(X = 0) = α and P(X = 1) = 1 − α.
1. Determine the average mutual information I (X; Y ) in bits.
2. Determine the value of α that maximizes I (X; Y ), i.e., the channel capacity C in bits

per channel use, and plot C as a function of p for the optimum value of α.
3. For the value of α found in part 2, determine the mutual information I (x; y) =

I (0; 0), I (1; 1), I (0; e), and I (1; e), where

I (x; y) = log
P [X = x, Y = y]

P [X = x] P [Y = y]

FIGURE P6.60

6.61 A discrete-time zero-mean Gaussian random process has a variance per sample of σ 2
1 . This

source generates outputs at a rate of 1000 per second. The samples are transmitted over
a discrete-time AWGN channel with input power constraint of P and noise variance per
sample of σ 2

2 . This channel is capable of transmitting 500 symbols per second.
1. If the source is to be transmitted over the channel, you are allowed to employ processing

schemes of any degree of complexity, and any delay is acceptable, what is the minimum
achievable distortion per sample?

2. If the channel remains the same but you have to use binary antipodal signals at the
input and employ hard decision decoding at the output (again no limit on complexity
and delay), what is the minimum achievable distortion per sample?

3. Now assume that the source has the same statistics but is not memoryless. Comparing
with part 1, do you expect the distortion to decrease or increase? Give your answer in
a short paragraph.

6.62 A binary memoryless source generates 0 and 1 with probabilities 1/3 and 2/3, respectively.
This source is to be transmitted over an AWGN channel using binary PSK modulation.
1. What is the absolute minimum Eb/N0 required to be able to transmit the source reliably,

assuming that hard decision decoding is employed by the channel and for each source
output you can use one channel transmission.

2. Under the same conditions as in part 1, find the minimum Eb/N0 required for reliable
transmission of the source if we can transmit at a rate at most equal to the cutoff rate
of the channel.

3. Now assume the source is a zero-mean memoryless Gaussian source with variance 1.
Answer part 1 if our goal is reproduction of the source with a mean-squared distortion
of at most 1/4.

6.63 A discrete memoryless source U is to be transmitted over a memoryless communication
channel. For each source output, the channel can be used only once. Determine the min-
imum theoretical distortion achievable in transmission of the source over the channel in
each of the following cases.
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1. The source is a binary source with 0 and 1 as its outputs with p(U = 0) = 0.1; the
channel is a binary symmetric channel with crossover probability ε = 0.1; and the
distortion measure is the Hamming distortion (probability of error).

2. The channel is as in part 1, but the source is a zero-mean Gaussian source with variance
1. The distortion is the squared-error distortion.

3. The source is as in part 2, and the channel is a discrete-time AWGN channel with input
power constraint P and noise variance σ 2.

6.64 Channel C1 is an additive white Gaussian noise channel with a bandwidth W , average
transmitter power P , and noise power spectral density 1

2 N0. Channel C2 is an additive
Gaussian noise channel with the same bandwidth and power as channel C1 but with noise
power spectral density Sn( f ). It is further assumed that the total noise power for both
channels is the same; i.e.,∫ W

−W
Sn( f ) d f =

∫ W

−W

1

2
N0 d f = N0W

Which channel do you think has a larger capacity? Give an intuitive reasoning.

6.65 A discrete memoryless ternary erasure communication channel is shown in Figure P6.65.

1
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2 1

2
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FIGURE P6.65

1. Determine the capacity of this channel.
2. A memoryless exponential source X with probability density function

fX (x) =
{

2e−2x x ≥ 0
0 otherwise

is quantized using a two-level quantizer defined by

X̂ = q(X ) =
{

0 X < 2
1 otherwise

Can X̂ be reliably transmitted over the channel shown above? Why? (The number of
source symbols per second is equal to the number of channel symbols per second.)

6.66 Plot the capacity of an AWGN channel that employs binary antipodal signaling, with
optimal bit-by-bit detection at the receiver, as a function of Eb/N0. On the same axis, plot
the capacity of the same channel when binary orthogonal signaling is employed.

6.67 A discrete-time memoryless Gaussian source with mean 0 and variance σ 2 is to be trans-
mitted over a binary symmetric channel with crossover probability p.
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1. What is the minimum value of the distortion attainable at the destination (distortion is
measured in mean-squared error)?

2. If the channel is a discrete-time memoryless additive Gaussian noise channel with input
power P and noise power Pn , what is the minimum attainable distortion?

3. Now assume that the source has the same basic properties but is not memoryless. Do you
expect the distortion in transmission over the binary symmetric channel to be decreased
or increased? Why?

6.68 Find the capacity of the cascade connection of n binary symmetric channels with the same
crossover probability ε. What is the capacity when the number of channels goes to infinity?

6.69 Channels 1, 2, and 3 are shown in Figure P6.69.
1. Find the capacity of channel 1. What input distribution achieves capacity?
2. Find the capacity of channel 2. What input distribution achieves capacity?
3. Let C denote the capacity of the third channel and C1 and C2 represent the

capacities of the first and second channels. Which of the following relations holds
true and why?

C ≤ 1

2
(C1 + C2)

C = 1

2
(C1 + C2)

C ≥ 1

2
(C1 + C2)

FIGURE P6.69

6.70 Let C denote the capacity of a discrete memoryless channel with input alphabet X =
{x1, x2, . . . , xN } and output alphabet Y = {y1, y2, . . . , yM }. Show that C ≤ min{log M,

log N }.

6.71 The channel C (known as the Z channel) is shown in Figure P6.71.
1. Find the input probability distribution that achieves capacity.
2. What is the input distribution and capacity for the special cases ε = 0, ε = 1, and

ε = 0.57?

0 0

1 1

1 � �

�

FIGURE P6.71
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3. Show that if n such channels are cascaded, the resulting channel will be equivalent to
a Z channel with ε1 = εn .

4. What is the capacity of the equivalent Z channel when n → ∞?

6.72 Find the capacity of an additive white Gaussian noise channel with a bandwidth 1 MHz,
power 10 W, and noise power spectral density 1

2 N0 = 10−9 W/Hz.

6.73 A Gaussian memoryless source is distributed according to N (0, 1). This source is to be
transmitted over a binary symmetric channel with a crossover probability of ε = 0.1. For
each source output one use of channel is possible. The fidelity measure is squared-error
distortion, i.e., d(x, x̂) = (x − x̂)2.
1. In the first approach we use the optimum one-dimensional (scalar) quantizer. This

results in the following quantization rule

Q(x) =
{

x̂ x > 0
−x̂ x ≤ 0

where x̂ = 0.798 and the resulting distortion is 0.3634. Then x̂ and −x̂ are represented
by 0 and 1 and directly transmitted over the channel (no channel coding). Determine
the resulting overall distortion using this approach.

2. In the second approach we use the same quantizer used in part 1, but we allow the use of
arbitrarily complex channel coding. How would you determine the resulting distortion
in this case, and why?

3. Now assume that after quantization, an arbitrarily complex lossless compression scheme
is employed and the output is transmitted over the channel (again using channel coding,
as explained in part 2). How would the resulting distortion compare with part 2?

4. If you were allowed to use an arbitrarily complex source and channel coding scheme,
what would be the minimum achievable distortion?

5. If the source is Gaussian with the same per-letter statistics (i.e., each letter is N (0, 1))
but the source has memory (for instance, a Gauss-Markov source), do you think the
distortion you derived in part 4 would increase, decrease, or not change? Why?

6.74 For the channel shown in Figure P6.65:
1. Consider an extension of the channel with inputs a1, a2, . . . , an , outputs a1, a2, . . . ,

an, E , where P(ai |ai ) = 1
2 , P(E |ai ) = 1

2 , for all 1 ≤ i ≤ n, and all other transition
probabilities are zero. What is the capacity of this channel? What is the capacity when
n = 2m?

2. If a memoryless binary equiprobable source is transmitted via the channel shown in
Figure P6.65, what is the minimum attainable error probability, assuming no limit is
imposed on the complexity and delay of the system? (The number of source symbols
per second is equal to the number of channel symbols per second.) For what values of
n in part 2 can the source be reliably transmitted over the channel?

3. If a Gaussian source distributed according to N (m, σ 2) is transmitted via the channel in
part 2, what is the minimum attainable mean-squared distortion in regeneration of this
source as a function of n and σ 2? (Again the number of source symbols per second is
equal to the number of channel symbols per second, and no limit is imposed on system
complexity and delay.)

6.75 Using the expression for the cutoff R0 for the BSC, given in Equation 6.8–29, plot R0 as
a function of Ec/N0 for the following binary modulation methods:
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1. Antipodal signaling: p = Q
(√

2Ec
N0

)

2. Orthogonal signaling: p = Q
(√

2Ec
N0

)
3. DPSK: p = 1

2 e−Ec/N0

Comment on the difference in performance for the three modulation methods, as given by
the cutoff rate.

6.76 Consider the binary-input, ternary-output channel with transition probabilities shown in
Figure P6.76, where e denotes an erasure. For the AWGN channel, α and p are defined as

α = 1√
π N0

∫ β

−β

e
−
(

x+
√

Ec

)2
/N0 dx

p = 1√
π N0

∫ ∞

β

e
−
(

x+
√

Ec

)2
/N0 dx

FIGURE P6.76

1. Determine the cutoff rate R0 as a function of the probabilities α and p.
2. The cutoff rate R0 depends on the choice of the threshold β through the probabilities α

and p. For any Ec/N0, the value of β that maximizes R0 can be determined by trial and

error. For example, it can be shown that for Ec/N0 below 0 dB, βopt = 0.65
√

1
2 N0; for

1 ≤ Ec/N0 ≤ 10, βopt varies approximately linearly between 0.65
√

1
2 N0 and

√
1
2 N0.

By using β = 0.65
√

1
2 N0 for the entire range of Ec/N0, plot R0 versus Ec/N0 and

compare this result with R0 for an unquantized (continuous) output channel.

6.77 Show that for M-ary PSK signaling the cutoff rate R0 is given by

R0 = log2 M − log2

[
M−1∑
k=0

e−||s0−sk ||2/4N0

]

= log2 M − log2

[
M−1∑
k=0

e−(Ec/N0) sin2(πk/M)

]

Plot R0 as a function of Ec/N0 for M = 2, 4, 8, and 16.

6.78 A discrete-time additive non-Gaussian noise channel is described by the input-output
relation

yi = xi + ni
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where ni represents a sequence of iid noise random variables with probability density
function

p(n) = 1

2
e−|n|

and xi can take ±1 with equal probability, where i represents the time index.
1. Determine the cutoff rate R0 for this channel.
2. Assume that this channel is used with optimal hard decision decoding at the output.

What is the crossover probability of the resulting BSC channel?
3. What is the cutoff rate in part 2?

6.79 Show that the cutoff rate for an M-ary orthogonal signaling system where each signal
has energy E and the channel is AWGN with noise power spectral density of 1

2 N0 can be
expressed as

R0 = log2 M − log2

[
1 + (M − 1)

(∫ ∞

−∞
pn(y −

√
E)pn(y) dy

)2
]

where pn(·) represents the PDF of an N (0, 1
2 N0) random variable. Conclude that the above

expression is simplified as

R0 = log2

[
M

1 + (M − 1) e−E/N0

]
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7

Linear Block Codes

We have studied the performance of different signaling methods when transmitted
through an AWGN channel in Chapter 4. In particular we have seen how the error
probability of each signaling method is related to the SNR per bit. In that chapter
we were mainly concerned with the case where M possible messages are sent by
transmitting one of the M possible waveforms, rather than blocks of channel inputs.
We also introduced criteria for comparing power and bandwidth efficiency of different
signaling schemes. The power efficiency is usually measured in terms of the required
SNR per bit to achieve a certain error probability. The lower the required SNR per
bit, the more power-efficient the system is. The bandwidth efficiency of the system is
measured by the spectral bit rate r = R/W which determines how many bits per second
can be transmitted in 1 Hz of bandwidth. Systems with high spectral bit rate are highly
bandwidth-efficient systems. We also saw that there is a trade-off between bandwidth
and power efficiency. Modulation schemes such as QAM are highly bandwidth-efficient,
and signaling schemes such as orthogonal signaling are power-efficient at the expense
of high bandwidth demand.

In Chapter 6 we saw that reliable communication over a noisy channel is possible
if the transmission rate is less than channel capacity. Reliable communication is made
possible through channel coding, i.e., assigning messages to blocks of channel inputs
and using only a subset of all possible blocks. In Chapter 6 we did not study specific
mappings between messages and channel input sequences. Both channel capacity C
and channel cutoff rate R0 were presented using random coding. In random coding
we do not find the best mapping from the message set to channel input sequences and
analyze the performance of that mapping; rather we average the error probability over
all possible mappings and show that if the transmission rate is less than channel capacity,
the ensemble average of the error probability, averaged over all possible mappings, goes
to zero as the block length increases. From this we concluded that there must exist at
least one mapping among all mappings for which the error probability goes to zero as
the block length increases. The original proof of the channel coding theorem, presented
by Shannon in 1948, was based on random coding, and hence was not constructive in the
sense that it proved only the existence of good codes but did not provide any method for

400
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their design. Of course, based on the idea of random coding, one can argue that there is
a good chance that a randomly generated code is a good code. The problem, however, is
that the decoding of a randomly generated code when the codeword sequences are long
becomes extremely complex, thus making its use in practical systems impossible. The
development of coding theory in the decades after 1948 has been focused on designing
coding schemes that have sufficient structure to make their decoding practical and at
the same time close the gap between an uncoded system and the bounds derived by
Shannon. In Chapter 6 we also derived a fundamental relation between r , the spectral
bit rate, and Eb

N0
, the SNR per bit of an ideal communication system given by

Eb

N0
>

2r − 1

r

By comparing the bandwidth and power efficiency of a given system with the bound
given in this equation, we can see how much that system can be improved.

Our focus in this chapter and Chapter 8 is on channel coding schemes with man-
ageable decoding algorithms that are used to improve performance of communication
systems over noisy channels. This chapter is devoted to block codes whose construction
is based on familiar algebraic structures such as groups, rings, and fields. In Chapter 8
we will study coding schemes that are best represented in terms of graphs and trellises.

7.1
BASIC DEFINITIONS

Channel codes can be classified into two major classes, block codes and convolutional
codes. In block codes one of the M = 2k messages, each representing a binary sequence
of length k, called the information sequence, is mapped to a binary sequence of length
n, called the codeword, where n > k. The codeword is usually transmitted over the
communication channel by sending a sequence of n binary symbols, for instance,
by using BPSK. QPSK and BFSK are other types of signaling schemes frequently
used for transmission of a codeword. Block coding schemes are memoryless. After a
codeword is encoded and transmitted, the system receives a new set of k information
bits and encodes them using the mapping defined by the coding scheme. The resulting
codeword depends only on the current k information bits and is independent of all the
codewords transmitted before.

Convolutional codes are described in terms of finite-state machines. In these codes,
at each time instance i , k information bits enter the encoder, causing n binary symbols
generated at the encoder output and changing the state of the encoder from σi−1 to σi .
The set of possible states is finite and denoted by �. The n binary symbols generated
at the encoder output and the next state σi depend on the k input bits as well as σi−1.
We can represent a convolutional code by a shift register of length K k as shown in
Figure 7.1–1.

At each time instance, k bits enter the encoder and the contents of the shift register
are shifted to the right by k memory elements. The contents of the rightmost k elements
of the shift register leave the encoder. After the k bits have entered the shift register,



Proakis-27466 book September 26, 2007 22:20

402 Digital Communications

FIGURE 7.1–1
A convolutional encoder.

the n adders add the contents of the memory elements they are connected to (modulo-2
addition) thus generating the code sequence of length n which is sent to the modulator.
The state of this convolutional code is given by the contents of the first (K − 1)k
elements of the shift register.

The code rate of a block or convolutional code is denoted by Rc and is given by

Rc = k

n
(7.1–1)

The rate of a code represents the number of information bits sent in transmission of a
binary symbol over the channel. The unit of Rc is information bits per transmission.
Since generally n > k, we have Rc < 1.

Let us assume that a codeword of length n is transmitted using an N -dimensional
constellation of size M , where M is assumed to be a power of 2 and L = n

log2 M is
assumed to be an integer representing the number of M-ary symbol transmitted per
codeword. If the symbol duration is Ts , then the transmission time for k bits is T = LTs

and the transmission rate is given by

R = k

LTs
= k

n
× log2 M

Ts
= Rc

log2 M

Ts
bits/s (7.1–2)

The dimension of the space of the encoded and modulated signals is L N , and using
the dimensionality theorem as stated in Equation 4.6–5 we conclude that the minimum
required transmission bandwidth is given by

W = N

2Ts
= RN

2Rc log2 M
bits/s (7.1–3)

and from Equation 7.1–3, the resulting spectral bit rate is given by

r = R

W
= 2 log2 M

N
Rc (7.1–4)
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These equations indicate that compared with an uncoded system that uses the same
modulation scheme, the bit rate is changed by a factor of Rc and the bandwidth is
changed by a factor of 1/Rc, i.e., there is a decrease in rate and an increase in bandwidth.

If the average energy of the constellation is denoted by Eav, then the energy per
codeword E , is given by

E = LEav = n

log2 M
Eav (7.1–5)

and Ec, energy per component of the codeword, is given by

Ec = E
n

= Eav

log2 M
(7.1–6)

The energy per transmitted bit is denoted by Eb and can be found from

Eb = E
k

= Eav

Rc log2 M
(7.1–7)

From Equations 7.1–6 and 7.1–7 we conclude that

Ec = RcEb (7.1–8)

The transmitted power is given by

P = E
LTs

= Eav

Ts
= R

Eav

Rc log2 M
= REb (7.1–9)

Modulation schemes frequently used with coding are BPSK, BFSK, and QPSK. The
minimum required bandwidth and the resulting spectral bit rates for these modulation
schemes† are given below:

BPSK :

{
W = R

Rc

r = Rc
BFSK :

{
W = R

Rc

r = Rc
QPSK :

{
W = R

2Rc

r = 2Rc
(7.1–10)

7.1–1 The Structure of Finite Fields

To further explore properties of block codes, we need to introduce the notion of a finite
field and its main properties. Simply stated, a field is a collection of objects that can
be added, subtracted, multiplied, and divided. To define fields, we begin by defining
Abelian groups. An Abelian group is a set with a binary operation that has the basic
properties of addition. A set G and a binary operation denoted by + constitute an
Abelian group if the following properties hold:

1. The operation + is commutative; i.e., for any a, b ∈ G, a + b = b + a.
2. The operation + is associative; i.e., for any a, b, c ∈ G, we have (a + b) + c =

a + (b + c).

†BPSK is assumed to be transmitted as a double-sideband signal.
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TABLE 7.1–1

Addition and Multiplication Tables for GF(2)

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

3. The operation + has an identity element denoted by 0 such that for any a ∈ G,
a + 0 = 0 + a = a.

4. For any a ∈ G there exists an element−a ∈ G such that a + (−a) = (−a) + a = 0.
The element −a is called the (additive) inverse of a.

An Abelian group is usually denoted by {G, +, 0}.
A finite field or Galois field† is a finite set F with two binary operations, addition and

multiplication, denoted, respectively, by + and ·, satisfying the following properties:

1. {F, +, 0} is an Abelian group.
2. {F − {0}, ·, 1} is an Abelian group; i.e., the nonzero elements of the field constitute

an Abelian group under multiplication with an identity element denoted by “1”. The
multiplicative inverse of a ∈ F is denoted by a−1.

3. Multiplication is distributive with respect to addition: a · (b + c) = (b + c) · a =
a · b + a · c.

A field is usually denoted by {F, +, ·}. It is clear that R, the set of real numbers, is a field
(but not a finite field) with ordinary addition and multiplication. The set F = {0, 1}
with modulo-2 addition and multiplication is an example of a Galois (finite) field. This
field is called the binary field and is denoted by GF(2). The addition and multiplication
tables for this field are given in Table 7.1–1.

Characteristic of a Field and the Ground Field
A fundamental theorem of algebra states that a Galois field with q elements, denoted
by GF(q), exists if and only if q = pm , where p is a prime and m is a positive integer.
It can also be proved that when GF(q) exists, it is unique up to isomorphism. This
means that any two Galois fields of the same size can be obtained from each other
after renaming the elements. For the case of q = p, the Galois field can be denoted by
GF(p) = {0, 1, 2, . . . , p − 1} with modulo-p addition and multiplication. For instance
GF(5) = {0, 1, 2, 3, 4} is a finite field with modulo-5 addition and multiplication.
When q = pm , the resulting Galois field is called an extension field of GF(p). In this
case GF(p) is called the ground field of GF(pm), and p is called the characteristic
of GF(pm).

†Named after French mathematician Évariste Galois (1811–1832).
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Polynomials over Finite Fields
To study the structure of extension fields, we need to define polynomials over GF(p).
A polynomial of degree m over GF(p) is a polynomial

g(X ) = g0 + g1 X + g2 X2 + · · · + gm Xm (7.1–11)

where gi , 0 ≤ i ≤ m, are elements of GF(p) and gm �= 0. Addition and multiplication of
polynomials follow standard addition and multiplication rules of ordinary polynomials
except that addition and multiplication of the coefficients are done modulo-p. If gm = 1,
the polynomial is called monic. If a polynomial of degree m over GF(p) cannot be
written as the product of two polynomials of lower degrees over the same Galois field,
then the polynomial is called an irreducible polynomial. For instance, X2 + X + 1 is
an irreducible polynomial over GF(2), whereas X2 + 1 is not irreducible over GF(2)
because X2 + 1 = (X + 1)2. A polynomial that is both monic and irreducible is called
a prime polynomial. A fundamental result of algebra states that a polynomial of degree
m over GF(p) has m roots (some may be repeated), but the roots are not necessarily in
GF(p). In general, the roots are in some extension field of GF(p).

The Structure of Extension Fields
From the above definitions it is clear that there exist pm polynomials of degree less
than m; in particular these polynomials include two special polynomials g(X ) = 0 and
g(X ) = 1. Now let us assume that g(X ) is a prime (monic and irreducible) polynomial
of degree m and consider the set of all polynomials of degree less than m over GF(p)
with ordinary addition and with polynomial multiplication modulo-g(X ). It can be
shown that the set of these polynomials with the addition and multiplication operations
defined above is a Galois field with pm elements.

E X A M P L E 7.1–1. We know that X2 + X + 1 is prime over GF(2); therefore this poly-
nomial can be used to construct GF(22) = GF(4). Let us consider all polynomials of
degree less than 2 over GF(2). These polynomials are 0, 1, X , and X + 1 with addition
and multiplication tables given in Table 7.1–2. Note that the multiplication rule basically
entails multiplying the two polynomials, dividing the product by g(X ) = X2 + X + 1,
and finding the remainder. This is what is meant by multiplying modulo-g(X ). It is
interesting to note that all nonzero elements of GF(4) can be written as powers of X ;
i.e, X = X1, X + 1 = X2, and 1 = X3.

TABLE 7.1–2

Addition and Multiplication Table for GF(4)

+ 0 1 X X + 1

0 0 1 X X + 1

1 1 0 X + 1 X

X X X + 1 0 1

X + 1 X + 1 X 1 0

· 0 1 X X + 1

0 0 0 0 0

1 0 1 X X + 1

X 0 X X + 1 1

X + 1 0 X + 1 1 X



Proakis-27466 book September 26, 2007 22:20

406 Digital Communications

TABLE 7.1–3

Multiplication Table for GF(8)

· 0 1 X X + 1 X2 X2 + 1 X2 + X X2 + X + 1

0 0 0 0 0 0 0 0 0

1 0 1 X X + 1 X2 X2 + 1 X2 + X X2 + X + 1

X 0 X X2 X2 + X X + 1 1 X2 + X + 1 X2 + 1

X + 1 0 X + 1 X2 + X X2 + 1 X2 + X + 1 X2 1 X

X2 0 X2 X + 1 X2 + X + 1 X2 + X X X2 + 1 1

X2 + 1 0 X2 + 1 1 X2 X X + 2 + X + 1 X + 1 X2 + X

X2 + X 0 X2 + X X2 + X + 1 1 X2 + 1 X + 1 X X2

X2 + X + 1 0 X2 + X + 1 X2 + 1 X 1 X2 + X X2 X + 1

E X A M P L E 7.1–2. To generate GF(23), we can use either of the two prime polynomials
g1(X ) = X3 + X + 1 or g2(X ) = X3 + X2 + 1. If g(X ) = X3 + X + 1 is used,
the multiplication table for GF(23) is given by Table 7.1–3. The addition table has
a trivial structure. Here again note that X1 = X , X2 = X2, X3 = X + 1, X4 =
X2 + X , X5 = X2 + X + 1, X6 = X2 + 1, and X7 = 1. In other words, all nonzero
elements of GF(8) can be written as powers of X . The nonzero elements of the field
can be expressed either as polynomials of degree less than 3 or, equivalently, as Xi for
1 ≤ i ≤ 7. A third method for representing the field elements is to write coefficients
of the polynomial as a vector of length 3. The representation of the form Xi is the
appropriate representation when multiplying field elements since Xi · X j = Xi+ j,
where i + j should be reduced modulo-7 because X7 = 1. The polynomial and vector
representations of field elements are more appropriate when adding field elements. A
table of the three representations of field elements is given in Table 7.1–4. For instance,
to multiply X2 + X + 1 and X2 + 1, we use their power representation as X5 and X6

and we have (X2 + X + 1)(X2 + 1) = X11 = X4 = X2 + X .

TABLE 7.1–4

Three Representations for GF(8) Elements

Power Polynomial Vector

— 0 000

X0 = X7 1 001

X1 X 010

X2 X2 100

X3 X + 1 011

X4 X2 + X 110

X5 X2 + X + 1 111

X6 X2 + 1 101
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Primitive Elements and Primitive Polynomials
For any nonzero element β ∈ GF(q), the smallest value of i such that β i = 1 is called the
order ofβ. It is shown in Problem 7.1 that for any nonzeroβ ∈ GF(q) we haveβq−1 = 1;
therefore the order of β is at most equal to q − 1. A nonzero element of GF(q) is
called a primitive element if its order is q − 1. We observe that in both Examples 7.1–1
and 7.1–2, X is a primitive element. Primitive elements have the property that their
powers generate all nonzero elements of the Galois field. Primitive elements are not
unique; for instance, the reader can verify that in the GF(8) of Example 7.1–2, X2 and
X + 1 are both primitive elements; however, 1 ∈ GF(8) is not primitive since 11 = 1.

Since there are many prime polynomials of degree m, there are many constructs of
GF(pm) which are all isomorphic; i.e., each can be obtained from another by renaming
the elements. It is desirable that X be a primitive element of the Galois field GF(pm),
since in this case all nonzero elements of the field can be expressed simply as powers of X
as was shown in Table 7.1–4 for GF(8). If GF(pm), generated by g(X ), is such that in this
field X is a primitive element, then the polynomial g(X ) is called a primitive polynomial.
It can be shown that primitive polynomials exist for any degree m; and therefore, for
any positive integer m and any prime p, it is possible to generate GF(pm) such that in
this field X is primitive, i.e., all nonzero elements can be written as Xi , 0 ≤ i < pm −1.
We always assume that Galois fields are constructed using primitive polynomials.

E X A M P L E 7.1–3. Polynomials g1(X ) = X4+X +1 and g2(X ) = X4+X3+X2+X +1
are two prime polynomials of degree 4 over GF(2) that can be used to generate GF(24).
However, in the Galois field generated by g1(X ), X is a primitive element, hence g1(X )
is a primitive polynomial, but in the field generated by g2(X ), X is not primitive; in fact
in this field X5 = 1 since X5 + 1 = (X + 1)g2(X ). Therefore, g2(X ) is not a primitive
polynomial.

It can be shown that any prime polynomial g(X ) of degree m over GF(p) divides
X pm−1 + 1. However, it is possible that g(X ) divides Xi + 1 for some i < pm − 1 as
well. For instance, X4 + X3 + X2 + X +1 divides X15 +1, but it also divides X5 +1. It
can be shown that if a prime polynomial g(X ) has the property that the smallest integer
i for which g(X ) divides Xi + 1 is i = pm − 1, then g(X ) is primitive. This means that
we have two equivalent definitions for a primitive polynomial. The first definition states
that a primitive polynomial g(X ) is a prime polynomial of degree m such that if GF(pm)
is constructed based on g(X ), in the resulting field X is a primitive element. The second
definition states that g(X ), a prime polynomial of degree m, is primitive if g(X ) does
not divide Xi + 1 for any i < pm − 1. All roots of a primitive polynomial of degree
m are primitive elements of GF(pm). Primitive polynomials are usually tabulated for
different values of m. Table 7.1–5 gives some primitive polynomials for 2 ≤ m ≤ 12.

E X A M P L E 7.1–4. GF(16) can be constructed using g(X ) = X4 + X + 1. If α is a root
of g(X ), then α is a primitive element of GF(16) and all nonzero elements of GF(16)
can be written as αi for 0 ≤ i < 15 with α15 = α0 = 1. Table 7.1–6 presents elements
of GF(16) as powers of α, as polynomials in α, and finally as binary vectors of length
4. Note that β = α3 is a nonprimitive element in this field since β5 = α15 = 1; i.e.,
the order of β is 5. It is clearly seen that α6, α12, and α9 are also elements of order 5,
whereas α5 and α10 are elements of order 3. Primitive elements of this field are α, α2,
α4, α8, α7, α14, α13, and α11.
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TABLE 7.1–5

Primitive Polynomials of Orders 2 through 12

m g(X)

2 X2 + X + 1

3 X3 + X + 1

4 X4 + X + 1

5 X5 + X2 + 1

6 X6 + X + 1

7 X7 + X3 + 1

8 X8 + X4 + X3 + X2 + 1

9 X9 + X4 + 1

10 X10 + X3 + 1

11 X11 + X2 + 1

12 X12 + X6 + X4 + X + 1

Minimal Polynomials and Conjugate Elements
The minimal polynomial of a field element is the lowest-degree monic polynomial over
the ground field that has the element as its root. Let β be a nonzero element of GF(2m).
Then the minimal polynomial of β, denoted by φβ(X ), is a monic polynomial of lowest
degree with coefficients in GF(2) such that β is a root of φβ(X ), i.e., φβ(β) = 0.
Obviously φβ(X ) is a prime polynomial over GF(2) and divides any other polynomial
over GF(2) that has a root at β; i.e., if f (X ) is any polynomial over GF(2) such that

TABLE 7.1–6

Elements of GF(16)

Power Polynomial Vector

— 0 0000

α0 = α15 1 0001

α1 α 0010

α2 α2 0100

α3 α3 1000

α4 α + 1 0011

α5 α2 + α 0110

α6 α3 + α2 1100

α7 α3 + α + 1 1011

α8 α2 + 1 0101

α9 α3 + α 1010

α10 α2 + α + 1 0111

α11 α3 + α2 + α 1110

α12 α3 + α2 + α + 1 1111

α13 α3 + α2 + 1 1101
α14 α3 + 1 1001
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f (β) = 0, then f (X ) can be factorized as f (X ) = a(X )φβ(X ). In the following
paragraph we see how to obtain the minimal polynomial of a field element.

Since β ∈ GF(2m) and β �= 0, we know that β2m−1 = 1. However, it is possible
that for some integer � < m we have β2�−1 = 1. For instance, in GF(16) if β = α5,
then β3 = β22−1 = 1; therefore for this β we have � = 2. It can be shown that for any
β ∈ GF(2m), the minimal polynomial φβ(X ) is given by

φβ(X ) =
�−1∏
i=0

(
X + β2i )

(7.1–12)

where � is the smallest integer such that β2�−1 = 1. The roots of φβ(X ), i.e., elements
of the form β2i

, 1 < i ≤ � − 1, are called conjugates of β. It can be shown that all
conjugates of an element of a finite field have the same order. This means that conjugates
of primitive elements are also primitive. We add here that although all conjugates have
the same order, this does not mean that all elements of the same order are necessarily
conjugates. All elements of the finite field that are conjugates of each other are said
to belong to the same conjugacy class. Therefore to find the minimal polynomial of
β ∈ GF(q), we take the following steps:

1. Find the conjugacy class of β, i.e., all elements of the form β2i
for 0 ≤ i ≤ � − 1

where � is the smallest positive integer such that β2� = β.
2. Find φβ(X ) as a monic polynomial whose roots are in the conjugacy class of β. This

is done by using Equation 7.1–12.

The φβ(X ) obtained by this procedure is guaranteed to be a prime polynomial with
coefficients in GF(2).

E X A M P L E 7.1–5. To find the minimal polynomial of β = α5 in GF(16), we observe
that β4 = α20 = α5 = β. Hence, � = 2, and the conjugacy class is {β, β2}. Therefore,

φβ(X ) =
1∏

i=0

(
X + β2i )

= (X + β)(X + β2)

= (X + α5)(X + α10)

= X2 + (α5 + α15)X + α15

= X2 + X + 1

(7.1–13)

For γ = α3 we have � = 4 and the conjugacy class is {γ, γ 2, γ 4, γ 8}. Therefore,

φγ (X ) =
3∏

i=0

(
X + γ 2i )

= (X + γ )(X + γ 2)(X + γ 4)(X + γ 8)

= (X + α3)(X + α6)(X + α12)(X + α9)

= X4 + X3 + X2 + X + 1

(7.1–14)
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To find the minimal polynomial of α, we note that α16 = α, hence � = 4 and the
conjugacy class is {α, α2, α4, α8}. The resulting minimal polynomial is

φα(X ) =
3∏

i=0

(
X + α2i )

= (X + α)(X + α2)(X + α4)(X + α8)

= X4 + X + 1

(7.1–15)

For δ = α7 we again have � = 4, and the conjugacy class is {δ, δ2, δ4, δ8}. The minimal
polynomial is

φδ(X ) =
3∏

i=0

(
X + δ2i )

= (X + α7)(X + α14)(X + α13)(X + α11)

= X4 + X3 + 1

(7.1–16)

Note that α and δ are both primitive elements, but they belong to two different conjugacy
classes and thus have different minimal polynomials.

We conclude our discussion of Galois field properties by observing that all the pm

elements of GF(pm) are the roots of the equation

X pm − X = 0 (7.1–17)

or equivalently, all nonzero elements of GF(pm) are the roots of

X pm−1 − 1 = 0 (7.1–18)

This means that the polynomial X2m−1 −1 can be uniquely factored over GF(2) into the
product of the minimal polynomials corresponding to the conjugacy classes of nonzero
elements of GF(2m). In fact X2m−1 − 1 can be factorized over GF(2) as the product
of all prime polynomials over GF(2) whose degree divides m. For more details on the
structure of finite fields and the proofs of the properties we covered here, the reader is
referred to MacWilliams and Sloane (1977), Wicker (1995), and Blahut (2003).

7.1–2 Vector Spaces

A vector a space over a field of scalars {F, +, ·} is an Abelian group {V, +, 0} whose
elements are denoted by boldface symbols such as v and called vectors, with vector
addition + and identity element 0; and an operation called scalar multiplication for
each c ∈ F and each v ∈ V that is denoted by c · v such that the following properties
are satisfied:

1. c · v ∈ V
2. c · (v1 + v2) = c · v1 + c · v2

3. c1 · (c2 · v) = (c1 · c2) · v

4. (c1 + c2) · v = c1 · v + c2 · v

5. 1 · v = v
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It can be easily shown that the following properties are satisfied:

1. 0 · v = 0
2. c · 0 = 0
3. (−c) · v = c · (−v) = −(c · v)

We will be mainly dealing with vector spaces over the scalar field GF(2). In this
case a vector space V is a collection of binary n-tuples such that if v1, v2 ∈ V ,
then v1 + v2 ∈ V , where + denotes componentwise binary addition, or component-
wise EXCLUSIVE-OR operation. Note that since we can choose v2 = v1, we have
0 ∈ V .

7.2
GENERAL PROPERTIES OF LINEAR BLOCK CODES

A q-ary block code C consists of a set of M vectors of length n denoted by cm =
(cm1, cm2, . . . , cmn), 1 ≤ m ≤ M , and called codewords whose components are selected
from an alphabet of q symbols, or elements. When the alphabet consists of two symbols,
0 and 1, the code is a binary code. It is interesting to note that when q is a power of 2,
i.e., q = 2b where b is a positive integer, each q-ary symbol has an equivalent binary
representation consisting of b bits; thus, a nonbinary code of block length N can be
mapped into a binary code of block length n = bN .

There are 2n possible codewords in a binary block code of length n. From these 2n

codewords, we may select M = 2k codewords (k < n) to form a code. Thus, a block of k
information bits is mapped into a codeword of length n selected from the set of M = 2k

codewords. We refer to the resulting block code as an (n, k) code, with rate Rc = k/n.
More generally, in a code having q symbols, there are qn possible codewords. A subset
of M = qk codewords may be selected to transmit k-symbol blocks of information.

Besides the code rate parameter Rc, an important parameter of a codeword is its
weight, which is simply the number of nonzero elements that it contains. In general,
each codeword has its own weight. The set of all weights in a code constitutes the
weight distribution of the code. When all the M codewords have equal weight, the code
is called a fixed-weight code or a constant-weight code.

A subset of block codes, called linear block codes, is particularly well studied
during the last few decades. The reason for the popularity of linear block codes is that
linearity guarantees easier implementation and analysis of these codes. In addition, it
is remarkable that the performance of the class of linear block codes is similar to the
performance of the general class of block codes. Therefore, we can limit our study to
the subclass of linear block codes without sacrificing system performance.

A linear block code C is a k-dimensional subspace of an n-dimensional space which
is usually called an (n, k) code. For binary codes, it follows from Problem 7.11 that a
linear block code is a collection of 2k binary sequences of length n such that for any
two codewords c1, c2 ∈ C we have c1 + c2 ∈ C. Obviously, 0 is a codeword of any
linear block code.
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7.2–1 Generator and Parity Check Matrices

In a linear block code, the mapping from the set of M = 2k information sequences of
length k to the corresponding 2k codewords of length n can be represented by a k × n
matrix G called the generator matrix as

cm = um G, 1 ≤ m ≤ 2k (7.2–1)

where um is a binary vector of length k denoting the information sequence and cm

is the corresponding codeword. The rows of G are denoted by gi , 1 ≤ i ≤ k,
denoting the codewords corresponding to the information sequences (1, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

G =

⎡
⎢⎢⎢⎢⎣

g1

g2

...

gk

⎤
⎥⎥⎥⎥⎦ (7.2–2)

and hence,

cm =
k∑

i=1

umi gi (7.2–3)

where the summation is in GF(2), i.e., modulo-2 summation.
From Equation 7.2–2 it is clear that the set of codewords of C is exactly the set of

linear combinations of the rows of G, i.e., the row space of G. Two linear block codes
C1 and C2 are called equivalent if the corresponding generator matrices have the same
row space, possibly after a permutation of columns.

If the generator matrix G has the following structure

G = [I k | P] (7.2–4)

where I k is a k×k identity matrix and P is a k×(n−k) matrix, the resulting linear block
code is called systematic. In systematic codes the first k components of the codeword
are equal to the information sequence, and the following n − k components, called the
parity check bits, provide the redundancy for protection against errors. It can be shown
that any linear block code has a systematic equivalent; i.e., its generator matrix can
be put in the form given by Equation 7.2–4 by elementary row operations and column
permutation.

Since C is a k-dimensional subspace of the n-dimensional binary space, its orthog-
onal complement, i.e., the set of all n-dimensional binary vectors that are orthogonal
to the the codewords of C, is an (n − k)-dimensional subspace of the n-dimensional
space, and therefore it defines an (n, n − k) code which is denoted by C⊥ and is called
the dual code of C. The generator matrix of the dual code is an (n − k) × n matrix
whose rows are orthogonal to the rows of G, the generator matrix of C. The generator
matrix of the dual code is called the parity check matrix of the original code C and is
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denoted by H . Since any codeword of C is orthogonal to all rows of H , we conclude
that for all c ∈ C

cH t = 0 (7.2–5)

Also if for some binary n-dimensional vector c we have cH t = 0, then c belongs to
the orthogonal complement of H , i.e., c ∈ C. Therefore, a necessary and sufficient
condition for c ∈ {0, 1}n to be a codeword is that it satisfy Equation 7.2–5. Since rows
of G are codewords, we conclude that

G H t = 0 (7.2–6)

In the special case of systematic codes, where G = [I k | P], the parity check matrix is
given by

H = [−P t | In−k
]

(7.2–7)

which obviously satisfies G H t = 0. For binary codes −P t = P t and H = [
P t | In−k

]
.

E X A M P L E 7.2–1. Consider a (7, 4) linear block code with

G = [I4 | P] =

⎡
⎢⎢⎣

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎤
⎥⎥⎦ (7.2–8)

Obviously this is a systematic code. The parity check matric for this code is obtained
from Equation 7.2–7 as

H = [
P t | In−k

] =
⎡
⎣1 1 1 0 1 0 0

0 1 1 1 0 1 0
1 1 0 1 0 0 1

⎤
⎦ (7.2–9)

If u = (u1, u2, u3, u4) is an information sequence, the corresponding codeword
c = (c1, c2, . . . , c7) is given by

c1 = u1

c2 = u2

c3 = u3

c4 = u4

c5 = u1 + u2 + u3

c6 = u2 + u3 + u4

c7 = u1 + u2 + u4

(7.2–10)

and from Equations 7.2–10 it can be easily verified that all codewords c satisfy Equa-
tion 7.2–5.
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7.2–2 Weight and Distance for Linear Block Codes

The weight of a codeword c ∈ C is denoted by w(c) and is the number of nonzero
components of that codeword. Since 0 is a codeword of all linear block codes, we
conclude that each linear block code has one codeword of weight zero. The Hamming
distance between two codewords c1, c2 ∈ C, denoted by d(c1, c2), is the number of
components at which c1 and c2 differ. It is clear that the weight of a codeword is its
distance from 0.

The distance between c1 and c2 is the weight of c1 − c2, and since in linear block
codes c1 − c2 is a codeword, then d(c1, c2) = w(c1 − c2). We clearly see that in linear
block codes there exists a one-to-one correspondence between weight and the distance
between codewords. This means that the set of possible distances from any codeword
c ∈ C to all other codewords is equal to the set of weights of different codewords,
and thus is independent of c. In other words, in a linear block code, looking from any
codeword to all other codewords, one observes the same set of distance, regardless of
the codeword one is looking from. Also note that in binary linear block codes we can
substitute c1 − c2 with c1 + c2.

The minimum distance of a code is the minimum of all possible distances between
distinct codewords of the code, i.e.,

dmin = min
c1,c2∈C
c1 �=c2

d(c1, c2) (7.2–11)

The minimum weight of a code is the minimum of the weights of all nonzero codewords,
which for linear block codes is equal to the minimum distance.

wmin = min
c∈C
c�=0

w(c) (7.2–12)

There exists a close relation between the minimum weight of a linear block code and
the columns of the parity check matrix H . We have previously seen that the necessary
and sufficient condition for c ∈ {0, 1}n to be a codeword is that cH t = 0. If we choose
c to be a codeword of minimum weight, from this relation we conclude that wmin (or
dmin) columns of H are linearly dependent. On the other hand, since there exists no
codeword of weight less than dmin, no fewer than dmin columns of H can be linearly
dependent. Therefore, dmin represents the minimum number of columns of H that can
be linearly dependent. In other words the column space of H has dimension dmin − 1.

In certain modulation schemes there exists a close relation between Hamming
distance and Euclidean distance of the codewords. In binary antipodal signaling—for
instance, BPSK modulation—the 0 and 1 components of a codeword c ∈ C are mapped
to −√Ec and +√Ec, respectively. Therefore if s is the vector corresponding to the
modulated sequence of codeword c, we have

smj = (2cmj − 1)
√
Ec, 1 ≤ j ≤ n, 1 ≤ m ≤ M (7.2–13)

and therefore,

d2
sm ,sm′ = 4Ecd(cm, cm ′) (7.2–14)
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where dsm ,sm′ denotes the Euclidean distance between the modulated sequences and
d(cm, cm ′) is the Hamming distance between the corresponding codewords. From the
above we have

d2
E min = 4Ecdmin (7.2–15)

where dE min is the minimum Euclidean distance of the BPSK modulated sequences
corresponding to the codewords. Using Equation 7.1–8, we conclude that

d2
E min = 4RcEbdmin (7.2–16)

For the binary orthogonal modulations, e.g., binary orthogonal FSK, we similarly
have

d2
E min = 2RcEbdmin (7.2–17)

7.2–3 The Weight Distribution Polynomial

An (n, k) code has 2k codewords that can have weights between 0 and n. In any
linear block code there exists one codeword of weight 0, and the weights of nonzero
codewords can be between dmin and n. The weight distribution polynomial (WEP) or
weight enumeration function (WEF) of a code is a polynomial that specifies the number
of codewords of different weights in a code. The weight distribution polynomial or
weight enumeration function is denoted by A(Z ) and is defined by

A(Z ) =
n∑

i=0

Ai Zi = 1 +
n∑

i=dmin

Ai Zi (7.2–18)

where Ai denotes the number of codewords of weight i . The following properties of
the weight enumeration function for linear block codes are straightforward:

A(1) =
n∑

i=0

Ai = 2k

A(0) = 1

(7.2–19)

The weight enumeration function for many block codes is unknown. For low rate
codes the weight enumeration function can be obtained by using a computer search.
The MacWilliams identity expresses the weight enumeration function of a code in
terms of the weight enumeration function of its dual code. By this identity, the weight
enumeration function of a code A(Z ) is related to the weight enumeration function of
its dual code Ad (Z ) by

A(Z ) = 2−(n−k)(1 + Z )n Ad

(
1 − Z

1 + Z

)
(7.2–20)

The weight enumeration function of a code is closely related to the distance enu-
merator function of a constellation as defined in Equation 4.2–74. Note that for a linear
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block code, the set of distances seen from any codeword to other codewords is indepen-
dent of the codeword from which these distances are seen. Therefore, in linear block
codes the error bound is independent of the transmitted codeword, and thus, without
loss of generality, we can always assume that the all-zero codeword 0 is transmitted.
The value of d2 in Equation 4.2–74 depends on the modulation scheme. For BPSK
modulation from Equation 7.2–14 we have

d2
E(sm) = 4Eb Rcw(cm) (7.2–21)

where dE(sm) denotes the Euclidean distance between sm and the modulated sequence
corresponding to 0. For orthogonal binary FSK modulation we have

d2
E(sm) = 2Eb Rcw(cm) (7.2–22)

The distance enumerator function for BPSK is given by

T (X ) =
n∑

i=dmin

Ai X4RcEbi = (A(Z ) − 1)|Z=X4RcEb
(7.2–23)

and for orthogonal BFSK by

T (X ) =
n∑

i=dmin

Ai X2RcEbi = (A(Z ) − 1)|Z=X2RcEb
(7.2–24)

Another version of the weight enumeration function provides information about
the weight of the codewords as well as the weight of the corresponding information
sequences. This polynomial is called the input-output weight enumeration function
(IOWEF), denoted by B(Y, Z ) and is defined as

B(Y, Z ) =
n∑

i=0

k∑
j=0

Bi j Y
j Z i (7.2–25)

where Bi j is the number of codewords of weight i that are generated by information
sequences of weight j . Clearly,

Ai =
k∑

j=0

Bi j (7.2–26)

and for linear block codes we have B(0, 0) = B00 = 1. It is also clear that

A(Z ) = B(Y, Z )|Y=1
(7.2–27)

A third form of the weight enumeration function, called the conditional weight
enumeration function (CWEF), is defined by

B j (Z ) =
n∑

i=0

Bi j Z i (7.2–28)
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and it represents the weight enumeration function of all codewords corresponding to
information sequences of weight j . From Equations 7.2–28 and 7.2–25 it is easy to see
that

B j (Z ) = 1

j!

∂ j

∂Y j
B(Y, Z )|Y=0

(7.2–29)

E X A M P L E 7.2–2. In the code discussed in Example 7.2–1, there are 24 = 16 codewords
with possible weights between 0 and 7. Substituting all possible information sequences
of the form u = (u1, u2, u3, u4) and generating the codewords, we can verify that for
this code dmin = 3 and there are 7 codewords of weight 3 and 7 codewords of weight
4. There exist one codeword of weight 7 and one codeword of weight 0. Therefore,

A(Z ) = 1 + 7Z3 + 7Z4 + Z7 (7.2–30)

It is also easy to verify that for this code

B00 = 1 B31 = 3 B32 = 3 B33 = 1

B41 = 1 B42 = 3 B43 = 3 B74 = 1

Hence,

B(Y, Z ) = 1 + 3Y Z3 + 3Y 2 Z3 + Y 3 Z3 + Y Z4 + 3Y 2 Z4 + 3Y 3 Z4 + Y 4 Z7 (7.2–31)

and

B0(Z ) = 1

B1(Z ) = 3Z3 + Z4

B2(Z ) = 3Z3 + 3Z4

B3(Z ) = Z3 + 3Z4

B4(Z ) = Z7

(7.2–32)

7.2–4 Error Probability of Linear Block Codes

Two types of error probability can be studied when linear block codes are employed.
The block error probability or word error probability is defined as the probability of
transmitting a codeword cm and detecting a different codeword cm ′ . The second type
of error probability is the bit error probability, defined as the probability of receiving
a transmitted information bit in error.

Block Error Probability
Linearity of the code guarantees that the distances from cm to all other codewords are
independent of the choice of cm . Therefore, without loss of generality we can assume
that the all-zero codeword 0 is transmitted.

To determine the block (word) error probability Pe, we note that an error occurs
if the receiver declares any codeword cm �= 0 as the transmitted codeword. The prob-
ability of this event is denoted by the pairwise error probability P0→cm , as defined in
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Section 4.2–3. Therefore,

Pe ≤
∑
cm∈C
cm �=0

P0→cm (7.2–33)

where in general P0→cm depends on the Hamming distance between 0 and cm , which
is equal to w(cm), in a way that depends on the modulation scheme employed for
transmission of the codewords. Since for codewords of equal weight we have the
same P0→cm , we conclude that

Pe ≤
n∑

i=dmin

Ai P2(i) (7.2–34)

where P2(i) denotes the pairwise error probability (PEP) between two codewords with
Hamming distance i .

From Equation 6.8–9 we know that

P0→cm ≤
n∏

i=1

∑
yi ∈Y

√
p(yi |0)p(yi |cmi ) (7.2–35)

Following Example 6.8–1 we define

� =
∑
y∈Y

√
p(y|0)p(y|1) (7.2–36)

With this definition, Equation 7.2–35 reduces to

P0→cm = P2(w(cm)) ≤ �w(cm ) (7.2–37)

Substituting this result into Equation 7.2–34 results in

Pe ≤
n∑

i=dmin

Ai�
i (7.2–38)

or

Pe ≤ A(�) − 1 (7.2–39)

where A(Z ) is the weight enumerating function of the linear block code.
From the inequality

∑
y∈Y

(√
p(y|0) − √

p(y|1)
)2 ≥ 0 (7.2–40)

we easily conclude that

� =
∑
y∈Y

√
p(y|0)p(y|1) ≤ 1 (7.2–41)

and hence, for i ≥ dmin,

�i ≤ �dmin (7.2–42)
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Using this result in Equation 7.2–38 yields the simpler, but looser, bound

Pe ≤ (2k − 1)�dmin (7.2–43)

Bit Error Probability
In general, errors at different locations of an information sequence of length k can occur
with different probabilities. We define the average of these error probabilities as the bit
error probability for a linear block code. We again assume that the all-zero sequence is
transmitted; then the probability that a specific codeword of weight i will be decoded at
the detector is equal to P2(i). The number of codewords of weight i that correspond to
information sequences of weight j is denoted by Bi j . Therefore, when 0 is transmitted,
the expected number of information bits received in error is given by

b̄ ≤
k∑

j=0

j
n∑

i=dmin

Bi j P2(i) (7.2–44)

Since for 0 < i < dmin we have Bi j = 0, we can write this as

b̄ ≤
k∑

j=0

j
n∑

i=0

Bi j P2(i) (7.2–45)

The (average) bit error probability of the linear block code Pb is defined as the ratio
of the expected number of bits received in error to the total number of transmitted bits,
i.e.,

Pb = b̄

k

≤ 1

k

k∑
j=0

j
n∑

i=0

Bi j P2(i)

≤ 1

k

k∑
j=0

j
n∑

i=0

Bi j�
i

(7.2–46)

where in the last step we have used Equation 7.2–37. From Equation 7.2–28 we see
that the last sum is simply B j (�); therefore,

Pb ≤ 1

k

k∑
j=0

jB j (�) (7.2–47)
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We can also express the bit error probability in terms of the IOWEF by using
Equation 7.2–25 as

Pb ≤ 1

k

n∑
i=0

k∑
j=0

jBi j�
i

= 1

k

∂

∂Y
B(Y, Z )∣∣

Y=1,Z=�

(7.2–48)

7.3
SOME SPECIFIC LINEAR BLOCK CODES

In this section, we briefly describe some linear block codes that are frequently encoun-
tered in practice and list their important parameters. Additional classes of linear codes
are introduced in our study of cyclic codes in Section 7.9.

7.3–1 Repetition Codes

A binary repetition code is an (n, 1) code with two codewords of length n. One codeword
is the all-zero codeword, and the other one is the all-one codeword. This code has a
rate of Rc = 1

n and a minimum distance of dmin = n. The dual of a repetition code is
an (n, n − 1) code consisting of all binary sequences of length n with even parity. The
minimum distance of the dual code is clearly dmin = 2.

7.3–2 Hamming Codes

Hamming codes are one of the earliest codes studied in coding theory. Hamming codes
are linear block codes with parameters n = 2m − 1 and k = 2m − m − 1, for m ≥ 3.
Hamming codes are best described in terms of their parity check matrix H which is an
(n − k) × n = m × (2m − 1) matrix. The 2m − 1 columns of H consist of all possible
binary vectors of length m excluding the all-zero vector. The rate of a Hamming code
is given by

Rc = 2m − m − 1

2m − 1
(7.3–1)

which is close to 1 for large values of m.
Since the columns of H include all nonzero sequences of length m, the sum of any

two columns is another column. In other words, there always exist three columns that
are linearly dependent. Therefore, for Hamming codes, independent of the value of m,
dmin = 3.



Proakis-27466 book September 26, 2007 22:20

Chapter Seven: Linear Block Codes 421

The weight distribution polynomial for the class of Hamming (n, k) codes is known
and is expressed as (see Problem 7.23)

A(Z ) = 1

n + 1

[
(1 + Z )n + n(1 + Z )(n−1)/2(1 − Z )(n+1)/2] (7.3–2)

E X A M P L E 7.3–1. To generate the H matrix for a (7, 4) Hamming code (corresponding
to m = 3), we have to use all nonzero sequences of length 3 as columns of H . We can
arrange these columns in such a way that the resulting code is systematic as

H =
⎡
⎣1 1 1 0 1 0 0

0 1 1 1 0 1 0
1 1 0 1 0 0 1

⎤
⎦ (7.3–3)

This is the parity check matrix derived in Example 7.2–1 and given by Equation 7.2–9.

7.3–3 Maximum-Length Codes

Maximum-length codes are duals of Hamming codes; therefore these are a family of
(2m − 1, m) codes for m ≥ 3. The generator matrix of a maximum-length code is the
parity check matrix of a Hamming code, and therefore its columns are all sequences
of length m with the exception of the all-zero sequence. In Problem 7.23 it is shown
that maximum-length codes are constant-weight codes; i.e., all codewords, except the
all-zero codeword, have the same weight, and this weight is equal to 2m−1. Therefore,
the weight enumeration function for these codes is given by

A(Z ) = 1 + (2m − 1)Zm−1 (7.3–4)

Using this weight distribution function and applying the MacWilliams identity given
in Equation 7.2–20, we can derive the weight enumeration function of the Hamming
code as given in Equation 7.3–2.

7.3–4 Reed-Muller Codes

Reed-Muller codes introduced by Reed (1954) and Muller (1954) are a class of linear
block codes with flexible parameters that are particularly interesting due to the existence
of simple decoding algorithms for them.

A Reed-Muller code with block length n = 2m and order r < m is an (n, k) linear
block code with

n = 2m

k =
r∑

i=0

(
m

i

)

dmin = 2m−r

(7.3–5)



Proakis-27466 book September 26, 2007 22:20

422 Digital Communications

whose generator matrix is given by

G =

⎡
⎢⎢⎢⎢⎢⎣

G0

G1

G2
...

Gr

⎤
⎥⎥⎥⎥⎥⎦

(7.3–6)

where G0 is a 1 × n matrix of all 1s

G0 = [1 1 1 . . . 1] (7.3–7)

and G1 is an m × n matrix whose columns are distinct binary sequences of length m
put in natural binary order.

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1 1

0 0 0 · · · 1 1

0 0 0 · · · 1 1
...

...
...

...
...

...

0 0 1 · · · 1 1

0 1 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.3–8)

G2 is an
(m

2

)×n matrix whose rows are obtained by bitwise multiplication of two rows
of G2 at a time. Similarly, Gi for 2 < i ≤ r is a

(m
r

)×n matrix whose rows are obtained
by bitwise multiplication of r rows of G2 at a time.

E X A M P L E 7.3–2. The first-order Reed-Muller code with block length 8 is an (8, 4)
code with generator matrix

G =

⎡
⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎥⎥⎦ (7.3–9)

This code can be obtained from a (7, 3) maximum-length code by adding one extra
parity bit to make the overall weight of each codeword even. This code has a minimum
distance of 4. The second-order Reed-Muller code with block length 8 has the generator
matrix

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.3–10)

and has a minimum distance of 2.
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7.3–5 Hadamard Codes

Hadamard signals were introduced in Section 3.2–4 as examples of orthogonal signal-
ing schemes. A Hadamard code is obtained by selecting as codewords the rows of a
Hadamard matrix. A Hadamard matrix Mn is an n × n matrix (n is an even integer)
of 1s and 0s with the property that any row differs from any other row in exactly n

2
positions.† One row of the matrix contains all zeros. The other rows each contain n

2
zeros and n

2 ones.
For n = 2, the Hadamard matrix is

M2 =
[

0 0
0 1

]
(7.3–11)

Furthermore, from Mn , we can generate the Hadamard matrix M2n according to the
relation

M2n =
[

Mn Mn

Mn Mn

]
(7.3–12)

where Mn denotes the complement (0s replaced by 1s and vice versa) of Mn . Thus, by
substituting Equation 7.3–11 into Equation 7.3–12, we obtain

M4 =

⎡
⎢⎢⎢⎣

0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0

⎤
⎥⎥⎥⎦ (7.3–13)

The complement of M4 is

M4 =

⎡
⎢⎢⎢⎣

1 1 1 1

1 0 1 0

1 1 0 0

1 0 0 1

⎤
⎥⎥⎥⎦ (7.3–14)

Now the rows of M4 and M4 form a linear binary code of block length n = 4 having
2n = 8 codewords. The minimum distance of the code is dmin = n

2 = 2.
By repeated application of Equation 7.3–12, we can generate Hadamard codes

with block length n = 2m, k = log2 2n = log2 2m+1 = m + 1, and dmin = n
2 = 2m−1,

where m is a positive integer. In addition to the important special cases where n = 2m ,
Hadamard codes of other block lengths are possible, but the resulting codes are not
linear.

†In Section 3.2–4 the elements of the Hadamard matrix were denoted +1 and −1, resulting in mutually
orthogonal rows. We also note that the M = 2k signal waveforms, constructed from Hadamard codewords
by mapping each bit in a codeword into a binary PSK signal, are orthogonal.
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7.3–6 Golay Codes

The Golay code (Golay (1949)) is a binary linear (23, 12) code with dmin = 7. The
extended Golay code is obtained by adding an overall parity bit to the (23, 12) Golay
code such that each codeword has even parity. The resulting code is a binary linear
(24, 12) code with dmin = 8. The weight distribution polynomials of Golay code and
extended Golay code are known and are given by

AG(Z ) = 1 + 253Z7 + 506Z8 + 1288Z11 + 1288Z12 + 506Z15 + 253Z16 + Z23

AEG(Z ) = 1 + 759Z8 + 2576Z12 + 759Z16 + Z24

(7.3–15)

We discuss the generation of the Golay code in Section 7.9–5.

7.4
OPTIMUM SOFT DECISION DECODING OF LINEAR BLOCK CODES

In this section, we derive the performance of linear binary block codes on an AWGN
channel when optimum (unquantized) soft decision decoding is employed at the re-
ceiver. The bits of a codeword may be transmitted by any one of the binary signaling
methods described in Chapter 3. For our purposes, we consider binary (or quaternary)
coherent PSK, which is the most efficient method, and binary orthogonal FSK with
either coherent detection or noncoherent detection.

From Chapter 4, we know that the optimum receiver, in the sense of minimizing
the average probability of a codeword error, for the AWGN channel can be realized as a
parallel bank of M = 2k filters matched to the M possible transmitted waveforms. The
outputs of the M matched filters at the end of each signaling interval, which encom-
passes the transmission of n binary symbols in the codeword, are compared, and the
codeword corresponding to the largest matched filter output is selected. Alternatively,
M cross-correlators can be employed. In either case, the receiver implementation can
be simplified. That is, an equivalent optimum receiver can be realized by use of a sin-
gle filter (or cross-correlator) matched to the binary PSK waveform used to transmit
each bit in the codeword, followed by a decoder that forms the M decision variables
corresponding to the M codewords.

To be specific, let r j , j = 1, 2, . . . , n, represent the n sampled outputs of the
matched filter for any particular codeword. Since the signaling is binary coherent PSK,
the output r j may be expressed either as

r j =
√
Ec + n j (7.4–1)

when the j th bit of a codeword is a 1, or as

r j = −
√
Ec + n j (7.4–2)

when the j th bit is a 0. The variables {n j } represent additive white Gaussian noise at the
sampling instants. Each n j has zero mean and variance 1

2 N0. From knowledge of the
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M possible transmitted codewords and upon reception of {r j }, the optimum decoder
forms the M correlation metrics

C Mm = C(r, cm) =
n∑

j=1

(2cmj − 1) r j , m = 1, 2, . . . , M (7.4–3)

where cmj denotes the bit in the j th position of the mth codeword. Thus, if cmj = 1, the
weighting factor 2cmj − 1 = 1; and if cmj = 0, the weighting factor 2cmj − 1 = −1. In
this manner, the weighting 2cmj − 1 aligns the signal components in {r j } such that the
correlation metric corresponding to the actual transmitted codeword will have a mean
value n

√Ec, while the other M − 1 metrics will have smaller mean values.
Although the computations involved in forming the correlation metrics for soft

decision decoding according to Equation 7.4–3 are relatively simple, it may still be im-
practical to compute Equation 7.4–3 for all the possible codewords when the number
of codewords is large, e.g., M > 210. In such a case it is still possible to implement
soft decision decoding using algorithms which employ techniques for discarding im-
probable codewords without computing their entire correlation metrics as given by
Equation 7.4–3. Several different types of soft decision decoding algorithms have been
described in the technical literature. The interested reader is referred to the papers
by Forney (1966b), Weldon (1971), Chase (1972), Wainberg and Wolf (1973), Wolf
(1978), and Matis and Modestino (1982).

Block and Bit Error Probability in Soft Decision Decoding
We can use the general bounds on the block error probability derived in Equa-
tions 7.2–39 and 7.2–43 to find bounds on the block error probability for soft deci-
sion decoding. The value of � defined by Equation 7.2–36 has to be found under the
specific modulation employed to transmit codeword components. In Example 6.8–1 it
was shown that for BPSK modulation we have � = e−Ec/N0 , and since Ec = RcEb, we
obtain

Pe ≤ (A(Z ) − 1)∣∣∣∣
Z=e

− RcEb
N0

(7.4–4)

where A(Z ) is the weight enumerating polynomial of the code.
The simple bound of Equation 7.2–43 under soft decision decoding reduces to

Pe ≤ (2k − 1)e−RcdminEb/N0 (7.4–5)

In Problem 7.18 it is shown that for binary orthogonal signaling, for instance,
orthogonal BFSK, we have � = e−Ec/2N0 . Using this result, we obtain the simple
bound

Pe ≤ (2k − 1)e−RcdminEb/2N0 (7.4–6)

for orthogonal BFSK modulation.
Using the inequality 2k − 1 < 2k = ek ln 2, we obtain

Pe ≤ e−γb

(
Rcdmin− k ln 2

γb

)
for BPSK (7.4–7)
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and

Pe ≤ e− γb
2

(
Rcdmin− k ln 2

γb

)
for orthogonal BFSK (7.4–8)

where as usual γb denotes Eb/N0, the SNR per bit.
When the upper bound in Equation 7.4–7 is compared with the performance of

an uncoded binary PSK system, which is upper-bounded as 1
2 exp(−γb), we find that

coding yields a gain of approximately 10 log(Rcdmin − k ln 2/γb) dB. We may call this
the coding gain. We note that its value depends on the code parameters and also on the
SNR per bit γb. For large values of γb, the limit of the coding gain, i.e., Rcdmin, is called
the asymptotic coding gain.

Similar to the block error probability, we can use Equation 7.2–48 to bound the bit
error probability for BFSK and orthogonal BFSK modulation. We obtain

Pb ≤ 1

k

∂

∂Y
B(Y, Z )∣∣∣∣Y=1,Z= exp

(
− RcEb

N0

) for BPSK

Pb ≤ 1

k

∂

∂Y
B(Y, Z )∣∣∣∣Y=1,Z= exp

(
− RcEb

2N0

) for orthogonal BFSK
(7.4–9)

Soft Decision Decoding with Noncoherent Detection
In noncoherent detection of binary orthogonal FSK signaling, the performance is
further degraded by the noncoherent combining loss. Here the input variables to the
decoder are {

r0 j = |√Ec + N0 j |2
r0 j = |N1 j |2 (7.4–10)

for j = 1, 2, . . . , n, where {N0 j } and {N1 j } represent complex-valued mutually statis-
tically independent Gaussian random variables with zero mean and variance 2N0. The
correlation metric C M1 is given as

C M1 =
n∑

j=1

r0 j (7.4–11)

while the correlation metric corresponding to the codeword having weight wm is sta-
tistically equivalent to the correlation metric of a codeword in which cmj = 1 for
1 ≤ j ≤ wm and cmj = 0 for wm + 1 ≤ j ≤ n. Hence, C Mm may be expressed as

C Mm =
wm∑
j=1

r1 j +
n∑

j=wm+1

r0 j (7.4–12)

The difference between C M1 and C Mm is

C M1 − C Mm =
wm∑
j=1

(r0 j − r1 j ) (7.4–13)
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and the pairwise error probability (PEP) is simply the probability that C M1−C Mm < 0.
But this difference is a special case of the general quadratic form in complex-valued
Gaussian random variables considered in Chapter 11 and in Appendix B. The expression
for the probability of error in deciding between C M1 and C Mm is (see Section 11.1–1)

P2(m) = 1

22wm−1
exp

(
−1

2
γb Rcwm

) wm−1∑
i=0

Ki

(
1

2
γb Rcwm

)i

(7.4–14)

where, by definition,

Ki = 1

i!

wm−1−i∑
r=0

(
2wm − 1

r

)
(7.4–15)

The union bound obtained by summing P2(m) over 2 ≤ m ≤ M provides us with an
upper bound on the probability of a codeword error.

As an alternative, we may use the minimum distance instead of the weight distri-
bution to obtain the looser upper bound

Pe ≤ M − 1

22dmin −1
exp

(
−1

2
γb Rcdmin

) dmin−1∑
i=0

Ki

(
1

2
γb Rcdmin

)i

(7.4–16)

A measure of the noncoherent combining loss inherent in the square-law detection
and combining of the n elementary binary FSK waveforms in a codeword can be
obtained from Figure 11.1–1, where dmin is used in place of L . The loss obtained is
relative to the case in which the n elementary binary FSK waveforms are first detected
coherently and combined, and then the sums are square-law-detected or envelope-
detected to yield the M decision variables. The binary error probability for the latter
case is

P2(m) = 1

2
exp

(
−1

2
γb Rcwm

)
(7.4–17)

and hence

Pe ≤
M∑

m=2

P2(m) (7.4–18)

If dmin is used instead of the weight distribution, the union bound for the codeword
error probability in the latter case is

Pe ≤ 1

2
(M − 1) exp

(
−1

2
γb Rcdmin

)
(7.4–19)

similar to Equation 7.4–8.
We have previously seen in Equation 7.1–10 that the channel bandwidth required

to transmit the coded waveforms, when binary PSK is used to transmit each bit, is
given by

W = R

Rc
(7.4–20)
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From Equation 4.6–7, the bandwidth requirement for an uncoded BPSK scheme is R.
Therefore, the bandwidth expansion factor Be for the coded waveforms is

Be = 1

Rc
(7.4–21)

Comparison with Orthogonal Signaling
We are now in a position to compare the performance characteristics and bandwidth
requirements of coded signaling with orthogonal signaling. As we have seen in Chap-
ter 4, orthogonal signals are more power-efficient compared to BPSK signaling, but
using them requires large bandwidth. We have also seen that using coded BPSK signals
results in a moderate expansion in bandwidth and, at the same time, by providing the
coding gain, improves the power efficiency of the system.

Let us consider two systems, one employing orthogonal signaling and one employ-
ing coded BPSK signals to achieve the same performance. We use the bounds given
in Equations 4.4–17 and 7.4–7 to compare the error probabilities of orthogonal and
coded BPSK signals, respectively. To have equal bounds on the error probability, we
must have k = 2Rcdmin. Under this condition, the dimensionality of the orthogonal
signals, given by N = M = 2k , is given by N = 2Rcdmin . The dimensionality of the
BPSK code waveform is n = k/Rc = 2dmin. Since dimensionality is proportional to
the bandwidth, we conclude that

Worthogonal

Wcoded BPSK
= 22Rcdmin

2dmin
(7.4–22)

For example, suppose we use a (63, 30) binary code that has a minimum distance
dmin = 13. The bandwidth ratio for orthogonal signaling relative to this code, given by
Equation 7.4–22, is roughly 205. In other words, an orthogonal signaling scheme that
performs similar to the (63, 30) code requires 205 times the bandwidth of the coded
system. This example clearly shows the bandwidth efficiency of coded systems.

7.5
HARD DECISION DECODING OF LINEAR BLOCK CODES

The bounds given in Section 7.4 on the performance of coded signaling waveforms
on the AWGN channel are based on the premise that the samples from the matched
filter or cross-correlator are not quantized. Although this processing yields the best
performance, the basic limitation is the computational burden of forming M correlation
metrics and comparing these to obtain the largest. The amount of computation becomes
excessive when the number M of codewords is large.

To reduce the computational burden, the analog samples can be quantized and
the decoding operations are then performed digitally. In this section, we consider the
extreme situation in which each sample corresponding to a single bit of a codeword is
quantized to two levels: 0 and 1. That is, a hard decision is made as to whether each
transmitted bit in a codeword is a 0 or a 1. The resulting discrete-time channel (consisting
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of the modulator, the AWGN channel, and the modulator/demodulator) constitutes a
BSC with crossover probability p. If coherent PSK is employed in transmitting and
receiving the bits in each codeword, then

p = Q

⎛
⎝

√
2Ec

N0

⎞
⎠ = Q

(√
2γb Rc

)
(7.5–1)

On the other hand, if FSK is used to transmit the bits in each codeword, then

p = Q
(√

γb Rc

)
(7.5–2)

for coherent detection and

p = 1

2
exp

(
−1

2
γb Rc

)
(7.5–3)

for noncoherent detection.

Minimum-Distance (Maximum-Likelihood) Decoding
The n bits from the detector corresponding to a received codeword are passed to the
decoder, which compares the received codeword with the M possible transmitted code-
words and decides in favor of the codeword that is closest in Hamming distance (num-
ber of bit positions in which two codewords differ) to the received codeword. This
minimum-distance decoding rule is optimum in the sense that it results in a minimum
probability of a codeword error for the binary symmetric channel.

A conceptually simple, albeit computationally inefficient, method for decoding is
to first add (modulo-2) the received codeword vector to all the M possible transmitted
codewords cm to obtain the error vectors em . Hence, em represents the error event
that must have occurred on the channel in order to transform the codeword cm to the
particular received codeword. The number of errors in transforming cm into the received
codeword is just equal to the number of 1s in em . Thus, if we simply compute the weight
of each of the M error vectors {em} and decide in favor of the codeword that results in the
smallest weight error vector, we have, in effect, a realization of the minimum-distance
decoding rule.

Syndrome and Standard Array
A more efficient method for hard decision decoding makes use of the parity check
matrix H . To elaborate, suppose that cm is the transmitted codeword and y is the
received sequence at the output of the detector. In general, y may be expressed as

y = cm + e

where e denotes an arbitrary binary error vector. The product yH t yields

s = yH t

= cm H t + eH t

= eH t

(7.5–4)
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where the (n − k)-dimensional vector s is called the syndrome of the error pattern. In
other words, the vector s has components that are zero for all parity check equations
that are satisfied and nonzero for all parity check equations that are not satisfied. Thus,
s contains the pattern of failures in the parity checks.

We emphasize that the syndrome s is a characteristic of the error pattern and not of
the transmitted codeword. If a syndrome is equal to zero, then the error pattern is equal
to one of the codewords. In this case we have an undetected error. Therefore, an error
pattern remains undetected if it is equal to one of the nonzero codewords. Hence, from
the 2n − 1 error patterns (the all-zero sequence does not count as an error), 2k − 1 are
not detectable; the remaining 2n −2k nonzero error patterns can be detected, but not all
can be corrected because there are only 2n−k syndromes and, consequently, different
error patterns result in the same syndrome. For ML decoding we are looking for the
error pattern of least weight among all possible error patterns.

Suppose we construct a decoding table in which we list all the 2k possible code-
words in the first row, beginning with the all-zero codeword c1 = 0 in the first (leftmost)
column. This all-zero codeword also represents the all-zero error pattern. After com-
pleting the first row, we put a sequence of length n which has not been included in
the first row (i.e., is not a codeword) and among all such sequences has the minimum
weight in the first column of the second row, and we call it e2. We complete the second
row of the table by adding e2 to all codewords and putting the result in the column
corresponding to that codeword. After the second row is complete, we look among all
sequences of length n that have not been included in the first two rows and choose
a sequence of minimum weight, call it e3, and put it in the first column of the third
row; and complete the third row similar to the way we completed the second row. This
process is continued until all sequences of length n are used in the table. We obtain an
n × (n − k) table as follows:

c1 = 0 c2 c3 · · · c2k

e2 c2 + e2 c3 + e2 · · · c2k + e2

e3 c2 + e3 c3 + e3 · · · c2k + e3

...
...

...
...

...

e2n−k c2 + e2n−k c3 + e2n−k · · · c2k + e2n−k

This table is called a standard array. Each row, including the first, consists of k possible
received sequences that would result from the corresponding error pattern in the first
column. Each row is called a coset, and the first (leftmost) codeword (or error pattern) is
called a coset leader. Therefore, a coset consists of all the possible received sequences
resulting from a particular error pattern (coset leader). Also note that by construction
the coset leader has the lowest weight among all coset members.

E X A M P L E 7.5–1. Let us construct the standard array for the (5, 2) systematic code with
generator matrix given by

G =
[

1 0 1 0 1

0 1 0 1 1

]
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TABLE 7.5–1

The Standard Array for Example 7.5–1

00000 01011 10101 11110

00001 01010 10100 11111
00010 01001 10111 11100
00100 01111 10001 11010
01000 00011 11101 10110
10000 11011 00101 01110
11000 10011 01101 00110
10010 11001 00111 01100

This code has a minimum distance dmin = 3. The standard array is given in Table 7.5–1.
Note that in this code, the coset leaders consist of the all-zero error pattern, five error
patterns of weight 1, and two error patterns of weight 2. Although many more double
error patterns exist, there is room for only two to complete the table.

Now, suppose that ei is a coset leader and that cm was the transmitted codeword.
Then the error pattern ei would result in the received sequence

y = cm + ei

The syndrome is

s = yH t = (cm + ei )H t = cm H t + ei H t = ei H t

Clearly, all received sequences in the same coset have the same syndrome, since the latter
depends only on the error pattern. Furthermore, each coset has a different syndrome.
This means that there exists a one-to-one correspondence between cosets (or coset
leaders) and syndromes.

The process of decoding the received sequence y basically involves finding the error
sequence of the lowest weight ei such that s = yH t = ei H t . Since each syndrome
s corresponds to a single coset, the error sequence ei is simply the lowest member of
the coset, i.e., the coset leader. Therefore, after the syndrome is found, it is sufficient
to find the coset leader corresponding to the syndrome and add the coset leader to y to
obtain the most likely transmitted codeword.

The above discussion makes it clear that coset leaders are the only error patterns
that are correctable. To sum up the above discussion, from all possible 2n − 1 nonzero
error patterns, 2k − 1 corresponding to nonzero codewords are not detectable, and
2n − 2k are detectable of which only 2n−k − 1 are correctable.

E X A M P L E 7.5–2. Consider the (5, 2) code with the standard array given in Table 7.5–1.
The syndromes versus the most likely error patterns are given in Table 7.5–2.

Now suppose the actual error vector on the channel is

e = (1 0 1 0 0)

The syndrome computed for the error is s = (0 0 1). Hence, the error determined
from the table is ê = (0 0 0 0 1). When ê is added to y, the result is a decoding
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TABLE 7.5–2

Syndromes and Coset
Leaders for Example 7.5–2

Syndrome Error Pattern

000 00000
001 00001
010 00010
100 00100
011 01000
101 10000
110 11000
111 10010

error. In other words, the (5, 2) code corrects all single errors and only two double
errors, namely, (1 1 0 0 0) and (1 0 0 1 0).

7.5–1 Error Detection and Error Correction Capability of Block Codes

It is clear from the discussion above that when the syndrome consists of all zeros, the
received codeword is one of the 2k possible transmitted codewords. Since the minimum
separation between a pair of codewords is dmin, it is possible for an error pattern of weight
dmin to transform one of these 2k codewords in the code to another codeword. When this
happens, we have an undetected error. On the other hand, if the actual number of errors
is less than dmin, the syndrome will have a nonzero weight. When this occurs, we have
detected the presence of one or more errors on the channel. Clearly, the (n, k) block code
is capable of detecting up to dmin −1 errors. Error detection may be used in conjunction
with an automatic repeat-request (ARQ) scheme for retransmission of the codeword.

The error correction capability of a code also depends on the minimum distance.
However, the number of correctable error patterns is limited by the number of possible
syndromes or coset leaders in the standard array. To determine the error correction
capability of an (n, k) code, it is convenient to view the 2k codewords as points in an
n-dimensional space. If each codeword is viewed as the center of a sphere of radius
(Hamming distance) t , the largest value that t may have without intersection (or tan-
gency) of any pair of the 2k spheres is t = ⌊ 1

2 (dmin − 1)
⌋
, where 
x� denotes the largest

integer contained in x . Within each sphere lie all the possible received codewords of
distance less than or equal to t from the valid codeword. Consequently, any received
code vector that falls within a sphere is decoded into the valid codeword at the center of
the sphere. This implies that an (n, k) code with minimum distance dmin is capable of
correcting t = ⌊ 1

2 (dmin − 1)
⌋

errors. Figure 7.5–1 is a two-dimensional representation
of the codewords and the spheres.

As described above, a code may be used to detect dmin − 1 errors or to correct
t = ⌊ 1

2 (dmin − 1)
⌋

errors. Clearly, to correct t errors implies that we have detected t
errors. However, it is also possible to detect more than t errors if we compromise in the
error correction capability of the code. For example, a code with dmin = 7 can correct
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FIGURE 7.5–1
A representation of codewords as center
of spheres with radius
t = ⌊

1
2 (dmin − 1)

⌋
.

up to t = 3 errors. If we wish to detect four errors, we can do so by reducing the radius
of the sphere around each codeword from 3 to 2. Thus, patterns with four errors are
detectable, but only patterns of two errors are correctable. In other words, when only
two errors occur, these are corrected; and when three or four errors occur, the receiver
may ask for a retransmission. If more than four errors occur, they will go undetected if
the codeword falls within a sphere of radius 2. Similarly, for dmin = 7, five errors can
be detected and one error corrected. In general, a code with minimum distance dmin can
detect ed errors and correct ec errors, where

ed + ec ≤ dmin − 1

and

ec ≤ ed

7.5–2 Block and Bit Error Probability for Hard Decision Decoding

In this section we derive bounds on the probability of error for hard decision decoding
of linear binary block codes based on error correction only.

From the above discussion, it is clear that the optimum decoder for a binary sym-
metric channel will decode correctly if (but not necessarily only if) the number of errors
in a codeword is less than one-half the minimum distance dmin of the code. That is, any
number of errors up to

t =
⌊

1

2
(dmin − 1)

⌋
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is always correctable. Since the binary symmetric channel is memoryless, the bit errors
occur independently. Hence, the probability of m errors in a block of n bits is

P(m, n) =
(

n

m

)
pm(1 − p)n−m (7.5–5)

and, therefore, the probability of a codeword error is upper-bounded by the expression

Pe ≤
n∑

m=t+1

P(m, n) (7.5–6)

For high signal-to-noise ratios, i.e., small values of p, Equation 7.5–6 can be approxi-
mated by its first term, and we have

Pe ≈
(

n

t + 1

)
pt+1(1 − p)n−t−1 (7.5–7)

This equation states that when 0 is transmitted, the probability of error almost entirely is
equal to the probability of receiving sequences of weight t+1. To derive an approximate
bound on the error probability of each binary symbol in a codeword, we note that if 0
is sent and a sequence of weight t + 1 is received, the decoder will decode the received
sequence of weight t + 1 to a codeword at a distance at most t from the received
sequence and hence a distance of at most 2t +1 from 0. But since the minimum weight
of the code is 2t + 1, the decoded codeword has to be of weight 2t + 1. This means
that for each highly probable block error we have 2t + 1 bit errors in the codeword
components; hence from Equation 7.5–7 we obtain

Pbs ≈ 2t + 1

n

(
n

t + 1

)
pt+1(1 − p)n−t−1 (7.5–8)

Equality holds in Equation 7.5–6 if the linear block code is a perfect code. To
describe the basic characteristics of a perfect code, suppose we place a sphere of radius
t around each of the possible transmitted codewords. Each sphere around a codeword
contains the set of all codewords of Hamming distance less than or equal to t from the
codeword. Now, the number of codewords in a sphere of radius t = ⌊ 1

2 (dmin − 1)
⌋

is

1 +
(

n

1

)
+

(
n

2

)
+ · · · +

(
n

t

)
=

t∑
i=0

(
n

i

)
(7.5–9)

Since there are M = 2k possible transmitted codewords, there are 2k nonoverlapping
spheres, each having a radius t . The total number of codewords enclosed in the 2k

spheres cannot exceed the 2n possible received codewords. Thus, a t-error correcting
code must satisfy the inequality

2k
t∑

i=0

(
n

i

)
≤ 2n (7.5–10)
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or, equivalently,

2n−k ≥
t∑

i=0

(
n

i

)
(7.5–11)

A perfect code has the property that all spheres of Hamming distance
t = ⌊ 1

2 (dmin − 1)
⌋

around the M = 2k possible transmitted codewords are disjoint
and every received codeword falls in one of the spheres. Thus, every received code-
word is at most at a distance t from one of the possible transmitted codewords, and
Equation 7.5–11 holds with equality. For such a code, all error patterns of weight less
than or equal to t are corrected by the optimum (minimum-distance) decoder. On the
other hand, any error pattern of weight t + 1 or greater cannot be corrected. Conse-
quently, the expression for the error probability given in Equation 7.5–6 holds with
equality. The reader can easily verify that the Hamming codes, which have the param-
eters n = 2n−k − 1, dmin = 3, and t = 1, are an example of perfect codes. The (23, 12)
Golay code has parameters dmin = 7 and t = 3. It can be easily verified that this code
is also a perfect code. These two nontrivial codes and the trivial code consisting of two
codewords of odd length n and dmin = n are the only perfect binary block codes.

A quasi-perfect code is characterized by the property that all spheres of Hamming
radius t around the M possible transmitted codewords are disjoint and every received
codeword is at most at a distance t +1 from one of the possible transmitted codewords.
For such a code, all error patterns of weight less than or equal to t and some error
patterns of weight t + 1 are correctable, but any error pattern of weight t + 2 or greater
leads to incorrect decoding of the codeword. Clearly, Equation 7.5–6 is an upper bound
on the error probability, and

Pe ≥
n∑

m=t+2

P(m, n) (7.5–12)

is a lower bound.
A more precise measure of the performance for quasi-perfect codes can be ob-

tained by making use of the inequality in Equation 7.5–11. That is, the total number of
codewords outside the 2k spheres of radius t is

Nt+1 = 2n − 2k
t∑

i=0

(
n

i

)

If these codewords are equally subdivided into 2k sets and each set is associated with
one of the 2k spheres, then each sphere is enlarged by the addition of

βt+1 = 2n−k −
t∑

i=0

(
n

i

)
(7.5–13)

codewords having distance t + 1 from the transmitted codeword. Consequently, of
the

( n
t+1

)
error patterns of distance t + 1 from each codeword, we can correct βt+1

error patterns. Thus, the error probability for decoding the quasi- perfect code may be



Proakis-27466 book September 26, 2007 22:20

436 Digital Communications

expressed as

Pe =
n∑

m=t+2

P(m, n) +
[(

n

t + 1

)
− βt+1

]
pt+1(1 − p)n−t−1 (7.5–14)

Another pair of upper and lower bounds is obtained by considering two codewords
that differ by the minimum distance. First, we note that Pe cannot be less than the
probability of erroneously decoding the transmitted codeword as its nearest neighbor,
which is at a distance dmin from the transmitted codeword. That is,

Pe ≥
dmin∑

m=
dmin/2�+1

(
dmin

m

)
pm(1 − p)dmin−m (7.5–15)

On the other hand, Pe cannot be greater than 2k −1 times the probability of erroneously
decoding the transmitted codeword as its nearest neighbor, which is at a distance dmin

from the transmitted codeword. That is a union bound, which is expressed as

Pe ≤ (2k − 1)
dmin∑

m=
dmin/2�+1

(
dmin

m

)
pm(1 − p)dmin−m (7.5–16)

When M = 2k is large, the lower bound in Equation 7.5–15 and the upper bound in
Equation 7.5–16 are very loose.

General bounds on block and bit error probabilities under hard decision decoding
are obtained by using relations derived in Equations 7.2–39, 7.2–43, and 7.2–48. The
value of � for hard decision decoding was found in Example 6.8–1 and is given by
� = √

4p(1 − p). The results are

Pe ≤ (A(Z ) − 1)∣∣∣Z=
√

4p(1−p)

(7.5–17)

Pe ≤ (2k − 1) [4p(1 − p)]
dmin

2 (7.5–18)

Pb ≤ 1

k

∂

∂Y
B(Y, Z )∣∣∣Y=1,Z=

√
4p(1−p)

(7.5–19)

7.6
COMPARISON OF PERFORMANCE BETWEEN HARD DECISION
AND SOFT DECISION DECODING

It is both interesting and instructive to compare the bounds on the error rate performance
of linear block codes for soft decision decoding and hard decision decoding on an
AWGN channel. For illustrative purposes, we use the Golay (23, 12) code, which has
the relatively simple weight distribution given in Equation 7.3–15. As stated previously,
this code has a minimum distance dmin = 7.

First we compute and compare the bounds on the error probability for hard decision
decoding. Since the Golay (23, 12) code is a perfect code, the exact error probability
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for hard decision decoding is given by Equation 7.5–6 as

Pe =
23∑

m=4

(
23

m

)
pm(1 − p)23−m

= 1 −
3∑

m=0

(
23

m

)
pm(1 − p)23−m

(7.6–1)

where p is the probability of a binary digit error for the binary symmetric channel.
Binary (or four-phase) coherent PSK is assumed to be the modulation/demodulation
technique for the transmission and reception of the binary digits contained in each
codeword. Thus, the appropriate expression for p is given by Equation 7.5–1. In addition
to the exact error probability given by Equation 7.6–1, we have the lower bound given
by Equation 7.5–15 and the three upper bounds given by Equations 7.5–16, 7.5–17,
and 7.5–18. Numerical results obtained from these bounds are compared with the
exact error probability in Figure 7.6–1. We observe that the lower bound is very loose.
At Pe = 10−5, the lower bound is off by approximately 2 dB from the exact error
probability. All three upper bounds are very loose for error rates above Pe = 10−2.

It is also interesting to compare the performance between soft and hard decision
decoding. For this comparison, we use the upper bounds on the error probability for
soft decision decoding given by Equation 7.4–7 and the exact error probability for hard
decision decoding given by Equation 7.6–1. Figure 7.6–2 illustrates these performance
characteristics. We observe that the two bounds for soft decision decoding differ by
approximately 0.5 dB at Pe = 10−6 and by approximately 1 dB at Pe = 10−2. We also

(7.6 –1)
(7.5–16)

(7.5–17)

(7.5–18)

(7.5–15)

P
e

FIGURE 7.6–1
Comparison of bounds with exact error
probability for hard decision decoding of Golay
(23, 12) code.
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(7.4–4)

(7.4–5)

(7.6–1)

P
e

FIGURE 7.6–2
Comparison of soft-decision decoding versus
hard-decision decoding for a (23, 12) Golay
code.

observe that the difference in performance between hard and soft decision decoding
is approximately 2 dB in the range 10−2 < Pe < 10−6. In the range Pe > 10−2, the
curve of the error probability for hard decision decoding crosses the curves for the
bounds. This behavior indicates that the bounds for soft decision decoding are loose
when Pe > 10−2.

As we observed in Example 6.8–3 and Figure 6.8–4, there exists a roughly 2-dB
gap between the cutoff rates of a BPSK modulated scheme under soft and hard decision
decoding. A similar gap also exits between the capacities in these two cases. This result
can be shown directly by noting that the capacity of a BSC, corresponding to hard
decision decoding, is given by Equation 6.5–29 as

C = 1 − H2(p) = 1 + p log2 p + (1 − p) log2(1 − p) (7.6–2)

where

p = Q
(√

2γb Rc

)
(7.6–3)

For small values of Rc we can use the approximation

Q(ε) ≈ 1

2
− ε√

2π
ε > 0 (7.6–4)

to obtain

p ≈ 1

2
−

√
γb Rc

π
(7.6–5)
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Substituting this result into Equation 7.6–2 and using the approximation

log2(1 + x) ≈ x − 1
2 x2

ln 2
(7.6–6)

we obtain

C = 2

π ln 2
γb Rc (7.6–7)

Now we set C = Rc. Thus, in the limit as Rc approaches zero, we obtain the result

γb = 1

2
π ln 2 ∼ 0.37 dB (7.6–8)

The capacity of the binary-input AWGN channel with soft decision decoding can
be computed in a similar manner. The expression for the capacity in bits per code
symbol, derived in Equations 6.5–30 to 6.5–32 can be approximated for low values of
Rc as

C ≈ γb Rc

ln 2
(7.6–9)

Again, we set C = Rc. Thus, as Rc → 0, the minimum SNR per bit to achieve capacity
is

γb = ln 2 ∼ −1.6 dB (7.6–10)

Equations 7.6–8 and 7.6–10 clearly show that at low SNR values there exists roughly a
2-dB difference between the performance of hard and soft decision decoding. As seen
from Figure 6.8–4, increasing SNR results in a decrease in the performance difference
between hard and soft decision decoding. For example, at Rc = 0.8, the difference
reduces to about 1.5 dB.

The curves in Figure 6.8–4 provide more information than just the difference in
performance between soft and hard decision decoding. These curves also specify the
minimum SNR per bit that is required for a given code rate. For example, a code rate of
Rc = 0.8 can provide arbitrarily small error probability at an SNR per bit of 2 dB, when
soft decision decoding is used. By comparison, an uncoded binary PSK requires 9.6 dB
to achieve an error probability of 10−5. Hence, a 7.6-dB gain is possible by employing
a rate Rc = 4

5 code. This gain is obtained by expanding the bandwidth by 25% since
the bandwidth expansion factor of such a code is 1/Rc = 1.25. To achieve such a
large coding gain usually implies the use of an extremely long block length code,
and generally a complex decoder. Nevertheless, the curves in Figure 6.8–4 provide
a benchmark for comparing the coding gains achieved by practically implementable
codes with the ultimate limits for either soft or hard decision decoding.
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7.7
BOUNDS ON MINIMUM DISTANCE OF LINEAR BLOCK CODES

The expressions for the probability of error derived in this chapter for soft decision and
hard decision decoding of linear binary block codes clearly indicate the importance
of the minimum-distance parameter in the performance of the code. If we consider
soft decision decoding, for example, the upper bound on the error probability given by
Equation 7.4–7 indicates that, for a given code rate Rc = k/n, the probability of error
in an AWGN channel decreases exponentially with dmin. When this bound is used in
conjunction with the lower bound on dmin given below, we obtain an upper bound on
Pe, the probability of a codeword error. Similarly, we may use the upper bound given by
Equation 7.5–6 for the probability of error for hard decision decoding in conjunction
with the lower bound on dmin to obtain an upper bound on the error probability for
linear binary block codes on the binary symmetric channel.

On the other hand, an upper bound on dmin can be used to determine a lower bound
on the probability of error achieved by the best code. For example, suppose that hard
decision decoding is employed. In this case, we can use Equation 7.5–15 in conjunction
with an upper bound on dmin, to obtain a lower bound on Pe for the best (n, k) code.
Thus, upper and lower bounds on dmin are important in assessing the capabilities of
codes. In this section we study some bounds on minimum distance of linear block
codes.

7.7–1 Singleton Bound

The Singleton bound is obtained using the properties of the parity check matrix H .
Recall from the discussion in Section 7.2–2 that the minimum distance of a linear
block code is equal to the minimum number of columns of H , the parity check matrix,
that are linearly dependent. From this we conclude that the rank of the parity check
matrix is equal to dmin − 1. Since the parity check matrix is an (n − k) × n matrix, its
rank is at most n − k. Hence,

dmin − 1 ≤ n − k (7.7–1)

or

dmin ≤ n − k + 1 (7.7–2)

The bound given in Equation 7.7–2 is called the Singleton bound. Since dmin − 1 is
approximately twice the number of errors that a code can correct, from Equation 7.7–1
we conclude that the number of parity checks in a code must be at least equal to twice
the number of errors a code can correct. Although the proof of the Singleton bound
presented here was based on the linearity of the code, this bound applies to all block
codes, linear and nonlinear, binary and nonbinary.

Codes for which the Singleton bound is satisfied with equality, i.e., codes for which
dmin = n − k + 1, are called maximum-distance separable, or MDS, codes. Repetition
codes and their duals are examples of MDS codes. In fact these codes are the only



Proakis-27466 book September 26, 2007 22:20

Chapter Seven: Linear Block Codes 441

binary MDS codes.† In the class of nonbinary codes, Reed-Solomon codes studied in
Section 7.11 are the most important examples of MDS codes.

Dividing both sides of the Singleton bound by n, we have

dmin

n
≤ 1 − Rc + 1

n
(7.7–3)

If we define

δn = dmin

n
(7.7–4)

we have

δn ≤ 1 − Rc + 1

n
(7.7–5)

Note that dmin/2 is roughly the number of errors that a code can correct. Therefore,

1

2
δn ≈ t

n
(7.7–6)

i.e., δn
2 approximately represents the fraction of correctable errors in transmission of n

bits.
If we define δ = limn→∞ δn , we conclude that as n → ∞,

δ ≤ 1 − Rc (7.7–7)

This is the asymptotic form of the Singleton bound.

7.7–2 Hamming Bound

The Hamming or sphere packing bound was previously developed in our study of the
performance of hard decision decoding and is given by Equation 7.5–11 as

2n−k ≥
t∑

i=0

(
n

i

)
(7.7–8)

Taking the logarithm and dividing by n result in

1 − Rc ≥ 1

n
log2

[
t∑

i=0

(
n

i

)]
(7.7–9)

or

1 − Rc ≥ 1

n
log2

⎡
⎢⎣

⌊
dmin−1

2

⌋
∑
i=0

(
n

i

)⎤
⎥⎦ (7.7–10)

This relation gives an upper bound for dmin in terms of n and k, known as the Hamming
bound. Note that the proof of the Hamming bound is independent of the linearity of

†The (n, n) code with dmin = 1 is another MDS code, but this code introduces no redundancy and can
hardly be called a code.
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the code; therefore this bound applies to all block codes. For the q-ary block codes the
Hamming bound yields

1 − Rc ≥ 1

n
logq

[
t∑

i=0

(
n

i

)
(q − 1)i

]
(7.7–11)

In Problem 7.39 it is shown that for large n the right-hand side of Equation 7.7–9
can be approximated by

t∑
i=0

(
n

i

)
≈ 2nHb( t

n ) (7.7–12)

where Hb(·) is the binary entropy function defined in Equation 6.2–6. Using this
approximation, and Equation 7.7–6, we see that the asymptotic form of the Hamming
bound for binary codes becomes

Hb

(
δ

2

)
≤ 1 − Rc (7.7–13)

The Hamming bound is tight for high-rate codes.
As discussed before, a code satisfying the Hamming bound given by Equa-

tion 7.7–10 with equality is called a perfect code. It has been shown by Tietäväinen
(1973) that the only binary perfect codes† are repetition codes with odd length, Ham-
ming codes, and the (23, 12) Golay code with minimum distance 7. There exists only
one nonbinary perfect code which is the (11,6) ternary Golay code with minimum
distance 5.

7.7–3 Plotkin Bound

The Plotkin bound due to Plotkin (1960) states that for any q-ary block code we have

dmin

n
≤ qk − qk−1

qk − 1
(7.7–14)

For binary codes this bound becomes

dmin ≤ n2k−1

2k − 1
(7.7–15)

The proof of the Plotkin bound for binary linear block codes is given in Prob-
lem 7.40. The proof is based on noting that the minimum distance of a code cannot
exceed its average codeword weight.

The form of the Plotkin bound given in Equation 7.7–15 is effective for low rates.
Another version of the Plotkin bound, given in Equation 7.7–16 for binary codes, is
tighter for higher-rate codes:

dmin ≤ min
1≤ j≤k

(n − k + j)
2 j−1

2 j − 1
(7.7–16)

†Here again an (n, 1) code can be considered as a trivial perfect code.
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A simplified version of this bound, obtained by choosing j = 1+
log2 dmin�, results in

2dmin − 2 − 
log2 dmin� ≤ n − k (7.7–17)

The asymptotic form of this bound with the assumption of δ ≤ 1
2 is

δ ≤ 1

2
(1 − Rc) (7.7–18)

7.7–4 Elias Bound

The asymptotic form of the Elias bound (see Berlekamp (1968)) states that for any
binary code with δ ≤ 1

2 we have

Hb

(
1

2

(
1 − √

1 − 2δ
))

≤ 1 − Rc (7.7–19)

The Elias bound also applies to nonbinary codes. For nonbinary codes this bound states
that for any q-ary code with δ ≤ 1 − 1

q we have

Hq

(
q − 1

q

(
1 −

√
1 − q

q − 1
δ

))
≤ 1 − Rc (7.7–20)

where Hq (·) is defined by

Hq (p) = −p logq p − (1 − p) logq (1 − p) + p logq (q − 1) (7.7–21)

for 0 ≤ p ≤ 1.

7.7–5 McEliece-Rodemich-Rumsey-Welch (MRRW) Bound

The McEliece-Rodemich-Rumsey-Welch (MRRW) bound derived by McEliece et al.
(1977) is the tightest known bound for low to moderate rates. This bound has two
forms; the simpler form has the asymptotic form given by

Rc ≤ Hb

(
1

2
−

√
δ(1 − δ)

)
(7.7–22)

for binary codes and for δ ≤ 1
2 . This bound is derived based on linear programming

techniques.

7.7–6 Varshamov-Gilbert Bound

All bounds stated so far give the necessary conditions that must be stratified by the
three main parameters n, k, and d of a block code. The Varshamov-Gilbert bound due to
Gilbert (1952) and Varshamov (1957) gives the sufficient conditions for the existence
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of an (n, k) code with minimum distance dmin. The Varshamov-Gilbert bound in fact
goes further to prove the existence of a linear block code with the given parameters.

The Varshamov-Gilbert states that if the inequality

d−2∑
i=0

(
n − 1

i

)
(q − 1)i < qn−k (7.7–23)

is satisfied, then there exists a q-ary (n, k) linear block code with minimum distance
dmin ≥ d. For the binary case the Varshamov-Gilbert bound becomes

d−2∑
i=0

(
n − 1

i

)
< 2n−k (7.7–24)

The asymptotic version of the Varshamov-Gilbert bound states that if for 0 < δ ≤
1 − 1

q we have

Hq (δ) < 1 − Rc (7.7–25)

where Hq (·) is given by Equation 7.7–21, then there exists a q-ary (n, Rcn) linear block
code with minimum distance of at least δn.

A comparison of the asymptotic version of the bounds discussed above is shown in
Figure 7.7–1 for the binary codes. As seen in the figure, the tightest asymptotic upper
bounds are the Elias and the MRRW bounds. We add here that there exists a second
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FIGURE 7.7–1
Comparison of Asymptotic Bounds.
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version of the MRRW bound that is better than the Elias bound at higher rates. The
ordering of the bounds shown on this plot is only an indication of how these bounds
compare as n → ∞. The region between the tightest upper bound and the Varshamov-
Gilbert lower bound can still be a rather wide region for certain block lengths. For
instance, for a (127, 33) code the best upper bound and lower bound yield dmin = 48
and dmin = 32, respectively (Verhoeff (1987)).

7.8
MODIFIED LINEAR BLOCK CODES

In many cases design techniques for linear block codes result in codes with certain
parameters that might not be the exact parameters that are required for a certain appli-
cation. For example, we have seen that for Hamming codes n = 2m − 1 and dmin = 3.
In Section 7.10, we will see that the codeword lengths of BCH codes, which are widely
used block codes, are equal to 2m − 1. Therefore, in many cases in order to change
the parameters of a code, the code has to be modified. In this section we study main
methods for modification of linear block codes.

7.8–1 Shortening and Lengthening

Let us assumeC is an (n, k) linear block code with minimum distance dmin. Shortening of
C means choosing some 1 ≤ j < k and considering only 2k− j information sequences
whose leading j bits are zero. Since these components carry no information, they
can be deleted. The result is a shortened code. The resulting code is a systematic
(n − j, k − j) linear block code with rate Rc = k− j

n− j which is less than the rate of
the original code. Since the codewords of a shortened code are the result of removing
j zeros for the codewords of C, the minimum weight of the shortened code is at
least as large as the minimum weight of the original code. If j is large, the minimum
weight of the shortened code is usually larger than the minimum weight of the original
code.

E X A M P L E 7.8–1. A (15, 11) Hamming code can be shortened by 3 bits to obtain a
(12, 8) shortened Hamming code which is 8 bits (1 byte) of information. The (15, 11)
can also be shortened by 7 bits to obtain an (8, 4) shortened Hamming code with parity
check matrix

H =

⎡
⎢⎢⎣

0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1

⎤
⎥⎥⎦ (7.8–1)

This code has a minimum distance of 4.
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E X A M P L E 7.8–2. Consider an (8, 4) linear block code with generator and parity check
matrices given by

G =

⎡
⎢⎢⎣

1 1 1 1 1 1 1 1
0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1

⎤
⎥⎥⎦

H =

⎡
⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 0 1 0 1 1 1
0 0 1 0 1 1 1 0
0 1 0 0 1 0 1 1

⎤
⎥⎥⎦

(7.8–2)

Shortening this code by 1 bit results in a (7, 3) linear block code with the following
generator and parity check matrices.

G =
⎡
⎣1 0 1 1 1 0 0

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤
⎦

H =

⎡
⎢⎢⎣

1 1 1 1 1 1 1
0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 1 1

⎤
⎥⎥⎦

(7.8–3)

Both codes have a minimum distance of 4.

Shortened codes are used in a variety of applications. One example is the shortened
Reed-Solomon codes used in CD recording where a (255, 251) Reed-Solomon code is
shortened to a (32, 28) code.

Lengthening a code is the inverse of the shortening operation. Here j extra infor-
mation bits are added to the code to obtain an (n + j, k + j) linear block code. The
rate of the lengthened code is higher than that of the original code, and its minimum
distance cannot exceed the minimum distance of the original code. Obviously in the
process of shortening and lengthening, the number of parity check bits of a code does
not change. In Example 7.8–2 the (8, 4) code can be considered a lengthened version
of the (7, 3) code.

7.8–2 Puncturing and Extending

Puncturing is a popular technique to increase the rate of a low-rate code. In puncturing
an (n, k) code the number of information bits k remains unchanged whereas some
components of the code are deleted (punctured). The result is an (n − j, k) linear block
code with higher rate and possibly lower minimum distance. Obviously the minimum
distance of a punctured code cannot be higher than the minimum distance of the original
code.
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E X A M P L E 7.8–3. The (8, 4) code of Example 7.8–2 can be punctured to obtain a (7, 4)
code with

G =

⎡
⎢⎢⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎤
⎥⎥⎦

H =
⎡
⎣0 0 1 0 1 1 1

0 1 0 1 1 1 0
1 0 0 1 0 1 1

⎤
⎦

(7.8–4)

The reverse of puncturing is extending a code. In extending a code, while k remains
fixed, more parity check bits are added. The rate of the resulting code is lower, and the
resulting minimum distance is at least as large as that of the original code.

E X A M P L E 7.8–4. A (7, 4) Hamming code can be extended by adding an overall parity
check bit. The resulting code is an (8, 4) extended Hamming code whose parity check
matrix has a row of all 1s to check the overall parity. If the parity check matrix of the
original Hamming code is an (n − k) × n matrix H , the parity check matrix of the
extended Hamming code is given by

He =

⎡
⎢⎣

H
... 0

. . . . . . . . .

1
... 1

⎤
⎥⎦ (7.8–5)

where 1 denotes a 1 × n row vector of 1s and 0 denotes a (n − k) × 1 vector column
of 0s.

7.8–3 Expurgation and Augmentation

In these two modifications of a code, the block length n remains unchanged, and
the number of information sequence k is decreased in expurgation and increased in
augmentation.

The result of expurgation of an (n, k) linear block code is an (n, k − j) code with
lower rate whose minimum distance is guaranteed to be at least equal to the minimum
distance of the original code. This can be done by eliminating j rows of the generator
matrix G. The process of augmentation is the reverse of expurgation in which 2 j (n, k)
codes are merged to generate an (n, k + j) code.

7.9
CYCLIC CODES

Cyclic codes are an important class of linear block codes. Additional structure built in the
cyclic code family makes their algebraic decoding at reduced computational complexity
possible. The important class of BCH codes and Reed-Solomon (RS) codes belongs to
the class of cyclic codes. Cyclic codes were first introduced by Prange (1957).
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7.9–1 Cyclic Codes — Definition and Basic Properties

Cyclic codes are a subset of the class of linear block codes that satisfy the following
cyclic shift property: if c = (cn−1 cn−2 · · · c1 c0) is a codeword of a cyclic code, then
(cn−2 cn−3 · · · c0 cn−1), obtained by a cyclic shift of the elements of c, is also a codeword.
That is, all cyclic shifts of c are codewords. As a consequence of the cyclic property,
the codes possess a considerable amount of structure which can be exploited in the
encoding and decoding operations. A number of efficient encoding and hard decision
decoding algorithms have been devised for cyclic codes that make it possible to imple-
ment long block codes with a large number of codewords in practical communication
systems. Our primary objective is to briefly describe a number of characteristics of
cyclic codes, with emphasis on two important classes of cyclic codes, the BCH and
Reed-Solomon codes.

In dealing with cyclic codes, it is convenient to associate with a codeword c =
(cn−1 cn−2 · · · c1 c0) a polynomial c(X ) of degree at most n − 1, defined as

c(X ) = cn−1 Xn−1 + cn−2 Xn−2 + · · · + c1 X + c0 (7.9–1)

For a binary code, each of the coefficients of the polynomial is either 0 or 1.
Now suppose we form the polynomial

Xc(X ) = cn−1 Xn + cn−2 Xn−1 + · · · + c1 X2 + c0 X

This polynomial cannot represent a codeword, since its degree may be equal to n (when
cn−1 = 1). However, if we divide Xc(X ) by Xn + 1, we obtain

Xc(X )

Xn + 1
= cn−1 + c(1)(X )

Xn + 1
(7.9–2)

where

c(1)(X ) = cn−2 Xn−1 + cn−3 Xn−2 + · · · + c0 X + cn−1

Note that the polynomial c(1)(X ) represents the codeword c(1) = (cn−2 · · · c0 cn−1),
which is just the codeword c shifted cyclicly by one position. Since c(1)(X ) is the
remainder obtained by dividing Xc(X ) by Xn + 1, we say that

c(1)(X ) = Xc(X ) mod (Xn + 1) (7.9–3)

In a similar manner, if c(X ) represents a codeword in a cyclic code, then Xi c(X )
mod (Xn + 1) is also a codeword of the cyclic code. Thus we may write

Xi c(X ) = Q(X )(Xn + 1) + c(i)(X ) (7.9–4)

where the remainder polynomial c(i)(X ) represents a codeword of the cyclic code,
corresponding to i cyclic shifts of c to the right, and Q(X ) is the quotient.

We can generate a cyclic code by using a generator polynomial g(X ) of degree
n − k. The generator polynomial of an (n, k) cyclic code is a factor of Xn + 1 and has
the general form

g(X ) = Xn−k + gn−k−1 Xn−k−1 + · · · + g1 X + 1 (7.9–5)



Proakis-27466 book September 26, 2007 22:20

Chapter Seven: Linear Block Codes 449

We also define a message polynomial u(X )

u(X ) = uk−1 Xk−1 + uk−2 Xk−2 + · · · + u1 X + u0 (7.9–6)

where (uk−1 uk−2 · · · u1, u0) represent the k information bits. Clearly, the product
u(X )g(X ) is a polynomial of degree less than or equal to n − 1, which may repre-
sent a codeword. We note that there are 2k polynomials {ui (X )}, and hence there are 2k

possible codewords that can be formed from a given g(X ).
Suppose we denote these codewords as

cm(X ) = um(X )g(X ), m = 1, 2, . . . , 2k (7.9–7)

To show that the codewords in Equation 7.9–7 satisfy the cyclic property, consider any
codeword c(X ) in Equation 7.9–7. A cyclic shift of c(X ) produces

c(1)(X ) = Xc(X ) + cn−1(Xn + 1) (7.9–8)

and since g(X ) divides both Xn + 1 and c(X ), it also divides c(1)(X ); i.e., c(1)(X ) can
be represented as

c(1)(X ) = u1(X )g(X )

Therefore, a cyclic shift of any codeword c(X ) generated by Equation 7.9–7 yields
another codeword.

From the above, we see that codewords possessing the cyclic property can be
generated by multiplying the 2k message polynomials with a unique polynomial g(X ),
called the generator polynomial of the (n, k) cyclic code, which divides Xn +1 and has
degree n − k. The cyclic code generated in this manner is a subspace Sc of the vector
space S. The dimension of Sc is k.

It is clear from above that an (n, k) cyclic code can exist only if we can find
a polynomial g(X ) of degree n − k that divides Xn + 1. Therefore the problem of
designing cyclic codes is equivalent to the problem of finding factors of Xn + 1. We
have studied this problem for the case where n = 2m − 1 for some positive integer
m in the discussion following Equation 7.1–18, and we have seen that for this case
the factors of Xn + 1 are the minimal polynomials corresponding to the conjugacy
classes of nonzero elements of GF(2m). For general n, the study of the factorization
of Xn + 1 is more involved. The interested reader is referred to the book by Wicker
(1995). Table 7.9–1 presents factoring of Xn + 1. The representation in this table is in
octal form; therefore the polynomial X3 + X2 + 1 is represented as 001101 which is
equivalent to 15 in octal notation.

E X A M P L E 7.9–1. Consider a code with block length n = 7. The polynomial X7 + 1
has the following factors:

X7 + 1 = (X + 1)(X3 + X2 + 1)(X3 + X + 1) (7.9–9)

To generate a (7, 4) cyclic code, we may take as a generator polynomial one of the
following two polynomials:

g1(X ) = X3 + X2 + 1
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TABLE 7.9–1

Factors of Xn + 1 Based on MacWilliams and Sloane (1977)

n Factors

7 3.15.13
9 3.7.111

15 3.7.31.23.37
17 3.471.727
21 3.7.15.13.165.127
23 3.6165.5343
25 3.37.4102041
27 3.7.111.1001001
31 3.51.45.75.73.67.57
33 3.7.2251.3043.3777
35 3.15.13.37.16475.13627
39 3.7.17075.13617.17777
41 3.5747175.6647133
43 3.47771.52225.64213
45 3.7.31.23.27.111.11001.10011
47 3.75667061.43073357
49 3.15.13.10040001.10000201
51 3.7.661.471.763.433.727.637
55 3.37.3777.7164555.5551347
57 3.7.1341035.1735357.1777777
63 3.7.15.13.141.111.165.155.103.163.133.147.127

127 3.301.221.361.211.271.345.325.235.375.203.323.313.253.247.367.217.357.277

and

g2(X ) = X3 + X + 1

The codes generated by g1(X ) and g2(X ) are equivalent. The codewords in the (7, 4)
code generated by g1(X ) = X3 + X2 + 1 are given in Table 7.9–2.

E X A M P L E 7.9–2. To determine the possible values of k for a cyclic code with block
length n = 25, we use Table 7.9–1. From this table, factors of X25 + 1 are 3, 37, and
4102041 which correspond to X+1, X4+X3+X2+X+1, and X20+X15+X10+X5+1.
The possible (nontrivial) values for n − k are 1, 4, 20, and 5, 21, 24, where the latter
three are obtained by multiplying pairs of the polynomials. These correspond to the
values 24, 21, 20, 5, 4, and 1 for k.

In general, the polynomial Xn + 1 may be factored as

Xn + 1 = g(X )h(X )

where g(X ) denotes the generator polynomial for the (n, k) cyclic code and h(X ) denotes
the parity check polynomial that has degree k. The latter may be used to generate the
dual code. For this purpose, we define the reciprocal polynomial of h(X ) as

Xkh(X−1) = Xk(X−k + hk−1 X−k+1 + hk−2 X−k+2 + · · · + h1 X−1 + 1)

= 1 + hk−1 X + hk−2 X2 + · · · + h1 Xk−1 + Xk
(7.9–10)
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TABLE 7.9–2

The (7, 4) Cyclic Code with Generator Polynomial
g1(X) = X3 + X2 + 1

Information Bits Codewords

X3 X2 X1 X0 X6 X5 X4 X3 X2 X1 X0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 1
0 0 1 0 0 0 1 1 0 1 0
0 0 1 1 0 0 1 0 1 1 1
0 1 0 0 0 1 1 0 1 0 0
0 1 0 1 0 1 1 1 0 0 1
0 1 1 0 0 1 0 1 1 1 0
0 1 1 1 0 1 0 0 0 1 1
1 0 0 0 1 1 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 1
1 0 1 0 1 1 1 0 0 1 0
1 0 1 1 1 1 1 1 1 1 1
1 1 0 0 1 0 1 1 1 0 0
1 1 0 1 1 0 1 0 0 0 1
1 1 1 0 1 0 0 0 1 1 0
1 1 1 1 1 0 0 1 0 1 1

Clearly, the reciprocal polynomial is also a factor of Xn + 1. Hence, Xkh(X−1) is
the generator polynomial of an (n, n − k) cyclic code. This cyclic code is the dual code
to the (n, k) code generated from g(X ). Thus, the (n, n − k) dual code constitutes the
null space of the (n, k) cyclic code.

E X A M P L E 7.9–3. Let us consider the dual code to the (7, 4) cyclic code generated
in Example 7.9–1. This dual code is a (7, 3) cyclic code associated with the parity
polynomial

h1(X ) = (X + 1)(X3 + X + 1)

= X4 + X3 + X2 + 1
(7.9–11)

The reciprocal polynomial is

X4h1(X−1) = 1 + X + X2 + X4

This polynomial generates the (7, 3) dual code given in Table 7.9–3. The reader can
verify that the codewords in the (7, 3) dual code are orthogonal to the codewords in the
(7, 4) cyclic code of Example 7.9–1. Note that neither the (7, 4) nor the (7, 3) codes
are systematic.

It is desirable to show how a generator matrix can be obtained from the genera-
tor polynomial of a cyclic (n, k) code. As previously indicated, the generator matrix
for an (n, k) code can be constructed from any set of k linearly independent code-
words. Hence, given the generator polynomial g(X ), an easily generated set of k lin-
early independent codewords is the codewords corresponding to the set of k linearly
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TABLE 7.9–3

The (7, 3) Dual Code with Generator Polynomial
X4h1(X−1) = X4 + X2 + X + 1

Information Bits Codewords

X2 X1 X0 X6 X5 X4 X3 X2 X1 X0

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1 0
0 1 1 0 1 1 1 0 0 1
1 0 0 1 0 0 1 1 0 0
1 0 1 1 0 1 1 0 1 1
1 1 0 1 1 0 0 0 1 0
1 1 1 1 1 1 0 1 0 1

independent polynomials

Xk−1g(X ), Xk−2g(X ), Xg(X ), g(X )

Since any polynomial of degree less than or equal to n − 1 and divisible by g(X )
can be expressed as a linear combination of this set of polynomials, the set forms a
basis of dimension k. Consequently, the codewords associated with these polynomials
form a basis of dimension k for the (n, k) cyclic code.

E X A M P L E 7.9–4. The four rows of the generator matrix for the (7, 4) cyclic code with
generator polynomial g1(X ) = X3 + X2 + 1 are obtained from the polynomials

Xi g1(X ) = X3+i + X2+i + Xi , i = 3, 2, 1, 0

It is easy to see that the generator matrix is

G1 =

⎡
⎢⎢⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎤
⎥⎥⎦ (7.9–12)

Similarly, the generator matrix for the (7, 4) cyclic code generated by the polynomial
g2(X ) = X3 + X + 1 is

G2 =

⎡
⎢⎢⎣

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎤
⎥⎥⎦ (7.9–13)

The parity check matrices corresponding to G1 and G2 can be constructed in the same
manner by using the respective reciprocal polynomials (see Problem 7.46).

Shortened Cyclic Codes
From Example 7.9–2 and Table 7.9–1 it is clear that we cannot design cyclic (n, k)
codes for all values of n and k. One common approach to designing cyclic codes with
given parameters is to begin with the design of an (n, k) cyclic code and then shorten it



Proakis-27466 book September 26, 2007 22:20

Chapter Seven: Linear Block Codes 453

by j bits to obtain an (n− j, k − j) code. The shortening of the cyclic code is carried out
by equating the j leading bits of the information sequence to zero and not transmitting
them. The resulting codes are called shortened cyclic codes, although in general they
are not cyclic codes. Of course by adding the deleted j zero bits at the receiver, we can
decode these codes with any decoder designed for the original cyclic code.

Shortened cyclic codes are extensively used in the form of shortened Reed-Solomon
codes and cyclic redundancy check (CRC) codes, which are widely used for error
detection in computer communication networks. For more details on CRC codes, see
Castagnoli et al. (1990) and Castagnoli et al. (1993).

7.9–2 Systematic Cyclic Codes

Note that the generator matrix obtained by this construction is not in systematic form.
We can construct the generator matrix of a cyclic code in the systematic form

G =
[

I k
... P

]

from the generator polynomial as follows. First, we observe that the lth row of G
corresponds to a polynomial of the form Xn−l + Rl(X ), l = 1, 2, . . . , k, where Rl(X )
is a polynomial of degree less than n − k. This form can be obtained by dividing Xn−l

by g(X ). Thus, we have

Xn−l

g(X )
= Ql(X ) + Rl(X )

g(X )
, l = 1, 2, . . . , k

or, equivalently,

Xn−l = Ql(X )g(X ) + Rl(X ), l = 1, 2, . . . , k (7.9–14)

where Ql(X ) is the quotient. But Xn−l + Rl(X ) is a codeword of the cyclic code since
Xn−l + Rl(X ) = Ql(X )g(X ). Therefore the desired polynomial corresponding to the
lth row of G is Xn−l + Rl(X ).

E X A M P L E 7.9–5. For the (7,4) cyclic code with generator polynomial g2(X ) = X3 +
X + 1, previously discussed in Example 7.9–4, we have

X6 = (X3 + X + 1)g2(X ) + X2 + 1

X5 = (X2 + 1)g2(X ) + X2 + X + 1

X4 = Xg2(X ) + X2 + X

X3 = g2(X ) + X + 1

Hence, the generator matrix of the code in systematic form is

G2 =

⎡
⎢⎢⎣

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎤
⎥⎥⎦ (7.9–15)
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and the corresponding parity check matrix is

H2 =
⎡
⎣

1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1

⎤
⎦ (7.9–16)

It is left as an exercise for the reader to demonstrate that the generator matrix G2 given
by Equation 7.9–13 and the systematic form given by Equation 7.9–15 generate the
same set of codewords (see Problem 7.16).

The method for constructing the generator matrix G in systematic form according
to Equation 7.9–14 also implies that a systematic code can be generated directly from
the generator polynomial g(X ). Suppose that we multiply the message polynomial u(X )
by Xn−k . Thus, we obtain

Xn−ku(X ) = uk−1 Xn−1 + uk−2 Xn−2 + · · · + u1 Xn−k+1 + u0 Xn−k

In a systematic code, this polynomial represents the first k bits in the codeword c(X ).
To this polynomial we must add a polynomial of degree less than n − k representing
the parity check bits. Now, if Xn−ku(X ) is divided by g(X ), the result is

Xn−ku(X )

g(X )
= Q(X ) + r (X )

g(X )

or, equivalently,

Xn−ku(X ) = Q(X )g(X ) + r (X ) (7.9–17)

where r (X ) has degree less than n − k. Clearly, Q(X )g(X ) is a codeword of the cyclic
code. Hence, by adding (modulo-2) r (X ) to both sides of Equation 7.9–17, we obtain
the desired systematic code.

To summarize, the systematic code may be generated by

1. Multiplying the message polynomial u(X ) by Xn−k

2. Dividing Xn−ku(X ) by g(X ) to obtain the remainder r (X )
3. Adding r (X ) to Xn−ku(X )

Below we demonstrate how these computations can be performed by using shift
registers with feedback.

Since Xn + 1 = g(X )h(X ) or, equivalently, g(X )h(X ) = 0 mod (Xn + 1), we
say that the polynomials g(X ) and h(X ) are orthogonal. Furthermore, the polynomials
Xi g(X ) and X j h(X ) are also orthogonal for all i and j . However, the vectors corre-
sponding to the polynomials g(X ) and h(X ) are orthogonal only if the ordered elements
of one of these vectors are reversed. The same statement applies to the vectors corre-
sponding to Xi g(X ) and X j h(X ). In fact, if the parity polynomial h(X ) is used as a
generator for the (n, n − k) dual code, the set of codewords obtained just comprises the
same codewords generated by the reciprocal polynomial except that the code vectors
are reversed. This implies that the generator matrix for the dual code obtained from
the reciprocal polynomial Xkh(X−1) can also be obtained indirectly from h(X ). Since
the parity check matrix H for the (n, k) cyclic code is the generator matrix for the
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dual code, it follows that H can also be obtained from h(X ). The following example
illustrates these relationships.

E X A M P L E 7.9–6. The dual code to the (7, 4) cyclic code generated by g1(X ) = X3 +
X2+1 is the (7, 3) dual code that is generated by the reciprocal polynomial X4h1(X−1) =
X4+X2+X +1. However, we may also use h1(X ) to obtain the generator matrix for the
dual code. Then the matrix corresponding to the polynomials Xi h1(X ), i = 2, 1, 0, is

Gh1 =
⎡
⎣1 1 1 0 1 0 0

0 1 1 1 0 1 0
0 0 1 1 1 0 1

⎤
⎦

The generator matrix for the (7, 3) dual code, which is the parity check matrix for the
(7, 4) cyclic code, consists of the rows of Gh1 taken in reverse order. Thus,

H1 =
⎡
⎣0 0 1 0 1 1 1

0 1 0 1 1 1 0
1 0 1 1 1 0 0

⎤
⎦

The reader may verify that G1 H t
1 = 0. Note that the column vectors of H1 consist

of all seven binary vectors of length 3, except the all-zero vector. But this is just the
description of the parity check matrix for a (7, 4) Hamming code. Therefore, the (7, 4)
cyclic code is equivalent to the (7, 4) Hamming code.

7.9–3 Encoders for Cyclic Codes

The encoding operations for generating a cyclic code may be performed by a linear
feedback shift register based on the use of either the generator polynomial or the parity
polynomial. First, let us consider the use of g(X ).

As indicated above, the generation of a systematic cyclic code involves three steps,
namely, multiplying the message polynomial u(X ) by Xn−k , dividing the product by
g(X ), and adding the remainder to Xn−ku(X ). Of these three steps, only the division is
nontrivial.

The division of the polynomial A(X ) = Xn−ku(X ) of degree n − 1 by the
polynomial

g(X ) = gn−k Xn−k + gn−k−1 Xn−k−1 + · · · + g1 X + g0

may be accomplished by the (n − k)-stage feedback shift register illustrated in Fig-
ure 7.9–1. Initially, the shift register contains all zeros. The coefficients of A(X ) are
clocked into the shift register one (bit) coefficient at a time, beginning with the higher-
order coefficients, i.e., with an−1, followed by an−2, and so on. After the kth shift, the
first nonzero output of the quotient is qk−1 = gn−kan−1. Subsequent outputs are gener-
ated as illustrated in Figure 7.9–1. For each output coefficient in the quotient, we must
subtract the polynomial g(X ) multiplied by that coefficient, as in ordinary long division.
The subtraction is performed by means of the feedback part of the shift register. Thus,
the feedback shift register in Figure 7.9–1 performs division of two polynomials.

In our case, gn−k = g0 = 1, and for binary codes the arithmetic operations are
performed in modulo-2 arithmetic. Consequently, the subtraction operations reduce to
modulo-2 addition. Furthermore, we are interested only in generating the parity check
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X

FIGURE 7.9–1
A feedback shift register for dividing the polynomial A(X ) by g(X ).

Xn�k u(X)

FIGURE 7.9–2
Encoding a cyclic code by use of the generator polynomial g(X ).

bits for each codeword, since the code is systematic. Consequently, the encoder for the
cyclic code takes the form illustrated in Figure 7.9–2. The first k bits at the output of the
encoder are simply the k information bits. These k bits are also clocked simultaneously
into the shift register, since switch 1 is in the closed position. Note that the polynomial
multiplication of Xn−k with u(X ) is not performed explicitly. After the k information
bits are all clocked into the encoder, the positions of the two switches are reversed.
At this time, the contents of the shift register are simply the n − k parity check bits,
which correspond to the coefficients of the remainder polynomial. These n − k bits are
clocked out one at a time and sent to the modulator.

E X A M P L E 7.9–7. The shift register for encoding the (7, 4) cyclic code with generator
polynomial g(X ) = X3 + X + 1 is illustrated in Figure 7.9–3. Suppose the input
message bits are 0110. The contents of the shift register are as follows:

Input Shift Shift Register Contents

0 000
0 1 000
1 2 110
1 3 101
0 4 100
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FIGURE 7.9–3
The encoder for the (7, 4) cyclic code
with generator polynomial
g(X ) = X3 + X + 1.

Hence, the three parity check bits are 100, which correspond to the code bits c5 = 0,
c6 = 0, and c7 = 1.

Instead of using the generator polynomial, we may implement the encoder for the
cyclic code by making use of the parity polynomial

h(X ) = Xk + hk−1 Xk−1 + · · · + h1 X + 1

The encoder is shown in Figure 7.9–4. Initially, the k information bits are shifted
into the shift register and simultaneously fed to the modulator. After all k information
bits are in the shift register, the switch is thrown into position 2 and the shift regis-
ter is clocked n − k times to generate the n − k parity check bits, as illustrated in
Figure 7.9–4.

E X A M P L E 7.9–8. The parity polynomial for the (7, 4) cyclic code generated by g(X ) =
X3 + X + 1 is h(X ) = X4 + X2 + X + 1. The encoder for this code based on the parity
polynomial is illustrated in Figure 7.9–5. If the input to the encoder is the message
bits 0110, the parity check bits are c5 = 0, c6 = 0, and c7 = 1, as is easily verified.
Note that the encoder based on the generator polynomial is simpler when n − k < k(
k > n

2

)
, i.e., for high-rate codes

(
Rc > 1

2

)
, while the encoder based on the parity

polynomial is simpler when k < n − k
(
k < n

2

)
, which corresponds to low- rate codes(

Rc < 1
2

)
.

FIGURE 7.9–4
The encoder for an (n, k) cyclic code based on the parity polynomial h(X ).



Proakis-27466 book September 26, 2007 22:20

458 Digital Communications

FIGURE 7.9–5
The encoder for the (7, 4) cyclic code based on the parity polynomial
h(X ) = X4 + X2 + X + 1.

7.9–4 Decoding Cyclic Codes

Syndrome decoding, described in Section 7.5, can be used for the decoding of cyclic
codes. The cyclic structure of these codes makes it possible to implement syndrome
computation and the decoding process using shift registers with considerable less com-
plexity compared to the general class of linear block codes.

Let us assume that c is the transmitted codeword of a binary cyclic code and
y = c+ e is the received sequence at the output of the binary symmetric channel model
(i.e., the channel output after the matched filter outputs have been passed through a
binary quantizer). In terms of the corresponding polynomials, we can write

y(X ) = c(X ) + e(X ) (7.9–18)

and since c(X ) is a codeword, it is a multiple of g(X ), the generator polynomial of the
code; i.e., c(X ) = u(X )g(X ) for some u(X ), a polynomial of degree at most k − 1.

y(X ) = u(X )g(X ) + e(X ) (7.9–19)

From this relation we conclude

y(X ) mod g(X ) = e(X ) mod g(X ) (7.9–20)

Let us define s(X ) = y(X ) mod g(X ) to denote the remainder of dividing y(X ) by
g(X ) and call s(X ) the syndrome polynomial, which is a polynomial of degree at most
n − k − 1.

To compute the syndrome polynomial, we need to divide y(X ) by the generator
polynomial g(X ) and find the remainder. Clearly s(X ) depends on the error pattern
and not on the codeword, and different error patterns can yield the same syndrome
polynomials since the number of possible syndrome polynomials is 2n−k and the number
of possible error patterns is 2n . Maximum-likelihood decoding calls for finding the error
pattern of the lowest weight corresponding to the computed syndrome polynomial s(X )
and adding it to y(X ) to obtain the most likely transmitted codeword polynomial c(X ).

The division of y(X ) by the generator polynomial g(X ) may be carried out by means
of a shift register which performs division as described previously. First the received
vector y is shifted into an (n − k)-stage shift register as illustrated in Figure 7.9–6.
Initially, all the shift register contents are zero, and the switch is closed in position 1.
After the entire n-bit received vector has been shifted into the register, the contents
of the n − k stages constitute the syndrome with the order of the bits numbered as
shown in Figure 7.9–6. These bits may be clocked out by throwing the switch into
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FIGURE 7.9–6
An (n − k)-stage shift register for computing the syndrome.

position 2. Given the syndrome from the (n −k)-stage shift register, a table lookup may
be performed to identify the most probable error vector. Note that if the code is used for
error detection, a nonzero syndrome detects an error in transmission of the codeword.

E X A M P L E 7.9–9. Let us consider the syndrome computation for the (7, 4) cyclic Ham-
ming code generated by the polynomial g(X ) = X3 + X +1. Suppose that the received
vector is y = (1001101). This is fed into the three-stage register shown in Figure 7.9–7.
After seven shifts, the contents of the shift register are 110, which corresponds to the
syndrome s = (011). The most probable error vector corresponding to this syndrome
is e = (0001000) and, hence,

ĉ = y + e = (1000101)

The information bits are 1 0 0 0.

The table lookup decoding method using the syndrome is practical only when n−k
is small, e.g., when n − k < 10. This method is impractical for many interesting and
powerful codes. For example, if n −k = 20, the table has 220 (approximately 1 million)

Shift Register contents

0 000
1 100
2 010
3 001
4 010
5 101
6 100
7 110

FIGURE 7.9–7
Syndrome computation for the (7, 4) cyclic code with generator polynomial
g(X ) = X3 + X + 1 and received vector y = (1001101).
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entries. Such a large amount of storage and the time required to locate an entry in such a
large table renders the table lookup decoding method impractical for long codes having
large numbers of check bits.

The cyclic structure of the code can be used to simplify finding the error polynomial.
First we note that, as shown in Problem 7.54, if s(X ) is the syndrome corresponding to
error sequence e(X ), then the syndrome corresponding to e(1)(X ), the right cyclic shift
of e(X ), is s(1)(X ), defined by

s(1)(X ) = Xs(X ) mod g(X ) (7.9–21)

This means that to obtain the syndrome corresponding to y(1), we need to multiply
s(X ) by X and then divide by g(X ); but this is equivalent to shifting the content of the
shift register shown in Figure 7.9–6 to the right when the input is disconnected. This
means that the same combinatorial logic circuit that computes en−1 from s can be used
to compute en−2 from a shifted version of s, i.e., s(1). The resulting decoder is known
as the Meggit decoder (Meggitt (1961)).

The Meggit decoder feeds the received sequence y into the syndrome computing
circuit to compute s(X ); the syndrome is fed into a combinatorial circuit that computes
en−1. The output of this circuit is added modulo-2 to yn−1, and after correction and a
cyclic shift of the syndrome, the same combinatorial logic circuit computes en−2. This
process is repeated n times, and if the error pattern is correctable, i.e., is one of the
coset leaders, the decoder is capable of correcting it.

For details on the structure of decoders for general cyclic codes, the interested
reader is referred to the texts of Peterson and Weldon (1972), Lin and Costello (2004),
Blahut (2003), Wicker (1995), and Berlekamp (1968).

7.9–5 Examples of Cyclic Codes

In this section we discuss certain examples of cyclic codes. We have have selected the
cyclic Hamming, Golay, and maximum-length codes discussed previously as general
linear block codes. The most important class of cyclic codes, i.e., the BCH codes, is
discussed in Section 7.10.

Cyclic Hamming Codes
The class of cyclic codes includes the cyclic Hamming codes, which have a block length
n = 2m −1 and n −k = m parity check bits, where m is any positive integer. The cyclic
Hamming codes are equivalent to the Hamming codes described in Section 7.3–2.

Cyclic Golay Codes
The linear (23, 12) Golay code described in Section 7.3–6 can be generated as a cyclic
code by means of the generator polynomial

g(X ) = X11 + X9 + X7 + X6 + X5 + X + 1 (7.9–22)

The codewords have a minimum distance dmin = 7.
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FIGURE 7.9–8
Three-stage (m = 3) shift register with
feedback.

Maximum-Length Shift Register Codes
Maximum-length shift register codes are a class of cyclic codes equivalent to the
maximum-length codes described in Section 7.3–3 as duals of Hamming codes. These
are a class of cyclic codes with

(n, k) = (2m − 1, m) (7.9–23)

where m is a positive integer. The codewords are usually generated by means of an
m-stage digital shift register with feedback, based on the parity polynomial. For each
codeword to be transmitted, the m information bits are loaded into the shift register,
and the switch is thrown from position 1 to position 2. The contents of the shift register
are shifted to the left one bit at a time for a total of 2m − 1 shifts. This operation
generates a systematic code with the desired output length n = 2m − 1. For example,
the codewords generated by the m = 3 stage shift register in Figure 7.9–8 are listed in
Table 7.9–4.

Note that, with the exception of the all-zero codeword, all the codewords generated
by the shift register are different cyclic shifts of a single codeword. The reason for this
structure is easily seen from the state diagram of the shift register, which is illustrated
in Figure 7.9–9 for m = 3. When the shift register is loaded initially and shifted 2m − 1
times, it will cycle through all possible 2m − 1 states. Hence, the shift register is back
to its original state in 2m − 1 shifts. Consequently, the output sequence is periodic with
length n = 2m −1. Since there are 2m −1 possible states, this length corresponds to the
largest possible period. This explains why the 2m − 1 codewords are different cyclic
shifts of a single codeword. Maximum-length shift register codes exist for any positive

TABLE 7.9–4

Maximum-Length Shift Register Code for m = 3

Information Bits Codewords

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 1
0 1 1 0 1 1 1 0 1 0
1 0 0 1 0 0 1 1 1 0
1 0 1 1 0 1 0 0 1 1
1 1 0 1 1 0 1 0 0 1
1 1 1 1 1 1 0 1 0 0
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FIGURE 7.9–9
The seven states for the m = 3 maximum-length shift
register.

value of m. Table 7.9–5 lists the stages connected to the modulo-2 adder that result in
a maximum-length shift register for 2 ≤ m ≤ 34.

Another characteristic of the codewords in a maximum-length shift register code
is that each codeword, with the exception of the all-zero codeword, contains 2m−1 ones

TABLE 7.9–5

Shift-Register Connections for Generating Maximum-Length Sequences
[from Forney (1970)].

Stages Connected Stages Connected Stages Connected
m to Modulo-2 Adder m to Modulo-2 Adder m to Modulo-2 Adder

2 1,2 13 1,10,11,13 24 1,18,23,24
3 1,3 14 1,5,9,14 25 1,23
4 1,4 15 1,15 26 1,21,25,26
5 1,4 16 1,5,14,16 27 1,23,26,27
6 1,6 17 1,15 28 1,26
7 1,7 18 1,12 29 1,28
8 1,5,6,7 19 1,15,18,19 30 1,8,29,30
9 1,6 20 1,18 31 1,29

10 1,8 21 1,20 32 1,11,31,32
11 1,10 22 1,22 33 1,21
12 1,7,9,12 23 1,19 34 1,8,33,34
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and 2m−1−1 zeros, as shown in Problem 7.23. Hence all these codewords have identical
weights, namely, w = 2m−1. Since the code is linear, this weight is also the minimum
distance of the code, i.e.,

dmin = 2m−1

As stated in Section 7.3–3, the maximum-length shift register code shown in Table 7.9–4
is identical to the (7, 3) code given in Table 7.9–3, which is the dual of the (7, 4)
Hamming code given in Table 7.9–2. The maximum-length shift register codes are the
dual codes of the cyclic Hamming (2m − 1, 2m − 1 − m) codes. The shift register for
generating the maximum-length code may also be used to generate a periodic binary
sequence with period n = 2m − 1. The binary periodic sequence exhibits a periodic
autocorrelation R(m) with values R(m) = n for m = 0, ±n, ±2n, . . . , and R(m) = −1
for all other shifts as described in Section 12.2–4. This impulselike autocorrelation
implies that the power spectrum is nearly white, and hence the sequence resembles
white noise. As a consequence, maximum-length sequences are called pseudo-noise
(PN) sequences and find use in the scrambling of data and in the generation of spread
spectrum signals as discussed in Chapter 12.

7.10
BOSE-CHAUDHURI-HOCQUENGHEM (BCH) CODES

BCH codes comprise a large class of cyclic codes that include codes over both binary
and nonbinary alphabets. BCH codes have rich algebraic structure that makes their
decoding possible by using efficient algebraic decoding algorithms. In addition, BCH
codes exist for a wide range of design parameters (rates and block lengths) and are well
tabulated. It also turns out that BCH codes are among the best-known codes for low to
moderate block lengths.

Our study of BCH codes is rather brief, and the interested reader is referred to
standard texts on coding theory including those by Wicker (1995), Lin and Costello
(2004), Berlekamp (1968), and Peterson and Weldon (1972) for details and proofs.

7.10–1 The Structure of BCH Codes

BCH codes are a subclass of cyclic codes that were introduced independently by Bose
Ray-Chaudhuri (1960a, 1960b) and Hocquenghem (1959). These codes have rich alge-
braic structure that makes it possible to design efficient algebraic decoding algorithms
for them.

Since BCH codes are cyclic codes, we can describe them in terms of their genera-
tor polynomial g(X ). In this section we treat only a special class of binary BCH codes
called primitive binary BCH codes. These codes have a block length of n = 2m − 1
for some integer m ≥ 3, and they can be designed to have a guaranteed error de-
tection capability of at least t errors for any t < 2m−1. In fact for any two positive
integers m ≥ 3 and t < 2m−1 we can design a BCH code whose parameters satisfy the
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following relations:

n = 2m − 1

n − k ≤ mt

dmin ≥ 2t + 1

(7.10–1)

The first equality determines the block length of the code. The second inequality pro-
vides a bound on the number of parity check bits of the code, and the third inequality
states that this code is capable of correcting at least t errors. The resulting code is called
a t-error correcting BCH code; although it is possible that this code can correct more
than t errors.

The Generator Polynomial for BCH Codes
To design a t-error correcting (primitive) BCH code, we choose α, a primitive element
of GF(2m). Then g(X ), the generator polynomial of the BCH code, is defined as the
lowest-degree polynomial g(X ) over GF(2) such that α, α2, α3, . . . , and α2t are its
roots.

Using the definition of the minimal polynomial of a field element given in Sec-
tion 7.1–1 and by Equation 7.1–12, we know that any polynomial over GF(2) that has
β ∈ GF(2) as a root is divisible by φβ(X ), the minimal polynomial of β. Therefore
g(X ) must be divisible by φαi (X ) for 1 ≤ i ≤ 2t . Since g(X ) is a polynomial of lowest
degree with this property, we conclude that

g(X ) = LCM {φαi (X ), 1 ≤ i ≤ 2t} (7.10–2)

where LCM denotes the least common multiple of φαi (X )’s. Also note that, for instance,
the φαi (X ) for i = 1, 2, 4, . . . are the same since α, α2, α4, . . . are conjugates and hence
they have the same minimal polynomial. The same is true for α3, α6, α12, . . . . Therefore,
in the expression for g(X ) it is sufficient to consider only odd values of α, i.e.,

g(X ) = LCM {φα(X ), φα3 (X ), φα5 (X ), . . . , φα2t−1 (X )} (7.10–3)

and since the degree of φαi (X ) does not exceed m, the degree of g(X ) is at most mt .
Therefore, n − k ≤ mt .

Let us assume that c(X ) is a codeword polynomial of the designed BCH code.
From the cyclic property of the code we know that g(X ) is a divisor of c(X ). Therefore,
all αi for 1 ≤ i ≤ 2t are roots of c(X ); i.e., for any codeword polynomial c(X ) we
have

c
(
αi) = 0 1 ≤ i ≤ 2t (7.10–4)

The conditions given in Equation 7.10–4 are necessary and sufficient conditions for a
polynomial of degree less than n to be a codeword polynomial of the BCH code.

E X A M P L E 7.10–1. To design a single-error-correcting (t = 1) BCH code with block
length n = 15 (m = 4), we choose α a primitive element in GF(24). The minimal
polynomial of α is a primitive polynomial of degree 4.
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From Table 7.1–5 we see that g(X ) = φα(X ) = X4 + X + 1. Therefore, n − k =
4 and k = 11. Since the weight of g(X ) is 3, we have dmin ≥ 3. Combining this
with Equation 7.10–1, which states dmin ≤ 2t + 1 = 3, we conclude that dmin = 3.
Therefore a single-error-correcting BCH code with block length 15 is a (15, 11) code
with dmin = 3. This is, in fact, a cyclic Hamming code. In general, cyclic Hamming
codes are single-error-correcting BCH codes.

E X A M P L E 7.10–2. To design a four-error-correcting (t = 4) BCH code with block
length n = 15 (m = 4), we choose α a primitive element in GF(24). The minimal
polynomial of α is g(X ) = φα(X ) = X4 + X + 1. We also need to find the minimal
polynomials of α3, α5, and α7.

From Example 7.1–5 we have φα3 = X4 + X3 + X2 + X + 1, φα5 = X2 + X + 1,
and φα7 (X ) = X4 + X3 + 1. Therefore,

g(X ) = (X4 + X + 1)(X4 + X3 + X2 + X + 1)

× (X2 + X + 1)(X4 + X3 + 1)

= X14 + X13 + X12 + X11 + X10 + X9 + X8 + X7

+ X6 + X5 + X4 + X3 + X2 + X + 1

(7.10–5)

Hence n − k = 14 and k = 1; the resulting code is a (15, 1) repetition code with
dmin = 15. Note that this code was designed to correct four errors but it is capable of
correcting up to seven errors.

E X A M P L E 7.10–3. To design a double-error-correcting BCH code with block length
n = 15 (m = 4), we need the minimal polynomials of α and α3. The minimal poly-
nomial of α is g(X ) = φα(X ) = X4 + X + 1, and from Example 7.1–5, φα3 =
X4 + X3 + X2 + X + 1. Therefore,

g(X ) = (X4 + X + 1)(X4 + X3 + X2 + X + 1)

= X8 + X7 + X6 + X4 + 1
(7.10–6)

Hence n−k = 8 and k = 7, and the resulting code is a (15, 7) BCH code with dmin = 5.

Table 7.10–1 lists the coefficients of generator polynomials for BCH codes of block
lengths 7 ≤ n ≤ 255, corresponding to 3 ≤ m ≤ 8. The coefficients are given in octal
form, with the leftmost digit corresponding to the highest-degree term of the generator
polynomial. Thus, the coefficients of the generator polynomial for the (15, 5) code are
2467, which in binary form is 10100110111. Consequently, the generator polynomial
is g(X ) = X10 + X8 + X5 + X4 + X2 + X + 1. A more extensive list of generator
polynomials for BCH codes is given by Peterson and Weldon (1972), who tabulated
the polynomial factors of X2m−1 + 1 for m ≤ 34.

Let us consider from Table 7.10–1 the sequence of BCH codes with triplet param-
eters (n, k, t) such that for these codes Rc is close to 1

2 . These codes include (7, 4, 1),
(15, 8, 2), (31, 16, 3), (63, 30, 6), (127, 64, 10), and (255, 131, 18) codes. We observe
that as n increases and the rate remains almost constant, the ratio t

n , that is the fraction
of errors that the code can correct, decreases. In fact for all BCH codes with constant
rate, as the block length increases, the fraction of correctable errors goes to zero. This
shows that the BCH codes are asymptotically bad, and for large n their δn falls below
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TABLE 7.10–1

Coefficients of Generator Polynomials (in Octal Form) for BCH Codes of Length 7 ≤ n ≤ 255

n k t g(X)

7 4 1 13
15 11 1 23

7 2 721
5 3 2467

31 26 1 45
21 2 3551
16 3 107657
11 5 5423325

6 7 313365047
63 57 1 103

51 2 12471
45 3 1701317
39 4 166623567
36 5 1033500423
30 6 157464165547
24 7 17323260404441
18 10 1363026512351725
16 11 6331141367235453
10 13 472622305527250155

7 15 5231045543503271737
127 120 1 211

113 2 41567
106 3 11554743

99 4 3447023271
92 5 624730022327
85 6 130704476322273
78 7 26230002166130115
71 9 6255010713253127753
64 10 1206534025570773100045
57 11 33526525205705053517721
50 13 54446512523314012421501421
43 14 17721772213651227521220574343
36 15 3146074666522075044764574721735
29 21 403114461367670603667530141176155
22 23 123376070404722522435445626637647043
15 27 22057042445604554770523013762217604353

8 31 7047264052751030651476224271567733130217
255 247 1 435

239 2 267543
231 3 156720665
223 4 75626641375
215 5 23157564726421
207 6 16176560567636227
199 7 7633031270420722341
191 8 2663470176115333714567
187 9 52755313540001322236351
179 10 22624710717340432416300455
171 11 1541621421234235607706163067

(continued)
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TABLE 7.10–1

(Continued)

n k t g(X)

163 12 7500415510075602551574724514601
155 13 3757513005407665015722506464677633
147 14 1642130173537165525304165305441011711
139 15 461401732060175561570722730247453567445
131 18 215713331471510151261250277442142024165471
123 19 120614052242066003717210326516141226272506267
115 21 60526665572100247263636404600276352556313472737
107 22 22205772322066256312417300235347420176574750154441

99 23 10656667253473174222741416201574332252411076432303431
91 25 6750265030327444172723631724732511075550762720724344561
87 26 110136763414743236435231634307172046206722545273311721317
79 27 66700035637657500020270344207366174621015326711766541342355
71 29 24024710520644321515554172112331163205444250362557643221706035
63 30 10754475055163544325315217357707003666111726455267613656702543301
55 31 7315425203501100133015275306032054325414326755010557044426035473617
47 42 2533542017062646563033041377406233175123334145446045005066024552543173
45 43 15202056055234161131101346376423701563670024470762373033202157025051541
37 45 5136330255067007414177447447245437530420735706174323432347644354737403044003
29 47 3025715536673071465527064012361377115342242324201174114060254757410403565037
21 55 1256215257060332656001773153607612103227341405653074542521153121614466513473725
13 59 464173200505256454442657371425006600433067744547656140317467721357026134460500547

9 63 15726025217472463201031043255355134614162367212044074545112766115547705561677516057

the Varshamov-Gilbert bound. We need, however, to keep in mind that this happens at
large values of n and for small to moderate values of n, which include the most practical
cases, these codes remain among the best-known codes for which efficient decoding
algorithms are known.

7.10–2 Decoding BCH Codes

Since BCH codes are cyclic codes, any decoding algorithm for cyclic codes can be
applied to BCH codes. For instance, BCH codes can be decoded using a Meggit decoder.
However, the additional structure in BCH codes makes it possible to use more efficient
decoding algorithms, particularly when using codes with long block lengths.

Let us assume that a codeword c is associated with codeword polynomial c(X ). By
Equation 7.10–4, we know that c(αi ) = 0 for 1 ≤ i ≤ 2t . Let us assume that the error
polynomial is e(X ) and the received polynomial is y(X ). Then

y(X ) = c(X ) + e(X ) (7.10–7)

Let us denote the value of y(X ) at αi by Si , i.e., the syndromes defined by

Si = y(αi )

= c(αi ) + e(αi ) 1 ≤ i ≤ 2t

= e(αi )

(7.10–8)
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Obviously if e(X ) is zero, or it is equal to a nonzero codeword, the syndromes are
all zero. The syndrome can be computed from the received sequence y using GF(2m)
arithmetic.

Now let us assume there have been ν errors in transmission of c, where ν ≤ t . Let
us denote the location of these errors by j1, j2, . . . , jν , where without loss of generality
we may assume 0 ≤ j1 < j2 < · · · < jν ≤ n − 1. Therefore

e(X ) = X jν + X jν−1 + · · · + X j2 + X j1 (7.10–9)

From Equations 7.10–8 and 7.10–9 we conclude that

S1 = α j1 + α j2 + · · · + α jν

S2 = (α j1 )2 + (α j2 )2 + · · · + (α jν )2

...

S2t = (α j1 )2t + (α j2 )2t + · · · + (α jν )2t

(7.10–10)

These are a set of 2t equations in ν unknowns, namely, j1, j2, . . . , jν , or equivalently
α ji , 1 ≤ i ≤ ν. Any method for solving simultaneous equations can be applied to
find unknowns α ji from which error locations j1, j2, . . . , jν can be found. Having
determined error locations, we change the received bit at those locations to find the
transmitted codeword c.

By defining error location numbers βi = α ji for 1 ≤ i ≤ ν, Equation 7.10–10
becomes

S1 = β1 + β2 + · · · + βν

S2 = β2
1 + β2

2 + · · · + β2
ν

...

S2t = β2t
1 + β2t

2 + · · · + β2t
ν

(7.10–11)

Solving this set of equations determines βi for 1 ≤ i ≤ ν from which error locations can
be determined. Obviously the βi ’s are members of GF(2m), and solving these equations
requires arithmetic over GF(2m). This set of equations in general has many solutions.
For maximum-likelihood (minimum Hamming distance) decoding we are interested in
a solution with the smallest number of β’s.

To solve these equations, we introduce the error locator polynomial as

σ (X ) = (1 + β1 X ) (1 + β2 X ) · · · (1 + βν X )

= σν X ν + σν−1 X ν−1 + · · · + σ1 X + σ0

(7.10–12)

whose roots are β−1
i for 1 ≤ i ≤ ν. Finding the roots of this polynomial determines

the location of errors. We need to determine σi for 0 ≤ i ≤ ν to have σ (X ) from which
we can find the roots and hence locate the errors. Expanding Equation 7.10–12 results
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in the following set of equations:

σ0 = 1

σ1 = β1 + β2 + · · · + βν

σ2 = β1β2 + β1β3 + · · · + βν−1βν

...

σν = β1β2 · · · βν

(7.10–13)

Using Equations 7.10–10 and 7.10–13, we obtain the following set of equations relating
the coefficients of σ (X ) and the syndromes.

S1 + σ1 = 0

S2 + σ1S1 + 2σ2 = 0

S3 + σ1S2 + σ2S1 + 3σ3 = 0

...

Sν + σ1Sν−1 + · · · + σν−1S1 + νσν = 0

Sν+1 + σ1Sν + · · · + σν−1S2 + σν S1 = 0

...

(7.10–14)

We need to obtain the lowest-degree polynomial σ (X ) whose coefficients satisfy this
set of equations. After determining σ (X ), we have to find its roots β−1

i . The inverse
of the roots provides the location of the errors. Note that when the polynomial of the
lowest degree σ (X ) is found, we can simply find its roots over GF(2m) by substituting
the 2m field elements in the polynomial.

The Berlekamp-Massey Decoding Algorithm for BCH Codes
Several algorithms have been proposed for solution of Equation 7.10–14. Here we
present the well-known Berlekamp-Massey algorithm due to Berlekamp (1968) and
Massey (1969). Our presentation of this algorithm follows the presentation in Lin and
Costello (2004). The interested reader is referred to Lin and Costello (2004), Berlekamp
(1968), Peterson and Weldon (1972), MacWilliams and Sloane (1977), Blahut (2003),
or Wicker (1995) for details and proofs.

To implement the Berlekamp-Massey algorithm, we begin by finding a polynomial
of lowest degree σ (1)(X ) that satisfies the first equation in 7.10–14. In the second step
we test to see if σ (1)(X ) satisfies the second equation in 7.10–14. If it satisfies the
second equation, we set σ (2)(X ) = σ (1)(X ). Otherwise, we introduce a correction term
to σ (1)(X ) to obtain σ (2)(X ), the polynomial of the lowest degree that satisfies the first
two equations. This process is continued until we obtain a polynomial of minimum
degree that satisfies all equations.

In general, if

σ (μ)(X ) = σ
(μ)
lμ Xlμ + σ

(μ)
lμ−1

Xlμ + · · · + σ
(μ)
2 X2 + σ

(μ)
1 X + 1 (7.10–15)
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is the polynomial of the lowest degree that satisfies the first μ equations in
Equation 7.10–14, to find σ (μ+1)(X ) we compute the μth discrepancy, denoted by
dμ and given by

dμ = Sμ+1 + σ
(μ)
1 Sμ + σ

(μ)
2 Sμ−1 + · · · + σ

(μ)
lμ Sμ+1−lμ (7.10–16)

If dμ = 0, no correction is necessary and the σ (μ)(X ) that satisfies the (μ+1)st equation
is Equation 7.10–14. In this case we set

σ (μ+1)(X ) = σ (μ)(X ) (7.10–17)

If dμ �= 0, a correction is necessary. In this case σ (μ+1)(X ) is given by

σ (μ+1)(X ) = σ (μ)(X ) + dμd−1
ρ σ (ρ)(X )Xμ−ρ (7.10–18)

where ρ < μ is selected such that dρ �= 0 and among all such ρ’s the value of ρ − lρ
is maximum (lρ is the degree of σ (ρ)(X )).

The polynomial given by Equation 7.10–18 is the polynomial of the lowest degree
that satisfies the first (μ + 1) equations in Equation 7.10–14. This process is continued
until σ (2t)(X ) is derived. The degree of this polynomial determines the number of errors,
and its roots can be used to locate the errors, as explained earlier. If the degree of σ (2t)(X )
is higher than t , the number of errors in the received sequence is greater than t , and the
errors cannot be corrected.

The Berlekamp-Massey algorithm can be better carried out if we begin with a table
such as Table 7.10–2.

E X A M P L E 7.10–4. Let us assume that the double-error-correcting BCH code designed
in Example 7.10–3 is considered, and the binary received sequence at the output of the
BSC channel is

y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)

TABLE 7.10–2

The Berlekamp-Massey Algorithm

μ σ (μ)(X) dμ lμ μ − lμ

−1 1 1 0 −1
0 1 S1 0 0
1 1 + S1 X
2
.
.
.

2t



Proakis-27466 book September 26, 2007 22:20

Chapter Seven: Linear Block Codes 471

TABLE 7.10–3

The Berlekamp-Massey Algorithm
Implementation for Example 7.10–4

μ σ (μ)(X) dμ lμ μ − lμ

−1 1 1 0 −1
0 1 α14 0 0
1 1 + α14 X 0 1 0
2 1 + α14 X α2 1 1
3 1 + α14 X + α3 X2 0 2 1
4 1 + α14 X + α3 X2 2 2

The corresponding received polynomial is y(X ) = X3 + 1, and the syndrome compu-
tation yields

S1 = α3 + 1 = α14

S2 = α6 + 1 = α13

S3 = α9 + 1 = α7

S4 = α12 + 1 = α11

(7.10–19)

where we have used Table 7.1–6. Now we have all we need to fill in the entries
of Table 7.10–2 by using Equations 7.10–16 to 7.10–18. The result is given in
Table 7.10–3.

Therefore σ (X ) = 1 + α14 X + α3 X2, and since the degree of this polynomial
is 2, this corresponds to a correctable error pattern. We can find the roots of σ (X ) by
inspection, i.e., by substituting the elements of GF(24). This will give the two roots
of 1 and α12. Since the roots are the reciprocals of the error location numbers, we
conclude that the error location numbers are β1 = α0 and β2 = α3. From this the
errors are at locations j1 = 0 and j2 = 3. From Equation 7.10–9 the error polynomial
is e(X ) = 1 + X3, and c(X ) = y(X ) + e(X ) = 0, i.e., the detected codeword, is the
all-zero codeword.

7.11
REED-SOLOMON CODES

Reed-Solomon (RS) codes are probably the most widely used codes in practice. These
codes are used in communication systems and particularly data storage systems. Reed-
Solomon codes are a special class of nonbinary BCH codes that were first introduced in
Reed and Solomon (1960). As we have already seen, these codes achieve the Singleton
bound and hence belong to the class of MDS codes.

Recall that in construction of a binary BCH code of block length n = 2m − 1,
we began by selecting a primitive element in GF(2m) and then finding the minimal
polynomials of αi for 1 ≤ i ≤ 2t . The notion of the minimal polynomial as defined
in Section 7.1–1 was a special case of the general notion of minimal polynomial with
respect to a subfield. We defined the minimal of β ∈ GF(2m) as a polynomial of lowest
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degree over GF(2), where one of its roots is β. This is the definition of the minimal
polynomial with respect to GF(2). If we drop the restriction that the minimal polynomial
be defined over GF(2), we can have other minimal polynomials of lower degree. One
extreme case occurs when we define the minimal polynomial of β ∈ GF(2m) with
respect to GF(2m). In this case we look for a polynomial of lowest degree over GF(2m)
whose root is β. Obviously X + β is such a polynomial.

Reed-Solomon codes are t-error-correcting 2m-ary BCH codes with block length
N = 2m − 1 symbols (i.e., m N binary digits)†. To design a Reed-Solomon code, we
choose α ∈ GF(2m) to be a primitive element and find the minimal polynomials of αi ,
for 1 ≤ i ≤ 2t , over GF(2m). These polynomials are obviously of the form X + αi .
Hence, the generator polynomial g(X ) is given by

g(X ) = (X + α)(X + α2)(X + α3) · · · (X + α2t )

= X2t + g2t−1 X2t−1 + · · · + g1 X + g0

(7.11–1)

where gi ∈ GF(2m) for 0 ≤ i ≤ 2t − 1; i.e., g(X ) is a polynomial over GF(2m). Since
αi , for 1 ≤ i ≤ 2t , are nonzero elements of GF(2m), they are all roots of X2m−1 + 1;
therefore g(X ) is a divisor of X2m−1 + 1, and it is the generator polynomial of a 2m-ary
code with block length N = 2m − 1 and N − K = 2t . Note that the weight of g(X )
cannot be less than Dmin, the minimum distance of the code, which is, by Equation 7.10–
1, at least 2t + 1. This means that none of the gi ’s in Equation 7.11–1 can be zero, and
therefore the minimum weight of the resulting code is equal to 2t + 1. Therefore, for
this code

Dmin = 2t + 1 = N − K + 1 (7.11–2)

which shows that the code is MDS.
From the discussion above, we conclude that Reed-Solomon codes are 2m-ary

(2m − 1, 2m − 2t − 1) BCH codes with minimum distance Dmin = 2t + 1, where m is
any positive integer greater than or equal to 3 and 1 ≤ t ≤ 2m−1 − 1. Equivalently, we
can define Reed-Solomon codes in terms of m and Dmin, the minimum distance of the
code, as 2m-ary BCH codes with N = 2m −1 and K = N − Dmin, where 3 ≤ Dmin ≤ n.

E X A M P L E 7.11–1. To design a triple-error-correcting Reed-Solomon code of length
n = 15, we note that N = 15 = 24 − 1. Therefore, m = 4 and t = 3. We choose
α ∈ GF(24) to be a primitive element. Using Equation 7.11–1, we obtain

g(X ) = (X + α)(X + α2)(X + α3)(X + α4)(X + α5)(X + α6)

= X6 + α10 X5 + α14 X4 + α4 X3 + α6 X2 + α9 X + α6
(7.11–3)

This is a (15, 8) triple-error-correcting Reed-Solomon code over GF(24). Codewords
of this code have a block length of 15 where each component is a 24-ary symbol. In
binary representation the codewords have length 60.

A popular Reed-Solomon code is the (255, 223) code over GF(28). This code has a
minimum distance of Dmin = 255−223+1 = 33 and is capable of correcting 16 symbol
errors. If these errors are spread, in the worst possible scenario this code is capable of

†In general, RS codes are defined on GF(pm ). For Reed-Solomon codes we denote the block length by N
(symbols) and the number of information symbols by K . The minimum distance is denoted by Dmin.
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correcting 16 bit errors. On the other hand, if these errors occur as a cluster, i.e., if we
have a burst of errors, this code can correct any burst of length 14 × 8 + 2 = 114 bits.
Some bursts of length up to 16 × 8 = 128 errors can be corrected also by this code.
That is the reason why Reed-Solomon codes are particularly attractive in channels with
burst of errors. Such channels include fading channels and storage channels in which
scratches and manufacturing imperfections usually damage a sequence of bits. Reed-
Solomon codes are also popular in concatenated coding schemes discussed later in this
chapter.

Since Reed-Solomon codes are BCH codes, any algorithm used for decoding BCH
codes can be used for decoding Reed-Solomon codes. The Berlekamp-Massey algo-
rithm, for instance, can be used for the decoding of Reed-Solomon codes. The only
difference is that after locating the errors, we also have to determine the values of the
errors. This step was not necessary in binary BCH codes since in that case the value
of any error is 1 that changes a 0 to a 1 and a 1 to a 0. In nonbinary BCH codes that is
not the case. The value of error can be any nonzero member of GF(2m) and has to be
determined. The methods used to determine the value of errors are beyond the scope
of our treatment. The interested user is referred to Lin and Costello (2004).

An interesting property of Reed-Solomon codes is that their weight enumeration
polynomial is known. In general, the weight distribution of a Reed-Solomon code with
symbols from GF(q) and with block length N = q − 1 and minimum distance Dmin is
given by

Ai =
(

N

i

)
N

i−Dmin∑
j=0

(−1) j

(
i − 1

j

)
(N + 1)i− j−Dmin, for Dmin ≤ i ≤ N (7.11–4)

A nonbinary code is particularly matched to an M-ary modulation technique for
transmitting the 2m possible symbols. Specifically, M-ary orthogonal signaling, e.g.,
M-ary FSK, is frequently used. Each of the 2m symbols in the 2m-ary alphabet is mapped
to one of the M = 2m orthogonal signals. Thus, the transmission of a codeword is
accomplished by transmitting N orthogonal signals, where each signal is selected from
the set of M = 2m possible signals.

The optimum demodulator for such a signal corrupted by AWGN consists of M
matched filters (or cross-correlators) whose outputs are passed to the decoder, either
in the form of soft decisions or in the form of hard decisions. If hard decisions are
made by the demodulator, the symbol error probability PM and the code parameters
are sufficient to characterize the performance of the decoder. In fact, the modulator,
the AWGN channel, and the demodulator form an equivalent discrete (M-ary) input,
discrete (M-ary) output, symmetric memoryless channel characterized by the transition
probabilities Pc = 1 − PM and PM/(M − 1). This channel model, which is illustrated
in Figure 7.11–1, is a generalization of the BSC.

The performance of the hard decision decoder may be characterized by the follow-
ing upper bound on the codeword error probability:

Pe ≤
N∑

i=t+1

(
N

i

)
Pi

M (1 − PM )N−i (7.11–5)

where t is the number of errors guaranteed to be corrected by the code.
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FIGURE 7.11–1
An M-ary input, M-ary output, symmetric
memoryless channel.

When a codeword error is made, the corresponding symbol error probability is

Pes = 1

N

N∑
i=t+1

i

(
N

i

)
Pi

M (1 − PM )N−i (7.11–6)

Furthermore, if the symbols are converted to binary digits, the bit error probability
corresponding to Equation 7.11–6 is

Peb = 2m−1

2m − 1
Pes (7.11–7)

E X A M P L E 7.11–2. Let us evaluate the performance of an N = 25 − 1 = 31 Reed-
Solomon code with Dmin = 3, 5, 9, and 17. The corresponding values of K are 29, 27,
23, and 15. The modulation is M = 32 orthogonal FSK with noncoherent detection at
the receiver. The probability of a symbol error is given by Equation 4.5–44 and may
be expressed as

Pe = 1

M
e−γ

M∑
i=2

(−1)i

(
M

i

)
eγ / i (7.11–8)

where γ is the SNR per code symbol. By using Equation 7.11–8 in Equation 7.11–6
and combining the result with Equation 7.11–7, we obtain the bit error probability. The
results of these computations are plotted in Figure 7.11–2. Note that the more powerful
codes (large Dmin) give poorer performance at low SNR per bit than the weaker codes.
On the other hand, at high SNR, the more powerful codes give better performance.
Hence, there are crossovers among the various codes, as illustrated, for example, in
Figure 7.11–2 for the t = 1 and t = 8 codes. Crossovers also occur among the t = 1, 2,
and 4 codes at smaller values of SNR per bit. Similarly, the curves for t = 4 and 8 and
for t = 8 and 2 cross in the region of high SNR. This is the characteristic behavior for
noncoherent detection of the coded waveforms.

If the demodulator does not make a hard decision on each symbol, but instead
passes the unquantized matched filter outputs to the decoder, soft decision decoding
can be performed. This decoding involves the formation of q K = 2mK correlation
metrics, where each metric corresponds to one of the q K codewords and consists of a
sum of N matched filter outputs corresponding to the N code symbols. The matched
filter outputs may be added coherently, or they may be envelope-detected and then
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b

FIGURE 7.11–2
Performance of several N = 31, t-error-correcting
Reed-Solomon codes with 32-ary FSK modulation on an AWGN
channel (noncoherent demodulation)

added, or they may be square-law-detected and then added. If coherent detection is
used and the channel noise is AWGN, the computation of the probability of error is a
straightforward extension of the binary case considered in Section 7.4. On the other
hand, when envelope detection or square-law detection and noncoherent combining
are used to form the decision variables, the computation of the decoder performance is
considerably more complicated.

7.12
CODING FOR CHANNELS WITH BURST ERRORS

Most of the well-known codes that have been devised for increasing reliability in the
transmission of information are effective when the errors caused by the channel are
statistically independent. This is the case for the AWGN channel. However, there are
channels that exhibit bursty error characteristics. One example is the class of channels
characterized by multipath and fading, which is described in detail in Chapter 13. Signal
fading due to time-variant multipath propagation often causes the signal to fall below
the noise level, thus resulting in a large number of errors. A second example is the class
of magnetic recording channels (tape or disk) in which defects in the recording media
result in clusters of errors. Such error clusters are not usually corrected by codes that
are optimally designed for statistically independent errors.

Some of the codes designed for random error correction, i.e., nonburst errors, have
the capability of burst error correction. A notable example is Reed-Solomon codes that
can easily correct long burst of errors because such long error bursts result in a few
symbol errors that can be easily corrected. Considerable work has been done on the
construction of codes that are capable of correcting burst errors. Probably the best-
known burst error correcting codes are the subclass of cyclic codes called Fire codes,
named after P. Fire (Fire (1959)), who discovered them. Another class of cyclic codes
for burst error correction was subsequently discovered by Burton (1969).

A burst of errors of length b is defined as a sequence of b-bit errors, the first and
last of which are 1. The burst error correction capability of a code is defined as 1 less
than the length of the shortest uncorrectable burst. It is relatively easy to show that a
systematic (n, k) code, which has n − k parity check bits, can correct bursts of length
b < 
 1

2 (n − k)�.
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FIGURE 7.12–1
Block diagram of system employing interleaving for burst error channel.

An effective method for dealing with burst error channels is to interleave the coded
data in such a way that the bursty channel is transformed to a channel having independent
errors. Thus, a code designed for independent channel errors (short bursts) is used.

A block diagram of a system that employs interleaving is shown in Figure 7.12–1.
The encoded data are reordered by the interleaver and transmitted over the channel. At
the receiver, after either hard or soft decision demodulation, the deinterleaver puts the
data in proper sequence and passes them to the decoder. As a result of the interleav-
ing/deinterleaving, error bursts are spread out in time so that errors within a codeword
appear to be independent.

The interleaver can take one of two forms: a block structure or a convolutional struc-
ture. A block interleaver formats the encoded data in a rectangular array of m rows and
n columns. Usually, each row of the array constitutes a codeword of length n. An inter-
leaver of degree m consists of m rows (m codewords) as illustrated in Figure 7.12–2.
The bits are read out columnwise and transmitted over the channel. At the receiver, the
deinterleaver stores the data in the same rectangular array format, but they are read out
rowwise, one codeword at a time. As a result of this reordering of the data during trans-
mission, a burst of errors of length l = mb is broken up into m bursts of length b. Thus,
an (n, k) code that can handle burst errors of length b < 
 1

2 (n − k)� can be combined
with an interleaver of degree m to create an interleaved (mn, mk) block code that can
handle bursts of length mb. A convolutional interleaver can be used in place of a block
interleaver in much the same way. Convolutional interleavers are better matched for

FIGURE 7.12–2
A block interleaver for coded data.
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use with the class of convolutional codes that is described in Chapter 8. Convolutional
interleaver structures have been described by Ramsey (1970) and Forney (1971).

7.13
COMBINING CODES

The performance of a block code depends mainly on the number of errors it can cor-
rect, which is a function of the minimum distance of the code. For a given rate Rc, one
can design codes with different block lengths. Codes with higher block length offer
the possibility of higher minimum distances and thus higher error correction capabil-
ity. This is clearly seen from the different bounds on the minimum distance derived
in Section 7.7. The problem, however, is that the decoding complexity of a block
code generally increases with the block length, and this dependence in general is an
exponential dependence. Therefore improved performance through using block codes
is achieved at the cost of increased decoding complexity.

One approach to design block codes with long block lengths and with manageable
complexity is to begin with two or more simple codes with short block lengths and
combine them in a certain way to obtain codes with longer block length that have
better distance properties. Then some kind of suboptimal decoding can be applied to
the combined code based on the decoding algorithms of the simple constituent codes.

7.13–1 Product Codes

A simple method of combining two or more codes is described in this section. The
resulting codes are called product codes, first studied by Elias (1954). Let us assume
we have two systematic linear block codes; code Ci is an (ni , ki ) code with minimum
distance dmin i for i = 1, 2. The product of these codes is an (n1n2, k1k2) linear block
code whose bits are arranged in a matrix form as shown in Figure 7.13–1.

The k1k2 information bits are put in a rectangle with width k1 and height k2. The k1

bits in each row of this matrix are encoded using the encoder for code C1, and the k2 bits
in each column are encoded using the encoder for code C2. The (n1 −k1)×(n2 −k2) bits

k2

k1 n1 – k1

n2 – k2

FIGURE 7.13–1
The structure of a product code.
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in the lower right rectangle can be obtained either from encoding the bottom n2 − k2

rows using the encoding rule for C1 or from encoding the rightmost n1 − k1 columns
using the encoding rule for C2. It is shown in Problem 7.63 that the results of these two
approaches are the same.

The resulting code is an (n1n2, k1k2) systematic linear block code. The rate of the
product code is obviously the product of the rates of its component codes. Moreover,
it can be shown that the minimum distance of the product code is the product of the
minimum distances of the component codes, i.e., dmin = dmin 1dmin 2 (see Problem 7.64),
and hence the product code is capable of correcting

t =
⌊

dmin 1dmin 2 − 1

2

⌋
(7.13–1)

errors using a complex optimal decoding scheme.
We can design a simpler decoding scheme based on the decoding rules of the two

constituent codes as follows. Let us assume

ti =
⌊

dmin i − 1

2

⌋
, i = 1, 2 (7.13–2)

is the number of errors that code Ci can correct. Now let us assume in transmission of
the n1n2 binary digits of a codeword that fewer than (t1+1)(t2+1) errors have occurred.
Regardless of the location of errors, the number of rows of the product code shown in
Figure 7.13–1 that have more than t1 errors is less than or equal to t2, because otherwise
the total number of errors would be (t1 +1)(t2 +1) or higher. Since each row having less
than t1 + 1 errors can be fully recovered using the decoding algorithm of C1, if we do
rowwise decoding, we will have at most t2 rows decoded erroneously. This means that
after this stage of decoding the number of errors in each column cannot exceed t2, all
of which can be corrected using the decoding algorithm for C2 on columns. Therefore,
using this simple two-stage decoding algorithm, we can correct up to

τ = (t1 + 1)(t2 + 1) − 1

= t1t2 + t1 + t2
(7.13–3)

errors.

E X A M P L E 7.13–1. Consider a (255, 123) BCH code with dmin 1 = 39 and t1 = 19 and
a (15, 7) BCH code with dmin 2 = 5 and t2 = 2 (see Example 7.10–3). The product of
these codes has a minimum distance of 39×5 = 195 and can correct up to 97 errors if a
complex decoding algorithm is employed to take advantage of the full error-correcting
capability of the code. A two-stage decoding algorithm can, however, correct up to
(19 + 1)(2 + 1) − 1 = 59 errors at noticeably lower complexity.

Another decoding algorithm, similar to how a crossword puzzle is solved, can also
be used for decoding product codes. Using the row codes, we can come up with the best
guess for the bit values; and then using the column codes, we can improve these guesses.
This process can be repeated in an iterative fashion, improving the quality of the guess
in each step. This process is known as iterative decoding and is very similar to the way
a crossword puzzle is solved. To employ this decoding procedure, we need decoding
schemes for the row and column codes that are capable of providing guesses about
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each individual bit. In other words, decoding schemes with soft outputs — usually, the
likelihood values — are desirable. We will describe such decoding procedures in our
discussion of turbo codes in Chapter 8.

7.13–2 Concatenated Codes

In concatenated coding two codes, one binary and one nonbinary are concatenated such
that the codewords of the binary code are treated as symbols of the nonbinary code.
The combination of the binary channel and the binary encoder and decoder appears
as a nonbinary channel to the nonbinary encoder and decoder. The binary code that is
directly connected to the binary channel is called the inner code, and the nonbinary
code that operates on the combination of binary encoder/binary channel/binary decoder
is called the outer code.

To be more specific, let us consider the concatenated coding scheme shown in
Figure 7.13–2. The nonbinary (N , K ) code forms the outer code, and the binary code
forms the inner code. Codewords are formed by subdividing a block of kK information
bits into K groups, called symbols, where each symbol consists of k bits. The K k-bit
symbols are encoded into N k-bit symbols by the outer encoder, as is usually done
with a nonbinary code. The inner encoder takes each k-bit symbol and encodes it into
a binary block code of length n. Thus we obtain a concatenated block code having a
block length of Nn bits and containing kK information bits. That is, we have created
an equivalent (Nn, K k) long binary code. The bits in each codeword are transmitted
over the channel by means of PSK or, perhaps, by FSK.

We also indicate that the minimum distance of the concatenated code is dmin Dmin,
where Dmin is the minimum distance of the outer code and dmin is the minimum distance
of the inner code. Furthermore, the rate of the concatenated code is K k/Nn, which is
equal to the product of the two code rates.

A hard decision decoder for a concatenated code is conveniently separated into an
inner decoder and an outer decoder. The inner decoder takes the hard decisions on each
group of n bits, corresponding to a codeword of the inner code, and makes a decision on
the k information bits based on maximum-likelihood (minimum-distance) decoding.
These k bits represent one symbol of the outer code. When a block of N k-bit symbols
is received from the inner decoder, the outer decoder makes a hard decision on the
K k-bit symbols based on maximum-likelihood decoding.

FIGURE 7.13–2
A concatenated coding scheme.
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Soft decision decoding is also a possible alternative with a concatenated code.
Usually, the soft decision decoding is performed on the inner code, if it is selected to
have relatively few codewords, i.e., if 2k is not too large. The outer code is usually
decoded by means of hard decision decoding, especially if the block length is long
and there are many codewords. On the other hand, there may be a significant gain in
performance when soft decision decoding is used on both the outer and inner codes, to
justify the additional decoding complexity. This is the case in digital communications
over fading channels, as we shall demonstrate in Chapter 14.

E X A M P L E 7.13–2. Suppose that the (7, 4) Hamming code is used as the inner code in
a concatenated code in which the outer code is a Reed-Solomon code. Since k = 4, we
select the length of the Reed-Solomon code to be N = 24 − 1 = 15. The number of
information symbols K per outer codeword may be selected over the range 1 ≤ K ≤ 14
in order to achieve a desired code rate.

Concatenated codes with Reed-Solomon codes as the outer code and binary con-
volutional codes as the inner code have been widely used in the design of deep space
communication systems. More details on concatenated codes can be found in the book
by Forney (1966a).

Serial and Parallel Concatenation with Interleavers
An interleaver may be used in conjunction with a concatenated code to construct a
code with extremely long codewords. In a serially concatenated block code (SCBC),
the interleaver is inserted between the two encoders as shown in Figure 7.13–3. Both
codes are linear systematic binary codes. The outer code is a (p, k) code, and the inner
code is an (n, p) code. The block interleaver length is selected as N = mp, where m is
a usually large positive integer that determines the overall block length. The encoding
and interleaving are performed as follows: mk information bits are encoded by the
outer encoder to produce mp coded bits. These N = mp coded bits are read out of the
interleaver in different order according to the permutation algorithm of the interleaver.
The mp bits at the output of the interleaver are fed to the inner encoder in blocks of
length p. Therefore, a block of mk information bits is encoded by the SCBC into a
block of mn bits. The resulting code rate is Rs

c = k/n, which is the product of the code
rates of the inner and outer encoders. However, the block length of the SCBC is nm
bits, which can be significantly larger than the block length of the conventional serial
concatenation of the block codes without the use of the interleaver.

The block interleaver is usually implemented as a pseudorandom interleaver, i.e.,
an interleaver that pseudorandomly permutes the block of N bits. For purposes of
analyzing the performance of SCBC, such an interleaver may be modeled as a uniform

FIGURE 7.13–3
Serial concatenated block code with interleaver.
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FIGURE 7.13–4
Parallel concatenated block code (PCBC) with interleaver.

interleaver, which is defined as a device that maps a given input word of weight w

into all distinct
(N

w

)
permutations with equal probability. This operation is similar to

Shannon’s random coding argument, where here the average performance is measured
over all possible interleavers of length N .

By use of interleaving, parallel concatenated block codes (PCBCs) can be con-
structed in a similar manner. Figure 7.13–4 illustrates the basic configuration of such
an encoder based on two constituent binary codes. The constituent codes may be iden-
tical or different. The two encoders are systematic, binary linear encoders, denoted as
(n1, k) and (n2, k). The pseudorandom block interleaver has length N = k, and thus
the overall PCBC has block length n1 + n2 − k and rate k/(n1 + n2 − k), since the
information bits are transmitted only once. More generally, we may encode mk bits
(m > 1) and thus use an interleaver of length N = mk. The design of interleavers
for parallel concatenated codes is considered in a paper by Daneshgaran and Mondin
(1999).

The use of an interleaver in the construction of SCBC and PCBC results in code-
words that are both large in block length and relatively sparse. Decoding of these types
of codes is generally performed iteratively, using soft-in/soft-out (SISO) maximum a
posteriori probability (MAP) algorithms. An iterative MAP decoding algorithm for
serially concatenated codes is described in the paper by Benedetto et al. (1998). Iter-
ative MAP decoding algorithms for parallel concatenated codes have been described
in a number of papers, including Berrou et al. (1993), Benedetto and Montorsi (1996),
Hagenauer et al. (1996) and in the book by Heegard and Wicker (1999). The combi-
nation of code concatenation with interleaving and iterative MAP decoding results in
performance very close to the Shannon limit at moderate error rates, such as 10−4 to
10−5 (low SNR region). More details on this type of concatenation will be given in
Chapter 8.
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7.14
BIBLIOGRAPHICAL NOTES AND REFERENCES

The pioneering work on coding and coded waveforms for digital communications was
done by Shannon (1948), Hamming (1950), and Golay (1949). These works were
rapidly followed with papers on code performance by Gilbert (1952), new codes by
Muller (1954) and Reed (1954), and coding techniques for noisy channels by Elias
(1954, 1955) and Slepian (1956). During the period 1960–1970, there were a num-
ber of significant contributions in the development of coding theory and decoding
algorithms. In particular, we cite the papers by Reed and Solomon (1960) on Reed-
Solomon codes, the papers by Hocquenghem (1959) and Bose and Ray-Chaudhuri
(1960) on BCH codes, and the Ph.D. dissertation of Forney (1966) on concatenated
codes. These works were followed by the papers of Goppa (1970, 1971) on the con-
struction of a new class of linear cyclic codes, now called Goppa codes [see also
Berlekamp (1973)], and the paper of Justesen (1972) on a constructive technique for
asymptotically good codes. During this period, work on decoding algorithms was pri-
marily focused on BCH codes. The first decoding algorithm for binary BCH codes
was developed by Peterson (1960). A number of refinements and generalizations by
Chien (1964), Forney (1965), Massey (1965), and Berlekamp (1968) led to the devel-
opment of the Berlekamp-Massey algorithm described in detail in Lin and Costello
(2004) and Wicker (1995). A treatment of Reed-Solomon codes is given in the book by
Wicker and Bhargava (1994).

In addition to the references given above on coding, decoding, and coded signal
design, we should mention the collection of papers published by the IEEE Press entitled
Key Papers in the Development of Coding Theory, edited by Berlekamp (1974). This
book contains important papers that were published in the first 25 years of the develop-
ment of coding theory. We should also cite the Special Issue on Error-Correcting Codes,
IEEE Transactions on Communications (October 1971). Finally, the survey papers by
Calderbank (1998), Costello et al. (1998), and Forney and Ungerboeck (1998) highlight
the major developments in coding and decoding over the past 50 years and include a
large number of references. Standard textbooks on this subject include those by Lin
and Costello (2004), MacWilliams and Sloane (1977), Blahut (2003), Wicker (1995),
and Berlekamp (1968).

PROBLEMS

7.1 From the definition of a Galois field GF(q) we know that {F − {0}, ·, 1} is an Abelian
group with q − 1 elements.
1. Let a ∈ {F − {0}, ·, 1} and define ai = a · a · a · · · a︸ ︷︷ ︸

i times

. Show that for some positive j

we have a j = 1 and ai �= 1 for all 0 < i < j , where j is called the order of a.
2. Show that if 0 < i < i ′ ≤ j , then ai and ai ′

are distinct elements of {F − {0}, ·, 1}.
3. Show that Ga = {a, a2, a3, . . . , a j } is an Abelian group under multiplication; Ga is

called the cyclic subgroup of element a.



Proakis-27466 book September 26, 2007 22:20

Chapter Seven: Linear Block Codes 483

4. Let us assume that a b ∈ {F − {0}, ·, 1} exists such that b /∈ Ga . Show that Gba =
{b · a, b · a2, . . . , b · a j } is an Abelian group and Ga ∩ Gba = ∅. Therefore, if such a b
exists, the number of elements in {F − {0}, ·, 1} is at least 2 j , and Gba is called a coset
of Ga .

5. Use the argument of part 4 to prove that the nonzero elements of GF(q) can be written
as the union of disjoint cosets, and hence the order of any element of GF(q) divides
q − 1.

6. Conclude that for any nonzero β ∈ GF(q) we have βq−1 = 1.

7.2 Use the result of Problem 7.1 to prove that the q elements of GF(q) are the roots of equation

Xq − X = 0

7.3 Construct the addition and multiplication tables of GF(5).

7.4 List all prime polynomials of degrees 2 and 3 over GF(3). Using a prime polynomial of
degree 2, generate the multiplication table of GF(9).

7.5 List all primitive elements in GF(8). How many primitive elements are in GF(32)?

7.6 Let α ∈ GF(24) be a primitive element. Show that {0, 1, α5, α10} is a field. From this
conclude that GF(4) is a subfield of GF(16).

7.7 Show that GF(4) is not a subfield of GF(32).

7.8 Using Table 7.1–5, generate GF(32) and express its elements in polynomials, power, and
vector form. Find the minimal polynomials of β = α3 and γ = α3 + α, where α is a
primitive element.

7.9 Let β ∈ GF(pm) be a nonzero element. Show that

p∑
i=1

β = 0

and
m∑

i=1

β �= 0

for all 0 < m < p.

7.10 Let α, β ∈ GF(pm). Show that

(α + β)p = α p + β p

7.11 Show that any binary linear block code of length n has exactly 2k codewords for some
integer k ≤ n.

7.12 Prove that the Hamming distance between two sequences of length n, denoted by dH (x, y),
satisfies the following properties:
1. dH (x, y) = 0 if and only if x = y
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2. dH (x, y) = dH ( y, x)
3. dH (x, z) ≤ dH (x, y) + dH ( y, z)
These properties show that dH is a metric.

7.13 The generator matrix for a linear binary code is

G =
⎡
⎣

0 0 1 1 1 0 1

0 1 0 0 1 1 1

1 0 0 1 1 1 0

⎤
⎦

a. Express G in systematic [I |P] form.
b. Determine the parity check matrix H for the code.
c. Construct the table of syndromes for the code.
d. Determine the minimum distance of the code.
e. Demonstrate that the codeword c corresponding to the information sequence 101 satisfies

cH t = 0.

7.14 A code is self-dual if C = C⊥. Show that in a self-dual code the block length is always
even and the rate is 1

2 .

7.15 Consider a linear block code with codewords {0000, 1010, 0101, 1111}. Find the dual of
this code and show that this code is self-dual.

7.16 List the codewords generated by the matrices given in Equations 7.9–13 and 7.9–15, and
thus demonstrate that these matrices generate the same set of codewords.

7.17 Determine the weight distribution of the (7, 4) Hamming code, and check your result with
the list of codewords given in Table 7.9–2.

7.18 Show that for binary orthogonal signaling, for instance, orthogonal BFSK, we have
� = e−Ec/2N0 , where � is defined by Equation 7.2–36.

7.19 Find the generator and the parity check matrices of a second-order (r = 2) Reed-Muller
code with block length n = 16. Show that this code is the dual of a first-order Reed-Muller
code with n = 16.

7.20 Show that repetition codes whose block length is a power of 2 are Reed-Muller codes of
order r = 0.

7.21 When an (n, k) Hadamard code is mapped into waveforms by means of binary PSK, the
corresponding M = 2k waveforms are orthogonal. Determine the bandwidth expansion
factor for the M orthogonal waveforms, and compare this with the bandwidth requirements
of orthogonal FSK detected coherently.

7.22 Show that the signaling waveforms generated from a maximum-length shift register code
by mapping each bit in a codeword into a binary PSK signal are equicorrelated with
correlation coefficient ρr = −1/(M − 1), i.e., the M waveforms form a simplex set.

7.23 Using the generator matrix of a (2m − 1, m) maximum-length code as defined in
Section 7.3–3, do the following.
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a. Show that maximum-length codes are constant-weight codes; i.e., all nonzero
codewords of a (2m − 1, m) maximum-length code have weight 2m−1.

b. Show that the weight distribution function of a maximum-length code is given by
Equation 7.3–4.

c. Use the MacWilliams identity to determine the weight distribution function of a
(2m − 1, 2m − 1 − m) Hamming code as the dual to a maximum-length code.

7.24 Compute the error probability obtained with a (7, 4) Hamming code on an AWGN channel,
for both hard decision and soft decision decoding. Use Equations 7.4–18, 7.4–19, 7.5–6,
and 7.5–18.

7.25 Show that when a binary sequence x of length n is transmitted over a BSC with crossover
probability p, the probability of receiving y, which is at Hamming distance d from x, is
given by

P( y|x) = (1 − p)n

(
p

1 − p

)d

From this conclude that if p < 1
2 , P( y|x) is a decreasing function of d and hence

ML decoding is equivalent to minimum-Hamming-distance decoding. What happens if
p > 1

2 ?

7.26 Using a symbolic computation program (e.g., Mathematica or Maple), find the weight
enumeration polynomial for a (15, 11) Hamming code. Plot the probability of decoding
error (when this code is used for error correction) and undetected error (when the code
used for error detection) as a function of the channel error probability p in the range
10−6 ≤ p ≤ 10−1.

7.27 By using a computer find the number of codewords of weight 34 in a (63, 57) Hamming
code.

7.28 Prove that if the sum of two error patterns e1 and e2 is a valid codeword c j , then each error
pattern has the same syndrome.

7.29 Prove that any two n-tuples in the same row of a standard array add to produce a valid
codeword.

7.30 Prove that
1. Elements of the standard array of a linear block code are distinct.
2. Two elements belonging to two distinct cosets of a standard array have distinct

syndromes.

7.31 A (k + 1, k) block code is generated by adding 1 extra bit to each information sequence of
length k such that the overall parity of the code (i.e., the number of 1s in each codeword) is
an odd number. Two students, A and B, make the following arguments on error detection
capability of this code.
1. Student A: Since the the weight of each codeword is odd, any single error changes the

weight to an even number. Hence, this code is capable of detecting any single error.
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2. Student B: The all-zero information sequence 00 · · · 0︸ ︷︷ ︸
k

will be encoded by adding

one extra 1 to generate the codeword 00 · · · 0︸ ︷︷ ︸
k

1. This means that there is at least one

codeword of weight 1 in this code. Therefore, dmin = 1, and since any code can detect
at most dmin − 1 errors, and for this code dmin − 1 = 0, this code cannot detect any
errors.

Which argument do you agree with and why? Give your explanation in one short paragraph.

7.32 The parity check matrix of a linear block code is given below:

H =

⎡
⎢⎢⎣

1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0
1 1 1 0 0 0 0 1

⎤
⎥⎥⎦

1. Determine the generator matrix for this code in the systematic form.
2. How many codewords are in this code? What is the dmin for this code?
3. What is the coding gain for this code (soft decision decoding and BPSK modulation

over an AWGN channel are assumed)?
4. Using hard decision decoding, how many errors can this code correct?
5. Show that any two codewords of this code are orthogonal, and in particular any codeword

is orthogonal to itself.

7.33 A code C consists of all binary sequences of length 6 and weight 3.
1. Is this code a linear block code? Why?
2. What is the rate of this code? What is the minimum distance of this code? What is the

minimum weight for this code?
3. If the code is used for error detection, how many errors can it detect?
4. If the code is used on a binary symmetric channel with crossover probability of p, what

is the probability that an undetectable error occurs?
5. Find the smallest linear block code C1 such that C ⊆ C1 (by the smallest code we mean

the code with the fewest codewords).

7.34 A systematic (6, 3) code has the generator matrix

G =
⎡
⎣

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

⎤
⎦

Construct the standard array and determine the correctable error patterns and their corre-
sponding syndromes.

7.35 Construct the standard array for the (7, 3) code with generator matrix

G =
⎡
⎣

1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

⎤
⎦

and determine the correctable patterns and their corresponding syndromes.
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7.36 A (6, 3) systematic linear block code encodes the information sequence x = (x1, x2, x3)
into codeword c = (c1, c2, c3, c4, c5, c6), such that c4 is a parity check on c1 and c2, to
make the overall parity even (i.e., c1 ⊕ c2 ⊕ c4 = 0). Similarly c5 is a parity check on c2

and c3, and c6 is a parity check on c1 and c3.
1. Determine the generator matrix of this code.
2. Find the parity check matrix for this code.
3. Using the parity check matrix, determine the minimum distance of this code.
4. How many errors is this code capable of correcting?
5. If the received sequence (using hard decision decoding) is y = 100000, what is the

transmitted sequence using a maximum-likelihood decoder? (Assume that the crossover
probability of the channel is less than 1

2 .)

7.37 C is a (6, 3) linear block code whose generator matrix is given by

G =
⎡
⎣

1 1 1 1 0 0

0 0 1 1 1 1

1 1 1 1 1 1

⎤
⎦

1. What rate, minimum distance, and the coding gain can C provide in soft decision
decoding when BPSK is used over an AWGN channel?

2. Can you suggest another (6, 3) LBC that can provide a better coding gain? If the answer
is yes, what is its generator matrix and the resulting coding gain? If the answer is no,
why?

3. Suggest a parity check matrix H for C.

7.38 Prove that if C is MDS, its dual C⊥ is also MDS.

7.39 Let n and t be positive integers such that n > 2t ; hence t
n < 1

2 .
1. Show that for any λ > 0 we have

2λ(n−t)
t∑

i=0

(
n

i

)
≤

n∑
i=n−t

2λi

(
n

i

)
≤ (1 + 2λ)n

2. Assuming p = t/n in part 1, show that

n∑
i=0

(
n

i

)
≤ (2−λ(1−p) + 2λp)n

3. By choosing λ = log2
1−p

p show that

n∑
i=0

(
n

i

)
≤ 2nHb(p)

4. Using Stirling’s approximation that states that

n! =
√

2πn
(n

e

)n
eλn
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where 1
12n+1 < λn < 1

12n , show that for large n and t such that t
n < 1

2 we have

t∑
i=0

(
n

i

)
≈ 2nHb( t

n )

7.40 Let C denote an (n, k) linear block code with minimum distance dmin.
a. Let C denote a 2k × n matrix whose rows are all the codewords of C. Show that all

columns of C have equal weight and this weight is 2k−1.
b. Conclude that the total weight of the codewords of C is given by

dtotal =
2k∑

m=1

w (cm) = n2k−1

c. From part (b) conclude that the Plotkin bound

dmin ≤ n 2k−1

2k − 1

7.41 Construct an extended (8, 4) code from the (7, 4) Hamming code by specifying the gener-
ator matrix and the parity check matrix.

7.42 The polynomial

g(X ) = X4 + X + 1

is the generator for the (15, 11) Hamming binary code.
a. Determine a generator matrix G for this code in systematic form.
b. Determine the generator polynomial for the dual code.

7.43 For the (7, 4) cyclic Hamming code with generator polynomial g(X ) = X3 + X2 + 1,
construct an (8, 4) extended Hamming code and list all the codewords. What is dmin for
the extended code?

7.44 An (8, 4) linear block code is constructed by shortening a (15, 11) Hamming code generated
by the generator polynomial g(X ) = X4 + X + 1.
a. Construct the codewords of the (8, 4) code and list them.
b. What is the minimum distance of the (8, 4) code?

7.45 The polynomial X15 + 1 when factored yields

X15 + 1 = (X4 + X3 + 1)(X4 + X3 + X2 + X + 1)(X4 + X + 1)(X2 + X + 1)(X + 1)

a. Construct a systematic (15, 5) code using the generator polynomial

g(X ) = (X4 + X3 + X2 + X + 1)(X4 + X + 1)(X2 + X + 1)

b. What is the minimum distance of the code?
c. How many random errors per codeword can be corrected?
d. How many errors can be detected by this code?
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e. List the codewords of a (15, 2) code constructed from the generator polynomial

g(X ) = X15 + 1

X2 + X + 1

and determine the minimum distance.

7.46 Construct the parity check matrices H1 and H2 corresponding to the generator matrices
G1 and G2 given by Equations 7.9–12 and 7.9–13, respectively.

7.47 Determine the correctable error patterns (of least weight) and their syndromes for the
systematic (7, 4) cyclic Hamming code.

7.48 Let g(X ) = X8 + X6 + X4 + X2 + 1 be a polynomial over the binary field.
a. Find the lowest-rate cyclic code with generator polynomial g(X ). What is the rate of

this code?
b. Find the minimum distance of the code found in (a).
c. What is the coding gain for the code found in (a)?

7.49 The polynomial g(X ) = X + 1 over the binary field is considered.
a. Show that this polynomial can generate a cyclic code for any choice of n. Find the

corresponding k.
b. Find the systematic form of G and H for the code generated by g(X ).
c. Can you say what type of code this generator polynomial generates?

7.50 Design a (6, 2) cyclic code by choosing the shortest possible generator polynomial.
a. Determine the generator matrix G (in the systematic form) for this code, and find all

possible codewords.
b. How many errors can be corrected by this code?

7.51 Let C1 and C2 denote two cyclic codes with the same block length n, with generator
polynomials g1(X ) and g2(X ), and with minimum distances d1 and d2, respectively. Define
Cmax = C1 ∪ C2 and Cmin = C1 ∩ C2.
1. Is Cmax a cyclic code? Why? If yes, what is its generator polynomial and its minimum

distance?
2. Is Cmin a cyclic code? Why? If yes, find its generator polynomial. What can you say

about its minimum distance?

7.52 We know that cyclic codes for all possible values of (n, k) do not exist.
1. Give an example of an (n, k) pair for which no cyclic code exists (k < n).
2. How many (10, 2) cyclic codes do exist? Determine the generator polynomial of one

such code.
3. Determine the minimum distance of the code in part 2.
4. How many errors can the code in part 2 correct?
5. If this code is employed for transmission over a channel which uses binary antipodal

signaling with hard decision decoding and the SNR per bit of the channel is γb = 3 dB,
determine an upper bound on the error probability of the system.

7.53 What are the possible rates for cyclic codes with block length 23? List all possible generator
polynomials and specify the generator polynomial of the (23, 12) Golay code.
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7.54 Let s(X ) denote the syndrome corresponding to error sequence e(X ) in an (n, k) cyclic
code with generator polynomial g(X ). Show that the syndrome corresponding to e(1)(X ),
the right cyclic shift of e(X ), is s(1)(X ), defined by

s(1)(X ) = Xs(X ) mod g(X )

7.55 Is the following statement true or false? If it is true, prove it; and if it is false, give a
counterexample: The minimum weight of a cyclic code is equal to the number of nonzero
coefficients of its generator polynomial.

7.56 Determine the generator polynomial and the rate of a double-error-correcting BCH code
with block length n = 31.

7.57 In the BCH code designed in Problem 7.56 the received sequence is

r = 0000000000000000000011001001001

Using the Berlekamp-Massey algorithm, detect the error locations.

7.58 Solve Problem 7.57 when the received sequence is

r = 1110000000000000000011101101001

7.59 Beginning with a (15, 7) BCH code, construct a shortened (12, 4) code. Give the generator
matrix for the shortened code.

7.60 Determine the generator polynomial and the rate of a double-error-correcting Reed-
Solomon code with block length n = 7.

7.61 Determine the generator polynomial and the rate of a triple-error-correcting Reed-Solomon
code with block length n = 63. How many codewords does this code have?

7.62 What is the weight distribution function of the Reed-Solomon code designed in
Problem 7.60?

7.63 Prove that in the product code shown in Figure 7.13–1 the (n1 − k1) × (n2 − k2) bits in the
lower right corner can be obtained as either the parity checks on the rows or parity checks
on the columns.

7.64 Prove that the minimum distance of a product code is the product of the minimum distances
of the two constituent codes.
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Trellis and Graph Based Codes

Linear block codes were studied in detail in Chapter 7. These codes are mainly used
with hard decision decoding that employs the built-in algebraic structure of the code
based on the properties of finite fields. Hard decision decoding of these codes results in
a binary symmetric channel model consisting of the binary modulator, the waveform
channel, and the optimum binary detector. The decoder for these codes tries to find the
codeword at the minimum Hamming distance from the output of the BSC. The goal in
designing good linear block codes is to find the code with highest minimum distance
for a given n and k.

In this chapter we introduce another class of codes whose structure is more con-
veniently described in terms of trellises or graphs. We will see that for this family of
codes, soft decision decoding is possible, and in some cases performance very close to
channel capacity is achievable.

8.1
THE STRUCTURE OF CONVOLUTIONAL CODES

A convolutional code is generated by passing the information sequence to be transmitted
through a linear finite-state shift register. In general, the shift register consists of K
(k-bit) stages and n linear algebraic function generators, as shown in Figure 8.1–1. The
input data to the encoder, which is assumed to be binary, is shifted into and along the
shift register k bits at a time. The number of output bits for each k-bit input sequence is
n bits. Consequently, the code rate is defined as Rc = k/n, consistent with the definition
of the code rate for a block code. The parameter K is called the constraint length of
the convolution code.†

†In many cases, the constraint length of the code is given in bits rather than k-bit bytes. Hence, the shift
register may be called an L-stage shift register, where L = K k. Furthermore, L may not be a multiple of
k, in general.

491
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FIGURE 8.1–1
Convolutional encoder.

One method for describing a convolutional code is to give its generator matrix, just
as we did for block codes. In general, the generator matrix for a convolutional code
is semi-infinite since the input sequence is semi-infinite in length. As an alternative to
specifying the generator matrix, we shall use a functionally equivalent representation
in which we specify a set of n vectors, one vector for each of the n modulo-2 adders.
Each vector has K k dimensions and contains the connections of the encoder to that
modulo-2 adder. A 1 in the i th position of the vector indicates that the corresponding
stage in the shift register is connected to the modulo-2 adder, and a 0 in a given position
indicates that no connection exists between that stage and the modulo-2 adder.

To be specific, let us consider the binary convolutional encoder with constraint
length K = 3, k = 1, and n = 3, which is shown in Figure 8.1–2. Initially, the shift
register is assumed to be in the all-zeros state. Suppose the first input bit is a 1. Then the
output sequence of 3 bits is 111. Suppose the second bit is a 0. The output sequence will
then be 001. If the third bit is a 1, the output will be 100, and so on. Now, suppose we
number the outputs of the function generators that generate each 3-bit output sequence
as 1, 2, and 3, from top to bottom, and similarly number each corresponding function
generator. Then, since only the first stage is connected to the first function generator
(no modulo-2 adder is needed), the generator is

g1 = [100]

The second function generator is connected to stages 1 and 3. Hence

g2 = [101]

FIGURE 8.1–2
K = 3, k = 1, n = 3 convolutional encoder.
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Finally,

g3 = [111]

The generators for this code are more conveniently given in octal form as (4, 5, 7). We
conclude that when k = 1, we require n generators, each of dimension K to specify
the encoder.

It is clear that g1, g2, and g3 are the impulse responses from the encoder input to
the three outputs. Then if the input to the encoder is the information sequence u, the
three outputs are given by

c(1) = u � g1

c(2) = u � g2

c(3) = u � g3

(8.1–1)

where � denotes the convolution operation. The corresponding code sequence c is the
result of interleaving c(1), c(2), and c(3) as

c =
(

c(1)
1 , c(2)

1 , c(3)
1 , c(1)

2 , c(2)
2 , c(3)

2 , . . .
)

(8.1–2)

The convolutional operation is equivalent to multiplication in the transform domain.
We define the D transform† of u as

u(D) =
∞∑

i=0

ui Di (8.1–3)

and the transfer function for the three impulse responses g1, g2, and g3 as

g1(D) = 1

g2(D) = 1 + D2

g3(D) = 1 + D + D2

(8.1–4)

The output transforms are then given by

c(1)(D) = u(D)g1(D)

c(2)(D) = u(D)g2(D)

c(3)(D) = u(D)g3(D)

(8.1–5)

and the transform of the encoder output c is given by

c(D) = c(1)(D3) + Dc(2)(D3) + D2c(3)(D3) (8.1–6)

E X A M P L E 8.1–1. Let the sequence u = (100111) be the input sequence to the convo-
lutional encoder shown in Figure 8.1–2. We have

u(D) = 1 + D3 + D4 + D5

†Using the D transform is common in coding literature where D denotes the unit delay introduced by
one memory element in the shift register. By substituting D = z−1, the D transform becomes the familiar
z transform.
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FIGURE 8.1–3
K = 2, k = 2, n = 3 convolutional encoder.

and

c(1)(D) = (1 + D3 + D4 + D5)(1) = 1 + D3 + D4 + D5

c(2)(D) = (1 + D3 + D4 + D5)(1 + D2) = 1 + D2 + D3 + D4 + D6 + D7

c(3)(D) = (1 + D3 + D4 + D5)(1 + D + D2) = 1 + D + D2 + D3 + D5 + D7

and

c(D) = c(1)(D3) + Dc(2)(D3) + D2c(3)(D3)

= 1 + D + D2 + D5 + D7 + D8 + D9 + D10 + D11 + D12 + D13 + D15

+ D17 + D19 + D22 + D23

corresponding to the code sequence

c = (111001011111110101010011)

For a rate k/n binary convolutional code with k > 1 and constraint length K ,
the n generators are K k-dimensional vectors, as stated above. The following example
illustrates the case in which k = 2 and n = 3.

E X A M P L E 8.1–2. Consider the rate 2/3 convolutional encoder illustrated in Fig-
ure 8.1–3. In this encoder, 2 bits at a time are shifted into it, and 3 output bits are
generated. The generators are

g1 = [1011], g2 = [1101], g3 = [1010]

In octal form, these generators are (13, 15, 12).

The code shown in Figure 8.1–3 can be also realized by the diagram shown in
Figure 8.1–4. In this realization, instead a single shift register of length 4, two shift
registers each of length 2 are employed. The information sequence u is split into two
substreams u(1) and u(2) using a serial-to-parallel converter. Each of the two substreams

�

�

�u

u(1)

u(2)

c(1)

c(2)

c(3)

c

FIGURE 8.1–4
Double shift register implementation of
the convolutional encoder shown in
Figure 8.1–3.
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is the input to one of the two shift registers. At the output, the three generated sequences
c(1), c(2), and c(3) are interleaved to generate the code sequence c. In general, instead of
one shift register with length L = K k, we can use a parallel implementation of k shift
registers each of length K .

In the implementation shown in Figure 8.1–4, the encoder has two input sequences
u(1) and u(2) and three output sequences c(1), c(2), and c(3). The encoder thus can be
described in terms of six impulse responses, and hence six transfer functions which are
the D transforms of the impulse responses. If we denote by g( j)

i the impulse response
from input stream u(i) to the output stream c( j), in the encoder depicted in Figure 8.1–4
we have

g(1)
1 = [0 1] g(1)

2 = [1 1]

g(2)
1 = [1 1] g(2)

2 = [1 0]

g(3)
1 = [0 0] g(3)

2 = [1 1]

(8.1–7)

and the transfer functions are

g(1)
1 (D) = D g(1)

2 (D) = 1 + D

g(2)
1 (D) = 1 + D g(2)

2 (D) = 1

g(3)
1 (D) = 0 g(3)

2 (D) = 1 + D

(8.1–8)

From the transfer functions and the D transform of the input sequences we obtain
the D transform of the three output sequences as

c(1)(D) = u(1)(D)g(1)
1 (D) + u(2)(D)g(1)

2 (D)

c(2)(D) = u(1)(D)g(2)
1 (D) + u(2)(D)g(2)

2 (D)

c(3)(D) = u(1)(D)g(3)
1 (D) + u(2)(D)g(3)

2 (D)

(8.1–9)

and finally

c(D) = c(1)(D3) + Dc(2)(D3) + D2c(3)(D3) (8.1–10)

Equation 8.1–9 can be written in a more compact way by defining

u(D) = [ u(1)(D) u(2)(D) ] (8.1–11)

and

G(D) =
[

g(1)
1 (D) g(2)

1 (D) g(3)
1 (D)

g(1)
2 (D) g(2)

2 (D) g(3)
2 (D)

]
(8.1–12)

By these definitions Equation 8.1–9 can be written as

c(D) = u(D)G(D) (8.1–13)
where

c(D) = [ c(1)(D) c(2)(D) c(3)(D) ] (8.1–14)

In general, matrix G(D) is a k × n matrix whose elements are polynomials in
D with degree at most K − 1. This matrix is called the transform domain generator
matrix of the convolutional code. For the code whose encoder is shown in Figure 8.1–4
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we have

G(D) =
[

D 1 + D 0

1 + D 1 1 + D

]
(8.1–15)

and for the convolutional code shown in Figure 8.1–2 we have

G(D) = [ 1 D2 + 1 D2 + D + 1 ] (8.1–16)

8.1–1 Tree, Trellis, and State Diagrams

There are three alternative methods that are often used to describe a convolutional code.
These are the tree diagram, the trellis diagram, and the state diagram. For example,
the tree diagram for the convolutional encoder shown in Figure 8.1–2 is illustrated in
Figure 8.1–5. Assuming that the encoder is in the all-zeros state initially, the diagram
shows that if the first input bit is a 0, the output sequence is 000 and if the first bit is a 1,
the output sequence is 111. Now, if the first input bit is a 1 and the second bit is a 0, the
second set of 3 output bits is 001. Continuing through the tree, we see that if the third bit
is a 0, then the output is 011, while if the third bit is a 1, then the output is 100. Given that
a particular sequence has taken us to a particular node in the tree, the branching rule is
to follow the upper branch if the next input bit is a 0 and the lower branch if the bit is a 1.
Thus, we trace a particular path through the tree that is determined by the input sequence.

Close observation of the tree that is generated by the convolutional encoder shown
in Figure 8.1–5 reveals that the structure repeats itself after the third stage. This behavior
is consistent with the fact that the constraint length K = 3. That is, the 3-bit output
sequence at each stage is determined by the input bit and the 2 previous input bits, i.e.,
the 2 bits contained in the first two stages of the shift register. The bit in the last stage of
the shift register is shifted out at the right and does not affect the output. Thus we may
say that the 3-bit output sequence for each input bit is determined by the input bit and
the four possible states of the shift register, denoted as a = 00, b = 01, c = 10, d = 11.

FIGURE 8.1–5
Tree diagram for rate 1/3, K = 3 convolutional code.



Proakis-27466 book September 26, 2007 22:28

Chapter Eight: Trellis and Graph Based Codes 497

FIGURE 8.1–6
Trellis diagram for rate 1/3, K = 3 convolutional code.

If we label each node in the tree to correspond to the four possible states in the shift
register, we find that at the third stage there are two nodes with label a, two with label
b, two with label c, and two with label d. Now we observe that all branches emanating
from two nodes having the same label (same state) are identical in the sense that they
generate identical output sequences. This means that the two nodes having the same
label can be merged. If we do this to the tree shown in Figure 8.1–5, we obtain another
diagram, which is more compact, namely, a trellis. For example, the trellis diagram for
the convolutional encoder of Figure 8.1–2 is shown in Figure 8.1–6. In drawing this
diagram, we use the convention that a solid line denotes the output generated by the
input bit 0 and a dotted line the output generated by the input bit 1. In the example being
considered, we observe that, after the initial transient, the trellis contains four nodes at
each stage, corresponding to the four states of the shift register, a, b, c, and d. After the
second stage, each node in the trellis has two incoming paths and two outgoing paths.
Of the two outgoing paths, one corresponds to the input bit 0 and the other to the path
followed if the input bit is a 1.

Since the output of the encoder is determined by the input and the state of the
encoder, an even more compact diagram than the trellis is the state diagram. The
state diagram is simply a graph of the possible states of the encoder and the possible
transitions from one state to another. For example, the state diagram for the encoder
shown in Figure 8.1–2 is illustrated in Figure 8.1–7. This diagram shows that the
possible transitions are

a
0−→a, a

1−→c, b
0−→a, b

1−→c, c
0−→b, c

1−→d, d
0−→b, d

1−→d

where α
1−→β denotes the transition from state α to β when the input bit is a 1. The

3 bits shown next to each branch in the state diagram represent the output bits. A dotted
line in the graph indicates that the input bit is a 1, while the solid line indicates that the
input bit is a 0.

E X A M P L E 8.1–3. Let us consider the k = 2, rate 2/3 convolutional code described in
Example 8.1–2 and shown in Figure 8.1–3. The first two input bits may be 00, 01, 10,
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FIGURE 8.1–7
State diagram for rate 1/3, K = 3
convolutional code.

or 11. The corresponding output bits are 000, 010, 111, 101. When the next pair of input
bits enters the encoder, the first pair is shifted to the second stage. The corresponding
output bits depend on the pair of bits shifted into the second stage and the new pair
of input bits. Hence, the tree diagram for this code, shown in Figure 8.1–8, has four
branches per node, corresponding to the four possible pairs of input symbols.

FIGURE 8.1–8
Tree diagram for K = 2, k = 2, n = 3
convolutional code.
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FIGURE 8.1–9
Trellis diagram for K = 2, k = 2, n = 3 convolutional code.

Since the constraint length of the code is K = 2, the tree begins to repeat after
the second stage. As illustrated in Figure 8.1–8, all the branches emanating from nodes
labeled a (state a) yield identical outputs.

By merging the nodes having identical labels, we obtain the trellis, which is shown
in Figure 8.1–9. Finally, the state diagram for this code is shown in Figure 8.1–10.

To generalize, we state that a rate k/n, constraint length K , convolutional code is
characterized by 2k branches emanating from each node of the tree diagram. The trellis
and the state diagrams each have 2k(K−1) possible states. There are 2k branches entering
each state and 2k branches leaving each state (in the trellis and tree, this is true after the
initial transient). The three types of diagrams described above are also used to represent
nonbinary convolutional codes. When the number of symbols in the code alphabet is
q = 2k, k > 1, the resulting nonbinary code may also be represented as an equivalent
binary code. The following example considers a convolutional code of this type.

E X A M P L E 8.1–4. Let us consider the convolutional code generated by the encoder
shown in Figure 8.1–11. This code may be described as a binary convolutional code
with parameters K = 2, k = 2, n = 4, Rc = 1/2 and having the generators

g1 = [1010], g2 = [0101], g3 = [1110], g4 = [1001]

Except for the difference in rate, this code is similar in form to the rate 2/3, k = 2
convolutional code considered in Example 8.1–2. Alternatively, the code generated by
the encoder in Figure 8.1–11 may be described as a nonbinary (q = 4) code with one
quaternary symbol as an input and two quaternary symbols as an output. In fact, if the
output of the encoder is treated by the modulator and demodulator as q-ary (q = 4)
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FIGURE 8.1–10
State diagram for K = 2, k = 2, n = 3 convolutional code.

symbols that are transmitted over the channel by means of some M-ary (M = 4)
modulation technique, the code is appropriately viewed as nonbinary. In any case, the
tree, the trellis, and the state diagrams are independent of how we view the code. That
is, this particular code is characterized by a tree with four branches emanating from
each node, or a trellis with four possible states and four branches entering and leaving
each state, or, equivalently, by a state diagram having the same parameters as the trellis.

8.1–2 The Transfer Function of a Convolutional Code

We have seen in Section 7.2–3 that the distance properties of block codes can be
expressed in terms of the weight distribution, or weight enumeration polynomial of

FIGURE 8.1–11
K = 2, k = 2, n = 4 convolutional
encoder.
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the code. The weight distribution polynomial can be used to find performance bounds
for linear block codes as given by Equations 7.2–39, 7.2–48, 7.4–4, and 7.5–17. The
distance properties and the error rate performance of a convolutional code can be
similarly obtained from its state diagram. Since a convolutional code is linear, the set of
Hamming distances of the code sequences generated up to some stage in the tree, from
the all-zero code sequence, is the same as the set of distances of the code sequences
with respect to any other code sequence. Consequently, we assume without loss of
generality that the all-zero code sequence is the input to the encoder. Therefore, instead
of studying distance properties of the code we will study the weight distribution of the
code, as we did for the case of block codes.

The state diagram shown in Figure 8.1–7 will be used to demonstrate the method
for obtaining the distance properties of a convolutional code. We assume that the
all-zero sequence is transmitted, and we focus on error events corresponding to a
departure from the all-zero path on the code trellis and returning to it for the first
time.

First, we label the branches of the state diagram as Z0 = 1, Z1, Z2, or Z3, where
the exponent of Z denotes the Hamming distance between the sequence of output bits
corresponding to each branch and the sequence of output bits corresponding to the
all-zero branch. The self-loop at node a can be eliminated, since it contributes nothing
to the distance properties of a code sequence relative to the all-zero code sequence
and does not represent a departure from the all-zero sequence. Furthermore, node a is
split into two nodes, one of which represents the input and the other the output of the
state diagram, corresponding to the departure from the all-zero path and returning to it
for the first time. Figure 8.1–12 illustrates the resulting diagram. We use this diagram,
which now consists of five nodes because node a was split into two, to write the four
state equations

Xc = Z3 Xa + Z Xb

Xb = Z Xc + Z Xd

Xd = Z2 Xc + Z2 Xd

Xe = Z2 Xb

(8.1–17)

Z3 Z2

Z2

Z2

Z

Z

Z

FIGURE 8.1–12
State diagram for rate 1/3, K = 3 convolutional code.
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The transfer function for the code is defined as T (Z ) = Xe/Xa . By solving the
state equations given above, we obtain

T (Z ) = Z6

1 − 2Z2

= Z6 + 2Z8 + 4Z10 + 8Z12 + · · ·

=
∞∑

d=6

ad Zd

(8.1–18)

where, by definition,

ad =
{

2(d−6)/2 even d
0 odd d

(8.1–19)

The transfer function for this code indicates that there is a single path of Hamming
distance d = 6 from the all-zero path that merges with the all-zero path at a given
node. From the state diagram shown in Figure 8.1–7 or the trellis diagram shown in
Figure 8.1–6, it is observed that the d = 6 path is acbe. There is no other path from node
a to node e having a distance d = 6. The second term in Equation 8.1–18 indicates that
there are two paths from node a to node e having a distance d = 8. Again, from the state
diagram or the trellis, we observe that these paths are acdbe and acbcbe. The third term
in Equation 8.1–18 indicates that there are four paths of distance d = 10, and so forth.
Thus the transfer function gives us the distance properties of the convolutional code.
The minimum distance of the code is called the minimum free distance and denoted by
dfree. In our example, dfree = 6.

The transfer function T (Z ) introduced above is similar to the the weight enumera-
tion function (WEF) A(Z ) for block codes introduced in Chapter 7. The main difference
is that in the transfer function of a convolutional code the term corresponding to the
loop at the all-zero state is eliminated; hence the all-zero code sequence is not included,
and therefore the lowest power in the transfer function is dfree. In determining A(Z )
we include the all-zero codeword, hence A(Z ) always contains a constant equal to 1.
Another difference is that in determining the transfer function of a convolutional code,
we consider only paths in the trellis that depart from the all-zero state and return to it
for the first time. Such a path is called a first event error and is used to bound the error
probability of convolutional codes.

The transfer function can be used to provide more detailed information than just
the distance of the various paths. Suppose we introduce a factor Y into all branch
transitions caused by the input bit 1. Thus, as each branch is traversed, the cumulative
exponent on Y increases by 1 only if that branch transition is due to an input bit 1.
Furthermore, we introduce a factor of J into each branch of the state diagram so that
the exponent of J will serve as a counting variable to indicate the number of branches
in any given path from node a to node e. For the rate 1/3 convolutional code in our
example, the state diagram that incorporates the additional factors of J and Y is shown
in Figure 8.1–13.
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JYZ3 JZ2

JYZ2

JYZ2

JYZ

JZ

JZ

FIGURE 8.1–13
State diagram for rate 1/3, K = 3 convolutional code.

The state equations for the state diagram shown in Figure 8.1–13 are

Xc = JY Z3 Xa + JY Z Xb

Xb = J Z Xc + J Z Xd

Xd = JY Z2 Xc + JY Z2 Xd

Xe = J Z2 Xb

(8.1–20)

Upon solving these equations for the ratio Xe/Xa , we obtain the transfer function

T (Y, Z , J ) = J 3Y Z6

1 − JY Z2(1 + J )

= J 3Y Z6 + J 4Y 2 Z8 + J 5Y 2 Z8 + J 5Y 3 Z10

+ 2J 6Y 3 Z10 + J 7Y 3 Z10 + · · ·

(8.1–21)

This form for the transfer functions gives the properties of all the paths in the
convolutional code. That is, the first term in the expansion of T (Y, Z , J ) indicates that
the distance d = 6 path is of length 3 and of the three information bits, one is a 1. The
second and third terms in the expansion of T (Y, Z , J ) indicate that of the two d = 8
terms, one is of length 4 and the second has length 5. Two of the four information
bits in the path having length 4 and two of the five information bits in the path having
length 5 are 1s. Thus, the exponent of the factor J indicates the length of the path that
merges with the all-zero path for the first time, the exponent of the factor Y indicates the
number of 1s in the information sequence for that path, and the exponent of Z indicates
the distance of the sequence of encoded bits for that path from the all-zero sequence
(the weight of the code sequence).

The factor J is particularly important if we are transmitting a sequence of finite
duration, say m bits. In such a case, the convolutional code is truncated after m nodes
or m branches. This implies that the transfer function for the truncated code is obtained
by truncating T (Y, Z , J ) at the term J m . On the other hand, if we are transmitting an
extremely long sequence, i.e., essentially an infinite-length sequence, we may wish to
suppress the dependence of T (Y, Z , J ) on the parameter J . This is easily accomplished
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by setting J = 1. Hence, for the example given above, we have

T (Y, Z ) = T (Y, Z , 1) = Y Z6

1 − 2Y Z2

= Y Z6 + 2Y 2 Z8 + 4Y 3 Z10 + · · ·

=
∞∑

d=6

adY (d−4)/2 Zd

(8.1–22)

where the coefficients {ad} are defined by Equation 8.1–19. The reader should note the
similarity between T (Y, Z ) and B(Y, Z ) introduced in Equation 7.2–25, Section 7.2–3.

The procedure outlined above for determining the transfer function of a binary
convolutional code can be applied easily to simple codes with few number of states.
For a general procedure for finding the transfer function of a convolutional code based
on application of Mason’s rule for deriving transfer function of flow graphs, the reader
is referred to Lin and Costello (2004).

The procedure outlined above can be easily extended to nonbinary codes. In the
following example, we determine the transfer function of the nonbinary convolutional
code previously introduced in Example 8.1–4.

E X A M P L E 8.1–5. The convolutional code shown in Figure 8.1–11 has the parameters
K = 2, k = 2, n = 4. In this example, we have a choice of how we label distances
and count errors, depending on whether we treat the code as binary or nonbinary.
Suppose we treat the code as nonbinary. Thus, the input to the encoder and the output
are treated as quaternary symbols. In particular, if we treat the input and output as
quaternary symbols 00, 01, 10, and 11, the distance measured in symbols between the
sequences 0111 and 0000 is 2. Furthermore, suppose that an input symbol 00 is decoded
as the symbol 11; then we have made one symbol error. This convention applied to the
convolutional code shown in Figure 8.1–11 results in the state diagram illustrated in
Figure 8.1–14, from which we obtain the state equations

Xb = Y J Z2 Xa + Y J Z Xb + Y J Z Xc + Y J Z2 Xd

Xc = Y J Z2 Xa + Y J Z2 Xb + Y J Z Xc + Y J Z Xd

Xd = Y J Z2 Xa + Y J Z Xb + Y J Z2 Xc + Y J Z Xd

Xc = J Z2(Xb + Xc + Xd )

(8.1–23)

Solution of these equations leads to the transfer function

T (Y, Z , J ) = 3Y J 2 Z4

1 − 2Y J Z − Y J Z2
(8.1–24)

This expression for the transfer function is particularly appropriate when the quaternary
symbols at the output of the encoder are mapped into a corresponding set of quaternary
waveforms sm(t), m = 1, 2, 3, 4, e.g., four orthogonal waveforms. Thus, there is a one-
to-one correspondence between code symbols and signal waveforms. Alternatively, for
example, the output of the encoder may be transmitted as a sequence of binary digits
by means of binary PSK. In such a case, it is appropriate to measure distance in terms
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JYZ

YJZ2

JYZ JYZ JYZ2JYZ2

JZ2

JZ2

JZ2

YJZ2

YJZ2 JYZ2 JYZ

JYZ

JYZ

FIGURE 8.1–14
State diagram for K = 2, k = 2, rate 1/2 nonbinary code.

of bits. When this convention is employed, the state diagram is labeled as shown in
Figure 8.1–15. Solution of the state equations obtained from this state diagram yields
a transfer function that is different from the one given in Equation 8.1–9.

8.1–3 Systematic, Nonrecursive, and Recursive Convolutional Codes

A convolutional code in which the information sequence directly appears as part of
the code sequence is called systematic. For instance the convolutional encoder given in
Figure 8.1–2 depicts the encoder for a systematic convolutional code since

c(1) = u � g1 = u (8.1–25)

This shows that the information sequence u appears as part of the code sequence c.
This can be directly seen by observing that the transform domain generator matrix of
the code given in Equation 8.1–16 has a 1 in its first column.

In general, if G(D) is of the form

G(D) = [ I k | P(D) ] (8.1–26)
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JYZ2

JYZ2
JYZ2

JZ2

JY2Z JYZ3 JYZ2

JYZ3 JZ2

JZ4JY2Z3

JY2Z

JY2Z3 JYZ

JYZ

FIGURE 8.1–15
State diagram for K = 2, k = 2, rate 1/2 convolutional code with output treated as a binary
sequence.

where P(D) is a k × (n − k) polynomial matrix, the convolutional code is systematic.
The matrix G(D) given below corresponds to a systematic convolutional code with
n = 3 and k = 2.

G(D) =
[

1 0 1 + D

0 1 1 + D + D2

]
(8.1–27)

Two convolutional encoders are called equivalent if the code sequences generated
by them are the same. Note that in the definition of equivalent convolutional encoders
it is sufficient that the code sequences be the same; it is not required that the equal code
sequences correspond to the same information sequences.

E X A M P L E 8.1–6. A convolutional code with n = 3 and k = 1 is described by

G(D) = [1 + D + D2 1 + D D] (8.1–28)

The code sequences generated by this encoder are sequences of the general form

c(D) = c(1)(D3) + Dc(2)(D3) + D2c(3)(D3) (8.1–29)
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where

c(1)(D) = (1 + D + D2)u(D)

c(2)(D) = (1 + D)u(D)

c(3)(D) = Du(D)

(8.1–30)

or

c(D) = (1 + D + D3 + D4 + D5 + D6)u(D3) (8.1–31)

The matrix G(D) can also be written as

G(D) = (1 + D + D2)
[

1 1+D
1+D+D2

D
1+D+D2

]
= (1 + D + D2)G′(D)

(8.1–32)

G(D) and G′(D) are equivalent encoders, meaning that these two matrices generate the
same set of code sequences; However, these code sequences correspond to different
information sequences. Also note that G′(D) represents a systematic convolutional
code.

It is easy to verify that the information sequences u = (1, 0, 0, 0, 0, . . . ) and
u′ = (1, 1, 1, 0, 0, 0, 0, . . . ) when applied to encoders G(D) and G′(D), respectively,
generate the same code sequence

c = (1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, . . . )

The transform domain generator matrix G′(D) given by

G′(D) = [
1 1+D

1+D+D2
D

1+D+D2

]
(8.1–33)

represents a convolutional encoder with feedback. To realize this transfer function, we
need to use shift registers with feedback as shown in Figure 8.1–16.

Convolutional codes that are realized using feedback shift registers are called re-
cursive convolutional codes (RCCs). The transform domain generator matrix for these
codes includes ratios of polynomials whereas in the case of nonrecursive convolutional
codes the elements of G(D) are polynomials. Note that in recursive convolutional codes
the existence of feedback causes the code to have infinite-length impulse responses.

Although systematic convolutional codes are desirable, unfortunately, in general
systematic nonrecursive convolutional codes cannot achieve the highest free distance
possible with nonsystematic nonrecursive convolutional codes of the same rate and
constraint length. Recursive systematic convolutional codes, however, can achieve the

�

�

�
c(2)

c(3)

c(1)

u

FIGURE 8.1–16
Realization of G′(D) using feedback shift register.
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same free distance as nonrecursive systematic codes for a given rate and constraint
length. The code depicted in Figure 8.1–16 is a recursive systematic convolutional
code (RSCC). Such codes are essential parts of turbo codes as discussed in Section 8.9.

8.1–4 The Inverse of a Convolutional Encoder and Catastrophic Codes

One desirable property of a convolutional encoder is that in the absence of noise it
is possible to recover the information sequence from the encoded sequence. In other
words it is desirable that the encoding process be invertible. Clearly, any systematic
convolutional code is invertible.

In addition to invertibility, it is desirable that the inverse of the encoder be realizable
using a feedforward network. The reason is that if in transmission of c(D) one error
occurs and the inverse function is a feedback circuit having an infinite impulse response,
then this single error, which is equivalent to an impulse, causes an infinite number of
errors to occur at the output.

For a nonsystematic convolutional code, there exists a one-to-one correspon-
dence between c(D) and c(1)(D), c(2)(D), . . . , c(n)(D) and also between u(D) and
u(1)(D), u(2)(D), . . . , u(k)(D). Therefore, to be able to recover u(D) from c(D), we
have to be able to recover u(1)(D), u(2)(D), . . . , u(k)(D) from c(1)(D), c(2)(D), . . . ,
c(n)(D). Using the relation

c(D) = u(D)G(D) (8.1–34)

we conclude that the code is invertible if G(D) is invertible. Therefore the condition
for invertibility of a convolutional code is that for the k × n matrix G(D) there must
exist an n × k inverse matrix G−1(D) such that

G(D)G−1(D) = Dl I k (8.1–35)

where l ≥ 0 is an integer representing a delay of l time units between the input and the
output.

The following result due to Massey and Sain (1968) provides the necessary and
sufficient condition under which a feedforward inverse for G(D) exists.

An (n, k) convolutional code with

G(D) = [ g1(D) g2(D) · · · gn(D) ] (8.1–36)

has a feedforward inverse with delay l if and only if for some l ≥ 0 we have

GCD {gi (D), 1 ≤ i ≤ k} = Dl (8.1–37)

where GCD denotes the greatest common divisor. For (n, k) convolutional codes the
condition is

GCD

{
�i (D), 1 ≤ i ≤

(
n

k

)}
= Dl (8.1–38)

where �i (D), 1 ≤ i ≤ (n
k

)
denote the determinants of the

(n
k

)
distinct k ×k submatrices

of G(D).
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c(2)

c(1)

u

FIGURE 8.1–17
A catastrophic convolutional encoder.

Convolutional codes for which a feedforward inverse does not exist are called
catastrophic convolutional codes. When a catastrophic convolutional code is used on a
binary symmetric channel, it is possible for a finite number of channel errors to cause an
infinite number of decoding errors. For simple codes, such a code can be identified from
its state diagram. It will contain a zero-distance path (a path with multiplier D0 = 1)
from some nonzero state back to the same state. This means that one can loop around this
zero-distance path an infinite number of times without increasing the distance relative to
the all-zero path. But, if this self-loop corresponds to the transmission of a 1, the decoder
will make an infinite number of errors. For general convolutional codes, conditions given
in Equations 8.1–37 and 8.1–38 must be satisfied for the code to be noncatastrophic.

E X A M P L E 8.1–7. Consider the k = 1, n = 2, K = 3 convolutional code shown in
Figure 8.1–17. For this code G(D) is given by

G(D) = [ 1 + D 1 + D2 ] (8.1–39)

and since GCD{1 + D, 1 + D2} = 1 + D �= Dl , the code is catastrophic. The state
diagram for this code is shown in Figure 8.1–18. The existence of the self-loop from
state 11 to itself corresponding to an input sequence of weight 1 and output sequence
of weight 0 results in catastrophic behavior for this code.

10

1100

01

0�01

1�11

0�11

1�01

1�000�00 1�100�10

FIGURE 8.1–18
The state diagram for the catastrophic code of Figure 8.1–17.
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8.2
DECODING OF CONVOLUTIONAL CODES

There exist different methods for decoding of convolutional codes. Similar to block
codes, the decoding of convolutional codes can be done either by soft decision or by hard
decision decoding. In addition, the optimal decoding of convolutional codes can employ
the maximum-likelihood or the maximum a posteriori principle. For convolutional
codes with high constraint lengths, optimal decoding algorithms become too complex.
Suboptimal decoding algorithms are usually used in such cases.

8.2–1 Maximum-Likelihood Decoding of Convolutional
Codes — The Viterbi Algorithm

In the decoding of a block code for a memoryless channel, we computed the distances
(Hamming distance for hard-decision decoding and Euclidean distance for soft-decision
decoding) between the received codeword and the 2k possible transmitted codewords.
Then we selected the codeword that was closest in distance to the received codeword.
This decision rule, which requires the computation of 2k metrics, is optimum in the
sense that it results in a minimum probability of error for the binary symmetric channel
with p < 1

2 and the additive white Gaussian noise channel.
Unlike a block code, which has a fixed length n, a convolutional encoder is basically

a finite-state machine. Hence the optimum decoder is a maximum-likelihood sequence
estimator (MLSE) of the type described in Section 4.8–1 for signals with memory.
Therefore, optimum decoding of a convolutional code involves a search through the
trellis for the most probable sequence. Depending on whether the detector following
the demodulator performs hard or soft decisions, the corresponding metric in the trel-
lis search may be either a Hamming metric or a Euclidean metric, respectively. We
elaborate below, using the trellis in Figure 8.1–6 for the convolutional code shown in
Figure 8.1–2.

Consider the two paths in the trellis that begin at the initial state a and remerge at
state a after three state transitions (three branches), corresponding to the two informa-
tion sequences 000 and 100 and the transmitted sequences 000 000 000 and 111 001
011, respectively. We denote the transmitted bits by {c jm, j = 1, 2, 3; m = 1, 2, 3},
where the index j indicates the j th branch and the index m the mth bit in that branch.
Correspondingly, we define {r jm, j = 1, 2, 3; m = 1, 2, 3} as the output of the de-
modulator. If the decoder performs hard decision decoding, the detector output for
each transmitted bit is either 0 or 1. On the other hand, if soft decision decoding is
employed and the coded sequence is transmitted by binary coherent PSK, the input to
the decoder is

r jm =
√
Ec(2c jm − 1) + n jm (8.2–1)

where n jm represents the additive noise and Ec is the transmitted signal energy for each
code bit.
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A metric is defined for the j th branch of the i th path through the trellis as the
logarithm of the joint probability of the sequence {r jm, m = 1, 2, 3} conditioned on the
transmitted sequence {c(i)

jm, m = 1, 2, 3} for the i th path. That is,

μ
(i)
j = log p

(
r j |c(i)

j

)
, j = 1, 2, 3, . . . (8.2–2)

Furthermore, a metric for the i th path consisting of B branches through the trellis is
defined as

PM (i) =
B∑

j=1

μ
(i)
j (8.2–3)

The criterion for deciding between two paths through the trellis is to select the one
having the larger metric. This rule maximizes the probability of a correct decision, or,
equivalently, it minimizes the probability of error for the sequence of information bits.
For example, suppose that hard decision decoding is performed by the demodulator,
yielding the received sequence {101 000 100}. Let i = 0 denote the three-branch all-
zero path and i = 1 the second three-branch path that begins in the initial state a and
remerges with the all-zero path at state a after three transitions. The metrics for these
two paths are

PM (0) = 6 log(1 − p) + 3 log p

PM (1) = 4 log(1 − p) + 5 log p
(8.2–4)

where p is the probability of a bit error. Assuming that p < 1
2 , we find that the metric

PM (0) is larger than the metric PM (1). This result is consistent with the observation that
the all-zero path is at Hamming distance d = 3 from the received sequence, while the
i = 1 path is at Hamming distance d = 5 from the received path. Thus, the Hamming
distance is an equivalent metric for hard decision decoding.

Similarly, suppose that soft decision decoding is employed and the channel adds
white Gaussian noise to the signal. Then the demodulator output is described statistically
by the probability density function

p
(
r jm |c(i)

jm

) = 1√
2πσ 2

exp

{
−

[
r jmc − √

E(
2c(i)

jm − 1
)]2

2σ 2

}
(8.2–5)

where σ 2 = 1
2 N0 is the variance of the additive Gaussian noise. If we neglect the terms

that are common to all branch metrics, the branch metric for the j th branch of the i th
path may be expressed as

μ
(i)
j =

n∑
m=1

r jm
(
2c(i)

jm − 1
)

(8.2–6)
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where, in our example, n = 3. Thus the correlation metrics for the two paths under
consideration are

CM (0) =
3∑

j=1

3∑
m=1

r jm
(
2c(0)

jm − 1
)

CM (1) =
3∑

j=1

3∑
m=1

r jm
(
2c(1)

jm − 1
) (8.2–7)

From the above discussion it is observed that for ML decoding we need to look for
a code sequence c(m) in the trellis T that satisfies

c(m) = max
c∈T

∑
j

log p(r j |c j ), for a general memoryless channel

c(m) = min
c∈T

∑
j

∥∥r j − c j

∥∥2
, for soft decision decoding

c(m) = min
c∈T

∑
j

dH( y j , c j ), for hard decision decoding

(8.2–8)

Note that for hard decision decoding y denotes the result of binary (hard) decisions
on the demodulator output r . Also in the hard decision case, c denotes the binary
encoded sequence whose components are 0 and 1, whereas in the soft decision case the
components of c are ±√Ec. What is clear from above is that in all cases maximum-
likelihood decoding requires finding a path in the trellis that minimizes or maximizes
an additive metric. This is done by using the Viterbi algorithm as discussed below.

We consider the two paths described above, which merge at state a after three
transitions. Note that any particular path through the trellis that stems from this node
will add identical terms to the path metrics CM (0) and CM (1). Consequently, if CM (0) >

CM (1) at the merged node a after three transitions, CM (0) will continue to be larger than
CM (1) for any path that stems from node a. This means that the path corresponding
to CM (1) can be discarded from further consideration. The path corresponding to the
metric CM (0) is the survivor. Similarly, one of the two paths that merge at state b can be
eliminated on the basis of the two corresponding metrics. This procedure is repeated at
state c and state d. As a result, after the first three transitions, there are four surviving
paths, one terminating at each state, and a corresponding metric for each survivor.
This procedure is repeated at each stage of the trellis as new signals are received in
subsequent time intervals.

In general, when a binary convolutional code with k = 1 and constraint length
K is decoded by means of the Viterbi algorithm, there are 2K−1 states. Hence, there
are 2K−1 surviving paths at each stage and 2K−1 metrics, one for each surviving path.
Furthermore, a binary convolutional code in which k bits at a time are shifted into
an encoder that consists of K (k-bit) shift-register stages generates a trellis that has
2k(K−1) states. Consequently, the decoding of such a code by means of the Viterbi
algorithm requires keeping track of 2k(K−1) surviving paths and 2k(K−1) metrics. At
each stage of the trellis, there are 2k paths that merge at each node. Since each path
that converges at a common node requires the computation of a metric, there are
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2k metrics computed for each node. Of the 2k paths that merge at each node, only
one survives, and this is the most probable (minimum-distance) path. Thus, the number
of computations in decoding performed at each stage increases exponentially with k
and K . The exponential increase in computational burden limits the use of the Viterbi
algorithm to relatively small values of K and k.

The decoding delay in decoding a long information sequence that has been con-
volutionally encoded is usually too long for most practical applications. Moreover, the
memory required to store the entire length of surviving sequences is large and expen-
sive. As indicated in Section 4.8–1, a solution to this problem is to modify the Viterbi
algorithm in a way which results in a fixed decoding delay without significantly affect-
ing the optimal performance of the algorithm. Recall that the modification is to retain
at any given time t only the most recent δ decoded information bits (symbols) in each
surviving sequence. As each new information bit (symbol) is received, a final decision
is made on the bit (symbol) received δ branches back in the trellis, by comparing the
metrics in the surviving sequences and deciding in favor of the bit in the sequence
having the largest metric. If δ is chosen sufficiently large, all surviving sequences will
contain the identical decoded bit (symbol) δ branches back in time. That is, with high
probability, all surviving sequences at time t stem from the same node at t − δ. It has
been found experimentally (computer simulation) that a delay δ ≥ 5K results in a
negligible degradation in the performance relative to the optimum Viterbi algorithm.

8.2–2 Probability of Error for Maximum-Likelihood Decoding
of Convolutional Codes

In deriving the probability of error for convolutional codes, the linearity property for
this class of codes is employed to simplify the derivation. That is, we assume that the
all-zero sequence is transmitted, and we determine the probability of error in deciding
in favor of another sequence.

Since the convolutional code does not necessarily have a fixed length, we derive
its performance from the probability of error for sequences that merge with the all-zero
sequence for the first time at a given node in the trellis. In particular, we define the
first-event error probability as the probability that another path that merges with the
all-zero path at node B has a metric that exceeds the metric of the all-zero path for
the first time. Of course in transmission of convolutional codes, other types of errors
can occur; but it can be shown that bounding the error probability of the convolutional
code by the sum of first-event error probabilities provides an upper bound that, although
conservative, in most cases is a usable bound on the error probability. The interested
user can refer to the book by Lin and Costello (2004) for details.

As we have previously discussed in Section 8.1–2, the transfer function of a con-
volutional code is similar to the WEF of a block code with two differences. First, it
considers only the first-event errors; and second, it does not include the all-zero code
sequence. Therefore, parallel to the argument we presented for block codes in Sec-
tion 7.2–4, we can derive bounds on sequence and bit error probability of convolutional
codes.
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The sequence error probability of a convolutional code is bounded by

Pe ≤ T (Z )∣∣
Z=�

(8.2–9)

where

� =
∑
y∈Y

√
p(y|0)p(y|1) (8.2–10)

Note that unlike Equation 7.2–39, which states in linear block codes Pe ≤ A(�) − 1,
here we do not need to subtract 1 from T (Z ) since T (Z ) does not include the all-zero
path. Equation 8.2–9 can be written as

Pe ≤
∞∑

d=dfree

ad�
d (8.2–11)

The bit error probability for a convolutional code follows from Equation 7.2–48 as

Pb ≤ 1

k

∂

∂Y
T (Y, Z )∣∣

Y=1,Z=�

(8.2–12)

From Example 6.8–1 we know that if the modulation is BPSK (or QPSK) and the
channel is an AWGN channel with soft decision decoding, then

� = e−Rcγb (8.2–13)

and in case of hard decision decoding, where the channel model is a binary symmetric
channel with crossover probability of p, we have

� = √
4p(1 − p) (8.2–14)

Therefore, we have the following upper bounds for the bit error probability of a con-
volutional code:

Pb ≤

⎧⎪⎨
⎪⎩

1
k

∂
∂Y T (Y, Z )∣∣

Y=1,Z=exp (−Rcγb )
BPSK with soft decision decoding

1
k

∂
∂Y T (Y, Z )∣∣∣Y=1,Z=

√
4p(1−p)

hard decision decoding

(8.2–15)
In hard decision decoding we can employ direct expressions for the pairwise error

probability instead of using the Bhatacharyya bound. This results in tighter bounds on
the error probability. The probability of selecting a path of weight d, when d is odd,
over the all-zero path is the probability that the number of errors at these locations is
greater than or equal to (d + 1)/2. Therefore, the pairwise error probability is given by

P2(d) =
d∑

k=(d+1)/2

(
d

k

)
pk(1 − p)n−k (8.2–16)

If d is even, the incorrect path is selected when the number of errors exceeds 1
2 d. If the

number of errors equals 1
2 d, there is a tie between the metrics in the two paths, which

may be resolved by randomly selecting one of the paths; thus, an error occurs one-half
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the time. Consequently, the pairwise error probability in this case is given by

P2(d) = 1

2

(
d
1
2 d

)
pd/2(1 − p)d/2 +

d∑
k=d/2+1

(
d

k

)
pk(1 − p)n−k (8.2–17)

The error probability is bounded by

Pe ≤
∞∑

d=dfree

ad P2(d) (8.2–18)

where P2(d) is substituted from Equations 8.2–16 and 8.2–17, for odd and even values
of d, respectively.

A similar tighter bound for the bit error probability can also be derived by using
the same approach. The result is given by

Pb ≤ 1

k

∞∑
d=dfree

βd P2(d) (8.2–19)

where βd are coefficients of Zd in the expansion of ∂
∂Y T (Y, Z ) computed at Y = 1.

A comparison of the error probability for the rate 1/3, K = 3 convolutional code
with soft decision decoding and hard decision decoding is made in Figure 8.2–1. Note
that the upper bound given by Equation 8.2–15 for hard decision decoding is less
than 1 dB above the tighter upper bound given by Equation 8.2–19 in conjunction
with Equations 8.2–16 and 8.2–17. The advantage of the Bhatacharyya bound is its

Upper bound
(8.2–19)

with (8.2–17)
and (8.2–16)

Chernov bound
(8.2–15)

Upper bound
(8.2–11)

FIGURE 8.2–1
Comparison of soft decision and hard decision
decoding for K = 3, k = 1, n = 3 convolutional
code.
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computational simplicity. In comparing the performance between soft decision and
hard decision decoding, note that the difference obtained from the upper bounds is
approximately 2.5 dB for 10−6 ≤ Pb ≤ 10−2.

Finally, we should mention that the ensemble average error rate performance of
a convolutional code on a discrete memoryless channel, just as in the case of a block
code, can be expressed in terms of the cutoff rate parameter R0 as (for the derivation,
see Viterbi and Omura (1979))

Pb ≤ (q − 1) q−K R0/Rc

(1 − q−(R0−Rc)/Rc )2
, Rc ≤ R0 (8.2–20)

where q is the number of channel input symbols, K is the constraint length of the code,
Rc is the code rate, and R0 is the cutoff rate defined in Chapter 6. Therefore, conclusions
reached by computing R0 for various channel conditions apply to both block codes and
convolutional codes.

8.3
DISTANCE PROPERTIES OF BINARY CONVOLUTIONAL CODES

In this subsection, we shall tabulate the minimum free distance and the generators for
several binary, short-constraint-length convolutional codes for several code rates. These
binary codes are optimal in the sense that, for a given rate and a given constraint length,
they have the largest possible dfree. The generators and the corresponding values of
dfree tabulated below have been obtained by Odenwalder (1970), Larsen (1973), Paaske
(1974), and Daut et al. (1982) using computer search methods.

Heller (1968) has derived a relatively simple upper bound on the minimum free
distance of a rate 1/n convolutional code. It is given by

dfree ≤ min
l>1

⌊
2l−1

2l − 1
(K + l − 1)n

⌋
(8.3–1)

where 
x� denotes the largest integer contained in x . For purposes of comparison, this
upper bound is also given in the tables for the rate 1/n codes. For rate k/n convolutional
codes, Daut et al. (1982) have given a modification to Heller’s bound. The values
obtained from this upper bound for k/n are also tabulated.

Tables 8.3–1 to 8.3–7 list the parameters of rate 1/n convolutional codes for n =
2, 3, . . . , 8. Tables 8.3–8 to 8.3–11 list the parameters of several rate k/n convolutional
codes for k ≤ 4 and n ≤ 8.

8.4
PUNCTURED CONVOLUTIONAL CODES

In some practical applications, there is a need to employ high-rate convolutional codes,
e.g., rates of (n − 1)/n. As we have observed, the trellis for such high-rate codes has
2n−1 branches that enter each state. Consequently, there are 2n−1 metric computations
per state that must be performed in implementing the Viterbi algorithm and as many
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TABLE 8.3–1

Rate 1/2 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal dfree on dfree

3 5 7 5 5
4 15 17 6 6
5 23 35 7 8
6 53 75 8 8
7 133 171 10 10
8 247 371 10 11
9 561 753 12 12

10 1,167 1,545 12 13
11 2,335 3,661 14 14
12 4,335 5,723 15 15
13 10,533 17,661 16 16
14 21,675 27,123 16 17

Sources: Odenwalder (1970) and Larsen (1973).

comparisons of the updated metrics to select the best path at each state. Therefore, the
implementation of the decoder of a high-rate code can be very complex.

The computational complexity inherent in the implementation of the decoder of a
high-rate convolutional code can be avoided by designing the high-rate code from a low-
rate code in which some of the coded bits are deleted from transmission. The deletion of
selected coded bits at the output of a convolutional encoder is called puncturing, as previ-
ously discussed in Section 7.8–2. Thus, one can generate high-rate convolutional codes
by puncturing rate 1/n codes with the result that the decoder maintains the low com-
plexity of the rate 1/n code. We note, of course, that puncturing a code reduces the free
distance of the rate 1/n code by some amount that depends on the degree of puncturing.

The puncturing process may be described as periodically deleting selected bits
from the output of the encoder, thus creating a periodically time-varying trellis code.

TABLE 8.3–2

Rate 1/3 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal dfree on dfree

3 5 7 7 8 8
4 13 15 17 10 10
5 25 33 37 12 12
6 47 53 75 13 13
7 133 145 175 15 15
8 225 331 367 16 16
9 557 663 711 18 18

10 1,117 1,365 1,633 20 20
11 2,353 2,671 3,175 22 22
12 4,767 5,723 6,265 24 24
13 10,533 10,675 17,661 24 24
14 21,645 35,661 37,133 26 26

Sources: Odenwalder (1970) and Larsen (1973).
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TABLE 8.3–3

Rate 1/4 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal dfree on dfree

3 5 7 7 7 10 10
4 13 15 15 17 13 15
5 25 27 33 37 16 16
6 53 67 71 75 18 18
7 135 135 147 163 20 20
8 235 275 313 357 22 22
9 463 535 733 745 24 24

10 1,117 1,365 1,633 1,653 27 27
11 2,327 2,353 2,671 3,175 29 29
12 4,767 5,723 6,265 7,455 32 32
13 11,145 12,477 15,537 16,727 33 33
14 21,113 23,175 35,527 35,537 36 36

Source: Larsen (1973).

TABLE 8.3–4

Rate 1/5 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal dfree on dfree

3 7 7 7 5 5 13 13
4 17 17 13 15 15 16 16
5 37 27 33 25 35 20 20
6 75 71 73 65 57 22 22
7 175 131 135 135 147 25 25
8 257 233 323 271 357 28 28

Source: Daut et al. (1982).

TABLE 8.3–5

Rate 1/6 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal dfree on dfree

3 7 7 7 16 16
7 5 5

4 17 17 13 20 20
13 15 15

5 37 35 27 24 24
33 25 35

6 73 75 55 27 27
65 47 57

7 173 151 135 30 30
135 163 137

8 253 375 331 34 34
235 313 357

Source: Daut et al. (1982).
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TABLE 8.3–6

Rate 1/7 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal dfree on dfree

3 7 7 7 7 18 18
5 5 5

4 17 17 13 13 23 23
13 15 15

5 35 27 25 27 28 28
33 35 37

6 53 75 65 75 32 32
47 67 57

7 165 145 173 135 36 36
135 147 137

8 275 253 375 331 40 40
235 313 357

Source: Daut et al. (1982).

TABLE 8.3–7

Rate 1/8 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal dfree on dfree

3 7 7 5 5 21 21
5 7 7 7

4 17 17 13 13 26 26
13 15 15 17

5 37 33 25 25 32 32
35 33 27 37

6 57 73 51 65 36 36
75 47 67 57

7 153 111 165 173 40 40
135 135 147 137

8 275 275 253 371 45 45
331 235 313 357

Source: Daut et al. (1982).

TABLE 8.3–8

Rate 2/3 Maximum Free Distance Codes

Constraint Upper Bound
Length K Generators in Octal dfree on dfree

2 17 6 15 3 4
3 27 75 72 5 6
4 236 155 337 7 7

Source: Daut et al. (1982).
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TABLE 8.3–9

Rate k/5 Maximum Free Distance Codes

Constraint Upper Bound
Rate Length K Generators in Octal dfree on dfree

2/5 2 17 07 11 12 04 6 6
3 27 71 52 65 57 10 10
4 247 366 171 266 373 12 12

3/5 2 35 23 75 61 47 5 5
4/5 2 237 274 156 255 337 3 4

Source: Daut et al. (1982).

TABLE 8.3–10

Rate k/7 Maximum Free Distance Codes

Constraint Upper Bound
Rate Length K Generators in Octal dfree on dfree

2/7 2 05 06 12 15 9 9
15 13 17

3 33 55 72 47 14 14
25 53 75

4 312 125 247 366 18 18
171 266 373

3/7 2 45 21 36 62 8 8
57 43 71

4/7 2 130 067 237 274 6 7
156 255 337

Source: Daut et al. (1982).

TABLE 8.3–11

Rate 3/4 and 3/8 Maximum Free Distance Codes

Constraint Upper Bound
Rate Length K Generators in Octal dfree on dfree

3/4 2 13 25 61 47 4 4
3/8 2 15 42 23 61 8 8

51 36 75 47

Source: Daut et al. (1982).

We begin with a rate 1/n parent code and define a puncturing period P, corresponding
to P input information bits to the encoder. Hence, in one period, the encoder outputs nP
coded bits. Associated with the nP encoded bits is a puncturing matrix P of the form

P =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1P

p21 p22 · · · p2P
...

...
...

...

pn1 pn2 · · · pn P

⎤
⎥⎥⎥⎦ (8.4–1)
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where each column of P corresponds to the n possible output bits from the encoder for
each input bit and each element of P is either 0 or 1. When pi j = 1, the corresponding
output bit from the encoder is transmitted. When pi j = 0, the corresponding output bit
from the encoder is deleted. Thus, the code rate is determined by the period P and the
number of bits deleted.

If we delete N bits out of n P , the code rate is P/(n P − N ), where N may take
any integer value in the range 0 to (n − 1)P − 1. Hence, the achievable code rates are

Rc = P

P + M
, M = 1, 2, . . . , (n − 1)P (8.4–2)

E X A M P L E 8.4–1. Let us construct a rate 3
4 code by puncturing the output of the rate

1
3 , K = 3 encoder shown in Figure 8.1–2. There are many choices for P and M
in Equation 8.4–2 to achieve the desired rate. We may take the smallest value of P ,
namely, P = 3. Then out of every n P = 9 output bits, we delete N = 5 bits. Thus,
we achieve a rate 3

4 punctured convolutional code. As the puncturing matrix, we may
select P as

P =
⎡
⎣

1 1 1

1 0 0

0 0 0

⎤
⎦ (8.4–3)

Figure 8.4–1 illustrates the generation of the punctured code from the rate 1
3 parent

code. The corresponding trellis for the punctured code is also shown in Figure 8.4–1.

In the example given above, the puncturing matrix was selected arbitrarily. How-
ever, some puncturing matrices are better than others in that the trellis paths have better
Hamming distance properties. A computer search is usually employed to find good
puncturing matrices. Generally, the high-rate punctured convolutional codes generated
in this manner have a free distance that is either equal to or 1 bit less than the best same
high-rate convolutional code obtained directly without puncturing.

Yasuda et al. (1984), Hole (1988), Lee (1988), Haccoun and Bégin (1989), and
Bégin et al. (1990) have investigated the construction and properties of small and large
constraint length punctured convolutional codes generated from low-rate codes. In
general, high-rate codes with good distance properties are obtained by puncturing rate
1
2 maximum free distance codes. For example, in Table 8.4–1 we list the puncturing
matrices for code rates of 2

3 ≤ Rc ≤ 7
8 which are obtained by puncturing rate 1

2 codes
with constraint lengths 3 ≤ K ≤ 9. The free distances of the punctured codes are
also given in the table. Punctured convolutional codes for additional rates and larger
constraint lengths may be found in the papers referred to above.

The decoding of punctured convolutional codes is performed in the same manner
as the decoding of the low-rate 1/n parent code, using the trellis of the 1/n code. The
path metrics in the trellis for soft decision decoding are computed in the conventional
way as described previously. When one or more bits in a branch are punctured, the
corresponding branch metric increment is computed based on the nonpunctured bits;
thus, the punctured bits do not contribute to the branch metrics. Error events in a
punctured code are generally longer than error events in the low-rate 1/n parent code.
Consequently, the decoder must wait longer than five constraint lengths before making
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a

b

FIGURE 8.4–1
Generation of a rate 3/4 punctured code from a rate 1/3 convolutional code.

TABLE 8.4–1

Puncturing Matrices for Code Rates of 2/3 ≤ Rc ≤ 7/8 from Rate 1/2 Code

Rate 2/3 Rate 3/4 Rate 4/5 Rate 5/6 Rate 6/7 Rate 7/8

K P d f ree P d f ree P d f ree P d f ree P d f ree P d f ree

3 10 3 101 3 1011 2 10111 2 101111 2 1011111 2
11 110 1100 11000 110000 1100000

4 11 4 110 4 1011 3 10100 3 100011 2 1000010 2
10 101 1100 11011 111100 1111101

5 11 4 101 3 1010 3 10111 3 101010 3 1010011 3
10 110 1101 11000 110101 1101100

6 10 6 100 4 1000 4 10000 4 110110 3 1011101 3
11 111 1111 11111 101001 1100010

7 11 6 110 5 1111 4 11011 4 111010 3 1111010 3
10 101 1000 10101 100101 1000101

8 10 7 110 6 1010 5 11100 4 101001 4 1010100 4
11 101 1101 10011 110110 1101011

9 11 7 111 6 1101 5 10110 5 110110 4 1101011 4
10 100 1010 11001 101001 1010100



Proakis-27466 book September 26, 2007 22:28

Chapter Eight: Trellis and Graph Based Codes 523

final decisions on the received bits. For soft decision decoding, the performance of
the punctured codes is given by the error probability (upper bound) expression in
Equation 8.2–15 for the bit error probability.

An approach for the design of good punctured codes is to search and select punc-
turing matrices that yield the maximum free distance. A somewhat better approach is
to determine the weight spectrum {βd} of the dominant terms of the punctured code
and to calculate the corresponding bit error probability bound. The code corresponding
to the puncturing matrix that results in the best error rate performance may then be
selected as the best punctured code, provided that it is not catastrophic. In general, in
determining the weight spectrum for a punctured code, it is necessary to search through
a larger number of paths over longer lengths than the underlying low-rate 1/n parent
code. Weight spectra for several punctured codes are given in the papers by Haccoun
and Bégin (1989) and Bégin et al. (1990).

8.4–1 Rate-Compatible Punctured Convolutional Codes

In the transmission of compressed digital speech signals and in some other applications,
there is a need to transmit some groups of information bits with more redundancy than
others. In other words, the different groups of information bits require unequal error
protection to be provided in the transmission of the information sequence, where the
more important bits are transmitted with more redundancy. Instead of using separate
codes to encode the different groups of bits, it is desirable to use a single code that
has variable redundancy. This can be accomplished by puncturing the same low-rate
1/n convolutional code by different amounts as described by Hagenauer (1988). The
puncturing matrices are selected to satisfy a rate compatibility criterion, where the
basic requirement is that lower-rate codes (higher redundancy) transmit the same coded
bits as all higher-rate codes plus additional bits. The resulting codes obtained from a
single rate 1/n convolutional code are called rate-compatible punctured convolutional
(RCPC) codes.

E X A M P L E 8.4–2. From the rate 1
3 , K = 4 maximum free distance convolutional code,

let us construct an RCPC code. The RCPC codes for this example are taken from
the paper of Hagenauer (1988), who selected P = 8 and generated codes of rates
ranging from 4

11 to 8
9 . The puncturing matrices are listed in Table 8.4–2. Note that the

rate 1
2 code has a puncturing matrix with all zeros in the third row. Hence all bits from

the third branch of the rate 1
3 encoder are deleted. Higher code rates are obtained by

deleting additional bits from the second branch of the rate 1
3 encoder. However, note

that when a 1 appears in a puncturing matrix of a high-rate code, a 1 also appears in
the same position for all lower-rate codes.

In applying RCPC codes to systems that require unequal error protection of the
information sequence, we may format the groups of bits into a frame structure, as
suggested by Hagenauer et al. (1990) and illustrated in Figure 8.4–2, where, for example,
three groups of bits of different lengths N1, N2, and N3 are arranged in order of their
corresponding specified error protection probabilities p1 > p2 > p3. Each frame is
terminated after the last group of information bits (N3) by K − 1 zeros, which result
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TABLE 8.4–2

Rate-Compatible Punctured Convolutional Codes
Constructed from Rate 1/3, K = 4 Code with P = 8
Rc = P/(P + M), M = 1, 2, 4, 6, 8, 10, 12, 14

Rate Puncturing Matrix P

1

3

[
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

]

4

11

[
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0

]

2

5

[
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

]

4

9

[
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0

]

1

2

[
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

]

4

7

[
1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0

]

4

6

[
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0

]

4

5

[
1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

]

8

9

[
1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]

in overhead bits that are used for the purpose of terminating the trellis in the all-zero
state. We then select an appropriate set of RCPC codes that satisfy the error protection
requirements, i.e., the specified error probabilities {pk}. In our example, the group of bits
will be encoded by the use of three puncturing matrices having period P corresponding
to a set of RCPC codes generated from a rate 1/n code. Thus, the bits requiring the least

FIGURE 8.4–2
Frame structure for transmitting data with unequal error protection.
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protection are transmitted first, followed by the bits requiring the next-higher level of
protection, up to the group of bits requiring the highest level of protection, followed by
the all-zero terminating sequence. All rate transitions occur within the frame without
compromising the designed error rate performance requirements. As in the encoding,
the bits within a frame are decoded by a single Viterbi algorithm using the trellis of the
rate 1/n code and performing metric computations based on the appropriate puncturing
matrix for each group of bits.

It can be shown (see Problem 8.21) that the average effective code rate of this
scheme is

Rav =
∑J

j=1 N j P∑J
j=1 N j (P + M j ) + (K − 1)(P + MJ )

(8.4–4)

where J is the number of groups of bits in the frame, P is the period of the RCPC
codes, and the second term in the denominator corresponds to the overhead code bits
which are transmitted with the lowest code rate (highest redundancy).

8.5
OTHER DECODING ALGORITHMS FOR CONVOLUTIONAL CODES

The Viterbi algorithm described in Section 8.2–1 is the optimum decoding algorithm
(in the sense of maximum-likelihood decoding of the entire sequence) for convolutional
codes. However, it requires the computation of 2kK metrics at each node of the trellis and
the storage of 2k(K−1) metrics and 2k(K−1) surviving sequences, each of which may be
about 5kK bits long. The computational burden and the storage required to implement
the Viterbi algorithm make it impractical for convolutional codes with large constraint
length.

Prior to the discovery of the optimum algorithm by Viterbi, a number of other
algorithms had been proposed for decoding convolutional codes. The earliest was the
sequential decoding algorithm originally proposed by Wozencraft (1957), further treated
by Wozencraft and Reiffen (1961), and subsequently modified by Fano (1963).

Sequential decoding algorithm The Fano sequential decoding algorithm searches
for the most probable path through the tree or trellis by examining one path at a time. The
increment added to the metric along each branch is proportional to the probability of the
received signal for that branch, just as in Viterbi decoding, with the exception that an
additional negative constant is added to each branch metric. The value of this constant
is selected such that the metric for the correct path will increase on the average, while
the metric for any incorrect path will decrease on the average. By comparing the metric
of a candidate path with a moving (increasing) threshold, Fano’s algorithm detects and
discards incorrect paths.

To be more specific, let us consider a memoryless channel. The metric for the i th
path through the tree or trellis from the first branch to branch B may be expressed as

CM (i) =
B∑

j=1

n∑
m=1

μ
(i)
jm (8.5–1)
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where

μ
(i)
jm = log2

p
(
r jm |c(i)

jm

)
p(r jm)

− K (8.5–2)

In Equation 8.5–2, r jm is the demodulator output sequence, p(r jm |c(i)
jm) denotes the

PDF of r jm conditional on the code bit c(i)
jm for the mth bit of the j th branch of the i th

path, and K is a positive constant. K is selected as indicated above so that the incorrect
paths will have a decreasing metric while the correct path will have an increasing metric
on the average. Note that the term p(r jm) in the denominator is independent of the code
sequence, and, hence, may be subsumed in the constant factor.

The metric given by Equation 8.5–2 is generally applicable for either hard- or
soft-decision decoding. However, it can be considerably simplified when hard-decision
decoding is employed. Specifically, if we have a BSC with transition (error) probability
p, the metric for each received bit, consistent with the form in Equation 8.5–2 is given by

μ
(i)
jm =

{
log2[2(1 − p)] − Rc

(
if r̃ jm = c(i)

jm

)
log2 2p − Rc

(
if r̃ �= c(i)

jm

) (8.5–3)

where r̃ jm is the hard-decision output from the demodulator, c(i)
jm is the mth code bit in

the j th branch of the i th path in the tree, and Rc is the code rate. Note that this metric
requires some (approximate) knowledge of the error probability.

E X A M P L E 8.5–1. Suppose we have a rate Rc = 1/3 binary convolutional code for
transmitting information over a BSC with p = 0.1. By evaluating Equation 8.5–3 we
find that

μ
(i)
jm =

{
0.52

(
if r̃ jm = c(i)

jm

)
−2.65

(
if r̃ jm �= c(i)

jm

) (8.5–4)

To simplify the computations, the metric in Equation 8.5–4 may be normalized. It is
well approximated as

μ
(i)
jm =

{
1

(
if r̃ jm = c(i)

jm

)
−5

(
if r̃ jm �= c(i)

jm

) (8.5–5)

Since the code rate is 1/3, there are three output bits from the encoder for each input
bit. Hence, the branch metric consistent with Equation 8.5–5 is

μ
(i)
j = 3 − 6d

or, equivalently,

μ
(i)
j = 1 − 2d (8.5–6)

where d is the Hamming distance of the three received bits from the three branch bits.
Thus, the metric μ

(i)
j is simply related to the Hamming distance between received bits

and the code bits in the j th branch of the i th path.
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FIGURE 8.5–1
An example of the path search in
sequential decoding. [From Jordan
(1996), c© 1966 IEEE.]

Initially, the decoder may be forced to start on the correct path by the transmission
of a few known bits of data. Then it proceeds forward from node to node, taking the
most probable (largest metric) branch at each node and increasing the threshold such
that the threshold is never more than some preselected value, say τ , below the metric.
Now suppose that the additive noise (for soft-decision decoding) or demodulation errors
resulting from noise on the channel (for hard-decision decoding) cause the decoder to
take an incorrect path because it appears more probable than the correct path. This is
illustrated in Figure 8.5–1. Since the metrics of an incorrect path decrease on the average,
the metric will fall below the current threshold, say τ0. When this occurs, the decoder
backs up and takes alternative paths through the tree or trellis, in order of decreasing
branch metrics, in an attempt to find another path that exceeds the threshold τ0. If it is
successful in finding an alternative path, it continues along that path, always selecting the
most probable branch at each node. On the other hand, if no path exists that exceeds the
threshold τ0, the threshold is reduced by an amount τ and the original path is retraced.
If the original path does not stay above the new threshold, the decoder resumes its
backward search for other paths. This procedure is repeated, with the threshold reduced
by τ for each repetition, until the decoder finds a path that remains above the adjusted
threshold. A simplified flow diagram of Fano’s algorithm is shown in Figure 8.5–2.

The sequential decoding algorithm requires a buffer memory in the decoder to
store incoming demodulated data during periods when the decoder is searching for
alternate paths. When a search terminates, the decoder must be capable of processing
demodulated bits sufficiently fast to empty the buffer prior to commencing a new search.
Occasionally, during extremely long searches, the buffer may overflow. This causes loss
of data, a condition that can be remedied by retransmission of the lost information. In
this regard, we should mention that the cutoff rate R0 has special meaning in sequential
decoding. It is the rate above which the average number of decoding operations per
decoded digit becomes infinite, and it is termed the computational cutoff rate Rcomp. In
practice, sequential decoders usually operate at rates near R0.

The Fano sequential decoding algorithm has been successfully implemented in
several communication systems. Its error rate performance is comparable to that of
Viterbi decoding. However, in comparison with Viterbi decoding, sequential decoding
has a significantly larger decoding delay. On the positive side, sequential decoding
requires less storage than Viterbi decoding and, hence, it appears attractive for convo-
lutional codes with a large constraint length. The issues of computational complexity
and storage requirements for sequential decoding are interesting and have been thor-
oughly investigated. For an analysis of these topics and other characteristics of the Fano
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FIGURE 8.5–2
A simplified flow diagram of Fano’s algorithm. [From Jordan (1966), c© 1966 IEEE.]

algorithm, the interested reader may refer to Gallager (1968), Wozencraft and Jacobs
(1965), Savage (1966), and Forney (1974).

Stack algorithm Another type of sequential decoding algorithm, called a stack al-
gorithm, has been proposed independently by Jelinek (1969) and Zigangirov (1966). In
contrast to the Viterbi algorithm, which keeps track of 2(K−1)k paths and corresponding
metrics, the stack sequential decoding algorithm deals with fewer paths and their corre-
sponding metrics. In a stack algorithm, the more probable paths are ordered according
to their metrics, with the path at the top of the stack having the largest metric. At each
step of the algorithm, only the path at the top of the stack is extended by one branch.
This yields 2k successors and their corresponding metrics. These 2k successors along
with the other paths are then reordered according to the values of the metrics, and all
paths with metrics that fall below some preselected amount from the metric of the top
path may be discarded. Then the process of extending the path with the largest metric
is repeated. Figure 8.5–3 illustrates the first few steps in a stack algorithm.

It is apparent that when none of the 2k extensions of the path with the largest metric
remains at the top of the stack, the next step in the search involves the extension of
another path that has climbed to the top of the stack. It follows that the algorithm does not
necessarily advance by one branch through the trellis in every iteration. Consequently,
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FIGURE 8.5–3
An example of the stack algorithm
for decoding a rate 1/3
convolutional code.

Stack with accumulated path metrics

Step a Step b Step c Step d Step e Step f

−1 −2 −3 −2 −1 −2
−3 −3 −3 −3 −3 −3

−4 −4 −4 −4 −4
−5 −5 −5 −4

−8 −7 −5
−8 −7

−8

some amount of storage must be provided for newly received signals and previously
received signals in order to allow the algorithm to extend the search along one of the
shorter paths, when such a path reaches the top of the stack.

In a comparison of the stack algorithm with the Viterbi algorithm, the stack algo-
rithm requires fewer metric computations, but this computational saving is offset to a
large extent by the computations involved in reordering the stack after every iteration.
In comparison with the Fano algorithm, the stack algorithm is computationally simpler,
since there is no retracing over the same path as is done in the Fano algorithm. On the
other hand, the stack algorithm requires more storage than the Fano algorithm.

Feedback decoding A third alternative to the optimum Viterbi decoder is a method
called feedback decoding (Heller, 1975), which has been applied to decoding for a BSC
(hard-decision decoding). In feedback decoding, the decoder makes a hard decision on
the information bit at stage j based on metrics computed from stage j to stage j + m,
where m is a preselected positive integer. Thus, the decision on the information bit is
either 0 or 1 depending on whether the minimum Hamming distance path that begins at
stage j and ends at stage j + m contains a 0 or 1 in the branch emanating from stage j .
Once a decision is made on the information bit at stage j , only that part of the tree that
stems from the bit selected at stage j is kept (half the paths emanating from node j)
and the remaining part is discarded. This is the feedback feature of the decoder.
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The next step is to extend the part of the tree that has survived to stage j +1+m and
consider the paths from stage j +1 to j +1+m in deciding on the bit at stage j +1. Thus,
this procedure is repeated at every stage. The parameter m is simply the number of stages
in the tree that the decoder looks ahead before making a hard decision. Since a large value
of m results in a large amount of storage, it is desirable to select m as small as possible.
On the other hand, m must be sufficiently large to avoid a severe degradation in perfor-
mance. To balance these two conflicting requirements, m is usually selected in the range
K ≤ m ≤ 2K , where K is the constraint length. Note that this decoding delay is signif-
icantly smaller than the decoding delay in a Viterbi decoder, which is usually about 5K .

E X A M P L E 8.5–2. Let us consider the use of a feedback decoder for the rate 1/3 convo-
lutional code shown in Figure 8.1–2. Figure 8.5–4 illustrates the tree diagram and the
operation of the feedback decoder for m = 2. That is, in decoding the bit at branch j ,
the decoder considers the paths at branches j , j + 1, and j + 2. Beginning with the
first branch, the decoder computes eight metrics (Hamming distances) and decides that
the bit for the first branch is 0 if the minimum distance path is contained in the upper
part of the tree, and 1 if the minimum distance path is contained in the lower part of
the tree. In this example, the received sequence for the first three branches is assumed
to be 101111110, so that the minimum distance path is in the upper part of the tree.
Hence, the first output bit is 0.

The next step is to extend the upper part of the tree (the part of the tree that has
survived) by one branch, and to compute the eight metrics for branches 2, 3, and 4. For
the assumed received sequence 111110011, the minimum-distance path is contained
in the lower part of the section of the tree that survived from the first step. Hence, the
second output bit is 1. The third step is to extend this lower part of the tree and to repeat
the procedure described for the first two steps.

FIGURE 8.5–4
An example of feedback decoding for a
rate 1/3 convolutional code.



Proakis-27466 book September 26, 2007 22:28

Chapter Eight: Trellis and Graph Based Codes 531

Instead of computing metrics as described above, a feedback decoder for the BSC
may be efficiently implemented by computing the syndrome from the received sequence
and using a table lookup method for correcting errors. This method is similar to the
one described for decoding block codes. For some convolutional codes, the feedback
decoder simplifies to a form called a majority logic decoder or a threshold decoder
(Massey (1963); Heller (1975)).

Soft-output algorithms The outputs of the Viterbi algorithm and the three algo-
rithms described in this section are hard decisions. In some cases, it is desirable to have
soft outputs from the decoder. This is the case if the decoding is being performed on an
inner code in a concatenated code, where it is desirable to provide soft decisions to the
input of the outer decoder. This is also the case in iterative decoding of concatenated
codes, previously discussed in the context of block codes in Section 7.13–2, and further
treated in the context of convolutional codes in Section 8.9–2.

The optimum metric that provides a measure of the reliability of symbol decisions
is the a posteriori probability of the detected symbol conditioned on the received signal
vector r = {r jm, m = 1, 2, · · · , n; j = 1, 2, · · · B}, where {r jm} is the sequence of soft
outputs from the demodulator, n is the number of output symbols from the encoder for
each k input symbols, and j is the branch index. For example, the output of the demodu-
lator for a binary convolutional code and binary PSK modulation in an AWGN channel is

r jm = (2cjm − 1)
√
Ec + njm (8.5–7)

where {c jm = 0, 1} are the output bits from the encoder. Given the received vector r,
decisions on the transmitted information bits are based on the maximum a posteriori
probability (MAP), which may be expressed as

P(xi = 0|r) = 1 − P(xi = 1|r) (8.5–8)

where xi denotes the i th information bit in the sequence. Thus, under the MAP criterion,
a decision is made on a symbol-by-symbol basis by selecting the information symbol,
or bit in this case, corresponding to the largest a posteriori probability. If the a posteriori
probabilities for the possible transmitted symbols are nearly the same, the decision is
unreliable. Hence, the a posteriori probability associated with the decided symbol (the
hard decision) is the soft output from the decoder that provides a measure, or metric, for
the reliability of the hard decision. Since the MAP criterion minimizes the probability
of a symbol error, the a posteriori probability metric is the optimum soft output of the
decoder.

An algorithm for recursively computing the a posteriori probabilities for each
received symbol given the received signal sequence r from the demodulator has been
described in the paper by Bahl, Cocke, Jelinek, and Raviv (1974). This symbol-by-
symbol decoding algorithm, called the BCJR algorithm, is based on the MAP criterion
and provides a hard decision on each received symbol and the a posteriori probability
metric that serves as a measure for the reliability of the hard decision. The BCJR
algorithm is described in Section 8.8.

In contrast to the MAP symbol-by-symbol detection criterion, the Viterbi algorithm
selects the sequence that maximizes the probability p(r|x), where x is the vector of
information bits. In this case, the soft output metric is the Euclidean distance associated
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with the sequence of received symbols, as opposed to the individual symbols. However,
it is possible to derive symbol metrics from the sequence or path metrics. Hagenauer
and Hoeher (1989) devised a soft-output Viterbi algorithm (SOVA) that provides a
reliability metric for each decoded symbol. The SOVA is based on the observation
that the probability that a hard decision on a given symbol at the output of the Viterbi
algorithm is correct is proportional to the difference in path metrics between a surviving
sequence and its associated nonsurviving sequences. This observation allows us to form
an estimate of the error probability, or the probability of a correct decision, for each
symbol by comparing the path metrics of the surviving path with the path metrics of
nonsurviving paths.

For example, let us consider a binary convolutional code with binary PSK mod-
ulation. Since the Viterbi algorithm makes decisions with a decoding delay δ, at time
t = i + δ the Viterbi decoder outputs the bit x̂is from the most probable surviving
sequence. When we trace back along the surviving path from t to t − δ, we observe
that we have discarded δ + 1 paths. Let us consider the j th discarded path and its
corresponding bit xi j at time t = i . If x̂is �= xi j , let ψ j (ψ j ≥ 0) be equal to
the difference in the path metrics between the surviving path and the j th discarded
path. If x̂is = xi j , let ψ j = ∞. This comparison is performed for all discarded
paths. From the set {ψ j , j = 0, 1, 2, · · · , δ} we select the smallest value, defined
as ψmin = min{ψ0, ψ1, · · · , ψδ}. Then, the probability of error for the bit x̂is is approx-
imated as

P̂e = 1

1 + eψmin
(8.5–9)

Note that if ψmin is very small, P̂e ≈ 1
2 , so the decision on x̂is is unreliable. Thus, P̂e

provides a reliability metric for the hard decisions at the output of the Viterbi algorithm.
We note, however, that P̂e is only an approximation to the true error probability. That
is, P̂e is not the optimum soft-output metric for the hard decisions at the output of
the Viterbi algorithm. In fact, it has been observed in a paper by Wang and Wicker
(1996) that P̂e underestimates the true error probability at low SNR. Nevertheless, this
soft-output metric from the Viterbi algorithm leads to a significant improvement in the
performance of the decoder in a concatenated code.

From Equation 8.5–9 we can obtain an estimate of the probability of a correct
decision as

P̂c = 1 − P̂e = eψmin

1 + eψmin
(8.5–10)

8.6
PRACTICAL CONSIDERATIONS IN THE APPLICATION
OF CONVOLUTIONAL CODES

Convolutional codes are widely used in many practical applications of communication
system design. Viterbi decoding is predominantly used for short constraint lengths
(K ≤ 10), while sequential decoding is used for long-constraint-length codes, where
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TABLE 8.6–1

Upper Bounds on Coding Gain for Soft-Decision Decoding of Some
Convolutional Codes

Rate 1/2 codes Rate 1/3 codes

Constraint Upper bound, Constraint Upper bound,
Length K d f ree dB Length K d f ree dB

3 5 3.98 3 8 4.26
4 6 4.77 4 10 5.23
5 7 5.44 5 12 6.02
6 8 6.02 6 13 6.37
7 10 6.99 7 15 6.99
8 10 6.99 8 16 7.27
9 12 7.78 9 18 7.78

10 12 7.78 10 20 8.24

the complexity of Viterbi decoding becomes prohibitive. The choice of constraint length
is dictated by the desired coding gain.

From the error probability results for soft-decision decoding given by Equa-
tions 8.2–11, 8.2–12, and 8.2–13, it is apparent that the coding gain achieved by a
convolutional code over an uncoded binary PSK or QPSK system is

Coding gain ≤ 10 log10(Rcdfree)

We also know that the minimum free distance dfree can be increased either by decreasing
the code rate or by increasing the constraint length, or both. Table 8.6–1 provides a
list of upper bounds on the coding gain for several convolutional codes. For purposes
of comparison, Table 8.6–2 lists the actual coding gains for several short-constraint-
length convolutional codes with Viterbi decoding. It should be noted that the coding
gain increases toward the asymptotic limit as the SNR per bit increases.

These results are based on soft-decision Viterbi decoding. If hard-decision decoding
is used, the coding gains are reduced by approximately 2 dB for the AWGN channel.

Larger coding gains than those listed in Tables 8.6–1 and 8.6–2 are achieved by
employing long-constraint-length convolutional codes, e.g., K = 50, and decoding
such codes by sequential decoding. Invariably, sequential decoders are implemented

TABLE 8.6–2

Coding Gain (dB) for Soft-Decision Viterbi Decoding

Eb/N0 Rc = 1/3 Rc = 1/2 Rc = 2/3 Rc = 3/4
Uncoded,

Pb dB K = 8 K = 8 K = 5 K = 6 K = 7 K = 6 K = 8 K = 6 K = 9

10−3 6.8 4.2 4.4 3.3 3.5 3.8 2.9 3.1 2.6 2.6
10−5 9.6 5.7 5.9 4.3 4.6 5.1 4.2 4.6 3.6 4.2
10−7 11.3 6.2 6.5 4.9 5.3 5.8 4.7 5.2 3.9 4.8

Source: Jacobs (1974); c© IEEE.
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FIGURE 8.6–1
Performance of rate 1/2 and rate 1/3
Viterbi and sequential decoding. [From
Omura and Levitt (1982). c© 1982 IEEE.]

for hard-decision decoding to reduce complexity. Figure 8.6–1 illustrates the error rate
performance of several constraint-length K = 7 convolutional codes for rates 1/2 and
1/3 and for sequential decoding (with hard decisions) of a rate 1/2 and a rate 1/3
constraint-length K = 41 convolutional codes. Note that the K = 41 codes achieve an
error rate of 10−6 at 2.5 and 3 dB, which are within 4–4.5 dB of the channel capacity
limit, i.e., in the vicinity of the cutoff rate limit. However, the rate 1/2 and rate 1/3,
K = 7 codes with soft-decision Viterbi decoding operate at about 5 and 4.4 dB at 10−6,
respectively. These short-constraint-length codes achieve a coding gain of about 6 dB
at 10−6, while the long-constraint-length codes gain about 7.5–8 dB.

Two important issues in the implementation of Viterbi decoding are

1. The effect of path memory truncation, which is a desirable feature that ensures a
fixed decoding delay.

2. The degree of quantization of the input signal to the Viterbi decoder.

As a rule of thumb, we stated that path memory truncation to about five constraint
lengths has been found to result in negligible performance loss. Figure 8.6–2 illustrates
the performance obtained by simulation for rate 1/2, constraint-lengths K = 3, 5, and
7 codes with memory path length of 32 bits. In addition to path memory truncation,
the computations were performed with eight-level (three bits) quantized input signals
from the demodulator. The broken curves are performance results obtained from the
upper bound in the bit error rate given by Equation 8.2–12. Note that the simulation
results are close to the theoretical upper bounds, which indicate that the degradation
due to path memory truncation and quantization of the input signal has a minor effect
on performance (0.20–0.30 dB).

Figure 8.6–3 illustrates the bit error rate performance obtained via simulation for
hard-decision decoding of convolutional codes with K = 3–8. Note that with the K = 8
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FIGURE 8.6–2
Bit error probability for rate 1/2 Viterbi decoding
with eight-level quantized inputs to the decoder and
32-bit path memory. [From Heller and Jacobs (1971).
c© 1971 IEEE.]

code, an error rate of 10−5 requires about 6 dB, which represents a coding gain of nearly
4 dB relative to uncoded QPSK.

The effect of input signal quantization is further illustrated in Figure 8.6–4 for a rate
1/2, K = 5 code. Note that 3-bit quantization (eight levels) is about 2 dB better than
hard-decision decoding, which is the ultimate limit between soft-decision decoding
and hard-decision decoding on the AWGN channel. The combined effect of signal
quantization and path memory truncation for the rate 1/2, K = 5 code with 8-, 16-,
and 32-bit path memories and either 1- or 3-bit quantization is shown in Figure 8.6–5.
It is apparent from these results that a path memory as short as three constraint lengths
does not seriously degrade performance.

When the signal from the demodulator is quantized to more than two levels, an-
other problem that must be considered is the spacing between quantization levels.
Figure 8.6–6 illustrates the simulation results for an eight-level uniform quantizer as
a function of the quantizer threshold spacing. We observe that there is an optimum

FIGURE 8.6–3
Performance of rate 1/2 codes with hard-decision
Viterbi decoding and 32-bit path memory truncation.
[From Heller and Jacobs (1971). c© 1971 IEEE.]
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FIGURE 8.6–4
Performance of rate 1/2, K = 5 code with eight-, four-,
and two-level quantization at the input to the Viterbi
decoder. Path truncation length = 32 bits. [From Heller
and Jacobs (1971). c© 1971 IEEE.]

FIGURE 8.6–5
Performance of rate 1/2, K = 5 code with 32-, 16-,
and 8-bit path memory truncation and eight- and
two-level quantization. [From Heller and Jacobs
(1971). c© 1971 IEEE.]

FIGURE 8.6–6
Error rate performance of rate 1/2, K = 5 Viterbi decoder
for Eb/N0 = 3.5 dB and eight-level quantization as a
function of quantizer threshold level spacing for equally
spaced thresholds. [From Heller and Jacobs (1971). c©
1971 IEEE.]

spacing between thresholds (approximately equal to 0.5). However, the optimum is
sufficiently broad (0.4–0.7), so that, once it is set, there is little degradation resulting
from variations in the AGC level of the order of ±20 percent.

Finally, we should point out some important results in the performance degradation
due to carrier phase variations. Figure 8.6–7 illustrates the performance of a rate 1/2,
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FIGURE 8.6–7
Performance of a rate 1/2, K = 7 code with
Viterbi decoding and eight-level quantization
as a function of the carrier phase tracking loop
SNR γL [From Heller and Jacobs (1971).
c© 1971 IEEE.]

K = 7 code with eight-level quantization and a carrier phase tracking loop SNR γL .
Recall that in a PLL, the phase error has a variance that is inversely proportional to γL .
The results in Figure 8.6–7 indicate that the degradation is large when the loop SNR is
small (γL < 12 dB), and causes the error rate performance to bottom out at a relatively
high error rate.

8.7
NONBINARY DUAL-k CODES AND CONCATENATED CODES

Our treatment of convolutional codes thus far has been focused primarily on binary
codes. Binary codes are particularly suitable for channels in which binary or quaternary
PSK modulation and coherent demodulation is possible. However, there are many
applications in which PSK modulation and coherent demodulation is not suitable or
possible. In such cases, other modulation techniques, e.g., M-ary FSK, are employed in
conjunction with noncoherent demodulation. Nonbinary codes are particularly matched
to M-ary signals that are demodulated noncoherently.

In this subsection, we describe a class of nonbinary convolutional codes, called
dual-k codes, that are easily decoded by means of the Viterbi algorithm using either
soft-decision or hard-decision decoding. They are also suitable either as an outer code
or as an inner code in a concatenated code, as will also be described below.

A dual-k rate 1/2 convolutional encoder may be represented as shown in
Figure 8.7–1. It consists of two (K = 2) k-bit shift-register stages and n = 2k func-
tion generators. Its output is two k-bit symbols. We note that the code considered in
Example 8.1–4 is a dual-2 convolutional code.



Proakis-27466 book September 27, 2007 14:39

538 Digital Communications

FIGURE 8.7–1
Encoder for rate 1/2 dual-k codes.

The 2k function generators for the dual-k codes have been given by Viterbi and
Jacobs (1975). These may be expressed in the form⎡

⎢⎢⎢⎣
← g1 →
← g2 →

...

← g k →

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 · · · 0 1 0 0 · · · 0
0 1 0 · · · 0 0 1 0 · · · 0
...

...
...

...
...

...
...

0 0 0 · · · 1 0 0 · · · 0 1

⎤
⎥⎥⎦ = [Ik Ik]

⎡
⎢⎢⎢⎣

← g k+1 →
← g k+2 →

...

← g 2k →

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 · · · 0 1 0 0 · · · 0
0 0 1 0 · · · 0 0 1 0 · · · 0
...

...
...

... · · · ...
...

...
... · · · ...

0 0 0 · · · 0 1 0 0 · · · 1 0
1 0 0 · · · 0 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

... · · · ... Ik

0 0 0 · · · 0 1
1 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

(8.7–1)
where Ik denotes the k × k identity matrix.

The general form for the transfer function of a rate 1/2 dual-k code has been derived
by Odenwalder (1976). It is expressed as

T (Y, Z , J ) = (2k − 1)Z4 J 2Y

1 − YJ [2Z + (2k − 3)Z2]

=
∞∑

i=4

ai Z i Y f (i) J h(i)

(8.7–2)

where D represents the Hamming distance for the q-ary (q = 2k) symbols, the f (i)
exponent on N represents the number of information symbol errors that are produced
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in selecting a branch in the tree or trellis other than a corresponding branch on the
all-zero path, and the h(i) exponent on J is equal to the number of branches in a given
path. Note that the minimum free distance is dfree = 4 symbols (4k bits).

Lower-rate dual-k convolutional codes can be generated in a number of ways, the
simplest of which is to repeat each symbol generated by the rate 1/2 code r times,
where r = 1, 2, . . . , m (r = 1 corresponds to each symbol appearing once). If each
symbol in any particular branch of the tree or trellis or state diagram is repeated r times,
the effect is to increase the distance parameter from Z to Zr . Consequently the transfer
function for a rate 1/2r dual-k code is

T (Y, Z , J ) = (2k − 1)Z4r J 2Y

1 − Y J [2Zr + (2k − 3)Z2r ]
(8.7–3)

In the transmission of long information sequences, the path length parameter J
in the transfer function may be suppressed by setting J = 1. The resulting transfer
function T (Y, Z ) may be differentiated with respect to Y , and Y is set to unity. This
yields

dT (Y, Z )

dY

∣∣∣∣
N=1

= (2k − 1)Z4r

[1 − 2Zr − (2k − 3)Z2r ]2

=
∞∑

i=4r

βi Z i

(8.7–4)

where βi represents the number of symbol errors associated with a path having distance
Zi from the all-zero path, as described previously in Section 8.2–2. The expression in
Equation 8.7–4 may be used to evaluate the error probability for dual-k codes under
various channel conditions.

Performance of dual-k codes with M-ary modulation Suppose that a dual-k code
is used in conjunction with M-ary orthogonal signaling at the modulator, where M =
2k . Each symbol from the encoder is mapped into one of the M possible orthogonal
waveforms. The channel is assumed to add white Gaussian noise. The demodulator
consists of M matched filters.

If the decoder performs hard-decision decoding, the performance of the code is
determined by the symbol error probability Pe. This error probability has been computed
in Chapter 4 for both coherent and noncoherent detection. From Pe, we can determine
P2(d) according to Equation 8.2–16 or 8.2–17, which is the probability of error in a
pairwise comparison of the all-zero path with a path that differs in d symbols. The
probability of a bit error is upper-bounded as

Pb <
2k−1

2k − 1

∞∑
d=4r

βd P2(d) (8.7–5)

The factor 2k−1/(2k − 1) is used to convert the symbol error probability to the bit error
probability.

Instead of hard-decision decoding, suppose that the decoder performs soft-decision
decoding using the output of a demodulator that employs a square-law detector. The
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expression for the bit error probability given by Equation 8.7–5 still applies, but now
P2(d) is given by (see Section 11.1–1)

P2(d) = 1

22d−1
exp

(
−1

2
γb Rcd

) d−1∑
i=0

Ki

(
1

2
γb Rcd

)i

(8.7–6)

where

Ki = 1

i!

d−1−i∑
l=0

(
2d − 1

l

)
(8.7–7)

and Rc = 1/2r is the code rate.

Concatenated codes In Section 7.13–2, we considered the concatenation of two
block codes to form a long block code. Now that we have described convolutional
codes, we broaden our viewpoint and consider the concatenation of a block code with
a convolutional code or the concatenation of two convolutional codes.

In a conventional concatenated code, the outer code is usually chosen to be non-
binary, with each symbol selected from an alphabet of q = 2k symbols. This code
may be a block code, such as a Reed–Solomon code, or a convolutional code, such as
a dual-k code. The inner code may be either binary or nonbinary, and either a block
or a convolutional code. For example, a Reed–Solomon code may be selected as the
outer code and a dual-k code may be selected as the inner code. In such a concatenation
scheme, the number of symbols in the outer (Reed–Solomon) code q equals 2k , so that
each symbol of the outer code maps into a k-bit symbol of the inner dual-k code. M-ary
orthogonal signals may be used to transmit the symbols.

The decoding of such concatenated codes may also take a variety of different
forms. If the inner code is a convolutional code having a short constraint length, the
Viterbi algorithm provides an efficient means for decoding, using either soft-decision
or hard-decision decoding.

If the inner code is a block code, and the decoder for this code performs soft-
decision decoding, the outer decoder may also perform soft-decision decoding using
as inputs the metrics corresponding to each word of the inner code. On the other hand,
the inner decoder may make a hard decision after receipt of the code word and feed the
hard decisions to the outer decoder. Then the outer decoder must perform hard-decision
decoding.

The following example describes a concatenated code in which the outer code is a
convolutional code and the inner code is a block code.

E X A M P L E 8.7–1. Suppose we construct a concatenated code by selecting a dual-k code
as the outer code and a Hadamard code as the inner code. To be specific, we select a
rate 1/2 dual-5 code and a Hadamard (16, 5) inner code. The dual-5 rate 1/2 code has
a minimum free distance Dfree = 4 and the Hadamard code has a minimum distance
dmin = 8. Hence, the concatenated code has an effective minimum distance of 32. Since
there are 32 code words in the Hadamard code and 32 possible symbols in the outer
code, in effect, each symbol from the outer code is mapped into one of the 32 Hadamard
code words.



Proakis-27466 book September 26, 2007 22:28

Chapter Eight: Trellis and Graph Based Codes 541

The probability of a symbol error in decoding the inner code may be determined
from the results of the performance of block codes given in Sections 7.4 and 7.5
for soft-decision and hard-decision decoding, respectively. First, suppose that hard-
decision decoding is performed in the inner decoder with the probability of a code word
(symbol of outer code) error denoted as P32, since M = 32. Then the performance of
the outer code and, hence, the performance of the concatenated code is obtained by
using this error probability in conjunction with the transfer function for the dual-5 code
given by Equation 8.7–2.

On the other hand, if soft-decision decoding is used on both the outer and the inner
codes, the soft-decision metric from each received Hadamard code word is passed to
the Viterbi algorithm, which computes the accumulated metrics for the competing paths
through the trellis. We shall give numerical results on the performance of concatenated
codes of this type in our discussion of coding for Rayleigh fading channels.

8.8
MAXIMUM A POSTERIORI DECODING OF CONVOLUTIONAL
CODES —THE BCJR ALGORITHM

The BCJR algorithm, named after Bahl, Cocke, Jelinek, and Raviv Bahl et al. (1974),
is a symbol-by-symbol maximum a posteriori decoding algorithm for convolutional
codes. In this algorithm the decoder uses the MAP algorithm to decode each input
symbol to the decoder rather than looking for the most likely input sequence.

We know that convolutional codes are finite memory encoders in which the output
and the next state depend on the current state and the input. Assuming k = 1, we denote
an information sequence of length N by u = (u1, u2, . . . , uN ) where ui ∈ {0, 1}, and
the corresponding encoded sequence by† c = (c1, c2, . . . , cN ) where the length of ci

is n. The encoder state at time i is denoted by σi . For 1 ≤ i ≤ N we have

ci = fc(ui , σi−1) (8.8–1)

σi = fs(ui , σi−1) (8.8–2)

where functions fc and fs define the codeword and the new state as functions of the
input ui ∈ {0, 1} and the previous state σi−1 ∈ , where  denotes the set of all states. It
is clear that any pair of states (σi−1, σi ) that satisfies Equation 8.8–2 corresponds either
to ui = 1 or to ui = 0. Therefore, we can partition the set of all pairs of state (σi−1, σi )
which correspond to all possible transitions into two subsets S0 and S1, corresponding
to ui = 0 and ui = 1, respectively.

The symbol-by-symbol maximum a posteriori decoding receives y = ( y1, y2, . . . ,

yN ), the demodulator output, and based on this observation decodes ui using the

†We use c to denote both the encoded sequence, which is a binary sequence of length nN with elements
from {0, 1}, and the encoded sequence after BPSK modulation, which is a sequence of length nN with
elements from ±√

Ec. It should be clear from the context which notion is used.
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maximum a posteriori rule

ûi = arg max
ui ∈{0,1}

P(ui | y)

= arg max
ui ∈{0,1}

p(ui , y)

p( y)

= arg max
ui ∈{0,1}

p(ui , y)

= arg max
�∈{0,1}

∑
(σi−1,σi )∈S�

p(σi−1, σi , y)

(8.8–3)

where the last equality follows from the fact that ui = l corresponds to all pairs of state
(σi−1, σi ) ∈ S� for � = 0, 1.

If we define

y(i−1)
1 = (

y1, . . . , y(i−1))
y(N )

i+1 = ( yi+1, . . . , yN )
(8.8–4)

we can write

y =
(

y(i−1)
1 , yi , y(N )

i+1

)
(8.8–5)

and we have

p (σi−1, σi , y) = p
(
σi−1, σi , y(i−1)

1 , yi , y(N )
i+1

)

= p
(
σi−1, σi , y(i−1)

1 , yi

)
p

(
y(N )

i+1|σi−1, σi , y(i−1)
1 , yi

)

= p
(
σi−1, y(i−1)

1

)
p

(
σi , yi |σi−1, y(i−1)

1

)
p

(
y(N )

i+1|σi−1, σi , y(i−1)
1 , yi

)

= p
(
σi−1, y(i−1)

1

)
p (σi , yi |σi−1) p

(
y(N )

i+1|σi

)
(8.8–6)

where the first three steps follow from the chain rule and the last step follows from
Markov properties of the state in a trellis.

At this point we define αi−1 (σi−1), βi (σi ), and γi (σi−1, σi ) as

αi−1 (σi−1) = p
(
σi−1, y(i−1)

1

)

βi (σi ) = p
(

y(N )
i+1|σi

)

γi (σi−1, σi ) = p (σi , yi |σi−1)

(8.8–7)

Using these definitions in Equation 8.8–6, we have

p (σi−1, σi , y) = αi−1 (σi−1) γi (σi−1, σi ) βi (σi ) (8.8–8)

and hence from Equation 8.8–3 we obtain

ûi = arg max
�∈{0,1}

∑
(σi−1,σi )∈S�

αi−1 (σi−1) γi (σi−1, σi ) βi (σi ) (8.8–9)
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Equation 8.8–9 indicates that for maximum a posteriori decoding we need the values
of αi−1 (σi−1), βi (σi ), and γi (σi−1, σi ). It should also be clear that although our devel-
opment of these equations was based on the assumption of k = 1 and ui ∈ {0, 1}, the
extension of these results to general k is straightforward.

Now we derive recursion relations for αi−1 (σi−1) and βi (σi ) which facilitate their
computation.

The Forward Recursion for αi (σi ) We show that αi−1 (σi−1) can be obtained by
using a forward recursion of the form

αi (σi ) =
∑

σi−1∈

γi (σi−1, σi ) αi−1 (σi−1) , 1 ≤ i ≤ N (8.8–10)

To prove Equation 8.8–10, we use the following set of relations

αi (σi ) = p
(
σi , y(i)

1

)

=
∑

σi−1∈

p
(
σi−1, σi , y(i−1)

1 , yi

)

=
∑

σi−1∈

p
(
σi−1, y(i−1)

1

)
p

(
σi , yi |σi−1, y(i−1)

1

)

=
∑

σi−1∈

p
(
σi−1, y(i−1)

1

)
p (σi , yi |σi−1)

=
∑

σi−1∈

αi−1 (σi−1) γi (σi−1, σi )

(8.8–11)

which completes the proof of the forward recursion relation for αi (σi ). This rela-
tion means that given the values of γi (σi−1, σi ), it is possible to obtain αi (σi ) from
αi−1 (σi−1). If we assume that the trellis starts in the all-zero state, the initial condition
for the forward recursion becomes

α0 (σ0) = P (σ0) =
{

1 σ0 = 0
0 σ0 �= 0

(8.8–12)

Equations 8.8–10 and 8.8–12 provide a complete set of recursions for computing the
values of α.

The Backward Recursion for βi (σi ) The backward recursion for computing the
values of β is given by

βi−1 (σi−1) =
∑
σi ∈

βi (σi ) γi (σi−1, σi ) , 1 ≤ i ≤ N (8.8–13)
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To prove this recursion, we note that

βi−1 (σi−1) = p
(

y(N )
i |σi−1

)

=
∑
σi ∈

p
(

yi , y(N )
i+1, σi |σi−1

)

=
∑
σi ∈

p (σi , yi |σi−1) p
(

y(N )
i+1 |σi , yi , σi−1

)

=
∑
σi ∈

p (σi , yi |σi−1 ) p
(

y(N )
i+1 |σi

)

=
∑
σi ∈

γi (σi−1, σi ) βi (σi )

(8.8–14)

The boundary condition for the backward recursion, assuming that the trellis is
terminated in the all-zero state, is

βN (σN ) =
{

1 σN = 0
0 σN �= 0

(8.8–15)

The recursive relations 8.8–10 and 8.8–13 together with initial conditions 8.8–12
and 8.8–15 provide the necessary equations to determine α’s and β’s when γ ’s are
known. We now focus on computation of γ ’s.

Computing γi (σi−1, σi ) We can write γi (σi−1, σi ), 1 ≤ i ≤ N , as

γi (σi−1, σi ) = p (σi , yi |σi−1)

= p (σi |σi−1) p ( yi |σi , σi−1)

= P(ui )p ( yi |ui )

= P(ui )p ( yi |ci )

(8.8–16)

where we have used the fact that there exists a one-to-one correspondence between a
pair of states (σi−1, σi ) and the input ui through Equation 8.8–2. The above expression
clearly shows the dependence of γi (σi−1, σi ) on P(ui ), the prior probability of the
information sequence at time i , as well as p ( yi |ci ) which depends on the channel char-
acteristics. If the information sequence is equiprobable, an assumption that is usually
made when no information is available, then P(ui = 0) = P(ui = 1) = 1

2 . Obviously,
the above derivation is based on the assumption that the state pair (σi−1, σi ) is a valid
pair; i.e., a transition from σi−1 to σi is possible.

Equation 8.8–9 together with the forward and backward relations for α and β given
in Equations 8.8–10 and 8.8–13 and Equation 8.8–16 for γ are known as the BCJR
algorithm for symbol-by-symbol MAP decoding of a convolutional code.

Note that unlike the Viterbi algorithm that looks for the most likely information
sequence, the BCJR finds the most likely individual bits, or symbols. The BCJR al-
gorithm also provides the values of P (ui | y). These values provide a level of certainty
of the decoder about the value of ui and are called soft outputs or soft values. Having
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P (ui | y), we can find the a posteriori L values as

L(ui ) = ln
P (ui = 1| y)

P (ui = 0| y)

= ln
P (ui = 1, y)

P (ui = 0, y)

= ln

∑
(σi−1,σi )∈S1

αi−1 (σi−1) γi (σi−1, σi ) βi (σi )

∑
(σi−1,σi )∈S0

αi−1 (σi−1) γi (σi−1, σi ) βi (σi )

(8.8–17)

which are also referred to as soft outputs. Knowledge of soft outputs is crucial in
decoding of turbo codes discussed later in this chapter. A decoder such as the BCJR
decoder that accepts soft inputs (the vector y) and generates soft outputs is called a
soft-input soft-output (SISO) decoder. Note that the decoding rule based on L(ui ) soft
values is given by

ûi =
{

1 L(ui ) ≥ 0
0 L(ui ) < 0

(8.8–18)

For an AWGN channel, y = c + n, where c represents the modulated signal
corresponding to the encoded sequence, we have

γi (σi−1, σi ) = P(ui )

(π N0)n/2
exp

(
−‖ yi − ci‖2

N0

)
(8.8–19)

E X A M P L E 8.8–1. Let us consider the special case when n = 2, the convolutional code
is systematic, and the modulation is BPSK. In this case we have ci = (

cs
i , cp

i

)
and

yi = (
ys

i , y p
i

)
, where the superscripts s and p represent the terms corresponding to

the systematic (information) bit and parity check bit, respectively. Here cs
i = ±√

Ec
depending on whether ui = 1 or ui = 0. The value of cp

i can also be one of the two
possible values of ±√

Ec. Using these values, Equation 8.8–19 becomes

γi (σi−1, σi ) = P(ui )

π N0
exp

(
−

(
ys

i − cs
i

)2 + (
y p

i − cp
i

)2

N0

)

= 1

π N0
exp

{
−

(
ys

i

)2 + (
y p

i

)2 + 2Ec

N0

}
P(ui ) exp

(
2ys

i cs
i + 2y p

i cp
i

N0

)

(8.8–20)

Note that the term 1
π N0

exp

{
− (ys

i )
2+(y p

i )2+2Ec

N0

}
in Equation 8.8–20 is independent

of ui and hence is canceled from the numerator and the denominator of the a posteriori
L values in Equation 8.8–17. It is also clear that in the numerator of Equation 8.8–17,
which corresponds to ui = 1, we have cs

i = √
Ec and in the denominator cs

i = −√
Ec.
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In this case the a posteriori L values simplify as

L(ui ) = ln

∑
(σi−1,σi )∈S1

αi−1 (σi−1) P(ui ) exp

(
2ys

i cs
i + 2y p

i cp
i

N0

)
βi (σi )

∑
(σi−1,σi )∈S0

αi−1 (σi−1) P(ui ) exp

(
2ys

i cs
i + 2y p

i cp
i

N0

)
βi (σi )

= 4
√
Ec ys

i

N0
+ ln

∑
(σi−1,σi )∈S1

αi−1 (σi−1) P(ui ) exp

(
2y p

i cp
i

N0

)
βi (σi )

∑
(σi−1,σi )∈S0

αi−1 (σi−1) P(ui ) exp

(
2y p

i cp
i

N0

)
βi (σi )

= 4
√
Ec ys

i

N0
+ ln

P(ui = 1)

P(ui = 0)
+ ln

∑
(σi−1,σi )∈S1

αi−1 (σi−1) exp

(
2y p

i cp
i

N0

)
βi (σi )

∑
(σi−1,σi )∈S0

αi−1 (σi−1) exp

(
2y p

i cp
i

N0

)
βi (σi )

(8.8–21)

One problem with the version of the BCJR algorithm described above is that it is not
a numerically stable algorithm, particularly if the trellis length is long. An alternative
to this algorithm is the log-domain version of it known as the Log-APP (log a posteriori
probability) algorithm.†

In the Log-APP algorithm, instead of α, β, and γ , we define their logarithms as

α̃i (σi ) = ln (αi (σi ))

β̃i (σi ) = ln (βi (σi ))

γ̃i (σi−1, σi ) = ln (γi (σi−1, σi ))

(8.8–22)

Straightforward calculation shows the following forward and backward recursions hold
for α̃i (σi ) and β̃i (σi−1).

α̃i (σi ) = ln

⎛
⎝ ∑

σi−1∈

exp (α̃i−1 (σi−1) + γ̃i (σi−1, σi ))

⎞
⎠

β̃i−1 (σi−1) = ln

⎛
⎝∑

σi ∈

exp
(
β̃i (σi ) + γ̃i (σi−1, σi )

)⎞
⎠

(8.8–23)

with initial conditions

α̃0 (σ0) =
{

0 σ0 = 0
−∞ σ0 �= 0

β̃N (σN ) =
{

0 σN = 0
−∞ σN �= 0

(8.8–24)

†Also called Log-MAP algorithm.
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and the a posteriori L values are computed as

L(ui ) = ln

⎡
⎣ ∑

(σi−1,σi )∈S1

exp(α̃i−1(σi−1) + γ̃i (σi−1, σi ) + β̃i (σi ))

⎤
⎦

− ln

⎡
⎣ ∑

(σi−1,σi )∈S0

exp(α̃i−1(σi−1) + γ̃i (σi−1, σi ) + β̃i (σi ))

⎤
⎦

(8.8–25)

These relations are numerically more stable but are not computationally efficient.
To improve the computational efficiency, we can introduce the following notation:

max∗{x, y} � ln(ex + ey)

max∗{x, y, z} � ln(ex + ey + ez)
(8.8–26)

Using these definitions, we have the recursions

α̃i (σi ) = max
σi−1∈

∗ {α̃i−1 (σi−1) + γ̃i (σi−1, σi )}

β̃i−1 (σi−1) = max
σi ∈

∗{β̃i (σi ) + γ̃i (σi−1, σi )}
(8.8–27)

where the initial conditions for these recursions are given by Equation 8.8–24. The a
posteriori L values are given by

L(ui ) = max
(σi−1,σi )∈S1

∗ {α̃i−1 (σi−1) + γ̃i (σi−1, σi ) + β̃i (σi )}

− max
(σi−1,σi )∈S0

∗ {α̃i−1 (σi−1) + γ̃i (σi−1, σi ) + β̃i (σi )}
(8.8–28)

The initial conditions for these recursions are given by Equation 8.8–24.

E X A M P L E 8.8–2. For the special case studied in Example 8.8–1, the expression for the a
posteriori L values can be obtained using the log-domain quantities in Equation 8.8–21.
The result is

L(ui ) = 4
√
Ec ys

i

N0
+ La(ui ) + max

(σi−1,σi )∈S1

∗
{

α̃i−1 (σi−1) + 2y p
i cp

i

N0
+ β̃i (σi )

}

− max
(σi−1,σi )∈S0

∗
{

α̃i−1 (σi−1) + 2y p
i cp

i

N0
+ β̃i (σi )

} (8.8–29)

where we have defined La(ui ) as

La(ui ) = ln
P(ui = 1)

P(ui = 0)
(8.8–30)

It is seen that in this case the a posteriori L values can be written as the sum of

three terms. The first term, 4
√
Ec ys

i
N0

, depends on the channel output corresponding to the
systematic bits received by the decoder. The second term, La(ui ), depends on the a
priori probabilities of the information bits. The remaining term is the contribution of
the channel outputs corresponding to the parity bits.
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It can be easily shown that (Problem 8.22)

max∗{x, y} = max{x, y} + ln
(
1 + e−|x−y|)

max∗{x, y, z} = max∗ {
max∗{x, y}, z

} (8.8–31)

The term ln
(
1 + e−|x−y|) is small when x and y are not close. Its maximum occurs

when x = y for which this term is ln 2. It is clear that for large x and y or when x and
y are not close, we can use the approximation

max∗{x, y} ≈ max{x, y} (8.8–32)

Under similar conditions we can use the approximation

max∗{x, y, z} ≈ max{x, y, z} (8.8–33)

The approximate relations in Equations 8.8–32 and 8.8–33 are valid when the
values of x and y (or x , y, and z) are not close. In general, approximating max∗ by
max in Equation 8.8–27 would result in a small performance degradation. The resulting
algorithm, which is a suboptimal implementation of the MAP algorithm, is called that
Max-Log-APP algorithm.†

Instead of using the approximations given in Equations 8.8–32 and 8.8–33, one
can use a lookup table for values of the correction term ln

(
1 + e−|x−y|) to improve the

performance. The interested reader is referred to Robertson and Hoeher (1997), Ryan
(2003), Robertson et al. (1995), and Lin and Costello (2004) for details.

8.9
TURBO CODES AND ITERATIVE DECODING

In Section 7.13–2 we introduced serial and parallel concatenated block codes in which
an interleaver is used to construct extremely long codes. In this section we consider the
construction and decoding of concatenated codes with interleaving, using convolutional
codes.

Parallel concatenated convolutional codes (PCCCs) with interleaving, also called
turbo codes, were introduced by Berrou et al. (1993) and Berrou and Glavieux (1996).
A basic turbo encoder, shown in Figure 8.9–1, is a recursive systematic encoder that
employs two recursive systematic convolutional encoders in parallel, where the second
encoder is preceded by an interleaver. The two recursive systematic convolutional
encoders may be either identical or different. We observe that the nominal rate at the
output of the turbo encoder is Rc = 1/3. However, by puncturing the parity check bits
at the output of the binary convolutional encoders, we may achieve higher rates, such
as rate 1/2 or 2/3. As in the case of concatenated block codes, the interleaver is usually
selected to be a block pseudorandom interleaver that reorders the bits in the information
sequence before feeding them to the second encoder. In effect, as will be shown later,

†Also called Max-Log-MAP algorithm.
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FIGURE 8.9–1
Encoder for parallel concatenated code (turbo code).

the use of two recursive convolutional encoders in conjunction with the interleaver
produces a code that contains very few codewords of low weight. This characteristic
does not necessarily imply that the free distance of the concatenated code is especially
large. However, the use of the interleaver in conjunction with the two encoders results
in codewords that have relatively few nearest neighbors. That is, the codewords are
relatively sparse. Hence, the coding gain achieved by a turbo code is due in part to this
feature, i.e., the reduction in the number of nearest-neighboring codewords, called the
multiplicity, that result from interleaving.

A standard turbo code shown in Figure 8.9–1 is completely described by the con-
stituent codes, which are usually similar, and the interleaving pattern, usually denoted
by �. The constituent codes, being recursive and systematic, are given by their generator
matrix of the form

G(D) =
[
1 g2(D)

g1(D)

]
(8.9–1)

where g1(D) and g2(D) specify the feedback and the feedforward connections, respec-
tively. Usually the constituent codes are specified by the octal representation of g1

and g2.

E X A M P L E 8.9–1. A (31, 27) RSC encoder is represented by g1 = (11001) and g2 =
(10111) corresponding to g1(D) = 1 + D + D4 and g2(D) = 1 + D2 + D3 + D4. The
encoder is given by the block diagram shown in Figure 8.9–2.

8.9–1 Performance Bounds for Turbo Codes

Turbo codes are two recursive systematic convolutional codes concatenated by an inter-
leaver. Although the codes are linear and time-invariant, the operation of the interleaver,
although linear, is not time-invariant. The trellis of the resulting linear but time-varying
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FIGURE 8.9–2
A (31, 27) RSC encoder.

finite-state machine has a huge number of states that makes maximum-likelihood de-
coding hopeless. In Benedetto and Montorsi (1996) it is stated that a certain turbo code
that has been implemented in VLSI when viewed as a time-varying finite-state machine
has 21030 states, making maximum-likelihood decoding impractical.

Although maximum-likelihood decoding of turbo codes is impractical, it can serve
to find an upper bound on the performance of these codes. By linearity of turbo codes,
we can assume that the all-zero information sequence is transmitted. Assuming an
interleaver of length N , there exist a total of 2N possible information sequences with
weights between 0 (for the all-zero sequence) and N . Let m ∈ {

1, 2, . . . , 2N − 1
}

denote the erroneous information sequence that is detected when the all-zero sequence
is transmitted, and let us denote the weight of this sequence by jm , where 1 ≤ jm ≤ N .
Note that since the code is systematic, the weight of the codeword corresponding to the
information sequence m, denoted by wm , is the sum of the weight of the information
sequence jm and the weight of the corresponding parity sequence. The probability of
decoding m when the all-zero sequence is transmitted, assuming BPSK modulation, is
given by

P0→m = Q
(√

2Rcwmγb

)
(8.9–2)

and the corresponding bit error probability when m is detected is given by

Pb(0 → m) = jm
N

Q
(√

2Rcwmγb

)
(8.9–3)

Using the union bound, the average bit error probability is bounded by

Pb ≤ 1

N

2N −1∑
m=1

jm Q
(√

2Rcwmγb

)
(8.9–4)

Reordering and grouping the terms corresponding to information sequences of the same
weight, we can write

Pb ≤ 1

N

N∑
j=1

(N
j )∑

l=1

jQ
(√

2Rcd jlγb

)
(8.9–5)

where
(N

j

)
is the number of information sequences of weight j and d jl is the weight

of the codeword generated by the lth information sequence of weight j . Now let us
consider the following cases as applied to the PCCC shown in Figure 8.9–1.
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Information Sequences of Weight j = 1 An information sequence with weight 1
( j = 1) when applied to a recursive convolutional code generates the impulse response
of the convolutional code. Since recursive convolutional codes have infinite impulse
response, or very large weight impulse response even when they are terminated, the
case of j = 1 results in large values for d jl and thus very low bit error probability.
The only case that can cause a problem occurs when the single 1 in the input sequence
occurs at the end of a block of length N , in which case the output weight is low. The
existence of the pseudorandom interleaver, however, makes it highly unlikely that after
interleaving the single 1 will not appear at the end of the block and thus would generate
a high-weight codeword when applied to the second encoder. The probability of having
a single 1 at the end of the block both before and after interleaving is very small.

Information Sequences of Weight j = 2 There exist
(N

2

)
information sequences of

weight 2 corresponding to polynomials of the form Di1 + Di2 = Di1 (Di2−i1 + 1), where
0 ≤ i1 < i2 ≤ N − 1, and i1 and i2 determine the location of the 1s in the information
sequence. In general, a polynomial of this form when applied to g2(D)/g1(D) generates
parity symbols of large weight, unless g1(D) divides D� + 1, where � = i2 − i1.
If this is the case, then D� + 1 = g1(D)h(D), where h(D) is a polynomial. The
parity sequences generated by Di1 + Di2 in this case will be Di1 h(D)g2(D) which can
correspond to a low-weight parity sequence. For instance, if g1(D) = 1 + D + D2,
then g1(D) divides any weight 2 sequence of the form Di1 (D3 +1), resulting in a parity
polynomial of the form Di1 (1 + D)g2(D) which can correspond to a parity sequence
of low weight. In this example any information sequence of weight 2 in which there
are two zeros between the two 1s will result in a low-weight parity sequence.† The
existence of the interleaver, however, makes it highly unlikely that an information
sequence of weight 2 would generate low-weight parity sequences both before and after
interleaving. In fact, the number of weight 2 information sequences that generate low-
weight parity polynomials before and after interleaving is much smaller than N , where
N is the interleaver length. In contrast, for a single RSCC this number is of the order
of N .

A similar argument can be applied to weight 3 and weight 4 information sequences.
In both cases it can be argued that due to the effect of the interleaver, the number of
weight 3 and weight 4 information sequences that generate low-weight parities is much
lower than N . This means that low-weight codewords are possible in turbo codes, but
their occurence is very low. In other words, the main factor contributing to the excellent
performance of turbo codes particularly at low signal-to-noise ratios is not their good
distance structure, but the relatively low multiplicity of codewords with low weight.
Note that the effect of low multiplicity of turbo codes is particularly noticeable at low
signal-to-noise ratios. At higher signal-to-noise ratios, the low minimum distance of
these codes results in an error floor.

If we consider information sequences of weight 2 and 3 as the main contributors
to the error probability bound for turbo codes, we can approximate the bit error bound

†Obviously, this also applies to the case where there are five zeros between two 1s, etc.
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of Equation 8.9–5 as

Pb �
1

N

3∑
j=2

jn j Q
(√

2Rcd j,minγb

)
(8.9–6)

where d j,min denotes the minimum codeword weight among all codewords generated
by information sequences of weight j and n j � N denotes the number of information
sequences of weight j that generate codewords of weight d j,min. Since n j � N , the
coefficient of Q

(√
2Rcd j,minγb

)
is much smaller than 1. The effect of the factor 1/N

that drastically reduces the error bound on turbo codes is called the interleaver gain.
The bounds discussed above are based on the union bounding technique that is

loose particularly at low signal-to-noise ratios. More advanced bounding techniques
have been studied and applied to turbo codes that provide tighter bounds at low signal-
to-noise ratios. The interested reader is referred to Duman and Salehi (1997), Sason
and Shamai (2000), and Sason and Shamai (2001b).

8.9–2 Iterative Decoding for Turbo Codes

We have seen that optimal decoding of turbo codes is impossible due to the large
number of states in the code trellis. A suboptimal iterative decoding algorithm, known
as the turbo decoding algorithm, was proposed by Berrou et al. (1993) which achieves
excellent performance very close to the theoretical bound predicted by Shannon.

The turbo decoding algorithm is based on iterative usage of the Log-APP or the
Max-Log-APP algorithm. As it was shown in Example 8.8–2, the a posteriori L values
can be written as the sum of three terms as

L(ui ) = Lc ys
i + L (a)(ui ) + L (e)(ui ) (8.9–7)

where

Lc ys
i = 4

√Ec ys
i

N0

La(ui ) = ln
P(ui = 1)

P(ui = 0)

L (e)(ui ) = max
(σi−1,σi )∈S1

∗
{

α̃i−1 (σi−1) + 2y p
i cp

i

N0
+ β̃i (σi )

}

− max
(σi−1,σi )∈S0

∗
{

α̃i−1 (σi−1) + 2y p
i cp

i

N0
+ β̃i (σi )

}
(8.9–8)

and we have defined Lc = 4
N0

√Ec.
The term Lc ys

i is called the channel L value and denotes the effect of channel
outputs corresponding to the systematic bits. The second term La(ui ) is the a priori
L value and is a function of the a priori probabilities of the information sequence. The
final term, L (e)(ui ), represents the extrinsic L value or extrinsic information which is
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the part of the a posteriori L value that does not depend on the a priori probabilities
and the systematic information at the channel output.

Let us assume that the binary information sequence u = (u1, u2, . . . , uN ) is ap-
plied to the first rate 1/2 RSCC, and let us denote the parity bits at the output by
cp = (cp

1 , cp
2 , . . . , cp

N ). The information sequence is passed through the interleaver to
obtain u′ = (u′

1, u′
2, . . . , u′

N ), and this sequence is applied to the second encoder to
generate the parity sequence c′p = (c′p

1 , c′p
2 , . . . , c′p

N ). Sequences u, cp, and c′p are
BPSK modulated and transmitted over a Gaussian channel. The corresponding output
sequences are denoted by ys, ye, and y′p. The MAP decoder for the first constituent
code receives the pair ( ys, yp). In the first iteration the decoder assumes all bits are
equiprobable, and therefore the a priori L values are set to zero. Having access to
( ys, yp), the first decoder uses Equation 8.8–29 to compute the a posteriori L values.
At the output of the first constituent decoder, the decoder subtracts the channel L val-
ues from the a posteriori L values to compute the extrinsic L values. These values
are denoted by L (e)

12 (ui ) and are permuted by the interleaver � and then used by the
second constituent decoder as its a priori L values. In addition to this information,
the second decoder is supplied with y′p and a permuted version of ys after passing
it through the interleaver �. The second decoder computes the extrinsic L values de-
noted by L (e)

21 (ui ) and after permuting them through �−1 supplies them to the first
encoder, which in the next iteration uses these values as its a priori L values. This
process is continued either for a fixed number of iterations or until a certain criterion
is met. After the last iteration the a posteriori L values L(ui ) are used to make the final
decision.

The building block of the turbo decoder is an SISO decoder with inputs ys , yp,
and L (a)(ui ) and outputs L (e)(ui ) and L(ui ). In iterative decoding L (a)(ui ) is substituted
by the extrinsic L values provided by the other decoder. The block diagram of a turbo
decoder is shown in Figure 8.9–3.

A typical plot of the performance of the iterative decoding algorithm for turbo codes
is given in Figure 8.9–4. It is clearly seen that the first few iterations noticeably improve
the performance. It is seen from these plots that three regions are distinguishable. For
the low-SNR region where the error probability changes very slowly as a function of
Eb/N0 and the number of iterations, for moderate SNRs the error probability drops
rapidly with increasing Eb/N0 and over many iterations Pb decreases consistently. This
region is called the waterfall region or the turbo cliff region. Finally, for moderately
large Eb/N0 values, the code exhibits an error floor which is typically achieved with a

SISO 1yp y�p

ys

SISO 2

��1

�

�

L(e)
12

L(e)
21

L(ui) L(ui)

FIGURE 8.9–3
Block diagram of a turbo decoder.
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FIGURE 8.9–4
Performance of iterative decoding for
turbo codes.

few iterations. As discussed before, the error floor effect in turbo codes is due to their
low minimum distance.

Typically, four iterations are adequate if the decoders are operating at a high enough
SNR to achieve an error rate in the range 10−5 to 10−6, whereas about eight to ten
iterations may be needed when the error rate is in the range of 10−5, where the SNR is
lower.

An important factor in the performance of the turbo code is the length of the
interleaver, which is sometimes referred to as the interleaver gain. With a sufficiently
large interleaver and iterative MAP decoding, the performance of a turbo code is very
close to the Shannon limit. For example, a rate 1/2 turbo code of block length N = 216

with 18 iterations of decoding per bit achieves an error probability of 10−5 at an SNR
of 0.7 dB. From Figure 6.5–6 we see that the Shannon limit for a binary input rate 1/2
code is roughly 0.19 dB. This means that this code operates 0.5 dB from the Shannon
limit.

The major drawback with decoding turbo codes with large interleavers is the de-
coding delay and the computational complexity inherent in the iterative decoding al-
gorithm. In most data communication systems, however, the decoding delay is tolera-
ble, and the additional computational complexity is usually justified by the significant
coding gain that is achieved by the turbo code. A second method for constructing
concatenated convolutional codes with interleaving is serial concatenation. Benedetto
et al. (1998) have investigated the construction and the performance of serial con-
catenated convolutional codes (SCCCs) with interleaving and have developed an iter-
ative decoding algorithm for such codes. In comparing the error rate performance of
SCCC with PCCC (turbo codes), Benedetto et al. (1998) found that SCCC generally
exhibit better performance than PCCC for error rates below 10−2. For more details
on the properties of turbo codes, the reader is referred to Lin and Costello (2004),
Benedetto and Montorsi (1996), Heegard and Wicker (1999), and Hagenauer et al.
(1996).
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8.9–3 EXIT Chart Study of Iterative Decoding

Due to complexity of the iterative decoding algorithm, study of its convergence prop-
erties is difficult. A useful tool in studying the performance of iterative decoding of
turbo codes, particularly in the turbo cliff region, is the Extrinsic Information Transfer
(EXIT) chart. These charts were introduced by ten Brink (2001) and have served as a
useful tool in performance study and design of different iterative algorithms.

In Section 8.9–2 we have seen that an iterative decoder for a standard turbo code
consists of two similar SISO decoders which accept the a priori and channel information
at their input and generate the extrinsic information and the log-likelihood values at
the output. The two SISO decoders are connected in such a way that the extrinsic
information L (e) of each serves as the a priori information L (a) for the other one. The
development of the EXIT chart is based on the empirical observation (ten Brink (2001))
that the a priori L value and the transmitted systematic bits are related through

L (a) = σ 2

2
C (s) + na (8.9–9)

where na is a zero-mean Gaussian random variable with variance σ 2, and C (s) denotes
the normalized systematic transmitted symbol that can take values ±1. From this we
conclude that

pL (a)|C (s) (�|c) = 1√
2πσ 2

e− (�−cσ2/2)2

2σ2 (8.9–10)

where c = ±1 with equal probability. The mutual information between L (a) and C (s)

is denoted by Ia and is given by

Ia = 1

2

∑
c=−1,1

∫ ∞

−∞
p(�|c) log2

2p(�|c)

p(�|C = −1) + p(�|C = 1)
d� (8.9–11)

Using Equation 8.9–10 in 8.9–11 and using an approach similar to the approach taken
in the derivation of Equations 6.5–31 and 6.5–32, we obtain

Ia = 1 − E
[
log2

(
1 + e−C (s)·L (a)

)]
(8.9–12)

where the expectation is with respect to the joint distribution of C (s) and L (a).
It is clear that 0 ≤ Ia ≤ 1, and it can be shown to be a monotonically increasing

function of σ ; thus given the value of Ia , σ can be uniquely determined.
A similar argument can be applied to the extrinsic information L (e) to derive Ie, the

mutual information between L (e) and C (s). The extrinsic information transfer (EXIT)
characteristic is defined as Ie when expressed as a function of Ia and Eb/N0, i.e.,

Ie = T (Ie, Eb/N0) (8.9–13)

or simply as

Ie = T (Ia) (8.9–14)



Proakis-27466 book September 26, 2007 22:28

556 Digital Communications

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

Ie

Ia

E b
�N 0

 � 3 dB

2 dB

1.5
 dB

1 d
B

0.5
 dB

0 dB

�0.5 dB

Rate 2�3, parity bits punctured
memory 4, (Gl, G) � (023, 037)

FIGURE 8.9–5
EXIT chart for a rate 2/3
convolutional code for different
values of Eb/N0. [From ten Brink
(2001) c© IEEE.]

where this characteristic is plotted for different values of Eb/N0. Since the values of
Ia and Ie are not given explicitly, Monte Carlo simulation is usually used to find the
expected value in Equation 8.9–12. This is done over a large number of samples N ,
and Ia is computed as

Ia ≈ 1 − 1

N

N∑
n=1

log2

(
1 + e−cn�n

)
(8.9–15)

The EXIT chart for a (23, 37) RSCC after puncturing to increase the rate from 1/2
to 2/3 is shown in Figure 8.9–5. The plots are shown for values of Eb/N0 in the range
of −0.5 dB to 3 dB.

For turbo codes, the extrinsic information generated by a decoder acts as the a
priori information for the next stage. To study the operation of an iterative decoder for a
turbo code, we plot the two EXIT functions of the constituent codes and move between
the two plots along the horizontal and vertical directions corresponding to equating the
extrinsic information of one encoder to the a priori information of the other, as shown
in Figure 8.9–6.

As seen in Figure 8.9–6, the iterative decoding begins with the assumption of
equal probabilities for the information bits. This corresponds to Ia1 = 0 and moves
horizontally and vertically between the two EXIT graphs. It is seen that when Eb/N0 =
0.1 dB, the two EXIT graphs intersect at low values of Ia and Ie, as noted in the lower left
corner of Figure 8.9–6. In this case after a couple of iterations no more improvement
is achieved, and low values of mutual information indicate a high error probability.
This behavior corresponds to the low signal-to-noise ratio region in Figure 8.9–4 and
sometimes is referred to as the pinch-off region. For higher values of Eb/N0, the two
EXIT graphs become separated and there exists a bottleneck region through which the
iterative decoding trajectory climbs to high Ia and Ie values corresponding to low error
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probabilities. This region corresponds to the waterfall region in Figure 8.9–4. Finally,
for large Eb/N0 values the graphs in the EXIT charts become wide open with fast
convergence to the error floor. Figure 8.9–7 depicts another example of EXIT charts
for various values of Eb/N0. The trajectories for Eb/N0 = 0.7 dB corresponding to the
waterfall region and Eb/N0 = 1.5 dB are shown for comparison.

In addition to providing insight to the performance of iterative decoding schemes,
EXIT charts have been used in the design of highly efficient codes as well as other
iterative methods such as iterative equalization.
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is done for an interleaver size of 106

bits. [From ten Brink (2001) c© IEEE.]
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8.10
FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM

We have observed that the trellis representation of convolutional codes is a convenient
graphical representation that is very useful in the implementation and understanding
of the maximum-likelihood decoding of these codes using the Viterbi algorithm or
the symbol-by-symbol maximum a posteriori decoding using the BCJR algorithm.
Representation of codes by more general graphical models is a convenient method in
studying the performance of some decoding algorithms. Graph representation is not
limited to decoding algorithms but has many applications to signal processing, circuit
theory, control theory, networking, and probability theory. In this section we provide
an introductory treatment of some of the basic graphical models used in the design of
a general algorithm called the sum-product algorithm.

The sum-product algorithm was first introduced by Gallager (1963) as a decoding
method for low-density parity check (LDPC) codes. Later, Tanner (1981) introduced
graphical models to describe this class of codes. These graphical models are known as
Tanner graphs. Wiberg et al. (1995) and Wiberg (1996) showed that the Viterbi and
BCJR algorithms as well as decoding algorithms for turbo and LDPC codes can be
unified in a single algorithm on certain graphs. The idea of graph representation of
codes was further developed and generalized by Forney (2001).

8.10–1 Tanner Graphs

Recall that an (n, k) linear block code C is described by a k × n generator matrix G
through

c = uG (8.10–1)

where u is an information sequence of length k and c is the corresponding codeword. A
binary sequence of length n is a codeword of C if and only if Equation 8.10–1 is satisfied
for some binary sequence u. The parity check matrix of this code H is an (n − k) × n
binary matrix defined as the generator matrix of the dual code C⊥. A necessary and
sufficient condition for c to be a codeword is that

cH t = 0 (8.10–2)

This equation can be written in terms of n − k relations

cht
1 = 0

cht
2 = 0

... = ...

cht
n−k = 0

(8.10–3)
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FIGURE 8.10–1
An example of a graph.

where hi denotes the i th row of H . These equations introduce a set of n − k linear
constraints on a codeword c. For instance in a (7, 4) Hamming code with

H =

⎡
⎢⎣

1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1

⎤
⎥⎦ (8.10–4)

these equations become

c1 + c2 + c3 + c5 = 0

c2 + c3 + c4 + c6 = 0

c1 + c2 + c4 + c7 = 0

(8.10–5)

where addition is modulo-2. For a (3, 1) repetition code we have

H =
[

1 1 0

1 0 1

]
(8.10–6)

and the parity check equations become

c1 + c2 = 0

c1 + c3 = 0
(8.10–7)

A Tanner graph is a graphical representation of Equations 8.10–3 as a bipartite
graph. In general, a graph is a collection of nodes (or vertices) and edges (or links) such
that each edge connects two nodes; i.e., each edge of the graph is uniquely determined
by the two nodes it connects. An example of a graph is shown in Figure 8.10–1. The
degree of a node is the number of edges that are incident on that node.

A graph is called a bipartite graph if the nodes of the graph can be partitioned into
two subsets N1 and N2 such that each edge has one node in N1 and one node in N2. In
other words, there exists no edge that connects two nodes both in N1 or both in N2. An
example of a bipartite graph is shown in Figure 8.10–2.

N1 N2 FIGURE 8.10–2
A bipartite graph.
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� f1

� f2

c3

c2

c1 FIGURE 8.10–3
The Tanner graph for the (3, 1) repetition code.

A Tanner graph representation of Equations 8.10–3 can be obtained by representing
the each codeword component ci , 1 ≤ i ≤ n, of a codeword c as a node i in N1 and
each of the n − k constraints given by Equation 8.10–3 as a node j , 1 ≤ j ≤ n − k,
in N2. There exists an edge connecting node i in N1 to node j in N2 if and only if ci

appears in the j th parity check equation. Figures 8.10–3 and 8.10–4 depict the Tanner
graphs for the (3, 1) repetition code and the (7, 4) Hamming code, respectively. Note
that since H for a code is not unique, its Tanner graph is not unique either.

One major difference between the two graphs shown in Figures 8.10–3 and 8.10–4
is that the first graph does not include cycles; that is, a path on the edges does not exist
that starts from a node and ends in the same node. However, the second graph includes
cycles, as clearly seen on the graph. A cycle-free graph is a graph in which removing
any edge divides the graph into two disconnected graphs. The length of the shortest
cycle included in a graph is called the girth of the graph. The girth of the graph shown
in Figure 8.10–4 is 4.

In the Tanner graph of Figure 8.10–4 two types of nodes are distinguishable: the
variable nodes, which correspond to the variables supplied to the Tanner graph (these are

� f1

� f2

� f3

c3

c2

c1

c5

c4

c7

c6

FIGURE 8.10–4
The Tanner graph for the (7, 4) Hamming code.
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the nodes denoted by circles on the left), and the constraint nodes that force a relation
between the variables. These nodes are denoted by squares on the right. A binary
sequence c is a codeword if it satisfies the three constraints given by Equations 8.10–5.
Let us define the indicator function of a proposition P as

δ[P] =
{

1 if P is true
0 if P is false

(8.10–8)

Then, for instance,

δ[c1 + c2 + c3 + c5 = 0] =
{

1 if c1 + c2 + c3 + c5 = 0
0 if c1 + c2 + c3 + c5 = 1

(8.10–9)

and c is a codeword if

δ[c1 +c2 +c3 +c5 = 0]δ[c2 +c3 +c4 +c6 = 0]δ[c1 +c2 +c4 +c7 = 0] = 1 (8.10–10)

The graph shown in Figure 8.10–4 is a graphical representation of the relation given
by Equation 8.10–10. We note that the product function of Equation 8.10–10 which
represents a global constraint for c to be a codeword can be factored into three local
constraints. Any input to this graph is a valid input if it results in a nonzero global value
for the global equation of the graph; and this can occur only if the input is a codeword.
Tanner graphs are special cases of factor graphs to be studied in the next section.

8.10–2 Factor Graphs

Let us assume that f (x1, x2, . . . , xn) is a real-valued function of n variables x1, . . . , xn

where xi takes values in a discrete set X . Assume we are interested in computing a
marginal function of one variable fi (xi ) as

fi (xi ) =
∑

x1

∑
x2

· · ·
∑
xi−1

∑
xi+1

· · ·
∑

xn

f (x1, x2, . . . , xn) (8.10–11)

This, for instance, can be the case if we have the joint PDF of n random variables
and want to compute the marginal PDF of xi . If the size of the set X is |X |, then
computing this sum requires |X |n−1 operations. If we use the the shorthand notation
∼ xi to indicate summation over all variables except xi , then Equation 8.10–11 can be
written in the more compact form

fi (xi ) =
∑
∼xi

f (x1, . . . , xn) (8.10–12)

Computation of fi (xi ) can be made considerably simpler if the global function
f (x1, x2, . . . , xn) is a factor of some local functions depending on a subset of variables,
i.e., if for x = (x1, x2, . . . , xn) we can write

f (x) =
M∏

m=1

gm(xm) (8.10–13)
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where xm , 1 ≤ m ≤ M , is a subset of components of x. For instance, in the case
where

f (x1, x2, x3, x4, x5, x6, x7, x8) = g1(x1)g2(x2)g3(x1, x2, x3, x4)g4(x4, x5, x6)

× g5(x5)g6(x6, x7, x8)g7(x7)
(8.10–14)

we have

f4(x4) =
( ∑

x1,x2,x3

g1(x1)g2(x2)g3(x1, x2, x3, x4)

)

×
(∑

x5,x6

g4(x4, x5, x6)g5(x5)

(∑
x7,x8

g6(x6, x7, x8)g7(x7)

)) (8.10–15)

which requires less computation than the general case.
Let us assume that f (x) is given by Equation 8.10–13. Then a factor graph repre-

senting this global function is a graph consisting of a M nodes and n edge or half-edges.
An edge connects two nodes, and a half-edge just represents a value entering a node.
Therefore a half-edge on one side is connected to a node and on the other side is free.
Each edge or half-edge of the factor graph uniquely represents a variable, and each
node uniquely represents a local function. Since we are assuming that each edge or
half-edge uniquely represents a variable, this representation is possible only if each
variable appears in at most two local functions. We will see shortly how this limitation
can be removed.

E X A M P L E 8.10–1. The factor graph representing

p(w, u, v, x1, x2, y) = p(u, v, w)p(x1|u)p(x2|v)p(y|x1, x2) (8.10–16)

is shown in Figure 8.10–5. Note that two half edges corresponding to variables w and
y appear just in one local function.

If a variable appears in more than two local functions, we introduce a cloning node
that makes copies of this variable. Then we can supply these copies to local functions
(nodes on the graph) that need them. A cloning node is given by equality constraints.

E X A M P L E 8.10–2. Let us consider the function

f (x1, x2, x3, x4, x5) = g1(x1, x2)g2(x1, x3)g3(x1, x4)g4(x3, x4, x5) (8.10–17)

g2 � p(x1�u)u

g1 � p(u, v, w)
w y

x1

g3 � p(x2�v)v x2

g4 � p(y�x1, x2)

FIGURE 8.10–5
Factor graph representing Equation 8.10–16.
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g1 g4g�

x2 x1 x5

x�1

x1	

x3

x4

g2

g3

FIGURE 8.10–6
The factor graph representing Equation 8.10–17.

In this function the variable x1 appears in three local functions and hence has to be
cloned. The factor graph in Figure 8.10–6 shows how the equality constraint is in-
troduced to carry out this cloning. The equality constraint is a local function of the
form

g= (x1, x ′
1, x ′′

1 ) = δ(x1 = x ′
1)δ(x1 = x ′′

1 ) (8.10–18)

This means that the value of this local function is 1 if and only if x1 = x ′
1 = x ′′

1 . If
this constraint is not satisfied, the value of the function is zero, making the value of
the global function zero. This means that for such values of (x1, x ′

1, x ′′
1 ) the value of

the global function is not positive, and hence such a combination is not a valid input.
Introducing g= as in Equation 8.10–18 makes it possible to have a variable in more
than two local functions.

E X A M P L E 8.10–3. The factor graph representation of the Tanner graph for the Ham-
ming code shown in Figure 8.10–4 is shown in Figure 8.10–7.

� f1�c3

�c4

c5

c6

c7

�c2

�c1

� f2

� f3

FIGURE 8.10–7
The factor graph representation for a (7, 4) Hamming code.
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g1

g2

g3 g4

g6

g7

g5

x1

x2

x3

x4

x5

x6 x8

x7

FIGURE 8.10–8
The factor graph representation of the function in Equation 8.10–14.

8.10–3 The Sum-Product Algorithm

The sum-product algorithm is an efficient algorithm for computing marginals of the
form

f (xi ) =
∑
∼xi

f (x1, x2, . . . , xn) (8.10–19)

using the factor graph for f (x1, . . . , xn). The basic idea is to sum over some of the
variables and then transmit two different messages in opposite directions across each
edge of the factor graph. The messages transmitted across each edge are functions of the
variable corresponding to that edge. These functions are usually expressed as vectors
whose components represent different values that these functions can take for different
values of the edge variable. This means that the dimensionality of the vector for each
edge is equal to the cardinality of the variable represented by that edge. In applications
of this algorithm to coding problems, since variables are usually binary, the vectors
representing the messages are two-dimensional vectors. A more convenient way in this
case, where the messages usually represent the probabilities of the variable being equal
to 0 or 1, is to use the ratio of the probabilities (likelihood ratio) or its logarithm (the
log-likelihood ratio LLR).

Let us consider the marginal represented by Equation 8.10–15 as†

f4(x4) =
( ∑

x1,x2,x3

g1(x1)g2(x2)g3(x1, x2, x3, x4)

)

×
(∑

x5,x6

g4(x4, x5, x6)g5(x5)

(∑
x7,x8

g6(x6, x7, x8)g7(x7)

)) (8.10–20)

The factor graph for f (x1, x2, x3, x4, x5, x6, x7, x8) is represented by Figure 8.10–8,
where elements in the boxes correspond to the partial sums in Equation 8.10–20.

†This example is taken from Loeliger (2004).
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We define

μg3→x4
(x4) =

∑
x1,x2,x3

g1(x1)g2(x2)g3(x1, x2, x3, x4)

μg6→x6
(x6) =

∑
x7,x8

g6(x6, x7, x8)g7(x7)

μg4→x4
(x4) =

∑
x5,x6

g4(x4, x5, x6)g5(x5)μg6→x6
(x6)

(8.10–21)

as the messages passed at g3, g6, and g4, respectively. Referring to Figure 8.10–8,
we note that μg6→x6

(x6) is the message passed out of the inner box summarizing its
content and μg3→x4

and μg4→x4
are the two messages sent in opposite directions on the

edge corresponding to variable x4. Equation 8.10–20 states that the marginal f4(x4)
is the product of the two messages passed along the edge corresponding to x4. What
we have done here is that we have successively summarized each subsystem and used
the result to summarize the next system. The resulting algorithm, known as the sum-
product algorithm, can be summarized as follows. Each node corresponding to local
function g(x1, x2, . . . , xn) receives messages corresponding to local variables xi on
the branches corresponding to these variables. The received messages are denoted by
μxi →g (xi ). Based on these messages the node computes the outgoing message μg→xi

(xi )
and sends it over the branch corresponding to xi . A diagram representing this process
is shown in Figure 8.10–9.

The outgoing messages are computed using the relation

μg→xi
(xi ) =

∑
∼xi

g(x1, . . . , xn)
∏
j �=i

μx j →g (x j ) (8.10–22)

where μx j →g (x j ) is the incoming message on edge j corresponding to variable x j . Note
that in computing the outgoing message on the edge corresponding to xi , we have used
all incoming messages except the message corresponding to edge xi . This is equivalent
to saying that the extrinsic information is passed over node xi . For some special nodes
the following rules are followed:

1. The message sent over a half-edge to the (single) node connecting to it is a message
with value 1.

�g�xi 
(xi)

�x1 � g (x1)

xi

x1

�xn � g (xn)

xn

g

.

.

.

.

.

.

FIGURE 8.10–9
The local computation in sum-product algorithm.
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2. If g is a function of a single variable xi , then the product term in Equation 8.10–22
becomes empty and the equation reduces to

μg→xi
(xi ) = g(xi ) (8.10–23)

3. For a cloning node g= with equality constraint, simple substitution in Equa-
tion 8.10–22 yields

μg= →xi
(xi ) =

∏
j �=i

μx j →g= (xi ) (8.10–24)

There exists a sharp contrast in applying the sum-product algorithm to cycle-free
graphs and graphs with cycles. In a cycle-free graph, the sum-product algorithm can start
from all leaves of the graph and proceed along the nodes as their incoming messages
become available. Since the graph is cycle-free, each message is computed only once.
After this step is done, the marginals corresponding to each variable can be found as the
product of the two messages sent in opposite directions on the edge corresponding to
that variable. For cycle-free graphs the sum-product algorithm converges to the correct
marginals in a finite number of steps. If the graph has cycles, then the convergence
of the algorithm is not guaranteed. However, in many practical cases of interest the
algorithm converges even for graphs that include cycles.

Factor Graph of a Code
For a code C with codewords ci , 1 ≤ i ≤ M , the global function can be written as
δ[c ∈ C]. If c is a codeword, then this function is equal to 1, indicating that c is a valid
input. For a noncodeword sequence, the value of the global variable is zero, indicating
that the input is not valid.

Depending on the code characteristics this global function can be factorized differ-
ently. For instance, for convolutional codes this function can be written as the product
of the conditions that each component of c must be part of a path through the code
trellis and, therefore, must correspond to a transition between states σi−1 and σi . For the
(7, 4) Hamming code the global function can be written as the product of three parity
check (local) functions as

δ[c ∈ C] = δ[c1 + c2 + c3 + c5 = 0]δ[c2 + c3 + c4 + c6 = 0]δ[c1 + c2 + c4 + c7 = 0]
(8.10–25)

In binary block codes two types of nodes are present in the factor graph of the
code: the n − k constraint nodes that represent the n − k parity check equations of the
form cht

s = 0 for 1 ≤ s ≤ n − k and the equality constraint nodes (cloning nodes)
corresponding to codeword components that appear in more than two parity check
equations. We have already seen that for the equality constraint nodes

μg= →ci
(ci ) =

∏
j �=i

μc j →g= (ci ) (8.10–26)
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For the parity check nodes, if the messages are two-dimensional vectors representing
the probability of the edge variable being† 0 or 1, we can show that (see Problem 8.25)

μg→xi
(ci = 0) = 1

2
+ 1

2

∏
j �=i

(1 − 2p j (1))

μg→xi
(ci = 1) = 1

2
− 1

2

∏
j �=i

(1 − 2p j (1))
(8.10–27)

where p j (1) denotes the incoming probability that the j th edge takes the value 1.

8.10–4 MAP Decoding Using the Sum-Product Algorithm

A code C with codewords ci , 1 ≤ i ≤ M , is used for communication over a memoryless
channel. Codeword c is transmitted over the channel and y is received, and at the decoder
we are interested in performing symbol-by-symbol maximum a posteriori decoding that
maximizes p(ci | y). This can be written as

ĉi = arg max
1≤m≤M

p(cmi | y)

= arg max
1≤m≤M

∑
∼cmi

p(cm | y)

= arg max
1≤m≤M

∑
∼cmi

p(cm)p( y|cm)

= arg max
1≤m≤M

∑
∼cmi

p(cm)
n∏

i=1

p(yi |cmi )

(8.10–28)

This quantity has to be computed over all codewords cm .
For an arbitrary binary sequence of length n denoted by c we have

p(c) =
{

1
M c ∈ C
0 otherwise

(8.10–29)

or equivalently we can write

p(c) = 1

M
δ[c ∈ C] (8.10–30)

The MAP decoding rule then becomes

ĉi = arg max
∑
∼ci

δ[c ∈ C]
n∏

i=1

p(yi |ci ) (8.10–31)

†Or, equivalently, when the incoming two-dimensional message vector to each node is appropriately nor-
malized such that the two components add to 1, i.e., if the messages are

(
μ(0)

μ(0)+μ(1) ,
μ(1)

μ(0)+μ(1)

)
.



Proakis-27466 book September 26, 2007 22:28

568 Digital Communications

� f1

� f2

� f3

�y4

c4

�y3

c3

y5
c5

y6
c6

y7
c7

�y2

c2

�y1

c1 FIGURE 8.10–10
The code-channel factor graph for a (7, 4) Hamming
code.

The factor δ[c ∈ C] determines the factor graph of the code, and factors p(yi |ci )
are nodes (functions) connected to the inputs (variable nodes) of the code factor graph
with yi as the input and p(yi |ci ) as the node function. The resulting factor graph for
a (7, 4) Hamming code is shown in Figure 8.10–10. In this graph the leftmost squares
represent the channel conditional probabilities p(yi |ci ).

The decoding process begins by supplying the channel outputs yi as the variables
to the variable nodes of the code-channel factor graph. Using the values of p(yi |ci ) and
Equations 8.10–31 and 8.10–27, the decoder can apply the sum-product algorithm to
find the marginal probabilities of each edge variable. The iterations are continued either
for a fixed number of times or until a stopping criterion is satisfied. One such stopping
criterion can be cH t = 0.

8.11
LOW DENSITY PARITY CHECK CODES

Low density parity check codes (LDPCs) are linear block codes that are characterized
by a sparse parity check matrix. These codes were originally introduced in Gallager
(1960, 1963), but were not widely studied for the next twenty years. Although Tanner
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(1981) introduced the graphical representation of these codes, it was not until after
the introduction of turbo codes and the iterative decoding algorithm that these codes
were rediscovered by MacKay and Neal (1996) and MacKay (1999). Since then these
codes have been the topic of active research in the coding community motivated by
the excellent performance of these codes, which is realized by using iterative decoding
schemes based on the sum-product algorithm. In fact, it has been shown that these
codes are competitors to turbo codes in terms of performance and, if well designed,
have better performance than turbo codes. Their excellent performance has resulted in
their adoption in several communication and broadcasting standards.

Low density parity check codes are linear block codes with very large codeword
length n usually in the thousands. The parity check matrix H for these codes is a large
matrix with very few 1s in it. The term low density refers to the low density of 1s in the
parity check matrix of these codes.

A regular low density parity check can be defined as a linear block code with a
sparse m × n parity check matrix H satisfying the following properties.

1. There are wr 1s in each row of H , where wr � min{m, n}.
2. There are wc 1s in each column of H , where wc � min{m, n}.
The density of a low-density parity check code, denoted by r , is defined as the ratio of
the total number of 1s in H to the total number of elements in H . The density is given
by

r = wr

n
= wc

m
(8.11–1)

from which it is clear that
m

n
= wc

wr
(8.11–2)

If the matrix H is full rank, then m = n − k

Rc = 1 − m

n
= 1 − wc

wr
(8.11–3)

otherwise,

Rc = 1 − rank(H)

n
(8.11–4)

The Tanner graph of a regular low density parity check code consists of the usual
constraint and variable nodes. The low density constraint of the code, however, makes
the degree of all constraint (parity-check) nodes equal to wr which is much less than
the code block length. Similarly the degree of all variable nodes is equal to wc. The
Tanner graph for an LDPC code is shown in Figure 8.11–1

The Tanner graph of LDPC codes usually is a graph with cycles. We have previously
defined the girth of a graph as the length of the shortest cycle in that graph. Obviously
a bipartite graph with cycles has a girth that is least equal to 4. A common decoding
technique used for LDPC codes is the sum-product algorithm discussed in the preceding
section. This algorithm is effective when the girth of the Tanner graph of the LDPC
code is large. The reason for this behavior is that in order for the sum-product algorithm
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�� �

FIGURE 8.11–1
The Tanner graph for a regular LDPC
code with wr = 4 and wc = 3.

to be effective on a graph with cycles, the value of the extrinsic information must be
high. If the girth of the LDPC code is low, the information corresponding to a bit loops
back to itself very soon, hence providing a small amount of extrinsic information and
resulting in poor performance. Design techniques for LDPC codes with large girth are
a topic of active research. We have seen in the preceding section that if the Tanner graph
of a code has no cycles, then the sum-product algorithm converges in a finite number of
steps. However, it has been shown that high-rate LDPC codes whose graph is cycle-free
have low minimum distance and hence their bit error rate performance is poor.

An irregular LDPC code is one in which the number of 1s in rows and columns
of H is low but is not constant for all rows and columns. Irregular low density parity
check codes are usually described in terms of two degree distribution polynomials λ(x)
and ρ(X ), for variable nodes and constraint nodes, respectively. These polynomials are
defined as

λ(x) =
dr∑

d=1

λd xd−1

ρ(x) =
dc∑

d=1

ρd xd−1

(8.11–5)

where λd and ρd denote the fraction of all edges connected to variable and constraint
nodes of degree d, respectively. It is clear that for a regular LDPC code we have

λ(x) = xwc−1

ρ(x) = xwr −1
(8.11–6)

Very long irregular LDPC codes have been designed to operate within 0.0045 dB of
the Shannon limit (see Chung et al. (2001)).

8.11–1 Decoding LDPC Codes

The two main algorithms used to decode LDPC codes are the bit-flipping algorithm
and the sum-product algorithm, the latter also referred to as the belief propagation algo-
rithm. The bit-flipping algorithm is a hard decision decoding algorithm with low com-
plexity. The sum-product algorithm is a soft decision algorithm with higher complexity.
We have already studied the sum-product algorithm in Section 8.10–3. Applying this
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algorithm to LDPC codes is straightforward and is based on applying Equations 8.10–31
and 8.10–27 to the code-channel factor graph.

The bit-flipping algorithm is a hard decision decoding algorithm. Let us assume
that y is the hard channel output, i.e., the channel output quantized to 0 or 1. In the first
step of the bit-flipping algorithm, the syndrome s = yH t is computed. If the syndrome
is zero, then we put ĉ = y and stop. Otherwise, we consider the nonzero components
of s corresponding to parity check equations that are not satisfied by the components
of y. The update of y is done by flipping those components of y that appear in the
largest number of unsatisfied parity check equations. Equivalently, these are the node
variables that are connected to the largest number of unsatisfied constraint nodes of the
graph of the LDPC code. After the update the syndrome is computed again, and the
whole process is repeated for a fixed number of iterations or until the syndrome is equal
to zero. The interested reader can refer to Lin and Costello (2004) for more details on
bit-flipping decoding and its various forms.

8.12
CODING FOR BANDWIDTH-CONSTRAINED CHANNELS — TRELLIS
CODED MODULATION

In the treatment of block and convolutional codes, performance improvement was
achieved by expanding the bandwidth of the transmitted signal by an amount equal to
the reciprocal of the code rate. Recall for example that the improvement in performance
achieved by an (n, k) binary block code with soft-decision decoding is approximately
10 log10(Rcdmin − k ln 2/γb) compared with uncoded binary or quaternary PSK. For
example, when γb = 10, the (24, 12) extended Golay code gives a coding gain of 5 dB.
This coding gain is achieved at a cost of doubling the bandwidth of the transmitted
signal and, of course, at the additional cost in receiver implementation complexity.
Thus, coding provides an effective method for trading bandwidth and implementation
complexity against transmitter power. This situation applies to digital communication
systems that are designed to operate in the power-limited region where R/W < 1.

In this section, we consider the use of coded signals for bandwidth-constrained
channels. For such channels, the digital communication system is designed to use
bandwidth-efficient multilevel amplitude and phase modulation, such as PAM, PSK,
DPSK, or QAM, and operates in the region where R/W > 1. When coding is applied
to the bandwidth-constrained channel, a performance gain is desired without expanding
the signal bandwidth. This goal can be achieved by increasing the number of signals
over the corresponding uncoded system to compensate for the redundancy introduced
by the code.

For example, suppose that a system employing uncoded four-phase PSK modula-
tion achieves an R/W = 2 (bits/s)/Hz at an error probability of 10−6. For this error rate
the SNR per bit is γb = 10.5 dB. We may try to reduce the SNR per bit by use of coded
signals, but this must be done without expanding the bandwidth. If we choose a rate
Rc = 2/3 code, it must be accompanied by an increase in the number of signal points
from four (2 bits per symbol) to eight (3 bits per symbol). Thus, the rate 2/3 code used
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in conjunction with eight-phase PSK, for example, yields the same data throughput as
uncoded four-phase PSK. However, we recall that an increase in the number of signal
phases from four to eight requires an additional 4 dB approximately in signal power to
maintain the same error rate. Hence, if coding is to provide a benefit, the performance
gain of the rate 2/3 code must overcome this 4-dB penalty.

If the modulation is treated as a separate operation independent of the encoding,
the use of very powerful codes (large-constraint-length convolutional codes or large-
block-length block codes) is required to offset the loss and provide some significant
coding gain. On the other hand, if the modulation is an integral part of the encoding
process and is designed in conjunction with the code to increase the minimum Euclidean
distance between pairs of coded signals, the loss from the expansion of the signal set is
easily overcome and a significant coding gain is achieved with relatively simple codes.
The key to this integrated modulation and coding approach is to devise an effective
method for mapping the coded bits into signal points such that the minimum Euclidean
distance is maximized. Such a method was developed by Ungerboeck (1982), based
on the principle of mapping by set partitioning. We describe this principle by means of
Examples 8.12–1 and 8.12–2.

Set partitioning We begin with a given signal constellation, such as M-ary PAM,
or QAM or PSK, and partition the constellation into subsets in a way that the minimum
Euclidean distance between signal points in a subset is increased with each partition. The
following two examples illustrate the set partitioning method proposed by Ungerboeck.

E X A M P L E 8.12–1. AN 8-PSK SIGNAL CONSTELLATION. Let us partition the eight-phase
signal constellation shown in Figure 8.12–1 into subsets of increasing minimum
Euclidean distance. In the eight-phase signal set, the signal points are located on a
circle of radius

√
E and have a minimum distance separation of

d0 = 2
√
E sin 1

8π =
√

(2 − √
2)E = 0.765

√
E

In the first partitioning, the eight points are subdivided into two subsets of four points
each, such that the minimum distance between points increases to d1 = √

2E . In the
second level of partitioning, each of the two subsets is subdivided into two subsets of
two points, such that the minimum distance increases to d2 = 2

√
E . This results in four

subsets of two points each.
Finally, the last stage of partitioning leads to eight subsets, where each subset

contains a single point. Note that each level of partitioning increases the minimum
Euclidean distance between signal points. The results of these three stages of partition-
ing are illustrated in Figure 8.12–1. The way in which the coded bits are mapped into
the partitioned signal points is described below.

E X A M P L E 8.12–2. A 16-QAM SIGNAL CONSTELLATION. The 16-point rectangular signal
constellation shown in Figure 8.12–2 is first divided into two subsets by assigning
alternate points to each subset as illustrated in the figure. Thus, the distance between
points is increased from 2

√
E to 2

√
2E by the first partitioning. Further partitioning of

the two subsets leads to greater separation in Euclidean distance between signal points
as illustrated in Figure 8.12–2. It is interesting to note that for the rectangular signal
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FIGURE 8.12–1
Set partitioning of an 8-PSK signal set.

FIGURE 8.12–2
Set partitioning of 16-QAM signal.
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FIGURE 8.12–3
General structure of combined
encoder/modulator.

constellations, each level of partitioning increases the minimum Euclidean distance by√
2, i.e., di+1/di = √

2 for all i .

In these two examples, the partitioning was carried out to the limit where each
subset contains only a single point. In general, this may not be necessary. For example,
the 16-point QAM signal constellation may be partitioned only twice, to yield four
subsets of four points each. Similarly, the eight-phase PSK signal constellation can be
partitioned twice, to yield four subsets of two points each.

Trellis-coded modulation (TCM) The degree to which the signal is partitioned
depends on the characteristics of the code. In general, the encoding process is performed
as illustrated in Figure 8.12–3. A block of m information bits is separated into two groups
of length k1 and k2, respectively. The k1 bits are encoded into n bits, while the k2 bits
are left uncoded. Then, the n bits from the encoder are used to select one of the possible
subsets in the partitioned signal set, while the k2 bits are used to select one of 2k2 signal
points in each subset. When k2 = 0, all m information bits are encoded.

The assignment of signal subsets to state transitions in the trellis is based on three
heuristic rules devised by Ungerboeck (1982). The rules are

1. Use all subsets with equal frequency in the trellis.
2. Transitions originating from the same state or merging into the same state in the

trellis are assigned subsets that are separated by the largest Euclidean distance.
3. Parallel state transitions (when they occur) are assigned signal points separated by

the largest Euclidean distance. Parallel transitions in the trellis are characteristic of
TCM that contains one or more uncoded information bits.

E X A M P L E 8.12–3. Consider the use of the rate 1/2 convolutional encoder shown in
Figure 8.12–4a to encode one information bit while the second information bit is left
uncoded. This code results in the four-state trellis shown in Figure 8.12–4b. When
used in conjunction with an eight-point signal constellation, such as eight-point PSK
or QAM, the two encoded output bits are used to select one of the four subsets in the
partitioned signal constellation, while the remaining information bit is used to select
one of the two points within each subset. Let us use the eight-point PSK consellation
to complete this example. The four subsets assigned to the trellis in Figure 8.12–4b
correspond to the subsets labeled C0, C1, C2, C3 in Figure 8.12–1. Note that the
Euclidean distance of points within any subset is d2 = 2

√
E and the largest minimum

distance between signal points in any pair of subsets is d1 = √
2E . The mappings

of the coded bits (c2, c1) and the uncoded bit c3 to the state transitions, using the
convention (c3, c2, c1) are shown in Figure 8.12–4c. We note that each trellis state has
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(c)

(d)

(a) (b)

FIGURE 8.12–4
Four-state trellis-coded modulation with 8-PSK signal constellation.

two parallel transitions, corresponding to the two possible values of the uncoded bit. The
phase assignments in the eight-point PSK constellation are shown in Figure 8.12–4d.
It should be noted that the mapping of the bits (c3, c2, c1) into the eight signal points
in the constellation is not unique. Several other mappings are possible. For example,
an equally good mapping is obtained if the four-point subsets B0 and B1 shown in
Figure 8.12–1, are interchanged, so that the signal points in the subsets C0, C1, C2, and
C3 will also change.

In general, the number of states S = 2ν in the code trellis is a function of the number
of memory elements in the encoder. Hence, we may increase the number of trellis states
while maintaining the same code rate. For example, Figure 8.12–5 illustrates a rate
2/3 code that has eight trellis states. In this case, both information bits are coded.

Let us now evaluate the performance of the trellis-coded 8-PSK and compare its
performance with that of uncoded 4-PSK, which we use as a reference in measuring the
coding gain of the trellis-coded modulation. Uncoded 4-PSK employs the signal points
in either subset B0 or B1 of Figure 8.12–1, for which the minimum distance of the signal
points is

√
2E . Note that the 4-PSK signal corresponds to a trivial one-state trellis with

four parallel state transitions, as shown in Figure 8.12–6. The subsets D0, D2, D4, and
D6 in Figure 8.12–1 are used as the signal points for the purpose of illustration.
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FIGURE 8.12–5
Rate 2

3 , eight-state trellis code.

For the trellis-coded 8-PSK modulation, we use the four-state trellis shown in
Figure 8.12–4b and c. We observe that each branch in the trellis corresponds to one of
the four subsets C0, C1, C2, or C3. As indicated above, for the eight-point constella-
tion, each of the subsets C0, C1, C2, and C3 contains two signal points. Hence, the state
transition C0 contains the two signal points corresponding to the bits (c3c2c1) = (000)
and (100), or (0, 4) in octal representation. Similarly, C2 contains the two signal points
corresponding to (010) and (110) or to (2, 6) in octal, C1 contains the points corre-
sponding to (001) and (101) or (1, 5) in octal, and C3 contains the points corresponding

(a)

(b)

(c)

FIGURE 8.12–6
Uncoded 4-PSK and trellis-coded 8-PSK modulation.
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to (011) and (111) or (3, 7) in octal. Thus, each transition in the four-state trellis con-
tains two parallel paths, as previously indicated. As shown in Figure 8.12–6, any two
signal paths that diverge from one state and remerge at the same state after more than
one transition have a squared Euclidean distance of d2

0 + 2d2
1 = d2

0 + d2
2 between

them. For example, the signal paths 0, 0, 0 and 2, 1, 2 are separated by d2
0 + d2

2 =
[(0.765)2 + 4]E = 4.585E . On the other hand, the squared Euclidean distance between
parallel transitions is d2

2 = 4E . Hence, the minimum Euclidean distance separation
between paths that diverge from any state and remerge at the same state in the four-
state trellis is d2 = 2

√
E . The minimum distance in the trellis code is called the free

Euclidean distance and denoted by Dfed.
In the four-state trellis of Figure 8.12–6b, Dfed = 2

√
E . When compared with the

Euclidean distance d0 = √
2E for the uncoded 4-PSK modulation, we observe that the

four-state trellis code gives a coding gain of 3 dB.
We should emphasize that the four-state trellis code illustrated in Figure 8.12–6b

is optimum in the sense that it provides the largest free Euclidean distance. Clearly,
many other four-state trellis codes can be constructed, including the one shown in
Figure 8.12–7, which consists of four distinct transitions from each state to all other
states. However, neither this code nor any of the other possible four-state trellis codes
gives a larger Dfed.

In the four-state trellis code, the parallel transitions were separated by the Euclidean
distance 2

√
E , which is also Dfed. Hence, the coding gain of 3 dB is limited by the

distance of the parallel transitions. Larger gains in performance relative to uncoded
4-PSK can be achieved by using trellis codes with more states, which allow for the
elimination of the parallel transitions. Thus, trellis codes with eight or more states
would use distinct transitions to obtain a larger Dfed.

For example, in Figure 8.12–8, we illustrate an eight-state trellis code due to
Ungerboeck (1982) for the 8-PSK signal constellation. The state transitions for maxi-
mizing the free Euclidean distance were determined from application of the three basic
rules given above. In this case, note that the minimum squared Euclidean distance is

D2
fed = d2

0 + 2d2
1 = 4.585E

which, when compared with d2
0 = 2E for uncoded 4-PSK, represents a gain of

3.6 dB. Ungerboeck (1982, 1987) has also found rate 2/3 trellis codes with 16, 32,

FIGURE 8.12–7
An alternative four-state trellis code.
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FIGURE 8.12–8
Eight-state trellis code for coded
8-PSK modulation.

64, 128, and 256 states that achieve coding gains ranging from 4 to 5.75 dB for 8-PSK
modulation.

The basic principle of set partitioning is easily extended to larger PSK signal
constellations that yield greater bandwidth efficiency. For example, 3 (bits/s)/Hz can
be achieved with either uncoded 8-PSK or with trellis-coded 16-PSK modulation.
Ungerboeck (1987) has devised trellis codes and has evaluated the coding gains achieved
by simple rate 1/2 and rate 2/3 convolutional codes for the 16-PSK signal constellations.
The results are summarized below.

Soft-decision Viterbi decoding for trellis-coded modulation is accomplished in two
steps. Since each branch in the trellis corresponds to a signal subset, the first step in
decoding is to determine the best signal point within each subset, i.e., the point in each
subset that is closest in distance to the received point. We may call this subset decoding.
In the second step, the signal point selected from each subset and its squared distance
metric are used for the corresponding branch in the Viterbi algorithm to determine the
signal path through the code trellis that has the minimum sum of squared distances
from the sequence of received (noisy channel output) signals.

The error rate performance of the trellis-coded signals in the presence of additive
Gaussian noise can be evaluated by following the procedure described in Section 8.2 for
convolutional codes. Recall that this procedure involves the computation of the proba-
bility of error for all different error events and summing these error event probabilities
to obtain a union bound on the first-event error probability. Note, however, that at high
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SNR, the first-event error probability is dominated by the leading term, which has the
minimum distance Dfed. Consequently, at high SNR, the first-event error probability is
well approximated as

Pe ≈ Nfed Q

⎛
⎝

√
D2

fed

2N0

⎞
⎠ (8.12–1)

where Nfed denotes the number of signal sequences with distance Dfed that diverge at
any state and remerge at that state after one or more transitions.

In computing the coding gain achieved by trellis-coded modulation, we usually
focus on the gain achieved by increasing Dfed and neglect the effect of Nfed. However,
trellis codes with a large number of states may result in a large Nfed that cannot be
ignored in assessing the overall coding gain.

In addition to the trellis-coded PSK modulations described above, powerful trellis
codes have also been developed for PAM and QAM signal constellations. Of particular
practical importance is the class of trellis-coded two-dimensional rectangular signal
constellations. Figure 8.12–9 illustrates these signal constellations for M-QAM where
M = 16, 32, 64, and 128. The M = 32 and 128 constellations have a cross pattern
and are sometimes called cross-constellations. The underlying rectangular grid con-
taining the signal points in M-QAM is called a lattice of type Z2 (the subscript indicates
the dimensionality of the space). When set partitioning is applied to this class of sig-
nal constellations, the minimum Euclidean distance between successive partitions is
di+1/di = √

2 for all i , as previously observed in Example 8.12–2.
Figure 8.12–10 illustrates an eight-state trellis code that can be used with any of the

M-QAM rectangular signal constellations for which M = 2k , where k = 4, 5, 6, . . . ,
etc. With the eight-state trellis, we associate eight signal subsets, so that any of the

FIGURE 8.12–9
Rectangular two-dimensional (QAM) signal constellations.
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FIGURE 8.12–10
Eight-state trellis for rectangular QAM signal
constellations.

M-QAM signal sets for M ≥ 16 are suitable. For M = 2m+1, two input bits (k1 = 2)
are encoded into n = 3 (n = k1 +1) bits that are used to select one of the eight subsets.
The additional k2 = m−k1 input bits are used to select signal points within a subset, and
result in parallel transitions in the eight-state trellis. Hence, 16-QAM with an 8-state
trellis involves two parallel transitions in each branch of the trellis. More generally, the
choice of an M = 2m+1-point QAM signal constellation implies that the eight-state
trellis contains 2m−2 parallel transitions in each branch.

The assignment of signal subsets to transitions is based on the same set of basic
(heuristic) rules described above for the 8-PSK signal constellation. Thus, for the 8-
state trellis, the four (branches) transitions originating from or leading to the same state
are assigned either the subsets D0, D2, D4, D6 or D1, D3, D5, D7. Parallel transitions
are assigned signal points contained within the corresponding subsets. This eight-state
trellis code provides a coding gain of 4 dB. The Euclidean distance of parallel transitions
exceeds the free Euclidean distance, and, hence, the code performance is not limited
by parallel transitions.

Larger size trellis codes for M-QAM provide even larger coding gains. For ex-
ample, trellis codes with 2ν states for an M = 2m+1 QAM signal constellation can be
constructed by convolutionally encoding k1 input bits into k1 + 1 output bits. Thus, a
rate Rc = k1/(k1 + 1) convolutional code is employed for this purpose. Usually, the
choice of k1 = 2 provides a significant fraction of the total coding gain that is achiev-
able. The additional k2 = m − k1 input bits are uncoded and are transmitted in each
signal interval by selecting signal points within a subset.
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TABLE 8.12–1

Coding Gains for Trellis-Coded PAM Signals

Code m = 1 m = 2 m → ∞
Number rate coding gain (dB) coding gain (dB) asymptotic

of k1 of 4-PAM versus of 8-PAM versus coding gain m → ∞
states k1 k1 + 1 uncoded 2-PAM uncoded 4-PAM (dB) N fed

4 1 1/2 2.55 3.31 3.52 4
8 1 1/2 3.01 3.77 3.97 4

16 1 1/2 3.42 4.18 4.39 8
32 1 1/2 4.15 4.91 5.11 12
64 1 1/2 4.47 5.23 5.44 36

128 1 1/2 5.05 5.81 6.02 66

Source: Ungerboeck (1987).

Tables 8.12–1 to 8.12–3, taken from the paper by Ungerboeck (1987), provide a
summary of coding gains achievable with trellis-coded modulation. Table 8.12–1 sum-
marizes the coding gains achieved for trellis-coded (one-dimensional) PAM modulation
with rate 1/2 trellis codes. Note that the coding gain with a 128-state trellis code is
5.8 dB for octal PAM, which is close to the channel cutoff rate R0 and less than 4 dB
from the channel capacity limit for error rates in the range of 10−6–10−8. We should
also observe that the number of paths Nfed with free Euclidean distance Dfed becomes
large with an increase in the number of states.

Table 8.12–2 lists the coding gain for trellis-coded 16-PSK. Again, we observe that
the coding gain for eight or more trellis states exceeds 4 dB, relative to uncoded 8-PSK.
A simple rate 1/2 code yields 5.33 dB gain with a 128-states trellis.

Table 8.12–3 contains the coding gains obtained with trellis-coded QAM signals.
Relatively simple rate 2/3 trellis codes yield a gain of 6 dB with 128 trellis states for
m = 3 and 4.

The results in these tables clearly illustrate the significant coding gains that are
achievable with relatively simple trellis codes. A 6-dB coding gain is close to the cutoff
rate R0 for the signal sets under consideration. Additional gains that would lead to

TABLE 8.12–2

Coding Gains for Trellis-Coded 16-PSK Modulation

m = 3
Number Code rate coding gain (dB)

of k1 of 16-PSK versus m → ∞
states k1 k1 + 1 uncoded 8-PSK N fed

4 1 1/2 3.54 4
8 1 1/2 4.01 4

16 1 1/2 4.44 8
32 1 1/2 5.13 8
64 1 1/2 5.33 2

128 1 1/2 5.33 2
256 2 2/3 5.51 8

Source: Ungerboeck (1987).
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TABLE 8.12–3

Coding Gains for Trellis-Coded QAM Modulation

m = 3 m = 4 m = 5
Code gain (dB) of gain (dB) of gain (dB) of m = ∞

Number rate 16-QAM versus 32-QAM versus 64-QAM versus asymptotic
of k1 uncoded uncoded uncoded coding

states k1 k1 + 1 8-QAM 16-QAM 32-QAM gain (dB) N fed

4 1 1/2 3.01 3.01 2.80 3.01 4
8 2 2/3 3.98 3.98 3.77 3.98 16

16 2 2/3 4.77 4.77 4.56 4.77 56
32 2 2/3 4.77 4.77 4.56 4.77 16
64 2 2/3 5.44 5.44 5.23 5.44 56

128 2 2/3 6.02 6.02 5.81 6.02 344
256 2 2/3 6.02 6.02 5.81 6.02 44

Source: Ungerboeck (1987).

transmission in the vicinity of the channel capacity bound are difficult to attain without
a significant increase in coding/decoding complexity. Continued partitioning of large
signal sets quickly leads to signal point separation within any subset that exceeds the
free Euclidean distance of the code. In such cases, parallel transitions are no longer
the limiting factor on Dfed. Usually, a partition to eight subsets is sufficient to obtain a
coding gain of 5–6 dB with simple rate 1/2 or rate 2/3 trellis codes with either 64 or
128 trellis states, as indicated in Tables 8.12–1 to 8.12–3.

Convolutional encoders for the linear trellis codes listed in Tables 8.12–1 to 8.12–3
for the M-PAM, M-PSK, and M-QAM signal constellations are given in the papers by
Ungerboeck (1982, 1987). The encoders may be realized either with feedback or with-
out feedback. For example Figure 8.12–11 illustrates three feedback-free convolutional
encoders corresponding to 4-, 8-, and 16-state trellis codes for 8-PSK and 16-QAM
signal constellations. Equivalent realizations of these trellis codes based on system-
atic convolutional encoders with feedback are shown in Figure 8.12–12. Usually, the
systematic convolutional encoders are preferred in practical applications.

A potential problem with linear trellis codes is that the modulated signal sets are not
usually invariant to phase rotations. This poses a problem in practical applications where
differential encoding is usually employed to avoid phase ambiguities when a receiver
must recover the carrier phase after a temporary loss of signal. For two-dimensional
signal constellations, it is possible to achieve 180◦ phase invariance by use of a linear
trellis code. However, it is not possible to achieve 90◦ phase invariance with a linear
code. In such a case, a non-linear code must be used. The problem of phase invari-
ance and differential encoding/decoding was solved by Wei (1984a,b), who devised
linear and non-linear trellis codes that are rotationally invariant under either 180◦ or
90◦ phase rotations, respectively. For example, Figure 8.12–13 illustrates a non-linear
eight-state convolutional encoder for a 32-QAM rectangular signal constellation that
is invariant under 90◦ phase rotations. This trellis code has been adopted as an interna-
tional standard (V.32 and V.33) for 9600 and 14,000 bits/s (high-speed) telephone line
modems.
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(a)

(b)

(c)

FIGURE 8.12–11
Minimal feedback-free convolutional encoders for 8-PSK and 16-QAM signals. [From
Ungerboeck (1982). c© 1982 IEEE.]

Trellis-coded modulation schemes have also been developed for multidimensional
signals. In practical systems, multidimensional signals are transmitted as a sequence of
either one-dimensional (PAM) or two-dimensional (QAM) signals. Trellis codes based
on 4-, 8-, and 16-dimensional signal constellations have been constructed, and some of
these codes have been implemented in commercially available modems. A potential ad-
vantage of trellis-coded multidimensional signals is that we can use smaller constituent
two-dimensional signal constellations that allow for a trade-off between coding gain
and implementation complexity. For example, a 16-state linear four-dimensional code,
also designed by Wei (1987), is currently used as one of the codes for the V.34 tele-
phone modem standard. The constituent two-dimensional signal constellation contains
a maximum of 1664 signal points. The modem can transmit as many as 10 bits per
symbol (eight uncoded bits) to achieve data rates as high as 33,600 bits/s. The papers
by Wei (1987), Ungerboeck (1987), Gersho and Lawrence (1984), and Forney et al.
(1984) treat multidimensional signal constellations for trellis-coded modulation.

8.12–1 Lattices and Trellis Coded Modulation

The set partitioning principles used in trellis coded modulation and the coding scheme
based on set partitioning can be formulated in terms of lattices. We have defined lattices
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(a)

(b)

(c)

FIGURE 8.12–12
Equivalent realizations of systematic convolutional encoders with feedback for 8-PSK and
16-QAM. [From Ungerboeck (1982). c© 1982 IEEE.]

and sublattice in Section 4.7. If �′ is a sublattice of lattice � and c ∈ � is arbitrary,
we can define a shift of �′ by c, denoted by �′ + c as the set of points of �′ when
each is shifted by c. The result is called a coset of �′ in �. If c is a member of �′
then the coset is simply �′. The union of all distinct cosets of �′ generate �, hence
� can be partitioned into cosets where each coset is a shifted version of �′. The set
of distinct cosets generated this way is denoted by �/�′. Each element of �/�′ is a
coset that can be represented by c ∈ �; this element of the lattice is called the coset
representative. The reader can compare this notion to the discussion of standard array
and cosets in linear block codes discussed in Section 7.5 and notice the close relation.
Coset representatives are similar to coset leaders. The set of coset representatives is
represented by [�/�′], and the number of distinct cosets, called the order of partition, is
denoted by |�/�′|. From this discussion we conclude that a lattice � can be partitioned
into cosets and be written as the union of the cosets as

� =
L⋃

i=1

{ci + �′} = [�/�′] + �′ (8.12–2)

where L = |�/�′| is the partition order. This relation is called the coset decomposition
of lattice � in terms of cosets of lattice �′.

The set partitioning of a constellation can be compared with the coset decomposi-
tion of a lattice. Let us assume a lattice � is decomposed using sublattice �′ such that
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(a)

(b)

FIGURE 8.12–13
Eight-state non-linear convolutional encoder for 32-QAM signal set that exhibits invariance
under 90◦ phase rotations.

the order of the partition |�/�′| is equal to 2n , then each coset can serve as one of the
partitions used in Ungerboeck’s set partitioning. An (n, k1) code is used to encode k1

information bits into a binary sequence of length n which select one of the 2n cosets in
the lattice decomposition. The k2 uncoded bits are used to select a point in the coset.
Note that the number of elements in a coset is equal to the number of elements of the
sublattice �′ which is infinite, selection of a point in the coset determines the signal
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FIGURE 8.12–14
Encoder for concatenation of a PCCC (turbo code) with TCM.

space boundary, thus determining the shaping. The total coding gain can then be defined
as the product of two factors, the fundamental coding gain and the shaping gain. The
shaping gain measures the amount of power reduction resulting from using a close to
spherically shaped boundary and is independent from the convolutional code and the
lattice used. The value of the shaping gain is limited to 1.53 dB as was discussed in
Section 4.7. The interested reader is referred to Forney (1988).

8.12–2 Turbo-Coded Bandwidth Efficient Modulation

The performance of TCM can be further improved by code concatenation. There are
several different methods described in the literature. We shall briefly describe two
schemes for code concatenation using parallel concatenated codes, which we simply
refer to as turbo coding.

In one scheme, described in the paper by Le Goff et al. (1994), the information
sequence is fed to a binary turbo encoder that employs a parallel concatenation of
a component convolutional code with interleaving to generate a systematic binary
turbo code. As shown in Figure 8.12–14, the output of the turbo encoder is ultimately
connected to the signal mapper after the binary sequence from the turbo code has
been appropriately multiplexed, the parity bit sequence has been punctured to achieve
the desired code rate, and the data and parity sequences have been interleaved. Gray
mapping is typically used in mapping coded bits to modulation signal points, separately
for the in-phase (I ) and quadrature (Q) signal components.

Figure 8.12–15 illustrates the block diagram of the decoder for this turbo coding
scheme. Based on each received I and Q symbol, the receiver computes the loga-
rithm of the likelihood ratio or the MAP of each systematic bit and each parity bit.

FIGURE 8.12–15
Decoder for concatenated PCCC/TCM code.
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After deinterleaving, depuncturing, and demultiplexing of these logarithmic metrics,
the systematic and parity bit information are fed to the standard binary turbo decoder.

This scheme for constructing turbo-coded bandwidth efficient modulation imposes
no constraints on the type or size of the signal constellation. In addition, this scheme can
be matched to any conventional binary turbo code. In fact, this scheme is also suitable
if the turbo code is replaced by a serially concatenated convolutional code.

A second scheme employs a conventional Ungerboeck trellis code with interleav-
ing to yield a parallel concatenated TCM. The basic configuration of the turbo TCM
encoder, as described in the paper by Robertson and Wörz (1998), is illustrated in Fig-
ure 8.12–16. To avoid a rate loss, the parity sequence is punctured, as described below,
in such a way that all information bits are transmitted only once, and the parity bits from
the two encoders are alternately punctured. The block interleaver operates on groups
of m − 1 information bits, where the signal constellation consists of 2m signal points.

To illustrate the group interleaving and puncturing, let us consider a rate Rc =
2
3 TCM code, a block interleaver of length N = 6, and 8-PSK modulation (m = 3).
Hence, the number of information bits per block is N (m −1) = 12, and the interleaving
is performed on pairs of information bits as shown in Figure 8.12–16 where, for example,
a pair of bits in an even position (2, 4, 6) is mapped to another even position and a pair
of bits in an odd position is mapped to another odd position. The output of the second

FIGURE 8.12–16
Turbo TCM encoder shown for 8-PSK with two-dimensional component codes of memory 3.
An example of interleaving with N = 6 is shown. Bold letters indicate that symbols or pairs of
bits correspond to the upper encoder. [From Robertson and Wörz (1998); c© 1998 IEEE.]
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TCM encoder is deinterleaved symbol-wise as illustrated in Figure 8.12–16, and the
output symbol sequence is obtained by puncturing the two signal-point sequences, i.e.,
by selecting every other symbol from each of the two sequences. That is, we select the
even-numbered symbols from the top symbol mapper and the odd-numbered symbols
from the bottom symbol mapper. (In general, some of the information bits can remain
uncoded, depending on the signal constellation and the signal mapping. In this example,
both information bits are coded.)

A block diagram of the turbo decoder is shown in Figure 8.12–17. In the conven-
tional binary iterative turbo decoder, each output of each component decoder is usually
split into three parts, namely, the systematic part, the a priori part, and the extrinsic
part, where only the latter is passed between the two decoders. In this TCM scheme,
the systematic part cannot be separated from the extrinsic component, because the
noise that affects the parity component also affects the systematic component due to
the fact that both components are transmitted by the same symbol. This implies that
the output of the decoders can be split into only two components, namely, the a priori
information and the extrinsic-systematic information. Hence, each decoder passes the
extrinsic-systematic information to the other decoder. Each decoder ignores those sym-
bols where the pertinent parity bit was not sent and obtains the systematic information

FIGURE 8.12–17
Turbo TCM decoder corresponding to the encoder in Figure 8.12–16. [From Robertson and
Wörz (1998); c© 1998 IEEE.]
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through its a priori input. In the first iteration, the a priori input of the first decoder
is initialized with the missing systematic information. Details of the iterative decoder
computations are given in the paper by Robertson and Wörz (1998). An additional
coding gain of about 1.7 dB has been achieved by use of a turbo TCM compared to
conventional TCM, at error rates in the vicinity of 10−4. This means that turbo TCM
achieves a performance close to the Shannon capacity on an AWGN channel.

8.13
BIBLIOGRAPHICAL NOTES AND REFERENCES

In parallel with the developments on block codes are the developments in convolu-
tional codes, which were invented by Elias (1955). The major problem in convolutional
coding was decoding. Wozencraft and Reiffen (1961) described a sequential decoding
algorithm for convolutional codes. This algorithm was later modified and refined by
Fano (1963), and it is now called the Fano algorithm. Subsequently, the stack algorithm
was devised by Zigangirov (1966) and Jelinek (1969), and the Viterbi algorithm was
devised by Viterbi (1967). The optimality and the relatively modest complexity for
small constraint lengths have served to make the Viterbi algorithm the most popular in
decoding of convolutional codes with K ≤ 10.

One of the most important contributions in coding during the 1970s was the work of
Ungerboeck and Csajka (1976) on coding for bandwidth-constrained channels. In this
paper, it was demonstrated that a significant coding gain can be achieved through the
introduction of redundancy in a bandwidth-constrained channel, and trellis codes were
described for achieving coding gains of 3–4 dB. This work has generated much interest
among researchers and has led to a large number of publications over the past 15 years.
A number of references can be found in the papers by Ungerboeck (1982, 1987) and
Forney et al. (1984). The papers by Benedetto et al. (1988, 1994) focus on applications
and performance evaluation. Additional papers on coded modulation for bandwidth-
constrained channels may also be found in the Special Issue on Voiceband Telephone
Data Transmission, IEEE Journal on Selected Areas in Communication (September
1984, August 1989, and December 1989). A comprehensive treatment of trellis-coded
modulation is given in the book by Biglieri et al. (1991).

A major new advance in coding and decoding is the construction of parallel and
serially concatenated codes with interleaving, and the decoding of such codes using
iterative MAP algorithms. Both PCCC and SCCC have been shown to yield performance
very close to the Shannon limit with iterative decoding. PCCCs, called turbo codes,
and the use of iterative decoding were first described in a paper by Berrou et al. (1993).
Serially concatenated codes with interleaving and their performance have been treated
in the paper by Benedetto et al. (1998). Turbo coding and decoding is also treated in
the books by Heegard and Wicker (1999), Johannesson and Zigangirov (1999), and
Schlegel (1997). Performance bounds for turbo codes are given in the paper by Duman
and Salehi (1997) and Sason and Shamai (2001a, b).

Low density parity check codes were introduced by the pioneering work of Gallager
(1963). Tanner (1981) studied the relation between these codes and graphs, and the work
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of MacKay and Neal (1996) reinstated the interest in these works. Wiberg et al. (1995),
Wiberg (1996), and Forney (2000) extended the work of Tanner on the relation between
codes and graphs.

In addition to the references given above on coding, decoding, and coded signal
design, we should mention the collection of papers published by the IEEE Press enti-
tled Key Papers in the Development of Coding Theory, edited by Berlekamp (1974).
This book contains important papers that were published in the first 25 years of coding
theory. We should also cite the Special Issue on Error-Correcting Codes, IEEE Trans-
actions on Communications (October 1971). Finally, the survey papers by Calderbank
(1998), Costello et al. (1998), and Forney and Ungerboeck (1998) highlight the major
developments in coding and decoding over the past 50 years and include a large number
of references.

PROBLEMS

8.1 A convolutional code is described by

g1 = [101], g2 = [111], g3 = [111]

1. Draw the encoder corresponding to this code.
2. Draw the state-transition diagram for this code.
3. Draw the trellis diagram for this code.
4. Find the transfer function and the free distance of this code.
5. Verify whether or not this code is catastrophic.

8.2 The convolutional code of Problem 8.1 is used for transmission over an AWGN
channel with hard decision decoding. The output of the demodulator detector is
(101001011110111 · · · ). Using the Viterbi algorithm, find the transmitted sequence, as-
suming that the convolutional code is terminated at the zero state.

8.3 Repeat Problem 8.1 for a code with

g1 = [110], g2 = [101], g3 = [111]

8.4 The block diagram of a binary convolutional code is shown in Figure P8.4.
1. Draw the state diagram for the code.
2. Find the transfer function of the code T (Z ).
3. What is dfree, the minimum free distance of the code?

FIGURE P8.4
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4. Assume that a message has been encoded by this code and transmitted over a binary
symmetric channel with an error probability of p = 10−5. If the received sequence is

r = (110, 110, 110, 111, 010, 101, 101)

using the Viterbi algorithm, find the most likely information sequence, assuming that
the convolutional code is terminated at the zero state.

5. Find an upper bound to the bit error probability of the code when the above binary
symmetric channel is employed. Make any reasonable approximation.

8.5 The block diagram of a (3, 1) convolutional code is shown in Figure P8.5.
1. Draw the state diagram of the code.
2. Find the transfer function T (Z ) of the code.
3. Find the minimum free distance (dfree) of the code, and show the corresponding path

(at distance dfree from the all-zero codeword) in the trellis.
4. Determine G(D) for this code. Use G(D) to determine whether this code is catastrophic.
5. Determine G(D) for the RSCC equivalent to this code, and sketch a block diagram of it.
6. Assume that four information bits (x1, x2, x3, x4), followed by two zero bits have been

encoded and sent via a binary-symmetric channel with crossover probability equal to
0.1. The received sequence is (111, 111, 111, 111, 111, 111). Use the Viterbi decoding
algorithm to find the most likely data sequence, assuming that the convolutional code
is terminated at the zero state.

FIGURE P8.5

8.6 In the convolutional code generated by the encoder shown in Figure P8.6:
1. Find the transfer function of the code in the form T (Y, Z ).
2. Find dfree of the code.
3. If the code is used on a channel with hard decision Viterbi decoding, assuming the

crossover probability of the channel is p = 10−6, use the hard decision bound to find
an upper bound on the average bit error probability of the code.

FIGURE P8.6

8.7 Figure P8.7 depicts a rate 1/2, constraint length K = 2, convolutional code.
1. Sketch the tree diagram, the trellis diagram, and the state diagram.
2. Solve for the transfer function T (Y, Z , J ), and from this, specify the minimum free

distance.
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FIGURE P8.7

8.8 A rate 1/2, K = 3, binary convolutional encoder is shown in Figure P8.8.
1. Draw the tree diagram, the trellis diagram, and the state diagram.
2. Determine the transfer function T (Y, Z , J ), and from this, specify the minimum free

distance.
3. Determine the RSCC equivalent to this code, and sketch a block diagram of it.
4. Determine whether this code is catastrophic.

FIGURE P8.8

8.9 A k = 1, K = 3, and n = 2 convolutional code is characterized by g1 = [001] and
g2 = [101].
1. Draw the state diagram for the encoder.
2. Determine the transfer function of the code in the form T (Y, Z ).
3. Is this code a catastrophic code? Why?
4. Determine the free distance of the code.
5. If the code is used with hard decision decoding on a channel with crossover probability

of p = 10−3, determine an upper bound on the average bit error probability of the
code.

8.10 The block diagram for a convolutional code is given in Figure P8.10.

k � 1

n � 2

FIGURE P8.10

1. Draw the state transition diagram for this code.
2. Is this code catastrophic? Why?
3. What is the transfer function for this code?
4. What is the free distance of this code?
5. Assuming that this code is used for binary data transmission over a binary symmetric

channel with crossover probability of 10−3, find a bound on the resulting bit error
probability.

8.11 The convolutional code shown in Figure P8.10 is used with a binary antipodal signaling
scheme for transmission over an additive noise channel with input-output relation

ri = ci + ni
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where ci ∈ {±√
Ec} and noise components are iid random variables with PDF

p(n) = 1

2
e−|n|

The receiver uses a soft decision ML decoding scheme.
1. Show that the optimal decoding rule is given by

c(m) = min
c∈T

∑
j

∣∣r j − c j

∣∣

2. Find an upper bound for the average bit error probability for this system. Is this a useful
bound? Why?

3. Assuming that Ec = 1 and the code is terminated at the zero state, determine the most
likely information sequence if the received output of the matched filter is

r = (−1, −1, 1.5, 2, 0.7, −0.5, −0.8, −3, 3, 0.2, 0, 1)

4. If in part 3 instead of soft decision decoding, hard decision is employed, what is the
most likely information sequence?

5. Answer part 2 for hard decision decoding.

8.12 The block diagram for a convolutional encoder is shown in Figure P8.12.
1. What is the number of states for this code?
2. Determine the transfer function T (Y, Z ) for this code, and find its free distance.
3. How many paths at the free distance exist in this code?
4. Is this code catastrophic? Why?
5. Assuming that this code is used for transmission over a binary symmetric channel with

a crossover probability of 10−4, find a bound on the bit error probability.

k � 2

n � 3

FIGURE P8.12

8.13 For the convolutional code shown in Figure P8.12:
1. Determine the matrix G(D).
2. Determine the encoded sequence for the input sequence u = (1001111001) using G(D)

found in part 1.
3. Directly determine the encoded sequence corresponding to u given in part 2, and com-

pare it with the sequence obtained using G(D).
4. Using G(D), determine whether this code is catastrophic.

8.14 A k = 1, K = 3, and n = 2 convolutional code is characterized by g1 = [001] and
g2 = [110].
1. Find the transfer function of the code in the form T (Y, Z ).
2. Is this code catastrophic? Why?
3. Find dfree for the code.
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4. If the code is used on an AWGN channel using BPSK with hard decision Viterbi
decoding, assuming Eb/N0 = 12.6 dB, find an upper bound on the average bit error
probability of the code.

8.15 Use Tables 8.3–1 to 8.3–11 to sketch the convolutional encoders for the following codes:
1. Rate 1/2, K = 5, maximum free distance code
2. Rate 1/3, K = 5, maximum free distance code
3. Rate 2/3, K = 2, maximum free distance code

8.16 Draw the state diagram for the rate 2/3, K = 2, convolutional code indicated in Prob-
lem 8.15, part 3, and, for each transition, show the output sequence and the distance of the
output sequence from the all-zero sequence.

8.17 Consider the K = 3, rate 1/2, convolutional code shown in Figure P8.17. Suppose that
the code is used on a binary symmetric channel and the received sequence for the first
eight branches is 0001100000001001. Trace the decisions on a trellis diagram, and label
the survivors’ Hamming distance metric at each node level. If a tie occurs in the metrics
required for a decision, always choose the upper path (arbitrary choice).

FIGURE P8.17

8.18 Use the transfer function derived in Problem 8.8 for the Rc = 1/2, K = 3, convolutional
code to compute the probability of a bit error for an AWGN channel with
a. Hard-decision decoding
b. Soft-decision decoding
Compare the performance by plotting the results of the computation on the same graph.

8.19 Draw the state diagram for the convolutional code generated by the encoder shown in
Figure P8.19, and thus determine whether the code is catastrophic. Also, give an example
of a rate 1/2, K = 4, convolutional encoder that exhibits catastrophic error propagation.

FIGURE P8.19

8.20 A trellis-coded signal is formed as shown in Figure P8.20 by encoding 1 bit by use of a
rate 1/2 convolutional code, while 3 additional information bits are left uncoded. Perform
the set partitioning of a 32-QAM (cross) constellation, and indicate the subsets in the
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partition. By how much is the distance between adjacent signal points increased as a result
of partitioning?

FIGURE P8.20

8.21 Prove Equation 8.4–4.

8.22 Prove that for all real numbers x , y, and z we have

max∗{x, y} = max{x, y} + ln(1 + e−|x−y|)

max∗{x, y, z} = max∗{max∗{x, y}, z}

8.23 A recursive systematic convolutional code is characterized by

G(D) = [
1 1

D+1

]
This code is used with antipodal signaling with Ec = ±1 over an additive white Gaussian
noise channel with noise power spectral density of N0

2 = 2 W/Hz. It is assumed that the
convolutional code is terminated at the zero state and the received sequence is given by

r = (0.3, 0.2, 1, −1.2, 1.21.7, 0.3 − 0.6)

1. Use the BCJR algorithm to determine the information sequence u.
2. Use the Viterbi algorithm to determine the information sequence u.

8.24 Apply the Max-Log-APP algorithm to Problem 8.23, and compare the result with the result
when the BCJR is used.

8.25 Let Xi , 1 ≤ i ≤ n, denote a sequence of independent binary random variables, and let
pi (0) and pi (1) denote the probabilities that Xi is equal to 0 and 1, respectively. Let

Y =
n∑

i=1

Xi

where the addition is modulo-2, and denote by p(0) and p(1) the probabilities that Y is 0
and 1, respectively.
1. Show that

p(0) − p(1) =
n∏

i=1

(pi (0) − pi (1))
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2. Show that

p(0) = 1

2
+ 1

2

n∏
i=1

(pi (0) − pi (1))

p(1) = 1

2
− 1

2

n∏
i=1

(pi (0) − pi (1))

3. Using these results, prove Equation 8.10–27.

8.26 Prove Equation 8.10–31 for the equality constraint nodes.

8.27 The parity check matrix of a (12, 3) LDPC code is given by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 1 1 1 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1 1 0
0 1 0 0 0 1 1 0 0 1 0 0
1 0 1 0 0 0 0 1 0 0 1 0
0 0 0 1 1 0 0 0 1 0 0 1
1 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 1
0 1 1 0 0 0 0 0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sketch the Tanner graph for this code.

8.28 Show that any (n, 1) repetition code is a LDPC code. Determine the general form of the
parity check matrix for an (n, 1) repetition code.

8.29 Sketch the Tanner graph of a (6, 1) repetition code.
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9

Digital Communication Through
Band-Limited Channels

In previous chapters, we considered the transmission of digital information through
an additive Gaussian noise channel. In effect, no bandwidth constraint was imposed on
the signal design and the communication system design.

In this chapter, we consider the problem of signal design when the channel is band-
limited to some specified bandwidth of W Hz. Under this condition, the channel may
be modeled as a linear filter having an equivalent lowpass† frequency response C( f )
that is zero for | f | > W .

The first topic that is treated is the design of the signal pulse g(t) in a linearly
modulated signal, represented as

v(t) =
∑

n

Ing(t − nT )

that efficiently utilizes the total available channel bandwidth W . We shall see that when
the channel is ideal for | f | ≤ W , a signal pulse can be designed that allows us to
transmit at symbol rates comparable to or exceeding the channel bandwidth W . On the
other hand, when the channel is not ideal, signal transmission at a symbol rate equal to
or exceeding W results in intersymbol interference (ISI) among a number of adjacent
symbols.

The second topic that we consider is the design of the receiver in the presence of
intersymbol interference and AWGN. The solution to the ISI problem is to design a
receiver that employs a means for compensating or reducing the ISI in the received
signal. The compensator for the ISI is called an equalizer.

We begin our discussion with a general characterization of band-limited linear filter
channels.

†For convenience, the subscript on lowpass equivalent signals is omitted throughout this chapter.

597
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9.1
CHARACTERIZATION OF BAND-LIMITED CHANNELS

Of the various channels available for digital communications, telephone channels are
by far the most widely used. Such channels are characterized as band-limited linear fil-
ters. This is certainly the proper characterization when frequency-division multiplexing
(FDM) is used as a means for establishing channels in the telephone network. Modern
telephone networks employ pulse-code modulation (PCM) for digitizing and encod-
ing the analog signal and time-division multiplexing (TDM) for establishing multiple
channels. Nevertheless, filtering is still used on the analog signal prior to sampling and
encoding. Consequently, even though the present telephone network employs a mixture
of FDM and TDM for transmission, the linear filter model for telephone channels is
still appropriate.

For our purposes, a bandlimited channel such as a telephone channel will be charac-
terized as a linear filter having an equivalent lowpass frequency-response characteristic
C( f ). Its equivalent lowpass impulse response is denoted by c(t). Then, if a signal of
the form

s(t) = Re [v(t)e j2π fct ] (9.1–1)

is transmitted over a bandpass telephone channel, the equivalent low-pass received
signal is

r (t) =
∫ ∞

−∞
v(τ )c(t − τ ) dτ + z(t) (9.1–2)

where the integral represents the convolution of c(t) with v(t), and z(t) denotes the
additive noise. Alternatively, the signal term can be represented in the frequency
domain as V ( f )C( f ), where V ( f ) is the Fourier transform of v(t).

If the channel is band-limited to W Hz, then C( f ) = 0 for | f | > W . As a conse-
quence, any frequency components in V ( f ) above | f | = W will not be passed by the
channel. For this reason, we limit the bandwidth of the transmitted signal to W Hz also.

Within the bandwidth of the channel, we may express the frequency response
C( f ) as

C( f ) = |C( f )|e jθ ( f ) (9.1–3)

where |C( f )| is the amplitude-response characteristic and θ ( f ) is the phase-response
characteristic. Furthermore, the envelope delay characteristic is defined as

τ ( f ) = − 1

2π

dθ ( f )

df
(9.1–4)

A channel is said to be nondistorting or ideal if the amplitude response |C( f )| is constant
for all | f | ≤ W and θ ( f ) is a linear function of frequency, i.e., τ ( f ) is a constant for all
| f | ≤ W . On the other hand, if |C( f )| is not constant for all | f | ≤ W , we say that the
channel distorts the transmitted signal V ( f ) in amplitude, and, if τ ( f ) is not constant
for all | f | ≤ W , we say that the channel distorts the signal V ( f ) in delay.

As a result of the amplitude and delay distortion caused by the nonideal channel
frequency-response characteristic C( f ), a succession of pulses transmitted through the
channel at rates comparable to the bandwidth W are smeared to the point that they are
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(a)

(c)

(b)

FIGURE 9.1–1
Effect of channel distortion: (a) channel input; (b) channel output; (c) equalizer output.

no longer distinguishable as well-defined pulses at the receiving terminal. Instead, they
overlap, and, thus, we have intersymbol interference. As an example of the effect of
delay distortion on a transmitted pulse, Figure 9.1–1a illustrates a band-limited pulse
having zeros periodically spaced in time at points labeled ±T , ±2T , etc. If information
is conveyed by the pulse amplitude, as in PAM, for example, then one can transmit a
sequence of pulses, each of which has a peak at the periodic zeros of the other pulses.
However, transmission of the pulse through a channel modeled as having a linear
envelope delay characteristic τ ( f ) (quadratic phase θ ( f )) results in the received pulse
shown in Figure 9.1–1b having zero-crossings that are no longer periodically spaced.
Consequently, a sequence of successive pulses would be smeared into one another and
the peaks of the pulses would no longer be distinguishable. Thus, the channel delay
distortion results in intesymbol interference. As will be discussed in this chapter, it
is possible to compensate for the nonideal frequency-response characteristic of the
channel by use of a filter or equalizer at the demodulator. Figure 9.1–1c illustrates the
output of a linear equalizer that compensates for the linear distortion in the channel.

The extent of the intersymbol interference on a telephone channel can be appre-
ciated by observing a frequency-response characteristic of the channel. Figure 9.1–2
illustrates the measured average amplitude and delay as functions of frequency for a
medium-range (180–725 mi) telephone channel of the switched telecommunications
network as given by Duffy and Tratcher (1971). We observe that the usable band of
the channel extends from about 300 Hz to about 3000 Hz. The corresponding impulse
response of this average channel is shown in Figure 9.1–3. Its duration is about 10 ms.
In comparison, the transmitted symbol rates on such a channel may be of the order
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FIGURE 9.1–2
Average amplitude and delay characteristics of medium-range telephone channel.

of 2500 pulses or symbols per second. Hence, intersymbol interference might extend
over 20–30 symbols.

In addition to linear distortion, signals transmitted through telephone channels are
subject to other impairments, specifically non-linear distortion, frequency offset, phase
jitter, impulse noise, and thermal noise.

Non-linear distortion in telephone channels arises from non-linearities in amplifiers
and compandors used in the telephone system. This type of distortion is usually small
and it is very difficult to correct.

A small frequency offset, usually less than 5 Hz, results from the use of carrier
equipment in the telephone channel. Such an offset cannot be tolerated in high-speed
digital transmission systems that use synchronous phase-coherent demodulation. The
offset is usually compensated for by the carrier recovery loop in the demodulator.

Phase jitter is basically a low-index frequency modulation of the transmitted signal
with the low-frequency harmonics of the power line frequency (50–60 Hz). Phase jitter
poses a serious problem in digital transmission at high rates. However, it can be tracked
and compensated for, to some extent, at the demodulator.

FIGURE 9.1–3
Impulse response of average channel with amplitude and delay shown in Figure 9.1–2.
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Impulse noise is an additive disturbance. It arises primarily from the switching
equipment in the telephone system. Thermal (Gaussian) noise is also present at levels
of 30 dB or more below the signal.

The degree to which one must be concerned with these channel impairments de-
pends on the transmission rate over the channel and the modulation technique. For rates
below 1800 bits/s (R/W < 1), one can choose a modulation technique, e.g., FSK, that
is relatively insensitive to the amount of distortion encountered on typical telephone
channels from all the sources listed above. For rates between 1800 and 2400 bits/s
(R/W ≈ 1), a more bandwidth-efficient modulation technique such as four-phase
PSK is usually employed. At these rates, some form of compromise equalization is
often employed to compensate for the average amplitude and delay distortion in the
channel. In addition, the carrier recovery method is designed to compensate for the
frequency offset. The other channel impairments are not that serious in their effects
on the error rate performance at these rates. At transmission rates above 2400 bits/s
(R/W > 1), bandwidth-efficient coded modulation techniques such as trellis-coded
QAM, PAM, and PSK are employed. For such rates, special attention must be paid to
linear distortion, frequency offset, and phase jitter. Linear distortion is usually com-
pensated for by means of an adaptive equalizer. Phase jitter is handled by a combi-
nation of signal design and some type of phase compensation at the demodulator. At
rates above 9600 bits/s, special attention must be paid not only to linear distortion,
phase jitter, and frequency offset, but also to the other channel impairments mentioned
above.

Unfortunately, a channel model that encompasses all the impairments listed above
becomes difficult to analyze. For mathematical tractability the channel model that is
adopted in this and the next chapter is a linear filter that introduces amplitude and delay
distortion and adds Gaussian noise.

Besides the telephone channels, there are other physical channels that exhibit some
form of time dispersion and, thus, introduce intersymbol interference. Radio channels
such as shortwave ionospheric channels (HF), tropospheric scatter channels, and mobile
radio channels are examples of time-dispersive channels. In these channels, time disper-
sion and, hence, intersymbol interference are the result of multiple propagation paths
with different path delays. The number of paths and the relative time delays among the
paths vary with time, and, for this reason, these radio channels are usually called time-
variant multipath channels. The time-variant multipath conditions give rise to a wide
variety of frequency-response characteristics. Consequently the frequency-response
characterization that is used for telephone channels is inappropriate for time-variant
multipath channels. Instead, these radio channels are characterized statistically, as ex-
plained in more detail in Chapter 13, in terms of the scattering function, which, in brief,
is a two-dimensional representation of the average received signal power as a function
of relative time delay and Doppler frequency.

In this chapter, we deal exclusively with the linear time-invariant filter model for
a band-limited channel. The adaptive equalization techniques presented in Chapter 10
for combating intersymbol interference are also applicable to time-variant multipath
channels, under the condition that the time variations in the channel are relatively slow in
comparison to the total channel bandwidth or, equivalently, to the symbol transmission
rate over the channel.
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9.2
SIGNAL DESIGN FOR BAND-LIMITED CHANNELS

It was shown in Chapter 3 that the equivalent lowpass transmitted signal for several
different types of digital modulation techniques has the common form

v(t) =
∞∑

n=0

Ing(t − nT ) (9.2–1)

where {In} represents the discrete information-bearing sequence of symbols and g(t)
is a pulse that, for the purposes of this discussion, is assumed to have a band-limited
frequency-response characteristic G( f ), i.e., G( f ) = 0 for | f | > W . This signal is
transmitted over a channel having a frequency response C( f ), also limited to | f | ≤ W .
Consequently, the received signal can be represented as

rl(t) =
∞∑

n=0

Inh(t − nT ) + z(t) (9.2–2)

where

h(t) =
∫ ∞

−∞
g(τ )c(t − τ ) dτ (9.2–3)

and z(t) represents the additive white Gaussian noise.
Let us suppose that the received signal is passed first through a filter and then

sampled at a rate 1/T samples/s. We shall show in a subsequent section that the optimum
filter from the point of view of signal detection is one matched to the received pulse.
That is, the frequency response of the receiving filter is H∗( f ). We denote the output
of the receiving filter as

y(t) =
∞∑

n=0

Inx(t − nT ) + ν(t) (9.2–4)

where x(t) is the pulse representing the response of the receiving filter to the input pulse
h(t) and ν(t) is the response of the receiving filter to the noise z(t).

Now, if y(t) is sampled at times t = kT + τ0, k = 0, 1, . . . , we have

y(kT + τ0) ≡ yk =
∞∑

n=0

Inx(kT − nT + τ0) + ν(kT + τ0) (9.2–5)

or, equivalently,

yk =
∞∑

n=0

Inxk−n + νk, k = 0, 1, . . . (9.2–6)

where τ0 is the transmission delay through the channel. The sample values can be
expressed as

yk = x0

⎛
⎜⎝Ik + 1

x0

∞∑
n=0
n �=k

Inxk−n

⎞
⎟⎠ + νk, k = 0, 1, . . . (9.2–7)
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(a) Binary (b) Quaternary

FIGURE 9.2–1
Examples of eye patterns for binary and quaternary amplitude-shift keying (or PAM).

We regard x0 as an arbitrary scale factor, which we arbitrarily set equal to unity for
convenience. Then

yk = Ik +
∞∑
n=0
n �=k

Inxk−n + νk (9.2–8)

The term Ik represents the desired information symbol at the kth sampling instant, the
term

∞∑
n=0
n �=k

Inxk−n

represents the ISI, and νk is the additive Gaussian noise variable at the kth sampling
instant.

The amount of intersymbol interference and noise in a digital communication
system can be viewed on an oscilloscope. For PAM signals, we can display the received
signal y(t) on the vertical input with the horizontal sweep rate set at 1/T . The resulting
oscilloscope display is called an eye pattern because of its resemblance to the human
eye. For example, Figure 9.2–1 illustrates the eye patterns for binary and four-level PAM
modulation. The effect of ISI is to cause the eye to close, thereby reducing the margin
for additive noise to cause errors. Figure 9.2–2 graphically illustrates the effect of

FIGURE 9.2–2
Effect of intersymbol interference on eye opening.
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(a) (b)

FIGURE 9.2–3
Two-dimensional digital “eye patterns.”

intersymbol interference in reducing the opening of a binary eye. Note that intersymbol
interference distorts the position of the zero-crossings and causes a reduction in the eye
opening. Thus, it causes the system to be more sensitive to a synchronization error.

For PSK and QAM it is customary to display the “eye pattern” as a two-dimensional
scatter diagram illustrating the sampled values {yk} that represent the decision variables
at the sampling instants. Figure 9.2–3 illustrates such an eye pattern for an 8-PSK
signal. In the absence of intersymbol interference and noise, the superimposed signals
at the sampling instants would result in eight distinct points corresponding to the eight
transmitted signal phases. Intersymbol interference and noise result in a deviation of
the received samples {yk} from the desired 8-PSK signal. The larger the intersymbol
interference and noise, the larger the scattering of the received signal samples relative
to the transmitted signal points.

Below, we consider the problem of signal design under the condition that there is
no intersymbol interference at the sampling instants.

9.2–1 Design of Band-Limited Signals for No Intersymbol
Interference—The Nyquist Criterion

For the discussion in this section and in Section 9.2–2, we assume that the band-limited
channel has ideal frequency-response characteristics, i.e., C( f ) = 1 for | f | ≤ W . Then
the pulse x(t) has a spectral characteristic X ( f ) = |G( f )|2, where

x(t) =
∫ W

−W
X ( f )e j2π f t d f (9.2–9)

We are interested in determining the spectral properties of the pulse x(t) and, hence,
the transmitted pulse g(t), that results in no intersymbol interference. Since

yk = Ik +
∞∑
n=0
n �=k

Inxk−n + νk (9.2–10)

the condition for no intersymbol interference is

x(t = kT ) ≡ xk =
{

1 k = 0
0 k �= 0 (9.2–11)
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Below, we derive the necessary and sufficient condition on X ( f ) in order for x(t)
to satisfy the above relation. This condition is known as the Nyquist pulse-shaping
criterion or Nyquist condition for zero ISI and is stated in the following theorem.

THEOREM: (NYQUIST). The necessary and sufficient condition for x(t) to satisfy

x(nT ) =
{

1 n = 0
0 n �= 0 (9.2–12)

is that its Fourier transform X ( f ) satisfy
∞∑

m=−∞
X ( f + m/T ) = T (9.2–13)

Proof. In general, x(t) is the inverse Fourier transform of X ( f ). Hence,

x(t) =
∫ ∞

−∞
X ( f )e j2π f t d f (9.2–14)

At the sampling instants t = nT , this relation becomes

x(nT ) =
∫ ∞

−∞
X ( f )e j2π f nT df (9.2–15)

Let us break up the integral in Equation 9.2–15 into integrals covering the finite range
of 1/T . Thus, we obtain

x(nT ) =
∞∑

m=−∞

∫ (2m+1)/2T

(2m−1)/2T
X ( f )e j2π f nT df

=
∞∑

m=−∞

∫ 1/2T

−1/2T
X ( f + m/T )e j2π f nT d f

=
∫ 1/2T

−1/2T

[ ∞∑
m=−∞

X ( f + m/T )

]
e j2π f nT df

=
∫ 1/2T

−1/2T
B( f )e j2π f nT df

(9.2–16)

where we have defined B( f ) as

B( f ) =
∞∑

m=−∞
X ( f + m/T ) (9.2–17)

Obviously B( f ) is a periodic function with period 1/T , and, therefore, it can be
expanded in terms of its Fourier series coefficients {bn} as

B( f ) =
∞∑

n=−∞
bne j2πn f T (9.2–18)

where

bn = T
∫ 1/2T

−1/2T
B( f )e− j2πn f T df (9.2–19)



Proakis-27466 book September 26, 2007 22:36

606 Digital Communications

FIGURE 9.2–4
Plot of B( f ) for the case T < 1/2W.

Comparing Equations 9.2–19 and 9.2–16, we obtain

bn = T x(−nT ) (9.2–20)

Therefore, the necessary and sufficient condition for Equation 9.2–11 to be satisfied is
that

bn =
{

T n = 0

0 n �= 0
(9.2–21)

which, when substituted into Equation 9.2–18, yields

B( f ) = T (9.2–22)

or, equivalently,

∞∑
m=−∞

X ( f + m/T ) = T (9.2–23)

This concludes the proof of the theorem.

Now suppose that the channel has a bandwidth of W . Then C( f ) ≡ 0 for | f | > W
and, consequently, X ( f ) = 0 for | f | > W . We distinguish three cases.

1. When T < 1/2W , or, equivalently, 1/T > 2W , since B( f ) = ∑+∞
n=−∞ X ( f + n/T )

consists of nonoverlapping replicas of X ( f ), separated by 1/T as shown in Fig-
ure 9.2–4, there is no choice for X ( f ) to ensure B( f ) ≡ T in this case and there is
no way that we can design a system with no ISI.

2. When T = 1/2W , or, equivalently, 1/T = 2W (the Nyquist rate), the replications
of X ( f ), separated by 1/T , are as shown in Figure 9.2–5. It is clear that in this case

FIGURE 9.2–5
Plot of B( f ) for the case T = 1/2W.
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there exists only one X ( f ) that results in B( f ) = T , namely,

X ( f ) =
{

T | f | < W

0 otherwise
(9.2–24)

which corresponds to the pulse

x(t) = sin(π t/T )

π t/T
≡ sinc

(
π t

T

)
(9.2–25)

This means that the smallest value of T for which transmission with zero ISI is
possible is T = 1/2W , and for this value, x(t) has to be a sinc function. The
difficulty with this choice of x(t) is that it is noncausal and, therefore, nonrealizable.
To make it realizable, usually a delayed version of it, i.e., sinc[π (t − t0)/T ] is used
and t0 is chosen such that for t < 0, we have sinc[π (t − t0)/T ] ≈ 0. Of course, with
this choice of x(t), the sampling time must also be shifted to mT + t0. A second
difficulty with this pulse shape is that its rate of convergence to zero is slow. The
tails of x(t) decay as 1/t ; consequently, a small mistiming error in sampling the
output of the matched filter at the demodulator results in an infinite series of ISI
components. Such a series is not absolutely summable because of the 1/t rate of
decay of the pulse, and, hence, the sum of the resulting ISI does not converge.

3. When T > 1/2W , B( f ) consists of overlapping replications of X ( f ) separated by
1/T , as shown in Figure 9.2–6. In this case, there exist numerous choices for X ( f )
such that B( f ) ≡ T .

A particular pulse spectrum, for the T > 1/2W case, that has desirable spectral
properties and has been widely used in practice is the raised cosine spectrum. The raised
cosine frequency characteristic is given as (see Problem 9.16)

Xrc( f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T 0 ≤ | f | ≤ 1 − β

2T
T

2

{
1 + cos

[
πT

β

(
| f | − 1 − β

2T

)]}
1 − β

2T
≤ | f | ≤ 1 + β

2T

0 | f | >
1 + β

2T
(9.2–26)

where β is called the roll-off factor and takes values in the range 0 ≤ β ≤ 1. The
bandwidth occupied by the signal beyond the Nyquist frequency 1/2T is called the

FIGURE 9.2–6
Plot of B( f ) for the case T > 1/2W .
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(a)

(b)

FIGURE 9.2–7
Pulses having a raised cosine spectrum.

excess bandwidth and is usually expressed as a percentage of the Nyquist frequency.
For example, when β = 1

2 , the excess bandwidth is 50 percent and when β = 1, the
excess bandwidth is 100 percent. The pulse x(t), having the raised cosine spectrum, is

x(t) = sin(π t/T )

π t/T

cos(πβt/T )

1 − 4β2t2/T 2

= sinc(π t/T )
cos(πβt/T )

1 − 4β2t2/T 2

(9.2–27)

Note that x(t) is normalized so that x(0) = 1. Figure 9.2–7 illustrates the raised cosine
spectral characteristics and the corresponding pulses for β = 0, 1

2 , and 1. Note that
for β = 0, the pulse reduces to x(t) = sinc(π t/T ), and the symbol rate 1/T = 2W .
When β = 1, the symbol rate is 1/T = W . In general, the tails of x(t) decay as 1/t3 for
β > 0. Consequently, a mistiming error in sampling leads to a series of ISI components
that converges to a finite value.

Because of the smooth characteristics of the raised cosine spectrum, it is possible
to design practical filters for the transmitter and the receiver that approximate the
overall desired frequency response. In the special case where the channel is ideal, i.e.,
C( f ) = 1, | f | ≤ W , we have

Xrc( f ) = GT ( f )G R( f ) (9.2–28)

where GT ( f ) and G R( f ) are the frequency responses of the two filters. In this case, if
the receiver filter is matched to the transmitter filter, we have Xrc( f ) = GT ( f )G R( f ) =
|GT ( f )|2. Ideally,

GT ( f ) = √|Xrc( f )|e− j2π f t0 (9.2–29)
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and G R( f ) = G∗
T ( f ), where t0 is some nominal delay that is required to ensure physical

realizability of the filter. Thus, the overall raised cosine spectral characteristic is split
evenly between the transmitting filter and the receiving filter. Note also that an additional
delay is necessary to ensure the physical realizability of the receiving filter.

9.2–2 Design of Band-Limited Signals with Controlled
ISI—Partial-Response Signals

As we have observed from our discussion of signal design for zero ISI, it is necessary to
reduce the symbol rate 1/T below the Nyquist rate of 2W symbols/s to realize practical
transmitting and receiving filters. On the other hand, suppose we choose to relax the
condition of zero ISI and, thus, achieve a symbol transmission rate of 2W symbols/s.
By allowing for a controlled amount of ISI, we can achieve this symbol rate.

We have already seen that the condition for zero ISI is x(nT ) = 0 for n �= 0.
However, suppose that we design the band-limited signal to have controlled ISI at one
time instant. This means that we allow one additional nonzero value in the samples
{x(nT )}. The ISI that we introduce is deterministic or “controlled” and, hence, it can
be taken into account at the receiver, as discussed below.

One special case that leads to (approximately) physically realizable transmitting
and receiving filters is specified by the samples†

x(nT ) =
{

1 n = 0, 1

0 otherwise
(9.2–30)

Now, using Equation 9.2–20, we obtain

bn =
{

T n = 0, −1

0 otherwise
(9.2–31)

which, when substituted into Equation 9.2–18, yields

B( f ) = T + T e− j2π f T (9.2–32)

As in the preceding section, it is impossible to satisfy the above equation for T < 1/2W .
However, for T = 1/2W , we obtain

X ( f ) =
⎧⎨
⎩

1

2W
(1 + e− jπ f/W ) | f | < W

0 otherwise

=
⎧⎨
⎩

1

W
e− jπ f/2W cos

π f

2W
| f | < W

0 otherwise

(9.2–33)

†It is convenient to deal with samples of x(t) that are normalized to unity for n = 0, 1.
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FIGURE 9.2–8
Time-domain and frequency-domain characteristics of a duobinary signal.

Therefore, x(t) is given by

x(t) = sinc(2πW t) + sinc
[

2π

(
W t − 1

2

)]
(9.2–34)

This pulse is called a duobinary signal pulse . It is illustrated along with its magnitude
spectrum in Figure 9.2–8. Note that the spectrum decays to zero smoothly, which means
that physically realizable filters can be designed that approximate this spectrum very
closely. Thus, a symbol rate of 2W is achieved.

Another special case that leads to (approximately) physically realizable transmit-
ting and receiving filters is specified by the samples

x
(

n

2W

)
= x(nT ) =

⎧⎨
⎩

1 n = −1
−1 n = 1

0 otherwise
(9.2–35)

The corresponding pulse x(t) is given as

x(t) = sinc
π (t + T )

T
− sinc

π (t − T )

T
(9.2–36)

and its spectrum is

X ( f ) =
⎧⎨
⎩

1

2W
(e jπ f/W − e− jπ f/W ) = j

W
sin

π f

W
| f | ≤ W

0 | f | > W
(9.2–37)

This pulse and its magnitude spectrum are illustrated in Figure 9.2–9. It is called a
modified duobinary signal pulse. It is interesting to note that the spectrum of this signal
has a zero at f = 0, making it suitable for transmission over a channel that does not
pass DC.

One can obtain other interesting and physically realizable filter characteristics, as
shown by Kretzmer (1966) and Lucky et al. (1968), by selecting different values for
the samples {x(n/2W )} and more than two nonzero samples. However, as we select
more nonzero samples, the problem of unraveling the controlled ISI becomes more
cumbersome and impractical.
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(a)

(b)

FIGURE 9.2–9
Time-domain and frequency-domain characteristics of a modified duobinary signal.

In general, the class of band-limited signal pulses that have the form

x(t) =
∞∑

n=−∞
x

(
n

2W

)
sinc

[
2πW

(
t − n

2W

)]
(9.2–38)

and their corresponding spectra

X ( f ) =

⎧⎪⎨
⎪⎩

1

2W

∞∑
n=−∞

x
(

n

2W

)
e− jnπ f/W | f | ≤ W

0 | f | > W

(9.2–39)

are called partial-response signals when controlled ISI is a purposely introduced by
selecting two or more nonzero samples from the set {x(n/2W )}. The resulting signal
pulses allow us to transmit information symbols at the Nyquist rate of 2W symbols/s.
The detection of the received symbols in the presence of controlled ISI is described
below.

Alternative characterization of partial-response signals We conclude this sub-
section by presenting another interpretation of a partial-response signal. Suppose that
the partial-response signal is generated, as shown in Figure 9.2–10, by passing the
discrete-time sequence {In} through a discrete-time filter with coefficients xn ≡
x(n/2W ), n = 0, 1, . . . , N − 1, and using the output sequence {Bn} from this filter
to excite periodically with an input Bnδ(t − nT ) an analog filter having an impulse
response sinc(2πW t). The resulting output signal is identical to the partial-response
signal given by Equation 9.2–38.

Since

Bn =
N−1∑
k=0

xk In−k (9.2–40)
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FIGURE 9.2–10
An alternative method for generating a partial-response signal.

the sequence of symbols {Bn} is correlated as a consequence of the filtering performed
on the sequence {In}. In fact, the autocorrelation function of the sequence {Bn} is

R(m) = E(Bn Bn+m)

=
N−1∑
k=0

N−1∑
l=0

xk xl E(In−k In+m−l)
(9.2–41)

When the input sequence is zero-mean and white,

E(In−k In+m−l) = δm+k−l (9.2–42)

where we have used the normalization E
(

I 2
n

) = 1. Substitution of Equation 9.2–42,
into Equation 9.2–41 yields the desired autocorrelation function for {Bn} in the form

R(m) =
N−1−|m|∑

k=0

xk xk+|m|, m = 0, ±1, . . . , ±(N − 1) (9.2–43)

The corresponding power spectral density is

S( f ) =
N−1∑

m=−(N−1)

R(m)e− j2π f mT

=
∣∣∣∣∣

N−1∑
m=0

xme− j2π f mT

∣∣∣∣∣
2 (9.2–44)

where T = 1/2W and | f | ≤ 1/2T = W . Thus, the partial-response signal designs
provide spectral shaping of the signal transmitted through the channel.
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9.2–3 Data Detection for Controlled ISI

In this section, we describe two methods for detecting the information symbols at the
receiver when the received signal contains controlled ISI. One is a symbol-by-symbol
detection method that is relatively easy to implement. The second method is based
on the maximum-likelihood criterion for detecting a sequence of symbols. The latter
method minimizes the probability of error but is a little more complex to implement.
In particular, we consider the detection of the duobinary and the modified duobinary
partial-response signals. In both cases, we assume that the desired spectral character-
istic X ( f ) for the partial-response signal is split evenly between the transmitting and
receiving filters, i.e., |GT ( f )| = |G R( f )| = |X ( f )|1/2. This treatment is based on PAM
signals, but it is easily generalized to QAM and PSK.

Symbol-by-symbol suboptimum detection For the duobinary signal pulse,
x(nT ) = 1, for n = 0, 1, and is zero otherwise. Hence, the samples at the output
of the receiving filter (demodulator) have the form

ym = Bm + νm = Im + Im−1 + νm (9.2–45)

where {Im} is the transmitted sequence of amplitudes and {νm} is a sequence of additive
Gaussian noise samples. Let us ignore the noise for the moment and consider the binary
case where Im = ±1 with equal probability. Then Bm takes on one of three possible
values, namely, Bm = −2, 0, 2 with corresponding probabilities 1/4, 1/2, 1/4. If
Im−1 is the detected symbol from the (m − 1)th signaling interval, its effect on Bm ,
the received signal in the mth signaling interval, can be eliminated by subtraction, thus
allowing Im to be detected. This process can be repeated sequentially for every received
symbol.

The major problem with this procedure is that errors arising from the additive noise
tend to propagate. For example, if Im−1 is in error, its effect on Bm is not eliminated
but, in fact, is reinforced by the incorrect subtraction. Consequently, the detection of
Im is also likely to be in error.

Error propagation can be avoided by precoding the data at the transmitter instead of
eliminating the controlled ISI by subtraction at the receiver. The precoding is performed
on the binary data sequence prior to modulation. From the data sequence {Dn} of 1s
and 0s that is to be transmitted, a new sequence {Pn}, called the precoded sequence, is
generated. For the duobinary signal, the precoded sequence is defined as

Pm = Dm � Pm−1, m = 1, 2, . . . (9.2–46)

where � denotes modulo-2 subtraction.† Then we set Im = −1 if Pm = 0 and Im = 1
if Pm = 1, i.e., Im = 2Pm − 1. Note that this precoding operation is identical to that
described in Section 3.3 in the context of our discussion of an NRZI signal.

†Although this is identical to modulo-2 addition, it is convenient to view the precoding operation for
duobinary in terms of modulo-2 subtraction.
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The noise-free samples at the output of the receiving filter are given by

Bm = Im + Im−1

= (2Pm − 1) + (2Pm−1 − 1)
= 2(Pm + Pm−1 − 1)

(9.2–47)

Consequently,

Pm + Pm−1 = 1
2 Bm + 1 (9.2–48)

Since Dm = Pm ⊕ Pm−1, it follows that the data sequence Dm is obtained from Bm

using the relation

Dm = 1
2 Bm + 1 (mod 2) (9.2–49)

Consequently, if Bm = ±2, then Dm = 0, and if Bm = 0, then Dm = 1. An example
that illustrates the precoding and decoding operations is given in Table 9.2–1. In the
presence of additive noise, the sampled outputs from the receiving filter are given by
Equation 9.2–45. In this case ym = Bm + νm is compared with the two thresholds set
at +1 and −1. The data sequence {Dn} is obtained according to the detection rule

Dm =
{

1 (|ym | < 1)

0 (|ym | ≥ 1)
(9.2–50)

The extension from binary PAM to multilevel PAM signaling using the duobinary
pulses is straightforward. In this case the M-level amplitude sequence {Im} results in a
(noise-free) sequence

Bm = Im + Im−1, m = 1, 2, . . . (9.2–51)

which has 2M − 1 possible equally spaced levels. The amplitude levels are determined
from the relation

Im = 2Pm − (M − 1) (9.2–52)

TABLE 9.2–1

Binary Signaling with Duobinary Pulses

Data
sequence Dn 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1

Precoded
sequence Pn 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0

Transmitted
sequence In −1 1 −1 1 1 −1 −1 −1 1 1 1 1 −1 1 1 −1

Received
sequence Bn 0 0 0 2 0 −2 −2 0 2 2 2 0 0 2 0

Decoded
sequence Dn 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1
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where {Pm} is the precoded sequence that is obtained from an M-level data sequence
{Dm} according to the relation

Pm = Dm � Pm−1 (mod M) (9.2–53)

where the possible values of the sequence {Dm} are 0, 1, 2, . . . , M − 1.
In the absence of noise, the samples at the output of the receiving filter may be

expressed as

Bm = Im + Im−1 = 2[Pm + Pm−1 − (M − 1)] (9.2–54)

Hence,

Pm + Pm−1 = 1
2 Bm + (M − 1) (9.2–55)

Since Dm = Pm + Pm−1 (mod M), it follows that

Dm = 1
2 Bm + (M − 1) (mod M) (9.2–56)

An example illustrating multilevel precoding and decoding is given in Table 9.2–2.
In the presence of noise, the received signal-plus-noise is quantized to the nearest

of the possible signal levels and the rule given above is used on the quantized values to
recover the data sequence.

In the case of the modified duobinary pulse, the controlled ISI is specified by the
values x(n/2W ) = −1, for n = 1, x(n/2W ) = 1 for n = −1, and zero otherwise.
Consequently, the noise-free sampled output from the receiving filter is given as

Bm = Im − Im−2 (9.2–57)

where the M-level sequence {Im} is obtained by mapping a precoded sequence accord-
ing to the Equation 9.2–52 and

Pm = Dm ⊕ Pm−2 (mod M) (9.2–58)

TABLE 9.2–2

Four-Level Signal Transmission with Duobinary Pulses

Data
sequence Dm 0 0 1 3 1 2 0 3 3 2 0 1 0

Precoded
sequence Pm 0 0 0 1 2 3 3 1 2 1 1 3 2 2

Transmitted
sequence Im −3 −3 −3 −1 1 3 3 −1 1 −1 −1 3 1 1

Received
sequence Bn −6 −6 −4 0 4 6 2 0 0 −2 2 4 2

Decoded
sequence Dm 0 0 1 3 1 2 0 3 3 2 0 1 0
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FIGURE 9.2–11
Block diagram of modulator and demodulator for partial-response signals.

From these relations, it is easy to show that the detection rule for recovering the data
sequence {Dm} from {Bm} in the absence of noise is

Dm = 1
2 Bm (mod M) (9.2–59)

As demonstrated above, the precoding of the data at the transmitter makes it possible
to detect the received data on a symbol-by-symbol basis without having to look back
at previously detected symbols. Thus, error propagation is avoided.

The symbol-by-symbol detection rule described above is not the optimum detection
scheme for partial-response signals due to the memory inherent in the received signal.
Nevertheless, symbol-by-symbol detection is relatively simple to implement and is
used in many practical applications involving duobinary and modified duobinary pulse
signals.

Let us determine the probability of error for detection of digital M-ary PAM sig-
naling using duobinary and modified duobinary pulses. The channel is assumed to be
an ideal band-limited channel with additive white Gaussian noise. The model for the
communication system is shown in Figure 9.2–11.

At the transmitter, the M-level data sequence {Dm} is precoded as described pre-
viously. The precoder output is mapped into one of M possible amplitude levels. Then
the transmitting filter with frequency response GT ( f ) has an output

v(t) =
∞∑

n=−∞
IngT (t − nT ) (9.2–60)

The partial-respone function X ( f ) is divided equally between the transmitting and
receiving filters. Hence, the receiving filter is matched to the transmitted pulse, and the
cascade of the two filters results in the frequency characteristic

|GT ( f )G R( f )| = |X ( f )| (9.2–61)

The matched filter output is sampled at t = nT = n/2W and the samples are fed to
the decoder. For the duobinary signal, the output of the matched filter at the sampling
instant may be expressed as

ym = Im + Im−1 + νm = Bm + νm (9.2–62)

where νm is the additive noise component. Similarly, the output of the matched filter
for the modified duobinary signal is

ym = Im − Im−2 + νm = Bm + νm (9.2–63)



Proakis-27466 book September 26, 2007 22:36

Chapter Nine: Digital Communication Through Band-Limited Channels 617

For binary transmission, let Im = ±d , where 2d is the distance between signal levels.
Then, the corresponding values of Bm are (2d, 0, −2d). For M-ary PAM signal trans-
mission, where Im = ±d, ±3d, . . . , ±(M −1)d, the received signal levels are Bm = 0,
±2d, ±4d, . . . , ±2(M − 1)d. Hence, the number of received levels is 2M − 1, and the
scale factor d is equivalent to x0 = Eg.

The input transmitted symbols {Im} are assumed to be equally probable. Then, for
duobinary and modified duobinary signals, it is easily demonstrated that, in the absence
of noise, the received output levels have a (triangular) probability distribution of the
form

P(B = 2md) = M − |m|
M2

, m = 0, ±1, ±2, . . . ,±(M − 1) (9.2–64)

where B denotes the noise-free received level and 2d is the distance between any two
adjacent received signal levels.

The channel corrupts the signal transmitted through it by the addition of white
Gaussian noise with zero-mean and power spectral density 1

2 N0.
We assume that a symbol error occurs whenever the magnitude of the additive

noise exceeds the distance d. This assumption neglects the rare event that a large noise
component with magnitude exceeding d may result in a received signal level that yields a
correct symbol decision. The noise component νm is zero-mean Gaussian with variance

σ 2
ν = 1

2 N0

∫ W

−W
|G R( f )|2df

= 1
2 N0

∫ W

−W
|X ( f )|df = 2N0

π

(9.2–65)

for both the duobinary and the modified duobinary signals. Hence, an upper bound on
the symbol probability of error is

Pe <

M−2∑
m=−(M−2)

P(|y − 2md| > d|B = 2md)P(B = 2md)

+ 2P[y + 2(M − 1)d > d|B = −2(M − 2)d]P[B = −2(M − 1)d]

= P(|y| > d|B = 0)

{
2

M−1∑
m=0

P(B = 2md) − P(B = 0) − P[B = −2(M − 1)d]

}

= (1 − M−2)P(|y| > d|B = 0)
(9.2–66)

But

P(|y| > d|B = 0) = 2√
2πσν

∫ ∞

d
e−x2/2σ 2

ν dx

= 2Q

⎛
⎝

√
πd2

2N0

⎞
⎠ (9.2–67)
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Therefore, the average probability of a symbol error is upper-bounded as

Pe < 2(1 − M−2)Q

⎛
⎝

√
πd2

2N0

⎞
⎠ (9.2–68)

The scale factor d in Equation 9.2–68 can be eliminated by expressing it in terms
of the average power transmitted into the channel. For the M-ary PAM signal in which
the transmitted levels are equally probable, the average power at the output of the
transmitting filter is

Pav = E
(

I 2
m

)
T

∫ W

−W
|GT ( f )|2 df = E

(
I 2
m

)
T

∫ W

−W
|X ( f )|df = 4

πT
E

(
I 2
m

)
(9.2–69)

where E
(

I 2
m

)
is the mean square value of the M signal levels, which is

E
(

I 2
m

) = 1
3 d2(M2 − 1) (9.2–70)

Therefore,

d2 = 3π PavT

4(M2 − 1)
(9.2–71)

By substituting the value of d2 from Equation 9.2–71 into Equation 9.2–68, we obtain
the upper bound on the symbol error probability as

Pe < 2
(

1 − 1

M2

)
Q

⎛
⎝

√(
π

4

)2 6

M2 − 1

Eav

N0

⎞
⎠ (9.2–72)

where Eav is the average energy per transmitted symbol, which can be also expressed
in terms of the average bit energy as Eav = kEbav = (log2 M)Ebav.

The expression in Equation 9.2–72 for the probability of error of M-ary PAM holds
for both duobinary and modified duobinary partial-response signals. If we compare this
result with the error probability of M-ary PAM with zero ISI, which can be obtained
by using a signal pulse with a raised cosine spectrum, we note that the performance of
partial-response duobinary or modified duobinary has a loss of ( 1

4π )2, or 2.1 dB. This
loss in SNR is due to the fact that the detector for the partial-response signals makes
decisions on a symbol-by-symbol basis, and ignores the inherent memory contained in
the received signal at its input.

Maximum-likelihood sequence detection It is clear from the above discussion
that partial-response waveforms are signal waveforms with memory. This memory is
conveniently represented by a trellis. For example, the trellis for the duobinary partial-
response signal for binary data transmission is illustrated in Figure 9.2–12. For binary
modulation, this trellis contains two states, corresponding to the two possible input
values of Im , i.e., Im = ±1. Each branch in the trellis is labeled by two numbers. The
first number on the left is the new data bit, i.e., Im+1 = ±1. This number determines
the transition to the new state. The number on the right is the received signal level.
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FIGURE 9.2–12
Trellis for duobinary partial-response signal.

The duobinary signal has a memory of length L = 1. Hence, for binary modulation
the trellis has St = 2 states. In general, for M-ary modulation, the number of trellis
states is M L .

The optimum maximum-likelihood (ML) sequence detector selects the most prob-
able path through the trellis upon observing the received data sequence {ym} at the
sampling instants t = mT , m = 1, 2, . . . . In general, each node in the trellis will have
M incoming paths and M corresponding metrics. One out of the M incoming paths is
selected as the most probable, based on the values of the metrics and the other M − 1
paths and their metrics are discarded. The surviving path at each node is then extended
to M new paths, one for each of the M possible input symbols, and the search process
continues. This is basically the Viterbi algorithm for performing the trellis search. Its
performance is calculated in Section 9.3–4.

9.2–4 Signal Design for Channels with Distortion

In Sections 9.2–1 and 9.2–2, we described signal design criteria for the modulation filter
at the transmitter and the demodulation filter at the receiver when the channel is ideal. In
this section, we perform the signal design under the condition that the channel distorts
the transmitted signal. We assume that the channel frequency-response C( f ) is known
for | f | ≤ W and that C( f ) = 0 for | f | > W . The filter responses GT ( f ) and G R( f )
may be selected to minimize the error probability at the detector. The additive channel
noise is assumed to be Gaussian with power spectral density Snn( f ). Figure 9.2–13
illustrates the overall system under consideration.

For the signal component at the output of the demodulator, we must satisfy the
condition

GT ( f )C( f )G R( f ) = Xd ( f )e− j2π f t0, | f | ≤ W (9.2–73)

FIGURE 9.2–13
System model for the design of the modulation and demodulation filters.
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where Xd ( f ) is the desired frequency response of the cascade of the modulator, channel,
and demodulator, and t0 is a time delay that is necessary to ensure the physical real-
izability of the modulation and demodulation filters. The desired frequency response
Xd ( f ) may be selected to yield either zero ISI or controlled ISI at the sampling instants.
We shall consider the case of zero ISI by selecting Xd ( f ) = Xrc( f ), where Xrc( f ) is
the raised cosine spectrum with an arbitrary roll-off factor.

The noise at the output of the demodulation filter may be expressed as

ν(t) =
∫ ∞

−∞
n(t − τ )gR(τ )dτ (9.2–74)

where n(t) is the input to the filter. Since n(t) is zero-mean Gaussian, ν(t) is zero-mean
Gaussian, with a power spectral density

Sνν( f ) = Snn( f )|G R( f )|2 (9.2–75)

For simplicity, we consider binary PAM transmission. Then, the sampled output
of the matched filter is

ym = x0 Im + νm = Im + νm (9.2–76)

where x0 is normalized† to unity, Im = ±d, and νm represents the noise term, which is
zero-mean Gaussian with variance

σ 2
ν =

∫ ∞

−∞
Snn( f )|G R( f )|2 df (9.2–77)

Consequently, the probability of error is

P2 = 1√
2π

∫ ∞

d/σν

e−y2/2dy = Q

(√
d2

σ 2
ν

)
(9.2–78)

The probability of error is minimized by maximizing the ratio d2/σ 2
ν or, equiva-

lently, by minimizing the noise-to-signal ratio σ 2
ν /d2.

Let us consider two possible solutions for the case in which the additive Gaussian
noise is white, so that Snn( f ) = N0/2. First, suppose that we precompensate for the
total channel distortion at the transmitter, so that the filter at the receiver is matched to
the received signal. In this case, the transmitter and receiver filters have the magnitude
characteristics

|GT ( f )| =
√

Xrc( f )

|C( f )| , | f | ≤ W

|G R( f )| = √
Xrc( f ), | f | ≤ W

(9.2–79)

The phase characteristic of the channel frequency response C( f ) may also be com-
pensated at the transmitter filter. For these filter characteristics, the average transmitted

†By setting x0 = 1 and Im = ±d, the scaling by x0 is incorporated into the parameter d.
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power is

Pav = E
(

I 2
m

)
T

∫ ∞

−∞
g2

T (t) dt = d2

T

∫ W

−W
|GT ( f )|2 df

= d2

T

∫ W

−W

Xrc( f )

|C( f )|2 df

(9.2–80)

and, hence,

d2 = PavT
[∫ W

−W

Xrc( f )

|C( f )|2 df
]−1

(9.2–81)

The noise variance at the output of the receiver filter is σ 2
ν = N0/2 and, hence, the

SNR at the detector is

d2

σ 2
ν

= 2PavT

N0

[∫ W

−W

Xrc( f )

|C( f )|2 df
]−1

(9.2–82)

As an alternative, suppose we split the channel compensation equally between the
transmitter and receiver filters, i.e.,

|GT ( f )| =
√

Xrc( f )

|C( f )|1/2
, | f | ≤ W

|G R( f )| =
√

Xrc( f )

|C( f )|1/2
| f | ≤ W

(9.2–83)

The phase characteristic of C( f ) may also be split equally between the transmitter
and receiver filters. In this case, the average transmitter power is

Pav = d2

T

∫ W

−W

Xrc( f )

|C( f )| df (9.2–84)

and the noise variance at the output of the receiver filter is

σ 2
ν = N0

2

∫ W

−W

Xrc( f )

|C( f )| df (9.2–85)

Hence, the SNR at the detector is

d2

σ 2
ν

= 2PavT

N0

[∫ W

−W

Xrc( f )

|C( f )| df
]−2

(9.2–86)

From Equations 9.2–82 and 9.2–86, we observe that when we express the SNR
d2/σ 2

ν in terms of the average transmitter power Pav, there is a loss incurred due to
channel distortion. In the case of the filters given by Equation 9.2–79, the loss is

10 log
∫ W

−W

Xrc( f )

|C( f )|2 df (9.2–87)
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and, in the case of the filters given by Equation 9.2–83, the loss is

10 log
[∫ W

−W

Xrc( f )

|C( f )| df
]2

(9.2–88)

We observe that when C( f ) = 1 for | f | ≤ W , the channel is ideal and
∫ W

−W
Xrc( f ) df = 1 (9.2–89)

so that no loss is incurred. On the other hand, when there is amplitude distortion,
|C( f )| < 1 for some range of frequencies in the band | f | ≤ W and, hence, there is a
loss in SNR as given by Equations 9.2–87 and 9.2–88. The interested reader may show
(see Problem 9.30) that the filters given by Equation 9.2–83 result in the smaller SNR
loss.

E X A M P L E 9.2–1. Let us determine the transmitting and receiving filters given by
Equation 9.2–83 for a binary communication system that transmits data at a rate of
4800 bits/s over a channel with frequency (magnitude) response

|C( f )| = 1√
1 + ( f/W )2

, | f | ≤ W (9.2–90)

where W = 4800 Hz. The additive noise is zero-mean white Gaussian with spectral
density 1

2 N0 = 10−15 W/Hz.
Since W = 1/T = 4800, we use a signal pulse with a raised cosine spectrum and

β = 1. Thus,

Xrc( f ) = 1
2 T [1 + cos(πT | f |)]

= T cos2

(
π | f |
9600

)
(9.2–91)

Then,

|GT ( f )| = |G R( f )| =
[

1 +
(

f

4800

)2
]1/4

cos

(
π | f |
9600

)
, | f | ≤ 4800 (9.2–92)

and |GT ( f )| = |G R( f )| = 0, otherwise. Figure 9.2–14 illustrates the filter character-
istic GT ( f ).

One can now use these filters to determine the amount of transmitted energy E
required to achieve a specified error probability. This problem is left as an exercise for
the reader.

FIGURE 9.2–14
Frequency response of an optimum transmitter filter.



Proakis-27466 book September 26, 2007 22:36

Chapter Nine: Digital Communication Through Band-Limited Channels 623

9.3
OPTIMUM RECEIVER FOR CHANNELS WITH ISI AND AWGN

In this section, we derive the structure of the optimum demodulator and detector for dig-
ital transmission through a nonideal band-limited channel with additive Gaussian noise.
We begin with the transmitted (equivalent lowpass) signal given by Equation 9.2–1.
The received (equivalent lowpass) signal is expressed as

r (t) =
∑

n

Inh(t − nT ) + z(t) (9.3–1)

where h(t) represents the response of the channel to the input signal pulse g(t) and z(t)
represents the additive white Gaussian noise.

First we demonstrate that the optimum demodulator can be realized as a filter
matched to h(t), followed by a sampler operating at the symbol rate 1/T and a sub-
sequent processing algorithm for estimating the information sequence {In} from the
sample values. Consequently, the samples at the output of the matched filter are suffi-
cient for the estimation of the sequence {In}.

9.3–1 Optimum Maximum-Likelihood Receiver

Using the Karhunen-Loève expansion, we expand the received signal rl(t) in the series

rl(t) = lim
N→∞

N∑
k=1

rkφk(t) (9.3–2)

where {φk(t)} is a complete set of orthonormal functions and {rk} are the observable
random variables obtained by projecting rl(t) onto the set {φk(t)}. It is easily shown
that

rk =
∑

n

Inhkn + zk, k = 1, 2, . . . (9.3–3)

where hkn is the value obtained from projecting h(t − nT ) onto φk(t), and zk is the
value obtained from projecting z(t) onto φk(t). The sequence {zk} is Gaussian with
zero-mean and covariance

E
(
z∗

k zm
) = 2N0δkm (9.3–4)

The joint probability density function of the random variables r N ≡ [r1 r2 · · · rN ]
conditioned on the transmitted sequence I p ≡ [I1 I2 · · · Ip], where p ≤ N , is

p(r N |I p) =
(

1

2π N0

)N

exp

⎛
⎝− 1

2N0

N∑
k=1

∣∣∣∣∣rk −
∑

n

Inhkn

∣∣∣∣∣
2
⎞
⎠ (9.3–5)
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In the limit as the number N of observable random variables approaches infinity, the
logarithm of p(r N |I p) is proportional to the metrics PM(I p), defined as

PM(I p) = −
∫ ∞

−∞

∣∣∣∣∣r1(t) −
∑

n

Inh(t − nT )

∣∣∣∣∣
2

dt

= −
∫ ∞

−∞
|rl(t)|2dt + 2Re

∑
n

[
I ∗
n

∫ ∞

−∞
rl(t)h

∗(t − nT ) dt
]

−
∑

n

∑
m

I ∗
n Im

∫ ∞

−∞
h∗(t − nT )h(t − mT ) dt

(9.3–6)

The maximum-likelihood estimates of the symbols I1, I2, . . . , Ip are those that
maximize this quantity. Note, however, that the integral of |rl(t)|2 is common to all
metrics, and, hence, it may be discarded. The other integral involving r (t) gives rise to
the variables

yn ≡ y(nT ) =
∫ ∞

−∞
rl(t)h

∗(t − nT ) dt (9.3–7)

These variables can be generated by passing r (t) through a filter matched to h(t) and
sampling the output at the symbol rate 1/T . The samples {yn} form a set of sufficient
statistics for the computation of P M(I p) or, equivalently, of the correlation metrics

CM(I p) = 2Re

(∑
n

I ∗
n yn

)
−

∑
n

∑
m

I ∗
n Im xn−m (9.3–8)

where, by definition, x(t) is the response of the matched filter to h(t) and

xn ≡ x(nT ) =
∫ ∞

−∞
h∗(t)h(t + nT ) dt (9.3–9)

Hence, x(t) represents the output of a filter having an impulse response h∗(−t) and
an excitation h(t). In other words, x(t) represents the autocorrelation function of h(t).
Consequently, {xn} represents the samples of the autocorrelation function of h(t), taken
periodically at 1/T . We are not particularly concerned with the noncausal characteristic
of the filter matched to h(t), since, in practice, we can introduce a sufficiently large
delay to ensure causality of the matched filter.

If we substitute for rl(t) in Equation 9.3–7 using Equation 9.3–1, we obtain

yk =
∑

n

Inxk−n + νk (9.3–10)

where νk denotes the additive noise sequence of the output of the matched filter, i.e.,

νk =
∫ ∞

−∞
z(t)h∗(t − kT ) dt (9.3–11)

The output of the demodulator (matched filter) at the sampling instants is corrupted
by ISI as indicated by Equation 9.3–10. In any practical system, it is reasonable to
assume that the ISI affects a finite number of symbols. Hence, we may assume that
xn = 0 for |n| > L . Consequently, the ISI observed at the output of the demodulator
may be viewed as the output of a finite state machine. This implies that the channel
output with ISI may be represented by a trellis diagram, and the maximum-likelihood
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FIGURE 9.3–1
Optimum receiver for an AWGN channel with ISI.

estimate of the information sequence (I1, I2, . . . , Ip) is simply the most probable path
through the trellis given the received demodulator output sequence {yn}. Clearly, the
Viterbi algorithm provides an efficient means for performing the trellis search.

The metrics that are computed for the MLSE of the sequence {Ik} are given by
Equation 9.3–8. It can be seen that these metrics can be computed recursively in the
Viterbi algorithm, according to the relation

CMn(In) = C Mn−1(In−1) + Re

[
I ∗
n

(
2yn − x0 In − 2

L∑
m=1

xm In−m

)]
(9.3–12)

Figure 9.3–1 illustrates the block diagram of the optimum receiver for an AWGN
channel with ISI.

9.3–2 A Discrete-Time Model for a Channel with ISI

In dealing with band-limited channels that result in ISI, it is convenient to develop
an equivalent discrete-time model for the analog (continuous-time) system. Since the
transmitter sends discrete-time symbols at a rate of 1/T symbols/s and the sampled
output of the matched filter at the receiver is also a discrete-time signal with samples
occurring at a rate of 1/T per second, it follows that the cascade of the analog filter
at the transmitter with impulse response g(t), the channel with impulse response c(t),
the matched filter at the receiver with impulse response h∗(−t), and the sampler can be
represented by an equivalent discrete-time tranversal filter having tap gain coefficients
{xk}. Consequently, we have an equivalent discrete-time transversal filter that spans a
time interval of 2LT seconds. Its input is the sequence of information symbols {Ik} and
its output is the discrete-time sequence {yk} given by Equation 9.3–10. The equivalent
discrete-time model is shown in Figure 9.3–2.

The major difficulty with this discrete-time model occurs in the evaluation of
performance of the various equalization or estimation techniques that are discussed
in the following sections. The difficulty is caused by the correlations in the noise
sequence {νk} at the output of the matched filter. That is, the set of noise variables {νk}
is a Gaussian-distributed sequence with zero-mean and autocorrelation function (see
Problem 9.36)

E
(
ν∗

k ν j
) =

{
2N0x j−k (|k − j | ≤ L)
0 (otherwise) (9.3–13)
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FIGURE 9.3–2
Equivalent discrete-time model of channel with intersymbol interference.

Hence, the noise sequence is correlated unless xk = 0, k �= 0. Since it is more convenient
to deal with the white noise sequence when calculating the error rate performance, it
is desirable to whiten the noise sequence by further filtering the sequence {yk}. A
discrete-time noise-whitening filter is determined as follows.

Let X (z) denote the (two-sided) z transform of the sampled autocorrelation function
{xk}, i.e.,

X (z) =
L∑

k=−L

xk z−k (9.3–14)

Since xk = x∗
−k , it follows that X (z) = X∗(1/z∗) and the 2L roots of X (z) have the

symmetry that if ρ is a root, 1/ρ∗ is also a root. Hence, X (z) can be factored and
expressed as

X (z) = F(z)F∗
(

1

z∗

)
(9.3–15)

where F(z) is a polynomial of degree L having the roots ρ1, ρ2, . . . , ρL and F∗(1/z∗) is
a polynomial of degree L having the roots 1/ρ∗

1 , 1/ρ∗
2 , . . . , 1/ρ∗

L . Assuming that there
are no roots on the unit circle, an appropriate noise-whitening filter has a z transform
1/F∗(1/z∗). Since there are 2L possible choices for the roots of F∗(1/z∗), each choice
resulting in a filter characteristic that is identical in magnitude but different in phase
from other choices of the roots, we propose to choose the unique F∗(1/z∗) that results
in an anticausal impulse response with poles corresponding to the zeros of X (z) that are
outside the unit circle. Such an anticausal filter is stable. Selecting the noise-whitening
filter in this manner ensures that the resulting channel response, characterized by F(z),
is minimum phase. Consequently, passage of the sequence {yk} through the digital filter
1/F∗(1/z∗) results in an output sequence {vk} that can be expressed as

vk =
L∑

n=0

fn Ik−n + ηk (9.3–16)
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where {ηk} is a white Gaussian noise sequence and { fk} is a set of tap coefficients of an
equivalent discrete-time transversal filter having a transfer function F(z). The cascade
of the matched filter, the sampler, and the noise-whitening filter is called the whitened
matched filter (WMF).

It is convenient to normalize the energy of F(z) to unity, i.e.,

L∑
n=0

| fn|2 = 1

The minimum-phase condition on F(z) implies that the energy in the first M values of
the impulse response { f0, f1, . . . , fM} is a maximum for every M .

In summary, the cascade of the transmitting filter g(t), the channel c(t), the matched
filter h∗(−t), the sampler, and the discrete-time noise-whitening filter 1/F∗(1/z∗) can be
represented as an equivalent discrete-time transversal filter having the set { fk} as its tap
coefficients. The additive noise sequence {ηk} corrupting the output of the discrete-time
transversal filter is a white Gaussian noise sequence having zero-mean and variance
N0. Figure 9.3–3 illustrates the model of the equivalent discrete-time system with
white noise. We refer to this model as the equivalent discrete-time white noise filter
model.

E X A M P L E 9.3–1. Suppose that the transmitter signal pulse g(t) has duration T and unit
energy and the received signal pulse is h(t) = g(t) + ag(t − T ). Let us determine the
equivalent discrete-time white noise filter model. The sampled autocorrelation function
is given by

xk =
⎧⎨
⎩

a∗ (k = −1)
1 + |a|2 (k = 0)
a (k = 1)

(9.3–17)

FIGURE 9.3–3
Equivalent discrete-time model of intersymbol interference channel with AWGN.
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The z transform of xk is

X (z) =
1∑

k=−1

xk z−k

= a∗z + (1 + |a|2) + az−1

= (az−1 + 1)(a∗z + 1)

(9.3–18)

Under the assumption that |a| < 1, one chooses F(z) = az−1 +1, so that the equivalent
transversal filter consists of two taps having tap gain coefficients f0 = 1, f1 = a. Note
that the correlation sequence {xk} may be expressed in terms of the { fn} as

xk =
L−k∑
n=0

f ∗
n fn+k, k = 0, 1, 2, . . . , L (9.3–19)

When the channel impulse response is changing slowly with time, the matched
filter at the receiver becomes a time-variable filter. In this case, the time variations
of the channel/matched-filter pair result in a discrete-time filter with time-variable
coefficients. As a consequence, we have time-variable intersymbol interference effects,
which can be modeled by the filter illustrated in Figure 9.3–3, where the tap coefficients
are slowly varying with time.

The discrete-time white noise linear filter model for the intersymbol interference
effects that arise in high-speed digital transmission over nonideal band-limited channels
will be used throughout the remainder of this chapter in our discussion of compensa-
tion techniques for the interference. In general, the compensation methods are called
equalization techniques or equalization algorithms.

9.3–3 Maximum-Likelihood Sequence Estimation (MLSE)
for the Discrete-Time White Noise Filter Model

In the presence of intersymbol interference that spans L + 1 symbols (L interfering
components), the MLSE criterion is equivalent to the problem of estimating the state of a
discrete-time finite-state machine. The finite-state machine in this case is the equivalent
discrete-time channel with coefficients { fk}, and its state at any instant in time is given
by the L most recent inputs, i.e., the state at time k is

Sk = (Ik−1, Ik−2, . . . , Ik−L ) (9.3–20)

where Ik = 0 for k ≤ 0. Hence, if the information symbols are M-ary, the channel filter
has M L states. Consequently, the channel is described by an M L -state trellis and the
Viterbi algorithm may be used to determine the most probable path through the trellis.

The metrics used in the trellis search are akin to the metrics used in soft-decision
decoding of convolutional codes. In brief, we begin with the samples v1, v2, . . . , vL+1,
from which we compute the M L+1 metrics

L+1∑
k=1

ln p(vk |Ik, Ik−1, . . . , Ik−L ) (9.3–21)

The M L+1 possible sequences of IL+1, IL , . . . , I2, I1 are subdivided into M L groups
corresponding to the M L states (IL+1, IL , . . . , I2). Note that the M sequences in each
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group (state) differ in I1 and correspond to the paths through the trellis that merge at a
single node. From the M sequences in each of the M L states, we select the sequence
with the largest probability (with respect to I1) and assign to the surviving sequence
the metric

PM1(I L+1) ≡ PM1(IL+1, IL , . . . , I2)

= max
I1

L+1∑
k=1

ln p(vk |Ik, Ik−1, . . . , Ik−L )
(9.3–22)

The M − 1 remaining sequences from each of the M L groups are discarded. Thus, we
are left with M L surviving sequences and their metrics.

Upon reception of vL+2, the M L surviving sequences are extended by one stage, and
the corresponding M L+1 probabilities for the extended sequences are computed using
the previous metrics and the new increment, which is ln p(vL+2|IL+2, IL+1, . . . , I2).
Again, the M L+1 sequences are subdivided into M L groups corresponding to the M L

possible states (IL+2, . . . , I3) and the most probable sequence from each group is se-
lected, while the other M − 1 sequences are discarded.

The procedure described continues with the reception of subsequent signal samples.
In general, upon reception of vL+k , the metrics†

PMk(I L+k) = max
Ik

[ln p(vL+k |IL+k, . . . , Ik) + PMk−1(I L+k−1))] (9.3–23)

that are computed give the probabilities of the M L surviving sequences. Thus, as each
signal sample is received, the Viterbi algorithm involves first the computation of the
M L+1 probabilities

ln p(vL+k |IL+k, . . . , Ik) + PMk−1(I L+k−1) (9.3–24)

corresponding to the M L+1 sequences that form the continuations of the M L surviving
sequences from the previous stage of the process. Then the M L+1 sequences are subdi-
vided into M L groups, with each group containing M sequences that terminate in the
same set of symbols IL+k, . . . , Ik+1 and differ in the symbol Ik . From each group of
M sequences, we select the one having the largest probability as indicated by Equa-
tion 9.3–23, while the remaining M − 1 sequences are discarded. Thus, we are left
again with M L sequences having the metrics PMk(I L+k).

As indicated previously, the delay in detecting each information symbol is variable.
In practice, the variable delay is avoided by truncating the surviving sequences to the
q most recent symbols, where q  L , thus achieving a fixed delay. In the case that
the M L surviving sequences at time k disagree on the symbol Ik−q , the symbol in the
most probable sequence may be chosen. The loss of performance resulting from this
suboptimum decision procedure is negligible if q ≥ 5L .

E X A M P L E 9.3–2. For illustrative purposes, suppose that a duobinary signal pulse is
employed to transmit four-level (M = 4) PAM. Thus, each symbol is a number selected
from the set {−3, −1, 1, 3}. The controlled intersymbol interference in this partial-
response signal is represented by the equivalent discrete-time channel model shown in

†We observe that the metrics PMk (I) are simply related to the Euclidean distance metrics DMk (I) when the
additive noise is Gaussian.
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(a) (b)

FIGURE 9.3–4
Equivalent discrete-time model for intersymbol interference resulting from a duobinary pulse.

Figure 9.3–4. Suppose we have received v1 and v2, where

v1 = I1 + η1

v2 = I2 + I1 + η2
(9.3–25)

and {ηi } is a sequence of statistically independent zero-mean Gaussian noise. We may
now compute the 16 metrics

PM1(I2, I1) = −
2∑

k=1

⎛
⎝vk −

1∑
j=0

Ik− j

⎞
⎠

2

, I1, I2 = ±1, ±3 (9.3–26)

where Ik = 0 for k ≤ 0.
Note that any subsequently received signals {vi } do not involve I1. Hence, at this

stage, we may discard 12 of the 16 possible pairs {I1, I2}. This step is illustrated by the
tree diagram shown in Figure 9.3–5. In other words, after computing the 16 metrics
corresponding to the 16 paths in the tree diagram, we discard three out of the four paths
that terminate with I2 = 3 and save the most probable of these four. Thus, the metric
for the surviving path is

PM1(I2 = 3, I1) = max
I1

⎡
⎢⎣−

2∑
k=1

⎛
⎝vk −

1∑
j=0

Ik− j

⎞
⎠

2
⎤
⎥⎦

The process is repeated for each set of four paths terminating with I2 = 1, I2 = −1,
and I2 = −3. Thus four paths and their corresponding metrics survive after v1 and v2
are received.

When v3 is received, the four paths are extended as shown in Figure 9.3–5 to yield
16 paths and 16 corresponding metrics given by

PM2(I3, I2, I1) = PM1(I2, I1) −
⎛
⎝v3 −

1∑
j=0

I3− j

⎞
⎠

2

(9.3–27)

Of the four paths terminating with the I3 = 3, we save the most probable. This procedure
is again repeated for I3 = 1, I3 = −1, and I3 = −3. Consequently, only four paths
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FIGURE 9.3–5
Tree diagram for Viterbi decoding of the duobinary pulse.

survive at this stage. The procedure is then repeated for each subsequently received
signal vk for k > 3.

9.3–4 Performance of MLSE for Channels with ISI

We shall now determine the probability of error for the MLSE of the received informa-
tion sequence when the information is transmitted via PAM and the additive noise is
Gaussian. The similarity between a convolutional code and a finite-duration intersym-
bol interference channel implies that the method for computing the error probability
for the latter carries over from the former. In particular, the method for computing the
performance of soft-decision decoding of a convolutional code by means of the Viterbi
algorithm, described in Section 8.3, applies with some modification.



Proakis-27466 book September 26, 2007 22:36

632 Digital Communications

In PAM signaling with the additive Gaussian noise and intersymbol interference,
the metrics used in the Viterbi algorithm may be expressed as in Equation 9.3–23, or,
equivalently, as

PMk−L (I k) = PMk−L−1(I k−1) −
⎛
⎝vk −

L∑
j=0

f j Ik− j

⎞
⎠

2

(9.3–28)

where the symbols {In} may take the values ±d, ±3d, . . . , ±(M − 1)d, and 2d is the
distance between successive levels. The trellis has M L states, defined at time k as

Sk = (Ik−1, Ik−2, . . . , Ik−L ) (9.3–29)

Let the estimated symbols from the Viterbi algorithm be denoted by { Ĩn} and the
corresponding estimated state at time k by

S̃k = ( Ĩ k−1, Ĩ k−2, . . . , Ĩ k−L ) (9.3–30)

Now suppose that the estimated path through the trellis diverges from the correct path at
time k and remerges with the correct path at time k +l. Thus, S̃k = Sk and S̃k+1 = Sk+1,
but S̃m �= Sm for k < m < k + l. As in a convolutional code, we call this an error
event. Since the channel spans L + 1 symbols, it follows that l ≥ L + 1.

For such an error event, we have Ĩ k �= Ik and Ĩ k+l−L−1 �= Ik+l−L−1, but Ĩ m = Im

for k − L ≤ m ≤ k − 1 and k + l − L ≤ m ≤ k + l − 1. It is convenient to define an
error vector ε corresponding to this error event as

ε = [εk εk+1 · · · εk+l−L−1] (9.3–31)

where the components of ε are defined as

ε j = 1

2d
(I j − Ĩ j ), j = k, k + 1, . . . , k + l − L − 1 (9.3–32)

The normalization factor of 2d in Equation 9.3–32 results in elements ε j that take on
the values 0, ±1, ±2, ±3, . . . ,±(M − 1). Moreover, the error vector is characterized
by the properties that εk �= 0, εk+l−L−1 �= 0, and there is no sequence of L consecutive
elements that are zero. Associated with the error vector in Equation 9.3–31 is the
polynomial of degree l − L − 1,

ε(z) = εk + εk+1z−1 + εk+2z−2 + · · · + εk+l−L−1z−(l−L−1) (9.3–33)

We wish to determine the probability of occurrence of the error event that begins
at time k and is characterized by the error vector ε given in Equation 9.3–31 or, equiv-
alently, by the polymonial given in Equation 9.3–33. To accomplish this, we follow the
procedure developed by Forney (1972). Specifically, for the error event ε to occur, the
following three subevents E1, E2, and E3 must occur:

E1: At time k, S̃k = Sk .
E2: The information symbols Ik, Ik+1, . . . , Ik+l−L−1 when added to the scaled

error sequence 2d(εk, εk+1, . . . , εk+l−L−1) must result in an allowable se-
quence, i.e., the sequence Ĩ k , Ĩ k+1, . . . , Ĩ k+l−L−1 must have values selected
from ±d, ±3d, ± · · · ± (M − 1)d.

E3: For k ≤ m < k + l, the sum of the branch metrics of the estimated path
exceeds the sum of the branch metrics of the correct path.
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The probability of occurrence of E3 is

P(E3) = P

⎡
⎢⎣

k+l−1∑
i=k

⎛
⎝vi −

L∑
j=0

f j Ĩ i− j

⎞
⎠

2

<

k+l−1∑
i=k

⎛
⎝vi −

L∑
j=0

f j Ii− j

⎞
⎠

2
⎤
⎥⎦ (9.3–34)

But

vi =
L∑

j=0

f j Ii− j + ηi (9.3–35)

where {ηi } is a real-valued white Gaussian noise sequence. Substitution of Equ-
ation 9.3–35 into Equation 9.3–34 yields

P(E3) = P

⎡
⎢⎣

k+l−1∑
i=k

⎛
⎝ηi + 2d

L∑
j=0

f jεi− j

⎞
⎠

2

<

k+l−1∑
i=k

η2
i

⎤
⎥⎦

= P

⎡
⎢⎣4d

k+l−1∑
i=k

ηi

⎛
⎝ L∑

j=0

f jεi− j

⎞
⎠ < −4d2

k+l−1∑
i=k

⎛
⎝ L∑

j=0

f jεi− j

⎞
⎠

2
⎤
⎥⎦

(9.3–36)

where ε j = 0 for j < k and j > k + l − L − 1. If we define

αi =
L∑

j=0

f jεi− j (9.3–37)

then Equation 9.3–36 may be expressed as

P(E3) = P

(
k+l−1∑

i=k

αiηi < −d
k+1−1∑

i=k

α2
i

)
(9.3–38)

where the factor of 4d common to both terms has been dropped. Now Equation 9.3–38
is just the probability that a linear combination of statistically independent Gaussian
random variables is less than some negative number. Thus

P(E3) = Q

⎛
⎝

√√√√2d2

N0

k+l−1∑
i=k

α2
i

⎞
⎠ (9.3–39)

For convenience, we define

δ2(ε) =
k+l−1∑

i=k

α2
i =

k+l−1∑
i=k

⎛
⎝ L∑

j=0

f jεi− j

⎞
⎠

2

(9.3–40)

where ε j = 0 for j < k and j > k + l − L − 1. Note that the {αi } resulting from the
convolution of { fi } with {ε j } are the coefficients of the polynomial

α(z) = F(z)ε(z)
= αk + αk+1z−1 + · · · + αk+l−1z−(l−1) (9.3–41)
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Furthermore, δ2(ε) is simply equal to the coefficient of z0 in the polynomial

α(z)α(z−1) = F(z)F(z−1)ε(z)ε(z−1)
= X (z)ε(z)ε(z−1)

(9.3–42)

We call δ2(ε) the Euclidean weight of the error event ε.
An alternative method for representing the result of convolving { f j } with {ε j } is

the matrix form

α = e f

where α is an l-dimensional vector, f is an (L + 1)-dimensional vector, and e is an
l × (L + 1) matrix defined as

α =

⎡
⎢⎢⎢⎢⎣

αk

ak+1

...

αk+l−1

⎤
⎥⎥⎥⎥⎦, f =

⎡
⎢⎢⎢⎢⎣

f0

f1

...

fL

⎤
⎥⎥⎥⎥⎦

e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εk 0 0 · · · 0 · · · 0

εk+1 εk 0 · · · 0 · · · 0

εk+2 εk+1 εk · · · 0 · · · 0
...

...
...

...
...

εk+l−1 · · · · · · · · · · · · · · · εk+l−L−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.3–43)

Then

δ2(ε) = αtα

= f t et e f
= f t A f

(9.3–44)

where A is an (L + 1) × (L + 1) matrix of the form

A = et e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β0 β1 β2 · · · βL

β1 β0 β1 · · · βL−1

β2 β1 β0 β1 βL−2

...
...

...
...

...

βL · · · · · · · · · β0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.3–45)

and

βm =
k+l−1−m∑

i=k

εiεi+m (9.3–46)

We may use either Equations 9.3–40 and 9.3–41 or Equations 9.3–45 and 9.3–46 in
evaluating the error rate performance. We consider these computations later. For now
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we conclude that the probability of the subevent E3, given by Equations 9.3–39, may
be expressed as

P(E3) = Q

⎛
⎝

√
2d2

N0
δ2(ε)

⎞
⎠

= Q

⎛
⎝

√
6

M2 − 1
γavδ2(ε)

⎞
⎠

(9.3–47)

where we have used the relation

d2 = 3

M2 − 1
TPav (9.3–48)

to eliminate d2 and γav = TPav/N0. Note that, in the absence of intersymbol interfer-
ence, δ2(ε) = 1 and P(E3) is proportional to the symbol error probability of M-ary
PAM.

The probability of the subevent E2 depends only on the statistical properties of
the input sequence. We assume that the information symbols are equally probable and
that the symbols in the transmitted sequence are statistically independent. Then, for an
error of the form |εi | = j, j = 1, 2, . . . , M − 1, there are M − j possible values of Ii

such that

Ii = Ĩ i + 2dεi

Hence

P(E2) =
l−L−1∏

i=0

M − |εi |
M

(9.3–49)

The probability of the subevent E1 is much more difficult to compute exactly be-
cause of its dependence on the subevent E3. That is, we must compute P(E1|E3). How-
ever, P(E1|E3) = 1 − Pe, where Pe is the symbol error probability. Hence P(E1|E3)
is well approximated (and upper-bounded) by unity for reasonably low symbol error
probabilities. Therefore, the probability of the error event ε is well approximated and
upper-bounded as

P(ε) ≤ Q

⎛
⎝

√
6

M2 − 1
γavδ2(ε)

⎞
⎠ l−L−1∏

i=0

M − |εi |
M

(9.3–50)

Let E be the set of all error events ε starting at time k and let w(ε) be the cor-
responding number of nonzero components (Hamming weight or number of symbol
errors) in each error event ε. Then the probability of a symbol error is upper-bounded
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(union bound) as

Pe ≤
∑
ε∈E

w(ε)P(ε)

≤
∑
ε∈E

w(ε)Q

⎛
⎝

√
6

M2 − 1
γavδ2(ε)

⎞
⎠ l−L−1∏

i=0

M − |εi |
M

(9.3–51)

Now let D be the set of all δ(ε). For each δ ∈ D, let Eδ be the subset of error events
for which δ(ε) = δ. Then Equation 9.3–51 may be expressed as

Pe ≤
∑
δ∈D

Q

⎛
⎝

√
6

M2 − 1
γavδ2

⎞
⎠

⎡
⎣∑

ε∈Eδ

w(ε)
l−L−1∏

i=0

M − |εi |
M

⎤
⎦

≤
∑
δ∈D

Kδ Q

⎛
⎝

√
6

M2 − 1
γavδ2

⎞
⎠

(9.3–52)

where

Kδ =
∑
ε∈Eδ

w(ε)
l−L−1∏

i=0

M − |εi |
M

(9.3–53)

The expression for the error probability in Equation 9.3–52 is similar to the form
of the error probability for a convolutional code with soft-decision decoding given
by Equation 8.2–19. The weighting factors {Kδ} may be determined by means of the
error state diagram, which is akin to the state diagram of a convolutional encoder. This
approach has been illustrated by Forney (1972) and Viterbi and Omura (1979).

In general, however, the use of the error state diagram for computing Pe is tedious.
Instead, we may simplify the computation of Pe by focusing on the dominant term in the
summation of Equation 9.3–52. Because of the exponential dependence of each term
in the sum, the expression Pe is dominated by the term corresponding to the minimum
value of δ, denoted as δmin. Hence the symbol error probability may be approximated
as

Pe ≈ Kδmin Q

⎛
⎝

√
6

M2 − 1
γavδ

2
min

⎞
⎠ (9.3–54)

where

Kδmin =
∑

ε∈Eδmin

w(ε)
l−L−1∏

i=0

M − |εi |
M

(9.3–55)

In general, δ2
min ≤ 1. Hence, 10 log δ2

min represents the loss in SNR due to intersymbol
interference.

The minimum value of δ may be determined either from Equation 9.3–40 or from
evaluation of the quadratic form in Equation 9.3–44 for different error sequences. In
the following two examples we use Equation 9.3–40.
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E X A M P L E 9.3–3. Consider a two path channel (L = 1) with arbitrary coefficients f0
and f1 satisfying the constraint f 2

0 + f 2
1 = 1. The channel characteristic is

F(z) = f0 + f1z−1 (9.3–56)

For an error event of length n,

ε(z) = ε0 + ε1z−1 + · · · + εn−1z−(n−1), n ≥ 1 (9.3–57)

The product α(z) = F(z)ε(z) may be expressed as

α(z) = α0 + α1z−1 + · · · + αnz−n (9.3–58)

where α0 = ε0 f0 and αn = f1εn−1. Since ε0 �= 0, εn−1 �= 0, and

δ2(ε) =
n∑

k=0

α2
k (9.3–59)

it follows that

δ2
min ≥ f 2

0 + f 2
1 = 1

Indeed, δ2
min = 1 when a single error occurs, i.e., ε(z) = ε0. Thus, we conclude that

there is no loss in SNR in maximum-likelihood sequence estimation of the information
symbols when the channel dispersion has length 2.

E X A M P L E 9.3–4. The controlled intersymbol interference in a partial-response signal
may be viewed as having been generated by a time-dispersive channel. Thus, the inter-
symbol interference from a duobinary pulse may be represented by the (normalized)
channel characteristic

F(z) =
√

1
2 +

√
1
2 z−1 (9.3–60)

Similarly, the representation for a modified duobinary pulse is

F(z) =
√

1
2 −

√
1
2 z−2 (9.3–61)

The minimum distance δ2
min = 1 for any error event of the form

ε(z) = ±(1 − z−1 − z−2 · · · − z−(n−1)), n ≥ 1 (9.3–62)

for the channel given by Equation 9.3–60, since

α(z) = ±
√

1
2 ∓

√
1
2 z−n

Similarly, when

ε(z) = ±(1 + z−2 + z−4 + · · · + z−2(n−1)), n ≥ 1 (9.3–63)

δ2
min = 1 for the channel given by Equation 9.3–61 since

α(z) = ±
√

1
2 ∓

√
1
2 z−2n
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Hence the MLSE of these two partial-response signals result in no loss in SNR. In
contrast, the suboptimum symbol-by-symbol detection described previously resulted
in a 2.1-dB loss.

The constant Kδmin is easily evaluated for these two signals. With precoding, the
number of output symbol errors (Hamming weight) associated with the error events in
Equations 9.3–62 and 9.3–63 is two. Hence,

Kδmin = 2
∞∑

n=1

(
M − 1

M

)n

= 2(M − 1) (9.3–64)

On the other hand, without precoding, these error events result in n symbol errors, and,
hence,

Kδmin = 2
∞∑

n=1

n

(
M − 1

M

)n

= 2M(M − 1) (9.3–65)

As a final exercise, we consider the evaluation of δ2
min from the quadratic form in

Equation 9.3–44. The matrix A of the quadratic form is positive-definite; hence, all
its eigenvalues are positive. If {μk(ε)} are the eigenvalues and {vk(ε)} are the corre-
sponding orthonormal eigenvectors of A for an error event ε, then the quadratic form
in Equation 9.3–44 can be expressed as

δ2(ε) =
L+1∑
k=1

μk(ε)[ f tvk(ε)]2 (9.3–66)

In other words, δ2(ε) is expressed as a linear combination of the squared projections
of the channel vector f onto the eigenvectors of A. Each squared projection of the sum
is weighted by the corresponding eigenvalue μk(ε), k = 1, 2, . . . , L + 1. Then

δ2
min = min

ε
δ2(ε) (9.3–67)

It is interesting to note that the worst channel characteristic of a given length L + 1
can be obtained by finding the eigenvector corresponding to the minimum eigenvalue.
Thus, if μmin(ε) is the minimum eigenvalue for a given error event ε and vmin(ε) is the
corresponding eigenvector, then

μmin = min
ε

μmin(ε)

f = min
ε

vmin(ε)

and

δ2
min = μmin

E X A M P L E 9.3–5. Let us determine the worst time-dispersive channel of length
3 (L = 2) by finding the minimum eigenvalue of A for different error events. Thus,

F(z) = f0 + f1z−1 + f2z−2

where f0, f1, and f2 are the components of the eigenvector of A corresponding to the
minimum eigenvalue. An error event of the form

ε(z) = 1 − z−1
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results in a matrix

A =
[

2 −1 0
−1 2 −1

0 −1 2

]

which has the eigenvalues μ1 = 2, μ2 = 2 + √
2, μ3 = 2 − √

2. The eigenvector
corresponding to μ3 is

vt
3 =

[
1
2

√
1
2

1
2

]
(9.3–68)

We may also consider the dual error event

ε(z) = 1 + z−1

which results in the matrix

A =
[

2 1 0
1 2 1
0 1 2

]

This matrix has eigenvalues identical to those of the one for ε(z) = 1 − z−1. The
corresponding eigenvector for μ3 = 2 − √

2 is

vt
3 =

[
− 1

2

√
1
2 − 1

2

]
(9.3–69)

Any other error events lead to larger values for μmin. Hence, μmin = 2 − √
2 and

the worst-case channel is either[
1
2

√
1
2

1
2

]
or

[
− 1

2

√
1
2 − 1

2

]

The loss in SNR from the channel is

−10 log δ2
min = −10 log μmin = 2.3 dB

Repetitions of the above computation for channels with L = 3, 4, and 5 yield the
results given in Table 9.3–1.

TABLE 9.3–1

Maximum Performance Loss and Corresponding
Channel Characteristics

Channel length Performance loss
L + 1 −10 log δ2

min dB Minimum-distance channel

3 2.3 0.50, 0.71, 0.50
4 4.2 0.38, 0.60, 0.60, 0.38
5 5.7 0.29, 0.50, 0.58, 0.50, 0.29
6 7.0 0.23, 0.42, 0.52, 0.52, 0.42, 0.23
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9.4
LINEAR EQUALIZATION

The MLSE for a channel with ISI has a computational complexity that grows exponen-
tially with the length of the channel time dispersion. If the size of the symbol alphabet
is M and the number of interfering symbols contributing to ISI is L , the Viterbi al-
gorithm computes M L+1 metrics for each new received symbol. In most channels of
practical interest, such a large computational complexity is prohibitively expensive to
implement.

In this and the following sections, we describe suboptimum channel equalization
approaches to compensate for the ISI. One approach employs a linear transversal filter,
which is described in this section. This filter structure has a computational complexity
that is a linear function of the channel dispersion length L .

The linear filter most often used for equalization is the transversal filter shown in
Figure 9.4–1. Its input is the sequence {vk} given in Equation 9.3–16 and its output in
the estimate of the information sequence {Ik}. The estimate of the kth symbol may be
expressed as

Î k =
K∑

j=−K

c jvk− j (9.4–1)

where {c j } are the 2K + 1 complex-valued tap weight coefficients of the filter. The
estimate Î k is quantized to the nearest (in distance) information symbol to form the
decision Ĩ k . If Ĩ k is not identical to the transmitted information symbol Ik , an error has
been made.

Considerable research has been performed on the criterion for optimizing the filter
coefficients {ck}. Since the most meaningful measure of performance for a digital com-
munication system is the average probability of error, it is desirable to choose the coeffi-
cients to minimize this performance index. However, the probability of error is a highly
non-linear function of {c j }. Consequently, the probability of error as a performance

FIGURE 9.4–1
Linear transversal filter.
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index for optimizing the tap weight coefficients of the equalizer is computationally
complex.

Two criteria have found widespread use in optimizing the equalizer coefficients
{c j }. One is the peak distortion criterion and the other is the mean-square-error criterion.

9.4–1 Peak Distortion Criterion

The peak distortion is simply defined as the worst-case intersymbol interference at the
output of the equalizer. The minimization of this performance index is called the peak
distortion criterion. First we consider the minimization of the peak distortion assuming
that the equalizer has an infinite number of taps. Then we shall discuss the case in which
the transversal equalizer spans a finite time duration.

We observe that the cascade of the discrete-time linear filter model having an im-
pulse response { fn} and an equalizer having an impulse response {cn} can be represented
by a single equivalent filter having the impulse response

qn =
∞∑

j=−∞
c j fn− j (9.4–2)

That is, {qn} is simply the convolution of {cn} and { fn}. The equalizer is assumed to
have an infinite number of taps. Its output at the kth sampling instant can be expressed
in the form

Î k = q0 Ik +
∑
n �=k

Inqk−n +
∞∑

j=−∞
c jηk− j (9.4–3)

The first term in Equation 9.4–3 represents a scaled version of the desired sym-
bol. For convenience, we normalize q0 to unity. The second term is the intersymbol
interference. The peak value of this interference, which is called the peak distortion, is

D(c) =
∞∑

n=−∞
n �=0

|qn|

=
∞∑

n=−∞
n �=0

∣∣∣∣∣∣
∞∑

j=−∞
c j fn− j

∣∣∣∣∣∣
(9.4–4)

Thus, D(c) is a function of the equalizer tap weights.
With an equalizer having an infinite number of taps, it is possible to select the

tap weights so that D(c) = 0, i.e., qn = 0 for all n except n = 0. That is, the
intersymbol interference can be completely eliminated. The values of the tap weights
for accomplishing this goal are determined from the condition

qn =
∞∑

j=−∞
c j fn− j =

{
1 (n = 0)
0 (n �= 0) (9.4–5)
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FIGURE 9.4–2
Block diagram of channel with
zero-forcing equalizer.

By taking the z transform of Equation 9.4–5, we obtain

Q(z) = C(z)F(z) = 1 (9.4–6)

or, simply,

C(z) = 1

F(z)
(9.4–7)

where C(z) denotes the z transform of the {c j }. Note that the equalizer, with transfer
function C(z), is simply the inverse filter to the linear filter model F(z). In other words,
complete elimination of the intersymbol interference requires the use of an inverse
filter to F(z). We call such a filter a zero-forcing filter. Figure 9.4–2 illustrates in block
diagram the equivalent discrete-time channel and equalizer.

The cascade of the noise-whitening filter having the transfer function 1/F∗(1/z∗)
and the zero-forcing equalizer having the transfer function 1/F(z) results in an equiv-
alent zero-forcing equalizer having the transfer function

C ′(z) = 1

F(z)F∗(1/z∗)
= 1

X (z)
(9.4–8)

as shown in Figure 9.4–3. This combined filter has as its input the sequence {yk} of
samples from the matched filter, given by Equation 9.3–10. Its output consists of the
desired symbols corrupted only by additive zero-mean Gaussian noise. The impulse
response of the combined filter is

c′
k = 1

2π j

∮
C ′(z)zk−1dz

= 1

2π j

∮
zk−1

X (z)
dz

(9.4–9)

where the integration is performed on a closed contour that lies within the region of
convergence of C ′(z). Since X (z) is a polynomial with 2L roots (ρ1, ρ2, . . . , ρL , 1/ρ∗

1 ,

1/ρ∗
2 , . . . , 1/ρ∗

L ), it follows that C ′(z) must converge in an annular region in the z plane

FIGURE 9.4–3
Block diagram of channel with equivalent zero-forcing equalizer.



Proakis-27466 book September 26, 2007 22:36

Chapter Nine: Digital Communication Through Band-Limited Channels 643

that includes the unit circle (z = e jθ ). Consequently, the closed contour in the integral
can be the unit circle.

The performance of the infinite-tap equalizer that completely eliminates the inter-
symbol interference can be expressed in terms of the SNR at its output. For mathematical
convenience, we normalize the received signal energy to unity.† This implies that q0 = 1
and that the expected value of |Ik |2 is also unity. Then the SNR is simply the reciprocal
of the noise variance σ 2

n at the output of the equalizer.‡

The value of σ 2
n can be simply determined by observing that the noise sequence

{νk} at the input to the equivalent zero-forcing equalizer C ′(z) has zero-mean and a
power spectral density

Sνν(ω) = N0 X (e jωT ), |ω| ≤ π

T
(9.4–10)

where X (e jωt ) is obtained from X (z) by the substitution z = e jωT. Since C ′(z) =
1/X (z), it follows that the noise sequence at the output of the equalizer has a power
spectral density

Snn(ω) = N0

X (e jωT )
, |ω| ≤ π

T
(9.4–11)

Consequently, the variance of the noise variable at the output of the equalizer is

σ 2
n = T

2π

∫ π/T

−π/T
Snn(ω) dω

= T N0

2π

∫ π/T

−π/T

dω

X (e jωT )

(9.4–12)

and the SNR for the zero-forcing equalizer is

γ∞ = 1

σ 2
n

=
[

T N0

2π

∫ π/T

−π/T

dω

X (e jωT )

]−1

(9.4–13)

where the subscript on γ indicates that the equalizer has an infinite number of taps.
The spectral characteristics X (e jωT ) corresponding to the Fourier transform of the

sampled sequence {xn} has an interesting relationship to the analog filter H (ω) used at
the receiver. Since

xk =
∫ ∞

−∞
h∗(t)h(t + kT ) dt

use of Parseval’s theorem yields

xk = 1

2π

∫ ∞

−∞
|H (ω)|2e jωkT dω (9.4–14)

†This normalization is used throughout this chapter for mathematical convenience.
‡If desired, one can multiply this normalized SNR at the output of the equalizer by the signal energy.
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where H (ω) is the Fourier transform of h(t). But the integral in Equation 9.4–14 can
be expressed in the form

xk = 1

2π

∫ π/T

−π/T

[ ∞∑
n=−∞

∣∣∣∣H
(

ω + 2πn

T

)∣∣∣∣
2
]

e jωkT dω (9.4–15)

Now, the Fourier transform of {xk} is

X (e jωT ) =
∞∑

k=−∞
xke− jωkT (9.4–16)

and the inverse transform yields

xk = T

2π

∫ π/T

−π/T
X (e jωT )e jωkT dω (9.4–17)

From a comparison of Equations 9.4–15 and 9.4–17, we obtain the desired relationship
beween X (e jωT ) and H (ω). That is,

X (e jωT ) = 1

T

∞∑
n=−∞

∣∣∣∣H
(

ω + 2πn

T

)∣∣∣∣
2

, |ω| ≤ π

T
(9.4–18)

where the right-hand side of Equation 9.4–18 is called the folded spectrum of |H (ω)|2.
We also observe that |H (ω)|2 = X (ω), where X (ω) is the Fourier transform of the
waveform x(t) and x(t) is the response of the matched filter to the input pulse h(t).
Therefore the right-hand side of Equation 9.4–18 can also be expressed in terms of
X (ω).

Substitution for X (e jωT ) in Equation 9.4–13 using the result in Equation 9.4–18
yields the desired expression for the SNR in the form

γ∞ =
[

T 2 N0

2π

∫ π/T

−π/T

dω∑∞
n=−∞ |H (ω + 2πn/T )|2

]−1

(9.4–19)

We observe that if the folded spectral characteristic of H (ω) possesses any zeros, the
integrand becomes infinite and the SNR goes to zero. In other words, the performance of
the equalizer is poor whenever the folded spectral characteristic possesses nulls or takes
on small values. This behavior occurs primarily because the equalizer, in eliminating
the intersymbol interference, enhances the additive noise. For example, if the channel
contains a spectral null in its frequency response, the linear zero-forcing equalizer
attempts to compensate for this by introducing an infinite gain at that frequency. But
this compensates for the channel distortion at the expense of enhancing the additive
noise. On the other hand, an ideal channel coupled with an appropriate signal design
that results in no intersymbol interference will have a folded spectrum that satisfies the
condition

∞∑
n=−∞

∣∣∣∣H
(

ω + 2πn

T

)∣∣∣∣
2

= T, |ω| ≤ π

T
(9.4–20)
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In this case, the SNR achieves its maximum value, namely,

γ∞ = 1

N0
(9.4–21)

Finite-length equalizer Let us now turn our attention to an equalizer having 2K +1
taps. Since c j = 0 for | j | > K , the convolution of { fn} with {cn} is zero outside the
range −K ≤ n ≤ K + L − 1. That is, qn = 0 for n < −K and n > K + L − 1. With
q0 normalized to unity, the peak distortion is

D(c) =
K+L−1∑

n=−K
n �=0

|qn| =
K+L−1∑

n=−K
n �=0

∣∣∣∣∣∣
∑

j

c j fn− j

∣∣∣∣∣∣ (9.4–22)

Although the equalizer has 2K + 1 adjustable parameters, there are 2K + L nonzero
values in the response {qn}. Therefore, it is generally impossible to completely eliminate
the intersymbol interference at the output of the equalizer. There is always some residual
interference when the optimum coefficients are used. The problem is to minimize D(c)
with respect to the coefficients {c j }.

The peak distortion given by Equation 9.4–22 has been shown by Lucky (1965) to
be a convex function of the coefficients {c j }. That is, it possesses a global minimum and
no local minima. Its minimization can be carried out numerically using, for example,
the method of steepest descent. Little more can be said for the general solution to this
minimization problem. However, for one special but important case, the solution for
the minimization of D(c) is known. This is the case in which the distortion at the input
to the equalizer, defined as

D0 = 1

| f0|
L∑

n=1

| fn| (9.4–23)

is less than unity. This condition is equivalent to having the eye open prior to equaliza-
tion. That is, the intersymbol interference is not severe enough to close the eye. Under
this condition, the peak distortion D(c) is minimized by selecting the equalizer coeffi-
cients to force qn = 0 for 1 ≤ |n| ≤ K and q0 = 1. In other words, the general solution
to the minimization of D(c), when D0 < 1, is the zero-forcing solution for {qn} in the
range 1 ≤ |n| ≤ K . However, the values of {qn} for K +1 ≤ n ≤ K +L−1 are nonzero,
in general. These nonzero values constitute the residual intersymbol interference at the
output of the equalizer.

9.4–2 Mean-Square-Error (MSE) Criterion

In the MSE criterion, the tap weight coefficients {c j } of the equalizer are adjusted to
minimize the mean square value of the error

εk = Ik − Î k (9.4–24)
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where Ik is the information symbol transmitted in the kth signaling interval and Î k is
the estimate of that symbol at the output of the equalizer, defined in Equation 9.4–1.
When the information symbols {Ik} are complex-valued, the performance index for the
MSE criterion, denoted by J, is defined as

J = E |εk |2 = E |Ik − Î k |2 (9.4–25)

On the other hand, when the information symbols are real-valued, the performance index
is simply the square of the real part of εk . In either case, J is a quadratic function of the
equalizer coefficients {c j }. In the following discussion, we consider the minimization
of the complex-valued form given in Equation 9.4–25.

Infinite-length equalizer First, we shall derive the tap weight coefficients that
minimize J when the equalizer has an infinite number of taps. In this case, the estimate
Î k is expressed as

Î k =
∞∑

j=−∞
c jvk− j (9.4–26)

Substitution of Equation 9.4–26 into the expression for J given in Equation 9.4–25 and
expansion of the result yields a quadratic function of the coefficients {c j }. This function
can be easily minimized with respect to the {c j } to yield a set (infinite in number) of
linear equations for the {c j }. Alternatively, the set of linear equations can be obtained
by invoking the orthogonality principle in mean square estimation. That is, we select
the coefficients {c j } to render the error εk orthogonal to the signal sequence {v∗

k−l} for
−∞ < l < ∞. Thus,

E
(
εkv

∗
k−l

) = 0, −∞ < l < ∞ (9.4–27)

Substitution for εk in Equation 9.4–27 yields

E

⎡
⎣

⎛
⎝Ik −

∞∑
j=−∞

c jvk− j

⎞
⎠ v∗

k−l

⎤
⎦ = 0

or, equivalently,

∞∑
j=−∞

c j E
(
vk− jv

∗
k−l

) = E
(

Ikv
∗
k−l

)
, −∞ < l < ∞ (9.4–28)

To evaluate the moments in Equation 9.4–28, we use the expression for vk given
in Equation 9.3–16. Thus, we obtain

E
(
vk− jv

∗
k−l

) =
L∑

n=0

f ∗
n fn+l− j + N0δl j

=
{

xl− j + N0δlj (|l − j | ≤ L)

0 (otherwise)

(9.4–29)
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and

E
(

Ikv
∗
k−l

) =
{

f ∗
−l (−L ≤ l ≤ 0)

0 (otherwise)
(9.4–30)

Now, if we substitute Equations 9.4–29 and 9.4–30 into Equation 9.4–28 and take the
z transform of both sides of the resulting equation, we obtain

C(z)[F(z)F∗(1/z∗) + N0] = F∗(1/z∗) (9.4–31)

Therefore, the transfer function of the equalizer based on the MSE criterion is

C(z) = F∗(1/z∗)

F(z)F∗(1/z∗) + N0
(9.4–32)

When the noise-whitening filter is incorporated into C(z), we obtain an equivalent
equalizer having the transfer function

C ′(z) = 1

F(z)F∗(1/z∗) + N0

= 1

X (z) + N0

(9.4–33)

We observe that the only difference between this expression for C ′(z) and the
one based on the peak distortion criterion is the noise spectral density factor N0 that
appears in Equation 9.4–33. When N0 is very small in comparison with the signal,
the coefficients that minimize the peak distortion D(c) are approximately equal to
the coefficients that minimize the MSE performance index J . That is, in the limit as
N0 → 0, the two criteria yield the same solution for the tap weights. Consequently,
when N0 = 0, the minimization of the MSE results in complete elimination of the
intersymbol interference. On the other hand, that is not the case when N0 �= 0. In
general, when N0 �= 0, there is both residual intersymbol interference and additive
noise at the output of the equalizer.

A measure of the residual intersymbol interference and additive noise is obtained
by evaluating the minimum value of J , denoted by Jmin, when the transfer function C(z)
of the equalizer is given by Equation 9.4–32. Since J = E |εk |2 = E

(
εk I ∗

k

)− E
(
εk Î ∗

k

)
,

and since E
(
εk Î ∗

k

) = 0 by virtue of the orthogonality conditions given in Equation
9.4–27, it follows that

Jmin = E
(
εk I ∗

k

)
= E |Ik |2 −

∞∑
j=−∞

c j E
(
vk− j I ∗

k

)

= 1 −
∞∑

j=−∞
c j f− j

(9.4–34)

This particular form for Jmin is not very informative. More insight on the perfor-
mance of the equalizer as a function of the channel characteristics is obtained when the
summation in Equation 9.4–34 is transformed into the frequency domain. This can be
accomplished by first noting that the summation in Equation 9.4–34 is the convolution



Proakis-27466 book September 26, 2007 22:36

648 Digital Communications

of {c j } with { f j }, evaluated at a shift of zero. Thus, if {bk} denotes the convolution of
these two sequences, the summation in Equation 9.4–34 is simply equal to b0. Since
the z transform of the sequence {bk} is

B(z) = C(z)F(z)

= F(z)F∗(1/z∗)

F(z)F∗(1/z∗) + N0

= X (z)

X (z) + N0

(9.4–35)

the term b0 is

b0 = 1

2π j

∮
B(z)

z
dz

= 1

2π j

∮
X (z)

z[X (z) + N0]
dz

(9.4–36)

The contour integral in Equation 9.4–36 can be transformed into an equivalent line
integral by the change of variable z = e jωT. The result of this change of variable is

b0 = T

2π

∫ π/T

−π/T

X (e jωT )

X (e jωT ) + N0
dω (9.4–37)

Finally, substitution of the result in Equation 9.4–37 for the summation in Equation
9.4–34 yields the desired expression for the minimum MSE in the form

Jmin = 1 − T

2π

∫ π/T

−π/T

X (e jωT )

X (e jωT ) + N0
dω

= T

2π

∫ π/T

−π/T

N0

X (e jωT ) + N0
dω

= T

2π

∫ π/T

−π/T

N0

T −1
∑∞

n=−∞ |H (ω + 2πn/T )|2 + N0
dω

(9.4–38)

In the absence of intersymbol interference, X (e jωT ) = 1 and, hence,

Jmin = N0

1 + N0
(9.4–39)

We observe that 0 ≤ Jmin ≤ 1. Furthermore, the relationship between the output
(normalized by the signal energy) SNR γ∞ and Jmin must be

γ∞ = 1 − Jmin

Jmin
(9.4–40)

More importantly, this relation between γ∞ and Jmin also holds when there is residual
intersymbol interference in addition to the noise.
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Finite-length equalizer Let us now turn our attention to the case in which the
transversal equalizer spans a finite time duration. The output of the equalizer in the kth
signaling interval is

Î k =
K∑

j=−K

c jvk− j (9.4–41)

The MSE for the equalizer having 2K + 1 taps, denoted by J (K ), is

J (K ) = E |Ik − Î k |2 = E

∣∣∣∣∣∣Ik −
K∑

j=−K

c jvk− j

∣∣∣∣∣∣
2

(9.4–42)

Minimization of J (K ) with respect to the tap weights {c j } or, equivalently, forcing
the error εk = Ik − Î k to be orthogonal to the signal samples v∗

j−l , |l| ≤ K, yields the
following set of simultaneous equations:

K∑
j=−K

c j�lj = ξl, l = −K , . . . ,−1, 0, 1, . . . , K (9.4–43)

where

�l j =
{

xl− j + N0δlj (|l − j | ≤ L)

0 (otherwise)
(9.4–44)

and

ξl =
{

f ∗
−l (−L ≤ l ≤ 0)

0 (otherwise)
(9.4–45)

It is convenient to express the set of linear equations in matrix form. Thus,

Γ C = ξ (9.4–46)

where C denotes the column vector of 2K + 1 tap weight coefficients, Γ denotes the
(2K +1)×(2K +1) Hermitian covariance matrix with elements �i j and ξ is a (2K +1)-
dimensional column vector with elements ξi . The solution of Equation 9.4–46 is

Copt = Γ −1ξ (9.4–47)

Thus, the solution for Copt involves inverting the matrix Γ. The optimum tap weight
coefficients given by Equation 9.4–47 minimize the performance index J (K ), with the
result that the minimum value of J (K ) is

Jmin(K ) = 1 −
0∑

j=−K

c j f− j

= 1 − ξ H
Γ −1ξ

(9.4–48)

where H represents the conjugate transpose. Jmin(K ) may be used in Equation 9.4–40
to compute the output SNR for the linear equalizer with 2K + 1 tap coefficients.
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9.4–3 Performance Characteristics of the MSE Equalizer

In this section, we consider the performance characteristics of the linear equalizer that
is optimized by using the MSE criterion. Both the minimum MSE and the probability of
error are considered as performance measures for some specific channels. We begin by
evaluating the minimum MSE Jmin and the output SNR γ∞ for two specific channels.
Then, we consider the evaluation of the probability of error.

E X A M P L E 9.4–1. First, we consider an equivalent discrete-time channel model con-
sisting of two components f0 and f1, which are normalized to | f0|2 + | f1|2 = 1.
Then

F(z) = f0 + f1z−1 (9.4–49)

and

X (z) = f0 f ∗
1 z + 1 + f ∗

0 f1z−1 (9.4–50)

The corresponding frequency response is

X (e jωT ) = f0 f ∗
1 e jωT + 1 + f ∗

0 f1e− jωT

= 1 + 2| f0|| f1| cos(ωT + θ )
(9.4–51)

where θ is the angle of f0 f ∗
1 . We note that this channel characteristic possesses a null

at ω = π/T when f0 = f1 =
√

1
2 .

A linear equalizer with an infinite number of taps, adjusted on the basis of the
MSE criterion, will have the minimum MSE given by Equation 9.4–38. Evaluation of
the integral in Equation 9.4–38 for the X (e jωT ) given in Equation 9.4–51 yields the
result

Jmin = N0√
N 2

0 + 2N0(| f0|2 + | f1|2) + (| f0|2 − | f1|2)2

= N0√
N 2

0 + 2N0 + (| f0|2 − | f1|2)2

(9.4–52)

Let us consider the special case in which f0 = f1 =
√

1
2 . The minimum MSE is

Jmin = N0/
√

N 2
0 + 2N0 and the corresponding output SNR is

γ∞ =
√

1 + 2

N0
− 1

≈
(

2

N0

)1/2

, N0 � 1

(9.4–53)

This result should be compared with the output SNR of 1/N0 obtained in the case of
no intersymbol interference. A significant loss in SNR occurs from this channel.

E X A M P L E 9.4–2. As a second example, we consider an exponentially decaying char-
acteristic of the form

fk =
√

1 − a2 ak, k = 0, 1, . . .
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where a < 1. The Fourier transform of this sequence is

X (e jωT ) = 1 − a2

1 + a2 − 2a cos ωT
(9.4–54)

which is a function that contains a minimum at ω = π/T.
The output SNR for this channel is

γ∞ =
⎛
⎝

√
1 + 2N0

1 + a2

1 − a2
+ N 2

0 − 1

⎞
⎠

−1

≈ 1 − a2

(1 + a2)N0
, N0 � 1

(9.4–55)

Therefore, the loss in SNR due to the presence of the interference is

−10 log10

(
1 − a2

1 + a2

)

Probability of error performance of linear MSE equalizer Above, we discussed
the performance of the linear equalizer in terms of the minimum achievable MSE Jmin

and the output SNR γ that is related to Jmin through the formula in Equation 9.4–40.
Unfortunately, there is no simple relationship between these quantities and the prob-
ability of error. The reason is that the linear MSE equalizer contains some residual
intersymbol interference at its output. This situation is unlike that of the infinitely long
zero-forcing equalizer, for which there is no residual interference, but only Gaussian
noise. The residual interference at the output of the MSE equalizer is not well char-
acterized as an additional Gaussian noise term, and, hence, the output SNR does not
translate easily into an equivalent error probability.

One approach to computing the error probability is a brute force method that yields
an exact result. To illustrate this method, let us consider a PAM signal in which the
information symbols are selected from the set of values 2n − M − 1, n = 1, 2, . . . , M,

with equal probability. Now consider the decision on the symbol In . The estimate of In

is

Î n = q0 In +
∑
k �=n

Ikqn−k +
K∑

j=−K

c jηn− j (9.4–56)

where {qn} represent the convolution of the impulse response of the equalizer and
equivalent channel, i.e.,

qn =
K∑

k=−K

ck fn−k (9.4–57)

and the input signal to the equalizer is

vk =
L∑

j=0

f j Ik− j + ηk (9.4–58)
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The first term in the right-hand side of Equation 9.4–56 is the desired symbol, the
middle term is the intersymbol interference, and the last term is the Gaussian noise.
The variance of the noise is

σ 2
n = N0

K∑
j=−K

c2
j (9.4–59)

For an equalizer with 2K + 1 taps and a channel response that spans L + 1 symbols,
the number of symbols involved in the intersymbol interference is 2K + L .

Define

D =
∑
k �=n

Ikqn−k (9.4–60)

For a particular sequence of 2K + L information symbols, say the sequence I J , the
intersymbol interference term D ≡ DJ is fixed. The probability of error for a fixed DJ

is

Pe(DJ ) = 2
M − 1

M
P(N + DJ > q0)

= 2(M − 1)

M
Q

(√
(q0 − DJ )2

σ 2
n

) (9.4–61)

where N denotes the additive noise term. The average probability of error is obtained
by averaging Pe(DJ ) over all possible sequences I J . That is,

Pe =
∑

IJ

Pe(DJ )P(I J )

= 2(M − 1)

M

∑
IJ

Q

(√
(q0 − DJ )2

σ 2
n

)
P(I J )

(9.4–62)

When all the sequences are equally likely,

P(I J ) = 1

M2K+L
(9.4–63)

The conditional error probability terms Pe(DJ ) are dominated by the sequence that
yields the largest value of DJ . This occurs when In = ±(M − 1) and the signs of the
information symbols match the signs of the corresponding {qn}. Then,

D∗
J = (M − 1)

∑
k �=0

|qk |

and

Pe
(

D∗
J

) = 2(M − 1)

M
Q

⎛
⎜⎜⎝

√√√√√ q2
0

σ 2
n

⎛
⎝1 − M − 1

q0

∑
k �=0

|qk |
⎞
⎠

2
⎞
⎟⎟⎠ (9.4–64)
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Thus, an upper bound on the average probability of error for equally likely symbol
sequences is

Pe ≤ Pe
(

D∗
J

)
(9.4–65)

If the computation of the exact error probability in Equation 9.4–62 proves to be
too cumbersome and too time consuming because of the large number of terms in the
sum and if the upper bound is too loose, one can resort to one of a number of different
approximate methods that have been devised, which are known to yield tight bounds
on Pe. A discussion of these different approaches would take us too far afield. The
interested reader is referred to the papers by Saltzberg (1968), Lugannani (1969), Ho
and Yeh (1970), Shimbo and Celebiler (1971), Glave (1972), Yao (1972), and Yao and
Tobin (1976).

As an illustration of the performance limitations of a linear equalizer in the pres-
ence of severe intersymbol interference, we show in Figure 9.4–4 the probability of
error for binary (antipodal) signaling, as measured by Monte Carlo simulation, for
the three discrete-time channel characteristics shown in Figure 9.4–5. For purposes of
comparison, the performance obtained for a channel with no intersymbol interference
is also illustrated in Figure 9.4–4. The equivalent discrete-time channel shown in Fig-
ure 9.4–5a is typical of the response of a good-quality telephone channel. In contrast,
the equivalent discrete-time channel characteristics shown in Figure 9.4–5b and c result

9.4

9.4

9.4

FIGURE 9.4–4
Error rate performance of linear MSE equalizer. Thirty-one taps in transversal equalizer.(

γ = 1

N0

∑
k

| fk |2
)

.
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(a)

(b)

(c)

FIGURE 9.4–5
Three discrete-time channel characteristics.

in severe intersymbol interference. The spectral characteristics |X (e jω)| for the three
channels, illustrated in Figure 9.4–6, clearly show that the channel in Figure 9.4–5c has
the worst spectral characteristic. Hence the performance of the linear equalizer for this
channel is the poorest of the three cases. Next in performance is the channel shown in
Figure 9.4–5b, and finally, the best performance is obtained with the channel shown in
Fig. 9.4–5a. In fact, the error rate of the latter is within 3 dB of the error rate achieved
with no interference.

One conclusion reached from the results on output SNR γ∞ and the limited prob-
ability of error results illustrated in Figure 9.4–4 is that a linear equalizer yields good
performance on channels such as telephone lines, where the spectral characteristics of
the channels are well behaved and do not exhibit spectral nulls. On the other hand,
a linear equalizer is inadequate as a compensator for the intersymbol interference on
channels with spectral nulls, which may be encountered in radio transmission. In gen-
eral, the channel spectral nulls result in a large noise enhancement at the output of the
linear equalizer.

The basic limitation of the linear equalizer to cope with severe ISI has motivated
a considerable amount of research into non-linear equalizers with low computational
complexity. The decision-feedback equalizer described in Section 9.5 is shown to be
an effective solution to this problem.
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(a) (b)

(c)

FIGURE 9.4–6
Amplitude spectra for the channels shown in Figure 9.4–5a, b, and c, respectively.

9.4–4 Fractionally Spaced Equalizers

In the linear equalizer structures that we have described in the previous section, the
equalizer taps are spaced at the reciprocal of the symbol rate, i.e., at the reciprocal of the
signaling rate 1/T . This tap spacing is optimum if the equalizer is preceded by a filter
matched to the channel distorted transmitted pulse. When the channel characteristics
are unknown, the receiver filter is sometimes matched to the transmitted signal pulse
and the sampling time is optimized for this suboptimum filter. In general, this approach
leads to an equalizer performance that is very sensitive to the choice of sampling time.

The limitations of the symbol rate equalizer are most easily evident in the frequency
domain. From Equation 9.2–5, the spectrum of the signal at the input to the equalizer
may be expressed as

YT ( f ) = 1

T

∑
n

X
(

f − n

T

)
e j2π ( f −n/T )τ0 (9.4–66)
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where YT ( f ) is the folded or aliased spectrum, where the folding frequency is 1/2T .
Note that the received signal spectrum is dependent on the choice of the sampling delay
τ0. The signal spectrum at the output of the equalizer is CT ( f )YT ( f ), where

CT ( f ) =
K∑

k=−K

cke− j2π f kT (9.4–67)

It is clear from these relationships that the symbol rate equalizer can only compen-
sate for the frequency-response characteristics of the aliased received signal. It cannot
compensate for the channel distortion inherent in X ( f )e j2π f τ0 .

In contrast to the symbol rate equalizer, a fractionally spaced equalizer (FSE) is
based on sampling the incoming signal at least as fast as the Nyquist rate. For example,
if the transmitted signal consists of pulses having a raised cosine spectrum with a roll-
off factor β, its spectrum extends to Fmax = (1 + β)/2T . This signal can be sampled
at the receiver at a rate

2Fmax = 1 + β

T
(9.4–68)

and then passed through an equalizer with tap spacing of T/(1 + β). For example, if
β = 1, we would have a 1

2 T -spaced equalizer. If β = 0.5, we would have a 2
3 T -spaced

equalizer, and so forth. In general, then, a digitally implemented fractionally spaced
equalizer has tap spacing of MT/N where M and N are integers and N > M . Usually,
a 1

2 T -spaced equalizer is used in many applications.
Since the frequency response of the FSE is

CT ′( f ) =
K∑

k=−K

cke− j2π f kT ′
(9.4–69)

where T ′ = MT/N , it follows that CT ′( f ) can equalize the received signal spectrum
beyond the Nyquist frequency f = 1/2T to f = (1 + β)/2T = N/2MT . The
equalized spectrum is

CT ′( f )YT ′( f ) = CT ′( f )
∑

n

X
(

f − n

T ′

)
e j2π ( f −n/T ′)τ0

= CT ′( f )
∑

n

X
(

f − nN

MT

)
e j2π ( f −nN/MT )τ0

(9.4–70)

Since X ( f ) = 0 for | f | > N/2MT , Equation 9.4–70 may be expressed as

CT ′( f )YT ′( f ) = CT ′( f )X ( f )e j2π f τ0, | f | ≤ 1

2T ′ (9.4–71)

Thus, we observe that the FSE compensates for the channel distortion in the received
signal before the aliasing effects due to symbol rate sampling. In other words, CT ′( f )
can compensate for an arbitrary timing phase.

The FSE output is sampled at the symbol rate 1/T and has the spectrum
∑

k

CT ′

(
f − k

T

)
X

(
f − k

T

)
e j2π ( f −k/T )τ0 (9.4–72)



Proakis-27466 book September 26, 2007 22:36

Chapter Nine: Digital Communication Through Band-Limited Channels 657

In effect, the optimum FSE is equivalent to the optimum linear receiver consisting of
the matched filter followed by a symbol rate equalizer.

Let us now consider the adjustment of the tap coefficients in the FSE. The input to
the FSE may be expressed as

y
(

k MT

N

)
=

∑
n

Inx
(

k MT

N
− nT

)
+ ν

(
k MT

N

)
(9.4–73)

In each symbol interval, the FSE produces an output of the form

Î k =
K∑

n=−K

cn y
(

kT − nMT

N

)
(9.4–74)

where the coefficients of the equalizer are selected to minimize the MSE. This
optimization leads to a set of linear equations for the equalizer coefficients that have
the solution

Copt = A−1α (9.4–75)

where A is the covariance matrix of the input data and α is the vector of cross corre-
lations. These equations are identical in form to those for the symbol rate equalizer,
but there are some subtle differences. One is that A is Hermitian, but not Toeplitz. In
addition, A exhibits periodicities that are inherent in a cyclostationary process, as shown
by Qureshi (1985). As a result of the fractional spacing, some of the eigenvalues of
A are nearly zero. Attempts have been made by Long et al. (1988a, b) to exploit this
property in the coefficient adjustment.

An analysis of the performance of fractionally spaced equalizers, including their
convergence properties, is given in a paper by Ungerboeck (1976). Simulation results
demonstrating the effectiveness of the FSE over a symbol rate equalizer have also
been given in the papers by Qureshi and Forney (1977) and Gitlin and Weinstein
(1981). We cite two examples from these papers. First, Figure 9.4–7 illustrates the
performance of the symbol rate equalizer and a 1

2 T -FSE for a channel with high-end
amplitude distortion, whose characteristics are also shown in this figure. The symbol-
spaced equalizer was preceded with a filter matched to the transmitted pulse that had a
(square-root) raised cosine spectrum with a 20 percent roll-off (β = 0.2). The FSE did
not have any filter preceding it. The symbol rate was 2400 symbols/s and the modulation
was QAM. The received SNR was 30 dB. Both equalizers had 31 taps; hence, the
1
2 T -FSE spanned one-half of the time interval of the symbol rate equalizer. Neverthe-
less, the FSE outperformed the symbol rate equalizer when the latter was optimized at
the best sampling time. Furthermore, the FSE did not exhibit any sensitivity to timing
phase, as illustrated in Figure 9.4–7b.

Similar results were obtained by Gitlin and Weinstein. For a channel with poor
envelope delay characteristics, the SNR performance of the symbol rate equalizer and
a 1

2 T -FSE are illustrated in Figure 9.4–8. In this case, both equalizers had the same
time span. The T -spaced equalizer had 24 taps while the FSE had 48 taps. The symbol
rate was 2400 symbols/s and the data rate was 9600 bits/s with 16-QAM modulation.
The signal pulse had a raised cosine spectrum with β = 0.12. Note again that the FSE
outperformed the T -spaced equalizer by several decibels, even when the latter was
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(a) (b)

FIGURE 9.4–7
T and 1

2 T equalizer performance as a function of timing phase for 2400 symbols per second.
(NRF indicates no receiver filter.) [From Qureshi and Forney (1977). c© 1977 IEEE.]

adjusted for optimum sampling. The results in these two papers clearly demonstrate
the superior performance achieved with a fractionally spaced equalizer.

9.4–5 Baseband and Passband Linear Equalizers

The linear equalizer treated above was described in terms of equivalent lowpass signals.
However, in a practical implementation, the linear equalizer shown in Figure 9.4–1 can
be realized either at baseband or at bandpass. For example, Figure 9.4–9 illustrates the
demodulation of QAM or multiphase PSK by first translating the signal to baseband and
equalizing the baseband signal with an equalizer having complex-valued coefficients. In
effect, the equalizer with a complex-valued (in-phase and quadrature components) input

FIGURE 9.4–8
Performance of T and 1

2 T equalizers as a function
of timing phase for 2400 symbols/s 16-QAM on a
channel with poor envelope delay. [From Gitlin and
Weinstein (1981). Reprinted with permission from
Bell System Technical Journal. c© 1981 AT & T.]
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FIGURE 9.4–9
QAM and PSK signal demodulator with baseband equalizer.

is equivalent to four parallel equalizers with real-valued tap coefficients as shown in
Figure 9.4–10. We generally refer to the equalizer in Figure 9.4–9 as a complex-valued
baseband equalizer.

As an alternative, we may equalize the signal at passband. This is accomplished
as shown in Figure 9.4–11 for two-dimensional signal constellations such as QAM
and PSK. The received signal is filtered and, in parallel, it is passed through a Hilbert
transformer, called a phase-splitting filter. Thus, we have the equivalent of in-phase and
quadrature components at passband, which are fed to a passband complex equalizer.
We may call this equalizer structure a complex-valued passband equalizer. Following
the equalization, the signal is down-converted to baseband and detected.

The complex-valued baseband equalizer may be implemented either as a symbol
rate equalizer (SRE) or as a fractionally spaced equalizer (FSE), with the latter being
preferable in view of its insensitivity to the sampling phase within a symbol interval.

The complex-valued passband equalizer must be an FSE, with samples of the
received signal taken at some multiple of the symbol rate that exceeds the Nyquist
rate.

An alternative passband FSE to the structure shown in Figure 9.4–11 is illustrated
in Figure 9.4–12. In this FSE, real-valued samples of the received signal are taken
at the Nyquist rate or faster and equalized at bandpass by a linear equalizer that has
complex-valued coefficients. We note that this equalizer structure does not explicitly

FIGURE 9.4–10
Complex-valued baseband equalizer for
QAM and PSK signals.
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FIGURE 9.4–11
QAM or PSK signal equalization at passband.

implement a Hilbert transformer to perform phase splitting. Instead, the phase-splitting
function is embedded in the equalizer coefficients and, thus, the Hilbert transform is
avoided. This alternative passband FSE structure in Figure 9.4–12 has been called a
phase-splitting FSE (PS-FSE). Its properties and its performance has been investigated
by Mueller and Werner (1982), Im and Un (1987), and Ling and Qureshi (1990).

FIGURE 9.4–12
Structure of a phase-splitting fractionally spaced equalizer. [From Ling and Qureshi (1990);
c© 1990 IEEE.]
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9.5
DECISION-FEEDBACK EQUALIZATION

In Section 9.3–2 we developed an equivalent discrete-time model of the channel with ISI
and additive noise, as shown in Figure 9.3–2. We observed that the additive Gaussian
noise in this model is colored. Then we simplified this model by inserting a noise-
whitening filter prior to the equalizer, so that the resulting discrete-time model of the
channel has AWGN as shown in Figure 9.3–3. To recover the information sequence that
is corrupted by ISI, we considered two types of equalization methods, one based on the
MLSE criterion that is efficiently implemented by the Viterbi algorithm and the other
employed a linear transversal filter. We recall that the MLSE is the optimum detector in
the sense that it minimizes the probability of a sequence error while the linear equalizer
is suboptimum.

In this section, we consider a nonlinear type of channel equalizer for mitigat-
ing the ISI, which is also suboptimum, but whose performance is generally better
than that of the linear equalizer. The nonlinear equalizer consists of two filters, a
feedforward filter and a feedback filter, arranged as shown in Figure 9.5–1, and it is
called a decision-feedback equalizer (DFE). The input to the feedforward filter is the
received signal sequence. The feedback filter has as its input the sequence of decisions
on previously detected symbols. Functionally, the feedback filter is used to remove
that part of the ISI from the present estimated symbol caused by previously detected
symbols. Since the detector feeds hard decisions to the feedback filter, the DFE is
nonlinear.

In the case where the feedforward and feedback filters have infinite-duration
impulse responses, Price (1972) showed that the optimum feedforward filter in a zero-
forcing DFE is the noise-whitening filter with system function 1/F∗(1/z∗). Hence, in
the zero-forcing DFE, the feedforward filter whitens the additive noise and results in
an equivalent discrete-time channel having the system function F(z).

In our treatment, we focus on finite-duration impulse response filters and apply the
MSE criterion to optimize their coefficients.

FIGURE 9.5–1
Structure of decision-feedback equalizer.
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9.5–1 Coefficient Optimization

From the description given above, it follows that the equalizer output can be
expressed as

Î k =
0∑

j=−K1

c jvk− j +
K2∑
j=1

c j Ĩ k− j (9.5–1)

where Î k is an estimate of the kth information symbol, {c j } are the tap coefficients
of the filter, and { Ĩ k−1, . . . , Ĩ k−K2} are previously detected symbols. The equalizer is
assumed to have (K1 +1) taps in its feedforward section and K2 in its feedback section.

Both the peak distortion criterion and the MSE criterion result in a mathematically
tractable optimization of the equalizer coefficients, as can be concluded from the papers
by George et al. (1971), Price (1972), Salz (1973), and Proakis (1975). Since the MSE
criterion is more prevalent in practice, we focus our attention on it. Based on the
assumption that previously detected symbols in the feedback filter are correct, the
minimization of MSE

J (K1, K2) = E |Ik − Î k |2 (9.5–2)

leads to the following set of linear equations for the coefficients of the feedforward
filter:

0∑
j=−K1

ψl j c j = f ∗
−l, l = −K1, . . . , −1, 0 (9.5–3)

where

ψl j =
−l∑

m=0

f ∗
m fm+l− j + N0δl j , l, j = −K1, . . . , −1, 0 (9.5–4)

The coefficients of the feedback filter of the equalizer are given in terms of the coeffi-
cients of the feedforward section by the following expression:

ck = −
0∑

j=−K1

c j fk− j , k = 1, 2, . . . , K2 (9.5–5)

The values of the feedback coefficients result in complete elimination of intersymbol
interference from previously detected symbols, provided that previous decisions are
correct and that K2 ≥ L (see Problem 9.51).

9.5–2 Performance Characteristics of DFE

We now turn our attention to the performance achieved with decision-feedback equal-
ization. The exact evaluation of the performance is complicated to some extent by
occasional incorrect decisions made by the detector, which then propagate down the
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feedback section. In the absence of decision errors, the minimum MSE is given as

Jmin(K1) = 1 −
0∑

j=−K1

c j f− j (9.5–6)

By going to the limit (K1 → ∞) of an infinite number of taps in the feedforward filter,
we obtain the smallest achievable MSE, denoted as Jmin. With some effort Jmin can be
expressed in terms of the spectral characteristics of the channel and additive noise, as
shown by Salz (1973). This more desirable form for Jmin is

Jmin = exp
{

T

2π

∫ π/T

−π/T
ln

[
N0

X (e jωT ) + N0

]
dω

}
(9.5–7)

The corresponding output SNR is

γ∞ = 1 − Jmin

Jmin

= −1 + exp

{
T

2π

∫ π/T

−π/T
ln

[
N0 + X (e j ωT )

N0

]
dω

} (9.5–8)

We observe again, that in the absence of intersymbol interference, X (e jωT ) = 1,
and hence, Jmin = N0/(1 + N0). The corresponding output SNR is γ∞ = 1/N0.

E X A M P L E 9.5–1. It is interesting to compare the value of Jmin for the decision-feedback
equalizer with the value of Jmin obtained with the linear MSE equalizer. For example,
let us consider the discrete-time equivalent channel consisting of two taps f0 and f1.
The minimum MSE for this channel is

Jmin = exp

{
T

2π

∫ π/T

−π/T
ln

[
N0

1 + N0 + 2| f0|| f1| cos(ωT + θ )

]
dω

}

= N0 exp

[
− 1

2π

∫ π

−π

ln(1 + N0 + 2| f0|| f1| cos ω) dω

]

= 2N0

1 + N0 +
√

(1 + N0)2 − 4| f0 f1|2

(9.5–9)

Note that Jmin is maximized when | f0| = | f1| =
√

1
2 . Then

Jmin = 2N0

1 + N0 +
√

(1 + N0)2 − 1

≈ 2N0, N0 � 1

(9.5–10)

The corresponding output SNR is

γ∞ ≈ 1

2N0
, N0 � 1 (9.5–11)

Therefore, there is a 3-dB degradation in output SNR due to the presence of intersymbol
interference. In comparison, the performance loss for the linear equalizer is very severe.
Its output SNR as given by Equalizer 9.4–53 is γ∞ ≈ (2/N0)1/2 for N0 � 1.
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E X A M P L E 9.5–2. Consider the exponentially decaying channel characteristic of the
form

fk = (1 − a2)1/2ak, k = 0, 1, 2, . . . (9.5–12)

where a < 1. The output SNR of the decision-feedback equalizer is

γ∞ = −1 + exp

{
1

2π

∫ π

−π

ln

[
1 + a2 + (1 − a2)/N0 − 2a cos ω

1 + a2 − 2a cos ω

]
dω

}

= −1 + 1

2N0

{
1 − a2 + N0(1 + a2) +

√
[1 − a2 + N0(1 + a2)]2 − 4a2 N 2

0

}

≈ (1 − a2)[1 + N0(1 + a2)/(1 − a2)] − N0

N0

≈ 1 − a2

N0
, N0 � 1 (9.5–13)

Thus, the loss in SNR is 10 log10(1 − a2) dB. In comparison, the linear equalizer has
a loss of 10 log10[(1 − a2)/(1 + a2)] dB.

These results illustrate the superiority of the decision-feedback equalizer over the
linear equalizer when the effect of decision errors on performance is neglected. It
is apparent that a considerable gain in performance can be achieved relative to the
linear equalizer by the inclusion of the decision-feedback section, which eliminates the
intersymbol interference from previously detected symbols.

One method of assessing the effect of decision errors on the error rate performance
of the decision-feedback equalizer is Monte Carlo simulation on a digital computer.
For purposes of illustration, we offer the following results for binary PAM signaling
through the equivalent discrete-time channel models shown in Figure 9.4–5b and c.

The results of the simulation are displayed in Figure 9.5–2. First of all, a compar-
ison of these results with those presented in Figure 9.4–4 leads us to conclude that the
decision-feedback equalizer yields a significant improvement in performance relative to
the linear equalizer having the same number of taps. Second, these results indicate that
there is still a significant degradation in performance of the decision-feedback equal-
izer due to the residual intersymbol interference, especially on channels with severe
distortion such as the one shown in Figure 9.4–5c. Finally, the performance loss due
to incorrect decisions being fed back is 2 dB, approximately, for the channel responses
under consideration. Additional results on the probability of error for a decision-
feedback equalizer with error propagation may be found in the papers by Duttweiler
et al. (1974) and Beaulieu (1994).

The structure of the DFE that is analyzed above employs a T -spaced filter for the
feedforward section. The optimality of such a structure is based on the assumption that
the analog filter preceding the DFE is matched to the channel-corrupted pulse response
and its output is sampled at the optimum time instant. In practice, the channel response
is not known a priori, so it is not possible to design an ideal matched filter. In view
of this difficulty, it is customary in practical applications to use a fractionally spaced
feedforward filter. Of course, the feedback filter tap spacing remains at T . The use of
the FSE for the feedforward filter eliminates the system sensitivity to a timing error.
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9.4�5c

9.4�5b

FIGURE 9.5–2
Performance of decision-feedback equalizer with and without error propagation.

Performance comparison with the MLSE We conclude this subsection on the
performance of the DFE by comparing its performance against that of the MLSE. For

the two-path channel with f0 = f1 =
√

1
2 , we have shown that the MLSE suffers no

SNR loss while the decision-feedback equalizer suffers a 3-dB loss. On channels with
more distortion, the SNR advantage of the MLSE over decision-feedback equalization
is even greater. Figure 9.5–3 illustrates a comparison of the error rate performance
of these two equalization techniques, obtained via Monte Carlo simulation, for binary
PAM and the channel characteristics shown in Figure 9.4–5b and c. The error rate curves
for the two methods have different slopes; hence the difference in SNR increases as
the error probability decreases. As a benchmark, the error rate for the AWGN channel
with no intersymbol interference is also shown in Figure 9.5–3.

9.5–3 Predictive Decision-Feedback Equalizer

Belfiore and Park (1979) proposed another DFE structure that is equivalent to the one
shown in Figure 9.5–1 under the condition that the feedforward filter has an infinite
number of taps. This structure consists of an FSE as a feedforward filter and a linear
predictor as a feedback filter, as shown in the configuration given in Figure 9.5–4. Let
us briefly consider the performance characteristics of this equalizer, based on the MSE
criterion.
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9.4�5b 9.4�5c(a) (b)

FIGURE 9.5–3
Comparison of performance between MLSE and decision-feedback equalization for channel
characteristics shown (a) in Figure 9.4–5b and (b) in Figure 9.4–5c.

First of all, the noise at the output of the infinite length feedforward filter has the
power spectral density

N0 X (e jωT )

|N0 + X (e jωT )|2 , |ω| ≤ π

T
(9.5–14)

The residual intersymbol interference has the power spectral density
∣∣∣∣∣1 − X (e jωT )

N0 + X (e jωT )

∣∣∣∣∣
2

= N 2
0

|N0 + X (e jωT )|2 , |ω| ≤ π

T
(9.5–15)

FIGURE 9.5–4
Block diagram of predictive DFE.
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The sum of these two spectra represents the power spectral density of the total noise
and intersymbol interference at the output of the feedforward filter. Thus, on adding
Equations 9.5–14 and 9.5–15, we obtain

|Et (ω)|2 = N0

N0 + X (e jωT )
, |ω| ≤ π

T
(9.5–16)

As we have observed previously, if X (e jωT ) = 1, the channel is ideal and, hence,
it is not possible to reduce the MSE any further. On the other hand, if there is channel
distortion, the power in the error sequence at the output of the feedforward filter can be
reduced by means of linear prediction based on past values of the error sequence.

If B(ω) represents the frequency response of the infinite length feedback pre-
dictor, i.e.,

B(ω) =
∞∑

n=1

bne− jωnT (9.5–17)

then the error at the output of the predictor is

E p(ω) = Et (ω) − Et (ω)B(ω) = Et (ω)[1 − B(ω)] (9.5–18)

The minimization of the mean square value of this error, i.e.,

J = 1

2π

∫ π/T

−π/T
|1 − B(ω)|2|Et (ω)|2dω (9.5–19)

over the predictor coefficients {bn} yields the optimum predictor in the form

B(ω) = 1 − G(ω)

g0
(9.5–20)

where G(ω) is the solution to the spectral factorization

G(ω)G∗(−ω) = 1

|Et (ω)|2 (9.5–21)

and

G(ω) =
∞∑

n=0

gne− jωnT (9.5–22)

The output of the infinite length linear predictor is a white noise sequence with power
spectral density 1/g2

0 and the corresponding minimum MSE is given by Equation 9.5–7.
Therefore, the MSE performance of the infinite length predictive DFE is identical to
the conventional DFE.

Although these two DFE structures result in equivalent performance if their lengths
are infinite, the predictive DFE is suboptimum if the lengths of the two filters are
finite. The reason for the optimality of the conventional DFE is relatively simple.
The optimization of its tap coefficients in the feedforward and feedback filters is
done jointly. Hence, it yields the minimum MSE. On the other hand, the optimiza-
tions of the feedforward filter and the feedback predictor in the predictive DFE are
done separately. Hence, its MSE is at least as large as that of the conventional DFE.
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In spite of this suboptimality of the predictive DFE, it is suitable as an equalizer for
trellis-coded signals, where the conventional DFE is not as suitable, as described in the
next chapter.

9.5–4 Equalization at the Transmitter—Tomlinson–Harashima Precoding

If the channel response is known to the transmitter, the equalizer can be placed at
the transmitter end of the communication system. Thus, the noise enhancement that
is generally inherent when the equalizer (linear or DFE) is placed at the receiver is
avoided. In practice, however, channel characteristics generally vary with time, so it is
cumbersome to place the entire equalizer at the transmitter.

In wireline channels, the channel characteristics do not vary significantly with time.
Therefore, it is possible to place the feedback filter of the DFE at the transmitter and
the feedforward filter at the receiver. This approach has the advantage that the problem
of error propagation due to incorrect decisions in the feedback filter is completely
eliminated. Thus, the tail (postcursors) in the channel response is cancelled without
any penalty in the SNR. The linear fractionally spaced feedforward part of the DFE,
which ideally is the WMF, can be designed to compensate for ISI that results from any
small time variation in the channel response. The synthesis of the feedback filter of the
DFE at the transmitter side is usually performed after the response of the channel is
measured at the receiver by the transmission of a channel probe signal and the receiver
sends to the transmitter the coefficients of the feedback filter.

The one problem with this approach to implementing the DFE is that the signal
points at the transmitter, after subtracting the postcursors of the ISI, generally have a
larger dynamic range than the original signal constellation and, consequently, require
a larger transmitter power. This problem can be avoided by precoding the information
symbols prior to transmission as described by Tomlinson (1971) and Harashima and
Miyakawa (1972).

We describe the precoding technique for a PAM signal constellation. Since a square
QAM signal constellation may be viewed as two PAM signal sets on quadrature carriers,
the precoding is easily extended to QAM. For simplicity, we assume that the feedforward
filter in the DFE is the WMF and that the channel response, characterized by the
parameters { fi , 0 ≤ i ≤ L}, is perfectly known to the transmitter and the receiver. The
information symbols {Ik} are assumed to take the values {±1, ±3, . . . , ±(M − 1)}.

In the precoding, the ISI due to the postcursors { fi , 1 ≤ i ≤ L} is subtracted from
the symbol to be transmitted and, if the difference falls outside of the range (−M, M],
it is reduced to the range by subtracting an integer multiple of 2M from this difference.
Hence, the precoder output may be expressed as

ak = Ik −
L∑

j=1

f j ak− j + 2Mbk (9.5–23)

where {bk} represents the appropriate integer that brings {ak} to the desired range. In
other words, {ak} is reduced to the desired range by performing a modulo-2M operation.

The modulo operation is defined mathematically by the function

my(x) = x − yz
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FIGURE 9.5–5
Tomlinson–Harashima precoding.

where y > 0 and z =
⌊

x + y/2

y

⌋
is a unique integer such that my(x) ε[−y/2, y/2]. In

our case y = 2M. By using the z transform to describe the operation of the precoder,
we have

A(z) = I (z) − [F(z) − 1]A(z) + 2MB(z) (9.5–24)

where the channel coefficient f0 is normalized to unity for convenience. Hence, the
transmitted sequence is

A(z) = I (z) + 2MB(z)

F(z)
(9.5–25)

Since the channel response is F(z), the received signal sequence may be expressed as

V (z) = A(z) + W (z)

= [I (z) + 2MB(z)] + W (z)
(9.5–26)

where W (z) represents the AWGN term. Therefore, the received data sequence term
I (z) + 2MB(z) at the input to the detector is free of ISI and I (z) can be recovered from
V (z) by use of a symbol-by-symbol detector that decodes the symbols modulo-2M .
Figure 9.5–5 illustrates the block diagram of the system that implements the precoder
and the feedback filter of the DFE at the transmitter.

The placement of the feedback filter at the transmitter makes it possible to use
the DFE in conjunction with trellis-coded modulation (TCM). Since the equalizer at
the receiver is a linear filter, decisions from the output of the Viterbi (TCM) detector
can be used to adjust the coefficients of the equalizer. In this case, the Viterbi detector
performs the modulo-2M operations in its metric computations.

9.6
REDUCED COMPLEXITY ML DETECTORS

The performance results of the three basic equalization methods described above,
namely, MLSE, linear equalization (LE), and decision-feedback equalization (DFE),
clearly show the superiority of MLSE in channels with severe ISI. Such channels are en-
countered in wireless communications and in high-density magnetic recording systems.
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The performance advantage of MLSE has motivated a significant amount of research
on methods that retain the performance characteristics of MLSE, but do so at a reduced
complexity.

The early work on the design of reduced complexity MLSE focused on methods
that reduce the length of the ISI span by preprocessing the received signal prior to the
maximum-likelihood detector. Falconer and Magee (1973) and Beare (1978) used a
linear equalizer to reduce the span of the ISI to some small specified length prior to
the Viterbi detector. Lee and Hill (1977) employed a DFE in place of the LE. Thus, the
large ISI span in the channel is reduced to a sufficiently small length, called the desired
impulse response, so that the complexity of the Viterbi detector following the LE or
DFE is manageable. We may view this role of the LE or the DFE, prior to the Viterbi
detector, as equalizing the channel response to a specified partial-response characteristic
of short duration (the desired impulse response) which the Viterbi detector can handle
with sufficiently small complexity. The choice of the desired impulse response is tailored
to the ISI characteristics of the channel. This approach to reducing the complexity of
the Viterbi detector has proved to be very effective in high-density magnetic recording
systems, as illustrated in the papers by Siegel and Wolf (1991), Tyner and Proakis
(1993), Moon and Carley (1988), and Proakis (1998).

Another general approach is to reduce the complexity of the Viterbi detector di-
rectly, by reducing the number of surviving sequences. The papers by Vermuelen and
Hellman (1974), Fredricsson (1974), and Foschini (1977) describe algorithms that re-
duce the number of surviving sequences in the Viterbi detector. Other works on this class
of methods include the papers by Clark et al. (1984, 1985) and Wesolowski (1987a).

The most effective approach in terms of performance for reducing the complexity
of the Viterbi detector directly is the method described in the papers by Bergmans
et al. (1987), Eyuboglu and Qureshi (1988), and Duel-Hallen and Heegard (1989). The
filter preceding the Viterbi detector is the whitened matched filter (WMF) described
previously. The WMF reduces the channel to one that has a minimum phase charac-
teristic. The basic algorithm described in these papers for reducing the computational
complexity of the Viterbi detector employs decision feedback within the Viterbi detec-
tor to reduce the effective length of the ISI from L terms to L0 terms, where L0 < L .
This may be accomplished in one of two ways, as described by Bergmans et al. (1987),
either by using “global feedback” or “local feedback” from preliminary decisions that
are present in the Viterbi detector. The use of global feedback is illustrated in Fig-
ure 9.6–1, where preliminary decisions obtained by using the most probable surviving
sequence from the Viterbi detector are used to synthesize the tail in the ISI due to the
channel coefficients ( fL0+1, fL0+2, . . . , fL−1, fL ). Thus, for M-ary modulations, the
computational complexity of the Viterbi detector is reduced from M L to M L0 , which
amounts to a reduction by the factor M L−L0 . The primary drawback of using global
feedback is that if one or more of the symbols Î k−L0−1, . . . , Î k−L in the most probable
surviving sequence are incorrect, the subtraction of the tail in the ISI is also incorrect
and, thus, the metric computations are corrupted by the residual ISI resulting from this
imperfect cancellation.

To remedy this problem, one may use the preliminary decisions corresponding
to each surviving sequence to cancel the ISI in the tail of the corresponding surviv-
ing sequence. Thus, the ISI will be perfectly cancelled when the correct sequence is
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(a)

(b)

FIGURE 9.6–1
Reduced complexity ML sequence detector using feedback from the Viterbi detector.

among the surviving sequences, even if it is not the most probable sequence. Bergmans
et al. (1987) described this approach as using “local feedback” to perform the tail
cancellation.

It is interesting to note that if L0 is selected as unity (L0 = 1), the Viterbi detector
reduces to the simple feedback filter of a conventional DFE. At the other extreme, when
L0 = L , we have a full complexity Viterbi detector. The analytical and simulation results
given in the paper by Bergmans et al. (1987) clearly illustrate that local feedback gives
superior performance to global feedback.

9.7
ITERATIVE EQUALIZATION AND DECODING—TURBO EQUALIZATION

Iterative decoding and the turbo-coding principle that was described in Section 8.7 can
be applied to channel equalization. Suppose the transmitter of a digital communica-
tion system employs a binary systematic convolutional encoder followed by a block
interleaver and a modulator. The channel is a linear time-dispersive channel that intro-
duces ISI. In such a case, we may view the channel as an inner encoder in a serially
concatenated code. Hence, we can apply iterative decoding based on the MAP criterion.

The basic configuration of the iterative equalizer–decoder is shown in Fig-
ure 9.7–1. The input to the MAP equalizer is the sequence {vk} from the WMF. The
equalizer computes the logarithm of the likelihood ratio of the coded bits, denoted as
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FIGURE 9.7–1
Iterative equalization and decoding.

L E (x̂), which represents the a posteriori values of the coded bits. The outer decoder
receives as an input the extrinsic part of L E (x̂), which is defined as

L E
e (x̂) = L E (x̂) − L D

e (x̂) (9.7–1)

where L D
e (x̂) is the extrinsic part of the outer decoder output after interleaving. L E

e (x̂)
is deinterleaved prior to being fed to the outer decoder.

The outer decoder computes the logarithm of the likelihood ratio of the coded bits,
denoted by L D(x̂ ′) and the information bits, denoted as L D( Î ). The extrinsic part of
L D(x̂ ′), denoted as L D

e (x̂ ′), is the incremental information about the current bit obtained
by the decoder after observing all the information for all the received bits. The extrinsic
information is computed as

L D
e (x̂ ′) = L D(x̂ ′) − L E

e (x̂ ′) (9.7–2)

L D
e (x̂ ′) is interleaved to produce L D

e (x̂) and fed to the MAP equalizer. We emphasize
the importance of feeding back only the extrinsic part L D

e (x̂), thus, minimizing the
correlation between the a priori information used by the equalizer and previous equal-
izer outputs. Similarly, we reduce the a posteriori information L E (x̂) by the a priori
information values L D

e (x̂) to obtain the extrinsic information value L E
e (x̂), which is fed

to the outer decoder after deinterleaving.
The computation of the log-likelihood ratios is described in the paper by Bauch

et al. (1997). The power of this iterative equalization–decoding scheme can be assessed
from the performance results given in this paper. Figure 9.7–2 illustrates the bit error
probability obtained through simulation of the five-tap time-invariant channel given in
Figure 9.4–5c. The outer decoder used is a rate 1/2 recursive systematic convolutional
code with constraint length K = 5. The interleaver used was a pseudorandom block
interleaver of length N = 4096 bits. Binary PSK was used for modulation. The graph
illustrates the performance gain as the number of iterations is increased. We observe
that after six iterations, the performance of the iterative equalizer–decoder is within
0.8 dB of the performance of the encoded data without ISI, at a bit error probability
of 10−4. Hence, the iterative equalizer eliminates nearly the entire loss due to ISI. In
contrast, the optimum (noniterative) Viterbi detector for this channel suffers a loss of
approximately 7 dB, due to ISI, as can be observed from Figure 9.5–3b. Therefore,
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FIGURE 9.7–2
Channel taps and bit error rate for a time-invariant channel. [From Bauch et al. (1997).]

the iterative equalizer has achieved a performance gain of about 6 dB, aside from the
coding gain due to the convolutional code. The performance of this method of iterative
equalization has been evaluated for cellular radio channels by Bauch et al. (1998). An
implementation of iterative equalization–decoding using non-linear circuits is described
in a paper by Hagenauer et al. (1999).

An alternative approach to iterative equalization–decoding is to employ a parallel
concatenated code (turbo code) followed by a block interleaver and a modulator at the
transmitter side. The receiver employs a MAP equalizer followed by a turbo decoder.
The extrinsic information generated by the turbo decoder is fed back to the MAP
equalizer. Thus, we have an iterative equalizer–turbo decoder structure, which is called
a turbo equalizer. Turbo equalization is treated by Raphaeli and Zarai (1998) and
Douillard et al. (1995).

9.8
BIBLIOGRAPHICAL NOTES AND REFERENCES

The pioneering work on signal design for bandwidth-constrained channels was done
by Nyquist (1928). The use of binary partial-response signals was originally pro-
posed by Lender (1963) and was later generalized by Kretzmer (1966). Other early
work on problems dealing with intersymbol interference (ISI) and transmitter and re-
ceiver optimization with constraints on ISI was done by Gerst and Diamond (1961),
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Tufts (1965), Smith (1965), and Berger and Tufts (1967). “Faster than Nyquist” trans-
mission has been studied by Mazo (1975) and Foschini (1984).

Channel equalization for digital communications was developed by Lucky (1965,
1966), who focused on linear equalizers that were optimized using the peak distortion
criterion. The mean-square-error criterion for optimization of the equalizer coefficients
was proposed by Widrow (1966).

Decision-feedback equalization was proposed and analyzed by Austin (1967).
Analyses of the performance of the DFE can be found in the papers by Monsen (1971),
George et al. (1971), Price (1972), Salz (1973), Duttweiler et al. (1974), and Altekar
and Beaulieu (1993).

The use of the Viterbi algorithm as the optimal maximum-likelihood sequence
estimator for symbols corrupted by ISI was proposed and analyzed by Forney (1972)
and Omura (1971). Its use for carrier-modulated signals was considered by Ungerboeck
(1974) and MacKenchnie (1973).

The use of iterative MAP algorithms in suppressing ISI in coded systems, called
turbo equalization, represents a major new advance in suppression of intersymbol
interference in signal transmission through band-limited channels. It is anticipated
that iterative MAP equalization algorithms will be incorporated in future communi-
cation systems. The implementation of turbo equalization, described in the paper by
Hagenauer et al. (1999), is the first attempt at implementing an iterative MAP equal-
ization algorithm in a coded system.

PROBLEMS

9.1 A channel is said to be distortionless if the response y(t) to an input x(t) is K x(t − t0),
where K and t0 are contants. Show that if the frequency response of the channel is
A( f )e jθ ( f ), where A( f ) and θ ( f ) are real, the necessary and sufficient conditions for
distortionless transmission are A( f ) = K and θ ( f ) = 2π f t0 ± nπ, n = 0, 1, 2, . . . .

9.2 The raised cosine spectral characteristic is given by Equation 9.2–26.
a. Show that the corresponding impulse response is

x(t) = sin(π t/T )

π t/T

cos(βπ t/T )

1 − 4β2t2/T 2

b. Determine the Hilbert transform of x(t) when β = 1.
c. Does x̂(t) possess the desirable properties of x(t) that make it appropriate for data

transmission? Explain.
d. Determine the envelope of the SSB suppressed-carrier signal generated from x(t).

9.3 a. Show that (Poisson sum formula)

x(t) =
∞∑

k=−∞
g(t)h(t − kT ) ⇒ X ( f ) = 1

T

∞∑
n=−∞

H
( n

T

)
G

(
f − n

T

)
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Hint: Make a Fourier-series expansion of the periodic factor

∞∑
k=−∞

h(t − kT )

b. Using the result in (a), verify the following versions of the Poisson sum:

∞∑
k=−∞

h(kT ) = 1

T

∞∑
n=−∞

H
( n

T

)
(i)

∞∑
k=−∞

h(t − kT ) = 1

T

∞∑
n=−∞

H
( n

T

)
exp

(
j2πnt

T

)
(ii)

∞∑
k=−∞

h(kT ) exp(− j2πkT f ) = 1

T

∞∑
n=−∞

H
(

f − n

T

)
(iii)

c. Derive the condition for no intersymbol interference (Nyquist criterion) by using the
Poisson sum formula.

9.4 Suppose a digital communication system employs Gaussian-shaped pulses of the form

x(t) = exp(−πa2t2)

To reduce the level of intersymbol interference to a relatively small amount, we impose
the condition that x(T ) = 0.01, where T is the symbol interval. The bandwidth W of the
pulse x(t) is defined as that value of W for which X (W )/X (0) = 0.01, where X ( f ) is
the Fourier transform of x(t). Determine the value of W and compare this value to that of
raised cosine spectrum with 100 percent rolloff.

9.5 Show that the impulse response of a filter having a square-root raised cosine spectral
characteristic is given as

xsr (t) = (4βt/T ) cos[π (1 + β)t/T ] + sin[π (1 − β)t/T ]

(π t/T )[1 − (4βt/T )2]

9.6 It is desired to implement a (discrete-time) finite impulse response (FIR) filter that provides
square-root raised cosine spectral shaping. The coefficients of the FIR filter are the sampled
values of the time response given in Problem 9.5, where the samples are taken at t = kT/2,
for k = 0, ±1, ±2, · · · , ±N .
a. Determine the effect on the spectral characteristic resulting from the truncation of the

filter response for N = 10, 15, and 20 and roll-off factor β = 1/2, by computing their
frequency response

Xsr (ω) =
N∑

n=−N

x(nTs)e− jωnTs

where Ts = T/2.
b. Plot the spectral characteristics of these three filters for N = 10, 15, and 20 and compare

your results with the ideal square-root raised cosine spectrum.
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9.7 Figure P9.7 illustrates a block diagram of a QAM or PSK modulator and demodulator
(modem) in which the modulated signals are synthesized digitally and demodulated digi-
tally. The FIR filters have square-root raised cosine spectral characteristics and employ a
sampling rate of 2/T , where the symbol rate 1/T = 2400 symbols/s. The FIR interpola-
tors employ a sampling rate of 6/T and are designed as linear phase FIR filters that pass
the desired signal spectrum.
a. Write a software program that implements the digital modulator in Figure P9.7 for the

following parameters: roll-off factor β = 0.25, length of FIR shaping filter = 21, length
of FIR interpolator = 11, carrier frequency fc = 1800 Hz.

b. Generate 5000 samples of the digital signal sequence xd (n) and compute and plot the
power spectral density of this modulated signal.

c. Repeat (b) for five more iterations and compute the average power spectrum over the
total of six signal records. Comment on the results.

(a)

(b)

FIGURE P9.7

9.8 (Carrierless QAM or PSK modem) Consider the transmission of a QAM or M-ary PSK
(M ≥ 4) signal at a carrier frequency fc, where the carrier is comparable to the bandwidth
of the baseband signal. The bandpass signal may be represented as

s(t) = Re

[∑
n

Ing(t − nT )e j2π fc t

]

a. Show that s(t) can be expressed as

s(t) = Re

[∑
n

I ′
n Q(t − nT )

]
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where Q(t) is defined as

Q(t) = q(t) + j q̂(t)

q(t) = g(t) cos 2π fct

q̂(t) = g(t) sin 2π fct

and I ′
n is a phase rotated symbol, i.e., I ′

n = Ine j2π fcnT .
b. Using FIR filters with responses q(t) and q̂(t), sketch the block diagram of the modulator

and demodulator implementation that does not require the mixer to translate the signal
to bandpass at the modulator and to baseband at the demodulator.

9.9 (Carrierless amplitude or phase [CAP] modulation) In some practical applications in
wireline data transmission, the bandwidth of the signal to be transmitted is comparable to
the carrier frequency. In such systems, it is possible to eliminate the step of mixing the
baseband signal with the carrier component. Instead, the bandpass signal can be synthesized
directly, by embedding the carrier component in the realization of the FIR shaping filters.
Thus, the modem is realized as shown in the block diagram in Figure P9.9, where the FIR
shaping filters have the impulse responses

q(t) = g(t) cos 2π fct

q̂(t) = g(t) sin 2π fct

and g(t) is a pulse that has a square-root raised cosine spectral characteristic.
a. Show that ∫ ∞

−∞
q(t)q̂(t) dt = 0

and that this system can be used to transmit two-dimensional signal constellations.

(a)

(b)

FIGURE P9.9
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b. Under what conditions is this CAP modem identical to the carrierless QAM/PSK
modem treated in Problem 9.8.

9.10 A band-limited signal having bandwidth W can be represented as

x(t) =
∞∑

n=−∞
xn

sin[2πW (t − n/2W )]

2πW (t − n/2W )

a. Determine the spectrum X ( f ) and plot |X ( f )| for the following cases:

x0 = 2, x1 = 1, x2 = −1, xn = 0, n �= 0, 1, 2 (i)

x−1 = −1, x0 = 2, x1 = −1, xn = 0, n �= −1, 0, 1 (ii)

b. Plot x(t) for these two cases.
c. If these signals are used for binary signal transmission, determine the number of

received levels possible at the sampling instants t = nT = n/2W and the probabilities
of occurrence of the received levels. Assume that the binary digits at the transmitter are
equally probable.

9.11 A 4-kHz bandpass channel is to be used for transmission of data at a rate of 9600 bits/s.
If 1

2 N0 = 10−10 W/Hz is the spectral density of the additive zero-mean Gaussian noise in
the channel, design a QAM modulation and determine the average power that achieves a
bit error probability of 10−6. Use a signal pulse with a raised cosine spectrum having a
roll-off factor of at least 50 percent.

9.12 Determine the bit rate that can be transmitted through a 4-kHz voice-band telephone
(bandpass) channel if the following modulation methods are used:
a. Binary PAM.
b. Four-phase PSK.
c. 8-point QAM.
d. Binary orthogonal FSK, with noncoherent detection.
e. Orthogonal four-FSK with noncoherent detection.
f. Orthogonal 8-FSK with noncoherent detection.
For (a)–(c), assume that the transmitter pulse shape has a raised cosine spectrum with a
50 percent roll-off.

9.13 An ideal voice-band telephone line channel has a band-pass frequency-response charac-
teristic spanning the frequency range 600–3000 Hz.
a. Design an M = 4 PSK (quadrature PSK or QPSK) system for transmitting data at a

rate of 2400 bits/s and a carrier frequency fc = 1800 Hz. For spectral shaping, use a
raised cosine frequency-response characteristic. Sketch a block diagram of the system
and describe the functional operation of each block.

b. Repeat (a) for a bit rate R = 4800 bits/s and a 8-QAM signal.

9.14 A voice-band telephone channel passes the frequencies in the band from 300 to 3300 Hz.
It is desired to design a modem that transmits at a symbol rate of 2400 symbols/s, with the
objective of achieving 9600 bits/s. Select an appropriate QAM signal constellation, carrier
frequency, and the roll-off factor of a pulse with a raised cosine spectrum that utilizes the
entire frequency band. Sketch the spectrum of the transmitted signal pulse and indicate the
important frequencies.
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9.15 A communication system for a voice-band (3 kHz) channel is designed for a received SNR
at the detector of 30 dB when the transmitter power is Ps = −3 dBW. Determine the value
of Ps if it is desired to expand the bandwidth of the system to 10 kHz, while maintaining
the same SNR at the detector.

9.16 Show that a pulse having the raised-cosine spectrum given by Equation 9.2–26 satisfies
the Nyquist criterion given by Equation 9.2–13 for any value of the roll-off factor β.

9.17 Show that, for any value of β, the raised cosine spectrum given by Equation 9.2–26 satisfies

∫ ∞

−∞
Xrc( f ) d f = 1

[Hint: Use the fact that Xrc( f ) satisfies the Nyquist criterion given by Equation 9.2–13.]

9.18 The Nyquist criterion gives the necessary and sufficient condition for the spectrum X ( f ) of
the pulse x(t) that yields zero ISI. Prove that for any pulse that is band-limited to | f | < 1/T ,
the zero-ISI condition is satisfied if Re[X ( f ), for f > 0, consists of a rectangular function
plus an arbitrary odd function around f = 1/2T , and Im[X ( f )] is any arbitrary even
function around f = 1/2T .

9.19 A voice-band telephone channel has a passband characteristic in the frequency range
300 Hz < f < 3000 Hz.
a. Select a symbol rate and a power efficient constellation size to achieve 9600 bits/s

signal transmission.
b. If a square-root raised cosine pulse is used for the transmitter pulse g(t), select the

roll-off factor. Assume that the channel has an ideal frequency-response characteristic.

9.20 Design an M-ary PAM system that transmits digital information over an ideal channel with
bandwidth W = 2400 Hz. The bit rate is 14,400 bits/s. Specify the number of transmitted
points, the number of received signal points using a duobinary signal pulse, and the required
Eb to achieve an error probability of 10−6. The additive noise is zero-mean Gaussian with
a power spectral density of 10−4W/Hz.

9.21 A binary PAM signal is generated by exciting a raised cosine roll-off filter with a
50 percent roll-off factor and is then DSB/SC amplitude-modulated on a sinusoidal carrier
as illustrated in Figure P9.21. The bit rate is 2400 bits/s.
a. Determine the spectrum of the modulated binary PAM signal and sketch it.
b. Draw the block diagram illustrating the optimum demodulator/detector for the received

signal, which is equal to the transmitted signal plus additive white Gaussian noise.

FIGURE P9.21
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9.22 The elements of the sequence {an}∞n=−∞ are independent binary random variables taking
values of ±1 with equal probability. This data sequence is used to modulate the basic pulse
g(t) shown in Figure P9.22a. The modulated signal is

X (t) =
+∞∑

n=−∞
ang(t − nT )

a. Find the power spectral density of X (t).
b. If g1(t) (shown in Figure 9.22b) is used instead of g(t), how would the power spectrum

in (a) change?
c. In (b) assume we want to have a null in the spectrum at f = 1/3T . This is done by a

precoding of the form bn = an + αan−3. Find the α that provides the desired null.
d. Is it possible to employ a precoding of the form bn = an +∑N

i=1 αi an−i for some finite
N such that the final power spectrum will be identical to zero for 1/3T ≤ | f | ≤ 1/2T ?
If yes, how? If no, why? [Hint: Use properties of analytic functions.]

(a) (b)

FIGURE P9.22

9.23 Consider the transmission of data via PAM over a voice-band telephone channel that has
a bandwidth of 3000 Hz. Show how the symbol rate varies as a function of the excess
bandwidth. In particular, determine the symbol rate for an excess bandwidth of 25, 33, 50,
67, 75 and 100 percent.

9.24 The binary sequence 10010110010 is the input to a precoder whose output is used to
modulate a duobinary transmitting filter. Construct a table as in Table 9.2–1 showing the
precoded sequence, the transmitted amplitude levels, the received signal levels, and the
decoded sequence.

9.25 Repeat Problem 9.24 for a modified duobinary signal pulse.

9.26 A precoder for a partial response signal fails to work if the desired partial response at n = 0
is zero modulo M . For example, consider the desired response for M = 2:

x(nT ) =

⎧⎪⎨
⎪⎩

2 (n = 0)
1 (n = 1)

−1 (n = 2)
0 (otherwise)

Show why this response cannot be precoded.

9.27 Consider the RC low-pass filter shown in Figure P9.27, where τ = RC = 10−6.
a. Determine and sketch the envelope (group) delay of the filter as a function of frequency.
b. Suppose that the input to the filter is a lowpass signal of bandwidth � f = 1 kHz.

Determine the effect of the RC filter on this signal.
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FIGURE P9.27

9.28 A microwave radio channel has a frequency response

C( f ) = 1 + 0.3 cos 2π f T

Determine the frequency-response characteristic of the transmitting and receiving filters
that yield zero ISI at a rate of 1/T symbols/s and have a 50 percent excess bandwidth.
Assume that the additive noise spectrum is flat.

9.29 M = 4 PAM modulation is used for transmitting at a bit rate of 9600 bits/s on a channel
having a frequency response

C( f ) = 1

1 + j( f/2400)

for | f | ≤ 2400, and C( f ) = 0 otherwise. The additive noise is zero-mean white Gaussian
with power spectral density 1

2 N0 W/Hz. Determine the (magnitude) frequency-response
characteristic of the optimum transmitting and receiving filters.

9.30 Use the Cauchy–Schwarz inequality to show that the transmitter and receiver filters given
by Equation 9.2–83 minimize the noise-to signal ratio σ 2

ν /d2, where σ 2
ν is the noise power

given by Equation 9.2–77, where Snn( f ) = N0/2.

9.31 Suppose that a channel frequency response is given as

C( f ) =
⎧⎨
⎩

1 | f | ≤ W/2

1
2

W

2
< | f | < W

Determine the loss in SNR incurred, as given by Equations 9.2–87 and 9.2–88, for the filters
given by the corresponding Equations 9.2–79 and 9.2–83, respectively. Which filters result
in a smaller loss?

9.32 In a binary PAM system, the input to the detector is

ym = am + nm + im

where am = ±1 is the desired signal, nm is a zero-mean Gaussian random variable with
variance σ 2

n , and im represents the ISI due to channel distortion. The ISI term is a random
variable that takes the values − 1

2 , 0, and 1
2 with probabilities 1

4 , 1
2 , and 1

4 , respectively.
Determine the average probability of error as a function of σ 2

n .

9.33 In a binary PAM system, the clock that specifies the sampling of the correlator output is
offset from the optimum sampling time by 10 percent.
a. If the signal pulse used is rectangular, determine the loss in SNR due to the mistiming.
b. Determine the amount of ISI introduced by the mistiming and determine its effect on

performance.
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9.34 The frequency-response characteristic of a lowpass channel can be approximated by

H ( f ) =
{

1 + α cos 2π f t0 |α| < 1, | f | ≤ W
0 otherwise

where W is the channel bandwidth. An input signal s(t) whose spectrum is band-limited
to W Hz is passed through the channel.
a. Show that

y(t) = s(t) + 1

2
α[s(t − t0) + s(t + t0)]

Thus, the channel produces a pair of echoes.
b. Suppose that the received signal y(t) is passed through a filter matched to s(t). Determine

the output of the matched filter at t = kT , k = 0, ±1, ±2, . . . , where T is the symbol
duration.

c. What is the ISI pattern resulting from the channel if t0 = T ?

9.35 A wireline channel of length 1000 km is used to transmit data by means of binary
PAM. Regenerative repeaters are spaced 50 km apart along the system. Each segment
of the channel has an ideal (constant) frequency response over the frequency band
0 ≤ f ≤ 1200 Hz and an attenuation of 1 dB/km. The channel noise is AWGN.
a. What is the highest bit rate that can be transmitted without ISI?
b. Determine the required Eb/N0 to achieve a bit error of P2 = 10−7 for each repeater.
c. Determine the transmitted power at each repeater to achieve the desired Eb/N0, where

N0 = 4.1 × 10−21 W/Hz.

9.36 Prove the relationship in Equation 9.3–13 for the autocorrelation of the noise at the output
of the matched filter.

9.37 In the case of PAM with correlated noise, the correlation metrics in the Viterbi algorithm
may be expressed in general as (Ungerboeck, 1974)

C M(I) = 2
∑

n

Inrn −
∑

n

∑
m

In Im xn−m

where xn = x(nT ) is the sampled signal output of the matched filter, {In} is the data
sequence, and {rn} is the received signal sequence at the output of the matched filter.
Determine the metric for the duobinary signal.

9.38 Consider the use of a (square-root) raised cosine signal pulse with a roll-off factor of unity
for transmission of binary PAM over an ideal band-limited channel that passes the pulse
without distortion. Thus, the transmitted signal is

v(t) =
∞∑

k=−∞
Ik gT (t − kTb)

where the signal interval Tb = 1
2 T . Thus, the symbol rate is double of that for no ISI.

a. Determine the ISI values at the output of a matched filter demodulator.
b. Sketch the trellis for the maximum-likelihood sequence detector and label the states.

9.39 A binary antipodal signal is transmitted over a nonideal band-limited channel, which
introduces ISI over two adjacent symbols. For an isolated transmitted signal pulse s(t), the
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(noise-free) output of the demodulator is
√
Eb at t = T ,

√
Eb/4 at t = 2T , and zero for

t = kT , k > 2, where Eb is the signal energy and T is the signaling interval.
a. Determine the average probability of error, assuming that the two signals are equally

probable and the additive noise is white and Gaussian.
b. By plotting the error probability obtained in (a) and that for the case of no ISI, determine

the relative difference in SNR of the error probability of 10−6.

9.40 Derive the expression in Equation 9.5–5 for the coefficients in the feedback filter of the
DFE.

9.41 Binary PAM is used to transmit information over an unequalized linear filter channel.
When a = 1 is transmitted, the noise-free output of the demodulator is

xm =

⎧⎪⎨
⎪⎩

0.3 m = 1
0.9 m = 0
0.3 m = −1

0 otherwise

a. Design a three-tap zero-forcing linear equalizer so that the output is

qm =
{

1 m = 0
0 m = ±1

b. Determine qm for m = ±2, ±3, by convolving the impulse response of the equalizer
with the channel response.

9.42 The transmission of a signal pulse with a raised cosine spectrum through a channel results
in the following (noise-free) sampled output from the demodulator:

xk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−0.5 k = −2
0.1 k = −1

1 k = 0
−0.2 k = 1
0.05 k = 2

0 otherwise

a. Determine the tap coefficients of a three-tap linear equalizer based on the zero-forcing
criterion.

b. For the coefficients determined in (a), determine the output of the equalizer for the case
of the isolated pulse. Thus, determine the residual ISI and its span in time.

9.43 A nonideal band-limited channel introduces ISI over three successive symbols. The (noise-
free) response of the matched filter demodulator sampled at the sampling time kT is

∫ ∞

−∞
s(t)s(t − kT ) dt =

⎧⎪⎨
⎪⎩

Eb k = 0
0.9Eb k = ±1
0.1Eb k = ±2
0 otherwise
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a. Determine the tap coefficients of a three-tap linear equalizer that equalizes the channel
(received signal) response to an equivalent partial-response (duobinary) signal

yk =
{

Eb k = 0, 1
0 otherwise

b. Suppose that the linear equalizer in (a) is followed by a Viterbi sequence detector for
the partial signal. Give an estimate of the error probability if the additive noise is white
and Gaussian, with power spectral density 1

2 N0 W/Hz.

9.44 Determine the tap weight coefficients of a three-tap zero-forcing equalizer if the ISI spans
three symbols and is characterized by the values x(0) = 1, x(−1) = 0.3, x(1) = 0.2. Also
determine the residual ISI at the output of the equalizer for the optimum tap coefficients.

9.45 In line-of-sight microwave radio transmission, the signal arrives at the receiver via two
propagation paths: the direct path and a delayed path that occurs due to signal reflection
from surrounding terrain. Suppose that the received signal has the form

r (t) = s(t) + αs(t − T ) + n(t)

where s(t) is the transmitted signal, α is the attenuation (α < 1) of the secondary path,
and n(t) is AWGN.
a. Determine the output of the demodulator at t = T and t = 2T that employs a filter

matched to s(t).
b. Determine the probability of error for a symbol-by-symbol detector if the transmitted

signal is binary antipodal and the detector ignores the ISI.
c. What is the error rate performance of a simple (one-tap) DFE that estimates α and

removes the ISI? Sketch the detector structure that employs a DFE.

9.46 Repeat Problem 9.41 using the MSE as the criterion for optimizing the tap coefficients.
Assume that the noise power spectral density is 0.1 W/Hz.

9.47 In a magnetic recording channel, where the readback pulse resulting from a positive tran-
sition in the write current has the form

p(t) =
[

1 +
(

2t

T50

)2
]−1

a linear equalizer is used to equalize the pulse to a partial response. The parameter T50 is
defined as the width of the pulse at the 50 percent amplitude level. The bit rate is 1/Tb and
the ratio of T50/Tb = � is the normalized density of the recording. Suppose the pulse is
equalized to the partial-response values

x(nT ) =
{

1 n = −1, 1
2 n = 0
0 otherwise

where x(t) represents the equalized pulse shape.
a. Determine the spectrum X ( f ) of the band-limited equalized pulse.
b. Determine the possible output levels at the detector, assuming that successive transitions

can occur at the rate 1/Tb.
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c. Determine the error rate performance of the symbol-by-symbol detector for this signal,
assuming that the additive noise is zero-mean Gaussian with variance σ 2.

9.48 Sketch the trellis for the Viterbi detector of the equalized signal in Problem 9.47 and
label all the states. Also, determine the minimum Euclidean distance between merging
paths.

9.49 Consider the problem of equalizing the discrete-time equivalent channel shown in
Figure P9.49. The information sequence {In} is binary (±1) and uncorrelated. The ad-
ditive noise {νn} is white and real-valued, with variance N0. The received sequence {yn} is
processed by a linear three-tap equalizer that is optimized on the basis of the MSE criterion.
a. Determine the optimum coefficients of the equalizer as a function of N0.
b. Determine the three eigenvalues λ1, λ2, and λ3 of the covariance matrix � and the

corresponding (normalized to unit length) eigenvectors v1, v2, v3.
c. Determine the minimum MSE for the three-tap equalizer as a function of N0.
d. Determine the output SNR for the three-tap equalizer as a function of N0. How does

this compare with the output SNR for the infinite-tap equalizer? For example, evaluate
the output SNR for these two equalizers when N0 = 0.1.

FIGURE P9.49

9.50 Use the orthogonality principle to derive the equations for the coefficients in a decision-
feedback equalizer based on the MSE criterion and given by Equations 9.5–3 and 9.5–5.

9.51 Suppose that the discrete-time model for the intersymbol interference is characterized by
the tap coefficients f0, f1, . . . , fL . From the equations for the tap coefficients of a decision-
feedback equalizer (DFE), show that only L taps are needed in the feedback filter of the
DFE. That is, if {ck} are the coefficients of the feedback filter, then ck = 0 for k ≥ L + 1.

9.52 Consider the channel model shown in Figure P9.52. {νn} is a real-valued white noise
sequence with zero-mean and variance N0. Suppose the channel is to be equalized by a
DFE having a two-tap feedforward filter (c0, c−1) and a one-tap feedback filter (c1). The
{ci } are optimized using the MSE criterion.
a. Determine the optimum coefficients and their approximate values for N0 � 1.
b. Determine the exact value of the minimum MSE and a first-order approximation

appropriate to the case N0 � 1.
c. Determine the exact value of the output SNR for the three-tap equalizer as a function

of N0 and a first-order approximation appropriate to the case N0 � 1.
d. Compare the results in (b) and (c) with the performance of the infinite-tap DFE.



Proakis-27466 book September 26, 2007 22:36

686 Digital Communications

e. Evaluate and compare the exact values of the output SNR for the three-tap and infinite-
tap DFE in the special cases where N0 = 0.1 and 0.01. Comment on how well the
three-tap equalizer performs relative to the infinite-tap equalizer.

FIGURE P9.52

9.53 A pulse and its (raised cosine) spectral characteristic are shown in Figure P9.53. This
pulse is used for transmitting digital information over a band-limited channel at a rate 1/T
symbols/s.
a. What is the roll-off factor β?
b. What is the pulse rate?
c. The channel distorts the signal pulses. Suppose the sampled values of the filtered re-

ceived pulse x(t) are as shown in Figure P9.53c. It is obvious that there are five in-
terfering signal components. Give the sequence of +1s and −1s that will cause the
largest (destructive or constructive) interference and the corresponding value of the
interference (the peak distortion).

d. What is the probability of occurrence of the worst sequence obtained in (c), assuming
that all binary digits are equally probable and independent?

(a) (b)

(c)

FIGURE P9.53

9.54 A time-dispersive channel having an impulse response h(t) is used to transmit four-phase
PSK at a rate R = 1/T symbols/s. The equivalent discrete-time channel is shown in
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Figure P9.54. The sequence {ηk} is a white noise sequence having zero-mean and variance
σ 2 = N0.
a. What is the sampled autocorrelation function sequence {xk} defined by

xk =
∫ ∞

−∞
h∗(t)h(t + kT ) dt

for this channel?
b. The minimum MSE performance of a linear equalizer and a decision-feedback equalizer

having an infinite number of taps depends on the folded-spectrum of the channel

1

T

∞∑
n=−∞

∣∣∣∣H

(
ω + 2πn

T

)∣∣∣∣
2

where H (ω) is the Fourier transform of h(t). Determine the folded spectrum of the
channel given above.

c. Use your answer in (b) to express the minimum MSE of a linear equalizer in terms of
the folded spectrum of the channel. (You may leave your answer in integral form.)

d. Repeat (c) for an infinite-tap decision-feedback equalizer.

FIGURE P9.54

9.55 Consider a four-level PAM system with possible transmitted levels, 3, 1, −1, and −3.
The channel through which the data is transmitted introduces intersymbol interference
over two successive symbols. The equivalent discrete-time channel model is shown in
Figure P9.55. {ηk} is a sequence of real-valued independent zero-mean Gaussian noise
variables with variance σ 2 = N0. The received sequence is

y1 = 0.8I1 + n1

y2 = 0.8I2 − 0.6I1 + n2

y3 = 0.8I3 − 0.6I2 + n3

...

yk = 0.8Ik − 0.6Ik−1 + nk

a. Sketch the tree structure, showing the possible signal sequences for the received signals
y1, y2, and y3.

b. Suppose the Viterbi algorithm is used to detect the information sequence. How many
probabilities must be computed at each stage of the algorithm?

c. How many surviving sequences are there in the Viterbi algorithm for this channel?
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d. Suppose that the received signals are

y1 = 0.5, y2 = 2.0, y3 = −1.0

Determine the surviving sequences through stage y3 and the corresponding metrics.
e. Give a tight upper bound for the probability of error for four-level PAM transmitted

over this channel.

FIGURE P9.55

9.56 A transversal equalizer with K taps has an impulse response

e(t) =
K−1∑
k=0

ckδ(t − kT )

where T is the delay between adjacent taps, and a transfer function

E(z) =
K−1∑
k=0

ck z−k

The discrete Fourier transform (DFT) of the equalizer coefficients {ck} is defined as

En ≡ E(z)|z=e j2πn/K =
K−1∑
k=0

cke− j2πkn/K , n = 0, 1, . . . , K − 1

The inverse DFT is defined as

bk = 1

K

K−1∑
n=0

Ene j2πnk/K , k = 0, 1, . . . , K − 1

a. Show that bk = ck , by substituting for En in the above expression.
b. From the relations given above, derive an equivalent filter structure having the z

transform

E(z) = 1 − z−K

K︸ ︷︷ ︸
E1(z)

K−1∑
n=0

En

1 − e j2πn/K z−1︸ ︷︷ ︸
E2(z)

c. If E(z) is considered as two separate filters E1(z) and E2(z) in cascade, sketch a block
diagram for each of the filters, using z−1 to denote a unit of delay.

d. In the transversal equalizer, the adjustable parameters are the equalizer coefficients {ck}.
What are the adjustable parameters of the equivalent equalizer in (b), and how are they
related to {ck}?
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10

Adaptive Equalization

In Chapter 9, we introduced both optimum and suboptimum receivers that compen-
sate for ISI in the transmission of digital information through band-limited, nonideal
channels. The optimum receiver employed maximum-likelihood sequence estimation
for detecting the information sequence from the samples of the demodulation filter.
The suboptimum receivers employed either a linear equalizer or a decision-feedback
equalizer.

In the development of the three equalization methods, we implicitly assumed that
the channel characteristics, either the impulse response or the frequency response,
were known at the receiver. However, in most communication systems that employ
equalizers, the channel characteristics are unknown a priori and, in many cases, the
channel response is time-variant. In such a case, the equalizers are designed to be
adjustable to the channel response and, for time-variant channels, to be adaptive to the
time variations in the channel response.

In this chapter, we present algorithms for automatically adjusting the equalizer co-
efficients to optimize a specified performance index and to adaptively compensate for
time variations in the channel characteristics. We also analyze the performance charac-
teristics of the algorithms, including their rate of convergence and their computational
complexity.

10.1
ADAPTIVE LINEAR EQUALIZER

In the case of the linear equalizer, recall that we considered two different criteria
for determining the values of the equalizer coefficients {ck}. One criterion was based
on the minimization of the peak distortion at the output of the equalizer, which is
defined by Equation 9.4–22. The other criterion was based on the minimization of the
mean square error at the output of the equalizer, which is defined by Equation 9.4–42.
Below, we describe two algorithms for performing the optimization automatically and
adaptively.

689
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10.1–1 The Zero-Forcing Algorithm

In the peak-distortion criterion, the peak distortion D(c), given by Equation 9.4–22, is
minimized by selecting the equalizer coefficients {ck}. In general, there is no simple
computational algorithm for performing this optimization, except in the special case
where the peak distortion at the input to the equalizer, defined asD0 in Equation 9.4–23,
is less than unity. When D0 < 1, the distortion D(c) at the output of the equalizer is
minimized by forcing the equalizer response qn = 0, for 1 ≤ |n| ≤ K , and q0 = 1. In
this case, there is a simple computational algorithm, called the zero-forcing algorithm,
that achieves these conditions.

The zero-forcing solution is achieved by forcing the cross correlation between the
error sequence εk = Ik − Î k and the desired information sequence {Ik} to be zero
for shifts in the range 0 ≤ |n| ≤ K . The demonstration that this leads to the desired
solution is quite simple. We have

E
(
εk I ∗

k− j

) = E
[
(Ik − Î k)I ∗

k− j

]
= E

(
Ik I ∗

k− j

) − E
(

Î k I ∗
k− j

)
, j = −K , . . . , K

(10.1–1)

We assume that the information symbols are uncorrelated, i.e., E
(

Ik I ∗
j

) = δk j , and that
the information sequence {Ik} is uncorrelated with the additive noise sequence {ηk}.
For Î k , we use the expression given in Equation 9.4–41. Then, after taking the expected
values in Equation 10.1–1, we obtain

E
(
εk I ∗

k− j

) = δ j0 − q j , j = −K , . . . , K (10.1–2)

Therefore, the conditions

E
(
εk I ∗

k− j

) = 0, j = −K , . . . , K (10.1–3)

are fulfilled when q0 = 1 and qn = 0, 1 ≤ |n| ≤ K .
When the channel response is unknown, the cross correlations given by Equa-

tion 10.1–1 are also unknown. This difficulty can be circumvented by transmitting a
known training sequence {Ik} to the receiver, which can be used to estimate the cross
correlation by substituting time averages for the ensemble averages given in Equation
10.1–1. After the initial training, which will require the transmission of a training se-
quence of some predetermined length that equals or exceeds the equalizer length, the
equalizer coefficients that satisfy Equation 10.1–3 can be determined.

A simple recursive algorithm for adjusting the equalizer coefficients is

c(k+1)
j = c(k)

j + �εk I ∗
k− j , j = −K , . . . , −1, 0, 1, . . . , K (10.1–4)

where c(k)
j is the value of the j th coefficient at time t = kT , εk = Ik − Î k is the error

signal at time t = kT , and � is a scale factor that controls the rate of adjustment, as will
be explained later in this section. This is the zero-forcing algorithm. The term εk I ∗

k− j
is an estimate of the cross correlation (ensemble average) E

(
εk I ∗

k− j

)
. The averaging

operation of the cross correlation is accomplished by means of the recursive first-order
difference equation algorithm in Equation 10.1–4, which represents a simple discrete-
time integrator.
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FIGURE 10.1–1
An adaptive zero-forcing equalizer.

Following the training period, after which the equalizer coefficients have converged
to their optimum values, the decisions at the output of the detector are generally suffi-
ciently reliable so that they may be used to continue the coefficient adaptation process.
This is called a decision-directed mode of adaptation. In such a case, the cross cor-
relations in Equation 10.1–4 involve the error signal ε̃k = Ĩ k − Î k and the detected
output sequence Ĩk− j , j = −K , . . . , K . Thus, in the adaptive mode, Equation 10.1–4
becomes

c(k+1)
j = c(k)

j + �ε̃k Ĩ ∗
k− j (10.1–5)

Figure 10.1–1 illustrates the zero-forcing equalizer in the training mode and the adaptive
mode of operation.

The characteristics of the zero-forcing algorithm are similar to those of the least-
mean-square (LMS) algorithm, which minimizes the MSE and which is described in
detail in the following section.

10.1–2 The LMS Algorithm

In the minimization of the MSE, treated in Section 9.4–2, we found that the optimum
equalizer coefficients are determined from the solution of the set of linear equations,
expressed in matrix form as

Γ C = ξ (10.1–6)
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where Γ is the (2K + 1) × (2K + 1) covariance matrix of the signal samples {vk}, C is
the column vector of (2K + 1) equalizer coefficients, and ξ is a (2K + 1)-dimensional
column vector of channel filter coefficients. The solution for the optimum equalizer
coefficients vector Copt can be determined by inverting the covariance matrix Γ, which
can be efficiently performed by use of the Levinson–Durbin algorithm (see Levinson
(1947) and Durbin (1959)).

Alternatively, an iterative procedure that avoids the direct matrix inversion may
be used to compute Copt. Probably the simplest iterative procedure is the method of
steepest descent, in which one begins by arbitrarily choosing the vector C, say as C0.
This initial choice of coefficients corresponds to some point on the quadratic MSE
surface in the (2K + 1)-dimensional space of coefficients. The gradient vector G0,
having the 2K + 1 gradient components 1

2∂ J/∂c0k , k = −K , . . . , −1, 0, 1, . . . , K , is
then computed at this point on the MSE surface, and each tap weight is changed in
the direction opposite to its corresponding gradient component. The change in the j th
tap weight is proportional to the size of the j th gradient component. Thus, succeeding
values of the coefficient vector C are obtained according to the relation

Ck+1 = Ck − �Gk, k = 0, 1, 2, . . . (10.1–7)

where the gradient vector Gk is

Gk = 1

2

d J

dCk
= Γ Ck − ξ = −E

(
εk V ∗

k

)
(10.1–8)

The vector Ck represents the set of coefficients at the kth iteration, εk = Ik − Î k is
the error signal at the kth iteration, V k is the vector of received signal samples that
make up the estimate Î k , i.e., V k = [vk+K · · · vk · · · vk−K ]t , and � is a positive number
chosen small enough to ensure convergence of the iterative procedure. If the minimum
MSE is reached for some k = k0, then Gk = 0, so that no further change occurs in
the tap weights. In general, Jmin(K ) cannot be attained for a finite value of k0 with the
steepest-descent method. It can, however, be approached as closely as desired for some
finite value of k0.

The basic difficulty with the method of steepest descent for determining the opti-
mum tap weights is the lack of knowledge of the gradient vector Gk , which depends
on both the covariance matrix Γ and the vector ξ of cross correlations. In turn, these
quantities depend on the coefficients { fk} of the equivalent discrete-time channel model
and on the covariance of the information sequence and the additive noise, all of which
may be unknown at the receiver in general. To overcome the difficulty, estimates of
the gradient vector may be used. That is, the algorithm for adjusting the tap weight
coefficients may be expressed in the form

Ĉk+1 = Ĉk − �Ĝk (10.1–9)

where Ĝk denotes an estimate of the gradient vector Gk and Ĉk denotes the estimate
of the vector of coefficients.

From Equation 10.1–8 we note that Gk is the negative of the expected value of the
εk V ∗

k . Consequently, an estimate of Gk is

Ĝk = −εk V ∗
k (10.1–10)
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FIGURE 10.1–2
Linear adaptive equalizer based on the MSE criterion.

Since E(Ĝk) = Gk , the estimate Ĝk is an unbiased estimate of the true gradient vector
Ĝk . Incorporation of Equation 10.1–10 into Equation 10.1–9 yields the algorithm

Ĉk+1 = Ĉk + �εk V ∗
k (10.1–11)

This is the basic LMS algorithm for recursively adjusting the tap weight coefficients of
the equalizer as described by Widrow (1966). It is illustrated in the equalizer shown in
Figure 10.1–2.

The basic algorithm given by Equation 10.1–11 and some of its possible variations
have been incorporated into many commercial adaptive equalizers that are used in high-
speed modems. Three variations of the basic algorithm are obtained by using only sign
information contained in the error signal εk and/or in the components of V k . Hence,
the three possible variations are

c(k+1) j = ck j + � csgn(εk)v∗
k− j , j = −K , . . . , −1, 0, 1, . . . , K (10.1–12)

c(k+1) j = ck j + �εk csgn
(
v∗

k− j

)
, j = −K , . . . ,−1, 0, 1, . . . , K (10.1–13)

c(k+1) j = ck j + � csgn(εk) csgn
(
v∗

k− j

)
, j = −K , . . . , −1, 0, 1, . . . , K (10.1–14)

where csgn(x) is defined as

csgn(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 + j [Re(x) > 0, Im(x) > 0]
1 − j [Re(x) > 0, Im(x) < 0]

−1 + j [Re(x) < 0, Im(x) > 0]
−1 − j [Re(x) < 0, Im(x) < 0]

(10.1–15)
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(Note that in Equation 10.1–15, j ≡ √−1, as distinct from the index j in Equa-
tions 10.1–12 to 10.1–14.) Clearly, the algorithm in Equation 10.1–14 is the most
easily implemented, but it gives the slowest rate of convergence relative to the others.

Several other variations of the LMS algorithm are obtained by averaging or filtering
the gradient vectors over several iterations prior to making adjustments of the equalizer
coefficients. For example, the average over N gradient vectors is

¯̂Gm N = − 1

N

N−1∑
n=0

εm N+n V ∗
m N+n (10.1–16)

and the corresponding recursive equation for updating the equalizer coefficients once
every N iterations is

Ĉ (k+1)N = Ĉk N − �
¯̂Gk N (10.1–17)

In effect, the averaging operation performed in Equation 10.1–16 reduces the noise in
the estimate of the gradient vector, as shown by Gardner (1984).

An alternative approach is to filter the noisy gradient vectors by a low-pass filter
and use the output of the filter as an estimate of the gradient vector. For example, a
simple low-pass filter for the noisy gradients yields as an output

¯̂Gk = w ¯̂Gk−1 + (1 − w)Ĝk,
¯̂G(0) = Ĝ(0) (10.1–18)

where the choice of 0 ≤ w < 1 determines the bandwidth of the low-pass filter. When
w is close to unity, the filter bandwidth is small and the effective averaging is performed
over many gradient vectors. On the other hand, when w is small, the low-pass filter has
a large bandwidth and, hence, it provides little averaging of the gradient vectors. With
the filtered gradient vectors given by Equation 10.1–18 in place of Gk , we obtain the
filtered gradient LMS algorithm given by

Ĉk+1 = Ĉk − �
¯̂Gk (10.1–19)

In the above discussion, it has been assumed that the receiver has knowledge of
the transmitted information sequence in forming the error signal between the desired
symbol and its estimate. Such knowledge can be made available during a short training
period in which a signal with a known information sequence is transmitted to the
receiver for initially adjusting the tap weights. The length of this sequence must be at
least as large as the length of the equalizer so that the spectrum of the transmitted signal
adequately covers the bandwidth of the channel being equalized.

In practice, the training sequence is often selected to be a periodic pseudorandom
sequence, such as a maximum length shift-register sequence whose period N is equal to
the length of the equalizer (N = 2K + 1). In this case, the gradient is usually averaged
over the length of the sequence as indicated in Equation 10.1–16 and the equalizer
is adjusted once a period according to Equation 10.1–17. This approach has been
called cyclic equalization, and has been treated in the papers by Mueller and Spaulding
(1975) and Qureshi (1977, 1985). A practical scheme for continuous adjustment of the
tap weights may be either a decision-directed mode of operation in which decisions on
the information symbols are assumed to be correct and used in place of Ik in forming



Proakis-27466 book September 26, 2007 22:43

Chapter Ten: Adaptive Equalization 695

the error signal εk , or one in which a known pseudorandom-probe sequence is inserted
in the information-bearing signal either additively or by interleaving in time and the tap
weights adjusted by comparing the received probe symbols with the known transmitted
probe symbols. In the decision-directed mode of operation, the error signal becomes
ε̃k = Ĩk − Îk , where Ĩk is the decision of the receiver based on the estimate Î k . As long
as the receiver is operating at low error rates, an occasional error will have a negligible
effect on the convergence of the algorithm.

If the channel response changes, this change is reflected in the coefficients { fk}
of the equivalent discrete-time channel model. It is also reflected in the error signal
εk , since it depends on { fk}. Hence, the tap weights will be changed according to
Equation 10.1–11 to reflect the change in the channel. A similar change in the tap
weights occurs if the statistics of the noise or the information sequence change. Thus,
the equalizer is adaptive.

10.1–3 Convergence Properties of the LMS Algorithm

The convergence properties of the LMS algorithm given by Equation 10.1–11 are gov-
erned by the step-size parameter �. We shall now consider the choice of the parameter
� to ensure convergence of the steepest-descent algorithm in Equation 10.1–7, which
employs the exact value of the gradient.

From Equations 10.1–7 and 10.1–8, we have

Ck+1 = Ck − �Gk

= (I − �Γ )Ck + �ξ
(10.1–20)

where I is the identity matrix, Γ is the autocorrelation matrix of the received signal,
Ck is the (2K + 1)-dimensional vector of equalizer tap gains, and ξ is the vector of
cross correlations given by Equation 9.4–45. The recursive relation in Equation 10.1–20
can be represented as a closed-loop control system as shown in Figure 10.1–3. Unfor-
tunately, the set of 2K + 1 first-order difference equations in Equation 10.1–20 are
coupled through the autocorrelation matrix Γ. In order to solve these equations and,
thus, establish the convergence properties of the recursive algorithm, it is mathemati-
cally convenient to decouple the equations by performing a linear transformation. The
appropriate transformation is obtained by noting that the matrix Γ is Hermitian and,
hence, can be represented as

Γ = UΛU H (10.1–21)

FIGURE 10.1–3
Closed-loop control system representation of the
recursive relation in Equation 10.1–20.
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where U is the normalized modal matrix of Γ and Λ is a diagonal matrix with diagonal
elements equal to the eigenvalues of Γ (see Appendix A).

When Equation 10.1–21 is substituted into Equation 10.1–20 and if we define the
transformed (orthogonalized) vectors Co

k = U H Ck and ξ o = U Hξ , we obtain

Co
k+1 = (I − �Λ)Co

k + �ξ o (10.1–22)

This set of first-order difference equations is now decoupled. Their convergence is
determined from the homogeneous equation

Co
k+1 = (I − �Λ)Co

k (10.1–23)

We see that the recursive relation will converge provided that all the poles lie inside the
unit circle, i.e.,

|1 − �λk | < 1, k = −K , . . . , −1, 0, 1, . . . , K (10.1–24)

where {λk} is the set of 2K + 1 (possibly nondistinct) eigenvalues of Γ. Since Γ is an
autocorrelation matrix, it is positive-definite and, hence, λk > 0 for all k. Consequently
convergence of the recursive relation in Equation 10.1–22 is ensured if � satisfies the
inequality

0 < � <
2

λmax
(10.1–25)

where λmax is the largest eigenvalue of Γ.
Since the largest eigenvalue of a positive-definite matrix is less than the sum of all

the eigenvalues of the matrix and, furthermore, since the sum of the eigenvalues of a
matrix is equal to its trace, we have the following simple upper bound on λmax:

λmax <

K∑
k=−K

λk = tr Γ = (2K + 1)�kk

= (2K + 1)(x0 + N0)

(10.1–26)

From Equations 10.1–23 and 10.1–24 we observe that rapid convergence occurs
when |1 − �λk | is small, i.e., when the pole positions are far from the unit circle. But
we cannot achieve this desirable condition and still satisfy Equation 10.1–25 if there
is a large difference between the largest and smallest eigenvalues of Γ. In other words,
even if we select � to be near the upper bound given in Equation 10.1–25, the con-
vergence rate of the recursive MSE algorithm is determined by the smallest eigenvalue
λmin. Consequently, the ratio λmax/λmin ultimately determines the convergence rate. If
λmax/λmin is small, � can be selected so as to achieve rapid convergence. However, if
the ratio λmax/λmin is large, as is the case when the channel frequency response has
deep spectral nulls, the convergence rate of the algorithm will be slow.

10.1–4 Excess MSE due to Noisy Gradient Estimates

The recursive algorithm in Equation 10.1–11 for adjusting the coefficients of the linear
equalizer employs unbiased noisy estimates of the gradient vector. The noise in these
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estimates causes random fluctuations in the coefficients about their optimal values and,
thus, leads to an increase in the MSE at the output of the equalizer. That is, the final
MSE is Jmin + J�, where J� is the variance of the measurement noise. The term J� due
to the estimation noise has been termed excess mean square error by Widrow (1966).

The total MSE at the output of the equalizer for any set of coefficients C can be
expressed as

J = Jmin + (C − Copt)
H Γ (C − Copt) (10.1–27)

where Copt represents the optimum coefficients, which satisfy Equation 10.1–6. This
expression for the MSE can be simplified by performing the linear orthogonal transfor-
mation used above to establish convergence. The result of this transformation applied
to Equation 10.1–27 is

J = Jmin +
K∑

k=−K

λk E |co
k − co

k opt|2 (10.1–28)

where the {co
k } are the set of transformed equalizer coefficients. The excess MSE is the

expected value of the second term in Equation 10.1–28, i.e.,

J� =
K∑

k=−K

λk E |co
k − co

k opt|2 (10.1–29)

It has been shown by Widrow (1970) that the excess MSE is

J� = �2 Jmin

K∑
k=−K

λ2
k

1 − (1 − �λk)2
(10.1–30)

The expression in Equation 10.1–30 can be simplified when � is selected such that
�λk � 1 for all k. Then

J� ≈ 1
2�Jmin

K∑
k=−K

λk

≈ 1
2�Jmin tr Γ

≈ 1
2�(2K + 1)Jmin(x0 + N0)

(10.1–31)

Note that x0 + N0 represents the received signal plus noise power.
It is desirable to have J� < Jmin. That is, � should be selected such that

J�

Jmin
≈ 1

2�(2K + 1)(x0 + N0) < 1

or, equivalently,

� <
2

(2K + 1)(x0 + N0)
(10.1–32)
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For example, if � is selected as

� = 0.2

(2K + 1)(x0 + N0)
(10.1–33)

the degradation in the output SNR of the equalizer due to the excess MSE is less than
1 dB.

The analysis given above on the excess mean square error is based on the assumption
that the mean value of the equalizer coefficients has converged to the optimum value
Copt. Under this condition, the step size � should satisfy the bound in Equation 10.1–
32. On the other hand, we have determined that convergence of the mean coefficient
vector requires that � < 2/λmax. While a choice of � near the upper bound 2/λmax

may lead to initial convergence of the deterministic (known) steepest-descent gradient
algorithm, such a large value of � will usually result in instability of the LMS stochastic
gradient algorithm.

The initial convergence or transient behavior of the LMS algorithm has been in-
vestigated by several researchers. Their results clearly indicate that the step size must
be reduced in direct proportion to the length of the equalizer as specified by Equa-
tion 10.1–32. Hence, the upper bound given by Equation 10.1–32 is also necessary
to ensure the initial convergence of the LMS algorithm. The papers by Gitlin and
Weinstein (1979) and Ungerboeck (1972) contain analyses of the transient behavior
and the convergence properties of the LMS algorithm.

The following example serves to reinforce the important points made above re-
garding the initial convergence of the LMS algorithm.

E X A M P L E 10.1–1. The LMS algorithm was used to adaptively equalize a communi-
cation channel for which the autocorrelation matrix Γ has an eigenvalue spread of
λmax/λmin = 11. The number of taps selected for the equalizer was 2K + 1 = 11. The
input signal plus noise power x0 + N0 was normalized to unity. Hence, the upper bound
on � given by Equation 10.1–32 is 0.18. Figure 10.1–4 illustrates the initial convergence
characteristics of the LMS algorithm for � = 0.045, 0.09, and 0.115, by averaging the
(estimated) MSE in 200 simulations. We observe that by selecting � = 0.09 (one-half
of the upper bound) we obtain relatively fast initial convergence. If we divide � by a
factor of 2 to � = 0.045, the convergence rate is reduced but the excess mean square
error is also reduced, so that the LMS algorithm performs better in steady state (in a
time-invariant signal environment). Finally, we note that a choice of � = 0.115, which

FIGURE 10.1–4
Initial convergence characteristics of the LMS
algorithm with different step sizes. (From Digital
Signal Processing, by J. G. Proakis and D. G.
Manolakis, 1995, Prentice Hall Company. Reprinted
with permission of the publisher.)
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is still far below the upper bound, causes large undesirable fluctuations in the output
MSE of the algorithm.

In a digital implementation of the LMS algorithm, the choice of the step-size
parameter becomes even more critical. In an attempt to reduce the excess mean square
error, it is possible to reduce the step-size parameter to the point where the total mean
square error actually increases. This condition occurs when the estimated gradient
components of the vector εk V ∗

k after multiplication by the small step-size parameter
� are smaller than one-half of the least significant bit in the fixed-point representation
of the equalizer coefficients. In such a case, adaptation ceases. Consequently, it is
important for the step size to be large enough to bring the equalizer coefficients in the
vicinity of Copt. If it is desired to decrease the step size significantly, it is necessary
to increase the precision in the equalizer coefficients. Typically, 16 bits of precision
may be used for the coefficients, with about 10–12 of the most significant bits used for
arithmetic operations in the equalization of the data. The remaining least significant
bits are required to provide the necessary precision for the adaptation process. Thus, the
scaled estimated gradient components �εV ∗

k usually affect only the least-significant
bits in any one iteration. In effect, the added precision also allows for the noise to be
averaged out, since many incremental changes in the least-significant bits are required
before any change occurs in the upper more significant bits used in arithmetic operations
for equalizing the data. For an analysis of roundoff errors in a digital implementation of
the LMS algorithm, the reader is referred to the papers by Gitlin and Weinstein (1979),
Gitlin et al. (1982), and Caraiscos and Liu (1984).

As a final point, we should indicate that the LMS algorithm is appropriate for
tracking slowly time invariant signal statistics. In such a case, the minimum MSE and
the optimum coefficient vector will be time-variant. In other words, Jmin(n) is a function
of time and the 2(K + 1)-dimensional error surface is moving with the time index n.
The LMS algorithm attempts to follow the moving minimum Jmin(n) in the (2K + 1)-
dimensional space, but it is always lagging behind due to its use of (estimated) gradient
vectors. As a consequence, the LMS algorithm incurs another form of error, called the
lag error, whose mean square value decreases with an increase in the step size �. The
total MSE error can now be expressed as

Jtotal = Jmin(n) + J� + Jl (10.1–34)

where Jl denotes the mean square error due to the lag.
In any given nonstationary adaptive equalization problem, if we plot the errors J�

and Jl as a function of �, we expect these errors to behave as illustrated in Figure 10.1–5.
We observe that J� increases with an increase in � while Jl decreases with an increase
in �. The total error will exhibit a minimum, which will determine the optimum choice
of the step-size parameter.

When the statistical time variations of the signal occur rapidly, the lag error will
dominate the performance of the adaptive equalizer. In such a case, Jl � Jmin + J�,
even when the largest possible value of � is used. When this condition occurs, the
LMS algorithm is inappropriate for the application and one must rely on the more
complex recursive least-squares algorithms described in Section 10.4 to obtain faster
convergence.
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FIGURE 10.1–5
Excess mean square error J� and lag
error Jl as a function of the step size.
(From Digital Signal Processing, by J. G.
Proakis and D. G. Manolakis, 1995,
Prentice Hall Company. Reprinted with
permission of the publisher.)

10.1–5 Accelerating the Initial Convergence Rate in the LMS Algorithm

As we have observed, the initial convergence rate of the LMS algorithm for any given
channel characteristic is controlled by the step-size parameter �. The initial conver-
gence rate is strongly influenced by the channel spectral characteristics, which are
related to the eigenvalues {λn} of the received signal covariance matrix. If the channel
amplitude and phase distortions are small, the eigenvalue ratio λmax/λmin is close to
unity and, hence, the equalizer converges to its optimum tap coefficients relatively fast.
On the other hand, if the channel exhibits poor spectral characteristics, such as rela-
tively large attenuation in a part of its spectrum, the eigenvalue ratio λmax/λmin � 1
and, hence, the convergence rate of the LMS algorithm will be slow.

A considerable effort has been spent by researchers on methods to accelerate the
initial convergence of the LMS algorithm. A simple remedy is to begin with a large step
size, say �0, and reduce the step size as the tap coefficients converge to their optimum
values. In other words, we use a sequence of step sizes, �0 > �1 > �2 > · · ·
> �m ≡ �, where � is the final step size to be used in steady-state operation of the
LMS algorithm.

An alternative method for accelerating initial convergence has been proposed and
investigated by Chang (1971) and Qureshi (1977). This method is based on introducing
additional parameters in the LMS algorithm by replacing the step size with a weighting
matrix W . In such a case, the LMS algorithm is generalized to the form:

Ĉk+1 = Ĉk − W Ĝk

= Ĉk + W (Γ Ĉ − ξ )
= Ĉk + Wek V ∗

k

(10.1–35)

where W is the weighting matrix. Ideally, W = Γ −1, or if Γ is estimated, then W can
be set equal to the inverse of the estimate.

When the training sequence for the equalizer is periodic with period N , the co-
variance matrix Γ is Toeplitz and circulant and its inverse is circulant. In this case,
the multiplication by the weighting matrix W can be simplified considerably by the
implementation of a single finite duration impulse response (FIR) filter with weights
equal to the first row of W , as indicated by Qureshi (1977). That is, the fast update
algorithm that is equivalent to multiplying the gradient vector Ĝk by W is simply im-
plemented as shown in Figure 10.1–6, by inserting the FIR filter with N coefficients
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w0, w1, . . . , wN−1 in the path of the periodic input sequence before it is used for tap
coefficient adjustment.

Qureshi (1977) described a method for estimating the weights from the received
signal. The basic steps are as follows:

1. Collect one period (N symbols) of received data v0, v1, . . . , vN−1 in the equalizer
delay line.

2. Compute the N -point discrete Fourier transform (DFT) of {vn} denoted as {Rn}.
3. Compute the discrete power spectrum |Rn|2. If we neglect the noise, |Rn|2 corre-

sponds to N times the eigenvalues of the circulant covariance matrix of the signal
at the input to the equalizer. Then, add N times the estimate of the noise variance
σ 2 to |Rn|2.

4. Compute the inverse DFT of the sequence 1/
(|Rn|2 + N σ̂ 2

)
, n = 0, 1, . . . , N − 1.

This yields the sequence {wn} of filter coefficients for the filter shown in
Figure 10.1–6.

5. The algorithm for adjusting the equalizer tap coefficient now becomes

c(k+1)
j = c(k)

j − e j

N−1∑
m=0

wkv
∗
k− j−m, j = 0, 1, . . . , N − 1 (10.1–36)

FIGURE 10.1–6
Fast start-up technique for an adaptive equalizer.
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10.1–6 Adaptive Fractionally Spaced Equalizer—The Tap
Leakage Algorithm

As described in Section 9.4–4, an FSE is preferable to a symbol rate equalizer (SRE)
when the channel characteristics are unknown at the receiver. In such a case, the FSE
combines the operations of matched filtering and equalization of intersymbol interfer-
ence into a single filter. By processing samples at the Nyquist rate, the FSE adapts its
coefficients to compensate for any timing phase within a symbol. Thus, its performance
is insensitive to the sampling time within a symbol interval, as discussed previously.
Consequently, from a performance viewpoint, the FSE is equivalent to a matched filter
followed by a symbol rate sampler, and followed by an SRE.

The LMS algorithm and any of its variants can be used to adjust the coefficients of
the FSE adaptively. Suitable training signals for initial adjustment may take the form of
an aperiodic pseudorandom sequence or a periodic pseudorandom sequence, where the
period is equal to the time span of the equalizer, i.e., a sequence of period P is used to
train an FSE with P N/M coefficients, where the tap spacing is MT/N . In the case of a
periodic sequence for training, the update of each of the coefficients may be performed
periodically, once in every period of the sequence based on the average gradient LMS
algorithm given by Equations 10.1–16 and 10.1–17.

In a digital implementation of the LMS algorithm for an FSE, some care must
be exercised in selecting the step-size parameter �. It has been shown by Gitlin and
Weinstein (1981) and further described by Qureshi (1985) that in an FSE, a fraction
(N − M)/N of the eigenvalues of the received signal covariance matrix are very small.
These small eigenvalues and their corresponding eigenvectors are related to the spectral
characteristics of the noise in the frequency band (1 + β)/2T ≤ | f | ≤ 1/T . As
a consequence, the output MSE becomes insensitive to deviations in the coefficient
values corresponding to these eigenvalues. In such cases, errors due to finite precision
arithmetic accumulate along the eigenvectors (frequency band) corresponding to the
small eigenvalues and eventually cause overflows in the coefficient values, without
significantly affecting the overall MSE.

A solution to this problem has been given in the paper by Gitlin et al. (1982). Instead
of minimizing the MSE given by Equation 9.4–42, we minimize the performance index

J = JMSE + μ

K∑
i=−K

|ci |2 (10.1–37)

where JMSE is the conventional MSE and μ is a small positive constant. Thus, the
ill-conditioning of the received signal covariance matrix is avoided. The minimization
of J leads to the following “modified LMS” algorithm (see Problem 10.5).

Ck+1 = (1 − �μ)Ck + �εk V ∗
k (10.1–38)

This algorithm is called the tap-leakage algorithm.
In adapting the tap coefficients of an FSE, the tap adjustments, as described above,

are made periodically either at the symbol rate or slower when a periodic training
sequence is transmitted. However, the samples at the input to the FSE occur at a faster
rate. For example, if we consider a T/2 FSE, there are two samples per information
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symbol. An interesting question is whether or not it is possible to increase the initial
convergence rate of an FSE by adapting its coefficients at the sampling rate. If the tap
adjustments are performed at the sampling rate, one must generate additional desired
signal values corresponding to sample values that fall between values of the desired
symbols. That is, one must design a filter that performs intersymbol interpolation in
order to generate the intermediate desired sample sequence. This problem has been
considered by Gitlin and Weinstein (1981), Cioffi and Kailath (1984), and Ling (1989).
The results given in the paper by Ling provide an answer to the question.

First we note that the initial convergence of the LMS algorithm depends on the
number of nontrivial eigenvalues of the autocorrelation matrix of the received signal.
This number is equal to the number of independent parameters that are to be optimized.
For example, an SRE that has K taps and spans a time interval of K T seconds has K
independent parameters to be optimized. In contrast, a T/2 complex-valued FSE that
spans the same time interval has 2K tap coefficients, but its autocorrelation matrix has
K nontrivial (and K trivial) eigenvalues and, thus, it has K independent parameters
to be optimized. Consequently, the complex-valued T/2 FSE that is adapted at the
symbol rate has the same convergence rate as the SRE. Now, if the complex-valued FSE
employs interpolation to update its coefficients at all time instants nT/2, the number of
independent parameters to be optimized is 2K . In this case, there are two autocorrelation
matrices, one corresponding to samples at nT/2, and the other corresponding to samples
at (nT + 1)/2, and each matrix has K nontrivial eigenvalues. That is, the T/2 FSE that
employs interpolation adjusts one set of K parameters in one update and the second set
of K parameters in the next update. Therefore, the convergence rate of the interpolated
FSE will be approximately the same as the convergence rate of the symbol-updated FSE.

In the case of a phase-splitting FSE (PS-FSE), which is implemented at bandpass,
with a time span of K T seconds and tap spacing T/N , where N > 2, e.g., N = 3
or 4, there are K N parameters to be optimized. In this case, Ling (1989) showed that
the convergence rate of the PS-FSE was approximately a factor of 2 slower than the
convergence rate of the conventional complex-valued FSE, when the PS-FSE is adjusted
at the symbol rate. By employing ideal intersymbol interpolation, the convergence rate
of the PS-FSE is increased by approximately a factor of 2 compared to symbol rate
adjustment of the PS-FSE. Thus, the PS-FSE with intersymbol interpolation achieves
the same convergence rate as the conventional complex-valued FSE that is adjusted at
the symbol rate.

10.1–7 An Adaptive Channel Estimator for ML Sequence Detection

The ML sequence detection criterion implemented via the Viterbi algorithm as em-
bodied in the metric computation given by Equation 9.3–23 requires knowledge of the
equivalent discrete-time channel coefficients { fk}. To accommodate a channel that is
unknown or slowly time varying, one may include a channel estimator connected in
parallel with the detection algorithm, as shown in Figure 10.1–7. The channel estima-
tor, which is shown in Figure 10.1–8, is identical in structure to the linear transver-
sal equalizer discussed previously in Section 10.1. In fact, the channel estimator is
a replica of the equivalent discrete-time channel filter that models the intersymbol
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FIGURE 10.1–7
Block diagram of method for estimating the channel
characteristics for the Viterbi algorithm.

interference. The estimated tap coefficients, denoted by { f̂ k}, are adjusted recursively
to minimize the MSE between the actual received sequence and the output of the esti-
mator. For example, the LMS steepest-descent algorithm in a decision-directed mode of
operation is

f̂ k+1 = f̂ k + �εk Ĩ
∗
k (10.1–39)

where f̂ k is the vector of tap gain coefficients at the kth iteration, � is the step size,
εk = vk − v̂k is the error signal, and Ĩ k denotes the vector of detected information
symbols in the channel estimator at the kth iteration.

We now show that when the MSE between vk and v̂k is minimized, the result-
ing values of the tap gain coefficients of the channel estimator are the values of the
discrete-time channel model. For mathematical tractability, we assume that the detected
information sequence { Ĩ k} is correct, i.e., { Ĩ k} is identical to the transmitted sequence
{Ik}. This is a reasonable assumption when the system is operating at a low probability
of error. Thus, the MSE between the received signal vk and the estimate v̂k is

J ( f̂ ) = E

⎛
⎜⎝

∣∣∣∣∣∣vk −
N−1∑
j=0

f̂ j Ik− j

∣∣∣∣∣∣
2
⎞
⎟⎠ (10.1–40)

FIGURE 10.1–8
Adaptive transversal filter for estimating the channel dispersion.
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The tap coefficients { f̂ k} that minimize J ( f̂ ) in Equation 10.1–40 satisfy the set of N
linear equations

N−1∑
j=0

f̂ j Rk j = dk, k = 0, 1, . . . , N − 1 (10.1–41)

where

Rkj = E
(

Ik I ∗
j

)
, dk =

N−1∑
j=0

f j Rk j (10.1–42)

From Equations 10.1–41 and 10.1–42, we conclude that, as long as the information
sequence {Ik} is uncorrelated, the optimum coefficients are exactly equal to the respec-
tive values of the equivalent discrete-time channel. It is also apparent that when the
number of taps N in the channel estimator is greater than or equal to L +1, the optimum
tap gain coefficients { f̂ k} are equal to the respective values of the { fk}, even when the
information sequence is correlated. Subject to the above conditions, the minimum MSE
is simply equal to the noise variance N0.

In the above discussion, the estimated information sequence at the output of the
Viterbi algorithm or the probabilistic symbol-by-symbol algorithm was used in making
adjustments of the channel estimator. For start-up operation, one may send a short
training sequence to perform the initial adjustment of the tap coefficients, as is usually
done in the case of the linear transversal equalizer. In an adaptive mode of operation,
the receiver simply uses its own decisions to form an error signal.

10.2
ADAPTIVE DECISION-FEEDBACK EQUALIZER

As in the case of the linear adaptive equalizer, the coefficients of the feedforward
filter and the feedback filter in a decision-feedback equalizer (DFE) may be adjusted
recursively, instead of inverting a matrix as implied by Equation 9.5–3. Based on the
minimization of the MSE at the output of the DFE, the steepest-descent algorithm takes
the form

Ck+1 = Ck + �E
(
εk V ∗

k

)
(10.2–1)

where Ck is the vector of equalizer coefficients in the kth signal interval, E
(
εk V ∗

k

)
is the

cross correlation of the error signal εk = Ik− Î k with V k = [vk+K1 · · · vk Ik−1 · · · Ik−K2 ]t ,
representing the signal values in the feedforward and feedback filters at time t = kT .
The MSE is minimized when the cross-correlation vector E

(
εk V ∗

k

) = 0 as k → ∞.
Since the exact cross-correlation vector is unknown at any time instant, we use

as an estimate the vector εk V ∗
k and average out the noise in the estimate through the

recursive equation

Ĉk+1 = Ĉk + �εk V ∗
k (10.2–2)

This is the LMS algorithm for the DFE.
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FIGURE 10.2–1
Decision-feedback equalizer.

As in the case of a linear equalizer, we may use a training sequence to adjust the
coefficients of the DFE initially. Upon convergence to the (near-) optimum coefficients
(minimum MSE), we may switch to a decision-directed mode where the decisions at
the output of the detector are used in forming the error signal εk and fed to the feedback
filter. This is the adaptive mode of the DFE, which is illustrated in Figure 10.2–1. In
this case, the recursive equation for adjusting the equalizer coefficient is

C̃k+1 = C̃k + �ε̃k V ∗
k (10.2–3)

where ε̃k = Ĩ k − Î k and V k = [vk+K1 · · · vk Ĩ k−1 · · · Ĩ k−K2 ]t .
The performance characteristics of the LMS algorithm for the DFE are basically

the same as the development given in Sections 10.1–3 and 10.1–4 for the linear adaptive
equalizer.

10.3
ADAPTIVE EQUALIZATION OF TRELLIS-CODED SIGNALS

Bandwidth efficient trellis-coded modulation that was described in Section 8.12 is fre-
quently used in digital communications over telephone channels to reduce the required
SNR per bit for achieving a specified error rate. Channel distortion of the trellis-coded
signal forces us to use adaptive equalization in order to reduce the intersymbol inter-
ference. The output of the equalizer is then fed to the Viterbi decoder, which performs
soft-decision decoding of the trellis-coded signal.
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FIGURE 10.3–1
Adjustment of equalizer based on
tentative decisions.

The question that arises regarding such a receiver is, how do we adapt the equalizer
in a data transmission mode? One possibility is to have the equalizer make its own
decisions at its output solely for the purpose of generating an error signal for adjusting its
tap coefficients, as shown in the block diagram in Figure 10.3–1. The problem with this
approach is that such decisions are generally unreliable, since the pre-decoding coded
symbol SNR is relatively low. A high error rate would cause a significant degradation
in the operation of the equalizer, which would ultimately affect the reliability of the
decisions at the output of the decoder. The more desirable alternative is to use the
post-decoding decisions from the Viterbi decoder, which are much more reliable, to
continuously adapt the equalizer. This approach is certainly preferable and viable when
a linear equalizer is used prior to the Viterbi decoder. The decoding delay inherent in
the Viterbi decoder can be overcome by introducing an identical delay in the tap weight
adjustment of the equalizer coefficients as shown in Figure 10.3–2. The major price that
must be paid for the added delay is that the step-size parameter in the LMS algorithm
must be reduced, as described by Long et al. (1987, 1989), in order to achieve stability
in the algorithm.

In channels with severe ISI, the linear equalizer is no longer adequate for com-
pensating the channel intersymbol interference. Instead, we would like to use a DFE.
But the DFE requires reliable decisions in its feedback filter in order to cancel out
the intersymbol interference from previously detected symbols. Tentative decisions
prior to decoding would be highly unreliable and, hence, inappropriate. Unfortunately,

FIGURE 10.3–2
Adjustment of equalizer based on decisions from the Viterbi decoder.
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(a)

(b)

FIGURE 10.3–3
Use of predictive DFE with interleaving and trellis-coded modulation.

the conventional DFE cannot be cascaded with the Viterbi algorithm in which post-
decoding decisions from the decoder are fed back to the DFE.

One alternative is to use the predictive DFE described in Section 9.5–3. In order
to accommodate for the decoding delay as it affects the linear predictor, we introduce
a periodic interleaver/deinterleaver pair that has the same delay as the Viterbi decoder
and, thus, makes it possible to generate the appropriate error signal to the predictor as
illustrated in the block diagram of Figure 10.3–3. The way in which a predictive DFE
can be combined with Viterbi decoding to equalize trellis-coded signals is described and
analyzed by Eyuboglu (1988). This same idea has been carried over to the equalization
of fading multipath channels by Zhou et al. (1988, 1990), but the structure of the DFE
was modified to use recursive least-squares lattice-type filters, which provide faster
adaptation to the time variations encountered in the channel.

Another approach that is effective in wireline channels, where the channel impulse
response is essentially time invariant, is to place the feedback section of the DFE at the
transmitter and, thus, eliminate the tail (postcursors) of the channel response prior to
transmission. This is the approach previously described in Section 9.5–4, in which the
information sequence is precoded using the Tomlinson–Harashima precoding scheme.
Generally, this approach is implemented by sending a channel probe signal to measure
the channel frequency or impulse response at the receiver and, thus, to inform the
transmitter of the channel response in order to synthesize the precoder. An adaptive,
fractionally spaced linear equalizer is implemented at the receiver, which serves as the
feedforward filter of the DFE and, thus, compensates for any small time variations in
the channel response.

Reduced-state Viterbi detection algorithms From a performance viewpoint, the
best method for detecting a TCM signal sequence that is corrupted by ISI is to model
the ISI and the trellis code jointly by a single finite state machine and to use the
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FIGURE 10.3–4
Model of TCM and ISI channel.

Viterbi algorithm on the combined trellis, as described in the papers by Chevillat and
Eleftheriou (1988, 1989), Eyuboglu et al. (1988, 1989), and Wesolowski (1987b). By
using a whitened matched filter (WMF) as described previously for the receiver front
end, the model for the combined trellis encoder and ISI channel filter is illustrated in
Figure 10.3–4, where the channel filter F(z) is minimum phase. Thus, a TCM encoder
that has S states and employs a signal constellation with 2m+1 signal points has a
combined TCM/ISI trellis that has S2mL states and 2m transitions (branches) emerging
from each state. The states of the combined finite state machine may be denoted as

Sn = (In−L , In−L+1, . . . , In−1, θn) (10.3–1)

where {In} is the information symbol sequence and where θn is the encoder state.
The Viterbi decoder operates on the combined ISI and code trellis in the conven-

tional way, by computing the branch metrics
∣∣∣∣∣vk −

L∑
i=0

fi Ik−i

∣∣∣∣∣
2

(10.3–2)

and incrementing the corresponding path metrics.
Clearly, the complexity of the Viterbi detector becomes prohibitively large when

the span L of the ISI is large. In such a case, the decoder complexity can be reduced
as described in Section 9.6, by truncating the effective channel memory to L0 terms.
With truncation, the combined TCM/ISI trellis has the S2mL0 states

SL0
n = (In−L0, In−L0+1, . . . , In−1, θn) (10.3–3)

where 1 ≤ L0 ≤ L .
Thus, when L0 = 1, the Viterbi algorithm operates directly on the TCM coded

trellis and the L ISI terms are estimated and canceled. By selecting L0 > 1, some
ISI terms are kept while L + 1 − L0 terms are canceled. To reduce the performance
degradation due to tentative decisions in the Viterbi detector, the ISI cancelation is
introduced into the branch metric computations using local feedback, as previously
described in Section 9.6. Thus, the branch metrics computed in the Viterbi detector
take the form ∣∣∣∣∣vk −

L0−1∑
i=0

fi Ik−i −
L+1∑
i=L0

fi Ĩ k−i
(
SL0

n

)∣∣∣∣∣
2

(10.3–4)

where Ĩ k−i
(
SL0

n

)
denotes the estimated ISI term due to the symbols {Ik−i , L0 < i < L}

involved in the truncation of the ISI based on local feedback.
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In the case of an unknown channel characteristic, both the WMF and the channel
estimator of F(z) must be determined adaptively. This may be accomplished by adapt-
ing a complex-valued baseband FSE for the WMF and the channel estimator described
previously in Section 10.1–7. Thus, a training sequence may be used for initial ad-
justment and decision-directed estimation may continue following the initial training
sequence. The LMS algorithm may be used in both the training and decision-directed
modes. Simulation results given by Chevillat and Eleftheriou (1989) demonstrate the
superior performance of this adaptive WMF/reduced-state Viterbi detector compared
to the combination of a linear equalizer followed by a Viterbi detector.

10.4
RECURSIVE LEAST-SQUARES ALGORITHMS
FOR ADAPTIVE EQUALIZATION

The LMS algorithm that we described in Sections 10.1 and 10.2 for adaptively adjusting
the tap coefficients of a linear equalizer or a DFE is basically a (stochastic) steepest-
descent algorithm in which the true gradient vector is approximated by an estimate
obtained directly from the data.

The major advantage of the steepest-descent algorithm lies in its computational
simplicity. However, the price paid for the simplicity is slow convergence, especially
when the channel characteristics result in an autocorrelation matrix Γ whose eigen-
values have a large spread, i.e., λmax/λmin � 1. Viewed in another way, the gradient
algorithm has only a single adjustable parameter for controlling the convergence rate,
namely, the parameter �. Consequently the slow convergence is due to this fundamen-
tal limitation. Two simple methods for increasing the convergence rate to some extent
were described in Section 10.1–5.

In order to obtain faster convergence, it is necessary to devise more complex algo-
rithms involving additional parameters. In particular, if the matrix Γ is N × N and has
eigenvalues λ1, λ2, . . . , λN , we may use an algorithm that contains N parameters—one
for each of the eigenvalues. The optimum selection of these parameters to achieve rapid
convergence is a topic of this section.

In deriving faster converging algorithms, we shall adopt a least-squares approach.
Thus, we shall deal directly with the received data in minimizing the quadratic per-
formance index, whereas previously we minimized the expected value of the squared
error. Put simply, this means that the performance index is expressed in terms of a time
average instead of a statistical average.

It is convenient to express the recursive least-squares algorithms in matrix form.
Hence, we shall define a number of vectors and matrices that are needed in this devel-
opment. In so doing, we shall change the notation slightly. Specifically, the estimate of
the information symbol at time t , where t is an integer, from a linear equalizer is now
expressed as

Î (t) =
K∑

j=−K

c j (t − 1)vt− j
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By changing the index j on c j (t −1) to run from j = 0 to j = N −1 and simultaneously
defining

y(t) = vt+K

the estimate Î (t) becomes

Î (t) =
N−1∑
j=0

c j (t − 1)y(t − j)

= C t
N (t − 1)Y N (t)

(10.4–1)

where C N (t − 1) and Y N (t) are, respectively, the column vectors of the equalizer
coefficients c j (t − 1), j = 0, 1, . . . , N − 1, and the input signals y(t − j), j =
0, 1, 2, . . . , N − 1.

Similarly, in the decision-feedback equalizer, we have tap coefficients c j (t), j =
0, 1, . . . , N − 1, where the first K1 + 1 are the coefficients of the feedforward filter
and the remaining K2 = N −K1−1 are the coefficients of the feedback filter. The data in
the estimate Î (t) is vt+K1, . . . , vt+1, Ĩ t−1, . . . , Ĩ t−K2, where Ĩ t− j , 1 ≤ j ≤ K2, denote
the decisions on previously detected symbols. In this development, we neglect the effect
of decision errors in the algorithms. Hence, we assume that Ĩ t− j = It− j , 1 ≤ j ≤ K2.
For notational convenience, we also define

y(t − j) =
{

vt+K1− j (0 ≤ j ≤ K1)
It+K1− j (K1 < j ≤ N − 1) (10.4–2)

Thus,

Y N (t) = [y(t) y(t − 1) · · · y(t − N + 1)]t

= [vt+K1 · · · vt+1 vt It−1 · · · It−K2 ]t (10.4–3)

10.4–1 Recursive Least-Squares (Kalman) Algorithm

The recursive least-squares (RLS) estimation of Î (t) may be formulated as follows.
Suppose we have observed the vectors Y N (n), n = 0, 1, . . . , t, and we wish to deter-
mine the coefficient vector C N (t) of the equalizer (linear or decision-feedback) that
minimizes the time-average weighted squared error

E L S
N =

t∑
n=0

wt−n|eN (n, t)|2 (10.4–4)

where the error is defined as

eN (n, t) = I (n) − C t
N (t)Y N (n) (10.4–5)

and w represents a weighting factor 0 < w < 1. Thus we introduce exponential
weighting into past data, which is appropriate when the channel characteristics are
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time-variant. Minimization of E L S
N with respect to the coefficient vector C N (t) yields

the set of linear equations

RN (t)C N (t) = DN (t) (10.4–6)

where RN (t) is the signal correlation matrix defined as

RN (t) =
t∑

n=0

wt−nY ∗
N (n)Y t

N (n) (10.4–7)

and DN (t) is the cross-correlation vector

DN (t) =
t∑

n=0

wt−n I (n)Y ∗
N (n) (10.4–8)

The solution of Equation 10.4–6 is

C N (t) = R−1
N (t)DN (t) (10.4–9)

The matrix RN (t) is akin to the statistical autocorrelation matrix Γ, while the vector
DN (t) is akin to the cross-correlation vector ξ , defined previously. We emphasize,
however, that RN (t) is not a Toeplitz matrix. We also should mention that, for small
values of t , RN (t) may be ill conditioned; hence, it is customary to initially add the
matrix δ I N to RN (t), where δ is a small positive constant and I N is the identity matrix.
With exponential weighting into the past, the effect of adding δ I N dissipates with time.

Now suppose we have the solution in Equation 10.4–9 for time t −1, i.e., C N (t −1),
and we wish to compute C N (t). It is inefficient, and, hence, impractical to solve the set
of N linear equations for each new signal component that is received. To avoid this, we
proceed as follows. First, RN (t) may be computed recursively as

RN (t) = wRN (t − 1) + Y ∗
N (t)Y t

N (t) (10.4–10)

We call Equation 10.4–10 the time-update equation for RN (t).
Since the inverse of RN (t) is needed in Equation 10.4–9, we use the matrix-inverse

identity

R−1
N (t) = 1

w

[
R−1

N (t − 1) − R−1
N (t − 1)Y ∗

N (t)Y t
N (t)R−1

N (t − 1)

w + Y t
N (t)R−1

N (t − 1)Y ∗
N (t)

]
(10.4–11)

Thus R−1
N (t) may be computed recursively according to Equation 10.4–11.

For convenience, we define P N (t) = R−1
N (t). It is also convenient to define an

N -dimensional vector, called the Kalman gain vector, as

K N (t) = 1

w + μN (t)
P N (t − 1)Y ∗

N (t) (10.4–12)

where μN (t) is a scalar defined as

μN (t) = Y t
N (t)P N (t − 1)Y ∗

N (t) (10.4–13)
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With these definitions, Equation 10.4–11 becomes

P N (t) = 1

w
[P N (t − 1) − K N (t)Y t

N (t)P N (t − 1)] (10.4–14)

Suppose we postmultiply both sides of Equation 10.4–14 by Y ∗
N (t). Then

P N (t)Y ∗
N (t) = 1

w
[P N (t − 1)Y ∗

N (t) − K N (t)Y t
N (t)P N (t − 1)Y ∗

N (t)]

= 1

w
{[w + μN (t)]K N (t) − K N (t)μN (t)}

= K N (t)

(10.4–15)

Therefore, the Kalman gain vector may also be defined as P N (t)Y N (t).
Now we use the matrix inversion identity to derive an equation for obtaining C N (t)

from C N (t − 1). Since

C N (t) = P N (t)DN (t)

and

DN (t) = wDN (t − 1) + I (t)Y ∗
N (t) (10.4–16)

we have

C N (t) = 1

w
[P N (t − 1) − K N (t)Y t

N (t)P N (t − 1)][wDN (t − 1) + I (t)Y ∗
N (t)]

= P N (t − 1)DN (t − 1) + 1

w
I (t)P N (t − 1)Y ∗

N (t)

− K N (t)Y t
N (t)P N (t − 1)DN (t − 1)

− 1

w
I (t)K N (t)Y t

N (t)P N (t − 1)Y ∗
N (t)

= C N (t − 1) + K N (t)[I (t) − Y t
N (t)C N (t − 1)]

(10.4–17)

Note that Y t
N (t)C N (t − 1) is the output of the equalizer at time t , i.e.,

Î (t) = Y t
N (t)C N (t − 1) (10.4–18)

and

eN (t, t − 1) = I (t) − Î (t) ≡ eN (t) (10.4–19)

is the error between the desired symbol and the estimate. Hence, C N (t) is updated
recursively according to the relation

C N (t) = C N (t − 1) + K N (t)eN (t) (10.4–20)

The residual MSE resulting from this optimization is

E L S
N min =

t∑
m=0

wt−n|I (n)|2 − C t
N (t)D∗

N (t) (10.4–21)
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To summarize, suppose we have C N (t − 1) and P N (t − 1). When a new signal
component is received, we have Y N (t). Then the recursive computation for the time
update of C N (t) and P N (t) proceeds as follows:

• Compute output:

Î (t) = Y t
N (t)C N (t − 1)

• Compute error:

eN (t) = I (t) − Î (t)

• Compute Kalman gain vector:

K N (t) = P N (t − 1)Y t
N (t)

w + Y t
N (t)P N (t − 1)Y ∗

N (t)

• Update inverse of the correlation matrix:

P N (t) = 1

w
[P N (t − 1) − K N (t)Y t

N (t)P N (t − 1)]

• Update coefficients:

C N (t) = C N (t − 1) + K N (t)eN (t)

= C N (t − 1) + P N (t)Y ∗
N (t)eN (t)

(10.4–22)

The algorithm described by Equation 10.4–22 is called the RLS direct form or
Kalman algorithm. It is appropriate when the equalizer has a transversal (direct-
form) structure.

Note that the equalizer coefficients change with time by an amount equal to the error
eN (t) multipled by the Kalman gain vector K N (t). Since K N (t) is N -dimensional, each
tap coefficient in effect is controlled by one of the elements of K N (t). Consequently
rapid convergence is obtained. In contrast, the steepest-descent algorithm, expressed in
our present notation, is

C N (t) = C N (t − 1) + �Y ∗
N (t)eN (t) (10.4–23)

and the only variable parameter is the step size �.
Figure 10.4–1 illustrates the initial convergence rate of these two algorithms for a

channel with fixed parameters f0 = 0.26, f1 = 0.93, f2 = 0.26, and a linear equalizer
with 11 taps. The eigenvalue ratio for this channel is λmax/λmin = 11. All the equalizer
coefficients were initialized to zero. The steepest-descent algorithm was implemented
with � = 0.020. The superiority of the Kalman algorithm is clearly evident. This is
especially important in a time-variant channel. For example, the time variations in the
characteristics of an (ionospheric) high-frequency (HF) radio channel are too rapid to
be equalized by the gradient algorithm, but the Kalman algorithm adapts sufficiently
rapidly to track such variations.

In spite of its superior convergence performance, the Kalman algorithm described
above has two disadvantages. One is its complexity. The second is its sensitivity to
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FIGURE 10.4–1
Comparison of convergence rate for the
Kalman and gradient algorithms.

roundoff noise that accumulates due to the recursive computations. The latter may
cause instabilities in the algorithm.

The number of computations or operations (multiplications, divisions, and sub-
tractions) in computing the variables in Equation 10.4–22 is proportional to N 2. Most
of these operations are involved in the updating of P N (t). This part of the computation
is also susceptible to roundoff noise. To remedy that problem, algorithms have been
developed that avoid the computation of P N (t) according to Equation 10.4–14. The
basis of these algorithms lies in the decomposition of P N (t) in the form

P N (t) = SN (t)ΛN (t)S′
N (t) (10.4–24)

where SN (t) is a lower-triangular matrix whose diagonal elements are unity, and ΛN (t)
is a diagonal matrix. Such a decomposition is called a square-root factorization (see
Bierman, 1977). This factorization is described in Appendix D. In a square-root algo-
rithm, P N (t) is not updated as in Equation 10.4–14 nor is it computed. Instead, the time
updating is performed on SN (t) and ΛN (t).

Square-root algorithms are frequently used in control systems applications in which
Kalman filtering is involved. In digital communications, the square-root Kalman algo-
rithm has been implemented in a decision-feedback-equalized PSK modem designed
to transmit at high speed over high-frequency radio channels with a nominal 3-kHz
bandwidth. This algorithm is described in the paper by Hsu (1982). It has a computa-
tional complexity of 1.5N 2 + 6.5N (complex-valued multiplications and divisions per
output symbol). It is also numerically stable and exhibits good numerical properties.
For a detailed discussion of square-root algorithms in sequential estimation, the reader
is referred to the book by Bierman (1977).

It is also possible to derive RLS algorithms with computational complexities that
grow linearly with the number N of equalizer coefficients. Such algorithms are generally
called fast RLS algorithms and have been described in the papers by Carayannis et al.
(1983), Cioffi and Kailath (1984), and Slock and Kailath (1991).

Another class of recursive least squares algorithms for adaptive equalization are
based on the lattice equalizer structure. Below, we derive the lattice filter structure
from the transversal filter structure and, thus, demonstrate the equivalence of the two
structures.
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10.4–2 Linear Prediction and the Lattice Filter

In this section we develop the connection between a linear FIR filter and a lattice
filter. This connection is most easily established by considering the problem of linear
prediction of a signal sequence.

The linear prediction problem may be stated as follows: given a set of data
y(t − 1), y(t − 2), . . . , y(t − p), predict the value of the next data point y(t). The
predictor of order p is

ŷ(t) =
p∑

k=1

apk y(t − k) (10.4–25)

Minimization of the MSE, defined as

Ep = E[y(t) − ŷ(t)]2

= E

[
y(t) −

p∑
k=1

apk y(t − k)

]2 (10.4–26)

with respect to the predictor coefficients {apk} yields the set of linear equations

p∑
k=1

apk R(k − l) = R(l), l = 1, 2, . . . , p (10.4–27)

where

R(l) = E[y(t)y(t + l)]

These are called the normal equations or the Yule–Walker equations.
The matrix R with elements R(k−l) is a Toeplitz matrix, and, hence, the Levinson–

Durbin algorithm provides an efficient means for solving the linear equations recur-
sively, starting with a first-order predictor and proceeding recursively to the solution of
the coefficients for the predictor of order p. The recursive relations for the Levinson–
Durbin algorithm are (see Levinson (1947) and Durbin (1959))

a11 = R(1)

R(0)
, E0 = R(0)

amm = φ(m) − At
m Rr

m−1

Em−1
amk = am−1k − ammam−1m−k

Em = Em−1
(
1 − a2

mm

)
(10.4–28)

for m = 1, 2, . . . , p, where the vectors Am−1 and Rr
m−1 are defined as

Am−1 = [am−11 am−12 · · · am−1m−1]t

Rr
m−1 = [R(m − 1) R(m − 2) · · · R(1)]t
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The linear prediction filter of order m may be realized as a transversal (FIR) filter
with transfer function

Am(z) = 1 −
m∑

k=1

am z−k (10.4–29)

Its input is the data {y(t)} and its output is the error e(t) = y(t) − ŷ(t). The prediction
filter can also be realized in the form of a lattice, as we now demonstrate.

Our starting point is the use of the Levinson–Durbin algorithm for the predictor
coefficients amk in Equation 10.4–29. This substitution yields

Am(z) = 1 −
m−1∑
k=1

(am−1k − ammam−1m−k)z−k − amm z−m

= 1 −
m−1∑
k=1

am−1k z−k − amm z−m

(
1 −

m−1∑
k=1

am−1k zk

)

= Am−1(z) − amm z−m Am−1(z−1)

(10.4–30)

Thus we have the transfer function of the mth-order predictor in terms of the transfer
function of the (m − 1)th-order predictor.

Now suppose we define a filter with transfer function Gm(z) as

Gm(z) = z−m Am(z−1) (10.4–31)

Then Equation 10.4–30 may be expressed as

Am(z) = Am−1(z) − amm z−1Gm−1(z) (10.4–32)

Note that Gm−1(z) represents a transversal filter with tap coefficients (−am−1m−1,

−am−1m−2, . . . , −am−11, 1), while the coefficients of Am−1(z) are exactly the same
except that they are given in reverse order.

More insight into the relationship between Am(z) and Gm(z) can be obtained by
computing the output of these two filters to an input sequence y(t). Using z-transform
relations, we have

Am(z)Y (z) = Am−1(z)Y (z) − amm z−1Gm−1(z)Y (z) (10.4–33)

We define the outputs of the filters as

Fm(z) = Am(z)Y (z)
Bm(z) = Gm(z)Y (z) (10.4–34)

Then Equation 10.4–33 becomes

Fm(z) = Fm−1(z) − amm z−1 Bm−1(z) (10.4–35)

In the time domain, the relation in Equation 10.4–35 becomes

fm(t) = fm−1(t) − ammbm−1(t − 1), m ≥ 1 (10.4–36)
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where

fm(t) = y(t) −
m−1∑
k=1

amk y(t − k) (10.4–37)

bm(t) = y(t − m) −
m−1∑
k=1

amk y(t − m + k) (10.4–38)

To elaborate, fm(t) in Equation 10.4–37 represents the error of an mth-order forward
predictor, while bm(t) represents the error of an mth-order backward predictor.

The relation in Equation 10.4–36 is one of two that specifies a lattice filter. The
second relation is obtained from Gm(z) as follows:

Gm(z) = z−m Am(z−1)

= z−m[Am−1(z−1) − amm zm Am−1(z)]

= z−1Gm−1(z) − amm Am−1(z)

(10.4–39)

Now, if we multiply both sides of Equation 10.4–39 by Y (z) and express the result in
terms of Fm(z) and Bm(z) using the definitions in Equation 10.4–34, we obtain

Bm(z) = z−1 Bm−1(z) − amm Fm−1(z) (10.4–40)

By transforming Equation 10.4–40 into the time domain, we obtain the second relation
that corresponds to the lattice filter, namely,

bm(t) = bm−1(t − 1) − amm fm−1(t), m ≥ 1 (10.4–41)

The initial condition is

f0(t) = b0(t) = y(t) (10.4–42)

The lattice filter described by the recursive relations in Equations 10.4–36 and 10.4–41
is illustrated in Figure 10.4–2. Each stage is characterized by its own multiplication
factor {aii }, i = 1, 2, . . . , m, which is defined in the Levinson–Durbin algorithm. The
forward and backward errors fm(t) and bm(t) are usually called the residuals. The mean
square value of these residuals is

Em = E
[

f 2
m(t)

] = E
[
b2

m(t)
]

(10.4–43)

(a) (b)

FIGURE 10.4–2
A lattice filter.
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Em is given recursively, as indicated in the Levinson–Durbin algorithm, by

Em = Em−1
(
1 − a2

mm

)

= E0

m∏
i=1

(
1 − a2

i i

) (10.4–44)

where E0 = R(0).
The residuals { fm(t)} and {bm(t)} satisfy a number of interesting properties, as

described by Makhoul (1978). Most important of these are the orthogonality properties

E[bm(t)bn(t)] = Emδmn

E[ fm(t + m) fn(t + n)] = Emδmn
(10.4–45)

Furthermore, the cross correlation between fm(t) and bn(t) is

E[ fm(t)bn(t)] =
{

annEm m ≥ n
0 m < n

m, n ≥ 0 (10.4–46)

As a consequence of the orthogonality properties of the residuals, the different
sections of the lattice exhibit a form of independence that allows us to add or delete
one or more of the last stages without affecting the parameters of the remaining stages.
Since the residual mean square error Em decreases monotonically with the number of
sections, Em can be used as a performance index in determining where the lattice should
be terminated.

From the above discussion, we observe that a linear prediction filter can be im-
plemented either as a linear transversal filter or as a lattice filter. The lattice filter is
order-recursive, and, as a consequence, the number of sections it contains can be easily
increased or decreased without affecting the parameters of the remaining sections. In
contrast, the coefficients of a transversal filter obtained on the basis of the RLS criterion
are interdependent. This means that an increase or a decrease in the size of the filter
results in a change in all coefficients. Consequently, the Kalman algorithm described
in Section 10.4–1 is recursive in time but not in order.

Based on least-squares optimization, RLS lattice equalization algorithms have
been developed whose computational complexity grows linearly with the number N
of filter coefficients (lattice stages). Hence, the lattice equalizer structure is compu-
tationally competitive with the direct-form fast RLS equalizer algorithms. For exam-
ple, Figure 10.4–3 illustrates the computational complexity (number of multiplications
and divisions per output symbol) of transversal and lattice, symbol-spaced DFE filter
structures. Observe that for equalizer lengths of fewer than 10 taps, the difference in
computational complexity among the different structures and algorithms is relatively
small. However, as the number of taps increases, the lattice RLS algorithm and the fast
(transversal) RLS algorithm are significantly less complex than the conventional and
square-root RLS algorithms. Of course, all the RLS algorithms are computationally
more complex than the LMS algorithm. RLS lattice algorithms are described in the
papers by Morf (1977), Morf and Lee (1978), and Morf et al. (1977a,b,c), Satorius and
Alexander (1979), Satorius and Pack (1981), Ling and Proakis (1982, 1984c, 1985,
1986) and in the books by Proakis et al. (2002) and Haykin (2002).
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FIGURE 10.4–3
Computational complexity of DFE algorithms.
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FIGURE 10.4–4
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RLS lattice algorithms have the distinct feature of being numerically robust to
round-off error inherent in digital implementations of the algorithms. A treatment of
their numerical properties may be found in the papers by Ling and Proakis (1984a) and
Ling et al. (1986a,b).

Figure 10.4–4 illustrater the different types of linear and nonlinear equalizers the
corresponding structures for their implementation, and the adaptive algorithms that
may be used to adjust the equalizer coefficients.

10.5
SELF-RECOVERING (BLIND) EQUALIZATION

In the conventional zero-forcing or minimum MSE equalizers, we assumed that a known
training sequence is transmitted to the receiver for the purpose of initially adjusting
the equalizer coefficients. However, there are some applications, such as multipoint
communication networks, where it is desirable for the receiver to synchronize to the
received signal and to adjust the equalizer without having a known training sequence
available. Equalization techniques based on initial adjustment of the coefficients without
the benefit of a training sequence are said to be self-recovering or blind.

Beginning with the paper by Sato (1975), three different classes of adaptive blind
equalization algorithms have been developed over the past three decades. One class of
algorithms is based on steepest descent for adaptation of the equalizer. A second class
of algorithms is based on the use of second- and higher-order (generally, fourth-order)
statistics of the received signal to estimate the channel characteristics and to design
the equalizer. More recently, a third class of blind equalization algorithms based on
the maximum-likelihood criterion have been investigated. In this section, we briefly
describe these approaches and give several relevant references to the literature.

10.5–1 Blind Equalization Based on the Maximum-Likelihood Criterion

It is convenient to use the equivalent, discrete-time channel model described in Sec-
tion 9.3–2. Recall that the output of this channel model with ISI is

vn =
L∑

k=0

fk In−k + ηn (10.5–1)

where { fk} are the equivalent discrete-time channel coefficients, {In} represents the
information sequence, and {ηn} is a white Gaussian noise sequence.

For a block of N received data points, the (joint) probability density function of
the received data vector v = [v1 v2 · · · vN ]t conditioned on knowing the impulse
response vector f = [ f0 f1 · · · fL ]t and the data vector I = [I1 I2 · · · IN ]t is

p(v| f , I) = 1

(2πσ 2)N
exp

⎛
⎝− 1

2σ 2

N∑
n=1

∣∣∣∣∣vn −
L∑

k=0

fk In−k

∣∣∣∣∣
2
⎞
⎠ (10.5–2)
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The joint maximum-likelihood estimates of f and I are the values of these vectors
that maximize the joint probability density function p(v| f , I) or, equivalently, the
values of f and I that minimize the term in the exponent. Hence, the ML solution is
simply the minimum over f and I of the metric

DM(I, f ) =
N∑

n=1

∣∣∣∣∣vn −
L∑

k=0

fk In−k

∣∣∣∣∣
2

= ‖v − A f ‖2

(10.5–3)

where the matrix A is called the data matrix and is defined as

A =

⎡
⎢⎢⎢⎢⎢⎣

I1 0 0 . . . 0
I2 I1 0 . . . 0
I3 I2 I1 . . . 0
...

...
...

...

IN IN−1 IN−2 . . . IN−L

⎤
⎥⎥⎥⎥⎥⎦

(10.5–4)

We make several observations. First of all, we note that when the data vector I
(or the data matrix A) is known, as is the case when a training sequence is available
at the receiver, the ML channel impulse response estimate obtained by minimizing
Equation 10.5–3 over f is

f M L (I) = (AH A)−1 AHv (10.5–5)

On the other hand, when the channel impulse response f is known, the optimum
ML detector for the data sequence I performs a trellis search (or tree search) by utilizing
the Viterbi algorithm for the ISI channel.

When neither I nor f are known, the minimization of the performance index
DM(I, f ) may be performed jointly over I and f . Alternatively, f may be estimated
from the probability density function p(v| f ), which may be obtained by averaging
p(v, f |I) over all possible data sequences. That is,

p(v| f ) =
∑

m

p(v, I (m)| f )

=
∑

m

p(v|I (m), f )P(I (m))
(10.5–6)

where P(I (m)) is the probability of the sequence I = I (m), for m = 1, 2, . . . , M N , and
M is the size of the signal constellation.

Channel estimation based on average over data sequences As indicated in the
above discussion, when both I and f are unknown, one approach is to estimate the
impulse response f after averaging the probability density p(v, I | f ) over all possible
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data sequences. Thus, we have

p(v| f ) =
∑

m

p(v|I (m), f )P(I (m))

=
∑

m

[
1

(2πσ 2)N
exp

(
−‖v − A(m) f ‖2

2σ 2

)]
P(I (m))

(10.5–7)

Then, the estimate of f that maximizes p(v| f ) is the solution of the equation

∂p(v| f )

∂ f
=

∑
m

P(I (m)) ·

(10.5–8)
(A(m)H A(m) f − A(m)Hv) exp

(
−‖v − A(m) f ‖2

2σ 2

)
= 0

Hence, the estimate of f may be expressed as

f =
[∑

m

P(I (m))A(m)H A(m)g(v, A(m), f )

]−1

×
∑

m

P(I (m))g(v, A(m), f )A(m)Hv

(10.5–9)

where the function g(v, A(m), f ) is defined as

g(v, A(m), f ) = exp

(
−‖v − A(m) f ‖2

2σ 2

)
(10.5–10)

The resulting solution for the optimum f is denoted by f ML.
Equation 10.5–9 is a non-linear equation for the estimate of the channel impulse re-

sponse, given the received signal vector v. It is generally difficult to obtain the optimum
solution by solving Equation 10.5–9 directly. On the other hand, it is relatively simple to
devise a numerical method that solves for f M L recursively. Specifically, we may write

f (k+1) =
[∑

m

P(I (m))A(m)H A(m)g(v, A(m), f (k))

]−1

×
∑

m

P(I (m))g(v, A(m), f (k))A(m)Hv

(10.5–11)

Once f M L is obtained from the solution of Equation 10.5–9 or 10.5–11, we may simply
use the estimate in the minimization of the metric DM(I, f M L ), given by Equation
10.5–3, over all the possible data sequences. Thus, I M L is the sequence I that minimizes
DM(I, f M L ), i.e.,

min
I

DM(I, f M L ) = min
I

‖v − A f M L‖2 (10.5–12)

We know that the Viterbi algorithm is the computationally efficient algorithm for per-
forming the minimization of DM(I, f M L ) over I .
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This algorithm has two major drawbacks. First, the recursion for f L M given by
Equation 10.5–11 is computationally intensive. Second, and, perhaps, more importantly,
the estimate f M L is not as good as the maximum-likelihood estimate f M L (I) that is
obtained when the sequence I is known. Consequently, the error rate performance of
the blind equalizer (the Viterbi algorithm) based on the estimate f M L is poorer than
that based on f M L (I). Next, we consider joint channel and data estimation.

Joint channel and data estimation Here, we consider the joint optimization of
the performance index DM(I, f ) given by Equation 10.5–3. Since the elements of the
impulse response vector f are continuous and the elements of the data vector I are
discrete, one approach is to determine the maximum-likelihood estimate of f for each
possible data sequence and, then, to select the data sequence that minimizes DM(I, f )
for each corresponding channel estimate. Thus, the channel estimate corresponding to
the mth data sequence I (m) is

f M L (I (m)) = (A(m)t A(m))−1 A(m)tv (10.5–13)

For the mth data sequence, the metric DM(I, f ) becomes

DM
[
I (m), f M L (I (m))

] = ‖v − A(m) f M L (I (m))‖2 (10.5–14)

Then, from the set of M N possible sequences, we select the data sequence that minimizes
the cost function in Equation 10.5–14, i.e., we determine

min
I (m)

DM
[
I (m), f M L (I (m))

]
(10.5–15)

The approach described above is an exhaustive computational search method with
a computational complexity that grows exponentially with the length of the data block.
We may select N = L +1, and, thus, we shall have one channel estimate for each of the
M L surviving sequences. Thereafter, we may continue to maintain a separate channel
estimate for each surviving path of the Viterbi algorithm search through the trellis. This
approach to joint channel and data estimation has been called per-survivor processing
by Raheli et al. (1995).

A similar approach has been proposed by Seshadri (1994). In essence, Seshadri’s
algorithm is a type of generalized Viterbi algorithm (GVA) that retains K ≥ 1 best esti-
mates of the transmitted data sequence into each state of the trellis and the corresponding
channel estimates. In Seshadri’s GVA, the search is identical to the conventional Viterbi
algorithm (VA) from the beginning up to the Lth stage of the trellis, i.e., up to the point
where the received sequence (v1, v2, . . . , vL ) has been processed. Hence, up to the Lth
stage, an exhaustive search is performed. Associated with each data sequence I (m),
there is a corresponding channel estimate f M L (I (m)). From this stage on, the search is
modified, to retain K ≥ 1 surviving sequences and associated channel estimates per
state instead of only one sequence per state. Thus, the GVA is used for processing the
received signal sequence {vn, n ≥ L + 1}. The channel estimate is updated recursively
at each stage using the LMS algorithm to further reduce the computational complex-
ity. Simulation results given in the paper by Seshadri (1994) indicate that this GVA
blind equalization algorithm performs rather well at moderate signal-to-noise ratios
with K = 4. Hence, there is a modest increase in the computational complexity of the
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GVA compared with that for the conventional VA. However, there are additional com-
putations involved with the estimation and updating of the channel estimates f (I (m))
associated with each of the surviving data estimates.

An alternative joint estimation algorithm that avoids the least-squares computation
for channel estimation has been devised by Zervas et al. (1991). In this algorithm,
the order for performing the joint minimization of the performance index DM(I, f )
is reversed. That is, a channel impulse response, say f = f (1), is selected and then
the conventional VA is used to find the optimum sequence for this channel impulse
response. Then, we may modify f (1) in some manner to f (2) = f (1) + � f (1) and
repeat the optimization over the data sequences {I (m)}.

Based on this general approach, Zervas et al. developed a new ML blind equalization
algorithm, which is called a quantized-channel algorithm. The algorithm operates over
a grid in the channel space, which becomes finer and finer by using the ML criterion
to confine the estimated channel in the neighborhood of the original unknown channel.
This algorithm leads to an efficient parallel implementation, and its storage requirements
are only those of the VA.

10.5–2 Stochastic Gradient Algorithms

Another class of blind equalization algorithms are stochastic-gradient iterative equal-
ization schemes that apply a memoryless non-linearity in the output of a linear FIR
equalization filter in order to generate the “desired response” in each iteration.

Let us begin with an initial guess of the coefficients of the optimum equalizer, which
we denote by {cn}. Then, the convolution of the channel response with the equalizer
response may be expressed as

{cn} � { fn} = {δn} + {en} (10.5–16)

where {δn} is the unit sample sequence and {en} denotes the error sequence that results
from our initial guess of the equalizer coefficients. If we convolve the equalizer impulse
response with the received sequence {vn}, we obtain

{ Î n} = {vn} � {cn}
= {In} � { fn} � {cn} + {ηn} � {cn}
= {In} � ({δn} + {en}) + {ηn} � {cn}
= {In} + {In} � {en} + {ηn} � {cn}

(10.5–17)

In Equation 10.5–17 the term {In} represents the desired data sequence, the term
{In} � {en} represents the residual ISI, and the term {ηn} � {cn} represents the additive
noise. Our problem is to utilize the deconvolved sequence { Î n} to find the “best” estimate
of a desired response, denoted in general by {dn}. In the case of adaptive equalization
using a training sequence, {dn} = {In}. In a blind equalization mode, we shall generate
a desired response from { Î n}.

The mean square error (MSE) criterion may be employed to determine the “best”
estimate of {In} from the observed equalizer output { În}. Since the transmitted sequence
{In} has a non-Gaussian PDF, the MSE estimate is a non-linear transformation of { În}.
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FIGURE 10.5–1
Adaptive blind equalization with stochastic
gradient algorithms.

In general, the best estimate {dn} is given by

dn = g( Î n) (memoryless)

dn = g( Î n, Î n−1, . . . , Î n−m) (mth-order memory)
(10.5–18)

where g( ) is a non-linear function. The sequence {dn} is then used to generate an error
signal, which is fed back into the adaptive equalization filter, as shown in Figure 10.5–1.
Let us consider the nonlinear function based on the MSE criterion.

A well-known classical estimation problem is the following. If the equalizer output
Î n is expressed as

Î n = In + η̃n (10.5–19)

where η̃n is assumed to be zero-mean Gaussian (the central limit theorem may be
invoked here for the residual ISI and the additive noise), {In} and {η̃n} are statistically
independent, and {In} are statistically independent and identically distributed random
variables, then the MSE estimate of {In} is

dn = E(In| Î n) (10.5–20)

which is a non-linear function of the equalizer output when {In} is non-Gaussian.
Table 10.5–1 illustrates the general form of existing blind equalization algorithms

that are based on LMS adaptation. We observe that the basic difference among these
algorithms lies in the choice of the memoryless non-linearity. The most widely used
algorithm in practice is the Godard algorithm, sometimes also called the constant-
modulus algorithm (CMA).

It is apparent from Table 10.5–1 that the output sequence {dn} obtained by taking
a non-linear function of the equalizer output plays the role of the desired response or
a training sequence. It is also apparent that these algorithms are simple to implement,
since they are basically LMS-type algorithms. As such, we expect that the convergence
characteristics of these algorithms will depend on the autocorrelation matrix of the
received data {vn}.

With regard to convergence, the adaptive LMS-type algorithms converge in the
mean when

E
[
vng∗( În)

]
= E

[
vn Î ∗

n

]
(10.5–21)
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TABLE 10.5–1

Stochastic Gradient Algorithms for Blind Equalization

Equalizer tap coefficients {cn, 0 ≤ n ≤ N − 1}
Received signal sequence {vn}
Equalizer output sequence { Î n} = {vn} � {cn}
Equalizer error sequence {en} = g( Î n) − Î n

Tap coefficient update equation cn+1 = cn + �v∗
nen

Algorithm Non-linearity: g( Ĩn)

Godard
Î n

| Ĩ n |
(| Ĩ n | + R2| Î n | − | În |3), R2 = E{|In |4}

E{|In |2}
Sato ζcsgn( Î n), ζ = E{[Re(In)]2}

E{|Re(In)|}
Benveniste–Goursat Î n + k1( Î n − In) + k2| Î n − Ĩ n |[ζ csgn ( Î n) − Ĩ n],

k1 and k2 are positive constants

Stop-and-go Î n + 1
2 A( Î n − Ĩ n) + 1

2 B( Î n − Ĩn)∗, (A, B) = (2, 0), (1, 1),
(1, −1), or (0, 0), depending on the signs of decision-directed
error Î n − Ĩ n and the error ζ csgn ( Î n) − Ĩ n

and, in the mean square sense, when

E
[
C H

n vng∗( În)
] = E

[
C H

n vn Î ∗
n

]
E

[
Îng∗( În)

] = E
[| În|2

] (10.5–22)

Therefore, it is required that the equalizer output { În} satisfy Equation 10.5–22.
Note that Equation 10.5–22 states that the autocorrelation of { În} (the right-hand side)
equals the cross correlation between În and a non-linear transformation of În (left-hand
side). Processes that satisfy this property are called Bussgang (1952), as named by
Bellini (1986). In summary, the algorithms given in Table 10.5–1 converge when the
equalizer output sequence În satisfies the Bussgang property.

The basic limitation of stochastic gradient algorithms is their relatively slow con-
vergence. Some improvement in the convergence rate can be achieved by modifying
the adaptive algorithms from LMS-type to RLS-type.

Godard algorithm The Godard blind equalization algorithm is a steepest-descent
algorithm that is widely used in practice when a training sequence is not available.
Let us describe this algorithm in more detail, assuming a general QAM signal
constellation.

Godard considered the problem of combined equalization and carrier phase re-
covery and tracking. The carrier phase tracking is performed at baseband, following
the equalizer as shown in Figure 10.5–2. Based on this structure, we may express the
equalizer output as

Îk =
K∑

n=−K

cnvk−n (10.5–23)
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FIGURE 10.5–2
Godard scheme for combined adaptive (blind) equalization and carrier phase tracking.

and the input to the decision device as Î n exp(− j φ̂k), where φ̂k is the carrier phase
estimate in the kth symbol interval.

If the desired symbol were known, we could form the error signal

εk = Ik − Î ke− j φ̂k (10.5–24)

and minimize the MSE with respect to φ̂k and {cn}, i.e.,

min
φ̂k ,C

E
(|Ik − Î ke− j φ̂k |2) (10.5–25)

This criterion leads us to use the LMS algorithm for recursively estimating C and φk .
The LMS algorithm based on knowledge of the transmitted sequence is

Ĉk+1 = Ĉk + �c
(

Ik − Î ke− j φ̂k
)
V ∗

ke j φ̂k (10.5–26)

φ̂k+1 = φ̂k + �φIm
(

Ik Î ∗
ke j φ̂k

)
(10.5–27)

where �c and �φ are the step-size parameters for the two recursive equations. Note
that these recursive equations are coupled together. Unfortunately, these equations will
not converge, in general, when the desired symbol sequence {Ik} is unknown.

The approach proposed by Godard is to use a criterion that depends on the amount
of intersymbol interference at the output of the equalizer but one that is independent of
the QAM signal constellation and the carrier phase. For example, a cost function that
is independent of carrier phase and has the property that its minimum leads to a small
MSE is

G(p) = E
(| Î k |p − |Ik |p)2 (10.5–28)

where p is a positive and real integer. Minimization of G(p) with respect to the equalizer
coefficients results in the equalization of the signal amplitude only. Based on this
observation, Godard selected a more general cost function, called the dispersion of
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order p, defined as

D(p) = E
(| Î k |p − Rp

)2 (10.5–29)

where Rp is a positive real constant. As in the case of G(p), we observe that D(p) is
independent of the carrier phase.

Minimization of D(p) with respect to the equalizer coefficients can be performed
recursively according to the steepest-descent algorithm

Ck+1 = Ck − �p
d D(p)

dCk
(10.5–30)

where �p is the step-size parameter. By differentiating D(p) and dropping the expecta-
tion operation, we obtain the following LMS-type algorithm for adjusting the equalizer
coefficients:

Ĉk+1 = Ĉk + �p V ∗
k Î k | Î k |p−2(Rp − | Î k |p) (10.5–31)

where �p is the step-size parameter and the optimum choice of Rp is

Rp = E
(|Ik |2p

)
E

(|Ik |p
) (10.5–32)

As expected, the recursion in Equation 10.5–31 for Ĉk does not require knowledge
of the carrier phase. Carrier phase tracking may be carried out in a decision-directed
mode according to Equation 10.5–27, with Ĩ k substituted in place of Ik .

Of particular importance is the case p = 2, which leads to the relatively simple
algorithm

Ĉk+1 = Ĉk + �p V ∗
k Î k

(
R2 − | Î k |2

)
φ̂k+1 = φ̂k + �φ Im

(
Ĩ k Î ∗

ke j φ̂k
) (10.5–33)

where Ĩ k is the output decision based on Î k , and

R2 = E
(|Ik |4

)
E

(|Ik |2
) (10.5–34)

Convergence of the algorithm given in Equation 10.5–33 is demonstrated in the
paper by Godard (1980). Initially, the equalizer coefficients are set to zero except for
the center (reference) tap, which is set according to the condition

|c0|2 >
E |Ik |4

2|x0|2
[
E(|Ik |2)

]2 (10.5–35)

which is sufficient, but not necessary, for convergence of the algorithm. Simulation
results performed by Godard on simulated telephone channels with typical frequency-
response characteristics and transmission rates of 7200–12,000 bits/s indicate that the
algorithm in Equation 10.5–31 performs well and leads to convergence in 5000–20,000
iterations, depending on the signal constellation. Initially, the eye pattern was closed
prior to equalization. The number of iterations required for convergence is about an
order of magnitude greater than the number required to equalize the channels with
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a known training sequence. No apparent difficulties were encountered in using the
decision-directed phase estimation algorithm in Equation 10.5–33 from the beginning
of the equalizer adjustment process.

10.5–3 Blind Equalization Algorithms Based on Second- and Higher-Order
Signal Statistics

It is well known that second-order statistics (autocorrelation) of the received signal
sequence provide information on the magnitude of the channel characteristics, but not
on the phase. However, this statement is not correct if the autocorrelation function of
the received signal is periodic, as is the case for a digitally modulated signal. In such
a case, it is possible to obtain a measurement of the amplitude and the phase of the
channel from the received signal. This cyclostationarity property of the received signal
forms the basis for a channel estimation algorithm devised by Tong et al. (1994, 1995).

It is also possible to estimate the channel response from the received signal by using
higher-order statistical methods. In particular, the impulse response of a linear, discrete-
time-invariant system can be obtained explicitly from cumulants of the received signal,
provided that the channel input is non-Gaussian. We describe the following simple
method, due to Giannakis (1987) and Giannakis and Mendel (1989) for estimation
of the channel impulse response from fourth-order cumulants of the received signal
sequence. For simplicity, we assume that the received signal sequence is real-valued.
The fourth-order cumulant is defined as

c(vk, vk+m, vk+n, vk+l) ≡ cr (m, n, l)

= E(vkvk+mvk+nvk+l)

− E(vk vk+m)E(vk+nvk+l)

− E(vk vk+n)E(vk+mvk+l)

− E(vk vk+l)E(vk+mvk+n)

(10.5–36)

(The fourth-order cumulant of a Gaussian signal process is zero.) Consequently, it
follows that

cr (m, n, l) = c(Ik, Ik+m, Ik+n, Ik+l)
∞∑

k=0

fk fk+m fk+n fk+l (10.5–37)

For a statistically independent and identically distributed input sequence {In} to
the channel, c(Ik, Ik+m, Ik+n, Ik+l) = k, a constant, which is called the kurtosis. Then,
if the length of the channel response is L + 1, we may let m = n = l = −L so that

cr (−L , −L , −L) = k fL f 3
0 (10.5–38)

Similarly, if we let m = 0, n = L , and l = p, we obtain

cr (0, L , p) = k fL f 2
0 f p (10.5–39)
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If we combine Equations 10.5–38 and 10.5–39, we obtain the impulse response within
a scale factor as

f p = f0
cr (0, L , p)

cr (−L , −L , −L)
, p = 1, 2, . . . , L (10.5–40)

The cumulants cr (m, n, l) are estimated from sample averages of the received signal
sequence {vn}.

Another approach based on higher-order statistics is due to Hatzinakos and Nikias
(1991). They have introduced the first polyspectra-based adaptive blind equalization
method named the tricepstrum equalization algorithm (TEA). This method estimates
the channel response characteristics by using the complex cepstrum of the fourth-
order cumulants (tricepstrum) of the received signal sequence {vn}. TEA depends
only on fourth-order cumulants of {vn} and is capable of separately reconstructing
the minimum-phase and maximum-phase characteristics of the channel. The channel
equalizer coefficients are then computed from the measured channel characteristics.
The basic approach used in TEA is to compute the tricepstrum of the received sequence
{vn}, which is the inverse (three-dimensional) Fourier transform of the logarithm of the
trispectrum of {vn}. [The trispectrum is the three-dimensional discrete Fourier trans-
form of the fourth-order cumulant sequence cr (m, n, l).] The equalizer coefficients are
then computed from the cepstral coefficients.

By separating the channel estimation from the channel equalization, it is possible
to use any type of equalizer for the ISI, i.e., either linear, or decision-feedback, or
maximum-likelihood sequence detection. The major disadvantage with this class of al-
gorithms is the large amount of data and the inherent computational complexity involved
in the estimation of the higher-order moments (cumulants) of the received signal.

In conclusion, we have provided an overview of three classes of blind equalization
algorithms that find applications in digital communications. Of the three families of
algorithms described, those based on the maximum-likelihood criterion for jointly
estimating the channel impulse response and the data sequence are optimal and require
relatively few received signal samples for performing channel estimation. However,
the computational complexity of the algorithms is large when the ISI spans many
symbols. On some channels, such as the mobile radio channel, where the span of the
ISI is relatively short, these algorithms are simple to implement. However, on telephone
channels, where the ISI spans many symbols but is usually not too severe, the LMS-type
(stochastic gradient) algorithms are generally employed.

10.6
BIBLIOGRAPHICAL NOTES AND REFERENCES

Adaptive equalization for digital communications was developed by Lucky (1965,
1966). His algorithm was based on the peak distortion criterion and led to the zero-
forcing algorithm. Lucky’s work was a major breakthrough, which led to the rapid
development of high-speed modems within 5 years of publication of his work. Concur-
rently, the LMS algorithm was devised by Widrow (1966, 1970), and its use for adaptive
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equalization for two-dimensional (in-phase and quadrature components) signals was
described and analyzed in a tutorial paper by Proakis and Miller (1969).

A tutorial treatment of adaptive equalization algorithms that were developed during
the period 1965–1975 is given by Proakis (1975). A more recent tutorial treatment of
adaptive equalization is given in the paper by Qureshi (1985). The major breakthrough
in adaptive equalization techniques, beginning with the work of Lucky in 1965 coupled
with the development of trellis-coded modulation, which was described by Ungerboeck
and Csajka (1976), has led to the development of commercially available high-speed
modems with a capability of speeds exceeding 30,000 bits/s on telephone channels.

The use of a more rapidly converging algorithm for adaptive equalization was pro-
posed by Godard (1974). Our derivation of the RLS (Kalman) algorithm, described
in Section 10.4–1, follows the approach outlined by Picinbono (1978). RLS lattice
algorithms for general signal estimation applications were developed by Morf (1977),
Morf and Lee (1978), and Morf et al. (1977a,b,c). The applications of these algorithms
have been investigated by several researchers, including Makhoul (1978), Satorius and
Pack (1981), Satorius and Alexander (1979), and Ling and Proakis (1982, 1984a–c,
1985, 1986). The fast RLS Kalman algorithm for adaptive equalization was first de-
scribed by Falconer and Ljung (1978). The above references are just a few of the
important papers that have been published on RLS algorithms for adaptive equalization
and other applications. A comprehensive treatment of RLS algorithms is given in the
books by Haykin (2002) and Proakis et al. (2002).

Sato’s (1975) original work on blind equalization was focused on PAM (one-
dimensional) signal constellations. Subsequently it was generalized to two-dimensional
and multidimensional signal constellations in the algorithms devised by Godard (1980),
Benveniste and Goursat (1984), Sato et al. (1986), Foschini (1985), Picchi and Prati
(1987), and Shalvi and Weinstein (1990). Blind equalization methods based on the use
of second- and higher-order moments of the received signal were proposed by Giannakis
(1987), Giannakis and Mendel (1989), Hatzinakos and Nikias (1991), and Tong et al.
(1994, 1995). The use of the maximum-likelihood criterion for joint channel estimation
and data detection has been investigated and treated in papers by Sato (1994), Seshadri
(1994), Ghosh and Weber (1991), Zervas et al. (1991), and Raheli et al. (1995). Finally,
the convergence characteristics of stochastic gradient blind equalization algorithms
have been investigated by Ding (1990), Ding et al. (1989), and Johnson (1991).

PROBLEMS

10.1 An equivalent discrete-time channel with white Gaussian noise is shown in Figure P10.1
a. Suppose we use a linear equalizer to equalize the channel. Determine the tap coeffi-

cients c−1, c0, c1 of a three-tap equalizer. To simplify the computation, let the AWGN
be zero.

b. The tap coefficients of the linear equalizer in (a) are determined recursively via the
algorithm

Ck+1 = Ck − �Gk, Ck = [c−1k c0k c1k]t
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where Gk = Γ Ck − ξ is the gradient vector and � is the step size. Determine the
range of values of � to ensure convergence of the recursive algorithm. To simplify
the computation, let the AWGN be zero.

c. Determine the tap weights of a DFE with two feedforward taps and one feedback tap.
To simplify the computation, let the AWGN be zero.

FIGURE P10.1

10.2 Refer to Problem 9.49 and answer the following questions.
a. Determine the maximum value of � that can be used to ensure that the equalizer

coefficients converge during operation in the adaptive mode.
b. What is the variance of the self-noise generated by the three-tap equalizer when

operating in an adaptive mode, as a function of �? Suppose it is desired to limit
the variance of the self-noise to 10 percent of the minimum MSE for the three-tap
equalizer when N0 = 0.1. What value of � would you select?

c. If the optimum coefficients of the equalizer are computed recursively by the method
of steepest descent, the recursive equation can be expressed in the form

Cn+1 = (I − �Γ )Cn + �ξ

where I is the identity matrix. The above represents a set of three coupled first-
order difference equations. They can be decoupled by a linear transformation that
diagonalizes the matrix Γ. That is, Γ = UΛU t where Λ is the diagonal matrix
having the eigenvalues of Γ as its diagonal elements and U is the (normalized) modal
matrix that can be obtained from your answer to Problem 9.49(b). Let C ′ = U t C and
determine the steady-state solution for C ′. From this, evaluate C = (U t )−1C ′ = UC ′
and, thus, show that your answer agrees with the result obtained in Problem 9.49(a).

10.3 When a periodic pseudorandom sequence of length N is used to adjust the coefficients of
an N -tap linear equalizer, the computations can be performed efficiently in the frequency
domain by use of the discrete Fourier transform (DFT). Suppose that {yn} is a sequence of
N received samples (taken at the symbol rate) at the equalizer input. Then the computation
of the equalizer coefficients is performed as follows.
a. Compute the DFT of one period of the equalizer input sequence {yn}, i.e.,

Yk =
N−1∑
n=0

yne− j2πnk/N
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b. Compute the desired equalizer spectrum

Ck = XkY ∗
k

|Yk |2 , k = 0, 1, . . . , N − 1

where {Xi } is the precomputed DFT of the training sequence.
c. Compute the inverse DFT of {Ck} to obtain the equalizer coefficients {cn}. Show that

this procedure in the absence of noise yields an equalizer whose frequency response
is equal to the frequency response of the inverse folded channel spectrum at the N
uniformly spaced frequencies fk = k/N T , k = 0, 1, . . . , N − 1.

10.4 Show that the gradient vector in the minimization of the MSE may be expressed as

Gk = −E(εk V ∗
k )

where the error εk = Ik − Î k , and the estimate of Gk , i.e.,

Ĝk = −εk V ∗
k

satisfies the condition that E(Ĝk) = Gk .

10.5 The tap-leakage LMS algorithm proposed in the paper by Gitlin et al. (1982) may be
expressed as

C N (n + 1) = wC N (n) + �ε(n)V ∗
N (n)

where 0 < w < 1, � is the step size, and V N (n) is the data vector at time n. Determine
the condition for the convergence of the mean value of C N (n).

10.6 Consider the random process

x(n) = gv(n) + w(n), n = 0, 1, . . . , M − 1

where v(n) is a known sequence, g is a random variable with E(g) = 0, and E(g2) = G.
The process w(n) is a white noise sequence with

γww(m) = σ 2
wδm

Determine the coefficients of the linear estimator for g, that is,

ĝ =
M−1∑
n=0

h(n)x(n)

that minimize the mean square error.

10.7 A digital transversal filter can be realized in the frequency-sampling form with system
function (see Problem 9.56)

H (z) = 1 − z−M

M

M−1∑
k=0

Hk

1 − e j2πk/M z−1

= H1(z)H2(z)

where H1(z) is the comb filter, H2(z) is the parallel bank of resonators, and {Hk} are the
values of the discrete Fourier transform (DFT).
a. Suppose that this structure is implemented as an adaptive filter using the LMS algo-

rithm to adjust the filter (DFT) parameters {Hk}. Give the time-update equation for
these parameters. Sketch the adaptive filter structure.
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b. Suppose that this structure is used as an adaptive channel equalizer in which the desired
signal is

d(n) =
M−1∑
k=0

Ak cos ωkn, ωk = 2πk

M

With this form for the desired signal, what advantages are there in the LMS adaptive
algorithm for the DFT coefficients {Hk} over the direct-form structure with coefficients
{h(n)}? [See Proakis (1970).]

10.8 Consider the performance index

J = h2 + 40h + 28

Suppose that we search for the minimum of J by using the steepest-descent algorithm

h(n + 1) = h(n) − 1
2�g(n)

where g(n) is the gradient.
a. Determine the range of values of � that provides an overdamped system for the

adjustment process.
b. Plot the expression for J as a function of n for a value of � in this range.

10.9 Determine the coefficients a1 and a2 for the linear predictor shown in Figure P10.9, given
that the autocorrelation γxx (m) of the input signal is

yxx (m) = b|m|, 0 < b < 1

FIGURE P10.9

10.10 Determine the lattice filter and its optimum reflection coefficients corresponding to the
linear predictor in Problem 10.9.

10.11 Consider the adaptive FIR filter shown in Figure P10.11. The system C(z) is characterized
by the system function

C(z) = 1

1 − 0.9z−1

Determine the optimum coefficients of the adaptive transversal (FIR) filter B(z) = b0 +
b1z−1 that minimize the mean square error. The additive noise is white with variance
σ 2

w = 0.1.
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FIGURE P10.11

10.12 An N × N correlation matrix Γ has eigenvalues λ1 > λ2 > · · · > λN > 0 and associated
eigenvectors v1, v2, . . . , vN . Such a matrix can be represented as

Γ =
N∑

i=1

λiviv
H
i

a. If Γ = Γ 1/2Γ 1/2, where Γ 1/2 is the square root of Γ , show that Γ 1/2 can be represented
as

Γ 1/2 =
N∑

i=1

λ
1/2
i viv

H
i

b. Using this representation, determine a procedure for computing Γ 1/2.
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Multichannel and Multicarrier Systems

In some applications, it is desirable to transmit the same information-bearing signal
over several channels. This mode of transmission is used primarily in situations where
there is a high probability that one or more of the channels will be unreliable from
time to time. For example, radio channels such as ionospheric scatter and tropospheric
scatter suffer from signal fading due to multipath, which renders the channels unreliable
for short periods of time. As another example, multichannel signaling is sometimes
employed in wireless communication systems as a means of overcoming the effects
of interference of the transmitted signal. By transmitting the same information over
multiple channels, we are providing signal diversity, which the receiver can exploit to
recover the information.

Another form of multichannel communications is multiple carrier transmission,
where the frequency band of the channel is subdivided into a number of subchannels
and information is transmitted on each of the subchannels. A rationale for subdividing
the frequency band of a channel into a number of narrowband channels is given below.

In this chapter, we consider both multichannel signal transmission and multicarrier
transmission. The focus is on the performance of such systems in AWGN channels.
The performance of multichannel and multicarrier transmission in fading channels is
treated in Chapter 13. We begin with a treatment of multichannel transmission.

11.1
MULTICHANNEL DIGITAL COMMUNICATIONS IN AWGN CHANNELS

In this section, we confine our attention to multichannel signaling over fixed channels
that differ only in attenuation and phase shift. The specific model for the multichannel
digital signaling system is illustrated in Figure 11.1–1 and may be described as follows.
The signal waveforms, in general, are expressed as

s(n)
m (t) = Re

[
s(n)

lm (t)e j2π fct], 0 ≤ t ≤ T

n = 1, 2, . . . , L , m = 1, 2, . . . , M (11.1–1)

737
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TX-1 Channel-1 RX-1
s(1)(t)m

TX-2 Channel-2 RX-2
s(2)(t)m

TX-L Channel-L RX-L
s(L)(t)m

Signal
combiner

and
detector

Output decision

. . . 

. . . 

. . . 

FIGURE 11.1–1
Model of a multichannel digital communication system.

where L is the number of channels and M is the number of waveforms. The waveforms
are assumed to have equal energy and to be equally probable a priori. The waveforms{

s(n)
m (t)

}
transmitted over the L channels are scaled by the attenuation factors {αn},

phase-shifted by {φn}, and corrupted by additive noise. The equivalent low-pass signals
received from the L channels may be expressed as

r (n)
l (t) = αne jφn s(n)

lm (t) + zn(t), 0 ≤ t ≤ T

n = 1, 2, . . . , L , m = 1, 2, . . . , M (11.1–2)

where
{

s(n)
lm (t)

}
are the equivalent lowpass transmitted waveforms and {zn(t)} represent

the additive noise processes on the L channels. We assume that {zn(t)} are mutually
statistically independent and identically distributed Gaussian noise random processes.

We consider two types of processing at the receiver, namely, coherent detection
and noncoherent detection. The receiver for coherent detection estimates the channel
parameters {αn} and {φn} and uses the estimates in computing the decision variables.
Suppose we define gn = αne jφn and let ĝn be the estimate of gn . The multichannel
receiver correlates each of the L received signals with a replica of the corresponding
transmitted signals, multiplies each of the correlator outputs by the corresponding
estimates {ĝ∗

n}, and sums the resulting signals. Thus, the decision variables for coherent
detection are the correlation metrics

C Mm =
L∑

n=1

Re
[

ĝ∗
n

∫ T

0
r (n)

l (t)s(n)
lm

∗(t) dt
]

, m = 1, 2, . . . , M (11.1–3)

In noncoherent detection, no attempt is made to estimate the channel parameters.
The demodulator may base its decision either on the sum of the envelopes (envelope
detection) or the sum of the squared envelopes (square-law detection) of the matched
filter outputs. In general, the performance obtained with envelope detection differs little
from the performance obtained with square-law detection in AWGN. However, square-
law detection of multichannel signaling in AWGN channels is considerably easier
to analyze than envelope detection. Therefore, we confine our attention to square-
law detection of the received signals of the L channels, which produces the decision
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variables

C Mm =
L∑

n=1

∣∣∣∣
∫ T

0
r (n)

l (t)s(n)
lm

∗(t) dt

∣∣∣∣
2

, m = 1, 2, . . . , M (11.1–4)

Let us consider binary signaling first, and assume that s(n)
l1 (t), n = 1, 2, . . . , L , are the

L transmitted waveforms. Then an error is committed if C M2 > C M1, or, equivalently,
if the difference D = C M1 − C M2 < 0. For noncoherent detection, this difference
may be expressed as

D =
L∑

n=1

(|Xn|2 − |Yn|2
)

(11.1–5)

where the variables {Xn} and {Yn} are defined as

Xn =
∫ T

0
r (n)

l (t)s(n)
l1

∗(t) dt, n = 1, 2, . . . , L

Yn =
∫ T

0
r (n)

l (t)s(n)
l2

∗(t) dt, n = 1, 2, . . . , L

(11.1–6)

The {Xn} are mutually independent and identically distributed complex Gaussian ran-
dom variables. The same statement applies to the variables {Yn}. However, for any n,
Xn and Yn may be correlated. For coherent detection, the difference D = C M1 − C M2

may be expressed as

D = 1
2

L∑
n=1

(
XnY ∗

n + X∗
nYn

)
(11.1–7)

where, by definition,

Yn = ĝn, n = 1, 2, . . . , L

Xn =
∫ T

0
r (n)

l (t)
[
s(n)

l1
∗(t) − s(n)

l2
∗(t)

]
dt

(11.1–8)

If the estimates {ĝn} are obtained from observation of the received signal over one or
more signaling intervals, as described in Appendix C, their statistical characteristics
are described by the Gaussian distribution. Then the {Yn} are characterized as mutually
independent and identically distributed Gaussian random variables. The same statement
applies to the variables {Xn}. As in noncoherent detection, we allow for correlation
between Xn and Yn , but not between Xm and Yn for m �= n.

11.1–1 Binary Signals

In Appendix B, we derive the probability that the general quadratic form

D =
L∑

n=1

(
A|Xn|2 + B|Yn|2 + C XnY ∗

n + C∗ X∗
nYn

)
(11.1–9)
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in complex-valued Gaussian random variables is less than zero, where A and B are
real constants and C may be either a real or a complex-valued constant. This proba-
bility, which is given in Equation B–21 of Appendix B, is the probability of error for
binary multichannel signaling in AWGN. A number of special cases are of particular
importance.

If the binary signals are antipodal and the estimates of {gn} are perfect, as in
coherent PSK, the probability of error takes the simple form

Pb = Q(
√

2γb) (11.1–10)

where

γb = E
N0

L∑
n=1

|gn|2 = E
N0

L∑
n=1

α2
n (11.1–11)

is the SNR per bit. If the channels are all identical, αn = α for all n and, hence,

γb = LE
N0

α2 (11.1–12)

We observe that LE is the total transmitted signal energy for the L signals. The inter-
pretation of this result is that the receiver combines the energy from the L channels
in an optimum manner. That is, there is no loss in performance in dividing the total
transmitted signal energy among the L channels. The same performance is obtained as
in the case in which a single waveform having energy LE is transmitted on one channel.
This behavior holds true only if the estimates ĝn = gn , for all n. If the estimates are
not perfect, a loss in performance occurs, the amount of which depends on the quality
of the estimates, as described in Appendix C.

Perfect estimates for {gn} constitute an extreme case. At the other extreme, we
have binary DPSK signaling. In DPSK, the estimates {ĝn} are simply the (normalized)
signal-plus-noise samples at the outputs of the matched filters in the previous signaling
interval. This is the simplest estimate that one might consider using in estimating {gn}.
For binary DPSK, the probability of error obtained from Equation B–21 is

Pb = 1

22L−1
e−γb

L−1∑
n=0

cnγ
n
b (11.1–13)

where, by definition,

cn = 1

n!

L−1−n∑
k=0

(
2L − 1

k

)
(11.1–14)

and γb is the SNR per bit defined in Equation 11.1–11 and, for identical channels,
in Equation 11.1–12. This result can be compared with the single-channel (L = 1)
error probability. To simplify the comparison, we assume that the L channels have
identical attenuation factors. Thus, for the same value of γb, the performance of the
multichannel system is poorer than that of the single-channel system. That is, splitting
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the total transmitted energy among L channels results in a loss in performance, the
amount of which depends on L .

A loss in performance also occurs in square-law detection of orthogonal sig-
nals transmitted over L channels. For binary orthogonal signaling, the expression for
the probability of error is identical in form to that for binary DPSK given in Equa-
tion 11.1–13, except that γb is replaced by 1

2γb. That is, binary orthogonal signaling
with noncoherent detection is 3 dB poorer than binary DPSK. However, the loss in
performance due to noncoherent combination of the signals received on the L channels
is identical to that for binary DPSK.

Figure 11.1–2 illustrates the loss resulting from noncoherent (square-law) combin-
ing of the L signals as a function of L . The probability of error is not shown, but it can
be easily obtained from the curve of the expression

Pb = 1
2 e−γb (11.1–15)

which is the error probability of binary DPSK shown in Figure 4.5–5 and then degrad-
ing the required SNR per bit, γb, by the noncoherent combining loss corresponding to
the value of L .

11.1–2 M-ary Orthogonal Signals

Now let us consider M-ary orthogonal signaling with square-law detection and com-
bination of the signals on the L channels. The decision variables are given by Equa-
tion 11.1–4. Suppose that the signals s(n)

l1 (t), n = 1, 2, . . . , L , are transmitted over the

FIGURE 11.1–2
Combining loss in noncoherent detection and combination of binary multichannel signals.
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L AWGN channels. Then, the decision variables are expressed as

C M1 ≡ U1 =
L∑

n=1

|2Eαn + Nn1|2

C Mm ≡ Um =
L∑

n=1

|Nnm |2, m = 2, 3, . . . , M

(11.1–16)

where the {Nnm} are circular complex-valued zero-mean Gaussian random variables
with variance σ 2 = 2EN0 per real and imaginary component. Hence U1 is described
statistically as a noncentral chi-square random variable with 2L degrees of freedom
and noncentrality parameter

s2 =
L∑

n=1

(2Eαn)2 = 4E2
L∑

n=1

α2
n (11.1–17)

Using Equation 2.3–29, we obtain the PDF of U1 as

p(u1) = 1

4EN0

(
u1

s2

)(L−1)/2

exp

(
−s2 + u1

4EN0

)
IL−1

(
s
√

u1

2EN0

)
, u1 ≥ 0 (11.1–18)

On the other hand, the {Um}, m = 2, 3, . . . , M , are statistically independent and iden-
tically chi-square-distributed random variables, each having 2L degrees of freedom.
Using Equation 2.3–21, we obtain the PDF for Um as

p(um) = 1

(4EN0)L (L − 1)!
uL−1

m e−um/4EN0, um ≥ 0

m = 2, 3, . . . , M (11.1–19)

The probability of a symbol error is

Pe = 1 − Pc

= 1 − P(U2 < U1, U3 < U1, . . . , UM < U1)

= 1 −
∫ ∞

0
[P(U2 < u1|U1 = u1)]M−1 p(u1) du1

(11.1–20)

But

P(U2 < u1|U1 = u1) = 1 − exp
(

− u1

4EN0

) L−1∑
k=0

1

k!

(
u1

4EN0

)k

(11.1–21)

Hence,

Pe = 1 −
∫ ∞

0

[
1 − e−u1/4EN0

L−1∑
k=0

1

k!

(
u1

4EN0

)k
]M−1

p(u1) du1

= 1 −
∫ ∞

0

(
1 − e−v

L−1∑
k=0

vk

k!

)M−1 (
v

γ

)(L−1)/2

e−(γ+v) IL−1(2
√

γ v) dv

(11.1–22)
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where

γ = E
L∑

n=1

α2
n

N0

The integral in Equation 11.1–22 can be evaluated numerically. It is also possible
to expand the term (1 − x)M−1 in Equation 11.1–22 and carry out the integration term
by term. This approach yields an expression for Pe in terms of finite sums.

An alternative approach is to use the union bound

Pe < (M − 1)P2(L) (11.1–23)

where P2(L) is the probability of error in choosing between U1 and any one of the
M − 1 decision variables {Um}, m = 2, 3, . . . , M . From our previous discussion on
the performance of binary orthogonal signaling, we have

P2(L) = 1

22L−1
e−kγb/2

L−1∑
n=0

cn( 1
2 kγb)n (11.1–24)

where cn is given by Equation 11.1–14. For relatively small values of M , the union
bound in Equation 11.1–23 is sufficiently tight for most practical applications.

11.2
MULTICARRIER COMMUNICATIONS

From our treatment of nonideal linear filter channels in Chapters 9 and 10, we have
observed that such channels introduce ISI, which degrades performance compared with
the ideal channel. The degree of performance degradation depends on the frequency-
response characteristics. Furthermore, the complexity of the receiver increases as the
span of the ISI increases.

In this section, we consider the transmission of information on multiple carriers
contained within the allocated channel bandwidth. The primary motivation for transmit-
ting the data on multiple carriers is to reduce ISI and, thus, eliminate the performance
degradation that is incurred in single carrier modulation.

11.2–1 Single-Carrier Versus Multicarrier Modulation

Given a particular channel characteristic, the communication system designer must
decide how to efficiently utilize the available channel bandwidth in order to transmit
the information reliably within the transmitter power constraint and receiver complexity
constraints. For a nonideal linear filter channel, one option is to employ a single-carrier
system in which the information sequence is transmitted serially at some specified rate
R symbols/s. In such a channel, the time dispersion is generally much greater than
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the reciprocal of the symbol rate, and, hence, ISI results from the nonideal frequency-
response characteristics of the channel. As we have observed, an equalizer is necessary
to compensate for the channel distortion.

As an example of such an approach, we cite the modems designed to transmit data
through voice-band channels in the switched telephone network, which are based on the
International Telecommunications Union (ITU) standard V.34. Such modems employ
QAM impressed on a single carrier that is selected along with the symbol rate from a
small set of specified values to obtain the maximum throughout at the desired level of
performance (error rate). The channel frequency-response characteristics are measured
upon initial setup of the telephone circuit, and the symbol rate and carrier frequency
are selected based on this measurement.

An alternative approach to the design of a bandwidth-efficient communication sys-
tem in the presence of channel distortion is to subdivide the available channel bandwidth
into a number of subchannels, such that each subchannel is nearly ideal. To elaborate,
suppose that C( f ) is the frequency response of a nonideal, band-limited channel with
a bandwidth W , and that the power spectral density of the additive Gaussian noise is
Snn( f ). Then we divide the bandwidth W into N = W/� f subbands of width � f ,
where � f is chosen sufficiently small that |C( f )|2/Snn( f ) is approximately a con-
stant within each subband. Furthermore, we select the transmitted signal power to be
distributed in frequency as P( f ), subject to the constraint that∫

W
P( f ) d f ≤ Pav (11.2–1)

where Pav is the available average power of the transmitter. Then we transmit the data
on these N subchannels. Before proceeding further with this approach, we evaluate the
capacity of the nonideal additive Gaussian noise channel.

11.2–2 Capacity of a Nonideal Linear Filter Channel

Recall that the capacity of an ideal, band-limited, AWGN channel is

C = W log2

(
1 + Pav

W N0

)
(11.2–2)

where C is the capacity in bits/s, W is the channel bandwidth, and Pav is the average
transmitted power. In a multicarrier system, with � f sufficiently small the subchannel
has capacity

Ci = � f log2

[
1 + � f P( fi )|C( fi )|2

� f Snn( fi )

]
(11.2–3)

Hence, the total capacity of the channel is

C =
N∑

i=1

Ci = � f
N∑

i=1

log2

[
1 + P( fi )|C( fi )|2

Snn( fi )

]
(11.2–4)



Proakis-27466 book September 26, 2007 22:48

Chapter Eleven: Multichannel and Multicarrier Systems 745

In the limit as � f −→ 0,we obtain the capacity of the overall channel in bits/s as

C =
∫

W
log2

[
1 + P( f )|C( f )|2

Snn( fi )

]
d f (11.2–5)

Under the constraint on P( f ) given by Equation 11.2–1, the choice of P( f ) that
maximizes C may be determined by maximizing the integral

∫
W

{
log2

[
1 + P( f )|C( f )|2

Snn( f )

]
+ λP( f )

}
d f (11.2–6)

where λ is a Lagrange multiplier, which is chosen to satisfy the constraint. By us-
ing the calculus of variations to perform the maximization, we find that the optimum
distribution of transmitted signal power is obtained from the solution to the equation

1

P( f ) + Snn( f )/|C( f )|2 + λ = 0 (11.2–7)

Therefore, P( f ) +Snn( f )|C( f )|2 must be a constant, whose value is adjusted to satisfy
the average power constraint in Equation 11.2–1. That is,

P( f ) =
{

K − Snn( f )/|C( f )|2 f ∈ W
0 f /∈ W

(11.2–8)

This expression for the channel capacity of a nonideal linear filter channel with additive
Gaussian noise is due to Holsinger (1964). The basic interpretation of this result is that
the signal power should be high when the channel SNR |C( f )|2/Snn( f ) is high, and
low when the channel SNR is low. This result on the transmitted power distribution
is illustrated in Figure 11.2–1. Observe that if Snn( f )/|C( f )|2 is interpreted as the
bottom of a bowl of unit depth, and we pour an amount of water equal to Pav into
the bowl, the water will distribute itself in the bowl so as to achieve capacity. This is
called the water-filling interpretation of the optimum power distribution as a function
of frequency.

It is interesting to note that the channel capacity is smallest when the channel
SNR |C( f )|2/Snn( f ) is a constant for all f ∈ W . In this case, P( f ) is a constant for
all f ∈ W . Equivalently, if the channel frequency response is ideal, i.e., C( f ) = 1
for f ∈ W , then the worst Gaussian noise power distribution, from the viewpoint of
maximizing capacity, is white Gaussian noise.

S

FIGURE 11.2–1
The optimum power distribution based on water-filling
interpretation.
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11.2–3 Orthogonal Frequency Division Multiplexing (OFDM)

The above development suggests that multicarrier modulation that divides the available
channel bandwidth into subbands of relatively narrow width � f = W/N provides a
solution that could yield transmission rates close to channel capacity. The signal in
each subband may be independently coded and modulated at a synchronous symbol
rate of 1/� f . If � f is small enough, the channel frequency response C( f ) is essentially
constant across each subband. Hence, the intersymbol interference is negligible. Such
a subdivision of the channel bandwidth W is illustrated in Figure 11.2–2.

With each subband (or subchannel), we associate a sinusoidal carrier signal of the
form

sk(t) = cos 2π fk t, k = 0, 1, . . . , N − 1 (11.2–9)

where fk is the mid frequency in the kth subchannel. By selecting the symbol rate 1/T
in each of the subchannels to be equal to the frequency separation � f of the adjacent
subcarriers, the subcarriers are orthogonal over the symbol interval T , independent of
the relative phase relationship between subcarriers. That is,∫ T

0
cos(2π fk t + φk) cos(2π f j t + φ j ) dt = 0 (11.2–10)

where fk − f j = n/T, n = 1, 2, . . . , N − 1, independent of the values of the phases
φk and φ j . Thus, we construct orthogonal frequency-division multiplexed (OFDM)
signals. In other words, OFDM is a special type of multicarrier modulation in which
the subcarriers of the corresponding subchannels are mutually orthogonal, as defined
in Equation 11.2–10.

Multicarrier modulation (OFDM) is widely used in both wireline and radio chan-
nels. For example, OFDM has been adopted as a standard for digital audio broadcast
applications and wireless local area networks based on the IEEE 802.11 standard.

A particular suitable application of OFDM is in digital transmission over copper
wire subscriber loops. The typical channel attenuation characteristics for such sub-
scriber lines are illustrated in Figure 11.2–3. We observe that the attenuation increases
rapidly as a function of frequency. This characteristic makes it extremely difficult to

W0 f

� f

C( f )

FIGURE 11.2–2
Subdivision of the channel bandwidth
W into narrowband subchannels of
equal width � f .
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FIGURE 11.2–3
Attenuation characteristic of a 24-gauge 12,000-ft
polyethylene-insulated cable loop. [From Werner (1991)
c© IEEE.]

achieve a high transmission rate with a single modulated carrier and an equalizer at the
receiver. The ISI penalty in performance is very large. On the other hand, OFDM with
optimum power distribution provides the potential for a higher transmission rate.

The dominant noise in transmission over subscriber lines is crosstalk interference
from signals carried on other telephone lines located in the same cable. The power
distribution of this type of noise is also frequency-dependent, which can be taken into
consideration in the allocation of the available transmitted power.

A design procedure for a multicarrier QAM system for a nonideal linear filter chan-
nel has been given by Kalet (1989). In this procedure, the overall bit rate is maximized,
through the design of an optimal power division among the subcarriers and an optimum
selection of the number of bits per symbol (sizes of the QAM signal constellations) for
each subcarrier, under an average power constraint and under the constraint that the
symbol error probabilities for all subcarriers are equal.

11.2–4 Modulation and Demodulation in an OFDM System

In an OFDM system with N subchannels, the symbol rate 1/T is reduced by a factor
of N relative to the symbol rate on a single carrier system that employs the entire
bandwidth W and transmits data at the same rate as OFDM. Hence, the symbol interval
in the OFDM system is T = N Ts , where Ts is the symbol interval in the single-
carrier system. By selecting N to be sufficiently large, the symbol interval T can
be made significantly larger than the time duration of the channel-time dispersion.
Thus, intersymbol interference can be made arbitrarily small through the selection
of N . In other words, each subchannel appears to have a fixed frequency response
C( fk), k = 0, 1, . . . , N − 1.

Suppose that each subcarrier is modulated with M-ary QAM. Then the signal on
the kth subcarrier may be expressed as

uk(t) =
√

2

T
Aki cos 2π fk t −

√
2

T
Akq sin 2π fk t

= Re

[√
2

T
Ake jθk e j2π fk t

]

= Re

[√
2

T
Xk e j2π fk t

]
(11.2–11)
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where Xk = Ake jθk is the signal point from the QAM signal constellation that is

transmitted on the kth subcarrier, Ak =
√

A 2
ki + A 2

kq , and θk = tan−1(Akq/Aki ). The

energy per symbol Es has been absorbed into {Xk} .

When the number of subchannels is large, so that the subchannels are sufficiently
narrowband, each subchannel can be characterized by a fixed frequency response
C( fk), k = 0, 1, . . . , N − 1. In general, C( fk) is complex-valued and may be ex-
pressed as

C( fk) = Ck = |Ck |e jφk (11.2–12)

Hence, the received signal on the kth subchannel is

rk(t) =
√

2

T
|Ck |Akc cos(2π fk t + φk) +

√
2

T
|Ck |Aks sin(2π fk t + φk) + nk(t)

= Re

[√
2

T
Ck Xk e j2π fk t

]
+ nk(t) (11.2–13)

where nk(t) represents the additive noise in the kth subchannel. We assume that nk(t)
is zero-mean Gaussian and spectrally flat across the bandwidth of the kth subchannel.
We also assume that the channel parameters |Ck | and φk are known at the receiver.
(These parameters are usually estimated by initially transmitting the unmodulated car-
rier cos 2π fk t and observing the received signal |Ck | cos (2π fk t + φk).)

The demodulation of the received signal in the kth subchannel may be accomplished
by cross-correlating rk(t) with the two basis functions, based on knowledge of the carrier
phase {φk} at the receiver,

ψ1(t) =
√

2

T
cos(2π fk t + φk), 0 ≤ t ≤ T

ψ2(t) = −
√

2

T
sin(2π fk t + φk), 0 ≤ t ≤ T

(11.2–14)

and sampling the output of the cross-correlators at t = T . Thus, we obtain the received
signal vector

yk = (|Ck |Aki + ηkr , |Ck |Akq + ηki ) (11.2–15)

which can also be expressed as the complex number

Yk = |Ck |Xk + ηk (11.2–16)

where ηk = ηkr + jηki represents the additive noise.
The scaling of the transmitted symbol by the channel gain |Ck | can be removed by

dividing Yk by |Ck |. Thus, we obtain

Y
′
k = Yk/|Ck | = Xk + η

′
k (11.2–17)
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where η
′
k = ηk/|Ck |. The normalized variable Y

′
k is passed to the detector, which

computes the distance metrics between Y ′
k and each of the possible signal points in the

QAM signal constellation and selects the signal point resulting in the smallest distance.
From this description, it is clear that two cross-correlators or two matched filters

are required to demodulate the received signal in each subchannel. Therefore, if the
OFDM signal consists of N subchannels, the implementation of the OFDM demodula-
tor requires a parallel bank of 2N cross-correlators or 2N matched filters. Furthermore,
the modulation process for generating the OFDM signal can also be viewed as ex-
citing a bank of 2N parallel filters with symbols taken from an M-ary QAM signal
constellation.

The bank of 2N parallel filters that generates the modulated signal at the transmitter
and demodulates the received signal is equivalent to the computation of the discrete
Fourier transform (DFT) and its inverse. Since an efficient computation of the DFT
is the fast Fourier transform (FFT) algorithm, a more efficient implementation of the
modulation and demodulation processes when N is large, e.g., N > 32, is by means of
the FFT algorithm. In the next section, we describe the implementation of the modulator
and demodulator in an OFDM system that uses the FFT algorithm to compute the DFT.

Since the signals transmitted on the N subchannels of the OFDM system are
synchronized, the received signals on any pair of subchannels are orthogonal over the
interval 0 ≤ t ≤ T . If the subchannel gains |Ck |, 0 ≤ k ≤ N − 1, are sufficiently
different across the channel bandwidth, subchannels that yield a higher SNR due to a
lower attenuation can be modulated to carry more bits per symbol than subcarriers that
yield a lower SNR (high attenuation). Consequently, QAM with different constellation
sizes can be used on the different subchannels of an OFDM system. This assignment
of different constellation sizes to different subchannels is generally done in practice.

11.2–5 An FFT Algorithm Implementation of an OFDM System

In this section we describe a multicarrier communication system that employs the
fast Fourier transform algorithm to synthesize the signal at the transmitter and to demod-
ulate the received signal at the receiver. The FFT is simply the efficient computational
tool for implementing the DFT.

Figure 11.2–4 illustrates a block diagram of a multicarrier communication system.
A serial-to-parallel buffer segments the information sequence into frames of N f bits.
The N f bits in each frame are parsed into Ñ groups, where the i th group is assigned bi

bits, and

Ñ∑
i=1

bi = Nf (11.2–18)

Each group may be encoded separately, so that the number of output bits from the
encoder for the i th group is ni ≥ bi .

It is convenient to view the multicarrier modulation as consisting of Ñ independent
QAM channels, each operating at the same symbol rate 1/T , but each channel having
a distinct QAM constellation; i.e., the i th channel will employ M = 2bi signal points.
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FIGURE 11.2–4
Multicarrier communication system.

We denote the complex-valued signal points corresponding to the information symbols
on the subchannels by Xk, k = 0, 1, . . . , Ñ − 1. To modulate the Ñ subcarriers by the
information symbols {Xk}, we employ the inverse DFT (IDFT).

However, if we compute the Ñ -point IDFT of {Xk}, we obtain a complex-valued
time series, which is not equivalent to Ñ QAM-modulated subcarriers. Instead, we
create N = 2Ñ information symbols by defining

X N−k = X∗
k , k = 1, . . . , Ñ − 1 (11.2–19)

and X0 = Re(X0), X Ñ = Im(X0). Thus, the symbol X0 is split into two parts, both
real. Then the N -point IDFT yields the real-valued sequence

xn = 1√
N

N−1∑
k−0

Xk e j2πnk/N , n = 0, 1, . . . , N − 1 (11.2–20)

where 1/
√

N is simply a scale factor.
The sequence {xn, 0 ≤ n ≤ N − 1} corresponds to the samples of the sum x(t) of

Ñ subcarrier signals, which is expressed as

x(t) = 1√
N

N−1∑
k=0

Xk e j2πkt/T , 0 ≤ t ≤ T (11.2–21)

where T is the symbol duration. We observe that the subcarrier frequencies are
fk = k/T, k = 0, 1, . . . , Ñ . Furthermore, the discrete-time sequence {xn} in Equa-
tion 11.2–20 represents the samples of x(t) taken at times t = nT/N where n = 0,

1, . . . , N − 1.
The computation of the IDFT of the data {Xk} as given in Equation 11.2–20 may

be viewed as multiplication of each data point Xk by a corresponding vector

vk = [vk0 vk1 . . . vk(N−1)] (11.2–22)

where

vkn = 1√
N

e j(2π/N )kn (11.2–23)
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FIGURE 11.2–5
Signal synthesis for multicarrier modulation
based on inverse DFT.

as illustrated in Figure 11.2–5. In any case, the computation of the DFT is performed
efficiently by the use of the FFT algorithm.

In practice, the signal samples {xn} are passed through a digital-to-analog (D/A)
converter whose output, ideally, would be the signal waveform x(t). The output of the
channel is the waveform

r (t) = x(t) ∗ c(t) + n(t) (11.2–24)

where c(t) is the impulse response of the channel and ∗ denotes convolution. By se-
lecting the bandwidth � f of each subchannel to be very small, the symbol duration
T = 1/� f is large compared with the channel time dispersion. To be specific, let us
assume that the channel dispersion spans ν + 1 signal samples where ν � N . One
way to avoid the effect of ISI is to insert a time guard band of duration νT/N between
transmissions of successive blocks.

An alternative method that avoids ISI is to append a cyclic prefix to each block
of N signal samples {x0, x1, . . . , xN−1}. The cyclic prefix for this block of samples
consists of the samples xN−ν, xN−ν+1, . . . , xN−1. These new samples are appended to
the beginning of each block. Note that the addition of the cyclic prefix to the block
of data increases the length of the block to N + ν samples, which may be indexed
from n = −ν, . . . , N − 1, where the first ν samples constitute the prefix. Then if
{cn, 0 ≤ n ≤ ν} denotes the sampled channel impulse response, its convolution with
{xn, −ν ≤ n ≤ N − 1} produces {rn}, the received sequence. We are interested in the
samples of {rn} for 0 ≤ n ≤ N −1, from which we recover the transmitted sequence by
using the N -point DFT for demodulation. Thus, the first ν samples of {rn} are discarded.

From a frequency-domain viewpoint, when the channel impulse response is {cn, 0 ≤
n ≤ ν}, its frequency response at the subcarrier frequencies fk = k/N is

Ck = C

(
2πk

N

)
=

ν∑
n=0

cn e− j2πnk/N (11.2–25)

Because the cyclic prefix serves as a time guard band against interference, successive
blocks (frames) of the transmitted information sequence do not interfere and, hence,
the demodulated sequence may be expressed as

X̃ k = Ck Xk + ηk, k = 0, 1, . . . , N − 1 (11.2–26)
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where {X̃ k} is the output of the N -point DFT demodulator and ηk is the additive noise
corrupting the signal. We note that by selecting N  ν, the rate loss due to the cyclic
prefix can be rendered negligible.

As shown in Figure 11.2–4, the information is demodulated by computing the
DFT of the received signal after it has been passed through an analog-to-digital (A/D)
converter. The DFT computation may be viewed as a multiplication of the received
signal samples {rn} from the A/D converter by v∗

k , where vk is defined in Equation
11.2–22. As in the case of the modulator, the DFT computation at the demodulator is
performed efficiently by use of the FFT algorithm.

It is simple matter to estimate and compensate for the channel factors {Ck} prior
to passing the data to the detector and decoder. A training signal consisting of either a
known modulated sequence on each of the subcarriers or unmodulated subcarriers may
be used to measure the {Ck} at the receiver. If the channel parameters vary slowly with
time, it is also possible to track the time variations by using the decisions at the output
of the detector or the decoder, in a decision-directed fashion. Thus, the multicarrier
system can be rendered adaptive.

By measuring the SNR in each subchannel, one can optimize the transmission rate
by allocating the average transmitted power and the number of bits to be carried by
each subcarrier. The SNR per subchannel is defined as

SNRk = TPk |Ck |2
σ 2

nk

(11.2–27)

where T is the symbol duration, Pk is the average power allocated to the kth subchannel,
|Ck |2 is the magnitude squared of the frequency response of the kth subchannel, and σ 2

nk
is the variance of the noise in the kth subchannel. Based on these SNR measurements,
the capacity of each subchannel may be determined as described in Section 11.2–2.
Furthermore, system performance may be optimized by selecting the bit and power
allocation for each subchannel as described below and in the papers by Chow et al.
(1995) and Fischer and Huber (1996).

Multicarrier QAM of the type described above has been implemented for a variety
of applications, including high-speed transmission over telephone lines, such as digital
subscriber lines.

Other types of implementation besides the DFT are possible. For example, a dig-
ital filter bank that basically performs the DFT may be substituted for the FFT-based
implementation when the number of subcarriers is small, e.g., N ≤ 32. For a large
number of subcarriers, e.g., N > 32, the FFT-based systems are computationally more
efficient.

11.2–6 Spectral Characteristics of Multicarrier Signals

Although the signals transmitted on the subcarriers of an OFDM system are mutually
orthogonal in the time domain, these signals have significant overlap in the frequency
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FIGURE 11.2–6
An example of the magnitude of the frequency response of adjacent subchannel filters in
OFDM system for f ∈ (0, 0.06 N

T ) and N = 64. [From Cherubini et al. (2002) IEEE.]

domain. This can be observed by computing the Fourier transform of the signal

uk(t) = Re

[√
2

T
Xk e j2π fk t

]

=
√

2

T
Ak cos(2π fk t + θk), 0 ≤ t ≤ T

(11.2–28)

for several values of k. Figure 11.2–6 illustrates the magnitude spectrum |Uk( f )| for
several adjacent subcarriers. Note the large spectral overlap of the main lobes. Also
note that the first sidelobe in the spectrum is only 13 dB down from the main lobe.
Hence, there is a significant amount of spectral overlap among the signals transmitted
on different subcarriers. Nevertheless, these signals are orthogonal when transmitted
synchronously in time.

The large spectral overlap of the OFDM signals has various ramifications when
the communication channel is a radio channel and the receiving terminal is mobile, as
in the case of cellular radio communications. In such mobile radio communications,
the transmitted signal is imparted with Doppler frequency shifts or Doppler spreading,
which destroys the orthogonality among the subcarriers and, as a consequence, results
in interchannel interference (ICI). The ICI produces a significant degradation in the
performance (error probability) of the OFDM system. The degree of performance
degradation is proportional to the speed at which the receiving terminal is moving.
In general, the degradation is small when the terminal is moving at pedestrian speed.
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FIGURE 11.2–7
Filter bank implementation of OFDM receiver.

This is the case, for example, in wireless LANs that employ OFDM signals with large
(M = 64) QAM signal constellations.

The detrimental effects of ICI in a multicarrier system, such as OFDM, can be
significantly reduced by employing a bank of parallel filters in the implementation
of the system, as illustrated in Figure 11.2–7. In such an implementation, the proto-
type filter H0( f ) and, hence, its frequency-shifted versions Hk( f ) = H0( f − k/T )
are designed to have sharp cutoff frequency-response characteristics. Consequently, a
Doppler frequency spread that is small compared to 1/2T , or equivalently, compared to
the bandwidth of the prototype filter H0( f ), will result in negligible ICI. For example,
Figure 11.2–8 illustrates the frequency-response characteristics in such a filter bank
implementation. Note that the filter sidelobes are approximately 70 dB below the main
lobe, and the spectral overlap between adjacent filters is negligible. Such filter charac-
teristics provide significant immunity against ICI that may be encountered in mobile
radio communication environments.

The price paid for achieving this immunity to ICI caused by Doppler spreading
is the added complexity in the implementation of the filters {Hk( f )} at the transmitter
and the receiver. An efficient implementation for the filter bank, based on multirate
digital signal processing methods, has been described in the papers by Cherubini
et al. (2000, 2002). The resulting filter bank implementation of the multicarrier system is
called filtered multitone (FMT) modulation. The spectral characteristics shown in Fig-
ure 11.2–8 correspond to filter frequency responses in an FMT multicarrier modulation
system.

11.2–7 Bit and Power Allocation in Multicarrier Modulation

We now consider a bit and power allocation procedure to optimize the performance of
a multicarrier system transmitting over a linear time-invariant channel with AWGN.
We assume that there are Ñ subcarriers and that the modulation on each subcarrier is



Proakis-27466 book September 26, 2007 22:48

Chapter Eleven: Multichannel and Multicarrier Systems 755

10

�80

�70

�60

�50

�40

�30

�20

�10

0

0

M
ag

ni
tu

de
 s

pe
ct

ru
m

 (
dB

)

0.01 0.02 0.03

fT�N

0.04 0.05 0.06

FIGURE 11.2–8
An example of the magnitude of the frequency response of adjacent subchannel filters in an
FMT system for f ∈ (0, 0.06 N

T ) and design parameters N = 64. [From Cherubini et al. (2002)
IEEE.]

QAM, where Mi = 2bi is the constellation size and bi is the number of bits transmitted
on the i th subcarrier in the frame interval of T seconds. Thus, the total bit rate is

Rb = 1

T

Ñ∑
i=1

bi (11.2–29)

The power allocated to the i th subcarrier is Pi , and the total transmitted power is

P =
Ñ∑

i=1

Pi (11.2–30)

which is constrained to be a fixed value.
The bandwidth of each subchannel is assumed to be sufficiently narrow that the

complex-valued channel gain C( fi ) is constant across the frequency band of the i th
subchannel. For convenience, we also assume that the spectral density of the additive
Gaussian noise in the Ñ subchannels is identical.

In selecting the bit and power allocation among the Ñ subchannels, our objective
is to maximize the bit rate Rb for a specified error probability that is the same across
the Ñ subchannels. It is convenient to use the symbol error probability for QAM as the
performance index and to focus on the low-error-rate (high-SNR) region. The symbol
error probability for QAM at low error rates is well approximated by the expression

Pe ≈ 4Q

⎛
⎝

√
3Pi |Ci |2

N0(Mi − 1)

⎞
⎠ (11.2–31)



Proakis-27466 book September 26, 2007 22:48

756 Digital Communications

where Pe is the desired symbol error probability and Ci ≡ C( fi ). The multiplier in
front of the Q function represents the number of nearest neighbors in a rectangular
QAM signal constellation. Therefore, Pi and Mi are selected such that

Q

⎛
⎝

√
3Pi |Ci |2

N0(Mi − 1)

⎞
⎠ = Pe

4
(11.2–32)

It has been shown by Kalet (1989) that transmitting equal power across all sub-
channels for which |Ci |2/N0 is sufficiently large to support at least an M = 4 signal
constellation at the desired low symbol error probability results in near optimum per-
formance. Hence, we may begin by allocating equal power among the subchannels and
deleting all subcarriers which cannot support at least an M = 4 signal constellation at
the desired error probability. Then we allocate the total transmit power equally among
the remaining subchannels and compute the value of Mi that satisfies the desired error
probability given by Equation (11.2–32).

At this point, we may simply truncate the values of {Mi } to {M̃i} such that

bi = log2 M̃i , i = 1, 2, . . . , N (11.2–33)

are integers. However, when the number of subchannels is large, this simple alloca-
tion procedure may result in a significant loss in rate. Alternatively, we may use the
unquantized value of each Mi that satisfies the desired symbol error probability and
either round up to the next-higher power of 2 or truncate to the next-lower power of
2, if the fractional part of the bit bi = log2 Mi is greater than 1/2 or lower than 1/2,
respectively. The allocated power for each subchannel is then adjusted accordingly to
satisfy the desired error probability. This power allocation procedure may be performed
sequentially, beginning with the subchannel having the largest |Ci |2/N0, where at each
step the remaining power is allocated equally among the remaining subchannels. Thus,
the total power allocation is kept constant.

As an example, let us consider high-speed digital transmission over wirelines that
connect a telephone subscriber’s premises to a telephone central office. These wireline
channels typically consist of unshielded twisted-pair wire and are commonly called
the subscriber local loop. The desire to provide high-speed Internet access to homes
and businesses over the telephone subscriber loop has resulted in the development of a
standard for digital transmission based on OFDM with QAM as the basic modulation
method on each of the subcarriers.

The usable bandwidth of a twisted-pair subscriber loop wire is primarily limited by
the distance between the subscriber and the central telephone office, i.e., the length of
the wire, and by crosstalk interference from other lines in the same cable. For example,
a 3-km twisted-pair wireline may have a usable bandwidth of approximately 1.2 MHz.
Since the need for high-speed digital transmission is usually in the direction from the
central office to the subscriber (the downlink) and the bandwidth is relatively small,
the major part of the bandwidth is allocated to the downlink. Consequently, the digital
transmission on the subscriber loop is asymmetric, and this transmission mode is called
ADSL (asymmetric digital subscriber line).

In the ADSL standard, the downlink and the uplink maximum data rates are spec-
ified as 6.8 Mbps and 640 kbps, respectively, for subscriber lines of approximately
12,000 ft in length, and 1.544 Mbps and 176 kbps, respectively, for subscriber lines of
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approximately 18,000 ft in length. The low part of the frequency band (0–25 kHz)
is reserved for the telephone voice transmission, which requires a nominal band-
width of 4 kHz. Hence, the frequency band of the subscriber line is separated into
two frequency bands via two filters (lowpass and highpass) that have cutoff frequen-
cies of 25 kHz. Thus, the low-end frequency for digital transmission is 25 kHz. The
ADSL standard specifies that the frequency range of 25 kHz to 1.1 MHz must be sub-
divided into 256 parallel OFDM subchannels Hence, the size of the DFT and IDFT
in the system implementation shown in Figure 11.2–4 is N = 512. A sampling rate
fs = 2.208 MHz is specified, so that the high-end frequency in the signal spectrum
is fs/2 = 1.104 MHz. The frequency spacing between two adjacent subcarriers is
� f = 1.104 × 106/256 = 4.3125 kHz. The channel time dispersion is suppressed by
using a cyclic prefix of N/16 = 32 samples.

By measuring the signal-to-noise ratio (SNR) for each subchannel at the receiver
and communicating this information to the transmitter via the uplink, the transmitter
can select the QAM constellation size in bits per symbol to achieve a desired error
probability in each subchannel. The ADSL standard specifies a minimum bit load
of 2 bits per subchannel, which corresponds to QPSK modulation. If a subchannel
cannot support QPSK at the desired error probability, no information is transmitted
over that subchannel. As an example, Figure 11.2–9 illustrates the received SNR as
measured by the receiver for each subchannel and the corresponding number of bits per
symbol selected from a QAM signal constellation. Note that the SNR in subchannels
220–256 is too low to support QPSK modulation; hence, no data are transmitted on
these subchannels. ADSL channel characteristics and the design of OFDM modems
based on the ADSL standard are treated in detail in the books by Bingham (2000) and
Starr et al. (1999). The use of OFDM with variable size QAM signal constellations for
each of the subcarriers is sometimes called discrete multitone (DMT) modulation.

11.2–8 Peak-to-Average Ratio in Multicarrier Modulation

A major problem with multicarrier modulation is the relatively high peak-to-average
ratio (PAR) that is inherent in the transmitted signal. In general, large signal peaks
occur in the transmitted signal when the signals in many of the various subchannels
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FIGURE 11.2–9
Example of a DSL frequency response and bit allocation on the OFDM subchannels.
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add constructively in phase. Such large signal peaks may result in clipping of the
signal voltage in a D/A converter when the multicarrier signal is synthesized digitally,
and/or it may saturate the power amplifier and thus cause intermodulation distortion
in the transmitted signal. When the number N of subcarriers is large, the central limit
theorem may be used to model the combined signal on the N subchannels as a zero-mean
Gaussian random process. In such a model, the voltage PAR is proportional to

√
N .

To avoid intermodulation distortion, it is common to reduce the power in the trans-
mitted signal and thus operate the power amplifier at the transmitter in the linear oper-
ating range. This power reduction or “power backoff” results in inefficient operation of
the communication system. For example, if the PAR is 10 dB, the power backoff may
be as much as 10 dB to avoid intermodulation distortion.

Various methods have been devised to reduce the PAR in multicarrier systems.
One of the simplest methods is to insert different phase shifts in each of the subcarriers.
These phase shifts can be selected pseudorandomly, or by means of some algorithm,
to reduce the PAR. For example, we may have a small set of N stored pseudorandomly
selected phase shifts which can be used when the PAR in the modulated subcarriers is
large. The information on which set of pseudorandom phase shifts is used in any signal
interval can be transmitted to the receiver on one of the N subcarriers. Alternatively,
a single set of pseudorandom phase shifts may be employed, where this set is found
via computer simulation to reduce the PAR to an acceptable level over the ensemble of
possible transmitted data symbols on the N subcarriers.

Another method that can be used to reduce the PAR is to modulate a small subset of
the subcarriers with dummy symbols which are selected to reduce the PAR. Since the
dummy symbols do not have to be constrained to take amplitude and phase values from
a specified signal constellation, the design of the dummy symbols is very flexible. The
subcarriers carrying dummy symbols may be distributed across the frequency band.
Since modulating subcarriers with dummy symbols results in a lower throughput in
data rate, it is desirable to employ only a small percentage of the total subcarriers for
this purpose.

As an alternative to allocating subcarriers that are modulated with dummy symbols,
one may select a subset of subcarriers that already carry data and expand the signal
constellation in such a manner that the data can be correctly detected at the receiver
by use of a modulo-q operation, where q is an appropriate integer. For example, if
rectangular 16-point QAM is used as the modulation of each subcarrier, a minimally
expanded signal constellation for a subset of subcarriers may consist of a 32-point
signal constellation that includes the 16 additional points adjacent to the outer points in
the original constellation. When the PAR of the original signal constellation exceeds a
predetermined amount, the signal point on a selected subcarrier is replaced by a signal
point from the minimally expanded set such that the PAR is reduced. This approach
may require several iterations using a different subcarrier each time to reduce the PAR
to a desired value. The interested reader may refer to the paper by Tellado and Cioffi
(1998), which treats this method.

In a digitally synthesized multicarrier signal, the PAR may be kept within a spec-
ified limit by clipping the signal at the D/A converter. The clipping generally distorts
the signal at the transmitter and hence degrades the performance at the receiver. The
effect of clipping on the probability of error at the detector in an OFDM system has
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been evaluated by Bahai and Saltzberg (1999). If the clipping occurs infrequently, the
occasional errors may be corrected by introducing a suitable error-correcting code.

Because of its practical importance, the problem of PAR reduction in multicar-
rier systems has been investigated by many people, and methods other than the ones
described above have been considered. The interested reader may refer to the papers
by Boyd (1986), Popovic (1991), Jones et al. (1994), Wilkinson and Jones (1995),
Wulich (1996), Li and Cimini (1997), Friese (1997), Müller et al. (1997), Tellado and
Cioffi (1998), Wulich and Goldfeld (1999), Tarokh and Jafarkhani (2000), Peterson and
Tarokh (2000), and Wunder and Boche (2003).

11.2–9 Channel Coding Considerations in Multicarrier Modulation

In single-carrier systems, channel coding is performed in the time domain. That is,
the coded bits or symbols span multiple signal or symbol intervals. In multicarrier
communication systems, such as OFDM, the frequency domain provides an additional
dimension in which channel coding can be applied to achieve immunity against noise
and other interference.

One possible channel coding approach is to encode the information bits on each
subcarrier separately (time-domain channel coding) using either a block code, or a
convolutional code, or by employing trellis-coded modulation (TCM). In such a time-
domain coding approach, the coded bits or symbols span multiple OFDM (multicarrier)
frames. There are basically two disadvantages with time-domain channel coding for
multicarrier communication systems. One is the encoding/decoding complexity in-
volved in the operation of N parallel encoders/decoders for the N subchannels. The
second is the latency (decoding delay) inherent in the decoding of the data on the N
subcarriers over multiple frames. For example, the decoding delay for a code that spans
K frames is K N f bits, where N f is the number of information bits per frame.

The decoding delay can be minimized by designing the channel code to span the bits
across the subchannels for a single OFDM (multicarrier) frame. In such a frequency-
domain coding approach we may employ a block code, or a convolutional code, or
TCM. If additional delay beyond a single frame is tolerable, the channel code may be
designed to span multiple OFDM frames. The advantage of this approach to channel
coding for multicarrier communication systems is that a single encoder and decoder
can be employed in the system, thus simplifying the system implementation.

Although the channel coding methods for multicarrier modulation described above
focused on simple coding techniques (block coding, convolutional coding, TCM), they
are easily extended to concatenated coding and turbo coding methods.

11.3
BIBLIOGRAPHICAL NOTES AND REFERENCES

Multichannel signal transmission is commonly used on time-varying channels to over-
come the effects of signal fading. This topic is treated in some detail in Chapter 13,
where we provide a number of references to published work. Of particular relevance
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to the treatment of multichannel digital communications given in this chapter are the
two publications by Price (1962a, b).

There is a large amount of literature on multicarrier digital communication systems.
Such systems have been implemented and used for over 35 years. One of the earliest
systems, described by Doeltz et al. (1957) and called Kineplex, was used for digital
transmission in the HF band. Other early work on multicarrier system design has been
reported in the papers by Chang (1966) and Saltzberg (1967). The use of the DFT for
modulation and demodulation of multicarrier systems was proposed by Weinstein and
Ebert (1971).

Of particular interest in recent years is the use of multicarrier digital transmission
for data, facsimile, and video on a variety of channels, including the narrowband (4 kHz)
switched telephone network, the 48-kHz group telephone band, digital subscriber lines,
cellular radio, and audio broadcast. The interested reader may refer to the many papers
in the literature. We cite as examples the papers by Hirosaki (1981), Hirosaki et al.
(1986), Chow et al. (1991), and the survey paper by Bingham (1990). The paper by
Kalet (1989) gives a design procedure for optimizing the rate in a multicarrier QAM
system given constraints on transmitter power and channel characteristics. Finally, we
cite the book by Vaidyanathan (1993) and the papers by Tzannes et al. (1994) and Rizos
et al. (1994) for a treatment of multirate digital filter banks, and the books by Starr et
al. (1999) and Bingham (2000) on the application of multicarrier modulation for digital
transmission on digital subscriber lines.

PROBLEMS

11.1 X1, X2, . . . , X N are a set of N statistically independent and identically distributed real
Gaussian random variables with moments E(Xi ) = m and var (Xi ) = σ 2.
a. Define

U =
N∑

n=1

Xn

Evaluate the SNR of U , which is defined as

(SNR)U = [E(U )]2

2σ 2
U

where σ 2
U is the variance of U .

b. Define

V =
N∑

n=1

X2
n

Evaluate the SNR of V , which is defined as

(SNR)V = [E(V )]2

2σ 2
V

where σ 2
V is the variance of V .
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c. Plot (SNR)U and (SNR)V versus m2/σ 2 on the same graph and, thus, compare the
SNRs graphically.

d. What does the result in (c) imply regarding coherent detection and combining versus
square-law detection and combining of multichannel signals?

11.2 A binary communication system transmits the same information on two diversity channels.
The two received signals are

r1 = ±
√

Eb + n1

r2 = ±
√

Eb + n2

where E(n1) = E(n2) = 0, E
(
n2

1

) = σ 2
1 and E

(
n2

2

) = σ 2
2 , and n1 and n2 are uncorrelated

Gaussian variables. The detector bases its decision on the linear combination of r1 and
r2, i.e.,

r = r1 + kr2

a. Determine the value of k that minimizes the probability of error.
b. Plot the probability of error for σ 2

1 = 1, σ 2
2 = 3, and either k = 1 or k is the optimum

value found in (a). Compare the results.

11.3 Assess the cost of the cyclic prefix (used in multicarrier modulation to avoid ISI) in
terms of
a. Extra channel bandwidth.
b. Extra signal energy.

11.4 Let x(n) be a finite-duration signal with length N and let X (k) be its N -point DFT. Sup-
pose we pad x(n) with L zeros and compute the (N + L)-point DFT, X ′(k). What is the
relationship between X (0) and X ′(0)? If we plot |X (k)| and |X ′(k)| on the same graph,
explain the relationships between the two graphs.

11.5 Show that the sequence {xn} given by Equation 11.2–11 corresponds to the samples of the
signal x(t) given by Equation 11.2–12.

11.6 Show that the IDFT of a sequence {Xk, 0 ≤ k ≤ N − 1} can be computed by passing the
sequence {Xk} through a bank of N linear discrete-time filters with system functions

Hn(z) = 1

1 − e j2πn/N z−1

and sampling the filter outputs at n = N .

11.7 Plot P2(L), given by Equation 11.1–24 for L = 1 and L = 2 as a function of 10 log γb

and determine the loss in SNR due to the combining loss for γb = 10.
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12

Spread Spectrum Signals for Digital
Communications

Spread spectrum signals used for the transmission of digital information are distin-
guished by the characteristic that their bandwidth W is much greater than the informa-
tion rate R in bits/s. That is, the bandwidth expansion factor Be = W/R for a spread
spectrum signal is much greater than unity. The large redundancy inherent in spread
spectrum signals is required to overcome the severe levels of interference that are
encountered in the transmission of digital information over some radio and satellite
channels. Since coded waveforms are also characterized by a bandwidth expansion
factor greater than unity and since coding is an efficient method for introducing redun-
dancy, it follows that coding is an important element in the design of spread spectrum
signals and systems.

A second important element employed in the design of spread spectrum signals
is pseudorandomness, which makes the signals appear similar to random noise and
difficult to demodulate by receivers other than the intended ones. This element is
intimately related with the application or purpose of such signals.

To be specific, spread spectrum signals are used for

• Combating or suppressing the detrimental effects of interference due to jamming,
interference arising from other users of the channel, and self-interference due to
multipath propagation.

• Hiding a signal by transmitting it at low power and, thus, making it difficult for an
unintended listener to detect in the presence of background noise.

• Achieving message privacy in the presence of other listeners.

In applications other than communications, spread spectrum signals are used to obtain
accurate range (time delay) and range rate (velocity) measurements in radar and navi-
gation. For the sake of brevity, we shall limit our discussion to digital communication
applications.

In combating intentional interference (jamming), it is important to the communi-
cators that the jammer who is trying to disrupt the communication does not have prior
knowledge of the signal characteristics except for the overall channel bandwidth and
the type of modulation (PSK, FSK, etc.) being used. If the digital information is just

762
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encoded as described in Chapters 7 and 8, a sophisticated jammer can easily mimic the
signal emitted by the transmitter and, thus, confuse the receiver. To circumvent this pos-
sibility, the transmitter introduces an element of unpredictability or randomness (pseu-
dorandomness) in each of the transmitted coded signal waveforms that is known to the
intended receiver but not to the jammer. As a consequence, the jammer must synthesize
and transmit an interfering signal without knowledge of the pseudorandom pattern.

Interference from the other users arises in multiple-access communication systems
in which a number of users share a common channel bandwidth. At any given time, a
subset of these users may transmit information simultaneously over the common chan-
nel to corresponding receivers. Assuming that all the users employ the same code for
the encoding and decoding of their respective information sequences, the transmitted
signals in this common spectrum may be distinguished from one another by superim-
posing a different pseudorandom pattern, also called a code, in each transmitted signal.
Thus, a particular receiver can recover the transmitted information intended for it by
knowing the pseudorandom pattern, i.e., the key, used by the corresponding transmitter.
This type of communication technique, which allows multiple users to simultaneously
use a common channel for transmission of information, is called code division multiple
access (CDMA). CDMA will be considered in Sections 12.2 and 12.3.

Resolvable multipath components resulting from time-dispersive propagation
through a channel may be viewed as a form of self-interference. This type of inter-
ference may also be suppressed by the introduction of a pseudorandom pattern in the
transmitted signal, as will be described below.

A message may be hidden in the background noise by spreading its bandwidth
with coding and transmitting the resultant signal at a low average power. Because of its
low power level, the transmitted signal is said to be “covert.” It has a low probability
of being intercepted (detected) by a casual listener and, hence, is also called a low-
probability-of-intercept (LPI) signal.

Finally, message privacy may be obtained by superimposing a pseudorandom pat-
tern on a transmitted message. The message can be demodulated by the intended re-
ceivers, who know the pseudorandom pattern or key used at the transmitter, but not by
any other receivers who do not have knowledge of the key.

In the following sections, we shall describe a number of different types of spread
spectrum signals, their characteristics, and their applications. The emphasis will be on
the use of spread spectrum signals for combating interference (antijam or AJ signals),
CDMA, and LPI. Before discussing the signal design problem, however, we shall briefly
describe the types of channel characteristics assumed for the applications cited above.

12.1
MODEL OF SPREAD SPECTRUM DIGITAL COMMUNICATION SYSTEM

The block diagram shown in Figure 12.1–1 illustrates the basic elements of a spread
spectrum digital communication system with a binary information sequence at its input
at the transmitting end and at its output at the receiving end. The channel encoder
and decoder and the modulator and demodulator are basic elements of the system,
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FIGURE 12.1–1
Model of spread spectrum digital communication system.

which were treated in Chapters 4, 7, and 8. In addition to these elements, we have two
identical pseudorandom pattern generators, one that interfaces with the modulator at the
transmitting end and a second that interfaces with the demodulator at the receiving end.
The generators generate a pseudorandom or pseudonoise (PN) binary-valued sequence
which is impressed on the transmitted signal at the modulator and removed from the
received signal at the demodulator.

Synchronization of the PN sequence generated at the receiver with the PN sequence
contained in the incoming received signal is required in order to demodulate the re-
ceived signal. Initially, prior to the transmission of information, synchronization may be
achieved by transmitting a fixed pseudorandom bit pattern that the receiver will recog-
nize in the presence of interference with a high probability. After time synchronization
of the generators is established, the transmission of information may commence.

Interference is introduced in the transmission of the information-bearing signal
through the channel. The characteristics of the interference depend to a large extent
on its origin. It may be categorized as being either broadband or narrowband relative
to the bandwidth of the information-bearing signal and as either continuous or pulsed
(discontinuous) in time. For example, an interfering signal may consist of one or more
sinusoids in the bandwidth used to transmit the information. The frequencies of the
sinusoids may remain fixed or they may change with time according to some rule. As
a second example, the interference generated in CDMA by other users of the channel
may be either broadband or narrowband, depending on the type of spread spectrum
signal that is employed to achieve multiple access. If it is broadband, it may be charac-
terized as an equivalent additive white Gaussian noise. We shall consider these types
of interference and some others in the following sections.

Our treatment of spread spectrum signals will focus on the performance of the dig-
ital communication system in the presence of narrowband and broadband interference.
Two types of modulation are considered: PSK and FSK. PSK is appropriate in appli-
cations where phase coherence between the transmitted signal and the received signal
can be maintained over a time interval that is relatively long compared to the reciprocal
of the transmitted signal bandwidth. On the other hand, FSK modulation is appropriate
in applications where such phase coherence cannot be maintained due to time-variant
effects on the communications link. This may be the case in a communications link
between two high-speed aircraft or between a high-speed aircraft and a ground terminal.

The PN sequence generated at the modulator is used in conjunction with the
PSK modulation to shift the phase of the PSK signal pseudorandomly as described
in Section 12.2. The resulting modulated signal is called a direct sequence (DS) or a
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pseudo-noise (PN) spread spectrum signal. When used in conjunction with binary or
M-ary (M > 2) FSK, the pseudorandom sequence selects the frequency of the trans-
mitted signal pseudorandomly. The resulting signal is called a frequency-hopped (FH)
spread spectrum signal. Although a number of other types of spread spectrum signals
will be briefly described, the emphasis of our treatment will be on DS and FH spread
spectrum signals.

12.2
DIRECT SEQUENCE SPREAD SPECTRUM SIGNALS

In the model shown in Figure 12.1–1, we assume that the information rate at the input
to the encoder is R bits/s and the available channel bandwidth is W Hz. The modulation
is assumed to be binary PSK. In order to utilize the entire available channel bandwidth,
the phase of the carrier is shifted pseudorandomly according to the pattern from the PN
generator at a rate W times/s. The reciprocal of W , denoted by Tc, defines the duration
of a pulse, which is called a chip; Tc is called the chip interval. The pulse is the basic
element in a DS spread spectrum signal.

If we define Tb = 1/R to be the duration of a rectangular pulse corresponding to
the transmission time of an information bit, the bandwidth expansion factor W/R may
be expressed as

Be = W

R
= Tb

Tc
(12.2–1)

In practical systems, the ratio Tb/Tc is an integer,

Lc = Tb

Tc
(12.2–2)

which is the number of chips per information bit. That is, Lc is the number of phase shifts
that can occur in the transmitted signal during the bit duration Tb = 1/R. Figure 12.2–1a
illustrates the relationships between the PN signal and the data signal.

Suppose that the encoder takes k information bits at a time and generates a binary
linear (n, k) block code. The time duration available for transmitting the n code elements
is kTb seconds. The number of chips that occur in this time interval is kLc. Hence,
we may select the block length of the code as n = kLc. If the encoder generates a
binary convolutional code of rate k/n, the number of chips in the time interval kTb

is also n = kLc. Therefore, the following discussion applies to both block codes and
convolutional codes. We note that the code rate Rc = k/n = 1/Lc.

One method for impressing the PN sequence on the transmitted signal is to alter
directly the coded bits by modulo-2 addition with the PN sequence.† Thus, each coded

†When four-phase PSK is desired, one PN sequence is added to the information sequence carried on the
in-phase signal component and a second PN sequence is added to the information sequence carried on the
quadrature component. In many PN spread spectrum systems, the same binary information sequence is
added to the two PN sequences to form the two quadrature components. Thus, a four-phase PSK signal is
generated with a binary information stream.
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(a)

(b)

FIGURE 12.2–1
The PN and data signals (a) and the QPSK modulator (b) for a DS spread spectrum system.

bit is altered by its addition with a bit from the PN sequence. If bi represents the i th
bit of the PN sequence and ci is the corresponding bit from the encoder, the modulo-2
sum is

ai = bi ⊕ ci (12.2–3)

Hence, ai = 1 if either bi = 1 and ci = 0 or bi = 0 and ci = 1; also ai = 0 if either
bi = 1 and ci = 1 or bi = 0 and ci = 0. We may say that ai = 0 when bi = ci and
ai = 1 when bi �= ci . The sequence {ai } is mapped into a binary PSK signal of the
form s(t) = ±Re[g(t)e j2π fct ] according to the convention

gi (t) =
{

g(t − iTc) ai = 0

−g(t − iTc) ai = 1
(12.2–4)

where g(t) represents a pulse of duration Tc seconds and arbitrary shape.
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The modulo-2 addition of the coded sequence {ci } and the sequence {bi } from
the PN generator may also be represented as a multiplication of two waveforms. To
demonstrate this point, suppose that the elements of the coded sequence are mapped
into a binary PSK signal according to the relation

ci (t) = (2ci − 1)g(t − iTc) (12.2–5)

Similarly, we define a waveform pi (t) as

pi (t) = (2bi − 1)p(t − iTc) (12.2–6)

where p(t) is a rectangular pulse of duration Tc. Then the equivalent low-pass trans-
mitted signal corresponding to the i th coded bit is

gi (t) = pi (t) ci (t)

= (2bi − 1)(2ci − 1)g(t − iTc) (12.2–7)

This signal is identical to the one given by Equation 12.2–4, which is obtained from the
sequence {ai }. Consequently, modulo-2 addition of the coded bits with the PN sequence
followed by a mapping that yields a binary PSK signal is equivalent to multiplying a
binary PSK signal generated from the coded bits with a sequence of unit amplitude
rectangular pulses, each of duration Tc, and with a polarity which is determined from
the PN sequence according to Equation 12.2–6. Although it is easier to implement
modulo-2 addition followed by PSK modulation instead of waveform multiplication,
it is convenient, for purposes of demodulation, to consider the transmitted signal in
the multiplicative form given by Equation 12.2–7. A functional block diagram of a
four-phase PSK-DS spread spectrum modulator is shown in Figure 12.2–1(b).

The received equivalent low-pass signal for the i th code element is

ri (t) = pi (t)ci (t) + z(t), iTc ≤ t ≤ (i + 1)Tc

= (2bi − 1)(2ci − 1)g(t − iTc) + z(t)
(12.2–8)

where z(t) represents the low-pass equivalent noise and interference signal corrupting
the information-bearing signal. This signal is assumed to be a stationary random process
with zero mean.

If z(t) is a sample function from a complex-valued Gaussian process, the optimum
demodulator may be implemented either as a filter matched to the waveform g(t) or
as a correlator, as illustrated by the block diagrams in Figure 12.2–2. In the matched
filter realization, the sampled output from the matched filter is multiplied by 2bi − 1,
which is obtained from the PN generator at the demodulator when the PN generator is
properly synchronized. Since (2bi − 1)2 = 1 when bi = 0 and bi = 1, the effect of the
PN sequence on the received coded bits is thus removed.

In Figure 12.2–2, we also observe that the cross correlation can be accomplished in
either one of two ways. The first, illustrated in Figure 12.2–2b, involves premultiplying
ri (t) with the waveform pi (t) generated from the output of the PN generator and then
cross-correlating with g∗(t) and sampling the output in each chip interval. The second
method, illustrated in Figure 12.2–2c, involves cross correlation with g∗(t) first, sam-
pling the output of the correlator and, then, multiplying this output with 2bi − 1, which
is obtained from the PN generator.
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(a)

(b)

(c)

FIGURE 12.2–2
Possible demodulator structures for PN spread spectrum signals.

If z(t) is not a Gaussian random process, the demodulation methods illustrated
in Figure 12.2–2 are no longer optimum. Nevertheless, we may still use any of these
three demodulator structures to demodulate the received signal. When the statistical
characteristics of the interference z(t) are unknown a priori, this is certainly one possible
approach. An alternative method, which is described later, utilizes an adaptive filter
prior to the matched filter or correlator to whiten the interference. The rationale for this
second method is also described later.

In Section 12.2–1, we derive the error rate performance of the DS spread spectrum
system in the presence of wideband and narrowband interference. The derivations are
based on the assumption that the demodulator is any of the three equivalent structures
shown in Figure 12.2–2.

12.2–1 Error Rate Performance of the Decoder

Let the unquantized output of the demodulator be denoted by y j , 1 ≤ j ≤ n. First we
consider a linear binary (n, k) block code and, without loss of generality, we assume
that the all-zero code word is transmitted.
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A decoder that employs soft-decision decoding computes the correlation metrics

C Mi =
n∑

j=1

(2ci j − 1)y j , i = 1, 2, . . . , 2k (12.2–9)

where ci j denotes the j th bit in the i th code word. The correlation metric corresponding
to the all-zero code word is

C M1 = 2nEc +
n∑

j=1

(2c1 j − 1)(2b j − 1)νj

= 2nEc −
n∑

j=1

(2bj − 1)νj

(12.2–10)

where νj , 1 ≤ j ≤ n, is the additive noise and interference term corrupting the j th
coded bit and Ec is the chip energy. It is defined as

ν j = Re
{∫ Tc

0
g∗(t)z[t + ( j − 1)Tc] dt

}
, j = 1, 2, . . . , n (12.2–11)

Similarly, the correlation metric corresponding to code word cm having weight
wm is

CMm = 2Ecn
(

1 − 2wm

n

)
+

n∑
j=1

(2cmj − 1)(2bj − 1)ν j (12.2–12)

Following the procedure used in Section 7.4, we shall determine the probability
that CMm > CM1. The difference between CM1 and CMm is

D = CM1 − CMm

= 4Ecwm − 2
n∑

j=1

cmj (2bj − 1)ν j (12.2–13)

Since the codeword cm has weight wm , there are wm nonzero components in the
summation of noise terms contained in Equation 12.2–13. We shall assume that the
minimum distance of the code is sufficiently large that we can invoke the central limit
theorem for the summation of noise components. This assumption is valid for DS spread
spectrum signals that have a bandwidth expansion of 10 or more.† Thus, the summation
of noise components is modeled as a Gaussian random variable. Since E(2bj − 1) = 0
and E(ν j ) = 0, the mean of the second term in Equation 12.2–13 is also zero.

The variance is

σ 2
m = 4

n∑
j=1

n∑
i=1

cmi cmj E[(2bj − 1)(2bi − 1)]E(νiν j ) (12.2–14)

†Typically, the bandwidth expansion factor in a spread spectrum signal is of the order of 10 to 100 and
sometimes higher.



Proakis-27466 book September 26, 2007 22:52

770 Digital Communications

The sequence of binary digits from the PN generator are assumed to be uncorrelated.
Hence

E[(2bj − 1)(2bi − 1)] = δi j (12.2–15)

and

σ 2
m = 4wm E(ν2) (12.2–16)

where E(ν2) is the second moment of any one element from the set {ν j }. This moment
is easily evaluated to yield

E(ν2) = 1

2

∫ Tc

0

∫ Tc

0
g∗(t)g(τ )Rzz(t − τ ) dt dτ

= 1

2

∫ ∞

−∞
|G( f )|2Szz( f ) d f

(12.2–17)

where Rzz(τ ) = E[z∗(t)z(t +τ )] is the autocorrelation function andSzz( f ) is the power
spectral density of the interference z(t).

We observe that when the interference is spectrally flat within the bandwidth†

occupied by the transmitted signal, i.e.,

Szz( f ) = 2J0, | f | ≤ 1
2 W (12.2–18)

the second moment in Equation 12.2–17 is E(ν2) = 2Ec J0, and, hence, the variance of
the interference term in Equation 12.2–16 becomes

σ 2
m = 8Ec J0wm (12.2–19)

In this case, the probability that D < 0 is

P2(m) = Q

⎛
⎝

√
2Ec

J0
wm

⎞
⎠ (12.2–20)

But the energy per coded bit Ec may be expressed in terms of the energy per information
bit Eb as

Ec = k

n
Eb = RcEb (12.2–21)

With his substitution, Equation 12.2–20 becomes

P2(m) = Q

⎛
⎝

√
2Eb

J0
Rcwm

⎞
⎠

= Q
(√

2γb Rcwm

) (12.2–22)

†If the bandwidth of the bandpass channel is W, that of the equivalent low-pass channel is 1
2 W.
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where γb = Eb/J0 is the SNR per information bit. Finally, the code word error proba-
bility may be upper-bounded by the union bound as

PM ≤
M∑

m=2

Q(
√

2γb Rcwm) (12.2–23)

where M = 2k . Note that this expression is identical to the probability of a code word
error for soft-decision decoding of a linear binary block code in an AWGN channel.

Although we have considered a binary block code in the derivation given above,
the procedure is similar for an (n, k) convolutional code. The result of such a derivation
is the following upper bound on the equivalent bit error probability:

Pb ≤ 1

k

∞∑
d=dfree

βd Q(
√

2γb Rcd) (12.2–24)

The set of coefficients {βd} is obtained from an expansion of the derivative of the
transfer function T (Y, Z ), as described in Section 8.2–2.

Next, we consider a narrowband interference centered at the carrier (at DC for
the equivalent low-pass signal). We may fix the total (average) interference power to
Jav = 2J0W , where 2J0 is the value of the power spectral density of an equivalent
wideband interference. The narrowband interference is characterized by the power
spectral density

Szz( f ) =
⎧⎨
⎩

Jav

W1
| f | ≤ 1

2 W1

0 | f | > 1
2 W1

(12.2–25)

where W � W1.
Substitution of Equation 12.2–25 for Szz( f ) into Equation 12.2–17 yields

E(ν2) = Jav

2W1

∫ W1/2

−W1/2
|G( f )|2 d f (12.2–26)

The value of E(ν2) depends on the spectral characteristics of the pulse g(t). In the
following example, we consider two special cases.

E X A M P L E 12.2–1. Suppose that g(t) is a rectangular pulse as shown in Figure 12.2–3(a)
and |G( f )|2 is the corresponding energy density spectrum shown in Figure 12.2–3(b).
For the narrowband interference given by Equation 12.2–25, the variance of the total
interference is

σ 2
m = 4wm E(ν2)

= 4Ecwm Tc Jav

W1

∫ W1/2

−W1/2

(
sin π f Tc

π f Tc

)2

d f

= 4Ecwm Jav

W1

∫ β/2

−β/2

(
sin πx

πx

)2

dx

(12.2–27)



Proakis-27466 book September 26, 2007 22:52

772 Digital Communications

(a) (b)

FIGURE 12.2–3
Rectangular pulse and its energy density spectrum.

where β = W1Tc. Figure 12.2–4 illustrates the value of this integral for 0 ≤ β ≤ 1.
We observe that the value of the integral is upper-bounded by unity. Hence, σ 2

m ≤
4Ecwm Jav/W1.

In the limit as W1 becomes zero, the interference becomes an impulse at the carrier.
In this case the interference is a pure frequency tone and it is usually called a continuous
wave (CW) interfering signal. The power spectral density is

Szz( f ) = Javδ( f ) (12.2–28)

and the corresponding variance for the decision variable D = CM1 − CMm is

σ 2
m = 2wm Jav|G(0)|2

= 4wmEcTc Jav
(12.2–29)

The probability of a codeword error for CW interference is upper-bounded as

Pe ≤
M∑

m=2

Q

(√
4Ec

JavTc
wm

)
(12.2–30)

FIGURE 12.2–4
Plot of the value of the integral in Equation 12.2–27.
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FIGURE 12.2–5
A sinusoidal signal pulse.

But Ec = RcEb. Furthermore, Tc ≈ 1/W and Jav/W = 2J0. Therefore Equation
12.2–30 may be expressed as

Pe ≤
M∑

m=2

Q

(√
2Eb

J0
Rcwm

)
(12.2–31)

which is the result obtained previously for broadband interference. This result indicates
that a CW interference has the same effect on performance as an equivalent broadband
interference. This equivalence is discussed further below.

E X A M P L E 12.2–2. Let us determine the performance of the DS spread spectrum system
in the presence of a CW interference of average power Jav when the transmitted signal
pulse g(t) is one-half cycle of a sinusoid as illustrated in Figure 12.2–5, i.e.,

g(t) =
√

4Ec

Tc
sin

π t

Tc
, 0 ≤ t ≤ Tc (12.2–32)

The variance of the interference of this pulse is

σ 2
m = 2wm Jav|G(0)|2

= 32

π2
EcTc Javwm

(12.2–33)

Hence, the upper bound on the codeword probability is

Pe ≤
M∑

m=2

Q

⎛
⎝

√
π2Eb

2JavTc
Rcwm

⎞
⎠ (12.2–34)

We observe that the performance obtained with this pulse is 0.9 dB better than that
obtained with a rectangular pulse. Recall that this pulse shape when used in offset
QPSK results in an MSK signal. MSK modulation is frequently used in DS spread
spectrum systems.

The processing gain and the interference margin An interesting interpretation
of the performance characteristics for the DS spread spectrum signal is obtained by
expressing the signal energy per bit Eb in terms of the average power. That is, Eb =
PavTb, where Pav is the average signal power and Tb is the bit interval. Let us consider
the performance obtained in the presence of CW interference for the rectangular pulse
treated in Example 12.2–1. When we substitute for Eb and J0 into Equation 12.2–31,
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we obtain

Pe ≤
M∑

m=2

Q

(√
4Pav

Jav

Tb

Tc
Rcwm

)
=

M∑
m=2

Q

(√
4Pav

Jav
Lc Rcwm

)
(12.2–35)

where Lc is the number of chips per information bit and Pav/Jav is the signal-to-
interference power ratio.

An identical result is obtained with broadband interference for which the perfor-
mance is given by Equation 12.2–23. For the signal energy per bit, we have

Eb = PavTb = Pav

R
(12.2–36)

where R is the information rate in bits/s. The power spectral density for the interference
may be expressed as

2J0 = Jav

W

Using this relation and Equation 12.2–36, the ratio Eb/J0 may be expressed as

Eb

J0
= Pav/R

Jav/2W
= 2W/R

Jav/Pav
(12.2–37)

The ratio Jav/Pav is the interference-to-signal power ratio, which is usually greater
than unity. The ratio W/R = Tb/Tc = Be = Lc is just the bandwidth expansion factor,
or, equivalently, the number of chips per information bit. This ratio is usually called the
processing gain of the DS spread spectrum system. It represents the advantage gained
over the interference that is obtained by expanding the bandwidth of the transmitted
signal. If we interpret Eb/J0 as the SNR required to achieve a specified error rate
performanace and W/R as the available bandwidth expansion factor, the ratio Jav/Pav

is called the interference margin of the DS spread spectrum system. In other words, the
interference margin is the largest value that the ratio Jav/Pav can take and still satisfy
the specified error probability.

The performance of a soft-decision decoder for a linear (n, k) binary code, ex-
pressed in terms of the processing gain and the interference margin, is

Pe ≤
M∑

m=2

Q

(√
4W/R

Jav/Pav
Rcwm

)
≤ (M − 1)Q

(√
4W/R

Jav/Pav
Rcdmin

)
(12.2–38)

In addition to the processing gain W/R and Jav/Pav, we observe that the performance
depends on a third factor, namely, Rcwm . This factor is the coding gain. A lower
bound on this factor is Rcdmin. Thus the interference margin achieved by the DS spread
spectrum signal depends on the processing gain and the coding gain.

We may express the relationship among these three quantities in dB as

(SNR)dB =
(

2W

R

)
dB

+ (Rcdmin)dB −
(

Jav

Pav

)
dB

(12.2–39)

where the (SNR)dB is the signal-to-noise ratio required by the receiver to achieve a
specified level of performance.
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Uncoded DS spread spectrum signals The performance results given above for
DS spread spectrum signals generated by means of an (n, k) code may be specialized
to a trivial type of code, namely, a binary repetition code. For this case, k = 1 and the
weight of the nonzero code word is w = n. Thus, Rcw = 1 and, hence, the performance
of the binary signaling system reduces to

P2 = Q

⎛
⎝

√
2Eb

J0

⎞
⎠

= Q

(√
4W/R

Jav/Pav

) (12.2–40)

Note that the trivial (repetition) code gives no coding gain. It does result in a
processing gain of W/R.

E X A M P L E 12.2–3. Suppose that we wish to achieve an error rate performance of 10−6 or
less with an uncoded DS spread spectrum system. The available bandwidth expansion
factor is W/R = 1000. Let us determine the jamming margin.

The Eb/J0 required to achieve a bit error probability of 10−6 with uncoded binary
PSK is 10.5 dB. The processing gain is 10 log10 1000 = 30 dB. Hence the maximum
interference-to-signal power that can be tolerated, i.e., the interference margin, is

10 log10
Jav

Pav
= 33 − 10.5 = 22.5 dB

Since this is the interference margin achieved with an uncoded DS spread spectrum
system, it may be increased by coding the information sequence.

There is another way to view the modulation and demodulation processes for the
uncoded (repetition code) DS spread spectrum system. At the modulator, the signal
waveform generated by the repetition code with rectangular pulses, for example, is
identical to a unit amplitude rectangular pulse s(t) of duration Tb or its negative, de-
pending on whether the information bit is 1 or 0, respectively. This may be seen from
Equation 12.2–7, where the coded chips {ci } within a single information bit are either
all 1s or 0s. The PN sequence multiplies either s(t) or −s(t). Thus, when the informa-
tion bit is a 1, the Lc PN chips generated by the PN generator are transmitted with the
same polarity. On the other hand, when the information bit is a 0, the Lc PN chips when
multiplied by −s(t) are reversed in polarity.

The demodulator for the repetition code, implemented as a correlator, is illustrated
in Figure 12.2–6. We observe that the integration interval in the integrator is the bit
interval Tb. Thus, the decoder for the repetition code is eliminated and its function is
subsumed in the demodulator.

Now let us qualitatively assess the effect of this demodulation process on the
interference z(t). The multiplication of z(t) by the output of the PN generator, which
is expressed as

w(t) =
∑

i

(2bi − 1)p(t − iTc)
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FIGURE 12.2–6
Correlation-type demodulator for a
repetition code.

yields

v(t) = w(t)z(t)

The waveforms w(t) and z(t) are statistically independent random processes each with
zero-mean and autocorrelation functions Rww(τ ) and Rzz(τ ), respectively. The product
v(t) is also a random process having an autocorrelation function equal to the product
of Rww(τ ) with Rzz(τ ). Hence, the power spectral density of the process v(t) is equal
to the convolution of the power spectral density of w(t) with the power spectral density
of z(t).

The effect of convolving the two spectra is to spread the power in bandwidth.
Since the bandwidth of w(t) occupies the available channel bandwidth W , the result
of convolution of the two spectra is to spread the power spectral density of z(t) over
the frequency band of width W . If z(t) is a narrowband process, i.e., its power spectral
density has a width much less than W , the power spectral density of the process v(t)
will occupy a bandwidth equal to at least W .

The integrator used in the cross correlation shown in Figure 12.2–6 has a bandwidth
approximately equal to 1/Tb. Since 1/Tb 	 W , only a fraction of the total interference
power appears at the output of the correlator. This fraction is approximately equal to
the ratio of bandwidths 1/Tb to W . That is,

1/Tb

W
= 1

W Tb
= Tc

Tb
= 1

Lc

In other words, the multiplication of the interference with the signal from the PN
generator spreads the interference to the signal bandwidth W , and the narrowband inte-
gration following the multiplication sees only the fraction 1/Lc of the total interference.
Thus, the performance of the uncoded DS spread spectrum system is enhanced by the
processing gain Lc.

Linear code concatenated with a repetition code As illustrated above, a binary
repetition code provides a margin against an interference signal but yields no coding
gain. To obtain an improvement in performance, we may use a linear (n1, k) block or
convolutional code, where n1 ≤ n = kLc. One possibility is to select n1 < n and to
repeat each code bit n2 times such that n = n1n2. Thus, we can construct a linear (n, k)
code by concatenating the (n1, k) code with a binary (n2, 1) repetition code. This may
be viewed as a trivial form of code concatenation where the outer code is the (n1, k)
code and the inner code is the repetition code.
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Since the repetition code yields no coding gain, the coding gain achieved by the
combined code must reduce to that achieved by the (n1, k) outer code. It is demonstrated
that this is indeed the case. The coding gain of the overall combined code is

Rcwm = k

n
wm, m = 2, 3, . . . , 2k

But the weights {wm} for the combined code may be expressed as

wm = n2w
o
m

where {wo
m} are the weights of the outer code. Therefore, the coding gain of the combined

code is

Rcwm = k

n1n2
n2w

o
m = k

n1
wo

m = Ro
c w

o
m (12.2–41)

which is just the coding gain obtained from the outer code.
A coding gain is also achieved if the (n1, k) outer code is decoded using hard

decisions. The probability of a bit error obtained with an (n2, 1) repetition code (based
on soft-decision decoding) is

p = Q

⎛
⎝

√
2n2Ec

J0

⎞
⎠ = Q

⎛
⎝

√
2
Eb

J0
Ro

c

⎞
⎠

= Q

(√
4W/R

Jav/Pav
Ro

c

) (12.2–42)

Then the codeword error probability for a linear (n1, k) block code is upper-bounded
as

Pe ≤
n1∑

m=t+1

(
n1

m

)
pm(1 − p)n1−m (12.2–43)

where t = 
 1
2 (dmin − 1)�, or as

Pe ≤
M∑

m=2

[4p(1 − p)]w
o
m/2 (12.2–44)

where the latter is a Chernov bound. For an (n1, k) binary convolutional code, the upper
bound on the bit error probability is

Pb ≤
∞∑

d=dfree

βd P2(d) (12.2–45)

where P2(d) is defined by Equation 8.2–16 for odd d and by Equation 8.2–17 for
even d.
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Concatenated coding for DS spread spectrum systems It is apparent from the
above discussion that an improvement in performance can be obtained by replacing
the repetition code by a more powerful code that will yield a coding gain in addition
to the processing gain. Basically, the objective in a DS spread spectrum system is to
construct a long, low-rate code having a large minimum distance. This may be best ac-
complished by using code concatenation. When binary PSK is used in conjunction with
DS spread spectrum, the elements of a concatenated code word must be expressed in
binary form.

Best performance is obtained when soft-decision decoding is used on both the
inner and outer codes. However, an alternative, which usually results in reduced com-
plexity for the decoder, is to employ soft-decision decoding on the inner code and
hard-decision decoding on the outer code. The expressions for the error rate perfor-
mance of these decoding schemes depend, in part, on the type of codes (block or
convolutional) selected for the inner and outer codes. For example, the concatenation
of two block codes may be viewed as an overall long binary (n, k) block code having a
performance given by Equation 12.2–38. The performance of other code combinations
may also be readily derived. For the sake of brevity, we shall not consider such code
combinations.

12.2–2 Some Applications of DS Spread Spectrum Signals

In this subsection, we shall briefly consider the use of coded DS spread spectrum signals
for two specific applications. One is concerned with a communication signal that is
hidden in the background noise by transmitting the signal at a very low power level.
The second application is concerned with accommodating a number of simultaneous
signal transmissions on the same channel, i.e., CDMA.

Low-detectability signal transmission In this application, the signal is purposely
transmitted at a very low power level relative to the background channel noise and
thermal noise that is generated in the front end of the receiver. If the DS spread spec-
trum signal occupies a bandwidth W and the spectral density of the additive noise is
N0/2 W/Hz, the average noise power in the bandwidth W is Nav = W N0.

The average received signal power at the intended receiver is Pav. If we wish to hide
the presence of the signal from receivers that are in the vicinity of the intended receiver,
the signal is transmitted at a low power level such that Pav/Nav 	 1. For example, let
us assume that binary PSK is used to transmit the information. The probability of error
at the intended receiver may be expressed as

Pe < M Q

⎛
⎝

√
2Eb

N0
Rcdmin

⎞
⎠

< M Q

(√
4

(
W

R

) (
Pav

Nav

)
Rcdmin

)
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From this expression, we observe that even though Pav/Nav 	 1, the intended receiver
can recover the information-bearing signal with the aid of the processing gain and
the coding gain. However, any other receiver that has no prior knowledge of the PN
sequence is unable to take advantage of the processing gain and the coding gain. Hence,
the presence of the information-bearing signal is difficult to detect. We say that the signal
has a low probability of being intercepted (LPI) and it is called an LPI signal.

The probability of error results given in Section 12.2–1 also apply to the demodu-
lation and decoding of LPI signals at the intended receiver.

Code division multiple access The enhancement in performance obtained from a
DS spread spectrum signal through the processing gain and coding gain can be used
to enable many DS spread spectrum signals to occupy the same channel bandwidth
provided that each signal has its own distinct PN sequence. Thus, it is possible to have
several users transmit messages simultaneously over the same channel bandwidth. This
type of digital communication in which each user (transmitter–receiver pair) has a
distinct PN code for transmitting over a common channel bandwidth is called code
division multiple access (CDMA).

In the demodulation of each PN signal, the signals from the other simultaneous
users of the channel appear as an additive interference. The level of interference varies,
depending on the number of users at any given time. A major advantage of CDMA is
that a large number of users can be accommodated if each transmits messages for a
short period of time. In such a multiple access system, it is relatively easy either to add
new users or to decrease the number of users without disrupting the system.

Let us determine the number of simultaneous signals that can be supported in
a CDMA system.† For simplicity, we assume that all signals have identical average
powers. Thus, if there are Nu simultaneous users, the desired signal-to-noise inteference
power ratio at a given receiver is

Pav

Jav
= Pav

(Nu − 1)Pav
= 1

Nu − 1
(12.2–46)

Hence, the performance for soft-decision decoding at the given receiver is upper-
bounded as

Pe ≤
M∑

m=2

Q

(√
4W/R

Nu − 1
Rcwm

)
≤ (M − 1)Q

(√
4W/R

Nu − 1
Rcdmin

)
(12.2–47)

In this case, we have assumed that the interference from other users is Gaussian.
As an example, suppose that the desired level of performance (error probability of

10−6) is achieved when

4W/R

Nu − 1
Rcdmin = 40

†In this section the interference from other users is treated as a random process. This is the case if there
is no cooperation among the users. In Chapter 16 we consider CDMA transmission in which interference
from other users is known and is suppressed by the receiver.
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Then the maximum number of users that can be supported in the CDMA system is

Nu = W/R

10
Rcdmin + 1 (12.2–48)

If W/R = 100 and Rcdmin = 4, as obtained with the Golay (24, 12) code, the maximum
number is Nu = 41. If W/R = 1000 and Rcdmin = 4, this number becomes Nu = 401.

In determining the maximum number of simultaneous users of the channel, we
have implicitly assumed that the PN code sequences are mutually orthogonal and the
interference from other users adds on a power basis only. However, orthogonality among
a number of PN code sequences is not easily achieved, especially if the number of PN
code sequences required is large. In fact, the selection of a good set of PN sequences
for a CDMA system is an important problem that has received considerable attention
in the technical literature. We shall briefly discuss this problem in Section 12.2–5.

Digital cellular CDMA system based on DS spread spectrum Direct sequence
CDMA has been adopted as one multiple-access method for digital cellular voice
communications in North America. This digital cellular communication system was
proposed and developed by Qualcomm and has been standardized and designated as
IS-95 by the Telecommunications Industry Association (TIA) for use in the 800-MHz
and in the 1900-MHz frequency bands.

The nominal bandwidth used for transmission from a base station to the mobile
receivers (forward link) is 1.25 MHz, and a separate channel, also with a bandwidth
of 1.25 MHz, is used for signal transmission from mobile receivers to a base station
(reverse link). The signals transmitted in both the forward and the reverse links are DS
spread spectrum signals having a chip rate of 1.2288×106 chips per second (Mchips/s).

Forward link A block diagram of the modulator for the signals transmitted from
a base station to the mobile receivers is shown in Figure 12.2–7. The speech coder is a
code-excited linear predictive (CELP) coder which generates data at the variable rates
of 9600, 4800, 2400, and 1200 bits/s, where the data rate is a function of the speech
activity of the user, in frame intervals of 20 ms. The data from the speech coder is
encoded by a rate 1/2, constraint length K = 9 convolutional code. For lower speech
activity, where the data rates are 4800, 2400, or 1200 bits/s, the output symbols from
the convolutional encoder are repeated either twice, four times, or eight times so as
to maintain a constant bit rate of 9600 bits/s. At the lower speech activity rates, the
transmitter power is reduced by either 3, 6, or 9 dB, so that the transmitted energy per
bit remains constant for all speech rates. Thus, a lower speech activity results in a lower
transmitter power and, hence, a lower level of interference to other users.

The encoded bits for each frame are passed through a block interleaver, which is
needed to overcome the effects of burst errors that may occur in transmission through
the channel. The data bits at the output of the block interleaver, which occur at a rate
of 19.2 kbits/s, are scrambled by multiplication with the output of a long code (period
N = 242−1) generator running at the chip rate of 1.2288 M chips/s, but whose output is
decimated by a factor of 64 to 19.2 kchips/s. The long code is used to uniquely identify
a call of a mobile station on the forward and reverse links.
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Each user of the channel is assigned a Hadamard (or Walsh) sequence of length 64.
There are 64 orthogonal Hadamard sequences assigned to each base station, and, thus,
there are 64 channels available. One Hadamard sequence (the all-zero sequence) is used
to transmit a pilot signal, which serves as a means for measuring the channel character-
istics, including the signal strength and the carrier phase offset. These parameters are
used at the receiver in performing phase coherent demodulation. Another Hadamard
sequence is used for providing time synchronization. One channel, and possibly more
if necessary, is used for paging. That leaves up to 61 channels for allocation to different
users.

Each user, using the Hadamard sequence assigned to it, multiplies the data sequence
by the assigned Hadamard sequence. Thus, each encoded data bit is multiplied by the
Hadamard sequence of length 64. The resulting binary sequence is now spread by
multiplication with two PN sequences of length N = 215, so as to create in-phase and
quadrature signal components. Thus, the binary data signal is converted to a four-phase
signal and both the I and Q components are filtered by baseband spectral shaping filters.
Different base stations are identified by different offsets of these PN sequences.The
signals for all the 64 channels are transmitted synchronously so that, in the absence of
channel multipath distortion, the signals of other users received at any mobile receiver
do not interfere because of the orthogonality of the Hadamard sequences.

At the receiver, a RAKE demodulator is used to resolve the major multipath sig-
nal components, which are then phase-aligned and weighted according to their signal
strength using the estimates of phase and signal strength derived from the pilot signal.
These components are combined and passed to the Viterbi soft-decision decoder. The
RAKE demodulator is described in detail in Chapter 13.

Reverse link The modulator for the reverse link from a mobile transmitter to a base
station is different from that for the forward link. A block diagram of the modulator
is shown in Figure 12.2–8. An important consideration in the design of the modulator
is that signals transmitted from the various mobile transmitters to the base station
are asynchronous and, hence, there is significantly more interference among users.
Secondly, the mobile transmitters are usually battery operated and, consequently, these
transmissions are power limited. To compensate for these major limitations, a K = 9,
rate 1/3 convolutional code is used in the reverse link. Although this code has essentially
the same coding gain in an AWGN channel as the rate 1/2 code used in the forward link,
it has a much higher coding gain in a fading channel, which is the characteristic of digital
cellular communication links, as we shall observe in our treatment of communication
through fading channels in Chapter 13. As in the case of the forward link, for lower
speech activity, the output bits from the convolutional encoder are repeated either two,
or four, or eight times. However, the coded bit rate is 28.8 kbits/s.

For each 20-ms frame, the 576 encoded bits are block-interleaved and passed to
the modulator. The data is modulated using an M = 64 orthogonal signal set using
Hadamard sequences of length 64. Thus, a 6-bit block of data is mapped into one
of the 64 Hadamard sequences. The result is a bit (or chip) rate of 307.2 kbits/s at
the output of the modulator. We note that 64-ary orthogonal modulation at an error
probability of 10−6 requires approximately 3.5 dB less SNR per bit than binary antipodal
signaling.
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To reduce interference to other users, the time position of the transmitted code
symbol repetitions is randomized so that, at the lower speech activity, consecutive
bursts do not occur evenly spaced in time. Following the randomizer, the signal is
spread by the output of the long code PN generator, which is running at a rate of
1.2288 Mchips/s. Hence, there are only four PN chips for every bit of the Hadamard
sequence from the modulator, so the processing gain in the reverse link is very small.
The resulting 1.2288 Mchips/s binary sequence at the output of the multiplier is
then further multiplied by two PN sequences of length N = 215, whose rate is also
1.2288 Mchips/s, to create I and Q signals (a QPSK signal) which are filtered by base-
band spectral shaping filters and then passed to quadrature mixers. The Q-channel
signal is delayed in time by one-half PN chip relative to the I -channel signal prior to
the baseband filter. In effect, the signal at the output of the two baseband filters is an
offset QPSK signal.

Although the chips are transmitted as an offset QPSK signal, the demodulator
employs noncoherent demodulation of the M = 64 orthogonal Hadamard waveforms
to recover the encoded data bits. A fast Hadamard transform is used to reduce the
computational complexity in the demodulation process. The output of the demodula-
tor is then fed to the Viterbi detector, whose output is used to synthesize the speech
signal.

12.2–3 Effect of Pulsed Interference on DS Spread Spectrum Systems

Thus far, we have considered the effect of continuous interference or jamming on a
DS spread spectrum signal. We have observed that the processing gain and coding gain
provide a means for overcoming the detrimental effects of this type of interference.
However, there is a jamming threat that has a dramatic effect on the performance of
a DS spread spectrum system. That jamming signal consists of pulses of spectrally
flat noise that covers the entire signal bandwidth W . This is usually called pulsed
interference.

Suppose the jammer has an average power Jav in the signal bandwidth W . Hence
2J0 = Jav/W . Instead of transmitting continuously, the jammer transmits pulses at a
power Jav/α for α percent of the time, i.e., the probability that the jammer is transmitting
at a given instant is α. For simplicity, we assume that an interference pulse spans an
integral number of signaling intervals and, thus, it affects an integral number of bits.
When the jammer is not transmitting, the transmitted bits are assumed to be received
error-free, and when the jammer is transmitting, the probability of error for an uncoded
DS spread spectrum system is Q(

√
2αEb/J0). Hence, the average probability of a bit

error is

P2(α) = αQ
(√

2αEb/J0

)
(12.2–49)

The jammer selects the duty cycle α to maximize the error probability. On differentiating
Equation 12.2–49 with respect to α, we find that the worst-case pulse jamming occurs
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when

α∗ =
⎧⎨
⎩

0.71

Eb/J0
Eb/J0 ≥ 0.71

1 Eb/J0 < 0.71
(12.2–50)

and the corresponding error probability is

P2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.083

Eb/J0
Eb/J0 > 0.71

Q

⎛
⎝

√
2Eb

J0

⎞
⎠ Eb/J0 < 0.71

(12.2–51)

The error rate performance given by Equation 12.2–49 for α = 1.0, 0.1, and 0.01
along with the worst-case performance based on α∗ is plotted in Figure 12.2–9. By
comparing the error rate for continuous Gaussian noise jamming with worst-case pulse
jamming, we observe a large difference in performance, which is approximately 40 dB
at an error rate of 10−6.

We should point out that the above analysis applies when the jammer pulse duration
is equal to or greater than the bit duration. In addition, we should indicate that practical
considerations may prohibit the jammer from achieving high peak power (small values
of α). Nevertheless, the error probability given by Equation 12.2–51 serves as an upper
bound on the performance of the uncoded binary PSK in worst-case pulse jamming.
Clearly, the performance of the DS spread spectrum system in the presence of such
interference is extremely poor.

If we simply add coding to the DS spread spectrum system, the improvement over
the uncoded system is the coding gain. Thus, Eb/J0 is reduced by the coding gain,

FIGURE 12.2–9
Performance of DS binary PSK with pulse
interference.
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FIGURE 12.2–10
Block diagram of AJ communication system.

which in most cases is limited to less than 10 dB. The reason for the poor performance
is that the jamming signal pulse duration may be selected to affect many consecutive
coded bits when the jamming signal is turned on. Consequently, the code word error
probability is high due to the burst characteristics of the jammer.

In order to improve the performance, we should interleave the coded bits prior
to transmission over the channel. The effect of the interleaving, as discussed in Sec-
tion 7.12, is to make the coded bits that are hit by the jammer statistically independent.

The block diagram of the digital communication system that includes interleaving/
deinterleaving is shown in Figure 12.2–10. Also shown is the possibility that the receiver
knows the jammer state, i.e., that it knows when the jammer is on or off. Knowledge
of the jammer state (called side information) is sometimes available from channel
measurements of noise power levels in adjacent frequency bands. In our treatment,
we consider two extreme cases, namely, no knowledge of the jammer state or com-
plete knowledge of the jammer state. In any case, the random variable ζ representing
the jammer state is characterized by the probabilities

P(ζ = 1) = α, P(ζ = 0) = 1 − α (12.2–52)

When the jammer is on, the channel is modeled as an AWGN with power spectral
density N0 = J0/α; and when the jammer is off, there is no noise in the channel.
Knowledge of the jammer state implies that the decoder knows when ζ = 1 and when
ζ = 0, and uses this information in the computation of the correlation metrics. For
example, the decoder may weight the demodulator output for each coded bit by the
reciprocal of the noise power level in the interval. Alternatively, the decoder may give
zero weight (erasure) to a jammed bit.

First, let us consider the effect of jamming without knowledge of the jammer state.
The interleaver/deinterleaver pair is assumed to result in statistically independent jam-
mer hits of the coded bits. As an example of the performance achieved with coding,
we cite the performance results from the paper of Martin and McAdam (1980). There
the performance of binary convolutional codes is evaluated for worst-case pulse jam-
ming. Both hard- and soft-decision Viterbi decoding are considered. Soft decisions
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FIGURE 12.2–11
Optimal duty cycle for pulse jammer. [From
Martin and McAdam (1980). c© 1980 IEEE.]

are obtained by quantizing the demodulator output to eight levels. For this purpose, a
uniform quantizer is used for which the threshold spacing is optimized for the pulse
jammer noise level. The quantizer plays the important role of limiting the size of the
demodulator output when the pulse jammer is on. The limiting action ensures that any
hit on a coded bit does not heavily bias the corresponding path metrics.

The optimum duty cycle for the pulse jammer in the coded system is generally
inversely proportional to the SNR, but its value is different from that given by Equa-
tion 12.2–50 for the uncoded system. Figure 12.2–11 illustrates graphically the optimal
jammer duty cycle for both hard- and soft-decision decoding of the rate 1/2 convolu-
tional codes. The corresponding error rate results for this worst-case pulse jammer are
illustrated in Figures 12.2–12 and 12.2–13 for rate 1/2 codes with constraint lengths
3 ≤ K ≤ 9. For example, note that at P2 = 10−6, the K = 7 convolutional code
with soft-decision decoding requires Eb/J0 = 7.6 dB, whereas hard-decision decoding
requires Eb/J0 = 11.7 dB. This 4.1-dB difference in SNR is relatively large. With
continuous Gaussian noise, the corresponding SNRs for an error rate of 10−6 are 5 dB
for soft-decision decoding and 7 dB for hard-decision decoding. Hence, the worst-case
pulse jammer has degraded the performance by 2.6 dB for soft-decision decoding and
by 4.7 dB for hard-decision decoding. These levels of degradation increase as the con-
straint length of the convolutional code is decreased. The important point, however, is
that the loss in SNR due to jamming has been reduced from 40 dB for the uncoded
system to less than 5 dB for the coded system based on a K = 7, rate 1/2 convolutional
code with interleaving.

A simpler method for evaluating the performance of a coded anti-jamming (AJ)
communication system is to use the cutoff rate parameter R0 as proposed by Omura
and Levitt (1982). For example, with binary-coded modulation, the cutoff rate may be
expressed as

R0 = 1 − log(1 + �α) (12.2–53)
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Union bound
Worst-case pulse jamming
Binary phase shift keying
Rate 1�2 convolutional code
with Viterbi decoding
Hard decisions

FIGURE 12.2–12
Performance of rate 1/2 convolutional
codes with hard-decision Viterbi decoding
binary PSK with worst-case pulse jamming.
[From Martin and McAdam (1980). c©
1980 IEEE.]

Union bound
Worst-case pulse jamming
Binary phase shift keying
Rate 1�2 convolutional code
with Viterbi decoding
Soft decisions

FIGURE 12.2–13
Performance of rate 1/2 convolutional codes
with soft-decision Viterbi decoding binary
PSK with worst-case pulse jamming. [From
Martin and McAdam (1980). c© 1980 IEEE.]
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where the factor �α depends on the channel noise characteristics and the decoder
processing. Recall that for binary PSK in an AWGN channel and soft-decision decoding,

�α = e−Ec/N0 (12.2–54)

where Ec is the energy per coded bit; and for hard-decision decoding,

�α = √
4p(1 − p) (12.2–55)

where p is the probability of a coded bit error. Here, we have N0 ≡ J0.
For a coded binary PSK, with pulse jamming, Omura and Levitt (1982) have shown

that

�α = αe−αEc/N0 for soft-decision decoding with
knowledge of jammer state

(12.2–56)

�α = min
λ≥0

{[
α exp

(
λ2Ec/N0/α

) + 1 − α
]

exp(−2λEc)
}

for soft-decision decoding with
no knowledge of jammer state

(12.2–57)

�α = α
√

4p(1 − p) for hard-decision decoding with
knowledge of the jammer state

(12.2–58)

�α = √
4αp(1 − αp) for hard-decision decoding with

no knowledge of the jammer state
(12.2–59)

where the probability of error for hard-decision decoding of binary PSK is

p = Q

⎛
⎝

√
2αEc

N0

⎞
⎠

The graphs for R0 as a function of Ec/N0 are illustrated in Figure 12.2–14 for
the cases given above. Note that these graphs represent the cutoff rate for the worst-
case value of α = α∗ that maximizes �α (minimizes R0) for each value of Ec/N0.
Furthermore, note that with soft-decision decoding and no knowledge of the jammer
state, R0 = 0. This situation results from the fact that the demodulator output is not
quantized.

The graphs in Figure 12.2–14 may be used to evaluate the performance of coded
systems. To demonstrate the procedure, suppose that we wish to determine the SNR
required to achieve an error probability of 10−6 with coded binary PSK in worst-case
pulse jamming. To be specific, we assume that we have a rate 1/2, K = 7 convolutional
code. We begin with the performance of the rate 1/2, K = 7 convolutional code with
soft-decision decoding in an AWGN channel. At P2 = 10−6, the SNR required is found
from Figure 8.6–1 to be

Eb

N0
= 5 dB
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FIGURE 12.2–14
Cutoff rate for coded DS binary PSK modulation. [From Omura and Levitt (1982). c© 1982
IEEE].

Since the code is rate 1/2, we have

Ec

N0
= 2 dB

Now, we go to the graphs in Figure 12.2–14 and find that for the AWGN channel
(reference system) with Ec/N0 = 2 dB, the corresponding value of the cutoff rate is

R0 = 0.74 bit per symbol

If we have another channel with different noise characteristics (a worst-case pulse noise
channel) but with the same value of the cutoff rate R0, then the upper bound on the
bit error probability is the same, i.e., 10−6 in this case. Consequently, we can use this
rate to determine the SNR required for the worst-case pulse jammer channel. From the
graphs in Figure 12.2–14, we find that

Ec

J0
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

10 dB for hard-decision decoding with
no knowledge of jammer state

5 dB for hard-decision decoding with
knowledge of jammer state

3 dB for soft-decision decoding with
knowledge of jammer state

Therefore, the corresponding values of Eb/J0 for the rate 1/2, K = 7 convolutional
code are 13, 8, and 6 dB, respectively.

This general approach may be used to generate error rate graphs for coded binary
signals in a worst-case pulse jamming channel by using corresponding error rate graphs
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for the AWGN channel. The approach we describe above is easily generalized to M-ary
coded signals as indicated by Omura and Levitt (1982).

By comparing the cutoff rate for coded DS binary PSK modulation shown in
Figure 12.2–14, we note that for rates below 0.7, there is no penalty in SNR with soft-
decision decoding and jammer state information compared with the performance on
the AWGN channel (α = 1). On the other hand, at R0 = 0.7, there is a 6-dB difference
in performance between the SNR in an AWGN channel and that required for hard-
decision decoding with no jammer state information. At rates below 0.4, there is no
penalty in SNR with hard-decision decoding if the jammer state is unknown. However,
there is the expected 2-dB loss in hard-decision decoding compared with soft-decision
decoding in the AWGN channel.

12.2–4 Excision of Narrowband Interference in DS Spread
Spectrum Systems

We have shown that DS spread spectrum signals reduce the effects of interference
due to other users of the channel and intentional jamming. When the interference is
narrowband, the cross correlation of the received signal with the replica of the PN code
sequence reduces the level of the interference by spreading it across the frequency
band occupied by the PN signal. Thus, the interference is rendered equivalent to a
lower-level noise with a relatively flat spectrum. Simultaneously the cross correlation
operation collapses the desired signal to the bandwidth occupied by the information
signal prior to spreading. Consequently, the power in the narrowband interference is
reduced by an amount equal to the processing gain.

The interference immunity of a DS spread spectrum communication system cor-
rupted by narrowband interference can be further improved by filtering (whitening) the
signal prior to despreading, where the objective is to reduce the level of the interference
at the expense of introducing some distortion on the desired signal. This filtering can
be accomplished by exploiting the wideband spectral characteristics of the desired DS
signal and the narrowband characteristic of the interference as described below.

To be specific, we consider the demodulator illustrated in Figure 12.2–15. The
received signal is passed through a filter matched to the chip pulse g(t). The output of

FIGURE 12.2–15
Demodulator for PN spread spectrum signal corrupted by narrowband interference.
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this filter is synchronously sampled every Tc seconds to yield

r j = 2Ec(2bj − 1)(2ci j − 1) + ν j , j = 1, 2, . . . (12.2–60)

where Ec is the energy of the chip pulse, {bj } is the binary-valued PN sequence, and
ν j represents the additive noise and interference term. The additive noise term ν j will
be assumed to consist of two terms, one corresponding to a broadband noise (usually
thermal noise) and the other to narrowband interference. Consequently we may express
r j as

r j = s j + i j + n j (12.2–61)

where s j denotes the signal component, i j the narrowband interference, and n j the
broadband noise.

The received signal sequence {r j } at the output of the sampler is fed to a discrete-
time filter that estimates the narrowband interference sequence {i j } and subtracts the
estimate î j from {r j }. This filter may be either linear or non-linear. The resulting signal
sequence {r j − î j } is then fed to the PN correlator, whose output is passed to the decoder.

Interference estimation and suppression based on linear prediction The interfer-
ence component i j can be estimated from the received signal by passing it through the
linear transversal filter. Computationally efficient algorithms based on linear predic-
tion may be used to estimate the interference. Basically, in this method the narrowband
interference is modeled as having been generated by passing white noise through an
all-pole filter. Hence, the output of this filter is an autoregressive (AR) process. Lin-
ear prediction is used to estimate the coefficients of the all-pole model. The estimated
coefficients specify an appropriate noise-whitening all-zero (transversal) filter which
is used to suppress the narrowband interference.

Let us assume for the moment that the statistics of the sequence {i j } are known
and that {i j } is a stationary random sequence. Then, because of the narrowband char-
acteristics of {i j }, we can predict i j from r j−1, r j−2, . . . , r j−m . That is,

î j =
m∑

l=1

amlr j−l (12.2–62)

where {aml} are the coefficients of an mth-order linear predictor. It should be empha-
sized that Equation 12.2–62 predicts the interference but not the signal s j , because the
PN chips are uncorrelated and, hence, s j is uncorrelated with r j−l , l = 1, 2, . . . , m,
where m is less than the length of the PN sequence.

The coefficients in Equation 12.2–62 are determined by minimizing the mean
square error between r j and î j , with respect to the predictor coefficients. This leads to
the set of linear equations, called the Yule–Walker equations,

m∑
l=1

aml R (k − l) = R (k), k = 1, 2, . . . , m (12.2–63)

where R (k) = E(r jr j+k) is the autocorrelation function of the received signal {r j }.
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The solution of Equation 12.2–63 for the coefficients of the prediction filter requires
knowledge of the autocorrelation function R(k). In practice, the autocorrelation function
of {i j } and, hence, {r j } is usually unknown, and it may also be slowly varying in
time (nonstationary interference). In such a case, adaptive algorithms may be used
to estimate the narrowband interference. In particular, least-squares-type algorithms,
such as the Burg algorithm, are especially effective for estimating the coefficients
of the linear prediction filter adaptively, as described in the paper by Ketchum and
Proakis (1982).

E X A M P L E 12.2–4. Let us consider a narrowband interference that occupies 20 per-
cent of the spectral band occupied by the PN spread spectrum signal. The average
power of the interference is 20 dB above the average power of the signal. The average
power of the broadband noise is 20 dB below the average power of the signal. Fig-
ure 12.2–16 illustrates the spectral characteristics of a 16-tap and a 29-tap FIR filter
when the interference is equally split into four frequency bands. It is apparent that the
29-tap filter has better spectral characteristics. In general, the number of taps in the
filter should be about four times the number of interference bands for adequate suppres-
sion. It is also apparent that the interference suppression filter acts as a notch filter. In
effect, it attempts to whiten the total noise plus interference, so that the power spectral
density of these components at its output is approximately flat. While suppressing the
interference, the filter also distorts the desired signal by spreading it in time.

FIGURE 12.2–16
Frequency-response characteristics of 16- and 29-tap filters for four bands of interference.
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Performance improvement with interference suppression Since the noise plus in-
terference at the output of the suppression filter is spectrally flat, the matched filtering or
cross correlation following the suppression filter should be performed with the distorted
signal. This may be accomplished by having a filter matched to the interference suppres-
sion filter, i.e., a discrete-time filter impulse response {−am,m, −am,m−1 . . . − am,1, 1}
followed by the PN correlator. In fact, we can combine the interference suppression
filter and its matched filter into a single filter having an impulse response

h0 = −am,m

hk = −am,m−k +
k−1∑
l=0

am,m−lam,k−l, 1 ≤ k ≤ m − 1

hm = 1 +
m∑

l=1

a2
m,l

hm+k = hm−k, 0 ≤ k ≤ m

(12.2–64)

The combined filter is a linear phase (symmetric) transversal filter with K = 2m + 1
taps. The impulse response may be normalized by dividing every term by hm . Thus
the center tap is normalized to unity. In order to demonstrate the effectiveness of the
interference suppression filter, we compare the performance of the DS system with and
without the suppression filter. The output SNR is a convenient performance index for
this purpose. Since the output of the PN correlator is characterized as Gaussian, there
is a one-to-one correspondence between the SNR and the probability of error.

Without the suppression filter, the PN correlator output , denoted as U1, has mean
2Ec Lc and a variance Lc(2Ec N0 + Rii (0)) where Rii (k) is the autocorrelation function
of the sequence {i j } and Lc is the number of chips per bit or per symbol. The output
SNR is defined as the ratio of the square of the mean to twice the variance. Hence the
SNR without the suppression filter is

SNRno = Ec Lc

N0 + Rii (0)/2Ec
(12.2–65)

With an interference suppression filter having a symmetric impulse response as
defined in Equation 12.2–64 and normalized such that the center tap is unity, the mean
value of the correlator output is also 2Ec Lc. However, the variance of the output now
consists of three terms. One corresponds to the additive wideband noise, the second to
the residual narrowband interference, and the third to a self-noise caused by the time
dispersion introduced by the suppression filter. The expression for the variance can be
shown to be (see Ketchum and Proakis [1982]):

VAR[U1] = 2LcEc N0

K∑
k=0

h2
k + Lc

K∑
k=0

K∑
l=0

h(l)h(k)Rii (k − l)

+ 4LcE2
c

K/2−1∑
k=0

(
2 − k

Lc

)
h2

k

(12.2–66)
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Hence the output SNR with the filter is the ratio of the square of the mean to twice the
variance. The ratio of the SNR with the filter to the SNR without the filter is

ηo = N0 + Rii (0)/2Ec

N0

K∑
k=0

h2
k + 1

2Ec

K∑
k=0

K∑
l=0

h(k)h(l)Rii (k − l) + 2Ec

K/2−1∑
k=0

(2 − k/Lc)h2
k

(12.2–67)

This ratio is called the improvement factor resulting from interference suppression. It
may be plotted against the normalized SNR per chip without filtering, defined as

SNRno

Lc
= Ec

N0 + Rii (0)/2Ec
(12.2–68)

The resulting graph of ηo versus SNRno/Lc is universal in the sense that it applies to
any PN spread spectrum system with arbitrary processing gain for a given Ec, N0, and
Rii (0).

As an example, the improvement factor in (decibels) is plotted against SNRno/Lc

in Figure 12.2–17 for a single-band equal-amplitude randomly phased sinusoids cov-
ering 20 percent of the frequency band occupied by the DS spread spectrum signal.
The interference suppression filter consists of a nine-tap suppression filter which corre-
sponds to a fourth-order predictor. These numerical results indicate that the notch filter
is very effective in suppressing the interference prior to PN correlation and decoding.
As a consequence, the interference margin of the system is increased.

FIGURE 12.2–17
Improvement factor for interference suppression filter in cascade with its matched filter.
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The use of a linear adaptive FIR filter for suppression of narrowband interference
in DS spread spectrum systems has been considered in the literature by many authors.
The interested reader is referred to this literature cited in Section 12.6. A practical
motivation for excision of narrowband signals from wideband signals is to allow the
overlay of narrowband digital cellular systems with wideband CDMA systems.

Interference estimation and suppression based on non-linear filtering The linear
FIR filter used to predict the narrowband interference, which is modeled as a Gaussian
autoregressive (AR) process, is the optimal minimum mean-square-error filter when
the signal {sk} and broadband noise {nk} components are Gaussian random processes.
However, the DS spread spectrum signal sequence {sk} is non-Gaussian. Consequently,
the linear estimation filter is suboptimal, in the sense that it is not the best filter for
suppressing the narrowband interference. The optimum estimator for the narrowband
interference is non-linear.

By defining the state vector xk as

xk = [ik ik−1 · · · ik−m+1]t (12.2–69)

where m is the order of the AR model, it is possible to express the state vector and the
observation sequence in the state-space form

xk = Φxk−1 + wk

rk = H xk + (nk + sk)
(12.2–70)

where Φ is the state transition matrix that depends on the AR model parameters, wk is
the white Gaussian process driving the AR model, and H = [100 . . . 0]. We recall that
the minimum mean-square-error estimator for the state at time k given the observations
rk−1 ≡ [rk−1, rk−2, . . . , r0] is the conditional mean E(xk |rk−1). If the signal sequence
{sk} and the broadband noise sequence {nk} were Gaussian, the optimum estimator for
the state xk corresponding to the conditional mean would be the linear predictor obtained
from the Kalman filter. Since {sk} is non-Gaussian, the conditional mean estimate is a
non-linear function of the observations which, in general, is highly complex. However,
it is possible to derive a reduced complexity approximation to the conditional mean
estimate. This approach has been described in the papers by Vijayan and Poor (1990),
Garth and Poor (1992), Rusch and Poor (1994), and Poor and Rusch (1994). The
general configuration of the approximate conditional mean non-linear filter is shown in
Figure 12.2–18. The non-linear function tanh(x) provides a soft-decision type feedback
signal component. An analysis and simulation results of the performance of this type
of non-linear filter for suppression of narrowband interference are given in the papers
cited above.

12.2–5 Generation of PN Sequences

The generation of PN sequences for spread spectrum applications is a topic that has
received considerable attention in the technical literature. We shall briefly discuss the
construction of some PN sequences and present a number of important properties of the
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FIGURE 12.2–18
Non-linear excision filter.

autocorrelation and cross-correlation functions of such sequences. For a comprehensive
treatment of this subject, the interested reader may refer to the book by Golomb (1967).

By far the most widely known binary PN sequences are the maximum-length shift-
register sequences introduced in Section 7.9–5 in the context of coding. A maximum-
length shift register sequence, or m-sequence for short, has length n = 2m − 1 bits
and is generated by an m-stage shift register with linear feedback as illustrated in Fig-
ure 12.2–19. The sequence is periodic with period n. Each period of the sequence
contains 2m−1 ones and 2m−1 − 1 zeros.

In DS spread spectrum applications the binary sequence with elements {0, 1} is
mapped into a corresponding sequence of positive and negative pulses according to the
relation

pi (t) = (2bi − 1)p(t − iT )

where pi (t) is the pulse corresponding to the element bi in the sequence with elements
{0, 1}. Equivalently, we may say that the binary sequence with elements {0, 1} is mapped
into a corresponding binary sequence with elements {−1, 1}. We shall call the equivalent

FIGURE 12.2–19
General m-stage shift register with linear feedback.
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sequence with elements {−1, 1} a bipolar sequence, since it results in pulses of positive
and negative amplitudes.

An important characteristic of a periodic PN sequence is its periodic autocorrelation
function, which is usually defined in terms of the bipolar sequence as

R( j) =
n∑

i=1

(2bi − 1)(2bi+ j − 1), 0 ≤ j ≤ n − 1 (12.2–71)

where n is the period. Clearly, R( j + rn) = R( j) for any integer value r .
Ideally, a pseudorandom sequence should have an autocorrelation function with

the property that R(0) = n and R( j) = 0 for 1 ≤ j ≤ n−1. In the case of m sequences,
the periodic autocorrelation function is

R( j) =
{

n j = 0

−1 1 ≤ j ≤ n − 1
(12.2–72)

For large values of n, i.e., for long m sequences, the size of the off-peak values of R( j)
relative to the peak value R( j)/R(0) = −1/n is small and, from a practical viewpoint,
inconsequential. Therefore, m sequences are almost ideal when viewed in terms of their
autocorrelation function.

In antijamming applications of PN spread spectrum signals, the period of the
sequence must be large in order to prevent the jammer from learning the feedback
connections of the PN generator. However, this requirement is impractical in most
cases because the jammer can determine the feedback connections by observing only
2m −1 chips from the PN sequence. This vulnerability of the PN sequence is due to the
linearity property of the generator. To reduce the vulnerability to a jammer, the output
sequences from several stages of the shift register or the outputs from several distinct
m sequences are combined in a non-linear way to produce a non-linear sequence that is
considerably more difficult for the jammer to learn. Further reduction in vulnerability
is achieved by frequently changing the feedback connections and/or the number of
stages in the shift register according to some prearranged plan formulated between the
transmitter and the intended receiver.

In some applications, the cross-correlation properties of PN sequences are as im-
portant as the autocorrelation properties. For example, in CDMA, each user is assigned
a particular PN sequence. Ideally, the PN sequences among users should be mutually
orthogonal so that the level of interference experienced by any one user from transmis-
sions of other users adds on a power basis. However, the PN sequences used in practice
exhibit some correlation.

To be specific, we consider the class of m sequences. It is known (Sarwate and
Pursley, 1980) that the periodic cross-correlation function between any pair of m se-
quences of the same period can have relatively large peaks. Table 12.2–1 lists the peak
magnitude Rmax for the periodic cross correlation between pairs of m sequences for
3 ≤ m ≤ 12. The table also shows the number of m sequences of length n = 2m −1 for
3 ≤ m ≤ 12. As we can see, the number of m sequences of length n increases rapidly
with m. We also observe that, for most sequences, the peak magnitude Rmax of the
cross-correlation function is a large percentage of the peak value of the autocorrelation
function.
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TABLE 12.2–1

Peak Cross Correlation of m Sequences and Gold Sequences

Number of Peak cross
m n = 2m − 1 m sequences correlation Rmax Rmax/R(0) t(m) t(m)/R(0)

3 7 2 5 0.71 5 0.71
4 15 2 9 0.60 9 0.60
5 31 6 11 0.35 9 0.29
6 63 6 23 0.36 17 0.27
7 127 18 41 0.32 17 0.13
8 255 16 95 0.37 33 0.13
9 511 48 113 0.22 33 0.06

10 1023 60 383 0.37 65 0.06
11 2047 176 287 0.14 65 0.03
12 4095 144 1407 0.34 129 0.03

Such high values for the cross correlations are undesirable in CDMA. Although it
is possible to select a small subset of m sequences that have relatively smaller cross-
correlation peak values, the number of sequences in the set is usually too small for
CDMA applications.

PN sequences with better periodic cross-correlation properties than m sequences
have been given by Gold (1967, 1968) and Kasami (1966). They are derived from m
sequences as described below.

Gold and Kasami proved that certain pairs of m sequences of length n exhibit a
three-valued cross-correlation function with values {−1, −t(m), t(m) − 2}, where

t(m) =
{

2(m+1)/2 + 1 odd m

2(m+2)/2 + 1 even m
(12.2–73)

For example, if m = 10, then t(10) = 26 + 1 = 65 and the three possible values of
the periodic cross-correlation function are {−1, −65, 63}. Hence the maximum cross
correlation for the pair of m sequences is 65, while the peak for the family of 60
possible sequences generated by a 10-stage shift register with different feedback con-
nections is Rmax = 383—about a sixfold difference in peak values. Two m sequences
of length n with a periodic cross-correlation function that takes on the possible values
{−1, −t(m), t(m) − 2} are called preferred sequences.

From a pair of preferred sequences, say a = [a1 a2 · · · an] and b = [b1 b2 · · · bn],
we construct a set of sequences of length n by taking the modulo-2 sum of a with the n
cyclicly shifted versions of b or vice versa. Thus, we obtain n new periodic sequences†

with period n = 2m −1. We may also include the original sequences a and b, and, thus,
we have a total of n + 2 sequences. The n + 2 sequences constructed in this manner
are called Gold sequences.

†An equivalent method for generating the n new sequences is to employ a shift register of length 2m
with feedback connections specified by the polynomial h(X ) = h1(X )h2(X ), where h1(X ) and h2(X ) are
the polynomials that specify the feedback connections of the m-stage shift registers that generate the m
sequences a and b.
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E X A M P L E 12.2–5. Let us consider the generation of Gold sequences of length n =
31 = 25 − 1. As indicated above for m = 5, the cross-correlation peak is

t(5) = 23 + 1 = 9

Two preferred sequences, which may be obtained from Peterson and Weldon (1972),
are described by the parity polynomials

h1(X ) = X5 + X3 + 1

h2(X ) = X5 + X4 + X3 + X + 1

The shift registers for generating the two m sequences and the corresponding Gold
sequences are shown in Figure 12.2–20. In this case, there are 33 different sequences,
corresponding to the 33 relative phases of the two m sequences. Of these, 31 sequences
are non-maximal-length sequences.

With the exception of the sequences a and b, the set of Gold sequences is not com-
prised of maximum-length shift-register sequences of length n. Hence, their autocorre-
lation functions are not two-valued. Gold (1968) has shown that the cross-correlation
function for any pair of sequences from the set of n + 2 Gold sequences is three-valued
with possible values {−1, −t(m), t(m) − 2}, where t(m) is given by Equation 12.2–73.
Similarly, the off-peak autocorrelation function for a Gold sequence takes on values
from the set {−1, −t(m), t(m) − 2}. Hence, the off-peak values of the autocorrelation
function are upper-bounded by t(m).

The values of the off-peak autocorrelation function and the peak cross-correlation
function, i.e., t(m), for Gold sequences is listed in Table 12.2–1. Also listed are the
values normalized by R(0).

The frequency of occurrence for each of the three possible values of the cross
correlation for any pair of Gold sequences may also be of interest to the system designer.
In Table 12.2–2, we give the frequency of occurrence of the three values for the case
in which m is odd.

It is interesting to compare the peak cross-correlation value of Gold sequences with
a known lower bound on the cross-correlation between any pair of binary sequences
of period n in a set of M sequences. A lower bound derived by Welch (1974) for

h1(X) � X5 � X2 � 1

h2(X) � X5 � X4 � X2 � X � 1

FIGURE 12.2–20
Generation of Gold sequences of length 31.
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TABLE 12.2–2

Frequency of Occurrence of Cross-Correlation
Values for Gold Codes of Length n = 2m − 1, m Odd

Cross-correlation value Frequency of occurrence

−1 2n−1 − 1
−[2(m+1)/2 + 1] 2n−2 − 2(n−3)/2

2(m+1)/2 − 1 2n−2 + 2(n−3)/2

Rmax is

Rmax ≥ n

√
M − 1

Mn − 1
(12.2–74)

which, for large values of n and M , is well approximated as
√

n. For Gold sequences,
M = 2m + 1, n = 2m − 1 and the lower bound is Rmax ≈ 2m/2. This bound is lower
by

√
2 for odd m and by 2 for even m relative to Rmax = t(m) for Gold sequences.

Therefore, Gold sequences do not achieve the lower bound.
A procedure similar to that used for generating Gold sequences will generate a

smaller set of M = 2m/2 binary sequences of period n = 2m − 1, where m is even.
In this procedure, we begin with an m sequence a and we form a binary sequence b
by taking every 2m/2 + 1 bit of a. Thus, the sequence b is formed by decimating a
by 2m/2 + 1. It can be verified that the resulting sequence b is periodic with period
2m/2 − 1. For example, if m = 10, the period of a is n = 1023 and the peroid of b is
31. Hence, if we observe 1023 bits of the sequence b, we shall see 33 repetitions of the
31-bit sequence. Now, by taking n = 2m − 1 bits of the sequences a and b, we form a
new set of sequences by adding, modulo-2, the bits from a and the bits from b and all
2m/2 − 2 cyclic shifts of the bits from b. By including a in the set, we obtain a set of
2m/2 binary sequences of length n = 2m − 1. These are called Kasami sequences. The
autocorrelation and cross-correlation functions of these sequences take on values from
the set {−1, −(2m/2 + 1), 2m/2 − 1}. Hence, the maximum cross-correlation value for
any pair of sequences from the set is

Rmax = 2m/2 + 1 (12.2–75)

This value of Rmax satisfies the Welch lower bound for a set of 2m/2 sequences of length
n = 2m − 1. Hence, the Kasami sequences are optimal.

Besides the well-known Gold and Kasami sequences, there are other binary se-
quences appropriate for CDMA applications. The interested reader may refer to the
work of Scholtz (1979), Olsen (1977), and Sarwate and Pursley (1980).

Finally, we wish to indicate that, although we have discussed the periodic cross-
correlation function between pairs of periodic sequences, many practical CDMA sys-
tems may use information bit durations that encompass only fractions of a periodic
sequence. In such cases, it is the partial-period cross correlation between two sequences
that is important. A number of papers deal with this problem, including those by Lind-
holm (1968), Wainberg and Wolf (1970), Fredricsson (1975), Bekir et al. (1978), and
Pursley (1979).
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12.3
FREQUENCY-HOPPED SPREAD SPECTRUM SIGNALS

In a frequency-hopped (FH) spread spectrum communication system the available chan-
nel bandwidth is subdivided into a large number of contiguous frequency slots. In any
signaling interval, the transmitted signal occupies one or more of the available fre-
quency slots. The selection of the frequency slot(s) in each signaling interval is made
pseudorandomly according to the output from a PN generator. Figure 12.3–1 illustrates
a particular FH pattern in the time-frequency plane.

A block diagram of the transmitter and receiver for an FH spread spectrum system
is shown in Figure 12.3–2. The modulation is usually either binary or M-ary FSK.
For example, if binary FSK is employed, the modulator selects one of two frequencies
corresponding to the transmission of either a 1 or a 0. The resulting FSK signal is
translated in frequency by an amount that is determined by the output sequence from
the PN generator, which, in turn, is used to select a frequency that is synthesized by the
frequency synthesizer. This frequency is mixed with the output of the modulator and the
resultant frequency-translated signal is transmitted over the channel. For example, m
bits from the PN generator may be used to specify 2m−1 possible frequency translations.

At the receiver, we have an identical PN generator, synchronized with the receiver
signal, which is used to control the output of the frequency synthesizer. Thus, the
pseudorandom frequency translation introduced at the transmitter is removed at the
receiver by mixing the synthesizer output with the received signal. The resultant signal
is demodulated by means of an FSK demodulator. A signal for maintaining synchronism
of the PN generator with the frequency-translated received signal is usually extracted
from the received signal.

Although PSK modulation gives better performance than FSK in an AWGN chan-
nel, it is sometimes difficult to maintain phase coherence in the synthesis of the fre-
quencies used in the hopping pattern and, also, in the propagation of the signal over the
channel as the signal is hopped from one frequency to another over a wide bandwidth.
Consequently, FSK modulation with noncoherent detection is often employed with FH
spread spectrum signals.

FIGURE 12.3–1
An example of a frequency-hopped (FH) pattern.
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FIGURE 12.3–2
Block diagram of an FH spread spectrum system.

In the FH system depicted in Figure 12.3–2, the carrier frequency is pseudoran-
domly hopped in every signaling interval. The M information-bearing tones are con-
tiguous and separated in frequency by 1/Tc, where Tc is the signaling interval. This
type of frequency hopping is called block hopping.

Another type of frequency hopping that is less vulnerable to some jamming strate-
gies is independent tone hopping. In this scheme, the M possible tones from the mod-
ulator are assigned widely dispersed frequency slots. One method for accomplishing
this is illustrated in Figure 12.3–3. Here, the m bits from the PN generator and the k
information bits are used to specify the frequency slots for the transmitted signal.

The FH rate is usually selected to be either equal to the (coded or uncoded) symbol
rate or faster than that rate. If there are multiple hops per symbol, we have a fast-hopped
signal. On the other hand, if the hopping is performed at the symbol rate, we have a
slow-hopped signal.

Fast frequency hopping is employed in AJ applications when it is necessary to
prevent a type of jammer, called a follower jammer, from having sufficient time to
intercept the frequency and retransmit it along with adjacent frequencies so as to create
interfering signal components. However, there is a penalty incurred in subdividing a
signal into several FH elements because the energy from these separate elements is

FIGURE 12.3–3
Block diagram of an independent tone FH spread spectrum system.
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combined noncoherently. Consequently, the demodulator incurs a penalty in the form
of a noncoherent combining loss as described in Section 11.1.

FH spread spectrum signals are used primarily in digital communication systems
that require AJ protection and in CDMA, where many users share a common bandwidth.
In most cases, an FH signal is preferred over a DS spread spectrum signal because of
the stringent synchronization requirements inherent in DS spread spectrum signals.
Specifically, in a DS system, timing and synchronization must be established to within
a fraction of the chip interval Tc ≈ 1/W . On the other hand, in an FH system, the
chip interval is the time spent in transmitting a signal in a particular frequency slot of
bandwidth B 	 W . But this interval is approximately 1/B, which is much larger than
1/W . Hence the timing requirements in an FH system are not as stringent as in a DS
system.

In Sections 12.3–2 and 12.3–3, we shall focus on the AJ and CDMA applications
of FH spread spectrum signals. First, we shall determine the error rate performance of
an uncoded and a coded FH signal in the presence of broadband AWGN inteference.
Then we shall consider a more serious type of interference that arises in AJ and CDMA
applications, called partial-band interference. The benefits obtained from coding for
this type of interference are determined. We conclude the discussion in Section 12.3–3
with an example of an FH CDMA system that was designed for use by mobile users
with a satellite serving as the channel.

12.3–1 Performance of FH Spread Spectrum Signals in an AWGN Channel

Let us consider the performance of an FH spread spectrum signal in the presence
of broadband interference characterized statistically as AWGN with power spectral
density J0. For binary orthogonal FSK with noncoherent detection and slow frequency
hopping (1 hop/bit), the probability of error, derived in Section 4.5–3, is

P2 = 1
2 e−γb/2 (12.3–1)

where γb = Eb/J0. On the other hand, if the bit interval is subdivided into L subintervals
and FH binary FSK is transmitted in each subinterval, we have a fast FH signal. With
square-law combining of the output signals from the corresponding matched filters for
the L subintervals, the error rate performance of the FH signal, obtained from the results
in Section 11.1, is

P2(L) = 1

22L−1
e−γb/2

L−1∑
i=0

Ki
( 1

2γb
)i

(12.3–2)

where the SNR per bit is γb = Eb/J0 = Lγc, γc is the SNR per chip in the L-chip
symbol, and

Ki = 1

i!

L−1−i∑
r=0

(
2L − 1

r

)
(12.3–3)
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We recall that, for a given SNR per bit γb, the error rate obtained from Equa-
tion 12.3–2 is larger than that obtained from Equation 12.3–1. The difference in SNR
for a given error rate and a given L is called the noncoherent combining loss, which
was described and illustrated in Section 11.1.

Coding improves the performance of the FH spread spectrum system by an amount,
which we call the coding gain, that depends on the code parameters. Suppose we use a
linear binary (n, k) block code and binary FSK modulation with one hop per coded bit
for transmitting the bits. With soft-decision decoding of the square-law-demodulated
FSK signal, the probability of a codeword error is upper-bounded as

Pe ≤
M∑

m=2

P2(m) (12.3–4)

where P2(m) is the error probability in deciding between the mth codeword and the
all-zero codeword when the latter has been transmitted. The expression for P2(m) was
derived in Section 7.4 and has the same form as Equations 12.3–2 and 12.3–3, with L
being replaced by wm and γb by γb Rcwm , where wm is the weight of the mth code word
and Rc is the code rate. The product Rcwm , which is not less than Rcdmin, represents
the coding gain. Thus, we have the performance of a block coded FH system with slow
frequency hopping in broadband interference.

The probability of error for fast frequency hopping with n2 hops per coded bit is
obtained by reinterpreting the binary event probability P2(m) in Equation 12.3–4. The
n2 hops per coded bit may be interpreted as a repetition code, which, when combined
with a nontrivial (n1, k) binary linear code having weight distribution {wm}, yields
an (n1n2, k) binary linear code having weight distribution {n2wm}. Hence, P2(m) has
the form given in Equation 12.3–2, with L replaced by n2wm and γb by γb Rcn2wm ,
where Rc = k/n1n2. Note that γb Rcn2wm = γbwmk/n1, which is just the coding gain
obtained from the nontrivial (n1, k) code. Consequently, the use of the repetition code
will result in an increase in the noncoherent combining loss.

With hard-decision decoding and slow frequency hopping, the probability of a
coded bit error at the output of the demodulator for noncoherent detection is

p = 1
2 e−γb Rc/2 (12.3–5)

The codeword error probability is easily upper bounded, by use of the Chernov bound,
as

Pe ≤
M∑

m=2

[4p(1 − p)]wm/2 (12.3–6)

However, if fast frequency hopping is employed with n2 hops per coded bit, and the
square-law-detected outputs from the corresponding matched filters for the n2 hops are
added as in soft-decision decoding to form the two decision variables for the coded bits,
the bit error probability p is also given by Equation 12.3–2, with L replaced by n2 and
γb replaced by γb Rcn2, where Rc is the rate of the nontrivial (n1, k) code. Consequently,
the performance of the fast FH system in broadband interference is degraded relative
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to the slow FH system by an amount equal to the noncoherent combining loss of the
signals received from the n2 hops.

We have observed that for both hard-decision and soft-decision decoding, the use
of the repetition code in a fast FH system yields no coding gain. The only coding gain
obtained comes from the (n1, k) block code. Hence, the repetition code is inefficient
in a fast FH system with noncoherent combining. A more efficient coding method is
one in which either a single low-rate binary code or a concatenated code is employed.
Additional improvements in performance may be obtained by using nonbinary codes
in conjunction with M-ary FSK. Bounds on the error probability for this case may be
obtained from the results given in Section 11.1.

Although we have evaluated the performance of linear block codes only in the
above discussion, it is relatively easy to derive corresponding performance results for
binary convolutional codes. We leave as an exercise for the reader the derivation of
the bit error probability for soft-decision Viterbi decoding and hard-decision Viterbi
decoding of FH signals corrupted by broadband interference.

Finally, we observe that Eb, the energy per bit, can be expressed as Eb = Pav/R,
where R is the information rate in bits per second and J0 = Jav/2W . Therefore, γb

may be expressed as

γb = Eb

J0
= 2W/R

Jav/Pav
(12.3–7)

In this expression, we recognize W/R as the processing gain and Jav/Pav as the inter-
ference margin for the FH spread spectrum signal.

12.3–2 Performance of FH Spread Spectrum Signals
in Partial-Band Interference

The partial-band interference considered in this subsection is modeled as a zero-mean
Gaussian random process with a flat power spectral density over a fraction α of the total
bandwidth W and zero elsewhere. In the region or regions where the power spectral
density is nonzero, its value is Rzz( f ) = 2J0/α, 0 < α ≤ 1. This model of the
interference may be applied to a jamming signal or to interference from other users in
an FH CDMA system.

Suppose that the partial-band interference comes from a jammer who may select
α to optimize the effect on the communication system. In an uncoded pseudorandomly
hopped (slow-hopping) FH system with binary FSK modulation and noncoherent de-
tection, the received signal will be jammed with probability α and it will not be jammed
with probability 1−α. When it is jammed, the probability of error is 1

2 exp (−Ebα/2J0),
and when it is not jammed, the demodulation is error-free. Consequently, the average
probability of error is

P2(α) = 1
2α exp

(
−αEb

2J0

)
(12.3–8)

where Eb/J0 may also be expressed as (2W/R)/(Jav/Pav).
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FIGURE 12.3–4
Performance of binary FSK with partial-band
interference.

Figure 12.3–4 illustrates the error rate as a function of Eb/J0 for several values
of α. The jammer’s optimum strategy is to select the value of α that maximizes the error
probability. By differentiating P2(α) and solving for the extremum with the restriction
that 0 ≤ α ≤ 1, we find that

α∗ =
⎧⎨
⎩

1

Eb/2J0
Eb/J0 ≥ 2

1 Eb/J0 < 2
(12.3–9)

The corresponding error probability for the worst-case partial-band jammer is

P2 = e−1

Eb/J0
(12.3–10)

Whereas the error probability decreases exponentially for full-band jamming, we now
find that the error probability decreases only inversely with Eb/J0 for the worst-case
partial-band jamming. This result is similar to the error rate performance of binary FSK
in a Rayleigh fading channel (see Section 13.3) and to the uncoded DS spread spectrum
system corrupted by worst-case pulse interference (see Section 12.2–3).

As we shall demonstrate below, signal diversity obtained by means of coding
provides a significant improvement in performance relative to uncoded signals. This
same approach to signal design is also effective for signaling over a fading channel, as
we shall demonstrate in Chapter 13.

To illustrate the benefits of diversity in an FH spread spectrum signal with partial-
band interference, we assume that the same information symbol is transmitted by binary
FSK on L independent frequency hops. This may be accomplished by subdividing
the signaling interval into L subintervals, as described previously for fast frequency
hopping. After the hopping pattern is removed, the signal is demodulated by passing it
through a pair of matched filters whose outputs are square-law-detected and sampled
at the end of each subinterval. The square-law-detected signals corresponding to the L
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frequency hops are weighted and summed to form the two decision variables (metrics),
which are denoted as U1 and U2.

When the decision variable U1 contains the signal components, U1 and U2 may be
expressed as

U1 =
L∑

k=1

βk |2Ec + N1k |2

U2 =
L∑

k=1

βk |N2k |2
(12.3–11)

where {βk} represent the weighting coefficients, Ec is the signal energy per chip in the
L-chip symbol, and {N jk} represent the additive Gaussian noise terms at the output of
the matched filters.

The coefficients are optimally selected to prevent the interference from saturating
the combiner should the transmitted frequencies be successfully hit in one or more hops.
Ideally, βk is selected to be equal to the reciprocal of the variance of the corresponding
noise terms {Nk}. Thus, the noise variance for each chip is normalized to unity by
this weighting and the corresponding signal is also scaled accordingly. This means that
when the signal frequencies on a particular hop are interfered, the corresponding weight
is very small. In the absence of interference on a given hop, the weight is relatively
large. In practice, for partial-band interference, the weighting may be accomplished
by use of an AGC having a gain that is set on the basis of noise power measurements
obtained from frequency bands adjacent to the transmitted tones. This is equivalent to
having side information (knowledge of jammer state) at the decoder.

Suppose that we have broadband Gaussian noise with power spectral density N0

and partial-band interference, over αW of the frequency band, which is also Gaussian
with power spectral density J0/α. In the presence of partial-band interference, the
variance of the real and imaginary parts of the noise terms N1k and N2k are

σ 2
k = 1

2 E
(|N1k |2

) = 1
2 E

(|N2k |2
) = 2Ec

(
N0 + J0

α

)
(12.3–12)

In this case, we select βk = 1/σ 2
k = [2Ec(N0 + J0/α)]−1. In the absence of partial-

band interference, σ 2
k = 2Ec N0 and, hence, βk = (2Ec N0)−1. Note that βk is a random

variable. It is convenient to normalize the variance of the noise components to unity by
defining, N ′

1k = √
βk N1k and N ′

2k = √
βk N2k , where βk = 1/σ 2

k for the corresponding
values of σ 2

k .
An error occurs in the demodulation ifU2 > U1. Although it is possible to determine

the exact error probability, we shall resort to the Chernov bound, which yields a result
that is much easier to evaluate and interpret. Specifically, the Chernov (upper) bound
on the error probability is

P2 = P(U2 − U1 > 0) ≤ E{exp[ν(U2 − U1)]}

= E

{
exp

[
−ν

L∑
k=1

(|2√
βkEc + N ′

1k |2 − |N ′
2k |2

)]}
(12.3–13)

where ν > 0 is a variable that is optimized to yield the tightest possible bound.
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The averaging in Equation 12.3–13 is performed with respect to the statistics of
the noise components and the statistics of the weighting coefficients {βk}, which are
random as a consequence of the statistical nature of the interference. Keeping the {βk}
fixed and averaging over the noise statistics first, we obtain

P2(β) ≤ E

[
exp

(
−ν

L∑
k=1

|2√
βkEc + N ′

1k |2 + ν

L∑
k=1

|N ′
2k |2

)]

=
L∏

k=1

E
[

exp
(−ν|2√

βkEc + N ′
1k |2

)]
E

[
exp

(
ν|N ′

2k |2
)]

=
L∏

k=1

1

1 − 4ν2
exp

(
−4E2

c βkν

1 + 2ν

)
(12.3–14)

Since the FSK tones are interfered with probability α, it follows that βk = [2E(N0 +
J0/α)]−1 with probability α and (2Ec N0)−1 with probability 1−α. Hence, the Chernov
bound is

P2 ≤
L∏

k=1

{
α

1 − 4ν2
exp

[ −2Ecν

(N0 + J0/α)(1 + 2ν)

]
+ 1 − α

1 − 4ν2
exp

[ −2Ecν

N0(1 + 2ν)

]}

=
{

α

1 − 4ν2
exp

[ −2Ecν

(N0 + J0/α)(1 + 2ν)
+ 1 − α

1 − 4ν2
exp

[ −2Ecν

N0(1 + 2ν)

]}L

(12.3–15)

The next step is to optimize the bound in Equation 12.3–15 with respect to the
variable ν. In its present form, however, the bound is messy to manipulate. A significant
simplification occurs if we assume that J0/α, ≥ N0, which renders the second term in
Equation 12.3–15 negligible compared with the first. Alternatively, we let N0 = 0, so
that the bound on P2 reduces to

P2 ≤
{

α

1 − 4ν2
exp

[ −2ανEc

J0(1 + 2ν)

]}L

(12.3–16)

The minimum value of this bound with respect to ν and the maximum with respect to α

(worst-case partial-band interference) is easily shown to occur when α = 3J0/Ec ≤ 1
and ν = 1

4 . For these values of the parameters, Equation 12.3–16 reduces to

P2 ≤ P2(L) =
(

4

eγc

)L

=
(

1.47

γc

)L

, γc = Ec

J0
= Eb

L J0
≥ 3 (12.3–17)

where γc is the SNR per chip in the L-chip symbol.
The result in Equation 12.3–17 was first derived by Viterbi and Jacobs (1975).
We observe that the probability of error for the worst-case partial-band interference

decreases exponentially with an increase in the SNR per chip γc. This result is very
similar to the performance characteristics of diversity techniques for Rayleigh fading
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FIGURE 12.3–5
Graph of the function h(γc).

channels (see Section 13.3). We may express the right-hand side of Equation 12.3–17
in the form

P2(L) = exp[−γbh(γc)] (12.3–18)

where the function h(γc) is defined as

h(γc) = − 1

γc

[
ln

(
4

γc

)
− 1

]
(12.3–19)

A plot of h(γc) is given in Figure 12.3–5. We observe that the function has a maximum
value of 1

4 at γc = 4. Consequently, there is an optimum SNR per chip of 10 log γc =
6 dB. At the optimum SNR, the error rate is upper-bounded as

P2 ≤ P2(Lopt) = e−γb/4 (12.3–20)

When we compare the error probability bound in Equation 12.3–20 with the
error probability for binary FSK in spectrally flat noise, which is given by Equa-
tion 12.3–1, we see that the combined effect of worst-case partial-band interference
and the noncoherent combining loss in the square-law combining of the L chips is 3 dB.
We emphasize, however, that for a given Eb/J0, the loss is greater when the order of
diversity is not optimally selected.

Coding provides a means for improving the performance of the FH system cor-
rupted by partial-band interference. In particular, if a block orthogonal code is used,
with M = 2k codewords and Lth-order diversity per codeword, the probability of a
codeword error is upper-bounded as

Pe ≤ (2k − 1)P2(L) = (2k − 1)
(

1.47

γc

)L

= (2k − 1)
(

1.47

kγb/L

)L

(12.3–21)

and the equivalent bit error probability is upper-bounded as

Pb ≤ 2k−1
(

1.47

kγb/L

)L

(12.3–22)
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FIGURE 12.3–6
Performance of binary and octal FSK with L-order diversity for a channel with worst-case
partial-band interference.

Figure 12.3–6 illustrates the probability of a bit error for L = 1, 2, 4, 8 and k = 1, 3.
With an optimum choice of diversity, the upper bound can be expressed as

Pb ≤ 2k−1 exp(− 1
4 kγb) = 1

2 exp[−k( 1
4γb − ln 2)] (12.3–23)

Thus, we have an improvement in performance by an amount equal to 10 log[k(1 −
2.77/γb)]. For example, if γb = 10 and k = 3 (octal modulation), then the gain is
3.4 dB, while if k = 5, then the gain is 5.6 dB.

Additional gains can be achieved by employing concatenated codes in conjunction
with soft-decision decoding. In the example below, we employ a dual-k convolutional
code as the outer code and a Hadamard code as the inner code on the channel with
partial-band interference.
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E X A M P L E 12.3–1. Suppose we use a Hadamard H (n, k) constant weight code with on–
off keying (OOK) modulation for each code bit. The minimum distance of the code is
dmin = 1

2 n, and, hence, the effective order of diversity obtained with OOK modulation
is 1

2 dmin = 1
4 n. There are 1

2 n FH tones transmitted per code word. Hence,

γc = k
1
2 n

γb = 2Rcγb (12.3–24)

when this code is used alone. The bit error rate performance for soft-decision decoding
of these codes for the partial-band interference channel is upper-bounded as

Pb ≤ 2k−1 P2( 1
2 dmin) = 2k−1

(
1.47

2Rcγb

)n/4

(12.3–25)

Now, if a Hadamard (n, k) code is used as the inner code and a rate 1/2 dual-k
convolutional code (see Section 8.7) is the outer code, the bit error performance in the
presence of worst-case partial-band interference is (see Equation 8.7–5)

Pb ≤ 2k−1

2k − 1

∞∑
m=4

βm P2( 1
2 mdmin) = 2k−1

2k − 1

∞∑
m=4

βm P2( 1
2 mn) (12.3–26)

where P2(L) is given by Equation 12.3–17 with

γc = k

n
γb = Rcγb (12.3–27)

Figure 12.3–7 illustrates the performance of the dual-k codes for k = 5, 4, and 3
concatenated with the Hadamard H (20, 5), H (16, 4), and H (12, 3) codes, respectively.

In the above discussion, we have focused on soft-decision decoding. On the other
hand, the performance achieved with hard-decision decoding is significantly (several
decibels) poorer than that obtained with soft-decision decoding. In a concatenated

FIGURE 12.3–7
Performance of dual-k codes concatenated with
Hadamard codes for a channel with worst-case
partial-band interference.
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coding scheme, however, a mixture involving soft decision decoding of the inner code
and hard decision decoding of the outer code represents a reasonable compromise
between decoding complexity and performance.

Finally, we wish to indicate that another serious threat in an FH spread spectrum
system is partial-band multitone interference. This type of interference is similar in ef-
fect to partial-band spectrally flat noise interference. Diversity obtained through coding
is an effective means for improving the performance of the FH system. An additional
improvement is achieved by properly weighting the demodulator outputs so as to sup-
press the effects of the interference.

12.3–3 A CDMA System Based on FH Spread Spectrum Signals

In Section 12.2–2, we considered a CDMA system based on the use of DS spread
spectrum signals. As previously indicated, it is also possible to have a CDMA system
based on FH spread spectrum signals. Each transmitter–receiver pair in such a system
is assigned its own pseudorandom FH pattern. Aside from this distinguishing feature,
the transmitters and receivers of all the users may be identical in that they may have
identical encoders, decoders, modulators, and demodulators.

CDMA systems based on FH spread spectrum signals are particularly attractive
for mobile (land, air, sea) users because timing requirements are not as stringent as in a
DS spread spectrum signal. In addition, frequency synthesis techniques and associated
hardware have been developed that make it possible to frequency-hop over bandwidths
that are significantly larger than those currently possible with DS spread spectrum
systems. Consequently, larger processing gains are possible with FH. The capacity of
CDMA with FH is also relatively high. Viterbi (1978) has shown that with dual-k codes
and M-ary FSK modulation, it is possible to accommodate up to 3

8W/R simultaneous
users who transmit at an information rate R bits/s over a channel with bandwidth W .

One of the earliest CDMA systems based on FH coded spread spectrum signals
was built to provide multiple-access tactical satellite communications for small mobile
(land, sea, air) terminals each of which transmitted relatively short messages over the
channel intermittently. The system was called the Tactical Transmission System (TATS),
and it is described in a paper by Drouilhet and Bernstein (1969).

An octal Reed–Solomon (7, 2) code is used in the TATS system. Thus, two 3-bit
information symbols from the input to the encoder are used to generate a seven-symbol
code word. Each 3-bit coded symbol is transmitted by means of octal FSK modulation.
The eight possible frequencies are spaced 1/Tc Hz apart, where Tc is the time (chip)
duration of a single frequency transmission. In addition to the seven symbols in a code
word, an eighth symbol is included. That symbol and its corresponding frequency are
fixed and transmitted at the beginning of each code word for the purpose of providing
timing and frequency synchronization† at the receiver. Consequently, each code word
is transmitted in 8Tc seconds.

†Since mobile users are involved, there is a Doppler frequency offset associated with transmission. This
frequency offset must be tracked and compensated for in the demodulation of the signal. The sync symbol
is used for this purpose.
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TATS was designed to transmit at information rates of 75 and 2400 bits/s. Hence,
Tc = 10 ms and 312.5 μs, respectively. Each frequency tone corresponding to a code
symbol is frequency-hopped. Hence, the hopping rate is 100 hops/s at the 75-bits/s rate
and 3200 hops/s at the 2400-bits/s rate.

There are M = 26 = 64 code words in the Reed–Solomon (7, 2) code and the
minimum distance of the code is dmin = 6. This means that the code provides an
effective order of diversity equal to 6.

At the receiver, the received signal is first dehopped and then demodulated by
passing it through a parallel bank of eight matched filters, where each filter is tuned to
one of the eight possible frequencies. Each filter output is envelope-detected, quantized
to 4 bits (one of 16 levels), and fed to the decoder. The decoder takes the 56 filter
outputs corresponding to the reception of each seven-symbol code word and forms 64
decision variables corresponding to the 64 possible code words in the (7, 2) code by
linearly combining the appropriate envelope-detected outputs. A decision is made in
favor of the code word having the largest decision variable.

By limiting the matched filter outputs to 16 levels, interference (crosstalk) from
other users of the channel causes a relatively small loss in performance (0.75 dB with
strong interference on one chip and 1.5 dB with strong interference on two chips out of
the seven). The AGC used in TATS has a time constant greater than the chip interval Tc,
so that no attempt is made to perform optimum weighting of the demodulator outputs
as described in Section 12.3–2.

The derivation of the error probability for the TATS signal in AWGN and worst-
case partial-band interference is left as an exercise for the reader (Problems 12.23
and 12.24).

12.4
OTHER TYPES OF SPREAD SPECTRUM SIGNALS

DS and FH are the most common forms of spread spectrum signals used in practice.
However, other methods may be used to introduce pseudorandomness in a spread
spectrum signal. One method, which is analogous to FH, is time hopping (TH). In TH,
a time interval, which is selected to be much larger than the reciprocal of the information
rate, is subdivided into a large number of time slots. The coded information symbols are
transmitted in a pseudorandomly selected time slot as a block of one or more codewords.
PSK modulation may be used to transmit the coded bits.

For example, suppose that a time interval T is subdivided into 1000 time slots of
width T/1000 each. With an information bit rate of R bits/s, the number of bits to be
transmitted in T seconds is RT . Coding increases this number to RT/Rc bits, where Rc

is the code rate. Consequently, in a time interval of T/1000s, we must transmit RT/Rc

bits. If binary PSK is used as the modulation method, the bit rate is 1000R/Rc and the
bandwidth required is approximately W = 1000R/Rc.

A block diagram of a transmitter and a receiver for a TH spread spectrum system
is shown in Figure 12.4–1. Because of the burst characteristics of the transmitted
signal, buffer storage must be provided at the transmitter in a TH system, as shown in
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FIGURE 12.4–1
Block diagram of time-hopping (TH) spread spectrum system.

Figure 12.4–1. A buffer may also be used at the receiver to provide a uniform data
stream to the user.

Just as partial-band interference degrades an uncoded FH spread spectrum system,
partial-time (pulsed) interference has a similar effect on a TH spread spectrum system.
Coding and interleaving are effective means for combating this type of interference, as
we have already demonstrated for FH and DS systems. Perhaps the major disadvantage
of a TH system is the stringent timing requirements compared not only with FH but,
also, with DS.

Other types of spread spectrum signals can be obtained by combining DS, FH, and
TH. For example, we may have a hybrid DS/FH, which means that a PN sequence is
used in combination with frequency hopping. The signal transmitted on a single hop
consists of a DS spread spectrum signal which is demodulated coherently. However,
the received signals from different hops are combined noncoherently (envelope or
square-law combining). Since coherent detection is performed within a hop, there is an
advantage obtained relative to a pure FH system. However, the price paid for the gain
in performance is an increase in complexity, greater cost, and more stringent timing
requirements.

Another possible hybrid spread spectrum signal is DS/ TH. This does not seem to
be as practical as DS/FH, primarily because of an increase in system complexity and
more stringent timing requirements.

12.5
SYNCHRONIZATION OF SPREAD SPECTRUM SYSTEMS

Time synchronization of the receiver to the received spread spectrum signal may be
separated into two phases. There is an initial acquisition phase and a tracking phase
after the signal has been initially acquired.
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Acquisition In a direct sequence spread spectrum system, the PN code must be
time-synchronized to within a small fraction of the chip interval Tc ≈ 1/W . The prob-
lem of initial synchronization may be viewed as one in which we attempt to synchronize
in time the receiver clock to the transmitter clock. Usually, extremely accurate and stable
time clocks are used in spread spectrum systems. Consequently, accurate time clocks
result in a reduction of the time uncertainty between the receiver and the transmitter.
However, there is always an initial timing uncertainty due to range uncertainty between
the transmitter and the receiver. This is especially a problem when communication is
taking place between two mobile users. In any case, the usual procedure for establish-
ing initial synchronization is for the transmitter to send a known pseudorandom data
sequence to the receiver. The receiver is continuously in a search mode looking for this
sequence in order to establish initial synchronization.

Let us suppose that the initial timing uncertainty is Tu and the chip duration is Tc.
If initial synchronization is to take place in the presence of additive noise and other
interference, it is necessary to dwell for Td = N Tc in order to test synchronism at each
time instant. If we search over the time uncertainty interval in (coarse) time steps of
1
2 Tc, then the time required to establish initial synchronization is

Tinit sync = Tu
1
2 Tc

N Tc = 2N Tu (12.5–1)

Clearly, the synchronization sequence transmitted to the receiver must be at least as
long as 2N Tu in order for the receiver to have sufficient time to perform the necessary
search in a serial fashion.

In principle, matched filtering or cross correlation are optimum methods for estab-
lishing initial synchronization. A filter matched to the known data waveform generated
from the known pseudorandom sequence continuously looks for exceedence of a pre-
determined threshold. When this occurs, initial synchronization is established and the
demodulator enters the “data receive” mode.

Alternatively, we may use a sliding correlator as shown in Figure 12.5–1. The
correlator cycles through the time uncertainty, usually in discrete time intervals of 1

2 Tc,
and correlates the received signal with the known synchronization sequence. The cross
correlation is performed over the time interval N Tc (N chips) and the correlator output
is compared with a threshold to determine if the known signal sequence is present. If
the threshold is not exceeded, the known reference sequence is advanced in time by

FIGURE 12.5–1
A sliding correlator for DS signal acquisition.
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1
2 Tc seconds and the correlation process is repeated. These operations are performed
until a signal is detected or until the search has been performed over the time uncertainty
interval Tu . In the latter case, the search process is then repeated.

A similar process may also be used for FH signals. In this case, the problem is to
synchronize the PN code that controls the hopped frequency pattern. To accomplish
this initial synchronization, a known FH signal is transmitted to the receiver. The initial
acquisition system at the receiver looks for this known FH signal pattern. For example,
a bank of matched filters tuned to the transmitted frequencies in the known pattern
may be employed. Their outputs must be properly delayed, envelope- or square-law-
detected, weighted, if necessary, and added (noncoherent integration) to produce the
signal output which is compared with a threshold. A signal present is declared when
the threshold is exceeded. The search process is usually performed continuously in time
until a threshold is exceeded. A block diagram illustrating this signal acquisition scheme
is given in Figure 12.5–2. As an alternative, a single matched-filter–envelope detector
pair may be used, preceded by an FH pattern generator and followed by a postdetection
integrator and a threshold detector. This configuration, shown in Figure 12.5–3, is based
on a serial search and is akin to the sliding correlator for DS spread spectrum signals.

The sliding correlator for the DS signals or its counterpart shown in Figure 12.5–3
for FH signals basically perform a serial search that is generally time-consuming. As
an alternative, one may introduce some degree of parallelism by having two or more
such correlators operating in parallel and searching over non-overlapping time slots.
In such a case, the search time is reduced at the expense of a more complex and costly
implementation.

FIGURE 12.5–2
System for acquisition of an FH signal.
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FIGURE 12.5–3
Alternative system for acquisition of an FH signal.

During the search mode, there may be false alarms that occur at the designed false
alarm rate of the system. To handle the occasional false alarms, it is necessary to have
an additional method or circuit that checks to confirm that the received signal at the
output of the correlator remains above the threshold. With such a detection strategy, a
large noise pulse that causes a false alarm will cause only a temporary exceedence of
the threshold. On the other hand, when a signal is present, the correlator or matched
filter output will stay above the threshold for the duration of the transmitted signal.
Thus, if confirmation fails, the search is resumed.

Another initial search strategy, called a sequential search, has been investigated by
Ward (1965) and Ward and Yiu (1977). In this method, the dwell time at each delay in
the search process is made variable by employing a correlator with a variable integration
period whose (biased) output is compared with two thresholds. Thus, there are three
possible decisions:

1. If the upper threshold is exceeded by the correlator output, initial synchronization
is declared established.

2. If the correlator output falls below the lower threshold, the signal is declared absent
at that delay and the search process resumes at a different delay.

3. If the correlator output falls between the two thresholds, the integration time is
increased by one chip and the resulting output is compared with the two thresholds
again.

Hence, steps 1, 2, and 3 are repeated for each chip interval until the correlator output
either exceeds the upper threshold or falls below the lower threshold.
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The sequential search method falls in the class of sequential estimation methods
proposed by Wald (1947), which are known to result in a more efficient search in the
sense that the average search time is minimized. Hence, the search time for a sequential
search is less than that for the fixed dwell time integrator.

In the above discussion, we have considered only time uncertainty in establishing
initial synchronization. However, another aspect of initial synchronization is frequency
uncertainty. If the transmitter and/or the receiver are mobile, the relative velocity be-
tween them results in a Doppler frequency shift in the received signal relative to the
transmitted signal. Since the receiver does not usually know the relative velocity, a
priori, the Doppler frequency shift is unknown and must be determined by means of
a frequency search method. Such a search is usually accomplished in parallel over
a suitably quantized frequency uncertainty interval and serially over the time uncer-
tainty interval. A block diagram of this scheme is shown in Figure 12.5–4. Appropriate
Doppler frequency search methods can also be devised for FH signals.

Tracking Once the signal is acquired, the initial search process is stopped and fine
synchronization and tracking begins. The tracking maintains the PN code generator at
the receiver in synchronism with the incoming signal. Tracking includes both fine chip
synchronization and, for coherent demodulation, carrier phase tracking.

The commonly used tracking loop for a DS spread spectrum signal is the delay-
locked loop (DLL) which is shown in Figure 12.5–5. In this tracking loop, the received
signal is applied to two multipliers, where it is multiplied by two outputs from the local
PN code generator, which are delayed relative to each other by an amount 2δ ≤ Tc.

FIGURE 12.5–4
Initial search for Doppler frequency offset in a DS system.
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FIGURE 12.5–5
Delay-locked loop (DLL) for PN code tracking.

Thus, the product signals are the cross correlations between the received signal and
the PN sequence at the two values of delay. These products are band-pass-filtered
and envelope- (or square-law-) detected and then subtracted. This difference signal
is applied to the loop filter that drives the voltage-controlled clock (VCC). The VCC
serves as the clock for the PN code signal generator.

If the synchronism is not exact, the filtered output from one correlator will exceed
the other and the VCC will be appropriately advanced or delayed. At the equilibrium
point, the two filtered correlator outputs will be equally displaced from the peak value,
and the PN code generator output will be exactly synchronized to the received signal that
is fed to the demodulator. We observe that this implementation of the DLL for tracking
a DS signal is equivalent to the early–late gate bit tracking synchronizer previously
discussed in Section 5.3–2 and shown in Figure 5.3–5.

An alternative method for time tracking a DS signal is to use a tau-dither loop
(TDL), illustrated by the block diagram in Figure 12.5–6. The TDL employs a single

FIGURE 12.5–6
Tau-dither loop (TDL).
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“arm” instead of the two “arms” shown in Figure 12.5–5. By providing a suitable
gating waveform, it is possible to make this “single-arm” implementation appear to be
equivalent to the “two-arm” realization. In this case, the cross correlation is regularly
sampled at two values of delay, by stepping the code clock forward or backward in
time by an amount δ. The envelope of the cross correlation that is sampled at ±δ has
an amplitude modulation whose phase relative to the tau-dither modulator determines
the sign of the tracking error.

A major advantage of the TDL is the less costly implementation resulting from
elimination of one of the two arms that are employed in the conventional DLL. A
second and less apparent advantage is that the TDL does not suffer from performance
degradation that is inherent in the DLL when the amplitude gain in the two arms is not
properly balanced.

The DLL (and its equivalent, the TDL) generate an error signal by sampling the
signal correlation function at ±δ off the peak as shown in Figure 12.5–7a. This generates
an error signal as shown in Figure 12.5–7b. The analysis of the performance of the DLL
is similar to that for the phase-locked loop (PLL) carried out in Section 5.2. If it were
not for the envelope detectors in the two arms of the DLL, the loop would resemble
a Costas loop. In general, the variance of the time estimation error in the DLL is
inversely proportional to the loop SNR, which depends on the input SNR to the loop
and the loop bandwidth. Its performance is somewhat degraded as in the squaring PLL
by non-linearities inherent in the envelope detectors, but this degradation is relatively
small.

A typical tracking technique for FH spread spectrum signals is illustrated in Fig-
ure 12.5–8a. This method is also based on the premise that, although initial acquisition
has been achieved, there is a small timing error between the received signal and the
receiver clock. The band pass filter is tuned to a single intermediate frequency and its
bandwidth is of the order of 1/Tc, where Tc is the chip interval. Its output is envelope-
detected and then multiplied by the clock signal to produce a three-level signal, as shown
in Figure 12.5–8b, which drives the loop filter. Note that when the chip transitions
from the locally generated sinusoidal waveform do not occur at the same time as the

(a) (b)

FIGURE 12.5–7
Autocorrelation function and tracking error signal for DLL.
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(a)

(b)

FIGURE 12.5–8
Tracking method for FH signals. [From Pickholtz et al. (1982). c© 1982 IEEE.]

transitions in the incoming signal, the output of the loop filter will be either negative or
positive, depending on whether the VCC is lagging or advanced relative to the timing
of the input signal. This error signal from the loop filter will provide the control signal
for adjusting the VCC timing signal so as to drive the frequency synthesized pulsed
sinusoid to proper synchronism with the received signal.
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12.6
BIBLIOGRAPHICAL NOTES AND REFERENCES

The introductory treatment of spread spectrum signals and their performance that we
have given in this chapter is necessarily brief. Detailed and more specialized treat-
ments of signal acquisition techniques, code tracking methods, and hybrid spread
spectrum systems, as well as other general topics on spread spectrum signals and
systems, can be found in the vast body of technical literature that now exists on the
subject.

Historically, the primary application of spread spectrum communications has been
in the development of secure (AJ) digital communication systems for military use.
In fact, prior to 1970, most of the work on the design and development of spread
spectrum communications was classified. Since then, this trend has been reversed. The
open literature now contains numerous publications on all aspects of spread spectrum
signal analysis and design. Moreover, we have recently seen the application of spread
spectrum signaling techniques to commercial communications such as interoffice radio
communications (see Pahlavan, 1985), mobile radio communications (see Yue, 1983),
and digital cellular communications (see Viterbi, 1995).

A historical perspective on the development of spread spectrum communication
systems covering the period 1920–1960 is given in a paper by Scholtz (1982).
Tutorial treatments focusing on the basic concepts are found in the papers by Scholtz
(1977) and Pickholtz et al. (1982). These papers also contain a large number of ref-
erences to previous work. In addition, there are two papers by Viterbi (1979, 1985)
that provide a basic review of the performance characteristics of DS and FH signaling
techniques.

Comprehensive treatments of various aspects of analysis and design of spread
spectrum signals and systems, including synchronization techniques are now available
in the texts by Simon et al. (1985) Peterson et al. (1995), and Holmes (1982). In
addition to these texts, there are several special issues of the IEEE Transactions on
Communications devoted to spread spectrum communications (August 1977 and May
1982) and the IEEE Transactions on Selected Areas in Communication (September
1985, May 1989, May 1990, and June 1993). These issues contain a collection of papers
devoted to a variety of topics, including multiple-access techniques, synchronization
techniques, and performance analyses with various types of interference. A number of
important papers that have been published in IEEE journals have also been reprinted in
book form by the IEEE Press (Dixon, 1976; Cook et al., 1983). Finally, we recommend
the book by Golomb (1967) as a basic reference on shift register sequences for the
reader who wishes to delve deeper into this topic.

PROBLEMS

12.1 Following the procedure outlined in Example 12.2–2, determine the error rate perfor-
mance of a DS spread spectrum system in the presence of CW jamming when the signal
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pulse is

g(t) =
√

16Ec

3Tc
cos2

[
π

Tc
(t − 1

2 Tc)

]
, 0 ≤ t ≤ Tc

12.2 The sketch in Figure P12.2 illustrates the power spectral densities of a PN spread spec-
trum signal and narrowband interference in an uncoded (trivial repetition code) digital
communication system. Referring to Figure 12.2–6, which shows the demodulator for
this signal, sketch the (approximate) spectral characteristics of the signal and the inter-
ference after the multiplication of r (t) with the output of the PN generator. Determine
the fraction of the total interference that appears at the output of the correlator when the
number of PN chips per bit is Lc.

FIGURE P12.2

12.3 Consider the concatenation of a Reed–Solomon (31, 3) (q = 32-ary alphabet) as the outer
code with a Hadamard (16, 5) binary code as the inner code in a DS spread spectrum
system. Assume that soft-decision decoding is performed on both codes. Determine an
upper (union) bound on the probability of a bit error based on the minimum distance of
the concatenated code.

12.4 The Hadamard (n, k) = (2m, m+1) codes are low-rate codes with dmin = 2n−1. Determine
the performance of this class of codes for DS spread spectrum signals with binary PSK
modulation and either soft-decision or hard-decision decoding.

12.5 A rate 1/2 convolutional code with dfree = 10 is used to encode a data sequence occurring
at a rate of 1000 bits/s. The modulation is binary PSK. The DS spread spectrum sequence
has a chip rate of 10 MHz.
a. Determine the coding gain.
b. Determine the processing gain.
c. Determine the interference margin assuming an Eb/J0 = 10.

12.6 A total of 30 equal-power users are to share a common communication channel by CDMA.
Each user transmits information at a rate of 10 kbits/s via DS spread spectrum and binary
PSK. Determine the minimum chip rate to obtain a bit error probability of 10−5. Additive
noise at the receiver may be ignored in this computation.

12.7 A CDMA system is designed based on DS spread spectrum with a processing gain of
1000 and binary PSK modulation. Determine the number of users if each user has equal
power and the desired level of performance is an error probability of 10−6. Repeat the
computation if the processing gain is changed to 500.
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12.8 A DS spread spectrum system transmits at a rate of 1000 bits/s in the presence of a tone
jammer. The jammer power is 20 dB greater than the desired signal, and the required
Eb/J0 to achieve satisfactory performance is 10 dB.
a. Determine the spreading bandwidth required to meet the specifications.
b. If the jammer is a pulse jammer, determine the pulse duty cycle that results in worst-

case jamming and the corresponding probability of error.

12.9 A CDMA system consists of 15 equal-power users that transmit information at a rate of
10,000 bits/s, each using a DS spread spectrum signal operating at a chip rate of 1 MHz.
The modulation is binary PSK.
a. Determine the Eb/J0, where J0 is the spectral density of the combined interference.
b. What is the processing gain?
c. How much should the processing gain be increased to allow for doubling the number

of users without affecting the output SNR?

12.10 A DS binary PSK spread spectrum signal has a processing gain of 500. What is the
interference margin against a continuous-tone interference if the desired error probability
is 10−5?

12.11 Repeat Problem 12.10 if the interference consists of pulsed noise with a duty cycle of
1 percent.

12.12 Consider the DS spread spectrum signal

c(t) =
∞∑

n=−∞
cn p(t − nTc)

where cn is a periodic m sequence with a period N = 127 and p(t) is a rectangular pulse
of duration Tc = 1 μs. Determine the power spectral density of the signal c(t).

12.13 Suppose that {c1i } and {c2i } are two binary (0, 1) periodic sequences with periods N1 and
N2, respectively. Determine the period of the sequence obtained by forming the modulo-2
sum of {c1i } and {c2i }.

12.14 An m = 10 maximum-length shift register is used to generate the pseudorandom sequence
in a DS spread spectrum system. The chip duration is Tc = 1 μs, and the bit duration is
Tb = N Tc, where N is the length (period) of the m sequence.
a. Determine the processing gain of the system in dB.
b. Determine the interference margin if the required Eb/J0 = 10 and the jammer is a

tone jammer with an average power Jav.

12.15 An FH binary orthogonal FSK system employs an m = 15 stage linear feedback shift
register that generates a maximum-length sequence. Each state of the shift register selects
one of L non-overlapping frequency bands in the hopping pattern. The bit rate is 100 bits/s
and the hop rate is one hop per bit. The demodulator employs noncoherent detection.
a. Determine the hopping bandwidth for this channel.
b. What is the processing gain?
c. What is the probability of error in the presence of AWGN?
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12.16 Consider the FH binary orthogonal FSK system described in Problem 12.15. Suppose
that the hop rate is increased to 2 hops/bit. The receiver uses square-law combining to
combine the signal over the two hops.
a. Determine the hopping bandwidth for the channel.
b. What is the processing gain?
c. What is the error probability in the presence of AWGN?

12.17 In a fast FH spread spectrum system, the information is transmitted via FSK, with non-
coherent detection. Suppose there are N = 3 hops/bit, with hard-decision decoding of
the signal in each hop.
a. Determine the probability of error for this system in an AWGN channel with power

spectral density 1
2 N0 and an SNR = 13 dB (total SNR over the three hops).

b. Compare the result in (a) with the error probability of an FH spread spectrum system
that hops once per bit.

12.18 A slow FH binary FSK system with noncoherent detection operates at Eb/J0 = 10, with
a hopping bandwidth of 2 GHz, and a bit rate of 10 kbits/s.
a. What is the processing gain for the system?
b. If the jammer operates as a partial-band jammer, what is the bandwidth occupancy for

worst-case jamming?
c. What is the probability of error for the worst-case partial-band jammer?

12.19 Determine the error probability for an FH spread spectrum signal in which a binary
convolutional code is used in combination with binary FSK. The interference on the
channel is AWGN. The FSK demodulator outputs are square-law-detected and passed
to the decoder, which performs optimum soft-decision Viterbi decoding as described in
Chapter 8. Assume that the hopping rate is 1 hop per coded bit.

12.20 Repeat Problem 12.19 for hard-decision Viterbi decoding.

12.21 Repeat Problem 12.19 when fast frequency hopping is performed at a hopping rate
of L hops per coded bit.

12.22 Repeat Problem 12.19 when fast frequency hopping is performed with L hops per coded
bit and the decoder is a hard-decision Viterbi decoder. The L chips per coded bit are
square-law-detected and combined prior to the hard decision.

12.23 The TATS signal described in Section 12.3–3 is demodulated by a parallel bank of eight
matched filters (octal FSK), and each filter output is square-law-detected. The eight
outputs obtained in each of seven signal intervals (56 total outputs) are used to form the
64 possible decision variables corresponding to the Reed–Solomon (7, 2) code. Determine
an upper (union) bound of the code word error probability for AWGN and soft-decision
decoding.

12.24 Repeat Problem 12.23 for the worst-case partial-band interference channel.

12.25 Derive the results in Equations 12.2–50 and 12.2–51 from Equation 12.2–49.

12.26 Show that Equation 12.3–14 follows from Equation 12.3–13.
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12.27 Derive Equation 12.3–17 from Equation 12.3–16.

12.28 The parity polynomials for constructing Gold code sequences of length n = 7 are

h1(X ) = X3 + X + 1

h2(X ) = X3 + X2 + 1

Generate all the Gold codes of length 7 and determine the cross correlations of one
sequence with each of the others.

12.29 In Section 12.2–3, we demonstrated techniques for evaluating the error probability of a
coded system with interleaving in pulse interference by using the cutoff rate parameter R0.
Use the error probability curves given in Figure P12.29 for rate 1/2 and 1/3 convolutional
codes with soft-decision Viterbi decoding to determine the corresponding error rates for
a coded system in pulse interference. Perform this computation for K = 3, 5, and 7.

FIGURE P12.29

12.30 In coded and interleaved DS binary PSK modulation with pulse jamming and soft-decision
decoding, the cutoff rate is

R0 = 1 − log2(1 + αe−αEc/N0 )
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FIGURE P12.29
(Continued)

where α is the fraction of the time the system is being jammed, Ec = Eb R, R is the bit
rate, and N0 ≡ J0.
a. Show that the SNR per bit, Eb/N0, can be expressed as

Eb

N0
= 1

αR
ln

α

21−R0 − 1

b. Determine the value of α that maximizes the required Eb/N0 (worst-case pulse jam-
ming) and the resulting maximum value of Eb/N0.

c. Plot the graph of 10 log(Eb/r N0) versus R0, where r = R0/R, for worst-case pulse
jamming and for AWGN (α = 1). What conclusions do you reach regarding the effect
of worst-case pulse jamming?

12.31 In a coded and interleaved FH q-ary FSK modulation with partial band jamming and
coherent demodulation with soft-decision decoding, the cutoff rate is

R0 = log2

[
q

1 + (q − 1)αe−αEc/2N0

]

where α is the fraction of the band being jammed, Ec is the chip (or tone) energy, and
N0 = J0.
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a. Show that the SNR per bit can be expressed as

Eb

N0
= 2

αR
ln

(q − 1)α

q2−R0 − 1

b. Determine the value of α that maximizes the required Eb/N0 (worst-case partial band
jamming) and the resulting maximum value of Eb/N0.

c. Define r = R0/R in the result for Eb/N0 from (b), and plot 10 log(Eb/r N0) versus the
normalized cutoff rate R0/ log2 q for q = 2, 4, 8, 16, 32. Compare these graphs with
the results of Problem 12.30c. What conclusions do you reach regarding the effect of
worst-case partial band jamming? What is the effect of increasing the alphabet size q?
What is the penalty in SNR between the results in Problem 12.30c and q-ary FSK
as q → ∞?
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Fading Channels I: Characterization and Signaling

The previous chapters have described the design and performance of digital communi-
cation systems for transmission on either the classical AWGN channel or a linear filter
channel with AWGN. We observed that the distortion inherent in linear filter channels
requires special signal design techniques and rather sophisticated adaptive equalization
algorithms in order to achieve good performance.

In this chapter, we consider the signal design, receiver structure, and receiver per-
formance for more complex channels, namely, channels having randomly time variant
impulse responses. This characterization serves as a model for signal transmission
over many radio channels such as shortwave ionospheric radio communication in the
3–30 MHz frequency band (HF), tropsopheric scatter (beyond-the-horizon) radio com-
munications in the 300–3000 MHz frequency band (UHF), and 3000–30,000 MHz
frequency band (SHF), and ionospheric forward scatter in the 30–300 MHz frequency
band (VHF). The time-variant impulse responses of these channels are a consequence
of the constantly changing physical characteristics of the media. For example, the ions
in the ionospheric layers that reflect the signals transmitted in the HF band are always
in motion. To the user of the channel, the motion of the ions appears to be random.
Consequently, if the same signal is transmitted at HF in two widely separated time
intervals, the two received signals will be different. The time-varying responses that
occur are treated in statistical terms.

We shall begin our treatment of digital signaling over fading multipath chan-
nels by first developing a statistical characterization of the channel. Then we shall
evaluate the performance of several basic digital signaling techniques for commu-
nication over such channels. The performance results will demonstrate the severe
penalty in SNR that must be paid as a consequence of the fading characteristics of
the received signal. We shall then show that the penalty in SNR can be dramati-
cally reduced by means of efficient modulation/coding and demodulation/decoding
techniques.

830
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13.1
CHARACTERIZATION OF FADING MULTIPATH CHANNELS

If we transmit an extremely short pulse, ideally an impulse, over a time-varying mul-
tipath channel, the received signal might appear as a train of pulses, as shown in
Figure 13.1–1. Hence, one characteristic of a multipath medium is the time spread
introduced in the signal that is transmitted through the channel.

A second characteristic is due to the time variations in the structure of the medium.
As a result of such time variations, the nature of the multipath varies with time. That is,
if we repeat the pulse-sounding experiment over and over, we shall observe changes in
the received pulse train, which will include changes in the sizes of the individual pulses,
changes in the relative delays among the pulses, and, quite often, changes in the number
of pulses observed in the received pulse train as shown in Figure 13.1–1. Moreover, the
time variations appear to be unpredictable to the user of the channel. Therefore, it is
reasonable to characterize the time-variant multipath channel statistically. Toward this
end, let us examine the effects of the channel on a transmitted signal that is represented
in general as

s(t) = Re
[
sl(t)e

j2π fct] (13.1–1)

(a)

(b)

(c)

(d)

FIGURE 13.1–1
Example of the response of a
time-variant multipath channel to a
very narrow pulse.
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We assume that there are multiple propagation paths. Associated with each path is
a propagation delay and an attenuation factor. Both the propagation delays and the
attenuation factors are time-variant as a result of changes in the structure of the medium.
Thus, the received bandpass signal may be expressed in the form

x(t) =
∑

n

αn(t)s[t − τn(t)] (13.1–2)

where αn(t) is the attenuation factor for the signal received on the nth path and τn(t) is
the propagation delay for the nth path. Substitution for s(t) from Equation 14.1–1 into
Equation 13.1–2 yields the result

x(t) = Re

({∑
n

αn(t)e− j2π fcτn (t)sl[t − τn(t)]

}
e j2π fct

)
(13.1–3)

It is apparent from Equation 13.1–3 that in the absence of noise the equivalent
lowpass received signal is

rl(t) =
∑

n

αn(t)e− j2π fcτn (t)sl[t − τn(t)] (13.1–4)

Since rl(t) is the response of an equivalent lowpass channel to the equivalent low-
pass signal sl(t), it follows that the equivalent lowpass channel is described by the
time-variant impulse response

c(τ ; t) =
∑

n

αn(t)e− j2π fcτn (t)δ[τ − τn(t)] (13.1–5)

For some channels, such as the tropospheric scatter channel, it is more appropriate
to view the received signal as consisting of a continuum of multipath components. In
such a case, the received signal x(t) is expressed in the integral form

x(t) =
∫ ∞

−∞
α(τ ; t)s(t − τ )dτ (13.1–6)

where α(τ ; t) denotes the attenuation of the signal components at delay τ and at time
instant t . Now substitution for s(t) from Equation 13.1–1 into Equation 13.1–6 yields

x(t) = Re
{[∫ ∞

−∞
α(τ ; t)e− j2π fcτ sl(t − τ ) dτ

]
e j2π fct

}
(13.1–7)

Since the integral in Equation 13.1–7 represents the convolution of sl(t) with an equiv-
alent lowpass time-variant impulse response c(τ ; t), it follows that

c(τ ; t) = α(τ ; t)e− j2π fcτ (13.1–8)

where c(τ ; t) represents the response of the channel at time t due to an impulse applied at
time t −τ . Thus Equation 13.1–8 is the appropriate definition of the equivalent lowpass
impulse response when the channel results in continuous multipath and Equation 13.1–5
is appropriate for a channel that contains discrete multipath components.

Now let us consider the transmission of an unmodulated carrier at frequency fc.
Then sl(t) = 1 for all t , and, hence, the received signal for the case of discrete multipath,
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given by Equation 13.1–4, reduces to

rl(t) =
∑

n

αn(t)e− j2π fcτn (t)

=
∑

n

αn(t)e jθn (t)
(13.1–9)

where θn(t) = −2π fcτn(t). Thus, the received signal consists of the sum of a number
of time-variant vectors (phasors) having amplitudes αn(t) and phases θn(t). Note that
large dynamic changes in the medium are required for αn(t) to change sufficiently to
cause a significant change in the received signal. On the other hand, θn(t) will change
by 2π rad whenever τn changes by 1/ fc. But 1/ fc is a small number and, hence, θn

can change by 2π rad with relatively small motions of the medium. We also expect
the delays τn(t) associated with the different signal paths to change at different rates
and in an unpredictable (random) manner. This implies that the received signal rl(t) in
Equation 13.1–9 can be modeled as a random process. When there are a large number
of paths, the central limit theorem can be applied. That is, rl(t) may be modeled as a
complex-valued Gaussian random process. This means that the time-variant impulse
response c(τ ; t) is a complex-valued Gaussian random process in the t variable.

The multipath propagation model for the channel embodied in the received signal
rl(t), given in Equation 13.1–9, results in signal fading. The fading phenomenon is
primarily a result of the time variations in the phases {θn(t)}. That is, the randomly time
variant phases {θn(t)} associated with the vectors {αne jθn } at times result in the vectors
adding destructively. When that occurs, the resultant received signal rl(t) is very small
or practically zero. At other times, the vectors {αne jθn } add constructively, so that the
received signal is large. Thus, the amplitude variations in the received signal, termed
signal fading, are due to the time-variant multipath characteristics of the channel.

When the impulse response c(τ ; t) is modeled as a zero-mean complex-valued
Gaussian process, the envelope |c(τ ; t)| at any instant t is Rayleigh-distributed. In this
case the channel is said to be a Rayleigh fading channel. In the event that there are fixed
scatterers or signal reflectors in the medium, in addition to randomly moving scatterers,
c(τ ; t) can no longer be modeled as having zero-mean. In this case, the envelope |c(τ ; t)|
has a Rice distribution and the channel is said to be a Ricean fading channel. Another
probability distribution function that has been used to model the envelope of fading
signals is the Nakagami-m distribution. These fading channel models are considered
in Section 13.1–2.

13.1–1 Channel Correlation Functions and Power Spectra

We shall now develop a number of useful correlation functions and power spectral
density functions that define the characteristics of a fading multipath channel. Our
starting point is the equivalent lowpass impulse response c(τ ; t), which is characterized
as a complex-valued random process in the t variable. We assume that c(τ ; t) is wide-
sense-stationary. Then we define the autocorrelation function of c(τ ; t) as

Rc(τ2, τ1; �t) = E
[
c∗(τ1; t)c(τ2; t + �t)

]
(13.1–10)
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Rc(�) FIGURE 13.1–2
Multipath intensity profile.

In most radio transmission media, the attentuation and phase shift of the channel
associated with path delay τ1 is uncorrelated with the attenuation and phase shift asso-
ciated with path delay τ2. This is usually called uncorrelated scattering. We make the
assumption that the scattering at two different delays is uncorrelated and incorporate it
into Equation 13.1–10 to obtain

E
[
c∗(τ1; t)c(τ2; t + �t)

] = Rc(τ1; �t)δ(τ2 − τ1) (13.1–11)

If we let �t = 0, the resulting autocorrelation function Rc(τ ; 0) ≡ Rc(τ ) is simply
the average power output of the channel as a function of the time delay τ . For this
reason, Rc(τ ) is called the multipath intensity profile or the delay power spectrum of
the channel. In general, Rc(τ ; �t) gives the average power output as a function of the
time delay τ and the difference �t in observation time.

In practice, the function Rc(τ ; �t) is measured by transmitting very narrow pulses
or, equivalently, a wideband signal and cross-correlating the received signal with a
delayed version of itself. Typically, the measured function Rc(τ ) may appear as shown
in Figure 13.1–2. The range of values of τ over which Rc(τ ) is essentially nonzero is
called the multipath spread of the channel and is denoted by Tm .

A completely analogous characterization of the time-variant multipath channel
begins in the frequency domain. By taking the Fourier transform of c(τ ; t), we obtain
the time-variant transfer function C( f ; t), where f is the frequency variable. Thus,

C( f ; t) =
∫ ∞

−∞
c(τ ; t)e− j2π f τ dτ (13.1–12)

If c(τ ; t) is modeled as a complex-valued zero-mean Gaussian random process in the t
variable, it follows that C( f ; t) also has the same statistics. Under the assumption that
the channel is wide-sense-stationary, we define the autocorrelation function

RC ( f2, f1; �t) = E
[
C∗( f1; t)C( f2; t + �t)

]
(13.1–13)

Since C( f ; t) is the Fourier transform of c(τ ; t), it is not surprising to find that
RC ( f2, f1; �t) is related to Rc(τ ; �t) by the Fourier transform. The relationship is
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easily established by substituting Equation 13.1–12 into Equation 13.1–13. Thus,

RC ( f2, f1; �t) =
∫ ∞

−∞

∫ ∞

−∞
E

[
c∗(τ1; t)c(τ2; t + �t)

]
e j2π ( f1τ1− f2τ2)dτ1dτ2

=
∫ ∞

−∞

∫ ∞

−∞
Rc(τ1; �t)δ(τ2 − τ1)e j2π ( f1τ1− f2τ2)dτ1dτ2

=
∫ ∞

−∞
Rc(τ1; �t)e j2π ( f1− f2)τ1 dτ1

=
∫ ∞

−∞
Rc(τ1; �t)e− j2π� f τ1 dτ1 ≡ RC (� f ; �t) (13.1–14)

where � f = f2 − f1. From Equation 13.1–14, we observe that RC (� f ; �t) is the
Fourier transform of the multipath intensity profile. Furthermore, the assumption of
uncorrelated scattering implies that the autocorrelation function of C( f ; t) in frequency
is a function of only the frequency difference � f = f2 − f1. Therefore, it is appropri-
ate to call RC (� f ; �t) the spaced-frequency, spaced time correlation function of the
channel. It can be measured in practice by transmitting a pair of sinusoids separated by
� f and cross-correlating the two separately received signals with a relative delay �t .

Suppose we set �t = 0 in Equation 13.1–14. Then, with RC (� f ; 0) ≡ RC (� f )
and Rc(τ ; 0) ≡ Rc(τ ), the transform relationship is simply

RC (� f ) =
∫ ∞

−∞
Rc(τ )e− j2π� f τ dτ (13.1–15)

The relationship is depicted graphically in Figure 13.1–3. Since RC (� f ) is an auto-
correlation function in the frequency variable, it provides us with a measure of the
frequency coherence of the channel. As a result of the Fourier transform relationship
between RC (� f ) and Rc(τ ), the reciprocal of the multipath spread is a measure of the
coherence bandwidth of the channel. That is,

(� f )c ≈ 1

Tm
(13.1–16)

RC(� f )

RC(� f ) Rc(�)

Rc(�)

FIGURE 13.1–3
Relationship between RC (� f ) and Rc(τ ).
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where (� f )c denotes the coherence bandwidth. Thus, two sinusoids with frequency sep-
aration greater than (� f )c are affected differently by the channel. When an information-
bearing signal is transmitted through the channel, if (� f )c is small in comparison to
the bandwidth of the transmitted signal, the channel is said to be frequency-selective.
In this case, the signal is severely distorted by the channel. On the other hand, if (� f )c

is large in comparison with the bandwidth of the transmitted signal, the channel is said
to be frequency-nonselective.

We now focus our attention on the time variations of the channel as measured by
the parameter �t in RC (� f ; �t). The time variations in the channel are evidenced as
a Doppler broadening and, perhaps, in addition as a Doppler shift of a spectral line.
In order to relate the Doppler effects to the time variations of the channel, we define
the Fourier transform of RC (� f ; �t) with respect to the variable �t to be the function
SC (� f ; λ). That is,

SC (� f ; λ) =
∫ ∞

−∞
RC (� f ; �t)e− j2πλ �t d�t (13.1–17)

With � f set to zero and SC (0; λ) ≡ SC (λ), the relation in Equation 14.1–17 becomes

SC (λ) =
∫ ∞

−∞
RC (0; �t)e− j2πλ �t d�t (13.1–18)

The function SC (λ) is a power spectrum that gives the signal intensity as a function
of the Doppler frequency λ. Hence, we call SC (λ) the Doppler power spectrum of the
channel.

From Equation 13.1–18, we observe that if the channel is time-invariant, RC (�t) =
1 andSC (λ) becomes equal to the delta function δ(λ). Therefore, when there are no time
variations in the channel, there is no spectral broadening observed in the transmission
of a pure frequency tone.

The range of values of λ over which SC (λ) is essentially nonzero is called the
Doppler spread Bd of the channel. Since SC (λ) is related to RC (�t) by the Fourier
transform, the reciprocal of Bd is a measure of the coherence time of the channel. That
is,

(�t)c ≈ 1

Bd
(13.1–19)

where (�t)c denotes the coherence time. Clearly, a slowly changing channel has a large
coherence time or, equivalently, a small Doppler spread. Figure 13.1–4 illustrates the
relationship between RC (�t) and SC (λ).

We have now established a Fourier transform relationship between RC (� f ; �t)
and Rc(τ ; �t) involving the variables (τ, � f ), and a Fourier transform relationship
between RC (� f ; �t) and SC (� f ; λ) involving the variables (�t, λ). There are two
additional Fourier transform relationships that we can define, which serve to relate
Rc(τ ; �t) to SC (� f ; λ) and, thus, close the loop. The desired relationship is obtained
by defining a new function, denoted byS(τ ; λ), to be the Fourier transform of Rc(τ ; �t)
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RC(� t)

RC(� t)

S

S

FIGURE 13.1–4
Relationship between RC (�t) and SC (λ).

in the �t variable. That is,

S(τ ; λ) =
∫ ∞

−∞
Rc(τ ; �t)e− j2πλ �t d�t (13.1–20)

It follows that S(τ ; λ) and SC (� f ; λ) are a Fourier transform pair. That is,

S(τ ; λ) =
∫ ∞

−∞
SC (� f ; λ)e j2πτ � f d� f (13.1–21)

Furthermore, S(τ ; λ) and RC (� f ; �t) are related by the double Fourier transform

S(τ ; λ) =
∫ ∞

−∞

∫ ∞

−∞
RC (� f ; �t)e− j2πλ �t e j2πτ � f d�t d� f (13.1–22)

This new function S(τ ; λ) is called the scattering function of the channel. It provides
us with a measure of the average power output of the channel as a function of the time
delay τ and the Doppler frequency λ.

The relationships among the four functions RC (� f ; �t), Rc(τ ; �t), SC (� f ; λ),
and S(τ ; λ) are summarized in Figure 13.1–5.

E X A M P L E 13.1–1. SCATTERING FUNCTION OF A TROPOSPHERIC SCATTER CHANNEL.

The scattering function S(τ ; λ) measured on a 150-mi tropospheric scatter link is
shown in Figure 13.1–6. The signal used to probe the channel had a time resolution
of 0.1 μs. Hence, the time-delay axis is quantized in increments of 0.1 μs. From the
graph, we observe that the multipath spread Tm = 0.7 μs. On the other hand, the
Doppler spread, which may be defined as the 3-dB bandwidth of the power spectrum
for each signal path, appears to vary with each signal path. For example, in one path it is
less than 1 Hz, while in some other paths it is several hertz. For our purposes, we shall
take the largest of these 3-dB bandwidths of the various paths and call that the Doppler
spread.

E X A M P L E 13.1–2. MULTIPATH INTENSITY PROFILE OF MOBILE RADIO CHANNELS. The
multipath intensity profile of a mobile radio channel depends critically on the type of
terrain. Numerous measurements have been made under various conditions in many
parts of the world. In urban and suburban areas, typical values of multipath spreads
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RC(� f ; � t)

RC(� t) RC(� f )

Rc(�)S

S

S

S

FIGURE 13.1–5
Relationships among the channel correlation functions and power spectra. [From Green
(1962), with permission.]

range from 1 to 10 μs. In rural mountainous areas, the multipath spreads are much
greater, with typical values in the range of 10 to 30 μs. Two models for the multipath
intensity profile that are widely used in evaluating system performance for these two
types of terrain are illustrated in Figure 13.1–7.

E X A M P L E 13.1–3. DOPPLER POWER SPECTRUM OF MOBILE RADIO CHANNELS. A
widely used model for the Doppler power spectrum of a mobile radio channel is the so-
called Jakes’ model (Jakes, 1974). In this model, the autocorrelation of the time-variant
transfer function C( f ; t) is given as

RC (�t) = E[C∗( f ; t)C( f ; t + �t)]

= J0(2π fm �t)
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FIGURE 13.1–6
Scattering function of a medium-range tropospheric scatter channel. The taps delay increment
is 0.1 μs.

where J0(·) is the zero-order Bessel function of the first kind and fm = v f0/c is the
maximum Doppler frequency, where v is the vehicle speed in meters per second (m/s),
f0 is the carrier frequency, and c is the speed of light (3 × 108 m/s). The Fourier
transform of this autocorrelation function yields the Doppler power spectrum. That is

SC (λ) =
∫ ∞

−∞
RC (�t)e− j2πλ �t d�t

=
∫ ∞

−∞
J0(2π fm �t)e− j2πλ �t d�t

=
⎧⎨
⎩

1

π fm

1√
1 − ( f/ fm)2

| f | ≤ fm

0 | f | > fm

The graph of SC (λ) is shown in Figure 13.1–8.

13.1–2 Statistical Models for Fading Channels

There are several probability distributions that can be considered in attempting to model
the statistical characteristics of the fading channel. When there are a large number of
scatterers in the channel that contribute to the signal at the receiver, as is the case in
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(a)

(b)

FIGURE 13.1–7
Cost 207 average power delay profiles: (a) typical delay profile for suburban and urban areas;
(b) typical “bad”-case delay profile for hilly terrain. [From Cost 207 Document 207 TD (86)51
rev 3.]

S FIGURE 13.1–8
Model of Doppler spectrum for a mobile
radio channel.

ionospheric or tropospheric signal propagation, application of the central limit theorem
leads to a Gaussian process model for the channel impulse response. If the process is
zero-mean, then the envelope of the channel response at any time instant has a Rayleigh
probability distribution and the phase is uniformly distributed in the interval (0, 2π ).
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That is

pR(r ) = 2r

	
e−r2/	, r ≥ 0 (13.1–23)

where

	 = E(R2) (13.1–24)

We observe that the Rayleigh distribution is characterized by the single parameter
E(R2).

An alternative statistical model for the envelope of the channel response is the
Nakagami-m distribution given by the PDF in Equation 2.3–67. In contrast to the
Rayleigh distribution, which has a single parameter that can be used to match the fad-
ing channel statistics, the Nakagami-m is a two-parameter distribution, involving the
parameter m and the second moment 	 = E(R2). As a consequence, this distribution
provides more flexibility and accuracy in matching the observed signal statistics. The
Nakagami-m distribution can be used to model fading channel conditions that are either
more or less severe than the Rayleigh distribution, and it includes the Rayleigh distribu-
tion as a special case (m = 1). For example, Turin et al. (1972) and Suzuki (1977) have
shown that the Nakagami-m distribution provides the best fit for data signals received
in urban radio multipath channels.

The Rice distribution is also a two-parameter distribution. It may be expressed by
the PDF given in Equation 2.3–56, where the parameters are s and σ 2, where s2 is called
the noncentrality parameter in the equivalent chi-square distribution. It represents the
power in the nonfading signal components, sometimes called specular components, of
the received signal.

There are many radio channels in which fading is encountered that are basically line-
of-sight (LOS) communication links with multipath components arising from secondary
reflections, or signal paths, from surrounding terrain. In such channels, the number of
multipath components is small, and, hence, the channel may be modeled in a somewhat
simpler form. We cite two channel models as examples.

As the first example, let us consider an airplane to ground communication link in
which there is the direct path and a single multipath component at a delay t0 relative to
the direct path. The impulse response of such a channel may be modeled as

c(τ ; t) = αδ(τ ) + β(t)δ[τ − τ0(t)] (13.1–25)

where α is the attenuation factor of the direct path and β(t) represents the time-variant
multipath signal component resulting from terrain reflections. Often, β(t) can be charac-
terized as a zero-mean Gaussian random process. The transfer function for this channel
model may be expressed as

C( f ; t) = α + β(t)e− j2π f τ0(t) (13.1–26)

This channel fits the Ricean fading model defined previously. The direct path with
attenuation α represents the specular component and β(t) represents the Rayleigh fading
component.

A similar model has been found to hold for microwave LOS radio channels used
for long-distance voice and video transmission by telephone companies throughout the
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world. For such channels, Rummler (1979) has developed a three-path model based on
channel measurements performed on typical LOS links in the 6-GHz frequency band.
The differential delay on the two multipath components is relatively small, and, hence,
the model developed by Rummler is one that has a channel transfer function

C( f ) = α[1 − βe− j2π ( f − f0)τ0 ] (13.1–27)

where α is the overall attenuation parameter, β is called a shape parameter which is due
to the multipath components, f0 is the frequency of the fade minimum, and τ0 is the
relative time delay between the direct and the multipath components. This simplified
model was used to fit data derived from channel measurements.

Rummler found that the parameters α and β may be characterized as random
variables that, for practical purposes, are nearly statistically independent. From the
channel measurements, he found that the distribution of β has the form (1 − β)2.3.
The distribution of α is well modeled by the lognormal distribution, i.e., − log α is
Gaussian. For β > 0.5, the mean of −20 log α was found to be 25 dB and the standard
deviation was 5 dB. For smaller values of β, the mean decreases to 15 dB. The delay
parameter determined from the measurements was τ0 = 6.3 ns. The magnitude-square
response of C( f ) is

|C( f )|2 = α2[1 + β2 − 2β cos 2π ( f − f0)τ0] (13.1–28)

|C( f )| is plotted in Figure 13.1–9 as a function of the frequency f − f0 for τ0 = 6.3 ns.
Note that the effect of the multipath component is to create a deep attenuation at f = f0

and at multiples of 1/τ0 ≈ 159 MHz. By comparison, the typical channel bandwidth
is 30 MHz. This model was used by Lundgren and Rummler (1979) to determine the
error rate performance of digital radio systems.

Propagation models for mobile radio channels In the link budget calculations
that were described in Section 4.10–2, we had characterized the path loss of radio
waves propagating through free space as being inversely proportional to d2, where d
is the distance between the transmitter and the receiver. However, in a mobile radio

FIGURE 13.1–9
Magnitude frequency response of LOS channel model.
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channel, propagation is generally neither free space nor line of sight. The mean path
loss encountered in mobile radio channels may be characterized as being inversely
proportional to d p, where 2 ≤ p ≤ 4, with d4 being a worst-case model. Consequently,
the path loss is usually much more severe compared to that of free space.

There are a number of factors affecting the path loss in mobile radio communi-
cations. Among these factors are base station antenna height, mobile antenna height,
operating frequency, atmospheric conditions, and presence or absence of buildings and
trees. Various mean path loss models have been developed that incorporate such factors.
For example, a model for a large city in an urban area is the Hata model, in which the
mean path loss is expressed as

Loss in dB = 69.55 + 26.16 log10 f − 13.82 log10 ht − a(hr )

+ (44.9 − 6.55 log10 ht ) log10 d
(13.1–29)

where f is the operating frequency in MHz (150 < f < 1500), ht is the transmitter
antenna height in meters (30 < ht < 200), hr is the receiver antenna height in meters
(1 < hr < 10), d is the distance between transmitter and receiver in km (1 < d < 20),
and

a(hr ) = 3.2(log10 11.75hr )2 − 4.97, f ≥ 400 MHz (13.1–30)

Another problem with mobile radio propagation is the effect of shadowing of the
signal due to large obstructions, such as large buildings, trees, and hilly terrain between
the transmitter and the receiver. Shadowing is usually modeled as a multiplicative and,
generally, slowly time varying random process. That is, the received signal may be
characterized mathematically as

r (t) = A0g(t)s(t) (13.1–31)

where A0 represents the mean path loss, s(t) is the transmitted signal, and g(t) is a
random process that represents the shadowing effect. At any time instant, the shadowing
process is modeled statistically as lognormally distributed. The probability density
function for the lognormal distribution is

p(g) =
⎧⎨
⎩

1√
2πσ 2 g

e−(ln g−μ)2/2σ 2
(g ≥ 0)

0 (g < 0)
(13.1–32)

If we define a new random variable X as X = ln g, then

p(x) = 1√
2πσ 2

e−(x−μ)2/2σ 2
, −∞ < x < ∞ (13.1–33)

The random variable X represents the path loss measured in dB, μ is the mean path
loss in dB, and σ is the standard deviation of the path loss in dB. For typical cellular
and microcellular environments, σ is in the range of 5–12 dB.
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13.2
THE EFFECT OF SIGNAL CHARACTERISTICS ON THE CHOICE
OF A CHANNEL MODEL

Having discussed the statistical characterization of time-variant multipath channels
generally in terms of the correlation functions describe in Section 13.1, we now consider
the effect of signal characteristics on the selection of a channel model that is appropriate
for the specified signal. Thus, let sl(t) be the equivalent lowpass signal transmitted over
the channel and let Sl( f ) denote its frequency content. Then the equivalent lowpass
received signal, exclusive of additive noise, may be expressed either in terms of the
time-domain variables c(τ ; t) and sl(t) as

rl(t) =
∫ ∞

−∞
c(τ ; t)sl(t − τ ) dτ (13.2–1)

or in terms of the frequency functions C( f ; t) and Sl( f ) as

rl(t) =
∫ ∞

−∞
C( f ; t)Sl( f )e j2π f t d f (13.2–2)

Suppose we are transmitting digital information over the channel by modulating
(either in amplitude, or in phase, or both) the basic pulse sl(t) at a rate 1/T , where
T is the signaling interval. It is apparent from Equation 13.2–2 that the time-variant
channel characterized by the transfer function C( f ; t) distorts the signal Sl( f ). If
Sl( f ) has a bandwidth W greater than the coherence bandwidth (� f )c of the channel,
Sl( f ) is subjected to different gains and phase shifts across the band. In such a case,
the channel is said to be frequency-selective. Additional distortion is caused by the
time variations in C( f ; t). This type of distortion is evidenced as a variation in the
received signal strength, and has been termed fading. It should be emphasized that the
frequency selectivity and fading are viewed as two different types of distortion. The
former depends on the multipath spread or, equivalently, on the coherence bandwidth
of the channel relative to the transmitted signal bandwidth W . The latter depends on
the time variations of the channel, which are grossly characterized by the coherence
time (�t)c or, equivalently, by the Doppler spread Bd .

The effect of the channel on the transmitted signal sl(t) is a function of our choice of
signal bandwidth and signal duration. For example, if we select the signaling interval
T to satisfy the condition T 	 Tm , the channel introduces a negligible amount of
intersymbol interference. If the bandwidth of the signal pulse sl(t) is W ≈ 1/T , the
condition T 	 Tm implies that

W 
 1

Tm
≈ (� f )c (13.2–3)

That is, the signal bandwidth W is much smaller than the coherence bandwidth of the
channel. Hence, the channel is frequency-nonselective. In other words, all the frequency
components in Sl( f ) undergo the same attenuation and phase shift in transmission
through the channel. But this implies that, within the bandwidth occupied by Sl( f ),
the time-variant transfer function C( f ; t) of the channel is a complex-valued constant
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in the frequency variable. Since Sl( f ) has its frequency content concentrated in the
vicinity of f = 0, C( f ; t) = C(0; t). Consequently, Equation 13.2–2 reduces to

rl(t) = C(0; t)
∫ ∞

−∞
Sl( f )e j2π f t d f

= C(0; t)sl(t)

(13.2–4)

Thus, when the signal bandwidth W is much smaller than the coherence bandwidth
(� f )c of the channel, the received signal is simply the transmitted signal multiplied by
a complex-valued random process C(0; t), which represents the time-variant character-
istics of the channel. In this case, we say that the multipath components in the received
are not resolvable because W 
 (� f )c.

The transfer function C(0; t) for a frequency-nonselective channel may be ex-
pressed in the form

C(0; t) = α(t)e jφ(t) (13.2–5)

where α(t) represents the envelope and φ(t) represents the phase of the equivalent
lowpass channel. When C(0; t) is modeled as a zero-mean complex-valued Gaussian
random process, the envelope α(t) is Rayleigh-distributed for any fixed value of t and
φ(t) is uniformly distributed over the interval (−π, π ). The rapidity of the fading on
the frequency-nonselective channel is determined either from the correlation function
RC (�t) or from the Doppler power spectrumSC (λ). Alternatively, either of the channel
parameters (�t)c or Bd can be used to characterize the rapidity of the fading.

For example, suppose it is possible to select the signal bandwidth W to satisfy the
condition W 
 (� f )c and the signaling interval T to satisfy the condition T 
 (�t)c.
Since T is smaller than the coherence time of the channel, the channel attenuation and
phase shift are essentially fixed for the duration of at least one signaling interval. When
this condition holds, we call the channel a slowly fading channel. Furthermore, when
W ≈ 1/T , the conditions that the channel be frequency-nonselective and slowly fading
imply that the product of Tm and Bd must satisfy the condition Tm Bd < 1.

The product Tm Bd is called the spread factor of the channel. If Tm Bd < 1, the
channel is said to be underspread; otherwise, it is overspread. The multipath spread,
the Doppler spread, and the spread factor are listed in Table 13.2–1 for several channels.

TABLE 13.2–1

Multipath Spread, Doppler Spread, and Spread Factor for Several Time-Variant
Multipath Channels

Multipath duration, Doppler spread, Spread
Type of channel s Hz factor

Shortwave ionospheric propagation (HF) 10−3–10−2 10−1–1 10−4–10−2

Ionospheric propagation under distributed 10−3–10−2 10 –100 10−2–1
auroral conditions (HF)

Ionospheric forward scatter (VHF) 10−4 10 10−3

Tropospheric scatter (SHF) 10−6 10 10−5

Orbital scatter (X band) 10−4 103 10−1

Moon at max. libration ( f0 = 0.4 kmc) 10−2 10 10−1



Proakis-27466 book September 26, 2007 22:59

846 Digital Communications

We observe from this table that several radio channels, including the moon when used
as a passive reflector, are underspread. Consequently, it is possible to select the signal
sl(t) such that these channels are frequency-nonselective and slowly fading. The slow-
fading condition implies that the channel characteristics vary sufficiently slowly that
they can be measured.

In Section 13.3, we shall determine the error rate performance for binary signaling
over a frequency-nonselective slowly fading channel. This channel model is, by far, the
simplest to analyze. More importantly, it yields insight into the performance character-
istics for digital signaling on a fading channel and serves to suggest the type of signal
waveforms that are effective in overcoming the fading caused by the channel.

Since the multipath components in the received signal are not resolvable when the
signal bandwidth W is less than the coherence bandwidth (� f )c of the channel, the
received signal appears to arrive at the receiver via a single fading path. On the other
hand, we may choose W 	 (� f )c, so that the channel becomes frequency-selective.
We shall show later that, under this condition, the multipath components in the received
signal are resolvable with a resolution in time delay of 1/W . Thus, we shall illustrate
that the frequency-selective channel can be modeled as a tapped delay line (transversal)
filter with time-variant tap coefficients. We shall then derive the performance of binary
signaling over such a frequency-selective channel model.

13.3
FREQUENCY-NONSELECTIVE, SLOWLY FADING CHANNEL

In this section, we derive the error rate performance of binary PSK and binary FSK when
these signals are transmitted over a frequency-nonselective, slowly fading channel. As
described in Section 13.2, the frequency-nonselective channel results in multiplicative
distortion of the transmitted signal sl(t). Furthermore, the condition that the channel
fades slowly implies that the multiplicative process may be regarded as a constant
during at least one signaling interval. Consequently, if the transmitted signal is sl(t),
the received equivalent lowpass signal in one signaling interval is

rl(t) = αe jφsl(t) + z(t), 0 ≤ t ≤ T (13.3–1)

where z(t) represents the complex-valued white Gaussian noise process corrupting the
signal.

Let us assume that the channel fading is sufficiently slow that the phase shift φ can
be estimated from the received signal without error. In that case, we can achieve ideal
coherent detection of the received signal. Thus, the received signal can be processed
by passing it through a matched filter in the case of binary PSK or through a pair of
matched filters in the case of binary FSK. One method that we can use to determine the
performance of the binary communication systems is to evaluate the decision variables
and from these determine the probability of error. However, we have already done
this for a fixed (time-invariant) channel. That is, for a fixed attenuation α, we know
the probability of error for binary PSK and binary FSK. From Equation 4.3–13, the
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expression for the error rate of binary PSK as a function of the received SNR γb is

Pb(γb) = Q
(√

2γb

)
(13.3–2)

where γb = α2Eb/N0. The expression for the error rate of binary FSK, detected coher-
ently, is given by Equation 4.2–32 as

Pb(γb) = Q
(√

γb

)
(13.3–3)

We view Equations 13.3–2 and 13.3–3 as conditional error probabilities, where the
condition is that α is fixed. To obtain the error probabilities when α is random, we must
average Pb(γb), given in Equations 13.3–2 and 13.3–3, over the probability density
function of γb. That is, we must evaluate the integral

Pb =
∫ ∞

0
Pb(γb)p(γb) dγb (13.3–4)

where p(γb) is the probability density function of γb when α is random.

Rayleigh fading When α is Rayleigh-distributed, α2 has a chi-square probabil-
ity distribution with two degrees of freedom. Consequently, γb also is chi-square-
distributed. It is easily shown that

p(γb) = 1

γ̄b
e−γb/γ̄b , γb ≥ 0 (13.3–5)

where γ b is the average signal-to-noise ratio, defined as

γ b = Eb

N0
E(α2) (13.3–6)

The term E(α2) is simply the average value of α2.
Now we can substitute Equation 13.3–5 into Equation 13.3–4 and carry out the

integration for Pb(γb) as given by Equations 13.3–2 and 13.3–3. The result of this
integration for binary PSK is (see Problems 4.44 and 4.50)

Pb = 1

2

(
1 −

√
γ b

1 + γ̄b

)
(13.3–7)

If we repeat the integration with Pb(γb) given by Equation 13.3–3, we obtain the
probability of error for binary FSK, detected coherently, in the form

Pb = 1

2

(
1 −

√
γ b

2 + γ̄b

)
(13.3–8)

In arriving at the error rate results in Equations 13.3–7 and 13.3–8, we have assumed
that the estimate of the channel phase shift, obtained in the presence of slow fading,
is noiseless. Such an ideal condition may not hold in practice. In such a case, the
expressions in Equations 13.3–7 and 13.3–8 should be viewed as representing the best
achievable performance in the presence of Rayleigh fading. In Appendix C we consider
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the problem of estimating the phase in the presence of noise and we evaluate the error
rate performance of binary and multiphase PSK.

On channels for which the fading is sufficiently rapid to preclude the estimation
of a stable phase reference by averaging the received signal phase over many signaling
intervals, DPSK, is an alternative signaling method. Since DPSK requires phase stability
over only two consecutive signaling intervals, this modulation technique is quite robust
in the presence of signal fading. In deriving the performance of binary DPSK for a
fading channel, we begin again with the error probability for a nonfading channel,
which is

Pb(γb) = 1
2 e−γb (13.3–9)

This expression is substituted into the integral in Equation 13.3–4 along with p(γb) ob-
tained from Equation 13.3–5. Evaluation of the resulting integral yields the probability
of error for binary DPSK, in the form

Pb = 1

2(1 + γ b)
(13.3–10)

If we choose not to estimate the channel phase shift at all, but instead employ a
noncoherent (envelope or square-law) detector with binary, orthogonal FSK signals,
the error probability for a nonfading channel is

Pb(γb) = 1
2 e−γb/2 (13.3–11)

When we average Pb(γb) over the Rayleigh fading channel attenuation, the resulting
error probability is

Pb = 1

2 + γ b
(13.3–12)

The error probabilities in Equations 13.3–7, 13.3–8, 13.3–10, and 13.3–12 are
illustrated in Figure 13.3–1. In comparing the performance of the four binary signaling
systems, we focus our attention on the probabilities of error for large SNR, i.e., γ b 	 1.
Under this condition, the error rates in Equations 13.3–7, 13.3–8, 13.3–10, and 13.3–12
simplify to

Pb ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/4γ b for coherent PSK
1/2γ b for coherent, orthogonal FSK
1/2γ b for DPSK
1/γ b for noncoherent, orthogonal FSK

(13.3–13)

From Equation 13.3–13, we observe that coherent PSK is 3 dB better than DPSK
and 6 dB better than noncoherent FSK. More striking, however, is the observtion that
the error rates decrease only inversely with SNR. In contrast, the decrease in error
rate on a nonfading channel is exponential with SNR. This means that, on a fading
channel, the transmitter must transmit a large amount of power in order to obtain a low
probability of error. In many cases, a large amount of power is not possible, technically
and/or economically. An alternative solution to the problem of obtaining acceptable
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FIGURE 13.3–1
Performance of binary signaling on a
Rayleigh fading channel.

performance on a fading channel is the use of redundancy, which can be obtained by
means of diversity techniques, as discussed in Section 13.4.

Nakagami fading If α is characterized statistically by the Nakagami-m distribu-
tion, the random variable γ = α2Eb/N0 has the PDF (see Problem 13.14)

p(γ ) = mm

�(m)γ m γ m−1e−mγ /γ (13.3–14)

where γ = E(α2)E/N0.
The average probability of error for any of the modulation methods is simply

obtained by averaging the appropriate error probability for a nonfading channel over
the fading signal statistics.

As an example of the performance obtained with Nakagami-m fading statistics,
Figure 13.3–2 illustrates the probability of error of binary PSK with m as a parameter.
We recall that m = 1 corresponds to Rayleigh fading. We observe that the performance
improves as m is increased above m = 1, which is indicative of the fact that the fading
is less severe. On the other hand, when m < 1, the performance is worse than Rayleigh
fading.

Other fading signal statistics Following the procedure describe above, one can
determine the performance of the various modulation methods for other types of fading
signal statistics, such as Ricean Fading.
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FIGURE 13.3–2
Average error probability for two-phase
PSK with Nakagami fading.

Error probability results for Rice-distributed fading statistics can be found in the
paper by Lindsey (1964), while for Nakagami-m fading statistics, the reader may refer
to the papers by Esposito (1967), Miyagaki et al. (1978), Charash (1979), Al-Hussaini
et al. (1985), and Beaulieu and Abu-Dayya (1991).

13.4
DIVERSITY TECHNIQUES FOR FADING MULTIPATH CHANNELS

Diversity techniques are based on the notion that errors occur in reception when the
channel attenuation is large, i.e., when the channel is in a deep fade. If we can sup-
ply to the receiver several replicas of the same information signal transmitted over
independently fading channels, the probability that all the signal components will fade
simultaneously is reduced considerably. That is, if p is the probability that any one
signal will fade below some critical value, then pL is the probability that all L inde-
pendently fading replicas of the same signal will fade below the critical value. There
are several ways in which we can provide the receiver with L independently fading
replicas of the same information-bearing signal.

One method is to employ frequency diversity. That is, the same information-bearing
signal is transmitted on L carriers, where the separation between successive carriers
equals or exceeds the coherence bandwidth (� f )c of the channel.

A second method for achieving L independently fading versions of the same
information-bearing signal is to transmit the signal in L different time slots, where
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the separation between successive time slots equals or exceeds the coherence time
(�t)c of the channel. This method is called time diversity.

Note that the fading channel fits the model of a bursty error channel. Furthermore,
we may view the transmission of the same information either at different frequencies or
in difference time slots (or both) as a simple form of repetition coding. The separation
of the diversity transmissions in time by (�t)c or in frequency by (� f )c is basically
a form of block-interleaving the bits in the repetition code in an attempt to break up
the error bursts and, thus, to obtain independent errors. Later in the chapter, we shall
demonstrate that, in general, repetition coding is wasteful of bandwidth when compared
with nontrivial coding.

Another commonly used method for achieving diversity employs multiple anten-
nas. For example, we may employ a single transmitting antenna and multiple receiving
antennas. The latter must be spaced sufficiently far apart that the multipath components
in the signal have significantly different propagation delays at the antennas. Usually a
separation of a few wavelengths is required between two antennas in order to obtain
signals that fade independently.

A more sophisticated method for obtaining diversity is based on the use of a
signal having a bandwidth much greater than the coherence bandwidth (� f )c of the
channel. Such a signal with bandwidth W will resolve the multipath components and,
thus, provide the receiver with several independently fading signal paths. The time
resolution is 1/W . Consequently, with a multipath spread of Tm seconds, there are
Tm W resolvable signal components. Since Tm ≈ 1/(� f )c, the number of resolvable
signal components may also be expressed as W/(� f )c. Thus, the use of a wideband
signal may be viewed as just another method for obtaining frequency diversity of order
L ≈ W/(� f )c. The optimum demodulator for processing the wideband signal will be
derived in Section 13.5. It is called a RAKE correlator or a RAKE matched filter and
was invented by Price and Green (1958).

There are other diversity techniques that have received some consideration in prac-
tice, such as angle-of-arrival diversity and polarization diversity. However, these have
not been as widely used as those described above.

13.4–1 Binary Signals

We shall now determine the error rate performance for a binary digital communication
system with diversity. We begin by describing the mathematical model for the com-
munication system with diversity. First of all, we assume that there are L diversity
channels, carrying the same information-bearing signal. Each channel is assumed to be
frequency-nonselective and slowly fading with Rayleigh-distributed envelope statistics.
The fading processes among the L diversity channels are assumed to be mutually statis-
tically independent. The signal in each channel is corrupted by an additive zero-mean
white Gaussian noise process. The noise processes in the L channels are assumed to be
mutually statistically independent, with identical autocorrelation functions. Thus, the
equivalent low-pass received signals for the L channels can be expressed in the form

rlk(t) = αke jφk skm(t) + zk(t), k = 1, 2, . . . , L , m = 1, 2 (13.4–1)
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where {αke jφk } represent the attenuation factors and phase shifts for the L channels,
skm(t) denotes the mth signal transmitted on the kth channel, and zk(t) denotes the
additive white Gaussian noise on the kth channel. All signals in the set {skm(t)} have
the same energy.

The optimum demodulator for the signal received from the kth channel consists of
two matched filters, one having the impulse response

bk1(t) = s∗
k1(T − t) (13.4–2)

and the other having the impulse response

bk2(t) = s∗
k2(T − t) (13.4–3)

Of course, if binary PSK is the modulation method used to transmit the information, then
sk1(t) = −sk2(t). Consequently, only a single matched filter is required for binary PSK.
Following the matched filters is a combiner that forms the two decision variables. The
combiner that achieves the best performance is one in which each matched filter output
is multiplied by the corresponding complex-valued (conjugate) channel gain αke− jφk .
The effect of this multiplication is to compensate for the phase shift in the channel
and to weight the signal by a factor that is proportional to the signal strength. Thus,
a strong signal carries a larger weight than a weak signal. After the complex-valued
weighting operation is performed, two sums are formed. One consists of the real parts
of the weighted outputs from the matched filters corresponding to a transmitted 0. The
second consists of the real part of the outputs from the matched filters corresponding
to a transmitted 1. This optimum combiner is called a maximal ratio combiner by
Brennan (1959). Of course, the realization of this optimum combiner is based on the
assumption that the channel attenuations {αk} and the phase shifts {φk} are known
perfectly. That is, the estimates of the parameters {αk} and {φk} contain no noise. (The
effect of noisy estimates on the error rate performance of multiphase PSK is considered
in Appendix C.)

A block diagram illustrating the model for the binary digital communication system
described above is shown in Figure 13.4–1.

Let us first consider the performance of binary PSK with Lth-order diversity. The
output of the maximal ratio combiner can be expressed as a single decision variable in
the form

U = Re

(
2E

L∑
k=1

α2
k +

L∑
k=1

αk Nk

)

= 2E
L∑

k=1

α2
k +

L∑
k=1

αk Nkr

(13.4–4)

where Nkr denotes the real part of the complex-valued Gaussian noise variable

Nk = e− jφk

∫ T

0
zk(t)s∗

k (t) dt (13.4–5)

We follow the approach used in Section 13.3 in deriving the probability of error. That is,
the probability of error conditioned on a fixed set of attenuation factors {αk} is obtained
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FIGURE 13.4–1
Model of binary digital communication system with diversity.

first. Then the conditional probability of error is averaged over the probability density
function of the {αk}.

Rayleigh fading For a fixed set of {αk} the decision variable U is Gaussian with
mean

E(U ) = 2E
L∑

k=1

α2
k (13.4–6)

and variance

σ 2
U = 2EN0

L∑
k=1

α2
k (13.4–7)

For these values of the mean and variance, the probability that U is less than zero is
simply

Pb(γb) = Q
(√

2γb

)
(13.4–8)

where the SNR per bit, γb, is given as

γb = E
N0

L∑
k=1

α2
k

=
L∑

k=1

γk

(13.4–9)

where γk = Eα2
k/N0 is the instantaneous SNR on the kth channel. Now we must de-

termine the probability density function p(γb). This function is most easily determined
via the characteristic function of γb. First of all, we note that for L = 1, γb ≡ γ1 has
a chi-square probability density function given in Equation 13.3–5. The characteristic
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function of γ1 is easily shown to be

�γ1 (v) = E(e jvγ1 )

= 1

1 − jvγ c

(13.4–10)

where γ c is the average SNR per channel, which is assumed to be identical for all
channels. That is,

γ c = E
N0

E(α2
k ) (13.4–11)

independent of k. This assumption applies for the results throughout this section. Since
the fading on the L channels is mutually statistically independent, the {γk} are statisti-
cally independent, and, hence, the characteristic function for the sum γb is simply the
result in Equation 13.4–10 raised to the Lth power, i.e.,

�γb (v) = 1

(1 − jvγ c)L
(13.4–12)

But this is the characteristic function of a chi-square-distributed random variable with
2L degrees of freedom. It follows from Equation 2.3–21 that the probability density
function p(γb) is

p(γb) = 1

(L − 1)!γ L
c

γ L−1
b e−γb/ γ c (13.4–13)

The final step in this derivation is to average the conditional error probability given
in Equation 13.4–8 over the fading channel statistics. Thus, we evaluate the integral

Pb =
∫ ∞

0
P2(γb)p(γb) dγb (13.4–14)

There is a closed-form solution for Equation 13.4–14, which can be expressed as

Pb = [ 1
2 (1 − μ)

]L
L−1∑
k=0

(
L − 1 + k

k

) [ 1
2 (1 + μ)

]k
(13.4–15)

where, by definition

μ =
√

γ c

1 + γ c
(13.4–16)

When the average SNR per channel, γ c, satisfies the condition γ c 	 1, the term
1
2 (1 + μ) ≈ 1 and the term 1

2 (1 − μ) ≈ 1/4γ c. Furthermore,

L−1∑
k=0

(
L − 1 + k

k

)
=

(
2L − 1

L

)
(13.4–17)
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Therefore, when γ c is sufficiently large (greater than 10 dB), the probability of error
in Equation 13.4–15 can be approximated as

Pb ≈
(

1

4γ c

)L (
2L − 1

L

)
(13.4–18)

We observe from Equation 13.4–18 that the probability of error varies as 1/γ c raised to
the Lth power. Thus, with diversity, the error rate decreases inversely with the Lth power
of the SNR.

Having obtained the performance of binary PSK with diversity, we now turn our
attention to binary, orthogonal FSK that is detected coherently. In this case, the two
decision variables at the output of the maximal ratio combiner may be expressed as

U1 = Re

(
2E

L∑
k=1

α2
k +

L∑
k=1

αk Nk1

)

U2 = Re

(
L∑

k=1

αk Nk2

) (13.4–19)

where we have assumed that signal sk1(t) was transmitted and where {Nk1} and {Nk2}
are the two sets of noise components at the output of the matched filters. The probability
of error is simply the probability that U2 > U1. This computation is similar to the one
performed for PSK, except that we now have twice the noise power. Consequently,
when the {αk} are fixed, the conditional probability of error is

Pb(γb) = Q
(√

γb
)

(13.4–20)

We use Equation 13.4–13 to average Pb(γb) over the fading. It is not surprising to find
that the result given in Equation 13.4–15 still applies, with γ c replaced by 1

2γ c. That is,
Equation 13.4–15 is the probability of error for binary, orthogonal FSK with coherent
detection, where the parameter μ is defined as

μ =
√

γ c

2 + γ c
(13.4–21)

Furthermore, for large values of γ c, the performance Pb can be approximated as

Pb ≈
(

1

2γ c

)L (
2L − 1

L

)
(13.4–22)

In comparing Equation 13.4–22 with Equation 13.4–18, we observe that the 3-dB
difference in performance between PSK and orthogonal FSK with coherent detection,
which exists in a nonfading, nondispersive channel, is the same also in a fading channel.

In the above discussion of binary PSK and FSK, detected coherently, we assumed
that noiseless estimates of the complex-valued channel parameters {αke jφk } were used
at the receiver. Since the channel is time-variant, the parameters {αke jφk } cannot be
estimated perfectly. In fact, on some channels, the time variations may be sufficiently
fast to preclude the implementation of coherent detection. In such a case, we should
consider using either DPSK or FSK with noncoherent detection.
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Let us consider DPSK first. In order for DPSK to be a viable digital signaling
method, the channel variations must be sufficiently slow so that the channel phase
shifts {φk} do not change appreciably over two consecutive signaling intervals. In our
analysis, we assume that the channel parameters {αke jφk } remain constant over two
successive signaling intervals. Thus the combiner for binary DPSK will yield as an
output the decision variable

U = Re

[
L∑

k=1

(
2Eαke jφk + Nk2

) (
2Eαke− jφk + N ∗

k1

)]
(13.4–23)

where {Nk1} and {Nk2} denote the received noise components at the output of the
matched filters in the two consecutive signaling intervals. The probability of error is
simply the probability that U < 0. Since U is a special case of the general quadratic form
in complex-valued Gaussian random variables treated in Appendix B, the probability
of error can be obtained directly from the results given in that appendix. Alternatively,
we may use the error probability given in Equation 11.1–13, which applies to binary
DPSK transmitted over L time-invariant channels, and average it over the Rayleigh
fading channel statistics. Thus, we have the conditional error probability

Pb(γb) = ( 1
2 )2L−1e−γb

L−1∑
k=0

bkγ
k
b (13.4–24)

where γb is given by Equation 13.4–9 and

bk = 1

k!

L−1−k∑
n=0

(
2L − 1

n

)
(13.4–25)

The average of Pb(γb) over the fading channel statistics given by p(γb) in Equa-
tion 13.4–13 is easily shown to be

Pb = 1

22L−1(L − 1)!(1 + γ c)L

L−1∑
k=0

bk(L − 1 + k)!
(

γ c

1 + γ c

)k

(13.4–26)

We indicate that the result in Equation 13.4–26 can be manipulated into the form given
in Equation 13.4–15, which applies also to coherent PSK and FSK. For binary DPSK,
the parameter μ in Equation 13.4–15 is defined as (see Appendix C)

μ = γ c

1 + γ c
(13.4–27)

For γ c 	 1, the error probability in Equation 13.4–26 can be approximated by the
expression

Pb ≈
(

1

2γ c

)L (
2L − 1

L

)
(13.4–28)

Orthogonal FSK with noncoherent detection is the final signaling technique that
we consider in this section. It is appropriate for both slow and fast fading. However,
the analysis of the performance presented below is based on the assumption that the
fading is sufficiently slow so that the channel parameters {αke jφk } remain constant for
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the duration of the signaling interval. The combiner for the multichannel signals is a
square-law combiner. Its output consists of the two decision variables

U1 =
L∑

k=1

|2Eαke jφk + Nk1|2

U2 =
L∑

k=1

|Nk2|2
(13.4–29)

where U1 is assumed to contain the signal. Consequently the probability of error is the
probability that U2 > U1.

As in DPSK, we have a choice of two approaches in deriving the performance of
FSK with square-law combining. In Section 11.1, we indicated that the expression for
the error probability for square-law-combined FSK is the same as that for DPSK with
γb replaced by 1

2γb. That is, the FSK system requires 3 dB of additional SNR to achieve
the same performance on a time-invariant channel. Consequently, the conditional error
probability for DPSK given in Equation 13.4–24 applies to square-law-combined FSK
when γb is replaced by 1

2γb. Furthermore, the result obtained by averaging Equa-
tion 13.4–24 over the fading, which is given by Equation 13.4–26, must also apply to
FSK with γ c replaced by 1

2γ c. But we also stated previously that Equations 13.4–26
and 13.4–15 are equivalent. Therefore, the error probability given in Equation 13.4–15
also applies to square-law-combined FSK with the parameter μ defined as

μ = γ c

2 + γ c
(13.4–30)

An alternative derivation used by Pierce (1958) to obtain the probability that the
decision variable U2 > U1 is just as easy as the method described above. It begins with
the probability density functions p(u1) and p(u2). Since the complex-valued random
variables {αke jφk }, {Nk1}, and {Nk2} are zero-mean Gaussian-distributed, the decision
variables U1 and U2 are distributed according to a chi-square probability distribution
with 2L degrees of freedom. That is,

p(u1) = 1

(2σ 2
1 )L (L − 1)!

uL−1
1 exp

(
− u1

2σ 2
1

)
(13.4–31)

where

σ 2
1 = 1

2 E
(|2Eαke− jφk + Nk1|2

)
= 2EN0(1 + γ c)

Similarly,

p(u2) = 1(
2σ 2

2

)
(L − 1)!

uL−1
2 exp

(
− u2

2σ 2
2

)
(13.4–32)

where

σ 2
2 = 2EN0
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The probability of error is just the probability that U2 > U1. It is left as an exercise
for the reader to show that this probability is given by Equation 13.4–15, where μ is
defined by Equation 13.4–30.

When γ c 	 1, the performance of square-law-detected FSK can be simplified as
we have done for the other binary multichannel systems. In this case, the error rate is
well approximated by the expression

Pb ≈
(

1

γ c

)L (
2L − 1

L

)
(13.4–33)

The error rate performance of PSK, DPSK, and square-law-detected orthogonal
FSK is illustrated in Figure 13.4–2 for L = 1, 2, and 4. The performance is plotted as
a function of the average SNR per bit, γ b, which is related to the average SNR per
channel, γ c, by the formula

γ b = Lγ c (13.4–34)

FIGURE 13.4–2
Performance of binary signals with diversity.
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The results in Figure 13.4–2 clearly illustrate the advantage of diversity as a means for
overcoming the severe penalty in SNR caused by fading.

Nakagami fading It is a simple matter to extend the results of this section to
other fading models. We shall briefly consider Nakagami fading. Let us compare the
Nakagami PDF for the single-channel SNR parameter γb = α2Eb/N0, previously given
by Equation 13.3–14 as

p(γb) = 1

�(m)(γ b/m)m
γ m−1

b e−γb/(γ b/m) (13.4–35)

with the PDF p(γb) obtained for the L-channel SNR with Rayleigh fading, given by
Equation 13.4–13 as

p(γb) = 1

(L − 1)!γ L
c

γ L−1
b e−γb/γ c (13.4–36)

By noting that γ c = γ b/L in the case of an Lth order diversity system, it is clear
that the two PDFs are identical for L = m = integer. When L = m = 1, the two
PDFs correspond to a single channel Rayleigh fading system. For the case in which
the Nakagami parameter m = 2, the performance of the single-channel system is
identical to the performance obtained in a Rayleigh fading channel with dual (L = 2)
diversity. More generally, any single-channel system with Nakagami fading in which
the parameter m is an integer, is equivalent to an L-channel diversity system for a
Rayleigh fading channel. In view of this equivalence, the characteristic function of a
Nakagami-m random variable must be of the form

�γb (v) = 1

(1 − jvγ b/m)m
(13.4–37)

which is consistent with the result given in Equation 13.4–12 for the characteristic
function of the combined signal in a system with Lth-order diversity in a Rayleigh
fading channel. Consequently, it follows that a K -channel system transmitting in a
Nakagami fading channel with independent fading is equivalent to an L = K m channel
diversity in a Rayleigh fading channel.

13.4–2 Multiphase Signals

Multiphase signaling over a Rayleigh fading channel is the topic presented in some
detail in Appendix C. Our main purpose in this section is to cite the general result for
the probability of a symbol error in M-ary PSK and DPSK systems and the probability
of a bit error in four-phase PSK and DPSK.
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The general result for the probability of a symbol error in M-ary PSK and DPSK is

Pe = (−1)L−1(1 − μ2)L

π (L − 1)!

(
∂ L−1

∂bL−1

{
1

b − μ2

[
π

M
(M − 1)

− μ sin(π/M)√
b − μ2 cos2(π/M)

cot−1 −μ cos(π/M)√
b − μ2 cos2(π/M)

]})
b=1

(13.4–38)

where

μ =
√

γ c

1 + γ c
(13.4–39)

for coherent PSK and

μ = γ c

1 + γ c
(13.4–40)

for DPSK. Again γ c is the average received SNR per channel. The SNR per bit is
γ b = Lγ c/k, where k = log2 M .

The bit error rate for four-phase PSK and DPSK is derived on the basis that the
pair of information bits is mapped into the four phases according to a Gray code. The
expression for the bit error rate derived in Appendix C is

Pb = 1

2

⎡
⎣1 − μ√

2 − μ2

L−1∑
k=0

(
2k
k

) (
1 − μ2

4 − 2μ2

)k
⎤
⎦ (13.4–41)

where μ is again given by Equations 13.4–39 and 13.4–40 for PSK and DPSK,
respectively.

Figure 13.4–3 illustrates the probability of a symbol error of DPSK and coherent
PSK for M = 2, 4, and 8 with L = 1. Note that the difference in performance between
DPSK and coherent PSK is approximately 3 dB for all three values of M . In fact, when
γ b 	 1 and L = 1, Equation 13.4–38 is well approximated as

Pe ≈ M − 1

(M log2 M)[sin2(π/M)]γ b

(13.4–42)

for DPSK and as

Pe ≈ M − 1

(M log2 M)[sin2(π/M)]2γ b

(13.4–43)

for PSK. Hence, at high SNR, coherent PSK is 3 dB better than DPSK on a Rayleigh
fading channel. This difference also holds as L is increased.

Bit error probabilities are depicted in Figure 13.4–4 for two-phase, four-phase,
and eight-phase DPSK signaling with L = 1, 2, and 4. The expression for the bit
error probability of eight-phase DPSK with Gray encoding is not given here, but it is
available in the paper by Proakis (1968). In this case, we observe that the performances
for two- and four-phase DPSK are (approximately) the same, while that for eight-phase
DPSK is about 3 dB poorer. Although we have not shown the bit error probability for
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FIGURE 13.4–3
Probability of symbol error for PSK and DPSK for Rayleigh fading.

coherent PSK, it can be demonstrated that two- and four-phase coherent PSK also yield
approximately the same performance.

13.4–3 M-ary Orthogonal Signals

In this subsection, we determine the performance of M-ary orthogonal signals trans-
mitted over a Rayleigh fading channel and we assess the advantages of higher-order
signal alphabets relative to a binary alphabet. The orthogonal signals may be viewed as
M-ary FSK with a minimum frequency separation of an integer multiple of 1/T , where
T is the signaling interval. The same information-bearing signal is transmitted on L
diversity channels. Each diversity channel is assumed to be frequency-nonselective and
slowly fading, and the fading processes on the L channels are assumed to be mutually
statistically independent. An additive white Gaussian noise process corrupts the signal
on each diversity channel. We assume that the additive noise processes are mutually
statistically independent.
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FIGURE 13.4–4
Probability of a bit error for DPSK with diversity for Rayleigh fading.

Although it is relatively easy to formulate the structure and analyze the performance
of a maximal ratio combiner for the diversity channels in the M-ary communication
system, it is more likely that a practical system would employ noncoherent detection.
Consequently, we confine our attention to square-law combining of the diversity signals.
The output of the combiner containing the signal is

U1 =
L∑

k=1

|2Eαke jφk + Nk1|2 (13.4–44)

while the outputs of the remaining M − 1 combiners are

Um =
L∑

k=1

|Nkm |2, m = 2, 3, 4, . . . , M (13.4–45)

The probability of error is simply 1 minus the probability that U1 > Um for m =
2, 3, . . . , M . Since the signals are orthogonal and the additive noise processes are mu-
tually statistically independent, the random variables U1, U2, . . . , UM are also mutually
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statistically independent. The probability density function of U1 was given in Equa-
tion 13.4–31. On the other hand, U2, . . . , UM are identically distributed and described
by the marginal probability density function in Equation 13.4–32. With U1 fixed, the
joint probability P(U2 < U1, U3 < U1, . . . , Um < U1) is equal to P(U2 < U1) raised
to the M − 1 power. Now,

P(U2 < U1 | U1 = u1) =
∫ u1

0
p(u2) du2

= 1 − exp
(

− u1

2σ 2
2

) L−1∑
k=0

1

k!

(
u1

2σ 2
2

)k (13.4–46)

where σ 2
2 = 2EN0. The M − 1 power of this probability is then averaged over the

probability density function of U1 to yield the probability of a correct decision. If we
subtract this result from unity, we obtain the probability of error in the form given by
Hahn (1962)

Pe = 1 −
∫ ∞

0

1(
2σ 2

1

)L
(L − 1)!

uL−1
1 exp

(
− u1

2σ 2
1

)

×
[

1 − exp
(

− u1

2σ 2
2

) L−1∑
k=0

1

k!

(
u1

2σ 2
2

)k
]M−1

du1

= 1 −
∫ ∞

0

1

(1 + γ c)L (L − 1)!
uL−1

1 exp
(

− u1

1 + γ c

)

×
(

1 − e−u1

L−1∑
k=0

uk
1

k!

)M−1

du1

(13.4–47)

where γ c is the average SNR per diversity channel. The average SNR per bit is γ b =
Lγ c/ log2 M = Lγ c/k.

The integral in Equation 13.4–47 can be expressed in closed form as a double
summation. This can be seen if we write

(
L−1∑
k=0

uk
1

k!

)m

=
m(L−1)∑

k=0

βkmuk
1 (13.4–48)

where βkm is the set of coefficients in the above expansion. Then it follows that Equa-
tion 13.4–47 reduces to

Pe = 1

(L − 1)!

M−1∑
m=1

(−1)m+1

(
M − 1

m

)

(1 + m + mγ c)L

×
m(L−1)∑

k=0

βkm(L − 1 + k)!
(

1 + γ c

1 + m + mγ c

)k
(13.4–49)
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When there is no diversity (L = 1), the error probability in Equation 13.4–49 reduces
to the simple form

Pe =
M−1∑
m=1

(−1)m+1

(
M − 1

m

)

1 + m + mγ c
(13.4–50)

The symbol error rate Pe may be converted to an equivalent bit error rate by multiplying
Pe with 2k−1/(2k − 1).

Although the expression for Pe given in Equation 13.4–49 is in closed form, it is
computationally cumbersome to evaluate for large values of M and L . An alternative
is to evaluate PM by numerical integration using the expression in Equation 13.4–47.
The results illustrated in the following graphs were generated from Equation 13.4–47.

First of all, let us observe the error rate performance of M-ary orthogonal signaling
with square-law combining as a function of the order of diversity. Figures 13.4–5 and
13.4–6 illustrate the characteristics of Pe for M = 2 and 4 as a function of L when the
total SNR, defined as γ t = Lγ c, remains fixed. These results indicate that there is an
optimum order of diversity for each γ t . That is, for any γ t , there is a value of L for
which Pe is a minimum. A careful observation of these graphs reveals that the minimum

P
e

FIGURE 13.4–5
Performance of square-law-detected
binary orthogonal signals as a function
of diversity.
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P
e

FIGURE 13.4–6
Performance of square-law-detected
M = 4 orthogonal signals as a
function of diversity.

in Pe is obtained when γ c = γ t/L ≈ 3. This result appears to be independent of the
alphabet size M .

Second, let us observe the error rate Pe as a function of the average SNR per bit,
defined as γ b = Lγ c/k. (If we interpret M-ary orthogonal FSK as a form of coding
and the order of diversity as the number of times a symbol is repeated in a repetition
code, then γ b = γ c/Rc, where Rc = k/L is the code rate.) The graphs of Pe versus
γ b for M = 2, 4, 8, 16, 32 and L = 1, 2, 4 are shown in Figure 13.4–7. These results
illustrate the gain in performance as M increases and L increases. First, we note that a
significant gain in performance is obtained by increasing L . Second, we note that the
gain in performance obtained with an increase in M is relatively small when L is small.
However, as L increases, the gain achieved by increasing M also increases. Since an
increase in either parameter results in an expansion of bandwidth, i.e.,

Be = L M

log2 M
(13.4–51)

the results illustrated in Figure 13.4–7 indicate that an increase in L is more efficient than
a corresponding increase in M . As we shall see in Chapter 14, coding is a bandwidth-
effective means for obtaining diversity in the signal transmitted over the fading channel.
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P
e

FIGURE 13.4–7
Performance of orthogonal signaling with M and L as parameters.

Chernov bound Before concluding this section, we develop a Chernov upper
bound on the error probability of binary orthogonal signaling with Lth-order diver-
sity, which will be useful in our discussion of coding for fading channels, the topic
of Chapter 14. Our starting point is the expression for the two decision variables U1

and U2 given by Equation 13.4–29, where U1 consists of the square-law-combined
signal-plus-noise terms and U2 consists of square-law-combined noise terms. The bi-
nary probability of error, denoted here by Pb(L), is

Pb(L) = P(U2 − U1 > 0)

= P(X > 0) =
∫ ∞

0
p(x) dx

(13.4–52)

where the random variable X is defined as

X = U2 − U1 =
L∑

k=1

(|Nk2|2 − |2Eαk + Nk1|2
)

(13.4–53)
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The phase terms {φk} in U1 have been dropped since they do not affect the performance
of the square-law detector.

Using the Chernov bound, the error probability in 13.4–52 can be expressed in the
form

Pb(L) ≤ E(eζ X ) (13.4–54)

where the parameter ζ > 0 is optimized to yield a tight bound. Upon substituting for
the random variable X from Equation 13.4–53 and noting that the random variables in
the summation are mutually statistically independent, we obtain the result

Pb(L) ≤
L∏

k=1

E
(

eζ |Nk2|2
)

E
(

e−ζ |2Eαk+Nk1|2
)

(13.4–55)

But

E
(

eζ |Nk2|2
)

= 1

1 − 2ζσ 2
2

, ζ <
1

2σ 2
2

(13.4–56)

and

E
(

e−ζ |2Eαk+Nk1|2
)

= 1

1 + 2ζσ 2
1

, ζ >
−1

2σ 2
1

(13.4–57)

where σ 2
2 = 2EN0, σ 2

1 = 2EN0(1 + γ c), and γ c is the average SNR per diversity
channel. Note that σ 2

1 and σ 2
2 are independent of k, i.e., the additive noise terms on

the L diversity channels as well as the fading statistics are identically distributed.
Consequently, Equation 13.4–55 reduces to

Pb(L) ≤
[

1(
1 − 2ζσ 2

2

) (
1 + 2ζσ 2

1

)
]L

, 0 ≤ ζ ≤ 1

2σ 2
2

(13.4–58)

By differentiating the right-hand side of Equation 13.4–58 with respect to ζ , we
find that the upper bound is minimized when

ζ = σ 2
1 − σ 2

2

4σ 2
1 σ 2

2

(13.4–59)

Substitution of Equation 13.4–59 for ζ into Equation 13.4–58 yields the Chernov upper
bound in the form

Pb(L) ≤
[

4(1 + γ c)

(2 + γ c)2

]L

(13.4–60)

It is interesting to note that Equation 13.4–60 may also be expressed as

Pb(L) ≤ [4p(1 − p)]L (13.4–61)
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Chernov bound

Chernov

Chernov bound

FIGURE 13.4–8
Comparison of Chernov bound with exact
error probability.

where p = 1/(2 + γ c) is the probability of error for binary orthogonal signaling on a
fading channel without diversity.

A comparison of the Chernov bound in Equation 13.4–60 with the exact error
probability for binary orthogonal signaling and square-law combining of the L diversity
signals, which is given by the expression

Pb(L) =
(

1

2 + γ c

)L L−1∑
k=0

(
L − 1 + k

k

) (
1 + γ c

2 + γ c

)k

= pL
L−1∑
k=0

(
L − 1 + k

k

)
(1 − p)k

(13.4–62)

reveals the tightness of the bound. Figure 13.4–8 illustrates this comparison. We observe
that the Chernov upper bound is approximately 6 dB from the exact error probability
for L = 1, but, as L increases, it becomes tighter. For example, the difference between
the bound and the exact error probability is about 2.5 dB when L = 4.

Finally we mention that the error probability for M-ary orthogonal signaling with
diversity can be upper-bounded by means of the union bound

Pe ≤ (M − 1)P2(L) (13.4–63)

where we may use either the exact expression given in Equation 13.4–62 or the Chernov
bound in Equation 13.4–60 for Pb(L).
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13.5
SIGNALING OVER A FREQUENCY-SELECTIVE, SLOWLY FADING
CHANNEL: THE RAKE DEMODULATOR

When the spread factor of the channel satisfies the condition Tm Bd 
 1, it is possible to
select signals having a bandwidth W 
 (� f )c and a signal duration T 
 (�t)c. Thus,
the channel is frequency-nonselective and slowly fading. In such a channel, diversity
techniques can be employed to overcome the severe consequences of fading.

When a bandwidth W 	 (� f )c is available to the user, the channel can be subdi-
vided into a number of frequency-division multiplexed (FDM) subchannels having a
mutual separation in center frequencies of at least (� f )c. Then the same signal can be
transmitted on the FDM subchannels, and, thus, frequency diversity is obtained. In this
section, we describe an alternative method.

13.5–1 A Tapped-Delay-Line Channel Model

As we shall now demonstrate, a more direct method for achieving basically the same
results is to employ a wideband signal covering the bandwidth W . The channel is
still assumed to be slowly fading by virtue of the assumption that T 
 (�t)c. Now
suppose that W is the bandwidth occupied by the real band-pass signal. Then the
band occupancy of the equivalent low-pass signal sl(t) is | f | ≤ 1

2 W . Since sl(t) is
band-limited to | f | ≤ 1

2 W , application of the sampling theorem results in the signal
representation

sl(t) =
∞∑

n=−∞
sl

(
n

W

)
sin[πW (t − n/W )]

πW (t − n/W )
(13.5–1)

The Fourier transform of sl(t) is

Sl( f ) =

⎧⎪⎨
⎪⎩

1

W

∞∑
n=−∞

sl(n/W )e− j2π fn/W | f | ≤ 1
2 W

0 | f | > 1
2 W

(13.5–2)

The noiseless received signal from a frequency-selective channel was previously
expressed in the form

rl(t) =
∫ ∞

−∞
C( f ; t)Sl( f )e j2π f t d f (13.5–3)
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where C( f ; t) is the time-variant transfer function. Substitution for Sl( f ) from Equa-
tion 13.5–2 into 13.5–3 yields

rl(t) = 1

W

∞∑
n=−∞

sl(n/W )
∫ ∞

−∞
C( f ; t)e j2π f (t−n/W ) d f

= 1

W

∞∑
n=−∞

sl(n/W )c(t − n/W ; t)

(13.5–4)

where c(τ ; t) is the time-variant impulse response. We observe that Equation 13.5–4
has the form of a convolution sum. Hence, it can also be expressed in the alternative
form

rl(t) = 1

W

∞∑
n=−∞

sl(t − n/W )c(n/W ; t) (13.5–5)

It is convenient to define a set of time-variable channel coefficients as

cn(t) = 1

W
c
(

n

W
; t

)
(13.5–6)

Then Equation 13.5–5 expressed in terms of these channel coefficients becomes

rl(t) =
∞∑

n=−∞
cn(t)sl(t − n/W ) (13.5–7)

The form for the received signal in Equation 13.5–7 implies that the time-variant
frequency-selective channel can be modeled or represented as a tapped delay line with
tap spacing 1/W and tap weight coefficients {cn(t)}. In fact, we deduce from Equa-
tion 13.5–7 that the low-pass impulse response for the channel is

c(τ ; t) =
∞∑

n=−∞
cn(t)δ(τ − n/W ) (13.5–8)

and the corresponding time-variant transfer function is

C( f ; t) =
∞∑

n=−∞
cn(t)e− j2π f n/W (13.5–9)

Thus, with an equivalent low-pass-signal having a bandwidth 1
2 W , where W 	 (� f )c,

we achieve a resolution of 1/W in the multipath delay profile. Since the total multipath
spread is Tm , for all practical purposes the tapped delay line model for the channel
can be truncated at L = �Tm W� + 1 taps. Then the noiseless received signal can be
expressed in the form

rl(t) =
L∑

n=1

cn(t)sl

(
t − n

W

)
(13.5–10)
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FIGURE 13.5–1
Trapped delay line model of frequency-selective channel.

The truncated tapped delay line model is shown in Figure 13.5–1. In accordance
with the statistical characterization of the channel presented in Section 13.1, the time-
variant tap weights {cn(t)} are complex-valued stationary random processes. In the spe-
cial case of Rayleigh fading, the magnitudes |cn(t)| ≡ αn(t) are Rayleigh-distributed
and the phases φn(t) are uniformly distributed. Since the {cn(t)} represent the tap
weights corresponding to the L different delays τ = n/W , n = 1, 2, . . . , L , the uncor-
related scattering assumption made in Section 13.1 implies that the {cn(t)} are mutually
uncorrelated. When the {cn(t)} are Gaussian random processes, they are statistically
independent.

13.5–2 The RAKE Demodulator

We now consider the problem of digital signaling over a frequency-selective channel
that is modeled by a tapped delay line with statistically independent time-variant tap
weights {cn(t)}. It is apparent at the outset, however, that the tapped delay line model
with statistically independent tap weights provides us with L replicas of the same
transmitted signal at the receiver. Hence, a receiver that processes the received signal in
an optimum manner will achieve the performance of an equivalent Lth-order diversity
communication system.

Let us consider binary signaling over the channel. We have two equal-energy
signals sl1(t) and sl2(t), which are either antipodal or orthogonal. Their time duration T
is selected to satisfy the condition T 	 Tm . Thus, we may neglect any intersymbol
interference due to multipath. Since the bandwidth of the signal exceeds the coherent
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bandwidth of the channel, the received signal is expressed as

rl(t) =
L∑

k=1

ck(t)sli (t − k/W ) + z(t)

= vi (t) + z(t), 0 ≤ t ≤ T, i = 1, 2

(13.5–11)

where z(t) is a complex-valued zero-mean white Gaussian noise process. Assume for
the moment that the channel tap weights are known. Then the optimum demodulator
consists of two filters matched to v1(t) and v2(t). The demodulator output is sampled at
the symbol rate and the samples are passed to a decision circuit that selects the signal
corresponding to the largest output. An equivalent optimum demodulator employs
cross correlation instead of matched filtering. In either case, the decision variables for
coherent detection of the binary signals can be expressed as

Um = Re
[∫ T

0
rl(t)v

∗
m(t) dt

]

= Re

[
L∑

k=1

∫ T

0
rl(t)c

∗
k (t)s∗

m(t − k/W ) dt

]
, m = 1, 2

(13.5–12)

Figure 13.5–2 illustrates the operations involved in the computation of the decision
variables. In this realization of the optimum receiver, the two reference signals are
delayed and correlated with the received signal rl(t).

An alternative realization of the optimum demodulator employs a single delay line
through which is passed the received signal rl(t). The signal at each tap is correlated
with c∗

k (t)s∗
lm(t), where k = 1, 2, . . . , L and m = 1, 2. This receiver structure is shown

in Figure 13.5–3. In effect, the tapped delay line demodulator attempts to collect the
signal energy from all the received signal paths that fall within the span of the delay
line and carry the same information. Its action is somewhat analogous to an ordinary
garden rake and, consequently, the name “RAKE demodulator” has been coined for this
demodulator structure by Price and Green (1958). The taps on the RAKE demodulator
are often called “RAKE fingers.”

13.5–3 Performance of RAKE Demodulator

We shall now evaluate the performance of the RAKE demodulator under the condition
that the fading is sufficiently slow to allow us to estimate ck(t) perfectly (without noise).
Furthermore, within any one signaling interval, ck(t) is treated as a constant and denoted
as ck . Thus the decision variables in Equation 13.5–12 may be expressed in the form

Um = Re

[
L∑

k=1

c∗
k

∫ T

0
r (t)s∗

lm(t − k/W ) dt

]
, m = 1, 2 (13.5–13)
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FIGURE 13.5–2
Optimum demodulator for wideband binary signals (delayed reference configuration).

Suppose the transmitted signal is sl1(t); then the received signal is

rl(t) =
L∑

n=1

cnsl1(t − n/W ) + z(t), 0 ≤ t ≤ T (13.5–14)

Substitution of Equation 13.5–14 into Equation 13.5–13 yields

Um = Re

[
L∑

k=1

c∗
k

L∑
n=1

cn

∫ T

0
sl1(t − n/W )s∗

lm(t − k/W ) dt

]

+ Re

[
L∑

k=1

c∗
k

∫ T

0
z(t)s∗

lm(t − k/W ) dt

]
, m = 1, 2

(13.5–15)
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FIGURE 13.5–3
Optimum demodulator for wideband binary signals (delayed received signal configuration).

Usually the wideband signals sl1(t) and sl2(t) are generated from pseudorandom
sequences, which result in signals that have the property∫ T

0
sli (t − n/W )s∗

li (t − k/W ) dt ≈ 0, k = n, i = 1, 2 (13.5–16)

If we assume that our binary signals are designed to satisfy this property, then Equa-
tion 13.5–15 simplifies to†

Um = Re

[
L∑

k=1

|ck |2
∫ T

0
sl1(t − k/W )s∗

lm(t − k/W ) dt

]

+ Re

[
L∑

k=1

c∗
k

∫ T

0
z(t)s∗

lm(t − k/W ) dt

]
, m = 1, 2

(13.5–17)

†Although the orthogonality property specified by Equation 13.5–16 can be satisfied by proper selection
of the pseudorandom sequences, the cross correlation of sl1(t − n/W ) with s∗

li (t − k/W ) gives rise to a
signal-dependent self-noise, which ultimately limits the performance. For simplicity, we do not consider
the self-noise term in the following calculations. Consequently, the performance results presented below
should be considered as lower bounds (ideal RAKE). An approximation to the performance of the RAKE
can be obtained by treating the self-noise as an additional Gaussian noise component with noise power
equal to its variance.
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When the binary signals are antipodal, a single decision variable suffices. In this
case, Equation 13.5–17 reduces to

U1 = Re

(
2E

L∑
k=1

α2
k +

L∑
k=1

αk Nk

)
(13.5–18)

where αk = |ck | and

Nk = e− jφk

∫ T

0
z(t)s∗

l (t − k/W ) dt (13.5–19)

But Equation 13.5–18 is identical to the decision variable given in Equation 13.4–4,
which corresponds to the output of a maximal ratio combiner in a system with Lth-order
diversity. Consequently, the RAKE demodulator with perfect (noiseless) estimates of
the channel tap weights is equivalent to a maximal ratio combiner in a system with
Lth-order diversity. Thus, when all the tap weights have the same mean-square value,
i.e., E(α2

k ) is the same for all k, the error rate performance of the RAKE demodulator
is given by Equations 13.4–15 and 13.4–16. On the other hand, when the mean-square
values E(α2

k ) are not identical for all k, the derivation of the error rate performance
must be repeated since Equation 13.4–15 no longer applies.

We shall derive the probability of error for binary antipodal and orthogonal signals
under the condition that the mean-square values of {αk} are distinct. We begin with the
conditional error probability

Pb(γb) = Q
(√

γb(1 − ρr )
)

(13.5–20)

where ρr = −1 for antipodal signals, ρr = 0 for orthogonal signals, and

γb = E
N0

L∑
k=1

α2
k =

L∑
k=1

γk (13.5–21)

Each of the {γk} is distributed according to a chi-squared distribution with two
degrees of freedom. That is,

p(γk) = 1

γ k
e−γk/ γ k (13.5–22)

where γ k is the average SNR for the kth path, defined as

γ k = E
N0

E
(
α2

k

)
(13.5–23)

Furthermore, from Equation 13.4–10 we know that the characteristic function of γk is

�γk (v) = 1

1 − jvγ k
(13.5–24)
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Since γb is the sum of L statistically independent components {γk}, the character-
istic function of γb is

�γb (v) =
L∏

k=1

1

1 − jvγ k
(13.5–25)

The inverse Fourier transform of the characteristic function in Equation 13.5–25 yields
the probability density function of γb in the form

p(γb) =
L∑

k=1

πk

γ k
e−γb/ γ k , γb ≥ 0 (13.5–26)

where πk is defined as

πk =
L∏

i=1
i =k

γ k

γ k − γ i
(13.5–27)

When the conditional error probability in Equation 13.5–20 is averaged over the
probability density function given in Equation 13.5–26, the result is

Pb = 1
2

L∑
k=1

πk

[
1 −

√
γ k(1 − ρr )

2 + γ k(1 − ρr )

]
(13.5–28)

This error probability can be approximated as (γ k 	 1)

Pb ≈
(

2L − 1

L

) L∏
k=1

1

2γ k(1 − ρr )
(13.5–29)

By comparing Equation 13.5–29 for ρr = −1 with Equation 13.4–18, we observe that
the same type of asymptotic behavior is obtained for the case of unequal SNR per path
and the case of equal SNR per path.

In the derivation of the error rate performance of the RAKE demodulator, we
assumed that the estimates of the channel tap weights are perfect. In practice, relatively
good estimates can be obtained if the channel fading is sufficiently slow, e.g., (�t)c/T ≥
100, where T is the signaling interval. Figure 13.5–4 illustrates a method for estimating
the tap weights when the binary signaling waveforms are orthogonal. The estimate is
the output of the low-pass filter at each tap. At any one instant in time, the incoming
signal is either sl1(t) or sl2(t). Hence, the input to the low-pass filter used to estimate
ck(t) contains signal plus noise from one of the correlators and noise only from the
other correlator. This method for channel estimation is not appropriate for antipodal
signals, because the addition of the two correlator outputs results in signal cancellation.
Instead, a single correlator can be employed for antipodal signals. Its output is fed
to the input of the low-pass filter after the information-bearing signal is removed. To
accomplish this, we must introduce a delay of one signaling interval into the channel
estimation procedure, as illustrated in Figure 13.5–5. That is, first the receiver must
decide whether the information in the received signal is +1 or −1 and, then, it uses the
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FIGURE 13.5–4
Channel tap weight estimation with binary orthogonal signals.

decision to remove the information from the correlator ouput prior to feeding it to the
low-pass filter.

If we choose not to estimate the tap weights of the frequency-selective channel, we
may use either DPSK signaling or noncoherently detected orthogonal signaling. The
RAKE demodulator structure for DPSK is illustrated in Figure 13.5–6. It is apparent that
when the transmitted signal waveform sl(t) satisfies the orthogonality property given in
Equation 13.5–16, the decision variable is identical to that given in Equation 13.4–23 for
an Lth-order diversity system. Consequently, the error rate performance of the RAKE
demodulator for a binary DPSK is identical to that given in Equation 13.4–15 with
μ = γ c/(1 + γ c), when all the signal paths have the same SNR γ c. On the other hand,
when the SNRs {γ k} are distinct, the error probability can be obtained by averaging
Equation 13.4–24, which is the probability of error conditioned on a time-invariant
channel, over the probability density function of γb given by Equation 13.5–26. The
result of this integration is

Pb = ( 1
2

)2L−1
L−1∑
m=0

m!bm

L∑
k=1

πk

γ k

(
γ k

1 + γ k

)m+1

(13.5–30)

where πk is defined in Equation 13.5–27 and bm in Equation 13.4–25.
Finally, we consider binary orthognal signaling over the frequency-selective chan-

nel with square-law detection at the receiver. This type of signal is appropriate when
the fading is rapid enough to preclude a good estimate of the channel tap weights.
The RAKE demodulator with square-law combining of the signal from each tap is
illustrated in Figure 13.5–7. In computing its performance, we again assume that the
orthogonality property given in Equation 13.5–16 holds. Then the decision variables at
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FIGURE 13.5–5
Channel tap weight estimation with binary antipodal signals.

FIGURE 13.5–6
RAKE demodulator for DPSK signals.
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FIGURE 13.5–7
RAKE demodulator for square-law combination of orthogonal signals.

the output of the RAKE are

U1 =
L∑

k=1

|2Eck + Nk1|2

U2 =
L∑

k=1

|Nk2|2
(13.5–31)

where we have assumed that sl1(t) was the transmitted signal. Again we observe that the
decision variables are identical to the ones given in Equation 13.4–29, which apply to
orthogonal signals with Lth-order diversity. Therefore, the performance of the RAKE
demodulator for square-law-detected orthogonal signals is given by Equation 13.4–15
with μ = γ̄c/(2 + γ −

c ) when all the signal paths have the same SNR. If the SNRs are
distinct, we can average the conditional error probability given by Equation 13.4–24,
with γb replaced by 1

2γb, over the probability density function p(γb) given in Equa-
tion 13.5–26. The result of this averaging is given by Equation 13.5–30, with γ k replaced
by 1

2γ k .
In the above analysis, the RAKE demodulator shown in Figure 13.5–7 for square-

law combining of orthogonal signals is assumed to contain a signal component at each
delay. If that is not the case, its performance will be degraded, since some of the tap
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correlators will contribute only noise. Under such conditions, the low-level, noise-only
contributions from the tap correlators should be excluded from the combiner, as shown
by Chyi et al. (1988).

The configurations of the RAKE demodulator presented in this section can be
easily generalized to multilevel signaling. In fact, if M-ary PSK or DPSK is chosen,
the RAKE structures presented in this section remain unchanged. Only the PSK and
DPSK detectors that follow the RAKE correlator are different.

Generalized RAKE Demodulator
The RAKE demodulator described above is the optimum demodulator when the ad-
ditive noise is white and Gaussian. However, there are communication scenarios in
which additive interference from other users of the channel results in colored additive
noise. This is the case, for example, in the downlink of a cellular communication sys-
tem employing CDMA as a multiple access method. In this case, the spread spectrum
signals transmitted from a base station to the mobile receivers carry information on
synchronously transmitted orthogonal spreading codes. However, in transmission over
a frequency-selective channel, the orthogonality of the code sequences is destroyed by
the channel time dispersion due to multipath. As a consequence, the RAKE demodu-
lator for any given mobile receiver must demodulate its desired signal in the presence
of additional additive interference resulting from the cross-correlations of its desired
spreading code sequence with the multipath corrupted code sequences that are assigned
to the other mobile users. This additional interference is generally characterized as col-
ored Gaussian noise, as shown by Bottomley (1993) and Klein (1997).

A model for the downlink transmission in a CDMA cellular communication system
is illustrated in Figure 13.5–8. The base station transmits the combined signal.

s(t) =
K∑

k=1

sk(t) (13.5–32)

to the K mobile terminals, where each sk(t) is a spread spectrum signal intended for the
kth user and the corresponding spreading code for the kth user is orthogonal with each
of the spreading codes of the other K − 1 users. We assume that the signals propagate
through a channel characterized by the baseband equivalent lowpass, time-invariant

Channel
ck(z)

s1(t)

s2(t)

sk(t)

Base station

�

AWGN

� rR(t),  k � 1, 2, ..., K . . . 

FIGURE 13.5–8
Model for the downlink transmission of a CDMA cellular communication system.
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FIGURE 13.5–9
Structure of generalized RAKE demodulator.

impulse response

ck(τ ) =
Lk∑

i=1

cki δ(τ − τki ), k = 1, 2, . . . , K (13.5–33)

where Lk is the number of resolvable multipath components, {cki } are the complex-
valued coefficients, and {τki } are the corresponding time delays. To simplify this pre-
sentation, we focus on the processing at the receiver of the first user (k = 1) and drop
the index k. In a CDMA cellular system, an unmodulated spread spectrum signal, say
s0(t), is transmitted along with the information-bearing signals and serves as a pilot
signal that is used by each mobile receiver to estimate the channel coefficients {ci } and
the time delays {τi }.

A conventional RAKE demodulator would consist of L “fingers” with each finger
corresponding to one of the L channel delays, and the weights at the L fingers would be
{c∗

i }, the complex conjugates of the corresponding channel coefficients. In contrast, a
generalized RAKE demodulator consists of Lg > L RAKE fingers, and the weights at
the Lg fingers, denoted as {wi }, are different from {c∗

i }. The structure of the generalized
RAKE demodulator is illustrated in Figure 13.5–9 for phase coherent modulation such
as PSK or QAM. The decision variable U at the detector may be expressed as

U = wH y (13.5–34)

It is convenient to express the received vector y at the output of the cross-
correlators as

y = gb + z (13.5–35)

where g is a vector of complex-valued elements which result from the cross-correlations
of the desired received signal, say s1(t) ∗ c1(t), with the corresponding spreading se-
quence at the Lg delays, b is the desired symbol to be detected, and z represents the
vector of additive Gaussian noise plus interference resulting from the cross-correlations
of the spreading sequence with the received signals of the other users and intersymbol



Proakis-27466 book September 26, 2007 22:59

882 Digital Communications

interference due to channel multipath. For a sufficiently large number of users and
channel multipath components, the vector z may be characterized as complex-valued
Gaussian with zero mean and covariance matrix Rz = E[zzH ]. Based on this statis-
tical characterization of z, the RAKE finger weight vector for maximum-likelihood
detection is given as

w = R−1
z g (13.5–36)

Giventhechannel impulseresponse, the implementationof themaximum-likelihood
detector requires the evaluation of the covariance matrix Rz and the desired signal vec-
tor g. The procedure for evaluation of these parameters has been described in a paper
by Bottomley et al. (2000). Also investigated in this paper is the selection of the number
of RAKE fingers and the selection of the corresponding delays for different channel
characteristics.

In the description of the generalized RAKE demodulator given above, we assumed
that the channel is time-invariant. In a randomly time-variant channel, the position of
the RAKE fingers and the weights {wi } must be varied according to the characteristics
of the channel impulse response. The pilot signal transmitted by the base station to
the mobile receivers is used to estimate the channel impulse response, from which the
finger placement and weights {wi } can be determined adaptively. The interested reader
is referred to the paper by Bottomley et al. (2000) for a detailed description of the
performance of the generalized RAKE demodulator for some channel models.

13.5–4 Receiver Structures for Channels with Intersymbol Interference

As described above, the wideband signal waveforms that are transmitted through the
multipath channels resolve the multipath components with a time resolution of 1/W ,
where W is the signal bandwidth. Usually, such wideband signals are generated as
direct sequence spread spectrum signals, in which the P N spreading sequences are
the outputs of linear feedback shift registers, e.g., maximum-length linear feedback
shift registers. The modulation impressed on the sequences may be binary PSK, QPSK,
DPSK, or binary orthogonal. The desired bit rate determines the bit interval or symbol
interval.

The RAKE demodulator that we described above is the optimum demodulator
based on the condition that the bit interval Tb 	 Tm , i.e., there is negligible ISI. When
this condition is not satisfied, the RAKE demodulator output is corrupted by ISI. In
such a case, an equalizer is required to suppress the ISI.

To be specific, we assume that binary PSK modulation is used and spread by a
PN sequence. The bandwidth of the transmitted signal is sufficiently broad to resolve
two or more multipath components. At the receiver, after the signal is demodulated to
baseband, it may be processed by the RAKE, which is the matched filter to the channel
response, followed by an equalizer to suppress the ISI. The RAKE output is sampled
at the bit rate, and these samples are passed to the equalizer. An appropriate equalizer,
in this case, would be a maximum-likelihood sequence estimator implemented by use
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FIGURE 13.5–10
Receiver structure for processing wideband signal corrupted by ISI.

of the Viterbi algorithm or a decision feedback equalizer (DFE). This demodulator
structure is shown in Figure 13.5–10.

Other receiver structures are also possible. If the period of the PN sequence is equal
to the bit interval, i.e., LTc = Tb, where Tc is the chip interval and L is the number of
chips per bit, a fixed filter matched to the spreading sequence may be used to process
the received signal and followed by an adaptive equalizer, such as a fractionally spaced
DFE, as shown in Figure 13.5–11. In this case, the matched filter output is sampled
at some multiple of the chip rate, e.g., twice the chip rate, and fed to the fractionally
spaced DFE. The feedback filter in the DFE would have taps spaced at the bit interval.
The adaptive DFE would require a training sequence for adjustment of its coefficients
to the channel multipath structure.

An even simpler receiver structure is one in which the spread spectrum matched
filter is replaced by a low-pass filter whose bandwidth is matched to the transmitted
signal bandwidth. The output of such a filter may be sampled at an integer multiple
of the chip rate and the samples are passed to an adaptive fractionally spaced DFE. In
this case, the coefficients of the feedback filter in the DFE, with the aid of a training
sequence, will adapt to the combination of the spreading sequence and the channel
multipath. Abdulrahman et al. (1994) consider the use of a DFE to suppress ISI in a
CDMA system in which each user employs a wideband direct sequence spread spectrum
signal.

The paper by Taylor et al. (1998) provides a broad survey of equalization techniques
and their performance for wireless channels.

FIGURE 13.5–11
Alternative receiver structure for processing wideband signal corrupted by ISI.
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13.6
MULTICARRIER MODULATION (OFDM)

Multicarrier modulation was introduced in Chapter 11 (Section 11.2), and a special
form of multicarrier transmission, called orthogonal frequency-division multiplexing
(OFDM), was treated in detail. In this section, we consider the use of OFDM for digital
transmission on fading multipath channels.

From our previous discussion, we have observed that OFDM is an attractive al-
ternative to single-carrier modulation for use in time-dispersive channels. By selecting
the symbol duration in an OFDM system to be significantly larger than the channel
dispersion, intersymbol interference (ISI) can be rendered negligible and completely
eliminated by use of a time guard band or, equivalently, by the use of a cyclic pre-
fix embedded in the OFDM signal. The elimination of ISI due to multipath dispersion,
without the use of complex equalizers, is a basic motivation for use of OFDM for digital
communication in fading multipath channels. However, OFDM is especially vulnera-
ble to Doppler spread resulting from time variations in the channel impulse response,
as is the case in mobile communication systems. The Doppler spreading destroys the
orthogonality of the OFDM subcarriers and results in intercarrier interference (ICI)
which can severely degrade the performance of the OFDM system. In the following
section we evaluate the effect of a Doppler spread on the performance of OFDM.

13.6–1 Performance Degradation of an OFDM System due
to Doppler Spreading

Let us consider an OFDM system with N subcarriers {e j2π fk t}, where each subcarrier
employs either M-ary QAM or PSK modulation. The subcarriers are orthogonal over
the symbol duration T , i.e., fk = k/T, k = 1, 2, . . . , N , so that

1

T

∫ T

0
e j2π fi t e− j2π fk t dt =

{
1 k = i
0 k = i (13.6–1)

The channel is modeled as a frequency-selective randomly varying channel with
impulse response c(τ ; t). Within the frequency band of each subcarrier, the channel is
modeled as a frequency-nonselective Rayleigh fading channel with impulse response.

ck(τ ; t) = αk(t)δ(t), k = 0, 1, . . . , N − 1 (13.6–2)

It is assumed that the processes {αk(t), k = 0, 1, . . . , N − 1} are complex-valued,
jointly stationary, and jointly Gaussian with zero means and cross-covariance function

Rαkαi (τ ) = E[αk(t + τ )α∗
t (t)], k, i = 0, 1, . . . , N − 1 (13.6–3)

For each fixed k, the real and imaginary parts of the process αk(t) are assumed
independent with identical covariance function. It is further assumed that the covariance
function Rαkαi (τ ) has the following factorable form

Rαkαi (τ ) = R1(τ )R2(k − i) (13.6–4)
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which is sufficient to represent the frequency selectivity and the time-varying effects
of the channel. R1(τ ) represents the temporal correlation of the process αk(t), which is
identical for all k = 0, 1, . . . , N − 1, and R2(k) represents the correlation in frequency
across subcarriers.

To obtain numerical results, we assume that the power spectral density correspond-
ing to R1(τ ) is modeled as in Jakes (1974) and given by (see Figure 13.1–8)

S( f ) =

⎧⎪⎪⎨
⎪⎪⎩

1

π fm

√
1 − ( f/ fm)2

| f | ≤ fm

0 otherwise

(13.6–5)

where Fd is the maximum Doppler frequency. We note that

R1(τ ) = J0(2π fmτ ) (13.6–6)

where J0(τ ) is the zero-order Bessel function of the first kind. To specify the correlation
in frequency across the subcarriers, we model the multipath power intensity profile as
an exponential of the form

Rc(τ ) = βe−βτ , τ > 0, β > 0 (13.6–7)

where β is a parameter that controls the coherence bandwidth of the channel. The
Fourier transform of Rc(τ ) yields

RC ( f ) = β

β + j2π f
(13.6–8)

which provides a measure of the correlation of the fading across the subcarriers, as
shown in Figure 13.6–1. Hence, R2(k) = RC (k/T ) is the frequency separation between
two adjacent subcarriers. The 3-dB bandwidth of RC ( f ) may be defined as the coherence
bandwidth of the channel and is easily shown to be

√
3β/2π .

The channel model described above is suitable for modeling OFDM signal trans-
mission in mobile radio systems, such as cellular systems and radio broadcasting sys-
tems. Since the symbol duration T is usually selected to be much larger than the channel
multipath spread, it is reasonable to model the signal fading as flat over each subcar-
rier. However, compared with the entire OFDM system bandwidth W , the coherence
bandwidth of the channel is usually smaller. Hence, the channel is frequency-selective
over the entire OFDM signal bandwidth.

Let us now model the time variations of the channel within an OFDM symbol
interval T . For mobile radio channels of practical interest, the channel coherence time
is significantly larger than T . For such slow fading channels, we may use the two-term
Taylor series expansion, first introduced by Bello (1963), to represent the time-varying
channel variations αk(t) as

αk(t) = αk(t0) + α′
k(t0)(t − t0), t0 = T

2
, 0 ≤ t ≤ T (13.6–9)
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FIGURE 13.6–1
Multipath delay profile and frequency correlation function.

Therefore, the impulse response of the kth subchannel within a symbol interval is
given as

ck(τ ; t) = αk(t0)δ(τ ) + (t − t0)α′
k(t0)δ(τ ) (13.6–10)

Since R1(τ ) given by Equation 13.6–6 is infinitely differentiable, all mean-square
derivatives exist and hence the differentiation of αk(t) is justified.

Based on the channel model described above, we determine the ICI term at the
detector and evaluate its power. The baseband signal transmitted over the channel is
expressed as

s(t) = 1√
T

N−1∑
k=0

sk e j2π fk t , 0 ≤ t ≤ T (13.6–11)

where fk = k/T and sk, k = 0, 1, . . . , N − 1, represents the complex-valued signal
constellation points. We assume that

E
[|sk |2

] = 2Eavg (13.6–12)

where 2Eavg denotes the average symbol energy of each sk .
The received baseband signal may be expressed as

r (t) = 1√
T

N−1∑
k=0

αk(t)sk e j2π fk t + n(t) (13.6–13)

where n(t) is the additive noise, which is modeled as a complex-valued, zero-mean
Gaussian process that is spectrally flat within the signal bandwidth with spectral den-
sity 2N0 W/Hz. By using the two-term Taylor series expansion for ak(t), r (t) may be
expressed as

r (t) = 1√
T

N−1∑
k=0

αk (t0)ske j2π fk t + 1√
T

N−1∑
k=0

(t − t0)α′
k(t0)sk e j2π fk t + n(t) (13.6–14)
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The received signal in a symbol interval is passed through a parallel bank of N
correlators, where each correlator is tuned to one of the N subcarrier frequencies. The
output of the i th correlator at the sampling instant is

ŝi = 1√
T

T∫
0

r (t) e− j2π fi t dt

= αi (t0)si + T

2π j

N−1∑
k=0
k =i

α′
k(t0)sk

k − i
+ ni

(13.6–15)

The first term in Equation 13.6–15 represents the desired signal, the second term rep-
resents the ICI, and the third term is the additive noise component.

The mean-square value of the desired signal component is

S = E
[|αi (t0)si |2

]
= E

[|αi (t0)|2] E
[|si |2

] = 2Eavg

(13.6–16)

where the average channel gain is normalized to unity. The mean-square value of the
ICI term is evaluated as follows. Since Rαs ak (τ ) = R1(τ ) is infinitely differentiable, all
(mean-square) derivatives of the process αk(t), −∞ < t < ∞, exist. In particular, the
first derivative α′

k(t) is a zero-mean, complex-valued Gaussian process with correlation
function

E
[
α′

k(t + τ )(α′
k(t)∗)

] = −R′′
1 (τ ) (13.6–17)

with corresponding spectral density (2π f )2S( f ). Hence,

E
[|α′

k(t)|2] =
∫ fm

− fm

(2π f )2S( f ) d f = 2π2 f 2
m (13.6–18)

The power in the ICI term is

I = E

⎡
⎢⎢⎣

∣∣∣∣∣∣∣∣
T

2π j

N−1∑
k=0
k =i

a′
k(t0)sk

k − i

∣∣∣∣∣∣∣∣

2⎤
⎥⎥⎦

=
(

T

2π

)2 N−1∑
k=0
k =i

N−1∑
l=0
l =i

1

(k − i)(l − i)
E

[
α′

k(t0)sk (α′
l(t0)sl)∗

]

+
(

T

2π

)2 N−1∑
k=0
k =i

1

(k − i)2
E

[|α′
k(t0)sk |2

]

(13.6–19)

We note that the pair (α′
k(t0), α′

l(t0)) is statistically independent of (sk, sl). Further-
more, the {sk} are iid with zero means. Hence, the first term of the right-hand side of
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FIGURE 13.6–2
Signal-to-ICI power ratio versus normalized Doppler spread.

Equation 13.6–19 is zero. Therefore, by using the result from Equation 13.6–18 in
Equation 13.6–19, the power of the ICI component is

I =
(
T f m

)
2

2 N−1∑
k=0
k =i

2Es

(k − i)2
(13.6–20)

Consequently, the signal-to-interference ratio S/I is given by

S

I
= 1

(T fm)2

2

N−1∑
k=0
k =1

1

(k − i)2

(13.6–21)

Graphs of S/I versus T f m are shown in Figure 13.6–2 for N = 256 subcarriers and
i = N/2, the interference on the middle subcarrier.

The evaluation of the effect of the ICI on the error rate performance of an OFDM
system requires knowledge of the PDF of the ICI which, in general, is a mixture of
Gaussian PDFs. However, when the number of subcarriers is large, the distribution of
the ICI can be approximated by a Gaussian distribution, and thus the evaluation of the
error rate performance is straightforward.

Figure 13.6–3 illustrates the symbol error probability for an OFDM system having
N = 256 subcarriers and 16-QAM, where the error probability is evaluated analytically
based on the Gaussian model for the ICI and by Monte Carlo simulation. We observe that
the ICI severely degrades the performance of the OFDM system. In the following section
we describe a method for suppressing the ICI and, thus, improving the performance of
the OFDM system.
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FIGURE 13.6–3
Symbol error probability for 16-QAM OFDM system with N = 256 subcarriers.

13.6–2 Suppression of ICI in OFDM Systems

The distortion caused by ICI in an OFDM system is akin to the distortion caused by
ISI in a single-carrier system. Recall that a linear time-domain equalizer based on the
minimum mean-square-error (MMSE) criterion is an effective method for suppressing
ISI. In a similar manner, we may apply the MMSE criterion to suppress the ICI in the
frequency domain. Thus, we begin with the N frequency samples at the output of the
discrete Fourier transform (DFT) processor, which we denote by the vector R(m) for
the mth frame. Then we form the estimate of the symbol sk(m) as

ŝk(m) = bH
k (m)R(m), k = 0, 1, . . . , N − 1 (13.6–22)

where bk(m) is the coefficient vector of size N × 1. This vector is selected to minimize
the MSE

E
[|sk(m) − ŝk(m)|2] = E

[|sk(m) − bH
k (m)R(m)|2] (13.6–23)

where the expectation is taken with respect to the signal and noise statistics. By applying
the orthogonality principle, the optimum coefficient vector is obtained as

bk(m) = [
G(m)GH (m) + σ 2 I N

]−1
gk(m), k = 0, 1, . . . , N − 1 (13.6–24)
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where

E
[
R(m)RH (m)

] = G(m)GH (m) + σ 2 I N

E
[
R(m)s H

k (m)
] = gk(m)

(13.6–25)

and G(m) is related to the channel impulse response matrix H(m) through the DFT
relation (see Problem 13.16)

G(m) = W H H(m)W (13.6–26)

where W is the orthonormal (IDFT) transformation matrix. The vector gk(m) is the kth
column of the matrix G(m), and σ 2 is the variance of the additive noise component.
It is easily shown that the minimum MSE for the signal on the kth subcarrier may be
expressed as

E
[|sk(m) − ŝk(m)|2] = 1 − gH

k (m)(G(m)GH (m) + σ 2 I N )−1 gk(m) (13.6–27)

We observe that the optimum weight vectors {bk(m)} require knowledge of the
channel impulse response. In practice, the channel response may be estimated by pe-
riodically transmitting pilot signals on each of the subcarriers and by employing a
decision-directed method when data are transmitted on the N subcarriers. In a slowly
fading channel, the coefficient vectors {bk(m)} may also be adjusted recursively by
employing either an LMS- or an RLS-type algorithm, as previously described in the
context of equalization for suppression of ISI.

13.7
BIBLIOGRAPHICAL NOTES AND REFERENCES

In this chapter, we have considered a number of topics concerned with digital commu-
nications over a fading multipath channel. We began with a statistical characterization
of the channel and then described the ramifications of the channel characteristics on
the design of digital signals and on their performance. We observed that the reliability
of the communication system is enhanced by the use of diversity transmission and
reception. We also considered the transmission of digital information through time-
dispersive channels and described the RAKE demodulator, which is the matched filter
for the channel. Finally, we considered the use of OFDM for mobile communications
and on the performance of an OFDM system, described the effect of ICI caused by
Doppler frequency spreading.

The pionerring work on the characterization of fading multipath channels and
on signal and receiver design for reliable digital communciations over such channels
was done by Price (1954, 1956). This work was followed by additional significant
contributions from Price and Green (1958, 1960), Kailath (1960, 1961), and Green
(1962). Diversity transmission and diversity combining techniques under a variety of
channel conditions have been considered in the papers by Pierce (1958), Brennan
(1959), Turin (1961, 1962), Pierce and Stein (1960), Barrow (1963), Bello and Nelin
(1962a, b, 1963), Price (1962a, b), and Lindsey (1964).
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Our treatment of digital communications over fading channels focused primarily
on the Rayleigh fading channel model. For the most part, this is due to the wide ac-
ceptance of this model for describing the fading effects on many radio channels and to
its mathematical tractability. Although other statistical models, such as the Ricean fad-
ing model or the Nakagami fading model may be more appropriate for characterizing
fading on some real channels, the general approach in the design of reliable commu-
nications presented in this chapter carries over. Alouini and Goldsmith (1998), Simon
and Alouini (1988, 2000), and Annamalai et al. (1998, 1999) have presented a unified
approach to evaluating the error rate performance of digital communication systems
for various fading channel models. The effect of ICI in OFDM for mobile commu-
nications has been extensively treated in the literature, e.g., the papers by Robertson
and Kaiser (1999), Li and Kavehrad (1999), Ciavaccini and Vitetta (2000), Li and
Cimini (2001), Stamoulis et al. (2002), and Wang et al. (2006). A general treatment
of wireless communications is given in the books by Rappaport (1996) and Stuber
(2000).

PROBLEMS

13.1 The scattering function S(τ ; λ) for a fading multipath channel is nonzero for the range
of values 0 ≤ τ ≤ 1 ms and −0.1 Hz ≤ λ ≤ 0.1 Hz. Assume that the scattering function
is approximately uniform in the two variables.
a. Give numerical values for the following parameters:

(i) The multipath spread of the channel.
(ii) The Doppler spread of the channel.

(iii) The coherence time of the channel.
(iv) The coherence bandwidth of the channel.
(v) The spread factor of the channel.

b. Explain the meaning of the following, taking into consideration the answers given
in (a):

(i) The channel is frequency-nonselective.
(ii) The channel is slowly fading.

(iii) The channel is frequency-selective.
c. Suppose that we have a frequency allocation (bandwidth) of 10 kHz and we wish to

transmit at a rate of 100 bits over this channel. Design a binary communication system
with frequency diversity. In particular, specify

(i) The type of modulation.
(ii) The number of subchannels.

(iii) The frequency separation between adjacent carriers.
(iv) The signaling interval used in your design.
Justify your choice of parameters.

13.2 Consider a binary communication system for transmitting a binary sequence over a fading
channel. The modulation is orthogonal FSK with third-order frequency diversity (L = 3).
The demodulator consists of matched filters followed by square-law detectors. Assume
that the FSK carriers fade independently and identically according to a Rayleigh envelope
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distribution. The additive noises on the diversity signals are zero-mean Gaussian with
autocorrelation functions E[z∗

k (t)zk(t +τ )] = 2N0δ(τ ). The noise processes are mutually
statistically independent.
a. The transmitted signal may be viewed as binary FSK with square-law detection,

generated by a repetition code of the form

1 → c1 = [1 1 1], 0 → c0 = [0 0 0]

Determine the error rate performance Pbh for a hard-decision decoder following the
square-law-detected signals.

b. Evaluate Pbh for γ c = 100 and 1000.
c. Evaluate the error rate Pbs for γ c = 100 and 1000 if the decoder employs soft-decision

decoding.
d. Consider the generalization of the result in (a). If a repetition code of block length

L (L odd) is used, determine the error probability Pbh of the hard-decision decoder
and compare that with Pbs , the error rate of the soft-decision decoder. Assume γ 	 1.

13.3 Suppose that the binary signal ±sl (t) is transmitted over a fading channel and the received
signal is

rl (t) = ±asl (t) + z(t), 0 ≤ t ≤ T

where z(t) is zero-mean white Gaussian noise with autocorrelation function

Rzz(τ ) = 2N0δ(τ )

The energy in the transmitted signal isE = 1
2

∫ T
0 |sl (t)|2 dt . The channel gain a is specified

by the probability density function

p(a) = 0.1δ(a) + 0.9δ(a − 2)

a. Determine the average probability of error Pb for the demodulator that employs a filter
matched to sl (t).

b. What value does Pb approach as E/N0 approaches infinity?
c. Suppose that the same signal is transmitted on two statistically independently fading

channels with gains a1 and a2, where

p(ak) = 0.1δ(ak) + 0.9δ(ak − 2), k = 1, 2

The noises on the two channels are statistically independent and identically distributed.
The demodulator employs a matched filter for each channel and simply adds the two
filter outputs to form the decision variable. Determine the average Pb.

d. For the case in (c) what value does Pb approach as E/N0 approaches infinity?

13.4 A multipath fading channel has a multipath spread of Tm = 1 s and a Doppler spread
Bd = 0.01 Hz. The total channel bandwidth at bandpass available for signal transmission
is W = 5 Hz. To reduce the effects of intersymbol interference, the signal designer selects
a pulse duration T = 10 s.
a. Determine the coherence bandwidth and the coherence time.
b. Is the channel frequency selective? Explain.
c. Is the channel fading slowly or rapidly? Explain.
d. Suppose that the channel is used to transmit binary data via (antipodal) coherently

detected PSK in a frequency diversity mode. Explain how you would use the available
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channel bandwidth to obtain frequency diversity and determine how much diversity
is available.

e. For the case in (d), what is the approximate SNR required per diversity to achieve an
error probability of 10−6?

f. Suppose that a wideband signal is used for transmission and a RAKE-type receiver is
used for demodulation. How many taps would you use in the RAKE receiver?

g. Explain whether or not the RAKE receiver can be implemented as a coherent receiver
with maximal ratio combining.

h. If binary orthogonal signals are used for the wideband signal with square-law post-
detection combining in the RAKE receiver, what is the approximate SNR required to
achieve an error probability of 10−6? (Assume that all taps have the same SNR.)

13.5 In the binary communication system shown in Figure P13.5, z1(t) and z2(t) are statistically
independent white Gaussian noise processes with zero-mean and identical autocorrelation
functions Rzz(τ ) = 2N0δ(τ ). The sampled values U1 and U2 represent the real parts of
the matched filter outputs. For example, if sl (t) is transmitted, then we have

U1 = 2E + N1

U2 = N1 + N2

where E is the transmitted signal energy and

Nk = Re

[∫ T

0
s∗

l (t)zk(t) dt

]
, k = 1, 2

It is apparent that U1 and U2 are correlated Gaussian variables while N1 and N2 are
independent Gaussian variables. Thus,

p(n1) = 1√
2πσ

exp

(
− n2

1

2σ 2

)

p(n2) = 1√
2πσ

exp

(
− n2

2

2σ 2

)

where the variance of Nk is σ 2 = 2EN0.
a. Show that the joint probability density function for U1 and U2 is

p(u1, u2) = 1

2πσ 2
exp

{
− 1

σ 2

[
(u2 − 2E)2 − u2(u1 − 2E) + 1

2 u2
2

]}

FIGURE P13.5
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if s(t) is transmitted and

p(u1, u2) = 1

2πσ 2
exp

{
− 1

σ 2

[
(u1 + 2E)2 − u2(u1 + 2E) + 1

2 u2
2

]}

if −s(t) is transmitted.
b. Based on the likelihood ratio, show that the optimum combination of U1 and U2 results

in the decision variable

U = U1 + βU2

where β is a constant. What is the optimum value of β?
c. Suppose that s(t) is transmitted. What is the probability density function of U?
d. What is the probability of error assuming that s(t) was transmitted? Express your

answer as a function for the SNR E/N0.
e. What is the loss in performance if only U = U1 is the decision variable?

13.6 Consider the model for a binary communication system with diversity as shown in Fig-
ure P13.6. The channels have fixed attenuations and phase shifts. The {zk(t)} are complex-
valued white Gaussian noise processes with zero-mean and autocorrelation functions

Rzz(t) = E
[
z∗

k (t)zk(t + τ )
] = 2N0kδ(τ )

(Note that the spectral densities {N0k} are all different.) Also, the noise processes {zk(t)}
are mutually statistically independent. The {βk} are complex-valued weighting factors to
be determined. The decision variable from the combiner is

U = Re

(
L∑

k=1

βkUk

)
1
≷
−1

0

a. Determine the PDF p(u) when +1 is transmitted.
b. Determine the probability of error Pb as a function of the weights {βk}.
c. Determine the values of {βk} that minimize Pb.

FIGURE P13.6

13.7 Determine the probability of error for binary orthogonal signaling with Lth-order diversity
over a Rayleigh fading channel. The PDFs of the two decision variables are given by
Equations 13.4–31 and 13.4–32.
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13.8 A binary sequence is transmitted via binary antipodal signaling over a Rayleigh fading
channel with Lth-order diversity. When sl (t) is transmitted, the received equivalent low-
pass signals are

rk(t) = αke jφk sl (t) + zk(t), k = 1, 2, . . . , L

The fading among the L subchannels is statistically independent. The additive noise
terms {zk(t)} are zero-mean, statistically independent, and identically distributed white
Gaussian noise processes with autocorrelation function Rzz(τ ) = 2N0δ(τ ). Each of the
L signals is passed through a filter matched to sl (t) and the output is phase-corrected to
yield

Uk = Re

[
e− jφk

∫ T

0
rk(t)s∗

l (t) dt

]
, k = 1, 2, . . . , L

The {Uk} are combined by a linear combiner to form the decision variable

U =
L∑

k=1

Uk

a. Determine the PDF of U conditional on fixed values for the {ak}.
b. Determine the expression for the probability of error when the {ak} are statistically

independent and identically distributed Rayleigh random variables.

13.9 The Chernov bound for the probability of error for binary FSK with diversity L in Rayleigh
fading was shown to be

P2(L) < [4p(1 − p)]L =
[

4
1 + γ c

(2 + γ c)2

]L

< 2−γ b g(γ c)

where

g(γ c) = 1

γ c
log2

[
(2 + γ c)2

4(1 + γ c)

]

a. Plot g(γ c) and determine its approximate maximum value and the value of γ c where
the maximum occurs.

b. For a given γ b, determine the optimal order of diversity.
c. Compare P2(L), under the condition that g(γ c) is maximized (optimal diversity), with

the error probability for binary FSK and AWGN with no fading, which is

P2 = 1
2 e−γb/2

and determine the penalty in SNR due to fading and noncoherent (square-law) com-
bining.

13.10 A DS spread spectrum system is used to resolve the multipath signal components in a
two-path radio signal propagation scenario. If the path length of the secondary path is
300 m longer than that of the direct path, determine the minimum chip rate necessary to
resolve the multipath components.



Proakis-27466 book September 26, 2007 22:59

896 Digital Communications

13.11 A baseband digital communication system employs the signals shown in Figure P13.11(a)
for the transmission of two equiprobable messages. It is assumed that the communication
problem studied here is a “one-shot” communication problem; that is, the above messages
are transmitted just once and no transmission takes place afterward. The channel has no
attenuation (α = 1), and the noise is AWGN with power spectral density 1

2 N0.
a. Find an appropriate orthonormal basis for the representation of the signals.
b. In a block diagram, give the precise specifications of the optimum receiver using

matched filters. Label the diagram carefully.
c. Find the error probability of the optimum receiver.
d. Show that the optimum receiver can be implemented by using just one filter (see the

block diagram in Figure P13.11(b)). What are the characteristics of the matched filter,
the sampler and decision device?

e. Now assume that the channel is not ideal but has an impulse response of c(t) =
δ(t) + 1

2δ(t − 1
2 T ). Using the same matched filter as in (d), design the optimum

receiver.
f. Assuming that the channel impulse response is c(t) = δ(t) + aδ(t − 1

2 T ), where a is
a random variable uniformly distributed on [0, 1], and using the same matched filter
as in (d), design the optimum receiver.

(a)

(b)

FIGURE P13.11

13.12 A communication system employs dual antenna diversity and binary orthogonal FSK
modulation. The received signals at the two antennas are

r (t) = α1s(t) + n1(t)

r2(t) = α2s(t) + n2(t)

where α1 and α2 are statistically iid Rayleigh random variables, and n1(t) and n2(t) are
statistically independent, zero-mean and white Gaussian random processes with power-
spectral density 1

2 N0. The two signals are demodulated, squared, and then combined
(summed) prior to detection.
a. Sketch the functional block diagram of the entire receiver, including the demodulator,

the combiner, and the detector.
b. Plot the probability of error for the detector and compare the result with the case of

no diversity.
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13.13 The two equivalent lowpass signals shown in Figure P13.13 are used to transmit a binary
sequence. The equivalent low-pass impulse response of the channel is h(t) = 4δ(t) −
2δ(t −T ). To avoid pulse overlap between successive transmissions, the transmission rate
in bits/s is selected to be R = 1/2T . The transmitted signals are equally probable and
are corrupted by additive zero-mean white Gaussian noise having an equivalent lowpass
representation z(t) with an autocorrelation function

Rzz(τ ) = E[z∗(t)z(t + τ )] = 2N0δ(τ )

a. Sketch the two possible equivalent lowpass noise-free received waveforms.
b. Specify the optimum receiver and sketch the equivalent lowpass impulse responses of

all filters used in the optimum receiver. Assume coherent detection of the signals.

FIGURE P13.13

13.14 Verify the relation in Equation 13.3–14 by making the change of variable γ = α2Eb/N0

in the Nakagami-m distribution.

13.15 Consider a digital communication system that uses two transmitting antennas and one
receiving antenna. The two transmitting antennas are sufficiently separated so as to pro-
vide dual spatial diversity in the transmission of the signal. The transmission scheme is
as follows: If s1 and s2 represent a pair of symbols from either a one-dimensional or a
two-dimensional signal constellation, which are to be transmitted by the two antennas,
the signal from the first antenna over two signal intervals is (s1, s∗

2 ) and from the second
antenna the transmitted signal is (s2, −s∗

1 ). The signal received by the single receiving
antenna over the two signal intervals is

r1 = h1s1 + h2s2 + n1

r2 = h1s∗
2 − h2s∗

1 + n2

where (h1, h2) represent the complex-valued channel path gains, which may be assumed
to be zero-mean, complex Gaussian with unit variance and statistically independent. The
channel path gains (h1, h2) are assumed to be constant over the two signal intervals and
known to the receiver. The terms (n1, n2) represent additive white Gaussian noise terms
that have zero-mean and variance σ 2 and uncorrelated.
a. Show how to recover the transmitted symbols (s1, s2) from (r1, r2) and achieve dual

diversity reception.
b. If the energy in the pair (s1, s2) is (Es, Es) and the modulation is binary PSK, determine

the probability of error.
c. Repeat (b) if the modulation is QPSK.

13.16 In the suppression of ICI in on DFDM system, the received signal vector for the mth
frame may be expressed as

r(m) = H(m)W s(m) + n(m)
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where W is the N × N IDFT transformation matrix, s(m) is the N ×1 signal vector, n(m)
is the zero-mean, Gaussian noise vector with iid components, and H(m) is the N × N
channel impulse response matrix, defined as

H(m) = [hH (0, m) hH (1, m) · · · hH (N − 1, m)]H

where h(n, m) is the right cyclic shift by n + 1 positions of the zero-padded channel
impulse response vector of dimension N × 1.

By expressing the DFT of r(m) by R(m), derive the relations in Equations 13.6–24,
13.6–25, and 13.6–27, where G(m) is defined in Equation 13.6–26.

13.17 Prove the result given in Equation 13.6–17.

13.18 Prove the result given in Equation 13.6–18.
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14

Fading Channels II: Capacity and Coding

This chapter studies capacity and coding aspects for fading channels. In Chapter 13
the physical sources of the fading phenomenon in communications were discussed, and
different models for fading channels were introduced. In particular, we saw that the
effect of fading can be expressed in terms of the multipath spread of the channel denoted
by Tm and the Doppler spread of the channel denoted by Bd . Equivalently we can use
the coherence bandwidth and the coherence time of the channel denoted by (� f )c and
(�t)c, respectively. If two narrow pulses are separated by less than the coherence time
of the channel, they will experience the same fading effects; and if two frequency tones
are separated by less than the coherence bandwidth, they will be affected by the same
fading effects. If the signal bandwidth is much larger than the coherence bandwidth of
the channel, i.e., if W � (� f )c, then we have a frequency-selective channel model; and
if W � (� f )c, then the channel model is frequency-nonselective or flat in frequency.
In this case all frequency components of the input signal experience the same fading
effects. Similarly if the signal duration is much longer than the channel coherence time,
i.e., T � (�t)c, the signal will be subject to different fading effects and we have a fast
fading channel; and if T � (�t)c we have a slowly fading channel, or the channel is
flat in time. Since the bandwidth and the duration of a signal are related through the
approximate relation W ≈ 1/T , we conclude that if in a channel Tm Bd � 1, i.e., if the
channel is underspread, then we can choose a signal bandwidth W such that for this
signal the channel is flat in both time and frequency.†

In dealing with capacity and coding for fading channels, we need to study chan-
nel variations during transmission of a block of signal waveforms transmitted over
the channel. We can distinguish two different possibilities. In one case the character-
istics of the channel change fast enough with respect to the transmission duration of
a block that a single block of information experiences all possible realizations of the
channel frequently. In this case the time averages during the transmission duration of
a single block are equal to the statistical (ensemble) averages over all possible channel

†We are excluding the spread spectrum systems in which W ≈ 1/Tc where Tc is the chip interval.

899
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realizations. Another possibility is that the block duration is short and each block ex-
periences only a cross section of channel characteristics. In this model, the channel
remains relatively constant during the transmission of one block, and we can say that
each block experiences a single state of the channel and the following blocks experi-
ence different channel states. The notions of channel capacity in these two cases are
quite different. In the first channel model, since all channel realizations are experienced
during a block, an ergodic channel model is appropriate and ergodic capacity can be
defined as the ensemble average of channel capacity over all possible channel realiza-
tions. In the second channel model, where in each block different channel realizations
are experienced, for each block the capacity will be different. Thus, the capacity can
best be modeled as a random variable. In this case another notion of capacity known
as outage capacity is more appropriate.

Another parameter that affects the capacity of fading channels is whether infor-
mation about the state of the channel is available at the transmitter and/or the receiver.
Availability of state information at the receiver that is usually measured by transmitting
tones over the channel at different frequencies helps the receiver in increasing the chan-
nel capacity since the state of the channel can be interpreted as an auxiliary channel
output. Availability of the state information at the transmitter makes it possible for the
transmitter to design its signal to match the state of the channel through some kind of
precoding. In this case the transmitter can change the level of the transmitted power
according to the channel state, thus preserving transmission of valuable power during
the time the channel is in deep fade and saving it for transmission during periods when
the channel does not highly attenuate the transmitted signal.

Coding for fading channels introduces new challenges and opportunities that are
different from the standard additive white Gaussian noise channels. As we will see in
this chapter, the metrics that determine the performance of coding schemes over fading
channels are different from the standard metrics used to compare the performance of
different coding schemes over additive white Gaussian noise channels. On the other
hand, since coding techniques introduce redundancy through transmission of the parity
check codes, the extra transmissions provide diversity that improves the performance
of coded systems over fading channels.

In this chapter we study the case of single-antenna systems from an information-
theoretic and coding point of view. The study of capacity and coding for multiple-
antenna systems and the design and analysis of space-time codes are done in Chapter 15.

14.1
CAPACITY OF FADING CHANNELS

The capacity of a channel is defined as the supremum of the rates at which reliable com-
munication over the channel is possible. Reliable communication at rate R is possible
if there exists a sequence of codes with rate R for which the average error probability
tends to zero as the block length of the code increases. In other words, at any rate less
than capacity we can find a code whose error probability is less than any specified ε > 0.
In Chapter 6 we gave a general expression for the capacity of a discrete memoryless
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channel in the form

C = max
p(x)

I (X; Y ) (14.1–1)

where the maximum is taken over all channel input probability density functions. For
a power-constrained discrete-time AWGN channel, the capacity can be expressed as

C = 1

2
log

(
1 + P

N

)
(14.1–2)

where P is the signal power, N is the noise power, and C is the capacity in bits per
transmission, or bits per (real) dimension. For a complex-input complex-output channel
with circular complex Gaussian noise† with noise variance N0, or N0/2 per real and
imaginary components, the capacity is given by

C = log
(

1 + P

N0

)
(14.1–3)

bits per complex dimension.
The capacity of an ideal band-limited, power-limited additive white Gaussian wave-

form channel is given by

C = W log
(

1 + P

N0W

)
(14.1–4)

where W denotes the bandwidth, P denotes the signal power, and N0/2 is the noise
power spectral density. The capacity C in this case is given in bits per second. For an
infinite-bandwidth channel in which the signal-to-noise ratio P/(N0W ) tends to zero,
the capacity is given in Equation 6.5–44 as

C = 1

ln 2

P

N0
≈ 1.44

P

N0
(14.1–5)

The capacity in bits/sec/Hz (or bits per complex dimension) which determines the
highest achievable spectral bit rate is given by

C = log (1 + SNR) (14.1–6)

where SNR denotes the signal-to-noise ratio defined as

SNR = P

N0W
(14.1–7)

Note that since W ∼ 1
Ts

, where Ts is the symbol duration, the above expression for

SNR can be written as SNR = PTs
N0

= Es
N0

where Es indicates energy per symbol. In an
AWGN channel the capacity is achieved by using a Gaussian input probability density
function. At low values of SNR we have

C ≈ 1

ln 2
SNR ≈ 1.44 SNR (14.1–8)

†We use the notation CN (0, σ 2) to denote a circular complex random variable with variance σ 2/2 per real
and imaginary parts.
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The notion of capacity for a band-limited additive white Gaussian noise channel
can be extended to a nonideal channel in which the channel frequency response is
denoted by C( f ). In this case the channel is described by the input-output relation of
the form

y(t) = x(t) � c(t) + n(t) (14.1–9)

where c(t) denotes the channel impulse response and C( f ) = F [c(t)] is the channel
frequency response. The noise is Gaussian with a power spectral density of Sn( f ). It
was shown in Chapter 11 that the capacity of this channel is given by

C = 1

2

∫ ∞

−∞
log

(
1 + P( f )|C( f )|2

Sn( f )

)
d f (14.1–10)

where P( f ), the the input power spectral density, is selected such that

P( f ) =
(

K − Sn( f )

|C( f )|2
)+

(14.1–11)

where x+ is defined by

x+ = max{0, x} (14.1–12)

and K is selected such that ∫ ∞

−∞
P( f ) d f = P (14.1–13)

The water-filling interpretation of this result states that the input power should be
allocated to different frequencies in such a way that more power is transmitted at those
frequencies of which the channel exhibits a higher signal-to-noise ratio and less power
is sent at the frequencies with poor signal-to-noise ratio. A graphical interpretation of
the water-filling process is shown in Figure 14.1–1.

The water-filling argument can be also applied to communication over parallel
channels. If N parallel discrete-time AWGN channels have noise powers Ni , 1 ≤ i ≤ N ,
and an overall power constraint of P , then the total capacity of the parallel channels is
given by

C = 1

2

N∑
i=1

log
(

1 + Pi

Ni

)
(14.1–14)

where Pi ’s are selected such that

Pi = (K − Ni )
+ (14.1–15)

subject to

N∑
i=1

Pi = P (14.1–16)

In addition to frequency selectivity which can be treated through water-filling argu-
ments, a fading channel is characterized with time variations in channel characteristics,



Proakis-27466 book September 26, 2007 23:8

Chapter Fourteen: Fading Channels II: Capacity and Coding 903

f

K

Sn( f )
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�Sn( f )

C( f ) 2

FIGURE 14.1–1
The water-filling interpretation of the channel
capacity.

i.e., time selectivity. Since the capacity is defined in the limiting sense as the block
length of the code tends to infinity, we can always argue that even in a slowly fading
channel the block length can be selected large enough that in any block the channel
experiences all possible states, and hence the time averages over one block are equal to
the statistical averages. However, from a practical point of view, this would introduce
a large delay which is not acceptable in many applications, for instance, speech com-
munication on cellular phones. Therefore, for a delay-constrained system on a slowly
fading channel, the ergodicity assumption is not valid.

A common practice to break the inherent memory in fading channels is to em-
ploy long interleavers that spread a code sequence across a long period of time, thus
making individual symbols experience independent fading. However, employing long
interleavers would also introduce unacceptable delay in many applications. These ob-
servations make it clear that the notion of capacity is more subtle in the study of fading
channels, and depending on the coherence time of the channel and the maximum delay
acceptable in the application under study, different channel models and different no-
tions of channel capacity need to be considered. Since fading channels can be modeled
as channels whose state changes, we first study the capacity of these channels.

14.1–1 Capacity of Finite-State Channels

A finite-state channel is a channel model for a communication environment that varies
with time. We assume that in each transmission interval the state of the channel is
selected independently from a set of possible states according to some probability



Proakis-27466 book September 26, 2007 23:8

904 Digital Communications

m x

u s v

y m̂
Encoder Decoder

Channel

p(y x, s)

State

FIGURE 14.1–2
A finite-state channel.

distribution on the space of channel states. The model for a finite-state channel is
shown in Figure 14.1–2.

In this channel model, in each transmission the output y ∈Y depends on the input
x ∈X and the state of the channel s ∈S through the conditional PDF p(y|x, s). The
sets X , Y , and S denote the input, the output, and the state alphabets, respectively,
and are assumed to be discrete sets. The state of the channel is generated independent
of the channel input according to

p(s) =
n∏

i=1

p(si ) (14.1–17)

and the channel is memoryless, i.e,

p( y|x, s) =
n∏

i=1

p(yi |xi , si ) (14.1–18)

The encoder and the decoder have access to noisy versions of the state denoted by
u ∈ U and v ∈V , respectively. Based on an original idea of Shannon (1958), Salehi
(1992), and Caire and Shamai (1999) have shown that the capacity of this channel can
be given as

C = max
p(t)

I (T ; Y |V ) (14.1–19)

In this expression the maximization is over p(t), the set of all probability mass functions
on T where T denotes the set of all vectors of length |U | with components from
X . The cardinality of the set T is |X ||U |, and the set T is called the set of input
strategies.

In the study of fading channels, certain cases of this channel model are of partic-
ular interest. The special case where U = S and V is a degenerate random variable
corresponds to the case when complete channel state information (CSI) is available at
the receiver and no channel state information is available at the transmitter. In this case
the capacity reduces to

C = max
p(x)

I (X; Y |S) (14.1–20)

where

p(s, x, y) = p(s)p(x)p(y|x, s) (14.1–21)
Note that since

I (X; Y |S) =
∑

s

p(s)I (X; Y |S = s) (14.1–22)
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the capacity can be interpreted as the maximum over all input distributions of the
average of the mutual information over all channel states. A second interesting case
occurs when the state information is available at both the transmitter and the receiver.
In this case

C = max
p(x |s)

I (X; Y |S) =
∑

s

p(s) max
p(x |s)

I (X; Y |S = s) (14.1–23)

where the maximization is on all joint probabilities of the form

p(s, x, y) = p(s)p(x |s)p(y|x, s) (14.1–24)

Clearly since in this case the state information is available at the transmitter, the encoder
can choose the input distribution based on the knowledge of the state. Since for each state
of the channel the input distribution is selected to maximize the mutual information
in that state, the channel capacity is the expected value of the capacities. A third
interesting case occurs when complete channel information is available at the receiver
but the receiver transmits only a deterministic function of it to the transmitter. In this
case v = s and u = g(s), where g(·) denotes a deterministic function. In this case the
capacity is given by [see Caire and Shamai (1999)]

C =
∑

u

p(u) max
p(x |u)

I (X; Y |S, U = u) (14.1–25)

This case corresponds to when the receiver can estimate the channel state but due to
communication constraints over the feedback channel can transmit only a quantized
version of the state information to the transmitter.

The underlying memoryless assumption in these cases makes these models appro-
priate for a fully interleaved fading channel.

14.2
ERGODIC AND OUTAGE CAPACITY

To study the difference between ergodic and outage capacity, consider the two-state
channel shown in Figure 14.2–1. In this figure two binary symmetric channels, one with
crossover probability p = 0 and one with crossover probability p = 1/2, are shown.
We consider two different channel models based on this figure.

1. In channel model 1 the input and output switches choose the top channel (BSC 1)
with probability δ and the bottom channel (BSC 2) with probability 1 − δ, inde-
pendently for each transmission. In this channel model each symbol is transmitted
independently of the previous symbols, and the state of the channel is also selected
independently for each symbol.

2. In channel model 2 the top and the bottom channels are selected at the beginning of
the transmission with probabilities δ and 1 − δ, respectively; but once a channel is
selected, it will not change for the entire transmission period.
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BSC 1
p � 0

BSC 2
p � 1�2

FIGURE 14.2–1
A two-state channel.

From Chapter 6 we know that the capacities of the top and bottom channels are C1 = 1
and C2 = 0 bits per transmission, respectively. To find the capacity of the first channel
model, we note that since in this case for transmission of each symbol the channel
is selected independently over a long block, the channel will experience both BSC
component channels according to their corresponding probabilities. In this case time
and ensemble averages can be interchanged, the notion of ergodic capacity, denoted
by C , applies, and the results of the preceding section can be used. The capacity of
this channel model depends on the availability of the state information. We distinguish
three cases for the first channel model.

1. Case 1: No channel state information is available at the transmitter or receiver. In
this case it is easy to verify that the average channel is a binary symmetric channel
with crossover probability of 1−δ

2 , and hence the ergodic capacity is

C = 1 − Hb

(
1 − δ

2

)
(14.2–1)

2. Case 2: Channel state information available at the receiver. Using Equation 14.1–
22, we observe that in this case we maximize the mutual information with a fixed
input distribution. But since regardless of the state of the channel a uniform input
distribution maximizes the mutual information, the ergodic capacity of the channel
is the average of the two capacities, i.e.,

C = δC1 + (1 − δ)C2 = δ (14.2–2)

3. Case 3: Channel state information is available at the transmitter and the receiver.
Here we use Equation 14.1–23 to find the channel capacity. In this case we can
maximize the mutual information individually for each state, and the capacity is the
average of the capacities as given in Equation 14.2–2.

A plot of the two capacities as a function of δ is given in Figure 14.2–2. Note that
in this particular channel since the capacity achieving input distribution for the two
channels states is the same, the results of cases 2 and 3 are the same. In general the
capacities in these cases are different, as shown in Problem 14.7.

In the second channel model where one of the two channels BSC 1 or BSC 2 is
selected only once and then used for the entire communication situation, the capacity
in the Shannon sense is zero. In fact it is not possible to communicate reliably over this
channel model at any positive rate. The reason is that if we transmit at a rate R > 0 and
channel BSC 2 is selected, the error probability cannot be set arbitrarily small. Since
channel BSC 2 is selected with a probability of 1 − δ > 0, reliable communication at
any rate R > 0 is impossible. In fact in this case the channel capacity is a binary random
variable which takes values of 1 and 0 with probabilities δ and 1 − δ, respectively. This
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FIGURE 14.2–2
The ergodic capacity of channel model 1.

is a case for which ergodic capacity is not applicable and a new notion of capacity
called outage capacity is more appropriate (Ozarow et al. (1994)).

We note that since the channel capacity in this case is a random variable, if we
transmit at a rate R > 0, there is a certain probability that the rate exceeds the capacity
and the channel will be in outage. The probability of this event is called the outage
probability and is given by

Pout(R) = P [C < R] = FC (R−) (14.2–3)

where FC (c) denotes the CDF of the random variable C and FC (R−) is the limit-from-
left of FC (c) at point c = R.

For any 0 ≤ ε < 1 we can define Cε , the ε-outage capacity of the channel, as the
highest transmission rate that keeps the outage probability under ε, i.e.,

Cε = max {R : Pout(R) ≤ ε} (14.2–4)

In the channel model 2, the ε-outage capacity of the channel is given by

Cε =
{

0 for 0 ≤ ε < 1 − δ

1 for 1 − δ ≤ ε < 1
(14.2–5)

14.2–1 The Ergodic Capacity of the Rayleigh Fading Channel

In this section we study the ergodic capacity of the Rayleigh fading channel. The
underlying assumption is that the channel coherence time and the delay restrictions of
the channel are such that perfect interleaving is possible and the discrete-time equivalent



Proakis-27466 book September 26, 2007 23:8

908 Digital Communications

of the channel can be modeled as a memoryless AWGN channel with independent
Rayleigh channel coefficients. The lowpass discrete-time equivalent of this channel is
described by an input-output relation of the form

yi = Ri xi + ni (14.2–6)

where xi and yi are the complex input and output of the channel, Ri is a complex iid
random variable with Rayleigh distributed magnitude and uniform phase, and ni ’s are
iid random variables drawn according to CN (0, N0). The PDF of the magnitude of Ri

is given by

p(r ) =
{

r
σ 2 e− r2

2σ2 r > 0
0 r ≤ 0

(14.2–7)

We know from Chapter 2, Equations 2.3–45 and 2.3–27, that R2 is an exponential
random variable with expected value E[R2] = 2σ 2. Therefore, if ρ = |Ri |2, then from
Equation 2.3–27 we have

p(ρ) =
{

1
2σ 2 e− ρ

2σ2 ρ > 0
0 ρ ≤ 0

(14.2–8)

and since the received power is proportional to ρ, we have

Pr = 2σ 2 Pt (14.2–9)

where Pt and Pr denote the transmitted and the received power, respectively. In the
following discussion we assume that 2σ 2 = 1, thus Pt = Pr = P . The extension of
the results to the general case is straightforward.

Depending on the availability of channel state information at the transmitter and
receiver, we study the ergodic channel capacity in three cases.

No Channel State Information In this case the receiver knows neither the magni-
tude nor the phase of the fading coefficients Ri ; hence no information can be transmitted
on the phase of the input signal. The input-output relation for the channel is given by

y = Rx + n (14.2–10)

where R and n are independent circular complex Gaussian random variables drawn
according to CN (0, 2σ 2) and CN (0, N0), respectively.

To determine the capacity of the channel in this case, we need to derive an expression
for p(y|x) which can be written as

p(y|x) = 1

2π

∫ 2π

0

∫ ∞

0
p(y|x, r, θ )p(r ) dr dθ (14.2–11)

where p(r ) is given by Equation 14.2–7 and

p(y|x, r, θ ) = 1

π N0
e

|y−re jθ x |2
N0 (14.2–12)
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It can be shown (see Problem 14.8) that Equation 14.2–11 simplifies to

p(y|x) = 1

π
(

N0 + |x |2) e
− |y|2

N0+|x |2 (14.2–13)

This relation clearly shows that all the phase information is lost.
It has been shown by Abou-Faycal et al. (2001) that when an input power constraint

is imposed, the capacity achieving input distribution for this case has a discrete iid
amplitude and an irrelevant phase. However, there exists no closed-form expression
for the capacity in this case. Moreover, in the same work it has been shown that for
relatively low average signal-to-noise ratios, when P/N0 is less than 8 dB, only two
signal levels, one of them at zero, are sufficient to achieve capacity; i.e., in this case
on-off signaling is optimal. As the signal-to-noise ratio decreases, the amplitude of the
nonzero input in the optimal on-off signaling increases, and in the limit for P/N0 → 0
we obtain

C = 1

ln 2

P

N0
≈ 1.44

P

N0
(14.2–14)

By comparing this result with Equation 14.1–8 it is seen that for low signal-to-noise
ratios the capacity is equal to the capacity of an AWGN channel; but at high signal-to-
noise ratios the capacity is much lower than the capacity of an AWGN channel.

Although no closed form for the capacity exists, a parametric expression for the
capacity is derived in Taricco and Elia (1997). The parametric form of the capacity is
given by

P = μe−γ−�(μ) − 1

C = μ − γ − μ�(μ) − 1

ln 2
+ log2 �(μ)

(14.2–15)

where �(z) is the digamma function defined by

�(z) = �′(z)

�(z)
(14.2–16)

and γ = −�(1) ≈ 0.5772156 is Euler’s constant.
A plot of capacity in this case is shown in Figure 14.2–3. The capacity of AWGN

is also given for reference. It is clearly seen that lack of information about the channel
state is particularly harmful at high signal-to-noise ratios.

State Information at the Receiver Since in this case the phase of the fading process
is available at the receiver, the receiver can compensate for this phase; hence without loss
of generality we can assume that fading is modeled by a multiplicative real coefficient
R with Rayleigh distribution whose effect on the power is a multiplicative coefficient ρ

with exponential PDF. Using Equation 14.1–22, we have to find the expected value of
the mutual information over all possible states. This corresponds to finding the expected
value of

C = log
(

1 + ρ
P

N0

)
(14.2–17)



Proakis-27466 book September 26, 2007 23:8

910 Digital Communications

�10 �5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

SNR (dB)

AWGN

Rayleigh (no CSI)

E
rg

od
ic

 c
ap

ac
ity

 C
 (

bi
ts

�c
ha

nn
el

 u
se

)

FIGURE 14.2–3
The ergodic capacity of a Rayleigh fading channel with no CSI.

in which ρ has an exponential PDF given by Equation 14.2–8. Since log is a concave
function, we can use Jensen’s inequality (see Problem 6.29) to show that

C = E
[

log
(

1 + ρ
P

N0

)]

≤ log
(

1 + E [ρ]
P

N0

)

= log
(

1 + P

N0

)
(14.2–18)

This shows that in this case the capacity is upper-bounded by the capacity of an AWGN
channel whose signal-to noise-ratio is equal to the average signal-to-noise ratio of the
Rayleigh fading channel.

To find an expression for the capacity in this case, we note that

C =
∫ ∞

0
log

(
1 + ρ

P

N0

)
e−ρ dρ

= 1

ln 2
e

N0
P �

(
0,

N0

P

)

= 1

ln 2
e

1
SNR �

(
0,

1

SNR

)
(14.2–19)
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where �(a, z) denotes the complementary gamma function, defined by

�(a, z) =
∫ ∞

z
ta−1e−t dt (14.2–20)

Note that �(a, 0) = �(a).
At low SNR values we can use the approximation

log
(

1 + ρ
P

N0

)
≈ 1

ln 2

P

N0
ρ (14.2–21)

and therefore at low signal-to-noise ratios the capacity is given by

C ≈ P

N0 ln 2

∫ ∞

0
ρe−ρ dρ ≈ 1.44 SNR (14.2–22)

which is equal to the capacity of an AWGN channel at low signal-to-noise ratios. At
high signal-to-noise ratios we have

log
(

1 + ρ
P

N0

)
≈ log

(
ρ

P

N0

)
(14.2–23)

and the capacity becomes

C ≈ 1

ln 2

∫ ∞

0
log

(
ρ

P

N0

)
e−ρ dρ

= log SNR + 1

ln 2

∫ ∞

0
(ln ρ)e−ρ dρ

= log SNR − 0.8327

(14.2–24)

Note that the capacity of an AWGN channel at high signal-to-noise ratios is approxi-
mated by log(SNR); therefore at high signal-to-noise ratios, the ergodic capacity of a
Rayleigh fading channel with channel state information at the receiver lags the capacity
of the AWGN channel by 0.83 bit per complex dimension.

Plots of the capacities of this channel model and the capacity of an AWGN chan-
nel with comparable SNR are given in Figure 14.2–4. Unlike the case where no CSI
is available, in this case the asymptotic difference between the two curves at high
signal-to-noise ratios is roughly 2.5 dB. This compares very favorably with the per-
formance difference of different signaling schemes over Rayleigh fading and AWGN
channels. We recall from Equation 13.3–13 that the error probability of common signal-
ing schemes over Rayleigh fading channels decreases inversely with the signal-to-noise
ratio, whereas on Gaussian channels the error probability is an exponentially decreasing
function of the signal-to-noise ratio. For instance, to achieve an error probability of 10−5

using BPSK, an AWGN channel requires a γb of 9.6 dB and a Rayleigh fading channel
requires 44 dB. This is a huge performance difference. The much lower performance
difference between capacities is highly promising and indicates that coding can provide
considerable gain in fading channels. The required length of the codewords on fading
channels is largely dependent on the dynamics of the fading process and the coherence
time of the channel, whereas in an AWGN channel the AWGN effects are averaged
over a codeword. In a fading channel, in addition to noise effects, fading effects have
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FIGURE 14.2–4
Capacity of Gaussian and Rayleigh fading channel with CSI at the decoder.

to be averaged out over the codeword length. If the channel coherence time is large,
this could require very large codeword lengths and could entail unacceptable delay.
Interleaving is often used to reduce large codeword requirements, but it cannot reduce
the delay in fading channels. Another alternative would be to spread the transmitted
code components in the frequency domain to benefit from the diversity. This approach
is studied in Section 14.7.

State Information Available at Both Sides If the state information is available at
both the transmitter and the receiver, then the result of Equation 14.1–23 can be used.
In this case the transmitter can adjust its power level to the fading level similar to the
water-filling approach in the frequency domain. Water-filling in time can be employed
to allocate the optimal transmitted power as a function of channel state information.
Here ρ, the channel state, plays the same role as frequency in the standard water-filling
argument, and the capacity is given by

C =
∫ ∞

0
log

(
1 + ρ

P(ρ)

N0

)
e−ρ dρ (14.2–25)

where P(ρ) denotes the optimum power allocation as a function of the fading parameter
ρ. The optimal power allocation is obtained by using water-filling in time, i.e.,

P(ρ)

N0
=

(
1

ρ0
− 1

ρ

)+
(14.2–26)

where as before (x)+ = max{x, 0}, and ρ0 is selected such that
∫ ∞

0

(
1

ρ0
− 1

ρ

)+
e−ρ dρ = P

N0
(14.2–27)
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Note that from above

P(ρ) =
{

N0

(
1
ρ0

− 1
ρ

)
ρ > ρ0

0 ρ < ρ0

(14.2–28)

Hence, Equation 14.2–27 becomes∫ ∞

ρ0

(
1

ρ0
− 1

ρ

)
e−ρ dρ = P

N0
(14.2–29)

This equation can be simplified as

e−ρ0

ρ0
− � (0, ρ0) = P

N0
(14.2–30)

where �(a, z) is given by Equation 14.2–20. Substituting P(ρ) in the expression for
capacity results in

C =
∫ ∞

ρ0

log
(

1 + ρ

(
1

ρ0
− 1

ρ

))
e−ρ dρ

=
∫ ∞

ρ0

e−ρ log
ρ

ρ0
dρ

= 1

ln 2
� (0, ρ0)

(14.2–31)

Equations 14.2–30 and 14.2–31 provide a parametric description of the capacity of this
channel model.

It is interesting to compare the capacity of this channel with an AWGN chan-
nel at low and high frequencies. For a very low signal-to-noise ratio, we consider
the case where SNR = 0.1 corresponding to −10 dB. Substituting this value into
Equation 14.2–30 results in ρ0 = 1.166. Substituting this value into Equation 14.2–31
yields C = 0.241. Computing the capacity of an AWGN channel at SNR = −10
dB yields C = 0.137. Interestingly, the capacity of the fading channel at low signal-
to-noise ratios in this case exceeds the capacity of a comparable AWGN channel. At
high signal-to-noise ratios, however, the capacity is less than the capacity of an AWGN
channel and is very close to the capacity of a Rayleigh fading channel for which the
state information is available only at the receiver.

A plot of capacity of this channel versus the signal-to-noise ratio is given in Fig-
ure 14.2–5. The capacity of an AWGN channel is also provided for comparison.

Figure 14.2–6 compares the capacities of Rayleigh fading channels under different
availability of state information scenarios with the capacity of the Gaussian channel.

14.2–2 The Outage Capacity of Rayleigh Fading Channels

The outage capacity is considered when due to strict delay restrictions ideal inter-
leaving is impossible and the channel capacity cannot be expressed as the average
of the capacities for all possible channel realizations, as was done in the case of the
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FIGURE 14.2–5
Capacity of Gaussian and Rayleigh fading channel with CSI at both sides.

ergodic capacity. In this case the capacity is a random variable (Ozarow et al. (1994)).
We assume at rates less than capacity ideal coding is employed to make transmission
effectively error-free. With this assumption, errors occur only when the rate exceeds
capacity, i.e., when the channel is in outage.
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FIGURE 14.2–6
Capacity of Gaussian and Rayleigh fading channel with different CSI.
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For a Rayleigh fading channel the outage ε-capacity is derived by using Equa-
tions 14.2–3 and 14.2–4 as

Cε = max{R : Pout(R) ≤ ε}
= max{R : FC (R−) = ε}
= F−1

C (ε)

(14.2–32)

where FC (·) is the CDF of the random variable representing the channel capacity.
For a Rayleigh fading channel with normalized channel gain, we have

C = log (1 + ρ SNR) (14.2–33)

where ρ is an exponential random variable with expected value equal to 1. The outage
probability in this case is given by

Pout(R) = P [C < R] (14.2–34)

which simplifies to

Pout(R) = P

[
ρ <

2R − 1

SNR

]

= 1 − e− 2R−1
SNR

(14.2–35)

Note that for high signal-to-noise ratios, i.e., for low outage probabilities, this expression
can be approximated by

Pout(R) ≈ 2R − 1

SNR
(14.2–36)

Solving for R from Equation 14.2–36 results in

R = log [1 − SNR ln (1 − Pout)] (14.2–37)

from which

Cε = log [1 − SNR ln (1 − ε)] (14.2–38)

We consider the cases of low and high signal-to-noise ratios separately. For low
SNR values we have

Cε ≈ SNR

ln 2
ln

1

1 − ε
(14.2–39)

Since the capacity of an AWGN at low SNR values is 1
ln 2 SNR, we conclude that the

outage capacity is a fraction of the capacity of an AWGN channel. In fact the capacity
of an AWGN channel is scaled by a factor of ln 1

1−ε
. For instance, for ε = 0.1 this

value is equal to 0.105, and the outage capacity of the Rayleigh fading channel is only
one-tenth of the capacity of an AWGN channel with the same power. For very small ε,
this factor tends to ε and we have

Cε ≈ εCAWGN (14.2–40)
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For high signal-to-noise ratios, the capacity is approximated by

Cε ≈ log
[

SNR ln
1

1 − ε

]

= log SNR + log
(

ln
1

1 − ε

) (14.2–41)

The capacity of an AWGN channel at high SNR is log SNR; therefore the outage
capacity of the Rayleigh fading channel is less than the capacity of a comparable
AWGN channel by log

(
ln 1

1−ε

)
bits per complex dimension. For ε = 0.1 this is equal

to 3.25 bits per complex dimension. For very small ε we have ln 1
1−ε

≈ ε, and the
difference between the capacities is log2 ε.

The outage capacity of a Rayleigh fading channel for ε = 0.1 and ε = 0.01 and
the capacity of the AWGN channel are shown in Figure 14.2–7.

Effect of Diversity on Outage Capacity
If a communication system over a Rayleigh fading channel employs L-order diversity,
then the random variable ρ = |R|2 has a χ2 PDF with 2L degrees of freedom. In the
special case of L = 1 we have a χ2 random variable with two degrees of freedom
which is an exponential random variable studied so far. For L-order diversity we use
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FIGURE 14.2–7
The outage capacity of a Rayleigh fading channel for ε = 0.1 and ε = 0.01. The capacity of an
AWGN channel is given for comparison.
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the CDF of a χ2 random variable given by Equation 2.3–24. We obtain

Pout(R) = P

[
ρ <

2R − 1

SNR

]

= 1 − e− 2R−1
SNR

L−1∑
k=0

1

k!

(
2R − 1

SNR

)k (14.2–42)

Equating Pout(R) to ε and solving for R give the ε-outage capacity Cε for a channel
with L-order diversity. The resulting Cε is obtained by solving the equation

e− 2Cε −1
SNR

L−1∑
k=0

1

k!

(
2Cε − 1

SNR

)k

= 1 − ε (14.2–43)

or equivalently

e− 2Cε −1
SNR

∞∑
k=L

1

k!

(
2Cε − 1

SNR

)k

= ε (14.2–44)

No closed-form solution for Cε exists for arbitrary L . Plots of C0.01 for different diversity
orders as well as the capacity of an AWGN channel are given in Figure 14.2–8. The
noticeable improvement due to diversity is clear from this figure.
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FIGURE 14.2–8
The outage capacity of fading channels with different diversity orders.
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14.3
CODING FOR FADING CHANNELS

In Chapter 13 we have demonstrated that diversity techniques are very effective in
overcoming the detrimental effects of fading caused by the time-variant dispersive
characteristics of the channel. Time and/or frequency diversity techniques may be
viewed as a form of repetition (block) coding of the information sequence. From this
point of view, the combining techniques described in Chapter 13 represent soft decision
decoding of the repetition code. Since a repetition code is a trivial form of coding,
we now consider the additional benefits derived from more efficient types of codes. In
particular, we demonstrate that coding provides an efficient means of obtaining diversity
on a fading channel. The amount of diversity provided by a code is directly related to
its minimum distance.

As explained in Section 13.4, time diversity is obtained by transmitting the signal
components carrying the same information in multiple time intervals mutually separated
by an amount equal to or exceeding the coherence time (�t)c of the channel. Similarly,
frequency diversity is obtained by transmitting the signal components carrying the same
information in multiple frequency slots mutually separated by an amount at least equal
to the coherence bandwidth (� f )c of the channel. Thus, the signal components carrying
the same information undergo statistically independent fading.

To extend these notions to a coded information sequence, we simply require that the
signal waveform corresponding to a particular code bit or code symbol fade indepen-
dently of the signal waveform corresponding to any other code bit or code symbol. This
requirement may result in inefficient utilization of the available time-frequency space,
with the existence of large unused portions in this two-dimensional signaling space.
To reduce the inefficiency, a number of codewords may be interleaved in time or in
frequency or both, in such a manner that the waveforms corresponding to the bits or sym-
bols of a given codeword fade independently. Thus, we assume that the time-frequency
signaling space is partitioned into nonoverlapping time-frequency cells. A signal wave-
form corresponding to a code bit or code symbol is transmitted within such a cell.

In addition to the assumption of statistically independent fading of the signal com-
ponents of a given codeword, we assume that the additive noise components corrupting
the received signals are white Gaussian processes that are statistically independent and
identically distributed among the cells in the time-frequency space. Also, we assume
that there is sufficient separation between adjacent cells that intercell interference is
negligible.

An important issue is the modulation technique that is used to transmit the coded
information sequence. If the channel fades slowly enough to allow the establishment
of a phase reference, then PSK or DPSK may be employed. In the case where channel
state information (CSI) is available at the receiver, knowledge of the phase makes co-
herent detection possible. If this is not possible, then FSK modulation with noncoherent
detection at the receiver is appropriate.

A model of the digital communication system for which the error rate performance
will be evaluated is shown in Figure 14.3–1. The encoder may be binary, nonbinary, or
a concatenation of a nonbinary encoder with a binary encoder. Furthermore, the code



Proakis-27466 book September 26, 2007 23:8

Chapter Fourteen: Fading Channels II: Capacity and Coding 919

Modulator

Demodulator

FIGURE 14.3–1
Model of communications system with modulation/demodulation and encoding/decoding.

generated by the encoder may be a block code a convolutional code, or, in the case of
concatenation, a mixture of a block code and a convolutional code.

To explain the modulation, demodulation, and decoding, consider a linear binary
block code in which k information bits are encoded into a block of n bits. For simplicity
and without loss of generality, let us assume that all n bits of a codeword are transmitted
simultaneously over the channel on multiple frequency/time cells. A codeword ci having
bits {ci j } is mapped into signal waveforms and interleaved in time and/or frequency and
transmitted. The dimensionality of the signal space depends on the modulation system.
For instance, if FSK modulation is employed, each transmitted symbol is a point in
the two-dimensional space, hence the dimensionality of the encoded/modulated signal
is 2n. Since each codeword conveys k bits of information, the bandwidth expansion
factor for FSK is Be = 2n/k.

The demodulator demodulates the signal components transmitted in independently
faded frequency/time cells, providing the sufficient statistics to the decoder which
appropriately combines them for each codeword to form the M = 2k decision variables.
The codeword corresponding to the maximum of the decision variables is selected. If
hard decision decoding is employed, the optimum maximum-likelihood decoder selects
the codeword having the smallest Hamming distance relative to the received codeword.

Although the discussion above assumed the use of a block code, a convolutional
encoder can be easily accommodated in the block diagram shown in Figure 14.3–1. For
this case the maximum-likelihood soft decision decoding criterion for the convolutional
code can be efficiently implemented by means of the Viterbi algorithm. On the other
hand, if hard decision decoding is employed, the Viterbi algorithm is implemented with
Hamming distance as the metric.

14.4
PERFORMANCE OF CODED SYSTEMS IN FADING CHANNELS

In studying the capacity of fading channels in Section 14.2 we noted that the notion of
capacity in fading channels is more involved that the notion of capacity for a standard
memoryless channel. The capacity of a fading channel depends on the dynamics of the
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fading process and how the coherence time of the channels compares with the code
length as well as the availability of channel state information at the transmitter and
the receiver. In this section we study the performance of a coded system on a fading
channel, and we observe that the same factors affect the code performance.

We assume that a coding scheme followed by modulation, or a coded modulation
scheme, is employed for data transmission over the fading channel. Our treatment
at this point is quite general and includes block and convolutional codes as well as
concatenated coding schemes followed by a general signaling (modulation) scheme.
This treatment also includes block or trellis-coded modulation schemes.

We assume that M signal space coded sequences {x1, x2, . . . , xM} are employed
to transmit one of the equiprobable messages 1 ≤ m ≤ M . Each codeword xi is a
sequence of n symbols of the form

xi = (xi1, xi2, . . . , xin) (14.4–1)

where each xi j is a point in the signal constellation. We assume that the signal constel-
lation is two-dimensional, hence xi j ’s are complex numbers.

Depending on the dynamics of fading and availability of channel state information,
we can study the effect of fading and derive bounds on the performance of the coding
scheme just described.

14.4–1 Coding for Fully Interleaved Channel Model

In this model we assume a very long interleaver is employed and the codeword com-
ponents are spread over a long interval, much longer than the channel coherence time.
As a result, we can assume that the components of the transmitted codeword undergo
independent fading. The channel output for this model, when xi is sent, is given by

y j = R j xi j + n j , 1 ≤ j ≤ n (14.4–2)

where the R j represents the fading effect of the channel and the n j is the noise. In this
model due to the interleaving, R j ’s are independent and n j ’s are iid samples drawn
according to CN (0, N0). The vector input-output relation for this channel is given by

y = Rx + n (14.4–3)

where R is an n × n diagonal matrix

R = diag(R1, R2, . . . , Rn) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R1 0 0 · · · 0

0 R2 0 · · · 0

0 0 R3 · · · 0
...

...
...

. . . 0

0 0 0 · · · Rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14.4–4)

and n is a vector with independent n j ’s as its components. The R j ’s are in general
complex, denoting the magnitude and the phase of the fading process.
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The maximum-likelihood decoder, having received y, uses the rule

m̂ = arg max
1≤m≤M

p( y|xm) (14.4–5)

to detect the transmitted message m. By the independence of fading and noise compo-
nents we have

p( y|xm) =
n∏

i=1

p(y j |xmj ) (14.4–6)

The value of p(y j |xmj ) depends on the availability of channel state information at the
receiver.

CSI Available at the Receiver In this case the output of the channel consists of the
output vector y and the channel state sequence (r1, r2, . . . , rn) which are realizations of
random variables R1, R2, . . . , Rn , or equivalently the realization of matrix R. Therefore,
the maximum-likelihood rule, P[observed|input], becomes

n∏
i=1

p(y j , r j |xmj ) =
n∏

i=1

p(r j )p(y j |xmj , r j ) (14.4–7)

Substituting Equation 14.4–7 into 14.4–5 and dropping the common positive factor∏n
i=1 p(r j ) result in

m̂ = arg max
1≤m≤M

n∏
i=1

p(y j |xmj , r j ) (14.4–8)

No CSI Available at the Receiver In this case the ML rule is

m̂ = arg max
1≤m≤M

n∏
i=1

p(y j |xmj ) (14.4–9)

where

p(y j |xmj ) =
∫

p(ri )p(y j |xmj , r j ) dri (14.4–10)

Performance of Fully Interleaved Fading Channels with CSI at the Receivers
A bound on error probability can be obtained by using an approach similar to the one
used in Section 6.8–1. Using Equation 6.8–2, we have

Pe|m ≤
M∑

m ′=1
m ′ �=m

P [ y ∈ Dmm ′ |xm sent ]

=
M∑

m ′=1
m ′ �=m

Pm→m ′

(14.4–11)
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where Pm→m ′ is the pairwise error probability (PEP), i.e., the probability of error in
a binary communication system consisting of two signals xm and xm ′ when xm is
transmitted. Here we derive an upper bound on the pairwise error probability by using
the Chernov bounding technique. For other methods of studying the pairwise error
probability, the reader is referred to Biglieri et al. (1995, 1996, 1998a).

A Bound on the Pairwise Error Probability To compute a bound on the PEP, we
note that since in this case CSI is available at the receiver, according to Equation 14.4–8,
the channel conditional probabilities are p(y j |xmj , r j ) and hence

Pm→m ′ =
∫

P [xm → xm ′ |R = r ]p(r) d r (14.4–12)

where

P [xm → xm ′ |R = r ] = P
[

ln
p( y|xm ′, r)

p( y|xm, r)
> 0

]

= P [Zmm ′(r) > 0]
(14.4–13)

and the likelihood ratio Zmm ′(r) becomes

Zmm ′(r) = ln
p( y|xm ′, r)

p( y|xm, r)

= 1

N0

(‖ y − rxm‖2 − ‖ y − rxm ′ ‖2)

= 1

N0

n∑
j=1

Zmm ′ j (r j )

(14.4–14)

with

Zmm ′ j (r j ) = |y j − r j xmj |2 − |y j − r j xm ′ j |2
= |r j |2

(|xmj |2 − |xm ′ j |2
) + 2Re

[
y∗

j r j (xm ′ j − xmj )
] (14.4–15)

Since we are assuming xm is transmitted, we have y j = r j xmj + n j . Substituting this
into Equation 14.4–15 and simplifying yield

Zmm ′ j (r j ) = −|r j |2|xmj − xm ′ j |2 − 2Re
[
r j n

∗
j (xmj − xm ′ j )

]
= −|r j |2d2

mm ′ j − N j

(14.4–16)

where N j is a real zero-mean Gaussian random variable with variance 2|r j |2d2
mm ′ j N0

and dmm ′ j is the Euclidean distance between the constellation points representing the
j th components of xm and xm ′ .

Substituting Equation 14.4–16 into Equation 14.4–13 yields

Zmm ′(r) = 1

N0

n∑
j=1

(−|r j |2d2
mm ′ j − N j

)
(14.4–17)
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Using this result, Equation 14.4–13 gives

P [xm → xm ′ |R = r ] = P

⎡
⎣ n∑

j=1

(|R j |2d2
mm ′ j + N j

)
< 0

∣∣∣∣∣∣ R = r

⎤
⎦ (14.4–18)

Applying the Chernov bounding technique discussed in Section 2.4 gives

P

⎡
⎣ n∑

j=1

(|R j |2d2
mm ′ j + N j

)
< 0

∣∣∣∣∣∣ R = r

⎤
⎦ = E

[
eν

∑n

j=1

(
|R j |2d2

mm′ j
+N j

)
<0

∣∣∣∣ R = r
]

≤ min
ν<0

n∏
j=1

E
[

eν
(
|R j |2d2

mm′ j
+N j

)∣∣∣∣ R j = r j

]

(14.4–19)

where |R j | denotes the envelope of the fading process. Substituting this result into
Equation 14.4–12 gives

Pm→m ′ ≤ min
ν<0

n∏
j=1

∫
E

[
eν

(
|R j |2d2

mm′ j
+N j

)∣∣∣∣ R j = r j

]
p(r j ) dr j (14.4–20)

Ricean Fading Here we assume that |R j |, the envelope of the fading process,
has a Ricean PDF as given by Equation 2.3–56. We can directly apply the result of
Example 2.4–2 in Section 2.4, and in particular Equation 2.4–25, to obtain

Pm→m ′ ≤
n∏

j=1

1

1 + d2
mm′ j

2N0
σ 2

exp

⎡
⎣−

d2
mm′ j

4N0
s2

1 + d2
mm′ j

2N0
σ 2

⎤
⎦ (14.4–21)

and finally, from Equation 14.4–11 we have

Pe ≤ 1

M

M∑
m=1

M∑
m ′=1
m ′ �=m

n∏
j=1

1

1 + d2
mm′ j

2N0
σ 2

exp

⎡
⎣−

d2
mm′ j

4N0
s2

1 + d2
mm′ j

2N0
σ 2

⎤
⎦ (14.4–22)

In Equations 14.4–21 and 14.4–22, σ 2 and s are the parameters of the Ricean random
variable determining the envelope of the fading process. The pairwise error probability
can also be expressed in terms of the Rice factor K as (see Equation 2.4–26)

Pm→m ′ ≤
n∏

j=1

K + 1

K + 1 + Ad2
mm′ j

4N0

exp

⎡
⎣−

AK d2
mm′ j

4N0

K + 1 + Ad2
mm′ j

4N0

⎤
⎦ (14.4–23)
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where A = E
[|R j |2

] = s2 + 2σ 2 is the fading gain and K = s2

2σ 2 is the Rice factor.
From Equations 14.4–21 and 14.4–23 it is seen that if for one particular codeword
component j we have xmj = xm ′ j , and hence dmm ′ j = 0, the corresponding term in
the product is equal to 1. Therefore, it is sufficient to consider only those terms in the
product for which xmj �= xm ′ j . Let us denote the components j for which xmj �= xm ′ j

by Jmm ′ , i.e,

Jmm ′ = {1 ≤ j ≤ n : xmj �= xm ′ j } (14.4–24)

Then

Pm→m ′ ≤
∏

j∈Jmm′

1

1 + d2
mm′ j

2N0
σ 2

exp

⎡
⎣−

d2
mm′ j

4N0
s2

1 + d2
mm′ j

2N0
σ 2

⎤
⎦ (14.4–25)

and in terms of the Rice factor,

Pm→m ′ ≤
∏

j∈Jmm′

K + 1

K + 1 + Ad2
mm′ j

4N0

exp

⎡
⎣−

AK d2
mm′ j

4N0

K + 1 + Ad2
mm′ j

4N0

⎤
⎦ (14.4–26)

For a normalized fading channel which does not change the transmitted energy, we
have E[|R|2] = A = 1, and the pairwise error probability can be bounded by

Pm→m ′ ≤
∏

j∈Jmm′

K + 1

K + 1 + d2
mm′ j

4N0

exp

⎡
⎣−

K d2
mm′ j

4N0

K + 1 + d2
mm′ j

4N0

⎤
⎦ (14.4–27)

Rayleigh Fading and Gaussian Channels For the special case of a Rayleigh fading
channel, i.e., in the extreme case of s = K = 0, we have

Pm→m ′ ≤
∏

j∈Jmm′

1

1 + d2
mm′ j

2N0
σ 2

(14.4–28)

and for a normalized Rayleigh fading channel for which 2σ 2 = 1 in which the received
power is equal to the transmitted power (see Equation 14.2–9) we obtain

Pm→m ′ ≤
∏

j∈Jmm′

1

1 + d2
mm′ j

4N0

(14.4–29)

The other extreme of a Ricean channel occurs when K → ∞. In this case
the Ricean channel becomes a Gaussian channel. For this case Equation 14.4–27
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reduces to

Pm→m ′ ≤
∏

j∈Jmm′

e−
d2
mm′ j
4N0 (14.4–30)

or

Pm→m ′ ≤ e−
d2

mm′
4N0 (14.4–31)

This is the standard result for a Gaussian channel used in Equation 4.2–72.

High Signal-to-Noise Ratio Approximation At high signal-to-noise ratios when
Ad2

mm′ j

4N0
� K + 1, the bound in Equation 14.4–26 can be approximated as

Pm→m ′ �
∏

j∈Jmm′

(K + 1)e−K

A2d2
mm′ j

4N0

(14.4–32)

We define the Hamming distance between xm and xm ′ as the cardinality of the set
Jmm ′ ; i.e., the number of components at which x and xm ′ are different.

dH (xm, xm ′) = |Jmm ′ | = ∣∣{1 ≤ j ≤ n : xmj �= xm ′ j }
∣∣ (14.4–33)

The product distance of a code is defined as

δ2(xm, xm ′) = 1( E s
)dH (xm ,xm′ )

∏
j∈Jmm′

d2
mm ′ j (14.4–34)

where E s is the average energy per codeword, given by

E s = 1

M

M∑
m=1

‖xm‖2 (14.4–35)

Note that with this definition we have factored the effect of the signal energy and have
defined the product distance for a normalized code, which is similar to the original
code, but has average energy equal to 1. With this definition Equation 14.4–32 can be
written as

Pm→m ′�

[
(1 + K )e−K

]dH (xm ,xm′ )

(
Es

4N0

)dH (xm ,xm′ )
δ2(xm, xm ′)

(14.4–36)

or

Pm→m ′ �

⎡
⎣ (1 + K )e−K

�mm ′ Es
4N0

⎤
⎦

dH (xm ,xm′ )

(14.4–37)

where

�mm ′ = (
δ2(xm, xm ′)

) 1
dH (xm ,xm′ ) (14.4–38)
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is the geometric mean of the Euclidean distances of the unequal components of xm and
xm ′ . Note that the signal-to-noise ratio is multiplied by �mm ′ , which we call the coding
gain of sequences xm and xm ′ due to its similarity to the Gaussian case.

Using Equation 14.4–37, in Equation 14.4–22, we obtain the following approximate
bound:

Pe �
1

M

M∑
m=1

M∑
m ′=1
m ′ �=m

⎡
⎣ (1 + K )e−K

�mm ′ Es
4N0

⎤
⎦

dH (xm ,xm′ )

(14.4–39)

For reasonably high signal-to-noise ratios, the dominating term in Equation 14.4–39 is
the term corresponding to the codewords with the minimum Hamming distance. In this
case we have

Pe � (M − 1)

⎡
⎣ (1 + K )e−K

�min
Es

4N0

⎤
⎦

dmin

(14.4–40)

where dmin is the minimum Hamming distance of the code and

�min = (
δ2

min

) 1
dmin (14.4–41)

where δ2
min denotes the minimum of the product distances of the codeword pairs having

the minimum Hamming distance.
For a Rayleigh fading channel K = 0 and for high signal-to-noise ratios, Equa-

tions 14.4–36, 14.4–37, 14.4–39, and 14.4–40 simplify to

Pm→m ′ �
1(

Es
4N0

)dH (xm ,xm′ )
δ2(xm, xm ′)

(14.4–42)

Pm→m ′ �

⎡
⎣ 1

�mm ′ Es
4N0

⎤
⎦

dH (xm ,xm′ )

(14.4–43)

Pe �
1

M

M∑
m=1

M∑
m ′=1
m ′ �=m

⎡
⎣ 1

�mm ′ Es
4N0

⎤
⎦

dH (xm ,xm′ )

(14.4–44)

Pe � (M − 1)

⎡
⎣ 1

�min
Es

4N0

⎤
⎦

dmin

(14.4–45)

Note that in Equations 14.4–40 and 14.4–45 we have been rather conservative to
use the factor (M − 1). This is with the assumption that all codewords are at minimum
distance from the transmitted codeword and certainly results in an upper bound on the
error probability. A more realistic bound would be obtained if (M −1) were substituted
by the (average) number of codewords at distance dmin, i.e., the multiplicity of the code
denoted by Nmin.
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Diversity Through Coding Since the product distance is defined for a unit-energy
constellation, its effect is independent of the signal-to-noise ratio. Its effect on the per-
formance of the coded system is to increase the signal-to-noise ratio, or shift the perfor-
mance plots by �min, the coding gain. A very important role is played by the minimum
Hamming distance of the code. Comparing Equations 14.4–42 to 14.4–45 with the per-
formance of diversity systems derived in Chapter 13, we note that in coded systems the
error probability is proportional to (SNR)−dmin and in a system with L-order diversity
the performance is propositional to (SNR)−L . We conclude that the effect of coding
is similar to the effect of an L-order diversity with L = dmin. In other words, a code
with minimum distance of dmin provides diversity of order dmin. This should be clear
by noting that a diversity system is equivalent to transmitting a signal L times, and this
is similar to using a repetition code of length L for which dmin = L . Coding, however,
can provide greater flexibility in choice of the diversity order and can provide coding
gain as well. In the context of coding for fading channels, the parameter dmin of a code
is usually called the diversity order or the effective length of the code.

From the above discussion it is clear that the factors affecting the performance of a
coded system on a Rayleigh fading channel are quite different from the factors affecting
the performance on Gaussian channels. On a Gaussian channel the performance of a
coded system is mainly determined by the minimum Euclidean distance of the code. In
other words, as long as the Euclidean distance between two codewords is large, it does
not matter how this distance is distributed among the code components. In a Rayleigh
fading channel, two parameters of the code contribute to its performance. The minimum
distance of the code determines the diversity order of the coded system and therefore
determines the slope of the error probability plots of the coded system. This is the most
important factor determining the code performance particularly at high signal-to-noise
ratios. A second factor that affects the performance is the product distance of the code
whose impact on the performance of the coded system is felt through the coding gain
�min. This effect is an additive effect on the performance plots and results in a horizontal
shift in performance curves. Since �min is the geometric mean of the Euclidean distances
of the codeword components over nonequal components, and the geometric mean of
positive numbers with a constant sum is maximized when the numbers are equal, we
conclude that a good performing code over a Rayleigh fading channel must have all
the components different to provide the highest diversity and must have the overall
Euclidean distance equally distributed among the codeword components to achieve the
highest possible coding gain.

Signal Space Diversity To describe the effect of diversity order of a coded system
in a Rayleigh fading channel and see the difference in performance between Rayleigh
fading and Gaussian channels, consider the two signal sets given in Figure 14.4–1.
The signal constellation (a) is a standard QPSK constellation, and (b) is a rotated
version of it. If coding affects only the quadrature component of the transmitted signal,
the constellation gets contracted in the vertical direction. Under these conditions the
constellation points move to the location denoted by the empty circles. If the fading
is quite deep, it is possible that the two constellation points with the same real part
collapse into the same point, thus causing considerable error probability. It is clear that
under these conditions the constellation shown in Figure 14.4–1(b) performs better than
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(a) (b)

FIGURE 14.4–1
The effect of Hamming distance on the performance of a coded system over fading channels.
[From Boutros and Viterbo (1998), copyright IEEE.]

the constellation of Figure 14.4–1(a). Note that the two constellations have the same
Euclidean distance between signal points, and hence their performance over Gaussian
channels is similar. The reason for better performance of constellation (b) is that it has
higher Hamming distance and hence provides higher diversity. The diversity order for
constellation (a) is 1, whereas the diversity order for constellation (b) is 2. This type of
diversity which is a direct result of the choice of the points in the signal space is called
signal space diversity. Note that in moving from constellation (a) to constellation (b) no
redundancy is introduced, and therefore the spectral efficiency of the communication
system has not been compromised. The better performance of signal space diversity
is achieved by a simple rotation of the constellation. It has been shown by Boutros
and Viterbo (1998) that this simple rotation can improve the performance of a QPSK
signaling scheme over a Rayleigh fading channel by 8 dB at error probability of 10−3.

Signal space diversity through rotation of a Gaussian constellation can be applied
to signal constellations carved from a lattice. Using this technique results in a system
with improved performance on fading channels at no bandwidth or power cost. The
only drawback of these systems is increased detection complexity when compared with
the unrotated lattice. Details on signal space diversity can be found in Boutros et al.
(1996) and Boutros and Viterbo (1998).

Performance of Fully Interleaved Fading Channels with No CSI
Derivation of the pairwise error probability in this case is more involved. The details
for an MPSK constellation can be found in Divsalar and Simon (1988a) and Jamali and
Le-Ngoc (1994). The result for Ricean fading is given by

Pm→m ′ ≤ min
ν>0

∏
j∈Jmm′

e
ν2

N0
|xmj −xm′ j |2 e−K

π

∫ π

0

[
1 − 2

√
πλ(θ )Q

(√
2λ(θ )

)
eλ2(θ )

]
dθ

(14.4–46)
where

λ(θ ) =
ν

2N0
|xmj − xm ′ j |2√

K + 1
−

√
K cos(θ ) (14.4–47)
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At high signal-to-noise ratios and moderate to low values of K , this expression can
be further simplified and can be written in the following form

Pm→m ′ ≤
[

(K + 1)e−K
2e
dH

�mm ′ SNR
·
∑

j∈Jmm′ |x̃m − x̃m ′ |2
�mm ′

]dH

(14.4–48)

where dH = dH (xm, xm ′) is the Hamming distance between xm and xm ′ and x̃m =
1√
Es

xm and x̃m ′ = 1√
Es

xm ′ . The signal-to-noise ratio is defined as SNR = Es
N0

. For the

special case of a Rayleigh fading channel for which K = 0, this bound becomes

Pm→m ′ ≤
[

2e
dH

�mm ′ SNR
·
∑

j∈Jmm′ |x̃m − x̃m ′ |2
�mm ′

]dH

(14.4–49)

14.5
TRELLIS-CODED MODULATION FOR FADING CHANNELS

Our discussion in Section 14.4 shows that in design of good codes for fading channels it
is important to consider code parameters that are different from the parameters consid-
ered for code design on Gaussian channels. We recall that for code design on Gaussian
channels, when soft decision decoding is employed, two parameters determine the
performance of the code. These parameters are

1. The minimum Euclidean distance of the code. This is the dominating factor that
determines the performance of the code, particularly at high signal-to-noise ratios.

2. The multiplicity of the code, i.e., the number of codewords that are at low Euclidean
distance, and particularly at minimum Euclidean distance, from a given codeword.
This parameter is particularly important at low signal-to-noise ratios. Turbo codes
are examples of codes with low multiplicity that contributes to their excellent per-
formance at low SNRs.

For fading channels the code parameters with highest impact on code performance are

1. The code diversity order or effective length, given by the minimum Hamming dis-
tance of the code. This determines the slope of the error probability plot and is
particularly the determining factor at high signal-to-noise ratios.

2. The product distance of the code as defined by Equation 14.4–34 which determines
the coding gain defined by Equations 14.4–38 and 14.4–41. This parameter results in
a shift in the error probability plot of the code and has the same effect at all signal-to-
noise ratios. It is interesting to note that the effect of increasing the product distance
on the coding gain is more pronounced at lower diversity orders. This is due to the
effect of the 1

dmin
exponent in Equation 14.4–41. For instance, doubling the product

distance in a code with diversity order of 2 increases the coding gain by 1.5 dB,
whereas in a code with diversity order of 4, the same increase in the product distance
improves the coding gain by 0.75 dB.
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3. The multiplicity of the code Nmin, i.e., the total number of codewords at minimum
diversity order and product distance. This factor affects the performance of the code
at low signal-to-noise ratios.

14.5–1 TCM Systems for Fading Channels

Trellis-coded modulation was described in Section 8.12 as a means for achieving a
coding gain on bandwidth-constrained channels, where we wish to transmit at a bit
rate-to-bandwidth ratio R/W > 1. For such channels, the digital communication sys-
tem is designed to use bandwidth-efficient multilevel or multiphase modulation (PAM,
PSK, DPSK, or QAM), which allows us to achieve an R/W > 1. When coding is
applied in signal design for a bandwidth-constrained channel, a coding gain is desired
without expanding the signal bandwidth. This goal can be achieved, as described in
Section 8.12, by increasing the number of signal points in the constellation over the cor-
responding uncoded system, to compensate for the redundancy introduced by the code,
and designing the trellis code so that the Euclidean distance in a sequence of transmitted
symbols corresponding to paths that merge at any node in the trellis is larger than the
Euclidean distance per symbol in an uncoded system. In contrast, traditional coding
schemes used on fading channels in conjunction with FSK or PSK modulation expand
the bandwidth of the modulated signal for the purpose of achieving signal diversity.

In designing trellis-coded signal waveforms for fading channels, we may use the
same basic principles that we have learned and applied in the design of conventional
coding schemes. In particular, the most important objective in any coded signal design
for fading channels is to achieve as large a diversity order as possible.

As indicated above, the candidate modulation methods that achieve high bandwidth
efficiency are M-ary PSK, DPSK, QAM, and PAM. The choice depends to a large extent
on the channel characteristics. If there are rapid amplitude variations in the received
signal, QAM and PAM may be particularly vulnerable, because a wideband automatic
gain control (AGC) must be used to compensate for the channel variations. In such a
case, PSK or DPSK is more suitable, since the information is conveyed by the signal
phase and not by the signal amplitude. DPSK provides the additional benefit that carrier
phase coherence is required only over two successive symbols. However, there is an
SNR degradation in DPSK relative to PSK.

The discussion and the design criteria provided in Section 14.5 show that a good
TCM code for the Gaussian channel is not necessarily a good code for the fading
channel. It is quite possible that a trellis code has a large Euclidean distance but has
a low effective code length or product distance. In particular some of the good codes
designed by Ungerboeck for the Gaussian channel (Ungerboeck (1983)) have parallel
branches in their trellises. The existence of parallel branches in TCM codes is due to
the existence of uncoded bits, as explained in Chapter 8. Obviously, two paths in the
trellis that are similar on all branches but correspond to different branches on a parallel
branch have a minimum distance of 1 and provide a diversity order of unity. Such codes
are not desirable for transmission over fading channels due to their low diversity order
and should be avoided. This is not, however, a problem with the Gaussian channel, and
in fact many good TCM schemes that work satisfactorily on Gaussian channels have
parallel branches in their trellis representation.
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To design TCM schemes with high diversity order, we have to make sure that the
paths in the trellis corresponding to different code sequences have long runs of different
branches, and the branches are labeled by different symbols from the code constellation.
In order for two code sequences to have a diversity order of L , the corresponding paths
in the code trellis must remerge at least L branches after diverging, and the two paths
on these L branches must have different labels. This clearly indicates that for L > 1
parallel transitions have to be excluded.

Let us consider an (n, k, K ) convolutional code as shown in Figure 8.1–1. The
number of memory elements in this code is K k, the number of states in the trellis
representing this code is 2k(K−1), and 2k branches enter and leave each state of the
trellis. Without loss of generality we consider the all-zero path and a path diverging
from it. The diverging path from the all-zero path corresponds to an input of k bits
that contains at least one 1. Since the number of memory elements of the code is K k,
it takes K sequences of k-bit inputs, all equal to zero, to move the 1 (or 1s) out of
the kK memory units, thus bringing back the code to the all-zero state and remerging
the path with the all-zero path. This shows that the two paths that have emerged from
one state can remerge after at least K branches, and hence this code can potentially
provide a diversity order of K . Therefore, the diversity order that a convolutional code
can provide is equal to K , the constraint length of the convolutional code. To employ
this potential diversity order, we need to have enough points in the signal constellation
to assign different signal points to different branches of the trellis.

Let us consider the following trellis code studied by Wilson and Leung (1987). The
trellis diagram and the constellation for this TCM scheme are shown in Figure 14.5–1
As seen in the figure, the trellis corresponding to this code is a fully connected trellis,
and there are no parallel branches on it, i.e., each branch of the trellis corresponds to
a single point in the constellation. The diversity order for this trellis is 2; therefore
the error probability is inversely proportional to the square of the signal-to-noise-ratio.
The product distance provided by this code is 1.172. It can be easily verified that the
squared free Euclidean distance for this code is d2

free = 2.586; therefore the coding
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FIGURE 14.5–1
A TCM scheme for fading channels.
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gain of the TCM scheme in Figure 14.5–1, when used for transmission over an AWGN
channel, is 1.1 dB which is 1.9 dB inferior to the coding gain of the Ungerboeck code
of comparable complexity given in Section 8.12.

In Schlegel and Costello (1989) a class of 8-PSK rate 2/3 TCM codes for various
constraint lengths is introduced. The search for good codes in this work is done among
all codes that can be designed by employing a systematic convolutional code followed by
mapping to the 8-PSK signal constellation. It turns out that the advantage of this design
procedure is more noticeable at higher constraint lengths. In particular, this design
approach results in the same codes obtained by Ungerboeck (1983) when the constraint
length is small. At high constraint lengths these codes are capable of providing both
higher diversity orders and higher product distances compared to the codes designed
by Ungerboeck. For example, for a trellis with 1024 states, these codes can provide a
diversity order of 5 and a (normalized) product distance of 128. For comparison, the
Ungerboeck code with the same complexity can provide a diversity order of 4 and a
product distance of 32.

In Du and Vucetic (1990), Gray coding is employed in the mapping from a convo-
lutional code output to the signal constellation. An exhaustive search is performed on
8-PSK TCM schemes, and it is shown that, particularly at lower constraint lengths, these
codes have a better performance compared to those designed in Schlegel and Costello
(1989). As the number of states increases, the performance of the codes designed in
Schlegel and Costello (1989) is better. As an example for a 32-state trellis code, the
approach of Du and Vucetic (1990) results in a diversity order of 3 and a normalized
product distance of 32, whereas the corresponding figures for the code designed in
Schlegel and Costello (1989) are 3 and 16, respectively.

In Jamali and Le-Ngoc (1991), not only is the design problem of good 4-state 8-PSK
trellis codes addressed, but also general design rules are formulated for the Rayleigh
fading channel. These design principles can be viewed as the generalization of the
design rules formulated in Ungerboeck (1983) for the Gaussian channel. Application
of these rules results in improved performance. As an example, by applying these rules
one obtains the signal constellation and the trellis shown in Figure 14.5–2.
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FIGURE 14.5–2
The improved TCM scheme.
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It is easy to verify that the coding gain of this code over an AWGN channel (as
expressed by the free Euclidean distance) is 2 dB, which is 0.9 dB superior to the code
designed in Wilson and Leung (1987) and shown in Figure 14.5–1, and only 1 dB
inferior to the Ungerboeck code with a comparable complexity. It is also easy to see
that the product distance of this code is twice the product distance of the code shown
in Figure 14.5–1, and therefore the performance of this code over a fading channel is
superior to the performance of the code designed in Wilson and Leung (1987). Since
the squared product distance of this code can be shown to be twice the squared product
distance of the code shown in Figure 14.5–1, the asymptotic performance improvement
of this code compared to the one designed in Wilson and Leung (1987), when used
over fading channels, is 10 log

√
2 = 1.5 dB. The encoder for this code can be realized

by a convolutional encoder followed by a natural mapping to the 8-PSK signal set.

14.5–2 Multiple Trellis-Coded Modulation (MTCM)

We have seen that the performance of trellis code modulation schemes on fading chan-
nels is primarily determined by their diversity order and product distance. In particular,
we saw that trellises with parallel branches are to be avoided in transmission over fading
channels due to their low (unity) diversity order. In cases where high bit rates are to
be transmitted under severe bandwidth restrictions, the signal constellation consists of
many signal points. In such cases, to avoid parallel paths in the code trellis, the number
of trellis states should be very large, resulting in a very complex decoding scheme.

An innovative approach to avoid parallel branches and at the same time to avoid
a very large number of states is to employ multiple trellis-coded modulation (MTCM)
as first formulated in Divsalar and Simon (1988c). The block diagram for a multiple
trellis-coded modulation is shown in Figure 14.5–3.

In the multiple trellis-coded modulation depicted in Figure 14.5–3, at each in-
stance of time K = km information bits enter the trellis encoder and are mapped into
N = nm bits, which correspond to m signals from a signal constellation with a total of
2n signal points, and these m signals are transmitted over the channel. The important
fact is that, unlike the standard TCM, here each branch of the trellis is labeled with m
signals from the constellation and not only one signal. The existence of more than one

. . . . . .

. . .

Trellis encoder Mapper Modulator

km bits

n bits

n bits

n bits

mn bits m signals

sl1

sl1
, sl2

, ..., slm

sl2

slm

FIGURE 14.5–3
Block diagram of a multiple trellis-coded modulation scheme.
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signal corresponding to each trellis branch results in higher diversity order and therefore
improved performance when used over fading channels. In fact, MTCM schemes can
have a relatively small number of states and at the same time avoid a reduced diversity
order. The throughput (or spectral bit rate, defined as the ratio of the bit rate to the
bandwidth) for this system is k, which is equivalent to an uncoded (and a conventional
TCM) system. In most implementations of MTCM, the value of n is selected to be
k + 1. Note that with this choice, the case m = 1 is equivalent to conventional TCM.
The rate of the MTCM code is R = K/N = k/n.

In the following example we give a specific TCM scheme and discuss its perfor-
mance in a fading environment. The signal constellation and the trellis for this example
are shown in Figure 14.5–4. For this code we assume m = 2, k = 2, and n = 3.

Therefore, the rate of this code is 2/3, and the trellis selected for the code is a two-state
trellis. At each instant of time K = km = 4 information bits enter the encoder. This
means that there are 2K = 16 branches leaving each state of the trellis. Due to the
symmetry in the structure of the trellis, there exist eight parallel branches connecting
any two states of the trellis. The difference, however, with conventional trellis-coded
modulation is that here we assign two signals in the signal space to each branch of the
trellis. In fact, corresponding to the K = 4 information bits that enter the encoder,
N = nm = 6 binary symbols leave the encoder. These six binary symbols are used to
select two signals from the 8-PSK constellation shown in Figure 14.5–4 (each signal
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FIGURE 14.5–4
An example of multiple trellis-coded modulation.
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requires three binary symbols). The mappings of the branches to the binary symbols
are also shown in Figure 14.5–4. Close examination of the mappings suggested in this
figure shows that although there exist parallel branches in the trellis for this code, the
diversity order provided by this code is equal to 2.

It is seen from the above example that multiple trellis-coded modulation can achieve
good diversity, which is essential for transmission through the fading channel, without
requiring complex trellises with a large number of states. It can also be shown (see
Divsalar and Simon (1988c)), that this same technique can provide all the benefits of
using the asymmetric signal sets, as described in Divsalar et al. (1987), without the dif-
ficulties encountered with time jitter and catastrophic trellis codes. Optimum set parti-
tioning rules for multiple trellis-coded modulation schemes are investigated in Divsalar
and Simon (1988b) (see also Biglieri et al. (1991)). It is important to note that the signal
set assignments to the trellis branches shown in Figure 14.5–4 are not the best possible
signal assignments if this code is to be used over an AWGN channel. In fact, the signal
set assignment shown in Figure 14.5–5 provides a performance 1.315 dB superior to the
signal set assignment of Figure 14.5–4 when used over an AWGN channel. However,
obviously the signal assignment of Figure 14.5–5 can only provide a diversity order
equal to unity as opposed to the diversity order of 2 provided by the signal assignment of
Figure 14.5–4. This means that on fading channels the performance of the code shown
in Figure 14.5–4 is superior to the performance of the code shown in Figure 14.5–5.
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FIGURE 14.5–5
Signal assignment for an MTCM scheme appropriate for transmission over an AWGN channel.
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14.6
BIT-INTERLEAVED CODED MODULATION

In Section 8.12 we have seen that a coded modulation system in which coding and
modulation are jointly designed as a single entity provides good coding gain over
Gaussian channels with no expansion in bandwidth. These codes employ labeling by
set partitioning on the code trellis rather than common labeling techniques such as
Gray labeling, and these codes achieve their good performance over Gaussian channels
by providing large Euclidian distance between trellis paths corresponding to differ-
ent coded sequences. On the other hand, a code has good performance on a fading
channel if it can provide high diversity order, which depends on the minimum Ham-
ming distance of the code, as was seen in Section 14.4–1. For a code to have good
performance under both channel models, it has to provide high Euclidean and high
Hamming distances. We have previously seen in Chapter 7 that for BPSK and BFSK
modulation schemes the relation between Euclidean and Hamming distances is a simple
relation given by Equations 7.2–15 and 7.2–17, respectively. These equations indicate
that for these modulation schemes Euclidean and Hamming distances are optimized
simultaneously.

For coded modulation where expanded signal sets are employed, the relation be-
tween Euclidean and Hamming distances is not as simple as the corresponding relations
for BPSK and BFSK. In fact, in many coded modulation schemes, where the perfor-
mance is optimized through labeling the trellis branches by set partitioning using the
Ungerboeck’s rules (Ungerboeck (1983)), optimal Euclidean distance, and hence opti-
mal performance on the AWGN channels model, is achieved with TCM schemes that
have parallel branches and thus have a Hamming distance, and consequently diversity
order, equal to unity. These codes obviously cannot perform well on fading channels.
In Section 14.5 we gave examples of coded modulation schemes designed for fading
channels that achieve good diversity gain on these channels. The underlying assumption
in designing these codes was that similar to Ungerboeck’s coded modulation approach,
the modulation and coding have to be considered as a single entity, and the symbols
have to be interleaved by a symbol interleaver of depth usually many times the coher-
ence time of the channel to guarantee maximum diversity. Using symbol interleavers
results in the diversity order of the code being equal to the minimum number of distinct
symbols between the codewords; and as we have seen in Section 14.5–1, this can be
done by eliminating parallel transitions and increasing the constraint length of the code.
However, there is no guarantee that the codes using this approach perform well when
transmitted over an AWGN channel model. In this section we introduce a coded mod-
ulation scheme, called bit-interleaved coded modulation (BICM), that achieves robust
performance under both fading and AWGN channel models.

Bit-interleaved coded modulation was first introduced by Zehavi (1992), who in-
troduced a bit interleaver instead of a symbol interleaver at the output of the channel
encoder and before the modulator. The idea of introducing a bit interleaver is to make
the diversity order of the code equal to the minimum number of distinct bits (rather
than channel symbols) by which two trellis paths differ. Using this scheme results in a
new soft decision decoding metric for optimal decoding that is different from the metric
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used in standard coded modulation. A consequence of this approach is that coding and
modulation can be done separately. Separate coding and modulation results in a system
that is not optimal in terms of achieving the highest minimum Euclidean distance, and
therefore the resulting code is not optimal when used on an AWGN channel. However,
the diversity order provided by these codes is generally higher than the diversity order
of codes obtained by set partitioned labeling and thus provides improved performance
over fading channels. A block diagram of a standard TCM system and a bit-interleaved
coded modulation system are shown in Figure 14.6–1. In both systems a rate 2/3 convo-
lutional code with an 8-PSK constellation is employed. In the TCM system, the symbol
outputs of the encoder are interleaved and then modulated using the 8-PSK constellation
and transmitted over the fading channel, in which ρ and n denote the fading and noise
processes. In the BICM system, instead of the symbol interleaver we are using three
independent bit interleavers that individually interleave the three bit streams. In both
systems deinterleavers (at symbol and bit level, respectively) are used at the receiver
to undo the effect of interleaving. Note that the fading process (CSI) is available at the
receiver in both systems.

Bit-interleaved coded modulation was extensively studied in Caire et al. (1998).
This comprehensive study generalized the system introduced by Zehavi (1992), which
used multiple bit interleavers at the output of the encoder, and instead used a single bit
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FIGURE 14.6–1
A TCM system (left) and a BICM system (right). [From Zehavi (1992) copyright IEEE.]
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FIGURE 14.6–2
The BICM system studied in Caire et al. (1998). [From Caire et al. (1998) copyright IEEE.]

interleaver that operates on the entire encoder output. The block diagram of the system
studied in Caire et al. (1998) is shown in Figure 14.6–2.

The encoder output is applied to to an interleaver denoted by π . The output of the
interleaver is modulated by the modulator consisting of a label map μ followed by a
signal set X . The channel model is a state channel with state s which is assumed to
be a stationary, finite-memory vector channel whose input and output symbols x and
y are N -tuples of complex numbers. The state s is independent of the channel input x,
and conditioned on s, the channel is memoryless, i.e.,

p( y|x, s) =
N∏

i=1

p( yi |xi , si ) (14.6–1)

The state sequence s is assumed to be a stationary finite-memory random process;
i.e., there exists some integer ν ≥ 0 such that for all integers r and s and all integers
ν < k1 < k2 < · · · < kr and j1 < j2 < · · · < js ≤ 0, the sequences (sk1, . . . , skr ) and
(s j1, . . . , s js ) are independent. The integer ν represents the maximum memory length
of the state process. The output of the channel enters the demodulator that computes
the branch metrics which after deinterleaving are supplied to the decoder for final
decision.

Both coded modulation and BICM systems can be described as special cases of
the block diagram of Figure 14.6–2. A coded modulation system results when the
encoder is defined over the label alphabet A and A and X ⊂ C

N have the same
cardinality, i.e., when |A| = |X | = M . The labeling map μ : A → X acts on symbol
interleaved encoder outputs individually. For Ungerboeck codes the encoder is a rate
k/n convolutional code, and A is the set of binary sequences of length n. The labeling
function μ is obtained through applying the set partitioning rules to X .

In BICM, a binary code is employed and its output is bit-interleaved. After inter-
leaving the bit sequence is broken into subsequences of length n, and each is mapped
onto a constellationX ⊂ C

N of size |X | = M = 2n using a mapping μ : {0, 1}n → X .
Let x ∈ X and let �i (x) denote the i th bit of the label x; obviously �i (x) ∈ {0, 1}.

We define

X i
b = {x ∈ X : �i (x) = b} (14.6–2)

where X i
b denotes the set of all points in the constellation whose label is equal to

b ∈ {0, 1} at position i . It can be easily seen that if P [b = 0] = P [b = 1] = 1/2, then

p( y|�i (x) = b, s) = 2−(m−1)
∑
x∈X i

b

p( y|x, s) (14.6–3)
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The computation of the bit metrics at the demodulator depends on the availability
of the channel state information. If CSI is available at the receiver, then the bit metric
for the i th bit of the symbol at time k is given by the log-likelihood

λi ( yk, b) = log
∑
x∈X i

b

p( yk |x, s) (14.6–4)

and for the case with no CSI we have

λi ( yk, b) = log
∑
x∈X i

b

p( yk |x) (14.6–5)

where b ∈ {0, 1} and 1 ≤ i ≤ n. In the bit metric calculation for the no CSI case, we
have

p( yk |x) =
∫

p( yk |x, s)p(s) ds (14.6–6)

Finally, the decoder uses the ML bit metrics to decode the codeword c ∈ C according
to

ĉ = arg max
c∈C

N∑
i=1

λi ( yk, ck) (14.6–7)

which can be implemented using the Viterbi algorithm.
A simpler version of bit metrics can be found using the approximation

log
∑

i

ai ≈ max
i

log ai (14.6–8)

which is similar to Equation 8.8–33. With this approximation we have the approximate
bit metric

λ̃i ( yk, b) =

⎧⎪⎨
⎪⎩

max
x∈X i

b

log p( yk |x, s) CSI available

max
x∈X i

b

log p( yk |x) no CSI
(14.6–9)

It turns out that BICM performs better when it is used with Gray labeling as
opposed to labeling induced by the set partitioning rules. The Gray and set partitioning
labeling for 16-QAM constellation is shown in Figure 14.6–3. Gray labeling is possible
for certain constellations. For instance, Gray labeling is not possible for a 32-QAM
constellation. In such cases a quasi-Gray labeling achieves good performance.

The channel model for BICM, when ideal interleaving is employed, is a set of n
independent memoryless parallel channels with binary inputs that are connected via a
random switch to the encoder output. Each channel corresponds to one particular bit
position from the total n bits. The capacity and the cutoff rate for this channel model
under the assumption of full CSI at the receiver and no CSI are computed in Caire et al.
(1998). Figure 14.6–4 shows the cutoff rate for different BICM systems for different
QAM signaling schemes over AWGN and Rayleigh fading channels.
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FIGURE 14.6–3
Set partitioning labeling (a) and Gray labeling (b) for
16-QAM signaling. [From Caire et al. (1998), copyright
IEEE.]

Comparison of these figures shows that for the AWGN channel the performance of
coded modulation is superior to the performance of BICM at all signal-to-noise ratios.
The performance difference is particularly large for larger constellations and lower-rate
codes. For the Rayleigh fading channel BICM outperforms coded modulation at all rates
above 1 bit per dimension. The difference in performance is particularly noticeable for
larger constellations and higher rates. Similar results can be obtained for orthogonal
signals and noncoherent detection.

Table 14.6–1 summarizes the performance parameters of various TCM and BICM
schemes with comparable complexity. It is seen that using BICM generally improves
the Hamming distance and results in higher diversity order. At the same time BICM
marginally reduces the Euclidean distance, resulting in performance deterioration on
AWGN channels. This indicates that BICM is a good candidate for channels with
variations in the channel model. For instance, Ricean fading channels with varying
Rice factor operate somewhere between Rayleigh fading and Gaussian channels. For
these channels BICM is an attractive coding scheme displaying robustness to changes
in channel characteristics.

For more details on BICM, the interested reader is referred to Caire et al. (1998),
Ormeci et al. (2001), Martinez et al. (2006), and Li and Ritcey (1997, 1998, 1999).
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TABLE 14.6–1

Upper Bounds to Minimum Euclidean Distance
and Diversity Order for TCM and BICM for
16-QAM Signaling. Average Energy is
Normalized to 1 and Transmission Rate is 3 Bits
per Complex Dimension.

BICM TCMEncoder
memory d2

E d2(C) d2
E d M(C)

2 1.2 3 2 1
3 1.6 4 2.4 2
4 1.6 4 2.8 2
5 2.4 6 3.2 2
6 2.4 6 3.6 3
7 3.2 8 3.6 3
8 3.2 8 4 3

Source: From Caire et al. (1998), copyright IEEE.

14.7
CODING IN THE FREQUENCY DOMAIN

Instead of bitwise or symbolwise interleaving in the time domain to increase diversity
of a coded system and improve the performance over a fading channel, we can achieve
similar diversity order by spreading the transmitted signal components in the frequency
domain. A candidate modulation scheme for this case is FSK which can be demodulated
noncoherently when tracking the channel phase is not possible.

A model for this communication scheme is shown in Figure 14.3–1 where each
bit {ci j } is mapped into FSK signal waveforms in the following way. If ci j = 0, the
tone f0 j is transmitted; and if ci j = 1, the tone f1 j is transmitted. This means that 2n
tones or cells are available to transmit the n bits of the codeword, but only n tones are
transmitted in any signaling interval.

The demodulator for the received signal separates the signal into 2n spectral com-
ponents corresponding to the available tone frequencies at the transmitter. Thus, the
demodulator can be realized as a bank of 2n filters, where each filter is matched to
one of the possible transmitted tones. The outputs of the 2n filters are detected nonco-
herently. Since the Rayleigh fading and the additive white Gaussian noises in the 2n
frequency cells are mutually statistically independent and identically distributed ran-
dom processes, the optimum maximum-likelihood soft decision decoding criterion
requires that these filter responses be square-law-detected and appropriately com-
bined for each codeword to form the M = 2k decision variables. The codeword
corresponding to the maximum of the decision variables is selected. If hard deci-
sion decoding is employed, the optimum maximum-likelihood decoder selects the
codeword having the smallest Hamming distance relative to the received codeword.
Either a block or a convolutional code can be employed as the underlying code in this
system.
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14.7–1 Probability of Error for Soft Decision Decoding
of Linear Binary Block Codes

Consider the decoding of a linear binary (n, k) code transmitted over a Rayleigh fad-
ing channel, as described above. The optimum soft-decision decoder, based on the
maximum-likelihood criterion, forms the M = 2k decision variables.

Ui =
n∑

j=1

[
(1 − ci j )| y0 j |2 + ci j | y1 j |2

]

=
n∑

j=1

[| y0 j |2 + ci j
(| y1 j |2 − | y0 j |2

)]
, i = 1, 2, . . . , 2k

(14.7–1)

where | yr j |2, j = 1, 2, . . . , n, and r = 0, 1 represent the squared envelopes at the
outputs of the 2n filters that are tuned to the 2n possible transmitted tones. A decision
is made in favor of the code word corresponding to the largest decision variable of the
set {Ui }.

Our objective in this section is the determination of the error rate performance of
the soft-decision decoder. Toward this end, let us assume that the all-zero code word c1

is transmitted. The average received signal-to-noise ratio per tone (cell) is denoted by
γ̄c. The total received SNR for the n tones in nγ̄c and, hence, the average SNR per bit is

γ̄b = n

k
γ̄c = γ̄c

Rc
(14.7–2)

where Rc is the code rate.
The decision variable U1 corresponding to the code word c1 is given by

Equation 14.7–1 with ci j = 0 for all j . The probability that a decision is made in
favor of the mth code word is just

P2(m) = P(Um > U1) = P(U1 − Um < 0)

= P

⎡
⎣ n∑

j=1

(c1 j − cmj )
(| y1 j |2 − | y0 j |2

)
< 0

⎤
⎦

= P

⎡
⎣ wm∑

j=1

(| y0 j |2 − | y1 j |2
)

< 0

⎤
⎦

(14.7–3)

where wm is the weight of the mth code word. But the probability in Equation 14.7–3
is just the probability of error for square-law combining of binary orthogonal FSK with
wm th-order diversity. That is,

P2(m) = pwm

wm−1∑
k=0

(
wm − 1 + k

k

)
(1 − p)k (14.7–4)

≤ pwm

wm−1∑
k=0

(
wm − 1 + k

k

)
=

(
2wm − 1

wm

)
pwm (14.7–5)
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where

p = 1

2 + γ̄c
= 1

2 + Rcγ̄b
(14.7–6)

As an alternative, we may use the Chernov upper bound derived in Section 13.4, which
in the present notation is

P2(m) ≤ [4p(1 − p)]wm (14.7–7)

The sum of the binary error events over the M − 1 nonzero-weight code words
gives an upper bound on the probability of error. Thus,

Pe ≤
M∑

m=2

P2(m) (14.7–8)

Since the minimum distance of the linear code is equal to the minimum weight, it
follows that

(2 + Rcγ̄b)−wm ≤ (2 + Rcγ̄b)−dmin

The use of this relation is conjunction with Equations 14.7–5 and 14.7–8 yields a simple,
albeit looser, upper bound that may be expressed in the form

Pe <

M∑
m=2

(
2wm − 1

wm

)

(2 + Rcγ̄b)dmin
(14.7–9)

This simple bound indicates that the code provides an effective order of diversity equal
to dmin. An even simpler bound is the union bound

Pe < (M − 1)[4p(1 − p)]dmin (14.7–10)

which is obtained from the Chernov bound given in Equation 14.7–7.
As an example serving to illustrate the benefits of coding for a Rayleigh fading

channel, we have plotted in Figure 14.7–1 the performance obtained with the extended
Golay (24,12) code and the performance of binary FSK and quaternary FSK each with
dual diversity. Since the extended Golay code requires a total of 48 cells and k = 12,
the bandwidth expansion factor Be = 4. This is also the bandwidth expansion factor
for binary and quaternary FSK with L = 2. Thus, the three types of waveforms are
compared on the basis of the same bandwidth expansion factor. Note that at Pb = 10−4,
the Golay code outperforms quaternary FSK by more than 6 dB, and at Pb = 10−5, the
difference is approximately 10 dB.

The reason for the superior performanc of the Golay code is its large minimum
distance (dmin = 8), which translates into an equivalent eighth-order (L = 8) diversity.
In contrast, the binary and quaternary FSK signals have only second-order diversity.
Hence, the code makes more efficient use of the available channel bandwidth. The price
that we must pay for the superior performance of the code is the increase in decoding
complexity.
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FIGURE 14.7–1
Example of performance obtained with
conventional diversity versus coding for
Be = 4.

14.7–2 Probability of Error for Hard-Decision Decoding
of Linear Block Codes

Bounds on the performance obtained with hard-decision decoding of a linear binary
(n, k) code have already been given in Section 7.5–2. These bounds are applicable to
a general binary-input, binary-output memoryless (binary symmetric) channel, and,
hence, they apply without modification to a Rayleigh fading AWGN channel with
statistically independent fading of the symbols in the code word. The probability of a
bit error needed to evaluate these bounds when binary FSK with noncoherent detection
is used as the modulation and demodulation technique is given by Equation 14.7–6.

A particularly interesting result is obtained when we use the Chernov upper bound
on the error probability for hard-decision decoding given by

P2(m) ≤ [4p(1 − p)]wm/2 (14.7–11)

and Pe is upper-bounded by Equation 14.7–8. In comparison, the Chernov upper bound
for P2(m) when soft-decision decoding is employed is given by Equation 14.7–7. We
observe that the effect of hard-decision decoding is a reduction in the distance between
any two code words by a factor of 2. When the minimum distance of a code is relatively
small, the reduction of the distances by a factor of 2 is much more noticeable in a fading
channel than in a nonfading channel.

For illustrative purposes we have plotted in Figure 14.7–2 the performance of the
Golay (23, 12) code when hard-decision and soft-decision decoding are used. The
difference in performance at Pb = 10−5 is approximately 6 dB. This is a significant
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FIGURE 14.7–2
Comparison of performance between
hard- and soft-decision decoding.

difference in performance compared with the 2-dB difference between soft- and hard-
decision decoding in a nonfading AWGN channel. We also note that the difference
in performance increases as Pb decreases. In short, these results indicate the ben-
efits of soft-decision decoding over hard-decision decoding on a Rayleigh fading
channel.

14.7–3 Upper Bounds on the Performance of Convolutional
Codes for a Rayleigh Fading Channel

In this subsection, we derive the performance of binary convolutional codes when used
on a Rayleigh fading AWGN channel. The encoder accepts k binary digits at a time and
puts out n binary digits at a time. Thus, the code rate is Rc = k/n. The binary digits at
the output of the encoder are transmitted over the Rayleigh fading channel by means of
binary FSK, which is square-law-detected at the receiver. The decoder for either soft-
or hard-decision decoding performs maximum-likelihood sequence estimation, which
is efficiently implemented by means of the Viterbi algorithm.

First, we consider soft-decision decoding. In this case, the metrics computed in the
Viterbi algorithm are simply sums of square-law-detected outputs from the demodula-
tor. Suppose the all-zero sequence is transmitted. Following the procedure outlined in
Section 8.2–2, it is easily shown that the probability of error in a pairwise comparison
of the metric corresponding to the all-zero sequence with the metric corresponding to
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another sequence that merges for the first time at the all-zero state is

P2(d) = pd
d−1∑
k=0

(
d − 1 + k

k

)
(1 − p)k (14.7–12)

where d is the number of bit positions in which the two sequences differ and p is
given by Equation 14.7–6. That is, P2(d) is just the probability of error for binary
FSK with square-law detection and dth-order diversity. Alternatively, we may use the
Chernov bound in Equation 14.7–7 for P2(d). In any case, the bit error probability is
upper-bounded, as shown in Section 8.2–2 by the expression

pb <
1

k

∞∑
d=dfree

βd P2(d) (14.7–13)

where the weighting coefficients {βd} in the summation are obtained from the expansion
of the first derivative of the transfer function T (Y, Z ), given by Equation 8.2–12.

When hard-decision decoding is performed at the receiver, the bounds on the error
rate performance for binary convolutional codes derived in Section 8.2–2 apply. That
is, Pb is again upper-bounded by the expression in Equation 14.7–13, where P2(d) is
defined by Equation 8.2–16 for odd d and by Equation 8.2–17 for even d , or upper-
bounded (Chernov bound) by Equation 8.2–15, and p is defined by Equation 14.7–6.

As in the case of block coding, when the respective Chernov bounds are used for
P2(d) with hard-decision and soft-decision decoding, it is interesting to note that the
effect of hard-decision decoding is to reduce the distances (diversity) by a factor of
2 relative to soft-decision decoding.

The following numerical results illustrate the error rate performance of binary,
rate 1/n, maximal free distance convolutional codes for n = 2, 3, and 4 with soft-
decision Viterbi decoding. First of all, Figure 14.7–3 shows the performance of the rate
1/2 convolutional codes for constraint lengths 3, 4, and 5. The bandwidth expansion
factor for binary FSK modulation is Be = 2n. Since an increase in the constraint
length results in an increase in the complexity of the decoder to go along with the
corresponding increase in the minimum free distance, the system designer can weight
these two factors in the selection of the code.

Another way to increase the distance without increasing the constraint length of
the code is to repeat each output bit m times. This is equivalent to reducing the code
rate by a factor of m or expanding the bandwidth by the same factor. The result is
a convolutional code that has a minimum free distance of mdfree, where dfree is the
minimum free distance of the original code without repetitions. Such a code is almost
as good, from the viewpoint of minimum distance, as a maximum free distance, rate
1/mn code. The error rate performance with repetitions is upper-bounded by

Pb <
1

k

∞∑
dfree

βd P2(md) (14.7–14)

where P2(md) is given by Equation 14.7–12. Figure 14.7–4 illustrates the performance
of the rate 1/2 codes with repetitions (m = 1, 2, 3, 4) for constraint length 5.
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FIGURE 14.7–3
Performance of rate 1/2 binary
convolutional codes with soft-decision
decoding.

FIGURE 14.7–4
Performance of rate 1/2m, constraint
length 5, binary convolutional codes with
soft-decision decoding.
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14.7–4 Use of Constant-Weight Codes and Concatenated Codes
for a Fading Channel

Our treatment of coding for a Rayleigh channel to this point was based on the use of
binary FSK as the modulation technique for transmitting each of the binary digits in a
code word. For this modulation technique, all the 2k code words in the (n, k) code have
identical transmitted energy. Furthermore, under the condition that the fading on the n
transmitted tones is mutually statistically independent and identically distributed, the
average received signal energy for the M = 2k possible code words is also identical.
Consequently, in a soft-decision decoder, the decision is made in favor of the code word
having the largest decision variable.

The condition that the received code words have identical average SNR has an
important ramification in the implementation of the receiver. If the received code words
do not have identical average SNR, the receiver must provide bias compensation for
each received code word so as to render it equal energy. In general, the determination
of the appropriate bias terms is difficult to implement because it requires the estimation
of the average received signal power; hence, the equal-energy condition on the received
code words considerably simplifies the receiver processing.

There is an alternative modulation method for generating equal-energy waveforms
from code words when the code is constant-weight, i.e., when every code word has
the same number of 1s. Note that such a code is non-linear. Nevertheless, suppose we
assign a single tone or cell to each bit position of the 2k code words. Thus, an (n, k)
binary block code has n tones assigned. Waveforms are constructed by transmitting the
tone corresponding to a particular bit in a code word if that bit is a 1; otherwise, that
tone is not transmitted for the duration of the interval. This modulation technique for
transmitting the coded bits is called on–off keying (OOK). Since the code is constant-
weight, say, w, every coded waveform consists of w transmitted tones that depend on
the positions of the 1s in each of the code words.

As in FSK, all tones in the OOK signal that are transmitted over the channel are
assumed to fade independently across the frequency band and in time from one code
word to another. The received signal envelope for each tone is described statistically
by the Rayleigh distribution. Statistically independent additive white Gaussian noise is
assumed to be present in each frequency cell.

The receiver employs maximum-likelihood (soft-decision) decoding to map the
received waveform into one of the M possible transmitted code words. For this purpose,
n matched filters are employed, each matched to one of the n frequency tones. For the
assumed statistical independence of the signal fading for the n frequency cells and
additive white Gaussian noise, the envelopes of the matched filter outputs are squared
and combined to form the M decision variables

Ui =
n∑

j=1

ci j | y j |2, i = 1, 2, . . . , 2k (14.7–15)

where |y j |2 corresponds to the squared envelope of the filter corresponding to the j th
frequency, where j = 1, 2, . . . , n.
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It may appear that the constant-weight condition severely restricts our choice
of codes. This is not the case, however. To illustrate this point, we briefly describe
some methods for constructing constant-weight codes. This discussion is by no means
exhaustive.

Method 1: Non-linear transformation of a linear code In general, if in each word
of an arbitrary binary code we substitute one binary sequence for every occurrence
of a 0 and another sequence for each 1, a constant-weight binary block code will be
obtained if the two substitution sequences are of equal weights and lengths. If the
length of the sequence is ν and the original code is an (n, k) code, then the resulting
constant-weight code will be an (νn, k) code. The weight will be n times the weight of
the substitution sequence, and the minimum distance will be the minimum distances
of the original code times the distances between the two substitution sequences. Thus,
the use of complementary sequences when ν is even results in a code with minimum
distance νdmin and weight 1

2νn.
The simplest form of this method is the case ν = 2, in which every 0 is replaced

by the pair 01 and every 1 is replaced by the complementary sequence 10 (or vice
versa). As an example, we take as the initial code the (24,12) extended Golay code.
The parameters of the original and the resultant constant-weight code are given in
Table 14.7–1.

Note that this substitution process can be viewed as a separate encoding. This
secondary encoding clearly does not alter the information content of a code word—
it merely changes the form in which it is transmitted. Since the new code word is
composed of pairs of bits—one “on” and one “off”—the use of OOK transmission of
this code word produces a waveform that is identical to that obtained by binary FSK
modulation for the underlying linear code.

Method 2: Expurgation In this method, we start with an arbitrary binary block
code and select from it a subset consisting of all words of a certain weight. Several
different constant-weight codes can be obtained from one initial code by varying the
choice of the weight w. Since the code words of the resulting expurgated code can
be viewed as a subset of all possible permutations of any one code word in the set,
the term binary expurgated permutation modulation (BEXPERM) has been used by
Gaarder (1971) to describe such a code. In fact, the constant-weight binary block codes
constructed by the other methods may also be viewed as BEXPERM codes. This method

TABLE 14.7–1

Example of Constant-Weight Code Formed by Method 1

Code parameters Original Golay Constant-weight

n 24 48
k 12 12
M 4096 4096

dmin 8 16
w Variable 24
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TABLE 14.7–2

Examples of Constant-Weight Codes Formed by Expurgation

Parameters Original Constant weight no. 1 Constant weight no. 2

n 24 24 24
k 12 9 11
M 4096 759 2576

dmin 8 ≥8 ≥8
w Variable 8 12

of generating constant-weight codes is in a sense opposite to the first method in that
the word length n is held constant and the code size M is changed. The minimum
distance for the constant-weight subset will clearly be no less than that of the original
code. As an example, we consider the Golay (24, 12) code and form the two different
constant-weight codes shown in Table 14.7–2.

Method 3: Hadamard matrices This method might appear to form a constant-
weight binary block code directly, but it actually is a special case of the method
of expurgation. In this method, a Hadamard matrix is formed as described in Sec-
tion 7.3–5, and a constant-weight code is created by selection of rows (code words)
from this matrix. Recall that a Hadamard matrix is an n × n matrix (n even integer)
of 1s and 0s with the property that any row differs from any other row in exactly 1

2 n
positions. One row of the matrix is normally chosen as being all 0s.

In each of the other rows, half of the elements are 0s and the other half 1s. A
Hadamard code of size 2(n − 1) code words is obtained by selecting these n − 1 rows
and their complements. By selecting M = 2k ≤ 2(n − 1) of these code words, we
obtain a Hadamard code, which we denote by H (n, k), where each code word conveys
k information bits. The resulting code has constant weight 1

2 n and minimum distance
dmin = 1

2 n.
Since n frequency cells are used to transmit k information bits, the bandwidth

expansion factor for the Hadamard H (n, k) code is defined as

Be = n

k
cells per information bit

which is simply the reciprocal of the code rate. Also, the average SNR per bit, denoted
by γ̄b, is related to the average SNR per cell, γ̄c, by the expression

γ̄c = k
1
2 n

γ̄b = 2
k

n
γ̄b = 2Rcγ̄b = 2γ̄b

Be
(14.7–16)

Let us compare the performance of the constant-weight Hadamard codes under
a fixed bandwidth constraint with a conventional M-ary orthogonal set of waveforms
where each waveform has diversity L . The M orthogonal waveforms with diversity are
equivalent to a block orthogonal code having a block length n = L M and k = log2 M .
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For example, if M = 4 and L = 2, the code words of the block orthogonal code are

c1 = [ 1 1 0 0 0 0 0 0 ]

c2 = [ 0 0 1 1 0 0 0 0 ]

c3 = [ 0 0 0 0 1 1 0 0 ]

c4 = [ 0 0 0 0 0 0 1 1 ]

To transmit these code words using OOK modulation requires n = 8 cells, and since
each code word conveys k = 2 bits of information, the bandwidth expansion factor
Be = 4. In general, we denote the block orthogonal code as O(n, k). The bandwidth
expansion factor is

Be = n

k
= L M

k
(14.7–17)

Also, the SNR per bit is related to the SNR per cell by the expression

γ̄c = k

L
γ̄b = M

(
k

n

)
γ̄b = M

γ̄b

Be
(14.7–18)

Now we turn our attention to the performance characteristics of these codes. First,
the exact probability of a code word (symbol) error for M-ary orthogonal signaling
over a Rayleigh fading channel with diversity was given in closed form in Section 13.4.
As previously indicated, this expression is rather cumbersome to evaluate, especially
if either L or M or both are large. Instead, we shall use a union bound that is very
convenient. That is, for a set of M orthogonal waveforms, the probability of a symbol
error can be upper-bounded as

Pe ≤ (M − 1)P2(L)

= (2k − 1)P2(L) < 2k P2(L)
(14.7–19)

where P2(L), the probability of error for two orthogonal waveforms, each with diversity
L , is given by Equation 14.7–12 with p = 1/(2 + γ̄c). The probability of bit error is
obtained by multiplying Pe by 2k−1/(2k − 1), as explained previously.

A simple upper (union) bound on the probability of a code word error for the
Hadamard H (n, k) code is obtained by noting the probability of error in deciding
between the transmitted code word and any other code word is bounded from above by
P2

( 1
2 dmin

)
, where dmin is the minimum distance of the code. Therefore, an upper bound

on Pe is

Pe ≤ (M − 1)P2
( 1

2 dmin
)

< 2k P2
( 1

2 dmin
)

(14.7–20)

Thus the “effective order of diversity” of the code for OOK modulation is 1
2 dmin.

The bit error probability may be approximated as 1
2 Pe, or slightly overbounded by

multiplying Pe by the factor 2k−1/(2k − 1), which is the factor used above for or-
thogonal codes. The latter was selected for the error probability computations given
below.

Figure 14.7–5 illustrates the error rate performance of a selected number of
Hadamard codes for several bandwidth expansion factors. The advantage resulting
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FIGURE 14.7–5
Performance of Hadamard codes.

from an increase in the size M of the alphabet (or k, since k = log2 M) and an increase
in the bandwidth expansion factor is apparent from observation of these curves. Note,
for example, that the H (20, 5) code when repeated twice results in a code that is de-
noted by 2 H (20, 5) and has a bandwidth expansion factor Be = 8. Figure 14.7–6 shows
the performance of the Hadamard and block orthogonal codes compared on the basis
of equal bandwidth expansion factors. It is observed that the error rate curves for the
Hadamard codes are steeper than the corresponding curves for the block orthogonal
codes. This characteristic behavior is due simply to the fact that, for the same bandwidth
expansion factor, the Hadamard codes provide more diversity than block orthogonal
codes. Alternatively, one may say that Hadamard codes provide better bandwidth effi-
ciency than block orthogonal codes. It should be mentioned, however, that at low SNR,
a lower-diversity code outperforms a higher-diversity code as a consequence of the fact
that, on a Rayleigh fading channel, there is an optimum distribution of the total received
SNR among the diversity signals. Therefore, the curves for the block orthogonal codes
will cross over the curves for the Hadamard codes at the low-SNR (high-error-rate)
region.

Method 4: Concatenation In this method, we begin with two codes: one binary
and the other nonbinary. The binary code is the inner code and is an (n, k) constant-
weight (non-linear) block code. The nonbinary code, which may be linear, is the outer
code. To distinguish it from the inner code, we use uppercase letters, e.g., an (N , K )
code, where N and K are measured in terms of symbols from a q-ary alphabet. The
size q of the alphabet over which the outer code is defined cannot be greater than the
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FIGURE 14.7–6
Comparison of performance between
Hadamard codes and block orthogonal
codes.

number of words in the inner code. The outer code, when defined in terms of the binary
inner code words rather than q-ary symbols, is the new code.

An important special case is obtained when q = 2k and the inner code size is
chosen to be 2k . Then the number of words is M = 2kK and the concatenated structure
is an (nN , kK ) code. The bandwidth expansion factor of this concatenated code is the
product of the bandwidth expansions for the inner and outer codes.

Now we shall demonstrate the performance advantages obtained on a Rayleigh
fading channel by means of code concatenation. Specifically, we construct a concate-
nated code in which the outer code is a dual-k (nonbinary) convolutional code and the
inner code is either a Hadamard code or a block orthogonal code. That is, we view the
dual-k code with M-ary (M = 2k) orthogonal signals for modulation as a concatenated
code. In all cases to be considered, soft-decision demodulation and Viterbi decoding
are assumed.

The error rate performance of the dual-k convolutional codes is obtained from the
derivation of the transfer function given by Equation 8.7–2. For a rate-1/2, dual-k code
with no repetitions, the bit error probability, appropriate for the case in which each k-bit
output symbol from the dual-k encoder is mapped into one of M = 2k orthogonal code
words, is upper-bounded as

Pb <
2k−1

2k − 1

∞∑
m=4

βm P2(m) (14.7–21)

where P2(m) is given by Equation 14.7–12.
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For example, a rate-1/2, dual-2 code may employ a 4-ary orthogonal code O(4, 2)
as the inner code. The bandwidth expansion factor of the resulting concatenated code
is, of course, the product of the bandwidth expansion factors of the inner and outer
codes. Thus, in this example, the rate of the outer code is 1/2 and the inner code is 1/2.
Hence, Be = (4/2)(2) = 4.

Note that if every symbol of the dual-k is repeated r times, this is equivalent to
using an orthogonal code with diversity L = r . If we select r = 2 in the example
given above, the resulting orthogonal code is denoted as O(8, 2) and the bandwidth
expansion factor for the rate-1/2, dual-2 code becomes Be = 8. Consequently, the term
P2(m) in Equation 14.7–21 must be replaced by P2(mL) when the orthogonal code
has diversity L . Since a Hadamard code has an “effective diversity” 1

2 dmin, it follows
that when a Hadamard code is used as the inner code with a dual-k outer code, the
upper bound on the bit error probability of the resulting concatenated code given by
Equation 14.7–21 still applies if P2(m) is replaced by P2( 1

2 mdmin). With these modi-
fications, the upper bound on the bit error probability given by Equation 14.7–21 has
been evaluated for rate-1/2, dual-k convolutional codes with either Hadamard codes
or block orthogonal codes as inner codes. Thus the resulting concatenated code has a
bandwidth exansion factor equal to twice the bandwidth expansion factor of the inner
code.

First, we consider the performance gains due to code concatenation. Figure 14.7–7
illustrates the performance of dual-k codes with block orthogonal inner codes compared
with the performance of block orthogonal codes for bandwidth expansion factors Be =
4, 8, 16, and 32. The performance gains due to concatenation are very impressive.

FIGURE 14.7–7
Comparison of performance between
block orthogonal codes and dual-k with
block orthogonal inner codes.
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FIGURE 14.7–8
Comparison of performance between
Hadamard codes and dual-k codes with
Hadamard inner codes.

For example, at an error rate of 10−6 and Be = 8, the dual-k code outperforms the
orthogonal block code by 7.5 dB. In short, this gain may be attributed to the increased
diversity (increase in minimum distance) obtained via code concatenation. Similarly,
Figure 14.7–8 illustrates the performance of two dual-k codes with Hadamard inner
codes compared with the performance of the Hadamard codes alone for Be = 8 and 12.
It is observed that the performance gains due to code concatenation are still significant,
but certainly not as impressive as those illustrated in Figure 14.6–8. The reason is that
the Hadamard codes alone yield a large diversity, so that the increased diversity arising
from concatenation does not result in as large a gain in performance for the range of
error rates covered in Figure 14.7–8.

The numerical results given above illustrate the performance advantages in using
codes with good distance properties and soft-decision decoding on a Rayleigh fading
channel as an alternative to conventional M-ary orthogonal signaling with diversity.
In addition, the results illustrate the benefits of code concatenation on such a channel,
using a dual-k convolutional code as the outer code and either a Hadamard code or a
block orthogonal code as the inner code. Although dual-k codes were used for the outer
code, similar results are obtained when a Reed–Solomon code is used for the outer
code. There is an even greater choice in the selection of the inner code.

The important parameter in the selection of both the outer and the inner codes
is the minimum distance of the resultant concatenated code required to achieve a
specified level of performance. Since many codes will meet the performance require-
ments, the ultimate choice is made on the basis of decoding complexity and bandwidth
requirements.
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14.8
THE CHANNEL CUTOFF RATE FOR FADING CHANNELS

We studied the notion and significance of the channel cutoff rate for the general class
of memoryless channels in Section 6.8. In the same section we obtained expressions
for the channel cutoff rate for the special cases of a BSC channel and a binary-input,
continuous-output Gaussian channel. In this section we extend those results to the case
of fully interleaved Ricean and Rayleigh fading channels for the cases where CSI is
available at the receiver.

We have seen in Section 6.8 that for a general memoryless channel the cutoff rate
can be expressed by Equation 6.8–20 as

R0 = max
p(x)

sup
λ>0

R0(p, λ)

= max
p(x)

sup
λ>0

− log2

[
E

[
�

(λ)
X1→X2

]] (14.8–1)

where for a symmetric channel model the maximum is achieved for λ = 1
2 , i.e., by

substituting the Chernov bound by the Bhattacharyya bound, or substituting �(λ)
x1→x2

by
�x1,x2 . The values of �(λ)

x1→x2
and �x1,x2 are given by Equation 6.8–10 as

�(λ)
x1→x2

=
∑
y∈y

pλ(y|x2)p1−λ(y|x1)

�x1,x2 =
∑
y∈y

√
p(y|x1)p(y|x2)

(14.8–2)

where the summation on y corresponds to a discrete-output channel, which should be
substituted by integration over the output space for a continuous-output channel. The
expectation in Equation 14.8–1 is over all independent input distributions, i.e.,

E
[
�

(λ)
X1→X2

]
=

⎡
⎣∑

x1∈x

∑
x2∈x

p(x1)p(x2)�(λ)
x1→x2

⎤
⎦ (14.8–3)

where for continuous-input channels the summations are substituted by integrals.

14.8–1 Channel Cutoff Rate for Fully Interleaved Fading
Channels with CSI at Receiver

For this channel model, ideal interleaving causes the channel model to be memoryless.
The availability of CSI at the receiver can be interpreted as extending the channel
output to be both the regular channel output y and the fading information. The channel
is described as a memoryless model in which

yi = ri xi + ni (14.8–4)



Proakis-27466 book September 26, 2007 23:8

958 Digital Communications

where ri denotes the iid fading process and ni is the iid noise process, which is assumed
to be distributed according to CN (0, N0) and is independent of the fading process. The
channel inputs are assumed to be points in a complex constellation. For a Rayleigh
fading channel the ri ’s are iid drawn according to CN (0, 2σ 2). Since channel state
information is available at the decoder, we can consider the pair (yi , ri ) as the channel
output. Therefore for this channel model P [output |input ] can be written as

p(r, y|x) = p(r )p(y|r, x) (14.8–5)

Since the channel model is symmetric, we use the Bhattacharyya bound and from
Equation 14.8–2 we obtain

�x1,x2 =
∫ ∞

0

[∫ ∞

−∞

√
p(y|x1, r )p(y|x2, r ) dy

]
p(r ) dr

= E
[∫ ∞

−∞

√
p(y|x1)p(y|x1, r ) dy

] (14.8–6)

where the expectation is taken with respect to the random variable R. For the channel
model of Equation 14.8–4 we have

p(y|x, r ) = 1

π N0
e− |y−r x |2

N0 (14.8–7)

Using Equation 14.8–7 after completing the square in the exponent and some manipu-
lation, we obtain ∫ ∞

−∞

√
p(y|x1)p(y|x1, r ) dy = e− |r |2

4N0
|x1−x2|2 (14.8–8)

or

�x1,x2 = E

[
e− |r |2d2

12
4N0

]
(14.8–9)

where d12 = |x1 − x2|. Defining

α12 = d2
12

4N0
(14.8–10)

we obtain

�x1,x2 = E
[
e−α12|r |2

]
(14.8–11)

In other words, �x1,x2 is equal to �|R|2 (t), the moment generating function of the random
variable |R|2, i.e., the squared envelope of the fading process, when t is substituted
with −α12.

For a Ricean fading channel |R| has a Ricean distribution and |R|2 has a noncentral
χ2 PDF with two degrees of freedom and parameters s and σ 2. From Table 2.3–3 we
obtain the characteristic function of |R|2, and from it we obtain

�x1,x2 = 1

1 + 2α12σ 2
e
− α12s2

1+2α12σ2 (14.8–12)
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By substituting the terms A = s2 + 2σ 2 and K = s2

2σ 2 in Equation 14.8–12, we have

�x1,x2 = K + 1

K + 1 + Aα12
e− AKα12

K+1+Aα12 (14.8–13)

Note that A = E[|R|2] represents the average power gain of the channel. If we assume
that A = 1, the transmitted and received powers become equal. For this case

�x1,x2 = K + 1

K + 1 + α12
e− Kα12

K+1+α12 (14.8–14)

For a Rayleigh fading channel we have s = K = 0 and

�x1,x2 = 1

1 + α12
(14.8–15)

Note that in all cases studied above, if x1 = x2, then α12 = 0 and �12 = 1.
For a BPSK modulation system the optimal p(x) to achieve R0 is a uniform distribu-

tion. To compute R0, we need to find E
[
�X1,X2

]
. For a uniform distribution on the inputs

±√Es , the probability of X1 = X2 is 1
2 , and the probability of X1 �= X2 is also 1

2 . For
this latter case d2

12 = 4Es , and from Equation 14.8–10 we obtain α12 = Es/N0 = SNR.
Therefore,

E
[
�X1,X2

] = 1

2
+ 1

2
� = � + 1

2
(14.8–16)

where

� = K + 1

K + 1 + SNR
e− K SNR

K+1+SNR (14.8–17)

and finally

R0 = − log2
� + 1

2

= 1 − log2

(
1 + K + 1

K + 1 + SNR
e− K SNR

K+1+SNR

) (14.8–18)

For the case of a Rayleigh fading channel, this relation reduces to

R0 = 1 − log2

(
1 + 1

1 + SNR

)
(14.8–19)

For QPSK signaling the optimal input probability distribution is a uniform distri-
bution. In this case, d2

12 = 0, or 2Es , or 4Es with probabilities 1
4 , 1

2 , and 1
4 , respectively.

The corresponding values of α12 are 0, SNR
2 , and SNR, respectively. Substituting these

values into Equation 14.8–14, we obtain

E [�] = 1

4
+ 1

2
g

(
SNR

2

)
+ 1

4
g(SNR) (14.8–20)
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FIGURE 14.8–1
The cutoff rate versus SNR for BPSK and QPSK over a Rayleigh fading channel.

where

g(α) = K + 1

K + 1 + α
e−Kα/(K+1+α) (14.8–21)

The Rayleigh fading case is obtained by putting K = 0 in Equation 14.8–21. The
result is

E [�] = (SNR)2 + 8SNR + 8

4(SNR + 2)(SNR + 1)
(14.8–22)

Finally R0 is obtained using

R0 = − log2 E [�] (14.8–23)

where E [�] is obtained from Equations 14.8–20 and 14.8–22. Plots of R0 versus
SNR = Es/N0 for BPSK and QPSK in the case of a Rayleigh fading channel are shown
in Figure 14.8–1.

14.9
BIBLIOGRAPHICAL NOTES AND REFERENCES

A comprehensive treatment of channel modeling, signaling, capacity issues, and coding
techniques for fading channels can be found in Biglieri et al. (1998b). This paper
summarizes and unifies the main results available on fading channel modeling, capacity,
and coding up to 1998 and includes many references. Channel capacity for finite-
state channels with different assumptions on the availability of state information are
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considered in Shannon (1958), Wolfowitz (1978), Salehi (1992), Cover and Chiang
(2002), Goldsmith and Varaiya (1997), Goldsmith and Varaiya (1996), Abou-Faycal
et al. (2001), and Ozarow et al. (1994).

Trellis-coded modulation for fading channels has been extensively treated in the
books by Biglieri et al. (1991) and Jamali and Le-Ngoc (1994) as well as in the papers
by Divsalar Simon (1988a, b, c), Sundberg and Seshadri (1993) and Salehi and Proakis
(1995). Coding for fading channels is also the subject of the book by Biglieri (2005)
where both coding and capacity issues under different assumptions have been treated.
The book by ?) also covers capacity and coding issues for wireless channels with
emphasis on multiantenna systems.

Bit-interleaved coded modulation introduced by Zehavi (1992) has been treated
extensively in the paper by Caire et al. (1998). Other papers studying different aspects
of this technique including error performance, iterative decoding, and optimal labeling
under iterative decoding include the works of Ormeci et al. (2001), Martinez et al.
(2006), and Li and Ritcey (1997, 1998, 1999).

The use of dual-k codes with M-ary orthogonal FSK was proposed in publications
by Viterbi and Jacobs (1975) and Odenwalder (1976). The importance of coding for
digital communications over a fading channel was also emphasized in a paper by Chase
(1976). The benefits derived from concatenated coding with soft decision decoding for
a fading channel were demonstrated by Pieper et al. (1978). The performance of dual-k
codes with either block orthogonal codes or Hadamard codes as inner codes was in-
vestigated by Proakis and Rahman (1979). The error rate performance of maximal
free-distance binary convolutional codes was evaluated by Rahman (1981).

PROBLEMS

14.1 Channels 1 and 2 are both continuous-time additive Gaussian noise channels described
by Y1(t) = X1(t) + Z1(t) and Y2(t) = X2(t) + Z2(t), respectively. Z1(t) and Z2(t) are
the noise processes of the channels. It is assumed that Z1(t) and Z2(t) are zero-mean,
independent Gaussian processes with power spectral densities N1( f ) and N2( f ) W/Hz,
as shown in Figure P14.1. It is assumed that each channel has an input power constraint
of 10 mW.
1. Determine C1 and C2, the capacities of the two channels (in bits per second).
2. If a binary memoryless source with P(U = 0) = 1−P(U = 1) = 0.4 which generates

7500 symbols per second is to be transmitted once via channel 1 and once via channel 2,
determine in each case the absolute minimum achievable error probability.

3. Now consider the two channel configurations shown in Figure P14.1. The first configu-
ration is simply a concatenation of the two original channels. The second concatenation
allows a processor with arbitrary complexity to be used between the two channels. In
each case determine the absolute minimum achievable error probability for the binary
source of part 2 when transmitted over the given channel configuration.

4. What is the capacity of channel 1 if the input power constraint is increased from 10
to 100 mW?
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N1( f )

f (kHz)

10�5

10�6

�3 �2 2

Noise spectral density in channel 1

3

N2( f )

f (kHz)

10�5

10�6

�3 �2 �1 21

Noise spectral density in channel 2

3

Channel 1 Channel 2

Configuration 1

Channel 1 Processor Channel 2

Configuration 2

FIGURE P14.1

14.2 Consider the channel model shown in Figure 14.2–1 and assume both channel components
are BSC channels with crossover probability p = 1

2 .
1. What is the ergodic capacity of this channel?
2. Now assume that the transmitter can control the state of the channel and the receiver

has access to channel state information. What is the capacity of the resulting channel?

14.3 Using Equation 14.1–19, determine the capacity of a finite-state channel in which state
information is only available at the receiver.

14.4 Using Equation 14.1–19, determine the capacity of a finite-state channel in which the
same state information is available at the transmitter and the receiver.
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14.5 Consider a BSC in which the channel can be in three states. In state S = 0 the output
of the channel is always 0, regardless of the channel input. In state S = 1, the output is
always 1, again regardless of the channel input. In state S = 2 the channel in noiseless,
i.e., the output is always equal to the input. We assume that P(S = 0) = P(S = 1) = p

2 .
1. Determine the capacity of this channel, assuming no state information is available to

the transmitter or the receiver.
2. Determine the capacity of the channel, assuming that channel state information S is

available at both sides.

14.6 In Problem 14.5 assume that the same noisy versions of state information are available
at both sides; i.e., Z = U = V is available where Z is a binary-valued random variable
with

P [Z = 0 |S = 0 ] = P [Z = 1 |S = 1 ] = 1

P [Z = 0 |S = 2 ] = P [Z = 1 |S = 2 ] = 1

2

Determine the capacity of this channel.

14.7 Consider the channel model shown in Figure 14.2–1. Assume that the top channel is a
noiseless BSC channel for which crossover probability is zero and the bottom channel
is a binary-input binary-output Z channel with P [Y = 1 |X = 1 ] = 1 and P [Y =
0 |X = 0 ] = 1

2 . The channel switches between the two states independently for each
transmission, and the two states are equiprobable.
1. Determine the ergodic capacity of this channel when no state information is available.
2. Determine the ergodic capacity of the channel when perfect state information is avail-

able at both sides.
3. Determine the ergodic capacity of the channel when perfect state information is avail-

able at the receiver.

14.8 Prove that Equation 14.2–11 can be simplified in the form of Equation 14.2–13.

14.9 In Figure 14.4–1, determine the optimal rotation that maximizes the coding gain. What
is the resulting coding gain?

14.10 A fading channel model that is flat in both time and frequency can be modeled as y =
Rx + n, where the fading factor R remains constant for the entire duration of the trans-
mission of the codeword. Determine the optimal decision rule for this channel for Ricean
fading when the state information is available at the receiver and when it is not available.

14.11 The outage probability of a diversity combiner is defined as the percentage of time the
instantaneous output SNR of the combiner is below some prescribed level for a specified
number of diversity branches. Consider a communication system that employs multiple
receiver antennas to achieve diversity in a Rayleigh fading channel. Suppose that selection
diversity is used with Nr receiver antennas. If the average SNR is 20 dB, determine the
probability that the instantaneous SNR drops below 10 dB when
1. Nr = 1
2. Nr = 2
3. Nr = 4



Proakis-27466 book September 26, 2007 23:8

964 Digital Communications

14.12 The Gauss-Markov model for a time-varying channel is given by

h(m + 1) = √
1 − αh(m) + αw(m + 1)

where {w(m)} is a sequence of iid CN (0, 1) random variables independent of h(0) ∼
CN (0, 1). The sampling time is Ts . The coherence time of this channel is controlled by
the choice of parameter α.
1. Calculate the autocorrelation function of the sequence {h(m)} denoted by Rh(m).
2. Define coherence time as that corresponding to Rh(m) = 0.5. Determine the value of

α in terms of Ts and the coherence time Tc.
3. Suppose that {h(m} is transmitted from the receiver to the transmitter with a delay

of Ts . The transmitter predicts the value of h(m), say ĥ(m), from the past samples
h(m − n) and h(m − n − 1). Thus

ĥ(m) = b1h(m − n) + b2h(m − n − 1)

where the prediction coefficients b1 and b2 are determined to minimize the MSE

E
[|e|2] = E

[|h(m) − ĥ(m)|2]

Determine b1 and b2 that minimize MSE.

14.13 The rate 1/3, K = 3, binary convolutional code with transfer function given by Equa-
tion 8.1–21 is used for transmitting data over a Rayleigh fading channel via binary PSK.
1. Determine and plot the probability of error for hard decision decoding. Assume that

the transmitted waveforms corresponding to the coded bits fade independently.
2. Determine and plot the probability of error for soft decision decoding. Assume that

the waveforms corresponding to the coded bits fade independently.

14.14 Show that the pairwise error probability for a fully interleaved Rayleigh fading channel
with fading process Ri can be bounded by

Px→x̂ ≤
n∏

i=1

E

[
e− R2

i
|xi −x̂i |2
4N0

]

where the expectation is taken with respect to Ri ’s. From above conclude the following
bound on the pairwise error probability.

Px→x̂ ≤
n∏

i=1

1

1 + |xi − x̂i |2/4N0

14.15 Determine the product distance and the free Euclidean distance of the coded modulation
scheme shown in Figure 14.5–1.
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14.16 Determine the product distance and the free Euclidean distance of the coded modulation
scheme shown in Figure 14.5–2.

14.17 Show that the signal set assignment of Figure 14.5–5 provides a performance 1.315 dB
superior to the signal set assignment of Figure 14.5–4 when used over an AWGN channel.

14.18 In Figure 14.6–3 show X i
b for b = 0, 1 and for 1 ≤ i ≤ 4 for both set partitioning labeling

and Gray labeling.
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15

Multiple-Antenna Systems

The use of multiple antennas at the receiver of a communication system is a standard
method for achieving spatial diversity to combat fading without expanding the band-
width of the transmitted signal. Spatial diversity can also be achieved by using multiple
antennas at the transmitter. For example, it is possible to achieve dual diversity with two
transmitting antennas and one receiving antenna, as we demonstrate in this chapter. We
will also demonstrate that multiple transmitting antennas can be used to create multiple
spatial channels and thus provide the capability to increase the data rate of a wireless
communication system. This method is called spatial multiplexing.

15.1
CHANNEL MODELS FOR MULTIPLE-ANTENNA SYSTEMS

A communication system employing NT transmitting antennas and NR receiving an-
tennas is generally called a multiple-input, multiple-output (MIMO) system, and the
resulting spatial channel in such a system is called a MIMO channel. The special case
in which NT = NR = 1 is called a single-input, single-output (SISO) system, and the
corresponding channel is called a SISO channel. A second special case is one in which
NT = 1 and NR ≥ 2. The resulting system is called a single-input, multiple-output
(SIMO) system, and the corresponding channel is called a SIMO channel. Finally, a
third special case is one in which NT ≥ 2 and NR = 1. The resulting system is called a
multiple-input, single-output (MISO) system, and the corresponding channel is called
a MISO channel.

In a MIMO system with NT transmit antennas and NR receive antennas, we denote
the equivalent lowpass channel impulse response between the j th transmit antenna and
the i th receive antenna as hi j (τ ; t), where τ is the age or delay variable and t is the time
variable.† Thus, the randomly time-varying channel is characterized by the NR × NT

†For convenience, the subscript on lowpass equivalent signals is omitted throughout this chapter.

966
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matrix H(τ ; t), defined as

H(τ ; t) =

⎡
⎢⎢⎢⎣

h11(τ ; t) h12(τ ; t) · · · h1NT (τ ; t)
h21(τ ; t) h22(τ ; t) · · · h2NT (τ ; t)

...
...

...

hNR1(τ ; t) hNR2(τ ; t) · · · hNR NT (τ ; t)

⎤
⎥⎥⎥⎦ (15.1–1)

Suppose that the signal transmitted from the j th transmit antenna is s j (t), j =
1, 2, . . . , NT . Then the signal received at the i th antenna in the absence of noise may
be expressed as

ri (t) =
NT∑
j=1

∫ ∞

−∞
hi j (τ ; t) s j (t − τ ) dτ

=
NT∑
j=1

hi j (τ ; t) ∗ s j (τ ), i = 1, 2, . . . , NR

(15.1–2)

where the asterisk denotes convolution. In matrix notation, Equation 15.1–2 is
expressed as

r(t) = H(τ ; t) ∗ s(τ ) (15.1–3)

where s(t) is an NT × 1 vector and r(t) is an NR × 1 vector.
For a frequency-nonselective channel, the channel matrix H is expressed as

H(t) =

⎡
⎢⎢⎢⎣

h11(t) h12(t) · · · h1NT (t)
h21(t) h22(t) · · · h2NT (t)

...
...

...

hNR1(t) hNR2(t) · · · hNR NT (t)

⎤
⎥⎥⎥⎦ (15.1–4)

In this case, the signal received at the i th antenna is simply

ri (t) =
NT∑
j=1

hi j (t)s j (t), i = 1, 2, . . . , NR (15.1–5)

and, in matrix form, the received signal vector r(t) is given as

r(t) = H(t)s(t) (15.1–6)

Furthermore, if the time variations of the channel impulse response are very slow within
a time interval 0 ≤ t ≤ T , when T may be either the symbol interval or some general
time interval, Equation 15.1–6 may be simply expressed as

r(t) = Hs(t), 0 ≤ t ≤ T (15.1–7)

where H is constant within the time interval 0 ≤ t ≤ T .
The slowly time-variant frequency-nonselective channel model embodied in Equa-

tion 15.1–7 is the simplest model for signal transmission in a MIMO channel. In the
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following two subsections, we employ this model to illustrate the performance charac-
teristics of MIMO systems. At this point, we assume that the data to be transmitted are
uncoded. Coding for MIMO channels is treated in Section 15.4.

15.1–1 Signal Transmission Through a Slow Fading
Frequency-Nonselective MIMO Channel

Consider a wireless communication system that employs multiple transmitting and
receiving antennas, as shown in Figure 15.1–1. We assume that there are NT transmitting
antennas and NR receiving antennas. As illustrated in Figure 15.1–1, a block of NT

symbols is converted from serial to parallel, and each symbol is fed to one of NT identical
modulators, where each modulator is connected to a spatially separate antenna. Thus,
the NT symbols are transmitted in parallel and are received on NR spatially separated
receiving antennas.

In this section, we assume that each signal from a transmitting antenna to a receiving
antenna undergoes frequency-nonselective Rayleigh fading. We also assume that the
differences in propagation times of the signals from the NT transmitting to the NR

receiving antennas are small relative to the symbol duration T , so that for all practical
purposes, the signals from the NT transmitting antennas to any receiving antenna are
synchronous. Hence, we can represent the equivalent lowpass received signals at the
receiving antennas in a signaling interval as

rm(t) =
NT∑

n=1

snhmng(t) + zm(t), 0 ≤ t ≤ T, m = 1, 2, . . . , NR (15.1–8)

Input

s1

NT  antennas

sNT

(a) Transmitter

Output NR antennas

(b) Receiver

data

data

s̃1

s̃2

s̃NT

FIGURE 15.1–1
A communication system with multiple transmitting and receiving antennas.
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where g(t) is the pulse shape (impulse response) of the modulation filters; hmn is the
complex-valued, circular zero-mean Gaussian channel gain between the nth transmit-
ting antenna and the mth receiving antenna; sn is the symbol transmitted on the nth
antenna; and zm(t) is a sample function of an AWGN process. The channel gains {hmn}
are identically distributed and statistically independent from channel to channel. The
Gaussian sample functions {zm(t)} are identically distributed and mutually statistically
independent, each having zero mean and two-sided power spectral density 2N0. The
information symbols {sn} are drawn from either a binary or an M-ary PSK or QAM
signal constellation.

The demodulator for the signal at each of the NR receiving antennas consists of
a matched filter to the pulse g(t), whose output is sampled at the end of each symbol
interval. The output of the demodulator corresponding to the mth receiving antenna can
be represented as

ym =
NT∑

n=1

snhmn + ηm, m = 1, 2, . . . , NR (15.1–9)

where the energy of the signal pulse g(t) is normalized to unity and ηm is the additive
Gaussian noise component. The NR soft outputs from the demodulators are passed to
the signal detector. For mathematical convenience, Equation 15.1–9 may be expressed
in matrix form as

y = Hs + η (15.1–10)

where y = [y1 y2 . . . yNR ]t , s = [s1 s2 . . . sNT ]t , η = [η1 η2 . . . ηNR ]t , and H is the
NR × NT matrix of channel gains. Figure 15.1–2 illustrates the discrete-time model for
the multiple transmitter and receiver signals in each signaling interval.

In the formulation of a MIMO system as described above, we observe that the
transmitted symbols on the NT transmitting antennas overlap totally in both time and
frequency. As a consequence, there is interchannel interference in the signals {ym, 1 ≤
m ≤ NR} received from the spatial channel. In the following subsection, we consider
three different detectors for recovering the transmitted data symbols in a MIMO system.

Input

data

Output

data

Serial-
to-

parallel
converter

Parallel-
to-

serial
converter

s1

s2

sNT

y1

y2

yNR

s1

s2

sNT

NR

hmn

FIGURE 15.1–2
Discrete-time model of the communication system with multiple transmit and receive antennas
in a frequency-nonselective slow fading channel.
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15.1–2 Detection of Data Symbols in a MIMO System

Based on the frequency-nonselective MIMO channel model described in Sec-
tion 15.1–1, we consider three different detectors for recovering the transmitted data
symbols and evaluate their performance for Rayleigh fading and additive white Gaus-
sian noise. Throughout this development, we assume that the detector knows the ele-
ments of the channel matrix H perfectly. In practice, the elements of H are estimated
by using channel probe signals.

Maximum-Likelihood Detector (MLD) The MLD is the optimum detector in the
sense that it minimizes the probability of error. Since the additive noise terms at the NR

receiving antennas are statistically independent and identically distributed (iid), zero-
mean Gaussian, the joint conditional PDF p( y|s) is Gaussian. Therefore, the MLD
selects the symbol vector ŝ that minimizes the Euclidean distance metric

μ(s) =
NR∑

m=1

∣∣∣∣∣ym −
NT∑

n=1

hmnsn

∣∣∣∣∣
2

(15.1–11)

Minimum Mean-Square-Error (MMSE) Detector The MMSE detector linearly
combines the received signals {ym, 1 ≤ m ≤ NR} to form an estimate of the transmitted
symbols {sn, 1 ≤ n ≤ NT }. The linear combining is represented in matrix form as

ŝ = W H y (15.1–12)

where W is an NR × NT weighting matrix, which is selected to minimize the mean
square error

J (W ) = E[‖ e‖2] = E[‖ s − W H y‖2] (15.1–13)

Minimization of J (W ) leads to the solution for the optimum weight vectors w1, w2, . . . ,

wNT as

wn = R−1
yy rsn y, n = 1, 2, . . . , NT (15.1–14)

where Ryy = E[ yyH ] = H Rss H H + N0 I is the (NR × NR) autocorrelation matrix of
the received signal vector y, Rss = E[ssH ], rsn y = E[s∗

n y], and E[ηηH ] = N0 I . When
the signal vector has uncorrelated, zero-mean components, Rss is a diagonal matrix.
Each component of the estimate ŝ is quantized to the closest transmitted symbol value.

Inverse Channel Detector (ICD) The ICD also forms an estimate of s by linearly
combining the received signals {ym, 1 ≤ m ≤ NR}. In this case, if we set NT = NR,

the weighting matrix W is selected so that the interchannel interference is completely
eliminated, i.e., W H = H−1, hence

ŝ = H−1 y
= s + H−1η

(15.1–15)

Each element of the estimate ŝ is then quantized to the closest transmitted symbol
value. We note that the ICD estimate ŝ is not corrupted by interchannel interference.
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However, this also implies that the ICD does not exploit the signal diversity inherent
in the received signal, as we will observe below.

When NR > NT , the weighting matrix W may be selected as the pseudoinverse of
the channel matrix, i.e.,

W H = (H H H)−1 H H

Error Rate Performance of the Detectors The error rate performance of the three
detectors in a Rayleigh fading channel is most easily assessed by computer simulation of
the MIMO system. Figures 15.1–3 and 15.1–4 illustrate the binary error rate (BER) for
binary PSK modulation with (NT , NR) = (2, 2) and (NT , NR) = (2, 3), respectively. In
both cases, the variances of the channel gains are identical, and their sum is normalized
to unity, i.e.,

∑
n,m

E
[|hmn|2

] = 1 (15.1–16)

The BER for binary PSK modulation is plotted as a function of the average SNR per
bit. With the normalization of the variances in the channel gains {hmn} as given by
Equation 15.1–16, the average received energy is simply the transmitted signal energy
per symbol.

MMSE
ICD

MLD

Single channel (NT � NR � 1 )

MLD (NT � NR � 2)
MMSE (NT � NR � 2)
Inverse channel (NT � NR � 2)
Dual diversity (NT � 1, NR � 2)

FIGURE 15.1–3
Performance of MLD, MMSE, and inverse channel detectors with NR = 2 receiving antennas.
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MMSE

MLD

Triple diversity (NT � 1, NR � 3)

MLD (NT � 2, NR � 3)
MMSE (NT � 2, NR � 3)

Dual diversity (NT � 1, NR � 2)

FIGURE 15.1–4
Performance of MLD and MMSE detectors with NR = 3 receiving antennas.

The performance results in Figures 15.1–3 and 15.1–4 illustrate that the MLD
exploits the full diversity of order NR available in the received signal, and thus its
performance is comparable to that of a maximal ratio combiner (MRC) of the NR

received signals, without the presence of interchannel interference, i.e., (NT , NR) =
(1, NR). The two linear detectors—the MMSE detector and the ICD—achieve an error
rate that decreases inversely as the SNR raised to the (NR − 1) power for NT =
2 transmitting antennas. Thus, when NR = 2, the two linear detectors achieve no
diversity, and when NR = 3, the linear detectors achieve dual diversity. We also note
that the MMSE detector outperforms the ICD, although both achieve the same order of
diversity. In general, with spatial multiplexing (NT antennas transmitting independent
data streams), the MLD detector achieves a diversity of order NR , and the linear detectors
achieve a diversity of order NR − NT +1, for any NR ≥ NT . In effect, with NT antennas
transmitting independent data streams and NR receiving antennas, a linear detector has
NR degrees of freedom. In detecting any one data stream, in the presence of NT − 1
interfering signals from the other transmitting antennas, the linear detectors utilize
NT − 1 degrees of freedom to cancel the NT − 1 interfering signals. Therefore, the
effective order of diversity for the linear detectors is NR − (NT − 1) = NR − NT + 1.

Let us now compare the computational complexity of the three detectors. We
observe that the complexity of the MLD grows exponentially as M NT , where M is
the number of points in the signal constellation, whereas the linear detectors have a



Proakis-27466 book September 26, 2007 23:14

Chapter Fifteen: Multiple-Antenna Systems 973

complexity that grows linearly with NT and NR . Therefore, the computational com-
plexity of the MLD is significantly larger when M and NT are large. However, for a
small number of transmitting antennas and signal points, say NT ≤ 4 and M = 4, the
computational complexity of the MLD is not excessive.

Other Detector Structures and Algorithms
As we have observed, the MLD is the optimum detector, hence, it minimizes the
symbol error probability. The two linear detectors, the ICD and the MMSE detector,
are suboptimum in terms of performance, but have low computational complexity.
Another class of detectors is nonlinear detectors whose performance is generally better
than that of linear detectors, but their computational complexity is greater.

An example of a nonlinear detector is one that employs successive cancellation
of symbols from the received signal once the symbols are detected. One method for
accomplishing symbol cancellation is to employ the ICD or MMSE detector on the first
pass through the data. From the linearly detected symbols, we select the symbol having
the highest SNR, i.e., which is the most reliable. This symbol can be multiplied by the
appropriate row of the channel matrix H and the result subtracted from the received
signals, leaving us with a received signal containing NT − 1 symbols. Then we repeat
the detection procedure for the received signal containing the NT − 1 symbols. Thus,
NT iterations are employed to detect the NT transmitted symbols. This successive
cancellation technique, applied to a MIMO system, is essentially a multiuser detection
method that is further treated in Chapter 16.

This is just one example of a nonlinear detection algorithm that may be employed
to detect the data. Such schemes have greater computational complexity than the linear
detectors described, but their performance is generally better.

Another suboptimum detection method that is simpler to implement than MLD is
sphere detection (also called sphere decoding). In sphere detection, the search for the
most probable transmitted signal vector s is limited to a set of points Hs that lie within
an NR-dimensional hypersphere of fixed radius centered on the received signal vector y.
Thus, compared with MLD in which the search for the most probable signal vector s
encompasses all possible points Hs, sphere detection involves a search over a limited
set of received signal points. Consequently, the computational complexity is decreased
at a cost of an increase in the error probability. Clearly, as the radius of the sphere
is increased, the performance of the sphere detector approaches the performance of
the MLD. Computationally efficient algorithms for sphere detection, i.e., determining
the signal points Hs that lie inside a sphere of a given radius centered on the received
vector y, have been published by Fincke and Pohst (1985), Viterbo and Boutros (1999),
Damen et al. (2000), deJong and Willink (2002), and Hochwald and ten Brink (2003).

Another nonlinear method that exploits the signal diversity inherent in the received
signal vector y and provides near MLD performance is based on lattice reduction. For
example, recall that if the elements of the n-dimensional signal vector s are taken from
a square QAM signal constellation, the set of signal vectors can be viewed as a subset
of an n-dimensional lattice. Hence, the noiseless received signal vector Hs is a subset
of a lattice that is transformed (distorted) by the channel matrix H . The basis vectors
for this transformed lattice are the columns of the matrix H , which, in general, are not
orthogonal. However, the basis vectors of the transformed lattice may be orthogonalized
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and reduced in magnitude, resulting in a new generator matrix B that is related to H
through the transformation B = H F, where the columns of B are orthogonal and F
is a unimodular matrix with elements having integer real and imaginary components,
such that F satisfies the condition det(F) = ±1 or ± j . The inverse F−1 of such a
matrix always exists.

We may use this basis transformation to express the received signal vector y as

y = Hs + η

= (B F−1)s + η

We define the vector w as w = F−1s, so that y may be expressed as

y = Bw + η

= (H F)w + η

Now, the ICD may be applied to detect the transformed signal vector w by inverting B
and making hard decisions on the resulting elements of the vector B−1 y to yield the
vector ŵ. An estimate of the signal vector s is obtained by the linear transformation ŝ =
Fŵ. This detection method has been shown to yield an order of diversity comparable
to MLD (for reference, see Yao and Wornell (2002)). Further discussion on lattice
reduction is given in Section 16.4–4, in the context of MIMO broadcast channels.

Signal Detection When Channel Is Known at the Transmitter and Receiver
The MLD, MMSE, and ICD techniques are based on knowing the channel matrix H
at the receiver. Another linear processing technique may be devised when the channel
matrix H is known at the transmitter as well as the receiver. In this method, the singular
value decomposition (SVD) of the channel matrix H , assumed to be of rank r , may be
expressed as

H = UΣV H (15.1–17)

where U is an NR × r matrix, V is an NT × r matrix, and Σ is an r × r diagonal matrix
with diagonal elements the singular values σ1, σ2, . . . , σr of the channel. The column
vectors of the matrices U and V are orthonormal. Hence U H U = I r and V H V = I r ,
where I r is the r × r identity matrix. If we process an r × 1 signal vector s at the
transmitter by the linear transformation

sv = V s (15.1–18)

then the received signal vector y is

y = Hsv + η = HV s + η (15.1–19)

At the receiver, we process the received signal vector y by the linear transformation
U H . Thus,

ŝ = U H y = U H HV s + U Hη

= U H UΣV H V s + U Hη = Σs + U Hη
(15.1–20)
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ŝ
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FIGURE 15.1–5
Signal processing and detection in a MIMO system when the channel is known at the
transmitter and the receiver.

Therefore, the elements of the received signal are decouptled and may be detected
individually. The scaling of the transmitted symbols by the singular values {σi } may be
compensated either at the transmitter by using the linear transformation VΣ−1 in place
of V or at the receiver by the linear transformation Σ−1U H . A block diagram of the
MIMO communication system is illustrated in Figure 15.1–5.

From the expression for the estimate of the signal vector s given by Equa-
tion 15.1–20 we observe that the SVD method does not exploit the signal diversity
provided by the channel. This is the main disadvantage in decoupling the received
signal vector y by means of the SVD.

15.1–3 Signal Transmission Through a Slow Fading Frequency-Selective
MIMO Channel

In this section we consider transmission through a frequency-selective MIMO channel
in which the time variations of the impulse responses {hi j (τ ; t)} are very slow compared
to the symbol rate 1/T . According to Equations 15.1–2 and 15.1–3, the signal received
from the frequency-selective MIMO channel may be expressed as

ri (t) =
NT∑
j=1

∫ ∞

−∞
hi j (τ ; t)s j (t − τ ) dτ + zi (t), i = 1, 2, . . . , NR (15.1–21)

where zi (t) represents the additive noise at the i th receive antenna. Let the signal
transmitted in the nth signal interval be s j (t) = s j (n)g(t − nT ), where g(t) is the
impulse response of the modulation filters and {s j (n)} is the set of NT information
symbols. After substituting for s j (t) in Equation 15.1–21, we obtain

ri (t) =
∑

n

NT∑
j=1

s j (n)
∫ ∞

−∞
hi j (τ ; t)g(t − nT − τ ) dτ + zi (t), i = 1, 2, . . . , NR

(15.1–22)

It is convenient to process the received signal in sampled form. Consequently, we
may sample the received signal ri (t) at some suitable sampling rate Fs = J/T , where
J is a positive integer. For example, we may select J = 2, so that there are two samples
per symbol. Such a sampling rate is appropriate when the impulse response g(t) of the
modulation filters is band-limited to | f | ≤ 1/T .



Proakis-27466 book September 26, 2007 23:14

976 Digital Communications

At each antenna, the received signal is passed through a bank of NT finite-duration
impulse response (FIR) filters, where each filter spans K samples. The filter coefficients
at time instant n are denoted as {ai j (k; n), k = 0, 1, . . . , K } and are assumed to be
complex-valued in general. Suppose that these FIR filters function as linear equalizers.
Then the outputs of the FIR filters from the NR receive antennas may be used to
form estimates of the transmitted information symbols. Thus, the estimate of the j th
information symbol transmitted at time instant n may be expressed as

ŝ j (n) =
NR∑
i=1

[
K−1∑
k=0

ai j (k; n)ri (n − k)

]
, j = 1, 2, . . . , NT (15.1–23)

where ŝ j (n) denotes the estimate of s j (n).
The estimates given by Equation 15.1–23 can be expressed more compactly in

matrix form as

ŝ(n) = AH (n)r(n) (15.1–24)

where the matrix A(n) and the vector r(n) are defined as

A(n) =

⎡
⎢⎢⎢⎣

a∗
11(n) a∗

12(n) · · · a∗
1NT

(n)
a∗

21(n) a∗
22(n) · · · a∗

2NT
(n)

...
...

a∗
NR1(n) a∗

NR2(n) · · · a∗
NR NT

(n)

⎤
⎥⎥⎥⎦ (15.1–25)

r(n) =

⎡
⎢⎢⎢⎣

r1(n)
r2(n)
...

r NR (n)

⎤
⎥⎥⎥⎦

where {ai j (n)} and {r j (n)} are column vectors of dimension K and AH (n) = [A(n)]H =
[a∗

i j (n)]H = [at
j i (n)]. Figure 15.1–6 illustrates the structure of the demodulator for

NT = 2 transmitting antennas and NR = 3 receiving antennas.
The estimate ŝ(n) is fed to the detector which compares each element of ŝ(n)

with the possible transmitted symbols and selects the symbol s j (n) that is closest in
Euclidean distance to ŝ j (n).

When the channel impulse responses {hi j (τ ; t)} change slowly with time, the
coefficients of the FIR equalizers can be adjusted adaptively to minimize the mean
square error (MSE) between the desired data symbols {s j (n), j = 1, 2, . . . , NT } and the
estimates {ŝ j (n), j = 1, 2, . . . , NT }. Initial adjustment of the coefficients {ai j (n)} may
be accomplished by transmitting a finite-duration sequence of training symbol vectors
from the NT transmit antennas. In the training mode, the error signal is formed as

e(n) = s(n) − ŝ(n)

= s(n) − AH (n)r(n)
(15.1–26)

or, equivalently, as

e j (n) = s j (n) − ŝ j (n), j = 1, 2, . . . , NT (15.1–27)
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FIGURE 15.1–6
Signal demodulation with linear equalizers for the frequency-selective channel.

and the equalizer coefficients are adjusted to minimize

MSE j = E
[|e j (n)|2] , j = 1, 2, . . . , NT (15.1–28)

Either the LMS algorithm or the RLS algorithm described in Sections 10.1 and
10.4 may be used to adjust the equalizer coefficients. Following the training symbols,
in the data transmission mode, the detector outputs may be used in place of the training
symbols to form the error signal, i.e.,

e j (n) = s̃ j (n) − ŝ j (n), j = 1, 2, . . . , NT (15.1–29)

where s̃ j (n) is the output of the detector for the j th symbol at time n, which is the
symbol nearest in distance to the estimate ŝ j (n).

E X A M P L E 15.1–1. Consider a MIMO system in which the channel impulse responses
are

hi j (τ ; t) = h(1)
i j δ(τ ) + h(2)

i j δ(τ − T ), i = 1, 2, . . . , NR
j = 1, 2, . . . , NT

where T is the symbol interval. In this case, the channel is time dispersive with inter-
symbol interference occurring over two successive symbols. The channel coefficients
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{
h(1)

i j

}
and

{
h(2)

i j

}
are assumed to be fixed over a time interval spanning 2000 symbols,

and are zero-mean complex-valued Gaussian random variables with variances

σ 2
i j (k) = E

[∣∣h(k)
i j

∣∣2
]
, k = 1, 2

The sum of all these variances is normalized to unity, i.e.,
2∑

k=1

NT∑
j=1

NR∑
i=1

σ 2
i j (k) = 1

A Monte Carlo simulation of the performance of the linear equalizers for the case
in which the two multipath components have equal variance and the modulation is
binary PSK is shown in Figure 15.1–7 for (NT , NR) = (1, 1), (2, 2), and (2, 3). The
linear equalizers were trained initially with the LMS algorithm for 1000 symbols. The
simulations were performed for 1000 different channel realizations. The maximum
achievable diversity is 2NR , where the factor of 2 is due to the multipath.

We observe that the effect of the ISI in the performance of the MIMO system is
very severe. There is a significant loss in the performance of the (2, 2) and (2, 3) MIMO
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FIGURE 15.1–7
Performance of linear equalizer for two-path channel with (NT , NR) antennas for spatial
multiplexing.
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systems due to the ISI. This effect is due to the basic limitation of linear equalizers to
mitigate ISI in fading multipath channels.

Other Equalizer Structures
The linear adaptive equalizer described above for the MIMO channel is the simplest
equalization technique from the viewpoint of computational complexity. To achieve bet-
ter performance, one may employ a more powerful equalizer, in particular, a decision-
feedback equalizer (DFE) or a maximum-likelihood sequence detector (MLSD).

Figure 15.1–8 illustrates the structure of a DFE for a MIMO channel with NT =
NR = 2 antennas. The two feedforward filters at each receive antenna are structurally
identical to the FIR filters in a linear equalizer structure. Typically, these FIR filters
have fractionally spaced taps. The two feedback filters connected to each detector
are symbol-spaced FIR filters. Their function is to suppress the ISI that is inherent
in previously detected symbols (so-called postcursors). Thus, the estimate of the j th
information symbol transmitted at time instant n may be expressed as

ŝ j (n) =
NR∑
i=1

⎧⎨
⎩

0∑
k=−K1

ai j (k; n)ri (n − k) −
K2∑

k=1

bi j (k; n)s̃i (n − k)

⎫⎬
⎭ (15.1–30)

where K1 + 1 is the number of tap coefficients in each of the feedforward filters and
K2 is the number of tap coefficients {bi j (k; n)} in each of the feedback filters.
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FIGURE 15.1–8
Signal demodulation with decision-feedback equalizers for the frequency-selective channel.
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As in the case of the linear equalizers for the MIMO channel, the MSE criterion
may be used to adjust the coefficients of the feedforward and feedback filters. Training
symbols are usually needed to adjust the equalizer coefficients initially. When data
are transmitted in frames, training symbols may be inserted in each frame for initial
adjustment of the DFE coefficients. During the transmission of information symbols,
the symbols at the output of the detector may be used for coefficient adjustment. We
note that the computational complexity of the DFE is comparable to that of the linear
MIMO equalizer.

E X A M P L E 15.1–2. Consider the MIMO system described in Example 15.1–1, where
the linear equalizers are replaced by decision-feedback equalizers. The error rate perfor-
mance of the MIMO system with DFEs, obtained by Monte Carlo simulation, is shown
in Figure 15.1–9. In comparing the performance of the MIMO system with DFEs and
with linear equalizers, we observe that the DFEs generally yield better performance.
Nevertheless, there is still a significant loss in performance due to ISI.

The best performance in the presence of ISI is obtained when the equalization algo-
rithm is based on the MLSD criterion. A multichannel version of the Viterbi algorithm
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FIGURE 15.1–9
Performance of DFEs for two-path channel with (NT , NR) antennas for spatial multiplexing.
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is computationally efficient in implementing MLSD for a MIMO channel with ISI. The
major impediment in the implementation of the Viterbi algorithm is its computational
complexity, which grows exponentially as M L , where M is the size of the symbol con-
stellation and L is the span of the channel multipath dispersion expressed in terms of
the number of information symbols spanned. Consequently, except for channels with
relatively small multipath spread, e.g., L = 2 or 3, and small signal constellations,
e.g., M = 2 or 4, the implementation complexity of the Viterbi algorithm for a MIMO
system is very high compared to that for a DFE.

15.2
CAPACITY OF MIMO CHANNELS

In this section, we evaluate the capacity of MIMO channel models. For mathematical
convenience, we limit our treatment to frequency-nonselective channels which are
assumed to be known to the receiver. Thus, the channel is characterized by an NR × NT

channel matrix H with elements {hi j }. In any signal interval, the elements {hi j } are
complex-valued random variables. In the special case of a Rayleigh fading channel,
the {hi j } are zero-mean complex-valued Gaussian random variables with uncorrelated
real and imaginary components (circularly symmetric). When the {hi j } are statistically
independent and identically distributed complex-valued Gaussian random variables,
the MIMO channel is spatially white.

15.2–1 Mathematical Preliminaries

By using a singular value decomposition (SVD), the channel matrix H with rank r may
be expressed as

H = UΣV H (15.2–1)

where U is an NR × r matrix, V is an NT × r matrix, and Σ is an r × r diagonal matrix
with diagonal elements the singular values σ1, σ2, . . . , σr of the channel. The singular
values {σi } are strictly positive and are ordered in decreasing order, i.e., σi ≥ σi+1.
The column vectors of U and V are orthonormal. Hence U H U = I r and V H V = I r ,
where I r is an r × r identity matrix. Therefore, the SVD of the channel matrix H may
be expressed as

H =
r∑

i=1

σi uiv
H
i (15.2–2)

where {ui } are the column vectors of U , which are called the left singular vectors of H ,
and {vi } are the column vectors of V , which are called the right singular vectors of H .

We also consider the decomposition of the NR × NR square matrix H H H . This
matrix may be decomposed as

H H H = QΛ QH (15.2–3)
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where Q is the NR ×NR modal matrix with orthonormal column vectors (eigenvectors),
i.e., QH Q = I NR , and � is an NR × NR diagonal matrix with diagonal elements
{λi , i = 1, 2, . . . , NR}, which are the eigenvalues of H H H . With the eigenvalues
numbered in decreasing order (λi ≥ λi+1), it can be easily demonstrated that the
eigenvalues of H H H are related to the singular values in the SVD of H as follows:

λi =
{

σ 2
i i = 1, 2, . . . , r

0 i = r + 1, . . . , NR
(15.2–4)

A useful metric is the Frobenius norm of H , which is defined as

‖ H ‖F =
√√√√ NR∑

i=1

NT∑
j=1

|hi j |2

= √
trace (H H H )

=
√√√√ NR∑

i=1

λi

(15.2–5)

We shall observe below that the squared Frobenius norm ‖H‖2
F is a parameter that de-

termines the performance of MIMO communication systems. The statistical properties
of ‖H‖2

F can be determined for various fading channel conditions. For example, in the
case of Rayleigh fading, |hi j |2 is a chi-squared random variable with two degrees of
freedom. When the {hi j } are iid (spatially white MIMO channel) with unit variance, the
probability density function of ‖H‖2

F is chi-squared with 2NR NT degrees of freedom;
i.e., if X =‖H‖2

F ,

p(x) = xn−1

(n − 1)!
e−x , x ≥ 0 (15.2–6)

where n = NR NT .

15.2–2 Capacity of a Frequency-Nonselective Deterministic MIMO Channel

Let us consider a frequency-nonselective AWGN MIMO channel characterized by
the matrix H . Let s denote the NT × 1 transmitted signal vector, which is statistically
stationary and has zero mean and autocovariance matrix Rss . In the presence of AWGN,
the NR × 1 received signal vector y may be expressed as

y = Hs + η (15.2–7)

where η is the NR × 1 zero-mean Gaussian noise vector with covariance matrix Rnn =
N0 I NR . Although H is a realization of a random matrix, in this section we treat H as
deterministic and known to the receiver.
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To determine the capacity of the MIMO channel, we first compute the mutual
information between the transmitted signal vector s and the received vector y, denoted
as I (s; y), and then determine the probability distribution of the signal vector s that
maximizes I (s; y). Thus,

C = max
p(s)

I (s; y) (15.2–8)

where C is the channel capacity in bits per second per hertz (bps/Hz). It can be shown
(see Telatar (1999) and Neeser and Massey (1993)) that I (s; y) is maximized when
s is a zero-mean, circularly symmetric, complex Gaussian vector; hence, C is only
dependent on the covariance of the signal vector. The resulting capacity of the MIMO
channel is

C = max
tr(Rss )=Es

log2 det
(

I NR + 1

N0
H Rss H H

)
bps/Hz (15.2–9)

where tr(Rss) denotes the trace of the signal covariance Rss . This is the maximum rate
per hertz that can be transmitted reliably (without errors) over the MIMO channel for
any given realization of the channel matrix H .

In the important practical case where the signals among the NT transmitters are
statistically independent symbols with energy per symbol equal to Es/NT , the signal
covariance matrix is diagonal, i.e.,

Rss = Es

NT
I NT (15.2–10)

and trace (Rss) = Es . In this case, the expression for the capacity of the MIMO channel
simplifies to

C = log2 det
(

I NR + Es

NT N0
H H H

)
bps/Hz (15.2–11)

The capacity formula in Equation 15.2–11 can also be expressed in terms of the
eigenvalues of H H H by using the decomposition H H H = QΛ QH . Thus,

C = log2 det
(

I NR + Es

NT N0
QΛ QH

)

= log2 det
(

I NR + Es

NT N0
QH QΛ

)

= log2 det
(

I NR + Es

NT N0
Λ

)

=
r∑

i=1

log2

(
1 + Es

NT N0
λi

)

(15.2–12)

where r is the rank of the channel matrix H .
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It is interesting to note that in a SISO channel, λ1 = |h11|2 so that

CSISO = log2

(
1 + Es

N0
|h11|2

)
bps/Hz (15.2–13)

We observe that the capacity of the MIMO channel is simply equal to the sum of the
capacities of r SISO channels, where the transmit energy per SISO channel is Es/NT

and the corresponding channel gain is equal to the eigenvalue λi .

Capacity of SIMO Channel
A SIMO channel (NT = 1, NR ≥ 2) is characterized by the vector h = [h11 h21 . . .

hNR1]t . In this case, the rank of the channel matrix is unity, and the eigenvalue λ1 is
given as

λ1 = ‖ h‖2
F =

NR∑
i=1

|hi1|2 (15.2–14)

Therefore, the capacity of the SIMO channel, when the NR elements {hi1} of the channel
are deterministic and known to the receiver, is

CSIMO = log2

(
1 + Es

N0
‖ h‖2

F

)

= log2

(
1 + Es

N0

NR∑
i=1

|hi1|2
)

bps/Hz
(15.2–15)

Capacity of MISO Channel
A MISO channel (NT ≥ 2, NR = 1) is characterized by the vector h = [h11 h12 . . .

h1NT ]t . In this case, the rank of the channel matrix is also unity, and the eigenvalue λ1

is given as

λ1 = ‖ h‖2
F =

NT∑
j=1

|h1 j |2 (15.2–16)

The resulting capacity of the MISO channel when the NT elements {h1 j } of the channel
are deterministic and known to the receiver is

CMISO = log2

(
1 + Es

NT N0
‖ h‖2

F

)

= log2

⎛
⎝1 + Es

NT N0

NT∑
j=1

|h1 j |2
⎞
⎠ bps/Hz

(15.2–17)

It is interesting to note that for the same ‖ h‖2
F , the capacity of the SIMO channel is

greater than the capacity of the MISO channel when the channel is known to the receiver
only. The reason is that, under the constraint that the total transmitted energy in the
two systems be identical, the energy Es in the MISO system is split evenly among the
NT transmit antennas, whereas in the SIMO system, the transmitter energy Es is used
by the single antenna. Note also that in both SIMO and MISO channels, the capacity
grows logarithmically as a function of ‖ h‖2

F .
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15.2–3 Capacity of a Frequency-Nonselective Ergodic Random
MIMO Channel

The channel capacity expressions derived in Section 15.2–2 for a deterministic MIMO
channel may be viewed as the capacity for a randomly selected realization of the channel
matrix. To determine the ergodic capacity, we may simply average the expression for
the capacity of the deterministic channel over the statistics of the channel matrix. Thus,
for a SIMO channel, the ergodic capacity, as defined in Chapter 14, is

C̄SIMO = E

[
log2

(
1 + Es

N0

NR∑
i=1

|hi1|2
)]

=
∫ ∞

0
log2

(
1 + Es

N0
x
)

p(x) dx bps/Hz

(15.2–18)

where X = �
NR
i=1|hi1|2 and p(x) is the probability density function of the random

variable X .
Figure 15.2–1 illustrates C̄SIMO versus the average SNR Es E(|hi1|2)/N0 for NR =

2, 4, and 8 when the channel parameters {hi1} are iid complex-valued, zero-mean,
circularly symmetric Gaussian with each having unit variance. Hence, the random
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FIGURE 15.2–1
Ergodic capacity of SIMO channels.
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variable X has a chi-squared distribution with 2NR degrees of freedom, and its PDF is
given by Equation 15.2–6. For comparison, the ergodic capacity C̄SISO is also shown.

Similarly, the ergodic channel capacity for the MISO channel is

C̄MISO = E

⎡
⎣log2

⎛
⎝1 + Es

NT N0

NT∑
j=1

|h1 j |2
⎞
⎠

⎤
⎦

=
∫ ∞

0
log2

(
1 + Es

NT N0
x
)

p(x) dx bps/Hz

(15.2–19)

Figure 15.2–2 illustrates C̄MISO versus the average SNR, as defined above, for
NT = 2, 4, and 8 when the channel parameters {h1 j } are iid zero-mean, complex-
valued, circularly symmetric Gaussian, each having unit variance. As in the case of
the SIMO channel, the random variable x has a chi-squared distribution with 2NT

degrees of freedom. The ergodic capacity of a SISO channel is also included in Fig-
ure 15.2–2 for comparison purposes. In comparing the graphs in Figure 15.2–1 with
those in Figure 15.2–2, we observe that C̄SIMO > C̄MISO.

To determine the ergodic capacity of the MIMO channel, we average the expression
for C given in Equation 15.2–12 over the joint probability density function of the
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Ergodic capacity of MISO channels.
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eigenvalues {λi }. Thus,

C̄MIMO = E

{
r∑

i=1

log2

(
1 + Es

NT N0
λi

)}

=
∫ ∞

0
· · ·

∫ ∞

0

[
r∑

i=1

log2

(
1 + Es

NT N0
λi

)]
p(λ1, . . . , λr ) dλ1 · · · dλr

(15.2–20)

For the case in which the elements of the channel matrix H are complex-valued
zero-mean Gaussian with unit variance and spatially white with NR = NT = N , the
joint PDF of {λi } is given by Edelman (1989) as

p(λ1, λ2, . . . , λN ) = (π/2)N (N−1)

[
N (N )]2
exp

[
−

(
N∑

i=1

λi

)] ∏
i, j

i< j

(2λi − 2λ j )
2

N∏
i=1

u(λi )

(15.2–21)

where 
N (N ) is the multivariate gamma function defined as


N (N ) = π N (N−1)/2
N∏

i=1

(N − i)! (15.2–22)

Figure 15.2–3 illustrates C̄MIMO versus the average SNR for NT = NR = 2 and
NT = NR = 4. The ergodic capacity of a SISO channel is also included in Fig-
ure 15.2–3 for comparison purposes. We observe that at high SNRs, the capacity of
the (NT , NR) = (4, 4) MIMO system is approximately four times the capacity of the
(1, 1) system. Thus, at high SNRs, the capacity increases linearly with the number of
antenna pairs when the channel is spatially white.

15.2–4 Outage Capacity

As we have observed, the capacity of a randomly fading channel is a random variable.
For an ergodic channel, its average value C̄ is the ergodic capacity. For a nonergodic
channel, a useful performance metric is the probability that the capacity is below some
value for a specified percentage of channel realizations. This performance metric is the
outage capacity, defined in Section 14.2–2.

To be specific, we consider a channel that is known to the receiver only. We assume
that the MIMO channel matrix H is randomly selected in accordance with each channel
realization and remains constant for each channel use. In other words, we assume that
the channel is quasi-static for the duration of a frame of data, but the channel matrix
may change from frame to frame. Then, for any given frame, the probability

P(C ≤ C p) = Pout (15.2–23)

is called the outage probability and the corresponding capacity C p is called the 100 Pout%
outage capacity where the subscript p denotes Pout. Hence, the achievable information
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FIGURE 15.2–3
Ergodic capacity of MIMO channels.

rate will exceed C p for 100(1− Pout)% of the MIMO channel realizations. Equivalently,
if we transmit a large number of frames, the transmission of a frame will fail (contain
errors) with probability Pout.

To evaluate the outage capacity of a MIMO channel, let us consider a channel matrix
H , whose elements are iid, complex-valued, circularly symmetric, zero-mean Gaussian
with unit variance. Then, for each realization of H , say Hk , the corresponding capacity
Ck is given by Equation 15.2–11 for any SNR Es/N0. If we consider the ensemble of all
possible channel realizations for any given SNR, the PDF of Ck may appear as shown
in Figure 15.2–4.

The cumulative distribution function (CDF) is

F(C) = P(Ck ≤ C)

Figure 15.2–5 illustrates the CDF for NT = NR = 2 and NT = NR = 4 MIMO
channels and a SISO channel for an SNR of 10 dB. The outage capacity at some
specified outage probability is easily determined from F(C) for any given SNR.

Figure 15.2–6 illustrates the 10% outage capacity as a function of the SNR for
NT = NR = 2 and NT = NR = 4 MIMO channels and for a SISO channel. We
observe that, as in the case of the ergodic capacity, the outage capacity increases as the
SNR is increased and as the number of antennas NR = NT increases.



Proakis-27466 book September 26, 2007 23:14

Chapter Fifteen: Multiple-Antenna Systems 989

0 2 4 6 8 10 12C
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(
C

k)

Ck Capacity (bps�Hz)

FIGURE 15.2–4
Probability density function of channel capacity for an NT = NR = 2 MIMO channel at
SNR = 10 dB.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(C

)

C � bps�Hz

NT � NR � 1 NT � NR � 2 NT � NR � 4

FIGURE 15.2–5
CDF of MIMO channel capacity at SNR = 10 dB.



Proakis-27466 book September 26, 2007 23:14

990 Digital Communications

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Average SNR (dB)

10
%

 O
ut

ag
e 

ca
pa

ci
ty

 (
bp

s/
H

z)

NT � 2, NR � 2

NT � 1, NR � 1

NT � 4, NR � 4

FIGURE 15.2–6
10% Outage capacity of MIMO channels.

15.2–5 Capacity of MIMO Channel When the Channel Is Known
at the Transmitter

We have observed that when the channel matrix H is known only at the receiver, the
transmitter allocates equal power to the signals transmitted on the multiple transmit
antennas. On the other hand, if both the transmitter and the receiver know the channel
matrix, the transmitter can allocate its transmitted power more efficiently and thus
achieve a higher capacity.

Let us consider a MIMO system with NT transmit antennas and NR receive antennas
in a frequency-nonselective channel. The channel matrix H is assumed to be of rank
r . Hence, using an SVD, H is represented as H = UΣV H . Since H is known at
the transmitter and the receiver, the transmitted signal vector of dimension r × 1 is
premultiplied by the matrix V , and the received signal is premultiplied by the matrix
U H as previously described in Section 15.1–2 and in Figure 15.1–5. The transmitted
signal vector s has zero-mean, complex-valued Gaussian elements. The sum of the
variances of the elements of s is constrained to be equal to NT , i.e.,

E(sH s) =
r∑

k=1

E
[|sk |2

] =
r∑

k=1

σ 2
ks = NT (15.2–24)

Hence, the signal transmitted on the NT antennas is
√
Es/NT V s.
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The received signal vector is

y =
√

Es

NT
HV s + η y =

√
Es

NT
UΣs + η (15.2–25)

After premultiplying y by U H , we obtain the transformed r × 1 vector

y′ = U H y =
√

Es

NT
Σs + η′ (15.2–26)

where η′ = U Hη.
We observe that the channel characterized by the NR × NT channel matrix is

equivalent to r decoupled SISO channels, whose output is

y′
k =

√
Esλk

NT
sk + η′

k, k = 1, 2, . . . , r (15.2–27)

Therefore, the capacity of the MIMO channel for a specific power allocation at the
transmitter is

C
({

σ 2
ks

}) =
r∑

k=1

log2

(
1 + Esλk

NT N0
σ 2

ks

)
(15.2–28)

Note that the energy transmitted per symbol on the kth subchannel is Esσ
2
ks/NT .

The transmitter allocates its total transmitted power across the NT antennas so as to
maximize C

({
σ 2

ks

})
. Thus, the capacity of the MIMO channel under the optimum

power allocation is

C = max
{σ 2

ks}

r∑
k=1

log2

(
1 + Esλk

NT N0
σ 2

ks

)
(15.2–29)

where the constraint on the
{
σ 2

ks

}
is given by Equation 15.2–24. The maximization

in Equation 15.2–29 can be performed by numerical methods. Basically, the solution
satisfies the “water-filling principle,” which allocates more power to subchannels which
have low noise power, i.e., according to the ratio N0/λk , and less power to subchannels
that have high noise power.

For an ergodic channel, the average (ergodic) capacity, is determined by averaging
the capacity given in Equation 15.2–29 for a given H over the channel statistics, i.e.,
over the joint PDF of {λk}. Thus,

C̄ = E

{
max
{σ 2

ks }

r∑
k=1

log2

(
1 + Esλk

NT N0
σ 2

ks

)}
(15.2–30)

This computation can be performed numerically when the joint PDF of the eigenvalues
{λk} is known.
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15.3
SPREAD SPECTRUM SIGNALS AND MULTICODE TRANSMISSION

In Section 15.1 we demonstrated that a MIMO system transmitting in a frequency-
nonselective fading channel can employ identical narrowband signals for data trans-
mission. The signals from the NT transmit antennas were assumed to arrive at the
NR receive antennas via NT NR independently fading propagation paths. By knowing
the channel matrix H , the receiver is able to separate and detect the NT transmitted
symbols in each signaling interval. Thus, the use of narrowband signals provided a
data rate increase (spatial multiplexing gain) of NT relative to a single-antenna sys-
tem and, simultaneously, a signal diversity of order NR , where NR ≥ NT , when the
maximum-likelihood detector is employed.

In this section we consider a similar MIMO system with the exception that the
transmitted signals on the NT transmit antennas will be wideband, i.e., spread spectrum
signals.

15.3–1 Orthogonal Spreading Sequences

The MIMO system under consideration is illustrated in Figure 15.3–1(a). The data
symbols {s j , 1 ≤ j ≤ NT } are each multiplied (spread) by a binary sequence {c jk, 1 ≤
k ≤ Lc, 1 ≤ j ≤ NT } consisting of Lc bits, where each bit takes a value of either +1
or −1. These binary sequences are assumed to be orthogonal, i.e.,

Lc∑
k=1

c jkcik = 0, j �= i (15.3–1)

For example, the orthogonal sequences may be generated from NT Hadamard code-
words of block length Lc, where a 0 in the Hadamard codeword is mapped into a −1
and a 1 is mapped into a +1. The resulting orthogonal sequences are usually called
Walsh-Hadamard sequences.

The transmitted signal on the j th transmit antenna may be expressed as

s j (t) = s j

√
Es

NT

Lc∑
k=1

c jk g(t − kTc), 0 ≤ t ≤ T ; j = 1, 2, . . . , NT (15.3–2)

where Es/NT is the energy per transmitted symbol, T is the symbol duration, Tc =
T/Lc, and g(t) is a signal pulse of duration Tc and energy 1/Lc. The pulse g(t) is
usually called a chip, and Lc is the number of chips per information symbol. Thus, the
bandwidth of the information symbols, which is approximately 1/T , is expanded by
the factor Lc, so that the transmitted signal on each antenna occupies a bandwidth of
approximately 1/Tc.

The MIMO channel is assumed to be frequency-nonselective and characterized by
the matrix H , which is known to the receiver. At each receiving terminal, the received
signal is passed through a chip matched filter and matched to the chip pulse g(t), and
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its sampled output is fed to a bank of NT correlators whose outputs are sampled at the
end of each signaling interval, as illustrated in Figure 15.3–1(b). Since the spreading
sequences are orthogonal, the NT correlator outputs at the mth receive antenna are
simply expressed as

ymj = s j

√
Es

NT
hmj + ηmj , m = 1, 2, . . . , NR; j = 1, 2, . . . , NT (15.3–3)

where {ηmj} denote the additive noise components, which are assumed to be zero mean,
complex-valued circularly symmetric Gaussian iid with variance E

[|ηmj |2
] = σ 2.

It is convenient to express the NR correlator outputs corresponding to the same
transmitted symbol s j in vector form as

y j =
√

Es

NT
s j h j + η j (15.3–4)

where y j = [y1 j y2 j · · · yNR j ]t , h j = [h1 j h2 j · · · hNR j ]t , and η j = [η1 j η2 j · · · ηNR j ]t .
The optimum combiner is a maximal ratio combiner (MRC) for each of the transmitted
symbols {s j}. Thus, the output of the MRC for the j th signal is

μ j = hH
j y j

=
√

Es

NT
s j ‖ h j ‖2

F + hH
j η j , j = 1, 2, . . . , NT

(15.3–5)

The decision metrics {μ j} are the inputs to the detector, which makes an independent
decision on each symbol in the set {s j } of transmitted symbols.

We observe that the use of orthogonal spreading sequences in a MIMO system
transmitting over a frequency-nonselective channel significantly simplifies the detector
and, for a spatially white channel, yields NR-order diversity for each of the transmitted
symbols {s j }. The evaluation of the error rate performance of the detector for standard
signal constellations such as PSK and QAM is relatively straightforward.

Frequency-Selective Channel If the channel is frequency-selective, the orthogo-
nality property of the spreading sequences no longer holds at the receiver. That is, the
channel multipath results in multiple received signal components which are offset in
time. Consequently, the correlator outputs at each of the antennas contain the desired
symbol plus the other NT − 1 transmitted symbols, each scaled by the correspond-
ing cross-correlations between pairs of sequences. Due to the presence of intersymbol
interference, the MRC is no longer optimum. Instead, the optimum detector is a joint
maximum-likelihood detector for the NT transmitted symbols received at the NR receive
antennas.

In general, the implementation complexity of the optimum detector in a frequency-
selective channel is extremely high. In such channels, a suboptimum receiver may be
employed. A receiver structure that is readily implemented in a MIMO frequency-
selective channel employs adaptive equalizers at each of the NR receivers prior to
despreading the spread spectrum signals. Figure 15.3–2 illustrates the basic receiver
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structure. The received signal at each receive antenna is sampled at some multiple
of the chip rate and fed to a parallel bank of NT fractionally spaced linear equaliz-
ers, whose outputs are sampled at the chip rate. After combining the respective NR

equalizer outputs, the NT signals are despread and fed to the detector, as illustrated in
Figure 15.3–2. Alternatively DFEs may be used, where the feedback filters are operated
at the symbol rate.

Training signals for the equalizers may be provided to the receiver by transmitting
a pilot signal from each transmit antenna. These pilot signals may be spread spec-
trum signals that are simultaneously transmitted along with the information-bearing
signals. Using the pilot signals, the equalizer coefficients can be adjusted recursively
by employing a LMS- or RLS-type algorithm.

15.3–2 Multiplexing Gain Versus Diversity Gain

As we have observed from our previous discussion, the use of orthogonal spreading
sequences to transmit multiple data symbols makes it possible for the receiver to separate
the data symbols by correlating the received signal with each of the spreading sequences.
For example, let us consider the MISO system shown in Figure 15.3–3, which has
NT transmit antennas and one receive antenna. As shown, NT different symbols are
transmitted simultaneously on the NT transmit antennas. The receiver employs a parallel
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MISO system with spread spectrum signals.
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bank of NT correlators. Thus, the output of the j th correlator is

y j =
√

Es

NT
s j h j + η j , j = 1, 2, . . . , NT (15.3–6)

where h j is the complex-valued channel parameter associated with the propagation
of the j th transmitted signal. Hence, the detector computes the decision variables
{y j h∗

j , j = 1, 2, . . . , NT } and makes an independent decision on each transmitted
symbol. In this configuration, the MISO system achieves a multiplexing gain (increase in
data rate) of NT , but there is no diversity gain. Alternatively, if two or more transmitting
antennas transmit the same information symbol, the receiver can employ a maximal
ratio combiner to combine the received signals carrying the same information and, thus,
achieve an order of diversity of 2 or more at the expense of reducing the multiplexing
gain. If all NT transmit antennas are used to transmit the same information symbol,
the receiver can achieve NT -order diversity, but there would be no multiplexing gain.
Thus, we observe that there is a tradeoff between muliplexing gain and diversity gain.

More generally, in a MIMO system with NT transmit antennas and NR receive
antennas, the multiplexing gain can vary from 1 to NT and the diversity gain can
vary from NR NT to NR , respectively. Thus, an increase in diversity gain is offset
by a corresponding decrease in multiplexing gain and vice versa. Although we have
described this tradeoff between multiplexing gain and diversity gain in the context
of orthogonal spreading sequences, this tradeoff is also appropriate in the context of
narrowband signals.

15.3–3 Multicode MIMO Systems

In Sections 15.3–1 and 15.3–2, we considered spread spectrum MIMO systems in
which a single sequence was used at each transmitting antenna to spread a single
information symbol. However, it is possible to employ multiple orthogonal sequences
at each transmitting antenna, to transmit multiple information symbols and thus to
increase the data rate.

Figure 15.3–4 illustrates this concept with the use of two transmit and two receive
antennas (NR = NT = 2). There are K orthogonal spreading sequences that are used
to spread the spectrum of K information symbols at each transmitter. The same K
spreading sequences are used at all the transmitters. Thus, with NT transmit antennas
there are K NT information symbols that are transmitted simultaneously. At each trans-
mitter, the sum of K spread signals is multiplied by a pseudorandom sequence p j ,
called a scrambling sequence, consisting of statistically independent, equally probable
+1s and −1s occurring at the chip rate of the orthogonal sequences {ck}. The scram-
bling sequences used at the NT different transmitters are assumed to be statistically
independent. These scrambling sequences serve as a means to separate (orthogonalize)
the transmissions among the NT transmit antennas, and have a length Ls , which may
be equal to or larger than the length Lc of the orthogonal sequences, where Lc is the
number of chips per information symbol. The scrambled orthogonal signals at each
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antenna may be expressed as

s j (t) =
√

Es

K NT

K∑
k=1

s jk

Lc∑
i=1

cki p ji g(t − iTc), j = 1, 2, . . . , NT ; 0 ≤ t ≤ T

(15.3–7)

where p j is the scrambling sequence at the j th transmitter, s j = [s j1 s j2 · · · s j K ]t is the
vector of information symbols transmitted from the j th antenna, ck = [ck1 ck2 · · · ckLc ]
is the kth orthogonal spreading sequence, g(t) is the chip signal pulse of duration Tc and
energy 1/Lc, and Es/K NT is the average energy per transmitted information symbol
at each antenna.

At each receive antenna, the received signals are passed through a chip matched
filter and sampled at the chip rate. The samples at the output of the chip matched
filters are descrambled and cross-correlated with each of the K orthogonal sequences.
The correlator outputs are sampled at the symbol rate. Assuming that the scrambling
sequences are orthogonal, these samples may be expressed as

y jk =
√

Es

K NT
s jk h j + η jk, j = 1, 2, . . . , NT ; k = 1, 2, . . . , K (15.3–8)

where y jk = [y1 jk y2 jk · · · yNR jk]t , h j = [h1 j h2 j · · · hNR j ]t , and η jk = [η1 jkη2 jk · · ·
ηNR jk]t is the additive Gaussian noise vector. Thus, the transmitted symbols are decou-
pled by use of orthogonal scrambling and spreading sequences. These samples are fed
to the maximal ratio combiner which computes the metrics

μ jk = hH
j y jk

=
√

Es

K NT
s jk ‖ h j ‖2

F + hH
j η jk, j = 1, 2, . . . , NT ; k = 1, 2, . . . , K

(15.3–9)

These metrics are passed to the detector which makes a decision on each of the trans-
mitted information symbols based on a Euclidean distance criterion. We should note
that if the scrambling sequences are not orthogonal, we have intersymbol interference
among the symbols transmitted on the NT antennas. In such a case, a multisymbol (or
multiuser) detector must be employed.

In a frequency-selective channel, the orthogonality among the multiple codes is de-
stroyed. In such channels, a practical implementation of the receiver employs adaptive
equalizers to restore the orthogonality of the codes and mitigates the effects of inter-
chip and intersymbol interference. Figure 15.3–5 illustrates such a receiver structure.
Training signals for the equalizers are usually provided to the receiver by transmitting
a pilot signal from each transmit antenna. These pilot signals may be spread spectrum
signals that are simultaneously transmitted along with the information-bearing signals.
For example, the pilot signals may be transmitted with the spreading code c1 at each
transmit antenna. Using the pilot signals, the equalizer coefficients can be adjusted
recursively by employing either an LMS or RLS type of algorithm.
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15.4
CODING FOR MIMO CHANNELS

In this section we describe two different approaches to code design for MIMO channels
and evaluate their performance for frequency-nonselective Rayleigh fading channels.
The first approach is based on using conventional block or convolutional codes with
interleaving to achieve signal diversity. The second approach is based on code design
that is tailored for multiple-antenna systems. The resulting codes are called space-time
codes. We begin by recapping the error rate performance of coded SISO systems in
Rayleigh fading channels.

15.4–1 Performance of Temporally Coded SISO Systems
in Rayleigh Fading Channels

Let us consider a SISO system, as shown in Figure 15.4–1, where the fading channel
is frequency-nonselective and the fading process is Rayleigh-distributed. The encoder
generates either an (n, k) linear binary block code or an (n, k) binary convolutional
code. The interleaver is assumed to be sufficiently long that the transmitted signals
conveying the coded bits fade independently. The modulation is binary PSK, DPSK,
or FSK.

The error probabilities for the coded SISO channel with Rayleigh fading are given
in Sections 14.4 and 14.7. Let us consider linear block codes first. From Section 7.2–4,
the union bound on the codeword error probability for soft decision decoding is

Pe <

M∑
m=2

P2(wm) < (M − 1)P2(dmin) < 2k P2(dmin) (15.4–1)

where P2(wm) is the pairwise error probability given by the expression (see Sec-
tion 14.7–1)

P2(wm) =
(

1 − ψ

2

)wm wm−1∑
k=0

(
wm − 1 + k

k

)(
1 + ψ

2

)k

(15.4–2)

Encoder Interleaver Modulator
h11

Input

data

Decoder Deinterleaver Demodulator
Output

data

FIGURE 15.4–1
Temporally coded SISO system.
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and

ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
γ̄b Rc

1 + γ̄b Rc
BPSK

γ̄b Rc/(1 + γ̄b Rc) DPSK

γ̄b Rc/(2 + γ̄b Rc) FSK (noncoherent detection)

(15.4–3)

For simplicity, we will use the simpler (looser) upper bound obtained by assuming
that γ̄b 	 1 in the expression for P2(dmin). Thus, we obtain

Pe < 2k P2(dmin)

< 2k

(
2dmin − 1

dmin

)(
1

q Rcγ̄b

)dmin (15.4–4)

where

q =
⎧⎨
⎩

4 BPSK
2 DPSK
1 FSK (noncoherent detection)

(15.4–5)

We observe that for soft decision decoding, the error probability decays exponentially
as 1/γ̄b Rc, where the exponent is equal to dmin, the minimum Hamming distance of the
block codes.

For hard decision decoding, we employ the Chernov bound given in Section 14.4,
which may be expressed as

Pe < 2k[4p(1 − p)]dmin/2 (15.4–6)

where the error probability per coded bit is given as

p = 1 − ψ

2
(15.4–7)

and ψ is defined in Equation 15.4–3. For γ̄b 	 1, the Chernov bound simplifies to

Pe < 2k

(
4

q Rcγ̄b

)dmin/2

(15.4–8)

where q is defined in Equation 15.4–5. As in the case of soft decision decoding, the error
probability decays exponentially as 1/γ̄b Rc; however, the exponent for hard decision
decoding is dmin/2. Therefore, soft decision decoding provides twice the signal diversity
that is obtained by hard decision decoding.

For convolutional codes with soft decision decoding, we use the union bound
derived in Section 14.3, namely,

Pb <

∞∑
d=dfree

βd P2(d) (15.4–9)
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where P2(d) is given by Equation 15.4–2 and ψ is defined by Equation 15.4–3. If
γ̄b 	 1, we obtain the simpler form for the pairwise error probability, i.e.,

P2(d) ≈
(

2d − 1

d

)(
1

q Rcγ̄b

)d

(15.4–10)

where q is defined by Equation 15.4–5. We observe that the leading term in Equation
15.4–9 has an exponent of d = dfree. Hence, for soft decision decoding, the leading
term in the error probability decays exponentially as 1/γ̄b Rc, where the exponent is
dfree, the free distance of the convolutional code.

For hard decision decoding, we again use the Chernov bound for the pairwise error
probability

P2(d) < [4p(1 − p)]d/2 (15.4–11)

where p is defined by Equation 15.4–7 and ψ is defined by Equation 15.4–3. Hence,
with γ̄b 	, P2(d) simplifies to

P2(d) <

(
4

q Rcγ̄b

)d/2

(15.4–12)

and the bit error probability is upper-bounded as

Pb <

∞∑
d=dfree

βd

(
4

q Rcγ̄b

)d/2

(15.4–13)

As in the case of block codes, we observe that with hard decision decoding, the signal
diversity achieved by the code is reduced by a factor of 2 compared with soft decision
decoding.

With this background on the performance of coded SISO systems, we now consider
the performance of coded MIMO systems.

15.4–2 Bit-Interleaved Temporal Coding for MIMO Channels

We consider the MIMO system as shown in Figure 15.4–2, which has NT transmit
antennas and NR receive antennas (NR ≥ NT ). The encoder may generate either a
binary block code or a convolutional code. The interleaver is selected to be suffi-
ciently long that the coded bits in a block of the block code or in several constraint
lengths of the convolutional code fade independently. The MIMO channel is assumed
to be frequency-nonselective with zero-mean, complex-valued, circularly symmetric
Gaussian distributed coefficients {hi j }, which are identically distributed and mutually
statistically independent. The channel metrix H is assumed to have full rank.

The demodulator output in each signal interval is the vector y given by Equa-
tion 15.1–10. For hard decision decoding, the vector y is fed to the detector, which
may employ any of the three detection algorithms (MLD, MMSE, ICD) described in
Section 15.1–2 to make the hard decisions on the transmitted bits. For soft decision
decoding, the vector y, after deinterleaving, is fed to the decoder. Similarly, for hard
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(a) Transmitter

(b) Receiver
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Modulator

Modulator
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Demodulator
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Demodulator

Parallel-to-
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converter

Output

data

. . .
. . .

FIGURE 15.4–2
Bit-interleaved temporally coded MIMO system.

decision decoding, the bits from the detector output are deinterleaved and fed to the
decoder.

Let us consider the amount of signal diversity that is achieved in the MIMO sys-
tem that employs spatial multiplexing of NT . Recall from Section 15.1–2 that with
hard decision detection in an uncoded system, we achieved (NR − NT + 1)-order
signal diversity with linear detection and NR-order signal diversity with the optimum
maximum-likelihood detector (MLD). From our discussion in Section 15.4–1, we ob-
served that the code provides a diversity of order dmin/2 or dfree/2. Therefore, in a coded
MIMO system, the total signal diversity achieved with a linear detector and a hard de-
cision decoder is (NR − NT + 1)dmin/2 or (NR − NT + 1)dfree/2. On the other hand,
if soft decision decoding is employed, the total diversity order is NRdmin or NRdfree.

We demonstrate the additional diversity achieved with coding and bit-interleaving
by computer simulation of the MIMO system shown in Figure 15.4–2 for a rate Rc =
1/2 convolutional code with dfree = 5 and BPSK modulation. Figures 15.4–3 and
15.4–4 illustrate the performance of the MIMO system for binary PSK with hard
decision decoding and soft decision decoding, for (NT , NR) = (2, 2) and (NT , NR) =
(2, 3). We observe that coding with interleaving improves the performance of the MIMO
system relative to the performance of the uncoded system at the cost of a reduction in the
data throughput rate by the reciprocal of the code rate. For (NT , NR) = (2, 3) and hard
decision decoding, the MMSE detector with coding performs almost as well as the MLD
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MMSE, uncoded

MLD, uncoded

ML, coded
MLD, coded

MMSE, coded
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MMSE coded
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FIGURE 15.4–3
Performance of coded (Rc = 1/2, dfree = 5) systems with NT = NR = 2.
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FIGURE 15.4–4
Performance of coded (Rc = 1/2, dfree = 5) systems with NT = 2, NR = 3.
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detector with coding. In this case, the signal diversity provided by the convolutional
code enhances the performance of the MMSE detected data more than the performance
of the MLD detected data. We also observe that maximum-likelihood, soft decision
decoding is significantly better than MLD with hard decision decoding. For example,
at 10−5, the difference in performance is more than 5 dB for (NT , NR) = (2, 3). This
performance advantage is due to the factor of 2 difference in the order of diversity
achieved by the two types of decoders.

Also plotted in Figures 15.4–3 and 15.4–4 is the ideal performance of rate 1/2,

dfree = 5 coded SIMO (NT , NR) = (1, 2) and (NT , NR) = (1, 3) systems. The signal
diversity achieved by these two systems with soft decision decoding is 10 and 15,
respectively. We observe that there is about a 2-dB degradation at Pb = 10−5 in the
performance of the soft decision decoded (2, 2) and (2, 3) MIMO systems compared to
the ideal performance of the corresponding SIMO systems. This loss in performance is
attributed to the interference resulting from the use of multiple transmitting antennas.

The simulation results shown in Figures 15.4–3 and 15.4–4 serve to reinforce our
analytical results on the signal diversity provided by coding with bit interleaving in
a MIMO system. The performance superiority of maximum-likelihood soft decision
decoding over hard decision decoding is clearly evident in these simulation results.

In this section we employed a single encoder and a single interleaver to generate
the coded symbols for transmission on the NT antennas and a single deinterleaver and
decoder at the receiver. An alternative approach that has been considered in the litera-
ture is to employ separate but identical encoding and interleaving on the dimultiplexed
streams fed to each of the transmit antennas. This approach requires NT parallel en-
coders and interleavers at the transmitter and NT parallel decoders and deinterleavers
at the receiver. It is especially suitable for situations where multiple data streams from
different users are to be transmitted in parallel on multiple transmit antennas.

15.4–3 Space-Time Block Codes for MIMO Channels

Let us now consider the MIMO system illustrated in Figure 15.4–5. At the transmitter,
the sequence of information bits is fed to a block encoder that maps a block of bits
into signal points selected from a signal constellation such as PAM, PSK, or QAM,
consisting of M = 2b signal points. The signal points generated by the encoder as a
block are fed to a parallel set of identical modulators which map the signal points into
corresponding waveforms that are transmitted simultaneously on the NT antennas.

A space-time block code (STBC) is defined by a generator matrix G, having N
rows and NT columns, of the form

G =

⎡
⎢⎢⎢⎣

g11 g12 · · · g1NT

g21 g22 · · · g2NT

...
...

...

gN1 gN2 · · · gN NT

⎤
⎥⎥⎥⎦ (15.4–14)

in which the elements {gi j } are signal points resulting from a mapping of information
bits to corresponding signal points from a binary or M-ary signal constellation. By
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FIGURE 15.4–5
Space-time block coded MIMO
system.

employing NT transmit antennas, each row of G consisting of NT signal points (sym-
bols) is transmitted on the NT antennas in a time slot. Thus, the first row of NT symbols
is transmitted on the NT antennas in the first time slot, the second row of NT symbols is
transmitted on the NT antennas in the second time slot, and the N th row of NT symbols
is transmitted on the NT antennas in the N th time slot. Therefore, N time slots are used
to transmit the symbols in the N rows of the generator matrix G.

In the design of the generator matrix of a STBC, it is desirable to focus on three
principal objectives: (1) achieving the highest possible diversity of NT NR , (2) achieving
the highest possible spatial rate, and (3) minimizing the complexity of the decoder. Our
treatment considers these three objectives.

The Alamouti STBC
Alamouti (1998) devised a STBC for NT = 2 transmit antennas and NR = 1 receive
antenna. The generator matrix for the Alamouti code is given as

G =
[

s1 s2

−s∗
2 s∗

1

]
(15.4–15)

where s1 and s2 are two signal points selected from an M-ary PAM, or PSK or QAM
signal constellation with M = 2b signal points. Thus, 2b data bits are mapped into two
signal points (symbols) s1 and s2 from the M-ary signal constellation. The symbols s1

and s2 are transmitted on the two antennas in the first time slot, and the symbols −s∗
2

and s∗
1 are transmitted on the two antennas in the second time slot. Thus, two symbols,

s1 and s2, are transmitted in two time slots. Consequently, the spatial code rate Rs = 1
for the Alamouti code. This is the highest possible rate for a (orthogonal) STBC.
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The MISO channel matrix for the NT = 2, NR = 1 channel, based on a frequency-
nonselective model, is

H = [h11 h12] (15.4–16)

In the decoding of the STBC, we assume that H is constant over the two time slots.
Consequently, the signal at the output of the matched filter demodulator of the receiver
in the two time slots is

y1 = h11s1 + h12s2 + η1

y2 = −h11s∗
2 + h12s∗

1 + η2
(15.4–17)

where η1 and η2 are zero-mean, circularly symmetric complex-valued uncorrelated
Gaussian random variables with equal variance σ 2

η .
Let us consider ML decoding of the symbols in Equation 15.4–17, with the objective

of achieving the full diversity of the STBC. Since η1 and η2 are uncorrelated zero-mean
Gaussian random variables with equal variance, the joint conditional PDF of y1 and y2

is

p(y1, y2|h11, h12, s1, s2) = 1

2πσ 2
η

exp
{− [|y1 − h11s1 − h12s2|2

+ |y2 + h11s∗
2 − h12s∗

1 |2]} /2σ 2
η (15.4–18)

Therefore, the Euclidean distance metric for ML decoding is

μ(s1, s2) = |y1 − h11s1 − h12s2|2 + |y2 + h11s∗
2 − h12s∗

1 |2 (15.4–19)

The optimum ML decoder computes the Euclidean metrics μ(s1, s2) for each pos-
sible pair of symbols and selects the symbol pair that results in the smallest metric.

The computational complexity of the ML decoding procedure is exponential in
the number of symbol pairs; i.e., there are M2 = 22b symbol pairs in the above metric
computations. However, the computational complexity can be reduced if we expand the
right-hand side of Equation 15.4–19 and drop the term |y1|2 +|y2|2, which is irrelevant
to the decision. Thus, we obtain

μ(s1, s2) = |s1|2
[|h11|2 + |h12|2

] − 2 Re
[
y∗

1 h11s1 + y2h∗
12s1

]
+ |s2|2

[|h11|2 + |h12|2
] − 2 Re

[
y∗

1 h12s2 − y2h∗
11s2

]
= μ(s1) + μ(s2)

(15.4–20)

Now, we observe that the metrics μ(s1) and μ(s2) can be computed separately; i.e.,
we determine the symbol s1 that minimizes μ(s1) and the symbol s2 that minimizes
μ(s2). Thus, the computational complexity is significantly reduced from computing M2

metrics to 2M metrics.
A further simplification in decoding results when the signal points in the con-

stellation have equal energy, as in PSK constellations. In such a case, the bias energy
terms |s1|2

[|h11|2 + |h12|2
]

and |s2|2
[|h11|2 + |h12|2

]
can be ignored. Furthermore, the

metrics μ(s1) and μ(s2) can be rearranged as correlation metrics, defined as

μc(s1) = Re
[
y∗

1 h11s1 + y2h∗
12s1

]
μc(s2) = Re

[
y∗

1 h12s2 − y2h∗
11s2

] (15.4–21)
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That is, we correlate y∗
1 with all possible values of s1, scaled by h11, and y2 with all

possible values of s1, scaled by h∗
12, and select the s1 that results in the largest correlation

metric μc(s1). A similar computation is performed to find the value of s2 that yields the
largest μc(s2).

For PAM and QAM signal constellations, the correlation metrics include the bias
terms in Equation 15.4–20. Hence, the correlation metrics may be expressed as

μc(s1) = 2 Re
[
y∗

1 h11s1 + y2h∗
12s1] − |s1|2[|h11|2 + |h12|2

]
μc(s2) = 2 Re

[
y∗

1 h12s2 − y2h∗
11s2] − |s2|2[|h11|2 + |h12|2

] (15.4–22)

It is interesting to note that for the particular symbol s1 that is contained in y1 and
y2, the signal component in the metric μc(s1) is the largest possible and has the value

E[μc(s1)] = |s1|2
[|h11|2 + |h12|2

]
(15.4–23)

where the expectation is taken over the additive Gaussian noise. Similarly, we have

E[μc(s2)] = |s2|2
[|h11|2 + |h12|2

]
(15.4–24)

Since each signal term contains the term
[|h11|2 + |h12|2

]
, the ML decoder achieves a

diversity of order 2, which is the maximum possible diversity with NT = 2 and NR = 1
antennas.

Instead of computing the correlation metrics as defined in Equation 15.4–22, an
equivalent detector (see Problem 15.15) computes the estimates of the symbols s1 and
s2 as follows:

ŝ1 = y1h∗
11 + y∗

2 h12

ŝ2 = y1h∗
12 − y∗

2 h11
(15.4–25)

and it selects the symbols s̃1 and s̃2 that are closest to ŝ1 and ŝ2 in Euclidean distance.
We make the following observation on the Alamouti STBC. First, we observe that

the code achieves the largest possible diversity. Second, through the separation of the
detector metrics given in Equation 15.4–22 or, equivalently, the estimates ŝ1 and ŝ2 given
in Equation 15.4–25, the maximum-likelihood detector has low complexity. These two
desirable properties were achieved as a result of the orthogonality characteristic of the
generator matrix G for the Alamouti code, which we may express as

G =
[

g1 g2

−g∗
2 g∗

1

]
(15.4–26)

We observe that the column vectors υ1 = (g1, −g∗
2)t and υ2 = (g2, g∗

1)t are orthogonal;
i.e., υ1 · υH

2 = 0 and, furthermore,

GH G = [|g1|2 + |g2|2
]

I2 (15.4–27)

where I2 is a 2×2 identity matrix. As a consequence of this property, when we express
the received signal given in Equation 15.4–17 as[

y1

y∗
2

]
=

[
h11 h12

h∗
12 −h∗

11

] [
s1

s2

]
+

[
η1

η∗
2

]

y = H21s + η (15.4–28)



Proakis-27466 book September 26, 2007 23:14

1010 Digital Communications

and form the estimates ŝ1 and ŝ2 as prescribed in Equation 15.4–25 from y in Equa-
tion 15.4–28, we obtain [

ŝ1

ŝ2

]
=

[
h∗

11 h12

h∗
12 −h11

] [
y1

y∗
2

]

= H H
21 H21s + H H

21η

= [|h11|2 + |h12|2
]

s + H H
21η

(15.4–29)

Therefore,

H H
21 H21 = [|h11|2 + |h12|2

]
I2 (15.4–30)

Thus, full diversity and low decoding complexity are achieved as a consequence of the
orthogonality property of G given in Equation 15.4–27.

Alamouti Code with Multiple Receive Antennas
We shall now demonstrate that the Alamouti code achieves the maximum possible
diversity of NT NR = 2NR when the number of receive antennas is increased to NR . In
this case, the NR × 2 channel matrix is

H = [h1 h2] =

⎡
⎢⎢⎢⎣

h11 h12

h21 h22
...

...

hNR1 hNR2

⎤
⎥⎥⎥⎦ (15.4–31)

In the first transmission, the received signal is

y1 = H
[

s1

s2

]
+ η1 (15.4–32)

and in the second transmission, the received signal is

y2 = H
[−s∗

2
s∗

1

]
+ η2 (15.4–33)

As in the case of the MISO NT = 2, NR = 1 system, we may combine Equa-
tions 15.4–32 and 15.4–33 into the equation

[
y1

y∗
2

]
= H2NR

[
s1

s2

]
+

[
η1

η∗
2

]
(15.4–34)

where H2NR is defined as follows:

H2NR =
[

h1 h2

h∗
2 −h∗

1

]
(15.4–35)

Here h1 and h2 are the column vectors of the channel matrix given in Equation 15.4–31.
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Suppose we form the estimates ŝ1 and ŝ2 as[
ŝ1

ŝ2

]
= H H

2NR

[
y1

y∗
2

]

= H H
2NR

H2NR

[
s1

s2

]
+ H H

2NR

[
η1

η∗
2

] (15.4–36)

It is easily verified that

H H
2NR

H2NR =
[

NR∑
i=1

|hi1|2 + |hi2|2)

]
I2

= ‖ H‖2
F I2

(15.4–37)

Consequently, Equation 15.4–36 simplifies to[
ŝ1

ŝ2

]
= ‖ H‖2

F

[
s1

s2

]
+ H H

2NR

[
η1

η∗
2

]
(15.4–38)

We conclude that the Alamouti code achieves the full diversity of 2NR available
in the MIMO system with NT = 2 transmit and NR receive antennas. Furthermore, the
maximum-likelihood decoder bases its decisions on the decoupled estimates ŝ1 and ŝ2

obtained from Equation 15.4–36 as

ŝ1 = hH
1 y1 + yH

2 h2

ŝ2 = hH
2 y1 − yH

2 h1
(15.4–39)

Hence, implementation complexity of the detector is minimized.

Orthogonal Code Design for NT > 2 Transmit Antennas
The design of orthogonal generator matrices for more than NT = 2 transmit antennas
has been extensively studied. Jafarkhani (2005) gives a comprehensive treatment on
their construction based on early work by Hurwitz and Radon (1922) on the design of
real orthogonal matrices. A real N × N matrix G with entries g1, −g1, g2, −g2, . . . ,

gN , −gN , is said to be orthogonal if

Gt G =
(

N∑
i=1

g2
i

)
I N (15.4–40)

where I N is the N × N identity matrix. It can be shown (Jafarkhani (2005)) that rate
Rs = 1 real orthogonal matrix designs exist only for N = 2, 4, 8. For example, a real
orthogonal matrix for NT = 4 transmit antennas is the following:

G =

⎡
⎢⎢⎣

g1 g2 g3 g4

−g2 g1 −g4 g3

−g3 g4 g1 −g2

−g4 −g3 g2 g1

⎤
⎥⎥⎦ (15.4–41)

With {gi } equal to {si } in the generator matrix in Equation 15.4–41, this code transmits
four symbols in four consecutive time slots. Hence, Rs = 1 for this code.
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Real orthogonal generator matrices are suitable for transmitting PAM signal con-
stellations and square QAM signal constellations that can be decoupled into two separate
PAM signal constellations. Real orthogonal generator matrix designs provide a diver-
sity of order NT NR and result in simple maximum-likelihood decoding by decoupling
the decision for each transmitted symbol.

The orthogonality property which results in a low-complexity maximum-likelihood
detector can be achieved for N > 8 at the cost of a lower spatial rate. Such space-time
block codes are called generalized orthogonal codes and are defined by a K × N
generator matrix G with real entries g1, −g1, g2, −g2, . . . , gK , −gK , that satisfies the
property

Gt G = b

(
K∑

i=1

g2
i

)
I N

where b is a constant. The spatial rate is Rs = K/N .
The Alamouti code is an example of an orthogonal complex matrix design for

NT = 2. It has been shown in the literature (see Jafarkhani (2005) and Tarokh et al.
(1999a)) that orthogonal complex matrix designs with Rs = 1 do not exist for NT > 2
transmit antennas. However, by reducing the code rate, it is possible to devise complex
orthogonal designs for two-dimensional signal constellations. For example, an orthog-
onal generator matrix for a STBC that transmits four complex-valued (PSK or QAM)
symbols on NT = 4 transmit antennas is

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1

s∗
1 s∗

2 s∗
3 s∗

4−s∗
2 s∗

1 −s∗
4 s∗

3−s∗
3 s∗

4 s∗
1 −s∗

2−s∗
4 −s∗

3 s∗
2 s∗

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.4–42)

For this code generator, the four complex-valued symbols are transmitted in eight
consecutive time slots. Hence the spatial rate for this code is Rs = 1/2. We also
observe that

GH G =
4∑

i=1

[|si |2
]

I4 (15.4–43)

so that this code provides fourth-order diversity in the case of one receive antenna and
4NR diversity with NR receive antennas.

Complex orthogonal matrices with rate Rs ≤ 1/2 exist for any number of transmit
antennas. However, Wang and Xia (2003) have shown that complex orthogonal matrices
for rates Rs > 3/4 do not exist. Rate Rs = 3/4 complex orthogonal matrices do exist.
The following Rs = 3/4 complex orthogonal generator matrices are given in the paper
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by Tarokh et al. (1999a) for NT = 3 and NT = 4 transmit antennas:

G =

⎡
⎢⎢⎢⎢⎣

s1 s2 s3/
√

2

−s∗
2 s∗

1 s3/
√

2

s∗
3/

√
2 s∗

3/
√

2 (−s1 − s∗
1 + s2 − s∗

2 )/2

s∗
3/

√
2 −s∗

3/
√

2 (s2 + s∗
2 + s1 − s∗

1 )/2

⎤
⎥⎥⎥⎥⎦ (15.4–44)

G =

⎡
⎢⎢⎢⎢⎣

s1 s2 s3/
√

2 s3/
√

2

−s∗
2 s∗

1 s3/
√

2 −s3/
√

2

s∗
3/

√
2 s∗

3/
√

2 (−s1 − s∗
1 + s2 − s∗

2 )/2 (−s2 − s∗
2 + s1 − s∗

1 )/2

s∗
3/

√
2 −s∗

3/
√

2 (s2 + s∗
2 + s1 − s∗

1 )/2 −(s1 + s∗
1 + s2 − s∗

2 )/2

⎤
⎥⎥⎥⎥⎦

(15.4–45)
Finally, we should indicate that orthogonal generator matrix designs are not unique.

To demonstrate this point, let U denote a unitary matrix, i.e., U H U = I , and let G be
a complex orthogonal matrix. Define Gu = U G. Then

GH
u Gu = (U G)H U G

= GH U H U G

= GH G

(15.4–46)

Hence, a system employing the generator matrix Gu has the same properties as a system
employing G.

Quasi-orthogonal Space-Time Block Codes As we have observed, orthogonal
STBCs have the desirable property that the maximum-likelihood (ML) detector reduces
to one that detects each symbol separately. Furthermore, for N = 2, 4, and 8, a real
orthogonal STBC yields full diversity. Similarly, for N = 2, the Alamouti code with
complex elements yields full diversity. We also observed that by reducing the code rate,
it is possible to design (generalized) orthogonal codes having either real or complex
elements. Thus, the low complexity of separate symbol detection can be maintained at
the expense of a reduced rate and diversity.

On the other hand, we may relax the orthogonality condition which results in
separate ML detection and attempt to design STBC with spatial rate Rs = 1 and full
diversity. The simplest detector of such a design is one that allows for pairwise ML
symbol detection. Such a code is called quasi-orthogonal. For example, a complex
quasi-orthogonal STBC with rate Rs = 1 is specified by the generator matrix

G =

⎡
⎢⎢⎢⎣

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3

−s∗
3 −s∗

4 s∗
1 s∗

2

s4 −s3 −s2 s1

⎤
⎥⎥⎥⎦

The transmitted symbols for this code can be optimally detected by a pairwise ML
detector, and the code yields full diversity (see Problem 15.23).
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Differential Space-Time Block Codes
In the application of the Alamouti code, as we have observed, it is assumed that the
channel path coefficients {hi j } are constant over two successive time intervals. For
NT > 2 transmit antennas, the time interval over which the channel path coefficients
are assumed to be constant is even larger. For example, the STBCs given in Equa-
tions 15.4–41, 15.4–44, and 15.4–45 are constructed based on the assumption that the
channel path coefficients are constant over four time intervals. In a fading channel,
this assumption is usually not satisfied precisely. That is, in practice, the channel path
coefficients vary to some extent from one time interval to another. Consequently, the
performance of the coherent detector may be degraded by the channel variation from
one signal interval to the next. Further deterioration in the performance of the detector is
caused by noisy estimates of the channel path coefficients {hi j }. Typically, in practical
systems, the transmitter sends pilot signals that the receiver uses to obtain estimates
of the channel path coefficients. Then the estimates are used in the demodulation and
detection of the STBC. In general, these estimates are noisy and cause some deteri-
oration in the performance of the system. The effects of channel time variations and
noisy channel estimates on the performance of the STBC have received considerable
attention in the technical literature, e.g., Tarokh et al. (1999b), Buehrer and Kumar
(2002), Gu and Leung (2003), and Jootar et al. (2005).

In rapidly fading channels, where the channel time variations preclude the use of
coherent STBC, one may employ differential space-time modulation, which is akin to
differential PSK (DPSK). Differential STBCs do not require knowledge of the channel
path coefficients at the receiver. Consequently, the detector performs differentially
coherent detection. As a result, the performance achieved by a differential STBC on
a Rayleigh fading channel is approximately 3 dB worse than the performance of a
coherently detected STBC. Differential STBCs are described in the papers by Tarokh
and Jafarkhani (2000), Hughes (2000), Hochwald and Sweldens (2000), Tao and Cheng
(2001), Jafarkhani and Tarokh (2001), Jafarkhani (2003), and Chen et al. (2003).

15.4–4 Pairwise Error Probability for a Space-Time Code

In this section we derive an expression for the pairwise error probability for a space-time
coded MIMO system that is communicating over a frequency-nonselective Rayleigh
fading channel. The MIMO system is assumed to employ a STBC for NT transmit
antennas and have spatial rate Rs = NT /N , where N is the block length (number of
time slots used to transmit the block code).

Let us denote the signal elements transmitted in each time slot by the vector s(l) =
[s1(l) s2(l) · · · sNT (l)]t for 1 ≤ l ≤ N and let the space-time codeword be denoted by the
NT × N matrix S = [s(1) s(2) · · · s(N )]. Then the transmitted signal may be expressed
in matrix form as

X =
√

Es

NT
S (15.4–47)

and the received signal may be expressed as

Y =
√

Es

NT
H S + N (15.4–48)
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where H is the NR × NT channel matrix with path coefficients {hi j }, which are constant
over the entire codeword, Y = [ y(1) y(2) · · · y(N )] with

y(l) =
√

Es

NT
Hs(l) + η(l), 1 ≤ l ≤ N (15.4–49)

and N = [η(1) η(2) . . . η(N )] represents the additive noise. The noise components are
assumed to be statistically independent and identically distributed, zero-mean, complex-
valued Gaussian with variance N0.

The receiver employs a maximum-likelihood (ML) decoder that is assumed to
know the channel matrix H . Since the additive noise components are iid, the decoder
searches for the valid codeword that is closest in Euclidean distance to the received
codeword. Thus, the decoder output is

S̃ = arg min
S

‖Y − H S‖2
F (15.4–50)

Let us assume that the codeword S(k) was transmitted. Then the pairwise error
probability (PEP) that S( j) is selected when S(k) is transmitted, for any given channel
matrix realization, is

P(S(k) → S( j)|H) = Q

⎛
⎝

√
Es

2N0 NT
‖ H(S(k) − S( j))‖2

F

⎞
⎠ (15.4–51)

It is convenient to define an NT × N error matrix as Ek j = S(k) − S( j) and to
approximate the PEP by the Chernov bound

P(S(k) → S( j)|H) ≤ exp
{ −Es

4N0 NT
‖ H Ek j ‖2

F

}
(15.4–52)

We can now average this conditional PEP over the statistics of the channel matrix H .
Assuming that the channel path coefficients {hi j} are iid, complex-valued zero-mean
Gaussian (spatially white channel), the average of the PEP in Equation 15.4–52 over
the statistics of the channel path coefficients yields the upper bound on the average
PEP as

P(S(k) → S( j)) ≤ 1[
det

(
I NT + Es

4N0 NT
Ek j EH

kj

)]NR

≤

⎛
⎜⎜⎝

r∏
n=1

1

1 + Esλn

4N0 NT

⎞
⎟⎟⎠

NR
(15.4–53)

where r is the rank of the NT × NT matrix Ak j = Ek j EH
kj and {λn} are the nonzero

eigenvalues of Ak j .
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At high SNR, where Es/4N0 NT 	 1, the bound on the PEP may be expressed as

P(S(k) → S( j)) ≤
(

r∏
n=1

λn

)−NR

(Es/4N0 NT )−r NR (15.4–54)

This expression for the PEP suggests the following two criteria for designing ST
codes, namely, the rank criterion and the determinant criterion, as described in the
paper by Tarokh et al. (1998). In applying the rank criterion, the objective is to achieve
the maximum possible diversity of NT NR , which is obtained when the matrix Ak j is
full rank (r = NT ) for any pair of valid codewords. If Ak j has minimum rank r for a
pair of codewords, the order of diversity is r NR . In applying the determinant criterion,
the objective is to maximize the minimum of the determinant of matrix Ak j taken over
all pairs(k, j) of valid codewords. The term in the PEP involving the product of the
nonzero eigenvalues of Ak j has been coined as the coding gain of the space-time code.
Hence, the determinant criterion has the objective of maximizing the coding gain of
the space-time code.

15.4–5 Space-Time Trellis Codes for MIMO Channels

We observed in Section 8.12 that trellis-coded modulation (TCM) is a combination of
a trellis code and an appropriately selected signal constellation designed with the aim
of achieving a coding gain. Space-time trellis coding also combines trellis coding and
a selected signal constellation with the primary objective of achieving the maximum
possible spatial diversity at the highest code rate. To achieve this objective, code con-
struction may be based on applying the rank criterion and the determinant criterion
described in Section 15.4–4.

In applying the rank criterion, we optimize the spatial diversity obtained from
the space-time code, or equivalently we maximize the rank of the matrices Ai j =
(S(i) − S( j))(S(i) − S( j))H over all pairs (i, j) of codewords. The goal is to achieve the
full rank of NT . It has been shown (see Jafarkhani (2005)) that for a bit rate of b bps/Hz
and a diversity r , a space-time trellis code (STTC) must have at least 2b(r−1) states.
Thus, to achieve full diversity, a STTC must have at least 2b(NT −1) states.

Space-time trellis codes may be designed either manually or with the aid of a
computer by following some simple rules, similar in nature to the rules formulated by
Ungerboeck (1982) for designing trellis codes for TCM. Tarokh et al. (1998) specify
two design rules that guarantee full diversity for MIMO systems with two transmit
antennas.

Design Rule 1: Transitions departing from the same state should differ in the
second symbol (symbol transmitted on the second antenna).
Design Rule 2: Transitions arriving at the same state should differ in the first
symbol (symbol transmitted on the first antenna).

As an example of a STTC, we consider the 4-state trellis code shown in Fig-
ure 15.4–6, which is designed for two transmit antennas and QPSK modulation.
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FIGURE 15.4–6
4-PSK, 4-state, space-time trellis code.

The states are denoted as St = 0, 1, 2, 3. The input to the encoder is a pair of bits
(00, 01, 10, 11) which are mapped into the corresponding phases that are numbered
(0, 1, 2, 3), respectively. The indices 0, 1, 2, 3 correspond to the four phases, which are
called symbols. Initially, the encoder is in state St = 0. Then for each pair of input
bits, which are mapped into a corresponding symbol, the encoder generates a pair of
symbols, the first of which is transmitted on the first antenna, and the second symbol is
transmitted simultaneously on the second antenna. For example, when the encoder is
in state St = 0 and the input bits are 11, the symbol is a 3. The STTC outputs the pair
of symbols (0, 3), corresponding to the phases 0 and 3π/2. The zero phase signal is
transmitted in the first antenna, and the 3π/2 phase signal is transmitted on the second
antenna. At this point the encoder goes to state St = 3. If the next two input bits are
01, the encoder outputs the symbols (3, 1) which are transmitted on the two antennas.
Then, the encoder goes to state St = 1, and this procedure continues. At the end of a
block of input bits, say a frame of data, zeros are inserted in the data stream to return
the encoder to the state St = 0. Thus the STTC transmits at a bit rate of 2 bps/Hz. We
note that it satisfies the two design rules given above and achieves full rank of NT = 2.

Increasing the number of states in the trellis beyond 2b states allows the designer to
increase the coding gain by increasing the product of the eigenvalues (determinant) in
the expression for the pairwise error probability. For example, the 8-state STTC, given
in the paper by Tarokh et al. (1998), that transmits at a bit rate of 2 bps/Hz with QPSK
modulation is shown in Figure 15.4–7. This code provides the same diversity order
(2NR) as the 4-state STTC illustrated in Figure 15.4–6, but achieves a larger coding gain.
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FIGURE 15.4–7
4-PSK, 8-state, space-time trellis code.

The paper by Tarokh et al. (1998) also describes higher rate codes for two transmit
antennas. For example, Figure 15.4–8 illustrates an 8-state STTC for use with 8-PSK
modulation to achieve a bit rate of 3 bps/Hz and full diversity of NT = 2. STTC for
large constellations employing QAM are given in the paper by Tarokh et al. (1998) and
other publications in the literature.

In decoding a STTC, the maximum-likelihood sequence detection (MLSD) crite-
rion provides the optimum performance. MLSD is efficiently implemented by use of the
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FIGURE 15.4–8
8-PSK, 8-state, space-time trellis code.

Viterbi algorithm. For two transmit antennas., the branch metrics may be expressed as

μb(s1, s2) =
NR∑
j=1

|y j − h1 j s1 − h2 j s2|2 (15.4–55)

where {y j , 1 ≤ j ≤ NR} are the outputs of the matched filters at the NR receive
antennas, {h1 j , 1 ≤ j ≤ NR} and {h2 j , 1 ≤ j ≤ NR} are the channel coefficients in
a frequency-nonselective channel, and (s1, s2) denote the symbols transmitted on the
two antennas. By using these branch metrics in the Viterbi algorithm, to form the path
metrics of valid paths through the trellis, we can find the path that minimizes the overall
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metric and thus determine the sequence of transmitted symbols corresponding to the
path having the smallest path metric.

15.4–6 Concatenated Space-Time Codes and Turbo Codes

In Section 15.4–2, we observed that temporal coding with interleaving provides a means
to achieve diversity in a MIMO system. It is also possible to construct concatenated
codes using temporal coding with interleaving in combination with space-time codes.
Figure 15.4–9 illustrates a system in which the input data stream is temporally coded
by either a block code or a convolutional code. Following the temporal encoding, the
data are bit-interleaved and passed to the space-time encoder, which may be either a
STBC or a STTC.

At the receiver, the space-time code is decoded first, and its output is deinter-
leaved and passed to the outer decoder. The output of the outer decoder constitutes the

(a) Transmitter

(b) Receiver

Outer
decoder

Deinterleaver
��1

Demodulator

Demodulator
NR Receive
antennas

Demodulator

Space-
time

decoder

Output

bits
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encoder

Interleaver
NT Transmit
antennas

Space-
time
coder

Input

data

Modulator

Modulator
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�
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�

�

�

. . .
. . .

. . .

�

FIGURE 15.4–9
A MIMO system with concatenated coding consisting of a temporal outer code and a
space-time inner code (dotted lines in the receiver indicate iterative decoding).
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reconstructed data stream. If desired, iterative decoding can be performed between the
inner and outer decoders by making multiple passes on the received data signal. Such
iterative decoding leads to an improvement in system performance but at a significant
cost in implementation (computational) complexity.

A turbo code (parallel concatenated convolutional encoders separated by an inter-
leaver) can also be used as the outer code in a concatenated coding scheme, as shown
in Figure 15.4–9. In such a case, the outer decoder at the receiver is a turbo (iterative)
decoder. Iterative decoding can also be implemented between the turbo decoder and
the space-time decoder. However, iterative decoding between the inner space-time de-
coder and the turbo decoder significantly increases the computational complexity of
the receiver.

15.5
BIBLIOGRAPHICAL NOTES AND REFERENCES

The use of multiple antennas at the receiver of the communication system has been a
well-known method for achieving spatial diversity to combat fading without expand-
ing the bandwidth of the transmitted signal. Much less common has been the use of
multiple antennas at the transmitter to achieve spatial diversity. The publications of
Wittneben (1993) and Seshadri and Winters (1994) are two of the early publications on
this topic.

A major breakthrough occurred with the publications of Foschini (1996) and
Foschini and Gans (1998), which demonstrated that multiple antennas at the trans-
mitter and the receiver of a wireless communication system can be used to establish
multiple parallel channels for simultaneous transmission of multiple data streams in
the same frequency band (spatial multiplexing) and, thus, result in extremely high
bandwidth efficiency. Since then, there have been numerous publications on the analy-
sis of the performance characteristics of MIMO wireless communication systems and
their implementation in practical systems. Basic treatments of MIMO systems may be
found in the textbooks by Goldsmith (2005), Haykin and Moher (2005), and Tse and
Viswanath (2005).

Pioneering work on space-time coding for MIMO channels was performed by
Tarokh et al. (1998, 1999a). The book by Jafarkhani (2005) provides a comprehensive
treatment of both space-time block codes and trellis codes.

PROBLEMS

15.1 Consider an (NT , NR) = (2, 1) MIMO system that employs the Alamouti code to trans-
mit a binary sequence using binary PSK modulation. The channel is Rayleigh fading
characterized by the channel vector

h = [h11 h12]t
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with E |h11|2 = E |h12|2 = 1. The additive noise is zero-mean Gaussian. Determine the
average probability of error for the system.

15.2 Consider a SIMO AWGN channel with NR receive antennas. Instead of maximal ratio
combining, the receiver selects the signal from the antenna having the strongest signal;
i.e., if h = [h1, h2, . . . , hNR ] is the channel vector, the receiver selects the antenna with
channel coefficient

|hmax| = max |hi |, i = 1, 2, . . . , NR

This method is called selection diversity. Determine the capacity of a MIMO system that
employs selection diversity.

15.3 Prove the relationship between the eigenvalues of H H H and the singular values of the
channel matrix H , as given by Equation 15.2–4.

15.4 Consider a MIMO system with NR = NT = N antennas and AWGN. The ergodic
capacity for the MIMO system is

C̄ = E

[
N∑

i=1

log2

(
1 + Es

NN0
λi

)]

Show that for N large, the capacity can be approximated as

C ≈ Es

N0 ln 2
λav

where λav is the average of the eigenvalues of H H H .

15.5 Consider a deterministic SIMO channel with AWGN in which the elements of the channel
vector h satisfy the conditions |hi |2 = 1, i = 1, 2, . . . , NR .

a. Determine the capacity of this SIMO channel when h is known at the receiver only.
b. Suppose that h is also known at the transmitter. Does this additional knowledge

increase the channel capacity? Explain.

15.6 Consider a deterministic MISO channel with AWGN in which the elements of the channel
vector h satisfy the conditions |hi |2 = 1, i = 1, 2, . . . , NT .
a. Determine the capacity of this MISO channel when h is known at the receiver only.
b. How does this capacity compare with that of a SIMO and a SISO channel?

15.7 Consider a MIMO system with NR = NT = N antennas and AWGN. The rank of the
channel matrix H is N .
a. Show that the capacity

C =
N∑

i=1

log2

(
1 + Es

NN0
λi

)



Proakis-27466 book September 26, 2007 23:14

Chapter Fifteen: Multiple-Antenna Systems 1023

subject to the constraint that

N∑
i=1

λi = β = constant

is maximized when λi = β/N for i = 1, 2, . . . , N , and hence

C = N log2

(
1 + βEs

N 2 N0

)

b. If λi = β/N for i = 1, 2, . . . , N , show that H must be an orthogonal matrix that
satisfies the condition

H H H = H H H = β

N
I N

c. Show that if all the elements of H are unit magnitude, i.e., |Hi j | = 1, then ‖H‖2
F = N 2

and

C = N log2

(
1 + Es

N0

)

Hence, under these conditions, the capacity of the orthogonal MIMO channel is N times
the capacity of a SISO channel.

15.8 The received signal vector in a frequency-nonselective AWGN MIMO channel with NT

transmit antennas and NR receive antennas is given by Equation 15.2–7 as

y = Hs + η

a. Use the SVD to transform the received signal vector to the form

y′ = �s + η′

where � is a diagonal matrix of rank r with the nonzero diagonal elements equal to
the singular values of the channel matrix H .

b. Show that if the elements ofη are statistically iid, zero-mean, complex-valued Gaussian
random variables, then the elements of η′ are also iid zero-mean complex-valued
Gaussian random variables.

c. Show that the capacity of the AWGN MIMO channel may be expressed as

C =
r∑

k=1

log2

(
1 + Pkσ

2
k

N0

)
bps/Hz

where P1, P2, . . . , Pr are the allocated powers based on the water-filling criterion with
the total power constraint

r∑
k=1

Pk = P

15.9 The capacity of MISO channel with AWGN, when the channel is known at the receiver
only, may be expressed as

C = log2

(
1 + γ

NT

NT∑
i=1

|hi |2
)
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where γ is the SNR and h = [h1 h2 · · · hNT ]t is the channel coefficient vector. Suppose
the channel coefficients are iid zero-mean, complex Gaussian distributed with E |hi |2 =
1, i = 1, 2, . . . , NT .

a. Determine the PDF of the random variable

X =
NT∑
i=1

|hi |2

b. Note that C is a monotonic function of X . Show that the outage probability for the
MISO system may be expressed as

Pout = P

[
X ≤ NT

2C − 1

γ

]

c. Evaluate and plot Pout versus γ for C = 2 bps/Hz and NT = 1, 2, 4, 8.
d. For γ = 10 dB, evaluate and plot the complementary cumulative distribution function

(CCDF)

1 − Pout = P

[
X ≥ NT

2C − 1

γ

]

versus C for N = 1, 2, 4, 8. This is the CCDF for the outage capacity. Repeat the
computation for γ = 20 dB.

e. Let Pout = 0.1 (corresponding to 10% outage capacity) and plot C versus γ for
NT = 1, 2, 4, 8.

15.10 Consider a deterministic MISO (NT , 1) channel with AWGN and channel vector h. The
received signal in any signal interval may be expressed as

y = hs + η

where y and η are scalars.
a. If the channel vector h is known at the transmitter, demonstrate that the received SNR

is maximized when the information is sent in the direction of the channel vector h,
i.e., s is selected as

s = h∗

‖ h‖ s ′

(The alignment of the transmit signal in the direction of the channel vector h is called
transmit beamforming.)

b. What is the capacity of the MISO channel when h is known at the transmitter?
c. Compare the capacity obtained in (b) with that of a SIMO channel, when the channel

matrix h is identical for the two systems.

15.11 Determine the outage probability of an (NT , NR) = (4, 1) MIMO system for an SNR
γ = 20 dB and outage capacity Cout = 2 bps/Hz.

15.12 The capacity of a SIMO channel with AWGN may be expressed as

C = log2

(
1 + γ

NR∑
i=1

|hi |2
)
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where γ is the SNR and h = [h1 h2 · · · hNR ]t is the channel coefficient vector. The channel
coefficients are complex-valued, iid zero-mean Gaussian distributed with E |hi |2 = 1,

i = 1, 2, . . . , NR .
a. Determine the PDF of the random variable

X =
NR∑
i=1

|hi |2

b. Note that C is a monotonic function of X . Show that the outage probability for the
SIMO system may be expressed as

Pout = P

[
X ≤ 2C − 1

γ

]

c. Evaluate and plot pout versus γ for C = 2 bps/Hz and NR = 1, 2, 4, 8.
d. For γ = 10 dB, evaluate and plot the complementary cumulative distribution function

(CCDF)

1 − Pout = P

[
X ≥ 2C − 1

γ

]

versus C for NR = 1, 2, 4, 8. This is the CCDF for the outage capacity. Repeat for
γ = 20 dB.

e. Let Pout = 0.1 (corresponding to 10% outage capacity) and plot C versus γ for
NR = 1, 2, 4, 8.

15.13 Consider an (NT , NR) = (2, NR) MIMO system that employs the Alamouti code with
QPSK modulation. If the input bit stream is 01101001110010, determine the transmitted
symbols from each antenna for each signaling interval.

15.14 Show that the detector that computes the estimates ŝ1 and ŝ2 given by Equation 15.4–25
is equivalent to the detector that computes the correlation metrics in Equation 15.4–22.

15.15 Determine the decision variables for the separate ML decoding of the symbols in the
following rate 3/4 block code.

C =

⎡
⎢⎢⎣

s1 s2 s3

−s∗
2 s∗

1 0

s∗
3 0 −s∗

1

0 s∗
3 −s∗

2

⎤
⎥⎥⎦

15.16 Determine the decision variables for the separate ML decoding of the symbols in the rate
1/2 orthogonal STBC given by Equation 15.4–42.

15.17 Determine the probability of error for the detector with input metrics given by Equa-
tion 15.3–5 for BPSK modulation and a Rayleigh fading channel. Assume that the com-
ponents of h j are iid, zero-mean, complex-valued Gaussian random variables.
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15.18 For a Rayleigh fading channel and BPSK modulation, determine the performance of a
MISO (2, 1) system employing the Alamouti code with that of a SIMO (1, 2) system.
Assume that the transmitter power is the same for the two systems.

15.19 Consider a MISO (2, 1) system in which the Alamouti code is used in conjunction with
multicode spread spectrum. To be specific, suppose that the symbol s1 is spread by code
c1 and −s∗

2 is spread by code c2. These two spread spectrum signals are added and
transmitted on antenna 1. Similarly, the symbol s2 is spread by c1 and the symbol s∗

1 is
spread by the code c2. Then two spread spectrum signals are added and transmitted on
antenna 2. The channel coefficients h1 and h2 are known at the receiver.
a. Sketch the block diagram configuration of the transmitter and the receiver, illustrating

the modulation and demodulation operations.
b. Assuming that the spreading codes c1 and c2 are orthogonal, determine the expressions

for the decision variables ŝ1 and ŝ2.
c. What, if any, are the advantages and disadvantages of this multicode MISO (2, 1)

system over the conventional MISO (2, 1) system that employs the Alamouti STBC
without the multicode spreading?

15.20 Consider an uncoded MIMO system with NT = NR antennas that transmits over a
frequency-nonselective channel in which the channel matrix H has iid complex-valued,
zero-mean Gaussian elements. The received signal vector is

y = Hs + η

where the elements of η are iid complex-valued, zero-mean Gaussian. The detector used
at the receiver is the inverse channel detector (ICD), described in Section 15.1–2.
a. Determine the covariance matrix of the noise at the output of the detector.
b. If the detector makes independent decisions on each of the NT transmitted symbols,

is this detector optimum (in the sense of minimizing the error probability)?
c. If BPSK modulation is employed, determine the error probability of the detector

described in (b).
d. Now, suppose that NR > NT and the decisions made by the detector are based on the

signal estimate ŝ = W H y, where W H = (H H H)−1 H H . Repeat parts (a) and (b).

15.21 The channel matrix in an NT = NR = 2 MIMO system with AWGN is

H =
[

0.4 0.5
0.7 0.3

]

a. Determine the SVD of H .
b. Based on the SVD of H , determine an equivalent MIMO system having two indepen-

dent channels, and find the optimal power allocation and channel capacity when H is
known at the transmitter and the receiver.

c. Determine the channel capacity when H is known only at the receiver.

15.22 Consider the following two MISO (2, 1) systems with AWGN. The first employs the
Alamouti code to achieve transmit diversity when the channel is known only at the
receiver. The second MISO (2, 1) also achieves transmit diversity, but the channel is
known at the transmitter. Determine and compare the outage probabilities for the two
systems. Which MISO system has a lower outage probability for the same SNR?
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15.23 The generator matrix for a rate Rs = 1 STBC is given as

G =

⎡
⎢⎢⎣

s1 s2 s3 s4

−s∗
2 s∗

1 −s∗
4 s∗

3

−s∗
3 −s∗

4 s∗
1 s∗

2

s4 −s3 −s2 s1

⎤
⎥⎥⎦

a. Determine the matrix GH G, and thus show that the code is not orthogonal.
b. Show that the ML detector can perform pairwise ML detection.
c. What is the order of diversity achieved by this code?
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16

Multiuser Communications

In the MIMO communication systems that were treated in Chapter 15, we observed
that multiple data streams can be sent simultaneously from a transmitter employing
multiple antennas to a receiver that employs multiple receive antennas. This type of
a MIMO system is generally viewed as a single-user point-to-point communication
system, having the primary objectives of increasing the data rate through spatial mul-
tiplexing and improving the error rate performance by increasing signal diversity to
combat fading. In this chapter, the focus shifts to multiple users and multiple commu-
nication links. We explore the various ways in which multiple users access a common
channel to transmit information. The multiple access methods that are described in
this chapter form the basis for current and future wireline and wireless communication
networks, such as satellite networks, cellular and mobile communication networks, and
underwater acoustic networks.

16.1
INTRODUCTION TO MULTIPLE ACCESS TECHNIQUES

It is instructive to distinguish among several types of multiuser communication systems.
One type is a multiple access system in which a large number of users share a common
communication channel to transmit information to a receiver. A model of such a system
is depicted in Figure 16.1–1. The common channel may represent the uplink in either
a cellular or a satellite communication system, or a cable to which are connected a
number of terminals that access a central computer. For example, in a mobile cellular
communication system, the users are the mobile terminals in any particular cell of the
system, and the receiver resides in the base station of the particular cell.

A second type of multiuser communication system is a broadcast network in which a
single transmitter sends information to multiple receivers, as depicted in Figure 16.1–2.
Examples of broadcast systems include the common radio and TV broadcast systems
as well as the downlinks in cellular and satellite communication systems.

1028
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FIGURE 16.1–1
A multiple access system.

The multiple access and broadcast systems are the most common multiuser com-
munication systems. A third type of multiuser system is a store-and-forward network,
as depicted in Figure 16.1–3. Yet a fourth type is the two-way communication system
shown in Figure 16.1–4.

In this chapter, we focus on multiple access and broadcast methods for multiuser
communications. In a multiple access system, there are several different ways in which
multiple users can send information through the communication channel to the receiver.
One simple method is to subdivide the available channel bandwidth into a number, say
K , of frequency non-overlapping subchannels, as shown in Figure 16.1–5, and to assign
a subchannel to each user upon request by the users. This method is generally called
frequency-division multiple access (FDMA) and is commonly used in wireline channels
to accommodate multiple users for voice and data transmission.

Another method for creating multiple subchannels for multiple access is to subdi-
vide the duration T f , called the frame duration, into, say, K non-overlapping subin-
tervals, each of duration T f /K . Then each user who wishes to transmit information

FIGURE 16.1–2
A broadcast network.
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FIGURE 16.1–3
A store-and-forward communication
network with satellite relays.

is assigned to a particular time slot within each frame. This multiple access method
is called time-division multiple access (TDMA) and it is frequently used in data and
digital voice transmission.

We observe that in FDMA and TDMA, the channel is basically partitioned into
independent single-user subchannels. In this sense, the communication system design
methods that we have described for single-user communication are directly applicable
and no new problems are encountered in a multiple access environment, except for the
additional task of assigning users to available channels.

The interesting problems arise when the data from the users accessing the network
is bursty in nature. In other words, the information transmissions from a single user
are separated by periods of no transmission, where these periods of silence may be
greater than the periods of transmission. Such is the case generally with users at various
terminals in a computer communication network. To some extent, this is also the case in
mobile cellular communication systems carrying digitized voice, since speech signals
typically contain long pauses.

In such an environment where the transmission from the various users is bursty and
low-duty-cycle, FDMA and TDMA tend to be inefficient because a certain percentage
of the available frequency slots or time slots assigned to users do not carry informa-
tion. Ultimately, an inefficiently designed multiple access system limits the number of
simultaneous users of the channel.

An alternative to FDMA and TDMA is to allow more than one user to share
a channel or subchannel by use of direct-sequence spread spectrum signals. In this

FIGURE 16.1–4
A two-way communication channel.
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FIGURE 16.1–5
Subdivision of the channel into non-overlapping frequency bands.

method, each user is assigned a unique code sequence or signature sequence that
allows the user to spread the information signal across the assigned frequency band.
Thus signals from the various users are separated at the receiver by cross correlation
of the received signal with each of the possible user signature sequences. By designing
these code sequences to have relatively small cross-correlations, the crosstalk inherent
in the demodulation of the signals received from multiple transmitters is minimized.
This multiple access method is called code division multiple access (CDMA).

In CDMA, the users access the channel in a random manner. Hence, the signal
transmissions among the multiple users completely overlap both in time and in fre-
quency. The demodulation and separation of these signals at the receiver is facilitated
by the fact that each signal is spread in frequency by the pseudorandom code sequence.
CDMA is sometimes called spread spectrum multiple access (SSMA).

An alternative to CDMA is nonspread random access. In such a case, when two
users attempt to use the common channel simultaneously, their transmissions collide
and interefere with each other. When that happens, the information is lost and must be
retransmitted. To handle collisions, one must establish protocols for retransmission of
messages that have collided. Protocols for scheduling the retransmission of collided
messages are described below.

16.2
CAPACITY OF MULTIPLE ACCESS METHODS

It is interesting to compare FDMA, TDMA, and CDMA in terms of the information rate
that each multiple access method achieves in an ideal AWGN channel of bandwidth W .
Let us compare the capacity of K users, where each user has an average power Pi = P ,
for all 1 ≤ i ≤ K . Recall that in an ideal band-limited AWGN channel of bandwidth
W , the capacity of a single user is

C = W log2

(
1 + P

W N0

)
(16.2–1)

where 1
2 N0 is the power spectral density of the additive noise.

In FDMA, each user is allocated a bandwidth W/K . Hence, the capacity of each
user is

CK = W

K
log2

[
1 + P

(W/K )N0

]
(16.2–2)
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FIGURE 16.2–1
Normalized capacity as a function of
Eb/N0 for FDMA.

and the total capacity for the K users is

K CK = W log2

(
1 + K P

W N0

)
(16.2–3)

Therefore, the total capacity is equivalent to that of a single user with average power
Pav = K P .

It is interesting to note that for a fixed bandwidth W, the total capacity goes
to infinity as the number of users increases linearly with K . On the other hand, as
K increases, each user is allocated a smaller bandwidth (W/K ) and, consequently,
the capacity per user decreases. Figure 16.2–1 illustrates the capacity CK per user
normalized by the channel bandwidth W, as a function of Eb/N0, with K as a parameter.
This expression is given as

CK

W
= 1

K
log2

[
1 + K

CK

W

( Eb

N0

)]
(16.2–4)

A more compact form of Equation 16.2–4 is obtained by defining the normalized total
capacity Cn = K CK /W, which is the total bit rate for all K users per unit of bandwidth.
Thus, Equation 16.2–4 may be expressed as

Cn = log2

(
1 + Cn

Eb

N0

)
(16.2–5)

or, equivalently,

Eb

N0
= 2Cn − 1

Cn
(16.2–6)

The graph of Cn versus Eb/N0 is shown in Figure 16.2–2. We observe that Cn increases
as Eb/N0 increases above the minimum value of ln 2.

In a TDMA system, each user transmits for 1/K of the time through the channel
of bandwidth W , with average power K P . Therefore, the capacity per user is

CK =
(

1

K

)
W log2

(
1 + K P

W N0

)
(16.2–7)
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FIGURE 16.2–2
Total capacity per hertz as a function
of Eb/N0 for FDMA.

which is identical to the capacity of an FDMA system. However, from a practical stand-
point, we should emphasize that, in TDMA, it may not be possible for the transmitters
to sustain a transmitter power of K P when K is very large. Hence, there is a practical
limit beyond which the transmitter power cannot be increased as K is increased.

In a CDMA system, each user transmits a pseudorandom signal of a bandwidth W
and average power P . The capacity of the system depends on the level of cooperation
among the K users. At one extreme is noncooperative CDMA, in which the receiver for
each user signal does not know the codes and spreading waveforms of the other users,
or chooses to ignore them in the demodulation process. Hence, the other users’ signals
appear as interference at the receiver of each user. In this case, the multiuser receiver
consists of a bank of K single-user matched filters. This is called single-user detection. If
we assume that each user’s pseudorandom signal waveform is Gaussian, then each user
signal is corrupted by Gaussian interference of power (K − 1)P and additive Gaussian
noise of power W N0. Therefore, the capacity per user for single-user detection is

CK = W log2

[
1 + P

W N0 + (K − 1)P

]
(16.2–8)

or, equivalently,

CK

W
= log2

[
1 + CK

W

Eb/N0

1 + (K − 1)(CK /W )(Eb/N0)

]
(16.2–9)

Figure 16.2–3 illustrates the graph of CK /W versus Eb/N0, with K as a parameter.
For a large number of users, we may use the approximation ln(1 + x) ≤ x . Hence,

CK

W
≤ CK

W

Eb/N0

1 + K (CK /W )(Eb/N0)
log2 e (16.2–10)

or, equivalently, the normalized total capacity Cn = K CK /W is

Cn ≤ log2 e − 1

Eb/N0

≤ 1

ln 2
− 1

Eb/N0
<

1

ln 2

(16.2–11)
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FIGURE 16.2–3
Normalized capacity as a function of Eb/N0 for noncooperative CDMA.

In this case, we observe that the total capacity does not increase with K as in TDMA
and FDMA.

On the other hand, suppose that the K users cooperate by transmitting their coded
signals synchronously in time, and the multiuser receiver jointly demodulates and
decodes all the users’ signals. This is called multiuser detection and decoding. Each
user is assigned a rate Ri , 1 ≤ i ≤ K , and a code book containing a set of 2n Ri

codewords of power P . In each signal interval, each user selects an arbitrary codeword,
say Xi , from its own code book, and all users transmit their codewords simultaneously.
Thus, the decoder at the receiver observes

Y =
K∑

i=1

X i + Z (16.2–12)

where Z is an additive noise vector. The optimum decoder looks for the K codewords,
one from each code book, that have a vector sum closest to the received vector Y in
Euclidean distance.

The achievable K -dimensional rate region for the K users in an AWGN channel,
assuming equal power for each user, is given by the following equations:

Ri < W log2

(
1 + P

W N0

)
, 1 ≤ i ≤ K (16.2–13)

Ri + R j < W log2

(
1 + 2P

W N0

)
, 1 ≤ i, j ≤ K (16.2–14)

...

RMU
SUM =

K∑
i=1

Ri < W log2

(
1 + K P

W N0

)
(16.2–15)
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where RMU
SUM is the total (sum) rate achieved by the K users by employing multiuser

detection. In the special case when all the rates are identical, the inequality 16.2–15 is
dominant over the other K − 1 inequalities. It follows that if the rates {Ri , 1 ≤ i ≤ K }
for the K cooperative synchronous users are selected to fall in the capacity region
specified by the inequalities given above, then the probabilities of error for the K users
tend to zero as the code block length n tends to infinity.

From the above discussion, we conclude that the sum of the rates of the K users
RMU

SUM goes to infinity with K . Therefore, with coded synchronous transmission and
joint detection and decoding, the capacity of CDMA has a form similar to that of
FDMA and TDMA. Note that if all the rates in the CDMA system are selected to be
identical to R, then Equation 16.2–15 reduces to

R <
W

K
log2

(
1 + K P

W N0

)
(16.2–16)

which is the highest possible rate and is identical to the rate constraint in FDMA and
TDMA. In this case, CDMA does not yield a higher rate than TDMA and FDMA.
However, if the rates of the K users are selected to be unequal such that the inequalities
16.2–13 to 16.2–15 are satisfied, then it is possible to find the points in the achievable
rate region such that the sum of the rates for the K users in CDMA exceeds the capacity
of FDMA and TDMA.

E X A M P L E 16.2–1. Consider the case of two users in a CDMA system that employs
coded signals as described above. The rates of the two users must satisfy the inequalities

R1 < W log2

(
1 + P

W N0

)
(16.2–17)

R2 < W log2

(
1 + P

W N0

)
(16.2–18)

R1 + R2 < W log2

(
1 + 2P

W N0

)
(16.2–19)

where P is the average transmitted power of each user and W is the signal bandwidth.
The capacity region for the two-user CDMA system with coded signal waveforms

has the form illustrated in Figure 16.2–4, where

Ci = W log2

(
1 + Pi

W N0

)
, i = 1, 2

are the capacities corresponding to the two users with P1 = P2 = P. We note that if
user 1 is transmitting at capacity C1, user 2 can transmit up to a maximum rate

R2m = W log2

(
1 + 2P

W N0

)
− C1

= W log2

(
1 + P

P + W N0

) (16.2–20)

which is illustrated in Figure 16.2–4 as point A. This result has an interesting interpre-
tation. We note that rate R2m corresponds to the case in which the signal from user 1 is
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FIGURE 16.2–4
Capacity region of two-user CDMA multiple
access Gaussian channel.

considered as an equivalent additive noise in the detection of the signal of user 2. On the
other hand, user 1 can transmit at capacity C1, since the receiver knows the transmitted
signal from user 2 and, hence, it can eliminate its effect in detecting the signal of user 1.

Because of symmetry, a similar situation exists if user 2 is transmitting at capacity
C2. Then user 1 can transmit up to a maximum rate R1m = R2m , which is illustrated in
Figure 16.2–4 as point B. In this case, we have a similar interpretation as above, with
an interchange in the roles of user 1 and user 2.

The points A and B are connected by a straight line, which is defined by Equa-
tion 16.2–19. It is easily seen that this straight line is the boundary of the achievable
rate region, since any point on the line corresponds to the maximum rate W log2
(1 + 2P/W N0), which can be obtained by simply time sharing the channel between
the two users.

In the next section, we consider the problem of signal detection for a multiuser
CDMA system and assess the performance and the computational complexity of several
receiver structures.

16.3
MULTIUSER DETECTION IN CDMA SYSTEMS

As we have observed, TDMA and FDMA are multiple access methods in which the
channel is partitioned into independent, single-user subchannels, i.e., non-overlapping
time slots or frequency bands, respectively. In CDMA, each user is assigned a distinct
signature sequence (or waveform), which the user employs to modulate and spread
the information-bearing signal. The signature sequences also allow the receiver to
demodulate the message transmitted by multiple users of the channel, who transmit
simultaneously and, generally, asynchronously.

In this section, we treat the demodulation and detection of multiuser uncoded
CDMA signals. We shall see that the optimum maximum-likelihood detector has a
computational complexity that grows exponentially with the number of users. Such a
high complexity serves as a motivation to devise suboptimum detectors having lower
computational complexities. Finally, we consider the performance characteristics of
the various detectors.
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16.3–1 CDMA Signal and Channel Models

Let us consider a CDMA channel that is shared by K simultaneous users. Each user is
assigned a signature waveform gk(t) of duration T , where T is the symbol interval. A
signature waveform may be expressed as

gk(t) =
L−1∑
n=0

ak(n)p(t − nTc), 0 ≤ t ≤ T (16.3–1)

where {ak(n), 0 ≤ n ≤ L − 1} is a pseudonoise (PN) code sequence consisting of L
chips that take values {±1}, p(t) is a pulse of duration Tc, and Tc is the chip interval.
Thus, we have L chips per symbol and T = LTc. Without loss of generality, we assume
that all K signature waveforms have unit energy, i.e.,∫ T

0
g2

k (t) dt = 1 (16.3–2)

The cross correlations between pairs of signature waveforms play an important role
in the metrics for the signal detector and on its performance. We define the following
cross correlations, where 0 ≤ τ ≤ T and i < j ,

ρi j (τ ) =
∫ T

τ

gi (t)g j (t − τ ) dt (16.3–3)

ρ j i (τ ) =
∫ τ

0
gi (t)g j (t + T + τ ) dt (16.3–4)

The cross correlations in Equations 16.3–3 and 16.3–4 apply to asynchronous trans-
missions among the K users. For synchronous transmission, we need only ρi j (0).

For simplicity, we assume that binary antipodal signals are used to transmit the
information from each user. Hence, let the information sequence of the kth user be
denoted by {bk(m)}, where the value of each information bit may be ±1. It is convenient
to consider the transmission of a block of bits of some arbitrary length, say N . Then,
the data block from the kth user is

bk = [bk(1) · · · bk(N )]t (16.3–5)

and the corresponding equivalent lowpass, transmitted waveform may be expressed as

sk(t) =
√
Ek

N∑
i=1

bk(i)gk(t − iT ) (16.3–6)

where Ek is the signal energy per bit. The composite transmitted signal for the K users
may be expressed as

s(t) =
K∑

k=1

sk(t − τk)

=
K∑

k=1

√
Ek

N∑
i=1

bk(i)gk(t − iT − τk)

(16.3–7)
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where {τk} are the transmission delays, which satisfy the condition 0 ≤ τk < T for
1 ≤ k ≤ K . Without loss of generality, we assume that 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τK < T .
This is the model for the multiuser transmitted signal in an asynchronous mode. In the
special case of synchronous transmission, τk = 0 for 1 ≤ k ≤ K .

The transmitted signal is assumed to be corrupted by AWGN. Hence, the received
signal may be expressed as

r (t) = s(t) + n(t) (16.3–8)

where s(t) is given by Equation 16.3–7 and n(t) is the noise, with power spectral
density 1

2 N0.

16.3–2 The Optimum Multiuser Receiver

The optimum receiver is defined as the receiver that selects the most probable sequence
of bits {bk(n), 1 ≤ n ≤ N , 1 ≤ k ≤ K } given the received signal r (t) observed over
the time interval 0 ≤ t ≤ N T + 2T . First, let us consider the case of synchronous
transmission; later, we shall consider asynchronous transmission.

Synchronous transmission In synchronous transmission, each (user) interferer
produces exactly one symbol which interferes with the desired symbol. In additive
white Gaussian noise, it is sufficient to consider the signal received in one signal
interval, say 0 ≤ t ≤ T , and determine the optimum receiver. Hence, r (t) may be
expressed as

r (t) =
K∑

k=1

√
Ekbk(1)gk(t) + n(t), 0 ≤ t ≤ T (16.3–9)

The optimum maximum-likelihood receiver computes the log-likelihood function

�(b) =
∫ T

0

[
r (t) −

K∑
k=1

√
Ekbk(1)gk(t)

]2

dt (16.3–10)

and selects the information sequence {bk(1), 1 ≤ k ≤ K } that minimizes �(b). If we
expand the integral in Equation 16.3–10, we obtain

�(b) =
∫ T

0
r2(t) dt − 2

K∑
k=1

√
Ekbk(1)

∫ T

0
r (t)gk(t) dt

+
K∑

j=1

K∑
k=1

√
E jEkbk(1)b j (1)

∫ T

0
gk(t)g j (t) dt

(16.3–11)

We observe that the integral involving r2(t) is common to all possible sequences {bk(1)}
and is of no relevance in determining which sequence was transmitted. Hence, it may
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be neglected. The term

rk =
∫ T

0
r (t)gk(t) dt, 1 ≤ k ≤ K (16.3–12)

represents the cross correlation of the received signal with each of the K signature
sequences. Instead of cross correlators, we may employ matched filters. Finally, the
integral involving gk(t) and g j (t) is simply

ρ jk(0) =
∫ T

0
g j (t)gk(t) dt (16.3–13)

Therefore, Equation 16.3–11 may be expressed in the form of correlation metrics

C(r K , bK ) = 2
K∑

k=1

√
Ekbk(1)rk −

K∑
j=1

K∑
k=1

√
E jEkbk(1)b j (1)ρ jk(0) (16.3–14)

These correlation metrics may also be expressed in vector inner product form as

C(r K , bK ) = 2bt
K r K − bt

K Rs bK (16.3–15)

where

r K = [r1 r2 · · · rK ]t , bK = [
√
E1b1(1) . . .

√
EK bK (1)]t

and Rs is the correlation matrix, with elements ρ jk(0). It is observed that the optimum
detector must have knowledge of the received signal energies in order to compute the
correlation metrics. Figure 16.3–1 depicts the optimum multiuser receiver.

There are 2K possible choices of the bits in the information sequence of the
K users. The optimum detector computes the correlation metrics for each sequence
and selects the sequence that yields the largest correlation metric. We observe that
the optimum detector has a complexity that grows exponentially with the number of
users, K .

In summary, the optimum receiver for symbol-synchronous transmission consists
of a bank of K correlators or matched filters followed by a detector that computes the 2K

correlation metrics given by Equation 16.3–15 corresponding to the 2K possible trans-
mitted information sequences. Then, the detector selects the sequence corresponding
to the largest correlation metric.

Asynchronous transmission In this case, there are exactly two consecutive sym-
bols from each interferer that overlap a desired symbol. We assume that the receiver
knows the received signal energies {Ek} for the K users and the transmission delays
{τk}. Clearly, these parameters must be measured at the receiver or provided to the
receiver as side information by the users via some control channel.
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C(rk, bk)

FIGURE 16.3–1
Optimum multiuser receiver for synchronous transmission.

The optimum maximum-likelihood receiver computes the log-likelihood function

�(b) =
∫ N T +2T

0

[
r (t) −

K∑
k=1

√
Ek

N∑
i=1

bk(i)gk(t − iT − τk)

]2

dt

=
∫ N T +2T

0
r2(t) dt − 2

K∑
k=1

√
Ek

N∑
i=1

bk(i)
∫ N T +2T

0
r (t)gk(t − iT − τk) dt

+
K∑

k=1

K∑
l=1

√
EkEl

N∑
i=1

N∑
j=1

bk(i)bl( j)
∫ N T +2T

0
gk(t − iT − τk)gl(t − jT − τl) dt

(16.3–16)

where b represents the data sequences from the K users. The integral involving r2(t)
may be ignored, since it is common to all possible information sequences. The integral

rk(i) ≡
∫ (i+1)T +τk

iT +τk

r (t)gk(t − iT − τk) dt, 1 ≤ i ≤ N (16.3–17)
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represents the outputs of the correlator or matched filter for the kth user in each of the
signal intervals. Finally, the integral

∫ N T +2T

0
gk(t − iT − τk)gl(t − jT − τl) dt

=
∫ N T +2T −iT −τk

−iT −τk

gk(t)gl(t + iT − jT + τk − τ1) dt (16.3–18)

may be easily decomposed into terms involving the cross correlation ρkl(τ ) = ρkl(τl −
τk) for k ≤ 1 and ρik(τ ) for k > 1. Therefore, we observe that the log-likelihood
function may be expressed in terms of a correlation metric that involves the outputs
{rk(i), 1 ≤ k ≤ K , ≤ i ≤ N } of K correlators or matched filters—one for each of the
K signature sequences. Using vector notation, it can be shown that the N K correlator
or matched filter outputs {rk(i)} can be expressed in the form

r = RN b + n (16.3–19)

where, by definition

r = [r t (1) r t (2) · · · r t (N )]t

r(i) = [r1(i) r2(i) · · · rK (i)]t (16.3–20)

b = [bt (1) bt (2) · · · bt (N )]t

b(i) = [
√
E1b1(i)

√
E2b2(i) · · ·

√
EK bK (i)]t (16.3–21)

n = [nt (1) nt (2) · · · nt (N )]t

n(i) = [n1(i) n2(i) · · · nK (i)]t (16.3–22)

RN =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ra(0) Rt
a(1) 0 · · · · · · 0

Ra(1) Ra(0) Rt
a(1) 0 · · · 0

...
...

...
...

...
...

0 0 0 Ra(1) Ra(0) Rt
a(1)

0 0 0 0 Ra(1) Ra(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

(16.3–23)

and Ra(m) is a K × K matrix with elements

Rkl(m) =
∫ ∞

−∞
gk(t − τk)gl(t + mT − τl) dt (16.3–24)

The Gaussian noise vectors n(i) have zero-mean and autocorrelation matrix

E[n(k)nt ( j)] = 1
2 N0 Ra(k − j) (16.3–25)

Note that the vector r given by Equation 16.3–19 constitutes a set of sufficient statistics
for estimating the transmitted bits bk(i).

If we adopt a block processing approach, the optimum M L detector must com-
pute 2N K correlation metrics and select the K sequences of length N that correspond
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to the largest correlation metric. Clearly, such an approach is much too complex com-
putationally to be implemented in practice, especially when K and N are large. An
alternative approach is M L sequence estimation employing the Viterbi algorithm. In
order to construct a sequential-type detector, we make use of the fact that each trans-
mitted symbol overlaps at most with 2K − 2 symbols. Thus, a significant reduction in
computational complexity is obtained with respect to the block size parameter N , but
the exponential dependence on K cannot be reduced.

It is apparent that the optimum M L receiver employing the Viterbi algorithm
involves such a high computational complexity that its use in practice is limited to
communication systems where the number of users is extremely small, e.g., K<10.
For larger values of K , one may consider a sequential-type detector that is akin
to either the sequential decoding or the stack algorithms described in Chapter 8.
Below, we consider a number of suboptimum detectors whose complexity grows lin-
early with K .

16.3–3 Suboptimum Detectors

In the above discussion, we observed that the optimum detector for the K CDMA users
has a computational complexity, measured in the number of arithmetic operations (ad-
ditions and multiplications/divisions) per modulated symbol, that grows exponentially
with K . In this subsection we describe suboptimum detectors with computational com-
plexities that grow linearly with the number of users, K . We begin with the simplest
suboptimum detector, which we call the conventional (single-user) detector.

Conventional single-user detector In conventional single-user detection, the re-
ceiver for each user consists of a demodulator that correlates (or match-filters) the
received signal with the signature sequence of the user and passes the correlator output
to the detector, which makes a decision based on the single correlator output. Thus,
the conventional detector neglects the presence of the other users of the channel or,
equivalently, assumes that the aggregate noise plus interference is white and Gaussian.

Let us consider synchronous transmission. Then, the output of the correlator for
the kth user for the signal in the interval 0 ≤ t ≤ T is

rk =
∫ T

0
r (t)gk(t) dt (16.3–26)

=
√
Ekbk(1) +

K∑
j=1
j �=k

√
E j b j (1)ρ jk(0) + nk(1) (16.3–27)

where the noise component nk(1) is given as

nk(1) =
∫ T

0
n(t)gk(t) dt (16.3–28)
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Since n(t) is white Gaussian noise with power spectral density 1
2 N0, the variance of

nk(1) is

E
[
n2

k(1)
] = 1

2 N0

∫ T

0
g2

k (t) dt = 1
2 N0 (16.3–29)

Clearly, if the signature sequences are orthogonal, the interference from the other users
given by the middle term in Equation 16.3–27 vanishes and the conventional single-user
detector is optimum. On the other hand, if one or more of the other signature sequences
are not orthogonal to the user signature sequence, the interference from the other users
can become excessive if the power levels of the signals (or the received signal energies)
of one or more of the other users is sufficiently larger than the power level of the kth user.
This situation is generally called the near–far problem in multiuser communications,
and necessitates some type of power control for conventional detection.

In asynchronous transmission, the conventional detector is more vulnerable to
interference from other users. This is because it is not possible to design signature
sequences for any pair of users that are orthogonal for all time offsets. Consequently,
interference from other users is unavoidable in asynchronous transmission with the
conventional single-user detection. In such a case, the near–far problem resulting from
unequal power in the signals transmitted by the various users is particularly serious.
The practical solution generally requires a power adjustment method that is controlled
by the receiver via a separate communication channel that all users are continuously
monitoring. Another option is to employ one of the multiuser detectors described below.

Decorrelating detector We observe that the conventional detector has a complexity
that grows linearly with the number of users, but its vulnerability to the near–far problem
requires some type of power control. We shall now devise another type of detector that
also has a linear computational complexity but does not exhibit the vulnerability to
other-user interference.

Let us first consider the case of symbol-synchronous transmission. In this case, the
received signal vector r K that represents the output of the K matched filters is

r K = Rs bK + nK (16.3–30)

where bK = [
√E1b1(1)

√E2b2(1) · · · √EK bK (1)]t and the noise vector with ele-
ments nK = [n1(1) n2(1) · · · nK (1)]t has a covariance

E
(
nK nt

K
) = N0

2
Rs (16.3–31)

Since the noise is Gaussian, r K is described by a K -dimensional Gaussian PDF with
mean Rs bK and covariance Rs . That is,

p(r K |bK ) = 1√
(N0π )K det Rs

exp
[
− 1

N0
(r K − Rs bK )t R−1

s (r K − Rs bK )
]

(16.3–32)

The best linear estimate of b0
K is the value of bK that minimizes the likelihood function

�(bK ) = (r K − Rs bK )t R−1
s (r K − Rs bK ) (16.3–33)
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b R r

b b

FIGURE 16.3–2
Receiver structure for decorrelation receiver.

The result of this minimization yields

b0
k = R−1

s r K (16.3–34)

Then, the detected symbols are obtained by taking the sign of each element of b0
K , i.e.,

b̂K = sgn(b0
K ) (16.3–35)

Figure 16.3–2 illustrates the receiver structure. Since the estimate b0
K is obtained by

performing a linear transformation on the vector of correlator outputs, the computational
complexity is linear in K .

The reader should observe that the best (maximum-likelihood) linear estimate of
bK given by Equation 16.3–34 is different from the optimum non-linear ML sequence
detector that finds the best discrete-valued {±1} sequence that maximizes the likelihood
function. It is also interesting to note that the estimate b0

K is the best linear estimate
that maximizes the correlation metric given by Equation 16.3–15.

An interesting interpretation of the detector that computes b0
K as in Equa-

tion 16.3–34 and makes decisions according to Equation 16.3–35 is obtained by con-
sidering the case of K = 2 users. In this case,

Rs =
[

1 ρ

ρ 1

]
(16.3–36)

R−1
s = 1

1 − ρ2

[
1 −ρ

−ρ 1

]
(16.3–37)

where

ρ =
∫ T

0
g1(t)g2(t) dt (16.3–38)
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Then, if we correlate the received signal

r (t) =
√
E1b1g1(t) +

√
E2b2g2(t) + n(t) (16.3–39)

with g1(t) and g2(t), we obtain

r2 =
[√

E1b1 + ρ
√E2b2 + n1

ρ
√E1b1 + √E2b2 + n2

]
(16.3–40)

where n1 and n2 are the noise components at the output of the correlators. Therefore,

b0
2 = R−1

s r2

=
[√E1b1 + (n1 − ρn2)/(1 − ρ2)√E2b2 + (n2 − ρn1)/(1 − ρ2)

]
(16.3–41)

This is a very interesting result, because the transformation R−1
s has eliminated the

interference components between the two users. Consequently, the near–far problem is
eliminated and there is no need for power control.

It is interesting to note that a result similar to Equation 16.3–41 is obtained if we
correlate r (t) given by Equation 16.3–39 with two modified signature waveforms

g′
1(t) = g1(t) − ρg2(t) (16.3–42)

g′
2(t) = g2(t) − ρg1(t) (16.3–43)

This means that, by correlating the received signal with the modified signature wave-
forms, we have tuned out or decorrelated the multiuser interference. Hence, the detector
based on Equation 16.3–34 is called a decorrelating detector.

In asynchronous transmission, the received signal at the output of the correlators
is given by Equation 16.3–19. Hence, the log-likelihood function is given as

�(b) = (r − RN b)t R−1
N (r − RN b) (16.3–44)

where RN is defined by Equation 16.3–23 and b is given by Equation 16.3–21. It is
relatively easy to show that the vector b that minimizes �(b) is

b0 = R−1
N r (16.3–45)

This is the ML estimate of b and it is again obtained by performing a linear transfor-
mation of the outputs from the bank of correlators of matched filters.

Since r = RN b + n, it follows from Equation 16.3–45 that

b0 = b + R−1
N n (16.3–46)

Therefore, b0 is an unbiased estimate of b. This means that the multiuser interference
has been eliminated, as in the case of symbol-synchronous transmission. Hence, this
detector for asynchronous transmission is also called a decorrelating detector.

A computationally efficient method for obtaining the solution given by Equa-
tion 16.3–45 is the square-root factorization method described in Appendix D. Of
course, there are many other methods that may be used to invert the matrix RN . Iterative
methods to decorrelate the signals have also been explored.
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Minimum mean-square-error detector In the above discussion, we showed that
the linear ML estimate of b is obtained by minimizing the quadratic log-likelihood
function in Equation 16.3–44. Thus, we obtained the result given by Equation 16.3–45,
which is an estimate derived by performing a linear transformation on the outputs of
the bank of correlators or matched filters.

Another, somewhat different, solution is obtained if we seek the linear transfor-
mation b0 = Ar , where the matrix A is to be determined so as to minimize the mean
square error (MSE)

J (b) = E[(b − b0)t (b − b0)]

= E[(b − Ar)t (b − Ar)]
(16.3–47)

where the expectation is with respect to the data vector b and the additive noise n. The
optimum matrix A may be found by forcing the error (b − Ar) to be orthogonal to the
data vector r . Thus,

E[(b − Ar)r t ] = 0
E(br ′) − AE(r r ′) = 0

(16.3–48)

Let us consider the case of synchronous transmission. We have

E
(
bK r t

K

) = E
(
bK bt

K

)
Rt

s = DRt
s (16.3–49)

and

E
(
r K r t

K

) = E[(Rs bK + nK )(Rs bK + nK )t ]

= Rs DRt
s + N0

2
Rt

s

(16.3–50)

where D is a diagonal matrix with diagonal elements {Ek, 1 ≤ k ≤ K }. By substituting
Equation 16.3–49 and 16.3–50 into Equation 16.3–48 and solving for A, we obtain

A0 =
(

Rs + N0

2
D−1

)−1

(16.3–51)

Then,

b0
K = A0r K (16.3–52)

and

b̂K = sgn
(
b0

K

)
(16.3–53)

Similarly, for asynchronous transmission, it can be shown that the optimum choice of
A that minimizes J (b) is

A0 = (
RN + 1

2 N0 I
)−1 (16.3–54)

and, hence,

b0 = (
RN + 1

2 N0 I
)−1r (16.3–55)

The output of the detector is then b̂ = sgn(b0).
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The estimate given by Equation 16.3–52 or 16.3–55 is called the minimum MSE
(MMSE) estimate of b. Note that when 1

2 N0 is small compared with the diagonal
elements of RN , the MMSE solution approaches the ML solution given by Equa-
tion 16.3–45. On the other hand, when the noise level is large compared with the signal
level in the diagonal elements of RN , A0 approaches the identity matrix (scaled by
1
2 N0). In this low-SNR case, the detector basically ignores the interference from other
users, because the additive noise is the dominant term. It should also be noted that
the MMSE criterion produces a biased estimate of b. Hence, there is some residual
multiuser interference.

To perform the computations that lead to the values of b, we solve the set of linear
equations

(
RN + 1

2 N0 I
)
b = r (16.3–56)

This solution may be computed efficiently using a square-root factorization of the matrix
RN + 1

2 N0 I as indicated above. Thus, to detect N K bits requires 3N K 2 multiplica-
tions. Therefore, the computational complexity is 3K multiplications per bit, which is
independent of the block length N and is linear in K .

We observe that both the decorrelating detector and the MMSE detector exhibit the
desirable property of being near-far resistant. In fact, in the case of the decorrelating
detector, the interference from other users is completely eliminated.

We also observe that both the decorrelating detector and the MMSE detector de-
scribed above involve performing linear transformations on a block of data obtained
from K correlators or matched filters. The linear transformations are akin to the linear
equalization of intersymbol interference treated in Chapter 9. In fact, the decorrelating
detector is akin to the zero-forcing linear equalizer, and the MMSE detector is akin to
the linear MMSE equalizer. Consequently, these multiuser detectors for asynchronous
transmission can be implemented by employing a tapped-delay-line filter with ad-
justable coefficients for each user and selecting the filter coefficients to either eliminate
the interuser interference or to minimize the MSE for each user signal. Thus, the received
information bits are estimated sequentially with finite delay, instead of as a block.

A decision-feedback-type filter can be used instead of a linear filter to implement
the multiuser detector that processes the data sequentially. In particular, Xie et al.
(1990b) demonstrated that the transmitted bits may be recovered sequentially from
the received signal by employing a form of a decision-feedback equalizer with finite
delay. Hence, there is a similarity between the detection of signals corrupted by ISI in
a single-user communication system and the detection of signals in a multiuser system
with asynchronous transmission.

16.3–4 Successive Interference Cancellation

Another multiuser detection technique is called successive interference cancellation
(SIC). This technique is based on removing the interfering signal waveforms from
the received signal, one at a time as they are detected. One approach is to demodulate
the users in the order of decreasing received powers. Thus, the user having the strongest
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received signal is demodulated first. After a signal has been demodulated and detected,
the detected information is used to subtract the signal of the particular user from the
received signal.

When making a decision about the transmitted information of the kth user, we
assume that the decisions of users k + 1, . . . , K are correct and neglect the presence of
users 1, . . . , k − 1. Therefore, the decision for the information bit of the kth user, for
synchronous transmission, is

b̂k = sgn

⎡
⎣rk −

K∑
j=k+1

√
E jρ jk(0)b̂ j

⎤
⎦ (16.3–57)

where rk is the output of the correlator or matched filter corresponding to the kth user’s
signature sequence.

The approach based on demodulating the user signals in the order of decreasing
received powers does not take into account the cross correlations among users. An
alternative approach is to demodulate the user signals according to the powers at the
outputs of the cross correlators or matched filters, i.e., according to the correlation
metrics

E

{[∫ T

0
gk(t)r (t) dt

]2
}

= Ek +
∑
j �=k

E jρ
2
jk(0) + N0

2
(16.3–58)

which applies to the case of synchronous transmission.
We make the following observations regarding the SIC of multiuser interference.

First of all, SIC requires that we estimate the received signal powers of the users in order
to cancel the interference. Estimation errors result in residual multiuser interference,
which causes a degradation in performance. Secondly, the interference from users whose
signals are weaker than the user signal being detected is treated as additive interference.
Thirdly, the computational complexity in the demodulation of a user information bit
is linear in the number of users. Finally, the delay in demodulating the weakest user
increases linearly with the number of users.

SIC is easily generalized to asynchronous signal transmission. In this case, both
the user signal strengths and the time delays must be estimated.

Finally, we note that the SIC multiuser detector given in Equation 16.3–57 is
also a suboptimum detector, since the signals of weaker users are treated as additive
interference. The jointly optimum interference canceller for synchronous transmission
may be defined as the detector which computes the decisions b̂k as

b̂k = sgn

⎡
⎣rk −

∑
j �=k

√
E jρ jk(0)b̂ j

⎤
⎦ (16.3–59)

Multistage interference cancellation (MIC) Multiuser detection based on MIC is
a technique that employs multiple iterations in detecting the user bits and cancelling
the interference. The method is easily described by means of an example.
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E X A M P L E 16.3–1. TWO USERS AND SYNCHRONOUS TRANSMISSION. For the first stage
of the detector, we may use the SIC detector or any of the suboptimum detectors. For
example, suppose we use the decorrelating detector in the first stage.

First stage (decorrelating detector):

b̂1 = sgn(r1 − ρr2)

b̂2 = sgn(r2 − ρr1)

Second stage:

ˆ̂b1 = sgn
(

r1 −
√
E2b̂2ρ

)
ˆ̂b2 = sgn

(
r2 −

√
E1b̂1ρ

)

Third stage:

ˆ̂̂
b1 = gn

(
r1 −

√
E2

ˆ̂b2ρ
)

ˆ̂̂
b2 = sgn

(
r2 −

√
E1

ˆ̂b1ρ
)

The computations may be terminated when there is no change in the decisions over
two successive iterations.

Successive interference cancellation and multistage interference cancellation are
two types of multiple access interference cancellation techniques that have received
considerable attention by many researchers. For reference, we include the papers by
Varanasi and Aazhang (1990), Patel and Holtzman (1994), Buehrer et al. (1996, 1999),
and Divsalar et al. (1998).

We should indicate that the MIC is a suboptimum detector and does not converge
to the jointly optimum multiuser detector defined above.

16.3–5 Other Types of Multiuser Detectors

Because of the widespread interest in the development of commercial CDMA commu-
nication systems, the design of multiuser detection algorithms continues to be a very
active area of research. Our treatment in this chapter focused on the optimum MLSE
algorithm, suboptimum linear (MMSE and decorrelating detection) algorithms, and
non-linear successive interference cancellation algorithms based on hard decisions.

In addition to these relatively simple algorithms, a number of more complex al-
gorithms have been described in the literature that are appropriate for time-dispersive
channels which result in ISI. In addition, one may assume that knowledge of the sig-
nature waveforms of the other users is not available to a user receiver. Hence, a user
receiver is confronted with both ISI and multiple access interference (MAI). In such a
scenario, it is possible to design adaptive interference suppression algorithms that are
akin to equalization algorithms previously described in Chapter 10.

Adapative algorithms for suppressing ISI and MAI in multiuser CDMA systems
are described in the papers by Abdulrahman et al. (1994), Honig (1998), Miller (1995,



Proakis-27466 book September 26, 2007 23:19

1050 Digital Communications

1996), Rapajic and Vucetic (1994), and Mitra and Poor (1995). In some cases, the
adaptive algorithms are designed to converge without the use of any training symbols.
Such algorithms are called blind multiuser detection algorithms. Examples of such
blind algorithms are described in the papers by Honig et al. (1995), Madhow (1998),
Wang and Poor (1998a, b), Bensley and Aazhang (1996) and the book by Wang and
Poor (2004).

The use of multiple transmitting and/or receiving antennas in CDMA systems pro-
vides each user with the opportunity to employ spatial filtering in addition to temporal
filtering to reduce ISI and MAI and combat signal fading. Blind multiuser detection
algorithms for multiple antenna systems have been described by Wang and Poor (1999).

In general, the signals transmitted by the various users in a CDMA communication
system are coded, either using a single level of coding or a concatenated code. In-
stead of separating the signal processing of the demodulator from the decoder, a better
strategy is to use soft-information metrics from the decoder to enhance the suppres-
sion of the MAI and ISI at the demodulator. Thus, one can devise turbo-type iterative
demodulation-decoding algorithms for suppressing MAI and ISI. Such algorithms for
coded CDMA systems have been described in the papers by Reed et al. (1998), Moher
(1998), Alexander et al. (1999), and Wang and Poor (1999).

16.3–6 Performance Characteristics of Detectors

The bit error probability is generally the desirable performance measure in multiuser
communications. In evaluating the effect of multiuser interference on the performance
of the detector for a single user, we may use as a benchmark the probability of a bit
error for a single-user receiver in the absence of other users of the channel, which is

Pk(γk) = Q(
√

2γk) (16.3–60)

where γk = Ek/N0, Ek is the signal energy per bit, and 1
2 N0 is the power spectral density

of the AWGN.
In the case of the optimum detector for either synchronous or asynchronous trans-

mission, the probability of error is extremely difficult and tedious to evaluate. In this
case, we may use Equation 16.3–60 as a lower bound and the performance of a subop-
timum detector as an upper bound.

Let us consider, first, the suboptimum, conventional single-user detector. For syn-
chronous transmission, the output of the correlator for the kth user is given by Equa-
tion 16.3–27. Therefore, the probability of error for the kth user, conditional on a
sequence bi of bits from other users, is

Pk(bi ) = Q

⎛
⎜⎜⎝

√√√√√√2

⎡
⎢⎣√

Ek +
K∑
j=1
j �=k

√
E j b j (1)ρ jk(0)

⎤
⎥⎦

2/
N0

⎞
⎟⎟⎠ (16.3–61)
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Then, the average probability of error is simply

Pk = ( 1
2

)K−1
2K−1∑
i=1

Pk(bi ) (16.3–62)

The probability in Equation 16.3–62 will be dominated by the term that has the smallest
argument in the Q function. The smallest argument will result in an SNR of

(SNR)min = 1

N0

⎡
⎢⎣√

Ek −
K∑
j=1
j �=k

√
E j |ρ jk(0)|

⎤
⎥⎦

2

(16.3–63)

Therefore,
( 1

2

)K−1
Q(

√
2(SNR)min) < Pk < Q(

√
2(SNR)min) (16.3–64)

A similar development can be used to obtain bounds on the performance for asyn-
chronous transmission.

In the case of a decorrelating detector, the other-user interference is completely
eliminated. Hence, the probability of error may be expressed as

Pk = Q
(√

Ek/σ
2
k

)
(16.3–65)

where σ 2
k is the variance of the noise in the kth element of the estimate b0.

E X A M P L E 16.3–2. Consider the case of synchronous, two-user transmission, where b0
2

is given by Equation 16.3–41. Let us determine the probability of error.
The signal component for the first term in Equation 16.3–41 is

√
E1. The noise

component is

n = n1 − ρn2

1 − ρ2

where ρ is the correlation between the two signature signals. The variance of this
noise is

σ 2
1 = E[(n1 − ρn2)]2

(1 − ρ2)2

= 1

1 − ρ2

N0

2

(16.3–66)

and

P1 = Q

(√
2E1

N0
(1 − ρ2)

)
(16.3–67)

A similar result is obtained for the performance of the second user. Therefore, the noise
variance has increased by the factor (1 − ρ2)−1. This noise enhancement is the price
paid for the elimination of the multiuser interference by the decorrelating detector.
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The error rate performance of the MMSE detector is similar to that for the decor-
relating detector when the noise level is low. For example, from Equation 16.3–55, we
observe that when N0 is small relative to the diagonal elements of the signal correlation
matrix RN ,

b0 ≈ R−1
N r (16.3–68)

which is the solution for the decorrelating detector. For low multiuser interference, the
MMSE detector results in a smaller noise enhancement compared with the decorrelating
detector, but has some residual bias resulting from the other users. Thus, the MMSE
detector attempts to strike a balance between the residual interference and the noise
enhancement.

An alternative to the error probability as a figure of merit that has been used to
characterize the performance of a multiuser communication system is the ratio of SNRs
with and without the presence of interference. In particular, Equation 16.3–60 gives
the error probability of the kth user in the absence of other-user interference. In this
case, the SNR is γk = Ek/N0. In the presence of multiuser interference, the user that
transmits a signal with energy Ek will have an error probability Pk that exceeds Pk(γk).
The effective SNR γke is defined as the SNR required to achieve the error probability

Pk = Pk(γke) = Q(
√

2γke) (16.3–69)

The efficiency is defined as the ratio γke/γk and represents the performance loss due
to the multiuser interference. The desirable figure of merit is the asymptotic efficiency,
defined as

ηk = lim
N0→0

γke

γk
(16.3–70)

This figure of merit is often simpler to compute than the probability of error.

E X A M P L E 16.3–3. Consider the case of two symbol-synchronous users with signal
energies E1 and E2. Let us determine the asymptotic efficiency of the conventional
detector.

In this case, the probability of error is easily obtained from Equation 16.3–61 and
Equation 16.3–62 as

P1 = 1
2 Q

(√
2(

√
E1 + ρ

√
E2)2/N0

)
+ 1

2 Q

(√
2(

√
E1 − ρ

√
E2)2/N0

)

However, the asymptotic efficiency is much easier to compute. It follows from the
definition of Equation 16.3–70 and from Equation 16.3–61 that

η1 =
[

max

(
0, 1 −

√
E2

E1
|ρ|

)]2

A similar expression is obtained for η2.

The asymptotic efficiency of the optimum and suboptimum detectors that we have
described has been evaluated by Verdu (1986c), Lupas and Verdu (1989), and Xie et al.
(1990b). Figure 16.3–3 illustrates the asymptotic efficiencies of these detectors when
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FIGURE 16.3–3
Asymptotic efficiencies of optimum (Viterbi) detector, conventional detector, MMSE detector,
and linear ML detector in a two-user synchronous DS/SSMA system. [From Xie et al. (1990 b),
c© IEEE.]

K = 2 users are transmitting synchronously. These graphs show that when the inter-
ference is small (E2 → 0), the asymptotic efficiencies of these detectors are relatively
large (near unity) and comparable. As E2 increases, the asymptotic efficiency of the
conventional single-user detector deteriorates rapidly. However, the other linear detec-
tors perform relatively well compared with the optimum detector. Similar conclusions
are reached by computing the error probabilities, but these computations are often more
tedious.

16.4
MULTIUSER MIMO SYSTEMS FOR BROADCAST CHANNELS

In the previous section we treated the detection of signals transmitted simultaneously
by multiple users to a common receiver. This scenario applies, for example, to the
uplink of a cellular communication system in which the individual users transmit to a
base station. We observed that the base station has the choice of selecting one of several
multiuser detection methods to separate and recover the data transmitted by each of the
multiple users.

In this section, we consider a broadcast scenario where data are transmitted simulta-
neously to multiple users from a common transmitting site. The transmitter is assumed
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to employ NT antennas to transmit the data to K geographically distributed receivers,
where NT ≥ K . Each user is assumed to have a receiver with one or more receiving
antennas. This scenario applies, for example, to the downlink (broadcast mode) of a
wireless local-area network (LAN) or a cellular communication system in which the
channel is a MIMO channel. The distinguishing feature of this MIMO broadcast system
is that the receivers are geographically distributed (point-to-multipoint transmission)
and employ no coordination in processing the received signals. In contrast, the point-
to-point MIMO systems that were treated in Chapter 15 exploited the availability of
the signals from all the antennas in detecting the data.

In the MIMO broadcast scenario considered in this section, there are two possible
approaches for dealing with the multiple-access interference (MAI) resulting from the
simultaneous transmission to multiple users. One approach is to have each receiver
employ interference mitigation in the recovery of its desired signal. In most cases,
this approach is impractical because the users lack the processing capabilities and are
constrained by the limited energy resources inherent in the use of battery power. The
alternative approach is to employ interference mitigation techniques at the base station,
which possesses significantly greater processing capabilities and energy resources. We
adopt this more practical approach to interference mitigation for the MIMO broadcast
channel.

MAI mitigation at the base station requires that the transmitter know the channel
characteristics, typically the channel impulse response. This channel state information
(CSI) may be obtained by channel measurements performed at each of the receivers by
means of received pilot signals transmitted by the base station. Then the CSI must be
transmitted to the base station for use in MAI mitigation. In some systems, the uplink
and downlink channels are identical, e.g., the same frequency band is employed for
both the uplink and downlink, but separate time slots are used for transmission. This
transmission mode is called time-division duplex (TDD). In TDD operation, the pilot
signals for channel measurement may be transmitted by each of the users in the uplink.
In any case, we assume that the channel time variations are relatively slow so that a
reliable estimate of the channel characteristics is available at the base station. In the
treatment given in this section, we assume that the CSI at the transmitter is perfect.

The suppression of MAI by means of transmitter processing is usually called signal
precoding. Although we will not include coded signal transmission in this discussion of
MAI suppression, the addition of channel coding to achieve a rate near channel capacity
is essential. In a paper entitled “Writing on Dirty Paper,” Costa (1983) demonstrated
that the capacity of an additive Gaussian noise channel further corrupted by additive
interference that is known at the transmitter is the same as the capacity of the additive
Gaussian noise channel without the additional interference. The analogy to writing on
dirty paper is that if the writer (transmitter) knows where the dirt is located on the paper,
the message can be written in a way that the reader (receiver) can recover the message
without any knowledge of the location of the dirt. To elaborate, suppose the transmitter
first selects a codeword x1, to be transmitted to receiver 1. Then the transmitter selects
a codeword x2 to be transmitted to receiver 2, with knowledge of the codeword x1 to
be sent to receiver 1. In such a case, the transmitter can presubtract x1 from x2, so that
receiver 2 will receive x2 without interference. The signal precoding performed at the
transmitter to suppress MAI is sometimes called dirty paper precoding.
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FIGURE 16.4–1
Model of MIMO broadcast system employing linear precoding.

Signal precoding at the transmitter may take one of several forms, depending on the
criterion or the method used to perform the precoding. The simplest precoding methods
are linear and are based on either the zero-forcing (ZF) criterion or the mean-square-
error (MSE) criterion. Alternatively, there are nonlinear signal precoding methods that
result in better system performance. We begin with a treatment of linear precoding and
then we describe three nonlinear precoding methods.

16.4–1 Linear Precoding of the Transmitted Signals

For convenience and mathematical simplicity, we assume that each user has a single
antenna and the number of receivers (users) is K ≤ NT . It is also convenient to assume
that the channel is nondispersive. The communication system configuration is shown
in Figure 16.4–1, where the precoding matrix is denoted as AT . Hence, the received
signal vector is

y = H AT s + η (16.4–1)

where H is a K × NT matrix, AT is an NT × K matrix, s is a K × 1 vector, and η is
a K × 1 Gaussian noise vector. The matrix that eliminates the MAI at each receiver is
generally given by the Moore-Penrose pseudoinverse (see Appendix A)

H+ = H H (H H H )−1 (16.4–2)

Hence, the precoding matrix is

AT = αH+ (16.4–3)

where α is a scale factor that is selected to satisfy the total transmitted power allo-
cation, i.e., ‖AT s‖2= P . Thus, the precoding matrix in Equation 16.4–3 allows the
individual users to recover their desired symbols without any interference from the
signals transmitted to the other users. We also observe that in the special case where
K = NT , AT = αH−1. Furthermore, we note that when the symbols transmitted to
the K users are selected from the same constellation, all users have the same SNR at
their receivers and the corresponding data rates are also identical.

The sum capacity of the MIMO broadcast system that employs a channel inversion
precoder has been investigated by Hochwald and Vishwanath (2005) and by Peel et
al. (2005). It is shown in these references that the ergodic sum capacity with channel
inversion, when K = NT → ∞, approaches a constant independent of K and NT .
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This result is in contrast to the achievable sum capacity of a MIMO system which, as
we have observed, increases linearly as min(NT , K ). This poor performance resulting
from channel inversion is attributed to the large disparity between the smallest and
largest eigenvalues of the matrix (H H H )−1.

The effect of the ill-conditioning in the channel matrix H is also observed in the
error rate performance of the MIMO broadcast system that employs channel inversion
to suppress the MAI. This ill-conditioning requires an increase in transmit power to
attain acceptable performance. The error rate performance is illustrated in the following
example.

E X A M P L E 16.4–1. The broadcast system modeled by Equations 16.4–1 and 16.4–3
may be simulated on a computer. The channel matrix elements are complex-valued iid
zero-mean Gaussian random variables with unit variance. The error rate performance
of the zero-forcing precoder obtained via Monte Carlo simulation is illustrated in
Figure 16.4–2 for K = NT = 4, 6, and 10 for QPSK modulation. We observe that
the error rate increases with an increase in the number of users. We attribute this
deterioration in performance to the ill-conditioning of the channel matrix H .

As we have observed, the major drawback with the zero-forcing solution is that
when the channel matrix H is ill-conditioned (low gains or high attenuation in some
of the transmitter-receiver links), the system performance is degraded, due to matrix
inversion. If we relax the condition that the MAI be zero at all the receivers, the
performance degradation can be reduced. This can be accomplished by using the linear
MSE criterion in the design of the precoding matrix AT . Thus, we select AT to minimize
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FIGURE 16.4–2
Performance of ZF linear precoding with NT = K = 4, 6, 10. Performance improves as K
decreases.
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FIGURE 16.4–3
Comparison of the sum capacity for the linear precoder as a function of the number of users
K (K = NT ) for an SNR = 10 dB. [From Peel et al. (2005). c© IEEE.]

the cost function

J (AT , α) = arg min
α,Ar

E

∥∥∥∥ 1

α
(H AT s + η) − s

∥∥∥∥
2

(16.4–4)

subject to the transmitted power allocation ‖Aτ s‖2 = P , and where the expectation in
Equation 16.4–4 is taken over the noise statistics and signal statistics. The solution to
the MMSE criterion is the precoding matrix

AT = αH H (H H H + β I)−1 (16.4–5)

where α is the scale factor that is selected to satisfy the power allocation and β is
defined as a loading factor, which when selected as β = K/P maximizes the signal-
to-interference-plus-noise ratio (SINR) at the receiver [see Peel et al. (2005)].

Figure 16.4–3, taken from the paper by Peel et al. (2005), provides a comparison of
the sum capacity for the two linear precoders based on the zero-forcing and the MMSE
criteria. Also shown in this figure is the ergodic sum capacity of the MIMO channel
when the channel characteristics are known at the transmitter. We observe that the sum
capacity of the linear precoder designed on the basis of the MMSE criterion increases
linearly with K , but it has a smaller slope than the theoretical limit.

The error rate performance of the MMSE linear precoder obtained by Monte Carlo
simulation in a frequency-nonselective Rayleigh fading channel is illustrated in Fig-
ure 16.4–4 for K = NT = 4, 6, and 10. We observe that the error rate performance
improves slightly as the number of users K increases.
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FIGURE 16.4–4
Performance of MMSE linear precoding with NT = K = 4, 6, 10. Performance improves as K
increases.

16.4–2 Nonlinear Precoding of the Transmitted Signals—The QR
Decomposition

When the transmitter knows the interference caused on other users by the transmis-
sion of a signal to any particular user, the transmitter can design signals for each
of the other users to cancel the MAI. The major problem with such an approach
is to perform the interference cancellation without increasing the transmitter power.
We encountered this same issue in our treatment of channel equalization based on
decision-feedback equalization, where the feedback part of the equalizer was imple-
mented at the transmitter (see Section 9.5–4). We recall that when the range of the
difference between the desired symbol and the ISI exceeded the range of the desired
transmitted symbol, the difference was reduced by subtracting an integer multiple of
2M for M-ary PAM, where [−M, M) is the range of the desired transmitted sig-
nal. This same nonlinear precoding method, called Tomlinson-Harashima precoding,
can be applied to the cancellation of the MAI in a MIMO broadcast communication
system.

Figure 16.4–5 illustrates the precoding operations for the MIMO multiuser sys-
tem. For a frequency-selective channel, the channel impulse response between the i th
transmit antenna and the receive antenna of the kth user is modeled as

hki (t) =
L−1∑
l=0

h(l)
ki δ(t − lT ) (16.4–6)
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FIGURE 16.4–5
Tomlinson-Harashima precoding applied to a MIMO system.

where L is the number of multipath components in the channel response, T is the
symbol duration, and h(l)

ki is the complex-valued channel coefficient for the lth path.
The channel coefficients {h(l)

ki } are known at the transmitter and are realizations of iid
zero-mean, circularly symmetric complex Gaussian random variables with variance

E
[
|h(l)

ki |2
]

= 1

L
, ∀k, i, and l (16.4–7)

It is convenient to arrange these channel coefficients for the lth path in a K × NT matrix
H (l), where [H (l)]ki = h(l)

ki , i = 1, 2, . . . , NT , k = 1, 2, . . . , K .

The MAI cancellation is facilitated by use of the QR decomposition of the channel
matrix H (0). Thus, we express [H (0)]H as

[H (0)]H = Q R (16.4–8)

where Q is an NT × K matrix, such that Q QH = I , and R is a K × K upper triangular
matrix with diagonal elements {rii }. Based on this decomposition of [H (0)]H , the signal
to be transmitted is precoded with the matrix transformation

W = Q A (16.4–9)

where A is a K × K diagonal matrix with diagonal elements 1/rii , i = 1, 2, . . . , K .
The {rii } are real and positive [see Tulino and Verdu (2004)]. The matrix P = p I is
a diagonal K × K matrix that is used simply for scaling the power of the transmitted
signal and results in equal SNR for all users. Therefore, we have an effective channel
matrix of the form

H (0)W P = [ Q R]H Q AP

= p RH A
(16.4–10)

We note that RH A is a K × K lower triangular matrix with unit diagonal elements. As
a result, user k sees multiple access interference from users 1, 2, . . . , k − 1. We also
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note that the effective channel matrix H (0)W = RH A will have full rank K , provided
that NT ≥ K .

By reducing this channel matrix to a lower triangular matrix, we can now subtract
the interference at the transmitter that each user would normally observe at his or
her respective receiver. Thus, when the channel adds the same interference to the
transmitted signal, the received signal at each receiver will be free of interference.
By taking advantage of the lower triangular matrix structure, successive interference
cancellation is performed with the feedback filter defined by the matrix

B = [I − H (0)W , −H (1)W , −H (2)W , . . . ,−H (L−1)W ] (16.4–11)

where the matrix (I−H (0)W ) is used to cancel the interference due to the other users that
arises in the current symbol interval, and the terms −H (1)W,−H (2)W , . . . ,−H (L−1)W
are used to cancel the interference due to previous symbols.

To ensure that the subtraction of the interference terms does not result in an in-
crease of transmitter power, we use the modulo operator, as in Tomlinson–Harashima
precoding, to limit the range of the signal to the boundaries of the signal constellation.
Thus, the output of the modulo operators for the nth symbol vector, as shown in Figure
16.4–5, is (for square QAM constellations)

x(n) = mod 2
√

M [s(n) + Bx̂(n)]

= s(n) + Bx̂(n) − 2
√

M zx (n)
(16.4–12)

where the modulo operation is performed on each real and imaginary component of the
vector [s(n) + Bx̂(n)], x(n) is the K × 1 vector at the output of the modulo operator,
s(n) is the K × 1 data vector, x̂(n) is defined as

x̂(n) = [x(n)t , x(n − 1)t , x(n − 2)t , . . . , x(n − (L − 1))t ]t (16.4–13)

and zx (n) is an K × 1 vector with complex-valued components that take on inte-
ger values, determined by the constraint that the real and imaginary components of
x(n) fall in the range of [−√

M,
√

M). Therefore, the transmitted signal vector is
expressed as

s′(n) = W P x(n)

= pW x(n)
(16.4–14)

and the received signal vector is

r(n) = p
L−1∑
i=0

H (i)W x(n − i) + η(n) (16.4–15)

Hence,

P−1r(n) = x(n) + (H (0)W − I)x(n) +
L−1∑
i=1

H (i)W X(n − i) + η′(n) (16.4–16)
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By substituting for B and x(n) in Equation 16.4–16, it follows that

P−1r(n) = s(n) + η′(n) − 2
√

M zx (n) (16.4–17)

Consequently, the MAI and ISI canceled perfectly, resulting in the test statistics for the
nth symbol vector as

y(n) = mod 2
√

M

[
1

p
r(n)

]
(16.4–18)

Optimum Ordering of the Decentralized Receivers
The ordering of the K decentralized receivers affects the construction of the K × NT

channel matrix H (0). There are K ! possible column permutations of [H (0)]H , and hence
there is one QR decomposition associated with each permutation. In turn, there are K !
transformation matrices W = Q A, each of which requires a different transmit power.
To minimize the total transmit power, it is necessary to search over all the column
permutations of [H (0)]H . Such an exhaustive search procedure is computationally time-
consuming, except for a small number of users. Foschini et al. (1999) have described
methods for simplifying the search for the optimum ordering.

The error rate performance of the QR decomposition method described above has
been evaluated by Amihood et al. (2006, 2007). Figure 16.4–6 illustrates the symbol
error probability as a function of the SNR (total transmitted signal power over all
antennas divided by N0) for QPSK modulation, L = 1, 2 and NT = K = 2. The
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Performance of optimal QR decomposition with NT = K = 2 and L = 1 and 2.
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FIGURE 16.4–7
Performance of optimal ordered QR decomposition with K = 2, L = 1 and NT = 2, 3, and 4.

Monte Carlo simulation results are also illustrated. The simulation results are obtained
by transmitting 1000 data symbols over each of 10,000 channel realizations.

Figure 16.4–7 shows the symbol error rate performance for QPSK with L = 1 (flat
fading), K = 2, and NT = 2, 3, 4. We observe that the system performance improves
with an increase in the number of transmit antennas, which reflects the benefit of spatial
diversity.

Figure 16.4–8 shows a comparison of the error rate performance of the linear
ZF and MMSE precoding methods with the QR decomposition method for QPSK
modulation with L = 1 and K = NT = 4. Figure 16.4–9 shows a similar comparison
for K = NT = 6. We observe that the performance of the QR decomposition method is
better than that of the linear precoders at high SNRs but poorer at low SNRs. However,
the improvement in performance of the QR decomposition method at high SNRs should
be weighed against the significantly higher computational complexity compared with
the linear MMSE precoder.

16.4–3 Nonlinear Vector Precoding

The QR decomposition method described in Section 16.4–2 is one of several nonlinear
precoding techniques described in the literature for suppressing MAI in MIMO broad-
cast communication systems. These methods may be generally described as vector
precoding techniques.

Hochwald et al. (2005) have proposed and evaluated the performance of a vector
precoding technique in which the data vector to be transmitted to the K users is modified
by the addition of a precoding vector with integer elements. In particular, let us consider
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Comparison of the QR decomposition and the linear precoders with NT = K = 4.

a modification of the linear zero-forcing precoder in which each element of the data
vector s is offset by some judiciously selected integer, as illustrated in Figure 16.4–10.
Thus, the offset data vector becomes

s′ = s + τ p̂ (16.4–19)
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Comparison of the QR decomposition and the linear precoders with NT = K = 6.
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ŝk

��p̂

FIGURE 16.4–10
Model of MIMO broadcast system employing vector precoding.

where τ is a real positive number and p̂ is a K -dimensional vector with complex-valued
elements, where the real and imaginary components are integers. Hence, for NT = K ,
the transmitted signal vector is

x = AT (s + τ p̂)

= αH−1(s + τ p̂)
(16.4–20)

The offset vector p̂ is chosen to minimize the power in the transmitted signal, i.e.,

p̂ = arg min
p

‖ αH−1(s + τ p) ‖2 (16.4–21)

Hence, the vector perturbation method jointly optimizes the perturbation vector for
the signals that are transmitted to all the receivers. Algorithms for solving this least-
squares K -dimensional integer-lattice problem are given in the paper by Hochwald
et al. (2005).

It is demonstrated in Hochwald et al. (2005) that the optimization of the perturba-
tion vector p results in an offset data vector s′ that, on average, is oriented toward each
eigenvalue of (H H H )−1 in inverse proportion to the eigenvalue. This vector precod-
ing method generally yields better error rate performance than the QR decomposition
method, described in the previous section, that employs scalar Tomlinson–Harashima
precoding.

The perturbation vector p̂ is not known to the receivers. However, by constraining
the elements of p̂ to be integers, the receivers may use the modulo operation, as in
Tomlinson–Harashima precoding, to recover the data components. The scalar τ is
selected large enough that each receiver applies the modulo function to the real and
imaginary components of each element of the received vector y = H x + η to recover
the corresponding element of the data vector s. It is desirable to choose τ so that it
results in a symmetric decoding region around the real and imaginary components
of every signal constellation symbol. The choice of τ that accomplishes this desired
goal is

τ = 2|sk |max + � (16.4–22)

where |sk |max is the signal constellation symbol having the largest magnitude and � is
the distance between adjacent constellation symbols.
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The vector perturbation technique may also be applied to the linear precoder based
on the MMSE criterion. In this case, the transmitted vector is

x = AT (s + τ p̂)

= αH H (H H H + β I)−1(s + τ p̂)
(16.4–23)

where p̂ is selected to minimize the power of the transmitted signal, i.e.,

p̂ = arg min
p

‖αH H (H H H + β I)−1(s + τ p)‖2 (16.4–24)

where α is selected to satisfy the transmitted power allocation constraint, β is se-
lected to maximize the signal-to-interference-plus-noise ratio, and τ is selected as
described previously to result in a symmetric decoding region around the real and
imaginary components of every signal constellation symbol. Hence the received signal
vector is

r = αH H H (H H H + β I)−1(s + τ p̂) + η (16.4–25)

The mth user assumes that its received signal has the form

rm = α(sm + τpm) + η′
m (16.4–26)

where η′
m includes the additive channel noise and the MAI from other users due to the

nonzero scale factor β. Since each user knows α and τ , the mth user performs the modulo
operation on rm to remove pm and passes the result to its decoder. It is demonstrated
in Hochwald et al. (2005) that the performance of this vector perturbation scheme is
significantly better than the linear MMSE precoder described in Section 16.4–1.

16.4–4 Lattice Reduction Technique for Precoding

Lattice constellations are quite common in designing signal sets for communication
systems. We have studied the main properties of lattices and lattice-based constellations
in Section 4.7. Lattice precoding is a technique similar to the Tomlinson–Harashima
precoding that can be used with channels with known interference at the transmitter.

We consider the MIMO broadcast channel model with NT transmit antennas at the
base station and K receivers each with a single antenna. We also assume K ≤ NT . The
input-output relation for the channel is written as

y = H x + η (16.4–27)

where x and y are the transmitted and received signals with NT and K components,
respectively, η is a vector of iid random variables each drawn according to CN (0, N0),
and H is a K × NT matrix of complex channel coefficients. As previously stated, the
matrix H is assumed to be perfectly known at the transmitter.

The original lattice reduction techniques were developed for real lattices and in
order to employ them it is convenient to introduce a real equivalent of the communication
system under study. Equation 16.4–27 is equivalent to the following form in which all
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quantities are real[
Re( y)

Im( y)

] [
Re(H) −Im(H)

Im(H) Re(H)

] [
Re(x)

Im(x)

]
+

[
Re(η)

Im(η)

]
(16.4–28)

This equation can be written as

yr = Hr xr + ηr (16.4–29)

The vector of data symbols intended for the K receivers is denoted by s, which
is a K -dimensional vector with components in an M-ary QAM constellation which is
defined as a set of lattice points with a given boundary.

We have seen different types of precoding in the previous sections, among them
zero-forcing precoding matrix of the form AT r = αH+

r = αH H
r (Hr H H

r )−1 resulting
in

xr = AT r sr = αH H
r

(
Hr H H

r

)−1sr (16.4–30)

and MMSE precoding matrix of the form AT r = αH H
r

(
Hr H H

r + β I
)−1

resulting in

xr = AT r sr = αH H
r

(
Hr H H

r + β I
)−1

sr (16.4–31)

as examples of linear precoding, and Tomlinson–Harashima which uses modulo arith-
metic at the transmitter and requires a modulo operation at the receiver before quantizing
to the M-ary QAM constellation. This nonlinear precoding technique is based on the QR
decomposition of Hr and successive cancellation whose performance can be improved
by optimal ordering of the subchannels using the algorithm described by Foschini et
al. (1999).

The perturbation method of Section 16.4–3 can also be expressed in terms of the
real equivalent matrix representation of Equation 16.4–29 as

xr = AT r (sr + p̂)

p̂ = arg min
p′∈αZ2K

‖AT r (sr + p′)‖2 (16.4–32)

where Z
2K is the 2K -dimensional integer lattice and α is the scalar (2

√
M) in the

Tomlinson–Harashima modulo operation. The optimization of p in Equation 16.4–32
can be interpreted as finding the closest point in the lattice α AT rZ

2K to −AT r sr , which
can be accomplished using the Voronoi regions of the lattice.

As studied in Section 4.7, a lattice can be expressed in terms of its generator matrix
G whose rows denote a basis for the lattice; i.e., all lattice points can be written as
a linear combination of the rows of G with integer coefficients. Any lattice � can
have many generator matrices and many bases for representation of lattice points. In
particular, if F is a square matrix with integer entries such that det F = ±1, then F−1

exists and its entries are all integers. Then G′ = FG is a generator of lattice �. The
new generator matrix G′ defines a new basis for the lattice �. A desirable property
of the modified lattice basis is that it be an orthogonal or close-to-orthogonal basis
with the lowest basis vector norms. The process of finding such a basis for a lattice
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is called lattice reduction. Although lattice reduction in high dimensions is an NP-
hard problem, a polynomial-time suboptimal lattice reduction method due to Lenstra,
Lenstra, and Lovász, known as the LLL algorithm for lattice reduction, exists that in
most cases gives very good results (Lenstra et al. (1982)).

Since we are looking for p in lattice α AT rZ
2K that is closest to −AT r sr , we can

apply the LLL algorithm and write

AT r = W r Fr (16.4–33)

where W r is a real-valued 2NT × 2K matrix, representing the transformed close-to-
orthogonal basis and Fr is the integer-valued matrix with det Fr = ±1 that represents
the transformation. A benefit of a close-to-orthogonal basis with low basis vector norm
is that when linear interference mitigation techniques are applied to this bases, noise
enhancement effects are lower.

In Figure 16.4–11 the left diagram shows the lattice corresponding to α AT rZ
2

with its Voronoi regions representing minimum-distance solutions of Equation 16.4–32.
The original basis for this lattice is denoted by the dashed arrows. Applying LLL to
this lattice results in the reduced basis denoted by solid arrows which are closer to
an orthogonal basis compared to the original basis. If we use the original basis for
linear equalization, we obtain the figure shown in the middle in which the dashed
arrows are orthonormal. However, the integer grid shown with dashed boundaries does
not match the modified Voronoi regions. In fact, large white areas that correspond to
the mismatch between the two regions indicate the inefficiency of this approach. In
the rightmost figure, the result of applying linear equalization to the reduced basis is
shown. As seen here, there is good overlap between the modified Voronoi regions and
the integer grid, indicating the efficiency of this method.

The lattice reduction method has also been applied directly to lattices in complex
dimensions using a complex version of the LLL algorithm as described by Gan and
Mow (2005). In this case the lattice is described by n linear independent complex row
vectors g1, g2, . . . , gn of length n that constitute a basis for the lattice. All lattice points

FIGURE 16.4–11
Left: Lattice AH+

r Z
2 and its Voronoi regions with original basis (dashed) and modified basis

(solid). Middle: Linear equalization applied to the original basis. Right: Linear equalization
applied to the modified basis. [From Windpassinger et al. (2004), copyright IEEE.]



Proakis-27466 book September 26, 2007 23:19

1068 Digital Communications

can be written as

x =
n∑

i=1

ci gi (16.4–34)

where ci ’s are complex numbers with integer real and imaginary parts and matrix G
whose rows are gi ’s is the generator of the lattice. Similar to real lattices, if G′ = G F
and F is a square matrix with complex entries with integer real and imaginary parts
such that det F = ±1 or det F = ± j . Then G′ is also a basis for the lattice generated
by G. The complex LLL reduction is of the form AT = W F where W represents the
close-to-orthogonal reduced basis.

Depending on the approach selected, AT can have different forms. For the zero-
forcing approach AT = αH+ = αH H (H H H )−1 and for the MMSE approach AT =
αH H (H H H + β I)−1. For the perturbation method which employs Voronoi regions to
find the closest lattice point, the approximate offset vector is given by

papprox = −F−1 Q(Fs) (16.4–35)

where Q(·) denotes the componentwise rounding of the K -dimensional vector to the
scaled complex integer lattice.

The lattice reduction technique studied by Windpassinger et al. (2004) indicates
the effectiveness of this method in improving the performance through increasing the
diversity gain. In fact the order of signal diversity achieved by the lattice reduction
technique is comparable to the signal diversity obtained by the maximum-likelihood
detection, but this signal diversity in the lattice reduction technique is obtained at a
much lower complexity. The interested reader is referred to Yao and Wornell (2002),
Fischer and Windpassinger (2003), and Windpassinger et al. (2004) for details.

16.5
RANDOM ACCESS METHODS

In this section, we consider a multiuser communication system in which users transmit
information in packets over a common channel. In contrast to the CDMA method de-
scribed in Section 16.3, the information signals of the users are not spread in frequency.
As a consequence, simultaneous transmission of signals from multiple users cannot be
separated at the receiver, without the use of spatial filtering which can be achieved by
multiple receiving antennas. The access methods described below are basically ran-
dom, because packets are generated according to some statistical model. Users access
the channel when they have one or more packets to transmit. When more than one
user attempts to transmit packets simultaneously, the packets overlap in time, i.e., they
collide, and, hence, a conflict results, which must be resolved by devising some channel
protocol for retransmission of the packets. Below, we describe several random access
channel protocols that resolve conflicts in packet transmission.
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(a)

(b)

FIGURE 16.5–1
Random access packet transmission:
(a) packets from a typical user;
(b) packets from several users.

16.5–1 ALOHA Systems and Protocols

Suppose that a random access scheme is employed where each user transmits a packet
as soon as it is generated. When a packet is transmitted by a user and no other user
transmits a packet for the duration of the time interval, then the packet is considered
successfully transmitted. However, if one or more of the other users transmits a packet
that overlaps in time with the packet from the first user, a collision occurs and the
transmission is unsuccessful. Figure 16.5–1 illustrates this scenario. If the users know
when their packets are transmitted successfully and when they have collided with other
packets, it is possible to devise a scheme, which we may call a channel access protocol,
for retransmission of collided packets.

Feedback to the users regarding the successful or unsuccessful transmission of
packets is necessary and can be provided in a number of ways. In a radio broadcast
system, such as one that employs a satellite relay as depicted in Figure 16.5–2, the
packets are broadcast to all the users on the downlink. Hence, all the transmitters
can monitor their transmissions and, thus, obtain the following ternary information: no
packet was transmitted, or a packet was transmitted successfully, or a collision occurred.
This type of feedback to the transmitters is generally denoted as (0, 1, c) feedback. In
systems that employ wireline or filter-optic channels, the receiver may transmit the
feedback signal on a separate channel.

FIGURE 16.5–2
Broadcast system.
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The ALOHA system devised by Abramson (1970, 1977) and others at the Univer-
sity of Hawaii employs a satellite repeater that broadcasts the packets received from the
various users who access the satellite. In this case, all the users can monitor the satellite
transmissions and, thus, establish whether or not their packets have been transmitted
successfully.

There are basically two types of ALOHA systems: synchronized or slotted and
unsynchronized or unslotted. In an unslotted ALOHA system, a user may begin trans-
mitting a packet at any arbitrary time. In a slotted ALOHA, the packets are transmitted
in time slots that have specified beginning and ending times.

We assume that the start time of packets that are transmitted is a Poisson point
process having an average rate of λ packets/s. Let Tp denote the time duration of a
packet. Then, the normalized channel traffic G, also called the offered channel traffic,
is defined as

G = λTp (16.5–1)

There are many channel access protocols that can be used to handle collisions. Let
us consider the one due to Abramson (1973). In Abramson’s protocol, packets that have
collided are retransmitted with some delay τ , where τ is randomly selected according
to the PDF

p(τ ) = αe−ατ (16.5–2)

where α is a design parameter. The random delay τ is added to the time of the initial
transmission and the packet is retransmitted at the new time. If a collision occurs
again, a new value of τ is randomly selected and the packet is retransmitted with a
new delay from the time of the second transmission. This process is continued until
the packet is transmitted successfully. The design parameter α determines the average
delay between retransmissions. The smaller the value of α, the longer the delay between
retransmissions.

Now, let λ′, where λ′ < λ, be the rate at which packets are transmitted successfully.
Then, the normalized channel throughput is

S = λ′Tp (16.5–3)

We can relate the channel throughput S to the offered channel traffic G by making
use of the assumed start time distribution. The probability that a packet will not overlap
a given packet is simply the probability that no packet begins Tp seconds before or Tp

seconds after the start time of the transmitted packet. Since the start time of all packets
is Poisson-distributed, the probability that a packet will not overlap is exp(−2λTp) =
exp(−2G). Therefore,

S = Ge−2G (16.5–4)

This relationship is plotted in Figure 16.5–3. We observe that the maximum throughput
is Smax = 1/2e = 0.184 packets per slot, which occurs at G = 1

2 . When G > 1
2 , the

throughput S decreases. The above development illustrates that an unsynchronized or
unslotted random access method has a relatively small throughput and is inefficient.
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FIGURE 16.5–3
Throughput in ALOHA systems.

Throughput for slotted ALOHA To determine the throughput in a slotted ALOHA
system, let Gi be the probability that the i th user will transmit a packet in some slot. If
all the K users operate independently and there is no statistical dependence between the
transmission of the user’s packet in the current slot and the transmission of the user’s
packet in previous time slots, the total (normalized) offered channel traffic is

G =
K∑

i=1

Gi (16.5–5)

Note that, in this case, G may be greater than unity.
Now, let Si ≤ Gi be the probability that a packet transmitted in a time slot is

received without a collision. Then, the normalized channel throughput is

S =
K∑

i=1

Si (16.5–6)

The probability that a packet from the i th user will not have a collision with another
packet is

Qi =
K∏
j=1
j �=i

(1 − G j ) (16.5–7)

Therefore,

Si = Gi Qi (16.5–8)

A simple expression for the channel throughput is obtained by considering K
identical users. Then,

Si = S

K
, Gi = G

K
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and

S = G
(

1 − G

K

)K−1

(16.5–9)

Then, if we let K → ∞, we obtain the throughput

S = Ge−G (16.5–10)

This result is also plotted in Figure 16.5–3. We observe that S reaches a maximum
throughput of Smax = 1/e = 0.368 packets per slot at G = 1, which is twice the
throughput of the unslotted ALOHA system.

The performance of the slotted ALOHA system given above is based on Abram-
son’s protocol for handling collisions. A higher throughput is possible by devising a
better protocol.

A basic weakness in Abramson’s protocol is that it does not take into account the
information on the amount of traffic on the channel that is available from observation of
the collisions that occur. An improvement in throughput of the slotted ALOHA system
can be obtained by using a tree-type protocol devised by Capetanakis (1979). In this
algorithm, users are not allowed to transmit new packets that are generated until all ear-
lier collisions are resolved. A user can transmit a new packet in a time slot immediately
following its generation, provided that all previous packets that have collided have been
transmitted successfully. If a new packet is generated while the channel is clearing the
previous collisions, the packet is stored in a buffer. When a new packet collides with
another, each user assigns its respective packet to one of two sets, say A or B, with equal
probability (by flipping a coin). Then, if a packet is put in set A, the user transmits it
in the next time slot. If it collides again, the user will again randomly assign the packet
to one of two sets and the process of transmission is repeated. This process continues
until all packets contained in set A are transmitted successfully. Then, all packets in set
B are transmitted following the same procedure. All the users monitor the state of the
channel, and, hence, they know when all the collisions have been serviced.

When the channel becomes available for transmission of new packets, the earliest
generated packets are transmitted first. To establish a queue, the time scale is subdivided
into subintervals of sufficiently short duration such that, on average, approximately one
packet is generated by a user in a subinterval. Thus, each packet has a “time tag”
that is associated with the subinterval in which it was generated. Then, a new packet
belonging to the first subinterval is transmitted in the first available time slot. If there
is no collision, then a packet from the second subinterval is transmitted, and so on.
This procedure continues as new packets are generated and as long as any backlog of
packets for transmission exists. Capetanakis has demonstrated that this channel access
protocol achieves a maximum throughput of 0.43 packets per slot.

In addition to throughput, another important performance measure in a random
access system is the average transmission delay in transmitting a packet. In an ALOHA
system, the average number of transmissions per packet is G/S. To this number we may
add the average waiting time between transmissions and, thus, obtain an average delay
for a successful transmission. We recall from the above discussion that in the Abramson
protocol, the parameter α determines the average delay between retransmissions. If we
select α small, we obtain the desirable effect of smoothing out the channel load at times
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of peak loading, but the result is a long retransmission delay. This is the trade-off in
the selection of α in Equation 16.5–2. On the other hand, the Capetanakis protocol has
been shown to have a smaller average delay in the transmission of packets. Hence, it
outperforms Abramson’s protocol in both average delay and throughput.

Another important issue in the design of random access protocols is the stability of
the protocol. In our treatment of ALOHA-type channel access protocols, we implicitly
assumed that for a given offered load, an equilibrium point is reached where the average
number of packets entering the channel is equal to the average number of packets trans-
mitted successfully. In fact, it can be demonstrated that any channel access protocol,
such as the Abramson protocol, that does not take into account the number of previous
unsuccessful transmissions in establishing a retransmission policy is inherently unsta-
ble. On the other hand, the Capetanakis algorithm differs from the Abramson protocol
in this respect and has been proved to be stable. A thorough discussion of the stability
issues of random access protocols is found in the paper by Massey (1988).

16.5–2 Carrier Sense Systems and Protocols

As we have observed, ALOHA-type (slotted and unslotted) random access protocols
yield relatively low throughput. Furthermore, a slotted ALOHA system requires that
users transmit at synchronized time slots. In channels where transmission delays are
relatively small, it is possible to design random access protocols that yield higher
throughput. An example of such a protocol is carrier sensing with collision detection,
which is used as a standard Ethernet protocol in local area networks. This protocol is
generally known as carrier sense multiple access with collision detection (CSMA/CD).

The CSMA/CD protocol is simple. All users listen for transmissions on the channel.
A user who wishes to transmit a packet seizes the channel when it senses that the channel
is idle. Collisions may occur when two or more users sense an idle channel and begin
transmission. When the users that are transmitting simultaneously sense a collision,
they transmit a special signal, called a jam signal, that serves to notify all users of the
collision and abort their transmissions. Both the carrier sensing feature and the abortion
of transmission when a collision occurs result in minimizing the channel downtime and,
hence, yield a higher throughput.

To elaborate on the efficiency of CSMA/CD, let us consider a local area network
having a bus architecture, as shown in Figure 16.5–4. Consider two users U1 and U2 at
the maximum separation, i.e., at the two ends of the bus, and let τd be the propagation

FIGURE 16.5–4
Local area network with bus architecture.
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delay for a signal to travel the length of the bus. Then, the (maximum) time required
to sense an idle channel is τd . Suppose that U1 transmits a packet of duration Tp.
User U2 may seize the channel τd seconds later by using carrier sensing and begins to
transmit. However, user U1 would not know of this transmission until τd seconds after
U2 begins transmission. Hence, we may define the time interval 2τd as the (maximum)
time interval to detect a collision. If we assume that the time required to transmit the jam
signal is negligible, the CSMA/CD protocol yields a high throughput when 2τd � Tp.

There are several possible protocols that may be used to reschedule transmissions
when a collision occurs. One protocol is called nonpersistent CSMA, a second is called
1-persistent CSMA, and a generalization of the latter is called p-persistent CSMA.

Nonpersistent CSMA In this protocol, a user that has a packet to transmit senses
the channel and operates according to the following rule.

(a) If the channel is idle, the user transmits a packet.
(b) If the channel is sensed busy, the user schedules the packet transmission at a later

time according to some delay distribution. At the end of the delay interval, the user
again senses the channel and repeats steps (a) and (b).

1-Persistent CSMA This protocol is designed to achieve high throughput by not
allowing the channel to go idle if some user has a packet to transmit. Hence, the user
senses the channel and operates according to the following rule.

(a) If the channel is sensed idle, the user transmits the packet with probability 1.
(b) If the channel is sensed busy, the user waits until the channel becomes idle and

transmits a packet with probability one. Note that in this protocol, a collision will
always occur when more than one user has a packet to transmit.

p-Persistent CSMA To reduce the rate of collisions in 1-persistent CSMA and
increase the throughput, we should randomize the starting time for transmission of
packets. In particular, upon sensing that the channel is idle, a user with a packet to
transmit sends it with probability p and delays it by τ with probability 1 − p. The
probability p is chosen in a way that reduces the probability of collisions while the
idle periods between consecutive (non-overlapping) transmissions is kept small. This
is accomplished by subdividing the time axis into minislots of duration τ and selecting
the packet transmission at the beginning of a minislot. In summary, in the p-persistent
protocol, a user with a packet to transmit proceeds as follows.

(a) If the channel is sensed idle, the packet is transmitted with probability p, and with
probability 1 − p the transmission is delayed by τ seconds.

(b) If at t = τ , the channel is still sensed to be idle, step (a) is repeated. If a colli-
sion occurs, the users schedule retransmission of the packets according to some
preselected transmission delay distribution.

(c) If at t = τ , the channel is sensed busy, the user waits until it becomes idle, and the
operates as in steps (a) and (b) above.

Slotted versions of the above protocol can also be constructed.
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The throughput analysis for the nonpersistent and the p-persistent CSMA/CD pro-
tocols has been performed by Kleinroch and Tobagi (1975), based on the following
assumptions:

1. The average retransmission delay is large compared with the packet duration Tp.
2. The interarrival times of the point process defined by the start times of all the packets

plus retransmissions are independent and exponentially distributed.

For the nonpersistent CSMA, the throughput is

S = Ge−aG

G(1 + 2a) + e−aG
(16.5–11)

where the parameter a = τd/Tp. Note that as a → 0, S → G/(1 + G). Figure 16.5–5
illustrates the throughput versus the offered traffic G, with a as a parameter. We observe
that S → 1 as G → ∞ for a = 0. For a > 0, the value of Smax decreases.

For the 1-persistent protocol, the throughput obtained by Kleinrock and Tobagi
(1975) is

S = G[1 + G + aG(1 + G + 1
2 aG)]e−G(1+2a)

G(1 + 2a) − (1 − e−aG) + (1 + aG)e−G(1+a)
(16.5–12)

In this case,

lim
a→0

S = G(1 + G)e−G

G + e−G
(16.5–13)

which has a smaller peak value than the nonpersistent protocol.

FIGURE 16.5–5
Throughput in nonpersistent CSMA. [From Kleinrock and Tobagi (1975), c© IEEE.]
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(a)

(b)

(c)

FIGURE 16.5–6
Channel throughput in p-persistent
CSMA: (a) a = 0; (b) a = 0.01;
(c) a = 0.1. [From Kleinrock and
Tobagi (1975), c© IEEE.]

By adopting the p-persistent protocol, it is possible to increase the throughput
relative to the 1-persistent scheme. For example, Figure 16.5–6 illustrates the throughput
versus the offered traffic with a = τd/Tp fixed and with p as a parameter. We observe
that as p increases toward unity, the maximum throughput decreases.

The transmission delay was also evaluated by Kleinrock and Tobagi (1975).
Figure 16.5–7 illustrates the graphs of the delay (normalized by Tp) versus the through-
put S for the slotted nonpersistent and p-persistent CSMA protocols. Also shown for
comparison is the delay versus throughput characteristic of the ALOHA slotted and
unslotted protocols. In this simulation, only the newly generated packets are derived in-
dependently from a Poisson distribution. Collisions and uniformly distributed random
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FIGURE 16.5–7
Throughput versus delay from simulation (a = 0.01). [From Kleinrock and Tobagi (1975),
c© IEEE.]

retransmissions are handled without further assumptions. These simulation results
illustrate the superior performance of the p-persistent and the nonpersistent protocols
relative to the ALOHA protocols. Note that the graph label “optimum p-persistent”
is obtained by finding the optimum value of p for each value of the throughput. We
observe that for small values of the throughput, the 1-persistent (p = 1) protocol is
optimal.

16.6
BIBLIOGRAPHICAL NOTES AND REFERENCES

FDMA was the dominant multiple access scheme that has been used for decades in
telephone communication systems for analog voice transmission. With the advent of
digital speech transmission using PCM, DPCM, and other speech coding methods,
TDMA has replaced FDMA as the dominant multiple access scheme in telecommuni-
cations. CDMA and random access methods, in general, have been developed over the
past three decades, primarily for use in wireless signal transmission and in local area
wireline networks.
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Multiuser information theory deals with basic information-theoretic limits in source
coding for multiple sources, and channel coding and modulation for multiple access
channels. A large amount of literature exists on these topics. In the context of our
treatment of multiple access methods, the reader will find the papers by Cover (1972),
El Gamal and Cover (1980), Bergmans and Cover (1974), Hui (1984), Cover (1998),
and the book by Cover and Thomas (2006) particularly relevant. The capacity of a
cellular CDMA system has been considered in the paper by Gilhousen et al. (1991).

Signal demodulation and detection for multiuser communications has received
considerable attention in recent years. The reader is referred to the papers by Verdu
(1986a,b,c, 1989), Lupas and Verdu (1990), Xie et al. (1990a,b), Poor and Verdu (1988),
Zhang and Brady (1993), Madhow and Honig (1994), Zvonar and Brady (1995), Viterbi
(1990), Varanasi (1999), and the books by Verdu (1998), Viterbi (1995), and Garg et al.
(1997). Earlier work on signal design and demodulation for multiuser communications
is found in the papers by Van Etten (1975, 1976), Horwood and Gagliardi (1975), and
Kaye and George (1970).

The achievable throughput (capacity) of point-to-multipoint signal transmission
employing multiple antennas in a Gaussian broadcast channel has been evaluated in
papers published by Yu and Cioffi (2002), Caire and Shamai (2003), Viswanath and Tse
(2003), Vishwanath et al. (2003), and Weingarten et al. (2004), as well as in the book
by Tse and Viswanath (2005). Various precoding schemes for the MIMO broadcast
channel have been considered in several publications, including the papers by Yu and
Cioffi (2001), Fisher et al. (2002), Ginis and Cioffi (2002), Windpassinger et al. (2003,
2004a, 2004b), Peel et al. (2005), Hochwald et al. (2005), and Amihood et al. (2006,
2007). The book by Fischer (2002) treats precoding and signal shaping for multichannel
digital transmission.

The ALOHA system, which was one of the earliest random access systems, is
treated in the papers by Abramson (1970, 1977) and Roberts (1975). These papers con-
tain the throughput analysis for unslotted and slotted systems. More recently, Abramson
(1994), considers an ALOHA system that employs spread spectrum signals and pro-
vides a link to CDMA systems. Stability issues regarding the ALOHA protocols may
be found in the papers by Carleial and Hellman (1975), Ghez et al. (1988), and Massey
(1988). Stable protocols based on tree algorithms for random access channels were
first given by Capetanakis (1979). The carrier sense multiple access protocols that we
described are due to Kleinrock and Tobagi (1975). Finally, we mention the IEEE Press
book edited by Abramson (1993), which contains a collection of papers dealing with
multiple access communications.

PROBLEMS

16.1 In the formulation of the CDMA signal and channel models described in Section 16.3–1,
we assumed that the received signals are real. For K > 1, this assumption implies
phase synchronism at all transmitters, which is not very realistic in a practical system. To
accommodate the case where the carrier phases are not synchronous, we may simply alter
the signature waveforms for the K users, given by Equation 16.3–1, to be complex-valued,
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of the form

gk(t) = e jθk

L−1∑
n=0

ak(n)p(t − nTc), 1 ≤ k ≤ K

where θk represents the constant phase offset of the kth transmitter as seen by the common
receiver.
a. Given this complex-valued form for the signature waveforms, determine the form

of the optimum ML receiver that computes the correlation metrics analogous to Equa-
tion 16.3–15.

b. Repeat the derivation for the optimum ML detector for asynchronous transmission
that is analogous to Equation 16.3–19.

16.2 Consider a TDMA system where each user is limited to a transmitted power P , indepen-
dent of the number of users. Determine the capacity per user, CK , and the total capacity
K CK . Plot CK and K CK as functions of Eb/N0 and comment on the results as K → ∞.

16.3 Consider an FDMA system with K = 2 users, in an AWGN channel, where user 1 is
assigned a bandwidth W1 = αW and user 2 is assigned a bandwidth W2 = (1 − α)W ,
where 0 ≤ α ≤ 1. Let P1 and P2 be the average powers of the two users.
a. Determine the capacities C1 and C2 of the two users and their sum C = C1 + C2 as a

function of α. On a two-dimensional graph of the rates R2 versus R1, plot the graph
of the points (C2, C1) as α varies in the range 0 ≤ α ≤ 1.

b. Recall that the rates of the two users must satisfy the conditions

R1 < W1 log2

(
1 + P1

W1 N0

)

R2 < W2 log2

(
1 + P2

W2 N0

)

R1 + R2 < W log2

(
1 + P1 + P2

W N0

)

Determine the total capacity C when P1/α = P2/(1 − α) = P1 + P2, and, thus, show
that the maximum rate is achieved when α/(1 − α) = P1/P2 = W1/W2.

16.4 Consider a TDMA system with K = 2 users in an AWGN channel. Suppose that the two
transmitters are peak-power-limited to P1 and P2, and let user 1 transmit for 100α percent
of the available time and user 2 transmit 100(1 − α) percent of the time. The available
bandwidth is W .
a. Determine the capacities C1, C2, and C = C1 + C2 as functions of α.
b. Plot the graph of the points (C2, C1) as α varies in the range 0 ≤ α ≤ 1.

16.5 Consider a TDMA system with K = 2 users in an AWGN channel. Suppose that the two
transmitters are average-power-limited, with powers P1 and P2. User 1 transmits 100a
percent of the time and user 2 transmits 100(1 − α) percent of the time. The channel
bandwidth is W .
a. Determine the capacities C1, C2, and C = C1 + C2 as functions of α.
b. Plot the graph of the points (C2, C1) as α varies in the range 0 ≤ α ≤ 1.
c. What is the similarity between this solution and the FDMA system in Problem 16.3?
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16.6 Consider a two-user, synchronous CDMA transmission system, where the received
signal is

r (t) =
√
E1b1g1(t) +

√
E2b2g2(t) + n(t), 0 ≤ t ≤ T

and (b1, b2) = (±1, ±1). The noise process n(t) is zero-mean Gaussian and white, with
spectral density N0/2. The demodulator for r (t) is shown in Figure P16.6.
a. Show that the correlator outputs r1 and r2 at t = T may be expressed as

r1 =
√
E1b1 +

√
E2ρb2 + n1

r2 =
√
E1b1ρ +

√
E2b2 + n2

b. Determine the variances of n1 and n2 and the covariance of n1 and n2.
c. Determine the joint PDF p(r1, r2|b1, b2).

FIGURE P16.6

16.7 Consider the two-user, synchronous CDMA transmission system described in Prob-
lem 16.6. The conventional single-user detector for the information bits b1 and b2 gives
the outputs

b1 = sgn(r1)

b2 = sgn(r2)

Assuming that P(b1 = 1) = P(b2 = 1) = 1
2 , and b1 and b2 are statistically independent,

determine the probability of error for this detector.

16.8 Consider the two-user, synchronous CDMA transmission system described in Prob-
lem 16.6. P(b1 = 1) = P(b2 = 1) = 1

2 and P(b1, b2) = P(b1)P(b2). The jointly
optimum detector makes decisions based on the maximum a posteriori probability (MAP)
criterion. That is, the detector computes

max
b1,b2

P[b1, b2|r (t), 0 ≤ t ≤ T ]

a. For the equally likely information bits (b1, b2) show that the MAP criterion is equiv-
alent to the maximum-likelihood (ML) criterion

max
b1,b2

p[r (t), 0 ≤ t ≤ T |b1, b2]
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b. Show that the ML criterion in (a) leads to the jointly optimum detector that makes
decisions on b1 and b2 according to the following rule:

max
b1,b2

(√
E1b1r1 +

√
E2b2r2 − √

E1E2ρb1b2

)

16.9 Consider the two-user, synchronous CDMA transmission system described in Prob-
lem 16.6. P(b1 = 1) = P(b2 = 1) = 1

2 and P(b1, b2) = P(b1)P(b2). The individually
optimum detector makes decisions based on the MAP criterion. That is, the detector
computes the a posteriori probabilities.

P[b1|r (t), 0 ≤ t ≤ T ] = P[b1, b2 = 1|r (t), 0 ≤ t ≤ T ]

+ P[b1, b2 = −1|r (t), 0 ≤ t ≤ T ]

and

P[b2|r (t), 0 ≤ t ≤ T ] = P[b1 = 1, b2|r (t), 0 ≤ t ≤ T ]

+ P[b1 = −1, b2|r (t), 0 ≤ t ≤ T ]

a. Show that an equivalent test statistic for this individually optimum MAP detector for
the information bit b1 is

max
b1

{√
E1r1

N0
b1 + ln cosh

(√
E2r2 − √

E1E2ρb1

N0

)}

b. By substituting b1 = 1 and b1 = −1 into the expression in (a), show that the test
statistic in (a) is equivalent to selecting b1 according to the relation

b̂1 = sgn

[
r1 − N0

2
√
E1

ln
cosh

(√
E2r2 + √

E1E2ρ
)
/N0

cosh
(√

E2r2 − √
E1E2ρ

)
/N0

]

16.10 Show that the asymptotic efficiency of the conventional single-user detector in a CDMA
system with K users transmitting synchronously is

ηk =
[

max

{
0, 1 −

∑
j �=k

√
E j

Ek
|ρ jk(0)|

}]2

16.11 Consider the jointly optimum detector defined in Problem 16.8 for the two-user, syn-
chronous CDMA system. Show that the (symbol) error probability for this detector may
be upper-bounded as

Pe < Q

(√
2E1

N0

)
+ 1

2
Q

⎛
⎝

√
E1 + E2 − 2

√
E1E2|ρ|

N0/2

⎞
⎠

16.12 Consider the jointly optimum detector defined in Problem 16.8 for the two-user, syn-
chronous CDMA system.
a. Show that the asymptotic efficiency for this detector for user 1

η1 = min

{
1, 1 + E2

E1
− 2

√
E2

E1
|ρ|

}
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b. Plot and compare the asymptotic efficiencies of the jointly optimum detector and the
conventional single-user detector for ρ = 0.1 and ρ = 0.2.

16.13 Consider the two-user synchronous CDMA system in Problem 16.6. Determine the prob-
ability of error for each user that employs a decorrelating detector when E1 �= E2.

16.14 Consider a two-user synchronous CDMA system where the received signal is given
in Problem 16.6. Each user employs the minimum MSE detector specified by Equa-
tions 16.3–51 to 16.3–53.
a. Determine the linear transformation matrix A0 for the two users.
b. Show that the MMSE detector approaches the decorrelating detector as N0 → 0.
c. Show that the MMSE detector approaches the conventional single-user detector as

N0 → ∞.

16.15 Consider the asynchronous communication system shown in Figure P16.15. The two
receivers are not colocated, and the white noise processes n(1)(t) and n(2)(t) may be
considered to be independent. The noise processes are identically distributed, with power
spectral density σ 2 and zero-mean. Since the receivers are not colocated, the relative
delays between the users are not the same—denote the relative delay of user k at receiver
i by τ

(i)
k . All other signal parameters coincide for the receivers, and the received signal

at receiver i is

r (i)(t) =
2∑

k=1

∞∑
l=−∞

bk(l)sk

(
t − lT − τ

(i)
k

) + n(i)(t)

where sk has support on [0, T ]. You may assume that the receiver i has full knowledge of
the waveforms, energies, and relative delays τ

(i)
1 and τ

(i)
2 . Although receiver i is eventually

interested only in the data from transmitter i , note that there is a free communication
link between the sampler of one receiver, and the postprocessing circuitry of the other.
Following each postprocessor, the decision is attained by threshold detection. In this
problem, you will consider options for postprocessing and for the communication link in
order to improve performance.
a. What is the bit error probability for users 1 and 2 of a receiver pair that does not utilize

the communication link and does not perform postprocessing? Use the following

FIGURE P16.15
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notation:

yk(l) =
∫

sk

(
t − lT − τ

(k)
k

)
r (k)(t) dt

ρ
(i)
12 =

∫
s1

(
t − τ

(i)
1

)
s2

(
t − τ

(i)
2

)
dt

ρ
(i)
21 =

∫
s1

(
t − τ

(i)
1

)
s2

(
t + T − τ

(i)
2

)
dt

wk =
∫

s2
k

(
t − τ

(1)
k

)
dt =

∫
s2

k

(
t − τ

(2)
k

)
dt

b. Consider a postprocessor for receiver 1 that accepts y2(l − 1) and y2(l) from the
communication link and implements the following postprocessing on y1(l)

zl (l) = y1(l) − ρ
(1)
21 sgn[y2(l − 1)] − ρ

(1)
12 sgn[y2(l)].

Determine an exact expression for the bit error rate for user 1.
c. Determine the asymptotic multiuser efficiency of the receiver proposed in (b), and

compare with that in (a). Does this receiver always perform better than that proposed
in (a)?

16.16 In a pure ALOHA system, the channel bit rate is 2400 bits/s. Suppose that each terminal
transmits a 100-bit message every minute on the average.
a. Determine the maximum number of terminals that can use the channel.
b. Repeat (a) if slotted ALOHA is used.

16.17 An alternative derivation for the throughput in a pure ALOHA system may be obtained
from the relation G = S+ A, where A is the average (normalized) rate of retransmissions.
Show that A = G(1 − e−2G) and then solve for S.

16.18 For a Poisson process, the probability of k arrivals in a time interval T is

P(k) = e−λT (λT )k

k!
, k = 0, 1, 2, . . .

a. Determine the average number of arrivals in the interval T .
b. Determine the variance σ 2 in the number of arrivals in the interval T .
c. What is the probability of at least one arrival in the interval T ?
d. What is the probability of exactly one arrival in the interval T ?

16.19 Refer to Problem 16.18. The average arrival rate is λ = 10 packets/s. Determine
a. The average time between arrivals.
b. The probability that another packet will arrive within 1 s; within 100 ms.

16.20 Consider a pure ALOHA system that is operating with a throughput S = 0.1 and packets
are generated with a Poisson arrival rate λ. Determine
a. The value of G.
b. The average number of attempted transmissions to send a packet.



Proakis-27466 book September 26, 2007 23:19

1084 Digital Communications

16.21 Consider a CSMA/CD system in which the transmission rate on the bus is 10 Mbits/s.
The bus is 2 km and the propagation delay is 5 μs/km. Packets are 1000 bits long.
Determine
a. The end-to-end delay τd .
b. The packet duration Tp.
c. The ratio τd/Tp.
d. The maximum utilization of the bus and the maximum bit rate.

16.22 Consider an MA communication system with K = 2 users and an AWGN channel. The
receiver decodes the two signals by preforming SIC. The signal power levels for the two
users at the receiver are P1 and P2.
a. Suppose that the receiver decodes the signal for user 2 and subtracts signal 2 from the

received signal. Then the receiver decodes the signal from user 1 without interference.
Determine the maximum rates that can be achieved by users 1 and 2.

b. Now suppose that P1 = 10P2 and that the signal from user 2 is decoded first.
Determine the sum capacity of the two-user system.

c. Repeat part 2 if user 1 is decoded first, and compare the sum capacities in parts b
and c.
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Matrices

A matrix is a rectangular array of real or complex numbers called the elements of
the matrix. An n × m matrix has n rows and m columns. If m = n, the matrix is
called a square matrix. An n-dimensional vector may be viewed as an n × 1 matrix.
An n × m matrix may be viewed as having n m-dimensional vectors as its rows or m
n-dimensional vectors as its columns.

The complex conjugate and the transpose of a matrix A are denoted as A∗ and At ,
respectively. The conjugate transpose of a matrix with complex elements is denoted as
AH ; that is, AH = [A∗]t = [At ]∗.

A square matrix A is said to be symmetric if At = A. A square matrix A with
complex elements is said to be Hermitian if AH = A. If A is a square matrix, then A−1

designates the inverse of A (if one exists), having the property that

A−1 A = AA−1 = In (A–1)

where In is the n ×n identity matrix, i.e., a square matrix whose diagonal elements are
unity and off-diagonal elements are zero. If A has no inverse, it is said to be singular.

The trace of a square matrix A is denoted as tr(A) and is defined as the sum of the
diagonal elements, i.e.,

tr(A) =
n∑

i=1

aii (A–2)

The rank of an n × m matrix A is the maximum number of linearly independent
columns or rows in the matrix (it makes no difference whether we take rows or columns).
A matrix is said to be of full rank if its rank is equal to the number of rows or columns,
whichever is smaller.

The following are some additional matrix properties (lowercase letters denote
vectors):

(Aυ)t = υ t At (AB)−1 = B−1 A−1

(AB)t = Bt At (At )−1 = (A−1)t
(A–3)

1085
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A.1
EIGENVALUES AND EIGENVECTORS OF A MATRIX

Let A be an n × n square matrix. A nonzero vector υ is called an eigenvector of A and
λ is the associated eigenvalue if

Aυ = λυ (A–4)

If A is a Hermitian n × n matrix, then there exist n mutually orthogonal eigenvectors
υ i , i = 1, 2, . . . , n. Usually, we normalize each eigenvector to unit length, so that

υH
i υ j =

{
1 i = j
0 i �= j

(A–5)

In such a case, the eigenvectors are orthonormal.
We define an n × n matrix Q whose i th column is the eigenvector υ i . Then

QH Q = Q QH = In (A–6)

Furthermore, A may be represented (decomposed) as

A = QΛ QH (A–7)

where Λ is an n × n diagonal matrix with elements equal to the eigenvalues of A. This
decomposition is called a spectral decomposition of a Hermitian matrix.

If u is an n × 1 nonzero vector for which Au = 0, then u is called a null vector of
A. When A is Hermitian and Au = 0 for some vector u, then A is singular. A singular
Hermitian matrix has at least one zero eigenvalue.

Now, consider the scalar quadratic form uH Au associated with the Hermitian
matrix A. If uH Au > 0, the matrix A is said to be positive definite. In such a case, all
the eigenvalues of A are positive. On the other hand, if uH Au ≥ 0, matrix A is said to
be positive semidefinite. In such a case, all the eigenvalues of A are nonnegative.

The following properties involving the eigenvalues of an arbitrary n × n matrix
A = (ai j )n hold:

n∑
i=1

λi =
n∑

i=1

aii = tr(A) (A–8)

n∏
i=1

λi = det(A) (A–9)

n∑
i=1

λk
i = tr(Ak) (A–10)

tr(At A) =
n∑

i=1

n∑
j=1

a2
i j ≥

n∑
i=1

λ2
i , A real (A–11)
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A.2
SINGULAR-VALUE DECOMPOSITION

The singular-value decomposition (SVD) is another orthogonal decomposition of a
matrix. Let us assume that A is an n × m matrix of rank r . Then there exist an n × r
matrix U , an m × r matrix V , and an r × r diagonal matrix � such that U H U =
V H V = I r and

A = UΣV H (A–12)

where Σ = diag (σ1, σ2, . . . , σr ). The r diagonal elements of Σ are strictly positive and
are called the singular values of matrix A. For convenience, we assume that σ1 ≥ σ2 ≥
· · · ≥ σr .

The SVD of matrix A may be expressed as

A =
r∑

i=1

σi uiv
H
i (A–13)

where ui are the column vectors of U , which are called the left singular vectors of A,
and υ i are the column vectors of V , which are called the right singular vectors of A.

The singular values {σi } are the nonnegative square roots of the eigenvalues of
matrix AH A. To demonstrate this, we postmultiply Equation A–12 by V . Thus, we
obtain

AV = UΣ (A–14)

or, equivalently,

Aυ i = σi ui , i = 1, 2, . . . , r (A–15)

Similarly, we postmultiply AH = VΣU H by U . Thus, we obtain

AH U = VΣ (A–16)

or, equivalently,

AH ui = συ i , i = 1, 2, . . . , r (A–17)

Then, by premultiplying both sides of Equation A–15 with AH and using Equ-
ation A–17, we obtain

AH Aυ i = σ 2
i υ i , i = 1, 2, . . . , r (A–18)

This demonstrates that the r nonzero eigenvalues of AH A are the squares of the singular
values of A, and the corresponding r eigenvectors υ i are the right singular vectors of A.
The remaining m−r eigenvalues of AH A are zero. On the other hand, if we premultiply
both sides of Equation A–17 by A and use Equation A–15, we obtain

AAH ui = σ 2
i ui , i = 1, 2, . . . , r (A–19)

This demonstrates that the r nonzero eigenvalues of AAH are the squares of the singular
values of A, and the corresponding r eigenvectors ui are the left singular vectors of A.
The remaining n − r eigenvalues of AAH are zero. Hence, AAH and AH A have the
same set of nonzero eigenvalues.
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A.3
MATRIX NORM AND CONDITION NUMBER

Recall that the Euclidean norm (L2 norm) of a vector υ, denoted as ‖υ‖, is defined as

‖υ‖= (υHυ)1/2 (A–20)

The Euclidean norm of a matrix A, denoted as ‖A‖, is defined as

‖A‖= max
‖Aυ‖
‖υ‖ (A–21)

for any vector υ. It is easy to verify that the norm of a Hermitian matrix is equal to the
largest eigenvalue.

Another useful quantity associated with a matrix A is the nonzero minimum value
of ‖Aυ‖/‖υ‖. When A is a nonsingular Hermitian matrix, this minimum value is equal
to the smallest eigenvalue.

The squared Frobenius norm of an n × m matrix A is defined as

‖A‖2
F= tr (AAH ) =

n∑
i=1

n∑
j=1

|ai j |2 (A–22)

From the SVD of the matrix A, it follows that

‖A‖2
F =

n∑
i=1

λi (A–23)

where {λi } are the eigenvalues of AAH .
The following are bounds on matrix norms:

‖A‖ > 0, A �= 0

‖A + B‖ ≤ ‖A‖ + ‖B‖
‖AB‖ ≤ ‖A‖‖B‖

(A–24)

The condition number of a matrix A is defined as the ratio of the maximum value
to the minimum value of ‖Aυ‖/‖υ‖. When A is Hermitian, the condition number is
λmax/λmin, where λmax is the largest eigenvalue and λmin is the smallest eigenvalue
of A.

A.4
THE MOORE–PENROSE PSEUDOINVERSE

Let us consider a rectangular n×m matrix A of rank r , having an SVD as A = UΣV H .
The Moore–Penrose pseudoinverse, denoted by A+, is an m × n matrix defined as

A+ = VΣ−1U H (A–25)
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where Σ−1 is an r × r diagonal matrix with diagonal elements 1/σi , i = 1, 2, . . . , r .
We may also express A+ as

A+ =
r∑

i=1

1

σi
υ i uH

i (A–26)

We observe that the rank of A+ is equal to the rank of A.
When the rank r = m or r = n, the pseudoinverse A+ can be expressed as

A+ = AH (AAH )−1 r = n

A+ = (AH A)−1 AH r = m

A+ = A−1 r = m = n

(A–27)

These relations are equivalent to AA+ = In and A+ A = Im .
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Error Probability for Multichannel Binary Signals

In multichannel communication systems that employ binary signaling for transmitting
information over the AWGN channel, the decision variable at the detector can be
expressed as a special case of the general quadratic form

D =
L∑

k=1

(
A|Xk |2 + B|Yk |2 + C XkY ∗

k + C∗ X∗
k Yk

)
(B–1)

in complex-valued Gaussian random variables. A, B, and C are constants; Xk and Yk

are a pair of correlated complex-valued Gaussian random variables. For the channels
considered, the L pairs {Xk, Yk} are mutually statistically independent and identically
distributed.

The probability of error is the probability that D < 0. This probability is evaluated
below.

The computation begins with the characteristic function, denoted by ψD( jv), of
the general quadratic form. The probability that D < 0, denoted here as the probability
of error Pb, is

Pb = P(D < 0) =
∫ 0

−∞
p(D) d D (B–2)

where p(D), the probability density function of D, is related to ψD( jv) by the Fourier
transform, i.e.,

p(D) = 1

2π

∫ ∞

−∞
ψD( jv)e− jvDdv

Hence,

Pb =
∫ 0

−∞
d D

1

2π

∫ ∞

−∞
ψD( jv)e− jvDdv (B–3)

1090



Proakis-27466 book September 27, 2007 13:14

Appendix B: Error Probability for Multichannel Binary Signals 1091

Let us interchange the order of integration and carry out first the integration with respect
to D. The result is

Pb = − 1

2π j

∫ ∞+ jε

−∞+ jε

ψD( jv)

v
dv (B–4)

where a small positive number ε has been inserted in order to move the path of integration
away from the singularity at v = 0 and which must be positive in order to allow for the
interchange in the order of integration.

Since D is the sum of statistically independent random variables, the characteristic
function of D factors into a product of L characteristic functions, with each function
corresponding to the individual random variables dk , where

dk = A|Xk |2 + B|Yk |2 + C XkY ∗
k + C∗ X∗

k Yk

The characteristic function of dk is

ψdk ( jv) = v1v2

(v + jv1)(v − jv2)
exp

[
v1v2

( − v2α1k + jvα2k
)

(v + jv1)(v − jv2)

]
(B–5)

where the parameters v1, v2, α1k , and α2k depend on the means X̄k and Ȳk and the
second (central) moments μxx , μyy , and μxy of the complex-valued Gaussian variables
Xk and Yk through the following definitions (|C |2 − AB > 0):

v1 =
√

w2 + 1

4
(
μxxμyy − |μxy|2

)
(|C |2 − AB)

− w

v2 =
√

w2 + 1

4
(
μxxμyy − |μxy|2

)
(|C |2−AB)

+ w

w = Aμxx + Bμyy + Cμ∗
xy + C∗μxy

4
(
μxxμyy − |μxy|2

)
(|C |2 − AB)

α1k = 2(|C |2 − AB)
(|X̄k |2μyy + |Ȳk |2μxx − X̄∗

k Ȳkμxy − X̄k Ȳ ∗
k μ∗

xy

)
α2k = A|X̄k |2 + B|Ȳk |2 + C X̄∗

k Ȳk + C∗ X̄k Ȳ ∗
k

μxy = 1
2 E[(Xk − X̄k)(Yk − Ȳk)∗]

(B–6)

Now, as a result of the independence of the random variables dk , the characteristic
function of D is

ψD( jv) =
L∏

k=1

ψdk ( jv)

ψD( jv) = (v1v2)L

(v + jv1)L (v − jv2)L
exp

[
v1v2

(
jvα2 − v2α1

)
(v + jv1)(v − jv1)

] (B–7)

where

α1 =
L∑

k=1

α1k, α2 =
L∑

k=1

α2k (B–8)
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The result B–7 is substituted for ψD( jv) in Equation B–4, and we obtain

Pb = − (v1v2)L

2π j

∫ ∞+ jε

−∞+ jε

dv

v(v + jv1)L (v − jv2)L
exp

[
v1v2

(
jvα2 − v2α1

)
(v + jv1)(v − jv2)

]
(B–9)

This integral is evaluated as follows.
The first step is to express the exponential function in the form

exp
(

−A1 + j A2

v + jv1
− j A3

v − jv2

)

where one can easily verify that the constants A1, A2, and A3 are given as

A1 = α1v1v2

A2 = v2
1v2

v1 + v2
(α1v1 + α2)

A3 = v1v
2
2

v1 + v2
(α1v2 − α2)

(B–10)

Second, a conformal transformation is made from the v plane onto the p plane via
the change in variable

p = −v1

v2

v − jv2

v + jv1
(B–11)

In the p plane, the integral given by Equation B–9 becomes

Pb = exp
[
v1v2(−2α1v1v2 + α2v1 − α2v2)/(v1 + v2)2

]
(1 + v2/v1)2L−1

1

2π j

∫
	

f (p) dp (B–12)

where

f (p) = [1 + (v2/v1)p]2L−1

pL (1 − p)
exp

[
A2(v2/v1)

v1 + v2
p + A3(v1/v2)

v1 + v2

1

p

]
(B–13)

and 	 is a circular contour of radius less than unity that encloses the origin.
The third step is to evaluate the integral

1

2π j

∫
	

f (p) dp = 1

2π j

∫
	

[1 + (v2/v1)p]2L−1

pL (1 − p)

× exp
[

A2(v2/v1)

v1 + v2
p + A3(v1/v2)

v1 + v2

1

p

]
dp

(B–14)

In order to facilitate subsequent manipulations, the constants a ≥ 0 and b ≥ 0 are
introduced and defined as follows:

1
2 a2 = A3(v1/v2)

v1 + v2
, 1

2 b2 = A2(v2/v1)

v1 + v2
(B–15)
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Let us also expand the function [1 + (v2/v1)p]2L−1 as a binomial series. As a result,
we obtain

1

2π j

∫
	

f (p) dp =
2L−1∑
k=0

(
2L − 1

k

) (
v2

v1

)k

× 1

2π j

∫
	

pk

pL (1 − p)
exp

(
1
2 a2

p
+ 1

2 b2 p

)
dp

(B–16)

The contour integral given in Equation B–16 is one representation of the Bessel
function. It can be solved by making use of the relations

In(ab) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2π j

(
a

b

)n ∫
	

1

pn+1
exp

(
1
2 a2

p
+ 1

2 b2 p

)
dp

1

2π j

(
b

a

)n ∫
	

pn−1 exp

(
1
2 a2

p
+ 1

2 b2 p

)
dp

where In(x) is the nth-order modified Bessel function of the first kind and the series
representation of Marcum’s Q function in terms of Bessel functions, i.e.,

Q1(a, b) = exp
[− 1

2 (a2 + b2)
] +

∞∑
n=0

(
a

b

)n

In(ab)

First, consider the case 0 ≤ k ≤ L − 2 in Equation B–16. In this case, the resulting
contour integral can be written in the form†

1

2π j

∫
	

1

pL−K (1 − p)
exp

(
1
2 a2

p
+ 1

2 b2 p

)
dp = Q1(a, b) exp

[ 1
2 (a2 + b2)

]+
L−1−k∑

n=1

(
b

a

)n

In(ab)

(B–17)

Next, consider the term k = L − 1. The resulting contour integral can be expressed in
terms of the Q function as follows:

1

2π j

∫
	

1

p(1 − p)
exp

(
1
2 a2

p
+ 1

2 b2 p

)
dp = Q1(a, b) exp

[ 1
2 (a2 + b2)

]
(B–18)

†This contour integral is related to the generalized Marcum Q function, defined as

Qm (a, b) =
∫ ∞

b

x(x/a)m−1 exp[− 1
2 (x2 + a2)]Im−1(ax)dx, m ≥ 1

in the following manner:

Qm (a, b) exp[ 1
2 (a2 + b2)] = 1

2π j

∫
	

1

pm (1 − p)
exp

(
1
2 a2

p
+ 1

2 b2 p

)
dp
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Finally, consider the case L ≤ k ≤ 2L − 1. We have

1

2π j

∫
	

pk−L

1 − p
exp

(
1
2 a2

p
+ 1

2 b2 p

)
dp

=
∞∑

n=0

1

2π j

∫
	

pk−L+n exp

(
1
2 a2

p
+ 1

2 b2 p

)
dp

=
∞∑

n=k+1−L

(
a

b

)n

In(ab) = Q1(a, b) exp
[ 1

2 (a2 + b2)
] −

k−L∑
n=0

(
a

b

)n

In(ab)

(B–19)
Collecting the terms that are indicated on the right-hand side of Equation B–16 and
using the results given in Equations B–17 to B–19, the following expression for the
contour integral is obtained after some algebra:

1

2π j

∫
	

f (p) dp =
(

1 + v2

v1

)2L−1

{exp
[ 1

2 (a2 + b2)
]
Q1(a, b) − I0(ab)}

+ I0(ab)
L−1∑
k=0

(
2L − 1

k

) (
v2

v1

)k

+
L−1∑
n=1

In(ab)
L−1−n∑

k=0

(
2L − 1

k

) [(
b

a

)n (
v2

v1

)k

−
(

a

b

)n (
v2

v1

)2L−1−k
]

(B–20)

Equation B–20 in conjunction with Equation B–12 gives the result for the prob-
ability of error. A further simplification results when one uses the following identity,
which can easily be proved:

exp
[

v1v2

(v1 + v2)2
(−2α1v1v2 + α2v1 − α2v2)

]
= exp

[− 1
2 (a2 + b2)

]

Therefore, it follows that

Pb = Q1(a, b) − I0(ab) exp
[− 1

2 (a2 + b2)
]

+ I0(ab) exp
[− 1

2 (a2 + b2)
]

(1 + v2/v1)2L−1

L−1∑
k=0

(
2L − 1

k

) (
v2

v1

)k

+ exp
[− 1

2 (a2 + b2)
]

(1 + v2/v1)2L−1

×
L−1∑
n=1

In(ab)
L−1−n∑

k=0

(
2L − 1

k

)

×
[(

b

a

)n (
v2

v1

)k

−
(

a

b

)n (
v2

v1

)2L−1−k
]

, L > 1

Pb = Q1(a, b) − v2/v1

1 + v2/v1
I0(ab) exp

[− 1
2 (a2 + b2)

]
, L = 1 (B–21)
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This is the desired expression for the probability of error. It is now a simple matter
to relate the parameters a and b to the moments of the pairs {Xk, Yk}. Substituting for
A2 and A3 from Equation B–10 into Equation B–15, we obtain

a =
[

2v2
1v2(α1v2 − α2)

(v1 + v2)2

]1/2

b =
[

2v1v
2
2(α1v1 + α2)

(v1 + v2)2

]1/2
(B–22)

Since v1, v2, α1, and α2 have been given in Equations B–6 and B–8 directly in terms of
the moments of the pairs Xk and Yk , our task is completed.
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A P P E N D I X C

Error Probabilities for Adaptive Reception
of M-Phase Signals

In this appendix, we derive probabilities of error for two- and four-phase signaling
over an L-diversity-branch time-invariant Gaussian noise channel and for M-phase
signaling over an L-diversity-branch Rayleigh fading additive Gaussian noise channel.
Both channels corrupt the signaling waveforms transmitted through them by introducing
additive white Gaussian noise and an unknown or random multiplicative gain and phase
shift in the transmitted signal. The receiver processing consists of cross-correlating the
signal plus noise received over each diversity branch by a noisy reference signal, which
is derived either from the previously received information-bearing signals or from the
transmission and reception of a pilot signal, and adding the outputs from all L-diversity
branches to form the decision variable.

C.1
MATHEMATICAL MODEL FOR AN M-PHASE SIGNALING
COMMUNICATION SYSTEM

In the general case of M-phase signaling, the signaling waveforms at the transmitter
are†

sn(t) = Re
[
sln(t)e j2π fct]

where

sln(t) = g(t) exp
[

j
2π

M
(n − 1)

]
, n = 1, 2, . . . , M, 0 ≤ t ≤ T (C–1)

and T is the time duration of the signaling interval.
Consider the case in which one of these M waveforms is transmitted, for the

duration of the signaling interval, over L channels. Assume that each of the channels

†The complex representation of real signals is used throughout. Complex conjugation is denoted by an
asterisk.

1096
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corrupts the signaling waveform transmitted through it by introducing a multiplicative
gain and phase shift, represented by the complex-valued number gk , and an additive
noise zk(t). Thus, when the transmitted waveform is sln(t), the waveform received over
the kth channel is

rlk(t) = gksln(t) + zk(t), 0 ≤ t ≤ T, k = 1, 2, . . . , L (C–2)

The noises {zk(t)} are assumed to be sample functions of a stationary white Gaussian
random process with zero-mean and autocorrelation function φz(τ ) = N0δ(τ ), where
N0 is the value of the spectral density. These sample functions are assumed to be
mutually statistically independent.

At the demodulator, rlk(t) is passed through a filter whose impulse response is
matched to the waveform g(t). The output of this filter, sampled at time t = T , is
denoted as

Xk = 2Egk exp
[

j
2π

M
(n − 1)

]
+ Nk (C–3)

where E is the transmitted signal energy per channel and Nk is the noise sample from the
kth filter. In order for the demodulator to decide which of the M phases was transmitted
in the signaling interval 0 ≤ t ≤ T , it attempts to undo the phase shift introduced by
each channel. In practice, this is accomplished by multiplying the matched filter output
Xk by the complex conjugate of an estimate ĝk of the channel gain and phase shift.
The result is a weighted and phase-shifted sampled output from the kth-channel filter,
which is then added to the weighted and phase-shifted sampled outputs from the other
L − 1 channel filters.

The estimate ĝk of the gain and phase shift of the kth channel is assumed to be
derived either from the transmission of a pilot signal or by undoing the modulation on
the information-bearing signals received in previous signaling intervals. As an example
of the former, suppose that a pilot signal, denoted by spk(t), 0 ≤ t ≤ T , is transmitted
over the kth channel for the purpose of measuring the channel gain and phase shift. The
received waveform is

gkspk(t) + z pk(t), 0 ≤ t ≤ T

where z pk(t) is a sample function of a stationary white Gaussian random process with
zero-mean and autocorrelation function φp(τ ) = N0δ(τ ). This signal plus noise is
passed through a filter matched to spk(t). The filter output is sampled at time t = T to
yield the random variable X pk = 2Epgk +Npk , whereEp is the energy in the pilot signal,
which is assumed to be identical for all channels, and Npk is the additive noise sample.
An estimate of gk is obtained by properly normalizing X pk , i.e., ĝk = gk + Npk/2Ep.

On the other hand, an estimate of gk can be obtained from the information-bearing
signal as follows. If one knew the information component contained in the matched
filter output, then an estimate of gk could be obtained by properly normalizing this
output. For example, the information component in the filter output given in Equa-
tion C–3 is 2Egk exp[ j(2π/M)(n − 1)], and, hence, the estimate is

ĝk = Xk

2E exp
[
− j

2π

M
(n − 1)

]
= gk + N ′

k

2E
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where N ′
k = Nk exp[− j(2π/M)(n − 1)] and the PDF of N ′

k is identical to the PDF of
Nk . An estimate that is obtained from the information-bearing signal in this manner
is called a clairvoyant estimate. Although a physically realizable receiver does not
possess such clairvoyance, it can approximate this estimate by employing a time delay
of one signaling interval and by feeding back the estimate of the transmitted phase in
the previous signaling interval.

Whether the estimate of gk is obtained from a pilot signal or from the information-
bearing signal, the estimate can be improved by extending the time interval over which
it is formed to include several prior signaling intervals in a way that has been described
by Price (1962a, b). As a result of extending the measurement interval, the signal-to-
noise ratio in the estimate of gk is increased. In the general case where the estimation
interval is the infinite past, the normalized pilot signal estimate is

ĝk = gk +
∞∑

i=1

ci Npki

/
2Ep

∞∑
i=1

ci (C–4)

where ci is the weighting coefficient on the subestimate of gk derived from the i th prior
signal interval and Npki is the sample of additive Gaussian noise at the output of the filter
matched to spk(t) in the i th prior signaling interval. Similarly, the clairvoyant estimate
that is obtained from the information-bearing signal by undoing the modulation over
the infinite past is

ĝk = gk +
∞∑

i=1

ci Nki

/
2E

∞∑
i=1

ci (C–5)

As indicated, the demodulator forms the product between ĝ∗
k and Xk and adds this

to the products of the other L − 1 channels. The random variable that results is

z =
L∑

k=1

Xk ĝ∗
k =

L∑
k=1

XkY ∗
k

= zr + j zi

(C–6)

where, by definition, Yk = ĝk, zr = Re(z), and zi = Im(z). The phase of z is the
decision variable. This is simply

θ = tan−1
(

zi

zr

)
= tan−1

[
Im

(
L∑

k=1

XkY ∗
k

)/
Re

(
L∑

k=1

XkY ∗
k

)]
(C–7)

C.2
CHARACTERISTIC FUNCTION AND PROBABILITY DENSITY
FUNCTION OF THE PHASE θ

The following derivation is based on the assumption that the transmitted signal phase
is zero, i.e., n = 1. If desired, the PDF of θ conditional on any other transmitted signal
phase can be obtained by translating p(θ ) by the angle 2π (n − 1)/M . We also assume
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that the complex-valued numbers {gk}, which characterize the L channels, are mutu-
ally statistically independent and identically distributed zero-mean Gaussian random
variables. This characterization is appropriate for slowly fading Rayleigh channels.
As a consequence, the random variables (Xk, Yk) are correlated, complex-valued, zero-
mean, Gaussian, and statistically independent, but identically distributed with any other
pair (Xi , Yi ).

The method that has been used in evaluating the probability density p(θ ) in the
general case of diversity reception is as follows. First, the characteristic function of the
joint probability distribution function of zr and zi , where zr and zi are two components
that make up the decision variable θ , is obtained. Second, the double Fourier transform
of the characteristic function is performed and yields the density p(zr , zi ). Then the
transformation

r =
√

z2
r + z2

i , θ = tan−1
(

zi

zr

)
(C–8)

yields the joint PDF of the envelope r and the phase θ . Finally, integration of this joint
PDF over the random variable r yields the PDF of θ .

The joint characteristic function of the random variables zr and zi can be expressed
in the form

ψ( jv1, jv2) =

⎡
⎢⎢⎢⎢⎢⎣

4

mxx myy(1 − |μ|2)(
v1 − j

2|μ| cos ε√
mxx myy(1 − |μ|2)

)2

+
(

v2 − j
2|μ| sin ε√

mxx myy (1 − |μ|2)

)2

+ 4

mxx myy(1 − |μ|2)2

⎤
⎦

(C–9)

where, by definition,

mxx = E
(|Xk |2

)
, identical for all k

myy = E
(|Yk |2

)
, identical for all k

mxy = E
(

XkY ∗
k

)
, identical for all k (C–10)

μ = mxy√
mxx myy

= |μ|e− jε

The result of Fourier-transforming the function ψ( jv1, jv2) with respect to the
variables v1 and v2 is

p(zr , zi ) =
(
1 − |μ|2)L

(L − 1)!π2L

(√
z2

r + z2
l

)L−1

× exp[|μ|(zr cos ε + zi sin ε)]KL−1

(√
z2

r + z2
i

) (C–11)
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where Kn(x) is the modified Hankel function of order n. Then the transformation of
random variables, as indicated in Equation C–8 yields the joint PDF of the envelope r
and the phase θ in the form

p(r, θ ) =
(
1 − |μ|2)L

(L − 1)!π2L
r L exp[|μ|r cos(θ − ε)]KL−1(r ) (C–12)

Now, integration over the variable r yields the marginal PDF of the phase θ . We have
evaluated the integral to obtain p(θ ) in the form

p(θ ) = (−1)L−1(1 − |μ|2)L

2π (L − 1)!

{
∂ L−1

∂bL−1

[
1

b − |μ|2 cos2(θ − ε)

+ |μ| cos(θ − ε)

[b − |μ|2 cos2(θ − ε)]3/2
cos−1

(
−|μ| cos(θ − ε)

b1/2

)]}∣∣∣∣
b=1

(C–13)

In this equation, the notation

∂ L

∂bL
f (b, μ)

∣∣∣∣
b=1

denotes the Lth partial derivative of the function f (b, μ) evaluated at b = 1.

C.3
ERROR PROBABILITIES FOR SLOWLY FADING RAYLEIGH CHANNELS

In this section, the probability of a character error and the probability of a binary
digit error are derived for M-phase signaling. The probabilities are evaluated via the
probability density function and the probability distribution function of θ .

The probability distribution function of the phase In order to evaluate the prob-
ability of error, we need to evaluate the definite integral

P(θ1 ≤ θ ≤ θ2) =
∫ θ2

θ1

p(θ ) dθ

where θ1 and θ2 are limits of integration and p(θ ) is given by Equation C–13. All
subsequent calculations are made for a real cross-correlation coefficient μ. A real-
valued μ implies that the signals have symmetric spectra. This is the usual situation
encountered. Since a complex-valued μ causes a shift of ε in the PDF of θ , i.e., ε is
simply a bias term, the results that are given for real μ can be altered in a trivial way to
cover the more general case of complex-valued μ.

In the integration of p(θ ), only the range 0 ≤ θ ≤ π is considered, because p(θ )
is an even function. Furthermore, the continuity of the integrand and its derivatives
and the fact that the limits θ1 and θ2 are independent of b allow for the interchange of
integration and differentiation. When this is done, the resulting integral can be evaluated
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quite readily and can be expressed as follows:

∫ θ2

θ1

p(θ ) dθ = (−1)L−1(1 − μ2)L

2π (L − 1)!

× ∂ L−1

∂bL−1

{
1

b − μ2

[
μ

√
1 − (b/μ2 − 1)x2

b1/2
cot−1 x (C–14)

− cot−1

(
xb1/2/μ√

1 − (b/μ2 − 1)x2

)]}x2

x1

∣∣∣∣∣
b=1

where, by definition,

xi = −μ cos θi√
b − μ2(cos θi )2

, i = 1, 2 (C–15)

Probability of a symbol error The probability of a symbol error for any M-phase
signaling system is

Pe = 2
∫ π

π/M
p(θ ) dθ

When Equation C–14 is evaluated at these two limits, the result is

Pe = (−1)L−1(1 − μ2)L

π (L − 1)!

∂ L−1

∂bL−1

{
1

b − μ2

[
π

M
(M − 1)

− μ sin(π/M)√
b − μ2 cos2(π/M)

cot−1

(
−μ cos(π/M)√

b − μ2 cos2(π/M)

)]}∣∣∣∣∣
b=1

(C–16)

Probability of a binary digit error First, let us consider two-phase signaling. In
this case, the probability of a binary digit error is obtained by integrating the PDF p(θ )
over the range 1

2π < θ < 3π . Since p(θ ) is an even function and the signals are a priori
equally likely, this probability can be written as

P2 = 2
∫ π

π/2
p(θ ) dθ

It is easily verified that θ1 = 1
2π implies xi = 0 and θ2 = π implies x2 = μ/

√
b − μ2.

Thus,

P2 = (−1)L−1(1 − μ2)L

2(L − 1)!

∂ L−1

∂bL−1

[
1

b − μ2
− μ

b1/2(b − μ2)

]∣∣∣∣
b=1

(C–17)

After performing the differentiation indicated in Equation C–17 and evaluating the
resulting function at b = 1, the probability of a binary digit error is obtained in
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the form

P2 = 1

2

⎡
⎣1 − μ

L−1∑
k=0

(
2k

k

)(
1 − μ2

4

)k
⎤
⎦ (C–18)

Next, we consider the case of four-phase signaling in which a Gray code is used to map
pairs of bits into phases. Assuming again that the transmitted signal is sl1(t), it is clear
that a single error is committed when the received phase is 1

4π < θ < 3
4π , and a double

error is committed when the received phase is 3
4π < θ < π . That is, the probability of

a binary digit error is

P4b =
∫ 3π/4

π/4
p(θ ) dθ + 2

∫ π

3π/4
p(θ ) dθ (C–19)

It is easily established from Equations C–14 and C–19 that

P4b = (−1)L−1(1 − μ2)L

2(L − 1)!

∂ L−1

∂bL−1

[
1

b − μ2
− μ

(b − μ2)(2b − μ2)1/2

]∣∣∣∣
b=1

Hence, the probability of a binary digit error for four-phase signaling is

P4b = 1

2

⎡
⎣1 − μ√

2 − μ2

L−1∑
k=0

(
2k

k

) (
1 + μ2

4 − 2μ2

)k
⎤
⎦ (C–20)

Note that if one defines the quantity ρ = μ/
√

2 − μ2, the expression for P4b in terms
of ρ is

P4b = 1

2

⎡
⎣1 − ρ

L−1∑
k=0

(
2k

k

) (
1 − ρ2

4

)k
⎤
⎦ (C–21)

In other words, P4b has the same form as P2 given in Equation C–18. Furthermore, note
that ρ, just like μ, can be interpreted as a cross-correlation coefficient, since the range
of ρ is 0 ≤ ρ ≤ 1 for 0 ≤ μ ≤ 1. This simple fact will be used in Section C.4.

The above procedure for obtaining the bit error probability for an M-phase signal
with a Gray code can be used to generate results for M = 8, 16, etc., as shown by
Proakis (1968).

Evaluation of the cross-correlation coefficient The expressions for the probabil-
ities of error given above depend on a single parameter, namely, the cross-correlation
coefficient μ. The clairvoyant estimate is given by Equation C–5, and the matched filter
output, when signal waveform sl1(t) is transmitted, is Xk = 2Egk + Nk . Hence, the
cross-correlation coefficient is

μ =
√

ν√(
γ̄ −1

c + 1
) (

γ̄ −1
c + ν

) (C–22)
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where, by definition,

ν =
∣∣∣∣∣

∞∑
i=1

ci

∣∣∣∣∣
2/ ∞∑

i=1

|ci |2

γ̄c = E
N0

E
(|gk |2

)
, k = 1, 2, . . . , L

(C–23)

The parameter ν represents the effective number of signaling intervals over which the
estimate is formed, and γ̄c is the average SNR per channel.

In the case of differential phase signaling, the weighting coefficients are c1 = 1,
ci = 0 for i �= 1. Hence, ν = 1 and μ = γ̄c/(1 + γ̄ )c).

When ν = ∞, the estimate is perfect and

lim
ν→∞ μ =

√
γ̄c

γ̄c + 1

Finally, in the case of a pilot signal estimate given by Equation C–4, the cross-
correlation coefficient is

μ =
[(

1 + r + 1

r γ̄t

) (
1 + r + 1

νγ̄t

)]−1/2

(C–24)

where, by definition.

γ̄t = Et

N0
E(|gk |2)

Et = E + Ep

r = E/Ep

The values of μ given above are summarized in Table C–1.

TABLE C–1

Rayleigh Fading Channel

Type of estimate Cross-correlation coefficient μ

Clairvoyant estimate

√
ν√(

γ̄ −1
c + 1

)(
γ̂ −1

c + ν
)

Pilot signal estimate
√

rν

(r + 1)

√(
1

γ̄t
+ r

r + 1

)(
1

γ̄t
+ ν

r + 1

)

Differential phase signaling
γ̄c

γ̄c + 1

Perfect estimate

√
γ̄c

γ̄c + 1



Proakis-27466 book September 27, 2007 13:14

1104 Digital Communications

C.4
ERROR PROBABILITIES FOR TIME-INVARIANT
AND RICEAN FADING CHANNELS

In Section C.2, the complex-valued channel gains {gk} were characterized as zero-mean
Gaussian random variables, which is appropriate for Rayleigh fading channels. In this
section, the channel gains {gk} are assumed to be nonzero-mean Gaussian random
variables. Estimates of the channel gains are formed by the demodulator and are used
as described in Section C.1. Moreover, the decision variable θ is defined again by
Equation C–7. However, in this case, the Gaussian random variables Xk and Yk , which
denote the matched filter output and the estimate, respectively, for the kth channel, have
nonzero-means, which are denoted by X̄k and Ȳk . Furthermore, the second moments
are

mxx = E
(|Xk − X̄k |2

)
, identical for all channels

myy = E
(|Yk − Ȳk |2

)
, identical for all channels

mxy = E
[(

Xk − X̄k)(Y ∗
k − Ȳ ∗

k

)]
, identical for all channels

and the normalized covariance is defined as

μ = mxy√
mxx myy

Error probabilities are given below only for two- and four-phase signaling with this
channel model. We are interested in the special case in which the fluctuating component
of each of the channel gains {gk} is zero, so that the channels are time-invariant. If, in
addition to this time invariance, the noises between the estimate and the matched filter
output are uncorrelated, then μ = 0.

In the general case, the probability of error for two-phase signaling over L sta-
tistically independent channels characterized in the manner described above can be
obtained from the results in Appendix B. In its most general form, the expression for
the binary error rate is

P2 = Q1(a, b) − I0(ab) exp[− 1
2 (a2 − b2)]

+ I0(ab) exp[− 1
2 (a2 + b2)]

[2/(1 − μ)]2L−1

L−1∑
k=0

(
2L − 1

k

) (
1 + μ

1 − μ

)k

+ exp[− 1
2 (a2 + b2)]

[2/(1 − μ)]2L−1

×
L−1∑
k=1

In(ab)
L−1−n∑

k=0

(
2L − 1

k

) [(
b

a

)n (
1 + μ

1 − μ

)k

−
(

a

b

)n (
1 + μ

1 − μ

)2L−1−k
]

(L ≥ 2)

P2 = Q1(a, b) − 1
2 (1 + μ)I0(ab) exp[− 1

2 (a2 + b2)] (L = 1) (C–25)



Proakis-27466 book September 27, 2007 13:14

Appendix C: Error Probabilities for Adaptive Reception of M-Phase Signals 1105

where, by definition,

a =
(

1
2

L∑
k=1

∣∣∣∣ X̄k√
mxx

− Ȳk√
myy

∣∣∣∣
2
)1/2

b =
(

1
2

L∑
k=1

∣∣∣∣ X̄k√
mxx

+ Ȳk√
myy

∣∣∣∣
2
)1/2

(C–26)

Q1(a, b) =
∫ ∞

b
x exp[− 1

2 (a2 + x2)]I0(ax) dx

In(x) is the modified Bessel function of the first kind and of order n.
Let us evaluate the constants a and b when the channel is time-invariant, μ = 0,

and the channel gain and phase estimates are those given in Section C.1. Recall that
when signal s1(t) is transmitted, the matched filter output is Xk = 2Egk + Nk . The
clairvoyant estimate is given by Equation C–5. Hence, for this estimate, the moments are
X̄k = 2Egk , Ȳk = gk , mxx = 4EN0, and myy = N0/Eν, where E is the signal energy, N0

is the value of the noise spectral density, and ν is defined in Equation C–23. Substitution
of these moments into Equation C–26 results in the following expressions for a and b:

a =
√

1
2γb|

√
ν − 1|

b =
√

1
2γb|

√
ν + 1| (C–27)

γb = E
N0

L∑
k=1

|gk |2

This is a result originally derived by Price (1962).
The probability of error for differential phase signaling can be obtained by setting

ν = 1 in Equation C–27.
Next, consider a pilot signal estimate. In this case, the estimate is given by Equation

C–4 and the matched filter output is again Xk = 2Egk + Nk . When the moments are
calculated and these are substituted into Equation C–26, the following expressions for
a and b are obtained:

a =
√

γt

2

∣∣∣∣
√

ν

r + 1
−

√
r

r + 1

∣∣∣∣
b =

√
γt

2

(√
ν

r + 1
+

√
r

r + 1

) (C–28)

where

γt = Et

N0

L∑
k=1

|gk |2

Et = E + Ep

r = E/Ep
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Finally, we consider the probability of a binary digit error for four-phase signaling
over a time-invariant channel for which the condition μ = 0 obtains. One approach
that can be used to derive this error probability is to determine the PDF of θ and then
to integrate this over the appropriate range of values of θ . Unfortunately, this approach
proves to be intractable mathematically. Instead, a simpler, albeit roundabout, method
may be used that involves the Laplace transform. In short, the integral in Equation 14.4–
14 of the text that relates the error probability P2(γb) in an AWGN channel to the error
probability P2 in a Rayleigh fading channel is a Laplace transform. Since the bit error
probabilities P2 and P4b for a Rayleigh fading channel, given by Equations C–18 and
C–21, respectively, have the same form but differ only in the correlation coefficient,
it follows that the bit error probabilities for the time-invariant channel also have the
same form. That is, Equation C–25 with μ = 0 is also the expression for the bit error
probability of a four-phase signaling system with the parameters a and b modified to
reflect the difference in the correlation coefficient. The detailed derivation may be found
in the paper by Proakis (1968). The expressions for a and b are given in Table C–2.

TABLE C–2

Time-Invariant Channel

Type of estimate a b

Two-phase signaling

Clairvoyant estimate
√

1
2 γb|√ν − 1|

√
1
2 γb(

√
ν + 1)

Differential phase signaling 0
√

2γb

Pilot signal estimate
√

γt

2

∣∣∣
√

ν

r + 1
−

√
r

r + 1

∣∣∣
√

γt

2

(√
ν

r + 1
+

√
r

r + 1

)

Four-phase signaling

Clairvoyant estimate
√

1
2 γb|

√
ν + 1 + √

ν2 + 1
√

1
2 γb

(√
ν + 1 + √

ν2 + 1

−
√

ν + 1 − √
ν2 + 1| +

√
ν + 1 − √

ν2 + 1
)

Differential phase signaling
√

1
2 γb

(√
2 + √

2 −
√

2 − √
2
) √

1
2 γb

(√
2 + √

2 +
√

2 − √
2
)

Pilot signal estimate

√
γt

4(r + 1)

∣∣∣
√

ν + r +
√

ν2 + r2

√
γt

4(r + 1)

(√
ν + r +

√
ν2 + r2

−
√

ν + r −
√

ν2 + r2

∣∣∣ +
√

ν + r −
√

ν2 + r2
)
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Square Root Factorization

Consider the solution of the set of linear equations

RN C N = U N (D–1)

where RN is an N × N positive-definite symmetric matrix, C N is an N -dimensional
vector of coefficients to be determined, and U N is an arbitrary N -dimensional vector.
The equations in D–1 can be solved efficiently by expressing RN in the factored form

RN = SN DN St
N (D–2)

where SN is a lower triangular matrix with elements {sik} and DN is a diagonal matrix
with diagonal elements {dk}. The diagonal elements of SN are set to unity, i.e., sii = 1.
Then we have

ri j = d
j∑

k=1

sikdks jk, 1 ≤ j ≤ i − 1, i ≥ 2 (D–3)

r11 = d1

where {ri j } are the elements of RN . Consequently, the elements {sik} and {dk} are
determined from Equation D–3 according to the equations

d1 = r11

si j d j = ri j −
j−1∑
k=1

sikdks jk, 1 ≤ j ≤ i − 1, 2 ≤ i ≤ N (D–4)

di = rii −
i−1∑
k=1

s2
ikdk, 2 ≤ i ≤ N

Thus, Equation D–4 defines SN and DN in terms of the elements of RN .
The solution to Equation D–1 is performed in two steps. With Equation D–2 sub-

stituted into Equation D–1 we have

SN DN St
N C N = U N

1107
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Let

Y N = DN St
N C N (D–5)

Then

SN Y N = U N (D–6)

First we solve Equation D–6 for Y N . Because of the triangular form of SN , we have

y1 = u1

yi = ui −
i−1∑
j=1

si j y j , 2 ≤ i ≤ N (D–7)

Having obtained Y N , the second step is to compute C N . That is,

DN St
N C N = Y N

St
N C N = D−1

N Y N

Beginning with

cN = yN /dN (D–8)

the remaining coefficients of C N are obtained recursively as follows:

ci = yi

di
−

N∑
j=i+1

s ji c j , 1 ≤ i ≤ N − 1 (D–9)

The number of multiplications and divisions required to perform the factorization
of RN is proportional to N 3. The number of multiplications and divisions required to
compute C N , once SN is determined, is proportional to N 2. In contrast, when RN is
Toeplitz the Levinson–Durbin algorithm should be used to determine the solution of
Equation D–1, since the number of multiplications and divisions is proportional to N 2.
On the other hand, in a recursive least-squares formulation, SN and DN are not com-
puted as in Equation D–3, but they are updated recursively. The update is accomplished
with N 2 operations (multiplications and divisions). Then the solution for the vector C N

follows the steps of Equations D–5 to D–9. Consequently, the computational burden of
the recursive least-squares formulation is proportional to N 2.
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for complex random
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Modulation),
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CSI (channel state information),
904, 957–960, 1054

Cutoff rate (R0), 371–380, 516, 527
comparison with channel

capacity, 377–380
for fading channels, 957–960
for pulsed interference,

787–791
CWEF (conditional weight

enumeration function), 416
Cyclic codes, 447

CRC, 453
decoding, 458
encoding, 455
generator polynomial, 448
Golay, 460
Hamming, 460
message polynomial, 449
parity check polynomial, 450
shortened, 452
systematic, 453

Cyclic equalization, 694
Cyclic redundancy check (CRC)

codes, 453
Cyclic subgroup, 482
Cyclostationary random

process, 70

D transform, 493
Data compression, 1, 335–354

lossless, 335–348
lossy, 348–354

Decision-feedback equalizer (see
Equalizers,
decision-feedback),
661–665, 705–706

Decision region, 163
Decoding,

Berlekamp-Massey, 469
Fano algorithm, 525
feedback, 529–531
hard decision, 428
iterative, 478, 548
Meggit, 460
sequential, 525–528
soft decision, 424
stack algorithm, 528–529
turbo, 552
LDPC, 570
Viterbi algorithm, 243–244,

Degrees of freedom, 75
Delay distortion, 598–599
Delay power spectrum, 834
Demodulation, 24
Demodulation and detection, 201

carrier recovery for, (See Carrier
phase estimation)

coherent
comparison of, 226–229
of binary signals, 173–177
of biorthogonal signals,

207–209
of orthogonal signal, 203–207
of PAM signals, 188–190
of PSK signals, 190–195
of QAM signals, 196–200
optimum, 201–203

correlation type, 177–178
of CPM, 243–258

performance, 251–258
for intersymbol interference,

623–628
matched filter-type, 178–182
maximum likelihood, 163
maximum-likelihood sequence,

623–628
noncoherent, 210–224

of binary signals, 219–221
of M-ary orthogonal signals,

216–219, 741–743,
861–865

multichannel,737–743
optimum, 212–214

of OFDM, 749
Density of a lattice, 236
Detector

decorrelating, 1043–1045
envelope, 214
inverse channel (ICD), 970
maximum-likelihood

(MLD), 970
MMSE, 970, 1046–1047
minimum distance, 171
nearest neighbor, 171
nonlinear, 973–974
optimal noncoherent, 212–214
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single user, 1042–1043
sphere, 973

Differential encoding, 115
Differential entropy, 349
Differential phase-shift keying

(DPSK), 221
Differentially encoded

PSK, 195
Digamma function, 909
Digital communication system

model, 1–3
Digital modulation, 95
Digital modulator, 2
Digital signaling, 95
Dimensionality theorem,

227
Direct sequence (See Spread

spectrum signals)
Dirty paper precoding, 1054
Discrete memoryless source

(DMS), 331
Discrete-memoryless channel

(DMC), 356
Discrete-time AWGN, 358
Discrete-time AWGN channel

capacity, 365
Discrete-time binary-input channel

capacity, 362
Distance (see Block codes;

Convolutional codes)
effective, 927
enumerator function, 185
Euclidean, 35
Hamming, 414
metric, 173
product, 925

Distortion (see Channel distortion)
Hamming, 354
squared-error, 350

Distortion-rate function, 352
Diversity

antenna, 851
frequency, 850
gain, 996–997
order, 852, 927
performance of, 851–859
polarization, 851
RAKE, 851
signal space, 928
time, 851

DMC (see Discret Memoryless
Channel)

DMS (see Discret Memoryless
Source)

Double-sideband (DSB)
PAM, 100

DPSK, 221
error probability, 223

DSB, 100
Dual code, 412
Dual-k codes, 537–540
Duobinary signal, 610

ε-outage capacity, 907
Early-late gate synchronizer,

318–321
Effective antenna area, 262
Effective distance, 927

Effective radiated power, 260–261
Eigenvalue, 29, 1086
Eigenvector, 29, 1086
Elias bound, 443
Encoder

catastrophic, 509
convolutional, 402, 492
for cyclic codes, 455
inverse, 508
turbo, 549

Encoding (see Block codes;
Convolutional codes)

Energy, 25
average, 97
per bit,

average, 97
Entropy, 333

chain rule, 335
conditional, 334
differential, 349
joint, 334

Entropy rate, 337
Envelope detection, 214
Envelope of a signal, 23
Equivalent codes, 412
Equivalent convolutional

encoders, 506
Equalizers (See also Adaptive

equalizers)
at transmitter, 668–669
decision-feedback, 661–665,

705–706
adaptive, 689–731
examples of performance,

662–665
for MIMO channels, 979–981
of trellis-coded signals,

706–708
minimum MSE, 663
predictive form, 665–667

linear, 640–649
adaptive, 689–693
baseband, 658–659
convergence of MSE

algorithm, 695–696
cyclic equalization, 694
error probability, 651–655
examples of performance,

651–655
excess MSE, 696–697
for MIMO channels, 975–979
fractionally spaced, 655–658
LMS (MSE) algorithm,

691–693
mean-square error (MSE)

criterion, 645–655
minimum MSE, 647–648
output SNR for, 648
passband, 658–659
peak distortion, 641
peak distortion criterion,

641–645
phase-splitting, 659
zero-forcing, 642

iterative equalization/decoding,
671–673

maximum a posteriority
probability (MAP), 291

maximum –likelihood sequence
estimation, 623–625,

reduced-state, 669–671
self-recovering (blind), 721–731
with trellis-coded modulation,

706–708
using the Viterbi algorithm,

628–631
channel estimator for,

703–705
performance of, 631–639
reduced complexity,

669–671
reduced-state, 669–671

erfc, 44
Ergodic capacity, 900, 905–906,

985–987
Error correction, 900
Error detection, 432
Error floor, 551
Error probability,

16QAM, 186, 200
ASK, 189
binary antipodal signaling, 174
binary equiprobable

signaling, 174
binary orthogonal

signaling, 176
biorthogonal signaling, 208
bit, 164, 417
block, 417
DPSK, 223
for hard-decision decoding,

945–946
for soft-decision decoding,

943–944
FSK, 205
lower bound to, 186
M-ary PSK, 190–194

for Rayleigh fading, 859–861,
1100–1103

for Ricean fading, 1104–1105
for AWGN channel, 1106

message, 164
multichannel binary symbols,

739–741, 1090–1095
orthogonal signaling, 205

noncoherent detection, 216
pairwise, 184, 372, 418,

922, 928
PAM, 189
QAM, 198
QPSK, 199
symbol, 164
union bound, 182
word, 417

Estimate
biased, 323
clairvoyant, 1098
consistent, 324
efficient, 324
pilot signal, 1098
unbiased, 323

Estimate of phase (See Carrier
phase estimation)

Estimation
maximum-likelihood, 291,

296–298, 321–322

of carrier phase, 295–315
of signal parameters, 290
of symbol timing, 290
of symbol timing and carrier

phase, 321–322
performance of, 323–326

Euclidean distance, 35
Euler’s constant, 909
Excess bandwidth, 607
Excess MSE, 696–697
Excision of narrowband

interference, 791–796
linear, 792–796
nonlinear, 796

EXIT charts, 555
Exponential random variable, 46
Expurgated codes, 447,

950–951
Extended codes, 447
Extended Golay code, 424
Extension field, 404
Extrinsic information, 552
Extrinsic L-value, 552
Eye pattern, 603

Factor Graphs, 558
Fading, 8, 830–844

figure, 52
Fading channels (See also

Channels), 830–890
coding for, 899–960
ergodic capacity, 900, 905–906,

985–987
outage capacity, 900, 906, 907,

900, 987–990
propagation models for,

842–843
Feedback decoding, 529–531
FH spread spectrum signals (see

Spread spectrum signals),
Field

characteristic, 404
extension, 404
finite, 403
Galois, 403
ground, 404
minimal polynomial of an

element, 408
order of an element, 407
primitive element, 407

Figure of merit
baseline, 239
constellation, 238

Filtered multitone (FMT)
modulation, 754

Filters,
matched, 178–182
whitening, 627

Finite fields, 403
Finite-state channels, 903

capacity, 903–905
Fire codes, 475
First-event error, 502
First-event error probability,

513
Fixed weight codes, 411,

949–953
Fixed-length source coding, 339
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Folded spectrum, 644
Forward recursion, 543
Free Euclidian distance, 577
Free-space path loss, 262
Frequency diversity, 850
Frequency range

wireline channels, 5
wireless (radio) channels, 6

Frequency division multiple access
(FDMA), 1029

capacity of,1031–1032
Frequency domain coding,

942–960
Frequency hopped (FH) spread

spectrum, 802–804
Frequency support, 20
Frequency-shift keying (FSK),

109–110
continuous-phase (CPFSK),

116–118
error probability, 205
noncoherent detection, 215
power density spectrum, 154

Frobenius norm, 982
Fundamental coding gain, 586
Fundamental volume of a

lattice, 233

Galois fields, 403
minimal polynomial, 464
subfield, 483

Gamma function, 45
complementary, 911
Digamma function, 909

Gamma random variable, 46
Gaussian minimum-shift keying

(GMSK), 118
Gaussian noise, 10
Gaussian random process, 10, 68
Gaussian random variable, 41
Generalized RAKE demodulator,

880–882
Generator matrix

lattice, 231
of linear block codes, 412
of space-time block code,

1006
transform domain, 495

Generator polynomial, 448, 464
Gilbert-Varsharmov bound, 443
Girth of a graph, 560
GMSK, 118, 127
Golay codes, 424, 460

extended, 424
ternary, 442

Gold sequences, 799
Gram-Schmidt procedure, 29
Graphs, 558–568

bipartite, 559
constraint nodes, 561
cycle-free, 560
cycles, 560
factor, 558
girth, 560
global function, 561
local functions, 561
Tanner, 558
variable nodes, 560

Gray coding, 100
Gray labeling, 939
Ground field, 404
Group

Abelian, 403
identity element, 404

Hadamard codes, 423, 951–953
Hamming bound, 441
Hamming codes, 420, 460
Hamming distance, 414
Hamming distortion, 354
Hard decision decoding,

of block codes, 428–436
of convolutional codes, 509–516

Hata model, 843
Hermite parameter, 233
Hermitian matrix, 65, 1085
Hermitian symmetry, 19
Hermitian transpose of a matrix, 28
Hexagonal lattice, 230
Hilbert transform, 22
Homogeneous Markov chains, 72
Huffman coding, 342–346

Identity element, 404
iid random variables, 45
Illumination efficiency factor, 262
Impulse noise, 601
Impulse response,

for bandpass systems, 27
In-phase component, 22
Inequality

Cauchy-Schwarz, 29–30
Kraft, 340
Markov, 56
triangle, 29–30

Information sequence, 1, 401
Information source

discrete memoryless, 331
memoryless, 331
stationary, 331

Inner code, 479
Inner product, 26, 28, 30
Input-output weight enumeration

function (IOWEF), 416
Instantaneous codes, 340
Interference margin, 774
Interleaver

block, 476
convolutional, 476
gain 552
uniform, 480–481

Interleaving, 476–477
Intersymbol interference, 599–600,

603–604
controlled (see Partial response

signals), 609–611
discrete-time model for, 626
equivalent white noise filter

model, 627
optimum demodulator for,

623–628
Inverse channel detector

(ICD), 970
Inverse filter, 642
Irreducible Markov chains, 73
Irreducible polynomial, 405

Irregular LDPC, 570
Irrelevant information, 166
Iterative decoding, 478, 548–558

error floor, 551
EXIT charts, 555
turbo cliff region, 553
waterfall region, 553

Jakes’ model, 838–839
Jensen’s inequality, 386
Joint entropy, 334
Jointly Gaussian random

variables, 54
Jointly wide-sense stationary

processes, 54

Kalman (RLS) algorithm,
711–714

Kalman gain vector, 712
Karhunen-Loève expansion, 76
Kasami sequences, 799
Kissing number of a lattice, 232
Kolmogorov-Wiener filter, 13
Kraft inequality, 340

Labeling
Gray, 939
set portioning, 939

Lattice
coding gain, 233
coset, 584
density, 236
equivalent, 231
filter, 716–721
fundamental volume, 233
generator matrix, 231
Hermite parameter, 233
hexagonal, 230
kissing number, 232
minimum distance, 232
multidimensional, 234
multiplicity, 232
recursive least squares, 708, 715
Schläfli, 234
Sublattice, 234
Voronoi region, 232

Law of large numbers (LLN), 63
LDPC (low density parity check

codes), 568–571
code density, 569
decoding, 570
degree distribution polynomial,

570
irregular, 570
regular, 569
Tanner graph, 569

Least-squares algorithms, 710–720
Lempel-Ziv algorithm, 346–348
Lengthened codes, 446
Levinson-Durbin algorithm,

692, 716
Likelihood function, 292
Linear block codes, 400–490
Linear equalization (see

Equalizers, linear)
Linear-feedback shift-register,

maximum length, 798–799
Linear filter channel, 11

Linear modulation, 110
Linear prediction, 716

backward, 718
forward, 717
residuals, 718

Linear time-varying channel, 11
Linearly independent signals, 30
Link budget analysis, 261–265
Link margin, 246
LLN (see law of large numbers)
Log-APP (log a posteriori

probability), 546
Log-MAP (log maximum a

posteriori probability), 546
Lognormal random variable, 54
Lossless data compression, 335
Lossless source coding theorem,

336
Lossy data compression, 335
Low density parity check codes

(see LDPC)
Lowpass equivalent, 22
Lowpass signal, 20
Low probability of intercept,

778–779

MacWilliams identity, 415
MAP (maximum a posteriori

probability), 162–163,
291

Mapping by set partitioning, 572
Marcum’s Q-function, 47

generalized, 47
M-ary modulation, 2
Markov chains, 71–74

aperiodic states, 73
equilibrium probabilities, 73
ergodic, 73
homogeneous, 72
irreducible, 73
period of state, 73
state, 72
state probability vector, 72
state transition matrix, 72
stationary probabilities, 73
steady-state probabilities, 73

Markov inequality, 57–58
Matched filter, 178–182

frequency domain, 179
receiver, 178

Matrix
condition number, 1088
eigenvalue, 1086
eigenvector, 1086
generator, 412–413
Hermitian, 65
Hermitian transpose, 28
norm, 1088
orthogonal, 231
parity check, 412–413
rank, 1085
singular values, 1087
skew-Hermitian, 65
symmetric, 1085
trace of, 1085
transpose, 28

Max-Log-APP algorithm, 548
Max-Log-MAP algorithm, 548
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Maximal ratio combiner, 852
Maximum a posteriori probability

(see MAP),
Maximum-distance separable

codes, 440
Maximum free distance codes, 516

tables of, 517–520
Maximum-length shift register

codes, 461, 798–799
Maximum likelihood,

parameter estimation, 290–291,
321–322

for carrier phase, 292–298
for joint carrier and symbol,

321–322
for symbol timing, 315–321
performance of, 323–324

Maximum-likelihood (ML)
receiver, 163, 623–625,

Maximum likelihood sequence
detection (MLSD),
623–625,

Maximum ratio combining, 852
performance of, 851–855

McEliece-Rodemich-Rumsey-
Welch (MRRW) bound,
443

MDS (maximum-distance
separable) codes, 440

Mean-square error (MSE)
criterion, 645–655

Meggit decoder, 460
Memoryless channel, 355
Memoryless modulation, 95
Memoryless source, 331
Mercer’s theorem, 77
Message error probability, 164

PSK, 194
QPSK, 193

Message polynomial, 449
Metric

correlation, 173
distance, 173
modified distance, 173

MGF (moment generating
function), 44

Microwave LOS channel, 8
MIMO channels, 966

capacity of, 982–984, 990–991
ergodic, 985–986
outage, 987–990

coding for, 1001–1021
bit-interleaved, 1003–1006
space-time codes, 1006–1021
temporal, 1003–1006

slow fading, 968–969, 975–979
spread spectrum signals for,

992–996
MIMO systems, 966

detectors for, 970–974
diversity gain for, 996–997
error rate performance,

971–973
lattice reduction for, 973–974
multicode, 997–1000
multiplexing gain for, 996–997
outage probability, 987–988
scrambling sequence for, 997

singular-value decomposition
for, 974–975

spread spectrum, 992–996
Minimal polynomial, 408
Minimum distance, 414
Minimum distance detector, 171
Minimum distance of a

constellation, 185
Minimum distance of a lattice, 232
Minimum weight, 414
Minimum-shift keying (MSK),

123–124
power spectrum of, 144

ML (see maximum-likelihood)
MLSD, 623–625,
Modified Bessel function, 47, 213
Modified distance metric, 173
Modified duobinary signal, 610
Modulation

binary, 2
comparison of, 226–229
constraint length, 96
continuous-phase FSK

(CPFSK), 116–118
power spectrum, 138–145

continuous-phase modulation
(CPM), 118–123

digital, 95
DPSK, 221–223
equicorrelated (simplex),

112–113, 209–210
frequency-shift keying (FSK),

109–110, 205, 215–216
linear, 110
M-ary orthogonal, 108–111,

204–207, 216–219
memoryless, 95
multichannel, 737–743
multidimensional, 108–113
NRZ, 115
NRZI, 115
nonlinear, 110
OFDM, 746–752
offset QPSK,
phase-shift keying (PSK),

101–103, 191–195
pulse amplitude (PAM, ASK),

98–101, 188–190
quadrature amplitude (QAM),

103–107, 185–187,
196–200

with memory, 95–96
Modulator, 2, 24

binary, 2
digital, 95
linear, 110
M-ary, 2
memoryless, 95
nonlinear, 110
pulse amplitude, 98–101
quadrature amplitude, 103–107
with memory, 95–96

Moment generating function (see
MGF)

Monic polynomial, 405
Moore-Penrose pseudoinverse,

1088
Morse code, 12, 339

MRRW (McEliece-Rodemich-
Rumsey-Welch) bound,
443

MSK, 123–124, 144
Multicarrier communications,

743–759
capacity of, 744–745
channel coding consideration,

759
FFT-based system, 749–752
Filtered multitone (FMT), 754
OFDM, 746–742

bit allocation, 754–757
power allocation, 754–757

peak-to-average ratio, 757–759
spectral characteristics, 752–754

Multichannel communications,
737–743

noncoherent combining
loss, 741

with binary signals, 739–741
with M-ary orthogonal signals,

741–743
Multicode MIMO systems,

997–1000
Multidimensional signaling,

108
Multipath channels, 8, 831
Multipath intensity profile,

834
Multipath spread, 834
Multiple access methods,

1029–1031
capacity of, 1031–1035
CDMA, 1033–1034
FDMA, 1031–1032
random accesss, 1068–1077
TDMA, 1032–1033

Multiple antenna systems,
966–1021

inverse channel detector,
970

maximum-likelihood detector,
970

minimum MSE detector, 970
space-time codes for, 1006–1021

concatenated codes,
1020–1021

differential STBC, 1014
orthogonal STBC, 1011–1013
quasi-orthogonal STBC, 1013
trellis codes, 1016–1019
turbo codes, 1020–1021

Multiplexing gain, 996–997
Multiplicity of a lattice, 232
Multistage interference

cancellation, 1043–1049
Multiuser communications,

1028
multiple access, 1029–1034
multiuser detection,

1029–1034
random access, 1068–1077

Multiuser detection, 1034
decorrelating detector,

1043–1045
for asynchronous transmission,

1039–1042

for broadcast channels,
1053–1068

for CDMA, 1036–1053
for random access, 1068–1077
for synchronous transmission,

1038–1039
single user detector, 1042–1043

Mutual information, 332

Nakagami random variable,
52, 841

Narrowband interference, 791–796
Narrowband process, 79
Narrowband signal, 18–21
Nat, 333
Nearest neighbor detector, 171
Negative spectrum, 20
Noise,

Gaussian, 10
thermal, 3, 69
white, 90

Noise equivalent bandwidth, 92
Noisy channel coding theorem, 361
Non-central χ2 random

variable, 46
Noncoherent combining loss, 741
Noncoherent detection, 210–226

error probability for orthogonal
signals, 216–218

FSK, 215–216
Nonlinear distortion, 600
Nonlinear modulation, 110
Norm

of a matrix, 1088
of a signal, 30
of a vector, 28

Normal equations, 716
Normal random variable, 41
NRZ, 115
NRZI, 115
Nyquist criterion, 604–605
Nyquist rate, 13

OFDM, 746–752, 844–890
bit and power allocation,

754–757
degradation due to Doppler

spreading, 884–889
FFT implementation, 749–752
ICI suppression in, 889–890
peak-to-average ratio, 757–759

Offset QPSK (OQPSK), 124–128
On-off keying (OOK), 267, 949
Optimal detection

after modulation, 202
binary antipodal signaling, 173
binary orthogonal signaling, 176
biorthogonal signaling, 207
simplex signaling, 209

OQPSK, 124–128
Order of a field element, 407
Orthogonal matrix, 231
Orthogonal signaling, 108

achieving channel capacity, 367
error probability, 205

with noncoherent detection,
216–218

Orthogonal signals, 26, 30
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Orthogonal vectors, 28
Orthogonality principle, 646

mean-square estimation,
646

Orthonormal
vectors, 28
basis, 28
signal set, 30

Outage capacity, 900, 907, 913
of MIMO channels, 987–990

Outage probability,
of MIMO channels, 987–988

Outer code,

Pairwise error probability (PEP),
184, 372, 514, 922,
1014–1016

Chernov bound, 373, 1014–1016
PAM, 98–101
Parallel contatenated block

codes, 481
Parallel concatenated convolutional

codes (PCCC), 548
Parity check bits, 412
Parity check matrix, 412
Parity check polynomial, 450
Partial-band interference, 804
Partial response signals, 609–611

duobinary, 610
error probability of, 617–618
modified duobinary, 610
precoding for, 613

Partial-time (pulsed), 784
Path memory truncation, 246
PCBC (parallel concatenated block

codes), 481
PCCC (parallel concatenated

convolutional codes), 548
Peak distortion criterion, 641–645
Peak frequency deviation, 117
Peak-to-average ratio, 757–759
PEP (see pairwise error

probability)
Perfect codes, 434, 442
Phase of a signal, 23
Phase jitter, 600
Phase-locked loop (PLL),

298–315
Costas, 312–313
decision-directed, 303, 308
loop damping factor, 299
M-law type, 313–314
natural frequency, 299
non-decision-directed, 308–315
square-law type, 310–312

Phase tree, 120
Phase trellis, 120
Phase-shift keying (PSK),

101–103
Pilot signal, 1098
Plotkin bound, 442
PN sequences, 463, 796–801
Polynomial

irreducible, 405
minimal, 408
monic, 405
prime, 405
syndrome, 458

Positive spectrum, 20
Power efficiency, 226
Power spectral density, 67

continuous component, 133
CPFSK, 138–145
discrete component, 133
for in-phase component, 80
for lowpass process, 81
for quadrature component, 80
linearly modulated signals, 133

Power spectrum, 67
Pre-envelope, 21
Precoding

for broadcast channels,
1053–1068

dirty paper, 1054
linear, 1055–1058
nonlinear, 1058–1068
QR decomposition,

1058–1062
vector, 1062–1065
via lattice reduction,

1065–1068
for spectral shaping, 133–135,

611–612
Prediction (see Linear

prediction),
Preferred sequences, 799
Prefix condition, 340
Preprocessing, 166
Prime polynomial, 405
Primitive BCH codes, 463
Primitive element, 407
Probability distributions

binomial, 41
chi-square,

central, 45–46
noncentral, 46–48

gamma, 46
Gaussian, 41–45
log normal, 54
multivariate Gaussian, 54–56
Nakagami, 52–53
Rayleigh, 48–50
Rice, 50–52
uniform, 41

Processing gain, 773–774
Probability transition matrix of a

channel, 357
Product codes, 477
Product distance, 925
Prolate spheroidal wave

functions, 227
Proper random processes, 71
Proper random vectors, 65
PSD (power spectral density), 67
Pseudo-noise (PN) sequences,

796–801
autocorrelation function, 798
generation via shift

register, 797
Gold, 799
Kasami, 799
maximal-length, 797
peak cross-correlation, 799
preferred, 799
(see also Spread spectrum

signals),

Pseudocovariance
for complex random

processes, 71
PSK, 101–103, 191–195

bit error probability, 195
Differential (DPSK), 221
differentially encoded, 195
message error probability, 194

Pulse amplitude modulation
(see PAM)

Pulsed interference, 784
effect on error rate performance,

785–791
Punctured codes, 446, 516,

521–523
Punctured convolutional codes,

516, 521–523
rate compatible, 523–525

Puncturing matrix, 520, 522
Pythagorian relation, 29

Q-function, 41
QAM, 103–107, 185–187,

196–200
error probability, 196–200

QPSK, 102
error probability, 199
message error probability, 193
offset (OQPSK), 124

Quadrature amplitude modulation
(see QAM)

Quadrature component, 22
Quasi-perfect codes, 435
Quaternary PSK (QPSK), 102

R0 (channel cutoff rate), 527,
787–791, 957–960

For fading channels, 957–960
Raised cosine spectrum, 607

excess bandwidth, 607
rolloff parameter, 607

RAKE demodulator, 869–882
for binary antipodal signals, 878
for binary orthogonal signals,

874–877
for DPSK signals, 878
for noncoherent detection of

orthogonal signals, 879
generalized, 880–882

Random access,1068–1077
ALOHA, 1069–1073
carrier sense, 1073–1077

with collision detection, 1073
non persistent, 1074
l-persistent, 1074
p-persistent, 1074–1077

offered channel traffic, 1070
slotted ALOHA, 1070
throughput, 1070
unslotted, 1070

Random coding, 362, 375
Random processes, 66–81

bandlimited, 74–76
bandpass, 78–81
cross spectral density, 67
cyclostationary, 70
discrete-time, 69
Gaussian, 68

jointly wide-sense
stationary, 67

narrowband, 79
power, 68
power spectral density, 67
power spectrum, 67
proper, 71
sampling theorem, 74
series expansion, 74
white, 69
wide-sense stationary, 67

Random variables, 40–57
Bernoulli, 40
binomial, 41
characteristic function, 44
χ2, 45
complex, 63
exponential, 46
gamma, 46
Gaussian, 41
iid, 45
jointly Gaussian, 54
lognormal, 54
moment generating

function, 44
Nakagami, 52
non-central χ2, 46
normal, 41
Rayleigh, 48
Ricean, 50
uniform, 41

Random vectors,
circular, 66
circularly symmetric, 66
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Signal (see also Signals)
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lowpass equivalent, 22
multipath, 8, 831
narrowband, 18–21
norm, 30
parameter estimation,

290–326
phase, 23

quadrature components of, 22
spectrum, 19

Signal design, 602–611,
619–623

for band-limited channel, 602
for channels with distortion,

619–623
for no intersymbol interference,

604–609
with partial response pulses,

609–611
with raised cosine spectral pulse,

607–608
Signal constellation, 28
Signal space diversity, 928
Signal space representation, 34
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Unequal error protection, 523
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