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Course Outline

* Local search Algorithms
* Gradient-Based local optimization methods
* Random Search
¢ Hill climbing, stochastic Hill clim., Iterative Hill clim.
e Simulated Annealing
* Tabu Search

e Hw#1 Stochastic HC, S.A (1.5 pts)
e HW#2 T.S (1.5 pts)




Course Outline(Cont.)

* Meta-Heuristics
* Introduction to Population based Algorithm
* EA/ES/Genetic Algorithms
* EA and TSP
 Constrained Evolutionary Optimization
* Ant Colony Optimization
* Particle Swarm Optimization
* Bee Algorithm

* Hw#3, Genetic Algorithm (1.5 pts)
 Hw#4, ACO (1.5 pts)
e Hw#5, PSO (1.5 pts)

Text Books

1. Essentials of Metaheuristics, A Set of Undergraduate
Lecture Notes by Sean Luke, George Mason University,
Second Edition 2013

2. Metaheuristics for Hard Optimization, Methods and Case
Studies Dréo, J., Pétrowski, A., Siarry, P., Taillard, E., 2003




If we can really understand the problem
the answer will come out of it,
because the answer is not separate from
the problem

Krishnamurti




Metaheuristics

* Stochastic optimization is the general class of algorithms and
techniques which employ some degree of randomness to find
optimal (or as optimal as possible) solutions to hard problems.

* Metaheuristics are the most general of these kinds of algorithms, and
are applied to a very wide range of problems.

Gradient Optimization

«  Convex functions

«  Convex sets

«  Reminder: denvative

« (Gradient descent

+ Problems of gradient descent




Convex function

Convex function
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Convex function

Convex function

f fix)=f(Aa+(1- A)b) < Af(a)+(1- A)f(b)
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Non convex function

Non convex function
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Concave function

Concave function

f f(x)=f(Aa*(1- \)b) = Af(a)+(1- A)f(b)
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Convexity

Definitions / facts, common mistakes

Definitions/facts
« |ffis convex, -fis concave
+« |ffis concave, -f Is convex

Common mistakes

« A nonconvex function is not necessarily concave
+ A nonconcave function is not necessarily convex
« A function can be neither concave neither convex
« A function can be concave and convex




Convex optimization programs

Convex function

min: ()
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Convex optimization programs Local minimum is a global
are “easy” problems, compared minimum

to general optimization programs

Reminder: derivative
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Gradient descent (conceptual description)

You want to find the minimum of a function, starting from a guess,
assuming that you cannot depict the graph of the function, for example
the following function
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Idea:

1) Make a guess

2) Compute the derivative at this point (i.e. the slope)

3) Follow the direction of the slope (i.e. descend)

4) Stop when the slope is zero, i.e. it does not go downhill

Gradient descent (illustration)

Gradient descent (illustration)
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Gradient descent (illustration)
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Gradient descent: algorithm

Start with a point (guess)

Repeat
Determine a descent direction
Choose a step
Update

Until stopping criterion is satisfied

Gradient descent: algorithm

Start with a point (guess)

Repeat
Determine a dezcent direction
Choose a step
Undate

Until stopping criterion is satisfied

- A—— step

e |
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Gradient descent: algornthm

Start with a point (guess) guess = X
Repeat
Determine & descent direction direction = -f'[x)
Choose a step step=h>0
Update x=x-hf'(x)
Until stopping criterion is satisfied {x)~0

tm |
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Example of 2D gradient: pic of the MATLAB demo

Definition of the gradient in 2D

df(x,y)

Vf(’f‘ y) — (’9,;‘”{;[}:%,3;)

Ay

This is just a genaralization of the denvative in two dimensions.

This can be generalized to any dimension.
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Example of 2D gradient: pic of the MATLAB demo

lllustration of the gradient in 2D
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Generalization to multiple dimensions

Start with a point (guess) Juess = X
Repeat
Determine a descent direciion direction = -f(x)
Choose a step step=h=0
Updats w=x—h Vi)
Until stopping criterion is satisfied Vit (x)~0

24




Problem 1: choice of the step

When updating the current computation:
-small steps: inefficient
- large steps: potentially bad results
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Problem 1: non convex function
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Problem 2: how to stop?
f
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Randomized Algorithms

Randomized (probabilistic) algorithms can be

* Nondeterministic ---they can make random but correct decisions : the
same algorithm may behave differently when it is applied twice to the
same instance of a problem.

* Not very precise sometimes ---usually the more time is given, the
better precision can be obtained

28




Randomized Algorithm

» A randomized algorithm is one that makes random choices during
the execution

What

What is a random search algorithm?




What

What is a random search algorithm?

A random search algorithm refers to an algorithm that uses some
kind of randomness or probability (typically in the form of a pseudo-
random number generator) in the definition of the method, and in
the literature, may be called a Monte Carlo method or a stochastic
algorithm.

What

* The term metaheuristic is also commonly associated with random
search algorithms.

* Simulated annealing, tabu search, genetic algorithms, evolutionary
programming, particle swarm optimization, ant colony optimization,
multi-start, clustering algorithms, and other random search methods
are being widely applied to global optimization problems,




When

* When you use Random Search Algorithm?
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When

* When you use Random Search Algorithm?

Random search algorithms are useful for ill-structured global
optimization problems, where the objective function may be non-
convex, non-differentiable, and possibly discontinuous over a
continuous, discrete, or mixed continuous-discrete domain.




Convergence

* In contrast to deterministic methods (such as Dynamic Programming
which typically guarantee convergence to the optimum, random
search algorithms ensure convergence in probability.
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Why

The tradeoff is in terms of computational effort. Random search
algorithms are popular because they can provide a relatively good
solution quickly and easily.




Why

When an algorithm is confronted by a choice, it is sometimes
preferable to choose a course of action at random, rather than
spending time to work out which alternative is the best.

Sometimes we do not have a better method than making random
choices

One advantage of this approach is that if there is more than one
correct answer, several different ones may be obtained by running
the probabilistic algorithm more than once.

Large Scale Problem

Random search methods have been shown to have a potential to
solve large-scale problems

efficiently in a way that is not possible for deterministic algorithms.

Deterministic method for global optimization is NP-hard, there is
evidence that a stochastic algorithm can be executed in polynomial
time, on the average




Advantage

Another advantage of random search methods is that they are
relatively easy to implement on complex problems with “black-box”
function evaluations. Because the methods typically only rely on
function evaluations, rather than gradient, they can be coded
quickly, and applied to a broad class of global optimization problems.
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Disadvantage

disadvantage of these methods is that they are currently customized
to each specific problem

largely through trial and error.

However:

A common experience is that random search algorithms perform well
and are “robust” in the sense that they give useful information
quickly for ill-structured global optimization problems.

40




Categorization type

* global search phase
* |ocal search phase

The global phase can be viewed as an exploration phase aimed at
exploring the entire feasible region, while the local phase can be
viewed as an exploitation phase aimed at exploiting local information
(e.g. gradient).

41

Definition

The general global optimization problem (P) used here is defined as,
(P) min f(x)
X€eS
where X is a vector of n decision variables, S is an n-dimensional

feasible region and assumed to be nonempty, and f is a real-valued

function defined over S. The goal is to find a value for x contained in S
that minimizes f.




Local Optimum

* Definition 1 (Local Maximum). A (local) maximum xI € X of one (objective)
function f : X = R is an input element with f(xl) 2 f(x) for all x neighboring
xl.

If X € R", we can write:
VxITe>0:f(xl)2f(x) VxEX, |x=-xl| <&

* Definition 2 (Local Minimum). A (local) minimum xI€ X of one (objective)
function f : X - R is an input element with f(xl) < f(x) for all x neighboring
xl.

If X € R", we can write:
Vxl3e>0:f(xl) <f(x) VxEX, |[x-xI]| <€

* Definition 3(Local Optimum). A (local) optimum xI € X of one (objective)
function f : X = R is either a local maximum or a local minimum.

Global Optimum

* Definition 4(Global Maximum). A global maximum x *€ x of one
(objective) function f : X - R is an input element with f(x*) 2 f(x) Vx € X.

* Definition 5(Global Minimum). A global minimum x* € X of one (objective)
function f : X - Ris an input element with f(x*) < f(x) Vx € X.

* Definition 6(Global Optimum). A global optimum xx € X of one (objective)
function f : X & R is either a global maximum or a global minimum.




The Structure Of Optimization

* Definition 7 (Problem Space). The problem space X of an optimization problem
is the set containing all elements x which could be its solution.

The problem space X is often restricted by:

1. logical constraints
2. practical constraints

with the Java programming language, we can only use 64 bit floating point
numbers. With these 64 bit, it is only possible to express numbers up to a
certain precision and we cannot have more than 15 or so decimals.

The Search Operations

* Definition 8 (Search Space). The search space G of an optimization
problem is the set of all elements g which can be processed by the
search operations.

* Definition 9 (Search Operations). The search operations are used by
optimization algorithms in order to explore the search space G.




Puzzle

The are six matches on the table and the task is to construct four
equilateral triangles where the length of each side is equal to the
length of a match.

If you start with the wrong search space, you will never find the
right answer!




Generic Random Search Algorithm:

* Step 0. Initialize algorithm parameters 0, initial points X(0)e S and
iteration index k = 0.

* Step 1. Generate a collection of candidate points V(k+1) € S according

to a specific generator.

* Step 2. Update X(k+1) based on the candidate points V(k+1), previous

iterates and algorithmic parameters. Also update algorithm
parameters k+1.

* Step 3. If a stopping criterion is met, stop. Otherwise increment k and

return to Step 1.

Single-point Generators

Many random search algorithms maintain and generate a single
point at each iteration.
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Multiple-point Generators

* Population-based random search algorithms use a collection of
current points to generate another collection of candidate points.

Many of these algorithms are motivated by biological processes, and
include genetic algorithms, evolutionary programming, particle
swarm optimization and ant colony optimization.

Update Procedure

* Update Procedure After a candidate point is generated, Step 2 of the
generic random search algorithm specifies a procedure to update the
current point and algorithm parameters. Algorithms that are strictly
improving have a simple procedure, update the current point only if
the candidate point is improving but in the most of the case the
update is done even if the new solution in not better than the last
one.




Convergence

* Convergence in Probability to the global minimum for general step
size algorithms is equal to one. But =>

with conditions on the method of generating the step length and
direction. Essentially, as long as the generator does not consistently
ignore any region, then the algorithm will converge with probability
one
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Pure Random Search(PRS)

* The simplest and most obvious random search method is a “blind
search” or called pure random search.

* Pure random search was first defined in 1958 by Brooks

* Pure random search (PRS) samples repeatedly from the feasible
region S, typically according to a uniform sampling distribution. In the
context of the generic random search algorithm, each candidate
point is generated independently from a uniform distribution on S,
and Xk+1 is updated only if the candidate point is improving.

* It can be shown that pure random search converges to within an
epsilon distance of the global optimum with probability one




TSP Pure Random Search

* Consider the TSP with N cities and subsequently (N — 1)! possible
points in the domain.

* |f there is a unique minimum, then
p(y) =1/(N -1)!

and the expected number of PRS iterations to first sample the
minimum is (N — 1)!, which explodes in N.

Pure Adaptive Search(PAS)

* In contrast to pure random search, where each sample is
independent and identically distributed, we next consider pure
adaptive search, where each sample depends on the one
immediately before it.

* Pure adaptive search (PAS) was introduced for convex programs and
later analyzed for global optimization problems




Pure Adaptive Search(PAS)

* PAS by definition, generates a candidate point uniformly in the subset
of the domain that is strictly improving. It is an idealized algorithm to
show potential performance for a random search algorithm.

* Whereas sampling from a uniform distribution in PRS over S is
typically very easy sampling from a uniform distribution in PAS over is

very difficult in general.

* However, the analysis shows the value of being able to find points in
the improving level set; the number of iterations of PAS is an
exponential improvement over the number of iterations in PRS
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Conclusion

* Gradient based optimization
you can compute the first , second ... derivative of your domain
* Random Based optimization
you do not have any idea of the structure of your search domain.




Ref

* Slides adapted from Advanced Algorithms course, presented by
kourosh ziarati




