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As the title of this book clearly indicates, the purpose of this book is to provide a practical guide for 
using the SAS System to conduct Monte Carlo simulation studies to solve many practical problems 
encountered in different disciplines. The book is intended for quantitative researchers from a variety 
of disciplines (e.g., education, psychology, sociology, political science, business and finance, 
marketing research) who use the SAS System as their major tool for data analysis and quantitative 
research. With this audience in mind, we assume that the reader is familiar with SAS and can read and 
understand SAS code. 

Although a variety of quantitative techniques will be used and discussed as examples of conducting 
Monte Carlo simulation through the use of the SAS System, quantitative techniques per se are not 
intended to be the focus of this book. It is assumed that readers have a good grasp of the relevant 
quantitative techniques discussed in an example such that their focus will not be on the quantitative 
techniques, but on how the quantitative techniques can be implemented in a simulation situation.   

Many of the quantitative techniques used as examples in this book are those that investigate linear 
relationships among variables. Linear relationships are the focus of many widely used quantitative 
techniques in a variety of disciplines, such as education, psychology, sociology, business and finance, 
agriculture, etc. One important characteristic of these techniques is that they are all fundamentally 
based on the least-squares principle, which minimizes the sum of residual squares. Some examples of 
these widely used quantitative methods are regression analysis, univariate and multivariate analysis of 
variance, discriminant analysis, canonical correlation analysis, and covariance structure analysis (i.e., 
structural equation modeling). 
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Before we begin our detailed discussion about how to use the SAS System to conduct Monte Carlo 
studies, we would like to take some time to discuss briefly a few more general but relevant topics. 
More specifically, we want to discuss the following: 

�� What is a Monte Carlo study?   

�� Why are Monte Carlo studies often necessary? 

�� What are some typical situations where Monte Carlo simulation is needed? 

�� Why use the SAS System for conducting Monte Carlo studies? 
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What is a Monte Carlo study? According to Webster’s dictionary, Monte Carlo relates to or involves 
"the use of random sampling techniques and often the use of computer simulation to obtain 
approximate solutions to mathematical or physical problems especially in terms of a range of values 
each of which has a calculated probability of being the solution" (Merriam-Webster, Inc., 1994, pp. 
754-755). This definition provides a concise and accurate description for Monte Carlo studies. For 
those who are not familiar with Monte Carlo studies, a simple example below will give you a good 
sense of what a Monte Carlo study is. 

1.2.1  Simulating the Rolling of a Die Twice  
Suppose that we are interested in knowing what the chances are of obtaining two as the sum from 
rolling a die twice (assuming a fair die, of course). There are basically three ways of obtaining an 
answer to our question. The first is to do it the hard way, and you literally roll a die twice tens of 
thousands of times so that you could reasonably estimate the chances of obtaining two as the sum of 
rolling a die twice. 

Another way of estimating the chance for this event (i.e., obtaining two as the sum from rolling a fair 
die twice) is to rely on theoretical probability theory. If you do that, you will reason as follows: to 
obtain a sum of two from rolling a fair die twice necessarily means you obtain one in each roll. The 
probability of obtaining one from rolling the die once is 1/6 (0.167). The probability of obtaining one 
from another rolling of the same die is also 1/6. Because each roll of the die is independent of another, 
according to probability theory, the joint probability of obtaining one from both rolls is the product of 
two—that is, 0.167 × 0.167 ≈ 0.028. In other words, the chances of obtaining the sum of two from 
rolling a fair die twice should be slightly less than 3 out of 100, a not very likely event.  In the same 
vein, the chances of obtaining the sum of 12 from rolling a fair die twice can also be calculated to be 
about 0.028. Although it is relatively easy to calculate the theoretical probability of obtaining two as 
the sum from rolling a fair die twice, it is more cumbersome to figure out the probability of obtaining, 
say, seven as the sum from rolling the die twice, because you have to consider multiple events (6+1, 
5+2, 4+3, 3+4, 2+5, 1+6) that will sum up to be seven.  Because each of these six events has the 
probability of 0.028 to occur, the probability of obtaining the sum of seven from rolling a die twice is 
6 × 0.028 = 0.168. 

Instead of relying on actually rolling a die tens of thousands of times, or on probability theory, we can 
also take an empirical approach to obtain the answer to the question without actually rolling a die. 
This approach entails a Monte Carlo simulation (MCS) in which the outcomes of rolling a die twice 
are simulated, rather than actually rolling a die twice. This approach is only possible with a computer 
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                                     Cumulative  Cumulative 
          SUM   Frequency   Percent   Frequency    Percent 
          ------------------------------------------------- 
            2        299      2.99         299       2.99 
            3        534      5.34         833       8.33 
            4        811      8.11        1644      16.44 
            5       1177     11.77        2821      28.21 
            6       1374     13.74        4195      41.95 
            7       1685     16.85        5880      58.50 
            8       1361     13.61        7241      72.41 
            9       1083     10.83        8324      83.24 
           10        852      8.52        9176      91.76 
           11        540      5.40        9716      97.10 
           12        284      2.84       10000     100.00 
 

and some appropriate software, such as SAS.  The following (Program 1.1) is an annotated SAS 
program that conducts an MCS to simulate the chances of obtaining a certain sum from rolling a die 
twice. 
 

Program 1.1   Simulating the Rolling of a Die Twice 
 

 
*** simulate the rolling of a die twice and the distribution; 
*** of the sum of the two outcomes; 

 
DATA DIE(KEEP=SUM) OUTCOMES(KEEP=OUTCOME); 
     DO ROLL=1 TO 10000;                   *** roll the two die 10,000 times.; 
        OUTCOME1=1+INT(6*RANUNI(123));     *** outcome from rolling the first die; 
        OUTCOME2=1+INT(6*RANUNI(123));     *** outcome from rolling the second die; 
        SUM=OUTCOME1+OUTCOME2;             *** sum up the two outcomes.; 
        OUTPUT DIE;                       *** save the sum.; 
        OUTCOME=OUTCOME1; OUTPUT OUTCOMES; *** save the first outcome.; 
        OUTCOME=OUTCOME2; OUTPUT OUTCOMES; *** save the second outcome.; 
     END; 
RUN; 
 
PROC FREQ DATA=DIE;         *** obtain the distribution of the sum.; 
     TABLE SUM; 
RUN; 
 
PROC FREQ DATA=OUTCOMES;    *** check the uniformity of the outcomes.; 
     TABLE OUTCOME; 
RUN; 
 

 
Output 1.1a presents part of the results (the sum of rolling a die twice) obtained from executing the 
program above. Notice that the chances of obtaining two as the sum from rolling a die twice (2.99%) 
is very close to what was calculated according to probability theory (0.028). In the same vein, the 
probability of obtaining the sum of 7 is almost identical to that based on probability theory (16.85% 
from MCS versus 0.168 based on probability theory). 

Output 1.1b presents the estimated chances of obtaining an outcome from rolling a die once. Note that 
the chances of obtaining 1 though 6 are basically equal from each roll of the die, as theoretically 
expected if the die is fair. 

 
Output 1.1a 
Chances of 
Obtaining a 
Sum from 
Rolling a 
Die Twice 
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                                       Cumulative  Cumulative 
        OUTCOME   Frequency   Percent   Frequency    Percent 
        ----------------------------------------------------- 
              1       3298     16.49        3298      16.49 
              2       3367     16.84        6665      33.33 
              3       3362     16.81       10027      50.14 
              4       3372     16.86       13399      67.00 
              5       3341     16.71       16740      83.70 
              6       3260     16.30       20000     100.00 
 

Output 1.1b  
Chances of 
Obtaining 
an Outcome 
from Rolling 
a Die Once 
 
 

 

Some readers may have some trouble understanding all the elements in the program presented in 
Program 1.1. We elaborate on the details of the program in later sections. The basic idea of this 
program is to use a computer to simulate the process of rolling a die twice, and then sum up the 
outcomes of the two rolls. After 10,000 replications (each consisting of rolling a die twice), we obtain 
10,000 sums, each of which is based on rolling a die twice. By using the SAS FREQ procedure, we 
obtain the percentage associated with each sum (2 through 12), and this percentage represents the 
chance of obtaining a specific sum from rolling a die twice. 

As implied from the above, Monte Carlo simulation offers researchers an alternative to the theoretical 
approach. There are many situations where the theoretical approach is difficult to implement, much 
less to find an exact solution. An empirical alternative like the one above is possible because of 
technological developments in the area of computing. As a matter of fact, with computing power 
becoming increasingly cheap and with powerful computers more widely available than ever, this 
computing-intensive approach is becoming more popular with quantitative researchers. In a nutshell, 
MCS simulates the sampling process from a defined population repeatedly by using a computer 
instead of actually drawing multiple samples (i.e., in this context, actually rolling dice) to estimate the 
sampling distributions of the events of interest. As we will discuss momentarily, this approach can be 
applied to a variety of situations in different disciplines. 
 

���� ���������������������	���������������
��������

After going over the example provided in the previous section, some readers may ask the question: 
Why is MCS needed or necessary? After all, we already have probability theory which allows us to 
figure out the chances of any outcome as the sum from rolling a dice twice, and using probability 
theory is relatively efficient, obviously more so than writing the SAS program presented in Program 
1.1. For the situation discussed above, it is true that using probability theory will be more efficient 
than using the MCS approach to provide the answer to our question.  But please keep in mind that the 
example provided in Program 1.1 is for illustration purposes only, and there are many situations 
where MCS is needed, or where MCS is the only viable approach to providing analytic solutions to 
some quantitative research questions. 

Although statistical theories are efficient, the validity of any statistical theory is typically contingent 
upon some theoretical assumptions. When the assumptions of a theory are met by the data that we 
have in hand, the statistical theory provides us with valid and efficient estimates of sampling 
distribution characteristics for a statistic of our interest. On the other hand, when the assumptions of a 
theory are violated in the data that we have, the validity of the estimates about certain sampling 
distribution characteristics based on the theory is often compromised and uncertain; consequently, we 
are often at a loss about how much we can trust the theoretical estimates, or about how erroneous our 
conclusion might be if we blindly rely on the theory, even if some crucial assumptions of the theory 
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have been violated. It is in these kind of analytic situations that MCS becomes very useful to 
quantitative researchers, because this approach relies on empirical estimation of sampling distribution 
characteristics, rather than on theoretical expectations of those characteristics. With a large number of 
replications, the empirical results should asymptotically approach the theoretical results, and this can 
be demonstrated when the theoretical results can be obtained. 

In addition to the situations discussed above in which the assumptions of statistical theories may not 
be met by the data we have at hand, and where consequently, MCS becomes an empirical alternative 
to theoretical approach, there are some other situations where statistical theories are either so weak 
that they can not be fully relied upon, or statistical theories simply do not exist. In these situations, 
MCS may be the only viable approach to providing answers to a variety of questions quantitative 
researchers may have.  

Such situations abound. For example, the distributional characteristics of sample means are well 
known (e.g., unbiased, with mean equal to � and standard deviation equal to 

N
� ). But how about 

the distributional characteristics of sample medians? Is a sample median an unbiased estimate? What 
is the expected standard deviation of a distribution of sample medians?  Does the central limit 
theorem, which is so important for the distribution of sample means, apply to the distribution of 
sample medians? These and other similar questions may not be answered from statistical theory, 
because it is an area where theory is weak or nonexistent. As a result, these questions may need to be 
answered empirically by conducting MCS, and the distributional characteristics of sample medians 
can be examined empirically, rather than theoretically based on statistical theory. 
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As the brief discussion in the previous section indicates, for quantitative researchers in a variety of 
disciplines, there are two typical situations in which MCS may be called for: when theoretical 
assumptions of a statistical theory may not hold; and when statistical theory is either weak or 
nonexistent. In this section, we will discuss some typical situations in which MCS becomes relevant 
or necessary. 

1.4.1  Assessing the Consequences of Assumption  
          Violations 
As is well known, statistical techniques can generally be classified into two broad categories: 
parametric and non-parametric. Most popular statistical techniques belong to the category of 
parametric statistics.  A common characteristic for all parametric statistics is that there are certain 
assumptions about the distribution of the data. If the assumptions are violated, the validity of the 
results derived from applying these techniques may be in question. However, statistical theory itself 
does not usually provide any indication about what, if any, the consequences are, and how serious the 
consequences will be. If a quantitative researcher wonders about these questions, MCS becomes, in 
many situations, the only viable approach to obtaining answers to these questions. 
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For example, for the very popular statistical technique of analysis of variance (ANOVA), which is 
designed to test the hypothesis of equal means on the dependent variable from two or more groups, a 
fundamental assumption for the validity of the probability statement from ANOVA is that the groups 
involved come from populations with equal population variances on the variable of interest 
(homogeneity of variance assumption). What happens if, in reality, the populations that the groups are 
from do not have equal population variances on the variable of interest? To what extent is the 
probability statement from ANOVA invalid? How robust is the ANOVA technique in relation to the 
violation of this equal variance assumption? 

To answer these and other similar questions, we may want to design a MC study in which we 
intentionally manipulate the variances of different population groups, draw samples from these 
populations, and apply ANOVA to test the hypothesis that the groups have equal means. Over 
repeated replications, we will be able to derive an empirical distribution of any sample statistic of our 
interest. Based on these distributions, we will be able to provide some answers to the questions that 
cannot be addressed by the statistical theory. Researchers have long used MCS to examine these 
issues related to ANOVA. (For a very early review, see Glass, Peckham, & Sanders 1972.) 

For many popular statistical techniques, data normality is an important assumption. For example, for 
regression analysis, which is used in almost all disciplines, the tests for regression model parameters, 
both for the overall regression model fitted to the sample data and for the individual regression 
coefficients, it is assumed that the data are normally distributed. What are the consequences if the data 
are not normally distributed as assumed? How extreme should the non-normality condition be before 
we discount the regression analysis results as invalid? These are only a few of the potential questions 
quantitative researchers may ask. As discussed before, the answers to these questions may be 
provided by MCS, because statistical theory only stipulates what the condition should be, and it does 
not provide a clear indication of what the reality would be if the conditions were not met by the data. 

1.4.2   Determining the Sampling Distribution of a  
           Statistic That Has No Theoretical Distribution 
In some situations, due to the complexity of a particular statistic, a theoretical sampling distribution of 
the statistic may not be available. In such situations, if one is interested in understanding how the 
statistic will vary from sample to sample, i.e., the sampling distribution of the statistic, MCS becomes 
one viable and realistic approach to obtaining such information. 

For example, discriminant analysis and canonical correlation analysis are two multivariate statistical 
techniques widely used in different disciplines.  In both of these techniques, there are (discriminant 
and canonical) function coefficients which are analogous to regression coefficients in regression 
analysis, and also, there are (discriminant and canonical) structure coefficients which are the 
correlations between the measured variables and the (discriminant and canonical) functions. Because 
of the complexity of these statistics, theoretical distributions are not available for these coefficients 
(both function and structure coefficients). In the case of discriminant or canonical correlation analysis, 
there has been a lot of debate about which type of coefficients, function or structure, is more stable 
across samples (Stevens 1996). Because theoretical sampling distributions are not available for these 
two type of coefficients, it is not possible to answer the question from any theoretical perspective. 
Faced with this lack of theoretical sampling distributions, Thompson (1991) conducted a Monte Carlo  
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study in which the sampling distributions of these two types of coefficients were empirically 
generated, and based on these empirical sampling distributions, this issue was empirically 
investigated.   

The same situation exists for exploratory factor analysis, a popular statistical technique widely used in 
psychometrics and in social and behavioral science research in general. In factor analysis, factor 
pattern coefficients play an important role. Unfortunately, the theoretical sampling distributions of 
factor pattern coefficients are not available. The lack of theoretical sampling distributions for factor 
pattern coefficients makes it difficult to assess the importance of a variable in relation to a factor. In 
practice, such assessment often relies on half guess work and half common sense. It is often suggested 
that factor pattern coefficients smaller than 0.30 be discounted. Ideally, such an assessment should be 
made by taking into consideration the sampling variability of the factor pattern coefficient. If one 
wants to get some idea about the sampling variability of such factor pattern coefficients, in the 
absence of the theoretical sampling distribution, MCS becomes probably the only viable approach. 
Quantitative researchers have utilized MCS to investigate this issue in factor analysis. (For examples, 
see Stevens 1996, pp. 370-371.) 

In the past two decades, covariance structure analysis, more commonly known as structural equation 
modeling (SEM), has become a popular analytic tool for quantitative researchers.  In SEM analysis, a 
group of descriptive model fit indices have been developed to supplement the model fit information 
provided by the 2

�  test, or to compensate for the widely perceived limitations of the 2
�  test in SEM, 

that is, it is heavily influenced by the sample size used in testing the model fit (Fan & Wang, 1998). 
These descriptive fit indices, however, have unknown theoretical sampling distributions, so it is not 
clear how these fit indices will vary from sample to sample. Again, MCS becomes the primary tool 
for providing the information about the variability of these fit indices, and many researchers have 
used this approach in their research (e.g., Fan, Thompson, & Wang 1999; Fan & Wang 1998; Marsh, 
Balla, & Hau 1996). 

 

��!� ���"��������������������������	
���#��������������

���������	������

As discussed above, Monte Carlo simulation has been an important research area for quantitative 
researchers in a variety of disciplines. Because MCS is computation-intensive, it is obvious that MCS 
research typically requires programming capabilities. Furthermore, because many MC studies involve 
some type of statistical techniques and/or mathematical functions, statistical/mathematical capabilities 
are also essential. The SAS System has the combination of a powerful variety of built-in statistical 
procedures (e.g., in SAS/STAT and SAS/ETS software), mathematical functions, and the versatile 
programming capabilities (in base SAS, the SAS Macro Facility, and SAS/IML software). This 
combination makes the SAS System ideal for conducting Monte Carlo simulation research, especially 
research related to statistical techniques. Such a combination of built-in statistical procedures and 
versatile programming capabilities makes it much more convenient for MCS researchers to get their 
job done. Without such a combination of statistical capabilities and programming capabilities within 
the same system, an MCS researcher may have to deal with different systems, and consequently 
worry about the interface among different systems. 

For example, some MCS researchers use the Fortran language for programming their Monte Carlo 
simulations. Because there are no built-in statistical procedures, any statistical analysis will either 
have to be programmed by the researchers themselves (a formidable task if one is dealing with a 
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complicated quantitative technique), or some other system has to be used for the purpose (e.g., IMSL: 
International Mathematical & Statistical Libraries, a package of mathematical routines).  In the latter 
case, the interface between different programs in the programming process may become cumbersome 
and difficult. 

By relying on the SAS System for statistical simulation, almost all statistical procedures are already 
built in, and statistical analysis results are easily obtained either through the built-in statistical 
procedures, or through programming using the powerful interactive matrix language (PROC IML) 
under the SAS System. In either case, both the statistical computation and programming are highly 
integrated within the same system, which considerably simplifies the tasks of Monte Carlo 
researchers. In addition, the SAS System offers great flexibility in data generation, data 
transformation, obtaining and saving simulation results, etc. The completeness and the flexibility of 
the SAS System have convinced us that currently no other system makes Monte Carlo research, 
especially research involving statistical techniques, easier and more efficient than the SAS System 
does.  
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This book has nine chapters. The first two chapters provide an overview of the Monte Carlo research 
process. Starting with the third chapter, we lead the readers through a step-by-step process of 
conducting a Monte Carlo simulation. The third chapter discusses data generation by using different 
random number generators that are available in base SAS. This chapter lays the foundation for 
Chapter 4, which focuses on generating multiple variables that are correlated and that have different 
population characteristics (e.g., variables that deviate from the theoretical normal distribution to 
different degrees). As a matter of fact, data generation is so crucial that it is no exaggeration to say 
that the success of Monte Carlo simulation research hinges on the correct data generation process. 

Once readers understand the data generation process in Monte Carlo simulation research, the next 
chapter, Chapter 5, discusses an important programming aspect of a Monte Carlo study:  automation 
of the simulation process. Because a Monte Carlo study usually involves a large number (e.g., 
thousands, or hundreds of thousands) of replications (i.e., repeatedly drawing samples from a 
specified statistical population, and obtaining and analyzing the sample statistic of interest), unless the 
process can be automated through programming, MCS would be almost impossible to do in practice. 
Chapter 5 provides a detailed practical guide for automating the MCS process in SAS. 

Chapter 6 and Chapter 7 present some Monte Carlo simulation examples involving both univariate 
and multivariate statistical techniques widely used by researchers in different fields. The examples in 
these two chapters integrate what has been discussed up to Chapter 5. Quantitative researchers who 
are interested in conducting Monte Carlo simulation involving statistical techniques will find these 
two chapters very useful and practical. For each of the examples used, a problem is presented, and the 
rationale for conducting a Monte Carlo simulation study is provided. Then, the SAS program and 
explanatory comments are presented step by step. Finally, some selected results of the simulation are 
presented. Thus, each example provides a complete examination of a Monte Carlo study. 
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In Chapter 8, our focus shifts a little, and we discuss Monte Carlo simulation examples related to the 
financial industry. As the examples in this chapter clearly indicate, the issues addressed by Monte 
Carlo simulation tend to be quite different from those in Chapters 6 and 7. For this reason, we present 
these examples from the financial industry in this separate chapter. Lastly, Chapter 9 provides 
discussion about implementing a Monte Carlo simulation study using techniques that involve 
SAS/ETS software. Examples related to time series analysis are presented in Chapter 9 as well. 

Combined, the chapters in this book provide a systematic and practical guide to conducting Monte 
Carlo simulation studies in SAS. In our presentation of the examples, if a quantitative technique is 
involved, the quantitative technique per se is not our focus; instead, we focus more on the 
programming aspects of the Monte Carlo study, and the quantitative technique is presented as an 
example.  Because of this, we provide little elaboration on the mathematical or statistical aspects of 
the quantitative techniques used as examples, and we assume that readers who are interested in the 
quantitative techniques will consult other relevant sources. 
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In Chapter 1 we provided an introduction to this book in which we discussed what a Monte Carlo 
(MC) study is and what some of its major characteristics are. In this chapter, we continue our 
discussion started in Chapter 1, and we will discuss the basic procedures or steps needed to 
successfully implement an MC study. In a very general sense, the following are the basic steps 
necessary for an MC study: 

�� Ask questions that can be examined through a Monte Carlo study. 

�� Design a Monte Carlo study to provide answers to the questions. 

�� Generate data. 

�� Implement the quantitative technique. 

�� Obtain and accumulate the statistic of interest from each replication. 

�� Analyze the accumulated statistic of interest. 

�� Draw conclusions based on the empirical results. 
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In this chapter, we will provide some discussion related to each of the above steps. To facilitate our 
discussion, we will use one simple SAS MC example to illustrate each step listed above. 

 

���� �������
���������
���������������������������
	��

It may be obvious, but unless you ask the right question(s), it may not be possible or necessary to 
conduct an MC study in the first place. As discussed in Chapter 1, an MC study is essentially 
concerned about how a statistic of interest may vary from sample to sample. In other words, an MC 
study is about obtaining the sampling distribution of a statistic of interest by repeatedly drawing 
random samples from a specified population. In this sense, the questions suitable for an MC study are 
typically related to some aspects of the sampling distribution of a statistic. 

For example, you may be interested in comparing the distribution of a sample median versus that of a 
sample mean, or you may be interested in knowing how the variability of a sample correlation 
coefficient is influenced by the sample size, or you are interested in something related to more 
sophisticated statistical techniques, such as how data non-normality affects the sampling distribution 
of regression coefficients in regression analysis. In short, questions related to sampling distributions 
of a statistic of interest are generally suitable for an MC study, especially when such questions do not 
have trustworthy theoretical answers because 1) the theoretical assumptions for the statistical theory 
are violated; 2) the theory about the statistic of interest is weak; or 3) no theory exists about the 
statistic of interest. Our examples in later chapters will illustrate a variety of questions that are suitable 
for an MC study. In this chapter, we will use a simple example to illustrate the steps in a typical MC study. 

Correlation between two variables is the statistic of interest in many applications. For example, an 
educator may be interested in the relationship between time spent on school work at home and 
academic achievement in school; an industrial psychologist may be interested in the relationship 
between mechanical aptitude and job performance; a stock analyst may be interested in the strength of 
the relationship between a company’s price/sale (P/S) ratio and the company’s stock performance. 

As an example of an MC study in this chapter, we are interested in the question: How high should a 
correlation coefficient be before we feel comfortable that the observed correlation coefficient is 
unlikely to have occurred by chance (i.e., the observed value of a sample correlation coefficient is not 
the result of sampling error)? In other words, although two variables may not be correlated 
(population correlation coefficient ρ=0), that does not mean that for every sample, the sample 
correlation coefficient between the two variables will always be zero. As a matter of fact, almost none 
of the samples will have a correlation coefficient of zero because of sampling variability of the 
statistic: in some samples, the sample correlation coefficient may be positive; in some other samples, 
it may be negative. Some samples may have sample correlation coefficients substantially different 
from zero, while others have correlation coefficients very close to zero, or even zero itself. (This 
occurrence, however, will be rare.) In the long run, however, the average of the sample correlation 
coefficients should be zero or very close to zero. 

The situation described above means that, from a particular sample, we may obtain a correlation 
coefficient quite different from zero even if there is absolutely no relationship between the two 
variables of interest. A natural question to ask is: How high should a sample correlation coefficient be 
before we conclude that the sample coefficient represents some degree of real relationship between 
the two variables, not just the occurrence due to sampling error? Let’s suppose that the statistical 
theory about the correlation coefficient between two variables were not well developed, or that we 
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simply do not trust the validity of the theory that much. We therefore want to adopt an empirical 
approach to provide some answers to our question. 

Because we are interested in the variability of sample correlation coefficients when the true 
population correlation coefficient is zero, our question is easily translated into a question about the 
sampling distribution of the correlation coefficient when the null hypothesis is true, i.e., when the true 
population correlation coefficient is zero. Because we want some empirical answers to our question, 
not theoretical answers, it is a question suitable for an MC study. In this chapter, we will use SAS to 
implement an MC study to obtain answers to this question. 
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Once we have identified the question(s) suitable for an MC study, we need to figure out how we can 
answer our questions by designing an appropriate MC study. To do this, we have to consider the 
major factor(s) that may affect the variability of sample correlation coefficients. The variability of 
sample correlation coefficients is affected by sample size. To see the influence of sample size on the 
statistics of interest (the sample correlation coefficient, in this case), let us consider a simpler and 
more intuitive case. 

Assume that in a moderately large university of 20,000 students, the true population ratio of male vs. 
female student numbers is 1, that is, 50% of students are male and 50% are female. However, if we 
get a random sample of students, the percentages of male vs. female students will almost certainly 
differ from 50/50. If we get another random sample, it will almost certainly differ from both 50/50 
(the population ratio) and from whatever ratio we obtained from the first sample. Now the question is, 
how much can the sample ratio vary just by chance, or simply due to sampling error? 

The answer to this question will not be known unless we take sample size into consideration. If we 
draw a random sample of ten students, it is possible to have a sample with just five male and five 
female students (proportion = 0.5), which actually reflects the population proportions, but it is also 
possible to have 10 male and zero female students. From another sample of ten students, we may get 
one male and nine female students. So under the condition of sample size ten (n=10), the proportion 
of male students may vary from 1 to 0, quite far from 0.5. But if we draw a random sample of 100 
students (n=100), we are much less likely to have 90 male and 10 female students. In other words, 
although it may not be too surprising to have a sample male student proportion of 0.9 when the 
sample size is 10, it is very unlikely that we will have a sample male student proportion of 0.9 or 0.1 
when the sample size is 100. This simple and intuitive example contains what is scientifically true: the 
variability of a sample statistic is inversely affected by sample size: the larger the sample size, the 
smaller the variability of the sample statistic. 

2.3.1 Simulating Pearson Correlation Coefficient  
          Distributions 
Now let us come back to our correlation coefficient example. We want to know how much the sample 
correlation coefficient can vary when the null hypothesis is true (the population correlation coefficient 
between two variables is zero). In order to have some understanding about the issue, we have to take 
sample size into consideration. So sample size becomes a prominent factor in our MC study design.  
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Although there may be other factors we can consider, e.g., whether data are normally distributed or 
not, or the degree of data non-normality, for the time being and to avoid unnecessarily complicating 
the matter, we only want to consider sample size in our MC study design. 

After deciding that only sample size will be considered as a factor in our MC study about the 
distribution of sample correlation coefficients, next we need to consider what sample size conditions 
we are willing to simulate. In this illustrative example, we make a somewhat arbitrary decision that 
we are going to simulate sample size conditions of n=10, 20, 40, and 100. Of course, if we are not 
concerned about the time it takes for the computer to get the job done, we can add as many sample 
size conditions as we want. 

Once the question about sample size conditions is settled, we need to consider another important 
issue: Under each sample size condition, how many random samples are we going to draw from a 
specified statistical population that represents the null hypothesis (i.e., the true population correlation 
coefficient is zero between the two variables)? The decision must be made carefully so that 
reasonably accurate answers to our question can be obtained. Because we are trying to obtain the 
sampling distributions of correlation coefficients under the true null hypothesis, the number of 
samples drawn under a particular sample size condition will greatly influence the accuracy of the 
simulated sampling distribution of correlation coefficients. If too few samples are drawn under each 
sample size condition, our answers might be too crude to be useful. For our illustrative example, let’s 
assume that, after our review of previous studies in this area, we decide that 2,000 samples is the 
minimum number we can live with, and that a sampling distribution of correlation coefficients based 
on 2,000 random samples for a particular sample size condition should be accurate enough for our 
illustrative purpose. 

We have now figured out all the important design characteristics for our MC study of sampling 
distributions of correlation coefficients, as follows: 

�� Four sample size conditions: 10, 20, 50, and 100. 

�� Under each sample size condition, 2,000 random samples will be drawn from the 
statistical population under which there is zero correlation between two variables, i.e., 
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Given our design, there will be 4 × 2000 = 8000 random samples to be drawn from the specified 
statistical population under the true null hypothesis. This design is implemented in the annotated 
Program 2.1. Although we provide more details later about Program 2.1, you can probably see that 
the number of samples under each sample size condition is 2,000 (SAS macro variable 
NO_SMPL=2000), and there are four sample size conditions (SAS macro variable SMPLSIZE=10, 
20, 50, 100). 
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Program 2.1  Simulating Pearson Correlation Coefficient Distributions 
 
 
LIBNAME CORR ’C:\CORR_EG’; 
%LET NO_SMPL=2000;          *** macro variable for # of random samples; 
                                         *** under each sample size condition; 
%MACRO CORR_RDM; 
%DO A = 1 %TO 4;                        *** specify four sample size conditions; 
  %IF &A=1 %THEN %DO; %LET SMPLSIZE=10;  %END; 
  %IF &A=2 %THEN %DO; %LET SMPLSIZE=20;  %END; 
  %IF &A=3 %THEN %DO; %LET SMPLSIZE=50;  %END; 
  %IF &A=4 %THEN %DO; %LET SMPLSIZE=100; %END; 
 
%DO B=1 %TO &NO_SMPL;                *** # of samples for each sample size condition; 
 
DATA DAT;               *** generate two uncorrelated random variables; 
  DO I=1 TO &SMPLSIZE; 
    X=RANNOR(0); 
    Y=RANNOR(0);  
    OUTPUT; 
  END;          
                   *** use PROC CORR to get Pearson r, results as SAS data set PEARSON; 
PROC CORR DATA=DAT NOPRINT OUTP=PEARSON; 
  VAR X Y; 
RUN; 
           *** collect Pearson r from each sample, add sample size condition; 
  *** accumulate Pearson r from samples by appending the Pearson r from a  

      sample to a SAS System file COR_RDM; 
 
DATA PEARSON; SET PEARSON; 
  SMPLSIZE=&SMPLSIZE; 
  IF _NAME_=’X’; 
  CORR=Y;  
  KEEP CORR SMPLSIZE; 
PROC APPEND BASE=CORR.COR_RDM; 
%END; 
%END; 
%MEND CORR_RDM; 
%CORR_RDM; 
RUN; QUIT; 
                     *** obtain descriptive statistics on the Pearson r’s; 
                     *** under each of the four sample size conditions; 
DATA A; SET CORR.COR_RDM; 
PROC SORT; BY SMPLSIZE; 
PROC MEANS; BY SMPLSIZE; 
  VAR CORR; 
TITLE1 'DESCRIPTIVE STATS FOR PEARSON RS BETWEEN TWO RANDOM VARIABLES'; 
TITLE2 'FOR FOUR DIFFERENT SAMPLE SIZE CONDITIONS'; 
TITLE3 '*************************************************************'; 
RUN; QUIT; 
                                * obtain bar graphs to show the 
                                distribution characteristics of 
                                Pearson rs under true null hypothesis 
                                for each of the four sample size 
                                conditions ; 
 
DATA A; SET CORR.COR_RDM; 
PROC SORT; BY SMPLSIZE; 
 
AXIS1 LABEL=(HEIGHT=1.0 FONT=TRIPLEX) ORDER=(0 TO 20 BY 5) 
      VALUE=(HEIGHT=1.0 FONT=TRIPLEX) MINOR=NONE; 
AXIS2 LABEL=(HEIGHT=1.0 FONT=TRIPLEX) VALUE=(HEIGHT=1.0 FONT=TRIPLEX) 
      MINOR=NONE; 
PATTERN COLOR=BLACK VALUE=X2; 
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PROC GCHART DATA=A; BY SMPLSIZE;  * use PROC GCHART for nicer graphs; 
  VBAR CORR/ TYPE=PERCENT 
           MIDPOINTS= -.9 TO .9 BY .05 
           RAXIS=AXIS1 MAXIS=AXIS2 
           WIDTH=1 
           SPACE=1; 
RUN; QUIT; 
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Once the MC study design has been worked out, the next step is to generate sample data to be used in 
the MC study. It is worth pointing out that data generation is probably the most important step in any 
MC study. This is so because MC study results are based on the data generated in the process. If the 
data generated in the process are not what you think they should be, the validity of the MC study 
results will obviously be in serious question. From this perspective, the importance of data generation 
in an MC study can never be overemphasized. 

Depending on the complexity of an MC study, the process of data generation can involve three major 
steps, as follows: 

1. Generate data from a distribution with known characteristics. 

2. Transform the data so that the data have desired shapes. 

3. Transform the data so that the simulated variables can be considered as samples 
randomly drawn from a population with a known inter-variable relationship pattern. 

2.4.1  Generating Data from a Distribution with Known  
          Characteristics 
This first step is really what we need for our illustrative example of simulating the distribution of 
correlation coefficients under the true null hypothesis of zero population correlation between two 
variables. For our purposes, we need to generate two variables not related to each other. We choose to 
generate two independent normally distributed random variables. Because the two variables are 
random and independent, they are not related to each other. In other words, the value of one variable 
will be totally unrelated to the value of the other variable. We can use the SAS random normal 
variable generator RANNOR to accomplish this. The two variables generated by the program are 
called X and Y in the program. Because X and Y are generated as independent random samples from 
a normal distribution, we know the underlying distributions for X and Y have a mean of 0 and a 
standard deviation of 1. In statistical terms, both X and Y are random variables from population 
distributed as N(0,1). The details about the SAS data generator will be discussed in Chapter 3. 

Program 2.1 presented the SAS code for data generation for our problem through the use of base 
SAS. In some examples in later chapters, the IML procedure (PROC IML) of SAS/IML (Interactive 
Matrix Language) will be used for the same purpose. Either way, the same thing can be 
accomplished: two independent random variables are generated from the normal distribution [N(0,1)] 
for specified sample size conditions (SMPLSIZE). 
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2.4.2  Transforming Data to Desired Shapes 
In many situations, sample data generated in the previous step need to be transformed to simulate 
particular population characteristics. There are two major purposes for which it is necessary to 
transform an individual variable: 1) to transform the data so that the data can be considered as a 
random sample from a population with a specified mean and standard deviation; 2) to transform the 
data so that the data can be considered as a random sample from a population with specified shapes 
(e.g., specified population skewness and kurtosis). The first transformation is simply a linear 
transformation that does not change the shape of the data. That is, if originally it is normally 
distributed, it remains normally distributed after the transformation. For any variable X, such a linear 
transformation can easily be achieved by the formula 

Xnew = X * SDnew + Meannew       (2.1) 

where Xnew is the transformed variable, SDnew is the desired new standard deviation, and Meannew is the 
desired new mean. The new variable Xnew has exactly the same distribution shape as X in terms of 
skewness and kurtosis. 

The second kind of transformation changes the shape of the distribution—for example, in terms of 
skewness and/or kurtosis. This kind of transformation is often necessary in statistical simulation to 
investigate the effect of non-normality on certain statistics of interest. This transformation is more 
complicated, and the necessary details for such a transformation will be discussed in Chapter 4. In our 
illustrative example in Program 2.1, there is no need to perform either of the two transformations. The 
SAS programming examples for these transformations will be presented in later chapters. 

2.4.3  Transforming Data to Simulate a Specified  
          Population Inter-variable Relationship Pattern 
The two transformations discussed in the previous section involve only one variable at a time. In 
many situations, multiple variables are used in analyses, and the multiple variables are supposed to be 
correlated to specified degrees. In such situations, procedures are needed to transform the independent 
variables (such X and Y in Program 2.1) into correlated variables with specified correlation pattern. 
This transformation will be discussed in Chapter 4, where multivariate data generation is covered. 
Obviously, for our illustrative example of correlation coefficient distribution under the true null 
hypothesis of no relationship between the two variables, we want to keep the two variables (X and Y) 
independent, so there is no need to implement this transformation. 
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Although some MC studies do not involve statistical techniques, in many MC studies, some type(s) of 
statistical techniques are involved. For example, the illustrative MC study example in Chapter 1 
(simulating the sum of throwing a dice twice) involves only simple frequency counts. On the other 
hand, in the example presented in Program 2.1, the Pearson product-moment correlation coefficient 
needs to be computed for each of the 8,000 samples. There are, of course, different ways to 
implement the statistical computation of the Pearson correlation coefficient. One can either program  
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the statistical computation by using either the IML procedure (PROC IML) or base SAS, or one can 
use SAS procedures. In Program 2.1, we chose to use the SAS CORR procedure (PROC CORR) to 
do the computation, which minimizes the programming demand for the task. As readers can see, the 
SAS code for this step is very straightforward. 

 

��%� &�����������	���
�
��������"������������������������

Once the statistical technique is implemented and the statistic of interest is computed, the statistic of 
interest from each random sample must be obtained, and it must be accumulated across samples.  In 
our example in Program 2.1, we need to obtain each of the 8,000 correlation coefficients (2,000 under 
each of the four sample size conditions) and to accumulate them for later analyses. Again, this can be 
accomplished in different ways. In Program 2.1, we used PROC CORR for computing Pearson r, so 
the computed Pearson r is contained in the PROC CORR output. To obtain the Pearson r from each 
sample, we request SAS to output the results of PROC CORR to a SAS data set named PEARSON 
(OUTP=PEARSON). Because the PEARSON data set contains more than just the Pearson r that we 
are interested in, we need to do a little programming to keep only what we want to obtain, and discard 
the rest. In order to do that, we need to understand what the PEARSON data set contains. 

The contents of the temporary PEARSON data set can be displayed by running a simple PROC 
PRINT DATA=PEARSON step. The following is the output of the temporary SAS data set 
PEARSON for a small (n=4) hypothetical data set. 
 

 
      OBS    _TYPE_    _NAME_       X          Y 
 
       1      MEAN               1.50000    2.75000 
       2      STD                0.57735    0.50000 
       3      N                  4.00000    4.00000 
       4      CORR       X       1.00000    0.57735 
       5      CORR       Y       0.57735    1.00000 
 

 

In this temporary SAS data set, the Pearson r, which is highlighted above, is the only thing we are 
interested in keeping at this time. Although the sample size N is also relevant, it can be obtained 
somewhere else. A few commands in Program 2.1 accomplish the goal of discarding everything else 
from the temporary PEARSON data set except the Pearson r. Sample size information is added to the 
data. So now, the temporary PEARSON data set only contains two variables: CORR for the sample 
Pearson correlation coefficient, and SMPLSIZE for the sample size condition. 

After obtaining the statistic of interest from a sample, that statistic should be stored somewhere so that 
SAS will go on to draw another sample and repeat the whole process again. In the example in 
Program 2.1, this is achieved by appending the Pearson correlation coefficient from each sample, 
together with the information about sample size (SMPLSIZE), to a permanent SAS data set 
(COR_RDM) on the hard disk in the directory "C:\CORR_EG", as indicated by the LIBNAME 
statement at the beginning of the SAS program in Program 2.1. Once this information is stored in the 
permanent SAS data set (COR_RDM), the SAS program repeats the process for the remaining 7,999 
samples until all 8,000 Pearson correlation coefficients from all the 8,000 samples have been 
accumulated. 
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 -----------------------------SMPLSIZE=10-------------------------- 
      N          Mean       Std Dev       Minimum       Maximum 
 ------------------------------------------------------------------ 
   2000    -0.0079822     0.3400933    -0.9171933     0.8923352 
 
 
 -----------------------------SMPLSIZE=20-------------------------- 
      N          Mean       Std Dev       Minimum       Maximum 
 ------------------------------------------------------------------ 
   2000    -0.0063981     0.2293055    -0.7653282     0.7339653 
 
 
 -----------------------------SMPLSIZE=50-------------------------- 
      N          Mean       Std Dev       Minimum       Maximum 
 ------------------------------------------------------------------ 
   2000     0.0026309     0.1418088    -0.4412904     0.4752965 
 
 
 -----------------------------SMPLSIZE=100------------------------- 
      N          Mean       Std Dev       Minimum       Maximum 
 ------------------------------------------------------------------ 
   2000    -0.0022238     0.1036991    -0.4455782     0.4067127 
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By the time the statistic of interest from all the samples has been obtained and accumulated, the 
simulation process of the MC study is complete. Depending on the nature of the question(s) in a 
particular MC study, data analysis after the simulation may be simple or complicated. In our 
illustrative example in Chapter 1 (Program 1.1), the analyses are simple and straightforward 
frequency counts, proportions, and cumulative proportions. In some MC studies, the analyses of the 
data accumulated from an MC simulation can be quite complicated. As a matter of fact, data analyses 
in an MC study are no different from data analyses in many other research situations. 

In our illustrative example in Program 2.1, the data analyses involve obtaining the descriptive 
statistics of the Pearson r sample distributions under the four sample size conditions. Output 2.1 
presents this basic descriptive information. In addition, the Pearson r sample distributions are 
presented in bar graphs that graphically illustrate the distributions of the Pearson r’s under the true 
null hypothesis for the four sample size conditions (Figure 2.1). Of course, other types of analyses can 
be conducted on the data, but to keep our presentation simple, we do only two here. 

 

Output 2.1 
Descriptive 
Statistics for 
Pearson r 
Sample 
Distributions 
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Figure 2.1   Empirical Distributions of Sample Correlation Coefficients under the True Null Hypothesis  
                    of ρ=0 
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We conducted our MC study for the purpose of answering our questions about the distributional 
characteristics of the statistic of interest to determine what factors may affect such distributional 
characteristics. The data analyses conducted in the previous step should be conducive to providing 
answers to the question(s) that motivated the MC study in the first place. To illustrate this last step in 
the MC study, let us go back to our original question: How high should a correlation coefficient be 
before we feel comfortable that the observed correlation coefficient is unlikely to have occurred by 
chance (i.e., the observed value of the sample correlation coefficient is the result of sampling error)? 
To answer this question, we conducted an MC study to obtain the sampling distributions of Pearson 
r’s under the true null hypothesis (population correlation ρ=0). We wanted to see how high a sample 
correlation coefficient could be just by sampling chance alone when the two variables have no 
relationship at all. Because the variability of the sample correlation coefficient is affected by sample 
size, we considered four sample size conditions in our MC study. 

Output 2.1 presented the descriptive statistics for the correlation coefficients under the four sample 
size conditions (N=10, 25, 50, 100). Two observations are noted from Output 2.1. First, the means of 
the correlation coefficients under each of the four sample size conditions are very close to zero. This 
makes perfect sense, because the two variables are independent random variables not related to each 
other. As a result, although sample correlation coefficients may vary within certain ranges, the mean 
of the sample correlation coefficients should converge on the population coefficient (ρ=0). Second, 
the standard deviation of the sampling distribution of the correlation coefficient is larger when the 
sample size is smaller, and it decreases with an increase in sample size. This indicates that when the 
sample size is small, there is more variability in the sample correlation coefficients than there is when 
the sample size is large. The same phenomenon is reflected by the range (range = maximum - 
minimum). 

Figure 2.1 presents a graphic illustration of the distribution of sample correlation coefficients for the 
four sample size conditions under the true null hypothesis (ρ=0). These four graphs make it very 
obvious that even when the population correlation coefficient is zero, we may observe substantial 
sample correlation coefficients. For example, for a random sample of 10 observations, the sample 
correlation coefficient can easily be as high (low) as ±0.50. But when the sample size increases to 
100, it becomes highly unlikely that one could obtain a sample correlation coefficient close to ±0.50 
just by chance. Based on the simulation results presented in Figure 2.1, we can make probability 
statements about obtaining an outcome under a sample size condition. For example, we can say that if 
the population correlation coefficient is 0 (ρ=0), for a sample of 10 observations (N=10), the 
probability of getting a sample r ≥ 0.50 in absolute value is higher than 0.05. That is, 
 

p (getting r ≥ 0.50 or r ≤ -0.50 | ���������� 

Obviously, if an outcome could have occurred by chance with considerable probability, this outcome 
would not be considered trustworthy. In other words, if you have obtained a correlation of ±0.50 from 
a sample of 10, this would not give you much confidence that there is indeed a relationship between 
the two variables under your consideration. In statistical terms, you would not feel comfortable in 
rejecting the null hypothesis that there is no correlation between the two variables, because the 
statistical evidence is not strong enough. 
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In this chapter, we navigated conceptually through the major steps in a typical Monte Carlo study, 
such as study design considerations, the data generation process, obtaining and accumulating the 
statistic of interest, etc. These steps are common for Monte Carlo studies in general. Among these 
major steps, data generation warrants special attention, because the validity of the Monte Carlo 
study’s results hinges on this step. In Chapters 3 and 4, we provide some mathematical and procedural 
details for the data generation process. 



24    SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 

 

  

 

 

 



 

Chapter 3   Generating Univariate Random  
               Numbers in SAS 
 

 

3.1  Introduction   25 

3.2  RANUNI, the Uniform Random Number Generator   26 

3.3  Uniformity (the EQUIDST Macro)   27 

3.4  Randomness (the CORRTEST Macro)   30 

3.5  Generating Random Numbers with Functions versus CALL Routines   34 

3.6  Generating Seed Values (the SEEDGEN Macro)   38 

3.7  List of All Random Number Generators Available in SAS   39 

3.8  Examples for Normal and Lognormal Distributions   45 
    3.8.1  Random Sample of Population Height (Normal Distribution)   45 
    3.8.2  Random Sample of Stock Prices (Lognormal Distribution)   46 

3.9  The RANTBL Function   51 

3.10  Examples Using the RANTBL Function   52 
     3.10.1  Random Sample of Bonds with Bond Ratings   52 
     3.10.2  Generating Random Stock Prices Using the RANTBL Function   54 

3.11  Summary   57 

3.12  References   58 
 
 
 

���� �����	
������

Simulation is the representation of the behavior of a physical or abstract system by the behavior of 
another system (Ralston 1976). Simulation is applied when the experiment with or the observation of 
the original system is dangerous (e.g., an epidemic or a nuclear reaction), impossible (global 
warming, meteor impact), expensive (optimal shape of a new vehicle), or when we want to study the 
effect of many different conditions on the system (effect of a new policy), etc. It is also utilized when 
the original system is too complicated to be investigated with exact analytic tools and the simulation 
can simplify the problem. The computer-based simulation can be deterministic or stochastic. In the 
latter case, which is also called Monte Carlo simulation, at least one variable of the system behaves 
by chance. Thus, we generate many sets of random numbers obeying certain a priori distributions and 
examine the results of our model.  

The heart of every Monte Carlo simulation is the random number generator. And the heart of the 
various random number generators is the uniform random number generator, because the random 
numbers of a certain distribution can be derived from uniformly distributed random numbers 
(Rubinstein 1981). The concept of randomness is a mysterious one, because no events in nature are 
truly random. We may not know all their influencing factors, and thus they just appear random to our 
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limited knowledge. Similarly, our computer-generated random numbers are called pseudo or quasi-
random numbers, because they are constructed by some deterministic algorithm and they only 
“appear” random. However, if they satisfy the randomness required by our problem, we can utilize 
them. 

Generating a random number in SAS requires a simple function or subroutine call in a DATA step 
(or in PROC IML), as shown here. Variable R in the following two examples holds a uniform 
random number. 

 
DATA …; 
     …; 
     R = RANUNI(123); 
     …; 
     RUN; 

 DATA …; 
     …; 
     SEED = 123; 
     CALL RANUNI(SEED,R); 
     …; 
     RUN; 

 
In this chapter, we will discuss many aspects of generating univariate random numbers. We will 
introduce and review RANUNI, the uniform random number generator of the SAS System. Then, we 
will test certain measures of uniformity and randomness. Most random number generators can be 
invoked as functions or as CALL routines, and their differences will be examined later in this 
chapter, along with the use of the seed value. A table will describe all random number generator 
functions available in SAS for reference purposes.  

This chapter will also present several examples for creating random samples with various 
characteristics. Finally, the RANTBL function will be discussed separately for its practical 
importance in generating random numbers of any distribution. 
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The RANUNI function (and the identical UNIFORM) returns uniform random numbers utilizing the 
most widely used generator, the congruential generator, which originates from D.H. Lehmer (Lehmer 
1951). This generator produces random numbers by using the following recursive formula, where Ri 
is the ith random number, a is the multiplier, and c is the increment: 

 
 � �1 ( c) mod 0,1, 2,...� �i+ iR aR m i =  (3.1) 

 
The formula can be written in the SAS statement 

 
  R = MOD(A*R+C,M); (3.2) 
 

The stream of random numbers (Ri) is started and controlled by the first random number (R0), which 
is called the seed. The generator produces uniform random numbers in (0,m), but its SAS 
implementation returns them transformed into (0,1) by dividing them by m. Since the actual random 
numbers returned by RANUNI and the seed along with its subsequent values are the same 
irrespective of that transformation, the terms seed and random numbers are used interchangeably in 
this chapter. 
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The above constants in the SAS System are a = 397,204,094, m = 231-1 (which is a prime), and c = 0. 
Due to (3.1), the seed (or R0) value must be an integer satisfying 11 0 −≤≤ mR  (m-1=2147483646.) In 
this special case, when c = 0, the generator is called a multiplicative congruential generator. (If we 
wish to calculate the random numbers with these constants substituted into (3.2), we will not obtain 
the random numbers generated by SAS software, because the calculations require extended precision 
beyond the standard double precision.) This type of generator has been extensively tested and found 
to be a reliable one (Clark & Woodward 1992; Fishman & Moore 1982; Killam 1987). The period of 
this generator, i.e., the number of elements produced before it begins repeating the elements, is m = 
231-2. The program below gives the length of the period to be 231-2. 

 
DATA _NULL_; 
     R0=RANUNI(123); 
     DO I=2 TO 2**31-1; 
        IF RANUNI(123)=R0  
           THEN DO; PUT ’End of period at element #’ i; 
                    STOP; 
                END; 
     END; 
     RUN; 

 
A great deal of attention and care have been given to the statistical tests of the random number 
generators. However, there is no single definition of randomness or a single statistical test for it. We 
should extensively test a generator before accepting it. The most widely applied tests are the chi-
square, Kolmogorov-Smirnov, Cramer-von Mises, serial, run, gap, poker, permutation, serial 
correlation, and maximum tests (Knuth 1982; Rubinstein 1981). RANUNI must satisfy two 
requirements: uniformity and randomness.  
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Uniformity means that the random numbers fill the unit interval uniformly. It can easily be tested by 
the equidistribution or frequency test. One such test is described by the EQUIDST macro (Program 
3.1). It tests uniformity by dividing (0,1) into 2, 3,...n subintervals of equal length: 
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The macro tallies the frequencies in these subintervals and calculates the goodness-of-fit test for the 
uniform distribution. If the random numbers uniformly fill (0,1), the subintervals of any number of 
divisions would get about the same number of random numbers. Thus, most of the divisions will 
result in a non-significant chi-square value, i.e., the null hypothesis (the random numbers are from a  
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uniform distribution) can be kept. Output 3.1 shows the results when we generate one million random 
numbers and divide (0,1) into 2,3,...,100 subintervals with the following macro call: 

 
%EQUIDST(NRANNUM=1000000,HNSINT=100,SEED=123) 

 

 
RANUNI really generates uniform random numbers, because only 9 out of 99 divisions have 
significant chi-square values at the 0.05 level. If we choose the 0.01 level, then none of the divisions 
reject the uniformity. The SERIAL macro (published in Fels vályi 1994) provides another type of 
uniformity test for RANUNI, where we test whether the random numbers defined as vectors in the n-
dimensional space fill the unit hypercube uniformly. 

 
 
Program 3.1  The EQUIDST Macro 
 

 
/**********************************************************/ 
/* Macro EQUIDST executes an equidistribution test to     */ 
/* check the uniform distribution of random numbers       */ 
/* generated by RANUNI.                                   */ 
/*                                                        */ 
/* Parameters:                                            */ 
/* NRANNUM # of random numbers to be generated.           */ 
/* HNSINT  highest number of subintervals. The macro      */ 
/*         calculates the chi-square test for             */ 
/*         2,3,...,HNSINT divisions of equal subintervals */ 
/*         of (0,1).                                      */ 
/* SEED    Seed of RANUNI function.                       */ 
/**********************************************************/ 

 
%MACRO EQUIDST(NRANNUM=,HNSINT=,SEED=0); 
  DATA WORK(KEEP=SINTERV X); 
 
       /* generate the requested number of random numbers.*/ 
 
       LENGTH SINTERV X 3; 
       DO I=1 TO &NRANNUM; 
          R=RANUNI(&SEED); 
 
          /* determine the interval number (variable ’X’) into */ 
          /* which the random number falls. Do this for each   */ 
          /* division (2-subinterval, 3-subinterval,...        */ 
          /* divisions).                                       */ 
 
          DO SINTERV=2 TO &HNSINT; 
              X=1+INT(SINTERV*R); 
              OUTPUT; 
          END; 
       END; 
       RUN; 
 
  /* determine the frequency of each subinterval by division.  */ 
 
  PROC FREQ DATA=WORK; 
       TABLE SINTERV*X/LIST OUT=WORK(KEEP=SINTERV COUNT) NOPRINT; 
       RUN; 
 
  /* calculate the chi-square test for each division. */ 
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                     Results of the Uniformity Test 
                     ------------------------------ 
                      # of Random Numbers: 1000000 
                     Subintervals Tested: 2 to 100 
  
                                        Cumulative  Cumulative 
         PVALUE    Frequency   Percent   Frequency    Percent 
         ------------------------------------------------------ 
         P<0.05            9       9.1           9        9.1 
         P<0.10            5       5.1          14       14.1 
         P<0.15            8       8.1          22       22.2 
         P>0.15           77      77.8          99      100.0 

 

  DATA WORK(KEEP=PVALUE); 
       SET WORK; 
       BY SINTERV; 
       RETAIN EXPFREQ CHISQ; 
 
       /* a division starts. */ 
 
       IF FIRST.SINTERV THEN DO; EXPFREQ=&NRANNUM/SINTERV; 
                                 CHISQ=0; 
                                 END; 
       CHISQ=CHISQ+(COUNT-EXPFREQ)**2/EXPFREQ; 
 
       /* the last interval of the division is read. */ 
       /* determine the p-value of the test.         */ 
 
       IF LAST.SINTERV THEN DO; PVALUE=1-PROBCHI(CHISQ,SINTERV-1); 
                                OUTPUT; 
                                END; 
  PROC FORMAT; 
     VALUE SIGNIF 0.0000-0.0001=’P<0.0001’ 
                  0.0001-0.001 =’P<0.001’ 
                  0.001 -0.01  =’P<0.01’ 
                  0.01  -0.05  =’P<0.05’ 
                  0.05  -0.10  =’P<0.10’ 
                  0.10  -0.15  =’P<0.15’ 
                  0.15  -1     =’P>0.15’; 
 
  PROC FREQ DATA=WORK;   *** summarize the results; 
     TABLE PVALUE; 
     FORMAT PVALUE SIGNIF.; 
     TITLE1 "Results of the Uniformity Test"; 
     TITLE2 "------------------------------"; 
     TITLE3 "# of Random Numbers: &NRANNUM"; 
     TITLE4 "Subintervals Tested: 2 to &HNSINT"; 
  RUN; 
 

 
 
Output 3.1 
Uniformity 
Test of 
RANUNI 
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Randomness is an elusive concept, and it cannot be measured by a single test. It posseses many 
facets, and we should examine as many of them as possible. The CORRTEST macro (Program 3.2) 
executes one of the many tests of randomness, the correlation test, which examines the correlation 
between the ith and the (i+j)th random numbers. The hypothesis is that if the numbers generated by 
RANUNI are random, the correlation between the ith and the (i+j)th numbers is not significant for 
any j. The macro calculates these correlation coefficients for j=1, 2,…, n  at once (the value of n in 
the macro is specified by the HLAG parameter). Output 3.2a shows the results when we generate one 
million uniform random numbers and calculate the correlations of up to 100 lags with the following 
statements: 

 
DATA SAMPLE(KEEP=X); 
     DO I=1 TO 1000000; 
        X=RANUNI(123); 
        OUTPUT; 
     END; 
     RUN; 
%CORRTEST(DATA=SAMPLE,HLAG=100,VAR=X) 

 
RANUNI satisfies the randomness as required by the correlation test, because only 10 out of 100 
have significantly high correlation coefficients at the 0.05 level. If we choose the 0.01 level, then 
only one is significantly high. The correlation test delivers similar results when we examine the other 
random number generator functions available in SAS. For example, if we test the RANGAM 
function with the following code, 

 
DATA SAMPLE(KEEP=X); 
     DO I=1 TO 1000000; 
        X=RANGAM(123,2); 
        OUTPUT; 
     END; 
     RUN; 
%CORRTEST(DATA=SAMPLE,HLAG=100,VAR=X) 

 
we obtain that only 2 out of 100 correlation coefficients have p-values less than 0.05, and none are 
less than 0.01 (see Output 3.2b). 
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Program 3.2  The CORRTEST Macro 
 

 
/***************************************************************/ 
/*                                                             */ 
/* The CORRTEST macro executes the correlation test of randomness.   */ 
/*                                                             */ 
/* Parameters:                                                 */ 
/* DATA    the name of the table containing a random variable. */ 
/* VAR     the name of the random variable.                    */ 
/* HLAG    the highest lag of correlation to be calculated.    */ 
/*         The macro calculates the correlation coefficients   */ 
/*         between subsequent random values with lags of 1, 2, */ 
/*         3, ... &HLAG. One correlation coefficient is        */ 
/*         calculated for each lag.                            */ 
/*                                                             */ 
/* Notes                                                       */ 
/* 1. The macro assumes that there is no missing value in the  */ 
/*    input table and it has at least HLAG number of rows.     */ 
/* 2. The name of the random variable must not start with      */ 
/*    ’lag’.                                                   */ 
/*                                                             */ 
/***************************************************************/ 
 
%MACRO CORRTEST(DATA=,HLAG=,VAR=); 
 
  /* Create a new table that has the original random value in  */ 
  /* column named ’lag0’ and one column for each lag specified.*/ 
  /* For example                                               */ 
  /*                                                           */ 
  /* Original                                                  */ 
  /*  Table         New Table                                  */ 
  /*                                                           */ 
  /*    X       LAG0 LAG1 LAG2 LAG3                            */ 
  /*    -       ---- ---- ---- ----                            */ 
  /*    1          1    2    3    4                            */ 
  /*    2          2    3    4    5                            */ 
  /*    3          3    4    5    6                            */ 
  /*    4          4    5    6    .                            */ 
  /*    5          5    6    .    .                            */ 
  /*    6          6    .    .    .                            */ 
  
 DATA WORK(KEEP=LAG0-LAG&HLAG); 
       SET &DATA NOBS=NOBS END=END; 
       ARRAY LAGARRAY(*) LAG0-LAG&HLAG; 
       RETAIN LAG0-LAG&HLAG; 
       IF _N_<=&HLAG THEN LAGARRAY(_N_+1)=&VAR; 
                       ELSE DO; DO I=1 TO &HLAG; 
                                   LAGARRAY(I)=LAGARRAY(I+1); 
                                END; 
                                LAGARRAY(&HLAG+1)=&VAR; 
                                OUTPUT; 
                             END; 



    SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 32 

       IF END THEN DO; CALL SYMPUT(’N’, 
                            COMPRESS(PUT(NOBS,BEST10.))); 
                       DO J=0 TO &HLAG-2; 
                          DO I=1 TO &HLAG-J; 
                             LAGARRAY(I)=LAGARRAY(I+1); 
                          END; 
                          LAGARRAY(&HLAG-J+1)=.; 
                          OUTPUT; 
                       END; 
                   END; 
       RUN; 
  /* calculate the correlation coefficients for each lag and   */ 
  /* save them.                                                */ 
 
  PROC CORR DATA=WORK OUTP=WORK(WHERE=(_TYPE_=’CORR’)) NOPRINT; 
       VAR LAG0; 
       WITH LAG1-LAG&HLAG; 
 
  /* calculate the p-value for each correlation coefficient    */ 
  /* (because PROC CORR does not save it along with the        */ 
  /* correlation coefficient).                                 */ 
 
  DATA WORK(KEEP=PVALUE); 
       SET WORK; 
       RETAIN N &N; 
       CORR=LAG0; 
       N=N-1;           *** Number of values - degrees of freedom.; 
       IF ABS(CORR)=1 THEN PVALUE=0; 
                      ELSE PVALUE=2*(1-PROBT(ABS(CORR/ 
                           SQRT(1-(CORR*CORR))*SQRT(N-2)),N-2)); 
       OUTPUT; 
       RUN; 
  PROC FORMAT; 
       VALUE SIGNIF 0.0000-0.0001=’P<0.0001’ 
                    0.0001-0.001 =’P<0.001’ 
                    0.001 -0.01  =’P<0.01’ 
                    0.01  -0.05  =’P<0.05’ 
                    0.05  -0.10  =’P<0.10’ 
                    0.10  -0.15  =’P<0.15’ 
                    0.15  -1     =’P>0.15’; 
 
  /* summarize the results */ 
 
  PROC FREQ DATA=WORK; 
       TABLE PVALUE; 
       FORMAT PVALUE SIGNIF.; 
       TITLE1 "Results of the Correlation Test"; 
       TITLE2 "-------------------------------"; 
       TITLE3 "# of Random Numbers: &N"; 
       TITLE4 "Lags Tested: 1 to &HORDER"; 
  RUN; 
%MEND; 
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                    Result of the Correlation Test 
                     ------------------------------ 
                      # of Random Numbers: 1000000 
                         Lags Tested: 1 to 100 
 
                                         Cumulative  Cumulative 
         PVALUE     Frequency   Percent   Frequency    Percent 
         ------------------------------------------------------ 
         P<0.01            1       1.0           1        1.0 
         P<0.05            9       9.0          10       10.0 
         P<0.10            5       5.0          15       15.0 
         P<0.15            3       3.0          18       18.0 
         P>0.15           82      82.0         100      100.0 

 

              
                    Result of the Correlation Test 
                     ------------------------------ 
                      # of Random Numbers: 1000000 
                         Lags Tested: 1 to 100 
 
                                         Cumulative  Cumulative 
         PVALUE     Frequency   Percent   Frequency    Percent 
         ------------------------------------------------------ 
         P<0.05            2       2.0           2        2.0 
         P<0.10            2       2.0           4        4.0 
         P<0.15            7       7.0          11       11.0 
         P<0.15           89      89.0         100      100.0 

 

Output 3.2a  
Correlation Test 
of RANUNI 
 
 
 
 
 
 
 
 
 
 
 
Output 3.2b  
Correlation Test 
of RANGAM 
 
 
 

  

 

 

 

Examining the correlation coefficients and their p-values using the CORRTEST macro, the curious 
mind might ask: What is the distribution of these p-values? The SAS System is a great tool for 
conducting experimental mathematics, and we can easily answer that question by using the table 
WORK, which was created by the CORRTEST macro, as shown in the program below. 

 
DATA SAMPLE(KEEP=X); 
     DO I=1 TO 500000; 
 
         /* this time, we carry out the test on  */ 
         /* normally distributed random numbers. */ 
 
         X=RANNOR(123); 
         OUTPUT; 
     END; 
     RUN; 
%CORRTEST(DATA=SAMPLE,HLAG=1000,VAR=X) 
PROC CHART DATA=WORK; 
     VBAR PVALUE / LEVELS=10; 
     LABEL PVALUE="p-values of the Correlation Test"; 
     RUN; 
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The answer is given using RANNOR in Output 3.2c: uniform distribution. If the generated numbers 
are close to a random sequence, then as the number of replicated correlation coefficients increases, 
the distribution in Output 3.2c should smoothen, and our results should more closely approximate the 
theoretical results — a uniformity of frequency. 

 
Output 3.2c  
The p-values 
of the 
Correlation 
Test Distribute 
Uniformly 
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The stream of the random numbers is determined by the so-called seed value, or R0 in (3.1). Seed is 
always the first parameter of each random number generator function or CALL routine, and 

310, 1, 2, , (2 2).� � � � ��seed  

The actual starting number of the stream depends on the seed value specified by the user according to 
the rule given here. 

 

If seed is 
R0, the starting number of the 
stream, is set to the 

and the streams of the random 
numbers at repeated executions are 

��� time since midnight different 

> 0 seed value specified by the user the same 
 

 
Frequency 
 
   120 |                                *** 
       |                                ***       ***  *** 
       |                      ***       ***  ***  ***  *** 
       |  ***  ***            ***       ***  ***  ***  *** 
    90 |  ***  ***       ***  ***  ***  ***  ***  ***  *** 
       |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
       |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
       |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
    60 |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
       |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
       |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
       |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
    30 |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
       |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
       |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
       |  ***  ***  ***  ***  ***  ***  ***  ***  ***  *** 
       ----------------------------------------------------- 
         0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 
 
                  p-values of the Correlation Test 
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The precision of the time since midnight (in the case of seed�0) depends on the operating system. 
For example, Windows returns it in units of milliseconds. If the seed is specified as a fraction or as a 
value greater than 231– 2, SAS issues an error message. You can specify a 31(2 2)� � �seed , but it 
may return a degenerated stream, so it must be avoided. 

Since the random numbers are calculated by a recursive formula, the first number determines all 
subsequent random numbers. A benefit to using a specific seed value is that the results can be 
replicated by using the same seed again. The debugging of your code becomes easier, and others can 
check your work by replicating it (see section 5.4 for more about the use of the seed value). Once a 
random number generator is started, SAS maintains only one stream of numbers, regardless of the 
number of references made to it. The code on the right hand side of Program 3.3 returns only one 
stream of random numbers, even though the RANUNI function is referenced twice with two different 
seeds. The random numbers in variables RUNI1 and RUNI2 correspond to the first invocation of 
RANUNI with seed=123 specified. The second invocation with seed=456 does not start a new stream 
of numbers (Output 3.3). 

 
Program 3.3  Seed Value – Example 1 
 
 
DATA TEMP1(DROP=I); 
     DO I=1 TO 10; 
        RUNI=RANUNI(123); 
        SEED=RUNI*(2**31-1); 
        OUTPUT; 
     END; 
     RUN; 
PROC PRINT DATA=TEMP1; 
     RUN; 

DATA TEMP2(DROP=I); 
     DO I=1 TO 5; 
        RUNI1=RANUNI(123); 
        /* The second seed (456) has no*/ 
        /* effect, because the stream has */ 
        /* already started with seed=123.*/ 
        RUNI2=RANUNI(456); 
        OUTPUT; 
     END; 
     RUN; 
PROC PRINT DATA=TEMP2; 
     RUN; 

 

 
 

Output 3.3  
The Function 
Produces Only 
One Stream of 
Numbers 
 
 
 

 

 

The seed value starts the recursive algorithm of (3.1), and at each execution the seed gets re-
calculated. The new value is stored internally in the function hidden from the user, and its value 
transformed into (0,1) is returned by RANUNI as the next random number. If we multiply this 
random number by the period (i.e., m=231-1) of (3.1), we obtain that hidden seed. (See the variable  
SEED  in the left-hand side of Program 3.3 — it will be discussed below).  

 
OBS      RUNI        SEED 
 
 1    0.75040    1611463328 
 2    0.32091     689153326 
 3    0.17839     383088854 
 4    0.90603    1945691870 
 5    0.35712     766903084 
 6    0.22111     474838741 
 7    0.78644    1688863383 
 8    0.39808     854874385 
 9    0.12467     267716529 
10    0.18769     403052287 
 

 
OBS     RUNI1      RUNI2 
 
 1     0.75040    0.32091 
 2     0.17839    0.90603 
 3     0.35712    0.22111 
 4     0.78644    0.39808 
 5     0.12467    0.18769 
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If we utilize the RANUNI CALL routine instead of the RANUNI function, it returns not only the 
next random number, but this re-calculated seed value as well. We then have the ability to alter this 
seed value and to thus alter the stream of the random numbers.  

Program 3.4 illustrates many important facts about RANUNI and the two forms of invocation: 
function and CALL. These facts apply equally to all random number generator functions available in 
SAS. The random number returned by the CALL routine is always its last parameter. 

 
Program 3.4  Seed Value – Example 2 
 

 
DATA TEMP3(DROP=I); 
     RETAIN SEED1 123 SEED2 123 SEED3 123 SEED4 456; 
     DO I=1 TO 10; 
        RUNI1=RANUNI(SEED1); 
        CALL RANUNI(SEED2,RUNI2); 
        CALL RANUNI(SEED3,RUNI3); 
        CALL RANUNI(SEED4,RUNI4); 
        /* Change the first and third seed values */ 
        /* for observations #6 and onward.        */ 
        IF I=5 THEN DO; SEED1=456; 
                        SEED3=456; 
                    END; 
        OUTPUT; 
     END; 
     RUN; 
PROC PRINT DATA=TEMP3; 
     RUN; 
 

 
• The random number returned by RANUNI is the same as the seed value irrespective of the 

transformation into (0,1). Compare the variables SEED in Output 3.3 and SEED2 in  
Output 3.4. 

• In the function, the stream of numbers is determined by the first seed value, and it is not 
altered regardless of the change in the seed variable. See the SEED1 values, and compare 
RUNI1 to RUNI2 in Output 3.4. 

• Either a function and a CALL routine together, or any number of CALL routines, produce 
independent streams of random numbers. Variables RUNI1 and RUNI2 in Output 3.3 are 
from one stream, but variables RUNI1 – RUNI4 in Output 3.4 are from four independent 
streams. 

• In the CALL routine form, we can change the seed value and it causes the stream to be re-
started with the new value. See variable RUNI3 in Output 3.4 and compare its values starting 
with observation #6 to the values of variable RUNI4 starting with observation #1. 

• The seed value for a function can be specified either as a scalar or as a variable. The seed 
value of a CALL routine must always be specified as a variable. 

 



Chapter 3  Generating Univariate Random Numbers in SAS     
 

37 

Output 3.4  
Altering the 
Stream by 
Changing the 
Seed 
 
 
 

  
 

As we mentioned earlier, if SEED=0 is specified, the streams of random numbers are different at 
each execution of the code. Program 3.5 generates three random numbers inside a macro with 
SEED=0 specified. The two successive executions result in two different streams of random 
numbers, because internally, SAS starts the RANUNI function with different seed values. Output 3.5 
shows the different random numbers and also the differing seed values. 

 
Program 3.5  Streams with SEED=0 
 

 
%MACRO SEED0; 
 DATA TEMP4(DROP=I); 
      SEED=0; 
      DO I=1 TO 3; 
         CALL RANUNI(SEED,RUNI); 
         OUTPUT; 
      END; 
      RUN; 
 PROC PRINT DATA=TEMP4; 
      RUN; 
%MEND; 
TITLE ’First Macro Call’; 
%SEED0 
TITLE ’Second Macro Call’; 
%SEED0 
RUN; 
 
 
 

Output 3.5  
Different 
Streams of 
Random 
Numbers with 
SEED=0 
 
 
 
 
 
 
 

 
OBS SEED1    SEED2       SEED3       SEED4    RUNI1    RUNI2    RUNI3    RUNI4 
 
 1  123  1611463328  1611463328   736440516  0.75040  0.75040  0.75040  0.34293 
 2  123   689153326   689153326   774069794  0.32091  0.32091  0.32091  0.36045 
 3  123   383088854   383088854   686944750  0.17839  0.17839  0.17839  0.31988 
 4  123  1945691870  1945691870   613712798  0.90603  0.90603  0.90603  0.28578 
 5  456   766903084         456   538536300  0.35712  0.35712  0.35712  0.25078 
 6  456   474838741   736440516  2127021321  0.22111  0.22111  0.34293  0.99047 
 7  456  1688863383   774069794  1285275311  0.78644  0.78644  0.36045  0.59850 
 8  456   854874385   686944750   969429106  0.39808  0.39808  0.31988  0.45143 
 9  456   267716529   613712798  1516286558  0.12467  0.12467  0.28578  0.70608 
10  456   403052287   538536300   760955526  0.18769  0.18769  0.25078  0.35435 
 

 
                            First Macro Call 
                       OBS        SEED       RANUI 
                        1       21287539    0.00991 
                        2     1972737807    0.91863 
                        3      790022720    0.36788 
 
 
                            Second Macro Call 
                       OBS       SEED        RANUNI 
 
                        1      156935322    0.07308 
                        2      972755748    0.45297 
                        3     2060025218    0.95927 
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Since the random numbers are the result of the recursive deterministic algorithm of (3.1), they can be 
thought of as a huge chain of all integers between 1 and 231-1 with their "random" sequence fixed. 
When we invoke a random number generator function, i.e., start a stream of random numbers, we 
merely point to one number in this gigantic sequence and take out a segment of numbers (e.g., 
100,000 of them) starting at that number. If we need more than one stream, we may select 
overlapping streams, even though the chain is more than two billion numbers long. To ensure non-
overlapping streams, the starting numbers of the streams must be far apart. More precisely, they must 
be separated by at least the length of the desired streams. The SEEDGEN macro of Program 3.6 
provides seed values that produce non-overlapping streams of random numbers. (See also Clark & 
Woodward 1992.) Output 3.6 shows 10 seed values that would produce 10 non-overlapping streams 
of one million random numbers each. The length of the streams should be set sufficiently large by 
considering all streams that are to be generated by our program. For example, if we need to generate 
100,000 uniform and 100,000 normal random numbers, the length should be set to at least 300,000, 
because the creation of one normal random number requires two random uniform numbers (see 
Section 3.7). 

 
Program 3.6  The SEEDGEN Macro 
 

 
/*******************************************************/ 
/* Macro SEEDGEN generates seed values to produce      */ 
/* non-overlapping streams of random numbers.          */ 
/*                                                     */ 
/* Parameters                                          */ 
/* FSSED   first seed                                  */ 
/* LSTREAM the length of the non-overlapping streams   */ 
/* NSEEDS  the number of seed values requested         */ 
/*                                                     */ 
/* Note                                                */ 
/* 1. Each paramater must be a positive integer less   */ 
/*    than 2**31-1.                                    */ 
/* 2. The macro may generate a smaller number of seeds, if  */ 
/*    LSTREAM*NSEEDS>2**31-1.                          */ 
/*                                                     */ 
/*******************************************************/ 
%MACRO SEEDGEN(FSEED=,LSTREAM=,NSEEDS=); 
   DATA TEMP(KEEP=SEED); 
        RETAIN SEED &FSEED; 
        OUTPUT; 
        DO I=1 TO MIN((&NSEEDS-1)*&LSTREAM,2**31-1) BY &LSTREAM; 
           DO J=1 TO &LSTREAM; 
              CALL RANUNI(SEED,X); 
           END; 
           OUTPUT; 
        END; 
        RUN; 
   PROC PRINT DATA=TEMP; 
        TITLE "List of &NSEEDS Seed Values"; 
        TITLE2 "Apart by &LSTREAM Numbers"; 
        RUN; 
%MEND; 
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Output 3.6  
Seed Values 
Generated by the   
SEEDGEN Macro 
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Most generators in SAS can be utilized as functions or as CALL routines. The general syntax is 

 
Form SAS Code Description 

function r=name(seed,p
i
); 

 
 
CALL 

 
 
call name(seed,p

i
,r); 

r:         SAS variable holding the random number. 
name:  one of the generators as given in  
             Table 3.1. 
seed:   a scalar or a SAS variable (in case of the  
           function) or a SAS variable (in case of the  
           CALL routine) holding the starting value of    
           the generator. 
pi:      one or more parameters described in  
          Table 3.1. 

 
Table 3.1 describes all generators available in SAS. The first column gives the function reference. 
The uniform random generator can be referred to by two names: RANUNI and UNIFORM. Table 3.2 
provides examples for some special uses of these functions. 

 

 
                  List of 10 Seed Values  
                 Apart by 1000000 Numbers  
 
                    OBS          SEED  
 
                      1           123  
                      2     587760465  
                      3     127671937  
                      4    1323234103  
                      5     619707514  
                      6    1330454004  
                      7    1307130277  
                      8     294729579  
                      9     689565084  
                     10     491301990  
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Table 3.1  Random Number Generator Functions Available in SAS 

 
SAS Function1 Distribution Function Parameters Probability Density Function2 

RANBIN(seed,n,p) Binomial  seed: See section 3.5 for 
seed values 

n: number of independent 
trials, n=1, 2, 3… 

p: probability of success, 
 0���� 
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RANCAU(seed) Cauchy  seed: See section 3.5 for 
seed values 
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RANEXP(seed) Exponential seed: See section 3.5 for 
seed values x
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RANGAM(seed,a) Gamma seed: See section 3.5 for 

seed values 
a: shape, a>0 

x
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RANNOR(seed) 
or 
NORMAL(seed)3 

Normal seed: See section 3.5 for 
seed values 
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RANPOI(seed,m) Poisson seed: See section 3.5 for 
seed values 

m: mean, m>0 
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1 When the function is utilized as a CALL routine, there is one extra parameter that is always the last one and which holds the random number 
returned by the generator. For example, r=RANBIN(seed,n,p); becomes CALL RANBIN(seed,n,p,r); 
2 The number in parentheses indicates the value of the parameter assumed in SAS. 
3 Functions RANNOR and NORMAL are identical. Function NORMAL cannot be utilized as a CALL routine. 



Chapter 3  Generating Univariate Random Numbers in SAS     
 

41 

Table 3.1  Random Number Generator Functions Available in SAS (continued) 
 
 
RANTBL(seed,p1,p2,
...pn) 

 
Defined by a 
probability 
mass 
function 

 
seed: See section 3.5 for 

seed values 
pi: probabilities, pi>0 and 

 1
1

=∑
=

n

i
ip  

nip
i

j
j �,2,1

1

=∑
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RANTRI(seed,h) 

 
Triangular 

 
seed: See section 3.5 for 

seed values 
h: hypotenuse, 0���� 
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�l is the left endpoint of the 
interval (0), 
l<r<���	
�r is the right endpoint of the 
interval (1) 

RANUNI(seed) 
or 
UNIFORM(seed)4 

Uniform seed: See section 3.5 for 
seed values 





 ≤≤

−
elsewhere

rxl
lr

0
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-��l<���	
�l is the left endpoint of the 
interval (0), 
l<r<���	
�r is the right endpoint of the 
interval (1) 

 
Table 3.2  Special Use of Some Random Number Generator Functions 
 

SAS Code Returns variates with distribution of 

x=theta+lambda*rancau(seed); Cauchy with given location (theta) and scale (lambda) parameters. 

x=ranexp(seed)/lambda; Exponential with given scale (lambda) parameter. 

x=floor(-ranexp(seed)/log(1-p)); Geometric: 
np(1 p) where 0 p 1, n 0, 1, 2,� � � � �  

x=lambda*rangam(seed,a); Gamma with given shape (a) and scale (lambda) parameters. 
If lambda=2 and 2*a is an integer, chi-square with degrees of 
freedom of 2*a. 
If a=1,2,…, Erlang (i.e., the sum of a independent exponential 
variates whose means are lambda). 

y1=rangam(seed,a); 

y2=rangam(seed,b); 

x=y1/(y1+y2); 

Beta: 

a 1 b 11
x (1 x) where 1 a and 1 b

B(a,b)
� �

� � � � � � �  

x=theta+lambda*rannor(seed); Normal with given location (theta) and scale (lambda) 
parameters. 

 

                                                           
4 Functions RANUNI and UNIFORM are identical. Function UNIFORM cannot be utilized as a CALL routine. 
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All random number generator functions are based on RANUNI, because all distributions can be 
obtained from a uniform distribution according to a theorem of probability theory. The 
transformations from uniform to other distributions are carried out by the inverse transform method, 
the Box-Müller transformation, and the acceptance-rejection procedure applied to the uniform 
variates generated by RANUNI. Internally, SAS generates only uniform random numbers with 
RANUNI and transforms them to the desired distribution. For example, if u1, u2 and u3 are from a 
uniform distribution, then n in formula (3.3) follows the standard normal distribution 

  )2cos(ln2 21 πuun −= ,                                                                    (3.3) 

and e calculated with formula (3.4) will be from an exponential distribution with a scale of one 

  )ln( 3ue −= .                                                                    (3.4) 

 

The fact that there is only one real generator is demonstrated by Program 3.7. 

 
Program 3.7  Demonstration of One Generator 
 

 
DATA TEMP5(DROP=I); 
�����DO I=1 TO 12; 
        RUNI=RANUNI(123); 
        OUTPUT; 
     END; 
     RUN; 
PROC PRINT DATA=TEMP5; 
     RUN; 
 

DATA TEMP6(DROP=I); 
     DO I=1 TO 3; 
        RUNI=RANUNI(123); 
        RNOR=RANNOR(456); 
        REXP=RANEXP(789); 
        OUTPUT; 
     END; 
     RUN; 
PROC PRINT DATA=TEMP6; 
     RUN;�
 

 
 
 
 Output 3.7 
Many 
Distributions 
but Only One 
Generator  
 
 
 
 
 
 
 
 
 
 
 

 
 OBS     RUNI 
 
  1    0.75040 
  2    0.32091 
  3    0.17839 
  4    0.90603 
  5    0.35712 
  6    0.22111 
  7    0.78644 
  8    0.39808 
  9    0.12467 
 10    0.18769 
 11    0.77618 
 12    0.43607 
 

 
 OBS   RUNI     RNOR     REXP 
 
  1  0.75040  0.65572  0.09868 
  2  0.35712  0.39428  0.92110 
  3  0.12467  0.29958  0.82994 
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See the values of RUNI on the right hand side of Output 3.7: they are the first, fifth and ninth values 
of the left hand side. It seems that three numbers are skipped for each observation in file TEMP5. 
Indeed, SAS takes two uniform random numbers to return one normal random number, and another 
uniform random number to return an exponential random number.  

Program 3.8 generates these same normal and exponential random numbers by taking those skipped 
uniform random numbers and transforming them according to formulae (3.3) and (3.4). The random 
numbers generated by our program in Output 3.8 are identical to the ones returned by the RANNOR 
and RANEXP functions in Output 3.7. 

 
Program 3.8  Uniform Random Numbers for Different Distributions 
 

 
DATA TEMP7(DROP=I); 
     DO I=1 TO 3; 
        RUNI=RANUNI(123); 
 
        /* take the next three random numbers. */ 
 
        U1=RANUNI(123); 
        U2=RANUNI(123); 
        U3=RANUNI(123); 
 
        /* 2*arsin(1) is used to obtain the value of pi. */ 
 
        RNOR=SQRT(-2*LOG(U1))*COS(4*ARSIN(1)*U2); 
        REXP=-LOG(U3); 
        OUTPUT; 
     END; 
     RUN; 
PROC PRINT DATA=TEMP7; 
     RUN; 
 

 
 
 Output 3.8 
Uniform Random  
Numbers Are  
Used  for Random  
Numbers of  
Different  
Distributions 
 
 

 
OBS    RUNI       U1        U2        U3       RNOR      REXP 
 
 1   0.75040   0.32091   0.17839   0.90603   0.65572   0.09868 
 2   0.35712   0.22111   0.78644   0.39808   0.39428   0.92110 
 3   0.12467   0.18769   0.77618   0.43607   0.29958   0.82994 
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Figure 3.1 is a comparative chart showing the execution times of the generators with certain 
parameters. The measured quantities depend highly on several hardware/software factors, so they are 
shown only for general guidance.  

As expected, RANUNI takes the least amount of time. As seen before, RANNOR takes two uniform 
random numbers and transforms them, so it takes a little more than two times that of RANUNI. 
Similarly, the execution of RANEXP takes a little longer than that of RANUNI. Figure 3.1 plots the 
execution time of the generators when referenced as functions. When we switch to the CALL 
routines, the execution time increases by about 10% on average. 

 
Figure 3.1  Benchmarking the Random Number Generators 
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3.8.1 Random Sample of Population Height (Normal  
          Distribution) 
One of the first variables that comes to mind when discussing normal distribution is height. In this 
example, we will generate a random population of 50,000 adults with height measurement. Height is 
normally distributed in the U.S. adult population (18-74 years) with a mean of 69.12 inches and a 
standard deviation of 2.85 inches for men; and 63.68 and 2.68 for women (Brainard & Burmaster 
1992). The following statement generates a random height value for men. 

 
HEIGHT=69.12+2.85*RANNOR(123); 

 
Program 3.9 generates 50,000 random, gender-dependent height values. The ratio of women to men 
in the U.S. adult population is 50.96 to 49.04 (U.S. Bureau of the Census 1998). The program first 
randomly chooses the gender code and then calculates the random height using the gender-dependent 
formula. The results in Output 3.9 indicate that the random sample of height in the female population 
is normally distributed with the requested parameters (see the normality test and the Q-Q plot).  The 
male random population possesses identical characteristics (not shown here). 

The logarithm of weight is also normally distributed, and it is highly correlated with height. In 
Chapter 4, we will demonstrate how to generate multivariate random variables with a given degree of 
correlation. 

 
Program 3.9  Generation of Random Height Values 
 

 
DATA RNDPOP; 
     DO I=1 TO 50000; 
        IF RANUNI(123)<0.5096 
           THEN DO; GENDER=’F’;  
                    HEIGHT=63.68+2.68*RANNOR(123); 
                END; 
           ELSE DO; GENDER=’M’; 
                    HEIGHT=69.12+2.85*RANNOR(123); 
                END; 
        OUTPUT; 
     END; 
     RUN; 
 
/*check the distribution in the female population. */ 
/* is it normal with the specified parameters?     */ 
 
PROC CAPABILITY DATA=RNDPOP NORMALTEST LINEPRINTER; 
     VAR HEIGHT; 
     WHERE GENDER=’F’; 
     QQPLOT HEIGHT / NORMAL (MU=63.68 SIGMA=2.68); 
     RUN; 
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 Output 3.9 
Distribution of 
Randomly 
Generated 
Height 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.8.2 Random Sample of Stock Prices (Lognormal  
          Distribution) 
In this example, we generate random samples of stock prices that follow the distribution of the S&P 
500 stock prices as of February 29, 2000. Program 3.10 reads all 500 prices and probes whether they 
form a normal distribution. Knowing the negative answer in advance, it also calculates the logarithm 
of the price and finds that to be normal. Output 3.10 shows the non-normal distribution of PRICE 
with a mean of 42.14 and a standard deviation of 30.22. The distribution of the variable LPRICE = 
LOG(PRICE) with a mean of 3.53 and a variance of 0.66 can be considered normal, based on the 
0.1108 p-value of the Shapiro-Wilk normality test. (The stock prices in many other months follow 
different distributions.) 

 

 
------------------------- gender=F ---------------------------- 
 
                    The CAPABILITY Procedure 
                       Variable:  height 
 
                            Moments 
 
N                       25480    Sum Weights              25480 
Mean               63.6665732    Sum Observations    1622224.29 
Std Deviation      2.68915463    Variance            7.23155264 
Skewness            0.0114548    Kurtosis            0.02004051 
Uncorrected SS      103465714    Corrected SS         184252.73 
Coeff Variation    4.22380929    Std Error Mean      0.01684675 
 
                      Tests for Normality 
 
   Test                  --Statistic---    -----p Value----- 
 
   Kolmogorov-Smirnov    D     0.004956    Pr > D      0.132 
   Cramer-von Mises      W-Sq  0.087017    Pr > W-Sq   0.173 
   Anderson-Darling      A-Sq  0.476862    Pr > A-Sq   0.242 
 
     --------------------------------------------------------- 
  80 +                                                    NNN| 
     |                                             +  NNNN   | 
  75 +                                           ++NNN       | 
H    |                                        ++++           | 
e 70 +                                    +++++              | 
i    |                               ++++++                  | 
g 65 +                           +++++                       | 
h    |                       +++++                           | 
t 60 +                   +++++                               | 
     |              ++++++                                   | 
  55 +           ++++                                        | 
     |       NN++                                            | 
  50 +    NNN                                                | 
     -+--------+--------+--------+--------+--------+--------+- 
     -6       -4       -2        0        2        4        6 
 
                         Normal Quantiles 
 
Normal Line:    NNN Mu=63.68, Sigma=2.68 
Observations:   +   (25435 Hidden) 
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Program 3.10  Distribution of Stock Prices 
 
 
DATA SPPRICE; 
     INPUT PRICE @@; 
     LPRICE=LOG(PRICE); 
     DATALINES; 
  3.6875   4.8750   5.6250   5.6875   6.1875   6.5000   6.8125   6.8750   7.0000 
  7.0000   8.0000   8.3125   8.5000   8.6250   8.7500   8.8125   8.9375   9.3750 
  9.6250   9.8125  10.0625  10.0625  10.8125  11.2500  11.7500  11.8125  12.1875 
 12.3750  13.1875  13.2500  13.3750  13.5625  13.6250  13.7500  13.8125  13.8125 
 13.8750  14.0000  14.3125  14.3125  14.5000  14.6250  14.8750  14.9375  15.0000 
 15.6250  15.7500  15.7500  15.7500  15.7500  15.9375  16.0625  16.1250  16.3125 
 16.3750  16.3750  16.5000  16.6875  16.7500  16.8125  16.8125  16.8125  16.9375 
 16.9375  17.1875  17.1875  17.2500  17.3750  17.4375  17.5000  17.5000  17.5625 
 17.6875  17.8125  17.8125  17.8750  18.0000  18.2500  18.3125  18.4375  18.5000 
 18.5000  18.5000  18.5625  18.6875  18.8125  19.0000  19.0000  19.1250  19.1250 
 19.1250  19.2500  19.3125  19.3125  19.3750  19.6875  19.6875  19.6875  19.7500 
 19.7500  19.8125  19.8125  19.8750  19.8750  20.1250  20.1250  20.1875  20.2500 
 20.2500  20.5625  20.6250  20.6250  20.6875  20.8750  20.9375  21.0000  21.0625 
 21.1875  21.3125  21.3750  21.3750  21.3750  21.6250  21.7500  21.8125  21.8750 
 21.8750  22.1250  22.1250  22.1250  22.1875  22.1875  22.3750  22.4375  22.5625 
 22.6875  22.8750  22.8750  22.9375  23.0000  23.2500  23.3750  23.4375  23.4375 
 23.5000  23.7500  23.9375  23.9375  24.0000  24.0625  24.2500  24.5000  24.6250 
 24.6875  24.6875  24.7500  24.8750  24.8750  24.9375  25.0625  25.1250  25.3125 
 25.7500  25.8125  25.8750  25.8750  26.0000  26.0625  26.1875  26.1875  26.2500 
 26.4375  26.6250  26.7500  26.7500  26.8125  27.0000  27.0625  27.0625  27.1875 
 27.2500  27.2500  27.3750  27.5000  27.5625  27.5625  27.5625  27.6250  27.6250 
 28.1250  28.2500  28.3125  28.3750  28.3750  28.4375  28.4375  28.5000  28.6250 
 28.8125  28.9375  29.0000  29.0625  29.5000  29.6875  29.7500  29.7500  29.7500 
 29.8125  29.8750  29.8750  29.9375  30.0000  30.0000  30.1250  30.1875  30.2500 
 30.3125  30.3750  30.7500  31.0000  31.1250  31.2500  31.3125  31.7500  31.9375 
 31.9375  32.1250  32.1250  32.6250  32.7500  32.8125  32.9375  32.9375  32.9375 
 33.0000  33.0000  33.0000  33.0625  33.0625  33.2500  33.3125  33.4375  33.6250 
 33.7500  33.8750  34.0000  34.0000  34.4375  34.6875  34.9375  35.0000  35.0000 
 35.0625  35.2500  35.4375  35.7500  35.9375  36.2500  36.5000  36.5625  36.6875 
 36.6875  36.6875  36.8125  36.8125  36.8125  36.9375  37.0000  37.0625  37.3125 
 37.3750  37.4375  37.7500  37.8125  37.9375  38.0000  38.0000  38.0000  38.1250 
 38.1875  38.2500  38.3125  38.3750  38.5625  38.5625  38.6250  38.6875  38.8125 
 38.9375  38.9375  39.2500  39.4375  39.5000  39.5000  40.0000  40.0000  40.1875 
 40.2500  40.4375  40.4375  40.5625  40.8125  40.8125  41.0000  41.1250  41.6250 
 41.7500  41.8125  41.8125  41.9375  42.0000  42.0625  42.2500  42.5000  42.6250 
 42.8125  43.0625  43.2500  43.4375  43.5000  43.5625  43.8750  43.8750  43.9375 
 44.5000  44.6250  44.6875  44.7500  44.8750  45.0000  45.2500  45.3125  45.5000 
 45.5625  45.6250  46.0000  46.0000  46.6250  46.8750  47.1250  47.4375  47.6250 
 47.6250  47.8125  47.8125  48.0000  48.0000  48.1250  48.3125  48.3125  48.4375 
 48.5000  48.6250  48.7500  48.9375  49.0000  49.1875  49.3750  49.3750  49.5000 
 49.6250  49.6875  49.6875  50.0625  50.3125  50.5000  50.5000  50.5625  50.8125 
 50.8750  50.9375  51.0000  51.1250  51.1250  51.3125  51.5000  51.6875  51.7500 
 51.7500  51.7500  52.0625  52.0625  52.1875  52.1875  52.7500  52.7500  52.8750 
 53.0000  53.3750  53.4375  53.6875  53.9375  54.3125  54.5000  54.6250  55.7500 
 55.8750  56.5000  57.1875  57.2500  57.3125  57.5000  57.8750  58.0000  58.0000 
 58.7500  58.9375  59.0000  59.0000  59.0000  59.4375  59.5000  59.5000  59.5625 
 60.6875  61.0000  61.0000  61.5625  62.3750  63.5000  64.0000  64.0000  64.2500 
 64.5000  64.6250  64.6875  65.1875  65.5000  66.6250  67.3750  67.5000  67.6250 
 68.1250  68.1875  68.5000  68.7500  68.7500  70.1875  70.4375  72.0000  72.5000 
 72.6250  72.8750  73.8125  73.8750  74.2500  74.6875  74.9375  75.1250  75.3125 
 75.8125  76.0625  77.3750  77.9375  78.5000  78.7500  78.8125  79.6250  79.7500 
 83.8125  85.2500  85.5625  87.0000  87.8750  88.1875  88.4375  89.3750  94.1875 
 95.2500  96.0000  98.0000  98.2500 102.0000 102.5000 102.6875 102.7500 105.0000 
105.4375 107.9375 108.5000 111.1875 113.0000 114.6250 115.7500 119.0000 119.2500 
132.1875 132.3750 134.1875 134.5000 136.7500 142.4375 157.2500 159.6875 166.1250 
172.0000 182.9375 188.0000 188.7500 196.8750 
; 
PROC UNIVARIATE DATA=SPPRICE NORMAL PLOT; 
       VAR PRICE LPRICE; 
       RUN;  
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 Output 3.10  
Lognormal 
Distribution of 
Stock Prices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     
                    The UNIVARIATE Procedure 
                        Variable:  PRICE 
 
                            Moments 
 
N                         500    Sum Weights                500 
Mean                42.144875    Sum Observations    21072.4375 
Std Deviation       30.217191    Variance            913.078629 
Skewness           2.11630849    Kurtosis            6.01943634 
Uncorrected SS     1343721.48    Corrected SS        455626.236 
Coeff Variation     71.698376    Std Error Mean      1.35135386 
 
                   Tests for Normality 
 
Test                  --Statistic---    -----p Value------ 
 
Shapiro-Wilk          W      0.81284    Pr < W     <0.0001 
Kolmogorov-Smirnov    D     0.137813    Pr > D     <0.0100 
Cramer-von Mises      W-Sq  3.656731    Pr > W-Sq  <0.0050 
Anderson-Darling      A-Sq  22.08451    Pr > A-Sq  <0.0050 
 
--------------------------------------------------------------- 
 
                   The UNIVARIATE Procedure 
                       Variable:  LPRICE 
 
                            Moments 
 
N                         500    Sum Weights                500 
Mean               3.52918406    Sum Observations    1764.59203 
Std Deviation      0.65656975    Variance            0.43108383 
Skewness           -0.1068052    Kurtosis            0.31914485 
Uncorrected SS     6442.68091    Corrected SS        215.110833 
Coeff Variation    18.6040098    Std Error Mean      0.02936269 
 
                   Tests for Normality 
 
Test                  --Statistic---    -----p Value------ 
 
Shapiro-Wilk          W     0.995057    Pr < W      0.1108 
Kolmogorov-Smirnov    D     0.027731    Pr > D     >0.1500 
Cramer-von Mises      W-Sq  0.062784    Pr > W-Sq  >0.2500 
Anderson-Darling      A-Sq   0.53297    Pr > A-Sq   0.1799 
 
                  Histogram                   #  Boxplot 
   5.3+**                                     4     0 
      .**                                     4     | 
   4.9+***                                    6     | 
      .*******                               14     | 
   4.5+*******                               13     | 
      .***************                       30     | 
   4.1+******************                    35     | 
      .**********************************    67  +-----+ 
   3.7+**********************************    67  |     | 
      .*************************             49  *--+--* 
   3.3+******************************        59  |     | 
      .************************              48  +-----+ 
   2.9+************************              48     | 
      .*************                         25     | 
   2.5+****                                   8     | 
      .***                                    6     | 
   2.1+****                                   7     | 
      .***                                    6     | 
   1.7+*                                      2     0 
      .*                                      1     0 
   1.3+*                                      1     0 
       ----+----+----+----+----+----+---- 
       * may represent up to 2 counts                    
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A variable is lognormally distributed if its logarithm is normally distributed. If the lognormal 
distribution has a mean of m and a standard deviation of s, then the variable PRICE in the statement 
below will follow lognormal distribution. 

 
PRICE=EXP(M+S*RANNOR(123)); 

 
Program 3.11 generates a sample of 10,000 random stock prices that follow the desired lognormal 
distribution. Output 3.11 shows a mean of 41.79 and a standard deviation of 31.33. Figure 3.2 
presents the frequency histogram of the random sample superimposed on the theoretical lognormal 
distribution. The histogram of the random sample closely follows the theoretical curve. The 
histogram gets much smoother and closer to the theoretical one when we increase the sample size to 
100,000. The program rounds the generated prices in two ways. 

 
PRICE=ROUND(PRICE,1/16); 
PRICERND=ROUND(PRICE,1); 

 
The first one rounds prices to 1/16 of a dollar, which is the precision with which the stock prices 
were quoted (before the change to decimalization), and the second one rounds them to whole values 
in order to facilitate the production of the frequencies with PROC FREQ later in the program. 

 
Program 3.11  Generation of 10,000 Random Stock Prices 
 

 
DATA RNDPRICE; 
     DO I=1 TO 10000; 
        PRICE=EXP(3.52918406+0.65656975*RANNOR(123)); 
        PRICE=ROUND(PRICE,1/16);   *** round the price to 1/16.; 
        PRICERND=ROUND(PRICE,1); 
        OUTPUT; 
     END; 
PROC UNIVARIATE DATA=RNDPRICE; 
     VAR PRICE; 
     RUN; 
PROC FREQ DATA=RNDPRICE; 
     TABLE PRICERND / OUT=FREQHIST(RENAME=(PRICERND=PRICE) 
                                   KEEP=PRICERND PERCENT); 
     RUN; 
 
/* create the theoretical probability density  */ 
/* function of stock prices as of 31/1/1999.   */ 
 
DATA PDFLOGN; 
     DO PRICE=0 TO 200 BY 0.1; 
        PROB=100*PDF(’LOGNORMAL’,PRICE,3.52918406,0.65656975); 
        OUTPUT; 
     END; 
DATA BOTH; 
     SET PDFLOGN FREQHIST; 
     RUN; 
PROC GPLOT DATA=BOTH; 
     PLOT (PROB PERCENT)*PRICE / OVERLAY VAXIS=AXIS1 
                                 HAXIS=AXIS2; 
     AXIS1 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Probability (%)’) 
           ORDER=0 TO 2.5 BY 0.5 VALUE=(H=1.2 F=SWISS) 
           MINOR=(N=1); 
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     AXIS2 LABEL=(F=SWISS H=1.5 ’Stock Price ($)’) 
           ORDER=0 TO 200 BY 25 VALUE=(H=1.2 F=SWISS) 
           MINOR=(N=3); 
     SYMBOL1 I=JOIN C=BLACK W=1 R=1; 
     SYMBOL2 I=STEPCJ C=BLACK W=2 R=1; 
     TITLE F=SWISS H=1.5 ’Theoretical and Randomly Generated 
           Distributions of Stock Prices’; 
     TITLE2 F=SWISS H=1.5 ’Size of Random Sample is 10,000’; 
     RUN; 
     QUIT; 
 

 

 

 Output 3.11 
Distribution of 
Randomly 
Generated 
Stock Prices 
 
 
 
 
 
Figure 3.2  Distribution of Randomly Generated 10,000 and 100,000 Stock Prices 
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The UNIVARIATE Procedure 
Variable:  PRICE 
                            Moments 
 
N                       10000    Sum Weights              10000 
Mean               41.7947188    Sum Observations    417947.188 
Std Deviation      31.3295633    Variance            981.541539 
Skewness           3.02657488    Kurtosis            22.3156609 
Uncorrected SS       27282419    Corrected SS        9814433.85 
Coeff Variation    74.9605794    Std Error Mean      0.31329563�
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The RANTBL function is one of the most widely used random number generators. When we need 
random numbers from a discrete distribution, RANTBL is the choice. Or when the theoretical 
distribution is unknown and we only possess a stepwise approximation of it, RANTBL is the 
generator of choice again. The RANTBL function has the form 

 
  R = RANTBL(seed,p1,p2,...pn); 

 

and the RANTBL CALL routine has the form 

 

  CALL RANTBL(seed,p1,p2,...pn,r); 

where pi are probabilities and .1
1

∑
=

=
n

i
ip  Variable r receives a value of 

  1 with probability of p1, 

  2 with probability of p2, 

  ... 

  n with probability of pn. 

 

If we need different values to be generated, we have to map 1,2,... n into the desired set of values. 

Sometimes ∑
=

<
n

i
ip

1

1  due to rounding error, and the RANTBL function may return an unexpected 

extra value of  n+1. In order to avoid this problem, we can increase the value of pn or leave it out 

entirely. In this latter case, SAS will automatically assign the remaining probabilities )1(
1

1
∑

−

=

−
n

i
ip  

to pn  and the execution time will also decrease. The pi probabilities can be spelled out individually in 
RANTBL, or they can be placed into an array, which is then referenced instead of the pi ’s. The 
following two methods result in the same random numbers: 

 
R=RANTBL(123,0.1,0.2,0.3,0.4); 
 
ARRAY PROB(4) P1-P4 (0.1,0.2,0.3,0.4); 
R=RANTBL(123,OF PROB(*)); 

 
As mentioned earlier, the following solutions provide the same results, but take a little less time to 
execute because we leave out the last probability: 

 
R=RANTBL(123,0.1,0.2,0.3); 
 
ARRAY PROB(3) P1-P3 (0.1,0.2,0.3); 
R=RANTBL(123,OF PROB(*)); 
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The execution time of the RANTBL function, in general, increases linearly with the number of 
probabilities specified, and it does not depend on the above two methods.  

In the following example, we will demonstrate the RANTBL function’s use for generating random 
samples of bonds with a given distribution of bond ratings. Then we pretend that the lognormal 
distribution in Section 3.8.2 is unknown, and we generate the random stock prices with the help of 
RANTBL in Section 3.10.2. 

 

3.10 Examples Using the RANTBL Function  

 

3.10.1   Random Sample of Bonds with Bond Ratings 
The riskiness of bonds is measured by so-called bond ratings, determined by rating agencies such as 
Moody's or Standard and Poor's. This example generates a sample portfolio of 10,000 bonds 
following the rating composition of U.S. bonds rated by Moody's at the end of 1998. In Moody's 
bond rating scale, 'Aaa' indicates the lowest level of risk, 'Aa' the second lowest level of risk and 
'Caa' (including 'Ca' and 'C') the highest. Program 3.12 reads the theoretical composition and loads 
the frequencies (probabilities) into array PROB, which makes up the probability mass function for 
RANTBL. The heart of the program is the statement  

 
BRATING=BRATINGS(RANTBL(123,OF PROB(*))); 

 
which generates a random integer between 1 and 7 and maps it to the character string of the 
corresponding rating category. This program determines what the ideal composition of the portfolio 
would be in a sample of 10,000 bonds, and compares the random sample to this one using the chi-
square test. The non-significant result of the chi-square test (p-value of 0.216 in Output 3.12) means 
that the random and theoretical portfolios are statistically identical. 

 
Program 3.12  Generation of 10,000 Random Bond Ratings 
 

 
/* Read the theoretical distribution of Moody’s */ 
/* bond ratings as of 12/1998.                  */ 
 
DATA BRATINGS; 
     INPUT BRATING $3. MDPROB; 
     MDPROB=MDPROB/100; 
     CARDS; 
Aaa     0.707   *** The sum of these frequencies is 100. 
Aa      4.302 
A      11.903 
Baa    17.030 
Ba     21.332 
B      33.942 
Caa    10.785 
; 
DATA RNDBONDS(KEEP=BRATING); 
     SET BRATINGS END=ENDOFRT; 
 
     /* set up arrays for the bond ratings (’BRTNGS’) */ 
     /* and the percent of companies in those rating  */ 
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     /* categories (’PROB’).                          */ 
 
     ARRAY BRATINGS(7) $5 BRTNGS1-BRTNGS7; 
     ARRAY PROB(7) PROB1-PROB7; 
     RETAIN BRTNGS1-BRTNGS7 PROB1-PROB7; 
     BRATINGS(_N_)=BRATING; 
     PROB(_N_)=MDPROB; 
 
     /* generate the 10,000 random bond ratings. */ 
 
     IF ENDOFRT THEN DO; 
        DO I=1 TO 10000; 
 
           /* function RANTBL is called with the probabilities */ 
           /* stored in array ’PROB’. The integer returned by  */ 
           /* RANTBL is mapped into the rating category.       */ 
 
           BRATING=BRATINGS(RANTBL(123,OF PROB(*))); 
           OUTPUT; 
        END; 
        END; 
 
/* check the random distribution to the theoretical one using */ 
/* the chi-square test of PROC FREQ. Obtain the frequencies   */ 
/* by rating category in the random sample.                   */ 
 
PROC FREQ DATA=RNDBONDS; 
     TABLE BRATING / NOPRINT OUT=FREQHIST(RENAME=(PERCENT=RNDPNT) 
                                 KEEP=BRATING PERCENT COUNT); 
     RUN; 
 
/* set up a special file where there is a record for each       */ 
/* rating category and for each sample (theoretical and random).*/ 
/* both theoretical and random samples have 10,000 bonds each.  */ 
/* variable ’FRQ’ holds the frequency in each record.           */ 
 
PROC SORT DATA=BRATINGS; 
     BY BRATING; 
DATA BOTH; 
     MERGE BRATINGS FREQHIST; 
     BY BRATING; 
     SAMPLE=’Theoretical’; 
     FRQ=ROUND(10000*MDPROB); 
     OUTPUT; 
     SAMPLE=’Random’; 
     FRQ=COUNT; 
     OUTPUT; 
     RUN; 
 
/* execute PROC FREQ to determine whether or not the   */ 
/* random sample is from the theoretical distribution. */ 
 
PROC FREQ DATA=BOTH; 
     TABLE SAMPLE*BRATING / CHISQ; 
     WEIGHT FRQ; 
     RUN; 
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Output 3.12  The Random Bond Ratings Follow the Theoretical Distribution 
 

 
SAMPLE       BRATING 
 
Frequency   | 
Percent     | 
Row Pct     | 
Col Pct     |A       |Aa      |Aaa     |B       |Ba      |Baa     |Caa     |  Total 
------------+--------+--------+--------+--------+--------+--------+--------+ 
Random      |   1125 |    462 |     68 |   3461 |   2215 |   1664 |   1005 |  10000 
            |   5.63 |   2.31 |   0.34 |  17.31 |  11.08 |   8.32 |   5.03 |  50.00 
            |  11.25 |   4.62 |   0.68 |  34.61 |  22.15 |  16.64 |  10.05 | 
            |  48.60 |  51.79 |  48.92 |  50.49 |  50.94 |  49.42 |  48.22 | 
------------+--------+--------+--------+--------+--------+--------+--------+ 
Theoretical |   1190 |    430 |     71 |   3394 |   2133 |   1703 |   1079 |  10000 
            |   5.95 |   2.15 |   0.36 |  16.97 |  10.67 |   8.52 |   5.40 |  50.00 
            |  11.90 |   4.30 |   0.71 |  33.94 |  21.33 |  17.03 |  10.79 | 
            |  51.40 |  48.21 |  51.08 |  49.51 |  49.06 |  50.58 |  51.78 | 
------------+--------+--------+--------+--------+--------+--------+--------+ 
Total           2315      892      139     6855     4348     3367     2084    20000 
               11.58     4.46     0.70    34.28    21.74    16.84    10.42   100.00 
 
Statistic                     DF     Value        Prob 
------------------------------------------------------ 
Chi-Square                     6     8.318       0.216 

 
 
 

3.10.2   Generating Random Stock Prices Using the  
             RANTBL Function 
If the theoretical distribution of a variable is not known, but a stepwise approximation of it is 
available, we can utilize the RANTBL function to generate the random samples that follow the 
distribution given by that stepwise function. Let us assume that the stock prices in the example in 
Section 3.8.2 follow an unknown theoretical distribution. We will show how to generate the random 
stock prices with the RANTBL function.  

Program 3.13 first establishes the theoretical cumulative density function of the S&P 500 stock prices 
(using the file SPPRICE from Program 3.10 in Section 3.8.2). Then these prices and their 
probabilities are loaded into two arrays used in conjunction with the RANTBL function. Note the 
compact reference to array PROB, which has 414 elements during the execution (414 is the number 
of unique stock prices among the S&P 500 stocks). Since the RANTBL function returns an integer, it 
is mapped to an actual stock price. The program finally determines the cumulative distribution 
function of the random stock prices and plots it along with the theoretical one. The closeness of the 
two curves is clear in Figure 3.3 even with 1,000 random prices. The first ten randomly generated 
values are shown in Output 3.13. 

 



Chapter 3  Generating Univariate Random Numbers in SAS     
 

55 

Program 3.13    Generating Random Stock Prices with RANTBL 
 

 
/* determine the probability mass function of the stock prices. */ 
/* file ’SPPRICE’ was created in Program 3.10.                  */ 
 
PROC FREQ DATA=SPPRICE; 
     TABLE PRICE / NOPRINT OUT=SPFREQ(KEEP=PRICE PERCENT); 
 
/* macro variable ’N’ holds the number of unique stock prices.  */ 
 
DATA _NULL_; 
     IF 0 THEN SET SPFREQ NOBS=N; 
     IF _N_=1 THEN CALL SYMPUT(’N’,COMPRESS(PUT(N,8.0))); 
     STOP; RUN; 
 
/* generate 1,000 random stock prices according to the       */ 
/* probabilities determined before (file ’RNDPRICE’). File   */ 
/* ’SPCDF’ holds the theoretical cumulative density function */ 
/* of the S&P 500 stock prices.                              */ 
 
DATA RNDPRICE(KEEP=PRICE) SPCDF(KEEP=PRICE SPPROB); 
     SET SPFREQ END=ENDOFPRC; 
 
     /* arrays ’PRICES’ and ’PROB’ hold the unique stock prices */ 
     /* and their probabilities of the S&P 500 stocks. Load     */ 
     /* them into the arrays from the output of ’PROC FREQ’.    */ 
 
     ARRAY PRICES(&N) PRC1-PRC&N; 
     ARRAY PROB (&N) PRB1-PRB&N; 
     RETAIN PRC1-PRC&N PRB1-PRB&N; 
     PRICES(_N_)=PRICE; 
     PROB(_N_)=PERCENT/100; 
 
     /* the arrays are loaded. Create the theoretical cdf (file */ 
     /* ’SPCDF’) and generate the 1,000 random stock prices.    */ 
 
     IF ENDOFPRC THEN DO; 
 
        /* calculate and save the theoretical cdf. */ 
 
        SPPROB=0; 
        DO I=1 TO DIM(PRICES); 
           PRICE=PRICES(I); 
           SPPROB=SPPROB+PROB(I); 
           OUTPUT SPCDF; 
        END; 
 
        /* generate random stock prices using function RANTBL. */ 
 
        DO I=1 TO 1000; 
 
           /* function RANTBL is called with the probabilities */ 
           /* in array ’PROB’. The returned integer is mapped  */ 
           /* to the actual stock price.                       */ 
 
           PRICE=PRICES(RANTBL(123,OF PROB(*))); 
           OUTPUT RNDPRICE; 
        END; 
     END; 
     RUN; 
 
/* determine the cumulative distribution */ 
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/* function of the random stock prices.  */ 
 
PROC FREQ DATA=RNDPRICE; 
     TABLE PRICE / NOPRINT OUT=RNDCDF(KEEP=PRICE PERCENT); 
     RUN; 
DATA RNDCDF(KEEP=PRICE RNDPROB); 
     SET RNDCDF; 
     RETAIN RNDPROB 0; 
     RNDPROB=RNDPROB+PERCENT/100; 
     RUN; 
 
/* concatenate the theoretical (file ’SPCDF’) and the randomly  */ 
/* generated (file ’RNDCDF’) cdf’s. Set up a sample identifier. */ 
 
DATA BOTH; 
     SET SPCDF(RENAME=(SPPROB=PROB)) 
         RNDCDF(RENAME=(RNDPROB=PROB) IN=RND); 
     RETAIN SAMPLE ’Theoretical’; 
     IF RND THEN SAMPLE=’Random’; 
     OUTPUT; 
     RUN; 
 
/* create an annotate file for the legend. */ 
 
DATA ANNO; 
     XSYS=’2’; YSYS=’2’; 
     FUNCTION=’LABEL’; POSITION=’6’; STYLE=’DUPLEX’; SIZE=1.2; 
     X=170; Y=0.20; TEXT=’THEORETICAL’; OUTPUT; 
            Y=0.10; TEXT=’RANDOM’;      OUTPUT; 
     LINE=1;  FUNCTION=’MOVE’; X=150; Y=0.1; OUTPUT; 
              FUNCTION=’DRAW’; X=168; Y=0.1; OUTPUT; 
     LINE=20; FUNCTION=’MOVE’; X=150; Y=0.2; OUTPUT; 
              FUNCTION=’DRAW’; X=168; Y=0.2; OUTPUT; 
 
/* plot the two cdf’s. */ 
 
PROC GPLOT DATA=BOTH ANNOTATE=ANNO; 
     PLOT PROB*PRICE=SAMPLE / VAXIS=AXIS1 HAXIS=AXIS2 NOLEGEND; 
     AXIS1 LABEL=(A=90 R=0 F=DUPLEX H=1.2 ’Probability’) 
           ORDER=0 TO 1 BY 0.2 VALUE=(H=1.2 F=DUPLEX) MINOR=(N=1); 
     AXIS2 LABEL=(F=DUPLEX H=1.2 ’Stock Price ($)’) 
           ORDER=0 TO 200 BY 25 VALUE=(H=1.2 F=DUPLEX) MINOR=(N=3); 
     TITLE  F=SWISS H=1.3 ’Theoretical and Randomly Generated 
Cumulative Distribution Functions’; 
     TITLE2 F=SWISS H=1.3 ’Size of Random Sample is 1,000. Function 
Used: RANTBL’; 
     SYMBOL1 I=JOIN C=BLACK R=1 L=1; 
     SYMBOL2 I=JOIN C=BLACK R=1 L=20; 
     RUN; 
     QUIT; 
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 Output 3.13  
Random Stock 
Prices 
Generated   
with the 
RANTBL 
Function  
 
 
 
 

 
 
 
 
 
Figure 3.3  Distribution of Random Stock Prices Generated by RANTBL 
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The random number generator functions available in SAS satisfy the requirements of producing 
random numbers of any distribution for Monte Carlo simulations. They are invoked in a DATA step 
or in PROC IML, either as functions or CALL routines. When we create more than one random 
variable, the CALL form should be used with carefully picked seed values in order to avoid 
overlapping or correlated streams of random numbers. Various SAS procedures help verify the 
distribution of the generated random numbers. 

 
              The first 10 Random Stock Prices 
 
                      OBS     PRICE 
 
                        1    62.0000 
                        2    33.6875 
                        3    26.6875 
                        4    85.0000 
                        5    35.0625 
                        6    28.3125 
                        7    64.5625 
                        8    37.0000 
                        9    21.7500 
                       10    26.9375 
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In Chapter 3, we discussed how to generate random numbers from different distributions in SAS (e.g., 
uniform or normal distributions). This chapter is a continuation of that discussion. A Monte Carlo 
study is “. . . the use of random sampling techniques ... to obtain approximate solutions ...” (Merriam-
Webster, Inc. 1994, pp. 754-755). To conduct a Monte Carlo study, it is obviously necessary to 
generate sample data in such a fashion that the generated sample data adequately represent random 
samples from a population with known population characteristics, such as population central tendency 
(e.g., population mean) and population variability (e.g., population standard deviation). Furthermore, 
population characteristics also include whether or not the population is normally distributed, and in 
the case of non-normal distributions, the nature and degree of non-normality (e.g., degree of skewness 
and/or kurtosis). 

When the analysis involves more than one variable, as is usually the case in most analysis situations, 
not only individual variable distribution characteristics (i.e., mean, standard deviation, skewness, and 
kurtosis of each individual variable) need to be simulated, but the inter-variable relationship patterns 
among the variables must also be adequately simulated. Fundamentally, the validity of any Monte 
Carlo study results hinges on the adequacy of data generation, both for individual variables and for 
inter-variable relationship patterns. Data generation is so crucial in Monte Carlo studies that it is no 
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exaggeration to say that unless we are able to generate sample data according to our specified 
population characteristics, no Monte Carlo studies can be attempted. 

The purpose of this chapter is to present procedures for data generation, and to present SAS program 
examples to implement the data generation procedures.  The theoretical aspects of data generation are 
briefly covered when necessary to provide readers with the necessary theoretical underpinnings of the 
data generation procedures.  SAS programming examples of data generation are provided for all 
important aspects of data generation so that readers will be able to apply these data generation 
procedures in SAS in their own work. 

 

��� ����������������������������������������

Most Monte Carlo studies involve more than one variable. But we must be able to generate samples 
of a single variable before we can attempt to tackle the situation involving multiple variables. This 
section discusses how such a task can be accomplished in SAS. Simulating data as if they were 
sampled from a standard normal distribution—i.e., N(0,1), normally distributed with a population 
mean of zero, and a population standard deviation of one—is easily accomplished in SAS by using 
the RANNOR function, as discussed in Chapter 3. So the major focus of this chapter is on generating 
sample data for a population with a known degree of non-normality. Because many statistical 
analyses assume data normality, the impact of violating data normality assumption on the validity of 
statistical results often becomes an area of focus for empirical investigations. Consequently, data non-
normality is often one important area of research interest in Monte Carlo simulation studies. 

4.2.1  Generating Sample Data from a Normal Distribution  
          with the Desired Mean and Standard Deviation 
As discussed in Chapter 3, the SAS normal variate generator RANNOR makes it relatively easy to 
generate samples from a normally distributed population with a mean of zero and a standard deviation 
of one [N(0, 1)]. The numerical values obtained through repeated generation of the SAS normal 
variate generator RANNOR can be considered as z scores from a normally distributed Z score 
distribution, which is used widely in many statistical analyses. In many Monte Carlo studies, 
however, we need variables with population means and standard deviations other than those provided 
by the SAS normal variate generator RANNOR. To linearly transform normally distributed data to a 
new distribution with the desired population mean and variance requires only a simple linear 
transformation. Linear transformation only changes the mean and variance of a distribution, but not 
the shape of the distribution as defined by the distribution's third and fourth statistical moments (i.e., 
skewness and kurtosis).  The formula used for such linear transformation is as follows: 

 

)(z  +  = X XX σµ ′′′         (4.1) 
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where  

X’ is the transformed variable. 

x’ is the desired population mean of the transformed variable. 

z the z score values generated by the SAS random normal variate generator  
        RANNOR. 

x’ is the desired population standard deviation of the transformed variable. 

 

Such simple linear transformation is readily implemented in the data generation process in SAS. For 
example, we are interested in generating a sample of 10,000 observations (cases) on three 
uncorrelated variables (X1, X2, X3) from the following three normal distributions with their respective 
population means and standard deviations: 

X1:  = 100,    = 15 (e.g., IQ Score Distribution) 

X2:  =   50,    = 10 (e.g., T-Score Distribution) 

X3:  =     0,    =   1 (e.g., Z-Score Distribution) 

 
A SAS program example (Program 4.1) is provided below to accomplish this task. Please notice that 
the linear transformations based on Formula 4.1, implemented for X1 and X2 in the SAS program, 
easily accomplish the goal of imposing the specified population means and standard deviations on X1 
and X2. 

 

Program 4.1  Generating Three Independent Normal Variables 
 

 
DATA A; 
  DO I = 1 TO 10000; 
     X1 = 100 + 15*RANNOR (0); 
     X2 =  50 + 10*RANNOR (0); 
     X3 = RANNOR (0); 
   OUTPUT; 
  END; 
PROC MEANS DATA=A N MEAN VAR SKEWNESS KURTOSIS; 
  VAR X1 X2 X3; 
PROC CORR NOSIMPLE; 
  VAR X1 X2 X3; 
RUN; 
 

 

Sample statistics (for N=10,000) based on one execution of Program 4.1 are presented in Output 4.1. 
These results indicate that the variables in the sample closely resemble normal distributions with 
specified means and standard deviations. In addition, as expected, the three variables are not 
correlated with each other except by chance. 
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Output 4.1   
Sample 
Statistics of 
Three 
Independent 
Variables 
(Program 
4.1) 
 
 
 
 
 
 
 
 
 
 
 

4.2.2  Generating Data from Non-Normal Distributions 
Although it is relatively easy to generate sample data from a normal distribution with any desired 
population mean and standard deviation, as seen in the previous section, generating data from a non-
normal distribution is considerably more complicated. But since non-normality tends to be an 
important condition for empirical investigation in a variety of statistical Monte Carlo simulation 
studies, it is crucial that a Monte Carlo researcher be able to accomplish this task. 

A variety of mathematical algorithms have been developed over the years to simulate non-normality 
distribution conditions (Burr 1973; Fleishman 1978; Johnson 1949, 1965; Johnson & Kitchen 1971; 
Pearson & Hartley 1972; Ramberg & Schmeiser 1974; Ramberg et al. 1979; Schmeiser & Deutch 
1977). In this section, we introduce two algorithms for simulating population distributional non-
normality conditions. These two algorithms have been popular among Monte Carlo researchers in 
different disciplines. Also, these two systems are relatively easy to implement in SAS programming. 

4.2.2.1   Using the Generalized Lambda Distribution (GLD) System  
Based on Tukey’s earlier work (Tukey 1960), Ramberg and Schmeiser (1974) developed algorithms 
for obtaining a generalized lambda distribution (GLD) for simulating non-normal distributions with 
desired degrees of skewness and kurtosis: 

  
λ

λ
λλ

2
1

)u  (1  u +  = X
43 −−′    (4.2) 

 
                          The MEANS Procedure 
 
  Variable     N          Mean      Variance      Skewness      Kurtosis   
  -----------------------------------------------------------------------   
  X1       10000   100.1210242   225.5664422     0.0089585    -0.0961917   
  X2       10000    50.2067529   101.1253957    -0.0118714     0.0306617   
  X3       10000     0.0139093     1.0228762     0.0087563     0.0473664   
  -------------------------------------------------------------------------   
                                 The CORR Procedure 
 
                    Pearson Correlation Coefficients, N = 10000 
                             Prob > |r| under H0: Rho=0 
 
                                  X1            X2            X3 
 
                    X1       1.00000       0.01188       0.00158 
                                            0.2349        0.8749 
 
                    X2       0.01188       1.00000       0.00809 
                              0.2349                      0.4183 
 
                    X3       0.00158       0.00809       1.00000 
                              0.8749        0.4183 
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where 

X’ is the simulated non-normal distribution. 

u is a uniform distribution ranging from 0 to 1 (see Chapter 3 for details 
about the SAS uniform distribution generator RANUNI). 

i (i=1 to 4) represents values needed to simulate sample data from a non-normal 
distribution with specified degrees of skewness and kurtosis; these four 
� values are determined once the degrees of skewness and kurtosis of the 
simulated non-normality are specified. 

 

Ramberg et al. (1979) elaborated on the GLD algorithms and tabulated the parameters  1,  2,  3, and 

 4 needed in (4.2) for selected values of skewness and kurtosis. Part of the tabulated parameters of  1, 

 2,  3, and  4 are adapted from Ramberg et al. (1979) and presented in Table 4.1. Table 4.1 is 
intended as an illustrative example, and it only covers those  values for non-normality conditions 
with skewness of +.75 or -.75, and kurtosis ranging from -.2 to +3.2. Readers should consult the 
tabulated values in Ramberg et al. (1979) for other non-normality conditions as defined by the 
population skewness and kurtosis of a distribution. 

 
Table 4.1   GLD Method Coefficients for Non-Normality Transformation 
 

 
SKEWNESS1   KURTOSIS           

 1
             

 2
           

 3
           

 4
 

 
 .75        -.20           -1.3340         .2104        .0000        .3903 
 .75         .00           -1.0970         .2003        .0183        .3119 
 .75         .40           - .7850         .1658        .0360        .1974 
 .75         .80           - .5900         .1206        .0355        .1179 
 .75        1.20           - .4660         .0726        .0246        .0614 
 .75        1.60           - .3840         .0266        .9663(+)     .0202 
 .75        2.00           - .3240        -.0157       -.5915(+)    -.0109 
 .75        2.40           - .2840        -.0539       -.0207       -.0352 
 .75        2.80           - .2540        -.0884       -.0342       -.0547 
 .75        3.20           - .2290        -.1195       -.0464       -.0706 
 
1: For negative skewness, see the explanation later in this section. 
(+): Multiply by 10-2. 
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One potential confusion related to the tabulated i values in the tables of Ramberg et al. (1979) is the 
kurtosis values listed in their tables.  Ramberg et al. defined skewness (  3) and����������	 4) 
respectively as: 

 

σ
µ

α

σ
µ

α

4

4

4
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) E(X
 = 

)E(X
 = 

−

−

        (4.3) 

where 

 
E  is a symbol meaning "expected value". 

�  is the population mean. 

  is the population standard deviation. 

3 is the skewness. 

4 is the kurtosis. 

 
While the definition for skewness (�3) is consistent with what is commonly used elsewhere, the 
definition for kurtosis (�4) is not. Although their definition for kurtosis is technically correct and not 
uncommon, the more commonly known definition for kurtosis is: 

      3  
) E(X

 = 
4

4

4 −−
σ

µ
α        (4.4) 

The difference between the two definitions of kurtosis is simple: Based on the more common 
definition of kurtosis (4.4), a normal distribution will have a skewness of zero and a kurtosis of zero. 
But based on the kurtosis definition in Ramberg et al. (1979), as expressed in (4.3), a normal 
distribution would have a skewness of zero and a kurtosis of 3. For this reason, readers should be 
careful in reading the tables in Ramberg et al. (1979) for different kurtosis values: simply subtract 3 
from their tabulated kurtosis values to make those values conform to the more common definition. 
For example, the kurtosis values in Table 4.1 above originally ranged from +2.8 to +6.2 in Ramberg 
et al. (1979). We simply subtracted 3 from their listed kurtosis values in order to make them conform 
to the convention that normal distributions have a kurtosis of zero instead of +3. 

The tabulated i values in Ramberg et al. (1979) for the GLD algorithm, as represented in Table 4.1, 
do not list any condition of negative skewness.  But the probability density with a negative skewness 
is the mirror image of the probability density with a positive skewness of the same absolute value.  So 
to obtain the i values for a negative skewness condition, do the following: 

1. Find the i values for the positive skewness with the same absolute value. 

2. Interchange the  3 and  4 values—i.e., use the  3 as the new  4, and  4 as the new  3. 

3. Change the sign of  1. 
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These three steps will allow us to generate sample data from distributions with negative skewness.   

It also warrants readers’ attention that, in using the GLD algorithm as presented above in simulating 
non-normal conditions, the uniform distribution generator (RANUNI in SAS) is needed instead of the 
normal variate generator (RANNOR). A SAS program example is presented below (Program 4.2) in 
which the GLD method is used to simulate a sample (N=10,000) with three uncorrelated non-normal 
variables with the following population non-normality conditions: 

X1:  = 100,  = 15, skewness =  .75,   kurtosis = .80 

X2:  = 50,  = 10, skewness = -.75,   kurtosis = .80 

X3:  = 0,  = 1, skewness =  .75,    kurtosis = 2.40 

 

Program 4.2  GLD Method for Generating Three Non-Normal Variables 
 

 
DATA A; 
  DO I = 1 TO 10000; 
     X1 = RANUNI(0); 
     X2 = RANUNI(0); 
     X3 = RANUNI(0); 
     X1 = -.59 + (X1**.0355 - (1-X1)**.1179)/.1206; 
     X2 =  .59 + (X2**.1179 - (1-X2)**.0355)/.1206; 
     X3 = -.284 + (X3**(-.0207) - (1-X3)**(-.0352))/(-.0539); 
     X1 = 100 + 15*X1;  
     X2 =  50 + 10*X2; 
     X3 =  X3; 
   OUTPUT; 
  END; 
PROC MEANS N MEAN STD SKEWNESS KURTOSIS; 
  VAR X1 X2 X3; 
PROC CORR NOSIMPLE; 
  VAR X1 X2 X3; 
RUN; 
 

 

The descriptive statistics for the simulated sample of three uncorrelated variables based on one 
execution of this SAS program are presented in Output 4.2 below.  These results indicate that the 
sample generated using the GLD method closely approximates the desired population non-normality 
conditions specified for the three variables.  Furthermore, the sample correlations among the three 
variables do not exceed chance level, as expected theoretically. 
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Output 4.2  
Three Non-
Normal 
Variables 
Based on 
GLD Method 
(Program 4.2) 
 
 

 

 

 

 

4.2.2.2   Using Fleishman’s Power Transformation Method   
Fleishman (1978) also introduced a method for generating sample data from a population with desired 
degrees of skewness and kurtosis.  This method uses polynomial transformation to transform a 
normally distributed variable to a variable with specified degrees of skewness and kurtosis.  The 
polynomial transformation developed by Fleishman takes the form: 

   dZ+ cZ + bZ + a = Y 32        (4.5) 

 where 

Y  is the transformed non-normal variable with specified population skewness 
and kurtosis. 

Z  is a normally distributed variable with a population mean of zero and a 
variance of one—i.e., a unit normal variate. 

a, b, c, d are coefficients needed for transforming the unit normal variate to a non-
normal variable with specified degrees of population skewness and 
kurtosis. Of the four coefficients, a = -c. 

 
The coefficients (a, b, c, d) needed for the transformation are tabulated in Fleishman (1978) for 
selected combinations of degrees of skewness and kurtosis.  Table 4.2 presents a small example set of 
Fleishman power transformation coefficients for skewness of .75, and for kurtosis ranging from -.20 
to +3.20.  Because a = -c, the table does not list the values for a. 

 
                           The MEANS Procedure 

 
  Variable     N          Mean       Std Dev      Skewness      Kurtosis   
  -----------------------------------------------------------------------   
  X1       10000   100.0306527    14.7541618     0.7329213     0.8436068  
  X2       10000    50.0614385     9.9028254    -0.7390503     0.7232249   
  X3       10000     0.0015703     0.9900119     0.6779757     2.4359533   
  -----------------------------------------------------------------------   
                                 The CORR Procedure 
                    Pearson Correlation Coefficients, N = 10000 
                             Prob > |r| under H0: Rho=0 
 
                                  X1            X2            X3 
                    X1       1.00000       0.00274       0.00319 
                                            0.7838        0.7497 
 
                    X2       0.00274       1.00000      -0.00231 
                              0.7838                      0.8175 
 
                    X3       0.00319      -0.00231       1.00000 
                              0.7497        0.8175 
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Once the coefficients for the desired transformation are available, generating non-normal data 
becomes a relatively simple matter. While the GLD method discussed above requires a uniform 
distribution random number generator (the RANUNI function in SAS), Fleishman’s method requires a 
normal variate generator (the RANNOR function in SAS) for generating random numbers from a 
normal distribution with a mean of zero and a variance of one. 

 

Table 4.2   Selected Coefficients for Non-Normality Transformation 
 

 
SKEWNESS1   KURTOSIS         b            c              d 
 
 .75        -.20     1.173302916     .207562460    -.079058576 
 .75         .00     1.112514484     .173629896    -.050334372 
 .75         .40     1.033355486     .141435163    -.018192493 
 .75         .80      .978350485     .124833577     .001976943 
 .75        1.20      .935785930     .114293870     .016737509 
 .75        1.60      .900640275     .106782526     .028475848 
 .75        2.00      .870410983     .101038303     .038291124 
 .75        2.40      .843688891     .096435287     .046773413 
 .75        2.80      .819604207     .092622898     .054275030 
 .75        3.20      .797581770     .089386978     .061023176 
 
Note:  a = -c 
 
1: For negative skewness, see the discussion in the text. 

 
Since positive and negative skewness can be considered symmetrical, the tabulated transformation 
coefficients in Fleishman (1978) did not list negative skewness conditions. But the coefficients for 
negative skewness conditions can be obtained simply by reversing the signs of c and a. In other 
words, to generate a sample from a negatively skewed distribution, do the following: 
 

1. Obtain the coefficients (b, c, d) for the desired kurtosis and positive skewness of the 
same absolute value. 

2. Obtain a (a = -c). 

3. Reverse the signs of a and c. 

4. Apply the coefficients in the formula. 

 

An example SAS program (Program 4.3) is presented below in which the Fleishman power 
transformation method is used for generating a sample (N=10,000) of three uncorrelated variables 
with the same univariate non-normality conditions as those specified in the example for the GLD 
method. That is, 

X1:  = 100, �= 15, skewness =  .75,   kurtosis =  .80 

X2:  = 50, �= 10, skewness = -.75,   kurtosis =  .80 

X3:  = 0, �= 1, skewness =  .75,   kurtosis = 2.40 
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Program 4.3   Fleishman Method for Generating Three Non-Normal Variables 
 
 
 DATA A; 

  DO I = 1 TO 10000; 
     X1 = RANNOR (0); 
     X2 = RANNOR (0); 
     X3 = RANNOR (0); 
                                 *** Fleishman non-normality transformation; 

 
     X1 = -.124833577 + .978350485*X1 + .124833577*X1**2 + .001976943*X1**3; 
     X2 =  .124833577 + .978350485*X2 - .124833577*X2**2 + .001976943*X2**3; 
     X3 = -.096435287 + .843688891*X3 + .096435287*X3**2 + .046773413*X3**3; 

 
     X1 = 100 + 15*X1;           ***linear transformation; 
     X2 =  50 + 10*X2; 
     X3 =  X3; 
   OUTPUT; 
  END; 
PROC MEANS N MEAN STD SKEWNESS KURTOSIS; 
  VAR X1 X2 X3; 
PROC CORR NOSIMPLE; 
  VAR X1 X2 X3; 
RUN; 
 

 

 

The resultant sample descriptive statistics based on one execution of Program 4.3 are presented in 
Output 4.3 below. These results indicate that the sample represents the theoretical population well in 
terms of the specified non-normality conditions (i.e., specified degrees of skewness and kurtosis). 
Note that the negative skewness of X2 was easily achieved by reversing the signs of a and c. In 
addition, the three variables are not correlated beyond what can be expected by sampling error. 

 

Output 4.3   
Three Non-
Normal 
Variables 
Based on the 
Fleishman 
Method 
(Program 4.3) 
 
 

 

 

 

 

 
                           The MEANS Procedure 
 
  Variable      N          Mean       Std Dev      Skewness      Kurtosis   
  -----------------------------------------------------------------------   
  X1        10000    99.9971162    15.1025922     0.7038539     0.7563708   
  X2        10000    50.0069170    10.0722888    -0.7547759     0.9121069   
  X3        10000     0.0014170     1.0133944     0.7898695     2.6114542   
  -----------------------------------------------------------------------   
 
                                  The CORR Procedure 
                     Pearson Correlation Coefficients, N = 10000 
                              Prob > |r| under H0: Rho=0 
 
                                   X1            X2            X3 
 
                     X1       1.00000      -0.00943       0.01024 
                                             0.3456        0.3060 
 
                     X2      -0.00943       1.00000       0.00668 
                               0.3456                      0.5040 
 
                     X3       0.01024       0.00668       1.00000 
                               0.3060        0.5040 
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Both the GLD and Fleishman methods for generating sample data from non-normal distributions are 
easy to use, because the coefficients needed for the non-normal transformation are tabulated in the 
authors’ original articles for many selected combinations of skewness and kurtosis.   

In case non-normality conditions other than those tabulated in Ramberg et al. (1979) or in Fleishman 
(1978) are desired, and consequently no coefficients are available for generating sample data with the 
desired non-normality conditions, we provide a SAS/IML program (Program 4.4) below for deriving 
your own Fleishman coefficients for any possible univariate non-normality conditions permitted by 
the Fleishman method.  To derive the Fleishman coefficients for any desired non-normality 
conditions, one simply specifies the desired degree of skewness and kurtosis for each variable, and 
then runs the SAS/IML program. The program will then output the Fleishman coefficients (a, b, c, 
and d). These coefficients can then be used for generating sample data, as in Program 4.3 above. As 
an example, in Program 4.4, Fleishman coefficients are derived for the following four 
skewness/kurtosis conditions:  

 

1. skewness = -1, kurtosis = 2.5 

2. skewness = 2,  kurtosis = 7 

3. skewness = 0,  kurtosis = 0 

4. skewness = -2, kurtosis = 7 

 

Program 4.4  Deriving Fleishman Coefficients for Desired Skewness and Kurtosis 
 
 
   /* This program calculates the coefficients for Fleishman’s power transformation in 

order to obtain univariate non-normal variables.  For references, see  Allen I. 
Fleishman, (1978).  A method for simulating non-normal distributions, 
Psychometrika, 43, 521-532.  Also see Vale, C. David and Maurelli, Vincent A.  
(1983).  Simulating multivariate non-normal distributions, Psychometrika, 48, 
465-471.                                                                      */ 

 
PROC IML; 

 
   /* In the following matrix ’SKEWKURT’, specify the skewness and kurtosis for each 

variable.  Each row represents one variable. In each row, the 1st number is the 
skewness, the 2nd is the kurtosis of the variable;                            */ 

 
SKEWKURT={-1 2.5, 
           2 7, 
           0 0, 
          -2 7}; 

 
START NEWTON; 
  RUN FUN; 
  DO ITER = 1 TO MAXITER 
  WHILE(MAX(ABS(F))>CONVERGE); 
        RUN DERIV; 
        DELTA=-SOLVE(J,F); 
        COEF=COEF+DELTA; 
        RUN FUN; 
  END; 
FINISH NEWTON; 
MAXITER=25; 
CONVERGE=.000001; 
START FUN; 
  X1=COEF[1]; 
  X2=COEF[2]; 
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  X3=COEF[3]; 
  F=(X1**2+6*X1*X3+2*X2**2+15*X3**2-1)// 
    (2*X2*(X1**2+24*X1*X3+105*X3**2+2)-SKEWNESS)// 
    (24*(X1*X3+X2**2*(1+X1**2+28*X1*X3)+X3**2* 
      (12+48*X1*X3+141*X2**2+225*X3**2))-KURTOSIS); 
FINISH FUN; 
START DERIV; 
  J=((2*X1+6*X3)||(4*X2)||(6*X1+30*X3))// 
    ((4*X2*(X1+12*X3))||(2*(X1**2+24*X1*X3+105*X3**2+2)) 
     ||(4*X2*(12*X1+105*X3)))// 
    ((24*(X3+X2**2*(2*X1+28*X3)+48*X3**3))|| 
     (48*X2*(1+X1**2+28*X1*X3+141*X3**2))|| 
     (24*(X1+28*X1*X2**2+2*X3*(12+48*X1*X3+141*X2**2+225*X3**2) 
     +X3**2*(48*X1+450*X3)))); 
FINISH DERIV; 
DO; 
NUM = NROW(SKEWKURT); 
DO VAR=1 TO NUM; 
  SKEWNESS=SKEWKURT[VAR,1]; 
  KURTOSIS=SKEWKURT[VAR,2]; 
  COEF={1.0, 0.0, 0.0}; 
  RUN NEWTON; 
  COEF=COEF‘; 
  SK_KUR=SKEWKURT[VAR,]; 
  COMBINE=SK_KUR || COEF; 
  IF VAR=1 THEN RESULT=COMBINE; 
  ELSE IF VAR>1 THEN RESULT=RESULT // COMBINE; 
END; 
  PRINT "COEFFICIENTS OF B, C, D FOR FLEISHMAN’S POWER TRANSFORMATION"; 
  PRINT "Y = A + BX + CX^2 + DX^3"; 
  PRINT " A = -C"; 
  MATTRIB RESULT COLNAME=({SKEWNESS KURTOSIS B C D}) 
                 FORMAT=12.9; 
  PRINT RESULT; 
END; 
QUIT; 
 

 

In Program 4.4, the Fleishman coefficients for four variables with varying degrees of 
skewness/kurtosis combinations (-1/2.5, 2/7, 0/0, and -1/7 respectively) are derived at the same time. 
A versatile iterative estimation method called the Newton-Raphson method is used to obtain a 
solution for the Fleishman coefficients for the variables with the desired degrees of skewness and 
kurtosis. It is not necessary for readers to understand the Newton-Ralphson method implemented in 
the program, nor is it necessary to understand the details of the SAS PROC IML program in Program 
4.4. The user only needs to provide the matrix called "SKEWKURT" in the program. The number of 
rows in this matrix represents the number of variables for which Fleishman coefficients are needed. 
Each row of the matrix has two numbers. The first is the desired skewness of the variable, and the 
second is the desired kurtosis of the variable. The execution of Program 4.4 produces the results 
shown in Output 4.4. These coefficients (a, b, c, and d) can then be used to generate sample data 
drawn from non-normal populations with the desired degrees of skewness and kurtosis. 
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Output 4.4   
Fleishman 
Coefficients 
for Four 
Variables 
(Program 
4.4) 
 
 

 

 

 

One disadvantage of both the GLD and Fleishman methods is that neither of the two covers all 
possible combinations of skewness and kurtosis. In other words, the two methods cannot generate 
data for some combinations of skewness and kurtosis conditions (Fleishman 1978; Tadikamalla 
1980). The comparative study by Tadikamalla (1980) indicated that the two methods cover 
approximately the same parameter space of non-normality as defined by skewness and kurtosis, but 
the Fleishman method is more efficient. Readers interested in this limitation may consult these 
references about the approximate parameter space (non-normality conditions as defined by skewness 
and kurtosis) for which the two methods can generate non-normal data.   

Besides the two methods discussed here, other methods exist for the same purpose, such as those by 
Johnson (1949, 1965), Ramberg and Schmeiser (1974), Schmeiser and Deutch (1977), and Burr 
(1973). Interested readers may consult the original papers for these alternative methods. Despite the 
fact that the Fleishman method cannot cover some non-normality conditions, the Fleishman method 
may be easier to use compared with other methods when multivariate non-normal data are desired in 
Monte Carlo simulations, as will be discussed later in this chapter. 
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Methods for generating univariate normal and non-normal sample data have been discussed in the 
previous sections.  In most Monte Carlo studies, however, multiple variables are involved. For 
example, in any regression analysis, there must be two correlated variables at a minimum: the 
dependent variable (Y) and one predictor (X). The same is true for many other univariate statistical 
techniques (i.e., where there is only one dependent variable). Any multivariate statistical technique 
(i.e., where there are multiple dependent variables), by definition, must have multiple variables in the 
system.  

When multiple variables are involved in a Monte Carlo study, not only does the researcher have to 
control univariate distributional characteristics as discussed above, he/she must also be able to control 
the multiple-variable sample data in such a way that the sample data generated can be considered as 
samples drawn from a multiple-variable population with known inter-variable correlations. This is 
the topic to be discussed in this section.   

 
       COEFFICIENTS OF B, C, D FOR FLEISHMAN’S POWER TRANSFORMATION 
 
                         Y = A + BX + CX^2 + DX^3 
 
                                   A = -C 
 
                                  RESULT 
           SKEWNESS     KURTOSIS            B            C            D 
  
 
       -1.000000000  2.500000000  0.865574890 -0.136404884  0.037138751 
  
        2.000000000  7.000000000  0.761585275  0.260022598  0.053072274 
  

0.000000000  0.000000000  1.000000000  0.000000000  0.000000000 
 
       -2.000000000  7.000000000  0.761585275 -0.260022598  0.053072274 
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The degree of complexity in generating multiple variables with desired degrees of inter-variable 
correlations depends partially on whether the individual variables involved are normally distributed or 
not. Because of this, we divide our discussion into two sections, with this section covering normal 
univariate variables, and with section 4.4 covering non-normal univariate variables. 

When all individual variables are normally distributed, imposing a specified population inter-
correlation pattern on the sample data of multiple variables is a relatively straightforward procedure. 
Kaiser and Dickman (1962) presented a matrix decomposition procedure that imposes a specified 
correlation matrix on a set of otherwise uncorrelated random normal variables, as if the data were 
sampled from a population with specified population correlations as represented by the imposed 
correlation matrix. Given a desired population correlation matrix R, the basic matrix decomposition 
procedure takes the following form (Kaiser & Dickman 1962): 

 

  X̂ F = Ẑ N)(kk)(kN)(k ×××         (4.6) 

where 

k is the number of variables involved. 

N is the number of observations (sample N). 

�̂  is a k×N data matrix, with N observations, each with k uncorrelated random normal 
variables (mean of zero and standard deviation of one). 

F: is a k×k matrix containing principal component factor pattern coefficients obtained 
by applying principal component factorization to the given population correlation 
matrix R. 

�̂  is the resultant k×N sample data matrix (N observations on k variables), as if 
sampled from a population with the given population correlation matrix R. 

k×N represents the matrix dimensions (k rows and N columns). 
 

To generate sample data of k variables with the desired population inter-correlation pattern as 
represented by R, take the following steps: 

1. For a specified population correlation matrix R, conduct a factor analysis (SAS/STAT 
PROC FACTOR) using principal component as the factor extraction method (the 
default option in PROC FACTOR). Request the option of keeping the same number of 
factors (PROC FACTOR N=K) as the number of variables in the specified population 
correlation matrix R, and obtain the matrix of factor pattern F, which is called "factor 
pattern" in SAS output. 

2. Generate k uncorrelated random normal variables (mean of zero and standard deviation 
of one), each with N observations. The dimension of this matrix is originally N×k. It is 

then transposed to a k×N dimension matrix ,
�

�  i.e., the matrix has k rows to represent k 
variables, and N columns to represent N observations. 
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3. Premultiply the uncorrelated data matrix
�

�with the factor pattern matrix F. The 

resultant Ẑ matrix (k×N) contains N observations on k correlated variables, as if the N 
observations were sampled from a population with the population correlation pattern 
represented by R. This correlated data matrix is then transposed back to an N×k 
dimension sample data matrix for later use in analysis. 

 

The matrix manipulations involved in the above discussion can easily be implemented in SAS. When 
individual variables are univariate normal, the multivariate data generated through this matrix 
decomposition procedure are multivariate normal (Vale & Maurelli 1983). To illustrate the steps for 
generating correlated multivariate normal data, we plan to generate sample data for three variables 
(X1, X2, and X3) with the following population parameters: 

 

Table 4.3   Specification of Three Correlated Normal Variables 
 
              Mean    STD    Skew    Kurtosis      Correlation Matrix 
 
        X1     100     15      .00      .00          1.00 
        X2      50     10      .00      .00           .70  1.00 
        X3       0      1      .00      .00           .20   .40  1.00 
 

 

For obtaining the factor pattern of the desired population correlation matrix, we use the following 
SAS FACTOR procedure: 

 

 
DATA A (TYPE=CORR);  _TYPE_=’CORR’;   
  INPUT X1-X3; 
CARDS; 
1.00  .    . 
 .70 1.00  . 
 .20  .40 1.00 
; 
PROC FACTOR N=3; 
RUN; 
 

 
The execution of the SAS program above produces the following factor pattern matrix: 

 

 

        FACTOR1   FACTOR2   FACTOR3 

          X1    0.84267  -0.42498   0.33062 
           X2    0.91671  -0.12476  -0.37958 
           X3    0.59317   0.79654   0.11694 
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Using the previous pattern matrix, we can then generate three correlated normal variables with 
specified population correlation coefficients and variable means and standard deviations as in  
Program 4.5.  More specifically, Program 4.5 accomplishes the following: 

�� generates sample data of three uncorrelated univariate normal variables of 10,000 
observations  

�� transforms the three uncorrelated variables to correlated variables as if sampled from a 
population with the desired correlation pattern, as specified in the population 
correlation matrix  

�� linearly transforms the variables to have the specified population means and standard 
deviations. 

 

Program 4.5   Generating Three Correlated Normal Variables 
 
 
PROC IML; 
F={0.84267  -0.42498   0.33062, 
   0.91671  -0.12476  -0.37958, 
   0.59317   0.79654   0.11694}; 
DATA=RANNOR(J(10000,3,0));    *** generate data matrix (10000×3); 
DATA=DATA‘;                   *** transpose data matrix (3×10000); 
Z = F*DATA;                   *** impose inter-correlations; 
Z = Z‘;                       *** transpose data matrix back (10000×3); 
 
X1=Z[,1]*15 + 100;            *** linear transformation for specified mean and std; 
X2=Z[,2]*10 + 50; 
X3=Z[,3]; 

  *** output data to a temporary SAS data set’A’; 
Z=X1||X2||X3; 
CREATE A FROM Z [COLNAME={X1 X2 X3}]; 
APPEND FROM Z; 

      *** obtain sample descriptive statistics; 
PROC MEANS DATA=A N MEAN STD SKEWNESS KURTOSIS; 
  VAR X1 X2 X3; 
PROC CORR DATA=A NOSIMPLE; 
  VAR X1 X2 X3; 
RUN; 
 

 
 

One execution of the program produces the results shown in Output 4.5. As can be seen from these 
results, the sample data that we obtained closely resemble the desired population characteristics both 
in terms of univariate descriptive statistics (sample mean and standard deviation) and in terms of the 
sample inter-variable correlation pattern.  In Program 4.5, linear transformation is carried out for the 
three correlated variables to impose the specified univariate population means and standard 
deviations.  As discussed previously, such linear transformation will not affect the inter-variable 
correlation pattern. 
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                            The MEANS Procedure 
 
  Variable      N          Mean       Std Dev      Skewness      Kurtosis   
  -----------------------------------------------------------------------   
  X1        10000   100.2838455    14.9544748    -0.0548380    -0.0099831   
  X2        10000    50.1804325     9.9780623     0.0058695    -0.0204076   
  X3        10000     0.0168731     0.9968740     0.0165395     0.1349200   
  -----------------------------------------------------------------------   
 
                                 The CORR Procedure 
 
                    Pearson Correlation Coefficients, N = 10000 
                             Prob > |r| under H0: Rho=0 
 
                                  X1            X2            X3 
 
                    X1       1.00000       0.70128       0.19828 
                                            <.0001        <.0001 
 
                    X2       0.70128       1.00000       0.40052 
                              <.0001                      <.0001 
 
                    X3       0.19828       0.40052       1.00000 
                             <.0001        <.0001 

 
 
Output 4.5  
Three 
Correlated 
Normal 
Variables 
(Program 4.5) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Program 4.5a is almost identical to Program 4.5, except that the factor pattern matrix is obtained 
within this program. Previously, the factor pattern matrix was obtained first, and it was then used in 
Program 4.5. In Program 4.5a, the two steps are combined, and the program becomes more 
automated. 

 
Program 4.5a   Generating Three Correlated Normal Variables 
    
 
DATA A (TYPE=CORR);  _TYPE_=’CORR’;   
  INPUT X1-X3; 
CARDS; 
1.00  .    . 
 .70 1.00  . 
 .20  .40 1.00 
; 
 
    * obtain factor pattern matrix for later data generation; 
 
PROC FACTOR N=3 OUTSTAT=FACOUT;  
DATA PATTERN; SET FACOUT; 
  IF _TYPE_=’PATTERN’; 
  DROP _TYPE_ _NAME_; 
RUN; 
 
PROC IML;                           
   USE PATTERN;                   * read in the factor pattern as a matrix ‘F’; 
   READ ALL VAR _NUM_ INTO F; 
  F=F`;            
 
DATA=RANNOR(J(10000,3,0));    *** generate data matrix (10000x3); 
DATA=DATA`;                   *** transpose data matrix (3x10000); 
Z = F*DATA;                   *** impose inter-correlations; 
Z = Z`;                       *** transpose data matrix back (10000x3); 
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X1=Z[,1]*15 + 100;            *** linear transformation for specified mean and std; 
X2=Z[,2]*10 + 50; 
X3=Z[,3]; 

  *** output data to a temporary SAS data set ’A’; 
Z=X1||X2||X3; 
CREATE A FROM Z [COLNAME={X1 X2 X3}]; 
APPEND FROM Z; 

      *** obtain sample descriptive statistics; 
PROC MEANS DATA=A N MEAN STD SKEWNESS KURTOSIS; 
  VAR X1 X2 X3; 
PROC CORR DATA=A NOSIMPLE; 
  VAR X1 X2 X3; 
RUN; 
 

 
 

Program 4.6 presents a fully automated base SAS macro program (%RMNC) comparable to Program 
4.5a. However, Program 4.6 is fully automated, and as a SAS macro program, it can be called in 
whenever it is needed. As the explanation in Program 4.6 indicates, once the correlation matrix plus 
means and standard deviations are used as data input, and the three parameters are specified (DATA=, 
OUT=, SEED=,) in the macro, sample data generation is fully automated.  In addition, to use macro 
RMNC, there is no need to specify information about the number of variables, sample size, etc.; all 
information is contained in the input data in the form of the correlation matrix plus means, standard 
deviations, and sample size N. 

 

Program 4.6  SAS Macro for Generating Correlated Normal Variables (Any Number) 
 
 
/*----------------------------------------------------------------------------*/ 
/* Macro RMNC generates Random variables of Multivariate Normal distribution  */ 
/* with given means, standard deviations and Correlation matrix.              */ 
/*                                                                            */ 
/* Parameters                                                                 */ 
/* DATA       the name of the input file that determines the characteristics  */ 
/*            of the random numbers to be generated. The file specifies       */ 
/*            the mean, standard deviation, number of observations of each    */ 
/*            random number and the correlation coefficients between the      */ 
/*            variables. It must be a TYPE=CORR file and its structure must   */ 
/*            comply with that of such file (see ’Chapter 15: The CORR        */ 
/*            Procedure’ in SAS Procedures Guide). The file has               */ 
/*            to have the following and only the following observations:      */ 
/*            _TYPE_=MEAN, STD, N, CORR. Its variables are _TYPE_, _NAME_ and */ 
/*            the variables to be generated. If the number of observations    */ 
/*            is not the same for all variables, the macro takes the minimum  */ 
/*            number of observations for all random variables.                */ 
/* OUT        the name of the output file that has the random variables       */ 
/*            generated according to the file given in parameter DATA.        */ 
/* SEED       seed of the random number generator.                            */ 
/*                                                                            */ 
/* Example                                                                    */ 
/* The code below sets up an input file, calls the macro to request three     */ 
/* random variables, and it checks their distributions and correlation        */ 
/* matrix.                                                                    */ 
/*                                                                            */ 
/*     data a(type=corr);                                                     */ 
/*          input _name_ $ _type_ $ x1-x3;                                    */ 
/*          cards;                                                            */ 
/*      .   MEAN    100     50      0                                         */ 
/*      .   STD      15     10      1                                         */ 
/*      .   N     10000  10000  10000                                         */ 
/*      x1  CORR   1.00      .      .                                         */ 
/*      x2  CORR    .70   1.00      .                                         */ 
/*      x3  CORR    .20    .40   1.00                                         */ 
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/*      ;                                                                     */ 
/*          run;                                                              */ 
/*     %rmnc(data=a,out=b,seed=123)                                           */ 
/*     proc means data=b n mean std skewness kurtosis maxdec=2;               */ 
/*     proc corr data=b;                                                      */ 
/*          var x1-x3;                                                        */ 
/*          run;                                                              */ 
/*                                                                            */ 
/* Output of Example                                                          */ 
/* Variable Label                             N   Mean Std Dev  Skewn.  Kurt. */ 
/* -------------------------------------------------------------------------- */ 
/* X1       St.Normal Var., m=100, std=15 10000  99.99   14.93    0.02  -0.01 */ 
/* X2       St.Normal Var., m=50, std=10  10000  50.04    9.95    0.02  -0.04 */ 
/* X3       St.Normal Var., m=0, std=1    10000  -0.01    1.00   -0.01  -0.06 */ 
/* -------------------------------------------------------------------------- */ 
/*                                                                            */ 
/* Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 10000  */ 
/*                                                                            */ 
/*                                        X1          X2          X3          */ 
/*                                                                            */ 
/* X1                                1.00000     0.70462     0.20305          */ 
/* St.Normal Var., m=100, std=15      0.0         0.0001      0.0001          */ 
/*                                                                            */ 
/* X2                                0.70462     1.00000     0.39276          */ 
/* St.Normal Var., m=50, std=10       0.0001      0.0         0.0001          */ 
/*                                                                            */ 
/* X3                                0.20305     0.39276     1.00000          */ 
/* St.Normal Var., m=0, std=1         0.0001      0.0001      0.0             */ 
/*                                                                            */ 
/*----------------------------------------------------------------------------*/ 
 
%MACRO RMNC (DATA=,OUT=,SEED=0); 
 
  /* obtain the names of the random variables to be generated. */ 
  /* the names are stored in macro variables V1, V2,...        */ 
  /* macro variable VNAMES has all these variable names        */ 
  /* concatenated into one long string.                        */ 
 
  PROC CONTENTS DATA=&DATA(DROP=_TYPE_ _NAME_) OUT=_DATA_(KEEP=NAME) NOPRINT; 
       RUN; 
  DATA _DATA_; 
       SET _LAST_ END=END; 
       RETAIN N 0; 
       N=N+1; 
       V=COMPRESS(’V’||COMPRESS(PUT(N,6.0))); 
       CALL SYMPUT(V,NAME); 
       IF END THEN CALL SYMPUT(’NV’,LEFT(PUT(N,6.))); 
       RUN; 
  %LET VNAMES=&V1; 
  %DO I=2 %TO &NV; 
      %LET VNAMES=&VNAMES &&V&I; 
  %END; 
 
 
  /* obtain the matrix of factor patterns and other statistics. */ 
 
  PROC FACTOR DATA=&DATA NFACT=&NV NOPRINT 
              OUTSTAT=_PTTRN_(WHERE=(_TYPE_ IN (’MEAN’,’STD’,’N’,’PATTERN’))); 
       RUN; 
 
  /* generate the random numbers.*/ 
 
  %LET NV2=%EVAL(&NV*&NV); 
  DATA &OUT(KEEP=&VNAMES); 
 
       /* rename the variables to be generated to V1, V2,... in order */ 
       /* to avoid any interference with the DATA step variables.     */ 
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       SET _PTTRN_(KEEP=&VNAMES _TYPE_ RENAME=(          %DO I=1 %TO &NV; 
                                               &&V&I=V&I 
                                                         %END; 
                                                        )) END=LASTFACT; 
       RETAIN; 
 
       /* set up arrays to store the necessary statistics. */ 
       ARRAY FPATTERN(&NV,&NV) F1-F&NV2;  /* factor pattern                   */ 
       ARRAY VMEAN(&NV)        M1-M&NV;   /* mean                             */ 
       ARRAY VSTD(&NV)         S1-S&NV;   /* standard deviation               */ 
       ARRAY V(&NV)            V1-V&NV;   /* random variables to be generated */ 
       ARRAY VTEMP(&NV)        VT1-VT&NV; /* temporary variables              */ 
       LENGTH LBL $40; 
 
       /* read and store the matrix of factor patterns. */ 
 
       IF _TYPE_=’PATTERN’ THEN DO; DO I=1 TO &NV; 
 
                                       /* here we utilize the fact that the  */ 
                                       /* observations of the factor pattern */ 
                                       /* start at observation #4.           */ 
 
                                       FPATTERN(_N_-3,I)=V(I); 
                                    END; 
                                END; 
 
       /* read and store the means. */ 
 
       IF _TYPE_=’MEAN’ THEN DO; DO I=1 TO &NV; 
                                    VMEAN(I)=V(I); 
                                 END; 
                             END; 
 
       /* read and store the standard deviations. */ 
 
       IF _TYPE_=’STD’ THEN DO; DO I=1 TO &NV; 
                                   VSTD(I)=V(I); 
                                END; 
                            END; 
 
       /* read and store the number of observations. */ 
 
       IF _TYPE_=’N’ THEN NNUMBERS=V(1); 
 
       /* all necessary statistics have been read and stored. */ 
       /* start generating the random numbers.                */ 
 
       IF LASTFACT THEN DO; 
 
          /* set up labels for the random variables. The labels */ 
          /* are stored in macro variables LBL1, LBL2,... and   */ 
          /* used in the subsequent PROC DATASETS.              */ 
 
          %DO I=1 %TO &NV; 
              LBL="ST.NORMAL VAR., M="||COMPRESS(PUT(VMEAN(&I),BEST8.))|| 
                  ", STD="||COMPRESS(PUT(VSTD(&I), BEST8.)); 
              CALL SYMPUT("LBL&I",LBL); 
          %END; 
 
          DO K=1 TO NNUMBERS; 
 
             /* generate the initial random numbers of standard   */ 
             /* normal distribution. Store them in array ’VTEMP.’ */ 
 
             DO I=1 TO &NV; 
                VTEMP(I)=RANNOR(&SEED); 
             END; 
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             /* impose the intercorrelation on each variable. The */ 
             /* transformed variables are stored in array ’V’.    */ 
 
             DO I=1 TO &NV; 
                V(I)=0; 
                DO J=1 TO &NV; 
                   V(I)=V(I)+VTEMP(J)*FPATTERN(J,I); 
                END; 
             END; 
 
             /* transform the random variables so they will have */ 
             /* means and standard deviations as requested.      */ 
 
             DO I=1 TO &NV; 
                V(I)=VSTD(I)*V(I)+VMEAN(I); 
             END; 
             OUTPUT; 
          END; 
       END; 
 
       /* rename V1,V2,... to the requested variable names. */ 
 
       RENAME           %DO I=1 %TO &NV; 
              V&I=&&V&I 
                        %END; 
              ; 
       RUN; 
 
  /* set the label of each random variable. The label contains */ 
  /* the mean and standard deviation of the variable.          */ 
 
  PROC DATASETS NOLIST; 
       MODIFY &OUT; 
       LABEL %DO I=1 %TO &NV; 
                 &&V&I="&&LBL&I" 
             %END; 
             ; 
       RUN; 
%MEND; 
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Although it is relatively straightforward to generate sample data from a multivariate normal 
distribution with desired univariate means and standard deviations and the desired population inter-
variable correlation pattern, as demonstrated in the previous section, it is considerably more difficult 
to generate sample data from a multivariate non-normal distribution.  The nature of the increased 
difficulty in data generation for multivariate non-normal distributions will be discussed momentarily. 
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4.4.1  Examining the Effect of Data Non-normality on  
          Inter-variable Correlations   
As is discussed in previous sections, generating sample data from a univariate non-normal 
distribution can be accomplished through several procedures, and Fleishman’s method was one of 
them.  Although it was pointed out that, for univariate non-normal variables, Fleishman’s method has 
some weakness because it does not cover certain combinations of degrees of skewness and kurtosis, 
Fleishman’s method does offer "an advantage over the other procedures in that it can easily be 
extended to generate multivariate random numbers with specified intercorrelations and univariate 
means, variances, skews, and kurtoses" (Vale & Maurelli 1983, p. 465). In other words, when we 
need to generate sample data from a multivariate non-normal distribution with specified population 
univariate skewness and kurtosis, and with a specified population inter-variable correlation pattern 
among the variables, Fleishman’s method is appropriate. 

In the generation of multivariate non-normal data, Vale and Maurelli (1983) showed that the 
application of matrix decomposition procedure for controlling the sample inter-variable correlations 
among the variables is no longer as straightforward as demonstrated previously. On the surface, the 
goal of generating multivariate non-normal data can be accomplished by  

1. generating multivariate normal data with specified inter-variable correlations through 
the matrix decomposition procedure.  

2. transforming each variable to the desired distributional shapes with specified 
population univariate skewness and kurtosis.  

Unfortunately, the two processes interact, and the resultant multivariate non-normal data will have an 
inter-variable correlation pattern that may differ from that specified in the matrix decomposition 
procedure. 

This point is illustrated in Program 4.7 for data population parameters specified in Table 4.4. The 
output from one execution of Program 4.7 is presented in Output 4.7. Table 4.3 presented an example 
of multivariate normal data (three correlated variables from normal distributions), and Program 4.5 
demonstrates that, through the application of the matrix decomposition procedure, the sample inter-
variable correlation pattern closely approximates that specified for the population of normally 
distributed variables.  

In the example in Table 4.4, the same inter-variable correlation pattern as that in Table 4.3 is imposed 
on the same three variables using the same matrix decomposition procedure. But this time, the three 
variables are not normal, as indicated by their respective population parameters of the third and the 
fourth moments (skewness and kurtosis). By applying the Fleishman power transformation method, 
the specified univariate skewness and kurtosis conditions are achieved. The resultant sample 
descriptive statistics indicate that the univariate non-normality conditions are modeled adequately. 
But compared with the sample data generated from normal distributions by Program 4.5 (see Output 
4.5), the sample inter-variable correlations generated by Program 4.7 have deviated considerably 
more from the population inter-variable correlation pattern implemented in the matrix decomposition 
procedure (see Output 4.7). This example illustrates that the two processes (the matrix decomposition 
procedure, and the Fleishman procedure) interact with each other, and this interaction will typically 
cause some non-trivial deviation in the generated sample data from the specified population inter-
variable correlation pattern when non-normality exists.  In other words, when non-normal 
distributions are simulated, the simple combination of the two procedures is not adequate. 
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Table 4.4   Non-Normal Data Conditions and Inter-Variable Correlations 
 

                            POPULATION PARAMETERS 
 

 
               Mean    STD    Skew    Kurtosis      Correlation Matrix 

 

        X1     100     15      .75      .80          1.00 

        X2      50     10     -.75      .80           .70  1.00 

        X3       0      1      .75     2.40           .20   .40  1.00 

 

Program 4.7   Generating Three Correlated Non-Normal Variables – Inadequate Approach 
 
 
 
PROC IML; 
                                        *read in factor pattern matrix; 
F={0.84267  -0.42498   0.33062, 
   0.91671  -0.12476  -0.37958, 
   0.59317   0.79654   0.11694}; 
 
DATA=RANNOR(J(10000,3,0));              *GENERATE DATA MATRIX (10000x3); 
DATA=DATA‘;                             *TRANSPOSE DATA MATRIX (3x10000); 
Z = F*DATA;                             *TRANSFORM TO 3 CORRELATED VAR; 
Z = Z‘;                                 *TRANSPOSE DATA MATRIX BACK (10000X3); 
 
                                        *FLEISHMAN NON-NORMALITY TRANSFORMATION; 
 
X1 = -.124833577 + .978350485*Z[,1] + .124833577*Z[,1]##2 + .001976943*Z[,1]##3; 
X2 =  .124833577 + .978350485*Z[,2] - .124833577*Z[,2]##2 + .001976943*Z[,2]##3; 
X3 = -.096435287 + .843688891*Z[,3] + .096435287*Z[,3]##2 + .046773413*Z[,3]##3; 
 
X1=X1*15 + 100;                         *LINEAR TRANSFORMATION FOR MEAN & STD; 
X2=X2*10 + 50; 
X3=X3; 
Z=X1||X2||X3; 
 
CREATE A FROM Z [COLNAME={X1 X2 X3}];   *OUTPUT DATA FOR DESCRIPTIVE STATS; 
APPEND FROM Z; 
 
PROC MEANS DATA=A N MEAN VAR SKEWNESS KURTOSIS; 
  VAR X1 X2 X3; 
PROC CORR DATA=A NOSIMPLE NOPROB; 
  VAR X1 X2 X3; 
RUN; 
 
 
 
 



82    SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 

Output 4.7 
Results of 
Program 4.7 
 
 

 

 

 

 

 

 

 

4.4.2  Deriving Intermediate Correlations   
Because inter-variable correlations and variable non-normality conditions interact with each other to 
cause sample data to deviate from the specified population inter-variable correlation pattern, the 
interaction must be taken into account in the process of generating sample data from multivariate non-
normal distributions. Vale and Maurelli (1983) presented a procedure for decomposing an 
"intermediate" inter-variable correlation matrix to counteract the effect of non-normality on the inter-
variable correlations. This intermediate correlation procedure is described in detail in the following 
sections to illustrate the implementation of this procedure. 

The intermediate correlation procedure presented by Vale and Maurelli (1983) demonstrates that, for 
multiple correlated variables, a simple implementation of the matrix decomposition procedure does 
not work as expected when the variables are not normally distributed. To counteract the effect of non-
normal conditions on the inter-variable correlations in the process of data generation, inter-variable 
correlations that are different from those specified as population inter-variable correlations must be 
derived and used in the matrix decomposition procedure. These derived correlations are called 
intermediate correlations, and the derivation of these intermediate correlations is based both on the 
specified population inter-variable correlation pattern to be modeled, and on the specified univariate 
non-normality conditions. 

Once all the intermediate inter-variable correlations are derived, they can be assembled in proper 
order into an intermediate inter-variable correlations matrix. It is this intermediate inter-variable 
correlation matrix that will be factor analyzed (decomposed). The resultant factor pattern matrix 
derived from this intermediate inter-variable correlation matrix will be used in the matrix 
decomposition procedure to impose the specified population inter-variable correlation pattern on a set 
of non-normal variables.  The end result will be correlated multivariate non-normal sample data that 
has the population inter-variable correlation pattern as originally specified. 

�

                                The MEANS Procedure 
 
  Variable        N            Mean         Std Dev        Skewness        Kurtosis 
  
  ---------------------------------------------------------------------------------  
  X1          10000      99.9754373      15.1008345       0.7601219       0.7667669 
  
  X2          10000      49.9041591      10.0024051      -0.7203833       0.7196319 
  
  X3          10000      -0.0173893       0.9966803       0.7651695       2.4459113  
  ---------------------------------------------------------------------------------  
 
                                 The CORR Procedure 
 
                    Pearson Correlation Coefficients, N = 10000 
                             Prob > |r| under H0: Rho=0 
 
                                  X1            X2            X3 
 
                    X1       1.00000       0.66905       0.18441 
                                            <.0001        <.0001 
 
                    X2       0.64905       1.00000       0.37367 
                              <.0001                      <.0001 
 
                    X3       0.18041       0.36367       1.00000 
                              <.0001        <.0001 
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Obviously, derivation of all pairwise intermediate correlations is essential when population non-
normal conditions exist.  The derivation process takes into account both the originally specified 
population correlation between two variables, and the population non-normality conditions of the two 
variables as defined by univariate skewness and kurtosis.  It is here that the Fleishman power 
transformation method is appropriate, since the coefficients in Fleishman’s power transformation can 
readily be used to derive the needed intermediate correlation coefficients.  It is not obvious that other 
non-normality transformation procedures can have the same direct extension to multivariate non-
normality data situations (Vale & Maurelli 1983). 

Any two normal variates Z1 and Z2 can be transformed into two non-normal variables X1 and X2, each 
with its known skewness and kurtosis, as follows (see previous equation 4.5):  

  
Zd + Zc + Zb + a = X

Zd + Zc + Zb + a = X
3
22

2
222222

3
11

2
111111  

Once the degrees of skewness and kurtosis are known, the coefficients (ai, bi, ci, and di, for i=1, 2) 
become available (either by consulting Fleishman’s table in the original article, or by executing 
Program 4.4, presented previously). These coefficients (ai, bi, ci, and di) in the Fleishman power 
transformation above are what is needed for deriving intermediate correlations. In addition to these 
coefficients, the modeled population correlation between the two non-normal variables X1 and X2 can 
be specified as RX1X2.  Once RX1X2 is set and the Fleishman coefficients are obtained based on the 
specified skewness and kurtosis conditions of the two variables (X1 and X2), Vale and Maurelli (1983) 
demonstrate that the following relationship exists: 

            )dd(6 + )cc(2 + )dd9 + bd3 + db3 + bb( = R 21
3

21
2

21212121X X 21
ρρρ                 (4.7) 

where  is the correlation between the two normal variates Z1 and Z2. This correlation is termed an 
“intermediate” correlation. In (4.7), all elements are known except the intermediate correlation . The 
bivariate intermediate correlation coefficient must be solved for all possible pairs of the variables 
involved. These intermediate correlation coefficients are then assembled in proper order into an 
intermediate correlation matrix. This intermediate correlation matrix is then factor analyzed to obtain 
the factor pattern matrix needed to transform uncorrelated variables into correlated ones. 

There is no direct algebraic solution for solving this polynomial function for , and an iterative 
approach has to be taken to arrive at an estimated solution. Again, we use the versatile iterative 
Newton-Raphson method to solve for , as we did in Program 4.4 for solving for Fleishman 
coefficients for generating sample data from univariate non-normal distributions. Table 4.5 presents 
population parameters for three correlated non-normal variables, as well as the Fleishman's power 
transformation coefficients for generating the three variables for the specified non-normality 
conditions. 
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Table 4.5  Parameters of Three Non-Normal Variables and Fleishman Coefficients 
 

                                   POPULATION PARAMETERS 
 

                Mean    STD    Skew    Kurtosis       Target Correlation Matrix 
 
                X1     100     15      .75      .80        1.00 
                X2      50     10     -.75      .80          70  1.00 
                X3       0      1      .75     2.40          20   .40  1.00 
 
 
                       FLEISHMAN COEFFICIENTS FOR THE THREE VARIABLES 
 
                         a           b           c            d 
 
            X1     -.124833577   .978350485  .124833577  .001976943 
            X2      .124833577   .978350485 -.124833577  .001976943 
            X3     -.096435287   .843688891  .096435287  .046773413 

 
Program 4.8 presents an example for deriving an intermediate correlation coefficient. In Table 4.5, the 
three variables to be modeled are correlated with each other as specified in the population correlation 
matrix, and each of them is non-normal as specified by the univariate skewness and kurtosis. Program 
4.8 derives the intermediate correlation coefficient between the first two variables (X1 and X2). Here, it 
is not necessary for readers to fully understand the Newton-Raphson method, nor is it necessary to 
fully understand the base SAS program itself. 

 
Program 4.8  Deriving a Pairwise Intermediate Correlation (X

1
 & X

2
) 

 
 
 
DATA D1; 
  B1=.978350485; C1=-.124833577; D1=.001976943;  * use Fleishman coefficients; 
  B2=.978350485; C2= .124833577; D2=.001976943; 
  TARGET=.70;                                    * target population correlation; 
  R=.5;                                          * starting value for iteration; 
 
DO I=1 TO 5; 
   FUNCTION=(R**3*6*D1*D2+R**2*2*C1*C2+R*(B1*B2+3*B1*D2+3*D1*B2+9*D1*D2)-TARGET); 
   DERIV=(3*R**2*6*D1*D2+2*R*2*C1*C2+(B1*B2+3*B1*D2+3*D1*B2+9*D1*D2)); 
   RATIO=FUNCTION/DERIV; 
   R_TEMP = R - RATIO; 
   IF ABS(R_TEMP - R)>.00001 THEN R = R_TEMP; OUTPUT; 
END; 
PROC PRINT; WHERE I=5;    * print intermediate correlation r for the last iteration; 
  VAR I RATIO R; 
RUN; 
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One execution of Program 4.8 produces the following result: 
 

 
                  OBS    I      RATIO       R 
 
                  5      5    -0.00000    0.74015   

 

Although the specified population correlation coefficient between X1 and X2 is 0.70, the result above 
indicates that for the given univariate non-normality conditions, the intermediate correlation between 
the two variables is 0.74. It is this intermediate correlation coefficient that will be used in the matrix 
decomposition procedure for sample data generation of these three correlated non-normal variables. 

By substituting the appropriate Fleishman coefficients and the specified population pair-wise 
correlation coefficient (TARGET=?), all pair-wise intermediate correlations can be solved with 
Program 4.8. Once this is done, all the intermediate correlation coefficients can then be assembled in 
proper order into a correlation matrix. The following is the resultant intermediate correlation matrix 
for the three non-normal variables as specified in Table 4.5. 

  

 
                  Intermediate Correlation Matrix   
 
                    X1    1.0000 
                    X2     .7402  1.0000 
                    X3     .2054   .4173  1.0000 

 
 

 

After all the pair-wise intermediate correlation coefficients are assembled into an intermediate 
correlation matrix, this intermediate correlation matrix is then factor analyzed in the usual fashion, 
and the factor pattern matrix is obtained. This factor pattern matrix based on the intermediate 
correlation matrix is then used in transforming uncorrelated non-normal variables into correlated 
ones. Program 4.9 presents an example of generating sample data for the three correlated non-normal 
variables described earlier in Table 4.5. In Program 4.9, the step for obtaining the factor pattern 
matrix is incorporated, as in Program 4.5a. 
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Program 4.9  Generating Non-Normal Multivariate Sample Data 
 
 
DATA A (TYPE=CORR);  _TYPE_=’CORR’;   
  INPUT X1-X3; 
CARDS; 
1.0000  .    . 
 .7402 1.0000  . 
 .2054  .4173 1.0000 
; 
 
    * obtain factor pattern matrix for later data generation; 
 
PROC FACTOR N=3 OUTSTAT=FACOUT;  
DATA PATTERN; SET FACOUT; 
  IF _TYPE_=’PATTERN’; 
  DROP _TYPE_ _NAME_; 
RUN; 
 
PROC IML;                           
   USE PATTERN;                   * read in the factor pattern as a matrix ‘F’; 
   READ ALL VAR _NUM_ INTO F; 
  F=F`;            
 
DATA=RANNOR(J(10000,3,0));    *** generate data matrix (10000×3); 
DATA=DATA`;                   *** transpose data matrix (3×10000); 
Z = F*DATA;                   *** impose inter-correlations; 
Z = Z`;                       *** transpose data matrix back (10000×3); 
 
                                        * Fleishman non-normality transformation; 
 
X1 = -.124833577 + .978350485*Z[,1] + .124833577*Z[,1]##2 + .001976943*Z[,1]##3; 
X2 =  .124833577 + .978350485*Z[,2] - .124833577*Z[,2]##2 + .001976943*Z[,2]##3; 
X3 = -.096435287 + .843688891*Z[,3] + .096435287*Z[,3]##2 + .046773413*Z[,3]##3; 
 
X1=X1*15 + 100;                         * linear transformation for mean & std; 
X2=X2*10 + 50; 
X3=X3; 
Z=X1||X2||X3; 
CREATE A FROM Z [COLNAME={X1 X2 X3}];   * output a temporary SAS data set 'A'; 
APPEND FROM Z; 
 
                                        * obtain descriptive stats for sample data; 
PROC MEANS DATA=A N MEAN STD SKEWNESS KURTOSIS; 
  VAR X1 X2 X3; 
PROC CORR DATA=A NOSIMPLE NOPROB; 
  VAR X1 X2 X3; 
RUN; QUIT; 
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The descriptive statistics of the sample data (N=10,000) from one execution of Program 4.9 are 
presented in Output 4.9. These results indicate that the sample statistics closely approximate the 
specified population parameters, both in terms of the correlations among the variables, and in terms of 
the univariate skewness and kurtosis of the three variables. This is especially true when we compare 
the sample correlation matrix in Output 4.9 with that in Output 4.7, where the intermediate correlation 
procedure was not implemented for non-normal distributions in the process (Program 4.7). The 
sample correlations in Output 4.9 are much closer to the specified population correlations than those 
in Output 4.7. 

 

Output 4.9   
Results of 
Program 4.9 
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During the data generation process of a Monte Carlo study, sometimes there is a need to convert a 
covariance matrix to a correlation matrix, or vice versa.  The relationship between a covariance and a 
correlation between two variables ( X and Y) is simple, as shown below: 

xy
xy

x y

Cov
r

s *s
�                    (4.8) 

xy xy x yCov r * s * s�                   (4.9) 

where rxy is the correlation between X and Y, Covxy is the covariance between X and Y, and sx and sy 
are standard deviations for X and Y, respectively. 

 
Variable        N            Mean         Std Dev      Skewness     Kurtosis   
----------------------------------------------------------------------------- 
  
  X1          10000      99.9721150      15.0763019     0.7540160  0.8112059   
  X2          10000      50.0248158      10.1009159    -0.8062380  0.7873609   
  X3          10000      -0.0103037       1.0042507     0.7850528  2.5621595   
----------------------------------------------------------------------------   
 
                                 The CORR Procedure 
 
                    Pearson Correlation Coefficients, N = 10000 
                             Prob > |r| under H0: Rho=0 
 
                                  X1            X2            X3 
 
                    X1       1.00000       0.70038       0.20824 
                                            <.0001        <.0001 
 
                    X2       0.70038       1.00000       0.39828 
                              <.0001                      <.0001 
 
                    X3       0.20824       0.39828       1.00000 
                              <.0001        <.0001 
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But when you have a covariance matrix and need to convert it to a correlation matrix, you may not 
want to do the computation for each covariance (correlation) in the matrix one by one. Instead, you 
may rely on matrix algebra and use SAS PROC IML for the conversion.  In matrix algebra, the 
equivalents of (4.8) and (4.9) are as follows: 

 

  R = (S)-1 * �  * (S)-1        (4.10) 

  �  = (S) * R * (S)        (4.11) 

where R is the correlation matrix, �  is the covariance matrix, and S is a diagonal matrix containing 
standard deviations for each variable as its diagonal elements, as in the following example matrix for 
three variables (X1, X2, and X3): 
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Once we have the covariance matrix � , the S matrix can easily be obtained through SAS PROC 
IML, and the correlation matrix R can be derived for use in the data generation process, as used in 
Program 4.5, for example. Conversely, if we have the correlation matrix and the standard deviations 
for the variables, we can also obtain the covariance matrix easily. As an example, we use the 
correlation matrix and standard deviations for the three variables (X1, X2, and X3) in Table 4.4 to 
illustrate the use of SAS PROC IML for such a conversion. Program 4.10 presents the SAS PROC 
IML code for such conversions. 

 

Program 4.10   Converting between Correlation and Covariance Matrices 
 
 
 
***** Program 4.10  PROC IML ***********; 
***** Converting a correlation matrix to covariance matrix, and vice versa; 
***** Example data from Table 4.4   ; 
 
       ****** Part I: Converting correlation matrix to covariance matrix; 
PROC IML; 
          *** define the correlation matrix;  
R={1.00 0.70 0.20, 
   0.70 1.00 0.40, 
   0.20 0.40 1.00}; 
 
          *** define the diagonal matrix with standard deviations on the diagonal; 
S={15  0  0, 
    0 10  0, 
    0  0  1}; 
 
COV=S*R*S;     *** obtain the covariance matrix; 
 
PRINT COV;     *** print the covariance matrix; 
 
RUN; 
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      ***** Part II: Converting covariance matrix to correlation matrix; 
PROC IML; 
 
          *** define the covariance matrix;  
COV={225 105 3, 
     105 100 4, 
       3   4 1}; 
 
S=SQRT(DIAG(COV));   *** obtain the matrix with standard deviations on the diagonal; 
 
S_INV=INV(S);        *** the inverse of S matrix; 
 
R=S_INV*COV*S_INV;   *** obtain correlation matrix; 
 
PRINT COV;           *** print out the three matrices; 
PRINT S; 
PRINT R; 
RUN; 
 

 

Program 4.10 has two parts. Part I (the top portion) converts a correlation matrix to a covariance 
matrix, and Part II (the bottom portion) converts a covariance matrix to a correlation matrix. If you 
run the two parts separately, you obtain the matrices shown in Output 4.10. As can be seen, from the 
correlation matrix and standard deviations given in Table 4.4, the covariance matrix (COV) is: 

 

225 105 3
COV 105 100 4

3 4 1

� �
� �
� �� �

�  

Part II of Program 4.10 converts the covariance matrix above (COV) to the original correlation matrix 
(R) and a diagonal matrix (S) containing the standard deviations of the three variables. 

 

Output 4.10   
Results from 
Program 4.10 

 

 

 

 

 

 

 

 

 
                              COV 
 
                     225       105         3 
                     105       100         4 
                       3         4         1 
 
                              COV 
 
                     225       105         3 
                     105       100         4 
                       3         4         1 
 
                              S 
 
                      15         0         0 
                       0        10         0 
                       0         0         1 
 
                              R 
 
                       1       0.7       0.2 
                     0.7         1       0.4 
                     0.2       0.4         1 
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In quantitative research, there is often a need to define statistical populations based on the sample data 
the researcher has. For example, suppose a researcher is interested in comparing two groups via a t-
test. But the sample data from the two groups are highly non-normal, and transformation is not of 
interest nor meaningful for the researcher. In this situation, the researcher may be interested in 
determining the empirical distribution of the t-statistic for these highly non-normal data, because the 
empirical t-statistic distribution for these kinds of data may deviate considerably from the theoretical t 
distribution that assumes data normality. 

To accomplish the researcher’s goal described above, i.e., to obtain the empirical distribution of the t-
statistic for the researcher’s non-normal data, the researcher can (a) define statistical populations by 
using sample characteristics, (b) conduct a Monte Carlo study based on these defined populations, and 
(c) derive empirical distributions for the statistic of interest from the Monte Carlo study results.   
These and similar tasks can be readily accomplished by using the data generation procedures 
discussed in this chapter. More specifically, the following steps need to be taken: 

1. Obtain the first four moments (i.e., mean, standard deviation, skewness, kurtosis; these 
four moments should be sufficient for most applications) of a variable from the sample 
data (e.g., using PROC UNIVARIATE). 

2. If multiple correlated variables are involved, obtain the inter-variable correlations from 
the sample data (e.g., using PROC CORR). 

3. Use sample data moments and inter-variable correlations as population parameters, and 
generate data accordingly, as we did in Section 4.2.2.2 (e.g., Program 4.3), Section 4.3 
(e.g., Program 4.5, Program 4.5a), and/or Section 4.4.2 (Program 4.9). 

In other words, generating data from statistical populations that mirror your sample characteristics is 
not any different from what we have been presenting so far. We simply need to obtain sample 
characteristics (e.g., four statistical moments, and inter-variable correlations), and use these sample 
characteristics as population parameters for later data generation. Once we have the population 
parameters as defined by the sample characteristics, we use exactly the same procedures as we have 
shown in this chapter. 

For example, in Table 4.4, we could assume that these statistical moments and inter-variable 
correlations for the three variables (X1, X2, and X3) are actually obtained from a sample. Of course 
obtaining these sample moments and correlations is a simple matter, because only simple analysis 
based on PROC UNIVARIATE and PROC CORR is needed. Once we have obtained these sample 
statistics, we will treat them as population parameters and will generate data for our Monte Carlo 
experiments as described in detail in the sections following Table 4.4.   
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In this and the previous chapters, we spent a considerable amount of time discussing different aspects 
of sample data generation as part of any Monte Carlo study. As is obvious in our discussions in these 
four chapters up to now, a Monte Carlo study is based on drawing random samples from a theoretical 
population with known population parameters. Our ability to simulate the process of drawing random 
samples from a population with specified population characteristics determines the validity of the 
results of our Monte Carlo study.  In this sense, the importance of correct data generation procedures 
in a Monte Carlo study can never be overemphasized. 

In this chapter, we discussed in some detail the following relevant topics: (1) generating sample data 
from a univariate normal distribution; (2) generating sample data from a univariate non-normal 
distribution as defined by univariate skewness and kurtosis; (3) generating sample data from a 
multivariate normal distribution with correlated variables; and (4) generating sample data from a 
multivariate non-normal distribution with correlated variables. As is seen in the presentation of this 
chapter, the process of generating sample data becomes increasingly complicated as we proceed from 
a univariate to multivariate situation, and as we proceed from a multivariate normal distribution to a 
multivariate non-normal distribution. 

We hope that Chapter 3 and Chapter 4 have provided an adequate working knowledge base for 
generating sample data for conducting a Monte Carlo study in general, and for implementing the 
procedures for generating sample data in SAS in particular.  In the following chapters, we will focus 
more on procedural and/or programmatic issues for implementing Monte Carlo studies in SAS.  For 
that purpose, we will discuss program automation in SAS (Chapter 5), and we will present a series of 
SAS examples for conducting Monte Carlo studies in Chapters 6-9. 
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The SAS System is an excellent choice for conducting Monte Carlo simulations (Hamer & Breen 
1985) because it is a whole environment providing the following features: ease of programming, 
portability (the same code runs on different hardware platforms and operating systems), good quality 
and a broad variety of random number generators, readily available statistical procedures, convenient 
database storage, and report writing capabilities. 

In this chapter, we will discuss the steps involved in conducting Monte Carlo simulations, the various 
ways of controlling the random number generators, placing the simulation into a macro shell for 
flexible and automatic execution, monitoring the execution of the simulation, and saving and 
presenting the results. The chapter will utilize the simple problem of "Matching Birthdays" for 
illustration purposes. At the end of the chapter, we will present a full-fledged solution to the so-called 
Parking Problem. 
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The full implementation of a Monte Carlo simulation problem in SAS usually includes the following 
steps: 

1. Designing the system (What are the parameters of the system? What are the 
relationships among these parameters? What is the unknown we are after? What are 
the parameters changing by chance? What precision do we wish to achieve?). 

2. Identifying the a priori distributions of the probability variables in the system. 

3. Programming the whole system in SAS. 

4. Executing the simulation. 

5. Saving all relevant results and necessary intermediate values. 

6. Checking the required randomness in the system. 

7. Calculating the results. 

8. Presenting the results. 
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We will use the problem of Matching Birthdays to illustrate the complete solution to a simulation 
problem in the SAS System. There are at least 366 people in a room. Their birthdays (birthday in this 
problem means month and day only) are random in the sense that each person’s birthday has the same 
probability of being any of the 365 days of the year. We select people randomly until the newly 
selected person’s birthday matches any of the birthdays of the people already selected. The problem 
that we want to solve is: What is the average number of people needed to obtain the first pair of 
matching birthdays?  

Before we start solving the problem, let us emphasize an important aspect of the problem/solution: 
When a new person is selected, his birthday is compared to the birthdays of all people previously 
selected. For simplicity’s sake, we ignore leap years. 

The problem has a simple analytical solution,1 but we intend to solve it with simulation. The 
problem’s parameters are the birthdays, up to 366 of them (the first 365 birthdays could be all 
different). They are random and independent of each other. During the simulation, we have to 
compare each newly selected birthday to each of the birthdays already chosen. The distribution of the 
birthdays is uniform from 1 to 365, because we will represent a birthday as day-of-the-year. We will 
utilize the RANUNI function and convert its random number to an integer between 1 and 365. We 
will save all birthdays selected randomly (in order to check the necessary uniform distribution of the  

                                                           

1 Let P(n) denote the probability of having the first pair of matching birthdays after selecting n people. Then � �
n 1

n 1 366 i
P(n)

365 365
i 1

�

� �

�

�

� . The average 

number of people is given by 
365

E(n) nP(n),

n 1

�

�

� which results in approximately 24.62. 
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birthdays) and the number of people required to have two matching birthdays (in order to answer the 
question). PROC UNIVARIATE will calculate and present the results: the average number of people 
needed for the first matching pair of birthdays. 

A crucial step in the simulation is the design and programming of the system in the SAS 
environment. It is usually done in a DATA step because it provides the user with almost all the 
capabilities of a programming language. A clever approach and good programming help to simplify 
the task and speed up the simulation. In the case of the matching birthdays, we have to generate 
random birthdays and compare them pair-wise. It is clear that a birthday in this problem should not 
contain a year, since we are only interested in the month and day. The generation of the day of the 
year, i.e., an integer between 1 (January 1st) and 365 (December 31st) would be sufficient.  

The other important simplification regards the comparison. We could program the comparison of the 
newly generated birthday to each of the birthdays obtained earlier, but it would take a lot of time. 
Instead, we keep track of a birthday by setting a flag associated with that particular date. Then, when 
we generate a new birthday, we only have to see whether or not that date has a flag and we do not 
have to compare it to all dates already obtained. These design- and programming tricks will speed up 
the simulation tremendously.  

The solution is given in Program 5.1. The simulation is executed 10,000 times in a DO LOOP of a 
DATA step. The data set RESULTS from that DATA step captures not only the number of people 
needed for the first matching pair of birthdays, but all intermediate birthdays selected randomly, so 
we can examine whether our program generates uniformly distributed random birthdays. Each record 
corresponds to one simulation. In a subsequent DATA step, the program creates the data set DAYS, 
which has every birthday of every simulation in a separate record, in order to check their uniform 
distribution. PROC CAPABILITY is utilized to see if these birthdays follow the uniform distribution 
between 1 and 365. (The uniform distribution is a special beta distribution with ALPHA=BETA=1.) 
PROC UNIVARIATE answers the problem by calculating the average number of people.  

The results are presented in Output 5.1: the randomly selected birthdays distribute uniformly (their 
Q-Q plot is a straight line), and the average number of people is 24.69 (the precise rounded value is 
24.62—see the analytic solution in the footnote on page 94). The presentation of the results in Output 
5.1 also reveals the distribution of the number of people needed for the first matching birthdays (see 
the histogram of PROC UNIVARIATE). 
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Program 5.1  Matching Birthdays 
 

 
DATA RESULTS; 
 
     /* array of day indicators. A value of one in an element of this array  */ 
     /* indicates the selection of that birthday. Zero means that birthday   */ 
     /* has not been selected.                                               */ 
 
     ARRAY DAYS(365) $1 D1-D365; 
     LENGTH NPEOPLE 3; 
     DO SIM=1 TO 10000;  *** execute 10,000 simulations of the problem.; 
        DO I=1 TO 365; 
           DAYS(I)=’0’;  *** the day indicators are set to zero initially.; 
        END; 
        DO NPEOPLE=1 TO 366; 
           D=1+INT(365*RANUNI(123));   *** generate a random birthday between 1  
                                          and 365.; 
           IF DAYS(D)=’1’ THEN LEAVE;  *** was that birthday previously  
                                                 selected?; 
                                       *** if yes, leave the loop.; 
                            ELSE DAYS(D)=’1’;  *** If not, mark the day as  
                                                    ’selected’.; 
        END; 
        OUTPUT; 
     END; 
     RUN; 
 
/* check the distribution of all birthdays selected during the simulation. */ 
/* they should form a uniform distribution between 1 and 365. Place each   */ 
/* birthday into an individual observation.                                */ 
 
DATA DAY(KEEP=DAY); 
     SET RESULTS; 
     ARRAY DAYS(365) D1-D365; 
     DO I=1 TO 365; 
        IF DAYS(I)=’1’ THEN DO; DAY=I; 
                                OUTPUT; END; 
     END; 
     RUN; 
 
/* test whether or not the days generated randomly follow the uniform  */ 
/* distribution between 1 and 365. Use PROC CAPABILITY with the ’beta’ */ 
/* distribution, because the uniform distribution is a special beta    */ 
/* distribution (alpha=beta=1). Set the threshold and scale parameters */ 
/* to 1 and 365 respectively.                                          */ 
 
PROC CAPABILITY DATA=DAY; 
     VAR DAY; 
     QQPLOT DAY / BETA (ALPHA=1 BETA=1 THETA=1 SIGMA=365) 
                  HAXIS=AXIS1 VAXIS=AXIS2 NOLEGEND; 
     AXIS1 LABEL=(F=SWISS H=1.5 ’Uniform Distribution (1-365)’) 
           ORDER=0 TO 1 BY 0.2 VALUE=(H=1.2 F=SWISS) MINOR=(N=1); 
     AXIS2 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Random Birthday’) 
           ORDER=0 TO 400 BY 100 VALUE=(H=1.2 F=SWISS) MINOR=(N=1); 
     TITLE  F=SWISS H=1.5 ’Q-Q Plot of Randomly Selected Birthdays’; 
     SYMBOL1 R=8; 
     SYMBOL9 I=JOIN C=BLACK W=40; 
     RUN; 
PROC UNIVARIATE DATA=RESULTS PLOT;   *** calculate and present the answer.; 
     VAR NPEOPLE; 
     RUN; 
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Output 5.1  Results of the Matching Birthday Problem 
 
 

 
 
 
                          Univariate Procedure 
 
Variable=NPEOPLE 
 
                 Moments 
 
 N             10000  Sum Wgts      10000 
 Mean        24.6918  Sum          246918 
 Std Dev    12.26552  Variance   150.4431 
 Skewness   0.563674  Kurtosis   0.047086 
 USS         7601130  CSS         1504280 
 CV         49.67448  Std Mean   0.122655 
 T:Mean=0   201.3106  Pr>|T|       0.0001 
 Num ^= 0      10000  Num > 0       10000 
 M(Sign)        5000  Pr>=|M|      0.0001 
 Sgn Rank   25002500  Pr>=|S|      0.0001 
 
                       Histogram                          #       Boxplot 
82.5+*                                                    1          0 
    .*                                                    2          0 
    .*                                                    7          0 
    .*                                                   16          0 
    .**                                                  43          0 
    .***                                                 92          | 
    .******                                             172          | 
    .************                                       354          | 
42.5+******************                                 560          | 
    .****************************                       876          | 
    .***********************************               1112       +-----+ 
    .*********************************************     1434       |     | 
    .************************************************  1532       *--+--* 
    .************************************************  1534       +-----+ 
    .*****************************************         1306          | 
    .*************************                          784          | 
 2.5+******                                             175          | 
     ----+----+----+----+----+----+----+----+----+--- 
     * may represent up to 32 counts 
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The role of a seed value in a random number generator function is discussed fully in Chapter 3. Here 
we give some practical advice for setting its value. During testing of the simulation program, we 
should use a known seed value, so we could replicate the results and make the debugging process 
possible. (Otherwise, when we alter our program, we do not know whether the different outcome is 
due to the changes we just administered to the code or to different random numbers.) We use 
SEED=123 in many sample programs in this book, so you could run the examples and generate the 
same results. When the program is completely debugged and we start the simulation, we should use 
random seeds. The SAS System applies randomly selected starting values to the random generator 
functions if SEED=0 is specified. We can also generate special seed values satisfying certain criteria 
(see the SEEDGEN macro in section 3.6 of Chapter 3). If we wish to use random seed values and 
know their values as well, we can invoke the TIME function to obtain the current time from the 
operating system and enter that value into the random number generators. For example, Program 5.1 
could be expanded: 

 
SEED = 1+ROUND(1000*TIME()); 
PUT SEED=; 
DO SIM=1 TO 10000; 
... 
   DO I=1 TO 365; 
      D=1+INT(365*RANUNI(SEED)); 
      ... 

 
Since the TIME function returns a fraction and the seed must be an integer, the program forces the 
value of SEED to be a positive integer. The statement PUT SEED=; displays the current seed value 
in the LOG window for possible re-use. 
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Simulations usually take a long time to perform. There is a need to monitor the execution and know 
its speed, so we can estimate the total time required to finish the entire simulation or so we can know 
how many simulations we can perform in a given time unit. A simple statement placed at the head of 
the simulation loop in Program 5.1 can provide a message at a given number of iterations.  

 
DO SIM=1 TO 10000; 
   IF NOT MOD(SIM,1000) THEN PUT ’Simulation Number: ’ SIM; 
   ... 

 
The above IF statement displays the messages 

 
Simulation Number: 1000 
Simulation Number: 2000 

... 
 

in the LOG window, so we can estimate the required time and monitor the execution of the 
simulation. Of course, we can modify the frequency of this message by altering the second argument 
of the MOD function.  
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A more sophisticated way is to display starting and ending times, and time elapsed. Program 5.2 
substitutes the DATA step of Program 5.1 and provides full-time monitoring. It displays the starting 
time at the beginning of the simulation loop, then shows the current time and the time elapsed 
between the previous and current messages at every 2,000 simulations. The message is constructed as 
a character variable (MSG) in order to line up its parts nicely. The solution utilizes the DATETIME 
function (instead of TIME) in order to correctly determine the elapsed time when midnight strikes 
between two messages. 

 
Program 5.2  Simulation with Full-Time Monitoring 
 
 
DATA RESULTS; 
     ARRAY DAYS(365) $1 D1-D365; 
     LENGTH NPEOPLE 3; 
     SDT=DATETIME(); 
     STIME=TIMEPART(SDT);   *** take and display the time only.; 
     PUT ’Starting Time: ’ STIME TIME12.3; 
     LENGTH MSG $72;   *** define a character variable for the message.; 
     SUBSTR(MSG,1,13)=’Simulation #:’;      *** set the fixed parts of the message.; 
     SUBSTR(MSG,21,16)=’, Current Time: ’; 
     SUBSTR(MSG,49,16)=’, Duration: ’; 
     DO SIM=1 TO 10000; 
 
        /* Construct and display a message if this is a 2,000th simulation. */ 
 
        IF NOT MOD(SIM,2000) 
           THEN DO; EDT=DATETIME(); 
                    ETIME=TIMEPART(EDT); 
                    DURATION=EDT-SDT;   *** determine the elapsed time.; 
                    SUBSTR(MSG,15,6)=PUT(SIM,6.);   *** build the message.; 
                    SUBSTR(MSG,37,12)=PUT(ETIME,TIME12.3); 
                    SUBSTR(MSG,61,12)=PUT(DURATION,TIME12.3); 
                    PUT MSG;   *** display the message.; 
                    SDT=EDT;   *** move the current time into the starting time; 
                               *** for the next message.; 
                END; 
        DO I=1 TO 365; 
           DAYS(I)=’0’; 
        END; 
        DO NPEOPLE=1 TO 366; 
           D=1+INT(365*RANUNI(123)); 
           IF DAYS(D)=’1’ THEN LEAVE; 
                          ELSE DAYS(D)=’1’; 
        END; 
        OUTPUT; 
     END; 
     RUN; 
 
 

 
Log 5.2  Messages in the LOG Window with Full-Time Monitoring 
 
Starting Time: 10:17:20.718 
Simulation #:   2000, Current Time: 10:17:22.296, Duration:  0:00:01.578 
Simulation #:   4000, Current Time: 10:17:23.937, Duration:  0:00:01.641 
Simulation #:   6000, Current Time: 10:17:25.765, Duration:  0:00:01.828 
Simulation #:   8000, Current Time: 10:17:27.390, Duration:  0:00:01.625 
Simulation #:  10000, Current Time: 10:17:29.421, Duration:  0:00:02.031 

 
Program 5.4 later in this chapter will simplify the code back to its original clarity by placing the 
extraneous statements of the time monitoring into macros. 
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One of the many advantages of conducting simulation with SAS is the portable nature of the SAS 
code. The same code runs on all hardware platforms and operating systems supported by the SAS 
System. There are slight variations in the input/output options due to differences in the operating 
systems, but that may affect only statements outside of the real simulation. Most importantly, the 
core statements of the SAS language and all random number generators (assuming the same seed 
values) produce the same results on all hardware. This means that we can code and test the 
simulation program on a micro computer and send it up to a more powerful machine for executing 
the time-consuming simulation. 
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By definition, simulation is the repeated execution of a piece of code. As such, it is best implemented 
in the SAS macro framework. This book’s aim is not teaching the SAS macro language, but we will 
show you in a simplified way how to implement a simulation as a macro. Many of the examples in 
the book are presented as macros. 

The SAS macro language can be thought of as a super SAS language, which is not executed by the 
SAS System directly, but evaluated by the macro processor in order to produce real SAS code, which 
is then executed. The macro processor carries out all macro statements and replaces all macro 
variables with actual values, creating actual SAS code. Macro programs, in a simplified manner, 
have four components: 

�� opening and closing statements (%MACRO and %MEND). 

�� macro statements that are like regular SAS statements, but preceded by a % sign, and 
which only affect the creation of regular SAS statements. 

�� macro variables that are, in many ways, similar to SAS data set variables. (The most 
important differences include: the macro variables are preceded by a & sign when 
referenced, and they contain text, which replaces the reference during the macro 
processing phase.)  

�� regular SAS code that stays intact during the macro processing phase. 

 

When we write a macro, we always have to think like the macro processor: the macro code must 
result in correct SAS code when evaluated. Macros provide essential flexibility for the simulation. 
Without discussing the macro language extensively, we will show its construction and usefulness 
through some examples in the rest of this chapter. For more information about the SAS macro 
facility, consult the SAS Guide to Macro Processing. 
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It is recommended that you start writing a macro by coding your program in the regular SAS 
language and testing it fully. Then you can alter the code to place it in the framework of a macro. To 
"convert" a piece of SAS code to a macro, first you have to identify the parts of the code that should 
be changeable (e.g., the number of simulations, the seed value, certain parameters of the problem. 
Then you replace them with macro variables written in the form &macro-variable-name. Finally, you 
wrap the code with a %MACRO and %MEND statement.  

You list the macro variables (also called parameters) in the %MACRO statement, where you can 
assign default values to them. The macro, i.e., the code from %MACRO to %MEND, is only the 
definition of the macro. In order to execute it, you have to start the macro processor by referencing 
the name of the macro with the necessary parameters. 

Let us use Program 5.1 to illustrate the process of writing a macro. The Original Solution in Program 
5.3 is identical to Program 5.1 without saving the randomly selected birthdays and checking their 
distribution with PROC CAPABILITY. The first part of the code that we wish to change is the name 
of the data set that captures the results of the simulation. On the right hand side of Program 5.3, we 
replace it with the corresponding macro variable: &OUT. In the %MACRO statement, we list this 
macro variable and assign a default value to it after an equal sign (OUT=RESULTS). Then we make 
the number of days (365), the number of simulations (10000), the frequency of the monitoring 
messages (at every 2000 simulations), and the seed value (123) parameters by replacing them with 
the macro variables &NDAYS, &NSIMS, &MSG, and &SEED, respectively. The left hand side of 
Program 5.3 highlights all parts of the code that we will replace with macro variables, and the right 
hand side has all those replaced with the corresponding macro variables. 

The second argument, the divisor, of function MOD becomes a macro variable (&MSG) in the macro 
solution. Since its value could be set to zero (i.e., we wish to suppress the monitoring messages), the 
execution of the MOD function should be restricted to non-zero values. In other words, the actual 
SAS code generated by the macro processor should not contain the IF statement with the MOD 
function, if macro variable &MSG is zero. Therefore, we enclose it in a %IF macro statement. This is 
like a regular IF statement, but it only controls the presence or disappearance of the statement 
containing the function call in the generated SAS program. During execution, the macro processor 
checks the value of &MSG, and it skips the following statement if the value is zero. 

The last statement of the macro solution, %BDAY(SEED=123) invokes the macro and executes the 
simulation. (The missing semicolon here is not an error, because this command causes SAS to load 
and process the macro, and each statement of the macro and the generated code already contains the 
obligatory semicolon.) Since the simulation is executed with SEED=123 specified, the results are 
identical to those given in Output 5.1. The highlighted parts in the right hand side of Program 5.3 are 
the changes required to create the macro solution. 
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Program 5.3  Macro Solution to the Matching Birthdays Problem 
 

Original Solution Macro Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DATA RESULTS(KEEP=NPEOPLE); 
     ARRAY DAYS(365) $1 D1-D365; 
     LENGTH NPEOPLE 3; 
     DO SIM=1 TO 10000; 
 
        IF NOT MOD(SIM,2000) THEN PUT  
                 ’SIMULATION NUMBER: ’ 
SIM; 
 
        DO I=1 TO 365; 
           DAYS(I)=’0’; 
        END; 
        DO NPEOPLE=1 TO 366; 
           D=1+INT(365*RANUNI(123)); 
           IF DAYS(D)=’1’ THEN LEAVE; 
                          ELSE 
DAYS(D)=’1’; 
        END; 
        OUTPUT; 
     END; 
     RUN; 
PROC UNIVARIATE DATA=RESULTS PLOT; 
     VAR NPEOPLE; 
     RUN; 

 

 
/*****************************************/ 
/* Macro BDAY simulates the problem of   */ 
/* of Matching Birthdays.                */ 
/*                                       */ 
/* Parameters:                           */ 
/* NDAYS   # of days in a year.          */ 
/* NSIMS   # of simulations.             */ 
/* MSG     # of simulations at which to  */ 
/*         display a message in the LOG  */ 
/*         window to monitor the run.    */ 
/* SEED    Seed of function RANUNI.      */ 
/* OUT     the name of the file that     */ 
/*         captures the results.         */ 
/*****************************************/  
%MACRO BDAY(NDAYS=365,NSIMS=10000,MSG=2000, 
            SEED=0,OUT=RESULTS); 
DATA &OUT(KEEP=NPEOPLE); 
     ARRAY DAYS(&NDAYS) $1 D1-D&NDAYS; 
     LENGTH NPEOPLE 3; 
     DO SIM=1 TO &NSIMS; 
        %IF &MSG^=0 %THEN %DO; 
        IF NOT MOD(SIM,&MSG) THEN PUT  
                 ’SIMULATION NUMBER: ’ SIM; 
                          %END; 
        DO I=1 TO &NDAYS; 
           DAYS(I)=’0’; 
        END; 
        DO NPEOPLE=1 TO &NDAYS+1; 
           D=1+INT(&NDAYS*RANUNI(&SEED)); 
           IF DAYS(D)=’1’ THEN LEAVE; 
                          ELSE DAYS(D)=’1’; 
        END; 
        OUTPUT; 
     END; 
     RUN; 
PROC UNIVARIATE DATA=&OUT PLOT; 
     VAR NPEOPLE; 
     RUN; 
%MEND; 
%BDAY(SEED=123) 

 
If we specify  OPTION MPRINT; before a macro execution, the Log window displays the real 
SAS code generated by the macro processor. In our case, the contents of the Log window are as 
follows (except that the indentation has been added for clarity): 
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Log 5.3   
SAS Code 
Generated by 
the Macro 
Processor When 
Executing 
Program 5.3 
 
 
 

 

 

 

It is recommended to set the default value of parameter SEED to zero in the %MACRO statement. 
Otherwise, when we forget to control it, we obtain the same result every time we run the macro.  

Also, to achieve the highest degree of flexibility, we should “parameterize” as much code as 
possible. One could ask, for example, why did we make the number of days a parameter? If we 
execute  %BDAY(NDAYS=12,SEED=123), then we can solve the problem of Matching Birth 
Months, a variation of the original problem: What is the average number of people needed to obtain 
the first pair of matching birth months? The macro returns a value of 5.06, whereas the theoretical 
value is 5.04. 
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Much of Program 5.2 is related to monitoring the execution of the simulation. These parts of the 
program can be removed and placed into macros for clarity's sake. One macro could contain the code 
for starting the monitoring process, and another one could contain the statements displaying the 
recurring message. These macros provide two benefits: they make the code clearer, and they can 
serve as building blocks for general use. Program 5.4 is a modified version of Program 5.3 with full-
time monitoring implemented. In the macros %TMONST and %TMON, we use variable names 
starting with underscores, because the macros must not interfere with the simulation code, and they 
must reference variables different from the ones used in the simulation. The macro %TMONST sets 
up many variables that are utilized by the second macro, %TMON. The macros are designed to 
handle the case where the user does not wish to monitor (i.e., MSG=0). 

 

 
DATA RESULTS(KEEP=NPEOPLE); 
     ARRAY DAYS(365) $1 D1-D365; 
     LENGTH NPEOPLE 3; 
     DO SIM=1 TO 10000; 
        IF NOT MOD(SIM,2000) THEN PUT ’Simulation Number: ’ SIM; 
        DO I=1 TO 365; 
           DAYS(I)=’0’; 
        END; 
        DO NPEOPLE=1 TO 365+1; 
           D=1+INT(365*RANUNI(123)); 
           IF DAYS(D)=’1’ THEN LEAVE; 
                          ELSE DAYS(D)=’1’; 
        END; 
        OUTPUT; 
     END; 
     RUN; 
PROC UNIVARIATE DATA=RESULTS PLOT; 
     VAR NPEOPLE; 
     RUN; 
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Program 5.4  Macro Solution to the Matching Birthdays Problem with Full-Time Monitoring 
 

 
LIBNAME MYMACLIB ’subdirectory’;   *** define a location for the macro library.; 
OPTION SASMSTORE=MYMACLIB MSTORED; 
 
/* Macro TMONST starts the time monitoring.                    */ 
/* Parameter                                                   */ 
/* MSG       # of simulations at which the program displays a  */ 
/*           a message in the LOG window. Specify zero if you */ 
/*           wish to suppress the monitoring.                  */ 
 
%MACRO TMONST(MSG=2000) / STORE; 
  _MSGCNT=0; 
  %IF &MSG^=0 %THEN %DO; 
      _MSGCNT=&MSG; 
      _SDT=DATETIME(); 
      _STIME=TIMEPART(_SDT); 
      PUT ’Starting Time: ’ _STIME TIME12.3; 
      LENGTH _MSG $72; 
      SUBSTR(_MSG,1,13)=’Simulation #:’; 
      SUBSTR(_MSG,21,16)=’, Current Time: ’; 
      SUBSTR(_MSG,49,16)=’, Duration: ’; 
  %END; 
%MEND; 
 
/* macro TMON displays the simulation number, current time and */ 
/* elapsed time after a certain number of simulations.         */ 
 
%MACRO TMON / STORE; 
  IF _MSGCNT^=0 THEN DO; 
      _SIM+1; 
      IF NOT MOD(_SIM,_MSGCNT) THEN DO; _EDT=DATETIME(); 
                                        _ETIME=TIMEPART(_EDT); 
                                        _DUR=_EDT-_SDT; 
                                        SUBSTR(_MSG,15,6)=PUT(_SIM,6.); 
                                        
SUBSTR(_MSG,37,12)=PUT(_ETIME,TIME12.3);SUBSTR(_MSG,61,12)=PUT(_DUR,TIME12.3); 
                                        PUT _MSG; 
                                        _SDT=_EDT; 
                                    END; 
                     END; 
%MEND; 
 
/* a new SAS session starts here. */ 
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LIBNAME MYMACLIB ’subdirectory’;   *** this is the location of the macro library.; 
OPTION SASMSTORE=MYMACLIB; 
%MACRO BDAY(NDAYS=365,NSIMS=10000,MSG=2000, SEED=0,OUT=RESULTS); 
  DATA &OUT(KEEP=NPEOPLE); 
       ARRAY DAYS(&NDAYS) $1 D1-D&NDAYS; 
       LENGTH NPEOPLE 3; 
       %TMONST(MSG=2000) 
       DO SIM=1 TO &NSIMS; 
          %TMON 
          DO I=1 TO &NDAYS; 
             DAYS(I)=’0’; 
          END; 
          DO NPEOPLE=1 TO &NDAYS+1; 
             D=1+INT(&NDAYS*RANUNI(&SEED)); 
             IF DAYS(D)=’1’ THEN LEAVE; 
                            ELSE DAYS(D)=’1’; 
          END; 
          OUTPUT; 
       END; 
       RUN; 
  PROC UNIVARIATE DATA=&OUT PLOT; 
       VAR NPEOPLE; 
       RUN; 
%MEND; 
%BDAY(SEED=123) 
 
 

 

Program 5.4 also illustrates how we can seamlessly incorporate macros in our programs. We can set 
up a macro library, store our macros there, and later reference them without repeating the macro 
codes in our program. The statements 

 
LIBNAME MYMACLIB ’subdirectory’; 
OPTION SASMSTORE=MYMACLIB MSTORED; 

 
define the location of a macro library and let SAS know that we wish to permanently store macros 
there. Storing a macro in that library requires the STORE option in the  %MACRO  statement (see, e.g., 
%MACRO TMONST/STORE;). In a future SAS session, we only need to point to this macro library 
and the macros become available with a simple reference. 
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In the rest of the chapter, we will solve the Parking Problem with a macro. We will see the 
advantages of using a macro solution, the many and convenient ways SAS enables us to analyze and 
present the results, and we will answer additional interesting questions concerning the original 
problem. 
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The Parking Problem is as follows. What is the average number of cars of unit length that can 
randomly park along a street of length x? If M(x) denotes that average, then the problem can also 
ask:  

   ?
)(

lim ==
∞→

C
x

xM
x

 

The problem was first solved by Alfréd Rényi,2 and C is called Rényi's constant. We assume an ideal 
situation, i.e., that cars can park with their bumpers touching (but not overlapping) each other. 

First, let us design an algorithm that can be programmed in SAS. At the beginning, there is one 
parking space, the whole street. After parking the first car, there may be two parking spaces—one in 
front of that car, the other one behind it. When we park a car, we have to choose an available parking 
space first, and then we have to randomly place the car somewhere in that parking space. During the 
simulation, we need to store the parking locations of the cars, keep track of the available parking 
spaces, and stop the parking process when the available parking space decreases to zero. The parking 
locations and the number of parking spaces are constantly updated during the simulation. We choose 
the centrum of a car for its parking location. 

The macro %PARKING in Program 5.5 is the complete solution to the simulation. The simulation 
itself is performed in a DATA step. In that DATA step, we have to dimension an array (PARKGLOC) 
for the parking locations. The number of elements in that array depends on the maximum number of 
cars that can park along the street of a given length. That value is determined in a preceding DATA 
_NULL_ step and is carried over in a macro variable (&MAXNCARS). If the parameters are specified 
such that no car can park (the street is shorter than the length of a car), the macro jumps to the end of 
the macro without starting the simulation.  

Note the use of the macro parameters: their values are assigned to regular DATA step variables in a 
RETAIN statement to avoid the excessive presence of macro variables. The macro provides added 
flexibility by controlling the level of output: whether to output the intermediate information after 
parking each car, or only the end result (see the parameter LEVEL), and whether to keep only the 
number of cars parked or all parking locations as well (see the parameter KEEP). 

 

                                                           

2 Rényi showed (Rényi, 1958) that 

x
2

M(0) 0 and M(x) 1 M(u)du
x 1

0

� � �
� �  if x>0. By a Laplace transform, he obtained 

t
u1 e

C exp( 2 du)dt 0.74759...
u

0 0

�

�
�

� � �� �  For a survey of the problem, see Solomon 1986. For calculating the value of C with high precision, see 

Marsaglia 1989. 
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Program 5.5  Macro PARKING 
 

 
LIBNAME MYMACLIB ’subdirectory’;   *** this is the location of; 
OPTION SASMSTORE=MYMACLIB;         *** the macro library.; 
/************************************************************/ 
/* Macro PARKING simulates the parking problem and returns  */ 
/* the number of cars that park along a given street.       */ 
/*                                                          */ 
/* Parameters                                               */ 
/* OUT       name of the data set that captures the results */ 
/*           of the simulations.                            */ 
/* STRLNGTH  the length of the street.                      */ 
/* CARLNGTH  the uniform length of a car.                   */ 
/* NSIMS     # of simulations.                              */ 
/* SEED      Seed of function RANUNI.                       */ 
/* MSG       # of simulations at which to display a         */ 
/*           a monitoring message in the LOG window.        */ 
/* LEVEL     MAIN or PARKING. It controls the level of      */ 
/*           detail in the output data set. MAIN creates    */ 
/*           one record per simulation. PARKING creates     */ 
/*           one record for every car parked.               */ 
/* KEEP      NCARS or ALL. It controls the variables in the */ 
/*           output data set. NCARS saves only variable     */ 
/*           NCARS (# of cars parked), ALL saves all        */ 
/*           auxiliary variables along with NCARS.          */ 
/************************************************************/ 
 
%MACRO PARKING(OUT=TEMP,STRLNGTH=10,CARLNGTH=1, 
               NSIMS=1,SEED=123,MSG=0,LEVEL=MAIN,KEEP=NCARS); 
 
 /* calculate the maximum number of cars that can park + 2. */ 
 /* do it in a data _null_ step and save the result in      */ 
 /* macro variable MAXNCARS using the SYMPUT CALL routine.  */ 
 /* macro variable &MAXNCARS will be used to dimension an   */ 
 /* array, which holds the locations of the parked cars.    */ 
 
DATA _NULL_; 
      IF &STRLNGTH.<&CARLNGTH. 
         THEN MAXNCARS=0; 
         ELSE MAXNCARS=2+INT(&STRLNGTH/&CARLNGTH); 
      CALL SYMPUT(’MAXNCARS’,COMPRESS(PUT(MAXNCARS,16.))); 
      STOP; RUN; 
 
 /* if parameters are invalid, jump to the end of the       */ 
 /* macro and do nothing.                                   */ 
 
 %IF &MAXNCARS=0 %THEN %DO; 
     %PUT Error: Invalid relative values for parameters ’STRLNGTH’; 
     %PUT Error: and ’CARLNGTH’.; 
     %GOTO FINISH; %END; 
 
 /* data step of the simulation. */ 
 
 DATA &OUT; 
 
      /* The parameters are placed in the corresponding SAS   */ 
      /* variables through a RETAIN statement.                */ 
 
      LENGTH STRLNGTH CARLNGTH 4; 
      RETAIN STRLNGTH &STRLNGTH CARLNGTH &CARLNGTH; 
      RETAIN NSIMS &NSIMS SEED &SEED; 
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      /* array PRKGLOC stores the centrum of each car parked. */ 
      /* its dimension is the maximum number of cars that     */ 
      /* can park + 2 (see macro variable &MAXNCARS).         */ 
      /* the minimum parking location can be half the length  */ 
      /* of a car from the start of the street and the        */ 
      /* maximum parking location can be half the length of a */ 
      /* car from the end of the street.                      */ 
      /* to let our algorithm work, we park two imaginary     */ 
      /* cars just before and after the street.               */ 
 
      ARRAY PRKGLOC(&MAXNCARS) P1-P&MAXNCARS; 
      LENGTH NCARS 4; 
      %TMONST(MSG=&MSG)   *** start the time monitoring.; 
 
      DO SIM=1 TO NSIMS;  *** the main LOOP of the simulations.; 
         %TMON            *** display the monitoring message.; 
         NCARS=0;         *** NCARS holds the number of cars; 
                          *** currently parked.; 
 
         /* set the parking locations of the two imaginary    */ 
         /* cars. All cars that the simulation parks will be  */ 
         /* parked between these two cars.                    */ 
 
         PRKGLOC(1)=-CARLNGTH/2; 
         PRKGLOC(2)= STRLNGTH+CARLNGTH/2; 
 
         /* NAVAILPS: # of available parking spaces. At the   */ 
         /* beginning, it is one, because the whole street    */ 
         /* is one continuous parking space.                  */ 
 
         NAVAILPS=1; 
 
         /* LOOP that parks cars. It keeps parking until      */ 
         /* there is only one available parking space.        */ 
 
         DO WHILE (NAVAILPS>0); 
 
            /* Choose from the available parking spaces. */ 
 
            CURRPARK=1+INT(RANUNI(SEED)*NAVAILPS); 
 
            /* find the possible parking spaces between the   */ 
            /* cars already parked and stop when the randomly */ 
            /* chosen parking space is reached.               */ 
 
            NPS=0; 
            DO I=1 TO NCARS+1 WHILE (CURRPARK^=NPS); 
               IF PRKGLOC(I)+2*CARLNGTH <= PRKGLOC(I+1) THEN DO; 
 
                  /* the space between car i and car i+1 is    */ 
                  /* long enough to be a parking space.        */ 
 
                  NPS=NPS+1;   *** Keep counting the parking spaces.; 
 
                  /* the randomly chosen parking space         */ 
                  /* (see above: CURRPARK) is found.           */ 
 
                  IF CURRPARK=NPS THEN DO; 
 
                     /* choose the parking location within the */ 
                     /* parking space randomly. The parking    */ 
                     /* location is held in variable NEWPRKG.  */ 
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                     NEWPRKG=PRKGLOC(I)+CARLNGTH+RANUNI(SEED)* 
                             (PRKGLOC(I+1)-PRKGLOC(I)-2*CARLNGTH); 
 
                     /* insert the car into the sequence of    */ 
                     /* parked cars. Push up all cars behind   */ 
                     /* it.                                    */ 
 
                     DO J=NCARS+2 TO I+1 BY -1; 
                        PRKGLOC(J+1)=PRKGLOC(J); 
                     END; 
                     NCARS=NCARS+1; 
                     PRKGLOC(I+1)=NEWPRKG; 
 
                     /* update the number of available parking */ 
                     /* spaces. Is there enough space for      */ 
                     /* another car in front of and behind     */ 
                     /* this newly parked car?                 */ 
 
                     NAVAILPS=NAVAILPS-1; 
                     IF PRKGLOC(I)+2*CARLNGTH<=PRKGLOC(I+1) 
                        THEN NAVAILPS=NAVAILPS+1; 
                     IF PRKGLOC(I+1)+2*CARLNGTH<=PRKGLOC(I+2) 
                        THEN NAVAILPS=NAVAILPS+1; 
                  END; 
               END; 
            END; 
 
            /* output record after each parking. */ 
 
            %IF %UPCASE(&LEVEL)=PARKING %THEN OUTPUT; 
         END; 
 
         /* output record after all cars are parked and no     */ 
         /* more cars can be parked.                           */ 
 
         %IF %UPCASE(&LEVEL)=MAIN %THEN OUTPUT;; 
      END; 
      %IF %UPCASE(&KEEP)=NCARS %THEN %STR(KEEP NCARS;); 
                               %ELSE %STR(KEEP NCARS CARLNGTH STRLNGTH  
                               P1-P&MAXNCARS;); 
      RUN; 
 %FINISH:; 
%MEND; 
 

 
Before we run a large number of simulations, let us call the macro to execute one simulation only and 
use a SAS/GRAPH procedure to present the process of parking visually. Program 5.6 calls the macro 
with one simulation requested, saving all intermediate data (note the utilization of the default values 
of the macro parameters). After adjusting the output file, we draw the parked cars along the street 
using PROG GPLOT (see Output 5.6). This sample simulation and its graphical presentation help us 
to understand the algorithm and the internal working of the macro. 
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Program 5.6  One Simulation of Parking 
 

 
%PARKING(OUT=ONESIM,LEVEL=PARKING,KEEP=ALL) 
PROC PRINT DATA=ONESIM; 
     FORMAT P1-P12 5.3; 
     TITLE F=SWISS H=1.5 ’One Random Parking (Street=10, Car=1)’; 
     RUN; 
 
/* data set ONESIM contains all parked cars of one simulation.*/ 
/* prepare the data set for drawing the sequence of parking   */ 
/* with PROC GPLOT using the SYMBOL INTERPOL=HILOBC;          */ 
/* statement that draws a rectangle representing a car.       */ 
 
DATA ONESIM(KEEP=CARS STREET); 
     SET ONESIM; 
     ARRAY PRKGLOC(12) P1-P12; 
     DO I=2 TO _N_+1; 
 
        /* make the ’x’ coordinate of each car unique by      */ 
        /* adding a unique fudging factor to each.            */ 
 
        CARS=_N_+0.00000001*I; 
        STREET=PRKGLOC(I)+0.5; OUTPUT; 
        STREET=PRKGLOC(I)-0.5; OUTPUT; 
 
        /* create two ’y’ values in order to have the         */ 
        /* vertical sides of the rectangle.                   */ 
 
        STREET=PRKGLOC(I)-0.5; OUTPUT; 
     END; 
PROC FORMAT; 
     VALUE FCARS 0=’ ’ 8=’ ’; 
PROC GPLOT DATA=ONESIM; 
     PLOT STREET*CARS / VAXIS=AXIS1 HAXIS=AXIS2; 
     FORMAT CARS FCARS.; 
     SYMBOL INTERPOL=HILOBC; 
     AXIS1 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Street’) 
           ORDER=0 TO 10 BY 1 VALUE=(H=1.2 F=SWISS) MINOR=NONE; 
     AXIS2 LABEL=(F=SWISS  H=1.5 ’Cars’) 
           ORDER=0 TO 8 BY 1 VALUE=(H=1.2 F=SWISS) MINOR=NONE; 
RUN; 
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Output 5.6  Graphical Representation of One Simulation 
 
 
One Random Parking (Street=10, Car=1) 
 
   S C 
   T A 
   R R 
   L L                                                                     N 
   N N                                                                     C 
O  G G                                                               P P P A 
B  T T      P     P      P      P      P      P      P      P      P 1 1 1 R 
S  H H      1     2      3      4      5      6      7      8      9 0 1 2 S 
 
1 10 1 -0.500 3.388 10.500   .      .      .      .      .      .    . . . 1 
2 10 1 -0.500 2.211  3.388 10.500   .      .      .      .      .    . . . 2 
3 10 1 -0.500 0.657  2.211  3.388 10.500   .      .      .      .    . . . 3 
4 10 1 -0.500 0.657  2.211  3.388  6.423 10.500   .      .      .    . . . 4 
5 10 1 -0.500 0.657  2.211  3.388  4.582  6.423 10.500   .      .    . . . 5 
6 10 1 -0.500 0.657  2.211  3.388  4.582  6.423  8.329 10.500   .    . . . 6 
7 10 1 -0.500 0.657  2.211  3.388  4.582  6.423  8.329  9.374 10.500 . . . 7 

 

 

 
 

Now we can run a real simulation and obtain the average number of cars. In Program 5.7, we specify 
the length of the street as 100 (the cars still have unit length), and we request 100,000 simulations. 
The output data set of the macro (RES100) is processed by PROC UNIVARIATE to return the 
answer: 74.5 cars. Rényi's constant would be 0.7451... . 
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Program 5.7  100,000 Simulations with Street=100 and Car Length=1 
 

 
%PARKING(OUT=RES100,STRLNGTH=100,NSIMS=100000) 
PROC UNIVARIATE DATA=RES100 PLOT; 
     VAR NCARS; 
     RUN; 
 

 
Output 5.7  Average Number of Parked Cars on Street=100 
 
 
Univariate Procedure 
 
Variable=NCARS 
 
                 Moments                               Quantiles(Def=5) 
 
 N            100000  Sum Wgts     100000   100% Max        83       99%        79 
 Mean       74.51164  Sum         7451164    75% Q3         76       95%        78 
 Std Dev    1.969904  Variance   3.880523    50% Med        75       90%        77 
 Skewness   0.003419  Kurtosis   -0.00247    25% Q1         73       10%        72 
 USS        5.5559E8  CSS        388048.5     0% Min        66        5%        71 
 CV         2.643754  Std Mean   0.006229                             1%        70 
 T:Mean=0   11961.32  Pr>|T|       0.0001   Range           17 
 Num ^= 0     100000  Num > 0      100000   Q3-Q1            3 
 M(Sign)       50000  Pr>=|M|      0.0001   Mode            75 
 Sgn Rank      2.5E9  Pr>=|S|      0.0001 
 D:Normal   0.101038  Pr>D           <.01 
 
                 Extremes 
 
    Lowest    Obs     Highest    Obs 
        66(   79423)       82(   82446) 
        66(   71606)       82(   87088) 
        66(   53040)       82(   91180) 
        67(   89263)       82(   95423) 
        67(   87120)       83(   89658) 
 
                          Histogram                          #  Boxplot 
   83.5+*                                                    1     0 
       .*                                                   13     0 
       .*                                                   95     0 
       .**                                                 416     | 
       .****                                              1538     | 
       .***********                                       4245     | 
       .**********************                            8969     | 
       .**************************************           15296  +-----+ 
       .************************************************ 19741  *-----* 
       .************************************************ 19506  |  +  | 
       .*************************************            14992  +-----+ 
       .***********************                           9110     | 
       .**********                                        4119     | 
       .****                                              1462     | 
       .*                                                  400     | 
       .*                                                   79     0 
       .*                                                   15     0 
   66.5+*                                                    3     0 
        ----+----+----+----+----+----+----+----+----+--- 
        * may represent up to 412 counts 
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Using the macro solution, it is easy to approximate Rényi's constant by executing the macro with 
increasing street lengths. In Program 5.8, we simulate the problem with street lengths of 10, 100, 
1000 and 10,000 units. Note that the last macro call requests only 10,000 simulations because of the 
increase in the execution time. The program concatenates the results of the four macro calls, sets up a 
variable for the length of the street (STREET), and calculates Rényi's constant with PROC MEANS 
and a subsequent DATA step. The results show an ever-increasing approximation of the true value. 
When the length of the street is 10,000 units, the error is less than 0.000003 (0.74760044... vs. the 
true value of 0.74759792...). 

 
Program 5.8  Approximation of Rényi's Constant 
 

 
%PARKING(OUT=RES10,STRLNGTH=10,NSIMS=100000) 
%PARKING(OUT=RES100,STRLNGTH=100,NSIMS=100000) 
%PARKING(OUT=RES1000,STRLNGTH=1000,NSIMS=100000) 
%PARKING(OUT=RES10000,STRLNGTH=10000,NSIMS=10000) 
DATA RESALL;   *** concatenate the results of all simulations; 
     SET RES10(IN=S10)     RES100(IN=S100) 
         RES1000(IN=S1000) RES10000(IN=S10000); 
     IF S10    THEN STREET=10;  *** set up the length of the street.; 
     IF S100   THEN STREET=100; 
     IF S1000  THEN STREET=1000; 
     IF S10000 THEN STREET=10000; 
PROC MEANS DATA=RESALL NOPRINT;  *** calculate average number of cars.; 
     VAR NCARS STREET; 
     BY STREET; 
     OUTPUT OUT=RENYI(KEEP=RENYI STREET NSIMS) MEAN=RENYI N=NSIMS; 
     RUN; 
DATA RENYI;   *** calculate Renyi’s constant (average number of ; 
              *** cars over the length of the street).; 
     SET RENYI; 
     RENYI=RENYI/STREET; 
     RUN; 
PROC PRINT DATA=RENYI LABEL SPLIT=’*’ NOOBS; 
     VAR STREET RENYI NSIMS; 
     LABEL STREET=’Length of*Street’ RENYI="Renyi’s*Constant" 
           NSIMS=’Number of*Simulations’; 
     TITLE  "Approximation of Renyi’s Constant"; 
     TITLE2 "(Average Number of Cars / Length of Street)"; 
     RUN; 
 

 
 
Output 5.8 
Approximation 
of Rényi's 
Constant 
 
 
 
 

 

 
                   Approximation of Renyi’s Constant 
               (Average Number of Cars / Length of Street) 
 
                   Length of     Renyi’s     Number of 
                     Street     Constant    Simulations 
 
                       10       0.72264      100000 
                      100       0.74511      100000 
                     1000       0.74731      100000 
                    10000       0.74760       10000 
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As we discussed in the introduction to this chapter, the SAS System provides an unparalleled 
richness of statistical procedures and convenient data handling capabilities for the simulations. We 
can raise many secondary questions about the simulation problem and answer them with ease.  

For example, we may ask: What is the distribution of the gaps between the parked cars? Normal or 
uniform? Even when we are not equipped with the necessary mathematical knowledge and skill, we 
can answer these questions. Program 5.9 presents the code to execute the simulation, grab the 
parking locations of the cars, calculate the gaps between them and, finally, draw the distribution with 
PROC UNIVARIATE. Output 5.9 shows the distribution, which is neither normal nor uniform. 

 
Program 5.9  Analysis of Gaps Between the Cars 
 

 
/* execute a simulation by grabbing the locations of */ 
/* all parked cars (see parameter KEEP=ALL and       */ 
/* variables p1,p2,...)                              */ 
 
%PARKING(OUT=GAP,STRLNGTH=100,NSIMS=100000,KEEP=ALL) 
 
/* calculate the gaps between the cars. Include the  */ 
/* distance from the beginning of the street and the */ 
/* first car and the distance between the last car   */ 
/* and the end of the street. Place each gap into a  */ 
/* separate observation.                             */ 
 
DATA GAP(KEEP=GAP); 
     SET GAP; 
     ARRAY PRKGLOC(102) P1-P102;   *** locations of the cars.; 
     LENGTH GAP 4; 
     DO I=1 TO NCARS+1; 
        GAP=PRKGLOC(I+1)-PRKGLOC(I)-1;   *** the length of a car is 1.; 
        OUTPUT; 
     END; 
PROC UNIVARIATE DATA=GAP NORMAL PLOT; 
     VAR GAP; 
     TITLE ’Distribution of Gaps between the Cars’; 
     RUN; 
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Output 5.9:  Distribution of Gaps Between the Cars 
 
 
                      Distribution of Gaps between the Cars 
 
Univariate Procedure 
 
Variable=GAP 
 
                 Moments                               Quantiles(Def=5) 
 
 N           7551164  Sum Wgts    7551164   100% Max         1       99%   0.97653 
 Mean       0.337542  Sum         2548835    75% Q3   0.541009       95%  0.887918 
 Std Dev    0.281835  Variance   0.079431    50% Med   0.26276       90%  0.787126 
 Skewness   0.676533  Kurtosis   -0.70364    25% Q1   0.091603       10%  0.026726 
 USS         1460135  CSS        599796.5     0% Min  1.146E-9        5%  0.011197 
 CV         83.49629  Std Mean   0.000103                             1%  0.001641 
 T:Mean=0    3291.09  Pr>|T|       0.0001   Range            1 
 Num ^= 0    7551164  Num > 0     7551164   Q3-Q1     0.449406 
 M(Sign)     3775582  Pr>=|M|      0.0001   Mode      0.255009 
 Sgn Rank   1.426E13  Pr>=|S|      0.0001 
 D:Normal   0.115525  Pr>D           <.01 
 
                 Extremes 
 
    Lowest    Obs     Highest    Obs 
  1.146E-9( 4756845) 0.999999( 4362339) 
  7.907E-9( 2295455) 0.999999( 5790184) 
  1.685E-8( 7007323) 0.999999( 6480881) 
    1.7E-8( 5455812)        1( 2429628) 
  2.736E-8( 4460589)        1( 4932128) 
 
                          Histogram                          #  Boxplot 
  0.975+*******                                         163291     | 
       .*******                                         171630     | 
       .********                                        180089     | 
       .********                                        189543     | 
       .********                                        200874     | 
       .*********                                       212389     | 
       .*********                                       224685     | 
       .**********                                      240839     | 
       .***********                                     256294     | 
       .***********                                     275069  +-----+ 
       .************                                    295764  |     | 
       .*************                                   321136  |     | 
       .**************                                  349358  |     | 
       .****************                                382718  |  +  | 
       .*****************                               423905  *-----* 
       .*******************                             475048  |     | 
       .**********************                          542824  |     | 
       .**************************                      637857  |     | 
       .********************************                791203  +-----+ 
  0.025+************************************************1.22E6     | 
        ----+----+----+----+----+----+----+----+----+--- 

*  may represent up to 25347 counts 
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The SAS System is an outstanding environment for Monte Carlo simulations. It provides all 
necessary tools for conducting a simulation, and it makes a full discussion of the problem possible 
with its broad range of procedures and features. In this chapter, we have seen that the programming 
of a simulation can be done in the familiar DATA step, that we have full control over the seed values 
of the random number generators, that it is easy to implement monitoring during the time-consuming 
execution, that the SAS code can be ported to any hardware and operating system without significant 
change, and that we can automate the simulation process by building it with the SAS Macro Facility. 
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Chapters 1 to 5 have covered the basic concepts and procedures for conducting a Monte Carlo simulation 
study. At the same time, the basic components of SAS programs necessary for implementing a Monte 
Carlo study have also been explained. We are now ready to present and discuss some complete examples 
of Monte Carlo studies in which the SAS System is used for statistical analysis. The examples in this 
chapter involve the following statistical techniques: 

�� a t-test, to assess the effect of violating the assumption of equal population variances  

�� analysis of variance (ANOVA), for assessing the effect of violating the assumptions 
of data normality and equal population variances  

�� linear regression, for comparing different R2 shrinkage formulas for correcting 
positive bias of sample R2. 
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For each example, we will present a) the theoretical rationale for conducting the study, and the major 
issues involved; b) the annotated SAS program for implementing the Monte Carlo study, with a detailed 
explanation of the SAS code; c) some selected and relevant results from the actual simulation based on 
the SAS programs provided. The examples provided in this chapter, as well as those in the following three 
chapters (Chapters 7, 8 and 9), are designed to help readers put together all the puzzle pieces discussed in 
previous chapters. 
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The t-test is a widely used statistical inferential test for assessing the equality of two population means on 
a variable of interest. For example, suppose that a large corporation has a complicated end-of-year bonus 
policy that involves some subjective decisions from each employee’s immediate supervisors. A personnel 
officer in the corporation may be interested in knowing if there is a difference in bonus (as represented by 
percentage of salary) between the male and female employees in the corporation. As another example, an 
educational psychologist may be interested in assessing whether there is a difference in the level of self-
esteem between those students who are in the regular classroom and those who have been assigned to a 
special education program because of their lower performance on some academic aptitude/achievement 
measures. In both of these cases, a t-test may be used to test if the observed sample difference could have 
occurred by sampling variation, i.e., by chance.  If it is statistically determined that the observed 
difference between the two samples on the variable of interest is very unlikely to be the result of sampling 
error, the difference would be declared to be statistically significant, namely, there is a real difference 
between the two populations (e.g., male versus female employees) on the variable of interest (e.g., end-of-
year bonus). 

All statistical inferential tests have some fundamental theoretical assumptions, and the t-test is no 
exception. If the fundamental assumptions of a statistical test are not tenable for the data used, the validity 
of the statistical conclusion based on the inferential test is often compromised to an unknown degree. For 
the t-test, there are two prominent assumptions: a) the two populations have equal variances; b) the 
variable of interest is normally distributed. If these assumptions are violated, the actual Type I error rate 
may deviate from the theoretical Type I error rate such that our statistical conclusion may be in error. 

In this Monte Carlo simulation example, we examine the issue of violating the first assumption, i.e., the 
two populations do not have equal variances. The effect of violating these two assumptions of the t-test is 
well known, because these issues have been studied by many researchers. In this sense, our interest here is 
not in the statistical issues themselves, but only to present an example to illustrate how a Monte Carlo 
study can be implemented in the SAS System. 
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6.2.1 Computational Aspects of T-Tests  
The t statistic for testing the equality of two independent samples, with sample sizes of n1 and n2 
respectively, is: 
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These formulas are presented to help readers follow some SAS programming code that will be presented 
and discussed in later sections. 

 

6.2.2 Design Considerations 
In this example, we want to assess the effect of unequal population variances on the actual Type I error 
rate of t-tests for samples drawn from populations with the same means. The simulation design, however, 
should include conditions of both equal and unequal population variances so that an empirical comparison 
can be made about the empirical Type I error rates for the data condition that satisfies the theoretical 
assumption of equal population variances, and for the other data condition that violates this assumption.   

Under the condition of unequal population variances, there can be different degrees of inequality of 
population variances. For example, the variance of one population may be 50% larger than that of the 
other, or twice as large as that of the other, or four times as large, etc. A real Monte Carlo study may 
include a range of degrees of inequality in order to gain a fuller understanding of the effects caused by 
such data conditions. In our example here, however, for the sake of simplicity, we only consider one 
condition of unequal population variances: the standard deviation of one population is 10 (variance=100), 
and that of the other is 15 (variance=225). In short, for the dimension of population variances, we will 
consider two conditions: equal and unequal population variances. 
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Previous research in this area suggests that sample size plays a role in influencing the effect of unequal 
population variances on the actual Type I error rate of t-tests. More specifically, unequal population 
variances have a substantially stronger effect on the actual Type I error rate of t-test statistics when the 
sample sizes of the two samples are unequal than when they are equal. To investigate the interaction 
effect between sample size and unequal population variances, sample size should be considered as another 
dimension of design.  

Although a real research Monte Carlo study may include a range of sample size conditions with different 
degrees of inequality of sample sizes in the two samples, we only include one condition of equal sample 
sizes (20 and 20 for the two samples) and one condition of unequal sample sizes (20 for the sample from 
the population with equal/smaller population variance, and 40 for the sample from the population with 
equal/larger population variance). The two dimensions (population variance and sample size) are fully 
crossed with each other, resulting in a 2�2 experimental design with four cell conditions. To obtain a 
reasonably accurate estimate of the actual Type I error rate for the conditions, 10,000 replications of the t-
test will be conducted in each cell condition. This design requires a total number of 40,000 replications 
[(2×2) ×10000]. The Monte Carlo study design is represented schematically in Table 6.1. 

 

Table 6.1  Schematic Representation of the T-Test Monte Carlo Study Design 
 

   Sample Size 

  Equal 
(20, 20) 

Unequal 
(20, 40) 

Equal 
(100, 100) 

10,000 replications 10,000 replications  
Variance 

Unequal 
(100, 225) 

10,000 replications 10,000 replications 

 

6.2.3 Different SAS Programming Approaches 
Because the SAS System is so flexible, for any Monte Carlo simulation study, different approaches can be 
taken. Different approaches may involve different amounts of statistical programming. It is usually the 
individual researcher’s preference that often dictates which approach is taken.  

In this chapter, we present two approaches for implementing the Monte Carlo simulation design as 
represented in Table 6.1 for assessing the effect of unequal population variances on the validity of the t 
statistic’s Type I error rate. The first approach is to rely on base SAS only, and we do the programming 
for all the computations involved in a t-test by using base SAS functions and mathematical capabilities. 
The second approach is to use SAS/IML for data generation and to use SAS/STAT software’s PROC 
TTEST to obtain the t statistic and its probability value. This approach of relying on SAS/STAT 
procedures for statistical computations allows us to avoid programming  
for statistical computations, instead of doing the computation programming ourselves as in the  
first approach.  
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As we progress through our examples in this and later chapters, it will become more obvious that the latter 
approach allows us to take full advantage of the SAS System and is often much more efficient and 
simpler to implement. This is especially true when we deal with complicated statistical procedures, for 
which programming by ourselves is either impossible or simply too complicated for us to deal with. 

 

6.2.4 T-Test Example: First Approach 
Program 6.1 presents a SAS macro program for simulating a t-test under the design conditions depicted in 
Table 6.1. This program relies only on base SAS for all the programming, including the programming for 
data generation and all the statistical computations involved in a t-test. Although the program contains 
many comments to explain the functions of the SAS programming code, for researchers who are novices 
in this area, some more detailed explanations may be beneficial. Following the program, a detailed 
explanation will be provided for some selected components of the program. 

 

Program 6.1  SAS Program for T-Test – First Approach 
 
 
LIBNAME TTEST ’C:\T_TEST\TRIALS’; 
 
            * -- to avoid the problem of SAS Log Window becoming full; 
PROC PRINTTO LOG=’C:\T_TEST\TRIALS\LOGFILE.TMP’; 
RUN; 
 
%MACRO TTEST;     * beginning of the macro program ‘TTEST’; 
 
%DO A=1 %TO 2;    * A=1:equal variance, A=2:unequal; 
%DO B=1 %TO 2;    * B=1:equal sample size, B=2:unequal; 
 
%DO I=1 %TO 10000;   * number of replications in each cell. 10,000 in this case; 
 
DATA TTEST; 
 
        /***  set parameters  ***/ 
ALPHA=0.05;    * nominal TYPE I error rate; 
MEAN=50;       * common mean for two populations; 
SD1=10;        * STD for GRP 1 & 2 - equal variance condition; 
N1=20;         * sample size for GRP 1 & 2 - equal N condition; 
        /***  end of parameters ***/ 
 
  IF &A=1 THEN SD2=SD1;      * A=1:equal variance, A=2:unequal - 1.5 times sd1; 
     ELSE SD2=SD1*1.5; 
 
  IF &B=1 THEN N2=N1;        * B=1:equal sample size, B=2:unequal - 2 times n1; 
     ELSE N2=N1*2; 
                             * initiate the accumulators; 
 SUM1=0;      * group 1:  sum of x - sigma(x); 
 SUM2=0;      * group 2:  sum of x - sigma(x); 
 SSU1=0;      * group 1:  uncorrected sum of squares (ss); 
 SSU2=0;      * group 2:  uncorrected sum of squares (ss); 
                      
   DO I=1 TO N1;          *  generate Group 1 data, carry out some computations; 
      X1=MEAN + SD1*RANNOR(0); 
      SUM1=SUM1 + X1; 
      SSU1=SSU1 + X1**2; 
   END; 
                      
   DO J=1 TO N2;          *  generate Group 2 data, carry out some computations; 
      X2=MEAN + SD2*RANNOR(0); 
      SUM2=SUM2 + X2; 
      SSU2=SSU2 + X2**2; 
   END; 
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   SSC1 = SSU1 - ((SUM1**2)/N1);     * compute corrected SS for two groups; 
   SSC2 = SSU2 - ((SUM2**2)/N2); 
 
   MEAN1=SUM1/N1;  MEAN2=SUM2/N2;    * means of the two samples; 
                           
   VARP=(SSC1+SSC2)/(N1+N2-2);       * pooled variance; 
                           
   T=(MEAN1-MEAN2)/SQRT(VARP*(1/N1 + 1/N2));    * t statistic; 
 
   DF = N1 + N2 - 2;                  * degrees of freedom; 
                          
   IF T<0 THEN PT=2*PROBT(T,DF);         * p value of the t statistic - two-tailed; 
   ELSE IF T>0 THEN PT=2*(1-PROBT(T,DF)); 
                            
   IF PT<ALPHA THEN SIG=1;      * classify each t-test as either significant or not; 
      ELSE SIG=0; 
                          
   IF &A=1 THEN EQ_VAR=’  EQUAL’;   * add design conditions to the output data set; 
      ELSE EQ_VAR=’UNEQUAL’; 
 
   IF &B=1 THEN EQ_N=’  EQUAL’; 
      ELSE EQ_N=’UNEQUAL’; 
DATA NEW; SET TTEST;                * append the results to a SAS data set on disk; 
  KEEP T DF PT SIG EQ_VAR EQ_N; 
  PROC APPEND BASE=TTEST.TTEST; 
RUN; 
 
%END;                * end iteration do loop; 
%END;                * end B do loop; 
%END;                * end A do loop; 
%MEND TTEST;         * close the macro program; 
%TTEST;              * run the macro program; 
RUN; 
                     * check empirical rejection rate for each cell condition; 
DATA A; SET TTEST.TTEST;   
PROC SORT; BY EQ_VAR EQ_N; 
PROC FREQ; BY EQ_VAR EQ_N; 
  TABLES SIG; 
RUN; 
 

�
 

The first PROC PRINTTO as repeated below directs the SAS log to a file on disk instead of displaying 
log messages in the SAS Log window. In a Monte Carlo simulation study where literally thousands of 
replications of some procedures may be run, the SAS log may become so long that the SAS Log window 
may not be able to display it, because the SAS Log window has a certain display limit (32,000 lines). 
Once the limit is reached, the SAS program will pause, and then ask you what to do. To avoid the 
problem so that we can be away while the program is running, we can simply redirect the SAS log to a 
file on the hard disk, and the file is given the name LOGFILE.TMP. 

 
            * -- to avoid the problem of SAS Log Window becoming full; 
PROC PRINTTO LOG=’C:\T_TEST\TRIALS\LOGFILE.TMP’; 
RUN; 
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In this program, we used a SAS macro to write the program. As discussed in Chapter 5, a SAS macro 
program has the structure of starting with %MACRO and ending with %MEND, as shown below: 

 
%MACRO name; 
. 
. (other SAS program statements) 
. 
%MEND name; 
 

SAS macro programs are extremely flexible, and almost anything can be included in them. When we use 
SAS for a Monte Carlo study, in many cases it is necessary to use a SAS macro program in order to run 
some SAS procedures repeatedly. For example, the DO loop in SAS works within the DATA step, before 
any PROC statements begin. But if we want to run a PROC statement repeatedly, we cannot use a regular 
DO loop. In other words, if we want to run PROC TTEST one hundred times, as in the following 
program, it will not work: 

 
DO I = 1 TO 100;     * program that will not work; 
 
  PROC TTEST; 
    CLASS GROUP; 
    VAR X; 
  RUN; 
 
END; 

 
This problem, however, can easily be solved by using a SAS macro program, as shown below.  As will be 
seen in the examples in this and the following chapters, for simulating complicated statistical procedures, 
this becomes absolutely necessary so that we can take advantage of the powerful SAS/STAT procedures. 

 
%MACRO TTEST; 
%DO I = 1 %TO 100; 
. 
.(other program statements) 
. 
  PROC TTEST; 
    CLASS GROUP; 
    VAR X; 
  RUN; 
. 
.(other program statements) 
. 
%END; 
%MEND TTEST; 
%TTEST;           * to run the macro program ‘ttest’; 
RUN; 
 

Once we obtain all the results of this simulation study, there are a variety of ways of handling the data. 
One approach is to output the results in the SAS Output window, in which case the results are not saved 
as a data set. For example, in this t-test example, we can program in such a way that the actual Type I 
error rates for the four cell conditions will be directly output into the SAS Output window. This approach, 
however, does not allow future analysis. Once the SAS program is terminated, the data no longer exist.   

Our preference is to save the results first as a permanent SAS data set, so future analysis is possible. This 
approach has some obvious advantages. In many Monte Carlo studies, especially those with complicated 
designs involving multiple factors and a variety of statistics, secondary analysis of the  
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results can be complicated, and it is not always possible to anticipate what kinds of secondary analyses 
will be performed on the simulation results. In these situations, it is imperative to save the simulation 
results for future analysis. 

In our t-test example, we use the base SAS APPEND procedure (PROC APPEND) to append the relevant 
information from each replication of PROC TTEST to a permanent SAS data set ‘TTEST’ (Notice the 
two-level name for the permanent SAS data set), as repeated below. This permanent SAS data set 
contains six variables: the t statistic (T), degrees of freedom (DF), the probability value of the t statistic 
(PT), statistically significant or not at 0.05 level (SIG: 1=significant, 0=non-significant), equal population 
variance or not (EQ_VAR: EQUAL=equal variances for the two groups, UNEQUAL=unequal 
population variances), and equal sample size or not (EQ_N, EQUAL=equal sample size, 
UNEQUAL=unequal sample size). Once the results are saved in the permanent SAS data set, future 
analysis of the results can be done at any time. 

 
             *  append the results to a permanent SAS data set on disk; 
DATA NEW; SET TTEST;       
  KEEP T DF PT SIG EQ_VAR EQ_N; 
  PROC APPEND BASE=TTEST.TTEST; 
RUN; 
 

Once all the results are obtained, we can run some simple analyses to check the actual Type I error rates 
of the t-test under each of the four cell conditions. PROC SORT and PROC FREQ statements accomplish 
the tasks, and the results based on one execution of Program 6.1 are in Output 6.1 below. 

 
DATA A; SET TTEST.TTEST;   
PROC SORT; BY EQ_VAR EQ_N; 
PROC FREQ; BY EQ_VAR EQ_N; 
  TABLES SIG; 
RUN; 
 

 
Output 6.1    
T-Test 
Simulation 
Results 
(Program 6.1) 
 
 

 

 

 

 

 

 

 

 

 
------------------------- EQ_VAR=’  EQUAL’ EQ_N=’  EQUAL’ --------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                    0       9509      95.1        9509       95.1 
                    1        491       4.9       10000      100.0 
 
-------------------------- EQ_VAR=’  EQUAL’ EQ_N=UNEQUAL ---------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                    0       9500      95.0        9500       95.0 
                    1        500       5.0       10000      100.0 
 
-------------------------- EQ_VAR=UNEQUAL EQ_N=’  EQUAL’ ---------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                    0       9503      95.0        9503       95.0 
                    1        497       5.0       10000      100.0 
 
--------------------------- EQ_VAR=UNEQUAL EQ_N=UNEQUAL ----------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                    0       9717      97.2        9717       97.2 
                    1        283       2.8       10000      100.0 
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In Output 6.1 it is seen that in three of the four conditions, the actual Type I error rates (0.049, 0.05, and 
0.05, respectively) are almost right on the target of the nominal Type I error rate of 0.05 as we specified in 
the program. Only for the last condition (both unequal variance and unequal sample size) does the actual 
Type I error rate (0.028) deviate noticeably from the nominal Type I error rate. This shows that the t-test 
is much more robust to the violation of the equal population variances assumption when the two groups 
have approximately equal sample sizes, a finding that is consistent with previous research studies in this 
area (see Glass & Hopkins 1996, Chapter 12, for some detailed discussion). 

6.2.5 T-Test Example: Second Approach 
The second program for the same t-test Monte Carlo study is presented Program 6.2. This program is very 
similar to the previous one, but it also contains enough variations to warrant some explanation. The two 
most prominent areas where this program differs from the previous one are 1) SAS/IML is used for data 
generation, instead of base SAS, as in the previous program; 2) SAS/STAT software’s PROC TTEST is 
used to obtain t-test results instead of programming all the statistical computation ourselves. This second 
feature may not seem to be a big deal here, because the computation for the t-test is quite simple. But for 
the more complicated statistical procedures that we will encounter later, this feature becomes absolutely 
essential, either because we do not fully understand the computational aspects of a statistical procedure, or 
because programming for such complicated statistical procedures is beyond our programming repertoire, 
or both. By taking full advantage of SAS/STAT procedures, we can easily overcome these barriers and 
conduct Monte Carlo studies for quite complicated statistical techniques. 

 
 
Program 6.2  SAS Program for T-Test – Second Approach 
 

 
LIBNAME TTEST ’C:\T_TEST\TRIALS’; 
 
            * -- to avoid the problem of SAS Log Window becoming full; 
PROC PRINTTO LOG=’C:\T_TEST\TRIALS\LOGFILE.TMP’; 
RUN; 
 
%MACRO TTEST; 
 
%DO A=1 %TO 2;    * A=1:equal variance, A=2:unequal; 
%DO B=1 %TO 2;    * B=1:equal sample size, B=2:unequal; 
 
%DO REP=1 %TO 10000;  * number of replications in each cell; 
 
PROC IML; 
 
/*** define parameters  ***/ 
 
%LET ALPHA=0.05;    * nominal Type I error rate; 
MEAN=50;            * common mean for two populations; 
SD1=10;             * STD for GRP 1 & 2 - equal variance condition; 
N1=20;              * sample size for GRP 1 & 2 - equal N condition; 
 
/*** end of parameters ***/ 
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                    * A=1:equal variance, A=2:unequal - 1.5 times SD1; 
  IF &A=1 THEN SD2=SD1; 
     ELSE IF &A=2 THEN SD2=SD1*1.5; 
 
                    * B=1:equal sample size, B=2:unequal - 2 times N1; 
  IF &B=1 THEN N2=N1; 
     ELSE IF &B=2 THEN N2=N1*2; 
 
                      * generate group 1 data; 
DAT1=SD1*RANNOR(J(N1,1,0)) + MEAN; 
GRP1=J(N1,1,1);                    * assigning group number: group=1; 
DAT1=DAT1||GRP1;                   * horizontal concatenation; 
 
                      * generate group 2 data; 
DAT2=SD2*RANNOR(J(N2,1,0)) + MEAN; 
GRP2=J(N2,1,2);                    * assigning group number: group=2; 
DAT2=DAT2||GRP2; 
 
DATA=DAT1//DAT2;       * vertical concatenation - put data of both  
                         groups together; 
 
CREATE DATAALL FROM DATA[COLNAME={X GROUP}];   * create a temporary  
                                                 data set; 
APPEND FROM DATA; 
                                    * direct the output to a file on  
                                      disk; 
 
FILENAME NEWOUT ’C:\T_TEST\TRIALS\OUTFILE’; 
PROC PRINTTO PRINT=NEWOUT NEW; 
RUN; 
                    * run the TTEST procedure; 
PROC TTEST DATA=DATAALL; 
  CLASS GROUP; 
  VAR X; 
RUN; 
                    * redirect output to print; 
PROC PRINTTO PRINT=PRINT; RUN; 
 
                    * read proc ttest output from the disk file and 
                      obtain t statistic, df, and p value; 
DATA READIN; INFILE NEWOUT; 
   INPUT WORD $ @@; 
IF WORD=’Equal’ THEN DO; 
  INPUT T DF PT; 
                    * add simulation design information to data; 
   IF PT<&ALPHA THEN SIG=1; 
      ELSE SIG=0; 
   IF &A=1 THEN EQ_VAR=’  EQUAL’; 
      ELSE EQ_VAR=’UNEQUAL’; 
    IF &B=1 THEN EQ_N=’  EQUAL’; 
      ELSE EQ_N=’UNEQUAL’; 
  OUTPUT; 
  KEEP T DF PT SIG EQ_VAR EQ_N; 
END; 
RUN; 
 
                 * append the relevant information to a SAS System  
                   file; 
DATA NEW; SET READIN; 
  KEEP T DF PT SIG EQ_VAR EQ_N; 
  PROC APPEND BASE=TTEST.TTEST; 
RUN; 
 
%END;              * end replication do loop; 
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%END;              * end B do loop; 
%END;              * end A do loop; 
%MEND TTEST;       * close the macro program ‘TTEST’; 
%TTEST;            * Run macro program ‘TTEST’; 
RUN; 
 
PROC SORT; BY EQ_VAR EQ_N; 
PROC FREQ; BY EQ_VAR EQ_N;    * check Type I error rate in four cells; 
  TABLES SIG; 
RUN; 
 

 

Data generation in SAS/IML has been discussed in previous chapters, so it will not be repeated here. The 
first new feature in this program is the group of statements that are repeated below. These two program 
statements direct the output from PROC TTEST to a file named OUTFILE on disk instead of displaying 
the results in the SAS Output window. This is necessary because the results of PROC TTEST cannot be 
directly output as a SAS data set. To use the PROC TTEST results, we will read the output from the file 
OUTFILE later, and obtain the information we need from it. 

 
                        * direct the output to a file on disk; 
FILENAME NEWOUT 'C:\T_TEST\TRIALS\OUTFILE'; 
PROC PRINTTO PRINT=NEWOUT NEW; 
RUN; 

 

In order to understand how to obtain relevant information from an output file containing the results of 
PROC TTEST, we need to take a look at how this output file is structured.  The following table displays 
the variations in the format of PROC TTEST output. 

 
 
Table 6.2  Variations in the Format of PROC TTEST Output 
 
�

FORMAT 1 (SAS 6.12)�
 
                                        TTEST PROCEDURE 
Variable: X 
 
GROUP1       N            Mean         Std Dev       Std Error         Minimum         Maximum 
---------------------------------------------------------------------------------------------- 
     1      10      4.00000000      0.66666667      0.21081851      3.00000000      5.00000000 
     2      10      6.00000000      1.15470054      0.36514837      4.00000000      7.00000000 
 
Variances        T       DF    Prob>|T| 
--------------------------------------- 
Unequal    -4.7434     14.4      0.0003 
Equal      -4.7434     18.0      0.0002 
 
For H0: Variances are equal, F’ = 3.00    DF = (9,9)    Prob>F’ = 0.1173 
 
 
 

FORMAT 2 (SAS 6.12) 
 
                                          TTEST PROCEDURE 
Variable: X 
 
GROUP1     N       Mean       Std Dev     Std Error    Variances        T       DF    Prob>|T| 
---------------------------------------------------    --------------------------------------- 
     1    10  4.00000000    0.66666667    0.21081851    Unequal    -4.7434     14.4      0.0003 
     2    10  6.00000000    1.15470054    0.36514837    Equal      -4.7434     18.0      0.0002 
 
For H0: Variances are equal, F’ = 3.00    DF = (9,9)    Prob>F’ = 0.1173 



128    SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 
 

FORMAT 3 (SAS 8) 
 
                                      The TTEST Procedure 
 
                                          Statistics 
 
                             Lower CL          Upper CL  Lower CL           Upper CL 
Variable  Class           N      Mean    Mean      Mean   Std Dev  Std Dev   Std Dev  Std Err 
 
X          1             10    3.5231       4    4.4769    0.4586   0.6667    1.2171   0.2108 
X          2             10     5.174       6     6.826    0.7942   1.1547     2.108   0.3651 
X         Diff (1-2)           -2.886      -2    -1.114    0.7124   0.9428    1.3942   0.4216 
 
                                            T-Tests 
 
             Variable    Method           Variances      DF    t Value    Pr > |t| 
 
             X           Pooled           Equal          18      -4.74      0.0002 
             X           Satterthwaite    Unequal      14.4      -4.74      0.0003 
 
                                     Equality of Variances 
 
                 Variable    Method      Num DF    Den DF    F Value    Pr > F 
 
                 X           Folded F         9         9       3.00    0.1173 

 

 

In all these format variations, the information we want to obtain follows the word “Equal”, and it is 
highlighted in the table. Once we know the format of the output file OUTFILE, extracting the relevant 
information is relatively easy using the SAS code below. 

 
                    * read proc ttest output from the disk file and 
                      obtain t statistic, df, and p value; 
DATA READIN; INFILE NEWOUT; 
   INPUT WORD $ @@; 
IF WORD=’Equal’ THEN DO; 
  INPUT T DF PT; 
                    * add simulation design information to data; 
   IF PT<&ALPHA THEN SIG=1; 
      ELSE SIG=0; 
   IF &A=1 THEN EQ_VAR=’  EQUAL’; 
      ELSE EQ_VAR=’UNEQUAL’; 
    IF &B=1 THEN EQ_N=’  EQUAL’; 
      ELSE EQ_N=’UNEQUAL’; 
  OUTPUT; 
  KEEP T DF PT SIG EQ_VAR EQ_N; 
END; 

 
 

This SAS code not only reads in the t statistic (T), the degrees of freedom (DF), and the probability value 
of the t statistic (PT) from the PROC TTEST output file, but also adds the Monte Carlo study design 
information to the data for later analyses. Note that the SAS statements “INPUT WORD $ @@;  IF 
WORD=’Equal’ THEN DO; ...” allow the program to keep reading the output file until it locates the word 
“Equal”, regardless of where the word “Equal” is in the SAS output file. Once the word “Equal” is 
located, the three pieces of information following the word “Equal” are read into the temporary SAS data 
set named READIN. 

As the program repeats the replications, each later output file replaces the previous output file on the disk, 
so it is always the current PROC TTEST output file that is being read. The relevant information from each 
replication of PROC TTEST is appended to a SAS permanent data set on disk (again, note the two-level 
name for this purpose) by using PROC APPEND. Finally, after all the results have been accumulated, 
PROC FREQ is used to check the actual Type I error rate of the t-test under each of the four conditions. 
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Based on one execution of Program 6.2, the output of PROC FREQ is presented in Output 6.2. It is 
obvious that these results are very similar to those from Program 6.1. This should not be surprising, 
because the two programs are fundamentally the same except for some programming variations. 

 

 Output 6.2     
T-Test 
Simulation 
Results 
(Program 
6.2) 
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Analysis of variance (ANOVA) is also a statistical technique widely used in a variety of disciplines, 
including, but not limited to, agriculture, sociology, psychology, education, range science, etc. Like many 
other parametric statistical techniques, one fundamental assumption for ANOVA is that the dependent 
variable is normally distributed. Another important assumption for ANOVA is that the groups come from 
populations with equal variances. But how serious are the consequences if the assumption about data 
normality is violated, or if the assumption of equal population variances is violated? Monte Carlo 
simulation is very useful in this situation if we are interested in answering these questions. In this 
example, we will present a SAS program example that implements a Monte Carlo study for assessing the 
consequences of data non-normality and unequal population variances on the Type I error rate of 
ANOVA analysis. 

 
The SAS System 

 
------------------------ EQ_VAR=’  EQUAL’ EQ_N=’  EQUAL’ ------------------------ 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                  ------------------------------------------------- 
                    0       9516      95.2        9516       95.2 
                    1        484       4.8       10000      100.0 
 
------------------------- EQ_VAR=’  EQUAL’ EQ_N=UNEQUAL ------------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                  ------------------------------------------------- 
                    0       9488      94.9        9488       94.9 
                    1        512       5.1       10000      100.0 
 
------------------------- EQ_VAR=UNEQUAL EQ_N=’  EQUAL’ ------------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                  ------------------------------------------------- 
                    0       9505      95.1        9505       95.1 
                    1        495       5.0       10000      100.0 
 
-------------------------- EQ_VAR=UNEQUAL EQ_N=UNEQUAL -------------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                  ------------------------------------------------- 
                    0       9733      97.3        9478       94.8 
                    1        267       2.7       10000      100.0 
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6.3.1 Design Considerations 
In a real Monte Carlo simulation study, the design may be complex and may include a range of different 
degrees of data non-normality conditions, as well as a range of different degrees of population variance 
inequality. Furthermore, the design may also combine these two factors with a range of different sample 
sizes for the groups. In our example of ANOVA, we conduct a three-group ANOVA analysis under the 
true null hypothesis of �1 = �2 = �3  = 50, i.e., all three groups are drawn from populations with the same 
mean of 50.    

In order to keep our example reasonably straightforward, we only use one sample size condition—an 
equal sample size of 30 for all three groups. Also, we will only consider two data normality conditions: 
when data are normally distributed, and when data are non-normal with both moderate skewness 
(skewness=1.75) and kurtosis (kurtosis=3.75). For the assumption of equal population variances, we only 
include two conditions: when all three populations have equal variances (�2

1 = �2

2 = �2

3 = 10), and when 
the three populations have unequal variances (�2

1 =10, �2

2 =20, and �2

3 = 40). The two factors (data 
normality and equal variances) are fully crossed to give us a 2×2 design with four cells. Within each cell, 
we want 5,000 replications of ANOVA analysis so that reasonable accuracy can be achieved in estimating 
the actual Type I error rate in each cell. This design requires conducting ANOVA analysis for 20,000 
samples (2×2×5000). This ANOVA Monte Carlo study design has the same schematic representation as 
the previous t-test shown in Table 6.1. 

6.3.2  ANOVA Example Program 
Program 6.3 presents a complete SAS program for the Monte Carlo study with the design described 
above. This program has many familiar elements discussed for the two t-test program examples. At the 
same time, it also contains some new elements for which some explanations may be warranted. Some 
detailed explanation is provided for some selected components following Program 6.3. 

 

Program 6.3  SAS Program for ANOVA Example 
 
 

 
LIBNAME ANOVA ’C:\ANOVA\TRIALS’; 
 
    * -- to avoid the problem of SAS Log Window becoming full; 
PROC PRINTTO LOG=’C:\ANOVA\TRIALS\LOGFILE.TMP’; 
RUN; 
 
%MACRO ANOVA; 
 
%DO A=1 %TO 2;        * A=1: normal data,  A=2: non-normal data; 
%DO B=1 %TO 2;        * B=1: equal variance,  B=2: unequal variance; 
%DO REP=1 %TO 5000;   * 5,000 replications in each cell; 
 
%LET ALPHA=0.05;   * nominal Type I error rate; 
 
PROC IML; 
 
MEAN=50;           * common mean for 3 groups; 
N=30;              * common sample size for 3 groups; 
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                   * Fleishman coefficients for data shapes 
                     1st row: normal data, 2nd row: non-normal data; 
DIST={1 0 0, 
      .92966052480111 .39949667453766 -.03646699281275}; 
 
                   * variances of 3 groups 
                     1st row: equal variances, 2nd row: unequal; 
VAR={10 10 10, 
     10 20 40}; 
                   * generate data for group 1; 
X=RANNOR(J(N,1,0)); 
X=-DIST[&A,2] + DIST[&A,1]*X + DIST[&A,2]*X##2 + DIST[&A,3]*X##3; 
X=X*SQRT(VAR[&B,1]) + MEAN; 
GRP=J(N,1,1);               * assign group number: group=1; 
GROUP1=X||GRP; 
 
                   * generate data for group 2; 
X=RANNOR(J(N,1,0)); 
X=-DIST[&A,2] + DIST[&A,1]*X + DIST[&A,2]*X##2 + DIST[&A,3]*X##3; 
X=X*SQRT(VAR[&B,2]) + MEAN; 
GRP=J(N,1,2);               * assign group number: group=2; 
GROUP2=X||GRP; 
 
                   * generate data for group 3; 
X=RANNOR(J(N,1,0)); 
X=-DIST[&A,2] + DIST[&A,1]*X + DIST[&A,2]*X##2 + DIST[&A,3]*X##3; 
X=X*SQRT(VAR[&B,3]) + MEAN; 
GRP=J(N,1,3);               * assign group number: group=3; 
GROUP3=X||GRP; 
 
                  * combine 3 groups data, vertical concatenation; 
DATA=GROUP1//GROUP2//GROUP3; 
 
                             * create SAS working data; 
CREATE DATAALL FROM DATA[COLNAME={X GROUP}]; 
APPEND FROM DATA; 
 
                   * run ANOVA analysis, and output ANOVA results 
                     to a temporary SAS data set, ’ANOVAOUT’; 
 
PROC ANOVA DATA=DATAALL NOPRINT OUTSTAT=ANOVAOUT; 
  CLASS GROUP; 
  MODEL X=GROUP; 
RUN; 
                    * use ’ANOVAOUT’ data; 
                    * extract relevant ANOVA results; 
 
DATA AA; SET ANOVAOUT; 
  IF _TYPE_=’ANOVA’; 
  DF_MOD=DF; SS_MOD=SS; 
 
                    * add a variable indicating statistical  
                      significance; 
  IF PROB<&ALPHA THEN SIG=’YES’; 
     ELSE SIG=’ NO’; 
 
  KEEP DF_MOD SS_MOD F PROB SIG;     * keep relevant variables; 
 
                    * extract error df, error sum-of-squares; 
 
DATA BB; SET ANOVAOUT; 
  IF _TYPE_=’ERROR’; 
  DF_ERR=DF; SS_ERR=SS; 
  KEEP DF_ERR SS_ERR; 
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                   * merge two data sets, add study design information; 
DATA AB; MERGE AA BB; 
  IF &A=1 THEN NORMAL=’YES’; 
     ELSE IF &A=2 THEN NORMAL=’ NO’; 
  IF &B=1 THEN EQ_VAR=’YES’; 
     ELSE IF &B=2 THEN EQ_VAR=’ NO’; 
                    * append each replication result to a permanent  
                      SAS data set; 
PROC APPEND BASE=ANOVA.ANOVA; 
 
%END;         * close replication do loop; 
%END;         * close B do loop; 
%END;         * close A do loop; 
%MEND ANOVA;  * macro ’ANOVA’; 
%ANOVA;       * run macro ’ANOVA’; 
RUN; 
 
              * obtain descriptive statistics for the simulation  
                results; 
DATA A; SET ANOVA.ANOVA; 
PROC SORT; BY NORMAL EQ_VAR; 
PROC FREQ; BY NORMAL EQ_VAR; 
  TABLES SIG; 
RUN; 
 

�
 

The first new element is probably the matrix DIST, as repeated below. This matrix contains the Fleishman 
coefficients for generating non-normal data, as discussed in Chapter 4. The first row of this matrix 
contains the coefficients for normally distributed data, and the second row contains the coefficients for 
generating non-normal data with skewness=1.75 and kurtosis=3.75. Those coefficients can either be 
obtained by using Program 4.4 in Chapter 4, or they can be found in the original article by Fleishman 
(1978). When the macro variable &A has value of 1 (&A=1), the first row is used for generating data. 
When &A=2, the second row is used in data generation, thus generating non-normal data drawn from a 
population with skewness=1.75 and kurosis=3.75. 

 

        * Fleishman coefficients for data shapes 
          1st row: normal data, 2nd row: non-normal data; 
 
DIST={1 0 0, 
92966052480111 .39949667453766 -.03646699281275}; 

 

The matrix VAR, as repeated below, contains the population variances of the three groups. The first row 
represents the equal variance condition, with all three groups drawn from populations of the same 
variance (10). The second row represents the unequal variance condition, with the first group having a 
population variance of 10, the second group of 20, and the third group of 40. When the macro variable 
&B=1, the first row is used to generate data for the three groups. When &B=2, the second row is used to 
generate data for the three groups. 

 

           * VARIANCES OF 3 GROUPS 
             1ST ROW: EQUAL VARIANCES, 2ND ROW: UNEQUAL; 
 VAR={10 10 10, 
      10 20 40}; 
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The readers are reminded here that an element in a matrix is identified by row number and column 
number. For example, when the macro variable &A=1, the statement that generates Group 1 data in the 
program 

 

 X=-DIST[&A,2] + DIST[&A,1]*X + DIST[&A,2]*X##2 + DIST[&A,3]*X##3; 
 

actually equals the following statement (rounded to six decimal places): 

 

 X=-.399497 + .929660*X + .399497*X##2 + (-.036467)*X##3; 
 

In the same vein, when the macro variable &B=1, the statement 

 

 X=X*SQRT(VAR[&B,1]) + MEAN; 
 

is equivalent to 

 

 X=X*SQRT(10) + MEAN; 
 

because, when &B=1, the element as identified by VAR[&B,1] is 10, the element of the first row and first 
column of the matrix VAR. Once this is understood, the programming for generating data for the three 
groups is relatively easy to follow. 

In this example, again, we use the SAS/STAT ANOVA procedure to conduct an ANOVA analysis.  This 
time, however, we do not want any SAS output. (Note the NOPRINT option in PROC ANOVA.) Instead, 
we use the OUTSTAT option in PROC ANOVA to output the relevant results of the ANOVA analysis to 
a temporary SAS data set named ANOVAOUT. Later, we will use this data set to get all the relevant 
results of the ANOVA analysis that we want to keep.  But to understand how we can obtain relevant 
information from this temporary SAS data set, we must first take a look at the content and structure of the 
data set. The content and structure of this temporary SAS data set for a hypothetical ANOVA analysis are 
presented below. As a reminder, the content and structure of the ANOVAOUT data set can be viewed by 
using the PRINT procedure. 

 

 

The SAS System 
 

OBS    _NAME_    _SOURCE_    _TYPE_    DF     SS        F            PROB 
1       X        ERROR      ERROR     27    19.8      .        . 
2       X        GROUP      ANOVA      2    49.4    33.6818    .000000046084 
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It is seen that this SAS data set contains the sum of squares for error and for the model, the degrees of 
freedom for error and the model, the F value, and the probability value of this ANOVA analysis for 
testing the null hypothesis that the means of the groups are equal. Once the content and structure of this 
data set are known, extracting the information from the data set is relatively easy, as shown by the 
following SAS program code:   

 

                    * use ’ANOVAOUT’ data; 
                    * extract relevant ANOVA results; 
 
DATA AA; SET ANOVAOUT; 
  IF _TYPE_=’ANOVA’; 
  DF_MOD=DF; SS_MOD=SS; 
 
                    * add a variable indicating statistical  
                      significance; 
  IF PROB<&ALPHA THEN SIG=’YES’; 
     ELSE SIG=’ NO’; 
 
  KEEP DF_MOD SS_MOD F PROB SIG;     * keep relevant variables; 
 
                    * extract error df, error sum-of-squares; 
 
DATA BB; SET ANOVAOUT; 
  IF _TYPE_=’ERROR’; 
  DF_ERR=DF; SS_ERR=SS; 
  KEEP DF_ERR SS_ERR; 
 
                   * merge two data sets, add study design information; 
DATA AB; MERGE AA BB; 
  IF &A=1 THEN NORMAL=’YES’; 
     ELSE IF &A=2 THEN NORMAL=’ NO’; 
  IF &B=1 THEN EQ_VAR=’YES’; 
     ELSE IF &B=2 THEN EQ_VAR=’ NO’; 
                    * append each replication results to a permanent  
                      SAS data set; 
PROC APPEND BASE=ANOVA.ANOVA; 

 

In this ANOVA Monte Carlo program, we keep all the numerical information that was generated by the 
OUTSTAT option in PROC ANOVA. First, we extract the information from the second row (model DF, 
model SS, F statistic, P value), and add information about statistical significance for our given nominal 
Type I error rate (ALPHA=0.05). We then extract the information from the first row (error DF, error SS). 
The two temporary SAS data sets (AA and BB) are then merged into one (AB) so that for each replication 
of the ANOVA analysis, there will be one line of data to be appended (PROC APPEND 
BASE=ANOVA.ANOVA) to a permanent SAS data set (ANOVA.ANOVA) on disk. Before the data are 
appended, some study design information is added to the data so that they can be used in later analyses. 
Although it is possible to save only the probability value for the purpose of this study, in our opinion and 
experience, it is more advantageous to save as much information as possible, because it is not always 
possible to anticipate what secondary analyses will be performed on these data in the future. For example, 
we may want to obtain the R-square value of the ANOVA model in the future. Although the R-square 
value is not in the permanent SAS data set ANOVA.ANOVA, it can easily be obtained by using the 
following statement in a SAS DATA step: 

 

R_SQUARE = 1 - (SS_ERR / (SS_ERR+SS_MOD)); 
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Had we only saved the P value information, we would not be able to obtain the information about the R-
square value for each replication of the ANOVA analysis. 

Output 6.3 presents the proportions of samples for which the ANOVA analysis rejected the true null 
hypothesis for each of the four design conditions (i.e., the actual Type I error rate for each of the four 
design conditions), from one execution of Program 6.3. These were obtained through the FREQ 
procedure at the end of the SAS program. As is seen from these results, the actual Type I error rate for 
each of the four data conditions is very close to the nominal Type I error rate that we specified in the 
program (‘ALPHA=0.05'), even when data were non-normal with the specified skewness and kurtosis 
(skewness=1.75, kurtosis=3.75).  These results indicate that, at least for the data conditions simulated in 
this program, ANOVA is quite robust even when data normality conditions are violated. 

 
 
Output 6.3     
ANOVA  
Simulation 
Results 
(Program 
6.3) 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

�

�                          The SAS System 
 
-------------------------- NORMAL=’ NO’ EQ_VAR=’ NO’ ------------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                  ------------------------------------------------ 
                   NO       4727      94.5        4727       94.5 
                  YES        273       5.5        5000      100.0 
 
-------------------------- NORMAL=’ NO’ EQ_VAR=YES --------------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                  ------------------------------------------------ 
                   NO       4748      95.0        4748       95.0 
                  YES        252       5.0        5000      100.0 
 
-------------------------- NORMAL=YES EQ_VAR=’ NO’ --------------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                  ------------------------------------------------ 
                   NO       4717      94.3        4717       94.3 
                  YES        283       5.7        5000      100.0 
 
--------------------------- NORMAL=YES EQ_VAR=YES ---------------------------- 
 
                                             Cumulative  Cumulative 
                  SIG   Frequency   Percent   Frequency    Percent 
                  ------------------------------------------------ 
                   NO       4763      95.3        4763       95.3 
                  YES        237       4.7        5000      100.0 
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Regression analysis, which is based on the ordinary least squares principle, is a statistical technique that 
enjoys widespread popularity among quantitative researchers across a variety of disciplines.  In regression 
analysis, one important indicator for the fit of the regression model is the R2—that is, the percentage of 
variation in the dependent variable that has been accounted for by the regression model.  In regression 
analysis based on a sample, the regression coefficients, commonly known as regression weights, 
associated with the independent variables are optimally derived based on least squares principles, such 
that the R2 for the regression model is maximized for the sample. This process of optimizing the 
regression weights of the independent variables for the sample tends to capitalize on the chance or 
sampling error associated with the particular sample used, which, in turn, causes the sample R2 to be a 
positively biased estimator for its corresponding population R2. In other words, if we draw many samples 
from a specified statistical population with known population R2, the average of the sample R2s will be 
higher than the population R2. This positive bias in regression analysis is well known and is discussed by 
many authors (e.g., Cohen & Cohen 1983; Glass & Hopkins 1996; Pedhazur 1997; Stevens 1996). 

To correct for the positive bias of the sample R2, researchers have proposed different formulas so that the 
corrected sample R2 will be a better estimate of the population R2 than the original uncorrected sample R2. 
However, it is not entirely clear which of these formulas has the best performance in terms of correcting 
for the positive bias of the sample R2. For a researcher who is interested in this issue, Monte Carlo 
simulation is a good tool for the investigation. 

 

6.4.1 Different Formulas for Correcting Sample R� Bias 
Several formulas have been proposed to correct for the positive bias of sample R2. Typically, the smaller 
the sample size, and the more predictor variables in the regression model, the greater positive bias the 
sample R2 contains. For this reason, the correction formulas penalize small sample size and more 
independent variables in a regression model. In our example, we will look at four different R2 shrinkage 
formulas for correcting the sample R2, as shown below. In all the following formulas, N is the sample size, 

P is the number of predictor variables, R2 is the sample R2, and 2R̂  is the sample R2 corrected for positive 
bias. 

The first formula takes the following form: 

 

   )1(1ˆ 22 R
PN

N
R −

−
−=       (6.4) 

This formula is generally known as the “Smith formula,” and it was developed in the 1920s (Wherry 
1931).   



Chapter 6  Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques    137  
 

The second formula takes the following form: 

 

   )1(
1

1ˆ 22 R
PN

N
R −

−−
−=       (6.5) 

This formula has been cited widely with different names (for example, the Wherry formula, the Ezekiel 
formula, the Wherry/McNemer formula, etc.), and it is also the sample R2 shrinkage formula currently 
implemented in the SAS REG procedure for computing the “adjusted R2". 

The third formula takes the form: 

 

   )1(
1

1ˆ 22 R
PN

N
R −

−
−−=       (6.6) 

This formula is the actual formula presented by Wherry (1931), although it is often cited in the literature 
by other names and is often confused with Formula 6.5, above. 

The fourth formula takes the form : 

 

  22222 )1(
)1)(1(

)3(2
)1(

1

2ˆ R
PNPN

N
R

PN

P
RR −

+−−−
−−−

−−
−−=   (6.7) 

 

This formula is often known as the Olkin and Pratt formula, and it is the approximation of Olkin and 
Pratt’s unbiased estimate of the population R2 (Olkin & Pratt 1958). 

The correction, or “shrinkage,” based on the correction formulas for sample R2 presented above is usually 
very small when the sample size is large and when the ratio of N/P (the ratio of sample size to the number 
of predictors in the regression model) is relatively large. It is when the sample size is small and the N/P 
ratio is small that the effect of correction based on these formulas is noticeable. 

 

6.4.2 Design Considerations 
Two factors obviously should come into play for correcting the positive bias of the sample R2: sample size 
(N) and the number of predictor variables (P), because these two factors affect the shrinkage of the sample 
R2 in all the correction formulas presented above. As pointed out before, the effect of bias correction will 
be more noticeable when the sample size is small and the N/P ratio is small. So, for our example, we will 
focus on such conditions. In addition to these two factors, there may be other relevant considerations, such 
as the magnitude of the population R2 and the strength of relationship among the predictors (statistically 
known as the degree of multicollinearity).  

To keep our Monte Carlo SAS program example relatively straightforward, we will only consider the 
sample size and the N/P ratio. For the population R2, we will only use the condition of population R2=0.5. 
For the factor of multicollinearity, we will only use r=0.3 as the strength of relationship among all the 
predictor variables. The design of this Monte Carlo study is represented by Table 6.6. 
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Table 6.3   Study Design for Estimating Sample R2 Positive Bias Correction 
 

(Population R2 = 0.5,  Multicollinearity r = 0.3) Sample Size 
 

Number of Predictors \ N/P Ratio 20 40 80 

4 5 10 20 

8 2.5 5 10 

 

6.4.3  Regression Analysis Sample Program 
To avoid unnecessarily complicating the SAS program for this Monte Carlo study, we choose to write 
two SAS programs for the study design presented above: one program for the 4-predictor condition, and 
the other for the 8-predictor condition. Because the two programs are essentially the same, we only 
present the SAS program for the 8-predictor condition as the example. Program 6.4 below presents the 
complete SAS program with detailed notes for the 8-predictor condition simulation. 

 

Program 6.4   Simulating Correction Formulas for Regression Sample R2 Bias 
 
 
LIBNAME REG ’C:\REG\TRIALS’; 
 
    * -- to avoid the problem of SAS Log Window becoming full; 
PROC PRINTTO LOG=’C:\REG\TRIALS\LOGFILE.TMP’; 
RUN; 
                    * population correlation matrix, with population R_square=0.50; 
                    * multicollinearity r=0.30, 8 predictors; 
DATA A (TYPE=CORR); 
_TYPE_=’CORR’; 
INPUT X1 X2 X3 X4 X5 X6 X7 X8 Y; 
CARDS; 
1.00 . . . . . . . . 
0.30 1.00 . . . . . . . 
0.30 0.30 1.00 . . . . . . 
0.30 0.30 0.30 1.00 . . . . . 
0.30 0.30 0.30 0.30 1.00 . . . . 
0.30 0.30 0.30 0.30 0.30 1.00 . . . 
0.30 0.30 0.30 0.30 0.30 0.30 1.00 . . 
0.30 0.30 0.30 0.30 0.30 0.30 0.30 1.00 . 
.44019 .44019 .44019 .44019 .44019 .44019 .44019 .44019 1.00 
; 
       * obtain factor pattern matrix for later data generation; 
PROC FACTOR N=9 OUTSTAT=FACOUT;      
DATA PATTERN; SET FACOUT; 
  IF _TYPE_=’PATTERN’; 
  DROP _TYPE_ _NAME_; 
RUN; 
 
%MACRO REG;          * starts the macro program ‘reg’; 
 
                     * 3 sample size conditions: A=1:N=20, A=2:N=40, A=3:N=80; 
%DO A=1 %TO 3; 
    %IF &A=1 %THEN %DO; %LET N=20; %END; 
    %IF &A=2 %THEN %DO; %LET N=40; %END; 
    %IF &A=3 %THEN %DO; %LET N=80; %END; 
%DO REP=1 %TO 2000;               * number of replications in each cell; 
                                  * generate correlated sample data of 9 variables; 
PROC IML;                           
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   USE PATTERN;                   * read in the factor pattern as a matrix ‘F’; 
   READ ALL VAR _NUM_ INTO F; 
  F=F`;                           * transpose ‘F’ for later premultiplication; 
 
DAT=RANNOR(J(&N,9,0));            * generate 9 random variables (&Nx9 dimension); 
DAT=DAT`;                         * transpose the random data matrix (9x&N dimension); 
DAT=F*DAT;                        * premultiply ‘F’ to ‘DAT’, variables become  
                                    correlated; 
DAT=DAT`;                         * transpose the data matrix back (&Nx9 dimension); 
 
                                  * create a temporary SAS data set ‘REGDATA’; 
 
CREATE REGDATA FROM DAT[COLNAME={X1 X2 X3 X4 X5 X6 X7 X8 Y}]; 
APPEND FROM DAT; 
 
                                    * use SAS PROC REG to obtain sample r-square; 
                                    * output the results to temporary SAS data  
                                      ‘REGOUT’; 
 
PROC REG DATA=REGDATA NOPRINT OUTEST=REGOUT; 
  MODEL Y =X1 X2 X3 X4 X5 X6 X7 X8 / SELECTION=RSQUARE; 
RUN; 
                                    * use ‘REGOUT’ data; 
DATA A; SET REGOUT; 
  IF _IN_=8;                        * select the row of data that contains sample r-square; 
  P=8; N=&N; NP_RATIO=N/P;          * add study design features: N, P N/P RATIO; 
  RSQ=_RSQ_; 
  RSQ_ADJ1=1-(N/(N-P))*(1-RSQ);     * apply four correction formulas; 
  RSQ_ADJ2=1-((N-1)/(N-P-1))*(1-RSQ); 
  RSQ_ADJ3=1-((N-1)/(N-P))*(1-RSQ); 
  RSQ_ADJ4=RSQ-((P-2)/(N-P-1))*(1-RSQ)-(2*(N-3))/((N-P-1)*(N-P+1))*(1-RSQ)**2; 
 
 * obtain bias: deviation of r-square and adjusted r-squares from population r-square; 
 
  BIAS_RSQ=RSQ-0.50;                
  BIAS1=RSQ_ADJ1-0.50; 
  BIAS2=RSQ_ADJ2-0.50; 
  BIAS3=RSQ_ADJ3-0.50; 
  BIAS4=RSQ_ADJ4-0.50; 
                           * only keep the relevant information for the study; 
KEEP N P NP_RATIO RSQ RSQ_ADJ1 RSQ_ADJ2 RSQ_ADJ3 RSQ_ADJ4 BIAS_RSQ BIAS1 BIAS2 BIAS3 
BIAS4; 
 
                     * append the results from each replication to permanent SAS data set;  
 
PROC APPEND BASE=REG.REG8_RSQ; 
 
%END;             * close &A do loop; 
%END;             * close &REP do loop; 
%MEND REG;        * end the macro program 'REG'; 
%REG;             * run the macro 'REG' program; 
RUN; 
 
DATA A; SET REG.REG8_RSQ; 
PROC SORT; BY NP_RATIO;         * analyze the results, obtain the average bias; 
PROC MEANS; BY NP_RATIO; 
  VAR BIAS_RSQ BIAS1 BIAS2 BIAS3 BIAS4; 
RUN; 
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The first section of the program that may be new to the readers is the following: 

     * obtain factor pattern matrix for later data generation; 
 
PROC FACTOR N=9 OUTSTAT=FACOUT; 
DATA PATTERN; SET FACOUT; 
  IF _TYPE_=’PATTERN’; 
  DROP _TYPE_ _NAME_; 
RUN; 

 
In this section of the program, PROC FACTOR generates the factor pattern matrix based on the 
population correlation matrix of the nine variables (Y, and X1 to X8). The results of PROC FACTOR are 
output into a temporary SAS data set named FACOUT. Then the temporary SAS data set named 
PATTERN is constructed based on FACOUT, but only the relevant information is kept. To understand 
how this is achieved, we need to take a look at the data structure of the FACOUT data set. 

 

Output 6.4a  Structure of the FACOUT Data Set 
 
 
                                         The SAS System 
 
OBS  _TYPE_    _NAME_       X1     X2      X3      X4      X5      X6      X7     X8       Y  
 
 1  MEAN                 0.00    0.00    0.00    0.00    0.00    0.00    0.00   0.00    0.00 
 2  STD                  1.00    1.00    1.00    1.00    1.00    1.00    1.00   1.00    1.00 
 3  N                   10000   10000   10000   10000   10000   10000   10000  10000   10000 
 4  CORR      X1         1.00    0.30    0.30    0.30    0.30    0.30    0.30   0.30    0.44 
 5  CORR      X2         0.30    1.00    0.30    0.30    0.30    0.30    0.30   0.30    0.44 
 6  CORR      X3         0.30    0.30    1.00    0.30    0.30    0.30    0.30   0.30    0.44 
 7  CORR      X4         0.30    0.30    0.30    1.00    0.30    0.30    0.30   0.30    0.44 
 8  CORR      X5         0.30    0.30    0.30    0.30    1.00    0.30    0.30   0.30    0.44 
 9  CORR      X6         0.30    0.30    0.30    0.30    0.30    1.00    0.30   0.30    0.44 
10  CORR      X7         0.30    0.30    0.30    0.30    0.30    0.30    1.00   0.30    0.44 
11  CORR      X8         0.30    0.30    0.30    0.30    0.30    0.30    0.30   1.00    0.44 
12  CORR      Y          0.44    0.44    0.44    0.44    0.44    0.44    0.44   0.44    1.00 
13  COMMUNAL             1.00    1.00    1.00    1.00    1.00    1.00    1.00   1.00    1.00 
14  PRIORS               1.00    1.00    1.00    1.00    1.00    1.00    1.00   1.00    1.00 
15  EIGENVAL             3.68    0.70    0.70    0.70    0.70    0.70    0.70   0.70    0.42 
16  PATTERN   FACTOR1    0.61    0.61    0.61    0.61    0.61    0.61    0.61   0.61    0.81 
17  PATTERN   FACTOR2   -0.06   -0.06   -0.06   -0.06   -0.06   -0.06   -0.39   0.73    0.00 
18  PATTERN   FACTOR3   -0.24   -0.24   -0.24    0.72    0.00    0.00    0.00   0.00    0.00 
19  PATTERN   FACTOR4   -0.19   -0.19   -0.19   -0.19    0.75    0.00    0.00   0.00    0.00 
20  PATTERN   FACTOR5   -0.16   -0.16   -0.16   -0.16   -0.16   -0.16    0.68   0.29    0.00 
21  PATTERN   FACTOR6    0.59   -0.59    0.00    0.00    0.00    0.00    0.00   0.00    0.00 
22  PATTERN   FACTOR7   -0.34   -0.34    0.68    0.00    0.00    0.00    0.00   0.00    0.00 
23  PATTERN   FACTOR8   -0.15   -0.15   -0.15   -0.15   -0.15    0.76    0.00   0.00    0.00 
24  PATTERN   FACTOR9    0.10    0.10    0.10    0.10    0.10    0.10    0.10   0.10   -0.50 

 
 

In the output above, the underlined section contains the factor pattern matrix that we need to use.  By 
using the SAS statements IF _TYPE_=’PATTERN’; DROP _TYPE_ _NAME_, we are able to keep the 
underlined section of this temporary SAS data set, which will be used later as a matrix. Once the factor 
pattern matrix is obtained, it is then read into PROC IML as a matrix of 9�9 dimension. This matrix F is 
then transposed so that the columns become the factors (FACTOR1 to FACTOR9), and the rows become 
the variables (X1 to X8, Y), as required for later pre-multiplication with a random variable data matrix. 
The SAS code for accomplishing this is presented below. 

 
PROC IML;                           
   USE PATTERN;           * read in the factor pattern as a matrix ‘F’; 
   READ ALL VAR _NUM_ INTO F; 
  F=F`;                       * transpose ‘F’ for later  
                                premultiplication; 
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The next section that warrants some explanation is probably the following section. This section uses the 
SAS REG procedure to run regression analysis, then outputs the results to a temporary SAS data set 
named REGOUT by using the option OUTEST=REGOUT. The program then uses the REGOUT data set 
to obtain the sample R2. 

 
                     * use SAS PROC REG to obtain sample r-square; 
                     * output the results to temporary SAS data set  
                       ‘REGOUT’; 
 
PROC REG DATA=REGDATA NOPRINT OUTEST=REGOUT; 
  MODEL Y =X1 X2 X3 X4 X5 X6 X7 X8 / SELECTION=RSQUARE; 
RUN; 
                     * USE ‘REGOUT’ DATA; 
DATA A; SET REGOUT; 
  IF _IN_=8;         * SELECT THE ROW OF DATA CONTAINS SAMPLE R-SQUARE; 

  

To understand how the sample R2 is selected from the temporary SAS data set REGOUT, it helps to take 
a look at the structure of REGOUT. For the sake of simplicity, we present a hypothetical regression 
analysis for a 3-predictor model (Y=X1 X2 X3) as an example. The OUTEST=’REGOUT’ option in 
PROC REG generates the following temporary SAS data set. 

 

Output 6.4b  Structure of the REGOUT Data Set 
 

 

The sample R2 is underlined in the box. To select this sample R2, we need to select the last line by 
specifying the maximum number of predictors in the model. In this case, the SAS command IF _IN_=3 
accomplishes the task for this 3-predictor regression model. In Program 6.4, we have eight predictors in 
the regression model, so we specify IF _IN_=8. Later, we will drop all irrelevant variables by using the 
KEEP statement to keep only the variables of our choice. Once the sample R2 is selected, the adjusted 
R2s based on the four formulas are obtained, and the deviations of the sample R2 and the four adjusted 
R2s from the true population R2 are computed as bias. All these results from each of the 6,000 replications 
of the simulation (2,000 replications for each sample size condition) are then appended (PROC APPEND 
BASE=libref.data-set-name) to a SAS permanent data set on disk by specifying the two-level name 
REG.REG8_RSQ (“libref.data-set-name”) for future analyses. 

Once the simulation is complete, the results saved in the file REG.REG8_RSQ can be used for a variety 
of analyses. Output 6.4c presents the results from the simple analysis of PROC MEANS.  The variables 
used for this analysis are the deviation scores of the unadjusted sample R2 and the four adjusted R2s from 
the true population R2 Ideally, the average deviation should be zero, which indicates that the sample 
statistic is not a biased estimator for the population parameter. As is seen in Output 6.4c, the unadjusted 

�

�                                        The SAS System 
 
OBS _MODEL_  _TYPE_  _DEPVAR_  _RMSE_ INTERCEP   X1    X2   X3    Y  _IN_  _P_  _EDF_  _RSQ_ 
 
 1  MODEL1   PARMS      Y     .90364     0    .4402  .      .     -1   1    2    78   .1938 
 2  MODEL1   PARMS      Y     .90364     0    .      .4402  .     -1   1    2    78   .1938 
 3  MODEL1   PARMS      Y     .90364     0    .      .      .4402 -1   1    2    78   .1938 
 4  MODEL1   PARMS      Y     .84860     0    .3386  .3386  .     -1   2    3    77   .2981 
 5  MODEL1   PARMS      Y     .84860     0    .3386  .      .3386 -1   2    3    77   .2981 
 6  MODEL1   PARMS      Y     .84860     0    .      .3386  .3386 -1   2    3    77   .2981 
 7  MODEL1   PARMS      Y     .81352     0    .2751  .2751  .2751 -1   3    4    76   .3633 
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sample R2 has obvious upward bias, as reasoned previously. When the N/P ratio is small (e.g., N/P=2.5), 
such upward bias is substantial.  For the three N/P ratio conditions examined here, the upward bias is 
reduced by approximately half (.1983, .0963, .0453) when the N/P ratio is doubled (2.5, 5, 10). 

For the N/P ratio conditions examined here, the first two R2 shrinkage formulas tend to produce 
downward bias, i.e., the adjusted R2 tends to be smaller than the true population R2. The last two R2 
shrinkage formulas tend to be slightly biased positively, i.e., larger than the true population R2. It appears 
that, among the four formulas, the fourth formula contains the least amount of bias. Of course, in order to 
draw any definite conclusions, a much more comprehensive Monte Carlo study must be conducted that 
should consider a variety of different regression models and data conditions (in terms of number of 
predictors, correlation patterns among the variables, strength of population R2, degree of multicollinearity 
among the predictors, sample size, N/P ratio, etc.). So what has been presented here is simply an example 
and should not be construed as representing the general performance of the different R2 shrinkage 
formulas.  

 

Output 6.4c     
Sample R2 
Bias  
Simulation 
Results 
Comparing 
Correction 
Formulas for 
(Program 
6.4) 
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------------------------------------ NP_RATIO=2.5 ----------------------------------- 
 
       Variable     N          Mean       Std Dev       Minimum       Maximum 
       ---------------------------------------------------------------------- 
       BIAS_RSQ  2000     0.1983442     0.1227444    -0.2524870     0.4685524 
       BIAS1     2000    -0.0027596     0.2045740    -0.7541449     0.4475873 
       BIAS2     2000    -0.0210418     0.2120130    -0.7997502     0.4456814 
       BIAS3     2000     0.0223784     0.1943453    -0.6914377     0.4502080 
       BIAS4     2000     0.0085889     0.2096738    -0.7975641     0.4511640 
       ---------------------------------------------------------------------- 
 
------------------------------------- NP_RATIO=5 ------------------------------------ 
 
       Variable     N          Mean       Std Dev       Minimum       Maximum 
       ---------------------------------------------------------------------- 
       BIAS_RSQ  2000     0.0962798     0.1002139    -0.2485962     0.3462413 
       BIAS1     2000    -0.0046503     0.1252674    -0.4357453     0.3078016 
       BIAS2     2000    -0.0079061     0.1260756    -0.4417824     0.3065616 
       BIAS3     2000     0.0079659     0.1221357    -0.4123517     0.3126066 
       BIAS4     2000     0.0056242     0.1257438    -0.4340228     0.3147714 
       ---------------------------------------------------------------------- 
 
------------------------------------- NP_RATIO=10 ----------------------------------- 
 
       Variable     N          Mean       Std Dev       Minimum       Maximum 
       ---------------------------------------------------------------------- 
       BIAS_RSQ  2000     0.0452773     0.0762414    -0.2206793     0.2722575 
       BIAS1     2000    -0.0052474     0.0847126    -0.3007548     0.2469528 
       BIAS2     2000    -0.0059590     0.0848320    -0.3018826     0.2465964 
       BIAS3     2000     0.0010682     0.0836537    -0.2907453     0.2501159 
       BIAS4     2000     0.0005336     0.0847887    -0.2970138     0.2514706 
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The several SAS Monte Carlo programming examples presented in this chapter have probably given 
readers some indication that the SAS System offers a high degree of flexibility for conducting Monte 
Carlo studies involving statistical techniques. The researcher can do the programming for the statistical 
technique in question (as in the first t-test example); can use SAS statistical procedures for analysis and 
save the output in a file on disk, and then obtain the relevant information from this file (the 2nd t-test 
example); or can use SAS statistical procedures for analysis and output the results to a temporary SAS 
data set from which the relevant information is obtained (the ANOVA example and the regression 
analysis example). This high degree of flexibility of the SAS System allows almost any analysis results to 
be obtained and saved in a Monte Carlo study. 

When computationally complicated statistical procedures are involved, it is preferable to take full 
advantage of SAS/STAT procedures for the statistical computation and analysis instead of doing the 
programming ourselves. This not only results in less programming, and sometimes substantially so, it also 
ensures the accuracy of the statistical analysis. For many difficult statistical procedures, this is also 
probably the only feasible approach for conducting Monte Carlo studies for many quantitative 
researchers. Our experience also suggests that it is advantageous to save all potentially relevant 
information in a permanent data set instead of outputting all the results at the end of program without 
saving them. In a Monte Carlo study, especially a study that involves complicated design and statistical 
techniques, it is not always easy to anticipate what secondary analyses are needed for the results of the 
Monte Carlo study. For this reason, it is safer to save the results first, and worry about secondary analyses 
of the Monte Carlo results later.  This especially makes sense for a SAS Monte Carlo program that may 
take a long time to finish. 
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Chapters 1 to 5 have covered the basic concepts and procedures for conducting a Monte Carlo study. 
At the same time, the basic components of SAS programs necessary for implementing a Monte Carlo 
study have also been explained. In Chapter 6, we presented and discussed some complete examples of 
using SAS for conducting Monte Carlo simulation for some widely used univariate statistical 
techniques, such as t-tests, analysis of variance (ANOVA), and regression analysis. In this chapter, we 
present and discuss two complete Monte Carlo simulation study examples for more complicated 
multivariate statistical techniques. Specifically, we will present the following Monte Carlo study 
examples involving different statistical techniques: 

�� a structural equation modeling example for assessing the effects of sample size and 
estimation methods on a group of widely known descriptive model fit indices 

�� an example for comparing logistic regression with linear discriminant analysis in 
classification accuracy in a two-group situation. 
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For each of the above examples, we will present a) the theoretical rationale for conducting the study, 
and the major issues involved; b) the annotated SAS program for implementing the Monte Carlo 
study, with detailed explanations of the SAS code; c) the selected and relevant results from the actual 
simulation based on the SAS program provided.  We want to point out that, when Monte Carlo 
studies involve these complicated statistical techniques, it is important to use SAS/STAT procedures, 
rather than to do statistical programming ourselves, because the latter is often beyond the reach of 
many research practitioners.  Even for those who may have the technical expertise for the required 
statistical programming, the accuracy and validity of such statistical programming may often be in 
question. 
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Structural equation modeling (SEM) has increasingly been seen as a useful quantitative technique for 
specifying, estimating, and testing hypothesized models describing relationships among a set of 
substantively meaningful variables. Much of SEM’s attractiveness is due to the method’s applicability 
in a wide variety of research situations (e.g., Baldwin 1989; Bollen & Long 1993; Byrne 1994; 
Jöreskog & Sörbom 1989; Loehlin 1992; Pedhazur & Schmelkin 1991; SAS Institute 1997). 
Furthermore, many widely used statistical techniques may also be considered as special cases of 
SEM, including regression analysis, canonical correlation analysis, confirmatory factor analysis, and 
path analysis (Bagozzi, Fornell & Larcker 1981; Bentler 1992; Fan 1996; Jöreskog & Sörbom 1989). 
Because of such generality, SEM has been heralded as a unified model that joins methods from 
econometrics, psychometrics, sociometrics, and multivariate statistics (Bentler 1994). 

Despite SEM's popularity in the research of social and behavioral sciences, there are some thorny 
issues in SEM applications, one of which is SEM model fit assessment. In SEM, initially, the 
assessment of model fit was conceptualized as a dichotomous decision process of either retaining the 
null hypothesis that the model fits the data, or rejecting it. The empirical basis for such a dichotomous 
decision is a χ2 test assessing the degree of discrepancy between two covariance matrices: the original 
sample covariance matrix, and the reconstructed covariance matrix based on the specified model and 
the resultant model parameter estimates. In practice, considerable uncertainty regarding model fit 
often arises. The χ2 test approach to model fit assessment is confounded with sample size: the power 
of the test increases with an increase of sample size in the analysis (i.e., χ2 tends to increase as sample 
size increases). As a result, model fit assessment using this approach becomes stringent when sample 
size is large, and lenient when sample size is small. 

 

7.2.1 Descriptive Indices for Assessing Model Fit 
Because of the concerns related to the χ2 test for model fit assessment in SEM (Thompson & Daniel 
1996), a variety of indices for assessing model fit have been developed for assessing the fit between a 
theoretical model and empirical data. Unlike the χ2 test, which can often be used for the inferential 
purpose of rejecting or retaining a model, these alternative fit indices are descriptive in nature, and 
typically, no inferential decision is made based on these indices. In other words, these fit indices are 
used to describe the fit, rather than to test fit statistically. The relative performance characteristics of 
these different fit indices, and their comparability under different data conditions, however, are not 
well understood. For many practitioners who use SEM in their research, there is often confusion with 
regard to which indices to use under what data conditions. 
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Descriptive SEM fit indices were developed with different rationales and with different motivations 
(Gerbing & Anderson 1993). As Fan and Wang (1998) discussed, there are several major categories 
of SEM descriptive fit indices. The first category may be described as being based on covariance 
matrix reproduction. These indices assess the degree to which the reproduced covariance matrix 
based on the specified model has accounted for the original sample covariance matrix. Examples of 
this type of fit indices are the Goodness-of-Fit Index (GFI) and the Adjusted Goodness-of-Fit Index 
(AGFI) (Jöreskog & Sörbom 1989). 

The second major category of fit indices can be described as relative model fit indices, also known as 
"incremental fit" indices in the literature.  They assess model fit by evaluating the improvement of fit 
of a given model over that of a more restricted null model, which usually assumes no relationships 
among the measured variables.  Examples of this type of fit indices are Bentler and Bonnet's normed 
and non-normed fit indices (NFI and N_NFI), Bentler's Comparative Fit Index (CFI), and Bollen's 
incremental fit index (DELTA2). 

The third category of model fit indices can be called parsimony weighted indices. These indices take 
model parsimony into consideration by imposing penalties for specifying more elaborate models.  
Examples are the fit index by James, Mulaik and Brett (1982) and that by Mulaik et al. (1989).  These 
fit indices are most useful for assessing competing theoretical models, but are less informative in 
situations where only one model is being fitted to data. In addition to those discussed above, there are 
some others, such as McDonald's index of noncentrality (McDonald 1989), and the root mean squared 
error of approximation (RMSEA, Steiger & Lind 1980) as an index to quantify the amount of model 
misfit. 

 

7.2.2 Design Considerations 
There are several major factors that have the potential to influence the performance of SEM 
descriptive model fit indices.  Obviously, model specification, i.e., the extent to which a model is 
correctly specified, should be the primary determinant for model fit assessment.  In other words, 
model fit indices should be sensitive enough to the degree of model misspecification, and model 
misspecification should be the major contributor to the variation of sample model fit indices.  In 
reality, there exist a few confounding factors that may affect model fit assessment, such as estimation 
methods (e.g., maximum likelihood vs. generalized least squares) used in SEM analysis, and sample 
size.  Ideally, model fit indices should not be sensitive to the estimation method used for model 
fitting, and this factor should contribute minimally to the variation of sample model fit indices.  
Furthermore, because descriptive model fit indices were designed to overcome the shortcoming of the 
χ2 test, i.e., its over-reliance on sample size, it makes sense to expect that the descriptive model fit 
indices should be minimally affected by sample size. 
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7.2.3 SEM Fit Indices Studied 
Based on the consideration of comparability, nine widely known SEM fit indices were chosen for 
investigation in the present example: goodness-of-fit index (GFI), adjusted goodness-of-fit index 
(AGFI), Bentler’s comparative fit index (CFI), McDonald’s centrality index (CENTRA), Bentler and 
Bonnett’s non-normed fit index (N_NFI) and normed fit index (NFI), Bollen’s normed fit index rho1 
(RHO1), Bollen’s non-normed index delta2 (DELTA2), and RMSEA (root mean squared error of 
approximation) (Steiger 1990; Steiger & Lind 1980). The GFI, AGFI, and CFI are normed fit indices 
ranging from 0 to 1 in value, while non-normed indices can have values from 0 to slightly over 1. Of 
these nine fit indices, five of them belong to the category of relative model fit indices (CFI, N_NFI, 
NFI, RHO1, and DELTA2) discussed previously. RMSEA is an index for model misfit, and a small 
RMSEA value (close to 0) indicates little misfit, while a relatively large RMSEA value (e.g., >.10) 
indicates more severe model misfit. 

7.2.4 Design of Monte Carlo Simulation 
Three factors were incorporated into the design of this example: model specification (two levels: true, 
and misspecified models), estimation methods (two levels: maximum likelihood and generalized least 
squares), and sample size (four levels: 100, 200, 500, and 1000). The three factors were fully crossed 
with each other, creating 16 (2×2×4) different cell conditions. Within each cell condition, 200 
replications were implemented (more replications may be implemented easily if time is not a 
concern). This balanced experimental design allows for a systematic assessment of the effects of the 
three factors on the SEM fit indices. The design required the generation of 3,200 random samples 
(2×2×4×200) for model fitting. 

A widely-known model from substantive research (Wheaton et al. 1977), with six observed and three 
latent variables, is used in the simulation (Figure 7.1). 
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Figure 7.1  True Model with Population Parameters (Presented in LISREL Matrices) and Model  
                   Misspecification Conditions 
 

 

This model has been discussed extensively in SEM literature (e.g., Bentler 1992; Jöreskog & Sörbom 
1989). The true model with population parameters (presented in LISREL convention matrices) and 
the misspecified model conditions are also presented in Figure 7.1. 
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7.2.4.1  Deriving the Population Covariance Matrix 
Once the model population parameters are fully specified, the population covariance matrix (Σ) is 
obtained through the following formula (Jöreskog & Sörbom 1989, p. 5).  This covariance matrix (Σ) 
serves as the target population covariance matrix in generating random data samples: 
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Based on (7.1), and by using the eight matrices defined in Figure 7.1, the population covariance 
matrix for the specified true model in Figure 7.1 can be derived by using PROC IML, as shown in 
Program 7.1, below: 

 

Program 7.1   Deriving the Population Covariance Matrix from Model Parameters 
 

 
*** Program 7.1 ***; 
*** Deriving population covariance matrix from model parameters; 
 
PROC IML; 
 
LX = {1.00, 0.50}; 
LY = {1.00 0.00, 0.95 0.00, 0.00 1.00, 0.00 0.90}; 
GA = {-0.60, -0.25}; 
PH = {7.00}; 
PS = {5.00 0.00, 0.00 4.00}; 
TD = {3.00 0.00, 
      0.00 2.50}; 
TE = {4.75 0.00 1.60 0.00, 
      0.00 2.50 0.00 0.30, 
      1.60 0.00 4.50 0.00, 
      0.00 0.30 0.00 3.00}; 
B  = {0.00 0.00, 0.60 0.00}; 
I = {1 0, 0 1}; 
 
COVY = LY*(INV(I-B))*(GA*PH*GA‘+PS)*(INV(I-B‘))*LY‘+TE; 
COVX = LX*PH*LX‘ + TD; 
COVYX = LY*(INV(I-B))*GA*PH*LX‘; 
COVXY = LX*PH*GA‘*(INV(I-B‘))*LY‘; 
 
UPPER = COVX || COVXY; 
LOWER = COVYX || COVY; 
 
COV = UPPER // LOWER; 
 
PRINT COV; 
RUN; 
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The output from running Program 7.1 is the population covariance matrix as shown in Output 7.1. 

 

Output 7.1   
Population 
Covariance 
Matrix 
Derived 
from Model 
Parameters 
 

Once this population covariance matrix is derived, Program 4.10 can be used to obtain the population 
correlation matrix and variable standard deviations for data generation. By using the covariance 
matrix above in Part II of Program 4.10, we obtain the population correlation matrix and population 
standard deviations. Table 7.1 presents the resultant population correlation matrix, plus variable 
means and variances, used for data generation. Because the means of the variables do not affect SEM 
model fitting (unless a mean structure model is tested), all the measured variables were centered with 
means being zeros. 

 

Table 7.1   Model Population Correlations, Means, and Variances 
 
 
σ2 10.000000 4.250000   12.270000 9.286800 12.904700 9.807807 
µ 0  0  0  0  0  0 
X1 1.000000 
X2  .536875 1.000000 
Y1 -.379164 -.290805 1.000000 
Y2 -.414038 -.317552  .669246 1.000000 
Y3 -.375884 -.288290  .569164  .482667 1.000000 
Y4 -.388047 -.297619  .456315  .529719  .672364 1.000000 
 

 

7.2.4.2  Dealing with Model Misspecification 
Although a true model is relatively easy to specify in simulation research, model misspecification is 
difficult to handle for at least two reasons: (1) model misspecification can take a variety of forms; and 
(2) the degree of model misspecification is not easily quantified. In other words, it is difficult to make 
a priori predictions about the severity of model misspecification (Gerbing & Anderson 1993). In the 
present study, model misspecification was achieved by fixing/constraining certain parameters in the 
model which should be set free for estimation. The degree of model misspecification was empirically 
determined by fitting the misspecified model to the population covariance matrix Σ, and the resultant 
values of fit indices were used as indicators of severity of model misfit. The "misspecified" model 
was defined as producing fit indices between .93 and .95 when it was fitted to the population 
covariance matrix, and a χ2 test would reach statistical significance of rejecting the model for sample 
size around 150.  

Table 7.2 schematically represents the design for this simulation study example. 

    COV 
 
10        3.5      -4.2     -3.99     -4.27    -3.843 
 3.5      4.25     -2.1     -1.995    -2.135   -1.9215 
-4.2     -2.1      12.27     7.144     7.162    5.0058 
-3.99    -1.995     7.144    9.2868    5.2839   5.05551 
-4.27    -2.135     7.162    5.2839   12.9047   7.56423 
-3.843   -1.9215    5.0058   5.05551   7.56423  9.807807 
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Table 7.2   Schematic Representation of the Design for SEM Monte Carlo Study Example 
 
   Model Specification 

  Sample N True Misspecified 

100 200 Replications 200 Replications 

200 200 Replications 200 Replications 

500 200 Replications 200 Replications 

 

Maximum 

Likelihood 

1000 200 Replications 200 Replications 

100 200 Replications 200 Replications 

200 200 Replications 200 Replications 

500 200 Replications 200 Replications 

 

 

 

Estimation 

Method  

Generalized 

Least Squares 

1000 200 Replications 200 Replications 

 

7.2.5  SEM Example Program 
Program 7.2 presents the complete SAS macro program for this Monte Carlo study example, with 
annotated notes for the functions of different components in this complete SAS program. This 
program implements the design discussed previously and saves all the desired analysis results (sample 
model fit indices) to an external SAS system file that can be accessed easily in later analyses. Program 
7.2 appears to be long, but a careful look reveals that it consists of many components that have been 
discussed in previous chapters. There are, however, several features in this program that require some 
more detailed discussion. 

 
Program 7.2  Simulating Structural Equation Models 
 
 
/*******************************************************************/ 
/* this program conducts Monte Carlo simulation of SEM, and outputs*/ 
/* parameter estimates and fit indices to a SAS system file named  */ 
/* ’SEM_FITS’.  2 models are simulated in this program: true,      */ 
/* & misspecified models.                                          */ 
/*******************************************************************/ 
 
/******************************************************************/ 
%LET MC=200;   * # of Monte Carlo replications for each cell condition; 
/******************************************************************/ 
 
LIBNAME SEM ’C:\SEM\SAS\’; 
 
     * -- to direct the SAS log to a disk file; 
PROC PRINTTO LOG=’C:\SEM\SAS\LOGFILE.TMP’; 
 
DATA A (TYPE=CORR); 
_TYPE_=’CORR’; 
INPUT X1 X2 Y1 Y2 Y3 Y4; 
CARDS; 
1.000000 . . . . . 
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 .536875 1.000000 . . . . 
-.379164 -.290805 1.000000 . . . 
-.414038 -.317552  .669246 1.000000 . . 
-.375884 -.288290  .569164  .482667 1.000000 . 
-.388047 -.297619  .456315  .529719  .672364 1.000000 
; 
             * obtain factor pattern matrix for later data generation; 
PROC FACTOR N=6 OUTSTAT=FACOUT;  
DATA PATTERN; SET FACOUT; 
  IF _TYPE_=’PATTERN’; 
  DROP _TYPE_ _NAME_; 
RUN; 
 
%MACRO SEM_MC;  * start of monte carlo simulation macro ’SEM_MC’; 
 
                * do-loop for 2 conditions for true and misspecified models; 
%DO MODEL = 1 %TO 2; 
  %IF &MODEL=1 %THEN %DO; %LET MODL=TRU; %END; 
  %IF &MODEL=2 %THEN %DO; %LET MODL=MIS; %END; 
 
                    * do-loop for 2 estimation procedures; 
%DO A = 1 %TO 2; 
  %IF &A=1 %THEN %DO; %LET METHOD=MAX;  %END; 
  %IF &A=2 %THEN %DO; %LET METHOD=GLS;  %END; 
 
                    * do-loop for 4 sample size conditions; 
%DO B = 1 %TO 4; 
  %IF &B=1 %THEN %DO; %LET SMPLN=100;  %END; 
  %IF &B=2 %THEN %DO; %LET SMPLN=200;  %END; 
  %IF &B=3 %THEN %DO; %LET SMPLN=500;  %END; 
  %IF &B=4 %THEN %DO; %LET SMPLN=1000; %END; 
 
%DO C=1 %TO &MC;     * do-loop for the number of replications in each cell; 
 
PROC IML;                    * use SAS PROC IML for data generation; 
   USE PATTERN;              * use the factor pattern matrix; 
   READ ALL VAR _NUM_ INTO F; 
  F=F‘; 
 
           * diagonal matrix containing variances for 6 variables; 
 
 VAR={10   0     0      0       0        0, 
      0 4.25     0      0       0        0, 
      0    0 12.27      0       0        0, 
      0    0     0 9.2868       0        0, 
      0    0     0      0 12.9047        0, 
      0    0     0      0       0 9.807807}; 
 
STD=SQRT(VAR);            * matrix containing stds for the 6 variables; 
X=RANNOR(J(&SMPLN,6,0));  * generate 6 random normal variables; 
XT=X‘;                    * transpose the data matrix for multiplication; 
 
                  * transform uncorrelated variables to correlated ones; 
XTCORR=F*XT; 
 
        *transform the scale of the variables 
         (from std=1 to std=specified above); 
 
XTSTD=STD*XTCORR; 
 
             * transpose the data matrix back; 
XY=XTSTD‘; 
RUN; 
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             * create SAS data set ’DAT’; 
CREATE DAT FROM XY[COLNAME={X1 X2 Y1 Y2 Y3 Y4}]; 
APPEND FROM XY; 
                         * implement the true model; 
                         * output the model fitting results to  
                           data set ’SEMOUT’; 
%IF &MODEL=1 %THEN %DO; 
 
PROC CALIS DATA=DAT METHOD=&METHOD COV OUTRAM=SEMOUT NOPRINT; 
  LINEQS 
    X1 =     FK  +   EX1, 
    X2 = LX2 FK  +   EX2, 
    Y1 =     FE1 +   EY1, 
    Y2 = LY2 FE1 +   EY2, 
    Y3 =     FE2 +   EY3, 
    Y4 = LY4 FE2 +   EY4, 
    FE1= GA1 FK  +   DE1, 
    FE2= GA2 FK  +  BE1 FE1 + DE2; 
STD 
 FK EX1 EX2 EY1 EY2 EY3 EY4 DE1 DE2 = 
 VFK VEX1 VEX2 VEY1 VEY2 VEY3 VEY4 VDE1 VDE2; 
COV 
  EY1 EY3 = C_EY13, EY2 EY4 = C_EY24; 
RUN; 
 
DATA SEMOUT; SET SEMOUT;  * keep only the relevant results; 
   KEEP _NAME_ _ESTIM_; 
RUN; 
 
                          * transpose the SAS data set ’SEMOUT’ to ’NEWFITS’; 
PROC TRANSPOSE DATA=SEMOUT OUT=NEWFITS LET; 
 
   DATA NEWFITS;  SET NEWFITS;    * add simulation design information; 
   MTHD="&METHOD"; MODEL="&MODL"; 
 
                          * keep the desired model fit indices; 
 
   KEEP MODEL MTHD N FIT NPARM DF CHISQUAR P_CHISQ CHISQNUL GFI AGFI 
        RMSEAEST COMPFITI BB_NONOR BB_NORMD BOL_RHO1 BOL_DEL2 CENTRALI; 
 
          * append results of each run to a SAS system file; 
 
PROC APPEND BASE=SEM.SEM_FITS FORCE; 
 
%END;      * end of implementing the true model; 
 
                       * implement misspecified model; 
%IF &MODEL=2 %THEN %DO; 
 
PROC CALIS DATA=DAT METHOD=&METHOD COV OUTRAM=SEMOUT NOPRINT; 
  LINEQS 
    X1 =     FK  +   EX1, 
    X2 = LX2 FK  +   EX2, 
    Y1 =     FE1 +   EY1, 
    Y2 = LX2 FE1 +   EY2, 
    Y3 =     FE2 +   EY3, 
    Y4 = LY4 FE2 +   EY4, 
    FE1= GA1 FK  +   DE1, 
    FE2= 0   FK  +   BE1 FE1 + DE2;    * misspecification: GA2 fixed; 
                                       * constrained: LY2=LX2; 
STD 
 FK EX1 EX2 EY1 EY2 EY3 EY4 DE1 DE2 = 
 VFK VEX1 VEX2 VEY1 VEY2 VEY3 VEY4 VDE1 VDE2; 
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        * misspecification: error covariances fixed to zeros; 
*COV 
  EY2 EY4 = C_EY24, EY1 EY3 = C_EY13; 
RUN; 
 
 
DATA SEMOUT; SET SEMOUT; 
   KEEP _NAME_ _ESTIM_; 
RUN; 
 
PROC TRANSPOSE DATA=SEMOUT OUT=NEWFITS LET; 
   DATA NEWFITS;   SET NEWFITS;   * add simulation design information; 
   MTHD="&METHOD"; MODEL="&MODL"; 
   KEEP MODEL MTHD N FIT NPARM DF CHISQUAR P_CHISQ CHISQNUL GFI AGFI 
        RMSEAEST COMPFITI BB_NONOR BB_NORMD BOL_RHO1 BOL_DEL2 CENTRALI; 
 
PROC APPEND BASE=SEM.SEM_FITS FORCE; 
 
%END;           * end of implementing the misspecified model; 
 
%END;           * close the do-loop for replications in each cell; 
%END;           * close the do-loop for sample size conditions; 
%END;           * close the do-loop for estimation procedure; 
%END;           * close the do-loop for model specification conditions; 
%MEND SEM_MC;   * end of simulation macro ’SEM_MC’; 
%SEM_MC;        * running the macro ’SEM_MC’; 
RUN; 
 
PROC PRINTTO PRINT=PRINT;  * direct output to SAS Output window; 
RUN; 
 
/*       * descriptive analysis for the 9 descriptive model fit indices;  
DATA D2; SET SEM.SEM_FITS; 
PROC SORT; BY MODEL MTHD N; 
PROC MEANS MEAN STD MAX MIN;  
   BY MODEL MTHD N; 
   VAR GFI AGFI RMSEAEST COMPFITI BB_NONOR BB_NORMD BOL_RHO1 BOL_DEL2 
CENTRALI; 
RUN; 
*/ 

 
 

7.2.6 Some Explanations of Program 7.2 
First of all, the program directs the SAS log to an external file (LOGFILE.TMP) on the hard drive by 
using the PRINTTO procedure: 

 
     * -- to direct the SAS log to a disk file; 
PROC PRINTTO LOG=’C:\SEM\SAS\LOGFILE.TMP’;  

 

As discussed in Chapter 6, when hundreds and thousands of replications need to be run, the SAS log 
can overwhelm the SAS Log window capacity. Thus, it is important to direct the SAS log to an 
external file to prevent SAS from stopping the operation and asking you what to do. 
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One important feature in this program is that we use the SAS CALIS procedure for fitting the 
structural equation models, and we use the statistical output from PROC CALIS to obtain all the fit 
indices of interest. Because structural equation modeling is mathematically sophisticated and 
computationally intensive, it is only feasible to conduct a Monte Carlo study in SEM if we do not 
have to worry about doing statistical programming ourselves.   Once a random sample of data drawn 
from a pre-specified statistical population (see Table 7.1 for the specifications of the statistical 
population) is generated, a particular SEM model (true or misspecified) is fitted to the sample data.  
For fitting the true model, we have the following commands: 

 
                         * implement the true model; 
                         * output the model fitting results to  
                           data set ’SEMOUT’; 
%IF &MODEL=1 %THEN %DO; 
 
PROC CALIS DATA=DAT METHOD=&METHOD COV OUTRAM=SEMOUT NOPRINT; 
  LINEQS 
    X1 =     FK  +   EX1, 
    X2 = LX2 FK  +   EX2, 
    Y1 =     FE1 +   EY1, 
    Y2 = LY2 FE1 +   EY2, 
    Y3 =     FE2 +   EY3, 
    Y4 = LY4 FE2 +   EY4, 
    FE1= GA1 FK  +   DE1, 
    FE2= GA2 FK  +  BE1 FE1 + DE2; 
STD 
 FK EX1 EX2 EY1 EY2 EY3 EY4 DE1 DE2 = 
 VFK VEX1 VEX2 VEY1 VEY2 VEY3 VEY4 VDE1 VDE2; 
COV 
  EY1 EY3 = C_EY13, EY2 EY4 = C_EY24; 
RUN; 

 

In this group of PROC CALIS options and statements, the method for estimation is varied 
(METHOD=&METHOD) between "maximum likelihood" and "generalized least squares," as one 
DO loop specifies. For obtaining the model fitting results, the option OUTRAM=SEMOUT 
accomplishes the task. Here, OUTRAM is a keyword in PROC CALIS requesting the model fitting 
results to be output to a temporary SAS data set. This SAS data set is named SEMOUT here and will 
be used later. 

The SEMOUT data set contains all the model fit indices, model parameter estimates, and more. To 
understand how model fit indices are obtained, we need to take a look at the structure of the 
SEMOUT data set by using a simple command: 

 
PROC PRINT DATA=SEMOUT; 
RUN; 
 

When the true model in Figure 7.1 is fitted to the population covariance matrix (correlation matrix 
and variable variances) in Table 7.1, the temporary SAS data set SEMOUT has the following 
structure and analysis results: 
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Output 7.2  Contents of the SEMOUT Data Set 
  
 
 
   Obs    _TYPE_     _NAME_      _MATNR_    _ROW_    _COL_             _ESTIM_    _STDERR_ 
 
     1    MODEL      _SEL_          1          6       17                12.00     0.00000 
     2    MODEL      _BETA_         2         17       17                13.00     2.00000 
     3    MODEL      _GAMMA_        3         17        9                14.00     0.00000 
     4    MODEL      _PHI_          4          9        9                 8.00     0.00000 
     5    VARNAME    X1             1          .        1                  .        . 
     6    VARNAME    X2             1          .        2                  .        . 
     7    VARNAME    Y1             1          .        3                  .        . 
     8    VARNAME    Y2             1          .        4                  .        . 
     9    VARNAME    Y3             1          .        5                  .        . 
    10    VARNAME    Y4             1          .        6                  .        . 
    11    VARNAME    FE1            1          .        7                  .        . 
    12    VARNAME    FE2            1          .        8                  .        . 
    13    VARNAME    FK             1          .        9                  .        . 
    14    VARNAME    EX1            1          .       10                  .        . 
    15    VARNAME    EX2            1          .       11                  .        . 
    16    VARNAME    EY1            1          .       12                  .        . 
    17    VARNAME    EY2            1          .       13                  .        . 
    18    VARNAME    EY3            1          .       14                  .        . 
    19    VARNAME    EY4            1          .       15                  .        . 
    20    VARNAME    DE1            1          .       16                  .        . 
    21    VARNAME    DE2            1          .       17                  .        . 
    22    METHOD     ML             .          .        .                  .        . 
    23    STAT       N              .          .        .               150.00      . 
    24    STAT       FIT            .          .        .                 0.00      . 
    25    STAT       GFI            .          .        .                 1.00      . 
    26    STAT       AGFI           .          .        .                 1.00      . 
    27    STAT       RMR            .          .        .                 0.00      . 
    28    STAT       PGFI           .          .        .                 0.27      . 
    29    STAT       NPARM          .          .        .                17.00      . 
    30    STAT       DF             .          .        .                 4.00      . 
    31    STAT       N_ACT          .          .        .                 0.00      . 
    32    STAT       CHISQUAR       .          .        .                 0.00      . 
    33    STAT       P_CHISQ        .          .        .                 1.00      . 
    34    STAT       CHISQNUL       .          .        .               349.59      . 
    35    STAT       RMSEAEST       .          .        .                 0.00      . 
    36    STAT       RMSEALOB       .          .        .                  .        . 
    37    STAT       RMSEAUPB       .          .        .                  .        . 
    38    STAT       P_CLOSFT       .          .        .                 1.00      . 
    39    STAT       ECVI_EST       .          .        .                 0.24      . 
    40    STAT       ECVI_LOB       .          .        .                  .        . 
    41    STAT       ECVI_UPB       .          .        .                  .        . 
    42    STAT       COMPFITI       .          .        .                 1.00      . 
    43    STAT       ADJCHISQ       .          .        .                  .        . 
    44    STAT       P_ACHISQ       .          .        .                  .        . 
    45    STAT       RLSCHISQ       .          .        .                 0.00      . 
    46    STAT       AIC            .          .        .                -8.00      . 
    47    STAT       CAIC           .          .        .               -24.04      . 
    48    STAT       SBC            .          .        .               -20.04      . 
    49    STAT       CENTRALI       .          .        .                 1.01      . 
    50    STAT       BB_NONOR       .          .        .                 1.04      . 
    51    STAT       BB_NORMD       .          .        .                 1.00      . 
    52    STAT       PARSIMON       .          .        .                 0.27      . 
    53    STAT       ZTESTWH        .          .        .                -4.00      . 
    54    STAT       BOL_RHO1       .          .        .                 1.00      . 
    55    STAT       BOL_DEL2       .          .        .                 1.01      . 
    56    STAT       CNHOELT        .          .        .      543658928584.00      . 
    57    ESTIM                     2          3        7                 1.00     0.00000 
    58    ESTIM      LY2            2          4        7                 0.95     0.14270 
    59    ESTIM                     2          5        8                 1.00     0.00000 
    60    ESTIM      LY4            2          6        8                 0.90     0.13770 
    61    ESTIM      BE1            2          8        7                 0.60     0.12628 
    62    ESTIM                     3          1        1                 1.00     0.00000 
    63    ESTIM                     3          1        2                 1.00     0.00000 
    64    ESTIM      LX2            3          2        1                 0.50     0.09780 
    65    ESTIM                     3          2        3                 1.00     0.00000 
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Output 7.2  Contents of the SEMOUT Data Set (continued) 
 
 
 
    66    ESTIM                     3          3        4                 1.00     0.00000 
    67    ESTIM                     3          4        5                 1.00     0.00000 
    68    ESTIM                     3          5        6                 1.00     0.00000 
    69    ESTIM                     3          6        7                 1.00     0.00000 
    70    ESTIM      GA1            3          7        1                -0.60     0.14131 
    71    ESTIM                     3          7        8                 1.00     0.00000 
    72    ESTIM      GA2            3          8        1                -0.25     0.13331 
    73    ESTIM                     3          8        9                 1.00     0.00000 
    74    ESTIM      VFK            4          1        1                 7.00     1.63916 
    75    ESTIM      VEX1           4          2        2                 3.00     1.25943 
    76    ESTIM      VEX2           4          3        3                 2.50     0.41890 
    77    ESTIM      VEY1           4          4        4                 4.75     1.13774 
    78    ESTIM      VEY2           4          5        5                 2.50     0.95706 
    79    ESTIM      C_EY13         4          6        4                 1.60     0.78801 
    80    ESTIM      VEY3           4          6        6                 4.50     1.25757 
    81    ESTIM      C_EY24         4          7        5                 0.30     0.62251 
    82    ESTIM      VEY4           4          7        7                 3.00     1.00843 
    83    ESTIM      VDE1           4          8        8                 5.00     1.19037 
    84    ESTIM      VDE2           4          9        9                 4.00     0.98312 

 

Of the eight columns in this SAS data set, only two columns (column heading _NAME_, and 
_ESTIM_) contain what we need, and for our purposes, the rest can be discarded. The column with 
the heading _NAME_ contains the names of the model fit indices or names of model parameters. The 
column with the heading _ESTIM_ contains the sample estimates of the model fit indices and model 
parameters.  So the next group of SAS statements in Program 7.2 only keeps the two columns 
_NAME_ and _ESTIM_: 

 
DATA SEMOUT; SET SEMOUT;  * only keep the relevant results; 
   KEEP _NAME_ _ESTIM_; 
RUN; 
 

After the unnecessary columns are dropped from the temporary SEMOUT data set by the SAS 
statements above, the data set is then transposed from two columns and 84 rows (84 rows for this 
model only; different models have different numbers of rows, due to the different numbers of model 
parameters) to two rows and 84 columns by using the TRANSPOSE procedure: 

 
               * transpose the SAS data set ’SEMOUT’ to ’NEWFITS’; 
PROC TRANSPOSE DATA=SEMOUT OUT=NEWFITS LET; 
 

 

In the new data set, NEWFITS, the first row represents the variable names, and the second row 
contains the sample model fit indices and parameter estimates.  Because we do not need all the 
variables from each model fitting analysis, we only keep what we need. In addition, our Monte Carlo 
simulation design information (i.e., what estimation method is used for this sample, and which model 
is fitted to the sample data) for each model fitting analysis needs to be added to the data for later 
analyses. The following group of SAS commands accomplish these tasks: 

 
   DATA NEWFITS;  SET NEWFITS;    * add simulation design information; 
   MTHD="&METHOD"; MODEL="&MODL"; 
 
                          * keep the desired model fit indices; 
   KEEP MODEL MTHD N FIT NPARM DF CHISQUAR P_CHISQ CHISQNUL GFI AGFI 
        RMSEAEST COMPFITI BB_NONOR BB_NORMD BOL_RHO1 BOL_DEL2 CENTRALI; 
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In the KEEP statement, the last nine variables are the model fit indices we are interested in studying, 
and they are as follows: 

 

 GFI:    goodness-of-fit index 

 AGFI:  Adjusted goodness-of-fit index 

 RMSEAEST: root mean square of approximation 

 COMPFITI: comparative fit index 

 BB_NONOR: Bentler-Bonnet non-normed fit index 

 BB_NORMD: Bentler-Bonnet normed fit index 

 BOL_RHO1: Bollen’s RHO1 

 BOL_DEL2: Bollen’s delta 2 

 CENTRALI: McDonald’s index of non-centrality 

 

Finally, the results from each sample need to be accumulated in an external SAS file for later 
analyses. The SAS APPEND procedure appends the results from each sample to the SAS file named 
SEM_FITS.  

 
          * append results of each run to a SAS system file; 
PROC APPEND BASE=SEM.SEM_FITS FORCE; 
 
%END;      * end of implementing the true model; 
 

By this time, the first sample in the first cell (true model, estimation method of maximum likelihood, 
and sample size of 100) is complete, and the results are saved. For the misspecified model, the SAS 
programming code has almost the same structure, but with a slightly modified model implemented. 
By the time SAS Program 7.2 is completed, the SAS file SEM_FITS will contain 18 variables and 
3,200 cases, with each case representing the model fitting results for each random sample drawn from 
the statistical population specified in Table 7.1. All the design information is contained in the SAS 
file for later analyses. One example descriptive analysis will be to obtain the means, standard 
deviations, maximum value, and minimum value of each model fit index, broken down by sample 
size, estimation method, and model specification, similar to the following: 

 

       * descriptive analysis for the 9 descriptive model fit indices;  
DATA D2; SET SEM.SEM_FITS; 
PROC SORT; BY MODEL MTHD N; 
PROC MEANS MEAN STD MAX MIN;  
   BY MODEL MTHD N; 
   VAR GFI AGFI RMSEAEST COMPFITI BB_NONOR BB_NORMD 
       BOL_RHO1 BOL_DEL2 CENTRALI; 
RUN; 
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7.2.7 Selected Results from Program 7.2 
As an example of the results obtained from this simulation program, Table 7.3 presents the means of 
the nine fit indices for the misspecified model based on the execution of Program 7.2.  For each 
sample size condition, the values in the upper row are the means of the fit indices based on the 
maximum likelihood estimation method for model fitting, and the values in the lower row are the 
means of the fit indices based on the generalized least squares estimation method for model fitting. 
Notice that for the relative fit indices (CFI, N_NFI, NFI, RHO1, DELTA2), the difference between 
model fit index values based on the estimation method (maximum likelihood vs. generalized least 
squares) is very obvious. In other words, for this group of fit indices, the estimation method used in 
model fitting appears to be influential for the fit index value obtained. For the other four fit indices 
(GFI, AGFI, RMSEA, CENTRA), however, the estimation method does not appear to affect the 
sample model fit index value to the same degree as it does for the relative fit indices. Of course, more 
detailed or more sophisticated analyses could be conducted for the obtained sample fit indices from 
this simulation study. For an example of such analyses in real research situations, see Fan and Wang 
(1998). 

 

Table 7.3   Means of Fit Indices from Two Estimation Methods for the Misspecified Model 
 
 

  Sample N       Model Fit Indices 
 

            GFI    AGFI   CFI   N_NFI   NFI    RHO1  DELTA2 RMSEA  CENTRA 

 
 100    .94    .84    .95    .90    .92    .85    .95    .12    .94 
     .94    .85    .86    .74    .79    .60    .88    .10    .96 
 
 200      .95    .87    .95    .90    .93    .87    .95    .12    .94 
     .95    .87    .85    .73    .82    .66    .86    .11    .95 
 
 500      .96    .89    .95    .90    .94    .89    .95    .12    .94 
     .96    .89    .85    .72    .83    .69    .85    .11    .95   
 
 1000    .96    .89    .95    .90    .94    .90    .95    .12    .94 
     .96    .90    .85    .72    .84    .71    .85    .12    .95 

 
Note:  For each sample size condition, the means in the upper row are based on the maximum likelihood estimation 
method for model fitting, and the means in the lower row are based on the generalized least squares estimation 
method for model fitting.  
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In many different disciplines, there is often a need to predict an individual’s group membership based 
on a battery of measurements. Both predictive discriminant analysis (PDA) and logistic regression 
(LR) have been the popular statistical tools for this purpose (Yarnold, Hart & Soltysik 1994). The 
relative efficacy of these two statistical methods under different data conditions, however, has been an 
issue of debate (e.g., Barón 1991; Dattalo 1994; Dey & Astin 1993). In our example here, we only 
examine the performance of logistic regression and linear discriminant analysis for classification in 
two-group situations. In the following discussion, PDA is used only for predictive discriminant 
analysis based on a linear discriminant function. 

 

7.3.1 Major Issues Involved 
Since both PDA and LR can be used for predicting or classifying individuals into different groups 
based on a set of measurements, a logical question often asked is: how do the two techniques compare 
with each other? In the literature, there has been some discussion about the relative merits of these 
two different techniques (e.g., Dattalo 1994; Fraser et al. 1994; Wilson & Hardgrave 1995). 

Theoretically, PDA is considered as having more stringent data assumptions. Two prominent 
assumptions for PDA are multivariate data normality, and homogeneity of the covariance matrices of 
the groups (Johnson & Wichern 1988; Stevens 1996). However, it is not entirely clear what 
consequences the violation of these assumptions may have on PDA results. LR, on the other hand, is 
considered relatively free of these stringent data assumptions (Cox & Snell 1989; Neter, Wasserman, 
& Kutner 1989; Tabachnick & Fidell 1996). Although there is no strong logical reason to expect the 
superiority of one technique over the other in classification accuracy when the assumptions for PDA 
hold, it would be reasonable to expect that LR should have the upper hand when some of these 
assumptions for PDA are not tenable (Neter et al. 1989; Tabachnick & Fidell 1996). 

Research findings about the relative performance of these two methods appear to be inconsistent. 
With regard to data normality, Efron (1975) showed that under the optimal data condition of 
multivariate normality and equal covariance matrices for the groups, a linear discriminant function is 
more economical and more efficient than logistic regression. When the data are not multivariate 
normal, results from some simulation studies (e.g., Barón 1991; Bayne et al. 1984) indicated that LR 
performed better than PDA. This finding, however, has not been unequivocally supported by the 
studies that compared the two techniques by using extant data sets, because quite a few studies 
involving actual non-normal data sets suggested very little practical difference between the two 
techniques (e.g., Cleary & Angel 1984; Dey & Astin 1993; Meshbane & Morris 1996).   
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With regard to the assumption of equal covariance matrices for PDA, there appears to be a lack of 
empirical studies to compare the relative performance of PDA and LR when this assumption does not 
hold. Researchers seem to assume that LR should be the method of choice when the two groups do 
not have equal covariance matrices (Harrell & Lee 1985; Press & Wilson 1978). Several studies that 
involved extant data sets did not suggest that PDA’s performance would suffer appreciably because 
the assumption was violated (Knoke 1982; Meshbane & Morris 1996). No one seems to have 
specifically manipulated this condition in simulation studies to examine its effect on the performance 
of PDA and LR. 

Relative performance of PDA and LR under different sample size conditions is also an issue of 
interest. Viewed from the perspective of statistical estimation in general, maximum likelihood 
estimators (as in LR) tend to require larger samples to achieve stable results than ordinary least square 
estimators (as in PDA). Inconsistent results have been reported about the relative performance of the 
two techniques with regard to sample size conditions. For example, in a simulation study, Harrell and 
Lee (1985) implied that PDA performed better under small sample size conditions. Johnson and 
Seshia (1992) showed that, when the techniques were applied to real data sets, the findings did not 
clearly show that this was the case. 

In addition to the three issues (data normality, equal covariance matrices, and sample size), another 
issue that has attracted relatively little attention in the literature is the situation where two groups have 
different population proportions, and what effect this condition has on the classification accuracy of 
PDA and LR.  There has been some discussion in the literature that it may make very little practical 
difference whether PDA or LR is used for classification when two groups have approximately equal 
proportions.  But when the two groups have very different proportions (e.g., 0.10 : 0.90), logistic 
regression may perform better than a linear discriminant function (Cleary & Angel 1984; Dey & Astin 
1993; Neter et al. 1989; Press & Wilson 1978). 

Our example has considered two issues discussed above: homogeneity of covariance matrices, and 
sample size. Although data normality conditions and group proportions are interesting issues, for the 
sake of keeping the programming example manageable, data normality is not examined in this 
example, and only the condition of equal group proportions (i.e., 0.50 : 0.50) is used in the example. 

 

7.3.2 Design 
A crossed two-factor experimental design was implemented for the data structure pattern described in 
Table 7.4. The data structure described here is arbitrarily specified. The degree of group separation in 
the multivariate space as measured by the Mahalanobis distance [D2 = (µ1-µ2)' Σ

-1

pooled(µ1-µ2 )] is 
provided.  
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Table 7.4  Data Structure Pattern Simulated in the Example 
 
  Common Covariance Matrix (Σcommon)

a: 
  
 X1     1.00     
 X2     0.30  1.00 
 X3     0.50  0.40  1.00 
 
 σ2     4.00  4.00  4.00 
 
 µ

1

b     5.00  5.00  5.00 
 µ

2
     9.00  9.00  9.00 

 
Group Separation (Mahalanobis Distance: D2=(µ

1
-µ

2
)’ Σ-1

pooled
(µ

1
-µ

2 
): 

 
   Equal Σs: D2 = 6.70 
   Unequal Σs: D2 = 6.70 (Group Proportions: 0.50:0.50) 
 
   a: For the condition of equal Σs, this common covariance matrix is used 

for both groups.  For the condition of unequal Σs, 2/5(Σcommon) is used 

for Group 1 population, and 8/5(Σcommon) is used for Group 2 population. 
 
   b: Mean row vectors for Group 1 and Group 2, respectively. 

 
 

The two factors manipulated under each data pattern were sample size (4 levels: 60, 100, 200, 400) 
and equality of covariance matrices (2 levels: equal, unequal). The fully crossed design for the data 
structure pattern, with 1000 replications in each cell, required the generation and model-fitting of 
8,000 (4×2×1000) samples. This design makes it possible to systematically assess the potential impact 
of the two factors on the classification accuracy of PDA and LR. 

Although no theoretical guidelines are available about what is a small or a large sample size for the 
purpose of classification for the two methods, the review of Meshbane and Morris (1996) of 32 real 
research data sets used for two-group classification has sample sizes ranging from 100 to 285. 
Compared with these 32 data sets, the sample size conditions specified in this study (60, 100, 200, 
400) could be considered as ranging from relatively small to moderately large. 

The degree of inequality of covariance matrices between the two groups was specified a priori as one 
group having a covariance matrix 4 times larger than that of the other group. To avoid the 
confounding of group separation (as measured by Mahalanobis distance D2) and heterogeneity of 
covariance matrices, the covariance matrices for the two populations were specified as follows: 

1. Specify a common covariance matrix Σcommon, and this Σcommon is used for the two 
populations for the condition of equal covariance; 

2. For the condition of unequal covariance matrices, the group with the smaller 
covariance matrix has 2/5(Σcommon) as its population covariance matrix; the group with 
the larger covariance matrix has 8/5(Σcommon) as its population covariance matrix. 

  



164    SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 
 

As shown in Table 7.4, the specification for the condition of unequal covariance matrices for the two 
populations maintained the same population separation as measured by the Mahalanobis distance D2, 
thus avoiding the confounding of heterogeneous covariance matrices with the degree of group 
separation. 

 

7.3.3 Data Source and Model Fitting 
For each sample, first a pseudo-population is generated that is 20 times larger than the size of the 
sample desired. This pseudo-population has the exact proportions of the two groups (0.50 : 0.50). 
Once this pseudo-population is generated, a simple random sample of a specified sample size (60, 
100, 200, or 400) is drawn from this pseudo-population. In other words, although the population 
proportions of the groups are exact, the sample proportions may not be. This procedure models the 
research reality: sample proportion varies around the population proportion within the limits of 
sampling error.  

Although statistical inference assumes an infinite population from which a sample is drawn, as Glass 
and Hopkins (1996, p. 224) pointed out, when the sampling fraction n/N =.05 or less (n: sample size; 
N: finite population size), the precision of statistical inferences would only be minimally and 
negligibly affected. This consideration motivated the decision to generate a pseudo-population 20 
times larger than the sample size. 

Once a sample was drawn, the sample data are fitted to both the linear discriminant analysis model 
and the logistic regression model, and the classification error rates from the two models are obtained. 
For PDA, the SAS DISCRIM procedure is used for model fitting, and the linear classification rule is 
used in the classification. For LR, the SAS LOGISTIC procedure is used for LR model fitting, and 
the maximum posterior probability rule, i.e., 0.5 on the modeled probability function for the modeled 
group, is specified for the classification. In this study, the modeled group is always the group with an 
equal or smaller covariance matrix. The classification error rates for the two groups and those for the 
total sample under both PDA and LR are collected and saved in a SAS data file for later analyses. 

Because both PDA and LR classification contain upward bias due to the fact that the model 
estimation and classification are done on the same sample, bias-corrected classification error rates for 
the two methods were used in the present study. For PDA, the bias correction is achieved through the 
leave-one-out approach (Huberty 1994; Lachenbruch 1967), which is often known as “jackknifing” in 
the context of PDA (Johnson & Wichern 1988). For LR, although computing power has made the 
computational intensity of LR less of a concern, for a resampling technique like jackknifing, to 
repeatedly fit the model to the data for each observation left out could still be computationally 
expensive (SAS Institute 1997, p. 461). For this reason, instead of the leave-one-out strategy, the SAS 
LOGISTIC procedure implements a less expensive, one-step algebraic approximation for correcting 
the upward bias.  Readers are referred to the original source for this bias correction (SAS Institute 
1997, pp. 461-468). 
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7.3.4  Example Program Simulating Classification Error 
Rates of PDA and LR 
Program 7.3 presents the complete SAS program for conducting the Monte Carlo study for comparing 
the classification accuracy of linear discriminant analysis and logistic regression for a two group 
problem described above. As discussed previously, from each random sample drawn from the defined 
statistical population, this program obtains the bias-corrected classification error rates (the error rate 
for each of the two groups and the overall error rate) from both linear discriminant analysis and 
logistic regression, and saves these error rates to a SAS file on disk for later analyses. 

 

Program 7.3   Simulating Classification Error Rates of PDA and LR 
 
 
/* This program conducts Monte Carlo simulation for comparing classification 
   error rates from linear discriminant function and from logistic regression 
   for a two-group situation. SAS PROC DISCRIM and SAS PROC LOGISTIC are used 
   for group membership classification.  The results of classification error 
   rates for the respective two groups and the overall error rate from both  
   PROC DISCRIM and PROC LOGISTIC are saved in an external SAS file for 
   future analyses. 
*/ 
 
LIBNAME PDA_LR ’C:\PDA_LR\SAS’; 
 
    * -- to direct the SAS log to an external file; 
PROC PRINTTO LOG=’C:\PDA_LR\SAS\LOGFILE.TMP’; 
RUN; 
 
DATA D1(TYPE=CORR); 
  INPUT _TYPE_ $ _NAME_ $ X1-X3; 
  CARDS; 
CORR X1  1 .  . 
CORR X2  0.30  1  . 
CORR X3  0.50  0.40  1 
; 
              *obtain factor pattern matrix for later data generation; 
PROC FACTOR N=3 OUTSTAT=FACTOUT;  
DATA PATTERN;  SET FACTOUT; 
     IF _TYPE_ = ’PATTERN’; 
     DROP _TYPE_ _NAME_; 
RUN; 
 
%MACRO PDA_LR;          * start of simulation macro; 
 
%DO A = 1 %TO 2;        * A=1: equal group covariance, A=2: unequal; 
 
                        * specify four pseudo-population sizes (N1+N2); 
                        * specify sample size conditions (N); 
%DO B = 1 %TO 4; 
  %IF &B=1 %THEN %DO; %LET N1=600;  %LET N2=600;  %LET N=60;   %END; 
  %IF &B=2 %THEN %DO; %LET N1=1000; %LET N2=1000; %LET N=100;  %END; 
  %IF &B=3 %THEN %DO; %LET N1=2000; %LET N2=2000; %LET N=200;  %END; 
  %IF &B=4 %THEN %DO; %LET N1=4000; %LET N2=4000; %LET N=400;  %END; 
 
%DO NITER=1 %TO 1000;     * specify the # of replications within each cell; 
 
PROC IML;           
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  USE PATTERN;           * use the factor pattern matrix; 
  READ ALL VAR _NUM_ INTO FT; 
  F=FT‘; 
  MEAN1={5 5 5};         * specify two mean vectors for the two populations; 
  MEAN2={9 9 9}; 
 
  VAR={4 0 0, 
       0 4 0, 
       0 0 4};           * specify the common variances of the 3 variables; 
 
                         * specify equal (&A=1) and   
                           unequal (&A=2) covariance conditions; 
IF &A=1 THEN VAR1=VAR;    
  ELSE VAR1=(2/5)*VAR; 
IF &A=1 THEN VAR2=VAR; 
  ELSE VAR2=(8/5)*VAR; 
 
************ GROUP 1 DATA **********; 
 
G1DATA=RANNOR(J(&N1,3,0));  * generate 3 random normal variables; 
G1DATAT=G1DATA‘;            * transpose the data matrix for multiplication; 
G1DATAT=F*G1DATAT;          * transform uncorrelated variables to correlated; 
 
STD1=SQRT(VAR1);            * transform the variables to specified scales; 
G1DATAT=(STD1*G1DATAT)‘; 
X1=G1DATAT[,1] + MEAN1[,1]; 
X2=G1DATAT[,2] + MEAN1[,2]; 
X3=G1DATAT[,3] + MEAN1[,3]; 
GROUP1=J(&N1,1,1);          * assigning group number; 
G1DATA=GROUP1||X1||X2||X3; 
 
******** GROUP 2 DATA ********************; 
 
G2DATA=RANNOR(J(&N2,3,0));  * generate 3 random normal variables; 
G2DATAT=G2DATA‘;            * transpose the data matrix for multiplication; 
G2DATAT=F*G2DATAT;          * transform uncorrelated variables to correlated; 
 
STD2=SQRT(VAR2);            * transform variables to specified scales; 
G2DATAT=(STD2*G2DATAT)‘; 
X1=G2DATAT[,1] + MEAN2[,1]; 
X2=G2DATAT[,2] + MEAN2[,2]; 
X3=G2DATAT[,3] + MEAN2[,3]; 
GROUP2=J(&N2,1,2);          * assigning group number; 
G2DATA=GROUP2||X1||X2||X3; 
RUN; 
 
G12DATA=G1DATA//G2DATA;     * combine data of two groups; 
 
CREATE DATA FROM G12DATA[COLNAME={GROUP X1 X2 X3}]; 
APPEND FROM G12DATA; 
 
      * draw a random sample of size N from the pseudo-population; 
 
DATA TEMP; SET DATA; 
  RANNO=RANUNI(0); 
PROC SORT; BY RANNO; 
DATA SMPLDAT; SET TEMP(OBS=&N); DROP RANNO; 
 
               * direct SAS PROC DISCRIM output to an external file; 
 
FILENAME NEWOUT ’C:\PDA_LR\SAS\OUTFILE’; 
PROC PRINTTO PRINT=NEWOUT NEW; 
 
       * PROC DISCRIM, requesting jackknife procedure (CROSSVALIDATE); 
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PROC DISCRIM CROSSVALIDATE DATA=SMPLDAT; 
  CLASS GROUP; 
  PRIORS PROPORTIONAL; 
  VAR X1 X2 X3; 
RUN; 
 
PROC PRINTTO PRINT=PRINT;  * direct SAS output back to SAS Output window; 
RUN; 
 
  * read in the external file containing output from PROC DISCRIM; 
  * read in jackknifed classification error rates for two groups and combined; 
 
DATA PDAERROR; INFILE NEWOUT;  
  INPUT WORD1 $ @; 
    IF WORD1=’Rate’ THEN DO;   
           INPUT DAG1_ERR DAG2_ERR DA_ERR; 
           KEEP DAG1_ERR DAG2_ERR DA_ERR; 
           OUTPUT; 
    END; 
RUN; 
 
DATA PDAERROR; SET PDAERROR;     * keep the jackknifed errors only; 
N=_N_; 
IF N=2;  DROP N; 
RUN; 
 
       * direct PROC LOGISTIC output to an external file for later use; 
 
FILENAME NEWOUT ’C:\PDA_LR\SAS\OUTFILE’; 
PROC PRINTTO PRINT=NEWOUT NEW; 
 
       * conduct PROC LOGISTIC analysis for the sample data; 
       * requesting classification table; 
       * with probability = 0.5 as the cut-off point for classification; 
 
PROC LOGISTIC DATA=SMPLDAT; 
  MODEL GROUP=X1 X2 X3/CTABLE PPROB=.5; 
RUN; 
 
       * direct SAS output back to SAS Output window; 
PROC PRINTTO PRINT=PRINT; RUN; 
 

 * from the external file containing output from PROC LOGISTIC; 
 * read in the following: 
      (a) overall correct classification rate (LRRATE), 
      (b) GROUP 1 correct classification rate (G1RATE),  
      (c) GROUP 2 correct classification rate (G2RATE); 
 * construct and keep the classification error rates for  

            (i) GROUP 1, (ii) GROUP 2, and (iii) overall error rate; 
 
DATA LRERROR; INFILE NEWOUT; 
  INPUT PRIOR $ @; 
    IF PRIOR=’0.500’ THEN DO; 
       INPUT V1 V2 V3 V4 LRRATE G1RATE G2RATE; 
             LRG1_ERR=1-G1RATE/100; 
             LRG2_ERR=1-G2RATE/100; 
             LR_ERR=1-LRRATE/100; 
       KEEP LRG1_ERR LRG2_ERR LR_ERR; 
       OUTPUT; 
    END; 
 
     * merge error rates from PDA and LR; 
     * add simulation study design information; 
     * append the results from each sample to a SAS file "RESULTS"; 
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DATA PDA_LR; 
  MERGE PDAERROR LRERROR; 
  N=&N; IF &A=1 THEN COV=’EQUAL’; ELSE IF &A=2 THEN COV=’NO_EQ’; 
PROC APPEND BASE=PDA_LR.RESULTS FORCE; 
RUN; 
 
%END;          * end of do-loop for replications in each cell; 
%END;          * end of do-loop for each sample size condition; 
%END;          * end of do-loop for each covariance equality condition; 
%MEND PDA_LR;  * end of simulation macro; 
%PDA_LR;       * run the simulation macro; 
RUN; 
 
 
/* 
PROC SORT; BY COV N; 
PROC MEANS MEAN STD MIN MAX; BY COV N; 
  VAR DAG1_ERR LRG1_ERR DAG2_ERR LRG2_ERR DA_ERR LR_ERR; 
TITLE1 ’Average Classification Error Rates’; 
TITLE2 ’Comparison of Discriminant Analysis and Logistic Regression’; 
TITLE3 ’For GROUP 1, GROUP 2, and Overall’; 
RUN; 
*/ 
 

 
 

7.3.5 Some Explanations of Program 7.3 
Although Program 7.3 contains many comments to remind the readers about the functions of different 
program components, some discussion is warranted here to illustrate some unique features in this 
program.  The first feature that appears to be new is the following: 

 
%DO B = 1 %TO 4; 
  %IF &B=1 %THEN %DO; %LET N1=600;  %LET N2=600;  %LET N=60;   %END; 
  %IF &B=2 %THEN %DO; %LET N1=1000; %LET N2=1000; %LET N=100;  %END; 
  %IF &B=3 %THEN %DO; %LET N1=2000; %LET N2=2000; %LET N=200;  %END; 
  %IF &B=4 %THEN %DO; %LET N1=4000; %LET N2=4000; %LET N=400;  %END; 

 
As discussed previously, in this program, we generate a finite pseudo-population first, and then draw 
a random sample from this pseudo-population. The pseudo-population has the exact 0.50:0.50 equal 
proportions for the two groups, but a random sample from such a pseudo-population may not have 
exact equal proportions due to random sampling error. The SAS statements above specify the pseudo-
population size (N1+N2, for Group 1 and Group 2 pseudo-populations, respectively), and the sample 
size (N) for each sample size condition. For each of the four sample size conditions, the sample size 
(N) is 1/20 of the pseudo-population size, as discussed previously in the section on the study design. 



Chapter 7  Conducting Monte Carlo Studies for Multivariate Techniques    169 
 

To draw a random sample of size N from the pseudo-population of size N1+N2, we generate a 
random number (RANNO), sort the pseudo-population data by that random number, and then select 
the first N observations as our sample.   This is accomplished by the following SAS statements: 

 
      * draw a random sample of size N from the pseudo-population; 
 
DATA TEMP; SET DATA; 
  RANNO=RANUNI(0); 
PROC SORT; BY RANNO; 
DATA SMPLDAT; SET TEMP(OBS=&N); DROP RANNO; 

 

For both the PROC DISCRIM and PROC LOGISTIC analysis results, the information we desire is 
only available in the SAS output file.  For this reason, we first direct the SAS output to an external 
file on disk, and then read in that external file and extract the information we need.  For PROC 
DISCRIM results, this is accomplished by the following SAS statements: 

 
  * read in the external file containing output from PROC DISCRIM; 
  * read in jackknifed classification error rates for two groups and   
     combined; 
 
DATA PDAERROR; INFILE NEWOUT;  
  INPUT WORD1 $ @; 
    IF WORD1=’Rate’ THEN DO;   
           INPUT DAG1_ERR DAG2_ERR DA_ERR; 
           KEEP DAG1_ERR DAG2_ERR DA_ERR; 
           OUTPUT; 
    END; 
RUN; 
 
DATA PDAERROR; SET PDAERROR;     * keep the jackknifed errors only; 
N=_N_; 
IF N=2;  DROP N; 
RUN; 
 
 

To understand how the SAS statements above extract the jackknifed classification errors for two 
groups and the overall classification error, we have to know what PROC DISCRIM output looks like. 
Because we requested the jackknife procedure for PROC DISCRIM (by specifying the 
CROSSVALIDATE option), the output contains two sections, one for the original classification 
results (not corrected for bias), and the other for bias-corrected classification results. Relevant sections 
of the PROC DISCRIM output are reproduced below based on an artificially constructed data set of 
50 cases for each of the two groups (Group A and Group B): 

 



170    SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 
 

 

Output 7.3a  Partial Output from PROC DISCRIM 
 
  
                                   The DISCRIM Procedure 
                  Resubstitution Summary using Linear Discriminant Function 
 
                 Number of Observations and Percent Classified into group 
 
                  From group              A            B        Total 
 
                             A           48            2           50 
                                      96.00         4.00       100.00 
 
                             B            1           49           50 
                                       2.00        98.00       100.00 
 
                         Total           49           51          100 
                                      49.00        51.00       100.00 
 
                        Priors          0.5          0.5 
 
                             Error Count Estimates for group 
 
                                             A           B       Total 
 
                      Rate              0.0400      0.0200      0.0300 
                      Priors            0.5000      0.5000 
 
 
                 Cross-validation Summary using Linear Discriminant Function 
 
                 Number of Observations and Percent Classified into group 
 
                  From group              A            B        Total 
 
                             A           47            3           50 
                                      96.00         4.00       100.00 
 
                             B            2           48           50 
                                       2.00        98.00       100.00 
 
                         Total           49           51          100 
                                      49.00        51.00       100.00 
 
                        Priors          0.5          0.5 
                             Error Count Estimates for group 
 
                                             A           B       Total 
 
                      Rate              0.0600      0.0400      0.0500 
                      Priors            0.5000      0.5000 

 

The two highlighted rows contain classification errors for the two groups and the overall classification 
error. The first highlighted row is for errors not corrected for bias, and the second highlighted row 
contains bias-corrected classification errors based on the jackknife procedure (from the 
CROSSVALIDATE option). The following SAS statements keep reading the output file until SAS 
encounters the word Rate. Then it inputs the three numerical variables after the word Rate as the 
Group 1 error rate (DAG1_ERR), the Group 2 error rate (DAG2_ERR), and the overall error rate 
(DA_ERR).  
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        INPUT WORD1 $ @; 
    IF WORD1=’Rate’ THEN DO;   
           INPUT DAG1_ERR DAG2_ERR DA_ERR; 
           KEEP DAG1_ERR DAG2_ERR DA_ERR; 
           OUTPUT; 
    END; 
 

From the PROC DISCRIM output for each sample, two cases will be read in. The first case is for 
error rates not corrected for bias, and the second case is for error rates corrected for bias based on the 
jackknife procedure. We only want to keep the second case of bias-corrected error rates, and this is 
accomplished by the following SAS statements: 

 
DATA PDAERROR; SET PDAERROR;     * keep the jackknifed errors only; 
N=_N_; 
IF N=2;  DROP N; 
RUN; 
 

Once the bias-corrected classification error rates from PROC DISCRIM are obtained, a similar 
programming sequence is used for obtaining the classification error rates from the PROC LOGISTIC 
analysis. First, the PROC LOGISTIC analysis is done, and the output is directed to an external file in 
ASCII format (i.e., text file). This external file is then read in to SAS to extract the classification error 
rates respectively for the two groups, as well as the overall classification error rate. The task is 
accomplished by the following SAS statements: 

 
* from the external file containing output from PROC LOGISTIC; 
 * read in the following: 
      (a) overall correct classification rate (LRRATE), 
      (b) GROUP 1 correct classification rate (G1RATE),  
      (c) GROUP 2 correct classification rate (G2RATE); 
 * construct and keep the classification error rates for  

            (i) GROUP 1, (ii) GROUP 2, and (iii) overall error rate; 
 
DATA LRERROR; INFILE NEWOUT; 
  INPUT PRIOR $ @; 
    IF PRIOR=’0.500’ THEN DO; 
       INPUT V1 V2 V3 V4 LRRATE G1RATE G2RATE; 
             LRG1_ERR=1-G1RATE/100; 
             LRG2_ERR=1-G2RATE/100; 
             LR_ERR=1-LRRATE/100; 
       KEEP LRG1_ERR LRG2_ERR LR_ERR; 
       OUTPUT; 
    END; 
 

To understand how the SAS statements extract the classification error rates of interest, we need to 
take a look at the structure of the relevant section of PROC LOGISTIC output, as follows: 

 

Output 7.3b  Partial Output from PROC LOGISTIC 
 
                                Classification Table 
 
            Correct      Incorrect                Percentages 
    Prob          Non-          Non-           Sensi-  Speci-  False  False 
   Level  Event  Event  Event  Event  Correct  tivity  ficity   POS    NEG 
 
   0.500     47     48      2      3     95.0    94.0    96.0    4.1    5.9 
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In the above, the three highlighted numbers are i) the overall correct classification rate for the two 
groups combined, ii) the correct classification rate for Group 1 (the modeled group in PROC 
LOGISTIC, also referred to as EVENT), and iii) the correct classification rate for Group 2 (also 
referred to as NON-EVENT). In other words, SENSITIVITY represents the correct classification rate 
for the modeled group (EVENT), while SPECIFICITY represents the correct classification rate for the 
other group (NON-EVENT). All the correct classification rates are expressed as percentages. 
Classification error rates can easily be constructed based on these correct classification rates. The SAS 
statements above read in the three correct classification rates (LRRATE, G1RATE, G2RATE) from 
the external file containing PROC LOGISTIC output, and construct three classification error rates 
(LRG1_ERR, LRG2_ERR, LR_ERR). 

Finally, for each sample, the classification error rates from linear discriminant function analysis 
(PDA) and logistic regression analysis (LR) are merged into one temporary SAS data set (PDA_LR), 
and the relevant Monte Carlo study design information is added to the data (sample size N, 
equal/unequal covariance matrices). The data are then appended to an external SAS file on disk for 
later use (PDA_LR.RESULTS), as accomplished by the following SAS statements: 

 
     * merge error rates from PDA and LR; 
     * add simulation study design information; 
     * append the results from each sample to SAS file "RESULTS"; 
 
DATA PDA_LR; 
  MERGE PDAERROR LRERROR; 
  N=&N; IF &A=1 THEN COV=’EQUAL’; ELSE IF &A=2 THEN COV=’NO_EQ’; 
PROC APPEND BASE=PDA_LR.RESULTS FORCE; 
      RUN; 
 
 

By this time, the simulation process for each random sample is complete, and all the DO loops in the 
program, as well as the PDA_LR macro, are brought to a close. Once the PDA_LR macro is run, the 
results can be analyzed by routine SAS procedures similar to the following: 

 

DATA A; SET PDA_LR.RESULTS; 
PROC SORT; BY COV N; 
PROC MEANS MEAN STD MIN MAX; BY COV N; 
  VAR DAG1_ERR LRG1_ERR DAG2_ERR LRG2_ERR DA_ERR LR_ERR; 
TITLE1 ’Average Classification Error Rates’; 
TITLE2 ’Comparison of Discriminant Analysis and Logistic Regression’; 
TITLE3 ’For GROUP 1, GROUP 2, and Overall’; 
RUN; 
 

7.3.6 Selected Results from Program 7.3 
Based on one execution of Program 7.3 with 1,000 replications in each cell condition, part of the 
results are presented in the following table. It is observed that when the two groups have equal 
covariance matrices, there is little difference between PDA and LR in their classification error rates.  
When the groups have unequal covariance matrices, PDA produces small classification error rates 
(range of .02-.03) for the group with the smaller covariance matrix, but substantially larger 
classification error rates (range of .16-.17) for the group with the larger covariance matrix. Although 
LR also has this tendency, its classification error rates are more evenly distributed between the two 
groups (ranges of .06-.08 and .11-.12, respectively, for two groups).  Of course, in a real Monte Carlo 
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study, more detailed and sophisticated analyses should be conducted, as seen in the article by Fan and 
Wang (1999) that focuses on similar issues. 

 

Table 7.5   PDA and LR Classification Error Rates for Group 1, Group 2, and Combined  
 
 
       Combined Sample Size 
 
  Method     60         100        200        400 
 

Equal Σ 
 
Group 1 or 2   PDA       11 (06)    10 (04)    10 (03)    10 (02) 
      LR        11 (05)    11 (04)    10 (03)    10 (02) 
 
Overall        PDA       11 (04)    10 (03)    10 (02)    10 (02) 
      LR        11 (04)    11 (03)    10 (02)    10 (02) 
 
Unequal Σ 
 
Group 1 with   PDA       03 (03)    02 (02)    02 (02)    02 (01) 
Smaller Σ     LR        08 (04)    07 (03)    06 (02)    06 (02) 
 
Group 2 with   PDA       17 (07)    16 (05)    16 (03)    16 (02) 
Larger Σ       LR        12 (05)    11 (04)    11 (03)    11 (02) 
 
Overall        PDA       10 (04)    09 (03)    09 (02)    09 (01) 
      LR        10 (04)    09 (03)    08 (02)    08 (01) 
 
 

Note:  Each entry is the mean classification error rate (standard deviation in parentheses) based on the 
classification error rates of 1,000 samples. The second place decimal point is omitted. 

 
 

��#� �
�������

This chapter is a natural extension of Chapter 6.  In Chapter 6, we presented Monte Carlo study 
examples involving some basic statistical techniques.  In this chapter, we provided two complete 
Monte Carlo examples involving more complicated statistical techniques. These are real research 
examples involving real analytical issues. In these two examples, we provided the background for 
each Monte Carlo study, as well as detailed discussion about study designs and simulated data 
conditions. Further, these examples integrated the procedures presented in previous chapters. We 
hope that this chapter, together with Chapter 6, will provide the foundation for those interested in 
conducting Monte Carlo studies involving these and other statistical techniques. 
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Monte Carlo techniques are particularly useful when the function in question is the probability 
distribution of outcomes for a system whose properties make analytic or numeric solutions 
impractical. Such situations often arise in financial applications in which the distribution of interest is 
an aggregation of outcomes that may be correlated, that are characterized by empirical distributions 
with no functional representation, or both. They also arise in the pricing of options or other 
derivatives, whose current value depends on the distribution of future values for the underlying 
security. Monte Carlo methods provide a rich, computationally efficient framework for estimating 
the distribution of future values for an asset, yielding a simple options pricing formula. 

In these probability applications, Monte Carlo methods involve setting up a mechanism that 
approximates the system in question and links the stochastic aspects of the system to random number 
generators whose properties can be controlled. Stimulating the system with the required number of 
random impulses produces a simulated outcome that should represent a plausible, feasible, potential 
realization of the system. By repeating this a large number of times, the set of simulated outcomes 
will trace out the true distribution of potential outcomes, and the frequency of these simulated 
outcomes will allow us to assign approximate probability measures to each potential outcome. 
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For example, the calculation of Value-at-Risk (VaR) centers around the simulation of losses over 
time for a portfolio of risky assets.1  Simulation is key in this context, because the VaR concept 
relates to the distribution of potential future losses — a distribution which may or may not bear a 
very close resemblance to a known distribution function familiar to us from probability theory and 
statistics. Even when the loss distributions of portfolio components are known distributions such as 
the Gaussian (normal) distribution, correlations across portfolio components make analytic or 
numerical calculations of conditional probabilities virtually impossible. These conditional 
probabilities may be necessary for scenario analysis, or to determine how structural changes in the 
portfolio can affect VaR. By characterizing the distribution of portfolio returns through a Monte 
Carlo approach, we can obtain the values needed to calculate VaR, as well as the conditional 
probabilities necessary for scenario analysis. 

The final step is straightforward, typically finding the appropriate quantile of the estimated 
distribution of losses. Therefore, most of our effort in VaR estimation, as with other Monte Carlo 
based applications, is absorbed in constructing an appropriate statistical model to approximate the 
system, and in creating an efficient procedure for generating the simulated responses. 

Monte Carlo techniques are used in a wide variety of situations, giving rise to a wide range of 
approaches (Fisher, Nychka, & Zervos 1994; Frankfurter & Lamourex 1989; Gibson & Pritsker 
2000; Jorion 1997; Picoult 1998). However, even with respect to a single well-specified situation, 
there is no accepted best way to conduct such simulations. Many subjective choices must be made. 
Usually, the analyst faces a tradeoff between computational efficiency, which recommends 
simplicity, and realism, which requires that the model contain every important aspect of the system 
under study. But simplicity can produce benefits beyond lowering the computer runtime. 
Understanding what the model is doing and not doing leads to greater confidence in the results. More 
complicated models may give the impression of greater “reality,” but increased complexity may not 
change results appreciably, or worse, may simply add additional noise, either biasing the results, 
lowering our confidence in them, or both. 

This chapter presents three examples of the use of Monte Carlo techniques in financial applications. 
In each case, we seek to obtain estimates of the distribution of an aggregate outcome deriving from a 
multivariate system. The first is a fairly simple case in which joint probabilities for correlated 
outcomes are estimated by simulation. Examples 2 and 3 consider VaR calculations for credit risk 
and market risk, respectively. These later introduce additional layers of complexity by including 
additional stochastic components and by decomposing asset price movements into correlated and 
uncorrelated components. The SAS programming code for these examples is presented, and some 
selected results are discussed. 

 

                                                           
1 Such losses could be the result of changes in market conditions, credit events, or any set of events that can be characterized in probabilistic 
terms. 
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This section describes an approach to evaluating the default risk of holding companies for whom 
most, or all, of their income derives from the upstreaming of cash from subsidiaries in the form of 
dividends. We may need this default probability to price a loan to the holding company (holdco), or 
to assign a rating to its debt obligations.  

In this example, the likelihood of a holdco default is defined as the likelihood that upstreamed cash 
will fall below the threshold necessary for the holdco to service its debts. Again, the holdco’s assets 
consist entirely of a portfolio of cash flows coming from its subsidiaries. The likelihood of the total 
cash flow falling below the threshold can be decomposed into a set of conditional default 
probabilities associated with the complete set of outcomes for dividend payment/non-payment at the 
subsidiary level, multiplied by the likelihood of each specific outcome. Put another way, the 
likelihood that the holdco will default is the joint likelihood that a subset of subsidiaries will stop 
paying dividends, such that the combined value of dividends from still-paying subsidiaries falls 
below the above-mentioned threshold. The problem is complicated by the fact that the outcomes at 
the subsidiary level are not likely to be independent, but will exhibit some level of correlation. 
Because of this, even if we assumed that the relevant probability distributions were of a convenient 
form, the complexities involved in calculating the joint likelihoods for all possible outcomes would 
become overwhelming as the number of subsidiaries grew past three. A Monte Carlo technique 
provides an efficient alternative and can easily handle a realistic number of correlated subsidiary cash 
flows. 

Using Monte Carlo simulation, we can avoid an analytic or numerical solution, and estimate the 
required joint probability using only a small set of information about the subsidiaries, and essentially 
one parameter describing the holdco. To make the example more concrete, consider the case of a 
utility holding company with seven subsidiaries. Six are power-producing operating companies 
(opcos) located in several states but in the same general region of the U.S., all with corporate bond 
ratings assigned by a public rating agency. Another subsidiary is an unregulated, unrated energy 
trading company. We will use numbers that are reasonable for the details of the example, but which 
are not intended to correspond to any specific company. 

In spite of the computational complexity of the problem, it is fairly easy to write down an algebraic 
expression of what we want to calculate. The unconditional probability that the holdco defaults, 
P(Hd), consists of the sum of conditional probabilities, P(Hd

j), that the holdco defaults given that 
outcome j has occurred, times the probability that outcome j will occur, P(Oj), where outcome j is a 
certain set of subsidiaries defaulting. 
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In our example with seven subsidiaries, we would need to calculate and sum 127 terms 
corresponding to the set of all possible outcomes of at least one subsidiary defaulting. For example, 
there are seven possible outcomes in which one, and only one, subsidiary stops paying dividends (the 
single-summation term in the previous equation). Not all of these outcomes are equally likely, nor do 
they affect the holdco in the same way. Another outcome is that all seven subsidiaries stop paying 
dividends. There is only one such outcome (the last term in the equation), and the probability that the 
holdco will default should reach a maximum in this case. The 127 terms in this equation can be 
thought of in terms of their associated number of non-paying subsidiaries as: 

 

Number of subs not paying dividends 1 2 3 4 5 6 7 

Number of terms 7 21 35 35 21 7 1 

 
 

The first input requirement is a set of unconditional probabilities for cash-flow stoppage of each 
subsidiary, and a magnitude measure for the current stream of dividends being paid out. The amount 
of the dividend flow from each subsidiary can be found in the holdco’s financial statements. We can 
also estimate the default threshold from leverage measures derived from the holdco’s balance sheet. 
For analytical convenience, we convert both of these into proportional measures, i.e., each subsidiary 
provides x% of the upstreamed cash flow, and the holdco will default if y% of this cash flow is cut 
off.  Example values are presented under the DIVIDEND (%) heading in Table 8.1. 

We can estimate the unconditional probability of cash-flow stoppage from each rated subsidiary from 
rating migration and default frequency information provided by the major rating agencies.  Or, if 
internal risk scores are used, we will need comparable estimates of migration and default risk.  In our 
example, we need migration rate estimates as well as default probabilities to obtain the likelihood of 
cash-flow stoppage, since for regulated utilities, dividend payout is likely to stop well before default 
on debt securities.  In fact, regulators are likely to require that dividend payments stop if the opco’s 
debt rating falls into the single-B range (or equivalent).  We can use the opcos’ current ratings and 
empirical transition frequencies to obtain estimates of the probability that each opco will be 
downgraded to B1 (or equivalent) or lower within the next twelve months.  As this is the probability 
that no cash is upstreamed, we denote it as P(NC), and the appropriate values are shown in Table 8.1. 

 
Table 8.1  Subsidiary Input Information 
 

SUBSIDIARY RATING P(NC) DIVIDEND (%) 

1 Baa3 0.05 0.129630 

2 Baa3 0.05 0.060847 

3 Ba1 0.10 0.243386 

4 Baa3 0.05 0.034392 

5 Baa3 0.05 0.238095 

6 Not Rated 0.20 0.026455 

7 Ba1 0.01 0.267196 
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In this case, we assumed that once a regulated utility was downgraded to a B1 or lower, it would stop 
paying dividends, either voluntarily or at the insistence of regulators. Probabilities for downgrades to 
this level can be obtained for each rated subsidiary using a one-year rating-migration matrix. The 
values in Table 8.1 are reasonable approximations. For the unrated subsidiary in this example, we 
simply guessed at the probability that no dividends would be paid during any future one-year period. 

The next required input is a correlation matrix, which describes the potential for correlated outcomes, 
e.g., more than one subsidiary stopping its dividend payments in the same year. An example is shown 
in Table 8.2. In this case, correlations were assumed to be a significant 10% across all electricity-
producing operating companies (subs 1-5 & 7), since they were operating in the same general region 
of the country, and were assumed to zero between these operating companies and sub 6, the unrated 
energy trading company.   

The only other required input is a threshold value for the proportion of the expected dividend flow to 
the holdco that can be cut off without precipitating a holdco default.  This will be discussed in more 
detail below. 

 
Table 8.2   Subsidiary Default Correlation Matrix 
 

 Sub1 Sub2  Sub3 Sub4 Sub5 Sub6 Sub7 

Sub1 1.0 0.1 0.1 0.1 0.1 0.0 0.1 

Sub2 0.1 1.0 0.1 0.1 0.1 0.0 0.1 

Sub3 0.1 0.1 1.0 0.1 0.1 0.0 0.1 

Sub4 0.1 0.1 0.1 1.0 0.1 0.0 0.1 

Sub5 0.1 0.1 0.1 0.1 1.0 0.0 0.1 

Sub6 0.0 0.0 0.0 0.0 0.0 1.0 0.0 

Sub7 0.1 0.1 0.1 0.1 0.1 0.0 1.0 

 
 

The P(NC) information required as an input, combined with the correlation information, allows us to 
determine the likelihood of each of these 127 outcomes.  The DIVIDEND values tell us the extent 
that the dividend flow will be impaired under each of the 127 possible outcomes, and finally, the 
holdco threshold value determines which outcomes will produce a holdco default and which will not.  
By simulating a very large number of outcomes that are consistent with our inputs, we can simply 
use the frequency that the holdco default threshold is exceeded as an estimate of the default 
likelihood of the holdco, and finally, we can map this into a risk rating. 

Our Monte Carlo technique is a simple latent variable model. Program 8.1 (Macro %EX1) consists of 
two main parts. The first generates a large number of correlated random standard normal variables, 
with the correlation structure defined by our correlation input matrix. Embedded in %EX1 is a call to 
macro %RMNC described in Chapter 4, which produces a file (TEMP) with one variable for each sub 
and as many observations as the number of simulations. Each variable represents a “latent” credit 
quality variable for a sub, and the macro %RMNC ensures that the entire set of latent variable values 
conforms to the correlation structure contained in our pre-specified correlation matrix. For each sub,  
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if the value of the latent variable exceeds its cutoff, it indicates a stoppage of dividend payment from 
that sub. 

The second main part is a DATA step, which executes the simulation on each set of random numbers 
given in file TEMP. The DATA step first maps the P(NC) values for each sub onto the standard 
normal function (because the default–non-default outcome of a sub is simulated by standard normal 
values), and then performs the simulation by reading file TEMP one observation at a time, comparing 
the standard normal random numbers to the cutoff values and summarizing the stopped dividends 
from the defaulting subs (variable DIVLOSS). If the total exceeds the threshold (variable 
DEFPOINT), then the macro flags the observation as a default. The number of defaults divided by 
the number of simulations is what we want: an estimate of the default probability for the holdco. This 
value is provided as the MEAN statistic of variable DEFAULT in PROC MEANS. 

 
Program 8.1   Macro (%EX1) for Simulating Default Risk for a Diversified Holding Company 
 
 
/*****************************************************************************/ 
/* Macro EX1 calculates the default probability of a holding company.        */ 
/*                                                                           */ 
/* Parameters                                                                */ 
/* PARM      the name of a special file of the default probabilities, the    */ 
/*           dividend payments and the default correlation matrix of the     */ 
/*           subsidiaries. It is similar to a _TYPE_=CORR file. The first    */ 
/*           row corresponds to the default probabilities of the             */ 
/*           subsidiaries, the second to the dividend payments of the        */ 
/*           subsidiaries and the rest forms the lower half of the           */ 
/*           correlation matrix of the subsidiaries’ default rates. See the  */ 
/*           example below.                                                  */ 
/* NSUBS     the number of subsidiaries.                                     */ 
/* DEFPOINT  percent of dividend over which default happens.                 */ 
/* NSIMS     number of simulations.                                          */ 
/* OUT       name of the output data set, which contains the default flag    */ 
/*           and the lost dividend.                                          */ 
/*                                                                           */ 
/* Example for creating an input file                                        */ 
/*                                                                           */ 
/* DATA SIMPAR;                                                              */ 
/*      INPUT _NAME_ $ _TYPE_ $ SUB1-SUB7;                                   */ 
/*      CARDS;                                                               */ 
/*      PNC   0.05     0.05     0.10     0.05     0.05     0.20     0.01     */ 
/* .    DIV   0.129630 0.060847 0.243386 0.034392 0.238095 0.026455 0.267196 */ 
/* SUB1 CORR  1.00      .        .        .        .        .        .       */ 
/* SUB2 CORR  0.10     1.00      .        .        .        .        .       */ 
/* SUB3 CORR  0.10     0.10     1.00      .        .        .        .       */ 
/* SUB4 CORR  0.10     0.10     0.10     1.00      .        .        .       */ 
/* SUB5 CORR  0.10     0.10     0.10     0.10     1.00      .        .       */ 
/* SUB6 CORR  0.00     0.00     0.00     0.00     0.00     1.00      .       */ 
/* SUB7 CORR  0.10     0.10     0.10     0.10     0.10     0.00     1.00     */ 
/* ;                                                                         */ 
/*      RUN;                                                                 */ 
/*****************************************************************************/ 
 
%MACRO EX1(PARM=,NSUBS=,DEFPOINT=,NSIMS=,OUT=,SEED=123); 
 
 /* create a file for generating the normally distributed correlated     */ 
 /* random numbers for the probabilities of subsidiary defaults. This    */ 
 /* file will be input into macro %RMNC.                                 */ 
 
 DATA TEMP(TYPE=CORR DROP=I); 
      SET &PARM; 
      ARRAY SUB(&NSUBS) SUB1-SUB&NSUBS; 
      IF _N_=1 THEN DO;       * add mean of zero for each subsidiary; 
                        DO I=1 TO &NSUBS; 
                           SUB(I)=0; 
                        END; 
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                        _TYPE_=’MEAN’; OUTPUT; 
 
                        /* add standard deviation of one for each subsidiary. */ 
 
                        DO I=1 TO &NSUBS; 
                           SUB(I)=1; 
                        END; 
                        _TYPE_=’STD’; OUTPUT; 
 
                        /* add number of simulations for each subsidiary. */ 
 
                        DO I=1 TO &NSUBS; 
                           SUB(I)=&NSIMS; 
                        END; 
                        _TYPE_=’N’; OUTPUT; 
                    END; 
      IF _TYPE_=’CORR’ THEN OUTPUT; 
      RUN; 
 
/* call macro %RMNC to generate correlated, normally distributed */ 
/* random numbers to simulate the defaults of the subsidiaries.  */ 
 
 %RMNC(DATA=TEMP,OUT=PROBS,SEED=&SEED) 
 
 /* data step of the simulation */ 
 
 DATA &OUT; 
      ARRAY PNC(&NSUBS) PNC1-PNC&NSUBS;   * array of default probabilities ; 
      ARRAY DIV(&NSUBS) DIV1-DIV&NSUBS;   * array of dividends ; 
      ARRAY SUB(&NSUBS) SUB1-SUB&NSUBS; 
 
      /* load the default probability thresholds and the dividend */ 
      /* payments of all subsidiaries into the arrays above.      */ 
 
      DO WHILE (NOT EOFPARM); 
         SET &PARM END=EOFPARM; 
         IF _TYPE_=’PNC’ THEN DO; DO I=1 TO &NSUBS; 
 
                                     /* transform the probability into  */ 
                                     /* a standard normal distribution. */ 
 
                                     PNC(I)=PROBIT(SUB(I)); 
                                  END; 
                              END; 
         IF _TYPE_=’DIV’ THEN DO; DO I=1 TO &NSUBS; 
                                     DIV(I)=SUB(I); 
                                  END; 
                              END; 
      END; 
 
      /* go through each set of default probabilities generated above. */ 
 
      DO WHILE (NOT EOFSIM); 
         SET PROBS END=EOFSIM; 
         DIVLOSS=0; 
         DO I=1 TO &NSUBS; 
 
            /* does a subsidiary default? If it does, add its forgone */ 
            /* dividend to the losses (variable DIVLOSS).             */ 
 
            IF SUB(I)<PNC(I) THEN DIVLOSS=DIVLOSS+DIV(I); 
         END; 
 
         /* does the dividend loss exceed the default point? */ 
         /* if yes, mark this draw as ’default’.             */ 
 
         IF DIVLOSS>&DEFPOINT THEN DEFAULT=1; 
                              ELSE DEFAULT=0; 
         OUTPUT; 
      END; 
      STOP; 
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      KEEP DEFAULT DIVLOSS; 
      RUN; 
 
 /* the default rate (the mean statistic of variable DEFAULT) and the */ 
 /* characteristics of the dividend losses (whether or not the draw   */ 
 /* results a default) are calculated by PROC MEANS.                  */ 
 
 PROC MEANS DATA=&OUT N MEAN STD MIN MAX; 
      VAR DEFAULT DIVLOSS; 
      RUN; 
 %MEND; 
 

 

The threshold for the holdco is expressed as the proportion of upstreamed dividends that it can forgo 
without defaulting.The threshold may depend on the amount of cash it has on hand relative to its debt 
service burden, but may also depend on other factors. It is important to point out that there is a key 
relationship between this threshold value and the effect of correlation among the subsidiaries. The 
relationship is this: correlation will not affect the mean value of stopped dividends for a large sample 
of draws.  Correlation will only increase or decrease the variance of the observed (simulated) values.  
Thus, if the threshold for holdco default is equal to the mean value of stopped dividends, the holdco 
default probability will be indifferent to changes in the assumed correlation structure.  However, if 
the threshold is more extreme (i.e., far from the mean value)—say a 10% reduction in dividend 
payouts, or a 90% reduction in dividend payouts—then the correlation structure will affect the 
estimated holdco default probability more strongly. 

Program 8.2 presents an example of using Program 8.1 (macro %EX1) to run a simulation of 20,000 
draws using the correlation matrix presented in Table 8.2 and a cutoff threshold of 35%. That is, the 
holdco is assumed to default if more than 35% of its dividend income is cut off. This is well above 
the mean value of 5.5% that results from the ratings, and consequent downgrade probabilities of the 
subsidiaries; hence, the correlation structure is affecting the results. The distribution of dividend 
stoppage proportions is presented in Output 8.1. As is evident from the plot, the most likely outcome 
is no dividend stoppage. However, given our threshold of 35%, there is a 1.8% chance that the 
dividend stoppage will be sufficiently large to precipitate a holdco default. We can translate this back 
into a debt rating using Moody’s historical one-year default frequencies. Applying some smoothing 
to Moody’s reported average one-year default rates, we can associate the 1.8% default likelihood 
with a Ba2 corporate bond rating. 

 
Program 8.2  Using Program 8.1 (Macro %EX1) 

 
 
DATA SIMPAR; 
     INPUT _NAME_ $ _TYPE_ $ SUB1-SUB7; 
     CARDS; 
     PNC   0.05     0.05     0.10     0.05     0.05     0.20     0.01 
.    DIV   0.129630 0.060847 0.243386 0.034392 0.238095 0.026455 0.267196 
SUB1 CORR  1.00      .        .        .        .        .        . 
SUB2 CORR  0.10     1.00      .        .        .        .        . 
SUB3 CORR  0.10     0.10     1.00      .        .        .        . 
SUB4 CORR  0.10     0.10     0.10     1.00      .        .        . 
SUB5 CORR  0.10     0.10     0.10     0.10     1.00      .        . 
SUB6 CORR  0.00     0.00     0.00     0.00     0.00     1.00      . 
SUB7 CORR  0.10     0.10     0.10     0.10     0.10     0.00     1.00 
; 
     RUN; 
%EX1(PARM=SIMPAR,NSUBS=7,DEFPOINT=0.035,NSIMS=20000,OUT=A,SEED=123) 
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In this example, we needed to characterize the distribution of potential dividend losses to the holdco 
to calculate the probability that these losses would exceed a certain threshold. This type of 
calculation, and the Monte Carlo techniques used to obtain solutions, arise in a wide range of similar 
situations in finance, broadly known as Value-at-Risk (VaR) problems. The next two sections treat 
two types of VaR problems, using methods closely resembling those applied in this example. 
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VaR refers to the calculation of the distribution of future losses (gains) on a portfolio of assets. It is 
always calculated with respect to a specific time horizon. That is, losses are accumulated over the 
period t0→T, where T is the horizon and t0 is usually the present. This leads to a methodological 
division; each simulation of portfolio losses may involve a single draw at the time horizon specified, 
or may be composed of a sequence of draws in which losses are accumulated over intermediate time 
horizons. VaR calculations for market risk are frequently directed to relatively short time horizons, 
which suggests that the single-draw approach may be appropriate. Such an example is presented in 
section 8.4. For longer horizons, where there is more overall uncertainty, a multi-period approach, 
which allows losses to accumulate in different ways, may be able to provide a richer description of 
the underlying dynamics. This is more common for credit risk VaR applications. 
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In a credit risk VaR context, we use Monte Carlo methods to model losses from a set of pure credit 
events—e.g., defaults on bonds, loans, or other contractual exposures to risky obligors. Such 
calculations are important for banks with loan portfolios, as well as for financial institutions with 
bond, swap, and other derivative exposures, where expected losses are a function of the 
counterparty’s future creditworthiness, and for managed fixed income funds such as CLOs and CBOs 
whose own credit ratings are closely tied to the VaR from credit events. Because such portfolios are 
typically held and managed over relatively long periods of time, VaR calculations may be directed 
toward longer time horizons than is usually the case for market-risk VaR; often, multi-year time 
horizons are relevant. In this example, we focus on a multi-year loss distribution, generated by a 
series of simulated annual portfolio changes. 

For this type of Monte Carlo simulation, credit movements are generally defined with respect to a 
manageable number of subsets of the portfolio as opposed to each individual exposure. The most 
common subsetting scheme is by credit quality—e.g., agency or internal ratings (Carey & Hrcay 
2001). Losses are driven by default rates and recovery rates (or loss-in-the-event-of-default: LIED), 
which are themselves driven by the distribution of ratings in the portfolio. Thus, the simulation needs 
to incorporate both the stochastic nature of default rates year-to-year, and the stochastic rating 
migrations that affect the evolution of the distribution of ratings within the portfolio. In the simplest 
approach, default rates and migration rates are applied on a rating-by-rating basis, while LIED 
probabilities are applied to all defaulting credits. One benefit of this type of approach is that, if 
detailed data are not available from internal sources, we can use historical statistics published by 
rating agencies for default frequencies, LIED rates, and migration rates to characterize the portfolio 
dynamics on which we base our Monte Carlo procedure. 

As is typical in VaR applications, we seek to characterize the distribution of future losses to obtain a 
cutoff loss value that is unlikely to be exceeded, with a specified confidence level, say 95%. To 
obtain an estimate of the future distribution of losses, our VaR calculations will consist of a set of 
multi-year portfolio simulations. Each simulation will consist of a set of iterations on a vector (set) of 
exposures, with each iteration corresponding to a one-year evolution of the portfolio. 

We identify exposures by rating and default/non-default status only. Initially, and for each iteration, 
this vector of exposures will define the portfolio. Each iteration will itself consist of three steps. First, 
we obtain a default component of the obligor pool by applying the one-year default probability for 
each rating category. Secondly, we apply a set of LIED rates to the default component to obtain a 
loss amount/loss rate for this iteration. Finally, we allow non-defaulting obligors to experience 
stochastic rating changes based on a set of historical migration frequencies. This completes one 
iteration and produces a new distribution of ratings for the obligors that have not exited the portfolio 
through default. This basic portfolio evolution scheme is diagrammed in Figure 8.1.  
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Figure 8.1  Calculation of One Portfolio Iteration 
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Importantly, using this approach we can calculate expected losses directly for any forward time 
horizon without employing any Monte Carlo simulations. All we need are the default, loss, and 
migration frequencies, and we can obtain the expected value of losses by straight multiplication and 
subtraction. However, as noted above, for VaR calculations we need to estimate the entire 
distribution of loss rates for the portfolio, not just the expected value. To do this we will need more 
than the average default, loss, and migration frequencies, which are after all, just expected values. 

We would also like to endow the system with a macroeconomic component to reflect changes in the 
general credit cycle. One approach involves the inclusion in our simulation of a single random 
variable that defines the state of the credit cycle, or “default intensity.” Many variations on this 
theme have been used by academics and practitioners (Duffie & Singleton 1998). Here we consider a 
two-state macroeconomic environment with stochastic regime switching. Figure 8.2 shows Moody’s 
speculative-grade corporate bond default rates (Keenan, Hamilton, & Bethault 2000), monthly from 
1970 to 2000, which characterizes the type of credit cycle variation we would like to embed in our 
Monte Carlo simulation. The mean default rate for this period is 3.49%, with three distinctive high-
default episodes that drove the rate above 6.0% over this 30-year period. More remotely, the Great 
Depression produced another such high-default episode, extending this pattern back as far as data 
permit. 
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Figure 8.2   Moody’s Speculative-Grade Default Rate, 1970-2000 
 

 
 

In our simple regime-switching model, we seek to distinguish between “normal” periods and “high-
default” periods, and apply default probabilities and migration frequencies consistent with the 
observed frequencies in those periods. For expository purposes, we calculated migration frequencies 
and default rates for two periods, 1972-1996 (normal period), and 1989-1992 (high-default period). 
By cutting off the 1970-71 “railroad default” episode and the 1997-98 “Asia crisis” episode, our 
normal period is a continuous period that averages the low-default 1970s with the high-default late 
1980s and early 1990s. The high-default period pulls out just the “junk-bond collapse” episode, 
which is also continuous. These choices, while arbitrary, seem reasonable from a broad historical 
perspective and prevent us from having to splice together data from disjoint periods. The default and 
migration frequencies associated with these two “regimes” are presented in Table 8.3. The main 
benefit of using discrete regimes is that we can calculate the default and migration frequencies from 
historical data, for any criterion we use to define the regimes. A more continuous approach would 
require us to continually adjust our default and migration rates based on the macroeconomic 
conditioning variable. However, this would require an additional modeling step and would introduce 
a number of complexities and forced assumptions. 
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Table 8.3   Migration Frequencies for Normal vs. High-Default Periods 
 

    Normal Conditions (Avg. 1972-1996)   

  Aaa Aa A Baa Ba B Caa-C Default 
From/To  (1) (2) (3) (4) (5) (6) (7) (8) 

Aaa (1) 91.68% 7.61% 0.69% 0.00% 0.02% 0.00% 0.00% 0.00% 

Aa (2) 1.43% 90.70% 7.46% 0.29% 0.09% 0.01% 0.00% 0.02% 
A (3) 0.07% 2.35% 91.87% 5.02% 0.55% 0.12% 0.01% 0.01% 
Baa (4) 0.04% 0.26% 5.68% 87.86% 5.15% 0.77% 0.08% 0.14% 
Ba (5) 0.02% 0.05% 0.49% 5.47% 85.81% 6.55% 0.42% 1.19% 
B (6) 0.01% 0.03% 0.13% 0.46% 6.93% 83.98% 2.09% 6.37% 
Caa-C (7) 0.00% 0.00% 0.00% 0.71% 2.18% 4.50% 67.40% 25.20% 

          
    High Default (Avg. 1989-1992 Smoothed)   
  Aaa Aa A Baa Ba B Caa-C Default 
From/To  (1) (2) (3) (4) (5) (6) (7) (8) 

Aaa (1) 91.00% 6.00% 2.75% 0.25% 0.00% 0.00% 0.00% 0.00% 
Aa (2) 0.45% 84.53% 12.06% 1.32% 0.82% 0.32% 0.30% 0.20% 
A (3) 0.00% 0.51% 88.92% 7.36% 0.94% 0.57% 1.20% 0.50% 
Baa (4) 0.00% 0.61% 3.77% 84.39% 5.12% 1.61% 3.50% 1.00% 

Ba (5) 0.00% 0.00% 0.66% 3.51% 83.87% 8.55% 0.66% 2.75% 
B (6) 0.00% 0.00% 0.00% 0.10% 4.00% 84.00% 1.33% 10.57% 
Caa-C (7) 0.00% 0.00% 0.00% 1.00% 2.00% 12.50% 47.00% 37.50% 

 

The default rate itself is essentially the number of failures per unit of the borrowing population. This 
suggests a binomial distribution for the default rate itself. Program 8.3 presents a SAS macro 
(%EX2) for simulating portfolio credit risk. By setting the success/failure rate for the binomial 
distribution to the historical mean of 3.5% (see variable HISTDEFRATE in Program 8.3), we can 
generate random values for the overall default rate which can be used to determine the regime that 
applies for each iteration in our simulation. The cutoff value for a switch to the high-default regime is 
a parameter for the overall simulation and will have a dramatic affect on the results. In the following 
results, we set the cutoff at 6%. That is, a binomial draw of greater than 6 per hundred trials indicates 
a high-default episode (see variable THRESHOLD in Program 8.3). Since we will need to simulate the 
behavior of the portfolio repeatedly to estimate the distribution of potential future losses, we will 
need to run a large number of multi-year simulations. For each portfolio run of say twenty years, we 
need only generate 20 random binomial values, with lambda set to the mean, or 3.5% in this case.  
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Program 8.3  Monte Carlo Simulation for Portfolio Credit Risk (Macro %EX2) 
 
 
/*****************************************************************************/ 
/* Macro EX2 performs VaR-calculation from a set of pure credit events.      */ 
/*                                                                           */ 
/* Parameters                                                                */ 
/* PORTFOLIO the name of a file defining a credit portfolio of seven risk    */ 
/*           categories. The file has one variable: EXPOSURE, which is       */ 
/*           numeric and defines the exposure in whole dollars for each risk */ 
/*           category. The number of risk categories, i.e., the number of    */ 
/*           observations, must be seven, and they must be listed in         */ 
/*           increasing order of risk. See example below.                    */ 
/* NYEARS    the number of years, which determines the time horizon of the   */ 
/*           simulation.                                                     */ 
/* NSIMS     number of simulations.                                          */ 
/* OUT       name of the output data set, which contains the loss for each   */ 
/*           simulation and the number of high-default years.                */ 
/* SEED      Seed of the random number generator functions.                  */ 
/*                                                                           */ 
/* Example for creating the input file for the portfolio:                    */ 
/*                                                                           */ 
/* DATA PORTF(KEEP=EXPOSURE);                                                */ 
/*      INPUT RATING $ EXPOSURE;                                             */ 
/*      CARDS;                                                               */ 
/*      Aaa   10000   - Risk category ’Aaa’ has the lowest level of risk.    */ 
/*      Aa    10000                                                          */ 
/*      A     10000                                                          */ 
/*      Baa   10000                                                          */ 
/*      Ba    0                                                              */ 
/*      B     0                                                              */ 
/*      C     0       - Risk category ’C’ has the highest level of risk.     */ 
/*      ;                                                                    */ 
/*      RUN;                                                                 */ 
/*****************************************************************************/ 
 
%MACRO EX2(PORTFOLIO=,NYEARS=,NSIMS=,OUT=,SEED=123); 
 
 DATA &OUT(KEEP=LOSS HIGHDEFYEAR); 
 
      /* supply the parameters of the simulation. */ 
 
      RETAIN HISTDEFRATE 0.035   * historical average default rate;  
             THRESHOLD   0.06;   * threshold for ’high-default’ year; 
 
      ARRAY MIGR(2,7,8) MIGR1-MIGR112 ( 
 
            /* Migration matrix of "normal" years */ 
            /* From To:    Aaa    Aa     A      Baa    Ba     B      C      Default */ 
            /*             (1)    (2)    (3)    (4)    (5)    (6)    (7)    (8)     */ 
 
            /* Aaa (1) */  0.9168 0.0761 0.0069 0.0000 0.0002 0.0000 0.0000 0.0000 
            /* Aa  (2) */  0.0143 0.9070 0.0746 0.0029 0.0009 0.0001 0.0000 0.0002 
            /* A   (3) */  0.0007 0.0235 0.9187 0.0502 0.0055 0.0012 0.0001 0.0001 
            /* Baa (4) */  0.0004 0.0026 0.0568 0.8786 0.0515 0.0077 0.0008 0.0014 
            /* Ba  (5) */  0.0002 0.0005 0.0049 0.0547 0.8581 0.0655 0.0042 0.0119 
            /* B   (6) */  0.0001 0.0003 0.0013 0.0046 0.0693 0.8398 0.0209 0.0637 
            /* C   (7) */  0.0000 0.0000 0.0000 0.0071 0.0218 0.0450 0.6740 0.2520 
 
            /* Migration matrix of "high-default" years */ 
            /* From To:    Aaa    Aa     A      Baa    Ba     B      C      Default */ 
            /*             (1)    (2)    (3)    (4)    (5)    (6)    (7)    (8)     */ 
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            /* Aaa (1) */  0.9100 0.0600 0.0275 0.0025 0.0000 0.0000 0.0000 0.0000 
            /* Aa  (2) */  0.0045 0.8453 0.1206 0.0132 0.0082 0.0032 0.0030 0.0020 
            /* A   (3) */  0.0000 0.0051 0.8892 0.0736 0.0094 0.0057 0.0120 0.0050 
            /* Baa (4) */  0.0000 0.0061 0.0377 0.8439 0.0512 0.0161 0.0350 0.0100 
            /* Ba  (5) */  0.0000 0.0000 0.0066 0.0351 0.8387 0.0855 0.0066 0.0275 
            /* B   (6) */  0.0000 0.0000 0.0000 0.0010 0.0400 0.8400 0.0133 0.1057 
            /* C   (7) */  0.0000 0.0000 0.0000 0.0100 0.0200 0.1250 0.4700 0.3750 
            ); 
 
      /* Define the distribution of loss in the event of default (LIED) as a    */ 
      /* stepwise function. Array ’LIED’ contains the discrete loss values from */ 
      /* 1.25% to 98.75%, and array ’LIEDPROB’ provides the probabilities, by   */ 
      /* which those losses happen. See Asarnow and Edwards (1995).             */ 
 
      ARRAY LIED(21)     (0.0125 0.05   0.10   0.15   0.20   0.25   0.30   0.35 
                          0.40   0.45   0.50   0.55   0.60   0.65   0.70   0.75 
                          0.80   0.85   0.90   0.95   0.9875); 
      ARRAY LIEDPROB(20) (0.1237 0.1410 0.1069 0.0708 0.0450 0.0394 0.0427 0.0405 
                          0.0450 0.0247 0.0225 0.0337 0.0259 0.0326 0.0281 0.0225 
                          0.0247 0.0236 0.0225 0.0236       ); 
 
      ARRAY PROB(7) PROB1-PROB7;                /* temporary array   */ 
      ARRAY INITPORTF(7) INITPORTF1-INITPORTF7; /* initial portfolio */ 
      ARRAY CURPORTF(7)  CURPORTF1 -CURPORTF7;  /* current portfolio */ 
      ARRAY NEWPORTF(7)  NEWPORTF1 -NEWPORTF7;  /* new portfolio after a migration */ 
 
      /* load the input portfolio into array ’INITPORTF’. */ 
 
      DO RATING=1 TO 7; 
         SET &PORTFOLIO POINT=RATING; 
         INITPORTF(RATING)=EXPOSURE; 
      END; 
 
      /* main loop of the simulations */ 
 
      DO SIM=1 TO &NSIMS; 
 
         /* start with the input portfolio, move */ 
         /* it into the current portfolio.       */ 
 
         DO RATING=1 TO 7; 
            CURPORTF(RATING)=INITPORTF(RATING); 
         END; 
 
         /* variable ’LOSS’ summarizes the losses, set it to zero initially. */ 
 
         LOSS=0; 
 
         /* variable ’HIGHDEFYEAR’ keeps track of the */ 
         /* number of years with high default rate.   */ 
 
         HIGHDEFYEAR=0; 
 
         /* migrate the portfolio through &NYEARS. */ 
 
         DO YEAR=1 TO &NYEARS; 
 
            /* array ’NEWPORT’ has the current portfolio after each annual */ 
            /* migration. Set it to zero before each yearly migration, and */ 
            /* then collect the exposures by the risk categories to which  */ 
            /* they migrate.                                               */ 
 
            DO RATING=1 TO 7; 
               NEWPORTF(RATING)=0; 
            END; 
 
            /* determine the type of year, i.e. ’Normal’ (REGIME=1) */ 
            /* or ’High-default’ (REGIME=2).                        */ 
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            MACROECO=RANBIN(&SEED,100,HISTDEFRATE)/100; 
            IF MACROECO>THRESHOLD THEN REGIME=2;   * high-default year; 
                                  ELSE REGIME=1;   * normal year; 
            IF REGIME=2 THEN HIGHDEFYEAR=HIGHDEFYEAR+1; 
 
            /* take one risk category of the portfolio. */ 
 
            DO RATING=1 TO 7; 
 
               /* load the migration percentages of the given year-type and */ 
               /* rating into a temporary array to be used for each dollar  */ 
               /* of the current rating category.                           */ 
 
               DO I=1 TO 7; 
                  PROB(I)=MIGR(REGIME,RATING,I); 
               END; 
 
               /* go through every exposure of a given rating category. */ 
 
               DO P=1 TO CURPORTF(RATING); 
 
                  /* take a random draw from the migration probabilities */ 
                  /* to determine the new risk category of the exposure. */ 
 
                  NEWRATING=RANTBL(&SEED,OF PROB(*)); 
 
                  /* if the exposure migrates to risk category ’8’, it goes */ 
                  /* into default. Draw a random loss-value from the        */ 
                  /* empirical loss distribution. If the migration does     */ 
                  /* not result in default, assign the exposure to the new  */ 
                  /* risk category.                                         */ 
 
                  IF NEWRATING=8 THEN LOSS=LOSS+LIED(RANTBL(&SEED,OF LIEDPROB(*))); 
                                 ELSE NEWPORTF(NEWRATING)=NEWPORTF(NEWRATING)+1; 
               END; 
 
            END; 
 
            /* make the new portfolio the current one, so the */ 
            /* next annual migration can be performed.        */ 
 
            DO RATING=1 TO 7; 
               CURPORTF(RATING)=NEWPORTF(RATING); 
            END; 
         END; 
         OUTPUT; 
      END; 
      STOP; 
      RUN; 
 
 /* check the distribution of the number of years with high-default rate. */ 
 
 PROC FREQ DATA=&OUT; 
      TABLE HIGHDEFYEAR; 
      TITLE ’Distribution of the Number of High-Default Years’; 
      RUN; 
 
 /* describe the loss distribution and determine certain percentiles of it. */ 
 
 PROC UNIVARIATE DATA=&OUT NOPRINT; 
      VAR LOSS; 
      OUTPUT OUT=RES N=N MEAN=MEAN STD=STD MAX=MAX MIN=MIN MEDIAN=MEDIAN 
                     Q1=Q1 Q3=Q3 P90=P90 P95=P95 P99=P99; 
      TITLE F=SWISS H=1.5 
            "Distribution of Losses (Number of Years=&NYEARS., Number of 
Simulations=&NSIMS.)"; 
      run; 
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 /* print the results in a comprehensive vertical layout. */ 
 
 PROC TRANSPOSE DATA=RES OUT=TRES; 
      RUN; 
 PROC PRINT DATA=TRES LABEL NOOBS; 
      VAR _LABEL_ COL1; 
      LABEL _LABEL_=’STATISTIC’ COL1=’LOSS ($)’; 
      FORMAT COL1 10.0; 
      RUN; 
 
 /* draw the graph of the ordered losses. Set up the labels */ 
 /* for the two reference lines at 95 and 99 percentiles.   */ 
 
 DATA ANNO; 
      SET RES; 
      FUNCTION=’LABEL’;  STYLE=’DUPLEX’; SIZE=1.2; 
      XSYS=’2’; YSYS=’2’; 
      Y=P95; X=10; TEXT=’95% - ’||COMPRESS(PUT(P95,10.0)); 
      POSITION=’F’; OUTPUT; 
      Y=P99; X=50; TEXT=’99% - ’||COMPRESS(PUT(P99,10.0)); 
      POSITION=’C’; OUTPUT; 
      CALL SYMPUT(’VREF95’,PUT(P95,BEST10.)); 
      CALL SYMPUT(’VREF99’,PUT(P99,BEST10.)); 
      RUN; 
 PROC SORT DATA=&OUT OUT=TEMP; 
      BY LOSS; 
 DATA TEMP; 
      SET TEMP; 
      PERCENT=100*(_N_/&NSIMS); 
      RUN; 
 PROC GPLOT DATA=TEMP ANNOTATE=ANNO; 
      PLOT LOSS*PERCENT / VAXIS=AXIS1 HAXIS=AXIS2 VREF=&VREF95 &VREF99; 
      SYMBOL1 I=JOIN V=NONE W=1; 
      AXIS1 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Portfolio Loss ($)’) 
            VALUE=(H=1.2 F=SWISS) MINOR=(N=1) OFFSET=(0,0); 
      AXIS2 LABEL=(F=SWISS H=1.5 ’Percentile’) 
            VALUE=(H=1.2 F=SWISS) ORDER=0 TO 100 BY 10 MINOR=(N=1) OFFSET=(0,0); 
      RUN; 
      QUIT; 

%MEND; 

 

 

To simulate the migration of non-defaulting credits to and from different rating categories over time, 
we use the RANTBL function by inputting the row of the migration matrix corresponding to the rating 
category in question: 

 
NEWRATING=RANTBL(&SEED,OF PROB(*));. 
 

Naturally, array PROB will contain the migration probabilities of either normal or high-default 
regimes chosen randomly before. If NEWRATING is 8, the exposure goes into default, and we register 
a randomly chosen loss value, utilizing the RANTBL function again with the empirical distribution of 
loss-in-the-event-of-default. If NEWRATING is not 8, we “migrate” the exposure and assign it to this 
new rating. After migrating all exposures in the portfolio, we obtain the losses from the defaults and 
the new portfolio of the remaining assets with their new rating categories. We are then ready to 
perform another annual migration of the portfolio over the specified time horizon (20 years). 

Under this scheme, correlation of credit events is summarized by the common macroeconomic 
variable and by the common set of expected migration rates faced by obligors with common ratings. 
This means that all credit events are correlated, but that the correlation is higher for obligors within a 
given credit rating than for obligors with different ratings. Note also that, in spite of the fact that the 
macro regime shifts are independent and identically distributed (i.i.d.), this simulation scheme will 
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generate serially correlated default rates, since the distribution of ratings in the portfolio will be 
strongly autocorrelated. Of course, an explicit serial dependence in the macro variable could be 
introduced as an additional feature. 

Program 8.4 presents an example of using Program 8.3 (macro %EX2) for a portfolio of 40,000 
investment-grade exposures, evenly distributed with 10,000 exposures in the rating categories Aaa 
through Baa. Suppose further that the exposures are of equal size, say $1.2  The distribution of losses 
from a set of 10,000 20-year simulations using the approach described above is presented in Output 
8.2. The chart in Output 8.2 simply plots the losses from each simulation run, ordered from lowest to 
highest, which traces out the distribution of potential losses. From this distribution of losses we can 
calculate the quantiles that answer the basic VaR question by reading the Y-axis loss level 
corresponding to a proportion of the simulated observations on the X-axis. That is, at an x% 
confidence level, we can predict that portfolio losses due to credit events will be no more than $y. 
Note that, in the credit risk context, we are accumulating losses only — no gains. Therefore, the 
extreme values we are interested are in are the upper tail of the distribution. In this case, assuming 
each exposure equals $1, at the 95% confidence level we can expect losses of no more than $1,633, 
or 4.08%. At the 99% confidence level we can expect losses of no more than $1,870, or 4.68%. The 
mean loss level is 1,190, or just 2.975% on this investment-grade portfolio, as given in Output 8.2. 

 

Program 8.4  Investment-Grade Portfolio Example (Using Program 8.3 – Macro %EX2) 
 

 
DATA PORTF1(KEEP=EXPOSURE); 
     INPUT RATING $ EXPOSURE; 
     CARDS; 
     Aaa   10000   * Risk category ’Aaa’ has the lowest level of risk.; 
     Aa    10000 
     A     10000 
     Baa   10000 
     Ba    0 
     B     0 
     C     0       * Risk category ’C’ has the highest level of risk.;          
     ; 
     RUN; 
%EX2(PORTFOLIO=PORTF1,NYEARS=20,NSIMS=10000,OUT=A,SEED=123); 
 

                                                           
2 This last simplification is left to the reader to relax—for exposures of different sizes, we will need to keep track of  each exposure individually, 
i.e., maintain an array containing the size and current rating for each exposure after each iteration. 
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                Distribution of the Number of High-Default Years 
 
                              The FREQ Procedure 
 
                                                Cumulative    Cumulative 
        HIGHDEFYEAR    Frequency     Percent     Frequency      Percent 
     
                  0        2749       27.49          2749        27.49 
                  1        3653       36.53          6402        64.02 
                  2        2368       23.68          8770        87.70 
                  3         906        9.06          9676        96.76 
                  4         264        2.64          9940        99.40 
                  5          44        0.44          9984        99.84 
                  6          14        0.14          9998        99.98 
                  7           2        0.02         10000       100.00 
 
    Distribution of Losses (Number of Years=20, Number of Simulations=10000) 
 
                   STATISTIC                              LOSS ($) 
 
                   number of nonmissing values, LOSS         10000 
                   the mean, LOSS                             1190 
                   the standard deviation, LOSS                242 
                   the largest value, LOSS                    2481 
                   the 99th percentile, LOSS                  1870 
                   the 95th percentile, LOSS                  1633 
                   the 90th percentile, LOSS                  1532 
                   the upper quartile, LOSS                   1361 
                   the median, LOSS                           1156 
                   the lower quartile, LOSS                    947 
                   the smallest value, LOSS                    834 

 

Ordered Losses 
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The distribution of losses exhibits some interesting and unusual features. Obviously, the distribution 
cannot be normal since it is bounded by zero and by the total amount of the portfolio. In fact, it is 
strongly non-normal, with an extremely fat lower tail (low losses), a relatively fat upper tail, and 
step-like increases over a few specific loss ranges.  These unusual step-like features are a direct result 
of our assumption about potential macroeconomic disturbances. Specifically, losses over a 20-year 
period are dramatically affected by whether or not there are zero, one, two, or more aggregate credit 
cycles over that period. Bad draws from the binomial distribution, which governs the macro credit 
cycle, lead to multiple periods of weak aggregate credit conditions in our simulations. These, in turn, 
lead to a segmentation in the distribution of losses over the full 20-year period. In addition, the 
timing of high-default episodes has also affected the distribution, since early periods of credit 
weakness result in the lower rating grades being populated for longer periods of time — a recipe for 
higher default totals per simulation. 

To see how well our cutoff threshold matched our beliefs about the likely frequency of aggregate 
credit problems, we can examine the distribution of high-default episodes per 20-year period.  Figure 
8.3 shows the frequency distribution of high-default episodes for our 10,000 runs, utilizing the 
variable HIGHDEFYEAR in the output data set of the macro.   

 

Figure 8.3  Simulation Frequencies for High-Default Episodes (10,000 Simulations) 
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Given our cutoff of 6%, we can see by grouping the bars in Figure 8.3 that 64% of the time, a 20-
year period will see 1 or less aggregate credit shocks. A significant 12.3% of the time, we will see 3 
or more aggregate credit shocks. The applicability of these frequencies is subjective. We can use 
history, as in Figure 8.2, as our guide, but as the main goal of Monte Carlo methods is to quantify the 
distribution of potential future outcomes, we do not want to tie ourselves too closely to historical 
experiences. After all, the future can certainly produce new, different, and unexpected events, not just 
repetitions of past events. Highlighting such features and their effect on the potential distribution of 
losses is one of the reasons Monte Carlo simulations are so appealing. 

Because our initial portfolio is defined as a vector of exposures by rating, we can easily explore the 
relationship between portfolio quality and potential loss, which can be useful in developing and 
setting investment strategy. For example, suppose we extended ourselves down the credit quality 
scale in forming our initial portfolio. Market spreads would tell us how much additional yield we 
would enjoy, but how would our credit risk exposure be effected? As an illustration, we consider an 
alternative $40,000 exposure portfolio, equally weighted across all rating categories (Program 8.5).3  
The distribution of losses for 10,000 simulations for this initial portfolio is presented in Output 8.3.  
In contrast to the investment-grade portfolio, this simulation shows higher loss levels.  Our VaR 
values are 4,867, or 12.17%, and 5,082, or 12.7%, at the 95% and 99% confidence levels, 
respectively. The mean loss level is 4,456, or 11.14%, on this lower quality portfolio. 

 
Program 8.5  Uniform Portfolio Example 
 

 
DATA PORTF2(KEEP=EXPOSURE); 
     INPUT RATING $ EXPOSURE; 
     CARDS; 
     Aaa   5714 
     Aa    5714 
     A     5715 
     Baa   5715 
     Ba    5714 
     B     5714 
     C     5714 
     ; 
     RUN; 
%EX2(PORTFOLIO=PORTF2,NYEARS=20,NSIMS=10000,OUT=A,SEED=123); 
 

 

                                                           
3 Here we have 5,714 in each, with A and Baa getting one additional exposure for rounding. 
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�
               Distribution of the Number of High-Default Years 
 
                           The FREQ Procedure 
                                            Cumulative    Cumulative 
    HIGHDEFYEAR    Frequency     Percent     Frequency      Percent 
 
              0        2796       27.96          2796        27.96 
              1        3637       36.37          6433        64.33 
              2        2317       23.17          8750        87.50 
              3         906        9.06          9656        96.56 
              4         276        2.76          9932        99.32 
              5          57        0.57          9989        99.89 
              6          11        0.11         10000       100.00 
 
    Distribution of Losses (Number of Years=20, Number of Simulations=10000) 
 
                STATISTIC                              LOSS ($) 
 
                number of nonmissing values, LOSS         10000 
                the mean, LOSS                             4456 
                the standard deviation, LOSS                223 
                the largest value, LOSS                    5548 
                the 99th percentile, LOSS                  5082 
                the 95th percentile, LOSS                  4867 
                the 90th percentile, LOSS                  4764 
                the upper quartile, LOSS                   4607 
                the median, LOSS                           4427 
                the lower quartile, LOSS                   4259 

       the smallest value, LOSS                   4077 

�

Ordered Losses 
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Note that the hump-shaped increases in losses due to discrete increases in the number of “bad” credit 
episodes are less pronounced for the lower quality portfolio. This reflects the fact that lower-rated 
credits are relatively more likely to default in good times than are investment-grade credits. This is 
typical of the type of intuitive fact that is extremely difficult to quantify analytically, but which can 
be evaluated and quantified quite easily using Monte Carlo simulation. 

 

���������������������������������������������� �����������

Our previous example uses a Monte Carlo approach to evaluate the risk associated with the change in 
the market value of a portfolio due to changes in market conditions, i.e., price fluctuations.  In a 
market risk VaR application, we seek to be able to find the value x that satisfies the statement: for a 
given confidence level C, portfolio losses over a specific time horizon are likely to be no greater than 
x.  For a diversified portfolio, i.e, a portfolio that consists of different types of assets, we need to 
generate estimates of future losses that are consistent with the joint distribution of returns for all 
relevant asset classes.  Once we have established a mechanism for generating these “realistic” loss 
estimates, we can use the Monte Carlo approach to trace out the distribution of potential future losses 
on the portfolio and obtain our VaR result.   

Market risk VaR calculations are typically directed toward measuring the potential losses from price 
movements over the very short term—often a single day. This type of high-frequency analysis 
creates some computational complexities, but also allows us to make use of a number of important 
simplifications. The calculations for market risk VaR may vary in a number of ways, but the critical 
issues relate to the two underlying dynamics associated with a portfolio of risky assets: 

 

�� the distribution of future returns for each asset or asset class in the portfolio 

�� the correlation of price movements across assets or asset classes. 

  
To estimate the distribution of future returns for a portfolio of assets, we have two choices. One 
approach is to model each security’s movement independently, given a complete set of volatilities 
and correlations for each asset and asset pair. That is, for n assets we would need n volatilities and 
n(n-1)/2 correlations. We can use the information in the variance-covariance matrix to transform a set 
of i.i.d. innovations into a set of innovations for each security with the appropriate volatilities and 
correlations. Under most circumstances,4 we could do this by applying the Cholesky decomposition 
to the variance-covariance matrix, which is discussed in greater detail below. However, because the 
calculation of so large a variance-covariance matrix will present significant data processing and other 
computational problems, the matrix will generally need to be estimated once, and treated as a set of 
fixed parameters for each Monte Carlo simulation. This will severely limit the range of outcomes that 
such simulations can produce. 

                                                           
4 The correlation matrix must be positive definite. 
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A second approach is the so-called factor approach, in which individual asset movements are 
modeled as a combination of response movements to a set of correlated factors and to a set of 
independent idiosyncratic movements. To derive the former, the so-called systematic component of 
asset price movements, one needs to identify the factors that are relevant for the specific portfolio, 
from macroeconomic and financial data. This is not a straightforward task and will require tradeoffs 
between increased completeness and increased complexity.  The idiosyncratic components are 
assumed to be normally distributed and uncorrelated across assets.  Hence, all correlation in asset 
prices then derives from their dependence on the correlated factors, which reduces the dimension of 
the required variance-covariance matrix to the number of factors included. 

While this approach gives a simpler way to embed correlation in the simulated movements of 
multiple asset prices, it forces us to specify the relationship between changes in the factors and 
changes in each asset’s price. In most cases, the relationship is assumed to be linear, and the issue 
then becomes one of specifying the weights, or “factor loadings,” that will be used to translate factor 
movements into the systematic price movements for each specific asset. This can be done by 
regression analysis, although for equity prices one can obtain “betas” (the correlation coefficients 
between individual equities and major market indices) from published sources. A by-product of this 
analysis will be variance estimates for each asset or asset group in the portfolio under consideration.  

In our example, we will assume that factors have been identified and that the factor loadings have 
been estimated. For simplicity, we consider a model with three factors, the S&P 500 Index, the yield 
to maturity on the 90-Day Treasury Bill, and the Japanese Yen/US Dollar exchange rate. Time series 
for the daily market values for these values from 1/1/1980 through 12/31/2000 are presented in 
Figure 8.4. We can imagine a portfolio of stocks, loans, and swaps for which the systematic changes 
in value are driven primarily by these three factors. We need to convert these data into stationary 
time series, i.e., percent changes, or log differences, for trending factors, since we are modeling the 
change in the portfolio’s overall value, not the value itself.  

 

Figure 8.4   Historical Time Series of Key Factors  
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The variance of these factors and the correlation among factors are the key components that remain 
to be identified. These values can be straightforwardly calculated from a specified length of historical 
time series data, leading to one fixed set of variance and correlation parameters. While the tractability 
of  this fixed-parameter variance-covariance approach lends it a great deal of appeal, it is not clear 
that it will accomplish the job for which it has been designed: to measure the risk on the portfolio by 
characterizing the distribution of potential future returns. The assumption of fixed variance-
covariance parameters is itself heroic. Because empirical evidence suggests that variance-covariance 
relationships change over time, fixing them at average values means we will be excluding from our 
simulations whole categories of potential future outcomes for the portfolio. Obviously, if we are 
mischaracterizing the distribution of potential losses, our VaR calculations will be wrong.   
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Consider, for example, the sign of the correlation between interest rates and stock prices. Lower 
interest rates mean lower cost of capital for corporate borrowers, with positive implications for 
balance sheets and with potentially expanded opportunity sets for corporate investment. Moreover, 
lower yields on fixed income instruments lowers the opportunity cost of holding stocks, which makes 
stocks relatively more attractive investment vehicles. Thus, we would often expect to see a negative 
short-run correlation between interest rates and stock returns. However, during inflationary or 
recessionary periods, interest rate cuts can be viewed as exacerbating inflationary pressures, or as 
remedial treatments to prop up a flagging economy. Under these conditions, the contemporaneous 
correlation could well be positive. If the sign of the correlation may switch, the use of average values 
is definitely going to prevent a range of plausible scenarios from being manifested in our Monte 
Carlo procedure. 

An alternative to the fixed correlation approach that is not too computationally demanding involves 
random sampling from historical factor data, to allow for a wider range of factor co-movements in 
our simulations. Because the variance-covariance matrix is relatively small, and because our short 
time horizon suggests using a small time-window for deriving the variance-covariance structure, we 
can re-estimate it for each portfolio iteration in the simulation. By randomly selecting the starting 
point for our window, we will allow the estimated variance-covariance matrix to drift stochastically 
over its historical range. When we apply random innovations to the set of factors governed by this 
stochastic correlation scheme, we obtain a richer set of potential outcomes, centered around, but not 
restricted to their recent or historical range of co-movement. Program 8.6 presents a SAS macro 
program for this approach. 
 

Program 8.6  VaR Estimation for Portfolio Market Risk (Macro %EX3) 
 
 
/*****************************************************************************/ 
/* Macro EX3 evaluates the risk associated with the change in the market     */ 
/* value of a portfolio due to changes in market conditions.                 */ 
/*                                                                           */ 
/* Parameters                                                                */ 
/* FACTORS   a SAS file containing the historical time series of the key     */ 
/*           factors. (For example S&P 500 Index, Yield to Maturity on the   */ 
/*           90-Day Treasury Bill and US Dollar/Japanese Yen Exchange Rate.) */ 
/*           The factors must be named FACTOR1, FACTOR2,... The file can     */ 
/*           have any number of factors, but it must not contain any other   */ 
/*           variables.                                                      */ 
/* PORT      a SAS file describing the portfolio. Every observation is an    */ 
/*           asset and the variables are VAR (the variance of the security), */ 
/*           and LOAD1, LOAD2,... (the loadings of the securities along the  */ 
/*           factors given in the file defined by parameter FACTORS).        */ 
/* WINDOW    the length of the window to estimate a variance matrix of the   */ 
/*           factors. The macro will take WINDOW number of consecutive       */ 
/*           observations, starting at a randomly selected observation, from */ 
/*           the historical time series of factors to determine a variance   */ 
/*           matrix.                                                         */ 
/* NSIMS     number of simulations.                                          */ 
/* OUT       name of the output data set, which contains the loss of the     */ 
/*           portfolio (variable LOSS) for each simulation.                  */ 
/* SEED      Seed of the random number generator functions.                  */ 
/*                                                                           */ 
/* Example for creating the files of factors and portfolio and calling the   */ 
/* macro to perform a simulation:                                            */ 
/*                                                                           */ 
/* DATA FACT;                                                                */ 
/*      INPUT FACTOR1-FACTOR3;                                               */ 
/*      CARDS;                                                               */ 
/*  0.002980003   0.014606266   0.003610108                                  */ 
/* -0.000351830  -0.006259128  -0.006255865                                  */ 
/* -0.001370942   0.007348310   0.021561221                                  */ 
/*  0.001449151  -0.001042101   0.002619011                                  */ 
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/*  0.004008841   0.005633215   0.013214505                                  */ 
/* -0.002291797  -0.005394191  -0.004322111                                  */ 
/*  0.007452402  -0.010221110  -0.013022618                                  */ 
/*  0.000994247   0.008851423   0.014969136                                  */ 
/* -0.000343905   0.001044496   0.008742588                                  */ 
/*  . . .     more data lines                                                */ 
/* ;                                                                         */ 
/* RUN;                                                                      */ 
/* DATA PORT;                                                                */ 
/*      INPUT VAR LOAD1 LOAD2 LOAD3;                                         */ 
/*      CARDS;                                                               */ 
/* 0.785011716  0.352891914  0.373870389  0.273237697                        */ 
/* 0.811390100  0.294478292  0.384795108  0.320726600                        */ 
/* 0.873502876  0.118961592  0.375286443  0.505751965                        */ 
/* 0.883075376  0.628817260  0.016169149  0.355013591                        */ 
/* 0.894593499  0.221131166  0.356409292  0.422459543                        */ 
/* 0.014082599  0.135102802  0.429376615  0.435520583                        */ 
/* 0.516532135  0.293662375  0.420554950  0.285782675                        */ 
/* 0.073421956  0.616759924  0.051255603  0.331984474                        */ 
/* 0.288352860  0.093046026  0.525914520  0.381039454                        */ 
/* 0.124769632  0.315012854  0.132633282  0.552353864                        */ 
/*  . . .     more data lines                                                */ 
/* ;                                                                         */ 
/* RUN;                                                                      */ 
/* %EX3(FACTORS=FACT,PORT=PORT,WINDOW=45,NSIMS=10000,OUT=LOSSES,SEED=123)    */ 
/*                                                                           */ 
/*****************************************************************************/ 
 
%MACRO EX3(FACTORS=,PORT=,WINDOW=,NSIMS=,OUT=,SEED=); 
 
 /* Create a new file that has a randomly chosen window */ 
 /* of market factors for each simulation.              */ 
 
 DATA TEMP(DROP=START); 
      IF _N_=1 THEN DO; 
         SET &FACTORS NOBS=NPERIODS; 
         ARRAY FACTORS(*) _NUMERIC_; 
 
         /* Determine the number of factors in the model, and store it in */ 
         /* macro variable ’NFACT’. It will be utilized at other parts of */ 
         /* the macro.                                                    */ 
 
         CALL SYMPUT(’NFACT’,LEFT(PUT(DIM(FACTORS),BEST10.))); 
         CALL SYMPUT(’NFACT2’,LEFT(PUT(DIM(FACTORS)*DIM(FACTORS),BEST10.))); 
 
         /* Create as many random windows as the number of simulations. */ 
 
         DO SIM=1 TO &NSIMS; 
 
            /* Variable START is the starting observation of the window. */ 
 
            START=1+INT((NPERIODS+1-&WINDOW)*RANUNI(&SEED)); 
            DO I=START TO START+&WINDOW-1; 
               SET &FACTORS POINT=I; 
               OUTPUT; 
            END; 
         END; 
      END; 
      RUN; 
 
 /* Determine the covariance matrix for each window. */ 
 
 PROC CORR DATA=TEMP COV NOPRINT OUT=TEMP(WHERE=(_TYPE_=’COV’) DROP=_NAME_); 
      BY SIM; 
 
 /* Calculate the Cholesky decomposition of each covariance matrix, */ 
 /* and create factor innovations with the desired correlation.     */ 
 
 DATA TEMP(KEEP=FACTOR1-FACTOR&NFACT); 
      ARRAY COV(&NFACT) FACTOR1-FACTOR&NFACT; 
      ARRAY COVSQ(&NFACT,&NFACT) COVSQ1-COVSQ&NFACT2; 
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      ARRAY CHOL(&NFACT,&NFACT) CHOL1-CHOL&NFACT2; 
      ARRAY RANNUM(&NFACT) R1-R&NFACT; 
 
      /* Perform the calculation for each window separately. */ 
 
      DO SIM=1 TO &NSIMS; 
 
         /* Read the current covariance matrix and store it in array ’COVSQ’.*/ 
 
         START=&NFACT*(SIM-1); 
         DO I=1 TO &NFACT; 
            POINT=START+I; 
            SET TEMP(DROP=SIM _TYPE_) POINT=POINT; 
            DO J=1 TO &NFACT; 
               COVSQ(I,J)=COV(J); 
            END; 
         END; 
 
         /* Calculate the elements of the Cholesky matrix   */ 
         /* (lower triangle). It is stored in array ’CHOL’. */ 
 
         DO I=1 TO &NFACT; 
            DO J=1 TO &NFACT; 
               SELECT; 
                 WHEN(J>I) CHOL(I,J)=0; 
                 WHEN(J=I) DO; SUM=0; 
                               DO K=1 TO I-1; 
                                  SUM=SUM+CHOL(I,K)**2; 
                               END; 
                               CHOL(I,I)=SQRT(COVSQ(I,I)-SUM); 
                               END; 
                 OTHERWISE DO; SUM=0; 
                               DO K=1 TO J-1; 
                                  SUM=SUM+CHOL(I,K)*CHOL(J,K); 
                               END; 
                               CHOL(I,J)=(COVSQ(I,J)-SUM)/CHOL(J,J); 
                               END; 
               END; 
            END; 
         END; 
 
         /* Utilizing the Cholesky matrix, introduce random */ 
         /* factors with the desired correlation.           */ 
 
         DO I=1 TO &NFACT; 
            RANNUM(I)=RANNOR(&SEED); 
         END; 
         DO J=1 TO &NFACT; 
            SUM=0; 
            DO I=1 TO &NFACT; 
               SUM=SUM+CHOL(I,J)*RANNUM(I); 
            END; 
            COV(J)=SUM; 
         END; 
 
         /* Output the random factors, one observation for each simulation. */ 
 
         OUTPUT; 
      END; 
      STOP; 
      RUN; 
 
 /* Determine the number of securities in the portfolio file. */ 
 /* Store it in macro variable ’NSECS’.                       */ 
 
 DATA _NULL_; 
      IF 0 THEN SET &PORT NOBS=COUNT; 
      CALL SYMPUT(’NSECS’,LEFT(PUT(COUNT,8.))); 
      STOP; 
      RUN; 
 %LET PORT2=%EVAL(&NSECS*&NFACT); 
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 /* The main simulation section: Apply the random change to each security */ 
 /* of the portfolio and calculate the losses for the entire portfolio.    */ 
 
 DATA &OUT(KEEP=LOSS); 
 
      /* Array VARS stores the variances of the securities                     */ 
      /* Array ALLFACTORS stores all loads of all securities along all factors */ 
      /*                  as a two-dimension array                             */ 
      /* Array FACTORS stores the factor innovations with the desired          */ 
      /*               correlation                                             */ 
      /* Array LOADS stores the loads of one security along the factors        */ 
 
      ARRAY VARS(&NSECS) VAR1-VAR&NSECS; 
      ARRAY ALLFACTORS(&NFACT,&NSECS) F1-F&PORT2; 
      ARRAY FACTORS(&NFACT) FACTOR1-FACTOR&NFACT; 
      ARRAY LOADS(&NFACT) LOAD1-LOAD&NFACT; 
      RETAIN VAR1-VAR&NSECS F1-F&PORT2; 
 
      /* Store the loads of the securities in the portfolio. */ 
 
      SET &PORT END=EOPORT; 
      VARS(_N_)=VAR; 
      DO J=1 TO &NFACT; 
         ALLFACTORS(J,_N_)=LOADS(J); 
      END; 
 
      /* Main simulation loop. */ 
 
      IF EOPORT THEN DO; 
 
         DO SIM=1 TO &NSIMS; 
 
            /* Read the factor innovations for the current simulation. */ 
 
            SET TEMP POINT=SIM; 
            LOSS=0; 
 
            /* Go through each security in the portfolio. */ 
 
            DO SEC=1 TO &NSECS; 
 
               /* Calculate the sum of changes in the factors (variable  */ 
               /* DELTA) and the idiosyncratic variation (variable IDIO) */ 
               /* for the security in question.                          */ 
 
               IDIO=0; 
               DELTA=0; 
               DO J=1 TO &NFACT; 
                  IDIO=IDIO+ALLFACTORS(J,SEC)**2; 
                  DELTA=DELTA+VARS(SEC)*ALLFACTORS(J,SEC)*FACTORS(J); 
               END; 
               IDIO=VARS(SEC)*SQRT(1-IDIO)*RANNOR(&SEED); 
               CHANGE=DELTA+IDIO; 
 
               /* Summarize the loss (change) throughout the portfolio. */ 
 
               LOSS=LOSS+CHANGE; 
            END; 
            OUTPUT; 
         END; 
      END; 
      RUN; 
 
 /* Describe the loss distribution and determine certain percentiles of it. */ 
 
 PROC UNIVARIATE DATA=&OUT NOPRINT; 
      VAR LOSS; 
      OUTPUT OUT=RES N=N MEAN=MEAN STD=STD MAX=MAX MIN=MIN MEDIAN=MEDIAN 
                     Q1=Q1 Q3=Q3 P10=P10 P5=P5 P1=P1; 
      TITLE F=SWISS H=1.5 
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            "Distribution of Losses (Length of Window=&WINDOW., Number of 
Simulations=&NSIMS.)"; 
      RUN; 
 
 /* Print the results in a comprehensive vertical layout. */ 
 
 PROC TRANSPOSE DATA=RES OUT=TRES; 
      RUN; 
 PROC PRINT DATA=TRES LABEL NOOBS; 
      VAR _LABEL_ COL1; 
      LABEL _LABEL_=’Statistic’ COL1=’Loss ($)’; 
      FORMAT COL1 10.2; 
      RUN; 
 
 /* Draw the graph of the ordered losses. Set up the labels */ 
 /* for the two reference lines at 5 and 1 percentiles.     */ 
 
 DATA ANNO; 
      SET RES; 
      FUNCTION=’LABEL’;  STYLE=’DUPLEX’; SIZE=1.2; 
      XSYS=’2’; YSYS=’2’; 
      Y=P5; X=50; TEXT=’5% ’||COMPRESS(PUT(P5,10.0)); 
      POSITION=’C’; OUTPUT; 
      Y=P1; X=80; TEXT=’1% ’||COMPRESS(PUT(P1,10.0)); 
      POSITION=’F’; OUTPUT; 
      CALL SYMPUT(’VREF5’,PUT(P5,BEST10.)); 
      call symput(’vref1’,put(p1,best10.)); 
      run; 
 PROC SORT DATA=&OUT OUT=TEMP; 
      BY LOSS; 
 DATA TEMP; 
      SET TEMP; 
      PERCENT=100*(_N_/&NSIMS); 
      RUN; 
 PROC GPLOT DATA=TEMP ANNOTATE=ANNO; 
      PLOT LOSS*PERCENT / VAXIS=AXIS1 HAXIS=AXIS2 VREF=&VREF5 &VREF1; 
      SYMBOL1 I=JOIN V=NONE W=1; 
      AXIS1 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Portfolio loss ($)’) 
            VALUE=(H=1.2 F=SWISS) MINOR=(N=1) OFFSET=(0,0); 
      AXIS2 LABEL=(F=SWISS H=1.5 ’Percentile’) 
            VALUE=(H=1.2 F=SWISS) ORDER=0 TO 100 BY 10 MINOR=(N=1) OFFSET=(0,0); 
      RUN; 
      QUIT; 
%MEND; 
 

 
 

The first step in our simulation, then, is to calculate the variance-covariance matrix for our key 
factors, and use it to produce a set of random innovations to apply to the factors to get one simulated 
“state of the world.” After drawing a random time window w from our historical time series, we 
obtain the variance-covariance matrix Σw for the three factors over that time interval: 
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This is accomplished by creating the data set TEMP and running PROC CORR in Program 8.6  
(macro %EX3). 

 

In order to convert a set of independent normal draws into simulated factor innovations whose 
variance-covariance relationships are defined by Σw , we apply a Cholesky decomposition to Σw , to 
obtain the matrix A, where 

 

  
















=Σ=×

2

2

2

kjkkjikki

jkkjjijji

ikkijkjii

w
TAA

σρσσρσσ
ρσσσρσσ
ρσσρσσσ

. 

 

The matrix A is essentially the lower left square root of Σw.  When we multiply the matrix A by 
independent random variables with unit variance, we obtain new variables whose variance-
covariance structure is precisely Σw.  Denote the changes in the three key factors as X={Xi, Xj, Xk}. 
We combine A and a set of random, independent standard normal variables Zi, Zj, Zk, to create factor 
innovations with the desired properties as 
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The Cholesky decomposition and subsequent generation of the factor innovations are carried out in 
the second DATA step of the macro. With these factor innovations in hand, and our pre-calculated 
factor loadings for each security in the portfolio, we can simulate the changes in value for every 
security, and hence for the portfolio as a whole, using random, independent standard normal 
variables to simulate the idiosyncratic component of each security’s value change. 

Consider first an equity, Si, whose value-changes consist of only two components: a component that 
is perfectly correlated with the S&P 500 index, and an idiosyncratic component zi that has unit 
variance and is independent of other factors and other equities. Denoting the factor loading for the 
S&P 500 index as β1i, we can describe the innovation to security i as 

   iiiiii zXS 2
111 1 βσβσ −+=∆ . 

The second term contains the factor  2
11 iβ−  to adjust the overall variance of security i to its 

appropriate value. That is, by including this adjustment, we ensure that 
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   iiSE σ=∆ )( 2 . 

For a security dependent on two factors plus idiosyncratic variation, we have  

  iiiiiiiii zXXS 2
2

2
12211 1 ββσβσβσ −−++=∆ , 

etc. 

Thus, each simulated outcome involves drawing one random number for each factor innovation, and 
one random number for the idiosyncratic innovation to each individual security’s value. After having 
calculated the value changes for all of the securities in the portfolio, we simply sum them to obtain 
the simulated change in portfolio value.5 This task is performed by the third DATA step of the macro. 
Note that in the market risk case, our simulations will produce losses as well as gains. Therefore, the 
extreme values we are interested in are in the lower tail, and the so-called 95% confidence level will 
correspond to the 5% quantile of our loss distribution. 

Notice also the asymmetry of our assumption about factor variances vs. security variances. We 
treated the variance of the security as a fixed value σi, but allowed the variance-covariance matrix for 
the key factors to vary stochastically, based on the randomly selected historical window over which it 
was estimated. This was done for simplicity and in order to illustrate a less rigid approach to 
representing factor movements/co-movements. In order to apply the random window approach to 
each security, we would need historical time series for each. But the simplification in our example 
has an effect that we might wish to avoid, even at the computational expense of selecting random 
windows for hundreds, or even thousands, of individual securities. 

The problematic effect comes from the requirement that the expectation of the simulated variance 
equals the fixed parameter 

   iiSE σ=∆ )( 2 . 

This implies that the relationship between the innovations to each security and the volatility of the 
key factors will be offsetting — the variance of the security-specific innovation is scaled up when the 
factor window produces low variance factors. This is counterintuitive. We would normally expect 
volatile factors to be associated with more extreme values for losses, but our assumption ensures that 
volatile factors will be associated with less volatile idiosyncratic security price changes. Obviously, a 
security’s volatility is not fixed but is variable, with a volatility of its own. The analyst can counter 
the effect of this assumption by adding an additional scaling factor that links the volatility of the 
factors with the variance of the idiosyncratic security-specific innovations. It is left to the reader to 
consider the possibilities for establishing such a link. 

Using the formula presented above, we ran a sample of 10,000 draws on a hypothetical portfolio of 
300 securities and estimated the 95% and 99% VaR levels with the following macro call: 

 

%EX3(FACTORS=FACT,PORT=PORT,WINDOW=45,NSIMS=10000,OUT=A,SEED=123); 
 

                                                           
5 As with Example 2, we are assuming equal weighted exposures.  In general, security value changes need to be multiplied by portfolio 
concentration weights to obtain the change in portfolio value. 
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In our example, we included three types of securities, related in three different ways. One hundred 
securities were dependent on one factor only, one hundred depended on two factors, and one hundred 
depended on all three factors. The time window over which we estimated the factors’ variance-
covariance matrix was fixed at 45 days. Output 8.4 presents the distribution of losses from the 10,000 
draws and shows the 95% and 99% VaR levels. Again, since the term “losses” is being used to describe 
market value changes, which may be negative or positive, we focus on the lower tail of the distribution, 
i.e., the 1% and 5% quantiles. From these simulations, we can say with 95% confidence that the portfolio 
is unlikely to lose more than 11.4% of its value, and can say with 99% confidence that it will lose no 
more than 16.33%.  

 
Output 8.4 
Ordered 
Losses From 
10,000 
Simulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution of Losses (Length of Window=45, Number of Simulations=10000) 

 

Statistic                              Loss ($) 

 

number of nonmissing values, loss      10000.00 

the mean, loss                             0.16 

the standard deviation, loss               7.11 

the largest value, loss                   27.08 

the upper quartile, loss                   4.98 

the median, loss                           0.15 

the lower quartile, loss                  -4.72 

the 10th percentile, loss                 -8.86 

the 5th percentile, loss                 -11.40 

the 1st percentile, loss                 -16.33 

the smallest value, loss                 -25.97 
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As is evident from Output 8.4, the simulated loss distribution is smooth, symmetric around zero, and 
approximately normal. A qq-plot comparing quantiles of the loss distribution with quantiles of the 
standard normal distribution is presented in Figure 8.5 and confirms the approximate normality of the 
simulated losses. This is not surprising, given that portfolio losses are linear functions of standard 
normal variables. However, the assumptions made in our example were extremely simple. Many 
relaxations or extensions of our example can be envisioned which could cause the loss distribution to 
deviate from normality. Because the complexities of numerical evaluation of the loss distribution are 
going to grow with model complexity, we would expect that evaluating these richer, more complex 
systems analytically, or numerically, will be infeasible. Hence, we will need to resort to Monte Carlo 
methods to evaluate the likely behavior, under extreme conditions, of portfolios with complex 
dynamics. 

While our simple example has given us a way to approximate some of the key dynamics of market 
value changes, the simplicity of our assumptions is manifested in the regularity of the simulated 
outputs. It remains a challenge to VaR practitioners how best to embed irregularities such as price 
jumps and other non-normal behavior in VaR models without increasing the dependency of the 
results on a growing set of parameters that may have been poorly estimated. More generally, we 
would like to draw as much relevant information from history as we can, without becoming so tied to 
history that our simulations fail to produce a full description of possible future outcomes. 

 
 

Figure 8.5   QQ-Plot Testing the Normality of the Loss Distribution 
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Monte Carlo techniques are particularly useful for characterizing the distribution of potential 
outcomes for a system whose properties make analytic or numeric solutions impractical. Such 
situations often arise in financial applications in which the distribution of interest is an aggregation of 
outcomes that may be correlated, that are characterized by empirical distributions with no functional 
representation, or both. They also arise in options pricing contexts, where the option value is a 
function of the distribution of future values of the underlying security. 

We have presented three examples of the use of Monte Carlo techniques to solve problems that arise 
in finance. We chose problems in which correlated stochastic components with, in some cases, non-
standard distributions, combined to generate an outcome. Our task was to trace out the probability 
distribution of future potential outcomes, and to locate various cutoff points defined in probabilistic 
terms. The Monte Carlo solutions involved setting up a model that characterized the stochastic 
components of the system, and specified their interrelationships. We showed how the SAS System 
provides us with convenient ways to characterize the stochastic components of the models we 
developed. We also described ways to apply random innovations drawn from known distributions to 
those stochastic components in order to simulate the response of the system overall.  Repeated draws 
of these simulated responses gives us the observations needed to estimate the distribution function 
and the required cutoff values. The macro solutions presented here utilize only base SAS software; 
however, they can also be programmed, sometimes in an even simpler way, using SAS/IML 
software. 

Furthermore, the SAS Solution for Risk Management (also known as Risk Dimensions) is a SAS 
software product specifically geared towards providing a robust framework for solving risk 
measurement problems such as VaR calculations. It encompasses all relevant aspects of the risk 
measurement problem, including data management, analytics, and reporting. In particular, the 
challenge alluded to in the previous section, regarding how to embed non-normal behavior in risk 
models without causing dependence on an unmanageable and unestimable number of parameters, is 
addressed by a copula approach for multivariate Monte Carlo simulation. A full treatment of the 
capabilities of the SAS Solution for Risk Management is beyond the scope of this chapter or this 
book. 

It cannot be overemphasized that the results obtained from any Monte Carlo estimation are valid only 
insofar as the model captures the critical elements of the system under study, and that for any such 
system there will be a large number of modeling approaches that could be applied.  One important 
consideration is computational efficiency, but it is far more important to ensure that the model’s 
assumptions are consistent with reality and with each other. 
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Time series methodology encompasses the collection of statistical procedures designed to empower 
quantitative researchers to handle issues particularly germane to temporal data. These statistical 
procedures are based upon assumptions that, theoretically, must be met so that inferences are 
accurate. Unfortunately, observations and measurements collected in the field do not always conform 
to the requirements, or the assumptions, of the statistics we intend to use. It is at this point that Monte 
Carlo research finds its place in applied research. 

9.1.1 Box and Jenkins ARIMA Models 
Data successively collected on the same person(s) or phenomenon (phenomena) over time 
notoriously evidence a nuisance condition known as autocorrelation. Autocorrelation in time data 
simply refers to a condition in which temporally adjacent or proximal observations evidence higher 
relationships than distally positioned observations. To clarify this point by way of an example, it is 
first important to define a lag. 

Consider an unrealistically short series comprised of six observations taken on one person, say (20, 
22, 24, 26, 28, 30). Essentially, this series will be correlated with itself, but in a special way—a way 
that does not necessarily give a 1.0 correlation. To estimate the degree of autocorrelation present, this 
series must first be lagged to some degree. With each lag, an observation is dropped, so the number 
of paired observations drops by one for each correlation between the original series and each series 
lagged to some order. 
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 Observations First lag Second lag 
1 20 22 24 
2 22 24 26 
3 24 26 28 
4 26 28 30 
5 28 30  
6 30   

 
 

Autocorrelated observations are thought to be generated by probabilistic models called stochastic 
processes. By examining the features of the autocorrelation at hand, the stochastic process in 
question may be identified (Box & Jenkins 1976).   

Stationary times series data may be modeled for two stochastic processes: Autoregressive (AR) and 
Moving Average (MA) (Box & Jenkins 1976). Autoregressive models represent the most recent 
observation in a series as a function of previous observations within the same series. The most 
general univariate case is represented by 

yt = φ1 yt–1 + φ2 yt–2 + ... + φp yt–p + εt 

where t = 1 to T occasions, yt denotes an observed score taken on some occasion (t) deviated from the 
original level y0 of the series, ε denotes error associated with a given occasion (t), and φ (–1< φ <1) 
denotes a covariance among temporally ordered scores at some lag (e.g., t−1 = a lag of 1, t−2 = a lag 
of 2). The autocorrelation function of an AR process has the characteristic of tapering off 
exponentially following the lag of the process. The multivariate counterpart of this general case is 

yt = Φ1 yt–1 + Φ2 yt–2 + ... + Φp yt–p + εt 

where the parameters are contained within the Φ matrices. Following from the general univariate 
case, an AR model with a lag one relationship (i.e., AR1) is represented by 

yt = φ1 yt–1 + εt 

and has the following multivariate counterpart 

yt = Φ1 yt–1 + εt 

Unlike AR models, moving average (MA) models represent the most recent observation in a series as 
a function of autocorrelated errors among earlier observations. The most general univariate case is 
represented by 

yt = εt + θ1 εt–1 + θ2 εt–2 + ... + θq εt–q 

where t = 1 to T occasions, yt denotes an observed score taken on some occasion (t) deviated from the 
original level y0 of the series, ε denotes error associated with a given occasion (t), and θ (–1< θ <1) 
denotes a covariance among errors at some lag (e.g., t−1 = a lag of 1, t−2 = a lag of 2). By extension, 
the multivariate form of this model is  

yt = εt + θ1 εt–1 + θ2 εt–2 + ... + θq εt–q 

where the parameters are contained within the θ matrices. Following from the general univariate 
case, an MA model with a lag one relationship (i.e., MA1) is represented by 

yt = εt + θ1 εt–1 
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with the multivariate counterpart being 

yt = εt + θ1 εt–1 

An MA1 model would have the error for the first occasion correlate with the second occasion error, 
and would have the second occasion error correlate with the third occasion error. However, the first 
occasion error would not be correlated with the third occasion error. This is possible when a unique 
component is introduced on each occasion—a component that covaries with a subsequent error, but 
is independent of the previous error. Each unique component, jointly with the previous error, 
codetermines the following error in the series. The net effect of an MA1 process is that the 
autocorrelation function cuts off immediately after lag 1. Put simply, all error covariances beyond the 
first lag will be zero. Only the errors on temporally adjacent occasions possess a non-zero covariance 
and constitute the MA1 lag. 

When both AR and MA processes are present in the same data, ARMA models may best represent 
the variation in the data. The univariate form of the most general case of the ARMA model is 

yt = φ1 yt–1 + φ2 yt–2 + ... + φp yt–p + θ1 εt–1 + θ2 εt–2 + ... + θq εt–q + εt, 

and the multivariate form is 

yt = Φ1 yt–1 + Φ 2 yt–2 + ... + Φ p yt–p + θ1 εt–1 + θ2 εt–2 + ... + θq εt–q + εt, 

The ARMA model with a lag one relationship for both its AR and MA processes is represented by 

yt = φ1 yt–1 + εt + θ1 εt–1 

and its multivariate form is 

yt = Φ1 yt–1 +  εt + θ1 εt–1 

If growth or a trend is expected in the observed time series (i.e., the data is nonstationary), an ARMA 
model is tested against the data only after a differencing procedure is applied to the data to remove 
the trend. Thus, an ARMA model is applied to residualized data. When an ARMA model is applied 
to differenced data, the model is properly called an autoregressive integrated moving-average 
(ARIMA) model. In other words, ARMA and ARIMA models differ only in that the latter are 
applied to residualized data originally possessing a trend. Most often a trend is removed from the 
data through a differencing procedure. The differencing procedure involves systematically obtaining 
the numerical difference between paired values of different temporal occasions. First differences are 
calculated by subtracting temporally earlier values from later adjacent values. Using the 
unrealistically short series of six observations [20, 22, 21, 26, 30, 28], the initial value obtained for 
the first difference is 2 (or 22-20); the fifth value, -2 (or 28-30).  

 

 Observations First Difference Second Difference 
1 20   
2 22   2  
3 21 - 1 - 3 
4 26   5   6 
5 30   4 -1 
6 28 - 2 - 6 
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Note that an observation is lost as a result of this manner of de-trending. The impact of this loss, of 
course, is far less severe for series with a more realistic number of observations (e.g., 50 or more; see 
Box & Jenkins 1976). If the trend is not removed by obtaining first differences, second differences 
may be obtained to further stabilize the series. Higher order differences are possible so long as the 
series is large enough to withstand the loss of an observation for each difference. Several of the 
SAS/ETS procedures include an option that automatically differences a series to whatever extent is 
necessary when a trend is present. Statistical routines are automatically invoked by these procedures 
to test whether a given series is still nonstationary. Differencing ends when a stationary solution has 
been attained. 

 

9.1.2 Akaike’s State Space Models for Multivariate Times  
          Series 
When multiple series of observations are collected over time, the researcher becomes concerned not 
just with modeling the individual series, but also with the cross-lagged relationships that may occur 
between the series and/or the weighted aggregate of the multiple series. Several approaches for 
modeling multivariate time series exist. A very common approach involves using state space 
modeling, an approach Akaike (1976) advocated and introduced clearly. Representing a multivariate 
time series in what is known as a state vector, the state space modeling approach invokes canonical 
analysis in the analysis of the data (Moryson 1998).  

State space procedures identify the multivariate times series models that best fit the data according to 
the value of an Akaike information criterion (AIC), with smaller AIC values signaling the better 
fitting models. The SAS/ETS STATESPACE procedure (PROC STATESPACE) can report the AIC 
values for each lag considered so that the researcher may rank differently lagged models according to 
their degree of fit. By default, PROC STATESPACE eliminates variables not sufficiently 
contributive to the model, according to their degree of statistical significance. An important feature 
of PROC STATESPACE to note is its ability to treat data requiring differencing. 

 

9.1.3 Modeling Multiple Regression Data with Serially  
          Correlated Disturbances  
Harvey (1981) defines dynamic regression models as regression models designed to accommodate 
criterion variables in which an autoregressive process is present. They are so called because the 
models handle situations in which the relationships between the variables under investigation are 
non-contemporaneous. In other words, the observations of the criterion variable may have been 
collected over time. Of course, all standard time series statistical procedures assume that the 
observations are equidistant from one another in time.  For example, data for the dependent variable 
may be collected daily, once a week on Saturdays, every three days, every four months, etc. Harvey 
(1981) stresses that maximum likelihood estimation, as opposed to ordinary least squares, must be 
used when a lagged dependent variable is introduced into the model. Indeed, the SAS/ETS 
AUTOREG procedure (PROC AUTOREG) uses maximum likelihood estimation for its solutions. 
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SAS/ETS software, a component of the SAS System, provides SAS procedures for econometric 
analysis, time series analysis, forecasting time series, systems modeling and simulation, seasonal 
adjustment, financial analysis and reporting, access to economic and financial databases, and time 
series data management. 

SAS/ETS Software: Applications Guide 1 discusses features of SAS/ETS software for time series 
modeling and forecasting, financial reporting, and loan analysis. The second volume, SAS/ETS 
Software: Applications Guide 2, discusses features of SAS/ETS software for econometric modeling 
and simulation. Table 9.1 provides an overview of the SAS/ETS procedures that are available. 

 

Table 9.1  Overview of SAS/ETS Procedures 
 

PROCEDURE 
 

DESCRIPTION 

PROC ARIMA  
 

ARIMA (Box-Jenkins) and ARIMAX (Box-Tiao) modeling and 
forecasting 

PROC AUTOREG  
 

regression analysis with autocorrelated errors and ARCH and 
GARCH modeling 

PROC CITIBASE 
 

access to DRI/McGraw-Hill Basic Economic database files 

PROC COMPUTAB  
 

spreadsheet calculations and financial report generation 

PROC DATASOURCE  
 

access to financial and economic databases 

PROC EXPAND   
 

time series interpolation and frequency conversion, and 
transformation of time series 

PROC FORECAST   
 

automatic forecasting 

PROC LOAN   
 

loan analysis and comparison 

PROC MODEL   
 

nonlinear simultaneous equations regression and nonlinear systems 
modeling and simulation 

PROC MORTGAGE 
 

fixed-rate mortgage amortization tables 

PROC PDLREG   
 

polynomial distributed lag regression (Almon lags) 

PROC SIMLIN   
 

linear systems simulation 

PROC SPECTRA   
 

spectral and cross-spectral analysis 

PROC STATESPACE   
 

state space modeling and automated forecasting of multivariate time 
series 

PROC SYSLIN   
 

linear simultaneous equations models 

PROC TSCSREG   
 

time series cross-sectional regression analysis 

PROC X11  seasonal adjustment (Census X-11 and X-11-ARIMA) 
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Recall that the lag one autoregressive (AR1) process may be modeled by 

     yt = φ1 yt–1 + εt                                      (9.1) 

When generating a univariate time series to have an AR1 process, the generating equation will bear a 
similar form. The SAS RANNOR function is used to generate a random normal deviate (scaled to 
have a mean of zero and a standard deviation of one) for each term in the equation (yt–1 , εt). Because 
the expected standard deviation of the RANNOR function is 1.0, the random variable component 
may be modified with whatever autoregressive coefficient parameter is desired.   

Consider the case of generating a 50-observation series with an AR1 process in which the squared 
parameter value is .50. Equation (9.1) indicates that the most recent observation in the series (yt) is 
determined by the previous observation (yt–1) plus some amount of error (εt). The degree of 
relationship between temporally adjacent observations is denoted by φ1. By definition,  

y1 = ε1 

y2 = φ1 y1 + ε2 

y3 = φ1 y2 + ε3 

Because y1 = ε1, begin by specifying 

 

SERIES (1) = RANNOR(-1); 
 

The remainder of the series is generated as 

 

do j = 2 to 50; 
SERIES (j) = SQRT(.50) *SERIES(j-1) + SQRT(.50)*RANNOR(-1); 
end; 

 

Notice that the squared coefficients of both terms sum to 1.0. Because the expected SERIES(2) 
observation is constrained to 1.0, the expected value for SQRT(.50) *SERIES(j-1) when defining the 
SERIES(3) observation will be .50. Moreover, the SERIES(3) observation is thereby constrained to 
an expected value of 1.0. 

These commands are now placed within the context of a SAS program. In the following program, 
PROC ARIMA is used to estimate the value of the generated AR process. 
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Program 9.1    Generating AR1 Data for PROC ARIMA 
 

 
/************************************************************************************/ 
/* This program generates a series of 50 observations with an AR1 process.  The */ 
/* expected AR1 value will be .8367, the square of which is .70.  The error */ 
/* variance component is made to account for 30% of each total observation variance */ 
/*(with the exception of the most recent observation in the series). */ 
/* */ 
/************************************************************************************/ 
 
DATA AR; 
      ARRAY OBS OBS1-OBS50;   *** Room is made for 50 observations; 
 
  OBS (1) = RANNOR (-1);   *** The most recent observation in the series; 
    DO J = 2 TO 50; 
        OBS (J) = SQRT(.70) * OBS (J-1) + SQRT(.30) * RANNOR(-1); 
    END; OUTPUT; 
         KEEP OBS1-OBS50;  
  PROC TRANSPOSE OUT=AR1;   *** The series is transposed into a column for PROC ARIMA; 
 
DATA AR1; SET AR1; 
 
PROC ARIMA DATA = AR1; IDENTIFY VAR=COL1 NLAG=1;  *** The AR1 lag value is estimated; 
           ESTIMATE P = 1; 
RUN; 
 

 

An adaptation of this program now may be incorporated into the following macro so that the results 
of 200 replications could be accumulated. This program was written to consider only six different 
research situations, though in a true Monte Carlo study many more situations would most likely be 
considered, depending upon the number of theoretically relevant conditions.   

 

Program 9.2    PROC ARIMA Macro Example for a Monte Carlo Study 
 

 
/************************************************************************************/ 
/* Macro AR1 generates a lag one autoregressive process 200 times for each of six */ 
/* research conditions.  In a true Monte Carlo study more than six conditions */ 
/* ordinarily will be planned.  For each additional AR1 process desired, add */ 
/* another AR1 statement with the parameters of interest. If so many AR1 statements */ 
/* are added that the program lacks sufficient memory to run, the research plan may */ 
/* be accomplished with more than one run, each run responsible for some set of */ 
/* conditions. */ 
/* */ 
/* Parameters: 
/* N The number of observations in the series. */ 
/* ARLAG The squared value of the lag relationship desired. */ 
/* VARIANCE The squared value of the error variance desired. */ 
/* SCENARI The designated number id of a given condition. */ 
/* */ 
/************************************************************************************/ 
 
OPTIONS LINESIZE=100 NOSOURCE NOSOURCE2 NONOTES; *** Log file will report errors only; 
 
LIBNAME AUTOREG ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’; 
 
PROC FORMAT;VALUE SCENE *** Labels six conditions; 
             1 = ’ARLAG**2 = .40, N = 100’ 
             2 = ’ARLAG**2 = .60, N = 100’ 
             3 = ’ARLAG**2 = .80, N = 100’ 
             4 = ’ARLAG**2 = .40, N = 500’ 
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             5 = ’ARLAG**2 = .60, N = 500’ 
             6 = ’ARLAG**2 = .80, N = 500’; 
 
%MACRO AR1(N,ARLAG,VARIANCE,SCENARI); *** Macro begins; 
  %DO J=1 %TO 200; *** 200 replications; 
 
    DATA SEM&J; 
      ARRAY SERIE SERIE1-SERIE&N; 
 
  SERIE(1)=RANNOR(-1); *** Generates AR1 data; 
    DO J=2 TO &N; 
        SERIE(J)= SQRT(&ARLAG)*SERIE(J-1) + SQRT(&VARIANCE)*RANNOR(-1); 
 
END;OUTPUT; 
 *** Transposes series to a column; 
       KEEP SERIE1-SERIE&N; PROC TRANSPOSE OUT=D2; 
 
DATA D2;SET D2; 
 
PROC ARIMA DATA=D2;IDENTIFY VAR=COL1 NLAG=1 NOPRINT; *** Output is suppressed; 
                   ESTIMATE P=1 OUTSTAT=ARIMA1 OUTMODEL=ARIMA2 NOPRINT MAXIT=5000; 
 *** Select statistics are outputted; 
DATA ARIMA1;SET ARIMA1;KEEP _VALUE_ _STAT_;IF 1<=_N_<= 2; 
            PROC TRANSPOSE OUT=ARIMA1; 
DATA ARIMA1;SET ARIMA1; AIC=COL1; SBC=COL2;OUTPUT; 
            KEEP AIC SBC; 
DATA ARIMA2;SET ARIMA2;IF _N_= 6;ARLAG=_VALUE_;ARLAGSTD=_STD_; 
            TTEST=ARLAG/ARLAGSTD;OUTPUT;KEEP ARLAG TTEST; 
DATA COMBINE;MERGE ARIMA1 ARIMA2;SCENARIO=&SCENARI;OUTPUT;  

 *** OUTMODEL and OUTSTAT results are merged; 
 
   PROC APPEND BASE=AUTOREG.RESULT1 (CNTLLEV=MEMBER); *** Results compiled in library; 
 
 %END; 
%MEND COMPUTE;  *** End of Macro; 
 
%AR1 (100,.40,.60,1); *** Each AR1 presents one research situation; 
%AR1 (100,.60,.40,2); 
%AR1 (100,.80,.20,3); 
%AR1 (500,.40,.60,4); 
%AR1 (500,.60,.40,5); 
%AR1 (500,.80,.20,6); 
 
FORMAT SCENARIO SCENE.; 
 
PROC SORT;BY SCENARIO; 
PROC SUMMARY PRINT VARDEF=N MAXDEC=2 FW=8;CLASS SCENARIO;  *** Summarizes Results; 
             VAR AIC SBC ARLAG TTEST; 
RUN; 
 

 
 

PROC SUMMARY presents the overall findings which are shown in Output 9.2. Of course, a full 
Monte Carlo study was not intended for this example, but a couple of findings nonetheless may be 
drawn from these results. Given that scenarios 1-3 were generated to have 100 observations, and 
scenarios 4-6 were generated to have 500 observations, it can be seen that the true AR1 lag value is 
overall modestly underestimated when N = 100. Note that the squared AR1 parameter values were 
.40, .60, and.80. The expected AR1 parameter values were therefore .6325, .7746, and .8944. The 
expected AR1 lag values for scenarios 4-6 were accurately estimated. Observe also that the 
magnitudes of the AIC and the SBC were much higher for the larger sample size (N = 500). 
Furthermore, their magnitudes were, overall, greater when the AR1 lag parameters were lower in 
value. 
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Output 9.2   Summary of 200 PROC ARIMA Results (Program 9.2) 
 
 

The SUMMARY Procedure 
 

scenario     Obs    Variable       N        Mean     Std Dev     Minimum     Maximum 
------------------------------------------------------------------------------------ 
       1     200    AIC          200      234.13       14.07      200.72      268.38 
                    SBC          200      239.34       14.07      205.93      273.59 
                    ARlag        200        0.61        0.08        0.34        0.82 
                    ttest        200        7.76        1.56        3.59       13.91 
 
       2     200    AIC          200      194.09       13.58      160.19      227.27 
                    SBC          200      199.30       13.58      165.40      232.48 
                    ARlag        200        0.76        0.08        0.48        0.99 
                    ttest        200       12.20        5.06        5.45       53.94 
 
       3     200    AIC          200      124.06       14.28       83.62      156.56 
                    SBC          200      129.27       14.28       88.83      161.77 
                    ARlag        200        0.88        0.07        0.63        1.00 
                    ttest        200       22.08       12.16        8.01       82.33 
 
       4     200    AIC          200     1160.56       30.92     1071.40     1245.79 
                    SBC          200     1168.99       30.92     1079.83     1254.22 
                    ARlag        200        0.63        0.03        0.55        0.72 
                    ttest        200       18.04        1.49       14.70       22.98 
 
       5     200    AIC          200      961.55       32.80      860.55     1054.47 
                    SBC          200      969.98       32.80      868.98     1062.90 
                    ARlag        200        0.77        0.03        0.68        0.84 
                    ttest        200       26.96        2.54       20.70       34.76 
 
       6     200    AIC          200      619.06       30.32      520.87      696.78 
                    SBC          200      627.49       30.32      529.30      705.21 
                    ARlag        200        0.89        0.02        0.82        0.99 
                    ttest        200       44.13        9.09       31.46      128.96 
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Recall that the multivariate AR model is defined by 

yt = Φ1 yt–1 + Φ2 yt–2 + ... + Φp yt–p + εt 

where parameters for more than one series are contained within the Φ matrices. What may not be 
obvious is that a Φ matrix holds not only the AR coefficients for each process, but also cross-lag 
coefficients existing between the multiple series collected. So, both autoregressive correlations and 
cross-lagged correlations are calculated when multivariate autoregressive time series procedures are 
used. Cross-lag coefficients allow the researcher to specify causal relationships between the lags, an 
important feature of any multivariate time series model. Cross-lag coefficients represent lagged 
relationships between two or more series. Suppose that two series have 15 observations. Cross-
lagging Series A with Series B would give 14 paired observations. 
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Occasion 

 
Series A 

 
Series B 

 Paired 
Observations 

 
Series A 

Lagged 
Series B 

1 3 53  1 3 54 
2 4 54  2 4 55 
3 7 55  3 7 56 
4 8 56  4 8 57 
5 2 57  5 2 55 
6 4 55  6 4 58 
7 6 58  7 6 59 
8 14 59  8 14 56 
9 15 56  9 15 60 

10 14 60  10 14 62 
11 16 62  11 16 64 
12 17 64  12 17 65 
13 17 65  13 17 66 
14 18 66  14 18 67 
15 19 67     

 

To correlate the paired cross-lagged observations, a cross-lagged correlation is calculated. Cross-
lagged correlations, like autocorrelations, may be lagged beyond the first order. Of course, both of 
these 15-occasion series are far shorter than what is recommended in practice. Box and Jenkins 
(1976) advise that at least 50 observations be collected to ensure positive identification of the time 
series processes under study. Employing power analysis to determine the needed sample size in a 
particular scenario would be much more precise. 

The lag one multivariate autoregressive model (i.e., Multivariate AR1) appropriate for the data 
presented would be:  

yt = Φ1 yt–1 + εt 

When generating a univariate time series to have a Multivariate AR1 process, more than one 
generating equation, of course, is needed. Not only are the random variable components modified 
with whatever autoregressive coefficient parameter is desired, but cross-lagged relationships will 
participate in the sequence of occasions. Consider the case in which a researcher wants to model 
three 200-observation series holding cross-lagged relationships. Again, because the first observation 
in each series equals the first error, we begin by specifying 

 

SerieA(1)=rannor(-1); 
SerieB(1)=rannor(-11); 
SerieC(1)=rannor(-111); 
 
    do j=2 to 200; 
 
       VAR_A(j) =rannor(-1111); 
       VAR_B(j) =rannor(-11111); 
       VAR_C(j) =rannor(-111111); 
 
SerieA(j)=VAR_A(j)*SQRT(.20) + SerieA(j-1)*SQRT(.80); 
SerieB(j)=VAR_B(j)*SQRT(.20) + SerieB(j-1)*SQRT(.60) + SerieA(j-1)*(.20); 
SerieC(j)=VAR_C(j)*SQRT(.15) + SerieC(j-1)*SQRT(.45) + SerieA(j-1)*(.10) + 
          SerieB(j-1)*(.30); 
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These commands are now placed within the context of a SAS program. In the following program, 
PROC STATESPACE is used to estimate the value of the generated Multivariate AR process, with 
cross-lagged relationships. Moryson (1998) demonstrates how the state space statistical procedure 
accommodates multivariate time series data. Indeed, more than one analytical approach to analyzing 
multivariate time series exists. 

 

Program 9.3    Generating Multivariate AR1 Data for PROC STATESPACE 
 

 
/************************************************************************************/ 
/* This program generates three series (Series A, B, and C) of 200 observations     */ 
/* each with a Multivariate AR1 process with cross-lagged relationships.  The       */ 
/* autoregressive coefficients for each series are .80, .60, and .45, respectively, */ 
/* and the error variance components are .20, .20 and .15, respectively.  The cross-*/ 
/* lagged relationship between Series A and B is .20; between Series A and C, .10;  */ 
/* and between Series B and C, .30.                                                 */ 
/*                                                                                  */ 
/************************************************************************************/ 
 
DATA GENERATE; 
  ARRAY SERIEA SERIEA1-SERIEA200;          *** each creates room for 200 observations; 
  ARRAY SERIEB SERIEB1-SERIEB200; 
  ARRAY SERIEC SERIEC1-SERIEC200; 
  ARRAY VAR_A  VAR_A1 -VAR_A200; 
  ARRAY VAR_B  VAR_B1 -VAR_B200; 
  ARRAY VAR_C  VAR_C1 -VAR_C200; 
 
  SERIEA(1)=RANNOR(-1);                    *** generates the first occasion; 
  SERIEB(1)=RANNOR(-11); 
  SERIEC(1)=RANNOR(-111); 
 
       VAR_A(1) =0; 
       VAR_B(1) =0; 
       VAR_C(1) =0; 
 
    DO J=2 TO 200; 
 
       VAR_A(J) =RANNOR(-1111);  *** random normal deviates are generated; 
       VAR_B(J) =RANNOR(-11111); 
       VAR_C(J) =RANNOR(-111111); 
 
                                 *** the equations which generate the process follow; 
SERIEA(J)=VAR_A(J)*SQRT(.20) + SERIEA(J-1)*SQRT(.80); 
SERIEB(J)=VAR_B(J)*SQRT(.20) + SERIEB(J-1)*SQRT(.60) + SERIEA(J-1)*(.20); 
SERIEC(J)=VAR_C(J)*SQRT(.15) + SERIEC(J-1)*SQRT(.45) + SERIEA(J-1)*(.10) + 
          SERIEB(J-1)*(.30); 
 
    END;KEEP SERIEA1-SERIEA200 
             SERIEB1-SERIEB200 
             SERIEC1-SERIEC200;  *** retains only the series generated; 
OUTPUT; 
 

 
This program may be inserted into the following macro so that the results of 200 replications can be 
accumulated. This program was written to consider only three different research situations (far fewer 
than necessary in a true Monte Carlo study). 
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Program 9.4    Macro for Multivariate AR1 Data Using PROC STATESPACE 
 

 
/************************************************************************************/ 
/* This macro generates 200 replications and aggregates the results. As before,     */ 
/* three series (Series A, B, and C) of 200 observations each with a Multivariate   */ 
/* AR1 process with cross-lagged relationships.  The autoregressive coefficients    */ 
/* for each series are .80, .60, and .45, respectively, and the error variance      */ 
/* components are .20, .20 and .15, respectively.  The cross-lagged relationship    */ 
/* between Series A and B is .20; between Series A and C, .10; and between Series   */ 
/* B and C, .30.                                                                    */ 
/*                                                                                  */ 
/************************************************************************************/ 
 
OPTIONS LINESIZE=100 NOSOURCE NOSOURCE2 NONOTES; 
 
LIBNAME MULTITS ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’; 
 
%MACRO MULTITS (REPS,N,VARA,AR_AA, 
                       VARB,AR_BB,AR_BA, 
                       VARC,AR_CC,AR_CA,AR_CB,SCENARI); 
 
   %DO J=1 %TO &REPS;                    *** 200 replications are undertaken; 
 
DATA GENERATE&J; 
  ARRAY SERIEA SERIEA1-SERIEA&N;         *** creates space for the observations; 
  ARRAY SERIEB SERIEB1-SERIEB&N; 
  ARRAY SERIEC SERIEC1-SERIEC&N; 
  ARRAY VAR_A  VAR_A1 -VAR_A&N ; 
  ARRAY VAR_B  VAR_B1 -VAR_B&N ; 
  ARRAY VAR_C  VAR_C1 -VAR_C&N ; 
 
  SERIEA(1)=RANNOR(-1); 
  SERIEB(1)=RANNOR(-11); 
  SERIEC(1)=RANNOR(-111); 
 
       VAR_A(1) =0; 
       VAR_B(1) =0; 
       VAR_C(1) =0; 
 
    DO J=2 TO &N; 
 
       VAR_A(J) =RANNOR(-1111); 
       VAR_B(J) =RANNOR(-11111); 
       VAR_C(J) =RANNOR(-111111); 
 
*** generates the multivariate processes with cross-lagged relationships; 
 
SERIEA(J)=VAR_A(J)*SQRT(&VARA) + SERIEA(J-1)*SQRT(&AR_AA); 
SERIEB(J)=VAR_B(J)*SQRT(&VARB) + SERIEB(J-1)*SQRT(&AR_BB) + SERIEA(J-1)*(&AR_BA); 
SERIEC(J)=VAR_C(J)*SQRT(&VARC) + SERIEC(J-1)*SQRT(&AR_CC) + SERIEA(J-1)*(&AR_CA) + 
              SERIEB(J-1)*(&AR_CB); 
 
    END; KEEP SERIEA1-SERIEA&N 
             SERIEB1-SERIEB&N 
             SERIEC1-SERIEC&N; 
OUTPUT; 
 
                                   *** transposes series a to prepare it for analysis; 
DATA GENERAT1;SET GENERATE&J;   
   KEEP SERIEA1-SERIEA&N;PROC TRANSPOSE OUT=GENERAT1; 
   DATA GENERAT1;SET GENERAT1;ID=_N_;SERIESA=COL1;OUTPUT;DROP COL1; 
 
                                   *** transposes series b to prepare it for analysis; 
DATA GENERAT2;SET GENERATE&J;  
   KEEP SERIEB1-SERIEB&N;PROC TRANSPOSE OUT=GENERAT2; 
   DATA GENERAT2;SET GENERAT2;ID=_N_;SERIESB=COL1;OUTPUT;DROP COL1; 
 
                                   *** transposes series c to prepare it for analysis; 
DATA GENERAT3;SET GENERATE&J; 
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   KEEP SERIEC1-SERIEC&N;PROC TRANSPOSE OUT=GENERAT3; 
   DATA GENERAT3;SET GENERAT3;ID=_N_;SERIESC=COL1;OUTPUT;DROP COL1; 
 
                                   *** merges the three series by observation; 
 
DATA GENERATE&J;MERGE GENERAT1 GENERAT2 GENERAT3;BY ID; 
             KEEP ID SERIESA SERIESB SERIESC ; 
 
                                   *** fits the multivariate model to the series data; 
 
PROC STATESPACE INTERVAL=DAY MAXIT=200 ARMAX=1 LAGMAX=1 
     NOPRINT    OUTMODEL=ARCOEFFS; 
 
                *** outputs the collected statistics var seriesa seriesb seriesc; 
 
      TITLE ’MULTIVARIATE ARIMA (1,0,0) CROSSLAGGED RESULTS’; 
 
                 *** plucks parameter estimates for series a out of statespace output; 
 
DATA GENERAT1;SET ARCOEFFS;IF _N_ = 1; 
      KEEP F_1 F_2 F_3 SIG_1 SIG_2 SIG_3; 
      AR_AA=F_1**2;   AR_AB=F_2;   AR_AC=F_3; 
      RESCOVAA=SIG_1; RESCOVAB=SIG_2; RESCOVAC=SIG_3; 
      KEEP AR_AA AR_AB AR_AC RESCOVAA RESCOVAB RESCOVAC; 
      OUTPUT; 
 
                 *** plucks parameter estimates for series b out of statespace output; 
 
DATA GENERAT2;SET ARCOEFFS;IF _N_ = 3; 
      KEEP F_1 F_2 F_3 SIG_1 SIG_2 SIG_3; 
      AR_BA=F_1;   AR_BB=F_2**2;   AR_BC=F_3; 
      RESCOVBA=SIG_1; RESCOVBB=SIG_2; RESCOVBC=SIG_3; 
      KEEP AR_BA AR_BB AR_BC RESCOVBA RESCOVBB RESCOVBC; 
      OUTPUT; 
 
                 *** plucks parameter estimates for series c out of statespace output; 
 
DATA GENERAT3;SET ARCOEFFS;IF _N_ = 5; 
      KEEP F_1 F_2 F_3 SIG_1 SIG_2 SIG_3; 
      AR_CA=F_1;   AR_CB=F_2;   AR_CC=F_3**2; 
      RESCOVCA=SIG_1; RESCOVCB=SIG_2; RESCOVCC=SIG_3; 
      KEEP AR_CA AR_CB AR_CC RESCOVCA RESCOVCB RESCOVCC; 
      OUTPUT; 
 
                 *** merges the parameter estimates for each of the three series; 
 
DATA ARCOEFFS; MERGE GENERAT1 GENERAT2 GENERAT3 GENERATE&J; 
              SCENARIO=&SCENARI;OUTPUT; 
 
      KEEP AR_AA AR_AB AR_AC RESCOVAA RESCOVAB RESCOVAC 
           AR_BA AR_BB AR_BC RESCOVBA RESCOVBB RESCOVBC 
           AR_CA AR_CB AR_CC RESCOVCA RESCOVCB RESCOVCC 
           SCENARIO M_A M_B M_C VAR_A VAR_B VAR_C; 
 
  PROC DELETE DATA=GENERATE&J;   *** frees some of the memory space for SAS; 
  PROC DELETE DATA=GENERAT1; 
  PROC DELETE DATA=GENERAT2; 
  PROC DELETE DATA=GENERAT3; 
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       *** adds the parameter information to an output file for one of 200 iterations; 
 
   PROC APPEND BASE=MULTITS.RESULT (CNTLLEV=MEMBER);   
 
  %END; 
%MEND COMPUTE; 
 
*** the following macro statements feed the macro above the parameters for each  
    condition under study; 
 
%MULTITS (200, 100,  .20, .80, 
                     .20, .60, .20, 
                     .15, .45, .10, .30, 1); 
 
%MULTITS (200, 500,  .20, .80, 
                     .20, .60, .20, 
                     .15, .45, .10, .30, 2); 
 
%MULTITS (200, 1000, .20, .80, 
                     .20, .60, .20, 
                     .15, .45, .10, .30, 3); 
 
PROC SORT;BY SCENARIO; 
 
                           *** proc summary summarizes the results for each condition; 
 
PROC SUMMARY PRINT VARDEF=N MAXDEC=2 FW=8;  
        CLASS SCENARIO;  *** summarizes results; 
             VAR  AR_AA AR_AB AR_AC 
                  AR_BA AR_BB AR_BC 
                  AR_CA AR_CB AR_CC 
                  RESCOVAA RESCOVAB RESCOVAC 
                  RESCOVBA RESCOVBB RESCOVBC 
                  RESCOVCA RESCOVCB RESCOVCC; 
 
             TITLE1  ’*****  SCENARIO 1 (N=100)  *****’; 
             TITLE2  ’*****  SCENARIO 2 (N=500)  *****’; 
             TITLE3  ’*****  SCENARIO 3 (N=1000) *****’; 
 
             TITLE5  ’AR_AA=.80 AR_BB=.60 AR_CC=.45’; 
             TITLE6  ’AR_BA=.20 AR_CA=.10 AR_CB=.30’; 
             TITLE7  ’ ’; 
RUN; 
 

 
 

PROC SUMMARY presents the estimates derived from the data replications (see Output 9.4). The 
results confirm that the autoregressive coefficients, cross-lagged coefficients, and errors are very 
accurate. Often, in a Monte Carlo simulation study, the researcher is concerned with studying 
accuracy of estimates under particular conditions, perhaps conditions in which assumptions of the 
statistical procedure are violated to varying extents so that the robustness of the statistic to violations 
may be evaluated. PROC STATESPACE outputs a number of statistical estimates that may be 
subjected to study under whatever conditions specified. Any of these output options may be 
incorporated into the macro and thereby collected for each replication. 
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Output 9.4  Summary of 200 PROC STATESPACE Results (Program 9.4) 
 
***** Scenario 1 (n=100)  *****  Scenario 2 (n=500)  *****  Scenario 3 (n=1000) ***** 

The SUMMARY Procedure 
             N 
SCENARIO    Obs    Variable       N         Mean      Std Dev     Minimum     Maximum 
------------------------------------------------------------------------------------- 
    1       200      AR_AA       200        0.70        0.12        0.40        1.00 
                     AR_AB       200       -0.00        0.08       -0.26        0.23 
                     AR_AC       200       -0.02        0.07       -0.25        0.18 
                     AR_BA       200        0.21        0.07        0.04        0.39 
                     AR_BB       200        0.54        0.10        0.26        0.77 
                     AR_BC       200        0.00        0.06       -0.17        0.16 
                     AR_CA       200        0.11        0.06       -0.05        0.28 
                     AR_CB       200        0.30        0.07        0.17        0.48 
                     AR_CC       200        0.41        0.07        0.17        0.60 
                     ResCovAA    200        0.20        0.03        0.13        0.31 
                     ResCovAB    200        0.01        0.02       -0.06        0.07 
                     ResCovAC    200        0.00        0.02       -0.07        0.09 
                     ResCovBA    200        0.01        0.02       -0.06        0.07 
                     ResCovBB    200        0.21        0.03        0.12        0.32 
                     ResCovBC    200        0.01        0.02       -0.05        0.09 
                     ResCovCA    200        0.00        0.02       -0.07        0.09 
                     ResCovCB    200        0.01        0.02       -0.05        0.09 
                     ResCovCC    200        0.17        0.03        0.11        0.28 
 
    2       200      AR_AA       200        0.79        0.04        0.67        0.91 
                     AR_AB       200        0.00        0.03       -0.09        0.09 
                     AR_AC       200       -0.00        0.03       -0.08        0.07 
                     AR_BA       200        0.20        0.03        0.13        0.26 
                     AR_BB       200        0.59        0.05        0.45        0.75 
                     AR_BC       200        0.00        0.03       -0.07        0.07 
                     AR_CA       200        0.10        0.02        0.04        0.16 
                     AR_CB       200        0.30        0.03        0.21        0.37 
                     AR_CC       200        0.44        0.04        0.35        0.54 
                     ResCovAA    200        0.20        0.01        0.17        0.24 
                     ResCovAB    200        0.00        0.01       -0.02        0.03 
                     ResCovAC    200        0.00        0.01       -0.02        0.02 
                     ResCovBA    200        0.00        0.01       -0.02        0.03 
                     ResCovBB    200        0.20        0.01        0.17        0.23 
                     ResCovBC    200        0.00        0.01       -0.02        0.02 
                     ResCovCA    200        0.00        0.01       -0.02        0.02 
                     ResCovCB    200        0.00        0.01       -0.02        0.02 
                     ResCovCC    200        0.15        0.01        0.13        0.19 
 
    3       200      AR_AA       200        0.80        0.03        0.70        0.86 
                     AR_AB       200       -0.00        0.02       -0.07        0.07 
                     AR_AC       200       -0.00        0.02       -0.05        0.06 
                     AR_BA       200        0.20        0.02        0.14        0.25 
                     AR_BB       200        0.59        0.03        0.49        0.67 
                     AR_BC       200       -0.00        0.02       -0.04        0.05 
                     AR_CA       200        0.10        0.02        0.05        0.14 
                     AR_CB       200        0.30        0.02        0.24        0.37 
                     AR_CC       200        0.45        0.02        0.39        0.50 
                     ResCovAA    200        0.20        0.01        0.18        0.23 
                     ResCovAB    200        0.00        0.01       -0.02        0.02 
                     ResCovAC    200        0.00        0.01       -0.01        0.02 
                     ResCovBA    200        0.00        0.01       -0.02        0.02 
                     ResCovBB    200        0.20        0.01        0.18        0.22 
                     ResCovBC    200        0.00        0.01       -0.01        0.02 
                     ResCovCA    200        0.00        0.01       -0.01        0.02 
                     ResCovCB    200        0.00        0.01       -0.01        0.02 
                     ResCovCC    200        0.15        0.01        0.13        0.17 
 ----------------------------------------------------------------------------------- 
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Autocorrelation is a nuisance condition that, when left uncontrolled, biases the outcome of ordinary 
least squares procedures. Neter, Wasserman, and Kutner (1989) identify several problems this 
condition causes, including the inefficiency of estimated regression coefficients, and an 
underestimation of the error variances and the standard deviation of the estimated regression 
coefficients. A common approach to modeling autocorrelation is to identify and directly model the 
process present in the data as a form of control. The residuals of the analysis, purified of the process, 
may then be analyzed by the statistical procedure of choice.   

PROC AUTOREG permits the researcher to conduct a regression analysis when autocorrelated errors 
are present in the dependent variable data. The general case for a multiple regression model with a 
first order autoregressive process running through the dependent variable takes the form 

Yt = α + β1 X t1 + β2 X t2 + …+ βi X t i + φ1 εt–1 + ut 

where φ1 εt–1 + ut is the AR1 process.   

 

To understand how to generate data for PROC AUTOREG, it may be useful first to generate data for 
multiple regression. Consider Program 9.5. This program generates data comprised of one criterion 
variable and two predictor variables. Beta weights for each of the predictor variables on the criterion 
variable are aggregated for 200 replications, and the results—the distributions of both statistics—are 
summarized using PROC UNIVARIATE.   

 

Program 9.5  Macro for Multiple Regression Data 
 

 
/************************************************************************************/ 
/* This macro generates 200 replications of data comprised of two predictors and    */ 
/* one criterion variable and aggregates the results.  The squared Beta weight for  */ 
/* predictor A is.35; for predictor B, .25.  PROC UNIVARIATE is used to display the */ 
/* sampling distribution of each statistic.  Match the squared Beta weights used to */ 
/* generate the data with the estimated Beta weights.                               */ 
/*                                                                                  */ 
/************************************************************************************/ 
 
OPTIONS LINESIZE=100 NONUMBER NODATE SPOOL ERASE NOSOURCE NOSOURCE2 NONOTES; 
 
LIBNAME REG ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’; 
 
%MACRO REG (REPS,N,ERR,BETA1,BETA2); 
   %DO J=1 %TO &REPS; 
 
DATA GENERATE&J; 
 
    DO I=1 TO &N; 
 
       A=RANNOR(-2);         *** predictor a generated to have unit variance; 
       B=RANNOR(-3);         *** predictor b generated to have unit variance; 
                             *** weighted predictors a and b plus random error give y; 
       Y=RANNOR(-6)*SQRT(&ERR) + A*SQRT(&BETA1) + B*SQRT(&BETA2); 
       OUTPUT; 
    END; 
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DATA GENERATE&J;SET GENERATE&J; 
 
PROC REG NOPRINT OUTEST=GENERATE&J;   *** proc reg outputs the beta coefficients; 
  MODEL Y = A B/OUTSTB; 
 RUN; 
 
DATA GENERATE&J;SET GENERATE&J;KEEP A B A_SQ B_SQ; 
A_SQ=A**2; B_SQ=B**2;OUTPUT; 
 
DATA GENERATE&J;SET GENERATE&J;KEEP A_SQ B_SQ; 
 
   PROC APPEND BASE=REG.RESULT1 (CNTLLEV=MEMBER); 
   PROC DELETE DATA=GENERATE&J; 
 
  %END; 
%MEND REG; 
 
   *** 200 reps, n= 500, .45= squared error, .35= beta a squared, .25= beta b squared; 
 
%REG (200,500,.45,.30,.25);  
 
DATA REG;SET REG.RESULT1; 
 
PROC UNIVARIATE PLOT; VAR A_SQ B_SQ;  *** proc univariate displays the distributions; 
 
QUIT; 
 

 
Output 9.5a  Summary of 200 PROC REG  Results for the Squared A Weight (Program 9.5) 
 
 
                                The UNIVARIATE Procedure 
                                    Variable:  A_SQ 
 
                                        Moments 
 
            N                         204    Sum Weights                204 
            Mean               0.29888145    Sum Observations    60.9718165 
            Std Deviation      0.03284431    Variance            0.00107875 
            Skewness           0.24515997    Kurtosis            0.64665644 
            Uncorrected SS     18.4423311    Corrected SS        0.21898593 
            Coeff Variation    10.9890745    Std Error Mean      0.00229956 
 
              Stem Leaf                               #             Boxplot 
                 42 8                                  1                0 
                 41 
                 40 
                 39 
                 38 
                 37 6                                  1                | 
                 36 449                                3                | 
                 35 02344689                           8                | 
                 34 12223333445668                    14                | 
                 33 000345888                          9                | 
                 32 011122233335567899                18             +-----+ 
                 31 1112333455788999                  16             |     | 
                 30 0111111122333444455778899         25             |     | 
                 29 0012222333334446667889999         25             *--+--* 
                 28 001123344445556667888888888899    30             |     | 
                 27 00011333445555667                 17             +-----+ 
                 26 0444555668888                     13                | 
                 25 333455556679999                   15                | 
                 24 2346                               4                | 
                 23 17                                 2                | 
                 22 8                                  1                | 
                 21 3                                  1                | 
                 20 3                                  1                0 
                    ----+----+----+----+----+----+ 
                Multiply Stem.Leaf by 10**-2 
 

 



230    SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 
 

 

Output 9.5b  Summary of 200 PROC REG  Results for the Squared B Weight (Program 9.5) 
 
 
                             The UNIVARIATE Procedure 
                                   Variable:  B_SQ 
 
                                        Moments 
 
            N                         204    Sum Weights                204 
            Mean               0.24926106    Sum Observations    50.8492569 
            Std Deviation      0.03057254    Variance            0.00093468 
            Skewness           -0.0221854    Kurtosis            -0.0808511 
            Uncorrected SS       12.86448    Corrected SS        0.18974011 
            Coeff Variation    12.2652701    Std Error Mean      0.00214051 
 
 
                Stem Leaf                             #             Boxplot 
                  34 2                                1                0 
                  33 
                  32 0                                1                | 
                  31 4                                1                | 
                  30 45677                            5                | 
                  29 0224446778889                   13                | 
                  28 01122334589                     11                | 
                  27 001222233334455557777889        24             +-----+ 
                  26 0000222244456778888             19             |     | 
                  25 0000111233345555577777799       25             |     | 
                  24 0000111122233334445566677999    28             *--+--* 
                  23 0111222333444667777899999       25             +-----+ 
                  22 001122234455667888999           21                | 
                  21 0024566679                      10                | 
                  20 0223478                          7                | 
                  19 0334789                          7                | 
                  18 299                              3                | 
                  17 347                              3                | 
                     ----+----+----+----+----+--- 
                 Multiply Stem.Leaf by 10**-2 
 

 
 

Generating data in which the dependent variable is lagged involves using components of the 
regression program previously presented (see Program 9.5). The criterion variable is 
programmatically assembled by adding autoregressive data as the error component to the data for 
each of the predictor variables, of course both having been modified by the respective Beta weights. 
The autoregressive process is generated first; then the predictors and criterion variables are 
generated. When the criterion variable is assembled using the predictor variables, the error 
component is omitted (unlike Program 9.5). Instead, later in the program, the AR1 process data are 
added to the incomplete criterion data. Program 9.6 shows how this is accomplished.   
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Program 9.6  Macro for Regression Data with AR1 Process in the Criterion Variable 
 

 
/************************************************************************************/ 
/* THIS MACRO GENERATES 200 REPLICATIONS OF DATA COMPRISED OF TWO PREDICTORS AND    */ 
/* ONE CRITERION VARIABLE.  THE CRITERION VARIABLE HAS A LAG 1 AUTOREGRESSIVE       */ 
/* PROCESS RUNNING THROUGH IT.  THIS EXAMPLE DIRECTLY BUILDS UPON THE REGRESSION    */ 
/* PROGRAM PRESENTED IN PROGRAM 9.5.  THE SQUARED BETA WEIGHT FOR PREDICTOR A IS.35;*/ 
/* FOR PREDICTOR B, .25. THE AR1 COEFFICIENT IS EITHER .80 OR .20, DEPENDING UPON   */ 
/* WHICH OF THE SIX CONDITIONS ARE EXAMINED.                                        */ 
/*                                                                                  */ 
/************************************************************************************/ 
 
OPTIONS LINESIZE=100 NOSOURCE NOSOURCE2 NONOTES; 
 
LIBNAME AUTOREG ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’; 
 
%MACRO AUTOREG (REPS,N,RES,AR,ERR,BETA1,BETA2,SCENARI); 
   %DO J=1 %TO &REPS; 
 
DATA GENERATE&J; 
 
  ARRAY SERIEA SERIEA1-SERIEA&N; 
 
  SERIEA(1)=RANNOR(-1); 
 
    DO J=2 TO &N; 
 
       SERIEA(J)=RANNOR(-11)*SQRT(&RES) + SERIEA(J-1)*SQRT(&AR);  *** ar1 process; 
 
    END; KEEP SERIEA1-SERIEA&N;OUTPUT; 
 
DATA GENERATE&J; SET GENERATE&J; 
   PROC TRANSPOSE OUT=GENERATE&J;   *** move the data from horizontal to vertical; 
 
DATA GENERATE&J;SET GENERATE&J;ID=_N_;SERIESA=COL1;OUTPUT;DROP COL1 _NAME_; 
 
DATA GENERATE; 
 
    DO ID=1 TO &N; 
 
       A=RANNOR(-2);          *** predictor a generated to have unit variance; 
       B=RANNOR(-3);          *** predictor b generated to have unit variance; 
 
                              *** weighted predictors a and b - no error yet; 
       Y=A*SQRT(&BETA1) + B*SQRT(&BETA2); 
 
OUTPUT; 
    END; 
 
DATA GENERATE&J;MERGE GENERATE GENERATE&J;BY ID; 
 
Y = Y + SERIESA*SQRT(&ERR);OUTPUT;          *** add the ar1 process to the criterion; 
 
DATA GENERATE&J;SET GENERATE&J; 
 
PROC AUTOREG NOPRINT DATA=GENERATE&J OUTEST=GENERATE&J;  *** produces estimates; 
MODEL Y = A B / ALL NLAG=1 LAGDEP DW=1 DWPROB ; 
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DATA GENERATE&J;SET GENERATE&J;KEEP A B A_SQ B_SQ _A_1 AR1_SQ; 
A_SQ=A**2; B_SQ=B**2; AR1_SQ=_A_1**2;_A_1=ABS(_A_1); OUTPUT; *** obtain square values; 
 
DATA GENERATE&J;SET GENERATE&J;SCENARIO=&SCENARI;OUTPUT; 
     KEEP A_SQ B_SQ AR1_SQ _A_1 A B SCENARIO; 
 
   PROC APPEND BASE=AUTOREG.RESULT1 (CNTLLEV=MEMBER);      *** accumulate the results; 
   PROC DELETE DATA=GENERATE&J; 
 
  %END; 
%MEND AUTOREG; 
 
%AUTOREG (200, 50,.80,.20,.45,.30,.25,1); *** parameters for six different conditions; 
%AUTOREG (200,100,.80,.20,.45,.30,.25,2); 
%AUTOREG (200,500,.80,.20,.45,.30,.25,3); 
%AUTOREG (200, 50,.20,.80,.45,.30,.25,4); 
%AUTOREG (200,100,.20,.80,.45,.30,.25,5); 
%AUTOREG (200,500,.20,.80,.45,.30,.25,6); 
 
DATA AUTOREG;SET AUTOREG.RESULT1;         *** accessing the output file; 
 
PROC SUMMARY PRINT VARDEF=N MAXDEC=2 FW=8;   *** summarize results for six conditions; 
        CLASS SCENARIO;  *** summarizes results; 
             VAR  A_SQ B_SQ AR1_SQ _A_1 A B; 
 
                     *****  Scenario 1 (n= 50; Squared AR1 = .20)  ***** 
                     *****  Scenario 2 (n=100; Squared AR1 = .20)  ***** 
                     *****  Scenario 3 (n=500; Squared AR1 = .20)  ***** 
                     *****  Scenario 4 (n= 50; Squared AR1 = .80)  ***** 
                     *****  Scenario 5 (n=100; Squared AR1 = .80)  ***** 
                     *****  Scenario 6 (n=500; Squared AR1 = .80)  ***** 

QUIT; 

 

 

A review of the output associated with Program 9.6 (shown in Output 9.6) reveals that PROC 
AUTOREG’s ability to estimate the Beta weight parameters was very accurate for all sample sizes 
considered (50, 100, 500), though it must be noted that the squared Beta weight values were 
moderately large (.30 and .25, respectively). As would be expected, the standard errors for Beta 
weights estimated from the smaller samples were much wider than when N=500 (see Output 9.5a). 

The results for the estimated lag 1 autoregressive coefficient, on the other hand, were not as invariant 
to sample size, particularly when the autoregressive parameter was larger (.80). The estimated 
autoregressive parameter of .80 was, on average, about .11 lower than the parameter value. 
Conversely, at N=500, the estimate was very accurate. So a tentative review of the results suggests 
that larger autoregressive coefficients are much more likely to be underestimated in practice when 
the overall sample size is around 50 or lower. Identifying just how much higher sample size must be 
for accurate autoregressive estimates under these conditions would require another study that intends 
to map the estimated parameter space more thoroughly. 
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Output 9.6  Summary of 200 PROC AUTOREG  Results (Program 9.6) 
 
 
                     *****  Scenario 1 (n= 50; Squared AR1 = .20)  ***** 
                     *****  Scenario 2 (n=100; Squared AR1 = .20)  ***** 
                     *****  Scenario 3 (n=500; Squared AR1 = .20)  ***** 
                     *****  Scenario 4 (n= 50; Squared AR1 = .80)  ***** 
                     *****  Scenario 5 (n=100; Squared AR1 = .80)  ***** 
                     *****  Scenario 6 (n=500; Squared AR1 = .80)  ***** 
 
                               The SUMMARY Procedure 
 
            N 
SCENARIO   Obs  Variable                  N      Mean   Std Dev   Minimum    Maximum 
------------------------------------------------------------------------------------ 
    1      200    A_SQ                   200     0.30     0.10      0.08      0.63 
                  B_SQ                   200     0.26     0.09      0.06      0.56 
                AR1_SQ                   200     0.18     0.10      0.00      0.47 
                 _A_1                    200     0.40     0.13      0.07      0.68 
                  A                      200     0.54     0.09      0.28      0.79 
                  B                      200     0.50     0.09      0.25      0.75 
 
    2      200    A_SQ                   200     0.31     0.06      0.14      0.49 
                  B_SQ                   200     0.25     0.05      0.13      0.43 
                AR1_SQ                   200     0.19     0.08      0.03      0.44 
                 _A_1                    200     0.43     0.09      0.17      0.66 
                  A                      200     0.55     0.06      0.38      0.70 
                  B                      200     0.50     0.05      0.36      0.66 
 
    3      200    A_SQ                   200     0.30     0.03      0.23      0.37 
                  B_SQ                   200     0.25     0.03      0.19      0.34 
                AR1_SQ                   200     0.20     0.03      0.09      0.30 
                 _A_1                    200     0.44     0.04      0.29      0.54 
                  A                      200     0.55     0.02      0.48      0.61 
                  B                      200     0.50     0.03      0.44      0.58 
 
    4      200    A_SQ                   200     0.30     0.04      0.22      0.42 
                  B_SQ                   200     0.25     0.03      0.16      0.36 
                AR1_SQ                   200     0.69     0.15      0.15      0.95 
                 _A_1                    200     0.83     0.09      0.38      0.97 
                  A                      200     0.55     0.03      0.47      0.65 
                  B                      200     0.50     0.03      0.40      0.60 
 
    5       200   A_SQ                   200     0.30     0.03      0.24      0.38 
                  B_SQ                   200     0.25     0.02      0.19      0.35 
                AR1_SQ                   200     0.75     0.09      0.47      0.92 
                 _A_1                    200     0.86     0.05      0.68      0.96 
                  A                      200     0.55     0.02      0.49      0.61 
                  B                      200     0.50     0.02      0.44      0.59 
 
    6      200    A_SQ                   200     0.30     0.01      0.27      0.33 
                  B_SQ                   200     0.25     0.01      0.23      0.28 
                AR1_SQ                   200     0.79     0.03      0.70      0.87 
                 _A_1                    200     0.89     0.02      0.84      0.93 
                  A                      200     0.55     0.01      0.52      0.58 
                  B                      200     0.50     0.01      0.48      0.53 
------------------------------------------------------------------------------------ 
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One very common motive for a Monte Carlo study concerns answering the question, "To what extent 
or under what conditions is it OK to assume that the violation of a statistical assumption is, in all 
likelihood, inconsequential with respect to accurate parameter estimation?" Some Monte Carlo 
studies are designed to explore whether modest violations of a statistical assumption make a 
noteworthy difference with regard to the trust one may place in the accuracy of the statistical results. 
Although ostensibly lofty at the outset, this motive is often very practical in nature, perhaps centering 
on an applied problem.   

In applied research, data seldom behave well enough to completely satisfy statistical assumptions. 
Very often assumptions are violated to a modest degree, and without access to the population data, 
the researcher is only positioned to guess whether the violation is severe enough to make parameter 
estimation untrustworthy. The conclusions of Monte Carlo simulation studies offer very practical 
insights regarding just how pronounced a violation may be before threatening the accuracy of 
parameter estimation.   

Consider, for example, the case in which a researcher desires to use multiple linear regression to 
predict a dependent variable, the data for which was collected over time. When dependent variable 
scores are collected over time, there is a great chance that the scores will be autocorrelated. This 
possibility would concern a researcher intending to use ordinary linear regression, because this 
procedure assumes that dependent variable scores are independent. In fact, statistical procedures exist 
to forewarn the data analyst whether linear dependence in the serially collected scores is statistically 
significant.   

When dependent variable scores are autocorrelated to a statistically significant extent, the researcher 
may still ask whether this will truly undermine an interpretation of the regression results. Neter, 
Wasserman, and Kutner (1989) indicate that when dependent variable scores are autocorrelated, the 
regression coefficients are still unbiased; however, they are inefficient and no longer have the 
minimum variance property. The mean square error (MSE) may seriously misrepresent the variance 
of the error terms. Moreover, the estimated standard error of the regression coefficients may be 
inaccurate relative to the true standard deviation. This, in turn, diminishes the applicability of 
confidence intervals and tests using t and F distributions. 

Suppose a researcher is concerned about whether estimates are biased by the autocorrelation detected 
in temporal data. Suppose further that the researcher plans a simulation study in which the 
autoregressive parameter is systematically varied, while sample size and the Beta coefficients are 
held constant. The researcher would want to choose a reasonably large sample size (for this analysis, 
an N of 500 would be suitable) and reasonably large Beta coefficients (say, .30 and .25).   

To sufficiently map the parameter space, the researcher would want to vary the size of the 
autoregressive coefficient widely enough in this study to sufficiently accommodate research 
situations encountered in practice. Suppose the researcher chose the values ranging from .00 to .75, 
incrementing by .05 for a total of sixteen values. Starting with a value of .00 is very important 
because this situation specifies that no autocorrelation exists, a condition by which other results may 
be compared when judging the impact of the autoregression of the dependent variable scores. A 
value of .75 is thought to be a pronounced degree of autoregression. More than likely, autocorrelation 
this severe will make other regression results not interpretable, so no evident need exists to consider 
any higher value.   
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Using the Monte Carlo Program 9.6, the researcher would have to modify the program to calculate 
the mean square error before the correction for autocorrelation and after. The researcher would also 
want to collect the standard errors for each Beta coefficient since, it too, is directly affected by the 
violation of the assumption of independent scores. The program modified for this investigation is 
Program 9.7. 

 

Program 9.7  Monte Carlo Example of How Autocorrelation Affects Regression Results 
 

 
/************************************************************************************/ 
/* This macro generates 200 replications of data comprised of two predictors and    */ 
/* one criterion variable.  The criterion variable has a lag 1 autoregressive       */ 
/* process running through it.  This example directly builds upon the regression    */ 
/* program presented in Program 9.6.  The squared Beta weight for predictor A is.35;*/ 
/* for predictor B, .25. The AR1 coefficient ranges from .00 to .75, depending upon */ 
/* which of the sixteen conditions are examined.                                    */ 
/*                                                                                  */ 
/************************************************************************************/ 
 
OPTIONS LINESIZE=100 NOSOURCE NOSOURCE2 NONOTES; 
 
LIBNAME AUTOREG ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’; 
 
%MACRO AUTOREG (REPS,N,RES,AR,ERR,BETA1,BETA2,SCENARI); 
   %DO J=1 %TO &REPS; 
 
DATA GENERATE&J; 
 
  ARRAY SERIEA SERIEA1-SERIEA&N; 
 
  SERIEA(1)=RANNOR(-1); 
 
    DO J=2 TO &N; 
 
       SERIEA(J)=RANNOR(-11)*SQRT(&RES) + SERIEA(J-1)*SQRT(&AR);  *** ar1 process; 
 
    END; KEEP SERIEA1-SERIEA&N; OUTPUT; 
 
DATA GENERATE&J; SET GENERATE&J; 
   PROC TRANSPOSE OUT=GENERATE&J;   *** move the data from horizontal to vertical; 
 
DATA GENERATE&J; SET GENERATE&J; ID=_N_; SERIESA=COL1;OUTPUT; DROP COL1 _NAME_; 
 
DATA GENERATE; 
 
    DO ID=1 TO &N; 
 
       A=RANNOR(-2);           *** predictor a generated to have unit variance; 
       B=RANNOR(-3);           *** predictor b generated to have unit variance; 
 
                               *** weighted predictors a and b - no error yet; 
       Y=A*SQRT(&BETA1) + B*SQRT(&BETA2); 
 
OUTPUT; 
    END; 
 
DATA GENERATE&J; MERGE GENERATE GENERATE&J; BY ID; 
 
AAR=A; BAR=B; 
Y = Y + SERIESA*SQRT(&ERR); OUTPUT;        *** add the ar1 process to the criterion; 
 
DATA GENERATE&J; SET GENERATE&J; 
 
 
   *** proc reg outputs the beta coefficients; 
 



236    SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 
 

 

PROC REG DATA=GENERATE&J NOPRINT OUTEST=GENERATE ; 
  MODEL Y = A B/OUTSTB OUTSEB; 
 RUN; 
 
   *** produces estimates; 
 
PROC AUTOREG DATA=GENERATE&J NOPRINT OUTEST=GENERATE&J COVOUT; 
  MODEL Y = AAR BAR / ALL NLAG=1 LAGDEP DW=1 DWPROB; 
 
DATA GENERATEA; SET GENERATE;IF _N_=1; KEEP _RMSE_ A B MSE; 
    MSE = _RMSE_**2; OUTPUT; 
 
DATA GENERATEB; SET GENERATE; IF _N_=2; KEEP A B STERR_A STERR_B; 
    STERR_A = A; STERR_B = B; OUTPUT; 
 
DATA GENERATEB; SET GENERATEB; DROP A B; 
DATA GENERATEA1; SET GENERATE&J; IF _N_=1; KEEP AAR BAR _A_1 _MSE_ AR_MSE; 
     AR_MSE = _MSE_;OUTPUT; 
DATA GENERATEB1; SET GENERATE&J; IF _N_=3; KEEP _STDERR_ STERRAAR; 
     STERRAAR = _STDERR_; OUTPUT; 
DATA GENERATEC1; SET GENERATE&J; IF _N_=4; KEEP _STDERR_ STERRBAR; 
     STERRBAR = _STDERR_;OUTPUT; 
 
DATA GENERATE&J; 
MERGE GENERATEA1 GENERATEB1 GENERATEC1 GENERATEA GENERATEB; 
KEEP A B A_SQ B_SQ AAR BAR AAR_SQ BAR_SQ _A_1 AR1_SQ 
     MSE STERR_A STERR_B AR_MSE STERRAAR STERRBAR; 
 
A_SQ=A**2; B_SQ=B**2; AAR_SQ=AAR**2; BAR_SQ=BAR**2; AR1_SQ=_A_1**2; 
_A_1=ABS(_A_1); 
 
LABEL A_SQ     =’SQUARED BETA 1 WEIGHT WITH PROC REG’; 
LABEL B_SQ     =’SQUARED BETA 2 WEIGHT WITH PROC REG’; 
LABEL AAR_SQ   =’CORRECTED SQUARED BETA 1 WEIGHT WITH PROC AUTOREG’; 
LABEL BAR_SQ   =’CORRECTED SQUARED BETA 2 WEIGHT WITH PROC AUTOREG’; 
LABEL A        =’BETA WEIGHT 1 WITH PROC REG’; 
LABEL B        =’BETA WEIGHT 2 WITH PROC REG’; 
LABEL AAR      =’CORRECTED BETA WEIGHT 1 WITH PROC AUTOREG’; 
LABEL BAR      =’CORRECTED BETA WEIGHT 2 WITH PROC AUTOREG’; 
LABEL _A_1     =’AUTOREGRESSION WEIGHT’; 
LABEL AR1_SQ   =’SQUARED AUTOREGRESSION WEIGHT’; 
LABEL MSE      =’PROC REG MEAN SQUARE ERROR’; 
LABEL STERR_A  =’BETA 1 STANDARD ERROR’; 
LABEL STERR_B  =’BETA 2 STANDARD ERROR’; 
LABEL AR_MSE   =’PROC AUTOREG MEAN SQUARE ERROR’; 
LABEL STERRAAR =’CORRECTED BETA 1 STANDARD ERROR’; 
LABEL STERRBAR =’CORRECTED BETA 2 STANDARD ERROR’; 
 
     OUTPUT; *** obtain square values; 
 
PROC DELETE DATA=GENERATEA1; 
PROC DELETE DATA=GENERATEB1; 
PROC DELETE DATA=GENERATEC1; 
PROC DELETE DATA=GENERATEA; 
PROC DELETE DATA=GENERATEB; 
 
DATA GENERATE&J; SET GENERATE&J; SCENARIO=&SCENARI; OUTPUT; 
     KEEP A   B   STERR_A  STERR_B  MSE  A_SQ   B_SQ 
          AAR BAR STERRAAR STERRBAR AR_MSE _A_1 AAR_SQ BAR_SQ AR1_SQ SCENARIO; 
 
   PROC APPEND BASE=AUTOREG.RESULT1 (CNTLLEV=MEMBER);      *** accumulate the results; 
   PROC DELETE DATA=GENERATE&J; 
 
  %END; 
%MEND AUTOREG; 
 
 
%AUTOREG (200,500,1.0,.00,.45,.30,.25,01); *** parameters for sixteen conditions; 
%AUTOREG (200,500,.95,.05,.45,.30,.25,02); 
%AUTOREG (200,500,.90,.10,.45,.30,.25,03); 
%AUTOREG (200,500,.85,.15,.45,.30,.25,04); 
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%AUTOREG (200,500,.80,.20,.45,.30,.25,05); 
%AUTOREG (200,500,.75,.25,.45,.30,.25,06); 
%AUTOREG (200,500,.70,.30,.45,.30,.25,07); 
%AUTOREG (200,500,.65,.35,.45,.30,.25,08); 
%AUTOREG (200,500,.60,.40,.45,.30,.25,09); 
%AUTOREG (200,500,.55,.45,.45,.30,.25,10); 
%AUTOREG (200,500,.50,.50,.45,.30,.25,11); 
%AUTOREG (200,500,.45,.55,.45,.30,.25,12); 
%AUTOREG (200,500,.40,.60,.45,.30,.25,13); 
%AUTOREG (200,500,.35,.65,.45,.30,.25,14); 
%AUTOREG (200,500,.30,.70,.45,.30,.25,15); 
%AUTOREG (200,500,.25,.75,.45,.30,.25,16); 
 
 
DATA AUTOREG; SET AUTOREG.RESULT1;         *** accessing the output file; 
 
PROC SUMMARY PRINT VARDEF=N MAXDEC=3 FW=8;   *** summarize results for six conditions; 
        CLASS SCENARIO;  *** summarizes results; 
             VAR  A   B   STERR_A  STERR_B  MSE         A_SQ   B_SQ 
                  AAR BAR STERRAAR STERRBAR AR_MSE _A_1 AAR_SQ BAR_SQ AR1_SQ; 
QUIT; 
 
 
 

A review of the results displayed by the SUMMARY procedure (Output 9.7) reveals that no matter 
how large the autoregression coefficient, the estimated Beta weights accurately represented the Beta 
weight parameters used to generate the data, supporting what Neter, Wasserman and Kutner (1989) 
indicate. This becomes clearer when examining the Squared Beta weights (.30 and .25, respectively), 
also included in the summary. However, the standard errors for the regression parameters progressed 
to be nearly twice as large as those estimated by the autoregression procedure (PROC AUTOREG) as 
the autoregression coefficient increased. The results may be interpreted to suggest that so long as the 
autoregression parameter is no higher than .20, the standard errors for the Beta weight coefficients 
may be used, because in Scenario 5, AR1 = .20, and the corrected standard errors are but .025, which 
may be rounded to .03.  

The discrepancy between the MSE for the regression procedure (PROC REG) and the autoregression 
procedure (PROC AUTOREG) is perhaps a bit wider for Scenario 5: the difference between 0.359 
and 0.446. Still, the researcher may consider this discrepancy tolerable enough to yield acceptably 
accurate estimates. The validity of the logic upon which this cutoff is based is of little consequence. 
Ultimately, the researcher is responsible for deciding what cutoff is personally meaningful and 
therefore tenable given the practical problem under study.   

 
Output 9.7   Summary of Autoregression Simulation Study Results (Program 9.7) 
 
 

The SUMMARY Procedure 
 
             N 
SCENARIO    Obs   Variable   Label                                              Mean 
------------------------------------------------------------------------------------- 
       1    200   A          Beta Weight 1 with PROC REG                        0.544 
                  B          Beta Weight 2 with PROC REG                        0.503 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.451 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.297 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.254 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.544 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.503 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.030 
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Output 9.7   Summary of Autoregression Simulation Study Results (Program 9.7) (continued) 
 

                  StErrBAR   Corrected Beta 2 Standard Error                    0.030 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.451 
                  _A_1       Autoregression Weight                              0.035 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.297 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.254 
                  AR1_SQ     Squared Autoregression Weight                      0.002 
 
       2    200   A          Beta Weight 1 with PROC REG                        0.544 
                  B          Beta Weight 2 with PROC REG                        0.500 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.448 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.296 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.251 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.542 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.500 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.029 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.029 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.427 
                  _A_1       Autoregression Weight                              0.218 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.295 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.251 
                  AR1_SQ     Squared Autoregression Weight                      0.049 
 
       3    200   A          Beta Weight 1 with PROC REG                        0.550 
                  B          Beta Weight 2 with PROC REG                        0.496 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.450 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.304 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.247 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.549 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.494 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.027 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.027 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.405 
                  _A_1       Autoregression Weight                              0.316 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.302 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.245 
                  AR1_SQ     Squared Autoregression Weight                      0.102 
 
       4    200   A          Beta Weight 1 with PROC REG                        0.545 
                  B          Beta Weight 2 with PROC REG                        0.500 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.447 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.298 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.251 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.546 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.498 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.026 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.026 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.382 
                  _A_1       Autoregression Weight                              0.379 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.299 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.249 
                  AR1_SQ     Squared Autoregression Weight                      0.146 
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Output 9.7   Summary of Autoregression Simulation Study Results (Program 9.7) (continued) 
 

       5    200   A          Beta Weight 1 with PROC REG                        0.549 
                  B          Beta Weight 2 with PROC REG                        0.498 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.446 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.302 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.249 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.548 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.498 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.025 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.025 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.359 
                  _A_1       Autoregression Weight                              0.440 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.301 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.248 
                  AR1_SQ     Squared Autoregression Weight                      0.195 
 
       6    200   A          Beta Weight 1 with PROC REG                        0.551 
                  B          Beta Weight 2 with PROC REG                        0.497 
                  StErr_A    Beta 1 Standard Error                              0.033 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.451 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.309 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.251 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.551 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.497 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.023 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.023 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.339 
                  _A_1       Autoregression Weight                              0.497 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.308 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.250 
                  AR1_SQ     Squared Autoregression Weight                      0.248 
 
       7    200   A          Beta Weight 1 with PROC REG                        0.546 
                  B          Beta Weight 2 with PROC REG                        0.503 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.451 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.299 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.254 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.547 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.500 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.022 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.022 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.316 
                  _A_1       Autoregression Weight                              0.546 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.299 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.251 
                  AR1_SQ     Squared Autoregression Weight                      0.300 
 
       8    200   A          Beta Weight 1 with PROC REG                        0.544 
                  B          Beta Weight 2 with PROC REG                        0.498 
                  StErr_A    Beta 1 Standard Error                              0.030 
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Output 9.7  Summary of Autoregression Simulation Study Results (Program 9.7) (continued) 
 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.449 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.296 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.249 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.545 
 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.500 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.021 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.021 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.292 
                  _A_1       Autoregression Weight                              0.590 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.297 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.250 
                  AR1_SQ     Squared Autoregression Weight                      0.349 
 
       9    200   A          Beta Weight 1 with PROC REG                        0.549 
                  B          Beta Weight 2 with PROC REG                        0.499 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.447 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.302 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.250 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.547 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.500 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.020 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.020 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.269 
                  _A_1       Autoregression Weight                              0.629 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.300 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.251 
                  AR1_SQ     Squared Autoregression Weight                      0.397 
 
      10    200   A          Beta Weight 1 with PROC REG                        0.545 
                  B          Beta Weight 2 with PROC REG                        0.501 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.446 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.298 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.252 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.546 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.500 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.019 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.019 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.247 
                  _A_1       Autoregression Weight                              0.666 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.299 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.250 
                  AR1_SQ     Squared Autoregression Weight                      0.445 
 
      11    200   A          Beta Weight 1 with PROC REG                        0.544 
                  B          Beta Weight 2 with PROC REG                        0.501 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.449 
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Output 9.7  Summary of Autoregression Simulation Study Results (Program 9.7) (continued) 
 

 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.297 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.252 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.546 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.500 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.017 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.017 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.226 
                  _A_1       Autoregression Weight                              0.703 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.298 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.251 
                  AR1_SQ     Squared Autoregression Weight                      0.496 
 
      12    200   A          Beta Weight 1 with PROC REG                        0.547 
                  B          Beta Weight 2 with PROC REG                        0.499 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.441 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.300 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.250 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.547 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.500 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.016 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.016 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.202 
                  _A_1       Autoregression Weight                              0.734 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.299 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.250 
                  AR1_SQ     Squared Autoregression Weight                      0.540 
 
      13    200   A          Beta Weight 1 with PROC REG                        0.548 
                  B          Beta Weight 2 with PROC REG                        0.502 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.444 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.301 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.253 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.550 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.501 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.015 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.015 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.181 
                  _A_1       Autoregression Weight                              0.767 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.302 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.251 
                  AR1_SQ     Squared Autoregression Weight                      0.588 
 
      14    200   A          Beta Weight 1 with PROC REG                        0.548 
                  B          Beta Weight 2 with PROC REG                        0.499 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.442 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.301 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.250 
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Output 9.7   Summary of Autoregression Simulation Study Results (Program 9.7) (continued) 
 

 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.547 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.499 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.014 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.014 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.157 
                  _A_1       Autoregression Weight                              0.801 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.300 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.249 
                  AR1_SQ     Squared Autoregression Weight                      0.642 
 
      15    200   A          Beta Weight 1 with PROC REG                        0.543 
                  B          Beta Weight 2 with PROC REG                        0.501 
                  StErr_A    Beta 1 Standard Error                              0.030 
                  StErr_B    Beta 2 Standard Error                              0.030 
                  MSE        Proc REG Mean Square Error                         0.442 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.296 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.252 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.546 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.500 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.013 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.013 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.135 
                  _A_1       Autoregression Weight                              0.831 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.298 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.250 
                  AR1_SQ     Squared Autoregression Weight                      0.691 
 
      16    200   A          Beta Weight 1 with PROC REG                        0.547 
                  B          Beta Weight 2 with PROC REG                        0.497 
                  StErr_A    Beta 1 Standard Error                              0.029 
                  StErr_B    Beta 2 Standard Error                              0.029 
                  MSE        Proc REG Mean Square Error                         0.433 
                  A_SQ       Squared Beta 1 Weight with PROC REG                0.300 
                  B_SQ       Squared Beta 2 Weight with PROC REG                0.248 
                  AAR        Corrected Beta Weight 1 with PROC AUTOREG          0.547 
                  BAR        Corrected Beta Weight 2 with PROC AUTOREG          0.499 
                  StErrAAR   Corrected Beta 1 Standard Error                    0.011 
                  StErrBAR   Corrected Beta 2 Standard Error                    0.011 
                  AR_MSE     Proc AUTOREG Mean Square Error                     0.112 
                  _A_1       Autoregression Weight                              0.859 
                  AAR_SQ     Corrected Squared Beta 1 Weight with PROC AUTOREG  0.299 
                  BAR_SQ     Corrected Squared Beta 2 Weight with PROC AUTOREG  0.249 
                  AR1_SQ     Squared Autoregression Weight                      0.738 
-------------------------------------------------------------------------------------- 
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In this chapter, the Monte Carlo simulation of time series data was considered, using SAS/ETS 
procedures and generating functions. To demonstrate how SAS may be used to investigate theoretical 
issues concerning time series statistical procedures, attention in this chapter was focused on 
univariate and multivariate time series problems, followed by modeling time series processes in the 
context of regression. These particular time series problems were discussed because they are three of 
the more common types of procedures used in practice. A mini-simulation study was finally 
presented to give researchers a sense of just how such a study would be implemented. The prevalent 
use of time series procedures in some disciplines (e.g., economics and business) is well known, but 
the application of these procedures could very well be extended to many other disciplines in which 
they are currently not as popular. It is our hope that these examples will provide some foundation and 
guidance for researchers interested in conducting Monte Carlo studies involving time series and 
SAS/ETS procedures. 
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Index 

�

��

accumulating statistics of interest  18 
adjusted R2, computing  137 
Akaike information criterion (AIC)  216 
analyzing statistics of interest  19-21 
ANOVA (analysis of variance) 

effects of data non-normality (example)   
129-135 

testing robustness of  6 
ANOVA procedure  133 

NOPRINT option  133 
OUTSTAT option  133 

APPEND procedure  124, 159 
AR (autoregressive) models  214-215 

multivariate time series processes (example)  
221-227 

univariate time series processes (example)   
218-221 

ARIMA (autoregressive integrated moving-
average) models  215 

ARIMA procedure  217-221 
assessing model fit, SEM  146-160 

descriptive indices and design considerations  
146-147 

design of Monte Carlo simulation  148-152 
example program  152-160 

assumption violations, assessing consequences of  
5-6 

autocorrelation  213 
See also time series processes 
correlated variables with, generating (example)  

228-233 
effects on regression results (example)  234-242 

automating simulations with macros  100 
full-time monitoring  103-105 
Matching Birthdays solution (example)  101-103 

AUTOREG procedure  216, 217 
autocorrelation effects on regression results 

(example)  237-242 
generating correlated variables with 

autocorrelated errors (example)  228, 231-233 
autoregressive integrated moving-average 

(ARIMA) models  215 
 

 

�

�

autoregressive (AR) models  214-215 
multivariate time series processes (example)  

221-227 
univariate time series processes (example)  

218-221 

��

benchmarking random number generators  44 
bias in regression analysis (example)  136-142 
Birthdays problem (example)  94-97 

 macro solution to  101-103 
bond ratings, random (example)  52-54 

��

CALIS procedure  156 
METHOD= option  156 
OUTRAM= option  156 

CALL routine for RANUNI  34-37 
canonical correlation analysis  6 
CAPABILITY procedure  95-96 
car parking problem, solving (example)  105-115 
Cholesky decomposition to variance-covariance 

matrices  199, 207 
CITIBASE procedure  217 
classification error, simulating (example)  161-173 

data source and model fitting  164 
example program  165-173 
experimental design  162-164 
major issues  161-162 

COMPUTAB procedure  217 
conclusions from study results  22 
congruential generator  26-27 

See also random numbers, generating 
CORR procedure  207 
correcting sample R2 bias (example)  136-142 
correlated variables with autocorrelated errors 

(example)  228-233 
correlation, asking questions about  12-13 
correlation matrices, converting to covariance 

matrices  87-89 
correlation patterns, transforming variables into  17 
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correlations between variables  71-72 
deriving intermediate correlations  82-87 
effects of data non-normality  80-82 
normal distribution, deriving for  72-79 

CORRTEST macro  30-34 
counting simulations during execution  98-99 
covariance matrices 

converting to correlation matrices  87-89 
covariance matrix reproduction  147 
SEM example  150-151 

covariance structure analysis  7 
credit risk estimation (example)  185-199 

investment-grade portfolio  194-197 
uniform portfolio  197-199 

CROSSVALIDATE option, DISCRIM procedure  
169 

��

data generation for Monte Carlo studies  16-17,  
59-91 

converting between correlation and covariance 
matrices  87-89 

mirroring sample characteristics  90 
multivariate non-normal distribution  79-87 
multivariate normal distribution  71-79 
one variable, non-normal distribution  62-71 
one variable, normal distribution  60-62 

data non-normality, effects on Type I error rate 
(example)  129-135 

data normality, testing  6 
PDA vs. LR performance  161 

data transformation  17 
DATASOURCE procedure  217 
DATETIME function for simulation monitoring  99 
default risk estimation (example)  179-185 
descriptive model fit indices, SEM  146-147 

design of Monte Carlo simulation  148-152 
example program  152-160 

designing Monte Carlo studies  13-16 
dice, simulating (example)  2-4 
discrete distribution, generating random numbers 

from  51 
See also RANTBL function 

DISCRIM procedure  164, 169-171 
CROSSVALIDATE option  169 

discriminant analysis  6 
distribution of potential financial losses 

See VaR estimation 
drawing conclusions from study results  22 
dynamic regression models  216 
 

��

empirical distribution of t-statistic, non-normal data  
90 

empirical probability theory  2-5 
equal covariance matrices, PDA vs. LR  162 
EQUIDST macro  27-29 
estimation of credit risk (example)  185-199 

investment-grade portfolio  194-197 
uniform portfolio  197-199 

estimation of default risk (example)  179-185 
estimation of portfolio market risk (example)   

199-210 
execution of simulations, monitoring  98-99 
execution time of random number generators  44 
EXPAND procedure  217 
exploratory factor analysis  7 
Ezekiel formula  137 

��

factor approach to estimating portfolio market risk 
(example)  200 

FACTOR procedure  140 
finance-related Monte Carlo simulations  177-179, 

211 
credit risk, VaR estimation  185-199 
default risk estimation  179-185 
portfolio market risk, VaR estimation  199-210 

Fleishman’s power transformation method  66-71 
deriving coefficients for desired conditions   

69-70 
interaction with matrix decomposition procedure  

80-82 
FORECAST procedure  217 
Fortran, Monte Carlo simulations in  7 
full-time simulation monitoring  99 

macros for  103-105 
 

��

generalized lambda distribution (GLD) system   
62-66 

kurtosis, definition of  64 
generating data for Monte Carlo studies  16-17,  

59-91 
converting between correlation and covariance 

matrices  87-89 
mirroring sample characteristics  90 
multivariate non-normal distribution  79-87 
multivariate normal distribution  71-79 
one variable, non-normal distribution  62-71 
one variable, normal distribution  60-62 
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generating random numbers  25-57 
See also RANNOR function 
See also RANUNI function 
generator performance  44 
list of generators  39-41 
normal and lognormal distributions (examples)  

45-50 
randomness requirement (CORRTEST macro)  

30-34 
RANTBL function  41, 51-57, 193 
seed generation, RANUNI  34-37 
seed generation, SEEDGEN  38 
uniformity requirement (EQUIDST macro)   

27-29 
GLD (generalized lambda distribution) system   

62-66 
kurtosis, definition of  64 

GPLOT procedure, graphing Parking Problem 
(example)  109, 111 

group membership, predicting 
See classification error, simulating 

��

height, random (example)  45-46 
HLAG parameter, CORRTEST macro  30 
holding companies, default risk estimation 

(example)  179-185 

	�

IML procedure 
converting between correlation and covariance 

matrices  88-89 
deriving Fleishman coefficients  69-70 
generating three correlated normal variables 

(example)  74-76 
population covariance matrix, SEM (example)  

150-151 
incremental fit indices  147-148 
inter-variable correlations  71-72 

deriving intermediate correlations  82-87 
effects of data non-normality  80-82 
normal distribution, deriving for  72-79 

inter-variable relationship patterns, simulating  17 
intermediate correlations, deriving  82-87 
investment-grade portfolio, credit risk estimation 

(example)  194-197 
 


�

KEEP statement  159 
kurtosis 

See also non-normal distribution, sample data 
from 

definitions for  64 
deriving coefficients for desired conditions   

69-70 
 

��

LIED (loss-in-event-of-default) rates  186 
linear discriminant analysis 

See PDA for classification 
linearly transforming normally distributed data 

mirroring sample characteristics  90 
multivariate  71-79 
one variable  60-62 

LOAN procedure  217 
Log window, display limit of  122 
LOGISTIC procedure  164, 171-172 
logistic regression 

See LR for classification 
lognormal random number distribution (example) 

RANNOR function  46-50 
RANTBL function  54-57 

loss-in-event-of-default (LIED) rates  186 
LR (logistic regression) for classification  161-173 

data source and model fitting  164 
example program  165-173 
experimental design  162-164 
major issues  161-162 

 

��

MA (moving average) models  214-215 
macro language  100 
macro parameters  101 
MACRO statement  101 
macros 

CORRTEST  30-34 
EQUIDST  27-29 
RMNC  76-79, 181 
SEEDGEN  38 
SERIAL  28 
TMON  103-105 
TMONST  103-105 
variables in  101 

macros for automating simulations  100 
full-time monitoring with  103-105 
Matching Birthdays solution (example)  101-103 
Parking Problem (example)  105-115 
simulating t-test with unequal population 

variances  121-125 
Mahalanobis distance  162 
market risk estimation (example)  199-210 
Matching Birthdays problem (example)  94-97 

macro solution to  101-103 



248    Index 

 

matrix decomposition procedure 
See inter-variable correlations 

MEANS procedure, calculating Rényi's constant 
(example)  113 

METHOD= option, CALIS procedure  156 
mirroring sample characteristics  90 
misspecification, model (SEM example)  151-152 
model fit assessment, SEM  146-160 

descriptive indices and design considerations  
146-147 

design of Monte Carlo simulation  148-152 
example program  152-160 

model misspecification (SEM example)  151-152 
MODEL procedure  217 
monitoring simulations  98-99 
Monte Carlo simulations 

See also finance-related Monte Carlo 
simulations 

analyzing statistics  19-21 
autocorrelation effects on regression results 

(example)  234-242 
automating  100 
comparing R2 shrinkage formulas in regression 

analysis  136-142 
correlated variables with autocorrelated errors 

(example)  228-233 
data generation  59-91 
defined  2-4 
designing studies  13-16 
drawing conclusions  22 
effects of data non-normality on ANOVA 

(example)  129-135 
effects of unequal population variances on t-tests 

(example)  118-129 
Matching Birthdays problem, solving (example)  

101-103 
monitoring  98-99 
multivariate time series processes (example)  

221-227 
Parking Problem, solving (example)  105-115 
portability of  100 
questions for  12 
reasons for  4-7 
reasons to use SAS System for  7-8 
sample data, generating  16-17 
simulating classification error with PDA and LR 

(example)  161-173 
simulation, defined  25 
statistical techniques, implementing  17 
statistics, obtaining and accumulating  18 
steps in  94 

structural equation modeling (SEM)  146-160 
univariate time series processes (example)  218-

221 
Moody's one-year default rates  184 
Moody's speculative-grade default rate  187-188 
MORTGAGE procedure  217 
moving average (MA) models  214-215 
MPRINT option  102 
multiple regression data with serially correlated 

disturbances  216 
multiplicative congruential generator  27 
multivariate non-normal distribution, sample data 

from  79-87 
deriving intermediate correlations  82-87 
effects of non-normality on inter-variable 

correlations  80-82 
multivariate normal distribution  71-79 

sample data, IML procedure for  74-76 
sample data, RMNC macro for  76-79 

multivariate techniques, Monte Carlo studies for 
simulating classification error with PDA and LR 

(example)  161-173 
structural equation modeling (SEM)  146-160 

multivariate time series processes (example)   
221-227 

 

�

Newton-Raphson method  83-84 
non-normal distribution, effects on Type I error 

rate (example)  129-135 
non-normal distribution, sample data from 

mirroring sample characteristics  90 
multivariate  79-82 
multivariate, deriving intermediate correlations  

82-87 
one variable, Fleishman's power transformation  

66-71 
one variable, GLD system  62-66 

NOPRINT option, ANOVA procedure  133 
normal distribution, sample data from 

mirroring sample characteristics  90 
multivariate  71-79 
one variable  60-62 

NORMAL function 
See RANNOR function 

normal random number distribution (example)   
45-46 

normality of data, testing  6 
numbers, random 

See random numbers, generating 
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��

Olkin and Pratt formula  137 
one variable, generating sample data for 

mirroring sample characteristics  90 
non-normal distribution, Fleishman’s power 

transformation  66-71 
non-normal distribution, GLD system  62-66 
normal distribution  60-62 

OUTRAM= option, CALIS procedure  156 
OUTSTAT option, ANOVA procedure  133 
 

��

pairwise intermediate correlations, deriving  83-85 
parameters, macro  101 
parametric statistics  5 
Parking Problem, solving (example)  105-115 
parsimony weighted model fit indices  147 
PDA (predictive discriminant analysis) for 

classification  161-173 
data source and model fitting  164 
example program  165-173 
experimental design  162-164 
major issues  161-162 

PDLREG procedure  217 
Pearson and sample distributions 

analyzing  19-21 
obtaining and accumulating  18 

Pearson correlation coefficient distributions, 
simulating  13-16 

performance of random number generators  44 
population correlation matrix 

See inter-variable correlations 
population covariance matrix, SEM example   

150-151 
population height, random (example)  45-46 
population proportions, PDA vs. LR performance  

162 
population variances, assessing effects with 

unequal (example)  118-129 
design considerations and programming 

approaches  119-121 
SAS macro for  121-125 
SAS/IML and SAS/STAT procedures for   

125-129 
portability of simulations  100 
portfolio market risk estimation (example)   

199-210 
predictive discriminant analysis 

See PDA for classification 
PRINTTO procedure  122, 155 
probability theory, empirical  2-5 
pseudo-randomness  26 

��

quasi-randomness  26 
questions suitable for Monte Carlo simulations   

12-13 
 

��

R2 shrinkage formulas, comparing in regression 
analysis  136-142 

RANBIN function  40 
RANCAU function  40 
random normal variable generator 

See RANNOR function 
random numbers, generating  25-57 

See also RANNOR function 
See also RANUNI function 
generator performance  44 
list of generators  39-41 
normal and lognormal distributions (examples)  

45-50 
randomness requirement (CORRTEST macro)  

30-34 
RANTBL function  40, 51-57, 193 
seed generation, RANUNI  34-37 
seed generation, SEEDGEN  38 
uniformity requirement (EQUIDST macro)   

27-29 
randomness  30-34 
RANEXP function  40, 44 
RANGAM function  40 
RANNOR function  16, 40 

execution time  44 
Fleishman’s method, non-normal conditions  67 
generating univariate time series processes 

(example)  218 
lognormal random number distribution  46-50 
sample data generation, one variable  60-62 

RANPOI function  40 
RANTBL function  40, 51-57 

credit risk estimation (example)  193 
lognormal random number distribution  54-57 

RANTRI function  41 
RANUNI function  26-27 

execution time  44 
generating seed values, function vs. CALL   

34-37 
GLD algorithm for non-normal conditions  65 
randomness of  30-34 
solving Matching Birthdays problem  94-97 
syntax for  41 
uniformity of  27-29 
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REG procedure 
autocorrelation effects on regression results 

(example)  237-242 
computing adjusted R2  137 
generating correlated variables with 

autocorrelated errors (example)  228-230 
regression analysis (example)  141 

regression, effects of autocorrelation (example)  
234-242 

relative model fit indices  147-148 
Rényi's constant, solving for (example)  105-115 
RETAIN statement  106 
RMNC macro  76-79 

default risk estimation (example)  181 
RMSEA (root mean squared error of 

approximation)  148 
robustness, testing  5-6 
rolling dice, simulating (example)  2-4 
 

��

sample data, generating  16-17, 59-91 
converting between correlation and covariance 

matrices  87-89 
mirroring sample characteristics  90 
multivariate non-normal distribution  79-87 
multivariate normal distribution  71-79 
one variable, non-normal distribution  62-71 
one variable, normal distribution  60-62 

sample R2 bias in regression analysis (example)  
136-142 

sample size 
considerations in simulations  13-16 
PDA vs. LR performance  162 
t-test Type I error rate and  120 

sampling distributions, asking questions about  12-
13 

SAS/ETS software  217 
SAS/IML software  125-129 
SAS macro language  100 
SAS/STAT software  125-129 
seed values (for random numbers)  26 

generating with SEEDGEN  38 
practical advice for setting  98 

SEEDGEN macro  38 
SEM (structural equation modeling)  7, 146-160 

covariance matrices  150-151 
descriptive model fit indices  146-147 
design of Monte Carlo simulation  148-152 
example program  152-160 
model fit assessment, descriptive indices   

146-147 
model misspecification  151-152 

SERIAL macro  28 
serially correlated disturbances in multiple 

regression data  216 
severity of model misspecification (SEM example)  

151-152 
shapes, transforming data to specific  17 
shrinkage formulas, comparing in regression 

analysis  136-142 
SIMLIN procedure  217 
simulations, Monte Carlo 

See Monte Carlo simulations 
simulations of financial losses 

See VaR estimation 
skewness, specifying distribution 

See non-normal distribution, sample data from 
See normal distribution, sample data from 

Smith formula  136 
SPECTRA procedure  217 
speed of random number generators  44 
state space modeling  216 
STATESPACE procedure  216, 217, 223-227 
stationary times series data  214 
statistics, obtaining and accumulating  18 
stepwise approximation of theoretical distribution  

51 
See also RANTBL function 

stochastic processes 
See time series processes 

stock prices, random (example) 
RANNOR function  46-50 
RANTBL function  54-57 

structural equation modeling 
See SEM 

SUMMARY procedure  220, 226, 237 
SYSLIN procedure  217 
 

��

t-tests and t-statistic  119 
computational aspects of  119 
effects of unequal population variances on 

(example)  118-129 
empirical distribution of t-statistic, non-normal 

data  90 
theoretical probability theory  2, 4-5 
theoretical sampling distributions, when 

unavailable  6-7 
TIME function to generate seed values  98 
time series processes  213-243 

autocorrelation effects on regression results 
(example)  234-242 

correlated variables with autocorrelated errors 
(example)  228-233 

methodology  213-216, 243 
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multivariate, generating (example)  221-227 
univariate, generating (example)  218-221 

timing simulations during execution  98-99 
TMON and TMONST macros  103-105 
transforming data to desired shapes  17 
transforming non-normally distributed data 

mirroring sample characteristics  90 
multivariate  79-82 
multivariate, deriving intermediate correlations  

82-87 
one variable, Fleishman’s power transformation  

66-71 
one variable, GLD system  62-66 

transforming normally distributed data 
mirroring sample characteristics  90 
multivariate  71-79 
one variable  60-62 

TRANSPOSE procedure  158 
TSCSREG procedure  217 
TTEST procedure  123, 125-127 
Type I error rate  

non-normality distribution effects  129-135 
t-tests, effects of unequal population variances  

118-129 
 

��

unequal population variances, assessing effects of 
(example)  118-129 

design considerations and programming 
approaches  119-121 

SAS/IML and SAS/STAT procedures for  125-
129 

SAS macro for  121-125 
UNIFORM function 

See RANUNI function 
uniform portfolio, credit risk estimation (example)  

197-199 
uniform random number generation  25-57 

See also RANNOR function 
See also RANUNI function 
generator performance  44 
list of generators  39-41 
normal and lognormal distributions (examples)  

45-50 
randomness requirement (CORRTEST macro)  

30-34 
RANTBL function  40, 51-57, 193 
seed generation, RANUNI  34-37 
seed generation, SEEDGEN  38 
uniformity requirement (EQUIDST macro)   

27-29 
uniformity of random number generation  27-29 

univariate non-normal distributions, sample data 
from 

Fleishman’s power transformation method   
66-71 

GLD system  62-66 
univariate normal distributions, sample data from  

60-62 
UNIVARIATE procedure  228-229 
univariate techniques, Monte Carlo studies for 

comparing R2 shrinkage formulas in regression 
analysis  136-142 

effects of data non-normality on ANOVA 
(example)  129-135 

effects of unequal population variances on t-tests 
(example)  118-129 

univariate time series processes (example)   
218-221 

 

��

VaR (value-at-risk) estimation  178 
credit risk (example)  185-199 
portfolio market risk (example)  199-210 

variability of sample correlation coefficients  12-13 
variables 

in macros  101 
transforming into correlation patterns  17 

 

��

Wherry formula  137 
 

��

X11 procedure  217 

 




