
SAS® for
Monte Carlo Studies
A Guide for Quantitative Researchers

Xitao Fan

Ákos Felsovályi

Stephen A. Sivo

Sean C. Keenan

´´

The correct bibliographic citation for this manual is as follows: Fan, Xitao, Ákos Fels vályi, Stephen A. Sivo, and
Sean C. Keenan. 2002. SAS® for Monte Carlo Studies: A Guide for Quantitative Researchers. Cary, NC: SAS Institute
Inc.

SAS® for Monte Carlo Studies: A Guide for Quantitative Researchers

Copyright © 2002 by SAS Institute Inc., Cary, NC, USA

ISBN 1-59047-141-5

All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise,
without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, December 2002

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software to
its fullest potential. For more information about our e-books, e-learning products, CDs, and hardcopy books, visit the
SAS Publishing Web site at www.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Table of Contents

Acknowledgments vii

Chapter 1 Introduction

1.1 Introduction 1

1.2 What Is a Monte Carlo Study? 2
 1.2.1 Simulating the Rolling of a Die Twice 2

1.3 Why Is Monte Carlo Simulation Often Necessary? 4

1.4 What Are Some Typical Situations Where a Monte Carlo Study Is Needed? 5
 1.4.1 Assessing the Consequences of Assumption Violations 5
 1.4.2 Determining the Sampling Distribution of a Statistic That Has No Theoretical Distribution 6

1.5 Why Use the SAS System for Conducting Monte Carlo Studies? 7

1.6 About the Organization of This Book 8

1.7 References 9

Chapter 2 Basic Procedures for Monte Carlo Simulation

2.1 Introduction 11

2.2 Asking Questions Suitable for a Monte Carlo Study 12

2.3 Designing a Monte Carlo Study 13
 2.3.1 Simulating Pearson Correlation Coefficient Distributions 13

2.4 Generating Sample Data 16
 2.4.1 Generating Data from a Distribution with Known Characteristics 16

 2.4.2 Transforming Data to Desired Shapes 17
 2.4.3 Transforming Data to Simulate a Specified Population Inter-variable Relationship Pattern 17

2.5 Implementing the Statistical Technique in Question 17

2.6 Obtaining and Accumulating the Statistic of Interest 18

2.7 Analyzing the Accumulated Statistic of Interest 19

2.8 Drawing Conclusions Based on the MC Study Results 22

2.9 Summary 23

Chapter 3 Generating Univariate Random Numbers in SAS

3.1 Introduction 25

3.2 RANUNI, the Uniform Random Number Generator 26

3.3 Uniformity (the EQUIDST Macro) 27

3.4 Randomness (the CORRTEST Macro) 30

 Table of Contents iv

3.5 Generating Random Numbers with Functions versus CALL Routines 34

3.6 Generating Seed Values (the SEEDGEN Macro) 38

3.7 List of All Random Number Generators Available in SAS 39

3.8 Examples for Normal and Lognormal Distributions 45
 3.8.1 Random Sample of Population Height (Normal Distribution) 45

 3.8.2 Random Sample of Stock Prices (Lognormal Distribution) 46

3.9 The RANTBL Function 51

3.10 Examples Using the RANTBL Function 52
 3.10.1 Random Sample of Bonds with Bond Ratings 52
 3.10.2 Generating Random Stock Prices Using the RANTBL Function 54

3.10 Summary 57

3.12 References 58

Chapter 4 Generating Data in Monte Carlo Studies

4.1 Introduction 59

4.2 Generating Sample Data for One Variable 60
 4.2.1 Generating Sample Data from a Normal Distribution with the Desired Mean and Standard
 Deviation 60
 4.2.2 Generating Data from Non-Normal Distributions 62
 4.2.2.1 Using the Generalized Lambda Distribution (GLD) System 62
 4.2.2.2 Using Fleishman’s Power Transformation Method 66

4.3 Generating Sample Data from a Multivariate Normal Distribution 71

4.4 Generating Sample Data from a Multivariate Non-Normal Distribution 79
 4.4.1 Examining the Effect of Data Non-normality on Inter-variable Correlations 80
 4.4.2 Deriving Intermediate Correlations 82

4.5 Converting between Correlation and Covariance Matrices 87

4.6 Generating Data That Mirror Your Sample Characteristics 90

4.7 Summary 91

4.8 References 91

Chapter 5 Automating Monte Carlo Simulations

5.1 Introduction 93

5.2 Steps in a Monte Carlo Simulation 94

5.3 The Problem of Matching Birthdays 94

5.4 The Seed Value 98

5.5 Monitoring the Execution of a Simulation 98

5.6 Portability 100

5.7 Automating the Simulation 100

5.8 A Macro Solution to the Problem of Matching Birthdays 101

5.9 Full-Time Monitoring with Macros 103

Table of Contents v

5.10 Simulation of the Parking Problem (Rényi's Constant) 105

5.11 Summary 116

5.12 References 116

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques

6.1 Introduction 117

6.2 Example 1: Assessing the Effect of Unequal Population Variances in a T-Test 118
 6.2.1 Computational Aspects of T-Tests 119
 6.2.2 Design Considerations 119
 6.3.3 Different SAS Programming Approaches 120
 6.3.4 T-Test Example: First Approach 121
 6.3.5 T-Test Example: Second Approach 125

6.3 Example 2: Assessing the Effect of Data Non-Normality on the Type I Error Rate in ANOVA 129
 6.3.1 Design Considerations 130
 6.3.2 ANOVA Example Program 130

6.4 Example 3: Comparing Different R2 Shrinkage Formulas in Regression Analysis 136
 6.4.1 Different Formulas for Correcting Sample R2 Bias 136
 6.4.2 Design Considerations 137
 6.4.3 Regression Analysis Sample Program 138

6.5 Summary 143

6.6 References 143

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques

7.1 Introduction 145

7.2 Example 1: A Structural Equation Modeling Example 146
 7.2.1 Descriptive Indices for Assessing Model Fit 146
 7.2.2 Design Considerations 147
 7.2.3 SEM Fit Indices Studied 148
 7.2.4 Design of Monte Carlo Simulation 148

 7.2.4.1 Deriving the Population Covariance Matrix 150
 7.2.4.2 Dealing with Model Misspecification 151

 7.2.5 SEM Example Program 152
 7.2.6 Some Explanations of Program 7.2 155
 7.2.7 Selected Results from Program 7.2 160

7.3 Example 2: Linear Discriminant Analysis and Logistic Regression for Classification 161
 7.3.1 Major Issues Involved 161
 7.3.2 Design 162
 7.3.3 Data Source and Model Fitting 164
 7.3.4 Example Program Simulating Classification Error Rates of PDA and LR 165
 7.3.5 Some Explanations of Program 7.3 168
 7.3.6 Selected Results from Program 7.3 172

7.4 Summary 173

7.5 References 174

 Table of Contents vi

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and
 Value-at-Risk

8.1 Introduction 177

8.2 Example 1: Estimation of Default Risk 179

8.3 Example 2: VaR Estimation for Credit Risk 185

8.4 Example 3: VaR Estimation for Portfolio Market Risk 199

8.5 Summary 211

8.6 References 212

Chapter 9 Modeling Time Series Processes with SAS/ETS Software

9.1 Introduction to Time Series Methodology 213
 9.1.1 Box and Jenkins ARIMA Models 213
 9.1.2 Akaike’s State Space Models for Multivariate Times Series 216
 9.1.3 Modeling Multiple Regression Data with Serially Correlated Disturbances 216

9.2 Introduction to SAS/ETS Software 216
9.3 Example 1: Generating Univariate Time Series Processes 218
9.4 Example 2: Generating Multivariate Time Series Processes 221
9.5 Example 3: Generating Correlated Variables with Autocorrelated Errors 228
9.6 Example 4: Monte Carlo Study of How Autocorrelation Affects Regression Results 234
9.7 Summary 243

9.8 References 243

Index 245

Acknowledgments

Putting all the pieces together for this project has taken more than what we originally expected.
During the process, it has been our pleasure to work with the patient and supportive members of the
Books by Users program. We are especially grateful for two members of BBU who have made our
project possible. From the very beginning of the project, Julie Platt has given us great encouragement
and support, as well as her understanding and patience, even at a time when our project appeared to
be faltering. Efficient, helpful, and pleasant, John West has kept us on the right path in the later stage
of the project, and finally guided us to bring the project to fruition.

We are very thankful for the technical reviewers who have provided us with constructive comments
and have pointed out our errors. Our gratitude goes to Jim Ashton, Brent Cohen, Michael Forno, Phil
Gibbs, Sunil Panikkath, Mike Patetta, Jim Seabolt, Paul Terrill, and Victor Willson, for their time and
effort in scrutinizing our draft chapters. We, of course, take full responsibility for any errors that
remain.

Chapter 1 Introduction

1.1 Introduction 1

1.2 What Is a Monte Carlo Study? 2
 1.2.1 Simulating the Rolling of a Die Twice 2

1.3 Why Is Monte Carlo Simulation Often Necessary? 4

1.4 What Are Some Typical Situations Where a Monte Carlo Study is Needed? 5
 1.4.1 Assessing the Consequences of Assumption Violations 5
 1.4.2 Determining the Sampling Distribution of a Statistic That Has No Theoretical
 Distribution 6

1.5 Why Use the SAS System for Conducting Monte Carlo Studies? 7

1.6 About the Organization of This Book 8

1.7 References 9

���� ������	
�����

As the title of this book clearly indicates, the purpose of this book is to provide a practical guide for
using the SAS System to conduct Monte Carlo simulation studies to solve many practical problems
encountered in different disciplines. The book is intended for quantitative researchers from a variety
of disciplines (e.g., education, psychology, sociology, political science, business and finance,
marketing research) who use the SAS System as their major tool for data analysis and quantitative
research. With this audience in mind, we assume that the reader is familiar with SAS and can read and
understand SAS code.

Although a variety of quantitative techniques will be used and discussed as examples of conducting
Monte Carlo simulation through the use of the SAS System, quantitative techniques per se are not
intended to be the focus of this book. It is assumed that readers have a good grasp of the relevant
quantitative techniques discussed in an example such that their focus will not be on the quantitative
techniques, but on how the quantitative techniques can be implemented in a simulation situation.

Many of the quantitative techniques used as examples in this book are those that investigate linear
relationships among variables. Linear relationships are the focus of many widely used quantitative
techniques in a variety of disciplines, such as education, psychology, sociology, business and finance,
agriculture, etc. One important characteristic of these techniques is that they are all fundamentally
based on the least-squares principle, which minimizes the sum of residual squares. Some examples of
these widely used quantitative methods are regression analysis, univariate and multivariate analysis of
variance, discriminant analysis, canonical correlation analysis, and covariance structure analysis (i.e.,
structural equation modeling).

2 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Before we begin our detailed discussion about how to use the SAS System to conduct Monte Carlo
studies, we would like to take some time to discuss briefly a few more general but relevant topics.
More specifically, we want to discuss the following:

�� What is a Monte Carlo study?

�� Why are Monte Carlo studies often necessary?

�� What are some typical situations where Monte Carlo simulation is needed?

�� Why use the SAS System for conducting Monte Carlo studies?

���� �����������������������	����

What is a Monte Carlo study? According to Webster’s dictionary, Monte Carlo relates to or involves
"the use of random sampling techniques and often the use of computer simulation to obtain
approximate solutions to mathematical or physical problems especially in terms of a range of values
each of which has a calculated probability of being the solution" (Merriam-Webster, Inc., 1994, pp.
754-755). This definition provides a concise and accurate description for Monte Carlo studies. For
those who are not familiar with Monte Carlo studies, a simple example below will give you a good
sense of what a Monte Carlo study is.

1.2.1 Simulating the Rolling of a Die Twice
Suppose that we are interested in knowing what the chances are of obtaining two as the sum from
rolling a die twice (assuming a fair die, of course). There are basically three ways of obtaining an
answer to our question. The first is to do it the hard way, and you literally roll a die twice tens of
thousands of times so that you could reasonably estimate the chances of obtaining two as the sum of
rolling a die twice.

Another way of estimating the chance for this event (i.e., obtaining two as the sum from rolling a fair
die twice) is to rely on theoretical probability theory. If you do that, you will reason as follows: to
obtain a sum of two from rolling a fair die twice necessarily means you obtain one in each roll. The
probability of obtaining one from rolling the die once is 1/6 (0.167). The probability of obtaining one
from another rolling of the same die is also 1/6. Because each roll of the die is independent of another,
according to probability theory, the joint probability of obtaining one from both rolls is the product of
two—that is, 0.167 × 0.167 ≈ 0.028. In other words, the chances of obtaining the sum of two from
rolling a fair die twice should be slightly less than 3 out of 100, a not very likely event. In the same
vein, the chances of obtaining the sum of 12 from rolling a fair die twice can also be calculated to be
about 0.028. Although it is relatively easy to calculate the theoretical probability of obtaining two as
the sum from rolling a fair die twice, it is more cumbersome to figure out the probability of obtaining,
say, seven as the sum from rolling the die twice, because you have to consider multiple events (6+1,
5+2, 4+3, 3+4, 2+5, 1+6) that will sum up to be seven. Because each of these six events has the
probability of 0.028 to occur, the probability of obtaining the sum of seven from rolling a die twice is
6 × 0.028 = 0.168.

Instead of relying on actually rolling a die tens of thousands of times, or on probability theory, we can
also take an empirical approach to obtain the answer to the question without actually rolling a die.
This approach entails a Monte Carlo simulation (MCS) in which the outcomes of rolling a die twice
are simulated, rather than actually rolling a die twice. This approach is only possible with a computer

Chapter 1 Introduction 3

 Cumulative Cumulative
 SUM Frequency Percent Frequency Percent

 2 299 2.99 299 2.99
 3 534 5.34 833 8.33
 4 811 8.11 1644 16.44
 5 1177 11.77 2821 28.21
 6 1374 13.74 4195 41.95
 7 1685 16.85 5880 58.50
 8 1361 13.61 7241 72.41
 9 1083 10.83 8324 83.24
 10 852 8.52 9176 91.76
 11 540 5.40 9716 97.10
 12 284 2.84 10000 100.00

and some appropriate software, such as SAS. The following (Program 1.1) is an annotated SAS
program that conducts an MCS to simulate the chances of obtaining a certain sum from rolling a die
twice.

Program 1.1 Simulating the Rolling of a Die Twice

*** simulate the rolling of a die twice and the distribution;
*** of the sum of the two outcomes;

DATA DIE(KEEP=SUM) OUTCOMES(KEEP=OUTCOME);
 DO ROLL=1 TO 10000; *** roll the two die 10,000 times.;
 OUTCOME1=1+INT(6*RANUNI(123)); *** outcome from rolling the first die;
 OUTCOME2=1+INT(6*RANUNI(123)); *** outcome from rolling the second die;
 SUM=OUTCOME1+OUTCOME2; *** sum up the two outcomes.;
 OUTPUT DIE; *** save the sum.;
 OUTCOME=OUTCOME1; OUTPUT OUTCOMES; *** save the first outcome.;
 OUTCOME=OUTCOME2; OUTPUT OUTCOMES; *** save the second outcome.;
 END;
RUN;

PROC FREQ DATA=DIE; *** obtain the distribution of the sum.;
 TABLE SUM;
RUN;

PROC FREQ DATA=OUTCOMES; *** check the uniformity of the outcomes.;
 TABLE OUTCOME;
RUN;

Output 1.1a presents part of the results (the sum of rolling a die twice) obtained from executing the
program above. Notice that the chances of obtaining two as the sum from rolling a die twice (2.99%)
is very close to what was calculated according to probability theory (0.028). In the same vein, the
probability of obtaining the sum of 7 is almost identical to that based on probability theory (16.85%
from MCS versus 0.168 based on probability theory).

Output 1.1b presents the estimated chances of obtaining an outcome from rolling a die once. Note that
the chances of obtaining 1 though 6 are basically equal from each roll of the die, as theoretically
expected if the die is fair.

Output 1.1a
Chances of
Obtaining a
Sum from
Rolling a
Die Twice

4 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 Cumulative Cumulative
 OUTCOME Frequency Percent Frequency Percent

 1 3298 16.49 3298 16.49
 2 3367 16.84 6665 33.33
 3 3362 16.81 10027 50.14
 4 3372 16.86 13399 67.00
 5 3341 16.71 16740 83.70
 6 3260 16.30 20000 100.00

Output 1.1b
Chances of
Obtaining
an Outcome
from Rolling
a Die Once

Some readers may have some trouble understanding all the elements in the program presented in
Program 1.1. We elaborate on the details of the program in later sections. The basic idea of this
program is to use a computer to simulate the process of rolling a die twice, and then sum up the
outcomes of the two rolls. After 10,000 replications (each consisting of rolling a die twice), we obtain
10,000 sums, each of which is based on rolling a die twice. By using the SAS FREQ procedure, we
obtain the percentage associated with each sum (2 through 12), and this percentage represents the
chance of obtaining a specific sum from rolling a die twice.

As implied from the above, Monte Carlo simulation offers researchers an alternative to the theoretical
approach. There are many situations where the theoretical approach is difficult to implement, much
less to find an exact solution. An empirical alternative like the one above is possible because of
technological developments in the area of computing. As a matter of fact, with computing power
becoming increasingly cheap and with powerful computers more widely available than ever, this
computing-intensive approach is becoming more popular with quantitative researchers. In a nutshell,
MCS simulates the sampling process from a defined population repeatedly by using a computer
instead of actually drawing multiple samples (i.e., in this context, actually rolling dice) to estimate the
sampling distributions of the events of interest. As we will discuss momentarily, this approach can be
applied to a variety of situations in different disciplines.

���� ���������������������	���������������
��������

After going over the example provided in the previous section, some readers may ask the question:
Why is MCS needed or necessary? After all, we already have probability theory which allows us to
figure out the chances of any outcome as the sum from rolling a dice twice, and using probability
theory is relatively efficient, obviously more so than writing the SAS program presented in Program
1.1. For the situation discussed above, it is true that using probability theory will be more efficient
than using the MCS approach to provide the answer to our question. But please keep in mind that the
example provided in Program 1.1 is for illustration purposes only, and there are many situations
where MCS is needed, or where MCS is the only viable approach to providing analytic solutions to
some quantitative research questions.

Although statistical theories are efficient, the validity of any statistical theory is typically contingent
upon some theoretical assumptions. When the assumptions of a theory are met by the data that we
have in hand, the statistical theory provides us with valid and efficient estimates of sampling
distribution characteristics for a statistic of our interest. On the other hand, when the assumptions of a
theory are violated in the data that we have, the validity of the estimates about certain sampling
distribution characteristics based on the theory is often compromised and uncertain; consequently, we
are often at a loss about how much we can trust the theoretical estimates, or about how erroneous our
conclusion might be if we blindly rely on the theory, even if some crucial assumptions of the theory

Chapter 1 Introduction 5

have been violated. It is in these kind of analytic situations that MCS becomes very useful to
quantitative researchers, because this approach relies on empirical estimation of sampling distribution
characteristics, rather than on theoretical expectations of those characteristics. With a large number of
replications, the empirical results should asymptotically approach the theoretical results, and this can
be demonstrated when the theoretical results can be obtained.

In addition to the situations discussed above in which the assumptions of statistical theories may not
be met by the data we have at hand, and where consequently, MCS becomes an empirical alternative
to theoretical approach, there are some other situations where statistical theories are either so weak
that they can not be fully relied upon, or statistical theories simply do not exist. In these situations,
MCS may be the only viable approach to providing answers to a variety of questions quantitative
researchers may have.

Such situations abound. For example, the distributional characteristics of sample means are well
known (e.g., unbiased, with mean equal to � and standard deviation equal to

N
�). But how about

the distributional characteristics of sample medians? Is a sample median an unbiased estimate? What
is the expected standard deviation of a distribution of sample medians? Does the central limit
theorem, which is so important for the distribution of sample means, apply to the distribution of
sample medians? These and other similar questions may not be answered from statistical theory,
because it is an area where theory is weak or nonexistent. As a result, these questions may need to be
answered empirically by conducting MCS, and the distributional characteristics of sample medians
can be examined empirically, rather than theoretically based on statistical theory.

���� ��������������� �
������	���������������������

���������������	��������������

As the brief discussion in the previous section indicates, for quantitative researchers in a variety of
disciplines, there are two typical situations in which MCS may be called for: when theoretical
assumptions of a statistical theory may not hold; and when statistical theory is either weak or
nonexistent. In this section, we will discuss some typical situations in which MCS becomes relevant
or necessary.

1.4.1 Assessing the Consequences of Assumption
 Violations
As is well known, statistical techniques can generally be classified into two broad categories:
parametric and non-parametric. Most popular statistical techniques belong to the category of
parametric statistics. A common characteristic for all parametric statistics is that there are certain
assumptions about the distribution of the data. If the assumptions are violated, the validity of the
results derived from applying these techniques may be in question. However, statistical theory itself
does not usually provide any indication about what, if any, the consequences are, and how serious the
consequences will be. If a quantitative researcher wonders about these questions, MCS becomes, in
many situations, the only viable approach to obtaining answers to these questions.

6 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

For example, for the very popular statistical technique of analysis of variance (ANOVA), which is
designed to test the hypothesis of equal means on the dependent variable from two or more groups, a
fundamental assumption for the validity of the probability statement from ANOVA is that the groups
involved come from populations with equal population variances on the variable of interest
(homogeneity of variance assumption). What happens if, in reality, the populations that the groups are
from do not have equal population variances on the variable of interest? To what extent is the
probability statement from ANOVA invalid? How robust is the ANOVA technique in relation to the
violation of this equal variance assumption?

To answer these and other similar questions, we may want to design a MC study in which we
intentionally manipulate the variances of different population groups, draw samples from these
populations, and apply ANOVA to test the hypothesis that the groups have equal means. Over
repeated replications, we will be able to derive an empirical distribution of any sample statistic of our
interest. Based on these distributions, we will be able to provide some answers to the questions that
cannot be addressed by the statistical theory. Researchers have long used MCS to examine these
issues related to ANOVA. (For a very early review, see Glass, Peckham, & Sanders 1972.)

For many popular statistical techniques, data normality is an important assumption. For example, for
regression analysis, which is used in almost all disciplines, the tests for regression model parameters,
both for the overall regression model fitted to the sample data and for the individual regression
coefficients, it is assumed that the data are normally distributed. What are the consequences if the data
are not normally distributed as assumed? How extreme should the non-normality condition be before
we discount the regression analysis results as invalid? These are only a few of the potential questions
quantitative researchers may ask. As discussed before, the answers to these questions may be
provided by MCS, because statistical theory only stipulates what the condition should be, and it does
not provide a clear indication of what the reality would be if the conditions were not met by the data.

1.4.2 Determining the Sampling Distribution of a
 Statistic That Has No Theoretical Distribution
In some situations, due to the complexity of a particular statistic, a theoretical sampling distribution of
the statistic may not be available. In such situations, if one is interested in understanding how the
statistic will vary from sample to sample, i.e., the sampling distribution of the statistic, MCS becomes
one viable and realistic approach to obtaining such information.

For example, discriminant analysis and canonical correlation analysis are two multivariate statistical
techniques widely used in different disciplines. In both of these techniques, there are (discriminant
and canonical) function coefficients which are analogous to regression coefficients in regression
analysis, and also, there are (discriminant and canonical) structure coefficients which are the
correlations between the measured variables and the (discriminant and canonical) functions. Because
of the complexity of these statistics, theoretical distributions are not available for these coefficients
(both function and structure coefficients). In the case of discriminant or canonical correlation analysis,
there has been a lot of debate about which type of coefficients, function or structure, is more stable
across samples (Stevens 1996). Because theoretical sampling distributions are not available for these
two type of coefficients, it is not possible to answer the question from any theoretical perspective.
Faced with this lack of theoretical sampling distributions, Thompson (1991) conducted a Monte Carlo

Chapter 1 Introduction 7

study in which the sampling distributions of these two types of coefficients were empirically
generated, and based on these empirical sampling distributions, this issue was empirically
investigated.

The same situation exists for exploratory factor analysis, a popular statistical technique widely used in
psychometrics and in social and behavioral science research in general. In factor analysis, factor
pattern coefficients play an important role. Unfortunately, the theoretical sampling distributions of
factor pattern coefficients are not available. The lack of theoretical sampling distributions for factor
pattern coefficients makes it difficult to assess the importance of a variable in relation to a factor. In
practice, such assessment often relies on half guess work and half common sense. It is often suggested
that factor pattern coefficients smaller than 0.30 be discounted. Ideally, such an assessment should be
made by taking into consideration the sampling variability of the factor pattern coefficient. If one
wants to get some idea about the sampling variability of such factor pattern coefficients, in the
absence of the theoretical sampling distribution, MCS becomes probably the only viable approach.
Quantitative researchers have utilized MCS to investigate this issue in factor analysis. (For examples,
see Stevens 1996, pp. 370-371.)

In the past two decades, covariance structure analysis, more commonly known as structural equation
modeling (SEM), has become a popular analytic tool for quantitative researchers. In SEM analysis, a
group of descriptive model fit indices have been developed to supplement the model fit information
provided by the 2

� test, or to compensate for the widely perceived limitations of the 2
� test in SEM,

that is, it is heavily influenced by the sample size used in testing the model fit (Fan & Wang, 1998).
These descriptive fit indices, however, have unknown theoretical sampling distributions, so it is not
clear how these fit indices will vary from sample to sample. Again, MCS becomes the primary tool
for providing the information about the variability of these fit indices, and many researchers have
used this approach in their research (e.g., Fan, Thompson, & Wang 1999; Fan & Wang 1998; Marsh,
Balla, & Hau 1996).

��!� ���"��������������������������	
���#��������������

���������	������

As discussed above, Monte Carlo simulation has been an important research area for quantitative
researchers in a variety of disciplines. Because MCS is computation-intensive, it is obvious that MCS
research typically requires programming capabilities. Furthermore, because many MC studies involve
some type of statistical techniques and/or mathematical functions, statistical/mathematical capabilities
are also essential. The SAS System has the combination of a powerful variety of built-in statistical
procedures (e.g., in SAS/STAT and SAS/ETS software), mathematical functions, and the versatile
programming capabilities (in base SAS, the SAS Macro Facility, and SAS/IML software). This
combination makes the SAS System ideal for conducting Monte Carlo simulation research, especially
research related to statistical techniques. Such a combination of built-in statistical procedures and
versatile programming capabilities makes it much more convenient for MCS researchers to get their
job done. Without such a combination of statistical capabilities and programming capabilities within
the same system, an MCS researcher may have to deal with different systems, and consequently
worry about the interface among different systems.

For example, some MCS researchers use the Fortran language for programming their Monte Carlo
simulations. Because there are no built-in statistical procedures, any statistical analysis will either
have to be programmed by the researchers themselves (a formidable task if one is dealing with a

8 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

complicated quantitative technique), or some other system has to be used for the purpose (e.g., IMSL:
International Mathematical & Statistical Libraries, a package of mathematical routines). In the latter
case, the interface between different programs in the programming process may become cumbersome
and difficult.

By relying on the SAS System for statistical simulation, almost all statistical procedures are already
built in, and statistical analysis results are easily obtained either through the built-in statistical
procedures, or through programming using the powerful interactive matrix language (PROC IML)
under the SAS System. In either case, both the statistical computation and programming are highly
integrated within the same system, which considerably simplifies the tasks of Monte Carlo
researchers. In addition, the SAS System offers great flexibility in data generation, data
transformation, obtaining and saving simulation results, etc. The completeness and the flexibility of
the SAS System have convinced us that currently no other system makes Monte Carlo research,
especially research involving statistical techniques, easier and more efficient than the SAS System
does.

��$� �%�	��������#���&��������������'��(�

This book has nine chapters. The first two chapters provide an overview of the Monte Carlo research
process. Starting with the third chapter, we lead the readers through a step-by-step process of
conducting a Monte Carlo simulation. The third chapter discusses data generation by using different
random number generators that are available in base SAS. This chapter lays the foundation for
Chapter 4, which focuses on generating multiple variables that are correlated and that have different
population characteristics (e.g., variables that deviate from the theoretical normal distribution to
different degrees). As a matter of fact, data generation is so crucial that it is no exaggeration to say
that the success of Monte Carlo simulation research hinges on the correct data generation process.

Once readers understand the data generation process in Monte Carlo simulation research, the next
chapter, Chapter 5, discusses an important programming aspect of a Monte Carlo study: automation
of the simulation process. Because a Monte Carlo study usually involves a large number (e.g.,
thousands, or hundreds of thousands) of replications (i.e., repeatedly drawing samples from a
specified statistical population, and obtaining and analyzing the sample statistic of interest), unless the
process can be automated through programming, MCS would be almost impossible to do in practice.
Chapter 5 provides a detailed practical guide for automating the MCS process in SAS.

Chapter 6 and Chapter 7 present some Monte Carlo simulation examples involving both univariate
and multivariate statistical techniques widely used by researchers in different fields. The examples in
these two chapters integrate what has been discussed up to Chapter 5. Quantitative researchers who
are interested in conducting Monte Carlo simulation involving statistical techniques will find these
two chapters very useful and practical. For each of the examples used, a problem is presented, and the
rationale for conducting a Monte Carlo simulation study is provided. Then, the SAS program and
explanatory comments are presented step by step. Finally, some selected results of the simulation are
presented. Thus, each example provides a complete examination of a Monte Carlo study.

Chapter 1 Introduction 9

In Chapter 8, our focus shifts a little, and we discuss Monte Carlo simulation examples related to the
financial industry. As the examples in this chapter clearly indicate, the issues addressed by Monte
Carlo simulation tend to be quite different from those in Chapters 6 and 7. For this reason, we present
these examples from the financial industry in this separate chapter. Lastly, Chapter 9 provides
discussion about implementing a Monte Carlo simulation study using techniques that involve
SAS/ETS software. Examples related to time series analysis are presented in Chapter 9 as well.

Combined, the chapters in this book provide a systematic and practical guide to conducting Monte
Carlo simulation studies in SAS. In our presentation of the examples, if a quantitative technique is
involved, the quantitative technique per se is not our focus; instead, we focus more on the
programming aspects of the Monte Carlo study, and the quantitative technique is presented as an
example. Because of this, we provide little elaboration on the mathematical or statistical aspects of
the quantitative techniques used as examples, and we assume that readers who are interested in the
quantitative techniques will consult other relevant sources.

��)� *������
���

Fan, X., B. Thompson, and L. Wang. 1999. “The Effects of Sample Size, Estimation Methods, and Model
Specification on SEM Fit Indices.” Structural Equation Modeling: A Multidisciplinary Journal
6:56-83.

Fan, X., and L. Wang. 1998. “Effects of Potential Confounding Factors on Fit Indices and Parameter
Estimates for True and Misspecified SEM Models.” Educational and Psychological
Measurement 58:699-733.

Glass, G. V., P. D. Peckham, and J. R. Sanders. 1972. “Consequences of Failure to Meet Assumptions
Underlying the Fixed-Effects Analysis of Variance and Covariance.” Review of Educational
Research 42:237-288.

Marsh, H. W., J. R. Balla, and K. T. Hau. 1996. “An Evaluation of Incremental Fit Indices: A Clarification
of Mathematical and Empirical Properties.” In Advanced Structural Equation Modeling: Issues
and Techniques, ed. G. A. Marcoulides and R. E. Schumacker, 315-353. Mahwah, NJ: Lawrence
Erlbaum Associates.

Merriam-Webster, Inc. 1994. Merriam-Webster’s Collegiate Dictionary. 10th ed. Springfield, MA:
Merriam-Webster, Inc.

Stevens, J. 1996. Applied Multivariate Statistics for the Social Sciences. 3d ed. Mahwah, NJ: Lawrence
Erlbaum Associates.

Thompson, B. 1991. “Invariance of Multivariate Results: A Monte Carlo Study of Canonical Function and
Structure Coefficients.” Journal of Experimental Education 59:367-382.

10 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Chapter 2 Basic Procedures for Monte Carlo
 Simulation

2.1 Introduction 11

2.2 Asking Questions Suitable for a Monte Carlo Study 12

2.3 Designing a Monte Carlo Study 13
 2.3.1 Simulating Pearson Correlation Coefficient Distributions 13

2.4 Generating Sample Data 16
 2.4.1 Generating Data from a Distribution with Known Characteristics 16
 2.4.2 Transforming Data to Desired Shapes 17
 2.4.3 Transforming Data to Simulate a Specified Population Inter-variable Relationship
 Pattern 17

2.5 Implementing the Statistical Technique in Question 17

2.6 Obtaining and Accumulating the Statistic of Interest 18

2.7 Analyzing the Accumulated Statistic of Interest 19

2.8 Drawing Conclusions Based on the MC Study Results 22

2.9 Summary 23

���� �����	
������

In Chapter 1 we provided an introduction to this book in which we discussed what a Monte Carlo
(MC) study is and what some of its major characteristics are. In this chapter, we continue our
discussion started in Chapter 1, and we will discuss the basic procedures or steps needed to
successfully implement an MC study. In a very general sense, the following are the basic steps
necessary for an MC study:

�� Ask questions that can be examined through a Monte Carlo study.

�� Design a Monte Carlo study to provide answers to the questions.

�� Generate data.

�� Implement the quantitative technique.

�� Obtain and accumulate the statistic of interest from each replication.

�� Analyze the accumulated statistic of interest.

�� Draw conclusions based on the empirical results.

12 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

In this chapter, we will provide some discussion related to each of the above steps. To facilitate our
discussion, we will use one simple SAS MC example to illustrate each step listed above.

���� �������
���������
���������������������������
	��

It may be obvious, but unless you ask the right question(s), it may not be possible or necessary to
conduct an MC study in the first place. As discussed in Chapter 1, an MC study is essentially
concerned about how a statistic of interest may vary from sample to sample. In other words, an MC
study is about obtaining the sampling distribution of a statistic of interest by repeatedly drawing
random samples from a specified population. In this sense, the questions suitable for an MC study are
typically related to some aspects of the sampling distribution of a statistic.

For example, you may be interested in comparing the distribution of a sample median versus that of a
sample mean, or you may be interested in knowing how the variability of a sample correlation
coefficient is influenced by the sample size, or you are interested in something related to more
sophisticated statistical techniques, such as how data non-normality affects the sampling distribution
of regression coefficients in regression analysis. In short, questions related to sampling distributions
of a statistic of interest are generally suitable for an MC study, especially when such questions do not
have trustworthy theoretical answers because 1) the theoretical assumptions for the statistical theory
are violated; 2) the theory about the statistic of interest is weak; or 3) no theory exists about the
statistic of interest. Our examples in later chapters will illustrate a variety of questions that are suitable
for an MC study. In this chapter, we will use a simple example to illustrate the steps in a typical MC study.

Correlation between two variables is the statistic of interest in many applications. For example, an
educator may be interested in the relationship between time spent on school work at home and
academic achievement in school; an industrial psychologist may be interested in the relationship
between mechanical aptitude and job performance; a stock analyst may be interested in the strength of
the relationship between a company’s price/sale (P/S) ratio and the company’s stock performance.

As an example of an MC study in this chapter, we are interested in the question: How high should a
correlation coefficient be before we feel comfortable that the observed correlation coefficient is
unlikely to have occurred by chance (i.e., the observed value of a sample correlation coefficient is not
the result of sampling error)? In other words, although two variables may not be correlated
(population correlation coefficient ρ=0), that does not mean that for every sample, the sample
correlation coefficient between the two variables will always be zero. As a matter of fact, almost none
of the samples will have a correlation coefficient of zero because of sampling variability of the
statistic: in some samples, the sample correlation coefficient may be positive; in some other samples,
it may be negative. Some samples may have sample correlation coefficients substantially different
from zero, while others have correlation coefficients very close to zero, or even zero itself. (This
occurrence, however, will be rare.) In the long run, however, the average of the sample correlation
coefficients should be zero or very close to zero.

The situation described above means that, from a particular sample, we may obtain a correlation
coefficient quite different from zero even if there is absolutely no relationship between the two
variables of interest. A natural question to ask is: How high should a sample correlation coefficient be
before we conclude that the sample coefficient represents some degree of real relationship between
the two variables, not just the occurrence due to sampling error? Let’s suppose that the statistical
theory about the correlation coefficient between two variables were not well developed, or that we

Chapter 2 Basic Procedures for Monte Carlo Simulation 13

simply do not trust the validity of the theory that much. We therefore want to adopt an empirical
approach to provide some answers to our question.

Because we are interested in the variability of sample correlation coefficients when the true
population correlation coefficient is zero, our question is easily translated into a question about the
sampling distribution of the correlation coefficient when the null hypothesis is true, i.e., when the true
population correlation coefficient is zero. Because we want some empirical answers to our question,
not theoretical answers, it is a question suitable for an MC study. In this chapter, we will use SAS to
implement an MC study to obtain answers to this question.

���� ��������������������������
	��

Once we have identified the question(s) suitable for an MC study, we need to figure out how we can
answer our questions by designing an appropriate MC study. To do this, we have to consider the
major factor(s) that may affect the variability of sample correlation coefficients. The variability of
sample correlation coefficients is affected by sample size. To see the influence of sample size on the
statistics of interest (the sample correlation coefficient, in this case), let us consider a simpler and
more intuitive case.

Assume that in a moderately large university of 20,000 students, the true population ratio of male vs.
female student numbers is 1, that is, 50% of students are male and 50% are female. However, if we
get a random sample of students, the percentages of male vs. female students will almost certainly
differ from 50/50. If we get another random sample, it will almost certainly differ from both 50/50
(the population ratio) and from whatever ratio we obtained from the first sample. Now the question is,
how much can the sample ratio vary just by chance, or simply due to sampling error?

The answer to this question will not be known unless we take sample size into consideration. If we
draw a random sample of ten students, it is possible to have a sample with just five male and five
female students (proportion = 0.5), which actually reflects the population proportions, but it is also
possible to have 10 male and zero female students. From another sample of ten students, we may get
one male and nine female students. So under the condition of sample size ten (n=10), the proportion
of male students may vary from 1 to 0, quite far from 0.5. But if we draw a random sample of 100
students (n=100), we are much less likely to have 90 male and 10 female students. In other words,
although it may not be too surprising to have a sample male student proportion of 0.9 when the
sample size is 10, it is very unlikely that we will have a sample male student proportion of 0.9 or 0.1
when the sample size is 100. This simple and intuitive example contains what is scientifically true: the
variability of a sample statistic is inversely affected by sample size: the larger the sample size, the
smaller the variability of the sample statistic.

2.3.1 Simulating Pearson Correlation Coefficient
 Distributions
Now let us come back to our correlation coefficient example. We want to know how much the sample
correlation coefficient can vary when the null hypothesis is true (the population correlation coefficient
between two variables is zero). In order to have some understanding about the issue, we have to take
sample size into consideration. So sample size becomes a prominent factor in our MC study design.

14 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Although there may be other factors we can consider, e.g., whether data are normally distributed or
not, or the degree of data non-normality, for the time being and to avoid unnecessarily complicating
the matter, we only want to consider sample size in our MC study design.

After deciding that only sample size will be considered as a factor in our MC study about the
distribution of sample correlation coefficients, next we need to consider what sample size conditions
we are willing to simulate. In this illustrative example, we make a somewhat arbitrary decision that
we are going to simulate sample size conditions of n=10, 20, 40, and 100. Of course, if we are not
concerned about the time it takes for the computer to get the job done, we can add as many sample
size conditions as we want.

Once the question about sample size conditions is settled, we need to consider another important
issue: Under each sample size condition, how many random samples are we going to draw from a
specified statistical population that represents the null hypothesis (i.e., the true population correlation
coefficient is zero between the two variables)? The decision must be made carefully so that
reasonably accurate answers to our question can be obtained. Because we are trying to obtain the
sampling distributions of correlation coefficients under the true null hypothesis, the number of
samples drawn under a particular sample size condition will greatly influence the accuracy of the
simulated sampling distribution of correlation coefficients. If too few samples are drawn under each
sample size condition, our answers might be too crude to be useful. For our illustrative example, let’s
assume that, after our review of previous studies in this area, we decide that 2,000 samples is the
minimum number we can live with, and that a sampling distribution of correlation coefficients based
on 2,000 random samples for a particular sample size condition should be accurate enough for our
illustrative purpose.

We have now figured out all the important design characteristics for our MC study of sampling
distributions of correlation coefficients, as follows:

�� Four sample size conditions: 10, 20, 50, and 100.

�� Under each sample size condition, 2,000 random samples will be drawn from the
statistical population under which there is zero correlation between two variables, i.e.,
��������������	�
�
�	�������
�����������������		���
���������
�
�	����� ����

Given our design, there will be 4 × 2000 = 8000 random samples to be drawn from the specified
statistical population under the true null hypothesis. This design is implemented in the annotated
Program 2.1. Although we provide more details later about Program 2.1, you can probably see that
the number of samples under each sample size condition is 2,000 (SAS macro variable
NO_SMPL=2000), and there are four sample size conditions (SAS macro variable SMPLSIZE=10,
20, 50, 100).

Chapter 2 Basic Procedures for Monte Carlo Simulation 15

Program 2.1 Simulating Pearson Correlation Coefficient Distributions

LIBNAME CORR ’C:\CORR_EG’;
%LET NO_SMPL=2000; *** macro variable for # of random samples;
 *** under each sample size condition;
%MACRO CORR_RDM;
%DO A = 1 %TO 4; *** specify four sample size conditions;
 %IF &A=1 %THEN %DO; %LET SMPLSIZE=10; %END;
 %IF &A=2 %THEN %DO; %LET SMPLSIZE=20; %END;
 %IF &A=3 %THEN %DO; %LET SMPLSIZE=50; %END;
 %IF &A=4 %THEN %DO; %LET SMPLSIZE=100; %END;

%DO B=1 %TO &NO_SMPL; *** # of samples for each sample size condition;

DATA DAT; *** generate two uncorrelated random variables;
 DO I=1 TO &SMPLSIZE;
 X=RANNOR(0);
 Y=RANNOR(0);
 OUTPUT;
 END;
 *** use PROC CORR to get Pearson r, results as SAS data set PEARSON;
PROC CORR DATA=DAT NOPRINT OUTP=PEARSON;
 VAR X Y;
RUN;
 *** collect Pearson r from each sample, add sample size condition;
 *** accumulate Pearson r from samples by appending the Pearson r from a

 sample to a SAS System file COR_RDM;

DATA PEARSON; SET PEARSON;
 SMPLSIZE=&SMPLSIZE;
 IF _NAME_=’X’;
 CORR=Y;
 KEEP CORR SMPLSIZE;
PROC APPEND BASE=CORR.COR_RDM;
%END;
%END;
%MEND CORR_RDM;
%CORR_RDM;
RUN; QUIT;
 *** obtain descriptive statistics on the Pearson r’s;
 *** under each of the four sample size conditions;
DATA A; SET CORR.COR_RDM;
PROC SORT; BY SMPLSIZE;
PROC MEANS; BY SMPLSIZE;
 VAR CORR;
TITLE1 'DESCRIPTIVE STATS FOR PEARSON RS BETWEEN TWO RANDOM VARIABLES';
TITLE2 'FOR FOUR DIFFERENT SAMPLE SIZE CONDITIONS';
TITLE3 '***';
RUN; QUIT;
 * obtain bar graphs to show the
 distribution characteristics of
 Pearson rs under true null hypothesis
 for each of the four sample size
 conditions ;

DATA A; SET CORR.COR_RDM;
PROC SORT; BY SMPLSIZE;

AXIS1 LABEL=(HEIGHT=1.0 FONT=TRIPLEX) ORDER=(0 TO 20 BY 5)
 VALUE=(HEIGHT=1.0 FONT=TRIPLEX) MINOR=NONE;
AXIS2 LABEL=(HEIGHT=1.0 FONT=TRIPLEX) VALUE=(HEIGHT=1.0 FONT=TRIPLEX)
 MINOR=NONE;
PATTERN COLOR=BLACK VALUE=X2;

16 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

PROC GCHART DATA=A; BY SMPLSIZE; * use PROC GCHART for nicer graphs;
 VBAR CORR/ TYPE=PERCENT
 MIDPOINTS= -.9 TO .9 BY .05
 RAXIS=AXIS1 MAXIS=AXIS2
 WIDTH=1
 SPACE=1;
RUN; QUIT;

���� �������������� ��������

Once the MC study design has been worked out, the next step is to generate sample data to be used in
the MC study. It is worth pointing out that data generation is probably the most important step in any
MC study. This is so because MC study results are based on the data generated in the process. If the
data generated in the process are not what you think they should be, the validity of the MC study
results will obviously be in serious question. From this perspective, the importance of data generation
in an MC study can never be overemphasized.

Depending on the complexity of an MC study, the process of data generation can involve three major
steps, as follows:

1. Generate data from a distribution with known characteristics.

2. Transform the data so that the data have desired shapes.

3. Transform the data so that the simulated variables can be considered as samples
randomly drawn from a population with a known inter-variable relationship pattern.

2.4.1 Generating Data from a Distribution with Known
 Characteristics
This first step is really what we need for our illustrative example of simulating the distribution of
correlation coefficients under the true null hypothesis of zero population correlation between two
variables. For our purposes, we need to generate two variables not related to each other. We choose to
generate two independent normally distributed random variables. Because the two variables are
random and independent, they are not related to each other. In other words, the value of one variable
will be totally unrelated to the value of the other variable. We can use the SAS random normal
variable generator RANNOR to accomplish this. The two variables generated by the program are
called X and Y in the program. Because X and Y are generated as independent random samples from
a normal distribution, we know the underlying distributions for X and Y have a mean of 0 and a
standard deviation of 1. In statistical terms, both X and Y are random variables from population
distributed as N(0,1). The details about the SAS data generator will be discussed in Chapter 3.

Program 2.1 presented the SAS code for data generation for our problem through the use of base
SAS. In some examples in later chapters, the IML procedure (PROC IML) of SAS/IML (Interactive
Matrix Language) will be used for the same purpose. Either way, the same thing can be
accomplished: two independent random variables are generated from the normal distribution [N(0,1)]
for specified sample size conditions (SMPLSIZE).

Chapter 2 Basic Procedures for Monte Carlo Simulation 17

2.4.2 Transforming Data to Desired Shapes
In many situations, sample data generated in the previous step need to be transformed to simulate
particular population characteristics. There are two major purposes for which it is necessary to
transform an individual variable: 1) to transform the data so that the data can be considered as a
random sample from a population with a specified mean and standard deviation; 2) to transform the
data so that the data can be considered as a random sample from a population with specified shapes
(e.g., specified population skewness and kurtosis). The first transformation is simply a linear
transformation that does not change the shape of the data. That is, if originally it is normally
distributed, it remains normally distributed after the transformation. For any variable X, such a linear
transformation can easily be achieved by the formula

Xnew = X * SDnew + Meannew (2.1)

where Xnew is the transformed variable, SDnew is the desired new standard deviation, and Meannew is the
desired new mean. The new variable Xnew has exactly the same distribution shape as X in terms of
skewness and kurtosis.

The second kind of transformation changes the shape of the distribution—for example, in terms of
skewness and/or kurtosis. This kind of transformation is often necessary in statistical simulation to
investigate the effect of non-normality on certain statistics of interest. This transformation is more
complicated, and the necessary details for such a transformation will be discussed in Chapter 4. In our
illustrative example in Program 2.1, there is no need to perform either of the two transformations. The
SAS programming examples for these transformations will be presented in later chapters.

2.4.3 Transforming Data to Simulate a Specified
 Population Inter-variable Relationship Pattern
The two transformations discussed in the previous section involve only one variable at a time. In
many situations, multiple variables are used in analyses, and the multiple variables are supposed to be
correlated to specified degrees. In such situations, procedures are needed to transform the independent
variables (such X and Y in Program 2.1) into correlated variables with specified correlation pattern.
This transformation will be discussed in Chapter 4, where multivariate data generation is covered.
Obviously, for our illustrative example of correlation coefficient distribution under the true null
hypothesis of no relationship between the two variables, we want to keep the two variables (X and Y)
independent, so there is no need to implement this transformation.

��!� �� �����������"��������������#��"��$
������
�������

Although some MC studies do not involve statistical techniques, in many MC studies, some type(s) of
statistical techniques are involved. For example, the illustrative MC study example in Chapter 1
(simulating the sum of throwing a dice twice) involves only simple frequency counts. On the other
hand, in the example presented in Program 2.1, the Pearson product-moment correlation coefficient
needs to be computed for each of the 8,000 samples. There are, of course, different ways to
implement the statistical computation of the Pearson correlation coefficient. One can either program

18 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

the statistical computation by using either the IML procedure (PROC IML) or base SAS, or one can
use SAS procedures. In Program 2.1, we chose to use the SAS CORR procedure (PROC CORR) to
do the computation, which minimizes the programming demand for the task. As readers can see, the
SAS code for this step is very straightforward.

��%� &�����������	���
�
��������"������������������������

Once the statistical technique is implemented and the statistic of interest is computed, the statistic of
interest from each random sample must be obtained, and it must be accumulated across samples. In
our example in Program 2.1, we need to obtain each of the 8,000 correlation coefficients (2,000 under
each of the four sample size conditions) and to accumulate them for later analyses. Again, this can be
accomplished in different ways. In Program 2.1, we used PROC CORR for computing Pearson r, so
the computed Pearson r is contained in the PROC CORR output. To obtain the Pearson r from each
sample, we request SAS to output the results of PROC CORR to a SAS data set named PEARSON
(OUTP=PEARSON). Because the PEARSON data set contains more than just the Pearson r that we
are interested in, we need to do a little programming to keep only what we want to obtain, and discard
the rest. In order to do that, we need to understand what the PEARSON data set contains.

The contents of the temporary PEARSON data set can be displayed by running a simple PROC
PRINT DATA=PEARSON step. The following is the output of the temporary SAS data set
PEARSON for a small (n=4) hypothetical data set.

 OBS _TYPE_ _NAME_ X Y

 1 MEAN 1.50000 2.75000
 2 STD 0.57735 0.50000
 3 N 4.00000 4.00000
 4 CORR X 1.00000 0.57735
 5 CORR Y 0.57735 1.00000

In this temporary SAS data set, the Pearson r, which is highlighted above, is the only thing we are
interested in keeping at this time. Although the sample size N is also relevant, it can be obtained
somewhere else. A few commands in Program 2.1 accomplish the goal of discarding everything else
from the temporary PEARSON data set except the Pearson r. Sample size information is added to the
data. So now, the temporary PEARSON data set only contains two variables: CORR for the sample
Pearson correlation coefficient, and SMPLSIZE for the sample size condition.

After obtaining the statistic of interest from a sample, that statistic should be stored somewhere so that
SAS will go on to draw another sample and repeat the whole process again. In the example in
Program 2.1, this is achieved by appending the Pearson correlation coefficient from each sample,
together with the information about sample size (SMPLSIZE), to a permanent SAS data set
(COR_RDM) on the hard disk in the directory "C:\CORR_EG", as indicated by the LIBNAME
statement at the beginning of the SAS program in Program 2.1. Once this information is stored in the
permanent SAS data set (COR_RDM), the SAS program repeats the process for the remaining 7,999
samples until all 8,000 Pearson correlation coefficients from all the 8,000 samples have been
accumulated.

Chapter 2 Basic Procedures for Monte Carlo Simulation 19

 -----------------------------SMPLSIZE=10--------------------------
 N Mean Std Dev Minimum Maximum
 --
 2000 -0.0079822 0.3400933 -0.9171933 0.8923352

 -----------------------------SMPLSIZE=20--------------------------
 N Mean Std Dev Minimum Maximum
 --
 2000 -0.0063981 0.2293055 -0.7653282 0.7339653

 -----------------------------SMPLSIZE=50--------------------------
 N Mean Std Dev Minimum Maximum
 --
 2000 0.0026309 0.1418088 -0.4412904 0.4752965

 -----------------------------SMPLSIZE=100-------------------------
 N Mean Std Dev Minimum Maximum
 --
 2000 -0.0022238 0.1036991 -0.4455782 0.4067127

��'� ����(�����"����
�
����	�����������������������

By the time the statistic of interest from all the samples has been obtained and accumulated, the
simulation process of the MC study is complete. Depending on the nature of the question(s) in a
particular MC study, data analysis after the simulation may be simple or complicated. In our
illustrative example in Chapter 1 (Program 1.1), the analyses are simple and straightforward
frequency counts, proportions, and cumulative proportions. In some MC studies, the analyses of the
data accumulated from an MC simulation can be quite complicated. As a matter of fact, data analyses
in an MC study are no different from data analyses in many other research situations.

In our illustrative example in Program 2.1, the data analyses involve obtaining the descriptive
statistics of the Pearson r sample distributions under the four sample size conditions. Output 2.1
presents this basic descriptive information. In addition, the Pearson r sample distributions are
presented in bar graphs that graphically illustrate the distributions of the Pearson r’s under the true
null hypothesis for the four sample size conditions (Figure 2.1). Of course, other types of analyses can
be conducted on the data, but to keep our presentation simple, we do only two here.

Output 2.1
Descriptive
Statistics for
Pearson r
Sample
Distributions

20 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Figure 2.1 Empirical Distributions of Sample Correlation Coefficients under the True Null Hypothesis
 of ρ=0

Chapter 2 Basic Procedures for Monte Carlo Simulation 21

22 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

��)� ���*���������
������+���	�����"�������
	��,��
����

We conducted our MC study for the purpose of answering our questions about the distributional
characteristics of the statistic of interest to determine what factors may affect such distributional
characteristics. The data analyses conducted in the previous step should be conducive to providing
answers to the question(s) that motivated the MC study in the first place. To illustrate this last step in
the MC study, let us go back to our original question: How high should a correlation coefficient be
before we feel comfortable that the observed correlation coefficient is unlikely to have occurred by
chance (i.e., the observed value of the sample correlation coefficient is the result of sampling error)?
To answer this question, we conducted an MC study to obtain the sampling distributions of Pearson
r’s under the true null hypothesis (population correlation ρ=0). We wanted to see how high a sample
correlation coefficient could be just by sampling chance alone when the two variables have no
relationship at all. Because the variability of the sample correlation coefficient is affected by sample
size, we considered four sample size conditions in our MC study.

Output 2.1 presented the descriptive statistics for the correlation coefficients under the four sample
size conditions (N=10, 25, 50, 100). Two observations are noted from Output 2.1. First, the means of
the correlation coefficients under each of the four sample size conditions are very close to zero. This
makes perfect sense, because the two variables are independent random variables not related to each
other. As a result, although sample correlation coefficients may vary within certain ranges, the mean
of the sample correlation coefficients should converge on the population coefficient (ρ=0). Second,
the standard deviation of the sampling distribution of the correlation coefficient is larger when the
sample size is smaller, and it decreases with an increase in sample size. This indicates that when the
sample size is small, there is more variability in the sample correlation coefficients than there is when
the sample size is large. The same phenomenon is reflected by the range (range = maximum -
minimum).

Figure 2.1 presents a graphic illustration of the distribution of sample correlation coefficients for the
four sample size conditions under the true null hypothesis (ρ=0). These four graphs make it very
obvious that even when the population correlation coefficient is zero, we may observe substantial
sample correlation coefficients. For example, for a random sample of 10 observations, the sample
correlation coefficient can easily be as high (low) as ±0.50. But when the sample size increases to
100, it becomes highly unlikely that one could obtain a sample correlation coefficient close to ±0.50
just by chance. Based on the simulation results presented in Figure 2.1, we can make probability
statements about obtaining an outcome under a sample size condition. For example, we can say that if
the population correlation coefficient is 0 (ρ=0), for a sample of 10 observations (N=10), the
probability of getting a sample r ≥ 0.50 in absolute value is higher than 0.05. That is,

p (getting r ≥ 0.50 or r ≤ -0.50 | ����������

Obviously, if an outcome could have occurred by chance with considerable probability, this outcome
would not be considered trustworthy. In other words, if you have obtained a correlation of ±0.50 from
a sample of 10, this would not give you much confidence that there is indeed a relationship between
the two variables under your consideration. In statistical terms, you would not feel comfortable in
rejecting the null hypothesis that there is no correlation between the two variables, because the
statistical evidence is not strong enough.

Chapter 2 Basic Procedures for Monte Carlo Simulation 23

��-� �
������

In this chapter, we navigated conceptually through the major steps in a typical Monte Carlo study,
such as study design considerations, the data generation process, obtaining and accumulating the
statistic of interest, etc. These steps are common for Monte Carlo studies in general. Among these
major steps, data generation warrants special attention, because the validity of the Monte Carlo
study’s results hinges on this step. In Chapters 3 and 4, we provide some mathematical and procedural
details for the data generation process.

24 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Chapter 3 Generating Univariate Random
 Numbers in SAS

3.1 Introduction 25

3.2 RANUNI, the Uniform Random Number Generator 26

3.3 Uniformity (the EQUIDST Macro) 27

3.4 Randomness (the CORRTEST Macro) 30

3.5 Generating Random Numbers with Functions versus CALL Routines 34

3.6 Generating Seed Values (the SEEDGEN Macro) 38

3.7 List of All Random Number Generators Available in SAS 39

3.8 Examples for Normal and Lognormal Distributions 45
 3.8.1 Random Sample of Population Height (Normal Distribution) 45
 3.8.2 Random Sample of Stock Prices (Lognormal Distribution) 46

3.9 The RANTBL Function 51

3.10 Examples Using the RANTBL Function 52
 3.10.1 Random Sample of Bonds with Bond Ratings 52
 3.10.2 Generating Random Stock Prices Using the RANTBL Function 54

3.11 Summary 57

3.12 References 58

���� �����	
������

Simulation is the representation of the behavior of a physical or abstract system by the behavior of
another system (Ralston 1976). Simulation is applied when the experiment with or the observation of
the original system is dangerous (e.g., an epidemic or a nuclear reaction), impossible (global
warming, meteor impact), expensive (optimal shape of a new vehicle), or when we want to study the
effect of many different conditions on the system (effect of a new policy), etc. It is also utilized when
the original system is too complicated to be investigated with exact analytic tools and the simulation
can simplify the problem. The computer-based simulation can be deterministic or stochastic. In the
latter case, which is also called Monte Carlo simulation, at least one variable of the system behaves
by chance. Thus, we generate many sets of random numbers obeying certain a priori distributions and
examine the results of our model.

The heart of every Monte Carlo simulation is the random number generator. And the heart of the
various random number generators is the uniform random number generator, because the random
numbers of a certain distribution can be derived from uniformly distributed random numbers
(Rubinstein 1981). The concept of randomness is a mysterious one, because no events in nature are
truly random. We may not know all their influencing factors, and thus they just appear random to our

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 26

limited knowledge. Similarly, our computer-generated random numbers are called pseudo or quasi-
random numbers, because they are constructed by some deterministic algorithm and they only
“appear” random. However, if they satisfy the randomness required by our problem, we can utilize
them.

Generating a random number in SAS requires a simple function or subroutine call in a DATA step
(or in PROC IML), as shown here. Variable R in the following two examples holds a uniform
random number.

DATA …;
 …;
 R = RANUNI(123);
 …;
 RUN;

 DATA …;
 …;
 SEED = 123;
 CALL RANUNI(SEED,R);
 …;
 RUN;

In this chapter, we will discuss many aspects of generating univariate random numbers. We will
introduce and review RANUNI, the uniform random number generator of the SAS System. Then, we
will test certain measures of uniformity and randomness. Most random number generators can be
invoked as functions or as CALL routines, and their differences will be examined later in this
chapter, along with the use of the seed value. A table will describe all random number generator
functions available in SAS for reference purposes.

This chapter will also present several examples for creating random samples with various
characteristics. Finally, the RANTBL function will be discussed separately for its practical
importance in generating random numbers of any distribution.

��� �����������������������	����
���������������

The RANUNI function (and the identical UNIFORM) returns uniform random numbers utilizing the
most widely used generator, the congruential generator, which originates from D.H. Lehmer (Lehmer
1951). This generator produces random numbers by using the following recursive formula, where Ri
is the ith random number, a is the multiplier, and c is the increment:

 � �1 (c) mod 0,1, 2,...� �i+ iR aR m i = (3.1)

The formula can be written in the SAS statement

 R = MOD(A*R+C,M); (3.2)

The stream of random numbers (Ri) is started and controlled by the first random number (R0), which
is called the seed. The generator produces uniform random numbers in (0,m), but its SAS
implementation returns them transformed into (0,1) by dividing them by m. Since the actual random
numbers returned by RANUNI and the seed along with its subsequent values are the same
irrespective of that transformation, the terms seed and random numbers are used interchangeably in
this chapter.

Chapter 3 Generating Univariate Random Numbers in SAS

27

The above constants in the SAS System are a = 397,204,094, m = 231-1 (which is a prime), and c = 0.
Due to (3.1), the seed (or R0) value must be an integer satisfying 11 0 −≤≤ mR (m-1=2147483646.) In
this special case, when c = 0, the generator is called a multiplicative congruential generator. (If we
wish to calculate the random numbers with these constants substituted into (3.2), we will not obtain
the random numbers generated by SAS software, because the calculations require extended precision
beyond the standard double precision.) This type of generator has been extensively tested and found
to be a reliable one (Clark & Woodward 1992; Fishman & Moore 1982; Killam 1987). The period of
this generator, i.e., the number of elements produced before it begins repeating the elements, is m =
231-2. The program below gives the length of the period to be 231-2.

DATA _NULL_;
 R0=RANUNI(123);
 DO I=2 TO 2**31-1;
 IF RANUNI(123)=R0
 THEN DO; PUT ’End of period at element #’ i;
 STOP;
 END;
 END;
 RUN;

A great deal of attention and care have been given to the statistical tests of the random number
generators. However, there is no single definition of randomness or a single statistical test for it. We
should extensively test a generator before accepting it. The most widely applied tests are the chi-
square, Kolmogorov-Smirnov, Cramer-von Mises, serial, run, gap, poker, permutation, serial
correlation, and maximum tests (Knuth 1982; Rubinstein 1981). RANUNI must satisfy two
requirements: uniformity and randomness.

��������������������������� �!����"�

Uniformity means that the random numbers fill the unit interval uniformly. It can easily be tested by
the equidistribution or frequency test. One such test is described by the EQUIDST macro (Program
3.1). It tests uniformity by dividing (0,1) into 2, 3,...n subintervals of equal length:

 2-subinterval division:)1,
2

1
(),

2

1
,0(

 3-subinterval division:)1,
3

2
(),

3

2
,

3

1
(),

3

1
,0(

 ...

 n-subinterval division:)1,
1

(),
2

,
1

(),
1

,0(
n

n

nnn

−
�

The macro tallies the frequencies in these subintervals and calculates the goodness-of-fit test for the
uniform distribution. If the random numbers uniformly fill (0,1), the subintervals of any number of
divisions would get about the same number of random numbers. Thus, most of the divisions will
result in a non-significant chi-square value, i.e., the null hypothesis (the random numbers are from a

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 28

uniform distribution) can be kept. Output 3.1 shows the results when we generate one million random
numbers and divide (0,1) into 2,3,...,100 subintervals with the following macro call:

%EQUIDST(NRANNUM=1000000,HNSINT=100,SEED=123)

RANUNI really generates uniform random numbers, because only 9 out of 99 divisions have
significant chi-square values at the 0.05 level. If we choose the 0.01 level, then none of the divisions
reject the uniformity. The SERIAL macro (published in Fels vályi 1994) provides another type of
uniformity test for RANUNI, where we test whether the random numbers defined as vectors in the n-
dimensional space fill the unit hypercube uniformly.

Program 3.1 The EQUIDST Macro

/**/
/* Macro EQUIDST executes an equidistribution test to */
/* check the uniform distribution of random numbers */
/* generated by RANUNI. */
/* */
/* Parameters: */
/* NRANNUM # of random numbers to be generated. */
/* HNSINT highest number of subintervals. The macro */
/* calculates the chi-square test for */
/* 2,3,...,HNSINT divisions of equal subintervals */
/* of (0,1). */
/* SEED Seed of RANUNI function. */
/**/

%MACRO EQUIDST(NRANNUM=,HNSINT=,SEED=0);
 DATA WORK(KEEP=SINTERV X);

 /* generate the requested number of random numbers.*/

 LENGTH SINTERV X 3;
 DO I=1 TO &NRANNUM;
 R=RANUNI(&SEED);

 /* determine the interval number (variable ’X’) into */
 /* which the random number falls. Do this for each */
 /* division (2-subinterval, 3-subinterval,... */
 /* divisions). */

 DO SINTERV=2 TO &HNSINT;
 X=1+INT(SINTERV*R);
 OUTPUT;
 END;
 END;
 RUN;

 /* determine the frequency of each subinterval by division. */

 PROC FREQ DATA=WORK;
 TABLE SINTERV*X/LIST OUT=WORK(KEEP=SINTERV COUNT) NOPRINT;
 RUN;

 /* calculate the chi-square test for each division. */

Chapter 3 Generating Univariate Random Numbers in SAS

29

 Results of the Uniformity Test

 # of Random Numbers: 1000000
 Subintervals Tested: 2 to 100

 Cumulative Cumulative
 PVALUE Frequency Percent Frequency Percent
 --
 P<0.05 9 9.1 9 9.1
 P<0.10 5 5.1 14 14.1
 P<0.15 8 8.1 22 22.2
 P>0.15 77 77.8 99 100.0

 DATA WORK(KEEP=PVALUE);
 SET WORK;
 BY SINTERV;
 RETAIN EXPFREQ CHISQ;

 /* a division starts. */

 IF FIRST.SINTERV THEN DO; EXPFREQ=&NRANNUM/SINTERV;
 CHISQ=0;
 END;
 CHISQ=CHISQ+(COUNT-EXPFREQ)**2/EXPFREQ;

 /* the last interval of the division is read. */
 /* determine the p-value of the test. */

 IF LAST.SINTERV THEN DO; PVALUE=1-PROBCHI(CHISQ,SINTERV-1);
 OUTPUT;
 END;
 PROC FORMAT;
 VALUE SIGNIF 0.0000-0.0001=’P<0.0001’
 0.0001-0.001 =’P<0.001’
 0.001 -0.01 =’P<0.01’
 0.01 -0.05 =’P<0.05’
 0.05 -0.10 =’P<0.10’
 0.10 -0.15 =’P<0.15’
 0.15 -1 =’P>0.15’;

 PROC FREQ DATA=WORK; *** summarize the results;
 TABLE PVALUE;
 FORMAT PVALUE SIGNIF.;
 TITLE1 "Results of the Uniformity Test";
 TITLE2 "------------------------------";
 TITLE3 "# of Random Numbers: &NRANNUM";
 TITLE4 "Subintervals Tested: 2 to &HNSINT";
 RUN;

Output 3.1
Uniformity
Test of
RANUNI

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 30

��#� ���	����$$������%&�� �� �!����"�

Randomness is an elusive concept, and it cannot be measured by a single test. It posseses many
facets, and we should examine as many of them as possible. The CORRTEST macro (Program 3.2)
executes one of the many tests of randomness, the correlation test, which examines the correlation
between the ith and the (i+j)th random numbers. The hypothesis is that if the numbers generated by
RANUNI are random, the correlation between the ith and the (i+j)th numbers is not significant for
any j. The macro calculates these correlation coefficients for j=1, 2,…, n at once (the value of n in
the macro is specified by the HLAG parameter). Output 3.2a shows the results when we generate one
million uniform random numbers and calculate the correlations of up to 100 lags with the following
statements:

DATA SAMPLE(KEEP=X);
 DO I=1 TO 1000000;
 X=RANUNI(123);
 OUTPUT;
 END;
 RUN;
%CORRTEST(DATA=SAMPLE,HLAG=100,VAR=X)

RANUNI satisfies the randomness as required by the correlation test, because only 10 out of 100
have significantly high correlation coefficients at the 0.05 level. If we choose the 0.01 level, then
only one is significantly high. The correlation test delivers similar results when we examine the other
random number generator functions available in SAS. For example, if we test the RANGAM
function with the following code,

DATA SAMPLE(KEEP=X);
 DO I=1 TO 1000000;
 X=RANGAM(123,2);
 OUTPUT;
 END;
 RUN;
%CORRTEST(DATA=SAMPLE,HLAG=100,VAR=X)

we obtain that only 2 out of 100 correlation coefficients have p-values less than 0.05, and none are
less than 0.01 (see Output 3.2b).

Chapter 3 Generating Univariate Random Numbers in SAS

31

Program 3.2 The CORRTEST Macro

/***/
/* */
/* The CORRTEST macro executes the correlation test of randomness. */
/* */
/* Parameters: */
/* DATA the name of the table containing a random variable. */
/* VAR the name of the random variable. */
/* HLAG the highest lag of correlation to be calculated. */
/* The macro calculates the correlation coefficients */
/* between subsequent random values with lags of 1, 2, */
/* 3, ... &HLAG. One correlation coefficient is */
/* calculated for each lag. */
/* */
/* Notes */
/* 1. The macro assumes that there is no missing value in the */
/* input table and it has at least HLAG number of rows. */
/* 2. The name of the random variable must not start with */
/* ’lag’. */
/* */
/***/

%MACRO CORRTEST(DATA=,HLAG=,VAR=);

 /* Create a new table that has the original random value in */
 /* column named ’lag0’ and one column for each lag specified.*/
 /* For example */
 /* */
 /* Original */
 /* Table New Table */
 /* */
 /* X LAG0 LAG1 LAG2 LAG3 */
 /* - ---- ---- ---- ---- */
 /* 1 1 2 3 4 */
 /* 2 2 3 4 5 */
 /* 3 3 4 5 6 */
 /* 4 4 5 6 . */
 /* 5 5 6 . . */
 /* 6 6 . . . */

 DATA WORK(KEEP=LAG0-LAG&HLAG);
 SET &DATA NOBS=NOBS END=END;
 ARRAY LAGARRAY(*) LAG0-LAG&HLAG;
 RETAIN LAG0-LAG&HLAG;
 IF _N_<=&HLAG THEN LAGARRAY(_N_+1)=&VAR;
 ELSE DO; DO I=1 TO &HLAG;
 LAGARRAY(I)=LAGARRAY(I+1);
 END;
 LAGARRAY(&HLAG+1)=&VAR;
 OUTPUT;
 END;

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 32

 IF END THEN DO; CALL SYMPUT(’N’,
 COMPRESS(PUT(NOBS,BEST10.)));
 DO J=0 TO &HLAG-2;
 DO I=1 TO &HLAG-J;
 LAGARRAY(I)=LAGARRAY(I+1);
 END;
 LAGARRAY(&HLAG-J+1)=.;
 OUTPUT;
 END;
 END;
 RUN;
 /* calculate the correlation coefficients for each lag and */
 /* save them. */

 PROC CORR DATA=WORK OUTP=WORK(WHERE=(_TYPE_=’CORR’)) NOPRINT;
 VAR LAG0;
 WITH LAG1-LAG&HLAG;

 /* calculate the p-value for each correlation coefficient */
 /* (because PROC CORR does not save it along with the */
 /* correlation coefficient). */

 DATA WORK(KEEP=PVALUE);
 SET WORK;
 RETAIN N &N;
 CORR=LAG0;
 N=N-1; *** Number of values - degrees of freedom.;
 IF ABS(CORR)=1 THEN PVALUE=0;
 ELSE PVALUE=2*(1-PROBT(ABS(CORR/
 SQRT(1-(CORR*CORR))*SQRT(N-2)),N-2));
 OUTPUT;
 RUN;
 PROC FORMAT;
 VALUE SIGNIF 0.0000-0.0001=’P<0.0001’
 0.0001-0.001 =’P<0.001’
 0.001 -0.01 =’P<0.01’
 0.01 -0.05 =’P<0.05’
 0.05 -0.10 =’P<0.10’
 0.10 -0.15 =’P<0.15’
 0.15 -1 =’P>0.15’;

 /* summarize the results */

 PROC FREQ DATA=WORK;
 TABLE PVALUE;
 FORMAT PVALUE SIGNIF.;
 TITLE1 "Results of the Correlation Test";
 TITLE2 "-------------------------------";
 TITLE3 "# of Random Numbers: &N";
 TITLE4 "Lags Tested: 1 to &HORDER";
 RUN;
%MEND;

Chapter 3 Generating Univariate Random Numbers in SAS

33

 Result of the Correlation Test

 # of Random Numbers: 1000000
 Lags Tested: 1 to 100

 Cumulative Cumulative
 PVALUE Frequency Percent Frequency Percent
 --
 P<0.01 1 1.0 1 1.0
 P<0.05 9 9.0 10 10.0
 P<0.10 5 5.0 15 15.0
 P<0.15 3 3.0 18 18.0
 P>0.15 82 82.0 100 100.0

 Result of the Correlation Test

 # of Random Numbers: 1000000
 Lags Tested: 1 to 100

 Cumulative Cumulative
 PVALUE Frequency Percent Frequency Percent
 --
 P<0.05 2 2.0 2 2.0
 P<0.10 2 2.0 4 4.0
 P<0.15 7 7.0 11 11.0
 P<0.15 89 89.0 100 100.0

Output 3.2a
Correlation Test
of RANUNI

Output 3.2b
Correlation Test
of RANGAM

Examining the correlation coefficients and their p-values using the CORRTEST macro, the curious
mind might ask: What is the distribution of these p-values? The SAS System is a great tool for
conducting experimental mathematics, and we can easily answer that question by using the table
WORK, which was created by the CORRTEST macro, as shown in the program below.

DATA SAMPLE(KEEP=X);
 DO I=1 TO 500000;

 /* this time, we carry out the test on */
 /* normally distributed random numbers. */

 X=RANNOR(123);
 OUTPUT;
 END;
 RUN;
%CORRTEST(DATA=SAMPLE,HLAG=1000,VAR=X)
PROC CHART DATA=WORK;
 VBAR PVALUE / LEVELS=10;
 LABEL PVALUE="p-values of the Correlation Test";
 RUN;

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 34

The answer is given using RANNOR in Output 3.2c: uniform distribution. If the generated numbers
are close to a random sequence, then as the number of replicated correlation coefficients increases,
the distribution in Output 3.2c should smoothen, and our results should more closely approximate the
theoretical results — a uniformity of frequency.

Output 3.2c
The p-values
of the
Correlation
Test Distribute
Uniformly

��'�����������(����	����
����$�)����*
������$�+��$
$��

�������%�,,���
����$�

The stream of the random numbers is determined by the so-called seed value, or R0 in (3.1). Seed is
always the first parameter of each random number generator function or CALL routine, and

310, 1, 2, , (2 2).� � � � ��seed

The actual starting number of the stream depends on the seed value specified by the user according to
the rule given here.

If seed is
R0, the starting number of the
stream, is set to the

and the streams of the random
numbers at repeated executions are

��� time since midnight different

> 0 seed value specified by the user the same

Frequency

 120 | ***
 | *** *** ***
 | *** *** *** *** ***
 | *** *** *** *** *** *** ***
 90 | *** *** *** *** *** *** *** *** ***
 | *** *** *** *** *** *** *** *** *** ***
 | *** *** *** *** *** *** *** *** *** ***
 | *** *** *** *** *** *** *** *** *** ***
 60 | *** *** *** *** *** *** *** *** *** ***
 | *** *** *** *** *** *** *** *** *** ***
 | *** *** *** *** *** *** *** *** *** ***
 | *** *** *** *** *** *** *** *** *** ***
 30 | *** *** *** *** *** *** *** *** *** ***
 | *** *** *** *** *** *** *** *** *** ***
 | *** *** *** *** *** *** *** *** *** ***
 | *** *** *** *** *** *** *** *** *** ***

 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

 p-values of the Correlation Test

Chapter 3 Generating Univariate Random Numbers in SAS

35

The precision of the time since midnight (in the case of seed�0) depends on the operating system.
For example, Windows returns it in units of milliseconds. If the seed is specified as a fraction or as a
value greater than 231– 2, SAS issues an error message. You can specify a 31(2 2)� � �seed , but it
may return a degenerated stream, so it must be avoided.

Since the random numbers are calculated by a recursive formula, the first number determines all
subsequent random numbers. A benefit to using a specific seed value is that the results can be
replicated by using the same seed again. The debugging of your code becomes easier, and others can
check your work by replicating it (see section 5.4 for more about the use of the seed value). Once a
random number generator is started, SAS maintains only one stream of numbers, regardless of the
number of references made to it. The code on the right hand side of Program 3.3 returns only one
stream of random numbers, even though the RANUNI function is referenced twice with two different
seeds. The random numbers in variables RUNI1 and RUNI2 correspond to the first invocation of
RANUNI with seed=123 specified. The second invocation with seed=456 does not start a new stream
of numbers (Output 3.3).

Program 3.3 Seed Value – Example 1

DATA TEMP1(DROP=I);
 DO I=1 TO 10;
 RUNI=RANUNI(123);
 SEED=RUNI*(2**31-1);
 OUTPUT;
 END;
 RUN;
PROC PRINT DATA=TEMP1;
 RUN;

DATA TEMP2(DROP=I);
 DO I=1 TO 5;
 RUNI1=RANUNI(123);
 /* The second seed (456) has no*/
 /* effect, because the stream has */
 /* already started with seed=123.*/
 RUNI2=RANUNI(456);
 OUTPUT;
 END;
 RUN;
PROC PRINT DATA=TEMP2;
 RUN;

Output 3.3
The Function
Produces Only
One Stream of
Numbers

The seed value starts the recursive algorithm of (3.1), and at each execution the seed gets re-
calculated. The new value is stored internally in the function hidden from the user, and its value
transformed into (0,1) is returned by RANUNI as the next random number. If we multiply this
random number by the period (i.e., m=231-1) of (3.1), we obtain that hidden seed. (See the variable
SEED in the left-hand side of Program 3.3 — it will be discussed below).

OBS RUNI SEED

 1 0.75040 1611463328
 2 0.32091 689153326
 3 0.17839 383088854
 4 0.90603 1945691870
 5 0.35712 766903084
 6 0.22111 474838741
 7 0.78644 1688863383
 8 0.39808 854874385
 9 0.12467 267716529
10 0.18769 403052287

OBS RUNI1 RUNI2

 1 0.75040 0.32091
 2 0.17839 0.90603
 3 0.35712 0.22111
 4 0.78644 0.39808
 5 0.12467 0.18769

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 36

If we utilize the RANUNI CALL routine instead of the RANUNI function, it returns not only the
next random number, but this re-calculated seed value as well. We then have the ability to alter this
seed value and to thus alter the stream of the random numbers.

Program 3.4 illustrates many important facts about RANUNI and the two forms of invocation:
function and CALL. These facts apply equally to all random number generator functions available in
SAS. The random number returned by the CALL routine is always its last parameter.

Program 3.4 Seed Value – Example 2

DATA TEMP3(DROP=I);
 RETAIN SEED1 123 SEED2 123 SEED3 123 SEED4 456;
 DO I=1 TO 10;
 RUNI1=RANUNI(SEED1);
 CALL RANUNI(SEED2,RUNI2);
 CALL RANUNI(SEED3,RUNI3);
 CALL RANUNI(SEED4,RUNI4);
 /* Change the first and third seed values */
 /* for observations #6 and onward. */
 IF I=5 THEN DO; SEED1=456;
 SEED3=456;
 END;
 OUTPUT;
 END;
 RUN;
PROC PRINT DATA=TEMP3;
 RUN;

• The random number returned by RANUNI is the same as the seed value irrespective of the

transformation into (0,1). Compare the variables SEED in Output 3.3 and SEED2 in
Output 3.4.

• In the function, the stream of numbers is determined by the first seed value, and it is not
altered regardless of the change in the seed variable. See the SEED1 values, and compare
RUNI1 to RUNI2 in Output 3.4.

• Either a function and a CALL routine together, or any number of CALL routines, produce
independent streams of random numbers. Variables RUNI1 and RUNI2 in Output 3.3 are
from one stream, but variables RUNI1 – RUNI4 in Output 3.4 are from four independent
streams.

• In the CALL routine form, we can change the seed value and it causes the stream to be re-
started with the new value. See variable RUNI3 in Output 3.4 and compare its values starting
with observation #6 to the values of variable RUNI4 starting with observation #1.

• The seed value for a function can be specified either as a scalar or as a variable. The seed
value of a CALL routine must always be specified as a variable.

Chapter 3 Generating Univariate Random Numbers in SAS

37

Output 3.4
Altering the
Stream by
Changing the
Seed

As we mentioned earlier, if SEED=0 is specified, the streams of random numbers are different at
each execution of the code. Program 3.5 generates three random numbers inside a macro with
SEED=0 specified. The two successive executions result in two different streams of random
numbers, because internally, SAS starts the RANUNI function with different seed values. Output 3.5
shows the different random numbers and also the differing seed values.

Program 3.5 Streams with SEED=0

%MACRO SEED0;
 DATA TEMP4(DROP=I);
 SEED=0;
 DO I=1 TO 3;
 CALL RANUNI(SEED,RUNI);
 OUTPUT;
 END;
 RUN;
 PROC PRINT DATA=TEMP4;
 RUN;
%MEND;
TITLE ’First Macro Call’;
%SEED0
TITLE ’Second Macro Call’;
%SEED0
RUN;

Output 3.5
Different
Streams of
Random
Numbers with
SEED=0

OBS SEED1 SEED2 SEED3 SEED4 RUNI1 RUNI2 RUNI3 RUNI4

 1 123 1611463328 1611463328 736440516 0.75040 0.75040 0.75040 0.34293
 2 123 689153326 689153326 774069794 0.32091 0.32091 0.32091 0.36045
 3 123 383088854 383088854 686944750 0.17839 0.17839 0.17839 0.31988
 4 123 1945691870 1945691870 613712798 0.90603 0.90603 0.90603 0.28578
 5 456 766903084 456 538536300 0.35712 0.35712 0.35712 0.25078
 6 456 474838741 736440516 2127021321 0.22111 0.22111 0.34293 0.99047
 7 456 1688863383 774069794 1285275311 0.78644 0.78644 0.36045 0.59850
 8 456 854874385 686944750 969429106 0.39808 0.39808 0.31988 0.45143
 9 456 267716529 613712798 1516286558 0.12467 0.12467 0.28578 0.70608
10 456 403052287 538536300 760955526 0.18769 0.18769 0.25078 0.35435

 First Macro Call
 OBS SEED RANUI
 1 21287539 0.00991
 2 1972737807 0.91863
 3 790022720 0.36788

 Second Macro Call
 OBS SEED RANUNI

 1 156935322 0.07308
 2 972755748 0.45297
 3 2060025218 0.95927

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 38

��-� ���������(����	�.�/
�$��������������!����"�

Since the random numbers are the result of the recursive deterministic algorithm of (3.1), they can be
thought of as a huge chain of all integers between 1 and 231-1 with their "random" sequence fixed.
When we invoke a random number generator function, i.e., start a stream of random numbers, we
merely point to one number in this gigantic sequence and take out a segment of numbers (e.g.,
100,000 of them) starting at that number. If we need more than one stream, we may select
overlapping streams, even though the chain is more than two billion numbers long. To ensure non-
overlapping streams, the starting numbers of the streams must be far apart. More precisely, they must
be separated by at least the length of the desired streams. The SEEDGEN macro of Program 3.6
provides seed values that produce non-overlapping streams of random numbers. (See also Clark &
Woodward 1992.) Output 3.6 shows 10 seed values that would produce 10 non-overlapping streams
of one million random numbers each. The length of the streams should be set sufficiently large by
considering all streams that are to be generated by our program. For example, if we need to generate
100,000 uniform and 100,000 normal random numbers, the length should be set to at least 300,000,
because the creation of one normal random number requires two random uniform numbers (see
Section 3.7).

Program 3.6 The SEEDGEN Macro

/***/
/* Macro SEEDGEN generates seed values to produce */
/* non-overlapping streams of random numbers. */
/* */
/* Parameters */
/* FSSED first seed */
/* LSTREAM the length of the non-overlapping streams */
/* NSEEDS the number of seed values requested */
/* */
/* Note */
/* 1. Each paramater must be a positive integer less */
/* than 2**31-1. */
/* 2. The macro may generate a smaller number of seeds, if */
/* LSTREAM*NSEEDS>2**31-1. */
/* */
/***/
%MACRO SEEDGEN(FSEED=,LSTREAM=,NSEEDS=);
 DATA TEMP(KEEP=SEED);
 RETAIN SEED &FSEED;
 OUTPUT;
 DO I=1 TO MIN((&NSEEDS-1)*&LSTREAM,2**31-1) BY &LSTREAM;
 DO J=1 TO &LSTREAM;
 CALL RANUNI(SEED,X);
 END;
 OUTPUT;
 END;
 RUN;
 PROC PRINT DATA=TEMP;
 TITLE "List of &NSEEDS Seed Values";
 TITLE2 "Apart by &LSTREAM Numbers";
 RUN;
%MEND;

Chapter 3 Generating Univariate Random Numbers in SAS

39

Output 3.6
Seed Values
Generated by the
SEEDGEN Macro

��0� ,�$������//����	����
��������������$��+��/��/������

�����������

Most generators in SAS can be utilized as functions or as CALL routines. The general syntax is

Form SAS Code Description

function r=name(seed,p
i
);

CALL

call name(seed,p

i
,r);

r: SAS variable holding the random number.
name: one of the generators as given in
 Table 3.1.
seed: a scalar or a SAS variable (in case of the
 function) or a SAS variable (in case of the
 CALL routine) holding the starting value of
 the generator.
pi: one or more parameters described in
 Table 3.1.

Table 3.1 describes all generators available in SAS. The first column gives the function reference.
The uniform random generator can be referred to by two names: RANUNI and UNIFORM. Table 3.2
provides examples for some special uses of these functions.

 List of 10 Seed Values
 Apart by 1000000 Numbers

 OBS SEED

 1 123
 2 587760465
 3 127671937
 4 1323234103
 5 619707514
 6 1330454004
 7 1307130277
 8 294729579
 9 689565084
 10 491301990

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 40

Table 3.1 Random Number Generator Functions Available in SAS

SAS Function1 Distribution Function Parameters Probability Density Function2

RANBIN(seed,n,p) Binomial seed: See section 3.5 for
seed values

n: number of independent
trials, n=1, 2, 3…

p: probability of success,
 0����

()

≤≤−

 −

elsewhere

nmpp
m

n mnm

0

01

RANCAU(seed) Cauchy seed: See section 3.5 for
seed values

()

−+ 22

1

θλ
λ

π x

where
-�� ����	
� �������������	����������
(0),
����	
� �������������������������

RANEXP(seed) Exponential seed: See section 3.5 for
seed values x

0 x 0

1
x 0e

� ��� �� ��

��
�
�

����

where
����	
� �������������������������

RANGAM(seed,a) Gamma seed: See section 3.5 for

seed values
a: shape, a>0

x
a 1

a

0 x 0

1
x e x 0

(a)

�
� �

��
�
�

��� ��

where
����	
� �������������������������

RANNOR(seed)
or
NORMAL(seed)3

Normal seed: See section 3.5 for
seed values

()

e
x

2

2

2

2

1
λ
θ

πλ

−−

where
-�� ����	
� �������������	����������
(0),
����	
� �������������������������

RANPOI(seed,m) Poisson seed: See section 3.5 for
seed values

m: mean, m>0

≥

<

− 0
!

00

n
n

m
e

n
n

m

1 When the function is utilized as a CALL routine, there is one extra parameter that is always the last one and which holds the random number
returned by the generator. For example, r=RANBIN(seed,n,p); becomes CALL RANBIN(seed,n,p,r);
2 The number in parentheses indicates the value of the parameter assumed in SAS.
3 Functions RANNOR and NORMAL are identical. Function NORMAL cannot be utilized as a CALL routine.

Chapter 3 Generating Univariate Random Numbers in SAS

41

Table 3.1 Random Number Generator Functions Available in SAS (continued)

RANTBL(seed,p1,p2,
...pn)

Defined by a
probability
mass
function

seed: See section 3.5 for

seed values
pi: probabilities, pi>0 and

 1
1

=∑
=

n

i
ip

nip
i

j
j �,2,1

1

=∑
=

RANTRI(seed,h)

Triangular

seed: See section 3.5 for

seed values
h: hypotenuse, 0����

≤≤−
−−

≤≤−
−−

elsewhere

rxhrx
rhlr

hxllx
lhlr

0

)(
))((

2

)(
))((

2

-��l<���	
�l is the left endpoint of the
interval (0),
l<r<���	
�r is the right endpoint of the
interval (1)

RANUNI(seed)
or
UNIFORM(seed)4

Uniform seed: See section 3.5 for
seed values

 ≤≤

−
elsewhere

rxl
lr

0

1

-��l<���	
�l is the left endpoint of the
interval (0),
l<r<���	
�r is the right endpoint of the
interval (1)

Table 3.2 Special Use of Some Random Number Generator Functions

SAS Code Returns variates with distribution of

x=theta+lambda*rancau(seed); Cauchy with given location (theta) and scale (lambda) parameters.

x=ranexp(seed)/lambda; Exponential with given scale (lambda) parameter.

x=floor(-ranexp(seed)/log(1-p)); Geometric:
np(1 p) where 0 p 1, n 0, 1, 2,� � � � �

x=lambda*rangam(seed,a); Gamma with given shape (a) and scale (lambda) parameters.
If lambda=2 and 2*a is an integer, chi-square with degrees of
freedom of 2*a.
If a=1,2,…, Erlang (i.e., the sum of a independent exponential
variates whose means are lambda).

y1=rangam(seed,a);

y2=rangam(seed,b);

x=y1/(y1+y2);

Beta:

a 1 b 11
x (1 x) where 1 a and 1 b

B(a,b)
� �

� � � � � � �

x=theta+lambda*rannor(seed); Normal with given location (theta) and scale (lambda)
parameters.

4 Functions RANUNI and UNIFORM are identical. Function UNIFORM cannot be utilized as a CALL routine.

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 42

All random number generator functions are based on RANUNI, because all distributions can be
obtained from a uniform distribution according to a theorem of probability theory. The
transformations from uniform to other distributions are carried out by the inverse transform method,
the Box-Müller transformation, and the acceptance-rejection procedure applied to the uniform
variates generated by RANUNI. Internally, SAS generates only uniform random numbers with
RANUNI and transforms them to the desired distribution. For example, if u1, u2 and u3 are from a
uniform distribution, then n in formula (3.3) follows the standard normal distribution

)2cos(ln2 21 πuun −= , (3.3)

and e calculated with formula (3.4) will be from an exponential distribution with a scale of one

)ln(3ue −= . (3.4)

The fact that there is only one real generator is demonstrated by Program 3.7.

Program 3.7 Demonstration of One Generator

DATA TEMP5(DROP=I);
�����DO I=1 TO 12;
 RUNI=RANUNI(123);
 OUTPUT;
 END;
 RUN;
PROC PRINT DATA=TEMP5;
 RUN;

DATA TEMP6(DROP=I);
 DO I=1 TO 3;
 RUNI=RANUNI(123);
 RNOR=RANNOR(456);
 REXP=RANEXP(789);
 OUTPUT;
 END;
 RUN;
PROC PRINT DATA=TEMP6;
 RUN;�

 Output 3.7
Many
Distributions
but Only One
Generator

 OBS RUNI

 1 0.75040
 2 0.32091
 3 0.17839
 4 0.90603
 5 0.35712
 6 0.22111
 7 0.78644
 8 0.39808
 9 0.12467
 10 0.18769
 11 0.77618
 12 0.43607

 OBS RUNI RNOR REXP

 1 0.75040 0.65572 0.09868
 2 0.35712 0.39428 0.92110
 3 0.12467 0.29958 0.82994

Chapter 3 Generating Univariate Random Numbers in SAS

43

See the values of RUNI on the right hand side of Output 3.7: they are the first, fifth and ninth values
of the left hand side. It seems that three numbers are skipped for each observation in file TEMP5.
Indeed, SAS takes two uniform random numbers to return one normal random number, and another
uniform random number to return an exponential random number.

Program 3.8 generates these same normal and exponential random numbers by taking those skipped
uniform random numbers and transforming them according to formulae (3.3) and (3.4). The random
numbers generated by our program in Output 3.8 are identical to the ones returned by the RANNOR
and RANEXP functions in Output 3.7.

Program 3.8 Uniform Random Numbers for Different Distributions

DATA TEMP7(DROP=I);
 DO I=1 TO 3;
 RUNI=RANUNI(123);

 /* take the next three random numbers. */

 U1=RANUNI(123);
 U2=RANUNI(123);
 U3=RANUNI(123);

 /* 2*arsin(1) is used to obtain the value of pi. */

 RNOR=SQRT(-2*LOG(U1))*COS(4*ARSIN(1)*U2);
 REXP=-LOG(U3);
 OUTPUT;
 END;
 RUN;
PROC PRINT DATA=TEMP7;
 RUN;

 Output 3.8
Uniform Random
Numbers Are
Used for Random
Numbers of
Different
Distributions

OBS RUNI U1 U2 U3 RNOR REXP

 1 0.75040 0.32091 0.17839 0.90603 0.65572 0.09868
 2 0.35712 0.22111 0.78644 0.39808 0.39428 0.92110
 3 0.12467 0.18769 0.77618 0.43607 0.29958 0.82994

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 44

Figure 3.1 is a comparative chart showing the execution times of the generators with certain
parameters. The measured quantities depend highly on several hardware/software factors, so they are
shown only for general guidance.

As expected, RANUNI takes the least amount of time. As seen before, RANNOR takes two uniform
random numbers and transforms them, so it takes a little more than two times that of RANUNI.
Similarly, the execution of RANEXP takes a little longer than that of RANUNI. Figure 3.1 plots the
execution time of the generators when referenced as functions. When we switch to the CALL
routines, the execution time increases by about 10% on average.

Figure 3.1 Benchmarking the Random Number Generators

Chapter 3 Generating Univariate Random Numbers in SAS

45

���� �����	
���������	�����������	���������������

3.8.1 Random Sample of Population Height (Normal
 Distribution)
One of the first variables that comes to mind when discussing normal distribution is height. In this
example, we will generate a random population of 50,000 adults with height measurement. Height is
normally distributed in the U.S. adult population (18-74 years) with a mean of 69.12 inches and a
standard deviation of 2.85 inches for men; and 63.68 and 2.68 for women (Brainard & Burmaster
1992). The following statement generates a random height value for men.

HEIGHT=69.12+2.85*RANNOR(123);

Program 3.9 generates 50,000 random, gender-dependent height values. The ratio of women to men
in the U.S. adult population is 50.96 to 49.04 (U.S. Bureau of the Census 1998). The program first
randomly chooses the gender code and then calculates the random height using the gender-dependent
formula. The results in Output 3.9 indicate that the random sample of height in the female population
is normally distributed with the requested parameters (see the normality test and the Q-Q plot). The
male random population possesses identical characteristics (not shown here).

The logarithm of weight is also normally distributed, and it is highly correlated with height. In
Chapter 4, we will demonstrate how to generate multivariate random variables with a given degree of
correlation.

Program 3.9 Generation of Random Height Values

DATA RNDPOP;
 DO I=1 TO 50000;
 IF RANUNI(123)<0.5096
 THEN DO; GENDER=’F’;
 HEIGHT=63.68+2.68*RANNOR(123);
 END;
 ELSE DO; GENDER=’M’;
 HEIGHT=69.12+2.85*RANNOR(123);
 END;
 OUTPUT;
 END;
 RUN;

/*check the distribution in the female population. */
/* is it normal with the specified parameters? */

PROC CAPABILITY DATA=RNDPOP NORMALTEST LINEPRINTER;
 VAR HEIGHT;
 WHERE GENDER=’F’;
 QQPLOT HEIGHT / NORMAL (MU=63.68 SIGMA=2.68);
 RUN;

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 46

 Output 3.9
Distribution of
Randomly
Generated
Height

3.8.2 Random Sample of Stock Prices (Lognormal
 Distribution)
In this example, we generate random samples of stock prices that follow the distribution of the S&P
500 stock prices as of February 29, 2000. Program 3.10 reads all 500 prices and probes whether they
form a normal distribution. Knowing the negative answer in advance, it also calculates the logarithm
of the price and finds that to be normal. Output 3.10 shows the non-normal distribution of PRICE
with a mean of 42.14 and a standard deviation of 30.22. The distribution of the variable LPRICE =
LOG(PRICE) with a mean of 3.53 and a variance of 0.66 can be considered normal, based on the
0.1108 p-value of the Shapiro-Wilk normality test. (The stock prices in many other months follow
different distributions.)

------------------------- gender=F ----------------------------

 The CAPABILITY Procedure
 Variable: height

 Moments

N 25480 Sum Weights 25480
Mean 63.6665732 Sum Observations 1622224.29
Std Deviation 2.68915463 Variance 7.23155264
Skewness 0.0114548 Kurtosis 0.02004051
Uncorrected SS 103465714 Corrected SS 184252.73
Coeff Variation 4.22380929 Std Error Mean 0.01684675

 Tests for Normality

 Test --Statistic--- -----p Value-----

 Kolmogorov-Smirnov D 0.004956 Pr > D 0.132
 Cramer-von Mises W-Sq 0.087017 Pr > W-Sq 0.173
 Anderson-Darling A-Sq 0.476862 Pr > A-Sq 0.242

 80 + NNN|
 | + NNNN |
 75 + ++NNN |
H | ++++ |
e 70 + +++++ |
i | ++++++ |
g 65 + +++++ |
h | +++++ |
t 60 + +++++ |
 | ++++++ |
 55 + ++++ |
 | NN++ |
 50 + NNN |
 -+--------+--------+--------+--------+--------+--------+-
 -6 -4 -2 0 2 4 6

 Normal Quantiles

Normal Line: NNN Mu=63.68, Sigma=2.68
Observations: + (25435 Hidden)

Chapter 3 Generating Univariate Random Numbers in SAS

47

Program 3.10 Distribution of Stock Prices

DATA SPPRICE;
 INPUT PRICE @@;
 LPRICE=LOG(PRICE);
 DATALINES;
 3.6875 4.8750 5.6250 5.6875 6.1875 6.5000 6.8125 6.8750 7.0000
 7.0000 8.0000 8.3125 8.5000 8.6250 8.7500 8.8125 8.9375 9.3750
 9.6250 9.8125 10.0625 10.0625 10.8125 11.2500 11.7500 11.8125 12.1875
 12.3750 13.1875 13.2500 13.3750 13.5625 13.6250 13.7500 13.8125 13.8125
 13.8750 14.0000 14.3125 14.3125 14.5000 14.6250 14.8750 14.9375 15.0000
 15.6250 15.7500 15.7500 15.7500 15.7500 15.9375 16.0625 16.1250 16.3125
 16.3750 16.3750 16.5000 16.6875 16.7500 16.8125 16.8125 16.8125 16.9375
 16.9375 17.1875 17.1875 17.2500 17.3750 17.4375 17.5000 17.5000 17.5625
 17.6875 17.8125 17.8125 17.8750 18.0000 18.2500 18.3125 18.4375 18.5000
 18.5000 18.5000 18.5625 18.6875 18.8125 19.0000 19.0000 19.1250 19.1250
 19.1250 19.2500 19.3125 19.3125 19.3750 19.6875 19.6875 19.6875 19.7500
 19.7500 19.8125 19.8125 19.8750 19.8750 20.1250 20.1250 20.1875 20.2500
 20.2500 20.5625 20.6250 20.6250 20.6875 20.8750 20.9375 21.0000 21.0625
 21.1875 21.3125 21.3750 21.3750 21.3750 21.6250 21.7500 21.8125 21.8750
 21.8750 22.1250 22.1250 22.1250 22.1875 22.1875 22.3750 22.4375 22.5625
 22.6875 22.8750 22.8750 22.9375 23.0000 23.2500 23.3750 23.4375 23.4375
 23.5000 23.7500 23.9375 23.9375 24.0000 24.0625 24.2500 24.5000 24.6250
 24.6875 24.6875 24.7500 24.8750 24.8750 24.9375 25.0625 25.1250 25.3125
 25.7500 25.8125 25.8750 25.8750 26.0000 26.0625 26.1875 26.1875 26.2500
 26.4375 26.6250 26.7500 26.7500 26.8125 27.0000 27.0625 27.0625 27.1875
 27.2500 27.2500 27.3750 27.5000 27.5625 27.5625 27.5625 27.6250 27.6250
 28.1250 28.2500 28.3125 28.3750 28.3750 28.4375 28.4375 28.5000 28.6250
 28.8125 28.9375 29.0000 29.0625 29.5000 29.6875 29.7500 29.7500 29.7500
 29.8125 29.8750 29.8750 29.9375 30.0000 30.0000 30.1250 30.1875 30.2500
 30.3125 30.3750 30.7500 31.0000 31.1250 31.2500 31.3125 31.7500 31.9375
 31.9375 32.1250 32.1250 32.6250 32.7500 32.8125 32.9375 32.9375 32.9375
 33.0000 33.0000 33.0000 33.0625 33.0625 33.2500 33.3125 33.4375 33.6250
 33.7500 33.8750 34.0000 34.0000 34.4375 34.6875 34.9375 35.0000 35.0000
 35.0625 35.2500 35.4375 35.7500 35.9375 36.2500 36.5000 36.5625 36.6875
 36.6875 36.6875 36.8125 36.8125 36.8125 36.9375 37.0000 37.0625 37.3125
 37.3750 37.4375 37.7500 37.8125 37.9375 38.0000 38.0000 38.0000 38.1250
 38.1875 38.2500 38.3125 38.3750 38.5625 38.5625 38.6250 38.6875 38.8125
 38.9375 38.9375 39.2500 39.4375 39.5000 39.5000 40.0000 40.0000 40.1875
 40.2500 40.4375 40.4375 40.5625 40.8125 40.8125 41.0000 41.1250 41.6250
 41.7500 41.8125 41.8125 41.9375 42.0000 42.0625 42.2500 42.5000 42.6250
 42.8125 43.0625 43.2500 43.4375 43.5000 43.5625 43.8750 43.8750 43.9375
 44.5000 44.6250 44.6875 44.7500 44.8750 45.0000 45.2500 45.3125 45.5000
 45.5625 45.6250 46.0000 46.0000 46.6250 46.8750 47.1250 47.4375 47.6250
 47.6250 47.8125 47.8125 48.0000 48.0000 48.1250 48.3125 48.3125 48.4375
 48.5000 48.6250 48.7500 48.9375 49.0000 49.1875 49.3750 49.3750 49.5000
 49.6250 49.6875 49.6875 50.0625 50.3125 50.5000 50.5000 50.5625 50.8125
 50.8750 50.9375 51.0000 51.1250 51.1250 51.3125 51.5000 51.6875 51.7500
 51.7500 51.7500 52.0625 52.0625 52.1875 52.1875 52.7500 52.7500 52.8750
 53.0000 53.3750 53.4375 53.6875 53.9375 54.3125 54.5000 54.6250 55.7500
 55.8750 56.5000 57.1875 57.2500 57.3125 57.5000 57.8750 58.0000 58.0000
 58.7500 58.9375 59.0000 59.0000 59.0000 59.4375 59.5000 59.5000 59.5625
 60.6875 61.0000 61.0000 61.5625 62.3750 63.5000 64.0000 64.0000 64.2500
 64.5000 64.6250 64.6875 65.1875 65.5000 66.6250 67.3750 67.5000 67.6250
 68.1250 68.1875 68.5000 68.7500 68.7500 70.1875 70.4375 72.0000 72.5000
 72.6250 72.8750 73.8125 73.8750 74.2500 74.6875 74.9375 75.1250 75.3125
 75.8125 76.0625 77.3750 77.9375 78.5000 78.7500 78.8125 79.6250 79.7500
 83.8125 85.2500 85.5625 87.0000 87.8750 88.1875 88.4375 89.3750 94.1875
 95.2500 96.0000 98.0000 98.2500 102.0000 102.5000 102.6875 102.7500 105.0000
105.4375 107.9375 108.5000 111.1875 113.0000 114.6250 115.7500 119.0000 119.2500
132.1875 132.3750 134.1875 134.5000 136.7500 142.4375 157.2500 159.6875 166.1250
172.0000 182.9375 188.0000 188.7500 196.8750
;
PROC UNIVARIATE DATA=SPPRICE NORMAL PLOT;
 VAR PRICE LPRICE;
 RUN;

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 48

 Output 3.10
Lognormal
Distribution of
Stock Prices

 The UNIVARIATE Procedure
 Variable: PRICE

 Moments

N 500 Sum Weights 500
Mean 42.144875 Sum Observations 21072.4375
Std Deviation 30.217191 Variance 913.078629
Skewness 2.11630849 Kurtosis 6.01943634
Uncorrected SS 1343721.48 Corrected SS 455626.236
Coeff Variation 71.698376 Std Error Mean 1.35135386

 Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.81284 Pr < W <0.0001
Kolmogorov-Smirnov D 0.137813 Pr > D <0.0100
Cramer-von Mises W-Sq 3.656731 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 22.08451 Pr > A-Sq <0.0050

 The UNIVARIATE Procedure
 Variable: LPRICE

 Moments

N 500 Sum Weights 500
Mean 3.52918406 Sum Observations 1764.59203
Std Deviation 0.65656975 Variance 0.43108383
Skewness -0.1068052 Kurtosis 0.31914485
Uncorrected SS 6442.68091 Corrected SS 215.110833
Coeff Variation 18.6040098 Std Error Mean 0.02936269

 Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.995057 Pr < W 0.1108
Kolmogorov-Smirnov D 0.027731 Pr > D >0.1500
Cramer-von Mises W-Sq 0.062784 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.53297 Pr > A-Sq 0.1799

 Histogram # Boxplot
 5.3+** 4 0
 .** 4 |
 4.9+*** 6 |
 .******* 14 |
 4.5+******* 13 |
 .*************** 30 |
 4.1+****************** 35 |
 .********************************** 67 +-----+
 3.7+********************************** 67 | |
 .************************* 49 *--+--*
 3.3+****************************** 59 | |
 .************************ 48 +-----+
 2.9+************************ 48 |
 .************* 25 |
 2.5+**** 8 |
 .*** 6 |
 2.1+**** 7 |
 .*** 6 |
 1.7+* 2 0
 .* 1 0
 1.3+* 1 0
 ----+----+----+----+----+----+----
 * may represent up to 2 counts

Chapter 3 Generating Univariate Random Numbers in SAS

49

A variable is lognormally distributed if its logarithm is normally distributed. If the lognormal
distribution has a mean of m and a standard deviation of s, then the variable PRICE in the statement
below will follow lognormal distribution.

PRICE=EXP(M+S*RANNOR(123));

Program 3.11 generates a sample of 10,000 random stock prices that follow the desired lognormal
distribution. Output 3.11 shows a mean of 41.79 and a standard deviation of 31.33. Figure 3.2
presents the frequency histogram of the random sample superimposed on the theoretical lognormal
distribution. The histogram of the random sample closely follows the theoretical curve. The
histogram gets much smoother and closer to the theoretical one when we increase the sample size to
100,000. The program rounds the generated prices in two ways.

PRICE=ROUND(PRICE,1/16);
PRICERND=ROUND(PRICE,1);

The first one rounds prices to 1/16 of a dollar, which is the precision with which the stock prices
were quoted (before the change to decimalization), and the second one rounds them to whole values
in order to facilitate the production of the frequencies with PROC FREQ later in the program.

Program 3.11 Generation of 10,000 Random Stock Prices

DATA RNDPRICE;
 DO I=1 TO 10000;
 PRICE=EXP(3.52918406+0.65656975*RANNOR(123));
 PRICE=ROUND(PRICE,1/16); *** round the price to 1/16.;
 PRICERND=ROUND(PRICE,1);
 OUTPUT;
 END;
PROC UNIVARIATE DATA=RNDPRICE;
 VAR PRICE;
 RUN;
PROC FREQ DATA=RNDPRICE;
 TABLE PRICERND / OUT=FREQHIST(RENAME=(PRICERND=PRICE)
 KEEP=PRICERND PERCENT);
 RUN;

/* create the theoretical probability density */
/* function of stock prices as of 31/1/1999. */

DATA PDFLOGN;
 DO PRICE=0 TO 200 BY 0.1;
 PROB=100*PDF(’LOGNORMAL’,PRICE,3.52918406,0.65656975);
 OUTPUT;
 END;
DATA BOTH;
 SET PDFLOGN FREQHIST;
 RUN;
PROC GPLOT DATA=BOTH;
 PLOT (PROB PERCENT)*PRICE / OVERLAY VAXIS=AXIS1
 HAXIS=AXIS2;
 AXIS1 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Probability (%)’)
 ORDER=0 TO 2.5 BY 0.5 VALUE=(H=1.2 F=SWISS)
 MINOR=(N=1);

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 50

 AXIS2 LABEL=(F=SWISS H=1.5 ’Stock Price ($)’)
 ORDER=0 TO 200 BY 25 VALUE=(H=1.2 F=SWISS)
 MINOR=(N=3);
 SYMBOL1 I=JOIN C=BLACK W=1 R=1;
 SYMBOL2 I=STEPCJ C=BLACK W=2 R=1;
 TITLE F=SWISS H=1.5 ’Theoretical and Randomly Generated
 Distributions of Stock Prices’;
 TITLE2 F=SWISS H=1.5 ’Size of Random Sample is 10,000’;
 RUN;
 QUIT;

 Output 3.11
Distribution of
Randomly
Generated
Stock Prices

Figure 3.2 Distribution of Randomly Generated 10,000 and 100,000 Stock Prices

Theoretical and Randomly Generated Distributions of Stock Prices
Size of Random Sample is 10,000

P
ro

ba
bi

lit
y

(%
)

0.0

0.5

1.0

1.5

2.0

2.5

Stock Price ($)

0 25 50 75 100 125 150 175 200

Theoretical and Randomly Generated Distributions of Stock Prices
Size of Random Sample is 100,000

P
ro

ba
bi

lit
y

(%
)

0.0

0.5

1.0

1.5

2.0

2.5

Stock Price ($)

0 25 50 75 100 125 150 175 200

The UNIVARIATE Procedure
Variable: PRICE
 Moments

N 10000 Sum Weights 10000
Mean 41.7947188 Sum Observations 417947.188
Std Deviation 31.3295633 Variance 981.541539
Skewness 3.02657488 Kurtosis 22.3156609
Uncorrected SS 27282419 Corrected SS 9814433.85
Coeff Variation 74.9605794 Std Error Mean 0.31329563�

Chapter 3 Generating Univariate Random Numbers in SAS

51

���� ��
����������� �����

The RANTBL function is one of the most widely used random number generators. When we need
random numbers from a discrete distribution, RANTBL is the choice. Or when the theoretical
distribution is unknown and we only possess a stepwise approximation of it, RANTBL is the
generator of choice again. The RANTBL function has the form

 R = RANTBL(seed,p1,p2,...pn);

and the RANTBL CALL routine has the form

 CALL RANTBL(seed,p1,p2,...pn,r);

where pi are probabilities and .1
1

∑
=

=
n

i
ip Variable r receives a value of

 1 with probability of p1,

 2 with probability of p2,

 ...

 n with probability of pn.

If we need different values to be generated, we have to map 1,2,... n into the desired set of values.

Sometimes ∑
=

<
n

i
ip

1

1 due to rounding error, and the RANTBL function may return an unexpected

extra value of n+1. In order to avoid this problem, we can increase the value of pn or leave it out

entirely. In this latter case, SAS will automatically assign the remaining probabilities)1(
1

1
∑

−

=

−
n

i
ip

to pn and the execution time will also decrease. The pi probabilities can be spelled out individually in
RANTBL, or they can be placed into an array, which is then referenced instead of the pi ’s. The
following two methods result in the same random numbers:

R=RANTBL(123,0.1,0.2,0.3,0.4);

ARRAY PROB(4) P1-P4 (0.1,0.2,0.3,0.4);
R=RANTBL(123,OF PROB(*));

As mentioned earlier, the following solutions provide the same results, but take a little less time to
execute because we leave out the last probability:

R=RANTBL(123,0.1,0.2,0.3);

ARRAY PROB(3) P1-P3 (0.1,0.2,0.3);
R=RANTBL(123,OF PROB(*));

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 52

The execution time of the RANTBL function, in general, increases linearly with the number of
probabilities specified, and it does not depend on the above two methods.

In the following example, we will demonstrate the RANTBL function’s use for generating random
samples of bonds with a given distribution of bond ratings. Then we pretend that the lognormal
distribution in Section 3.8.2 is unknown, and we generate the random stock prices with the help of
RANTBL in Section 3.10.2.

3.10 Examples Using the RANTBL Function

3.10.1 Random Sample of Bonds with Bond Ratings
The riskiness of bonds is measured by so-called bond ratings, determined by rating agencies such as
Moody's or Standard and Poor's. This example generates a sample portfolio of 10,000 bonds
following the rating composition of U.S. bonds rated by Moody's at the end of 1998. In Moody's
bond rating scale, 'Aaa' indicates the lowest level of risk, 'Aa' the second lowest level of risk and
'Caa' (including 'Ca' and 'C') the highest. Program 3.12 reads the theoretical composition and loads
the frequencies (probabilities) into array PROB, which makes up the probability mass function for
RANTBL. The heart of the program is the statement

BRATING=BRATINGS(RANTBL(123,OF PROB(*)));

which generates a random integer between 1 and 7 and maps it to the character string of the
corresponding rating category. This program determines what the ideal composition of the portfolio
would be in a sample of 10,000 bonds, and compares the random sample to this one using the chi-
square test. The non-significant result of the chi-square test (p-value of 0.216 in Output 3.12) means
that the random and theoretical portfolios are statistically identical.

Program 3.12 Generation of 10,000 Random Bond Ratings

/* Read the theoretical distribution of Moody’s */
/* bond ratings as of 12/1998. */

DATA BRATINGS;
 INPUT BRATING $3. MDPROB;
 MDPROB=MDPROB/100;
 CARDS;
Aaa 0.707 *** The sum of these frequencies is 100.
Aa 4.302
A 11.903
Baa 17.030
Ba 21.332
B 33.942
Caa 10.785
;
DATA RNDBONDS(KEEP=BRATING);
 SET BRATINGS END=ENDOFRT;

 /* set up arrays for the bond ratings (’BRTNGS’) */
 /* and the percent of companies in those rating */

Chapter 3 Generating Univariate Random Numbers in SAS

53

 /* categories (’PROB’). */

 ARRAY BRATINGS(7) $5 BRTNGS1-BRTNGS7;
 ARRAY PROB(7) PROB1-PROB7;
 RETAIN BRTNGS1-BRTNGS7 PROB1-PROB7;
 BRATINGS(_N_)=BRATING;
 PROB(_N_)=MDPROB;

 /* generate the 10,000 random bond ratings. */

 IF ENDOFRT THEN DO;
 DO I=1 TO 10000;

 /* function RANTBL is called with the probabilities */
 /* stored in array ’PROB’. The integer returned by */
 /* RANTBL is mapped into the rating category. */

 BRATING=BRATINGS(RANTBL(123,OF PROB(*)));
 OUTPUT;
 END;
 END;

/* check the random distribution to the theoretical one using */
/* the chi-square test of PROC FREQ. Obtain the frequencies */
/* by rating category in the random sample. */

PROC FREQ DATA=RNDBONDS;
 TABLE BRATING / NOPRINT OUT=FREQHIST(RENAME=(PERCENT=RNDPNT)
 KEEP=BRATING PERCENT COUNT);
 RUN;

/* set up a special file where there is a record for each */
/* rating category and for each sample (theoretical and random).*/
/* both theoretical and random samples have 10,000 bonds each. */
/* variable ’FRQ’ holds the frequency in each record. */

PROC SORT DATA=BRATINGS;
 BY BRATING;
DATA BOTH;
 MERGE BRATINGS FREQHIST;
 BY BRATING;
 SAMPLE=’Theoretical’;
 FRQ=ROUND(10000*MDPROB);
 OUTPUT;
 SAMPLE=’Random’;
 FRQ=COUNT;
 OUTPUT;
 RUN;

/* execute PROC FREQ to determine whether or not the */
/* random sample is from the theoretical distribution. */

PROC FREQ DATA=BOTH;
 TABLE SAMPLE*BRATING / CHISQ;
 WEIGHT FRQ;
 RUN;

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 54

Output 3.12 The Random Bond Ratings Follow the Theoretical Distribution

SAMPLE BRATING

Frequency |
Percent |
Row Pct |
Col Pct |A |Aa |Aaa |B |Ba |Baa |Caa | Total
------------+--------+--------+--------+--------+--------+--------+--------+
Random | 1125 | 462 | 68 | 3461 | 2215 | 1664 | 1005 | 10000
 | 5.63 | 2.31 | 0.34 | 17.31 | 11.08 | 8.32 | 5.03 | 50.00
 | 11.25 | 4.62 | 0.68 | 34.61 | 22.15 | 16.64 | 10.05 |
 | 48.60 | 51.79 | 48.92 | 50.49 | 50.94 | 49.42 | 48.22 |
------------+--------+--------+--------+--------+--------+--------+--------+
Theoretical | 1190 | 430 | 71 | 3394 | 2133 | 1703 | 1079 | 10000
 | 5.95 | 2.15 | 0.36 | 16.97 | 10.67 | 8.52 | 5.40 | 50.00
 | 11.90 | 4.30 | 0.71 | 33.94 | 21.33 | 17.03 | 10.79 |
 | 51.40 | 48.21 | 51.08 | 49.51 | 49.06 | 50.58 | 51.78 |
------------+--------+--------+--------+--------+--------+--------+--------+
Total 2315 892 139 6855 4348 3367 2084 20000
 11.58 4.46 0.70 34.28 21.74 16.84 10.42 100.00

Statistic DF Value Prob
--
Chi-Square 6 8.318 0.216

3.10.2 Generating Random Stock Prices Using the
 RANTBL Function
If the theoretical distribution of a variable is not known, but a stepwise approximation of it is
available, we can utilize the RANTBL function to generate the random samples that follow the
distribution given by that stepwise function. Let us assume that the stock prices in the example in
Section 3.8.2 follow an unknown theoretical distribution. We will show how to generate the random
stock prices with the RANTBL function.

Program 3.13 first establishes the theoretical cumulative density function of the S&P 500 stock prices
(using the file SPPRICE from Program 3.10 in Section 3.8.2). Then these prices and their
probabilities are loaded into two arrays used in conjunction with the RANTBL function. Note the
compact reference to array PROB, which has 414 elements during the execution (414 is the number
of unique stock prices among the S&P 500 stocks). Since the RANTBL function returns an integer, it
is mapped to an actual stock price. The program finally determines the cumulative distribution
function of the random stock prices and plots it along with the theoretical one. The closeness of the
two curves is clear in Figure 3.3 even with 1,000 random prices. The first ten randomly generated
values are shown in Output 3.13.

Chapter 3 Generating Univariate Random Numbers in SAS

55

Program 3.13 Generating Random Stock Prices with RANTBL

/* determine the probability mass function of the stock prices. */
/* file ’SPPRICE’ was created in Program 3.10. */

PROC FREQ DATA=SPPRICE;
 TABLE PRICE / NOPRINT OUT=SPFREQ(KEEP=PRICE PERCENT);

/* macro variable ’N’ holds the number of unique stock prices. */

DATA _NULL_;
 IF 0 THEN SET SPFREQ NOBS=N;
 IF _N_=1 THEN CALL SYMPUT(’N’,COMPRESS(PUT(N,8.0)));
 STOP; RUN;

/* generate 1,000 random stock prices according to the */
/* probabilities determined before (file ’RNDPRICE’). File */
/* ’SPCDF’ holds the theoretical cumulative density function */
/* of the S&P 500 stock prices. */

DATA RNDPRICE(KEEP=PRICE) SPCDF(KEEP=PRICE SPPROB);
 SET SPFREQ END=ENDOFPRC;

 /* arrays ’PRICES’ and ’PROB’ hold the unique stock prices */
 /* and their probabilities of the S&P 500 stocks. Load */
 /* them into the arrays from the output of ’PROC FREQ’. */

 ARRAY PRICES(&N) PRC1-PRC&N;
 ARRAY PROB (&N) PRB1-PRB&N;
 RETAIN PRC1-PRC&N PRB1-PRB&N;
 PRICES(_N_)=PRICE;
 PROB(_N_)=PERCENT/100;

 /* the arrays are loaded. Create the theoretical cdf (file */
 /* ’SPCDF’) and generate the 1,000 random stock prices. */

 IF ENDOFPRC THEN DO;

 /* calculate and save the theoretical cdf. */

 SPPROB=0;
 DO I=1 TO DIM(PRICES);
 PRICE=PRICES(I);
 SPPROB=SPPROB+PROB(I);
 OUTPUT SPCDF;
 END;

 /* generate random stock prices using function RANTBL. */

 DO I=1 TO 1000;

 /* function RANTBL is called with the probabilities */
 /* in array ’PROB’. The returned integer is mapped */
 /* to the actual stock price. */

 PRICE=PRICES(RANTBL(123,OF PROB(*)));
 OUTPUT RNDPRICE;
 END;
 END;
 RUN;

/* determine the cumulative distribution */

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 56

/* function of the random stock prices. */

PROC FREQ DATA=RNDPRICE;
 TABLE PRICE / NOPRINT OUT=RNDCDF(KEEP=PRICE PERCENT);
 RUN;
DATA RNDCDF(KEEP=PRICE RNDPROB);
 SET RNDCDF;
 RETAIN RNDPROB 0;
 RNDPROB=RNDPROB+PERCENT/100;
 RUN;

/* concatenate the theoretical (file ’SPCDF’) and the randomly */
/* generated (file ’RNDCDF’) cdf’s. Set up a sample identifier. */

DATA BOTH;
 SET SPCDF(RENAME=(SPPROB=PROB))
 RNDCDF(RENAME=(RNDPROB=PROB) IN=RND);
 RETAIN SAMPLE ’Theoretical’;
 IF RND THEN SAMPLE=’Random’;
 OUTPUT;
 RUN;

/* create an annotate file for the legend. */

DATA ANNO;
 XSYS=’2’; YSYS=’2’;
 FUNCTION=’LABEL’; POSITION=’6’; STYLE=’DUPLEX’; SIZE=1.2;
 X=170; Y=0.20; TEXT=’THEORETICAL’; OUTPUT;
 Y=0.10; TEXT=’RANDOM’; OUTPUT;
 LINE=1; FUNCTION=’MOVE’; X=150; Y=0.1; OUTPUT;
 FUNCTION=’DRAW’; X=168; Y=0.1; OUTPUT;
 LINE=20; FUNCTION=’MOVE’; X=150; Y=0.2; OUTPUT;
 FUNCTION=’DRAW’; X=168; Y=0.2; OUTPUT;

/* plot the two cdf’s. */

PROC GPLOT DATA=BOTH ANNOTATE=ANNO;
 PLOT PROB*PRICE=SAMPLE / VAXIS=AXIS1 HAXIS=AXIS2 NOLEGEND;
 AXIS1 LABEL=(A=90 R=0 F=DUPLEX H=1.2 ’Probability’)
 ORDER=0 TO 1 BY 0.2 VALUE=(H=1.2 F=DUPLEX) MINOR=(N=1);
 AXIS2 LABEL=(F=DUPLEX H=1.2 ’Stock Price ($)’)
 ORDER=0 TO 200 BY 25 VALUE=(H=1.2 F=DUPLEX) MINOR=(N=3);
 TITLE F=SWISS H=1.3 ’Theoretical and Randomly Generated
Cumulative Distribution Functions’;
 TITLE2 F=SWISS H=1.3 ’Size of Random Sample is 1,000. Function
Used: RANTBL’;
 SYMBOL1 I=JOIN C=BLACK R=1 L=1;
 SYMBOL2 I=JOIN C=BLACK R=1 L=20;
 RUN;
 QUIT;

Chapter 3 Generating Univariate Random Numbers in SAS

57

 Output 3.13
Random Stock
Prices
Generated
with the
RANTBL
Function

Figure 3.3 Distribution of Random Stock Prices Generated by RANTBL

��!!��"�����#�

The random number generator functions available in SAS satisfy the requirements of producing
random numbers of any distribution for Monte Carlo simulations. They are invoked in a DATA step
or in PROC IML, either as functions or CALL routines. When we create more than one random
variable, the CALL form should be used with carefully picked seed values in order to avoid
overlapping or correlated streams of random numbers. Various SAS procedures help verify the
distribution of the generated random numbers.

 The first 10 Random Stock Prices

 OBS PRICE

 1 62.0000
 2 33.6875
 3 26.6875
 4 85.0000
 5 35.0625
 6 28.3125
 7 64.5625
 8 37.0000
 9 21.7500
 10 26.9375

 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers 58

��!$���
�
�
�
��

Brainard, J., and D. E. Burmaster. 1992. “Bivariate Distributions for Height and Weight of Men and
Women in the United States.” Risk Analysis 12:267-275

Clark, M. R., and D. E. Woodward. 1992. “Generating Random Numbers with Base SAS Software.”
Observations 1(4):12-19.

Fels vályi, Á. 1994. “Solving the Monty Hall Problem with SAS Simulation.” Observations 3(3):43-53.

Fishman, G. S., and L. R. Moore. 1982. “A Statistical Evaluation of Multiplicative Congruential Random
Number Generators with Modulus 231-1.” Journal of the American Statistical Association 77
(377):129-136.

Hamer, R. M., and T. J. Breen. 1985. “The SAS System as a Statistical Simulation Language.”
Proceedings of the Tenth Annual SAS Users Group International Conference, Reno, Nevada,
982-989.

Killam, B. 1987. “An Overview of the SAS System Random Number Generators.”Proceedings of the
Twelfth Annual SAS Users Group International Conference, Dallas, Texas, 1059-1065.

Knuth, D. E. 1982. The Art of Computer Programming: Seminumerical Algorithms. Vol. 2. 2d ed. Reading,
MA: Addison-Wesley.

Lehmer, F. H. 1951. Second Symposium on Large-Scale Digital Calculating Machinery. Cambridge:
Harvard University Press.

Moody’s Investor Services. 1999. Bond Rating Distribution. New York: Moody’s Investor Services.

Ralston, A., ed. 1976. Encyclopedia of Computer Science. New York: Van Nostrand Reinhold.

Rubinstein, R. Y. 1981. Simulation and the Monte Carlo Method. New York: John Wiley & Sons.

U.S. Bureau of the Census. “Resident Population of the United States: Estimates, by Age and Sex.”
http://www.census.gov/population/estimates/nation/intfile2-1.txt (12/28/1998).

Chapter 4 Generating Data in Monte Carlo
 Studies

4.1 Introduction 59

4.2 Generating Sample Data for One Variable 60
 4.2.1 Generating Sample Data from a Normal Distribution with the Desired Mean and Standard
 Deviation 60
 4.2.2 Generating Data from Non-Normal Distributions 62
 4.2.2.1 Using the Generalized Lambda Distribution (GLD) System 62
 4.2.2.2 Using Fleishman’s Power Transformation Method 66

4.3 Generating Sample Data from a Multivariate Normal Distribution 71

4.4 Generating Sample Data from a Multivariate Non-Normal Distribution 79
 4.4.1 Examining the Effect of Data Non-normality on Inter-variable Correlations 80
 4.4.2 Deriving Intermediate Correlations 82

4.5 Converting between Correlation and Covariance Matrices 87

4.6 Generating Data That Mirror Your Sample Characteristics 90

4.7 Summary 91

4.8 References 91

���� �����	
������

In Chapter 3, we discussed how to generate random numbers from different distributions in SAS (e.g.,
uniform or normal distributions). This chapter is a continuation of that discussion. A Monte Carlo
study is “. . . the use of random sampling techniques ... to obtain approximate solutions ...” (Merriam-
Webster, Inc. 1994, pp. 754-755). To conduct a Monte Carlo study, it is obviously necessary to
generate sample data in such a fashion that the generated sample data adequately represent random
samples from a population with known population characteristics, such as population central tendency
(e.g., population mean) and population variability (e.g., population standard deviation). Furthermore,
population characteristics also include whether or not the population is normally distributed, and in
the case of non-normal distributions, the nature and degree of non-normality (e.g., degree of skewness
and/or kurtosis).

When the analysis involves more than one variable, as is usually the case in most analysis situations,
not only individual variable distribution characteristics (i.e., mean, standard deviation, skewness, and
kurtosis of each individual variable) need to be simulated, but the inter-variable relationship patterns
among the variables must also be adequately simulated. Fundamentally, the validity of any Monte
Carlo study results hinges on the adequacy of data generation, both for individual variables and for
inter-variable relationship patterns. Data generation is so crucial in Monte Carlo studies that it is no

60 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

exaggeration to say that unless we are able to generate sample data according to our specified
population characteristics, no Monte Carlo studies can be attempted.

The purpose of this chapter is to present procedures for data generation, and to present SAS program
examples to implement the data generation procedures. The theoretical aspects of data generation are
briefly covered when necessary to provide readers with the necessary theoretical underpinnings of the
data generation procedures. SAS programming examples of data generation are provided for all
important aspects of data generation so that readers will be able to apply these data generation
procedures in SAS in their own work.

��� ��

Most Monte Carlo studies involve more than one variable. But we must be able to generate samples
of a single variable before we can attempt to tackle the situation involving multiple variables. This
section discusses how such a task can be accomplished in SAS. Simulating data as if they were
sampled from a standard normal distribution—i.e., N(0,1), normally distributed with a population
mean of zero, and a population standard deviation of one—is easily accomplished in SAS by using
the RANNOR function, as discussed in Chapter 3. So the major focus of this chapter is on generating
sample data for a population with a known degree of non-normality. Because many statistical
analyses assume data normality, the impact of violating data normality assumption on the validity of
statistical results often becomes an area of focus for empirical investigations. Consequently, data non-
normality is often one important area of research interest in Monte Carlo simulation studies.

4.2.1 Generating Sample Data from a Normal Distribution
 with the Desired Mean and Standard Deviation
As discussed in Chapter 3, the SAS normal variate generator RANNOR makes it relatively easy to
generate samples from a normally distributed population with a mean of zero and a standard deviation
of one [N(0, 1)]. The numerical values obtained through repeated generation of the SAS normal
variate generator RANNOR can be considered as z scores from a normally distributed Z score
distribution, which is used widely in many statistical analyses. In many Monte Carlo studies,
however, we need variables with population means and standard deviations other than those provided
by the SAS normal variate generator RANNOR. To linearly transform normally distributed data to a
new distribution with the desired population mean and variance requires only a simple linear
transformation. Linear transformation only changes the mean and variance of a distribution, but not
the shape of the distribution as defined by the distribution's third and fourth statistical moments (i.e.,
skewness and kurtosis). The formula used for such linear transformation is as follows:

)(z + = X XX σµ ′′′ (4.1)

Chapter 4 Generating Data in Monte Carlo Studies 61

where

X’ is the transformed variable.

x’ is the desired population mean of the transformed variable.

z the z score values generated by the SAS random normal variate generator
 RANNOR.

x’ is the desired population standard deviation of the transformed variable.

Such simple linear transformation is readily implemented in the data generation process in SAS. For
example, we are interested in generating a sample of 10,000 observations (cases) on three
uncorrelated variables (X1, X2, X3) from the following three normal distributions with their respective
population means and standard deviations:

X1: = 100, = 15 (e.g., IQ Score Distribution)

X2: = 50, = 10 (e.g., T-Score Distribution)

X3: = 0, = 1 (e.g., Z-Score Distribution)

A SAS program example (Program 4.1) is provided below to accomplish this task. Please notice that
the linear transformations based on Formula 4.1, implemented for X1 and X2 in the SAS program,
easily accomplish the goal of imposing the specified population means and standard deviations on X1
and X2.

Program 4.1 Generating Three Independent Normal Variables

DATA A;
 DO I = 1 TO 10000;
 X1 = 100 + 15*RANNOR (0);
 X2 = 50 + 10*RANNOR (0);
 X3 = RANNOR (0);
 OUTPUT;
 END;
PROC MEANS DATA=A N MEAN VAR SKEWNESS KURTOSIS;
 VAR X1 X2 X3;
PROC CORR NOSIMPLE;
 VAR X1 X2 X3;
RUN;

Sample statistics (for N=10,000) based on one execution of Program 4.1 are presented in Output 4.1.
These results indicate that the variables in the sample closely resemble normal distributions with
specified means and standard deviations. In addition, as expected, the three variables are not
correlated with each other except by chance.

62 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 4.1
Sample
Statistics of
Three
Independent
Variables
(Program
4.1)

4.2.2 Generating Data from Non-Normal Distributions
Although it is relatively easy to generate sample data from a normal distribution with any desired
population mean and standard deviation, as seen in the previous section, generating data from a non-
normal distribution is considerably more complicated. But since non-normality tends to be an
important condition for empirical investigation in a variety of statistical Monte Carlo simulation
studies, it is crucial that a Monte Carlo researcher be able to accomplish this task.

A variety of mathematical algorithms have been developed over the years to simulate non-normality
distribution conditions (Burr 1973; Fleishman 1978; Johnson 1949, 1965; Johnson & Kitchen 1971;
Pearson & Hartley 1972; Ramberg & Schmeiser 1974; Ramberg et al. 1979; Schmeiser & Deutch
1977). In this section, we introduce two algorithms for simulating population distributional non-
normality conditions. These two algorithms have been popular among Monte Carlo researchers in
different disciplines. Also, these two systems are relatively easy to implement in SAS programming.

4.2.2.1 Using the Generalized Lambda Distribution (GLD) System
Based on Tukey’s earlier work (Tukey 1960), Ramberg and Schmeiser (1974) developed algorithms
for obtaining a generalized lambda distribution (GLD) for simulating non-normal distributions with
desired degrees of skewness and kurtosis:

λ

λ
λλ

2
1

)u (1 u + = X
43 −−′ (4.2)

 The MEANS Procedure

 Variable N Mean Variance Skewness Kurtosis

 X1 10000 100.1210242 225.5664422 0.0089585 -0.0961917
 X2 10000 50.2067529 101.1253957 -0.0118714 0.0306617
 X3 10000 0.0139093 1.0228762 0.0087563 0.0473664

 The CORR Procedure

 Pearson Correlation Coefficients, N = 10000
 Prob > |r| under H0: Rho=0

 X1 X2 X3

 X1 1.00000 0.01188 0.00158
 0.2349 0.8749

 X2 0.01188 1.00000 0.00809
 0.2349 0.4183

 X3 0.00158 0.00809 1.00000
 0.8749 0.4183

Chapter 4 Generating Data in Monte Carlo Studies 63

where

X’ is the simulated non-normal distribution.

u is a uniform distribution ranging from 0 to 1 (see Chapter 3 for details
about the SAS uniform distribution generator RANUNI).

i (i=1 to 4) represents values needed to simulate sample data from a non-normal
distribution with specified degrees of skewness and kurtosis; these four
� values are determined once the degrees of skewness and kurtosis of the
simulated non-normality are specified.

Ramberg et al. (1979) elaborated on the GLD algorithms and tabulated the parameters 1, 2, 3, and

 4 needed in (4.2) for selected values of skewness and kurtosis. Part of the tabulated parameters of 1,

 2, 3, and 4 are adapted from Ramberg et al. (1979) and presented in Table 4.1. Table 4.1 is
intended as an illustrative example, and it only covers those values for non-normality conditions
with skewness of +.75 or -.75, and kurtosis ranging from -.2 to +3.2. Readers should consult the
tabulated values in Ramberg et al. (1979) for other non-normality conditions as defined by the
population skewness and kurtosis of a distribution.

Table 4.1 GLD Method Coefficients for Non-Normality Transformation

SKEWNESS1 KURTOSIS

 1

 2

 3

 4

 .75 -.20 -1.3340 .2104 .0000 .3903
 .75 .00 -1.0970 .2003 .0183 .3119
 .75 .40 - .7850 .1658 .0360 .1974
 .75 .80 - .5900 .1206 .0355 .1179
 .75 1.20 - .4660 .0726 .0246 .0614
 .75 1.60 - .3840 .0266 .9663(+) .0202
 .75 2.00 - .3240 -.0157 -.5915(+) -.0109
 .75 2.40 - .2840 -.0539 -.0207 -.0352
 .75 2.80 - .2540 -.0884 -.0342 -.0547
 .75 3.20 - .2290 -.1195 -.0464 -.0706

1: For negative skewness, see the explanation later in this section.
(+): Multiply by 10-2.

64 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

One potential confusion related to the tabulated i values in the tables of Ramberg et al. (1979) is the
kurtosis values listed in their tables. Ramberg et al. defined skewness (3) and����������	 4)
respectively as:

σ
µ

α

σ
µ

α

4

4

4

3

3

3

) E(X
 =

)E(X
 =

−

−

 (4.3)

where

E is a symbol meaning "expected value".

� is the population mean.

 is the population standard deviation.

3 is the skewness.

4 is the kurtosis.

While the definition for skewness (�3) is consistent with what is commonly used elsewhere, the
definition for kurtosis (�4) is not. Although their definition for kurtosis is technically correct and not
uncommon, the more commonly known definition for kurtosis is:

 3
) E(X

 =
4

4

4 −−
σ

µ
α (4.4)

The difference between the two definitions of kurtosis is simple: Based on the more common
definition of kurtosis (4.4), a normal distribution will have a skewness of zero and a kurtosis of zero.
But based on the kurtosis definition in Ramberg et al. (1979), as expressed in (4.3), a normal
distribution would have a skewness of zero and a kurtosis of 3. For this reason, readers should be
careful in reading the tables in Ramberg et al. (1979) for different kurtosis values: simply subtract 3
from their tabulated kurtosis values to make those values conform to the more common definition.
For example, the kurtosis values in Table 4.1 above originally ranged from +2.8 to +6.2 in Ramberg
et al. (1979). We simply subtracted 3 from their listed kurtosis values in order to make them conform
to the convention that normal distributions have a kurtosis of zero instead of +3.

The tabulated i values in Ramberg et al. (1979) for the GLD algorithm, as represented in Table 4.1,
do not list any condition of negative skewness. But the probability density with a negative skewness
is the mirror image of the probability density with a positive skewness of the same absolute value. So
to obtain the i values for a negative skewness condition, do the following:

1. Find the i values for the positive skewness with the same absolute value.

2. Interchange the 3 and 4 values—i.e., use the 3 as the new 4, and 4 as the new 3.

3. Change the sign of 1.

Chapter 4 Generating Data in Monte Carlo Studies 65

These three steps will allow us to generate sample data from distributions with negative skewness.

It also warrants readers’ attention that, in using the GLD algorithm as presented above in simulating
non-normal conditions, the uniform distribution generator (RANUNI in SAS) is needed instead of the
normal variate generator (RANNOR). A SAS program example is presented below (Program 4.2) in
which the GLD method is used to simulate a sample (N=10,000) with three uncorrelated non-normal
variables with the following population non-normality conditions:

X1: = 100, = 15, skewness = .75, kurtosis = .80

X2: = 50, = 10, skewness = -.75, kurtosis = .80

X3: = 0, = 1, skewness = .75, kurtosis = 2.40

Program 4.2 GLD Method for Generating Three Non-Normal Variables

DATA A;
 DO I = 1 TO 10000;
 X1 = RANUNI(0);
 X2 = RANUNI(0);
 X3 = RANUNI(0);
 X1 = -.59 + (X1**.0355 - (1-X1)**.1179)/.1206;
 X2 = .59 + (X2**.1179 - (1-X2)**.0355)/.1206;
 X3 = -.284 + (X3**(-.0207) - (1-X3)**(-.0352))/(-.0539);
 X1 = 100 + 15*X1;
 X2 = 50 + 10*X2;
 X3 = X3;
 OUTPUT;
 END;
PROC MEANS N MEAN STD SKEWNESS KURTOSIS;
 VAR X1 X2 X3;
PROC CORR NOSIMPLE;
 VAR X1 X2 X3;
RUN;

The descriptive statistics for the simulated sample of three uncorrelated variables based on one
execution of this SAS program are presented in Output 4.2 below. These results indicate that the
sample generated using the GLD method closely approximates the desired population non-normality
conditions specified for the three variables. Furthermore, the sample correlations among the three
variables do not exceed chance level, as expected theoretically.

66 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 4.2
Three Non-
Normal
Variables
Based on
GLD Method
(Program 4.2)

4.2.2.2 Using Fleishman’s Power Transformation Method
Fleishman (1978) also introduced a method for generating sample data from a population with desired
degrees of skewness and kurtosis. This method uses polynomial transformation to transform a
normally distributed variable to a variable with specified degrees of skewness and kurtosis. The
polynomial transformation developed by Fleishman takes the form:

 dZ+ cZ + bZ + a = Y 32 (4.5)

 where

Y is the transformed non-normal variable with specified population skewness
and kurtosis.

Z is a normally distributed variable with a population mean of zero and a
variance of one—i.e., a unit normal variate.

a, b, c, d are coefficients needed for transforming the unit normal variate to a non-
normal variable with specified degrees of population skewness and
kurtosis. Of the four coefficients, a = -c.

The coefficients (a, b, c, d) needed for the transformation are tabulated in Fleishman (1978) for
selected combinations of degrees of skewness and kurtosis. Table 4.2 presents a small example set of
Fleishman power transformation coefficients for skewness of .75, and for kurtosis ranging from -.20
to +3.20. Because a = -c, the table does not list the values for a.

 The MEANS Procedure

 Variable N Mean Std Dev Skewness Kurtosis

 X1 10000 100.0306527 14.7541618 0.7329213 0.8436068
 X2 10000 50.0614385 9.9028254 -0.7390503 0.7232249
 X3 10000 0.0015703 0.9900119 0.6779757 2.4359533

 The CORR Procedure
 Pearson Correlation Coefficients, N = 10000
 Prob > |r| under H0: Rho=0

 X1 X2 X3
 X1 1.00000 0.00274 0.00319
 0.7838 0.7497

 X2 0.00274 1.00000 -0.00231
 0.7838 0.8175

 X3 0.00319 -0.00231 1.00000
 0.7497 0.8175

Chapter 4 Generating Data in Monte Carlo Studies 67

Once the coefficients for the desired transformation are available, generating non-normal data
becomes a relatively simple matter. While the GLD method discussed above requires a uniform
distribution random number generator (the RANUNI function in SAS), Fleishman’s method requires a
normal variate generator (the RANNOR function in SAS) for generating random numbers from a
normal distribution with a mean of zero and a variance of one.

Table 4.2 Selected Coefficients for Non-Normality Transformation

SKEWNESS1 KURTOSIS b c d

 .75 -.20 1.173302916 .207562460 -.079058576
 .75 .00 1.112514484 .173629896 -.050334372
 .75 .40 1.033355486 .141435163 -.018192493
 .75 .80 .978350485 .124833577 .001976943
 .75 1.20 .935785930 .114293870 .016737509
 .75 1.60 .900640275 .106782526 .028475848
 .75 2.00 .870410983 .101038303 .038291124
 .75 2.40 .843688891 .096435287 .046773413
 .75 2.80 .819604207 .092622898 .054275030
 .75 3.20 .797581770 .089386978 .061023176

Note: a = -c

1: For negative skewness, see the discussion in the text.

Since positive and negative skewness can be considered symmetrical, the tabulated transformation
coefficients in Fleishman (1978) did not list negative skewness conditions. But the coefficients for
negative skewness conditions can be obtained simply by reversing the signs of c and a. In other
words, to generate a sample from a negatively skewed distribution, do the following:

1. Obtain the coefficients (b, c, d) for the desired kurtosis and positive skewness of the
same absolute value.

2. Obtain a (a = -c).

3. Reverse the signs of a and c.

4. Apply the coefficients in the formula.

An example SAS program (Program 4.3) is presented below in which the Fleishman power
transformation method is used for generating a sample (N=10,000) of three uncorrelated variables
with the same univariate non-normality conditions as those specified in the example for the GLD
method. That is,

X1: = 100, �= 15, skewness = .75, kurtosis = .80

X2: = 50, �= 10, skewness = -.75, kurtosis = .80

X3: = 0, �= 1, skewness = .75, kurtosis = 2.40

68 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Program 4.3 Fleishman Method for Generating Three Non-Normal Variables

 DATA A;

 DO I = 1 TO 10000;
 X1 = RANNOR (0);
 X2 = RANNOR (0);
 X3 = RANNOR (0);
 *** Fleishman non-normality transformation;

 X1 = -.124833577 + .978350485*X1 + .124833577*X1**2 + .001976943*X1**3;
 X2 = .124833577 + .978350485*X2 - .124833577*X2**2 + .001976943*X2**3;
 X3 = -.096435287 + .843688891*X3 + .096435287*X3**2 + .046773413*X3**3;

 X1 = 100 + 15*X1; ***linear transformation;
 X2 = 50 + 10*X2;
 X3 = X3;
 OUTPUT;
 END;
PROC MEANS N MEAN STD SKEWNESS KURTOSIS;
 VAR X1 X2 X3;
PROC CORR NOSIMPLE;
 VAR X1 X2 X3;
RUN;

The resultant sample descriptive statistics based on one execution of Program 4.3 are presented in
Output 4.3 below. These results indicate that the sample represents the theoretical population well in
terms of the specified non-normality conditions (i.e., specified degrees of skewness and kurtosis).
Note that the negative skewness of X2 was easily achieved by reversing the signs of a and c. In
addition, the three variables are not correlated beyond what can be expected by sampling error.

Output 4.3
Three Non-
Normal
Variables
Based on the
Fleishman
Method
(Program 4.3)

 The MEANS Procedure

 Variable N Mean Std Dev Skewness Kurtosis

 X1 10000 99.9971162 15.1025922 0.7038539 0.7563708
 X2 10000 50.0069170 10.0722888 -0.7547759 0.9121069
 X3 10000 0.0014170 1.0133944 0.7898695 2.6114542

 The CORR Procedure
 Pearson Correlation Coefficients, N = 10000
 Prob > |r| under H0: Rho=0

 X1 X2 X3

 X1 1.00000 -0.00943 0.01024
 0.3456 0.3060

 X2 -0.00943 1.00000 0.00668
 0.3456 0.5040

 X3 0.01024 0.00668 1.00000
 0.3060 0.5040

Chapter 4 Generating Data in Monte Carlo Studies 69

Both the GLD and Fleishman methods for generating sample data from non-normal distributions are
easy to use, because the coefficients needed for the non-normal transformation are tabulated in the
authors’ original articles for many selected combinations of skewness and kurtosis.

In case non-normality conditions other than those tabulated in Ramberg et al. (1979) or in Fleishman
(1978) are desired, and consequently no coefficients are available for generating sample data with the
desired non-normality conditions, we provide a SAS/IML program (Program 4.4) below for deriving
your own Fleishman coefficients for any possible univariate non-normality conditions permitted by
the Fleishman method. To derive the Fleishman coefficients for any desired non-normality
conditions, one simply specifies the desired degree of skewness and kurtosis for each variable, and
then runs the SAS/IML program. The program will then output the Fleishman coefficients (a, b, c,
and d). These coefficients can then be used for generating sample data, as in Program 4.3 above. As
an example, in Program 4.4, Fleishman coefficients are derived for the following four
skewness/kurtosis conditions:

1. skewness = -1, kurtosis = 2.5

2. skewness = 2, kurtosis = 7

3. skewness = 0, kurtosis = 0

4. skewness = -2, kurtosis = 7

Program 4.4 Deriving Fleishman Coefficients for Desired Skewness and Kurtosis

 /* This program calculates the coefficients for Fleishman’s power transformation in

order to obtain univariate non-normal variables. For references, see Allen I.
Fleishman, (1978). A method for simulating non-normal distributions,
Psychometrika, 43, 521-532. Also see Vale, C. David and Maurelli, Vincent A.
(1983). Simulating multivariate non-normal distributions, Psychometrika, 48,
465-471. */

PROC IML;

 /* In the following matrix ’SKEWKURT’, specify the skewness and kurtosis for each

variable. Each row represents one variable. In each row, the 1st number is the
skewness, the 2nd is the kurtosis of the variable; */

SKEWKURT={-1 2.5,
 2 7,
 0 0,
 -2 7};

START NEWTON;
 RUN FUN;
 DO ITER = 1 TO MAXITER
 WHILE(MAX(ABS(F))>CONVERGE);
 RUN DERIV;
 DELTA=-SOLVE(J,F);
 COEF=COEF+DELTA;
 RUN FUN;
 END;
FINISH NEWTON;
MAXITER=25;
CONVERGE=.000001;
START FUN;
 X1=COEF[1];
 X2=COEF[2];

70 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 X3=COEF[3];
 F=(X1**2+6*X1*X3+2*X2**2+15*X3**2-1)//
 (2*X2*(X1**2+24*X1*X3+105*X3**2+2)-SKEWNESS)//
 (24*(X1*X3+X2**2*(1+X1**2+28*X1*X3)+X3**2*
 (12+48*X1*X3+141*X2**2+225*X3**2))-KURTOSIS);
FINISH FUN;
START DERIV;
 J=((2*X1+6*X3)||(4*X2)||(6*X1+30*X3))//
 ((4*X2*(X1+12*X3))||(2*(X1**2+24*X1*X3+105*X3**2+2))
 ||(4*X2*(12*X1+105*X3)))//
 ((24*(X3+X2**2*(2*X1+28*X3)+48*X3**3))||
 (48*X2*(1+X1**2+28*X1*X3+141*X3**2))||
 (24*(X1+28*X1*X2**2+2*X3*(12+48*X1*X3+141*X2**2+225*X3**2)
 +X3**2*(48*X1+450*X3))));
FINISH DERIV;
DO;
NUM = NROW(SKEWKURT);
DO VAR=1 TO NUM;
 SKEWNESS=SKEWKURT[VAR,1];
 KURTOSIS=SKEWKURT[VAR,2];
 COEF={1.0, 0.0, 0.0};
 RUN NEWTON;
 COEF=COEF‘;
 SK_KUR=SKEWKURT[VAR,];
 COMBINE=SK_KUR || COEF;
 IF VAR=1 THEN RESULT=COMBINE;
 ELSE IF VAR>1 THEN RESULT=RESULT // COMBINE;
END;
 PRINT "COEFFICIENTS OF B, C, D FOR FLEISHMAN’S POWER TRANSFORMATION";
 PRINT "Y = A + BX + CX^2 + DX^3";
 PRINT " A = -C";
 MATTRIB RESULT COLNAME=({SKEWNESS KURTOSIS B C D})
 FORMAT=12.9;
 PRINT RESULT;
END;
QUIT;

In Program 4.4, the Fleishman coefficients for four variables with varying degrees of
skewness/kurtosis combinations (-1/2.5, 2/7, 0/0, and -1/7 respectively) are derived at the same time.
A versatile iterative estimation method called the Newton-Raphson method is used to obtain a
solution for the Fleishman coefficients for the variables with the desired degrees of skewness and
kurtosis. It is not necessary for readers to understand the Newton-Ralphson method implemented in
the program, nor is it necessary to understand the details of the SAS PROC IML program in Program
4.4. The user only needs to provide the matrix called "SKEWKURT" in the program. The number of
rows in this matrix represents the number of variables for which Fleishman coefficients are needed.
Each row of the matrix has two numbers. The first is the desired skewness of the variable, and the
second is the desired kurtosis of the variable. The execution of Program 4.4 produces the results
shown in Output 4.4. These coefficients (a, b, c, and d) can then be used to generate sample data
drawn from non-normal populations with the desired degrees of skewness and kurtosis.

Chapter 4 Generating Data in Monte Carlo Studies 71

Output 4.4
Fleishman
Coefficients
for Four
Variables
(Program
4.4)

One disadvantage of both the GLD and Fleishman methods is that neither of the two covers all
possible combinations of skewness and kurtosis. In other words, the two methods cannot generate
data for some combinations of skewness and kurtosis conditions (Fleishman 1978; Tadikamalla
1980). The comparative study by Tadikamalla (1980) indicated that the two methods cover
approximately the same parameter space of non-normality as defined by skewness and kurtosis, but
the Fleishman method is more efficient. Readers interested in this limitation may consult these
references about the approximate parameter space (non-normality conditions as defined by skewness
and kurtosis) for which the two methods can generate non-normal data.

Besides the two methods discussed here, other methods exist for the same purpose, such as those by
Johnson (1949, 1965), Ramberg and Schmeiser (1974), Schmeiser and Deutch (1977), and Burr
(1973). Interested readers may consult the original papers for these alternative methods. Despite the
fact that the Fleishman method cannot cover some non-normality conditions, the Fleishman method
may be easier to use compared with other methods when multivariate non-normal data are desired in
Monte Carlo simulations, as will be discussed later in this chapter.

������������������������������������
�������������������

��������������
�����

Methods for generating univariate normal and non-normal sample data have been discussed in the
previous sections. In most Monte Carlo studies, however, multiple variables are involved. For
example, in any regression analysis, there must be two correlated variables at a minimum: the
dependent variable (Y) and one predictor (X). The same is true for many other univariate statistical
techniques (i.e., where there is only one dependent variable). Any multivariate statistical technique
(i.e., where there are multiple dependent variables), by definition, must have multiple variables in the
system.

When multiple variables are involved in a Monte Carlo study, not only does the researcher have to
control univariate distributional characteristics as discussed above, he/she must also be able to control
the multiple-variable sample data in such a way that the sample data generated can be considered as
samples drawn from a multiple-variable population with known inter-variable correlations. This is
the topic to be discussed in this section.

 COEFFICIENTS OF B, C, D FOR FLEISHMAN’S POWER TRANSFORMATION

 Y = A + BX + CX^2 + DX^3

 A = -C

 RESULT
 SKEWNESS KURTOSIS B C D

 -1.000000000 2.500000000 0.865574890 -0.136404884 0.037138751

 2.000000000 7.000000000 0.761585275 0.260022598 0.053072274

0.000000000 0.000000000 1.000000000 0.000000000 0.000000000

 -2.000000000 7.000000000 0.761585275 -0.260022598 0.053072274

72 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

The degree of complexity in generating multiple variables with desired degrees of inter-variable
correlations depends partially on whether the individual variables involved are normally distributed or
not. Because of this, we divide our discussion into two sections, with this section covering normal
univariate variables, and with section 4.4 covering non-normal univariate variables.

When all individual variables are normally distributed, imposing a specified population inter-
correlation pattern on the sample data of multiple variables is a relatively straightforward procedure.
Kaiser and Dickman (1962) presented a matrix decomposition procedure that imposes a specified
correlation matrix on a set of otherwise uncorrelated random normal variables, as if the data were
sampled from a population with specified population correlations as represented by the imposed
correlation matrix. Given a desired population correlation matrix R, the basic matrix decomposition
procedure takes the following form (Kaiser & Dickman 1962):

 X̂ F = Ẑ N)(kk)(kN)(k ××× (4.6)

where

k is the number of variables involved.

N is the number of observations (sample N).

�̂ is a k×N data matrix, with N observations, each with k uncorrelated random normal
variables (mean of zero and standard deviation of one).

F: is a k×k matrix containing principal component factor pattern coefficients obtained
by applying principal component factorization to the given population correlation
matrix R.

�̂ is the resultant k×N sample data matrix (N observations on k variables), as if
sampled from a population with the given population correlation matrix R.

k×N represents the matrix dimensions (k rows and N columns).

To generate sample data of k variables with the desired population inter-correlation pattern as
represented by R, take the following steps:

1. For a specified population correlation matrix R, conduct a factor analysis (SAS/STAT
PROC FACTOR) using principal component as the factor extraction method (the
default option in PROC FACTOR). Request the option of keeping the same number of
factors (PROC FACTOR N=K) as the number of variables in the specified population
correlation matrix R, and obtain the matrix of factor pattern F, which is called "factor
pattern" in SAS output.

2. Generate k uncorrelated random normal variables (mean of zero and standard deviation
of one), each with N observations. The dimension of this matrix is originally N×k. It is

then transposed to a k×N dimension matrix ,
�

� i.e., the matrix has k rows to represent k
variables, and N columns to represent N observations.

Chapter 4 Generating Data in Monte Carlo Studies 73

3. Premultiply the uncorrelated data matrix
�

�with the factor pattern matrix F. The

resultant Ẑ matrix (k×N) contains N observations on k correlated variables, as if the N
observations were sampled from a population with the population correlation pattern
represented by R. This correlated data matrix is then transposed back to an N×k
dimension sample data matrix for later use in analysis.

The matrix manipulations involved in the above discussion can easily be implemented in SAS. When
individual variables are univariate normal, the multivariate data generated through this matrix
decomposition procedure are multivariate normal (Vale & Maurelli 1983). To illustrate the steps for
generating correlated multivariate normal data, we plan to generate sample data for three variables
(X1, X2, and X3) with the following population parameters:

Table 4.3 Specification of Three Correlated Normal Variables

 Mean STD Skew Kurtosis Correlation Matrix

 X1 100 15 .00 .00 1.00
 X2 50 10 .00 .00 .70 1.00
 X3 0 1 .00 .00 .20 .40 1.00

For obtaining the factor pattern of the desired population correlation matrix, we use the following
SAS FACTOR procedure:

DATA A (TYPE=CORR); _TYPE_=’CORR’;
 INPUT X1-X3;
CARDS;
1.00 . .
 .70 1.00 .
 .20 .40 1.00
;
PROC FACTOR N=3;
RUN;

The execution of the SAS program above produces the following factor pattern matrix:

 FACTOR1 FACTOR2 FACTOR3

 X1 0.84267 -0.42498 0.33062
 X2 0.91671 -0.12476 -0.37958
 X3 0.59317 0.79654 0.11694

74 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Using the previous pattern matrix, we can then generate three correlated normal variables with
specified population correlation coefficients and variable means and standard deviations as in
Program 4.5. More specifically, Program 4.5 accomplishes the following:

�� generates sample data of three uncorrelated univariate normal variables of 10,000
observations

�� transforms the three uncorrelated variables to correlated variables as if sampled from a
population with the desired correlation pattern, as specified in the population
correlation matrix

�� linearly transforms the variables to have the specified population means and standard
deviations.

Program 4.5 Generating Three Correlated Normal Variables

PROC IML;
F={0.84267 -0.42498 0.33062,
 0.91671 -0.12476 -0.37958,
 0.59317 0.79654 0.11694};
DATA=RANNOR(J(10000,3,0)); *** generate data matrix (10000×3);
DATA=DATA‘; *** transpose data matrix (3×10000);
Z = F*DATA; *** impose inter-correlations;
Z = Z‘; *** transpose data matrix back (10000×3);

X1=Z[,1]*15 + 100; *** linear transformation for specified mean and std;
X2=Z[,2]*10 + 50;
X3=Z[,3];

 *** output data to a temporary SAS data set’A’;
Z=X1||X2||X3;
CREATE A FROM Z [COLNAME={X1 X2 X3}];
APPEND FROM Z;

 *** obtain sample descriptive statistics;
PROC MEANS DATA=A N MEAN STD SKEWNESS KURTOSIS;
 VAR X1 X2 X3;
PROC CORR DATA=A NOSIMPLE;
 VAR X1 X2 X3;
RUN;

One execution of the program produces the results shown in Output 4.5. As can be seen from these
results, the sample data that we obtained closely resemble the desired population characteristics both
in terms of univariate descriptive statistics (sample mean and standard deviation) and in terms of the
sample inter-variable correlation pattern. In Program 4.5, linear transformation is carried out for the
three correlated variables to impose the specified univariate population means and standard
deviations. As discussed previously, such linear transformation will not affect the inter-variable
correlation pattern.

Chapter 4 Generating Data in Monte Carlo Studies 75

 The MEANS Procedure

 Variable N Mean Std Dev Skewness Kurtosis

 X1 10000 100.2838455 14.9544748 -0.0548380 -0.0099831
 X2 10000 50.1804325 9.9780623 0.0058695 -0.0204076
 X3 10000 0.0168731 0.9968740 0.0165395 0.1349200

 The CORR Procedure

 Pearson Correlation Coefficients, N = 10000
 Prob > |r| under H0: Rho=0

 X1 X2 X3

 X1 1.00000 0.70128 0.19828
 <.0001 <.0001

 X2 0.70128 1.00000 0.40052
 <.0001 <.0001

 X3 0.19828 0.40052 1.00000
 <.0001 <.0001

Output 4.5
Three
Correlated
Normal
Variables
(Program 4.5)

Program 4.5a is almost identical to Program 4.5, except that the factor pattern matrix is obtained
within this program. Previously, the factor pattern matrix was obtained first, and it was then used in
Program 4.5. In Program 4.5a, the two steps are combined, and the program becomes more
automated.

Program 4.5a Generating Three Correlated Normal Variables

DATA A (TYPE=CORR); _TYPE_=’CORR’;
 INPUT X1-X3;
CARDS;
1.00 . .
 .70 1.00 .
 .20 .40 1.00
;

 * obtain factor pattern matrix for later data generation;

PROC FACTOR N=3 OUTSTAT=FACOUT;
DATA PATTERN; SET FACOUT;
 IF _TYPE_=’PATTERN’;
 DROP _TYPE_ _NAME_;
RUN;

PROC IML;
 USE PATTERN; * read in the factor pattern as a matrix ‘F’;
 READ ALL VAR _NUM_ INTO F;
 F=F`;

DATA=RANNOR(J(10000,3,0)); *** generate data matrix (10000x3);
DATA=DATA`; *** transpose data matrix (3x10000);
Z = F*DATA; *** impose inter-correlations;
Z = Z`; *** transpose data matrix back (10000x3);

76 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

X1=Z[,1]*15 + 100; *** linear transformation for specified mean and std;
X2=Z[,2]*10 + 50;
X3=Z[,3];

 *** output data to a temporary SAS data set ’A’;
Z=X1||X2||X3;
CREATE A FROM Z [COLNAME={X1 X2 X3}];
APPEND FROM Z;

 *** obtain sample descriptive statistics;
PROC MEANS DATA=A N MEAN STD SKEWNESS KURTOSIS;
 VAR X1 X2 X3;
PROC CORR DATA=A NOSIMPLE;
 VAR X1 X2 X3;
RUN;

Program 4.6 presents a fully automated base SAS macro program (%RMNC) comparable to Program
4.5a. However, Program 4.6 is fully automated, and as a SAS macro program, it can be called in
whenever it is needed. As the explanation in Program 4.6 indicates, once the correlation matrix plus
means and standard deviations are used as data input, and the three parameters are specified (DATA=,
OUT=, SEED=,) in the macro, sample data generation is fully automated. In addition, to use macro
RMNC, there is no need to specify information about the number of variables, sample size, etc.; all
information is contained in the input data in the form of the correlation matrix plus means, standard
deviations, and sample size N.

Program 4.6 SAS Macro for Generating Correlated Normal Variables (Any Number)

/*--*/
/* Macro RMNC generates Random variables of Multivariate Normal distribution */
/* with given means, standard deviations and Correlation matrix. */
/* */
/* Parameters */
/* DATA the name of the input file that determines the characteristics */
/* of the random numbers to be generated. The file specifies */
/* the mean, standard deviation, number of observations of each */
/* random number and the correlation coefficients between the */
/* variables. It must be a TYPE=CORR file and its structure must */
/* comply with that of such file (see ’Chapter 15: The CORR */
/* Procedure’ in SAS Procedures Guide). The file has */
/* to have the following and only the following observations: */
/* _TYPE_=MEAN, STD, N, CORR. Its variables are _TYPE_, _NAME_ and */
/* the variables to be generated. If the number of observations */
/* is not the same for all variables, the macro takes the minimum */
/* number of observations for all random variables. */
/* OUT the name of the output file that has the random variables */
/* generated according to the file given in parameter DATA. */
/* SEED seed of the random number generator. */
/* */
/* Example */
/* The code below sets up an input file, calls the macro to request three */
/* random variables, and it checks their distributions and correlation */
/* matrix. */
/* */
/* data a(type=corr); */
/* input _name_ $ _type_ $ x1-x3; */
/* cards; */
/* . MEAN 100 50 0 */
/* . STD 15 10 1 */
/* . N 10000 10000 10000 */
/* x1 CORR 1.00 . . */
/* x2 CORR .70 1.00 . */
/* x3 CORR .20 .40 1.00 */

Chapter 4 Generating Data in Monte Carlo Studies 77

/* ; */
/* run; */
/* %rmnc(data=a,out=b,seed=123) */
/* proc means data=b n mean std skewness kurtosis maxdec=2; */
/* proc corr data=b; */
/* var x1-x3; */
/* run; */
/* */
/* Output of Example */
/* Variable Label N Mean Std Dev Skewn. Kurt. */
/* -- */
/* X1 St.Normal Var., m=100, std=15 10000 99.99 14.93 0.02 -0.01 */
/* X2 St.Normal Var., m=50, std=10 10000 50.04 9.95 0.02 -0.04 */
/* X3 St.Normal Var., m=0, std=1 10000 -0.01 1.00 -0.01 -0.06 */
/* -- */
/* */
/* Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 10000 */
/* */
/* X1 X2 X3 */
/* */
/* X1 1.00000 0.70462 0.20305 */
/* St.Normal Var., m=100, std=15 0.0 0.0001 0.0001 */
/* */
/* X2 0.70462 1.00000 0.39276 */
/* St.Normal Var., m=50, std=10 0.0001 0.0 0.0001 */
/* */
/* X3 0.20305 0.39276 1.00000 */
/* St.Normal Var., m=0, std=1 0.0001 0.0001 0.0 */
/* */
/*--*/

%MACRO RMNC (DATA=,OUT=,SEED=0);

 /* obtain the names of the random variables to be generated. */
 /* the names are stored in macro variables V1, V2,... */
 /* macro variable VNAMES has all these variable names */
 /* concatenated into one long string. */

 PROC CONTENTS DATA=&DATA(DROP=_TYPE_ _NAME_) OUT=_DATA_(KEEP=NAME) NOPRINT;
 RUN;
 DATA _DATA_;
 SET _LAST_ END=END;
 RETAIN N 0;
 N=N+1;
 V=COMPRESS(’V’||COMPRESS(PUT(N,6.0)));
 CALL SYMPUT(V,NAME);
 IF END THEN CALL SYMPUT(’NV’,LEFT(PUT(N,6.)));
 RUN;
 %LET VNAMES=&V1;
 %DO I=2 %TO &NV;
 %LET VNAMES=&VNAMES &&V&I;
 %END;

 /* obtain the matrix of factor patterns and other statistics. */

 PROC FACTOR DATA=&DATA NFACT=&NV NOPRINT
 OUTSTAT=_PTTRN_(WHERE=(_TYPE_ IN (’MEAN’,’STD’,’N’,’PATTERN’)));
 RUN;

 /* generate the random numbers.*/

 %LET NV2=%EVAL(&NV*&NV);
 DATA &OUT(KEEP=&VNAMES);

 /* rename the variables to be generated to V1, V2,... in order */
 /* to avoid any interference with the DATA step variables. */

78 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 SET _PTTRN_(KEEP=&VNAMES _TYPE_ RENAME=(%DO I=1 %TO &NV;
 &&V&I=V&I
 %END;
)) END=LASTFACT;
 RETAIN;

 /* set up arrays to store the necessary statistics. */
 ARRAY FPATTERN(&NV,&NV) F1-F&NV2; /* factor pattern */
 ARRAY VMEAN(&NV) M1-M&NV; /* mean */
 ARRAY VSTD(&NV) S1-S&NV; /* standard deviation */
 ARRAY V(&NV) V1-V&NV; /* random variables to be generated */
 ARRAY VTEMP(&NV) VT1-VT&NV; /* temporary variables */
 LENGTH LBL $40;

 /* read and store the matrix of factor patterns. */

 IF _TYPE_=’PATTERN’ THEN DO; DO I=1 TO &NV;

 /* here we utilize the fact that the */
 /* observations of the factor pattern */
 /* start at observation #4. */

 FPATTERN(_N_-3,I)=V(I);
 END;
 END;

 /* read and store the means. */

 IF _TYPE_=’MEAN’ THEN DO; DO I=1 TO &NV;
 VMEAN(I)=V(I);
 END;
 END;

 /* read and store the standard deviations. */

 IF _TYPE_=’STD’ THEN DO; DO I=1 TO &NV;
 VSTD(I)=V(I);
 END;
 END;

 /* read and store the number of observations. */

 IF _TYPE_=’N’ THEN NNUMBERS=V(1);

 /* all necessary statistics have been read and stored. */
 /* start generating the random numbers. */

 IF LASTFACT THEN DO;

 /* set up labels for the random variables. The labels */
 /* are stored in macro variables LBL1, LBL2,... and */
 /* used in the subsequent PROC DATASETS. */

 %DO I=1 %TO &NV;
 LBL="ST.NORMAL VAR., M="||COMPRESS(PUT(VMEAN(&I),BEST8.))||
 ", STD="||COMPRESS(PUT(VSTD(&I), BEST8.));
 CALL SYMPUT("LBL&I",LBL);
 %END;

 DO K=1 TO NNUMBERS;

 /* generate the initial random numbers of standard */
 /* normal distribution. Store them in array ’VTEMP.’ */

 DO I=1 TO &NV;
 VTEMP(I)=RANNOR(&SEED);
 END;

Chapter 4 Generating Data in Monte Carlo Studies 79

 /* impose the intercorrelation on each variable. The */
 /* transformed variables are stored in array ’V’. */

 DO I=1 TO &NV;
 V(I)=0;
 DO J=1 TO &NV;
 V(I)=V(I)+VTEMP(J)*FPATTERN(J,I);
 END;
 END;

 /* transform the random variables so they will have */
 /* means and standard deviations as requested. */

 DO I=1 TO &NV;
 V(I)=VSTD(I)*V(I)+VMEAN(I);
 END;
 OUTPUT;
 END;
 END;

 /* rename V1,V2,... to the requested variable names. */

 RENAME %DO I=1 %TO &NV;
 V&I=&&V&I
 %END;
 ;
 RUN;

 /* set the label of each random variable. The label contains */
 /* the mean and standard deviation of the variable. */

 PROC DATASETS NOLIST;
 MODIFY &OUT;
 LABEL %DO I=1 %TO &NV;
 &&V&I="&&LBL&I"
 %END;
 ;
 RUN;
%MEND;

������������������������������������
������������

���������� ��������������
�����

Although it is relatively straightforward to generate sample data from a multivariate normal
distribution with desired univariate means and standard deviations and the desired population inter-
variable correlation pattern, as demonstrated in the previous section, it is considerably more difficult
to generate sample data from a multivariate non-normal distribution. The nature of the increased
difficulty in data generation for multivariate non-normal distributions will be discussed momentarily.

80 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

4.4.1 Examining the Effect of Data Non-normality on
 Inter-variable Correlations
As is discussed in previous sections, generating sample data from a univariate non-normal
distribution can be accomplished through several procedures, and Fleishman’s method was one of
them. Although it was pointed out that, for univariate non-normal variables, Fleishman’s method has
some weakness because it does not cover certain combinations of degrees of skewness and kurtosis,
Fleishman’s method does offer "an advantage over the other procedures in that it can easily be
extended to generate multivariate random numbers with specified intercorrelations and univariate
means, variances, skews, and kurtoses" (Vale & Maurelli 1983, p. 465). In other words, when we
need to generate sample data from a multivariate non-normal distribution with specified population
univariate skewness and kurtosis, and with a specified population inter-variable correlation pattern
among the variables, Fleishman’s method is appropriate.

In the generation of multivariate non-normal data, Vale and Maurelli (1983) showed that the
application of matrix decomposition procedure for controlling the sample inter-variable correlations
among the variables is no longer as straightforward as demonstrated previously. On the surface, the
goal of generating multivariate non-normal data can be accomplished by

1. generating multivariate normal data with specified inter-variable correlations through
the matrix decomposition procedure.

2. transforming each variable to the desired distributional shapes with specified
population univariate skewness and kurtosis.

Unfortunately, the two processes interact, and the resultant multivariate non-normal data will have an
inter-variable correlation pattern that may differ from that specified in the matrix decomposition
procedure.

This point is illustrated in Program 4.7 for data population parameters specified in Table 4.4. The
output from one execution of Program 4.7 is presented in Output 4.7. Table 4.3 presented an example
of multivariate normal data (three correlated variables from normal distributions), and Program 4.5
demonstrates that, through the application of the matrix decomposition procedure, the sample inter-
variable correlation pattern closely approximates that specified for the population of normally
distributed variables.

In the example in Table 4.4, the same inter-variable correlation pattern as that in Table 4.3 is imposed
on the same three variables using the same matrix decomposition procedure. But this time, the three
variables are not normal, as indicated by their respective population parameters of the third and the
fourth moments (skewness and kurtosis). By applying the Fleishman power transformation method,
the specified univariate skewness and kurtosis conditions are achieved. The resultant sample
descriptive statistics indicate that the univariate non-normality conditions are modeled adequately.
But compared with the sample data generated from normal distributions by Program 4.5 (see Output
4.5), the sample inter-variable correlations generated by Program 4.7 have deviated considerably
more from the population inter-variable correlation pattern implemented in the matrix decomposition
procedure (see Output 4.7). This example illustrates that the two processes (the matrix decomposition
procedure, and the Fleishman procedure) interact with each other, and this interaction will typically
cause some non-trivial deviation in the generated sample data from the specified population inter-
variable correlation pattern when non-normality exists. In other words, when non-normal
distributions are simulated, the simple combination of the two procedures is not adequate.

Chapter 4 Generating Data in Monte Carlo Studies 81

Table 4.4 Non-Normal Data Conditions and Inter-Variable Correlations

 POPULATION PARAMETERS

 Mean STD Skew Kurtosis Correlation Matrix

 X1 100 15 .75 .80 1.00

 X2 50 10 -.75 .80 .70 1.00

 X3 0 1 .75 2.40 .20 .40 1.00

Program 4.7 Generating Three Correlated Non-Normal Variables – Inadequate Approach

PROC IML;
 *read in factor pattern matrix;
F={0.84267 -0.42498 0.33062,
 0.91671 -0.12476 -0.37958,
 0.59317 0.79654 0.11694};

DATA=RANNOR(J(10000,3,0)); *GENERATE DATA MATRIX (10000x3);
DATA=DATA‘; *TRANSPOSE DATA MATRIX (3x10000);
Z = F*DATA; *TRANSFORM TO 3 CORRELATED VAR;
Z = Z‘; *TRANSPOSE DATA MATRIX BACK (10000X3);

 *FLEISHMAN NON-NORMALITY TRANSFORMATION;

X1 = -.124833577 + .978350485*Z[,1] + .124833577*Z[,1]##2 + .001976943*Z[,1]##3;
X2 = .124833577 + .978350485*Z[,2] - .124833577*Z[,2]##2 + .001976943*Z[,2]##3;
X3 = -.096435287 + .843688891*Z[,3] + .096435287*Z[,3]##2 + .046773413*Z[,3]##3;

X1=X1*15 + 100; *LINEAR TRANSFORMATION FOR MEAN & STD;
X2=X2*10 + 50;
X3=X3;
Z=X1||X2||X3;

CREATE A FROM Z [COLNAME={X1 X2 X3}]; *OUTPUT DATA FOR DESCRIPTIVE STATS;
APPEND FROM Z;

PROC MEANS DATA=A N MEAN VAR SKEWNESS KURTOSIS;
 VAR X1 X2 X3;
PROC CORR DATA=A NOSIMPLE NOPROB;
 VAR X1 X2 X3;
RUN;

82 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 4.7
Results of
Program 4.7

4.4.2 Deriving Intermediate Correlations
Because inter-variable correlations and variable non-normality conditions interact with each other to
cause sample data to deviate from the specified population inter-variable correlation pattern, the
interaction must be taken into account in the process of generating sample data from multivariate non-
normal distributions. Vale and Maurelli (1983) presented a procedure for decomposing an
"intermediate" inter-variable correlation matrix to counteract the effect of non-normality on the inter-
variable correlations. This intermediate correlation procedure is described in detail in the following
sections to illustrate the implementation of this procedure.

The intermediate correlation procedure presented by Vale and Maurelli (1983) demonstrates that, for
multiple correlated variables, a simple implementation of the matrix decomposition procedure does
not work as expected when the variables are not normally distributed. To counteract the effect of non-
normal conditions on the inter-variable correlations in the process of data generation, inter-variable
correlations that are different from those specified as population inter-variable correlations must be
derived and used in the matrix decomposition procedure. These derived correlations are called
intermediate correlations, and the derivation of these intermediate correlations is based both on the
specified population inter-variable correlation pattern to be modeled, and on the specified univariate
non-normality conditions.

Once all the intermediate inter-variable correlations are derived, they can be assembled in proper
order into an intermediate inter-variable correlations matrix. It is this intermediate inter-variable
correlation matrix that will be factor analyzed (decomposed). The resultant factor pattern matrix
derived from this intermediate inter-variable correlation matrix will be used in the matrix
decomposition procedure to impose the specified population inter-variable correlation pattern on a set
of non-normal variables. The end result will be correlated multivariate non-normal sample data that
has the population inter-variable correlation pattern as originally specified.

�

 The MEANS Procedure

 Variable N Mean Std Dev Skewness Kurtosis

 X1 10000 99.9754373 15.1008345 0.7601219 0.7667669

 X2 10000 49.9041591 10.0024051 -0.7203833 0.7196319

 X3 10000 -0.0173893 0.9966803 0.7651695 2.4459113

 The CORR Procedure

 Pearson Correlation Coefficients, N = 10000
 Prob > |r| under H0: Rho=0

 X1 X2 X3

 X1 1.00000 0.66905 0.18441
 <.0001 <.0001

 X2 0.64905 1.00000 0.37367
 <.0001 <.0001

 X3 0.18041 0.36367 1.00000
 <.0001 <.0001

Chapter 4 Generating Data in Monte Carlo Studies 83

Obviously, derivation of all pairwise intermediate correlations is essential when population non-
normal conditions exist. The derivation process takes into account both the originally specified
population correlation between two variables, and the population non-normality conditions of the two
variables as defined by univariate skewness and kurtosis. It is here that the Fleishman power
transformation method is appropriate, since the coefficients in Fleishman’s power transformation can
readily be used to derive the needed intermediate correlation coefficients. It is not obvious that other
non-normality transformation procedures can have the same direct extension to multivariate non-
normality data situations (Vale & Maurelli 1983).

Any two normal variates Z1 and Z2 can be transformed into two non-normal variables X1 and X2, each
with its known skewness and kurtosis, as follows (see previous equation 4.5):

Zd + Zc + Zb + a = X

Zd + Zc + Zb + a = X
3
22

2
222222

3
11

2
111111

Once the degrees of skewness and kurtosis are known, the coefficients (ai, bi, ci, and di, for i=1, 2)
become available (either by consulting Fleishman’s table in the original article, or by executing
Program 4.4, presented previously). These coefficients (ai, bi, ci, and di) in the Fleishman power
transformation above are what is needed for deriving intermediate correlations. In addition to these
coefficients, the modeled population correlation between the two non-normal variables X1 and X2 can
be specified as RX1X2. Once RX1X2 is set and the Fleishman coefficients are obtained based on the
specified skewness and kurtosis conditions of the two variables (X1 and X2), Vale and Maurelli (1983)
demonstrate that the following relationship exists:

)dd(6 +)cc(2 +)dd9 + bd3 + db3 + bb(= R 21
3

21
2

21212121X X 21
ρρρ (4.7)

where is the correlation between the two normal variates Z1 and Z2. This correlation is termed an
“intermediate” correlation. In (4.7), all elements are known except the intermediate correlation . The
bivariate intermediate correlation coefficient must be solved for all possible pairs of the variables
involved. These intermediate correlation coefficients are then assembled in proper order into an
intermediate correlation matrix. This intermediate correlation matrix is then factor analyzed to obtain
the factor pattern matrix needed to transform uncorrelated variables into correlated ones.

There is no direct algebraic solution for solving this polynomial function for , and an iterative
approach has to be taken to arrive at an estimated solution. Again, we use the versatile iterative
Newton-Raphson method to solve for , as we did in Program 4.4 for solving for Fleishman
coefficients for generating sample data from univariate non-normal distributions. Table 4.5 presents
population parameters for three correlated non-normal variables, as well as the Fleishman's power
transformation coefficients for generating the three variables for the specified non-normality
conditions.

84 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Table 4.5 Parameters of Three Non-Normal Variables and Fleishman Coefficients

 POPULATION PARAMETERS

 Mean STD Skew Kurtosis Target Correlation Matrix

 X1 100 15 .75 .80 1.00
 X2 50 10 -.75 .80 70 1.00
 X3 0 1 .75 2.40 20 .40 1.00

 FLEISHMAN COEFFICIENTS FOR THE THREE VARIABLES

 a b c d

 X1 -.124833577 .978350485 .124833577 .001976943
 X2 .124833577 .978350485 -.124833577 .001976943
 X3 -.096435287 .843688891 .096435287 .046773413

Program 4.8 presents an example for deriving an intermediate correlation coefficient. In Table 4.5, the
three variables to be modeled are correlated with each other as specified in the population correlation
matrix, and each of them is non-normal as specified by the univariate skewness and kurtosis. Program
4.8 derives the intermediate correlation coefficient between the first two variables (X1 and X2). Here, it
is not necessary for readers to fully understand the Newton-Raphson method, nor is it necessary to
fully understand the base SAS program itself.

Program 4.8 Deriving a Pairwise Intermediate Correlation (X

1
 & X

2
)

DATA D1;
 B1=.978350485; C1=-.124833577; D1=.001976943; * use Fleishman coefficients;
 B2=.978350485; C2= .124833577; D2=.001976943;
 TARGET=.70; * target population correlation;
 R=.5; * starting value for iteration;

DO I=1 TO 5;
 FUNCTION=(R**3*6*D1*D2+R**2*2*C1*C2+R*(B1*B2+3*B1*D2+3*D1*B2+9*D1*D2)-TARGET);
 DERIV=(3*R**2*6*D1*D2+2*R*2*C1*C2+(B1*B2+3*B1*D2+3*D1*B2+9*D1*D2));
 RATIO=FUNCTION/DERIV;
 R_TEMP = R - RATIO;
 IF ABS(R_TEMP - R)>.00001 THEN R = R_TEMP; OUTPUT;
END;
PROC PRINT; WHERE I=5; * print intermediate correlation r for the last iteration;
 VAR I RATIO R;
RUN;

Chapter 4 Generating Data in Monte Carlo Studies 85

One execution of Program 4.8 produces the following result:

 OBS I RATIO R

 5 5 -0.00000 0.74015

Although the specified population correlation coefficient between X1 and X2 is 0.70, the result above
indicates that for the given univariate non-normality conditions, the intermediate correlation between
the two variables is 0.74. It is this intermediate correlation coefficient that will be used in the matrix
decomposition procedure for sample data generation of these three correlated non-normal variables.

By substituting the appropriate Fleishman coefficients and the specified population pair-wise
correlation coefficient (TARGET=?), all pair-wise intermediate correlations can be solved with
Program 4.8. Once this is done, all the intermediate correlation coefficients can then be assembled in
proper order into a correlation matrix. The following is the resultant intermediate correlation matrix
for the three non-normal variables as specified in Table 4.5.

 Intermediate Correlation Matrix

 X1 1.0000
 X2 .7402 1.0000
 X3 .2054 .4173 1.0000

After all the pair-wise intermediate correlation coefficients are assembled into an intermediate
correlation matrix, this intermediate correlation matrix is then factor analyzed in the usual fashion,
and the factor pattern matrix is obtained. This factor pattern matrix based on the intermediate
correlation matrix is then used in transforming uncorrelated non-normal variables into correlated
ones. Program 4.9 presents an example of generating sample data for the three correlated non-normal
variables described earlier in Table 4.5. In Program 4.9, the step for obtaining the factor pattern
matrix is incorporated, as in Program 4.5a.

86 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Program 4.9 Generating Non-Normal Multivariate Sample Data

DATA A (TYPE=CORR); _TYPE_=’CORR’;
 INPUT X1-X3;
CARDS;
1.0000 . .
 .7402 1.0000 .
 .2054 .4173 1.0000
;

 * obtain factor pattern matrix for later data generation;

PROC FACTOR N=3 OUTSTAT=FACOUT;
DATA PATTERN; SET FACOUT;
 IF _TYPE_=’PATTERN’;
 DROP _TYPE_ _NAME_;
RUN;

PROC IML;
 USE PATTERN; * read in the factor pattern as a matrix ‘F’;
 READ ALL VAR _NUM_ INTO F;
 F=F`;

DATA=RANNOR(J(10000,3,0)); *** generate data matrix (10000×3);
DATA=DATA`; *** transpose data matrix (3×10000);
Z = F*DATA; *** impose inter-correlations;
Z = Z`; *** transpose data matrix back (10000×3);

 * Fleishman non-normality transformation;

X1 = -.124833577 + .978350485*Z[,1] + .124833577*Z[,1]##2 + .001976943*Z[,1]##3;
X2 = .124833577 + .978350485*Z[,2] - .124833577*Z[,2]##2 + .001976943*Z[,2]##3;
X3 = -.096435287 + .843688891*Z[,3] + .096435287*Z[,3]##2 + .046773413*Z[,3]##3;

X1=X1*15 + 100; * linear transformation for mean & std;
X2=X2*10 + 50;
X3=X3;
Z=X1||X2||X3;
CREATE A FROM Z [COLNAME={X1 X2 X3}]; * output a temporary SAS data set 'A';
APPEND FROM Z;

 * obtain descriptive stats for sample data;
PROC MEANS DATA=A N MEAN STD SKEWNESS KURTOSIS;
 VAR X1 X2 X3;
PROC CORR DATA=A NOSIMPLE NOPROB;
 VAR X1 X2 X3;
RUN; QUIT;

Chapter 4 Generating Data in Monte Carlo Studies 87

The descriptive statistics of the sample data (N=10,000) from one execution of Program 4.9 are
presented in Output 4.9. These results indicate that the sample statistics closely approximate the
specified population parameters, both in terms of the correlations among the variables, and in terms of
the univariate skewness and kurtosis of the three variables. This is especially true when we compare
the sample correlation matrix in Output 4.9 with that in Output 4.7, where the intermediate correlation
procedure was not implemented for non-normal distributions in the process (Program 4.7). The
sample correlations in Output 4.9 are much closer to the specified population correlations than those
in Output 4.7.

Output 4.9
Results of
Program 4.9

��!� "�������������#����"�������������	�"�����������

����������������

During the data generation process of a Monte Carlo study, sometimes there is a need to convert a
covariance matrix to a correlation matrix, or vice versa. The relationship between a covariance and a
correlation between two variables (X and Y) is simple, as shown below:

xy
xy

x y

Cov
r

s *s
� (4.8)

xy xy x yCov r * s * s� (4.9)

where rxy is the correlation between X and Y, Covxy is the covariance between X and Y, and sx and sy
are standard deviations for X and Y, respectively.

Variable N Mean Std Dev Skewness Kurtosis

 X1 10000 99.9721150 15.0763019 0.7540160 0.8112059
 X2 10000 50.0248158 10.1009159 -0.8062380 0.7873609
 X3 10000 -0.0103037 1.0042507 0.7850528 2.5621595
--

 The CORR Procedure

 Pearson Correlation Coefficients, N = 10000
 Prob > |r| under H0: Rho=0

 X1 X2 X3

 X1 1.00000 0.70038 0.20824
 <.0001 <.0001

 X2 0.70038 1.00000 0.39828
 <.0001 <.0001

 X3 0.20824 0.39828 1.00000
 <.0001 <.0001

88 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

But when you have a covariance matrix and need to convert it to a correlation matrix, you may not
want to do the computation for each covariance (correlation) in the matrix one by one. Instead, you
may rely on matrix algebra and use SAS PROC IML for the conversion. In matrix algebra, the
equivalents of (4.8) and (4.9) are as follows:

 R = (S)-1 * � * (S)-1 (4.10)

 � = (S) * R * (S) (4.11)

where R is the correlation matrix, � is the covariance matrix, and S is a diagonal matrix containing
standard deviations for each variable as its diagonal elements, as in the following example matrix for
three variables (X1, X2, and X3):

=

3

2

1

00

00

00

x

x

x

s

s

s

S

Once we have the covariance matrix � , the S matrix can easily be obtained through SAS PROC
IML, and the correlation matrix R can be derived for use in the data generation process, as used in
Program 4.5, for example. Conversely, if we have the correlation matrix and the standard deviations
for the variables, we can also obtain the covariance matrix easily. As an example, we use the
correlation matrix and standard deviations for the three variables (X1, X2, and X3) in Table 4.4 to
illustrate the use of SAS PROC IML for such a conversion. Program 4.10 presents the SAS PROC
IML code for such conversions.

Program 4.10 Converting between Correlation and Covariance Matrices

***** Program 4.10 PROC IML ***********;
***** Converting a correlation matrix to covariance matrix, and vice versa;
***** Example data from Table 4.4 ;

 ****** Part I: Converting correlation matrix to covariance matrix;
PROC IML;
 *** define the correlation matrix;
R={1.00 0.70 0.20,
 0.70 1.00 0.40,
 0.20 0.40 1.00};

 *** define the diagonal matrix with standard deviations on the diagonal;
S={15 0 0,
 0 10 0,
 0 0 1};

COV=S*R*S; *** obtain the covariance matrix;

PRINT COV; *** print the covariance matrix;

RUN;

Chapter 4 Generating Data in Monte Carlo Studies 89

 ***** Part II: Converting covariance matrix to correlation matrix;
PROC IML;

 *** define the covariance matrix;
COV={225 105 3,
 105 100 4,
 3 4 1};

S=SQRT(DIAG(COV)); *** obtain the matrix with standard deviations on the diagonal;

S_INV=INV(S); *** the inverse of S matrix;

R=S_INV*COV*S_INV; *** obtain correlation matrix;

PRINT COV; *** print out the three matrices;
PRINT S;
PRINT R;
RUN;

Program 4.10 has two parts. Part I (the top portion) converts a correlation matrix to a covariance
matrix, and Part II (the bottom portion) converts a covariance matrix to a correlation matrix. If you
run the two parts separately, you obtain the matrices shown in Output 4.10. As can be seen, from the
correlation matrix and standard deviations given in Table 4.4, the covariance matrix (COV) is:

225 105 3
COV 105 100 4

3 4 1

� �
� �
� �� �

�

Part II of Program 4.10 converts the covariance matrix above (COV) to the original correlation matrix
(R) and a diagonal matrix (S) containing the standard deviations of the three variables.

Output 4.10
Results from
Program 4.10

 COV

 225 105 3
 105 100 4
 3 4 1

 COV

 225 105 3
 105 100 4
 3 4 1

 S

 15 0 0
 0 10 0
 0 0 1

 R

 1 0.7 0.2
 0.7 1 0.4
 0.2 0.4 1

90 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

��$� ����������������%&����������'�
����������

�������"&��������������

In quantitative research, there is often a need to define statistical populations based on the sample data
the researcher has. For example, suppose a researcher is interested in comparing two groups via a t-
test. But the sample data from the two groups are highly non-normal, and transformation is not of
interest nor meaningful for the researcher. In this situation, the researcher may be interested in
determining the empirical distribution of the t-statistic for these highly non-normal data, because the
empirical t-statistic distribution for these kinds of data may deviate considerably from the theoretical t
distribution that assumes data normality.

To accomplish the researcher’s goal described above, i.e., to obtain the empirical distribution of the t-
statistic for the researcher’s non-normal data, the researcher can (a) define statistical populations by
using sample characteristics, (b) conduct a Monte Carlo study based on these defined populations, and
(c) derive empirical distributions for the statistic of interest from the Monte Carlo study results.
These and similar tasks can be readily accomplished by using the data generation procedures
discussed in this chapter. More specifically, the following steps need to be taken:

1. Obtain the first four moments (i.e., mean, standard deviation, skewness, kurtosis; these
four moments should be sufficient for most applications) of a variable from the sample
data (e.g., using PROC UNIVARIATE).

2. If multiple correlated variables are involved, obtain the inter-variable correlations from
the sample data (e.g., using PROC CORR).

3. Use sample data moments and inter-variable correlations as population parameters, and
generate data accordingly, as we did in Section 4.2.2.2 (e.g., Program 4.3), Section 4.3
(e.g., Program 4.5, Program 4.5a), and/or Section 4.4.2 (Program 4.9).

In other words, generating data from statistical populations that mirror your sample characteristics is
not any different from what we have been presenting so far. We simply need to obtain sample
characteristics (e.g., four statistical moments, and inter-variable correlations), and use these sample
characteristics as population parameters for later data generation. Once we have the population
parameters as defined by the sample characteristics, we use exactly the same procedures as we have
shown in this chapter.

For example, in Table 4.4, we could assume that these statistical moments and inter-variable
correlations for the three variables (X1, X2, and X3) are actually obtained from a sample. Of course
obtaining these sample moments and correlations is a simple matter, because only simple analysis
based on PROC UNIVARIATE and PROC CORR is needed. Once we have obtained these sample
statistics, we will treat them as population parameters and will generate data for our Monte Carlo
experiments as described in detail in the sections following Table 4.4.

Chapter 4 Generating Data in Monte Carlo Studies 91

��(� �
����)�

In this and the previous chapters, we spent a considerable amount of time discussing different aspects
of sample data generation as part of any Monte Carlo study. As is obvious in our discussions in these
four chapters up to now, a Monte Carlo study is based on drawing random samples from a theoretical
population with known population parameters. Our ability to simulate the process of drawing random
samples from a population with specified population characteristics determines the validity of the
results of our Monte Carlo study. In this sense, the importance of correct data generation procedures
in a Monte Carlo study can never be overemphasized.

In this chapter, we discussed in some detail the following relevant topics: (1) generating sample data
from a univariate normal distribution; (2) generating sample data from a univariate non-normal
distribution as defined by univariate skewness and kurtosis; (3) generating sample data from a
multivariate normal distribution with correlated variables; and (4) generating sample data from a
multivariate non-normal distribution with correlated variables. As is seen in the presentation of this
chapter, the process of generating sample data becomes increasingly complicated as we proceed from
a univariate to multivariate situation, and as we proceed from a multivariate normal distribution to a
multivariate non-normal distribution.

We hope that Chapter 3 and Chapter 4 have provided an adequate working knowledge base for
generating sample data for conducting a Monte Carlo study in general, and for implementing the
procedures for generating sample data in SAS in particular. In the following chapters, we will focus
more on procedural and/or programmatic issues for implementing Monte Carlo studies in SAS. For
that purpose, we will discuss program automation in SAS (Chapter 5), and we will present a series of
SAS examples for conducting Monte Carlo studies in Chapters 6-9.

��*� +����������

Burr, I. W. 1973. “Parameters for a General System for Distributions to Match a Grid of α3 and α4.”
Communications in Statistics 2:1-21.

Fleishman, A. I. 1978. “A Method for Simulating Non-Normal Distributions.” Psychometrika 43:
521-531.

Johnson, N. L. 1949. “Systems for Frequency Curves Generated by Methods of Translation.” Biometrika
36:149-176.

Johnson, N. L. 1965. “Tables to Facilitate Fitting SU Frequency Curves.” Biometrika 52:547-558.

Johnson, N. L., and J. O. Kitchen. 1971. “Tables to Facilitate Fitting SB Curves.” Biometrika 58:
223-226.

Kaiser, H. F., and K. Dickman. 1962. “Sample and Population Score Matrices and Sample Correlation
Matrices from an Arbitrary Population Correlation Matrix.” Psychometrika 27:179-182.

Merriam-Webster, Inc. 1994. Merriam-Webster’s Collegiate Dictionary. 10th ed. Springfield, MA:
Merriam-Webster, Inc.

Pearson, E. S., and H. O. Hartley, eds. 1972. Biometrika Tables for Statisticians. Vol. 2. London:
Cambridge University Press.

92 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Ramberg, J. S., E. J. Dudewicz, P. R. Tadikamalla, and E. F. Mykytka. 1979. “A Probability Distribution
and Its Use in Fitting Data.” Technometrics 21:201-214.

Ramberg, J. S., and B. W. Schmeiser. 1974. “An Approximate Method for Generating Asymmetric
Random Variables.” Communications of the Association for Computing Machinery 17:78-82.

Schmeiser, B. W., and S. J. Deutch. 1977. “A Versatile Four Parameter Family of Probability Distributions
Suitable for Simulation.” AIIE Transactions 9:176-182.

Tadikamalla, P. R. 1980. “On Simulating Non-Normal Distributions.” Psychometrika 45:273-279.

Tukey, J. W. 1960. “A Survey of Sampling from Contaminated Distributions.” In Contributions to
Probability and Statistics, ed. I. Olkin, 448-485. Palo Alto, CA: Stanford University Press.

Vale, C. D., and V. A. Maurelli. 1983. “Simulating Multivariate Nonnormal Distributions.” Psychometrika
48:465-471.

Chapter 5 Automating Monte Carlo Simulations

5.1 Introduction 93

5.2 Steps in a Monte Carlo Simulation 94

5.3 The Problem of Matching Birthdays 94

5.4 The Seed Value 98

5.5 Monitoring the Execution of a Simulation 98

5.6 Portability 100

5.7 Automating the Simulation 100

5.8 A Macro Solution to the Problem of Matching Birthdays 101

5.9 Full-Time Monitoring with Macros 103

5.10 Simulation of the Parking Problem (Rényi's Constant) 105

5.11 Summary 116

5.12 References 116

����������	
������

The SAS System is an excellent choice for conducting Monte Carlo simulations (Hamer & Breen
1985) because it is a whole environment providing the following features: ease of programming,
portability (the same code runs on different hardware platforms and operating systems), good quality
and a broad variety of random number generators, readily available statistical procedures, convenient
database storage, and report writing capabilities.

In this chapter, we will discuss the steps involved in conducting Monte Carlo simulations, the various
ways of controlling the random number generators, placing the simulation into a macro shell for
flexible and automatic execution, monitoring the execution of the simulation, and saving and
presenting the results. The chapter will utilize the simple problem of "Matching Birthdays" for
illustration purposes. At the end of the chapter, we will present a full-fledged solution to the so-called
Parking Problem.

94 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

������������������������������
�������

The full implementation of a Monte Carlo simulation problem in SAS usually includes the following
steps:

1. Designing the system (What are the parameters of the system? What are the
relationships among these parameters? What is the unknown we are after? What are
the parameters changing by chance? What precision do we wish to achieve?).

2. Identifying the a priori distributions of the probability variables in the system.

3. Programming the whole system in SAS.

4. Executing the simulation.

5. Saving all relevant results and necessary intermediate values.

6. Checking the required randomness in the system.

7. Calculating the results.

8. Presenting the results.

����������������������������������	����

We will use the problem of Matching Birthdays to illustrate the complete solution to a simulation
problem in the SAS System. There are at least 366 people in a room. Their birthdays (birthday in this
problem means month and day only) are random in the sense that each person’s birthday has the same
probability of being any of the 365 days of the year. We select people randomly until the newly
selected person’s birthday matches any of the birthdays of the people already selected. The problem
that we want to solve is: What is the average number of people needed to obtain the first pair of
matching birthdays?

Before we start solving the problem, let us emphasize an important aspect of the problem/solution:
When a new person is selected, his birthday is compared to the birthdays of all people previously
selected. For simplicity’s sake, we ignore leap years.

The problem has a simple analytical solution,1 but we intend to solve it with simulation. The
problem’s parameters are the birthdays, up to 366 of them (the first 365 birthdays could be all
different). They are random and independent of each other. During the simulation, we have to
compare each newly selected birthday to each of the birthdays already chosen. The distribution of the
birthdays is uniform from 1 to 365, because we will represent a birthday as day-of-the-year. We will
utilize the RANUNI function and convert its random number to an integer between 1 and 365. We
will save all birthdays selected randomly (in order to check the necessary uniform distribution of the

1 Let P(n) denote the probability of having the first pair of matching birthdays after selecting n people. Then � �
n 1

n 1 366 i
P(n)

365 365
i 1

�

� �

�

�

� . The average

number of people is given by
365

E(n) nP(n),

n 1

�

�

� which results in approximately 24.62.

Chapter 5 Automating Monte Carlo Simulations 95

birthdays) and the number of people required to have two matching birthdays (in order to answer the
question). PROC UNIVARIATE will calculate and present the results: the average number of people
needed for the first matching pair of birthdays.

A crucial step in the simulation is the design and programming of the system in the SAS
environment. It is usually done in a DATA step because it provides the user with almost all the
capabilities of a programming language. A clever approach and good programming help to simplify
the task and speed up the simulation. In the case of the matching birthdays, we have to generate
random birthdays and compare them pair-wise. It is clear that a birthday in this problem should not
contain a year, since we are only interested in the month and day. The generation of the day of the
year, i.e., an integer between 1 (January 1st) and 365 (December 31st) would be sufficient.

The other important simplification regards the comparison. We could program the comparison of the
newly generated birthday to each of the birthdays obtained earlier, but it would take a lot of time.
Instead, we keep track of a birthday by setting a flag associated with that particular date. Then, when
we generate a new birthday, we only have to see whether or not that date has a flag and we do not
have to compare it to all dates already obtained. These design- and programming tricks will speed up
the simulation tremendously.

The solution is given in Program 5.1. The simulation is executed 10,000 times in a DO LOOP of a
DATA step. The data set RESULTS from that DATA step captures not only the number of people
needed for the first matching pair of birthdays, but all intermediate birthdays selected randomly, so
we can examine whether our program generates uniformly distributed random birthdays. Each record
corresponds to one simulation. In a subsequent DATA step, the program creates the data set DAYS,
which has every birthday of every simulation in a separate record, in order to check their uniform
distribution. PROC CAPABILITY is utilized to see if these birthdays follow the uniform distribution
between 1 and 365. (The uniform distribution is a special beta distribution with ALPHA=BETA=1.)
PROC UNIVARIATE answers the problem by calculating the average number of people.

The results are presented in Output 5.1: the randomly selected birthdays distribute uniformly (their
Q-Q plot is a straight line), and the average number of people is 24.69 (the precise rounded value is
24.62—see the analytic solution in the footnote on page 94). The presentation of the results in Output
5.1 also reveals the distribution of the number of people needed for the first matching birthdays (see
the histogram of PROC UNIVARIATE).

96 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Program 5.1 Matching Birthdays

DATA RESULTS;

 /* array of day indicators. A value of one in an element of this array */
 /* indicates the selection of that birthday. Zero means that birthday */
 /* has not been selected. */

 ARRAY DAYS(365) $1 D1-D365;
 LENGTH NPEOPLE 3;
 DO SIM=1 TO 10000; *** execute 10,000 simulations of the problem.;
 DO I=1 TO 365;
 DAYS(I)=’0’; *** the day indicators are set to zero initially.;
 END;
 DO NPEOPLE=1 TO 366;
 D=1+INT(365*RANUNI(123)); *** generate a random birthday between 1
 and 365.;
 IF DAYS(D)=’1’ THEN LEAVE; *** was that birthday previously
 selected?;
 *** if yes, leave the loop.;
 ELSE DAYS(D)=’1’; *** If not, mark the day as
 ’selected’.;
 END;
 OUTPUT;
 END;
 RUN;

/* check the distribution of all birthdays selected during the simulation. */
/* they should form a uniform distribution between 1 and 365. Place each */
/* birthday into an individual observation. */

DATA DAY(KEEP=DAY);
 SET RESULTS;
 ARRAY DAYS(365) D1-D365;
 DO I=1 TO 365;
 IF DAYS(I)=’1’ THEN DO; DAY=I;
 OUTPUT; END;
 END;
 RUN;

/* test whether or not the days generated randomly follow the uniform */
/* distribution between 1 and 365. Use PROC CAPABILITY with the ’beta’ */
/* distribution, because the uniform distribution is a special beta */
/* distribution (alpha=beta=1). Set the threshold and scale parameters */
/* to 1 and 365 respectively. */

PROC CAPABILITY DATA=DAY;
 VAR DAY;
 QQPLOT DAY / BETA (ALPHA=1 BETA=1 THETA=1 SIGMA=365)
 HAXIS=AXIS1 VAXIS=AXIS2 NOLEGEND;
 AXIS1 LABEL=(F=SWISS H=1.5 ’Uniform Distribution (1-365)’)
 ORDER=0 TO 1 BY 0.2 VALUE=(H=1.2 F=SWISS) MINOR=(N=1);
 AXIS2 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Random Birthday’)
 ORDER=0 TO 400 BY 100 VALUE=(H=1.2 F=SWISS) MINOR=(N=1);
 TITLE F=SWISS H=1.5 ’Q-Q Plot of Randomly Selected Birthdays’;
 SYMBOL1 R=8;
 SYMBOL9 I=JOIN C=BLACK W=40;
 RUN;
PROC UNIVARIATE DATA=RESULTS PLOT; *** calculate and present the answer.;
 VAR NPEOPLE;
 RUN;

Chapter 5 Automating Monte Carlo Simulations 97

Output 5.1 Results of the Matching Birthday Problem

 Univariate Procedure

Variable=NPEOPLE

 Moments

 N 10000 Sum Wgts 10000
 Mean 24.6918 Sum 246918
 Std Dev 12.26552 Variance 150.4431
 Skewness 0.563674 Kurtosis 0.047086
 USS 7601130 CSS 1504280
 CV 49.67448 Std Mean 0.122655
 T:Mean=0 201.3106 Pr>|T| 0.0001
 Num ^= 0 10000 Num > 0 10000
 M(Sign) 5000 Pr>=|M| 0.0001
 Sgn Rank 25002500 Pr>=|S| 0.0001

 Histogram # Boxplot
82.5+* 1 0
 .* 2 0
 .* 7 0
 .* 16 0
 .** 43 0
 .*** 92 |
 .****** 172 |
 .************ 354 |
42.5+****************** 560 |
 .**************************** 876 |
 .*********************************** 1112 +-----+
 .*** 1434 | |
 .** 1532 *--+--*
 .** 1534 +-----+
 .*** 1306 |
 .************************* 784 |
 2.5+****** 175 |
 ----+----+----+----+----+----+----+----+----+---
 * may represent up to 32 counts

98 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

�� � �������	�!��
��

The role of a seed value in a random number generator function is discussed fully in Chapter 3. Here
we give some practical advice for setting its value. During testing of the simulation program, we
should use a known seed value, so we could replicate the results and make the debugging process
possible. (Otherwise, when we alter our program, we do not know whether the different outcome is
due to the changes we just administered to the code or to different random numbers.) We use
SEED=123 in many sample programs in this book, so you could run the examples and generate the
same results. When the program is completely debugged and we start the simulation, we should use
random seeds. The SAS System applies randomly selected starting values to the random generator
functions if SEED=0 is specified. We can also generate special seed values satisfying certain criteria
(see the SEEDGEN macro in section 3.6 of Chapter 3). If we wish to use random seed values and
know their values as well, we can invoke the TIME function to obtain the current time from the
operating system and enter that value into the random number generators. For example, Program 5.1
could be expanded:

SEED = 1+ROUND(1000*TIME());
PUT SEED=;
DO SIM=1 TO 10000;
...
 DO I=1 TO 365;
 D=1+INT(365*RANUNI(SEED));
 ...

Since the TIME function returns a fraction and the seed must be an integer, the program forces the
value of SEED to be a positive integer. The statement PUT SEED=; displays the current seed value
in the LOG window for possible re-use.

���� ���������������"#��
�������������
�������

Simulations usually take a long time to perform. There is a need to monitor the execution and know
its speed, so we can estimate the total time required to finish the entire simulation or so we can know
how many simulations we can perform in a given time unit. A simple statement placed at the head of
the simulation loop in Program 5.1 can provide a message at a given number of iterations.

DO SIM=1 TO 10000;
 IF NOT MOD(SIM,1000) THEN PUT ’Simulation Number: ’ SIM;
 ...

The above IF statement displays the messages

Simulation Number: 1000
Simulation Number: 2000

...

in the LOG window, so we can estimate the required time and monitor the execution of the
simulation. Of course, we can modify the frequency of this message by altering the second argument
of the MOD function.

Chapter 5 Automating Monte Carlo Simulations 99

A more sophisticated way is to display starting and ending times, and time elapsed. Program 5.2
substitutes the DATA step of Program 5.1 and provides full-time monitoring. It displays the starting
time at the beginning of the simulation loop, then shows the current time and the time elapsed
between the previous and current messages at every 2,000 simulations. The message is constructed as
a character variable (MSG) in order to line up its parts nicely. The solution utilizes the DATETIME
function (instead of TIME) in order to correctly determine the elapsed time when midnight strikes
between two messages.

Program 5.2 Simulation with Full-Time Monitoring

DATA RESULTS;
 ARRAY DAYS(365) $1 D1-D365;
 LENGTH NPEOPLE 3;
 SDT=DATETIME();
 STIME=TIMEPART(SDT); *** take and display the time only.;
 PUT ’Starting Time: ’ STIME TIME12.3;
 LENGTH MSG $72; *** define a character variable for the message.;
 SUBSTR(MSG,1,13)=’Simulation #:’; *** set the fixed parts of the message.;
 SUBSTR(MSG,21,16)=’, Current Time: ’;
 SUBSTR(MSG,49,16)=’, Duration: ’;
 DO SIM=1 TO 10000;

 /* Construct and display a message if this is a 2,000th simulation. */

 IF NOT MOD(SIM,2000)
 THEN DO; EDT=DATETIME();
 ETIME=TIMEPART(EDT);
 DURATION=EDT-SDT; *** determine the elapsed time.;
 SUBSTR(MSG,15,6)=PUT(SIM,6.); *** build the message.;
 SUBSTR(MSG,37,12)=PUT(ETIME,TIME12.3);
 SUBSTR(MSG,61,12)=PUT(DURATION,TIME12.3);
 PUT MSG; *** display the message.;
 SDT=EDT; *** move the current time into the starting time;
 *** for the next message.;
 END;
 DO I=1 TO 365;
 DAYS(I)=’0’;
 END;
 DO NPEOPLE=1 TO 366;
 D=1+INT(365*RANUNI(123));
 IF DAYS(D)=’1’ THEN LEAVE;
 ELSE DAYS(D)=’1’;
 END;
 OUTPUT;
 END;
 RUN;

Log 5.2 Messages in the LOG Window with Full-Time Monitoring

Starting Time: 10:17:20.718
Simulation #: 2000, Current Time: 10:17:22.296, Duration: 0:00:01.578
Simulation #: 4000, Current Time: 10:17:23.937, Duration: 0:00:01.641
Simulation #: 6000, Current Time: 10:17:25.765, Duration: 0:00:01.828
Simulation #: 8000, Current Time: 10:17:27.390, Duration: 0:00:01.625
Simulation #: 10000, Current Time: 10:17:29.421, Duration: 0:00:02.031

Program 5.4 later in this chapter will simplify the code back to its original clarity by placing the
extraneous statements of the time monitoring into macros.

100 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

��$� ������������

One of the many advantages of conducting simulation with SAS is the portable nature of the SAS
code. The same code runs on all hardware platforms and operating systems supported by the SAS
System. There are slight variations in the input/output options due to differences in the operating
systems, but that may affect only statements outside of the real simulation. Most importantly, the
core statements of the SAS language and all random number generators (assuming the same seed
values) produce the same results on all hardware. This means that we can code and test the
simulation program on a micro computer and send it up to a more powerful machine for executing
the time-consuming simulation.

��%� &
����������������
�������

By definition, simulation is the repeated execution of a piece of code. As such, it is best implemented
in the SAS macro framework. This book’s aim is not teaching the SAS macro language, but we will
show you in a simplified way how to implement a simulation as a macro. Many of the examples in
the book are presented as macros.

The SAS macro language can be thought of as a super SAS language, which is not executed by the
SAS System directly, but evaluated by the macro processor in order to produce real SAS code, which
is then executed. The macro processor carries out all macro statements and replaces all macro
variables with actual values, creating actual SAS code. Macro programs, in a simplified manner,
have four components:

�� opening and closing statements (%MACRO and %MEND).

�� macro statements that are like regular SAS statements, but preceded by a % sign, and
which only affect the creation of regular SAS statements.

�� macro variables that are, in many ways, similar to SAS data set variables. (The most
important differences include: the macro variables are preceded by a & sign when
referenced, and they contain text, which replaces the reference during the macro
processing phase.)

�� regular SAS code that stays intact during the macro processing phase.

When we write a macro, we always have to think like the macro processor: the macro code must
result in correct SAS code when evaluated. Macros provide essential flexibility for the simulation.
Without discussing the macro language extensively, we will show its construction and usefulness
through some examples in the rest of this chapter. For more information about the SAS macro
facility, consult the SAS Guide to Macro Processing.

Chapter 5 Automating Monte Carlo Simulations 101

��'� &����������
���������������������������������

������������	����

It is recommended that you start writing a macro by coding your program in the regular SAS
language and testing it fully. Then you can alter the code to place it in the framework of a macro. To
"convert" a piece of SAS code to a macro, first you have to identify the parts of the code that should
be changeable (e.g., the number of simulations, the seed value, certain parameters of the problem.
Then you replace them with macro variables written in the form ¯o-variable-name. Finally, you
wrap the code with a %MACRO and %MEND statement.

You list the macro variables (also called parameters) in the %MACRO statement, where you can
assign default values to them. The macro, i.e., the code from %MACRO to %MEND, is only the
definition of the macro. In order to execute it, you have to start the macro processor by referencing
the name of the macro with the necessary parameters.

Let us use Program 5.1 to illustrate the process of writing a macro. The Original Solution in Program
5.3 is identical to Program 5.1 without saving the randomly selected birthdays and checking their
distribution with PROC CAPABILITY. The first part of the code that we wish to change is the name
of the data set that captures the results of the simulation. On the right hand side of Program 5.3, we
replace it with the corresponding macro variable: &OUT. In the %MACRO statement, we list this
macro variable and assign a default value to it after an equal sign (OUT=RESULTS). Then we make
the number of days (365), the number of simulations (10000), the frequency of the monitoring
messages (at every 2000 simulations), and the seed value (123) parameters by replacing them with
the macro variables &NDAYS, &NSIMS, &MSG, and &SEED, respectively. The left hand side of
Program 5.3 highlights all parts of the code that we will replace with macro variables, and the right
hand side has all those replaced with the corresponding macro variables.

The second argument, the divisor, of function MOD becomes a macro variable (&MSG) in the macro
solution. Since its value could be set to zero (i.e., we wish to suppress the monitoring messages), the
execution of the MOD function should be restricted to non-zero values. In other words, the actual
SAS code generated by the macro processor should not contain the IF statement with the MOD
function, if macro variable &MSG is zero. Therefore, we enclose it in a %IF macro statement. This is
like a regular IF statement, but it only controls the presence or disappearance of the statement
containing the function call in the generated SAS program. During execution, the macro processor
checks the value of &MSG, and it skips the following statement if the value is zero.

The last statement of the macro solution, %BDAY(SEED=123) invokes the macro and executes the
simulation. (The missing semicolon here is not an error, because this command causes SAS to load
and process the macro, and each statement of the macro and the generated code already contains the
obligatory semicolon.) Since the simulation is executed with SEED=123 specified, the results are
identical to those given in Output 5.1. The highlighted parts in the right hand side of Program 5.3 are
the changes required to create the macro solution.

102 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Program 5.3 Macro Solution to the Matching Birthdays Problem

Original Solution Macro Solution

DATA RESULTS(KEEP=NPEOPLE);
 ARRAY DAYS(365) $1 D1-D365;
 LENGTH NPEOPLE 3;
 DO SIM=1 TO 10000;

 IF NOT MOD(SIM,2000) THEN PUT
 ’SIMULATION NUMBER: ’
SIM;

 DO I=1 TO 365;
 DAYS(I)=’0’;
 END;
 DO NPEOPLE=1 TO 366;
 D=1+INT(365*RANUNI(123));
 IF DAYS(D)=’1’ THEN LEAVE;
 ELSE
DAYS(D)=’1’;
 END;
 OUTPUT;
 END;
 RUN;
PROC UNIVARIATE DATA=RESULTS PLOT;
 VAR NPEOPLE;
 RUN;

/***/
/* Macro BDAY simulates the problem of */
/* of Matching Birthdays. */
/* */
/* Parameters: */
/* NDAYS # of days in a year. */
/* NSIMS # of simulations. */
/* MSG # of simulations at which to */
/* display a message in the LOG */
/* window to monitor the run. */
/* SEED Seed of function RANUNI. */
/* OUT the name of the file that */
/* captures the results. */
/***/
%MACRO BDAY(NDAYS=365,NSIMS=10000,MSG=2000,
 SEED=0,OUT=RESULTS);
DATA &OUT(KEEP=NPEOPLE);
 ARRAY DAYS(&NDAYS) $1 D1-D&NDAYS;
 LENGTH NPEOPLE 3;
 DO SIM=1 TO &NSIMS;
 %IF &MSG^=0 %THEN %DO;
 IF NOT MOD(SIM,&MSG) THEN PUT
 ’SIMULATION NUMBER: ’ SIM;
 %END;
 DO I=1 TO &NDAYS;
 DAYS(I)=’0’;
 END;
 DO NPEOPLE=1 TO &NDAYS+1;
 D=1+INT(&NDAYS*RANUNI(&SEED));
 IF DAYS(D)=’1’ THEN LEAVE;
 ELSE DAYS(D)=’1’;
 END;
 OUTPUT;
 END;
 RUN;
PROC UNIVARIATE DATA=&OUT PLOT;
 VAR NPEOPLE;
 RUN;
%MEND;
%BDAY(SEED=123)

If we specify OPTION MPRINT; before a macro execution, the Log window displays the real
SAS code generated by the macro processor. In our case, the contents of the Log window are as
follows (except that the indentation has been added for clarity):

Chapter 5 Automating Monte Carlo Simulations 103

Log 5.3
SAS Code
Generated by
the Macro
Processor When
Executing
Program 5.3

It is recommended to set the default value of parameter SEED to zero in the %MACRO statement.
Otherwise, when we forget to control it, we obtain the same result every time we run the macro.

Also, to achieve the highest degree of flexibility, we should “parameterize” as much code as
possible. One could ask, for example, why did we make the number of days a parameter? If we
execute %BDAY(NDAYS=12,SEED=123), then we can solve the problem of Matching Birth
Months, a variation of the original problem: What is the average number of people needed to obtain
the first pair of matching birth months? The macro returns a value of 5.06, whereas the theoretical
value is 5.04.

��(�)
��*����������������+�����������

Much of Program 5.2 is related to monitoring the execution of the simulation. These parts of the
program can be removed and placed into macros for clarity's sake. One macro could contain the code
for starting the monitoring process, and another one could contain the statements displaying the
recurring message. These macros provide two benefits: they make the code clearer, and they can
serve as building blocks for general use. Program 5.4 is a modified version of Program 5.3 with full-
time monitoring implemented. In the macros %TMONST and %TMON, we use variable names
starting with underscores, because the macros must not interfere with the simulation code, and they
must reference variables different from the ones used in the simulation. The macro %TMONST sets
up many variables that are utilized by the second macro, %TMON. The macros are designed to
handle the case where the user does not wish to monitor (i.e., MSG=0).

DATA RESULTS(KEEP=NPEOPLE);
 ARRAY DAYS(365) $1 D1-D365;
 LENGTH NPEOPLE 3;
 DO SIM=1 TO 10000;
 IF NOT MOD(SIM,2000) THEN PUT ’Simulation Number: ’ SIM;
 DO I=1 TO 365;
 DAYS(I)=’0’;
 END;
 DO NPEOPLE=1 TO 365+1;
 D=1+INT(365*RANUNI(123));
 IF DAYS(D)=’1’ THEN LEAVE;
 ELSE DAYS(D)=’1’;
 END;
 OUTPUT;
 END;
 RUN;
PROC UNIVARIATE DATA=RESULTS PLOT;
 VAR NPEOPLE;
 RUN;

104 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Program 5.4 Macro Solution to the Matching Birthdays Problem with Full-Time Monitoring

LIBNAME MYMACLIB ’subdirectory’; *** define a location for the macro library.;
OPTION SASMSTORE=MYMACLIB MSTORED;

/* Macro TMONST starts the time monitoring. */
/* Parameter */
/* MSG # of simulations at which the program displays a */
/* a message in the LOG window. Specify zero if you */
/* wish to suppress the monitoring. */

%MACRO TMONST(MSG=2000) / STORE;
 _MSGCNT=0;
 %IF &MSG^=0 %THEN %DO;
 _MSGCNT=&MSG;
 _SDT=DATETIME();
 _STIME=TIMEPART(_SDT);
 PUT ’Starting Time: ’ _STIME TIME12.3;
 LENGTH _MSG $72;
 SUBSTR(_MSG,1,13)=’Simulation #:’;
 SUBSTR(_MSG,21,16)=’, Current Time: ’;
 SUBSTR(_MSG,49,16)=’, Duration: ’;
 %END;
%MEND;

/* macro TMON displays the simulation number, current time and */
/* elapsed time after a certain number of simulations. */

%MACRO TMON / STORE;
 IF _MSGCNT^=0 THEN DO;
 _SIM+1;
 IF NOT MOD(_SIM,_MSGCNT) THEN DO; _EDT=DATETIME();
 _ETIME=TIMEPART(_EDT);
 _DUR=_EDT-_SDT;
 SUBSTR(_MSG,15,6)=PUT(_SIM,6.);

SUBSTR(_MSG,37,12)=PUT(_ETIME,TIME12.3);SUBSTR(_MSG,61,12)=PUT(_DUR,TIME12.3);
 PUT _MSG;
 _SDT=_EDT;
 END;
 END;
%MEND;

/* a new SAS session starts here. */

Chapter 5 Automating Monte Carlo Simulations 105

LIBNAME MYMACLIB ’subdirectory’; *** this is the location of the macro library.;
OPTION SASMSTORE=MYMACLIB;
%MACRO BDAY(NDAYS=365,NSIMS=10000,MSG=2000, SEED=0,OUT=RESULTS);
 DATA &OUT(KEEP=NPEOPLE);
 ARRAY DAYS(&NDAYS) $1 D1-D&NDAYS;
 LENGTH NPEOPLE 3;
 %TMONST(MSG=2000)
 DO SIM=1 TO &NSIMS;
 %TMON
 DO I=1 TO &NDAYS;
 DAYS(I)=’0’;
 END;
 DO NPEOPLE=1 TO &NDAYS+1;
 D=1+INT(&NDAYS*RANUNI(&SEED));
 IF DAYS(D)=’1’ THEN LEAVE;
 ELSE DAYS(D)=’1’;
 END;
 OUTPUT;
 END;
 RUN;
 PROC UNIVARIATE DATA=&OUT PLOT;
 VAR NPEOPLE;
 RUN;
%MEND;
%BDAY(SEED=123)

Program 5.4 also illustrates how we can seamlessly incorporate macros in our programs. We can set
up a macro library, store our macros there, and later reference them without repeating the macro
codes in our program. The statements

LIBNAME MYMACLIB ’subdirectory’;
OPTION SASMSTORE=MYMACLIB MSTORED;

define the location of a macro library and let SAS know that we wish to permanently store macros
there. Storing a macro in that library requires the STORE option in the %MACRO statement (see, e.g.,
%MACRO TMONST/STORE;). In a future SAS session, we only need to point to this macro library
and the macros become available with a simple reference.

���,������
�����������������-������������./0���1���

������������������2�

In the rest of the chapter, we will solve the Parking Problem with a macro. We will see the
advantages of using a macro solution, the many and convenient ways SAS enables us to analyze and
present the results, and we will answer additional interesting questions concerning the original
problem.

106 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

The Parking Problem is as follows. What is the average number of cars of unit length that can
randomly park along a street of length x? If M(x) denotes that average, then the problem can also
ask:

 ?
)(

lim ==
∞→

C
x

xM
x

The problem was first solved by Alfréd Rényi,2 and C is called Rényi's constant. We assume an ideal
situation, i.e., that cars can park with their bumpers touching (but not overlapping) each other.

First, let us design an algorithm that can be programmed in SAS. At the beginning, there is one
parking space, the whole street. After parking the first car, there may be two parking spaces—one in
front of that car, the other one behind it. When we park a car, we have to choose an available parking
space first, and then we have to randomly place the car somewhere in that parking space. During the
simulation, we need to store the parking locations of the cars, keep track of the available parking
spaces, and stop the parking process when the available parking space decreases to zero. The parking
locations and the number of parking spaces are constantly updated during the simulation. We choose
the centrum of a car for its parking location.

The macro %PARKING in Program 5.5 is the complete solution to the simulation. The simulation
itself is performed in a DATA step. In that DATA step, we have to dimension an array (PARKGLOC)
for the parking locations. The number of elements in that array depends on the maximum number of
cars that can park along the street of a given length. That value is determined in a preceding DATA
NULL step and is carried over in a macro variable (&MAXNCARS). If the parameters are specified
such that no car can park (the street is shorter than the length of a car), the macro jumps to the end of
the macro without starting the simulation.

Note the use of the macro parameters: their values are assigned to regular DATA step variables in a
RETAIN statement to avoid the excessive presence of macro variables. The macro provides added
flexibility by controlling the level of output: whether to output the intermediate information after
parking each car, or only the end result (see the parameter LEVEL), and whether to keep only the
number of cars parked or all parking locations as well (see the parameter KEEP).

2 Rényi showed (Rényi, 1958) that

x
2

M(0) 0 and M(x) 1 M(u)du
x 1

0

� � �
� � if x>0. By a Laplace transform, he obtained

t
u1 e

C exp(2 du)dt 0.74759...
u

0 0

�

�
�

� � �� � For a survey of the problem, see Solomon 1986. For calculating the value of C with high precision, see

Marsaglia 1989.

Chapter 5 Automating Monte Carlo Simulations 107

Program 5.5 Macro PARKING

LIBNAME MYMACLIB ’subdirectory’; *** this is the location of;
OPTION SASMSTORE=MYMACLIB; *** the macro library.;
/**/
/* Macro PARKING simulates the parking problem and returns */
/* the number of cars that park along a given street. */
/* */
/* Parameters */
/* OUT name of the data set that captures the results */
/* of the simulations. */
/* STRLNGTH the length of the street. */
/* CARLNGTH the uniform length of a car. */
/* NSIMS # of simulations. */
/* SEED Seed of function RANUNI. */
/* MSG # of simulations at which to display a */
/* a monitoring message in the LOG window. */
/* LEVEL MAIN or PARKING. It controls the level of */
/* detail in the output data set. MAIN creates */
/* one record per simulation. PARKING creates */
/* one record for every car parked. */
/* KEEP NCARS or ALL. It controls the variables in the */
/* output data set. NCARS saves only variable */
/* NCARS (# of cars parked), ALL saves all */
/* auxiliary variables along with NCARS. */
/**/

%MACRO PARKING(OUT=TEMP,STRLNGTH=10,CARLNGTH=1,
 NSIMS=1,SEED=123,MSG=0,LEVEL=MAIN,KEEP=NCARS);

 /* calculate the maximum number of cars that can park + 2. */
 /* do it in a data _null_ step and save the result in */
 /* macro variable MAXNCARS using the SYMPUT CALL routine. */
 /* macro variable &MAXNCARS will be used to dimension an */
 /* array, which holds the locations of the parked cars. */

DATA _NULL_;
 IF &STRLNGTH.<&CARLNGTH.
 THEN MAXNCARS=0;
 ELSE MAXNCARS=2+INT(&STRLNGTH/&CARLNGTH);
 CALL SYMPUT(’MAXNCARS’,COMPRESS(PUT(MAXNCARS,16.)));
 STOP; RUN;

 /* if parameters are invalid, jump to the end of the */
 /* macro and do nothing. */

 %IF &MAXNCARS=0 %THEN %DO;
 %PUT Error: Invalid relative values for parameters ’STRLNGTH’;
 %PUT Error: and ’CARLNGTH’.;
 %GOTO FINISH; %END;

 /* data step of the simulation. */

 DATA &OUT;

 /* The parameters are placed in the corresponding SAS */
 /* variables through a RETAIN statement. */

 LENGTH STRLNGTH CARLNGTH 4;
 RETAIN STRLNGTH &STRLNGTH CARLNGTH &CARLNGTH;
 RETAIN NSIMS &NSIMS SEED &SEED;

108 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 /* array PRKGLOC stores the centrum of each car parked. */
 /* its dimension is the maximum number of cars that */
 /* can park + 2 (see macro variable &MAXNCARS). */
 /* the minimum parking location can be half the length */
 /* of a car from the start of the street and the */
 /* maximum parking location can be half the length of a */
 /* car from the end of the street. */
 /* to let our algorithm work, we park two imaginary */
 /* cars just before and after the street. */

 ARRAY PRKGLOC(&MAXNCARS) P1-P&MAXNCARS;
 LENGTH NCARS 4;
 %TMONST(MSG=&MSG) *** start the time monitoring.;

 DO SIM=1 TO NSIMS; *** the main LOOP of the simulations.;
 %TMON *** display the monitoring message.;
 NCARS=0; *** NCARS holds the number of cars;
 *** currently parked.;

 /* set the parking locations of the two imaginary */
 /* cars. All cars that the simulation parks will be */
 /* parked between these two cars. */

 PRKGLOC(1)=-CARLNGTH/2;
 PRKGLOC(2)= STRLNGTH+CARLNGTH/2;

 /* NAVAILPS: # of available parking spaces. At the */
 /* beginning, it is one, because the whole street */
 /* is one continuous parking space. */

 NAVAILPS=1;

 /* LOOP that parks cars. It keeps parking until */
 /* there is only one available parking space. */

 DO WHILE (NAVAILPS>0);

 /* Choose from the available parking spaces. */

 CURRPARK=1+INT(RANUNI(SEED)*NAVAILPS);

 /* find the possible parking spaces between the */
 /* cars already parked and stop when the randomly */
 /* chosen parking space is reached. */

 NPS=0;
 DO I=1 TO NCARS+1 WHILE (CURRPARK^=NPS);
 IF PRKGLOC(I)+2*CARLNGTH <= PRKGLOC(I+1) THEN DO;

 /* the space between car i and car i+1 is */
 /* long enough to be a parking space. */

 NPS=NPS+1; *** Keep counting the parking spaces.;

 /* the randomly chosen parking space */
 /* (see above: CURRPARK) is found. */

 IF CURRPARK=NPS THEN DO;

 /* choose the parking location within the */
 /* parking space randomly. The parking */
 /* location is held in variable NEWPRKG. */

Chapter 5 Automating Monte Carlo Simulations 109

 NEWPRKG=PRKGLOC(I)+CARLNGTH+RANUNI(SEED)*
 (PRKGLOC(I+1)-PRKGLOC(I)-2*CARLNGTH);

 /* insert the car into the sequence of */
 /* parked cars. Push up all cars behind */
 /* it. */

 DO J=NCARS+2 TO I+1 BY -1;
 PRKGLOC(J+1)=PRKGLOC(J);
 END;
 NCARS=NCARS+1;
 PRKGLOC(I+1)=NEWPRKG;

 /* update the number of available parking */
 /* spaces. Is there enough space for */
 /* another car in front of and behind */
 /* this newly parked car? */

 NAVAILPS=NAVAILPS-1;
 IF PRKGLOC(I)+2*CARLNGTH<=PRKGLOC(I+1)
 THEN NAVAILPS=NAVAILPS+1;
 IF PRKGLOC(I+1)+2*CARLNGTH<=PRKGLOC(I+2)
 THEN NAVAILPS=NAVAILPS+1;
 END;
 END;
 END;

 /* output record after each parking. */

 %IF %UPCASE(&LEVEL)=PARKING %THEN OUTPUT;
 END;

 /* output record after all cars are parked and no */
 /* more cars can be parked. */

 %IF %UPCASE(&LEVEL)=MAIN %THEN OUTPUT;;
 END;
 %IF %UPCASE(&KEEP)=NCARS %THEN %STR(KEEP NCARS;);
 %ELSE %STR(KEEP NCARS CARLNGTH STRLNGTH
 P1-P&MAXNCARS;);
 RUN;
 %FINISH:;
%MEND;

Before we run a large number of simulations, let us call the macro to execute one simulation only and
use a SAS/GRAPH procedure to present the process of parking visually. Program 5.6 calls the macro
with one simulation requested, saving all intermediate data (note the utilization of the default values
of the macro parameters). After adjusting the output file, we draw the parked cars along the street
using PROG GPLOT (see Output 5.6). This sample simulation and its graphical presentation help us
to understand the algorithm and the internal working of the macro.

110 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Program 5.6 One Simulation of Parking

%PARKING(OUT=ONESIM,LEVEL=PARKING,KEEP=ALL)
PROC PRINT DATA=ONESIM;
 FORMAT P1-P12 5.3;
 TITLE F=SWISS H=1.5 ’One Random Parking (Street=10, Car=1)’;
 RUN;

/* data set ONESIM contains all parked cars of one simulation.*/
/* prepare the data set for drawing the sequence of parking */
/* with PROC GPLOT using the SYMBOL INTERPOL=HILOBC; */
/* statement that draws a rectangle representing a car. */

DATA ONESIM(KEEP=CARS STREET);
 SET ONESIM;
 ARRAY PRKGLOC(12) P1-P12;
 DO I=2 TO _N_+1;

 /* make the ’x’ coordinate of each car unique by */
 /* adding a unique fudging factor to each. */

 CARS=_N_+0.00000001*I;
 STREET=PRKGLOC(I)+0.5; OUTPUT;
 STREET=PRKGLOC(I)-0.5; OUTPUT;

 /* create two ’y’ values in order to have the */
 /* vertical sides of the rectangle. */

 STREET=PRKGLOC(I)-0.5; OUTPUT;
 END;
PROC FORMAT;
 VALUE FCARS 0=’ ’ 8=’ ’;
PROC GPLOT DATA=ONESIM;
 PLOT STREET*CARS / VAXIS=AXIS1 HAXIS=AXIS2;
 FORMAT CARS FCARS.;
 SYMBOL INTERPOL=HILOBC;
 AXIS1 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Street’)
 ORDER=0 TO 10 BY 1 VALUE=(H=1.2 F=SWISS) MINOR=NONE;
 AXIS2 LABEL=(F=SWISS H=1.5 ’Cars’)
 ORDER=0 TO 8 BY 1 VALUE=(H=1.2 F=SWISS) MINOR=NONE;
RUN;

Chapter 5 Automating Monte Carlo Simulations 111

Output 5.6 Graphical Representation of One Simulation

One Random Parking (Street=10, Car=1)

 S C
 T A
 R R
 L L N
 N N C
O G G P P P A
B T T P P P P P P P P P 1 1 1 R
S H H 1 2 3 4 5 6 7 8 9 0 1 2 S

1 10 1 -0.500 3.388 10.500 1
2 10 1 -0.500 2.211 3.388 10.500 2
3 10 1 -0.500 0.657 2.211 3.388 10.500 3
4 10 1 -0.500 0.657 2.211 3.388 6.423 10.500 4
5 10 1 -0.500 0.657 2.211 3.388 4.582 6.423 10.500 5
6 10 1 -0.500 0.657 2.211 3.388 4.582 6.423 8.329 10.500 6
7 10 1 -0.500 0.657 2.211 3.388 4.582 6.423 8.329 9.374 10.500 . . . 7

Now we can run a real simulation and obtain the average number of cars. In Program 5.7, we specify
the length of the street as 100 (the cars still have unit length), and we request 100,000 simulations.
The output data set of the macro (RES100) is processed by PROC UNIVARIATE to return the
answer: 74.5 cars. Rényi's constant would be 0.7451... .

112 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Program 5.7 100,000 Simulations with Street=100 and Car Length=1

%PARKING(OUT=RES100,STRLNGTH=100,NSIMS=100000)
PROC UNIVARIATE DATA=RES100 PLOT;
 VAR NCARS;
 RUN;

Output 5.7 Average Number of Parked Cars on Street=100

Univariate Procedure

Variable=NCARS

 Moments Quantiles(Def=5)

 N 100000 Sum Wgts 100000 100% Max 83 99% 79
 Mean 74.51164 Sum 7451164 75% Q3 76 95% 78
 Std Dev 1.969904 Variance 3.880523 50% Med 75 90% 77
 Skewness 0.003419 Kurtosis -0.00247 25% Q1 73 10% 72
 USS 5.5559E8 CSS 388048.5 0% Min 66 5% 71
 CV 2.643754 Std Mean 0.006229 1% 70
 T:Mean=0 11961.32 Pr>|T| 0.0001 Range 17
 Num ^= 0 100000 Num > 0 100000 Q3-Q1 3
 M(Sign) 50000 Pr>=|M| 0.0001 Mode 75
 Sgn Rank 2.5E9 Pr>=|S| 0.0001
 D:Normal 0.101038 Pr>D <.01

 Extremes

 Lowest Obs Highest Obs
 66(79423) 82(82446)
 66(71606) 82(87088)
 66(53040) 82(91180)
 67(89263) 82(95423)
 67(87120) 83(89658)

 Histogram # Boxplot
 83.5+* 1 0
 .* 13 0
 .* 95 0
 .** 416 |
 .**** 1538 |
 .*********** 4245 |
 .********************** 8969 |
 .************************************** 15296 +-----+
 .** 19741 *-----*
 .** 19506 | + |
 .************************************* 14992 +-----+
 .*********************** 9110 |
 .********** 4119 |
 .**** 1462 |
 .* 400 |
 .* 79 0
 .* 15 0
 66.5+* 3 0
 ----+----+----+----+----+----+----+----+----+---
 * may represent up to 412 counts

Chapter 5 Automating Monte Carlo Simulations 113

Using the macro solution, it is easy to approximate Rényi's constant by executing the macro with
increasing street lengths. In Program 5.8, we simulate the problem with street lengths of 10, 100,
1000 and 10,000 units. Note that the last macro call requests only 10,000 simulations because of the
increase in the execution time. The program concatenates the results of the four macro calls, sets up a
variable for the length of the street (STREET), and calculates Rényi's constant with PROC MEANS
and a subsequent DATA step. The results show an ever-increasing approximation of the true value.
When the length of the street is 10,000 units, the error is less than 0.000003 (0.74760044... vs. the
true value of 0.74759792...).

Program 5.8 Approximation of Rényi's Constant

%PARKING(OUT=RES10,STRLNGTH=10,NSIMS=100000)
%PARKING(OUT=RES100,STRLNGTH=100,NSIMS=100000)
%PARKING(OUT=RES1000,STRLNGTH=1000,NSIMS=100000)
%PARKING(OUT=RES10000,STRLNGTH=10000,NSIMS=10000)
DATA RESALL; *** concatenate the results of all simulations;
 SET RES10(IN=S10) RES100(IN=S100)
 RES1000(IN=S1000) RES10000(IN=S10000);
 IF S10 THEN STREET=10; *** set up the length of the street.;
 IF S100 THEN STREET=100;
 IF S1000 THEN STREET=1000;
 IF S10000 THEN STREET=10000;
PROC MEANS DATA=RESALL NOPRINT; *** calculate average number of cars.;
 VAR NCARS STREET;
 BY STREET;
 OUTPUT OUT=RENYI(KEEP=RENYI STREET NSIMS) MEAN=RENYI N=NSIMS;
 RUN;
DATA RENYI; *** calculate Renyi’s constant (average number of ;
 *** cars over the length of the street).;
 SET RENYI;
 RENYI=RENYI/STREET;
 RUN;
PROC PRINT DATA=RENYI LABEL SPLIT=’*’ NOOBS;
 VAR STREET RENYI NSIMS;
 LABEL STREET=’Length of*Street’ RENYI="Renyi’s*Constant"
 NSIMS=’Number of*Simulations’;
 TITLE "Approximation of Renyi’s Constant";
 TITLE2 "(Average Number of Cars / Length of Street)";
 RUN;

Output 5.8
Approximation
of Rényi's
Constant

 Approximation of Renyi’s Constant
 (Average Number of Cars / Length of Street)

 Length of Renyi’s Number of
 Street Constant Simulations

 10 0.72264 100000
 100 0.74511 100000
 1000 0.74731 100000
 10000 0.74760 10000

114 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

As we discussed in the introduction to this chapter, the SAS System provides an unparalleled
richness of statistical procedures and convenient data handling capabilities for the simulations. We
can raise many secondary questions about the simulation problem and answer them with ease.

For example, we may ask: What is the distribution of the gaps between the parked cars? Normal or
uniform? Even when we are not equipped with the necessary mathematical knowledge and skill, we
can answer these questions. Program 5.9 presents the code to execute the simulation, grab the
parking locations of the cars, calculate the gaps between them and, finally, draw the distribution with
PROC UNIVARIATE. Output 5.9 shows the distribution, which is neither normal nor uniform.

Program 5.9 Analysis of Gaps Between the Cars

/* execute a simulation by grabbing the locations of */
/* all parked cars (see parameter KEEP=ALL and */
/* variables p1,p2,...) */

%PARKING(OUT=GAP,STRLNGTH=100,NSIMS=100000,KEEP=ALL)

/* calculate the gaps between the cars. Include the */
/* distance from the beginning of the street and the */
/* first car and the distance between the last car */
/* and the end of the street. Place each gap into a */
/* separate observation. */

DATA GAP(KEEP=GAP);
 SET GAP;
 ARRAY PRKGLOC(102) P1-P102; *** locations of the cars.;
 LENGTH GAP 4;
 DO I=1 TO NCARS+1;
 GAP=PRKGLOC(I+1)-PRKGLOC(I)-1; *** the length of a car is 1.;
 OUTPUT;
 END;
PROC UNIVARIATE DATA=GAP NORMAL PLOT;
 VAR GAP;
 TITLE ’Distribution of Gaps between the Cars’;
 RUN;

Chapter 5 Automating Monte Carlo Simulations 115

Output 5.9: Distribution of Gaps Between the Cars

 Distribution of Gaps between the Cars

Univariate Procedure

Variable=GAP

 Moments Quantiles(Def=5)

 N 7551164 Sum Wgts 7551164 100% Max 1 99% 0.97653
 Mean 0.337542 Sum 2548835 75% Q3 0.541009 95% 0.887918
 Std Dev 0.281835 Variance 0.079431 50% Med 0.26276 90% 0.787126
 Skewness 0.676533 Kurtosis -0.70364 25% Q1 0.091603 10% 0.026726
 USS 1460135 CSS 599796.5 0% Min 1.146E-9 5% 0.011197
 CV 83.49629 Std Mean 0.000103 1% 0.001641
 T:Mean=0 3291.09 Pr>|T| 0.0001 Range 1
 Num ^= 0 7551164 Num > 0 7551164 Q3-Q1 0.449406
 M(Sign) 3775582 Pr>=|M| 0.0001 Mode 0.255009
 Sgn Rank 1.426E13 Pr>=|S| 0.0001
 D:Normal 0.115525 Pr>D <.01

 Extremes

 Lowest Obs Highest Obs
 1.146E-9(4756845) 0.999999(4362339)
 7.907E-9(2295455) 0.999999(5790184)
 1.685E-8(7007323) 0.999999(6480881)
 1.7E-8(5455812) 1(2429628)
 2.736E-8(4460589) 1(4932128)

 Histogram # Boxplot
 0.975+******* 163291 |
 .******* 171630 |
 .******** 180089 |
 .******** 189543 |
 .******** 200874 |
 .********* 212389 |
 .********* 224685 |
 .********** 240839 |
 .*********** 256294 |
 .*********** 275069 +-----+
 .************ 295764 | |
 .************* 321136 | |
 .************** 349358 | |
 .**************** 382718 | + |
 .***************** 423905 *-----*
 .******************* 475048 | |
 .********************** 542824 | |
 .************************** 637857 | |
 .******************************** 791203 +-----+
 0.025+**1.22E6 |
 ----+----+----+----+----+----+----+----+----+---

* may represent up to 25347 counts

116 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

�������
������

The SAS System is an outstanding environment for Monte Carlo simulations. It provides all
necessary tools for conducting a simulation, and it makes a full discussion of the problem possible
with its broad range of procedures and features. In this chapter, we have seen that the programming
of a simulation can be done in the familiar DATA step, that we have full control over the seed values
of the random number generators, that it is easy to implement monitoring during the time-consuming
execution, that the SAS code can be ported to any hardware and operating system without significant
change, and that we can automate the simulation process by building it with the SAS Macro Facility.

���� /����������

Hamer, R. M., and T. J. Breen. 1985. “The SAS System as a Statistical Simulation Language.”
Proceedings of the Tenth Annual SAS Users Group International Conference, Reno, Nevada,
982-989.

Marsaglia, G., A. Zaman, and J. Marsaglia. 1989. “Numerical Solution of Some Classical Differential
Equations.” Mathematics of Computation 53(187):191-201.

Rényi, A. 1958. “On a One-Dimensional Problem Concerning Random Space Filling.” Publications of the
Mathematical Institute of the Hungarian Academy of Sciences 3:109-127 (in Hungarian).

SAS Institute Inc. 1990. SAS Guide to Macro Processing, Version 6. 2d ed. Cary, NC: SAS Institute Inc.

Solomon, H., and H. Weiner. 1986. “A Review of the Packing Problem.” Commun. Statist. Theory
Methods 15:2571-2607.

Chapter 6 Conducting Monte Carlo Studies
 That Involve Univariate Statistical
 Techniques

6.1 Introduction 117

6.2 Example 1: Assessing the Effect of Unequal Population Variances in a T-TEST 118
 6.2.1 Computational Aspects of T-Tests 119
 6.2.2 Design Considerations 119
 6.2.3 Different SAS Programming Approaches 120
 6.2.4 T-Test Example: First Approach 121
 6.2.5 T-Test Example: Second Approach 125

6.3 Example 2: Assessing the Effect of Data Non-Normality on the Type I Error Rate in ANOVA 129
 6.3.1 Design Considerations 130
 6.3.2 ANOVA Example Program 130

6.4 Example 3: Comparing Different R2 Shrinkage Formulas in Regression Analysis 136
 6.4.1 Different Formulas for Correcting Sample R2 Bias 136
 6.4.2 Design Considerations 137
 6.4.3 Regression Analysis Sample Program 138

6.5 Summary 143

6.6 References 143

���� �����	
������

Chapters 1 to 5 have covered the basic concepts and procedures for conducting a Monte Carlo simulation
study. At the same time, the basic components of SAS programs necessary for implementing a Monte
Carlo study have also been explained. We are now ready to present and discuss some complete examples
of Monte Carlo studies in which the SAS System is used for statistical analysis. The examples in this
chapter involve the following statistical techniques:

�� a t-test, to assess the effect of violating the assumption of equal population variances

�� analysis of variance (ANOVA), for assessing the effect of violating the assumptions
of data normality and equal population variances

�� linear regression, for comparing different R2 shrinkage formulas for correcting
positive bias of sample R2.

118 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

For each example, we will present a) the theoretical rationale for conducting the study, and the major
issues involved; b) the annotated SAS program for implementing the Monte Carlo study, with a detailed
explanation of the SAS code; c) some selected and relevant results from the actual simulation based on
the SAS programs provided. The examples provided in this chapter, as well as those in the following three
chapters (Chapters 7, 8 and 9), are designed to help readers put together all the puzzle pieces discussed in
previous chapters.

��� ���������������������������������������
����

����������
����������������������� ��!��

The t-test is a widely used statistical inferential test for assessing the equality of two population means on
a variable of interest. For example, suppose that a large corporation has a complicated end-of-year bonus
policy that involves some subjective decisions from each employee’s immediate supervisors. A personnel
officer in the corporation may be interested in knowing if there is a difference in bonus (as represented by
percentage of salary) between the male and female employees in the corporation. As another example, an
educational psychologist may be interested in assessing whether there is a difference in the level of self-
esteem between those students who are in the regular classroom and those who have been assigned to a
special education program because of their lower performance on some academic aptitude/achievement
measures. In both of these cases, a t-test may be used to test if the observed sample difference could have
occurred by sampling variation, i.e., by chance. If it is statistically determined that the observed
difference between the two samples on the variable of interest is very unlikely to be the result of sampling
error, the difference would be declared to be statistically significant, namely, there is a real difference
between the two populations (e.g., male versus female employees) on the variable of interest (e.g., end-of-
year bonus).

All statistical inferential tests have some fundamental theoretical assumptions, and the t-test is no
exception. If the fundamental assumptions of a statistical test are not tenable for the data used, the validity
of the statistical conclusion based on the inferential test is often compromised to an unknown degree. For
the t-test, there are two prominent assumptions: a) the two populations have equal variances; b) the
variable of interest is normally distributed. If these assumptions are violated, the actual Type I error rate
may deviate from the theoretical Type I error rate such that our statistical conclusion may be in error.

In this Monte Carlo simulation example, we examine the issue of violating the first assumption, i.e., the
two populations do not have equal variances. The effect of violating these two assumptions of the t-test is
well known, because these issues have been studied by many researchers. In this sense, our interest here is
not in the statistical issues themselves, but only to present an example to illustrate how a Monte Carlo
study can be implemented in the SAS System.

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 119

6.2.1 Computational Aspects of T-Tests
The t statistic for testing the equality of two independent samples, with sample sizes of n1 and n2
respectively, is:

)2(,

)
11

(
21

21

2

21 −+=
+

−
= nndf

nn
s

XX
t

pooled

 (6.1)

s2

pooled is the pooled variance of the two samples under the assumption of equal population variances

(2
2

2
1 σσ =):

2

)1()1(

21

2
22

2
112

−+
−+−

=
nn

snsn
s pooled (6.2)

2
1s and 2

2s are the sample variances of the two samples, and 2
11)1(sn − and

2
22)1(sn − represent the corrected sum of squares for the two samples, respectively. The corrected sum

of squares of a sample is defined as:

∑ −= 2)(XXSS icorrected

and it can be computed via:

∑ ∑−=
n

X
XSS i

icorrected

2
2

)(
 (6.3)

These formulas are presented to help readers follow some SAS programming code that will be presented
and discussed in later sections.

6.2.2 Design Considerations
In this example, we want to assess the effect of unequal population variances on the actual Type I error
rate of t-tests for samples drawn from populations with the same means. The simulation design, however,
should include conditions of both equal and unequal population variances so that an empirical comparison
can be made about the empirical Type I error rates for the data condition that satisfies the theoretical
assumption of equal population variances, and for the other data condition that violates this assumption.

Under the condition of unequal population variances, there can be different degrees of inequality of
population variances. For example, the variance of one population may be 50% larger than that of the
other, or twice as large as that of the other, or four times as large, etc. A real Monte Carlo study may
include a range of degrees of inequality in order to gain a fuller understanding of the effects caused by
such data conditions. In our example here, however, for the sake of simplicity, we only consider one
condition of unequal population variances: the standard deviation of one population is 10 (variance=100),
and that of the other is 15 (variance=225). In short, for the dimension of population variances, we will
consider two conditions: equal and unequal population variances.

120 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Previous research in this area suggests that sample size plays a role in influencing the effect of unequal
population variances on the actual Type I error rate of t-tests. More specifically, unequal population
variances have a substantially stronger effect on the actual Type I error rate of t-test statistics when the
sample sizes of the two samples are unequal than when they are equal. To investigate the interaction
effect between sample size and unequal population variances, sample size should be considered as another
dimension of design.

Although a real research Monte Carlo study may include a range of sample size conditions with different
degrees of inequality of sample sizes in the two samples, we only include one condition of equal sample
sizes (20 and 20 for the two samples) and one condition of unequal sample sizes (20 for the sample from
the population with equal/smaller population variance, and 40 for the sample from the population with
equal/larger population variance). The two dimensions (population variance and sample size) are fully
crossed with each other, resulting in a 2�2 experimental design with four cell conditions. To obtain a
reasonably accurate estimate of the actual Type I error rate for the conditions, 10,000 replications of the t-
test will be conducted in each cell condition. This design requires a total number of 40,000 replications
[(2×2) ×10000]. The Monte Carlo study design is represented schematically in Table 6.1.

Table 6.1 Schematic Representation of the T-Test Monte Carlo Study Design

 Sample Size

 Equal
(20, 20)

Unequal
(20, 40)

Equal
(100, 100)

10,000 replications 10,000 replications
Variance

Unequal
(100, 225)

10,000 replications 10,000 replications

6.2.3 Different SAS Programming Approaches
Because the SAS System is so flexible, for any Monte Carlo simulation study, different approaches can be
taken. Different approaches may involve different amounts of statistical programming. It is usually the
individual researcher’s preference that often dictates which approach is taken.

In this chapter, we present two approaches for implementing the Monte Carlo simulation design as
represented in Table 6.1 for assessing the effect of unequal population variances on the validity of the t
statistic’s Type I error rate. The first approach is to rely on base SAS only, and we do the programming
for all the computations involved in a t-test by using base SAS functions and mathematical capabilities.
The second approach is to use SAS/IML for data generation and to use SAS/STAT software’s PROC
TTEST to obtain the t statistic and its probability value. This approach of relying on SAS/STAT
procedures for statistical computations allows us to avoid programming
for statistical computations, instead of doing the computation programming ourselves as in the
first approach.

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 121

As we progress through our examples in this and later chapters, it will become more obvious that the latter
approach allows us to take full advantage of the SAS System and is often much more efficient and
simpler to implement. This is especially true when we deal with complicated statistical procedures, for
which programming by ourselves is either impossible or simply too complicated for us to deal with.

6.2.4 T-Test Example: First Approach
Program 6.1 presents a SAS macro program for simulating a t-test under the design conditions depicted in
Table 6.1. This program relies only on base SAS for all the programming, including the programming for
data generation and all the statistical computations involved in a t-test. Although the program contains
many comments to explain the functions of the SAS programming code, for researchers who are novices
in this area, some more detailed explanations may be beneficial. Following the program, a detailed
explanation will be provided for some selected components of the program.

Program 6.1 SAS Program for T-Test – First Approach

LIBNAME TTEST ’C:\T_TEST\TRIALS’;

 * -- to avoid the problem of SAS Log Window becoming full;
PROC PRINTTO LOG=’C:\T_TEST\TRIALS\LOGFILE.TMP’;
RUN;

%MACRO TTEST; * beginning of the macro program ‘TTEST’;

%DO A=1 %TO 2; * A=1:equal variance, A=2:unequal;
%DO B=1 %TO 2; * B=1:equal sample size, B=2:unequal;

%DO I=1 %TO 10000; * number of replications in each cell. 10,000 in this case;

DATA TTEST;

 /*** set parameters ***/
ALPHA=0.05; * nominal TYPE I error rate;
MEAN=50; * common mean for two populations;
SD1=10; * STD for GRP 1 & 2 - equal variance condition;
N1=20; * sample size for GRP 1 & 2 - equal N condition;
 /*** end of parameters ***/

 IF &A=1 THEN SD2=SD1; * A=1:equal variance, A=2:unequal - 1.5 times sd1;
 ELSE SD2=SD1*1.5;

 IF &B=1 THEN N2=N1; * B=1:equal sample size, B=2:unequal - 2 times n1;
 ELSE N2=N1*2;
 * initiate the accumulators;
 SUM1=0; * group 1: sum of x - sigma(x);
 SUM2=0; * group 2: sum of x - sigma(x);
 SSU1=0; * group 1: uncorrected sum of squares (ss);
 SSU2=0; * group 2: uncorrected sum of squares (ss);

 DO I=1 TO N1; * generate Group 1 data, carry out some computations;
 X1=MEAN + SD1*RANNOR(0);
 SUM1=SUM1 + X1;
 SSU1=SSU1 + X1**2;
 END;

 DO J=1 TO N2; * generate Group 2 data, carry out some computations;
 X2=MEAN + SD2*RANNOR(0);
 SUM2=SUM2 + X2;
 SSU2=SSU2 + X2**2;
 END;

122 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 SSC1 = SSU1 - ((SUM1**2)/N1); * compute corrected SS for two groups;
 SSC2 = SSU2 - ((SUM2**2)/N2);

 MEAN1=SUM1/N1; MEAN2=SUM2/N2; * means of the two samples;

 VARP=(SSC1+SSC2)/(N1+N2-2); * pooled variance;

 T=(MEAN1-MEAN2)/SQRT(VARP*(1/N1 + 1/N2)); * t statistic;

 DF = N1 + N2 - 2; * degrees of freedom;

 IF T<0 THEN PT=2*PROBT(T,DF); * p value of the t statistic - two-tailed;
 ELSE IF T>0 THEN PT=2*(1-PROBT(T,DF));

 IF PT<ALPHA THEN SIG=1; * classify each t-test as either significant or not;
 ELSE SIG=0;

 IF &A=1 THEN EQ_VAR=’ EQUAL’; * add design conditions to the output data set;
 ELSE EQ_VAR=’UNEQUAL’;

 IF &B=1 THEN EQ_N=’ EQUAL’;
 ELSE EQ_N=’UNEQUAL’;
DATA NEW; SET TTEST; * append the results to a SAS data set on disk;
 KEEP T DF PT SIG EQ_VAR EQ_N;
 PROC APPEND BASE=TTEST.TTEST;
RUN;

%END; * end iteration do loop;
%END; * end B do loop;
%END; * end A do loop;
%MEND TTEST; * close the macro program;
%TTEST; * run the macro program;
RUN;
 * check empirical rejection rate for each cell condition;
DATA A; SET TTEST.TTEST;
PROC SORT; BY EQ_VAR EQ_N;
PROC FREQ; BY EQ_VAR EQ_N;
 TABLES SIG;
RUN;

�

The first PROC PRINTTO as repeated below directs the SAS log to a file on disk instead of displaying
log messages in the SAS Log window. In a Monte Carlo simulation study where literally thousands of
replications of some procedures may be run, the SAS log may become so long that the SAS Log window
may not be able to display it, because the SAS Log window has a certain display limit (32,000 lines).
Once the limit is reached, the SAS program will pause, and then ask you what to do. To avoid the
problem so that we can be away while the program is running, we can simply redirect the SAS log to a
file on the hard disk, and the file is given the name LOGFILE.TMP.

 * -- to avoid the problem of SAS Log Window becoming full;
PROC PRINTTO LOG=’C:\T_TEST\TRIALS\LOGFILE.TMP’;
RUN;

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 123

In this program, we used a SAS macro to write the program. As discussed in Chapter 5, a SAS macro
program has the structure of starting with %MACRO and ending with %MEND, as shown below:

%MACRO name;
.
. (other SAS program statements)
.
%MEND name;

SAS macro programs are extremely flexible, and almost anything can be included in them. When we use
SAS for a Monte Carlo study, in many cases it is necessary to use a SAS macro program in order to run
some SAS procedures repeatedly. For example, the DO loop in SAS works within the DATA step, before
any PROC statements begin. But if we want to run a PROC statement repeatedly, we cannot use a regular
DO loop. In other words, if we want to run PROC TTEST one hundred times, as in the following
program, it will not work:

DO I = 1 TO 100; * program that will not work;

 PROC TTEST;
 CLASS GROUP;
 VAR X;
 RUN;

END;

This problem, however, can easily be solved by using a SAS macro program, as shown below. As will be
seen in the examples in this and the following chapters, for simulating complicated statistical procedures,
this becomes absolutely necessary so that we can take advantage of the powerful SAS/STAT procedures.

%MACRO TTEST;
%DO I = 1 %TO 100;
.
.(other program statements)
.
 PROC TTEST;
 CLASS GROUP;
 VAR X;
 RUN;
.
.(other program statements)
.
%END;
%MEND TTEST;
%TTEST; * to run the macro program ‘ttest’;
RUN;

Once we obtain all the results of this simulation study, there are a variety of ways of handling the data.
One approach is to output the results in the SAS Output window, in which case the results are not saved
as a data set. For example, in this t-test example, we can program in such a way that the actual Type I
error rates for the four cell conditions will be directly output into the SAS Output window. This approach,
however, does not allow future analysis. Once the SAS program is terminated, the data no longer exist.

Our preference is to save the results first as a permanent SAS data set, so future analysis is possible. This
approach has some obvious advantages. In many Monte Carlo studies, especially those with complicated
designs involving multiple factors and a variety of statistics, secondary analysis of the

124 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

results can be complicated, and it is not always possible to anticipate what kinds of secondary analyses
will be performed on the simulation results. In these situations, it is imperative to save the simulation
results for future analysis.

In our t-test example, we use the base SAS APPEND procedure (PROC APPEND) to append the relevant
information from each replication of PROC TTEST to a permanent SAS data set ‘TTEST’ (Notice the
two-level name for the permanent SAS data set), as repeated below. This permanent SAS data set
contains six variables: the t statistic (T), degrees of freedom (DF), the probability value of the t statistic
(PT), statistically significant or not at 0.05 level (SIG: 1=significant, 0=non-significant), equal population
variance or not (EQ_VAR: EQUAL=equal variances for the two groups, UNEQUAL=unequal
population variances), and equal sample size or not (EQ_N, EQUAL=equal sample size,
UNEQUAL=unequal sample size). Once the results are saved in the permanent SAS data set, future
analysis of the results can be done at any time.

 * append the results to a permanent SAS data set on disk;
DATA NEW; SET TTEST;
 KEEP T DF PT SIG EQ_VAR EQ_N;
 PROC APPEND BASE=TTEST.TTEST;
RUN;

Once all the results are obtained, we can run some simple analyses to check the actual Type I error rates
of the t-test under each of the four cell conditions. PROC SORT and PROC FREQ statements accomplish
the tasks, and the results based on one execution of Program 6.1 are in Output 6.1 below.

DATA A; SET TTEST.TTEST;
PROC SORT; BY EQ_VAR EQ_N;
PROC FREQ; BY EQ_VAR EQ_N;
 TABLES SIG;
RUN;

Output 6.1
T-Test
Simulation
Results
(Program 6.1)

------------------------- EQ_VAR=’ EQUAL’ EQ_N=’ EQUAL’ ---------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent
 0 9509 95.1 9509 95.1
 1 491 4.9 10000 100.0

-------------------------- EQ_VAR=’ EQUAL’ EQ_N=UNEQUAL ----------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent
 0 9500 95.0 9500 95.0
 1 500 5.0 10000 100.0

-------------------------- EQ_VAR=UNEQUAL EQ_N=’ EQUAL’ ----------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent
 0 9503 95.0 9503 95.0
 1 497 5.0 10000 100.0

--------------------------- EQ_VAR=UNEQUAL EQ_N=UNEQUAL -----------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent
 0 9717 97.2 9717 97.2
 1 283 2.8 10000 100.0

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 125

In Output 6.1 it is seen that in three of the four conditions, the actual Type I error rates (0.049, 0.05, and
0.05, respectively) are almost right on the target of the nominal Type I error rate of 0.05 as we specified in
the program. Only for the last condition (both unequal variance and unequal sample size) does the actual
Type I error rate (0.028) deviate noticeably from the nominal Type I error rate. This shows that the t-test
is much more robust to the violation of the equal population variances assumption when the two groups
have approximately equal sample sizes, a finding that is consistent with previous research studies in this
area (see Glass & Hopkins 1996, Chapter 12, for some detailed discussion).

6.2.5 T-Test Example: Second Approach
The second program for the same t-test Monte Carlo study is presented Program 6.2. This program is very
similar to the previous one, but it also contains enough variations to warrant some explanation. The two
most prominent areas where this program differs from the previous one are 1) SAS/IML is used for data
generation, instead of base SAS, as in the previous program; 2) SAS/STAT software’s PROC TTEST is
used to obtain t-test results instead of programming all the statistical computation ourselves. This second
feature may not seem to be a big deal here, because the computation for the t-test is quite simple. But for
the more complicated statistical procedures that we will encounter later, this feature becomes absolutely
essential, either because we do not fully understand the computational aspects of a statistical procedure, or
because programming for such complicated statistical procedures is beyond our programming repertoire,
or both. By taking full advantage of SAS/STAT procedures, we can easily overcome these barriers and
conduct Monte Carlo studies for quite complicated statistical techniques.

Program 6.2 SAS Program for T-Test – Second Approach

LIBNAME TTEST ’C:\T_TEST\TRIALS’;

 * -- to avoid the problem of SAS Log Window becoming full;
PROC PRINTTO LOG=’C:\T_TEST\TRIALS\LOGFILE.TMP’;
RUN;

%MACRO TTEST;

%DO A=1 %TO 2; * A=1:equal variance, A=2:unequal;
%DO B=1 %TO 2; * B=1:equal sample size, B=2:unequal;

%DO REP=1 %TO 10000; * number of replications in each cell;

PROC IML;

/*** define parameters ***/

%LET ALPHA=0.05; * nominal Type I error rate;
MEAN=50; * common mean for two populations;
SD1=10; * STD for GRP 1 & 2 - equal variance condition;
N1=20; * sample size for GRP 1 & 2 - equal N condition;

/*** end of parameters ***/

126 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 * A=1:equal variance, A=2:unequal - 1.5 times SD1;
 IF &A=1 THEN SD2=SD1;
 ELSE IF &A=2 THEN SD2=SD1*1.5;

 * B=1:equal sample size, B=2:unequal - 2 times N1;
 IF &B=1 THEN N2=N1;
 ELSE IF &B=2 THEN N2=N1*2;

 * generate group 1 data;
DAT1=SD1*RANNOR(J(N1,1,0)) + MEAN;
GRP1=J(N1,1,1); * assigning group number: group=1;
DAT1=DAT1||GRP1; * horizontal concatenation;

 * generate group 2 data;
DAT2=SD2*RANNOR(J(N2,1,0)) + MEAN;
GRP2=J(N2,1,2); * assigning group number: group=2;
DAT2=DAT2||GRP2;

DATA=DAT1//DAT2; * vertical concatenation - put data of both
 groups together;

CREATE DATAALL FROM DATA[COLNAME={X GROUP}]; * create a temporary
 data set;
APPEND FROM DATA;
 * direct the output to a file on
 disk;

FILENAME NEWOUT ’C:\T_TEST\TRIALS\OUTFILE’;
PROC PRINTTO PRINT=NEWOUT NEW;
RUN;
 * run the TTEST procedure;
PROC TTEST DATA=DATAALL;
 CLASS GROUP;
 VAR X;
RUN;
 * redirect output to print;
PROC PRINTTO PRINT=PRINT; RUN;

 * read proc ttest output from the disk file and
 obtain t statistic, df, and p value;
DATA READIN; INFILE NEWOUT;
 INPUT WORD $ @@;
IF WORD=’Equal’ THEN DO;
 INPUT T DF PT;
 * add simulation design information to data;
 IF PT<&ALPHA THEN SIG=1;
 ELSE SIG=0;
 IF &A=1 THEN EQ_VAR=’ EQUAL’;
 ELSE EQ_VAR=’UNEQUAL’;
 IF &B=1 THEN EQ_N=’ EQUAL’;
 ELSE EQ_N=’UNEQUAL’;
 OUTPUT;
 KEEP T DF PT SIG EQ_VAR EQ_N;
END;
RUN;

 * append the relevant information to a SAS System
 file;
DATA NEW; SET READIN;
 KEEP T DF PT SIG EQ_VAR EQ_N;
 PROC APPEND BASE=TTEST.TTEST;
RUN;

%END; * end replication do loop;

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 127

%END; * end B do loop;
%END; * end A do loop;
%MEND TTEST; * close the macro program ‘TTEST’;
%TTEST; * Run macro program ‘TTEST’;
RUN;

PROC SORT; BY EQ_VAR EQ_N;
PROC FREQ; BY EQ_VAR EQ_N; * check Type I error rate in four cells;
 TABLES SIG;
RUN;

Data generation in SAS/IML has been discussed in previous chapters, so it will not be repeated here. The
first new feature in this program is the group of statements that are repeated below. These two program
statements direct the output from PROC TTEST to a file named OUTFILE on disk instead of displaying
the results in the SAS Output window. This is necessary because the results of PROC TTEST cannot be
directly output as a SAS data set. To use the PROC TTEST results, we will read the output from the file
OUTFILE later, and obtain the information we need from it.

 * direct the output to a file on disk;
FILENAME NEWOUT 'C:\T_TEST\TRIALS\OUTFILE';
PROC PRINTTO PRINT=NEWOUT NEW;
RUN;

In order to understand how to obtain relevant information from an output file containing the results of
PROC TTEST, we need to take a look at how this output file is structured. The following table displays
the variations in the format of PROC TTEST output.

Table 6.2 Variations in the Format of PROC TTEST Output

�

FORMAT 1 (SAS 6.12)�

 TTEST PROCEDURE
Variable: X

GROUP1 N Mean Std Dev Std Error Minimum Maximum
--
 1 10 4.00000000 0.66666667 0.21081851 3.00000000 5.00000000
 2 10 6.00000000 1.15470054 0.36514837 4.00000000 7.00000000

Variances T DF Prob>|T|

Unequal -4.7434 14.4 0.0003
Equal -4.7434 18.0 0.0002

For H0: Variances are equal, F’ = 3.00 DF = (9,9) Prob>F’ = 0.1173

FORMAT 2 (SAS 6.12)

 TTEST PROCEDURE
Variable: X

GROUP1 N Mean Std Dev Std Error Variances T DF Prob>|T|
--- ---------------------------------------
 1 10 4.00000000 0.66666667 0.21081851 Unequal -4.7434 14.4 0.0003
 2 10 6.00000000 1.15470054 0.36514837 Equal -4.7434 18.0 0.0002

For H0: Variances are equal, F’ = 3.00 DF = (9,9) Prob>F’ = 0.1173

128 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

FORMAT 3 (SAS 8)

 The TTEST Procedure

 Statistics

 Lower CL Upper CL Lower CL Upper CL
Variable Class N Mean Mean Mean Std Dev Std Dev Std Dev Std Err

X 1 10 3.5231 4 4.4769 0.4586 0.6667 1.2171 0.2108
X 2 10 5.174 6 6.826 0.7942 1.1547 2.108 0.3651
X Diff (1-2) -2.886 -2 -1.114 0.7124 0.9428 1.3942 0.4216

 T-Tests

 Variable Method Variances DF t Value Pr > |t|

 X Pooled Equal 18 -4.74 0.0002
 X Satterthwaite Unequal 14.4 -4.74 0.0003

 Equality of Variances

 Variable Method Num DF Den DF F Value Pr > F

 X Folded F 9 9 3.00 0.1173

In all these format variations, the information we want to obtain follows the word “Equal”, and it is
highlighted in the table. Once we know the format of the output file OUTFILE, extracting the relevant
information is relatively easy using the SAS code below.

 * read proc ttest output from the disk file and
 obtain t statistic, df, and p value;
DATA READIN; INFILE NEWOUT;
 INPUT WORD $ @@;
IF WORD=’Equal’ THEN DO;
 INPUT T DF PT;
 * add simulation design information to data;
 IF PT<&ALPHA THEN SIG=1;
 ELSE SIG=0;
 IF &A=1 THEN EQ_VAR=’ EQUAL’;
 ELSE EQ_VAR=’UNEQUAL’;
 IF &B=1 THEN EQ_N=’ EQUAL’;
 ELSE EQ_N=’UNEQUAL’;
 OUTPUT;
 KEEP T DF PT SIG EQ_VAR EQ_N;
END;

This SAS code not only reads in the t statistic (T), the degrees of freedom (DF), and the probability value
of the t statistic (PT) from the PROC TTEST output file, but also adds the Monte Carlo study design
information to the data for later analyses. Note that the SAS statements “INPUT WORD $ @@; IF
WORD=’Equal’ THEN DO; ...” allow the program to keep reading the output file until it locates the word
“Equal”, regardless of where the word “Equal” is in the SAS output file. Once the word “Equal” is
located, the three pieces of information following the word “Equal” are read into the temporary SAS data
set named READIN.

As the program repeats the replications, each later output file replaces the previous output file on the disk,
so it is always the current PROC TTEST output file that is being read. The relevant information from each
replication of PROC TTEST is appended to a SAS permanent data set on disk (again, note the two-level
name for this purpose) by using PROC APPEND. Finally, after all the results have been accumulated,
PROC FREQ is used to check the actual Type I error rate of the t-test under each of the four conditions.

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 129

Based on one execution of Program 6.2, the output of PROC FREQ is presented in Output 6.2. It is
obvious that these results are very similar to those from Program 6.1. This should not be surprising,
because the two programs are fundamentally the same except for some programming variations.

 Output 6.2
T-Test
Simulation
Results
(Program
6.2)

���� �����	
������
��������
����
�����������

����������������	���������
����
������������
������ �

Analysis of variance (ANOVA) is also a statistical technique widely used in a variety of disciplines,
including, but not limited to, agriculture, sociology, psychology, education, range science, etc. Like many
other parametric statistical techniques, one fundamental assumption for ANOVA is that the dependent
variable is normally distributed. Another important assumption for ANOVA is that the groups come from
populations with equal variances. But how serious are the consequences if the assumption about data
normality is violated, or if the assumption of equal population variances is violated? Monte Carlo
simulation is very useful in this situation if we are interested in answering these questions. In this
example, we will present a SAS program example that implements a Monte Carlo study for assessing the
consequences of data non-normality and unequal population variances on the Type I error rate of
ANOVA analysis.

The SAS System

------------------------ EQ_VAR=’ EQUAL’ EQ_N=’ EQUAL’ ------------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent

 0 9516 95.2 9516 95.2
 1 484 4.8 10000 100.0

------------------------- EQ_VAR=’ EQUAL’ EQ_N=UNEQUAL -------------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent

 0 9488 94.9 9488 94.9
 1 512 5.1 10000 100.0

------------------------- EQ_VAR=UNEQUAL EQ_N=’ EQUAL’ -------------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent

 0 9505 95.1 9505 95.1
 1 495 5.0 10000 100.0

-------------------------- EQ_VAR=UNEQUAL EQ_N=UNEQUAL --------------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent

 0 9733 97.3 9478 94.8
 1 267 2.7 10000 100.0

130 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

6.3.1 Design Considerations
In a real Monte Carlo simulation study, the design may be complex and may include a range of different
degrees of data non-normality conditions, as well as a range of different degrees of population variance
inequality. Furthermore, the design may also combine these two factors with a range of different sample
sizes for the groups. In our example of ANOVA, we conduct a three-group ANOVA analysis under the
true null hypothesis of �1 = �2 = �3 = 50, i.e., all three groups are drawn from populations with the same
mean of 50.

In order to keep our example reasonably straightforward, we only use one sample size condition—an
equal sample size of 30 for all three groups. Also, we will only consider two data normality conditions:
when data are normally distributed, and when data are non-normal with both moderate skewness
(skewness=1.75) and kurtosis (kurtosis=3.75). For the assumption of equal population variances, we only
include two conditions: when all three populations have equal variances (�2

1 = �2

2 = �2

3 = 10), and when
the three populations have unequal variances (�2

1 =10, �2

2 =20, and �2

3 = 40). The two factors (data
normality and equal variances) are fully crossed to give us a 2×2 design with four cells. Within each cell,
we want 5,000 replications of ANOVA analysis so that reasonable accuracy can be achieved in estimating
the actual Type I error rate in each cell. This design requires conducting ANOVA analysis for 20,000
samples (2×2×5000). This ANOVA Monte Carlo study design has the same schematic representation as
the previous t-test shown in Table 6.1.

6.3.2 ANOVA Example Program
Program 6.3 presents a complete SAS program for the Monte Carlo study with the design described
above. This program has many familiar elements discussed for the two t-test program examples. At the
same time, it also contains some new elements for which some explanations may be warranted. Some
detailed explanation is provided for some selected components following Program 6.3.

Program 6.3 SAS Program for ANOVA Example

LIBNAME ANOVA ’C:\ANOVA\TRIALS’;

 * -- to avoid the problem of SAS Log Window becoming full;
PROC PRINTTO LOG=’C:\ANOVA\TRIALS\LOGFILE.TMP’;
RUN;

%MACRO ANOVA;

%DO A=1 %TO 2; * A=1: normal data, A=2: non-normal data;
%DO B=1 %TO 2; * B=1: equal variance, B=2: unequal variance;
%DO REP=1 %TO 5000; * 5,000 replications in each cell;

%LET ALPHA=0.05; * nominal Type I error rate;

PROC IML;

MEAN=50; * common mean for 3 groups;
N=30; * common sample size for 3 groups;

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 131

 * Fleishman coefficients for data shapes
 1st row: normal data, 2nd row: non-normal data;
DIST={1 0 0,
 .92966052480111 .39949667453766 -.03646699281275};

 * variances of 3 groups
 1st row: equal variances, 2nd row: unequal;
VAR={10 10 10,
 10 20 40};
 * generate data for group 1;
X=RANNOR(J(N,1,0));
X=-DIST[&A,2] + DIST[&A,1]*X + DIST[&A,2]*X##2 + DIST[&A,3]*X##3;
X=X*SQRT(VAR[&B,1]) + MEAN;
GRP=J(N,1,1); * assign group number: group=1;
GROUP1=X||GRP;

 * generate data for group 2;
X=RANNOR(J(N,1,0));
X=-DIST[&A,2] + DIST[&A,1]*X + DIST[&A,2]*X##2 + DIST[&A,3]*X##3;
X=X*SQRT(VAR[&B,2]) + MEAN;
GRP=J(N,1,2); * assign group number: group=2;
GROUP2=X||GRP;

 * generate data for group 3;
X=RANNOR(J(N,1,0));
X=-DIST[&A,2] + DIST[&A,1]*X + DIST[&A,2]*X##2 + DIST[&A,3]*X##3;
X=X*SQRT(VAR[&B,3]) + MEAN;
GRP=J(N,1,3); * assign group number: group=3;
GROUP3=X||GRP;

 * combine 3 groups data, vertical concatenation;
DATA=GROUP1//GROUP2//GROUP3;

 * create SAS working data;
CREATE DATAALL FROM DATA[COLNAME={X GROUP}];
APPEND FROM DATA;

 * run ANOVA analysis, and output ANOVA results
 to a temporary SAS data set, ’ANOVAOUT’;

PROC ANOVA DATA=DATAALL NOPRINT OUTSTAT=ANOVAOUT;
 CLASS GROUP;
 MODEL X=GROUP;
RUN;
 * use ’ANOVAOUT’ data;
 * extract relevant ANOVA results;

DATA AA; SET ANOVAOUT;
 IF _TYPE_=’ANOVA’;
 DF_MOD=DF; SS_MOD=SS;

 * add a variable indicating statistical
 significance;
 IF PROB<&ALPHA THEN SIG=’YES’;
 ELSE SIG=’ NO’;

 KEEP DF_MOD SS_MOD F PROB SIG; * keep relevant variables;

 * extract error df, error sum-of-squares;

DATA BB; SET ANOVAOUT;
 IF _TYPE_=’ERROR’;
 DF_ERR=DF; SS_ERR=SS;
 KEEP DF_ERR SS_ERR;

132 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 * merge two data sets, add study design information;
DATA AB; MERGE AA BB;
 IF &A=1 THEN NORMAL=’YES’;
 ELSE IF &A=2 THEN NORMAL=’ NO’;
 IF &B=1 THEN EQ_VAR=’YES’;
 ELSE IF &B=2 THEN EQ_VAR=’ NO’;
 * append each replication result to a permanent
 SAS data set;
PROC APPEND BASE=ANOVA.ANOVA;

%END; * close replication do loop;
%END; * close B do loop;
%END; * close A do loop;
%MEND ANOVA; * macro ’ANOVA’;
%ANOVA; * run macro ’ANOVA’;
RUN;

 * obtain descriptive statistics for the simulation
 results;
DATA A; SET ANOVA.ANOVA;
PROC SORT; BY NORMAL EQ_VAR;
PROC FREQ; BY NORMAL EQ_VAR;
 TABLES SIG;
RUN;

�

The first new element is probably the matrix DIST, as repeated below. This matrix contains the Fleishman
coefficients for generating non-normal data, as discussed in Chapter 4. The first row of this matrix
contains the coefficients for normally distributed data, and the second row contains the coefficients for
generating non-normal data with skewness=1.75 and kurtosis=3.75. Those coefficients can either be
obtained by using Program 4.4 in Chapter 4, or they can be found in the original article by Fleishman
(1978). When the macro variable &A has value of 1 (&A=1), the first row is used for generating data.
When &A=2, the second row is used in data generation, thus generating non-normal data drawn from a
population with skewness=1.75 and kurosis=3.75.

 * Fleishman coefficients for data shapes
 1st row: normal data, 2nd row: non-normal data;

DIST={1 0 0,
92966052480111 .39949667453766 -.03646699281275};

The matrix VAR, as repeated below, contains the population variances of the three groups. The first row
represents the equal variance condition, with all three groups drawn from populations of the same
variance (10). The second row represents the unequal variance condition, with the first group having a
population variance of 10, the second group of 20, and the third group of 40. When the macro variable
&B=1, the first row is used to generate data for the three groups. When &B=2, the second row is used to
generate data for the three groups.

 * VARIANCES OF 3 GROUPS
 1ST ROW: EQUAL VARIANCES, 2ND ROW: UNEQUAL;
 VAR={10 10 10,
 10 20 40};

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 133

The readers are reminded here that an element in a matrix is identified by row number and column
number. For example, when the macro variable &A=1, the statement that generates Group 1 data in the
program

 X=-DIST[&A,2] + DIST[&A,1]*X + DIST[&A,2]*X##2 + DIST[&A,3]*X##3;

actually equals the following statement (rounded to six decimal places):

 X=-.399497 + .929660*X + .399497*X##2 + (-.036467)*X##3;

In the same vein, when the macro variable &B=1, the statement

 X=X*SQRT(VAR[&B,1]) + MEAN;

is equivalent to

 X=X*SQRT(10) + MEAN;

because, when &B=1, the element as identified by VAR[&B,1] is 10, the element of the first row and first
column of the matrix VAR. Once this is understood, the programming for generating data for the three
groups is relatively easy to follow.

In this example, again, we use the SAS/STAT ANOVA procedure to conduct an ANOVA analysis. This
time, however, we do not want any SAS output. (Note the NOPRINT option in PROC ANOVA.) Instead,
we use the OUTSTAT option in PROC ANOVA to output the relevant results of the ANOVA analysis to
a temporary SAS data set named ANOVAOUT. Later, we will use this data set to get all the relevant
results of the ANOVA analysis that we want to keep. But to understand how we can obtain relevant
information from this temporary SAS data set, we must first take a look at the content and structure of the
data set. The content and structure of this temporary SAS data set for a hypothetical ANOVA analysis are
presented below. As a reminder, the content and structure of the ANOVAOUT data set can be viewed by
using the PRINT procedure.

The SAS System

OBS _NAME_ _SOURCE_ _TYPE_ DF SS F PROB
1 X ERROR ERROR 27 19.8 . .
2 X GROUP ANOVA 2 49.4 33.6818 .000000046084

134 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

It is seen that this SAS data set contains the sum of squares for error and for the model, the degrees of
freedom for error and the model, the F value, and the probability value of this ANOVA analysis for
testing the null hypothesis that the means of the groups are equal. Once the content and structure of this
data set are known, extracting the information from the data set is relatively easy, as shown by the
following SAS program code:

 * use ’ANOVAOUT’ data;
 * extract relevant ANOVA results;

DATA AA; SET ANOVAOUT;
 IF _TYPE_=’ANOVA’;
 DF_MOD=DF; SS_MOD=SS;

 * add a variable indicating statistical
 significance;
 IF PROB<&ALPHA THEN SIG=’YES’;
 ELSE SIG=’ NO’;

 KEEP DF_MOD SS_MOD F PROB SIG; * keep relevant variables;

 * extract error df, error sum-of-squares;

DATA BB; SET ANOVAOUT;
 IF _TYPE_=’ERROR’;
 DF_ERR=DF; SS_ERR=SS;
 KEEP DF_ERR SS_ERR;

 * merge two data sets, add study design information;
DATA AB; MERGE AA BB;
 IF &A=1 THEN NORMAL=’YES’;
 ELSE IF &A=2 THEN NORMAL=’ NO’;
 IF &B=1 THEN EQ_VAR=’YES’;
 ELSE IF &B=2 THEN EQ_VAR=’ NO’;
 * append each replication results to a permanent
 SAS data set;
PROC APPEND BASE=ANOVA.ANOVA;

In this ANOVA Monte Carlo program, we keep all the numerical information that was generated by the
OUTSTAT option in PROC ANOVA. First, we extract the information from the second row (model DF,
model SS, F statistic, P value), and add information about statistical significance for our given nominal
Type I error rate (ALPHA=0.05). We then extract the information from the first row (error DF, error SS).
The two temporary SAS data sets (AA and BB) are then merged into one (AB) so that for each replication
of the ANOVA analysis, there will be one line of data to be appended (PROC APPEND
BASE=ANOVA.ANOVA) to a permanent SAS data set (ANOVA.ANOVA) on disk. Before the data are
appended, some study design information is added to the data so that they can be used in later analyses.
Although it is possible to save only the probability value for the purpose of this study, in our opinion and
experience, it is more advantageous to save as much information as possible, because it is not always
possible to anticipate what secondary analyses will be performed on these data in the future. For example,
we may want to obtain the R-square value of the ANOVA model in the future. Although the R-square
value is not in the permanent SAS data set ANOVA.ANOVA, it can easily be obtained by using the
following statement in a SAS DATA step:

R_SQUARE = 1 - (SS_ERR / (SS_ERR+SS_MOD));

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 135

Had we only saved the P value information, we would not be able to obtain the information about the R-
square value for each replication of the ANOVA analysis.

Output 6.3 presents the proportions of samples for which the ANOVA analysis rejected the true null
hypothesis for each of the four design conditions (i.e., the actual Type I error rate for each of the four
design conditions), from one execution of Program 6.3. These were obtained through the FREQ
procedure at the end of the SAS program. As is seen from these results, the actual Type I error rate for
each of the four data conditions is very close to the nominal Type I error rate that we specified in the
program (‘ALPHA=0.05'), even when data were non-normal with the specified skewness and kurtosis
(skewness=1.75, kurtosis=3.75). These results indicate that, at least for the data conditions simulated in
this program, ANOVA is quite robust even when data normality conditions are violated.

Output 6.3
ANOVA
Simulation
Results
(Program
6.3)

�

� The SAS System

-------------------------- NORMAL=’ NO’ EQ_VAR=’ NO’ -------------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent
 --
 NO 4727 94.5 4727 94.5
 YES 273 5.5 5000 100.0

-------------------------- NORMAL=’ NO’ EQ_VAR=YES ---------------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent
 --
 NO 4748 95.0 4748 95.0
 YES 252 5.0 5000 100.0

-------------------------- NORMAL=YES EQ_VAR=’ NO’ ---------------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent
 --
 NO 4717 94.3 4717 94.3
 YES 283 5.7 5000 100.0

--------------------------- NORMAL=YES EQ_VAR=YES ----------------------------

 Cumulative Cumulative
 SIG Frequency Percent Frequency Percent
 --
 NO 4763 95.3 4763 95.3
 YES 237 4.7 5000 100.0

136 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

��!� �����	
����"�������������
�
����
�

�#����$��
��

�������%���&	�������
��
��������	�����

Regression analysis, which is based on the ordinary least squares principle, is a statistical technique that
enjoys widespread popularity among quantitative researchers across a variety of disciplines. In regression
analysis, one important indicator for the fit of the regression model is the R2—that is, the percentage of
variation in the dependent variable that has been accounted for by the regression model. In regression
analysis based on a sample, the regression coefficients, commonly known as regression weights,
associated with the independent variables are optimally derived based on least squares principles, such
that the R2 for the regression model is maximized for the sample. This process of optimizing the
regression weights of the independent variables for the sample tends to capitalize on the chance or
sampling error associated with the particular sample used, which, in turn, causes the sample R2 to be a
positively biased estimator for its corresponding population R2. In other words, if we draw many samples
from a specified statistical population with known population R2, the average of the sample R2s will be
higher than the population R2. This positive bias in regression analysis is well known and is discussed by
many authors (e.g., Cohen & Cohen 1983; Glass & Hopkins 1996; Pedhazur 1997; Stevens 1996).

To correct for the positive bias of the sample R2, researchers have proposed different formulas so that the
corrected sample R2 will be a better estimate of the population R2 than the original uncorrected sample R2.
However, it is not entirely clear which of these formulas has the best performance in terms of correcting
for the positive bias of the sample R2. For a researcher who is interested in this issue, Monte Carlo
simulation is a good tool for the investigation.

6.4.1 Different Formulas for Correcting Sample R� Bias
Several formulas have been proposed to correct for the positive bias of sample R2. Typically, the smaller
the sample size, and the more predictor variables in the regression model, the greater positive bias the
sample R2 contains. For this reason, the correction formulas penalize small sample size and more
independent variables in a regression model. In our example, we will look at four different R2 shrinkage
formulas for correcting the sample R2, as shown below. In all the following formulas, N is the sample size,

P is the number of predictor variables, R2 is the sample R2, and 2R̂ is the sample R2 corrected for positive
bias.

The first formula takes the following form:

)1(1ˆ 22 R
PN

N
R −

−
−= (6.4)

This formula is generally known as the “Smith formula,” and it was developed in the 1920s (Wherry
1931).

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 137

The second formula takes the following form:

)1(
1

1ˆ 22 R
PN

N
R −

−−
−= (6.5)

This formula has been cited widely with different names (for example, the Wherry formula, the Ezekiel
formula, the Wherry/McNemer formula, etc.), and it is also the sample R2 shrinkage formula currently
implemented in the SAS REG procedure for computing the “adjusted R2".

The third formula takes the form:

)1(
1

1ˆ 22 R
PN

N
R −

−
−−= (6.6)

This formula is the actual formula presented by Wherry (1931), although it is often cited in the literature
by other names and is often confused with Formula 6.5, above.

The fourth formula takes the form :

 22222)1(
)1)(1(

)3(2
)1(

1

2ˆ R
PNPN

N
R

PN

P
RR −

+−−−
−−−

−−
−−= (6.7)

This formula is often known as the Olkin and Pratt formula, and it is the approximation of Olkin and
Pratt’s unbiased estimate of the population R2 (Olkin & Pratt 1958).

The correction, or “shrinkage,” based on the correction formulas for sample R2 presented above is usually
very small when the sample size is large and when the ratio of N/P (the ratio of sample size to the number
of predictors in the regression model) is relatively large. It is when the sample size is small and the N/P
ratio is small that the effect of correction based on these formulas is noticeable.

6.4.2 Design Considerations
Two factors obviously should come into play for correcting the positive bias of the sample R2: sample size
(N) and the number of predictor variables (P), because these two factors affect the shrinkage of the sample
R2 in all the correction formulas presented above. As pointed out before, the effect of bias correction will
be more noticeable when the sample size is small and the N/P ratio is small. So, for our example, we will
focus on such conditions. In addition to these two factors, there may be other relevant considerations, such
as the magnitude of the population R2 and the strength of relationship among the predictors (statistically
known as the degree of multicollinearity).

To keep our Monte Carlo SAS program example relatively straightforward, we will only consider the
sample size and the N/P ratio. For the population R2, we will only use the condition of population R2=0.5.
For the factor of multicollinearity, we will only use r=0.3 as the strength of relationship among all the
predictor variables. The design of this Monte Carlo study is represented by Table 6.6.

138 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Table 6.3 Study Design for Estimating Sample R2 Positive Bias Correction

(Population R2 = 0.5, Multicollinearity r = 0.3) Sample Size

Number of Predictors \ N/P Ratio 20 40 80

4 5 10 20

8 2.5 5 10

6.4.3 Regression Analysis Sample Program
To avoid unnecessarily complicating the SAS program for this Monte Carlo study, we choose to write
two SAS programs for the study design presented above: one program for the 4-predictor condition, and
the other for the 8-predictor condition. Because the two programs are essentially the same, we only
present the SAS program for the 8-predictor condition as the example. Program 6.4 below presents the
complete SAS program with detailed notes for the 8-predictor condition simulation.

Program 6.4 Simulating Correction Formulas for Regression Sample R2 Bias

LIBNAME REG ’C:\REG\TRIALS’;

 * -- to avoid the problem of SAS Log Window becoming full;
PROC PRINTTO LOG=’C:\REG\TRIALS\LOGFILE.TMP’;
RUN;
 * population correlation matrix, with population R_square=0.50;
 * multicollinearity r=0.30, 8 predictors;
DATA A (TYPE=CORR);
TYPE=’CORR’;
INPUT X1 X2 X3 X4 X5 X6 X7 X8 Y;
CARDS;
1.00
0.30 1.00
0.30 0.30 1.00
0.30 0.30 0.30 1.00
0.30 0.30 0.30 0.30 1.00
0.30 0.30 0.30 0.30 0.30 1.00 . . .
0.30 0.30 0.30 0.30 0.30 0.30 1.00 . .
0.30 0.30 0.30 0.30 0.30 0.30 0.30 1.00 .
.44019 .44019 .44019 .44019 .44019 .44019 .44019 .44019 1.00
;
 * obtain factor pattern matrix for later data generation;
PROC FACTOR N=9 OUTSTAT=FACOUT;
DATA PATTERN; SET FACOUT;
 IF _TYPE_=’PATTERN’;
 DROP _TYPE_ _NAME_;
RUN;

%MACRO REG; * starts the macro program ‘reg’;

 * 3 sample size conditions: A=1:N=20, A=2:N=40, A=3:N=80;
%DO A=1 %TO 3;
 %IF &A=1 %THEN %DO; %LET N=20; %END;
 %IF &A=2 %THEN %DO; %LET N=40; %END;
 %IF &A=3 %THEN %DO; %LET N=80; %END;
%DO REP=1 %TO 2000; * number of replications in each cell;
 * generate correlated sample data of 9 variables;
PROC IML;

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 139

 USE PATTERN; * read in the factor pattern as a matrix ‘F’;
 READ ALL VAR _NUM_ INTO F;
 F=F`; * transpose ‘F’ for later premultiplication;

DAT=RANNOR(J(&N,9,0)); * generate 9 random variables (&Nx9 dimension);
DAT=DAT`; * transpose the random data matrix (9x&N dimension);
DAT=F*DAT; * premultiply ‘F’ to ‘DAT’, variables become
 correlated;
DAT=DAT`; * transpose the data matrix back (&Nx9 dimension);

 * create a temporary SAS data set ‘REGDATA’;

CREATE REGDATA FROM DAT[COLNAME={X1 X2 X3 X4 X5 X6 X7 X8 Y}];
APPEND FROM DAT;

 * use SAS PROC REG to obtain sample r-square;
 * output the results to temporary SAS data
 ‘REGOUT’;

PROC REG DATA=REGDATA NOPRINT OUTEST=REGOUT;
 MODEL Y =X1 X2 X3 X4 X5 X6 X7 X8 / SELECTION=RSQUARE;
RUN;
 * use ‘REGOUT’ data;
DATA A; SET REGOUT;
 IF _IN_=8; * select the row of data that contains sample r-square;
 P=8; N=&N; NP_RATIO=N/P; * add study design features: N, P N/P RATIO;
 RSQ=_RSQ_;
 RSQ_ADJ1=1-(N/(N-P))*(1-RSQ); * apply four correction formulas;
 RSQ_ADJ2=1-((N-1)/(N-P-1))*(1-RSQ);
 RSQ_ADJ3=1-((N-1)/(N-P))*(1-RSQ);
 RSQ_ADJ4=RSQ-((P-2)/(N-P-1))*(1-RSQ)-(2*(N-3))/((N-P-1)*(N-P+1))*(1-RSQ)**2;

 * obtain bias: deviation of r-square and adjusted r-squares from population r-square;

 BIAS_RSQ=RSQ-0.50;
 BIAS1=RSQ_ADJ1-0.50;
 BIAS2=RSQ_ADJ2-0.50;
 BIAS3=RSQ_ADJ3-0.50;
 BIAS4=RSQ_ADJ4-0.50;
 * only keep the relevant information for the study;
KEEP N P NP_RATIO RSQ RSQ_ADJ1 RSQ_ADJ2 RSQ_ADJ3 RSQ_ADJ4 BIAS_RSQ BIAS1 BIAS2 BIAS3
BIAS4;

 * append the results from each replication to permanent SAS data set;

PROC APPEND BASE=REG.REG8_RSQ;

%END; * close &A do loop;
%END; * close &REP do loop;
%MEND REG; * end the macro program 'REG';
%REG; * run the macro 'REG' program;
RUN;

DATA A; SET REG.REG8_RSQ;
PROC SORT; BY NP_RATIO; * analyze the results, obtain the average bias;
PROC MEANS; BY NP_RATIO;
 VAR BIAS_RSQ BIAS1 BIAS2 BIAS3 BIAS4;
RUN;

140 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

The first section of the program that may be new to the readers is the following:

 * obtain factor pattern matrix for later data generation;

PROC FACTOR N=9 OUTSTAT=FACOUT;
DATA PATTERN; SET FACOUT;
 IF _TYPE_=’PATTERN’;
 DROP _TYPE_ _NAME_;
RUN;

In this section of the program, PROC FACTOR generates the factor pattern matrix based on the
population correlation matrix of the nine variables (Y, and X1 to X8). The results of PROC FACTOR are
output into a temporary SAS data set named FACOUT. Then the temporary SAS data set named
PATTERN is constructed based on FACOUT, but only the relevant information is kept. To understand
how this is achieved, we need to take a look at the data structure of the FACOUT data set.

Output 6.4a Structure of the FACOUT Data Set

 The SAS System

OBS _TYPE_ _NAME_ X1 X2 X3 X4 X5 X6 X7 X8 Y

 1 MEAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 2 STD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 3 N 10000 10000 10000 10000 10000 10000 10000 10000 10000
 4 CORR X1 1.00 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.44
 5 CORR X2 0.30 1.00 0.30 0.30 0.30 0.30 0.30 0.30 0.44
 6 CORR X3 0.30 0.30 1.00 0.30 0.30 0.30 0.30 0.30 0.44
 7 CORR X4 0.30 0.30 0.30 1.00 0.30 0.30 0.30 0.30 0.44
 8 CORR X5 0.30 0.30 0.30 0.30 1.00 0.30 0.30 0.30 0.44
 9 CORR X6 0.30 0.30 0.30 0.30 0.30 1.00 0.30 0.30 0.44
10 CORR X7 0.30 0.30 0.30 0.30 0.30 0.30 1.00 0.30 0.44
11 CORR X8 0.30 0.30 0.30 0.30 0.30 0.30 0.30 1.00 0.44
12 CORR Y 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 1.00
13 COMMUNAL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 PRIORS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 EIGENVAL 3.68 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.42
16 PATTERN FACTOR1 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.81
17 PATTERN FACTOR2 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.39 0.73 0.00
18 PATTERN FACTOR3 -0.24 -0.24 -0.24 0.72 0.00 0.00 0.00 0.00 0.00
19 PATTERN FACTOR4 -0.19 -0.19 -0.19 -0.19 0.75 0.00 0.00 0.00 0.00
20 PATTERN FACTOR5 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 0.68 0.29 0.00
21 PATTERN FACTOR6 0.59 -0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 PATTERN FACTOR7 -0.34 -0.34 0.68 0.00 0.00 0.00 0.00 0.00 0.00
23 PATTERN FACTOR8 -0.15 -0.15 -0.15 -0.15 -0.15 0.76 0.00 0.00 0.00
24 PATTERN FACTOR9 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 -0.50

In the output above, the underlined section contains the factor pattern matrix that we need to use. By
using the SAS statements IF _TYPE_=’PATTERN’; DROP _TYPE_ _NAME_, we are able to keep the
underlined section of this temporary SAS data set, which will be used later as a matrix. Once the factor
pattern matrix is obtained, it is then read into PROC IML as a matrix of 9�9 dimension. This matrix F is
then transposed so that the columns become the factors (FACTOR1 to FACTOR9), and the rows become
the variables (X1 to X8, Y), as required for later pre-multiplication with a random variable data matrix.
The SAS code for accomplishing this is presented below.

PROC IML;
 USE PATTERN; * read in the factor pattern as a matrix ‘F’;
 READ ALL VAR _NUM_ INTO F;
 F=F`; * transpose ‘F’ for later
 premultiplication;

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 141

The next section that warrants some explanation is probably the following section. This section uses the
SAS REG procedure to run regression analysis, then outputs the results to a temporary SAS data set
named REGOUT by using the option OUTEST=REGOUT. The program then uses the REGOUT data set
to obtain the sample R2.

 * use SAS PROC REG to obtain sample r-square;
 * output the results to temporary SAS data set
 ‘REGOUT’;

PROC REG DATA=REGDATA NOPRINT OUTEST=REGOUT;
 MODEL Y =X1 X2 X3 X4 X5 X6 X7 X8 / SELECTION=RSQUARE;
RUN;
 * USE ‘REGOUT’ DATA;
DATA A; SET REGOUT;
 IF _IN_=8; * SELECT THE ROW OF DATA CONTAINS SAMPLE R-SQUARE;

To understand how the sample R2 is selected from the temporary SAS data set REGOUT, it helps to take
a look at the structure of REGOUT. For the sake of simplicity, we present a hypothetical regression
analysis for a 3-predictor model (Y=X1 X2 X3) as an example. The OUTEST=’REGOUT’ option in
PROC REG generates the following temporary SAS data set.

Output 6.4b Structure of the REGOUT Data Set

The sample R2 is underlined in the box. To select this sample R2, we need to select the last line by
specifying the maximum number of predictors in the model. In this case, the SAS command IF _IN_=3
accomplishes the task for this 3-predictor regression model. In Program 6.4, we have eight predictors in
the regression model, so we specify IF _IN_=8. Later, we will drop all irrelevant variables by using the
KEEP statement to keep only the variables of our choice. Once the sample R2 is selected, the adjusted
R2s based on the four formulas are obtained, and the deviations of the sample R2 and the four adjusted
R2s from the true population R2 are computed as bias. All these results from each of the 6,000 replications
of the simulation (2,000 replications for each sample size condition) are then appended (PROC APPEND
BASE=libref.data-set-name) to a SAS permanent data set on disk by specifying the two-level name
REG.REG8_RSQ (“libref.data-set-name”) for future analyses.

Once the simulation is complete, the results saved in the file REG.REG8_RSQ can be used for a variety
of analyses. Output 6.4c presents the results from the simple analysis of PROC MEANS. The variables
used for this analysis are the deviation scores of the unadjusted sample R2 and the four adjusted R2s from
the true population R2 Ideally, the average deviation should be zero, which indicates that the sample
statistic is not a biased estimator for the population parameter. As is seen in Output 6.4c, the unadjusted

�

� The SAS System

OBS _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X1 X2 X3 Y _IN_ _P_ _EDF_ _RSQ_

 1 MODEL1 PARMS Y .90364 0 .4402 . . -1 1 2 78 .1938
 2 MODEL1 PARMS Y .90364 0 . .4402 . -1 1 2 78 .1938
 3 MODEL1 PARMS Y .90364 0 . . .4402 -1 1 2 78 .1938
 4 MODEL1 PARMS Y .84860 0 .3386 .3386 . -1 2 3 77 .2981
 5 MODEL1 PARMS Y .84860 0 .3386 . .3386 -1 2 3 77 .2981
 6 MODEL1 PARMS Y .84860 0 . .3386 .3386 -1 2 3 77 .2981
 7 MODEL1 PARMS Y .81352 0 .2751 .2751 .2751 -1 3 4 76 .3633

142 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

sample R2 has obvious upward bias, as reasoned previously. When the N/P ratio is small (e.g., N/P=2.5),
such upward bias is substantial. For the three N/P ratio conditions examined here, the upward bias is
reduced by approximately half (.1983, .0963, .0453) when the N/P ratio is doubled (2.5, 5, 10).

For the N/P ratio conditions examined here, the first two R2 shrinkage formulas tend to produce
downward bias, i.e., the adjusted R2 tends to be smaller than the true population R2. The last two R2
shrinkage formulas tend to be slightly biased positively, i.e., larger than the true population R2. It appears
that, among the four formulas, the fourth formula contains the least amount of bias. Of course, in order to
draw any definite conclusions, a much more comprehensive Monte Carlo study must be conducted that
should consider a variety of different regression models and data conditions (in terms of number of
predictors, correlation patterns among the variables, strength of population R2, degree of multicollinearity
among the predictors, sample size, N/P ratio, etc.). So what has been presented here is simply an example
and should not be construed as representing the general performance of the different R2 shrinkage
formulas.

Output 6.4c
Sample R2
Bias
Simulation
Results
Comparing
Correction
Formulas for
(Program
6.4)

�

 The SAS System

------------------------------------ NP_RATIO=2.5 -----------------------------------

 Variable N Mean Std Dev Minimum Maximum
 --
 BIAS_RSQ 2000 0.1983442 0.1227444 -0.2524870 0.4685524
 BIAS1 2000 -0.0027596 0.2045740 -0.7541449 0.4475873
 BIAS2 2000 -0.0210418 0.2120130 -0.7997502 0.4456814
 BIAS3 2000 0.0223784 0.1943453 -0.6914377 0.4502080
 BIAS4 2000 0.0085889 0.2096738 -0.7975641 0.4511640
 --

------------------------------------- NP_RATIO=5 ------------------------------------

 Variable N Mean Std Dev Minimum Maximum
 --
 BIAS_RSQ 2000 0.0962798 0.1002139 -0.2485962 0.3462413
 BIAS1 2000 -0.0046503 0.1252674 -0.4357453 0.3078016
 BIAS2 2000 -0.0079061 0.1260756 -0.4417824 0.3065616
 BIAS3 2000 0.0079659 0.1221357 -0.4123517 0.3126066
 BIAS4 2000 0.0056242 0.1257438 -0.4340228 0.3147714
 --

------------------------------------- NP_RATIO=10 -----------------------------------

 Variable N Mean Std Dev Minimum Maximum
 --
 BIAS_RSQ 2000 0.0452773 0.0762414 -0.2206793 0.2722575
 BIAS1 2000 -0.0052474 0.0847126 -0.3007548 0.2469528
 BIAS2 2000 -0.0059590 0.0848320 -0.3018826 0.2465964
 BIAS3 2000 0.0010682 0.0836537 -0.2907453 0.2501159
 BIAS4 2000 0.0005336 0.0847887 -0.2970138 0.2514706

Chapter 6 Conducting Monte Carlo Studies That Involve Univariate Statistical Techniques 143

��'� #&������

The several SAS Monte Carlo programming examples presented in this chapter have probably given
readers some indication that the SAS System offers a high degree of flexibility for conducting Monte
Carlo studies involving statistical techniques. The researcher can do the programming for the statistical
technique in question (as in the first t-test example); can use SAS statistical procedures for analysis and
save the output in a file on disk, and then obtain the relevant information from this file (the 2nd t-test
example); or can use SAS statistical procedures for analysis and output the results to a temporary SAS
data set from which the relevant information is obtained (the ANOVA example and the regression
analysis example). This high degree of flexibility of the SAS System allows almost any analysis results to
be obtained and saved in a Monte Carlo study.

When computationally complicated statistical procedures are involved, it is preferable to take full
advantage of SAS/STAT procedures for the statistical computation and analysis instead of doing the
programming ourselves. This not only results in less programming, and sometimes substantially so, it also
ensures the accuracy of the statistical analysis. For many difficult statistical procedures, this is also
probably the only feasible approach for conducting Monte Carlo studies for many quantitative
researchers. Our experience also suggests that it is advantageous to save all potentially relevant
information in a permanent data set instead of outputting all the results at the end of program without
saving them. In a Monte Carlo study, especially a study that involves complicated design and statistical
techniques, it is not always easy to anticipate what secondary analyses are needed for the results of the
Monte Carlo study. For this reason, it is safer to save the results first, and worry about secondary analyses
of the Monte Carlo results later. This especially makes sense for a SAS Monte Carlo program that may
take a long time to finish.

���� �
�
�
��
��

Cohen, J., and P. Cohen. 1983. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences.
2d ed. Hillsdale, NJ: Lawrence Erlbaum Associates.

Fleishman, A. I. 1978. “A Method for Simulating Non-Normal Distributions.” Psychometrika 43:521-531.

Glass, G. V., and K. D. Hopkins. 1996. Statistical Methods in Education and Psychology. 3d ed. Boston: Allyn
and Bacon.

Olkin, E., and J. W. Pratt. 1958. “Unbiased Estimation of Certain Correlation Coefficients.” Annals of
Mathematical Statistics 29:201-211.

Pedhazur, E. J. 1997. Multiple Regression in Behavioral Research: Explanation and Prediction. 3d ed. Fort
Worth, TX: Harcourt Brace College Publishers.

SAS Institute Inc. 1990. SAS/STAT User’s Guide,Vol. 2. Cary, NC: SAS Institute Inc.

Stevens, J. 1996. Applied Multivariate Statistics for the Social Sciences. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Wherry, R. J. 1931. “A New Formula for Predicting the Shrinkage of the Coefficient of Multiple Correlation.”
Annals of Mathematical Statistics 2:440-457.

144 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Chapter 7 Conducting Monte Carlo Studies
 for Multivariate Techniques

7.1 Introduction 145

7.2 Example 1: A Structural Equation Modeling Example 146
 7.2.1 Descriptive Indices for Assessing Model Fit 146
 7.2.2 Design Considerations 147
 7.2.3 SEM Fit Indices Studied 148
 7.2.4 Design of Monte Carlo Simulation 148
 7.2.4.1 Deriving the Population Covariance Matrix 150
 7.2.4.2 Dealing with Model Misspecification 151
 7.2.5 SEM Example Program 152
 7.2.6 Some Explanations of Program 7.2 155
 7.2.7 Selected Results from Program 7.2 160

7.3 Example 2: Linear Discriminant Analysis and Logistic Regression for Classification 161
 7.3.1 Major Issues Involved 161
 7.3.2 Design 162
 7.3.3 Data Source and Model Fitting 164
 7.3.4 Example Program Simulating Classification Error Rates of PDA and LR 165
 7.3.5 Some Explanations of Program 7.3 168
 7.3.6 Selected Results from Program 7.3 172

7.4 Summary 173

7.5 References 174

���� �����	
������

Chapters 1 to 5 have covered the basic concepts and procedures for conducting a Monte Carlo study.
At the same time, the basic components of SAS programs necessary for implementing a Monte Carlo
study have also been explained. In Chapter 6, we presented and discussed some complete examples of
using SAS for conducting Monte Carlo simulation for some widely used univariate statistical
techniques, such as t-tests, analysis of variance (ANOVA), and regression analysis. In this chapter, we
present and discuss two complete Monte Carlo simulation study examples for more complicated
multivariate statistical techniques. Specifically, we will present the following Monte Carlo study
examples involving different statistical techniques:

�� a structural equation modeling example for assessing the effects of sample size and
estimation methods on a group of widely known descriptive model fit indices

�� an example for comparing logistic regression with linear discriminant analysis in
classification accuracy in a two-group situation.

146 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

For each of the above examples, we will present a) the theoretical rationale for conducting the study,
and the major issues involved; b) the annotated SAS program for implementing the Monte Carlo
study, with detailed explanations of the SAS code; c) the selected and relevant results from the actual
simulation based on the SAS program provided. We want to point out that, when Monte Carlo
studies involve these complicated statistical techniques, it is important to use SAS/STAT procedures,
rather than to do statistical programming ourselves, because the latter is often beyond the reach of
many research practitioners. Even for those who may have the technical expertise for the required
statistical programming, the accuracy and validity of such statistical programming may often be in
question.

��� ����������������
��
������
��������	��������������

Structural equation modeling (SEM) has increasingly been seen as a useful quantitative technique for
specifying, estimating, and testing hypothesized models describing relationships among a set of
substantively meaningful variables. Much of SEM’s attractiveness is due to the method’s applicability
in a wide variety of research situations (e.g., Baldwin 1989; Bollen & Long 1993; Byrne 1994;
Jöreskog & Sörbom 1989; Loehlin 1992; Pedhazur & Schmelkin 1991; SAS Institute 1997).
Furthermore, many widely used statistical techniques may also be considered as special cases of
SEM, including regression analysis, canonical correlation analysis, confirmatory factor analysis, and
path analysis (Bagozzi, Fornell & Larcker 1981; Bentler 1992; Fan 1996; Jöreskog & Sörbom 1989).
Because of such generality, SEM has been heralded as a unified model that joins methods from
econometrics, psychometrics, sociometrics, and multivariate statistics (Bentler 1994).

Despite SEM's popularity in the research of social and behavioral sciences, there are some thorny
issues in SEM applications, one of which is SEM model fit assessment. In SEM, initially, the
assessment of model fit was conceptualized as a dichotomous decision process of either retaining the
null hypothesis that the model fits the data, or rejecting it. The empirical basis for such a dichotomous
decision is a χ2 test assessing the degree of discrepancy between two covariance matrices: the original
sample covariance matrix, and the reconstructed covariance matrix based on the specified model and
the resultant model parameter estimates. In practice, considerable uncertainty regarding model fit
often arises. The χ2 test approach to model fit assessment is confounded with sample size: the power
of the test increases with an increase of sample size in the analysis (i.e., χ2 tends to increase as sample
size increases). As a result, model fit assessment using this approach becomes stringent when sample
size is large, and lenient when sample size is small.

7.2.1 Descriptive Indices for Assessing Model Fit
Because of the concerns related to the χ2 test for model fit assessment in SEM (Thompson & Daniel
1996), a variety of indices for assessing model fit have been developed for assessing the fit between a
theoretical model and empirical data. Unlike the χ2 test, which can often be used for the inferential
purpose of rejecting or retaining a model, these alternative fit indices are descriptive in nature, and
typically, no inferential decision is made based on these indices. In other words, these fit indices are
used to describe the fit, rather than to test fit statistically. The relative performance characteristics of
these different fit indices, and their comparability under different data conditions, however, are not
well understood. For many practitioners who use SEM in their research, there is often confusion with
regard to which indices to use under what data conditions.

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 147

Descriptive SEM fit indices were developed with different rationales and with different motivations
(Gerbing & Anderson 1993). As Fan and Wang (1998) discussed, there are several major categories
of SEM descriptive fit indices. The first category may be described as being based on covariance
matrix reproduction. These indices assess the degree to which the reproduced covariance matrix
based on the specified model has accounted for the original sample covariance matrix. Examples of
this type of fit indices are the Goodness-of-Fit Index (GFI) and the Adjusted Goodness-of-Fit Index
(AGFI) (Jöreskog & Sörbom 1989).

The second major category of fit indices can be described as relative model fit indices, also known as
"incremental fit" indices in the literature. They assess model fit by evaluating the improvement of fit
of a given model over that of a more restricted null model, which usually assumes no relationships
among the measured variables. Examples of this type of fit indices are Bentler and Bonnet's normed
and non-normed fit indices (NFI and N_NFI), Bentler's Comparative Fit Index (CFI), and Bollen's
incremental fit index (DELTA2).

The third category of model fit indices can be called parsimony weighted indices. These indices take
model parsimony into consideration by imposing penalties for specifying more elaborate models.
Examples are the fit index by James, Mulaik and Brett (1982) and that by Mulaik et al. (1989). These
fit indices are most useful for assessing competing theoretical models, but are less informative in
situations where only one model is being fitted to data. In addition to those discussed above, there are
some others, such as McDonald's index of noncentrality (McDonald 1989), and the root mean squared
error of approximation (RMSEA, Steiger & Lind 1980) as an index to quantify the amount of model
misfit.

7.2.2 Design Considerations
There are several major factors that have the potential to influence the performance of SEM
descriptive model fit indices. Obviously, model specification, i.e., the extent to which a model is
correctly specified, should be the primary determinant for model fit assessment. In other words,
model fit indices should be sensitive enough to the degree of model misspecification, and model
misspecification should be the major contributor to the variation of sample model fit indices. In
reality, there exist a few confounding factors that may affect model fit assessment, such as estimation
methods (e.g., maximum likelihood vs. generalized least squares) used in SEM analysis, and sample
size. Ideally, model fit indices should not be sensitive to the estimation method used for model
fitting, and this factor should contribute minimally to the variation of sample model fit indices.
Furthermore, because descriptive model fit indices were designed to overcome the shortcoming of the
χ2 test, i.e., its over-reliance on sample size, it makes sense to expect that the descriptive model fit
indices should be minimally affected by sample size.

148 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

7.2.3 SEM Fit Indices Studied
Based on the consideration of comparability, nine widely known SEM fit indices were chosen for
investigation in the present example: goodness-of-fit index (GFI), adjusted goodness-of-fit index
(AGFI), Bentler’s comparative fit index (CFI), McDonald’s centrality index (CENTRA), Bentler and
Bonnett’s non-normed fit index (N_NFI) and normed fit index (NFI), Bollen’s normed fit index rho1
(RHO1), Bollen’s non-normed index delta2 (DELTA2), and RMSEA (root mean squared error of
approximation) (Steiger 1990; Steiger & Lind 1980). The GFI, AGFI, and CFI are normed fit indices
ranging from 0 to 1 in value, while non-normed indices can have values from 0 to slightly over 1. Of
these nine fit indices, five of them belong to the category of relative model fit indices (CFI, N_NFI,
NFI, RHO1, and DELTA2) discussed previously. RMSEA is an index for model misfit, and a small
RMSEA value (close to 0) indicates little misfit, while a relatively large RMSEA value (e.g., >.10)
indicates more severe model misfit.

7.2.4 Design of Monte Carlo Simulation
Three factors were incorporated into the design of this example: model specification (two levels: true,
and misspecified models), estimation methods (two levels: maximum likelihood and generalized least
squares), and sample size (four levels: 100, 200, 500, and 1000). The three factors were fully crossed
with each other, creating 16 (2×2×4) different cell conditions. Within each cell condition, 200
replications were implemented (more replications may be implemented easily if time is not a
concern). This balanced experimental design allows for a systematic assessment of the effects of the
three factors on the SEM fit indices. The design required the generation of 3,200 random samples
(2×2×4×200) for model fitting.

A widely-known model from substantive research (Wheaton et al. 1977), with six observed and three
latent variables, is used in the simulation (Figure 7.1).

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 149

Figure 7.1 True Model with Population Parameters (Presented in LISREL Matrices) and Model
 Misspecification Conditions

This model has been discussed extensively in SEM literature (e.g., Bentler 1992; Jöreskog & Sörbom
1989). The true model with population parameters (presented in LISREL convention matrices) and
the misspecified model conditions are also presented in Figure 7.1.

150 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

7.2.4.1 Deriving the Population Covariance Matrix
Once the model population parameters are fully specified, the population covariance matrix (Σ) is
obtained through the following formula (Jöreskog & Sörbom 1989, p. 5). This covariance matrix (Σ)
serves as the target population covariance matrix in generating random data samples:

+ΦΛΛΛ−ΦΓΛ
ΓΦΓΛ−Λ+Λ−Ψ+ΓΦΓ−Λ

=

=Σ

−

−−−

δ

ε

θ
θ

xxyx

xyyy

xxy

yxy

BI

BIBIBI

CovCov

CovCov

’’)’(’

’)(’)’)(’()(
1

111
 (7.1)

Based on (7.1), and by using the eight matrices defined in Figure 7.1, the population covariance
matrix for the specified true model in Figure 7.1 can be derived by using PROC IML, as shown in
Program 7.1, below:

Program 7.1 Deriving the Population Covariance Matrix from Model Parameters

*** Program 7.1 ***;
*** Deriving population covariance matrix from model parameters;

PROC IML;

LX = {1.00, 0.50};
LY = {1.00 0.00, 0.95 0.00, 0.00 1.00, 0.00 0.90};
GA = {-0.60, -0.25};
PH = {7.00};
PS = {5.00 0.00, 0.00 4.00};
TD = {3.00 0.00,
 0.00 2.50};
TE = {4.75 0.00 1.60 0.00,
 0.00 2.50 0.00 0.30,
 1.60 0.00 4.50 0.00,
 0.00 0.30 0.00 3.00};
B = {0.00 0.00, 0.60 0.00};
I = {1 0, 0 1};

COVY = LY*(INV(I-B))*(GA*PH*GA‘+PS)*(INV(I-B‘))*LY‘+TE;
COVX = LX*PH*LX‘ + TD;
COVYX = LY*(INV(I-B))*GA*PH*LX‘;
COVXY = LX*PH*GA‘*(INV(I-B‘))*LY‘;

UPPER = COVX || COVXY;
LOWER = COVYX || COVY;

COV = UPPER // LOWER;

PRINT COV;
RUN;

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 151

The output from running Program 7.1 is the population covariance matrix as shown in Output 7.1.

Output 7.1
Population
Covariance
Matrix
Derived
from Model
Parameters

Once this population covariance matrix is derived, Program 4.10 can be used to obtain the population
correlation matrix and variable standard deviations for data generation. By using the covariance
matrix above in Part II of Program 4.10, we obtain the population correlation matrix and population
standard deviations. Table 7.1 presents the resultant population correlation matrix, plus variable
means and variances, used for data generation. Because the means of the variables do not affect SEM
model fitting (unless a mean structure model is tested), all the measured variables were centered with
means being zeros.

Table 7.1 Model Population Correlations, Means, and Variances

σ2 10.000000 4.250000 12.270000 9.286800 12.904700 9.807807
µ 0 0 0 0 0 0
X1 1.000000
X2 .536875 1.000000
Y1 -.379164 -.290805 1.000000
Y2 -.414038 -.317552 .669246 1.000000
Y3 -.375884 -.288290 .569164 .482667 1.000000
Y4 -.388047 -.297619 .456315 .529719 .672364 1.000000

7.2.4.2 Dealing with Model Misspecification
Although a true model is relatively easy to specify in simulation research, model misspecification is
difficult to handle for at least two reasons: (1) model misspecification can take a variety of forms; and
(2) the degree of model misspecification is not easily quantified. In other words, it is difficult to make
a priori predictions about the severity of model misspecification (Gerbing & Anderson 1993). In the
present study, model misspecification was achieved by fixing/constraining certain parameters in the
model which should be set free for estimation. The degree of model misspecification was empirically
determined by fitting the misspecified model to the population covariance matrix Σ, and the resultant
values of fit indices were used as indicators of severity of model misfit. The "misspecified" model
was defined as producing fit indices between .93 and .95 when it was fitted to the population
covariance matrix, and a χ2 test would reach statistical significance of rejecting the model for sample
size around 150.

Table 7.2 schematically represents the design for this simulation study example.

 COV

10 3.5 -4.2 -3.99 -4.27 -3.843
 3.5 4.25 -2.1 -1.995 -2.135 -1.9215
-4.2 -2.1 12.27 7.144 7.162 5.0058
-3.99 -1.995 7.144 9.2868 5.2839 5.05551
-4.27 -2.135 7.162 5.2839 12.9047 7.56423
-3.843 -1.9215 5.0058 5.05551 7.56423 9.807807

152 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Table 7.2 Schematic Representation of the Design for SEM Monte Carlo Study Example

 Model Specification

 Sample N True Misspecified

100 200 Replications 200 Replications

200 200 Replications 200 Replications

500 200 Replications 200 Replications

Maximum

Likelihood

1000 200 Replications 200 Replications

100 200 Replications 200 Replications

200 200 Replications 200 Replications

500 200 Replications 200 Replications

Estimation

Method

Generalized

Least Squares

1000 200 Replications 200 Replications

7.2.5 SEM Example Program
Program 7.2 presents the complete SAS macro program for this Monte Carlo study example, with
annotated notes for the functions of different components in this complete SAS program. This
program implements the design discussed previously and saves all the desired analysis results (sample
model fit indices) to an external SAS system file that can be accessed easily in later analyses. Program
7.2 appears to be long, but a careful look reveals that it consists of many components that have been
discussed in previous chapters. There are, however, several features in this program that require some
more detailed discussion.

Program 7.2 Simulating Structural Equation Models

/***/
/* this program conducts Monte Carlo simulation of SEM, and outputs*/
/* parameter estimates and fit indices to a SAS system file named */
/* ’SEM_FITS’. 2 models are simulated in this program: true, */
/* & misspecified models. */
/***/

/**/
%LET MC=200; * # of Monte Carlo replications for each cell condition;
/**/

LIBNAME SEM ’C:\SEM\SAS\’;

 * -- to direct the SAS log to a disk file;
PROC PRINTTO LOG=’C:\SEM\SAS\LOGFILE.TMP’;

DATA A (TYPE=CORR);
TYPE=’CORR’;
INPUT X1 X2 Y1 Y2 Y3 Y4;
CARDS;
1.000000

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 153

 .536875 1.000000
-.379164 -.290805 1.000000 . . .
-.414038 -.317552 .669246 1.000000 . .
-.375884 -.288290 .569164 .482667 1.000000 .
-.388047 -.297619 .456315 .529719 .672364 1.000000
;
 * obtain factor pattern matrix for later data generation;
PROC FACTOR N=6 OUTSTAT=FACOUT;
DATA PATTERN; SET FACOUT;
 IF _TYPE_=’PATTERN’;
 DROP _TYPE_ _NAME_;
RUN;

%MACRO SEM_MC; * start of monte carlo simulation macro ’SEM_MC’;

 * do-loop for 2 conditions for true and misspecified models;
%DO MODEL = 1 %TO 2;
 %IF &MODEL=1 %THEN %DO; %LET MODL=TRU; %END;
 %IF &MODEL=2 %THEN %DO; %LET MODL=MIS; %END;

 * do-loop for 2 estimation procedures;
%DO A = 1 %TO 2;
 %IF &A=1 %THEN %DO; %LET METHOD=MAX; %END;
 %IF &A=2 %THEN %DO; %LET METHOD=GLS; %END;

 * do-loop for 4 sample size conditions;
%DO B = 1 %TO 4;
 %IF &B=1 %THEN %DO; %LET SMPLN=100; %END;
 %IF &B=2 %THEN %DO; %LET SMPLN=200; %END;
 %IF &B=3 %THEN %DO; %LET SMPLN=500; %END;
 %IF &B=4 %THEN %DO; %LET SMPLN=1000; %END;

%DO C=1 %TO &MC; * do-loop for the number of replications in each cell;

PROC IML; * use SAS PROC IML for data generation;
 USE PATTERN; * use the factor pattern matrix;
 READ ALL VAR _NUM_ INTO F;
 F=F‘;

 * diagonal matrix containing variances for 6 variables;

 VAR={10 0 0 0 0 0,
 0 4.25 0 0 0 0,
 0 0 12.27 0 0 0,
 0 0 0 9.2868 0 0,
 0 0 0 0 12.9047 0,
 0 0 0 0 0 9.807807};

STD=SQRT(VAR); * matrix containing stds for the 6 variables;
X=RANNOR(J(&SMPLN,6,0)); * generate 6 random normal variables;
XT=X‘; * transpose the data matrix for multiplication;

 * transform uncorrelated variables to correlated ones;
XTCORR=F*XT;

 *transform the scale of the variables
 (from std=1 to std=specified above);

XTSTD=STD*XTCORR;

 * transpose the data matrix back;
XY=XTSTD‘;
RUN;

154 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 * create SAS data set ’DAT’;
CREATE DAT FROM XY[COLNAME={X1 X2 Y1 Y2 Y3 Y4}];
APPEND FROM XY;
 * implement the true model;
 * output the model fitting results to
 data set ’SEMOUT’;
%IF &MODEL=1 %THEN %DO;

PROC CALIS DATA=DAT METHOD=&METHOD COV OUTRAM=SEMOUT NOPRINT;
 LINEQS
 X1 = FK + EX1,
 X2 = LX2 FK + EX2,
 Y1 = FE1 + EY1,
 Y2 = LY2 FE1 + EY2,
 Y3 = FE2 + EY3,
 Y4 = LY4 FE2 + EY4,
 FE1= GA1 FK + DE1,
 FE2= GA2 FK + BE1 FE1 + DE2;
STD
 FK EX1 EX2 EY1 EY2 EY3 EY4 DE1 DE2 =
 VFK VEX1 VEX2 VEY1 VEY2 VEY3 VEY4 VDE1 VDE2;
COV
 EY1 EY3 = C_EY13, EY2 EY4 = C_EY24;
RUN;

DATA SEMOUT; SET SEMOUT; * keep only the relevant results;
 KEEP _NAME_ _ESTIM_;
RUN;

 * transpose the SAS data set ’SEMOUT’ to ’NEWFITS’;
PROC TRANSPOSE DATA=SEMOUT OUT=NEWFITS LET;

 DATA NEWFITS; SET NEWFITS; * add simulation design information;
 MTHD="&METHOD"; MODEL="&MODL";

 * keep the desired model fit indices;

 KEEP MODEL MTHD N FIT NPARM DF CHISQUAR P_CHISQ CHISQNUL GFI AGFI
 RMSEAEST COMPFITI BB_NONOR BB_NORMD BOL_RHO1 BOL_DEL2 CENTRALI;

 * append results of each run to a SAS system file;

PROC APPEND BASE=SEM.SEM_FITS FORCE;

%END; * end of implementing the true model;

 * implement misspecified model;
%IF &MODEL=2 %THEN %DO;

PROC CALIS DATA=DAT METHOD=&METHOD COV OUTRAM=SEMOUT NOPRINT;
 LINEQS
 X1 = FK + EX1,
 X2 = LX2 FK + EX2,
 Y1 = FE1 + EY1,
 Y2 = LX2 FE1 + EY2,
 Y3 = FE2 + EY3,
 Y4 = LY4 FE2 + EY4,
 FE1= GA1 FK + DE1,
 FE2= 0 FK + BE1 FE1 + DE2; * misspecification: GA2 fixed;
 * constrained: LY2=LX2;
STD
 FK EX1 EX2 EY1 EY2 EY3 EY4 DE1 DE2 =
 VFK VEX1 VEX2 VEY1 VEY2 VEY3 VEY4 VDE1 VDE2;

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 155

 * misspecification: error covariances fixed to zeros;
*COV
 EY2 EY4 = C_EY24, EY1 EY3 = C_EY13;
RUN;

DATA SEMOUT; SET SEMOUT;
 KEEP _NAME_ _ESTIM_;
RUN;

PROC TRANSPOSE DATA=SEMOUT OUT=NEWFITS LET;
 DATA NEWFITS; SET NEWFITS; * add simulation design information;
 MTHD="&METHOD"; MODEL="&MODL";
 KEEP MODEL MTHD N FIT NPARM DF CHISQUAR P_CHISQ CHISQNUL GFI AGFI
 RMSEAEST COMPFITI BB_NONOR BB_NORMD BOL_RHO1 BOL_DEL2 CENTRALI;

PROC APPEND BASE=SEM.SEM_FITS FORCE;

%END; * end of implementing the misspecified model;

%END; * close the do-loop for replications in each cell;
%END; * close the do-loop for sample size conditions;
%END; * close the do-loop for estimation procedure;
%END; * close the do-loop for model specification conditions;
%MEND SEM_MC; * end of simulation macro ’SEM_MC’;
%SEM_MC; * running the macro ’SEM_MC’;
RUN;

PROC PRINTTO PRINT=PRINT; * direct output to SAS Output window;
RUN;

/* * descriptive analysis for the 9 descriptive model fit indices;
DATA D2; SET SEM.SEM_FITS;
PROC SORT; BY MODEL MTHD N;
PROC MEANS MEAN STD MAX MIN;
 BY MODEL MTHD N;
 VAR GFI AGFI RMSEAEST COMPFITI BB_NONOR BB_NORMD BOL_RHO1 BOL_DEL2
CENTRALI;
RUN;
*/

7.2.6 Some Explanations of Program 7.2
First of all, the program directs the SAS log to an external file (LOGFILE.TMP) on the hard drive by
using the PRINTTO procedure:

 * -- to direct the SAS log to a disk file;
PROC PRINTTO LOG=’C:\SEM\SAS\LOGFILE.TMP’;

As discussed in Chapter 6, when hundreds and thousands of replications need to be run, the SAS log
can overwhelm the SAS Log window capacity. Thus, it is important to direct the SAS log to an
external file to prevent SAS from stopping the operation and asking you what to do.

156 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

One important feature in this program is that we use the SAS CALIS procedure for fitting the
structural equation models, and we use the statistical output from PROC CALIS to obtain all the fit
indices of interest. Because structural equation modeling is mathematically sophisticated and
computationally intensive, it is only feasible to conduct a Monte Carlo study in SEM if we do not
have to worry about doing statistical programming ourselves. Once a random sample of data drawn
from a pre-specified statistical population (see Table 7.1 for the specifications of the statistical
population) is generated, a particular SEM model (true or misspecified) is fitted to the sample data.
For fitting the true model, we have the following commands:

 * implement the true model;
 * output the model fitting results to
 data set ’SEMOUT’;
%IF &MODEL=1 %THEN %DO;

PROC CALIS DATA=DAT METHOD=&METHOD COV OUTRAM=SEMOUT NOPRINT;
 LINEQS
 X1 = FK + EX1,
 X2 = LX2 FK + EX2,
 Y1 = FE1 + EY1,
 Y2 = LY2 FE1 + EY2,
 Y3 = FE2 + EY3,
 Y4 = LY4 FE2 + EY4,
 FE1= GA1 FK + DE1,
 FE2= GA2 FK + BE1 FE1 + DE2;
STD
 FK EX1 EX2 EY1 EY2 EY3 EY4 DE1 DE2 =
 VFK VEX1 VEX2 VEY1 VEY2 VEY3 VEY4 VDE1 VDE2;
COV
 EY1 EY3 = C_EY13, EY2 EY4 = C_EY24;
RUN;

In this group of PROC CALIS options and statements, the method for estimation is varied
(METHOD=&METHOD) between "maximum likelihood" and "generalized least squares," as one
DO loop specifies. For obtaining the model fitting results, the option OUTRAM=SEMOUT
accomplishes the task. Here, OUTRAM is a keyword in PROC CALIS requesting the model fitting
results to be output to a temporary SAS data set. This SAS data set is named SEMOUT here and will
be used later.

The SEMOUT data set contains all the model fit indices, model parameter estimates, and more. To
understand how model fit indices are obtained, we need to take a look at the structure of the
SEMOUT data set by using a simple command:

PROC PRINT DATA=SEMOUT;
RUN;

When the true model in Figure 7.1 is fitted to the population covariance matrix (correlation matrix
and variable variances) in Table 7.1, the temporary SAS data set SEMOUT has the following
structure and analysis results:

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 157

Output 7.2 Contents of the SEMOUT Data Set

 Obs _TYPE_ _NAME_ _MATNR_ _ROW_ _COL_ _ESTIM_ _STDERR_

 1 MODEL _SEL_ 1 6 17 12.00 0.00000
 2 MODEL _BETA_ 2 17 17 13.00 2.00000
 3 MODEL _GAMMA_ 3 17 9 14.00 0.00000
 4 MODEL _PHI_ 4 9 9 8.00 0.00000
 5 VARNAME X1 1 . 1 . .
 6 VARNAME X2 1 . 2 . .
 7 VARNAME Y1 1 . 3 . .
 8 VARNAME Y2 1 . 4 . .
 9 VARNAME Y3 1 . 5 . .
 10 VARNAME Y4 1 . 6 . .
 11 VARNAME FE1 1 . 7 . .
 12 VARNAME FE2 1 . 8 . .
 13 VARNAME FK 1 . 9 . .
 14 VARNAME EX1 1 . 10 . .
 15 VARNAME EX2 1 . 11 . .
 16 VARNAME EY1 1 . 12 . .
 17 VARNAME EY2 1 . 13 . .
 18 VARNAME EY3 1 . 14 . .
 19 VARNAME EY4 1 . 15 . .
 20 VARNAME DE1 1 . 16 . .
 21 VARNAME DE2 1 . 17 . .
 22 METHOD ML
 23 STAT N . . . 150.00 .
 24 STAT FIT . . . 0.00 .
 25 STAT GFI . . . 1.00 .
 26 STAT AGFI . . . 1.00 .
 27 STAT RMR . . . 0.00 .
 28 STAT PGFI . . . 0.27 .
 29 STAT NPARM . . . 17.00 .
 30 STAT DF . . . 4.00 .
 31 STAT N_ACT . . . 0.00 .
 32 STAT CHISQUAR . . . 0.00 .
 33 STAT P_CHISQ . . . 1.00 .
 34 STAT CHISQNUL . . . 349.59 .
 35 STAT RMSEAEST . . . 0.00 .
 36 STAT RMSEALOB
 37 STAT RMSEAUPB
 38 STAT P_CLOSFT . . . 1.00 .
 39 STAT ECVI_EST . . . 0.24 .
 40 STAT ECVI_LOB
 41 STAT ECVI_UPB
 42 STAT COMPFITI . . . 1.00 .
 43 STAT ADJCHISQ
 44 STAT P_ACHISQ
 45 STAT RLSCHISQ . . . 0.00 .
 46 STAT AIC . . . -8.00 .
 47 STAT CAIC . . . -24.04 .
 48 STAT SBC . . . -20.04 .
 49 STAT CENTRALI . . . 1.01 .
 50 STAT BB_NONOR . . . 1.04 .
 51 STAT BB_NORMD . . . 1.00 .
 52 STAT PARSIMON . . . 0.27 .
 53 STAT ZTESTWH . . . -4.00 .
 54 STAT BOL_RHO1 . . . 1.00 .
 55 STAT BOL_DEL2 . . . 1.01 .
 56 STAT CNHOELT . . . 543658928584.00 .
 57 ESTIM 2 3 7 1.00 0.00000
 58 ESTIM LY2 2 4 7 0.95 0.14270
 59 ESTIM 2 5 8 1.00 0.00000
 60 ESTIM LY4 2 6 8 0.90 0.13770
 61 ESTIM BE1 2 8 7 0.60 0.12628
 62 ESTIM 3 1 1 1.00 0.00000
 63 ESTIM 3 1 2 1.00 0.00000
 64 ESTIM LX2 3 2 1 0.50 0.09780
 65 ESTIM 3 2 3 1.00 0.00000

158 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 7.2 Contents of the SEMOUT Data Set (continued)

 66 ESTIM 3 3 4 1.00 0.00000
 67 ESTIM 3 4 5 1.00 0.00000
 68 ESTIM 3 5 6 1.00 0.00000
 69 ESTIM 3 6 7 1.00 0.00000
 70 ESTIM GA1 3 7 1 -0.60 0.14131
 71 ESTIM 3 7 8 1.00 0.00000
 72 ESTIM GA2 3 8 1 -0.25 0.13331
 73 ESTIM 3 8 9 1.00 0.00000
 74 ESTIM VFK 4 1 1 7.00 1.63916
 75 ESTIM VEX1 4 2 2 3.00 1.25943
 76 ESTIM VEX2 4 3 3 2.50 0.41890
 77 ESTIM VEY1 4 4 4 4.75 1.13774
 78 ESTIM VEY2 4 5 5 2.50 0.95706
 79 ESTIM C_EY13 4 6 4 1.60 0.78801
 80 ESTIM VEY3 4 6 6 4.50 1.25757
 81 ESTIM C_EY24 4 7 5 0.30 0.62251
 82 ESTIM VEY4 4 7 7 3.00 1.00843
 83 ESTIM VDE1 4 8 8 5.00 1.19037
 84 ESTIM VDE2 4 9 9 4.00 0.98312

Of the eight columns in this SAS data set, only two columns (column heading _NAME_, and
ESTIM) contain what we need, and for our purposes, the rest can be discarded. The column with
the heading _NAME_ contains the names of the model fit indices or names of model parameters. The
column with the heading _ESTIM_ contains the sample estimates of the model fit indices and model
parameters. So the next group of SAS statements in Program 7.2 only keeps the two columns
NAME and _ESTIM_:

DATA SEMOUT; SET SEMOUT; * only keep the relevant results;
 KEEP _NAME_ _ESTIM_;
RUN;

After the unnecessary columns are dropped from the temporary SEMOUT data set by the SAS
statements above, the data set is then transposed from two columns and 84 rows (84 rows for this
model only; different models have different numbers of rows, due to the different numbers of model
parameters) to two rows and 84 columns by using the TRANSPOSE procedure:

 * transpose the SAS data set ’SEMOUT’ to ’NEWFITS’;
PROC TRANSPOSE DATA=SEMOUT OUT=NEWFITS LET;

In the new data set, NEWFITS, the first row represents the variable names, and the second row
contains the sample model fit indices and parameter estimates. Because we do not need all the
variables from each model fitting analysis, we only keep what we need. In addition, our Monte Carlo
simulation design information (i.e., what estimation method is used for this sample, and which model
is fitted to the sample data) for each model fitting analysis needs to be added to the data for later
analyses. The following group of SAS commands accomplish these tasks:

 DATA NEWFITS; SET NEWFITS; * add simulation design information;
 MTHD="&METHOD"; MODEL="&MODL";

 * keep the desired model fit indices;
 KEEP MODEL MTHD N FIT NPARM DF CHISQUAR P_CHISQ CHISQNUL GFI AGFI
 RMSEAEST COMPFITI BB_NONOR BB_NORMD BOL_RHO1 BOL_DEL2 CENTRALI;

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 159

In the KEEP statement, the last nine variables are the model fit indices we are interested in studying,
and they are as follows:

 GFI: goodness-of-fit index

 AGFI: Adjusted goodness-of-fit index

 RMSEAEST: root mean square of approximation

 COMPFITI: comparative fit index

 BB_NONOR: Bentler-Bonnet non-normed fit index

 BB_NORMD: Bentler-Bonnet normed fit index

 BOL_RHO1: Bollen’s RHO1

 BOL_DEL2: Bollen’s delta 2

 CENTRALI: McDonald’s index of non-centrality

Finally, the results from each sample need to be accumulated in an external SAS file for later
analyses. The SAS APPEND procedure appends the results from each sample to the SAS file named
SEM_FITS.

 * append results of each run to a SAS system file;
PROC APPEND BASE=SEM.SEM_FITS FORCE;

%END; * end of implementing the true model;

By this time, the first sample in the first cell (true model, estimation method of maximum likelihood,
and sample size of 100) is complete, and the results are saved. For the misspecified model, the SAS
programming code has almost the same structure, but with a slightly modified model implemented.
By the time SAS Program 7.2 is completed, the SAS file SEM_FITS will contain 18 variables and
3,200 cases, with each case representing the model fitting results for each random sample drawn from
the statistical population specified in Table 7.1. All the design information is contained in the SAS
file for later analyses. One example descriptive analysis will be to obtain the means, standard
deviations, maximum value, and minimum value of each model fit index, broken down by sample
size, estimation method, and model specification, similar to the following:

 * descriptive analysis for the 9 descriptive model fit indices;
DATA D2; SET SEM.SEM_FITS;
PROC SORT; BY MODEL MTHD N;
PROC MEANS MEAN STD MAX MIN;
 BY MODEL MTHD N;
 VAR GFI AGFI RMSEAEST COMPFITI BB_NONOR BB_NORMD
 BOL_RHO1 BOL_DEL2 CENTRALI;
RUN;

160 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

7.2.7 Selected Results from Program 7.2
As an example of the results obtained from this simulation program, Table 7.3 presents the means of
the nine fit indices for the misspecified model based on the execution of Program 7.2. For each
sample size condition, the values in the upper row are the means of the fit indices based on the
maximum likelihood estimation method for model fitting, and the values in the lower row are the
means of the fit indices based on the generalized least squares estimation method for model fitting.
Notice that for the relative fit indices (CFI, N_NFI, NFI, RHO1, DELTA2), the difference between
model fit index values based on the estimation method (maximum likelihood vs. generalized least
squares) is very obvious. In other words, for this group of fit indices, the estimation method used in
model fitting appears to be influential for the fit index value obtained. For the other four fit indices
(GFI, AGFI, RMSEA, CENTRA), however, the estimation method does not appear to affect the
sample model fit index value to the same degree as it does for the relative fit indices. Of course, more
detailed or more sophisticated analyses could be conducted for the obtained sample fit indices from
this simulation study. For an example of such analyses in real research situations, see Fan and Wang
(1998).

Table 7.3 Means of Fit Indices from Two Estimation Methods for the Misspecified Model

 Sample N Model Fit Indices

 GFI AGFI CFI N_NFI NFI RHO1 DELTA2 RMSEA CENTRA

 100 .94 .84 .95 .90 .92 .85 .95 .12 .94
 .94 .85 .86 .74 .79 .60 .88 .10 .96

 200 .95 .87 .95 .90 .93 .87 .95 .12 .94
 .95 .87 .85 .73 .82 .66 .86 .11 .95

 500 .96 .89 .95 .90 .94 .89 .95 .12 .94
 .96 .89 .85 .72 .83 .69 .85 .11 .95

 1000 .96 .89 .95 .90 .94 .90 .95 .12 .94
 .96 .90 .85 .72 .84 .71 .85 .12 .95

Note: For each sample size condition, the means in the upper row are based on the maximum likelihood estimation
method for model fitting, and the means in the lower row are based on the generalized least squares estimation
method for model fitting.

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 161

���� ���	�����������

������� ����������!���"�����!��������

In many different disciplines, there is often a need to predict an individual’s group membership based
on a battery of measurements. Both predictive discriminant analysis (PDA) and logistic regression
(LR) have been the popular statistical tools for this purpose (Yarnold, Hart & Soltysik 1994). The
relative efficacy of these two statistical methods under different data conditions, however, has been an
issue of debate (e.g., Barón 1991; Dattalo 1994; Dey & Astin 1993). In our example here, we only
examine the performance of logistic regression and linear discriminant analysis for classification in
two-group situations. In the following discussion, PDA is used only for predictive discriminant
analysis based on a linear discriminant function.

7.3.1 Major Issues Involved
Since both PDA and LR can be used for predicting or classifying individuals into different groups
based on a set of measurements, a logical question often asked is: how do the two techniques compare
with each other? In the literature, there has been some discussion about the relative merits of these
two different techniques (e.g., Dattalo 1994; Fraser et al. 1994; Wilson & Hardgrave 1995).

Theoretically, PDA is considered as having more stringent data assumptions. Two prominent
assumptions for PDA are multivariate data normality, and homogeneity of the covariance matrices of
the groups (Johnson & Wichern 1988; Stevens 1996). However, it is not entirely clear what
consequences the violation of these assumptions may have on PDA results. LR, on the other hand, is
considered relatively free of these stringent data assumptions (Cox & Snell 1989; Neter, Wasserman,
& Kutner 1989; Tabachnick & Fidell 1996). Although there is no strong logical reason to expect the
superiority of one technique over the other in classification accuracy when the assumptions for PDA
hold, it would be reasonable to expect that LR should have the upper hand when some of these
assumptions for PDA are not tenable (Neter et al. 1989; Tabachnick & Fidell 1996).

Research findings about the relative performance of these two methods appear to be inconsistent.
With regard to data normality, Efron (1975) showed that under the optimal data condition of
multivariate normality and equal covariance matrices for the groups, a linear discriminant function is
more economical and more efficient than logistic regression. When the data are not multivariate
normal, results from some simulation studies (e.g., Barón 1991; Bayne et al. 1984) indicated that LR
performed better than PDA. This finding, however, has not been unequivocally supported by the
studies that compared the two techniques by using extant data sets, because quite a few studies
involving actual non-normal data sets suggested very little practical difference between the two
techniques (e.g., Cleary & Angel 1984; Dey & Astin 1993; Meshbane & Morris 1996).

162 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

With regard to the assumption of equal covariance matrices for PDA, there appears to be a lack of
empirical studies to compare the relative performance of PDA and LR when this assumption does not
hold. Researchers seem to assume that LR should be the method of choice when the two groups do
not have equal covariance matrices (Harrell & Lee 1985; Press & Wilson 1978). Several studies that
involved extant data sets did not suggest that PDA’s performance would suffer appreciably because
the assumption was violated (Knoke 1982; Meshbane & Morris 1996). No one seems to have
specifically manipulated this condition in simulation studies to examine its effect on the performance
of PDA and LR.

Relative performance of PDA and LR under different sample size conditions is also an issue of
interest. Viewed from the perspective of statistical estimation in general, maximum likelihood
estimators (as in LR) tend to require larger samples to achieve stable results than ordinary least square
estimators (as in PDA). Inconsistent results have been reported about the relative performance of the
two techniques with regard to sample size conditions. For example, in a simulation study, Harrell and
Lee (1985) implied that PDA performed better under small sample size conditions. Johnson and
Seshia (1992) showed that, when the techniques were applied to real data sets, the findings did not
clearly show that this was the case.

In addition to the three issues (data normality, equal covariance matrices, and sample size), another
issue that has attracted relatively little attention in the literature is the situation where two groups have
different population proportions, and what effect this condition has on the classification accuracy of
PDA and LR. There has been some discussion in the literature that it may make very little practical
difference whether PDA or LR is used for classification when two groups have approximately equal
proportions. But when the two groups have very different proportions (e.g., 0.10 : 0.90), logistic
regression may perform better than a linear discriminant function (Cleary & Angel 1984; Dey & Astin
1993; Neter et al. 1989; Press & Wilson 1978).

Our example has considered two issues discussed above: homogeneity of covariance matrices, and
sample size. Although data normality conditions and group proportions are interesting issues, for the
sake of keeping the programming example manageable, data normality is not examined in this
example, and only the condition of equal group proportions (i.e., 0.50 : 0.50) is used in the example.

7.3.2 Design
A crossed two-factor experimental design was implemented for the data structure pattern described in
Table 7.4. The data structure described here is arbitrarily specified. The degree of group separation in
the multivariate space as measured by the Mahalanobis distance [D2 = (µ1-µ2)' Σ

-1

pooled(µ1-µ2)] is
provided.

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 163

Table 7.4 Data Structure Pattern Simulated in the Example

 Common Covariance Matrix (Σcommon)

a:

 X1 1.00
 X2 0.30 1.00
 X3 0.50 0.40 1.00

 σ2 4.00 4.00 4.00

 µ

1

b 5.00 5.00 5.00
 µ

2
 9.00 9.00 9.00

Group Separation (Mahalanobis Distance: D2=(µ

1
-µ

2
)’ Σ-1

pooled
(µ

1
-µ

2
):

 Equal Σs: D2 = 6.70
 Unequal Σs: D2 = 6.70 (Group Proportions: 0.50:0.50)

 a: For the condition of equal Σs, this common covariance matrix is used

for both groups. For the condition of unequal Σs, 2/5(Σcommon) is used

for Group 1 population, and 8/5(Σcommon) is used for Group 2 population.

 b: Mean row vectors for Group 1 and Group 2, respectively.

The two factors manipulated under each data pattern were sample size (4 levels: 60, 100, 200, 400)
and equality of covariance matrices (2 levels: equal, unequal). The fully crossed design for the data
structure pattern, with 1000 replications in each cell, required the generation and model-fitting of
8,000 (4×2×1000) samples. This design makes it possible to systematically assess the potential impact
of the two factors on the classification accuracy of PDA and LR.

Although no theoretical guidelines are available about what is a small or a large sample size for the
purpose of classification for the two methods, the review of Meshbane and Morris (1996) of 32 real
research data sets used for two-group classification has sample sizes ranging from 100 to 285.
Compared with these 32 data sets, the sample size conditions specified in this study (60, 100, 200,
400) could be considered as ranging from relatively small to moderately large.

The degree of inequality of covariance matrices between the two groups was specified a priori as one
group having a covariance matrix 4 times larger than that of the other group. To avoid the
confounding of group separation (as measured by Mahalanobis distance D2) and heterogeneity of
covariance matrices, the covariance matrices for the two populations were specified as follows:

1. Specify a common covariance matrix Σcommon, and this Σcommon is used for the two
populations for the condition of equal covariance;

2. For the condition of unequal covariance matrices, the group with the smaller
covariance matrix has 2/5(Σcommon) as its population covariance matrix; the group with
the larger covariance matrix has 8/5(Σcommon) as its population covariance matrix.

164 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

As shown in Table 7.4, the specification for the condition of unequal covariance matrices for the two
populations maintained the same population separation as measured by the Mahalanobis distance D2,
thus avoiding the confounding of heterogeneous covariance matrices with the degree of group
separation.

7.3.3 Data Source and Model Fitting
For each sample, first a pseudo-population is generated that is 20 times larger than the size of the
sample desired. This pseudo-population has the exact proportions of the two groups (0.50 : 0.50).
Once this pseudo-population is generated, a simple random sample of a specified sample size (60,
100, 200, or 400) is drawn from this pseudo-population. In other words, although the population
proportions of the groups are exact, the sample proportions may not be. This procedure models the
research reality: sample proportion varies around the population proportion within the limits of
sampling error.

Although statistical inference assumes an infinite population from which a sample is drawn, as Glass
and Hopkins (1996, p. 224) pointed out, when the sampling fraction n/N =.05 or less (n: sample size;
N: finite population size), the precision of statistical inferences would only be minimally and
negligibly affected. This consideration motivated the decision to generate a pseudo-population 20
times larger than the sample size.

Once a sample was drawn, the sample data are fitted to both the linear discriminant analysis model
and the logistic regression model, and the classification error rates from the two models are obtained.
For PDA, the SAS DISCRIM procedure is used for model fitting, and the linear classification rule is
used in the classification. For LR, the SAS LOGISTIC procedure is used for LR model fitting, and
the maximum posterior probability rule, i.e., 0.5 on the modeled probability function for the modeled
group, is specified for the classification. In this study, the modeled group is always the group with an
equal or smaller covariance matrix. The classification error rates for the two groups and those for the
total sample under both PDA and LR are collected and saved in a SAS data file for later analyses.

Because both PDA and LR classification contain upward bias due to the fact that the model
estimation and classification are done on the same sample, bias-corrected classification error rates for
the two methods were used in the present study. For PDA, the bias correction is achieved through the
leave-one-out approach (Huberty 1994; Lachenbruch 1967), which is often known as “jackknifing” in
the context of PDA (Johnson & Wichern 1988). For LR, although computing power has made the
computational intensity of LR less of a concern, for a resampling technique like jackknifing, to
repeatedly fit the model to the data for each observation left out could still be computationally
expensive (SAS Institute 1997, p. 461). For this reason, instead of the leave-one-out strategy, the SAS
LOGISTIC procedure implements a less expensive, one-step algebraic approximation for correcting
the upward bias. Readers are referred to the original source for this bias correction (SAS Institute
1997, pp. 461-468).

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 165

7.3.4 Example Program Simulating Classification Error
Rates of PDA and LR
Program 7.3 presents the complete SAS program for conducting the Monte Carlo study for comparing
the classification accuracy of linear discriminant analysis and logistic regression for a two group
problem described above. As discussed previously, from each random sample drawn from the defined
statistical population, this program obtains the bias-corrected classification error rates (the error rate
for each of the two groups and the overall error rate) from both linear discriminant analysis and
logistic regression, and saves these error rates to a SAS file on disk for later analyses.

Program 7.3 Simulating Classification Error Rates of PDA and LR

/* This program conducts Monte Carlo simulation for comparing classification
 error rates from linear discriminant function and from logistic regression
 for a two-group situation. SAS PROC DISCRIM and SAS PROC LOGISTIC are used
 for group membership classification. The results of classification error
 rates for the respective two groups and the overall error rate from both
 PROC DISCRIM and PROC LOGISTIC are saved in an external SAS file for
 future analyses.
*/

LIBNAME PDA_LR ’C:\PDA_LR\SAS’;

 * -- to direct the SAS log to an external file;
PROC PRINTTO LOG=’C:\PDA_LR\SAS\LOGFILE.TMP’;
RUN;

DATA D1(TYPE=CORR);
 INPUT _TYPE_ $ _NAME_ $ X1-X3;
 CARDS;
CORR X1 1 . .
CORR X2 0.30 1 .
CORR X3 0.50 0.40 1
;
 *obtain factor pattern matrix for later data generation;
PROC FACTOR N=3 OUTSTAT=FACTOUT;
DATA PATTERN; SET FACTOUT;
 IF _TYPE_ = ’PATTERN’;
 DROP _TYPE_ _NAME_;
RUN;

%MACRO PDA_LR; * start of simulation macro;

%DO A = 1 %TO 2; * A=1: equal group covariance, A=2: unequal;

 * specify four pseudo-population sizes (N1+N2);
 * specify sample size conditions (N);
%DO B = 1 %TO 4;
 %IF &B=1 %THEN %DO; %LET N1=600; %LET N2=600; %LET N=60; %END;
 %IF &B=2 %THEN %DO; %LET N1=1000; %LET N2=1000; %LET N=100; %END;
 %IF &B=3 %THEN %DO; %LET N1=2000; %LET N2=2000; %LET N=200; %END;
 %IF &B=4 %THEN %DO; %LET N1=4000; %LET N2=4000; %LET N=400; %END;

%DO NITER=1 %TO 1000; * specify the # of replications within each cell;

PROC IML;

166 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 USE PATTERN; * use the factor pattern matrix;
 READ ALL VAR _NUM_ INTO FT;
 F=FT‘;
 MEAN1={5 5 5}; * specify two mean vectors for the two populations;
 MEAN2={9 9 9};

 VAR={4 0 0,
 0 4 0,
 0 0 4}; * specify the common variances of the 3 variables;

 * specify equal (&A=1) and
 unequal (&A=2) covariance conditions;
IF &A=1 THEN VAR1=VAR;
 ELSE VAR1=(2/5)*VAR;
IF &A=1 THEN VAR2=VAR;
 ELSE VAR2=(8/5)*VAR;

************ GROUP 1 DATA **********;

G1DATA=RANNOR(J(&N1,3,0)); * generate 3 random normal variables;
G1DATAT=G1DATA‘; * transpose the data matrix for multiplication;
G1DATAT=F*G1DATAT; * transform uncorrelated variables to correlated;

STD1=SQRT(VAR1); * transform the variables to specified scales;
G1DATAT=(STD1*G1DATAT)‘;
X1=G1DATAT[,1] + MEAN1[,1];
X2=G1DATAT[,2] + MEAN1[,2];
X3=G1DATAT[,3] + MEAN1[,3];
GROUP1=J(&N1,1,1); * assigning group number;
G1DATA=GROUP1||X1||X2||X3;

******** GROUP 2 DATA ********************;

G2DATA=RANNOR(J(&N2,3,0)); * generate 3 random normal variables;
G2DATAT=G2DATA‘; * transpose the data matrix for multiplication;
G2DATAT=F*G2DATAT; * transform uncorrelated variables to correlated;

STD2=SQRT(VAR2); * transform variables to specified scales;
G2DATAT=(STD2*G2DATAT)‘;
X1=G2DATAT[,1] + MEAN2[,1];
X2=G2DATAT[,2] + MEAN2[,2];
X3=G2DATAT[,3] + MEAN2[,3];
GROUP2=J(&N2,1,2); * assigning group number;
G2DATA=GROUP2||X1||X2||X3;
RUN;

G12DATA=G1DATA//G2DATA; * combine data of two groups;

CREATE DATA FROM G12DATA[COLNAME={GROUP X1 X2 X3}];
APPEND FROM G12DATA;

 * draw a random sample of size N from the pseudo-population;

DATA TEMP; SET DATA;
 RANNO=RANUNI(0);
PROC SORT; BY RANNO;
DATA SMPLDAT; SET TEMP(OBS=&N); DROP RANNO;

 * direct SAS PROC DISCRIM output to an external file;

FILENAME NEWOUT ’C:\PDA_LR\SAS\OUTFILE’;
PROC PRINTTO PRINT=NEWOUT NEW;

 * PROC DISCRIM, requesting jackknife procedure (CROSSVALIDATE);

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 167

PROC DISCRIM CROSSVALIDATE DATA=SMPLDAT;
 CLASS GROUP;
 PRIORS PROPORTIONAL;
 VAR X1 X2 X3;
RUN;

PROC PRINTTO PRINT=PRINT; * direct SAS output back to SAS Output window;
RUN;

 * read in the external file containing output from PROC DISCRIM;
 * read in jackknifed classification error rates for two groups and combined;

DATA PDAERROR; INFILE NEWOUT;
 INPUT WORD1 $ @;
 IF WORD1=’Rate’ THEN DO;
 INPUT DAG1_ERR DAG2_ERR DA_ERR;
 KEEP DAG1_ERR DAG2_ERR DA_ERR;
 OUTPUT;
 END;
RUN;

DATA PDAERROR; SET PDAERROR; * keep the jackknifed errors only;
N=_N_;
IF N=2; DROP N;
RUN;

 * direct PROC LOGISTIC output to an external file for later use;

FILENAME NEWOUT ’C:\PDA_LR\SAS\OUTFILE’;
PROC PRINTTO PRINT=NEWOUT NEW;

 * conduct PROC LOGISTIC analysis for the sample data;
 * requesting classification table;
 * with probability = 0.5 as the cut-off point for classification;

PROC LOGISTIC DATA=SMPLDAT;
 MODEL GROUP=X1 X2 X3/CTABLE PPROB=.5;
RUN;

 * direct SAS output back to SAS Output window;
PROC PRINTTO PRINT=PRINT; RUN;

 * from the external file containing output from PROC LOGISTIC;
 * read in the following:
 (a) overall correct classification rate (LRRATE),
 (b) GROUP 1 correct classification rate (G1RATE),
 (c) GROUP 2 correct classification rate (G2RATE);
 * construct and keep the classification error rates for

 (i) GROUP 1, (ii) GROUP 2, and (iii) overall error rate;

DATA LRERROR; INFILE NEWOUT;
 INPUT PRIOR $ @;
 IF PRIOR=’0.500’ THEN DO;
 INPUT V1 V2 V3 V4 LRRATE G1RATE G2RATE;
 LRG1_ERR=1-G1RATE/100;
 LRG2_ERR=1-G2RATE/100;
 LR_ERR=1-LRRATE/100;
 KEEP LRG1_ERR LRG2_ERR LR_ERR;
 OUTPUT;
 END;

 * merge error rates from PDA and LR;
 * add simulation study design information;
 * append the results from each sample to a SAS file "RESULTS";

168 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

DATA PDA_LR;
 MERGE PDAERROR LRERROR;
 N=&N; IF &A=1 THEN COV=’EQUAL’; ELSE IF &A=2 THEN COV=’NO_EQ’;
PROC APPEND BASE=PDA_LR.RESULTS FORCE;
RUN;

%END; * end of do-loop for replications in each cell;
%END; * end of do-loop for each sample size condition;
%END; * end of do-loop for each covariance equality condition;
%MEND PDA_LR; * end of simulation macro;
%PDA_LR; * run the simulation macro;
RUN;

/*
PROC SORT; BY COV N;
PROC MEANS MEAN STD MIN MAX; BY COV N;
 VAR DAG1_ERR LRG1_ERR DAG2_ERR LRG2_ERR DA_ERR LR_ERR;
TITLE1 ’Average Classification Error Rates’;
TITLE2 ’Comparison of Discriminant Analysis and Logistic Regression’;
TITLE3 ’For GROUP 1, GROUP 2, and Overall’;
RUN;
*/

7.3.5 Some Explanations of Program 7.3
Although Program 7.3 contains many comments to remind the readers about the functions of different
program components, some discussion is warranted here to illustrate some unique features in this
program. The first feature that appears to be new is the following:

%DO B = 1 %TO 4;
 %IF &B=1 %THEN %DO; %LET N1=600; %LET N2=600; %LET N=60; %END;
 %IF &B=2 %THEN %DO; %LET N1=1000; %LET N2=1000; %LET N=100; %END;
 %IF &B=3 %THEN %DO; %LET N1=2000; %LET N2=2000; %LET N=200; %END;
 %IF &B=4 %THEN %DO; %LET N1=4000; %LET N2=4000; %LET N=400; %END;

As discussed previously, in this program, we generate a finite pseudo-population first, and then draw
a random sample from this pseudo-population. The pseudo-population has the exact 0.50:0.50 equal
proportions for the two groups, but a random sample from such a pseudo-population may not have
exact equal proportions due to random sampling error. The SAS statements above specify the pseudo-
population size (N1+N2, for Group 1 and Group 2 pseudo-populations, respectively), and the sample
size (N) for each sample size condition. For each of the four sample size conditions, the sample size
(N) is 1/20 of the pseudo-population size, as discussed previously in the section on the study design.

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 169

To draw a random sample of size N from the pseudo-population of size N1+N2, we generate a
random number (RANNO), sort the pseudo-population data by that random number, and then select
the first N observations as our sample. This is accomplished by the following SAS statements:

 * draw a random sample of size N from the pseudo-population;

DATA TEMP; SET DATA;
 RANNO=RANUNI(0);
PROC SORT; BY RANNO;
DATA SMPLDAT; SET TEMP(OBS=&N); DROP RANNO;

For both the PROC DISCRIM and PROC LOGISTIC analysis results, the information we desire is
only available in the SAS output file. For this reason, we first direct the SAS output to an external
file on disk, and then read in that external file and extract the information we need. For PROC
DISCRIM results, this is accomplished by the following SAS statements:

 * read in the external file containing output from PROC DISCRIM;
 * read in jackknifed classification error rates for two groups and
 combined;

DATA PDAERROR; INFILE NEWOUT;
 INPUT WORD1 $ @;
 IF WORD1=’Rate’ THEN DO;
 INPUT DAG1_ERR DAG2_ERR DA_ERR;
 KEEP DAG1_ERR DAG2_ERR DA_ERR;
 OUTPUT;
 END;
RUN;

DATA PDAERROR; SET PDAERROR; * keep the jackknifed errors only;
N=_N_;
IF N=2; DROP N;
RUN;

To understand how the SAS statements above extract the jackknifed classification errors for two
groups and the overall classification error, we have to know what PROC DISCRIM output looks like.
Because we requested the jackknife procedure for PROC DISCRIM (by specifying the
CROSSVALIDATE option), the output contains two sections, one for the original classification
results (not corrected for bias), and the other for bias-corrected classification results. Relevant sections
of the PROC DISCRIM output are reproduced below based on an artificially constructed data set of
50 cases for each of the two groups (Group A and Group B):

170 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 7.3a Partial Output from PROC DISCRIM

 The DISCRIM Procedure
 Resubstitution Summary using Linear Discriminant Function

 Number of Observations and Percent Classified into group

 From group A B Total

 A 48 2 50
 96.00 4.00 100.00

 B 1 49 50
 2.00 98.00 100.00

 Total 49 51 100
 49.00 51.00 100.00

 Priors 0.5 0.5

 Error Count Estimates for group

 A B Total

 Rate 0.0400 0.0200 0.0300
 Priors 0.5000 0.5000

 Cross-validation Summary using Linear Discriminant Function

 Number of Observations and Percent Classified into group

 From group A B Total

 A 47 3 50
 96.00 4.00 100.00

 B 2 48 50
 2.00 98.00 100.00

 Total 49 51 100
 49.00 51.00 100.00

 Priors 0.5 0.5
 Error Count Estimates for group

 A B Total

 Rate 0.0600 0.0400 0.0500
 Priors 0.5000 0.5000

The two highlighted rows contain classification errors for the two groups and the overall classification
error. The first highlighted row is for errors not corrected for bias, and the second highlighted row
contains bias-corrected classification errors based on the jackknife procedure (from the
CROSSVALIDATE option). The following SAS statements keep reading the output file until SAS
encounters the word Rate. Then it inputs the three numerical variables after the word Rate as the
Group 1 error rate (DAG1_ERR), the Group 2 error rate (DAG2_ERR), and the overall error rate
(DA_ERR).

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 171

 INPUT WORD1 $ @;
 IF WORD1=’Rate’ THEN DO;
 INPUT DAG1_ERR DAG2_ERR DA_ERR;
 KEEP DAG1_ERR DAG2_ERR DA_ERR;
 OUTPUT;
 END;

From the PROC DISCRIM output for each sample, two cases will be read in. The first case is for
error rates not corrected for bias, and the second case is for error rates corrected for bias based on the
jackknife procedure. We only want to keep the second case of bias-corrected error rates, and this is
accomplished by the following SAS statements:

DATA PDAERROR; SET PDAERROR; * keep the jackknifed errors only;
N=_N_;
IF N=2; DROP N;
RUN;

Once the bias-corrected classification error rates from PROC DISCRIM are obtained, a similar
programming sequence is used for obtaining the classification error rates from the PROC LOGISTIC
analysis. First, the PROC LOGISTIC analysis is done, and the output is directed to an external file in
ASCII format (i.e., text file). This external file is then read in to SAS to extract the classification error
rates respectively for the two groups, as well as the overall classification error rate. The task is
accomplished by the following SAS statements:

* from the external file containing output from PROC LOGISTIC;
 * read in the following:
 (a) overall correct classification rate (LRRATE),
 (b) GROUP 1 correct classification rate (G1RATE),
 (c) GROUP 2 correct classification rate (G2RATE);
 * construct and keep the classification error rates for

 (i) GROUP 1, (ii) GROUP 2, and (iii) overall error rate;

DATA LRERROR; INFILE NEWOUT;
 INPUT PRIOR $ @;
 IF PRIOR=’0.500’ THEN DO;
 INPUT V1 V2 V3 V4 LRRATE G1RATE G2RATE;
 LRG1_ERR=1-G1RATE/100;
 LRG2_ERR=1-G2RATE/100;
 LR_ERR=1-LRRATE/100;
 KEEP LRG1_ERR LRG2_ERR LR_ERR;
 OUTPUT;
 END;

To understand how the SAS statements extract the classification error rates of interest, we need to
take a look at the structure of the relevant section of PROC LOGISTIC output, as follows:

Output 7.3b Partial Output from PROC LOGISTIC

 Classification Table

 Correct Incorrect Percentages
 Prob Non- Non- Sensi- Speci- False False
 Level Event Event Event Event Correct tivity ficity POS NEG

 0.500 47 48 2 3 95.0 94.0 96.0 4.1 5.9

172 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

In the above, the three highlighted numbers are i) the overall correct classification rate for the two
groups combined, ii) the correct classification rate for Group 1 (the modeled group in PROC
LOGISTIC, also referred to as EVENT), and iii) the correct classification rate for Group 2 (also
referred to as NON-EVENT). In other words, SENSITIVITY represents the correct classification rate
for the modeled group (EVENT), while SPECIFICITY represents the correct classification rate for the
other group (NON-EVENT). All the correct classification rates are expressed as percentages.
Classification error rates can easily be constructed based on these correct classification rates. The SAS
statements above read in the three correct classification rates (LRRATE, G1RATE, G2RATE) from
the external file containing PROC LOGISTIC output, and construct three classification error rates
(LRG1_ERR, LRG2_ERR, LR_ERR).

Finally, for each sample, the classification error rates from linear discriminant function analysis
(PDA) and logistic regression analysis (LR) are merged into one temporary SAS data set (PDA_LR),
and the relevant Monte Carlo study design information is added to the data (sample size N,
equal/unequal covariance matrices). The data are then appended to an external SAS file on disk for
later use (PDA_LR.RESULTS), as accomplished by the following SAS statements:

 * merge error rates from PDA and LR;
 * add simulation study design information;
 * append the results from each sample to SAS file "RESULTS";

DATA PDA_LR;
 MERGE PDAERROR LRERROR;
 N=&N; IF &A=1 THEN COV=’EQUAL’; ELSE IF &A=2 THEN COV=’NO_EQ’;
PROC APPEND BASE=PDA_LR.RESULTS FORCE;
 RUN;

By this time, the simulation process for each random sample is complete, and all the DO loops in the
program, as well as the PDA_LR macro, are brought to a close. Once the PDA_LR macro is run, the
results can be analyzed by routine SAS procedures similar to the following:

DATA A; SET PDA_LR.RESULTS;
PROC SORT; BY COV N;
PROC MEANS MEAN STD MIN MAX; BY COV N;
 VAR DAG1_ERR LRG1_ERR DAG2_ERR LRG2_ERR DA_ERR LR_ERR;
TITLE1 ’Average Classification Error Rates’;
TITLE2 ’Comparison of Discriminant Analysis and Logistic Regression’;
TITLE3 ’For GROUP 1, GROUP 2, and Overall’;
RUN;

7.3.6 Selected Results from Program 7.3
Based on one execution of Program 7.3 with 1,000 replications in each cell condition, part of the
results are presented in the following table. It is observed that when the two groups have equal
covariance matrices, there is little difference between PDA and LR in their classification error rates.
When the groups have unequal covariance matrices, PDA produces small classification error rates
(range of .02-.03) for the group with the smaller covariance matrix, but substantially larger
classification error rates (range of .16-.17) for the group with the larger covariance matrix. Although
LR also has this tendency, its classification error rates are more evenly distributed between the two
groups (ranges of .06-.08 and .11-.12, respectively, for two groups). Of course, in a real Monte Carlo

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 173

study, more detailed and sophisticated analyses should be conducted, as seen in the article by Fan and
Wang (1999) that focuses on similar issues.

Table 7.5 PDA and LR Classification Error Rates for Group 1, Group 2, and Combined

 Combined Sample Size

 Method 60 100 200 400

Equal Σ

Group 1 or 2 PDA 11 (06) 10 (04) 10 (03) 10 (02)
 LR 11 (05) 11 (04) 10 (03) 10 (02)

Overall PDA 11 (04) 10 (03) 10 (02) 10 (02)
 LR 11 (04) 11 (03) 10 (02) 10 (02)

Unequal Σ

Group 1 with PDA 03 (03) 02 (02) 02 (02) 02 (01)
Smaller Σ LR 08 (04) 07 (03) 06 (02) 06 (02)

Group 2 with PDA 17 (07) 16 (05) 16 (03) 16 (02)
Larger Σ LR 12 (05) 11 (04) 11 (03) 11 (02)

Overall PDA 10 (04) 09 (03) 09 (02) 09 (01)
 LR 10 (04) 09 (03) 08 (02) 08 (01)

Note: Each entry is the mean classification error rate (standard deviation in parentheses) based on the
classification error rates of 1,000 samples. The second place decimal point is omitted.

��#� �
�������

This chapter is a natural extension of Chapter 6. In Chapter 6, we presented Monte Carlo study
examples involving some basic statistical techniques. In this chapter, we provided two complete
Monte Carlo examples involving more complicated statistical techniques. These are real research
examples involving real analytical issues. In these two examples, we provided the background for
each Monte Carlo study, as well as detailed discussion about study designs and simulated data
conditions. Further, these examples integrated the procedures presented in previous chapters. We
hope that this chapter, together with Chapter 6, will provide the foundation for those interested in
conducting Monte Carlo studies involving these and other statistical techniques.

174 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

��$� �!��������

Bagozzi, R. P., C. Fornell, and D. F. Larcker. 1981. “Canonical Correlation Analysis as a Special Case of
Structural Relations Model.” Multivariate Behavioral Research 16:437-454.

Baldwin, B. 1989. “A Primer in the Use and Interpretation of Structural Equation Models.” Measurement
and Evaluation in Counseling and Development 22:100-112.

Barón, A. E. 1991. “Misclassification among Methods Used for Multiple Group Discrimination: The
Effects of Distributional Properties.” Statistics in Medicine 10:757-766.

Bayne, C. K., J. J. Beauchamp, V. E. Kane, and G. P. McCabe. 1983. “Assessment of Fisher and Logistic
Linear and Quadratic Discrimination Models.” Computational Statistics and Data Analysis
1:257-273.

Bentler, P. M. 1992. EQS Structural Equations Program Manual. Los Angeles: BMDP Statistical Software.

Bentler, P. M. 1994. “Foreword.” In B. M. Byrne, Structural Equation Modeling with EQS and
EQS/Windows. Newbury Park, CA: Sage Publications.

Bollen, K. A., and J. S. Long. 1993. “Introduction.” In Testing Structural Equation Models, ed. K. A.
Bollen and J. S. Long. Newbury Park, CA: Sage Publications.

Byrne, B. M. 1994. Structural Equation Modeling with EQS and EQS/Windows: Basic Concepts,
Applications, and Programming. Newbury Park, CA: Sage Publications.

Cleary, P. D., and R. Angel. 1984. “The Analysis of Relationships Involving Dichotomous Dependent
Variables.” Journal of Health and Social Behavior 25:334-348.

Cox, D. R., and E. J. Snell. 1989. The Analysis of Binary Data. 2d ed. London: Chapman and Hall.

Dattalo, P. 1994. “A Comparison of Discriminant Analysis and Logistic Regression.” Journal of Social
Service Research 19:121-144.

Dey, E. L., and A. W. Astin. 1993. “Statistical Alternatives for Studying College Student Retention: A
Comparative Analysis of Logit, Probit, and Linear Regression.” Research in Higher Education
34:569-581.

Efron, B. 1975. “The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis.”
Journal of the American Statistical Association 70:892-898.

Fan, X. 1996. “Structural Equation Modeling and Canonical Correlation Analysis: What Do They Have in
Common?” Structural Equation Modeling: A Multidisciplinary Journal 4:64-78.

Fan, X., and L. Wang. 1998. “Effects of Potential Confounding Factors on Fit Indices and Parameter
Estimates for True and Misspecified SEM Models.” Educational and Psychological
Measurement 58:699-733.

Fan, X., and L. Wang. 1999. “Comparing Logistic Regression with Linear Discriminant Analysis in Their
Classification Accuracy.” Journal of Experimental Education 67:265-286.

Fraser, M. W., J. M. Jensen, D. Kiefer, and C. Popuang. 1994. “Statistical Methods for the Analysis of
Critical Events.” Social Work Research 18(3):163-177.

Gerbing, D. W., and J. C. Anderson. 1993. “Monte Carlo Evaluations of Goodness-of-Fit Indices for
Structural Equation Models.” In Testing Structural Equation Models, ed. K. A. Bollen and J. S.
Long, 40-65. Newbury Park, CA: Sage Publications.

Chapter 7 Conducting Monte Carlo Studies for Multivariate Techniques 175

Glass, G. V., and K. D. Hopkins. 1996. Statistical Methods in Education and Psychology. 3d ed. Boston:
Allyn and Bacon.

Harrell, F. E., Jr., and K. L. Lee. 1985. “A Comparison of the Discrimination of Discriminant Analysis and
Logistic Regression under Multivariate Normality.” In Biostatistics: Statistics in Biomedical,
Public Health and Environmental Sciences, ed. P. K. Sen, 333-343. Amsterdam: North Holland.

Huberty, C. J. 1994. Applied Discriminant Analysis. New York: Wiley.

James, L. R., S. A. Mulaik, and J. M. Brett. 1982. Causal Analysis: Models, Assumptions, and Data.
Beverly Hills, CA: Sage Publications.

Johnson, B., and S. S. Seshia. 1992. “Discriminant Analysis When All Variables Are Ordered.” Statistics in
Medicine 11:1023-1032.

Johnson, R. A., and D. W. Wichern. 1988. Applied Multivariate Statistical Analysis. 2d ed. Englewood
Cliffs, NJ: Prentice Hall.

Jöreskog, K. G., and D. Sörbom. 1989. LISREL 7: A Guide to the Program and Applications. 2d ed.
Chicago: SPSS Inc.

Knoke, J. D. 1982. "Discriminant Analysis with Discrete and Continuous Variables." Biometrics 38:191-
200.

Lachenbruch, P. A. 1967. “An Almost Unbiased Method of Obtaining Confidence Intervals for the
Probability of Misclassification in Discriminant Analysis.” Biometrics 23:639-645.

Loehlin, J. C. 1992. Latent Variable Models: An Introduction to Factor, Path, and Structural Analysis.
Hillsdale, NJ: Lawrence Erlbaum Associates.

McDonald, R. P. 1989. “An Index of Goodness-of-Fit Based on Noncentrality.” Journal of Classification
6:97-103.

Meshbane, A., and J. D. Morris. “Predictive Discriminant Analysis versus Logistic Regression in Two-
Group Classification Problems.” Paper presented at the annual meeting of the American
Educational Research Association, New York, April 1996 (ERIC Documentation Reproduction
Services No. ED 400 280).

Mulaik, S. A., L. R. James, J. Van Alstine, N. Bennett, S. Lind, and C. D. Stillwell. 1989. “An Evaluation
of Goodness of Fit Indices for Structural Equation Models.” Psychological Bulletin 105:430-445.

Neter, J., W. Wasserman, and M. H. Kutner. 1989. Applied Linear Regression Models. 2d ed. Boston:
Irwin.

Pedhazur, E. J., and L. P. Schmelkin. 1991. Measurement, Design, and Analysis: An Integrated Approach.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Press, S. J., and S. Wilson. 1978. “Choosing between Logistic Regression and Discriminant Analysis.”
Journal of the American Statistical Association 73:699-705.

SAS Institute Inc. 1997. SAS/STAT Software: Changes and Enhancements through Release 6.12. Cary,
NC: SAS Institute Inc.

Steiger, J. H. 1990. “Structural Model Evaluation and Modification: An Interval Estimation Approach.”
Multivariate Behavioral Research 25:173-180.

Steiger, J. H., and J. C. Lind. 1980. “Statistically Based Tests for the Number of Common Factors.” Paper
presented at the annual meeting of the Psychometric Society, Iowa City, IA.

176 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Stevens, J. 1996. Applied Multivariate Statistics for the Social Sciences. 3d ed. Mahwah, NJ: Lawrence
Erlbaum Associates.

Tabachnick, B. G., and L. S. Fidell. 1996. Using Multivariate Statistics. 3d ed. New York: HarperCollins
College Publishers.

Thompson, B., and L. G. Daniel. 1996. “Factor Analytic Evidence for the Construct Validity of Scores: An
Historical Overview and Some Guidelines.” Educational and Psychological Measurement 56:
213-224.

Wheaton, D. E., B. Muthén, D. F. Alwin, and G. F. Summers. 1977. "Assessing Reliability and Stability in
Panel Models." In Sociological Methodology, ed. D. R. Heise, 84-136. San Francisco: Jossey-
Bass.

Wilson, R. L., and B. C. Hardgrave. 1995. “Predicting Graduate Student Success in an MBA Program:
Regression versus Classification.” Educational and Psychological Measurement 55:186-195.

Yarnold, P. R., L. A. Hart, and R. C. Soltysik. 1994. “Optimizing the Classification Performance of
Logistic Regression and Fisher’s Discriminant Analyses.” Educational and Psychological
Measurement 54:73-85.

Chapter 8 Examples for Monte Carlo Simulation
 in Finance: Estimating Default Risk
 and Value-at-Risk

8.1 Introduction 177

8.2 Example 1: Estimation of Default Risk 179

8.3 Example 2: VaR Estimation for Credit Risk 185

8.4 Example 3: VaR Estimation for Portfolio Market Risk 199

8.5 Summary 211

8.6 References 212

���� �����	
������

Monte Carlo techniques are particularly useful when the function in question is the probability
distribution of outcomes for a system whose properties make analytic or numeric solutions
impractical. Such situations often arise in financial applications in which the distribution of interest is
an aggregation of outcomes that may be correlated, that are characterized by empirical distributions
with no functional representation, or both. They also arise in the pricing of options or other
derivatives, whose current value depends on the distribution of future values for the underlying
security. Monte Carlo methods provide a rich, computationally efficient framework for estimating
the distribution of future values for an asset, yielding a simple options pricing formula.

In these probability applications, Monte Carlo methods involve setting up a mechanism that
approximates the system in question and links the stochastic aspects of the system to random number
generators whose properties can be controlled. Stimulating the system with the required number of
random impulses produces a simulated outcome that should represent a plausible, feasible, potential
realization of the system. By repeating this a large number of times, the set of simulated outcomes
will trace out the true distribution of potential outcomes, and the frequency of these simulated
outcomes will allow us to assign approximate probability measures to each potential outcome.

178 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

For example, the calculation of Value-at-Risk (VaR) centers around the simulation of losses over
time for a portfolio of risky assets.1 Simulation is key in this context, because the VaR concept
relates to the distribution of potential future losses — a distribution which may or may not bear a
very close resemblance to a known distribution function familiar to us from probability theory and
statistics. Even when the loss distributions of portfolio components are known distributions such as
the Gaussian (normal) distribution, correlations across portfolio components make analytic or
numerical calculations of conditional probabilities virtually impossible. These conditional
probabilities may be necessary for scenario analysis, or to determine how structural changes in the
portfolio can affect VaR. By characterizing the distribution of portfolio returns through a Monte
Carlo approach, we can obtain the values needed to calculate VaR, as well as the conditional
probabilities necessary for scenario analysis.

The final step is straightforward, typically finding the appropriate quantile of the estimated
distribution of losses. Therefore, most of our effort in VaR estimation, as with other Monte Carlo
based applications, is absorbed in constructing an appropriate statistical model to approximate the
system, and in creating an efficient procedure for generating the simulated responses.

Monte Carlo techniques are used in a wide variety of situations, giving rise to a wide range of
approaches (Fisher, Nychka, & Zervos 1994; Frankfurter & Lamourex 1989; Gibson & Pritsker
2000; Jorion 1997; Picoult 1998). However, even with respect to a single well-specified situation,
there is no accepted best way to conduct such simulations. Many subjective choices must be made.
Usually, the analyst faces a tradeoff between computational efficiency, which recommends
simplicity, and realism, which requires that the model contain every important aspect of the system
under study. But simplicity can produce benefits beyond lowering the computer runtime.
Understanding what the model is doing and not doing leads to greater confidence in the results. More
complicated models may give the impression of greater “reality,” but increased complexity may not
change results appreciably, or worse, may simply add additional noise, either biasing the results,
lowering our confidence in them, or both.

This chapter presents three examples of the use of Monte Carlo techniques in financial applications.
In each case, we seek to obtain estimates of the distribution of an aggregate outcome deriving from a
multivariate system. The first is a fairly simple case in which joint probabilities for correlated
outcomes are estimated by simulation. Examples 2 and 3 consider VaR calculations for credit risk
and market risk, respectively. These later introduce additional layers of complexity by including
additional stochastic components and by decomposing asset price movements into correlated and
uncorrelated components. The SAS programming code for these examples is presented, and some
selected results are discussed.

1 Such losses could be the result of changes in market conditions, credit events, or any set of events that can be characterized in probabilistic
terms.

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 179

��� ������������������������������
���������

This section describes an approach to evaluating the default risk of holding companies for whom
most, or all, of their income derives from the upstreaming of cash from subsidiaries in the form of
dividends. We may need this default probability to price a loan to the holding company (holdco), or
to assign a rating to its debt obligations.

In this example, the likelihood of a holdco default is defined as the likelihood that upstreamed cash
will fall below the threshold necessary for the holdco to service its debts. Again, the holdco’s assets
consist entirely of a portfolio of cash flows coming from its subsidiaries. The likelihood of the total
cash flow falling below the threshold can be decomposed into a set of conditional default
probabilities associated with the complete set of outcomes for dividend payment/non-payment at the
subsidiary level, multiplied by the likelihood of each specific outcome. Put another way, the
likelihood that the holdco will default is the joint likelihood that a subset of subsidiaries will stop
paying dividends, such that the combined value of dividends from still-paying subsidiaries falls
below the above-mentioned threshold. The problem is complicated by the fact that the outcomes at
the subsidiary level are not likely to be independent, but will exhibit some level of correlation.
Because of this, even if we assumed that the relevant probability distributions were of a convenient
form, the complexities involved in calculating the joint likelihoods for all possible outcomes would
become overwhelming as the number of subsidiaries grew past three. A Monte Carlo technique
provides an efficient alternative and can easily handle a realistic number of correlated subsidiary cash
flows.

Using Monte Carlo simulation, we can avoid an analytic or numerical solution, and estimate the
required joint probability using only a small set of information about the subsidiaries, and essentially
one parameter describing the holdco. To make the example more concrete, consider the case of a
utility holding company with seven subsidiaries. Six are power-producing operating companies
(opcos) located in several states but in the same general region of the U.S., all with corporate bond
ratings assigned by a public rating agency. Another subsidiary is an unregulated, unrated energy
trading company. We will use numbers that are reasonable for the details of the example, but which
are not intended to correspond to any specific company.

In spite of the computational complexity of the problem, it is fairly easy to write down an algebraic
expression of what we want to calculate. The unconditional probability that the holdco defaults,
P(Hd), consists of the sum of conditional probabilities, P(Hd

j), that the holdco defaults given that
outcome j has occurred, times the probability that outcome j will occur, P(Oj), where outcome j is a
certain set of subsidiaries defaulting.

}),,,({}),,,{(

.....}),({}),{()()(

)()()P(H

721721

7

1

7

1

7

1

d

2121

12

21

ddddddd

d
i

d
i

d
i

d
i

ii
i

d

i

d
i

i

d
i

d

j
j

d
j

OOOPOOOHP

OOPOOHPOPOHP

OPHP

��

+++

==

∑∑∑

∑

≠
===

180 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

In our example with seven subsidiaries, we would need to calculate and sum 127 terms
corresponding to the set of all possible outcomes of at least one subsidiary defaulting. For example,
there are seven possible outcomes in which one, and only one, subsidiary stops paying dividends (the
single-summation term in the previous equation). Not all of these outcomes are equally likely, nor do
they affect the holdco in the same way. Another outcome is that all seven subsidiaries stop paying
dividends. There is only one such outcome (the last term in the equation), and the probability that the
holdco will default should reach a maximum in this case. The 127 terms in this equation can be
thought of in terms of their associated number of non-paying subsidiaries as:

Number of subs not paying dividends 1 2 3 4 5 6 7

Number of terms 7 21 35 35 21 7 1

The first input requirement is a set of unconditional probabilities for cash-flow stoppage of each
subsidiary, and a magnitude measure for the current stream of dividends being paid out. The amount
of the dividend flow from each subsidiary can be found in the holdco’s financial statements. We can
also estimate the default threshold from leverage measures derived from the holdco’s balance sheet.
For analytical convenience, we convert both of these into proportional measures, i.e., each subsidiary
provides x% of the upstreamed cash flow, and the holdco will default if y% of this cash flow is cut
off. Example values are presented under the DIVIDEND (%) heading in Table 8.1.

We can estimate the unconditional probability of cash-flow stoppage from each rated subsidiary from
rating migration and default frequency information provided by the major rating agencies. Or, if
internal risk scores are used, we will need comparable estimates of migration and default risk. In our
example, we need migration rate estimates as well as default probabilities to obtain the likelihood of
cash-flow stoppage, since for regulated utilities, dividend payout is likely to stop well before default
on debt securities. In fact, regulators are likely to require that dividend payments stop if the opco’s
debt rating falls into the single-B range (or equivalent). We can use the opcos’ current ratings and
empirical transition frequencies to obtain estimates of the probability that each opco will be
downgraded to B1 (or equivalent) or lower within the next twelve months. As this is the probability
that no cash is upstreamed, we denote it as P(NC), and the appropriate values are shown in Table 8.1.

Table 8.1 Subsidiary Input Information

SUBSIDIARY RATING P(NC) DIVIDEND (%)

1 Baa3 0.05 0.129630

2 Baa3 0.05 0.060847

3 Ba1 0.10 0.243386

4 Baa3 0.05 0.034392

5 Baa3 0.05 0.238095

6 Not Rated 0.20 0.026455

7 Ba1 0.01 0.267196

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 181

In this case, we assumed that once a regulated utility was downgraded to a B1 or lower, it would stop
paying dividends, either voluntarily or at the insistence of regulators. Probabilities for downgrades to
this level can be obtained for each rated subsidiary using a one-year rating-migration matrix. The
values in Table 8.1 are reasonable approximations. For the unrated subsidiary in this example, we
simply guessed at the probability that no dividends would be paid during any future one-year period.

The next required input is a correlation matrix, which describes the potential for correlated outcomes,
e.g., more than one subsidiary stopping its dividend payments in the same year. An example is shown
in Table 8.2. In this case, correlations were assumed to be a significant 10% across all electricity-
producing operating companies (subs 1-5 & 7), since they were operating in the same general region
of the country, and were assumed to zero between these operating companies and sub 6, the unrated
energy trading company.

The only other required input is a threshold value for the proportion of the expected dividend flow to
the holdco that can be cut off without precipitating a holdco default. This will be discussed in more
detail below.

Table 8.2 Subsidiary Default Correlation Matrix

 Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7

Sub1 1.0 0.1 0.1 0.1 0.1 0.0 0.1

Sub2 0.1 1.0 0.1 0.1 0.1 0.0 0.1

Sub3 0.1 0.1 1.0 0.1 0.1 0.0 0.1

Sub4 0.1 0.1 0.1 1.0 0.1 0.0 0.1

Sub5 0.1 0.1 0.1 0.1 1.0 0.0 0.1

Sub6 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Sub7 0.1 0.1 0.1 0.1 0.1 0.0 1.0

The P(NC) information required as an input, combined with the correlation information, allows us to
determine the likelihood of each of these 127 outcomes. The DIVIDEND values tell us the extent
that the dividend flow will be impaired under each of the 127 possible outcomes, and finally, the
holdco threshold value determines which outcomes will produce a holdco default and which will not.
By simulating a very large number of outcomes that are consistent with our inputs, we can simply
use the frequency that the holdco default threshold is exceeded as an estimate of the default
likelihood of the holdco, and finally, we can map this into a risk rating.

Our Monte Carlo technique is a simple latent variable model. Program 8.1 (Macro %EX1) consists of
two main parts. The first generates a large number of correlated random standard normal variables,
with the correlation structure defined by our correlation input matrix. Embedded in %EX1 is a call to
macro %RMNC described in Chapter 4, which produces a file (TEMP) with one variable for each sub
and as many observations as the number of simulations. Each variable represents a “latent” credit
quality variable for a sub, and the macro %RMNC ensures that the entire set of latent variable values
conforms to the correlation structure contained in our pre-specified correlation matrix. For each sub,

182 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

if the value of the latent variable exceeds its cutoff, it indicates a stoppage of dividend payment from
that sub.

The second main part is a DATA step, which executes the simulation on each set of random numbers
given in file TEMP. The DATA step first maps the P(NC) values for each sub onto the standard
normal function (because the default–non-default outcome of a sub is simulated by standard normal
values), and then performs the simulation by reading file TEMP one observation at a time, comparing
the standard normal random numbers to the cutoff values and summarizing the stopped dividends
from the defaulting subs (variable DIVLOSS). If the total exceeds the threshold (variable
DEFPOINT), then the macro flags the observation as a default. The number of defaults divided by
the number of simulations is what we want: an estimate of the default probability for the holdco. This
value is provided as the MEAN statistic of variable DEFAULT in PROC MEANS.

Program 8.1 Macro (%EX1) for Simulating Default Risk for a Diversified Holding Company

/***/
/* Macro EX1 calculates the default probability of a holding company. */
/* */
/* Parameters */
/* PARM the name of a special file of the default probabilities, the */
/* dividend payments and the default correlation matrix of the */
/* subsidiaries. It is similar to a _TYPE_=CORR file. The first */
/* row corresponds to the default probabilities of the */
/* subsidiaries, the second to the dividend payments of the */
/* subsidiaries and the rest forms the lower half of the */
/* correlation matrix of the subsidiaries’ default rates. See the */
/* example below. */
/* NSUBS the number of subsidiaries. */
/* DEFPOINT percent of dividend over which default happens. */
/* NSIMS number of simulations. */
/* OUT name of the output data set, which contains the default flag */
/* and the lost dividend. */
/* */
/* Example for creating an input file */
/* */
/* DATA SIMPAR; */
/* INPUT _NAME_ $ _TYPE_ $ SUB1-SUB7; */
/* CARDS; */
/* PNC 0.05 0.05 0.10 0.05 0.05 0.20 0.01 */
/* . DIV 0.129630 0.060847 0.243386 0.034392 0.238095 0.026455 0.267196 */
/* SUB1 CORR 1.00 */
/* SUB2 CORR 0.10 1.00 */
/* SUB3 CORR 0.10 0.10 1.00 */
/* SUB4 CORR 0.10 0.10 0.10 1.00 . . . */
/* SUB5 CORR 0.10 0.10 0.10 0.10 1.00 . . */
/* SUB6 CORR 0.00 0.00 0.00 0.00 0.00 1.00 . */
/* SUB7 CORR 0.10 0.10 0.10 0.10 0.10 0.00 1.00 */
/* ; */
/* RUN; */
/***/

%MACRO EX1(PARM=,NSUBS=,DEFPOINT=,NSIMS=,OUT=,SEED=123);

 /* create a file for generating the normally distributed correlated */
 /* random numbers for the probabilities of subsidiary defaults. This */
 /* file will be input into macro %RMNC. */

 DATA TEMP(TYPE=CORR DROP=I);
 SET &PARM;
 ARRAY SUB(&NSUBS) SUB1-SUB&NSUBS;
 IF _N_=1 THEN DO; * add mean of zero for each subsidiary;
 DO I=1 TO &NSUBS;
 SUB(I)=0;
 END;

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 183

 TYPE=’MEAN’; OUTPUT;

 /* add standard deviation of one for each subsidiary. */

 DO I=1 TO &NSUBS;
 SUB(I)=1;
 END;
 TYPE=’STD’; OUTPUT;

 /* add number of simulations for each subsidiary. */

 DO I=1 TO &NSUBS;
 SUB(I)=&NSIMS;
 END;
 TYPE=’N’; OUTPUT;
 END;
 IF _TYPE_=’CORR’ THEN OUTPUT;
 RUN;

/* call macro %RMNC to generate correlated, normally distributed */
/* random numbers to simulate the defaults of the subsidiaries. */

 %RMNC(DATA=TEMP,OUT=PROBS,SEED=&SEED)

 /* data step of the simulation */

 DATA &OUT;
 ARRAY PNC(&NSUBS) PNC1-PNC&NSUBS; * array of default probabilities ;
 ARRAY DIV(&NSUBS) DIV1-DIV&NSUBS; * array of dividends ;
 ARRAY SUB(&NSUBS) SUB1-SUB&NSUBS;

 /* load the default probability thresholds and the dividend */
 /* payments of all subsidiaries into the arrays above. */

 DO WHILE (NOT EOFPARM);
 SET &PARM END=EOFPARM;
 IF _TYPE_=’PNC’ THEN DO; DO I=1 TO &NSUBS;

 /* transform the probability into */
 /* a standard normal distribution. */

 PNC(I)=PROBIT(SUB(I));
 END;
 END;
 IF _TYPE_=’DIV’ THEN DO; DO I=1 TO &NSUBS;
 DIV(I)=SUB(I);
 END;
 END;
 END;

 /* go through each set of default probabilities generated above. */

 DO WHILE (NOT EOFSIM);
 SET PROBS END=EOFSIM;
 DIVLOSS=0;
 DO I=1 TO &NSUBS;

 /* does a subsidiary default? If it does, add its forgone */
 /* dividend to the losses (variable DIVLOSS). */

 IF SUB(I)<PNC(I) THEN DIVLOSS=DIVLOSS+DIV(I);
 END;

 /* does the dividend loss exceed the default point? */
 /* if yes, mark this draw as ’default’. */

 IF DIVLOSS>&DEFPOINT THEN DEFAULT=1;
 ELSE DEFAULT=0;
 OUTPUT;
 END;
 STOP;

184 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 KEEP DEFAULT DIVLOSS;
 RUN;

 /* the default rate (the mean statistic of variable DEFAULT) and the */
 /* characteristics of the dividend losses (whether or not the draw */
 /* results a default) are calculated by PROC MEANS. */

 PROC MEANS DATA=&OUT N MEAN STD MIN MAX;
 VAR DEFAULT DIVLOSS;
 RUN;
 %MEND;

The threshold for the holdco is expressed as the proportion of upstreamed dividends that it can forgo
without defaulting.The threshold may depend on the amount of cash it has on hand relative to its debt
service burden, but may also depend on other factors. It is important to point out that there is a key
relationship between this threshold value and the effect of correlation among the subsidiaries. The
relationship is this: correlation will not affect the mean value of stopped dividends for a large sample
of draws. Correlation will only increase or decrease the variance of the observed (simulated) values.
Thus, if the threshold for holdco default is equal to the mean value of stopped dividends, the holdco
default probability will be indifferent to changes in the assumed correlation structure. However, if
the threshold is more extreme (i.e., far from the mean value)—say a 10% reduction in dividend
payouts, or a 90% reduction in dividend payouts—then the correlation structure will affect the
estimated holdco default probability more strongly.

Program 8.2 presents an example of using Program 8.1 (macro %EX1) to run a simulation of 20,000
draws using the correlation matrix presented in Table 8.2 and a cutoff threshold of 35%. That is, the
holdco is assumed to default if more than 35% of its dividend income is cut off. This is well above
the mean value of 5.5% that results from the ratings, and consequent downgrade probabilities of the
subsidiaries; hence, the correlation structure is affecting the results. The distribution of dividend
stoppage proportions is presented in Output 8.1. As is evident from the plot, the most likely outcome
is no dividend stoppage. However, given our threshold of 35%, there is a 1.8% chance that the
dividend stoppage will be sufficiently large to precipitate a holdco default. We can translate this back
into a debt rating using Moody’s historical one-year default frequencies. Applying some smoothing
to Moody’s reported average one-year default rates, we can associate the 1.8% default likelihood
with a Ba2 corporate bond rating.

Program 8.2 Using Program 8.1 (Macro %EX1)

DATA SIMPAR;
 INPUT _NAME_ $ _TYPE_ $ SUB1-SUB7;
 CARDS;
 PNC 0.05 0.05 0.10 0.05 0.05 0.20 0.01
. DIV 0.129630 0.060847 0.243386 0.034392 0.238095 0.026455 0.267196
SUB1 CORR 1.00
SUB2 CORR 0.10 1.00
SUB3 CORR 0.10 0.10 1.00
SUB4 CORR 0.10 0.10 0.10 1.00 . . .
SUB5 CORR 0.10 0.10 0.10 0.10 1.00 . .
SUB6 CORR 0.00 0.00 0.00 0.00 0.00 1.00 .
SUB7 CORR 0.10 0.10 0.10 0.10 0.10 0.00 1.00
;
 RUN;
%EX1(PARM=SIMPAR,NSUBS=7,DEFPOINT=0.035,NSIMS=20000,OUT=A,SEED=123)

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 185

Output 8.1
Average
and
Distribution
of Dividend
Stoppage
Proportions

In this example, we needed to characterize the distribution of potential dividend losses to the holdco
to calculate the probability that these losses would exceed a certain threshold. This type of
calculation, and the Monte Carlo techniques used to obtain solutions, arise in a wide range of similar
situations in finance, broadly known as Value-at-Risk (VaR) problems. The next two sections treat
two types of VaR problems, using methods closely resembling those applied in this example.

���� ���������������������������������	��������

VaR refers to the calculation of the distribution of future losses (gains) on a portfolio of assets. It is
always calculated with respect to a specific time horizon. That is, losses are accumulated over the
period t0→T, where T is the horizon and t0 is usually the present. This leads to a methodological
division; each simulation of portfolio losses may involve a single draw at the time horizon specified,
or may be composed of a sequence of draws in which losses are accumulated over intermediate time
horizons. VaR calculations for market risk are frequently directed to relatively short time horizons,
which suggests that the single-draw approach may be appropriate. Such an example is presented in
section 8.4. For longer horizons, where there is more overall uncertainty, a multi-period approach,
which allows losses to accumulate in different ways, may be able to provide a richer description of
the underlying dynamics. This is more common for credit risk VaR applications.

���	
����
��

�

��
��

�

�� !"� #$����������������������� ���������

�%��&����������������������''(#"��������� �!'#!"�������������������������))' !���

186 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

In a credit risk VaR context, we use Monte Carlo methods to model losses from a set of pure credit
events—e.g., defaults on bonds, loans, or other contractual exposures to risky obligors. Such
calculations are important for banks with loan portfolios, as well as for financial institutions with
bond, swap, and other derivative exposures, where expected losses are a function of the
counterparty’s future creditworthiness, and for managed fixed income funds such as CLOs and CBOs
whose own credit ratings are closely tied to the VaR from credit events. Because such portfolios are
typically held and managed over relatively long periods of time, VaR calculations may be directed
toward longer time horizons than is usually the case for market-risk VaR; often, multi-year time
horizons are relevant. In this example, we focus on a multi-year loss distribution, generated by a
series of simulated annual portfolio changes.

For this type of Monte Carlo simulation, credit movements are generally defined with respect to a
manageable number of subsets of the portfolio as opposed to each individual exposure. The most
common subsetting scheme is by credit quality—e.g., agency or internal ratings (Carey & Hrcay
2001). Losses are driven by default rates and recovery rates (or loss-in-the-event-of-default: LIED),
which are themselves driven by the distribution of ratings in the portfolio. Thus, the simulation needs
to incorporate both the stochastic nature of default rates year-to-year, and the stochastic rating
migrations that affect the evolution of the distribution of ratings within the portfolio. In the simplest
approach, default rates and migration rates are applied on a rating-by-rating basis, while LIED
probabilities are applied to all defaulting credits. One benefit of this type of approach is that, if
detailed data are not available from internal sources, we can use historical statistics published by
rating agencies for default frequencies, LIED rates, and migration rates to characterize the portfolio
dynamics on which we base our Monte Carlo procedure.

As is typical in VaR applications, we seek to characterize the distribution of future losses to obtain a
cutoff loss value that is unlikely to be exceeded, with a specified confidence level, say 95%. To
obtain an estimate of the future distribution of losses, our VaR calculations will consist of a set of
multi-year portfolio simulations. Each simulation will consist of a set of iterations on a vector (set) of
exposures, with each iteration corresponding to a one-year evolution of the portfolio.

We identify exposures by rating and default/non-default status only. Initially, and for each iteration,
this vector of exposures will define the portfolio. Each iteration will itself consist of three steps. First,
we obtain a default component of the obligor pool by applying the one-year default probability for
each rating category. Secondly, we apply a set of LIED rates to the default component to obtain a
loss amount/loss rate for this iteration. Finally, we allow non-defaulting obligors to experience
stochastic rating changes based on a set of historical migration frequencies. This completes one
iteration and produces a new distribution of ratings for the obligors that have not exited the portfolio
through default. This basic portfolio evolution scheme is diagrammed in Figure 8.1.

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 187

Figure 8.1 Calculation of One Portfolio Iteration

Current
Portfolio

 One Minus
Default Rate

 Post Default
Portfolio

Migration Matrix

 Next Period
Portfolio

Aaa% % Aaa% % % % Aaa%
Aa% % Aa% % % % Aa%
A% % A% % % % A%

Baa% X % = Baa% X % 7x7 Matrix % = Baa%
Ba% % Ba% % % % Ba%
B% % B% % % % B%

Caa-C% % Caa-C% % % % Caa-C%

Importantly, using this approach we can calculate expected losses directly for any forward time
horizon without employing any Monte Carlo simulations. All we need are the default, loss, and
migration frequencies, and we can obtain the expected value of losses by straight multiplication and
subtraction. However, as noted above, for VaR calculations we need to estimate the entire
distribution of loss rates for the portfolio, not just the expected value. To do this we will need more
than the average default, loss, and migration frequencies, which are after all, just expected values.

We would also like to endow the system with a macroeconomic component to reflect changes in the
general credit cycle. One approach involves the inclusion in our simulation of a single random
variable that defines the state of the credit cycle, or “default intensity.” Many variations on this
theme have been used by academics and practitioners (Duffie & Singleton 1998). Here we consider a
two-state macroeconomic environment with stochastic regime switching. Figure 8.2 shows Moody’s
speculative-grade corporate bond default rates (Keenan, Hamilton, & Bethault 2000), monthly from
1970 to 2000, which characterizes the type of credit cycle variation we would like to embed in our
Monte Carlo simulation. The mean default rate for this period is 3.49%, with three distinctive high-
default episodes that drove the rate above 6.0% over this 30-year period. More remotely, the Great
Depression produced another such high-default episode, extending this pattern back as far as data
permit.

188 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Figure 8.2 Moody’s Speculative-Grade Default Rate, 1970-2000

In our simple regime-switching model, we seek to distinguish between “normal” periods and “high-
default” periods, and apply default probabilities and migration frequencies consistent with the
observed frequencies in those periods. For expository purposes, we calculated migration frequencies
and default rates for two periods, 1972-1996 (normal period), and 1989-1992 (high-default period).
By cutting off the 1970-71 “railroad default” episode and the 1997-98 “Asia crisis” episode, our
normal period is a continuous period that averages the low-default 1970s with the high-default late
1980s and early 1990s. The high-default period pulls out just the “junk-bond collapse” episode,
which is also continuous. These choices, while arbitrary, seem reasonable from a broad historical
perspective and prevent us from having to splice together data from disjoint periods. The default and
migration frequencies associated with these two “regimes” are presented in Table 8.3. The main
benefit of using discrete regimes is that we can calculate the default and migration frequencies from
historical data, for any criterion we use to define the regimes. A more continuous approach would
require us to continually adjust our default and migration rates based on the macroeconomic
conditioning variable. However, this would require an additional modeling step and would introduce
a number of complexities and forced assumptions.

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 189

Table 8.3 Migration Frequencies for Normal vs. High-Default Periods

 Normal Conditions (Avg. 1972-1996)

 Aaa Aa A Baa Ba B Caa-C Default
From/To (1) (2) (3) (4) (5) (6) (7) (8)

Aaa (1) 91.68% 7.61% 0.69% 0.00% 0.02% 0.00% 0.00% 0.00%

Aa (2) 1.43% 90.70% 7.46% 0.29% 0.09% 0.01% 0.00% 0.02%
A (3) 0.07% 2.35% 91.87% 5.02% 0.55% 0.12% 0.01% 0.01%
Baa (4) 0.04% 0.26% 5.68% 87.86% 5.15% 0.77% 0.08% 0.14%
Ba (5) 0.02% 0.05% 0.49% 5.47% 85.81% 6.55% 0.42% 1.19%
B (6) 0.01% 0.03% 0.13% 0.46% 6.93% 83.98% 2.09% 6.37%
Caa-C (7) 0.00% 0.00% 0.00% 0.71% 2.18% 4.50% 67.40% 25.20%

 High Default (Avg. 1989-1992 Smoothed)
 Aaa Aa A Baa Ba B Caa-C Default
From/To (1) (2) (3) (4) (5) (6) (7) (8)

Aaa (1) 91.00% 6.00% 2.75% 0.25% 0.00% 0.00% 0.00% 0.00%
Aa (2) 0.45% 84.53% 12.06% 1.32% 0.82% 0.32% 0.30% 0.20%
A (3) 0.00% 0.51% 88.92% 7.36% 0.94% 0.57% 1.20% 0.50%
Baa (4) 0.00% 0.61% 3.77% 84.39% 5.12% 1.61% 3.50% 1.00%

Ba (5) 0.00% 0.00% 0.66% 3.51% 83.87% 8.55% 0.66% 2.75%
B (6) 0.00% 0.00% 0.00% 0.10% 4.00% 84.00% 1.33% 10.57%
Caa-C (7) 0.00% 0.00% 0.00% 1.00% 2.00% 12.50% 47.00% 37.50%

The default rate itself is essentially the number of failures per unit of the borrowing population. This
suggests a binomial distribution for the default rate itself. Program 8.3 presents a SAS macro
(%EX2) for simulating portfolio credit risk. By setting the success/failure rate for the binomial
distribution to the historical mean of 3.5% (see variable HISTDEFRATE in Program 8.3), we can
generate random values for the overall default rate which can be used to determine the regime that
applies for each iteration in our simulation. The cutoff value for a switch to the high-default regime is
a parameter for the overall simulation and will have a dramatic affect on the results. In the following
results, we set the cutoff at 6%. That is, a binomial draw of greater than 6 per hundred trials indicates
a high-default episode (see variable THRESHOLD in Program 8.3). Since we will need to simulate the
behavior of the portfolio repeatedly to estimate the distribution of potential future losses, we will
need to run a large number of multi-year simulations. For each portfolio run of say twenty years, we
need only generate 20 random binomial values, with lambda set to the mean, or 3.5% in this case.

190 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Program 8.3 Monte Carlo Simulation for Portfolio Credit Risk (Macro %EX2)

/***/
/* Macro EX2 performs VaR-calculation from a set of pure credit events. */
/* */
/* Parameters */
/* PORTFOLIO the name of a file defining a credit portfolio of seven risk */
/* categories. The file has one variable: EXPOSURE, which is */
/* numeric and defines the exposure in whole dollars for each risk */
/* category. The number of risk categories, i.e., the number of */
/* observations, must be seven, and they must be listed in */
/* increasing order of risk. See example below. */
/* NYEARS the number of years, which determines the time horizon of the */
/* simulation. */
/* NSIMS number of simulations. */
/* OUT name of the output data set, which contains the loss for each */
/* simulation and the number of high-default years. */
/* SEED Seed of the random number generator functions. */
/* */
/* Example for creating the input file for the portfolio: */
/* */
/* DATA PORTF(KEEP=EXPOSURE); */
/* INPUT RATING $ EXPOSURE; */
/* CARDS; */
/* Aaa 10000 - Risk category ’Aaa’ has the lowest level of risk. */
/* Aa 10000 */
/* A 10000 */
/* Baa 10000 */
/* Ba 0 */
/* B 0 */
/* C 0 - Risk category ’C’ has the highest level of risk. */
/* ; */
/* RUN; */
/***/

%MACRO EX2(PORTFOLIO=,NYEARS=,NSIMS=,OUT=,SEED=123);

 DATA &OUT(KEEP=LOSS HIGHDEFYEAR);

 /* supply the parameters of the simulation. */

 RETAIN HISTDEFRATE 0.035 * historical average default rate;
 THRESHOLD 0.06; * threshold for ’high-default’ year;

 ARRAY MIGR(2,7,8) MIGR1-MIGR112 (

 /* Migration matrix of "normal" years */
 /* From To: Aaa Aa A Baa Ba B C Default */
 /* (1) (2) (3) (4) (5) (6) (7) (8) */

 /* Aaa (1) */ 0.9168 0.0761 0.0069 0.0000 0.0002 0.0000 0.0000 0.0000
 /* Aa (2) */ 0.0143 0.9070 0.0746 0.0029 0.0009 0.0001 0.0000 0.0002
 /* A (3) */ 0.0007 0.0235 0.9187 0.0502 0.0055 0.0012 0.0001 0.0001
 /* Baa (4) */ 0.0004 0.0026 0.0568 0.8786 0.0515 0.0077 0.0008 0.0014
 /* Ba (5) */ 0.0002 0.0005 0.0049 0.0547 0.8581 0.0655 0.0042 0.0119
 /* B (6) */ 0.0001 0.0003 0.0013 0.0046 0.0693 0.8398 0.0209 0.0637
 /* C (7) */ 0.0000 0.0000 0.0000 0.0071 0.0218 0.0450 0.6740 0.2520

 /* Migration matrix of "high-default" years */
 /* From To: Aaa Aa A Baa Ba B C Default */
 /* (1) (2) (3) (4) (5) (6) (7) (8) */

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 191

 /* Aaa (1) */ 0.9100 0.0600 0.0275 0.0025 0.0000 0.0000 0.0000 0.0000
 /* Aa (2) */ 0.0045 0.8453 0.1206 0.0132 0.0082 0.0032 0.0030 0.0020
 /* A (3) */ 0.0000 0.0051 0.8892 0.0736 0.0094 0.0057 0.0120 0.0050
 /* Baa (4) */ 0.0000 0.0061 0.0377 0.8439 0.0512 0.0161 0.0350 0.0100
 /* Ba (5) */ 0.0000 0.0000 0.0066 0.0351 0.8387 0.0855 0.0066 0.0275
 /* B (6) */ 0.0000 0.0000 0.0000 0.0010 0.0400 0.8400 0.0133 0.1057
 /* C (7) */ 0.0000 0.0000 0.0000 0.0100 0.0200 0.1250 0.4700 0.3750
);

 /* Define the distribution of loss in the event of default (LIED) as a */
 /* stepwise function. Array ’LIED’ contains the discrete loss values from */
 /* 1.25% to 98.75%, and array ’LIEDPROB’ provides the probabilities, by */
 /* which those losses happen. See Asarnow and Edwards (1995). */

 ARRAY LIED(21) (0.0125 0.05 0.10 0.15 0.20 0.25 0.30 0.35
 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
 0.80 0.85 0.90 0.95 0.9875);
 ARRAY LIEDPROB(20) (0.1237 0.1410 0.1069 0.0708 0.0450 0.0394 0.0427 0.0405
 0.0450 0.0247 0.0225 0.0337 0.0259 0.0326 0.0281 0.0225
 0.0247 0.0236 0.0225 0.0236);

 ARRAY PROB(7) PROB1-PROB7; /* temporary array */
 ARRAY INITPORTF(7) INITPORTF1-INITPORTF7; /* initial portfolio */
 ARRAY CURPORTF(7) CURPORTF1 -CURPORTF7; /* current portfolio */
 ARRAY NEWPORTF(7) NEWPORTF1 -NEWPORTF7; /* new portfolio after a migration */

 /* load the input portfolio into array ’INITPORTF’. */

 DO RATING=1 TO 7;
 SET &PORTFOLIO POINT=RATING;
 INITPORTF(RATING)=EXPOSURE;
 END;

 /* main loop of the simulations */

 DO SIM=1 TO &NSIMS;

 /* start with the input portfolio, move */
 /* it into the current portfolio. */

 DO RATING=1 TO 7;
 CURPORTF(RATING)=INITPORTF(RATING);
 END;

 /* variable ’LOSS’ summarizes the losses, set it to zero initially. */

 LOSS=0;

 /* variable ’HIGHDEFYEAR’ keeps track of the */
 /* number of years with high default rate. */

 HIGHDEFYEAR=0;

 /* migrate the portfolio through &NYEARS. */

 DO YEAR=1 TO &NYEARS;

 /* array ’NEWPORT’ has the current portfolio after each annual */
 /* migration. Set it to zero before each yearly migration, and */
 /* then collect the exposures by the risk categories to which */
 /* they migrate. */

 DO RATING=1 TO 7;
 NEWPORTF(RATING)=0;
 END;

 /* determine the type of year, i.e. ’Normal’ (REGIME=1) */
 /* or ’High-default’ (REGIME=2). */

192 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 MACROECO=RANBIN(&SEED,100,HISTDEFRATE)/100;
 IF MACROECO>THRESHOLD THEN REGIME=2; * high-default year;
 ELSE REGIME=1; * normal year;
 IF REGIME=2 THEN HIGHDEFYEAR=HIGHDEFYEAR+1;

 /* take one risk category of the portfolio. */

 DO RATING=1 TO 7;

 /* load the migration percentages of the given year-type and */
 /* rating into a temporary array to be used for each dollar */
 /* of the current rating category. */

 DO I=1 TO 7;
 PROB(I)=MIGR(REGIME,RATING,I);
 END;

 /* go through every exposure of a given rating category. */

 DO P=1 TO CURPORTF(RATING);

 /* take a random draw from the migration probabilities */
 /* to determine the new risk category of the exposure. */

 NEWRATING=RANTBL(&SEED,OF PROB(*));

 /* if the exposure migrates to risk category ’8’, it goes */
 /* into default. Draw a random loss-value from the */
 /* empirical loss distribution. If the migration does */
 /* not result in default, assign the exposure to the new */
 /* risk category. */

 IF NEWRATING=8 THEN LOSS=LOSS+LIED(RANTBL(&SEED,OF LIEDPROB(*)));
 ELSE NEWPORTF(NEWRATING)=NEWPORTF(NEWRATING)+1;
 END;

 END;

 /* make the new portfolio the current one, so the */
 /* next annual migration can be performed. */

 DO RATING=1 TO 7;
 CURPORTF(RATING)=NEWPORTF(RATING);
 END;
 END;
 OUTPUT;
 END;
 STOP;
 RUN;

 /* check the distribution of the number of years with high-default rate. */

 PROC FREQ DATA=&OUT;
 TABLE HIGHDEFYEAR;
 TITLE ’Distribution of the Number of High-Default Years’;
 RUN;

 /* describe the loss distribution and determine certain percentiles of it. */

 PROC UNIVARIATE DATA=&OUT NOPRINT;
 VAR LOSS;
 OUTPUT OUT=RES N=N MEAN=MEAN STD=STD MAX=MAX MIN=MIN MEDIAN=MEDIAN
 Q1=Q1 Q3=Q3 P90=P90 P95=P95 P99=P99;
 TITLE F=SWISS H=1.5
 "Distribution of Losses (Number of Years=&NYEARS., Number of
Simulations=&NSIMS.)";
 run;

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 193

 /* print the results in a comprehensive vertical layout. */

 PROC TRANSPOSE DATA=RES OUT=TRES;
 RUN;
 PROC PRINT DATA=TRES LABEL NOOBS;
 VAR _LABEL_ COL1;
 LABEL _LABEL_=’STATISTIC’ COL1=’LOSS ($)’;
 FORMAT COL1 10.0;
 RUN;

 /* draw the graph of the ordered losses. Set up the labels */
 /* for the two reference lines at 95 and 99 percentiles. */

 DATA ANNO;
 SET RES;
 FUNCTION=’LABEL’; STYLE=’DUPLEX’; SIZE=1.2;
 XSYS=’2’; YSYS=’2’;
 Y=P95; X=10; TEXT=’95% - ’||COMPRESS(PUT(P95,10.0));
 POSITION=’F’; OUTPUT;
 Y=P99; X=50; TEXT=’99% - ’||COMPRESS(PUT(P99,10.0));
 POSITION=’C’; OUTPUT;
 CALL SYMPUT(’VREF95’,PUT(P95,BEST10.));
 CALL SYMPUT(’VREF99’,PUT(P99,BEST10.));
 RUN;
 PROC SORT DATA=&OUT OUT=TEMP;
 BY LOSS;
 DATA TEMP;
 SET TEMP;
 PERCENT=100*(_N_/&NSIMS);
 RUN;
 PROC GPLOT DATA=TEMP ANNOTATE=ANNO;
 PLOT LOSS*PERCENT / VAXIS=AXIS1 HAXIS=AXIS2 VREF=&VREF95 &VREF99;
 SYMBOL1 I=JOIN V=NONE W=1;
 AXIS1 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Portfolio Loss ($)’)
 VALUE=(H=1.2 F=SWISS) MINOR=(N=1) OFFSET=(0,0);
 AXIS2 LABEL=(F=SWISS H=1.5 ’Percentile’)
 VALUE=(H=1.2 F=SWISS) ORDER=0 TO 100 BY 10 MINOR=(N=1) OFFSET=(0,0);
 RUN;
 QUIT;

%MEND;

To simulate the migration of non-defaulting credits to and from different rating categories over time,
we use the RANTBL function by inputting the row of the migration matrix corresponding to the rating
category in question:

NEWRATING=RANTBL(&SEED,OF PROB(*));.

Naturally, array PROB will contain the migration probabilities of either normal or high-default
regimes chosen randomly before. If NEWRATING is 8, the exposure goes into default, and we register
a randomly chosen loss value, utilizing the RANTBL function again with the empirical distribution of
loss-in-the-event-of-default. If NEWRATING is not 8, we “migrate” the exposure and assign it to this
new rating. After migrating all exposures in the portfolio, we obtain the losses from the defaults and
the new portfolio of the remaining assets with their new rating categories. We are then ready to
perform another annual migration of the portfolio over the specified time horizon (20 years).

Under this scheme, correlation of credit events is summarized by the common macroeconomic
variable and by the common set of expected migration rates faced by obligors with common ratings.
This means that all credit events are correlated, but that the correlation is higher for obligors within a
given credit rating than for obligors with different ratings. Note also that, in spite of the fact that the
macro regime shifts are independent and identically distributed (i.i.d.), this simulation scheme will

194 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

generate serially correlated default rates, since the distribution of ratings in the portfolio will be
strongly autocorrelated. Of course, an explicit serial dependence in the macro variable could be
introduced as an additional feature.

Program 8.4 presents an example of using Program 8.3 (macro %EX2) for a portfolio of 40,000
investment-grade exposures, evenly distributed with 10,000 exposures in the rating categories Aaa
through Baa. Suppose further that the exposures are of equal size, say $1.2 The distribution of losses
from a set of 10,000 20-year simulations using the approach described above is presented in Output
8.2. The chart in Output 8.2 simply plots the losses from each simulation run, ordered from lowest to
highest, which traces out the distribution of potential losses. From this distribution of losses we can
calculate the quantiles that answer the basic VaR question by reading the Y-axis loss level
corresponding to a proportion of the simulated observations on the X-axis. That is, at an x%
confidence level, we can predict that portfolio losses due to credit events will be no more than $y.
Note that, in the credit risk context, we are accumulating losses only — no gains. Therefore, the
extreme values we are interested are in are the upper tail of the distribution. In this case, assuming
each exposure equals $1, at the 95% confidence level we can expect losses of no more than $1,633,
or 4.08%. At the 99% confidence level we can expect losses of no more than $1,870, or 4.68%. The
mean loss level is 1,190, or just 2.975% on this investment-grade portfolio, as given in Output 8.2.

Program 8.4 Investment-Grade Portfolio Example (Using Program 8.3 – Macro %EX2)

DATA PORTF1(KEEP=EXPOSURE);
 INPUT RATING $ EXPOSURE;
 CARDS;
 Aaa 10000 * Risk category ’Aaa’ has the lowest level of risk.;
 Aa 10000
 A 10000
 Baa 10000
 Ba 0
 B 0
 C 0 * Risk category ’C’ has the highest level of risk.;
 ;
 RUN;
%EX2(PORTFOLIO=PORTF1,NYEARS=20,NSIMS=10000,OUT=A,SEED=123);

2 This last simplification is left to the reader to relax—for exposures of different sizes, we will need to keep track of each exposure individually,
i.e., maintain an array containing the size and current rating for each exposure after each iteration.

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 195

Output 8.2
Output of
Investment-
Grade Portfolio
Example

 Distribution of the Number of High-Default Years

 The FREQ Procedure

 Cumulative Cumulative
 HIGHDEFYEAR Frequency Percent Frequency Percent

 0 2749 27.49 2749 27.49
 1 3653 36.53 6402 64.02
 2 2368 23.68 8770 87.70
 3 906 9.06 9676 96.76
 4 264 2.64 9940 99.40
 5 44 0.44 9984 99.84
 6 14 0.14 9998 99.98
 7 2 0.02 10000 100.00

 Distribution of Losses (Number of Years=20, Number of Simulations=10000)

 STATISTIC LOSS ($)

 number of nonmissing values, LOSS 10000
 the mean, LOSS 1190
 the standard deviation, LOSS 242
 the largest value, LOSS 2481
 the 99th percentile, LOSS 1870
 the 95th percentile, LOSS 1633
 the 90th percentile, LOSS 1532
 the upper quartile, LOSS 1361
 the median, LOSS 1156
 the lower quartile, LOSS 947
 the smallest value, LOSS 834

Ordered Losses

196 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

The distribution of losses exhibits some interesting and unusual features. Obviously, the distribution
cannot be normal since it is bounded by zero and by the total amount of the portfolio. In fact, it is
strongly non-normal, with an extremely fat lower tail (low losses), a relatively fat upper tail, and
step-like increases over a few specific loss ranges. These unusual step-like features are a direct result
of our assumption about potential macroeconomic disturbances. Specifically, losses over a 20-year
period are dramatically affected by whether or not there are zero, one, two, or more aggregate credit
cycles over that period. Bad draws from the binomial distribution, which governs the macro credit
cycle, lead to multiple periods of weak aggregate credit conditions in our simulations. These, in turn,
lead to a segmentation in the distribution of losses over the full 20-year period. In addition, the
timing of high-default episodes has also affected the distribution, since early periods of credit
weakness result in the lower rating grades being populated for longer periods of time — a recipe for
higher default totals per simulation.

To see how well our cutoff threshold matched our beliefs about the likely frequency of aggregate
credit problems, we can examine the distribution of high-default episodes per 20-year period. Figure
8.3 shows the frequency distribution of high-default episodes for our 10,000 runs, utilizing the
variable HIGHDEFYEAR in the output data set of the macro.

Figure 8.3 Simulation Frequencies for High-Default Episodes (10,000 Simulations)

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 197

Given our cutoff of 6%, we can see by grouping the bars in Figure 8.3 that 64% of the time, a 20-
year period will see 1 or less aggregate credit shocks. A significant 12.3% of the time, we will see 3
or more aggregate credit shocks. The applicability of these frequencies is subjective. We can use
history, as in Figure 8.2, as our guide, but as the main goal of Monte Carlo methods is to quantify the
distribution of potential future outcomes, we do not want to tie ourselves too closely to historical
experiences. After all, the future can certainly produce new, different, and unexpected events, not just
repetitions of past events. Highlighting such features and their effect on the potential distribution of
losses is one of the reasons Monte Carlo simulations are so appealing.

Because our initial portfolio is defined as a vector of exposures by rating, we can easily explore the
relationship between portfolio quality and potential loss, which can be useful in developing and
setting investment strategy. For example, suppose we extended ourselves down the credit quality
scale in forming our initial portfolio. Market spreads would tell us how much additional yield we
would enjoy, but how would our credit risk exposure be effected? As an illustration, we consider an
alternative $40,000 exposure portfolio, equally weighted across all rating categories (Program 8.5).3
The distribution of losses for 10,000 simulations for this initial portfolio is presented in Output 8.3.
In contrast to the investment-grade portfolio, this simulation shows higher loss levels. Our VaR
values are 4,867, or 12.17%, and 5,082, or 12.7%, at the 95% and 99% confidence levels,
respectively. The mean loss level is 4,456, or 11.14%, on this lower quality portfolio.

Program 8.5 Uniform Portfolio Example

DATA PORTF2(KEEP=EXPOSURE);
 INPUT RATING $ EXPOSURE;
 CARDS;
 Aaa 5714
 Aa 5714
 A 5715
 Baa 5715
 Ba 5714
 B 5714
 C 5714
 ;
 RUN;
%EX2(PORTFOLIO=PORTF2,NYEARS=20,NSIMS=10000,OUT=A,SEED=123);

3 Here we have 5,714 in each, with A and Baa getting one additional exposure for rounding.

198 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 8.3
Uniform
Portfolio
Example

�
 Distribution of the Number of High-Default Years

 The FREQ Procedure
 Cumulative Cumulative
 HIGHDEFYEAR Frequency Percent Frequency Percent

 0 2796 27.96 2796 27.96
 1 3637 36.37 6433 64.33
 2 2317 23.17 8750 87.50
 3 906 9.06 9656 96.56
 4 276 2.76 9932 99.32
 5 57 0.57 9989 99.89
 6 11 0.11 10000 100.00

 Distribution of Losses (Number of Years=20, Number of Simulations=10000)

 STATISTIC LOSS ($)

 number of nonmissing values, LOSS 10000
 the mean, LOSS 4456
 the standard deviation, LOSS 223
 the largest value, LOSS 5548
 the 99th percentile, LOSS 5082
 the 95th percentile, LOSS 4867
 the 90th percentile, LOSS 4764
 the upper quartile, LOSS 4607
 the median, LOSS 4427
 the lower quartile, LOSS 4259

 the smallest value, LOSS 4077

�

Ordered Losses

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 199

Note that the hump-shaped increases in losses due to discrete increases in the number of “bad” credit
episodes are less pronounced for the lower quality portfolio. This reflects the fact that lower-rated
credits are relatively more likely to default in good times than are investment-grade credits. This is
typical of the type of intuitive fact that is extremely difficult to quantify analytically, but which can
be evaluated and quantified quite easily using Monte Carlo simulation.

�� �����������

Our previous example uses a Monte Carlo approach to evaluate the risk associated with the change in
the market value of a portfolio due to changes in market conditions, i.e., price fluctuations. In a
market risk VaR application, we seek to be able to find the value x that satisfies the statement: for a
given confidence level C, portfolio losses over a specific time horizon are likely to be no greater than
x. For a diversified portfolio, i.e, a portfolio that consists of different types of assets, we need to
generate estimates of future losses that are consistent with the joint distribution of returns for all
relevant asset classes. Once we have established a mechanism for generating these “realistic” loss
estimates, we can use the Monte Carlo approach to trace out the distribution of potential future losses
on the portfolio and obtain our VaR result.

Market risk VaR calculations are typically directed toward measuring the potential losses from price
movements over the very short term—often a single day. This type of high-frequency analysis
creates some computational complexities, but also allows us to make use of a number of important
simplifications. The calculations for market risk VaR may vary in a number of ways, but the critical
issues relate to the two underlying dynamics associated with a portfolio of risky assets:

�� the distribution of future returns for each asset or asset class in the portfolio

�� the correlation of price movements across assets or asset classes.

To estimate the distribution of future returns for a portfolio of assets, we have two choices. One
approach is to model each security’s movement independently, given a complete set of volatilities
and correlations for each asset and asset pair. That is, for n assets we would need n volatilities and
n(n-1)/2 correlations. We can use the information in the variance-covariance matrix to transform a set
of i.i.d. innovations into a set of innovations for each security with the appropriate volatilities and
correlations. Under most circumstances,4 we could do this by applying the Cholesky decomposition
to the variance-covariance matrix, which is discussed in greater detail below. However, because the
calculation of so large a variance-covariance matrix will present significant data processing and other
computational problems, the matrix will generally need to be estimated once, and treated as a set of
fixed parameters for each Monte Carlo simulation. This will severely limit the range of outcomes that
such simulations can produce.

4 The correlation matrix must be positive definite.

200 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

A second approach is the so-called factor approach, in which individual asset movements are
modeled as a combination of response movements to a set of correlated factors and to a set of
independent idiosyncratic movements. To derive the former, the so-called systematic component of
asset price movements, one needs to identify the factors that are relevant for the specific portfolio,
from macroeconomic and financial data. This is not a straightforward task and will require tradeoffs
between increased completeness and increased complexity. The idiosyncratic components are
assumed to be normally distributed and uncorrelated across assets. Hence, all correlation in asset
prices then derives from their dependence on the correlated factors, which reduces the dimension of
the required variance-covariance matrix to the number of factors included.

While this approach gives a simpler way to embed correlation in the simulated movements of
multiple asset prices, it forces us to specify the relationship between changes in the factors and
changes in each asset’s price. In most cases, the relationship is assumed to be linear, and the issue
then becomes one of specifying the weights, or “factor loadings,” that will be used to translate factor
movements into the systematic price movements for each specific asset. This can be done by
regression analysis, although for equity prices one can obtain “betas” (the correlation coefficients
between individual equities and major market indices) from published sources. A by-product of this
analysis will be variance estimates for each asset or asset group in the portfolio under consideration.

In our example, we will assume that factors have been identified and that the factor loadings have
been estimated. For simplicity, we consider a model with three factors, the S&P 500 Index, the yield
to maturity on the 90-Day Treasury Bill, and the Japanese Yen/US Dollar exchange rate. Time series
for the daily market values for these values from 1/1/1980 through 12/31/2000 are presented in
Figure 8.4. We can imagine a portfolio of stocks, loans, and swaps for which the systematic changes
in value are driven primarily by these three factors. We need to convert these data into stationary
time series, i.e., percent changes, or log differences, for trending factors, since we are modeling the
change in the portfolio’s overall value, not the value itself.

Figure 8.4 Historical Time Series of Key Factors

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 201

The variance of these factors and the correlation among factors are the key components that remain
to be identified. These values can be straightforwardly calculated from a specified length of historical
time series data, leading to one fixed set of variance and correlation parameters. While the tractability
of this fixed-parameter variance-covariance approach lends it a great deal of appeal, it is not clear
that it will accomplish the job for which it has been designed: to measure the risk on the portfolio by
characterizing the distribution of potential future returns. The assumption of fixed variance-
covariance parameters is itself heroic. Because empirical evidence suggests that variance-covariance
relationships change over time, fixing them at average values means we will be excluding from our
simulations whole categories of potential future outcomes for the portfolio. Obviously, if we are
mischaracterizing the distribution of potential losses, our VaR calculations will be wrong.

202 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Consider, for example, the sign of the correlation between interest rates and stock prices. Lower
interest rates mean lower cost of capital for corporate borrowers, with positive implications for
balance sheets and with potentially expanded opportunity sets for corporate investment. Moreover,
lower yields on fixed income instruments lowers the opportunity cost of holding stocks, which makes
stocks relatively more attractive investment vehicles. Thus, we would often expect to see a negative
short-run correlation between interest rates and stock returns. However, during inflationary or
recessionary periods, interest rate cuts can be viewed as exacerbating inflationary pressures, or as
remedial treatments to prop up a flagging economy. Under these conditions, the contemporaneous
correlation could well be positive. If the sign of the correlation may switch, the use of average values
is definitely going to prevent a range of plausible scenarios from being manifested in our Monte
Carlo procedure.

An alternative to the fixed correlation approach that is not too computationally demanding involves
random sampling from historical factor data, to allow for a wider range of factor co-movements in
our simulations. Because the variance-covariance matrix is relatively small, and because our short
time horizon suggests using a small time-window for deriving the variance-covariance structure, we
can re-estimate it for each portfolio iteration in the simulation. By randomly selecting the starting
point for our window, we will allow the estimated variance-covariance matrix to drift stochastically
over its historical range. When we apply random innovations to the set of factors governed by this
stochastic correlation scheme, we obtain a richer set of potential outcomes, centered around, but not
restricted to their recent or historical range of co-movement. Program 8.6 presents a SAS macro
program for this approach.

Program 8.6 VaR Estimation for Portfolio Market Risk (Macro %EX3)

/***/
/* Macro EX3 evaluates the risk associated with the change in the market */
/* value of a portfolio due to changes in market conditions. */
/* */
/* Parameters */
/* FACTORS a SAS file containing the historical time series of the key */
/* factors. (For example S&P 500 Index, Yield to Maturity on the */
/* 90-Day Treasury Bill and US Dollar/Japanese Yen Exchange Rate.) */
/* The factors must be named FACTOR1, FACTOR2,... The file can */
/* have any number of factors, but it must not contain any other */
/* variables. */
/* PORT a SAS file describing the portfolio. Every observation is an */
/* asset and the variables are VAR (the variance of the security), */
/* and LOAD1, LOAD2,... (the loadings of the securities along the */
/* factors given in the file defined by parameter FACTORS). */
/* WINDOW the length of the window to estimate a variance matrix of the */
/* factors. The macro will take WINDOW number of consecutive */
/* observations, starting at a randomly selected observation, from */
/* the historical time series of factors to determine a variance */
/* matrix. */
/* NSIMS number of simulations. */
/* OUT name of the output data set, which contains the loss of the */
/* portfolio (variable LOSS) for each simulation. */
/* SEED Seed of the random number generator functions. */
/* */
/* Example for creating the files of factors and portfolio and calling the */
/* macro to perform a simulation: */
/* */
/* DATA FACT; */
/* INPUT FACTOR1-FACTOR3; */
/* CARDS; */
/* 0.002980003 0.014606266 0.003610108 */
/* -0.000351830 -0.006259128 -0.006255865 */
/* -0.001370942 0.007348310 0.021561221 */
/* 0.001449151 -0.001042101 0.002619011 */

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 203

/* 0.004008841 0.005633215 0.013214505 */
/* -0.002291797 -0.005394191 -0.004322111 */
/* 0.007452402 -0.010221110 -0.013022618 */
/* 0.000994247 0.008851423 0.014969136 */
/* -0.000343905 0.001044496 0.008742588 */
/* . . . more data lines */
/* ; */
/* RUN; */
/* DATA PORT; */
/* INPUT VAR LOAD1 LOAD2 LOAD3; */
/* CARDS; */
/* 0.785011716 0.352891914 0.373870389 0.273237697 */
/* 0.811390100 0.294478292 0.384795108 0.320726600 */
/* 0.873502876 0.118961592 0.375286443 0.505751965 */
/* 0.883075376 0.628817260 0.016169149 0.355013591 */
/* 0.894593499 0.221131166 0.356409292 0.422459543 */
/* 0.014082599 0.135102802 0.429376615 0.435520583 */
/* 0.516532135 0.293662375 0.420554950 0.285782675 */
/* 0.073421956 0.616759924 0.051255603 0.331984474 */
/* 0.288352860 0.093046026 0.525914520 0.381039454 */
/* 0.124769632 0.315012854 0.132633282 0.552353864 */
/* . . . more data lines */
/* ; */
/* RUN; */
/* %EX3(FACTORS=FACT,PORT=PORT,WINDOW=45,NSIMS=10000,OUT=LOSSES,SEED=123) */
/* */
/***/

%MACRO EX3(FACTORS=,PORT=,WINDOW=,NSIMS=,OUT=,SEED=);

 /* Create a new file that has a randomly chosen window */
 /* of market factors for each simulation. */

 DATA TEMP(DROP=START);
 IF _N_=1 THEN DO;
 SET &FACTORS NOBS=NPERIODS;
 ARRAY FACTORS(*) _NUMERIC_;

 /* Determine the number of factors in the model, and store it in */
 /* macro variable ’NFACT’. It will be utilized at other parts of */
 /* the macro. */

 CALL SYMPUT(’NFACT’,LEFT(PUT(DIM(FACTORS),BEST10.)));
 CALL SYMPUT(’NFACT2’,LEFT(PUT(DIM(FACTORS)*DIM(FACTORS),BEST10.)));

 /* Create as many random windows as the number of simulations. */

 DO SIM=1 TO &NSIMS;

 /* Variable START is the starting observation of the window. */

 START=1+INT((NPERIODS+1-&WINDOW)*RANUNI(&SEED));
 DO I=START TO START+&WINDOW-1;
 SET &FACTORS POINT=I;
 OUTPUT;
 END;
 END;
 END;
 RUN;

 /* Determine the covariance matrix for each window. */

 PROC CORR DATA=TEMP COV NOPRINT OUT=TEMP(WHERE=(_TYPE_=’COV’) DROP=_NAME_);
 BY SIM;

 /* Calculate the Cholesky decomposition of each covariance matrix, */
 /* and create factor innovations with the desired correlation. */

 DATA TEMP(KEEP=FACTOR1-FACTOR&NFACT);
 ARRAY COV(&NFACT) FACTOR1-FACTOR&NFACT;
 ARRAY COVSQ(&NFACT,&NFACT) COVSQ1-COVSQ&NFACT2;

204 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 ARRAY CHOL(&NFACT,&NFACT) CHOL1-CHOL&NFACT2;
 ARRAY RANNUM(&NFACT) R1-R&NFACT;

 /* Perform the calculation for each window separately. */

 DO SIM=1 TO &NSIMS;

 /* Read the current covariance matrix and store it in array ’COVSQ’.*/

 START=&NFACT*(SIM-1);
 DO I=1 TO &NFACT;
 POINT=START+I;
 SET TEMP(DROP=SIM _TYPE_) POINT=POINT;
 DO J=1 TO &NFACT;
 COVSQ(I,J)=COV(J);
 END;
 END;

 /* Calculate the elements of the Cholesky matrix */
 /* (lower triangle). It is stored in array ’CHOL’. */

 DO I=1 TO &NFACT;
 DO J=1 TO &NFACT;
 SELECT;
 WHEN(J>I) CHOL(I,J)=0;
 WHEN(J=I) DO; SUM=0;
 DO K=1 TO I-1;
 SUM=SUM+CHOL(I,K)**2;
 END;
 CHOL(I,I)=SQRT(COVSQ(I,I)-SUM);
 END;
 OTHERWISE DO; SUM=0;
 DO K=1 TO J-1;
 SUM=SUM+CHOL(I,K)*CHOL(J,K);
 END;
 CHOL(I,J)=(COVSQ(I,J)-SUM)/CHOL(J,J);
 END;
 END;
 END;
 END;

 /* Utilizing the Cholesky matrix, introduce random */
 /* factors with the desired correlation. */

 DO I=1 TO &NFACT;
 RANNUM(I)=RANNOR(&SEED);
 END;
 DO J=1 TO &NFACT;
 SUM=0;
 DO I=1 TO &NFACT;
 SUM=SUM+CHOL(I,J)*RANNUM(I);
 END;
 COV(J)=SUM;
 END;

 /* Output the random factors, one observation for each simulation. */

 OUTPUT;
 END;
 STOP;
 RUN;

 /* Determine the number of securities in the portfolio file. */
 /* Store it in macro variable ’NSECS’. */

 DATA _NULL_;
 IF 0 THEN SET &PORT NOBS=COUNT;
 CALL SYMPUT(’NSECS’,LEFT(PUT(COUNT,8.)));
 STOP;
 RUN;
 %LET PORT2=%EVAL(&NSECS*&NFACT);

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 205

 /* The main simulation section: Apply the random change to each security */
 /* of the portfolio and calculate the losses for the entire portfolio. */

 DATA &OUT(KEEP=LOSS);

 /* Array VARS stores the variances of the securities */
 /* Array ALLFACTORS stores all loads of all securities along all factors */
 /* as a two-dimension array */
 /* Array FACTORS stores the factor innovations with the desired */
 /* correlation */
 /* Array LOADS stores the loads of one security along the factors */

 ARRAY VARS(&NSECS) VAR1-VAR&NSECS;
 ARRAY ALLFACTORS(&NFACT,&NSECS) F1-F&PORT2;
 ARRAY FACTORS(&NFACT) FACTOR1-FACTOR&NFACT;
 ARRAY LOADS(&NFACT) LOAD1-LOAD&NFACT;
 RETAIN VAR1-VAR&NSECS F1-F&PORT2;

 /* Store the loads of the securities in the portfolio. */

 SET &PORT END=EOPORT;
 VARS(_N_)=VAR;
 DO J=1 TO &NFACT;
 ALLFACTORS(J,_N_)=LOADS(J);
 END;

 /* Main simulation loop. */

 IF EOPORT THEN DO;

 DO SIM=1 TO &NSIMS;

 /* Read the factor innovations for the current simulation. */

 SET TEMP POINT=SIM;
 LOSS=0;

 /* Go through each security in the portfolio. */

 DO SEC=1 TO &NSECS;

 /* Calculate the sum of changes in the factors (variable */
 /* DELTA) and the idiosyncratic variation (variable IDIO) */
 /* for the security in question. */

 IDIO=0;
 DELTA=0;
 DO J=1 TO &NFACT;
 IDIO=IDIO+ALLFACTORS(J,SEC)**2;
 DELTA=DELTA+VARS(SEC)*ALLFACTORS(J,SEC)*FACTORS(J);
 END;
 IDIO=VARS(SEC)*SQRT(1-IDIO)*RANNOR(&SEED);
 CHANGE=DELTA+IDIO;

 /* Summarize the loss (change) throughout the portfolio. */

 LOSS=LOSS+CHANGE;
 END;
 OUTPUT;
 END;
 END;
 RUN;

 /* Describe the loss distribution and determine certain percentiles of it. */

 PROC UNIVARIATE DATA=&OUT NOPRINT;
 VAR LOSS;
 OUTPUT OUT=RES N=N MEAN=MEAN STD=STD MAX=MAX MIN=MIN MEDIAN=MEDIAN
 Q1=Q1 Q3=Q3 P10=P10 P5=P5 P1=P1;
 TITLE F=SWISS H=1.5

206 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 "Distribution of Losses (Length of Window=&WINDOW., Number of
Simulations=&NSIMS.)";
 RUN;

 /* Print the results in a comprehensive vertical layout. */

 PROC TRANSPOSE DATA=RES OUT=TRES;
 RUN;
 PROC PRINT DATA=TRES LABEL NOOBS;
 VAR _LABEL_ COL1;
 LABEL _LABEL_=’Statistic’ COL1=’Loss ($)’;
 FORMAT COL1 10.2;
 RUN;

 /* Draw the graph of the ordered losses. Set up the labels */
 /* for the two reference lines at 5 and 1 percentiles. */

 DATA ANNO;
 SET RES;
 FUNCTION=’LABEL’; STYLE=’DUPLEX’; SIZE=1.2;
 XSYS=’2’; YSYS=’2’;
 Y=P5; X=50; TEXT=’5% ’||COMPRESS(PUT(P5,10.0));
 POSITION=’C’; OUTPUT;
 Y=P1; X=80; TEXT=’1% ’||COMPRESS(PUT(P1,10.0));
 POSITION=’F’; OUTPUT;
 CALL SYMPUT(’VREF5’,PUT(P5,BEST10.));
 call symput(’vref1’,put(p1,best10.));
 run;
 PROC SORT DATA=&OUT OUT=TEMP;
 BY LOSS;
 DATA TEMP;
 SET TEMP;
 PERCENT=100*(_N_/&NSIMS);
 RUN;
 PROC GPLOT DATA=TEMP ANNOTATE=ANNO;
 PLOT LOSS*PERCENT / VAXIS=AXIS1 HAXIS=AXIS2 VREF=&VREF5 &VREF1;
 SYMBOL1 I=JOIN V=NONE W=1;
 AXIS1 LABEL=(A=90 R=0 F=SWISS H=1.5 ’Portfolio loss ($)’)
 VALUE=(H=1.2 F=SWISS) MINOR=(N=1) OFFSET=(0,0);
 AXIS2 LABEL=(F=SWISS H=1.5 ’Percentile’)
 VALUE=(H=1.2 F=SWISS) ORDER=0 TO 100 BY 10 MINOR=(N=1) OFFSET=(0,0);
 RUN;
 QUIT;
%MEND;

The first step in our simulation, then, is to calculate the variance-covariance matrix for our key
factors, and use it to produce a set of random innovations to apply to the factors to get one simulated
“state of the world.” After drawing a random time window w from our historical time series, we
obtain the variance-covariance matrix Σw for the three factors over that time interval:

=Σ

2

2

2

kjkkjikki

jkkjjijji

ikkijkjii

w

σρσσρσσ
ρσσσρσσ
ρσσρσσσ

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 207

This is accomplished by creating the data set TEMP and running PROC CORR in Program 8.6
(macro %EX3).

In order to convert a set of independent normal draws into simulated factor innovations whose
variance-covariance relationships are defined by Σw , we apply a Cholesky decomposition to Σw , to
obtain the matrix A, where

=Σ=×

2

2

2

kjkkjikki

jkkjjijji

ikkijkjii

w
TAA

σρσσρσσ
ρσσσρσσ
ρσσρσσσ

.

The matrix A is essentially the lower left square root of Σw. When we multiply the matrix A by
independent random variables with unit variance, we obtain new variables whose variance-
covariance structure is precisely Σw. Denote the changes in the three key factors as X={Xi, Xj, Xk}.
We combine A and a set of random, independent standard normal variables Zi, Zj, Zk, to create factor
innovations with the desired properties as

×=

k

j

i

k

j

i

Z

Z

Z

A

X

X

X

.

The Cholesky decomposition and subsequent generation of the factor innovations are carried out in
the second DATA step of the macro. With these factor innovations in hand, and our pre-calculated
factor loadings for each security in the portfolio, we can simulate the changes in value for every
security, and hence for the portfolio as a whole, using random, independent standard normal
variables to simulate the idiosyncratic component of each security’s value change.

Consider first an equity, Si, whose value-changes consist of only two components: a component that
is perfectly correlated with the S&P 500 index, and an idiosyncratic component zi that has unit
variance and is independent of other factors and other equities. Denoting the factor loading for the
S&P 500 index as β1i, we can describe the innovation to security i as

 iiiiii zXS 2
111 1 βσβσ −+=∆ .

The second term contains the factor 2
11 iβ− to adjust the overall variance of security i to its

appropriate value. That is, by including this adjustment, we ensure that

208 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 iiSE σ=∆)(2 .

For a security dependent on two factors plus idiosyncratic variation, we have

 iiiiiiiii zXXS 2
2

2
12211 1 ββσβσβσ −−++=∆ ,

etc.

Thus, each simulated outcome involves drawing one random number for each factor innovation, and
one random number for the idiosyncratic innovation to each individual security’s value. After having
calculated the value changes for all of the securities in the portfolio, we simply sum them to obtain
the simulated change in portfolio value.5 This task is performed by the third DATA step of the macro.
Note that in the market risk case, our simulations will produce losses as well as gains. Therefore, the
extreme values we are interested in are in the lower tail, and the so-called 95% confidence level will
correspond to the 5% quantile of our loss distribution.

Notice also the asymmetry of our assumption about factor variances vs. security variances. We
treated the variance of the security as a fixed value σi, but allowed the variance-covariance matrix for
the key factors to vary stochastically, based on the randomly selected historical window over which it
was estimated. This was done for simplicity and in order to illustrate a less rigid approach to
representing factor movements/co-movements. In order to apply the random window approach to
each security, we would need historical time series for each. But the simplification in our example
has an effect that we might wish to avoid, even at the computational expense of selecting random
windows for hundreds, or even thousands, of individual securities.

The problematic effect comes from the requirement that the expectation of the simulated variance
equals the fixed parameter

 iiSE σ=∆)(2 .

This implies that the relationship between the innovations to each security and the volatility of the
key factors will be offsetting — the variance of the security-specific innovation is scaled up when the
factor window produces low variance factors. This is counterintuitive. We would normally expect
volatile factors to be associated with more extreme values for losses, but our assumption ensures that
volatile factors will be associated with less volatile idiosyncratic security price changes. Obviously, a
security’s volatility is not fixed but is variable, with a volatility of its own. The analyst can counter
the effect of this assumption by adding an additional scaling factor that links the volatility of the
factors with the variance of the idiosyncratic security-specific innovations. It is left to the reader to
consider the possibilities for establishing such a link.

Using the formula presented above, we ran a sample of 10,000 draws on a hypothetical portfolio of
300 securities and estimated the 95% and 99% VaR levels with the following macro call:

%EX3(FACTORS=FACT,PORT=PORT,WINDOW=45,NSIMS=10000,OUT=A,SEED=123);

5 As with Example 2, we are assuming equal weighted exposures. In general, security value changes need to be multiplied by portfolio
concentration weights to obtain the change in portfolio value.

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 209

In our example, we included three types of securities, related in three different ways. One hundred
securities were dependent on one factor only, one hundred depended on two factors, and one hundred
depended on all three factors. The time window over which we estimated the factors’ variance-
covariance matrix was fixed at 45 days. Output 8.4 presents the distribution of losses from the 10,000
draws and shows the 95% and 99% VaR levels. Again, since the term “losses” is being used to describe
market value changes, which may be negative or positive, we focus on the lower tail of the distribution,
i.e., the 1% and 5% quantiles. From these simulations, we can say with 95% confidence that the portfolio
is unlikely to lose more than 11.4% of its value, and can say with 99% confidence that it will lose no
more than 16.33%.

Output 8.4
Ordered
Losses From
10,000
Simulations

Distribution of Losses (Length of Window=45, Number of Simulations=10000)

Statistic Loss ($)

number of nonmissing values, loss 10000.00

the mean, loss 0.16

the standard deviation, loss 7.11

the largest value, loss 27.08

the upper quartile, loss 4.98

the median, loss 0.15

the lower quartile, loss -4.72

the 10th percentile, loss -8.86

the 5th percentile, loss -11.40

the 1st percentile, loss -16.33

the smallest value, loss -25.97

210 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

As is evident from Output 8.4, the simulated loss distribution is smooth, symmetric around zero, and
approximately normal. A qq-plot comparing quantiles of the loss distribution with quantiles of the
standard normal distribution is presented in Figure 8.5 and confirms the approximate normality of the
simulated losses. This is not surprising, given that portfolio losses are linear functions of standard
normal variables. However, the assumptions made in our example were extremely simple. Many
relaxations or extensions of our example can be envisioned which could cause the loss distribution to
deviate from normality. Because the complexities of numerical evaluation of the loss distribution are
going to grow with model complexity, we would expect that evaluating these richer, more complex
systems analytically, or numerically, will be infeasible. Hence, we will need to resort to Monte Carlo
methods to evaluate the likely behavior, under extreme conditions, of portfolios with complex
dynamics.

While our simple example has given us a way to approximate some of the key dynamics of market
value changes, the simplicity of our assumptions is manifested in the regularity of the simulated
outputs. It remains a challenge to VaR practitioners how best to embed irregularities such as price
jumps and other non-normal behavior in VaR models without increasing the dependency of the
results on a growing set of parameters that may have been poorly estimated. More generally, we
would like to draw as much relevant information from history as we can, without becoming so tied to
history that our simulations fail to produce a full description of possible future outcomes.

Figure 8.5 QQ-Plot Testing the Normality of the Loss Distribution

L
o

s
se

s

-30

-20

-10

0

10

20

30

Standard Normal Distribution
-4 -3 -2 -1 0 1 2 3 4

Chapter 8 Examples for Monte Carlo Simulation in Finance: Estimating Default Risk and Value-at-Risk 211

���� ������	�

Monte Carlo techniques are particularly useful for characterizing the distribution of potential
outcomes for a system whose properties make analytic or numeric solutions impractical. Such
situations often arise in financial applications in which the distribution of interest is an aggregation of
outcomes that may be correlated, that are characterized by empirical distributions with no functional
representation, or both. They also arise in options pricing contexts, where the option value is a
function of the distribution of future values of the underlying security.

We have presented three examples of the use of Monte Carlo techniques to solve problems that arise
in finance. We chose problems in which correlated stochastic components with, in some cases, non-
standard distributions, combined to generate an outcome. Our task was to trace out the probability
distribution of future potential outcomes, and to locate various cutoff points defined in probabilistic
terms. The Monte Carlo solutions involved setting up a model that characterized the stochastic
components of the system, and specified their interrelationships. We showed how the SAS System
provides us with convenient ways to characterize the stochastic components of the models we
developed. We also described ways to apply random innovations drawn from known distributions to
those stochastic components in order to simulate the response of the system overall. Repeated draws
of these simulated responses gives us the observations needed to estimate the distribution function
and the required cutoff values. The macro solutions presented here utilize only base SAS software;
however, they can also be programmed, sometimes in an even simpler way, using SAS/IML
software.

Furthermore, the SAS Solution for Risk Management (also known as Risk Dimensions) is a SAS
software product specifically geared towards providing a robust framework for solving risk
measurement problems such as VaR calculations. It encompasses all relevant aspects of the risk
measurement problem, including data management, analytics, and reporting. In particular, the
challenge alluded to in the previous section, regarding how to embed non-normal behavior in risk
models without causing dependence on an unmanageable and unestimable number of parameters, is
addressed by a copula approach for multivariate Monte Carlo simulation. A full treatment of the
capabilities of the SAS Solution for Risk Management is beyond the scope of this chapter or this
book.

It cannot be overemphasized that the results obtained from any Monte Carlo estimation are valid only
insofar as the model captures the critical elements of the system under study, and that for any such
system there will be a large number of modeling approaches that could be applied. One important
consideration is computational efficiency, but it is far more important to ensure that the model’s
assumptions are consistent with reality and with each other.

212 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

��
� ����������

Asarnow, E., and D. Edwards. 1995. “Measuring Loss on Defaulted Bank Loans: A 24-Year Study.”
Journal of Commercial Lending (March): 11-23.

Carey, M., and M. Hrcay. 2001. “Parameterizing Credit Risk Models with Rating Data.” Journal of
Banking and Finance 25(1).

Duffie, D., and K. Singleton. 1998. “Simulating Correlated Defaults.” Palo Alto, CA: Stanford University,
Graduate School of Business.

Fisher, M., D. Nychka, and D. Zervos. 1994. “Fitting the Term Structure of Interest Rates with Smoothing
Splines.” Finance and Economics Discussion Series 95-1. Washington: Board of Governors of
the Federal Reserve System.

Frankfurter, G. M., and C. G. Lamourex. 1989. “Estimation and Selection Bias in Mean-Variance Portfolio
Selection.” Journal of Financial Research XII(2):173-181.

Gibson, M. S, and M. Pritsker. 2000. “Improving Grid-Based Methods for Estimating Value at Risk of
Fixed-Income Portfolios.” Washington: Board of Governors of the Federal Reserve System,
Working Paper 2000-25.

Jorion, P. 1997. Value at Risk: The New Benchmark for Controlling Derivatives Risk. Burr Ridge, IL:
McGraw Hill.

Keenan, S. C., D. T. Hamilton, and A. Bethault. 2000. Historical Default Rates of Corporate Bond Issuers,
1920-1999. New York: Moody’s Investor Services.

Picoult, E. 1998. “Calculating Value-at-Risk with Monte Carlo Simulation.” In Monte Carlo
Methodologies and Applications for Pricing and Risk Management, ed. B. Dupire, 209-229.
London: Risk Books.

Chapter 9 Modeling Time Series Processes with
 SAS/ETS Software

9.1 Introduction to Time Series Methodology 213
 9.1.1 Box and Jenkins ARIMA Models 213
 9.1.2 Akaike’s State Space Models for Multivariate Times Series 216
 9.1.3 Modeling Multiple Regression Data with Serially Correlated Disturbances 216

9.2 Introduction to SAS/ETS Software 216

9.3 Example 1: Generating Univariate Time Series Processes 218

9.4 Example 2: Generating Multivariate Time Series Processes 221

9.5 Example 3: Generating Correlated Variables with Autocorrelated Errors 228

9.6 Example 4: Monte Carlo Study of How Autocorrelation Affects Regression Results 234

9.7 Summary 243

9.8 References 243

���� �����	
�������������������������	������

Time series methodology encompasses the collection of statistical procedures designed to empower
quantitative researchers to handle issues particularly germane to temporal data. These statistical
procedures are based upon assumptions that, theoretically, must be met so that inferences are
accurate. Unfortunately, observations and measurements collected in the field do not always conform
to the requirements, or the assumptions, of the statistics we intend to use. It is at this point that Monte
Carlo research finds its place in applied research.

9.1.1 Box and Jenkins ARIMA Models
Data successively collected on the same person(s) or phenomenon (phenomena) over time
notoriously evidence a nuisance condition known as autocorrelation. Autocorrelation in time data
simply refers to a condition in which temporally adjacent or proximal observations evidence higher
relationships than distally positioned observations. To clarify this point by way of an example, it is
first important to define a lag.

Consider an unrealistically short series comprised of six observations taken on one person, say (20,
22, 24, 26, 28, 30). Essentially, this series will be correlated with itself, but in a special way—a way
that does not necessarily give a 1.0 correlation. To estimate the degree of autocorrelation present, this
series must first be lagged to some degree. With each lag, an observation is dropped, so the number
of paired observations drops by one for each correlation between the original series and each series
lagged to some order.

214 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 Observations First lag Second lag
1 20 22 24
2 22 24 26
3 24 26 28
4 26 28 30
5 28 30
6 30

Autocorrelated observations are thought to be generated by probabilistic models called stochastic
processes. By examining the features of the autocorrelation at hand, the stochastic process in
question may be identified (Box & Jenkins 1976).

Stationary times series data may be modeled for two stochastic processes: Autoregressive (AR) and
Moving Average (MA) (Box & Jenkins 1976). Autoregressive models represent the most recent
observation in a series as a function of previous observations within the same series. The most
general univariate case is represented by

yt = φ1 yt–1 + φ2 yt–2 + ... + φp yt–p + εt

where t = 1 to T occasions, yt denotes an observed score taken on some occasion (t) deviated from the
original level y0 of the series, ε denotes error associated with a given occasion (t), and φ (–1< φ <1)
denotes a covariance among temporally ordered scores at some lag (e.g., t−1 = a lag of 1, t−2 = a lag
of 2). The autocorrelation function of an AR process has the characteristic of tapering off
exponentially following the lag of the process. The multivariate counterpart of this general case is

yt = Φ1 yt–1 + Φ2 yt–2 + ... + Φp yt–p + εt

where the parameters are contained within the Φ matrices. Following from the general univariate
case, an AR model with a lag one relationship (i.e., AR1) is represented by

yt = φ1 yt–1 + εt

and has the following multivariate counterpart

yt = Φ1 yt–1 + εt

Unlike AR models, moving average (MA) models represent the most recent observation in a series as
a function of autocorrelated errors among earlier observations. The most general univariate case is
represented by

yt = εt + θ1 εt–1 + θ2 εt–2 + ... + θq εt–q

where t = 1 to T occasions, yt denotes an observed score taken on some occasion (t) deviated from the
original level y0 of the series, ε denotes error associated with a given occasion (t), and θ (–1< θ <1)
denotes a covariance among errors at some lag (e.g., t−1 = a lag of 1, t−2 = a lag of 2). By extension,
the multivariate form of this model is

yt = εt + θ1 εt–1 + θ2 εt–2 + ... + θq εt–q

where the parameters are contained within the θ matrices. Following from the general univariate
case, an MA model with a lag one relationship (i.e., MA1) is represented by

yt = εt + θ1 εt–1

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 215

with the multivariate counterpart being

yt = εt + θ1 εt–1

An MA1 model would have the error for the first occasion correlate with the second occasion error,
and would have the second occasion error correlate with the third occasion error. However, the first
occasion error would not be correlated with the third occasion error. This is possible when a unique
component is introduced on each occasion—a component that covaries with a subsequent error, but
is independent of the previous error. Each unique component, jointly with the previous error,
codetermines the following error in the series. The net effect of an MA1 process is that the
autocorrelation function cuts off immediately after lag 1. Put simply, all error covariances beyond the
first lag will be zero. Only the errors on temporally adjacent occasions possess a non-zero covariance
and constitute the MA1 lag.

When both AR and MA processes are present in the same data, ARMA models may best represent
the variation in the data. The univariate form of the most general case of the ARMA model is

yt = φ1 yt–1 + φ2 yt–2 + ... + φp yt–p + θ1 εt–1 + θ2 εt–2 + ... + θq εt–q + εt,

and the multivariate form is

yt = Φ1 yt–1 + Φ 2 yt–2 + ... + Φ p yt–p + θ1 εt–1 + θ2 εt–2 + ... + θq εt–q + εt,

The ARMA model with a lag one relationship for both its AR and MA processes is represented by

yt = φ1 yt–1 + εt + θ1 εt–1

and its multivariate form is

yt = Φ1 yt–1 + εt + θ1 εt–1

If growth or a trend is expected in the observed time series (i.e., the data is nonstationary), an ARMA
model is tested against the data only after a differencing procedure is applied to the data to remove
the trend. Thus, an ARMA model is applied to residualized data. When an ARMA model is applied
to differenced data, the model is properly called an autoregressive integrated moving-average
(ARIMA) model. In other words, ARMA and ARIMA models differ only in that the latter are
applied to residualized data originally possessing a trend. Most often a trend is removed from the
data through a differencing procedure. The differencing procedure involves systematically obtaining
the numerical difference between paired values of different temporal occasions. First differences are
calculated by subtracting temporally earlier values from later adjacent values. Using the
unrealistically short series of six observations [20, 22, 21, 26, 30, 28], the initial value obtained for
the first difference is 2 (or 22-20); the fifth value, -2 (or 28-30).

 Observations First Difference Second Difference
1 20
2 22 2
3 21 - 1 - 3
4 26 5 6
5 30 4 -1
6 28 - 2 - 6

216 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Note that an observation is lost as a result of this manner of de-trending. The impact of this loss, of
course, is far less severe for series with a more realistic number of observations (e.g., 50 or more; see
Box & Jenkins 1976). If the trend is not removed by obtaining first differences, second differences
may be obtained to further stabilize the series. Higher order differences are possible so long as the
series is large enough to withstand the loss of an observation for each difference. Several of the
SAS/ETS procedures include an option that automatically differences a series to whatever extent is
necessary when a trend is present. Statistical routines are automatically invoked by these procedures
to test whether a given series is still nonstationary. Differencing ends when a stationary solution has
been attained.

9.1.2 Akaike’s State Space Models for Multivariate Times
 Series
When multiple series of observations are collected over time, the researcher becomes concerned not
just with modeling the individual series, but also with the cross-lagged relationships that may occur
between the series and/or the weighted aggregate of the multiple series. Several approaches for
modeling multivariate time series exist. A very common approach involves using state space
modeling, an approach Akaike (1976) advocated and introduced clearly. Representing a multivariate
time series in what is known as a state vector, the state space modeling approach invokes canonical
analysis in the analysis of the data (Moryson 1998).

State space procedures identify the multivariate times series models that best fit the data according to
the value of an Akaike information criterion (AIC), with smaller AIC values signaling the better
fitting models. The SAS/ETS STATESPACE procedure (PROC STATESPACE) can report the AIC
values for each lag considered so that the researcher may rank differently lagged models according to
their degree of fit. By default, PROC STATESPACE eliminates variables not sufficiently
contributive to the model, according to their degree of statistical significance. An important feature
of PROC STATESPACE to note is its ability to treat data requiring differencing.

9.1.3 Modeling Multiple Regression Data with Serially
 Correlated Disturbances
Harvey (1981) defines dynamic regression models as regression models designed to accommodate
criterion variables in which an autoregressive process is present. They are so called because the
models handle situations in which the relationships between the variables under investigation are
non-contemporaneous. In other words, the observations of the criterion variable may have been
collected over time. Of course, all standard time series statistical procedures assume that the
observations are equidistant from one another in time. For example, data for the dependent variable
may be collected daily, once a week on Saturdays, every three days, every four months, etc. Harvey
(1981) stresses that maximum likelihood estimation, as opposed to ordinary least squares, must be
used when a lagged dependent variable is introduced into the model. Indeed, the SAS/ETS
AUTOREG procedure (PROC AUTOREG) uses maximum likelihood estimation for its solutions.

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 217

���� �����	
�������������������������

SAS/ETS software, a component of the SAS System, provides SAS procedures for econometric
analysis, time series analysis, forecasting time series, systems modeling and simulation, seasonal
adjustment, financial analysis and reporting, access to economic and financial databases, and time
series data management.

SAS/ETS Software: Applications Guide 1 discusses features of SAS/ETS software for time series
modeling and forecasting, financial reporting, and loan analysis. The second volume, SAS/ETS
Software: Applications Guide 2, discusses features of SAS/ETS software for econometric modeling
and simulation. Table 9.1 provides an overview of the SAS/ETS procedures that are available.

Table 9.1 Overview of SAS/ETS Procedures

PROCEDURE

DESCRIPTION

PROC ARIMA

ARIMA (Box-Jenkins) and ARIMAX (Box-Tiao) modeling and
forecasting

PROC AUTOREG

regression analysis with autocorrelated errors and ARCH and
GARCH modeling

PROC CITIBASE

access to DRI/McGraw-Hill Basic Economic database files

PROC COMPUTAB

spreadsheet calculations and financial report generation

PROC DATASOURCE

access to financial and economic databases

PROC EXPAND

time series interpolation and frequency conversion, and
transformation of time series

PROC FORECAST

automatic forecasting

PROC LOAN

loan analysis and comparison

PROC MODEL

nonlinear simultaneous equations regression and nonlinear systems
modeling and simulation

PROC MORTGAGE

fixed-rate mortgage amortization tables

PROC PDLREG

polynomial distributed lag regression (Almon lags)

PROC SIMLIN

linear systems simulation

PROC SPECTRA

spectral and cross-spectral analysis

PROC STATESPACE

state space modeling and automated forecasting of multivariate time
series

PROC SYSLIN

linear simultaneous equations models

PROC TSCSREG

time series cross-sectional regression analysis

PROC X11 seasonal adjustment (Census X-11 and X-11-ARIMA)

218 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

���� ���� ����!��"����������#��$�������������������

�������%���������

Recall that the lag one autoregressive (AR1) process may be modeled by

 yt = φ1 yt–1 + εt (9.1)

When generating a univariate time series to have an AR1 process, the generating equation will bear a
similar form. The SAS RANNOR function is used to generate a random normal deviate (scaled to
have a mean of zero and a standard deviation of one) for each term in the equation (yt–1 , εt). Because
the expected standard deviation of the RANNOR function is 1.0, the random variable component
may be modified with whatever autoregressive coefficient parameter is desired.

Consider the case of generating a 50-observation series with an AR1 process in which the squared
parameter value is .50. Equation (9.1) indicates that the most recent observation in the series (yt) is
determined by the previous observation (yt–1) plus some amount of error (εt). The degree of
relationship between temporally adjacent observations is denoted by φ1. By definition,

y1 = ε1

y2 = φ1 y1 + ε2

y3 = φ1 y2 + ε3

Because y1 = ε1, begin by specifying

SERIES (1) = RANNOR(-1);

The remainder of the series is generated as

do j = 2 to 50;
SERIES (j) = SQRT(.50) *SERIES(j-1) + SQRT(.50)*RANNOR(-1);
end;

Notice that the squared coefficients of both terms sum to 1.0. Because the expected SERIES(2)
observation is constrained to 1.0, the expected value for SQRT(.50) *SERIES(j-1) when defining the
SERIES(3) observation will be .50. Moreover, the SERIES(3) observation is thereby constrained to
an expected value of 1.0.

These commands are now placed within the context of a SAS program. In the following program,
PROC ARIMA is used to estimate the value of the generated AR process.

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 219

Program 9.1 Generating AR1 Data for PROC ARIMA

/**/
/* This program generates a series of 50 observations with an AR1 process. The */
/* expected AR1 value will be .8367, the square of which is .70. The error */
/* variance component is made to account for 30% of each total observation variance */
/*(with the exception of the most recent observation in the series). */
/* */
/**/

DATA AR;
 ARRAY OBS OBS1-OBS50; *** Room is made for 50 observations;

 OBS (1) = RANNOR (-1); *** The most recent observation in the series;
 DO J = 2 TO 50;
 OBS (J) = SQRT(.70) * OBS (J-1) + SQRT(.30) * RANNOR(-1);
 END; OUTPUT;
 KEEP OBS1-OBS50;
 PROC TRANSPOSE OUT=AR1; *** The series is transposed into a column for PROC ARIMA;

DATA AR1; SET AR1;

PROC ARIMA DATA = AR1; IDENTIFY VAR=COL1 NLAG=1; *** The AR1 lag value is estimated;
 ESTIMATE P = 1;
RUN;

An adaptation of this program now may be incorporated into the following macro so that the results
of 200 replications could be accumulated. This program was written to consider only six different
research situations, though in a true Monte Carlo study many more situations would most likely be
considered, depending upon the number of theoretically relevant conditions.

Program 9.2 PROC ARIMA Macro Example for a Monte Carlo Study

/**/
/* Macro AR1 generates a lag one autoregressive process 200 times for each of six */
/* research conditions. In a true Monte Carlo study more than six conditions */
/* ordinarily will be planned. For each additional AR1 process desired, add */
/* another AR1 statement with the parameters of interest. If so many AR1 statements */
/* are added that the program lacks sufficient memory to run, the research plan may */
/* be accomplished with more than one run, each run responsible for some set of */
/* conditions. */
/* */
/* Parameters:
/* N The number of observations in the series. */
/* ARLAG The squared value of the lag relationship desired. */
/* VARIANCE The squared value of the error variance desired. */
/* SCENARI The designated number id of a given condition. */
/* */
/**/

OPTIONS LINESIZE=100 NOSOURCE NOSOURCE2 NONOTES; *** Log file will report errors only;

LIBNAME AUTOREG ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’;

PROC FORMAT;VALUE SCENE *** Labels six conditions;
 1 = ’ARLAG**2 = .40, N = 100’
 2 = ’ARLAG**2 = .60, N = 100’
 3 = ’ARLAG**2 = .80, N = 100’
 4 = ’ARLAG**2 = .40, N = 500’

220 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 5 = ’ARLAG**2 = .60, N = 500’
 6 = ’ARLAG**2 = .80, N = 500’;

%MACRO AR1(N,ARLAG,VARIANCE,SCENARI); *** Macro begins;
 %DO J=1 %TO 200; *** 200 replications;

 DATA SEM&J;
 ARRAY SERIE SERIE1-SERIE&N;

 SERIE(1)=RANNOR(-1); *** Generates AR1 data;
 DO J=2 TO &N;
 SERIE(J)= SQRT(&ARLAG)*SERIE(J-1) + SQRT(&VARIANCE)*RANNOR(-1);

END;OUTPUT;
 *** Transposes series to a column;
 KEEP SERIE1-SERIE&N; PROC TRANSPOSE OUT=D2;

DATA D2;SET D2;

PROC ARIMA DATA=D2;IDENTIFY VAR=COL1 NLAG=1 NOPRINT; *** Output is suppressed;
 ESTIMATE P=1 OUTSTAT=ARIMA1 OUTMODEL=ARIMA2 NOPRINT MAXIT=5000;
 *** Select statistics are outputted;
DATA ARIMA1;SET ARIMA1;KEEP _VALUE_ _STAT_;IF 1<=_N_<= 2;
 PROC TRANSPOSE OUT=ARIMA1;
DATA ARIMA1;SET ARIMA1; AIC=COL1; SBC=COL2;OUTPUT;
 KEEP AIC SBC;
DATA ARIMA2;SET ARIMA2;IF _N_= 6;ARLAG=_VALUE_;ARLAGSTD=_STD_;
 TTEST=ARLAG/ARLAGSTD;OUTPUT;KEEP ARLAG TTEST;
DATA COMBINE;MERGE ARIMA1 ARIMA2;SCENARIO=&SCENARI;OUTPUT;

 *** OUTMODEL and OUTSTAT results are merged;

 PROC APPEND BASE=AUTOREG.RESULT1 (CNTLLEV=MEMBER); *** Results compiled in library;

 %END;
%MEND COMPUTE; *** End of Macro;

%AR1 (100,.40,.60,1); *** Each AR1 presents one research situation;
%AR1 (100,.60,.40,2);
%AR1 (100,.80,.20,3);
%AR1 (500,.40,.60,4);
%AR1 (500,.60,.40,5);
%AR1 (500,.80,.20,6);

FORMAT SCENARIO SCENE.;

PROC SORT;BY SCENARIO;
PROC SUMMARY PRINT VARDEF=N MAXDEC=2 FW=8;CLASS SCENARIO; *** Summarizes Results;
 VAR AIC SBC ARLAG TTEST;
RUN;

PROC SUMMARY presents the overall findings which are shown in Output 9.2. Of course, a full
Monte Carlo study was not intended for this example, but a couple of findings nonetheless may be
drawn from these results. Given that scenarios 1-3 were generated to have 100 observations, and
scenarios 4-6 were generated to have 500 observations, it can be seen that the true AR1 lag value is
overall modestly underestimated when N = 100. Note that the squared AR1 parameter values were
.40, .60, and.80. The expected AR1 parameter values were therefore .6325, .7746, and .8944. The
expected AR1 lag values for scenarios 4-6 were accurately estimated. Observe also that the
magnitudes of the AIC and the SBC were much higher for the larger sample size (N = 500).
Furthermore, their magnitudes were, overall, greater when the AR1 lag parameters were lower in
value.

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 221

Output 9.2 Summary of 200 PROC ARIMA Results (Program 9.2)

The SUMMARY Procedure

scenario Obs Variable N Mean Std Dev Minimum Maximum
--
 1 200 AIC 200 234.13 14.07 200.72 268.38
 SBC 200 239.34 14.07 205.93 273.59
 ARlag 200 0.61 0.08 0.34 0.82
 ttest 200 7.76 1.56 3.59 13.91

 2 200 AIC 200 194.09 13.58 160.19 227.27
 SBC 200 199.30 13.58 165.40 232.48
 ARlag 200 0.76 0.08 0.48 0.99
 ttest 200 12.20 5.06 5.45 53.94

 3 200 AIC 200 124.06 14.28 83.62 156.56
 SBC 200 129.27 14.28 88.83 161.77
 ARlag 200 0.88 0.07 0.63 1.00
 ttest 200 22.08 12.16 8.01 82.33

 4 200 AIC 200 1160.56 30.92 1071.40 1245.79
 SBC 200 1168.99 30.92 1079.83 1254.22
 ARlag 200 0.63 0.03 0.55 0.72
 ttest 200 18.04 1.49 14.70 22.98

 5 200 AIC 200 961.55 32.80 860.55 1054.47
 SBC 200 969.98 32.80 868.98 1062.90
 ARlag 200 0.77 0.03 0.68 0.84
 ttest 200 26.96 2.54 20.70 34.76

 6 200 AIC 200 619.06 30.32 520.87 696.78
 SBC 200 627.49 30.32 529.30 705.21
 ARlag 200 0.89 0.02 0.82 0.99
 ttest 200 44.13 9.09 31.46 128.96

��&� ���� ����!��"�����������
���$�������������������

�������%���������

Recall that the multivariate AR model is defined by

yt = Φ1 yt–1 + Φ2 yt–2 + ... + Φp yt–p + εt

where parameters for more than one series are contained within the Φ matrices. What may not be
obvious is that a Φ matrix holds not only the AR coefficients for each process, but also cross-lag
coefficients existing between the multiple series collected. So, both autoregressive correlations and
cross-lagged correlations are calculated when multivariate autoregressive time series procedures are
used. Cross-lag coefficients allow the researcher to specify causal relationships between the lags, an
important feature of any multivariate time series model. Cross-lag coefficients represent lagged
relationships between two or more series. Suppose that two series have 15 observations. Cross-
lagging Series A with Series B would give 14 paired observations.

222 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Occasion

Series A

Series B

 Paired
Observations

Series A

Lagged
Series B

1 3 53 1 3 54
2 4 54 2 4 55
3 7 55 3 7 56
4 8 56 4 8 57
5 2 57 5 2 55
6 4 55 6 4 58
7 6 58 7 6 59
8 14 59 8 14 56
9 15 56 9 15 60

10 14 60 10 14 62
11 16 62 11 16 64
12 17 64 12 17 65
13 17 65 13 17 66
14 18 66 14 18 67
15 19 67

To correlate the paired cross-lagged observations, a cross-lagged correlation is calculated. Cross-
lagged correlations, like autocorrelations, may be lagged beyond the first order. Of course, both of
these 15-occasion series are far shorter than what is recommended in practice. Box and Jenkins
(1976) advise that at least 50 observations be collected to ensure positive identification of the time
series processes under study. Employing power analysis to determine the needed sample size in a
particular scenario would be much more precise.

The lag one multivariate autoregressive model (i.e., Multivariate AR1) appropriate for the data
presented would be:

yt = Φ1 yt–1 + εt

When generating a univariate time series to have a Multivariate AR1 process, more than one
generating equation, of course, is needed. Not only are the random variable components modified
with whatever autoregressive coefficient parameter is desired, but cross-lagged relationships will
participate in the sequence of occasions. Consider the case in which a researcher wants to model
three 200-observation series holding cross-lagged relationships. Again, because the first observation
in each series equals the first error, we begin by specifying

SerieA(1)=rannor(-1);
SerieB(1)=rannor(-11);
SerieC(1)=rannor(-111);

 do j=2 to 200;

 VAR_A(j) =rannor(-1111);
 VAR_B(j) =rannor(-11111);
 VAR_C(j) =rannor(-111111);

SerieA(j)=VAR_A(j)*SQRT(.20) + SerieA(j-1)*SQRT(.80);
SerieB(j)=VAR_B(j)*SQRT(.20) + SerieB(j-1)*SQRT(.60) + SerieA(j-1)*(.20);
SerieC(j)=VAR_C(j)*SQRT(.15) + SerieC(j-1)*SQRT(.45) + SerieA(j-1)*(.10) +
 SerieB(j-1)*(.30);

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 223

These commands are now placed within the context of a SAS program. In the following program,
PROC STATESPACE is used to estimate the value of the generated Multivariate AR process, with
cross-lagged relationships. Moryson (1998) demonstrates how the state space statistical procedure
accommodates multivariate time series data. Indeed, more than one analytical approach to analyzing
multivariate time series exists.

Program 9.3 Generating Multivariate AR1 Data for PROC STATESPACE

/**/
/* This program generates three series (Series A, B, and C) of 200 observations */
/* each with a Multivariate AR1 process with cross-lagged relationships. The */
/* autoregressive coefficients for each series are .80, .60, and .45, respectively, */
/* and the error variance components are .20, .20 and .15, respectively. The cross-*/
/* lagged relationship between Series A and B is .20; between Series A and C, .10; */
/* and between Series B and C, .30. */
/* */
/**/

DATA GENERATE;
 ARRAY SERIEA SERIEA1-SERIEA200; *** each creates room for 200 observations;
 ARRAY SERIEB SERIEB1-SERIEB200;
 ARRAY SERIEC SERIEC1-SERIEC200;
 ARRAY VAR_A VAR_A1 -VAR_A200;
 ARRAY VAR_B VAR_B1 -VAR_B200;
 ARRAY VAR_C VAR_C1 -VAR_C200;

 SERIEA(1)=RANNOR(-1); *** generates the first occasion;
 SERIEB(1)=RANNOR(-11);
 SERIEC(1)=RANNOR(-111);

 VAR_A(1) =0;
 VAR_B(1) =0;
 VAR_C(1) =0;

 DO J=2 TO 200;

 VAR_A(J) =RANNOR(-1111); *** random normal deviates are generated;
 VAR_B(J) =RANNOR(-11111);
 VAR_C(J) =RANNOR(-111111);

 *** the equations which generate the process follow;
SERIEA(J)=VAR_A(J)*SQRT(.20) + SERIEA(J-1)*SQRT(.80);
SERIEB(J)=VAR_B(J)*SQRT(.20) + SERIEB(J-1)*SQRT(.60) + SERIEA(J-1)*(.20);
SERIEC(J)=VAR_C(J)*SQRT(.15) + SERIEC(J-1)*SQRT(.45) + SERIEA(J-1)*(.10) +
 SERIEB(J-1)*(.30);

 END;KEEP SERIEA1-SERIEA200
 SERIEB1-SERIEB200
 SERIEC1-SERIEC200; *** retains only the series generated;
OUTPUT;

This program may be inserted into the following macro so that the results of 200 replications can be
accumulated. This program was written to consider only three different research situations (far fewer
than necessary in a true Monte Carlo study).

224 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Program 9.4 Macro for Multivariate AR1 Data Using PROC STATESPACE

/**/
/* This macro generates 200 replications and aggregates the results. As before, */
/* three series (Series A, B, and C) of 200 observations each with a Multivariate */
/* AR1 process with cross-lagged relationships. The autoregressive coefficients */
/* for each series are .80, .60, and .45, respectively, and the error variance */
/* components are .20, .20 and .15, respectively. The cross-lagged relationship */
/* between Series A and B is .20; between Series A and C, .10; and between Series */
/* B and C, .30. */
/* */
/**/

OPTIONS LINESIZE=100 NOSOURCE NOSOURCE2 NONOTES;

LIBNAME MULTITS ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’;

%MACRO MULTITS (REPS,N,VARA,AR_AA,
 VARB,AR_BB,AR_BA,
 VARC,AR_CC,AR_CA,AR_CB,SCENARI);

 %DO J=1 %TO &REPS; *** 200 replications are undertaken;

DATA GENERATE&J;
 ARRAY SERIEA SERIEA1-SERIEA&N; *** creates space for the observations;
 ARRAY SERIEB SERIEB1-SERIEB&N;
 ARRAY SERIEC SERIEC1-SERIEC&N;
 ARRAY VAR_A VAR_A1 -VAR_A&N ;
 ARRAY VAR_B VAR_B1 -VAR_B&N ;
 ARRAY VAR_C VAR_C1 -VAR_C&N ;

 SERIEA(1)=RANNOR(-1);
 SERIEB(1)=RANNOR(-11);
 SERIEC(1)=RANNOR(-111);

 VAR_A(1) =0;
 VAR_B(1) =0;
 VAR_C(1) =0;

 DO J=2 TO &N;

 VAR_A(J) =RANNOR(-1111);
 VAR_B(J) =RANNOR(-11111);
 VAR_C(J) =RANNOR(-111111);

*** generates the multivariate processes with cross-lagged relationships;

SERIEA(J)=VAR_A(J)*SQRT(&VARA) + SERIEA(J-1)*SQRT(&AR_AA);
SERIEB(J)=VAR_B(J)*SQRT(&VARB) + SERIEB(J-1)*SQRT(&AR_BB) + SERIEA(J-1)*(&AR_BA);
SERIEC(J)=VAR_C(J)*SQRT(&VARC) + SERIEC(J-1)*SQRT(&AR_CC) + SERIEA(J-1)*(&AR_CA) +
 SERIEB(J-1)*(&AR_CB);

 END; KEEP SERIEA1-SERIEA&N
 SERIEB1-SERIEB&N
 SERIEC1-SERIEC&N;
OUTPUT;

 *** transposes series a to prepare it for analysis;
DATA GENERAT1;SET GENERATE&J;
 KEEP SERIEA1-SERIEA&N;PROC TRANSPOSE OUT=GENERAT1;
 DATA GENERAT1;SET GENERAT1;ID=_N_;SERIESA=COL1;OUTPUT;DROP COL1;

 *** transposes series b to prepare it for analysis;
DATA GENERAT2;SET GENERATE&J;
 KEEP SERIEB1-SERIEB&N;PROC TRANSPOSE OUT=GENERAT2;
 DATA GENERAT2;SET GENERAT2;ID=_N_;SERIESB=COL1;OUTPUT;DROP COL1;

 *** transposes series c to prepare it for analysis;
DATA GENERAT3;SET GENERATE&J;

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 225

 KEEP SERIEC1-SERIEC&N;PROC TRANSPOSE OUT=GENERAT3;
 DATA GENERAT3;SET GENERAT3;ID=_N_;SERIESC=COL1;OUTPUT;DROP COL1;

 *** merges the three series by observation;

DATA GENERATE&J;MERGE GENERAT1 GENERAT2 GENERAT3;BY ID;
 KEEP ID SERIESA SERIESB SERIESC ;

 *** fits the multivariate model to the series data;

PROC STATESPACE INTERVAL=DAY MAXIT=200 ARMAX=1 LAGMAX=1
 NOPRINT OUTMODEL=ARCOEFFS;

 *** outputs the collected statistics var seriesa seriesb seriesc;

 TITLE ’MULTIVARIATE ARIMA (1,0,0) CROSSLAGGED RESULTS’;

 *** plucks parameter estimates for series a out of statespace output;

DATA GENERAT1;SET ARCOEFFS;IF _N_ = 1;
 KEEP F_1 F_2 F_3 SIG_1 SIG_2 SIG_3;
 AR_AA=F_1**2; AR_AB=F_2; AR_AC=F_3;
 RESCOVAA=SIG_1; RESCOVAB=SIG_2; RESCOVAC=SIG_3;
 KEEP AR_AA AR_AB AR_AC RESCOVAA RESCOVAB RESCOVAC;
 OUTPUT;

 *** plucks parameter estimates for series b out of statespace output;

DATA GENERAT2;SET ARCOEFFS;IF _N_ = 3;
 KEEP F_1 F_2 F_3 SIG_1 SIG_2 SIG_3;
 AR_BA=F_1; AR_BB=F_2**2; AR_BC=F_3;
 RESCOVBA=SIG_1; RESCOVBB=SIG_2; RESCOVBC=SIG_3;
 KEEP AR_BA AR_BB AR_BC RESCOVBA RESCOVBB RESCOVBC;
 OUTPUT;

 *** plucks parameter estimates for series c out of statespace output;

DATA GENERAT3;SET ARCOEFFS;IF _N_ = 5;
 KEEP F_1 F_2 F_3 SIG_1 SIG_2 SIG_3;
 AR_CA=F_1; AR_CB=F_2; AR_CC=F_3**2;
 RESCOVCA=SIG_1; RESCOVCB=SIG_2; RESCOVCC=SIG_3;
 KEEP AR_CA AR_CB AR_CC RESCOVCA RESCOVCB RESCOVCC;
 OUTPUT;

 *** merges the parameter estimates for each of the three series;

DATA ARCOEFFS; MERGE GENERAT1 GENERAT2 GENERAT3 GENERATE&J;
 SCENARIO=&SCENARI;OUTPUT;

 KEEP AR_AA AR_AB AR_AC RESCOVAA RESCOVAB RESCOVAC
 AR_BA AR_BB AR_BC RESCOVBA RESCOVBB RESCOVBC
 AR_CA AR_CB AR_CC RESCOVCA RESCOVCB RESCOVCC
 SCENARIO M_A M_B M_C VAR_A VAR_B VAR_C;

 PROC DELETE DATA=GENERATE&J; *** frees some of the memory space for SAS;
 PROC DELETE DATA=GENERAT1;
 PROC DELETE DATA=GENERAT2;
 PROC DELETE DATA=GENERAT3;

226 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

 *** adds the parameter information to an output file for one of 200 iterations;

 PROC APPEND BASE=MULTITS.RESULT (CNTLLEV=MEMBER);

 %END;
%MEND COMPUTE;

*** the following macro statements feed the macro above the parameters for each
 condition under study;

%MULTITS (200, 100, .20, .80,
 .20, .60, .20,
 .15, .45, .10, .30, 1);

%MULTITS (200, 500, .20, .80,
 .20, .60, .20,
 .15, .45, .10, .30, 2);

%MULTITS (200, 1000, .20, .80,
 .20, .60, .20,
 .15, .45, .10, .30, 3);

PROC SORT;BY SCENARIO;

 *** proc summary summarizes the results for each condition;

PROC SUMMARY PRINT VARDEF=N MAXDEC=2 FW=8;
 CLASS SCENARIO; *** summarizes results;
 VAR AR_AA AR_AB AR_AC
 AR_BA AR_BB AR_BC
 AR_CA AR_CB AR_CC
 RESCOVAA RESCOVAB RESCOVAC
 RESCOVBA RESCOVBB RESCOVBC
 RESCOVCA RESCOVCB RESCOVCC;

 TITLE1 ’***** SCENARIO 1 (N=100) *****’;
 TITLE2 ’***** SCENARIO 2 (N=500) *****’;
 TITLE3 ’***** SCENARIO 3 (N=1000) *****’;

 TITLE5 ’AR_AA=.80 AR_BB=.60 AR_CC=.45’;
 TITLE6 ’AR_BA=.20 AR_CA=.10 AR_CB=.30’;
 TITLE7 ’ ’;
RUN;

PROC SUMMARY presents the estimates derived from the data replications (see Output 9.4). The
results confirm that the autoregressive coefficients, cross-lagged coefficients, and errors are very
accurate. Often, in a Monte Carlo simulation study, the researcher is concerned with studying
accuracy of estimates under particular conditions, perhaps conditions in which assumptions of the
statistical procedure are violated to varying extents so that the robustness of the statistic to violations
may be evaluated. PROC STATESPACE outputs a number of statistical estimates that may be
subjected to study under whatever conditions specified. Any of these output options may be
incorporated into the macro and thereby collected for each replication.

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 227

Output 9.4 Summary of 200 PROC STATESPACE Results (Program 9.4)

***** Scenario 1 (n=100) ***** Scenario 2 (n=500) ***** Scenario 3 (n=1000) *****

The SUMMARY Procedure
 N
SCENARIO Obs Variable N Mean Std Dev Minimum Maximum

 1 200 AR_AA 200 0.70 0.12 0.40 1.00
 AR_AB 200 -0.00 0.08 -0.26 0.23
 AR_AC 200 -0.02 0.07 -0.25 0.18
 AR_BA 200 0.21 0.07 0.04 0.39
 AR_BB 200 0.54 0.10 0.26 0.77
 AR_BC 200 0.00 0.06 -0.17 0.16
 AR_CA 200 0.11 0.06 -0.05 0.28
 AR_CB 200 0.30 0.07 0.17 0.48
 AR_CC 200 0.41 0.07 0.17 0.60
 ResCovAA 200 0.20 0.03 0.13 0.31
 ResCovAB 200 0.01 0.02 -0.06 0.07
 ResCovAC 200 0.00 0.02 -0.07 0.09
 ResCovBA 200 0.01 0.02 -0.06 0.07
 ResCovBB 200 0.21 0.03 0.12 0.32
 ResCovBC 200 0.01 0.02 -0.05 0.09
 ResCovCA 200 0.00 0.02 -0.07 0.09
 ResCovCB 200 0.01 0.02 -0.05 0.09
 ResCovCC 200 0.17 0.03 0.11 0.28

 2 200 AR_AA 200 0.79 0.04 0.67 0.91
 AR_AB 200 0.00 0.03 -0.09 0.09
 AR_AC 200 -0.00 0.03 -0.08 0.07
 AR_BA 200 0.20 0.03 0.13 0.26
 AR_BB 200 0.59 0.05 0.45 0.75
 AR_BC 200 0.00 0.03 -0.07 0.07
 AR_CA 200 0.10 0.02 0.04 0.16
 AR_CB 200 0.30 0.03 0.21 0.37
 AR_CC 200 0.44 0.04 0.35 0.54
 ResCovAA 200 0.20 0.01 0.17 0.24
 ResCovAB 200 0.00 0.01 -0.02 0.03
 ResCovAC 200 0.00 0.01 -0.02 0.02
 ResCovBA 200 0.00 0.01 -0.02 0.03
 ResCovBB 200 0.20 0.01 0.17 0.23
 ResCovBC 200 0.00 0.01 -0.02 0.02
 ResCovCA 200 0.00 0.01 -0.02 0.02
 ResCovCB 200 0.00 0.01 -0.02 0.02
 ResCovCC 200 0.15 0.01 0.13 0.19

 3 200 AR_AA 200 0.80 0.03 0.70 0.86
 AR_AB 200 -0.00 0.02 -0.07 0.07
 AR_AC 200 -0.00 0.02 -0.05 0.06
 AR_BA 200 0.20 0.02 0.14 0.25
 AR_BB 200 0.59 0.03 0.49 0.67
 AR_BC 200 -0.00 0.02 -0.04 0.05
 AR_CA 200 0.10 0.02 0.05 0.14
 AR_CB 200 0.30 0.02 0.24 0.37
 AR_CC 200 0.45 0.02 0.39 0.50
 ResCovAA 200 0.20 0.01 0.18 0.23
 ResCovAB 200 0.00 0.01 -0.02 0.02
 ResCovAC 200 0.00 0.01 -0.01 0.02
 ResCovBA 200 0.00 0.01 -0.02 0.02
 ResCovBB 200 0.20 0.01 0.18 0.22
 ResCovBC 200 0.00 0.01 -0.01 0.02
 ResCovCA 200 0.00 0.01 -0.01 0.02
 ResCovCB 200 0.00 0.01 -0.01 0.02
 ResCovCC 200 0.15 0.01 0.13 0.17

228 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

��'� ���� ����!��"����������(��������	�)����*����������

��������
�����������	���������

Autocorrelation is a nuisance condition that, when left uncontrolled, biases the outcome of ordinary
least squares procedures. Neter, Wasserman, and Kutner (1989) identify several problems this
condition causes, including the inefficiency of estimated regression coefficients, and an
underestimation of the error variances and the standard deviation of the estimated regression
coefficients. A common approach to modeling autocorrelation is to identify and directly model the
process present in the data as a form of control. The residuals of the analysis, purified of the process,
may then be analyzed by the statistical procedure of choice.

PROC AUTOREG permits the researcher to conduct a regression analysis when autocorrelated errors
are present in the dependent variable data. The general case for a multiple regression model with a
first order autoregressive process running through the dependent variable takes the form

Yt = α + β1 X t1 + β2 X t2 + …+ βi X t i + φ1 εt–1 + ut

where φ1 εt–1 + ut is the AR1 process.

To understand how to generate data for PROC AUTOREG, it may be useful first to generate data for
multiple regression. Consider Program 9.5. This program generates data comprised of one criterion
variable and two predictor variables. Beta weights for each of the predictor variables on the criterion
variable are aggregated for 200 replications, and the results—the distributions of both statistics—are
summarized using PROC UNIVARIATE.

Program 9.5 Macro for Multiple Regression Data

/**/
/* This macro generates 200 replications of data comprised of two predictors and */
/* one criterion variable and aggregates the results. The squared Beta weight for */
/* predictor A is.35; for predictor B, .25. PROC UNIVARIATE is used to display the */
/* sampling distribution of each statistic. Match the squared Beta weights used to */
/* generate the data with the estimated Beta weights. */
/* */
/**/

OPTIONS LINESIZE=100 NONUMBER NODATE SPOOL ERASE NOSOURCE NOSOURCE2 NONOTES;

LIBNAME REG ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’;

%MACRO REG (REPS,N,ERR,BETA1,BETA2);
 %DO J=1 %TO &REPS;

DATA GENERATE&J;

 DO I=1 TO &N;

 A=RANNOR(-2); *** predictor a generated to have unit variance;
 B=RANNOR(-3); *** predictor b generated to have unit variance;
 *** weighted predictors a and b plus random error give y;
 Y=RANNOR(-6)*SQRT(&ERR) + A*SQRT(&BETA1) + B*SQRT(&BETA2);
 OUTPUT;
 END;

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 229

DATA GENERATE&J;SET GENERATE&J;

PROC REG NOPRINT OUTEST=GENERATE&J; *** proc reg outputs the beta coefficients;
 MODEL Y = A B/OUTSTB;
 RUN;

DATA GENERATE&J;SET GENERATE&J;KEEP A B A_SQ B_SQ;
A_SQ=A**2; B_SQ=B**2;OUTPUT;

DATA GENERATE&J;SET GENERATE&J;KEEP A_SQ B_SQ;

 PROC APPEND BASE=REG.RESULT1 (CNTLLEV=MEMBER);
 PROC DELETE DATA=GENERATE&J;

 %END;
%MEND REG;

 *** 200 reps, n= 500, .45= squared error, .35= beta a squared, .25= beta b squared;

%REG (200,500,.45,.30,.25);

DATA REG;SET REG.RESULT1;

PROC UNIVARIATE PLOT; VAR A_SQ B_SQ; *** proc univariate displays the distributions;

QUIT;

Output 9.5a Summary of 200 PROC REG Results for the Squared A Weight (Program 9.5)

 The UNIVARIATE Procedure
 Variable: A_SQ

 Moments

 N 204 Sum Weights 204
 Mean 0.29888145 Sum Observations 60.9718165
 Std Deviation 0.03284431 Variance 0.00107875
 Skewness 0.24515997 Kurtosis 0.64665644
 Uncorrected SS 18.4423311 Corrected SS 0.21898593
 Coeff Variation 10.9890745 Std Error Mean 0.00229956

 Stem Leaf # Boxplot
 42 8 1 0
 41
 40
 39
 38
 37 6 1 |
 36 449 3 |
 35 02344689 8 |
 34 12223333445668 14 |
 33 000345888 9 |
 32 011122233335567899 18 +-----+
 31 1112333455788999 16 | |
 30 0111111122333444455778899 25 | |
 29 0012222333334446667889999 25 *--+--*
 28 001123344445556667888888888899 30 | |
 27 00011333445555667 17 +-----+
 26 0444555668888 13 |
 25 333455556679999 15 |
 24 2346 4 |
 23 17 2 |
 22 8 1 |
 21 3 1 |
 20 3 1 0
 ----+----+----+----+----+----+
 Multiply Stem.Leaf by 10**-2

230 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 9.5b Summary of 200 PROC REG Results for the Squared B Weight (Program 9.5)

 The UNIVARIATE Procedure
 Variable: B_SQ

 Moments

 N 204 Sum Weights 204
 Mean 0.24926106 Sum Observations 50.8492569
 Std Deviation 0.03057254 Variance 0.00093468
 Skewness -0.0221854 Kurtosis -0.0808511
 Uncorrected SS 12.86448 Corrected SS 0.18974011
 Coeff Variation 12.2652701 Std Error Mean 0.00214051

 Stem Leaf # Boxplot
 34 2 1 0
 33
 32 0 1 |
 31 4 1 |
 30 45677 5 |
 29 0224446778889 13 |
 28 01122334589 11 |
 27 001222233334455557777889 24 +-----+
 26 0000222244456778888 19 | |
 25 0000111233345555577777799 25 | |
 24 0000111122233334445566677999 28 *--+--*
 23 0111222333444667777899999 25 +-----+
 22 001122234455667888999 21 |
 21 0024566679 10 |
 20 0223478 7 |
 19 0334789 7 |
 18 299 3 |
 17 347 3 |
 ----+----+----+----+----+---
 Multiply Stem.Leaf by 10**-2

Generating data in which the dependent variable is lagged involves using components of the
regression program previously presented (see Program 9.5). The criterion variable is
programmatically assembled by adding autoregressive data as the error component to the data for
each of the predictor variables, of course both having been modified by the respective Beta weights.
The autoregressive process is generated first; then the predictors and criterion variables are
generated. When the criterion variable is assembled using the predictor variables, the error
component is omitted (unlike Program 9.5). Instead, later in the program, the AR1 process data are
added to the incomplete criterion data. Program 9.6 shows how this is accomplished.

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 231

Program 9.6 Macro for Regression Data with AR1 Process in the Criterion Variable

/**/
/* THIS MACRO GENERATES 200 REPLICATIONS OF DATA COMPRISED OF TWO PREDICTORS AND */
/* ONE CRITERION VARIABLE. THE CRITERION VARIABLE HAS A LAG 1 AUTOREGRESSIVE */
/* PROCESS RUNNING THROUGH IT. THIS EXAMPLE DIRECTLY BUILDS UPON THE REGRESSION */
/* PROGRAM PRESENTED IN PROGRAM 9.5. THE SQUARED BETA WEIGHT FOR PREDICTOR A IS.35;*/
/* FOR PREDICTOR B, .25. THE AR1 COEFFICIENT IS EITHER .80 OR .20, DEPENDING UPON */
/* WHICH OF THE SIX CONDITIONS ARE EXAMINED. */
/* */
/**/

OPTIONS LINESIZE=100 NOSOURCE NOSOURCE2 NONOTES;

LIBNAME AUTOREG ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’;

%MACRO AUTOREG (REPS,N,RES,AR,ERR,BETA1,BETA2,SCENARI);
 %DO J=1 %TO &REPS;

DATA GENERATE&J;

 ARRAY SERIEA SERIEA1-SERIEA&N;

 SERIEA(1)=RANNOR(-1);

 DO J=2 TO &N;

 SERIEA(J)=RANNOR(-11)*SQRT(&RES) + SERIEA(J-1)*SQRT(&AR); *** ar1 process;

 END; KEEP SERIEA1-SERIEA&N;OUTPUT;

DATA GENERATE&J; SET GENERATE&J;
 PROC TRANSPOSE OUT=GENERATE&J; *** move the data from horizontal to vertical;

DATA GENERATE&J;SET GENERATE&J;ID=_N_;SERIESA=COL1;OUTPUT;DROP COL1 _NAME_;

DATA GENERATE;

 DO ID=1 TO &N;

 A=RANNOR(-2); *** predictor a generated to have unit variance;
 B=RANNOR(-3); *** predictor b generated to have unit variance;

 *** weighted predictors a and b - no error yet;
 Y=A*SQRT(&BETA1) + B*SQRT(&BETA2);

OUTPUT;
 END;

DATA GENERATE&J;MERGE GENERATE GENERATE&J;BY ID;

Y = Y + SERIESA*SQRT(&ERR);OUTPUT; *** add the ar1 process to the criterion;

DATA GENERATE&J;SET GENERATE&J;

PROC AUTOREG NOPRINT DATA=GENERATE&J OUTEST=GENERATE&J; *** produces estimates;
MODEL Y = A B / ALL NLAG=1 LAGDEP DW=1 DWPROB ;

232 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

DATA GENERATE&J;SET GENERATE&J;KEEP A B A_SQ B_SQ _A_1 AR1_SQ;
A_SQ=A**2; B_SQ=B**2; AR1_SQ=_A_1**2;_A_1=ABS(_A_1); OUTPUT; *** obtain square values;

DATA GENERATE&J;SET GENERATE&J;SCENARIO=&SCENARI;OUTPUT;
 KEEP A_SQ B_SQ AR1_SQ _A_1 A B SCENARIO;

 PROC APPEND BASE=AUTOREG.RESULT1 (CNTLLEV=MEMBER); *** accumulate the results;
 PROC DELETE DATA=GENERATE&J;

 %END;
%MEND AUTOREG;

%AUTOREG (200, 50,.80,.20,.45,.30,.25,1); *** parameters for six different conditions;
%AUTOREG (200,100,.80,.20,.45,.30,.25,2);
%AUTOREG (200,500,.80,.20,.45,.30,.25,3);
%AUTOREG (200, 50,.20,.80,.45,.30,.25,4);
%AUTOREG (200,100,.20,.80,.45,.30,.25,5);
%AUTOREG (200,500,.20,.80,.45,.30,.25,6);

DATA AUTOREG;SET AUTOREG.RESULT1; *** accessing the output file;

PROC SUMMARY PRINT VARDEF=N MAXDEC=2 FW=8; *** summarize results for six conditions;
 CLASS SCENARIO; *** summarizes results;
 VAR A_SQ B_SQ AR1_SQ _A_1 A B;

 ***** Scenario 1 (n= 50; Squared AR1 = .20) *****
 ***** Scenario 2 (n=100; Squared AR1 = .20) *****
 ***** Scenario 3 (n=500; Squared AR1 = .20) *****
 ***** Scenario 4 (n= 50; Squared AR1 = .80) *****
 ***** Scenario 5 (n=100; Squared AR1 = .80) *****
 ***** Scenario 6 (n=500; Squared AR1 = .80) *****

QUIT;

A review of the output associated with Program 9.6 (shown in Output 9.6) reveals that PROC
AUTOREG’s ability to estimate the Beta weight parameters was very accurate for all sample sizes
considered (50, 100, 500), though it must be noted that the squared Beta weight values were
moderately large (.30 and .25, respectively). As would be expected, the standard errors for Beta
weights estimated from the smaller samples were much wider than when N=500 (see Output 9.5a).

The results for the estimated lag 1 autoregressive coefficient, on the other hand, were not as invariant
to sample size, particularly when the autoregressive parameter was larger (.80). The estimated
autoregressive parameter of .80 was, on average, about .11 lower than the parameter value.
Conversely, at N=500, the estimate was very accurate. So a tentative review of the results suggests
that larger autoregressive coefficients are much more likely to be underestimated in practice when
the overall sample size is around 50 or lower. Identifying just how much higher sample size must be
for accurate autoregressive estimates under these conditions would require another study that intends
to map the estimated parameter space more thoroughly.

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 233

Output 9.6 Summary of 200 PROC AUTOREG Results (Program 9.6)

 ***** Scenario 1 (n= 50; Squared AR1 = .20) *****
 ***** Scenario 2 (n=100; Squared AR1 = .20) *****
 ***** Scenario 3 (n=500; Squared AR1 = .20) *****
 ***** Scenario 4 (n= 50; Squared AR1 = .80) *****
 ***** Scenario 5 (n=100; Squared AR1 = .80) *****
 ***** Scenario 6 (n=500; Squared AR1 = .80) *****

 The SUMMARY Procedure

 N
SCENARIO Obs Variable N Mean Std Dev Minimum Maximum
--
 1 200 A_SQ 200 0.30 0.10 0.08 0.63
 B_SQ 200 0.26 0.09 0.06 0.56
 AR1_SQ 200 0.18 0.10 0.00 0.47
 _A_1 200 0.40 0.13 0.07 0.68
 A 200 0.54 0.09 0.28 0.79
 B 200 0.50 0.09 0.25 0.75

 2 200 A_SQ 200 0.31 0.06 0.14 0.49
 B_SQ 200 0.25 0.05 0.13 0.43
 AR1_SQ 200 0.19 0.08 0.03 0.44
 _A_1 200 0.43 0.09 0.17 0.66
 A 200 0.55 0.06 0.38 0.70
 B 200 0.50 0.05 0.36 0.66

 3 200 A_SQ 200 0.30 0.03 0.23 0.37
 B_SQ 200 0.25 0.03 0.19 0.34
 AR1_SQ 200 0.20 0.03 0.09 0.30
 _A_1 200 0.44 0.04 0.29 0.54
 A 200 0.55 0.02 0.48 0.61
 B 200 0.50 0.03 0.44 0.58

 4 200 A_SQ 200 0.30 0.04 0.22 0.42
 B_SQ 200 0.25 0.03 0.16 0.36
 AR1_SQ 200 0.69 0.15 0.15 0.95
 _A_1 200 0.83 0.09 0.38 0.97
 A 200 0.55 0.03 0.47 0.65
 B 200 0.50 0.03 0.40 0.60

 5 200 A_SQ 200 0.30 0.03 0.24 0.38
 B_SQ 200 0.25 0.02 0.19 0.35
 AR1_SQ 200 0.75 0.09 0.47 0.92
 _A_1 200 0.86 0.05 0.68 0.96
 A 200 0.55 0.02 0.49 0.61
 B 200 0.50 0.02 0.44 0.59

 6 200 A_SQ 200 0.30 0.01 0.27 0.33
 B_SQ 200 0.25 0.01 0.23 0.28
 AR1_SQ 200 0.79 0.03 0.70 0.87
 _A_1 200 0.89 0.02 0.84 0.93
 A 200 0.55 0.01 0.52 0.58
 B 200 0.50 0.01 0.48 0.53
--

234 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

��+� ���� ���&!�������(�������
	�����,����

��������
����������������������-����������-��
����

One very common motive for a Monte Carlo study concerns answering the question, "To what extent
or under what conditions is it OK to assume that the violation of a statistical assumption is, in all
likelihood, inconsequential with respect to accurate parameter estimation?" Some Monte Carlo
studies are designed to explore whether modest violations of a statistical assumption make a
noteworthy difference with regard to the trust one may place in the accuracy of the statistical results.
Although ostensibly lofty at the outset, this motive is often very practical in nature, perhaps centering
on an applied problem.

In applied research, data seldom behave well enough to completely satisfy statistical assumptions.
Very often assumptions are violated to a modest degree, and without access to the population data,
the researcher is only positioned to guess whether the violation is severe enough to make parameter
estimation untrustworthy. The conclusions of Monte Carlo simulation studies offer very practical
insights regarding just how pronounced a violation may be before threatening the accuracy of
parameter estimation.

Consider, for example, the case in which a researcher desires to use multiple linear regression to
predict a dependent variable, the data for which was collected over time. When dependent variable
scores are collected over time, there is a great chance that the scores will be autocorrelated. This
possibility would concern a researcher intending to use ordinary linear regression, because this
procedure assumes that dependent variable scores are independent. In fact, statistical procedures exist
to forewarn the data analyst whether linear dependence in the serially collected scores is statistically
significant.

When dependent variable scores are autocorrelated to a statistically significant extent, the researcher
may still ask whether this will truly undermine an interpretation of the regression results. Neter,
Wasserman, and Kutner (1989) indicate that when dependent variable scores are autocorrelated, the
regression coefficients are still unbiased; however, they are inefficient and no longer have the
minimum variance property. The mean square error (MSE) may seriously misrepresent the variance
of the error terms. Moreover, the estimated standard error of the regression coefficients may be
inaccurate relative to the true standard deviation. This, in turn, diminishes the applicability of
confidence intervals and tests using t and F distributions.

Suppose a researcher is concerned about whether estimates are biased by the autocorrelation detected
in temporal data. Suppose further that the researcher plans a simulation study in which the
autoregressive parameter is systematically varied, while sample size and the Beta coefficients are
held constant. The researcher would want to choose a reasonably large sample size (for this analysis,
an N of 500 would be suitable) and reasonably large Beta coefficients (say, .30 and .25).

To sufficiently map the parameter space, the researcher would want to vary the size of the
autoregressive coefficient widely enough in this study to sufficiently accommodate research
situations encountered in practice. Suppose the researcher chose the values ranging from .00 to .75,
incrementing by .05 for a total of sixteen values. Starting with a value of .00 is very important
because this situation specifies that no autocorrelation exists, a condition by which other results may
be compared when judging the impact of the autoregression of the dependent variable scores. A
value of .75 is thought to be a pronounced degree of autoregression. More than likely, autocorrelation
this severe will make other regression results not interpretable, so no evident need exists to consider
any higher value.

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 235

Using the Monte Carlo Program 9.6, the researcher would have to modify the program to calculate
the mean square error before the correction for autocorrelation and after. The researcher would also
want to collect the standard errors for each Beta coefficient since, it too, is directly affected by the
violation of the assumption of independent scores. The program modified for this investigation is
Program 9.7.

Program 9.7 Monte Carlo Example of How Autocorrelation Affects Regression Results

/**/
/* This macro generates 200 replications of data comprised of two predictors and */
/* one criterion variable. The criterion variable has a lag 1 autoregressive */
/* process running through it. This example directly builds upon the regression */
/* program presented in Program 9.6. The squared Beta weight for predictor A is.35;*/
/* for predictor B, .25. The AR1 coefficient ranges from .00 to .75, depending upon */
/* which of the sixteen conditions are examined. */
/* */
/**/

OPTIONS LINESIZE=100 NOSOURCE NOSOURCE2 NONOTES;

LIBNAME AUTOREG ’C:\MY DOCUMENTS\MY SAS FILES\RESULTS’;

%MACRO AUTOREG (REPS,N,RES,AR,ERR,BETA1,BETA2,SCENARI);
 %DO J=1 %TO &REPS;

DATA GENERATE&J;

 ARRAY SERIEA SERIEA1-SERIEA&N;

 SERIEA(1)=RANNOR(-1);

 DO J=2 TO &N;

 SERIEA(J)=RANNOR(-11)*SQRT(&RES) + SERIEA(J-1)*SQRT(&AR); *** ar1 process;

 END; KEEP SERIEA1-SERIEA&N; OUTPUT;

DATA GENERATE&J; SET GENERATE&J;
 PROC TRANSPOSE OUT=GENERATE&J; *** move the data from horizontal to vertical;

DATA GENERATE&J; SET GENERATE&J; ID=_N_; SERIESA=COL1;OUTPUT; DROP COL1 _NAME_;

DATA GENERATE;

 DO ID=1 TO &N;

 A=RANNOR(-2); *** predictor a generated to have unit variance;
 B=RANNOR(-3); *** predictor b generated to have unit variance;

 *** weighted predictors a and b - no error yet;
 Y=A*SQRT(&BETA1) + B*SQRT(&BETA2);

OUTPUT;
 END;

DATA GENERATE&J; MERGE GENERATE GENERATE&J; BY ID;

AAR=A; BAR=B;
Y = Y + SERIESA*SQRT(&ERR); OUTPUT; *** add the ar1 process to the criterion;

DATA GENERATE&J; SET GENERATE&J;

 *** proc reg outputs the beta coefficients;

236 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

PROC REG DATA=GENERATE&J NOPRINT OUTEST=GENERATE ;
 MODEL Y = A B/OUTSTB OUTSEB;
 RUN;

 *** produces estimates;

PROC AUTOREG DATA=GENERATE&J NOPRINT OUTEST=GENERATE&J COVOUT;
 MODEL Y = AAR BAR / ALL NLAG=1 LAGDEP DW=1 DWPROB;

DATA GENERATEA; SET GENERATE;IF _N_=1; KEEP _RMSE_ A B MSE;
 MSE = _RMSE_**2; OUTPUT;

DATA GENERATEB; SET GENERATE; IF _N_=2; KEEP A B STERR_A STERR_B;
 STERR_A = A; STERR_B = B; OUTPUT;

DATA GENERATEB; SET GENERATEB; DROP A B;
DATA GENERATEA1; SET GENERATE&J; IF _N_=1; KEEP AAR BAR _A_1 _MSE_ AR_MSE;
 AR_MSE = _MSE_;OUTPUT;
DATA GENERATEB1; SET GENERATE&J; IF _N_=3; KEEP _STDERR_ STERRAAR;
 STERRAAR = _STDERR_; OUTPUT;
DATA GENERATEC1; SET GENERATE&J; IF _N_=4; KEEP _STDERR_ STERRBAR;
 STERRBAR = _STDERR_;OUTPUT;

DATA GENERATE&J;
MERGE GENERATEA1 GENERATEB1 GENERATEC1 GENERATEA GENERATEB;
KEEP A B A_SQ B_SQ AAR BAR AAR_SQ BAR_SQ _A_1 AR1_SQ
 MSE STERR_A STERR_B AR_MSE STERRAAR STERRBAR;

A_SQ=A**2; B_SQ=B**2; AAR_SQ=AAR**2; BAR_SQ=BAR**2; AR1_SQ=_A_1**2;
_A_1=ABS(_A_1);

LABEL A_SQ =’SQUARED BETA 1 WEIGHT WITH PROC REG’;
LABEL B_SQ =’SQUARED BETA 2 WEIGHT WITH PROC REG’;
LABEL AAR_SQ =’CORRECTED SQUARED BETA 1 WEIGHT WITH PROC AUTOREG’;
LABEL BAR_SQ =’CORRECTED SQUARED BETA 2 WEIGHT WITH PROC AUTOREG’;
LABEL A =’BETA WEIGHT 1 WITH PROC REG’;
LABEL B =’BETA WEIGHT 2 WITH PROC REG’;
LABEL AAR =’CORRECTED BETA WEIGHT 1 WITH PROC AUTOREG’;
LABEL BAR =’CORRECTED BETA WEIGHT 2 WITH PROC AUTOREG’;
LABEL _A_1 =’AUTOREGRESSION WEIGHT’;
LABEL AR1_SQ =’SQUARED AUTOREGRESSION WEIGHT’;
LABEL MSE =’PROC REG MEAN SQUARE ERROR’;
LABEL STERR_A =’BETA 1 STANDARD ERROR’;
LABEL STERR_B =’BETA 2 STANDARD ERROR’;
LABEL AR_MSE =’PROC AUTOREG MEAN SQUARE ERROR’;
LABEL STERRAAR =’CORRECTED BETA 1 STANDARD ERROR’;
LABEL STERRBAR =’CORRECTED BETA 2 STANDARD ERROR’;

 OUTPUT; *** obtain square values;

PROC DELETE DATA=GENERATEA1;
PROC DELETE DATA=GENERATEB1;
PROC DELETE DATA=GENERATEC1;
PROC DELETE DATA=GENERATEA;
PROC DELETE DATA=GENERATEB;

DATA GENERATE&J; SET GENERATE&J; SCENARIO=&SCENARI; OUTPUT;
 KEEP A B STERR_A STERR_B MSE A_SQ B_SQ
 AAR BAR STERRAAR STERRBAR AR_MSE _A_1 AAR_SQ BAR_SQ AR1_SQ SCENARIO;

 PROC APPEND BASE=AUTOREG.RESULT1 (CNTLLEV=MEMBER); *** accumulate the results;
 PROC DELETE DATA=GENERATE&J;

 %END;
%MEND AUTOREG;

%AUTOREG (200,500,1.0,.00,.45,.30,.25,01); *** parameters for sixteen conditions;
%AUTOREG (200,500,.95,.05,.45,.30,.25,02);
%AUTOREG (200,500,.90,.10,.45,.30,.25,03);
%AUTOREG (200,500,.85,.15,.45,.30,.25,04);

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 237

%AUTOREG (200,500,.80,.20,.45,.30,.25,05);
%AUTOREG (200,500,.75,.25,.45,.30,.25,06);
%AUTOREG (200,500,.70,.30,.45,.30,.25,07);
%AUTOREG (200,500,.65,.35,.45,.30,.25,08);
%AUTOREG (200,500,.60,.40,.45,.30,.25,09);
%AUTOREG (200,500,.55,.45,.45,.30,.25,10);
%AUTOREG (200,500,.50,.50,.45,.30,.25,11);
%AUTOREG (200,500,.45,.55,.45,.30,.25,12);
%AUTOREG (200,500,.40,.60,.45,.30,.25,13);
%AUTOREG (200,500,.35,.65,.45,.30,.25,14);
%AUTOREG (200,500,.30,.70,.45,.30,.25,15);
%AUTOREG (200,500,.25,.75,.45,.30,.25,16);

DATA AUTOREG; SET AUTOREG.RESULT1; *** accessing the output file;

PROC SUMMARY PRINT VARDEF=N MAXDEC=3 FW=8; *** summarize results for six conditions;
 CLASS SCENARIO; *** summarizes results;
 VAR A B STERR_A STERR_B MSE A_SQ B_SQ
 AAR BAR STERRAAR STERRBAR AR_MSE _A_1 AAR_SQ BAR_SQ AR1_SQ;
QUIT;

A review of the results displayed by the SUMMARY procedure (Output 9.7) reveals that no matter
how large the autoregression coefficient, the estimated Beta weights accurately represented the Beta
weight parameters used to generate the data, supporting what Neter, Wasserman and Kutner (1989)
indicate. This becomes clearer when examining the Squared Beta weights (.30 and .25, respectively),
also included in the summary. However, the standard errors for the regression parameters progressed
to be nearly twice as large as those estimated by the autoregression procedure (PROC AUTOREG) as
the autoregression coefficient increased. The results may be interpreted to suggest that so long as the
autoregression parameter is no higher than .20, the standard errors for the Beta weight coefficients
may be used, because in Scenario 5, AR1 = .20, and the corrected standard errors are but .025, which
may be rounded to .03.

The discrepancy between the MSE for the regression procedure (PROC REG) and the autoregression
procedure (PROC AUTOREG) is perhaps a bit wider for Scenario 5: the difference between 0.359
and 0.446. Still, the researcher may consider this discrepancy tolerable enough to yield acceptably
accurate estimates. The validity of the logic upon which this cutoff is based is of little consequence.
Ultimately, the researcher is responsible for deciding what cutoff is personally meaningful and
therefore tenable given the practical problem under study.

Output 9.7 Summary of Autoregression Simulation Study Results (Program 9.7)

The SUMMARY Procedure

 N
SCENARIO Obs Variable Label Mean

 1 200 A Beta Weight 1 with PROC REG 0.544
 B Beta Weight 2 with PROC REG 0.503
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.451
 A_SQ Squared Beta 1 Weight with PROC REG 0.297
 B_SQ Squared Beta 2 Weight with PROC REG 0.254
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.544
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.503
 StErrAAR Corrected Beta 1 Standard Error 0.030

238 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 9.7 Summary of Autoregression Simulation Study Results (Program 9.7) (continued)

 StErrBAR Corrected Beta 2 Standard Error 0.030
 AR_MSE Proc AUTOREG Mean Square Error 0.451
 _A_1 Autoregression Weight 0.035
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.297
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.254
 AR1_SQ Squared Autoregression Weight 0.002

 2 200 A Beta Weight 1 with PROC REG 0.544
 B Beta Weight 2 with PROC REG 0.500
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.448
 A_SQ Squared Beta 1 Weight with PROC REG 0.296
 B_SQ Squared Beta 2 Weight with PROC REG 0.251
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.542
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.500
 StErrAAR Corrected Beta 1 Standard Error 0.029
 StErrBAR Corrected Beta 2 Standard Error 0.029
 AR_MSE Proc AUTOREG Mean Square Error 0.427
 _A_1 Autoregression Weight 0.218
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.295
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.251
 AR1_SQ Squared Autoregression Weight 0.049

 3 200 A Beta Weight 1 with PROC REG 0.550
 B Beta Weight 2 with PROC REG 0.496
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.450
 A_SQ Squared Beta 1 Weight with PROC REG 0.304
 B_SQ Squared Beta 2 Weight with PROC REG 0.247
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.549
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.494
 StErrAAR Corrected Beta 1 Standard Error 0.027
 StErrBAR Corrected Beta 2 Standard Error 0.027
 AR_MSE Proc AUTOREG Mean Square Error 0.405
 _A_1 Autoregression Weight 0.316
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.302
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.245
 AR1_SQ Squared Autoregression Weight 0.102

 4 200 A Beta Weight 1 with PROC REG 0.545
 B Beta Weight 2 with PROC REG 0.500
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.447
 A_SQ Squared Beta 1 Weight with PROC REG 0.298
 B_SQ Squared Beta 2 Weight with PROC REG 0.251
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.546
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.498
 StErrAAR Corrected Beta 1 Standard Error 0.026
 StErrBAR Corrected Beta 2 Standard Error 0.026
 AR_MSE Proc AUTOREG Mean Square Error 0.382
 _A_1 Autoregression Weight 0.379
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.299
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.249
 AR1_SQ Squared Autoregression Weight 0.146

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 239

Output 9.7 Summary of Autoregression Simulation Study Results (Program 9.7) (continued)

 5 200 A Beta Weight 1 with PROC REG 0.549
 B Beta Weight 2 with PROC REG 0.498
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.446
 A_SQ Squared Beta 1 Weight with PROC REG 0.302
 B_SQ Squared Beta 2 Weight with PROC REG 0.249
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.548
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.498
 StErrAAR Corrected Beta 1 Standard Error 0.025
 StErrBAR Corrected Beta 2 Standard Error 0.025
 AR_MSE Proc AUTOREG Mean Square Error 0.359
 _A_1 Autoregression Weight 0.440
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.301
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.248
 AR1_SQ Squared Autoregression Weight 0.195

 6 200 A Beta Weight 1 with PROC REG 0.551
 B Beta Weight 2 with PROC REG 0.497
 StErr_A Beta 1 Standard Error 0.033
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.451
 A_SQ Squared Beta 1 Weight with PROC REG 0.309
 B_SQ Squared Beta 2 Weight with PROC REG 0.251
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.551
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.497
 StErrAAR Corrected Beta 1 Standard Error 0.023
 StErrBAR Corrected Beta 2 Standard Error 0.023
 AR_MSE Proc AUTOREG Mean Square Error 0.339
 _A_1 Autoregression Weight 0.497
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.308
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.250
 AR1_SQ Squared Autoregression Weight 0.248

 7 200 A Beta Weight 1 with PROC REG 0.546
 B Beta Weight 2 with PROC REG 0.503
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.451
 A_SQ Squared Beta 1 Weight with PROC REG 0.299
 B_SQ Squared Beta 2 Weight with PROC REG 0.254
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.547
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.500
 StErrAAR Corrected Beta 1 Standard Error 0.022
 StErrBAR Corrected Beta 2 Standard Error 0.022
 AR_MSE Proc AUTOREG Mean Square Error 0.316
 _A_1 Autoregression Weight 0.546
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.299
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.251
 AR1_SQ Squared Autoregression Weight 0.300

 8 200 A Beta Weight 1 with PROC REG 0.544
 B Beta Weight 2 with PROC REG 0.498
 StErr_A Beta 1 Standard Error 0.030

240 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 9.7 Summary of Autoregression Simulation Study Results (Program 9.7) (continued)

 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.449
 A_SQ Squared Beta 1 Weight with PROC REG 0.296
 B_SQ Squared Beta 2 Weight with PROC REG 0.249
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.545

 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.500
 StErrAAR Corrected Beta 1 Standard Error 0.021
 StErrBAR Corrected Beta 2 Standard Error 0.021
 AR_MSE Proc AUTOREG Mean Square Error 0.292
 _A_1 Autoregression Weight 0.590
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.297
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.250
 AR1_SQ Squared Autoregression Weight 0.349

 9 200 A Beta Weight 1 with PROC REG 0.549
 B Beta Weight 2 with PROC REG 0.499
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.447
 A_SQ Squared Beta 1 Weight with PROC REG 0.302
 B_SQ Squared Beta 2 Weight with PROC REG 0.250
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.547
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.500
 StErrAAR Corrected Beta 1 Standard Error 0.020
 StErrBAR Corrected Beta 2 Standard Error 0.020
 AR_MSE Proc AUTOREG Mean Square Error 0.269
 _A_1 Autoregression Weight 0.629
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.300
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.251
 AR1_SQ Squared Autoregression Weight 0.397

 10 200 A Beta Weight 1 with PROC REG 0.545
 B Beta Weight 2 with PROC REG 0.501
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.446
 A_SQ Squared Beta 1 Weight with PROC REG 0.298
 B_SQ Squared Beta 2 Weight with PROC REG 0.252
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.546
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.500
 StErrAAR Corrected Beta 1 Standard Error 0.019
 StErrBAR Corrected Beta 2 Standard Error 0.019
 AR_MSE Proc AUTOREG Mean Square Error 0.247
 _A_1 Autoregression Weight 0.666
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.299
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.250
 AR1_SQ Squared Autoregression Weight 0.445

 11 200 A Beta Weight 1 with PROC REG 0.544
 B Beta Weight 2 with PROC REG 0.501
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.449

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 241

Output 9.7 Summary of Autoregression Simulation Study Results (Program 9.7) (continued)

 A_SQ Squared Beta 1 Weight with PROC REG 0.297
 B_SQ Squared Beta 2 Weight with PROC REG 0.252
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.546
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.500
 StErrAAR Corrected Beta 1 Standard Error 0.017
 StErrBAR Corrected Beta 2 Standard Error 0.017
 AR_MSE Proc AUTOREG Mean Square Error 0.226
 _A_1 Autoregression Weight 0.703
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.298
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.251
 AR1_SQ Squared Autoregression Weight 0.496

 12 200 A Beta Weight 1 with PROC REG 0.547
 B Beta Weight 2 with PROC REG 0.499
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.441
 A_SQ Squared Beta 1 Weight with PROC REG 0.300
 B_SQ Squared Beta 2 Weight with PROC REG 0.250
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.547
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.500
 StErrAAR Corrected Beta 1 Standard Error 0.016
 StErrBAR Corrected Beta 2 Standard Error 0.016
 AR_MSE Proc AUTOREG Mean Square Error 0.202
 _A_1 Autoregression Weight 0.734
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.299
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.250
 AR1_SQ Squared Autoregression Weight 0.540

 13 200 A Beta Weight 1 with PROC REG 0.548
 B Beta Weight 2 with PROC REG 0.502
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.444
 A_SQ Squared Beta 1 Weight with PROC REG 0.301
 B_SQ Squared Beta 2 Weight with PROC REG 0.253
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.550
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.501
 StErrAAR Corrected Beta 1 Standard Error 0.015
 StErrBAR Corrected Beta 2 Standard Error 0.015
 AR_MSE Proc AUTOREG Mean Square Error 0.181
 _A_1 Autoregression Weight 0.767
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.302
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.251
 AR1_SQ Squared Autoregression Weight 0.588

 14 200 A Beta Weight 1 with PROC REG 0.548
 B Beta Weight 2 with PROC REG 0.499
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.442
 A_SQ Squared Beta 1 Weight with PROC REG 0.301
 B_SQ Squared Beta 2 Weight with PROC REG 0.250

242 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Output 9.7 Summary of Autoregression Simulation Study Results (Program 9.7) (continued)

 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.547
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.499
 StErrAAR Corrected Beta 1 Standard Error 0.014
 StErrBAR Corrected Beta 2 Standard Error 0.014
 AR_MSE Proc AUTOREG Mean Square Error 0.157
 _A_1 Autoregression Weight 0.801
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.300
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.249
 AR1_SQ Squared Autoregression Weight 0.642

 15 200 A Beta Weight 1 with PROC REG 0.543
 B Beta Weight 2 with PROC REG 0.501
 StErr_A Beta 1 Standard Error 0.030
 StErr_B Beta 2 Standard Error 0.030
 MSE Proc REG Mean Square Error 0.442
 A_SQ Squared Beta 1 Weight with PROC REG 0.296
 B_SQ Squared Beta 2 Weight with PROC REG 0.252
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.546
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.500
 StErrAAR Corrected Beta 1 Standard Error 0.013
 StErrBAR Corrected Beta 2 Standard Error 0.013
 AR_MSE Proc AUTOREG Mean Square Error 0.135
 _A_1 Autoregression Weight 0.831
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.298
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.250
 AR1_SQ Squared Autoregression Weight 0.691

 16 200 A Beta Weight 1 with PROC REG 0.547
 B Beta Weight 2 with PROC REG 0.497
 StErr_A Beta 1 Standard Error 0.029
 StErr_B Beta 2 Standard Error 0.029
 MSE Proc REG Mean Square Error 0.433
 A_SQ Squared Beta 1 Weight with PROC REG 0.300
 B_SQ Squared Beta 2 Weight with PROC REG 0.248
 AAR Corrected Beta Weight 1 with PROC AUTOREG 0.547
 BAR Corrected Beta Weight 2 with PROC AUTOREG 0.499
 StErrAAR Corrected Beta 1 Standard Error 0.011
 StErrBAR Corrected Beta 2 Standard Error 0.011
 AR_MSE Proc AUTOREG Mean Square Error 0.112
 _A_1 Autoregression Weight 0.859
 AAR_SQ Corrected Squared Beta 1 Weight with PROC AUTOREG 0.299
 BAR_SQ Corrected Squared Beta 2 Weight with PROC AUTOREG 0.249
 AR1_SQ Squared Autoregression Weight 0.738
--

Chapter 9 Modeling Time Series Processes with SAS/ETS Software 243

��.� �
������

In this chapter, the Monte Carlo simulation of time series data was considered, using SAS/ETS
procedures and generating functions. To demonstrate how SAS may be used to investigate theoretical
issues concerning time series statistical procedures, attention in this chapter was focused on
univariate and multivariate time series problems, followed by modeling time series processes in the
context of regression. These particular time series problems were discussed because they are three of
the more common types of procedures used in practice. A mini-simulation study was finally
presented to give researchers a sense of just how such a study would be implemented. The prevalent
use of time series procedures in some disciplines (e.g., economics and business) is well known, but
the application of these procedures could very well be extended to many other disciplines in which
they are currently not as popular. It is our hope that these examples will provide some foundation and
guidance for researchers interested in conducting Monte Carlo studies involving time series and
SAS/ETS procedures.

��/� -����������

Akaike, H. 1976. “Canonical Correlations Analysis of Time Series and the Use of an Information
Criterion.” In Advances and Case Studies in System Identification, ed. R. Mehra and D.
Lainiotis, 27-96. New York: Academic Press.

Box, G. E. P., and G. M. Jenkins. 1976. Time Series Analysis: Forecasting and Control. Oakland, CA:
Holden-Day.

Harvey, A. C. 1981. The Econometric Analysis of Time Series. New York: Halsted Press.

Moryson, M. 1998. Testing for Random Walk Coefficients in Regression and State Space Models. New
York: Physica-Verlag.

Neter, J., W. Wasserman, and M. H. Kutner. 1989. Applied Linear Regression Models. 2d ed. Burr Ridge,
IL: Irwin.

244 SAS for Monte Carlo Studies: A Guide for Quantitative Researchers

Index

�

��

accumulating statistics of interest 18
adjusted R2, computing 137
Akaike information criterion (AIC) 216
analyzing statistics of interest 19-21
ANOVA (analysis of variance)

effects of data non-normality (example)
129-135

testing robustness of 6
ANOVA procedure 133

NOPRINT option 133
OUTSTAT option 133

APPEND procedure 124, 159
AR (autoregressive) models 214-215

multivariate time series processes (example)
221-227

univariate time series processes (example)
218-221

ARIMA (autoregressive integrated moving-
average) models 215

ARIMA procedure 217-221
assessing model fit, SEM 146-160

descriptive indices and design considerations
146-147

design of Monte Carlo simulation 148-152
example program 152-160

assumption violations, assessing consequences of
5-6

autocorrelation 213
See also time series processes
correlated variables with, generating (example)

228-233
effects on regression results (example) 234-242

automating simulations with macros 100
full-time monitoring 103-105
Matching Birthdays solution (example) 101-103

AUTOREG procedure 216, 217
autocorrelation effects on regression results

(example) 237-242
generating correlated variables with

autocorrelated errors (example) 228, 231-233
autoregressive integrated moving-average

(ARIMA) models 215

�

�

autoregressive (AR) models 214-215
multivariate time series processes (example)

221-227
univariate time series processes (example)

218-221

��

benchmarking random number generators 44
bias in regression analysis (example) 136-142
Birthdays problem (example) 94-97

 macro solution to 101-103
bond ratings, random (example) 52-54

��

CALIS procedure 156
METHOD= option 156
OUTRAM= option 156

CALL routine for RANUNI 34-37
canonical correlation analysis 6
CAPABILITY procedure 95-96
car parking problem, solving (example) 105-115
Cholesky decomposition to variance-covariance

matrices 199, 207
CITIBASE procedure 217
classification error, simulating (example) 161-173

data source and model fitting 164
example program 165-173
experimental design 162-164
major issues 161-162

COMPUTAB procedure 217
conclusions from study results 22
congruential generator 26-27

See also random numbers, generating
CORR procedure 207
correcting sample R2 bias (example) 136-142
correlated variables with autocorrelated errors

(example) 228-233
correlation, asking questions about 12-13
correlation matrices, converting to covariance

matrices 87-89
correlation patterns, transforming variables into 17

246 Index

correlations between variables 71-72
deriving intermediate correlations 82-87
effects of data non-normality 80-82
normal distribution, deriving for 72-79

CORRTEST macro 30-34
counting simulations during execution 98-99
covariance matrices

converting to correlation matrices 87-89
covariance matrix reproduction 147
SEM example 150-151

covariance structure analysis 7
credit risk estimation (example) 185-199

investment-grade portfolio 194-197
uniform portfolio 197-199

CROSSVALIDATE option, DISCRIM procedure
169

��

data generation for Monte Carlo studies 16-17,
59-91

converting between correlation and covariance
matrices 87-89

mirroring sample characteristics 90
multivariate non-normal distribution 79-87
multivariate normal distribution 71-79
one variable, non-normal distribution 62-71
one variable, normal distribution 60-62

data non-normality, effects on Type I error rate
(example) 129-135

data normality, testing 6
PDA vs. LR performance 161

data transformation 17
DATASOURCE procedure 217
DATETIME function for simulation monitoring 99
default risk estimation (example) 179-185
descriptive model fit indices, SEM 146-147

design of Monte Carlo simulation 148-152
example program 152-160

designing Monte Carlo studies 13-16
dice, simulating (example) 2-4
discrete distribution, generating random numbers

from 51
See also RANTBL function

DISCRIM procedure 164, 169-171
CROSSVALIDATE option 169

discriminant analysis 6
distribution of potential financial losses

See VaR estimation
drawing conclusions from study results 22
dynamic regression models 216

��

empirical distribution of t-statistic, non-normal data
90

empirical probability theory 2-5
equal covariance matrices, PDA vs. LR 162
EQUIDST macro 27-29
estimation of credit risk (example) 185-199

investment-grade portfolio 194-197
uniform portfolio 197-199

estimation of default risk (example) 179-185
estimation of portfolio market risk (example)

199-210
execution of simulations, monitoring 98-99
execution time of random number generators 44
EXPAND procedure 217
exploratory factor analysis 7
Ezekiel formula 137

��

factor approach to estimating portfolio market risk
(example) 200

FACTOR procedure 140
finance-related Monte Carlo simulations 177-179,

211
credit risk, VaR estimation 185-199
default risk estimation 179-185
portfolio market risk, VaR estimation 199-210

Fleishman’s power transformation method 66-71
deriving coefficients for desired conditions

69-70
interaction with matrix decomposition procedure

80-82
FORECAST procedure 217
Fortran, Monte Carlo simulations in 7
full-time simulation monitoring 99

macros for 103-105

��

generalized lambda distribution (GLD) system
62-66

kurtosis, definition of 64
generating data for Monte Carlo studies 16-17,

59-91
converting between correlation and covariance

matrices 87-89
mirroring sample characteristics 90
multivariate non-normal distribution 79-87
multivariate normal distribution 71-79
one variable, non-normal distribution 62-71
one variable, normal distribution 60-62

Index 247

generating random numbers 25-57
See also RANNOR function
See also RANUNI function
generator performance 44
list of generators 39-41
normal and lognormal distributions (examples)

45-50
randomness requirement (CORRTEST macro)

30-34
RANTBL function 41, 51-57, 193
seed generation, RANUNI 34-37
seed generation, SEEDGEN 38
uniformity requirement (EQUIDST macro)

27-29
GLD (generalized lambda distribution) system

62-66
kurtosis, definition of 64

GPLOT procedure, graphing Parking Problem
(example) 109, 111

group membership, predicting
See classification error, simulating

��

height, random (example) 45-46
HLAG parameter, CORRTEST macro 30
holding companies, default risk estimation

(example) 179-185

	�

IML procedure
converting between correlation and covariance

matrices 88-89
deriving Fleishman coefficients 69-70
generating three correlated normal variables

(example) 74-76
population covariance matrix, SEM (example)

150-151
incremental fit indices 147-148
inter-variable correlations 71-72

deriving intermediate correlations 82-87
effects of data non-normality 80-82
normal distribution, deriving for 72-79

inter-variable relationship patterns, simulating 17
intermediate correlations, deriving 82-87
investment-grade portfolio, credit risk estimation

(example) 194-197

�

KEEP statement 159
kurtosis

See also non-normal distribution, sample data
from

definitions for 64
deriving coefficients for desired conditions

69-70

��

LIED (loss-in-event-of-default) rates 186
linear discriminant analysis

See PDA for classification
linearly transforming normally distributed data

mirroring sample characteristics 90
multivariate 71-79
one variable 60-62

LOAN procedure 217
Log window, display limit of 122
LOGISTIC procedure 164, 171-172
logistic regression

See LR for classification
lognormal random number distribution (example)

RANNOR function 46-50
RANTBL function 54-57

loss-in-event-of-default (LIED) rates 186
LR (logistic regression) for classification 161-173

data source and model fitting 164
example program 165-173
experimental design 162-164
major issues 161-162

��

MA (moving average) models 214-215
macro language 100
macro parameters 101
MACRO statement 101
macros

CORRTEST 30-34
EQUIDST 27-29
RMNC 76-79, 181
SEEDGEN 38
SERIAL 28
TMON 103-105
TMONST 103-105
variables in 101

macros for automating simulations 100
full-time monitoring with 103-105
Matching Birthdays solution (example) 101-103
Parking Problem (example) 105-115
simulating t-test with unequal population

variances 121-125
Mahalanobis distance 162
market risk estimation (example) 199-210
Matching Birthdays problem (example) 94-97

macro solution to 101-103

248 Index

matrix decomposition procedure
See inter-variable correlations

MEANS procedure, calculating Rényi's constant
(example) 113

METHOD= option, CALIS procedure 156
mirroring sample characteristics 90
misspecification, model (SEM example) 151-152
model fit assessment, SEM 146-160

descriptive indices and design considerations
146-147

design of Monte Carlo simulation 148-152
example program 152-160

model misspecification (SEM example) 151-152
MODEL procedure 217
monitoring simulations 98-99
Monte Carlo simulations

See also finance-related Monte Carlo
simulations

analyzing statistics 19-21
autocorrelation effects on regression results

(example) 234-242
automating 100
comparing R2 shrinkage formulas in regression

analysis 136-142
correlated variables with autocorrelated errors

(example) 228-233
data generation 59-91
defined 2-4
designing studies 13-16
drawing conclusions 22
effects of data non-normality on ANOVA

(example) 129-135
effects of unequal population variances on t-tests

(example) 118-129
Matching Birthdays problem, solving (example)

101-103
monitoring 98-99
multivariate time series processes (example)

221-227
Parking Problem, solving (example) 105-115
portability of 100
questions for 12
reasons for 4-7
reasons to use SAS System for 7-8
sample data, generating 16-17
simulating classification error with PDA and LR

(example) 161-173
simulation, defined 25
statistical techniques, implementing 17
statistics, obtaining and accumulating 18
steps in 94

structural equation modeling (SEM) 146-160
univariate time series processes (example) 218-

221
Moody's one-year default rates 184
Moody's speculative-grade default rate 187-188
MORTGAGE procedure 217
moving average (MA) models 214-215
MPRINT option 102
multiple regression data with serially correlated

disturbances 216
multiplicative congruential generator 27
multivariate non-normal distribution, sample data

from 79-87
deriving intermediate correlations 82-87
effects of non-normality on inter-variable

correlations 80-82
multivariate normal distribution 71-79

sample data, IML procedure for 74-76
sample data, RMNC macro for 76-79

multivariate techniques, Monte Carlo studies for
simulating classification error with PDA and LR

(example) 161-173
structural equation modeling (SEM) 146-160

multivariate time series processes (example)
221-227

�

Newton-Raphson method 83-84
non-normal distribution, effects on Type I error

rate (example) 129-135
non-normal distribution, sample data from

mirroring sample characteristics 90
multivariate 79-82
multivariate, deriving intermediate correlations

82-87
one variable, Fleishman's power transformation

66-71
one variable, GLD system 62-66

NOPRINT option, ANOVA procedure 133
normal distribution, sample data from

mirroring sample characteristics 90
multivariate 71-79
one variable 60-62

NORMAL function
See RANNOR function

normal random number distribution (example)
45-46

normality of data, testing 6
numbers, random

See random numbers, generating

Index 249

��

Olkin and Pratt formula 137
one variable, generating sample data for

mirroring sample characteristics 90
non-normal distribution, Fleishman’s power

transformation 66-71
non-normal distribution, GLD system 62-66
normal distribution 60-62

OUTRAM= option, CALIS procedure 156
OUTSTAT option, ANOVA procedure 133

��

pairwise intermediate correlations, deriving 83-85
parameters, macro 101
parametric statistics 5
Parking Problem, solving (example) 105-115
parsimony weighted model fit indices 147
PDA (predictive discriminant analysis) for

classification 161-173
data source and model fitting 164
example program 165-173
experimental design 162-164
major issues 161-162

PDLREG procedure 217
Pearson and sample distributions

analyzing 19-21
obtaining and accumulating 18

Pearson correlation coefficient distributions,
simulating 13-16

performance of random number generators 44
population correlation matrix

See inter-variable correlations
population covariance matrix, SEM example

150-151
population height, random (example) 45-46
population proportions, PDA vs. LR performance

162
population variances, assessing effects with

unequal (example) 118-129
design considerations and programming

approaches 119-121
SAS macro for 121-125
SAS/IML and SAS/STAT procedures for

125-129
portability of simulations 100
portfolio market risk estimation (example)

199-210
predictive discriminant analysis

See PDA for classification
PRINTTO procedure 122, 155
probability theory, empirical 2-5
pseudo-randomness 26

��

quasi-randomness 26
questions suitable for Monte Carlo simulations

12-13

��

R2 shrinkage formulas, comparing in regression
analysis 136-142

RANBIN function 40
RANCAU function 40
random normal variable generator

See RANNOR function
random numbers, generating 25-57

See also RANNOR function
See also RANUNI function
generator performance 44
list of generators 39-41
normal and lognormal distributions (examples)

45-50
randomness requirement (CORRTEST macro)

30-34
RANTBL function 40, 51-57, 193
seed generation, RANUNI 34-37
seed generation, SEEDGEN 38
uniformity requirement (EQUIDST macro)

27-29
randomness 30-34
RANEXP function 40, 44
RANGAM function 40
RANNOR function 16, 40

execution time 44
Fleishman’s method, non-normal conditions 67
generating univariate time series processes

(example) 218
lognormal random number distribution 46-50
sample data generation, one variable 60-62

RANPOI function 40
RANTBL function 40, 51-57

credit risk estimation (example) 193
lognormal random number distribution 54-57

RANTRI function 41
RANUNI function 26-27

execution time 44
generating seed values, function vs. CALL

34-37
GLD algorithm for non-normal conditions 65
randomness of 30-34
solving Matching Birthdays problem 94-97
syntax for 41
uniformity of 27-29

250 Index

REG procedure
autocorrelation effects on regression results

(example) 237-242
computing adjusted R2 137
generating correlated variables with

autocorrelated errors (example) 228-230
regression analysis (example) 141

regression, effects of autocorrelation (example)
234-242

relative model fit indices 147-148
Rényi's constant, solving for (example) 105-115
RETAIN statement 106
RMNC macro 76-79

default risk estimation (example) 181
RMSEA (root mean squared error of

approximation) 148
robustness, testing 5-6
rolling dice, simulating (example) 2-4

��

sample data, generating 16-17, 59-91
converting between correlation and covariance

matrices 87-89
mirroring sample characteristics 90
multivariate non-normal distribution 79-87
multivariate normal distribution 71-79
one variable, non-normal distribution 62-71
one variable, normal distribution 60-62

sample R2 bias in regression analysis (example)
136-142

sample size
considerations in simulations 13-16
PDA vs. LR performance 162
t-test Type I error rate and 120

sampling distributions, asking questions about 12-
13

SAS/ETS software 217
SAS/IML software 125-129
SAS macro language 100
SAS/STAT software 125-129
seed values (for random numbers) 26

generating with SEEDGEN 38
practical advice for setting 98

SEEDGEN macro 38
SEM (structural equation modeling) 7, 146-160

covariance matrices 150-151
descriptive model fit indices 146-147
design of Monte Carlo simulation 148-152
example program 152-160
model fit assessment, descriptive indices

146-147
model misspecification 151-152

SERIAL macro 28
serially correlated disturbances in multiple

regression data 216
severity of model misspecification (SEM example)

151-152
shapes, transforming data to specific 17
shrinkage formulas, comparing in regression

analysis 136-142
SIMLIN procedure 217
simulations, Monte Carlo

See Monte Carlo simulations
simulations of financial losses

See VaR estimation
skewness, specifying distribution

See non-normal distribution, sample data from
See normal distribution, sample data from

Smith formula 136
SPECTRA procedure 217
speed of random number generators 44
state space modeling 216
STATESPACE procedure 216, 217, 223-227
stationary times series data 214
statistics, obtaining and accumulating 18
stepwise approximation of theoretical distribution

51
See also RANTBL function

stochastic processes
See time series processes

stock prices, random (example)
RANNOR function 46-50
RANTBL function 54-57

structural equation modeling
See SEM

SUMMARY procedure 220, 226, 237
SYSLIN procedure 217

��

t-tests and t-statistic 119
computational aspects of 119
effects of unequal population variances on

(example) 118-129
empirical distribution of t-statistic, non-normal

data 90
theoretical probability theory 2, 4-5
theoretical sampling distributions, when

unavailable 6-7
TIME function to generate seed values 98
time series processes 213-243

autocorrelation effects on regression results
(example) 234-242

correlated variables with autocorrelated errors
(example) 228-233

methodology 213-216, 243

Index 251

multivariate, generating (example) 221-227
univariate, generating (example) 218-221

timing simulations during execution 98-99
TMON and TMONST macros 103-105
transforming data to desired shapes 17
transforming non-normally distributed data

mirroring sample characteristics 90
multivariate 79-82
multivariate, deriving intermediate correlations

82-87
one variable, Fleishman’s power transformation

66-71
one variable, GLD system 62-66

transforming normally distributed data
mirroring sample characteristics 90
multivariate 71-79
one variable 60-62

TRANSPOSE procedure 158
TSCSREG procedure 217
TTEST procedure 123, 125-127
Type I error rate

non-normality distribution effects 129-135
t-tests, effects of unequal population variances

118-129

��

unequal population variances, assessing effects of
(example) 118-129

design considerations and programming
approaches 119-121

SAS/IML and SAS/STAT procedures for 125-
129

SAS macro for 121-125
UNIFORM function

See RANUNI function
uniform portfolio, credit risk estimation (example)

197-199
uniform random number generation 25-57

See also RANNOR function
See also RANUNI function
generator performance 44
list of generators 39-41
normal and lognormal distributions (examples)

45-50
randomness requirement (CORRTEST macro)

30-34
RANTBL function 40, 51-57, 193
seed generation, RANUNI 34-37
seed generation, SEEDGEN 38
uniformity requirement (EQUIDST macro)

27-29
uniformity of random number generation 27-29

univariate non-normal distributions, sample data
from

Fleishman’s power transformation method
66-71

GLD system 62-66
univariate normal distributions, sample data from

60-62
UNIVARIATE procedure 228-229
univariate techniques, Monte Carlo studies for

comparing R2 shrinkage formulas in regression
analysis 136-142

effects of data non-normality on ANOVA
(example) 129-135

effects of unequal population variances on t-tests
(example) 118-129

univariate time series processes (example)
218-221

��

VaR (value-at-risk) estimation 178
credit risk (example) 185-199
portfolio market risk (example) 199-210

variability of sample correlation coefficients 12-13
variables

in macros 101
transforming into correlation patterns 17

��

Wherry formula 137

��

X11 procedure 217

