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Preface

This volume came into existence because of our long-held desire to produce a
“showcase” book on the ways in which complex statistical theories and methods
are actually applied in the real world. By “showcase,” we do not imply in any
way that this volume presents the best possible analyses or applications—any such
claim would only demonstrate grotesque lack of understanding of the complexity
and artistic nature of statistical analysis. The world’s top five statisticians, how-
ever selected, could never produce identical “solutions” to any real-life statistical
problem. Putting it differently, if they were all to arrive at the same answer, in the
usual mathematical sense, then the problem must be of a toy nature.

Just as objects displayed in a museum showcase are often collectibles from
various sources attracting different degrees of appreciation by different viewers,
readers of this volume may walk away with different degrees of intellectual stimu-
lation and satisfaction. Nevertheless, we have tried to provide something for almost
everyone. To put it another way, it would be difficult to find an individual, statis-
tician or otherwise, who could successfully deal with a real-life statistical problem
without having the frustration of dealing with missing data, or the need for some
sophistication in modeling and computation, or the urge, possibly subconscious,
to learn about underlying causal questions. The substantive areas touched upon
by the chapters in this volume are also wide-ranging, including astrophysics, biol-
ogy, economics, education, medicine, neuroscience, political science, psychology,
public policy, sociology, visual learning, and so forth. The Summary of Contents
below provides a more detailed account.

Like any showcase display, there is a general theme underlying the chapters in
this volume. Almost all the methods discussed in this volume benefited from the
incomplete-data perspective. This is certainly true for the counterfactual model for
causal inference, for multiple imputation, for the EM algorithm and more gener-
ally for data augmentation methods, for mixture modeling, for latent variables, for
Bayes hierarchical models, and so forth. Most of the chapters also share a common
feature in that out of the total of 31 chapters, 24 are authored or coauthored by Don-
ald Rubin’s students and grandstudents. Their names are indicated in the “family
tree” on page xix. Three of the remaining seven chapters are coauthored by Don’s
long-time collaborators: Guido Imbens, Rod Little, and Hal Stern. The remaining
four chapters are written by specially invited distinguished experts who are not part
of the “Rubin statistical family”: Sander Greenland, John Eltinge, Mike Tittering-
ton, and Brad Carlin. Each of these “outsiders” provides an overview article to lead

xiii



xiv PREFACE

the four parts of the volume. No matter how large any statistical family is, it is
obvious that readers will benefit from both within and between-family variability,
sometimes dominantly so by the latter.

The immediate motivation for this volume is to celebrate Don Rubin’s 60th
birthday, and it is scheduled to appear just in time for the 2004 Joint Statistical
Meetings in Toronto, during which Don will deliver the Fisher lecture. As his
students, we obviously wish to dedicate this volume to Don, whose enormous
contribution to statistics and impact on general quantitative scientific studies are
more than evident from the chapters presented in this volume. We checked the
Science Citation Index and found that his papers have been cited over 8,000 times—
but Don claims that what he really likes is that his ideas such as ignorability and
multiple imputation are so accepted that people use them without even citing him.1

(A quick look through Parts 3 and 4 of this volume, along with the reference list,
reveals that Bayes, and Metropolis are similarly honored but not cited by our
contributors.)

Indeed, Don’s work is so wide-ranging that it was not an easy task to come
up with an accurate but attractive title for this volume. Titles we considered
include “Blue-label Statistics (60 years): Sipping with Donald Rubin,” “Defenders
of Tobacco Companies: From R. A. Fisher to D. B. Rubin,” and so forth. We finally
settled on the current title, not as amusing as some of us would have liked, but
conveying the serious objective of this volume: to showcase a range of applications
and topics in applied statistics related to inference and missing data and to take
the reader to the frontiers of research in these areas.

Summary of Contents

Part 1: Causal inference and observational studies

Part 1 contains nine chapters, leading with Sander Greenland’s overview of three
common approaches to causal inference from observational studies. Greenland’s
chapter is followed with a chapter on the role of matching in observational stud-
ies, and a chapter reviewing the basics of the most popular method of perform-
ing matching, based on propensity scores, with illustrations using data from the
National Supported Work Demonstration and the Current Population Survey. Pro-
pensity score matching is in some ways as fundamental to observational studies
as randomization is to experimental studies, for it provides “the next to the best
thing”—a remarkably simple and effective method for reducing or even eliminat-
ing confounding factors when randomization is not possible or not used in the
design stage.

The next three chapters apply the propensity score method to three studies in
public health and economics: a Medicare cost-sharing and drug-spending study, an
infant health development study, and a Massachusetts lottery study. Along the way,

1For the record, it’s Rubin (1976) and Rubin (1978).
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these chapters also demonstrate how to use propensity score matching to construct
observational studies and to fix “broken experiments.” The seventh chapter of Part
1 shows how propensity scores can be extended to continuous treatments, and the
methods are applied to the aforementioned lottery study.

The eighth chapter provides an introduction to another popular method in causal
inference, the method of instrumental variables. The last chapter of Part 1 inves-
tigates the use of instrumental variables for dealing with “partially controlled”
studies, a rather difficult class of problems where extra caution is needed in order
to arrive at meaningful estimates for treatment effects. The fundamental concept
of “principal stratification” is introduced and illustrated with a study on the effec-
tiveness of a needle exchange program in reducing HIV transmission.

Part 2: Missing data modeling

The second part of the book begins with a review by John Eltinge of methods
used to adjust for nonresponse in government surveys. The next three chapters
provide three accounts of applications of multiple imputation, one of the most
popular methods for dealing with missing data, especially in the context of pro-
ducing public-use data files. The first of the three applications concerns the use of
multiple imputation for the purposes of bridging across changes in classification
systems, from the earliest application of multiple imputation for achieving com-
parability between 1970 and 1980 industry and occupation codes, to one of the
latest applications involving bridging the transition from single-race reporting to
multiple-race reporting in the 2000 Census.

The second of the three applications concerns the use of multiple imputation
for representing Census undercount, an extremely contentious issue due to the use
of census data in allocation of congressional seats and federal funding. The third
application touches on data confidentiality—another controversial issue that has
received much attention among the public and in government. Multiple imputation
provides a flexible framework for dealing with the conflict between confidentiality
and the informativeness of released data by replacing parts or all of the data with
synthetic imputations.

The remaining three chapters of Part 2 address design and estimation issues in
the presence of missing data. The first of the three investigates the “missing by
design” issue with the National Assessment of Educational Progress, an ongoing
collection of surveys of students (and teachers) in the U.S. that uses a matrix sam-
pling design to reduce the burden on each student—namely, different students are
administered different small subsets of a large collection of test items. The next
chapter presents models and computation methods for dealing with the problem
of missing data in estimating propensity scores, with application to the March of
Dimes observational study examining various effects of post-term birth versus term
birth on preteen development. The last chapter of Part 2 describes a convenient
method for diagnosing the sensitivity of inferences to nonignorability in missing
data modeling, a thorny but essential issue in almost any real-life missing-data
problem.
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Part 3: Statistical modeling and computation

The third part of the book begins with an overview by Mike Titterington of
modeling and computation, which between them cover much of applied statistics
nowadays. As Titterington notes, although the more cerebral activity of modeling
is rather different from the nuts-and-bolts issues of computation, the two lines of
research are in practice closely interwoven. General ideas of modeling are immedi-
ately worthwhile only if they are computationally feasible. On the other hand, the
need for fitting realistic models in complex settings (which essentially is the case
for most applied activities when we take them seriously) has been the strongest
stimulus for more advanced and statistical computational methods, the availability
of which in turn promote investigators to consider models beyond what are tra-
ditionally available (to a point that there is a growing concern that we fit more
complex models simply because we can).

The remaining chapters in Part 3 clearly demonstrate this interweaving, both
in methodological research and in practice. The second chapter proposes a class
of variance-component models for dealing with interactions between treatment
and pretreatment covariates, a problem motivated by several examples including
observational studies of the effects of redistricting and incumbency in electoral
systems in the United States. The next chapter investigates a novel “preclassifying”
method for dealing with the tricky computational issue of label-switching with
mixtures and other models with latent categories. The investigation involves both
the EM algorithm and Markov chain simulation, and the method is illustrated with
a well-known factor analysis in educational testing. The following chapter deals
with the complicated problem of modeling covariance and correlation matrices,
giving specific steps for a Markov chain simulation to fit the proposed models in a
variety of settings, and providing a detailed application to a repeated measurement
problem arising from a study of long-term neuropsychological impacts after head
trauma, using data from UCLA Brain Injury Research Center.

Part 3 continues with a new class of regression models for analyzing binary
outcomes, the “robit regression” model, which replaces the normal model under-
lying the probit regressions by the more robust (hence the term “robit”) t models.
The models are then fitted by the EM algorithm and several of its recent exten-
sions. The next two chapters detail how to use both the EM algorithm and Markov
chain simulation methods for fitting competing risk models and mixed-effect mod-
els, including generalized mixed-effect models and the so-called frailty models
for estimating hazard rates in survival analysis. Again, all methods are illustrated
in detail using simulated and real data sets. The concluding chapter of Part 3
provides a comprehensive overview and investigation of the sampling/importance
resampling algorithm for Bayesian and general computation.

Part 4: Applied Bayesian inference

The final part of the book begins with an entertaining survey by Brad Carlin
on the past, present, and future of applied Bayesian inference, followed by six
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chapters on how Bayesian methods are applied to address substantive questions
in natural and social sciences. The first study is an inference on emission lines
in high-energy astrophysics, based on photon counts collected by the Chandra
X-ray observatory. Carefully constructed and problem-specific hierarchical mod-
els are developed to handle the complex nature of the sources and the collection
process of the data. Complications include, but are not limited to, the mixing
of continuum and line emission sources, background contamination, restrictions
due to “effective area” and instruments, and absorption by interstellar or inter-
galactic media. The next chapter demonstrates how and why statistical modeling
should be integrated with scientific modeling in addressing substantive questions.
In studying a famous example from time series analysis—the dynamic of the Cana-
dian lynx population—a simple biological “prey-predator” type of model combined
with empirical time-series models provides a more realistic depiction of the lynx
population (with forecasts substantially outperforming previously proposed mod-
els), even without the availability of actual data on its prey, the snowshoe hare
population!

The next two chapters apply Bayesian methods for record linkage—the prob-
lem of matching subjects from different data files or even within the same data
file. The methods were originally developed for the purposes of linking various
governmental files, such as for estimating undercount by identifying individuals
who were counted in both the decennial Census and a Post-Enumeration Survey
and those who were only counted in one of the canvasses. However, as Chapter 29
demonstrates, the methods are also useful in identifying duplicates in anonymous
surveys. A case in point is the Los Angeles Women’s Health Risk Study, where
it was found that about 10% of surveyed prostitutes appeared more than once in
the data source because of the monetary incentive given for drawing blood, which
was necessary in order to estimate the prevalence of HIV and other diseases in
this population.

The next chapter discusses Bayesian inference for structural equation models
with incomplete data, as applied to a longitudinal study of rural families using
data from the Iowa Youth and Families Project. The final chapter of the book pro-
vides a fascinating framework, inspired by the Bayesian philosophy, for studying
a profound problem in visual learning, namely, how to model humans’ perceptual
transition over scale. For an image of, say, trees, at near distance, we perceive
individual leaves, including their edges and shapes. For the same image at far
distance, however, we only perceive a collective foliage impression, even though
the natural scene itself is the same. The proposed entropy-based framework pro-
vides an elegant theoretical explanation of this common-sense perception change.
More importantly, it leads to statistical methods for creating synthesized images by
effectively separating sparse structures from collective textures in natural images.
The pictures on the cover of this volume, supplied by Zijian Xu and Yingnian
Wu, show an illustrative comparison of sketch images at two different levels of
resolution.
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Casual inference and
observational studies
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An overview of methods
for causal inference from
observational studies

Sander Greenland1

1.1 Introduction

This chapter provides a brief overview of causal-inference methods found in the
health sciences. It is convenient to divide these methods into a few broad classes:
Those based on formal models of causation, especially potential outcomes; those
based on canonical considerations, in which causality is a property of an association
to be diagnosed by symptoms and signs; and those based on methodologic modeling.
These are by no means mutually exclusive approaches; for example, one may (though
need not) base a methodologic model on potential outcomes, and a canonical approach
may use modeling methods to address specific considerations. Rather, the categories
reflect historical traditions that until recently had only limited intersection.

1.2 Approaches based on causal models

Background: potential outcomes

Most statistical methods, from orthodox Neyman–Pearsonian testing to radical sub-
jective Bayesianism, have been labeled by their proponents as solutions to problems

1Departments of Epidemiology and Statistics, University of California, Los Angeles. The author is
grateful to Katherine Hoggatt, Andrew Gelman, James Robins, Marshall Joffe and Donald Rubin for
helpful comments.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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of inductive inference (Greenland, 1998), and causal inference may be classified
as a prominent (if not the major) problem of induction. It would then seem that
causal-inference methods ought to figure prominently in statistical theory and train-
ing. That this has not been so has been remarked on by other reviewers (Pearl,
2000). In fact, despite the long history of statistics up to that point, it was not
until the 1920s that a formal statistical model for causal inference was proposed
(Neyman, 1923), the first example of a potential-outcome model.

Skeptical that induction in general and causal inference in particular could be
given a sound logical basis, David Hume nonetheless captured the foundation of
potential-outcome models when he wrote:

“We may define a cause to be an object, followed by another, . . .where,
if the first object had not been, the second had never existed.” (Hume,
1748, p. 115)

A key aspect of this view of causation is its counterfactual element: It refers to how
a certain outcome event (the “second object,” or effect) would not have occurred
if, contrary to fact, an earlier event (the “first object,” or cause) had not occurred.
In this regard, it is no different from standard frequentist statistics (which refer
to sample realizations that might have occurred, but did not) and some forms of
competing-risk models (those involving a latent outcome that would have occurred,
but for the competing risk). This counterfactual view of causation was adopted by
numerous philosophers and scientists after Hume (e.g., Mill, 1843; Fisher, 1918;
Cox, 1958; Simon and Rescher, 1966; MacMahon and Pugh, 1967; Lewis, 1973).

The development of this view into a statistical theory for causal inference is
recounted by Rubin (1990), Greenland, Robin, and Pearl (1999), Greenland (2000),
and Pearl (2000). To describe that theory, suppose we wish to study the effect of an
intervention variable X with potential values (range) x1, . . . , xJ on a subsequent
outcome variable Y defined on an observational unit or a population. The theory
then supposes that there is a vector of potential outcomes y = (y(x1), . . . , y(xJ )),
such that if X = xj then Y = y(xj ); this vector is simply a mapping from the X
range to the Y range for the unit. To say that intervention xi causally affects Y
relative to intervention xj then means that y(xi) �= y(xj ); and the effect of inter-
vention xi relative to xj on Y is measured by y(xi)− y(xj ) or (if Y is strictly
positive) by y(xi)/y(xj ). Under this theory, assignment of a unit to a treatment
level xi is simply a choice of which coordinate of y to attempt to observe; regard-
less of assignment, the remaining coordinates are treated as existing pretreatment
covariates on which data are missing (Rubin, 1978a). Formally, if we define the
vector of potential treatments x = (x1, . . . , xJ ), with treatment indicators ri = 1 if
the unit is given treatment xi , 0 otherwise, and r = (r1, . . . , rJ ), then the actual
treatment given is xa = r′x and the actual outcome is ya = y(xa) = r′y. Viewing r
as the item-response vector for the items in y, causal inference under potential out-
comes can be seen as a special case of inference under item nonresponse in which
�iri = 0 or 1, that is, at most one item in y is observed per unit (Rubin, 1991).
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The theory extends to stochastic outcomes by replacing the y(xi) by probability
mass functions pi(y) (Greenland, 1987; Robins, 1988; Greenland, Robin, and Pearl,
1999), so the mapping is from X to the space of probability measures on Y . This
extension is embodied in the “set” or “do” calculus for causal actions (Pearl,
1995, 2000) described briefly below. The theory also extends to continuous X by
allowing the potential-outcome vector to be infinite-dimensional with coordinates
indexed by X, and components y(x) or px(y). Finally, the theory extends to
complex longitudinal data structures by allowing the treatments to be different
event histories or processes (Robins, 1987, 1997).

Limitations of potential-outcome models

The power and controversy of this formalization derives in part from defining
cause and effect in simple terms of interventions and potential outcomes, rather
than leaving them informal or obscure. Judged on the basis of the number and
breadth of applications, the potential-outcome approach is an unqualified success,
as contributions to the present volume attest. Nonetheless, because only one of the
treatments xi can be administered to a unit, for each unit at most one potential out-
come y(xi) will become an observable quantity; the rest will remain counterfactual,
and hence in some views less than scientific (Dawid, 2000). More specifically, the
approach has been criticized for including structural elements that are in principle
unidentifiable by randomized experiments alone. An example is the correlation
among potential outcomes: Because no two potential outcomes y(xi) and y(xj )
from distinct interventions xi �= xj can be observed on one unit, nothing about the
correlation of y(xi) and y(xj ) across units can be inferred from observing inter-
ventions and outcomes alone; the correlation becomes unobservable and hence by
some usage “metaphysical.”

This sort of problem has been presented as if it is a fatal flaw of potential out-
comes models (Dawid, 2000). Most commentators, however, regard such problems
as indicating inherent limits of inference on the basis of unrepeatable “black-
box” observation: For some questions, one must go beyond observations of unit
responses, to unit-specific investigation of the mechanisms of action (e.g., dissec-
tion and physiology). This need is familiar in industrial statistics in the context of
destructive testing, although controversy does not arise there because the mech-
anisms of action are usually well understood. The potential-outcomes approach
simply highlights the limits of what statistical analyses can show without back-
ground theory about causal mechanisms, even if treatment is randomized: standard
statistical analyses address only the magnitude of associations and the average
causal effects they represent, not the mechanisms underlying those effects.

Translating potential outcomes into statistical methodology

Among the earliest applications of potential outcomes were the randomization tests
for causal effects. These applications illustrate the transparency potential outcomes
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can bring to standard methods, and show their utility in revealing the assumptions
needed to give causal interpretations to standard statistical procedures.

Suppose we have N units indexed by n and we wish to test the strong (sharp)
null hypothesis that treatment X has no effect on Y for any unit, that is, for all
i, j, n, yn(xi) = yn(xj ). Under this null, the observed distribution of Y among the
N units would not differ from its observed value, regardless of how treatment is
allocated among the units. Consequently, given the treatment-allocation probabili-
ties (propensity scores), we may compute the exact null distribution of any measure
of differences among treatment groups. In doing so, we can and should keep the
marginal distribution of Y at its observed value, for with no treatment effect on Y ,
changes in treatment allocation cannot alter the marginal distribution of Y .

The classic examples of this reasoning are permutation tests based on uniform
allocation probabilities across units (simple randomization), such as Fisher’s exact
test (Cox and Hinkley, 1974, sec. 6.4). For these tests, the fixed Y -margin is often
viewed as a mysterious assumption by students, but can be easily deduced from the
potential-outcome formulation, with no need to appeal to obscure and controversial
conditionality principles (Greenland, 1991). Potential-outcome models can also be
used to derive classical confidence intervals (which involve nonnull hypotheses and
varying margins), superpopulation inferences (in which the N units are viewed as a
random sample from the actual population of interest), and posterior distributions
for causal effects of a randomized treatment (Robins, 1988; Rubin, 1978). The
models further reveal hidden assumptions and limitations of common procedures
for instrumental-variable estimation (Angrist, Imbens, and Rubin, 1996), for intent-
to-treat analyses (Goetghebeur and van Houwelingen, 1998), for separating direct
and indirect effects (Robins and Greenland, 1992, 1994; Frangakis and Rubin,
2002), for confounding identification (Greenland, Robins, and Pearl, 1999), for
estimating causation probabilities (Greenland and Robins, 2000), for handling time-
varying covariates (Robins, 1987, 1998; Robins et al., 1992), and for handling
time-varying outcomes (Robins, Greenland, and Hu, 1999a).

A case study: g-estimation

Potential-outcome models have contributed much more than conceptual clarifica-
tion. As documented elsewhere in this volume, they have been used extensively
by Rubin, his students, and his collaborators to develop novel statistical proce-
dures for estimating causal effects. Indeed, one defense of the approach is that it
stimulates insights which lead not only to the recognition of shortcomings of pre-
vious methods but also to development of new and more generally valid methods
(Wasserman, 2000).

Methods for modeling effects of time-varying treatment regimes (generalized
treatments, or “g-treatments”) provide a case study in which the potential-outcome
approach led to a very novel way of attacking an exceptionally difficult problem.
The difficulty arises because a time-varying regime may not only be influenced
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by antecedent causes of the outcome (which leads to familiar issues of confound-
ing) but may also influence later causes, which in turn may influence the regime.
Robins (1987) identified a recursive “g-computation” formula as central to mod-
eling treatment effects under these feedback conditions and derived nonparametric
tests on the basis of this formula (a special case of which was first described by
Morrison, 1985). These tests proved impractical beyond simple null-testing con-
texts, which led to the development of semiparametric modeling procedures for
inferences about time-varying treatment effects (Robins, 1998).

The earliest of these procedures were based on the structural-nested failure-
time model (SNFTM) for survival time Y (Robins, Blevins et al., 1992; Robins
and Greenland, 1994; Robins, 1998), a generalization of the strong accelerated-life
model (Cox and Oakes, 1984). Suppressing the unit subscript n, suppose a unit is
actually given fixed treatment X = xa and fails at time Ya = y(xa), the potential
outcome of the unit under X = xa . The basic accelerated-life model assumes the
survival time of the unit when given X = 0 instead would have been Y0 = exaβYa ,
where Y0 is the potential outcome of the unit under X = 0, and the factor exaβ is the
amount by which setting X = 0 would have expanded (if xaβ > 0) or contracted
(if xaβ < 0) survival time relative to setting X = xa .

Suppose now X could vary and the actual survival interval S = (0, Ya) is
partitioned into K successive intervals of length �t1, . . . , �tK , such that X = xk
in interval k, with a vector of covariates Z = zk in the interval. A basic SNFTM
for the survival time of the unit had X been held at zero over time is then Y0 =
�k exp(xkβ)�tk; the extension to a continuous treatment history x(t) is Y0 =∫
S

ex(t)βdt . The model is semiparametric insofar as the distribution of Y0 across
units is unspecified or incompletely specified, although this distribution may be
modeled as a function of covariates, for example, by a proportional-hazards model
for Y0.

Likelihood-based inference on β is unwieldy, but testing and estimation can
be easily done with a clever two-step procedure called g-estimation (Robins et al.,
1992; Robins and Greenland, 1994; Robins, 1998). To illustrate the basic idea,
assume no censoring of Y , no measurement error, and let Xk and Zk be the
treatment and covariate random variables for interval k. Then, under the model, a
hypothesized value βh for β produces for each unit a computable value Y0(βh) =
�k exp(xkβh)�tk for Y0. Next, suppose that for all k, Y0 and Xk are independent
given past treatment history X1, . . . , Xk−1 and covariate history Z1, . . . , Zk (as
would obtain if treatment were sequentially randomized given these histories). If
β = βh, then Y0(βh) = Y0 and so must be independent of Xk given the histories.
One may test this conditional independence of Y0(βh) and the Xk with any standard
method. For example, one could use a permutation test or some approximation
to one (such as the usual logrank test) stratified on histories; subject to further
modeling assumptions, one could instead use a test that the coefficient of Y0(βh)

is zero in a model for the regression of Xk on Y0(βh) and the histories. In either
case, α-level rejection of conditional independence of Xk and Y0(βh) implies α-
level rejection of β = βh, and the set of all βh not so rejected form a 1 − α
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confidence set for β. Furthermore, the random variable corresponding to the value
b for β that makes Y0(b) and the Xk conditionally independent is a consistent,
asymptotically normal estimator of β (Robins, 1998).

Of course, in observational studies, g-estimation shares all the usual limitations
of standard methods. The assignment mechanism is not known, so inferences are
only conditional on an uncertain assumption of “no sequential confounding”; more
precisely, that Y0 and the Xk are independent given the treatment and covariate
histories used for stratification or modeling of Y0 and the Xk . If this independence
is not assumed, then rejection of βh only entails that either β �= βh or that Y0

and the Xk are dependent given the histories (i.e., there is residual confounding).
Also, inferences are conditional on the form of the model being correct, which is
not likely to be exactly true, even if fit appears good. Nonetheless, as in many
standard testing contexts (such as the classical t-test), under broad conditions the
asymptotic size of the stratified test of the no-effect hypothesis β = 0 will not
exceed α if Y0 and the Xk are indeed independent given the histories (i.e., absent
residual confounding), even if the chosen SNFTM for Y0 is incorrect, although
the power of the test may be severely impaired by the model misspecification
(Robins, 1998). In light of this “null-robustness” property, g-null testing can be
viewed as a natural extension of classical null testing to time-varying treatment
comparisons.

If (as usual) censoring is present, g-estimation becomes more complex (Robins,
1998). As a simpler though more restrictive approach to censored longitudinal
data with time-varying treatments, one may fit a marginal structural model (MSM)
for the potential outcomes using a generalization of Horvitz–Thompson inverse-
probability-of-selection weighting (Robins, 1999; Hernan, Brumback, and Robins,
2001). Unlike standard time-dependent Cox models, both SNFTM and MSM fitting
require special attention to the censoring process, but make weaker assumptions
about that process. Thus their greater complexity is the price one must pay for the
generality of the procedures, for both can yield unconfounded effect estimates in
situations in which standard models appear to fit well but yield very biased results
(Robins et al., 1992; Robins and Greenland, 1994; Robins, Greenland, and Hu,
1999a; Hernan, Brumback, and Robins, 2001).

Other formal models of causation

Most statistical approaches to causal modeling incorporate elements formally equiv-
alent to potential outcomes (Pearl, 2000). For example, the sufficient-component
cause model found in epidemiology (Rothman and Greenland, 1998, Chapter 2) is
a potential-outcome model. In structural-equation models (SEMs), the component
equations can be interpreted as models for potential outcomes (Pearl, 1995, 2000),
as in the SNFTM example. The identification calculus based on graphical models
of causation (causal diagrams) has a direct mapping into the potential-outcomes
framework, and yields the g-computation algorithm as a by-product (Pearl, 1995).
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These and other connections are reviewed by Pearl (2000), and Greenland and
Brumback (2002).

It appears that causal models lacking a direct correspondence to potential out-
comes have yet to yield generally accepted statistical methodologies for causal
inference, at least within the health sciences. This may represent an inevitable state
of affairs arising from a counterfactual element at the core of all commonsense
or practical views of causation (Lewis, 1973; Pearl, 2000). Consider the prob-
lem of predictive causality: We can recast causal inferences about future events
as predictions conditional on specific intervention or treatment-choice events. The
choice of x for X is denoted “set X = x” in Pearl (1995) and “do X = x” in Pearl
(2000); the resulting collection of predictive probabilities P {Y = y|set(X = xi)}
or P {Y = y|do(X = xi)} is isomorphic to the set of stochastic potential out-
comes pi(y). As Hume (1748) and Lewis (1973) noted, for causal inferences
about past events, we are typically interested in questions of the form “what
would have happened if X had equaled xc rather than xa ,” where the alterna-
tive choice xc does not equal the actual choice xa and so must be counterfactual;
thus, consideration of potential outcomes seems inescapable when confronting his-
torical causal questions, a point conceded by thoughtful critics of counterfactuals
(Dawid, 2000).

1.3 Canonical inference

Some approaches to causal inference bypass definitional controversy by not basing
their methods on a formal causal model. The oldest of these approaches is traceable
to John Stuart Mill in his to attempt to lay out a system of inductive logic on the
basis of canons or rules, which causal associations were presumed to obey (Mill,
1843). Perhaps the most widely cited of such lists today are the Austin Bradford
Hill considerations (misnamed “criteria” by later writers) (Hill, 1965), which are
discussed critically in numerous sources (e.g., Koepsell and Weiss, 2003; Phillips
and Goodman, 2003; Rothman and Greenland, 1998, Chapter 2), and which will
be the focus here.

The canonical approach usually leaves terms like “cause” and “effect” as primi-
tives (formally undefined concepts) around which the self-evident canons are built,
much like axioms are built around the primitives of “set” and “is an element
of” in mathematics, although the terms may be defined in terms of potential out-
comes. Only the canon of proper temporal sequence (cause must precede effect)
is a necessary condition for causation. The remaining canons or considerations are
not necessary conditions; instead, they are like diagnostic symptoms or signs of
causation—that is, properties an association is assumed more likely to exhibit if
it is causal than if it is not (Hill, 1965; Susser, 1988, 1991). Thus, the canoni-
cal approach makes causal inference appear more akin to clinical judgment than
experimental science, although experimental evidence is among the considerations
(Hill, 1965; Rothman and Greenland, 1998, Chapter 2; Susser, 1991). Some of the
considerations (such as temporal sequence, association, dose–response or predicted
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gradient, and specificity) are empirical signs and thus subject to conventional sta-
tistical analysis; others (such as plausibility) refer to prior belief and thus (as with
disease symptoms) require elicitation, and could be used to construct priors for
Bayesian analysis.

The canonical approach is widely accepted in the health sciences, subject to
many variations in detail. Nonetheless, it has been criticized for its incompleteness
and informality, and the consequent poor fit it affords to the deductive or mathemat-
ical approaches familiar to classic science and statistics (Rothman and Greenland,
1998, Chapter 2). Although there have been some interesting attempts to reinforce
or reinterpret certain canons as empirical predictions of causal hypotheses (e.g.,
Susser, 1988; Weed, 1986; Weiss, 1981, 2002; Rosenbaum, 2002b), there is no
generally accepted mapping of the entire canonical approach into a coherent statis-
tical methodology; one simply uses standard statistical techniques to test whether
empirical canons are violated. For example, if the causal hypothesis linking X to Y
predicts a strictly increasing trend in Y with X, a test of this statistical prediction
may serve as a statistical criterion for determining whether the hypothesis fails the
dose–response canon. Such usage falls squarely in the falsificationist/frequentist
tradition of twentieth century statistics, but leaves unanswered most of the policy
questions that drive causal research (Phillips and Goodman, 2003).

1.4 Methodologic modeling
In the second half of the twentieth century, a third approach emerged from battles
over the policy implications of observational data, such as those concerning the
epidemiology of cigarette smoking and lung cancer. One begins with the idea that,
conditional on some set of concomitants or covariates Z, there is a population
association or relation between X and Y that is the target of inference, usually
because it is presumed to accurately reflect the effect of X on Y in that population
(as in the canonical approach, “cause” and “effect” may be left undefined or defined
in other terms such as potential outcomes). Observational and analytic shortcomings
then distort or bias estimates of this effect: Units may be selected for observation
in a nonrandom fashion; conditioning on additional unmeasured covariates U may
be essential for the X–Y association to approximate a causal effect; inappropriate
covariates may be entered into the analysis; components of X or Y or Z may not
be adequately measured; and so on.

One can parametrically model these methodologic shortcomings and derive
effect estimates on the basis of the models. If (as is usual) the data under analysis
cannot provide estimates of the methodologic parameters, one can fix the parame-
ters at specific values, estimate effects based on those values, and see how effect
estimates change as these values are varied (sensitivity analysis). One can also
assign the parameters prior to distributions on the basis of background informa-
tion, and summarize the effect estimates over these distributions (e.g., with the
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resulting posterior distribution). These ideas are well established in engineering
and policy research and are covered in many books, albeit in a wide variety of
forms and specialized applications. Little and Rubin (2002) focus on missing-data
problems; Eddy, Hasselblad, and Schachter (1992) focus on medical and health-risk
assessment; and Vose (2000) covers general risk assessment. Nonetheless, general
methodologic or bias modeling has only recently begun to appear in epidemiologic
research (Robins, Rotnitzky, and Scharfstein, 1999b; Graham, 2000; Gustafson,
2003; Lash and Fink, 2003; Phillips, 2003; Greenland, 2003), although more basic
sensitivity analyses have been employed sporadically since the 1950s (see Rothman
and Greenland, 1998, Chapter 19, for citations and an overview).

Consider again the problem of estimating the effect of X on Y , given a vector
of antecedent covariates Z. Standard approaches are based on estimating E(Y |x, z)
and taking the fitted (partial) regression of Y on X given Z as the effect of X on
Y . Usually a parametric model r(x, z;β) for E(Y |x, z) is fit and the coefficient
for X is taken as the effect (this approach is reflected in common terminology that
refers to such coefficients as “main effects”). The fitting is almost always done as if
(1) within levels of X and Z, the data are a simple random sample and any missing-
ness is completely at random, (2) the causal effect of X on Y is accurately reflected
by the association of X and Y given Z (i.e., there is no residual confounding—as
might be reasonable to assume if X were randomized within levels of Z), and
(3) X, Y , and Z are measured without error. But, in reality, (1) sampling and
missing-data probabilities may jointly depend on X, Y , and Z in an unknown
fashion, (2) conditioning on certain unmeasured (and possibly unknown) covari-
ates U might be essential for the association of X and Y to correspond to a causal
effect of X on Y , and (3) X, Y , and Z components may be mismeasured.

Let V = (X, Y, Z). One approach to sampling (selection) biases is to posit a
model s(v; σ) for the probability of selection given v, then use this model in the
analysis along with r(x, z;β), for example, by incorporating s(v; σ) into the like-
lihood function (Eddy, Hasselblad, and Schachter, 1992; Little and Rubin, 2002;
Gelman, Carlin, Stern, and Rubin, 2003) or by using s(v; σ)−1 as a weighting factor
(Robins, Rotnitzky, and Zhao, 1994; Robins, Rotnitzky, and Scharfstein, 1999b).
The joint parameter (β, σ ) is usually not fully identified from the data under anal-
ysis, so one must either posit various fixed values for σ and estimate β for each
chosen σ (sensitivity analysis), or else give (β, σ ) a prior density and conduct a
Bayesian analysis. A third approach, Monte-Carlo risk analysis or Monte-Carlo
sensitivity analysis (MCSA), repeatedly samples σ from its marginal prior, resam-
ples (bootstraps) the data, and reestimates β using the sampled σ and data; it then
gives the distribution of results obtained from this repeated sampling-estimation
cycle. MCSA can closely approximate Bayesian results under certain (though not
all) conditions (Greenland, 2001, 2004), most notably that β and σ are a priori
independent and the prior for β is vague. The basic selection-modeling methods
can be generalized (with many technical considerations) to handle missing data
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(Little and Rubin, 2002; Robins, Rotnitzky, and Zhao, 1994; Robins, Rotnitzky,
and Scharfstein, 1999b).

One approach to problem (2) is to model the joint distribution of U , V with a
parametric model p(u, v|β, γ ) = p(y|u, x, z, β)p(u, x, z|γ ). Again, one can esti-
mate β by likelihood-based or by weighting methods, but because U is unmeasured
(latent), the parameter (β, γ ) will not be fully identified from the data and so some
sort of sensitivity analysis or prior distribution will be needed (e.g., Yanagawa,
1984; Robins, Rotnitzky, and Scharfstein, 1999b; Greenland, 2003, 2004). Results
will depend heavily on the prior specification given U . For example, U may be a
specific unmeasured covariate (e.g., smoking status) with well studied relations to
X, Y , and Z, which affords straightforward Bayesian and MCSA analyses (Steen-
land and Greenland, 2004). On the other hand, U may represent an unspecified
aggregation of latent confounders, in which case the priors and hence inferences
are more uncertain (Greenland, 2003).

Next, suppose that the “true” variable vector V = (X, Y, Z) has the corre-
sponding measurement or surrogate W (a vector with subvectors corresponding to
measurements of components of X, Y , and Z). The measurement-error problem
(problem 3) can then be expressed as follows: For some or all units, at least one of
the V components is missing, but the measurement (subvector of W ) correspond-
ing to that missing V component is present. If enough units are observed with
both V and W complete, the problem can be handled by standard missing-data
methods. For example, given a model for the distribution of (V,W) one can use
likelihood-based methods (Little and Rubin, 2002), or impute V components where
absent and then fit the model r(x, z;β) for E(Y |x, z) to the completed data (Cole,
Chu, and Greenland, 2004), or fit the model to the complete records using weights
derived from all records using a model for missing-data patterns (Robins, Rot-
nitzky, and Zhao, 1994; Robins, Rotnitzky, and Scharfstein, 1999b). Alternatively,
there are many measurement-error correction procedures that directly modify β
estimates obtained by fitting the regression using W as if it were V ; this is usu-
ally accomplished with a model relating V to W fitted to the complete records
(Ruppert, Stefanski, and Carroll, 1995).

If a component of V is never observed on any unit (or, more practically, if there
are too few complete records to support large-sample missing-data or measurement-
error procedures), one may turn to latent-variable methods (Berkane, 1997). For
example, one could model the distribution of (V,W) or a sufficient factor from
that distribution by a parametric model; the unobserved components of V are the
latent variables in the model. The parameters will not be fully identified, however,
and sensitivity analysis or prior distributions will again be needed. In practice,
a realistic specification can become quite complex, with subsequent inferences
displaying extreme sensitivity to parameter constraints or prior distribution choices
(e.g., Greenland, 2004). Nonetheless, display of this sensitivity can help provide
an honest accounting for the large uncertainty that can be generated by apparently
modest and realistic error distributions.
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1.5 Conclusion

The three approaches described above represent separate historical streams rather
than distinct methodologies, and can be blended in various ways. For example,
methodologic models for confounding or randomization failure are often based on
potential outcomes; the result of any modeling exercise is simply one more input
to larger, informal judgments about causal relations; and those judgments may be
guided by canonical considerations. Insights and innovations in any approach can
thus benefit the entire process of causal inference, especially when that process
is seen as part of a larger context. Finally, other traditions or approaches (some
perhaps yet to be imagined) may contribute to the process. Hence, I would advise
against regarding any one approach or blending as a complete solution or algorithm
for problems of causal inference; the area remains one rich with open problems
and opportunities for innovation.





2

Matching in observational
studies

Paul R. Rosenbaum1

2.1 The role of matching in observational studies

In their review of methods for controlling bias in observational studies, Cochran
and Rubin (1973, p. 417–8) described the role of matching as follows:

An observational study differs from an experiment in that the random
assignment of treatments (i.e., agents, programs, procedures) to units is
absent. As has been pointed out by many writers since Fisher (1925),
this randomization is a powerful tool in that many systematic sources
of bias are made random. If randomization is absent, it is virtually
impossible in many practical circumstances to be convinced that the
estimates of the effects of treatments are in fact unbiased. This follows
because other variables that affect the dependent variable besides the
treatment may be differently distributed across treatment groups, and
thus any estimate of the treatment is confounded by these extraneous
x-variables. . . . In dealing with the presence of confounding variables,
a basic step in planning an observational study is to list the major
confounding variables, design the study to record them, and find some
method of removing or reducing the biases that they may cause. In
addition, it is useful to speculate about the size and direction of any

1Department of Statistics, University of Pennsylvania, Philadelphia, Pa. This work was supported
by a grant from the U.S. National Science Foundation.
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remaining biases. . . There are two principal strategies for reducing bias
in observational studies. In matching or matched sampling, the samples
are drawn from the populations in such a way that the distributions of
the confounding variables are similar in some respects in the samples.
Alternatively, random samples may be drawn, the estimates of the
treatment being adjusted by means of a model relating the dependent
variable y to the confounding variable x. . . .A third strategy is to
control bias due to the x-variables by both matched sampling and
statistical adjustment.

2.2 Why match?

Matching is used to accomplish several objectives.

Matched sampling. In matched sampling, there is a treated group of moderate size
and a large reservoir of potential controls, and some or all of the information
about the covariates x is available. However, additional information must be
collected at significant cost for subjects included in the study, perhaps their
responses y, or perhaps additional covariate information. In this case, cost
considerations may require some form of sampling of the large reservoir of
potential controls. In matched sampling, potential controls are drawn from the
reservoir to be similar to the treated group in terms of available covariates,
so the sampling process both reduces cost and begins to remove bias due
to x.

Matching increases robustness of model-based adjustments. Matching can be
used as a method for sampling controls or alternatively as an analytical
method that retains many or all available controls. In either case, model-
based adjustment of matched treated and control groups is more robust to
inaccuracies of the model than is model-based adjustment of unmatched
groups (Rubin, 1973b, 1979; Table 2 versus Table 3).

A persuasive method of adjustment. Matching attempts to compare the outcomes
y of treated and control subjects who were comparable in terms of the observed
covariates x before treatment. The success of matching is often indicated
in published reports by a table showing that the distribution of x is similar
for matched treated and control groups (e.g., Rosenbaum and Rubin, 1985a;
Table 2). Nontechnical audience quickly grasp the importance of comparing
comparable subjects, and they also understand simple comparisons demon-
strating the groups are comparable, at least in terms of the observed covariates
x. In contrast, model-based adjustments that intend to accomplish the same
goal indirectly without matching may be far less persuasive to nontechni-
cal audiences, because those adjustments require more technical knowledge
to understand and appraise. Moreover, it is straightforward to present both
(i) matched analyses and (ii) model-based adjustment of matched analyses,
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and because the conclusions typically do not differ greatly, (i) may aid in
making (ii) palatable and plausible to nontechnical audiences.

Avoiding inappropriate comparisons. Even when data for potential controls are
available without cost, so that all controls may be used without sampling, it
may be wise to set aside the data for some potential controls. If a treatment
is typically given only to people who have some need of it, then the support
of the distribution of x for the treated group may be only a portion of
the support of the distribution of x in the general population of potential
controls. For instance, if the treated group consisted of children in the Head
Start program in a particular city, then all of these children would come from
low-income homes, while the untreated children in the same city would come
from homes with a wide range of incomes. Any attempt to estimate the effect
of Head Start on children from upper-income homes is pure extrapolation,
pure speculation. Moreover, when the reservoir of potential controls is many
times larger than the treated group, there is only a slight increase in the
standard error of an estimated effect owing to setting aside some controls
(Rosenbaum and Rubin, 1985a, p. 33). Two nice case studies illustrating this
point are Smith (1997) and Dehejia and Wahba (1999).

Aiding thick description. A thick description is a narrative account that would
attempt to make the reader feel familiar with the situation and acquainted with
individuals involved. Thick descriptions are common in the social sciences
(e.g., Athens, 1997; Bosk, 1981; Estroff, 1985; Katz, 1999) and are familiar
in medicine from the “Case Reports from the Massachusetts General Hos-
pital” published in the New England Journal of Medicine. The techniques
of qualitative research, such as thick description, are not easily combined
with model-based adjustments, because the parameters of the model do
not typically refer to intact human beings and the situations in which they
live. In contrast, it is straightforward to coordinate quantitative and narra-
tive accounts using matching. Moreover, such narrative investigations can
improve matching through deeper insight into the relationship between the
measured x and the underlying reality. See Rosenbaum and Silber (2001) for
discussion of this aspect of matching and a case study.

2.3 Two key issues: balance and structure

Matching is sometimes conceived as forming pairs of subjects, one treated, one
control, with nearly the same values of the observed covariates x; however, this
conception, or misconception, is a substantial handicap when using matching to
control bias. There are two key issues: covariate balance and the structure of
matched sets. The simulation study by Gu and Rosenbaum (1993) considered a
wide variety of issues and proposals, and concluded that balance and structure had
both the largest and most consistent effect on the quality of matched samples.
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Covariate balance using propensity scores

When x is of moderate to high dimension k—that is, when there are many covariates—
it will be difficult if not impossible to match most treated subjects to controls with
the same value of x. It is easy to see why. Imagine dividing each covariate into just
two levels, say above or below its median, and trying to match exactly for the level
of each of the k covariates. There will be 2k patterns of levels with a k-dimensional x,
or about a million patterns with k = 20 covariates. Even if one had thousands or tens
of thousands of potential controls available for matching, with k = 20 covariates, it
would be difficult to find a control to match the levels for many treated subjects—there
are too many patterns and too few controls. Moreover, with just two levels for each
covariate, even an exact match for the two levels formed from the covariates would
not be adequate to control bias from continuous covariates. Specifically, Cochran
(1968) found that four or five levels for each continuous covariate would be needed,
making matching for level much more difficult, with 420 .= 1012 or 520 = 9.5 × 1013

patterns for k = 20 covariates.
The alternative to closely matching individuals for x is to balance x, that is,

to form matched treated and control groups with similar distributions of x. More
precisely, write Z = 1 for a treated subject, Z = 0 for a control. Covariate balance
means that the observed covariates x and the treatment Z are conditionally inde-
pendent within matched sets. If there is covariate balance, then a treated subject,
Z = 1, may be matched to a control, Z = 0, with a different value of x, but their
two values of x will not help to identify the treated subject.

Covariate balance may be achieved by matching on a scalar, the propensity
score, as proposed by Rosenbaum and Rubin (1983a). The propensity score is the
conditional probability of exposure to treatment given the observed covariates, that
is, e (x) = Pr (Z = 1 |x ). They showed that

x | | Z | e (x) , (2.1)

where A | | B | C is Dawid’s (1979) notation for A is conditionally independent
of B given C. In other words, the covariates x may strongly predict who will
receive treatment, Z = 1, and who will receive control, Z = 0, but (2.1) asserts
that among subjects with the same value of the propensity score, e (x), the covari-
ates x no longer predict treatment assignment Z. Moreover, Rosenbaum and Rubin
(1983) also showed that if adjustments for the k-dimensional x suffices to permit
estimation of treatment effects, then adjustments for scalar propensity score e (x)
also suffices. Typically, the propensity score e (x) is estimated from a model, such
as a logit model, log

[
e (x) / {1 − e (x)}] = α + xT β, and then one matches on the

estimated propensity score or on xT β̂. Two case studies of matching or stratify-
ing on the propensity score are given by Rosenbaum and Rubin (1984, 1985a),
one balancing 20 covariates, the other balancing 74 covariates, using the scalar
estimated propensity score. Somewhat surprisingly, these case studies and some
theory shows that estimated propensity scores are slightly better than true propen-
sity scores at balancing covariates, apparently because estimated propensity scores
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cannot distinguish systematic imbalances from chance imbalances and the esti-
mated scores work to remove both. In a simulation, Gu and Rosenbaum (1993)
found that matching on the propensity score was much better than other multi-
variate matching methods, such as Mahalanobis metric matching, when there were
k = 20 covariates.

If the treatment, Z, has more than two versions, say several doses, but the con-
ditional distribution Pr (Z |x ) depends on x only through a function e (x), then e (x)
acts as a generalized propensity score, with parallel properties (Joffe and Rosen-
baum, 1999a, 1999b). For instance, if Z takes on ordinal values j = 0, 1, . . . , J ,
and Pr (Z |x ) follows McCullagh’s (1980) ordinal logit model,

log

[
Pr (Z ≥ j |x )

1 − Pr (Z ≥ j |x )
]

= αj + xT β, j = 0, 1, . . . , J,

then xT β has the key properties of the propensity score for the two treatment
levels described above. See Lu, Zanutto, Hornik, and Rosenbaum (2001) for an
application of this approach, and see Imbens (2000) for an alternative approach
with separate propensity scores for each level of Z.

For many treatments, the decision is to treat now or to wait and see, possibly
treating later. For instance, this is common with many surgical procedures, in which
the decision not to operate today does not foreclose the possibility of operating at a
future date. In this case, the treatment/control indicator Z (t) varies with time t ≥ 0
for each person, starting with Z (0) = 0, and possibly stepping up to Z (t) = 1 at
some later t > 0. The covariates x (t), too, may vary with time up to the moment of
treatment, and changes in the covariates may increase the chance of being switched
to treatment. In this case, one might match a subject newly treated at time t to
a similar subject still untreated at t . This is known as risk-set matching, where
the risk set resembles that in Cox’s proportional hazards model. If the hazard of
treatment varies as a function h {x (t)} of the observed covariates, x (t), then the
hazard h {x (t)} has properties similar to the propensity score. See Li, Propert, and
Rosenbaum (2001, §4) for detailed discussion.

Propensity scores can also be used in other ways. For instance, propensity
scores can be used in exact or approximate permutation inference, alone or in con-
junction with covariate adjustment (Rosenbaum, 1984a, 2002a). The reciprocal of
the propensity score may be used as a form of weighting adjustment (Rosenbaum,
1987a; Robins, Rotnitzky, and Zhao, 1995; Imbens, 2000).

Structure of matched sets

There are limits to what can be accomplished with pair matching, in which one
treated subject is matched to one control. Rubin (1973a, 1976b) provides formal
upper bounds on bias reduction with matched pairs using expected order statistics of
the covariates, but the intuition behind these bounds may be described briefly. For
simplicity, imagine just k = 1 covariate x, and two superimposed histograms: a red
histogram describing its distribution among treated subjects, and a blue histogram



20 MATCHING IN OBSERVATIONAL STUDIES—ROSENBAUM

describing its distribution in the reservoir of potential controls, where the height of
the histogram equals the number of subjects. If the reservoir of potential controls
is larger than the treated group, then the blue histogram will be higher than the
red histogram for at least some values of x. However, an exact pair matching for
x will exist only if the blue histogram is higher than the red for all values of x.
If the x’s for treated subjects tend to be larger than those for potential controls, if
the red histogram is higher than the blue one for large x, it may not be possible to
construct matched pairs that balance x even in the sense of equating their means.
Again, Rubin (1973a, 1976b) gives numerical values of these upper bounds on bias
reduction with pair matching. The problem does not disappear as the sample size
increases if the treated group and the reservoir of potential controls grow at the same
rate. When there are several covariates, k > 1, the same considerations apply with
histograms describing the distributions of scalar propensity scores. Generally, it is
unwise to overcome this problem by discarding treated subjects who are difficult
to match; see Rosenbaum and Rubin (1985b) who show that this “solution” creates
substantial problems of its own.

A second limitation of pair matching concerns efficiency. If data on controls
are inexpensive or free, it may be possible to closely match some treated subjects
to more than one control, thereby reducing sampling variability.

More flexible matching structures overcome these limitations. The form of
an optimal stratification is a full matching in which a matched set may contain
one treated subject and one or more controls, or one control and one or more
treated subjects (Rosenbaum, 1991). Where the blue histogram (for controls) is
above the red histogram (for treated subjects), treated subjects are matched to more
than one control, whereas where the red histogram is above the blue histogram,
control subjects are matched to more than one treated subject. Provided the two
distributions have the same support, as the sample size increases, full matching
can remove all of the bias due to x, and it can use as many controls as desired.
The analysis of data from a full matching is only slightly more complex than the
analysis from a pair matching; it must take account of the varied sample sizes in
distinct matched sets. In a simulation, Gu and Rosenbaum (1993) found that full
matching was much better than pair matching or matching with a fixed number of
controls.

When matching with multiple controls, Ming and Rosenbaum (2000) calculated
upper bounds on bias reductions similar to Rubin’s (1973a, 1976b) for pair match-
ing. They found substantially greater bias reduction when the number of controls
is allowed to vary from set to set than when that number is fixed, the same for all
sets. Tables 2.1–2.2 present an illustration adapted from the case–control study of
mortality after surgery by Silber et al. (2001). Deaths following surgery were opti-
mally matched to survivors using estimated probability of death based on baseline
covariates measured upon admission to the hospital. The estimated probabilities of
death were from a model predicting mortality from baseline covariates and fitted
to separate data from previous years. Table 2.1 shows the estimated mortality risks
for the first five matched sets, matching three survivors to each death. Some of the
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Set Death Survivors

1 .034 .034, .034, .034
2 .274 .141, .114, .104
3 .227 .194, .158, .150
4 .024 .024, .024, .024
5 .485 .439, .198, .155

Table 2.1 Optimal matching with three controls: risk scores for the first five
matched sets. Source: Ming and Rosenbaum (2000), Biometrics.

Set Death Survivors

1 .034 .034, .034, .034, .034
2 .274 .216
3 .227 .218
4 .024 .024, .024, .024, .024
5 .485 .439

Table 2.2 Optimal matching with one to four controls: risk scores for the first five
matched sets. Source: Ming and Rosenbaum (2000), Biometrics.

matches are very poor: some of the people who died were at much higher risk than
their matched controls. In contrast, Table 2.2 shows the same first five matched
sets, optimally matched, but with variable set sizes, and the same total number of
controls in the complete matched sample. Here, the matching is much closer. Ming
and Rosenbaum (2000) also examine increases in variance owing to unequal rather
than equal set sizes, finding the gains in bias reduction are often large, while the
increases in variance are often small.

2.4 Additional issues

Matching algorithms

There is competition among treated subjects for the best control matches. The
control who is the best match for the first treated subject may also be the best match
for the second treated subject. Should that control be assigned to the first treated
subject or to the second or to someone else? Table 2.3 illustrates the problem, with
three treated subjects, three controls, and a table of covariate distances between
them. Control “a” is closest to all three treated subjects, α, β, and γ . A bad strategy
is a greedy algorithm: it picks the best match, sets that match aside, picks the best
from what is left, and so on. Here, greedy pairs (α, a) at a cost of 0, sets α and
a aside, then picks (β, b) at a cost of 5, and is forced to accept (γ, c) at a cost
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Controls
a b c

α 0 1 1

Treated β 1 5 6
γ 1 6 100

Table 2.3 A distance matrix between three treated subjects and three controls.

of 100, for an average cost per comparison of 35 = (0 + 5 + 100) /3. An optimal
match has (α, c), (β, b), (γ, a), for an average cost of 2.33 = (1 + 5 + 1) /3. An
optimal full matching does better still: it has (α, b, c) at a cost of 2 = 1 + 1 and
(β, γ, a) at a cost of 2 = 1 + 1, for a total cost of 1 = (1 + 1 + 1 + 1) /4.

Fast algorithms exist for optimal matching problems. See Rosenbaum (1989,
2002b, §11) for discussion of optimal matching in observational studies. See Bert-
sekas (1991) for good general algorithms, Fortran and C code. See Bergstralh,
Kosanke, and Jacobsen (1996) and Ming and Rosenbaum (2001) for implemen-
tations in SAS. Matching with doses, as in Lu, Zanutto, Hornik, and Rosenbaum
(2001), requires “nonbipartite matching” for which Derigs (1988) presents an algo-
rithm and Fortran code. An alternative general algorithm is available in C; see
Galil (1986).

Covariance adjustment of matched data

Rubin (1973b, 1979) found using simulations that covariance adjustment of matched
pairs was more efficient than matching alone and more robust to model misspeci-
fication than covariance adjustment alone. In particular, covariance adjustment of
matched pair differences consistently reduced bias, even when the covariance adjust-
ment model was wrong, but covariance adjustment alone sometimes increased the
bias compared to no adjustment when the model was wrong. Using propensity scores
in an appropriate way, it is possible to draw valid inferences even though the covari-
ance model is incorrect (Rosenbaum, 2002a).

Overmatching

Matched sampling builds adjustments for covariates into the research design. Unlike
analytical adjustments for covariates, adjustments that are built into the design are
difficult to undo at a later stage.

A covariate is a variable measured prior to treatment and hence unaffected by
the treatment. An outcome is measured after treatment and may be affected by the
treatment. If one adjusts for an outcome as if it were a covariate, the adjustment
itself may introduce a bias where none existed previously (Rosenbaum, 1984b;
Wainer, 1989). Matching on outcomes as if they were covariates is sometimes
called “overmatching,” but that term is not ideal because it does not emphasize
the important distinction between covariates and outcomes, and vaguely hints that



MATCHING IN OBSERVATIONAL STUDIES—ROSENBAUM 23

the number of covariates is important. In certain special situations, adjustments
for outcomes may confer benefits, reducing biases from important unobserved
covariates (see Rosenbaum, 1984b, §1.2 and §1.3 for examples and §3.6 for theory).

Although analyses that adjust one outcome for another are sometimes useful
for specific purposes, it is often best to maintain flexibility, to avoid building
those adjustments irrevocably into the research design, and to avoid matching on
outcomes. If needed, by applying analytical adjustments to matched pairs or sets,
some analyses can go on to adjust for certain outcomes, while other analyses refrain
from such adjustments.

Matching with two control groups

Matching removes or reduces visible bias from observed covariates, but those
biases are the tip of the iceberg. There may also be biases that cannot be seen in
the data from covariates that were not measured. Much of the effort in the design
and analysis of an observational study is devoted to addressing concerns about
possible hidden biases.

Perhaps the simplest and most common tactic is the use of two control groups
selected to systematically vary certain unobserved covariates (Campbell, 1969;
Rosenbaum, 1987b, 2002b, §8). That is, although a certain covariate u is not
measured, u is known to be substantially higher in one control group than in the
other. If the two control groups have similar outcomes, which are very different
from the outcomes in the treated group, then this is consistent with a treatment
effect as opposed to bias from u, whereas substantial differences in outcomes
between the two control groups cannot be explained as a treatment effect and are
consistent with bias from u.

An interesting example is found in Card and Krueger’s (1994) study of the
effects of the minimum wage on employment in the fast food industry. On April 1,
1992, New Jersey raised its minimum wage by about 20% from $4.25 per hour
to $5.05 per hour. Economic theory is generally understood to predict a decline
in consumption when prices are forced up, here a decline in employment among
minimum wage earners when the minimum wage is increased. Card and Krueger
looked at changes in employment at fast-food restaurants, such as Burger King or
Wendy’s, from the year before the wage increase to the year after, comparing New
Jersey to eastern Pennsylvania where the minimum wage remained at $4.25 per
hour. They found no sign of a decline in employment following the increase in
the minimum wage. In certain analyses, they used two control groups, that is two
groups of restaurants not required by law to materially increase wages. One control
group consisted of restaurants in Pennsylvania, the other consisted of restaurants
in New Jersey whose lowest wage was already at least $5.00 per hour. Although
Burger Kings are much the same throughout New Jersey and Pennsylvania they
are not identical, and one could raise concerns about either control group. For
example, taxes and regulations differ somewhat in New Jersey and Pennsylvania.
Also, Burger Kings in New Jersey paying the minimum wage are likely to be in
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different labor markets than Burger Kings in New Jersey paying substantially more
than the minimum wage—one thinks of the wealthy suburb of Princeton and the
poor city of Camden. However, Card and Krueger found similar results for both
control groups.

When two control groups are used to systematically vary an unobserved covari-
ate u, it is still important to control for observed covariates x. In Card and Krueger’s
study, one would like to compare Burger Kings to Burger Kings, Wendy’s to
Wendy’s, company owned restaurants to other company owned restaurants, restau-
rants open long hours to other restaurants open long hours, and so on. Matching
may be used to form an incomplete block design to compare the treated group
and the two control groups. Lu and Rosenbaum (2004) use Derigs’ (1988) Fortran
algorithm to construct optimal matched designs with two control groups, using
data from Card and Krueger to illustrate. For an algorithm in C, see Galil (1986).

Other tactics for addressing unobserved covariates, such as sensitivity anal-
yses, known effects, and coherence are discussed in Rosenbaum (2002b, §4-§9,
2003, 2004).
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Estimating causal effects in
nonexperimental studies

Rajeev Dehejia1

3.1 Introduction

This chapter discusses the use of propensity score methods to estimate causal effects
in nonexperimental studies. Statisticians and social scientists have studied this ques-
tion since at least the early part of the twentieth century, and it remains a central
question even today. Though a randomized experiment is the gold standard in esti-
mating treatment effects, there are many settings in which an experiment cannot be
performed, owing to cost limitations or an obligation to provide treatment or because
evaluation is undertaken after the treatment program has already been offered. In such
settings, evaluation of the treatment effect is undertaken using a nonexperimental
comparison group, in addition to individuals who have received the treatment.

The fundamental difficulty in estimating the treatment effect in an observational
study, as noted in Rubin (1974), is controlling for those pretreatment variables that
determine assignment to treatment and that affect the outcome of interest. These
variables can be of two types: those that are observed by the researcher and those
that are not observed. The methods discussed in this chapter deal exclusively
with controlling for the former. Methods that deal with unobservable differences
between the treatment and the comparison group are discussed in Imbens and
Angrist (1992) and Angrist, Imbens, and Rubin (1996).

1Department of Economics and SIPA, Columbia University, New York. I am grateful to Don Rubin
for his support, suggestions, and encouragement over the last 10 years. His energy, ideas, and creativity
have been inspirational.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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The key insight for estimating treatment effects in nonexperimental settings,
when assignment to treatment is based on observed variables, is identified in Rubin
(1978a): conditional on the pretreatment covariates that determine assignment to
treatment, assignment to treatment is essentially random. When there are only a few
relevant variables, this provides a simple means of estimating the treatment effect:
by matching or grouping observations on the basis of pretreatment covariates,
estimating the treatment effect within each group, and then averaging over these
treatment effects to obtain the overall treatment effect.

The difficulty with implementing this strategy in practice is that in many set-
tings of interest there are a large number of variables that determine assignment
to treatment. Controlling for a high-dimensioned set of pretreatment covariates
poses several difficulties: (i) matching or grouping requires a metric or rule to
order the covariates, (ii) matching has been shown to be inconsistent when there
are four or more continuous covariates (Abadie and Imbens, 2002), (iii) standard
nonparametric methods encounter the curse of dimensionality, and (iv) standard
regression-based methods linearly extrapolate between the treatment and compar-
ison groups and typically (though not necessarily) assume a constant treatment
effect.

The central contribution of Rosenbaum and Rubin (1983a) is to provide a
means of eschewing the higher-dimensional issues discussed above by focusing on
a uni-dimensional summary of the pretreatment covariates, namely the propensity
score. By estimating the propensity score, one can (i) check the balance between
the treatment and comparison groups in terms of pretreatment covariates, (ii) create
a comparison group that is well balanced in the same sense, and (iii) provided that
assignment to treatment is based on the observed covariates, obtain an unbiased
estimate of the treatment effect.

In this chapter, I illustrate the use of propensity score methods by applying
them to a widely studied data set constructed by Lalonde (1986) (see also Heck-
man and Hotz, 1989; Dehejia and Wahba 1999, 2002). Lalonde combined data from
the National Supported Work (NSW) Demonstration, a randomized trial described
below, with data from two nonexperimental comparison groups. The random-
ized trial provides a benchmark estimate of the treatment effect. By combining
the experimental treatment group with the nonexperimental comparison groups,
Lalonde was able to evaluate the efficacy of a range of nonexperimental estima-
tors. His finding was that in general nonexperimental methods do not succeed in
robustly replicating the benchmark experimental estimate. Lalonde’s result was one
among many within economics, the social sciences, and statistics that was influ-
ential in building a consensus for randomized trials as the key method to reliably
evaluate treatment effects. In this chapter, I reevaluate this finding by applying
propensity score methods to Lalonde’s data set.

Section 3.2 provides a concise, self-contained overview of propensity score
methods. Section 3.3 outlines a few salient features of the NSW Data. Section 3.4
presents estimates of the treatment effect. Section 3.5 concludes.
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3.2 Identifying and estimating the average
treatment effect

Identification

Let Y1i represent the value of the outcome when unit i is subject to regime 1
(called treatment), and Y0i the value of the outcome when unit i is exposed to
regime 0 (called control). Only one of Y0i or Y1i can be observed for any unit,
since we cannot observe the same unit under both treatment and control. Let
Ti be a treatment indicator (= 1 if exposed to treatment, = 0 otherwise). Then
the observed outcome for unit i is Yi = TiY1i + (1 − Ti)Y0i . The treatment effect
for unit i is τi = Y1i − Y0i . The average treatment effect for this population is:
τ = E(Y1i )− E(Y0i ), where the expectation is over the population of treated and
control individuals.

In an experimental setting, where assignment to treatment is randomized, the
treatment and control groups are randomly drawn from the same population. This
implies that {Y1i , Y0i ⊥⊥ Ti} (using Dawid’s (1979) notation, ⊥⊥ represents inde-
pendence), so that, for j = 0, 1:

E
(
Yji | Ti = 1

) = E (
Yji | Ti = 0

) = E (Yi | Ti = j) ,

and τ = E(Y1i)− E(Y0i) = E(Yi |Ti = 1)− E(Yi |Ti = 0), which is readily esti-
mated.

In a nonexperimental setting, this expression cannot be estimated directly since
Y0i is not observed for treated units. Assuming that assignment to treatment is
based on observable covariates, Xi , namely that {Y1i , Y0i ⊥⊥ Ti}|Xi (Rubin, 1974,
1977), we obtain:

E
(
Yji | Xi, Ti = 1

) = E (
Yji | Xi, Ti = 0

) = E (Yi | Xi, Ti = j) ,

for j = 0, 1. Conditional on the observables, Xi , there is no systematic pretreatment
difference between the groups assigned to treatment and control. This allows us to
identify the treatment effect:

τ = E{E (Yi |Xi, Ti = 1)− E (Yi |Xi, Ti = 0)}, (3.1)

where the outer expectation is over the distribution of X, namely the distribution
of preintervention variables.

One method for estimating the treatment effect that stems from (3.1) is esti-
mating E(Yi |Xi, Ti = 1) and E(Yi |Xi, Ti = 0) as two nonparametric equations.
This estimation strategy becomes difficult, however, if the covariates, Xi , are high
dimensional. The propensity score theorem provides an intermediate step:

Proposition 1 (Rosenbaum and Rubin, 1983a) Let p(Xi) be the probability of
unit i having been assigned to treatment, defined as p(Xi) ≡ p(Ti = 1|Xi) =
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E(Ti |Xi). Assume 0 < p(Xi) < 1, ∀Xi , and Pr(T1, T2, . . . Tn|X1, X2, . . . Xn) =∏
i=1,...,N p(Xi)

Ti (1 − p(Xi))(1−Ti ) for the N units in the sample. Then:

{(Y1i , Y0i ) ⊥⊥ Ti} | Xi ⇒ {(Y1i , Y0i ) ⊥⊥ Ti} | p(Xi).

If {(Y1i , Y0i ) ⊥⊥ Ti}|Xi and the assumptions of Proposition 1 hold, then:

τ = E{E (Yi |Ti = 1, p (Xi))− E (Yi |Ti = 0, p (Xi))}. (3.2)

The outer expectation is over the distribution of p(Xi), namely the propensity
score in the treated and control groups.

One intuition for the propensity score is that, whereas in equation (3.1) we are
trying to condition on X (intuitively, to find observations with similar covariates),
in equation (3.2) we are trying to condition just on the propensity score, because
the proposition implies that observations with the same propensity score have the
same distribution of the full vector of covariates X.

In an observational study, we are often interested in the treatment effect for the
treated group, rather than the overall average treatment effect. In our application,
the treatment group is selected from the population of interest, namely welfare
recipients eligible for the program. The (nonexperimental) comparison group is
drawn from a different population (in our application both the Current Population
Survey [CPS] and Panel Survey of Income Dynamics [PSID] are more represen-
tative of the general US population). Thus, the treatment effect we are trying to
identify is the average treatment effect for the treated population:

τ |T=1= E(Y1i |Ti = 1)− E(Y0i |Ti = 1). (3.3)

The arguments above are readily extended to identifying the treatment effect on
the treated:

τ |T=1= E {E (Yi |Ti = 1, p(Xi))− E (Yi |Ti = 0, p(Xi)) |Ti = 1} , (3.4)

where the outer expectation is over the distribution of p(Xi)|Ti = 1, namely the
distribution of the propensity score in the treated group.

The estimation strategy

Estimation is in two steps. First, we estimate the propensity score, separately for
each nonexperimental sample consisting of the experimental treatment units and
the specified set of comparison units (PSID or CPS). We use a logistic probability
model, but other standard models yield similar results. One issue is what func-
tional form of the preintervention variables to include in the logit. We rely on the
following proposition:
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Proposition 2 (Rosenbaum and Rubin, 1983) If p(Xi) is the propensity score,
then:

Xi ⊥⊥ Ti | p(Xi).
Proposition 2 asserts that, conditional on the propensity score, the covariates

are independent of assignment to treatment, so that, for observations with the
same propensity score, the distribution of covariates should be the same across
the treatment and comparison groups. Conditioning on the propensity score, each
individual has the same probability of assignment to treatment, as in a randomized
experiment.

We use this proposition to assess estimates of the propensity score. For any
given specification (we start by introducing the covariates linearly), we group obser-
vations into strata defined on the estimated propensity score and check whether
we succeed in balancing the covariates within each stratum. We use tests for the
statistical significance of differences in the distribution of covariates, focusing on
first and second moments (see Rosenbaum and Rubin, 1984). If there are no sig-
nificant differences between the two groups within each stratum, then we accept
the specification. If there are significant differences, we add higher-order terms and
interactions of the covariates until this condition is satisfied. Failure to satisfy this
condition under all specifications would lead to the conclusion that the treatment
and control groups do not overlap along all dimensions.

In the second step, given the estimated propensity score, we need to estimate
a univariate nonparametric regression E(Yi |Ti = j, p(Xi)), for j = 0, 1. We focus
on two simple methods for obtaining a flexible functional form, stratification, and
matching, but in principle one could use any of the standard array of nonparametric
techniques (e.g., see Härdle and Linton, 1994; Heckman, Ichimura, and Todd, 1997)
or weighting (see Hirano, Imbens, and Ridder, 2002).

With stratification, observations are sorted from lowest to highest estimated
propensity score. We discard the comparison units with an estimated propensity
score less than the minimum (or greater than the maximum) estimated propensity
score for treated units. The strata, defined on the estimated propensity score, are
chosen so that the covariates within each stratum are balanced across the treatment
and comparison units (we know such strata exist from step one). On the basis of
equations (3.2) and (3.4), within each stratum we take a difference in means of
the outcome between the treatment and comparison groups, and weight these by
the number of (treated) observations in each stratum. We also consider matching
on the propensity score. Each treatment unit is matched with replacement to the
comparison unit with the closest propensity score; the unmatched comparison units
are discarded (see Dehejia and Wahba, 2002 for more details; also Rubin, 1979).

3.3 The NSW data
The NSW was a US federally and privately funded program that aimed to pro-
vide work experience for individuals who had faced economic and social problems
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Sample No. of Age Education Black Hispanic No Married RE74 RE75
Obs Degree US$ US$

NSW:
Treated 185 25.81 10.35 0.84 0.059 0.71 0.19 2,096 1,532

(0.35) (0.10) (0.02) (0.01) (0.02) (0.02) (237) (156)

Control 260 25.05 10.09 0.83 0.1 0.83 0.15 2,107 1,267
(0.34) (0.08) (0.02) (0.02) (0.02) (0.02) (276) (151)

Comparison groups:a

PSID 2,490 34.85 12.11 0.25 0.032 0.31 0.87 19,429 19,063
[0.78] [0.23] [0.03] [0.01] [0.04] [0.03] [991] [1,002]

CPS 15,992 33.22 12.02 0.07 0.07 0.29 0.71 14,016 13,650
[0.81] [0.21] [0.02] [0.02] [0.03] [0.03] [705] [682]

Age = age in years; Education = number of years of schooling;
Black = 1 if black, 0 otherwise; Hispanic = 1 if Hispanic, 0 otherwise; Nodegree = 1
if no high school degree, 0 otherwise; Married = 1 if married, 0 otherwise;
REx = earnings in calendar year 19x.
aDefinition of Comparison Groups (Lalonde, 1986):
PSID: All male household heads less than 55 years old who did not classify
themselves as retired in 1975.
CPS: All CPS males less than 55 years of age.

Table 3.1 Sample means of characteristics for National Support Work Demonstra-
tion and comparison samples. (Standard errors in parentheses.) [Standard error on
difference in means with NSW subset/Treated in brackets.]

prior to enrollment in the program (see Hollister, Kemper, and Maynard, 1984;
Manpower Demonstration Research Corporation, 1983).2 Candidates for the experi-
ment were selected on the basis of eligibility criteria, and then were either randomly
assigned to, or excluded from, the training program. Table 3.1 provides the charac-
teristics of the sample we use, Lalonde’s male sample (185 treated and 260 control
observations).3 The table highlights the role of randomization: the distribution of

2Four groups were targeted: women on Aid to Families with Dependent Children (AFDC), former
addicts, former offenders, and young school dropouts. Several reports extensively document the NSW
program. For a general summary of the findings, see Manpower Demonstration Research Corporation
(1983).

3The data we use are a subsample of the data used in Lalonde (1986). The analysis in Lalonde
(1986) is based on one year of pretreatment earnings. But as Ashenfelter (1978), and Ashenfelter and
Card (1985) suggest, the use of more than one year of pretreatment earnings is key in accurately
estimating the treatment effect, because many people who volunteer for training programs experience
a drop (“Ashenfelter’s dip”) in their earnings just prior to entering the training program. Using the
Lalonde sample of 297 treated and 425 control units, we exclude the observations for which earnings
in 1974 could not be obtained, thus arriving at a reduced sample of 185 treated observations and 260
control observations. Because we obtain this subset by looking at pretreatment covariates, we do not
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the covariates for the treatment and control groups is not significantly different. We
use the two nonexperimental comparison groups constructed by Lalonde (1986),
drawn from the CPS and PSID.4

Table 3.1 presents the sample characteristics of the two comparison groups
and the treatment group. The differences are striking: the PSID and CPS sample
units are eight to nine years older than those in the NSW group; their ethnic
and racial composition is different; they have on average completed high school
degrees, while NSW participants were by and large high school dropouts; and,
most dramatically, pretreatment earnings are much higher, by more than 10, 000,
for the comparison units than for the treated units, by more than $10,000.

3.4 Propensity score estimates

Comparing the treatment and comparison samples

One of the simplest, and most powerful, uses of the propensity score is as a diag-
nostic on the quality of a nonexperimental comparison group. Whereas Table 3.1
convincingly established significant overall differences between the treatment and
comparison groups, the propensity score allows us to focus directly on the compar-
ison units that are not well matched with the treatment group. Using the method
outlined in Section 3.2, we estimate the propensity score for the two composite
samples (NSW-CPS and NSW-PSID), incorporating the covariates linearly and
with higher-order terms.5

Figures 3.1 and 3.2 provide a simple diagnostic on the data examined, plotting
the histograms of the estimated propensity scores for the NSW-CPS and NSW-
PSID samples. The histograms do not include the comparison units (11,168 units
for the CPS and 1,254 units for the PSID) whose estimated propensity score is less
than the minimum estimated propensity score for the treated units. Also, the first
bins of both diagrams contain most of the remaining comparison units (4,398 for
the CPS and 1,007 for the PSID). Hence, it is clear that very few of the comparison
units are similar to the treated units. In fact, one of the strengths of the propensity
score method is that it dramatically highlights this fact. On comparing the other
bins, we note that the number of comparison units in each bin is greater than or
(approximately) equal to the number of treated units in the NSW-CPS sample, but
in the NSW-PSID sample many of the upper bins have far more treated units than
comparison units.

disturb the balance in observed and unobserved characteristics between the experimental treated and
control groups. See Dehejia and Wahba (1999) for a comparison of the two samples.

4These are the CPS-1 and PSID-1 comparison groups from Lalonde’s paper.
5We use the following specifications for the propensity score. For the PSID, Prob(Ti = 1) =

F(age, age2, education, education2, married, no degree, black, Hispanic, RE74, RE75, RE742, RE752,
u74 × black). For the CPS, Prob(Ti = 1) = F(age, age2, education, education2, no degree, married,
black, Hispanic, RE74, RE75, u74, u75, educ × RE74, age3).
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Estimated p(Xj), 11,168 comparison units discarded, first bin contains 4,398 units

Figure 3.1 Histogram of estimated propensity score, National Support Work
Demonstration and Current Population Survey.

Estimating the treatment effect
We use stratification and matching on the propensity score to group the treatment
units with the comparison units whose estimated propensity scores are greater than
the minimum—or less than the maximum—propensity score for treatment units. We
estimate the treatment effect by summing the within-stratum difference in means
between the treatment and comparison observations (of earnings in 1978), where
the sum is weighted by the number of treated observations within each stratum
(Table 3.2, column (4)). An alternative is a within-stratum regression, again taking
a weighted sum over the strata (Table 3.2, column (5)). When the covariates are
well balanced, such a regression should have little effect, but it can help to eliminate
the remaining within-stratum differences. Likewise for matching, we can estimate
a difference in means between the treatment and matched comparison group for
earnings in 1978 (column (7)), and also perform a regression of 1978 earnings on
covariates (column (8)).

For comparison, in columns (1) and (2), we estimate the treatment effect using a
difference in means and a regression over the full sample.6 We also estimate a least

6We estimate a regression of the form,

Yi = α + βxi + δTi + εi ,



CAUSAL EFFECTS IN NONEXPERIMENTAL STUDIES—DEHEJIA 33

0
0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ol

id
-t

re
at

ed
, d

as
he

d-
co

nt
ro

l

Estimated p(Xj), 1,254 comparison units discarded, first bin contains 1,007 units

Figure 3.2 Histogram of estimated propensity score, National Support Work
Demonstration and Panel Survey of Income Dynamics.

squares regression of earnings in 1978 on a quadratic of the estimated propensity
score and a treatment indicator, for those observations used in stratification and
matching.

Table 3.2 presents the results. For the PSID sample, the stratification esti-
mate is $1,608 and the matching estimate is $1,691, compared to the benchmark
randomized-experiment estimate of $1,794. The estimates from a difference in
means or regression on the full sample are −$15,205 and $731. In columns (5)
and (8), controlling for covariates has little impact on the stratification and match-
ing estimates. Likewise for the CPS, the propensity-score-based estimates from the
CPS—$1,713 and $1,582—are much closer to the experimental benchmark than
estimates from the full comparison sample: −$8,498 and $972.

Column (3) in Table 3.2 illustrates the value of allowing both for a heteroge-
neous treatment effect and for a nonlinear functional form in the propensity score.
The estimators in columns (4) to (8) have both these characteristics, whereas in

where δ is the treatment effect and we include age, age2, education, no degree, black, Hispanic, RE74,
and RE75 as controls. We use the same covariates for within-stratum regressions and the post-matching
weighted regression.
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NSW Earnings Less NSW Treatment Earnings Less Comparison Group Earnings,
Comparison Group Propensity Score Estimates

Earnings Quadratic
in the Estimated Stratifying on the Matching on the

p-score Estimated p-score Estimated p-score
(1) (2) (3) (4) (5) (6) (7) (8)

Difference Regression Difference Regression [Observations]a Difference Regression
in Means Adjusted in Means Adjusted in Means Adjustedb

NSW 1794 1672
(633) (638)

PSID −15205 731 294 1608 1494 [1255] 1691 1473
(1154) (886) (1389) (1571) (1581) (2209) (809)

CPS −8498 972 1117 1713 1774 [4117] 1582 1616
(712) (550) (747) (1115) (1152) (1069) (751)

aNumber of observations refers to the actual number of comparison and treatment units
used for (3) to (5), namely all treatment units and those comparison units whose estimated
propensity score is greater than the minimum, and less than the maximum, estimated
propensity score for the treatment group.
bWeighted Least Squares: treatment observations weighted as 1, and control observations
weighted by the number of times they are matched to a treatment observation.

Table 3.2 Estimated training effects for the National Support Work Demonstration
male participants using comparison groups from Panel Survey of Income Dynamics
and Current Population Survey.

column (3) we regress 1978 earnings on a less nonlinear function (quadratic as
opposed to the step function, that is, within-stratum constant, in columns (4) and
(5)) of the estimated propensity score and a treatment indicator. The estimates are
comparable to those in column (2), where we regress the outcome on all prein-
tervention characteristics, and are further from the experimental benchmark than
the estimates in columns (4) to (8). This demonstrates the ability of the propensity
score to summarize all preintervention variables, but underlines the importance
both of using the propensity score in a sufficiently nonlinear functional form and
of allowing for a heterogeneous treatment effect.

Finally, it must be noted that even though the propensity score estimates pre-
sented in columns (3) to (8) are closer to the experimental benchmark than those
presented in columns (1) and (2), with the exception of the adjusted matching
estimator, their standard errors are higher: in Table 3.2, column (5), the standard
errors are 1,152 and 1,581 for the CPS and PSID, compared with 550 and 886 in
Table 3.2, column (2). This is because the propensity score estimators use fewer
observations. When stratifying on the propensity score, we discard irrelevant con-
trols, so that the strata may contain as few as seven treated observations. The
standard errors for the adjusted matching estimator (751 and 809) are similar to
those in column (2). However, in this application, given the extent of the bias in
the regression estimates, the bias-variance trade-off is probably not of paramount
concern.
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3.5 Conclusions

This chapter illustrates the use of propensity score methods on the Lalonde data.
The results demonstrate that propensity score methods are able to identify the
subset of units from the comparison groups that are comparable to the treatment
group in terms of pretreatment covariates and to accurately estimate the treatment
effect. It is important to bear in mind that the first of these is a general property of
propensity score methods, whereas the second is a feature of the data we examine.
By comparing units on the basis of the propensity score, one will always be able to
assess the quality of a comparison group and to extract from the comparison group
the subset that is most comparable to the treatment group in terms of pretreatment
covariates. However, whether this is sufficient to obtain an accurate estimate of the
treatment effect depends on the particular application and on whether one observes
the covariates that determine assignment to treatment. As such, the conclusion from
this analysis is not that propensity score methods can always estimate the treatment
effect, but that these methods are (i) a useful tool for judging the quality of, and
creating a well-matched, comparison group; and (ii) in applications in which the
assignment to treatment is based on observable covariates, a simple and accurate
means of estimating the treatment effect.
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Medication cost sharing
and drug spending
in Medicare

Alyce S. Adams1

In 2003, Congress passed the Medicare Prescription Drug, Improvement, and Mod-
ernization Act (Public Law 108-173), which provides an outpatient prescription
benefit under Medicare, effective January 1, 2006, to be delivered by private health
plans as a stand-alone drug benefit. Beneficiaries would pay out of pocket for 100%
of prescription drug costs up to the $250 deductible and 25% thereafter, up to the
$2,500 coverage limit. For beneficiaries whose out-of-pocket costs exceed $3,600,
cost sharing of 5% will be imposed. For a detailed summary of the law, see Kaiser
Family Foundation (2004).

Unfortunately, little is known about the impact of various levels of cost sharing
on prescription drug use in the Medicare population. Findings from previous studies
(Blustein, 2000; Adams, Soumerai, and Ross-Degnan, 2001; Federman et al., 2001;
Stuart and Zacker, 1999; Artz, 2002) indicate that having any drug coverage and
specific types of coverage (i.e., Medicaid, employer-sponsored) are associated with
higher levels of overall and essential medication use. However, these studies did
not explicitly control for possible selection bias resulting from self-selection into

1Department of Ambulatory Care and Prevention, Harvard Medical School, Boston, Mass. I would
like to thank Drs Soumerai, Ross-Degnan, and Federman for their contributions to the design and
conduct of our previous studies of coverage effects using the MCBS. These earlier papers provided
an ample foundation for the conduct of this study. I am also indebted to Professor Donald Rubin and
Drs Jennifer Hill and Ken Kleinman for their assistance in the application of the propensity score to
this context.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X

37



38 COST SHARING AND DRUG SPENDING IN MEDICARE—ADAMS

coverage categories (Ettner, 1996). Specifically, individuals choose to purchase or
are eligible for drug coverage based on factors that are likely related to medication
spending (e.g., health status, income, anticipated use of medications), irrespective
of coverage status.

The purpose of this chapter is to demonstrate the application of propensity
score methods to the estimation of the association between prescription drug cost
sharing and medication spending in the Medicare population. To accomplish this,
I first use logistic regression to estimate the propensity to have any drug coverage
and specific levels of cost sharing (e.g., 20–40% of total drug expenditures; 40–
60%). I then estimate the relationships between coverage, cost sharing, and total
and antihypertensive drug expenditures for community dwelling beneficiaries, strat-
ifying by quintiles of the propensity score. Rosenbaum and Rubin (1983a, 1984)
have demonstrated the effectiveness of subclassification on the propensity score
in reducing bias in observational studies. I then compare these results to those
obtained from models in which the propensity score is not used and when it is
included as a covariate to assess the impact of the method of propensity score
adjustment on the estimates.

4.1 Methods

Data source

The data source for the analysis was the Medicare Current Beneficiary Survey
(MCBS) Cost and Use Files for 1995. The MCBS is a national longitudinal survey
of approximately 12,000 Medicare beneficiaries. Respondents were interviewed
four times during the course of the year regarding their health care status, utiliza-
tion, and access. The sample was stratified according to geographic region and post
stratified by age, gender, region, metropolitan residence, and year of entry into the
sample. Additional information on sample selection for the MCBS can be found
in the article by Adler (1994).

Study sample

For the purposes of this study, I included those beneficiaries most likely to vol-
untarily enroll in the new Medicare prescription drug plans. They included all
beneficiaries with fee for service (i.e., no drug coverage and no private insurance)
or private insurance (i.e., employer sponsored, self-purchased), with or without
drug coverage. Excluded were beneficiaries with VA, state drug coverage plans,
local drug coverage plans, which are typically more generous than the new benefit.
Dual enrollees, those with both Medicaid and Medicare, will be moved from Med-
icaid drug coverage to Medicare drug coverage. However, they are not comparable
to the other groups included in this analysis due to high rates of disability and
health services use and have therefore been excluded from the analysis.

Drug coverage was determined from self-reports, administrative records, and
self-reported payments for medication expenditures as described by Davis et al.
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(1999). Individuals were classified as having employer or Medigap drug coverage
if they reported having drug coverage through a private health plan in the insurance
record or if any of their expenditures were paid by these entities. Drug coverage
through the state, the VA, and other public sources was defined using similar
methods. Medicaid enrollment was determined by beneficiary self-report, Medicare
administrative records, and payment source for medication expenditures.

Outcome variables

The outcomes of interest in this study were total and antihypertensive drug spend-
ing. Drug expenditures per person were estimated from the prescription drug file of
the MCBS. Owing to the skewed distribution of expenditures, a natural log trans-
formation was employed. Antihypertensive drugs were identified using the U.S.
Pharmacopeia Drug Information (USP DI) (1999). Medicines classified as anti-
hypertensive were diuretics (including loop diuretics), calcium channel blockers,
angiotensen converting enzyme (ACE) inhibitors, and beta-blockers. For more on
the selection of antihypertensive medications, please see Adams, Soumerai, and
Ross-Degnan (2001).

Predictor variables

The primary covariates of interest were drug coverage (1/0) and two indicators of
beneficiary cost sharing (i.e., = 1 if cost sharing = 20–40% vs >40% paid out of
pocket; = 1 if cost sharing = 40–60% vs >60% paid out of pocket). Drug cov-
erage was defined as described above. Level of cost sharing was defined as the
proportion of medication expenditures reportedly paid out of pocket by the ben-
eficiary. Individuals without drug coverage were coded as having cost sharing of
100%. Other control variables included age, race, gender, marital status, educa-
tion, region of residence, income, health status, functional status (limitations in the
following activities of daily living (ADLs): bathing/showering, dressing, eating,
getting in or out of a chair, and using the toilet), the number of other chronic con-
ditions, and the number of medical provider visits, which captures medical provider
visits, separately billing physicians, separately billing labs, and other medical ser-
vices. For the analysis of antihypertensive drug expenditures, we also included
an indicator for whether the individual self-reported having one of five conditions
that were likely to increase their exposure to antihypertensive drugs (i.e., high
blood pressure, previous myocardial infarction, coronary heart disease, other heart
related conditions, and diabetes). All covariates were represented by dichotomous
and categorical variables.

Statistical analysis

The analysis was conducted using STATA statistical software (Version 7.0). In the
first stage of the analysis, propensity scores were estimated using logistic regression
for the likelihood of having any drug coverage and of having specific levels of
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cost sharing (20–40% and 40–60%, respectively). Covariates were included in the
models if Wald tests produced p-values <0.25. Inclusion of the region variables
was determined using a joint test of significance. Once the basic models were
constructed, the statistical significance (p < .25) of interaction terms was assessed.
The predicted value from each of the models was saved and labeled as a propensity
score (i.e., predicted probability of each of the outcomes). I then compared the
groups of interest (i.e., coverage vs no coverage; copay of 20–40% vs copay >
40%; copay of 40–60% vs copay > 60%) on their covariates controlling only for
propensity score quintile. The propensity modeling process was repeated until there
were no significant (p < .10) differences between the groups of interest.

Three models were constructed to estimate the impact of coverage on total
drug expenditures for individuals with positive drug expenditures using weighted
ordinary least squares. Covariates for inclusion in the drug expenditure models
were identified using univariate statistics. The key covariate of interest in the first
model was a dichotomous indicator of the individual’s coverage status (1/0). The
key covariate of interest in the second model was a dichotomous indicator of
whether the individual paid between 20 and 40% (vs greater than 40%) of their
drug expenditures out of pocket. The third model estimated the impact of paying
between 40 to 60% out of pocket (vs greater than 60%) on total drug expenditures.

The significance of covariates included in the final models was determined at
the 0.05 level for both the full and reduced model to assure the robustness of the
findings to the modeling procedure. Each model was stratified by the corresponding
propensity score quintile. These results were then compared to estimates obtained
when the propensity score quintile was included in the final regression models as
a covariate and when the propensity score was not controlled for in the analysis.
For comparative purposes, I calculated the weighted average from the stratified
models by weighting the estimate for each subclass by the proportion of the study
population represented in that subclass. Standard estimates for the weighted average
were calculated assuming zero covariance between the variances of the estimates.
The entire procedure was repeated for antihypertensive drug expenditures. These
and other applications of the propensity score in observational studies can be found
in D’Agostino (1998).

4.2 Results

Drug spending by coverage and cost sharing

Drug spending varied considerably by both enrollee characteristics and drug cov-
erage status (Table 4.1). Those without coverage had considerably lower spending
patterns compared to those with coverage, regardless of health status. Spending
also varied by level of cost sharing, with those with lower cost sharing spending
more on prescription drugs. Enrollee characteristics varied considerably by cov-
erage status and level of cost sharing. Controlling for propensity score quintile
resulted in statistically significant reductions in these differences (Table 4.2).
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Characteristics No Drug
Coverage
(N = 2,504)

Some Drug
Coverage
(N = 2,433)

Cost Sharing:
20–40%
(N = 674)

Cost Sharing:
40–60%
(N = 372)

Age < 65
65–74
75–84
85+

$700 (12%)
$528 (32%)
$551 (38%)
$527 (18%)

$1600 (7%)
$770 (42%)
$780 (38%)
$760 (13%)

$2000 (7%)
$720 (40%)
$910 (39%)
$870 (14%)

$1200 (8%)
$700 (43%)
$630 (37%)
$560 (12%)

Male
Female

$540 (41%)
$570 (59%)

$820 (44%)
$830 (56%)

$850 (44%)
$940 (56%)

$660 (46%)
$730 (54%)

Non-white
White

$480 (10%)
$560 (90%)

$770 (6%)
$830 (94%)

$890 (6%)
$910 (94%)

$710 (10%)
$700 (90%)

Not married
Married

$550 (52%)
$560 (48%)

$820 (40%)
$830 (60%)

$930 (40%)
$890 (60%)

$710 (38%)
$690 (62%)

<12 yrs educ.
12 or more

$570 (46%)
$540 (54%)

$800 (32%)
$840 (68%)

$910 (35%)
$900 (65%)

$670 (30%)
$710 (70%)

Income <
10,000
$10 k–20 k
>$20,000

$560 (32%)
$550 (38%)
$560 (30%)

$740 (11%)
$850 (36%)
$830 (53%)

$980 (10%)
$980 (37%)
$840 (53%)

$970 (13%)
$610 (32%)
$690 (54%)

No ADL limits
1
2
>2

$460 (65%)
$670 (14%)
$620 (7%)
$830 (14%)

$690 (70%)
$980 (13%)
$1100 (7%)
$1400 (10%)

$740 (67%)
$1100 (16%)
$1100 (6%)
$1400 (12%)

$580 (67%)
$690 (14%)
$970 (7%)
$1200 (12%)

Poorer health
Good or better

$770 (30%)
$460 (70%)

$1300 (24%)
$690 (76%)

$1300 (26%)
$750 (74%)

$990 (26%)
$600 (74%)

0 Chronic
cond.
1
>1

$440 (12%)
$430 (25%)
$640 (63%)

$470 (11%)
$610 (26%)
$970 (63%)

$540 (9%)
$710 (24%)
$1000 (66%)

$410 (11%)
$410 (26%)
$870 (63%)

Table 4.1 Distribution of individual characteristics and drug expenditures by drug
coverage status using data from the 1995 Medicare Current Beneficiary Survey.
The percentages represent the proportion of the population matching that specific
characteristic.
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Characteristics Drug
Coverage
Before

Drug
Coverage
After

Cost
Sharing:
20–40%
Before

Cost
Sharing:
20–40%
After

Cost
Sharing:
40–60%
Before

Cost
Sharing:
40–60%
After

<65 yrs of age 39∗∗∗ 0.88 4.6* 0.06 2.9 0.23
>84 yrs of age 25∗∗∗ 0.04 5* 0.02 6.5** 0.06

Male gender 5.1∗ 0.88 1.3 0.92 3.7 0.02

White race 28∗∗∗ 1.4 5∗ 0.94 0.49 0.25

Married 73∗∗∗ 0.92 19∗ 0.08 22∗∗∗ 0.59

Education >
12 yrs

104∗∗∗ 0.98 9.9∗∗ 0.23 24∗∗∗ 0.003

Income 137∗∗∗ 1.8 15∗∗∗ 0.05 14∗∗∗ 0.58

Poorer health 26∗∗∗ 0.13 0.79 0.23 1.3 0.06

# Chronic con-
ditions

0.56 3.5 5.4∗ 0.56 0.22 0.53

ADLs 20∗∗∗ 0.98 0.72 0.50 0.24 0.01

Region 1 10∗∗ 1.1 0.003 0.004 0.67 0.0004
Region 2 34∗∗∗ 0.01 16∗∗∗ 0.04 7.1∗∗ 0.35
Region 3 3.8∗ 0.01 2.1 0.46 0.03 0.41
Region 4 11∗∗ 1.4 14∗∗∗ 0.71 7.7∗∗ 0.33
Region 5 11∗∗ 0.0004 0.0001 0.40 2.5 0.37
Region 6 1.9 0.06 3.1 0.08 0.25 0.006
Region 7 15∗ 0.04 1.6 0.14 0.02 0.15
Region 8 0.56 0.08 0.02 0.08 0.76 0.25
Region 9 5.3∗ 2.2 0.11 0.07 2.1 0.21
Region 10 13∗∗ 0.42 1.8 0.04 0.27 0.12

Table 4.2 F statistics for differences in individual characteristics by drug coverage
status before and after controlling for propensity score quintile. ∗0.05 > p > 0.01;
∗∗0.01 > p > 0.001; ∗∗∗0.001 > p-value.
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Effect of coverage on total drug spending within propensity
score subclass

Having drug coverage of any kind was positively associated with drug spending in
all five subclasses. However, the magnitude of the effect varied considerably by drug
class and the relationship between the effect and the propensity score quintiles was
not linear. The smallest effect (β = 0.17; se = 0.081) was in the second subclass,
while the largest effect was in the third subclass (β = 0.58; se = 0.070).

The level of cost sharing was also significantly associated with drug spending.
Copayments between 20 to 40% were associated with dramatically higher rates
of drug spending and the magnitude of the association varied by propensity score
quintile. Estimates ranged from β = 0.36 (0.11) to β = 0.71 (0.13). Cost sharing
between 40 to 60% was also significantly associated with higher drug spending
relative to those with cost sharing greater than 60%, though the magnitude of
the effect was considerably lower than that for individuals with lower cost sharing
(Range: 0.13–0.55). Other factors positively associated with drug spending included
age less than 65 (i.e., disability), white race, poorer health status, the number of
chronic conditions, and the number of medical provider visits. Region of residence
was also associated with the level of drug expenditures.

Effect of coverage on antihypertensive drug spending within
propensity score subclass

The results of the antihypertensive spending models are presented in the bottom
half of Table 4.3. Any drug coverage was significantly associated with higher anti-
hypertensive drug spending in all subclasses. However, the magnitude of the effect
varied by subclass and the relationship was again nonlinear. The values ranged
between 0.13 in the first and second subclass and 0.73 in the fifth subclass. Copay-
ments between 20 to 40% were also associated with higher antihypertensive drug
expenditures (β : 0.18(5th subclass)− 0.57(2nd subclass)). However, the associa-
tion between antihypertensive spending and cost sharing between 40 to 60% was
not statistically significant. In fact, for three of the five subclasses, the relation-
ship was negative. Other factors positively associated with antihypertensive drug
spending included functional disability, the number of chronic conditions, and hav-
ing at least one of the five conditions for which antihypertensives are generally
prescribed.

Comparison of estimates with and without propensity score
adjustment

Table 4.4 compares the coefficients obtained from the multivariate model with
no adjustment for the likelihood of being in a given coverage group (βols), the
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Propensity Score
Quintiles

Any Drug
Coverage
(se)

20–40% Cost
Sharing (se)

40–60% Cost
Sharing (se)

Total drug spending
Q1
Q2
Q3
Q4
Q5

0.33 (0.09)
0.17 (0.08)
0.58 (0.07)
0.45 (0.08)
0.035
(0.088)

0.63 (0.17)
0.71 (0.13)
0.51 (0.11)
0.36 (0.11)
0.36 (0.09)

0.55 (0.21)
0.23 (0.16)
0.33 (0.15)
0.14 (0.15)
0.13 (0.13)

Antihypertensive spending
Q1
Q2
Q3
Q4
Q5

0.13 (0.11)
0.13 (0.10)
0.33 (0.09)
0.26 (0.11)
0.73 (0.10)

0.38 (0.21)
0.57 (0.15)
0.30 (0.13)
0.21 (0.14)
0.18 (0.11)

0.36 (0.23)
−0.12 (0.22)

0.08 (0.17)
−0.05 (0.18)
−0.27 (0.16)

Table 4.3 Estimated effect of coverage obtained from the expenditure models
stratified by propensity score quintile. Other covariates included in the multivariate
models included age, gender, race, income, functional status, health status, number
of chronic conditions, and the number of medical provider visits.

Covariates βols βstrat βcov

Total drug spending
Any coverage
Copay:20–40%
Copay:40–60%

0.41 (0.04)
0.48 (0.05)
0.22 (0.07)

0.39 (0.04)
0.51 (0.06)
0.28 (0.07)

0.39 (0.04)
0.48 (0.05)
0.22 (0.07)

Antihypertensive drug spending
Any coverage
Copay:20–40%
Copay:40–60%

0.20 (0.04)
0.31 (0.06)

−0.04 (0.08)

0.19 (0.05)
0.33 (0.07)
0.002 (0.09)

0.19 (0.05)
0.30 (0.06)

−0.03 (0.08)

Table 4.4 Estimated effect of coverage status and cost sharing without propen-
sity score adjustment (βols) to those obtained after subclassification (βstrat) and
covariance adjustment (βcov) using the propensity score. The coefficient from the
analysis using subclassification on the propensity score is the weighted average of
the coefficients from each of the models, where the weights equal the proportion
of the population in each propensity score quintile.
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weighted average of the estimates from the multivariate model stratified by propen-
sity score quintile (βstrat), and the coefficients from the multivariate model that
included the propensity score quintile as a covariate (βcov).

The analysis of the effect of having any drug coverage on drug expendi-
tures were consistent across all and antihypertensive expenditures. Specifically, the
stratified analysis and the covariance adjustment approaches produced the same
coefficient, which was smaller than that produced by the linear regression models.
However, in the analysis of the impact of cost sharing, the coefficient obtained
from the unadjusted linear regression and the covariance adjusted models were
more similar and consistently smaller than the estimates from the stratified model.

4.3 Study limitations

Self-reported spending and coverage status

Reliance on self-reported data in this study may have led to underestimation of drug
use. I may have also overestimated out-of-pocket payments for beneficiaries who
were awaiting reimbursement at the time the survey was conducted. To the extent
that individuals with coverage are more likely to underestimate use (i.e., because
they are not responsible for paying the bill), these results would underestimate the
impact of coverage on use. Likewise, if individuals with coverage anticipated reim-
bursement of expenditures or considered premium costs in their spending decisions,
these findings may underestimate the impact of total cost sharing on use.

It is possible that some beneficiaries with coverage were classified as having no
coverage. Further, no distinctions were made between individuals with part year
and full year coverage. Overestimation of actual coverage rates is likely to have
led to underestimation of the impact of coverage on expenditures.

Expenditures as a measure of medication use

Expenditures represent not only use but also prescription price. Therefore, it is
possible that I overestimated the impact of coverage on use owing to variations in
cost by level of cost sharing. In a previous analysis, we (Adams, Soumerai, and
Ross-Degnan, 2001) found that expenditures were a good indicator of actual use.
However, I may have underestimated use for individuals who typically receive
medication at lower cost. In this analysis, our main focus was on spending rather
than overall use. Additional research is needed to estimate the impact of the new
drug benefit on the price of medications to beneficiaries.

Antihypertensive drugs were chosen to represent essential drug spending in
this analysis owing to high rates of nonadherence and considerable evidence of
their efficacy in reducing morbidity and mortality in this population (Sanson-
Fisher and Clover, 1995; Morrell, Park, Kidder, and Martin, 1997). However, the
price elasticity of other essential medications may differ from that of hyperten-
sion. Therefore, evidence of a negative relationship between cost sharing and drug
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spending for other essential medications would lend additional support to these
findings.

Selection bias and use of the propensity score

It is likely that individuals with coverage differ from those without coverage in
ways that are related to their medication spending, but are unrelated to their cov-
erage status. As a result, this study may contain some degree of selection bias.
I attempted to reduce the effect of selection bias by including propensity scores
in the estimation models. Stratification on the propensity score resulted in con-
siderable improvement in the comparability of the groups of interest with respect
to the observed covariates. However, to the extent that the selection bias is due
to unmeasured factors, selection bias still possesses a threat to the validity of the
above findings.

To estimate the impact of the method of propensity score correction, I compared
the results from the stratified models to those from models employing covariance
adjustment using the propensity score. While the weighted estimates from the
stratified analysis were quite similar to those from the covariance adjusted models
for the analysis of any drug coverage, they were consistently higher than the
covariance adjusted model estimates for the subanalysis of cost sharing.

Lack of control for sampling design

Ordinary least squares were used to assess the impact of cost sharing on drug
spending due to the appearance of strata with only one psu (primary sampling
unit) in reduced samples. One option would have been to delete observations
included in strata with only one psu, a limitation of the software program. Rather
than delete observations, I chose to not control for the sampling design in the
analysis. As a result, the findings from the antihypertensive drug analysis may not
be generalizable to the entire Medicare population.

4.4 Conclusions and policy implications

As in previous research, this study found that having any drug coverage was
significantly associated with greater use of all and essential medications. Analysis
of cost sharing rather than source of drug coverage allowed for estimation of the
impact of specific levels of cost sharing on drug use. While cost sharing levels of
20 to 40% and 40 to 60% were both positively associated with total drug spending,
the magnitude of the effect was greatest for those with cost sharing between 20 and
40%. Further, while lower cost sharing was associated with greater use of essential
medications, higher cost sharing rates were not. These results indicate that higher
rates of cost sharing may not only slow the growth of total drug spending but may
also reduce the use of life saving medications. These results are consistent with
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our previous findings showing that patients with coverage characterized by higher
than average cost sharing, spending less on essential medications.

An interesting methodological finding from this study is that relative to the
estimates using subclassification on the propensity score, ordinary least squares
estimates consistently overestimated the impact of drug coverage on spending and
underestimated the impact of the level of cost sharing on overall and antihyper-
tensive drug spending. These results provide additional evidence that propensity
scores are a useful and accessible method for reducing selection bias in studies
of the impact of insurance coverage on health care spending. Further, disparities
between the results obtained from subclassification versus covariance adjustment
with the propensity score for the cost sharing analysis suggest that subclassifica-
tion may be a more economical method for reducing selection bias. At the very
least, researchers should use both approaches to confirm that their results are not
dependent upon the method employed.
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A comparison of experimental
and observational data
analyses
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For obtaining inferences about causality, randomized experiments are the gold
standard. Random assignment of treatments ensures, in large samples, that the
background characteristics in the treatment groups are similar, so that compar-
isons of the groups’ outcome variables estimate differences in the effects of the
treatment assignments. For some causal questions, however, it is not possible to
assign treatments to units at random, perhaps for ethical or practical reasons. Typ-
ically, such observational studies involve collecting and comparing units from
existing databases that have nonrandom treatment assignments. Unlike in random-
ized experiments, there is no assurance that background characteristics are similar
across treatment groups, and simple comparisons of the outcome variables can be
confounded by such differences.

Researchers use a variety of methods to deal with confounding in observational
studies. One approach is to fit linear regressions that include causally-relevant
background characteristics as covariates. Typically, such models include indicator
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variables for the treatments. Another approach, developed by Rosenbaum and
Rubin (1983b, 1984) specifically to deal with the problem of confounding in obser-
vational studies, is to use propensity scores. Here, the goal is to create two groups
of units closely balanced on causally-relevant background characteristics. Impor-
tantly, both approaches can mitigate only confounding from observed background
variables; the groups may still differ on variables not controlled for in the models.

In this chapter, we illustrate the potential efficacy of these types of analyses.
The causal question we address concerns the effects on intelligence test scores
of a particular intervention that provided very high quality childcare for children
with low birth weights. We have data from the randomized experiment performed
to evaluate the causal effect of this intervention, as well as observational data
from the National Longitudinal Survey of Youth on children not exposed to the
intervention. Using these two datasets, we compare several estimates of the treat-
ment effect from the observational data to the estimate of the treatment effect
from the experiment, which we treat as the gold standard. This general strategy
of evaluating the efficacy of competing nonexperimental techniques by creating a
“constructed” observational study using a randomized experiment was first used by
Lalonde (1986). Other studies using the same or similar strategies include Lalonde
and Maynard (1987), Fraker and Maynard (1987), Friedlander and Robins (1995),
Heckman, Ichimura, and Todd (1997), and Dehejia and Wahba (1999). We also
demonstrate the use of propensity scores with data that has been multiply imputed
to handle pretreatment and posttreatment missingness. To our knowledge, these
other constructed observational studies performed analyses using only units with
fully observed data.

In the end, for these data, we find that the propensity score approaches yield
estimated treatment effects consistent with the effects in the experiment, whereas
the regression approach does not. The analyses also illustrate the importance of
matching on geographic characteristics, something that can be easily overlooked
when using propensity score approaches.

5.1 Experimental sample

Low birth weight infants have elevated risks of cognitive impairment and academic
failures later in life (Klebanov, Brooks-Gunn, and McCormick, 1994a, 1994b). One
approach to reduce these risks is to provide extraordinary support for the families
of low birth weight infants, for example, intensive early childhood education for
the infants and access to trained specialists for the parents.

To assess the effectiveness of such interventions, in 1985 researchers designed the
Infant Health Development Program (IHDP). The IHDP involved randomizing 985
low birth weight infants to one of two groups: (1) a treated group assigned to receive
weekly visits from specialists and to attend daily childcare at child development
centers and (2) a control group that did not have access to the weekly visits or
child development centers. There were 377 infants assigned to the treated group
and 608 assigned to the control group. The IHDP provided transportation to the
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childcare centers to reduce the risk of noncompliance. More details on the design
of the experiment can be found in IHDP (1990), Brooks-Gunn, Liaw, and Klebanov
(1992), and Hill, Brooks-Gunn, and Waldfogel (2003).

The outcome variable is the infant’s score on the Peabody Picture Vocabulary
Test Revised (PPVT-R) administered at age three or four. Other outcome variables
were analyzed in the experiment, but this is the only outcome measured at the
same time point in the IHDP and NLSY. The PPVT-R scores are available for all
but 173 infants (17.6%).

There are many background variables associated with PPVT-R scores. We limit
the variables in our analyses to those measured in both datasets, but a rich set of
variables remains. These include characteristics of the infant’s mother measured
at the time of birth of her child: age, marital status, race (Hispanic, black or
other), educational attainment (less than high school, high school, some college,
completed college), whether she worked during her pregnancy, and whether she
received prenatal care. They also include characteristics of the child: sex, whether
the child was first born, the birth weight, age of the child in 1990, the number
of weeks the child was born preterm, and the number of days the child had to
stay in the hospital after birth. In addition to these sociodemographic variables, we
have geographic data: county level unemployment rates and state indicators. In the
experimental data, these variables are all fully observed, except for whether or not
the mother worked during pregnancy, which is missing for 50 infants (5.1%).

All missing data are handled using multiple imputation (Rubin, 1987b). Impu-
tation methods are described in detail in Section 5.2.

As expected, randomization balances the distributions of the background vari-
ables in the treated and control groups. This is evident in the first panel of
Table 5.1, which displays the covariates’ means and standard deviations across
the five imputed datasets for both the treated and control groups. The second
panel of Table 5.1 displays similar summaries for the observational study, which
is discussed in Section 5.2.

The experimental estimate of the intention-to-treat effect for the intervention
relative to the control is 6.39 with a standard error of 1.17. This suggests that
the combination of intensive childcare and home visits had a significant positive
average effect on children’s test scores.

5.2 Constructed observational study

We now construct an observational study to assess the same question that the
experiment addressed: what is the impact of the IHDP treatment? We use the
treated infants from the IHDP as the treatment group, and a sample of infants from
the National Longitudinal Survey of Youth (NLSY) as the comparison group. This
“constructed” observational study reflects the type of data researchers might have
access to in the absence of a randomized experiment.

The NLSY is a panel survey that began in 1979 with a sample of approximately
12,000 teenagers who, appropriately weighted, were nationally representative at
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Experimental Sample Observational Sample
Control Treated Full NLSY Treated

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Mother
Age (yrs.) 24.74 (6.11) 24.39 (5.93) 23.76 (3.15) 24.59 (5.93)
Hispanic 0.12 (0.33) 0.10 (0.30) 0.21 (0.41) 0.10 (0.30)
Black 0.54 (0.50) 0.55 (0.50) 0.29 (0.45) 0.53 (0.50)
White 0.34 (0.47) 0.34 (0.48) 0.50 (0.50) 0.37 (0.48)
Married 0.46 (0.50) 0.41 (0.49) 0.69 (0.46) 0.42 (0.49)
No HS degree 0.40 (0.49) 0.45 (0.50) 0.30 (0.46) 0.43 (0.50)
HS degree 0.27 (0.44) 0.28 (0.45) 0.42 (0.49) 0.28 (0.45)
Some college 0.21 (0.41) 0.16 (0.37) 0.19 (0.39) 0.17 (0.37)
College degree 0.12 (0.33) 0.11 (0.31) 0.08 (0.27) 0.13 (0.33)
Working 0.57 (0.50) 0.57 (0.50) 0.62 (0.49) 0.59 (0.49)
Prenatal care 0.95 (0.21) 0.95 (0.22) 0.99 (0.11) 0.95 (0.22)

Child
Birth weight 1769 (473) 1819 (436) 3314 (604) 1819 (439)
Days in hospital 26.6 (24.7) 23.4 (22.3) 4.47 (7.63) 23.7 (22.6)
Age 1990 (mos.) 56.8 (2.13) 56.8 (2.04) 56.3 (29.1) 56.8 (2.03)
Weeks preterm 7.04 (2.77) 6.91 (2.52) 1.24 (2.18) 6.96 (2.52)
Sex (1=female) 0.51 (0.50) 0.50 (0.50) 0.50 (0.50) 0.50 (0.50)
First born 0.43 (0.50) 0.47 (0.50) 0.42 (0.49) 0.47 (0.50)

Geography
Unemployment 0.08 (0.05) 0.08 (0.06) 0.09 (0.04) 0.08 (0.05)
Lives in state 1 0.14 (0.35) 0.13 (0.34) 0.01 (0.11) 0.13 (0.33)
Lives in state 2 0.11 (0.32) 0.12 (0.33) 0.02 (0.14) 0.12 (0.33)
Lives in state 3 0.10 (0.30) 0.12 (0.33) 0.05 (0.21) 0.12 (0.32)
Lives in state 4 0.14 (0.35) 0.12 (0.32) 0.02 (0.12) 0.12 (0.32)
Lives in state 5 0.16 (0.37) 0.13 (0.34) 0.06 (0.23) 0.12 (0.33)
Lives in state 6 0.09 (0.28) 0.12 (0.32) 0.04 (0.19) 0.13 (0.33)
Lives in state 7 0.16 (0.37) 0.14 (0.35) 0.09 (0.28) 0.13 (0.34)
Lives in state 8 0.10 (0.30) 0.12 (0.30) 0.01 (0.12) 0.14 (0.34)

Table 5.1 Means and standard deviations for both the experimental and observa-
tional studies. Dichotomous variables equal one for “yes” answers and equal zero
for “no” answers. Differences in the experimental and observational samples for
the IHDP treateds reflect differences due to independent imputation of missing
data.
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that time. These participants were interviewed every year thereafter until 1994 and
biannually after that. Children of women in the NLSY have also been followed
since 1986. Given that the IHDP began in 1985, we restrict our NLSY sample to
the 4,511 children born from 1981 to 1989. The IHDP treatment was very intensive
and extraordinary, so that the NLSY controls are unlikely to have received similar
treatments.

As in the experimental data, the observational data contain missing values. The
outcome variable, PPVT-R scores, is missing for 870 infants (19.3%). Twelve of
the covariates have missing data, ranging from a minimum of 4 infants (.1%) for
mother’s education to a maximum of 212 infants (4.7%) for child’s birth weight.
Most covariates have missing data rates around 4%. Missing data were handled
using multiple imputation; see below.

Panel 2 of Table 5.1 displays the means and standard deviations of the poten-
tially confounding covariates for the treatment group and full NLSY comparison
group (we reserve the term “control” for experimental control group). The treated
children and the NLSY comparison group look quite different on a number of the
covariates measured.

Analyses

There are several ways to control for differences in the groups’ sociodemographic
background variables. One approach is to fit a multiple regression of PPVT-R
scores on the background variables, including an indicator variable for treatment.
With this “Regression” approach, when the model describes relationships in the data
well, the resulting estimated coefficient of the treatment indicator is a reasonable
estimate of the average causal effect of the treatment. However, the estimate can
be badly biased when the model fits the data poorly. When the data in the treated
and comparison groups have different characteristics, the fitted regression involves
extrapolations over much of the multidimensional covariate space (Rubin, 1997).
Such violations of model assumptions can be difficult to detect.

A second approach is to match units on the basis of estimated propensity scores
to attempt to construct groups balanced on the confounding covariates. Treatment
effects can be estimated by differencing the sample averages of the treated and
matched comparison groups; we call this the “P-score Direct” approach. Or, they
can be estimated by using the treated and matched groups in a multiple regression of
the outcome on the confounding covariates and an indicator for treatment; we call
this the “P-score Regression” approach. Alternative propensity score approaches,
not considered here, include subclassification on propensity scores (Rosenbaum and
Rubin, 1984; D’Agostino, 1998; Dehejia and Wahba, 1999) and propensity score
weighted estimation (Rosenbaum, 1987a, 1987b; Schneider, Cleary, Zaslavsky, and
Epstein, 2001; Hirano, Imbens, and Ridder, 2003).

The P-score Direct approach avoids the specification of regression models for
the relationship between the outcome and the covariates. Although models must
be fit to estimate propensity scores, estimates of treatment effects are generally
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less sensitive to misspecification of the propensity score model than the Regression
approach is to misspecification of the regression model (Drake, 1993; Rubin, 1997).
With close matching on estimated propensity scores, the groups should be balanced
on the observed background characteristics. Part of the model-fitting process is
checking this balance so that the researcher can discern whether the groups are too
different for resulting treatment effect estimates to be trustworthy. Assuming close
balance, direct comparisons of the average for the treated group and the average
for the matched comparison group should be mostly free of confounding due to
the matched variables (Rosenbaum and Rubin, 1983, 1984).

The P-score Regression approach in a sense combines the other two approaches.
It is less likely to be subject to extrapolations than the Regression approach, because
the treated and matched comparison units are in similar regions of the covariate
space. But, it adjusts for slight imbalances in the groups’ background characteristics
with a regression model, thereby potentially reducing bias and increasing precision
(Rubin, 1973a, 1973b, 1979; Rubin and Thomas, 2000).

The Regression approach and the matched-sample approaches estimate different
quantities. The Regression approach estimates the average treatment effect across
the full sample, whereas the matched-sample approaches estimate the effect of the
treatment on the treated (IHDP) group. These estimands can differ when the treat-
ment effect is a nonconstant function of the covariates, in which case the estimated
treatment effects can differ even if each method produces unbiased estimates. In
this study, we seek to estimate the effect of the treatment on the IHDP-treated
group.

Importantly, both the Regression and propensity score approaches work well
only when we have controlled for all confounding covariates. When there are
important confounding variables that have not been controlled for, either method
can lead to biased estimates of treatment effects.

Missing data

Many social science researchers handle missing outcome data by restricting anal-
yses to complete cases, sometimes in conjunction with other fixes such as dummy
variables for missing data. This strategy leaves analyses open to bias because there
may be systematic differences between the treated and control units with observed
outcomes (Little and Rubin, 2002). This is even true in randomized experiments,
unless the outcome data are missing completely at random (Frangakis and Rubin,
1999). For the constructed observational study, we therefore do not use experi-
mental complete case estimates as benchmarks when comparing the regression and
propensity score matching strategies.

Instead, we handle missing values using multiple imputation (Rubin, 1987).
This retains the full sample for calculating intention-to-treat estimates and, under
appropriate assumptions, should yield unbiased estimates of the intention-to-treat
effect with the experimental data. The complete case estimate of the experimental
estimate is 5.7, roughly half a standard error smaller than the multiple imputation
estimate of 6.4. In the observational study, using only complete cases forces us to
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exclude large numbers of children when implementing the strategies (more than
3,000 children for the most comprehensive strategy). As a result, when using only
complete cases, all the strategies perform poorly and without distinction.

For the experimental data, we assume the missing PPVT-R scores and mother’s
work status are missing at random (Rubin, 1976a). We believe that the num-
ber and breadth of the covariates measured makes this assumption plausible. We
then generate multiple imputations from chained regression models (van Buuren,
Boshuizen, and Knook, 1999; Raghunathan, Lepkowski, Van Hoewyk, and Solen-
berger, 2001). The models are fit with the MICE software (www.multiple-
imputation.com) for S-Plus. The imputation model for PPVT-R scores is a
linear regression, fit using main effects for all covariates and the treatment indica-
tor, as well as interactions between the treatment variable and all covariates. The
imputation model for mother’s working status is a logistic regression, fit using
all covariates, the treatment indicator, and the outcome variable as predictors. For
both models, we include all the main effects and interactions to reduce the risk of
generating imputations that are not consistent with the relationships in the data.2

Five imputations are independently generated for each missing value.
For the observational data, we assume data are missing at random and use

MICE to generate five imputations for each missing value, using chained linear,
logistic, and polytomous logistic regression models as appropriate. For PPVT-R
scores, the linear regression is fit using all covariates and the treatment indicator, as
well as all interactions between covariates and the treatment indicator. For all other
variables, predictors for the imputation models include all covariates, the treatment
indicator, and the outcome variable. The missing at random assumption is more
tenuous in the observational sample than in the experimental sample, because of
the increase in the number of variables with missing data.

Propensity score analyses are performed in a two-step process. First, within each
of the five completed datasets, we estimate propensity scores, find a matched control
group, and calculate treatment effect estimates and their standard errors. Second, we
combine these five estimates and their standard errors using Rubin’s (1987) com-
bining rules for multiple imputation. Other examples of propensity score analysis
of multiply imputed data can be found in Hill, Waldfogel, and Brooks-Gunn (2002)
and Hill, Brooks-Gunn, and Waldfogel (2003), and its underlying assumptions and
potential efficacy are discussed in Hill (2004). Analyses for the Regression strategy
are performed in the standard way using Rubin’s combining rules.

Results of analyses

We consider several model specifications for the regression and propensity scores,
controlling for different background variables. All regression models are of the

2Imputing missing data for the purpose of causal analyses is a bit more complicated than standard
imputation but the discussion is too detailed for the confines of this chapter and will be reserved for
future work.
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form Y ∼ N(Xβ, σ 2), where X contains covariates. All propensity scores are esti-
mated using the fitted values from the logistic regression of treatment on the same
X included in the regressions. Matches for each treated child are determined by
finding the NLSY child with the closest propensity score to that child. We use
matching with replacement because evidence suggests that it can lead to smaller
bias than matching without replacement (Dehejia and Wahba, 2002).

The first set of models, labeled DE, controls only for the sociodemographic
variables. The second set of models, labeled DE + U, controls for the sociode-
mographic variables and the unemployment rate of the county the infant resides.
Adding unemployment rate should help control for the economic conditions in
which the child was raised. The third set of models, labeled DE + U + S, controls
for the sociodemographic variables, the county unemployment rate, and the state
the infant was born in. The state variable should help control for differences in the
availability and quality of healthcare, childcare, and other services, as well as for
differences in lifestyles across states. Ideally, we would control for county-level
effects; however, there are not sufficient numbers of children in our study to do so.
The fourth set of models, labeled DE + U + X, controls for the same variables as
in DE + U + S but, additionally, performs exact matching on state. That is, each
treated child is required to be matched with an NLSY child from the same state.

Many of the 4,511 children in the full NLSY sample reside in states other than
the eight states from the IHDP. We exclude the children from these “other” states
when fitting the logistic and linear regressions for the DE + U + S and DE + U +
X analyses. This reduces the pool of potential matches to about 1,500 children,
which could make close matching more difficult. Including children from non-
IHDP states, however, forces a linear dependency with the group of treatment
children in the logistic regressions if we try to include indicator variables for all
states but one, making these models inestimable. An alternative to excluding the
children from non-IHDP states is to combine data from two arbitrarily selected
states into one category. In this case, the estimated propensity scores and the
resulting treatment effect estimates depend critically on which states are selected for
this combination, which is undesirable. We do not exclude children from the non-
IHDP states for the corresponding Regression analyses because it seems unlikely
that a researcher unaccustomed to matching would think of doing this. Excluding
the children from non-IHDP states in the Regression analyses changes the estimates
by roughly one-quarter of the standard error.

Table 5.2 displays summary statistics reflecting the balance in the covariates
for the different logistic regression models. The entries are standardized differences
between the treated and comparison group means, defined in the caption. Large
absolute values indicate that the means are far apart, whereas absolute values near
zero suggest close balance. This metric was used by Rosenbaum and Rubin (1984,
1985a) to display covariate balance.

When comparing the treated group to the full NLSY sample, without any match-
ing, we see that the groups’ means differ greatly, especially for birth weight and
weeks preterm. Matching on sociodemographic variables through propensity scores
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Variable Full NLSY DE DE + U DE + U + S DE + U + X

Mother

Age (yrs.) 0.17 0.19 0.23 0.14 0.25
Hispanic −0.32 −0.07 −0.10 −0.39 −0.34
Black 0.52 0.13 0.04 0.31 0.40
White −0.27 −0.08 0.04 0.01 −0.11
Married −0.55 −0.19 −0.07 −0.23 −0.02
No HS degree 0.27 0.08 0.07 0.28 −0.19
HS degree −0.32 −0.19 −0.20 −0.15 −0.06
Some college −0.07 −0.03 0.00 −0.43 0.02
College degree 0.15 0.21 0.21 0.35 0.36
Working −0.06 −0.04 0.01 0.27 0.10
Prenatal care −0.22 −0.13 −0.17 −0.27 −0.25

Child

Birth weight −2.83 0.18 0.17 0.42 0.17
Days in hospital 1.14 0.01 −0.01 −0.69 −0.44
Age 1990 (mos.) 0.03 0.14 0.06 −0.06 −0.09
Weeks preterm 2.43 −0.09 −0.06 −0.90 −0.23
First born 0.10 0.15 0.07 0.03 0.20
Sex (1 = female) 0.00 −0.02 0.01 0.08 0.01

Geography

Unemployment −0.06 −0.08 −0.06 0.06 −0.08
Lives in state 1 0.47 0.50 0.48 0.33 0.00
Lives in state 2 0.40 0.42 0.39 0.06 0.00
Lives in state 3 0.26 0.16 0.21 −0.43 0.00
Lives in state 4 0.42 0.46 0.46 0.19 0.00
Lives in state 5 0.24 0.32 0.27 −0.24 0.00
Lives in state 6 0.34 0.30 0.31 0.12 0.00
Lives in state 7 0.14 0.23 0.22 −0.08 0.00
Lives in state 8 0.47 0.44 0.44 0.24 0.00

Method controls for:

Demographics X X X X
Unemployment X X X
States X X
Exact state match X

Table 5.2 Summaries of covariate balance in treated and control groups. The

entries equal (xt − xc)/
√
(s2
t + s2

0c)/2, where xt and xc are the sample means of

the treated and comparison groups’ covariates, and s2
t and s2

0c are the sample vari-
ances of the 377 treated and 4,511 nontreated children’s covariates. The common
denominator facilitates comparisons of the balance in unmatched and matched com-
parison groups. DE + U + S includes state in the propensity score model, whereas
DE + U + X forces state to be exactly balanced.
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Figure 5.1 The bars represent approximate 95% confidence intervals for the aver-
age treatment effect using the various methods. The horizontal lines at 8.68 and
4.10 are the upper and lower limits, respectively, of the 95% confidence interval
from the randomized experiment.

improves balance considerably, reducing most standardized differences. Matching
additionally on unemployment rate does not substantially change balance. Exact
matching on state results arguably in the best balance across the spectrum of vari-
ables. Exact matching on state gives better balance than simply including state
indicators in the propensity score model, which is done by including indica-
tor variables for state in the logistic regression used to estimate the propensity
scores.

We now turn to the analysis of PPVT-R scores for each of these models. The
point estimates and standard errors of the treatment effects are summarized in
Figure 5.1 for each analysis. We calculate standard errors for P-score Direct esti-

mates using
√

Var(yt )/nt +
∑
i (wi/nc)

2Var(yc), where Var(yt ) is the variance of
the treated units, Var(yc) is the variance of the distinct matched control units, and
wi is the number of times matched control unit i is used. We calculate point esti-
mates and standard errors for P-score Regression using weighted least squares, with
weights equal to wi . These variance estimates are somewhat ad hoc; however, there
are no commonly accepted and statistically validated estimators of treatment effect
variances when matching on propensity scores with replacement. This is a subject
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for future research. The corresponding approximate 95% confidence intervals are
displayed in Figure 5.1.

We treat the result from the IHDP experiment as the target for comparison,
since the estimated treatment effect is unbiased with relatively small standard
error and the resulting confidence intervals are inferentially valid. The Regres-
sion approach, which always uses the full NLSY sample as the comparison group,
consistently results in biased estimates of the treatment effect and little overlap with
the confidence intervals from the randomized experiment. As we see in Panel 2
of Table 5.1, the treated group and full NLSY sample infants have very different
covariate distributions, so that linear models fit using the full NLSY sample are
especially prone to model misspecification caused by extrapolations. In contrast,
once all sociodemographic and geographic variables are included in the matching,
the P-score Direct and P-score Regression approaches result in estimates and inter-
vals that more closely track those from the randomized experiment. The P-score
Regression is better in this case than the P-score Direct, most likely because the
regression model in the P-score Regression controls for residual imbalances in the
covariates due to incomplete matching.

These analyses suggest that P-score Regression is the most effective for this
study. However, generalizing this conclusion to say that propensity score match-
ing is always the best approach, or always outperforms regression, would not be
appropriate. We obtain reasonable estimates only after including the state variables
in the propensity score models. If we had used the analyses based only on the
sociodemographic variables, for example if the geographic variables were unavail-
able due to confidentiality restrictions, it would not have been easy for us to detect
that those inferences are so strongly biased, since the socioeconomic variables are
well balanced for the DE and DE + U propensity score analyses.

The analyses are sensitive to the specification of the model for the propensity
scores, as illustrated by the similarities of the results in Figure 5.1 until state is
included in the models. Additionally, when we restrict the sample to the infants
at the higher end of the range of birth weights, who presumably are easier to find
matches for than infants at the lower end of the range, we do not find an identical
ordering in terms of which method comes closest to the experimental estimate for
this subgroup of 7.4. For DE + U + S, the P-score Direct estimate is 11.2, and the
P-score Regression estimate is 6.0. For DE + U + X, the P-score Direct estimate
of 8.8 is slightly more reliable than the P-score Regression estimate of 5.0. This
contrasts with the results in Figure 5.1, where the P-score Regression estimate did
better across the board.

Since the propensity score analyses appear to outperform the unmatched Re-
gression analyses for these data, one might wonder to what extent bias is reduced
by limiting the sample to only those control observations most similar to the
treated observations, and to what extent bias is reduced by the “reweighting” of
the control sample that occurs when matching units. To explore this issue, we per-
form a Regression analysis on a sample that removes all control children who are
from non-IHDP states or whose propensity scores are below the lowest propensity
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score among the treated units. The predictors include the demographic variables,
unemployment rate, and the state indicators. The resulting estimate is 8.85 with a
standard error of 1.89. This is closer to the experimental estimate than the regres-
sions using the full sample, but not as close as the matched regression-adjusted
results. Nonetheless, in these data, it appears that a large share of the bias reduc-
tion comes from reducing the sample space to observations that are similar to each
other.

Finally, we illustrate the effect of including the children from “other’ ” states
in the DE + U + S and DE + U + X models. If we arbitrarily combine the “other”
states with state 8 (Washington) as the baseline for the dummy variables, the
estimated treatment effects for the P-score Regression models are 10.1 for the
DE + U + S and 5.9 for the DE + U + X. If we instead combine “other” states with
the second to last state (Texas), the P-score Regression treatment effect estimates
are 7.4 for the DE + U + S and 8.0 for the DE + U + X. The exact match effects
change because the propensity score estimates change, even though afterwards
we force exact matches on state. This artificial dependence on the specification
of the dummy variables led us to exclude the children in “other” states for the
DE + U + S and DE + U + X models.

5.3 Concluding remarks

By comparing the results of an experiment and observational study, we have shown
the potential advantage of propensity score approaches over regressions fit using
the full comparison sample. Our study also revealed an important finding: it is
useful to control for geographic variables. Doing so resulted in estimates from the
observational study that more closely matched those from the experiment. This
reinforces the importance of controlling for as many variables as possible in a
propensity score analysis (Rosenbaum and Rubin, 1983). The sensitivity of these
estimates to model specification—all of which led to reasonable balance on the
included covariates—suggests that a range of treatment effect estimates should be
presented when performing propensity score analyses.
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Fixing broken experiments
using the propensity score

Bruce Sacerdote1

6.1 Introduction
“Let’s not think of this as a problem with the data. This is an opportunity.”
—Guido Imbens to disillusioned junior coauthor, 1996.

Suppose that we are interested in estimating a causal effect by comparing
the outcomes for a treatment group and a control group. Rosenbaum and Rubin
(1983b, 1985a) show that conditioning on the propensity score removes any bias in
estimated treatment effects that may arise from observable pretreatment differences
between the two groups.

Though much attention has been focused on the use of propensity score methods
in nonexperimental settings, the method also works well in small experiments and
imperfect natural experiments if the process of selection into treatment group is
nonignorable, but known, and the researcher has the data needed to estimate the
likelihood that an observation would be assigned to the treatment group (i.e., the
propensity score). In our lottery data example, the treatment and control groups are
not well matched, but the assignment process is known and the relevant covariates
are present in the data set. This is precisely the case discussed in Rubin (1977).2

1Department of Economics, Dartmouth College, Hanover, N.H., and NBER.
2Estimation of the propensity score can be less straightforward if the treatment and control groups

are drawn from purely observational data (e.g., the National Longitudinal Survey of Youth (NLSY)
or the Panel Survey of Income Dynamics (PSID)) and selection into the treatment group is via an
unknown and potentially complex process. See Dehejia and Wahba (1999) and Heckman, Ichimura,
and Todd (1997) for some examples.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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In the example below, we take the mismatched treatment and control groups
and address the selection problem in two ways. First, we reweight the data using the
estimated propensity score as in Hirano, Imbens, and Ridder (2000), Hahn (1998),
and Dehejia and Wahba (1999). This balances the pretreatment observables in the
data while still using all the available observations. We also show a second set of
results in which we stratify (block) on the estimated propensity score. This amounts
to dropping observations in the control group, which had a very low probability
of being in the treatment group and dropping observations in the treatment group,
which were unlikely to be control observations.

Estimation of the propensity score in this case is straightforward and deliv-
ers plausible estimated causal effects from winning the lottery on people’s labor
income, savings, housing consumption, probability of divorce and their expenditure
on their children’s education.

6.2 The lottery data

In 1996, Imbens, Rubin, and Sacerdote ran a survey of winners and players of
Massachusetts Megabucks, which was at that time the most popular of the jackpot
lottery games.3 We limited the sample to people who had played Megabucks during
1984 to 1988 because we wanted to examine long run treatment effects, that is, 7
to 11 years after winning.

The survey asked subjects a variety of questions on their and their spouse’s
labor supply, educational attainment, savings, and consumption. We also asked sub-
jects about their happiness, whether they were divorced, expenditures on children’s
education, and their children’s educational attainment. Furthermore, we obtained
Social Security Earnings Records for each subject by requesting that she sign a
release form, which we then forwarded to the Social Security Administration.

One major issue with the study design was finding an appropriate control group
to match the treatment group (the winners). The Massachusetts State Lottery does
not automatically collect names and addresses of people who played Megabucks
but did not win. However, we dealt with this problem in two ways. First, we
surveyed people who had won small prizes of $100 to 5,000 and therefore had
provided their names to the lottery. We also surveyed people whom we knew had
played Megabucks in a given year because they had purchased a “season ticket”,
which is good every week that the lottery game is held.

Predictably, this led to a moderate amount of mismatch between the treatment
and control groups and hence some probable biases in the uncorrected estimates of
treatment effects. Our control group is older and has higher pretreatment education
and income than the treatment group. This stems from the fact that younger and lower
income players buy more tickets. The season ticket holders in the control group are
more likely to be older, have higher incomes, and to buy fewer tickets per game.

3For details on the survey, see Imbens, Rubin, and Sacerdote (2001).
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In Imbens, Rubin, and Sacerdote (2001), we addressed this problem in part
by using a differences-in-differences estimator to remove pretreatment differences
between the two groups. The second approach we used was to limit the sample to
just the winners (the treatment group) and use the variation in the size of the prize
won to identify the effect of unearned income on labor supply and other outcomes.

Here we address the selection problem using estimated propensity scores to adjust
for the likelihood of an observation being in the treatment group. We report two
separate treatment and control group comparisons. First, we compare the winners to
the nonwinners. Second, following the earlier paper, we split the sample of winners
into large and small winners. Even within the subset of winners, there are observable
differences between the big winners and the small winners. In particular, men are
relatively more likely to play (and buy more tickets) in response to a large advertised
jackpot. Thus, men actually appear to win larger prizes in the lottery, conditional on
winning. But this appearance of the lottery’s bias against women is just an artifact
of selection into the different weeks during which Megabucks is run.

We estimate separate propensity scores for the two separate experiments. One
propensity score is for the likelihood that a player is a winner versus a nonwinner and
the second is for big winners versus small winners. We define a big winner as someone
who wins a nominal prize greater than $650,000, which is the sample median.4

6.3 Estimating the propensity scores
We argue above that selection into the treatment group is a function of the number
of tickets bought, which itself depends on age, income, and gender. In the data
set, we have each person’s estimate of his average number of tickets bought per
week around the time of winning. In theory, the propensity score could be esti-
mated using just the number of tickets bought. But as Rubin and Thomas (1996)
show, there is an efficiency gain from using all of the pretreatment variables in
estimating the score. In column (1) of Table 6.1, we show the results from a probit
regression of the indicator for treatment status (winning = 1) on a series of pre-
treatment covariates including age, gender, pretreatment income, and education,
and the average number of tickets bought. Marginal coefficients are shown.

Not surprisingly, the self reported, average number of tickets purchased is
strongly related to the probability of winning a jackpot prize (i.e., being in the
treatment group). Pretreatment earnings tend to be negatively related to the propen-
sity to be in the treatment group, with the coefficient on earnings in 1983 being
large, negative, and statistically significant. Each additional $1,000 of earnings is
associated with a 1.2% decrease in the likelihood of winning a jackpot prize.

Men are 6.4% less likely to be in the treatment group. However, in column (2),
we see that conditional on winning a jackpot prize, men are 17.8% more likely to

4This nominal prize is paid out in equal installments over twenty years, meaning that the net present
value is less than the stated amount. Many modern lottery games pay out the full amount immediately,
or allow winners to choose between an annuity and a lump sum.
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Variable (1) (2)
Treated Group Large Prize

(Lottery Winner) (Cond. on Winning)

Age −0.01
(0.002)

Male −0.06 0.18
(0.06) (0.06)

Own years of high school −0.04
(0.03)

Own years of college −0.11
(0.02)

Number of tickets bought 0.04
(0.01)

Working at time won 0.08
(0.07)

Indicator for low income −0.20
(0.11)

Indicator for high income −0.01
(0.13)

Earnings 1978 × 1000 −0.004
(0.01)

Earnings 1979 × 1000 −0.01
(0.01)

Earnings 1980 × 1000 0.02
(0.01)

Earnings 1981 × 1000 −0.01
(0.01)

Earnings 1982 × 1000 0.006
(0.01)

Earnings 1983 × 1000 −0.01
(0.006)

Observations 593 291
Pseudo r-squared 0.34 0.02

Table 6.1 Estimation of the propensity scores. This table shows probit regressions
used to estimate the propensity scores. The dependent variable in column (1) is an
indicator for being in the original treatment versus control group. The dependent
variable in column (2) is an indicator for winning a large versus a small jack-
pot, conditional on winning Megabucks. The large jackpots range from a nominal
prize of $651,000–10.3 million, versus a nominal prize of $20,000–650,000 for the
smaller jackpots. ∂p̂(x)

∂x
is shown rather than probit coefficients. Regression (1) also

includes a set of dummies for the number of tickets bought. Standard errors are
shown in parentheses.
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win a prize greater than $650,000. Column (2) shows the probit used to estimate
the propensity to win a large prize among all those who won a jackpot prize. We
use the estimated propensity scores from this second regression in calculating the
treatment effects from winning a large versus a small prize.

6.4 Results
Table 6.2 demonstrates the use of the propensity score to balance the pretreatment
covariates across the treatment and control groups. In the raw data (columns 1–3),
there are 302 control observations and 291 treatment observations. The two groups
are statistically different on all of the pretreatment measures. For example, the
control group is on average 67% male and 61 years old in 1996. In contrast, the
treatment group is 55% male and has an average age of 55 years. The treatment
group has earnings that are roughly $2,000 per year lower than the earnings of the
control group, and the treatment group has on average fewer years of education.

Columns (4) to (6) show that most of these imbalances are removed by blocking
on the estimated propensity score. Here we simply limit the observations in both

Variable Weighting
Raw Data Blocking on the Score by Score

Mean Mean p-value Mean Mean p-value p-value
Control Treat. for Diff. Control Treat. for Diff. for Diff.

Prize value (mil.) 0.0 1.1 0.00 0.0 1.0 0.00 0.00
Age of winner 61.2 54.7 0.00 57.0 55.9 0.47 0.10
Male 0.7 0.6 0.01 0.6 0.5 0.36 0.88
4 yrs hs? 0.9 0.8 0.01 0.9 0.9 0.61 0.19
4 yrs college? 0.5 0.2 0.00 0.3 0.3 0.11 0.12
Yrs of hs 3.8 3.6 0.00 3.8 3.7 0.81 0.13
Spouse’s yrs of hs 3.9 3.7 0.01 3.8 3.7 0.66 0.19
Yrs of college 2.3 1.1 0.00 1.8 1.5 0.26 0.07
Spouse’s yrs of coll. 2.0 1.4 0.00 1.8 1.8 0.89 0.23
#tix/wk, pretreat. 2.5 5.9 0.00 2.6 3.4 0.03 0.73
Work at time won? 0.7 0.8 0.03 0.8 0.8 0.22 0.40
Earnings (thous.)
1978 8.3 6.6 0.01 7.5 6.9 0.49 0.35
1979 9.6 7.6 0.00 8.6 8.1 0.64 0.23
1980 10.7 8.6 0.01 9.8 9.6 0.81 0.20
1981 11.9 9.5 0.01 10.7 10.4 0.79 0.15
1982 12.8 10.6 0.03 11.9 11.9 0.99 0.10
1983 13.8 11.3 0.02 13.0 12.6 0.80 0.06

N 302 291 149 147

Table 6.2 Balance in pretreatment covariates when blocking on and weighting
by the score. This table shows pretreatment variables for two groups: (1) people
who won prizes with nominal amounts of $22,000–10,000,000 in Mass Megabucks
(the Treatment Group) and (2) people who played Megabucks but did not win a
jackpot prize.
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groups to those with an estimated treatment propensity greater than 0.20 and less
than 0.80. After blocking on the score, none of the pretreatment differences between
the treatment and the control groups remain statistically significant. For example,
the average age is now 57 for the treatment group and 56 for the control group.

Column (7) shows the resulting p-values for the differences between groups
when we weight by the estimated propensity score rather than blocking on the
score. The chief advantage to weighting is that all the observations can then be
used in estimating treatment effects, and with an appropriate weighting scheme,
the estimator is efficient. (See Hirano, Imbens, and Ridder (2000)). We weight the
treatment observations by 1/p̂(x) and the control group observations by 1/(1 −
p̂(x)), where p̂(x) is the estimated propensity score. In this example, weighting by
the estimated score also achieves pretreatment balance between the treatment and
control groups, although the balance is less perfect than with the blocking method.
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Figure 6.1 Achieving balance in pretreatment covariates using the propensity
score: p-values for difference in means between treatment in control groups. The
height of each bar represents the p-value for a test of the hypothesis that the dif-
ference in means between the treatment and control groups equals zero. The x-axis
shows 16 different pretreatment variables. In the raw data (light grey), the treat-
ment and control groups are statistically different on every pretreatment variable.
In contrast, after blocking on the score, only one difference between the groups is
statistically significant at the 10% level.
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Figure 6.1 shows graphically that blocking on the propensity score or weighting
by the propensity score balances the pretreatment covariates. The heights of the bars
show p-values for differences in means between the treatment and control groups
being equal to zero. The blue bars are the p-values for the raw (unadjusted) means.
In the raw data, the treatment and control group are statistically different on all of
the pretreatment measures. Once we adjust by weighting or blocking on the score,
the p-values all rise dramatically, meaning that the large and statistically significant
differences between the treatment and control groups are greatly reduced.

Either method of adjustment will remove the selection bias in the estimated
treatment effects if we have unbiased estimates of the propensity score (Rosenbaum
and Rubin (1983)). Propensity score adjustment is likely to reduce the selection
bias in the lottery example because we know the assignment mechanism and we
observe the covariates that determine the selection process.

Figure 6.2 shows the earnings of the treatment and control groups over time,
weighting by the estimated propensity score. Pretreatment earnings (1978–1983)
for the two groups are perfectly matched. The people in the treatment group win
the lottery during 1984 to 1988 and their labor market earnings drop sharply below
those of the control group.
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Figure 6.2 Effects of winning Mass Megabucks on labor supply treatment and
control group social security earnings over time. Selection into treatment group
is controlled for by weighting on the estimated propensity score. Subjects in the
treatment group won Megabucks during 1984–1988.
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Table 6.3 shows treatment effects from winning the lottery on earnings, con-
sumption of cars and housings, savings, and divorce. Most of the treatment effects
are statistically different from zero and do not change appreciably when we use
weighting by the score or blocking (stratifying) on the score. Treatment subjects
have labor income of about $6,000 less per year than the control subjects. Not
surprisingly, the treatment subjects have about $20,000 less in their Individual
Retirement Accounts, since they are working less.

The treated individuals drive cars worth $2,000 to $4,000 more, and own homes
worth $6,000 more, relative to the control group. One of the strongest and most
robust results is the effect on divorce. The treatment people are 9% more likely to
get divorced relative to the control people. This may imply that divorce is a normal
good (meaning that its consumption rises with income), or that the additional

Variable Weighting by the Score Blocking on the Score
Mean Mean Treat. Mean Mean Treat.

Control Treated Effect (t-stat) Control Treated Effect (t-stat)

Earnings 1989 (thous.) 16.5 11.1 −5.4 (−3.8) 19.1 13.2 −5.9 (−2.7)
Earnings 1990 (thous.) 17.2 11.1 −6.1 (−4.2) 18.8 13.1 −5.7 (−2.6)
Earnings 1991 (thous.) 17.1 11.0 −6.2 (−4.1) 18.6 13.4 −5.2 (−2.3)
Earnings 1992 (thous.) 15.7 10.9 −4.8 (−3.2) 18.5 13.2 −5.3 (−2.4)
Earnings 1993 (thous.) 17.5 11.3 −6.3 (−4.0) 18.7 13.7 −5.0 (−2.1)
Earnings 1994 (thous.) 17.7 11.0 −6.7 (−4.2) 18.7 12.8 −5.8 (−2.4)
Earnings 1995 (thous.) 15.7 9.2 −6.5 (−4.2) 16.6 10.2 −6.5 (−2.8)
Working now? 0.7 0.4 −0.2 (−5.9) 0.6 0.5 −0.1 (−1.6)
Value of cars (thous.) 16.8 19.1 2.3 (1.8) 15.2 19.8 4.6 (2.6)
Sum all savings (thous.) 182.5 224.4 41.9 (2.0) 175.9 196.2 20.3 (0.7)
IRA value (thous.) 60.3 38.5 −21.9 (−2.9) 65.2 41.9 −23.3 (−2.5)
Savings acct. val. (thous.) 32.1 46.4 14.4 (2.3) 31.6 46.7 15.1 (1.3)
Value small bus. (thous.) 47.8 72.2 24.3 (2.0) 35.1 40.3 5.1 (0.3)
Value ins. policies (thous.) 80.7 93.6 12.9 (0.9) 67.6 85.5 17.9 (0.9)
Oth. major assets (thous.) 10.0 12.5 2.5 (0.5) 7.4 15.7 8.2 (1.6)
Home value (thous.) 161.4 167.3 5.9 (0.7) 160.4 159.7 −0.7 (−0.1)
Divorced since won? 0.0 0.1 0.1 (3.6) 0.0 0.1 0.1 (2.5)
Generally happy? (1 = yes) 0.9 1.0 0.1 (3.5) 1.0 1.0 0.0 (0.0)

N 302 291 149 147

Table 6.3 Treatment effects from winning the lottery: blocking on and weighting
by the propensity score. This table shows treatment effects (from winning the
Massachusetts State Lottery) on income, consumption, savings, happiness, and
the probability of divorce. In the raw data, selection causes the treatment and
control groups to be mismatched in terms of age and pretreatment earnings and
education. The selection problem is corrected here using the estimated propensity
score p̂(x). In columns (2) to (5), this correction is achieved by weighting the
treatment observations by 1/p̂(x) and the control observations by 1/(1 − p̂(x)).
In columns (6) to (9), we limit the sample to control and treatment observations
with 0.2 < p̂(x) < 0.8. In other words, we block on the propensity score.



BROKEN EXPTS AND THE PROPENSITY SCORE—SACERDOTE 69

Variable Raw Means Weighting by the Score
p-value p-value

Control Treat. for Diff. Control Treat. for Diff.

Nominal prize value (mil.) 0.4 1.8 0.0 0.4 1.8 0.0
Age of winner 53.2 56.1 0.07 53.2 56.0 0.06
Male 0.5 0.6 0.00 0.6 0.6 1.00
Yrs of high school 3.5 3.6 0.19 3.5 3.6 0.23
Spouse’s yrs of high school 3.4 3.9 0.00 3.4 3.9 0.00
Yrs of college 1.0 1.2 0.36 1.1 1.2 0.54
Spouse’s yrs of college 1.5 1.4 0.59 1.5 1.4 0.63
#tix/wk, pretreat. 5.9 5.9 0.99 6.0 5.7 0.70
Working at time won? 0.8 0.8 0.82 0.8 0.8 0.32
Earnings 1978 (thous.) 5.7 7.4 0.04 6.2 6.9 0.40
Earnings 1979 (thous.) 6.5 8.6 0.03 7.0 7.9 0.33
Earnings 1980 (thous.) 7.6 9.6 0.07 8.2 8.8 0.57
Earnings 1981 (thous.) 8.1 10.8 0.02 8.8 10.0 0.30
Earnings 1982 (thous.) 8.7 12.4 0.00 9.5 11.4 0.13
Earnings 1983 (thous.) 9.5 12.9 0.01 10.3 11.9 0.22
Year won prize 1986.0 1986.1 0.49 1986.0 1986.1 0.42

N 137 154 137 154

Table 6.4 Balance in pretreatment covariates: winners of big versus smaller prizes.
This table shows pretreatment variables for two groups: (1) people who won prizes
with nominal amounts of $22,000–650,000 (the Control Group) and (2) people who
won nominal prizes of $651,000–$10,000,000 (the Treatment Group). Above, we
argue that assignment to treatment group is random conditional on gender. Men
are more likely to win larger prizes. Covariates in the treatment and control group
are not balanced in the raw data, but are somewhat more balanced when we weight
by the propensity score. The indicator for male is the only covariate used in the
propensity score.

wealth of the lottery prize causes marital problems. The vast majority of people in
both groups report being happy and in most specifications any differences are not
statistically significant. However, when weighting by the score, we find that the
treatment people are statistically significantly happier.

In Tables 6.4 and 6.5, we proceed to analyze the treatment effects of winning
a large (>650,000) jackpot prize versus a smaller prize. Table 6.4 shows that
weighting by the propensity to win the larger prize balances the differences between
the two groups.5 These are likely not the most efficient weights, because we only
included the indicator for male in the propensity score. Our working assumption
for this exercise is that simple differences between men’s and women’s responses
to advertised jackpots causes the pretreatment imbalances between the large and
small jackpot winners. Table 6.4 reinforces this claim.

5Again, we weight by 1/p̂(x) for the treatment and 1/(1 − p̂(x)) for the control.
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Variable Weighting by the Propensity Score
Mean Mean Treat.

Control Treated Effect (t-stat)

Earnings 1989 (thous.) 14.6 10.4 −4.1 (−2.31)
Earnings 1990 (thous.) 14.0 10.4 −3.5 (−1.97)
Earnings 1991 (thous.) 15.0 10.1 −4.9 (−2.64)
Earnings 1992 (thous.) 15.3 9.8 −5.6 (−2.90)
Earnings 1993 (thous.) 15.8 9.7 −6.1 (−3.07)
Earnings 1994 (thous.) 15.8 9.4 −6.3 (−3.17)
Earnings 1995 (thous.) 13.4 8.3 −5.0 (−2.66)
Working now? 0.6 0.4 −0.2 (−3.84)
Value of cars owned (thous.) 15.4 22.9 7.6 (3.46)
Sum of all savings (thous.) 126.3 230.3 104.0 (3.57)
IRA value (thous.) 35.5 34.7 −0.7 (−0.10)
Savings account value (thous.) 21.5 53.4 31.9 (2.57)
Value of small businesses (thous.) 15.5 70.0 54.5 (3.01)
Value of insurance policies (thous.) 72.9 102.2 29.4 (1.43)
Value other major assets (thous.) 7.8 21.4 13.6 (1.91)
Home value (thous.) 126.6 177.4 50.8 (4.16)
Divorced since won? 0.1 0.2 0.1 (1.65)
Generally happy? (1 = yes) 1.0 1.0 0.0 (0.35)

N 137 154

Child outcomes
Spent on child’s private hs (thous.) 2.2 2.1 −0.2 (−0.15)
Spent on child’s college ed. (thous.) 8.5 11.8 3.2 (1.16)
Spent on child’s grad school ed. (thous.) 0.3 2.2 1.9 (1.75)
Child’s yrs of college 1.4 1.8 0.4 (1.81)
Child has 4+ yrs of college? 0.2 0.3 0.1 (1.46)

N 217 259

Table 6.5 Treatment effects from winning a big versus a smaller prize. Here
we examine the treatment effects from winning a big versus a smaller prize (on
average $1.8 million versus 0.36 million). The propensity score is used to weight
observations to correct for selection into treatment group on the basis of gender. The
mean child outcomes reported use the data at the child level, counting each child
in the family as an observation, rather than each winner as a single observation.
Standard errors are corrected for within family correlation.
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One strategy would be to simply block on the indicator for male as in Rubin
(1977) and Fisher (1925), and we did this in results not reported here. However, for
illustrative purposes, here we estimate instead the propensity score with a single
variable (gender).

Table 6.5 shows the estimated treatment effects from winning a large, rather
than a small jackpot. Many of the results are similar to the earlier comparison of
winners and nonwinners. For example, divorce rates are 9% higher for the large
winners. The chief differences between the original treatment effects and those in
Table 6.5 are the value of savings and homes. Large jackpot winners report total
savings (IRA, stocks, bonds, mutual funds, savings accounts) that are larger than
the total savings of small jackpot winners by $104,000. Furthermore, the large
jackpot winners have homes worth $50,000 more.

We also explore the effects of winning a large prize on children’s educational
expenses and attainment. In the second panel of Table 6.5, we examine the data at
the level of each individual child within the families that won large and smaller
jackpots. Children in families that won a large jackpot have about 0.4 years more of
college education and this result is significant at the 10% level. Similarly, children
from families that win large jackpots receive about $2,000 more to cover costs of
graduate education.

6.5 Concluding remarks

This chapter shows the value of the propensity score in fixing broken experiments.
Frequently, natural experiments in social science will not have perfectly matched
treatment and control groups. The presence of human factors almost guarantees
that some selection into or out of the treatment group will occur. However, if we
know the process by which this selection occurs, we can often undo the selection
bias by blocking on or weighting by the propensity score.

In this example, there is a seemingly large pretreatment imbalance between
lottery winners and nonwinners, and even between large and small jackpot winners.
However, all of these differences are due to differences in lottery ticket buying
behavior and propensity score adjustment allows us to reduce, and hopefully correct
for, selection bias.

The propensity score allows researchers to adjust for a single variable (the
estimated propensity score) and is extremely useful in cases like the lottery study,
where there is a modest sample size. The lottery data example illustrates the value
of the propensity score to social science and medical research. The propensity
score is a great tool for enabling a valid comparison between treatment and control
groups in order to identify causal effects.
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The propensity score with
continuous treatments

Keisuke Hirano and Guido W. Imbens1

7.1 Introduction
Much of the work on propensity score analysis has focused on the case in which the
treatment is binary. In this chapter, we examine an extension to the propensity score
method, in a setting with a continuous treatment. Following Rosenbaum and Rubin
(1983a) and most of the other literature on propensity score analysis, we make an
unconfoundedness or ignorability assumption, that adjusting for differences in a set
of covariates removes all biases in comparisons by treatment status. Then, building
on Imbens (2000) we define a generalization of the binary treatment propensity
score, which we label the generalized propensity score (GPS). We demonstrate that
the GPS has many of the attractive properties of the binary treatment propensity
score. Just as in the binary treatment case, adjusting for this scalar function of the
covariates removes all biases associated with differences in the covariates. The GPS
also has certain balancing properties that can be used to assess the adequacy of par-
ticular specifications of the score. We discuss estimation and inference in a paramet-
ric version of this procedure, although more flexible approaches are also possible.

We apply this methodology to a data set collected by Imbens, Rubin, and
Sacerdote (2001). The population consists of individuals winning the Megabucks

1Department of Economics, University of Arizona, Tuscon, Ariz., and Department of Economics
and Department of Agricultural and Resource Economics, University of California, Berkeley. Financial
support for this research was generously provided through NSF grants SES-0226164 and SES-0136789.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X

73



74 CONTINUOUS PROPENSITY SCORES—HIRANO, IMBENS

lottery in Massachusetts in the mid-1980s. We are interested in the effect of the
amount of the prize on subsequent labor earnings. Although the assignment of
the prize is obviously random, substantial item and unit nonresponse led to a
selected sample in which the amount of the prize is no longer independent of
background characteristics. We estimate the average effect of the prize adjusting for
differences in background characteristics using the propensity score methodology,
and compare the results to conventional regression estimates. The results suggest
that the propensity score methodology leads to credible estimates that can be more
robust than simple regression estimates.

7.2 The basic framework
We have a random sample of units, indexed by i = 1, . . . , N . For each unit i, we
postulate the existence of a set of potential outcomes, Yi(t), for t ∈ T , referred
to as the unit-level dose–response function. In the binary treatment case, T =
{0, 1}. Here we allow T to be an interval [t0, t1]. We are interested in the average
dose–response function, µ(t) = E[Yi(t)]. For each unit i, there is also a vector of
covariates Xi , and the level of the treatment received, Ti ∈ [t0, t1]. We observe the
vector Xi , the treatment received Ti , and the potential outcome corresponding to
the level of the treatment received, Yi = Yi(Ti).

To simplify the notation, we will drop the i subscript in the sequel. We assume
that {Y(t)}t∈T , T , X are defined on a common probability space, that T is con-
tinuously distributed with respect to Lebesgue measure on T , and that Y = Y(T )
is a well-defined random variable (this requires that the random function Y(·) be
suitably measurable).

Our key assumption generalizes the unconfoundedness assumption for binary
treatments made by Rosenbaum and Rubin (1983), to the multivalued case:

Assumption 1 (Weak Unconfoundedness) Y(t) ⊥ T |X for all t ∈ T .

We refer to this as weak unconfoundedness, as we do not require joint inde-
pendence of all potential outcomes, {Y(t)}t∈[t0,t1]. Instead, we require conditional
independence to hold for each value of the treatment.

Next, we define the generalized propensity score.

Definition 1 (Generalized Propensity Score) Let r(t, x) be the conditional den-
sity of the treatment given the covariates:

r(t, x) = fT |X(t |x).
Then the generalized propensity score is R = r(T ,X).
This definition follows Imbens (2000). For alternative approaches to the case with
multivalued treatments, see Joffe and Rosenbaum (1999a, 1999b), Lechner (2001),
and Imai and van Dyk (2004).

The function r is defined up to equivalence almost everywhere. By standard
results on conditional probability distributions, we can choose r such that R =
r(T ,X) and r(t, X) are well-defined random variables for every t .
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The GPS has a balancing property similar to that of the standard propensity
score. Within strata with the same value of r(t, X), the probability that T = t does
not depend on the value of X. Loosely speaking, the GPS has the property that

X ⊥ 1{T = t}|r(t, X).
This is a mechanical implication of the definition of the GPS, and does not require
unconfoundedness. In combination with unconfoundedness, this implies that assign-
ment to treatment is unconfounded given the generalized propensity score.

Theorem 1 (Weak Unconfoundedness Given The Generalized Propensity
Score) Suppose that assignment to the treatment is weakly unconfounded given
pretreatment variables X. Then, for every t ,

fT (t |r(t, X), Y (t)) = fT (t |r(t, X)). (7.1)

Proof. Throughout the proof, equality is taken as a.e. equality. Since r(t, X)
is a well-defined random variable, for each t we can define a joint law for
(Y (t), T ,X, r(t, X)). We use FX(x|·) to denote various conditional probability
distributions for X, and we use fT (t |·) to denote conditional densities of T . Note
that r(t, X) is measurable with respect to the sigma-algebra generated by X. This
implies, for example, that fT (t |X, r(t, X)) = fT (t |X).

Using standard results on iterated integrals, we can write

fT (t |r(t, X)) =
∫
fT (t |x, r(t, X)) dFX(x|r(t, X))

=
∫
fT (t |x) dFX(x|r(t, X))

=
∫
r(t, x) dFX(x|r(t, X)) = r(t, X).

The left side of equation (7.1) can be written as:

fT (t |r(t, X), Y (t)) =
∫
fT (t |x, r(t, X), Y (t)) dFX(x|Y(t), r(t, X)).

By weak unconfoundedness, fT (t |x, r(t, X), Y (t)) = fT (t |x), so

fT (t |r(t, X), Y (t)) =
∫
r(t, x) dFX(x|Y(t), r(t, X))

= r(t, X).
Therefore, for each t , fT (t |r(t, X), Y (t)) = fT (t |r(t, X)). �

When we consider the conditional density of the treatment level at t , we evalu-
ate the generalized propensity score at the corresponding level of the treatment. In
that sense, we use as many propensity scores as there are levels of the treatment.
Nevertheless, we never use more than a single score at one time.
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7.3 Bias removal using the GPS
In this section, we show that the GPS can be used to eliminate any biases associated
with differences in the covariates. The approach consists of two steps. First, we
estimate the conditional expectation of the outcome as a function of two scalar
variables, the treatment level T and the GPS R, β(t, r) = E[Y |T = t, R = r].
Second, to estimate the dose–response function at a particular level of the treatment
we average this conditional expectation over the GPS at that particular level of the
treatment, µ(t) = E[β(t, r(t, X))]. We do not average over the GPS R = r(T ,X);
rather we average over the score evaluated at the treatment level of interest, r(t, X).

Theorem 2 (Bias Removal with Generalized Propensity Score) Suppose that
assignment to the treatment is weakly unconfounded given pretreatment variables
X. Then
(i) β(t, r) = E[Y(t)|r(t, X) = r] = E[Y |T = t, R = r].
(ii) µ(t) = E[β(t, r(t, X)].

Proof. Let fY(t)|T ,r(t,X)(·|t, r) denote the conditional density (with respect to
some measure) of Y(t) given T = t and r(t, X) = r . Then, using Bayes rule and
Theorem 1,

fY(t)|T ,r(t,X)(y|t, r) = fT (t |Y(t) = y, r(t, X) = r)fY(t)|r(t,X)(y|r)
fT (t |r(t, X) = r)

= fY(t)|r(t,X)(y|r)
Hence,

E[Y(t)|T = t, r(t, X) = r] = E[Y(t)|r(t, X) = r].
But we also have

E[Y(t)|T = t, R = r] = E[Y(t)|T = t, r(T ,X) = r]
= E[Y(t)|T = t, r(t, X) = r]
= E[Y(t)|r(t, X) = r] = β(t, r)

Hence, E[Y(t)|r(t, X) = r] = β(t, r), which proves part (i). For the second part,
by iterated expectations, E[β(t, r(t, X))] = E[E[Y(t)|r(t, X)]] = E[Y(t)]. �

It should be stressed that the regression function β(t, r) does not have a causal
interpretation. In particular, the derivative with respect to the treatment level t
does not represent an average effect of changing the level of the treatment for any
particular subpopulation.

Robins (1998, 1999) and Robins, Hernan, and Brumback (2000) use a related
approach. They parameterize or restrict the form of the Y(t) process (and hence the
form of µ(t)), and call this a marginal structural model (MSM). The parameters
of the MSM are estimated using a weighting scheme based on the GPS. When
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the treatment is continuous these weights must be “stabilized” by the marginal
probabilities of treatment. In the approach we take here, we would typically employ
parametric assumptions about the form of β(t, r) instead of µ(t), and do not need
to reweight the observations.

Two artificial examples

Example 1: Suppose that the conditional distribution of Y(t) given X is

Y(t)|X ∼ N(t +X exp(−tX), 1).
The conditional mean of Y(t) given X is t +X exp(−tX). Suppose also that
the marginal distribution of X is unit exponential. The marginal mean of Y(t)
is obtained by integrating out the covariate to get

µ(t) = E[t +X exp(−tX)] = t + 1

(t + 1)2
.

Now consider estimating the dose–response function using the GPS approach. We
assume that the assignment to treatment is weakly unconfounded. For illustrative
purposes, we also assume that the conditional distribution of the treatment T given
X is exponential with hazard rate X. This implies that the conditional density of
T given X is

fT |X(t, x) = x exp(−tx).
Hence the generalized propensity score is R = X exp(−TX).

Next, we consider the conditional expectation of Y given the treatment T and
the score R. By weak unconfoundedness, the conditional expectation of Y given
T and X is

E[Y |T = t, X = x] = E[Y(t)|X = x].

Then by iterated expectations

E[Y |T = t, R = r] = E [E[Y |T = t, X]| T = t, R = r]
= E[E[Y(t)|X]|T = t, R = r]
= E[t +X exp(−tX)|T = t, R = r] = t + r.

As stressed before, this conditional expectation does not have a causal interpretation
as a function of t . For the final step, we average this conditional expectation over
the marginal distribution of r(t, X):

E[Y(t)] = E[t + r(t, X)] = t + 1

(1 + t)2 = µ(t).

This gives us the dose–response function at treatment level t .
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Example 2: Suppose that the dose–response function is E[Y(t)] = µ(t). Also sup-
pose that X is independent of the level of the treatment so that we do not actually
need to adjust for the covariates. Independence of the covariates and the treatment
implies that the GPS r(t, x) = fT |X(t |x) = fT (t) is a function only of t . This
creates a lack of uniqueness in the regression of the outcome on the level of the
treatment and the GPS. Formally, there is no unique function β(t, r) such that
E[Y |T = t, R = r] = β(t, r) for all (t, r) in the support of (T , r(T )). In practice,
this means that the GPS will not be a statistically significant determinant of the
average value of the outcome, and in the limit we will have perfect collinearity in
the regression of the outcome on the treatment level and the GPS. However, this
does not create problems for estimating the dose–response function. To see this,
note that any solution β(t, r) must satisfy

β(t, r(t)) = E[Y |T = t, r(T ) = r(t)] = E[Y |T = t] = µ(t).

Hence, the implied estimate of the dose–response function is∫
x

β(t, r(t, x))fX(x) dx = β(t, r(t)) = µ(t),

equal to the dose–response function.

7.4 Estimation and inference

In this section, we consider the practical implementation of the generalized propen-
sity score methodology outlined in the previous section. We use a flexible para-
metric approach. In the first stage, we use a normal distribution for the treatment
given the covariates:

Ti |Xi ∼ N(β0 + β ′
1Xi, σ

2).

We may consider more general models such as mixtures of normals, or het-
eroskedastic normal distributions with the variance being a parametric function
of the covariates. In the simple normal model, we can estimate β0, β1, and σ 2 by
maximum likelihood. The estimated GPS is

R̂i = 1√
2πσ̂ 2

exp

(
− 1

2σ̂ 2
(Ti − β̂0 − β̂ ′

1Xi)
2
)
.

In the second stage, we model the conditional expectation of Yi given Ti and Ri
as a flexible function of its two arguments. In the application in the next section,
we use a quadratic approximation:

E[Yi |Ti, Ri] = α0 + α1Ti + α2T
2
i + α3Ri + α4R

2
i + α5TiRi.

We estimate these parameters by ordinary least squares using the estimated GPS R̂i .
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Given the estimated parameter in the second stage, we estimate the average
potential outcome at treatment level t as

Ê[Y(t)] = 1

N

N∑
i=1

(
α̂0 + α̂1t + α̂2t

2 + α̂3r̂(t, Xi)+ α̂4r̂(t, Xi)
2 + α̂5t r̂(t, Xi)

)
.

We do this for each level of the treatment we are interested in, to obtain an estimate
of the entire dose–response function.

Given the parametric model we use for the GPS and the regression function
one can demonstrate root-N consistency and asymptotic normality for the estima-
tor. Asymptotic standard errors can be calculated using expansions based on the
estimating equations; these should take into account estimation of the GPS as well
as the α parameters. In practice, however, it is convenient to use bootstrap methods
to form standard errors and confidence intervals.

7.5 Application: the Imbens–Rubin–Sacerdote
lottery sample

The data

The data we use to illustrate the methods discussed in the previous section come
from the survey of Massachusetts lottery winners, which is described in fur-
ther detail in the chapter by Sacerdote in this volume, and in Imbens, Rubin,
and Sacerdote (2001). Here we analyze the effect of the prize amount on sub-
sequent labor earnings (from social security records), without discretizing the
prize variable.

Although the lottery prize is obviously randomly assigned, there is substantial
correlation between some of the background variables and the lottery prize in our
sample. The main source of potential bias is the unit and item nonresponse. In
the survey unit, nonresponse was about 50%. In fact, it was possible to directly
demonstrate that this nonresponse was nonrandom, since for all units the lottery
prize was observed. It was shown that the higher the lottery prize, the lower the
probability of responding to the survey. The missing data imply that the amount
of the prize is potentially correlated with background characteristics and potential
outcomes. In order to remove such biases, we make the weak unconfoundedness
assumption that conditional on the covariates the lottery prize is independent of
the potential outcomes.

The sample we use in this analysis is the “winners” sample of 237 individuals
who won a major prize in the lottery. In Table 7.1, we present means and standard
deviations for this sample. To demonstrate the effects of nonresponse, we also
report the correlation coefficients between each of the covariates and the prize,
with the t-statistic for the test that the correlation is equal to zero. We see that
many of the covariates have substantial and significant correlations with the prize.
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Variable Mean S.D. Corr. t-stat GPS Est. GPS SE
w/Prize

Intercept 2.32 (0.48)
Age 47.0 13.8 0.2 2.4 0.02 (0.01)
Years high school 3.6 1.1 −0.1 −1.4 0.02 (0.06)
Years college 1.4 1.6 0.0 0.5 0.04 (0.04)
Male 0.6 0.5 0.3 4.1 0.44 (0.14)
Tickets bought 4.6 3.3 0.1 1.6 0.00 (0.02)
Working then 0.8 0.4 0.1 1.4 0.13 (0.17)
Year won 1986.1 1.3 −0.0 −0.4 −0.00 (0.05)
Earnings year–1 14.5 13.6 0.1 1.7 0.01 (0.01)
Earnings year–2 13.5 13.0 0.1 2.1 −0.01 (0.02)
Earnings year–3 12.8 12.7 0.2 2.3 0.01 (0.02)
Earnings year–4 12.0 12.1 0.1 2.0 0.02 (0.02)
Earnings year–5 12.2 12.4 0.1 1.1 −0.02 (0.02)
Earnings year–6 12.1 12.4 0.1 1.1 −0.01 (0.01)

Table 7.1 Summary statistics and parameter estimates of generalized propensity
score.

Modeling the conditional distribution of the prize given
covariates

The first step is to estimate the conditional distribution of the prize given the
covariates. The distribution of the prize is highly skewed, with a skewness of 2.9
and a kurtosis of 15.0. We therefore first transform the prize by taking logarithms.
The logarithm of the prize has a skewness of −0.02 and a kurtosis of 3.4. We then
use a normal linear model for the logarithm of the prize:

log Ti |Xi ∼ N(β0 + β ′
1Xi, σ

2).

The estimated coefficients from this model are presented in Table 7.1.
To see whether this specification of the propensity score is adequate, we inves-

tigate how it affects the balance of the covariates. This idea is again borrowed from
the analysis of binary treatment cases, in which Rosenbaum and Rubin (1983) stress
the balancing properties of the propensity score. We divide the range of prizes into
three treatment intervals, [0, 23], [23, 80], and [80, 485], with 79 observations in
the first group, 106 in the second, and 52 in the last treatment group. For each of
the thirteen covariates, we investigate the balance by testing whether the mean in
one of the three treatment groups was different from the mean in the other two
treatment groups combined. (Alternatively, we could carry out various joint tests
to assess the covariate balance.) In Table 7.2, we report the t-tests for each of the
thirteen covariates and each of the three groups. The results show a clear lack of
balance, with 14 (17) of 39 t-statistics greater than 1.96 (1.645) in absolute value.
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Variable Unadjusted Adjusted for the GPS

[0, 23] [23, 80] [80, 485] [0, 23] [23, 80] [80, 485]

Age −1.7 −0.1 2.0 0.1 0.3 1.7
Years high school −0.9 1.7 −0.7 −0.5 0.8 −1.0
Years college −1.2 0.7 0.5 −0.5 0.7 −0.7
Male −3.6 0.5 4.0 −0.4 0.2 0.1
Tickets bought −1.1 0.5 0.6 −0.7 0.7 −0.2
Working then −1.1 −0.3 2.0 −0.0 −0.2 0.3
Year won −0.6 2.0 −1.6 −0.1 1.1 −1.0
Earnings year–1 −1.8 −0.5 2.3 −0.3 −0.7 0.5
Earnings year–2 −2.3 −0.4 2.6 −1.0 −0.4 0.5
Earnings year–3 −2.7 −0.6 3.1 −1.4 −0.6 1.2
Earnings year–4 −2.7 −0.7 3.1 −0.9 −0.6 1.7
Earnings year–5 −2.2 −0.3 2.4 −1.1 −0.0 2.1
Earnings year–6 −2.1 −0.1 2.3 −1.5 0.4 2.2

Table 7.2 Balance given the generalized propensity score: t-statistics for equality
of means.

Next, we report GPS-adjusted versions of these statistics. Take the first covariate
(age), and the test whether the adjusted mean in the first group (with prizes less
than 23 K) is different from the mean in the other two groups. Recall that we
should have

Xi ⊥ 1{Ti = t}|r(t, Xi).
We implement this by discretizing both the level of the treatment and the GPS.
First, we check independence of Xi and the indicator that 0 ≤ Ti ≤ 23, conditional
on r(t, Xi). To implement this we approximate r(t, Xi) by evaluating the GPS at
the median of the prize in this group, which is 14. Thus, we test

Xi ⊥ 1{0 ≤ Ti ≤ 23} | r(14, Xi).

We test this by blocking on the score r(14, Xi). We use five blocks, defined
by quintiles of r(14, Xi) in the group with 1{0 ≤ Ti ≤ 23}. The five groups are
defined by the GPS values for r(14, Xi) in the intervals [0.06, 0.21], [0.21, 0.28],
[0.28, 0.34], [0.34, 0.39], and [0.39, 0.45]. (The full range of values for the GPS
r(T ,X) evaluated at received treatment and covariates is [0.00, 0.45], but the
range of r(14, X) is [0.06, 0.45].) For example, the first of these five groups, with
r(14, Xi) ∈ [0.06, 0.21] has a total of 84 observations (16 with Ti ∈ [0, 23] and
68 with Ti /∈ [0, 23]). Testing for equality of the average age in the first versus the
other two prize groups in this GPS group gives a mean difference of −5.5 with a
standard error of 2.2. In the second GPS group, with r(14, Xi) ∈ [0.21, 0.28] there
are 39 observations (16 with Ti ∈ [0, 23] and 23 with Ti /∈ [0, 23]), leading to
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a mean difference of −3.2 (SE 5.3). In the third GPS group, with r(14, Xi) ∈
[0.28, 0.34] there are 53 observations (15 with Ti ∈ [0, 23] and 38 with Ti /∈
[0, 23]), leading to a mean difference of 8.2 (SE 4.4). In the fourth GPS group,
with r(14, Xi) ∈ [0.34, 0.39] there are 36 observations (16 with Ti ∈ [0, 23] and
20 with Ti /∈ [0, 23]), leading to a mean difference of 4.7 (SE 3.0). In the fifth GPS
group, with r(14, Xi) ∈ [0.39, 0.45] there are 25 observations (16 with Ti ∈ [0, 23]
and 9 with Ti /∈ [0, 23]), leading to a mean difference of 0.4 (SE 4.0). Combining
these five differences in means, weighted by the number of observations in each
GPS group, leads to a mean difference of 0.1 (SE 0.9), and thus a t-statistic of 0.1,
compared to an unadjusted mean of −3.1 (SE 1.8) and t-statistic of −1.7.

The adjustment for the GPS improves the balance. After the adjustment for the
GPS, only 2 t-statistics are larger than 1.96 (compared to 16 prior to adjustment)
and 4 out of 39 are larger than 1.645 (compared to 17 prior to adjustment). These
lower t-statistics are not merely the result of increased variances. For example, for
earnings in year −1, the mean difference between treatment group [0, 23] and the
other two is −3.1 (SE 1.7). After adjusting for the GPS, this is reduced to −0.3
(SE 0.9).

Estimating the conditional expectation of outcome given prize
and generalized propensity score

Next, we regress the outcome, earnings six years after winning the lottery, on the
prize Ti , and the logarithm of the score Ri . We include all second-order moments
of prize and log score. The estimated coefficients are presented in Table 7.3. Again,
it should be stressed that there is no direct meaning to the estimated coefficients
in this model, except that testing whether all coefficients involving the GPS are
equal to zero can be interpreted as a test of whether the covariates introduce any
bias.

Estimating the dose-response function
The last step consists of averaging the estimated regression function over the
score function evaluated at the desired level of the prize. Rather than report the
dose–response function, we report the derivative of the dose–response function.

Variable Est. SE

Intercept 9.68 3.34
Prize −0.03 0.03
Prize-squared/1,000 0.40 0.20
Log(score) −3.33 3.41
Log(score)-squared −0.28 0.46
Log(score) × prize 0.05 0.02

Table 7.3 Parameter estimates of conditional distribution of prize given covariates.
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Figure 7.1 Estimated derivatives and 95% confidence bands.

In economic terminology, this is the marginal propensity to earn out of unearned
income. (The yearly prize money is viewed as unearned income, and the derivative
of average labor income with respect to this is the marginal propensity to earn out of
unearned income.) We report the value of the derivative at $10,000 increments for
all values of the yearly lottery prize between $10,000 and $100,000. The results are
shown in Figure 7.1, along with pointwise 95% confidence bands. The bands are
based on 1,000 bootstrap replications, taking into account estimation of the GPS.

The GPS-based estimates are compared to linear regression estimates based
on a regression function that is quadratic in the prize, either without additional
covariates (“unadjusted”) or with the additional covariates included linearly (“LS
adjusted”).

The GPS estimates imply that the absolute value of the propensity to earn out
of unearned income goes down sharply with the level of unearned income, from
−0.10 at $10,000 to −0.02 at $100,000, suggesting that those with lower earnings
are much more sensitive to income changes than those with higher earnings. The
linear regression estimates suggest a much smaller change, with the derivative at
a prize of $100,000 equal to −0.04, compared to −0.05 at $10,000.

7.6 Conclusion
Propensity score methods have become one of the most important tools for analyzing
causal effects in observational studies. Although the original work of Rosenbaum
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and Rubin (1983) considered applications with binary treatments, many of the ideas
readily extend to multivalued and continuous treatments. We have discussed some
of the issues involved in handling continuous treatments, and emphasized how the
propensity score methodology can be extended to this case. We applied these ideas
to a data set previously studied by Imbens, Rubin, and Sacerdote (2001). We expect
that coming years will see further work applying the Rubin causal model approach
to a range of settings.
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Causal inference with
instrumental variables

Junni L. Zhang1

8.1 Introduction

The Rubin causal model (RCM) has been a well-established framework of causal
inference in comparison and evaluation of treatments and programs in economics,
medicine, and other fields. In a series of influential papers (Imbens and Angrist,
1994a; Angrist and Imbens, 1995; Angrist, Imbens, and Rubin, 1996; Imbens and
Rubin, 1997a, 1997b), Don Rubin and his colleagues reinterpreted the instrumen-
tal variable (IV) estimand in the RCM framework and laid out assumptions under
which this estimand has causal interpretation as a local average treatment effect
(LATE), without requiring functional form or constant effect assumptions tradi-
tionally employed in econometric IV analyses. This interpretation of IV estimands
has been discussed and explored in many studies (e.g., Gerber and Green, 1999,
2000a, 2000b; Ichino and Winter-Ebmer, 1998; Angrist and Evans, 1998; Cruces
and Galiani, 2003; Contoyannis and Rice, 2001). A related context arises with
studying noncompliance in randomized experiments, where treatment assignment
serves as the IV for the effect of treatment receipt on the outcome, and LATE is
often termed as CACE (complier average causal effect).

More traditionally, following Haavelmo (1943, 1944), the IVs are used to
identify causal parameters in structural equation models, which specify a system
of autonomous equations that attempt to capture the causal relationship between

1Department of Business Statistics and Econometrics, Peking University.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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variables. Often linearity constant causal effects are assumed such that the IV
estimand can be interpreted as average treatment effect (ATE).

Consider a simple but important case with binary treatment and binary instru-
ment. For illustration, we will consider an example of inferring the effect of college
degree on income, using families’ proximity to colleges as the IV (see Card, 1995).
For individual i, let Di be an indicator of whether he gets a college degree, let
Yi be his income, and let Zi be the dichotomized IV: Zi = 1 if family is close
to college and Zi = 0 if family is far from college. An example of a structural
equation model for inferring the treatment effect is the dummy endogenous variable
model (see, e.g., Heckman and Robb, 1985; Heckman and Hotz, 1989)

Yi = β0 + β1 ·Di + εi,
D∗
i = α0 + α1 · Zi + vi, (8.1)

and

Di =
{

1 if D∗
i > 0,

0 if D∗
i ≤ 0.

(8.2)

In this model, β1 represents the causal effect of college degree on income. εi and
vi are disturbance terms. Since people choose to attend colleges on the basis of
unobserved factors (such as ability) that tend to be also related to their income,
usually εi and vi are correlated, and hence Di is correlated with εi . This has been
known as self-selection problem or selection bias problem in econometrics.

For Zi to be a valid IV that can be used to identify β1, two assumptions are
typically made:

E[Zi · εi] = 0, E[Zi · vi] = 0 (8.3)

and

cov(Di, Zi) �= 0. (8.4)

The zero correlation between Zi and εi in (8.3) and the absence of Zi in (8.1)
implies that any effect of families’ proximity to colleges on income must be through
an effect on college degree. With the second assumption in (8.4), the effect of
families’ proximity to colleges on college degree is nonzero. The IV estimand
(Durbin, 1954) is then defined as the ratio of the covariances

β IV = cov(Yi, Zi)

cov(Di, Zi)
, (8.5)

which is equal to β1 in (8.1) given the two assumptions. Since β1 as the causal
effect of college degree on income is assumed to be constant in the population,
the IV estimand can be interpreted as the ATE.

When the causal effect is heterogeneous, however, the IV estimand is no longer
equal to ATE. In this chapter, we discuss reinterpretation of the IV estimand
and estimation of causal effects using IVs. The materials are mainly drawn from
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Angrist, Imbens, and Rubin (1996) and Imbens and Rubin (1997a, 1997b). In
Section 8.2, we give the assumptions for the LATE interpretation of the IV esti-
mand. We then discuss estimation of causal effects under these assumptions and
sensitivity to these assumptions in Section 8.3. Section 8.4 reviews some recent
applications. Section 8.5 then concludes with discussion on IV choice and exten-
sions of the work.

8.2 Key assumptions for the LATE interpretation of
the IV estimand

Let Zi be a binary instrument. To represent the potential outcomes, we use notation
different from the previous section. For z = 0, 1, letDi(z) = 0 or 1 be the treatment
that would be obtained by individual i given instrument z; for z = 0, 1 and d = 0, 1,
let Yi(z, d) be the outcome that would be observed for individual i given instrument
z and treatment d, respectively. An implicit assumption in this notation is the Stable
Unit Treatment Value Assumption (SUTVA, Rubin, 1980b, 1990), which requires
that individual i is not affected by the values of the instrument and the treatment
for other individuals. For individual i, we observe the triple(

Zobs
i = Zi, Dobs

i = Di(Zobs
i ), Y

obs
i = Yi(Zobs

i , D
obs
i )

)
.

We make a second assumption that the instrument Zi is randomly assigned,
independent of all the potential outcomes Di(z) and Yi(z, d), or ignorable more
generally (Rubin, 1978a). The third assumption is that the average effect of Z on
D is nonzero, or E[Di(1)−Di(0)] �= 0. The fourth assumption is the exclusion
restriction for IV: the potential outcomes Yi(z, d) do not depend on the instrument
z; so for d = 0, 1, Yi(d) denotes the outcome that would be observed for individual
i under treatment d. Finally, we assume monotonicity such that Di(1) ≥ Di(0) for
all individuals; this assumes that no one would receive the treatment when given
instrument z = 0 but not when given z = 1.

In the context of our example of evaluating the effect of a college degree on
income, the five assumptions described above are as follows:

• SUTVA: whether individual i gets a college degree and his subsequent
income are unrelated to whether families of other individuals are close to
colleges and whether they get college degrees. This assumption might fail,
for example, if individuals living far from college but close to each other
tend to go to college together.

• Ignorable assignment of the instrument: families’ proximity to colleges is
exogenous for the potential outcomes of individuals in the study. This assump-
tion might fail, for example, if families choose to live close to college if their
kids promise to go to college.
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• Exclusion restriction: after taking into account whether an individual gets a
college degree, his income is not affected by whether his family lives close
to colleges. This assumption might fail, for example, if individuals are more
constrained when their family lives closer to college, and thus lose some
opportunities to become more self-supportive.

• Nonzero average effect of Z on D: the distance of family from colleges
changes the likelihood that individuals get college degrees. Card (1995) pre-
sented evidence that supports this assumption.

• Monotonicity: no one would get a college degree when his family lives far
from colleges but not when his family lives close to colleges. This assumption
might fail, if individuals with families far from colleges tend to work harder
in order to go to college.

We will address violation of the exclusion restriction or the monotonicity assump-
tion in the next section. At present, we will assume that all five assumptions are
satisfied.

Under the SUTVA assumption, we can define the causal effects of Z on D and
on Y .

Definition 1 Causal Effects of Z on D and Z on Y .
The causal effect for individual i of Z on D is Di(1)−Di(0).
The causal effect for individual i of Z on Y is Yi(1,Di(1))− Yi(0,Di(0)).

If exclusion restriction is further assumed, we can define the causal effect of
treatment D on outcome Y , which is the causal effect of ultimate interest.

Definition 2 Causal Effect of D on Y .
The causal effect for individual i of D on Y is Yi(1)− Yi(0).

Under the SUTVA assumptions, ignorable assignment of the instrument and
nonzero average effect of Z on D, the units can be partitioned according to the
four possible joint values of (Di(0),Di(1)), as shown in Table 8.1. This partition is
an example of principal stratification (Frangakis and Rubin, 2002). For individual

Causal Effect of Z on Y
Di(0) Di(1) No Exclusion With Exclusion

Never-takers 0 0 Yi(1, 0)− Yi(0, 0) 0
Compliers 0 1 Yi(1, 1)− Yi(0, 0) Yi(1)− Yi(0)
Defiers 1 0 Yi(1, 0)− Yi(0, 1) −(Yi(1)− Yi(0))
Always-takers 1 1 Yi(1, 1)− Yi(0, 1) 0

Table 8.1 Partition of the population by Di(0) and Di(1), and the corresponding
causal effect of Z on Y , with or without exclusion restriction.
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i, let Ci denote the principal stratum indicator. In the context of our example, the
four principal strata are as follows:

• The individuals who would not get a college degree regardless of whether
their families live close to colleges, {i : Di(0) = Di(1) = 0}. We label them
never-takers (Ci = n). Under exclusion restriction, the causal effects of Z
on Y are 0 for never-takers.

• The individuals who would get a college degree regardless of whether their
families live close to colleges, {i : Di(0) = Di(1) = 1}. We label them always-
takers (Ci = a). Under exclusion restriction, the causal effects of Z on Y are
0 for always-takers.

• The individuals who would get a college degree when their families live
close to colleges but not otherwise, {i : Di(0) = 0,Di(1) = 1}. We label
them compliers (Ci = c). Under exclusion restriction, the causal effects for
compliers of Z on Y are equal to those of D on Y .

• The individuals who would not get a college degree when their families
live close to colleges but would otherwise, {i : Di(0) = 1,Di(1) = 0}. We
label them defiers (Ci = d). Under exclusion restriction, the causal effects
for defiers of Z on Y are opposite to those of D on Y .

We refer to never-takers, always-takers, and defiers together as noncompliers.
Under the SUTVA assumptions, ignorable assignment of the instrument, and

nonzero effect of Z on D, one can show that

βIV = E[Yi(1,Di(1))− Yi(0,Di(0))]
E[Di(1)−Di(0)] , (8.6)

thus the IV estimand is equal to the ratio of the average causal effect of Z on Y
and the average causal effect of Z on D.

By virtue of the exclusion restriction, the causal effects of Z on Y are 0 for
never-takers and always-takers. By virtue of the monotonicity assumption, there
are no defiers. Further, by assuming nonzero effect of Z on D, the proportion
of compliers is nonzero and is equal to the average causal effect of Z on D.
Combing all five assumptions, we can see that the average causal effect of Z
on Y is proportional to the average causal effect of D on Y for compliers, and
the proportional factor is equal to the proportion of compliers. Therefore, the IV
estimand can be written as

βIV = E[(Yi(1)− Yi(0))|Di(1)−Di(0) = 1]. (8.7)

The IV estimand thus identifies a LATE, the average treatment effect for compliers.
In our example, it is equal to the average causal effect of college degree on income
for those who would get a college degree only because their families live close to
colleges.
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In the context of randomized studies with noncompliance, if we use treatment
assignment Z as the IV for the effect of treatment receipt D on outcome Y ,
the same five assumptions can be made. In particular, the second assumption is
automatically satisfied, the third assumption (exclusion restriction) assumes that
treatment assignment affects outcome only through treatment receipt, and the fifth
assumption (monotonicity) assumes that there is only one-sided noncompliance
such that no one would always go against the treatment assignment. Under these
assumptions, as shown in (8.7), the IV estimand identifies the complier average
causal effect (i.e., CACE).

8.3 Estimating causal effects with IV

Since we cannot observe both Di(0) and Di(1), we cannot directly observe the
principal strata for the individuals. What we can observe are the four groups based
on Zobs

i and Dobs
i . In the context of our example, these four observed groups are:

• OBS(0, 0) = {i : Zobs
i = 0,Dobs

i = 0}, those whose families live far away
from college and do not get college degrees;

• OBS(0, 1) = {i : Zobs
i = 0,Dobs

i = 1}, those whose families live far away
from college and get college degrees;

• OBS(1, 0) = {i : Zobs
i = 1,Dobs

i = 0}, those whose families live close to
college and do not get college degrees;

• OBS(1, 1) = {i : Zobs
i = 1,Dobs

i = 1}, those whose families live close to
college and get college degrees;

The data pattern and latent principal strata associated with each observed group are
shown in Table 8.2. Without monotonicity assumption, each of the four observed
groups is a mixture of two latent principal strata. With monotonicity assump-
tion, we can identify the OBS(1, 0) group as never-takers, and OBS(0,1) group as
always-takers.

Latent Types
OBS(Zobs

i , D
obs
i ) No Monotonicity With Monotonicity

OBS(1,1) Always-takers, compliers Always-takers, compliers
OBS(1,0) Never-takers, defiers Never-takers
OBS(0,1) Always-takers, defiers Always-takers
OBS(0,0) Never-takers, compliers Never-takers, compliers

Table 8.2 Classification of the population by Zobs
i and Dobs

i , and the latent types
of individuals belonging to each observed group, with and without monotonicity
assumption.
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Since we never observe never-takers with Dobs
i = 1 or always-takers with

Dobs
i = 0, the treatment effect of D on Y for never-takers and always-takers cannot

be estimated from the observed data, so we cannot estimate the ATE. As shown
in the previous section, a LATE can be estimated by assuming exclusion restric-
tion and monotonicity. These two assumptions, however, are not directly verifiable
from the observed data. In the rest of this section, we will discuss what can be
estimated from the observed data given these two assumptions, and sensitivity to
these two assumptions.

The IV estimand

As discussed in Section 8.2, with exclusion restriction and monotonicity assump-
tion, the IV estimand is equal to LATE, or the average causal effect of D on Y for
the compliers.

Suppose we want to relax only the exclusion restriction. Angrist, Imbens, and
Rubin (1996) showed if we assume that there is a direct effect of the instrument on
outcome Y for each individual, and the instrument and the treatment have additive
effects on outcome Y for each complier, then

bias of IV estimand for LATE = E(Hi)

Pr(i is a complier)
,

where
Hi = Yi(1, d)− Yi(0, d), d = 0, 1,

is the direct effect of the instrument on outcome. The higher the correlation between
the instrument and the treatment (i.e., the stronger the instrument), the higher the
proportion of compliers, and therefore the less sensitive the IV estimand is to
violations of the exclusion restriction.

If we relax the monotonicity assumption only, Angrist, Imbens, and Rubin
(1996) showed that the bias of the IV estimand for LATE is

bias = − Pr(i is a defier)

Pr(i is a complier)− Pr(i is a defier)

× (E[Yi(1)− Yi(0)|i is a defier] − E[Yi(1)− Yi(0)|i is a complier]) .

The smaller the proportion of defiers, or the stronger the instrument, or the less
variation there is in the causal effect of D on Y between defiers and compliers,
the less sensitive the IV estimand is to violations of the monotonicity assumption.

Estimating outcome distributions

Before proceeding, it is helpful to have more notation. Let φn, φa , φc, and φd denote
the population proportions of never-takers, always-takers, compliers, and defiers
respectively. Let gtz(y) denote the distribution of Yi(z,Di(z)) for individuals of
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type t (t = n, a, c, d) and for z = 0, 1. Let fzd(y) denote the directly estimable
distribution of Y obs

i for the OBS(z, d) group.
Imbens and Rubin (1997b) showed that under the exclusion restriction and the

monotonicity assumption, one can in principle estimate the entire marginal outcome
distributions gtz(y). The exclusion restriction implies that gn0(y) = gn1(y) = gn(y)
and ga0(y) = ga1(y) = ga(y). Under the monotonicity assumption, there is no
defier, so φd = 0. As shown in the last column of Table 8.2, the OBS(1, 0) group
and the OBS(0, 1) group can be identified as never-takers and always-takers respec-
tively, so gn(y) = f10(y) and ga(y) = f01(y). At the same time, since the instru-
ment is independent of Di(0) and Di(1), it is also independent of the principal
stratum indicator Ci . So in large samples we can obtain the proportions of the prin-
cipal strata: φn = Pr(Dobs

i = 0|Zobs
i = 1), φa = Pr(Dobs

i = 1|Zobs
i = 0) and thus

φc = 1 − φn − φa .
Since the OBS(0, 0) group is a mixture of never-takers and compliers, the

sampling distribution of f00(y) is a mixture distribution of gn(y) and gc0. The
OBS(1, 1) group is a mixture of always-takers and compliers, so the sampling
distribution of f11(y) is a mixture distribution of ga(y) and gc1(y).

f00(y) = φc

φc + φn gc0(y)+
φn

φc + φn gn(y),

f11(y) = φc

φc + φa gc1(y)+
φa

φc + φa ga(y).

We can invert the relations to get gc0(y) and gc1(y) as:

gc0(y) = φn + φc
φc

f00(y)− φn

φc
f10(y), (8.8)

gc1(y) = φa + φc
φc

f11(y)− φa

φc
f01(y). (8.9)

Estimation of the marginal outcome distributions can help the policy-makers
understand the distributional effects of treatments, and thus is more desirable than
a simple LATE estimate provided by the IV estimand. These estimates, however,
depend heavily on the assumptions and large sample size. If the sample size is
small, there is no guarantee that the sample estimates ĝc0 and ĝc1 will be nonneg-
ative, as required by a probability density function. This is similar to the case that
unbiased estimators for the variances can lead to negative estimates. Similar to the
solution there, we need to constrain the estimates ĝc0 and ĝc1 to be nonnegative.

Imposition of nonnegativity can be done through nonparametric or parametric
method. In nonparametric method, histogram estimates ĝc0 and ĝc1 can first be
obtained in correspondence to (8.8) and (8.9), and then nonnegativity is imposed
by revising the estimates to be

ĝ
pos
cz (y) = max(0, ĝcz(y))∫

max(0, ĝcz(y))dy
,
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for z = 0, 1. In parametric method, it is assumed that gn(y), ga(y), gc0(y), and
gc1(y) follow some parametric distributions, such as multinomial distribution (with
cells defined similar to the histogram estimates) or normal distribution, then find
the maximum likelihood estimates (MLEs). Through a Monte Carlo simulation
example, Imbens and Rubin (1997b) showed that if exclusion restriction and mono-
tonicity hold, although imposition of nonnegativity makes the estimators biased for
LATE, it decreases the root-mean-squared error and median-absolute error. This is
again similar to the result from imposing nonnegativity on variance estimates.

If we relax the exclusion restriction only, the distribution estimands obtained
from (8.8) and (8.9) are actually

g̃c0(y) = gc0(y)+ φn

φc
[gn0(y)− gn1(y)],

g̃c1(y) = gc1(y)+ φa

φc
[ga1(y)− ga0(y)].

The bias depends on how much gn0 is different from gn1 and ga0 is different from
ga1. Imposing nonnegative on the density estimates cannot let the bias go away.

If we want to relax the monotonicity assumption but keep the exclusion restric-
tion, the situation becomes more complex, since the proportions are estimated
assuming monotonicity, and they will be biased for the true population propor-
tions. In general, the bias of the estimands g̃c0(y) and g̃c1(y) obtained from (8.8)
and (8.9) will be related to the true proportions of the principal strata and the true
marginal outcome distributions.

Bayesian analysis

More principled inferences come from Bayesian analysis. First, consider the case
without exclusion restriction or monotonicity assumption. Let ηtz denote the param-
eters for gtz(y), and let gitz = gtz(Y obs

i ). Let

π = (φn, φa, φc, φd, ηn0, ηn1, ηa0, ηa1, ηc0, ηc1, ηd0, ηd1)

be the vector of parameters, and let p(π) be its prior distribution. Let Zobs be the
N -vector of Zobs

i , Dobs be the N -vector of Dobs
i , and Yobs be the N -vector of Y obs

i .
The posterior distribution is

p(π |Zobs,Dobs,Yobs) ∝ p(π)
×

∏
i∈OBS(0,0)

(φng
i
n0 + φcgic0)

∏
i∈OBS(0,1)

(φag
i
a0 + φdgid0)

×
∏

i∈OBS(1,0)
(φng

i
n1 + φdgid1)

∏
i∈OBS(1,1)

(φag
i
a1 + φcgic1)

Taking the view of data augmentation (Tanner and Wong, 1987), we can aug-
ment the observed data by C, the N -vector of Ci , and thus the complete data are
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Zobs
i Dobs

i Pr(Ci = n) Pr(Ci = a) Pr(Ci = c) Pr(Ci = d)

0 0
φng

i
n0

φng
i
n0+φcgic0

0
φcg

i
c0

φng
i
n0+φcgic0

0

0 1 0
φag

i
a0

φag
i
a0+φdgid0

0
φdg

i
d0

φag
i
a0+φdgid0

1 0
φng

i
n1

φng
i
n1+φdgid1

0 0
φdg

i
d1

φng
i
n1+φdgid1

1 1 0
φag

i
a1

φag
i
a1+φcgic1

φcg
i
c1

φag
i
a1+φcgic1

0

Table 8.3 Pr(Ci = t |Zobs
i , D

obs
i , Y

obs
i , π), conditional probability of individual i

being type t given observed data (Zobs
i , D

obs
i , Y

obs
i ) and parameters π .

(Zobs,Dobs,Yobs,C). The Gibbs sampler (Geman and Geman, 1984; Gelman and
Rubin, 1992) can be used to simulate π from its posterior distribution by itera-
tively imputing C from its conditional distribution given (Zobs,Dobs,Yobs, π), and
drawing π from its conditional distribution given (Zobs,Dobs,Yobs,C).

The conditional distribution Pr(Ci = t |Zobs
i , D

obs
i , Y

obs
i , π) in the first step of

each iteration is given in Table 8.3. Let �(t) = {i|Ci = t} denote the set of units
of type t . The conditional distribution in the second step of each iteration is given
by

p(π |Zobs,Dobs,Yobs,C) ∝ p(π)
∏

i∈�(n)∩OBS(0,0)
φng

i
n0

∏
i∈�(c)∩OBS(0,0)

φcg
i
c0

×
∏

i∈�(a)∩OBS(0,1)
φag

i
a0

∏
i∈�(d)∩OBS(0,1)

φdg
i
d0

×
∏

i∈�(n)∩OBS(1,0)
φng

i
n1

∏
i∈�(d)∩OBS(1,0)

φdg
i
d1

×
∏

i∈�(a)∩OBS(1,1)
φag

i
a1

∏
i∈�(c)∩OBS(1,1)

φcg
i
c1

For convenience of drawing from this conditional distribution, we can let the prior
distribution of π be

p(π) = p(φn, φa, φc, φd)
∏

t∈{n,a,c,d}

∏
z=0,1

p(ηtz),

and choose conjugate priors when possible. For example, p(φn, φa, φc, φd) can be
a Dirichlet distribution; if the outcome is binary and binomial distribution is used
for gtz, or if the outcome is continuous and normal distribution is used for gtz, the
corresponding conjugate priors can be used for the η parameters.

If the exclusion restriction is assumed, then gn0 = gn1 and thus ηn0 = ηn1,
similarly, ga0 = ga1 and thus ηa0 = ηa1. The only difference from the above pro-
cedure is in the second step of each iteration, where only one η parameter needs
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to be drawn for always-takers, and only one η parameter needs to be drawn for
never-takers. If the monotonicity assumption is made, then φd = 0, �(d) is empty,
and the two distributions gd0 and gd1 are irrelevant. The above Bayesian analysis
can still be performed.

There are several advantages of the principled Bayesian analysis. First, one can
investigate sensitivity to the exclusion restriction and the monotonicity assump-
tion easily by examining how the posterior distributions for causal estimands (e.g.
LATE) change. Second, as shown by Imbens and Rubin (1997a), even assuming
exclusion restriction and monotonicity, Bayesian analysis with full posterior dis-
tribution can yield inference differing from MLE and IVE (IV estimator) with
normal approximation. In a Monte Carlo simulation, they showed that the central
probability intervals from Bayesian analysis have higher coverage rate than those
from MLE with normal approximation, and are less wide than those from IVE
with normal approximation.

8.4 Some recent applications

In a series of papers, Gerber and Green (1999, 2000a, 2000b) studied the effect
of personal canvassing on voter turnout. In some voter mobilization experiments,
lists of registered people were randomly assigned to treatment and control groups.
Some of the people in the treatment group were successfully contacted for personal
canvassing. Using IV analysis with treatment assignment as the IV, Green and
Gerber showed that actual canvassing increased voter turnout.

Ichino and Winter-Ebmer (1998) presented evidence based on Germany that
supports the existence of heterogeneous returns to schooling and the validity of
the LATE interpretation of IV. They used two different IVs, one is the indicator
whether the father of individual i served actively in World War II, the other is the
indicator whether father of individual i has a degree higher than high school. They
argued that the different IV estimates thus obtained should be interpreted as LATE
estimates of the returns for different subgroups in the population.

IV estimation together with its LATE interpretation have also been discussed
and applied, for example, in evaluating the effect of childbearing on labor supply
(Angrist and Evans, 1998; Cruces and Galiani, 2003), the effect of school interrup-
tion on earnings (Meng and Gregory, 1999), the impact of welfare benefit denial
on future receipt (Green and Warburton, 2001), and the effect of psychological
interventions on depression (Dunn et al., 2003).

8.5 Discussion

Rubin (1986) made a point that observational study can only be informative about
the causal effect of treatment for those whose treatment status can be thought of
having been manipulated in some way. This is exemplified in estimating causal
effect with IV: the average causal effect can only be estimated for those who would
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be induced to take the treatment by changing the value of the instrument. Differ-
ent instruments will thus lead to estimates of average causal effects for different
subpopulations. For example, in estimating the effect of college degree on income,
if we use father’s education as the instrument, we will estimate the average causal
effect for those who would get college degrees only because their fathers have col-
lege degrees, which is different from the LATE from using families’ proximity as
the instrument. Therefore, in choosing IV, we not only want the IV to be valid (so
that the five assumptions in Section 8.2 are satisfied), but we also need to consider
whether the corresponding LATE is of policy interest.

The extension of the framework in this chapter can be extended for multivalued
instrument and multiple instruments along the line in Imbens and Angrist (1994),
and for multivalued treatment along the line in Angrist and Imbens (1995). Under
assumptions similar to those in Section 8.2, the IV estimands in those cases are
equal to weighted averages of LATEs. The marginal outcome distributions can-
not be estimated as in the binary-treatment, binary-instrument case, towing to the
complex mixture structure. Bayesian analysis can still be performed, but careful
modeling should be considered, and the payoff could be substantial.

In real studies, covariates are usually observed together with the outcomes of
interest. They can serve several purposes: they can help predict the principal strata
and the missing potential outcomes for the individuals, thus making inference more
precise; they can make inferences more specific by estimating LATEs for differ-
ent subpopulation indexed by the covariates. With discrete covariates, one can
seek LATE for each joint value of the covariates. Angrist, Graddy, and Imbens
(2000) showed that if additive linear structure for the (possibly continuous) covari-
ates is assumed, the IV estimand is equal to a weighted average of LATEs. The
Bayesian analysis presented in Section 8.3 can be extended to incorporate covari-
ates by making the proportions φ and the outcome distributions gtz depend on the
covariates.
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Principal stratification

Constantine E. Frangakis1

9.1 Introduction: partially controlled studies

We often need to evaluate the effects of treatments or other interventions on the
outcomes of biologic, clinical, economic, or other behavioral nature. A general type
of such studies has some factors of interest that are controlled and others that are
not controlled. Such “partially controlled” studies are increasingly met in practice,
especially when controlled studies cannot be conducted at all. We argue that in such
partially controlled studies, we can use a framework, “principal stratification”, for
formulating and addressing in a systematic way the problems that arise.

The goal here is to provide a review of principal stratification. The next section
provides two examples of partially controlled studies, for demonstration (see also
Rubin, 2000; Zhang, 2002). The three main sections discuss the role of principal
stratification, respectively, in formulating quantities of interest (estimands), flexible
assumptions, and better designs for partially controlled studies.

9.2 Examples of partially controlled studies

Example and goals in the study of surrogate endpoints

When conducting clinical trials to compare treatments on a primary outcome (end-
point), we also record variables of the patient’s progression after the treatment

1Department of Biostatistics, Johns Hopkins University, Baltimore, Md. The discussion at
biosun01.biostat.jhsph.edu/∼cfrangak/papers/discussion-pstrat.pdf pro-
vides additional comments, including points of critique and how they are addressed by principal
stratification. This work was supported in part by NEI grant RO1 EY 014314-01 and was completed,
while the author was on leave, at the Press Room of the President of the Hellenic Republic.
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but before the primary outcome is measured. Such posttreatment variables, called
“surrogate endpoints” are of increasing interest (e.g., Prentice, 1989; Freedman,
Graubard, and Schatzkin, 1992; Buyse et al., 2000). We focus here on a fundamen-
tal question: how to evaluate treatment effects on the outcomes that are associative
(i.e., occur together) and that are dissociative (i.e., do not occur together) with
effects on the surrogate.

To focus on the main points, we consider a template study with a standard
(z = 1) and a new (z = 2) therapy for cancer patients. For patient i, consider the
potential outcomes (Rubin, 1974, 1977, 1978a) of the patient under each treatment
z = 0,1: Yi(z) for the survival time (the primary endpoint), and Si(z) for a measure
(L = low, H = high) of cancer response two months after treatment assignment.
Also, assume for simplicity that no patient dies before two months so that cancer
response is measured, that treatments {Zi} are completely randomized, and that,
for subject i, cancer response Sobs

i = Si(Zi) and, later, survival time Y obs
i = Yi(Zi)

are measured, thereby creating what we call a “validation” study.
To evaluate the above question, it is important to have a definition of causal

effects. A causal effect of the treatment on the outcome Y is defined as a comparison
(e.g., difference or ratio of averages) between the ordered sets of potential outcomes
on a common set of subjects, for example, the comparison between the ordered sets

{Yi(1) : i ∈ set1} and {Yi(2) : i ∈ set2}, (9.1)

if the groups of subjects, set1 and set2, being compared are identical (Neyman,
1923; Rubin, 1978). For example, a comparison of the distribution Pr(Yi(1)) to
Pr(Yi(2)) describes causal effects for all subjects.

The main goal for the posttreatment variable S here is to evaluate if it possesses
the following property:

Causal necessity: S is necessary for the effect of treatment on the outcome Y
in the sense that an effect of treatment on Y can occur only if an effect of treatment
on S has occurred.

The property of causal necessity relates to the degree to which the treatment
acts on the outcome together or separately from acting on the surrogate. This
information is central feedback about the mechanisms of treatment action, for
example, in guiding pathways of drug development.

To approach quantifying this property, Prentice (1989) defined Sobs to be a
surrogate if it satisfies certain criteria, the main being that the observed outcome
Y obs
i should be conditionally independent of the assigned treatment Zi given the

observed value Sobs
i of the posttreatment variable in the validation study. (Prentice

(1989), used a hazard regression parameterization for multiple-time measurements
on Sobs. For clarity, we discuss the single-time measurement case.) Related def-
initions have been proposed when exact independence is not expected and that
compare results (e.g., r-squares) of the regression of the outcome on treatment
before and after conditioning on the variable Sobs (e.g., Freedman et al., 1997;
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Lin, Fleming, and De Gruttola, 1997; Buyse and Molenberghs, 1998; Gail, Pfeif-
fer, Houwelingen, and Carroll, 2000). All these approaches are based on the general
idea to call Sobs a surrogate if Sobs is a good predictor (relative to treatment Z)
of outcome Y obs when conditioning on Sobs and Z. Thus, in principle, all current
definitions generate from Prentice’s main criterion of a statistical surrogate:

Statistical surrogate (Prentice (1989) criterion): S is a statistical surrogate
for a comparison of the effect of z = 1 versus z = 2 on Y if, for all fixed s, that
comparison of the distributions

Pr(Y obs
i |Sobs

i = s, Zi = 1) and Pr(Y obs
i |Sobs

i = s, Zi = 2). (9.2)

is an equality.
Equality (9.2) is also known as “net-treatment” equality (Rosenbaum, 1984b).

It is important to note, however, that the net-treatment equality does not gener-
ally have the interpretation of (causal) treatment effect equality. Since treatment
is randomized, Pr(Zi = 1|Si(1), Si(2), Yi(1), Yi(2)) is a common constant across
subjects, which implies that assignment is ignorable (Rubin, 1978) and that the
comparison in (9.2) is equivalent to the comparison in

Pr(Yi(1)|Si(1) = s) and Pr(Yi(2)|Si(2) = s). (9.3)

The last comparison is problematic if the treatment has any effect on the posttreat-
ment variable. Then, the groups {i : Si(1) = s} and {i : Si(2) = s} (i.e., who get
posttreatment value s under standard and new treatment, respectively) are not the
same subjects, and, by (9.1), the equality does not evaluate a treatment effect. Fran-
gakis and Rubin (2002) show that the standard approaches (e.g., Prentice, 1989;
“individual-level surrogacy” of Buyse et al., 2000) do not in principle satisfy the
property of causal necessity. This problem, although known to epidemiologists
(e.g., see Rosenbaum, 1984; Robins and Greenland, 1992) has not been addressed
appropriately.

In Section 9.4, we review how principal stratification provides a new crite-
rion that satisfies the property of causal necessity and quantifies associative and
dissociative effects.

Example and goals in the study of needle exchange

Needle exchange programs (NEPs) attempt to reduce HIV transmission among
injection drug users (IDUs) (e.g., Bastos and Strathdee, 2000). A NEP consists
of sites, usually vans, where a user can visit and exchange a used needle for
a clean one. However, controversy exists on whether NEPs actually help or not
(e.g., Bruneau, Lamothe, and Franco, 1997; Drucker, Lurie, Wodak, and Alcabes,
1998). We consider estimation of the effect on HIV that is attributable to using
versus not using the NEP.

Most of the existing methods evaluate the NEPs either by (a) comparing IDUs
who use the NEP to IDUs who do not use it, with respect to HIV transmission,
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a comparison called “as-treated” or by (b) comparing HIV rates before and after
the institution of a NEP (e.g., Keende, Stimson, Jones, and Parry-Langdon, 1993;
van Ameijden, van den Hoek, and Coutinho, 1994; Drucker, Lurie, Wodak, and
Alcabes, 1998). Such methods are limited by the fact that the decision about who
uses the NEP, and who provides outcomes (HIV tests) is not controlled by the
study. Consequently, even after as-treated analyses stratify on certain measured
variables, IDUs who use the NEP can be at higher (or lower) risk for HIV, before
the start of NEP, compared to IDUs who do not use the NEP (e.g., Drucker,
Lurie, Wodak, and Alcabes, 1998; Schechter et al., 1999). Then any differences
in HIV rates observed between NEP users and nonusers can reflect differences
between the groups and not the impact of NEP. Analogous complications arise for
before-after comparisons because of trends of the HIV epidemic, and from likely
differences between IDUs who agree to be tested for HIV (for whom outcomes get
measured), and those who do not agree (for whom the outcome is unmeasured)
(e.g., Kaplan, 1994).

To address these complications, new research methods must capitalize on the
factor that is controlled by these studies: the location of the NEP sites (vans) rel-
ative to subjects’ residences. For example, in the Baltimore NEP (Vlahov et al.,
1997), the location of a NEP site was chosen to be within each of a number of
broader areas that had exhibited high HIV rates in the years prior to the study.
Importantly, however, within those broad areas, the location of the NEP sites was
chosen essentially at random. More generally, then, and within broad areas, IDUs
who live closer to NEP sites are comparable, before the NEP starts, to IDUs
who live farther from the NEP sites. Moreover, it is expected that larger distance
of an IDU from the NEP site decreases the likelihood that the IDU exchanges
needles at the site and/or accepts to get tested for HIV, as suggested by posi-
tive relations between the access to and use of services in other settings (e.g.,
McClellan, McNeil, and Newhouse, 1994). These points indicate that we can use
the controlled factor of location with a method to provide a better evaluation of
the NEPs.

Such a method, however, did not really exist. In particular, if there were a
single uncontrolled factor, the needed method for NEP evaluation would share some
aspects with the more standard method of instrumental variables in some earlier
studies for other evaluations; for example, see Card (1986), McClellan, McNeil,
and Newhouse (1994), and Angrist, Imbens, and Rubin (1996). The problem in
the NEP study, however, is the presence of more than one uncontrolled factor
simultaneously, that is, here both exchange of needles at the NEP, and whether or
not the subject provides outcomes (Figure 9.1). For more such demanding studies,
earlier work has shown that the standard instrumental variables method is not
appropriate to estimate the treatment effects (Frangakis and Rubin, 1999).

In Section 9.5, we discuss how principal stratification can be used to better
evaluate such studies with combined uncontrolled factors.
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Figure 9.1 Needle exchange program as a partially controlled study. Combined
factors of (i) exchanging needles and (ii) measuring outcome, partially controlled
through distance of the program from the subjects.

9.3 Principal stratification
In the two partially controlled examples discussed above, a common goal is the
estimation of certain causal effects of the controllable factor on the outcome that
also takes into consideration the partially controlled factors (the cancer response,
for the surrogate endpoint example and the exchange behavior, for the needle
exchange example). In this section, which borrows essentially from Frangakis and
Rubin (2002), we propose such estimands that use the posttreatment variable and
that are always causal effects.

To do this, first consider, more generally, a group of subjects i = 1, . . . , n,
where each can be potentially assigned either a standard “treatment” (z = 1) or
a new “treatment” (z = 2). Also, let Y denote the outcome at a specific time
after assignment of each unit, where we let Yi(z) be the value of Y if unit i is
assigned treatment z, for z = 1, 2. Finally, let S denote the partially controlled
(posttreatment) factor, where we let Si(z) be the value of S if unit i is assigned
treatment z, for z = 1, 2. Consider all the potential values of the posttreatment
variable jointly, and construct the following partitions.

(a) The basic principal stratification P0 with respect to posttreatment variable S
is the partition of units i = 1, . . . , n such that within any set of P0, all units
have the same vector (Si(1), Si(2)).

(b) A principal stratification P with respect to posttreatment variable S is a
partition of the units whose sets are unions of sets in the basic principal
stratification P0.
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An example of a principal stratification P is the partition of subjects into the
set whose posttreatment variable is unaffected by treatment in this study (i.e., with
Si(2) = Si(1)) and into the remaining subjects (i.e., with Si(2) �= Si(1)). Generally,
we cannot directly observe subjects’ principal strata because we cannot directly
observe both Si(1) and Si(2) for any i. Nevertheless, consideration of the principal
strata is important in order to determine which quantities are causal. Generally, a
principal stratification generates the following estimands.

Let P be a principal stratification with respect to the posttreatment variable S,
and let SPi indicate the stratum of P to which unit i belongs. Then, a principal effect
with respect to P is defined as a comparison of potential outcomes under standard
versus new treatment within a principal stratum ς in P , that is, a comparison
between the ordered sets

{Yi(1) : SPi = ς} and {Yi(2) : SPi = ς}. (9.4)

Principal effects are important thanks to their conditioning on principal strata.
Although the potential variable Si(1) generally differs from Si(2), the value of the
ordered pair (Si(1), Si(2)) is, by definition, not affected by treatment, just like the
pair (birthdate, gender). Therefore, we have

Property. The stratum SPi , to which unit i belongs, is unaffected by treatment
for any principal stratification P .

And, by definition (9.1), we have,
Property. Any principal effect, as defined in (9.4), is a causal effect.
Using the examples of surrogate endpoints and needle exchange, we discuss

next how these properties of principal stratification help in three important aspects
of partially controlled studies. First, in formulating better estimands. Second, in
allowing assumptions for more appropriate analysis. Third, in implementing designs
that allow more reliable estimation.

9.4 Estimands

Example on surrogate endpoints (continued)

Consider first the four finest principal strata with respect to the binary surrogate of
early cancer response in our template study:

1. subjects whose cancer response would be low no matter the treatment,
{i : Si(1) = Si(2) = L}, and whom we label “sicker” patients (the terms
“sicker” etc., are for convenience, and do not imply knowledge of all the
characteristics that underlie the principal strata);

2. subjects whose cancer response would be high no matter the treatment
{i : Si(1) = Si(2) = H }, and whom we call “healthier”;

3. subjects whose cancer response under new treatment would be better than
under standard treatment, {i : Si(1) = L and Si(2) = H }, and whom we label
“normal”;



PRINCIPAL STRATIFICATION—FRANGAKIS 103

4. subjects whose cancer response under new treatment would be worse than
under standard treatment, {i : Si(1) = H and Si(2) = L}, and whom we label
“special.”

Then, we propose the following criterion of surrogacy:

Definition 1 S is a principal surrogate for a comparison of the effect of z = 1
versus z = 2 on Y if, for all fixed s, that comparison between the ordered sets

{Yi(1) : Si(1) = Si(2) = s} and {Yi(2) : Si(1) = Si(2) = s}, (9.5)

results in equality.

The above criterion in words is that causal effects of treatment on outcome Y
may only exist when causal effects of treatment on the posttreatment variable S
exist. Thus, our criterion based on principal stratification immediately satisfies the
property of causal necessity of Section 9.2.

To see the contrast with a statistical surrogate, note that, although defini-
tion (9.5) does not involve an assumption about the assignment model for Zi ,
under randomization, (9.5) implies that the same comparison applied to

Pr(Y obs
i |Si(1) = Si(2) = s, Zi = 1) and Pr(Y obs

i |Si(1) = Si(2) = s, Zi = 2).
(9.6)

also results in equality. Then we have the following:

Result 1. (a) If the posttreatment variable S is a statistical surrogate (equation (9.2))
then it is not, generally, a principal surrogate (equation (9.5)). (b) If the posttreatment
variable S is a principal surrogate, then it is not, generally, a statistical surrogate.

To understand better the implications of Result 1, we offer a proof for part
(b) by discussing the example in Figure 9.2 for the comparison of averages (to
show the result, in the figure we need only consider scenarios with no “special”
subjects).

The subgroups of patients who experience no causal effect of treatment on
the early cancer response (“sicker” and “healthier”) experience no causal effect
of treatment on survival. Therefore, by criterion (9.6), early cancer response is a
principal surrogate in this study.

However, when s = L, the subjects {i : Sobs
i = L,Zi = 1} in the left-side con-

ditioning of (9.2) is the mixture of “sicker” and “normal” patients under standard
treatment, whereas the subjects {i : Sobs

i = L,Zi = 2} are, in fact, a different
group of subjects—the “sicker” patients only—under new treatment. Using the
numbers of Figure 9.2, the left side of (9.2) has mean 20 months, whereas the right
side of (9.2) has mean 10 months. It follows that early cancer response is not a
statistical surrogate. Therefore, although the standard interpretation would be that
the new treatment decreases survival whenever it cannot change a low value of
the surrogate, that conclusion is incorrect, as the principal surrogacy of S clearly
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Figure 9.2 Example where early cancer response is a principal but not a statisti-
cal surrogate. Notes: (1) We set equal proportions for each principal stratum, for
simplicity of demonstration; (2) 1

2 (10)+ 1
2(30); (3) 1

2(50)+ 1
2 (50).

indicates. Part (a) of Result 1 can also easily be shown. The discrepancy between
the two criteria indicated in Result 1 occurs more generally because a statistical
surrogate does not generally involve causal effects.

More generally than assessing principal surrogacy, we can evaluate the effects
of treatment on outcome that are associative and dissociative with effects on the
posttreatment variable in the validation study. An effect on outcome that is dissocia-
tive with an effect on surrogate is defined as a comparison between {Yi(1) : Si(1) =
Si(2)} and {Yi(2) : Si(1) = Si(2)}, that is, it occurs without an effect on the sur-
rogate. An effect on outcome that is associative with an effect on the surrogate
is defined as a comparison between {Yi(1) : Si(1) �= Si(2)} and {Yi(2) : Si(1) �=
Si(2)}. Note that both the associate and the dissociative effects can, in principle,
be further stratified on basic principal strata.

9.5 Assumptions

Example on needle exchange (continued)

To discuss the role of principal stratification on flexibility of assumptions, we
return to the example on needle exchange, discussed as a simplified context of the
Baltimore NEP (Vlahov et al., 1997). Details of evaluating the program can be
found in Frangakis et al. (2004).

The Baltimore NEP can be considered as part of a larger cohort study, the
ALIVE study (Vlahov et al., 1991), which follows IDU subjects, offering clinical
testing for HIV and interviews, independently of attendance to the NEP, although
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ALIVE is linked with the NEP component (after appropriate subjects’ consent).
We consider IDUs in ALIVE who are HIV negative at the beginning of needle
exchange, and, focus in an area served by a single NEP van. To formulate the
appropriate question and methods for evaluation, consider the following data for
each person that would arise if the van were placed at a distance d from person i:

1. Ei(d) for the indicator for whether or not the subject would exchange needles
at the van (1 for yes);

2. Yi(d) for the subject’s HIV status five years after the van begins service;
and

3. Mi(d) for the indicator for whether or not the HIV status in (ii) would be
measured (1 if the subject would consent to testing at the ALIVE or NEP
visit).

In the simple setting, distance is dichotomized, d = 1, 2 for close and far respec-
tively, and “far” is assumed to be chosen far enough so that no subject living far
(d = 2) from the van would visit it to exchange needles (i.e., Ei(2) = 0), although
subjects living close may or may not exchange needles (the condition can be
relaxed).

There are two finest principal strata of needle exchange in this study:

1. a “never-exchanger,” denoted by Ui = n, that is, a subject who, in the context
of this study, would never exchange needles whether the van was placed close
or not; and

2. a “close-exchanger,” denoted byUi = c, that is, a subject who would exchange
needles if and only if the van was placed close.

These strata relate to those considered by Angrist, Imbens, and Rubin (1996) for
single posttreatment variables. In the NEP, important implications also have the
analogous classification of subjects by measurement status Mi(d), d = 1, 2.

From the earlier discussion, the estimand of interest for evaluating the effect
on HIV attributed to the NEP should be a principal effect of distance on HIV with
respect to exchanging needles. To define and estimate such effect, we focus on the
main issues related to the points of the chapter, and refer the reader to (Frangakis
et al., 2004) for issues of less relevance.

Since never-exchangers are, by definition, people who would not exchange
needles at the van, regardless of its location, placing the van far or close to never-
exchangers can be assumed to not have an important effect on either their outcome
HIV status in five years, or their behavior in allowing the study to measure that
status. More explicitly, this is stated as follows.

Compound Exclusion Restriction: if subject i is a never-exchanger, that is, if
Ei(1) = Ei(2), then: (a) Yi(1) = Yi(2); and (b) Mi(1) = Mi(2).
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We now define the estimand of interest as follows. Denote the average outcome
among each principal stratum by Yu(d) := E{Yi(d)|Ui = u}. By the properties of
principal stratification, comparisons of HIV rates by distance within principal strata
are well-defined causal effects. One such comparison is

ECE := Yu=c(d = 1)/Yu=c(d = 2),

the proportional effect of close versus far distance on HIV among “close-exchangers,”
which we call the “exchange causal effect” (ECE) (see also Imbens and Rubin,
1997a,b; Frangakis and Rubin, 1999). In the above effect, all close-exchangers
do exchange needles when close to the NEP (numerator), and no close-exchanger
exchanges needles when far from the NEP (denominator). In addition, by compound
exclusion, distance can only affect HIV status for close-exchangers, in other words,
there is no effect of distance on HIV that is dissociative with exchange. For these
reasons, we take the principal effect ECE to represent the effect of distance on HIV
and that is attributable to exchange.

We consider two additional assumptions that can help estimation. First, vans are
placed by study staff, so, on the basis of earlier arguments, it is reasonable to assume
that placement of the vans is independent of the potential outcomes of the variables
measured after placement of the vans, conditionally on the observed covariates
Xi available to the study staff. This essentially implies that the mechanism of
determining actual distance Di of the nearest needle exchange site to subject i is
ignorable.

Owing to the second uncontrolled factor, we do not observe all outcomes Y . It
is, therefore, necessary to connect information from HIV statuses that are measured
to HIV statuses that are not measured. Quite generally, in order to avoid con-
founding, such connections first need to balance (e.g., match) important covariates
between subjects with and without HIV measures. Exchange of principal stratum
Ui , as a pretreatment characteristic, is likely a predictor of outcome, in the sense
that close-exchangers can be at very different risk for HIV than never-exchangers
even in the absence of the NEP, and also a predictor of who has HIV status mea-
sured. Therefore, if we know the exchange stratum for all subjects, we should first
stratify subjects by it, before connecting those without measured HIV status to
those with measured HIV status. One way to formalize this is with the following
assumption.

Latent ignorability: Among subjects who have the same principal stratum
Ui , the same other observed covariates Xi , and the same distance from the van
d, the potential outcomes are independent of whether or not those outcomes are
measured:

Pr(Yi(d),Mi(d) | Xi, Ui) = Pr(Yi(d) | Xi, Ui) Pr(Mi(d) | Xi, Ui). (9.7)

Under ignorability of distance of the vans from the subjects, latent ignorability, and
compound exclusion for missing outcomes and needle exchange, and together with
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certain additional conditions, Frangakis and Rubin (1999) obtained results that, in
this application, amount to the following:

Result 2. The effect on HIV attributable to exchange is estimable, but it is not
estimable by standard instrumental variables methods.

Because measuring HIV data is not controlled, of course, latent ignorability, as
other assumptions, should be judged, not by whether or not it is certain to be cor-
rect, but in comparison to other approaches, on the inferences and the sensitivity
analyses it can produce. The point is that a framework that allows that the mecha-
nism of who provides measurements can depend on the latent exchange status U ,
also allows inferences to be closer to the true NEP effects than inferences that do
not allow such possibility (e.g., Gilbert, Bosch, and Hudgens, 2003).

For the NEP, these points are demonstrated practically in Frangakis et al.
(2004). Their results point to a reduction of up to 90% in HIV incidence that
is attributable to needle exchange, a benefit that is substantially larger than the one
indicated by the standard method. Importantly, they also show that the compari-
son between the standard and the new method gives additional insights into the
characteristics of those who exchange needles more often, and provides additional
support for the benefit of NEPs.

9.6 Designs and polydesigns

The new ways of formulating questions and analyzing data to address them, also
suggest that we should start using different designs, specific to the new questions
and analyses of principal stratification. Better designs can play an important role
when either the cost is differential for different measurements (e.g., on outcome
versus controlled versus partially controlled factors) or when there is concern in the
robustness of the answers to model specification. Designs addressing cost issues
are discussed by Jo (1999) and Frangakis and Baker (2001). The case is more
demanding when we consider designs to address possible misspecification of the
model for principal stratification.

Suppose that, to do this, instead of considering the “full design” (all the data),
we create a “reduced design,” that is, a subset of the full data together with the
rule that created this subset. An example of this in the context of the NEP study
is discussed in Li, Frangakis, and Varadhan (2004). Over the duration of six years,
a total of only 54 subjects were diagnosed as new HIV cases. In the NEP, then, a
“reduced design” can be one where we match each new HIV case with a subject
who was non-HIV (control) at the same time, and so that the control is “close”
to the case in some metric of covariates measured before the program starts. The
“reduced design” has the advantage that it explicitly focuses on controls that are
similar to the cases in the covariates, and, therefore, as in other situations with
“case-control” designs, the “reduced design” avoids extrapolation of the model
that can have unwanted consequences if the model is misspecified.
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It is, therefore, noteworthy why “reduced designs” in partially controlled studies
have not been used frequently for estimation. One can see two reasons for this.

The first reason is that, in the more traditional, instrumental variables frame-
work for special cases of partially controlled studies, the properties of the model tie
together assumptions specific to the “full design” as well as assumptions on poten-
tial outcomes and principal strata (even if such quantities are not stated explicitly
in that framework). This, of course, is expected, because the equations of the IV
framework have as reference the observed outcomes and observed exposures to
the uncontrolled treatment, which are the result of a combination of potential out-
comes, principal strata, and mechanisms of selection and assignment of subjects.
This issue, originally pointed out by Imbens and Rubin (1994) and Angrist, Imbens,
and Rubin (1996) in relation to appreciating the role of different assumptions, also
has important consequences for designs. In particular, in a design that differs from
the “full design,” such as the “reduced design,” it becomes quite difficult for the
standard framework to distinguish between the two types of assumptions, in the
sense of replacing those specific to the “full design” by those of the “reduced
design,” and keeping the ones specific to the potential outcomes and principal
strata. This task is, nevertheless, straightforward within the framework of principal
stratification, which emphasizes making each assumption explicit, as pointed out
in the previous section.

The second reason for the infrequent use of reduced designs in partially con-
trolled studies is more subtle. From the likelihood of a reduced design as induced
from the model on the principal stratification in the full design, we can find that
the estimand of interest (e.g., the associative effect ECE of (9.7)) is not necessarily
identifiable, even if it is identifiable in the full design. This is because partially
controlled studies are more complex in structure than more familiar studies, such as
a simple case-control modeled by conditional logistic regression. It would appear,
therefore, that addressing robustness is in conflict with identifiability in a reduced
design.

To address this conflict, Li, Frangakis, and Varadhan (2004) propose a class
of “polydesign methods”, which are methods that use a combination of designs,
specifically here the “full design” and the “reduced design.” The key idea of poly-
design methods is to use the reduced design to estimate only certain parameters
identifiable by it, and use the full design to estimate the remaining parameters, in
a way that keeps identifiability of the main estimand of interest. Li, Frangakis, and
Varadhan (2004) show that polydesign methods can combine both, identifiability
of the estimands and more robust estimation for possible model misspecifications
that relate to the data that are present in the full design but not in the reduced
design. Operational details of polydesign methods are a subject for further work.
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Nonresponse adjustment
in government statistical
agencies: constraints,
inferential goals, and
robustness issues

John Eltinge1

10.1 Introduction: a wide spectrum of nonresponse
adjustment efforts in government statistical
agencies

I thank the editors of this volume for the invitation to present brief comments on
some issues in nonresponse modeling and adjustment encountered by government
statistical agencies. The general missions of statistical agencies vary widely. At
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one extreme, some agencies, or programs within agencies, focus on production of
estimates for relatively simple population aggregates. At the other extreme, other
agencies or programs emphasize scientific research based on extensive modeling
and a correspondingly high degree of conditioning in analyses and subsequent
formal inferences. Still other agencies and programs collect data intended to meet
needs at both ends of this spectrum. Within the general survey context, Skinner,
Holt, and Smith (1989) discuss this spectrum of survey goals in some depth. For the
current discussion of nonresponse modeling and adjustment, it may be especially
useful to consider three factors that may display quite distinct characteristics at
different points along this spectrum: constraints, inferential goals, and robustness.

10.2 Constraints

In many cases, statistical agency decisions to develop and implement a given non-
response adjustment procedure are influenced by fairly strong constraints. Some
examples include compatibility with legacy production systems, incremental costs
of changes in these production systems, availability of personnel with specific
types of training, and timely availability of relevant auxiliary data. In some cases,
these constraints are well defined and readily admit a formal mathematical char-
acterization. In such cases, one could consider extension of classical efforts at
survey optimization under constraints (e.g., Cochran, 1977) to optimize (approx-
imately) nonresponse adjustment procedures. In other cases, the constraints are
clearly important, but do not readily admit a formal deterministic characteriza-
tion. It would be of interest to study the extent to which the uncertainty of some
of these operational constraints could be characterized realistically in a stochastic
form. For such cases, a Bayesian approach might be useful in subsequent devel-
opment of approximately optimal procedures, and in comparison of these new
procedures with current agency practice.

10.3 Complex estimand structures, inferential goals,
and utility functions

Historically, much of the research literature on nonresponse modeling and adjust-
ment has focused on cases in which principal interest resides in a small or moderate
number of estimands that are identified a priori. See, e.g., Rubin (1996) and
references cited therein). However, statistical agencies are often responsible for
production of estimates for a very large number of population parameters; or for
production of public-use datasets that in turn may be used in production of many
parameter estimates. In many cases, some of the parameters of interest may not
have been anticipated when the agency designed its nonresponse adjustment pro-
cedure. In addition, the presence of a large number of estimands and potential data
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users will entail a wide range of priorities among inferential goals, and a corre-
sponding disparity in data users’ utility functions. In many cases, agency decisions
on implementation of a given nonresponse adjustment procedure may depend on
trade-offs among these competing utility functions.

In addition, when a survey involves a large vector of observations on an individ-
ual unit, or a large vector of estimands, the underlying observational structure and
associated estimand structure may involve important complex conditional relation-
ships which in turn are important in the implementation of a given nonresponse
adjustment procedure. Some important issues associated with complex estimand
structure have been considered in some special cases (e.g., Heeringa, Little, and
Raghunathan, 2002), but there are a large number of open questions in this area
that would benefit from additional study.

10.4 Robustness

In work with nonresponse adjustment procedures, statistical agencies encounter
several important sets of robustness issues. First, in keeping with the comments
in Section 10.3, one often has a large number of estimands, and the sample size
associated with some of these estimands may be relatively small. In such cases,
one may have concerns regarding influential observations, especially in establish-
ment surveys with highly skewed underlying populations. These problems can be
exacerbated when patterns of nonresponse are uneven across subpopulations. For
such cases, it is beneficial for agencies to have available diagnostics to identify
observations that are influential for specific subsets of the large number of poten-
tial estimands (see, e.g., Zaslavsky, Schenker, and Belin, 2001 and references cited
therein).

Second, the setting described in Section 10.3 can lead agencies to be especially
concerned about traditional issues associated with omission of important predictor
variables from nonresponse models and associated adjustment procedures. Variants
on this issue, potential solutions, and associated critiques, have been considered in
general survey, observational study and nonresponse contexts for many years. See,
e.g., Rosenbaum and Rubin (1983b), Hansen, Madow, and Tepping (1983), and
references cited therein. However, agencies may benefit from additional consider-
ation of these issues in a framework that emphasizes a large number of estimands
and associated competing utility functions.

10.5 Closing remarks
In the past, nonresponse adjustment methods used by some government statistical
agencies have been occasionally described as baroque bordering on rococo; and
some incremental efforts to update agency practice have been compared to the
Ptolemaic theory of epicycles awaiting a Copernican revolution. Such critiques,
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taken in good humor, can be useful if they spur the statistical community to a
broader and deeper consideration of the factors that give rise to general agency
practice for nonresponse adjustment. The preceding remarks have highlighted three
factors:

(a) The often dominant role of constraints.

(b) The complexity of estimand structures, inferential goals, and utility functions.

(c) Robustness.

Each of these factors has received attention in both the Bayesian and randomi-
zation-based literature on nonresponse. However, additional systematic study could
shed a considerable amount of additional light on approximate optimization of
nonresponse adjustment methods for statistical agencies. Two areas are of special
interest.

First, although factors (a) and (b) above have been studied in depth for specific
cases, general attempts to develop a systematic approach to nonresponse adjustment
have tended to treat (a) and (b) somewhat as side conditions. In some cases, this
is reasonable either because factors (a) and (b) truly are of secondary interest or
because a systematic characterization of (a) and (b) is simply not feasible. However,
in many practical applications, factors (a) and (b), and related implications for (c),
can have a major—and sometimes dominant—effect on the efforts to optimize
agency practice. Consequently, to the extent that we can formally characterize (a)
and (b) in a realistic way, it would be of interest to incorporate these factors more
systematically into the development, implementation, and evaluation of agency
nonresponse adjustment methods. This would help ensure a stronger match between
methodological development and agency practice, and has the potential to lead to
several very rich classes of statistical research problems.

Second, the preceding sections noted that nonresponse modeling and adjust-
ment efforts by government statistical agencies encompass a wide range of users,
with correspondingly wide-ranging inferential goals and utility functions. Many
of these users are likely to approach nonresponse adjustment methods as con-
sumers of a technology, even though these adjustment methods may have been
originally developed on the basis of first-principles statistical science. The general
process of conversion of scientific results into a broadly applicable technology,
and subsequent adoption of that technology by a relatively wide range of users,
has been studied in some depth in the sociology, engineering, and business lit-
erature; see, e.g., Rogers (1995), Drucker (1985), and references cited therein.
Much of this literature is quite controversial, and one would naturally be cau-
tious about wholesale application of that literature to the adoption and diffusion
processes observed in statistical science and statistical technology. Nonetheless,
several general themes of this literature (e.g., differences in utility functions and
risk/reward profiles; expectations on robustness and observable feedback loops; and
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degrees of customization) do appear to have close parallels in the development and
implementation of nonresponse adjustment methods. Careful consideration of these
themes by statistical researchers, by managers of government statistical agencies,
and by users of specific survey datasets may be very helpful in calibrating statis-
tical research work with the needs of agencies and users, and in accelerating the
adoption and diffusion of improved nonresponse adjustment methods.
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Bridging across changes
in classification systems

Nathaniel Schenker1

11.1 Introduction

A common practice in data collections is to classify responses into categories for
analysis. For example, narrative responses on jobs can be classified into industry
and/or occupation categories, people’s descriptions of their races can be classified
into race categories, and medical diagnoses can be classified into disease cate-
gories. When a data collection is repeated over time, but the system for classifying
responses into categories changes, problems of noncomparability can arise, espe-
cially if data classified using an earlier system are to be compared or combined
with data classified using a later system. This noncomparability can be viewed as
an issue of missing data: Either the units classified using the earlier system can be
viewed as missing the categories under the later system, or vice versa.

In this chapter, I discuss two projects, each of which had the goal of bridging
the transition between classification systems, that is, handling the missing-data
problem caused by the transition. In the first project, Rubin’s (1978b, 1987b)
multiple imputation was used to achieve comparability of industry and occupation
codes in public-use files from the 1970 and 1980 censuses. This was, I believe, the
first application of multiple imputation to a large public-use database, and I had the
good fortune of working with Rubin on the project when I was his doctoral student

1National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, Md.
The views expressed in this chapter are those of the author and do not necessarily reflect the views of
the United States government.
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as well as early in my postdoctoral years. In the second project, methods that can
be viewed as imputation were used by the National Center for Health Statistics of
the Centers for Disease Control and Prevention, with assistance from the Bureau
of the Census, to bridge the transition from single-race reporting to multiple-race
reporting in the census. Analytic approximations to multiple imputation were then
used to assess the variability due to race bridging. This was one of the most recent
efforts to bridge across a change in a classification system. The two bridging
problems, while similar in their basic structures, had many differences both in
their features and in the methods used to solve them.

11.2 Multiple imputation to achieve comparability
of industry and occupation codes

Overview

In each decennial census, employment information is obtained from individuals
using open-ended descriptions of occupations, which are then coded into several
hundred specific categories for both occupation and industry.

To provide relatively up-to-date information, the classification scheme is revised
somewhat by the Bureau of the Census for each census. Major changes, however,
were made for the 1980 census. For example, fewer than one-third of the 1970
occupation categories mapped into single categories in the 1980 classification. As a
consequence, public-use databases from the 1980 census had industry and occupa-
tion codes that were not directly comparable to those in public-use databases from
previous censuses, and in particular the 1970 census. The lack of comparability of
codes across time made it difficult to study such topics as occupation mobility and
labor force shifts by demographic characteristics.

As discussed in Section 11.1, the industry and occupation coding problem could
be viewed as a problem of missing data. Because the 1980 classification system
was thought to be more broadly used and superior to earlier systems, it was chosen
as the standard, and thus, the units in the 1970 public-use files were viewed as
missing 1980 codes.

The 1970 public-use databases contained over one million records, with written
descriptions of occupations only in physical storage, and therefore it would have
been prohibitively expensive to recode the 1970 data according to the 1980 scheme.
There existed, however, a double-coded sample of about 127,000 units from the
1970 census, that is, a sample with occupations coded using both the 1980 and
1970 schemes, which was created by the Bureau of the Census for purposes other
than those described here.

A project to multiply impute 1980 industry and occupation codes to public-use
samples from the 1970 census was carried out with funding from the National
Science Foundation and support from the Bureau of the Census. The double-coded
sample from the 1970 census was used to build models predicting 1980 codes
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from the 1970 codes and covariates. The models were then used to create multiple
imputations of 1980 codes for two public-use samples from 1970 with a combined
total of about 1.6 million units.

Descriptions and evaluations of this project can be found in Treiman and
Rubin (1983), Rubin (1983), Rubin and Schenker (1987a), Treiman, Bielby, and
Cheng (1988), Weidman (1989), Clogg et al. (1991), and Schenker, Treiman, and
Weidman (1993). At the time of the project, which was carried out early in the
development of multiple imputation, many of the issues, techniques, and results
were quite novel. Although about two decades have gone by since the project took
place, many aspects of the project are still useful and important. In the following
subsections, I highlight some of the details.

Special features of this missing-data problem

The industry and occupation coding problem had three features that were unusual
for missing-data problems. The first, which made this problem easier than many,
was that the reasons for “nonresponse” were known, since the double-coded sample
from the 1970 census was a probability sample. The second, which made this
problem harder than many, was that the level of missing data in the 1970 public-
use files was very high. In fact, 1980 codes could be viewed as missing for all of
the records in the 1970 public-use files.

Finally, the double-coded sample was drawn independently of the 1970 public-
use samples. Thus, the “observed” data used to fit the imputation model were not part
of the data set to which multiple imputation was to be applied. Rubin and Schenker
(1987a) argued that this feature would result in multiple-imputation inferences that
are conservative. This was, I believe, the first published discussion of the conser-
vatism that can result when the imputer uses information that is unavailable to the
analyst of the multiply imputed data. Issues of this type have been discussed further
in Fay (1991, 1992, 1993), Kott (1992), Meng (1994a), and Rubin (1996).

Methods used

Models predicting the 1980 codes for each 1970 code, given covariates, were fitted
to the double-coded sample. The models were used to impute five sets of 1980
codes (M = 5, in the traditional notation of multiple imputation) for two 1970
public-use samples, each with about 800,000 records. To simplify modeling and to
avoid imputing impossible 1980 industry and occupation pairs, the 1980 industry
code was imputed first, and then the 1980 occupation code was imputed conditional
on the 1980 industry code.

Modeling a polytomous outcome as a sequence of binary outcomes

The basic imputation model used was binary logistic regression. If a 1970 code
mapped into more than two 1980 codes, a sequence of binary logistic regressions
was used. Consider, for example, the situation in which a single 1970 code had
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four possible 1980 codes associated with it, say codes A through D in order of
sample size in the double-coded sample. Separate binary logistic regression models
were fitted to predict the dichotomies A versus (B, C, or D), B versus (C or D), and
C versus D. Imputation of the 1980 code for a given unit in the 1970 public-use
sample was carried out in the same sequence, with the first model used to impute
A versus (B, C, or D), the second model used to impute B versus (C or D) if A
was not imputed in the first step, and the third model used to impute C versus D
if B was not imputed in the second step. Modeling a polytomous outcome as a
sequence of binary outcomes had two benefits: (1) it allowed the use of simpler
software and (2) it prevented the quality of the fitted models for 1980 codes with
more data available (e.g., code A) to be affected by lack of data for less populous
codes (e.g., code D).

Including many substantively important variables

It is standard advice that, when using multiple imputation, it is beneficial to include
as many variables as possible in the imputation model; see, for example Meng
(1994a) and Rubin (1996). In the industry and occupation coding project, in addi-
tion to including variables in the logistic regression models that were thought to
be good predictors of the 1980 codes, an effort was made to include as many
substantively important variables as possible, even if such variables were not sta-
tistically significant predictors of the 1980 codes. This was done to ensure that if
the variables were used in subsequent analyses of the multiply imputed data, then
the analyses would reflect the uncertainty about the relationships of the variables to
the 1980 codes. (Not including a variable in an imputation model implies that it is
known with certainty that the variable is unrelated to what is being imputed, which
is usually not the case.) As part of the modeling process, knowledgeable social sci-
entists were asked which variables were most important to and most often used by
analysts of data on industries and occupations. The models for 1980 industry codes
included categorical variables for age, race, sex, race-by-sex and age-by-sex inter-
actions, class of worker (private industry, government, or self-employed), amount
of work, and geography. The models for 1980 occupation codes included the same
variables that were used for industry codes, as well as categorical variables for
earnings and 1980 industry code.

Simple Bayesian methods for logistic regression

Since the predictors used were categorical, the data used to fit each logistic regres-
sion model could be represented in terms of a contingency table. Because an effort
was made to include a large number of predictors, the contingency table often
had sparse data, especially when the outcomes involved were less populous indus-
tries or occupations. For example, each contingency table for a 1980 industry code
dichotomy had 4,608 cells, while the number of observations per table ranged from
4 to 3,500.
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To handle the sparse data in estimation, simple Bayesian methods for logistic
regression, as developed and evaluated in Rubin and Schenker (1987b) and Clogg
et al. (1991), were used. Briefly, for a contingency table with 2c cells being used to
fit a logistic regression model with p parameters for predicting, say, 1980 code A
versus code B, the methods added fp/c “prior” observations to each cell of the con-
tingency table corresponding to code A, and (1 − f )p/c prior observations to each
cell corresponding to code B, where f was the marginal fraction of sample units
with code A. Thus, the total number of observations added to the entire table was
equal to the number of parameters being estimated in the logistic regression model.
After the prior observations were added, traditional maximum likelihood methods
for fitting logistic regression models were applied to the augmented sample.

The simple Bayesian methods used in the project can be thought of as an
extension of the use of the Jeffreys prior for estimating a binomial proportion to
the problem of logistic regression (Rubin and Schenker, 1987b). They also have
the flavor of empirical Bayes estimation (Morris, 1983). Use of the methods in the
project ensured that the posterior distributions of the logistic regression parameters
were unimodal and easy to maximize, and it facilitated the reflection of uncertainty
in the multiple imputations, regardless of the sample sizes involved in fitting the
logistic regressions.

Properly reflecting uncertainty and using the SIR algorithm

To properly reflect the uncertainty due to estimating the parameters of a logistic
regression model in the multiple imputations for a dichotomy, say 1980 code A
versus code B, the following two steps were followed for each of the M = 5
sets of imputations. First, a random vector of the logistic regression parameters
was drawn from the approximate posterior distribution of the parameters. Second,
for each unit in the public-use sample needing imputation of the dichotomy in
question, (1) the drawn vector of parameters and the unit’s covariate values were
used to compute the probability of code A, and (2) a random imputation of code
A or B was created using the probability computed (and its complement, the
probability of code B). The two-step procedure of first drawing parameter values
and then imputing given the drawn parameter values is a standard technique for
properly reflecting the uncertainty due to estimating the parameters of an imputation
model when the pattern of missing data is simple. For more complicated patterns,
advances in computational statistics, such as Markov chain Monte Carlo methods
(Gilks, Richardson, and Spiegelhalter, 1996; Kass, Carlin, Gelman, and Neal, 1998;
Gelman, Carlin, Stern, and Rubin, 2003; Chapter 11), are useful.

In the first step of the two-step procedure, an approximation to the posterior dis-
tribution of the logistic regression parameters was needed. An obvious candidate
was a normal approximation, with mean equal to the posterior mode and vari-
ance/covariance matrix equal to the negative of the inverse of the second-derivative
matrix of the log-posterior. This approximation was relatively easy to obtain after
application of the simple Bayesian methods described earlier. However, because of
the small sample sizes as well as unequal splits in the categories of the outcomes
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often occurring in the logistic regressions, the actual posterior distributions were
often not approximated well by normal distributions. To obtain better approxima-
tions, the sampling/importance resampling (SIR) algorithm (Rubin, 1983, 1987a,
1988) was used; see K. H. Li’s Chapter 24 in this book for a detailed discussion
of the SIR algorithm. First, a large sample was drawn from the normal approxima-
tion. Then, for each vector in the sample, the ratio of the posterior density to the
normal density, evaluated at the vector, was calculated. Finally, M = 5 vectors, to
be used for the five sets of imputations, were resampled from the original sample,
with probabilities proportional to the ratios of densities. The size of the original
sample drawn from the normal approximation varied across the logistic regression
problems, with large samples drawn for problems with more unequal splits in the
categories of the outcomes.

Evaluations and lessons learned

In addition to the methodological innovations in the industry and occupation cod-
ing project, and the general idea of treating noncomparability as a missing-data
problem, there were several lessons learned from the evaluations of data from the
project.

Rubin and Schenker (1987a) conducted a Monte Carlo study, using data from
the double-coded sample on the agriculture industry, to investigate the properties
of the methods used in the project. They found that on average, the actual coverage
rates of intervals based on the multiply imputed data were close to the nominal
levels. In contrast, single imputation was found to result in actual coverage rates
that were substantially below the nominal levels. They also found that, owing to
the high fractions of missing information in the industry and occupation coding
problem, it was important to properly reflect the uncertainty due to estimating the
parameters of the imputation model as discussed earlier. Not doing so resulted in
actual coverage rates that were well below the nominal levels, although still better
than those resulting from single imputation.

Treiman, Bielby, and Cheng (1988) conducted an evaluation of the data result-
ing from using the project’s imputation models to multiply impute 1980 industry
codes for the units in the double-coded sample (treating the actual 1980 codes
as unknown). They found that the imputed codes approximated the actual codes
well. Their analysis was an intermediate step in the industry and occupation coding
project, and at the time of the analysis, multiple imputations for the 1970 public-
use files had not yet been created. They also considered the question of whether
the use of a multiply imputed public-use file from 1970 (a larger file, but with
multiply imputed codes rather than directly assigned codes) would yield more pre-
cise results than the use of the double-coded file (a smaller file, but with directly
assigned codes rather than multiply imputed codes). As an example, they examined
estimates (and standard errors) of the mean years of school completed by workers
in various industry categories. By extrapolating the results on the extra variability
due to imputation from analyses of the multiple imputations for the double-coded
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sample to the situation of a file of the size of the public-use file, they concluded
that the standard errors obtained from the multiply imputed public-use file would
be substantially smaller than those obtained from analyses of the double-coded
sample with directly assigned codes.

The latter question considered by Treiman, Bielby, and Cheng (1988) was also
addressed by Schenker, Treiman, and Weidman (1993), who compared analyses
of an actual multiply imputed public-use file with analyses of the double-coded
sample with directly assigned codes. They examined estimates (and standard errors)
of changes between 1970 and 1980 in the percentage of workers in 12 different
occupations who were female. Consistent with the results of Treiman, Bielby, and
Cheng (1988), they found that smaller standard errors were usually obtained with
the multiply imputed public-use file. Schenker, Treiman, and Weidman (1993) also
estimated the fraction of missing information for their analyses of the multiply
imputed public-use file, using a formula suggested by Rubin (1987b; Section 3.1).
This fraction differs from the simple missing-data rate, which can be considered to
be 100% for the industry and occupation coding problem, since it measures how
much information is lost by having to use multiply imputed codes rather than known
codes, and thus accounts for the predictive power of the covariates in the imputation
models. For the 12 occupations considered, the fraction of missing information
varied from 2 to 83%, demonstrating how much the fraction can depend on the
specific estimation problem being addressed. This is a good counter-argument to the
idea of estimating a single inflation factor to correct standard errors in the presence
of missing data rather than using a technique such as multiple imputation.

11.3 Bridging the transition from single-race
reporting to multiple-race reporting

Overview

In 1997, the Office of Management and Budget issued revised standards for the
collection of race information within the Federal statistical system (Office of Man-
agement and Budget, 1997). One major revision allows each respondent to a Federal
data collection to choose more than one race category in describing the person in
question. The prior standards, issued in 1977, had specified that only a single-
race category be chosen (Office of Management and Budget, 1977). This change
presents challenges for analyses that involve data collected under both the 1977
and 1997 race reporting systems, since the data on race are not comparable.

There were four race categories under the 1977 standards: American Indian or
Alaska Native (AIAN); Asian or Pacific Islander (API); Black; and White. Under
the 1997 standards, the four single-race categories from 1977 have been expanded
to five: AIAN; Asian; Black or African American; Native Hawaiian or Other Pacific
Islander (NHOPI); and White. In addition, any combination of these five categories
may be used. The five 1997 single-race categories can be collapsed into the four



124 CHANGES IN CLASSIFICATION SYSTEMS—SCHENKER

1977 race categories (by collapsing the Asian and NHOPI categories to form the
API category).

As most people still report only a single race under the 1997 system, a common
proposed solution is to try to bridge the transition by assigning a 1977 race category
to each multiple-race report under the 1997 system, and to conduct analyses using
just the observed and assigned 1977 race categories; see, for example, Office of
Management and Budget (2000). Thus, analogous to the industry and occupation
coding problem, the problem of noncomparability of race reporting can be viewed
as a missing-data problem, in which 1977 race categories are missing and need to be
imputed for people assigned a multiple-race race category under the 1997 system.

A specific issue that sparked interest in race bridging at the National Center for
Health Statistics involves the calculation of vital rates by race. Such rates are fre-
quently used in epidemiologic and other studies. Beginning in 2000, data from the
decennial census, which are used to calculate the denominators for rates, were col-
lected under the 1997 race reporting system. In contrast, vital event (e.g., birth and
death) record systems, which provide the data for the numerators, are implement-
ing the change to the new standards over the next several years. Thus, numerators
will often be available under the 1977 race categories, whereas denominators will
be available under the 1997 categories.

To enhance comparability between the 2000 census and data classified accord-
ing to the 1977 standards, in particular data on vital events, the National Center
for Health Statistics, with assistance from the Bureau of the Census, has produced
estimates of the population counts that would have been obtained had the 1977
standards been used. The estimates, which have been released publicly, result from
bridging the data in the Census 2000 Modified Race Data Summary File, which
contains the counts of the resident population for each of the (single- or multiple-)
race categories under the 1997 standards, by county, age, sex, and Hispanic origin,
to the four categories specified in the 1977 standards.

Descriptions and evaluations of this project, which is still ongoing, can be found
in Ingram et al. (2003), Schenker (2003), and Parker et al. (2004); and precursors
to the methods used in the project are discussed in Schenker and Parker (2003).
In the following subsections, I highlight some of the aspects of the project and
offer some contrasts to the industry and occupation coding project discussed in
Section 11.2.

Special features of this missing-data problem

In contrast to the industry and occupation coding problem, the race bridging prob-
lem had very low rates of missing data overall, although the rates were higher
for some specific race groups and geographical areas. For example, analysis of
the Census 2000 Modified Race Data Summary File indicates that only 1.3% of
the overall population was classified into multiple-race categories. In contrast to
this overall low rate, there is a much higher rate of multiple-race reporting involv-
ing the 1977 race group AIAN. While 0.9% of the population was classified into
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the AIAN category, 0.4% was classified as AIAN/White; thus, over three-tenths
(i.e., over 0.4/(0.4 + 0.9)) of the reporting involving the AIAN race is accounted
for by multiple-race reports.

Also, in contrast to the industry and occupation coding problem, the reasons
for “nonresponse” in the race bridging problem are not well understood; that is,
the factors leading up to someone being described by a multiple-race category,
so that they cannot be straightforwardly assigned to a 1977 race category, are not
fully known.

A final feature of the race bridging problem that deserves mention is that the
variable in question, race, is sometimes reported inconsistently. For example, the
race of a person is often reported by proxy: In the census, it might be reported
by a family member other than the person in question; in another survey, it might
be reported by a different family member; and on a death certificate, it might be
reported by a funeral director on the basis of information from an informant or on
observation. This inconsistency is an issue to consider in race bridging, but it is
also an important issue even without the problem of race bridging.

Methods used

The National Health Interview Survey (NHIS) is an ongoing household-based sur-
vey of the civilian noninstitutionalized population, with about 40,000 households
containing about 100,000 persons surveyed per year. The NHIS has allowed multiple-
race reporting for all persons being surveyed since 1982. In a follow-up question, for
each person classified into a multiple-race category, it asks for the “primary” race,
that is, the single-race category that best describes the person.

Categorical regression models predicting primary race were fitted to data on the
roughly 4,000 persons from the 1997–2000 NHIS who were classified into multiple-
race groups but also had accompanying primary-race descriptions. For each of
the 11 multiple-race groups formed by combinations of AIAN, API, Black, and
White, by county and person-level covariate combination, the count in the Census
2000 Modified Race Data Summary File was distributed into the applicable 1977
race groups in proportion to the estimated probabilities from the appropriate fitted
regression model.

Bridging backward rather than forward

Whereas the industry and occupation coding project bridged from the older clas-
sification system to the newer one, the race bridging project bridged in the other
direction. There were two main reasons for this. First, as mentioned earlier, only
1.3% of the people in the Census 2000 Modified Race Data Summary File were
classified into multiple-race groups. Thus, predicting a 1977 race category for each
multiple-race person effectively defined a problem with 1.3% of the values miss-
ing. In contrast, predicting how races classified under the 1977 system, such as for
vital events, would have been classified under the 1997 system effectively defines
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a problem with 100% of the data missing, since each person would have the pos-
sibility of being put into a multiple-race category. Second, the modeling required
is much simpler when bridging from the 1997 system to the 1977 system than
vice versa. For example, a person classified as Black/White under the 1997 system
has two possibilities under the 1977 system: Black or White. In contrast, a person
classified as White under the 1977 system has several multiple-race possibilities
under the 1997 system, including any multiple-race group for which White is a
component.

Separate versus combined models

For each of the six largest multiple-race groups in the NHIS (AIAN/Black, AIAN/
White, API/Black, API/White, Black/White, AIAN/Black/White), a separate logis-
tic or multinomial logit model was fitted. Since the remaining five multiple-race
groups had small sample sizes, a single multinomial logit model was fitted for these
groups, based on the combined data for all 11 groups. The use of separate models
for larger groups and a combined model for smaller groups was roughly in the spirit
of Bayesian or empirical Bayesian procedures that compromise between separate
estimates and pooled estimates based in part on their relative precisions (Morris,
1983; Gelman, Carlin, Stern, and Rubin, 2003; Chapter 5). Further research will
be aimed at refining the modeling, especially for the small groups.

Selection of predictors

As discussed in Section 11.2, when creating imputations for a public-use file, it is
often desirable to include more predictors than necessary rather than fewer predic-
tors than necessary. Since the fitted models in the race bridging project were to be
applied to the Census 2000 Modified Race Data Summary File, the person-level
predictors that could be used were limited to those in the summary file, that is,
age, sex, and Hispanic origin. However, since the counts in the summary file were
given by county, there is the potential to include a number of contextual, mainly
county-level, predictors. At the time that the bridging of the summary file was
carried out, most county-level data from the 2000 census were not yet available,
so the contextual variables were limited to region of the country, urbanicity, sum-
maries of the single-race distribution in the 2000 census, and the prevalence of
multiple-race reporting in the 2000 census. As more contextual variables become
available, a goal in the race bridging effort is to determine which, if any, additional
variables should be included in the bridging models.

Imputing “best” estimates

The primary need of users of the Census 2000 Modified Race Data Summary File
was to have point estimates of the counts by 1977 race. Moreover, most such
users would not be familiar with multiple imputation. Hence, the race bridging
project created only a single file of bridged counts, analogous to the Census 2000
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Modified Race Data Summary File, with “best” estimates of the counts under the
1977 system (i.e., point estimates based on the estimated probabilities from the
regressions). In contrast, the use of multiple imputation would produce multiple
versions of the file of bridged counts, each version representing a random draw
from the predictive distribution of the counts.

Assessing variability due to race bridging

Often, when there is no need for race bridging, census counts are treated as non-
random population quantities. In contrast, bridged census counts such as those
produced in the race bridging project, are estimates and thus have random vari-
ability. Schenker and Parker (2003) suggested the use of multiple imputation to
assess the variability due to race bridging.

For the race bridging project, in which only a file of “best” estimates had been
created, Schenker (2003) assessed the variability due to race bridging by adapting
the methods of Schafer and Schenker (2000) for inference with imputed conditional
means to the race bridging problem. These methods can be viewed as a first-order
approximation to multiple imputation with an infinite number of versions of the
file of bridged counts. Schenker (2003) gave a detailed discussion contrasting the
use of the Schafer/Schenker methods with the use of multiple imputation. Briefly,
however, the Schafer/Schenker methods are more efficient (since they approxi-
mate multiple imputation with “M = ∞”), and the production of a single file of
“best” estimates of the counts simplifies point estimation. On the other hand, for
variance estimation, the Schafer/Schenker methods involve more complicated for-
mulas than does multiple imputation, and the Schafer/Schenker formulas need to be
customized for each inference problem, as illustrated by Schenker (2003). More-
over, the Schafer/Schenker methods involve more linear approximations than does
multiple imputation, and thus could be less effective when sample sizes are small.

Evaluations and lessons learned

As mentioned earlier, the race bridging project is ongoing. Future efforts will focus
on refining the methods used to bridge the counts from the 2000 census, and on
applying the methods to other years of data and perhaps in other contexts.

Ingram et al. (2003) provided detailed evaluations of the bridged census counts,
and Parker et al. (2004) provided further evaluations of the methodology, with an
emphasis on vital rates. As might be expected, the largest impacts of bridging
are for the races that have the largest amounts of multiple-race reporting relative
to their populations. Overall, the largest relative amount of multiple-race report-
ing involves the AIAN race, followed by, in decreasing order, API, Black, and
White. The allocations of people from multiple-race groups into 1977 race cate-
gories vary among states, reflecting the effects of the covariates in the bridging
models. Moreover, the estimated parameters differ between the bridging models
for the multiple-race groups, suggesting that the race reporting mechanisms differ
across groups.
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As for the assessments of variability due to race bridging, Schenker (2003)
found that the relative standard errors of the bridged census counts tend to be
higher for finer geographic levels and lower for coarser geographic levels. For
each state or the District of Columbia, the relative standard error of the bridged
count for any race is no larger than 0.05. At the national level, for birth and death
rates by age group and 1977 race, use of bridged census counts in the denominators
does not add substantially (on an absolute basis) to the relative standard errors of
the rates.

11.4 Conclusion

The problem of bridging across a change in a classification system is in some
senses an “artificial” type of missing-data problem, since the missing data are
caused by a change in the system rather than by nonresponse per se. Nevertheless,
it is a problem that is not uncommon, since classification systems are often changed
to provide up-to-date information on the current characteristics of the population.
As illustrated by the two bridging problems discussed in this chapter, treating a
bridging problem as a missing-data problem can be very useful, as it facilitates
bringing lessons from the large amount of research on methods for handling missing
data to bear.
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Representing the Census
undercount by multiple
imputation of households

Alan M. Zaslavsky1

12.1 Introduction

It has been known at least since 1950 that the decennial US census undercounts the
population (Citro and Cohen, 1985). Some households are omitted entirely from
the census roster, while others are included but with one or more members omitted.
Also, some households and individuals are counted more than once. Such errors in
coverage are extremely contentious due to the role of census population estimates
in the allocation of political power and resources (Anderson and Fienberg, 1999;
Choldin 1994).

Major efforts were devoted to estimation of the undercount in the 1990 and
2000 censuses in the United States. Estimation classes were defined by the char-
acteristics of persons, such as age or sex, and of households or blocks (small
geographic areas), such as type of dwelling, tenure (owner-occupied or rented
housing unit) or urbanicity. For each class, an undercount rate was calculated
using data from a second survey conducted independently of the census, the Post
Enumeration Survey (PES). These rates expressed estimated net omissions as a
fraction of enumerated persons in that class. Although the 1990 census had a net
undercount of 0.5 to 1%, some classes had a larger estimated net undercount,

1Department of Health Care Policy, Harvard Medical School, Boston, Mass.
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exceeding 8%, and some had a small net overcount (Hogan, 1993). The 2000 cen-
sus presented a more confusing picture, with inconsistent coverage estimates from
different methodologies (Citro, Cork, and Norwood, 2004).

“Adjustment” is any process that corrects the enumeration for estimated cover-
age error. Coverage rates for adjustment classes (groups of observations regarded
as exchangeable for adjustment) can be used to calculate adjusted counts of indi-
viduals, using weights that incorporate inverse probabilities of enumeration. For
more complex analyses, however, it would be desirable to place the added per-
sons into households in microdata rosters or samples. Household microdata are
used for tabulations by household characteristics and for a wide range of research
purposes. The adjusted records are only useful if the composition of the adjusted
households (represented here by a vector giving the number of household members
from each adjustment class) and the relationships of its individual members are
logically consistent and typical of the types of households found in their area.

To describe abstractly the patterns of plausible households and create new
households that fit them is a daunting task. Imputing persons into a special cat-
egory of unrelated individuals to represent omissions, as in the 1990 undercount
estimates, sidesteps this problem at the cost of creating a skewed picture of rela-
tionships in the block.

One solution to this problem is to assign weights to the households enumerated
in the census lists for the block, making the weighted counts of households and
of persons in each adjustment class agree with the corresponding adjusted totals
(Zaslavsky, 1988). This methodology, a generalization of raking ratio estimation,
changes the proportionate composition of the block, but all of the households
are real. However, the weighting methodology is not based on a model of the
underlying processes of census undercoverage, in particular of the within-household
omissions, which cause households to appear to be smaller than they actually
are. A simulation of the reweighting procedure examined the effect of household
reweighting on the distribution of the number of adults in households with children,
under simple models of simulated undercount. Owing to the simulated undercount,
some two-adult households were observed as having a single adult member. Two-
adult households are unusually numerous, so their prevalence was underestimated
even after weighting, whereas one-adult households were overestimated owing to
the large number of two-adult households that are erroneously classified as one-
adult households. Thus, the limitation of weighting strategies is that it is difficult to
incorporate complex information either about the prevalence of different types of
households or about the undercount mechanism into the adjustment methodology.

This chapter describes an alternative approach, in which households are imputed
into the census roster to represent omitted households, while persons are imputed
into enumerated households to represent persons omitted from those households,
under explicit probability models for the misenumeration processes and the dis-
tribution of household types. This approach lends itself to multiple imputation
(Rubin, 1978b, 1987b), in which the entire imputation process is repeated several
times to represent the variability introduced by estimation of the underenumeration.
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Applying standard combining rules to repeated analyses of the imputed data sets,
a census data user would calculate valid standard errors for estimates of interest
(be they simple tabulations or complex model parameters) reflecting all known
sources of variability. This unifying scheme facilitates analyses of any degree of
complexity that use familiar complete-data methods, at the same time properly
representing bias and variance introduced by all known forms of nonresponse and
error in the census.

The remainder of this chapter develops methods for imputing households from
the posterior distribution of true household types given the observed roster, empha-
sizing the overall framework rather than the details of models and simulation
results. More extensive results appear in Zaslavsky (1989), where these methods
were first presented.

12.2 Models

Notation and overall model structure

Define a “household type” by the vector of counts of persons from each adjustment
class (for example, white women over 65 years old in urban areas) making up
the household. Let Tbh and Ubh be the true and observed types respectively of
the h-th household in census block b, NTb and NU b be the true and observed
number of households in block b, and T = {Tbh}, U = {Ubh}, NT = {NTb} and
NU = {NU b} the arrays of true and observed values. The following hierarchical
model specifies distributions of hyperparameters �, block-level parameters {ωb},
true values NT ,T and observed data NU ,U.

General hyperparameter: a general hyperparameter � = (�µ,�ω,�α) (with
some prior distribution) governs all of the other distributions.

Block-level parameters and independence of blocks: Conditional on �, the dis-
tributions of the data and parameters for different blocks are independent. For each
block, a block-level parameter ωb represents the particular characteristics of that
block. The number of households NTb is also an unobserved block-level parameter.
The distribution of (ωb,NTb) is governed by the hyperparameter component �ω.

(ωb,NTb) | � ∼ Pω(·, �ω), i.i.d. for b = 1, . . . B. (12.1)

Distribution of true and observed household types: The pairs (Tbh, Ubh) repre-
senting true and observed household types are drawn independently, conditional
on the block and general parameters. We factor their distribution as the product of
the probability of the true type in that block, µb(t) = Pr(Tbh = t | �µ,ωb) and the
probability that the true type is recorded as a particular observed type, αb(t, u) =
Pr(Ubh = u | Tbh = t, �α, ωb). The former distribution describes the distribution of
true household types in various blocks, while the latter describes the process that
causes households to be misclassified (i.e., the undercounting process). If αb(t, u) >
0 (t could be observed as u), we say that “t is a cover for u” or t � u.
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Figure 12.1 Overall structure of the hierarchical model.

The factorization p(U, T ) = p(T )p(U | T ) characterizes the joint distribution
of (T , U) by submodels for two scientifically distinct processes, the “distributional
parameterization” of Rubin and Zaslavsky (1989). An alternative “direct predic-
tive parameterization” models P (T | U, θ), thus specifying a predictive model from
which T might be drawn directly. An advantage of our distributional parameteriza-
tion, besides its greater scientific interpretability, is that it separates the distribution
of T , which might be expected to vary across small areas, from the undercover-
age process U | T , which is estimated from a relatively small sample (the PES),
and therefore must be modeled as relatively consistent across areas. Thus, this
factorization is better adapted to the structure of the available data.

With this notation, the distribution of observed and true household types in
block b is

p(Tbh, Ubh | ωb,�) = αb(Tbh, Ubh)µb(Tbh), i.i.d. for h = 1, . . .NTb. (12.2)

The hierarchical model for (NT ,T,U) is summarized by Figure 12.1 and the fol-
lowing equation:

p(NT ,T,U) =
∫ ∏

b

∫ NTb∏
h=1

p(Ubh | Tbh, ωb,�µ)p(Tbh | ωb,�µ)

× dP(NTb, ωb | �ω)
 dP(�). (12.3)

Models for the local distribution of household types

Households are of types drawn from the discrete set of possible household compo-
sitions, which is very large. There is no simple or reliable way of characterizing the
possible household types (compositions) that includes all the plausible types and
excludes the impossible ones. Rather, we assume that the set of possible household
types equals the set of observed types. This is a reasonable approach in this set-
ting because most households are enumerated accurately, so any type that actually
occurs more than a few times is highly likely to be observed.
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The distributions of individuals by race and age, and of households by fam-
ily size and other variables, vary substantially across blocks. This variability is
reflected in (12.3) by the dependency of µb on the block parameter ωb.

We model prevalences of household types in various blocks as:

µb(t) = µ0(t) exp(r(t)′ωb)∑
t ′ µ0(t ′) exp(r(t ′)′ωb)

, (12.4)

where r(t) is a low-dimensional function that summarizes the composition of
household type t and ωb is a parameter for block b. The general parameter �µ
enters through µ0 and possibly through the definition of r(t) as a function of house-
hold characteristics. Because µ0(t) assumes a distinct value for each type t (µ0(t)

is specified nonparametrically), the model is semiparametric, like the proportional
hazards model for survival times (Cox, 1972), which it resembles in form.

This model has the following interpretation: in block b, the probability that
each household will be of type t is proportional to the product of a factor µ0(t)

corresponding to the prevalence of type t generally and a factor exp(r(t)′ωb) cor-
responding to the relative prevalence of households like t (having similar values
of r(t)) in a block like b. Thus, it is unnecessary to model or describe all possible
household types. Only the interblock differences need be modeled; these differ-
ences are much better understood than the probabilities of the particular types. The
components of r(t) should be functions of household characteristics whose distribu-
tions differ most among the blocks; these can be selected by multiple discriminant
analysis.

In the simulations of Section 12.4, r(t) is taken to be one-dimensional. In this
case, the joint distribution of t and b is the log-multiplicative model for two-way
contingency tables with ordered categories (Agresti, 1984; Goodman, 1981), with
known scores r(t) on the t dimension and estimated scores ωb on the b dimension.

Models for errors in enumerating households

If enumeration errors are always undercounts, misclassifications take the form of
omission of one or more persons from the household. Then {u : t � u} consists
of subsets of the members of t , that is, households obtained by dropping one or
more members from t ; conversely, {t : t � u} can be obtained by adding members
to u. The αb matrix is sparse because only misclassifications due to omissions
have positive probability. These features may be exploited in data structures and
algorithms.

The structure of the models is similar when persons are also overcounted or are
misclassified owing to misrecording of characteristics; then U is obtained by adding
members to T or changing the classification of one or more members, respectively.
These extensions are not considered further in this chapter but with adequate data
could be explored to build more realistic models for misclassifications.

Households that are completely missed in the census constitute a truncated type
U = 0. These differ from households that are counted but for which there is no
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information on their composition: for example, when a neighborhood informant
indicates that a housing unit is occupied but the number or characteristics of occu-
pants cannot be determined. The latter constitutes special observed types that are
included in the count NU b, but “type 0” households are not. Hence NU b ≤ NTb.

Whole-household omission probabilities αb(t, 0) might be modeled by logistic
regression on summaries of household composition (number of members, number
of adults, proportions by race, and so forth). If there is another special status (such
as “occupied but no interview obtained”), the regression is polytomous.

Specific models for within-household omissions, αb(t, u) for u �= 0, can be built
upon models for omissions of persons with appropriate modeling of dependency
between persons within the same household. For example, an omission model
with random household effects can be approximated by a simple additive loglinear
model for independent omissions with an extra nonlinear (e.g., quadratic) term for
dependency (Zaslavsky, 1989, Section 12; Darroch, Fienberg, Glonek, and Junker,
1993, Section 4.3). Either of these models requires processing PES data differently
than in past censuses, since previous efforts have focused on marginal omission
probabilities for classes of individuals, ignoring household structure.

12.3 Inference

Overview

Proper multiple imputations (Rubin, 1987) may be obtained as draws of completed
data from the posterior distribution of the complete data given the observed data.
In this context, the complete data correspond to the full population including all
members of all households; the completed data are imputed “true” rosters.

The data are observed households Ub for every block, other block-level covari-
ate information xb, and the true rosters (NTb,Tb) for a sample of blocks that fall
into the PES. To impute we must draw from the joint distribution p(NT ,T, �,ω |
U,TPES). We outline here the steps of this full Bayesian inference, recognizing
that for some parameters maximum likelihood estimation might be an adequate
approximation and computationally cheaper in large data sets.

Only in the PES blocks are complete pairs (Tbh, Ubh) observed; thus, in accor-
dance with PES procedures, we assume that �α , the general parameter controlling
αb, is estimated from PES data alone and hence is independent of the remain-
ing parameters. We can sample from the posterior distributions of parameters of
these loglinear and logistic regression models using standard approximations for
exponential family models.

The remaining parameters and imputed values are the type prevalence param-
eter µ0 (equivalent to �µ), the block composition parameters ω, and the general
parameter �ω of their prior distribution, the true block counts NTb, and the true
household types T. Using a Gibbs sampler, each of these can be drawn in turn
conditional on all of the others; the stationary distribution after many such cycles is
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the desired posterior distribution. The following sections present the specific algo-
rithms for sampling these variables and suggest plausible specifications of their
prior distributions.

Inference for µ0

As described in Section 12.2, we assume that the support of µ0 is the set of
observed types U. Conditional on other parameters, the likelihood of µ0 is∏

t

µ0(t)
n(t)

/∏
b

(∑
t

µ0(t)e
r(t)′ωb

)NTb

, (12.5)

where n(t) is the number of households of type t . With a proper Dirichlet
prior p(µ0) ∝ ∏

t µ0(t)
δt−1, the posterior distribution can be approximated by a

scaled Dirichlet distribution (c1µ0(1), c2µ0(2), . . .) ∼ Dirichlet(n(1)+ δ1, n(2)+
δ2, . . .), where ct is a suitably weighted average of er(t)

′ωb . (The approximation is
obtained by Taylor linearization of the logarithm of the denominator, from which
ct ≈ (En(t)) /µ0(t), where the expectation is under current values µ0 and ω and
includes a prior “pseudo-data” block 0 with n0 = ∑

δt and ω0 = 0.) In simulations,
this approximation appears to be a good proposal distribution in a Metropolis-
Hastings step, with adequate acceptance rates.

A proper prior for µ0 (δt > 0) must be assumed even though it introduces
a small bias in the estimation of µ0. With an improper prior (δt = 0), the Gibbs
sampler is nonrecurrent and will converge to a µ0 with support on a minimal set of
household types. With a uniform prior δt ≡ δ, δ should be small to avoid biasing the
posterior draws of µ0 toward low-prevalence types. Bias can be further reduced
by specifying a simple model for (δ1, δ2, . . .) reflecting general relationships of
prevalence to characteristics of types, for example, a loglinear model with predic-
tors like the number of household members and the prevalences of the adjustment
classes to which the members belong.

Inference for block parameters ω and �ω

Conditional on NTb and µ0, the likelihoods of each of the ωb are distinct, given by

L(ωb) =
∏
t

enb(t)r(t)
′ωb

/(∑
t

µ0(t)e
r(t)′ωb

)NTb

, (12.6)

where nb(t) is the number of type t households in block b. This is the likelihood
of a polytomous regression model with an offset.

A flexible prior distribution for ωb is the familiar multivariate normal regression
model ωb | �ω ∼ N(βxb, �), where �ω = (β,�), possibly with some prior con-
straints on the coefficient matrix β. The regression model allows us to incorporate
observable block characteristics xb into the predicted distribution for each block.
Methods for drawing from such normal-exponential-family hierarchical models are
well known (e.g., Gelman, Carlin, Stern, and Rubin, 2003; Section 16.4).
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Inference for block counts NTb

Although (12.1) assumes a distribution for block sizes, in practice block definitions
are often quite arbitrary. Census blocks in urban areas largely correspond to city
blocks bounded by streets or other natural features, but almost half of the cen-
sus blocks cover areas with no population at all, such as highway median strips,
wilderness areas, or bodies of water. Furthermore, blocks that are anticipated before
the census to have little or no population sometimes are found at census time to
be occupied by new housing developments. Therefore, unbiasedness in estima-
tion of NTb is more important than incorporating unreliable prior information on
the empirical size distribution of blocks. Any estimator that systematically under-
or overestimated the population of a certain class of blocks (e.g., small blocks)
might be regarded as arbitrary and unfair (since block boundaries are themselves
arbitrary) and therefore legally and politically unacceptable.

Instead of pursuing a posterior inference for the distribution of NTb from (12.1)
and (12.2), a single vague prior distribution for NTb is posited in all blocks. Once
NTb is drawn from its posterior distribution, U∗

b is Ub augmented with N0b =
NTb −NU b households with “missing” status.

Unit or whole-household omissions exemplify truncated observations; the num-
ber of unobserved households is unknown. This is a distinct case from censored
observations that are known to be present although there is no information about
the type, as when a housing unit (physical structure) is determined to be occu-
pied but no response can be obtained. (Such households constitute another set of
observed types.) Once the number of truncated households N0b is determined, these
households are assigned a distinct “observed” type U = 0. Hence we now consider
imputation of NTb when the number of observed households NU b is known.

Let α0b = ∑
µb(t)αb(t, 0) be the expected probability that a household will

be missed altogether (“type 0”) in block b. The inference conditional on the
observed households U is the same as that conditional only on the number of
observed households NU b; since all the households are drawn from the same
distribution, the observed households give no additional information on the unob-
served household (except perhaps through estimation of µb). Hence we write
NU b | NTb ∼ Bin(NTb, 1 − α0). Then E[NU b | NTb] = (1 − α0b)NTb, so a natural
unbiased (conditional on α0b) estimator of NTb is NU b/(1 − α0b).

A simple prior specification preserves the key properties of this unbiased
estimator in multiple imputation of NTb and hence of N0b = NTb − NU b, the num-
ber of omitted households. Suppose that NTb has the improper prior distribution
Pr(NTb = n) ∝ 1

n
. Then NTb | U has a (proper) negative binomial posterior distri-

bution with expectation NU b/(1 − α0), so the posterior expectation is an unbiased
estimator of the total number of households. Meng and Zaslavsky (2002) show that
this single observation unbiased prior (SOUP) is the only prior distribution having
this property under the binomial model. They also show that inference under this
prior is insensitive to the boundaries drawn (somewhat arbitrarily) between blocks
with similar population distributions µb and coverage properties αb.



MULTIPLE IMPUTATION, CENSUS UNDERCOUNT—ZASLAVSKY 137

Although the SOUP distribution is improper, by restricting the number of
observed households to some broad range (say, 1 ≤ NU b ≤ 1010) we obtain a
proper prior with no appreciable effect on the inference. (The “infinite” mass at 0
means only that no households will be imputed into blocks in which none were
observed, the only prudent course in the absence of substantive information about
the size and characteristics of the block.) Therefore, the procedure is legitimately
Bayesian. The motivation, however, lies in the frequency properties of the pro-
cedure, that is, its unbiasedness, rather than in credibly representing prior beliefs
about the distribution of household sizes. Unbiasedness is often considered a major
criterion for “fairness” of census methodology, since a procedure that tended to
under- or overestimate the population of blocks with certain characteristics would
share many of the defects of using uncorrected census data. A procedure that yields
roughly unbiased estimates of population in each class of blocks might be more
acceptable than a biased one even if it has slightly larger mean squared error.
Furthermore, if the population estimate for each block is unbiased, the popula-
tion estimates for larger areas made up of many blocks are consistent as the area
size increases.

Drawing true types Tb

Conditional on NTb, µb, and αb, the posterior distribution of Tbh, by Bayes’
theorem, is

Pr(Tbh = t | Ubh = u,NTb, µb, αb) = αb(t, u)µb(t)
/∑

t ′
αb(t

′, u)µb(t ′),

(12.7)

Directly applying (12.7) could be computationally expensive when the number
of types is large. Several algorithms for imputation of T that do not require sum-
ming over all possible values of T are described in Zaslavsky (1989, Section 11.1).
These include a sampling procedure to estimate the denominator of (12.7) and
several rejection sampling procedures.

The types of the N0b unobserved households can also be drawn under (12.7),
that is, with probability proportional to αb(t, 0)µb(t), in the same manner as for
households of observed types.

Imputation of covariates

Households may be associated with covariate information in addition to their type.
Some such data, such as characteristics of housing units, are asked of all respon-
dents. Other data, such as income, are collected only from the sample of households
that complete the long-form census questionnaire. Issues regarding covariates are
discussed in the context of weighting in Zaslavsky (1989, Section 8). When imput-
ing the roster, explicit models may be formulated relating true covariate values YTbh
to the true and observed types Tbh and Ubh, observed covariates values YTbh, and
the distribution of covariate values for households of type T .
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Taking income as an illustrative covariate, a range of models might be con-
sidered. At one extreme, we might assume that reported income is equally valid
regardless of whether or not the household type was observed correctly. Alter-
natively, the distribution of true income might be assumed to be similar for a
given true type, regardless of whether or not it was observed correctly. In the
latter case, reported income in households with omitted members would have to
be (stochastically) adjusted for the difference between the income distributions
for the observed and imputed types, perhaps reflecting underreporting of income
for the omitted member. More complex models might be required if households
with omissions (or unenumerated households) differ systematically from fully
enumerated households with similar composition, for example, if they tend to
be poorer.

In an imputation framework, covariates can also be multiply imputed under
models that specify p(YT | YU , T , U). There is currently little empirical basis for
fitting such models, however, since PES implementations have not included col-
lection of long-form data.

12.4 Simulation evaluations

We conducted a simulation (Zaslavsky, 1989; Section 14) to evaluate the bias of
estimates of some population summaries under the imputation procedure, and to
evaluate the usefulness of our block distribution model for describing real census
data. We used the 1% Public Use Microdata Sample for the state of California from
the 1980 census, comprising 231,459 persons in 86,447 households. The simulated
blocks are the 111 “subcounty group units”, each of which covers a part of a large
city or one or more smaller cities and towns, with an average of 2,085 persons
(779 households) per block.

Persons were classified into 60 classes by sex, age (5 levels), race (3 levels),
and form of tenure (renter or owner). Of the 7,812 distinct household types, 60.9%
appeared only once, while 5.8% of the types (453 types) comprised over 80% of
the households (69,737 households).

The median number of covering types per type (not counting a type as covering
itself) is 4, and 24.2% of the types have no covers. However, the most common
household types are the smaller households, which tend to have more covers. Thus,
most of the types with no covers are represented by a single household, over 90%
of households have at least 11 covering types, and the median number of covering
types per household is 141. For most observed households, the data represent a
rich distribution of possible “true” types.

Models for µb of the form described in Section 12.2 were fitted, where r(t)
weighted together the fractions of household members who were Black or Hispanic
and seven other variables. The fit of the block-level model is highly significant
(likelihood ratio test, �G = 6628 on 110 d.f.).
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Because no data set was available for fitting the omission models of
Section 12.2, plausible specifications were constructed for use in simulations,
using marginal undercount rates from the 1985 Test of Adjustment Related Oper-
ations (TARO), approximately doubled by using the same rates for within- and
whole-household omissions (Diffendal, 1988).

Within-household omissions were assumed independent. Whole-household
omission rates were posited to follow a logistic model of the form logit α(t, 0) =
logit a(t)− 0.2 s(t)+ 0.6, where s(t) = size (number of persons) of household t ,
and a(t) = mean value of adjustment class omission rates for persons in house-
hold t . This specification reflects evidence that whole-household omission rates are
higher for smaller households and for households whose individual members are
from classes that have high omission rates (Fein and West, 1988).

The California data set and variously constructed subsets of it were treated as
representing the “truth” for a single large block. Simulated “observed” data sets
with omissions were drawn. Then µ0 and NTb were estimated from the “observed”
data by maximum likelihood (using an EM procedure); this calculation is equivalent
to mean-imputation of adjusted data sets.

In each case, the “true”, “observed”, and “adjusted” data sets were summarized
by total number of households and total population, population counts by race
(Asian, Hispanic, and Other), sex, and age (five levels), and fraction of house-
holds by total size and by number of adults for households with children. For
these household size measures, substantial bias remained in data sets adjusted by
reweighting (as described in the Introduction to this chapter), with almost twice the
correct number of single-adult families with children and substantial differences in
other categories (Zaslavsky, 1988).

We evaluated how well the imputation procedure corrected biases in the simu-
lated observed data by averaging over imputations. The simulated adjusted house-
hold and population counts are all very close to the “true” values, within 1.6% of
the correct values, despite the large simulated undercounts of population (10.6%)
and households (6.2%) and the large differentials in simulated undercount (ranging
from 4.4 to 16.7% for various groups).

Adjusted proportions of households by size were also generally close to the
truth, despite large biases (from −20.0 to +53.6% relative to the true proportion) in
the observed data. The largest remaining biases were for the largest size categories
(by either measure), which were underestimated by about 5.5% of their true shares.
This might be due to the paucity of covers for the larger household types, which
made it hard to impute additional persons to large households. To solve this problem
it might be necessary to abandon the purely nonparametric approach used here
to define possible household types, at least insofar as the more complex (larger)
household types are concerned, or to enrich the model for misclassification of these
larger types to create more covers.

Nonetheless, the bias of the estimation procedure is at most modest, and this
holds for a wider range of measures than for the reweighting methodology.
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12.5 Conclusion

The work described here addresses a challenging problem in inference from data
under misclassification, complicated by the large number of possible classifica-
tions, the complex structure of both the original classifications and the classification
errors, the truncation of some observations, and the importance of small-area vari-
ation to the required estimates. Although many problems remain to be solved,
the models and computational methods described here might prove useful in other
applications sharing some of these features. A helpful feature of the explicit hierar-
chical modeling approach is that alternative components can be substituted where
desired, while retaining the overall structure of the model. In particular, Schafer
(1995) proposed a parametric alternative for modeling household types and their
distributions across blocks that would be less affected by the sparseness of the
larger household types. Schafer’s model could replace our nonparametric model
µ0 wholly, or as a supplement for the range of types (particularly larger households)
in which sparseness is an issue.

This research reflects the contributions of Don Rubin in a number of spheres.
Don led a long-term collaboration with the Census Bureau, directing his own
talents and those of his students, including many represented in this volume, to
solving complex methodological problems arising in the Census Bureau’s work,
particularly in the areas of missing data, undercount estimation, record linkage,
and nondisclosure.

The use of imputation as a unifying strategy for expressing complex models was
prescient; Rubin (1978) anticipates the widespread adoption of data augmentation
(Tanner and Wong, 1987) and the Gibbs sampler (Gelfand and Smith, 1990). More
broadly, Don Rubin has been among the leading proponents of using Bayesian hier-
archical models to describe complex phenomena while obtaining valid measures of
uncertainty. Frequency evaluation of Bayesianly derived procedures (Rubin, 1984)
is critical to their acceptance in applied practice, especially for closely scrutinized
applications like the census.

The methods described here, or indeed any form of adjustment for under-
count, have not been adopted in the Census Bureau’s practice, for both technical
and policy reasons. In complex, high-profile applications like these, however, the
statistician’s role is not only to solve an immediate problem, but to widen the range
of alternatives, extending the policymaker’s methodological horizon and eventually
improving statistical practice.
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Statistical disclosure
techniques based on
multiple imputation

Roderick J. A. Little, Fang Liu,

and Trivellore E. Raghunathan1

13.1 Introduction
Statistical disclosure control (SDC) is the modification of statistical data to prevent
third parties from revealing sensitive information about the respondents (such as
persons, households, businesses, etc.) Easy access to data via the Internet and
electronic media has increased concerns about respondent privacy. SDC methods
provide tools for modifying data to maintain wide dissemination of information
while reducing the risk of disclosure of the identity of respondents. Ideally, an
SDC tool should protect the identity of respondents in a data set, allow valid
statistical inferences from the modified data with minimum information loss, and
should achieve a reasonable balance between the competing goals of protection
of confidentiality and dissemination of information. This chapter summarizes a
cluster of SDC techniques that protect against disclosure by deleting the original
values of variables in the data set and replacing them by D > 1 sets of values
drawn from their predictive distributions. The imputation uncertainty is reflected
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by the method of multiple imputation (MI, Rubin, 1987b), applied to the set of D
imputed data sets.

We first discuss full synthesis, which replaces the entire data file by predicted
records from a model fitted to the observed data. This method provides essentially
perfect protection from disclosure, since no actual records need to be released.
However, it requires a full model for the joint distribution of the survey variables,
and the quality of inferences from the synthetic data sets depends on how well
this large model is specified. Also, disclosure protection comes at the expense of a
considerable loss of information, although this loss can be appropriately taken into
account in the inference by applying the MI combining rules described below.

We then discuss methods of partial synthesis that modify a part of the observed
data. We assume the variables can be divided into two sets: key variables X (such
as age, sex, and locality) that provide identifying information to intruders from
publicly available sources, and nonkey variables that are not available from public
databases, including potentially sensitive information like HIV status or income.
Partial synthesis methods can be divided into methods that synthesize sensitive
nonkey variables, so that values of these variables are not available to intruders who
identify individuals in the database (Raghunathan, Reiter, and Rubin, 2003; Reiter,
2003; Rubin, 1993), and methods that synthesize key variables, so that individuals
in the database cannot be identified. We focus here on the latter approach, which
provides the potential to protect a large number of nonkey variables by synthesizing
a modest number of keys (Little, 1993), though it does require knowledge of the
key variables available to potential intruders. In particular, we consider Multiple
Imputation of Keys (MIKe), which synthesizes all the values of the key variables,
and Selective Multiple Imputation of Keys (SMIKe), which synthesizes the values
of key variables for a selected subset of the cases, including the cases deemed most
likely to be identified by the intruder. As with full synthesis, the information loss
can be propagated in statistical inferences by MI, although, as discussed below, the
combining rules are different from those for full synthesis or for MI for missing
data. An attractive feature of partial synthesis is that the loss of information is much
lower than with full synthesis, and in fact can be reduced to negligible levels by
increasing the number D of multiply-imputed data sets.

The synthesized values in these methods are predictions based on a model for
the population values. SDC methods not based on formal statistical models include
global recoding (Willenborg and De Waal, 1996), local suppression (Willenborg
and De Waal, 1996), data swapping (Dalenius and Reiss, 1982; Greenberg, 1987),
microaggregation (Defays and Anwar, 1998), and post randomization (PRAM)
(Gouweleeuw, Willenborg, and de Wolf, 1998). An important weakness of these
model-free procedures is that they do not ensure valid statistical inferences based on
modified data sets. In particular, point estimates based on the released data may be
biased; furthermore, the incurred modification uncertainty is not taken into account
in statistical analyses, so standard errors are too small and confidence intervals do
not have their nominal level of coverage. The MI procedures discussed here do
provide valid inferences, provided the imputation model is correctly specified.
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Sections 13.2 and 13.3 provide overviews of full synthesis and partial synthesis,
and Section 13.4 describes simple measures of protection and information loss.
Section 13.5 describes an application of these methods to data from the 1995 panel
of the Commercial Building Energy Consumption Survey. Section 13.6 provides
concluding remarks and some topics for future research.

13.2 Full synthesis

Rubin (1993) first proposed full synthesis for disclosure control, where the original
data set is replaced by D multiple synthetic data sets with all the variables imputed
from their joint posterior predictive distribution. The method follows the basic
principles of a Bayesian analysis of survey data (Rubin, 1987; Chapter 2), where the
nonsampled portion of the population is treated as “missing data”, and a Bayesian
model is used to construct the posterior predictive distribution of the nonsampled
values conditional on the observed sample values. Inferences are based on MI and
can be viewed as approximations of Monte Carlo Bayesian inference. Although
Bayesian in etiology, these inferences have desirable repeated sampling properties
under a well-specified model.

Multiple synthetic populations can be constructed by appending sets of predic-
tions of the nonsampled values to the sampled values, but they are often large and
unwieldy. Rubin (1993) proposed addressing this by releasing a simple random
sample from each synthetic population instead of the full population. The sam-
pling affords maximum protection against disclosure if none of the original sample
records are released, but introduces an additional source of variability that needs
to be incorporated in the analysis.

The imputer model should be chosen to provide valid inferences for a wide
variety of analyst models. Biased inferences can result when the imputer model
is a submodel of the one used by an analyst (see for example the discussions of
uncongeniality in Meng (1994a) and Rubin (1996)). Hence, the imputer model
should be expansive, in the sense of including as submodels models that may be
fitted by analysts. For this reason, Raghunathan, Reiter, and Rubin (2003) consid-
ered a nonparametric approach for creating multiple synthetic samples using the
approximate Bayesian bootstrap (Rubin, 1987; Rubin and Schenker, 1986).

Suppose that the population consists of N subjects and a simple random sam-
ple of size n is drawn from this population. Suppose that Y = (Y1, Y2, . . . , Yp) are
the p survey variables of interest with multivariate distribution p(y1, y2, . . . , yp).
The objective is to simulate from the posterior predictive distribution of Y given the
observed data Yobs = {(yi1, yi2, . . . , yip), i = 1, 2, . . . , n}. The following approx-
imate Bayesian bootstrap (Rubin, 1981b) simulates approximate draws from this
posterior distribution for a likelihood based on the empirical distribution and a
noninformative Dirichlet prior distribution:

1. Draw n− 1 uniform random numbers and order them, yielding the ordered
sequence a0 = 0 < a1 < a2 < · · · < an−1 < an = 1.
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2. Draw N uniform random numbers, u1, u2, . . . , uN . Select sample unit i as
unit j of the synthetic population if ai−1 ≤ uj < ai , for j = 1, 2, . . . , N .

3. A synthetic sample is a simple random sample from the population simulated
in Step 2.

4. Repeat steps 1 to 3 D times to create D synthetic samples.

Confidentiality protection in this approach is limited by the fact that actual
data from the sampled units are replicated in the synthetic samples. To improve
protection but maintain the nonparametric nature of the synthetic data creation, we
suggest replacing the values in step 2 by draws from the predictive distribution
corresponding to, for example, a sequence of semiparametric regression models
(Hastie and Tibshirani, 1990; Green and Silverman, 1994). This approach is a gen-
eralization of Abowd and Woodcock (2001), who apply the sequential regression
approach to multiple imputation of missing data (Kennickell, 1991; Raghunathan,
Lepkowski, Van Hoewyk, and Solenberger, 2001).

Specifically, we obtain predictions Ŷj of a variable Yj from the generalized
additive model,

g(E(Yj )) = fo +
p∑
k �=j
fj (Yk)+

L∑
�=1

f�(Z�) (13.1)

where Z� are interactions or nonlinear functions of {Yk, k = 1, 2, . . . , p; k �= j}
and g is a suitable link function, for example, the identity function for continuous
variables, logistic for binary, log for counts, and so on. For a continuous variable,
define the perturbed values as Y ∗

j = Ŷj + e∗j , where e∗j are the residuals drawn at

random from the observed residuals, Yj − Ŷj . In general, the perturbations of the
data are draws from the distribution centered at (13.1). For binary variables, the
perturbations are created by drawing an independent uniform random number and
setting the value to 1 if it is smaller than the corresponding predicted value in
(13.1), and 0 otherwise. For count variables, the predictions may be drawn from
a Poisson distribution with the mean equal to the predicted value in (13.1) or by
adding randomly drawn residuals to the predictions, as in the case of continuous
variables. The terms on the right side of (13.1) can be empirically determined
on the basis of the data analysis of the original data, or lower-order interaction
terms can be routinely included. The order of the sequential regressions can be
randomized for each synthetic sample. In each sequence, previously perturbed Y ’s
should be used as predictors in subsequent regression models to model association
between the Y ’s. Smoothing parameters or roughness penalty parameters can be
chosen to control the smoothness of the regression function.

13.3 SMIKe and MIKe

We now describe SMIKe, an SDC technique in which keys of sensitive cases and a
selected mixing set of nonsensitive cases are multiply imputed from their posterior
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predictive distributions, and each set of imputed keys is released to the public with
the rest of the data. We first describe SMIKe for categorical key variables, and
then outline extensions to data where the key variables are both categorical and
continuous. What follows can be applied for MIKe by considering the mixing set
to be all cases in the data set.

The steps of SMIKe are (a) selection of sensitive cases and mixing sets of
nonsensitive cases; (b) construction of an imputation model and MI of the values
of key variables for the sensitive cases and their mixing sets; (c) assessment of
disclosure risk and information loss for selected analyses involving the key vari-
ables; and (d) release of the imputed data along with tools for valid inferences. The
amount of information synthesized can be varied through the size of the mixing
sets to achieve a good balance between protection and information loss.

Suppose in a data set with n cases, there is a set of categorical key variables
X, the cross-tabulation of which forms a contingency table with K categories;
let Y denote a vector containing q nonkey variables, which may be continuous,
categorical, or a mixture of both. Cells in the contingency table based on X are
defined as sensitive if they contain less than s cases, where s is a sensitivity
threshold chosen by the analyst. The cases in sensitive cells are called sensitive
cases, and the objective of the SMIKe is to reduce the chance that an intruder will
identify these cases.

Selection of nonsensitive cases

Each sensitive case i (i = 1, 2, . . . , ns), where ns is the number of sensitive cases)
is associated with a mixing set Mi of insensitive cases. In general, it is advantageous
to include cases in the mixing set that are similar to the sensitive case with respect to
Y , since imputing keys with relatively homogeneous sets of cases tends to distribute
cases over the set of sensitive and nonsensitive cells, thus promoting the mixing
of sensitive and nonsensitive cases and increasing protection. Thus, it is suggested
that cases in Mi are chosen from donor key cells that are close to the sensitive
cell according to some metric. For example, if Y is continuous with components
transformed to be approximately normal and yi is the value of Y for sensitive case
i, then cases in the mixing set might be selected from a cell or cells j that are
close as measured by the Mahalanobis distance (yi − yj )T S−1(yi − yj ), where yj
is the mean of Y in cell j and S is the pooled within-cell covariance matrix of
Y . Mixing sets can be chosen by randomly sampling cases within cells (random
selection), or by selecting cases that have values of Y close to yi (purposive
selection). These choices have implications for the imputation model, as discussed
below. The mixing sets for different sensitive cases may overlap. Also, the mixing
sets can be further constrained to avoid information loss for particular analyses.
For example, if we want to preserve the row margins of a table formed by a subset
of key variables, we may only allow sensitive cases to be mixed with cases from
the same row in that table.
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Let M denote the union of sensitive cases and nonsensitive cases in the mixing
sets

(
M = ⋃

i=1,2,...,ns (i
⋃
Mi)

)
, and let nM denote the number of cases in M .

The fraction of cases with keys imputed is thus nM/n. The size of nM determines
how many key values are imputed; the larger the mixing sets, the greater the gains
in protection and losses in information. M is a subset of the union of sensitive
cases and all the nonsensitive cases in donor cells, which we denote as C. MIKe is
a special case of SMIKe, where nM = n and the keys for all the cases are imputed.

Construction of an imputation model for keys

Let (xM, yM) denote the values of X and Y in M . The values xM are deleted,
and then multiply imputed from the predictive distribution p(xM |yM,M) of xM
given yM based on an imputation model estimated using the original data. The
predictive distribution p(xM |yM,M) is written conditional on M , since for valid
inferences we need to take into account the method of selection of the mixing set
M , which differs from the full sample. In particular, the distribution of the key
variables in M differs because the definition of sensitive cases and their mixing
sets is based on the distribution of X. The selection of cases in the donor cells also
depends on Y under purposive selection, but does not depend on Y under random
selection of cases from a given donor cell. These differences have implications for
the modeling of p(xM |yM,M). The most straightforward approach is to model the
distribution of X and Y using only the data in M . However, this is inefficient if
the set of cases in M is small, particularly if Y is high dimensional. Factor the
joint distribution of (xM, yM) as:

p(xM, yM,M) = p(xM |M)p(yM |xM,M).

If the selection of the mixing set is based only on X, as in random selection, then

p(yM |xM,M) = p(yM |xM,C),

and this conditional distribution can be modeled using the larger set of cases C.
In fact, the entire data set could be used to model this distribution, but restricting
the model to the donor cells limits the modeling task to the cells that are relevant
to the imputation. Under purposive selection based on a subset of the Y -variables,
say Y1, let yM1 denote the values of Y1 in the mixing set and yM2 the values of
the other Y -variables; then the predictive distribution

p(y2M |y1M, xM,M) = p(y2M |y1M, xM,C)

can be estimated on the basis of the cases in C and p(y1M, xM |M) estimated using
the cases in M .

As with full synthesis, the imputation model can be parametric, semiparametric
or nonparametric; a parametric model may be adequate here since the impact of
model misspecification is limited to the subset of values being imputed. In our
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applications, imputes of the keys are drawn from the predictive distribution

p(xi |yi,M) =
∫
p(xi |yi,M, θ)p(θ | M) dθ,

which can be accomplished by drawing θ(d) from the posterior distribution of θ ,
and then drawing xi from p(xi |yi,M, θ(d)) for cases in the mixing set.

For continuous keys, all cases will tend to be deemed sensitive based on a cross-
classification, leading to the MIKe, where all key values are imputed. When keys
include continuous and categorical variables, MIKe can be applied to the continu-
ous keys and SMIKe can be applied to the categorical keys, treating the continuous
keys like nonkey variables. To reduce information loss in the continuous keys,
SMIKe can be applied to a coarsened version of the continuous variables, and the
continuous variables are then imputed for all cases, conditioning on the imputed
coarsened variables.

13.4 Analysis of synthetic samples

Suppose for completed data set d (d = 1, . . . , D), φ̂(d) is an estimate of φ, a scalar
parameter of interest, and V (d) is an estimate of the variance of φ̂(d). The synthetic
estimate for both full and partial synthesis is

φ̂syn =
D∑
d=1

φ̂(d)/D. (13.2)

The variance estimate for full synthesis (as described in Section 13.2) is

Tsyn = (1 +D−1)B −W, (13.3)

where B = ∑D
d=1 (φ̂

(d) − φ̂syn)
2/(D − 1) and W = ∑D

d=1 V
(d)/D (Raghunathan,

Reiter, and Rubin, 2003). For small D, say D < 10, the variance estimate in (13.3)
can occasionally be negative. Raghunathan and Rubin (2000) suggest replacing
negative values by Tsyn = kW /n, where k is the size of the synthetic sample.
This ad hoc fix gave well-calibrated confidence intervals in simulations by Reiter
(2002). Raghunathan and Rubin (2000) and Raghunathan, Reiter, and Rubin (2003)
provide analytical results demonstrating the validity of inferences from a repeated
sampling perspective, and show for various regression models that inferences from
the original data and multiple synthetic samples are comparable. Reiter (2002) also
demonstrates that this approach results in valid inferences for a complex survey
design, if the model used to construct the predictive inference incorporates these
complex design features.

For the partial synthesis methods of Section 13.3, the variance associated with
φ̂syn is given by

Tsyn = W + B/D, (13.4)
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(Reiter, 2004; Little and Liu, 2003). The combining rules in (13.3) and (13.4)
both differ from that for missing data problems, namely Tmis = W + (1 + 1/D)B
(Rubin, 1987).

The associated fraction of information loss for inferences for scalar φ is γ =
B/(DT syn), where Tsyn is given by (13.3) for full synthesis and (13.4) for partial
synthesis. The former is larger than the information loss for missing data, and the
latter is smaller, and tends to zero as the number of MI data sets D increases. To
assess information loss for a given amount of imputation, γ might be computed
for a range of analyses of interest.

Assessment of disclosure risk
The assessment of disclosure risk is difficult since it requires conjectures about
the behavior of a data intruder, and we provide a brief discussion here. We first
describe a measure of disclosure risk R(orig) for the original data set. If the data
are a census of the population, and cases in key cells with more than s cases are
assumed to have negligible disclosure risk, then equating risk with the probability
of disclosure yields the measure

R(orig) =
n∑
i=1

ri(orig), (13.5)

where

ri(orig) =
{

1/ni, if ni ≤ s
0, otherwise

, (13.6)

ni is the number of sample cases of the key cell containing unit i. A simple mod-
ification of (13.6) for an equal probability sample of the population with sampling
fraction f is

ri =
{
f/ni , if ni ≤ f c
0, otherwise

, (13.7)

c is a prespecified cutoff value for the population.
A simple measure of the disclosure risk for the d th synthesized data set is

R(d) =
n∑
i=1

r
(d)
i ,

where

r
(d)
i = δif/n(d)i , (13.8)

where δi = 1 if the case i is imputed to its original key cell and n(d)i , the number of
cases in that cell after imputation, is less than or equal to f c; otherwise δi = 0. Then

R1(smike) =
D∑
d=1

R
(d)
1 /D, (13.9)
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averaging the risk measure of the MI data sets. This simple measure does not
account for the fact that additional information is available if the D data sets are
considered in aggregate rather than one at a time. For a more complex measure
that addresses this issue, see Liu and Little (2002). Absolute disclosure risk is
important in applications, but the relative reduction in disclosure risk is useful for
measuring the trade-off between the information loss and protection P , which is
given by

P1 = 1 − R1(smike)

R(orig)
. (13.10)

13.5 An application
In this section, we apply full synthesis, MIKe and SMIKe to 13 variables from the
Energy Information Administration’s 1995 Commercial Building Energy Consump-
tion Survey (CBECS), a survey (n = 5,655) that provides information concerning
building characteristics and electricity, natural gas, and fuel oil consumption for a
national sample of commercial buildings. The 13 variables comprised two categor-
ical key variables, namely principal building activity (pba) and year of construction
(year), which formed a table with K = 171 cells, and two continuous key variables,
namely space and number of employees. The remaining nine variables are the non-
key variables Y , consumption of electricity, natural gas and major fuel (3 variables),
the associated expenditures (3 variables), and percent of floor space heated, cooled
or lit (3 variables). All these variables were logtransformed to reduce skewness.

Model for full synthesis: The procedure outlined in Section 13.2 was imple-
mented, creating D = 10 imputations. The projection pursuit regression package in
S-plus was used to perturb the values, with a maximum of 10 terms in the model.
Projection pursuit regression is a generalized additive model for a linear combina-
tion of the predictor variables, as in (13.1). These linear combinations are carefully
chosen to succinctly extract the variation in the predictor space. We included all
two-factor interaction terms as predictors as well.

Model for partial synthesis: For unit i, denote the two categorical keys as X0i ,
the two continuous keys as X1i , and the nine continuous nonkeys after transfor-
mation as Yi , and all the continuous variables as Zi = (X1i , Yi). Partial synthesis
was based on the following general location model:

X0i ∼ind Multinomial (π1, . . . , πK),

K∑
k=1

πk = 1,

Zi | X0i = k ∼ind N(µk,�k). (13.11)

The covariance matrix in the multivariate normal distribution was initially
assumed to be a constant over cells k, but diagnostics revealed that it was important
to allow this matrix to vary over k. Some cases with gross outlying values of Zi
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were also excluded in fitting the imputation model. A standard Bayesian analysis of
this model assuming standard noninformative priors yields the following posterior
distribution of the parameters given the data prior to masking:

π1, . . . , πK |data ∼ Dirichlet(n1 + 1/2, . . . , nK + 1/2)

µk |π�k, data ∼ N(zk, �k/nk)

�k|π, data ∼ inverse-Wishart((nk − 1)Sk, nk − 1), (13.12)

where (nk, zk, Sk) denote respectively the sample count, the sample mean of Z,
and the sample covariance matrix of Z in the inverse-Wishart distribution with
degrees of freedom ν (e.g., Schafer, 1997). In MIKe, the keys for all cases i
are imputed. For SMIKe, all values of the continuous keys are imputed but the
categorical keys are imputed for a subset of cases. Specifically, we set s = 3 as the
threshold for a sensitive cell in the contingency table formed by X0, yielding 26
out of 171 sensitive cells and 50 out of 5,655 sensitive cases. We set nmix = 4 as
the size of mixing set for each sensitive case. The matching sets consisted of 136
nonsensitive cases in 34 nonsensitive cells, chosen to be close to the sensitive cells
in the Mahalanobis distance. The set M with categorical keys imputed includes
50 + 136 = 186 cases and the set C for modeling consists of 671 cases.

Evaluation: To compare inferences based on the original data and the
data modified by SMIKe, MIKe, and full synthesis, estimates of the regression

6
5

4
3

2
1

0
E

st
im

at
e

0.
30

0.
25

0.
20

0.
15

0.
10

0.
05

0.
0

S
ta

nd
ar

d 
er

ro
r

Raw data
SMIKe
Partial imputation
Full imputation

5 10 15 20 25

Parameter

5 10 15 20 25

Parameter

Fuel consumption Fuel consumption

Figure 13.1 Estimates of regression coefficients (26 parameters) and their stan-
dard errors from the multiple regression of log(fuel consumption) in the raw data
and data sets modified by SMIKe, MIKe, and full synthesis.
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Figure 13.2 Estimates of regression coefficients (26 parameters) and their stan-
dard errors from the multiple regression of log(fuel expenditure) in the raw data
and data sets modified by SMIKe, MIKe, and full synthesis.

coefficients and their associated standard errors from regressions of log (fuel con-
sumption) and log (fuel expenditure) based on the original and imputed data are
plotted in Figures 13.1 and 13.2. Results from various other statistical analyses can
be found in Liu (2003). The regressions include 26 predictors and do not include
a constant term. The estimates of the regression coefficients based on the imputed
data are close to the original ones, and the standard errors of the estimates from
SMIKe and MIKe are close to those from the original sample, indicating very little
information loss. The standard errors from full synthesis are larger, suggesting more
information loss. Measures on protection are given in Table 13.1. Compared to the
perfect protection given by full synthesis, those given by SMIKe and MIKe are
comparable, especially when h gets larger, P1 approaches to 1 as well. Liu (2003)
provides more discussion on information loss and protection for this application.

SDC MIKe SMIKe
Technique

h 10 10 20 50 100 20 50 100
P1 0.909 0.972 0.991 0.996 0.924 0.976 0.994 0.997

Table 13.1 Protection given by SMIKe and MIKe in the CBECS data.
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13.6 Conclusions

The full synthesis method provides the greatest degree of disclosure protection of
the methods discussed; indeed, the method can provide inferences that are com-
parable (if less efficient) than inferences from the original data, without having to
disclose any of the values in the original data set. Thus, the method shows promise
for situations where very high levels of disclosure protection are sought. On the
other hand, the method involves an extensive model-building effort, particularly for
large data sets, and models need to be relatively nonparametric to avoid potential
distortions from the effects of model misspecification. SMIKe is attractive since it
can yield major gains in disclosure protection with much less imputation than is
needed for full synthesis. The method is less affected by model misspecification
than full synthesis, and involves less onerous imputation tasks.

An alternative to SMIKe that preserves the distribution of the key variables
in the original data is multiple and stochastic swapping of keys (MaSSK), which
swaps the values of the key variables between paired cases in a data set and
releasing multiple swapped data sets. MaSSK can be viewed as a model-based
version of data swapping that yields valid inferences. For more information about
this method, see Liu (2003).

An important feature of these methods is the ability to create valid
inferences from the MI data sets, using the combining rules discussed in
Section 13.4. Methods are also available for hypothesis testing and inferences for
multiparameter estimands, analogous to the methods for missing data (Rubin, 1987;
Little and Rubin, 2002) with the total variances modified as in (13.3) for full synthe-
sis and (13.4) for partial synthesis. Real-data examples such as that in Section 13.5
cannot demonstrate the validity of inferences, but this has been shown in simulation
studies described elsewhere (Reiter, 2002; Raghunathan, Reiter, and Rubin, 2003;
Little and Liu, 2003). More assessments of the frequency validity of these infer-
ences would be useful on large and more realistic problems. Also, better measures
of disclosure risk would be welcome. We look forward to further developments of
the methods described here in the future.
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Designs producing balanced
missing data: examples from
the National Assessment of
Educational Progress

Neal Thomas1

14.1 Introduction

The National Assessment of Educational Progress (NAEP) is an ongoing collec-
tion of surveys of students and teachers in the United States. Demographic and
educational environmental variables are collected from sampled students who are
subsequently administered a brief examination. Teachers of sampled classes also
complete a questionnaire. The goal of NAEP is to estimate the proficiency of US
students in different subject areas, how it varies with demographic and educational
environmental conditions, and how it changes over time. The primary reporting
of a NAEP survey consists of mean performance and percent above prespecified
cutpoints by region (Northeast, Southeast, Midwest, West), ethnicity, and gender
on scales described in Section 14.2.

To increase the number of different items (test questions) that can be admin-
istered, matrix-sampling designs have been used since 1985 in which sampled
students are administered different forms each containing a small subset of a large
collection of items. These designs allow many more items to be administered,

1Department of Clinical Biostatistics, Pfizer Corp., Groton, Ct.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
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but they result in a large amount of (planned) missing data because sampled stu-
dents are not administered most items in the survey. The primary reporting, and
secondary analyses based on public-release files, are performed using multiple
imputation. Robert Mislevy (personal communication) attributes the idea of using
multiple imputation to analyze matrix-sampled NAEP data to Darrell Bock, who
proposed it after attending an early seminar on multiple imputation given by Don-
ald Rubin in the Statistics Department at the University of Chicago. NAEP is one
of the earliest substantial applications of multiple imputation, and one of the most
ambitious uses of statistical methods in large-scale public policy research. A brief
overview of the statistical methods utilized in NAEP with an emphasis on the han-
dling of the planned missing item responses is in Section 14.2. Beaton and Zwick
(1992), along with accompanying articles, provide a more detailed introduction to
the statistical methods used for NAEP.

Each NAEP survey measures a domain such as reading or mathematics. The
ability of a student to correctly respond to cognitive items (test questions) within
a domain is called their “proficiency”. Within a domain such as Mathematics,
for example, items are administered in several (5) related subdomains like alge-
bra and geometry. The design issue considered in Section 14.3 is how to allocate
items measuring different subdomains, for example, assign some students items
measuring algebra, other students mostly geometry items, and some students a
very small number of items measuring proficiencies in both subdomains. With
very limited time to administer the survey, and several subdomains to measure,
it was conjectured that concentrating the items for each student in only one or
two subdomains would yield more accurate proficiency estimates because the pro-
ficiencies that were well measured could be used to impute proficiencies in the
subdomains not measured, taking advantage of the correlation between proficien-
cies. Such designs are also popular because some “extended” item types, which
involve several related items on a common complex task, measure a single subdo-
main and require too much time to allow items measuring each subdomain. Results
summarized in Section 14.3 show that a class of “balanced” designs is optimal.

The simultaneous analysis of data from the multiple correlated proficiencies are
contrasted with the results for bivariate normal data subject to missingness in Little
and Rubin (2002). The NAEP analyses are a generalization of the results in Little
and Rubin, and the balanced designs have the peculiar feature that despite high
correlation between proficiencies (such as algebra and geometry), which allow for
much more accurate estimation of each individual proficiency using all of the items
administered to a student, there is no improvement from multivariate analyses in
the estimation of population parameters included in the primary reporting.

In addition to the covariates defining the subpopulations for the primary report-
ing, such as region, ethnicity, and gender, NAEP collects numerous secondary
covariates, including responses to questions such as: “How many math courses have
you taken?” and “How many hours do you watch TV each day?”. In Section 14.5,
the role of secondary covariates in the estimation of primary population parame-
ters is considered. As with cognitive items measuring different proficiencies, the
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secondary covariates do not contribute to the estimation of the primary population
parameters when optimal balanced designs are utilized, despite the fact that using
the secondary covariates can substantially improve the estimation of proficiencies
for individual students. The practical consequences of this unanticipated result are
discussed. The role of secondary covariates in the creation of public-use files is
also discussed.

14.2 Statistical methods in NAEP

Notation

The q primary and secondary covariates for the ith student in a sample of size n
are denoted by x ′

i = (
xi1, . . . , xiq

)
. The variables representing the cognitive items

for the ith student are denoted by yi , and are partitioned into p subdomains (e.g.,
algebra and geometry) y ′

i = (
yi1, . . . , yip

)
, corresponding to p latent proficien-

cies in a multidimensional Item Response (IRT) model. Each yij is composed of
item scores, yijk, k = 1, . . . , sj , that are binary or ordinal with values coded as
0, 1, . . . , mjk , for the kth item measuring the j th proficiency.

A model representing the data is specified in two stages. First, a latent pro-
ficiency vector, θ i = (

θi1, . . . , θip
)
, is hypothesized for the ith student, which

determines the distribution of the item scores through logistic IRT models, where
conditional on the latent proficiencies, all item responses are assumed independent
of each other and the xi . Second, the θ i are assumed to follow a multivariate
normal distribution conditional on the covariates. Most NAEP reporting is based
on summaries of the θ i .

Models for the cognitive responses

A logistic item response model is used for the cognitive data yi conditional on
xi , θ i , and the item parameters β = (

β1, . . . ,βp
)
, βj = {

βjk, k = 1, . . . , sj
}
. The

probabilities of binary scored items are modeled by a three-parameter logistic IRT
model,

Pr
(
yijk = 1 | θ i , xi ,β

) = cjk + (
1 − cjk

)
/
[
1 + exp

{
ajk

(
θij − bjk

)}]
, (14.1)

where βjk = (
ajk, bjk, cjk

)
. The response probabilities of an ordinal item are mod-

eled by a partial credit model,

Pr
(
yijk = l | θ i , xi ,β

) =
exp

{∑l
h=0 ajk

(
θij − bjkh

)}
∑mjk
q=0 exp

{∑q

h=0 ajk
(
θij − bjkh

)} , l = 0, . . . , mjk,

(14.2)

where βjk = {
ajk, bjkh, h = 1, . . . , mjk

}
.
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The model invokes several independence assumptions conditional on the θ i
and β: (1) the yi are independent of the xi ; (2) the responses of a student to
different items are independent (i.e., the distribution of the yi is the product of
the probabilities in (14.1) and (14.2)); (3) responses from different students are
independent; and (4) yij are independent of θij ′ conditional on θij , j �= j ′, that is,
item responses depend only on the proficiency to which they are assigned. With
these independence assumptions, the density of yi , i = 1, . . . , n conditional on θ i
can be represented as

n∏
i=1


p∏
j=1

fj
(
yij | θij ,βj

) , (14.3)

and each fj
(
yij | θij ,βj

)
is in turn the product of the response probabilities for

the cognitive items given in (14.1) and (14.2). Items not presented to a student do
not contribute to the likelihood function because they are missing completely at
random (MCAR) by design.

The βj are included in the likelihood term, fj
(
yij | θij ,βj

)
, to explicitly

denote the dependence of (14.3) on each βj . To identify the logistic IRT model,
the mean and variance of θ in the overall population are constrained to be zero and
one. Mislevy and Bock (1982), and Muraki (1992) give details of these models.

Distribution of the latent proficiency conditional on the
background variables

The θ i vectors are assumed to be normally distributed conditional on the xi . The
mean of this conditional distribution is given by the multivariate multiple linear

regression, �′
xi , where � =

[
γ 1 |, . . . , | γ p

]
and γ j , j = 1, . . . , p are unknown

regression parameter vectors of length q. The common (unknown) p dimensional
conditional variance–covariance matrix is � with elements �jk , (Mislevy, John-
son, and Muraki, 1992). The distribution of θ i can be viewed as a normal prior
density conditional on xi and the parameters � and �, before observing the
cognitive data yi : φ

(
θ i;�′

xi ,�
)
.

Estimation using multiple imputation

Applying the independence assumptions, the regression model and the item response
model fully specify the distribution of observed data. The likelihood function for the
parameters

(
β,�,�

)
is the distribution of the data

(
yi , xi

)
, i = 1, . . . , n, given(

β,�,�
)
:

lik
(
β,�,�

) =
n∏
i=1

∫
φ
(
θ i;�′

xi ,�
) p∏
j=1

fj
(
yij | θij ,βj

)
dθ i . (14.4)
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The integrand in (14.4) is proportional to the posterior distribution of θ i with β,
�, and � regarded as known:

f
(
θ i; xi , yi ,β,�,�

) ∝ φ (θ i;�′
xi ,�

) p∏
j=1

fj
(
yij | θij ,βj

)
. (14.5)

The θ i are regarded as “missing” data and imputed. The missing item responses
are not directly imputed as part of the multiple imputation procedures. Thomas and
Gan (1997) provide details on the numerical methods used to generate multiple
imputations from (14.5) and the distribution of

(
β,�,�

)
given (x, y). Following

Rubin and Schenker (1986), five multiply imputed data sets are created. The stan-
dard methods in Rubin (1987b) are applied to combine the multiple estimates. The
same methods are used for primary reporting and for secondary analyses, which
are based on the same multiply imputed data sets with confidential data excluded.

Simplifying normal error approximation
The contribution of the IRT component to the likelihood function in (14.5),�pj=1fj(
yij | θij ,βj

)
, approaches normality as the number of items increases (Chang

and Stout, 1993). Replacing the IRT component by a corresponding product of
normal densities reduces the problem to one with analytic solutions, which have
been extensively studied. For each proficiency, θij , j = 1, · · · , p, reuse the sym-
bol yij to represent the maximum likelihood estimate (MLE) of θij based on
fj

(
yij | θij ,βj

)
. The redefined response yij is a scalar, in contrast to the original

yij , which is a vector of item responses. Let τij represent the variance based on the
observed information from fj

(
yij | θij ,βj

)
. The normal approximation is then

fj
(
yij | θij ,βj

) ∝ φ (θij ; yij , τij) . (14.6)

The τij can be viewed as measurement error variances for the estimation of the θij ,
and the estimation problem is an example of generalized least squares (Johnson,
1984). The τij are determined by the item parameters and the item sampling design.
When there are no items measuring the θij , the yij are set equal to an overall
mean value, and the τij are (effectively) infinite so there is no contribution to the
likelihood function in (14.5) for the j th proficiency from the students. When the
number of items measuring θij is small, the modal approximation can be unstable.
Mislevy (1992) and Thomas (1993) propose alternative normal approximations that
perform better in this situation.

14.3 Split and balanced designs for estimating
population parameters

Split and balanced designs
A balanced design is one in which each student is assigned the same number
of items measuring each proficiency, although the number of items measuring
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different proficiencies can differ. An example of a balanced design assigns 10 items
measuring geometry and five items measuring algebra to each student. More items
may be assigned to a proficiency if it is deemed more important. The simplified
balanced designs considered here assume that the same number items are assigned
for each proficiency.

A split design assigns differing numbers of items to different students. A typical
example of a split design assigns some students 5 algebra items and 5 geometry
items, some students 10 algebra items only, and some students 10 geometry items.
Such designs may be used for statistical reasons, but they occur more commonly
when test designers create extended collections of related items involving a com-
plex task measuring a single proficiency. These items take most of the allotted
testing time so it is not feasible to include items measuring other proficiencies.
Discussion is limited here to bivariate traits, although there may be as many as
five traits in practice and similar design issues apply.

Zeger and Thomas (1997) consider the following class of split designs for
bivariate traits that have a balanced design as a limiting case (when m = 0):

1. A fixed number of items, nI , are administered to each student, and they are
divided between items measuring either proficiency.

2. A subsample of nI −m students are assigned 1/2 the items to measure each
proficiency. An additional subsample of m/2 students are assigned items
measuring only the first proficiency, and the remaining m/2 students are
assigned items measuring the second proficiency.

Simplifying assumptions

The simplifying normal approximation to the IRT model is applied to the class of
designs along with the following assumptions:

1. The individual student estimates of the proficiencies, (yi1, yi2), are bivariate
normal as in (14.6) with a common measurement error variance, τ .

2. The variances of the proficiencies in the two subdomains are equal (�11 =
�22).

3. The first two assumptions imply that if nI items measuring one of the profi-
ciencies are utilized, the variance of the estimate of the proficiency is τ/nI .
If 1/2 of the items are selected to measure each proficiency, the variance for
each proficiency is 2τ/nI .

Several considerations relating to these assumptions are as follows:

1. A very difficult item does not differentiate weak students from mediocre
students, but is very effective in demonstrating the performance of the best
students, for example. In practice, measurement error variances are hetero-
geneous and may depend on the proficiency level.
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2. It is implicitly assumed that there is no unplanned item missingness. Such
missing does occur in NAEP further altering the idealized designs (and more
importantly, may not be missing at random (MAR).

3. The variances for different proficiencies are set to one in the overall pop-
ulation as part of the identification of the IRT model. The variances con-
ditional on covariates are not exactly equal, but have not varied widely in
past surveys.

The design and accompanying assumptions about the variances produce mathe-
matical simplification by creating symmetry between the proficiencies. The results
in Section 14.4 on ML estimation indicate that the optimality properties extend to
other designs with multiple differing split types.

Optimal designs

The optimal design (minimizing the variance of the MLE of the mean estimators)
in this class has m = 0, that is, all students receive the items measuring both profi-
ciencies. Despite several simplifications to the actual NAEP setting, the simplified
setting produced accurate predictions of the efficiencies of several NAEP designs,
both approximately balanced and split designs. The robustness of the actual NAEP
results to the moderate deviations from exact balance and normality is another
example of the robustness of regression estimators to normality and moderate het-
erogeneity, which results in slightly nonoptimal weighting. The loss in efficiency
due to the use of split designs was in the range of 15 to 20%.

14.4 Maximum likelihood estimation
With the simplifying normal approximation, the optimal balanced designs yield
standard multivariate ML estimation. The conditional distribution in (14.6) implies
the distribution of yij , j = 1, 2 is

yij ∼ φ (γ ′xi , �jj + 2τ/nI
)
,

and cov (yi1, yi2) = �12. The complex NAEP estimation procedures are thus reduced
(approximately) to standard multivariate multiple regression. One immediate conse-
quence is that despite the missing data for each proficiency, which is well predicted
by observed data from other proficiencies, the estimation is essentially univariate.
Despite no borrowing of information between the correlated proficiencies, the bal-
anced design/estimation is optimal.

Zeger and Thomas (1997) also show that if there is balanced missing data
for a proficiency, its estimation does not depend on data from other proficiencies
regardless of the item sampling design for the other proficiencies.

It is instructive to compare the balanced NAEP setting to the classic formu-
las in Little and Rubin (1987) for bivariate normal data with one variable subject
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to all-or-none missing data (assumed to be MAR). This corresponds to the set-
ting in which any observed yij equal θij . With the first proficiency completely
observed for each subject, a subsample of the second proficiency fully observed,
but an additional subsample with no data on the second proficiency, the MLE from
equation (6.9) of Little and Rubin is:

µ̂2 = y2 + β̂21|1
(
µ̂1 − y1

)
, (14.7)

where (µ1, µ2) refer to population means without covariates, β̂21|1 is the regression
of y2 on y1, (y1, y2) are sample means restricted to the students with fully observed
proficiencies, and µ̂1 is the mean of y1 in the complete sample. The estimator
in (14.7) is a poststratification adjustment of the subsample with y2 observations
to the full sample. Little and Rubin show that there can be large gains in preci-
sion if the correlation between the two proficiencies is high, approaching complete
information for correlations near one. The adjustment can also reduce bias when
the y2 are MAR, but not MCAR.

The corresponding estimator for the second proficiency in a balanced design is

µ̂2 = y2 + β̂21|1
n

n∑
i=1

(
µ̂1 − yi1

)
, (14.8)

where β̂21|1 now estimates the attenuated regression coefficient, �12/(�11 + τ/nI ).
The poststratification adjustment is exactly zero in this simplified version of the
NAEP balanced setting because the students with observed and missing measure-
ments coincide. The lack of adjustment occurs despite the substantial improvement
in the estimators of the individual proficiencies, θi2. Corresponding to (6.12) of
Little and Rubin, (14.8) can be rewritten

µ̂2 = 1

n

n∑
i=1

(
yi2 − β̂21|1

(
yi1 − µ̂1

))

≡ 1

n

n∑
i=1

θ̂i2, (14.9)

where θ̂i2 is the regression adjusted estimate of θi2.
The next section shows that a similar situation exists when using the extensive

collection of secondary variables to improve the estimates for subpopulation param-
eters defined by the primary covariates. The item sampling design also determines
the need for poststratification with respect to the background covariates.

14.5 The role of secondary covariates

The primary reporting of NAEP is focused on subpopulations defined by a few
“primary” demographic variables and school type (i.e., public, private). The multi-
ply imputed data sets upon which it is based, however, are created using numerous
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secondary covariates. The primary reporting is evaluated here by considering a sin-
gle binary primary covariate, x1, and a single binary secondary covariate, x2 (for
details, see Thomas, 2002). The simplified setting based on the normal approximat-
ing model with analytic MLEs is considered first, and then the consequences for
imputation-based estimation are discussed. Denote the mean of the first proficiency
in the subpopulation with x1 = 1 by µ1(1).

First, consider the situation with a balanced design. Ignoring the secondary
covariate, the estimator of µ1(1) is just y1(1), the mean of the measurements of the
first proficiency among subjects with x1 = 1. Under a saturated model for x1 and
x2, the MLEs for the means of the first proficiency among subjects with x1 = 1 and
(x2 = 0 or x2 = 1) are the corresponding sample means, y1(10) and y1(11). Setting
λ̂ equal to the observed proportion of students with x2 = 1 among students with
x1 = 1, the MLE of µ1(1) based on x1 and x2 is:

µ̂1(1) = λ̂y1(11) +
(

1 − λ̂
)
y1(10). (14.10)

It is easy to check that µ̂1(1) = y1(1), so the secondary covariate does not contribute
to the estimation of the means of the primary subpopulations.

With a split design, the analytic formulas are more complex, even in the sim-
plified normal model setting. To further reduce complexity, the contribution of the
items measuring the second proficiency are ignored, and a split design is evalu-
ated in which all items measure the first proficiency, or no items measure the first
proficiency. This further simplification yields an MLE similar to the one with the
balanced design:

µ̃1(1) = λ̂yobs1(11)
+
(

1 − λ̂
)
yobs1(10)

, (14.11)

where yobs1(10)
and yobs1(11)

are the means of the first proficiency among the subsam-
ples of students with x1 = 1 and (x2 = 0 or x2 = 1) who receive items measuring
the first proficiency. Unlike the MLE for the balanced design, µ̃1 does not equal
y1(1) because the weighting of the two subpopulations is based on the full sample
proportion, λ̂, which is not restricted to the subsample of students with measure-
ments of the first proficiency. The µ̃1(1) estimator is a poststratification estimator,
averaging the sample means of students assigned cognitive items within the sec-
ondary subpopulations using the complete sample proportions of the covariates.

The effect of the design on the role of the secondary covariates has been
confirmed in the much more complex NAEP models utilizing multiple imputation
to evaluate them. Examination of imputations from actual NAEP models showed
that the imputations created using secondary covariates differ from imputations
created without the secondary covariates because the proficiency estimates for
individual students are more accurate. The posterior means were more dispersed
when secondary covariates were included because there was less shrinkage to a
common mean, while the corresponding posterior variances were smaller producing
the same combined variability in the imputed values. As with the contributions from
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individual students to the MLE (e.g., equation 14.9), the changes in the posterior
means under the (approximately) balanced designs, when averaged over the primary
reporting subpopulations, are nearly unchanged from the average of the posterior
means for students computed without regard to the secondary covariates.

The fact that approximately balanced designs for missing data nearly eliminate
the role of secondary covariates from the primary estimation does not imply that
their inclusion is unimportant. The relationship between the secondary covariates
and the proficiencies is also important, and the subject of secondary analyses based
on public-release imputed data. The controversies (Fay, 1992, 1996) regarding the
inclusion/exclusion of variables from the imputers’ model were known to the NAEP
researchers from the earliest implementation of multiple imputation in NAEP.
Methodological and empirical studies led to the adaption of principal components
as an approach to reduce the high dimensionality and multicollinearity induced
by the inclusion of all secondary covariates in the imputation model. To avoid
attenuation of correlations between the proficiencies and the secondary covariates,
principal components capturing 90% of the variation in the covariates were rec-
ommended for inclusion in the model in Section 14.1 (Mazzeo, J., Johnson, E.,
Bowker, D., and Fong, Y. 1992). The inclusion of secondary covariates may also
improve the MAR approximation for unplanned missing item responses.

14.6 Conclusions

Rubin (1996) succinctly describes the prevailing advice about the inclusion of
numerous predictors when forming multiple imputations:

“Thus, the danger with an imputer’s model is generally leaving out predictors
rather than including too many, and the advice has always been to include as many
variables as possible when doing multiple imputation.”

The results in Sections 14.3 to 14.5 do not contradict this advice, rather they
show that when missing data are planned, an appropriate balanced design can
reduce the role of the highly complex multivariate imputation model while yielding
highly efficient estimation. Although it has not been rigorously demonstrated, the
reduced role of the secondary covariates in primary analyses with balanced missing
data designs suggests increased robustness of the most important analyses to the
difficult-to-specify multivariate regression model including the numerous secondary
covariates, while also insuring the approximate validity of secondary analyses.
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Propensity score estimation
with missing data

Ralph B. D’Agostino Jr.1

15.1 Introduction

This chapter covers a breadth of topics that will be discussed in detail elsewhere
throughout the first three parts of this book (missing-data modeling, causal infer-
ence and observational studies, and statistical computation). The work in this
chapter will not necessarily introduce new methods in any of these areas but shows
how these separate techniques and methods can be combined to address a common
problem in applied research. We shall briefly introduce concepts of missing data,
propensity scores, and statistical computation and then focus on the use of these
tools in application.

In many applications, research to determine the effectiveness of a particular
treatment cannot be carried out using a controlled clinical trial. In settings such as
these, observational studies must be used to make inference concerning the effec-
tiveness of a particular nonrandomized treatment. The treated and nontreated (i.e.,
control) groups in these observational studies may have substantial differences in
observed covariates, and these differences can lead to biased estimates of treatment
effects unless properly handled. Propensity score methods are popular tools used
for balancing the distribution of the covariates in the two groups to reduce this bias.

1Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-
Salem, N.C. The author would like to thank the editors and reviewers for their helpful comments and
corrections. He would also like to thank his family for their love and support in this work. This work
was supported in part by National Cancer Institute Grant 1 R01 CA79934.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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This method has been shown to confer a greater reduction in bias than standard
adjustment methods, such as ANCOVA (analysis of covariance), in many circum-
stances (D’Agostino Jr., 1998; Rubin and Thomas, 2000). In order to estimate
the propensity score, defined as the conditional probability of being treated given
the observed covariates, we must model the distribution of the treatment indicator
given the observed covariates. An additional complication that often occurs is that
missing data may be present among the covariates and in some cases the pattern
of the missing covariates may be prognostically important. When this occurs, the
propensity score needs to be modeled conditional on both the observed values of
the covariates and the patterns of missing data.

Background on propensity scores

Since introduced, propensity scores have been used in observational studies in many
fields to adjust for imbalances on pretreatment covariates, X, between a treated
group, indicated by Z = 1, and a control group indicated by Z = 0 (D’Agostino
Jr., 1998; Rosenbaum and Rubin, 1983a; Rubin 1997). Propensity scores are a
one-dimensional summary of multidimensional covariates, X, such that when the
propensity scores are balanced across the treatment and control groups, the dis-
tribution of all the covariates, X, are balanced in expectation across the two
groups. Typically, matched sampling (e.g., Heckman et al., 1996; Lytle et al., 1999;
Rosenbaum and Rubin, 1985a; Takizawa et al., 1999; Willoughby et al., 1990) or
subclassification (e.g., Barker et al., 1998; Conners et al., 1996; Nakamura et al.,
1999; Rosenbaum and Rubin 1984; U.S. GAO, 1994) on estimated propensity
scores is used, often in combination with model-based adjustments (e.g., Curley
et al., 1998; Lieberman et al., 1996; Rich, 1998; Rubin and Thomas, 2000; Smith
et al., 1998).

The propensity score for an individual is the probability of being treated con-
ditional on the individual’s covariate values. To estimate propensity scores for
individuals, one must model the distribution of Z given the observed covariates,
X. There is a large technical literature on propensity score methods with com-
plete data. (Rubin and Thomas, 1992, 1996, 2000; Rubin, 1978a). In practice,
however, typically some covariate values will be missing, and so it is not clear
how the propensity score should be estimated. Often, the missingness itself may
be predictive about which treatment is received in the sense that the treatment
assignment mechanism is ignorable (Rubin, 1986) given the observed values of
X and the observed pattern of missing covariates but not ignorable given only
the former.

There are several possible ways to estimate propensity scores in the presence
of missing covariates. We follow the approach of D’Agostino and Rubin (2000)
and model the joint distribution of (Z,X,R), where R is the missing covari-
ate indicator (R = 1 for observed, R = 0 for missing). The particular approach
we will illustrate in our application is based on a general location model (Olkin
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and Tate, 1961) accounting for the missing data (Schafer, 1997). This modeling
implies a conditional distribution for Z given (Xobs, R), that is, a generalized
propensity score: probabilities of Z = 1 versus Z = 0 for each unit as a function
of its observed covariate values Xobs, and its missing data pattern R. Because X
is missing when R = 0, a saturated model for (X,R) cannot be fit, even with
the general location model. We impose loglinear constraints on the categorical
variables, which include the missing value indicators for covariates whose miss-
ingness is related to treatment assignment. In the special case of no missing data
and only continuous covariates, the approach reduces to estimating propensity
scores by discriminant analysis, which is practically very close to logistic regres-
sion (Rubin and Thomas, 1992). Our methods use as basic computational tools
the EM (Dempster, Laird, and Rubin, 1977) and ECM (Meng and Rubin, 1993)
algorithms applied to the general location model. We will briefly illustrate this
method by estimating propensity scores for an applied example and use these esti-
mated propensity scores to select matched samples that have similar distributions
of observed covariates and missing value indicators. We also provide suggestions
for diagnostic procedures to assess the success of the matching in creating balanced
distributions of these observed covariates and missing value indicators. We illus-
trate these procedures in the context of a matched-sampling study of the effects of
postterm pregnancy.

The problem we are describing is different from most missing data problems
in which the goal is parameter estimation. We are not interested in obtaining one
set of estimated parameters for a logistic regression or discriminant analysis, or
a posterior distribution for these parameters, or even drawing inferences about
these parameters. Rather, parameters particular to each pattern of missing data
serve only in intermediate calculations to obtain estimated propensity scores for
each subject. Moreover, the propensity scores themselves serve only as devices to
balance the observed distribution of covariates and patterns of missing covariates
across the treated and control groups. Consequently, the success of the propensity
score estimation is assessed by this resultant balance rather than by the fit of the
models used to create the estimated propensity scores. This goal is not special
to the case with missing values in covariates, but rather has been the goal with
propensity score estimation from the start.

15.2 Notation

Estimation of propensity scores

With complete data, Rosenbaum and Rubin (1983) introduced the propensity score
for subject i(i = 1, . . . , N) as the conditional probability of receiving a particular
treatment (Zi = 1) versus control (Zi = 0) given a vector of observed covariates, xi :

e(xi) = pr(Zi = 1 | Xi = xi), (15.1)
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where it assumed that, given the X’s, the Zi are independent:

pr(Z1 = z1, . . . , ZN = zN | X1 = x1, . . . , XN = xN)

=
N∏
i=1

e(xi)
zi {1 − e(xi)}1−zi. (15.2)

Rosenbaum and Rubin (1983) showed that for a specific value of the propensity
score, the difference between the treatment and control means for all units with
that value of the propensity score is an unbiased estimate of the average treatment
effect at that propensity score, if the treatment assignment is strongly ignorable
given the covariates. Thus, matching, subclassification, or regression (covariance)
adjustment on the propensity score tends to produce unbiased estimates of the
treatment effects when treatment assignment is strongly ignorable, which occurs
when the treatment assignment, Z, and the potential outcomes, Y , are conditionally
independent given the covariates X : Pr(Z|X, Y) = Pr(Z|X).

Propensity scores with incomplete data

Let the response indicator be Rij , (j = 1, . . . , T ), which is one when the value
of the j th covariate for the ith subject is observed and zero when it is miss-
ing; Rij is fully observed by definition. Also, let X = (Xobs, Xmis), where Xobs =
{Xij |Rij = 1} denotes the observed parts and Xmis = {Xij |Rij = 0} denotes the
missing components of X.

The generalized propensity score for subject i, which conditions on all of the
observed covariate information, is

e∗i = e∗i (Xobs,i , Ri) = pr(Zi = 1 | Xobs,i , Ri), (15.3)

Rosenbaum and Rubin (1985) showed that with missing covariate data and strongly
ignorable treatment assignment given Xobs and R, the generalized propensity score,
e∗i in (3), plays the same role as the usual propensity score, ei in (1) with no
missing covariate data. Treatment assignment is strongly ignorable given (Xobs, R)

if Pr(Z|X, Y,R) = Pr(Z|Xobs, R). If in addition, the missing data mechanism is
such that Pr(R|X,Z) = Pr(R|Xobs), then Pr(Z|X, Y,R) = Pr(Z|Xobs), and R
itself can be ignored in the modeling. It is important to emphasize that, just as
with propensity score matching with no missing data, the success of a propensity
score estimation method is to be assessed by the quality of the balance in the
(Xobs, R) distributions between control and treated groups that has been achieved
by matching on it. Consequently, the usual concerns with the fit of a particular
model (i.e., the general location model) are not relevant if such balance is achieved.

General location model with complete data

The distribution of (X,Z) is defined by the marginal distribution of the categorical
variables, Z and the categorical covariates, U , and the conditional distribution of
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continuous covariates, say V , given (U,Z) (thus, X = (U, V )). (Uij , Zi) locates
the ith subject in one of the m cells of the table formed by (U,Z).

We assume that (U,Z) are iid multinomial random variables, and conditional on
Ui, Zi , we assume that Vi is K-variate normal with mean that depends on the cell
but with a common covariance. This is the general location model (Olkin and Tate,
1961) with parameters � =, cell probabilities from the multinomial distribution,
� =, the matrix of cell means, and � =, the positive definite covariance matrix
common to all cells; θ = (�, �,�).

Krzanowski (1980, 1982), Little and Schlucter (1985), and Little and Rubin
(1987) describe restricted general location models having fewer parameters. One
way to reduce the number of parameters to be estimated is to constrain � by a log-
linear model (Goodman, 1968; Bishop, Fienberg, and Holland, 1975); for example,
three-way and higher-order interactions are set to zero. ML estimates of the param-
eters for these models have closed form solutions for many configurations, but if
they do not have a closed form, they can be found by using an iterative procedure
such as iterative proportional fitting (IPF; Bishop, Fienberg, and Holland, 1975).

A second way to reduce the number of parameters to be estimated in the
general location model is to impose ANOVA-like restrictions on the means, �,
using a known design matrix A to define � in terms of a lower-dimensional matrix
of unknown regression coefficients β; if A is the identity matrix, then there are
no restrictions. With standard models and complete data, the parameter estimates
for β and � can be found using standard regression techniques (Anderson, 1958,
Chapter 8).

Although the restrictions described previously reduce the number of parameters
to be estimated in the model, we could also generalize the model to increase the
number of parameters to be estimated. For instance, the assumption of a common
covariance � across all cells of the contingency table can be relaxed to allow for
possibly different covariance matrices to be estimated in different cells. This, how-
ever, can require substantial sample sizes in each cell. A more useful extension
may be to estimate separate covariance matrices only for the treated and control
groups. Other extensions involve proportional covariance matrices and more gen-
eral ellipsoidal distributions (e.g., t-distributions as in Liu and Rubin 1995, 1998).

Fitting the general location model with missing data

The basic method for finding estimates for the parameters of the general location
model when there are ignorably missing data is outlined in Little and Rubin (1987,
Chapter 10) and Schafer (1997) and is based on the EM algorithm (Dempster, Laird,
and Rubin, 1977) and the ECM algorithm (Meng and Rubin, 1993), which is used
when loglinear restrictions have been placed on the general location model such
that IPF is needed with complete data. Of particular importance for our situation,
where we want to include explicitly the response indicator R in the modeling, is
that R is a fully observed collection of categorical (in fact binary) covariates. For
notational convenience, let U∗ = (U,R), with corresponding changes to the other
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notation. Because Xij is missing when Rij = 0, some restrictions are needed to
obtain unique maximum likelihood estimates of parameters for the joint distribution
of (Z,X,R), which we need to obtain unique maximum likelihood estimates (MLEs)
of the conditional distribution of Z given Xobs and R.

At each iteration of the EM algorithm, the E-step computes the expected values
of the complete-data sufficient statistics given the observed data and the current
estimates of the parameters, θ∗(t) = (�∗(t), �∗(t),�∗(t)), where t indexes iterations.
The M-step computes the ML estimates for the parameters using the estimated val-
ues of the sufficient statistics. These become the current estimates of the parameters
to be used in the next E-step calculations. The E and M steps are repeated until
convergence. When there are loglinear constraints on the categorical covariates,
ECM is used instead of EM; the M-step of EM is replaced by CM steps, which
perform one cycle of IPF. The complete-data sufficient statistics for this model are
the raw sums of squares and cross products of the V ’s (�V Ti Vi ), the sums of the
V ’s in each cell (cell totals), and the cell frequencies from the table defined by
(Z,U∗).

Once EM or ECM has converged, we have ML estimates, θ̂∗, for the param-
eters θ∗ = (�∗, �∗, �∗) for the joint distribution of (V,Z,U∗), which we use
to calculate an estimated propensity score for each subject, ê∗i , as in (3) with
Xobs,i = (Vobs,i , Uobs,i ).

ê∗i = pr(Zi = 1|Vobs,i , U
∗
obs,i, Ri, θ̂

∗). (15.4)

To find the estimated propensity score (4) from θ̂∗ and the observed data, we simply
run one E-step using the converged MLE θ̂∗, but now treating Zi as missing.

15.3 Applied example: March of Dimes data

Description of the data

To illustrate these methods, we take data from a March of Dimes observational
study examining the effects of postterm birth versus term birth on neuropsychiatric,
social, and academic achievements of 5- to 10-year-old children. The investigators
were interested in selecting and interviewing a sample of 5- to 10-year-old term
and postterm children from a large database of birth records collected. Since the
database of birth records consisted of more than 4,000 potential children, it was
financially infeasible to try and recruit all potential children. Therefore, the initial
issue they faced was how to select the sample to facilitate inference for the effect of
being postterm. It was decided that the best approach to address this question was
to identify potential matches for each postterm child from the pool of term children
and then recruit a subset of the matched pairs into the study. A complication was
that for some children, some covariates had missing values.

From this applied data set, a sample of 4,500 potential children were used in
this illustration. Of these 4,500 children, 4,155 (92.3%) were term babies and 345
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(7.7%) were postterm babies. In the propensity score model we fit, there were
25 covariates that were felt to be scientifically significant for predicting postterm
birth and prognostically important for predicting outcomes, and thus, if left uncon-
trolled, could confound estimated treatment effects. Among the covariates included
in the propensity score model, there were a few (e.g., infant’s weight or medical
induction during labor) that may be considered improper in the sense that their
values were not determined prior to the “treatment assignment” to being term
or postterm. That is, in the hypothetical experiment underlying the observational
study, before week 42 a decision could have been made to induce labor for the
postterm babies and the effect of not doing so is the effect we seek. Formally, any
covariate measured after 41 weeks is thus an improper covariate because it could
be affected by treatment.

For example, infant’s weight had the largest initial imbalance, but can be con-
sidered to be an outcome of being postterm, and not a proper covariate. Despite
this, as with the other improper covariates, the investigating physicians felt strongly
that this variable needed to be controlled. Because this improper covariate can be
thought of as a proxy for unmeasured proper pretreatment covariates that predict
fetal disorders, the physicians and investigators felt they needed to explicitly con-
trol these variables as if they were proper covariates, if useful inferences were to
be drawn about policy-relevant advice concerning postterm pregnancies. Still, we
acknowledge that the inclusion of such improper covariates may actually adjust
away part of the true treatment effect. However, this limitation occurs regardless
of which method for control is employed (i.e., matching or covariate modeling). In
addition, the focus of this example is to illustrate the estimation and use of propen-
sity scores with missing covariate data, which could have been applied using only
proper covariates.

Tables 15.1 and 15.2 present descriptive statistics for the covariates and fitted
propensity score, separately for the term and postterm groups. It is important to
emphasize that these statistics are descriptive and not inferential in the sense that
they do not purport to estimate relevant population parameters, but rather simply
describe the two samples and their differences. Table 15.1 presents, for each con-
tinuous covariate and the propensity score, the mean and standard deviation using
available cases; also presented are standardized percentage differences prior to and
following matching, defined as the mean difference between postterm and term

groups as a percentage of the standard deviation:

(
100(xp−xt )√
(s2
p+s2

t )/2

)
, where xp and xt

are the sample means in the postterm and term groups respectively, and s2
p and s2

t

are the corresponding sample variances, again based on available cases.
Table 15.1 presents the proportion of women in each category in the term

and postterm groups; also presented are the corresponding results for the miss-
ing data indicators (last 10 rows) for the 10 covariates with any missing values
(either continuous or categorical). The third column displays these proportions for
the term group chosen as matches for the postterm group. The fourth and fifth
columns display the absolute differences in percent between the term and postterm
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Covariate Mean (SD) Postterm Standardized
Term Mean (SD) Difference in %b

Initial Final

Binary predictors (modeled as continuous)
Antepartum complications 0.72 (.45) 0.72 (.45) 1 2
Previous obstetrical history 0.47 (.50) 0.40 (.49) −14 1
Vaginal bleeding 0.12 (.33) 0.11 (.31) −4 1
Second stage indicatora 0.81 (.39) 0.77 (.42) −10 3

Ordinal predictors
Delivery mode 1.26 (.51) 1.30 (.51) 8 2
Labor complications 0.58 (.63) 0.66 (.59) 14 10
Classa 2.37 (.77) 2.31 (.77) −8 3
Diabetesc 0.15 (1.05) 0.11 (.82) −4 3
Fetal distress 0.04 (.64) 0.15 (1.2) 11 3
Induction 0.17 (.88) 0.41 (1.2) 23 11
Pelvic adequacy (clinic)a 0.19 (.68) 0.19 (.67) 0 2
Pelvic adequacy (X-ray)a 1.71 (.94) 1.69 (.79) −3 12
Placental problems 0.11 (.1.04) 0.09 (.93) −2 2
Previous perinatal mortalityd 0.22 (1.49) 0.15 (1.13) −6 7
Urinary tract disorders 0.11 (.51) 0.13 (.53) 4 2

Continuous predictors
Child’s age (months from 1980–range 0–48) 23.4 (13.0) 23.9 (11.4) 4 7
Infant’s weight (grams)a 3338 (461) 3626 (533) 58 11
Length of first stage (min)a 784 (571) 910 (665) 20 1
Length of second stage (min)a 53.8 (65) 59.5 (66) 9 3
Time since membranes ruptured (min)a 454 (791) 414 (651) −6 3
Mother’s age (years) 28.8 (5) 28.2 (5) −12 5
Parity 0.77 (1.0) 0.66 (1.1) −10 3
Total length of labor (min)a 841 (589) 968 (688) 20 1
Propensity score .072 (.081) .168 (.180) 69 2
Logit of propensity score −2.95 (1.02) −1.95 (1.29) 86 2

aCovariate suffers from some missing data.
bThe standardized difference in % is mean difference as a percentage of the average standard

deviation:
100(xp−xt )√
(s2p+s2t )/2

, where for each covariate xp and xt are the sample means in the postterm

and term groups, respectively, and s2p and s2t are the corresponding sample variances.
cDiabetes—0 = None, 1 = diabetes insipidus or glucosuria, 5 = abnormal glucose tolerance test, and
10 = diabetes mellitus.
dPrevious perinatal mortality—0 = no previous child deaths, 5 = previous late death (in first year of
life), 10 = previous stillbirth or neonatal death, and 20 = previous stillborn and previous neonatal death
(or any combination of 2 or more perinatal mortalities).

Table 15.1 Descriptive statistics for the variables that were included in the propen-
sity score models as continuous variables. These statistics are shown for the term
and postterm groups before and after matching and include the means, standard
deviations, and the standardized differences in percent for each variable estimated
using available cases only.
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Covariate Term Postterm Term Differences in %
Matches Initial Final

Race White .70 .72 .72 2 0
Nonwhite .30 .28 .28 2 0

Gender Male .49 .51 .49 2 2
Female .51 .49 .51 2 2
Vertex .77 .72 .73 5 1

Delivery mode Cesarean .21 .27 .25 6 2
Other .02 .01 .02 1 1
No labor (cesarean) .08 .06 .06 2 0

Labor No complications .26 .21 .21 5 0
Complications Some complications .66 .73 .75 7 2

Missing value indicators (proportion observed)
Pelvic adequacy (X-ray) .05 .10 9 5 1
Length of 2nd stage of labor .78 .74 .72 4 2
Race .95 .95 .95 0 0
2nd stage of labor indicator .99 1.00 1.00 1 0
Class .99 .99 1.00 0 1
Pelvic adequacy (clinic) .85 .90 .88 5 2
Infant’s weight .99 1.00 1.00 1 0
Length first stage of labor .89 .91 .91 2 0
Time membranes ruptured .97 .97 .97 0 0
Length of labor .89 .91 .91 2 0

Table 15.2 Descriptive statistics for categorical variables and missing value indi-
cators. These statistics are shown for the term and postterm groups before and after
matching and include the observed proportions in each category and the differences
between term and postterm groups for each variable.

groups for each of the categorical covariates and missing data indicators before
and after matching.

The initial term versus postterm group differences summarized in Tables 15.1
and 15.2 indicate the possible extent of biased comparisons of outcomes due to
different distributions of observed covariates and patterns of missing data in the
initial term and postterm groups. That is, ideally all such descriptive statistics
should suggest the same distribution in the term and postterm groups, as they would
be in expectation if the treatment indicator (term vs postterm) had been randomly
assigned. As can be seen by examining these tables, there exists considerable initial
bias between the term and postterm groups. For instance, nine of the continuous
covariates have initial standardized differences larger than 10%. In addition, there
are substantial differences between the groups based on the estimated propensity
score. The missingness rates appear similar except that there seems to be a trend
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for some indicators of potential complications to be more observed in the postterm
group (e.g., pelvic adequacy, both x-ray and clinical), suggesting a greater need
for such medical tests among the postterm subjects. In addition, the missing data
indicator for the length of the second stage of labor shows that more individuals in
the term group had this variable observed than in the postterm group (78 vs 74%).

Specific propensity score model fit

The generalized propensity score model we fit used all 23 continuous covari-
ates in Table 15.1 and the two categorical covariates (race and child’s gender)
in Table 15.2. In addition, among the 10 variables that contained missing values,
the missingness on two were differentially distributed in the treatment groups and
believed to be prognostically important: the results of a pelvic x-ray and the length
of the second stage of labor. In addition, for the pelvic x-ray variable there was a
large statistically significant difference in the rate of missingness between groups
based on a chi-square test. Therefore, the propensity score model fit included the
missing value indicators for these two variables as additional categorical covari-
ates in the model. This propensity score model without any constraints would have
1,043 parameters, therefore we placed some constraints on the model. Loglinear
constraints were placed on the cell probabilities so that the three-way and higher
interactions were set to zero, and thus we estimated five main effects (one for the
treatment indicator, two for the categorical covariates, gender, and race, and two for
the two missing value indicators) and 10 two-way interactions. The design matrix
relating the means of the continuous variables to the categorical variables includes
an intercept, main effects for each of the categorical variables, and terms for each
of the two-way interactions of the categorical variables. This constrained model
has 659 total parameters including 15 for the contingency table, 368 regression
coefficients, and 276 variance and covariances.

Matching using estimated propensity scores

We estimated the propensity score for the model using the ECM algorithm as
illustrated above. Then we used the nearest available matching on these esti-
mated propensity scores to choose matches for the postterm subjects. We randomly
ordered the term and postterm subjects, and then selected the term subject with
propensity score closest to the first postterm subject. Both subjects were then
removed from the pools of subjects. We repeated this procedure for each post-
term subject, which resulted in selecting a total of 345 term subjects from the
4,150 available ones. There are numerous other approaches that we could have
used to select the matches, but chose this straightforward approach using propen-
sity scores in order to focus on how well matching based on the propensity score
model succeeds in balancing the distribution of observed covariates and missing-
data indicators between the term and postterm groups.
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Resultant distributions of propensity scores and their logits

We first compare the distributions of the propensity scores in the postterm group
with those in the initial term group (n = 4,150), those in a randomly selected
term group (n = 345), and the matched term group (n = 345), by examining some
of the descriptive statistics from each group. We find that the median propensity
score for the matched term group (0.109) was nearly equal to the median in the
postterm group (0.11), whereas both these values were larger than even the 75th
percentile propensity score in the unmatched and randomly selected term groups
(0.089 and 0.090 respectively), indicating that the vast majority of term group
babies had lower propensity scores than those in the postterm group. Thus, if a
random sample of term babies had been selected for analyses the majority of those
selected would not have resembled the postterm group. In addition, we find that
the spread of propensity scores for the unmatched term group (n = 4,150) spans
nearly the whole range of potential propensity scores (i.e., from 0 to nearly 1.0)
This second feature allows us to find matches from the term group with propensity
scores close to the propensity scores of the subjects in the postterm group.

The distribution of the estimated propensity scores can also be compared by
examining columns 4 and 5 of Table 15.1. Column 4 contains the initial standard-
ized differences in percent for the propensity score and its logit and column 5
contains the same statistic after matching using the model. The initial standard-
ized differences in % was quite large (69%) as well as the initial variance ratio
(5.00) (estimated as the ratio of the sample variance of the propensity score in the
postterm group divided by the sample variance of the propensity score in the term
group), which suggests that this model is successful in separating the term and
postterm groups. When we examine the standardized differences after matching,
we see that this difference was reduced to less than 2% and the variance ratio was
reduced to 1.19.

Resultant covariate balance after matching

To assess further the relative success of the propensity score model for creating
balanced matched samples, we compare balance on observed covariates and miss-
ing data indicators in the matched samples created by the model. It is important for
practice to realize that, as in Rosenbaum and Rubin (1984, 1985), these assessments
can be made before any resources have been committed to collecting outcome data
on the matched controls. Also, it is important to realize that, since these compar-
isons involve only observed covariates and their missing-data indicators and not
outcome variables, there is no chance of biasing results in favor of one treatment
condition versus the other through the selection of matched controls.

Columns 4 and 5 from Table 15.1 compare the standardized differences in
percent, after matching, for the continuous covariates. The matching performed
well in reducing the bias of the background covariates with moderate to large
initial standardized differences. For instance, the initial standardized difference for
the length of the first stage of labor variable is 20%, and this was reduced to
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1% after matching. Even the initial standardized difference for infant’s weight is
substantially reduced by the matching (from 58 to 11%)

In Table 15.2, which compares the available-case cell proportions for the cat-
egorical covariates and missing value indicators between the term and postterm
groups before and after matching, we find that the initial imbalance in delivery
mode and labor complications was moderate, with 26% of the postterm babies
being cesarean birth versus 20% of the term pregnancies and 73% of the postterm
pregnancies having some complications versus 66% of the term pregnancies. These
differences were both significantly reduced after matching.

We acknowledge that there are many other plausible propensity score models
that could be constructed using the 25 covariates and their missing-data indicators,
and that among these there are likely to exist models that produce better balance
than our propensity score model. Still, this model would provide the investiga-
tors with what they wanted, that is, propensity scores that could be used to select
matches for the postterm babies from the available pool of term babies, where the
bias that was observed between the term and postterm groups on many covari-
ates and their missingness prior to matching was substantially reduced (and often
essentially removed) by the matching.

15.4 Conclusion and future directions

This chapter has focused on using a model-based (the general location model)
approach for estimating propensity scores in the presence of missing data. There
are alternative methods for handling the missing data that are currently being devel-
oped. These include using a pattern mixture model (Rosenbaum and Rubin, 1984;
Little, 1993) or multiple imputation methodology (Rubin, 1987b) for propensity
score estimation.

We have presented an approach for estimating propensity scores in the pres-
ence of missing data using the EM and ECM algorithms as computing tools. The
framework allows the investigator to put structure on the relationships among the
covariates in the model, including missing value indicators for specific effects.
In addition, we have illustrated our approach using the March of Dimes data.
Simulation studies are underway to examine the effects of specifying different
missing-data mechanisms on the data. In addition, user-friendly software is being
developed to make implementation of these methods more easily available to inves-
tigators.



16

Sensitivity to nonignorability
in frequentist inference

Guoguang Ma and Daniel F. Heitjan1

16.1 Missing data in clinical trials

The occurrence of missing data can harm both the power of a trial, through loss
of sample size, and its validity, through selection bias. This is particularly vexing
in psychiatric trials, where the collection of primary outcome data (depression
scores, quality of life, etc.) depends on the willingness of subjects to submit to a
series of possibly burdensome examinations. The potential loss of power is easy
to overcome by simply increasing accrual targets, which is a typical feature of
practical trial design. An explicit, quantitative assessment of the potential for bias,
although justified, is not yet standard practice.

16.2 Ignorability and bias

In his seminal paper, “Inference and missing data”, Rubin (1976a) established a
general theory of ignorability for frequentist inferences from data subject to miss-
ingness. The key condition, now called missing completely at random (MCAR),
is that the conditional probability of the observed missing data indicator, given
the complete data, is the same for all possible values of the complete data. When

1Clinical Biostatistics, Merck & Co., Inc., Blue Bell, Pa., and Department of Biostatistics and
Epidemiology, University of Pennsylvania, Philadelphia, Pa. The authors thank the referees and editors
for a number of helpful suggestions. The USPHS supported this research under grant HL 68074.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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MCAR holds, the stochastic nature of the missingness mechanism is ignorable
in frequentist inferences. In practice, this means that if you set out to sample 10
observations but only managed to get 5, for the purposes of frequentist inferences
you can act as though your intention had been to collect only 5 in the first place
(e.g., see Heitjan and Basu, 1996; Little and Rubin, 2002). Heitjan (1997) pro-
vides further justification for this view by showing that MCAR is equivalent to
what he called observed ancillarity of the missingness indicator. Thus, when the
data are MCAR, not only can one do conditional frequentist inference given the
missingness indicator, but in a sense one should.

Unfortunately, we seldom know with certainty that missing data are MCAR,
and consequently we seldom feel confident that our inferences are free of this
type of bias. Thus, the methodology of nonignorable modeling (Schluchter 1992;
Diggle and Kenward, 1994) and global analysis of sensitivity to nonignorability
(Vach and Blettner, 1995; Rotnitzky, Robins, and Scharfstein, 1998; Scharfstein,
Rotnitzky, and Robins, 1999) has been an area of rapid development in recent
years. A related enterprise is the development of indices that measure sensitivity
locally, in the neighborhood of an ignorable model (Copas and Li, 1997; Copas
and Eguchi, 2001; Verbeke et al., 2001; Troxel, Ma, and Heitjan, 2004). These
methods promise straightforward, practical, and robust assessments of sensitivity.

In this chapter, we illustrate the concept of local sensitivity by applying it
in the planning of a clinical trial. The intention is to estimate mean depression
score in psychiatric patients who are prone to drop out according to a mecha-
nism that may not be MCAR. The methodology differs from the local sensitivity
approaches described above in that it is explicitly frequentist and is applicable prior
to data collection.

We begin by describing the model.

16.3 A nonignorable selection model

Consider a random vector Y = (Y1, . . . , Yn) whose components Yi are independent
and distributed according to densities f Yiθ (yi), i = 1, . . . , n, governed by a common
parameter of interest θ . Let Gi be a variable that equals 1 if Yi is observed and
0 if Yi is missing. Assume that the probability of being observed depends on yi
through a link function h and a parameter γ = (γ0, γ1), as follows:

Prγ0,γ1 [Gi = 1|Yi = yi] = h(γ0 + γ1yi).

If γ1 = 0, every possible data set is MCAR, G is ancillary for θ , and it follows
that one should base frequentist inferences on the conditional distribution of the
data Y given G = g—that is, as if G were fixed at its observed value (Cox and
Hinkley, 1974, pp. 31–33; Heitjan, 1997).

For practice, a key question is the extent to which the distribution of Y given
G = g under ignorability (γ1 = 0) gives an adequate approximation to the correct
distribution under nonignorability (γ1 �= 0). For a variety of reasons, we believe that
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it is sufficient in most cases to explore sensitivity in the neighborhood of γ1 = 0.
Thus, we devote the remainder of this chapter to exploring local approximations
to various summaries of this distribution.

16.4 Sensitivity of the mean and variance

Suppose that we intend to sample n independent observations, y = (y1, . . . , yn),
from a normal density with mean µ and variance τ . We end up observing only no

units, and we are concerned that the missingness mechanism is nonignorable. If
the target of estimation is the mean, then we seek to determine the extent to which
the mean of the population of units that would be observed (the expectation of the
observed data) differs from the mean of the entire population.

A straightforward calculation shows that, to first order,

E[Yi |Gi = 1] ≈ µ+ γ1
h′(γ0)

h(γ0)
τ (16.1)

for all observed units, where h′(·) is the first derivative of h. Thus if Y o is the
sample mean of the observed units, that is, Y o = ∑

GiYi/
∑
Gi , then its expecta-

tion is also given by the right side of (16.1). We can further approximate the mean
to second order as

E[Yi |Gi = 1] ≈ µ+ γ1
h′(γ0)

h(γ0)
τ + γ 2

1

[
h(γ0)h

′′(γ0)− [h′(γ0)]2

h2(γ0)

]
µ τ, (16.2)

where h′′(·) is the second derivative of h. The first-order sensitivity of the variance
is zero:

var[Yi |Gi = 1] ≈ τ, (16.3)

and henceforth we assume that the variance is known.
In fact, with a little extra effort we can generalize these results to any moment.

LetMγ1(t) be the moment-generating function of a random variable Y , given that it
is observed, when the nonignorability parameter is fixed at γ1. The k-th derivative
of this function is

M(k)
γ1
(t) =

∫
uk exp(tu)f Yθ (u)h(γ0 + γ1u) du∫

f Yθ (u)h(γ0 + γ1u) du
.

A straightforward differentiation shows that

∂M
(k)
γ1 (t)

∂γ1

∣∣∣∣∣
γ1=0

= h′(γ0)

h(γ0)

[
M
(k+1)
0 (t)−M(k)

0 (t)E(Y )
]
,
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and

∂2M
(k)
γ1 (t)

∂γ 2
1

∣∣∣∣∣
γ1=0

= h′′(γ0)

h(γ0)

[
M
(k+2)
0 (t)−M(k)

0 (t)E(Y 2)
]

− 2

[
h′(γ0)

h(γ0)

]2 [
M
(k+1)
0 (t)−M(k)

0 (t)E(Y )
]
E(Y ).

From this we readily obtain (16.1), (16.2), and (16.3). The moment formulas apply
to any random variable whose distribution is sufficiently regular to permit passing
the derivative with respect to γ1 under the integral sign.

16.5 Sensitivity of the power

Suppose that we wish to test µ = µ0 in a normal model with known variance, and
that we expect to observe no of a possible n units. Let µ(γ1) be the hypothetical
mean of the observed data when the nonignorability parameter takes value γ1.
Define Pγ1(α, µ, g) to be the probability, conditional onG = g, of rejecting the null
hypothesis µ = µ0 in a one-sided test of level α when the mean in the underlying
population is µ(γ1) > µ0,

Pγ1(α, µ, g) = �
[
µ(γ1)− µ0√

τ/no
+ zα

]
,

where� is the standard normal integral. This expression involves a level of approx-
imation because the distribution of Y , given that it is observed, may not be exactly
normal for γ1 �= 0. The departure for small γ1 should be modest, however, and
when no is large, the central limit theorem guarantees that Y o is normal even if
the parent distribution is not. Consequently, these results can be taken to hold in a
large-sample sense for any random variable with sufficient finite moments.

We approximate the probability, to second order, by the Taylor series

Pγ1(α, µ, g) ≈ Pγ1(α, µ, g)
∣∣
γ1=0 + γ1

∂Pγ1(α, µ, g)

∂γ1

∣∣∣∣
γ1=0

+γ
2
1

2

∂2Pγ1(α, µ, g)

∂γ 2
1

∣∣∣∣∣
γ1=0

. (16.4)

By (16.2), µ(γ1) is approximated by

µ(γ1) ≈ µ(0)+ γ1
h′(γ0)

h(γ0)
τ + γ 2

1

[
h(γ0)h

′′(γ0)− [h′(γ0)]2

h2(γ0)

]
µ(0)τ.

Letting a = [µ(0)− µ0]/
√
τ/no + zα , the derivatives of the probability with

respect to γ1 at γ1 = 0 are

∂Pγ1(α, µ, g)

∂γ1

∣∣∣∣
γ1=0

= φ(a)h
′(γ0)

h(γ0)

√
noτ (16.5)
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and

∂2Pγ1(α, µ, g)

∂γ 2
1

∣∣∣∣∣
γ1=0

= −a φ(a)
[
h′(γ0)

h(γ0)

]2

noτ

+ 2φ(a)

[
h(γ0)h

′′(γ0)− [h′(γ0)]2

h2(γ0)

]
µ(0)

√
noτ ,

(16.6)
where φ is the standard normal density.

For a two-sided test, the power equals

Pγ1(α, µ, g) = �
[
µ(γ1)− µ0√

τ/no
+ zα/2

]
+�

[
µ0 − µ(γ1)√

τ/no
+ zα/2

]
. (16.7)

Letting

c1 = µ(0)− µ0√
τ/no

+ zα/2, c2 = µ0 − µ(0)√
τ/no

+ zα/2,

the derivatives evaluated at γ1 = 0 take the following forms:

∂Pγ1(α, µ, g)

∂γ1

∣∣∣∣
γ1=0

=
[
φ(c1)− φ(c2)

] h′(γ0)

h(γ0)

√
noτ

and

∂2Pγ1(α, µ, g)

∂γ 2
1

∣∣∣∣∣
γ1=0

= − [c1 φ(c1)+ c2 φ(c2)]

[
h′(γ0)

h(γ0)

]2

noτ + 2
[
φ(c1)− φ(c2)

]

×
[
h(γ0)h

′′(γ0)− [h′(γ0)]2

h2(γ0)

]
µ(0)

√
noτ .

If the smaller term in (16.7) can be ignored for a fixed hypothetical µ, the deriva-
tives of the power for a two-sided test are approximately given by (16.5) and (16.6)
with zα replaced by zα/2.

We conducted a simulation experiment to illustrate the adequacy of these
approximations. We generated 2,000 data sets of size n = 10 from a normal distri-
bution with mean 2 and variance 4, and fixed γ0 = 0. For a range of values of γ1
(−0.4 to 0.4 by 0.05), we simulated a vector of the missingness indicator g given
the true y, according to Pr[Gi = 1|Yi = yi] = h(γ0 + γ1yi), for i = 1, . . . , 10,
with the logistic link h(u) = exp(u)/[1 + exp(u)]. Although any number of points
could be missing, we focused on the most common patterns, which for these
parameters are those with 4 to 7 points observed. For each pattern, we counted
the number of data sets with (Y o − µ0)

√
no/τ > z1−α for a one-sided test, and

|Y o − µ0|
√
no/τ > z1−α/2 for a two-sided test, where µ0 = 0. Finally, we calcu-

lated the empirical and approximate probabilities, which are plotted in Figure 16.1
for a one-sided test. Results are similar for a two-sided test.
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Figure 16.1 Empirical and approximate power of a one-sided test as a function
of the nonignorability parameter.

Figure 16.1 shows that the first-order curve fits well and the second-order
curve fits better. As γ1 increases from zero, larger observations are more likely to
be observed, and therefore the power to detect µ > µ0 increases monotonically.
Although the power increases with no, the sensitivity is similar in all four graphs.

16.6 Sensitivity of the coverage probability

Another important application is to the calculation of confidence interval coverage
probabilities. Assuming normality with the variance known to be τ , the upper
confidence bound for the mean is Y o + z1−α

√
τ/no. The coverage probability

is then

CPγ1(α, µ, g) = �
[
z1−α + µ(γ1)− µ(0)√

τ/no

]
,

where � and µ(γ1) are as in Section 16.5, and again the equation holds for large
no. We approximate the coverage probability as

CPγ1(α, µ, g) ≈ 1 − α + γ1
∂CPγ1(α, µ, g)

∂γ1

∣∣∣∣
γ1=0

+ γ 2
1

2

∂2CPγ1(α, µ, g)

∂γ 2
1

∣∣∣∣∣
γ1=0

(16.8)
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where
∂CPγ1(α, µ, g)

∂γ1

∣∣∣∣
γ1=0

= φ(z1−α)
h′(γ0)

h(γ0)

√
noτ ,

and

∂2CPγ1(α, µ, g)

∂γ 2
1

∣∣∣∣∣
γ1=0

= −z1−αφ(z1−α)
[
h′(γ0)

h(γ0)

]2

noτ

+ 2φ(z1−α)
[
h(γ0)h

′′(γ0)− [h′(γ0)]2

h2(γ0)

]
µ(0)

√
noτ .

The first derivative of the coverage probability does not depend on µ(0), while the
second derivative does.

For a two-sided interval, the coverage probability is

CPγ1(α, µ, g) = �
[
µ(0)− µ(γ1)√

τ/no
+ z1−α/2

]
+�

[
µ(γ1)− µ(0)√

τ/no
+ z1−α/2

]
− 1.

The first-order sensitivity of the two-sided coverage probability is identically zero,
because any bias at all, in either direction, erodes the probability with equal mag-
nitude, and consequently the coverage probability reaches its maximum value at
γ1 = 0. Other derivatives are

∂2CPγ1(α, µ, g)

∂γ 2
1

∣∣∣∣∣
γ1=0

= −2 z1−α/2 φ(z1−α/2) noτ

[
h′(γ0)

h(γ0)

]2

and

∂3CPγ1(α, µ, g)

∂γ 3
1

∣∣∣∣∣
γ1=0

= −12 z1−α/2 φ(z1−α/2) noτ
h′(γ0)

h(γ0)

×
[
h(γ0)h

′′(γ0)− [h′(γ0)]2

h2(γ0)

]
µ(0).

Therefore, the coverage probability of a two-sided confidence interval approx-
imately equals

CPγ1(α, µ, g) ≈ 1 − α + γ 2
1

2

∂2CPγ1(α, µ, g)

∂γ 2
1

∣∣∣∣∣
γ1=0

+γ
3
1

6

∂3CPγ1(α, µ, g)

∂γ 3
1

∣∣∣∣∣
γ1=0

. (16.9)

The simulation process is similar to that of Section 16.5: First, we generated
2,000 datasets of size 10 from the normal distribution with µ = 2 and τ = 4. Next,
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we generated vectors of g values conditional on the simulated y vectors for given
γ0 = 0 and γ1. Finally, for each no, we tabulated empirical coverage probabilities
for comparison with approximations (16.8) and (16.9).

Figures 16.2 and 16.3 plot the coverage probabilities of one-sided and two-sided
95% confidence intervals, for no = 5 and 6, against γ1 (results are similar for 4 and
7 points observed). For the one-sided interval, again the first-order approximation
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Figure 16.2 Empirical and approximate coverage probability of a one-sided inter-
val as a function of the nonignorability parameter.
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Figure 16.3 Empirical and approximate coverage probability of a two-sided inter-
val as a function of the nonignorability parameter.

is good but the second-order approximation is better, and probably adequate for
most purposes. When γ1 increases positively, more large values are observed,
and consequently, the coverage probability exceeds 95%; conversely, coverage
probabilities can be much less than 95% for negative γ1. For a two-sided interval
(Figure 16.3), the third-order approximation is generally sufficient. As indicated
above, the coverage probability reaches its nominal, and maximum, value at γ1 = 0.
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16.7 An example

The data are from a 12-week randomized trial of the antidepressant desipramine
in outpatients with a diagnosis of cocaine dependence and a depressive disorder.
The study hypothesized that desipramine would be superior to placebo in reducing
the symptoms of depression and therefore also cocaine use. To demonstrate our
method, we discuss only the data from the desipramine arm and the outcome
measure HAMD-21. Of 55 patients randomized to desipramine, only 25 were left
by week 12.

Suppose that we wish to conduct a further study to test H0 : µ = 11 versus
Ha : µ < 11 when, as in the desipramine trial, no = 25 and τ = 35. If γ1 = 0 and
µ(0) = 8, we have 81% power to detect the difference of 3 points at level 0.05 s.
Figure 16.4 plots the power of this test as a function of γ1, using an expression
analogous to (16.4). The graph shows that a value of γ1 = .04, meaning that a
4-unit increase in HAMD-21 (e.g., a change from the lowest to the highest level
on the anxiety subscale) is associated with an increase in the odds of being observed
of exp(4 × .04) = 1.17, would be sufficient to reduce the power to roughly 65%.
Thus, the power is sensitive to moderate departures from ignorability.

We approximate the coverage probability of a 95% two-sided interval by (16.9),
which we plot against γ1 in Figure 16.5. The graph shows that the coverage

−0.04 −0.02 0.00 0.02 0.04

Gamma_1

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

P
ow

er

Logit link
Cloglog link
Probit link

Figure 16.4 Approximate power of a one-sided test as a function of the nonig-
norability parameter using different link functions.
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Figure 16.5 Approximate coverage probability of a two-sided interval as a func-
tion of the nonignorability parameter using different link functions.

probability of this interval is less sensitive to nonignorability than the power.
The relatively modest values of γ1 = −.04 can, however, reduce the coverage
probability to less than 90%.

The plots also show the effect on sensitivity of using a complementary log–log
or probit link in place of the logistic. The curves are directly comparable, in that
we have transformed the binary regression slope parameters for the probit and
complementary log–log selection models to have the same meaning, in terms of
odds ratios, as the logistic γ1. It is evident that the general shapes of the curves
and measures of sensitivity are much the same for all the three models.

16.8 Discussion

In this article, we have demonstrated a simple method for computing the approx-
imate sensitivity to nonignorability of the operating characteristics of frequentist
data summaries. Simulations show that the approximations are valid across a rel-
evant range of nonignorability parameters.

We anticipate using the method as a quick check on the validity of frequentist
procedures when data are missing. For example, in clinical trials it is common
to inflate enrollment goals beyond the nominal target sample size to adjust for
anticipated dropout. Thus, if a power calculation shows that one needs 40 subjects,
but one expects to lose 20% to attrition, the study would plan to enroll 50. Our
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findings suggest that still more patients are needed to counteract nonignorability,
whose bias can erode power even further. More to the point, if the size of a test (its
power under the null) is sensitive under the anticipated missingness mechanism, it
may be prudent to avoid testing altogether.

Although our model allows any link function, the logistic may be the most
convenient because its γ1 parameter is a log odds ratio. Evidence to date (Xie, 2003)
suggests that the choice of link makes little difference, as long as the dependence
of the missingness probability on y is monotone. Thus, our methods may not be
helpful with variables like self-reported income, where both high and low values are
more likely to be missing. They should work well with health-related quality of life,
where evidence suggests that the missingness probability is inversely related to y.

One can easily extend our method to other contexts such as the normal linear
model with regression coefficient β and predictors X. Simply note that the expec-
tation of β̂o, the estimated regression coefficient from the observed subjects, is

E(β̂o|G = g) = (X′
oXo)

−1X′
oE(Yo|G = g)

where Xo is the submatrix of X for observed subjects and E(Yo|G = g) is a vector
of (16.2) for subjects with gi = 1. According to (16.3), the conditional variance of
β̂o given G = g is

var(β̂o|G = g) = (X′
oXo)

−1X′
ovar(Yo|G = g)[(X′

oXo)
−1X′

o]′

≈ τ (X′
oXo)

−1,

which again needs no adjustment, to first order. For more complicated models
such as nonlinear regression, survival curve estimation, and survival regression,
the analysis steps may be more complex. The idea should be straightforward to
carry through, however, numerically if not analytically.

This chapter has emphasized approaches to evaluating sensitivity prior to data
collection. Once the data are available, one may wish to base inferences on sam-
ple moments corrected for nonignorability according to formulas such as (16.1),
(16.2), and (16.3). Such analyses are potentially complicated by the need to esti-
mate γ0 for various tentative values of γ1. In data analysis, we generally espouse a
Bayesian/likelihood sensitivity analysis as proposed by Troxel, Ma, and
Heitjan (2004).
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Statistical modeling
and computation

D. Michael Titterington1

To provide even a brief overview of an area as wide ranging and active as “statis-
tical modeling and computation” is a daunting task, and in view of the limitations
of the space available I can only scratch the surface.

At first sight, it might seem more appropriate to consider the two topics sepa-
rately, because the more cerebral activity of modeling seems rather different from
the nuts-and-bolts issues in computation. However, they are of course very closely
linked, in that, in general, new ideas in modeling are only immediately worth-
while if they are computationally feasible. In general, therefore, the two lines
of research have pulled each other along, encouraged by the carrot of the need
to analyze, in realistic fashion, ever more complex data structures thrown up by
pressing real-life problems. Modeling ideas then develop that stretch the current
capabilities of computational hardware and techniques, and improvement on the
computational side challenges the modeler to make the most of the new resources.
Sometimes, of course, methodological ideas are proposed that may not be imme-
diately implementable, but the inventor predicts, with justifiable confidence, that
computer power will soon be such that the methods will be routine; I recall noting
such a prediction in one of Rubin’s own early expositions of the ideas of multiple
imputation (Rubin, 1978b)!

As I have said, I can only give a brief sketch of the total picture here, and I
shall concentrate on the topics of regression and latent-variable models, partly
because, although they are rather specific, they do subsume a wide range of

1Department of Statistics, University of Glasgow, Scotland.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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particular manifestations, and partly because they include scenarios of personal
interest to me. Another theme will appear that I feel is also of current importance,
namely the existence of strongly related activity in the computer science research
community.

17.1 Regression models

A vast array of ideas is covered by the general heading of regression models,
in which one or more response variables are related to one or more covariates.
Here the simplest scenario is provided by linear models with uncorrelated Gaussian
errors, but recent and current work goes way beyond that, and even way beyond the
rich class of generalized linear models: parametric developments include nonlinear
regression models, models including random effects, and models that accommodate
measurement error on the covariates; semiparametric models allow more flexibility
for part of the regression function, often the intercept term, while retaining a
parametric formulation for the component of the model involving many of the
covariates; and approaches to nonparametric regression aim simply to acknowledge
local smoothness without the straightjacket of a global parametric component. One
particular area of much current activity concerns longitudinal data (see for example
Diggle et al., 2002), to which all these types of approach have been applied, and
which has popularized the generic ideas of generalized estimating equations and so-
called “sandwich” variance estimators of the uncertainty associated with estimators
of parametric elements of the model.

Purely nonparametric approaches to regression have now matured, based on
splines and other types of basis function. Further seminal advances may be hard to
come by unless some major new step is taken, but the realistic application of these
approaches to problems with more than a very small number of covariates still rep-
resents a major challenge. It is perhaps fortunate that many important applications
involve only one covariate, such as time, or only two, perhaps representing spatial
coordinates, or just three, as would be appropriate for spatiotemporal modeling of
climatic behavior or three-dimensional image modeling.

As promised, I shall refer more than once to developments in the computer
science or artificial intelligence literature, and here it is appropriate to comment on
the class of models known as artificial neural networks and, in particular, those
called multilayer perceptrons or feed-forward networks. As indicated for example
in Cheng and Titterington (1994), these have a direct interpretation as complicated
nonlinear classifiers or regression models, depending on the nature of the response
variable or variables. They have certainly been applied to complicated scenarios
with vast numbers of covariates, for example, in optical character recognition in
which there is a covariate for each pixel in a fine-resolution pixelated image.
Strictly speaking, these models are parametric, but they are so rich that their effect
is essentially nonparametric.
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17.2 Latent-variable problems

The incorporation of latent variables represents one way of enriching an otherwise
simple model with a view to rendering it more realistic and widely applicable. Mix-
ture models provide a good example of this, with the latent variable corresponding
to the mixture-component indicator of an observation. Of course, in some appli-
cations, such a latent variable is actually a real but missing variable, such as the
disease category of an undiagnosed patient, and then the mixture distribution mod-
els the marginal distribution of certain observed quantities, but there seems to be
an ever-increasing use of mixture models as flexible structures in which the latent
variable does not necessarily have a physical meaning. Of course, there may be
some post hoc attempt to interpret the meaning of the latent variable, as in factor
analysis, which corresponds to the case of continuous latent variables.

If we restrict ourselves for the time being to a multinomial latent variable, as is
the case with mixture models, it is undeniable that interest is still remarkably high,
especially if one includes certain extensions. With mixture data, the latent vari-
ables or states for different observations are assumed independent, but one might
consider imposing some dependence among then. For example, if the latent states
are assumed to follow a Markov chain then we have the class of hidden Markov
chains, more usually called hidden Markov models. For some time now, these
models have found application in areas such as ecology and speech modeling, and
more recently they have been widely used in the context of DNA sequencing. If
we generalize further, move into two dimensions and assume that the hidden states
follow a Markov random field then we produce the type of model that became
popular in statistical image analysis (Geman and Geman, 1984; Besag, 1986) and
which kick-started the revolution in Gibbs sampling and Bayesian computation in
general; see later. Here again the computer science community has shown con-
siderable interest, with further variations on mixture models, such as the so-called
hierarchical mixtures of experts models (Jordan and Jacobs, 1994) and mixtures of
factor analyzers (Ghahramani and Beal, 2000; Fokoué and Titterington, 2003), the
latter of which contains both discrete and continuous latent variables.

17.3 Computation: non-Bayesian

As mentioned in the introduction, the practical viability of models and methods
relies on computational feasibility, and, if a non-Bayesian approach is adopted, the
most crucial issue in modern statistics is the practicality of maximum likelihood
estimation. For many decades, the numerical difficulties of implementing prob-
lems of maximum likelihood estimation in Gaussian mixture problems restricted
parameter estimation to ad hoc methods and Karl Pearson’s version of the method
of moments. In general, in the context of latent-variable problems, the fact that
the contributors to the likelihood are themselves marginal densities without a
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neat closed-form expression renders the likelihood unwieldy and not amenable
to explicit maximization. This led to the need for numerical methods, such as
Newton–Raphson, gradient ascent, and of course the EM algorithm and its many
refinements and derivatives.

The impact of the initial EM paper by Dempster, Laird, and Rubin (1977) has
been astonishing and continuing. Its level of citation seems still to be very high and
its pervasiveness is truly impressive. Again, I should like to emphasize its fame
and influence on the computer science and machine learning literature, where many
versions of the algorithm have been developed for the models, often based on latent
variables, used there. Some nice foundational work has also appeared, such as the
interpretation of the EM steps as a pair of maximizations; see for example Amari
(1995) and Neal and Hinton (1999).

Various adaptations have been made to the EM algorithm to speed it up or to
deal with difficulties of implementation. An initial attraction of the method was
that the M-step is easy if complete-data maximum likelihood is easy, so that the
iterative stages could be explicit provided the E-step is also available in closed
form. This is not always possible. For example, given data from a hidden Markov
random field, neither the E-step nor the M-step can be done explicitly. A num-
ber of ways of dealing with these problems, none of them totally satisfactory,
have been formulated. For instance, the expectation required in the E-step, of the
high-dimensional distribution of the latent states given the data, might be approx-
imated by Monte Carlo, based on simulations, but generation of such simulations
requires time-consuming Gibbs sampling. An alternative idea is to approximate
the conditional distribution, which reflects complicated interdependence among the
latent states, by something much simpler, such as an independence model. This
leads into the ideas of variational approximations and the use of so-called mean-
field approximations, which first evolved in the statistical-physics literature. These
modifications seem to work quite well empirically (see for instance Zhang, 1992),
but their theoretical properties remain unresolved and of interest, to me at least.
Variational approximations have also been used to obtain computationally feasible
lower bounds for the values of unwieldy likelihoods; for example, Jordan et al.,
(1999) apply this approach to certain graphical models with hidden variables, such
as hidden Markov models and Boltzmann machines. Again, some theoretical issues
are unresolved in general, such as the consistency or otherwise of the estimator
defined by the maximizer of the lower-bound surface.

17.4 Computation: Bayesian

By direct analogy with the problems incurred by maximum likelihood estimation,
Bayesian analysis of the complex models that are required for explaining data sets
of interest in the modern world is nontrivial. Straightforward conjugate analysis
of exponential-family models is not sufficiently rich. The EM algorithm certainly
helped here also, in often facilitating the computation of posterior modes, but
the Bayesian computational revolution began in earnest with Geman and Geman
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(1984), and Gelfand and Smith (1990), as the full potential of Gibbs sampling and
other forms of Markov chain Monte Carlo (MCMC) methods started to be revealed;
of course, the methodology was not totally new, having many antecedents in the
statistical-physics literature and in Hastings (1970). Gibbs sampling is arguably the
simplest and most pervasive of the techniques, but other methods include versions
of Metropolis–Hastings algorithms, importance sampling, and so on. Important
issues concern the convergence of the algorithms, and strategies for generating
multiple samples from the posterior distribution of interest; see for example, the
work of Gelman and Rubin (1992). Helpful recent thumbnail sketches of these
topics are given by Cappé and Robert (2000) and Gelfand (2000). The former
paper identifies perfect sampling and adaptive or sequential sampling as important
current areas. With perfect sampling, one can guarantee convergence of the sam-
pling algorithm at a certain stage, but there are doubts about the scope of problems
to which it can confidently be applied. Sequential approaches include the group of
techniques known as particle filtering; see for example Doucet et al. (2001).

These simulation-based methods have been complemented by some determin-
istic techniques. In the statistical literature, the most well-known idea has been the
method of Laplace approximations (see for example Tierney and Kadane, 1986) that
has been particularly valuable in the evaluation of integrals of interest to Bayesians.
On a different tack, the computer science literature has publicized a class of so-
called variational Bayes approximations. These have been applied in particular to
latent-variable problems such as mixtures, as approximations to the joint posterior
distribution of the model parameters and the latent variable indicators. One general
approach is to choose a variational posterior of a prescribed simplified form that is
as close as possible to the true posterior according to Kullback–Leibler divergence.
Typically, the level of “simplification” involves assuming that the indicators and
the model parameters are independent, a posteriori. In many cases, this leads to
workable algorithms with good empirical results. However, theoretical issues are
still being resolved; in principle, MCMC should reflect the true posterior distribu-
tion, once convergence has occurred, whereas that cannot really happen with the
variational approach. Some key references are Corduneanu and Bishop (2001) and
Ueda and Ghahramani (2003), with more citations provided in Titterington (2004).

17.5 Prospects for the future

The evolution of statistical modeling and computation will surely continue in tan-
dem as it has done over the last 100 years or so, with models becoming more
flexible in order to provide meaningful answers to questions about increasingly
complicated and voluminous data sets. The wealth of application areas will guar-
antee this; a more-or-less randomly chosen issue of JASA Applications Section,
from September 2003, dealt with a range of topics, from a multistage model for the
life cycle of grasshoppers to sampling mechanisms of long-period comets, including
on the way the application of wavelets to colon carcinogenesis, the assessment of
higher education, hierarchical Bayes modeling of consumer purchasing, and papers
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about climate change. The nature of the modeling process will no doubt change,
perhaps becoming more hierarchical or more nonparametric, and the distinction, if
such exists, between mainstream statistics and machine learning will become even
more blurred (Hastie et al., 2001); I have several times noticed that, according
to the announcements of conferences in machine learning, “Bayesian statistics”,
“graphical models”, and even “statistics”, are in fact already thought of as being
topics within the umbrella of machine learning! Notwithstanding this trend, long-
standing ideas may well have new leases of life, as has recently been the case
with multiple testing on a massive scale, in contexts such as functional imaging
(Genovese et al., 2002) and simultaneous inference for the differential expression
of thousands of genes in microarray analysis (Storey and Tibshirani, 2003).
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Treatment effects in
before-after data

Andrew Gelman1

18.1 Default statistical models of treatment effects

The default analyses for experiments and observational studies assume constant
treatment effects. The usual modeling or Bayesian approach with ignorable treat-
ment assignment starts with a constant treatment effect; for example, yi = β0 +
β1Ti + β2x2i + β3x3i + · · · + εi , where Ti is the treatment variable (most simply,
an indicator that equals 1 for treated units and 0 for controls). In Fisher’s classical
test, the null hypothesis is that treatment effects are zero for all units. More gen-
erally, this approach can be inverted to obtain confidence intervals for a constant
treatment effect. Neyman (1923) allowed the possibility for varying effects (see
Rubin, 1990) but only as a goal toward estimating or testing hypotheses about
average treatment effects.

Before-after designs have been much discussed in the statistical literature (see
Brogan and Kutner, 1980; Laird, 1983; Crager, 1987; Stanek, 1988; Stein, 1989;
Singer and Andrade, 1997; Yang and Tsiatis, 2001). It is recognized that treatment
effects can vary with pretreatment covariates (x2, x3, . . . in the above model), and
that these interactions can be substantively important (see Dehejia, 2004). We argue
here that interaction between treatment and covariates is a general phenomenon

1Department of Statistics and Department of Political Science, Columbia University, New York. We
thank Gary King, Iain Pardoe, Don Rubin, Hal Stern, and Alan Zaslavsky for helpful conversations
and the National Science Foundation for financial support.
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that can be seen as deriving from an underlying variance components model. We
posit fundamental variation among experimental (or observational) units that is not
fully captured in pretreatment predictors and manifests itself in experimental or
observational outcomes.

18.2 Before-after correlation is typically larger for
controls than for treated units

Our point is not merely that treatment effects vary—in practice, everything varies—
but that they vary in systematic, predictable ways. We begin by reviewing a
ubiquitous pattern in experiments and observational studies with before-after data:
the correlation between “before” and “after” measurements is commonly higher
for controls than in the treatment group.

An observational study of legislative redistricting

Figure 18.1 gives an example from our research on the effects of redistricting
on the partisan bias of electoral systems (Gelman and King, 1994). The sym-
bols in the graph represent state legislatures in election years (e.g., California in
1974), with the estimated “partisan bias” (a measure of the fairness of the elec-
toral system) of the legislature in that year plotted versus the estimated partisan
bias in the previous election. The small dots in the graph represent “control”
cases in which there was no redistricting, and the larger symbols correspond to
“treated” cases, or redistrictings. The treatment has three levels—corresponding
to redistrictings controlled by Democrats, Republicans, or both parties—but here
we consider all treatments together. Elections come every two years and redis-
tricting typically happens every 10 years, so most of the data points are controls.
The correlation between before and after measurements is much larger for con-
trols than treated cases. (The regression lines for the three levels of treatment
are constrained to be parallel and equally spaced because there were not enough
data points to accurately estimate separate slopes or separate effects for the two
parties.)

From the usual standpoint of estimating treatment effects, the interaction between
treatment and x (estimated partisan bias in previous election) in Figure 18.1 is
dramatic—and, in fact, we had not thought to include an interaction in our model
until it jumped out at us from the graph. Stepping back a bit, however, the different
slopes for the two groups should be no surprise at all. In the control cases with
no redistricting, the state legislature changes very little, and so the partisan bias
will probably change very little from the previous election. In contrast, when the
legislative districts are redrawn, larger and more unpredictable changes occur.

In fact, in this example, the interaction effect of redistricting—that it tends
to reduce partisan bias—is larger than the original object of this study, which
was the partisan advantage of redistricting (the slight difference between the lines
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Figure 18.1 Effect of redistricting on partisan bias. Each symbol represents a state
and election year, with dots indicating control cases (years with no redistricting)
and the other symbols corresponding to different types of redistricting. As indicated
by the fitted regression lines, the “before” value is much more predictive of the
“after” value for the control cases than for the treated (redistricting) cases. In
contrast to the minor differences between Democratic, bipartisan, and Republican
redistricting, the dominant effect of the treatment is to bring the expected value of
partisan bias toward 0, and this effect would not be discovered with a model that
assumed parallel regression lines for treated and control cases. From Gelman and
King (1994).

for Democratic, bipartisan, and Republican treatment lines in Figure 18.1). It was
crucial to model the variation in the treatment effects to see this effect.

An experiment with pretest and posttest data

Figure 18.2 summarizes before-after correlations from an educational experiment
performed on a set of elementary-school classes.2 In each of the four grades, the
classes were randomized into treated and control groups, with pretest and posttests
taken for each class. Figure 18.2 shows the correlation between before and after
measurements, computed separately among the control and treated classes. At each
grade level, the correlation is higher for the controls.

2The treatment in this experiment was exposure to a new educational television show called “The
Electric Company.” The experiment was conducted around 1970 and used as an example in Don Rubin’s
course at Harvard University in 1985.
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Figure 18.2 Correlation of pretest and posttest scores for an educational experi-
ment, for control and treated classrooms in each of the four grades. Correlations are
higher in the control groups, which is consistent with models of varying treatment
effects.

As in our previous example, the pattern of correlations makes sense: the pretest
is a particularly effective predictor of posttest scores for the control classes, where
no intervention has been imposed (except for a year of schooling). In the treatment
group, it is reasonable to expect the intervention to have different effects in different
classrooms, thus attenuating the correlation of before and after measurements.

Congressional elections with incumbents and open seats

We give one more example of before-after correlations, in an observational study
of the effect of incumbency in elections in the US House of Representatives.3 The
units in this example are Congressional districts, the before and after measurements
are the Democratic Party’s share of the vote in two successive elections, and the
“treatment” is incumbency. For simplicity, we separately analyze in each year the
seats held by Democrats and by Republicans.

In the context of our discussion here, the “control” districts are those where
the incumbents are running for reelection, and the “treated” districts are the open
seats, where the incumbent party is running a new candidate. We use this labeling
because the races with incumbents represent less change from the previous election,
whereas running a new candidate can be viewed as an intervention. The effect of
incumbency in a given district is then the negative of the treatment effect as
defined here.

Figure 18.3 shows the correlations between the Democratic vote shares in each
pair of two successive elections, computed separately for controls (incumbents

3See Gelman and King (1990) and Gelman and Huang (2004) for details.



TREATMENT EFFECTS IN BEFORE-AFTER DATA—GELMAN 199

1900 1920 1940 1960 1980 2000

0.
0

0.
2

0.
4

0.
6

0.
8

Year

C
or

re
la

tio
n

Incumbents

Open seats

Figure 18.3 Correlations of party vote share in each pair of successive Congres-
sional elections in the past century, computed separately for the incumbents running
for reelection (the “control group”) and open seats (the “treatment group”). Corre-
lations are consistently higher in the control group, which makes sense since there
is less change between before and after in these districts. In the early part of the
century, when correlations in the two groups were about the same, the effect of
incumbency was very small.

running) and treated districts (open seats).4 As in our previous examples, the before-
after correlation is much higher in the control group. Again, this picture is consistent
with the idea that there is little change among the controls, whereas a varying
treatment effect reduces the predictive importance of past data.

A careful look at Figure 18.3 reveals that the before-after correlations within the
two groups did not diverge until the second half of the century. A separate analysis
(not shown here) estimates the average advantage of incumbency in Congressional
elections to be near zero for the first half of the century, then increasing dramatically
through the 1950s and 1960s to its current high level. Thus, as the treatment effect
increased, its variation also increased. (The jaggedness of the solid line in Figure
18.3 can largely be explained as sampling variability given the small number of
open seats, especially in recent decades.)

4We exclude uncontested elections and years ending in “2,” when district lines are redrawn. Within
each group (incumbents running and open seats), we compute correlations separately for the Democratic-
and Republican-held seats: Figure 18.3 presents the averages of the within-party correlations for each
pair of election years.
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18.3 A class of models for varying treatment effects

When only “after” data are available in an experiment, it is not possible to see
the consequences of varying treatment effects, and the classical t interval gives
appropriate superpopulation inference for average treatment effects (see Gelman,
Carlin, Stern, and Rubin, 2003; Section 7.5). In contrast, treatment effects that vary
as a function of “before” data can be modeled and estimated in a number of ways.

Plots such as Figure 18.1 suggest regression models with treatment effects
interacted with pretreatment covariates. We would like to think more generally
of treatments that can have varying effects, both additive and subtractive. For
example, suppose we label the “before” and “after” measurements for unit j as
yjt , t = 0, 1, and fit the two-error-term model,

before: yj0 = (Xβ)j0 + αj + γj0 + εj0

after: yj1 = Tj θ + (Xβ)j1 + αj + γj1 + εj1, (18.1)

where T represents the indicator for treatment (which in this setup occurs between
the “before” and “after” measurements) and θ is the average treatment effect—
the usual object of inference in an observational study. The matrix X represents
other linear predictors in the regression model (e.g., demographic variables for
a model of individuals, or district-level characteristics for a model of election
outcomes), and the unit-level term αj represents persistent variation among units
not explained by the predictors. The error terms εj0, εj1 are the usual independent
observation-level errors.

The terms γj0, γj1 take model (18.1) beyond the usual longitudinal or panel-
data hierarchical regression framework, and our key innovation is in linking this
variance component with the treatment, so that it is affected differently by the
treatment and controls. Various models are possible here, all of which allow treat-
ment effects to vary by unit and have the by-product that before-after correlation
is higher for controls than treated units. We list some possibilities here.

Replacement treatment error. Suppose that under the control condition, γj is
unchanged (that is γj1 ≡ γj0), but under the treatment, γj0 and γj1 are independent
draws from the same probability distribution. In this model, the treatment has the
effect of replacing a random error component. This could make sense if the control
corresponded to staying with a particular regimen and the treatment corresponded
to switching to a new approach. For example, in the redistricting example in
Figure 18.1, the treatment replaces an old districting plan with a new one.

Additive treatment error. Suppose that γj0 ≡ 0 for all units, and γj1 = 0 for
controls, but is drawn from a distribution for treated units. In this model, the
treatment adds a source of variability that was not present before. This could
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happen if the treatment is a new, active intervention (for example, the educational
TV program in Figure 18.2).

Subtractive treatment error. For a different model, suppose that γj0 comes
from some probability distribution, and under the control condition, γj1 ≡ γj0),
but under the treatment, γj1 ≡ 0. In this model, the treatment subtracts a source
of variability. This could apply to a setting in which an active intervention has
already been applied to the “before” measurements, and the control and treatment
conditions correspond to staying with or dropping the intervention. For example,
in the incumbency example in Figure 18.3, the “treatment” corresponds to an open
seat—the disappearance of an incumbent (see Gelman and Huang, 2004).

More formally, using the potential-outcome notation of Rubin (1974), the error
terms γj1 could be written as γTj1 , where T = 0 or 1 corresponds to the control
and treatment conditions. In any case, these models, or more general distributions
on these error terms, capture the idea that the treatment changes the affected units
as well as having some average additive effect. Similar models are used in animal
breeding to model genetic variation and treatment effects (see Lynch and Walsh,
1988; Sargent and Hodges, 1997) present related ideas for hierarchical models of
complex regression interactions. We would also like to formulate a class of models
in which treatments with larger main effects naturally have larger variation, as this
is another property that often seems to hold in practice.

18.4 Discussion

It has been argued that statistical models should be adapted individually to applied
problems (see, for example, Chapter 27 in this volume). However, in practice,
default procedures and models are used in a wide variety of settings. This is not
merely for convenience (or because certain models are easier to access in statis-
tical software packages such as SPSS) but because default models often work.
Methods such as t-intervals, the analysis of variance, and least-squares regres-
sion have been effective in all sorts of problems (see, for example, Snedecor and
Cochran, 1989), and much of the methodological research of the past few decades
has resulted in extensions of these and other approaches. Our current toolbox of
default methods includes t models for robust regression and multivariate imputation
(generalized from the normal; see Liu, 1995), wavelet decompositions (generalized
from Fourier analysis; see Chapter 31 in this volume), generalized linear models
(McCullagh and Nelder, 1989), splines and locally weighted regressions (Wahba,
1978; Cleveland, 1979), and model averaging for regressions and density estimates
(Hoeting, Madigan, Raftery, and Volinsky, 1999; Richardson and Green, 1997). All
these methods have been demonstrated for specific examples but are intended to
be flexible generalizations of previous default approaches.
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In this chapter, we have tried to motivate an expansion of the default model of
experiments and observational studies to allow for treatment effects to vary among
units. This variation can sometimes be expressed as interactions with pretreatment
measurements but more generally can be understood as effects on unobserved unit-
level variance components of the sort that are used in instrumental variables and
principal stratification (see Chapters 8 and 9 in this volume). Our models are still
under development and we hope they will reach “default” stage sometime in the not
so distant future, as a small part of a general applied framework for causal inference
deriving ultimately from the potential-outcome perspective of Rubin (1974).



19

Multimodality in mixture
models and factor models

Eric Loken1

As a psychology graduate student, I worked with Kagan who viewed infant temper-
ament as a set of qualitatively different types, rather than as continuous dimensions
along which infants differ (Kagan, 1994). I had been using cluster analysis to
explore latent group structure when Don Rubin introduced me to more formal anal-
yses he and Hal Stern had completed on a subset of the same infant data (Rubin
and Stern, 1994). For my dissertation, I followed closely the work of Stern et al.
(1994), using latent class analysis—a simple type of mixture model—to explore
Kagan’s data for evidence of temperament types. Inevitably, working with Don led
me to adopt a Bayesian approach to mixture modeling, and of the many challenges
I encountered, one of the most interesting was the label-switching problem. In a
mixture model, each case is assumed to have a missing indicator denoting the latent
class to which it belongs. But this means there are multiple equivalent modes, as
the likelihood and posterior distribution are invariant to arbitrary reorderings of the
class membership labels. The problem is relatively easy to recognize in maximum
likelihood (ML) estimation as the “different” solutions are of equal likelihood and
just represent permutations of the class indicators. In a Bayesian setting, however,
label switching might occur during simulation of the posterior distribution, and
posterior summaries will be biased and have inflated variance if the problem is not
addressed.

The first section of this chapter shows how the label-switching problem can
affect posterior inferences. In the context of a latent class example, I present a

1Department of Human Development and Family Studies, Pennsylvania State University, University
Park, Pa.
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simple technique to limit label switching and improve posterior inference. The
second section extends the discussion to models with continuous latent variables.
There, in the context of an orthogonal factor model, I discuss a similar concern
about multimodality, and show how certain choices of identification constraints
can lead to problems impacting both ML and Bayesian inference.

19.1 Multimodality in mixture models

The label-switching problem in mixture models has long been recognized. Com-
mon solutions have typically centered on applying constraints during simulation or
postprocessing the posterior draws (Celeux, Hurn, and Robert, 2000; McLachlan
and Peel, 2000; Richardson and Green, 1997; Stephens, 2000), with the goal of
keeping the simulation confined to one modal region in the posterior distribution.
A novel method that appears to have promise is to preclassify one or more obser-
vations in order to dampen or eliminate the nuisance modes and leave the mode
of interest largely unaffected. The soundness of the idea is still under exploration.
I report here on an example using latent class analysis (see also Chung, Loken,
and Schafer (in press) for an example with a mixture of exponentials; an argument
regarding preclassifying to identify a model was made in a different context by
Taylor (1995) and Zhuang et al. (2000)).

A latent class model is a simple mixture model with categorical indicators and
the key assumption that the indicators are conditionally independent given class
membership. Suppose a researcher has binary data (low/high) on four measures
of infant reactivity. Specifically, the researcher might observe the infant’s motor
activity, crying, smiles, and vocalizations (let m, c, s, v represent the observed
variables). If there are two latent classes, the probability of observing a specific
data pattern [m, c, s, v] is

πmcsv =
2∑
i=1

πz=iπm|z=iπc|z=iπs|z=iπv|z=i ,

where πz represents the probability a case is in class z, and πm|z=i represents the
conditional probability of the motor score given an infant belongs to latent class i.
Four binary indicators yield 16 possible observed data patterns. If Nr represents
the number of observations with pattern r , the likelihood function, given model
parameters θ , is

p(y|θ) =
16∏
r=1

[
2∑
i=1

πz=iπm|z=iπc|z=iπs|z=iπv|z=i

]Nr
.

Table 19.1 gives population parameters for two latent classes and four binary
indicators. In one class, the infants have high motor and cry reactivity, low smiling,
and low vocalizations; in the other class, the opposite pattern occurs. One sample
of 100 observations was drawn for this example.
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Class 1 Class 2

πz 0.6 0.4
πm=1|z 0.7 0.3
πc=1|z 0.7 0.3
πs=1|z 0.3 0.7
πv=1|z 0.3 0.7

Table 19.1 Population parameters for two latent classes with four manifest binary
indicators.
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Figure 19.1 Profile likelihood with πm|z=1 and πz fixed. Inner contour is for
logL > −267, outer contour is for logL > −270 (logLmax = −266.4).

Before proceeding to a Bayesian analysis, it is instructive to use some graphical
techniques to represent the contours of the likelihood. Figure 19.1 shows the profile
likelihood for these data, calculated by maximizing over the free parameters after
fixing πm=1|z=1 and πz=1 at specific values. The figure has rough edges because the
likelihood is maximized on a 100 × 100 grid and because only three estimates were
made at each location (requiring 30,000 runs of EM). The most notable feature is
the two modal regions corresponding to estimates in the neighborhood of the two
equivalent maximum likelihood estimates (MLEs). Note also that the likelihood is
actually quite flat, indicating a good deal of uncertainty in the estimates.

From a Bayesian perspective, the posterior distribution, p(θ |y), is proportional
to the product of the prior distribution and the likelihood. As the class label and
the observed indicators are binary variables, the natural conjugate prior for all
parameters is the Beta distribution. Therefore, we set p(πm|z) = Beta(αm|z, βm|z)
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(and similar for the other three indicators), and p(πz) = Beta(αz, βz). The full
posterior distribution is

p(θ |y) = p(πz)p(πm|z)p(πc|z)p(πs|z)p(πv|z)

×
16∏
r=1

[
2∑
i=1

πz=iπm|z=iπc|z=iπs|z=iπv|z=i

]Nr

The posterior distribution can be simulated following Stern et al. (1994, 1995).
The Markov chain Monte Carlo (MCMC) algorithm iterates between the condi-
tional distribution of the class indicators given the current parameter estimates,
and the distribution of the parameters given the complete data (i.e., including the
latent class indicators). However, it is possible (and in this example highly likely)
that the simulation will move back and forth between the two modal regions shown
in Figure 19.1. Figure 19.2 shows that mode switching is clearly evident in a chain
of 40,000 draws from the posterior distribution for πm|z=1.

Posterior means derived by averaging over chains such as the one shown in
Figure 19.2 will be considerably biased to 0.5. Table 19.2 shows that the poste-
rior means are clearly biased in the expected direction relative to the population
parameters shown in Table 19.1.

Solutions to the label-switching problem often involve applying constraints or
somehow regrouping the posterior draws (Richardson and Green, 1997). However,
we can see from the first figure that care must be taken in applying an appropriate
constraint. For instance, setting πz=1 > πz=2 (i.e., setting class 1 to be the majority
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Figure 19.2 Posterior draws for πm|z=1. Abrupt shifts represent mode switching,
where the labels z = 1 and z = 2 change meaning.
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Class 1 Class 2

πz 0.52 (.24) 0.48 (.24)
πm=1|z 0.52 (.29) 0.44 (.29)
πc=1|z 0.52 (.20) 0.45 (.20)
πs=1|z 0.48 (.18) 0.52 (.19)
πv=1|z 0.51 (.30) 0.58 (.30)

Table 19.2 Posterior means (standard deviations) calculated over MCMC chain.
Owing to label switching, the means are biased to 0.5 and the variances are large.

class) would not be an effective constraint because it would fix the MCMC algo-
rithm to the right side of the figure, and still allow label switching for the motor
parameter. In this case, the constraint πm=1|z=1 > πm=1|z=2 would probably be
better, defining class 1 as the class in which the infants are most likely to have
low motor scores.

A different approach might be to assign one of the observations to a specific
class. If the observation is judiciously chosen, the effect should be to leave one
of the modes of interest virtually untouched, and to “dampen” the nuisance mode.
How can we choose an observation to preclassify? In the simulated data, there
were 14 observations with data pattern [1,1,2,2] (i.e., low motor and cry, and high
smiling and vocalizing). If we assume that one of these observations is known to
be in class 1, the modified likelihood looks strikingly different. Figure 19.3 shows
the profile likelihood calculated in the same manner as in Figure 19.1, except with
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Figure 19.3 Profile likelihood with πm|z=1 and πz fixed. Inner contour line is for
logL > −267, outer contour is for logL > −270. (logLmax = −266.4).
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the modification that the latent group membership for one case is set to z = 1 with
probability 1. The modification has the desired result of significantly dampening
the second mode while leaving the first mode substantively similar.

The preclassification trick is easy to implement in posterior simulation; all we
really need to do is “move” the one case from the observed data into the prior.
We accomplish this by adding 1 to the appropriate α and β hyperparameters of the
prior distribution and removing the observation from the observed data, ensuring
that the case is always classified to the same latent class at each imputation step
of the MCMC algorithm.

Figure 19.4 shows posterior draws generated under the modified model. There
is still some minor mode switching, but because the density in that region has
been greatly reduced, the algorithm quickly jumps back to the desired mode. The
posterior summaries are now much closer to the true values as the draws from one
mode dominate the chain (see Table 19.3).

The technique of preclassifying one observation to restrict the MCMC for a two-
class mixture model to one dominant mode appears promising, but requires more
study. It is an appealing approach because it is extremely easy to implement and
it does not require continuous monitoring and rejecting draws during simulation
of the posterior distribution (as is necessary with a constraint). The technique
also involves less subjective information than might be thought at first. Although
classifying one of the observations does imply a stronger prior, the modification
can actually be viewed as following from the definition of the model. According
to the model, each case belongs to one of the latent classes, so preclassifying one
case simply defines class 1 as the class to which that observation belongs. In fact,
in a latent class model, the assumption is even weaker because it only stipulates
that one of the cases with a specific observed data pattern belongs in class 1.
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Figure 19.4 Posterior draws for πm|z=1 under modified posterior.
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Class 1 Class 2

πz 0.67 (.16) 0.33 (.16)
πa=1|z 0.71 (.13) 0.25 (.21)
πb=1|z 0.62 (.09) 0.34 (.17)
πc=1|z 0.37 (.09) 0.62 (.16)
πd=1|z 0.29 (.15) 0.79 (.21)

Table 19.3 Posterior means (standard deviations) after preclassifying one case. The
posterior means are closer to the population means, and the variance is significantly
reduced.

Nevertheless, it is clear that some observations are better than others to pre-
classify. The classified observation should have high posterior probability for one
of the two classes. Preclassifying an observation with 0.50 posterior probability of
being in either class does nothing to dampen either mode. Clearly the success of
the technique is not exactly blind to the data.

19.2 Multimodal posterior distributions in
continuous latent variable models

Having become interested in the problem of nuisance modes in the posterior distri-
butions for mixture models, I also started to wonder if there were similar issues in
models with latent continuous variables. One day Rubin dug into his file cabinet to
give me a copy of Rubin and Thayer (1982), the paper in which he outlines an EM
algorithm to estimate exploratory and confirmatory factor models. The empirical
example was a four factor confirmatory model analyzing a set of nine academic
tests (Joreskog, 1969). Following Joreskog’s notation, the model is

y = �x + z,

where for this example y is a 9 × n matrix of observed scores; x is a 4 × n matrix
of factor scores; and z is 9 × n matrix of disturbance terms. In this example, �

is the 9 × 4 matrix of factor loadings connecting y and x. The four factors are
uncorrelated, centered at 0, and have unit variance. We also assume that E(zzt) =
	 is a diagonal matrix of uniquenesses. The factor loadings and uniquenesses
combine to reproduce the variance–covariance matrix of y as follows:

� = ��T + 	.

Assuming a multivariate normal distribution for y, the log-likelihood function is

p(y|�,	) = −1

2
n
[
log |�| + tr(S�−1)

]
.
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As initially suggested in Dempster, Laird, and Rubin (1977), Rubin and Thayer
argued that EM is an effective tool for understanding the likelihood in factor
analysis. Applying it to the Joreskog data, they ran the model from three different
sets of starting values and found three different modes. They argued that the esti-
mation procedures implemented in SEM (structural equation modeling) packages
such as LISREL may miss important features of the likelihood, and they pointed
out that parameter inferences based on symmetric, normal approximations to a
unimodal likelihood may not be accurate.

Bentler and Tanaka (1983) quickly responded that only one of the three modes
identified by Rubin and Thayer (1982) met the technical criteria for a local maxi-
mum, and asserted that multimodality in factor models is actually quite rare. It is
true that Rubin and Thayer may have been hasty in their initial paper (the preprint
that Don gave me had a few inked-in corrections). However, they did raise some
substantive issues with regard to ML estimation of factor models. Even if the other
“modes” they identified were not strictly local maxima, they still represented high
probability regions of the likelihood several standard deviations removed from the
global maximum, an unexpected result if the standard quadratic approximations to
the likelihood were appropriate.

Multimodality analogous to the problem of equivalent modes in mixture mod-
els also arises in factor models. It is well known that the factor loadings are
only uniquely estimated up to ��T: most major structural equations packages
require that at least k(k − 1)/2 loadings are fixed to identify a k factor solu-
tion.

Consider the MLEs for the Rubin and Thayer example given in Table 19.4.
Bentler and Tanaka (1983) fixed λ12 to identify the first two factors. Of course,
this is only a local identification, as there are still four equivalent solutions corre-
sponding to reversals of the polarity of factors 1 and 2.

A simple way to get a visual representation of the likelihood in this case is to
rotate the first two factors maintaining the fixed constraint. If there were no fixed

Variable f1 f2 f3 f4

1 0.71 0∗ 0.15 0∗
2 0.74 0.04 0.22 0∗
3 0.25 0.86 0.33 0∗
4 0.24 0.80 0.08 0∗
5 0.64 0.08 0∗ 0.37
6 0.72 0.07 0∗ 0.15
7 0.57 0.19 0∗ 0.35
8 0.39 0.73 0∗ 0.02
9 0.36 0.74 0∗ −0.12

Table 19.4 Factor loadings (�) at MLE for Rubin and Thayer example. Asterisks
indicate loadings that were fixed to zero.
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Figure 19.5 Tracing values of log-likelihood under orthogonal rotation of the
loadings on factors 1 and 2 from Table 19.4. At each point in the rotation, the
constraint λ12 = 0 is reapplied. The second mode at 180 degrees of rotation cor-
responds to reversing the polarity of the two factors.

loadings, the resulting plot of the log-likelihood versus the θ of rotation would be
a flat line. Under the constraint, the plot traces a curve as in Figure 19.5 with a
second peak at 180 degrees of rotation. (The curve in Figure 19.5 is not a profile
likelihood. I have held the uniquenesses at the same value as in Table 19.4, and
so the depth of the valleys here is exaggerated. The purpose is just to illustrate the
shape and the second equivalent mode.)

All of the above is very well known, but a couple of important points are
worth emphasizing. First, a researcher carrying out a Bayesian analysis of this
factor model would have to be attentive to the multiple modal regions. From the
ML perspective, the four possible modes due to reversals of the first two factors are
immediately seen to have the same substantive interpretation. However, posterior
simulation must not be allowed to sample from more than one of the symmetric
modes, or the summaries will be biased to zero and the variances will be inflated.
Most researchers who apply Bayesian methods for latent variable models do not
distinguish between local and global identification of the models.

The constraints sufficient for identification in ML estimation are generally
not sufficient for Bayesian estimation. But at least in the zero loading case, the
equivalent modes are widely separated and under careful consideration reasonable
constraints can be applied to restrict the simulation to one mode (see for example
Geweke and Zhou, 1996). Something more interesting, however, occurs when a
loading is fixed to a nonzero constant in order to identify the first two factors. Orig-
inally, Joreskog (1969) thought that as long as k(k − 1)/2 loadings were fixed, a
k factor model would be locally identified. However, Jennrich (1978) showed that
when nonzero loadings were fixed, there were still equivalent modes in the like-
lihood, but they were not as transparent as in the zero loading case. Joreskog
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Figure 19.6 Tracing the log-likelihood with the constraint λ12 = 0.6. A sym-
metric mode is now only a few degrees of rotation removed from the mode of
interest.

and Sorbom (1979) acknowledged this point but concluded that even models with
nonzero constraints were usually locally identified.

The simple rotational technique above can be used to gain some understanding
as to the shape of the likelihood when a nonzero loading is fixed. Figure 19.6
shows the likelihood plotted for an orthogonal rotation of a few degrees of the first
two factors, now maintaining a constraint λ12 = 0.6. Note the two modes separated
by only 60 degrees of rotation. In fact, if we fix λ12 at larger values approaching
0.71 (the MLE for λ11 when λ12 is fixed to zero), the modes converge.

The double mode shown in Figure 6 is a concern for both ML and Bayesian
estimation and inference. From the ML perspective, it is clear that under certain
identification constraints, a quadratic approximation to the mode is inappropriate, as
a second high density region can lie adjacent to it. From a Bayesian perspective,
such a double mode will incur mode switching, and it is doubtful whether any
sensible constraints could be applied to restrict the algorithm to one mode.

Although not exactly the type of multimodality addressed by Rubin and Thayer
(1982), the above examples reinforce their well-founded concerns about inference
in factor models. The likelihood and posterior distributions for these models have
some peculiar properties, and at the very least, researchers employing a Bayesian
approach must recognize a multimodality problem in factor models analogous to
the label-switching problem in mixture models.

19.3 Summary

In this chapter, we have used some simple graphical techniques to explore and
understand symmetries in the likelihood and posterior distributions of latent variable



MULTIMODALITY IN MIXTURE, FACTOR MODELS—LOKEN 213

models. Simple profile likelihood contour plots show the equivalent modes in a
mixture model that correspond to label switching. The same plots also show the
impact of the trick of “preclassifying” one observation to help identify the model
and improve Bayesian inference.

Similarly, a simple representation of the likelihood under orthogonal rotations
of a two-factor model gave a clear picture of the equivalent modes. In the case
where the model is identified by fixing a zero loading, the rotation plot reveals
an expected second mode at 180 degrees. However, in the case where a nonzero
loading is fixed, the rotation plot shows that the symmetric mode may actually be
quite close to the mode of interest, presenting problems for both ML and Bayesian
inference.
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Modeling the covariance
and correlation matrix
of repeated measures

W. John Boscardin and Xiao Zhang1

20.1 Introduction

Advances in computational methods have brought about a recent resurgence of
interest in modeling the covariance and correlation matrix of repeated measures
data. Examples include: Daniels and Kass (2001) who shrink toward known struc-
tures; Barnard, McCulloch, and Meng (2000) who develop one element at a time
jumping rules for MCMC sampling of correlation matrices; Chib and Greenberg
(1998) who place a truncated multivariate normal prior distribution on the vec-
tor of correlations; Shi, Weiss, and Taylor (1996) who develop a semiparametric
approach to covariance matrix estimation for longitudinal data; and Daniels and
Pourahmadi (2002), and Pourahmadi and Daniels (2002) who introduce covariate
models for the parameters of the covariance matrix.

In this chapter, we describe an approach to setting up a model for either the covari-
ance or correlation matrix of repeated measures and discuss MCMC computational
methods for this approach. This methodology unifies concepts described in Boscardin
and Weiss (2004) and Zhang, Boscardin, and Belin (2004). In the covariance matrix
case, the model bridges two important approaches: (i) the inverse-Wishart prior

1Department of Biostatistics, University of California, Los Angeles. This work was partially sup-
ported by NIH grants MH60213, NS30308, and AI28697.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
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distribution with given scale matrix (e.g., Schafer, 1997) and (ii) parametric models
such as those estimated in the SAS Proc Mixed (Wolfinger, Stroup, Milliken, and
Littell, 1990) and the R/S-plus package lme (Pinheiro and Bates, 2000).

More specifically, we consider the problem of performing inference about the
covariance or correlation matrix of zero-mean multivariate Gaussian data,

yi |� ∼ Np(0, �), (20.1)

where i = 1, . . . , n indexes subjects, each of whom is measured p times (e. g., at p
common time points, or on p multiple measures). Extensions to the nonzero-mean
case or the regression setting (so that the mean vector is Xiβ) and to unbalanced
or missing data settings are straightforward and will be presented in Section 20.5.
We will discuss the case in which all or part of � is a correlation matrix. This is
particularly useful if the yi vector (or part of it) contains latent variables as in the
repeated measures multivariate probit model.

For concreteness, the setting we have in mind might involve repeated measures
data on a moderate number of subjects (e. g., n = 50). Each subject may be poten-
tially measured on each of 40 to 50 variables (e. g., quantities A, B, and C at each
of 15 timepoints), but only 10 to 20 variables are recorded per subject on average.
Thus, we would be interested in estimating a covariance matrix of dimension 40 to
50 using 50 data vectors that are typically two-thirds missing. Inference would be
extremely vague if no assumptions were made about �, yet we would like to avoid
a completely parametric model. We now indicate how to achieve a compromise
between these extremes.

20.2 Modeling the covariance matrix

We propose a hierarchical prior distribution for � that is centered around a para-
metric family. Briefly, the idea is to first choose a reasonable parametric family
�(θ) that might capture the important features of �. For example, �(·) might be
an autoregressive matrix of order one, in which case θ is a two-dimensional vec-
tor of the lag-one correlation ρ and the variance parameter σ 2. Next, we assume
� has a prior distribution on the space of covariance matrices, which we denote
CovMat (e.g., inverse-Wishart or Wishart), centered around this parametric struc-
ture with hyperparameters ν, for example, degrees of freedom for the Wishart
distributions. Thus,

�|ν, θ ∼ CovMatν(�(θ)). (20.2)

The model is completed with prior distributions on ν and θ . In most settings,
ν will be a degrees of freedom parameter; for computational simplicity, we allow
it to have support on the positive real numbers instead of the natural numbers, and
thus a gamma distribution would be a natural choice for a prior distribution. In the
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examples of Sections 20.7 and 20.8, ν is fixed and might be thought of as a tuning
parameter for the amount of smoothing performed. Similar models have appeared
in the pre-MCMC literature (Chen, 1979; Dickey, Lindley, and Press, 1985), but
computational limitations only allowed for very specific cases to be used.

If� is an unrestricted covariance matrix, then we achieve conditional conjugacy
by using the inverse-Wishart distribution:

�|ν, θ ∼ Inv-Wishartν((ν�(θ))
−1). (20.3)

Here, the degrees of freedom parameter, ν, regulates the fidelity to the parametric
model. A large value of ν corresponds to little possible deviation from the paramet-
ric model; conversely, a small value of ν allows � to be quite different from �(θ).
Model (20.3) bridges several important special cases. First, parametric models for
� correspond to the case ν → ∞. Second, the commonly used inverse-Wishart
prior with known scale matrix (e.g., Schafer, 1997) corresponds to a point mass
prior for θ . Finally, letting ν → −1 and �(θ)→ 0 corresponds to a commonly
used noninformative prior on �.

As part of the inference procedure described next, we obtain an estimate �(θ̂),
where θ̂ is some estimate of θ , for example, the posterior mean. This might be
thought of as the best parametric approximation to �. We also obtain direct infer-
ence about and an estimate of � itself, for example, the posterior mean of �. These
quantities can be compared to see where departures from the parametric model are
most noticeable.

Computation for the hierarchical covariance model

Let Y be an n by p matrix whose ith row is the data vector for the ith case,
yTi . Our goal is to generate simulations from the distribution p(�, θ, ν|Y). The
posterior density is proportional to the likelihood in equation (20.1) times the prior
density given in equation (20.2). In the inverse-Wishart case of equation (20.3),
we have

p(�, θ, ν|Y) ∝
(

2νp/2�p
(ν

2

))−1 |�|−n/2 exp

(
−1

2
tr(�−1YTY)

)
(20.4)

× |ν�(θ)|ν/2|�|−(ν+p+1)/2 exp

(
−1

2
tr(�−1ν�(θ))

)
p(θ)p(ν),

where �p(ν/2) ≡ ∏p

j=1 �((ν + 1 − j)/2). As this is not a tractable density func-
tion, we use a Metropolis-within-Gibbs approach to generate simulations that
converge in distribution to simulations from the joint posterior distribution.

At the mth step of the algorithm, we have values (�(m), θ (m), ν(m)):

1. [�, θ |ν(m),Y]. As described in Boscardin and Weiss (2004), we are able
to draw directly from the joint conditional distribution of � and θ . We
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accomplish this by integrating � out from equation (20.4), so that θ can be
drawn conditional on only Y and ν. This helps to reduce autocorrelation in
the sampler (Liu, 1994). The details of the two substeps are

(a) [�|θ(m), ν(m),Y]. Generate �(m+1) from Inv-Wishartν+n((ν�(θ)+
YTY)−1).

(b) [θ |ν(m),Y]. If the sampler is currently at θ(m), propose a candidate θ∗
according to a jumping kernel q(·|θ(m)) (e.g., multivariate normal with
variance and correlation tuned in burn-in period). Set θ(m+1) = θ∗ with
probability min(1, αθ ), where

αθ = p(θ∗)q(θ (m)|θ∗) |�(θ∗)|ν/2 |ν�(θ∗)+ YTY|−(ν+n)/2
p(θ(m))q(θ∗|θ(m)) |�(θ(m))|ν/2 |ν�(θ(m))+ YTY|−(ν+n)/2 ,

(20.5)
otherwise set θ(m+1) = θ(m).

2. [ν|�(m+1), θ (m+1),Y]. For the examples in Sections 20.7 and 20.8, we fix ν
to a set value, so that it is a tuning parameter for the amount of smoothing.
Should we wish the data to determine the amount of smoothing, we can
easily include ν in the MCMC simulation. A convenient prior distribution
is ν ∼ Gamma(αν, βν). No conjugacy is obtained, so we would perform a
Metropolis–Hastings step here.

20.3 Modeling the correlation matrix

In many settings, including the multivariate probit model described in Section 20.6,
the vector yi in equation (20.1) may actually represent a scale-free, latent vector,
in which case we are only interested in estimating its correlation matrix R. We
might consider attempting to mimic the approach of equation (20.2) and put a
prior distribution, which we will denote CorMat, on R. Unfortunately, distributions
that are supported only on the space of proper correlation matrices are at a real
premium. One of the few available ones, in the sense that we can both simulate
directly from it and compute its density function, is what we term the Wishart
correlation (WC) distribution (Gupta and Nagar, 2000). The WC density function is
obtained by integrating out the variance components from the density function for a
Wishart with a nonsingular diagonal scale matrix. This leads to p(R) = WCν(R) =
�(ν/2)p/�p(ν/2)|R|(ν−p−1)/2. Nondiagonal scale matrices make this integration
intractable. An inverse-Wishart correlation (IWC) density can be similarly obtained
by integrating out the diagonal elements of an inverse-Wishart density function with
diagonal scale matrix.

The WC and IWC distributions lack flexibility for two reasons: (i) they are
centered around the identity matrix, which means the posterior density is shrunk
toward a matrix with zero correlations, and (ii) there is no way to allow a gener-
alization to the �(θ)-type family of centers. As an additional complication, we do
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not get conjugacy for the � step of an MCMC algorithm by using either the WC
or IWC distribution.

To circumvent these issues, we use parameter expansion (Liu, Rubin, and Wu,
1998) to create models for the correlation matrix. The central idea is to augment
the correlation matrix R, with a diagonal matrix of variances D to create a covari-
ance matrix � = D1/2RD1/2. We then place a Wishart prior distribution on �
with ν degrees of freedom and scale matrix �(θ)/ν, so that � has prior mean
�(θ). The change of parameterization from � to (R,D) gives a Jacobian term
J�→R,D = (∏p

j=1 Djj )
(p−1)/2. We term the prior density on (R,D) the PX-Wishart

prior and denote p(R,D) = PXν(R,D|�(θ)/ν) = J�→R,DWishartν(�|�(θ)/ν).
The conjugacy that is gained in the covariance matrix situation from using the
inverse-Wishart distribution is unfortunately lost in general here because of this
Jacobian term; one exception is described in Liu (2001), where a Jeffreys prior
distribution for R leads to an inverse-Wishart full conditional distribution for �.
We will thus use the Wishart distribution in what follows for simplicity.

Computation for the hierarchical correlation model

The joint posterior for R, D, θ , and ν can be found as:

p(R,D, θ, ν|Y) ∝
(

2νp/2�p
(ν

2

))−1 |R|−n/2 exp

(
−1

2
tr(R−1YTY)

)

×
 p∏
j=1

Djj

(p−1)/2

|�(θ)/ν|−ν/2|D1/2RD1/2|(ν−p−1)/2

× exp

(
−1

2
tr(D1/2RD1/2(�(θ)/ν)−1)

)
p(θ)p(ν). (20.6)

Notice that inference for D does not depend on the data.
This posterior density is even more intractable than in the covariance matrix

case, and we therefore use an MCMC algorithm to perform inference. At the mth
step of the algorithm, we have values (R(m),D(m), θ (m), ν(m)):

1. [R,D|θ(m), ν(m),Y]. As mentioned at the end of the previous section, we now
need a Metropolis–Hastings step for (R,D). We extend the same idea that we
used for putting a model on R to simulating a candidate for this step: generate
�∗ = (D∗)1/2R∗(D∗)1/2 from Wishartν0(�

(m)/ν0). Set (R(m+1),D(m+1)) =
(R∗,D∗) with probability αRD, where

αRD = q((R(m),D(m))|(R∗,D∗))p(R∗,D∗, θ (m), ν(m)|Y)
q((R∗,D∗)|(R(m),D(m)))p(R(m),D(m), θ (m), ν(m)|Y) , (20.7)

q((R1,D1)|(R0,D0)) = J�1→R1,D1 Wishartν0(�1|�0/ν0) is the jumping ker-
nel, and p(R,D, θ, ν|Y), which is proportional to p(R,D|θ, ν,Y), is the
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posterior density from equation (20.6). The covariance matrix �(m+1) deter-
mines R(m+1) and D(m+1), so we condition on �(m+1) in the next two steps
for simplicity.

2. [θ |�(m+1), ν(m),Y]. It is no longer possible to analytically integrate out �.
We propose a candidate θ∗ according to a jumping kernel q(·|θ(m)), and
accept θ∗ with the appropriate probability.

3. [ν|�(m+1), θ (m+1),Y] can be performed similarly to the ν step for the covari-
ance sampler.

20.4 Modeling a mixed covariance-correlation
matrix

The model of Section 20.3 can be generalized to the case in which a portion of yi
has meaningful variance components, and the remainder is scale-free. We define
vi to be the portion of yi with meaningful scale and zi the scaleless portion. In
defining a split of the p by 1 vector yi into two subvectors, say vi and zi , we
will use a slight abuse of notation and write yi = (ui, zi), even though the correct
notation is yi = (uTi , zTi )T . Let � denote the combination covariance-correlation
matrix of the yi = (vi, zi) vectors

� =
(
�vv �vz

�Tvz Rzz

)
=
(

D1/2
vv Rvv D1/2

vv D1/2
vv Rvz

RTvz D1/2
vv Rzz

)
. (20.8)

We expand the parameterization of � to include a diagonal scale matrix Dzz
for zi . The expanded matrix is called � and we can write � = D1/2RD1/2, where

D =
(

Dvv 0

0 Dzz

)
, and R =

(
Rvv Rvz

RTvz Rzz

)
. (20.9)

We define a prior density on (R,D) as the product of the Jacobian for trans-
forming � to (R,D) times a Wishart density for � with ν degrees of freedom and
scale matrix �(θ)/ν. Computation proceeds as in Section 20.3.

20.5 Nonzero means and unbalanced data

The models we have presented can be easily extended to the case of nonzero
means. These are often expressed as k parameter regression models, where the p-
dimensional mean vector of yi is modeled as Xiβ, with Xi a p by k design matrix
for the ith subject. Also, in many applied settings, each subject has measurements
at only a subset of size pi of p possible recording times. We regard the data vectors
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yi as incomplete observations of a p vector and handle this through a framework
for ignorable missingness (Little and Rubin, 2002).

To extend the covariance matrix MCMC algorithm to handle a regression model
for the mean and ignorably missing data, we proceed as follows. Partition yi as
(yobs
i , ymis

i ). Given the missing data ymis
i and the regression coefficients β, we

subtract off Xiβ from the complete vector yi . This gives zero-mean data so that
the MCMC algorithm goes through exactly as above for �, θ , and ν. The β and
ymis
i steps are straightforward Bayesian regression computations as described in

Schafer (1997), for example.

20.6 Multivariate probit model

Sections 20.3 and 20.4 discuss the case where all or part of the data vector is
scale-free. The usual setting for this is that the scale-free continuous vector is a
latent vector for a multivariate ordinal probit model (Chib and Greenberg, 1998;
Liu, 2001). We assume that the data vector yi consists of a continuous portion vi of
length p1 and an ordinal portion ci of length p2 (with p1 + p2 = p). The element
cij takes values on the discrete set 0, 1, . . . , Jj − 1, and cij = l if and only if the
latent variable zij is in the range (γj,l−1, γj,l]. We set γj,0 = −∞, γj,Jj−1 = +∞
for notational simplicity, and γj,1 = 0 for identifiability of the cutpoints. The vector
ci will then follow a multivariate probit model if we assume zi ∼ Np2(X

(2)
i β,R),

where X(2)i is the p2 by k design matrix for the linear model and R is a p2 by p2
correlation matrix.

To model vi and ci simultaneously, we assume that given the latent vector zi ,
the vector yi = (vi, zi) ∼ Np(Xiβ,�), where Xi is vertically partitioned as X(1)i
(the p1 by k design matrix for vi) and X(2)i (as defined in the previous paragraph),
and � is the covariance-correlation matrix of the vector (vi, zi) as defined in
equation (20.8). The model is completed by placing a prior distribution on the
ragged array {γj,l , j = 1, . . . , p2, l = 2, . . . , Jj − 1}; a common noninformative
choice is p(γj,l) ∝ 1.

Ignorably missing data for portions of the vi or zi vectors are handled exactly
as in Section 20.5; sample missing components given the observed components,
β, and � from the appropriate conditional multivariate normal distribution. Given
complete data, yi , and the regression parameters, β, subtract off Xiβ from yi to
reduce the computation for � to the case described in Section 20.4.

There are two additional steps for the MCMC procedure, which we write assum-
ing zero-mean complete data for simplicity:

• [zij |zi,−j , vi, �, cij = l, γj,l−1, γj,l]. zij given the other elements of zi and
vi is sampled from an interval truncated univariate normal with conditional
mean and variance derived from the standard results for conditioning on a
part of a multivariate normal vector (since the full vector (vi, zi) is multi-
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variate normal with mean zero and covariance-correlation matrix �). The
interval for truncation is (γj,l−1, γj,l] so that zij will be compatible with cij .

• [γj,l |γj,l−1, γj,l+1, z1,j , . . . , zn,j , c1,j , . . . , cn,j ]. Draw γj,l ∼ U(a, b) where
a = max{maxi{zij : cij = l}, γj,l−1} and b = min{mini{zij : cij = l + 1},
γj,l+1}. In other words, we sample a cutpoint from the widest range possible
given the constraints that it must be compatible with the data and must lie
in between the neighboring cutpoints.

20.7 Example: covariance modeling

We now apply the covariance matrix version of our repeated measures regression
model with missingness to data from the UCLA Brain Injury Research Center (BIRC)
(Glenn et al., 2003). The UCLA BIRC studies moderate to severe head trauma
patients, focusing on short-term postinjury brain metabolism and long-term neu-
ropsychological outcome. Metabolic data are collected longitudinally on a variety of
markers including arterial-venous (AV) differences of oxygen, glucose, and lactate,
and cerebral blood flow rates (CBF). AV differences are measured as differences
in concentrations in a particular substance (measured in milligrams per milliliter)
between arterial uptake and venous release in the brain. CBF is measured in units of
milliliters per 100 grams per minute. These metabolic measurements are potentially
taken twice per day during the time that patients are in the study. Most patients are
studied for at least seven or eight days postinjury. Informative dropout is an issue
that will not be discussed here; instead, we focus on the first seven days postin-
jury for which dropout is not as much of a problem. During this timeframe, many
of the twice-daily measurements are missing for reasons that might be considered
ignorable, for example, qualified personnel are not always available to perform the
measurements twice per day. In practice, most patients end up with approximately
one measurement per day on a particular parameter. We examine here the relation-
ship of CBF and AV difference in oxygen (AVDO2), and whether considering AV
difference in glucose (AVDglc) contributes toward inference on this relationship.

To investigate this, we use data through postinjury hour 180 on CBF, AVDO2,
and AVDglc. CBF was transformed by square root and AVDglc by natural logarithm
to make the normality assumptions more plausible. We abbreviate the transformed
quantities as C (square root of CBF), O (AVDO2), and G (logarithm of AVDglc).
A total of n = 56 patients had at least one measurement for one of these three
parameters in this time frame. We gridded the postinjury hours into 15 twelve-
hour epochs, so that each patient could potentially contribute a vector of length
p = 45, that is, fifteen timepoints times three measures. In reality, patients had
anywhere from 1 to 27 total measurements on the three parameters, recorded at
between 1 and 9 of the 15 possible timepoints. The total number of measures was
292 for C, 214 for O, and 215 for G.
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We analyze the data using the model in Section 20.2. The complete data for
the ith patient are ordered as yi = (Ci,1, Oi,1,Gi,1, . . . , Ci,15, Oi,15,Gi,15)

T . The
Xi matrix is constant across subjects, and indicates a common mean for each of
C, O, and G. Thus, Xi has 45 rows and 3 columns, and consists of 15 three
by three identity matrices stacked atop one another. The 45 by 45 covariance
matrix � was assumed to be centered around a multivariate compound symme-
try matrix generalized to allow AR-1 correlation attenuation between time points
(Galecki, 1994). To give a bit more detail, �(θ) is a 45 by 45 matrix parti-
tioned as a 15 by 15 array of 3 by 3 submatrices. The (i, j)th submatrix of
�(θ) is M + ρ|i−j |V, where the 3 by 3 matrix M represents the between sub-
ject variability of the mean values for blood flow, oxygen, and glucose, the 3
by 3 matrix V represents the within subject variability of these measures, and
ρ measures how the within subject variability attenuates across timepoints. So
θ ≡ (M,V, ρ) has 13 parameters instead of the 1,035 in a general 45 by 45
covariance matrix. In the special case of ρ = 0, we get the multivariate com-
pound symmetry model with M + V on the diagonal blocks of �(θ) and M on
the off-diagonal blocks. For this computation, we fixed the value of ν to be 40.
The six variance components in θ were given independent inverse-gamma prior
distributions with α = 4 and β = 2, the six intrasubject and intersubject correla-
tion components were given independent beta prior distributions rescaled to run
from −1 to 1 with α = 3 and β = 3, and finally, the AR correlation was given
a similar beta prior but with α = 5 and β = 3. We generated 50,000 simulations
from the MCMC algorithm with results saved at every 50th iteration to produce a
manageable sample size from the posterior. Various diagnostics suggested that the
sampler had converged.

Figure 20.1(a) shows the prior and posterior marginal distributions of the three
elements in θ that relate to the correlation of C and O: the leftmost panel shows
the correlation in M, that is, the correlation between subject means; the middle
panel gives the (intrasubject) correlation in the V matrix between C and O; and
the rightmost panel displays the AR-1 parameter describing how the intrasubject
correlation decays with time difference. Notice that there is quite a bit of informa-
tion in the data on all three of these parameters, and it is clear that the parametric
underpinning to � has strong evidence for negative correlations of C and O, both
intersubject and intrasubject. It is also evident that the AR-1 attenuation is strongly
supported by the data.

To examine the individual elements of �, Figure 20.2 gives the posterior
median and a 90% posterior interval for all 225 correlations between a C measure-
ment and an O measurement, Corr(Ct1, Ot2) for t1 and t2 running from 1 to 15.
These correlations are grouped by the t1 index, so that the 15 bars above the por-
tion of the figure corresponding to row number 1, give correlations of the first C
measurement with O measurements 1 through 15. Many of the individual elements
of � have high posterior probability of being below zero.
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Figure 20.1 (a) Correlations between square root of blood flow (C) and arterial-
venous oxygen differences (O) for the parametric center of �. Left panel gives
correlation of subject level means. Middle panel gives intrasubject correlation.
Right panel gives AR-1 parameter describing the attenuation of intrasubject cor-
relation with time gap. (b) Comparison of estimation precision for the same three
parameters between the three and two repeated measure model.

To investigate the contribution of the glucose values to information about corre-
lations of blood flow and oxygen, we fit a reduced model that used only the C and
O data, so that � is now 30 by 30. Figure 20.1(b) compares posterior inference for
θ : the left panel compares inference about the between subject means correlation
between C and O (from the M matrix), the middle panel the intrasubject corre-
lation of C and O (from the V matrix), and the right panel the AR-1 parameter.
Within each panel, the solid density estimate is for the three-measure model (C,
O, and G), and the dashed estimate for the two-measure model (C and O only).
The figure shows that inference about the between subject means correlation and
the AR-1 parameter is more precise if we use the glucose data, but that there is
not very much information about the intrasubject correlation of C and O in the
glucose data.
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Figure 20.2 Posterior medians and 90% posterior intervals for individual corre-
lation elements between C and O. Grouping is by timepoint for C. Within a group,
the 15 bars run from timepoint 1 through 15 for O.

20.8 Example: mixed data

We now give an example of how to apply the methodology of Section 20.4 to a
mixture of continuous and ordinal repeated measures data, again from the UCLA
BIRC, on n = 51 subjects. For each subject, we use two ordinal measures collected
near the time of injury: (i) Pupils is 0, 1, or 2 indicating the number of abnormal
pupils; and (ii) Improve is 0, 1, or 2 indicating whether the subject’s Glasgow Coma
Scale score improved, stayed the same, or worsened in the early hours postinjury.
We also include four continuous variables collected during long-term follow-up
visits: (i) NRS6 and NRS12 give the total score at 6 and 12 months postinjury on
the Neurobehavioral Rating Scale with higher scores indicating poorer condition;
and (ii) Peg6 and Peg12 are related to the time required at 6 and 12 months
postinjury to complete a test involving putting pegs in a pegboard. The two Peg
variables were created by taking the average of the logarithm of left-hand time and
logarithm of right-hand time. This transformation was chosen to give approximate
normality. We chose a compound symmetry structure for �(θ) with θ fixed at an
intraclass correlation value of 0.5. The degrees of freedom parameter was set to
ν = 8. We ran the MCMC sampler for 100,000 iterations. The Metropolis–Hastings
step used a jumping degrees of freedom of ν0 = 200 and achieved an acceptance
rate of approximately 20%. All diagnostics indicated excellent convergence of the
algorithm.



226 MODELING COVARIANCE MATRICES—BOSCARDIN, ZHANG

NRS6 NRS12 Peg6 Peg12 Pupils Improve

NRS6 1 .77 (.06) .60 (.09) .45 (.12) .32 (.14) .14 (.14)
NRS12 .99 1 .42 (.11) .38 (.12) .19 (.15) .18 (.14)
Peg6 .99 .99 1 .81 (.06) .27 (.15) .27 (.13)
Peg12 .99 .99 .99 1 .27 (.15) .15 (.14)
Pupils .99 .90 .96 .95 1 −.03 (.17)
Improve .84 .91 .98 .86 .43 1

Table 20.1 Above diagonal: posterior means and standard deviations of the corre-
lation matrix for the mixed data. Below diagonal: posterior probability of positive
correlation.

NRS12 Peg12

Pupils .19 (.15) .27 (.16)
Improve .19 (.14) .17 (.15)

Table 20.2 Posterior means and standard deviations of partial correlations between
long-term outcomes and each of the two early diagnostics while controlling for the
other early diagnostic.

The upper triangular portion of Table 20.1 gives the posterior means and stan-
dard deviations of the correlation matrix R, and the lower triangular portion gives
the posterior probability of a positive correlation. Here we see that the strongest
categorical-continuous correlations are between Pupils and NRS6 and both Peg
times and between Improve and Peg6 ; all four of these have at least a 95% pos-
terior probability of being positive.

To investigate the correlation structure more carefully, we examined the pos-
terior distribution of the partial correlations in R. The partial correlation of quan-
tities 1 and 2 controlling for quantity 3 is calculated for each posterior simula-

tion as r12.3 = (r12 − r13r23)/

√
(1 − r2

13)(1 − r2
23). Table 20.2 presents the poste-

rior means and standard deviations of the partial correlations for the two long-term
outcomes, NRS12 and Peg12, with each of the two early diagnostic measures
Pupils and Improve controlling for the other early diagnostic. The strongest partial
correlation is between Pupils and Peg12 controlling for Improve, suggesting that
patients with normal pupils are faster at peg placement one year postinjury, even
after controlling for initial GCS status.
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Robit regression: a simple
robust alternative to logistic
and probit regression

Chuanhai Liu1

21.1 Introduction

The logistic and probit regression models are commonly used in practice to analyze
binary response data, but many authors (see, Pregibon (1982) and the references
therein) have shown that their maximum likelihood estimators are not robust. This
chapter considers robit regression, which replaces the normal distribution in probit
regression with a t-distribution with known or unknown degrees of freedom. The
use of the t-distribution for robust estimation in the different contexts where the
response variables are typically modeled with the normal distribution has been
addressed by many authors (e.g., Rubin, 1983; Lange, Little, and Taylor 1989;
Liu and Rubin, 1995). As an alternative to logistic regression, the corresponding
t-distribution has been previously suggested in the literature by Mudholkar and
George (1978), and Albert and Chib (1993). Mudholkar and George (1978) dis-
covered that a t-distribution with 9 degrees of freedom has the same kurtosis as
the logistic regression. Albert and Chib (1993) suggested the use of a t-distribution
with 8 degrees of freedom and provided the detailed implementation of the Gibbs
sampler for Bayesian estimation.

1Statistics and Data Mining Research, Bell Laboratories, Murray Hill, N.J. The author thanks Dr.
Diane Lambert for her numerous insightful and constructive comments.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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It is shown that (i) the maximum likelihood estimators are robust if the number
of degrees of freedom is known; (ii) the robit regression model with about seven
degrees of freedom provides an excellent approximation to the logistic regression
model; and (iii) the robit regression model with a large number of degrees of
freedom approximates the probit regression model. Thus, in a certain sense, the
robit regression model provides a rich class of models, including logistic and probit
regression models as special cases, for analysis of binary response data.

This chapter also provides efficient EM-type algorithms (Dempster, Laird, and
Rubin, 1977; Liu, Rubin, and Wu, 1998) for finding the maximum likelihood
estimates of the regression coefficients in the robit model. These algorithms provide
information that can be used to identify outliers that have too much influence on
the maximum likelihood estimates of the regression coefficient under the logistic
and probit models.

The rest of the chapter is arranged as follows. Section 21.2 describes the robit
model and its relationship with the probit and logistic models. Section 21.3 shows
that the robust maximum likelihood estimators of the regression coefficients are
robust. Section 21.4 formulates a complete-data model for robit regression that
can be used for maximum likelihood estimation using EM-type algorithms and
for identifying outliers under logistic and probit models. Section 21.5 provides
detailed implementation of the EM, ECME, and PX-EM algorithm for maximum
likelihood estimation of the robit model. Section 21.6 illustrates the methodology
with an example. Finally, Section 21.7 concludes with a few remarks.

21.2 The robit model

The logistic and probit models

Suppose that the observed data consist of n independent observations {(xi, yi) :
i = 1, . . . , n} with a p-dimensional covariate vector xi and binary response yi that
is either 0 or 1. The logistic regression model is specified by

logit Pr(yi = 1|xi, β) = log
Pr(yi = 1|xi , β)

1 − Pr(yi = 1|xi, β) = x′
iβ (i = 1, . . . , n).

(21.1)
The logistic regression model can also be derived by assuming that there are latent
variables zi = x′

iβ + ei , where ei follows the logistic distribution function,

Flogistic(x) = exp{x}
1 + exp{x} (21.2)

and yi is 1 if zi > 0 and 0 otherwise. Then, the logistic regression model (21.1) is
obtained as the marginal distribution of yi . The maximum likelihood estimates of
β can be obtained using the iterative reweighted least squares.

The probit model (e.g., Albert and Chib, 1993), for which

Pr(yi = 1|xi, β) = 1 − Pr(yi = 0|xi, β) = �(x ′
iβ) (i = 1, . . . , n),
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is obtained by replacing the logistic distribution for the latent error terms ei with
the standard normal distribution, where φ(x) and �(x) are the density and distri-
bution functions of the standard normal distribution respectively. The maximum
likelihood estimates of β in the probit model can be obtained using the EM algo-
rithm (Dempster, Laird, and Rubin, 1977) or the PX-EM algorithm (Liu, Rubin,
and Wu, 1998).

The robit model: a simple extension of the probit model

To have a robust model, following Lange, Little, and Taylor (1989), who replaced
the normal distribution in the linear regression model with a t-distribution to obtain
robust estimators of linear regression coefficients, replace the normal distribution in
the probit regression model with the t-distribution with ν degrees of freedom. For
computational simplicity, which itself is important in the current state of the art in
statistics as discussed by Liu (2000), Albert and Chib (1993) suggested the use of
a t-distribution with 8 degrees of freedom and provided a detailed implementation
of the Gibbs sampler for Bayesian estimation.

We call this model robit regression, and denote by robit (ν) the robit regression
model with ν degrees of freedom. More formally, the robit regression model for
the data {(xi , yi) : i = 1, . . . , n} is

Pr(yi = 1|xi , β) = 1 − Pr(yi = 0|xi, β) = Fν(x′
iβ) (i = 1, . . . , n),

where Fν(x) denotes the cdf of the t random variable with center zero, scale
parameter one, and ν degrees of freedom. Fν(x) has the density function

fν(x) ≡ �((ν + 1)/2)

(πν)1/2�(ν/2)(1 + x2/ν)(ν+1)/2
(x ∈ (−∞,∞)).

As ν → ∞, the robit(ν) model becomes the probit regression model.

The robit regression model with 7 degrees of freedom:
an approximation to the logistic model

Empirically, the robit link with about 7 degrees of freedom approximates the logis-
tic link, as Figure 21.1 suggests.2 The quantiles below the 0.01 and 0.99 quantiles
swing away from the reference line (dotted diagonal line), suggesting that the tail
probabilities of the robit regression model are heavier than those of the logistic
distribution. It is this tail property that distinguishes the robit and logistic links in
terms of robust estimation. To balance robustness and approximation to the logistic
model, one may like to use the t-distribution with even smaller number of degrees
of freedom, such as 6 or 5.

2The scale parameter σ = 1.5484 in Figure 21.1 was chosen by numerically minimizing
maxxi {|Fν(xi/σ )− Flogistic(xi )| : xi = −10 + 0.002i, i = 1, . . . , 1000} over σ . For σ = 1.5484, the
maximum distance is about 0.0006.
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Figure 21.1 The Q–Q plot of the robit (7) model and the logistic model in the
range corresponding to the probability range from 0.001 to 0.999. The horizontal
and vertical dotted lines represent the 0.01 and 0.99 quantiles. The diagonal dotted
line is the reference line indicating how well the two distributions match with each
other.

21.3 Robustness of likelihood-based inference using
logistic, probit, and robit regression models

Consider the effects of a potential observation (x, y) on the estimates of p(yi |xi, β)
for all i, or on the estimate of the regression coefficient vector β and consider the
effective sample size s (s > 0) of the potential observation. Without loss of gen-
erality, take y = 1. Let s (s > 0) be the effective sample size. Denote by β̂+(x,y),s
the ML estimate of β with (y, x) included, that is,

β̂+(x,y),s = arg max
β

{�+(x,y),s(β) ≡ �(β|Yobs)+ s log(p(y|x, β))},

where �(β|Yobs) denotes the log-likelihood given the observed data. If the ML
estimates β̂ and β̂+(x,y),s are unique and finite, the potential influence of (x, y) is
defined as

I (x, y) ≡ lim
s→+0

β̂+(x,y),s − β̂
s

. (21.3)
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If the Hessian matrix H(β̂) = ∂2�(β̂)/(∂β∂β ′) is negative definite, then

I (x, y) = −H−1(β̂)
∂logp(y|x, β̂)

∂β
.

Given the observed data, H(β̂) is fixed and can be viewed as a scaling matrix for
the factor ∂logp(y|x, β̂)/∂β . Given the observed data, β̂ is also constant. To avoid
the trivial cases, assume that all the components of β̂ are nonzero so

β̂ ′ ∂logp(y|x, β̂)
∂β

is a convenient scalar factor. For the logistic regression model,

β̂ ′ ∂logp(y|x, β̂)
∂β

= x ′β̂
1 + exp(x′β̂)

,

implying that the influence can be unbounded. For the probit regression model,

∂logp(y|x, β̂)
∂β

= φ(x′β̂)
�(x ′β̂)

x ′β̂.

When x′β̂ → −∞, this factor is approximately −(x′β̂)2. This quadratic function
in x indicates that the influence of (y, x) is unbounded and is more extreme than
the influence under the logistic regression model.

For the robit regression model,

∂logp(y|x, β̂)
∂β

= fν(x
′β̂)

Fν(x′β̂)
x′β̂.

This factor is bounded, and thereby the I (x, y) is bounded because

lim
x′β̂→−∞

fν(x
′β̂)

Fν(x′β̂)
x ′β̂ = lim

u→−∞
fν(u)

Fν(u)
u = − lim

u→−∞
(ν + 1)u

ν + u2
u = ν + 1

and

lim
x′β̂→∞

fν(x
′β̂)

Fν(x′β̂)
x′β̂ = lim

µ→∞
fν(µ)

Fν(µ)
µ = 0.

21.4 Complete data for simple maximum
likelihood estimation

Let yi denote the univariate binary response of the i-th individual, and let xi denote
the p-dimensional vector of covariates for i = 1, . . . , n. Let

τi |θ ∼ Gamma(ν/2, 2/ν) and zi |(τi, θ) ∼ N(x′
iβ, 1/τi) (i = 1, . . . , n),
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where θ = (β, ν) with β being the p-dimensional vector of regression coefficients
and ν being the number of degrees of freedom. In the literature, τi is called weight,
for example, in the context of iterative reweighted least squares. Then the robit
regression model is completed by specifying

yi =
{

1, if zi > 0;
0, if zi ≤ 0.

(21.4)

This complete-data model belongs to the exponential family. The sufficient statis-
tics for θ are

Sτ =
n∑
i=1

τi, Sτxx =
n∑
i=1

τixix
′
i , Sτzz =

n∑
i=1

τiz
2
i ,

Sτxz =
n∑
i=1

τixizi , and Slogτ−τ =
n∑
i=1

(logτi − τi);
(21.5)

and the complete-data maximum likelihood estimate of θ = (β, ν) is given by
β̂ = S−1

τxxSτxz and

ν̂ = arg max
ν

[
−nlog�(ν/2)+ n(ν/2)log(ν/2)+ (ν/2)Slogτ−τ

]
.

Let µi = x′
iβ, denote by tν the t-deviate with location 0, scale parameter 1,

degrees of freedom ν, and denote by fν(.) the probability density of tν , that is,
fν(z) = cν(1 + z2/ν)−(ν+1)/2 with the normalizing constant cν = (πν)−1/2�((ν +
1)/2)�−1(ν/2). Then

τ̂i ≡ E(τi |Yobs, θ) = yi − (2yi − 1)Pr(tν+2 < −(1 + 2/ν)1/2µi)

yi − (2yi − 1)Pr(tν < −µi) , (21.6)

E(τi(zi − µi)|Yobs, θ) = τ̂i (2yi − 1)ftν (µi)

yi − (2yi − 1)Pr(tν+2 < −(1 + 2/ν)1/2µi)
,

E(τi(zi − µi)2|Yobs, θ) = ν + 1 − ντ̂i ,

where I (.) is the indicator function. With

ẑi ≡ µi + (2yi − 1)ftν (µi)

yi − (2yi − 1)Pr(tν+2 < −(1 + 2/ν)1/2µi)
, (21.7)

it follows then

E(τizi |Yobs, θ) = E(τi(zi − µi)|Yobs, θ)+ µiE(τi |Yobs, θ) = τ̂i ẑi ,

and

E(τiz
2
i |Yobs, θ) = ν + 1 − ντ̂i + τ̂i

[
µ2
i + 2µi(ẑi − µi)

]
. (21.8)
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When the conditional expectation of the sufficient statistics is calculated at the
ML estimate of θ ,

β̂ =
(
n∑
i=1

τ̂ixix
′
i

)−1 ( n∑
i=1

τ̂ixi ẑi

)
,

which is the ML estimate of β in the linear regression ẑi ∼ N(x ′
iβ, 1/τ̂i).

Letting ν → ∞ gives the complete-data probit regression model and the con-
ditional expectations of the associated sufficient statistics:

lim
ν→∞ τ̂i = 1, lim

ν→∞ ẑi = µi + (2yi − 1)φ(µi)

yi − (2yi − 1)�(−µi) ,

and limν→∞E(z2
i |Yobs, θ) = 1 + µiẑi . The last equality is obtained using the fact

that ν + 1 − ντ̂i → 1 − µizi + µ2
i as ν → ∞.

21.5 Maximum likelihood estimation using
EM-type algorithms

MLE of the regression coefficients β with known number of
degrees of freedom ν using EM

With the complete data {(xi, yi, zi , τi) : i = 1, . . . , n} described in Section 21.4,
the EM algorithm for finding the MLE of β with known ν is as follows. At
iteration t + 1 with input β(t),

E-step of EM. Compute τ̂i and ẑi for all i = 1, . . . , n in (21.6) and (21.7) with
θ = (β(t), ν), and then the expected sufficient statistics Ŝτxx = ∑n

i=1 τ̂ixix
′
i

and Ŝτxz = ∑n
i=1 τ̂ixi ẑi .

M-step of EM. Update β: β(t+1) = Ŝ−1
τxx Ŝτxz .

MLE of θ = (β, ν) with unknown number of degrees of
freedom ν using ECME

To use the EM algorithm to find the MLE of θ = (β, ν) when the number of
degrees of freedom ν is unknown, compute

E((logτi − τi)|Yobs, θ) = ψ((ν + 1)/2)− log((ν + 1)/2)

+ E

(
log

ν + 1

ν + (zi − µi)2
∣∣∣∣ Yobs, θ

)
− τ̂i (21.9)

for all i = 1, . . . , n, where ψ(α) ≡ dlog (�(α)) /dα = �′(α)/�(α) is the digamma
function. Because there are no (obvious) numerical methods for computing the
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conditional expectation term in (21.9) and ECME typically converges dramatically
faster than EM, we use ECME with two constrained maximization (CM) steps:
one CM step maximizes the expected complete-data log-likelihood over β with
ν fixed at its current estimate; and the other CM step maximizes the constrained
actual likelihood over ν with β fixed at its current estimate, where the constrained
log-likelihood function of ν given β is

�(ν|β, Yobs) =
n∑
i=1

log (yi(1 − Pr(tν < −µi))+ (1 − yi)Pr(tν < −µi)) . (21.10)

The ECME algorithm for finding the MLE of θ = (β, ν) is as follows. At
iteration t + 1 with input θ(t) = (β(t), ν(t)),
E-step of ECME. The same as the E-step of EM: condition on the current param-

eter estimates, θ(t) = (β(t), ν(t)).
CM-step 1 of ECME. The same as the M-step of EM.

CM-step 2 of ECME. Search for the ν(t+1) that maximizes �(ν|β(t+1), Yobs).

Then update ν using, for example, the half-interval method (Carnahan, Luther,
and Wilks, 1969) to maximize �(ν|β, Yobs) in the likelihood function (21.10).

MLE of the robit model using PX-EM: a more efficient
algorithm for computing (β̂, ν̂)

Liu, Rubin, and Wu (1998) show that the PX-EM algorithm, which makes use
of the extra information captured in the imputed complete data, converges much
faster than the EM algorithm for finding the MLE of the t-distribution and the
probit regression model. Here PX-EM is used to find the MLE of the robit model,
which involves both the t-distribution and the probit model. To make use of the
extra information captured in the complete data, following Liu, Rubin, and Wu
(1998), the complete-data model is extended as

(τi/α)|θ∗ ∼ Gamma(ν∗/2, ν∗/2), zi |(τi, θ∗) ∼ N(x′
iβ

∗, σ 2/τi),

and
yi = I (zi ≥ 0)

for i = 1, . . . , n, where θ∗ = (β∗, ν∗, α, σ ) with α > 0 and σ > 0. The observed-
data model is preserved with the reduction function

β = (α/σ )β∗ and ν = ν∗. (21.11)

The complete data sufficient statistics for the expanded parameters θ∗ are given
in (21.5). The complete-data MLE of θ∗ is given by

α̂ = n−1
n∑
i=1

τi, σ̂ 2 = n−1(Sτ zz − S′
τxzS

−1
τxxSτxz ),
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and β̂∗ and ν̂∗ are the same as β̂ and ν̂ respectively. Compared to the EM
and ECME algorithms in Section 21.5, the corresponding PX-EM and PX-ECME
algorithms require only simple extra computation, namely, the conditional expec-
tations of Sτ and Sτ zz . The PX-EM algorithm for finding the regression coef-
ficients β with known number of degrees of freedom ν is then a simple
extension of the EM algorithm and is given as follows. At iteration t + 1 with
input β(t),

E-step of PX-EM. The same as the E-step of EM, except for the extra calcula-
tion of the conditional expectations Ŝτ = ∑n

i=1 τ̂i and Ŝτ zz = n(ν + 1)−
ν
∑n
i=1 τ̂i +

∑n
i=1 τ̂i (2µiẑi − µ2

i ).

M-step of PX-EM. Compute the estimates β̂∗ = Ŝ−1
τxx Ŝτxy , α̂ = n−1Ŝτ , and σ̂ 2 =

n−1(Ŝτ zz − Ŝ′
τxz Ŝ

−1
τxx Ŝτxz ) and then apply the reduction function to update β:

β(t+1) = (α̂/σ̂ )β̂∗

With unknown number of degrees of freedom ν, the ECME algorithm is then
extended to the following PX-ECME algorithm. At iteration t + 1 with input θ(t) =
(β(t), ν(t)),

E-step of PX-ECME. The same as the E-step of PX-EM, just conditioning on the
parameter estimates, θ(t) = (β(t), ν(t)).

CM-step 1 of PX-ECME. The same as the M-step of PX-EM.

CM-step 2 of PX-ECME. The same as the CM-step 2 of ECME.

21.6 A numerical example

We analyze a data set from Finney (1947) consisting of 39 binary responses denot-
ing the presence (y = 1) or absence (y = 0) of vasoconstriction of the skin of the
subjects after inspiration of a volume V of air at inspiration rate R. The data were
obtained from repeated measurements on three individual subjects, the numbers
of observations per subject being 9, 8, and 22. Finney (1947) found no evidence
of intersubject variability, treated the data as 39 independent observations, and
analyzed the data using the probit regression model with V and R in the log-
arithm scale as covariates. These data were also analyzed by Pregibon (1982),
using robust procedures (called resistant fitting methods) as alternatives to logistic
regression.

The data are displayed in Figure 21.2. The fitted probability contours obtained
from the MLE indicate that there is little difference between the fitted probit and
logistic regression models. From these contours, the robit(7) and logistic models
are almost identical, suggesting again the robit(7) model as an alternative to the
logistic model in the sense that the robit(7) regression model provides results that
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Figure 21.2 Scatterplot of the skin vasoconstriction data (with the symbols • and
◦ indicating positive and negative responses respectively). The probability contours
represent the probit (solid line), logistic (dotted line), and robit(7) (dashed line)
models fitted by the methods of maximum likelihood.

can be understood as those from the logistic model and that the MLE of robit(7)
regression model is robust.

The EM algorithm was used to choose the number of degrees of freedom.
The algorithm was stopped when the likelihood increment becomes numerically
instable because of the accuracy in evaluation of the probability functions of the t-
distributions. The estimate of ν̂ is about 0.11 with the likelihood value −10.62. The
fitted robit models with various numbers of degrees of freedom are represented by
the probability contours in Figure 21.3. The use of a small number of the degrees
of freedom is intuitively suggested by the data in which the observations with
positive responses and those with negative responses can be almost separated by
a line on the plane of log(V ) and log(R) except for the three observations with
i = 4, 18, and 24. These three observations are identified from the fitted individual
weights. Pregibon (1982) also found that these three observations are influential
to the ML estimation of the logistic model. The fitted 0.1, 0.5, and 0.9 contours
by Pregibon are similar to those obtained from the robit model with about ν = 2
degrees of freedom.
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21.7 Conclusion

We have shown that the robit model is a usable robust alternative to the probit and
logistic models for analyzing binary response data. The advantages of using the
robit model include (1) inference based on the robit model is robust to the pres-
ence of outlying observations, and (2) computation for a Bayesian robit regression
model using Markov chain Monte Carlo (MCMC) methods is simpler than that for
the logistic model (see, for example, Zeger and Karim (1991)). Since robit (ν) with
small ν gives more weight to the observations that are close to the dividing line
Pr(y = 1|x) = (Pr(y = 0|x) = 1/2 when they agree with the fitted model, the robit
model with a small number of degrees of freedom should also be useful in classi-
fication. In addition, as with the probit model (e.g., Albert and Chib, 1993; Chib
and Greenberg, 1998), the extension of the robit model to correlated multivariate
binary responses is straightforward.
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Using EM and data
augmentation for the
competing risks model

Radu V. Craiu and Thierry Duchesne1

We consider a survival analysis problem in which items are subject to failure
from competing risks. For some of the items, the failure cause is known only
to belong to a subset of the set of all possible causes, while for the remaining
items the cause of death is known precisely. In this chapter, we investigate two
complementary analyses based on models in which the hazard rates are assumed
piecewise constant. The approaches proposed rely on the EM algorithm and its
Bayesian counterpart, the data augmentation (DA) algorithm. An example is used
to illustrate the advantages of each analysis.

22.1 Introduction

In situations in which the survival data involve several different failure types, the
analysis is performed using the theory of competing risks. In most medical and
industrial applications, the data includes the time of censoring or failure and an
indicator of the failure cause for each item/patient. However, it is often the case,
especially with modular systems, that for a certain subset of the items the true
cause of failure is not known exactly. Such items are said to have a masked cause

1Department of Statistics, University of Toronto, Ontario, and Universite Laval, Departement de
Mathematiques et de Statistique, Quebec.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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of failure. While in some cases the failure can be isolated down to a subset of
causes, without any such additional information the masking group is considered
to be the entire set of causes. In certain experiments, a second-stage analysis can be
conducted so that part of the items with a masked cause of failure are investigated
and an exact diagnostic of the failure cause is obtained.

The literature on competing risks with masked causes of failure has grown
greatly in the recent years. In the context of carcinogenicity studies, Racine-Poon
and Hoel (1984) establish a nonparametric estimate of the survival function, while
Dinse (1986) proposes nonparametric maximum likelihood estimators of preva-
lence and mortality. Several other authors also discuss the problem of missing
cause-of-death in carcinogenicity studies (Kodell and Chen, 1987; Lagakos, 1982;
Lagakos and Louis, 1988). Goetghebeur and Ryan (1990), and Dewanji (1992)
construct a log-rank test to assess the difference between survival functions for
subgroups of the population under study in the presence of covariates. Goet-
ghebeur and Ryan (1995) subsequently generalize the approach to proportional
cause-specific hazards regression models. Flehinger, Reiser, and Yashchin (1998,
2002) consider the analysis of data sets in which there are second-stage data.
They propose maximum likelihood estimation using a model with nonparametric
proportional cause-specific hazards (Flehinger, Reiser, and Yashchin, 1998) and a
model with completely parametric cause-specific hazards (Flehinger, Reiser, and
Yashchin, 2002). The literature regarding the Bayesian analyses of this problem is
reviewed at the beginning of Section 22.4.

Proportionality between the cause-specific hazards or their complete parametric
specification are assumptions that do not always mirror reality. In this chapter, we
propose two approaches, both based on piecewise constant hazards. We assume
no proportionality between the hazards and only weak parametric assumptions are
made, namely no particular shape is imposed on the hazards. The model is defined
in Section 22.2. In Section 22.3, we briefly describe an EM-based approach, which
is analyzed in detail by Craiu and Duchesne (2004). The model described in
Section 22.2 is the backbone of the Bayesian analysis presented in Section 22.4,
which represents the main contribution of this chapter. While pros and cons are
discussed for each analysis, we hope that the illustration from Section 22.5 will
emphasize the advantages of each approach as well as the potential for combining
their strengths. Conclusions and further work are in Section 22.6.

22.2 The model

We consider a situation in which n independent items are observed in the time
interval [0, Tmax] and each of them can fail because of exactly one of J possible
causes. The data are collected in two stages. In the first stage, we observe for
each item its failure time, which may be censored if at time Tmax the item was still
functioning. For those items that have failed while in the study, we can observe one



EM AND DA FOR COMPETING RISKS—CRAIU, DUCHESNE 241

of the following two situations: (1) item i fails due to cause j at time t , (2) item
i fails due to an unknown cause of failure, which is known to belong to a group
of failure causes g(i) ⊂ {1, . . . , J }. The items that belong to the second situation
have a masked failure cause. In the second stage, a subset of the masked items is
sent for further analysis and the precise cause of failure is then determined. It is
intuitive that the masking parameters shall be estimated using those items that are
sent to the second stage of the experiment. In fact, if all the items were sent to the
second stage, then all the information needed for estimation would be available and
no missing data procedure would be necessary. Hence, we get a natural definition
of the complete data as the data set that we would obtain if every masked item
with an uncensored failure time were sent to a second-stage analysis. Suppose
there are M masking groups in the data set (including the groups consisting of
the individual failure causes). The observation for item i in the complete data set
would be (ti , γig1

, . . . , γigM , δi1, . . . , δiJ ), where γig is the indicator that item i’s
failure cause was masked to group g at the first stage (if the failure cause is known
to be j at the first stage, then we say that it is masked to g = {j}), δij is the
indicator that item i’s actual failure cause is j (if an item is right-censored, then
all the indicators δij , j = 1, . . . , J , take on the value 0). The groups containing
more than one cause are called proper.

Here is a short example to set the notation straight. Suppose that we have two
potential causes of failure, say causes 1 and 2. Let us assume that at the first stage
we either identify the cause of failure directly (in which case we say that it is
masked in group {1} or {2} accordingly) or we only know that failure is due to
one of causes 1 or 2 (in which case we say that failure is masked in group {1, 2}).
For item 1, we have failure at time 2.4 masked in group {1, 2} at stage 1 with no
second stage. Item 2 fails at time 6.3 of a cause masked in group {1, 2} and it is
found in a second-stage analysis that failure was actually due to cause 2. Item 3 is
right-censored at time 4.1, and item 4 fails at time 7.2 and its failure is diagnosed in
stage 1 as being due to the first cause. These four observations would be coded as

(t1, γ1{1}, γ1{2}, γ1{12}, δ11, δ12) = (2.4, 0, 0, 1, ·, ·)
(t2, γ2{1}, γ2{2}, γ2{1,2}, δ21, δ22) = (6.3, 0, 0, 1, 0, 1)
(t3, γ3{1}, γ3{2}, γ3{1,2}, δ31, δ32) = (4.1, ·, ·, ·, 0, 0)
(t4, γ4{1}, γ4{2}, γ4{1,2}, δ41, δ42) = (7.2, 1, 0, 0, 1, 0)

where “·” represents missing data. We denote by M2 all masked items that have
not been sent to a second-stage analysis and by Gj the set of all masking groups
containing cause j . The number of elements in Gj is denoted Lj and we define
G∗
j = Gj\{j}.

The statistical model has a part involving the competing-risk aspect (failure
times, hazard rates) and a part due to masking (masking probabilities). If T ∗ and
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J ∗ are random variables that represent the failure time and the cause of failure
respectively, then the cause-specific hazards are

λj (t) = lim
h↓0

Pr[t < T ∗ ≤ t + h, J ∗ = j |T ∗ ≥ t]
h

, j = 1, . . . , J. (22.1)

In this chapter, we suppose that the cause-specific hazard functions are piecewise
constant, that is, there exists a partition of the time interval [0, Tmax] given by 0 =
a0 < a1 < · · · < aK = Tmax such that, if 1k(t) is the indicator that t ∈ (ak−1, ak],
then

λj (t) =
K∑
k=1

λjk 1k(t). (22.2)

The choice of the same endpoints for the hazard intervals (ak−1, ak] is justified
because it allows testing for the proportionality of cause-specific hazards and sym-
metry, as shown in Craiu and Duchesne (2004). However, if no such tests are
necessary, the analysis described here can be carried on even if the intervals have
different lengths for different cause-specific hazards. In such a situation, the nota-
tion for the endpoints would have to include a second index, j , to show their
dependence on the cause. Of ultimate interest are the diagnostic probabilities

πj |g(i)(ti ) = Pr[item i failed of j |failed at ti and was masked in g(i)],

for all masked items i and all causes j ∈ g(i). In order to compute πj |g(t), we
need the masking probabilities,

pg|j = Pr[cause masked to group g at stage 1|actual failure cause is j ], j ∈ g.

With Bayes’ rule we obtain

πj |g(t) = λj (t)pg|j∑
l∈g λl(t)pg|l

. (22.3)

If θ is the vector of parameters that contains λjk , j = 1, . . . , J , k = 1, . . . , K
and pgm|j , j = 1, . . . , J , m = 1, . . . ,M , then the log-likelihood function under
complete data is

logpC(θ) =
n∑
i=1

J∑
j=1


[
δij log

K∑
k=1

λjk 1k(ti)−
K∑
k=1

λjk

∫ ti

0
1k(u) du

]

+ δij

(1 −
∑
g∈G∗

j

γig

)
log

(
1 −

∑
g∈G∗

j

pg|j
)

+
∑
g∈G∗

j

γig logpg|j


 .

(22.4)
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The likelihood (22.4) contains a competing-risk part that involves the failure times
and failure causes (first line), and a masking part that involves the masking prob-
abilities (second line). Under complete data, these two parts would be maximized
separately making the maximum likelihood estimates of the masking probabilities
robust to the specification of hazard intervals. One can notice that for right-censored
observations the term on the second line of equation (22.4) vanishes and for such
items there is no need to know γig .

22.3 EM-based analysis

The EM algorithm (Dempster, Laird, and Rubin, 1977) has become a classic among
the methods designed to handle the maximization of intractable likelihood func-
tions. The use of EM to maximize (22.4) is recommended since the log-likelihood is
linear in the missing data {δij : i ∈ M2, 1 ≤ j ≤ J } and the maximization required
in the M-step can be performed in closed form, as shown below.

The algorithm

For each i ∈ M2 with uncensored failure time ti and with a failure cause masked
in g(i), we have that

E[δij |YOBS, θ ] = π̂j |g(i)(ti ) = λ̂j (ti )p̂g(i)|j∑
l∈gi λ̂l(ti )p̂g(i)|l

.

Since the complete-data log-likelihood (22.4) is linear in the missing δij , substitu-
tion of the missing δij with E[δij |YOBS, θ ] constitutes the E-step of the algorithm.
In addition, if we let

ek =
n∑
i=1

∫ ti

0
1k(u) du (22.5)

denote the k-th interval exposure, that is, the total time lived by all items in the
interval (ak−1, ak], then one easily obtains that (22.4) is maximized when

λ̂jk =
∑n
i=1 δij 1k(ti)

ek
and p̂g|j =

∑n
i=1 δij γig∑n
i=1 δij

.

Hence, once the starting points have been chosen, the algorithm iterates between
the E-step described above and the M-step given by

λ̂
(l)
jk =

∑n
i=1 E

θ̂ (l−1)[δij |YOBS] 1k(ti)

ek
and p̂

(l)
g|j =

∑n
i=1 E

θ̂ (l−1)[δij |YOBS] γig∑n
i=1 E

θ̂ (l−1)[δij |YOBS]
.

(22.6)
The algorithm can be easily extended to include time-varying masking proba-

bilities pg|j (t) (see Craiu and Duchesne, 2004).
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In all situations encountered with relatively large sample sizes and a 30 to
50% percentage of masked items sent to the second-stage analysis, the algorithm
converges in less than 10 to 20 iterations. Caution is required in situations in
which there are no data collected in the second stage and the cause-specific hazard
rates are proportional. In such a case, the parameters are unidentifiable conditional
on the observed data (Flehinger, Reiser, and Yashchin, 1998) but are identifiable
given the complete data. If the parameters are identifiable only in the complete-
data model, there is a ridge of local maxima in the likelihood surface and the
EM algorithm will converge to one of the points on the ridge, depending on the
starting point. The erratic behavior of the EM can be detected by using multiple
starting points. Previous authors (Goetghebeur and Ryan, 1990; Dewanji, 1992;
Lo, 1991) propose a working hypothesis of symmetry to reduce the number of
parameters and obtain identifiability. The symmetry assumption states that the
masking probabilities pg|j does not depend on the cause j , that is, pg|j = pg for
any group g and any j ∈ g.

Craiu and Duchesne (2004) prove results regarding the convergence of the
EM algorithm, develop inference methods such as likelihood ratio tests for the
assumptions of symmetry and proportionality of hazards, and apply the supple-
mentary EM (SEM) algorithm (Meng and Rubin, 1991) for the estimation of the
asymptotic variance matrix of the maximum likelihood estimators.

However, even if the cause-specific hazards are not proportional, with little or
nonexistent second-stage data, the information about the pg|j ’s is obtained via the
hazard rate estimates, which are time dependent. As a result, if the intervals for the
hazards are misspecified, then the maximum likelihood estimates can be far from
the true values. Equations (22.6) require that the hazard intervals are chosen so
that for each interval 1 ≤ k ≤ K and for each failure cause 1 ≤ j ≤ J , there exists
an i such that j ∈ gi and 1k(ti) = 1. In most cases, this implies that the intervals
for the piecewise hazards are fairly large, leading naturally to misspecification. We
expect that combining the previous approach with the Bayesian analysis proposed
in the next section will remedy this problem since, owing to the prior specifications,
there are no restrictions on the number and size of intervals for each cause-specific
hazard.

22.4 Bayesian analysis

Most of the Bayesian inferences presented in the literature of competing hazards
allow parametric models for the hazard rates. Reiser et al. (1995) assume that the
component lifetimes are exponentially distributed, Kuo and Yang (2000) consider
also Weibull-distributed lifetimes, while Basu et al. (2003) incorporate in their anal-
ysis all commonly used parametric distributions. In recent years, the nonparametric
Bayesian analysis of survival models has spurred a lot of work. Following the ideas
of beta and gamma processes devised by Hjort (1990), Kalbfleisch (1978), Dykstra
and Laud (1981), statisticians have increased the complexity of the prior elicita-
tion for the hazards rates in the competing-risks models. We refer the reader to
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Arjas and Gasbarra (1994), Walker and Mallick (1997), Gasbarra and Karia (2000),
Salinas-Torres, Pereira, and Tiwari (2002), Nieto-Barajas and Walker (2002), and
Ibrahim, Chen, and Sinha (2001).

While the EM-based inference offers simplicity and robustness to the misspec-
ification of the hazards rate when there are enough second-stage data, it can also
produce the wrong estimates when there is not enough information (sparse second-
stage data, large percentage of masked items, etc.). It is therefore important to
be able to incorporate in the model the knowledge accumulated from past similar
experiments. In addition, the performance may be improved with a more flexible
choice of the intervals for the hazards.

In the following, we construct a Bayesian analysis structured on the model (22.4)
that uses the work of Nieto-Barajas and Walker (2002) to define the prior distribution
on the hazard rates. More precisely, their discrete gamma process is used to model
piecewise constant hazard rates as we adapt their method to the context of competing
proportional cause-specific hazards.

Prior distributions

As before, assume that for each cause j ∈ {1, . . . , J }, we define K intervals on
which the j -th hazard is constant and equal to λjk , 1 ≤ k ≤ K . If we consider
these intervals to be shorter, then it is likely that the values of the hazards in two
successive pieces are not independent. We follow Nieto-Barajas and Walker (2002)
and assume a latent process ujk so that for each cause j , there is a Markovian
dependence summarized by the graph

λj1 → uj1 → λj2 → . . .→ ujK−1 → λjK .

Adding the latent variables ujk allows one to model and control the dependence
between values taken by one cause-specific hazard rate on adjacent intervals. Such
dependence is important in situations in which we choose the intervals without
a good knowledge of the underlying process (as is usually the case in practice).
Alternatively, one may interpret the ujk ’s as virtual failures of a process identical
in nature to the one under study; this point of view is attractive as it allows an
intuitive interpretation of the model.

Formally, take the following conditional distributions

λj1 ∼ Gamma(αj1, βj1),

ujk |λjk ∼ Poisson(cjkλjk )

λj,k+1|ujk ∼ Gamma(αjk+1 + ujk , βjk+1 + cjk ) (22.7)

with αjK+1 = βjK+1 = 0 for all 1 ≤ j ≤ J and 1 ≤ k ≤ K . The cjk regulates the
smoothing of the hazard λj so that if cjk = 0 then λjk and λjk+1 are independent.
In general, 10 ≤ cjk ≤ 20 is enough to produce smoother hazards, while taking
c = 0 will result in approximately the same inference as the EM-based one. The
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choice of the cjk ’s has to be done in connection with the width of the intervals, for
example, a succession of larger intervals requires a smaller value of the smoothing
parameter. One can also let the data decide by considering the c’s as part of the
parameter vector and assigning exponential priors to them as suggested in Nieto-
Barajas and Walker (2002). In the absence of prior information, the αjk and βjk
are recommended to be small. If we have prior information regarding the process
λj , say we know E[λjk ] = ψjk , then we can choose the αjk , βjk , and cjk such that

αjk+1

βjk+1
= ψjk+1 − ξjk+1ψjk

1 − ξjk+1
,

where ξjk+1 = cjk/(βjk+1 + cjk ). We refer to Nieto-Barajas and Walker (2002) for
other properties of the gamma process prior.

A natural conjugate prior assigned to the masking probabilities is

(pg1|j , pg2|j , . . . , pgLj |j ) ∼ Dirichlet(η1j , . . . , ηLj j ), (22.8)

for all 1 ≤ j ≤ J causes. Lack of information on the masking probabilities will
produce ηij = constant for all 1 ≤ i ≤ Lj and all causes j , while prior information

can be included as E[pgi |j ] = ηij /
∑Lj
h=1 ηhj .

Data augmentation algorithm

There are two sets of latent variables in the model. For each item i ∈ M2, there
are J unobserved random variables (δi1, . . . , δiJ ). In addition, the prior (22.7)
introduces K − 1 additional latent variables, (uj1, . . . , ujK−1), for each cause j . In
the initialization step, we need to input initial guesses for all the latent variables.
For the set of δ’s, one can use the output from the EM algorithm described in
the previous section. Although the δEM

ij computed in the E-step are not integers,

we can choose for each i ∈ M2 the j0 with the largest δEM
ij and assign δ(0)ij 0

= 1,

δ
(0)
ij = 0, j �= j0. In our applications, we use u(0)jk = 1 for all j, k.

The data augmentation algorithm (Tanner and Wong, 1987) consists in the
following steps at iteration t :

Masking probabilities For each j ∈ {1, . . . , J } sample(
p
(t)
g1|j , . . . , p

(t)
gLj |j

)
∼ Dirichlet

(
η1j+

N∑
i=1

γig1
δ
(t−1)
ij , . . . , ηLj j+

N∑
i=1

γigLj
δ
(t−1)
ij

)
.

Hazard rates For each j ∈ {1, . . . , J }

λ
(t)
j1 ∼ Gamma

(
αj1 + u(t−1)

j1 + nj1, βj1 + cj1 + e(t−1)
1

)
,

λ
(t)
jk ∼ Gamma

(
αjk + u(t−1)

jk−1 + u(t−1)
jk + n(t−1)

jk , βjk + cjk−1 + cjk + e(t−1)
k

)
,
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where n(t−1)
jk is the number of items that fail in the k-th interval due to cause

j , e(t)k is defined by equation (22.5), and cjK = ujK = 0. The superindex t − 1
means that these numbers are estimated using the latent variables imputed
at step t − 1.

Latent variables For each item i ∈ M2,(
δ
(t)
i1 , . . . , δ

(t)
iJ

)
∼ Multin

1,
p
(t)
g(i)|1λ

(t)
1 (ti)∑

j∈g(i) p
(t)
g(i)|j λ

(t)
j (ti )

, . . . ,
p
(t)
g(i)|J λ

(t)
J (ti)∑

j∈g(i) p
(t)
g(i)|jλ

(t)
j (ti )

 .

For each cause j ∈ {1, . . . , J } and for each interval k ∈ {1, . . . , K},

Pr
(
u
(t)
jk = u

)
∝

[cjk (cjk + βjk+1)λ
(t)
jk λ

(t)
jk+1]u

�(u+ 1)�(αjk + u) .

The proportional hazards case

The assumption of proportional cause-specific hazards, here denoted APH, is recur-
rent in the literature of competing risks. However, tests to assess the correctness of
such a hypothesis are rare. Craiu and Duchesne (2004) develop a likelihood ratio
test for the hypothesis APH. In the present context, one first needs to construct a
data augmentation algorithm to sample from the parameter subspace defined by
the constraints

APH : λjk = φjλ1k

for all 2 ≤ j ≤ J and all 1 ≤ k ≤ K . The masking part of the model as well as the
prior specification of λ1 remain the same. For each j ≥ 2, the prior distribution
of φj is Gamma(νj , χj ). The DA algorithm for the unrestricted model changes in
that only the {u1k : 1 ≤ k ≤ K − 1} is imputed and the hazard rates step becomes:

Hazard rates

λ
(t)
11 ∼ Gamma

(
α11 + u(t−1)

11 + n11, β11 + c11 + e(t−1)
1

)
,

λ
(t)
1k ∼ Gamma

(
α1k + u(t−1)

1k−1 + u(t−1)
1k + n(t−1)

1k , β1k + c1k−1 + c1k + e(t−1)
k

)
,

φ
(t)
j ∼ Gamma

(
νj +

N∑
i=1

δij , χj +
K∑
k=1

λ
(t)
1k ek

)
.

We denote APC the general model with piecewise constant hazards. In assessing
the validity of APH of interest is the Bayes factor

BPH = p(YOBS|APC)

p(YOBS|APH)
. (22.9)
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It is well known (for example, Kass and Raftery, 1995; Meng and Wong, 1996;
Chen, Shao, and Ibrahim, 2000) that

p(YOBS|APH) =
∫
p(YOBS|θPH, APH)p(θPH|APH) dθPH

is just the normalizing constant of the posterior density p(θPH|YOBS, APH). As a
result, the estimation of (22.9) is equivalent to the estimation of a ratio of two
normalizing constants. The latter problem has been intensively studied in the last
years, particularly in situations in which only samples (independent or dependent)
from the two distributions of interest are available to the analyst. A simple but often
highly variable solution is based on importance sampling (Geweke, 1989). Meng
and Wong (1996) develop bridge sampling as a generalization of importance sam-
pling that exploits optimally the overlap between the supports of the distributions.
Recently, Gelman and Meng (1998) introduced path sampling as the limit of an
infinite sequence of bridge samplers. While the theory of bridge sampling has been
developed for situations in which independent realizations from each distribution
are available, subsequent applications and studies (Servidea, 2002) have shown that
the method also works well with dependent samples. In the context of the present
analysis, we have reasonable confidence that the two models have a significant
overlap since the two parameter spaces share the subset of masking probabilities.
It is worth adding that the unnormalized posterior density can be computed at any
point because p(YOBS|θPH, APH) and p(YOBS|θ, APC) can be expressed in closed
form (Craiu and Duchesne, 2004).

22.5 Example

To assess the importance of transferring information between adjacent intervals, we
consider a simulation example in which the hazards rates are Weibull distributed
and there is no proportionality among them. There are 300 observations with times
of failure between 0 and 15. Only 20% of the masked items are sent to a second-
stage analysis. There are three possible causes of failure and there are three masking
groups: g1 = {1, 2}, g2 = {1, 3}, and g3 = {1, 2, 3}. The probability of having the
cause masked is: 60% for cause 1, 80% for cause 2, and 70% for cause 3. We
implement the Bayesian analysis with 10 or 20 intervals. In the absence of prior
information, we take cjk = C, αjk = βjk = 0.001 for all causes j and all intervals k.

The DA algorithm has been used to generate 4,000 iterations out of which
we used the last 2,000 for estimation. The convergence assessment has been done
following the ideas of Gelman and Rubin (1992) using Andrew Gelman’s itsim
function in S-plus applied to four parallel chains. The simulation lasted approx-
imately one hour. Figures 22.1 and 22.2 illustrate the effect of increasing the
“smoothing parameter” C from 0 to 10 when the number of intervals is relatively
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Figure 22.1 Plot of the posterior mean of the diagnostic probability π1|{1,2,3}
against time as the number of intervals and the value of the smoothing parameter
C vary. The true curve is represented by the dashed line, and the estimates within
each interval are rendered with the solid lines.

moderate (10–20). Under consideration are the posterior means of the estimators for
the diagnostic probability π̂1|{1,2,3}(t) and π̂2|{1,2,3}(t). Each plot shows in solid line
the true value, and in dotted line the piecewise constant estimator. The C = 0 value
corresponds roughly to the EM-based inference. It is seen here that if we increase
the number of intervals, the EM estimator is too rough due to the lack of sufficient
data in some of the intervals. Raising the value of the smoothing parameter notice-
ably increases the precision of the estimate. It can also be seen from the plot that the
difference between the estimators obtained for C = 5 and C = 10 is quite small.

The Bayes factor (22.9) can be calculated following the iterative construction
of Meng and Wong (1996). This calculation is possible since one can compute the
observed likelihood in any point as shown in Craiu and Duchesne (2004). With
any of the above values for C, (22.9) ranges between 25 and 40 and shows no
support for APH.
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Figure 22.2 Plot of the posterior mean of the diagnostic probability π2|{1,2,3}
against time as the number of intervals and the value of the smoothing parameter
C vary. The true curve is represented by the dashed line, and the estimates within
each interval are rendered with the solid lines.

22.6 Discussion and further work

The two methods presented are complementary and should be used together to
increase the strength of the analysis. While the EM analysis produces robust infer-
ence of the masking probabilities and can be used to test for the symmetry and
proportional hazards assumptions, it can also be used to determine the posterior
modes for some or all of the model parameters as suggested in Gelman, Carlin,
Stern, and Rubin (2003, Chapter 12). The Bayesian analysis is particularly useful
in producing more sensible estimates of the hazard rates when the data are sparse.
In addition, the calculation of the posterior variance of the diagnostic probabilities
is more straightforward once it is possible to sample from the posterior distribution
of the parameters.
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Within the Bayesian framework, it may be of interest to produce an automatic
sequential design procedure to help the experimenter decide which masked items
should be sent to the second-stage analysis so that a certain given utility function
is maximized.

We would like to enrich the class of possible models by relaxing the condition of
piecewise linearity of the hazards. However, the computation complexity increases
rapidly once we give up linearity and needs further investigation.
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Mixed effects models
and the EM algorithm

Florin Vaida, Xiao-Li Meng,

and Ronghui Xu1

23.1 Introduction

Random effects models are a powerful and popular tool for clustered data. In
this chapter, we show how to use the Monte Carlo EM algorithm (MCEM, Wei
and Tanner, 1990) for maximum likelihood inference in the generalized linear
mixed effects model (GLMM), and the proportional hazards mixed effects model
(PHMM). The computation of the maximum likelihood estimator (MLE) for these
models is complex, due to the analytically intractable marginal likelihood. As for
linear mixed-effects models (Laird and Ware, 1982; Meng and van Dyk, 1998),
we treat the random effects as “missing data.” The expectation of the conditional
log-likelihood at the E-step is analytically intractable for GLMM and PHMM, and
is computed via the Monte Carlo simulation.

The GLMM has received increasing attention (e.g., Breslow and Clayton, 1993;
Diggle and Kenward, 1994; Lee and Nelder, 1996; Chan and Kuk, 1997). When
the random effects have a crossed design, the data cannot be reduced to small
independent clusters, and therefore numerical methods are impractical; this is the
case of interest here. For the computation of the E-step, several methods have been
proposed: a Metropolis–Hastings algorithm (McCulloch, 1997); an independent

1Department of Biostatistics and Department of Statistics, Harvard University, Boston, Mass.
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sampler based on either multivariate importance sampling or rejection sampling
(Booth and Hobert, 1999); and a Gibbs sampler (McCulloch and Searle, 2001,
for probit link). Bayesian analyses for GLMM include Karim and Zeger (1992),
Clayton (1996), Damien, Wakefield, and Walker (1999). In this chapter, by invoking
a data-augmentation scheme larger than the one used by the M-step of EM, we
obtain a straightforward slice sampler (Neal, 2003) for the E-step, which naturally
accommodates any link function and distribution of random effects. Secondly,
we propose a new EM scheme for fitting GLMM, in which the missing data
are the variance-standardized random effects. Using the well-known salamander
mating data of McCullagh and Nelder (1989, p. 439), we compare the two slice-EM
algorithms with other methods in the literature.

The second half of the chapter is dedicated to the PHMM. In survival analysis,
the random effects have traditionally been incorporated in the proportional haz-
ards model (Cox, 1972) through the “frailty” term, a univariate gamma-distributed
random effect that factors in the hazard function (Vaupel, Manton, and Stallard,
1979; Nielsen, Gill, Andersen, and Sorensen, 1992; Klein, 1992). Recent work
includes Ripatti and Palmgren (2000) and O’Quigley and Stare (2002). Bayesian
analysis of PHMM-related models include Gray (1994), Sargent (1998), and Carlin
and Hodges (1999). Following Vaida and Xu (2000), we propose here a general
PHMM with a linear mixed-effects predictor acting on the log-hazard scale, for the
analysis of censored clustered survival data. The model is applied in the analysis
of a lung cancer data set.

23.2 Binary regression with random effects

In the salamander mating data, 60 females and 60 males of two species of sala-
mander, the Rough Butt (R), and White Side (W) were paired following a crossed,
blocked, and incomplete design, in an experiment studying whether the two species
have developed genetic mechanisms that would prevent interbreeding. The response
is binary—successful (yij = 1) or unsuccessful (yij = 0) mating between female i
and male j . We adopt the model

logit Pr(yij = 1|u, β) = βIJ + uFi + uMj , (23.1)

where βIJ is the fixed effect corresponding to the species combination of the {i, j}-
pair of salamanders with β = (βRR, βRW , βWR, βWW ); u = (uF , uM) is the vector
of female and male random effects respectively, for which it is assumed that, inde-

pendently, uFi
i id∼ N(0, σ 2

F ), u
M
j

i id∼ N(0, σ 2
M), i, j = 1 . . . 60. Each animal partici-

pates in six matings. The experiments yielded the female–male mating proportions:
R–R = 60/90, R–W = 50/90, W–R = 19/90, W–W = 60/90. We only focus here
on computing MLEs of the parameters β and δ = (σF , σM) under the simple
model (23.1). The proposed methods are applicable to more sophisticated models,
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such as those that allow correlated, species-specific, and/or experiment-specific
random effects (e.g., McCullagh and Nelder, 1989; Karim and Zeger, 1992; Chan
and Kuk, 1997).

The main interest is on θ = (β, δ), which determines the probability of a
successful mating for each crossing, πIJ = E[G(βIJ + uF + uM)], where G is the
inverse logit function, G(η) = (1 + exp(−η))−1, and the expectation is over u.
The random effects may be used to estimate the mating propensity of individual
animals. Conditional on u, the likelihood for β is

p(y|β, u) =
exp

(∑
I,J yIJ βIJ +∑

i yi .u
F
i + ∑

j y.j u
M
j

)
∏
i,j

{
1 + exp(βIJ + uFi + uMj )

} ,

where yIJ = ∑
yij and the sum extends over all observations from the cross-

ing (I, J ); yi. and y.j are the total number of successful matings for the ith
female and j th male respectively (between 0 and 6); and i, j extend over all
females and males, respectively, in the experiment. The marginal likelihood to
maximize is p(y|θ) = E[p(y|β, u)|δ]. This 120-dimensional integral can be decom-
posed into a product of six 20-dimensional integrals, which cannot be reduced any
further.

Slice-EM algorithms for GLMM

The EM algorithm for GLMM solves iteratively Fisher’s equation s(θ; y) = E[s(θ;
y, u)|y, θ ] = 0, where s(θ; y) and s(θ; y, u) are the observed-data and augmented-
data score functions respectively. Operationally, the E-step computes s(θ |θ(t)) ≡
E[s(θ; y, u)|y, θ(t)], and then the M-step solves s(θ |θ(t)) = 0 for θ to determine
θ(t+1). The algorithm is iterated to convergence.

For a general GLMM with binary response yi , linear predictor ηi = x�
i β + z�

i u,
and mean response E(yi) = G(ηi) = Gi , s(θ |θ̃ ) conveniently separates the fixed
effect β from the variance parameter δ : s(θ |θ̃ ) = s(β|θ̃ )+ s(δ|θ̃ ),

s(β|θ̃ ) =
n∑
i=1

xiE
{
G′
i (yi −Gi)
Gi(1 −Gi)

∣∣∣∣ y, θ̃
}
, (23.2)

s(δ|θ̃ ) = E
{
∂

∂δ
logp(u|δ)

∣∣∣∣ y, θ̃
}
, (23.3)

where G′
i = dG/dηi . Using the Monte Carlo simulation to compute (23.2) and

(23.3), at the M-step we then solve

ŝm(β) =
n∑
i=1

xi
1

m

m∑
k=1

G′
ik (yi −Gik )

Gik (1 −Gik )
= 0 (23.4)
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and similarly for s(δ|θ̃ ), where u1 . . .um are draws from p(u|θ̃ , y), Gik and G′
ik

are obtained by substituting ηik = x�
i β + z�

i uk for ηi in Gi and G′
i , respectively.

In (23.4), ŝm(β) is the score function of a GLM with mn observations yi (repeated
m times) and linear predictor ηik , and the M-step for β is the estimation of a
GLM with offsets uk . The M-step for δ is the same as finding MLE for δ under
p(u|δ) based on perceived i.i.d. observations u1 . . .um. For the salamanders mating
data, the solutions were {σ 2

F }(t+1) = (Im)−1 ∑I
i=1

∑m
k=1(u

F
ik )

2 and {σ 2
M }(t+1) =

(Jm)−1 ∑J
j=1

∑m
k=1(u

M
jk )

2, where I = J = 60 and uFik ’s and uFjk ’s are the output
from the E-step sampler.

We sample from p(u|y, θ̃ ) via a slice sampler (Neal, 2003), which produces a
data-augmentation scheme for the E-step larger than the one for the M-step (see
also Meng and van Dyk, 1997). Specifically, we further augment {u, y} to {u, y, v},
where v = (v1 . . . vn) are an i.i.d. sample from the uniform distribution on [0,1];
v is independent of u and is connected to y via the threshold representation,

yi = I [vi ≤ G(ηi)], i = 1 . . . n, (23.5)

where I [·] is the indicator function. We sample v from p(v|u, y) and u from
p(u|v, y). The two distributions are proportional to the joint distribution restricted
by a set of linear inequalities (both also condition on θ ): p(v|u, y) ∝ IR(y)p(v),
p(u|v, y) ∝ IR(y)p(u), where R(y) is the set of all vectors (u, v) for which (23.5)
holds. The distribution p(v|u, y) is truncated uniform on the unit hypercube, and
p(u|v, y) is a truncated p(u). Slice sampling is a general method for constructing
useful Gibbs samplers (Damien, Wakefield, and Walker, 1999), and it has good
convergence properties (Mira and Tierney, 2002).

An alternative slice-EM algorithm is obtained by writing equation (23.1) as

logit Pr(Yij = 1|wFi , wMj ) = βIJ + σFwFi + σMwMj , with wFi , w
M
j

iid∼ N(0, 1) for
all i, j , that is, σF , σM become the regression coefficients of the standardized
random effects wFi , w

M
j . The E-step remains essentially unchanged, but the key

difference is that the variance parameters are now part of the mean parameter to
be estimated at the M-step, θ = (β, σF , σM). This leads to faster convergence for
σF , σM , for reasons similar to those given in Meng and van Dyk (1997, 1998).

The standard errors (SEs) of the estimates are computed from the Fisher infor-
mation matrix, as a by-product of the MCEM using the formula (Orchard and
Woodbury, 1972; Louis, 1982):

Iy(θ̂) = E
[
−s ′(θ̂; y, u) | y, θ̂

]
− E

[
s(θ̂; y, u)s(θ̂; y, u)� | y, θ̂

]
, (23.6)

where θ̂ is the MLE of θ , and s′ = ds/dθ . The right side is estimated via Monte
Carlo averages of −s ′(θ̂; y, u) and s(θ̂; y, u)s(θ̂; y, u)�. The second slice-EM has
the added appeal that the augmented-data score and Fisher information have stan-
dard GLM forms, regardless of the distribution of the random effects.
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Implementation and results of the slice-EM

In MCEM, the E-step computation is not exact, the EM sequence of likelihood
values is no longer guaranteed to be monotone, and the convergence to the MLE
is stochastic. Chan and Ledolter (1995), Biscarat (1994), Vaida (1998) establish
the convergence of MCEM under suitable conditions. Practical methods of moni-
toring convergence of MCEM include graphical monitoring of some sequences of
parameters (Chan and Ledolter, 1995); monitoring the likelihood ratio via bridge
sampling (Meng and Schilling, 1996); stopping when the Monte Carlo error is
small relative to the statistical error (Booth and Hobert, 1999). Our strategy is to
implement an MCEM in three stages: (1) The burn-in, where the starting point
is “forgotten.” We use a small sample size m; our goal is just to approach the
region of convergence. (2) The transition stage, where m is increased gradually
(e.g., linearly). (3) The plateau, where the algorithm is run with large m to achieve
a small Monte Carlo error.

The starting point was β = 0, σ 2
F = σ 2

M = 1. The burn-in had 50 steps at
m = 100. Figure 23.1 shows that this was enough to approach stationarity. The
transition had 20 steps, with m increased linearly to 10,000, ensuring a smooth
transition to the plateau. The plateau stage, with m = 10,000 for 50 steps, showed
the stationarity of the process, and gave more precise MLE. The total running
time was less than 30 min (Slice-EM1 and Slice-EM2 took about same time per
iteration), with 20-s burn-in and 25-min plateau. All programs were implemented
in C and were run on a Sun Ultra 30 workstation. The MLE was the average of the
MCEM iterates from the plateau stage. Table 23.1 compares the point and interval
estimates from the two algorithms, and the error due to the simulation. The latter
was estimated on the basis of an AR(1) approximation to θ (t) during the plateau
stage (see Chan and Ledolter, 1995; Vaida, 1998). Slice-EM2 has uniformly lower
MCEM error than Slice-EM1, with small improvements for β, but 50% reduction
for the variance estimates. In general, the MCEM error is negligible compared to
the standard error of the MLE.

The population-level probabilities of mating, πIJ are given by πIJ = G(βIJ /√
1 + c2σ 2), where c2 = (16

√
3/(15π))2 ≈ 0.346 and G is the inverse logit func-

tion (Zeger, Liang, and Albert, 1988). They are reported in Table 23.2. Interval
estimates for these were obtained by simulating the 90% highest posterior density
interval for πIJ as a function of (β, log σ 2

F , log σ 2
M). The mating probabilities are

large and very similar for same-species matings, πWW = .676, πRR = .673, but
very low for WR, πWR = .197. To test whether the mating between species is less
probable than within the same species, we calculated the marginal odds ratios (OR)
relative to RR for the three other crossings. There is strong evidence of a smaller
probability of mating for WR : OR = .12, 95% CI = (.05, .26). For the other two
comparisons, the 95% CI include OR = 1.

Table 23.2 compares the mating probabilities πIJ and 90% intervals estimates
from four different models/methods: GLMM (computed via Slice-EM2), a
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fixed-effects GLM, the Bayesian model of Karim and Zeger (1992), and penal-
ized quasi-likelihood (PQL, Breslow and Clayton, 1993). GLMM and the Bayesian
method produce numerically identical results. The GLM probabilities are also very
similar to GLMM; however, the confidence intervals from GLM are slightly nar-
rower due to the absence of the random effects.
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Method Estimate MCEM MLE 95% Conf Int
St Error St Error

Slice-EM1 1.019 .0016 .415 (0.19, 1.85)
βRR Slice-EM2 1.018 .0013 .407 (0.20, 1.83)

Slice-EM1 .321 .0015 .393 (−0.47 1.11)
βRW Slice-EM2 .320 .0013 .389 (−0.46, 1.10)

Slice-EM1 −1.940 .0019 .475 (−2.89 −0.99)
βWR Slice-EM2 −1.941 .0013 .473 (−2.89, −0.99)

Slice-EM1 .997 .0016 .415 (0.17 1.83)
βWW Slice-EM2 .994 .0014 .417 (0.16, 1.83)

Slice-EM1 1.384 .0044 .658 (0.54 3.58)
σ 2
F Slice-EM2 1.385 .0016 .626 (0.56 3.42)

Slice-EM1 1.238 .0039 .583 (0.48 3.18)
σ 2
M Slice-EM2 1.234 .0016 .580 (0.48 3.16)

Table 23.1 Maximum likelihood estimates for the salamander data from the two
Slice-EM algorithms, MCEM error, standard error of the MLE, and approximate
95% confidence intervals.

GLMM GLM Bayes PQL

πRR .68 (.56 .77) .67 (.59 .75) .67 (.56 .77) .66
πRW .56 (.44 .66) .56 (.47 .64) .56 (.44 .66) .55
πWR .20 (.13 .30) .21 (.14 .28) .20 (.13 .30) .22
πWW .67 (.56 .77) .67 (.59 .75) .68 (.56 .77) .66

Table 23.2 Marginal probabilities and 90% intervals from GLMM, GLM, and
Karim and Zeger’s Bayesian model, and marginal probabilities from PQL.

23.3 Proportional hazards mixed-effects models
A natural extension of the proportional hazards model (Cox, 1972) to clustered
survival data is to incorporate the random effects in the log relative risk:

λij (t) = λ0(t) exp(′zijβ
′ + w′

ij bi ), (23.7)

where λij (t) is the hazard function of the j th observation for the ith cluster (i =
1 . . . n, j = 1 . . . ni), bi is the vector of random effects from the ith cluster, and
zij ,wij are the covariate vectors for the fixed and random effects. Often wij is a
submatrix of zij , apart from possibly a ‘1,’ which multiplies the cluster effect on

the baseline hazard. In the following, we assume that bi
iid∼ N(0, V ). The typical
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frailty model (Vaupel, Manton, and Stallard, 1979) corresponds to a univariate
random effect in (23.7) with wij = 1 and exp(bi ) ∼ gamma(σ−2, σ 2).

Model (23.7) reflects the fact that some of the regression parameters in the
proportional hazards model are cluster-dependent and that they may be treated as
random. As an example, in a lung cancer trial conducted by the Eastern Cooperative
Oncology Group (EST 1582) to compare two different chemotherapy regimens,
there was evidence that the treatment effect varied substantially across the 31
participating institutions (Gray, 1994, 1995). Vaida and Xu (2000) apply PHMM to
recurrent events data, and I. Liu (2003) to the genetic epidemiology of alcoholism.

Let γ be the vector of parameters in V . In certain cases, with proper parameteri-
zation of the random effects, the covariance matrix V can be chosen to be diagonal
(γ = diag(V )). Let θ = (β, γ, λ0) denote the “vector” of parameters. While the
random effects bi are not parameters in the strict sense, they are estimable quan-
tities. The interest and focus on the unknown quantities β, bi , or γ depend on
the application at hand: in a clinical trial, the fixed treatment effect is usually of
importance; in a biological application where the cluster of observations corre-
sponds to a certain animal, or breed, the interest is in ranking the random effects
and selecting the best animal or breed; for genetic data, the focus is on γ , which
contains the components of genetic variability. The baseline hazard λ0(t) is needed
for the estimation and prediction of the survival probabilities. As will be seen, our
method generates the nonparametric maximum likelihood estimate (NPMLE) of
λ0(·) and its estimated variance as a by-product.

Each observation of the data can be written as yij = (tij , δij , zij ,wij ), where
tij is the failure time, possibly censored, and δij is the event indicator (1 for an
observed failure and 0 otherwise). Let yi = (yi1 . . . yin i ), that is, the data for cluster
i. Our inference is based on the full likelihood from the observed data. For cluster
i, conditional on the random effect, the (full) log-likelihood is

logp(yi |bi ) =
ni∑
j=1

{δij log λ0(tij )+ δij (zijβ
′ + w′

ij bi )−�0(tij )e
zijβ

′+w′
ij bi },

(23.8)
where �0(t) = ∫ t

0 λ0(s) ds is the cumulative baseline hazard. The likelihood based
on the observed data is then

p(y|θ) =
∫
p(y|θ, b)p(b|γ ) db =

n∏
i=1

∫
p(yi |β, λ0, bi)p(bi |γ ) dbi, (23.9)

where p(y|θ, b) = ∏
i p(yi |β, λ0, bi ) is the likelihood conditional on the random

effects b = (b1 . . .bn). Usually, no closed-form expression is available for p(y|θ)
and its calculation involves d-dimensional integration.

In the fixed-effect proportional hazards model, the partial likelihood is the pro-
file likelihood obtained by maximizing out the baseline hazard function within
the family of nonparametric discrete hazards (Johansen, 1993), which amounts to
replacing λ0 and �0 by their Nelson–Aalen estimators, respectively. In the random
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effects case, the NPMLE θ̂ = (β̂, γ̂ , λ̂0) maximizes the likelihood (23.9), and can
be obtained using the EM algorithm (Gill, 1985). For the univariate gamma-frailty
model, the algorithm was described in Klein (1992) and a corrected variance esti-
mator was later given in Andersen et al. (1997) following Parner (1998). Asymp-
totic theory for gamma-frailty models was developed in Murphy (1994, 1995)
and Parner (1998). They showed the consistency and asymptotic normality of the
NPMLE and that the asymptotic variance can be consistently estimated by the
inverse of a discrete observed information matrix Parner (1998).

The EM algorithm for the PHMM

For the EM algorithm, the augmented data is (yi , bi ). Conditional on the current
parameter θ̃ and the observed data, the expected log-likelihood is

Q(θ) = E[logp(y, b|θ) | y, θ̃ ] = E[logp(y|β, λ, b) | y, θ̃] + E[logp(b|γ ) | y, θ̃].
(23.10)

Denote the two terms on the right side of the above equation by Q1(β, λ) and
Q2(γ ). Then

Q1(β, λ) =
n∑
i=1

ni∑
j=1

{
δij (logλ0(tij )+ zijβ

′ + w′
ij E[bi ])−�0(tij )e

zij β
′+uij

}
,

(23.11)

where uij = log E[ew′
ij bi ], and Q2(γ ) = ∑n

i=1 E[l(γ ; bi )]. For normal random
effects with diagonal V , we have

Q2(γ ) = −
d∑
g=1

(n log σ 2
g + σ−2

g

n∑
i=1

E[b2
ig ])/2; (23.12)

a similar formula involving the expectation of cross-products bigbi ′g is obtained
for a general unconstrained V .

The conditional expectations in (23.11) and (23.12) can be obtained by numer-
ical methods (Xue and Brookmeyer, 1996, for d = 2) or Monte Carlo simulation.
For higher dimensions, we propose computing the E-step expectations based on
a simulated sample from p(bi |yi ). For log-concave “prior” distributions of the
random effects p(bi ), p(bi |yi ) is also log-concave, and a Gibbs sampler may be
implemented on the basis of the adaptive rejection sampling algorithm of Gilks
and Wild (1992). Most commonly used distributions for the random effects are
log-concave; the multivariate t is a notable exception, but a special algorithm is
available in this case.

The M-step conveniently separates the estimation of the parameters β and λ
from the variance components γ . The formula (23.11) has the same form as the log-
likelihood in a Cox regression model with known offsets uij , for which standard
software is available. Q2 is equivalent to the log-likelihood corresponding to n



262 MIXED MODELS AND EM ALGORITHM—VAIDA, MENG, XU

independent observations from the “prior” random effects distribution p(bi ), where
the standard sufficient statistics are replaced with their conditional expectations. For
diagonal V with (23.12), the estimates are σ̂ 2

g = n−1 ∑n
i=1 E[b2

ig ] for g = 1, . . . , d.

If V is unconstrained, it is maximized by V̂ = n−1 ∑n
i=1 E[bib′

i].
A good starting point for β and λ in the EM algorithm is given by a usual

Cox regression with no random effects. The initial value for V can be taken as
the identity matrix. As in the GLMM case, the convergence of the MCEM is only
approximately monotone, and special stopping rules are needed.

In the Cox random effects model, the EM algorithm has the particular feature
that the baseline hazard function is maximized nonparametrically; for this reason
the algorithm has sometimes been called a “modified EM” (Klein, 1992). However,
the theory of the parametric EM algorithm applies to this case. It may be showed
with similar methods as Johansen (1993) that the NPMLE for λ0(·) is concentrated
at the observed failure times. The problem is now equivalent to maximizing a para-
metric likelihood with a parameter λ = (λ1, . . . , λs)

′ for the baseline hazard, where
λi = λ0(ti) and t1, . . . , ts are the distinct uncensored failure times. Therefore, the
standard convergence properties of the EM algorithm apply.

The variance matrix of the NPMLE θ̂ = (β̂, λ̂, γ̂ ) is estimated using Louis’
formula, as described for GLMM. Parner (1998) showed consistency of such a
variance estimator in the gamma-frailty case. See Vaida and Xu (2000) for details.

An important advantage of random effects models over the marginal, or GEE-
type models, is that they allow inference of the cluster-specific random effects,
and therefore a better understanding and interpretation of the variability in the
data. Estimation, or prediction, of the random effect bi is based on its posterior,
or “empirical Bayes,” distribution p(bi |yi , θ̂ ) (Morris, 1983; Carlin and Louis,
1996). Conditional on the estimated parameters θ̂ , the point estimate for bi is b̂i =
E(bi |yi , θ̂ ), with variance v̂i = var(bi |yi , θ̂ ). These quantities are easily computed
as by-products of the EM algorithm at convergence. We illustrate inference for the
random effects in the following example.

A lung cancer clinical trial

The lung cancer trial EST 1582 compared two different chemotherapy regimens:
a standard (CAV) and an alternating regimen (CAV-HEM), where cycles of CAV
were alternated with HEM. The endpoint is overall survival. There were 31 insti-
tutions with a total of 579 patients. Gray (1995) found significant variation in
treatment effects among institutions, but no significant variation in the baseline
hazards (corresponding to the random intercept).

We fit model (23.7) to this data set with all 579 patients. The covariates are
treatment, presence or absence of bone metastases, presence or absence of liver
metastases, performance status at entry, and whether there was weight loss prior
to entry. We first modeled all five covariates with two independent normal random
effects for the intercept and treatment. Unsurprisingly, the standard deviations of
the random effect on the baseline hazard converged to zero. We therefore only
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d = 0 d = 1 d = 2

Treatment β −0.25 (0.09) −0.25 (0.10) −0.25 (0.12)
Bone 0.22 (0.09) 0.21 (0.10) 0.23 (0.14)
Liver 0.43 (0.09) 0.42 (0.09) 0.39 (0.09)

ps −0.60 (0.10) −0.64 (0.11) −0.65 (0.13)
Weight loss 0.20 (0.09) 0.22 (0.09) 0.21 (0.09)

Treatment σ – 0.27 (0.13) 0.21 (0.43)
Bone – – 0.36 (0.12)

Table 23.3 Estimates (and SE’s) for the mean parameters β and random effects
standard deviations σ from the lung cancer trial. Proportional hazards model (d =
0); PHMM with treatment random effect (d = 1); PHMM with treatment and bone
random effects (d = 2).

kept the treatment random effect; see Table 23.3 (d = 1). (The SE’s of the σ s
should not be used for testing σ = 0 since the null hypothesis lies on the boundary
of the parameter space and the normal approximation of the null test statistic is
no longer appropriate.) The EM sequence achieved satisfactory convergence after
25 iterations. The results with d = 1 were compared to the fit from the usual Cox
regression without any random effects (Table 23.3, d = 0).
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cer data. The institutions are ordered by increasing sample size (from 1 to 56).
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When we fit the data set with independent random effects for all five covariates,
three of the random-effects variances, corresponding to liver metastases, perfor-
mance status, and weight loss, converged to zero. Finally, we fit a model with
all five covariates and two independent random effects for treatment and bone
metastases, respectively (Table 23.3, d = 2). The results are statistically indistin-
guishable from the model with d = 1. Figure 23.2 shows the predicted random
effects of treatment and bone metastases together with the 95% credibility inter-
vals, with the institutions ordered by their sizes. The lengths of the credibility
intervals decrease as the clusters become larger.

In summary, in this analysis the random effects model leads to similar con-
clusions regarding the treatment and the other fixed effects, but the prediction for
each hospital is different, due to the presence of the random effects.
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The sampling/importance
resampling algorithm

Kim-Hung Li1

24.1 Introduction

The increasing use of the Bayesian methods in statistics demands powerful sampling
algorithms that are workable even for very awkward distributions. The demand is
especially strong when full Bayesian analysis with nonstandard combinations of dis-
tributions is of interest. Markov chain Monte Carlo (MCMC) methods are commonly
used for this sampling purpose. MCMC methods are iterative. A process having the
target probability density function (pdf), f (x), as its unique stationary distribution
is constructed and simulated. After removing a leading portion of a realization of the
simulated process, the remaining portion is taken as (correlated) samples from the
target distribution. The Gibbs sampler (Geman and Geman, 1984) and the Metropolis
algorithms (Hastings, 1970) are well-known examples of this type.

Rubin (1983) described a noniterative method for approximately sampling from
f (x). He called it the sampling/importance resampling (SIR) algorithm (Rubin
1987a, 1988). The SIR algorithm is a sample filtering method. It takes a random
sample of size M from an approximate distribution as input and produces a refined
sample of size m as output. In the SIR algorithm, a specially designed resampling
procedure that uses the importance ratios as resampling weights is used to select
the sample. As expected, the output of the SIR algorithm is “good” if the input is
“good” or if M/m is large.

1Department of Statistics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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The SIR algorithm has been used in different occasions. It was used as a
method to generate a starting value for the MCMC procedure (Gelman and Rubin,
1992), as an adjusting method for the weighted likelihood bootstrap (Newton and
Raftery, 1994), as an updating method in the bootstrap filter (Gordon, Salmond, and
Smith, 1993), and as a sampling method in the inverse Bayes formulae sampling
(Tan, Tian, and Ng, 2003).

This chapter is organized as follows. The SIR algorithm is presented in
Section 24.2. Then we discuss several fundamental problems of the SIR algorithm.
In Section 24.3, the selection ofM is studied. It is shown that when the importance
ratios follow a Gamma distribution, a slightly nonlinear relation between M and
m is preferred. We also show how M affects the fitness of the distribution of each
individual output to f (x). In Section 24.4, we suggest a selection criterion of the
importance sampling pdf. In Section 24.5, we consider different resampling algo-
rithms. The idea of the SIR algorithm is extended to yield an iterative sampling
algorithm. Finally, a discussion is given in Section 24.6.

24.2 SIR algorithm

The SIR algorithm consists of two steps: a sampling step and an importance resam-
pling step as given below:

Step 1. (Sampling step) Generate X1, . . . , XM independently and identically dis-
tributed (iid) from h(x), the support of which includes that of f (x).

Step 2. (Importance resampling step) Draw a weighted sample of size m(m ≤ M),
say {Y1, . . . , Ym}, from {X1, . . . , XM } with weight assigned to Xi being
ω(Xi) ∝ f (Xi)/h(Xi) for all i.

We call {X1, . . . , XM } a pool of candidate values, {Y1, . . . , Ym} a resample,
h(x) the importance sampling pdf, and ω(X) the importance ratio (also known as
importance weight) of X. Smith and Gelfand (1992) used simple weighted random
sampling with replacement in the importance resampling step and called their
method the weighted bootstrap. Throughout this chapter, we assume that ω(X)
has finite second moment. Write µk(ω) = E(ωk(X)) for k = 1 and 2.

The SIR algorithm is most useful when h(x) is a good approximation of f (x).
This characteristic makes the SIR algorithm attractive in sensitivity studies (Smith
and Gelfand, 1992) because once a sample from a distribution is generated, we
can easily resample it to give a sample from similar distributions using the SIR
algorithm. Lancaster (1997), and Koop and Poirier (2001) studied two hypotheses.
They generated a sample under one hypothesis and resampled it using the SIR
algorithm to give a sample under the other hypothesis.

The SIR algorithm is closely related to the well-known importance sampling
(IS) method (Srinivasan, 2002). Suppose E(g(X)|X ∼ f (x)) is of interest. Given
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X1, . . . , XM an iid sample from h(x), the IS method uses

M∑
i=1

g(Xi)ω(Xi)

/ M∑
i=1

ω(Xi)

to estimate the expectation. Instead of using ω(X) as the weight in the weighted
average, the SIR algorithm uses it as the weight for resampling, and estimates the
expectation by

∑m
i=1 g(Yi)/m. Clearly the IS method produces a better estimator

than the SIR algorithm because resampling introduces noises. Estimate produced
by the SIR algorithm can be viewed as a Monte Carlo estimate of the IS estimate,
just like the Monte Carlo approximation of the bootstrap distribution.

The introduction of the randomness in the importance resampling step is in
fact a trade-off for greater flexibility. A well-tuned sample is preferred to a sin-
gle estimate or several estimates in many occasions. A sample provides a more
complete picture of the distribution, and is an efficient way to represent a distri-
bution. For example, in bootstrap filter (Gordon, Salmond, and Smith, 1993), the
SIR algorithm is used to refine the sample because keeping track of how a sample
evolutes is much easier than keeping track of how a density evolutes. It explains
the attractiveness of the sample-based approach (Gelfand and Smith, 1990; Smith
and Gelfand, 1992).

24.3 Selection of the pool size

It was pointed out in Section 24.1 that the SIR algorithm is good when M/m
is large. It means that controlling the M value alone is good enough to achieve
the following two purposes: (i) avoid positive dependence among Yi’s (negative
dependence may be desirable) and (ii) the distribution of any Yi in the resample
is close to f (x). Choosing an appropriate value of M to achieve the two purposes
is fundamental in the application of the SIR algorithm. If ω(x) is not a constant
function, elements in the resample are dependent. The relative magnitude ofM and
m monitors the dependence among {Yi}. On the other hand, in order to control the
closeness of the distribution of each Yi to f (x), our choice of M does not depend
on m as the latter plays no role in this aspect. We will discuss each of these in the
following subsections.

Relative magnitude of the pool and resample sizes

The SIR algorithm generates iid samples from f (x) when M/m tends to infinity.
We want M/m not to be small so as to avoid a lot of duplicates in the resam-
ple. Rubin (1987) suggested a linear rule, M/m = 20. Smith and Gelfand (1992)
recommended M/m ≥ 10. Theoretically, the relation between M and m should
depend on the distribution of the importance ratio.
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Let qi be the count of Xi in the resample {Y1, . . . , Ym}. Given the pool
{X1, . . . , XM }, we call a resampling algorithm a sampling without-replacement
algorithm if qi can only be either 0 or 1 with probability one; otherwise the algo-
rithm is called sampling with replacement. We want the resampling algorithms to
satisfy the following weighting condition:

E(qi |X1, . . . , XM) ∝ ω(Xi) for i = 1, . . .M.

If the resample size m(= ∑M
i=1 qi) is fixed, it becomes

E(qi |X1, . . . , XM) = mω(Xi)
/ M∑

j=1

ω(Xj ) for i = 1, . . .M. (24.1)

Given M , m, and {X1, . . . , XM}, a weighted sample without replacement exists if
and only if

mω(Xi)

/ M∑
j=1

ω(Xj) ≤ 1 for i = 1, . . . ,M. (24.2)

As expected, condition (24.2) implies that m is less than or equal to M .
Define [�c�] to be the ceiling of c, �c� to be the floor of c, and [c] = c − �c�.

From (24.1), the tightest possible bounds for qi aremω(Xi)/ M∑
j=1

ω(Xj )

 ≤ qi ≤
mω(Xi)

/ M∑
j=1

ω(Xj )

 . (24.3)

An algorithm is called tight if (24.3) holds for all i with probability one. We call
a sample that satisfies (24.3) tight. A tight sampling algorithm will be sampling
without replacement whenever condition (24.2) holds.

Large variation of qi is clearly undesirable because it usually means large
variation in estimation. For this reason, given m, M , and a pool {X1, . . . , XM }, a
resampling algorithm should be chosen to minimize the variability of qi’s. Clearly
any tight sampling algorithm is optimal with respect to this criterion.

The count qi relates directly to the positive dependence among elements in the
resample. We want M large enough for the following condition to hold:

Pr(qi ≤ b for all i) ≥ 1 − γ, (24.4)

for a given positive integer b(b < m), and a small positive value γ . For a tight
sampling algorithm, (24.4) means

Pr

m max
i=1,...,M

ω(Xi)

/ M∑
j=1

ω(Xj) ≤ b
 ≥ 1 − γ. (24.5)



SAMPLING/IMPORTANCE RESAMPLING ALGORITHM—LI 269

Insights into the requirement in (24.5) on M can be obtained if the impor-
tance weights are iid from a Gamma(α, β) distribution, where α is the shape
parameter and β is the scale parameter. Under this distribution assumption,
(ω(X1), . . . , ω(XM))/

∑M
j=1 ω(Xj ) follows the Dirichlet(α, . . . , α) distribution.

Pr(qi ≤ b for all i)

= Pr

(
m max
j=1,...,M

Zj ≤ b
∣∣∣∣ (Z1, . . . , ZM) ∼ Dirichlet(α, . . . , α)

)
≥ 1 −M Pr(Z > b/m|Z ∼ Beta(α, (M − 1)α)).

Condition (24.4) is fulfilled if

M Pr(Z > b/m|Z ∼ Beta(α, (M − 1)α)) ≤ γ. (24.6)

When m, b, α, and γ are given, we should choose the smallest M value satisfy-
ing (24.6). Suppose that m = 1,000, b = 1, α = 2, and γ = 0.05. Equation (24.6)
suggests M = 7,320. Suppose that h(x) is close to f (x), so that α is large,
say α = 1,000. If all other values remain unchanged, from (24.6), the required
M = 1,129, which is close to m.

To investigate how M and m are related, we show that for large M ,

M Pr(Z > b/m|Z ∼ Beta(α, (M − 1)α))

≤ M(αbM/m)α−1 exp(−{(M − 1)α − 1}b/m)(1 + o(1))
�(α)

, (24.7)

where �(.) is the gamma function (the proof of (24.7) is available from the author).
It suggests choosing M to be an integer close to the larger root of the equation

γ = M(αbM/m)α−1 exp(−{(M − 1)α − 1}b/m)/�(α). (24.8)

This formula gives quite a good approximation to (24.6). When m = 1,000, b = 1,
α = 2, and γ = 0.05, equation (24.8) gives M = 7,286. If α changes to 1,000,
M = 1,119. They show a little downward bias when compared with the use
of (24.6). If both M and m are much larger than α, equation (24.8) can be approx-
imated by γ = M(αbM /m)α−1 exp(−αbM /m)/�(α) implying that αbM /m ≈
log(M)+ (α − 1)loglog(M)− log(γ�(α)). This shows that M/m increases in an
order log(M).

Magnitude of the pool size

Let C be an arbitrary set in the sample space of Y . Define the indicator function of
the set C by IC(X). It takes value 1 when X ∈ C and 0 otherwise. As pointed out
in Section 24.2, the estimator of Pr(X ∈ C|X ∼ f (x)) based on the resample is a
Monte Carlo approximation of the IS estimator,

∑M
i=1 IC(Xi)ω(Xi)/

∑M
i=1 ω(Xi).

Lee (1997) used M to make the mean squared error (MSE) of the IS estimator
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bounded above by a small value, ε. He showed that the MSE is asymptotically
bounded above by µ2(ω)/(Mµ

2
1(ω)) and suggested that M should be chosen to

be µ2(ω)/(εµ
2
1(ω)). This choice is not very satisfactory because if ε is small, it

asks for large M even when h(x) = f (x).
Let Y be a random element from the resample {Y1, . . . , Ym}. We want Pr(Y ∈ C)

to be equal or very close to Pr(X ∈ C|X ∼ f (x)). A better measure of the perfor-
mance of the algorithm is | Pr(Y ∈ C)− Pr(X ∈ C|X ∼ f (x))|.

| Pr(Y ∈ C)− Pr(X ∈ C|X ∼ f (x))|

=
∣∣∣∣∣E

(
M∑
i=1

IC(Xi)qi

/ M∑
i=1

qi

)
− Pr(X ∈ C|X ∼ f (x))

∣∣∣∣∣
=
∣∣∣∣∣E

(
M∑
i=1

IC(Xi)ω(Xi)

/ M∑
i=1

ω(Xi)

)
− Pr(X ∈ C|X ∼ f (x))

∣∣∣∣∣ . (24.9)

Equation (24.9) reveals that (i) the performance of the algorithm depends on the
bias rather than the MSE of the IS estimator, and (ii) as far as (24.1) is satisfied,
the quality of each individual Yi does not depend on the resampling method used.

From (24.9), it can be shown that

| Pr(Y ∈ C)− Pr(X ∈ C | X ∼ f (x))|

= |µ2(ω)E(ω(X)IC(X))− µ1(ω)E(ω2(X)IC(X))|
Mµ3

1(ω)
+ o

(
1

M

)

≤ E(|µ2(ω)ω(X)− µ1(ω)ω
2(X)|)

2Mµ3
1(ω)

+ o
(

1

M

)
. (24.10)

Given a maximum tolerable error, δ, the pool size, M , should be chosen so that

E(|µ2(ω)ω(X)− µ1(ω)ω
2(X)|)

2δµ3
1(ω)

≤ M. (24.11)

If ω(X) follows a Gamma(α, β) distribution, (24.11) becomes

(α + 1)α+1 exp(−α − 1)

δα�(α + 1)
≤ M.

When α is large (that is, the importance sampling pdf is close to f (x)), we can
apply the Stirling’s formula for the gamma function (Abramowitz and Stegun,
1964, P. 257), and obtain the following choice of M

M ≈ 1/(δ
√

2πα).

If α is very small (that is, the importance sampling pdf is a very poor approximation
of f (x)), choose

M ≈ 1/(δαe).
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24.4 Selection criterion of the importance sampling
distribution

Like the IS method, the SIR algorithm will be inefficient if the importance sampling
pdf is not close to f (x). When sampling parameter from its posterior distribution,
normal approximation is a good importance sampling pdf. Of course, t-distribution
is an attractive alternative because of its closeness to the normal distribution and
its thicker tails. We can further extend the family of distributions to a mixture of
the above distributions. See for example, Gelman and Rubin (1992), Gelman et al.
(2003), and Tan, Tian, and Ng (2003).

The selection of an importance sampling pdf for the IS method has attracted
many discussions (Srinivasan, 2002). There is, however, a basic difference in the
focus between the IS method and the SIR algorithm: The main concern in the IS
method is on the variance (or MSE), but that in the SIR algorithm is on the bias as
demonstrated in (24.9). Usual adaptive approach (Oh and Berger, 1992; Schmidt,
Gamerman, and Moreira, 1999) chooses a parametric family of pdf hλ(x). An
adaptive rule is then activated to improve the choice of λ as more samples are
drawn. A good family of pdfs should possess the following properties: (i) it is
easy to draw sample from any of its members, and (ii) the family is rich in the
sense that f (x) can be well approximated by at least one member in the family.

Equation (24.10) suggests that the performance of an importance sampling pdf
can be measured by

E(|µ2(ω)ω(X)− µ1(ω)ω
2(X)|)/µ3

1(ω).

The smaller the value, the better the hλ(x). Let ωλ(X) be the importance ratio
of X for the importance sampling pdf hλ(x) and µk(ωλ) = E(ωkλ(X)|X ∼ hλ(x))
be the kth moment of ωλ(X). Suppose ωλ(X) = τf (X)/hλ(X), then µ1(ωλ) = τ .
Thus, hλ(x) is a good importance sampling pdf, if for X ∼ hλ(x),

E(|µ2(ωλ)ωλ(X)− τω2
λ(X)|) (24.12)

is small.
Suppose f (x) is the beta-binomial distribution with n = 5, α = 3 and β = 2.

Take Bin(n, λ) as the importance sampling pdf. The optimal λ value that mini-
mizes (24.12) is λ = 0.581. If n = 5, α = β = 3, f (x) is symmetric with respect
to n/2, and (24.12) suggests λ = 0.5 as expected.

If we have X1, . . . , XT iid from hλ0(x), which has equal or larger support than
hλ(x), the quantity in (24.12) can be estimated by

1

T

T∑
j=1

ωλ0(Xj )

∣∣∣∣∣ 1

T

T∑
i=1

ωλ(Xi)ωλ0(Xi)−
(

1

T

T∑
i=1

ωλ0(Xi)

)
ωλ(Xj )

∣∣∣∣∣ .
We should look for λ, which minimizes the above estimate.
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24.5 The resampling algorithms

How a resample is selected from a pool is an important problem in the SIR algo-
rithm. When M is fixed, it is not meaningful to restrict our attention to sampling
without-replacement algorithms because it is difficult to rule out the possibility that
condition (24.2) fails. Two common situations that cause trouble are (i) when the
importance ratio is unbounded from above and (ii) when the importance ratio is
not bounded away from zero.

In Section 24.3, tight sampling algorithms are defined and recommended. They
minimize the variability of each qi , and thus usually produce an estimator with a
smaller standard error. Generating a tight sample is easy once a weighted sampling
without-replacement method is available. For any tight sampling algorithm, we have
qi ≥ �mω(Xi)/

∑M
j=1 ω(Xj)�. This means that at least �mω(Xi)/

∑M
j=1 ω(Xj )�

copies of Xi must appear in the resample. We call these �mω(Xi)/
∑M
j=1 ω(Xj )�

copies of Xi a self-selective sample. Let � be the set of all self-selective samples,
that is,� contains �mω(X1)/

∑M
j=1 ω(Xj )� copies ofX1, �mω(X2)/

∑M
j=1 ω(Xj )�

copies ofX2, and so on. Denote the size of� by ν(�). Let� contain a weighted sam-
ple from {X1, . . . , XM } of sizem− ν(�). The weight assigned toXi(i = 1, . . . ,M)
is [[mω(Xi)/

∑M
j=1 ω(Xj )]]. It can be shown that these revised weights satisfy con-

dition (24.2). Therefore, � can be a without-replacement sample, and � ∪� is a
tight sample of size m.

A sampling algorithm from a pool is called a one-pass algorithm , if each
element in the pool is to be read once in order to draw the final sample. One-pass
sampling algorithm has some attractive advantages. First, the pool need not to be
stored, and the computer storage requirement is independent of the pool size M .
Second, many one-pass algorithms do not need prior knowledge of M and thus
we can choose M adaptively to control the accuracy of the method. Third, if we
want to generate a sequence of {Yi}, the sampling algorithm must be a one-pass
algorithm.

The SIR algorithm generates a sample of size m. We can extend the idea of
the SIR algorithm to cases when we want n(n > 1) samples each of size m, and
when we want a sequence of values. We will discuss each of the three cases in the
following sections.

Generating one sample

In survey sampling, many sampling algorithms have been proposed to draw a
weighted sample with or without replacement from a finite population. Brewer
and Hanif (1983) discussed 50 of them, not to mention the significant additions
after 1983. With the weights defined to be the importance ratios, many weighted
sampling algorithms can be used in the importance resampling step of the SIR
algorithm. In this subsection, we consider only four methods. They are the simple
weighted sampling with replacement, the Yates–Grundy draw by draw procedure,
the ordered systematic procedure, and Chao’s algorithm. The first two are the
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algorithms that are currently in use with the SIR algorithm. The ordered systematic
procedure is chosen because of its simplicity and its relation with another algorithm
in Section 24.5. Chao’s algorithm is a one-pass algorithm and can be modified to
generate a tight sample.

Simple weighted sampling with replacement

It is the standard weighted sampling with replacement method. Elements are drawn
independently one by one with replacement. In each draw, an Xi in the pool is
selected with probability equal to ω(Xi)/

∑M
j=1 ω(Xj). Brewer and Hanif (1983)

called it the multinomial sampling because of its close relation to the multinomial
distribution. It is a popular sampling method used in the importance resampling
step of the SIR algorithm (Smith and Gelfand, 1992; Gordon, Salmond, and
Smith, 1993, McAllister, Pikitch, Punt, and Hilborn, 1994; Avitzour, 1995; Gor-
don, Salmond, and Ewing, 1995; Lancaster, 1997; Lopes, Moreira, and Schmidt,
1999; Koop and Poirier, 2001; Tanizaki, 2001). This sampling method is simple.
However, from the statistical point of view, it is usually (but not always) less effi-
cient than the weighted sampling without-replacement algorithms when the latter
is applicable.

Yates–Grundy draw by draw procedure

The Yates–Grundy draw by draw procedure (Yates and Grundy, 1953) is a weighted
sampling without-replacement algorithm in sample survey. Units are drawn one by
one. The first unit in the sample is selected with probability proportional to ω(Xi);
the second unit, without replacement, again with probability proportional to ω(Xi);
and so on until m values are drawn. It is the method used in Raghunathan and Rubin
(1990), Gelman (1992), Gelman et al. (1995), and Tan, Tian, and Ng (2003). Efficient
one-pass algorithm is available in Li (1994). A major drawback of this method is
that condition (24.1) holds only approximately whenM/m is large. It explains why
it can always give a sample without replacement even if condition (24.2) is violated.

Ordered systematic procedure

The ordered systematic procedure (Hartley, 1966) is a tight sampling algorithm. To
use it in the SIR algorithm, we arrange Xi’s in a convenient order. Compute Si =∑i
j=1 ω(Xj ) for i = 1, . . . ,M . Generate u ∼ U(0, SM/m). For i = 1, . . . , m, let

Yi = Xj , where j is the smallest integer such that u+ (i − 1)SM/m ≤ Sj . Then
{Y1, . . . , Ym} is the resample. Kitagawa (1996) considered the case when u is a
fixed value, and found in an example that it outperforms the simple weighted
sampling with replacement method.

As we are free to determine the ordering of Xi’s, we can take advantage of
this flexibility. For example, if we want to estimate E(g(X)|X ∼ f (x)), a regular
sample can be obtained if Xi’s are ordered according to the magnitude of g(Xi)’s.
A disadvantage of this method is that it is not a one-pass algorithm, and the pool
has to be stored in the computer.
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Chao’s algorithm

Chao’s (1982) algorithm is a one-pass sampling method. When the algorithm is
applied to the SIR algorithm, it gives a sample, which is the union of two disjoint
sets, say A and B. Let SM = ∑M

j=1 ω(Xj ), which is available when Chao’s algo-
rithm ends. The set A = {Xi : mω(Xi)/SM > 1} (in Chao’s notation A = AM−1),
and B is a weighted random sample without replacement from ({X1, . . . , XM } − A)
of size (m− ν(A)) with ω(Xi) being the weight of Xi . When condition (24.2)
holds, A is empty, and B is a without-replacement sample. We can modify Chao’s
algorithm to yield a tight sample when A is not empty. As defined in Section 24.5,
we let � be the set of all self-selective samples. Draw � a weighted sample
without replacement of size (m− ν(�)) from A ∪ B with weight [[mω(Xi)/SM ]]
for every Xi ∈ A, and with weight m(SM −∑

j∈A ω(Xj))/(ν(B)SM) for every
Xi ∈ B. Then �

⋃
� is a tight sample.

Generating multiple samples

Like the bootstrap, we may want n samples of size m. A simple way to generate the
samples is to repeat the SIR algorithm independently n times. Each time a sample of
size m is simulated. We call this method the independent multiple sampling (IMS)
method. Another way is to use the SIR algorithm to generate a sample of size mn,
then randomly partition the sample into n sets of m values. If a tight sampling is
used in the importance resampling step, we call this method a balanced multiple
sampling (BMS) method because it reduces to the balanced bootstrap (Davison,
Hinkley, and Schechtman, 1986) when M = m and h(x) = f (x).

It is of interest to compare the BMS method with the IMS method when a tight
sampling method is used. Let the pool size used in the BMS method be nM, where
M is the pool size used in the IMS method. Therefore, both methods require the
same number of Xi’s. As the pool size used in the BMS method is nM, which is
larger than the pool size M in the IMS method, from (24.10), an individual sample
from the BMS method is of better quality than that from the IMS method. On the
other hand, let q∗

i be the count of Xi in the resample of size mn. Assume that
ω(X)’s are iid Gamma(α, β) distributed. From (24.7), for the IMS method,

Pr(q∗
i ≤ b for all i)

≥ {1 −M(αbM/m)α−1 exp(−{(M − 1)α − 1}b/m)(1 + o(1))/�(α)}n

= 1 − nM (αbM/m)α−1 exp(−{(M − 1)α − 1}b/m)(1 + o(1))/�(α).

For the BMS method, the chance is

Pr(q∗
i ≤ b for all i)

≥ 1 − nM (αbM/m)α−1 exp(−{(nM − 1)α − 1}b/(mn))(1 + o(1))/�(α)
= 1 − nM (αbM/m)α−1 exp(−{(M − 1/n)α − 1/n}b/m)(1 + o(1))/�(α).
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The BMS method has a slightly larger lower bound than the IMS method. In sum-
mary, the BMS method is preferred to the IMS method as it has better individual
property and slightly larger lower bound for the chance of having less duplicates
in the resample. A drawback for the BMS method is that the mn selected values
are needed to be stored.

Generating a sequence of values

Like the uniform random number generation, it is desirable if we can generate a
sequence of random values. To do so, we construct and simulate a stochastic process
{Yi}. The process should have f (x) as its unique stationary distribution. Gelman
(1992) proposed an iterative procedure that fails to satisfy the above requirement.
We are going to introduce a new iterative procedure.

Consider the following continuous time process {X(t) : t ≥ 0}.
Step 1: Set r = 0.
Step 2: Generate Z from h(x), and a variable value L(L ≥ 0) given Z.
Step 3: Set X(t) = Z for r ≤ t < r + L when L > 0.
Step 4: Increase r by L and go to Step 2.

The process {X(t)} is a regenerative process (see for example, Shedler, 1993).
Variable X(t) converges in distribution to f (x) if E(L|Z) ∝ ω(Z), the importance
ratio of Z. We call a process satisfying the above condition an importance weighted
regenerative (IWR) process. To get a sequence of Yi from a realization of an IWR
process, we choose a length of the “burn-in” period c(c ≥ 0), and a sampling
interval k(k > 0). Generate a random starting point u from U[c, c + k), and set
Yi = X(u+ (i − 1)k) for i = 1, 2, . . . .

A simple IWR process is to set L = ω(Z). It relates closely to the ordered
systematic sampling. The differences are (i) the sampling interval k is fixed rather
than data-dependent in the ordered systematic sampling, (ii) we do not have a finite
pool in the IWR process, and (iii) the IWR process has a “burn-in” period.

Another reasonable choice is to set k = 1, and c = 0 and let L be a random
variable taking only nonnegative integer values. In this case, L is simply the
number of copies of Z in the final sample. This form of IWR process relates to the
Friedman’s sampling method and the method considered in Patil and Rao (1977).
For a given positive scale parameter λ, the former corresponds to the case when
L takes value either �λω(Z)� or �λω(Z)�, while the latter has L equal to either 0
or �λω(Z)�. Both methods reduce to the acceptance–rejection method when λ is
chosen such that λω(Z) ≤ 1 for all Z in the support of h(x).

The use of the IWR process does not have the problem of determining M .
However, we have to choose a sampling interval k and the length of the “burn-in”
period c. The former plays a crucial role in q, the number of copies of an X(t)
in the output values. As Pr(q ≤ b) ≥ Pr(L < bk). With a given integer b in mind,
pick a k value large enough so that Pr(L < bk) is close to one.

To diminish the effect of successive identical Y’s when we encounter Z values
with large ω(Z), we can apply the table-shuffling method that works successfully in
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the combination of pseudorandom numbers (MacLaren and Marsaglia, 1965; Nance
and Overstreet, 1978). First, a table of size n is initialized to store Y1, . . . , Yn.
Whenever a random sample from f (x) is wanted, randomly select one element
from the table as our sample. Then replace the selected element in the table by the
next Yi .

24.6 Discussion

Apart from the fundamental problems considered in this chapter, other topics about
the SIR algorithm are worth discussion. The requirement that elements in the pool,
{X1, . . . , XM }, are iid samples is too restrictive. Lancaster (1997), and Koop and
Poirier (2001) applied the SIR algorithm to optimal job-search models. However,
the pool is not a simple random sample but a realization of a Gibbs sampler. A
simple way to gain efficiency is to allow negative dependence among Xi’s. The
ideas of stratification and systematic sampling are helpful in this direction. The use
of nonidentically distributed sample is also desired, especially when an adaptive
rule is implemented to update our choice of the importance sampling pdf as more
and more values are sampled.

Real-time control of M is also an interesting problem. Instead of fixing M
before simulation, we can go on sampling from h(X) until a certain stopping
criterion is satisfied. A simple stopping rule is to stop simulating Xi when M is
larger than a fixed value and condition (24.2) is satisfied. This stopping rule ensures
that there are no duplicates in the output. Chao’s algorithm is a good resampling
algorithm for real-time control of M because it is a one-pass algorithm and does
not require the knowledge of M before sampling.
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Whither applied Bayesian
inference?

Bradley P. Carlin1

In this chapter, I would like to offer some thoughts on where we have been, where
we are, and where we hope to go as applied Bayesians in the next few years.
Mercifully, this task is far easier than reviewing Prof. Rubin’s contributions to
the field (a summary of the impact of the EM algorithm and its extensions alone
would easily fill my available space), or even giving a cogent overview of the
applied Bayesian papers included in this part of the book (which also cover a very
broad range of application). Nor will I attempt a textbook-style review of applied
Bayesian methods, since that is not the purpose of this book and, in any case,
many such fine treatments (including of course Gelman, Carlin, Stern, and Rubin,
2003) already exist.

25.1 Where we’ve been

There was a time not so long ago (say, 1960) when the term “applied Bayes”
would have been viewed by virtually all practicing statisticians as inherently self-
contradictory, as we would now view the terms “jumbo shrimp” or “sensible
p-value.” This was because, prior to modern computing, believable analyses were

1Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minn. The
author is grateful to Profs. Andrew Gelman and Xiao-Li Meng for their assistance in preparing these
remarks, and to Prof. Donald Rubin for a lifetime of insightful, passionate, relentless, and irreverent
devotion to Bayesian statistical science.
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not possible unless one could somehow argue that the low-dimensional model and
conjugate prior employed were actually reflective of real life. Of course, this is
not to say that there was no applied Bayes work at all prior to this time; examples
can be cited as far back as Laplace, and Bayesian methods had a robust (if primar-
ily theoretical) following under the banner of “inverse probability.” Moreover, the
seeds of Bayesian thinking creeping into the applied work of mainstream statis-
ticians were already being sown in the 1960s by James and Stein (1961), who
showed that Bayesianly derived estimators could outperform traditional ones even
when judged by frequentist criteria. Still, the lion’s share of the history of applied
Bayesian inference is irretrievably tied to the history of computing. In my applied
Bayesian courses, I often refer to the “prehistoric” period in Bayesian computing as
starting in 1763 (with the publication of Bayes’ rule) and ending sometime during
the 1960s, when compiled languages like Fortran coupled with Newton–Cotes
type integration routines at last made “real” applied Bayesian work possible—at
least for models with no more than 10 or 12 unknown parameters.

Fortunately, the publication of the EM algorithm by Dempster, Laird, and Rubin
(1977) and subsequent 1980s emergence of practical Monte Carlo integration meth-
ods and 1990s popularization of the Gibbs and Metropolis samplers changed this
situation forever. (These changes took place roughly in parallel with the devel-
opment and popularization of the similarly computationally intensive bootstrap
method within the frequentist camp.) Since the 1980s, every statistician has had
enough computing power in a desktop workstation or PC to allow these algorithms
to deliver good Bayesian answers for a remarkably broad array of applied prob-
lems. Starting around 15 years ago, applied Bayesians systematically conquered
virtually every standard model typically used by working statisticians: linear, log-
linear, nonlinear, categorical, longitudinal, latent variable, mixture, survival, spatial,
and on and on. Perhaps even more remarkable, the reduced reliance of the Monte
Carlo–Bayes approach on closed forms and restrictive assumptions meant that it
quickly surpassed the ability of traditional likelihood methods in handling compli-
cated or nonstandard settings. Small but annoying problems like nonnormal error
distributions, unbalanced data, unequal variances across populations, and the like
that greatly complicated the asymptotic theory supporting traditional methods now
caused no additional complexity in the Bayesian solution. Since this solution was
already the conceptually simpler one, it became the case that when the applied
statistical going gets tough, the tough get Bayesian.

Of course, without access to user-friendly software, Bayesian methods might
still be the purview of just a few PhD-level Bayesian statisticians with the stomach
for low-level programming. But during the last decade or so, the freely avail-
able WinBUGS language has enabled statisticians with just an MS (or even an
advanced undergraduate) understanding of probability distributions and standard
models to become genuine applied Bayesians. Several other competitor programs
have emerged recently, but in all cases the basic approach remains the same: code
up the model (probably by modifying an existing piece of code, just as one would
do in any statistical package), run a few parallel sampling chains, check that the



WHITHER APPLIED BAYESIAN INFERENCE—CARLIN 281

algorithm’s convergence is acceptable by looking at trace plots and maybe comput-
ing some (Gelman and Rubin, 1992) diagnostics, then create posterior summaries
from a lengthy “production run” of post-burn-in MCMC samples. The particular
inferential task at hand (estimation, testing, etc.) causes the “script” to diverge at
this point, but not in the sense that everything still arises from the manipulation of
these posterior samples.

25.2 Where we are

What then can we say about the current state of applied Bayesian statistics? Cer-
tainly there is now a widespread awareness that applied Bayesian tools are valuable
in advanced modeling settings, and should be included in the kit bag of every
well-educated senior statistician. Most leading statistics and biostatistics graduate
programs now include courses in Bayesian methods at the PhD level, and some
(including, I am proud to say, my own department) at the Master’s level as well.
However, the methods seem to be widely viewed as another “special topic” in
both practice and education, akin to other recent methodological areas of devel-
opment such as spatial statistics, genomics, or causal inference. But Bayesians do
not view their approach as another methodological subcategory; there is Bayesian
spatial, Bayesian genomics, and Bayesian causal. Clearly there is still work to be
done in getting mainstream statistical practitioners and educators to think of our
approach as a general one to be used in all situations, not merely when standard
methods fail.

This point is related to the one made by the current ASA President, Brad
Efron (2004), in his first Amstat News editorial, where he argued that the Bayes-
frequentist controversy is at this point mostly resolved; philosophically we have all
moved to the middle, and statistics is now “a unified discipline”. This is certainly
an entirely appropriate and upbeat view for an incoming ASA President to espouse.
It is also true that traditional statisticians and other applied scientists now recognize
the deficiencies in the frequentist paradigm (many medical journals now prohibit
p-values, and instead insist on point estimates and confidence intervals) and incor-
porate many quasi-Bayesian elements in their work (SAS Proc Mixed leaps to
mind). And for their part, the predominant view among Bayesians is now no longer
subjectivist but objectivist, strongly respecting the data and exhibiting a healthy
skepticism of “expert opinion.” Despite all this, I still find Prof. Efron’s view to
be on the optimistic side. The problems with traditional significance testing are not
going to go away, and as computing continues to advance, statisticians’ comfort
even with well-loved and time-honored traditional estimation methods (based as
they often are on unrealistic assumptions and approximate asymptotic normality)
is likely to increase.

To be fair, at this point we ought to take stock of the problems that still
vex applied Bayesian inference. The first is of course the difficulty in MCMC
convergence assessment. Recently, Lange (2004) somewhat darkly observed that,
“Practical failures of the ergodic theorem are the Achilles heel of MCMC.” While
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we have a large class of diagnostic plots and statistics to assist us, it is certainly true
that all can be fooled if the situation is chosen carefully enough, and convergence
diagnosis for arbitrary models should not be left to the inexperienced (or to the
machine itself). However, experience in this regard is slowly being accumulated
model class by model class, and I think there is reason to be optimistic that conver-
gence can be concluded with confidence for a very wide range of standard models
with “default priors.” This brings up the second major area of difficulty, namely,
the specification of noninformative prior distributions. Years of sophisticated theo-
retical struggle with concepts such as finite additivity have yielded relatively little
of practical value, and applied Bayesians continue to rely largely on well-known
“flat priors.” But here again, thinking of these priors as “defaults” may not be
entirely bad, since the lack of established conventions is part of what has hindered
Bayesians in their competition with traditional methods. Ongoing developments
in default priors (e.g., in finding alternatives to the much-maligned Gamma(ε, ε)
prior for variance components) also seem promising.

Finally, we should note areas in which Bayesians have not too few solutions,
but too many (thus leading to discord among competing camps). Here the most
obvious area seems to be hypothesis testing and model choice. Gone are the days
when all Bayesians agreed that Bayes factors were the only sensible solution: their
reliance on proper priors and their nature as a (sometimes erratic) single number
summary have greatly reduced the frequency of their appearance. Replacing them
are a veritable alphabet soup of penalized likelihood criteria (AIC, BIC, DIC, NIC,
TIC), conditional predictive summaries, posterior predictive loss criteria (Gelfand
and Ghosh, 1998), and Bayesian p-values and posterior predictive checks (Gelman,
Meng, and Stern, 1996). It seems that a lot more experience must be built up
before any of these alternatives emerges as a “default” approach. Second, rather
than developing richer and richer models for our data, it would likely behoove us to
work harder to understand the models we have already got. Liu and Hodges (2003)
recently offered a surprising characterization of bimodality in the balanced one-
way random effects model, a setting most Bayesians would likely regard as well
understood. A better understanding of the identifiability of variance components in
hierarchical longitudinal and spatial models would certainly help us in both prior
selection and MCMC algorithm design and implementation. A final (and long-
standing) area of Bayesian discord might be the extent to which mere posterior
summarization is sufficient for a standard analysis, and how many situations require
more (e.g., full-blown decision theory, or reference to underlying casual structure).

25.3 Where we’re going

Where will the field of applied Bayesian statistics be in 10 or 20 years? Legendary
Bayesian thinker Dennis Lindley once famously predicted that the 21st century
would be a “Bayesian century”; that prediction now looks somewhat optimistic,
and in 1994 Prof. Lindley himself put off the century’s arrival date to 2020 (Smith,
1995, p. 317). My own thinking is somewhere between that of Prof. Lindley and
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Prof. Efron, in that, while applied Bayes will continue to gain prominence, ulti-
mately the statistical and broader scientific communities will do as they have always
done, retaining and using whatever classical or Bayesian ideas that deliver sensible
answers for a reasonable investment (in terms of both human and computer time).
To this end, the current and long-awaited development by SAS of an MCMC-
based Bayes procedure will certainly win converts that an academic-style piece of
freeware like WinBUGS never could.

In the biostatistical application areas with which I am most familiar, Bayesian
methods have undoubtedly made a significant impact, and in many cases seem
poised to fundamentally change the way scientific evidence is accumulated, ana-
lyzed, and reported. In clinical trials, the FDA Center for Devices and Radiological
Health has been recommending Bayesian designs and stopping rules for ten years
now, as a way of utilizing the large historical databases often available in device
settings while simultaneously limiting the sample sizes needed to understand the
safety and efficacy of new devices. As discomfort with the high costs of drug trials
(in terms of both dollars and patient lives) continues to rise, the FDA Center for
Drug Evaluation and Research is now also showing interest in hierarchical mod-
eling and design, following the approach initially popularized by Thall, Simon,
and Estey (1995). In spatial epidemiology, Bayesian methods for combining evi-
dence across similar but distinct units are particularly helpful, since the random
effects distribution can be tailored to the spatial pattern anticipated, regardless
of whether the data are observed at point (say, latitude/longitude) or areal (say,
county) level. The hierarchical framework is also very natural for resolving mis-
alignment between two spatially oriented variables, or for handling data that are
multivariate, spatiotemporally indexed, or feature a wide variety of other complex-
ities (Banerjee, Carlin, and Gelfand, 2004). These are just two areas in my own
work where sensible answers simply would not be available were we forced to
rely solely on traditional methods.

While the MCMC-Bayes revolution will no doubt have significant repercussions
on industry and government, the impact on academia will be especially interesting
to observe. In a way, academic Bayesians have slit their own throats with MCMC,
since an analysis that would have been JASA-worthy 15 years ago might now
cause an associate editor only to yawn and say, “That’s just another straightforward
application of the Gibbs sampler, isn’t it?” The prominence of Bayesian articles in
the mainstream journals has led to more and more Bayesians on influential editorial
boards. But the simultaneous maturation of the field and change of emphasis from
convenient mathematical closed forms to complex numerical solutions implies that
we may need to update our definition of “a good paper.” The next 20 years will
likely see applied Bayesian research spending less time on traditional statistical
modeling and more time on integrating Bayesian thinking into the many substantive
areas that have yet to benefit from it. Certainly, I think the days when a “good
paper” featured a new method, some impressive (but often inapplicable) asymptotic
theory, a simulation study or two, and an illustration with a toy data set ought to
be behind us. Not only must real applications motivate our theory but they must



284 WHITHER APPLIED BAYESIAN INFERENCE—CARLIN

also do it in a way that answers our nonstatistical colleagues’ questions, rather than
“shoehorning” them into models and paradigms we have sitting on the shelf.

The future of applied Bayes in statistical education is also interesting to pon-
der. The MCMC-Bayes revolution notwithstanding, the number of undergraduate
Bayesian courses remains small; as mentioned above, most educators still seem to
view the area as a secondary topic to be learned only after one has learned “the
basics” of traditional statistical inference. One can certainly teach t-statistics and
corresponding table lookups to students without any calculus background; they will
not really understand what is going on, but should still be able to handle data sets
that do not deviate from the standard designs. With its reliance on explicit model-
ing, most Bayesian courses and textbooks have historically admitted only students
with at least a rudimentary understanding of distribution theory, a much higher
threshold. But as more “point and click” MCMC-Bayes software appears, perhaps
Bayesians will be able to reach the younger and less mathematically sophisticated
audiences of Statistics 101? I do think this will happen, and indeed to have the
impact on future scientific research that we desire, we must reach beyond the
undergraduates of Bayes-dominated departments like Duke and Carnegie Mellon
and start all undergraduates’ training in statistical literacy with Bayesian think-
ing, since these are the very people who will one day be the scientists analyzing
important questions in their own fields.

In closing, let me say that the future of applied Bayesian statistics appears
bright, with the articles in this book providing particularly compelling evidence. I
look forward to writing an even more upbeat assessment of the field for the book
in honor of Don Rubin’s 120th birthday.
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Efficient EM-type algorithms
for fitting spectral lines in
high-energy astrophysics

David A. van Dyk and Taeyoung Park1

26.1 Application-specific statistical methods

In recent years, a progressive new trend has been growing in applied statistics: It is
becoming ever more popular to build application-specific models that are designed
to account for the hierarchical and latent structures inherent in any particular data
generation mechanism. Such multilevel models have long been advocated on the-
oretical grounds, but the development of methodological and computational tools
for statistical analysis has now begun to bring such model fitting into routine prac-
tice. In this chapter, we discuss one such application, the use of highly structured
models to analyze spectral and spatial data obtained with modern high-resolution
telescopes that are designed to study the high-energy end of the electromagnetic
spectrum (e.g., X-rays and Gamma-rays). In particular, we consider the high-
resolution data that is available from the space-based Chandra X-ray Observatory.

1Department of Statistics, University of California, Irvine and Department of Statistics, Harvard
University, Cambridge, Mass. The authors gratefully acknowledge funding for this project partially
provided by NSF grant DMS-01-04129 and by NASA Contract NAS8-39073 (Chandra X-ray Center).
This chapter summarizes one thread of the work of the California–Harvard Astrostatistics Collaboration
(www.ics.uci.edu/∼dvd/astrostat.html). In addition to the authors, active participants
include A. Connors, D. Esch, P. Freeman, H. Kang, V. L. Kashyap, X. L. Meng, A. Siemiginowska,
E. Sourlas, Y. Yu, and A. Zezas.
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Launched in 1999 by the space shuttle Columbia, Chandra provides a new class
of high precision instrumentation that allows for much more precise imaging of
distant X-ray sources. The first author has been working on developing methods
for handling this data since before Chandra was launched; there are a number of
citations listed below that fill in many details of what is presented here and discuss
related topics in astrostatistics.

X-ray telescopes such as Chandra can map nearby stars with active magnetic
fields, the remnants of exploding stars, areas of star formation, regions near the
event horizon of a black hole, very distant but very turbulent galaxies, or even
the glowing gas embedding a cosmic cluster of galaxies. The production of X-ray
emission requires temperatures of millions of degrees and indicates the release of
stored energy such as that in very strong magnetic fields, extreme gravity, explo-
sive nuclear forces, or shock waves in hot plasma. Thus, X-ray observations give
astrophysicists a window into the physical processes involved in these turbulent
regions of the universe, which is unavailable from observations of visible light.
Because of the complexity of the sources themselves as well as the data collection
process, however, unlocking this window requires sophisticated statistical model-
ing and analysis. For example, the recorded X-rays are a mixture of X-rays from
a number of physical processes within the source. The X-rays are also subject
to the so-called effective area, a nonignorable stochastic censoring process: The
probability that an X-ray is observed depends on its energy, one of the variables of
primary interest. The energy and the originating sky coordinates of each X-ray are
observed with error and X-ray observations are subject to background contamina-
tion. (More background on the relevant astrophysics and instrumentation appears
in van Dyk et al. (2004)). To handle these various factors we generally adopt a
Bayesian perspective and construct highly structured multileveled models. Sophis-
ticated computational tools such as EM-type algorithms and MCMC samplers are
required for model fitting.

In this chapter, we describe a particular applied question that has come up in
our work in astrophysics. Namely, we describe computational methods for fitting
narrow emission lines in high-energy spectral analysis. Spectral analysis aims to
describe the distribution of the energy of photons emitted from a particular source;
here we focus on a high-energy interval of energies, the X-ray band. An emission
line is a narrow range of energy with excess electromagnetic emission, relative to
nearby intervals of energy. Such emission lines appear as sharp jumps in the distri-
bution over a narrow range of energies. Emission lines are formed when electrons
of energized ions fall down to lower energy shells and the excess energy is emitted
in the form of a photon. Because of the distinct quantum differences between the
energies of the electron shells of a particular ion, photons are emitted with one of a
number of particular energies. Thus, we observe excess electromagnetic emission
at these energies. The emission lines can be used to identify the ions and thus
the composition of the source. The redshift of the emission lines can be used to
compute the relative velocity of and the distance to the source. For these reasons,
the precise fitting of emission lines is of key interest to astrophysicists.
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This chapter is organized into four sections. In Section 26.2, we describe the
statistical issues involved with the Chandra’s data-generating mechanism and intro-
duce a highly structured model that accounts for this mechanism. Our model is
formulated in terms of several levels of missing data, which are critical in our for-
mulation of the necessary computational techniques. The specific problem that we
address in this chapter is introduced in Section 26.3, where we discuss the computa-
tional challenges that are involved with fitting narrow emission lines in high-energy
spectral analysis. In Section 26.4, we discuss model checking techniques based on
the posterior-predictive distribution.

26.2 The Chandra X-ray observatory

Data are collected on each X-ray photon that arrives at one of the detectors on board
Chandra; the time of arrival, the two dimensional sky coordinates, and the energy
are all recorded. Because of instrumental constraints, each of these four variables
is discrete. Thus, the data can be complied into a four-way table of photon counts
with margins corresponding to time, energy, and the two sky coordinates. Spectral
analysis focuses on the one-way energy margin and image analysis models the
two-way marginal table of sky coordinates. In this chapter, we focus on spectral
analysis; see van Dyk and Hans (2002), Esch (2003), Esch, Connors, Karovska,
and van Dyk (2004), and van Dyk et al. (2004) for discussion of image analysis
of Chandra data.

A spectral model aims to describe the distribution of the energy of photons
emitted from an astronomical source. This distribution can be formulated as a
finite mixture model, in which the photon count in each energy bin is modeled as
the sum of several independent Poisson random variables. A simplified form of
this model might consist of a continuum term and an emission line. These terms
represent two physical processes in the source; the continuum emission is a smooth
function across a wide range of energies, while the emission line is highly focused
at a particular energy. Thus, we might model the expected Poisson count in energy
bin j as

�j (θ) = �jf
(
θC,Ej

) + λpj (µ, σ ), for j = 1, . . . , J (26.1)

where �j is the width of bin j , f (θC,Ej ) is the expected counts per unit energy
due to the continuum term at energy Ej , θC is the set of free parameters in the
continuum model, λ is the expected counts due to the emission line, and pj (µ, σ )
is the proportion of an emission line centered at µ and with width σ that falls
into bin j . A Gaussian or Lorentzian density function is often used to model the
emission line, in which case σ might represent the standard deviation or some other
measure of variability. There are a number of standard forms for the continuum
term; here we use a power law, f (θC,Ej ) = αE−β

j , with θC = (α, β).
While the model in (26.1) is of primary scientific interest, a more complex

model is needed to address the data distortion introduced by instrumental effects
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and other aspects of the data collection procedure. For example, photons have a
certain probability of being absorbed by interstellar or intergalactic media. Since
this probability depends on the energy of the photon, the missing-data mechanism
is nonignorable (Rubin, 1976a). A similar effect occurs inside the detector; rather
than being reflected onto the detector, some photons are reflected away from or
pass right through the mirror. The likelihood of this occurring again depends on
the energy of the photon; this effect is known as the effective area of the detector.
Even for photons that are recorded, their energy may be recorded with error; given
the energy of the photon, there is a multinomial distribution that characterizes
the likely energy that is recorded by the instrument. (In practice, the number of
cells in these multinomial distributions is different from J ; we index the cells that
correspond to the observed data with l = 1, . . . , L.) To account for these processes
along with background contamination, (26.1) is modified via

�l(θ) =
J∑
j=1

Mlj�j (θ)dju(θ
A,Ej )+ λBl (26.2)

where Mlj is the probability that a photon with true energy in bin j is recorded in
the multinomial cell l, dj is the effective area of bin j , u(θA,Ej ) is the probability
that a photon with energy Ej is not absorbed, and λBl is a Poisson intensity of the
background counts in channel l. The multinomial distributions and effective area
are presumed known from calibration. The absorption probability is parameterized
using a smooth function, see van Dyk and Hans (2002) for details. Background
contamination is quantified using a second observation from an area of black space
near the source of interest, where all counts are assumed to be due to background
contamination. More details, more general forms, and applications of this model can
be found in van Dyk, Connors, Kashyap, and Siemiginowska (2001) and van Dyk
and Kang (2003).

This data generation process can be described in terms of a number of steps
and intermediate unobservable quantities. Each step starts with the output from the
previous step and updates it in some possibly stochastic fashion. We begin with the
energies of the continuum photons and the energies of the emission line photons. In
the first step, these energies are mixed together. Next, a Bernoulli random variable
is generated for each photon, with the probability of success depending on the
energy of the photon. If this random variable comes up positive, the photon is
observed; otherwise the photon is lost to absorption or the effective area of the
instrument. In another step, error is added to the remaining photon energies via
the conditional multinomial distributions. Finally, the data is contaminated with
Poisson background counts.

This formulation of the data generation process leads naturally to a multilevel
model that formalizes each of these intermediate quantities as missing data. Given
the layers of missing data, the model falls into a sequence of simple standard
models. For example, we might use a loglinear model for the Poisson counts
from the continuum, or a binomial regression to account for absorption (van Dyk,
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Connors, Kashyap, and Siemiginowska, 2001; van Dyk and Hans, 2002). Likewise,
given the parameters for each of the stochastic steps, it is a simple application of
the Bayes theorem to compute the conditional distribution of each of the layers
of missing data. Thus, from a computational point of view, such tools as the EM
or expectation/maximization algorithm (Dempster, Laird, and Rubin, 1977), the
Data Augmentation algorithm (Tanner and Wong, 1987), the Gibbs sampler (e.g.,
Gelfand and Smith, 1990; Smith and Roberts, 1993), and other Markov chain Monte
Carlo (MCMC) methods are ideally suited to highly structured models of this sort;
see van Dyk (2003). The modular structure of these algorithms fits hand in glove
with the hierarchical structure of our models. This allows us to divide a complex
model-fitting task into a sequence of much easier tasks. The modular structure
also allows us to take advantage of well-known algorithms that exist for fitting
certain components of our model. For example, using the EM algorithm to handle
a blurring matrix and background contamination in Poisson image analysis is a
well-known (and often rediscovered) technique (Fessler and Hero, 1994; Lange and
Carson, 1984; Lucy, 1974; Meng and van Dyk, 1997; Richardson, 1972; Shepp and
Vardi, 1982). Even though this standby image reconstruction algorithm is unable to
handle the richness of our highly structured model, we utilize it and its stochastic
generalization as a step in our mode-finding and posterior-sampling algorithms.

In this short chapter, we only present one model that we hope illustrates the
complexity of the data generation process, the models of this process, the algo-
rithms required to fit the models, and the required inference and model-checking
techniques. We emphasize, however, that the multilevel structure in the data gen-
eration process is inherent to the complex scientific processes studied and the
instruments used in high-energy astrophysics. Thus, the missing-data framework,
the related computational techniques, and methods for Bayesian inference and
model checking have many waiting applications in high-energy astrophysics.

26.3 Fitting narrow emission lines

In this section, we outline some of the difficulties involved in fitting the location
of a narrow emission line in (26.1). Our proposed solutions including EM-type
algorithms, MCMC samplers, and data-analysis techniques along with detailed
examples can be found in Park and van Dyk (2004) and Park, Siemiginowska, and
van Dyk (2004).

When a Gaussian density function is used to model the emission line in
the simplified spectral model given in (26.1), the standard EM algorithm ren-
ders straightforward calculation of the maximum likelihood estimate (MLE) or
the posterior mode; to streamline our discussion, we focus on maximum likeli-
hood estimation in this section. We construct a multilevel missing-data structure
that accounts for background contamination, the effective area of the instrument,
photon absorption, the blurring of photon energies, and the mixture of continuum
and emission line photons, see van Dyk, Connors, Kashyap, and Siemiginowska
(2001). For clarity, we consider an ideal instrument that produces counts that are



290 SPECTRAL ANALYSIS IN ASTROPHYSICS—VAN DYK, PARK

a mixture of continuum and emission line photons, but these counts are not sub-
ject to the data distortion processes described in Section 26.2. Accounting for the
various forms of data distortion causes no conceptual difficulty, but obscures the
ideas involved with fitting an emission line. The counts from an ideal instrument
are one of the levels of missing data in our formulation of the model that does
account for data distortion; we call these counts the ideal counts. Notationally, we
write Y ideal

j = YCj + YLj for each j , where Y ideal
j , YCj , and YLj are the total ideal

counts, the counts due to the continuum, and the counts due to the emission line in
bin j respectively. Given the ideal counts, it is easy to construct an EM algorithm
to fit (26.1); the missing data are the ideal counts split into continuum counts and
emission line counts, that is, {(YCj , YLj ), j = 1, . . . , J }. Since the augmented-data
log-likelihood is linear in these counts, the E-step simply computes the conditional
expectation of the missing data. Because given the ideal counts, the photon counts
due to the emission line in each bin follow binomial distributions, the conditional
expectation of each is simply the total (ideal) photon counts times the relative
magnitude of the emission line intensity and the combined continuum and emis-
sion line intensities at that bin. Specifically, given the current iterate of the model
parameters, θ(t) = (θC(t), λ(t), µ(t), σ (t)), the E-step is given by

E-step: Compute E
[
YLj

∣∣θ(t), Y ideal
j

]
for each bin j = 1, . . . , J , that is,

Ŷ Lj ≡ E
[
YLj

∣∣θ(t), Y ideal
j

] = Y ideal
j

λ(t)pj (µ
(t), σ (t))

�jf (θC(t), Ej )+ λ(t)pj (µ(t), σ (t)) . (26.3)

Next, the M-step of EM completes the update of the emission line location by
computing the weighted average of the bin energies using the photon counts due
to the emission line at every bin as the weights. In particular, the M-step updates
the emission line location using

M-step: Compute µ(t+1) = ∑J
j=1 Ej Ŷ

L
j /

∑J
j=1 Ŷ

L
j ,

where Ej is the mean energy in bin j . Generally the model includes other unknown
parameters such as the continuum parameters and the emission line intensity, which
are also updated in the M-step. Iteration between the E-step and the M-step forms
what we call the “standard EM algorithm” for maximum likelihood estimation.

Given physical constraints on emission lines, it is often appropriate to replace
the Gaussian line profile with a delta function. In this case, however, the standard
EM algorithm breaks down. A delta function is a limiting case of a Gaussian
density that results when the Gaussian variance goes to zero. Since the data are
binned, the success probability of the binomial random variable in the E-step is
zero for all of the bins except the one containing the previous iterate of the line
location. That is, all of the photon counts attributed to the emission line are in one
bin. Thus, the M-step necessarily returns the next iterate of the line location that is
the same as the previous iterate. Since the EM algorithm begins with an arbitrarily
specified value of a parameter, the algorithm will converge to the mean energy of
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the bin closest to the starting value in one iteration; the standard EM algorithm
does not return the maximum likelihood estimate in this case.

To avoid this difficulty, we can update the line location at each iteration by
maximizing the observed-data log-likelihood conditional on the other parameters
in the model. To accomplish this, we simply compute the conditional observed-data
log-likelihood at each possible value of the line location; because of the binning
of the data, possible line locations within each bin are indistinguishable, and thus
we are left with a finite number of possible distinguishable line locations. That is,
this strategy updates the other model parameters by maximizing the augmented-
data log-likelihood conditional on the line location using an EM iteration, and then
updates the line location given the other model parameters without a missing-data
formulation; this is an example of the ECME or expectation/conditional maxi-
mization either algorithm (Liu and Rubin, 1994). This algorithm allows groups of
parameters to be updated by maximizing either the augmented-data log-likelihood
or the observed-data log-likelihood while conditioning on the other parameters.
The ECME algorithm is especially easy to formulate in this case because the con-
ditional independence between the line location and the other parameters given
the augmented data means that the E-step and conditional M-steps (CM-STEPS)
for the other parameters are the same as in the standard EM algorithm. A diffi-
culty with the ECME algorithm when used with real data that are subject to the
data distortion processes described in Section 26.2, however, is that each itera-
tion of the algorithm is computationally expensive, requiring the computation of
the observed-data log-likelihood at each possible line location. Each evaluation
involves computing, (26.2) which is time consuming because of the large dimen-
sion of the blurring matrix, M; this difficulty persists even when sparse matrix
techniques are implemented.

As an alternative to ECME, we consider an AECM or alternating expecta-
tion/conditional maximization algorithm (Meng and van Dyk, 1997) that is com-
putationally less expensive per iteration in this case. The AECM algorithm is so
named because it allows the missing-data formulation to alternate for different
groups of parameters. In terms of its use of missing data, the AECM algorithm
finds middle ground between the EM and ECME algorithms. The AECM algorithm
offers a more general formation than the ECME algorithm in that the CM-steps
of AECM may conditionally maximize not only the observed-data log-likelihood
or the conditional expectation of the augmented-data log-likelihood but also the
conditional expectation of a partially augmented-data log-likelihood. That is, a
portion of the missing data may be used to formulate some of the CM-steps in
AECM. Thus, in our example, the ECME algorithm uses no missing data to for-
mulate the CM-step for the emission line location, the EM algorithm uses all of
the missing data, and the AECM algorithm allows us to formulate the CM-step
using part of the missing data. In particular, we construct an augmented-data log-
likelihood using the ideal counts as missing data, but do not separate the ideal
counts into continuum and emission line counts. To update the line location in the
AECM algorithm, we maximize this augmented-data log-likelihood conditional on
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the other model parameters. As with the ECME algorithm, the CM-step evaluates
the augmented-data log-likelihood at each possible value of the line location, while
fixing the other parameters at their current iteration. Because this evaluation does
not involve the high-dimensional blurring matrix, each iteration is much quicker
than those of the ECME algorithm.

The computational advantage of AECM, however, comes at a price: For some
starting values, AECM exhibits the same pathological convergence as the EM
algorithm, that is, the AECM algorithm can also get stuck at a point near its
starting value and thus never reach a mode of the likelihood. In order to combine
the stability of ECME and the speed of AECM, we propose a Rotation algorithm.
In the Rotation algorithm, we run one ECME iteration followed by a number of
AECM iterations, and repeat this procedure, rotating between ECME and AECM
until convergence. For clarity, we refer to a rotation algorithm that runs m AECM
iterations per ECME iteration as a Rotation(m) algorithm. In our experience, the
rotation algorithms not only find the same mode as ECME for any starting value,
but also outperform ECME in terms of required computation time.

To illustrate the application of our spectral model and the various EM-type algo-
rithms, we use a Chandra observation of the high redshift quasar PG1634+706.
Quasars are the most distant distinct detectable objects in the universe and their
study has important consequences for cosmological theory. In particular, by mea-
suring the location of the emission line of a quasar and accounting for the expansion
of the universe, we can estimate the distance of the quasar from Earth. Thus,
accurate fitting of emission line locations is central to the substantive scientific
questions. We modeled this data using a power law continuum with the absorp-
tion model of Morrison and McCammmon (1983) to account for absorption due
to the interstellar and intergalactic media, and a power law continuum for back-
ground contamination. The model was fitted via maximum likelihood using ECME,
AECM, and the Rotation(1) and Rotation(9) algorithms. Figure 26.1(a) shows the
fixed values of the AECM runs for each of the 51 equally spaced starting values
between 1.0 keV and 6.0 keV. If a point in this plot does not lie on a horizon-
tal line near 2.885 keV, it indicates that the AECM iteration is fixed at a point
other than the mode of the likelihood, that is, AECM did not attain the maximum
likelihood as shown in Figure 26.1(b). The middle two panels of Figure 26.1 plot
the log-likelihood against computation time and against iteration number using the
ECME, Rotation(1), and Rotation(9) algorithms; all three algorithms were started
at 4.9 keV. These plots illustrate that the use of more AECM iterations in the
Rotation algorithm can make the algorithm converge to a mode significantly more
quickly and that the increase of the log-likelihood per iteration is about the same
in these algorithms. The bottom two panels of Figure 26.1 compare the ECME,
Rotation(1), and Rotation(9) algorithms in terms of total required computation time
and the number of iterations required for convergence for 51 different starting val-
ues equally spaced between 1.0 keV and 6.0 keV. Figure 26.1(e) illustrates that
the Rotation(9) algorithm converged most quickly among these algorithms with
every starting value. In particular, the Rotation(1) and the Rotation(9) algorithms
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Figure 26.1 Comparison of the ECME, AECM, Rotation(1), and Rotation(9)
algorithms. (a) and (b) illustrate that AECM can get stuck at a point other than a
mode, thereby never reaching a mode of the likelihood; the AECM algorithm is
represented by a dashed-dotted line. (c) and (d) illustrate the behavior of the log-
likelihood evaluated at the iterates as a function of computation time and the
iteration number using the ECME, Rotation(1), and Rotation(9) algorithms. The
ECME, Rotation(1), and Rotation(9) algorithms are represented by solid, dashed,
and dotted lines respectively. (e) and (f) compare the ECME and Rotation(1) and
(9) algorithms in terms of computation time and the number of iterations required
for convergence using 51 equally spaced starting values. The Rotation(9) algo-
rithm is the quickest to converge among all of the algorithms considered for every
starting value.
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required only 1/2 and 1/10 of the computation time required by ECME respectively.
While the algorithms all attain the same mode, 2.885 keV, for every starting value,
Figure 26.1(f) indicates that the number of iterations required for convergence is
almost identical for all of the algorithms with this data set; for a few starting values,
the Rotation(9) algorithm takes more iterations than the other algorithms. Thus, in
this example, the computation time for each AECM iteration is trivial relative to
that of ECME, and when AECM is combined with ECME the average gain per
iteration is equal to that of ECME alone.

26.4 Model checking and model selection

Residual plots and posterior-predictive methods (Gelman and Meng, 1996; Gelman,
Meng, and Stern, 1996; Meng, 1994b; Rubin, 1981a, 1984) can be employed
to check our spectral model specification. Both methods aim to check the self-
consistency of the model, that is, the ability of the fitted model to predict the data
to which the model was fit. The methods illustrated in this section were suggested
for the spectral model by van Dyk and Kang (2003).

We consider the same model for Quasar PG1634+706 as discussed in Section
26.3 except that we compare three models for the emission line:

Model 0: There is no emission line.

Model 1: There is an emission line with fixed location in the spectrum.

Model 2: There is an emission line with unknown location.

The top two panels of Figure 26.2 compare the observed data with the fitted models
under Models 0 and 1 in the first and second column respectively. The expected
count per channel, �l(θ̂), is represented by a solid line and the predictive errors
by dotted lines; θ̂ is the maximum likelihood estimate. The errors are computed
using two standard deviations under the sampling model conditioning on θ̂ ; thus,
these errors are based on a Gaussian approximation and do not account for the
posterior variability of θ . The middle two panels of Figure 26.2 are mean subtracted
versions of the first two panels, that is, these panels are residual plots. To better
account for the Poisson nature of the data and the posterior variability in θ , we
can compute residual errors using the posterior-predictive distribution. These plots
appear as the final two panels in Figure 26.2; the jagged nature of the posterior-
predictive residual errors is due to our Monte Carlo evaluation of this distribution.
The advantage of the posterior-predictive errors is evident for the low counts in
the high-energy tail of the spectra as shown in the residual plots of Figure 26.2.
Comparing the two columns in Figure 26.2 near 2.885 keV also provides evidence
for the inclusion of the emission line.

Posterior-predictive p-values can be used to compare the three models and, thus,
to quantify the evidence in the data for the emission line. We base our comparisons
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Figure 26.2 Model diagnostic plots. (a) and (b) show the data with predictive
errors based on a Gaussian approximation; (c) and (d) show the residuals with
errors based on a Gaussian approximation; and (e) and (f) show the residuals with
errors based on the posterior predictive distribution. The two columns of the figure
correspond to Models 0 and 1 respectively. The excess counts near 2.885 keV are
apparent in the top two panels, thereby indicating evidence for the inclusion of the
emission line in the model; the location of the emission line is represented by a
vertical line in (b).
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Figure 26.3 The posterior-predictive check. In each of the two histograms, the
observed likelihood ratio test statistic (the vertical line) is compared with the
posterior-predictive distribution of the test statistic under Model 0.

on the likelihood ratio test statistic,

Ti(yrep) = log

{
supθ∈ i L(θ |yrep)

supθ∈ 0
L(θ |yrep)

}
, i = 1, 2,

where  0,  1, and  2 represent the parameter spaces under Models 0, 1, and 2
respectively, and yrep is a replicate data set. We can generate a sample from
the posterior-predictive distribution of Ti(yrep) under Model 0; we use the EM-
type algorithms described above to compute Ti(yrep). Histograms of T1(yrep) and
T2(yrep) appear in Figure 26.3. Comparing these distributions with the observed
values of the test statistics yields the posterior-predictive p-values in Figure 26.3.
There is strong evidence for the presence of the emission line in the spectrum.
Thus, Models 1 and 2 are preferable to Model 0.
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Improved predictions of lynx
trappings using a biological
model

Cavan Reilly and Angelique Zeringue1

27.1 Introduction

Often statistics is viewed, and taught, as a series of procedures. In this view,
methods are developed on the basis of some hypothesized data structure. The
perspective that there are fixed data structures that can be treated as a whole
misses the fascinating specificity of real-world problems. The field of time series
prediction provides an excellent example of a well-defined data structure with
a well-defined problem. In short, we assume we have a real-valued stochastic
process that depends on time and our goal is to predict values of this process at
some point in the future. If we assume the process is stationary, then there are
representation theorems that provide us with a parameterized representation of any
such series. Hence, to predict the series, we fit one of these parameterized forms
and extrapolate. There are other classes of stochastic processes that have been
developed to deal with nonstationary series, and while none of these has the same
status as autoregressive moving averages, the same strategy is advocated: find a
suitable parametric form from a class and estimate the parameters.

This general approach to statistics is often not the best approach to data analysis.
As an example, we will consider prediction of the often-analyzed series of Canadian

1Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minn.
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lynx trapped in the Mackenzie River area from 1821 to 1934 (Elton and Nicholson,
1942). We will develop a model using just the first 80 years, and then use this
model to predict the series for the next 34 years. These data have been analyzed
dozens of times see (Tong, 1990 for a review), often by methods that have no basis
in population biology. For example, several early analyses fit a sine curve to the
population over time and cleaned up the remaining lack of fit with an autoregression
(Bulmer, 1974; Campbell and Walker, 1977). But why would a sine curve describe
the dynamics of the lynx population? Clearly the lynx population fluctuates, but
sine curves, or even finite linear combinations of such curves, are certainly not the
only periodic functions. Perhaps such a model even provides good predictions, but
could we do better using knowledge of the biology involved?

Our statistical model of the lynx series should be based on the biological con-
text. This means that the model should attempt to describe fluctuations in the series
in terms of the source of the fluctuations. As mentioned above, most approaches
to statistical models of the lynx series have modeled the series as having fluctu-
ations that are attributable to some form of autocorrelation in the series without
attempting to understand why there would be such autocorrelation. The approach
presented here assumes that these fluctuations are due to fluctuations in the pri-
mary food source of the lynx, namely, the snowshoe hare. The problem with this
approach is that there is no data on the hare population for this period; hence we
will need to impute the hare population, at least implicitly.

To understand the basis of the model developed below, we first note an impor-
tant fact about the Canadian lynx. The Canadian lynx is an unusual predator in
terms of its diet. This predator relies almost exclusively on a diet of snowshoe
hare. When the hare become scarce in a region, the lynx will either move to other
regions or slowly starve to death rather than switch their food source (McCord and
Cardoza, 1982; Keith, 1990; Poole, 1994; Slough and Mowat, 1996; Brand and
Keith, 1979). Other similar predators, such as the bobcat, will change their diet
according to what food sources are available. Hence, our statistical model should
attribute the source of fluctuations in the lynx population to fluctuations in the size
of the hare population.

27.2 The current best model

There have been many attempts to model the lynx series: indeed, this series is
considered a benchmark by many who work in nonlinear time series analysis. A
rather comprehensive treatment of methods existing up to 1990 can be found in
Tong (1990). As mentioned in the introduction, the first attempts at modeling this
series combined autoregressions with sine curves. In 1980, Tong and Lim published
a paper in which they used a self exciting threshold autoregression (SETAR) to
model the lynx series. They had noticed that the series increased at a different rate
than it declined, hence sine curves were inappropriate. SETAR models can display
this behavior. Basically this model fits a different autoregression to the upswings
and the downturns in the population. For model selection issues, they employed
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Akaike’s information criterion. Many other models have been fit to this data with
varying degrees of success. Almost all of these models have been based on some
proposed form of autocorrelation in the series. In reviews of various treatments,
Lim (1987) and Lai (1996) both rated Tong’s SETAR model to be the best in
overall fit.

27.3 Biological models for predator prey systems

The most fundamental model of the interaction of a predator species with a prey
species is provided by the Lotka–Volterra equations. These equations assume that
the number of hare would increase exponentially in the absence of predation and
the number of lynx would decay exponentially in the absence of hare. In addi-
tion, when there are lynx present in the system, the hare population will decrease
exponentially at a rate depending on the population of lynx, and similarly the
population of lynx will increase exponentially at a rate depending on the hare
population. If u1(t) = the number of lynx at time t , and u2(t) = the number of
snowshoe hare at time t , then this simple framework implies the following set of
differential equations that describe the dynamics of the interaction between these
two species

du1

dt
= −α1u1 + β1u1u2

du2

dt
= α2u2 − β2u1u2,

where αj , βj for j = 1, 2 are positive parameters.
From a biological perspective, this model has the obvious shortcoming that it does

not consider the effect of other predators on the population of snowshoe hare. That
is, to have a model that represents the interaction of species in this habitat, we should
have more terms in the second equation of the form −βjuju2 for j = 3, . . . , J ,
where J − 1 is the number of predators that consume snowshoe hare. Indeed, one
can imagine a system of equations where there is an equation for each predator and
an equation for each prey that describes which animals consume each other in a
habitat. What makes the equation for the lynx unique is that it only depends on the
hare population. To take advantage of this property of the lynx equation, we suppose
there are two types of snowshoe hare: those that ultimately are consumed by lynx
and those that are not. We can split the equation for the total hare population into
two equations: one of the two equations will govern the dynamics of the population
of hare that are consumed by lynx and one equation for all the other hare. The first
of these equations will not depend on the population of any other predator and will
be exactly of the form of the second equation above. These two equations will be
related, but we assume that the effect of competition between hares is negligible
compared to the effect of birth and death on the population. Such an assumption is a
basic tenet of the Lotka-Volterra equations. Hence the effect of other predators is just
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that now in the basic Lotka-Volterra equations presented above, u2(t) = the number
of snowshoe hare alive at time t that are ultimately consumed by lynx. Of course, we
cannot measure the number of hare today that will eventually be consumed by lynx,
but it is nonetheless a well-defined concept. Actually, just determining the number
of hare in a given habitat is a hard problem.

Another biological shortcoming of this model is the assumption that in the
absence of predators, the snowshoe hare population will increase without bound.
Clearly this is not realistic, as ultimately the food source of the hare will become
depleted. To remedy this shortcoming, other terms are often added to the right
side of the equations that include powers of the population of the species on the
left side of the equation so that this behavior is ruled out. Rather than taking this
route, we think of the system of equations as a useful model only when conditions
are such that neither species dies out. That these conditions are applicable to the
lynx/hare system over the last several hundred years, and that therefore this model
is appropriate for the lynx/hare system, is obvious from the continued survival of
both species.

A mathematical aspect of this model that has led some to conclude that it is
not useful as a model in practice is that these equations are not structurally stable:
small changes in the parameter values can lead to radical changes in the behavior of
solutions. This has led some to abandon these equations or modify them to obtain
a system that is better behaved. While this instability does make model fitting
difficult, we can still use this set of equations to estimate parameters and make
predictions, as we demonstrate in what follows. We do not think this structural
instability makes the model unrealistic, as the world is full of phenomena that are
quite sensitive to parameters.

27.4 Some statistical models based
on the Lotka-Volterra system

Our first statistical model is based on the Lotka–Volterra system presented above.
We observe the number of lynx trapped each year, y(t) for 80 years. Although the
number of lynx and hare can only take integer values, we model these quantities
by real valued processes, as in the biological models presented above. We suppose
that the expected proportion of lynx trapped each year is some constant proportion
of the total number of lynx residing in the region, so that

y(t) = α′
0 u1(t)δ(t),

where δ(t), t = 1, . . . , 80 is a sequence of unit mean iid random variables that are
independent of u1(t). For the purposes of conducting inference, we further assume
these are lognormally distributed errors. The resulting model has 8 parameters:
α1, α2, β1, β2, u1(1), u2(1), α′

0, and σ , the standard deviation of the lognormally
distributed errors.
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This model is poorly identified; hence, we turned to the scientific literature in an
attempt to construct informative priors. There are several methods that have been
suggested for estimating parameters in the system. For example, one can construct
an artificial habitat for hare so that no predation takes place. Observations on the
hare population in such a setting could provide estimates of the birth rate of hare.
But even in such situations, it is not clear that the birth rate is what it would be
if there were lynx present. In any event, we can then assume that the birth rate of
hare that ultimately get consumed by lynx is the same as the overall hare birthrate
and obtain an informative prior for the birth rate parameter α2. Other methods have
been used to estimate the birthrate of hare, such as counting the mean number of
young surviving. Similar techniques have been used to estimate the death rate of
lynx (Poole, 1994; Slough and Mowat, 1996; Brand and Keith, 1979).

Unfortunately, we found that unless we used prior distributions with smaller
standard deviations than the prior information really indicates, the posterior is too
diffuse, as we describe below in the section on posterior simulation. For this model,
the model parameters and the predictions themselves diverged as the Metropolis
algorithm proceeded. Despite this, the predictions of the model at the best local
mode we could find were very good, but we are reluctant to recommend the use
of such predictions in general.

A simple reparameterization leads to a model with six parameters, and the
resulting model behaves much better. This reparameterization can be thought of as
just changing the units of the system. By letting θ1(t) = log

(
β2u1(t)

)
and θ2(t) =

log
(
β1u2(t)

)
we obtain the system,

log
(
y(t)

) = α0 + θ1(t)+ ε(t)
dθ1
dt

= eθ2 − α1

dθ2

dt
= α2 − eθ1 ,

where ε(t) for t = 1, . . . , 80 is a sequence of independent normal measurement
errors. We then have six parameters in the model (θ1(1), θ2(1), α0, α1, α2, and σ ).
Unfortunately, although it is not immediately transparent, these six parameters are
not identifiable.

To understand the nature of the identifiability problem here, we need to consider
the trajectories of the system. The system has a non-hyperbolic fixed point at
(θ1 = logα2, θ2 = logα1). If we take the ratio of the equations that define the
system, we obtain the differential equation

dθ1

dθ2
= eθ2 − α1

α2 − eθ1
,

which can be solved to yield an equation that describes the trajectories of the
system in phase space

α2θ1(t)− eθ1(t) + α1θ2(t)− eθ2(t) = α2θ1(1)− eθ1(1) + α1θ2(1)− eθ2(1).
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If we define f (x) = α2x − ex , then f is concave and has a unique maximum
at logα2, hence provided α2θ1(1)− eθ1(1) + α1θ2(1)− eθ2(1) + eθ2(t) − α1θ2(t) <

α2(logα2 − 1), there are two distinct solutions to the previous equation, one less
than logα2 and one greater than logα2. We can repeat this argument using a condi-
tion on θ1(t) too, hence the set of trajectories implied by the model is a collection
of closed curves. Moreover, we can see from the equation that for trajectories near
the fixed point, these curves will be approximately ellipses. For the lynx data,
given this parameterization, the data supports the trajectory being very close to the
fixed point for the θ2 dimension, hence an elliptical trajectory with respect to that
dimension. But if the trajectory is an ellipse and we only have data related to the
θ1 axis, then any translation of the trajectory along the θ2 axis will yield the same
fit to the data. When we attempted to find the posterior mode or generate samples
from the posterior, we noticed that α2 and θ2(1) always moved together—this is
what we expect given the elliptical trajectories. Given this identifiability problem,
we simply fix θ2(1), the rescaled initial number of hare that are ultimately con-
sumed by lynx, at some arbitrary value and use noninformative priors for the other
parameters in the model. In general, fixing θ2(1) may reduce the set of possible
trajectories, but this does not appear to be the case for this data set. Also, by fixing
θ2(1), we clearly cannot interpret α1, but α2 is still interpretable. The resulting
model has five parameters that we estimate from the data.

Prior information on the system

There have been a large number of field studies aimed at understanding the popu-
lation dynamics of lynx and hare. None of these have generated long time series
of the sort on which we will base our predictions. Instead, these studies typically
observe the numbers of animals over a short time period. Of the facts that these
studies have identified, a consistent observation has been that the lynx population
reaches its peak 1 to 2 years after the hare population reaches its peak. That is,
once the hare population starts to decline, the lynx population follows suit. The
Lotka–Volterra system has the property that periodic solutions have a fixed period,
hence we use a prior distribution on the system that states that the difference in
time between the two peaks is 1.5 years with a standard deviation of 0.25. When
we discuss computing the posterior at a location in parameter space we will make
clear how one can use this prior information.

27.5 Computational aspects of posterior inference

Given the structure of our model, computation is quite difficult. Note that we
have no data on the number of hare at any point in time. The point of using
the Lotka–Volterra system is to have a functional form for the number of lynx
over time that is consistent with models from population biology. Although we
think the formulation of the system in terms of the number of lynx and hare is
quite intuitive, one can take the hare out of the system and obtain a second order
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differential equation for the lynx dynamics. Since we ultimately solve the system
numerically, we end up converting back to two first-order equations in any event.

Computing the posterior at a location in parameter space

Since there is no explicit solution to the system of equations presented above,
computation of the likelihood is not straightforward. We compute the log-likelihood
at a point in parameter space (θ1(1), θ2(1), α0, α1, α2, σ ) by first computing the
contribution to the log-likelihood of the first observation y(1). Since log y(1) ∼
N(α0 + θ1(1), σ 2) this term is straightforward. To compute the contribution of
y(2) to the log-likelihood, we first numerically integrate the system forward in
time one step to obtain θ1(2) and θ2(2), then we use log y(2) ∼ N(α0 + θ1(2), σ 2)

to determine the contribution of the second time point to the log-likelihood. Note
that θ1(2) will be a function of α1 and α2. If we iterate this process, we can
compute the log-likelihood for all of the data in this fashion. Finally, given that
we have computed the log-likelihood we simply add the terms from the log-prior
to obtain the log-posterior.

To perform the numerical integration, we use the fourth-order Runge–Kutta
method (for implementation see Press et al., 1992). In order to use a prior dis-
tribution on the distance between the peaks of the series, we need to modify the
basic procedure outlined above. As described above, we will only have the val-
ues of the solution to the system of differential equations at integer values. While
this is adequate for computing the log-likelihood, we actually need the values of
the solution for times between the integer valued times in order to determine at
what time the peak of each series occurs. To this end, we integrate the system
forward in time and save the solution each tenth of a year. Then we examine the
value of the solutions over this finer time scale in order to determine when the
peaks occur in each series. From the time of the peaks of the two series, it is
easy to get the distance between the peaks implied by the set of parameter values
(θ1(1), θ2(1), α0, α1, α2). We then use this distance between the peaks in the term
for the log-prior. Since the distance between the peaks is the same for all peaks,
we can save some computational time by only integrating over this fine scale for
the first pair of peaks.

Finding posterior modes

Although our posterior is only five-dimensional, finding posterior modes is quite
difficult since the posterior is computed by numerically solving a system of dif-
ferential equations. We found that using the simulated annealing algorithm for
optimization of functions with continuous arguments presented in Press et al.
(1992) allowed us to find posterior modes with some success.

Since the use of that algorithm is not at all standardized, we briefly indicate
how we were able to successfully use the method. The simulated annealing algo-
rithm of Press et al. is a stochastic mode-finding algorithm based on the downhill
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simplex method combined with a Metropolis-type algorithm. This algorithm has
three parameters whose values greatly influence the utility of the approach: the
initial computational temperature, the number of iterations at each temperature,
and the percentage the computational temperature should decrease when lowered.
We found that using an initial computational temperature of 1 that gets lowered
every 500 iterations by 90% was useful for finding local modes here. Choice of the
initial computational temperature has, in our experience, been the most important
parameter when using this algorithm. One should monitor the best solution as the
temperature is decreased. If the initial temperature is selected too high, then these
best solutions tend not to be as good as the initial value. If this value is selected
too low, then the algorithm usually converges quickly to a local mode.

Simulating from the posterior distribution

Since we can compute the log-posterior as described above, we can use the
Metropolis algorithm to draw simulations from the posterior distribution. While
we are actually only concerned with predictions based on the posterior mode, we
used the Metropolis algorithm as a check on the propriety of the posterior distri-
bution. We used the general strategy outlined in Gelman, Carlin, Stern, and Rubin
(2003): a multivariate normal jumping distribution with an estimated covariance
matrix that is scaled so that 30 to 40% of the jumps are accepted. Since we were
not able to successfully compute the numerical derivatives of the log-posterior
with adequate accuracy, we ran the chain for several thousand iterations to obtain
an estimate of the covariance matrix, then used this estimate in the next run of
the chain. It was by using the Metropolis algorithm with multiple chains that
never converged that we were able to conclude that the model with six parameters
and noninformative prior distributions did not give a proper posterior distribu-
tion. Similarly, when we used priors constructed from the literature, as previously
mentioned, the chains still did not mix adequately to declare convergence of the

chains (using Gelman and Rubin’s
√
R̂). As sometimes happens, although the pos-

terior is mathematically proper when we use informative priors, if these priors are
not adequately informative, the posterior can numerically behave as if it is not
proper.

27.6 Posterior predictive checks and model
expansion

While the model performs quite well in terms of prediction, if we perform diag-
nostic checks just using the first 80 years of data and our fitted model, we discover
an important discrepancy between the model and the data. In Figure 27.1, we
see a graph of the residuals at the posterior mode and a graph of the mean of
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Figure 27.1 The residuals at the posterior mode and the mean of the posterior
distribution of the residuals when there is no autoregressive component. There is
autocorrelation at one lag.

the posterior distribution of the autocorrelation function of the residuals. We do
not need to compute the posterior predictive distribution of the residuals in this
example even though we are doing a posterior predictive check because we simply
have iid Gaussian noise added to a functional form; hence, we know how large
the autocorrelation function should be if there is really no autocorrelation. There
is evidently substantial autocorrelation at lag one. This is not surprising given that
there is an extensive literature indicating the presence of autocorrelation in this
series, and here we see how posterior predictive checks can automatically detect
such deviations from iid errors. There are basically two potential sources for this
autocorrelation: the model dynamics are inadequate or the equation relating the
dynamics to the measurements is incorrect. Since the model dynamics are based
on the biological background, we expand our model to consider more realistic
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models for the way the number of lynx trappings relate to the number of lynx. In
particular, the assumption that the proportion of lynx trapped is constant over time
seems questionable. We would expect that the effort of trappers to capture lynx is
a function of the demand for lynx pelts. As lynx pelts are luxury items, the demand
would be greatly affected by fluctuations in the business cycle. To model this effect,
we suppose that the measurement errors are a realization from an autoregression.
To determine the order of the autoregression, we fit the smallest number of terms
to this autoregression so that there is no autocorrelation in the posterior predictive
residuals. This exercise led us to conclude that a first-order autoregression (with
parameter φ) is adequate to describe the deviation from iid errors. In Figure 27.2,
we see the residuals at the mode and the mean of the posterior distribution of the
residuals. In Figure 27.3, we see the fitted curve and the predictions for the lynx
and the scaled hare population (scaled to fit on the graph). In particular, notice the
asymmetry of the rise and decline in the populations over time.
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Figure 27.2 The residuals at the posterior mode and the mean of the posterior
distribution of the residuals when there is a first-order autoregressive component.
There is no evidence for autocorrelation.
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Figure 27.3 The lynx series, and the fitted values for the lynx and the hare. (The
hare are scaled to fit in the graph.) The model is only fit to the first 80 years: the
fitted values beyond year 1900 represent predictions.

27.7 Prediction with the posterior mode

Of course, without some regularity on the log-posterior we can never be sure that
we have really found the global optimum. After running the simulated annealing
algorithm for many iterations with many restarts from new locations in parameter
space, we eventually became convinced that the best of the modes we had identified
is the global optimum. Then we used this global optimum to make predictions. To
obtain the predictions, we use the parameter values we found at the optimum and
integrate the system forward in time starting from year 80 (the parameter values are
α0 = 14.4309, α1 = 804.209, α2 = 0.0006318, θ1(1) = −8.2474, θ2(1) = 6.6888,
σ = 0.7151, φ = 0.7431). Although there are perhaps better ways to quantify the
quality of a set of correlated predictions, we use the root-mean-square error of the
predictions to quantify the quality of the predictions. For the above model, this
quantity is 1,481.6. As noted above, perhaps the most widely supported model
for this series is Tong’s SETAR model. Tong fit his model to the entire series
of 134 observations and using some model fit criteria, he eventually arrived at a
14-parameter model. To compare Tong’s model to the model proposed here, we
used Tong’s parameter estimates (obtained from the entire series) and with his
model made predictions starting from year 80 for the rest of the series. Strictly
speaking, we should compare the predictions from our model to the predictions
from a SETAR model fit to only the first 80 years of the series. In any event, the
root-mean-squared error from Tong’s model is 1,599.3; hence our model is better
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in terms of prediction even though Tong got to use more data and his model has
more than twice as parameters. While the model developed here generates accurate
predictions, there are some large discrepancies between the fitted curve and data
(e.g., around 1865). A better fit could be obtained by allowing noise in the system,
that is, use a system of stochastic differential equations. Such a model would be
more realistic as we would expect stochastic disturbances (e.g., the weather) to
impact animal populations.

27.8 Discussion

We have shown here how using models based on the science at hand, when com-
bined with state-of-the-art statistical methods, can greatly improve our long-term
predictive ability. Similar phenomena are known to exist in prediction of economic
time series, but in that case it is usually accepted that nonstructural models, such
as time series models, can outperform structural models (those based on economic
theory) in the short term. We have also illustrated that nonlinear dynamical models
can be of use in applications, and are not useless pieces of theory from textbooks.
The numerical challenges of such model fitting are not to be underestimated, but
they are not insurmountable.
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Record linkage using finite
mixture models

Michael D. Larsen1

28.1 Introduction to record linkage

A goal of record linkage is to identify pairs of records (a, b), a from file A and
b from file B, that correspond to the same person or entity. If there are no unique
codes that identify the matching pairs of records, then links can be designated by
comparing variables contained in the two files. In US census operations, social
security number (SSN) is not collected, but first and last name, street address and
house number, and other information are recorded. Often a great deal of work,
including name and address parsing and standardization, is required to prepare
files for comparison. If unique SSN’s were recorded accurately for all individuals
in both files, then the linkage task would be greatly simplified.

At the US Bureau of the Census, record linkage is an important step in under-
count estimation and coverage evaluation. In order to evaluate the 1990 census,
the Bureau of the Census conducted a post-enumeration survey (PES). The PES
database was matched to census records. The number of individuals counted in
both the census and the PES and the numbers counted in one but not in the other
canvas, under an assumption of independence between enumerations, yields an
overall estimate of the population. The actual estimation procedure is much more
complicated in its details, but the idea is essentially the same. The 1990 PES is dis-
cussed in articles in volume 88 of Journal of the American Statistical Association

1Department of Statistics and CSSM, Iowa State University, Ames, Iowa.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives.
Edited by A. Gelman and X-L. Meng  2004 John Wiley & Sons, Ltd ISBN: 0-470-09043-X
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(1993) and in volume 9 of Statistical Science (1994). See also Elliott and Little
(2000). Census 2000 included a post-enumeration survey as part of its Accuracy
and Coverage Evaluation (ACE; see, e.g., Hogan, 2000). Record linkage methods
also are used at census for unduplication and address matching.

Clerical review of records is time consuming and costly. Computers can quickly
score the level of agreement on recorded information between records in the two
files, and, given a decision procedure, designate pairs as links or nonlinks. The
method of scoring agreements and disagreements, how to combine evidence from
several fields of information, and setting cutoff values are practical and theoretical
problems.

Bill Winkler has made many advances in record linkage applications at the
US Bureau of the Census, Statistical Research Division (Winkler, 1994, 1995, and
references therein). Tom Belin while in graduate school at Harvard studied census
record linkage problems with Bill and Don, leading to Belin (1993) and Belin and
Rubin (1995). The author followed in this line of work and with Don produced
Larsen and Rubin (2001). It is characteristic of Don’s approach to scientific prob-
lems that models are used to learn from data. Don saw the potential advantage
of modeling record linkage data using latent class models and, more generally,
mixture models to fit important structures in the data. This chapter presents some
results that have come out of that approach. It also describes ideas for incorporating
experience with similar record linkage operations into methods and analyses and
for accounting for sources of uncertainty in results.

Section 28.2 discusses some theory of record linkage. Section 28.3 presents
latent class and mixture models and describes estimation procedures. Section 28.4
summarizes the application of methods to census test data sets. Sections 28.5 and
28.6 focus on extensions, regression analysis of linked files and hierarchical models,
that are being developed. Section 28.7 provides summary comments.

28.2 Record linkage

Assume the files A and B do not contain duplicates and that K comparisons
can be made between information in pair of records (a, b). Comparisons in the
census context are made using name, address, and demographic information. Let
{vk(a), k = 1, . . . , K} be K pieces of information in file A on person a and
{wk(b), k = 1, . . . , K} be the information in file B on person b. The comparison
of information on pair (a, b) yields a comparison vector γ (a, b) = {γk(a, b), k =
1, . . . , K}, where γk(a, b) = 1 if vk(a) = wk(b) and 0 otherwise. If a ∈ A and
b ∈ B were produced by the same person, then it would be expected that γ (a, b)
would contain more “1” entries than if they were produced by different people.
Illustrations are given in Winkler (1995).

Not all pairs are compared since such a procedure would create many pairs
and most of them would not be plausible as matches (e.g., a and b live in different
geographical areas, have different first letters of last name, etc.). The records in the
two files are divided into S “blocks” and comparisons are made between records
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within blocks. Let the records in block s in file A be denoted A(s) and in file B,
B(s). It is assumed here that blocking does not create errors in matching, that is,
that records involved in matches are blocked together.

Fellegi and Sunter (1969) proposed decomposing the space A× B into sets
M , the matches, and U , the unmatched or nonmatching pairs. They showed that,
given probabilities Pr(γ |M) and Pr(γ |U) for all comparison vectors γ , if pairs
with � = Pr(γ |M)/Pr(γ |U) above a cutoff are designated links and pairs with the
ratio below a second cutoff are designated nonlinks, then the number of undeclared
pairs is minimized at the error levels corresponding to the two cutoff levels.

In practice, there have been several methods developed for estimating the
probabilities involved in the ratio or for producing the ratio itself. In many appli-
cations, the log ratio log�, also called the weight, is used. The components
Pr(γk|M)/Pr(γk|U) are sometimes taken to have a multiplicative (log-additive)
effect: log� = ∑K

k=1(log Pr(γk|M)− log Pr(γk|U)). Some applications sum spec-
ified values for agreement or disagreement on each field of information, rather than
using logs of estimated probabilities.

Belin and Rubin (1995), see also Belin et al. (2004) in this volume, used train-
ing data to estimate transformations to normalize the distributions of weights for
matches and for nonmatches. They then fit mixtures of transformed normals to data
from new record linkage operations. The transformed normal mixture models yield
estimated error rates and cutoff values. Winkler (1995), Larsen and Rubin (2001),
and references therein fit mixture models directly to the comparison vector data.

28.3 Mixture models
Consider the observed data to be the patterns of agreements for the pairs of
records: {γ (a, b), a ∈ A(s), b ∈ B(s), s = 1, . . . , S}. Before clerical review deter-
mines match status, the data can be viewed as arising from a mixture of comparison
vectors from matches and nonmatches. The probability of observing pattern γ is

Pr(γ ) = Pr(γ |M)pM + Pr(γ |U)pU , (28.1)

where Pr(γ |M) and Pr(γ |U) are the probabilities of the pattern among the matches
and nonmatches respectively, pM is the probability that a pair is a match, and
pU = 1 − pM . The observed-data likelihood is a product of (28.1) over all pairs
(a, b), where the pair (a, b) determines a value of γ = γ (a, b).

The conditional-independence model specifies that the conditional probability of
pattern γ is the product of the conditional probabilities for agreeing or disagreeing
on the K fields:

Pr(γ |C) =
K∏
k=1

Pr(γk |C)γk (1 − Pr(γk|C))1−γk ,

with C ∈ {M,U}. Loglinear models can be used to incorporate interactions between
fields of information within classes.
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Let z(a, b) = 1 if pair (a, b) is a match and 0 otherwise. The vector of indicators
z is unobserved before clerical review. If matches are unique and z(a, b) = 1, then
z(a, b′) and z(a′, b) = 0 for a′ �= a and b′ �= b. Taking this into account greatly
complicates the structure of the complete data; rather than consider a pair (a, b),
it would be necessary to consider all pairs in a block simultaneously. In practice,
pairs are considered individually (Fellegi and Sunter, 1969; Winkler, 1994; Larsen
and Rubin, 2001) and a linear sum assignment algorithm (Jaro, 1989; Winkler,
1994) is used to force one-to-one matching after parameter estimation.

The probability that z(a, b) equals 1 given the agreement pattern is

Pr(M|γ ) = pMPr(γ |M)/Pr(γ ).

If z were observed and pairs considered individually, the complete-data likelihood
would be a product over pairs (a, b) of[

Pr(γ |M) pM
]z [Pr(γ |U) pU

]1−z
.

If there are duplicate records for a person in either file, then the files could be
linked to themselves to identify and remove the duplicates before they are linked
together.

Maximum likelihood estimation

A convenient method of finding maximum likelihood estimates (MLE) of mixture
model parameters is to treat the unobserved indicators z as missing data and use the
EM (Dempster, Laird, and Rubin, 1977) or ECM (Meng and Rubin, 1993) algo-
rithms for estimation. The EM algorithm is used for the conditional-independence
model and for models using loglinear models with direct estimates of parameters.
The ECM algorithm accommodates models that would involve iterative propor-
tional fitting or other indirect estimation. More complex models have been used
to model discrete mixtures (e.g., Becker and Yang, 1998) and in record linkage
(Winkler, 1995; Larsen and Rubin, 2001, and references therein).

In the case of the conditional-independence model, given current estimates of
parameter values, the E-step is completed by computing Pr(z(a, b) = 1|γ (a, b)),
the expected value of z(a, b), for all pairs (a, b), which is the same for each unique
comparison vector γ . Call the values Ez (a, b)(t+1). The M-step is completed by
calculating maximum likelihood estimates of parameters with entries in z held at
their current expectations. The estimate of pM is the sum of Ez(a, b)(t+1) over
pairs (a, b) divided by n, the total number of pairs. The estimate of Pr(γk(a, b) =
1|M) is the sum of Ez (a, b)(t+1) over pairs (a, b) for which γk(a, b) equals 1
divided by the sum of Ez (a, b)(t+1) over all pairs. The estimate of Pr(γk(a, b) =
1|U) is the sum of 1 − Ez (a, b)(t+1) over pairs (a, b) for which γk(a, b) equals
1 divided by the sum of 1 − Ez (a, b)(t+1) over all pairs. The algorithm iterates
between the E- and M-steps until the observed-data likelihood converges to a
maximum.
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Bayesian estimation

Bayesian analysis multiplies the likelihood by a prior distribution on the parameters
to reflect uncertainty about parameter values. Prior distributions for the record link-
age parameters described above can be relatively noninformative, but still reflect
knowledge about record linkage in similar applications. Census operations, often
involving more than 100,000 record pairs, have been conducted in several locations
over the last couple of decades.

Logically, the probability of agreeing on a comparison should be higher among
matches than among nonmatches. Relatively weak prior distributions for the latent
class model can be specified using beta distributions to reflect this a priori belief
and the fact that the percent of pairs that are matches is restricted by the relative
sizes of the files. Alternatively, data from a past record linkage operation that has
been reviewed by clerks could be used to form a prior distribution. The proportion
of pairs that are matches could be taken as the mean of the distribution for pM . In
the latent class model, the mean probability of agreeing on a field of information
for matches and nonmatches could be set equal to the values observed previously.
Belin and Rubin (1995) and Larsen and Rubin (2001) observed that parameter
estimates vary substantially by record linkage location. The variability in the prior
distributions should be high enough to allow the current data to strongly influence
the posterior distribution. The degree of blocking also will affect the types of
comparison patterns observed in a record linkage operation.

Posterior distributions can be simulated by sampling from alternating con-
ditional distributions in steps analogous to those of EM and ECM. Given val-
ues for parameters after iteration step t , each variable z(a, b) is drawn from a
Bernoulli distribution with parameter equal to Pr(z(a, b) = 1|γ (a, b)). Call the
values z(a, b)t+1. Given the drawn values of components of z, the parameters are
drawn from current conditional distributions.

If the prior distribution on the proportion pM is a Beta(αM, βM ) distribution,
then given z(t+1) pM has a beta distribution with parameters αM +∑

z(a, b)t+1

and βM +∑
(1 − z(a, b))t+1. Here summation is over pairs (a, b). In the latent

class case, an independent Beta(αMk , βMk ) prior distribution on Pr(γk(a, b) = 1|M)
produces a conditional

Beta
(
αMk +

∑
z
(t+1)
ab γk(a, b), βMk +

∑
z
(t+1)
ab (1 − γk(a, b))

)
distribution, independently for k = 1, . . . , K , where zab = z(a, b). An independent
Beta(αkU , βkU ) prior distribution on Pr(γk(a, b) = 1|U) yields a

Beta
(
αUk +

∑
(1 − zab)

(t+1)γk(a, b), βUk +
∑
(1 − zab)

(t+1)(1 − γk(a, b))
)

distribution, independently for k = 1, . . . , K . The algorithm cycles between draw-
ing values of parameters and values of missing indicator variables until drawn
values are being sampled from the posterior distribution.

In the case of models with interactions within classes that do not have direct
maximum likelihood estimates, simulation of parameters given current values of
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indicators z(a, b) involves simulation analogous to iterative proportional fitting.
The methods of Gelman et al. (2003, Section 16.8) can be used within each class
given the indicators z(a, b). Schafer (1997, Chapter 8) and Larsen (1994, 1996),
when studying with Don Rubin, explored simulation methods for these general
models.

The end product of the Bayesian sampling algorithm is several sets of values for
mixture model parameters and several sets of imputed links. Each set of parameter
values could be used to calculate probabilities that pairs are matches, Pr(z(a, b) =
1|γ (a, b)). Each set of imputed links is a set of drawn values for z that identify
which pairs (a, b) are designated as links at a particular iteration of the algorithm.

28.4 Application

Larsen and Rubin (2001) developed record linkage methodology using mixture
models by addressing four practical concerns and applied the methods to five
census data sets. First, they selected a mixture model from a set of candidate
models by comparing probabilities estimated via maximum likelihood under the
models to empirical probabilities obtained from data.

Second, an initial fit based on the selected model was used to sort the pairs
of records according to their estimated probabilities of matching. Pairs with high
probabilities are designated links, whereas those with low probabilities are desig-
nated nonlinks.

Third, a few cases were selected using the model for immediate review by
clerks. It is common when using probabilistic record linkage to examine some
record pairs to check that the models are accurately separating matches from non-
matches. Record linkage, when there are many nonmatching and few matching
pairs, is most effective when it finds the matches. When comparisons between
records yield mostly agreements (disagreements), there are mostly matches (non-
matches) and not much mixing of the two groups. At intermediate levels of
agreement, which correspond to intermediate probabilities of matching, the groups
are less well separated. It is possible then, based on estimated probabilities, to
select some pairs to review that are harder to classify.

Fourth, the model is refit using both the clerically classified cases reviewed
in step three and the remaining unclassified cases. The procedure iterates through
identifying records, clerical review, and refitting as time and clerical resources
allow, or until little additional improvement is needed or made. The procedure was
stopped when two consecutive clerical review steps found few new matches.

Five data sets, described in Larsen and Rubin (2001), were created from the
1988 and 1990 Census and Post-Enumeration Survey (PES) operations at separate
sites. The choice of a reasonable initial model along with clerical review and updat-
ing provided some robustness to the procedure, which worked well on these data
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Data Pairs Declared Link Undeclared Declared Nonlink
Set Reviewed Match nonM. Match nonM. Match nonM.

D88a 10,000 10,074 0 961 1,471 57 103,742
D88b 10,000 6,762 3 34 112 82 49,780
D90a 4,000 3,286 8 221 182 89 33,541
D90b 3,200 2,836 3 573 367 79 34,937
D90c 2,400 1,203 1 0 0 58 37,952

Table 28.1 Number of matches and nonmatches (“nonM.”) designated as links and
nonlinks and undeclared at 0.001 estimated false-match and false-nonmatch rates
for each data set after some clerical review and model updating.

sets. Table 28.1 presents some of the results from Larsen and Rubin (2001). Most
of the pairs (the total number of pairs at each site is the sum of the last six columns)
are correctly classified after reviewing approximately ten percent of the file.

Experiments on forming prior distributions were conducted with these data
sets. Results reported in Larsen and Rubin (2001) used maximum likelihood esti-
mation. The census data sets ranged in size from 37,327 to 116,305 pairs of records
and used ten (K = 10) fields of information, yielding 210 = 1,024 possible agree-
ment/disagreement vectors. Using fairly weak prior information, as described in
Section 28.2, estimates of parameters did not differ substantially from the maxi-
mum likelihood estimates. The designations of pairs as links and nonlinks, using
posterior means as parameter values in probability calculations, also did not change
appreciably, sometimes not at all.

One modification to the procedure that was implemented using the Bayesian
results was to select the cutoff values for specified error rates based on the 10th

percentile of the simulated error distribution. That is, based on a set of simulated
parameters one can determine how many links should be declared at a specified
error level. In these applications across simulations, the 10th percentile of the
number of links was lower than the mean number of links. This procedure was
more conservative in terms of sending more pairs to clerical review and making
fewer classification errors. That is, the Bayesian approach allowed a different,
more conservative procedure to be implemented. As more pairs were clerically
reviewed and the fit of models updated, differences among procedures using the
10th percentile, the median, and the mean decreased.

When stronger prior information was used, as would be expected, the parameter
estimates changed. In most cases, the performance in terms of identifying matches
and nonmatches was approximately the same. When the prior distribution based
on the data set from a rural site with poor quality address information (site D90c
in Larsen and Rubin (2001) was given substantial weight, however, the number of
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misclassifications increased for the other sites. The differences in site characteristics
then can influence the performance of model-based record linkage methods.

Two extensions have been studied and are described briefly below. Section 28.5
concerns regression analysis of files created through record linkage when there
is possible matching error. Section 28.6 presents ideas for a hierarchical record
linkage model that would accommodate sites with varying characteristics.

28.5 Analysis of linked files

Consider the following regression model

yi = x ′
iβ + εi, i = 1, . . . , n,

where xi = (xi1, · · · , xip)
′ is a vector of p known covariates, E(εi) = 0, var(εi) =

σ 2, and cov(εi, εj ) = 0 for i �= j, i, j = 1, . . . n. Suppose that the response (Y ) is
in file B, the covariates (X) are in file A, the two files are linked imperfectly, and
there is at most one link in the other file for each record. The true pairs (xi, yi) are
not observable. Instead, one observes u′

i s that may or may not correspond to xi .
Scheuren and Winkler (1993) proposed the following model for ui’s:

ui =
{
yi with probability qii

yj with probability qij for i �= j,
where

∑n
j=1 qij = 1, i, j = 1, . . . , n(i �= j).

A naive estimator of β would be

β̂N = (X′X)−1X′U,

where X = (x ′
1, . . . , x

′
n)

′ and U = (u1, . . . , un)
′. This estimator is biased due to

the imperfect linkage of response and predictor variables.
An improved estimator that utilized the estimated probabilities of being links for

adjustment of regression results was presented by Scheuren and Winkler (1993). An
iterative procedure to correct for outliers was presented by Scheuren and Winkler
(1997). Lahiri and Larsen (2000, 2004) developed an alternative estimator of β and
its standard error, which they studied using simulation. Table 28.2 presents some
simulation results from Lahiri and Larsen (2004), which show an improvement in
performance using their procedure.

One difficulty encountered in the work of Lahiri and Larsen (2004) concerned
the expression of uncertainty due to record linkage parameter estimation on adjusted
regression results. When the linkage probabilities were treated as fixed values
for the purposes of regression adjustment, confidence intervals based on the esti-
mates and standard errors were too short to cover the simulation slope values. An
improvement in results was achieved by using the Bayesian approach for record
linkage. For each set of simulated record linkage parameter values, the regres-
sion adjustment estimates and standard errors can be calculated. Several sets of
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Method Sum of Absolute Sum of Squared
Deviations Errors∑ |β̂ − β| ∑

(β̂ − β)2

Naive regression 21.14 2.24
Robust regression 17.45 1.54
Scheuren–Winkler adjustment 15.53 1.43
Lahiri–Larsen adjustment 11.54 0.84

Table 28.2 Regression results based on 400 simulated data sets using four
estimators.

estimates and their standard errors can be combined using formulas for multiple
imputation inference (Rubin, 1987b). This approach incorporates more variability
into regression error estimates and produces improved coverage.

28.6 Bayesian hierarchical record linkage

The algorithms presented previously do not enforce one-to-one linking. That is,
for an individual a in file A, there is no constraint in the model that forces the
probability that a has a match to be 1. Several records in file B could agree closely
with person a and have high probabilities of matching person a. The algorithms
also do not explicitly incorporate all constraints due to blocking. Specifically, if
pairs within a particular block tend to agree much more than is typical, the sum over
pairs of the probabilities could add to more than the possible number of matches.
Also, the parameter estimates produced overall might be very different than would
be produced for subsets of record pairs, and the estimate of the probability of
agreeing on a comparison among matches could be lower than the estimate among
nonmatches.

Larsen (1999, 2002) discusses extensions of current models and algorithms
that could address these concerns. If it is assumed that there are no duplicates in
files A and B, then there should be at most one unique match for each record in
each file. That is, if z(a, b) = 1 if pair (a, b) is a match and zero otherwise, then∑
a∈block s z(a, b) ≤ 1 and

∑
b∈block s z(a, b) ≤ 1. Logical parameter restrictions

can be expressed as Pr(γk |M) ≥ Pr(γk|U), k = 1, . . . , K .
A hierarchical model could allow each area or block to adapt to its own config-

uration of agreement/disagreement patterns, but limit the variability by relating the
parameters across sites or blocks to one another. Within block s, the (independent)
prior distributions on parameters could be

Pr(γk = 1|M, s) ∼ Beta(αsMk , βsMk )

Pr(γk = 1|U, s) ∼ Beta(αsUk , βsUk )

and pMs ∼ Beta(αs, βs).
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Across blocks the parameters of these distributions could be related to one
another through the following (independent) distributions:

θsMk = logit

(
αsMk

αsMk + βsMk

)
∼ N(µθMk , σ

2
θMk ),

θsUk = logit

(
αsUk

αsUk + βsUk

)
∼ N(µθUk , σ

2
θUk ),

τsMk = log(αsMk + βsMk ) ∼ N(µτMk , σ
2
τMk ),

τsUk = log(αsUk + βsUk ) ∼ N(µτUk , σ
2
τUk ),

θs = logit

(
αs

αs + βs

)
∼ N(µθ , σ

2
θ ), and τs = log(αs + βs) ∼ N(µτ , σ

2
τ ),

for s = 1, . . . , S indexing blocks and k = 1, . . . , K indexing comparison fields.
The simulation of the posterior distribution is more involved than in Section 28.2

because of the second level of the hierarchy and the number of parameters. If the prior
distribution for the parameters across the blocks is chosen as above, then the simula-
tion of the posterior distribution can be accomplished using the Metropolis–Hastings
algorithm within a Gibbs sampling sequence. Implementation of this algorithm is
being studied.

Bayesian record linkage has been studied also by Fortini, Liseo, Nuccitelli, and
Scanu (2001) and Fortini, Nuccitelli, Liseo, and Scanu (2002). These authors avoid
placing prior distributions on parameters by averaging over them analytically.

28.7 Summary

The use of latent class and mixture models has proved to be a productive application
of models to a complicated applied problem. Some common practices, for example,
reviewing a subset of records, can be incorporated into the estimation, model
selection, and analysis procedures. It has been possible to build on Bill Winkler
and Don Rubin’s proposal for latent class and mixture modeling of record linkage
comparison data to address additional concerns. Further work is being conducted
on methods of analysis for linked files and for implementing hierarchical models
of record linkage. The topic of automated record linkage has increasing relevance
to research and society as administrative and survey information increases in detail
and availability (Winkler, 2003). It will also play a role in counterterrorism efforts
(Gomatam and Larsen, 2004).

From interaction with Don Rubin, the author has observed the value of using
models as tools to learn about data, the importance of trying to understand and
model sources of variability, and the benefit and pleasure of interacting with subject
area experts.
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Identifying likely duplicates
by record linkage in a survey
of prostitutes

Thomas R. Belin, Hemant Ishwaran,

Naihua Duan, Sandra H. Berry and David

E. Kanouse1

29.1 Concern about duplicates in an anonymous
survey

The Los Angeles Women’s Health Risk Study (LAWHRS) was a survey of female
street prostitutes in Los Angeles County that aimed to provide insight into the
evolution of the AIDS epidemic in the early 1990s (Kanouse et al., 1999). Goals
of the study included estimating the size of the female street-prostitute popula-
tion in Los Angeles, determining seroprevalence of the HIV virus among female
street prostitutes, measuring the prevalence of sexual and drug-related risk behav-
iors associated with HIV transmission, measuring the frequency of condom use
and other preventive behaviors, and relating HIV status to behavior patterns and
prostitute characteristics.

The LAWHRS was designed as a probability sample of areas of Los Ange-
les, times of day, and days of the week (Duan, Kanouse, and Berry, 1992). The

1Department of Biostatistics, University of California, Los Angeles, Calif., Cleveland Clinic Foun-
dation, Cleveland, Ohio, and RAND Corporation, Santa Monica, Calif.
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area frame was assembled from the police, health officials, and study consultants
including former prostitutes, and special procedures were developed for field staff
(interviewers, drivers, and phlebotomists) to go through sampled areas beginning
at randomly selected start points, to approach women for interviews in a system-
atic fashion until agreement was obtained from a woman in the area, and to obtain
informed consent (Kanouse et al., 1999). Interviews typically took roughly 45 min,
and participants were asked to provide a blood sample to be tested for exposure
to HIV, syphilis, and hepatitis B. Women were paid $25 for participation. Blood-
test results were not immediate, but women could obtain test results by calling
RAND to arrange an appointment. Test results were stored and retrieved using a
“distinguishing” code constructed at the time of interview by stringing together a
set of responses to seemingly innocuous questions such as, “What is the first letter
of your mother’s maiden name?” We allude to the code as “distinguishing” rather
than “identifying” because it succeeded in distinguishing between individuals in
the study without allowing anyone to associate the information with a person in
the way that a name or social security number would allow.

After eligibility for the study was established through a question about trad-
ing sex for money or drugs in the previous year, a screening question sought to
avoid duplicate interviews by asking, “Have you been interviewed already by the
Los Angeles Women’s Health Risk Study?” An informed consent procedure was
administered to respondents who acknowledged eligibility and who stated that they
had not been interviewed previously. As part of the protocol, participants were told
that they would not be asked to disclose their name, address, or other information
that could be used to identify them personally. The informed consent form was
signed by the interviewer, who certified that the respondent had reviewed all of
the points on the form.

The present chapter describes an approach that was developed to address con-
cerns that arose over possible duplicate interviews. The payment for participation
was judged to be large enough that it might provide motivation for individual
prostitutes to participate more than once. But because the interviews were anony-
mous, duplicate interviews could not be identified in a straightforward way. Some
insights were possible based on the distinguishing codes associated with individual
prostitutes for retrieving blood-test results. Although such codes would not enable
personal identification in the manner of a name or social security number, they
enabled the research team to assess whether individuals had participated more than
once, at least to the extent that participants would answer the questions the same
way in successive interviews.

The study produced 998 completed interviews, representing roughly 61% of
the 1,629 women who were approached for screening. On the basis of the distin-
guishing codes, there were 55 individuals who were “known” to be interviewed
more than once: 50 individuals had duplicate identifying codes in the database,
and 5 individuals had codes that were observed in triplicate. However, distinguish-
ing codes were not available for approximately 23% of the interviews (Ishwaran,
Berry, Duan, and Kanouse, 1991). Further, it was suspected that some subjects
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might have misled interviewers when answering questions to be used for identi-
fication purposes. This gave rise to concern that there were additional undetected
duplicate interviews in the database, carrying the potential to bias estimates of HIV
prevalence and other outcomes of interest.

The present chapter summarizes collaborative work building on methods for
calibrating error rates in record linkage settings using a mixture-model framework
(Belin and Rubin, 1995). The effort strengthened the foundation of the LAWHRS
by providing evidence that the study had indeed succeeded in interviewing a large
number of different street prostitutes. In this chapter, we review relevant frame-
works for record linkage that relate to the problem of identifying duplicates, after
which we describe the procedure used to identify duplicates in the LAWHRS and
offer comments for future applications.

29.2 General frameworks for record linkage

The problem of identifying duplicate records in the LAWHRS is framed here as
a problem of record linkage, which generally refers to a technique for identifying
individual records in one or more databases that correspond to the same person.
Early theoretical work on record linkage (e.g., Newcombe, Kennedy, Axford, and
James, 1959; Fellegi and Sunter, 1969) gave rise to strategies for bringing together
candidate matched pairs of records. These authors recognized that there were
inherent uncertainties in automated procedures requiring investigators to develop
tolerances for false linkages, or false matches. Fellegi and Sunter (1969) outlined
a procedure for estimating false-match rates that made use of the estimated prob-
abilities of agreement on components within individual records that provided the
basis for their procedure to assign weights characterizing closeness of agreement
between record pairs. For example, typographical and transcribing errors might
result in gender agreeing 99% of the time between pairs of records referring to the
same person, while chance agreement would suggest that gender might agree 50%
of the time between pairs of records from different people. Assuming independence
of agreement across fields of information within records, one can estimate proba-
bilities of false match as a function of the agreement weights, which can then be
used to establish a cutoff between record pairs treated as matches and record pairs
treated as nonmatches. Belin (1993) shows that the performance of record-linkage
procedures can depend critically on decisions about where to set such a cutoff. But
as noted in Belin and Rubin (1995) and Larsen and Rubin (2001), the Fellegi–
Sunter approach can founder on violations of the independence assumption, giving
rise to inaccurate estimates of false-match rates. (For example, in census applica-
tions considered in those articles, agreement on first name would clearly not be
independent of agreement on gender.)

Belin and Rubin (1995) finesse the independence assumptions in the Fellegi–
Sunter framework by tapping outside information, namely previously processed
databases that have already been reviewed for accuracy by teams of matching
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clerks. These databases, with matching-clerk determinations taken as a gold stan-
dard, offer information regarding the distribution of agreement weights for true-
matched pairs and the distribution of agreement weights for false-matched pairs.
The key innovation of Belin and Rubin (1995) involved viewing the agreement
weights in a database not yet reviewed by matching clerks as arising from a mix-
ture of weights for true matches and weights for false matches. In this context, it is
not essential that the agreement weights be derived from a procedure such as that
of Fellegi and Sunter (1969); more crucial is that the procedures used to develop
agreement weights are exchangeable across applications. Two-component mixture
models could then be fit in a current database by making use of informative priors
derived from previously processed data. Other elements of the estimation strategy
include the EM algorithm (Dempster, Laird, and Rubin, 1977) to obtain poste-
rior modes for mixture-model parameters, the SEM algorithm to obtain asymptotic
standard errors (Meng and Rubin, 1991), and multiple imputation to average over
uncertainty about appropriate normalizing transformations (Rubin, 1987b).

Another strategy for calibrating error rates in record linkage is described by
Larsen and Rubin (2001), who extend the Fellegi–Sunter approach in a more flex-
ible framework that allows dependence of agreement among fields of information
in records. The mixture-model idea is still central, as the set of all pairs of records
is partitioned on the basis of latent indicators into separate classes, but the models
in this context are mixtures for discrete data (reflecting agreement or disagreement
on each of the several characteristics). In the census application that served as a
motivating example, three-class mixtures were explored, where the fitted models
tended to divide pairs into same-household matches, same-household nonmatches,
and different-household nonmatches. Instead of assuming the existence of a large
database that has already been processed, Larsen and Rubin (2001) propose to
achieve accurate calibration of false-match rates by fitting a mixture model, select-
ing subsets of the original record pairs to be reviewed for accuracy of matching
determinations, and iterating the model-fitting and review process until only a
small proportion of record pairs reviewed in successive review cycles appear to be
matches.

29.3 Estimating probabilities of duplication
in the Los Angeles Women’s Health Risk Study

In the LAWHRS, the availability of 50 known duplicates and 5 known tripli-
cates based on information in the “distinguishing codes” presented an oppor-
tunity to use the Belin and Rubin (1995) framework to assess the extent of
additional duplication in the database. Specifically, the known duplicates and
triplicates would provide a “training” data set where, for a given metric sum-
marizing closeness of agreement between answers in the balance of the interview,
the training data would provide information on the distribution of the agreement
metric between duplicate interviews on the same person as well as information on
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the distribution of the agreement metric between interviews on different people.
We elaborate by summarizing a procedure for choosing a distance metric, dis-
cussing the estimation of mixture components, and describing findings from the
LAWHRS.

Choosing a distance metric

There were 14 questionnaire items that were used to construct the individual dis-
tinguishing codes in the LAWHRS. Because these items were not available on all
individuals, it was necessary to use other questionnaire items to develop a distance
metric to summarize closeness of agreement between records. Ishwaran, Berry,
Duan, and Kanouse (1991) list 107 questionnaire items that were available for
inclusion in a distance metric. While it would have been possible to use all items
in the metric, it was presumed that some items would contribute substantially to
the ability to distinguish records while other items would not. To avoid including
items in the distance metric that were largely adding noise to the assessment, it
was decided to include items in the distance metric only if there was evidence that
they would contribute to the ability to distinguish individuals.

This problem was conceptualized using a testing framework to decide whether
a pair of records represents two different individuals or two records from the
same individual. Suppose the database has n records. Let questionnaire items be
indexed by i, where i = 1, 2, . . . , 107, let record pairs be indexed by j , where
j = 1, 2, . . . , n(n− 1)/2, and let δi,j represent the indicator function comparing
record pair j on question i, with the result equal to 1 if there is agreement and
equal to 0 if there is disagreement. The set of record pairs can be partitioned into
the set T of truly matched (or duplicate) pairs and the set F of false-matched
pairs. If we let p0i represent the probability of agreement on question i between
two different individuals and p1i represent the probability of agreement on question
i in two interviews with the same individual, we can write

δi,j ∼
{

Bernoulli(p0i) if j ∈ F
Bernoulli(p1i) if j ∈ T .

The training data set provides information that can be used to estimate p0i and
p1i . Specifically, we can let

p̂0i =
∑
jεF δi,j

| F |
and

p̂1i =
∑
jεT δi,j

| T | ,

where | · | represents the cardinality of a set. We assume that the 50 record pairs with
duplicate distinguishing codes and the 5 record triples with triplicate distinguishing
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codes in the training set refer to 55 different individuals (e.g., we assume that a person
did not respond twice with one set of answers to the distinguishing-code questions
and twice more with a different set of answers to the distinguishing-code questions).
Then, except for the triplicates, we should have near independence among the δi,j
for j ∈ T . Therefore,

|T |p̂1i ∼ Bin(|T |, p1i ),

approximately. However, there may be quite a bit of dependence among the δi,j
when jεF . For instance, the first record from duplicate pair A will be compared
against both records of a different duplicate pair B, and the second record from
duplicate pair A will also be compared against both records from duplicate pair B.
These four comparisons are apt to yield the same indicator values if the duplicates
are well matched. Ignoring triplicates, we should expect

|F |p̂0i ∼ 4 Bin(|F/4|, p0i ),

at least approximately.
For items where p0i = p1i , which would not be useful for distinguishing true-

matched and false-matched pairs, we would have

p̂1i − p̂0i ∼ N(0, s2)

where

s =
√
p̂1i (1 − p̂1i )

| T | + 4p̂0i (1 − p̂0i )

| F |
based on using the fact that p̂1i is independent of p̂0i and applying a normal
approximation.

These results were used to motivate a decision rule to include question i in the
metric summarizing closeness of agreement if

p̂1i > p̂0i + 3.1 s,

which corresponds to an event in the upper 0.1 percentile of the normal reference
distribution. This decision rule suggested that 55 of the original 107 items would
be included in the distance metric.

The second part of the algorithm involved assigning a weight to a chosen
question. If question i was deemed suitable, then the weight for this question was
calculated as

wi = 1

2

(
p1i

p0i
+ 1 − p0i

1 − p1i

)
.

The wi’s ranged from values of 1.54 to 28.40. Although not formally equivalent
to the weighting procedure outlined in Fellegi and Sunter (1969), which involves
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logarithms of the ratios of conditional probabilities of agreement given T and F ,
this weighting scheme has the property of assigning high weights to questions
that have a high probability of agreement under the alternative hypothesis as well
as to those questions that have a high probability of disagreement under the null
hypothesis. Agreement weights Yj were calculated by summing the wi values
across all questionnaire items represented in record pair j and rescaling so that the
maximum agreement weight would equal 100.

Figure 29.1 displays the distribution of agreement weights for the true- and
false-matched pairs. There is some overlap, but it is clear that the metric provides
a strong basis for distinguishing true and false matches.

In line with the findings of Belin (1993), we anticipated that even ad hoc
approaches to assigning weights would perform reasonably well. For purposes
of comparison, using the same questionnaire items as were included in the dis-
tance metric described above, unit weights were assigned for agreement on field
i. As expected, this metric capturing a count of the number of fields of agreement
between records produced well-separated components, but the original weighting
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Figure 29.1 Histograms of agreement weights for (a) true-matched pairs and
(b) false-matched pairs, showing clear separation but some overlap.
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scheme appeared to produce better separation in the region of overlap between the
two components.

Estimating mixture components

Formally, the problem of determining the extent of duplication in the LAWHRS
can be framed as a mixture problem, where the distribution of all distances can be
partitioned into two components, one characterizing the distribution of distances
associated with true-matched pairs and one characterizing the distribution of dis-
tances associated with false-matched pairs. The problem is complicated by the
presence of many pairs being associated with each individual record. For example,
among the 115 records in the training data set (comprised 50 duplicate pairs and
5 triplicate sets), one could construct 6,555 record pairs, of which 65 are true
matches (the 50 duplicates plus 3 matched pairs for each triplicate), and the remain-
ing 6,490 are false matches. The problem is further complicated by the fact that
the size of the training set is small compared to the size of the set being investi-
gated for duplicates, where there were nearly 500,000 pairs to be considered. While
the distribution of weights for true matches might be fairly comparable between
the training and target databases, the greater number of possible pairs in the tar-
get database raised the possibility of a different distribution of weights for false
matches between the training and target databases.

A first-pass approach sought to gauge the extent of the duplication by identify-
ing best candidate matches for each record using the newly developed closeness-
of-agreement metric and then reviewing candidate matches manually. The largest
weight associated with a false-matched pair in the training data set was 80.3 on the
100-point scale, so in this first pass, it was decided to consider all pairs with weights
above 80.3 to be duplicates. Individual distinguishing codes were also assessed to
judge whether some of the cases might be part of triples or quadruples. This pro-
cess yielded 25 new suspected doubles, 7 new suspected triples (4 of which were
duplicates in the training set), and 2 new quadruples (1 of which was a triplicate in
the training set). According to this tally, overall there were 2 quadruples, 11 triples
(7 newly suspected plus 4 of the 5 triples in the training data, with the other triple
in the training data now looking like a quadruple), and 71 duplicates (25 newly
suspected plus 46 of the 50 duplicates in the training data, the other 4 duplicates
now appearing to be parts of triples). The implied number of duplicate interviews
was 3 for each of the quadruples, 2 for each of the triples, and 1 for each of
the duplicates, or 99 overall. This represented roughly 10% of the 998 completed
interviews.

An alternate approach to assessing the extent of contamination of the set of
interviews through duplication was based on a probability model described in Belin
and Rubin (1995). Working with the weights for the best candidate matches, the
model assumes that the weights for true matches and weights for false matches
are each normally distributed after application of two-parameter Box–Cox trans-
formations, with distinct transformations for each component to address possibly
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different skewness in the weight distributions. The transformations are indexed by
a power parameter γ and a scaling parameter g corresponding to the geometric
mean of the observations in the following way:

ψ(w; γ, g) =
{

wγ−1
γ (g)γ−1 if γ �= 0

g log(w) if γ = 0.

The two transformations are estimated from the training sample by the use of
a grid search of the likelihood. To facilitate identification of the mixture distribu-
tion in the target sample, the training data are also used to provide an estimate of
the ratio of the variances of the component distributions on the transformed scales.
Subsequently, a mixture model is fit to the weights for best candidate matches from
the target sample. An EM algorithm is available to obtain estimates of the com-
ponent means and the unconstrained component variance parameter, after which
posterior probabilities of duplication are available as ratios of transformed-normal
component densities (Belin and Rubin, 1995). Using this approach, the aggregate
probability of false match (duplication) was estimated to be 14.9%. This departed
somewhat from the assessment from the manual procedure, partly due to the impact
of cases where the record pair was not clearly a duplicate. But the broader conclu-
sion of investigators from both approaches was that duplication, while a concern
that merited attention, was not at a level that would completely undermine findings
from the very demanding fieldwork.

Results from LAWHRS

Estimates for the street-prostitute workforce were obtained by combining sam-
pling weights from the LAWHRS with estimated probabilities of duplication to
downweight the impact of potential duplicates. Key findings from the LAWHRS
are summarized in Berry, Kanouse, Duan, and Lillard (1992) and Kanouse et al.
(1992). Survey participants saw a mean of 30.2 clients per week. Vaginal sex with-
out a condom occurred in 12% of most recent transactions, and oral sex without
a condom occurred in 21% of most recent transactions, with some transactions
involving both. In 30% of transactions, the client requested a condom, with a
condom being used in 97% of those cases. Meanwhile, in 11% of transactions the
client requested that a condom not be used, with condoms not being used in roughly
half of those transactions. While practical considerations involving supervision of
phlebotomy delayed the initiation of blood testing, blood draws were available for
over half of the sample. Laboratory analysis suggested seropositive rates of 2.5%
for HIV-1 antibodies, 33% for hepatitis B surface antibodies, and 34% for past or
present syphilis infection. The emerging profile suggests that both street prostitutes
and their clients are at a substantial risk for sexually transmitted diseases including
HIV and that the amount of risk assumed is an outcome of a negotiation process.
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29.4 Discussion

The application of Belin and Rubin’s mixture-model technique for identifying
duplicate interviews was successful on multiple levels in the context of this inter-
esting applied context. First, the availability of the method provided a probabilistic
framework for incorporating evidence about duplication, which was desirable in a
context where great effort had been expended to obtain a probability sample. The
results, which appeared consistent with a manual approach that had face validity,
helped to instill confidence not only in the method itself but also, on account of
the nonthreatening magnitude of the estimated duplication, in the findings of the
study as a whole.

Further confidence in the method derived from an anecdote that the investigators
alluded to as “the search for the three-faced Eve.” Feedback from field workers had
identified a case as a likely triplicate, although in the clerical process, linkage was
lost between the record of the third interview and two other records that could be
classified as duplicates using the distinguishing codes. Although the investigators
were prepared to have project staff review the hundreds of hard copies of interviews
to try to find the lurking triplicate, the weighting scheme suggested a candidate
match that was readily identified as the third member of the triple without requiring
such extensive manual effort. This process added a measure of face validity to the
methodology.

An anonymous reviewer noted the possibility of comparing characteristics of
duplicates and nonduplicates to assess potential systematic relationships. That is,
to build on terminology from Rubin (1976a), one could consider whether records
were “duplicated completely at random,” with no systematic differences between
duplicates and nonduplicates, or were “duplicated at random”, allowing the possi-
bility that duplicates and nonduplicates may differ on covariates. One could further
consider defining weighting classes based on covariate data and using weighting
adjustments to assess whether certain quantities of interest, such as AIDS preva-
lence, are disproportionately affected by duplication.

A final comment concerns implications of this methodology in disclosure-
avoidance problems. Survey organizations routinely offer pledges of confidentiality
to survey participants, yet there is often considerable interest in having data files
from censuses and annual surveys available for public use. The concern raised by
the record-linkage methods described here is that another avenue might become
available for identifying individuals in public-use data files by aggregating infor-
mation on seemingly innocuous characteristics. Many individuals in the United
States would be uniquely identifiable given a set of, say, 50 pieces of covariate
information. As a hypothetical, suppose that a data user knew 50 pieces of covari-
ate information on an individual from public sources (e.g., white, male, age 55, city
of residence, etc.) and suppose that a public-use data file supplies records of per-
sonal income along with all of the same 50 items except city of residence. In such
a setting, record-linkage techniques might be used by adversarial individuals to try
to break confidentiality in public-use files. The implied challenge may require not
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just that imputation be used for disclosure avoidance, as suggested in Rubin (1993)
and Raghunathan, Reiter, and Rubin (2003) but also that the imputation procedures
scramble covariate information across individuals rather than just drawing entire
individual records using hot-deck or approximate Bayesian bootstrap procedures.
Raghunathan, Reiter, and Rubin (2003) recognize that choices between model-
based and resampling-based imputation procedures involve trade-offs affecting both
precision and protection against disclosure. Guarding against record-linkage tech-
nology implies another layer of challenge in disclosure-avoidance problems. The
idea of joining seemingly distinct statistical frameworks into a unified whole, which
paid off in assessing the extent of duplication in the Los Angeles prostitute survey,
might also be important to a successful disclosure-avoidance strategy.
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Applying structural equation
models with incomplete data

Hal S. Stern and Yoonsook Jeon1

Structural equation models (SEM) are commonly used by social scientists to draw
inferences about phenomena of interest. The models consist of systems of equations
relating latent variables of scientific interest and the various observations that are
designed to measure the latent variables. It is not uncommon for individuals in
a study to be missing some of the measured variables. Many applied researchers
in the past dealt with such incomplete data by ignoring any cases with missing
values. This is certainly inefficient as it can lead to the loss of one-third or more
of a typical study population and may be misleading if those with missing val-
ues differ from those with complete cases in any systematic way. A number of
likelihood-based or least-squares approaches to accommodating incomplete cases
have been developed (see, e.g., Little and Rubin, 2002). Approaches based on maxi-
mum likelihood estimation rely on asymptotic theory. In this chapter, the Bayesian
approach to posterior inference for structural equation models with incomplete
data is described and illustrated with data from a study of adolescent development.
Structural equation models are introduced in Section 30.1, with an emphasis on the
confirmatory factor or measurement model. The Bayesian approach to inference for
SEM with incomplete data including relevant notation and algorithms is described
in Section 30.2. Section 30.3 applies the methodology to data from the Iowa Youth
and Family Project concerning psychological development of adolescents.
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30.1 Structural equation models

Latent variable model

The general SEM consists of two pieces: the latent variable model and the con-
firmatory factor model. The latent variable model describes relationships among a
set of latent variables. The variables typically represent theoretical constructs, like
self-esteem, that are difficult to measure. The model distinguishes between endoge-
nous and exogenous latent variables. Endogenous variables are determined by other
variables within the model and exogenous variables are determined outside of the
model. The mathematical representation for the latent variable model is

ηi = Bηi + �ξi + ζi
ξi ∼ N(0, �) (30.1)

ζi ∼ N(0, �),

for i = 1, . . . , n, where ηi is an m× 1 vector of endogenous latent variables, ξi
is an r × 1 vector of exogenous latent variables, ζi is an m× 1 vector of error
variables, which are assumed to be uncorrelated with the exogenous variables,
B is an m×m coefficient matrix for the endogenous latent variables (with zero
elements on the diagonal), � is an m× r coefficient matrix for the exogenous latent
variables, � is an r × r diagonal variance–covariance matrix of the exogenous
latent variables, and � is an m×m diagonal variance–covariance matrix of the
error variables. It is assumed that (I − B) is nonsingular (Bollen, 1989). The errors
and exogenous variables are assumed independent across individuals.

Confirmatory factor model

The confirmatory factor model represents the link between observed variables
Y and latent variables Z. The observed variables are often indicators or scales
designed to measure the underlying latent variables. The mathematical representa-
tion of the confirmatory factor model is

Yi = µ+�Zi + εi
εi ∼ N(0, �) (30.2)

Zi ∼ N(0, R),

for i = 1, . . . , n, where Yi is a p × 1 vector of observed variables, µ is a p × 1
mean vector, Zi is a q × 1 vector of latent variables, � is a p × q coefficient
matrix, εi is a p × 1 error vector, which is uncorrelated with the latent variable
Zi , R is a q × q variance–covariance matrix of the latent variables, and � is the
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p × p variance–covariance matrix of the errors of measurement. The error vectors
and latent variables are assumed independent across individuals. With complete
data, the model is often expressed in terms of centered data (so that µ = 0) but
the mean vector is necessary for our incomplete data setting.

Combining the models

The latent variable and confirmatory factor models are combined in a single model
by taking Zi = (ξTi , ηTi )T with q = m+ r . Then the parameters of the latent vari-
able model B,�,�,� represent a particular structural hypothesis about the nature
of the covariance matrix R of the latent variables in the confirmatory factor model.
In particular, we have

R =
(

� ��T ((I − B)−1)T

(I − B)−1�� (I − B)−1(���T +�)((I − B)−1)T

)
(30.3)

Identification

A model is said to be identified if it is possible to identify each parameter from
the elements of the population variance–covariance matrix. The identification issue
is relevant to both the confirmatory factor model and the latent variable model.
Identification of the confirmatory factor model requires that the parameters �, R,
and � be identified from the p(p + 1)/2-element variance–covariance matrix of Y .
It is common to identify the model by introducing restrictions, for example, setting
some elements of � and � to zero. Common restrictions include the assumption
of uncorrelated errors of measurement (off-diagonal elements of � equal to zero)
and/or the assumption that each observed variable measures a single latent variable
(only a single nonzero λij coefficient in each row of �). In addition, identification
of the confirmatory factor model requires a “scaling” of the latent variables. This
is required because the contribution of the latent variables to the observed variance
is �R�T and it is always possible to find an infinite number of equivalent (�,R)
pairs. There are two ways to produce a scale for the latent variables: set the
variances of the latent variables to one (i.e., make R a correlation matrix) or take
each latent variable’s variance to be equal to the variance of one of the observed
variables (i.e., set a single λij in each row equal to 1).

Identification of the latent variable model implies further that the parameters
in the latent variable model can be distinguished. Much has been written about
identification for the full structural equation model (including confirmatory factor
and latent variable components), for example, see Bollen (1989). This chapter
assumes that the latent variable model is recursive, which guarantees that the
full structural equation model is identifiable if the confirmatory factor model is
identifiable. A latent variable model is said to be recursive if there are no reciprocal
causation or feedback relationships among the latent variables, and the error in one
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equation is not correlated with the errors in the other equations. Mathematically, a
recursive model has lower triangular B matrix and diagonal � matrix.

30.2 Bayesian inference for structural equation
models

Inference for structural equation models is often done without relying on formal
probability models. Parameters are estimated to minimize some measure of dis-
tance between the observed variance matrix and the population variance matrix
implied by the model (see, for example, Bollen, 1989). Though it is possible to
accommodate missing data with such approaches (Yuan and Bentler, 1996), it is
generally more straightforward to accommodate missing data with an underlying
probability model and that is the approach of this chapter.

The confirmatory factor model with complete data

Under the assumed normal distributions, the marginal distribution of the observed

data is Yi
iid∼ N(µ,�R�T +�), i = 1, 2, . . . , n. Assuming Y = (Y1, . . . , Yn) is

completely observed, maximum likelihood (ML) estimates and associated inference
can be obtained directly from the Gaussian likelihood. Throughout this chapter we
focus on Bayesian inference. The Bayesian approach to inference incorporates a
prior distribution for the parameters and provides inferences based on the posterior
distribution p(µ,�,R,�|Y ) ∝ L(µ,�,R,�|Y )p(µ,�,R,�). Maximum likeli-
hood inference relies on large sample theory, whereas the Bayesian approach does
not. We discuss the choice of prior distributions a bit later in this section.

For computational convenience, and to facilitate our approach to incomplete
data, we introduce the augmented complete-data likelihood incorporating the latent
variables Z = (Z1, . . . , Zn). The joint distribution of Yi and Zi is easily obtained
by multiplying the marginal distribution of Zi and the conditional distribution of
Yi given Zi . This yields(

Yi
Zi

)
iid∼ N

((
µ

0

)(
�R�T +�, �R

R�T R

))
(30.4)

for i = 1, . . . , n. Rubin and Thayer (1982, 1983) describe the use of the EM
algorithm for obtaining maximum likelihood estimates in the confirmatory factor
model by treating the latent variables as missing data in the augmented model.
Bayesian inference can be carried out in much the same way. We obtain inferences
from the posterior distribution p(µ,�,R,�,Z|Y ) and then marginalize over Z.
This approach also provides the flexibility for reporting inferences about the latent
variables (factor scores) if desired.

To identify the confirmatory factor model, we assume that R is a variance–
covariance matrix and that a single element in each row of � is equal to one. This
identifies the scale of each latent variable as the scale of one of its indicators.
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Model specification with missing data

If there are missing values, then we write Yi = (Yobs,i , Ymis,i ), i = 1, . . . , n, and
let Y = (Yobs, Ymis) represent the entire data set. Throughout we assume that miss-
ing values are missing at random (MAR) in the sense of Rubin (1976a). This
means that we can draw inferences based on the observed-data likelihood without
modeling the missing-data mechanism. Though the data itself does not provide
enough information to determine whether MAR is a plausible assumption, it is
common to initially assume MAR and then assess the sensitivity of the inferences
to this assumption. One strategy for data analysis with missing values is multiple
imputation (see, for example, Rubin, 1987), wherein multiple complete data sets
are constructed using a probabilistic imputation model to fill-in the missing values.
The other common strategy, which is followed here, is to carry out likelihood-based
or Bayesian inference by averaging over the missing values. Collins, Schafer, and
Kam (2001) compare these two strategies in the context of SEM.

Finkbeiner (1979) carries out a likelihood-based analysis with missing data
by averaging over the missing values. Jeon (1998) instead uses the augmented
model likelihood that includes Z and extends the EM approach of Rubin and
Thayer (1982) to accommodate the unintentionally missing data Ymis along with
the intentionally missing (i.e., latent) Z. We use a Bayesian approach based on the
augmented model. The augmented model can be written as Yobs,i

Ymis,i
Zi

 ind∼ N

 µobs,i
µmis,i

0

 , � =
 �oo,i �om,i �oz ,i
�mo,i �mm,i �mz ,i

�zo,i �zm,i �zz ,i

 (30.5)

for i = 1, . . . , n. In this notation, we usem or mis to denote elements corresponding
to missing values, o or obs to denote elements corresponding to observed values,
and z to denote elements corresponding to latent variables. It follows from earlier
results that

� =
 (�R�T +�)oo,i (�R�T +�)om,i (�R)oz ,i

(�R�T +�)om,i (�R�T +�)mm,i (�R)mz ,i

(R�T )zo,i (R�T )zm,i R

 .
The joint posterior distribution of the model parameters, the missing data, and the
latent variables is

p(µ,�,R,�,Z, Ymis|Yobs) ∝
(
n∏
i=1

p(Yobs,i , Ymis,i , Zi |µ,�,�,R)
)

×p(µ,�,�,R). (30.6)

Notation for carrying out the Bayesian analysis

The posterior distribution, both with complete data and without, is difficult to
study analytically. Instead, we study the posterior distribution by using Markov
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chain Monte Carlo to generate samples from it and then computing numerical
summaries from the simulated values. A key issue in applying the Bayesian method
to the analysis of data using SEM is that the variance–covariance matrix � and the
coefficient matrix� typically have special structure that must be taken into account.

In this chapter, we restrict attention to the common case in which � is either
diagonal (the observed variables Y are independent given the latent variables Z)
or block diagonal (conditional correlations allowed but only within subsets of the
vector Y). We can combine the two cases since the diagonal matrix can be viewed
as a block diagonal matrix with each block consisting of a single element. Let the
number of blocks be m and denote these by �1, . . . , �m. The number of elements
in block k is pk . The model for Y given Z can be written as a series of independent
models defined on the blocks. This requires some fairly detailed notation that is
provided next.

Let Y ∗
i,k be the pk × 1 subvector of Yi corresponding to the kth block, Y ∗

i,k =
(yi,k(1), yi,k(2), . . . , yi,k(pk))

T , where yi,k(j) is the observation corresponding to the
j th variable in the kth block for unit i. The notation k(j) allows us to account
for the possibility that the elements of Y may need to be reordered to create
the block diagonal form. Define µ∗

k to be the corresponding pk × 1 subvector of
µ, �∗

k to be the corresponding pk × q submatrix of � with k(j)th row �Tk(j) =
(λk(j),1, λk(j),2, . . . , λk(j),q), and ε∗i,k to be the corresponding pk × 1 subvector of
ε. The model within the kth block can be written as follows:

Y ∗
i,k = µ∗

k +�∗
kZi + ε∗i,k, i = 1, . . . , n.

We next accommodate the fact that for a confirmatory factor model some
elements of �∗

k are assumed a priori to be equal to zero. We reorder the ele-
ments in each row of �∗

k so that the zero elements are together and make the
corresponding change to Zi , writing Zi,k(j) = (ZT

i,1,k(j), Z
T
i,0,k(j))

T and �T
k(j)

=(
�T1,k(j), �

T
0,k(j)

)
=
(
�T1,k(j), 0

)
, where Zi,1,k(j) is the bk(j) × 1 vector corre-

sponding to the latent variables with nonzero coefficients, Zi,0,k(j) is the (q −
bk(j))× 1 vector corresponding to the latent variables with zero coefficients,�T1,k(j)
is the row vector of elements to be estimated in �Tk(j), �

T
0,k(j) is the row vector

of a priori zero elements. Then the model for an individual variable, say the j th
variable, within the kth block can be written as

yi,k(j) = µk(j) +�1,k(j)Zi,1,k(j) + εi,k(j). (30.7)

If we treat the Zi as known (they will be available at the appropriate stage of the
MCMC algorithm developed below), then we can combine the individual variable
models (30.7) into a multivariate regression model for block k (i.e., a regression
model with multiple responses),

Y ∗
i,k = µ∗

k + Z∗
i,k�

∗∗
k + ε∗i,k, i = 1, 2, . . . , n, (30.8)
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where �∗∗
k is the

∑pk
j=1 bk(j) × 1 vector obtained by concatenating the �1,k(j)

vectors for each of the block’s variables into a single column, and Z∗
i,k is the pk ×∑pk

j=1 bk(j) matrix with j th row equal to ZTi,1,k(j) in the columns corresponding to
the relevant elements of �∗∗

k and zero elsewhere.

Prior distributions

We choose noninformative flat prior distributions for location parameters and
regression coefficients and conjugate prior distribution for the variance components,

p(µ) ∝ 1;
p(λ|�) ∝ 1,where λ is any element of �(not fixed at 0 or 1);

�j ∼ inverse-Wishart(νj , Sj ), j = 1, . . . , m;
R ∼ inverse-Wishart(νm+1, Sm+1).

The inverse-Wishart distribution is a conjugate prior distribution for a mul-
tivariate normal variance matrix. A limitation of the inverse-Wishart is that it
assumes a single degrees-of-freedom parameter, thus assuming equal information
about each variable. In the present case, this should not be a problem if the blocks
contain few variables. More generally alternative prior distributions can be used
for the variance–covariance matrices, as described for example in Gelman, Carlin,
Stern, and Rubin (2003). The flat prior distributions for µ and for the elements of
� are not proper distributions, but the resulting posterior distribution is a proper
distribution.

Gibbs sampling for structural equation models

Gibbs sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) can be used
for simulating from the posterior distribution because each of the full conditional
distributions (the posterior distribution of one subvector of parameters or missing
data given all of the others) are known distributional forms. We now describe
the Gibbs sampling algorithm for the confirmatory factor model, including the
possibility of missing data, by specifying the full conditional distributions:

Full conditional distribution of µ
Given all of the model parameters and conditioning on the augmented complete
data containing Y and Z, the distribution of µ is normal,

µ|Y ,Z,�,�,R ∼ N(µµ, Vµ),

where µµ = Y −�Z, Vµ = 1
n
�, Y is the sample mean of the observed or indicator

variables and Z is the sample mean of the factor scores.
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Full conditional distribution of Zi
The conditional distribution of Zi , the latent variables for the ith observation, can
be obtained from its joint normal distribution with Yi given in (30.4),

Zi | Yi, µ,�,�,R ∼ N(µz,i, Vz), i = 1, 2, . . . , n,

where µz,i = R�T (�R�T +�)−1(Yi − µ), and Vz = R − R�T (�R�T +�)−1

�R. Draws for different individuals are independent.

Full conditional distribution of Ymis,i
In a similar manner, the conditional distribution of the missing data is obtained
from the joint normal distribution of (Yobs,i , Ymis,i , Zi) given in (30.5),

Ymis,i |Yobs,i , Zi, µ,�,�,R ∼ N(µY,i, VY,i ), i = 1, 2, . . . , n,

where

µY,i = µmis,i +
(
�mz ,i �mo,i

) ( �zz ,i �zo,i
�oz ,i �oo,i

)−1 (
Zi

Yobs,i − µobs,i

)
,

VY,i = �mm,i −
(
�mz ,i �mo,i

) ( �zz ,i �zo,i

�oz ,i �oo,i

)−1 (
�zm,i

�om,i

)
.

The draws for different individuals are independent.

Full conditional distribution of R
Given the latent variables, the posterior distribution of the unstructured variance–
covariance matrix R is straightforward,

R|Y , µ,�,�,Z ∼ inverse-Wishart(n+ νm+1,
(∑n

i=1 ZiZ
T
i + Sm+1)

−1
)
.

Full conditional distributions of � and �
The conditional posterior distributions for � and � are specified separately for
each block using the representation in (30.8). For the kth block, we obtain

�∗∗
k |Z∗

i,k, Y
∗
i,k, µ

∗
k, R,�k

ind∼ N

�̂∗∗
k ,

(
n∑
i=1

(Z∗
i,k)

T �−1
k Z

∗
i,k

)−1
 ,

where �̂∗∗
k =

(∑n
i=1(Z

∗
i,k)

T �−1
k Z

∗
i,k

)−1 ∑n
i=1(Z

∗
i,k)

T �−1
k (Y

∗
i,k − µ∗

k), and

�k|Y ∗
i,k, �

∗∗
k , Z

∗
i,k, µ

∗
k, R ∼ inverse-Wishart (n+ νk,Wk)

where Wk =
(∑n

i=1(Y
∗
i,k − µ∗

k − Z∗
i,k�

∗∗
k )(Y

∗
i,k − µ∗

k − Z∗
i,k�

∗∗
k )
T + Sk

)−1
.
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Beyond the confirmatory factor model

The Gibbs sampling algorithm we have described allows us to obtain simula-
tions from the posterior distribution of the parameters for the confirmatory factor
model. Because we have assumed a recursive latent variable model with fully
lower triangular B, it turns out that there is a one-to-one correspondence between
the parameters (B, �,�,�) of the latent variable model and the elements of the
variance–covariance matrix of the latent variables R. Then posterior inferences for
the latent variable parameters can be can be obtained directly from the posterior
distribution of R by referring to the definition (30.3) in Section 30.1.

An alternative is to put prior distributions on �,�,�,B and work directly
with the joint posterior distribution (30.6) after making the transformation from
R to the latent variable parameters. For models where there is no longer a one-
to-one relationship between R and the elements of the latent variable model, this
alternative would be the only way to proceed.

30.3 Iowa Youth and Families Project example

The data set and the model

Data from the Iowa Youth and Families Project (IYFP), a longitudinal study con-
cerning the welfare of rural families that was carried out at the Institute for
Social and Behavioral Research at Iowa State University, provides an example
for illustrating our approach. Each of 451 rural Iowa families was interviewed
four times during the period 1989 to 1992. One particular analysis by researchers
Rand Conger and Martha Reuter concerned the development of adolescent problem
solving behavior. There are 11 indicators in that analysis corresponding to 4 latent
variables in their conceptual model. The first latent variable, “warmth, commu-
nication, and listening (1989),” is measured by 3 indicators (denoted Y1, Y2, and
Y3). The second latent variable, “adolescent problem solving behavior (1990),” is
measured by 3 indicators (Y4, Y5, and Y6). The third latent variable, “adolescent
cynical, contemptuous attitude (1991),” is measured by 2 indicators (Y7, Y8). The
fourth latent variable, “adolescent problem solving behavior (1992),” is measured
by 3 indicators (Y9, Y10, and Y11). The scientists expected a positive association
between positive family communication in the first year (the first latent variable)
and adolescent problem solving ability in the final year (the fourth latent vari-
able). They also expected a positive association between problem solving ability
in years 2 and 4 but a negative association between having a cynical attitude in
year 3 and problem solving in year 4. We might expect the indicators for the sec-
ond latent variable and the fourth latent variable to be correlated because the same
items are used to measure the same latent variable at two different times. For this
study, only 295 families out of the 451 had a completely observed Y vector; a
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complete case analysis loses 35% of the sample. Causes of missing data included
unanswered questions and unusable videotape (which was used to define some
indicators). The investigators were content to begin with the MAR assumption.

The matrix � relates the observable variable Y to the four latent variables. As
described earlier, we identify the matrix R by selecting one indicator to define the
scale of the latent variables. For example, Y1 defines the scale of Z1,

�T =


1 λ2 λ3 0 0 0 0 0 0 0 0
0 0 0 1 λ5 λ6 0 0 0 0 0
0 0 0 0 0 0 1 λ8 0 0 0
0 0 0 0 0 0 0 0 1 λ10 λ11

 .
The conditional variance–covariance matrix of the indicator variables given the

latent variables, �, can be written as a block diagonal matrix by reordering the rows
and columns so that there are eight blocks: {Y1}, {Y2}, {Y3}, {Y7}, {Y8}, {Y4, Y9},
{Y5, Y10}, {Y6, Y11}. The bivariate blocks reflect the expected correlation between
those indicators measured both at time 2 and 4. Let θi denote the diagonal element
corresponding to variable Yi and also introduce θ12, θ13, θ14 as the off-diagonal
elements for the two-variable blocks.

The latent variable model relates the four latent variables. Owing to the longitu-
dinal nature of the study, it is natural to think of Z1 as exogenous (ξ in the notation
of Section 30.1) and the other latent variables as endogenous ((Z2, Z3, Z4) =
(η2, η3, η4) in the notation of Section 30.1). Then we can write the latent variable
model for this example in the notation (30.2) as zi,2zi,3

zi,4

 =
 0 0 0
β32 0 0
β42 β43 0

 zi,2zi,3
zi,4

+
 γ2
γ3
γ4

 zi,1 +
 ζi,2ζi,3
ζi,4

 ,
with � a scalar variance parameter of the exogenous variable (Z1) and � a
3 × 3 diagonal variance matrix of the endogenous variables (Z2, Z3, Z4). We have
assumed a recursive latent variable model (lower triangular matrix B and diago-
nal matrix �). There are 10 free parameters (3 elements of B, 3 elements of �,
1 element of � and 3 elements of �), which can be identified from the 10 unique
elements of R.

Bayesian inference

Prior distributions are chosen in accord with the earlier discussion. Specifically,
we choose flat prior distributions for µ and the elements of � and

θj ∼ scaled inverse-χ2(0.01, 1), j = 1, 2, 3, 7, 8;
�(l,m) ∼ inverse-Wishart(2, I2), (l, m) = (4, 9), (5, 10), (6, 11);

R ∼ inverse-Wishart(4, I4),
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where I2 and I4 are 2 × 2 and 4 × 4 identity matrices respectively, and

�(4,9) =
(
θ4 θ12
θ12 θ9

)
, �(5,10) =

(
θ5 θ13
θ13 θ10

)
, �(6,11) =

(
θ6 θ14
θ14 θ11

)
.

The MCMC algorithm is described in Section 30.2. We carried out 5,000 iter-
ations for each of 5 independently chosen starting points. The Gelman and Rubin
(1992) potential scale reduction factor based on the last halves of the 5 chains are
less than 1.2 so we take these simulations as representative of the posterior distribu-
tion. Numerical summaries of the posterior distribution are provided in Table 30.1.
The left side of the table gives the estimated posterior medians and 95% central
posterior intervals for the elements of R.

Because the parameters in our recursive latent variable model are completely
determined by the elements of R, we do not need any additional simulation effort
to draw inferences about them. We take each posterior draw of R and solve to
obtain a posterior sample for the latent variable parameters. The right side of
Table 30.1 shows summaries of the posterior distribution for the latent variable
model parameters. The results confirm the researchers’ hypotheses in that the poste-
rior distribution for β42, the association between problem solving ability in years 2
and 4, is concentrated on positive numbers, while β43, the association between
having a cynical attitude in year 3 and problem solving in year 4, is primarily
concentrated on negative values.

Assessing fit

An essential part of a data analysis using SEM is to assess the quality of the fit of
the model. The Bayesian approach easily allows model checking via the posterior
predictive approach of Rubin (1984) and Gelman, Meng, and Stern (1996). We

Param Posterior 95% Posterior Param Posterior 95% Posterior
Median Interval Median Interval

R(1,1) 8.96 (6.72, 11.74) φ1 8.96 (6.72, 11.74)
R(1,2) 0.23 (0.08, 0.41) ψ2 0.12 (0.02, 0.19)
R(1,3) −1.30 (−2.17, −0.60) ψ3 1.11 (0.56, 2.04)
R(1,4) 0.40 (0.04, 0.78) ψ4 0.69 (0.44, 0.98)
R(2,2) 0.15 (0.09, 0.22) γ2 0.03 (0.01, 0.04)
R(2,3) −0.14 (−0.26, −0.05) γ3 −0.11 (−0.19, −0.03)
R(2,4) 0.13 (0.06, 0.20) γ4 0.01 (−0.05, 0.06)
R(3,3) 1.91 (0.91, 3.36) β32 −0.88 (−2.08, −0.21)
R(3,4) −0.32 (−0.56, −0.11) β42 0.82 (0.19, 1.64)
R(4,4) 0.89 (0.59, 1.21) β43 −0.12 (−0.34, 0.05)

Table 30.1 Numerical summaries of the posterior distribution of the confirmatory
factor parameter R and the associated latent variable model parameters.
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define one or more test statistics T (Y) or discrepancies T (Y;ϒ) (the latter may
depend on the unknown parameters that are generically denoted by ϒ here) and
compare the observed value (or observed distribution in the case of a discrepancy)
with an appropriate reference distribution. The reference distribution is obtained
by generating replicate data, say Yrep from its posterior predictive distribution; this
is done by simulating ϒ from its posterior distribution and then Yrep from the
distribution for Y given ϒ . The replicate data Yrep is a plausible value for what
we might expect if the study were repeated with the same (but currently unknown)
parameter value. We can choose T to be a traditional SEM measure of fit, for
example, T (Y;ϒ) = tr(S(�R�T +�)−1), a measure of the distance between the
observed sample covariance matrix S and the model-implied covariance matrix. It
is not a problem that the definition of T depends on missing values because we have
included the missing values in our simulation algorithm. For each posterior draw ϒ ,
we simulate a replicated data set Yrep and then calculate T (Y;ϒ) and T (Yrep;ϒ).
The two sets of values can be displayed in a scatterplot and/or summarized by a tail-
area probability, the probability that T (Yrep;ϒ) ≥ T (Y;ϒ). In the IYFP example,
the points are well scattered around a 45-degree line indicating no obvious lack of
fit. A more thorough assessment would consider other diagnostic measures as well.

30.4 Summary and discussion

In this article, we explore statistical inference for structural equation models with
missing data using a Bayesian approach. Methods are developed for confirmatory
factor models and linked to a particular class of latent variable models. A computa-
tional algorithm is developed for generating samples from the posterior distribution
of the model parameters. In addition, we discuss how the fit of the model is assessed
using posterior predictive model checks. The influence of Rubin’s work can be seen
in the incorporation of latent variables as missing data following Rubin and Thayer
(1982), the general approach to inference for missing data (Little and Rubin, 2002),
the Gelman and Rubin (1992) developments regarding MCMC, and the application
of posterior predictive model checks (Rubin, 1984).
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Perceptual scaling

Ying Nian Wu, Cheng-En Guo,

and Song Chun Zhu1

31.1 Introduction

Vision as statistical learning and inference

Vision can be posed as a statistical learning and inference problem. As an over-
simplified account, let W be a description of the outside scene in terms of “what
is where,” let I be the retina image, and let p(W, I) be the joint distribution of
W and I .2 Then visual learning is to learn p(W, I) from training data, and visual
perception is to infer W from I based on p(W |I ).

There are two major schools on visual learning and perception. One school is
operation oriented and learns the inferential process defined by p(W |I ) directly,
often in the form of an explicit transformation W ≈ F(I). This scheme is mostly
used in supervised learning, whereW is the object category, and is given in training
data. The other school is representation oriented and learns the generative process
p(W) and p(I |W) explicitly, then perception is to invert the generative process

1Department of Statistics and Computer Science, University of California, Los Angeles, Calif.
We thank the two editors for advice on presentation. The work is partially supported by NSF grant
IIS-0222967.

2In a philosophically more rigorous formulation, we may assume the existence of an underlying
world, which is a functional. When this functional acts on the physical equipment, it gives what we
call “W .” When this functional acts on the retina cells, it gives what we call “I .” A distribution over
this “world functional” leads to the joint distribution of W and I . See for example, Mumford and Gidas
(2001).
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by maximizing or sampling p(W |I ) ∝ p(W)p(I |W). This scheme is Bayesian in
nature, the prior distribution p(W) may also be accounted for by a regularization
term such as smoothness or sparsity. This scheme is often used in unsupervised
learning where W is not available in training data.

In the literature, there are a number of statistical theories proposed for vision.
In representation-oriented school, Grenander (1993) and Mumford (1994) proposed
pattern theory as a paradigm for vision (see also Geman and Geman, 1984; Amit,
Grenander, and Piccioni, 1991; Grenander and Miller, 1994; Geman, Potter, and
Chi, 2002), for important contributions that are related to pattern theory). Olshausen
and Field (1996) proposed the sparsity principle as a general strategy employed
by primitive visual cortex, and use it to learn linear bases from natural images,
and these bases are considered mathematical models for simple visual cells (see
also Bell and Sejnowski, 1997), on independent component analysis for learning
edge filters from natural images). The sparsity principle was also investigated by
Candes and Donoho (1999) in the framework of harmonic analysis on wavelets and
curvelets. Zhu, Wu, and Mumford (1997) and Wu, Zhu, and Liu (2000) proposed
a class of Markov random field models (Besag, 1974; Cressie, 1993) for textures,
and studied the minimax entropy principle and the equivalence of ensembles for
feature statistics based on linear filters. In the operation-oriented school, contri-
butions were made by Amit and Geman (1997), and Blanchard and D. Geman
(2003), who stressed the importance of computing efficiency in visual perception.
Tu and Zhu (2002) proposed data-driven Markov chain Monte Carlo (MCMC) for
integrating operation-oriented methods into representation-oriented schemes.

As evidenced by the above theories, to understand visual learning and per-
ceptual inference, it is crucial to identify fundamental visual phenomena and
understand the underlying statistical principles. The proposed work is to study
a ubiquitous visual phenomenon that we call perceptual scaling.

Perceptual scaling

The left column of Figure 31.1 displays three images of an ivy wall taken at three
different distances. For the image at near distance, we perceive individual leaves,
including their edges and shapes. For the image at far distance, however, we only
perceive a collective foliage impression without discerning individual structures.
While the near-distance image looks regular and simple, with sparse structures, the
far-distance image appears random and complex, with rich details. Why does the
same pattern result in different perceptions at different distances? Can we find a
mathematical theory to formally explain this perceptual transition over scale?

This transition from sparse structures to collective textures is ubiquitous in
outdoor scenes, and we call such transition perceptual scaling. For instance, the
images of branches and twigs in the right column of Figure 31.1 also exhibit such
a scaling effect. Currently, it is still unclear whether this transition is a continuous
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Figure 31.1 Perceptual scaling: transition from sparse structures to collective tex-
tures over distance.

one or a quantum jump. It is likely that there exists a small gray area where both
structure interpretation and texture interpretation are equally plausible.

Perceptual scaling typically presents itself in a single image of a static natu-
ral scene, because objects and patterns can appear at a wide variety of distances
and depths from the viewer. See Figure 31.2 for two examples, where the leaves
and branches give us different impressions at different scales. Thus, a mathemat-
ical theory that accounts for this scaling effect is crucial for a visual system to
successfully interpret virtually any natural scenes.

As another example of perceptual scaling, in Figure 31.3, the left image gives
us vivid 3D impression of shapes, whereas the right image only gives us an overall
impression of roughness.
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Figure 31.2 Perceptual scaling: the same patterns can appear at different scales
in a single image.

Perceptual scaling also manifests itself in motion scenes (e.g., Doretto, Chiuso,
Wu, and Soatto, 2003). For instance, when we look at sea surface, we perceive
the shapes of big waves and we can trace their motions, whereas for the large
number of small ripples, their shapes are not perceptible and their motions are not
trackable.

There have been many interesting theories on the issue of scaling in the liter-
ature, such as scale space theory (e.g., Lindeberg, 1994), multiresolution analysis
(Mallat, 1989), fractals (Mandelbrot, 1982), spectrum and simple statistics of nat-
ural images (Ruderman and Bialek, 1994; Mumford and Gidas, 2001; Chi, 2001;
Simoncelli and Olshausen, 2001). However, none of these theories are concerned
with the effect of image scaling on our perception of particular patterns such as
those in Figure 31.1.

Given the fact that visual perception is a statistical inference problem, and
complexity and randomness must be studied in a statistical framework, we argue
that perceptual scaling is a statistical phenomenon. In particular, our approach
relies heavily on the concept of entropy. This concept has its root in statistical
mechanics, and can be understood as counting (in log-scale) the size of certain
equivalence class (or ensemble). It also plays a central role in information theory,
where it counts the average number of bits for coding the signal.

In this chapter, we prove two scaling laws in vision: if we get farther from a
visual pattern, then (1) the resulting retina image becomes less sparse, and (2) the
underlying pattern becomes less perceptible. The two scaling laws have interesting
implications in the possible strategy employed by visual cortex, and reveal the
connection between wavelet sparse coding and Markov random fields.
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Figure 31.3 Perceptual scaling: from 3D shapes to texture impression of
roughness.

31.2 Sparsity and minimax entropy

Wavelets and Markov random fields

The simple neuron cells in the primitive visual cortex (called V1) are mathemat-
ically modeled by a set of localized, oriented, and elongated linear bases/filters,



348 PERCEPTUAL SCALING—WU, GUO, ZHU

Figure 31.4 Linear bases/filters as mathematical model of V1 cells.

{Bx,y,k}, where (x, y) indexes the location, and k indexes the shape, such as ori-
entation and scale. See Figure 31.4 for an illustration.

There are two major classes of representations for nature images; both involve
the above local bases/filters.

Wavelets and sparse coding: This representation is generative (Lewicki and
Olshausen, 1999)

cx,y,k ∼ p(c), (31.1)

I =
∑
cx,y,kBx,y,k + ε, (31.2)

where cx,y,k are coefficients for representing I in the form of (31.2), and ε is
the residual error. The key principle is the sparsity principle (Olshausen and Field,
1996), where {Bx,y,k} is assumed to be over-complete, that is, the number of bases
exceeds the number of pixels, but for a typical image, only a small number of cx,y,k
are significantly different from 0, that is, the prior distribution p(c) in (31.1) is a
long-tail distribution such as mixture of normals (Olshausen and Millman, 2000;
see also George and McCulloch (1997), for independent but closely related work
on Bayesian variable selection in regression). The sparsity assumption can also be
expressed in a nonprobabilistic form by a regularization or penalty term (Candes
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and Donoho, 1999). If we treat {Bx,y,k} as unknown parameters, then we can learn
them from natural images (Olshausen and Field, 1996).

Markov random fields (MRFs) and feature statistics: For a homogeneous local
image patch, which is still denoted by I for simplicity, we compute filter responses
rx,y,k = 〈I, Bx,y,k〉 for all the filters within this patch (Malik and Perona, 1990),
and then for each type of filter k, we compute the histogram Hk(I) by pooling
rx,y,k over all (x, y) in this patch. The image patch is then represented by the set
of histograms Hk(I) (Heeger and Bergen, 1995; Portilla and Simoncelli, 2000).
The basic idea is to consider the ensemble of images (Wu, Zhu, and Liu, 2000):

� = {I : Hk(I) = Hk(I obs), ∀k}, (31.3)

which collects all the images I that share the same histograms as the observed
image I obs. This ensemble is called Julesz ensemble by Wu, Zhu, and Liu (2000).
One can model I as following the uniform distribution over the Julesz ensemble �
according to the maximum entropy principle, where maximum entropy here means
we are completely ignorant about I except that it is in a particular Julesz ensemble.
This uniform distribution is equivalent to an MRF model or a Gibbs distribution
(Wu, Zhu, and Liu, 2000),

f (I) = 1

Z
exp

{∑
k

〈λk,Hk(I )〉
}

= 1

Z
exp

{∑
k

∑
x,y

λk(〈I, Bx,y,k〉)
}
,

(31.4)
where λk is a vector of the same dimension as Hk(I), so it can also be viewed

as a one-dimensional step function over the bins of the histogram Hk(I). Z is the
normalizing constant that depends on {λk}. This model is called FRAME model
(Filter, Random field, And Maximum Entropy) by Zhu, Wu, and Mumford (1997).
If {Hk(I)} are taken to be other statistics (e.g., moments instead of histograms),
then the corresponding {λk()} become other functions (e.g., polynomials instead of
step functions). It is just a matter of parameterization.

The set of filters can be learned so that the volume of the Julesz ensemble �,
that is, |�|, or the entropy of the fitted MRF model f (I) in (31.4), is minimum.
This is the minimum entropy principle. Here minimum entropy means that we want
to be as certain about I as possible, so we want the corresponding Julesz ensemble
to be as small as possible. Or in other words, we want the most meaningful set of
filters to describe I . Inferentially, one can estimate {Bx,y,k} and λk in the FRAME
model by maximum likelihood. Computationally, this can be accomplished by
stochastic gradient algorithm.

Although both the sparsity principle and the minimum entropy principle are
about representing the image with minimum complexity, the philosophies and the
mathematical structures in wavelet model and the FRAME model are very differ-
ent. Philosophically, the wavelet model is constructive, where I is deterministically
constructed by superposition of local bases. The FRAME model is restrictive, where
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I is defined stochastically by restricting histograms of filter responses. Mathemat-
ically, the {Bx,y,k} in the wavelet model are bases, and the corresponding cx,y,k
compete to explain I , so there is lateral inhibition among them, that is, if one base
is active in explaining I , then it will inhibit other overlapping bases. The {Bx,y,k}
in the FRAME model are filters, and there is no lateral inhibition among the filter
responses rx,y,k.

It is worth mentioning that, if {Bx,y,k} is complete, that is, the number of bases is
the same as the number of pixels, then both models reduce to independent component
analysis (Bell and Sejnowski, 1997). One may call the latter the “restructive” scheme,
because it involves a one to one transformation between I and the coefficients {cx,y,k}
or the responses {rx,y,k}. The principle behind independent component analysis is
the factorial coding principle, which is closely related to both sparsity principle and
the minimum entropy principle.

(a) (b)

(c) (d)

Figure 31.5 Feature statistics. (a) and (c) are observed images. (b) and (d) are
“reconstructed” by matching feature statistics.
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Complexity regimes

The complexity behavior of the two models are also different.
Figure 31.5 shows two examples of feature statistics representation. (a) and (c)

are observed images, and (b) and (d) are respectively the “reconstructed” images.
However, the reconstruction is of a statistical nature: (b) and (d) are sampled from
the respective Julesz ensembles � (31.3) by matching feature statistics. We can
see that this representation is appropriate for random images such as image (a).
It captures texture information, but does not do a good job in capturing salient
structures.

Figure 31.6 shows two examples of sparse coding. (a) and (c) are observed
images, (b) and (d) are images reconstructed by 300 bases. We used the matching

(a) (b)

(c) (d)

Figure 31.6 Sparse coding. (a) and (c) are observed images. (b) and (d) are respec-
tively the reconstructed images using 300 bases.
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(a) (b)

(c) (d)

Figure 31.7 From sparse coding to feature statistics. (a) Observed near-distance
image. (b) Reconstructed by sparse coding with 1,000 bases. (c) Observed far-
distance image. (d) “Reconstructed” by matching feature statistics.

pursuit algorithm of Mallat and Zhang (1993) to select the bases (in a manner
very similar to forward stepwise regression). We can see that sparse coding is very
effective for images with sparse structures, such as image (a). However, the texture
information is not well represented.

To summarize, the wavelet sparse coding model is effective in low entropy
regime where images have order and structures, such as the shape and geometry.
We call this regime “sketchable.” The FRAME model is effective in high entropy
regime where images have less structures, such as stochastic texture. We call this
regime “nonsketchable.” The competition between these two models in terms of
some model selection criterion such as minimum description length (e.g., Hansen
and Yu, 2000). This competition may give us a threshold that tells us when we
should stop using sparse coding representation and switch to feature statistics.

Figure 31.7 displays some preliminary results. (a) and (c) are images of an
ivy wall at near-distance and far-distance respectively. (b) is reconstructed near-
distance image using sparse coding representation with 1,000 bases selected by
the matching pursuit algorithm. (d) is statistically reconstructed far-distance image
using feature statistics representation by matching histograms of filter responses.
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In a previous paper (Guo, Zhu, and Wu, 2003), we studied and experimented
with a primal sketch model (the name comes from the book by Marr, 1982),
where the image I is divided into sketchable part Isk and nonsketchable part Insk.
The model for I is p(I) = p(Isk)p(Insk|Isk). Isk is modeled by wavelet sparse
coding. p(Insk|Isk) is modeled by the FRAME model, with Isk being the bound-
ary conditions. Or in other words, Insk interpolates Isk by matching local feature
statistics.

See Figure 31.8 for an example, where (a) is the observed image; (b) depicts
the sketch version of the image, where each base in representing Isk is replaced by
a small line segment (or a circle for center-surround base); (c) is the synthesized
image, where the structures are reconstructed by sparse coding, and the textures are
generated by matching feature statistics. See Figure 31.9 for two more examples.

The prior models for the spatial arrangements of local bases is a pairwise Gibbs
point process model (see also Stoyan, Kendall, and Mecke, 1987; Wu, Zhu, and,
Guo, 2002) that takes care of continuity, joints, and closures of the local bases.
We call such a model the Gestalt field.

In the next two sections, we will prove two scaling laws that explain the
transition from sparse structures to stochastic textures.

31.3 Complexity scaling law

Let I be the image of a pattern observed at a certain distance, and let us assume
that I is generated by a physical process that can be summarized by a probability
distribution p(I). Let � be the lattice on which I is defined.

Definition 1 Image Complexity, denoted by H(I ), is defined as the entropy of p(I),
that is, H(I ) = −∑

I p(I ) logp(I). The complexity rate is defined as H(I )/|�|.

When we move away from a scene, the change of image involves both local
smoothing and down-sampling. As a first step, we shall only study the effect
of down-sampling, while ignoring the effect of local averaging. To simplify the
situation even further, let us assume that we down-sample I by a factor of 2 along
both vertical and horizontal axes. Then there are four down-sampled versions, and
let us denote them by I (k)− , k = 1, 2, 3, 4, each defined on a down-sampled lattice
�−, so that |�−| = |�|/4. See Figure 31.10 for an illustration.

Theorem 1 Complexity Scaling Law.

1) H(I (k)− ) ≤ H(I ), k = 1, . . . , 4.

2)
1

|�−|
4∑
k=1

H(I (k)− )/4 ≥ 1

|�|H(I ).
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(a) (b)

(c)

Figure 31.8 Primal sketch: (a) Observed image. (b) Image sketch with each base
replaced by a line segment (or a circle). (c) Synthesized image.

Proof. 1) p(I |I (k)− ) = p(I)/p(I (k)− ) since I (k)− is fully determined by I . Thus

H(I )− H(I (k)− ) = EI

[
− log

p(I)

p(I
(k)
− )

]
= H(I |I (k)− ) ≥ 0.



PERCEPTUAL SCALING—WU, GUO, ZHU 355

(a)

(b)

Figure 31.9 Primal sketch: (a) Observed image. (b) Synthesized image.

Figure 31.10 The four down-sampled versions of the original image.

2) Let M() denote mutual information,

4∑
k=1

H(I (k)− )− H(I ) = E

[
log

p(I)∏
k p(I

(k)
− )

]

= M(I
(k)
− , k = 1, 2, 3, 4) ≥ 0.



356 PERCEPTUAL SCALING—WU, GUO, ZHU

One can also understand this result from the perspective of Komolgorov com-
plexity. The shortest algorithmic coding length of I must be greater than or equal
to the shortest coding length of any of the I (k)− , but must be smaller than or equal
to the sum of the shortest coding lengths of the four I (k)− .

In Theorem 1, we only consider the effect of down-sampling, without consid-
ering the effect of local averaging. But from information theoretical perspective,
the purpose of local averaging is to make the entropy of down-scaled I− as close to
the entropy of I as possible in order to maintain as much information as possible.
As a result, the complexity rate of I− will be even larger if we take into account
the local smoothing effect.

This theorem tells us that if we down-sample an image, the image looks more
random. This can be easily understood from real-life experience. For instance, for
the ivy wall pattern in Figure 31.1, when we move farther away from it, we lose
information, so the complexity is decreasing. But we see more leaves within the
unit area of the visual field, so the complexity rate is increasing.

The complexity scaling law we have proved has far reaching implications on
sparsity principle (Olshausen and Field, 1996). At near distance, the complexity
rate is very low, so sparsity principle applies. But as the viewer moves farther
from the underlying pattern, the complexity rate of the image will increase, so that
there may not exist any sparse deterministic representation of the image, and the
sparsity principle is violated. As a result, the visual system can only interpret the
image by some summaries that cannot determine the image deterministically, and
these summaries are feature statistics. This may explain the perceptual transition
from sparse coding to feature statistics.

31.4 Perceptibility scaling law

The purpose of vision is to make inference about the outside world. Now, let
us study the issue of perceptual transition in an inferential framework, under the
slogan that “vision = inverse graphics.”

Let W describe the outside world that produces the image I . Let us assume that
bothW and I are properly discretized, and thatW is detailed enough to determine I
uniquely, that is, I = g(W), where the many to one function g() can be thought of
as a graphics process. For natural patterns such as foliage and grass, W is typically
very complex, including detailed descriptions of all the leaves and strands of grass.
Such visual complexity is a defining characteristic of natural scenes and is a key
factor for visual realism in graphics and paintings.

Suppose W is generated by a physical process that can be summarized by a
distribution p(W) (we shall not engage in a philosophical discussion on whether
there exists a true p(W)). Given W ∼ p(W), and I = g(W), we have p(W |I ) =
p(W, I)/p(I ) = p(W)/p(I). p(W, I) = p(W) because I is fully determined by
W . This distribution defines an inversion of the graphics equation I = g(W).
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Definition 2 Scene complexity, denoted by H(W), is defined as the entropy of
p(W).

Definition 3 Imperceptibility, denoted by H(W |I ), is defined as the average con-
ditional entropy of p(W |I ), that is, H(W |I ) = −∑

W,I p(W, I) logp(W |I ).

Imperceptibility is defined as the average of the conditional entropy over the
data I .

Theorem 2 Let W ∼ p(W), and I = g(W), then H(W |I ) = H(W)− H(I ). That
is, imperceptibility = scene complexity − image complexity.

This theorem can be easily understood from the fact that joint entropy =
marginal entropy + average of conditional entropy. This fact is the key to the
proofs of several theorems in this chapter.

The imperceptibility H(W |I ) gives a general definition of “ill-posedness” of the
inversion problem. Here the concept of imperceptibility only means the possibility
of estimating W under a particular physics representation of W .

For an image I , its down-scaled version I− can be obtained by local smoothing
and down-sampling, and the process can be represented by a many to one reduction
function R(), such that I− = R(I).

Theorem 3 Perceptibility Scaling Law. For W ∼ p(W), I = g(W), if I− = R(I)
with R() being any many to one reduction function, then H(W |I−) ≥ H(W |I ). That
is, imperceptibility becomes larger with down-scaling.

If H(W |I−) is too large, we can only perceive some aspect of W , that is.,
W− = ρ(W), for some many to one reduction ρ(), such that H(W−|I−) is small.
It is possible to find such a W−, because of the following theorem.

Theorem 4 For W ∼ p(W), I = g(W), and I− = R(I), W− = ρ(W), we have
H(W−|I−) ≤ H(W |I−).

Here W− can be a coarser representation of W , where the scale of the elements
in W− may be larger than that of W . It is possible that there still exists a g−, such
that I− = g−(W−), but it is most likely that this is only approximately true. It
is also likely that W− may only correspond to some statistical property of I−,
or in other words, that p(I−|W−) with a high entropy rate. That is, although W
defines I deterministically via I = g(W), W− may only defines I− statistically via
a probability distribution p(I−|W−). While W represents sparse structures, W−
may only represent collective textures.

This perceptibility scaling law provides a possible explanation to the perceptual
transition from sparse structures to stochastic textures.
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31.5 Texture = imperceptible structures

The visual cells in the primitive visual cortex V1 may correspond to various types
of local descriptors for local structures appearing at different scales, locations,
and orientations. Olshausen and Field (1996) proposed a sparsity principle as a
V1 strategy. This principle holds that for a typical image, only a small number
of local descriptors need to be selected to interpret the image. We argue that the
sparsity principle only accounts for part of V1 representations and activities. This
is because the number of local descriptors is much less than the number of all
possible image patches. As a result, there are a lot of image patches that cannot
be well represented by local descriptors, or there are no sparse representations for
such image patches. Such image patches often correspond to patterns viewed at
a far distance, so that both the complexity rate and the imperceptibility are high.
These image patches cannot be accounted for by the sparsity principle. Then what
are the possible representations for them?

One possible choice is to summarize them into feature statistics, that is, they are
interpreted statistically as textures (or more precisely stochastic textures), instead
of structures. Then what feature statistics should we use? The next theorem sheds
light on this question.

Theorem 5 For F = F(I) be a set of feature statistics, (i) If W ∼ p(W), I =
g(W), then

D(p(W |I )||p(W |F)) = EW
[

log
p(W |I )
p(W |F)

]
= H(W |F)− H(W |I ) = H(I |F).

(ii) If W ∼ p(W) and [I |W ] ∼ p(I |W), then

D(p(W |I )||p(W |F)) = EW,I
[

log
p(W |I )
p(W |F)

]
= H(W |F)− H(W |I ) = M(W, I |F).

Here D() denotes Kullback–Leibler divergence, and M() denotes mutual informa-
tion.

Result (i) justifies the minimum entropy principle we discussed before. That is,
to minimize H(W |F) over a set of possible {F()}, we need to minimize H(I |F).
In result (ii), M(W, I |F) measures the sufficiency of F .

This theorem shows that in order to choose good feature statistics, we must
have p(W |F) to be close to p(W |I ). This makes us believe that F must be derived
from some intermediate results in the computation of p(W |I ).

We propose the following strategy for primitive visual cortex. For each local
patch around pixel (x, y), that is, Ix,y , there can be a number of local descriptors
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to describe it. Let wx,y index the possible local descriptor as well as its param-
eters. Then by fitting a local model, we compute p(wx,y|Ix,y). This can be done
efficiently in a parallel manner.

For those pixels (x, y) with very low H(p(wx,y |Ix,y)), we use sparse coding
representation, that is, we select a small number of local descriptors to represent
those pixels, while respecting our prior knowledge for the spatial arrangements of
these local descriptors.

For those pixels (x, y) with very high imperceptibility H(p(wx,y|Ix,y)), the
underlying structures cannot be unambiguously determined. As such, we abort
the effort of committing a particular wx,y . Instead, we pool the local posterior
p(wx,y |Ix,y) over (x, y) into texture statistics. That is, texture = pooling of imper-
ceptible structures. This should be complimentary to the sparsity principle.

This complementary principle bridges deterministic structures and stochastic
textures in a very elegant manner. It also has interesting implications on the two
conjectures of Julesz on textures (Julesz, 1981), as well as the phenomenon of
lateral inhibition in neuroscience.

For the wavelet sparse coding model I = ∑
cx,y,kBx,y,k + ε, the local model is

Ix,y = cx,y,kBx,y,k + ε. If the bases are not perceptible, we can pool local posterior
over (x, y). One can show that the pooled statistics is very close to the histograms
of filter responses. If we assume such feature statistics, then we are led to the
Markov random field model (31.4). Thus, we establish an interesting link between
wavelet sparse coding theory and Markov random field theory. We shall further
investigate this connection, which should be interesting to both wavelet community
and spatial statistics community.

31.6 Perceptibility and sparsity

The inferential concept of perceptibility also arises from the coding perspective.
That is, we only assume I ∼ p(I), and W is an augmented variable purely for the
purpose of coding I , via a model W ∼ f (W) and I |W ∼ f (I |W). In this coding
scheme, for an image I , we first estimate W by a sample from the posterior
distribution f (W |I ), then we code W by f (W) with coding length − log f (W).
After that, we code I by f (I |W) with coding length − log f (I |W). So the average
coding length is −Ep

[
Ef (W |I)(log f (W)+ log f (I |W))].

Theorem 6 The average coding length is Ep[H(f (W |I ))] + D(p||f )+ H(p). That
is, coding redundancy = imperceptibility + error. Here H(f (W |I )) is the entropy
of f (W |I ) conditional on I , and D(p||f ) is the Kullback–Leibler distance.

The relationship between perceptibility and sparsity deserves more investiga-
tion. To make the idea more concrete, let us consider the sparse coding model
I = ∑

cx,y,kBx,y,k + ε. If the image is very complex, then even the sparsest rep-
resentation still has a large number of bases, so that sparsity principle is violated.
One may ask, what is wrong with a nonsparse representation? This can be answered
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by perceptibility. That is, if the sparsest representation still has a large number of
bases, then there can be a lot of representations that are only slightly less sparse,
but can approximate I with equally small error ε. Or in other words, there can be
a lot of “equivalent” representations, so that there is ambiguity as to which one to
use. This ambiguity may be mathematically defined, and clearly it is closely related
to imperceptibility. In wavelet sparse coding theory, this issue of ambiguity has
not been studied. But it is clearly of fundamental importance to vision applications,
because the representation is to be used in later stages of visual processing.

At the end of this chapter, the authors would like to acknowledge that the
work presented here has close connections to Rubin’s statistics in the following
four aspects. First, we study the problem in the Bayesian framework. Second, the
issue of unsupervised learning fits naturally into the EM framework. Third, the
loss of information over distance is essentially a matter of missing data. Fourth,
the perceptibility issue leads to the issue of defining the estimand.
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