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1. Concept of Probability

1.1. Introduction

1 Tentatively accept aformal statistical model
Typically suggested by informal descriptive evaluation
Conclusions conditional on the assumption that model is correct

11 Bayesian approach firmly based on axiomatic foundations
Mathematical need to describe by probabilities all uncertainties
Parameters must have a (prior) distribution describing available

Information about their values
Not a description of their variability (fixed unknown quantities),
but a description of the uncertainty about their true values.

1 Important particular case: no relevant (or subjective) initial information
Prior only based on model assumptions and well-documented data
Objective Bayesian Statistics:

Scientific and industrial reporting, public decision making



e Notation

1 Under conditions C', p(x | C'), 7(0 | C') are, respectively, probability
densities (or mass) functions of observables x and parameters 6
p(x|C) >0, [yp(x|C)de =1, Ez|C] = [yxp(x|C)d,
m(@|C) >0, [on(0]C)dO =1, E[0|C] = |gO0n(8|C)do.
1 Special densities (or mass) functions use specific notation, as
N(z | 1, 0%), Bi(z | n, 8), or Pn(z | A). Other examples:

Beta {Be(z|a,0), O0<z<1l, a>0,3>0}
Be(z | f) = pagr et 1 - )

Gamma  {Ga(z|a,3), >0, a>0,08>0}
8%
Galz|a,p) = B pa—lg—fx

Student (St(x|p,0%,0), z€R, peR o>0 a>0

D{(a+1)/2} 1 o) 2] T/

B =TNa ovar [” E(5)

St(x | p, o




e Satistical Models

1 Satistical model generatingx € X, {p(x|0),x € X,0 € O}

Parameter vector @ = {6, ...,0;} € ©. Parameter space® C RF.
Dataset x € X. Sampling space X, of arbitrary structure.

1 Likelihood function of @, (0 | ).
[(0|x) =p(x]|0),asafunction of O € O.
11 Maximum likelithood estimator (mle) of 6
0 = 0(x) = arg supgcg (0] )
1 Datax = {x1,...,xn} randomsample (iid) from model if
p(z|0) = ?:1p(:13j‘9), 213]'6.)(, X =x"
11 Behaviour under repeated sampling (general, not iid data)
Considering {x1, x9, . ..}, a(possibly infinite) sequence
of possible replications of the complete data set .
Denote by (™) = {x1,...,xm} afinite set of m such replications.

11 Asymptotic results obtained asm — oo



1.2. Intrinsic Divergence

e Logarithmic divergences

1 Thelogarithmic divergence (Kullback-Leibler) k{p | p} of adensity p(x)
from itstrue density p(x), is

k{p|p} = [yp(z)log= E gdm (provided this exists)

Thefunctional k£{p | p} isnon-negative, (zeroiff, p(x) = p(x) a.e.) and
Invariant under one-to-one transformations of x.

1 But k{p1 | pa} isnot symmetric and divergesif, strictly, Xy C A} .

e Intrinsic discrepancy between distributions

D5{p,q}:min{fxp( log E dax qu ) log E gdm}
Theintrinsic discrepancy 6{p, q}} ISnon-negative, (zeroiff, p = p ae)
Invariant under one-to-one transformations of «,

1 Definedif X5 C X or X7 C Ay, operativeinterpretation asthe minimum
amount of information (in nits) required to discriminate.



e Interpretation and calibration of the intrinsic discrepancy

1 Let {p1(x|01),01 € O1} or {py(x|09),09 € Oy} be two alternative
statistical models for x € X, one of which is assumed to be true. The
Intrinsic divergence {01,605} = d{p1,po} isthen minimum expected
log-likelihood ratio in favour of the true model.

Indeed, if p1(x | 1) true model, the expected log-likelihood ratio in its
favourisEq|log{pi(x |01)/pa(x|01)} = k{pa|p1}. If thetruemodel
ispa(z | 82), theexpectedlog-likelihood ratio in favour of thetrue model
isk{p2|p1}. Butd{pa|p1} = min[k{pa |p1}, k{p1|p2}].

1 Calibration. § = log|100] ~ 4.6 nits, likelihood ratiosfor thetrue model
larger than 100 making discrimination very easy.

0 = log(1 + ¢€) = ¢ nits, likelihood ratios for the true model may about
1 + e making discrimination very hard.

Intrinsic Discrepancy o 069 23 46 69

Average Likelihood Ratio
for true model exp|J] 2 10 100 1000
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1 Example. Conventional Poisson approximation Pn(r | n#) of Binomial
probabilities Bi(r | n, 6)

5(Bi,Pn) = d(n,0) = k(Pn|Bi) = >1"_oBi(r|n,0)log Elrf(?;'ﬁ{g))
0{Bi(r|,n,0),Pn(r|,nd)}
: n=1
0.02
0.015 n=2
| n=3>a
0.01
0.005
* v

0056 01 015 02



e Intrinsic Convergence of Distributions

1 Intrinsic Convergence. A sequence of probability densities (or mass)
functions {p;(x) };2, convergesintrinsically to p(x) if (and only if) the
Intrinsic divergence between p;(x) and p(x) converges to zero. i.e., iff
lim; 50 6(p;,p) = 0.

11 Example. Normal approximation to a Student distribution.

d(a) = 0{St(x]0,1,),N(z|0,1)}
/OO N(x|0,1) 1

N 0,1)]1 dr ~
@10 )18 g 10 10y ™ 1+ )2

The function §(«a) converges rapidly to zero. 6(18) = 0.004.
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1.3. Foundations

e Foundations of Satistics

11 Axiomatic foundations on rational description of uncertainty imply that
the uncertainty about all unknown quantities should be measured with
probability distributions {7 (6| C),0 € ©} describing the plausibility
of their given available conditions C.

1 Axioms have a strong intuitive appeal; examples include
e Trangitivity of plausibility.
If £1 > Eo|C,and Fy > Eg|C,then £y > E3|C
e The sure-thing principle.
If £1 > E9|A,Cand E| > E5 | A, C, then E1 > E5 | ().

11 Axioms are not a description of actual human activity, but a normative
set of principles for those aspiring to rational behaviour.

1 “Absolute” probabilities do not exist. Typical applications produce
Pr(E |z, A, K), a measure of rational belief in the occurrence of the
event F/, given data «, assumptions A and available knowledge K.
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e Probability as a Measure of Conditional Uncertainty

1 Axiomatic foundations imply that Pr(E | C'), the probability of an event
E given C' isalways a conditional measure of the (presumably rational)
uncertainty, on a |0, 1] scale, about the occurrence of £ in conditions C.

e Probabilistic diagnosis.V isthe event that a person carries avirus
and + a positive test result. All related probabilities, e.g.,
Pr(+|V)=0.98,Pr(+|V) = 0.01, Pr(V | K) = 0.002,
Pr(+|K)=Pr(+|V)Pr(V|K)+Pr(+|V)Pr(V | K) = 0.012

Pr(V |+, A, K) = Pr(*grﬁm({v)’m — 0.164 (Bayes Theorem)

are conditional uncertainty measures (and proportion estimates).
e Estimation of a proportion.Survey conducted to estimate
the proportion ¢ of positive individuals in a population.
Random sample of size n with r positive.
Pr(a <60 <b|r,n, A, K),aconditional measure of the uncertainty
about the event that 6 belongs to |a, b] given assumptions A,
Initial knowledge K and data {r, n}.
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e Measurement of a physical constant.M easuring the unknown val ue of
physical constant i, withdatax = {x{,...,xy}, considered to be
measurements of 1, subject to error. Desired to find
Prla <pu<b|xq,...,zpn, A, K), the probability that the unknown
value of p (fixed in nature, but unknown to the scientists)
belongsto [a, b] given the information provided by the data «,
assumptions A made, and available knowledge K.

1 The statistical model may include nuisance parameters, unknown quan-
tities, which have to be eliminated in the statement of the final results.

For instance, the precision of the measurements described by unknown
standard deviation o inaN(z | 1, o) normal model

1 Relevant scientific information may impose restrictions on the admissi-
ble values of the quantitiesof interest. These must be taken into account.

For instance, in measuring the value of the gravitational field g in a
laboratory, it is known that it must lie between 9.7803 m/sec? (average
value at the Equator) and 9.8322 m/sec? (average value at the poles).
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e Future discrete observations.Experiment counting the number r
of times that an event E takes place in each of n replications.
Desired to forecast the number of times r that £ will take place
in afuture, similar situation, Pr(r|ry,...,rn, 4, K).
For instance, no accidents in each of n = 10 consecutive months
may yield Pr(r =0|x, A, K) = 0.953.

e Future continuous observations.Datax = {yq,...,y,}. Desred
to forecast the value of afuture observation y, p(y | x, A, K).
For instance, from breaking strengthsx = {y1,...,yn} Of n
randomly chosen safety belt webbings, the engineer may find
Priy > y* |z, A, K) = 0.9987.

e Regression.Data set consists of pairsx = {(y1,v1),---, (Y, vn)}
of quantity y; observed in conditions v ;.
Desired to forecast the value of y in conditions v, p(y | v, x, A, K).

For instance, y contamination levels, v wind speed from source;
environment authoritiesinterested in Pr(y > y* |v, @, A, K)
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2. Basics of Bayesian Analysis

2.1. Parametric Inference

e Bayes Theorem

0 Let M ={p(x|0),x € X, 0 c O} bean dstatistical model, let 7 (0 | K)
beaprobability density for 8 given prior knowledge K and let 2 be some
available data.

p(z|0)n(0| K)
T 9 CC, M, K — y
(O ) Jop(x|0) (0| K)dO
encapsulates all information about @ given data and prior knowledge.
1 Simplifying notation, Bayes' theorem may be expressed as
m(0|x) o p(x|0)m(0) :
The posterior Is proportional to the likelihood times the prior. The
missing proportionality constant [ [g p(x | 0) 7(6) d0]~1 may be de-
duced from the fact that (@ | £) must integrate to one. To identify a

posterior distribution it suffices to identify a kernel k£(0, ) such that
(0| x) = c(x) k(0,x). Thisisavery common technique.
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e Bayesian Inference with a Finite Parameter Space

1 Model {p(x|6;),@ € X,0) € x}, with© = {6;,..., 0}, 0 that 6

may only take a finite number m of different values. Using the finite
form of Bayes' theorem,

p(x|0;)Pr(6;)
TLip(x]0;)Pr(0;)

1 Example: Probabilistic diagnosis. A test to detect a virus, is known
from laboratory research to give a positive result in 98% of the infected
people and in 1% of the non-infected. The posterior probability that a
person who tested positive isinfected is

Pr(0; | =) =

r=1,...,m.

Pr(V | +
Pr(V | +) = 0.98 p N (V'[+)

~ 0.98p+0.01 (1—p)
as afunction of p = Pr(V). N F
11 Notice sensitivity of posterior s

Pr(V | +) to changes .
in the prior p = Pr(V). Pr(V)

0.2 0.4 0.6 0.8 1
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e Example: Inference about a binomial parameter

1 Let datax be n Bernoulli observations with parameter 6
which contain r positives, sothat p(x | 0,n) = 6" (1 — 6)" 7.

0 1f 7(9) = Be(f | a, 8), then 30| A
7-‘-(9 ’ CB) X @T‘I‘Oé—l(l _ Q)H—T—I-ﬁ—l 25 |

kernel of Be(0 |7 + a,n — 7+ ).

1 Prior information (K) 10
P(0.4 < 6 < 0.6) = 0.95, 5 //j/tﬁ\\w
and symmetric, yields oo = § = 47, 0.35 0.4 0.45 0.5 0.55 0.6 0.65

1 No prior informationa = 5 = 1/2
0 n = 1500,r = 720
PO < 05|z, K)=0.933
P(f < 0.5]|x) =0.934 .
1 n=100,7=0 0
P(0 < 0.01]|x) = 0.844 . .
Notice: § = 0, but Me[d | 2] = 0.0023 0005 001 0015 002 0.025

500
400
300
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e SUfficiency

1 Given amodel p(x | @), afunction of the datat = t(x), is a sufficient
statistic if it encapsulates all information about 0 available in x.

1 Formally, t = t(x) is sufficient if (and only if), for any prior 7(0)
(@ |x) =7w(0|t). Hence, (0 |x) = 7(0 |t) x p(t|O) w(O).

1 Thisisequivalent to the frequentist definition; thust = ¢(x) issufficient

iff p(x |60) = f(6,t)g(x).

1 A sufficient statistic always exists, for t(x) = « isobvioudy sufficient
A much smpler sufficient statistic, with fixed dimensionality
Independent of the sample size, often exists.

Thisis case whenever the statistical model belongsto the
generalized exponential family, which includes many of the
more frequently used statistical models.

1 In contrast to frequentist statistics, Bayesian methods are independent
on the possible existence of a sufficient statistic of fixed dimensionality.

For instance, iIf data come from an Student distribution, there is no suffi-
cient statistic of fixed dimensionality: all data are needed.
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e Example: Inference from Cauchy observations

1 Datax = {xq,...,xn} randomfromCa(z | u, 1) = St(x | u, 1, 1).
1 Objective reference prior for the location parameter pisw(p) = 1.
1 By Bayes' theorem,

Tl @) OCHJ— @l L OCHJ L1+ (25— p)?

Proportionality constant easily obtained by numerical integration.

1 Fivesamplesof sizen = 2 \
smulated from Ca(z | 5,1).

0.5 |

ZUl 5172 04 .
4034 4.054 03|
21.220 5.831 0l
5.272 6.475
4776 5.317 ol

7.409 4.743
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e |mproper prior functions

1 Objective Bayesian methods often use functions which play the role of
prior distributions but are not probability distributions.

7 An improper prior function is an non-negative function 7(8) such that
Jo 7(0) d@ isnot finite.

The Cauchy example usestheimproper prior function () = 1, u € R.

(1 (@) is an improper prior function, {©;}°°, an increasing sequence
approximating ©, such that f@i m(0) < oo, and {m;(0)}°, the proper
priors obtained by renormalizing 7 (6) within the ©,’s.

1 For any data = with likelihood p(x | 6), the sequence of posteriors
7;(0 | &) convergesintrinsically to 7(0 | x) < p(x | 0) 7 (8).

1 Normal data, o known, 7(u) = 1. 1
m(ul@) ocp@|po)mp) (1| )
A L B
m(pu|x) =N(p|T,0%/n) ~Nr(plz)
Example: n =9, 7 =2.11, 0 =4 0 [
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e Sequential updating

1 Prior and posterior are termsrelative to a set of data.

1 Ifdatax = {xq,...,x,} aresequentially presented, thefinal result will
be the same whether data are globally or sequentially processed.

m(@|xy, ... @ip1) xp(xip1]0) w(0| @1, .., ;).
The “posterior” at a given stage becomes the “prior” at the next.

1 Typically (but not always), the new posterior, 7(0 | x1,...,x;11), IS
more concentrated around the true valuethan 7 (0 | x4, ..., x;).

[ Posteriors (A | x1, ..., x;)
from increasingly large 2
simulated data from Poisson
Pn(z|\),withA =3

15

1,
T(Alz1, ..., %)
=Ga\|r; +1/2,1) 05 |
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e Nuisance parameters

[

[]

In general the vector of interest is not the whole parameter vector 6, but
some function ¢ = ¢(0) of possibly lower dimension.

By Bayes theorem 7(0 |x) «x p(x|0)7(0). Let w = w(O) € Q be
another function of @ such that ¢» = {¢,w} isabijection of 8, and let
J (1) = (00 /0) be the Jacobian of the inverse function b = 1 (0).

From probability theory, 7(¢ | ) = [J()||7(0 | )| g_g(qp)
and r(¢| ) = [ (¢, w | @) dw.

Any valid conclusion on ¢ will be contained in (¢ | x).
Particular case: marginal posteriors

Often modd directly expressed in terms of vector of interest ¢, and
vector of nuisance parameters w, p(x |0) = p(x | ¢, w).

Specify theprior 7(0) = n(¢) T(w | @)
Get the joint posterior (¢, w \ x) xplx|p,w)r(w|@) (o)
Integrate out w, w(¢|x) x (@) Jop(x| P, w) T(w|P) dw
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e Example: Inferences about a Normal mean

1 Datax = {z1,... x,} random from N(:z; |, o ) Likelihood function
p(a|p,0) o o expl-n{s® + (T — p)? }/(20 ),
withnz = 3", z;, and ns? = 3, (z; — T)2.
" Objective prior isuniform in both 1 and log(o), i.e., 7(y,0) = o L.
Joint posterior 7(y, o | ) oc o~ (") exp[—n{s? + (T — 1)2}/(202)].
1 Marginal posterior 7(u | x) o< [§° 7 u,a\w )do o [s2+(T—p)2] /2,
kernel of the Student density St(x |z, s2/(n —1),n — 1)

1 Classroom experiment to 40 |
measure gravity ¢ yields
T = 9.8087, s = 0.0428 *

with n = 20 measures. ool

m(g]T, s,n)
= St(¢g]9.9087,0.0001%,19) *©

Pr(9.788 < g < 9.829 | x) \ \
_ 095 (Shaded area) 9.75 9.8 9.85 9.9
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e Restricted parameter space

11 Range of values of 8 restricted by contextual considerations.

If & known to belongto ©, C ©, 7(0) > 0iff 8 € O,
By Bayes' theorem,

(
(0 | x) .
) f 9 @
r(0]2.0c00)=1{ [o m@]x)d6 = ©
0 otherwise

\

11 To incorporate a restriction, it suffices to renormalize the unrestricted
posterior distribution to the set © . C © of admissible parameter values.

1 Classroom experimentto 4]
measure gravity g with
restriction to lie between 30|
go = 9.7803 (equator)
g1 = 9.8322 (poles).

Pr(9.7803 < g < 9.8322 | )
= 0.95 (shaded areq) 9

9.7 9.75 9.8 9.85 9.9
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e Asymptotic behaviour, discrete case

1 If the parameter space © = {61, 6, ...} Is countable and
The true parameter value 6; is distinguishable from the others,i.e.,

0ip(x | 61), p(x|0;)) > 0,4 7 t,

lim 7w(0|x1,...,2pn) =1

n—00

lim 7(0;|xy,...,2n) =0, 1#£t
n—00

11 To prove this, take logarithms is Bayes' theorem,
define z; = log[p(x | 0;)/p(x | 04)],
and use the strong law of large numbers on the n
1.1.d. random variables z1, ..., zj.
1 For instance, in probabilistic diagnosis the posterior probability of the
true disease converges to one as new relevant information accumul ates,

provided the model distinguishes the probabilistic behaviour of data un-
der the true disease from its behaviour under the other alternatives.
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e Asymptotic behaviour, continuous case

]

If the parameter 6 is one-dimensional and continuous, so that © C R,

and themodel {p(x |0), x € X'} isregular: basicaly,
X does not depend on 6,
p(x | 0) istwice differentiable with respect to 6

Then,asn — oo, w(0 | x1, ..., xy) convergesintrinsically
to anormal distribution with mean at the mle estimator 6,
and with variance v(x1, . .., xy, 0), where
_ A 2
v @, 0) = = S0 S loglp(x; | 6]
To prove this, expressis Bayes theorem as
m(0]@1,.. ., zn) x expllogm(f) + 37 logp(z; | 6)),
and expand 3_"_; log p(z; | 6)] about its maximum, the mle ¢

The result is easily generalized to the case @ = {01, ..., 0} }, to obtain
alimiting multivariate Normal N..(0 |0,V (x{,...,xn, 0)}.
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e Asymptotic behaviour, continuous case. Smpler form

1 Using the strong law of large numbers on the sums above asimpler, less
precise approximation is obtained:

1 If the parameter @ = {f, ..., 0;} iscontinuous, so that © c R*

and themodel {p(x|0), x € X} isregular; basically:
X does not depend on 6
p(x | 0) istwice differentiable with respect to each of the §;’s

1 Asn — oo, (0| xq,...,xy) convergesintrinsically to a multivariate
normal distribution N;.{6 |8, n "1 F~1(6)} with mean the mle 8 and
precision (inverse of variance) matrix n F(é), where F' is Fisher's in-
formation matrix, of general e ement

2
Fij(0) = —E, g ﬁm@jmgm 6)

1 From this result, the properties of the multivariate Normal immediately
yield the asymptotic formsfor the marginal and the conditional posterior
distributions of any subgroup of the 6;’s.



e Example: Asymptotic approximation with Poisson data

1 Datax = {z1,...,2n} randomfrom Pn(z | A) x e " A\?

hence, p(xz | \) ox e "M\, r = Yjxj, and A=r/n.

Fisher'sfunctionis F'(\) = —E, A [8}2 log Pn(zx | A)]

>

7 The objective prior functionis(\) = F(A\)1/2 = A—1/2
Hence (A | ) oc e AN 1/2

27

the of Ga(\ | r + %,n)
11 The Normal approximation is 0s |
(A x) ~ N AP0
= N{\|r/n,r/n?}
1 Samplesn = 5 and n = 25
simulated from Poisson A = 3

1+

04 |

yielded r = 19 and r = 82 T,



28
2.2. Reference Analysis

e No Relevant Initial Information

1 ldentify the mathematical form of a“noninformative” prior. One with
minimal effect, relative to the data, on the posterior distribution of the
guantity of interest.

7 Intuitive basis:

Use information theory to measure the amount on information about the
guantity of interest to be expected from data. This depends on prior
knowledge: the moreit isknown, the lessthe amount of information the
data may be expected to provide.

Define the missing information about the quantity of interest as that
which infinite independent replications of the experiment could possible
provide.

Define the reference prior asthat which maximizes the missing informa-
tion about the quantity if interest.
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e EXxpected information from the data

1 Given model {p(x|0),x € X,0 € O}, the amount of information

19{x,7(0)} which may be expected to be provided by x, about the
value of 6 iIs defined by
194X, 7(0) = Eg[ [ (0| ) log = (‘3” da),

the expected logarithmic divergence between prior and posterior.

1 Consider I7{ X%, 7(6)} theinformation about 6 which may be expected
from k& conditionally independent replications of the original setup.
Ask — oo, thiswould provide any missing information about 6. Hence,
as k — oo, the functional I?{X* 7(#)} will approach the missing
Information about 6 associated with the prior 7(6).

1 Let 74.(6) bethe prior which maximizes I?{ X%, 7(6)} in the class P of
strictly positive prior distributionscompati blewith accepted assumptions
on the value of # (which be the class of all strictly positive priors).

The reference prior 7*(0) isthelimit as k — oo (in a sense to be made
precise) of the sequence of priors{7.(0), k =1,2,...}.
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e Reference priorsin thefinite case

1 1If & may only take a finite number m of different values {61,...,0,}
and 7(0) = {p1,...,pm}, Withp;, = Pr(6 = 6,), then
limy, o0 19{X%, 7(0)} = H(py,....pm) = — L1y pylog(py),

that is, the entropy of the prior distribution {p1, ..., pm}-

1 Inthefinite case, thereference prior isthat with maximumentropy within
the class P of priors compatible with accepted assumptions.
(cf. Statistical Physics)

7 If, in particular, P contains all priors over {61, ..., 0y,}, the reference
prior isthe uniformprior, () = {1/m,...,1/m}.
(cf. Bayes-Laplace postulate of insufficient reason)

1 Prior {p1,p2,p3, P4}
In genetics problem
where p1 = 2p9.

Reference prior Is
{0.324,0.162,0.257,0.257}




31

e Reference priorsin one-dimensional continuous case

1 Let7.(6) bethe prior which maximizes I7{ X% ()} intheclass P of

[]

acceptable priors.

For any datax € X, let 7.(0 | x) o p(x|6) 71.(0) be
the corresponding posterior.

The reference posterior density 7#*(6 | «) is defined to be the intrinsic
limit of the sequence {7.(0 |x),k=1,2,...}

A reference prior function 7*(6) is any positive function such that,
foralx € X, n*(0|x) oc p(x|0) 7(0).
Thisis defined up to an (irrelevant) arbitrary constant.

Let (%) ¢ xF petheresult of & Independent replications of x € X.
With calculus of variations, the exact expression for .(#) isfound to be

mh(0) = exp |E g1y {lom(6]9) }

For large k, this allows a numerical derivation of the reference prior by
repeated simulation from p(x | #) for different 6 values.
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e Reference priorsunder regularity conditions

1 Let 9k = é(az(k)) be a consistent, asymptotically sufficient estimator
of #. Inregular problems thisis often the case with the mle estimator 6.
The exact expression for 7;.(6) then becomes, for large &,

0 m(0) = exp| gkw{logﬁk( [ 0)}]

As k — oo thisconvergesto 7.(4 | Hk)‘ékze

1 Let ék = é(a:(k)) be a consistent, asymptotically sufficient estimator

of 9. Let 7(6]6;.) be any asymptotic approximation to (4 | a:(k)), the
posterior distribution of 6.

Hence, W*(Q) = 7T((9 ’ ék)’ékze
11 Under regularity conditions, the posterior distribution of 6

is asymptotically Normal, N(6 |0, n~1F~1(6)), where
F(0) = —E[0?%log p(x | 0) /062 is Fisher’s information function.

Hence, ©*(0) = F(0)Y/2 (cf. Jeffreys rule).
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e One nuisance parameter

1 Two parameters. reduce the problem to a sequential application of the
one parameter case. Probability model is{p(x |0, ),0 € ©, A € A} and
a ¢-reference prior (6, A) isrequired. Two steps:
(i) Conditional on 8, p(a |6, A) only dependson )\, and it is possible to
obtain the conditional reference prior 7*(\ | 6).
(i) If 7 (X | 9) is proper, integrate out \ to get the one-parameter model
p(x]0) = [y p(x]|0, ) 7*(N\]|0)dA, and use the one-parameter solu-
tion to obtain 7*(6).
The ¢-reference prior isthen (0, A) = (A | 0) 7*(0).
The required reference posterior is 7*(0 | x) o< p(x | 0)7*(0).

0 If 7*(A\ ] 0) isan improper prior function, proceed within an increasing
sequence {A;} over which 7*()\ | #) isintegrable and, for given data x,
obtain the corresponding sequence of reference posteriors {77 (6 | x}.

The required reference posterior 7* (0 | «) istheir intrinsic limit.

A O-reference prior is any positive function such that, for any data x,
(0] x) oc [y p(z |6, ) 750, A) dX.
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e Theregular two-parameter continuous case

1 Model p(x |0, \). If the joint posterior of (6, \) is asymptotically nor-
mal, the 6-reference prior may be derived in terms of the corresponding
Fisher's information matrix, F'(60, \).

ro = (%) Fo6)). s -r o,
The §-reference prior is, (0, A) = (A | 0) 7*(6), where

(A 6) x Fl//\z(e, A), A€ A, and, if 7*(\|0) is proper,
7(0) o exp { [} 7 (A |0) log[Sy/2(0, \)] dA}, 6 € ©.

0 If #*(\ | 9) is not proper, integrations are performed within an approx-
imating sequence {A;} to obtain a sequence {7 (A |0) 7;(0)}, and the
0-reference prior 7, (0, \) is defined asitsintrinsic limit.

1 Bvenif 7*(\|0) isimproper, if 6 and A are variation independent,
Spp ! 2(0,7) < f5(6) gg(N), and Fy12(0,A) o £1(0) gr(N).
Then 7y (6, A) = fp(0) gx(M).
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e Examples. Inference on normal parameters

1 The information matrix for the normal model N(z | i, o) is

—9 2
F(,LL,O') — (UO 20_02> y S(:L%O-) — O-O 0.20/2 ;

Since . and o are variation independent, and both F; and Sy, factorize
(0| 1) o B o oL ¥ () ox Syt
The u-reference prior, as anticipated, is

(o) = 7 (o | p) 7 () = 01,
. e uniform on both 1 and log o

1 Since F'(u, o) isdiagonal the o- reference prior Is
o (1, 0) = 7 (| 0)7*(0) = 01, thesame as }; (1, o) = 75 (1, 7).
1 Infact, it may be shown that, for location-scale model S,

p(z|p0) = £ (555,

the reference prior for the location and scale parameters are aways
wh(w,0) = mo(p,0) = o L.

ox 1.
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1 Within any given model p(x | 0) the ¢-reference prior W;Z(H) maximizes

the missing information about ¢ = ¢(0) and, in multiparameter prob-
lems, that prior may change with the quantity of interest ¢.

1 For instance, within a normal N(z | 1, c) model, let the standardized
mean ¢ = u/o. bethe quantity of interest.

Fisher’'s information matrix in terms of the parameters ¢ and o is
F(¢p,0) = J' F(u,0)J, where J = (0(u, 0)/0(¢, o)) is the Jacobian
of the inverse transformation,; thisyields

o) — 1 gba_l
F(¢7 )_ <§b0'1 0_2(2_|_¢2)) ’

o o (L4 ¢%/2)71/2

) The ¢-reference prior is, (¢, o) = (1 + ¢2/2)"1/26=1 Or, inthe
~1/2,—2

with 772 x o= and S

original parametrization, 7 (1, o) = (1 + (1/0)?/2)

which is different from 7, (11, o) = 75 (1, o).

This prior is shown to lead to areference posterior for ¢ with consistent
marginalization properties.
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e Many parameters

1 Thereference agorithm generalizes to any number of parameters.
If themoddl isp(x|0) = p(x|60q,...,0mn), ajoint reference prior

T (dm | dm—1,- -, 1) X ... X T (P2 | ¢1) X T (¢1) may sequentially
be obtained for each ordered parametrization, {¢1(0), ..., om(0)}.

Reference priors are invariant under reparametrization of the ¢;(0)’s.

1 The choice of the ordered parametrization {1, ..., ¢;,} describes the
particular prior required, namely that which sequentially
maximizes the missing information about each of the ¢;’s,
conditional on {¢1,...,¢;_1},fori=m,m—1,...,1.

1 Example: Sein’s paradox. Data random from a m-variate normal
N (x|, I). The reference prior function for any permutation of
the 1;'s 1s uniform, and leads to appropriate posterior distributions for
any of the 14;’s, but cannot be used if the quantity of interestisf = » _, M?,
the distance of . to the origin.

The reference prior for {6, \{, ..., \,,,—1} produces, for any choice of
the \;’s, an appropriate the reference posterior for 6.
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2.3. Inference Summaries

e Summarizing the posterior distribution

[

TheBayesian final outcome of aproblem of inference about any unknown
quantity 0 is precisely the posterior density 7(0 | x, C).

Bayesian inference may be described as the problem of stating a proba-
bility distribution for the quantity of interest encapsulating all available
Information about its value.

In one or two dimensions, a graph of the posterior probability density
of the quantity of interest conveys an intuitive summary of the main
conclusions. This is greatly appreciated by users, and is an important
asset of Bayesian methods.

However, graphical methods not easily extend to more than two dimen-
sions and elementary quantitative conclusions are often required.

The ssmplest formsto summarize the information contained in the poste-
rior distribution are closely related to the conventional concepts of point
estimation and interval estimation.
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e Point Estimation: Posterior mean and posterior mode

1 It is often required to provide point estimates of relevant quantities.
Bayesian point estimation Is best described as a decision problemwhere
one has to choose a particular value 8 as an approximate proxy for the
actual, unknown value of 6.

1 Intuitively, any location measure of the posterior density 7 (0 | x)
may be used as a point estimator. When they exist, either
E[0|x] = |gOn(6|x)dl (posterior mean), or
Molf | ] = argsupg.g (0 | z) (posterior mode)
are often regarded as natural choices.

[ Lackofinvariance. Neither the posterior mean not the posterior mode are
Invariant under reparametrization. The point estimator 1) of a bijection
P = 1(0) of 8 will generally not be equal to v(8).

In pure “inferential” applications, where one is reguested to provide a

point estimate of the vector of interest without an specific application in
mind, it is difficult to justify a non-invariant solution.
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e Point Estimation; Posterior median

1 A summary of amultivariate density = (0 | x), where@ = {61, ...,0,.},
should contain summaries of:
(i) each of the marginal densities 7(6; | ),
(ii) the densities (¢ | «) of other functions of interest ¢ = ¢(0).

1 In one-dimensional continuous problems the posterior median,
IS easily defined and computed as

Melo|z] = g5 [rgeqy (0] 2)do =1/2

The one-dimensional posterior median has many attractive properties:
(i) itisinvariant under bijections, Me[¢(0) | ] = ¢(Me|fd | x]).
(1) it exists and it is unique under very wide conditions

(111) it israther robust under moderate perturbations of the data.

11 The posterior median is often considered to be the best ‘automatic’
Bayesian point estimator in one-dimensional continuous problems.

1 The posterior median is not easily used to a multivariate setting.
The natural extension of its definition produces surfaces (not points).

General invariant multivariate definitions of point estimators is possible
using Bayesian decision theory
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e General Credible Regions

]

To describe (@ | x) it is often convenient to quote regions ©), C O of
given probability content p under 7 (0 | ). Thisisthe intuitive basis of
graphical representations like boxplots.

A subset ©,, of the parameter space © such that
f@pW(H |x)d@ =p, sothat Pr( € ©,|x) = p,
ISaposterior p-credible region for 6.

A credible region isinvariant under reparametrization:
If ©), isp-credible for 8, ¢(O©,) isap-crediblefor ¢ = ¢(0).

For any given p there are generally infinitely many credible regions.
Credible regions may be selected to have minimum size (length, area,
volume), resulting in highest probability density (HPD) regions,

where all pointsin the region have larger probability density

than all points outside.

HPD regions are not invariant : theimage ¢(©,) of an HPD region ©,
will be acredible region for ¢, but will not generally be HPD.
There is no reason to restrict attention to HPD credible regions.
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e CredibleIntervals

]

[

In one-dimensional continuous problems, posterior quantiles are often
used to derive credible intervals.

If 0, = Qq|0 | ] isthe g-quantile of the posterior distribution of 6,
the interval ©, = {6; 0 < 0,} isap-credible region,
and it isinvariant under reparametrization.

Equal -tailed p -credible intervals of the form

are typi CaI ly unlque and they |nvar|ant under reparametrization.
Example: Model N(z | u, o). Credible intervals for the normal mean.
The reference posterior for pism(p | x) = St(p|Z, s2/(n —1),n — 1).
Hence the reference posterior distributionof 7 = v/n — 1(u — x) /s,
afunctionof u,isw(7|Z,s,n) = St(7]0,1,n — 1).

Thus, the equal-tailed p-credible intervals for 1 are

{u,uéwiqlp/zs/\/ 1},

where q< 1p )/2 Isthe (1 — p)/2 quantile of a standard Student density

with n — 1 degrees of freedom.
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e Calibration

]

[

In the normal example above, the expressiont = vn — 1(u — ) /s
may also be analyzed, for fixed u, as afunction of the data.

The fact that the sampling distribution of the statistic t = ¢(z, s | u, n)
Is also an standard Student p(t | 4, n) = St(¢]0,1,n — 1) with the same
degrees of freedom implies that, in this example, objective Bayesian
credible intervals are also be exact frequentist confidence intervals.

Exact numerical agreement between Bayesian credible intervals and
frequentist confidence intervals is the exception, not the norm.

For large samples, convergence to normality implies approximate
numerical agreement. This provides a frequentist calibration to
obj ective Bayesian methods.

Exact numerical agreement is obvioudly impossible when the data are
discrete: Precise (non randomized) frequentist confidence intervals do
not exist in that case for most confidence levels.

The computation of Bayesian credibleregionsfor continuous parameters
Ishowever precisely the samewhether thedataarediscrete or continuous.
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2.4. Prediction

e Posterior predictive distributions

1 Datax = {xy,...,zn}, x; € X, set of “homogeneous’ observations.
Desired to predict the value of afuture observation x € X generated by
the same mechanism.

11 From the foundations arguments the solution must be a probability dis-
tribution p(x | =, K') describing the uncertainty on the value that = will
take, given data x and any other available knowledge K. Thisiscalled
the (posterior) predictive density of .

] Toderivep(x | x, K) itisnecessary to specify the precise senseinwhich
the x;’s are judged to be homogeneous.
1 It isoften directly assumed that thedatax = {z1,...,z,} consist of a

random sample from some specified model, {p(z|0),x € X,0 € O},
sothat p(x |0) = p(z1,...,2n|0) = [[7_; p(z;]0).

If this is the case, the solution to the prediction problem is immediate
once a prior distribution 7 (@) has been specified.
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e Posterior predictive distributions from random samples

0 Letx = {z1,...,2n}, x; € X arandom sample of size n from the
statistical model {p(x|0),x € X,0 € O}
Let (@) a prior distribution describing available knowledge (in any)
about the value of the parameter vector 6.
The posterior predictive distribution is

p(z|z) =px|z1,....,2n) = Jgp(x|0) (0| x)d6
This encapsulates all available information about the outcome of any
future observation x € X from the same model.

1 To prove this, make use the total probability theorem, to have
p(z|x) = [gp(r|0,x)n(0|x)d0 N
and notice the new observation x has been assumed to be conditionally
Independent of the observed data x, so that p(x |0, ) = p(x | 9).

1 The observable values x € X may be either discrete or continuous
random quantities. In the discrete the predictive distribution will be
described by its probability mass function; if the continuous case, by its
probability density function. Both are denoted p(z | x).
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e Prediction in a Poisson process

1 Datax = {ry,...,rp} randomfrom Pn(r | A). The reference posterior
density of Ais7*(A|z) = Ga(A|,t + 1/2,n), wheret = X, ;.
The (reference) posterior predictive distribution is

o0
p(r|z) = Prlr|t,n] :/ Pn(r | \) Ga(\ |, t + 4,n) dX
0

o oatt2 1 T+ 1/2)
- T(t+1/2) 7! (1 + n)rt+t+1/2 !
an example of a Poisson-Gamma probability mass function.

11 For example, no flash floods have been recorded on a particular location
In 10 consecutive years. Local authorities are interested in forecasting
possible future flash floods. Using a Poisson model, and assuming that
meteorological conditions remain similar, the probabilities that r flash
floods will occur next year in that location are given by the Poisson-
Gamma mass function above, with ¢ = 0 and n = 10. This yields,
Pri0|t,n] = 0.953, Pr[1|t,n] = 0.043, and Pr2| ¢, n| = 0.003.

Many other situations may be described with the same model.
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e Prediction of Normal measurements

0 Datax = {zq,...,zn} random from N(z|u,o?). Reference prior
™(u,0) = o~ Lor intermsof theprecision A = =2, 7% (u, A) = A~ L.
Thejoint reference posterior, 7*(u, A | @) o< p(@ |, A) 7% (u, A), is
(1, A ) = N(u| T, (nA) ") Ga(A | (n — 1)/2,n5%/2).

1 The predictive distribution is

(| ) = / / NGz | s A1) 7 (1, A | ) s

—{(1+n)s’+ (u—7)%} n/2
which isakernel of the Sudent density

p(z|x) = St(z|7,s2 L, n - 1).

11 Example. Production of safety belts. Observed breaking strengths of 10
randomly chosen webbings have mean z = 28.011 kKN and standard
deviation s = 0.443 kN. Specification requires x > 26 kN.

Reference posterior predictive p(x | ) = St(x | 28.011,0.490, 9).
Pr(z > 26| x) = [55 St(x]28.011,0.240,9) dz = 0.9987.
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e Regression

1 Often additional information from relevant covariates. Data structure,
set of pairsx = {(y1,vq1),...(y,,vn)}; y;, v;, both vectors. Given a
new observation, with v known, predict the corresponding value of y.
Formally, compute p{y | v, (y1,v1), - . . (Y, vn)}.

1 Need amodel {p(y|v,0),y € Y,0 € ©} which makes precise the
probabilistic relationship between y and v. The simplest option assumes
a linear dependency of the form p(y |v,0) = N(y |V 3,%), but far
more complex structures are common in applications.

1 Univariatelinear regressionon k covariates. Y C R, v = {vy, ..., v }.
p(y|v,B3,0) = N(y| v6,02), B ={06,-.. ,ﬁk}t. Datax = {y,V},
y = {y1,...,yn},and V isthen x k matrix with the v;'s as rows.

p(y|V,B,0) = Nn(y | VB,0°I); reference prior 7*(8,0) = o~ ".
Predictive posterior is the Student density

. 2
p(ylv,y,V) =Sy |vB, f(v,V) r,n—k)

B=(VIV)" Wiy ns? = (y —vB)(y — vB)
f(0,V)=1+0(VIV) !



e Example: Smplelinear regression

49

1 One covariate and a constant term; p(y | v, 3,0) = N(y | 81 + Bov, o)
Sufficient statisticist = {v, ¥, svy, svv}, Withnv = Yv;, ny = My,

Syv = Evjyj/n VY, Spy = Y2

p(y|v,t) = St(y | By + Bov, f(v, t) 2E

~ _ ~ S
B1 =7 — 9T, [o=:N

Spv’
ns® =3 1_1(yj — b1 — Pawj)?

2

_i_
ef(v,t):::]_%—;i( gvv Ol

1 Pollution density (ugr/m?), and
wind speed from source (m/s ).

y; 1212 836 850 446 1164 601
v; 48 33 31 17 47 21

y; 1074 284 352 1064 712 976
v; 39 09 14 43 29 34

Prly > 50| v = 0,x] = 0.66

o2

1400
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800
600
400
200

0.008 ;. P

0.006

0.004

0.002

250 500 750 1000 1250 1500
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2.4. Hierarchical Models

e Exchangeability

1 Random quantities are often “homogeneous’ in the precise sense that
only their values matter, not the order in which they appear. Formally,
thisis captured by the notion of exchangeability. The set of random vec-
tors{xy,...,xy} isexchangeable if ther joint distribution is invariant
under permutations. An infinite sequence {x;} of random vectors is
exchangeable if all its finite subsequences are exchangeable.

1 Any randomsamplefromany model isexchangeable. Therepresentation
theoremestablishesthat if observations{x1, . . . , x;, } areexchangeable,
they areaarandomsamplefrom somemodel {p(x | 80),0 € O}, |abeled
by aparameter vector @, defined asthelimit (asn — oo) of somefunction
of thex;’s. Information about 8 in prevailing conditions C' isnecessarily
described by some probability distribution 7(0 | C').

1 Formally, thejoint density of any finite set of exchangeabl e observations
{x1,...,xn} hasan integral representation of the form

p(a1,...,xn|C) = [o 1l p(x;|0) (6| C)d6.
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e Structured Models

]

[

Complex data structures may often be usefully described by partial ex-
changeability assumptions.

Example: Public opinion. Sample & different regions in the country.
Sample n; Citizens in region ¢ and record whether or not (y;; = 1 or
Yij 0) citizen 57 would vote A. Assuming exchangeable citizens
W|th|n each region implies

n e
p(Yi1, - - aymz) — Hj_l p(ym 10;) = 9 ( — ;)"
where 6, isthe (unknown) proportion of C|t|zens Inregion < voting A and
r; = 2;y;; the number of citizensvoting A inregion .
Assuming regions exchangeable within the country ssimilarly leads to

p(01,...,0) = [1F_ 7(6;| D)

for some probablllty dlstrlbutlon (6| ¢) describing the political varia-
tion within the regions. Often choose (6 | ¢) = Be(6 | a, ).

The resulting two-stages hierarchical Binomial-Beta model

v ={y1,- - yrh ¥i = {¥i1, - - - Yin, }, random from Bi(y | 6;),
{61,...,0;,}, random from Be(f | o, 3)
provides afar richer model than (unrealistic) ssmple binomial sampling.
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1 Example: Biological response. Sample k different animals of the same

species in specific environment. Control n; times animal : and record
his responses {y;1,---,Y;n.} 10 prevailing conditions. Assuming ex-
changeabl e observations within each animal Implies

n;
P(Yits - Yin,) = 112, (9351 65).
Often choose p(y;; |0;) = Nr(y|p;,X1), where 7 is the number of
biological responses measured.

Assuming exchangeable animals within the environment |leads to

p(p1, - py) = T15q 7(pi | @) N o |
for some probability distribution 7 (e | ¢») describing the biological vari-

ation within the species. Often choose 7( | @) = Ny (| g, 29).
11 The two-stages hierarchical multivariate Normal-Normal model
r={y1,- - yrh yi ={yi1,- - - Yin, 1, random from Ny (y | e, 31,

{p1, - -, pyf, random from Ny (pe | g, o) o
provides afar richer model than (unrealistic) simple multivariate normal
sampling.

1 Finer subdivisions, e.g., subspecies within each species, similarly lead
to hierarchical models with more stages.
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e Bayesian analysis of hierarchical models

]

]

[

A two-stages hierarchical model has the general form
T =YYk Yi = {Zilr > Zin, )

y; random sample of sizen; fromp(z|8;), 8; € O,
{64,...,0.}, randomof sizek from (0 | @), ¢ € D.

Specify aprior distribution (or areference prior function)
m(¢) for the hyperparameter vector ¢.

Use standard probability theory to compute all desired
posterior distributions:
(¢ | x) for inferences about the hyperparameters,

(0, | «) for inferences about the parameters,

w(zp x) for inferences about the any functiony = (01, ...,0}.)
of the parameters,

mw(y | x) for predictions on future observations,

w(t|x) for predictionsonany functiont =t(yq,...,Ym)

of m future observations

Markov Chain Monte Carlo based software available for the necessary
computations.
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3. Decision Making

3.1 Structure of a Decision Problem

e Alternatives, conseguences, relevant events

11 A decision problem if two or more possible courses of action; A isthe

[

class of possible actions.

For each a € A, O, Isthe set of relevant events, those may affect the
result of choosing a.

Each pair {a,0}, 8 € ©,, produces aconsequencec(a, 8) € Cq. Inthis
context, @ if often referred to as the parameter of interest.

The class of pairs {(©,,Cy),a € A} describes the structure of the
decision problem. Without loss of generality, it may be assumed that the
possible actions are mutually exclusive, for otherwise the appropriate
Cartesian product may be used.

In many problems the class of relevant events ©, Is the same for all
a € A. Evenif thisis not the case, acomprehensive parameter space ©
may be defined as the union of all the ©,,.
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e Foundations of decision theory

1 Different sets of principles capture aminimum collection of logical rules
required for “rational” decision-making.

These are axioms with strong intuitive appeal.
Theair basic structure consists of:

e The Trangitivity of preferences:
If a1 > a9 given C, and a9 > a3 given C,
thena; > a3 given C.

e The Sure-thing principle:
If a1 > a9 givenC' and E/, and a1 > a9 given C' and not £
thena; > a9 given C.

¢ The existence of Sandard events:
There are events of known plausibility.
These may be used as a unit of measurement, and
have the properties of a probability measure

1 These axioms are not a description of human decision-making,
but a normative set of principles defining coherent decision-making.
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e Decision making

1 Many different axiom sets.
All lead basically to the same set of conclusions, namely:

¢ The consequences of wrong actions should be evaluated in terms of a
real-valued loss function L(a, 8) which specifies, on a numerical scale,
their undesirability.

e The uncertainty about the parameter of interest 8 should be measured
with a probability distribution (0 | C)

T(@|C) >0, 6¢€0, /W(B\C)d@zl,
)

describing all available knowledgeabout itsvalue, giventhe conditionsC
under which the decision must be taken.

e Therelative undesirability of available actions a € A is measured by
their expected loss

f(a]C):/@L(a,H)w(H\C)dH, ac A
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e Intrinsic loss functions: Intrinsic discrepancy

1 Theloss function istypically context dependent.

7 In mathematical statistics, intrinsic loss functions are used to measure
the distance between between statistical models.

They measure the divergence between the models {p{(x|01),x € X'}
and {po(x|09),x € X} as some non-negative function of the form
Lipi1(x|01),p2(x | 09)] whichis zero if (and only if) the two distribu-
tions are equal almost everywhere.

1 Theintrinsic discrepancy between two statistical models is smply the
Intrinsic discrepancy between their sampling distributions, i.e.,

0{p1,p2} = 0{01,02}

. pi(x|61)
= min p1(x|01)log de,
Ui onies 2L

pa(x | 02) }
po(a|09) log dax
el eoe 2 C g
11 Theintrinsic discrepancy is an information-based, symmetric, invariant
Intrinsic | oss.
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3.2 Formal Point Estimation

e The decision problem

1 Given statistical model {p(x |w),x € X, w € Q}, quantity of interest
0 = 0(w) € ©. A point estimator 8 = 6(x) of 8 is some function of
the data to be regarded as a proxy for the unknown value of 6.

1 To choose apoint estimate for 8 is adecision problem, where the action
spaceis A = O.

1 Given aloss function (6, 8), the posterior expected lossis

~

LWﬂ:/L@mﬂM@w,
)
The corresponding Bayes estimator isthat function of the data,

6* = 0*(x) = arg inf L[O]|x],
6cO
which minimizes that expectation.
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e Conventional estimators

1 The posterior mean and the posterior mode are the Bayes estimators
which respectively correspond to aquadratic an azero-onelossfunctions.

o If L(0,0) = (6 —0)!(6 — ), then, assuming that the mean exists, the
Bayes estimator isthe posterior mean E |0 | x].

1 e If the loss function is a zero-one function, so that L(0,0) = 0 if 6

belongs to a ball of radius e centered in @ and L(6,80) = 1 otherwise
then, , assuming that aunique mode exists, the Bayesestimator converges
to the posterior mode Mo[@ | x| asthe ball radius ¢ tends to zero.

1 If 6 isunivariate and continuous, and the loss function islinear,
L(0,0) = {01(9_@ T 029
co(0—0) if <40
then the Bayes estimator isthe posterior quantile of order ¢y /(¢ + ¢9),
so that Pr[f < 6%] = co/(c1 + ¢9).
In particular, if ¢c; = ¢9, the Bayes estimator is the posterior median.
11 Any 6 value may be optimal: it all depends on the loss function.
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e Intrinsic estimation

] Given the statistical model {p(x |0),x € X,0 € ©} theintrinsic dis-
crepancy 6(61, 09) between two parameter values 6, and 05 isthe in-
trinsic discrepancy d{p(x | 01),p(x|O02)} between the corresponding
probability models.

Thisis symmetric, non-negative (and zero iff 81 = 65), invariant under
reparametrization and invariant under bijections of x.

11 Theintrinsic estimator is the reference Bayes estimator which
corresponds to the loss defined by the intrinsic discrepancy:

e The expected |oss with respect to the reference posterior distribution

d(é\:::):/@d{é,e}w*(eym) do

Isan objective measure, in information units, of the expected discrepancy
between the model p(x | @) and the true (unknown) model p(x | 8).

e Theintrinsic estimator 8* = 8*(x) isthe value which minimizes such
expected discrepancy,
6* = arg inf d(0|x).
0cO
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e Example: Intrinsic estimation of the Binomial parameter

0 Datax = {z1,...,zn}, random from p(z | 0) = 6*(1 — ‘9)1_$z
0

r=Xr;. Intr|n3|c dlscrepancy 5(6,0) =n min{k(60),k(60)},
1-6
k(01]02) —9210gq (1 —92)10gﬁ’ () = Be(| 3, 3)
(@] r,n) = Be(@\r—l—%,n—r—l—%).
. 60
N Expected reference dlscrepancy o 1*610.12)
d(6,r,n) f() O|r,n)do
1 Intrinsic esti mator ) i_’g
0%(r,n) = argming_5 _, d(6,7,n) 0@ 0
From invariance, for any bijection 005 01 015 02
¢ = qb(@), Qb* — Qb(@*) 0.1
1 Analytic approximation 008/
+1/3 006/
0" (r,n) ~ ;+2§3, n > 2 0.04|
Tn=12,r=0, 0%0,12)=0.026 "

Melf | x| = 0.018, E[f | | = 0.038
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3.3 Hypothesis Testing

e Precise hypothesistesting as a decision problem

[

The posterior (6 | D) conveys intuitive information on the values of 6
which are compatible with the observed data : those with arelatively
high probability density.

Often a particular value 6y is suggested for special consideration:
e Because 8 = 0 would greatly ssmplify the model
e Because there are context specific arguments suggesting that 0 = 0

More generally, one may analyze the restriction of parameter space ©
to a subset ©4 which may contain more than one value.

Formally, testing the hypothesis Hy = {6 = 6} isadecision problem
with just two possible actions:.

e (. 1O Hg and work with p(x | 8).
e a: torgect Hy and keep the general model p(x | 6).

To proceed, a loss function L(a;,0), 8 € O, describing the possible
consequences of both actions, must be specified.
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e Sructure of the loss function

1 Glven data x, optimal action isto regject H( (action aq) iff the expected
posterior loss of accepting, g L(agp,0) 7r(0 | ) d@, is larger than the
expected posterior loss of rejecting, [g L(a1,0) (9 |x) da, i.e., iff
JolL(ag,0) — L(a1,0)]7(0 |x)d0 = [o AL(0) 7(6|x)dE > 0.

Therefore, onlythelossdlfferenceAL(H) = L(agp,0)—L(ay,0),which
measures the advantage of rgecting H( as a function of @, has to be
specified: The hypothesis should be rgected whenever the expected
advantage of rgecting is positive.

1 The advantage AL(0) of rejecting H( as a function of 6 should be of
theform AL(0) = 1(0y,0) — [I*, for some ™ > 0, where

e [(0(, 0) measures the discrepancy between p(x | 8p) and p(x | 9),

e [* isapositive utility constant which measures the advantage working
with the ssmpler model when it istrue.

1 The Bayes criterion will then be: Rgject Hy if (and only if)
Jol(89,0) (0] x)d0 > 1*, that isif (and only if)
the expected discrepancy between p(x | ) and p(x | @) istoo large.
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e Bayesian Reference Criterion

1 An good choice for the function [(0), @) is the intrinsic discrepancy,
0(80,8) = min k(8¢ | 0), k(6 69)},
where k(6 |0) = |y p(z | 0)log{p(z | 0)/p(x | Op)}dx.

If x = {xq,..., 2y} € X" isarandom sample from p(x | 8), then
0
k(0g|0) =n [ p(x|0)log (( "H()))dx

1 For objective results, exclusively based on model assumptions and data,
the reference posterior distribution 7* (6 | ) should be used.

11 Hence, rgject if (and only if) the expected reference posterior intrinsic
discrepancy d(@q | x) istoo large,
d(@g|x) = Jg 0(80,0) 7*(0 | x)dO > d*, for some d* > 0.
Thisisthe Bayesian reference criterion (BRC).

1 The reference test statistic d(6g | =) is nonnegative, it is invariant both
under reparametrization and under sufficient transformation of the data,
and it is a measure, in natural information units (nits) of the expected
discrepancy between p(x | 8) and the true model.
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e Calibration of the BRC

1 Thereferencetest statisticd(0 | x) isthe posterior expected discrepancy
of the intrinsic discrepancy between p(x | 0g) and p(x | ). Hence,

o A reference test statistic value d(0 | «) of, say, log(10) = 2.303 nits
Implies that, given data x, the average value of the likelihood ratio
against the hypothesis, p(x | 0)/p(x | 8), is expected to be about 10,
suggesting some mild evidence against 6y,.

e Similarly, avalue d(8 | «) of log(100) = 4.605 indicates an average
value of the likelihood ratio against 8 of about 100, indicating rather
strong evidence against the hypothesis, and log(1000) = 6.908, arather
conclusive likelihood ratio against the hypothesis of about 1000.

11 Asexpected, there are strong connections between the BRC criterion for
precise hypothesis testing and intrinsic estimation:

e Theintrinsic estimator Isthe value of 8 with minimizes the reference
test statistic: 0* = arginfg_g d(0| ).

e The regions defined by {0; d(0|x) < d*} are invariant reference
posterior g(d*)-credible regions for 6. For regular problems and large
samples, ¢(log(10)) ~ 0.95 and ¢(log(100)) ~ 0.995.
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e A canonical example: Testing a value for the Normal mean

1 In the simplest case where the variance o2 is known,
6(pos 1) = n(p — 1)/ (20%), 7 (u|z) = N(u|T,0%/n),
_ 1 2 _ T—p
dlpg|@) = 301 +2%), == 0
Thus rgecting u = pg if d(ug|x) > d* is equivalent to rgecting if
|z] > v/2d* — 1 and, hence, to a conventional two-sided frequentist test
with significance level o = 2(1 — ®(|z|)).

d* H Q

log(10) 1.8987 0.0576
log(100) 2.8654 0.0042
log(1000) 3.5799 0.0003

1 The expected value of d(uq | x)
If the hypothesisis IS

0
[ A1+ 22)N(2|0,1)dz = 1

— 00
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e Fisher’stasting tea lady

0 Datax = {x1,...,zn}, random from p(z | 8) = 6%(1 — 6)1 7,
r = Zx Intr|n8|c d|screpancy 0(0p,0) = n min{k(0y[0), k(0 |0p)},
1—-6
k(01 ]62) = 09 108;@ (1 —62)log —1_9% . 7(0) = Be(d] 3, 3)
Intrlnactest statlstlc
d(fg | x) fO (0] x) db

] Fisher’ sexample. xr = {10, 10}
Test g = 1/2, 6*(x) = 0.9686

d(y ] 10, 10)

AN

04 05 06 07 08 09 1

P NWhrMOHO

d(0* | x) 0* Prjd < 0| x]

log[10] 0.711 0.99185
log[100] 0.547 0.99957 20
log[1000] 0.425 0.99997 5 1%(0]10,10)
125
Using d* = log[100] = 4.61, 75
thevalue # = 0.5 isrgected. o2 o

Prjf < 0.5 |z] = 0.00016

04 05 06 07 08 09 1
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e Asymptotic approximation

" For large samples, the posterior approachesN(8 | 8, n = F~1(6)), where
F(0) isFisher'sinformation function. Changing variables, the

posterior distribution of ¢ = ¢(0) = [ F1/2(9) do = 2arc sin\/8) is
approximately normal N(¢ | ¢, n~1). Since d(6, =) isinvariant,

A6 @) ~ 31 +nfo(6o) — (@)} S

o\ deyle)
e Testing for amajority (g = 0.5) A \ /

x = {720,1500}, 6*(x) = 0.4800 > — AN
LN

d(0*|x) R=(6;067) PrldcR|x] 042 0.44 046 048 05 052 054

log|10] (0.456, 0.505) 0.9427 0
log[100] (0.443, 0.517) 09959 = 7 (0|x)
log[1000] (0.434, 0.526) 0.9997 20|

Very mild evidence against 6 = 0.5: |
d(0.5|720,1500) = 1.67 |
Pr(6 < 0.5]720,1500) = 0.9393 D44 046 048 05 052 054
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