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Summary

1. Concept of Probability
Introduction. Notation. Statistical models.
Intrinsic discrepancy. Intrinsic convergence of distributions.
Foundations. Probability as a rational degree of belief.

2. Basics of Bayesian Analysis
Parametric inference. The learning process.
Reference analysis. No relevant initial information.
Inference summaries. Point and interval estimation.
Prediction. Regression.
Hierarchical models. Exchangeability.

3. Decision Making
Structure of a decision problem. Intrinsic Loss functions.
Formal point estimation. Intrinsic estimation.
Hypothesis testing. Bayesian reference criterion (BRC).



3
1. Concept of Probability

1.1. Introduction
Tentatively accept a formal statistical model

Typically suggested by informal descriptive evaluation
Conclusions conditional on the assumption that model is correct

Bayesian approach firmly based on axiomatic foundations
Mathematical need to describe by probabilities all uncertainties
Parameters must have a (prior) distribution describing available

information about their values
Not a description of their variability (fixed unknown quantities),

but a description of the uncertainty about their true values.

Important particular case: no relevant (or subjective) initial information
Prior only based on model assumptions and well-documented data
Objective Bayesian Statistics:

Scientific and industrial reporting, public decision making
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• Notation

Under conditions C, p(x |C), π(θ |C) are, respectively, probability
densities (or mass) functions of observables x and parameters θ

p(x |C) ≥ 0,
∫
X p(x |C) dx = 1, E[x |C] =

∫
X x p(x |C) dx,

π(θ |C) ≥ 0,
∫
Θ π(θ |C) dθ = 1, E[θ |C] =

∫
Θ θ π(θ |C) dθ.

Special densities (or mass) functions use specific notation, as
N(x |µ, σ2), Bi(x |n, θ), or Pn(x |λ). Other examples:

Beta {Be(x |α, β), 0 < x < 1, α > 0, β > 0}
Be(x |α, β) = Γ(α+β)

Γ(α)Γ(β) xα−1(1 − x)β−1

Gamma {Ga(x |α, β), x > 0, α > 0, β > 0}
Ga(x |α, β) = βα

Γ(α) xα−1e−βx

Student {St(x |µ, σ2, α), x ∈ �, µ ∈ �, σ > 0, α > 0}

St(x |µ, σ2, α) = Γ{(α+1)/2)}
Γ(α/2)

1
σ
√

απ

[

1 + 1
α

(
x−µ

σ

)2
]−(α+1)/2



5
• Statistical Models

Statistical model generating x ∈ X , {p(x |θ),x ∈ X ,θ ∈ Θ}
Parameter vector θ = {θ1, . . . , θk} ∈ Θ. Parameter space Θ ⊂ �k.
Data set x ∈ X . Sampling space X , of arbitrary structure.

Likelihood function of x, l(θ |x).
l(θ |x) = p(x |θ), as a function of θ ∈ Θ.

Maximum likelihood estimator (mle) of θ

θ̂ = θ̂(x) = arg supθ∈Θ l(θ |x)

Data x = {x1, . . . , xn} random sample (iid) from model if
p(x |θ) =

∏n
j=1 p(xj |θ), xj ∈ X , X = Xn

Behaviour under repeated sampling (general, not iid data)
Considering {x1,x2, . . .}, a (possibly infinite) sequence
of possible replications of the complete data set x.

Denote by x(m) = {x1, . . . ,xm} a finite set of m such replications.

Asymptotic results obtained as m → ∞
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1.2. Intrinsic Divergence

• Logarithmic divergences

The logarithmic divergence (Kullback-Leibler) k{p̂ | p} of a density p̂(x)
from its true density p(x), is

k{p̂ | p} =
∫
X p(x) log p(x)

p̂(x) dx, (provided this exists)

The functional k{p̂ | p} is non-negative, (zero iff, p̂(x) = p(x) a.e.) and
invariant under one-to-one transformations of x.

But k{p1 | p2} is not symmetric and diverges if, strictly, X2 ⊂ X1 .

• Intrinsic discrepancy between distributions

δ{p, q} = min
{∫

X p(x) log p(x)
q(x) dx,

∫
X q(x) log q(x)

p(x) dx
}

The intrinsic discrepancy δ{p, q}} is non-negative, (zero iff, p̂ = p a.e.)
invariant under one-to-one transformations of x,

Defined ifX2 ⊂ X1 orX1 ⊂ X2, operative interpretation as the minimum
amount of information (in nits) required to discriminate.



7
• Interpretation and calibration of the intrinsic discrepancy

Let {p1(x |θ1), θ1 ∈ Θ1} or {p2(x |θ2),θ2 ∈ Θ2} be two alternative
statistical models for x ∈ X , one of which is assumed to be true. The
intrinsic divergence δ{θ1,θ2} = δ{p1, p2} is then minimum expected
log-likelihood ratio in favour of the true model.

Indeed, if p1(x |θ1) true model, the expected log-likelihood ratio in its
favour is E1[log{p1(x |θ1)/p2(x |θ1)}] = k{p2 | p1}. If the true model
is p2(x |θ2), the expected log-likelihood ratio in favour of the true model
is k{p2 | p1}. But δ{p2 | p1} = min[k{p2 | p1}, k{p1 | p2}].
Calibration. δ = log[100] ≈ 4.6 nits, likelihood ratios for the true model
larger than 100 making discrimination very easy.

δ = log(1 + ε) ≈ ε nits, likelihood ratios for the true model may about
1 + ε making discrimination very hard.

Intrinsic Discrepancy δ 0.01 0.69 2.3 4.6 6.9

Average Likelihood Ratio
for true model exp[δ] 1.01 2 10 100 1000
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Example. Conventional Poisson approximation Pn(r |nθ) of Binomial
probabilities Bi(r |n, θ)

δ(Bi, Pn) = δ(n, θ) = k(Pn |Bi) =
∑n

r=0 Bi(r |n, θ) log Bi(r |n,θ)
Pn(r |nθ)

δ{Bi(r | , n, θ), Pn(r | , nθ)}
n = 1

n = 2
n = 5

θ

0.05 0.1 0.15 0.2

0.005

0.01

0.015

0.02
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• Intrinsic Convergence of Distributions

Intrinsic Convergence. A sequence of probability densities (or mass)
functions {pi(x)}∞i=1 converges intrinsically to p(x) if (and only if) the
intrinsic divergence between pi(x) and p(x) converges to zero. i.e., iff
limi→∞ δ(pi, p) = 0.

Example. Normal approximation to a Student distribution.
δ(α) = δ{St(x | 0, 1, α), N(x | 0, 1)}

=
∫ ∞

−∞
N(x | 0, 1) log

N(x | 0, 1)
St(x | 0, 1, α)

dx ≈ 1
(1 + α)2

2 4 6 8 10

0.2

0.4

0.6

0.8

1

δ(α)

α

The function δ(α) converges rapidly to zero. δ(18) = 0.004.
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1.3. Foundations

• Foundations of Statistics

Axiomatic foundations on rational description of uncertainty imply that
the uncertainty about all unknown quantities should be measured with
probability distributions {π(θ |C),θ ∈ Θ} describing the plausibility
of their given available conditions C.

Axioms have a strong intuitive appeal; examples include

• Transitivity of plausibility.
If E1 > E2 |C, and E2 > E3 |C, then E1 > E3 |C

• The sure-thing principle.
If E1 > E2 |A, C and E1 > E2 |A, C, then E1 > E2 |C).

Axioms are not a description of actual human activity, but a normative
set of principles for those aspiring to rational behaviour.

“Absolute” probabilities do not exist. Typical applications produce
Pr(E |x, A, K), a measure of rational belief in the occurrence of the
event E, given data x, assumptions A and available knowledge K.
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• Probability as a Measure of Conditional Uncertainty

Axiomatic foundations imply that Pr(E |C), the probability of an event
E given C is always a conditional measure of the (presumably rational)
uncertainty, on a [0, 1] scale, about the occurrence of E in conditions C.

• Probabilistic diagnosis.V is the event that a person carries a virus
and + a positive test result. All related probabilities, e.g.,
Pr(+ |V ) = 0.98, Pr(+ |V ) = 0.01, Pr(V |K) = 0.002,
Pr(+ |K) = Pr(+ |V )Pr(V |K) + Pr(+ |V )Pr(V |K) = 0.012

Pr(V |+, A, K) = Pr(+ |V )Pr(V |K)
Pr(+ |K) = 0.164 (Bayes’ Theorem)

are conditional uncertainty measures (and proportion estimates).

• Estimation of a proportion.Survey conducted to estimate
the proportion θ of positive individuals in a population.
Random sample of size n with r positive.
Pr(a < θ < b | r, n, A, K), a conditional measure of the uncertainty
about the event that θ belongs to [a, b] given assumptions A,
initial knowledge K and data {r, n}.
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• Measurement of a physical constant.Measuring the unknown value of
physical constant µ, with data x = {x1, . . . , xn}, considered to be
measurements of µ subject to error. Desired to find
Pr(a < µ < b |x1, . . . , xn, A, K), the probability that the unknown
value of µ (fixed in nature, but unknown to the scientists)
belongs to [a, b] given the information provided by the data x,
assumptions A made, and available knowledge K.

The statistical model may include nuisance parameters, unknown quan-
tities , which have to be eliminated in the statement of the final results.

For instance, the precision of the measurements described by unknown
standard deviation σ in a N(x |µ, σ) normal model

Relevant scientific information may impose restrictions on the admissi-
ble values of the quantities of interest. These must be taken into account.

For instance, in measuring the value of the gravitational field g in a
laboratory, it is known that it must lie between 9.7803 m/sec2 (average
value at the Equator) and 9.8322 m/sec2 (average value at the poles).
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• Future discrete observations.Experiment counting the number r
of times that an event E takes place in each of n replications.
Desired to forecast the number of times r that E will take place
in a future, similar situation, Pr(r | r1, . . . , rn, A, K).
For instance, no accidents in each of n = 10 consecutive months
may yield Pr(r = 0 |x, A, K) = 0.953.

• Future continuous observations.Data x = {y1, . . . ,yn}. Desired
to forecast the value of a future observation y, p(y |x, A, K).
For instance, from breaking strengths x = {y1, . . . , yn} of n
randomly chosen safety belt webbings, the engineer may find
Pr(y > y∗ |x, A, K) = 0.9987.

• Regression.Data set consists of pairs x = {(y1,v1), . . . , (yn,vn)}
of quantity yj observed in conditions vj.
Desired to forecast the value of y in conditions v, p(y |v,x, A, K).
For instance, y contamination levels, v wind speed from source;
environment authorities interested in Pr(y > y∗ | v,x, A, K)
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2. Basics of Bayesian Analysis

2.1. Parametric Inference

• Bayes’ Theorem

Let M = {p(x |θ),x ∈ X ,θ ∈ Θ} be an statistical model, let π(θ |K)
be a probability density for θ given prior knowledge K and let x be some
available data.

π(θ |x, M, K) =
p(x |θ)π(θ |K)

∫
Θ p(x |θ)π(θ |K) dθ

,

encapsulates all information about θ given data and prior knowledge.

Simplifying notation, Bayes’ theorem may be expressed as

π(θ |x) ∝ p(x |θ)π(θ) :
The posterior is proportional to the likelihood times the prior. The
missing proportionality constant [

∫
Θ p(x |θ) π(θ) dθ]−1 may be de-

duced from the fact that π(θ |x) must integrate to one. To identify a
posterior distribution it suffices to identify a kernel k(θ,x) such that
π(θ |x) = c(x) k(θ,x). This is a very common technique.
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• Bayesian Inference with a Finite Parameter Space

Model {p(x | θi),x ∈ X , θ〉 ∈ ×}, with Θ = {θ1, . . . , θm}, so that θ

may only take a finite number m of different values. Using the finite
form of Bayes’ theorem,

Pr(θi |x) =
p(x | θi) Pr(θi)∑m

j=1 p(x | θj) Pr(θj)
, i = 1, . . . , m.

Example: Probabilistic diagnosis. A test to detect a virus, is known
from laboratory research to give a positive result in 98% of the infected
people and in 1% of the non-infected. The posterior probability that a
person who tested positive is infected is

Pr(V |+)

Pr(V )
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1Pr(V |+) = 0.98 p
0.98 p+0.01 (1−p)

as a function of p = Pr(V ).
Notice sensitivity of posterior
Pr(V |+) to changes
in the prior p = Pr(V ).
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• Example: Inference about a binomial parameter

Let data x be n Bernoulli observations with parameter θ

which contain r positives, so that p(x | θ, n) = θr(1 − θ)n−r.

If π(θ) = Be(θ |α, β), then

π(θ |x) ∝ θr+α−1(1 − θ)n−r+β−1

kernel of Be(θ | r + α, n − r + β).
Prior information (K)
P (0.4 < θ < 0.6) = 0.95,
and symmetric, yields α = β = 47;

No prior information α = β = 1/2
n = 1500, r = 720
P (θ < 0.5 |x, K) = 0.933
P (θ < 0.5 |x) = 0.934
n = 100, r = 0
P (θ < 0.01 |x) = 0.844
Notice: θ̂ = 0, but Me[θ |x] = 0.0023 0.005 0.01 0.015 0.02 0.025

100

200

300

400

500

0.35 0.4 0.45 0.5 0.55 0.6 0.65

5

10

15

20

25

30
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• Sufficiency

Given a model p(x |θ), a function of the data t = t(x), is a sufficient
statistic if it encapsulates all information about θ available in x.

Formally, t = t(x) is sufficient if (and only if), for any prior π(θ)
π(θ |x) = π(θ | t). Hence, π(θ |x) = π(θ | t) ∝ p(t |θ)π(θ).
This is equivalent to the frequentist definition; thus t = t(x) is sufficient
iff p(x |θ) = f(θ, t)g(x).
A sufficient statistic always exists, for t(x) = x is obviously sufficient

A much simpler sufficient statistic, with fixed dimensionality
independent of the sample size, often exists.
This is case whenever the statistical model belongs to the
generalized exponential family, which includes many of the
more frequently used statistical models.

In contrast to frequentist statistics, Bayesian methods are independent
on the possible existence of a sufficient statistic of fixed dimensionality.

For instance, if data come from an Student distribution, there is no suffi-
cient statistic of fixed dimensionality: all data are needed.
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• Example: Inference from Cauchy observations

Data x = {x1, . . . , xn} random from Ca(x |µ, 1) = St(x |µ, 1, 1).
Objective reference prior for the location parameter µ is π(µ) = 1.

By Bayes’ theorem,

π(µ |x) ∝
∏n

j=1
Ca(xj |µ, 1)π(µ) ∝

∏n

j=1
1

1 + (xj − µ)2
.

Proportionality constant easily obtained by numerical integration.

Five samples of size n = 2
simulated from Ca(x | 5, 1).

x1 x2
4.034 4.054

21.220 5.831
5.272 6.475
4.776 5.317
7.409 4.743 0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

µ

π(µ |x)
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• Improper prior functions

Objective Bayesian methods often use functions which play the role of
prior distributions but are not probability distributions.

An improper prior function is an non-negative function π(θ) such that∫
Θ π(θ) dθ is not finite.

The Cauchy example uses the improper prior function π(µ) = 1, µ ∈ �.

π(θ) is an improper prior function, {Θi}∞i=1 an increasing sequence
approximating Θ, such that

∫
Θi

π(θ) < ∞, and {πi(θ)}∞i=1 the proper

priors obtained by renormalizing π(θ) within the Θi’s.

For any data x with likelihood p(x |θ), the sequence of posteriors
πi(θ |x) converges intrinsically to π(θ |x) ∝ p(x |θ)π(θ).
Normal data, σ known, π(µ) = 1.
π(µ |x) ∝ p(x |µ, σ)π(µ)

∝ exp[− n
2σ2(x − µ)2]

π(µ |x) = N(µ |x, σ2/n)
Example: n = 9, x = 2.11, σ = 4

-4 -2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

µ

πi(µ |x)

π(µ |x)
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• Sequential updating

Prior and posterior are terms relative to a set of data.

If data x = {x1, . . . ,xn} are sequentially presented, the final result will
be the same whether data are globally or sequentially processed.

π(θ |x1, . . . ,xi+1) ∝ p(xi+1 |θ)π(θ |x1, . . . ,xi).

The “posterior” at a given stage becomes the “prior” at the next.

Typically (but not always), the new posterior, π(θ |x1, . . . ,xi+1), is
more concentrated around the true value than π(θ |x1, . . . ,xi).
Posteriors π(λ |x1, . . . , xi)
from increasingly large
simulated data from Poisson
Pn(x |λ), with λ = 3
π(λ |x1, . . . , xi)

= Ga(λ | ri + 1/2, i)
ri =

∑i
j=1 xj

1 2 3 4 5 6 7

0.5

1

1.5

2

λ
n = 5

n = 10
n = 20

n = 50

n = 100
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• Nuisance parameters

In general the vector of interest is not the whole parameter vector θ, but
some function φ = φ(θ) of possibly lower dimension.

By Bayes’ theorem π(θ |x) ∝ p(x |θ)π(θ). Let ω = ω(θ) ∈ Ω be
another function of θ such that ψ = {φ,ω} is a bijection of θ, and let
J(ψ) = (∂θ/∂ψ) be the Jacobian of the inverse function ψ = ψ(θ).
From probability theory, π(ψ |x) = |J(ψ)|[π(θ |x)]θ=θ(ψ)
and π(φ |x) =

∫
Ω π(φ,ω |x) dω.

Any valid conclusion on φ will be contained in π(φ |x).
Particular case: marginal posteriors

Often model directly expressed in terms of vector of interest φ, and
vector of nuisance parameters ω, p(x |θ) = p(x |φ,ω).
Specify the prior π(θ) = π(φ) π(ω |φ)
Get the joint posterior π(φ,ω |x) ∝ p(x |φ,ω)π(ω |φ)π(φ)
Integrate out ω, π(φ |x) ∝ π(φ)

∫
Ω p(x |φ,ω)π(ω |φ) dω
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• Example: Inferences about a Normal mean

Data x = {x1, . . . xn} random from N(x |µ, σ2). Likelihood function
p(x |µ, σ) ∝ σ−n exp[−n{s2 + (x − µ)2}/(2σ2)],
with nx =

∑
i xi, and ns2 =

∑
i(xi − x)2.

Objective prior is uniform in both µ and log(σ), i.e., π(µ, σ) = σ−1.
Joint posterior π(µ, σ |x) ∝ σ−(n+1) exp[−n{s2 +(x−µ)2}/(2σ2)].

Marginal posteriorπ(µ |x) ∝
∫ ∞
0 π(µ, σ |x) dσ ∝ [s2+(x−µ)2]−n/2,

kernel of the Student density St(µ |x, s2/(n − 1), n − 1)
Classroom experiment to
measure gravity g yields
x = 9.8087, s = 0.0428
with n = 20 measures.

π(g |x, s, n)
= St(g | 9.9087, 0.00012, 19)
Pr(9.788 < g < 9.829 |x)
= 0.95 (shaded area) 9.75 9.8 9.85 9.9

10

20

30

40

g
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• Restricted parameter space

Range of values of θ restricted by contextual considerations.
If θ known to belong to Θc ⊂ Θ, π(θ) > 0 iff θ ∈ Θc
By Bayes’ theorem,

π(θ |x, θ ∈ Θc) =






π(θ |x)
∫
Ωc

π(θ |x) dθ
, if θ ∈ Θc

0 otherwise

To incorporate a restriction, it suffices to renormalize the unrestricted
posterior distribution to the set Θc ⊂ Θ of admissible parameter values.

Classroom experiment to
measure gravity g with
restriction to lie between

g

g0 = 9.7803 (equator)
g1 = 9.8322 (poles).

Pr(9.7803 < g < 9.8322 |x)
= 0.95 (shaded area)

9.7 9.75 9.8 9.85 9.9

10

20

30

40
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• Asymptotic behaviour, discrete case

If the parameter space Θ = {θ1, θ2, . . .} is countable and

The true parameter value θt is distinguishable from the others,i.e.,

δ{p(x |θt), p(x |θi)) > 0, i �= t,

lim
n→∞π(θt |x1, . . . ,xn) = 1

lim
n→∞π(θi |x1, . . . ,xn) = 0, i �= t

To prove this, take logarithms is Bayes’ theorem,

define zi = log[p(x |θi)/p(x |θt)],
and use the strong law of large numbers on the n

i.i.d. random variables z1, . . . , zn.

For instance, in probabilistic diagnosis the posterior probability of the
true disease converges to one as new relevant information accumulates,
provided the model distinguishes the probabilistic behaviour of data un-
der the true disease from its behaviour under the other alternatives.
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• Asymptotic behaviour, continuous case

If the parameter θ is one-dimensional and continuous, so that Θ ⊂ �,

and the model {p(x | θ), x ∈ X} is regular: basically,
X does not depend on θ,
p(x | θ) is twice differentiable with respect to θ

Then, as n → ∞, π(θ |x1, . . . ,xn) converges intrinsically
to a normal distribution with mean at the mle estimator θ̂,
and with variance v(x1, . . . ,xn, θ̂), where

v−1(x1, . . . ,xn, θ̂) = −
∑n

j=1
∂2

∂θ2
log[p(xj | θ]

To prove this, express is Bayes’ theorem as

π(θ |x1, . . . ,xn) ∝ exp[log π(θ) +
∑n

j=1 log p(xj | θ)],
and expand

∑n
j=1 log p(xj | θ)] about its maximum, the mle θ̂

The result is easily generalized to the case θ = {θ1, . . . , θk}, to obtain
a limiting multivariate Normal Nk(θ | θ̂,V (x1, . . . ,xn, θ̂)}.
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• Asymptotic behaviour, continuous case. Simpler form

Using the strong law of large numbers on the sums above a simpler, less
precise approximation is obtained:

If the parameter θ = {θ1, . . . , θk} is continuous, so that Θ ⊂ �k

and the model {p(x | θ), x ∈ X} is regular; basically:
X does not depend on θ
p(x |θ) is twice differentiable with respect to each of the θi’s

As n → ∞, π(θ |x1, . . . ,xn) converges intrinsically to a multivariate
normal distribution Nk{θ | θ̂, n−1F−1(θ̂)} with mean the mle θ̂ and
precision (inverse of variance) matrix n F (θ̂), where F is Fisher’s in-
formation matrix, of general element

F ij(θ) = −Ex |θ

[
∂2

∂θi∂θj
log p(x |θ)

]

From this result, the properties of the multivariate Normal immediately
yield the asymptotic forms for the marginal and the conditional posterior
distributions of any subgroup of the θj’s.
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• Example: Asymptotic approximation with Poisson data

Data x = {x1, . . . , xn} random from Pn(x |λ) ∝ e−λλx

hence, p(x |λ) ∝ e−nλλr, r = Σj xj, and λ̂ = r/n.

Fisher’s function is F (λ) = −Ex |λ

[
∂2

∂λ2 log Pn(x |λ)
]

= 1
λ

The objective prior function is π(λ) = F (λ)1/2 = λ−1/2

Hence π(λ |x) ∝ e−nλλr−1/2

the of Ga(λ | r + 1
2, n)

The Normal approximation is
π(λ |x) ≈ N{λ | λ̂, n−1F−1(λ̂)}

= N{λ | r/n, r/n2}
Samples n = 5 and n = 25
simulated from Poisson λ = 3
yielded r = 19 and r = 82 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

λ

π(λ |x)
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2.2. Reference Analysis

• No Relevant Initial Information

Identify the mathematical form of a “noninformative” prior. One with
minimal effect, relative to the data, on the posterior distribution of the
quantity of interest.

Intuitive basis:
Use information theory to measure the amount on information about the
quantity of interest to be expected from data. This depends on prior
knowledge: the more it is known, the less the amount of information the
data may be expected to provide.
Define the missing information about the quantity of interest as that
which infinite independent replications of the experiment could possible
provide.
Define the reference prior as that which maximizes the missing informa-
tion about the quantity if interest.
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• Expected information from the data

Given model {p(x | θ),x ∈ X , θ ∈ Θ}, the amount of information
Iθ{X , π(θ)} which may be expected to be provided by x, about the
value of θ is defined by

Iθ{X , π(θ) = Ex[
∫
Θ π(θ |x) log π(θ |x)

π(θ) dθ],
the expected logarithmic divergence between prior and posterior.

Consider Iθ{X k, π(θ)} the information about θ which may be expected
from k conditionally independent replications of the original setup.
As k → ∞, this would provide any missing information about θ. Hence,
as k → ∞, the functional Iθ{X k, π(θ)} will approach the missing
information about θ associated with the prior π(θ).

Let πk(θ) be the prior which maximizes Iθ{X k, π(θ)} in the class P of
strictly positive prior distributions compatible with accepted assumptions
on the value of θ (which be the class of all strictly positive priors).

The reference prior π∗(θ) is the limit as k → ∞ (in a sense to be made
precise) of the sequence of priors {πk(θ), k = 1, 2, . . .}.
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• Reference priors in the finite case

If θ may only take a finite number m of different values {θ1, . . . , θm}
and π(θ) = {p1, . . . , pm}, with pi = Pr(θ = θi), then
limk→∞ Iθ{X k, π(θ)} = H(p1, . . . , pm) = −

∑m
i=1 pi log(pi),

that is, the entropy of the prior distribution {p1, . . . , pm}.

In the finite case, the reference prior is that with maximum entropy within
the class P of priors compatible with accepted assumptions.
(cf. Statistical Physics)

If, in particular, P contains all priors over {θ1, . . . , θm}, the reference
prior is the uniform prior, π(θ) = {1/m, . . . , 1/m}.
(cf. Bayes-Laplace postulate of insufficient reason)

Prior {p1, p2, p3, p4}
in genetics problem
where p1 = 2p2.

Reference prior is
{0.324, 0.162, 0.257, 0.257}

0.1

0.2
0.3

0.2
0.40.60.8
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0.5

1

p3

p2

(0, 0)

H(p2, p3)
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• Reference priors in one-dimensional continuous case

Let πk(θ) be the prior which maximizes Iθ{X k, π(θ)} in the class P of
acceptable priors.

For any data x ∈ X , let πk(θ |x) ∝ p(x | θ)πk(θ) be
the corresponding posterior.

The reference posterior density π∗(θ |x) is defined to be the intrinsic
limit of the sequence {πk(θ |x), k = 1, 2, . . .}
A reference prior function π∗(θ) is any positive function such that,
for all x ∈ X , π∗(θ |x) ∝ p(x | θ) π∗(θ).
This is defined up to an (irrelevant) arbitrary constant.

Let x(k) ∈ X k be the result of k independent replications of x ∈ X .
With calculus of variations, the exact expression for πk(θ) is found to be

πk(θ) = exp
[

E
x(k) | θ

{
log πk(θ |x(k))

}]

For large k, this allows a numerical derivation of the reference prior by
repeated simulation from p(x | θ) for different θ values.
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• Reference priors under regularity conditions

Let θ̃k = θ̃(x(k)) be a consistent, asymptotically sufficient estimator
of θ. In regular problems this is often the case with the mle estimator θ̂.

The exact expression for πk(θ) then becomes, for large k,

πk(θ) ≈ exp[E
θ̃k | θ{log πk(θ | θ̃k)}]

As k → ∞ this converges to πk(θ | θ̃k)|
θ̃k=θ

Let θ̃k = θ̃(x(k)) be a consistent, asymptotically sufficient estimator
of θ. Let π(θ | θ̃k) be any asymptotic approximation to π(θ |x(k)), the
posterior distribution of θ.

Hence, π∗(θ) = π(θ | θ̃k)|
θ̃k=θ

Under regularity conditions, the posterior distribution of θ
is asymptotically Normal, N(θ | θ̂, n−1F−1(θ̂)), where
F (θ) = −E[∂2 log p(x | θ)/∂θ2] is Fisher’s information function.

Hence, π∗(θ) = F (θ)1/2 (cf. Jeffreys’ rule).
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• One nuisance parameter

Two parameters: reduce the problem to a sequential application of the
one parameter case. Probability model is {p(x | θ, λ, θ ∈ Θ, λ ∈ Λ} and
a θ-reference prior π∗θ(θ, λ) is required. Two steps:

(i) Conditional on θ, p(x | θ, λ) only depends on λ, and it is possible to
obtain the conditional reference prior π∗(λ | θ).
(ii) If π∗(λ | θ) is proper, integrate out λ to get the one-parameter model
p(x | θ) =

∫
Λ p(x | θ, λ)π∗(λ | θ) dλ, and use the one-parameter solu-

tion to obtain π∗(θ).
The θ-reference prior is then π∗θ(θ, λ) = π∗(λ | θ)π∗(θ).
The required reference posterior is π∗(θ |x) ∝ p(x | θ)π∗(θ).
If π∗(λ | θ) is an improper prior function, proceed within an increasing
sequence {Λi} over which π∗(λ | θ) is integrable and, for given data x,
obtain the corresponding sequence of reference posteriors {π∗i (θ |x}.

The required reference posterior π∗(θ |x) is their intrinsic limit.

A θ-reference prior is any positive function such that, for any data x,
π∗(θ |x) ∝

∫
Λ p(x | θ, λ) π∗θ(θ, λ) dλ.
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• The regular two-parameter continuous case

Model p(x | θ, λ). If the joint posterior of (θ, λ) is asymptotically nor-
mal, the θ-reference prior may be derived in terms of the corresponding
Fisher’s information matrix, F (θ, λ).

F (θ, λ) =

(
Fθθ(θ, λ) Fθλ(θ, λ)
Fθλ(θ, λ) Fλλ(θ, λ)

)

, S(θ, λ) = F−1(θ, λ),

The θ-reference prior is π∗θ(θ, λ) = π∗(λ | θ)π∗(θ), where

π∗(λ | θ) ∝ F
1/2
λλ (θ, λ), λ ∈ Λ, and, if π∗(λ | θ) is proper,

π∗(θ) ∝ exp {
∫
Λ π∗(λ | θ) log[S−1/2

θθ (θ, λ)] dλ}, θ ∈ Θ.

If π∗(λ | θ) is not proper, integrations are performed within an approx-
imating sequence {Λi} to obtain a sequence {π∗i (λ | θ)π∗i (θ)}, and the
θ-reference prior π∗θ(θ, λ) is defined as its intrinsic limit.

Even if π∗(λ | θ) is improper, if θ and λ are variation independent,

S
−1/2
θθ (θ, λ) ∝ fθ(θ) gθ(λ), and F

1/2
λλ (θ, λ) ∝ fλ(θ) gλ(λ),

Then π∗θ(θ, λ) = fθ(θ) gλ(λ).
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• Examples: Inference on normal parameters

The information matrix for the normal model N(x |µ, σ) is

F (µ, σ) =

(

σ−2 0
0 2σ−2

)

, S(µ, σ) =



 σ2 0
0 σ2/2



 ;

Since µ and σ are variation independent, and both Fσσ and Sµµ factorize

π∗(σ |µ) ∝ F
1/2
σσ ∝ σ−1, π∗(µ) ∝ S

−1/2
µµ ∝ 1.

The µ-reference prior, as anticipated, is
π∗µ(µ, σ) = π∗(σ |µ)π∗(µ) = σ−1,
i.e., uniform on both µ and log σ

Since F (µ, σ) is diagonal the σ-reference prior is
π∗σ(µ, σ) = π∗(µ |σ)π∗(σ) = σ−1, the same as π∗µ(µ, σ) = π∗σ(µ, σ).
In fact, it may be shown that, for location-scale models,
p(x |µ, σ) = 1

σf(x−µ
σ ),

the reference prior for the location and scale parameters are always
π∗µ(µ, σ) = π∗σ(µ, σ) = σ−1.
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Within any given model p(x |θ) the φ-reference prior π∗φ(θ) maximizes
the missing information about φ = φ(θ) and, in multiparameter prob-
lems, that prior may change with the quantity of interest φ.

For instance, within a normal N(x |µ, σ) model, let the standardized
mean φ = µ/σ. be the quantity of interest.

Fisher’s information matrix in terms of the parameters φ and σ is
F (φ, σ) = Jt F (µ, σ) J , where J = (∂(µ, σ)/∂(φ, σ)) is the Jacobian
of the inverse transformation; this yields

F (φ, σ) =



 1 φσ−1

φσ−1 σ−2(2 + φ2)



 ,

with F
1/2
σσ ∝ σ−1, and S

−1/2
φφ ∝ (1 + φ2/2)−1/2.

The φ-reference prior is, π∗φ(φ, σ) = (1 + φ2/2)−1/2σ−1. Or, in the

original parametrization, π∗φ(µ, σ) = (1 + (µ/σ)2/2)−1/2σ−2,
which is different from π∗µ(µ, σ) = π∗σ(µ, σ).
This prior is shown to lead to a reference posterior for φ with consistent
marginalization properties.
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• Many parameters

The reference algorithm generalizes to any number of parameters.
If the model is p(x |θ) = p(x | θ1, . . . , θm), a joint reference prior
π∗(φm |φm−1, . . . , φ1)× . . .×π∗(φ2 |φ1)×π∗(φ1) may sequentially
be obtained for each ordered parametrization, {φ1(θ), . . . , φm(θ)}.

Reference priors are invariant under reparametrization of the φi(θ)’s.

The choice of the ordered parametrization {φ1, . . . , φm} describes the
particular prior required, namely that which sequentially
maximizes the missing information about each of the φi’s,
conditional on {φ1, . . . , φi−1}, for i = m, m − 1, . . . , 1.

Example: Stein’s paradox. Data random from a m-variate normal
Nm(x |µ, I). The reference prior function for any permutation of
the µi’s is uniform, and leads to appropriate posterior distributions for
any of the µi’s, but cannot be used if the quantity of interest is θ =

∑
i µ

2
i ,

the distance of µ to the origin.

The reference prior for {θ, λ1, . . . , λm−1} produces, for any choice of
the λi’s, an appropriate the reference posterior for θ.
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2.3. Inference Summaries

• Summarizing the posterior distribution

The Bayesian final outcome of a problem of inference about any unknown
quantity θ is precisely the posterior density π(θ |x, C).
Bayesian inference may be described as the problem of stating a proba-
bility distribution for the quantity of interest encapsulating all available
information about its value.

In one or two dimensions, a graph of the posterior probability density
of the quantity of interest conveys an intuitive summary of the main
conclusions. This is greatly appreciated by users, and is an important
asset of Bayesian methods.

However, graphical methods not easily extend to more than two dimen-
sions and elementary quantitative conclusions are often required.

The simplest forms to summarize the information contained in the poste-
rior distribution are closely related to the conventional concepts of point
estimation and interval estimation.
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• Point Estimation: Posterior mean and posterior mode

It is often required to provide point estimates of relevant quantities.
Bayesian point estimation is best described as a decision problem where
one has to choose a particular value θ̃ as an approximate proxy for the
actual, unknown value of θ.

Intuitively, any location measure of the posterior density π(θ |x)
may be used as a point estimator. When they exist, either
E[θ |x] =

∫
Θ θ π(θ |x) dθ (posterior mean ), or

Mo[θ |x] = arg supθ∈Θ π(θ |x) (posterior mode)
are often regarded as natural choices.

Lack of invariance. Neither the posterior mean not the posterior mode are
invariant under reparametrization. The point estimator ψ̃ of a bijection
ψ = ψ(θ) of θ will generally not be equal to ψ(θ̃).
In pure “inferential” applications, where one is requested to provide a
point estimate of the vector of interest without an specific application in
mind, it is difficult to justify a non-invariant solution.
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• Point Estimation: Posterior median

A summary of a multivariate density π(θ |x), where θ = {θ1, . . . , θk},
should contain summaries of:
(i) each of the marginal densities π(θi |x),
(ii) the densities π(φ |x) of other functions of interest φ = φ(θ).
In one-dimensional continuous problems the posterior median,
is easily defined and computed as
Me[θ |x] = q ;

∫
{θ≤q} π(θ |x) dθ = 1/2

The one-dimensional posterior median has many attractive properties:
(i) it is invariant under bijections, Me[φ(θ) |x] = φ(Me[θ |x]).
(ii) it exists and it is unique under very wide conditions

(iii) it is rather robust under moderate perturbations of the data.

The posterior median is often considered to be the best ‘automatic’
Bayesian point estimator in one-dimensional continuous problems.

The posterior median is not easily used to a multivariate setting.
The natural extension of its definition produces surfaces (not points).

General invariant multivariate definitions of point estimators is possible
using Bayesian decision theory
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• General Credible Regions

To describe π(θ |x) it is often convenient to quote regions Θp ⊂ Θ of
given probability content p under π(θ |x). This is the intuitive basis of
graphical representations like boxplots.

A subset Θp of the parameter space Θ such that∫
Θp

π(θ |x) dθ = p, so that Pr(θ ∈ Θp |x) = p,
is a posterior p-credible region for θ.

A credible region is invariant under reparametrization:
If Θp is p-credible for θ, φ(Θp) is a p-credible for φ = φ(θ).
For any given p there are generally infinitely many credible regions.
Credible regions may be selected to have minimum size (length, area,
volume), resulting in highest probability density (HPD) regions,
where all points in the region have larger probability density
than all points outside.

HPD regions are not invariant : the image φ(Θp) of an HPD region Θp
will be a credible region for φ, but will not generally be HPD.
There is no reason to restrict attention to HPD credible regions.
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• Credible Intervals

In one-dimensional continuous problems, posterior quantiles are often
used to derive credible intervals.

If θq = Qq[θ |x] is the q-quantile of the posterior distribution of θ,
the interval Θp = {θ; θ ≤ θp} is a p-credible region,
and it is invariant under reparametrization.

Equal-tailed p-credible intervals of the form
Θp = {θ; θ(1−p)/2 ≤ θ ≤ θ(1+p)/2}
are typically unique, and they invariant under reparametrization.

Example: Model N(x |µ, σ). Credible intervals for the normal mean.
The reference posterior for µ is π(µ |x) = St(µ |x, s2/(n− 1), n− 1).
Hence the reference posterior distribution of τ =

√
n − 1(µ − x)/s,

a function of µ, is π(τ |x, s, n) = St(τ | 0, 1, n − 1).
Thus, the equal-tailed p-credible intervals for µ are

{µ; µ ∈ x ± q
(1−p)/2
n−1 s/

√
n − 1},

where q
(1−p)/2
n−1 is the (1 − p)/2 quantile of a standard Student density

with n − 1 degrees of freedom.
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• Calibration

In the normal example above , the expression t =
√

n − 1(µ − x)/s
may also be analyzed, for fixed µ, as a function of the data.

The fact that the sampling distribution of the statistic t = t(x, s |µ, n)
is also an standard Student p(t |µ, n) = St(t | 0, 1, n− 1) with the same
degrees of freedom implies that, in this example, objective Bayesian
credible intervals are also be exact frequentist confidence intervals.

Exact numerical agreement between Bayesian credible intervals and
frequentist confidence intervals is the exception, not the norm.

For large samples, convergence to normality implies approximate
numerical agreement. This provides a frequentist calibration to
objective Bayesian methods.

Exact numerical agreement is obviously impossible when the data are
discrete: Precise (non randomized) frequentist confidence intervals do
not exist in that case for most confidence levels.

The computation of Bayesian credible regions for continuous parameters
is however precisely the same whether the data are discrete or continuous.
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2.4. Prediction

• Posterior predictive distributions

Data x = {x1, . . . , xn}, xi ∈ X , set of “homogeneous” observations.
Desired to predict the value of a future observation x ∈ X generated by
the same mechanism.

From the foundations arguments the solution must be a probability dis-
tribution p(x |x, K) describing the uncertainty on the value that x will
take, given data x and any other available knowledge K. This is called
the (posterior) predictive density of x.

To derive p(x |x, K) it is necessary to specify the precise sense in which
the xi’s are judged to be homogeneous.

It is often directly assumed that the data x = {x1, . . . , xn} consist of a
random sample from some specified model, {p(x |θ), x ∈ X ,θ ∈ Θ},
so that p(x |θ) = p(x1, . . . , xn |θ) =

∏n
j=1 p(xj |θ).

If this is the case, the solution to the prediction problem is immediate
once a prior distribution π(θ) has been specified.
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• Posterior predictive distributions from random samples

Let x = {x1, . . . , xn}, xi ∈ X a random sample of size n from the
statistical model {p(x |θ), x ∈ X ,θ ∈ Θ}
Let π(θ) a prior distribution describing available knowledge (in any)
about the value of the parameter vector θ.
The posterior predictive distribution is

p(x |x) = p(x |x1, . . . , xn) =
∫
Θ p(x |θ)π(θ |x) dθ

This encapsulates all available information about the outcome of any
future observation x ∈ X from the same model.

To prove this, make use the total probability theorem, to have
p(x |x) =

∫
Θ p(x |θ,x)π(θ |x) dθ

and notice the new observation x has been assumed to be conditionally
independent of the observed data x, so that p(x |θ,x) = p(x |θ).
The observable values x ∈ X may be either discrete or continuous
random quantities. In the discrete the predictive distribution will be
described by its probability mass function; if the continuous case, by its
probability density function. Both are denoted p(x |x).
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• Prediction in a Poisson process

Data x = {r1, . . . , rn} random from Pn(r |λ). The reference posterior
density of λ is π∗(λ |x) = Ga(λ | , t + 1/2, n), where t = Σj rj.

The (reference) posterior predictive distribution is

p(r |x) = Pr[r | t, n] =
∫ ∞

0
Pn(r |λ) Ga(λ | , t + 1

2, n) dλ

=
nt+1/2

Γ(t + 1/2)
1
r!

Γ(r + t + 1/2)

(1 + n)r+t+1/2
,

an example of a Poisson-Gamma probability mass function.

For example, no flash floods have been recorded on a particular location
in 10 consecutive years. Local authorities are interested in forecasting
possible future flash floods. Using a Poisson model, and assuming that
meteorological conditions remain similar, the probabilities that r flash
floods will occur next year in that location are given by the Poisson-
Gamma mass function above, with t = 0 and n = 10. This yields,
Pr[0 | t, n] = 0.953, Pr[1 | t, n] = 0.043, and Pr[2 | t, n] = 0.003.

Many other situations may be described with the same model.
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• Prediction of Normal measurements

Data x = {x1, . . . , xn} random from N(x |µ, σ2). Reference prior
π∗(µ, σ) = σ−1 or, in terms of the precision λ = σ−2, π∗(µ, λ) = λ−1.

The joint reference posterior, π∗(µ, λ |x) ∝ p(x |µ, λ) π∗(µ, λ), is
π∗(µ, λ |x) = N(µ |x, (nλ)−1) Ga(λ | (n − 1)/2, ns2/2).
The predictive distribution is

π∗(x |x) =
∫ ∞

0

∫ ∞

−∞
N(x |µ, λ−1) π∗(µ, λ |x) dµ dλ

= {(1 + n)s2 + (µ − x)2}−n/2,

which is a kernel of the Student density

p(x |x) = St(x |x, s2 n+1
n−1, n − 1).

Example. Production of safety belts. Observed breaking strengths of 10
randomly chosen webbings have mean x = 28.011 kN and standard
deviation s = 0.443 kN. Specification requires x > 26 kN.

Reference posterior predictive p(x |x) = St(x | 28.011, 0.490, 9).
Pr(x > 26 |x) =

∫ ∞
26 St(x | 28.011, 0.240, 9) dx = 0.9987.
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• Regression

Often additional information from relevant covariates. Data structure,
set of pairs x = {(y1,v1), . . . (yn,vn)}; yi, vi, both vectors. Given a
new observation, with v known, predict the corresponding value of y.
Formally, compute p{y |v, (y1,v1), . . . (yn,vn)}.

Need a model {p(y |v,θ),y ∈ Y ,θ ∈ Θ} which makes precise the
probabilistic relationship between y and v. The simplest option assumes
a linear dependency of the form p(y |v,θ) = N(y |V β,Σ), but far
more complex structures are common in applications.

Univariate linear regression on k covariates. Y ⊂ �, v = {v1, . . . , vk}.
p(y |v,β, σ) = N(y |vβ, σ2), β = {β1, . . . , βk}t. Data x = {y,V },
y = {y1, . . . , yn}t, and V is the n × k matrix with the vi’s as rows.
p(y |V , β, σ) = Nn(y |V β, σ2In); reference prior π∗(β, σ) = σ−1.

Predictive posterior is the Student density

p(y |v,y,V ) = St(y |vβ̂, f(v,V ) ns2
n−k, n − k)

β̂ = (V tV )−1V ty, ns2 = (y − vβ̂)t(y − vβ̂)
f(v, V ) = 1 + v(V tV )−1vt
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• Example: Simple linear regression

One covariate and a constant term; p(y | v,β, σ) = N(y |β1 + β2v, σ2)
Sufficient statistic is t = {v, y, svy, svv}, with nv = Σvj, ny = Σyj,
syv = Σvjyj/n − v y, svv = Σv2

j /n − v2.

p(y | v, t) = St(y | β̂1 + β̂2v, f(v, t) ns2
n−2, n − 2)

β̂1 = y − β̂2v, β̂2 =
svy
svv

,

ns2 =
∑n

j=1(yj − β̂1 − β̂2xj)2

f(v, t) = 1 + 1
n

(v−v)2+svv
svv

Pollution density (µgr/m3), and
wind speed from source (m/s ).
yj 1212 836 850 446 1164 601
vj 4.8 3.3 3.1 1.7 4.7 2.1

yj 1074 284 352 1064 712 976
vj 3.9 0.9 1.4 4.3 2.9 3.4

Pr[y > 50 | v = 0,x] = 0.66 250 500 750 1000 1250 1500

0.002
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0.008
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v

v

p(y | v,x)
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2.4. Hierarchical Models

• Exchangeability

Random quantities are often “homogeneous” in the precise sense that
only their values matter, not the order in which they appear. Formally,
this is captured by the notion of exchangeability. The set of random vec-
tors {x1, . . . ,xn} is exchangeable if their joint distribution is invariant
under permutations. An infinite sequence {xj} of random vectors is
exchangeable if all its finite subsequences are exchangeable.

Any random sample from any model is exchangeable. The representation
theorem establishes that if observations {x1, . . . ,xn} are exchangeable,
they are a a random sample from some model {p(x |θ),θ ∈ Θ}, labeled
by a parameter vectorθ, defined as the limit (asn → ∞) of some function
of the xi’s. Information about θ in prevailing conditions C is necessarily
described by some probability distribution π(θ |C).
Formally, the joint density of any finite set of exchangeable observations
{x1, . . . ,xn} has an integral representation of the form
p(x1, . . . ,xn |C) =

∫
Θ

∏n
i=1 p(xi |θ) π(θ |C) dθ.
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• Structured Models

Complex data structures may often be usefully described by partial ex-
changeability assumptions.

Example: Public opinion. Sample k different regions in the country.
Sample ni citizens in region i and record whether or not (yij = 1 or
yij = 0) citizen j would vote A. Assuming exchangeable citizens
within each region implies
p(yi1, . . . , yini

) =
∏ni

j=1 p(yij | θi) = θ
ri
i (1 − θi)

ni−ri,
where θi is the (unknown) proportion of citizens in region i voting A and
ri = Σjyij the number of citizens voting A in region i.

Assuming regions exchangeable within the country similarly leads to
p(θ1, . . . , θk) =

∏k
i=1 π(θi |φ)

for some probability distribution π(θ |φ) describing the political varia-
tion within the regions. Often choose π(θ |φ) = Be(θ |α, β).
The resulting two-stages hierarchical Binomial-Beta model
x = {y1, . . . ,yk}, yi = {yi1, . . . , yini

}, random from Bi(y | θi),
{θ1, . . . , θk}, random from Be(θ |α, β)
provides a far richer model than (unrealistic) simple binomial sampling.
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Example: Biological response. Sample k different animals of the same
species in specific environment. Control ni times animal i and record
his responses {yi1, . . . ,yini

} to prevailing conditions. Assuming ex-
changeable observations within each animal implies
p(yi1, . . . ,yini

) =
∏ni

j=1 p(yij |θi).
Often choose p(yij |θi) = Nr(y |µi,Σ1), where r is the number of
biological responses measured.

Assuming exchangeable animals within the environment leads to
p(µ1, . . . ,µk) =

∏k
i=1 π(µi |φ)

for some probability distribution π(µ |φ) describing the biological vari-
ation within the species. Often choose π(µ |φ) = Nr(µ |µ0,Σ2).
The two-stages hierarchical multivariate Normal-Normal model
x = {y1, . . . ,yk}, yi = {yi1, . . . ,yini

}, random from Nr(y |µi,Σ1),
{µ1, . . . ,µk}, random from Nr(µ |µ0,Σ2)
provides a far richer model than (unrealistic) simple multivariate normal
sampling.

Finer subdivisions, e.g., subspecies within each species, similarly lead
to hierarchical models with more stages.
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• Bayesian analysis of hierarchical models

A two-stages hierarchical model has the general form
x = {y1, . . . ,yk}, yi = {zi1, . . . ,zini

}
yi random sample of size ni from p(z |θi), θi ∈ Θ,

{θ1, . . . ,θk}, random of size k from π(θ |φ), φ ∈ Φ.

Specify a prior distribution (or a reference prior function)
π(φ) for the hyperparameter vector φ.

Use standard probability theory to compute all desired
posterior distributions:
π(φ |x) for inferences about the hyperparameters,
π(θi |x) for inferences about the parameters,
π(ψ |x) for inferences about the any function ψ = ψ(θ1, . . . ,θk)

of the parameters,
π(y |x) for predictions on future observations,
π(t |x) for predictions on any function t = t(y1, . . . ,ym)

of m future observations

Markov Chain Monte Carlo based software available for the necessary
computations.
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3. Decision Making

3.1 Structure of a Decision Problem

• Alternatives, consequences, relevant events

A decision problem if two or more possible courses of action; A is the
class of possible actions.

For each a ∈ A, Θa is the set of relevant events, those may affect the
result of choosing a.

Each pair {a,θ}, θ ∈ Θa, produces a consequence c(a,θ) ∈ Ca. In this
context, θ if often referred to as the parameter of interest.

The class of pairs {(Θa, Ca), a ∈ A} describes the structure of the
decision problem. Without loss of generality, it may be assumed that the
possible actions are mutually exclusive, for otherwise the appropriate
Cartesian product may be used.

In many problems the class of relevant events Θa is the same for all
a ∈ A. Even if this is not the case, a comprehensive parameter space Θ
may be defined as the union of all the Θa.
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• Foundations of decision theory

Different sets of principles capture a minimum collection of logical rules
required for “rational” decision-making.

These are axioms with strong intuitive appeal.
Their basic structure consists of:

• The Transitivity of preferences:
If a1 > a2 given C, and a2 > a3 given C,
then a1 > a3 given C.

• The Sure-thing principle:
If a1 > a2 given C and E, and a1 > a2 given C and not E
then a1 > a2 given C.

• The existence of Standard events:
There are events of known plausibility.
These may be used as a unit of measurement, and
have the properties of a probability measure

These axioms are not a description of human decision-making,
but a normative set of principles defining coherent decision-making.
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• Decision making

Many different axiom sets.
All lead basically to the same set of conclusions, namely:

• The consequences of wrong actions should be evaluated in terms of a
real-valued loss function L(a,θ) which specifies, on a numerical scale,
their undesirability.

• The uncertainty about the parameter of interest θ should be measured
with a probability distribution π(θ |C)

π(θ |C) ≥ 0, θ ∈ Θ,

∫

Θ
π(θ |C) dθ = 1,

describing all available knowledge about its value, given the conditions C
under which the decision must be taken.

• The relative undesirability of available actions a ∈ A is measured by
their expected loss

L(a |C) =
∫

Θ
L(a,θ)π(θ |C) dθ, a ∈ A.
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• Intrinsic loss functions: Intrinsic discrepancy

The loss function is typically context dependent.

In mathematical statistics, intrinsic loss functions are used to measure
the distance between between statistical models.

They measure the divergence between the models {p1(x |θ1),x ∈ X}
and {p2(x |θ2),x ∈ X} as some non-negative function of the form
L[p1(x |θ1), p2(x |θ2)] which is zero if (and only if) the two distribu-
tions are equal almost everywhere.

The intrinsic discrepancy between two statistical models is simply the
intrinsic discrepancy between their sampling distributions, i.e.,
δ{p1, p2} = δ{θ1,θ2}

= min
{∫

X
p1(x |θ1) log

p1(x |θ1)
p2(x |θ2)

dx,
∫

X
p2(x |θ2) log

p2(x |θ2)
p1(x |θ1)

dx

}

The intrinsic discrepancy is an information-based, symmetric, invariant
intrinsic loss.
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3.2 Formal Point Estimation

• The decision problem

Given statistical model {p(x |ω),x ∈ X ,ω ∈ Ω}, quantity of interest
θ = θ(ω) ∈ Θ. A point estimator θ̃ = θ̃(x) of θ is some function of
the data to be regarded as a proxy for the unknown value of θ.

To choose a point estimate for θ is a decision problem, where the action
space is A = Θ.

Given a loss function l(θ̃,θ), the posterior expected loss is

L[θ̃ |x] =
∫

Θ
L(θ̃,θ)π(θ |x) dθ,

The corresponding Bayes estimator is that function of the data,

θ∗ = θ∗(x) = arg inf
θ̃∈Θ

L[θ̃ |x],

which minimizes that expectation.
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• Conventional estimators

The posterior mean and the posterior mode are the Bayes estimators
which respectively correspond to a quadratic an a zero-one loss functions.

• If L(θ̃, θ) = (θ̃−θ)t(θ̃−θ), then, assuming that the mean exists, the
Bayes estimator is the posterior mean E[θ |x].

• If the loss function is a zero-one function, so that L(θ̃,θ) = 0 if θ̃
belongs to a ball of radius ε centered in θ and L(θ̃,θ) = 1 otherwise
then, , assuming that a unique mode exists, the Bayes estimator converges
to the posterior mode Mo[θ |x] as the ball radius ε tends to zero.

If θ is univariate and continuous, and the loss function is linear,

L(θ̃, θ) =
{

c1(θ̃ − θ) if θ̃ ≥ θ

c2(θ − θ̃) if θ̃ < θ

then the Bayes estimator is the posterior quantile of order c2/(c1 + c2),
so that Pr[θ < θ∗] = c2/(c1 + c2).
In particular, if c1 = c2, the Bayes estimator is the posterior median.

Any θ value may be optimal: it all depends on the loss function.
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• Intrinsic estimation

Given the statistical model {p(x |θ),x ∈ X ,θ ∈ Θ} the intrinsic dis-
crepancy δ(θ1,θ2) between two parameter values θ1 and θ2 is the in-
trinsic discrepancy δ{p(x |θ1), p(x |θ2)} between the corresponding
probability models.

This is symmetric, non-negative (and zero iff θ1 = θ2), invariant under
reparametrization and invariant under bijections of x.

The intrinsic estimator is the reference Bayes estimator which
corresponds to the loss defined by the intrinsic discrepancy:

• The expected loss with respect to the reference posterior distribution

d(θ̃ |x) =
∫

Θ
δ{θ̃,θ}π∗(θ |x) dθ

is an objective measure, in information units, of the expected discrepancy
between the model p(x | θ̃) and the true (unknown) model p(x |θ).
• The intrinsic estimator θ∗ = θ∗(x) is the value which minimizes such
expected discrepancy,

θ∗ = arg inf
θ̃∈Θ

d(θ̃ |x).
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• Example: Intrinsic estimation of the Binomial parameter

Data x = {x1, . . . , xn}, random from p(x | θ) = θx(1 − θ)1−x,
r = Σxj. Intrinsic discrepancy δ(θ̃, θ) = n min{k(θ̃ | θ), k(θ | θ̃)},
k(θ1 | θ2) = θ2 log θ2

θ1
+ (1 − θ2) log 1−θ2

1−θ1
, π∗(θ) = Be(θ | 1

2,
1
2)

π∗(θ | r, n) = Be(θ | r + 1
2, n − r + 1

2).
Expected reference discrepancy

d(θ̃, r, n) =
∫ 1
0 δ(θ̃, θ)π∗(θ | r, n) dθ

Intrinsic estimator
θ∗(r, n) = arg min0<θ̃<1 d(θ̃, r, n)

From invariance, for any bijection
φ = φ(θ), φ∗ = φ(θ∗).
Analytic approximation

θ∗(r, n) ≈ r+1/3
n+2/3, n > 2

n = 12, r = 0, θ∗(0, 12) = 0.026
Me[θ |x] = 0.018, E[θ |x] = 0.038 0 10 20 30 40 50
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3.3 Hypothesis Testing

• Precise hypothesis testing as a decision problem

The posterior π(θ |D) conveys intuitive information on the values of θ
which are compatible with the observed data x: those with a relatively
high probability density.

Often a particular value θ0 is suggested for special consideration:

• Because θ = θ0 would greatly simplify the model

• Because there are context specific arguments suggesting that θ = θ0
More generally, one may analyze the restriction of parameter space Θ
to a subset Θ0 which may contain more than one value.

Formally, testing the hypothesis H0 ≡ {θ = θ0} is a decision problem
with just two possible actions:

• a0: to accept H0 and work with p(x |θ0).
• a1: to reject H0 and keep the general model p(x |θ).
To proceed, a loss function L(ai,θ), θ ∈ Θ, describing the possible
consequences of both actions, must be specified.
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• Structure of the loss function

Given data x, optimal action is to reject H0 (action a1) iff the expected
posterior loss of accepting,

∫
Θ L(a0,θ) π(θ |x) dθ, is larger than the

expected posterior loss of rejecting,
∫
Θ L(a1,θ)π(θ |x) dθ, i.e., iff

∫
Θ[L(a0, θ) − L(a1,θ)]π(θ |x) dθ =

∫
Θ ∆L(θ)π(θ |x) dθ > 0.

Therefore, only the loss difference ∆L(θ) = L(a0,θ)−L(a1,θ), which
measures the advantage of rejecting H0 as a function of θ, has to be
specified: The hypothesis should be rejected whenever the expected
advantage of rejecting is positive.

The advantage ∆L(θ) of rejecting H0 as a function of θ should be of
the form ∆L(θ) = l(θ0,θ) − l∗, for some l∗ > 0, where

• l(θ0,θ) measures the discrepancy between p(x |θ0) and p(x |θ),
• l∗ is a positive utility constant which measures the advantage working
with the simpler model when it is true.

The Bayes criterion will then be: Reject H0 if (and only if)
∫
Θ l(θ0,θ) π(θ |x) dθ > l∗, that is if (and only if)

the expected discrepancy between p(x |θ0) and p(x |θ) is too large.
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• Bayesian Reference Criterion

An good choice for the function l(θ0,θ) is the intrinsic discrepancy,

δ(θ0, θ) = min {k(θ0 |θ), k(θ |θ0)},
where k(θ0 |θ) =

∫
X p(x |θ) log{p(x |θ)/p(x |θ0)}dx.

If x = {x1, . . . , xn} ∈ Xn is a random sample from p(x |θ), then

k(θ0 |θ) = n
∫
X p(x |θ) log p(x |θ)

p(x |θ0) dx.

For objective results, exclusively based on model assumptions and data,
the reference posterior distribution π∗(θ |x) should be used.

Hence, reject if (and only if) the expected reference posterior intrinsic
discrepancy d(θ0 |x) is too large,

d(θ0 |x) =
∫
Θ δ(θ0,θ)π∗(θ |x) dθ > d∗, for some d∗ > 0.

This is the Bayesian reference criterion (BRC).

The reference test statistic d(θ0 |x) is nonnegative, it is invariant both
under reparametrization and under sufficient transformation of the data,
and it is a measure, in natural information units (nits) of the expected
discrepancy between p(x |θ0) and the true model.
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• Calibration of the BRC

The reference test statistic d(θ0 |x) is the posterior expected discrepancy
of the intrinsic discrepancy between p(x |θ0) and p(x |θ). Hence,

• A reference test statistic value d(θ0 |x) of, say, log(10) = 2.303 nits
implies that, given data x, the average value of the likelihood ratio
against the hypothesis, p(x |θ)/p(x |θ0), is expected to be about 10,
suggesting some mild evidence against θ0.

• Similarly, a value d(θ0 |x) of log(100) = 4.605 indicates an average
value of the likelihood ratio against θ0 of about 100, indicating rather
strong evidence against the hypothesis, and log(1000) = 6.908, a rather
conclusive likelihood ratio against the hypothesis of about 1000.

As expected, there are strong connections between the BRC criterion for
precise hypothesis testing and intrinsic estimation:

• The intrinsic estimator is the value of θ with minimizes the reference
test statistic: θ∗ = arg infθ∈Θ d(θ |x).

• The regions defined by {θ; d(θ |x) ≤ d∗} are invariant reference
posterior q(d∗)-credible regions for θ. For regular problems and large
samples, q(log(10)) ≈ 0.95 and q(log(100)) ≈ 0.995.
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• A canonical example: Testing a value for the Normal mean

In the simplest case where the variance σ2 is known,

δ(µ0, µ) = n(µ − µ0)2/(2σ2), π∗(µ |x) = N(µ |x, σ2/n),

d(µ0 |x) = 1
2(1 + z2), z = x−µ0

σ/
√

n

Thus rejecting µ = µ0 if d(µ0 |x) > d∗ is equivalent to rejecting if
|z| >

√
2d∗ − 1 and, hence, to a conventional two-sided frequentist test

with significance level α = 2(1 − Φ(|z|)).
d∗ |z| α

log(10) 1.8987 0.0576
log(100) 2.8654 0.0042

log(1000) 3.5799 0.0003

The expected value of d(µ0 |x)
if the hypothesis is true is
∞∫

−∞
1
2(1 + z2)N(z | 0, 1) dz = 1

-4 -2 0 2 4
0

2

4

6

8

z

d(µ0 |x) = (1 + z2)/2
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• Fisher’s tasting tea lady

Data x = {x1, . . . , xn}, random from p(x | θ) = θx(1 − θ)1−x,
r = Σxj. Intrinsic discrepancy δ(θ0, θ) = n min{k(θ0 | θ), k(θ | θ0)},
k(θ1 | θ2) = θ2 log θ2

θ1
+ (1 − θ2) log 1−θ2

1−θ1
, π∗(θ) = Be(θ | 1

2,
1
2)

Intrinsic test statistic
d(θ0 |x) =

∫ 1
0 δ(θ̃, θ)π∗(θ |x) dθ

Fisher’s example: x = {10, 10}
Test θ0 = 1/2, θ∗(x) = 0.9686

d(θ∗ |x) θ∗ Pr[θ < θ∗ |x]

log[10] 0.711 0.99185
log[100] 0.547 0.99957

log[1000] 0.425 0.99997

Using d∗ = log[100] = 4.61,
the value θ = 0.5 is rejected.
Pr[θ < 0.5 |x] = 0.00016

0.4 0.5 0.6 0.7 0.8 0.9 1

2.5
5

7.5
10

12.5
15

17.5
20

0.4 0.5 0.6 0.7 0.8 0.9 1

1
2
3
4
5
6
7

π∗(θ | 10, 10)

d(θ0 | 10, 10)



68
• Asymptotic approximation

For large samples, the posterior approaches N(θ | θ̂, n−1F−1(θ̂)), where
F (θ) is Fisher’s information function. Changing variables, the
posterior distribution of φ = φ(θ) =

∫
F 1/2(θ) dθ = 2 arc sin

√
θ) is

approximately normal N(φ | φ̂, n−1). Since d(θ, x) is invariant,

d(θ0,x) ≈ 1
2[1 + n{φ(θ0) − φ(θ̂)}2].

• Testing for a majority (θ0 = 0.5)

x = {720, 1500}, θ∗(x) = 0.4800

d(θ∗ |x) R = (θ∗0, θ
∗
1) Pr[θ ∈ R |x]

log[10] (0.456, 0.505) 0.9427
log[100] (0.443, 0.517) 0.9959

log[1000] (0.434, 0.526) 0.9997

Very mild evidence against θ = 0.5:
d(0.5 | 720, 1500) = 1.67
Pr(θ < 0.5 | 720, 1500) = 0.9393 0.44 0.46 0.48 0.5 0.52 0.54
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