
Modeling Car Crash Management with KAOS 

Antoine Cailliau, Christophe Damas, Bernard Lambeau, and Axel van Lamsweerde 
Université catholique de Louvain (UCL)  

Louvain-La-Neuve, Belgium 
{antoine.cailliau, christophe.damas, bernard.lambeau, axel.vanlamsweerde}@uclouvain.be 

 
 

Abstract—Getting the right software requirements under the 
right environment assumptions is a critical precondition for 
developing the right software. KAOS is a goal-driven, model-
based approach for elaborating a complete, adequate, consistent, 
and well-structured set of measurable software requirements and 
environment assumptions. The modeling language and method 
cover the intentional, structural, functional, and behavioral facets 
of the target system. Declarative and operational sub-models are 
integrated. Semi-formal and formal techniques complement each 
other for model construction, analysis and evolution.  They 
support early and incremental reasoning on partial models for a 
variety of purposes including goal satisfaction arguments, 
property checks, animations, the evaluation of alternative 
options, the analysis of risks, threats and conflicts, and 
traceability management.  

The paper illustrates the modeling language and method on a 
car crash management case study. The overall produced model 
integrates the goal, object, agent, operation and behavior sub-
models of the system. The paper outlines some of the features 
supported by KAOS for incremental model elaboration, 
including goal identification and refinement, the structuring of 
domain concepts, risk analysis for increased requirements 
completeness, goal operationalization, the derivation of agent 
interfaces and the derivation of state machine behavior models. 

Index Terms— Goal-oriented requirements engineering, multi-
view system modeling, model construction, model analysis. 

I. INTRODUCTION 
Requirements engineering (RE) is concerned with the 
elicitation, evaluation, specification, consolidation, and 
evolution of the objectives, functionalities, qualities, and 
constraints a software-based system should meet within some 
organizational or physical setting [5]. The RE process is 
intrinsically complex. 
• A wide spectrum of concerns need to be addressed, ranging 

from high-level, strategic objectives to detailed, technical 
requirements. 

• Two systems are involved: the system as it is before 
software development and the system-to-be. The latter 
includes software and environment components such as 
people, devices or pre-existing software. 

• The involved stakeholders may have diverse, partial and 
conflicting concerns. 

• Risks must be anticipated in order to achieve requirements 
completeness and system robustness. 

• Numerous alternative options must be evaluated for 
selection of preferred ones. 

KAOS is a rigorous method for requirements engineering 
aimed at addressing those challenges [5]. The method may be 
briefly characterized as follows. 
• Model-based and multi-view: the elaborated system 

specification is organized at various levels of abstraction 
and according to multiple system facets. 

• Goal-oriented: the software requirements and environment 
assumptions are derived so as to meet the system’s 
functional and non-functional objectives. 

• Constructive: systematic steps and heuristic rules at each 
step are available to provide guidance in elaborating high-
quality requirements. 

• Incremental: early reasoning on partial models is supported. 
• Wide-spectrum: declarative and operational models are 

integrated. 
• Formal when and where needed for more sophisticated 

analysis. 
• Lightweight for use in practical situations, with formal 

details kept hidden wherever possible. 
In KAOS, the multiple system facets are captured through 

complementary models integrated through inter-model 
consistency rules [5].  
• The goal model interrelates all functional and non-

functional objectives of the system considered (as-is or to-
be). 

• The object model defines and interrelates all concepts 
involved in the goal specifications. 

• The agent model specifies the system components, their 
interfaces and their responsibilities with respect to goals. 

• The operation model specifies the functional services 
derived from the goals assigned to specific agents. 

• The behavior model captures agent behaviors for goal 
satisfaction in terms of interaction scenarios and parallel 
state machines. 
The paper shows KAOS in action on the bCMS case study 

(barbados Car crash Management System) [3]. The proposed 
system is intended to coordinate the communication between a 
fire station coordinator (FSC) and a police station coordinator 
(PSC) to handle crises in a timely manner. Only a few 
modeling steps are discussed here for lack of space. Further 
modeling increments resulting in a larger portion of the bCMS 
model are available in [2].  

Section II shows the elaboration of a first-sketch model for 
an ideal system; a few high-level goals are gradually refined 
into subgoals assignable to individual system agents. During 

978-1-4799-0779-3/13/$31.00 c© 2013 IEEE CMA@RE 2013, Rio de Janeiro, Brasil19

 

 

 



such refinement, key concepts are identified and structured in 
an object model. Alternative system options are then discussed 
and evaluated in the light of soft goals and agent 
responsibilities. Section III de-idealizes the model presented in 
Section II through risk identification, assessment and 
resolution. Section IV shows how operational software 
specifications, behavior models and agent interfaces are 
obtained systematically from the models previously built. 
Section V concludes the paper by briefly discussing the 
strengths and limitations of the overall model obtained. 

II. DECLARATIVE MODEL FOR AN IDEAL SYSTEM  
The main bCMS goals are first identified, specified and related 
to each other within goal model fragments (Section II.A). 
While doing so, a first sketch for the object model is derived 
from goal specifications (Section II.B). The goal model is 
enriched by refining goals until fine-grained subgoals are 
obtained that can be assigned to software or environment 
agents, respectively (Section II.C). Throughout this process, 
scenarios can be used for goal elicitation or for illustration of 
alternative goal refinements (Section II.D). 

A. Elaborating Goal Model Fragments 
A goal is a prescriptive statement of intent whose satisfaction 
requires the cooperation of agents forming the system [5]. 
Agents are active system components playing some role in goal 
satisfaction; they include people, devices such as sensors and 
actuators, legacy software or software-to-be components. The 
system thus comprises software-to-be agents together with 
environment agents. Functional goals prescribe services to be 
delivered by the system; non-functional goals constrain how 
such services should be delivered (e.g., quality constraints). 
Behavioral goals prescribe intended system behaviors; soft 
goals prescribe preferences among alternative behaviors. Goals 
cover a wide range of concerns –from strategic, high-level ones 
to technical, fine-grained ones. Requirements are goals under 
the sole responsibility of the software-to-be; expectations 
(sometimes called assumptions) are goals under the 
responsibility of some environment agent.  

A goal model is an AND/OR graph showing how goals 
contribute to each other. An AND-refinement requires all 
subgoals to be satisfied for the parent goal to be satisfied. An 
OR-refinement captures alternative system options; the parent 
goal is satisfied provided one of the alternative subgoals is 
satisfied. Heuristic rules and refinement patterns are available 
for goal identification and refinement [5]. For example, parent 
goals may be obtained bottom-up by answering WHY 
questions about subgoals; subgoals may be obtained top-down 
by answering HOW questions about parent goals. 

Our heuristic rule for eliciting goals from intentional or 
prescriptive keywords in natural language text yields the 

following goal stated in [3, p.3]: 
Goal Achieve [CrisisResolved When Reported] 
Def Every crisis detected and reported both at the fire station and the 
police station shall be resolved in a timely manner. 

The Achieve prefix introduces a specific kind of behavioral 
goal; it prescribes behaviors where a target condition must 
sooner or later hold (here, CrisisResolved) whenever some 
current condition holds (here, CrisisReported). Goal 
specifications in the Def annotation should be made precise. 
This calls for further elicitation and disambiguation with 
stakeholders –e.g., what do “in a timely manner” or “resolved” 
exactly mean? 

Refinement patterns provide effective modeling guidance 
by encoding common tactics for goal decomposition and 
subgoal specification [5]. The explanation in [3, p.7] on how a 
crisis should be resolved suggests reusing the milestone-driven 
pattern. This pattern refines a behavioral goal by identifying 
milestone conditions for reaching the goal’s target condition. 
For the goal Achieve [CrisisResolvedWhenReported] it produces the 
following refinement into three subgoals (see Fig. 1): 
Goal Achieve [CrisisRequirementsKnown When CrisisReported] 
Def For every crisis reported, the number of fire trucks and police 
vehicles needed for handling the crisis shall eventually be known by both 
coordinators. 

Goal Achieve [RoutePlanAgreementReached When 
CrisisRequirementsKnown] 

Def When the numbers of required fire trucks and police vehicles are 
known, the PSC and FSC shall eventually agree on a route plan to be 
deployed for resolving the crisis. The latter specifies the vehicles to be 
allocated to the crisis. For each of them, the route plan describes the 
route to be followed from its current position to the crisis location. 

Goal Achieve [CrisisResolvedWhenRoutePlanAgreementReached] 
Def When a route plan has been agreed by both coordinators, the crisis 
shall eventually be resolved. 

This refinement introduces two milestone conditions: 
CrisisRequirementsKnown and RoutePlanAgreement Reached.  

B. Deriving Objects from Goal Specifications  
A first portion of the object model may be derived from the 
goal specifications available so far.  

The object model provides a structural view of how the 
system concepts are interrelated. A conceptual object is a 
system-specific concept whose instances are distinctly 
identifiable, can be enumerated in any system state, share 
similar features, and differ from each other in their individual 
behavior. An object is structurally modeled as an entity, 
association, event or agent depending on whether it is an 
autonomous, subordinate, instantaneous, or active object, 
respectively. The object model is represented by an operation-

 
Fig. 1. Refining Achieve [CrisisResolved When Reported] 

 
Fig. 2. First object model portion for the bCMS 

20

 

 

 



free, design-independent class diagram. It is gradually derived 
from goal specifications by use of heuristic rules [5], e.g., 
“identify associations from linking expressions in goal specs”.  

Fig. 2 shows the object model obtained through such rules. 
Multiplicities may capture descriptive domain properties to be 
used when reasoning about the models –e.g., the multiplicities 
on Allocation express that a route plan requires one or more 
vehicles whereas a vehicle may be allocated to at most one 
route plan at a time. The early object model in Fig. 2 will be 
enriched with additional objects, attributes and associations as 
goal elicitation proceeds further. 

C. Enriching the Goal Model 
Goal refinement terminates when fine-grained subgoals can be 
assigned as requirements or expectations to software or 
environment agents, respectively. The process is guided by 
refinement heuristics, tactics, and patterns [5]. 

Fig. 3 shows the refinement of the goal Achieve [RoutePlan 
AgreementReached When RequirementsKnown] introduced in 
Section II.A. According to [3, p.7], a route plan must be built 
by the police coordinator and then agreed by the fire 
coordinator. Building a route plan requires the vehicle positions 
and availabilities to be known at the police station —a goal to 
be further refined in another diagram. 

There are alternative options for meeting the goal Achieve 
[RoutePlanBuilt From Requirements&VehiclePositions&Availabilities], 
to be evaluated with respect to soft goals in the goal model.  
1. Manual System. No software is used. As the goal 

assignment shows, the police coordinator is expected to 
build the route plan manually (e.g., through a physical 
map). This alternative corresponds to the system-as-is.  

2. Centralized System. The police and fire station coordinators 
use a common centralized CrisisSoftware. The latter 
proposes a route plan that both coordinators may adapt by 
stating constraints on selected vehicles and routes. This 
option involves real-time collaboration between both 
coordinators and the software in order to build an accurate 

route plan with respect to actual vehicle positions and 
availabilities.  

3. Distributed System. The police and fire station coordinators 
use their own software [3, p.3]. The police coordinator 
builds the route plan using the PoliceSoftware, in a way 
similar to the previous alternative. Here, however, the fire 
coordinator is not involved in route plan construction; she 
has to agree with the proposal.  

D. Exploring Alternative Options with Scenarios 
Scenarios capture typical examples of system behavior through 
sequences of interactions among its agents [5]. The MSC 
scenarios in Fig. 4 illustrate the centralized (left) and 
distributed (right) options for route plan construction.  

The scenario illustrating the distributed option reveals the 
implicit assumption that firemen constraints, such as a fire 
truck being unavailable, are known by the PSC. Such hidden 
assumptions must be made explicit and carefully assessed, 
requiring further elicitation in case this option is selected.  

E. Identifying Soft Goals for Option Selection 
Alternative goal refinements or agent assignments capture 
different system designs. The selection of best alternatives is 
based on soft goals as the latter capture preferred behaviors. 

Soft goals for the bCMS system can be identified from 
stakeholder objectives in [3, p.4-6], e.g., Minimize [TimeToGet 
ResourcesOnCrisisLocation], Maximize [TimeEstimatesAccuracy], 
Minimize [StressLevel], Minimize [SystemCost]. Such goals are more 
satisfied along some alternatives envisioned in Section II.C and 
less along others. As illustrated by the scenarios, favoring real-
time collaboration among coordinators in the centralized option 
is likely to yield an agreement more quickly than in the 
distributed option. The centralized option would thus better 
meet the first soft goal –possibly at the expense of system cost. 

Other sub-models may help assessing the satisfaction level 
of soft goals in a given alternative. For example, a 
responsibility diagram shows all responsibilities assigned to a 
given agent [5]. Comparing the responsibility diagrams of the 
police and fire coordinators in the alternative options helps 
assessing potential stress levels through load analysis; too 
many responsibilities may negatively impact on stress level.  

III. OBSTACLE ANALYSIS TO COMPLETE THE GOAL MODEL 
Missing requirements are known to be among the major causes 
of software failures. Early goal models tend to be too ideal; the 
software and its environment are assumed to always behave as 
normally expected. Obstacle analysis is a goal-anchored form 
of risk analysis whereby exceptional conditions obstructing 
system goals are identified, assessed and resolved to produce 

 
Fig. 3. Refining Achieve [RoutePlanAgreementReached When 

Requirements Known] 

 
Fig. 4. Scenario for Centralized (left) and Distributed (right) Systems 

21

 

 

 



more complete requirements [5]. An obstacle to a goal is a 
precondition for non-satisfaction of this goal. An obstacle tree 
is anchored on a leaf goal; it shows through AND/OR 
refinements how this goal can be violated. The root of the tree 
is the goal negation; the leaves are elementary obstruction 
conditions that are satisfiable by the environment. 

A. Identifying Obstacles 
Consider the following descendant of the goal Achieve 

[CrisisResolvedWhenRoutePlanAgreementReached] in Section II.A:  
Goal Achieve [FireVehicleOnScene When Dispatched] 
Def Every fire vehicle dispatched to a crisis shall be on the crisis scene 
within the prescribed deadline.  

This leaf goal is assigned to the Fireman agent. Its root 
obstacle is obtained by negating it. The resulting obstacle is 
recursively refined into sub-obstacles until leaf obstacles are 
reached whose satisfiability, probability of occurrence, and 
resolution can easily be determined. Fig. 5 shows the resulting 
obstacle tree. For example, the fire vehicle may not be on the 
crisis scene in time because it was retracted or it took a wrong 
direction. The latter sub-obstacle might be caused by the driver 
confusing destinations, as shown in the refinement. 

This example, focused on fire vehicle dispatching, shows 
that undesirable situations are not necessarily connected to 
communication problems among coordinators [3]. The 
restricted scope in [3] must thus be enlarged in order to 
anticipate problems that might severely affect the envisioned 
software. (We come back to this in the next section.) 

The communication failures mentioned in [3] were all 
identified by obstacle generation using our regression calculus 
through domain properties [5]. Other problems missing in [3] 
were thereby discovered such as NetworkHardwareFailure, 
FloodingAttackCausingNetworkDelay, LargeTrafficPeak, Messages 
ModifiedByNetworkInfrastructure, etc.  

The generated obstacles must be assessed in terms of 
probability of occurrence and criticality of consequences on the 
degree of satisfaction of high-level goals in the goal model [1].  

B. Resolving Obstacles 
The likely and critical obstacles must be resolved in order to 
produce a more robust goal model with new and/or deidealized 
goals, resulting in a more complete set of requirements. 
Various tactics are available for obstacle resolution, such as 
goal weakening, goal substitution, agent substitution, obstacle 
prevention or obstacle mitigation [5].  

For example, the leaf obstacle FireVehicleDestinationConfused 
in Fig. 5 can be resolved in different ways (see Fig. 6). A first 
countermeasure might be to avoid sending fire vehicles in 
unfamiliar areas: 
Goal Avoid [FireTruckDriver In UnfamiliarAreas] 
Def The planned fire truck routes shall avoid sending truck drivers in 
unfamiliar areas. 

This countermeasure decreases the probability of 
occurrence of the associated obstacle. The new goal has to be 
refined in turn towards assignable requirements and 
expectations. Note that this resolution has an impact on the 
software envisioned in [3]; the requirements discovered along 
the refinement of this new goal impose further constraints on 
route plan proposals in addition to those specified in [3]. They 
will appear more precisely in Section IV.A through 
postconditions on corresponding software operationalizations. 

The alternative resolutions of FireVehicleDestinationConfused 
in Fig. 6 mitigate the goal obstruction by (a) introducing a GPS 
device to reduce the chance of confusion, or (b) dispatching 
another fire vehicle to the crisis together with driver guidance 
for reaching the crisis location.  

Leaf goals along those resolutions might be obstructed by 
further obstacles, leading to a new cycle of obstacle analysis. 

An anti-goal model with the goals of potential attackers 
should be built for security analysis using similar techniques 
[5] –notably, for generating attacks on the compromiser’s goals 
and resolving the corresponding threats. Potential conflicts 
among goals in the goal model should similarly be detected and 
resolved [5].  

IV. DERIVING THE AGENT MODEL 
An agent model captures the agents forming the target system, 
their capabilities, their responsibilities on goals and operations, 
and their interfaces with each other. The boundary between the 
software-to-be and its environment is thereby specified. The 
capabilities of an agent are defined in terms of state variables 
the agent can monitor and control. State variables correspond to 
object attributes and associations from the object model. 
Capabilities and agent interfaces are specified in a context 
diagram; the latter can be systematically derived from leaf goal 
specifications and responsibility assignments [5]. An agent 
model provides a basis for responsibility assignment heuristics, 
load analysis, vulnerability analysis, and software architectural 
design [5]. It may also show how agents and responsibility 
assignments are refined into finer-grained ones.  

Fig. 7 shows a context diagram fragment derived from the 
specifications of the goals assigned to the corresponding 
agents. The labels there mean that the source agent controls the 
corresponding attribute/association whereas the target agent 
monitors it. For example, to satisfy its assigned goal of 
proposing a route plan draft to the coordinators, the 
CrisisSoftware needs to monitor information about vehicle 

 
Fig. 5. Obstacles for Achieve [FireVehicleOnScene When Dispatched] 

 
Fig. 6. Resolutions of obstacle FireVehicleDestinationConfused 

22

 

 

 



positions and availabilities. This information is sent by the GPS 
and the mobile data terminal inside each vehicle. The real, 
physical position and availability status of vehicles is 
controlled by fireman/police officer agents; these state 
variables are not directly monitorable by the software. 

The precise relationship between real and assumed 
information about objects and their attributes/associations (such 
as vehicles here) must be prescribed by accuracy goals [5]. The 
latter are often overlooked in requirements documents in spite 
of being generally critical.  

V. DERIVING OPERATIONAL MODELS 
All leaf goals from the goal model must be operationalized into 
specifications of software operations or environment agent 
tasks. An operation model focuses on the operations to be 
performed by the software-to-be. The specifications of these 
operations are systematically derived from goal specifications 
using operationalization techniques [5]. Operation applications 
define events that trigger state transitions on state variables. A 
behavior model captures the required behaviors of an agent on 
the state variables it controls so as to meet its assigned goals. 

This section considers the CentralizedSoftware alternative 
discussed in Section II.C and illustrates the building of an 
operation model fragment (Section V.A) and a behavior model 
fragment (Section V.B). 

A. Deriving Operations from Goal Specifications 
Let us consider the software operation ProposeRoutePlanDraft 
proposing a route plan draft to the coordinators, as illustrated 
by the first scenario interaction in Fig. 4 (left). This operation 
operationalizes leaf goals from the goal model such as Route 
PlanDraftProposedPromptly, DraftMeetsRequirements, DraftMeets 
Constraints and RoutePlanDraftFeasible. 

The specification of this operation has three parts. 
• The signature declares the input/output state variables. 

ProposeRoutePlanDraft takes as input a crisis info together 
with vehicle information (their current known availability 
status and position). It outputs a route plan draft. 

• The domain pre- and postconditions capture what the 
operation intrinsically means in the domain regardless of 
any prescription for goal satisfaction. Here, the domain 
conditions capture a transition from a state where there is 
no route plan draft for the crisis to a state where such draft 
has been proposed to the coordinators. 

• The required pre-, trigger- and postconditions must ensure 
that the goals underlying the operation are satisfied. A 
required pre- (resp. trigger-) condition for some goal 
captures a permission (resp. an obligation); under this 
condition the operation may (resp. must) be applied to 
ensure that goal. For example, the trigger condition 
hereafter prescribes that the operation must be performed as 

soon as the crisis requirements have been encoded. A 
required postcondition for some goal prescribes an 
additional effect that the operation must have to ensure that 
goal –in addition to the effect captured by the operation’s 
domain postcondition. 

Operation ProposeRoutePlanDraft 
Input c: CrisisInfo, v1..vn: VehicleInfo 
Output rp: RoutePlanDraft 
DomPre No route plan draft exists for resolving c 
DomPost rp is proposed for resolving c 
ReqTrig for Achieve [RoutePlanDraftProposedPromptly]: 

The number of fire trucks and police vehicles needed for handling c 
has been encoded by coordinators. 

ReqPre for Maintain [DraftMeetsRequirements]: 
There are sufficient vehicles available so as to meet c’s requirements 
while meeting all stated constraints. 

ReqPost for Maintain [DraftMeetsRequirements]: 
rp allocates at least as many fire truck and police vehicles as stated in 
the fire and police requirements for crisis c, respectively. 

ReqPost for Maintain [DraftMeetsConstraints]: 
rp meets all constraints stated by fire and police coordinators 

ReqPost for Maintain [RoutePlanDraftFeasible]: 
Every vehicle in rp is currently available; the time to reach the crisis 
location from its current location is below X minutes. 

The operation model may provide a basis for eliciting 
further requirements in a bottom-up fashion. Some missing 
goals underlying required pre-, trigger- and postconditions 
might be discovered through WHY questions about these. For 
example, consider the additional trigger condition on 
ProposeRoutePlanDraft stating that a new constraint is being 
given by a coordinator; this new obligation should prompt a 
WHY question to elicit the underlying goal.  

B. Deriving Agent Behavior Models 
State machine diagrams are used for prescribing the behaviors 
of an agent in terms of admissible sequences of state transitions 
for the state variables the agent controls. Depending on the 
kind of analysis to be performed, such diagrams can be UML 
statecharts or LTS diagrams. They are systematically derivable 
from goal operationalizations or from MSC scenarios [5]. 

Fig. 8 shows a partial statechart model derived for the crisis 
software agent. The diagram refers to the building and 
agreement of a route plan draft. The agreement process is 
modeled by a composite state made of three parallel state 
machines for the corresponding controlled state variables. In 
view of the guards, this composite state can be left only when 
both coordinators have agreed on the route plan draft, see 
Fig. 8 (left). The states, events and guards are derivable from 
domain pre- and postconditions and from required pre-, trigger- 
and postconditions from the operation model [5]. 

The goal, object, agent, operation and behavior models are 
integrated through inter-model consistency rules [5]. For 
example, every event appearing on a state transition in Fig. 8 
should correspond to a scenario event in Fig. 4; the event route 
plan proposal must be controlled by the software in the agent 
model, and correspond to an application of the operation 
ProposeRoutePlanDraft specified in Section IV.A. 

VI. DISCUSSION 
The paper illustrated the KAOS method for model-based RE on 
a number of modeling steps for a car crash management 
system.  The full model integrates the intentional, structural, 
operational, and behavioral dimensions of RE. Along each 

 
Fig. 7. Context diagram for bCMS agents 

23

 

 

 



dimension, dedicated elicitation or derivation techniques were 
used for model construction; consistency rules were used for 
integrating those multiple dimensions [5]. Goals were refined 
until they can be assigned to specific agents. Key structural 
concepts were systematically derived from goal specifications. 
The refinement process enabled reasoning on alternative 
options, illustrated by scenarios, and selected using soft goals 
from the goal model. A more complete and robust version of 
the goal model was obtained through obstacle analysis. From 
there, an agent model was derived together with goal-based 
specifications of software operations and agent behaviors.  

Despite the linear presentation here, a KAOS model 
elaboration is intended to support a seamless transition from 
high-level concerns to operational requirements and vice versa; 
the process turns out to be both top-down (e.g., through HOW 
questions or refinement patterns) and bottom-up (e.g., through 
WHY questions about goals, scenarios, multiplicities in the 
object model, or required pre-, trigger- and postconditions in 
the operation model).  

The modeling language, method, and derivation/analysis 
techniques associated with each step are intended to increase 
the quality of the requirements document derived from the 
model —in terms of requirements completeness, consistency, 
adequacy, precision, measurability, pertinence, and structuring. 
These quality attributes define the problem space a 
requirements modeling approach should address; fit criteria for 
them should provide a problem-oriented basis for comparing 
different modeling approaches for RE. Surprisingly, the 
solution-oriented comparison criteria in [4] ignores them. 

The paper was more focused on the model elaboration 
process, thereby sacrifying to: the presentation of a more 
comprehensive model; the formalization of critical aspects; and 
the illustration of formal analysis techniques on critical issues. 
A more extensive model can be found in [2]. The high-level 
goal introduced in Section II.A is entirely refined within the 
scope of the three alternative options discussed in Section II.C. 
Other high-level goals are identified and refined. The model is 
therefore richer than here, with more soft goals, conceptual 
objects, obstacles and resolutions, responsibilities, agent 
interfaces, operations, and behavioral specifications. 

The scope of our bCMS modeling is significantly wider 
than the one suggested in [3]. The latter puts a strong emphasis 
on the communication between the fire and police station 
coordinators –with premature decisions such as owning a T1 
link or making use of the https protocol. Such decisions pertain 
to the solution space rather than the problem space addressed 

by the RE process. Many other aspects of the system are 
claimed to be out of scope, such as the internal communication 
among police personnel or with vehicles. Internal 
communication issues are definitely part of the problem space. 
For instance, are vehicle positions manually sent by radio or 
through an automated positioning system? This may strongly 
impact on the bCMS software to be developed. 

In the context of an academic modeling exercise, the 
absence of real stakeholders makes it difficult to make realistic 
choices among possible options. The lack of domain 
descriptions in [3] made us explore system options within the 
wider context of resolving a car crash crisis rather than simply 
communicating among coordinators. As already suggested with 
the obstacle analysis in Section III, such wider-scope modeling 
appears highly relevant to the requirements-related quality 
attributes mentioned before. It enables reasoning about 
environment behaviors that will definitely impact on the quality 
of the software-to-be. Moreover, RE modeling approaches 
should be compared within realistic settings; RE is inherently 
an in-the-large process where the context of the proposed 
application has to be investigated. Zooming now on the 
communication among coordinators, our extended modeling in 
[2] suggests that the distributed design decided in [3] is not 
necessarily the best option. 

The following improvements should be considered for 
making our bCMS model more complete. 
• More security, accuracy and usability goals should be 

identified and refined in the goal model. 
• Obstacle analysis should be extended to more leaf goals. 

More anti-goals for the communication compromiser 
should be identified and refined to increase the level of 
security in the system. Conflicts in the goal model should 
be identified and resolved as well [5] (e.g., 
NoFeasibleRoutePlanMeetingAllCrisis Requirements). 

• Critical goals should be formalized in the KAOS real-time 
temporal logic to support formal analysis when and where 
needed, e.g., to prove the correctness of refinements and 
operationalizations, to detect conflicts formally, and to 
generate obstacles automatically [5]. 

• Our single-system model should be extended into a product 
line model using the OR-refinement and OR-assignment 
constructs to specify variation points [5]. 

REFERENCES 
[1] A. Cailliau, A. van Lamsweerde. Assessing requirements-related 

risks through probabilistic goals and obstacles, Req. Eng. 
Journal Vol. 18 No. 2, June 2013, pp 129-146. 

[2] A. Cailliau et al., Modeling Car Crash Management with KAOS, 
UCL, May 2013, kaos.info.ucl.ac.be/bcms.html and www.cs. 
colostate.edu/remodd/v1/sites/default/files/Models-KAOS.pdf 

[3] A. Capozucca, B. H.C. Cheng, G. Georg, N. Guelfi, P. Istoan, G. 
Mussbacher, Requirements Definition Document for a Software 
Product Line of Car Crash Management Systems, May 2012, 
http://cserg0.site.uottawa.ca/cma2013re/CaseStudy.pdf. 

[4] Geri Georg et al., Modeling Approach Comparison Criteria for 
the CMA@RE Workshop at RE’2013, http://cserg0.site. 
uottawa.ca/cma2013re/ComparisonCriteria.pdf 

[5] A. van Lamsweerde, Requirements Engineering: From System 
Goals to UML Models to Software Specifications. Wiley, 2009.

 

 
Fig. 8. Partial behavior model for the crisis software 

24

 

 

 


