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STING: A Statistical Information Grid Approach
 STING (Statistical Information Grid) (Wang, Yang and Muntz, VLDB’97)
 The spatial area is divided into rectangular cells at different levels of resolution, 

and these cells form a tree structure
 A cell at a high level contains a number of smaller cells of the next lower level
 Statistical information of each cell is 

calculated and stored beforehand and 
is used to answer queries

 Parameters of higher level cells can be 
easily calculated from that of lower 
level cell, including
 count, mean, s(standard deviation), 

min, max
 type of distribution—normal, 

uniform, etc.
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Query Processing in STING and Its Analysis

 To process a region query
 Start at the root and proceed to the next lower level, using the STING index
 Calculate the likelihood that a cell is relevant to the query at some confidence 

level using the statistical information of the cell
 Only children of likely relevant cells are recursively explored
 Repeat this process until the bottom layer is reached
 Advantages
 Query-independent, easy to parallelize, incremental update
 Efficiency: Complexity is O(K)
 K: # of grid cells at the lowest level, and K << N (i.e., # of data points)

 Disadvantages
 Its probabilistic nature may imply a loss of accuracy in query processing
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CLIQUE: Grid-Based Subspace Clustering
 CLIQUE (Clustering In QUEst) (Agrawal, Gehrke, Gunopulos, Raghavan: SIGMOD’98)

 CLIQUE is a density-based and grid-based subspace clustering algorithm

 Grid-based: It discretizes the data space through a grid and estimates the density 
by counting the number of points in a grid cell

 Density-based: A cluster is a maximal set of connected dense units in a subspace

 A unit is dense if the fraction of total data points contained in the unit exceeds the 
input model parameter

 Subspace clustering: A subspace cluster is a set of neighboring dense cells in an 
arbitrary subspace.  It also discovers some minimal descriptions of the clusters 

 It automatically identifies subspaces of a high dimensional data space that allow 
better clustering than original space using the Apriori principle
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CLIQUE: SubSpace Clustering with Apriori Pruning

 Start at 1-D space and discretize numerical intervals in each axis into grid
 Find dense regions (clusters) in each subspace and generate their minimal descriptions
 Use the dense regions to find promising candidates in 2-D space based on the Apriori

principle
 Repeat the above in level-wise manner in higher dimensional subspaces
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Major Steps of the CLIQUE Algorithm
 Identify subspaces that contain clusters
 Partition the data space and find the number of points that lie inside each cell of 

the partition

 Identify the subspaces that contain clusters using the Apriori principle

 Identify clusters
 Determine dense units in all subspaces of interests

 Determine connected dense units in all subspaces of interests

 Generate minimal descriptions for the clusters
 Determine maximal regions that cover a cluster of connected dense units for each 

cluster

 Determine minimal cover for each cluster
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Additional Comments on CLIQUE
 Strengths

 Automatically finds subspaces of the highest dimensionality as long as high 
density clusters exist in those subspaces

 Insensitive to the order of records in input and does not presume some 
canonical data distribution

 Scales linearly with the size of input and has good scalability as the number of 
dimensions in the data increases

 Weaknesses

 As in all grid-based clustering approaches, the quality of the results crucially 
depends on the appropriate choice of the number and width of the partitions 
and grid cells
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 Partitioning Methods
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Clustering Validation
 Clustering Validation: Basic Concepts

 Clustering Evaluation: Measuring Clustering Quality

 External Measures for Clustering Validation

 I: Matching-Based Measures

 II: Entropy-Based Measures

 III: Pairwise Measures

 Internal Measures for Clustering Validation

 Relative Measures

 Cluster Stability

 Clustering Tendency
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Clustering Validation and Assessment
 Major issues on clustering validation and assessment

 Clustering evaluation

 Evaluating the goodness of the clustering 

 Clustering stability

 To understand the sensitivity of the clustering result to various algorithm 
parameters, e.g., # of clusters

 Clustering tendency

 Assess the suitability of clustering, i.e., whether the data has any inherent 
grouping structure
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Measuring Clustering Quality
 Clustering Evaluation: Evaluating the goodness of clustering results

 No commonly recognized best suitable measure in practice

 Three categorization of measures: External, internal, and relative

 External: Supervised, employ criteria not inherent to the dataset

 Compare a clustering against prior or expert-specified knowledge (i.e., the 
ground truth) using certain clustering quality measure

 Internal: Unsupervised, criteria derived from data itself

 Evaluate the goodness of a clustering by considering how well the clusters are 
separated and how compact the clusters are, e.g., silhouette coefficient

 Relative: Directly compare different clusterings, usually those obtained via 
different parameter settings for the same algorithm
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Measuring Clustering Quality: External Methods 
 Given the ground truth T, Q(C, T) is the quality measure for a clustering C
 Q(C, T) is good if it satisfies the following four essential criteria
 Cluster homogeneity
 The purer, the better
 Cluster completeness 
 Assign objects belonging to the same category in the ground truth to the same 

cluster
 Rag bag better than alien 
 Putting a heterogeneous object into a pure cluster should be penalized more than 

putting it into a rag bag (i.e., “miscellaneous” or “other” category)
 Small cluster preservation
 Splitting a small category into pieces is more harmful than splitting a large category 

into pieces
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Commonly Used External Measures
 Matching-based measures
 Purity, maximum matching, F-measure
 Entropy-Based Measures
 Conditional entropy
 Normalized mutual information (NMI)
 Variation of information
 Pairwise measures
 Four possibilities: True positive (TP), FN, FP, TN
 Jaccard coefficient, Rand statistic, Fowlkes-Mallow measure
 Correlation measures
 Discretized Huber static, normalized discretized Huber static

Ground truth partitioning T1 T2

Cluster C1 Cluster C2
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C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100

Matching-Based Measures (I):  Purity vs. Maximum Matching

 Purity:  Quantifies the extent that cluster Ci contains points only 
from one (ground truth) partition:
 Total purity of clustering C:

 Perfect clustering if purity = 1 and r = k (the number of clusters 
obtained is the same as that in the ground truth)

 Ex. 1 (green or orange): purity1 = 30/50; purity2 = 20/25; 
purity3 = 25/25; purity = (30 + 20 + 25)/100 = 0.75

 Two clusters may share the same majority partition

11 1
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 Maximum matching: Only one cluster can match one partition
 Match: Pairwise matching, weight w(eij) = nij

 Maximum weight matching:
 Ex2.  (green) match = purity =  0.75; (orange) match = 0.65 > 0.6
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Matching-Based Measures (II): F-Measure
 Precision: The fraction of points in Ci from the majority partition      

(i.e., the same as purity), where ji is the partition that contains 
the maximum # of points from Ci

 Ex. For the green table
 prec1 = 30/50; prec2 = 20/25; prec3 = 25/25

 Recall:  The fraction of point in partition      shared in common 
with cluster Ci, where 
 Ex. For the green table
 recall1 = 30/35; recall2 = 20/40; recall3 = 25/25

 F-measure for Ci: The harmonic means of preci and recalli:
 F-measure for clustering C: average of all clusters:
 Ex. For the green table
 F1 = 60/85; F2 = 40/65; F3 = 1; F = 0.774
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Entropy-Based Measures (I): Conditional Entropy
 Entropy of clustering C:

 Entropy of partitioning T:
 Entropy of T with respect to cluster Ci:
 Conditional entropy of T with respect to

clustering C:
 The more a cluster’s members are split into different partitions, 

the higher the conditional entropy
 For a perfect clustering, the conditional entropy value is 0, where 

the worst possible conditional entropy value is log k

 (i.e., the probability of cluster )
i

i
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
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Pairwise Measures: Four Possibilities for Truth Assignment

 Four possibilities based on the agreement between cluster label and partition label
 TP: true positive—Two points xi and xj belong to the same partition T , and they 

also in the same cluster C

where yi: the true partition label , and      : the cluster label for point xi

 FN: false negative:
 FP: false positive
 TN: true negative
 Calculate the four measures:
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Pairwise Measures: Jaccard Coefficient and Rand Statistic

 Jaccard coefficient:  Fraction of true positive point pairs, but 
after ignoring the true negatives (thus asymmetric)
 Jaccard = TP/(TP + FN + FP)   [i.e., denominator ignores TN]
 Perfect clustering: Jaccard = 1 
 Rand Statistic:     
 Rand = (TP + TN)/N 
 Symmetric; perfect clustering: Rand = 1 
 Fowlkes-Mallow Measure: 
 Geometric mean of precision and recall

 Using the above formulas, one can calculate all the measures for 
the green table (leave as an exercise)

C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100
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Internal Measures (I): BetaCV Measure
 A trade-off in maximizing intra-cluster compactness and inter-cluster separation

 Given a clustering C = {C1, . . ., Ck} with k clusters, cluster Ci containing ni = |Ci| points

 Let W(S, R) be sum of weights on all edges with one vertex in S and the other in R

 The sum of all the intra-cluster weights over all clusters:   

 The sum of all the inter-cluster weights: 

 The number of distinct intra-cluster edges:

 The number of distinct inter-cluster edges:

 Beta-CV measure: 

 The ratio of the mean intra-cluster distance to the mean inter-cluster distance

 The smaller, the better the clustering
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Relative Measure
 Relative measure: Directly compare different clusterings, usually those obtained via 

different parameter settings for the same algorithm
 Silhouette coefficient as an internal measure: Check cluster cohesion and separation
 For each point xi, its silhouette coefficient si is: 

where             is the mean distance from xi to points in its own cluster
is the mean distance from xi to points in its closest cluster

 Silhouette coefficient (SC) is the mean values of si across all the points:
 SC close to +1 implies good clustering
 Points are close to their own clusters but far from other clusters 

 Silhouette coefficient as a relative measure: Estimate the # of clusters in the data
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  Pick the k value that yields the best clustering, i.e., yielding high 
values for SC and SCi (1 ≤ i ≤ k)
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Cluster Stability
 Clusterings obtained from several datasets sampled from 

the same underlying distribution as D should be similar or “stable”
 Typical approach: 
 Find good parameter values for a given clustering algorithm
 Example: Find a good value of k, the correct number of clusters
 A bootstrapping approach to find the best value of k (judged on stability)
 Generate t samples of size n by sampling from D with replacement 
 For each sample Di, run the same clustering algorithm with k values from 2 to kmax

 Compare the distance between all pairs of clusterings Ck(Di) and Ck(Dj) via some 
distance function
 Compute the expected pairwise distance for each value of k

 The value k* that exhibits the least deviation between the clusterings obtained from 
the resampled datasets is the best choice for k since it exhibits the most stability
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Other Methods for Finding K, the Number of Clusters

 Empirical method
 # of clusters:  for a dataset of n points (e.g., n = 200, k = 10)
 Elbow method: Use the turning point in the curve of the sum 

of within cluster variance with respect to the # of clusters
 Cross validation method
 Divide a given data set into m parts
 Use m – 1 parts to obtain a clustering model
 Use the remaining part to test the quality of the clustering
 For example, for each point in the test set, find the closest centroid, and use the 

sum of squared distance between all points in the test set and the closest centroids 
to measure how well the model fits the test set

 For any k > 0, repeat it m times, compare the overall quality measure w.r.t. different 
k’s, and find # of clusters that fits the data the best

/ 2k n
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Clustering Tendency: Whether the Data 
Contains Inherent Grouping Structure

 Assessing the suitability of clustering
 (i.e., whether the data has any inherent grouping structure)

 Determining clustering tendency or clusterability
 A hard task because there are so many different definitions of clusters
 E.g., partitioning, hierarchical, density-based, graph-based, etc.
 Even fixing cluster type, still hard to define an appropriate null model for a data set
 Still, there are some clusterability assessment methods, such as
 Spatial histogram: Contrast the histogram of the data with that generated from 

random samples  
 Distance distribution: Compare the pairwise point distance from the data with 

those from the randomly generated samples 
 Hopkins Statistic: A sparse sampling test for spatial randomness
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