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STING: A Statistical Information Grid Approach
 STING (Statistical Information Grid) (Wang, Yang and Muntz, VLDB’97)
 The spatial area is divided into rectangular cells at different levels of resolution, 

and these cells form a tree structure
 A cell at a high level contains a number of smaller cells of the next lower level
 Statistical information of each cell is 

calculated and stored beforehand and 
is used to answer queries

 Parameters of higher level cells can be 
easily calculated from that of lower 
level cell, including
 count, mean, s(standard deviation), 

min, max
 type of distribution—normal, 

uniform, etc.
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Query Processing in STING and Its Analysis

 To process a region query
 Start at the root and proceed to the next lower level, using the STING index
 Calculate the likelihood that a cell is relevant to the query at some confidence 

level using the statistical information of the cell
 Only children of likely relevant cells are recursively explored
 Repeat this process until the bottom layer is reached
 Advantages
 Query-independent, easy to parallelize, incremental update
 Efficiency: Complexity is O(K)
 K: # of grid cells at the lowest level, and K << N (i.e., # of data points)

 Disadvantages
 Its probabilistic nature may imply a loss of accuracy in query processing
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CLIQUE: Grid-Based Subspace Clustering
 CLIQUE (Clustering In QUEst) (Agrawal, Gehrke, Gunopulos, Raghavan: SIGMOD’98)

 CLIQUE is a density-based and grid-based subspace clustering algorithm

 Grid-based: It discretizes the data space through a grid and estimates the density 
by counting the number of points in a grid cell

 Density-based: A cluster is a maximal set of connected dense units in a subspace

 A unit is dense if the fraction of total data points contained in the unit exceeds the 
input model parameter

 Subspace clustering: A subspace cluster is a set of neighboring dense cells in an 
arbitrary subspace.  It also discovers some minimal descriptions of the clusters 

 It automatically identifies subspaces of a high dimensional data space that allow 
better clustering than original space using the Apriori principle
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CLIQUE: SubSpace Clustering with Apriori Pruning

 Start at 1-D space and discretize numerical intervals in each axis into grid
 Find dense regions (clusters) in each subspace and generate their minimal descriptions
 Use the dense regions to find promising candidates in 2-D space based on the Apriori

principle
 Repeat the above in level-wise manner in higher dimensional subspaces
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Major Steps of the CLIQUE Algorithm
 Identify subspaces that contain clusters
 Partition the data space and find the number of points that lie inside each cell of 

the partition

 Identify the subspaces that contain clusters using the Apriori principle

 Identify clusters
 Determine dense units in all subspaces of interests

 Determine connected dense units in all subspaces of interests

 Generate minimal descriptions for the clusters
 Determine maximal regions that cover a cluster of connected dense units for each 

cluster

 Determine minimal cover for each cluster
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Additional Comments on CLIQUE
 Strengths

 Automatically finds subspaces of the highest dimensionality as long as high 
density clusters exist in those subspaces

 Insensitive to the order of records in input and does not presume some 
canonical data distribution

 Scales linearly with the size of input and has good scalability as the number of 
dimensions in the data increases

 Weaknesses

 As in all grid-based clustering approaches, the quality of the results crucially 
depends on the appropriate choice of the number and width of the partitions 
and grid cells
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 Partitioning Methods
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Clustering Validation
 Clustering Validation: Basic Concepts

 Clustering Evaluation: Measuring Clustering Quality

 External Measures for Clustering Validation

 I: Matching-Based Measures

 II: Entropy-Based Measures

 III: Pairwise Measures

 Internal Measures for Clustering Validation

 Relative Measures

 Cluster Stability

 Clustering Tendency
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Clustering Validation and Assessment
 Major issues on clustering validation and assessment

 Clustering evaluation

 Evaluating the goodness of the clustering 

 Clustering stability

 To understand the sensitivity of the clustering result to various algorithm 
parameters, e.g., # of clusters

 Clustering tendency

 Assess the suitability of clustering, i.e., whether the data has any inherent 
grouping structure
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Measuring Clustering Quality
 Clustering Evaluation: Evaluating the goodness of clustering results

 No commonly recognized best suitable measure in practice

 Three categorization of measures: External, internal, and relative

 External: Supervised, employ criteria not inherent to the dataset

 Compare a clustering against prior or expert-specified knowledge (i.e., the 
ground truth) using certain clustering quality measure

 Internal: Unsupervised, criteria derived from data itself

 Evaluate the goodness of a clustering by considering how well the clusters are 
separated and how compact the clusters are, e.g., silhouette coefficient

 Relative: Directly compare different clusterings, usually those obtained via 
different parameter settings for the same algorithm
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Measuring Clustering Quality: External Methods 
 Given the ground truth T, Q(C, T) is the quality measure for a clustering C
 Q(C, T) is good if it satisfies the following four essential criteria
 Cluster homogeneity
 The purer, the better
 Cluster completeness 
 Assign objects belonging to the same category in the ground truth to the same 

cluster
 Rag bag better than alien 
 Putting a heterogeneous object into a pure cluster should be penalized more than 

putting it into a rag bag (i.e., “miscellaneous” or “other” category)
 Small cluster preservation
 Splitting a small category into pieces is more harmful than splitting a large category 

into pieces
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Commonly Used External Measures
 Matching-based measures
 Purity, maximum matching, F-measure
 Entropy-Based Measures
 Conditional entropy
 Normalized mutual information (NMI)
 Variation of information
 Pairwise measures
 Four possibilities: True positive (TP), FN, FP, TN
 Jaccard coefficient, Rand statistic, Fowlkes-Mallow measure
 Correlation measures
 Discretized Huber static, normalized discretized Huber static

Ground truth partitioning T1 T2

Cluster C1 Cluster C2
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C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100

Matching-Based Measures (I):  Purity vs. Maximum Matching

 Purity:  Quantifies the extent that cluster Ci contains points only 
from one (ground truth) partition:
 Total purity of clustering C:

 Perfect clustering if purity = 1 and r = k (the number of clusters 
obtained is the same as that in the ground truth)

 Ex. 1 (green or orange): purity1 = 30/50; purity2 = 20/25; 
purity3 = 25/25; purity = (30 + 20 + 25)/100 = 0.75

 Two clusters may share the same majority partition
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 Maximum matching: Only one cluster can match one partition
 Match: Pairwise matching, weight w(eij) = nij

 Maximum weight matching:
 Ex2.  (green) match = purity =  0.75; (orange) match = 0.65 > 0.6
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Matching-Based Measures (II): F-Measure
 Precision: The fraction of points in Ci from the majority partition      

(i.e., the same as purity), where ji is the partition that contains 
the maximum # of points from Ci

 Ex. For the green table
 prec1 = 30/50; prec2 = 20/25; prec3 = 25/25

 Recall:  The fraction of point in partition      shared in common 
with cluster Ci, where 
 Ex. For the green table
 recall1 = 30/35; recall2 = 20/40; recall3 = 25/25

 F-measure for Ci: The harmonic means of preci and recalli:
 F-measure for clustering C: average of all clusters:
 Ex. For the green table
 F1 = 60/85; F2 = 40/65; F3 = 1; F = 0.774
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Entropy-Based Measures (I): Conditional Entropy
 Entropy of clustering C:

 Entropy of partitioning T:
 Entropy of T with respect to cluster Ci:
 Conditional entropy of T with respect to

clustering C:
 The more a cluster’s members are split into different partitions, 

the higher the conditional entropy
 For a perfect clustering, the conditional entropy value is 0, where 

the worst possible conditional entropy value is log k

 (i.e., the probability of cluster )
i

i
C i

np C
n
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Pairwise Measures: Four Possibilities for Truth Assignment

 Four possibilities based on the agreement between cluster label and partition label
 TP: true positive—Two points xi and xj belong to the same partition T , and they 

also in the same cluster C

where yi: the true partition label , and      : the cluster label for point xi

 FN: false negative:
 FP: false positive
 TN: true negative
 Calculate the four measures:
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Pairwise Measures: Jaccard Coefficient and Rand Statistic

 Jaccard coefficient:  Fraction of true positive point pairs, but 
after ignoring the true negatives (thus asymmetric)
 Jaccard = TP/(TP + FN + FP)   [i.e., denominator ignores TN]
 Perfect clustering: Jaccard = 1 
 Rand Statistic:     
 Rand = (TP + TN)/N 
 Symmetric; perfect clustering: Rand = 1 
 Fowlkes-Mallow Measure: 
 Geometric mean of precision and recall

 Using the above formulas, one can calculate all the measures for 
the green table (leave as an exercise)

C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100

( )( )
TPFM prec recall

TP FN TP FP
  

 

Ground Truth T1 T2

Cluster C1 C2 C3



88

Internal Measures (I): BetaCV Measure
 A trade-off in maximizing intra-cluster compactness and inter-cluster separation

 Given a clustering C = {C1, . . ., Ck} with k clusters, cluster Ci containing ni = |Ci| points

 Let W(S, R) be sum of weights on all edges with one vertex in S and the other in R

 The sum of all the intra-cluster weights over all clusters:   

 The sum of all the inter-cluster weights: 

 The number of distinct intra-cluster edges:

 The number of distinct inter-cluster edges:

 Beta-CV measure: 

 The ratio of the mean intra-cluster distance to the mean inter-cluster distance

 The smaller, the better the clustering
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Relative Measure
 Relative measure: Directly compare different clusterings, usually those obtained via 

different parameter settings for the same algorithm
 Silhouette coefficient as an internal measure: Check cluster cohesion and separation
 For each point xi, its silhouette coefficient si is: 

where             is the mean distance from xi to points in its own cluster
is the mean distance from xi to points in its closest cluster

 Silhouette coefficient (SC) is the mean values of si across all the points:
 SC close to +1 implies good clustering
 Points are close to their own clusters but far from other clusters 

 Silhouette coefficient as a relative measure: Estimate the # of clusters in the data
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  Pick the k value that yields the best clustering, i.e., yielding high 
values for SC and SCi (1 ≤ i ≤ k)



91

Cluster Stability
 Clusterings obtained from several datasets sampled from 

the same underlying distribution as D should be similar or “stable”
 Typical approach: 
 Find good parameter values for a given clustering algorithm
 Example: Find a good value of k, the correct number of clusters
 A bootstrapping approach to find the best value of k (judged on stability)
 Generate t samples of size n by sampling from D with replacement 
 For each sample Di, run the same clustering algorithm with k values from 2 to kmax

 Compare the distance between all pairs of clusterings Ck(Di) and Ck(Dj) via some 
distance function
 Compute the expected pairwise distance for each value of k

 The value k* that exhibits the least deviation between the clusterings obtained from 
the resampled datasets is the best choice for k since it exhibits the most stability
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Other Methods for Finding K, the Number of Clusters

 Empirical method
 # of clusters:  for a dataset of n points (e.g., n = 200, k = 10)
 Elbow method: Use the turning point in the curve of the sum 

of within cluster variance with respect to the # of clusters
 Cross validation method
 Divide a given data set into m parts
 Use m – 1 parts to obtain a clustering model
 Use the remaining part to test the quality of the clustering
 For example, for each point in the test set, find the closest centroid, and use the 

sum of squared distance between all points in the test set and the closest centroids 
to measure how well the model fits the test set

 For any k > 0, repeat it m times, compare the overall quality measure w.r.t. different 
k’s, and find # of clusters that fits the data the best

/ 2k n
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Clustering Tendency: Whether the Data 
Contains Inherent Grouping Structure

 Assessing the suitability of clustering
 (i.e., whether the data has any inherent grouping structure)

 Determining clustering tendency or clusterability
 A hard task because there are so many different definitions of clusters
 E.g., partitioning, hierarchical, density-based, graph-based, etc.
 Even fixing cluster type, still hard to define an appropriate null model for a data set
 Still, there are some clusterability assessment methods, such as
 Spatial histogram: Contrast the histogram of the data with that generated from 

random samples  
 Distance distribution: Compare the pairwise point distance from the data with 

those from the randomly generated samples 
 Hopkins Statistic: A sparse sampling test for spatial randomness
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 Evaluation of Clustering
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