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Preface 

This revised handbook provides a concise summary of the salient 
facts and formulas relating to 40 major probability distributions, 
together with associated diagrams that allow the shape and other 
general properties of each distribution to be readily appreciated. 

In the introductory chapters the fundamental concepts of the 
subject are covered with clarity, and the rules governing the relation- 
ships between variates are described. Extensive use is made of the 
inverse distribution function and a definition establishes a variate as 
a generalized form of a random variable. A consistent and unam- 
biguous system of nomenclature can thus be developed, with chapter 
summaries relating to individual distributions. 

Students, teachers, and practitioners for whom statistics is either a 
primary or secondary discipline will find this book of great value, 
both for factual references and as a guide to the basic principles of 
the subject. It fulfills the need for rapid access to information that 
must otherwise be gleaned from many scattered sources. 

The first version of this book, written by N. A. J. Hastings and 
J. B. Peacock, was published by Butterworths, London, 1975. The 
second edition, with a new author, M. A. Evans, was published by 
John Wiley & Sons in 1993. This third edition includes an increased 
number of distributions and material on applications, variate rela- 
tionships, estimation, and computing. Merran Evans is in the 
Department of Econometrics and Business Statistics and currently 
Director, Planning and Academic Affairs at Monash University, 
Victoria, Australia. Professor Evans holds a Ph.D. in Econometrics 
from Monash University. Nicholas Hastings is Mount Isa Mines 
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Professor of Maintenance Engineering at Queensland University of 
Technology, Brisbane, Australia. Dr. Hastings holds a Ph.D. in 
Operations Research from the University of Birmingham. His publi- 
cations include co-authorship of Decision Networks (Wiley, 1978). 
Brian Peacock graduated from Loughborough University in 
Ergonomics and Cybernetics and obtained his Ph.D. in Engineering 
Production from Birmingham University. He spent 14 years in 
academia in Hong Kong, Australia, Canada, and the United States 
before joining General Motors, where, for the past 10 years, he has 
been manager of manufacturing ergonomics. 

The authors gratefully acknowledge the helpful suggestions made 
by Harry Bartlett. 
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C H A P T E R  1 

Introduction 

The number of puppies in a litter, the life of a light bulb, and 
the time to arrival of the next bus at a stop are all examples of 
random variables encountered in everyday life. Random vari- 
ables have come to play an important role in nearly every field 
of study: in physics, chemistry, and engineering, and especially 
in the biological, social, and management sciences. Random 
variables are measured and analyzed in terms of their statisti- 
cal and probabilistic properties, an underlying feature of which 
is the distribution function. Although the number of potential 
distribution models is very large, in practice a relatively small 
number have come to prominence, either because they have 
desirable mathematical characteristics or because they relate 
particularly well to some slice of reality or both. 

This book gives a concise statement of leading facts relating 
to 40 distributions and includes diagrams so that shapes and 
other general properties may readily be appreciated. A consis- 
tent system of nomenclature is used throughout. We have 
found ourselves in need of just such a summary on frequent 
occasions-as students, as teachers, and as practitioners. This 
book has been prepared and revised in an attempt to fill the 
need for rapid access to information that must otherwise be 
gleaned from scattered and individually costly sources. 

In choosing the material, we have been guided by a utilitar- 
ian outlook. For example, some distributions that are special 

1 



2 

cases of more general families are given extended treatm 
where this is felt to be justified by applications. A general 
discussion of families or systems of distributions was consid- 
ered beyond the scope of this book. In choosing the appropri- 
ate symbols and parameters for the description of each 
distribution, and especially where different but interrelated 
sets of symbols arc in use in different fields, we have tried to 
strike a balance between the various usages, the need for a 
consistent system of nomenclature within the book, and typo- 
graphic simplicity. We have given some methods of parameter 
estimation where we felt it was appropriate to do so. Refer- 
ences listed in the Bibliography are not the primary sources 
but should be regarded as the first "port of call." 

In addition to listing the properties of individual variates we 
have considered relationships between variates. This area is 
often obscure to the nonspecialist. We have also made use of 
the inverse distribution function, a function that is widely 
tabulated and used but rarely explicitly defined. We have 
particularly sought to avoid the confusion that can result from 
using a single symbol to mean here a function, there a quan- 
tile, and elsewhere a variate. 
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Terms and Symbols 

2.1. PROBABILITY, RANDOM VARIABLE, VARIATE, 
AND RANDOM NUMBER 

Probabilistic Experiment 

A probabilistic experiment is some occurrence such as the 
tossing of coins, rolling dice, or observation of rainfall on a 
particular day where a complex natural background leads to a 
chance outcome. 

Sample Space 

The set of possible outcomes of a probabilistic experiment is 
called the sample, event, or possibility space. For example, if 
two coins are tossed, the sample space is the set of possible 
results HH, HT, TH, and TT, where H indicates a head and T 
a tail. 

Random Variable 

A random variable is a function that maps events defined on a 
sample space into a set of values. Several different random 
variables may be defined in relation to a given experiment. 
Thus in the case of tossing two coins the number of heads 
observed is one random variable, the number of tails is an- 
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Sample space 

Figure 2.1. The random variable "number of heads." 

other, and the number of double heads is another. The ran- 
dom variable "number of heads" associates the number 0 with 
the event TT, the number 1 with the events T H  and HT, and 
the number 2 with the event HH. Figure 2.1 illustrates this 
mapping. 

Variate 

In the discussion of statistical distributions it is convenient to 
work in terms of variates. A variate is a generalization of the 
idea of a random variable and has similar probabilistic proper- 
ties but is defined without reference to a particular type of 
probabilistic experiment. A variate is the set of all random 
variables that obey a given probabilistic law. The number of 
heads and the number of tails observed in independent coin 
tossing experiments are elements of the same variate since the 
probabilistic factors governing the numerical part of their 
outcome are identical. 
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A multivariate is a vector or a set of elements, each of which 
is a variate. A matrix variate is a matrix or two-dimensional 
array of elements, each of which is a variate. In general, 
correlations may exist between these elements. 

Random Number 

A random number associated with a given variate is a number 
generated at a realization of any random variable that is an 
element of that variate. 

2.2. RANGE, QUANTILE, PROBABILITY STATEMENTS 
AND DOMAIN, AND DISTRIBUTION FUNCTION 

Range 

Let X denote a variate and let !Rx be the set of all (real 
number) values that the variate can take. The set Mi, is the 
range of X. As an illustration (illustrations are in terms of 
random variables) consider the experiment of tossing two coins 
and noting the number of heads. The range of this random 
variable is the set {O, 1,2) heads, since the result may show 
zero, one, or two heads. (An alternative common usage of the 
term range refers to the largest minus the smallest of a set of 
variate values.) 

Quantile 

For a general variate X let x (a real number) denote a general 
element of the range Xx. We refer to x as the quantize of X. 
In the coin tossing experiment referred to previously, x E 

{0,1,2) heads; that is, x is a member of the set {O, 1,2) heads. 

Probability Statement 

Let X = x mean "the value realized by the variate X is x." Let 
Pr[X 5 x] mean "the probability that the value realized by the 
variate X is less than or equal to x." 
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Probability Domain 

Let a (a real number between 0 and 1) denote probability. Let 
R; be the set of all values (of probability) that Pr[X s x ]  can 
take. For a continuous variate, 3; is the line segment [O,l]; 
for a discrete variate it will be a subset of that segment. Thus 
3; is the probability domain of the variate X. 

In examples we shall use the symbol X to denote a random 
variable. Let X be the number of heads observed when two 
coins are tossed. We then have 

and hence 

Distribution Function 

The distribution function F (or more specifically F,) associated 
with a variate X maps from the range 8, into the probability 
domain 8; or [O,l] and is such that 

The function F(x)  is nondecreasing in x and attains the value 
unity at the maximum of x. Figure 2.2 illustrates the distribu- 
tion function for the number of heads in the experiment of 
tossing two coins. Figure 2.3 illustrates a general continuous 
distribution function and Fig. 2.4 a general discrete distribu- 
tion function. 

The surviual function S(x) is such that 
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Quantile x 

Figure 2.2. The distribution function F: x + a or a = F(x) for the random variable, 
"number of heads." 

Figure 2.3. Distribution function and inverse distribution function for a continuous 
variate. 
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X 
- -- - - - - - --I- 

x 

x 

I 

x 

0 Quantile x 

Figure 2.4. Distribution function and inverse distribution function for a discrete 
variate. 

2.3. INVERSE DISTRIBUTION AND SURVIVAL 
FUNCTION 

For a distribution function F ,  mapping a quantile x into a 
probability a ,  the quantile function or inverse distribution 
function G performs the corresponding inverse mapping from 
a into x. Thus x E %,, a E trig, the following statements 
hold: 
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where G ( a )  is the quantile such that the probability that the 
variate takes a value less than or equal to it is a ;  G ( a )  is the 
100a percentile. 

Figures 2.2, 2.3, and 2.4 illustrate both distribution functions 
and inverse distribution functions, the difference lying only in 
the choice of independent variable. 

For the two-coin tossing experiment the distribution func- 
tion F and inverse distribution function G of the number of 
heads are as follows: 

Inverse Survival Function 

The inverse survival function Z is a function such that Z ( a )  is 
the quantile, which is exceeded with probability a. This defini- 
tion leads to the following equations: 

Inverse survival functions are among the more widely tabu- 
lated functions in statistics. For example, the well-known chi- 
squared tables are tables of the quantile x as a function of the 
probability level a and a shape parameter and are tables of 
the chi-squared inverse survival function. 

2.4. PROBABILITY DENSITY FUNCTION AND 
PROBABILITY FUNCTION 

A probability density function, f(x), is the first derivative 
coefficient of a distribution function, F(x), with respect to x 
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(where this derivative exists). 

f ( x )  = 
d ( F ( x ) )  

dx  

For a given continuous variate X the area under the proba- 
bility density curve between two points x,, xu in the range of 
X is equal to the probability that an as-yet unrealized random 
number of X will lie between x, and xu. Figure 2.5 illustrates 
this. Figure 2.6 illustrates the relationship between the area 
under a probability density curve and the quantile mapped by 
the inverse distribution function at the corresponding proba- 
bility value. 

A discrete variate takes discrete values x with finite proba- 
bilities f(x). In this case f(x) is the probability function, also 
called the probability mass function. 

Figure 2.5. Probability density function. 
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Figure 2.6. Probability density function illustrating the quantile corresponding to a 
given probability cr; G is the inverse distribution function. 

2.5. OTHER ASSOCIATED FUNCTIONS 
AND QUANTITIES 

In addition to the functions just described, there are many 
other functions and quantities that are associated with a given 
variate. A listing is given in Table 2.1 relating to a general 
variate that may be either continuous or discrete. The integrals 
in Table 2.1 are Stieltjes integrals, which for discrete variates 
become ordinary summations, so 

Xu 

[ X u 4 ( x )  f ( x )  dx corresponds to 4 ( x )  f ( x )  
X I .  X = X L  

Table 2.2 gives some general relationships between mo- 
ments, and Table 2.3 gives our notation for values, mean, and 
variance for samples. 
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Table 2.1. Functions and Related Quantities for a General Variate 
( X  Denotes a Variate, x a Quantile, and a Probability) 

Term Symbol Description and Notes 
---- - 

1. Distribution function (df) 
or cumulative distribution 
function (cdf) 

2. Probability density function 
(pdf) 

3. Probability function (pf) 
(discrete variates) 

4. Inverse distribution func- 
tion or quantile function 
(of probability a )  

5. Survival function 

6. Inverse survival function 
(of probability a )  

- 

F(x) F(x) is the probability that the variate 
takes a value less than or equal to x. 

f(x) A function whose general integral over 
the range x,  to xu is equal to the 
probability that the variate takes a value 
in that range. 

f(x) f(x) is the probability that the variate 
takes the value x. 

f(x) = Pr[X =XI  

G ( a )  G ( a )  is the quantile such that the proba- 
bility that the variate takes a value less 
than or equal to it is a. 

x = G ( a )  = G(F(x)) 

Pr[X< G(a)]  = a 

G ( a )  is the 100a percentile. The rela- 
tion to df and pdf is shown in Figs. 2.3, 
2.4, and 2.6. 

S(x) S(x) is the probability that the variate 
takes a value greater than x. 

S(x) = Pr[X > x] = I - F(x) 

Z ( a )  Z ( a )  is the quantile that is exceeded by 
the variate with probability a .  

Pr[X> Z ( a ) l =  a! 

x = Z ( a )  =Z(S(x)) 

where S is the survival function 

Z(cu)= G(1 - a) 

where G is the inverse distribution func- 
tion. 
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Table 2.1. (Continued) 

Term Symbol Description and Notes 

7. Hazard function (or failure h(x) h(x) is the ratio of the probability density 
rate, hazard rate, or force to the survival function at quantile x. 
of mortality) h(x) = f(x)/S(x) = f (x) / ( l -  F(x)) 

8. Mills ratio m(x) m(x) = (1 - F(x))/f(x) = l/h(x) 

9. Cumulative or integrated H(x)  Integral of the hazard function. 
hazard function 

10. Probability generating P(t)  A function of an auxiliary variable t (or 
function (discrete nonneg- Z )  such that the coefficient of t X  = f(x). 
ative integer valued vari- Cs 

ates); also called the geo- P(t)  = C tXf(x) 
metric or z transform X = O  

11. Moment generating func- M(t) A function of an auxiliary variable t 
tion (mgf) whose general term is of the form pLtr/r! 

For any independent variates A and B 
whose moment generating functions, 
MA(t) = MA(t)MB(t) exist 

MA+,(t) = MA(t)MB(t) 

12. Laplace transform of the f*(s) A function of the auxiliary variable s 

pd f defined by 
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Table 2.1. (Continued) 

TERMS AND SYMBOLS 

Term Symbol Description and Notes 

13. Characteristic function C(t) A function of the auxiliary variable t and 
the imaginary quantity i ( i2 = - 11, which 
exists and is unique to a given pdf. 

If C(t) is expanded in powers of t and if 
p!, exists, then the general term is 
p;(itlr/r! 

For any independent variates A and B, 

14. Cumulant generation 
function 

15. rth Cumulant 

16. rth Moment about the 
origin 

cA+,(t) = cA(t)c,(t) 

K(t) K(t) = log C(t) 

[sometimes defined as log M(t)l 

K~ The coefficient of (itIr/r! in the expan- 
sion of K(t). 

17. Mean (first moment about p p = / +=xjf(x) h = p', 
- P 

p the origin) 
+I. 

18. r th  (Central) moment p, &=/-=  (x - d r f ( x ) &  
about the mean 

+ m 

19. Variance (second moment u 2  u 2  = /-= ( X  - d 2 f ( x ) ~  
about the mean, p Z )  

20. Standard deviation u  The positive square root of the variance. 
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Table 2.1. (Continued) 

Term Symbol Description and Notes 

21. Mean deviation 

22. Mode 

23. Median 

24. Quartiles 

25. Percentiles 

26. Standardized rth moment 77, 
about the mean 

27. Coefficient of skewness 

28. Coefficient of kurtosis 

29. Coefficient of variation 

30. Information content (or 1 
entropy) 

31. rth Factorial moment 4 r )  
about the origin (discrete 
nonnegative variates) 

32. rth Factorial moment h r )  
about the mean (discrete 
nonnegative variate) 

+ n 
x - f(x)dx. The mean absolute 

value of the deviation from the mean. 

A quantile for which the pdf or pf is a 
local maximum. 

The quantile that is exceeded with prob- 
ability i, m = G($). 

The upper and lower quartiles are ex- 
ceeded with probabilities + and $, corre- 
sponding to G(4) and G($), respectively. 

G ( a )  is the 1 0 0 ~  percentile. 

The rth moment about the mean scaled 
so that the standard deviation is unity. 

Coefficient of excess or excess kurtosis = 

p, - 3. p, < 3 is platykurtosis, p2 > 3 is 
leptokurtosis. 

Standard deviation/mean = u/p.  
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Table 2.2. General Relationships Between Moments 

Moments about the origin p = I P ) = 1 
i = O  

Central moments about 
p ; - I ( -~ ' l )~ ,  ~ 1 = 0 1 ~ 0 = 1  

mean i = O  

Hence, 

Moments and cumulants p: = 2 ( i  1 i )  p;-, K,  
i =  1 

Table 2.3. Samples 

Term Symbol Description and Notes 

Sample data 

Sample size 

Sample mean 

Xi x i  is an observed value of a 
random variable. 

n The number of observations 
in a sample. 

1 " 
Sample variance s2 - C ( x i  - i I 2  

(unadjusted for bias) n i = ~  

Sample variance (unbiased) (&)@xi-f)2 
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General Variate Relationships 

3.1. INTRODUCTION 

This chapter is concerned with general relationships between 
variates and with the ideas and notation needed to describe 
them. Some definitions are given, and the relationships 
between variates under one-to-one transformations are devel- 
oped. Location, scale, and shape parameters are then intro- 
duced, and the relationships between functions associated with 
variates that differ only in regard to location and scale are 
listed. The relationship of a general variate to the rectangular 
variate is derived, and finally the notation and concepts in- 
volved in dealing with variates that are related by many-to-one 
functions and by functionals are discussed. 

Following the notation introduced in Chapter 2 we denote a 
general variate by X, its range by %,, its quantile by x, and 
a realization or random number of X by x,. 

3.2. FUNCTION OF A VARIATE 

Let 6 be a function mapping from 3, into a set we shall call 
%*(X). 

Definition 3 . 2 ~ .  Function of a Variate 
The term + ( X )  is a variate such that if x, is a random 
number of X then 4 ( x , )  is a random number of @ ( X ) .  

i a 
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Thus a function of a variate is itself a variate whose value at 
any realization is obtained by applying the appropriate trans- 
formation to the value realized by the original variate. For 
example, if X is the number of heads obtained when three 
coins are tossed, then x3 is the cube of the number of heads 
obtained. (Here, as in Chapter 2, we use the symbol X for 
both a variate and a random variable that is an element of that 
variate.) 

The probabilistic relationship between X and +(X) will 
depend on whether more than one number in 9i, maps into 
the same +(x) in M+(,,. That is, it is important to consider 
whether + is or is not a one-to-one function over the range 
considered. This point is taken up in Section 3.3. 

A definition similar to 3.2a applies in the case of a function 
of several variates; we shall detail the case of a function of two 
variates. Let X, Y be variates with ranges M,, My and let cC, 
be a functional mapping from the Cartesian product of 3, 
and into (all or part of) the real line. 

Definiton 3.2b. Function of Two Variates 
The term $(X, Y) is a variate such that if x,, x, are random 
numbers of X and Y, respectively, then +(x,, x,) is a random 
number of +(X, Y ). 

3.3. ONE-TO-ONE TRANSFORMATIONS 
AND INVERSES 

Let + be a function mapping from the real line into the real 
line. 

Definition 3.3. One-to-one Function 
The function 4 is one to one if there are no two numbers 
x,, x, in the domain of + such that +(x,) = +(x,), x, # x,. 

A sufficient condition for a real function to be one to one is 
that it be increasing in x. As an example, +(x) = exp(x) is a 
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. . 

X 1  X 2  X  

Figure 3.1. A one-to-one function. 

Figure 3.2. A manv-to-one function. 

one-to-one function, but +(x) = x 2  is not (unless x is confined 
to all negative or all positive values, say) since x, = 2 and 
x, = - 2 give +(x,) = +(x,) = 4. Figures 3.1 and 3.2 illustrate 
this. 

A function that is not one to one is a many-to-onefunction. 
See also Section 3.8. 
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Inverse of a One-to-one Function 

The inverse of a one-to-one function + is a one-to-one func- 
tion +-I, where 

and x and y are real numbers (Bernstein's Theorem). 

3.4. VARIATE RELATIONSHIPS UNDER ONE-TO-ONE 
TRANSFORMATION 

Probability Statements 

Definitions 3.2a and 3.3 imply that if X is a variate and + is 
an increasing one-to-one function, then +(X) is a variate with 
the property 

Distribution Function 

In terms of the distribution function F,(x) for variate X at 
quantile x, Eq. 3.4a is equivalent to the statement 

To illustrate Eqs. 3.4a and 3.4b consider the experiment of 
tossing three coins and the random variables "number of 
heads," denoted by X, and "cube of the number of heads," 
denoted by x'. The probability statements and distribution 
functions at quantiles 2 heads and 8 (heads)' are 
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Inverse Distribution Function 

The inverse distribution function (introduced in Section 2.3) 
for a variate X at probability level a is Gx( a) .  For a one-to- 
one function 6 we now establish the relationship between the 
inverse distribution functions of the variates X and 4(X). 

Theorem 3.4a 

Proof Equations 2 . 3 ~  and 3.4b imply that if 

G,(a) = x  then G4(,,(a) = 6(x) 

which implies that the theorem is true. 

We illustrate this theorem by extending the example of Eq. 
3 .4~.  Considering the inverse distribution function, we have 

Equivalence of Variates 

For any two variates X and Y, the statement X - Y, read "X is 
distributed as Y," means that the distribution functions of X 
and Y are identical. All other associated functions, sets, and 
probability statements of X and Y are therefore also identical. 

"Is distributed as" is an equivalent relations, so that 

1. X- X.  
2. X - Y implies Y - X. 
3. X - Y and Y - Z implies X - Z. 
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Inverse Function of a Variate 

Theorem 3.4b 
If X and Y are variates and 4 is an increasing one-to-one 
function, then Y - + ( I )  implies +-'(Y) - X. 

Proof 

Y -  +(X) implies Pr[Y i x ]  = Pr[4(X)  1x1 

(by the equivalence of variates, above) 

(from Eqs. 3.3 and 3.4a) 

(from Eqs. 3.3 and 3.4a) 

These last two equations together with the equivalence of 
variates (above) imply that Theorem 3.4b is true. H 

3.5. PARAMETERS, VARIATE, AND FUNCTION 
NOTATION 

Every variate has an associated distribution function. Some 
groups of variates have distribution functions that differ from 
one another only in the values of certain parameters. A 
generalized distribution function in which the parameters ap- 
pear as symbols correspond to a family of variates (not to be 
confused with a distribution family). Examples are the variate 
families of the normal, lognormal, beta, gamma, and exponen- 
tial distributions. The detailed choice of the parameters that 
appear in a distribution function is to some extent arbitrary. 
However, we regard three types of parameter as "basic" in the 
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sense that they always have a certain physical geometrical 
meaning. These are the location, scale, and shape parameters, 
the descriptions of which are as follows: 

Location Parameter, a. The abscissa of a location point 
(usually the lower or midpoint) of the range of the 
variate. 

Scale Parameter, b. A parameter that determines the scale 
of measurement of the quantile x. 

Shape Parameter, c. A parameter that determines the shape 
(in a sense distinct from location and scale) of the distri- 
bution function (and other functions) within a family of 
shapes associated with a specified type of variate. 

The symbols a,  b, c will be used to denote location, scale, 
and shape parameters in general, but other symbols may be 
used in cases where firm conventions are established. Thus for 
the normal distribution the mean, p, is a location parameter 
(the locating point is the midpoint of the range) and the 
standard deviation, a ,  is a scale parameter. The normal distri- 
bution does not have a shape parameter. Some distributions 
(e.g., the beta) have two shape parameters, which we denote 
by v and w .  

Variate and Function Notation 

A variate X with parameters a,  b, c is denoted in full by 
X: a,  b, c. Some or all of the parameters may be omitted if the 
context permits. 

The distribution function for a variate X: c is F,(x: c). If 
the variate name is implied by the context, we write F(x: c). 
Similar usages apply to other functions. The inverse distribu- 
tion function for a variate X: a ,  b, c at probability level a is 
denoted G,( a :  a, b, c). 
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3.6. TRANSFORMATION OF LOCATION AND SCALE 

Let X: 0,1 denote a variate with location parameter a = 0 and 
scale parameter b = 1. (This is often referred to as the stan- 
dard variate.) A variate that differs from X: O,1 only in regard 
to location and scale is denoted X: a,  b and is defined by 

The location and scale transformation function is the one-to- 
one function 

and its inverse is 

The following equations relating to variates that differ only 
in relation to location and scale parameters then hold: 

X: a, b - a + b(X: O,1) 

(by definition) 

X: 0 , l -  [(X: a,  b) - a]/b 

(by Theorem 3.4b and Eq. 3.6aI 

Pr[(X: a ,  b) 5 x 1  = Pr[(X: O,1) I (x - a)/b] 

(by Eq. 3.4a) 

R,(x: a, b) = FX{[(x - a)/b]: O,1) 

(equivalent to Eq. 3.6b) 

G,(cu: a , b ) = a  +b(G,(a: O,l)) 

(by Theorem 3.4a) 
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Table 3.1. Relationships Between Functions for Variates that Differ 
Only by Location and Scale Parameters a, b 

Variate relationship X: a, b - a  + b(X:  0 , l )  

Probability statement Pr[(X: a, b )  1x1 = Pr[(X: 0 , l )  I ( x  - a) /b]  

Function relationships 
Distribution function F(x: a, b )  = F([(x - a)/b]:  0 , l )  
Probability density function f ( x :  a, b )  = ( l / b ) f ( [ ( x  - a)/b]:  0 , l )  
Inverse distribution function G ( a :  a ,  b )  = a + bG(a:  0 , l )  
Survival function S(x:  a ,  b )  = S([(x - a)/b]:  0 , l )  

Inverse survival function Z ( a :  a, b )  = a  + bZ(a:  0 , l )  

Hazard function h(x:  a, b )  = ( l /b )h ([ (x  - a)/b]:  0 , l )  
Cumulative hazard function H(x:  a, b )  = H([(x  - a)/b]: 0 , l )  
Moment generating function M(t: a, b )  = exp(at)M(bt: 0 , l )  
Laplace transform f *(s: a, b )  = exp(-as)f *(bs: 0 , l )  

Characteristic function C(t:  a, b )  = exp(iat)C(bt: 0 , l )  

Cumulant function K(t:  a, b )  = iat + K(bt: 0 , l )  

These and other interrelationships between functions asso- 
ciated with variates that differ only in regard to location and 
scale parameters are summarized in Table 3.1. The functions 
themselves are defined in Table 2.1. 

3.7. TRANSFORMATION FROM THE RECTANGULAR 
VARIATE 

The following transformation is often useful for obtaining 
random numbers of a variate X from random numbers of the 
unit rectangular variate R. The latter has distribution function 
FR(x) =x ,  0 I X  5 1, and inverse distribution function GR(a)  
= a, 0 r a I 1. The inverse distribution function of a general 
variate X is denoted Gx(a), a E %ft. Here GX(a)  is a one-to- 
one function. 
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Theorem 3.7a 
X - Gx(R) for continuous uariates. 

(property of R) 

= P~[G,(R) 5 Gx(a)]  

(by Eq. 3.4a) 

Hence, by these two equations and Eq. 2.3c, 

For discrete variates, the corresponding expression is 

X - G , [ ~ ( R ) ] ,  where f ( a ) = M i n { p l p 2 a , p ~ % ; }  

Thus every variate is related to the unit rectangular variate via 
its inverse distribution function, although, of course, this func- 
tion will not always have a simple algebraic form. 

3.8. MANY-TO-ONE TRANSFORMATIONS 

In Sections 3.3 through 3.7 we considered the relationships 
between variates that were linked by a one-to-one function. 
Now we consider many-to-one functions, which are defined as 
follows. Let C#I be a function mapping from the real line into 
the real line. 

Definition 3.8 
The function + is many to one if there are at least two 
numbers x,, x, in the domain of + such that +(x,) = 4(x,), 
XI Zx,. 

The many-to-one function C#I(x) = x 2  is illustrated in 
Fig. 3.2. 
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In Section 3.2 we defined, for a general variate X with 
range 3, and for a function +, a variate + ( I )  with range 
!lib,,,. Here +(XI has the property that if x, is a random 
number of X, then +(x,) is a random number of +(X). Let r2 
be a subset of %+(,, and r, be the subset of M,, which + 
maps into r,. The definition of +(X) implies that 

This equation enables relationships between X and + ( I )  and 
their associated functions to be established. If + is many-to- 
one, the relationships will depend on the detailed form of +. 

Example 

As an example we consider the relationships between the 
variates X and x2 for the case where 8,  is the real line. We 
know that 6: x + x 2  is a many-to-one function. In fact it is a 
two-to-one function in that +x and -x both map into x2. 
Hence the probability that an as-yet unrealized random num- 
ber of x2 will be greater than x 2 will be equal to the 
probability that an as-yet unrealized random number of X will 
be either greater than +x or less than -x. 

Symmetrical Distributions 

Let us now consider a variate X whose probability density 
function is symmetrical about the origin. We shall derive a 
relationship between the distribution function of the variates 
X and x2 under the condition that X is symmetrical. An 
application of this result appears in the relationship between 
the F (variance ratio) and Student's t variates. 

Theorem 3.8 
Let X be a variate whose probability density function is symmetri- 
cal about the origin. 
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1. The distribution functions Fx(x) and FX2(x2) for the van- 
ates X and x2 at quantiles x and x2, respectively, are related 
by 

2. The inverse survival functions Z,(;CY) and ZxZ( a )  for the 
variates X and x2 at probability levels +a and a ,  respec- 
tively, are related by 

ProoJ (1) For a variate X with symmetrical pdf about the 
origin we have 

This and Eq. 3.8a imply 

Introducing the distribution function Fx(x), we have, from the 
definition (Eq. 2.2) 

This and Eq. 3.8b imply 

Rearrangement of this equation gives 
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(2) Let F,(x) = a. Equation 3 . 8 ~  implies 

which can be arranged as 

This and Eqs. 2.3a and 2.3b imply 

G X ( a ) = x  and Gx2(2a-1)=x2 

which implies 

From the definition of the inverse survival function Z (Table 
2.1, item 6), we have G ( a )  = Z( l  - a) .  Hence from Eq. 3.8d 

[ z x ( l  - a)] '  = ZX2(2(1 - a ) )  

[zx(n)12  =Zx2(200 

[zx(ff /2)I2 = Zx:(a) 

3.9. FUNCTIONS OF SEVERAL VARIATES 

If X and Y are variates with ranges 3, and 3, and $ is a 
functional mapping from the Cartesian product of 8, and 8, 
into the real line, then +(X, Y) is a variate such that if x, 
and x, are random numbers of X and Y, respectively, then 
$(x,, x,) is a random number of $(X, Y). 

The relationships between the associated functions of X 
and Y on the one hand and of $ ( I ,  Y) on the other are not 
generally straightforward and must be derived by analysis of 
the variates in question. One important general result is where 
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the function is a summation, say, Z = X + Y. In this case 
practical results may often be obtained by using a property 
of the characteristic function C,(t) of a variate X, namely, 
Cx+y(t) = Cx(t)Cy(t); that is, the characteristic function of 
the sum of two independent variates is the product of the 
characteristic functions of the individual variates. 

We are often interested in the sum (or other functions) of 
two or more variates that are independently and identically 
distributed. Thus consider the case Z -X + Y, where X - Y. In 
this case we write 

Note that XI +X, is not the same as 2X,, even though 
XI - X,. The term XI + X, is a variate for which a random 
number can be obtained by choosing a random number of X 
and then another independent random number of X and then 
adding the two. The term 2X, is a variate for which a random 
number can be obtained by choosing a single random number 
of X and multiplying it by two. 

If there are n such variates of the form X: a, b to be 
summed, 

n 

2 -  z ( X :  a ,b ) ,  
i =  1 

When the variates to be summed differ in their parameters,we 
write 

n 

2 -  z (X:  a i ,b i )  
i = l  
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Bernoulli Distribution 

A Bernoulli trial is a probabilistic experiment that can have 
one of two outcomes, success (x  = 1) or failure (x  = 0) and in 
which the probability of success is p. We refer to p as the 
Bernoulli probability parameter. 

An example of a Bernoulli trial is the inspection of a 
random item from a production line with the possible result 
that the item could be acceptable or faulty. The Bernoulli trial 
is a basic building block for other discrete distributions such as 
the binomial, Pascal, geometric, and negative binomial. 

Variate B:  1, p. 
(The general binomial variate is B: n, p ,  involving n trials.) 
Range x E {0, 1). 
Parameter p ,  the Bernoulli probability parameter, 0 < p  < 1. 

Distribution function F(0) = 1 - p ;  F(1) = 1 
Probability function f(0) = 1 -p; f ( l )  = p  
Characteristic function 1 + p[exp( it) - 11 
rth Moment about the origin P  
Mean P 
Variance p(1 -p )  
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4.1. RANDOM NUMBER GENERATION 

R is a unit rectangular variate and B: 1 , p  is a Bernoulli 
variate. 

R s p  implies B: l , p  takes value 1; R > p  implies B: 1 , p  
takes value 0. 

4.2. CURTAILED BERNOULLI TRIAL SEQUENCES 

The binomial, geometric, Pascal, and negative binomial vari- 
ates are based on sequences of independent Bernoulli trials, 
which are curtailed in various ways, for example, after n trials 
or x successes. We shall use the following terminology: 

p = Bernoulli probability parameter (probability of success 
at a single trial). 

n = number of trials. 
x = number of successes. 
y = number of failures. 
Binomial variate, B: n, p = number of successes in n trials. 
Geometric variate, G :  p = number of failures before the 

first success. 
Negative binomial variate, NB: x, p = number of failures 

before the xth success. 
Pascal variate is the integer version of the negative binomial 

variate. 

Alternative forms of the geometric and Pascal variates in- 
clude the number of trials up to and including the xth success. 

These variates are interrelated in various ways, specified 
under the relevant chapter headings. 



4.3. URN SAMPLING SCHEME 

The selection of items from an urn, with a finite population N 
of which Np are of the desired type or attribute and N( l  - p )  
are not, is the basis of the Polyh family of distributions. 

A Bernoulli variate corresponds to selecting one item ( n  = 1) 
with probability p of success in choosing the desired type. For 
a sample consisting of n independent selections of items, with 
replacement, the binomial variate B: n,  p is the number x of 
desired items chosen or successes, and the negative binomial 
variate NB: x , p  is the number of failures before the xth 
success. As the number of trials or selections n tends to 
infinity, p tends to zero, and np tends to a constant A, the 
binomial variate tends to the Poisson variate P: A with param- 
eter A = np. 

If sample selection is without replacement, successive selec- 
tions are not independent, and the number of successes x in n 
trials is a hypergeometric variate H: N, x, n. If two items of 
the type corresponding to that selected are replaced each 
time, thus introducing "contagion," the number of successes x 
in n trials is then a negative hypergeometric variate, with 
parameters N, x, and n. 

4.4. NOTE 

The following properties can be used as a guide in choosing 
between the binomial, negative binomial, and Poisson distribu- 
tion models: 

Binomial Variance < mean 
Negative binomial Variance > mean 
Poisson Variance = mean 
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Beta Distribution 

Applications include modeling random variables that have a 
finite range, a to b. An example is the distribution of activity 
times in project networks. The beta distribution is used as 
a prior distribution for binomial proportions in Bayesian 
analysis. 

Variate p:  v, o. 

Range 0 IX I 1. 
Shape parameters v > 0, o > 0. 

This beta distribution (of the first kind) is U shaped if v < 1, 
o < 1 and J shaped if ( v - 1)( w - 1) < 0, and is otherwise 
unimodal. 

Distribution Often called the incomplete beta 
function. (See Pearson, 1968) 

Probability density function x "-'(1 - x) "-' /B( v, w), where 
B( v, w) is the beta function with 
arguments v, w, given by 

( v + i )  B(v+r ,  o )  
rth Moment about the origin n - - 

, = , ( v + o + i )  B(v,w) 



NOTES ON BETA AND GAMMA FUNCTIONS 

Mean v / (  v  + 0)  

Variance v w / [ ( v  + o ) ~ (  v  + w  + I ) ]  

Mode ( v -  l ) / ( v +  w - 21, 

2 ( w  - v ) (  v  + w  + 1)lL2 
Coefficient of skewness 

( v  + w  + 2 ) ( v w ) 1 / 2  

3 ( v +  w ) ( v +  w +  l ) ( v +  1 ) ( 2 w -  v )  
Coefficient of kurtosis 

v w ( v +  w + 2 ) ( v +  w + 3 )  

Coefficient of variation 

Probability density func- 
tion if v  and w  are inte- 
gers 

Probability density func- 
tion if range is a l x  l b. 
Here a is a location pa- 
rameter and b - a a scale 
parameter 

5.1. NOTES ON BETA AND GAMMA FUNCTIONS 

The beta function with arguments v ,  w  is denoted B ( v ,  w) ;  
v ,  0 > 0. 

The gamma function with argument c  is denoted I'(c); 
c  > 0. 

The di-gamma function with argument c  is denoted + ( c ) ;  
c  > 0. 
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Definitions 

Beta function: 

BETA DISTRIBUTION 

Gamma function: 

Di-gamma function: 

Interrelationships 

Special Values 

If v, o, and c are integers, 
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Alternative Expressions 

5.2. VARIATE RELATIONSHIPS 

For the range a 5 x 5 b ,  the beta variate with parameters v  
and w is related to the beta variate with the same shape 
parameters but with the range 0 sx I 1 ( p :  v ,  w )  by 

1. The beta variates P : v ,  w ,  and /? : w,  v  exhibit symmetry; 
see Figs. 5.1 and 5.2. In terms of probability statements 

Quantile x 

Figure 5.1. Probability density function for the beta variate P :  v, w. 
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and the distribution functions, we have 

2. The beta variate P :  i,; is an arc sin variate (Figs. 5.2 
and 5.3). 

3. The beta variate P : 1 , l  is a rectangular variate (Figs. 5.2 
and 5.3). 

4. The beta variate P :  v, 1 is a power function variate. 
5. The beta variate with shape parameters i, n - i + 1, de- 

noted p :  i, n - i + 1, and the binomial variate with 
Bernoulli trial parameter n and Bernoulli probability 
parameter p ,  denoted B: n, p ,  are related by the follow- 
ing equivalent statements: 

Here n and i are positive integers, 0 ~p I 1. 
Equivalently, putting v = i, w = n - i + 1, and x = p :  

6. The beta variate with shape parameters 0/2, v/2, de- 
noted p :  0/2, v/2, and the F variate with degrees of 
freedom v, w, denoted F :  v, o ,  are related by 

P r [ ( p :  w/2, v/2) I [ o / ( w +  vx)]] = P ~ [ ( F :  v, w) > x ]  
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Hence the inverse distribution function Gp( a : w/2, v/2) 
of the beta variate p :  w/2, v/2 and the inverse survival 
function Z,(a: v, w) of the F variate F :  v, w are 
related by 

where a denotes probability. 
7. The independent gamma variates with unit scale parame- 

ter and shape parameter v, denoted y :  1, v, and with 
shape parameter w, denoted y :  1, w, respectively, are 
related to the beta variate p: v, w by 

P :  v, w w  ( y :  1, v ) / [ ( ~ :  1, v) + ( y :  1, w ) ]  

8. As v and w tend to infinity, such that the ratio v/w 
remains constant, the p :  v, w variate tends to the stan- 
dard normal variate N: 0 , l .  

9. The variate P :  v, w corresponds to the one-dimensional 
Dirichlet variate with v = c , ,  w = c,. The Dirichlet distri- 
bution is the multivariate generalization of the beta dis- 
tribution. 

5.3. PARAMETER ESTIMATION 

Parameter Estimator Method 

v i{ [ i ( l  - i ) / s2]  - 1) Matching moments 
w (1 - i){[Z(l - i ) / s2]  - I} Matching moments 
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The maximum-likelihood estimators C and 6 are the solutions 
of the simultaneous equations 

n 

$(C ) - $ ( C +  6 )  =n-' z log xi 
i = l  

n 

$ ( 6 )  - $(;+ 6 )  = n-l z log(1 -xi) 
i = l  

5.4. RANDOM NUMBER GENERATION 

If v and o are integers, then random numbers of the beta 
variate p :  v, o can be computed from random numbers of the 
unit rectangular variate R using the relationship with the 
gamma variates y : 1, v and y : 1, o as follows: 

5.5. INVERTED BETA DISTRIBUTION 

The beta variate of the second kind, also known as the 
inverted beta or beta prime variate with parameters v and o ,  
denoted I P :  v, w, is related to the P :  v, w variate by 

and to independent standard gamma variates by 
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The inverted beta variate with shape parameters v/2,  w /2  is 
related to the F: v ,  w  variate by 

The pdf is x V - l / [ B ( v ,  w) ( l  +x)"+"],  x  > 0. 

5.6. NONCENTRAL BETA DISTRIBUTION 

The noncentral beta variate P :  v ,  w, 8 is related to the inde- 
pendent noncentral chi-squared in variate x ': V ,  8 and the 
central chi-squared variate x 2 :  w  by 

5.7. BETA BINOMIAL DISTRIBUTION 

If the parameter p of a binomial variate B: n ,  p is itself a beta 
variate 0 :  v ,  o, the resulting variate is a beta binomial variate 
with probability function 

B ( v + x , n  + w - x )  ( 1  B ( v , w )  

with mean n v / (  v  + W )  and variance 

This is also called the binomial beta or compound binomial 
distribution. For integer v  and w, this corresponds to the 
negative hypergeometric distribution. For v  = w  = 1, it corre- 
sponds to the discrete rectangular distribution. A multivariate 
extension of this is the Dirichlet multinomial distribution. 
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Binomial Distribution 

Applications include the following: 

Estimation of probabilities of outcomes in any set of 
success or failure trials. 
Estimation of probabilities of outcomes in games of 
chance. 
Sampling for attributes. 

Variate B:  n, p. 
Quantile x, number of successes. 
Range 0 r x r n, x an integer. 

The binomial variate B:  n, p is the number of successes in 
n-independent Bernoulli trials, where the probability of suc- 
cess at each trial is p and the probability of failure is q = 1 - p .  

Parameters n, the Bernoulli trial parameter, 
n a positive integer p, the 
Bernoulli probability parameter, 
o < y < 1  

Distribution function ( : ) P i q r L - i  
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Probability function 

Moment generating function 

Probability generating function 

Characteristic function 

Moments about the origin 
Mean 
Second 
Third 

Moments about the mean 
Variance 
Third 
Fourth 

Mode 

Coefficient of skewness 

Coefficient of kurtosis 

Factorial moments about 
the mean 

Second 
Third 

Coefficient of variation 

[ p  exp(t) + q]" function 

(pt + 4)" 

[ p  exp(it) + qln 

6.1. VARIATE RELATIONSHIPS 

1. For the distribution functions of the binomial variates 
B: n , p  and B: n, 1 -p, 
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2. The binomial variate B: n, p can be approximated by 
the normal variate with mean np and standard devia- 
tion (npq)'I2, provided npq > 5 and 0.1 s p  1 0 . 9  or if 
Min(np, nq) > 10. For npq > 25 this approximation holds 
for any p. 

3. The binomial variate B: n , p  can be approximated by 
the Poisson variate with mean np provided p < 0.1 and 
np < 10. 

4 .  The binomial variate B: n , p  with quantile x and the 
beta variate with shape parameters x, n  - x + 1 and 
quantile p are related by 

P ~ [ ( B :  n , p )  2x1 = P ~ [ ( P :  x,  n  - x  + 1 )  sp ]  

Quantile x ,  successes Quantile x ,  successes 

Figure 6.1. Probability function for the binomial variate B: n, p. 

Figure 6.2. Distribution function for the binomial variate B: n, p. 
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Quantile x ,  successes Quantile x ,  successes 

0 0 1.0 

0.8 
.G - 

n = 10 $ 0 . 6 -  
p=O.l 8 0 . 4 -  

- 0.2 
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- 0 

o 
n = 10 

o 
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- 0 
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5. The binomial variate B: n, p with quantile x and the F 
variate with degrees of freedom 2(x + 1),2(n -x), de- 
noted F: (2(x + 1),2(n -x), are related by 

6. The sum of k-independent binomial variates B: ni, p; 
i = 1,.  . . , k, is the binomial variate B: n', p ,  where 

k k 

( B :  ni,  p )  - B :  n', p ,  where n '  = ni 
i=l  i=l  

7. The Bernoulli variate corresponds to the binomial vari- 
ate with n = 1. The sum of n-independent Bernoulli 
variates B: 1, p is the binomial variate B: n, p. 

8. The hypergeometric variate H: N, X, n tends to the 
binomial variate B :  n, p as N and X tend to infinity 
and X/N tends to p .  

9. The binomial variate B :  n, p  and the negative binomial 
variate NB: x , p  (with integer x, which is the Pascal 
variate) are related by 

10. The multinomial variate is a multivariate generalization 
of the binomial variate, where the trials have more than 
two distinct outcomes. 

6.2. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

Bernoulli probability, p  x/n Minimum variance 
unbiased 
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6.3. RANDOM NUMBER GENERATION 

1. Rejection Technique. Select n unit rectangular random 
numbers. The number of these that are less than p is a 
random number of the binomial variate B: n ,  p. 

2. Geometric Distribution Method. If p is small, a faster 
method may be to add together x geometric random 
numbers until their sum exceeds n -x. The number of 
such geometric random numbers is a binomial random 
number. 
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Cauchy Distribution 

The Cauchy distribution is of mathematical interest due to the 
absence of defined moments. 

C: a, b. 

Range - w  < x  < co. 

Location parameter a, the median. 

Scale parameter b > 0. 

Probability density function 

Distribution function 

Characteristic function 

Inverse distribution function 
(of probability a )  

Moments 

Cumulants 

Mode 

Median 

1 1  x- a  
- + 
2 5- 

exp(iat - Itlb) 

a + b[tan n(a - $)] 

Do not exist 

Do not exist 

a 

a  



VARIATE RELATIONSHIPS 

7.1. NOTE 

The Cauchy distribution is unimodal and symmetric, with 
much heavier tails than the normal. The probability density 
function is symmetric about a,  with upper and lower quartiles, 
a f b .  

7.2. VARIATE RELATIONSHIPS 

The Cauchy variate C: a,  b is related to the standard Cauchy 
variate C: O,1 by 

C : a , b - a + b ( C : O , l )  
1. The ratio of two independent unit normal variates N,, N, 

is the standard Cauchy variate C: 0 , l .  

4 - 3 - 2 - 1  0 1 2  3 4 

Quantile x 

Figure 7.1. Cauchy probability density function. 
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2. The standard Cauchy variate is a special case of the 
Student's t variate with one degree of freedom, t:  1. 

3. The sum of n-independent Cauchy variates C: a,, bi with 
location parameters a,, i = 1,. . . , n and scale parameters 
b,, i = 1,. . . , n is a Cauchy variate C: a,  b with parame- 
ters the sum of those of the individual variates: 

n n n 

(c: a i ,bi)  - C :  a , b ,  where a = C a , ,  b =  bi 
i = l  i =  1 i =  1 

The mean of n-independent Cauchy variates C: a, b is 
the Cauchy C: a ,  b variate. Hence the distribution is 
"stable" and infinitely divisible. 

4. The reciprocal of a Cauchy variate C: a,  b is a Cauchy 
variate C: a ' ,  b', where a', b' are given by 

1/(C: a ,  b) - C: a ' ,  b ' ,  

where a '  = a/(a2 + b2), b '  = b/(a2 + b2) 

7.3. RANDOM NUMBER GENERATION 

The standard Cauchy variate C: 0.1 is generated from the unit 
rectangular variate R by 

7.4. GENERALIZED FORM 

Shape parameter m > 0. normalizing: constant k. 
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Probability density k [ 1 + ('ia - ) ' I m ,  m 2 1 
function 

where k = r(m)/[br(l/2)I'(m - ;)I 
Mean a 

Median a 

Mode a 

reven, r < 2 m - 1  

0, r odd 

For m = 1, this variate corresponds to the Cauchy variate 
C :  a, b. 

For a = 0, this variate corresponds to a Student's t vari- 
ate with (2m - 1) degrees of freedom, multiplied by 
b(2m - 1)-'I2. 



C H A P T E R  8 

Chi-Squared Distribution 

Important applications of the chi-squared variate arise from 
the fact that it is the distribution of the sum of the squares of a 
number of normal variates. Where a set of data is represented 
by a theoretical model, the chi-squared distribution can be 
used to test the goodness of fit between the observed data 
points and the values predicted by the model, subject to the 
differences being normally distributed. A particularly common 
application is the analysis of contingency tables. 

Variate X2:  v. 

Range 0 s x  < m. 

Shape parameter v, degrees of freedom. 

x("-2)/2 
Probability density function 

exp( -x/2) 
2"12r(v/2) 

where I?( v/2) is the gamma 
function with argument v/2 

1 Moment generating function (1 - 2t)- "I2, t < , 
1 Laplace transform of the pdf (1 + 2s)- v/2, s > - 5 

Characteristic function (1 - 2it)-"1' 
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Cumulant generating function ( - v/2)log(l - 2it) 

rth Cumulant 2 ' r  - 1 )  r 2 1 
r - 1  

rth Moment about the origin 2' n [i + (v/2)] 
i = O  

Mean v 

Variance 2v  

Mode v- 2, v 2 2  

Median 2 v - 7  
(approximately for large v) 

Coefficient of skewness 23/zv- 1/2 

Coefficient of kurtosis 3 + 12/v 

Coefficient of variation (2/v)ll2 

8.1. VARIATE RELATIONSHIPS 

1. The chi-squared variate with v degrees of freedom is 
equal to the gamma variate with scale parameter 2 and 
shape parameter v/2, or equivalently is twice the gamma 
variate with scale parameter 1 and shape parameter 
v/2. 

Properties of the gamma variate apply to the chi-squared 
variate ,y ': v. The chi-squared variate ,y ': 2 is the 
exponential variate E: 2. 

2. The independent chi-squared variates with v and 0 

degrees of freedom, denoted ,y 2: v and ,y 2: 0 ,  respec- 
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tively, are related to the F variate with degrees of 
freedom v, w, denoted F :  v, w by 

3. As w tends to infinity, v times the F  variate F :  v, w 
tends to the chi-squared variate x 2 :  v. 

4. The chi-squared variate x 2 :  v is related to the Student's 
t  variate with v degrees of freedom, denoted t :  v, and 
the independent unit normal variate N :  O , 1  by 

Quant~le x 

Figure 8.1. Probability density function for the chi-squared variate x ' :  v 
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Quantile r 

Figure 8.2. Distribution function for the chi-squared variate x ': V .  

5. The chi-squared variate x2: v is related to the Poisson 
variate with mean x/2, denoted P: x/2, by 

Equivalent statements in terms of the distribution func- 
tion F and inverse distribution function G are 

0 I x < a; v/2 a positive integer; 0 < (Y < 1; a denotes 
probability. 
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6. The chi-squared variate x 2 :  v is equal to the sum of 
the squares of pindependent unit normal variates, 
N: 0 , l .  

7. The sum of independent chi-squared variates is also a 
chi-squared variate: 

z ( x 2 :  vi) - x 2 :  V,  where V =  z vi 
i =  1 i = l  

8. The chi-squared variate x 2 :  v for v large can be 
approximated by transformations of the normal variate. 

The first approximation of Fisher is less accurate than 
the second of wilson-Hilferty. 

9. Given n normal variates N: p ,  a ,  the sum of the 
squares of their deviations from their mean is the vari- 
ate a 2x 2: n - 1. Define variates i ,  s 2  as follows: 

Then ns2 /a2  - x 2 :  n -- 1. 
10. Consider a set of n,-independent normal variates 

N: p,, a ,  and a set of n,-independent normal variates 
N: p2 ,  u (note same a )  and define variates x,, i 2 ,  s:, s$ 
as follows: 
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Then 

(n ,s f  t n 2 s ; ) / u 2  x 2 :  nl  + n2  - 2 

8.2. RANDOM NUMBER GENERATION 

For independent N:  O,1 variates 

See also gamma distribution. 

8.3. CHI DISTRIBUTION 

The positive square root of a chi-squared variate, x 2 :  v, has a 
chi distribution with shape parameter v, the degrees of free- 
dom. The probability density function is 

and the rth central moment about the origin is 

and the mode is m, v 2 1. 
This chi variate, X :  v, corresponds to the Rayleigh variate 

for v = 2 and the Maxwell variate with unit scale parameter for 
v =  3. Also, IN: O,lI - X :  1. 
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Chi-Squared (Noncentral) 
Distribution 

An application of the noncentral chi-squared distribution is to 
describe the size of cohorts of wildlife species in predefined 
unit-area blocks. In some cases the whole cohort will be found 
in a particular block, whereas in others some of the cohort 
may have strayed outside the predefined area. 

The chi-squared (noncentral) distribution is also known as 
the generalized Rayleigh, Rayleigh-Rice, or Rice distribution. 

Variate x2: v, 6. 
Range 0 < x  < m. 

Shape parameters v > 0, the degrees of freedom, and 6 2 0, 
the noncentrality parameter. 

e x p [  + (x  + a ) ]  
Probability density function 2 " / 2  

Moment generating function (1 - 2t)- "I2 exp[6t/(l - 2t)], 
1 t < ,  

58 
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Characteristic function ( 1  - 2it)-"I2 exp[6 i t / ( l  - 2it)  
I Cumulant generating function - v  log(1 - 2it)  

+ 6 i t / ( l  - 2it)  

rth Cumulant 2'-'(r - I)!( v  + r 6 )  

rth Moment about the origin 2'r r + - x i (;I(:)/ 
Mean v + 6  

Moments about the mean 
Variance 2 ( v +  2 6 )  

Third 8 ( v  + 3 6 )  

Fourth 4 8 ( v + 4 6 ) + 4 ( ~ + 2 6 ) ~  

8 ' I2 (v  + 3 6 )  
Coefficient of skewness 

( v  + 26)3'2 

12(v  + 4 6 )  
Coefficient of kurtosis 3 + 

( v  + 2 6 ) 2  

[ 2 ( v  + 2 6 ) ] 1 / 2  
Coefficient of variation 

v +  6  

9.1. VARIATE RELATIONSHIPS 

1. Given pindependent standard normal variates N :  0,1, 
then, the noncentral chi-squared variate corresponds to 

Y v 

,y2: v ,  6 - [ ( N :  0 ,  l ) i  + 6,12 - ( N :  ai7 I ) ~ ,  

where 6  = x Si2 
i = l  



Quantile x 

Figure 9.1. Probability density function for the (noncentral) chi-squared variate 
X 2 :  v, 8 .  

2. The sum of n-independent noncentral chi-squared vari- 
ates x 2: vi ,  ai, i = 1,. . . , n, is a noncentral chi-squared 
variate x 2 :  v ,  6 .  

n n n 

x 2 :  P , S -  z (x2: v i 7 6 , ) ,  where v =  z v , ,  6 =  zai 
i =  l i = l  i = l  

3. The noncentral chi-squared variate x 2 :  v ,  6  with zero 
noncentrality parameter 6  = 0 is the (central) chi-squared 
variate x 2 :  v .  

4. The standardized noncentral chi-squared variate x 2 :  v ,  8 
tends to the standard normal variate N: O,1 ,  either when 
v  tends to infinity as 6  remains fixed or when 6  tends to 
infinity as v  remains fixed. 

5. The noncentral chi-squared variate x ' :  v ,  6  (for v  even) 
is related to two independent Poisson parameters with 
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parameters v/2 and 6/2, denoted P :  v/2 and P :  8/2, 
respectively, by 

~ r [ (  x 2 :  v, 8 )  1x1 = P ~ [ [ ( P :  v/2) - ( P :  6/2)] 2 v/2] 

6. The independent noncentral chi-squared variate x 2 :  v, 8 
and central chi-squared variate x 2 :  w are related to the 
noncentral F  variate F :  v, o ,  6 by 
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Dirichlet Distribution 

The standard or Type I Dirichlet is a multivariate generaliza- 
tion of the beta distribution. 

Vector quantile with elements x,, . . . , x,. 
Range xi 2 0, Cf=, xi I 1. 
Parameters c,  > 0, i = 1,. . . , k and c, .  

Probability density function , 
r = O  

For individual elements (with c = Cf= ,el): 

Mean 
Variance 
Covariance 

10.1. VARIATE RELATIONSHIPS 

1. The elements X i ,  i = 1,. . . , k, of the Dirichlet multivari- 
ate vector are related to independent standard gamma 

62 
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variates with shape parameters ci, i = 0,. . . , k, by 

and independent chi-squared variates with shape param- 
eters 2vi, i = O,.. ., k, by 

2. For k = 1, the Dirichlet univariate is the beta variate 
p: v, w with parameters v = c, and w = c,. The Dirich- 
let variate can be regarded as a multivariate generaliza- 
tion of the beta variate. 

3. The marginal distribution of Xi is the standard beta 
distribution with parameters 

k 

v =  ci and w = cj - ci 
j = o  

4. The Dirichlet variate with parameters np, is an approxi- 
mation to the multinominal variate, for np, not too small 
for every i. 

10.2. DIRICHLET MULTINOMIAL DISTRIBUTION 

The Dirichlet multinominal distribution is the multivariate 
generalization of the beta binomial distribution. It is also 
known as the compound multinomial distribution and, for 
integer parameters, the multivariate negative hypergeometric 
distribution. 
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It arises if the parameters pi, i = 1,. . . , k, of the multi- 
nomial distribution follow a Dirichlet distribution. It has prob- 
ability function 

The mean of the individual elements xi is nci/c,  where 
c = q = , c , ,  and the variances and covariances correspond to 
those of a multinomial distribution with pi = ci/c. The 
marginal distribution of Xi is a beta binomial. 
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Empirical Distribution Function 

An empirical distribution function is one that is estimated 
directly from sample data, without assuming an underlying 
algebraic form of the distribution model. 

Variate X. 
Quantile x. 
Distribution function (unknown) F(x). 
Empirical distribution function (edf) F,(X). 

11.1. ESTIMATION FROM UNCENSORED DATA 

Consider a data sample from X, of size n, with observations 
xi, i = 1, n, arranged in nondecreasing order. Here i is referred 
to as the order-number of observation i. Estimates are made 
of the value of the distribution function F(x), at points corre- 
sponding to the observed quantile values, xi. 

Estimates of the empirical distribution function (edf) FE(xi) 
at xi are the following: 

Kaplan-Meier estimate i/n 
Mean rank estimate i/(n + 1) 
Median rank estimate (i  - 0.3)/(n + 0.4) 
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11.2. ESTIMATION FROM CENSORED DATA 

The data consist of a series of euents, some of which are 
observations and some are random censorings. Let the events 
be arranged in nondecreasing order of their quantile value. An 
observation order-number i, a censoring order-number j, an 
event order-number e, and a modified (observation) order- 
number mi are used. A modified order-number is an adjusted 
observation order-number that allows for the censored items. 
The modified order-numbers and then the distribution func- 
tion value at quantile xi are calculated with the modified 
order-number mi replacing the observation order-number i in 
the median rank equation above. 

i = observation order-number (excludes censorings) 
I = total number of observations (excludes censorings) 
e = event order-number (observations and censorings) 
n = total number of events (observations and censorings) 
j = censoring order-number 

e ,  = event-number of observation i 
e, = event-number of censoring j 
mi = modified order-number of observation i 

C( i )  = set of censoring occurring at or after observation i - 1 
and before observation i (this set may be empty) 

xi = the quantile value (e.g., age at failure) for observa- 
tion i 

x, = the quantile value for event e, which may be an obser- 
vation or a censoring 

x, = the quantile value for censoring j 
m T = n + l - m i  
e , * = n + l - e i  
a;. = the proportion of the current interobservation interval 

that has elapsed when censoring j occurs 
x,=m,=e,=O 



EXAMPLE 

For censoring j in the set C ( i ) ,  ai is defined by 

a, is the proportion of the interval between observation i - 1 
and observation i, which elapses before censoring j occurs. 
The method used is described in Bartlett and Hastings (1998). 
The Herd-Johnson method described by d'Agostino and 
Stephens (1986) is equivalent to assuming that all values of a;. 
are zero. 

The formula for the modified order-number is 

Here, the product is taken over suspensions in the set C(i ) .  If 
this set is empty the product term has value 1, and 

11.3. PARAMETER ESTIMATION 

11.4. EXAMPLE 

An example of reliability data, relating to the lives of certain 
mechanical components, is shown in the first three columns of 
Table 11.1. The observations are ages (in kilometers run) at 
failure and the censoring is the age of an item that has run but 
not failed. 

To estimate the empirical distribution function, first calcu- 
late the modified order-numbers using the equations in Sec- 
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Table 11.1. Modified Order-Numbers and Median Ranks 

Observation Modified 
Event Order- Order- Median 
Order- Hours Number Number Rank, F ( x )  

Number e Run, x Status i mi (mi - 0.3)/(n + 0.4) 

1 3895 Failure 1 1 0.1591 
2 4733 Failure 2 2 0.3864 
3 7886 Censoring 
4 9063 Failure 3 3.2137 0.6622 

tion 11.2. For events prior to the first censoring, m, = 1, m, = 2 
is obtained. Event 3 is a censoring 

a, = (7886 - 4733)/(9063 - 4733) = 0.7282 

m, - m, = 3[1 - ix(3 - 0.7282)]/(2 - 0.7282) = 1.2137 

m, = 3.2137 

Median ranks are calculated as in Section 11.1. The results are 
summarized in Table 11.1 and shown in graphical form in 
Fig. 11.1. 

l o  1 Probabity 

5,000 10,000 

Quantile (kilometers) 

Figure 11.1. Empirical distribution function. 
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Modified 

Order-Numbers 

1 2 3 

Observed Order-Numbers 

Figure 11.2. Graphical method for the modified order-numbers. 

11.5. GRAPHICAL METHOD FOR THE MODIFIED 
ORDER-NUMBERS 

A square grid (Fig. 11.2) is drawn with the sides made up of 
n + 1 small squares, where n is the total number of events. 
The bottom edge of the grid is numbered with observation 
order-numbers i = 1,. . . , I. The top edge of the grid is num- 
bered with censoring order-numbers, starting from the top 
right-hand corner and working to the left. The left-hand side 
of the grid represents the scale of modified order-numbers. 

If there are no censorings, the observation order-numbers 
and the modified order-numbers are the same. This situation 
would be represented by a 45" diagonal line across the large 
square. In Fig. 11.2, the diagonal line starts out at 45", as 
initially there are no censorings, and for the first two observa- 
tions the observation order-number and the modified order- 
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I number are the same. When there is a censoring, j, between ; 
observation i - 1 and observation i, the censoring is indicated 
by a dotted vertical line placed a proportion a, between I 

observations. The vertical dotted line i between observation 2 
and observation 3 illustrates this. The gradient of the diagonal 
line increases at each censoring, becoming directed toward 
the corresponding censoring order-number on the top scale of 
the square. In the example, there is only one censoring, so the 
gradient of the diagonal line increases only once. The modi- 
fied order-numbers are read off from the left-hand vertical 
scale, by drawing horizontal lines across from the points where 
the vertical lines through the observation numbers intersect 
the diagonal line. 

11.6. MODEL ACCURACY 

For any given distribution model, let FM(xi) be the distribu- 
tion function value at quantile xi, where the edf value is F(xi). 
Let qf be the square of the difference between the model 
value FM(xi) and the edf value FE(xi). 

The mean square error between the edf points and the model 
distribution function is given by the Cramer-von Mises statis- 
tic: 

A, the model accuracy, is defined (in percentage terms) by 

If the edf points all lie exactly on the model distribution 
function curve, the model accuracy is 100%. 
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Erlang Distribution 

The Erlang variate is the sum of a number of exponential 
variates. It was developed as the distribution of waiting time 
and message length in telephone traffic. If the durations of 
individual calls are exponentially distributed, the duration of a 
succession of calls has an Erlang distribution. 

The Erlang variate is a gamma variate with shape parame- 
ters c, an integer. The diagrams, notes on parameter estima- 
tion, and variate relationships for the gamma variate apply to 
the Erlang variate. 

Variate y :  b, c. 

Range 0 s x  < m. 

Scale parameter b > 0. Alternative parameter A = l /b.  

Shape parameter c > 0, c an integer for the Erlang distribu- 
tion. 

Distribution function 

(x/b)'-' exp( -x/b) 
Probability density function 

b(c - I)! 



Survival function 

Hazard functions 

Moment generating function (1 - bt)-", t < l / b  

Laplace transform of the pdf (1 + bs)-" 

Characteristic function (1 - ibt)-" 

Cumulant generating function - c log(1 - ibt) 

r th Cumulant ( r  - l)!cbr 
r - 1  

r th Moment about the origin br n (c + i) 
i=O 

Mean bc 

Variance b 2~ 

Mode b(c - I), c 2 1 

Coefficient of skewness 2c-l/2 

Coefficient of kurtosis 3 + 6/c 

Coefficient of variation c-1/2 

12.1. VARIATE RELATIONSHIPS 

1. If c = 1, the Erlang reduces to the exponential distribu- 
tion. 

2. The Erlang variate with scale parameter b and shape 
parameter c, denoted y:  b,c, is equal to the sum 
of c-independent exponential variates with mean b, 
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denoted E: b. 

C 

y :  b , c -  x ( E :  b),, capositiveinteger 
i =  1 

3. For other properties see the gamma distribution. 

12.2. PARAMETER ESTIMATION 

See gamma distribution. 

12.3. RANDOM NUMBER GENERATION 

where R, are independent rectangular unit variates. 
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Error Distribution 

The error distribution is also known as the exponential power 
distribution or the general error distribution. 

Range - m < x < w .  
Location parameter - OJ < a < m, the mean. 
Scale parameter b  > 0. 
Shape parameter c  > 0. Alternative parameter A = 2/c.  . 

Probability density exp[- ( l x  - ~ l / b ) ~ " / 2 ]  

function b(2'/2+ 1 )r(l+ c / 2 )  

Mean 

Median 

Mode 

r  th Moment about 
the mean 

br2rc/2 r ( ( r  + l ) c / 2 )  , r even 
T ( c / 2 )  

lo, r  odd 

2'b2 r ( 3 c / 2 )  
Variance 

T ( c / 2 )  



NOTE 

2"/2 bT(c) 
Mean deviation 

T(c/2) 

Coefficient of skewness 0 

Coefficient of kurtosis 
w c / 2 ) r ( c / 2 )  

[r(3c/2)I2 

13.1. NOTE 

Distributions are symmetric, and for c > 1 are leptokurtic and 
for c < 1 ?re platykurtic. 

Probability 
density 

c = 0.5 

Quantile x 

Figure 13.1. . Probability densitv function for the error variate. 
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13.2. VARIATE RELATIONSHIPS 

1. The error variate with a = 0, b = c = 1 corresponds to a 
standard normal variate N: 0 , l .  

2. The error variate with a = 0, b = $, c = 2 corresponds to 
a Laplace variate. 

3. As c tends to zero, the error variate tends to a rectangu- 
lar variate with range (a - b, a + b) .  
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Exponential Distribution 

This is a distribution of the time to an event when the 
probability of the event occurring in the next small time 
interval does not vary through time. It is also the distribution 
of the time between events when the number of events in any 
time interval has a Poisson distribution. 

The exponential distribution has many applications. Exam- 
ples include the time to decay of a radioactive atom and the 
time to failure of components with constant failure rates. It is 
used in the theory of waiting lines or queues, which are found 
in many situations: from the gates at the entrance to toll roads 
through the time taken for an answer to a telephone enquiry, 
to the time taken for an ambulance to arrive at the scene of an 
accident. For exponentially distributed times, there will be 
many short times, fewer longer times, and occasional very long 
times. 

The exponential distribution is also known as the negative 
exponential distribution. 

Variate E:  b. 

Range 0 sx < +m. 

Scale parameter b > 0, the mean. 

Alternative parameter A, the hazard function (hazard rate), 
A = l /b.  

77 
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Distribution function 1 - exp( -x/b) 

Probability function !l/b)exp( -x/b) 

= A exp( - Ax) 

Inverse distribution function b log[l/(l - a )] 
(of probability a )  = -b log(1 - a )  

Survival function exp( -x/b) 

Inverse survival function b log(l/a) = -b log(a) 
(of probability a )  

Hazard function l /b  = A 

Cumulative hazard function x/b 

Moment generating function l / ( l  - bt), t < l /b  
= A/( A - t) 

Laplace transform of the pdf 1/(1 + bs), s > - l / b  

Characteristic function l / ( l  - ibt) 

Cumulant generating function - log(1 - ibi) 

r th Cumulant r - 1 r 2 l 

rth Moment about the origin r!br 

Mean b 

Variance b2 

Mean deviation 2b/e, where e is the base of 
natural logarithms 

Mode 0 

Median b log 2 

Coefficient of skewness 2 

Coefficient of kurtosis 9 

Coefficient of variation 1 

Information content log ,( eb) 



NOTE 

14.1. NOTE 

The exponential distribution is the only continuous distribu- 
tion characterized by a "lack of memory." An exponential 
distribution truncated from below has the same distribution 
with the same parameter b. The geometric distribution is its 
discrete analogue. The hazard rate is constant. 

Quantile x 

Figure 14.1. Probability density function for the exponential variate E:  b. 

0 1 2 3 

Quantile x 

Figure 14.2. Distribution function for the exponential variate E:  6. 
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Figure 14.3. Cumulative hazard function for the 
exponential variate E :  b. 

x b  

Mean 

14.2. VARIATE RELATIONSHIPS 

( E :  b ) / b  - E :  1, the unit exponential variate 

1. The exponential variate E: b is a special case of the 
gamma variate y : b ,  c corresponding to shape parameter 
c = l .  

2. The exponential variate E:  b is a special case of the 
Weibull variate W: b, c corresponding to shape parame- 
ter c = 1. 

E :  b - W :  b , 1  

E: 1 is related to Weibull variate W :  b,  c 

3. The exponent variate E: b is related to the unit rectangu- 
lar variate R by 

4. The sum of c-independent exponential variates, E: b ,  is 
the Erlang (gamma) variate y :  b ,  c, with integer parame- 
ter c. 
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5. The difference of the two independent exponential vari- 
ates, (E: b), and (E: b),, is the Laplace variate with 
parameters 0, b, denoted L: 0, b. 

L :  0, b - ( E :  b), - ( E :  b), 

If L: a,  b is the Laplace variate, E :  b - I(L: a,  b) - al. 
6. The exponential variate E: b is related to the standard 

power function variate with shape parameter c, here 
denoted X: c, for c = l/b. 

X: c - exp(-E: b) for c = l / b  

and the Pareto variate with shape parameter c, here 
denoted X: a,  c, for c = l /b,  by 

7. The exponential variate E :  b is related to the Gumbel 
extreme value variate V: a,  b by 

V: a ,  b - a  - log(E: b) 

8. Let Y be a random variate with a continuous distribution 
function F,. Then the standard exponential variate E: 1 
corresponds to E:  1 - - log(1 - F,). 

14.3. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

b 
- 
x Unbiased. maximum likelihood 

14.4. RANDOM NUMBER GENERATION 

Random numbers of the exponential variate E: b can be 
generated from random numbers of the unit rectangular vari- 
ate R using the relationship 
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Exponential Family 

i 
1 
1 

Variate can be discrete or continuous and uni- or multidi- 
mensional. 

Parameter 8 can be uni- or multidimensional. 
The exponential family is characterized by having a pdf or 

pf of the form 

15.1. MEMBERS OF THE EXPONENTIAL FAMILY 

These include the univariate Bernoulli, binomial, Poisson, 
geometric, gamma, normal, inverse Gaussian, logarithmic, 
Rayleigh, and von Mises distributions. Multivariate distribu- 
tions include the multinomial, multivariate normal, Dirichlet, 
and Wishart. 

15.2. UNIVARIATE ONE-PARAMETER EXPONENTIAL 
FAMILY 

The natural exponential family has B(x) =x,  with A(8) the 
natural or canonical parameter. For A(8) = 8: 

82 
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Probability (density) function exp[0x + C(x) + D(0)I 
Characteristic function exp[D(0) - D(O + it)] 
Cumulant generating function D(0) - D(0 + it) 

d' 
rth Cumulant - -D(0) 

dor 

Particular cases are: 

Binomial B: n, p for 0 = p ,  

A(0)  = log[0/(1- 0)1 = log(p/q) 

C(x) = log(:), D ( 0 )  = n log(1- 0)  = n log q 

Gamma y : b, c,  for 0 = l / b  = A scale parameter, 
Inverse Gaussian I :  p ,  A, for 0 = p ,  

Negative binomial NB: x, p, for 0 = p ,  

Normal N :  p ,  1, for 6 = p ,  
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Extreme Value (Gumbel) 
Distribution 

The extreme value distribution was developed as the distribu- 
tion of the largest of a number of values and was originally 
applied to the estimation of flood levels. It has since been 
applied to the estimation of the magnitude of earthquakes. 
The distribution may also be applied to the study of athletic 
and other records. 

We consider the distribution of the largest extreme. Rever- 
sal of the sign of x gives the distribution of the smallest 
extreme. This is the Type I, the most common of three 
extreme value distributions, known as the Gumbel distribu- 
tion. 

Variate V: a,  b. 
Range -m  < x  < +m. 

Location parameter a,  the mode. 
Scale parameter b > 0. 

Distribution function 1 - exp( - exp[-(x - a)/b]} 

Probability density function (l/b)exp[- ( x  - a)/bl 

x exp{ - exp[- (x  - a)/b]) 



Inverse distribution function a - b log[log(l/a )] 
(of probability a )  

Inverse survival function a - b log{log[l/(l - a ) ] }  
(of probability a )  

Hazard function 
exp[ - ( x  - a w l  

b(exp{exp[ - ( x  - a)/bl} - 1) 

Moment generating function exp(at)T(l - bt), t < l / b  

Characteristic function exp(iat ) r ( l  - ibt) 

Mean a - bT'(1) 

r '(1) = - 0.57722 is the first 
derivative of the gamma function 
T(n) with respect to n at n = 1 

Variance b2v2/6 

Coefficient of skewness 1.139547 

Coefficient of kurtosis 5.4 

Mode a 

Median a - b log(1og 2) 

16.1. NOTE 

Extreme value variates correspond to the limit, as n tends to 
infinity, of the maximum value of n-independent random 
variates with the same continuous distribution. Logarithmic 
transformations of extreme value variates of Type I1 (Frkchet) 
and Type I11 (Weibull) correspond to Type I Gumbel variates. 

16.2. VARIATE RELATIONSHIPS 

standard Gumbel extreme value variate 
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Probability 
density 

0 

a-3b  a- 2b  a - b  a  a + b  a + 2 b  a + 3 b  a + @  
Quantile x 

Figure 16.1. Probability density function for the extreme value variate V: a, b (largest 
extreme). 

9 _ 
Probability - 

a 

a-3b  a- 2b  a - b  a  a + b  a + 2 b  a + 3 b  a + 4 b  

Quantile x 

Figure 16.2. Distribution function for the extreme value variate V: a, b (largest 
extreme). 

1 .  The Gumbel extreme value variate V :  a ,  b is related to 
the exponential variate E: b  by 

2. Let ( E :  b ) i ,  i = 1 , .  . . , n,  be independent exponential 
variates with shape parameter b. For large n,  

( E :  b)n+a-b l o g ( m )  = V :  a ,  b  for m = 1 , 2 , .  . . 



a - 2 6  a - b  a  a + h  a + 2 6  a + 3 6  a + 4 h  
Quant~le x 

Figure 16.3. Hazard function for the extreme value variate V: a, b (largest extreme). 

3. The standard extreme value variate V :  O,1 is related to 
the Weibull variate W: b, c by 

The extreme value distribution is also known as the 
"log-Weibull" distribution and is an approximation to the 
Weibull distribution for large c .  

4. The difference of the two independent extreme value 
variates (V :  a, b), and (V :  a, b), is the logistic variate 
with parameters 0 and b, here denoted X: 0, b, 

X :  0, b - ( V :  a ,  b), - ( V :  a ,  b), 

5. The standard extreme value variate, V :  0,1 is related to 
the Pareto variate, here denoted X: a, c by 

and the standard power function variate, here denoted 
X: 0, c by 
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16.3. PARAMETER ESTIMATION 

By the method of maximum likelihood, the estimators 2, & are 
the solutions of the simultaneous equations 

16.4. RANDOM NUMBER GENERATION 

Let R denote a unit rectangular variate. Random numbers of 
the extreme value variate V: a, b can be generated using the 
relationship 
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F (variance Ratio) or 
Fisher-Snedecor Distribution 

The F variate is the ratio of two chi-squared variates. Chi- 
squared is the distribution of the variance between data and a 
theoretical model. The F distribution provides a basis for 
comparing the ratios of subsets of these variances associated 
with different factors. 

Many experimental scientists make use of the technique 
called analysis of variance. This method identifies the relative 
effects of the "main"variab1es and interactions between these 
variables. The F distribution represents the ratios of the 
variances due to these various sources. For example, a biolo- 
gist may wish to ascertain the relative effects of soil type and 
water on the yield of a certain crop. The F ratio would be 
used to compare the variance due to soil type and that due to 
amount of watering with the residual effects due to other 
possible causes of variation in yield. The interaction between 
watering and soil type can also be assessed. The result will 
indicate which factors, if any, are a significant cause of varia- 
tion. 

Variate F: v, w. 
Range 0 IX < a. 
Shape parameters v, w, positive integers, referred to as 

degrees of freedom. 
90 
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Probability density 
function 

rth Moment about 
the origin 

Mean 

Variance 

Mode 

Coefficient of skewness 

Coefficient of kurtosis 

Coefficient of variation 

17.1. VARIATE RELATIONSHIPS 

1. The quantile of the variate F: v, o at probability level 
1 - a is the reciprocal of the quantile of the variate F: 
w, v at probability level a. That is, 



Quantile x 

Figure 17.1. Probability density function for the F variate F: v, w .  

Quantile x 

Figure 17.2. Distribution function for the F variate F: v, w. 

where G , ( a :  v, w )  is the inverse distribution function 
of F :  v, w at probability level a .  

2. The variate F :  v, w is related to the independent chi- 
squared variates x 2 :  v and x 2 :  w by 
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3. As the degrees of freedom v  and o increase, the F:  
v ,  o variate tends to normality. 

4. The variate F :  v ,  o tends to the chi-squared variate 
x 2 :  v  as w tends to infinity: 

5. The quantile of the variate F:  1, o at probability level a  
is equal to the square of the quantile of the Student's t 
variate t :  w at probability level + ( I  + a ) .  That is, 

2 
G F ( a :  1,  o )  = [ ~ , ( f  ( 1  + a ) :  w ) ]  

where G is the inverse distribution function. In terms of 
the inverse survival function the relationship is 

2 
Z,(a : 1, o )  = [ ~ , ( + a :  o)]  

6. The variate F :  v ,  o and the beta variate P :  w/2,  v / 2  
are related by 

P ~ [ ( F :  v ,  w )  > x ]  = P r [ ( P :  w /2 ,  v /2 )  s w / ( w  + v x ) ]  

= S,(x: v ,  0 )  

= Fp([  w / ( o  + v x ) ]  : o / 2 ,  v / 2 )  

where S  is the survival function and F is the distribu- 
tion function. Hence the inverse survival function ZF(  a  : 
v ,  w )  of the variate F: v ,  o and the inverse distribution 
function G p ( a :  o / 2 ,  v / 2 )  of the beta variate P :  
w/2,  v / 2  are related by 

Z F ( a :  v ,  o )  = G F ( ( l  - a ) :  v ,  o )  

= ( w / v ) ( [ 1 / ~ p (  a  : @/2 ,  v /2 )]  - 1 )  

where a  denotes probability. 



dq ajerlea '2 :d ayj 01 palel 
-a1 sr 2'1 = T '!(q '0 :7) pajouap 'q pue 0 slajaweled 
yj!~ 'sa~e!~eh a3elde~ juapuadapu! ow 30 o!lel ayL '01 

-1a8aluy uaha ue s! A + m alayM 

:SMO~~OJ se ,Zs 'is 'Zg '[g salerreh aug 
-3, .Zu6...'~ = (f1(zD'Zd :N) PUE 'U '. . ' '1 = !!(ID 'Id 
:N) saje!lea ~ew~ou juapuadapu! 30 sjas ow laprsuoa .g 

dq pajelal ale ~/m 'Z/A 
:dr ajerlea ejaq pallahuy aql pue m 'A :d a]e!lea ayL -L 



C H A P T E R  18 

F  o on central) Distribution 

Variate F: v, w, 6. 
Range 0 < x  < a. 
Shape parameters v, w, positive integers are the degrees of 

freedom, and S > 0 the noncentrality parameter. 

Probability density exp( - 6/2) v"/2mw/2x("-2)/2 
k 

function(Fig.18.1) B(v/2,0/2)(w+vx) ( u + w ) / 2  ' 

where k = 1 + 
j =1  

rth Moment about ' T((v/2) + r)T((w/2) - r )  
the origin r( 4 2 )  

Mean 



Quant~le x 

Figure 18.1. Probability density function for the (noncentral) F variate F: v, o, 6 .  

( v + 6 ) 2 + ( v + 2 8 ) ( w - 2 )  
Variance 

2 ! ~  12[ ( w  - 2).(w - 4 )  

w > 4  

2 [ ( v +  a ) ' +  ( v + 2 ~ ) ( w - 2 ) ]  
Mean deviation 

1 / 2  
, w > 2  

[ ( v +  8 ) ' ( w - 4 ) ]  

18.1. VARIATE RELATIONSHIPS 

1. The noncentral F variate F: v ,  w,  6  is related to the 
independent noncentral chi-squared variate x 2: v ,  8  and 
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central chi-squared variate x 2 :  w by 

2. The noncentral F variate F :  v, w, S tends to the (central) 
F variate F: v, w as 6 tends to zero. 

3. If the negative binomial variate NB: w/2,p, and the 
Poisson variate P :  S/2 are independent, then they are 
related to the noncentral F variate F :  v, w, 6 (for v 
even) by 

P ~ [ ( F :  v, w, 8 )  < ~ w / v ]  

= P~[[(NB: w/2,p) - ( P :  6/2)] r v/2] 
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Gamma Distribution 

The gamma distribution includes the chi-squared, Erlang, and 
exponential distributions as special cases, but the shape pa- 
rameter of the gamma is not confined to integer values. The 
gamma distribution starts at the origin and has a flexible 
shape. The parameters are easy to estimate by matching mo- 
ments. 

Variate y : b, c. 

Range 0 rx < co. 
Scale parameter b > 0. Alternative parameter A, A = l/b. 
Shape parameter c > 0. 

Distribution function For c an integer see Erlang 
distribution. 

Probability density function (x/b)'- l[exp( -x/b)l/bT(c), 
where T(c) is the gamma 
function with argument c (see 
Section 5.1). 

Moment generating function (1 - bt)-", t < l / b  

Laplace transform of the pdf (1 + bs)-", s > - l / b  
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Characteristic function 

Cumulant generating function 

r th Cumulant 

rth Moment about the origin 

Mean 

Variance 

Mode 

Coefficient of skewness 

Coefficient of kurtosis 

Coefficient of variation 

(1 - ibt)-" 

-c log(1 - ibt) 

( r  - l)!cbr 

brT(c + r)/T(c) 

bc 

b 2~ 

b(c - I), c 2 1 
ZC - 1/2 

3 + 6/c 
c - 1/2 

19.1. VARIATE RELATIONSHIPS 

( y  : b, c)/b - y : 1, c,  standard gamma variate 

1. If E: b is an exponential variate with mean b, then 

2. If the shape parameter c is an integer, the gamma variate 
y :  1, c is also referred to as the Erlang variate. 

3. If the shape parameter c is such that 2c is an integer, 
then 

where ,y 2: 2c is a chi-squared variate with 2c degrees of 
freedom. 

4. The sum of n-independent gamma variates with shape 
parameters ci is a gamma variate with shape parameter 



GAMMA DISTRIBUTION 

Qwntile x 

Figure 19.1. Probability density function for the gamma variate y : 1, c.  

n n 

( y :  b ,c i )  - y :  b , c ,  where c =  x c i  
i =  1 i= 1 

5. The independent standard gamma variates with shape 
parameters c, and c, are related to the beta variate with 
shape parameters c,, c,, denoted P : c,, c,, by 
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Quant~le x 

Figure 19.2. Distribution function for the gamma variate y: 1, c. 

19.2. PARAMETER ESTIMATION 

Parameter Estimator Method 

Scale parameter, b s 2/.F Matching moments 
Shape parameter, c (X/s12 Matching moments 

Maximum-likelihood estimators 6 and c^ are solutions of the 
simultaneous equations [see Section 5.1 for $(c)). 
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Qwntile x 

Figure 19.3. Hazard function for the gamma variate y : 1, c. 

19.3. RANDOM NUMBER GENERATION 

Variates y : b, c for the case where c is an integer (equivalent 
to the Erlang variate) can be computed using 

where the R, are independent unit rectangular variates. 



NORMAL GAMMA DISTRIBUTION 

19.4. INVERTED GAMMA DISTRIBUTION 

The variate l/( y : b, c) is the inverted gamma variate and has 
probability distribution function (with quantile y )  

Its mean is A/(c - 1) for c > 1 and its variance is 

A - 1 - 211 for c > 2 

19.5. NORMAL GAMMA DISTRIBUTION 

For a normal N: p, a variate, the normal gamma prior density 
for ( p, a) is obtained by specifying a normal density for the 
conditional prior of p given a, and an inverted gamma 
density for the marginal prior of a, and is 

where T, po, V, and s2 are the parameters of the prior 
distribution. In particular, 

This is often used as a tractable conjugate prior distribution in 
Bayesian analysis. 



Variate y : a, 6,  c, k. 
Range x  > a > 0. 
Location parameter a  > 0. Scale parameter b > 0. 
Shape parameters c  > 0  and k  > 0. 

Probability density k ( x  - 
function bkCT(c)  

rth Moment about a blT(c + r / k ) / r ( c ) ,  c  > -r/k 

Mean a  + bT(c + l / k ) / T ( c ) ,  c  > - l / k  

Variance b2{r(c  + 2 / k ) / T ( c )  
- [T(c  + l / k ) / r ( c ) l 2 ) ,  

c > -2k 

Mode a  + b(c - ~ / I G ) ' / ~ ,  c  > l / k  

Variate Relationships 

1. Special cases of the generalized gamma variate y :  
a, b, c, k  are the following: 
Gamma variate y :  b, c  with k  = 1, a = 0. 
Exponential variate E: b  with c  = k  = 1,  a  = 0. 
Weibull variate W: b, k  with c = 1, a  = 0. 

Chi-squared variate x 2 :  v with a = 0, b = 2, c = v/2, 
k =  1. 

2. The generalized and standard gamma variates are re- 
lated by 
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3. The generalized gamma variate y : a, b, c,  k tends to the 
lognormal variate L: m, a when k tends to zero, c tends 
to infinity, and b tends to infinity such that k2c tends to 
l / a 2  and bc'Ik tends to m.  

4. The generalized gamma variate y : 0, b,  c, k with a = 0 
tends to the power function variate with parameters b 
and p when c tends to zero and k tends to infinity such 
that ck tends to p ,  and tends to the Pareto variate with 
parameters b and p when c tends to zero and k tends to 
minus infinity such that ck tends to - p .  



Geometric Distribution 

Suppose we were interviewing a series of people for a job and 
we had established a set of criteria that must be met for a 
candidate to be considered acceptable. The geometric distri- 
bution would be used to describe the number of interviews 
that would have to be conducted in order to get the first 
acceptable candidate. 

Variate G :  p.  
Quantile n, number of trials. 
Range n 2 0, n an integer. 

Given a sequence of independent Bernoulli trials, where the 
probability of success at each trial is p, the geometric variate 
G: p is the number of trials or failures before the first success. 
Let q = 1 -p. 

Parameter p ,  the Bernoulli probability parameter, 0 < p  < 1. 

Distribution function 1 - f + l  

Probability function ~ 4 "  

Inverse distribution function [log(l - a ) / l ~ g ( ~ ) ]  - 1, 
(of probability a )  rounded up 
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Inverse survival function [log( a! )/log(q)I - 1, 
(of probability a )  rounded up 

Moment generating function 

Probability generating function 

Characteristic function 

Mean 

Moments about mean 
Variance 
Third 
Fourth 

Mode 

Coefficient of skewness 

Coefficient of kurtosis 

Coefficient of variation 

20.1. NOTES 

1. The geometric distribution is a discrete analogue of the 
continuous exponential distribution and only these are 
characterized by a "lack of memory." 

Quantile n, number of trials Quantile n, number of trials 

Figure 20.1. Probability function for the geometric variate G :  p. 
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2. An alternative form of the geometric distribution in- 
volves the number of trials up to and including the first 
success. This has probability function pqn-', mean l/p, 
and probability generating function pt/(l  - qt). The geo- 
metric distribution is also sometimes called the Pascal 
distribution. 

20.2. VARIATE RELATIONSHIPS 

1. The geometric variate is a special case of the negative 
binomial variate NB: x ,  p with x = 1. 

G : p - N B :  1 , p  

2. The sum of x-independent geometric variates is the 
negative binomial variate 

X 

( G :  p) ,  - NB: x , p  
r = l  

20.3. RANDOM NUMBER GENERATION 

Random numbers of the geometric variate G: p can be gener- 
ated from random numbers of the unit rectangular variate R 
using the relationship 

G :  p - [ log(~) / log( l  -p)] - 1, rounded up to the next 
larger integer 
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Hypergeometric Distribution 

Suppose a wildlife biologist is interested in the reproductive 
success of wolves that had been introduced into an area. Her 
approach could be to catch a sample, size X, and place radio 
collars on them. The next year, after the wolf packs had been 
allowed to spread, a second sample, size n, could be caught 
and the number of this sample that had the radio collars 
would be x. The hypergeometric distribution could then be 
used to estimate the total number of wolves, N, in the area. 
This example illustrates an important point in the application 
of theory to practice-that is, the assumptions that must be 
made to make the application of a particular theory (distribu- 
tion) reliable and valid. In the cited example it was assumed 
that the wolves had intermixed randomly and that the samples 
were drawn randomly and independently on the successive 
years. Also, it was assumed that there had been minimal losses 
due to the activities of hunters or farmers or gains due to 
reproduction or encroachment from other areas. Probability 
and statistical distribution theory provide useful research tools, 
which must be complemented by domain knowledge. 

Variate H: N, X, n. 
Quantile x, number of successes. 

Range max[O, n - N + X I  I x s min[X, n]. 
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From a population of N elements of which X are successes 
(i.e., possess a certain attribute) we draw a sample of n items 
without replacement. The number of successes in such a 
sample is a hypergeometric variate H: N,  X ,  n. 

Parameters 

Probability function 
(probability 
of exactly 
x successes) 

Mean 

Moments about 
the mean 

Variance 

Third 

Fourth 

N,  the number of elements in the 
population 

X, the number of successes in the 
population n ,  sample size 
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( N  - 2 X ) ( N  - 1 ) 1 / 2 ( ~  - 2n)  
Coefficient of skewness 

[ ~ x ( N  - x ) ( N  - ~ ) J ~ / ' ( N  - 2) 

- ,.,.. . ". r N ~ ( N  - 1) 1 

Coefficient of variation {( N  - X)(  N  - n) /nX(  N - 1 

21.1. NOTE 

Successive values of the probability function f ( x )  are related 
by 

f ( x +  l ) = f ( x ) ( n  - x ) ( X - x ) / [ ( x +  1 ) ( N - n  - X + x +  I ) ]  

f (0)  = ( N  - x ) ! ( N - n ) ! / [ ( N  - X -  n ) ! N ! ]  

21.2. VARIATE RELATIONSHIPS 

1. The hypergeometric variate H: N, X ,  n  can be approxi- 
mated by the binomial variate with Bernoulli probability 
parameter p = X / N  and Bernoulli trial parameter n ,  
denoted B: n , p ,  provided n / N  < 0.1, and N is large. 
That is, when the sample size is relatively small, the 
effect of nonreplacement is slight. 

2. The hypergeometric variate H: N,  X, n  tends to the 
Poisson variate P: A as X, N,  and n  all tend to infinity 
for X / N  small and n X / N  tending to A. For large n,  but 
v /AT nnt tnn r m - 1 1  it t a n A c  tn - n n r m - 1  r r q r i q t n  
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HYPERGEOMETRIC DISTRIBUTION 

21.3. PARAMETER ESTIMATION 

Parameter Estimation Method / Properties 

N max integer I nX/x Maximum likelihood 
X max integer 5 ( N  + l)x/n Maximum likelihood 
X Nx/n Minimum variance, 

unbiased 

21.4. RANDOM NUMBER GENERATION 

To generate random numbers of the hypergeometric variate 
H: N, X,  n, select n-independent, unit rectangular random 
numbers R,, i = 1,.  . . , n. If Ri < p i  record a success, where 

where 

21.5. NEGATIVE HYPERGEOMETRIC DISTRIBUTION 

If two items of the corresponding type are replaced at each 
selection (see Section 4.3), the number of successes in a 
sample of n items is the negative hypergeometric variate with 
parameters N, X, n. The probability function is 



The mean is nX/N and the variance is (nX/N)(l -X/N) 
x ( N  + n)/(N + 1). This variate corresponds to the beta bino- 
mial or binomial beta variate with integral parameters 
v = X ,  o = N - X .  

The negative hypergeometric variate with parameters 
N, X, n tends to the binomial variate, B: n, p ,  as N and X 
tend to infinity and X/N to p, and to the negative binomial 
variate, NB: x ,  p ,  as N and n tend to infinity and N/(N + n) 
to p. 

21.6. GENERALIZED HYPERGEOMETRIC (SERIES) 
DISTRIBUTION 

A generalization, with parameters N, X, n taking any real 
values, forms an extensive class, which includes many well- 
known discrete distributions and which has attractive features. 
(See Kotz and Johnson, 1983, Vol. 3, p. 330.) 
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Inverse Gaussian (Wald) 
Distribution 

The inverse Gaussian distribution has applications in the study 
of diffusion processes and as a lifetime distribution model. 

Variate I :  p, A. 

Range x > 0. 

Location parameter p > 0, the mean. 

Scale parameter A  > 0. 

A - A(x - P )  
Probability density function 

Moment generating function exp 

Characteristic function 

r th Cumulant 1 . 3 - 5  ...(2r - 3 ) p 2 r - 1 ~ 1 - r ,  
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Curnulant generating function 

rth Moment about 
the origin 

Mean 

Variance 

Mode 

r - 1  ( r  - 1 + i ) !  
pr C 

i = O  i ! ( r  - 1 - i ) !  

Coefficient of skewness 

Coefficient of kurtosis 

Coefficient of variation 

22.1. VARMTE RELATIONSHIPS 

1. The standard inverse Gaussian variate I: p, A is related 
to the chi-squared variate with one degree of freedom, 
X 2 :  1, by 

: 1 [ ( I :  p ,  A )  - PI2/[ p2(1: P7 A)]  

2. The standard Wald variate is a special case of the inverse 
Gaussian variate I :  p, A, for p = 1. 

3. The standard inverse Gaussian variate I :  p, A tends to 
the standard normal variate N: O , 1  as A tends to infinity. 



Figure 22.1. 

Quantile x 

Probability density function for the inverse Gaussian variate I: p, A. 

22.2. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

P 
- 
x Maximum likelihood 

h 
- ( I - , i )  - 1 )  ~ i n i m u m  variance, 

i = l  unbiased 
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Laplace Distribution 

The Laplace distribution is often known as the double-ex- 
ponential distribution. 

In modeling, the Laplace provides a heavier tailed alterna- 
tive to the normal distribution. 

Variate L: a, b. 

Range - a < x < c ~ .  

Location parameter - < a < m, the mean. 
Scale parameter b > 0. 

1 a -x 
Distribution function Texp[-(4)], X < a  

Probability density 
function 

Moment generating 
function 
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exp(iat) 
Characteristic function 

1 + b2t2 

( r  - l)!br, r even 
r th Cumulant 

r odd 

Mean a 

Median a 

Mode a 

rth Moment about the r even 
mean, pr { r odd 

Variance 2b2 

Coefficient of skewness 0 

Coefficient of kurtosis 6 

Coefficient of variation 21/2 (9) 
23.1. VARIATE RELATIONSHIPS 

1. The Laplace variate L: a, b is related to the independent 
exponential variates E: b and E: 1 by 

E:  b - I(L: a ,  b) - a (  

E :  1 - [ (L:  a ,  b) - al/b 

2. The Laplace variate L: 0, b is related to two independent 
exponential variates E :  b by 

L: 0, b - ( E :  b), - (E:  b), 

3. Two independent Laplace variates, with parameter a = 0, 
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Quantlle x 

Figure 23.1. Probability density function for the Laplace variate. 

are related to the F variate with parameters v = w = 2, 
F: 2 ,2 ,  by 

9 ,  - b = 0.5 

a a = O  

Quantile x 

Figure 23.2. Distribution function for the Laplace variate. 
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23.2. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

a Median Maximum likelihood 
1 " 

b - Ixi - a1 Maximum likelihood 
j = l  

23.3. RANDOM NUMBER GENERATION 

The standard Laplace variate L: 0,1 is related to the indepen- 
dent unit rectangular variates R,, R ,  by 



Logarithmic Series Distribution 

Range x 2 1, an integer. 

Shape parameter 0 < c < 1. 

For simplicity, also let k = - l/log(l - c). 

Probability function kcx/x 

Probability generating 
log(1 - ct)/log(l - c), It1 < l / c  

function 

Moment generating log[l - c exp(t )]/log(l - c) 
function 

Characteristic function log[l - c exp(it)l/log(l - c) 

Moments about the origin 
Mean kc(1 - c) 

Second kc/(l - cI2 

Third kc(1 + c)/(l  - c ) ~  

Fourth kc(1 + 4c + c2)/(1 - c ) ~  

Moments about the mean 
Variance kc(1 - kc)/(l - c ) ~  
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Third kc(1 + c - 3kc + 2k2c2) / (1  - c ) ~  

Fourth 

(1  + c )  - 3kc + 2k2c2 
Coefficient of skewness 

(kc) ' / ' ( l  - 

1 + 4c + c2  - 4kc( l  + c i + 6k2c2 - 3k3c- 
Coefficient of kurtosis 

kc(1 - kc12 

24.1. VARIATE RELATIONSHIPS 

1. The logarithmic series variate with parameter c corre- 
sponds to the power series distribution variate with pa- 
rameter c and series function -log(l - c).  

2. The limit toward zero of a zero truncated (i.e., excluding 
x = 0) negative binomial variate with parameters x and 
p = 1 - c is a logarithmic series variate with parameter c.  

24.2. PARAMETER ESTIMATION 

The maximum-likelihood and matching moments estimators c^ 
satisfy the equation 



PARAMETER ESTIMATION 

Quantile x 

Quantile x 

Figure 24.1. Probability function for the logarithmic series variate. 

Other asymptotically unbiased estimators of c are 

proportion of )  1. 
- [x~sequal  to 1 
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Logistic Distribution 

The distribution function of the logistic is used as a model for 
growth. For example, with a new product we often find that 
growth is initially slow, then gains momentum, and finally 
slows down when the market is saturated or some form of 
equilibrium is reached. 

Applications include the following: 

Market penetration of a new product. 

Population growth. 
The expansion of agricultural production. 
Weight gain in animals. 

Range -a < x  < a. 
Location parameter a,  the mean. 
Scale parameter b > 0. 

Alternative parameter k = 7rb/3'l2, the standard deviation. 

Distribution function 1 - 11 + exp[(x - a)/b])-' 

= (1 + exp[- (x - a)/b])-' 
1 

= ,{I + tanh[:(x - a)/b]} 
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Probability density function 

Inverse distribution function 
(of probability a )  

Survival function 

Inverse survival function 
(of probability a )  

Hazard function 

Cumulative hazard function 

Moment generating function 

Characteristic function 

Mean 

Variance 

Mode 

Median 

Coefficient of skewness 

Coefficient of kurtosis 

Coefficient of variation 

- 
sech2 [(x - a)/2b] 

- 
4b 

{b{l + exp[-(x - a)/b]}}-' 

log{l + exp[(x - a)/bl} 

exp(at)r(l - bt)T(l + bt) 

= T bt exp(at)/sin(~ bt) 

exp ( i a t )~  bit/sin(n bit) 

a 

T 2b2/3 

a 

a 

0 

4.2 

T b(3'I2a) 
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Figure 25.1. Probability density function for the logistic variate. 

Figure 25.2. Distribution function for the logistic variate. 

25.1. NOTES 

1. The logistic distribution is the limiting distribution, as n 
tends to infinity, of the average of the largest to smallest 
sample values, of random samples of size n from an 
exponential-type distribution. 

2. The standard logistic variate, here denoted X: 0,1 with 
parameters a = 0, b = 1, has a distribution function F, 
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and probability density function fx with the properties 

25.2. VARIATE RELATIONSHIPS 

The standard logistic variate, here denoted X :  O,1, is related 
to the logistic variate, denoted X :  a, b  by 

1. The standard logistic variate X: 0 , l  is related to the 
standard exponential variate E: 1 by 

For two independent standard exponential variates E: 1, 
then 

2. The standard logistic variate X:  O,1 is the limiting form 
of the weighted sum of n-independent standard Gumbel 
extreme value variates V :  O,1 as n tends to infinity 

n 

X :  0, 1 ( V :  0, I ) ,  n + co 
i =  l 

3. Two independent standard Gumbel extreme value vari- 
ates, V :  a, b, are related to the logistic variate X:  0, b by 

X: 0, b - ( V :  a ,  b ) ,  - ( V :  a ,  b), 

4. The Pareto variate, here denoted Y: a, c,  is related to the 
standard logistic variate X:  O,1 by 
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5. The standard power function variate, here denoted Y: 
1, c,  is related to the standard logistic variate X: O , 1  by 

25.3. PARAMETER ESTIMATION 

The maximum-likelihood estimators â  and & of the location 
and scale parameters are the solutions of the simultaneous 
equations. 

25.4. RANDOM NUMBER GENERATION 

Let R denote a unit rectangular variate. Random numbers of 
the logistic variate X :  a, b can be generated using the relation 
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Lognormal Distribution 

The lognormal distribution is applicable to random variables 
that are constrained by zero but have a few very large values. 
The resulting distribution is asymmetrical and positively 
skewed. Examples include the following: 

The weight of adults. 
The concentration of minerals in deposits. 
Duration of time off due to sickness. 
Distribution of wealth. 
Machine down times. 

The application of a logarithmic transformation to the data 
can allow the data to be approximated by the symmetrical 
normal distribution, although the absence of negative values 
may limit the validity of this procedure. 

Variate L: m, a or L: p ,  0. 
Range 0 s x  < a. 
Scale parameter m > 0, the median. 
Alternative parameter p ,  the mean of log L. 
m and p are related by m = exp p, p = log m. 
Shape parameter a > 0, the standard deviation of log L. 
For compactness the substitution w = exp(a2) is used in 

several formulas. 
129 
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Probability density function 

rth Moment about the origin 

Mean 

Variance 

Mode 

Median 

Coefficient of skewness 

Coefficient of kurtosis 

Coefficient of variation 

LOGNORMAL DISTRIBUl 

X exp 
2 a 2  

- - 
1 

x u  ( 2 ~ ) " ~  

26.1. VARlATE RELATIONSHIPS 

1. The lognormal variate with median rn and with a denot- 
ing the standard deviation of log L is expressed by L: 
m, a. (Alternatively, if p, the mean of log L, is used as a 
parameter, the lognormal variate is expressed by L: p, a.)  
The lognormal variate is related to the normal variate 
with mean p and standard deviation a ,  denoted N: 
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p, u ,  by the following: 

L: m, a-  exp(N: p ,  a )  - exp[ p + a ( N :  0, I)] 

- m exp(aN: 0 , l )  

log(L: m, a )  - (N: p ,  a )  - p + a ( N :  0 , l )  

P ~ [ ( L :  p ,  a )  1x1 = P r [ ( e x p ( ~ :  p ,  a ) )  1x1 

= P ~ [ ( N :  p ,  a )  I log x] 

= P ~ [ ( N :  0 , l )  I log((x - p)/a)] 

2. For small a ,  the normal variate N: log p ,  u approxi- 
mates the lognormal variate L: p, a. 

3. Transformations of the following form, for a and b 
constant, of the lognormal variate L: p, a are also 
lognormal: 

exp(a)(L: p, a )b  - L: a + bp, b a  

Quantile x 

Figure 26.1. Probability density function for the lognormal variate L: m, u. 
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Quantile x 

Figure 26.2. Distribution function for the lognormal variate L: m, (T. 

Quantile x 

Figure 263. Hazard function for the lognormal variate L: m, u. 
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4. For two independent lognormal variates, L: p,, a, and 
L: p2, a2, 

5. The geometric mean of the n-independent lognormal 
variates L: p, u is also a lognormal variate 

26.2. PARAMETER ESTIMATION 

The following estimators are derived by transformation to the 
normal distribution. 

Parameter Estimator 

Median, m riz = exp jl 

Mean of log( L), p 

Variance of  log(^), a G = ( n  - I ) [log(xi - jl)12 

26.3. RANDOM NUMBER GENERATION 

The relationship of the lognormal variate L: m, a to the unit 
normal variate N: O,1 gives 

L: m, a-  m exp(aN: 0 , l )  

- exp[ p + a ( N :  0, I)] 
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Multinomial Distribution 

The multinomial variate is a multidimensional generalization 
of the binomial. Consider a trial that can result in only one of 
k possible distinct outcomes, labeled Ai, i = 1,. . . , k. Outcome 
Ai occurs with probability pi. The multinomial distribution 
relates to a set of n-independent trials of this type. The 
multinomial multivariate is M = [Mi], where Mi is the variate 
"number of times event Ai  occurs," i = 1,. . . , k. The quantile 
is a vector x = [x,, . . . , x,]'. For the multinomial variate, xi is 
the quantile of Mi and is the number of times event Ai occurs 
in the n trials. 

Suppose we wish to test the robustness of a complex compo- 
nent of an automobile under crash conditions. The component 
may be damaged in various ways each with different probabili- 
ties. If we wish to evaluate the probability of a particular 
combination of failures we could apply the multinomial distri- 
bution. A useful approximation to the multinomial distribution 
is the application of the chi-squared distribution to the analy- 
sis of contingency tables. 

Multivariate M: n, p,, . . . , p,. 
Range xi 2 0, Cf=, xi = n, xi an integer. 
Parameters n and pi (i = 1,. . . , k), where 0 < p i  < 1, 

C;=lPi = 1. 

The joint probability function f (x,, . . . , x,) is the probability 
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that each event A, occurs xi times, i = 1,. . . , k, in the n trials, 
and is given by 

k 

Probability function n! n (p,"k/xi!) 
i = l  

Probability generating 
function 

Moment generating 
function 

Cumulant generating n log pi exp(it,) 
function [i:, I 

Individual elements, Mi 
Mean nPi 
Variance npi(l -pi) 

Covariance -npipj, i Z j  

Third cumulant npi(l -p,)(l - 2pi), i = j = k 

-npipk(l - 2pi), i = j # k 

2npipjpk, i, j, k all distinct 

Fourth cumulant npi(l -pi)[l - 6pi(l -pi)], 
i = j = k = l  

-npipl[l - 6pi(l -pi)], 

i = j = k # l  

- 6 n ~ i ~ j ~ k  

i, j, k, I all distinct 
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27.1. VARIATE RELATIONSHIPS 

1. If k = 2 and p ,  = p ,  the multinomial variate corresponds 
to the binomial variate B: n ,  p .  The marginal distribution 
of each Mi is the binomial distribution with parameters 
12, Pi. 

27.2. PARAMETER ESTIMATION 

For individual elements 

Parameter Estimator Method / Properties 

Pi xi/n Maximum likelihood 
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Multivariate Normal 
(Multinormal) Distribution 

A multivariate normal distribution is a multivariate extension 
of the normal distribution. 

The bivariate normal distribution may be applied to the 
description of correlated variables, such as smoking and per- 
formance on respiratory function tests. An extension of the 
concept may be applied to multiple correlated variables such 
as heart disease, body weight, exercise, and dietary habits. 

Multivariate MN: p ,  Z. 
Quantile x = [ x , ,  . . . , x k ] '  a k X 1 vector. 
Range - a  < x i  < m, for i = I,.. ., k. 
Location parameter, the k x 1 mean vector, p = 

[ p  ,,..., p k ] ' ,  with - m  < p i  <m. 

Parameter X, the k x k positive definite variance-covari- 
ance matrix, with elements C i j  = uij. 

Probability density function f(x) = ( 2 T ) - ( l / 2 ) k l z  [ - I / 2  

Characteristic function exp( - i t  ' Z t  )exp(it ' p) 
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Moment generating function exp( p ' t  + i t  ' Z t )  

Cumulant generating function - $tr2t  + i ' t  'p 

Mean P 

Variance-covariance 2 

Moments about the mean 
Third 

Fourth 

r th Cumulant 

For individual elements MN, 
Probability density function 

Mean 

Variance 

Covariance 

(Tij(Tkl + (Tikqr + uilTk 
0 for r > 2 

28.1. VARLATE RELATIONSHIPS 

1. A fixed linear transformation of a multivariate normal 
variate is also a multivariate normal variate. For a a 
constant j X 1 vector and B a j x k fixed matrix, the 
resulting variate is of dimension j x 1: 

a + B(MN: p ,  Z )  - (MN: a + B p ,  BXB')  

2. The multinormal variate with k = 1 corresponds to the 
normal variate N: p, (T, where p = pFLI and u 2  = Z,,. 

3. The sample mean of variates with any joint distribution 
with finite mean and variance tends to the multivariate 
normal form. This is the simplest form of the multivari- 
ate central limit theorem. 
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28.2. PARAMETER ESTIMATION 

For individual elements 

Parameter Estimator Method / Properties 
n 

Pi X i  = C xii Maximum likelihood 
t = l  

n 

Cij C ( x t i  - Xi) (x i j  - q) Maximum likelihood 
t=l 
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Negative Binomial Distribution 

The Pascal variate is the number of failures before the xth 
success in a sequence of Bernoulli trials, where the probability 
of success at each trial is p and the probability of failure is 
q = 1 -p. This generalizes to the negative binomial variate for 
noninteger x .  

Suppose prosecution and defense lawyers were choosing 12 
citizens to comprise a jury. The Pascal distribution could be 
applied to estimate the number of rejections before the jury 
selection process was completed. The Pascal distribution is an 
extension of the geometric distribution, which applies to the 
number of failures before the first success. The Pascal distri- 
bution generalizes to the negative binomial, when the defini- 
tion of "success" is not an integer. An example of the negative 
binomial is the number of scoops of ice cream needed to fill a 
bowl, as this is not necessarily an integer. 

Variate NB: x, p. 

Quantile y. 

Range 0 s y < a ,  y an integer. 

Parameters 0 < x < a , O  < p  < 1 , q =  1 - p .  
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Distribution function (Pascal) 
i = O  

) Pxqi 

(integer x only) 

Probability function (Pascal) ( x  ::; l)P%' 
(integer x only) 

Probability function 

Moment generating function p x ( l  - q exp t)-", t < log(q) 

Probability generating function p x ( l  - qt)-", It 1 < l /q  

Characteristic function px[ l  - q exp(it)]-" 

Cumulant generating function x log(p) - x log[l - q exp(it)] 

Cumulants 
First 
Second 
Third 
Fourth 

Mean 

Moments about the mean 
Variance X ~ / P  

Third d l  + 9)/p3 
Fourth (xq/p4)(3xq + 6q + p 2 )  

Coefficient of skewness (1 + q ) ( ~ q ) - " ~  

Coefficient of kurtosis 3 + 6/x +p2/(xq) 

Coefficient of variation (xq>-"2 

Factorial moment generating 
function (1 - qt/p) -" 

rth Factorial moment about ( q / ~ ) ~ r ( x  + r )  
the origin IT4 
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29.1. NOTE 

The Pascal variate is a special case of the negative binomial 
variate with integer values only. An alternative form of the 
Pascal variate involves trials up to and including the xth 
success. 

29.2. VAFUATE RELATIONSHIPS 

1. The sum of k-independent negative binomial variates 
NB: xi, p ;  i = 1, . . . , k is a negative binomial variate NB: 
x', p ,  where 

k k x ( N B :  x i , p )  - N B :  x r , p ,  where x '  = E x i  
i = l  i = l  

2. The geometric variate G :  p is a special case of the 
negative binomial variate with x = 1. 

G :  p - NB: 1 , p  

3. The sum of x-independent geometric variates G: p is a 
negative binomial variate. 

4. The negative binomial variate corresponds to the power 
series variate with parameter c = 1 -p ,  and probability 
function (1 - c)-". 

5. As x tends to infinity and p tends to 1 with x(1 -p)  = A 
held fixed, the negative binomial variate tends to the 
Poisson variate, P: A. 
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Quantile y ,  number of failures 

Quantile y,  number of failures 

Quantile y,  number of failures 

Figure 29.1. Probability function for the negative binomial variate NB: x, p. 
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6. The binomial variate B:  n, p and negative binomial vari- 
ate NB: x, p are related by 

29.3. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

P (X - l ) / (y  + X  - 1) Unbiased 
P x/(y +XI  Maximum likelihood 1 d 

2 

29.4. RANDOM NUMBER GENERATION 

1. Rejection Technique. Select a sequence of unit rectangu- 
lar random numbers, recording the numbers of those 
that are greater than and less than p. When the number 
less than p first reaches x, the number greater than p is 
a negative binomial random number, for x  and y integer 
valued. 

2. Geometric Distribution Method. If p is small, a faster 
method may be to add x geometric random numbers, as 

X 

NB: x , p  - (G: P); 
i = l  
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Normal (Gaussian) Distribution 

The normal distribution is applicable to a very wide range of 
phenomena and is the most widely used distribution in statis- 
tics. 

It was originally developed as an approximation to the 
binomial distribution when the number of trials is large and 
the Bernoulli probability p is not close to 0 or 1. It is also the 
asymptotic form of the sum of random variables under a wide 
range of conditions. 

The normal distribution was first described by the French 
mathematician de Moivre in 1733. The development of the 
distribution is often ascribed to Gauss, who applied the theory 
to the movements of heavenly bodies. 

Variate N: p ,  a.  
Range -a < x  <a. 
Location parameter p, the mean. 
Scale parameter a  > 0, the standard deviation. 

1 
Probability density function 

4 2 4  

Moment generating function exp( p t  + a 't ') 

Characteristic function exp(ipt - +a2t2) 



1 2 2  Cumulant generating function i p t  - TU t 

r th Cumulant 

Mean En. 

/pr = 0, r odd 

rth Moment about the mean p, = [(r/2)!]}, 
= ( r  - l )(r  - 3) ... 

\ 3 . 1 - o r ,  r even 

Variance 

Mean deviation 

Mode 

Median 

Standardized r th moment 
about the mean 

q,.= 0, r odd 

q = r!/{2r/2 [(r/2)!]}, 

r even 

Coefficient of skewness 0 

Coefficient of kurtosis 3 

Information content log2[ a ( 2 7 ~ e ) ' / ~  I 

30.1. VAIUATE RELATIONSHIPS 

The standard normal variate N: O,1 and the normal variate N: 
p,  u are related by 

1. Let Ni, i = 1,. . . , n be independent normal variates with 
means pi and variances ui

2. Then Cy= , c i4  is normally 
2 2 distributed with mean Cy= ci pi and variance Cy= ci ui , 

where the ci, i = 1,. . . , n are constant weighting factors. 
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Quantile x 

Figure 30.1. Probability density function for the standard normal variate N: 0,l .  

Quantile x 

Figure 30.2. Distribution function for the standard normal variate N: 0,l.  



Quantile x 

Figure 30.3. Hazard function for the standard normal variate N: 0,l .  

2. The sum of n-independent normal variates, N :  p,  a ,  is a 
normal variate with mean n p  and standard deviation 
a n'12. 

n 

C ( N :  p ,  u ) ~  - N :  n p ,  un112 
i = l  

3. Any fixed linear transformation of a normal variate is 
also a normal variate. For constants a and b. 

4. The sum of the squares of pindependent unit normal 
variates, N :  O,1, is a chi-squared variate with v degrees 
of freedom, x 2: V :  

( N :  0,l): - jy2:  v 
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and for Si, i = 1,. . . , v, and 6 = Cy=, Si2, 

v V 

[(N: 0 , l )  + Si12- (N: ~ , , l ) ~ - ~ ' :  v, S 
i = l  i =  1 

where x 2: V, S is the noncentral chi-squared variate 
with parameters v, 6. 

5. The normal variate N: p ,  u and the lognormal variate L: 
p ,  a are related by 

6. The ratio of two independent N: 0,1 variates is the 
standard Cauchy variate with parameters 0 and 1, here 
denoted X: O,1, 

X: 0 , l  - (N:  0, l) , /(N: 0, I), 

7. The standardized forms of the following variates tend to 
the standard normal variate N: 0 , l :  
Binomial B: n, p as n tends to infinity. 
Beta f l :  v, o as v and o tend to infinity such that v / o  

is constant. 
Chi-squared x 2 :  v as v tends to infinity. 
Noncentral chi-squared x ': V, 8 as S tends to infinity, 

such that v remains constant, and also as v tends to 
infinity such that S remains constant. 

Gamma y : b, c as c tends to infinity. 
Inverse Gaussian I :  p ,  A as A tends to infinity. 
Lognormal L: p ,  a as a tends to zero. 
Poisson P: A as A tends to infinity. 
Student's t :  v as v tends to infinity. 

8. The sample mean of n-independent and identically dis- 
tributed random variates, each with mean p and variance 
u 2 ,  tends to be normally distributed with mean p and 
variance a 2/n, as n tends to infinity. 



If n-independent variates have finite means and vari- 
ances, then the standardized form of their sample mean 
tends to be normally distributed, as n tends to infinity. 
These follow from the central limit theorem. 

30.2. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 
- 

El. x Unbiased, maximum likelihood 
u2 ns2/(n - 1 )  Unbiased 
u 2  s 2  Maximum likelihood 

30.3. RANDOM NUMBER GENERATION 

Let R, and R2 denote independent unit rectangular variates. 
Then two independent standard normal variates are generated 
by 
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Pareto Distribution 

The Pareto distribution is often described as the basis of the 
80/20 rule. For example, 80% of customer complaints regard- 
ing a make of vehicle typically arise from 20% of components. 
Other applications include the distribution of income and the 
classification of stock in a warehouse on the basis of frequency 
of movement. 

Range a  i x  < co. 
Location parameter a > 0 .  

Shape parameter c  > 0 .  

Distribution function 1 - (a /xIC 

Probability density function caC/xc+' 

Inverse distribution function 
(of probability a )  

a ( 1 -  

Survival function ( a / x I c  

Inverse survival function a(y- l /c  
(of probability a )  

Hazard function C / X  



Cumulative hazard function 

rth Moment about the mean 

Mean 

Variance 

Mode 

Median 

Coefficient of variation 

PARETO DISTRIBUTION 

c log( x/a) 

car/(c - r), c > r 

ca/(c - I), c > 1 

ca2/Nc - 1 ) 2 ( ~  - 2)], c > 2  

a 

2 '/"a 

[ c ( c - ~ ) ] - " ~ ,  c > 2  

Quantile x 

Figure 31.1. Probability density function for the Pareto variate. 
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31.1. NOTE 

This is a Pareto distribution of the first of three kinds. Stable 
Pareto distributions have 0 < c < 2. 

3 1.2. VARIATE RELATIONSHIPS 

1. The Pareto variate, here denoted X: a,  c, is related to 
the following variates: 
The exponential variate E:  b with parameter b = l/c, 

 log[(^: a ,  c)/a] - E :  l / c  

Quantile x 

Figure 31.2. Distribution function for the Pareto variate. 
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The power function variate Y: b, c with parameter b = 

l /a ,  

[X: a ,  c]  -' - Y :  l / a ,  c 

The standard logistic variate, here denoted Y: O,1, 

2. The n-independent Pareto variates, X: a, c, are related 
to a standard gamma variate with shape parameter n, y :  
1, n, and to a chi-squared variate with 2n degrees of 
freedom by 

31.3. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

l / c  ( ) 2 log(;) Maximum likelihood 

a min xi Maximum likelihood 

31.4. RANDOM NUMBER GENERATION 

1. The Pareto variate X: a ,  c is related to the unit rectangu- 
lar variate R by 
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Poisson Distribution 

The Poisson distribution is applied in counting the number of 
rare, but open-ended events. A classic example is the number 
of people per year who become invalids due to being kicked by 
horses. Another application is the number of faults in a batch 
of materials. 

It is also used to represent the number of arrivals, say, per 
hour, at a service center. This number will have a Poisson 
distribution if the average arrival rate does not vary through 
time. If the interarrival times are exponentially distributed, the 
number of arrivals in a unit time interval are Poisson dis- 
tributed. In practice, arrival rates may vary according to the 
time of day or year, but a Poisson model will be used for 
periods that are reasonably homogeneous. 

The mean and variance are equal and can be estimated by 
observing the characteristics of actual samples of "arrivals" or 
"faults." 

Variate P: A. 

Range 0 I x < m, x integer. 

Parameter the mean, A > 0. 



Distribution function 

Probability function 

Moment generating function 

Probability generating function 

Characteristic function 

Cumulant generating function 

r th Cumulant 

Moments about the origin 
Mean 

Second 
Third 
Fourth 

rth Moment about the mean 

Moments about the mean 
Variance 
Third 

Fourth 
Fifth 

Sixth 

Mode 

POISSON DISTRIBUTION 

X 

A' exp( - A ) / i !  
1 = 1  

The mode occurs when x 
is the largest integer less 
than A. For A  an integer 
the values x = A  and x = A  
- 1 are tie modes. 
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Coefficient of skewness ~ - 1 / 2  

Coefficient of kurtosis 3 + l / A  

Coefficient of variation A - 1 / 2  

Factorial moments about the mean 
Second A 
Third - 2 A  

Fourth 3 A ( A  + 2 )  

32.1. NOTE 

Successive values of the probability function f ( x ) ,  for x = 

0 , 1 , 2 , .  . . , are related by 

32.2. VARIATE RELATIONSHIPS 

1. The sum of a finite number of independent Poisson 
variates, P: A,, P: A,, . . . , P: A,, is a Poisson variate with 
mean equal to the sum of the means of the separate 
variates: 

(P: A,)  + (P: A,) + ... +(P: A,) 

- (P: A, + A, + +A,) 

2. The Poisson variate P: A is the limiting form of the 
binomial variate B: n , p ,  as n tends to infinity and p 
tends to zero such that np tends to A. 
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A = 0.5 X = l  

0 1 2 3 4 5  
Qwntile x Quantile x 

Quantile x Quantile x 

Quantile x Quantile x 

Figure 32.1. Probability function for the Poisson variate P: A. 

3. For large values of A the Poisson variate P: A may be 
approximated by the normal variate with mean A and 
variance A. 

4. The probability that the Poisson variate P: A is less than 
or equal to x is equal to the probability that the chi- 
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C z 0.6 

2 0.4 
0 

a 0.2 
0 

0 1 2 3 4 5 6 7  0  1 2  3 4  5 6 7 8 9 1 0  

Quantile x Quantik? x 

1 . 0 -  
8 
h 0 8 -  - .- z O G b O  
0 

$ 0.4 
L 

a 0 .2 -  

Quantile x Quantile x 

Figure 32.2. Distribution function for the Poisson variate P: A. 

o o o o  

h=0.5 
0 

- 

squared variate with 2(1 +x) degrees of freedom, de- 
noted x 2 :  2(1 + x), is greater than 2 A. 

P ~ [ ( P :  A) r x ]  = pr[(X2: 2(1 +x)) > 2A] 

o h  0  
0 1 2 3 4  0  1 2 3 4  

Quantile x Qwntile x 

5. The hypergeometric variate H: N, X, n tends to a Pois- 
son variate P :  A as X, N, and n all tend to infinity, for 
X/N tending to zero, and nX/N tending to A. 
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6. The Poisson variate P: A is the power series variate with 
parameter A and series function exp( A). 

32.3. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

A 
- 
x Maximum likelihood 

Minimum variance unbiased j 

32.4. RANDOM NUMBER GENERATION 

Calculate the distribution function F(x)  for x = 0,1,2,. . . , N, 
where N is an arbitra~y cutoff number. Choose random num- 
bers of the unit rectangular variate R. If F(x)  I R < F(x + 11, 
then the corresponding Poisson random number is x. 
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Power Function Distribution 

Range 0 s x  5 b. 
Shape parameter c, scale parameter b > 0. 

Distribution function (x /bIc  

Probability density function cxc-'/bc 

Inverse distribution function 
(of probability a )  bff'/c 

Hazard function cxc- ' / (be - x C )  

Cumulative hazard function - log[l - ( x / b ) " ]  

rth Moment about the origin brc/(c + r )  

Mean bc/(c + 1) 

Variance b2c/[(c + 2)(c + 
Mode b for c > 1,Ofor c < 1 

Median b/2lIc 

Coefficient of skewness 



162 POWER FUNCTION DISTRIBUTION 

3(c + 2)[2(c + I)'+ c(c + 5 ) /  
Coefficient of kurtosis 

[c(c + 3)(c + 4)l 

Coefficient of variation 1 /[c(c + 2)1'12 

33.1. VARIATE RELATIONSHIPS 

1. The power function variate with scale parameter b and 
shape parameter c, here denoted X: b,c, is related to 
the power function variate X: l/b, c by 

1 
[X: b, c] ' -X: -, c 

b 

2. The standard power function variate, denoted X: 1, c, 
is a special case of the beta variate, P :  v, w, with v = c, 
w =  1. 

X: 1 , c - p : c , 1  

Quantile x 

Figure 33.1. Probability density function for the power function variate. 
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Quantile x 

Figure 33.2. Distribution function for the power function variate. 

3. The standard power function, denoted X: 1, c, is related 
to the following variates: 
The exponential variate E: b with shape parameter b = 

l/c, 

The Pareto variate with location parameter zero and 
shape parameter c, here denoted Y: 0, c, 

[X: 1,c1-I - Y: 0 , c  

The standard logistic variate, here denoted Y: O,1, 

The standard Weibull variate, with shape parameter k, 
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The standard Gumbel extreme value variate, V: O,1, 

4. The power function variate with shape parameter c = 1, 
denoted X: b, 1, corresponds to the rectangular variate 
R: 0, b. 

5. Two independent standard power function variates, de- 
noted X: 1, c, are related to the standard Laplace variate 
L: O,1 by 

-c log[(x: 1, c),/(X: 1, c),] - L:  0 , l  

33.2. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

c L n  - l log xj 1 Maximum likelihood 
j = 1  

c %/(I - Z) Matching moments 

33.3. RANDOM NUMBER GENERATION 

The power function random variate X: b, c can be obtained 
from the unit rectangular variate R by 
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Power Series (~iscre te)  
Distribution 

Range of x is a countable set of integers for generalized 
power series distributions. 

Parameter c > 0. 
Coefficient function a, > 0, series function A(c) = Za,cx. 

Probability function a,cx/A(c) 

Probability generating function A(ct)/A(c) 

Moment generating function A[c exp(t)]/A(c) 

d 
Mean, PI c - [log A(c)I 

dc 

Variance, p2 

'pi- 
rth Moment about the mean c - + rp, p,_ r > 2 

dc 

First cumulant, K ,  

r th Cumulant, K, 

d dA(c) 
c-[log A(c)] = - - 

dc A(c) dc 



34.1. NOTE 

Power series distributions (PSDs) can be extended to the 
multivariate case. Factorial series distributions are the ana- 
logue of power series distributions, for a discrete parameter c. 
(See Kotz and Johnson, 1986, Vol. 7, p. 130.) 

Generalized hypergeometric (series) distributions are a sub- 
class of power series distributions. 

34.2. VARIATE RELATIONSHIPS 

1 1. The binomial variate B:  n , p  is a PSD variate with j 

parameter c =p / ( l  -p)  and series function A(c) = I 
(1 + c)" = (1 -PC i 

2. The Poisson variate P: A is a PSD variate with parameter ; 
c = A and series function A(c) = exp(c) and is uniquely 
characterized by having equal mean and variance for 
any c. 

3. The negative binomial variate NB: x, p is a PSD variate 
with parameter c = 1 -p and series function A(c) = 

(1 - c)-" =p-" .  
4. The logarithmic series variate is a PSD variate with 

parameter c and series function A(c) = - log(1 - c). 

34.3. PARAMETER ESTIMATION 

The estimator c^ of the shape parameter, obtained by the 
methods of maximum likelihood or-matching moments, is the 
solution of the equation 

d .̂  d[A(.^)] 
5 = .̂  - [log ~ ( c ^ ) ]  = A(Z) 

d2 d2 
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Rayleigh Distribution 

Range 0 < x  < a. 
Scale parameter b > 0. 

Distribution function 

Probability density function 

Inverse distribution function 
(of probability a )  

Hazard function 

rth Moment about the origin 
Mean 
Variance 

Coefficient of skewness 

Coefficient of kurtosis 

Coefficient of variation 
Mode 
Median 
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35.1. VARIATE RELATIONSHIPS 

1. The Rayleigh variate corresponds to the Weibull variate 
with shape parameter c = 2, W: b, 2. 

2. The Rayleigh variate with parameter b = 1 corresponds 
to the chi-squared variate with 2 degrees of freedom, 
x: 2. 

3. The square of a Rayleigh variate with parameter b corre- 
sponds to an exponential variate with parameter 1/(2b2). 

4. The Rayleigh variate with parameter b = a ,  here de- 
noted X: a ,  is related to independent normal variates N: 
0, a by 

X :  CT- [ ( N :  0, c): + ( N :  0, 

5. A generalization of the Rayleigh variate, related to the 
sum of squares of v independent N: 0, a variates, has 
pdf 

Quantlle x 

Figure 35.1. Probability density function for the Rayleigh variate. 



PARAMETER ESTIMATION 

Quantile x 

Figure 35.2. Distribution function for the Rayleigh variate 

with rth moment about the origin 

For b = 1, this corresponds to the chi variate X :  v. 

35.2. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 
1 . 

b [ - ) Maximum likelihood 
2n i = 1  
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Rectangular (uniform) Continuous 
Distribution 

Every value in the range of the distribution is equally likely to 
occur. This is the distribution taken by uniform random num- 
bers. It is widely used as the basis for the generation of 
random numbers for other statistical distributions. 

Variate R: a ,  b. 

Where we write R without specifying parameters, we imply 
the standard or unit rectangular variate R: 0 , l .  

Range a  I x  I b. 
Location parameter a ,  the lower limit of the range. 
Parameter b, the upper limit of the range. 

Distribution function ( X  - a ) / ( b  - a )  

Probability density function 1 /( b - a )  

Inverse distribution function 
a  + a ( b  - a )  

(of probability a )  

Inverse survival function 
b - a ( b - a )  

(of probability a )  



VARIATE RELATIONSHIPS 

Hazard function l / (b  -x) 

Cumulative hazard function - log[( b - x)/( b - a)] 

Moment generating function [exp(bt) - exp(at)]/[t(b - a)] 

Characteristic function [exp(ibt) - exp(iat)]/it( b - a)] 

b'+l - 1 

rth Moment about the origin 
( b  - a)(r  + 1) 

Mean 

rth Moment about the mean 

Variance 

Mean deviation 

Median 

Coefficient of skewness 

Coefficient of kurtosis 

Coefficient of variation 

Information content 

r rod 

, r even 

36.1. VARIATE RELATIONSHIPS 

1. Let X be any variate and G, be the inverse distribution 
function of X, that is, 

Variate X is related to the unit rectangular variate R by 



a Quantile x b 

Figure 36.1. Probability density function for the rectangular variate R: a, h. 

a 

0 

Figure 36.2. Distribution function for the rectangular variate R: a, h. 

1 - -- 
h - a  1 1 

I I 
I I 
I I 
I I 

I 
I I 

- I 
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Quantile x 

Figure 36.3. Hazard function for the unit rectangular variate R: 0,l.  

For X any variate with a continuous density function f,, 

2. The distribution function of the sum of n-independent 
unit rectangular variates R,,  i = 1,. . . , n is 

3. The unit parameter beta variate P :  1 , l  and the power 
function variate, here denoted X: 1,1, correspond to a 
unit rectangular variate R. 



4. The mean of two independent unit rectangular variates is 
a standard symmetrical triangular variate. 

36.2. PARAMETER ESTIMATION 

Parameter Estimator Method 

Lower limit, a i - 3lI2s Matching moments 

Upper limit, b i + 31/2s Matching moments 

36.3. RANDOM NUMBER GENERATION 

Algorithms to generate pseudorandom numbers, which closely 
approximate independent standard unit rectangular variates, 
R: O , 1 ,  are a standard feature in statistical software. 



Rectangular (uniform) 
Discrete Distribution 

In sample surveys it is often assumed that the items (e.g., 
people) being surveyed are uniformly distributed through the 
sampling frame. 

Variate D: 0, n. 
Range 0 I x I n, x an integer taking values O,1,2,. . . , n. 

Distribution function (X + 1)/(n + 1) 

Probability function l / (n  + 1) 

Inverse distribution function 
(of probability a )  a ( n  + 1) - 1 

Survival function (n -x)/(n + 1) 

Inverse survival function 
(of probability a )  n - a ( n  + 1) 

Hazard function l / (n  -XI 
Probability generating function (1 - tn+')/[(n + 1)(1 - t ) ]  

Characteristic function 11 - exp[it(n + I)])/ 
1[1 - exp(it)l(n + 1)) 



Moments about the origin 
Mean n / 2  
Second n(2n + 1)/6 
Third n2(n + 1)/4 

Variance n(n + 21/12 

Coefficient of skewness 0 

Coefficient of kurtosis 5[3 - 4/n(n  + 2)] 

Coefficient of variation [(n  + 2)/3n]'I2 

37.1. GENERAL FORM 

Let a <x < a + nh, such that any point of the sample space is 
equally likely. The term a is a location parameter and h,  the 
size of the increments, is a scale parameter. The probability 
function is still l / ( n  + 1). The mean is a - nh/2, and the rth 
moments are those of the standard form D: 0, l  multiplied 
by hr. 

As N tends to infinity and h tends to zero with nh = b - a, 
the discrete rectangular variate D: a,a + nh tends to the 
continuous rectangular variate R: a, b. 

0 n 
Quantile x 

Figure 37.1. Probability function for the discrete rectangular variate D: 0, n. 
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I 
0 I1 

Quantile r 

Figure 37.2. Distribution function for the discrete rectangular variate D: 0, n. 

37.2. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

Location i - nh/2  Matching moments 
parameter, a 

Increments, h {12s2/[n(n - 2)])1/2 Matching moments 



Student's t Distribution 

7 

The Student's t distribution is used to test whether the differ- 
ence between the means of two samples of observations is 
statistically significant. For example, the heights of a random 

i 
sample of basketball players could be compared with the 
heights from a random sample of football players. The Stu- 
dent's t distribution would be used to test whether the data 
indicated that one group was significantly taller than the other. 
More precisely, it would be testing the hypothesis that both 

3 
1 
I 

samples were drawn from the same normal population. A 1 
significant value of t would cause the hypothesis to be re- ! 
jetted, indicating that the means were significantly different. 

1 

Variate t :  v. 

Range -m  < x  < m. 
I 
i 

Shape parameter v, degrees of freedom, v a positive I 

integer. 
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( v - 3 ) / 2  

x C ai v  odd 
j - 0  ( I  +x2/v)"  

Distribution function 

I where aj = [ 2 j / ( 2 j  + l ) ] a j l ,  

Probability density function 
{ r [ ( v +  1)/211 

( 7 T v ) ' / 2 r ( v / 2 ) [ i  + ( x 2 / ~ ) ]  
( v + 1 ) / 2  

Mean 0, v > l  

,Lr = 0, r odd 

rth Moment about the mean 

Variance 

Mean deviation 

( v - 9  
r even, v  > r 
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Mode 0  

Coefficient of skewness 0, v > 3  
(but always symmetrical) 

Coefficient of kurtosis 3 ( v -  2 ) / ( v -  41, v >  4  

38.1. VARIATE RELATIONSHIPS 

1. The Student's t  variate with v  degrees of freedom, t :  v, 
is related to the independent chi-squared variate x 2 :  v,  
the F variate F: 1 ,  v ,  and the unit normal variate N :  O , 1  
by 

( t :  v ) 2  - ( x 2 :  I)/[( x 2 :  v ) / v ]  

- F :  1, v  

- ( N :  0 ,  1 ) 2 / [ (  x 2 :  v ) / v ]  

t :  v  - ( N :  0 ,  I)/[( x i :  v ) / v ]  ' I 2  

Quantile x 

Figure 38.1. Probability density function for Student's t variate, t: v. 
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Quantile x 

Figure 38.2. Distribution function for Student's t variate, t :  v. 

Equivalently, in terms of a probability statement, 

In terms of the inverse survival function of t: v at 
probability level ;a,  denoted Z,(;a: v), and the survival 
function of the F variate F :  1, v at probability level a ,  
denoted Z,(a: 1, v), the last equation is equivalent to 

2 [z,($a : v)] = Z,(a : 1, V)  

2. As v tends to infinity, the variate t: v tends to the unit 
normal variate N: O,1. The approximation is reasonable 
for v 2 30. 

3. Consider independent normal variates N: p, a.  Define 
variates i, s2 as follows: 
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Then 

STUDENT'S t DISTRIBUTION 

4. Consider a set of n,-independent normal variates 
N: P , ~ ,  u ,  and a set of n2-independent normal variates 
N: p2,  u .  Define variates i l ,  i 2 ,  s:, s i  as follows: 

Then 

( f ,  -2) - (ILL1 - ILL?) 
t :  n l + n 2 - 2 -  

n,s: + n2s; 1/2 

5. The t:  1 variate corresponds to the standard Cauchy 
variate. 

I 6. The t: v variate is related to two independent F: v, v 
I 
I variates by 
I 

: 
7. Two independent chi-squared variates x 2: v are related 1 

I to the t: v variate by I 

v 2  [( x 2 :  v), - ( x 2 :  v)2] i d  ,/, - t :  v 
[( x 2 :  v)1( x

2
:  4 2 1  



RANDOM NUMBER GENERATION 

38.2. RANDOM NUMBER GENERATION 

From independent N :  O , 1  and ,y 2 :  v variates 

or from a set of v + 1 independent N :  O , 1  variates 
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Distribution 

The noncentral t distribution can be applied to the testing of 
one-sided hypotheses related to normally distributed data. For 
example, if the mean test score of a large cohort of students is 
known, then it would be possible to test the hypothesis that 
the mean score of a subset, from a particular teacher, was 
higher than the general mean by a specified amount. 

Variate t :  v, 6. 

Range -m < x  < co. 
Shape parameters v a positive integer, the degrees of free- 

dom and - co < 6 < co, the noncentrality parameter. 

(v)'l2exp(- S2/2) 
Probability density function 

2 ( v + 1 ) / 2  ~ ( v / ~ ) T I / ~ ( v + x  ) 
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( ~ / 2 ) ' / ~ r ( ( ~  - ~ ) / 2 )  
rth Moment about the origin 

r ( v/2) 

Mean 

Variance 

Probability 
density 

Qwntilex 

Figure 39.1. Probability density function for the (noncentral) Student's t variate 
t :  v, 8.  



I 

i 39.1. VARIATE RELATIONSHIPS 

I 1. The noncentral t  variate t :  v, 6 is related to the inde- 
i pendent chi-squared variate, x 2: v, and normal variate, 

N :  O,1 (or N :  6, I), by 

( N :  0,1) + 6 N :  6 , 1  
t :  v , 6 -  - 

[( ,y2: v)/v]"2 [ (  x 2 :  v)/v]"2 

2. The noncentral t  variate t :  v, 6 is the same as the 
(central) Student's t  variate t :  v for 6 = 0. 

3. The noncentral t  variate t :  v, 6 is related to the noncen- 
tral beta variate p :  1, v, s2  with parameters 1, v, and 6 
by 

p :  1, v, S 2 -  ( I :  v, q 2 / [ v +  ( t :  v, 
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Triangular Distribution 

Range a s x  s b. 
Parameters: Shape parameter c, the mode. 

Location parameter a,  the lower limit; parame- 
ter b, the upper limit. 

Distribution function 

Probability density function if a s x s c  

\ i f c s x s b  

Mean (a  + b + c)/3 

Variance 

Mode c 



TRIANGULAR DISTRIBUTION 

Quantile x 

Figure 40.1. Probability density function for the triangular variate. 

40.1. VARIATE RELATIONSHIPS 

1. The standard triangular variate corresponding to a = 0, 
b = 1, has median \lc/2 for c 2 i and 1 - 4- 

1 for c I Z. 
2. The standard symmetrical triangular variate is a special 

case of the triangular variate with a = 0, b = 1, c = i. 
It has even moments about the mean p, = [2'-'(r + 1) 
( r  + 211-' and odd moments zero. The skewness coeffi- 
cient is zero and kurtosis 12/5. 

40.2. RANDOM NUMBER GENERATION 

The standard symmetrical triangular variate is generated from 
independent unit rectangular variates R,,  R ,  by 



von Mises Distribution 

Range 0 < x I 2 ~ ,  where x is a circular random variate. 
Scale parameter b > 0 is the concentration parameter. 
Location parameter 0 < a  < 2.rr is the mean direction. 

r tC 

Distribution function 2 b I 1  xI0(b) + 2 z [ ~ , ( b )  
j = O  

X [sin j(x - a ) ]  / j  , 1 
where 

is the modified Bessel function 
of the first kind of order t, and 
for order t = 0 

Probability density exp[b cos(x - a)]/2~Z,(b)l 
function 
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Characteristic function [I,( b)/I,][cos(at) + i sin(at)] 

r th Trigonometric moments 
about the origin 

Mean direction a 

Mode a 

Circular variance 1 - Il(b)/Io(b) 

41.1. NOTE 

The von Mises distribution can be regarded as the circular 
analogue of the normal distribution on the line. The distribu- 
tion is unimodal, symmetric about a ,  and infinitely divisible. 
The minimum value occurs at a f n [whichever is in range 
(0,2n)], and the ratio of maximum to minimum values of the 
pdf is exp(2b). 

Probabil~ty 
density 

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180 

Quantile x 

Figure 41.1. Probability density function for the von Mises variate. 



PARAMETER ESTIMATION 

41.2. VARIATE RELATIONSHIPS 

1. For b = 0, the von Mises variate reduces to the rectangu- 
lar variate R: a ,  b with a = - T ,  b = T with pdf 1/(27r). 

2. For large b, the von Mises variate tends to the normal 
variate N: p, a with p = 0, a = l/b. 

3. For independent normal variates, with means sin(a) and 
coda), respectively, let their corresponding polar coordi- 
nates be R and 8. The conditional distribution of 8, 
given R = 1, is the von Mises distribution with parame- 
ters a,  b. 

41.3. PARAMETER ESTIMATION 

Parameter Estimator Method / Properties 

a a [ sin / 0 s  ] Mrrinlum likelihood 
i = l  

Il(b)/I,,(b) 2 

(a measure of Maximum likelihood 

precision) 
1 /2 

+ C sin x i  
i  i2] 



Weibull Distribution 

The Weibull variate is commonly used as a lifetime distribu- 
tion in reliability applications. The two-parameter Weibull 
distribution can represent decreasing, constant, or increasing 
failure rates. These correspond to the three sections of the 
"bathtub curve" of reliability, referred to also as "burn-in," 
"random," and "wearout" phases of life. The bi-Weibull distri- 
bution can represent combinations of two such phases of life. 

Variate W: q, p. 
Range 0 I X < ~ .  

Scale parameter q > 0 is the characteristic life. 

Shape parameter P > 0. 

Distribution function 1 - e x p [ - ( ~ / q ) ~ ]  

Probability density function ( px / q  )exp[ - (x/q) 1 
Inverse distribution function 

(of probability a )  dlog[l/(l - a)l}l'p 

Survival function e ~ p [ - ( x / q > ~ ]  

Inverse survival function 
(of probability a )  q [ l ~ g ( l / a ) ' / ~  1 



NOTE 

Hazard function , ! 3 ~ * - ' / ~ ~  

Cumulative hazard function ( x / T )  

rth Moment about the mean fT[[( P + r)/P] 
Mean rlr[( P + 1)/pl 
Variance q2(r[( P + 2 ) / P  I 

- {r[( p + i) /p 1 1 ~ )  

Mode 

Median ?(log 2 ) ' / p  

Coefficient of variation 

42.1. NOTE 

The characteristic life has the property that 

P ~ [ ( w :  7, p )  I r l ]  = 1 -exp(-1) =0.632 for every /3 

Thus 77 is approximately the 63rd percentile. 

Quantile x 

Figure 42.1. Probability density function for the Weibull variate W: 1, P.  
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Quantile x 

Figure 42.2. Distribution function for the Weibull variate W: 1, P.  

42.2. VARIATE RELATIONSHIPS 

W :  r ] ,  p - r](W: 1, p ), standard Weibull variate 

1. The Weibull variate W :  r ] ,  P with shape parameter P = 1 
is the exponential variate E:  r] with mean r ] ,  

The Weibull variate W: r] ,  P is related to E:  r] by 
(W:  r ] ,  p)P E: r]. 

2. The Weibull variate W: r],2 is the Rayleigh variate, and 
the Weibull variate W :  r] ,  P is also known as the trun- 
cated Rayleigh variate. 

3. The Weibull variate W: r ] ,  P is related to the standard 
extreme value variate V: O,1 by 

42.3. PARAMETER ESTIMATION 

By the method of maximum likelihood the estimators, 5, p, of 
the shape and scale parameters are the solution of the simulta- 



PARAMETER ESTIMATION 

V 
0 1 .o 2.0 3 .o 

Quantile x 

Figure 42.3. Hazard function for the Weibull variate W: 1, P. 

Mean 

Standard deviation 

Shape parameter 0 

Figure 42.4. Weibull W: 1, p mean and standard deviation as a function of the shape 
parameter p. 



neous equations: 

WEIBULL DISTRIBUTION 

(I/?) C x p  log xi - log xi 

42.4. RANDOM NUMBER GENERATION 

Random numbers of the Weibull variate W: 7, P can be 
generated from those of the unit rectangular variate R using 
the relationship 

42.5. THREE-PARAMETER WEIBULL DISTRIBUTION 

Further flexibility can be introduced into the Weibull distribu- 
tion by adding a third parameter, which is a location parame- 
ter and is usually denoted by the symbol gamma (y). The 
probability density is zero for x < y and then follows a Weibull 
distribution with origin at y. In reliability applications, gamma 
is often referred to as the minimum life, but this does not 
guarantee that no failures will occur below this value in the 
future. 

Variate W: y, 7 ,  p. 
Location parameter y > 0. 
Scale parameter v >  0. 
Shape parameter P > 0. 
Range y 2 x I +a. 
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Cumulative distribution 1 - exp{ - [(x - ~ ) / r l l ~ } ,  
function x 2 y  

Probability density function [ P(x - y)P-1/77 
exp{ -[(x - y)/rllPl, X 2 y 

Inverse distribution function 
(of probability a )  y + rXlogtl/(l - a)l) l /P 

Survival function exp{-[(x- y)/rllP}, x 2 y  

Inverse survival function 
(of probability a )  y + rl[log(l/a )F" 

Hazard function (failure rate) p (x  - y) PP1/?  P, x 2 y 

Cumulative hazard function [(x - @, x 2 y 

Mean 

Variance 

Mode 

42.6. THREE-PARAMETER WEIBULL RANDOM 
NUMBER GENERATION 

Random numbers of the Weibull variate W: y, q, /3 can be 
generated from the unit rectangular variate R using the rela- 
tionship 

42.7. BI-WEIBULL DISTRIBUTION 

A bi-Weibull distribution is formed by combining two Weibull 
distributions. This provides a distribution model with a very 



WEIBULL DISTRIBUTION 

Quantile x 

Figure 42.6. Distribution function for the Weibull variate W: y ,  7, P.  

C 
'J, 0.3 c 
Q1 
u 
> 
C .- - .- 
11 
m 
I) 

2 0.15- 
a 

- 
7-1, q = 2 , p = 2  

2 4 6 

Quantile x 

Figure 42.5. Probability density function for the Weibull variate W: y ,  TJ, P .  
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flexible shape. In reliability analysis, for example, it can repre- 
sent combinations of (two of) decreasing, constant, and/or 
increasing failure rate. Even more flexibility can be introduced 
by adding more than two Weibull distributions, but this in- 
creases the number of parameters to be estimated. Several 
versions of the bi-Weibull distribution have been proposed by 
different authors. These versions differ in the way in which the 
two Weibull distributions are combined, and in the number of 
parameters specified. The five-parameter bi-Weibull distribu- 
tion described here is used in the RELCODE software pack- 
age. 

42.8. FIVE-PARAMETER BI-WEIBULL DISTRIBUTION 

Phase 1 scale parameter A > 0, shape parameter 6  > 0. 
Phase 2 location parameter y >  0, scale parameter v >  0, 

shape parameter P > 0. 

A five-parameter bi-Weibull distribution is derived by adding 
two Weibull hazard functions. The first of these hazard func- 
tions is a two-parameter Weibull hazard function with the 
equation 

where x is the component age, h(x) is the hazard function at 
age x, A is the reciprocal of a scale parameter, and 6  is a 
shape parameter. The case where 8 =  1 corresponds to a 
constant failure rate A. 

The second hazard function is a three-parameter Weibull 
hazard function, which becomes operative for x > y. The 
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equation is 

WEIBULL DISTRIBUTION 

here, P, 7, and y are shape, scale, and location parameters, 
respectively, as in the three-parameter Weibull distribution. 

Adding the two hazard functions gives the five-parameter 
bi-Weibull distribution, for which the hazard and reliability 
equations are: 

Hazard function 

Survival function 

Bi-Weibull Random Number Generation 

Use the equations given for the bi-Weibull survival function 
S(x) to calculate values of S(x), for values of x from 0 to 
y + 27, and keep the results in a table. Generate a uniform 
random number R and look up the value of x corresponding 
to S(x) = R (approximately) in the table. 

Bi-Weibull Graphs 

Figures 42.7,42.8,42.9 show, respectively, examples of the 
five-parameter bi-Weibull hazard function, probability density 
function, and reliability function. Note that the hazard func- 
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Quantile x 

Figure 42.7. Bi-Weibull hazard function W: A, 0, y ,  7, P.  

Quantile x 

Figure 42.8. Bi-Weibull probability density function W: A, 0, y ,  7, P.  
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4 8 12 

Quantile x 
Figure 42.9. Bi-Weibull distribution function W: A, 0, y ,  7, P.  

tion has a "bathtub" shape, which in a reliability application 
corresponds to a combination of burn-in and wearout failures. 
The range of shapes that can be taken by the bi-Weibull 
distribution is large. Any combination of two Weibull failure 
rate patterns can be accommodated, for example, burn-in plus 
wearout, random plus wearout, burn-in plus random, random 
plus another random starting later. P is not required to be 
greater than 1, nor 8 less than 1. In practice, the use of the 
five-parameter bi-Weibull distribution to detect the onset of 
wearout is one of its main advantages. 

42.9. WEIBULL FAMILY 

The negative exponential, two-parameter Weibull, three- 
parameter Weibull, and bi-Weibull distributions form a family 
of distributions of gradually increasing: complexitv. 
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The negative exponential is the simplest and has a constant 
hazard function. The two-parameter Weibull extends the range 
of models to include (one of) decreasing, constant, or increas- 
ing hazard function. The three-parameter Weibull model adds 
a location parameter to the two-parameter model. The bi- 
Weibull distribution allows (two of) decreasing, constant, and 
increasing hazard function. 
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Wishart (Central) Distribution 

Matrix variate: WC: k, n, 21. 
Formed from n-independent multinormal variates NN: p ,  2 

by 

Matrix quantile X a k x k positive semidefinite matrix, 
with elements X i j .  

Parameters k, n r k, 2 ,  where k is the dimension of the 
n-associated multinormal multivariates; n is the degrees 
of freedom, n 2 k; and 2 is the k x k variance-covari- 
ance matrix of the associated multinormal multivariates, 
with elements Zi j  = uij. 

(k + 1)/2; - ~ Z P ' X )  
Distribution function 

~ [ f ( n + k + 1 ) ] / 2 2 1 " / ~  ' 

where , F, is a hypergeometric 
function of the matrix argument 
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Probability density function exp( - ktr Z - l ~ ) I ~ I  (1/2)(n-k-1) 

Characteristic function - n / 2  IIk - 2 i 2 T I  , 
where T is a symmetric k x k 
matrix such that 2- ' - 2T is 
positive define 

Moment generating function 1 I, - 2 2 ~ 1 ~ " ' ~  

rth Moment about origin 122  lrrk(+n + r)/r,(+n) 

Mean n Z  

Individual elements E(Xi,) = no,, 
codxi, ,  Xrs) 

= n(oira,, + oisqr )  

43.1. NOTE 

The Wishart variate is a k-dimensional generalization of the 
chi-squared variate, which is the sum of squared normal vari- 
ates. It performs a corresponding role for multivariate normal 
problems as the chi-squared does for the univariate normal. 

43.2. VARIATE RELATIONSHIPS 

1. The Wishart k x k matrix variate WC: k, n, 2 is related 
to n-independent multinormal multivariates of dimen- 
sion k, MN: p ,  2 ,  by 

2. The sum of mutually independent Wishart variates WC: 
k,n, ,  2 is also a Wishart variate with parameters 
k, Cn,, 2. 

~ ( W C :  k , n i ,  X )  - WC: k ,  E n , ,  2 



Computing References 

Inverse of Random 
Chapter/ Density Distribution Distribution Number 
Variate Function Function Function Generation 

4. Bernoulli EXECUSTAT EXECUSTAT EXECUSTAT 
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA 
MINITAB MINITAB MINITAB MINITAB 

5. Beta EXECUSTAT EXECUSTAT EXECUSTAT EXECUSTAT 

MATHEMATICA 
MINITAB 
@RISK 

6. Binomial EXECUSTAT 
IMSL 
MATHEMATICA 
MINITAB 
@RISK 

7. Cauchy 
MATHEMATICA 
MINITAB 

GAUSS 
IMSL 
MATHEMATICA 
MINITAB 
@RISK 
SYSTAT 
A.S. 63,109 

EXECUSTAT 
IMSL 
MATHEMATICA 
MINITAB 
@RISK 

MATHEMATI CA 
MINITAB 

IMSL 
MATHEMATICA 
MINITAB 

SYSTAT 
A.S. 64,109 

MATHEMATICA 
MINITAB 

MATHEMATICA 
MINITAB 

IMSL 
MATHEMATICA 
MINITAB 
@RISK 
SYSTAT 

EXECUSTAT 
IMSL 
MATHEMATICA 
MINITAB 
@RISK 

ISML 
MATHEMATICA 
MINITAB 

8. Chi-squared EXECUSTAT EXECUSTAT EXECUSTAT EXECUSTAT 
GAUSS -. .- -- 
IMSL IMSL IMSL 

MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA 
MINITAB MINITAB MINITAB MINITAB 
@RISK @RISK @RISK 

SYSTAT SYSTAT SYSTAT 
A.S. 239 AS.  91 

GAUSS 
IMSL 
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Inverse of Random 
Chapter/ Density Distribution Distribution Number 
Variate Function Function Function Generation 

12. Erlang 
(see also 
gamma) 

EXECUSTAT 
@RISK 

EXECUSTAT 
@RISK 

EXECUSTAT 
@RISK 

14. Exponential EXECUSTAT EXECUSTAT EXECUSTAT 
IMSL 

MATHEMATICA 
MINITAB 

MATHEMATICA 
MINITAB 
SYSTAT 

16. Extreme 
value 
(Gumbel) 

EXECUSTAT 
MATHEMATICA 

EXECUSTAT 
MATHEMATICA 

EXECUSTAT 
MATHEMATICA MATHEMATICA 

17. F (variance- 
ratio) 

EXECUSTAT EXECUSTAT 
GAUSS 
IMSL 
MATHEMATICA 
MINITAB 
SYSTAT 

EXECUSTAT EXECUSTAT 

lMSL 
MATHEMATICA 
MINITAB 
SYSTAT 

MATHEMATICA 
MINITAB 

MATHEMATICA 
MINITAB 
SYSTAT 

GAUSS 

19. Gamma EXECUSTAT EXECUSTAT 
GAUSS 
IMSL 
MATHEMATICA 
MINITAB 
@RISK 
SYSTAT 
A.S. 32,147,239 

EXECUSTAT 

IMSL 
MATHEMATICA 
MINITAB 

MATHEMATICA 
MINITAB 
@RISK 

MATHEMATICA 
MINITAB 

SYSTAT 
@RISK 
SYSTAT 

20. Geometric EXECUSTAT 
MATHEMATICA 
@RISK 

EXECUSTAT 
MATHEMATICA 
@RISK 

EXECUSTAT 
MATHEMATICA 
@RISK 

MATHEMATICA 

IMSL 
MATHEMATICA 
@RISK 

21. Hyper- 
geometric 

IMSL 
MATHEMATICA 
@RISK 
A.S. 59 

IMSL 
MATHEMATICA 
@RISK 
A.S. 152 

MATHEMATICA 

23. Laplace EXECUSTAT 
MATHEMATICA 
MINITAB 

EXECUSTAT 
MATHEMATICA 
MINITAB 

EXECUSTAT 
MATHEMATICA 
MINITAB 

MATHEMATICA 
MINITAB 

25. Logistic EXECUSTAT 
MATHEMATICA 
MINITAB 
@RISK 

EXECUSTAT 
MATHEMATICA 
MINITAB 
@RISK 

EXECUSTAT 
MATHEMATICA 
MINITAB 
@RISK 

MATHEMATICA 
MINITAB 

26. Lognormal EXECUSTAT 
MATHEMATICA 

EXECUSTAT 
MATHEMATICA 

EXECUSTAT 
MATHEMATICA 
IMSL 
MINITAB 
@RISK 

MATHEMATICA 

MINITAB MINITAB 
@RISK 

MINITAB 
@RISK 

27. Multinomial IMSL 



208 COMPUTING REFERENCES 

Inverse of Random 
Chapter/ Density Distribution Distribution Number 
Variate Function Function Function Generation 

28. Multivariate GAUSS 
normal (k = 2.3) 

IMSL (k -. 2) 

29. Negative EXECUSTAT EXECUSTAT 
binomial 

@RISK @RISK 

IMSL 

EXECUSTAT 
IMSL 

30. Normal EXECUSTAT EXECUSTAT EXECUSTAT EXECUSTAT 
GAUSS GAUSS GAUSS 

IMSL IMSL lMSL 
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA 
MINITAB MINITAB MINITAB MINITAB 
@RISK @RISK @RISK 

SYSTAT SYSTAT SYSTAT 

31. Pareto 

32. Poisson 

36. Rectangular/ 
uniform 
(continuous) 

37. Rectangular/ 
uniform 
(discrete) 

EXECUSTAT 
@RISK 

EXECUSTAT 
lMSL 
MATHEMATICA 
MINITAB 

EXECUSTAT 

MINITAB 
@RISK 

EXECUSTAT 

MINITAB 
@RISK 

A.S. 2,66 

EXECUSTAT 
@RISK 

EXECUSTAT 
IMSL 
MATHEMATICA 
MINITAB 

EXECUSTAT 

MINITAB 
@RISK 
SYSTAT 

EXECUSTAT 

MINITAB 
@RISK 

A.S. 24,70,111,241 

EXECUSTAT 
@RISK 

EXECUSTAT 
IMSL 

MATHEMATICA MATHEMATICA 
MINITAB MINITAB 

@RISK 

EXECUSTAT 
GAUSS 
IMSL 

MINITAB MINITAB 
@RISK 

SYSTAT SYSTAT 

EXECUSTAT 
IMSL 

MINITAB MINITAB 
@RISK 

38. Student's t EXECUSTAT EXECUSTAT EXECUSTAT EXECUSTAT 
GAUSS -. - - - -  

IMSL IMSL 
MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA 
MINITAB MINITAB MINITAB MINITAB 

SYSTAT SYSTAT SYSTAT 
A.S. 3,27 

39. Student's t 
(noncentrao 

GAUSS 
IMSL 

40. Triangular 
@RISK @RISK 

41. von Mises A.S. 86 

42. Weibull EXECUSTAT EXECUSTAT EXECUSTAT 
IMSL 

MATHEMATICA MATHEMATICA MATHEMATICA MATHEMATICA 
MINITAB MINITAB MINITAB MINITAB 
@RISK @RISK @RISK 

43. Wishart AS. 53 
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