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Preface

This book is intended as a course in numerical analysis and approximation
theory for advanced undergraduate students or graduate students, and as
a reference work for those who lecture or research in this area. Its title pays
homage to Interpolation and Approximation by Philip J. Davis, published
in 1963 by Blaisdell and reprinted by Dover in 1976. My book is less gen-
eral than Philip Davis’s much respected classic, as the qualification “by
polynomials” in its title suggests, and it is pitched at a less advanced level.

I believe that no one book can fully cover all the material that could
appear in a book entitled Interpolation and Approximation by Polynomials.
Nevertheless, I have tried to cover most of the main topics. I hope that my
readers will share my enthusiasm for this exciting and fascinating area
of mathematics, and that, by working through this book, some will be
encouraged to read more widely and pursue research in the subject. Since
my book is concerned with polynomials, it is written in the language of
classical analysis and the only prerequisites are introductory courses in
analysis and linear algebra.

In deciding whether to include a topic in any book or course of lectures, I
always ask myself, Is the proposed item mathematically interesting? Para-
doxically, utility is a useless guide. For instance, why should we discuss
interpolation nowadays? Who uses it? Indeed, how many make direct use
of numerical integration, orthogonal polynomials, Bernstein polynomials, or
techniques for computing various best approximations? Perhaps the most
serious users of mathematics are the relatively small number who construct,
and the rather larger number who apply, specialist mathematical packages,
including those for evaluating standard functions, solving systems of linear
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equations, carrying out integrations, solving differential equations, drawing
surfaces with the aid of CAGD (computer-aided geometrical design) tech-
niques, and so on. However, it is all too easy to make use of such packages
without understanding the mathematics on which they are based, or their
limitations, and so obtain poor, or even meaningless, results. Many years
ago someone asked my advice on a mathematical calculation that he was
finding difficult. I gently pointed out that his result was invalid because the
series he was summing was divergent. He responded honestly that, faced
with an infinite series, his strategy was always to compute the sum of the
first hundred terms.

There are many connections between the various chapters and sections in
this book. I have sought to emphasize these interconnections to encourage a
deeper understanding of the subject. The first topic is interpolation, from
its precalculus origins to the insights and advances made in the twenti-
eth century with the study of Lebesgue constants. Unusually, this account
of interpolation also pursues the direct construction of the interpolating
polynomial by solving the system of linear equations involving the Vander-
monde matrix. How could we dream of despising a study of interpolation,
when it is so much at the centre of the development of the calculus? Our
understanding of the interpolating polynomial leads us naturally to a study
of integration rules, and an understanding of Gaussian integration rules re-
quires knowledge of orthogonal polynomials, which are at the very heart
of classical approximation theory. The chapter on numerical integration
also includes an account of the Euler–Maclaurin formula, in which we can
use a series to estimate an integral or vice versa, and the justification of
this powerful formula involves some particularly interesting mathematics,
with a forward reference to splines. The chapter devoted to orthogonal
polynomials is concerned with best approximation, and concentrates on
the Legendre polynomials and least squares approximations, and on the
Chebyshev polynomials, whose minimax property leads us on to minimax
approximations.

One chapter is devoted to Peano kernel theory, which was developed in
the late nineteenth century and provides a special calculus for creating and
justifying error terms for various approximations, including those generated
by integration rules. This account of Peano kernel theory is rather more
extensive than that usually given in a textbook, and I include a derivation
of the error term for the Euler–Maclaurin formula. The following chapter
extends the topic of interpolation to several variables, with most atten-
tion devoted to interpolation in two variables. It contains a most elegant
generalization of Newton’s divided difference formula plus error term to a
triangular set of points, and discusses interpolation formulas for various
sets of points in a triangle. The latter topic contains material that was first
published in the late twentieth century and is justified by geometry dating
from the fourth century ad, towards the very end of the golden millennium
of Greek mathematics, and by methods belonging to projective geometry,
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using homogeneous coordinates. Mathematics certainly does not have to
be new to be relevant. This chapter contains much material that has not
appeared before in a textbook at any level.

There is a chapter on polynomial splines, where we split the interval
on which we wish to approximate a function into subintervals. The ap-
proximating function consists of a sequence of polynomials, one on each
subinterval, that connect together smoothly. The simplest and least smooth
example of this is a polygonal arc. Although we can detect some ideas in
earlier times that remind us of splines, this is a topic that truly belongs
to the twentieth century. It is a good example of exciting, relatively new
mathematics that worthily stands alongside the best mathematics of any
age. Bernstein polynomials, the subject of the penultimate chapter, date
from the early twentieth century. Their creation was inspired by the fa-
mous theorem stated by Weierstrass towards the end of the nineteenth
century that a continuous function on a finite interval of the real line can
be approximated by a polynomial with any given precision over the whole
interval. Polynomials are simple mathematical objects that are easy to eval-
uate, differentiate, and integrate, and Weierstrass’s theorem justifies their
importance in approximation theory.

Several of the processes discussed in this book have special cases where
a function is evaluated at equal intervals, and we can scale the variable so
that the function is evaluated at the integers. For example, in finite dif-
ference methods for interpolation the interpolated function is evaluated at
equal intervals, and the same is true of the integrand in the Newton–Cotes
integration rules. Equal intervals occur also in the Bernstein polynomials
and the uniform B-splines. In our study of these four topics, we also discuss
processes in which the function is evaluated at intervals whose lengths are
in geometric progression. These can be scaled so that the function is evalu-
ated on the q-integers. Over twenty years ago I was asked to referee a paper
by the distinguished mathematician I. J. Schoenberg (1903–1990), who is
best known for his pioneering work on splines. Subsequently I had a letter
from the editor of the journal saying that Professor Schoenberg wished to
know the name of the anonymous referee. Over the following few years I
had a correspondence with Professor Schoenberg which I still value very
much. His wonderful enthusiasm for mathematics continued into his eight-
ies. Indeed, of his 174 published papers and books, 56 appeared after his
retirement in 1973. The above-mentioned paper by Iso Schoenberg was the
chief influence on the work done by S. L. Lee and me in applying q-integers
to interpolation on triangular regions. The q-integer motif was continued
in joint work with Zeynep Koçak on splines and then in my work on the
Bernstein polynomials, in which I was joined by Tim Goodman and Halil
Oruç. The latter work nicely illustrates variation-diminishing ideas, which
take us into the relatively new area of CAGD.

The inclusion of a few rather minor topics in whose development I have
been directly involved may cause some eyebrows to be raised. But I trust
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I will be forgiven, since my intentions are honourable: I hope that by in-
cluding a relatively small amount of material on topics in which I have
carried out research I can encourage all students of mathematics, and es-
pecially those thinking of doing research, to know and understand that the
discovery of new ideas in mathematics is not the sole preserve of the most
outstanding mathematicians.

I was born in Aberdeen, Scotland. Soon after I began lecturing at the
University of St Andrews I learned that the famous Scottish mathematician
James Gregory (1638–1675) had also lectured there. Gregory was born in
Drumoak, near Aberdeen, and was educated at Aberdeen Grammar School,
as I was. Moreover, Gregory’s year of birth was exactly three hundred years
before mine. There the similarities end, most fortunately for me, in view of
the woeful brevity of Gregory’s life. James Gregory obtained many impor-
tant results in the early development of the calculus, including his discovery
of the series for the inverse tangent. Indeed, H. W. Turnbull [54], who car-
ried out a most rigorous study of Gregory’s publications and unpublished
manuscripts and letters, argues that Gregory’s mastery of what we call
Maclaurin series and Taylor series, after Colin Maclaurin (1698–1746) and
Brook Taylor (1685–1731), entitles him to much more recognition than he
has received. Much ahead of his time, Gregory made a bold attempt at
showing the transcendental nature of the numbers π and e, results that
were completed only at the end of the nineteenth century by C. L .F. Lin-
demann (1852–1939).

On completing this book it is a pleasure to renew my thanks to my old
friend Peter Taylor, from whom I have learned much about numerical anal-
ysis. Our meeting as colleagues at the University of Southampton in 1963
was the start of a most valued friendship combined with a fruitful collab-
oration in mathematics. Our book Theory and Applications of Numerical
Analysis was first published in 1973 and is still in print as I write this. It
has been translated into Chinese and Farsi (Persian), and a second edition
was published in 1996. Now, in the fortieth year of our friendship, I am very
grateful to Peter Taylor for his most helpful comments on the manuscript
of this book. At an earlier stage in the preparation of the manuscript, I par-
ticularly remember discussions with Peter concerning the divided difference
form for interpolation on a triangular region. This is one of the few signif-
icant mathematical conversations I can recall sharing that did not involve
writing anything down. We were sitting on a park bench in the Meadows
in Edinburgh before attending a concert by the Edinburgh Quartet in the
Queen’s Hall.

It is also a pleasure to thank my much respected colleague József Szaba-
dos, who read the first draft of the manuscript of this book on behalf of
my publisher. I am extremely grateful to him for the great care he took in
pursuing this task, and for the wisdom of his remarks and suggestions. As
a result, I believe I have been able to make some substantial improvements
in the text. However, I am solely responsible for the final form of this book.
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A few years ago I invited my good friend and former student Halil Oruç
to join me in writing a book on approximation theory. We were both very
disappointed that he was unable to do this, due to pressure of other work.
Different parents produce different children. Indeed, children of the same
parents are usually rather different. Therefore, although Halil and I would
surely have produced a rather different book together, I hope that he will
approve of this one.

This book is my second contribution to the series CMS Books in Math-
ematics, and it is a pleasure to thank the editors, Jonathan and Peter
Borwein, for their support and encouragement. I also wish to acknowledge
the fine work of those members of the staff of Springer, New York who have
been involved with the production of this book. I am especially grateful to
the copyeditor, David Kramer. I worked through his suggestions, page by
page, with an ever increasing respect for the great care he devoted to his
task. I also wish to thank my friend David Griffiths for his help with one of
the items in the Bibliography. I must also mention David’s book Learning
LATEX, written jointly with Desmond J. Higham and published by SIAM.
It has been my guide as I prepared this text in LATEX.

In Two Millennia of Mathematics, my first contribution to the CMS se-
ries, I expressed my thanks to my early teachers and lecturers and to the
many mathematicians, from many countries, who have influenced me and
helped me. I will not repeat that lengthy list here, having put it on record
so recently. However, having mentioned I. J. Schoenberg, let me write down
also, in the order in which I met them, the names of three other approxi-
mation theorists, Philip Davis, Ward Cheney, and Ted Rivlin. Their most
elegantly written and authoritative books on approximation theory inspired
me and taught me a great deal. I would also like to mention the name of
my good friend Lev Brutman (1939–2001), whose work I quote in the sec-
tion on Lebesgue constants. I was his guest in Israel, and he was mine
in Scotland, and we corresponded regularly for several years. I admired
very much his fine mathematical achievements and his language skills in
Russian, Hebrew, and English. He loved to read poetry in these three lan-
guages. Lev’s favourite poet was Alexander Pushkin (1799–1837), and he
also admired Robert Burns (1759–1796), whose work he began reading in
Russian translation during his early years in Moscow.

I dedicated my Ph.D. thesis to my dear parents, Betty McArtney Phillips
(1910–1961) and George Phillips (1911–1961). With the same measure of
seriousness, love, and gratitude, I dedicate this book to my wife, Rona.

George M. Phillips
Crail, Scotland
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1
Univariate Interpolation

1.1 Introduction

Given the values of a function f(x) at two distinct values of x, say x0
and x1, we could approximate f by a linear function p that satisfies the
conditions

p(x0) = f(x0) and p(x1) = f(x1). (1.1)

It is geometrically obvious that such a p exists and is unique. (See Figure
1.1.) We call p a linear interpolating polynomial. We may then evaluate
p(x) for a value of x other than x0 or x1 and use it as an approximation
for f(x). This process is called linear interpolation.
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x0 x1

p(x)

f(x)

FIGURE 1.1. Linear interpolation. The curve y = f(x) is approximated by the
straight line y = p(x).
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We can construct the linear interpolating polynomial directly, writing
p(x) = ax+b and using the above two conditions in (1.1) to give two linear
equations to determine a and b. On solving these equations, we obtain

p(x) =
x1f(x0) − x0f(x1)

x1 − x0
+ x

(
f(x1) − f(x0)

x1 − x0

)
. (1.2)

This can also be expressed in the Lagrange symmetric form

p(x) =
(
x− x1

x0 − x1

)
f(x0) +

(
x− x0

x1 − x0

)
f(x1), (1.3)

or in Newton’s divided difference form

p(x) = f(x0) + (x− x0)
(
f(x1) − f(x0)

x1 − x0

)
, (1.4)

to which we will return later. Observe that if we write x1 = x0 +h in (1.4),
the limit of p(x) as h → 0 gives the first two terms of the Taylor series for
f , assuming that f is differentiable.

It is convenient to denote the set of all polynomials of degree at most n
by Pn. Given the values of a function f(x) at n+1 distinct values of x, say
x0, x1, . . . , xn, can we find a polynomial pn ∈ Pn, say

pn(x) = a0 + a1x+ a2x
2 + · · · + anx

n,

such that pn(xj) = f(xj), for j = 0, 1, . . . , n? This means that we require

a0 + a1xj + a2x
2
j + · · · + anx

n
j = f(xj), 0 ≤ j ≤ n, (1.5)

giving a system of n+ 1 linear equations to determine the n+ 1 unknowns
a0, a1, . . . , an. These equations, which may be written in the form


1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
...

...
...

1 xn x2
n · · · xn

n






a0
a1
...
an


 =



f(x0)
f(x1)

...
f(xn)


 , (1.6)

have a unique solution if the matrix

V =




1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

...
...

...
...

...
1 xn x2

n · · · xn
n


 , (1.7)

called the Vandermonde matrix, is nonsingular. It is not hard to verify (see
Problem 1.1.1) that the determinant of V is given by

detV =
∏
i>j

(xi − xj), (1.8)
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where the product is taken over all i and j such that 0 ≤ j < i ≤ n. For
example, when n = 2,

detV = (x1 − x0)(x2 − x0)(x2 − x1).

Since the abscissas x0, x1, . . . , xn are distinct, it is clear from (1.8) that
detV is nonzero. Thus the Vandermonde matrix V is nonsingular, and the
system of linear equations (1.6) has a unique solution. We conclude that
given a function f defined on a set of distinct points x0, x1, . . . , xn, there is
a unique polynomial pn ∈ Pn such that pn(xj) = f(xj) for j = 0, 1, . . . , n.
This is called the interpolating polynomial. Note that the degree of pn may
be less than n. For example, if all n+ 1 points (xj , f(xj)) lie on a straight
line, then the interpolating polynomial will be of degree 1 or 0, the latter
case occurring when all the f(xj) are equal.

It is not necessary to solve the above system of equations (1.6), whose
matrix is the Vandermonde matrix, because the interpolating polynomial
pn can easily be constructed by other means, as we will now show. However,
since the solution of the Vandermonde system is an interesting problem in
its own right, we will return to it in Section 1.2.

Instead of using the monomials 1, x, x2, . . . , xn as a basis for the poly-
nomials of degree at most n, let us use the fundamental polynomials L0,
L1, . . . , Ln, where

Li(x) =
∏
j �=i

(
x− xj

xi − xj

)
, (1.9)

and the product is taken over all j between 0 and n, but excluding j = i.
It follows from this definition that Li(x) takes the value 1 at x = xi and
is zero at all n other abscissas xj , with j �= i. Each polynomial Li(x) is of
degree n. For example,

L0(x) =
(x− x1) · · · (x− xn)

(x0 − x1) · · · (x0 − xn)
,

and we see that L0(x0) = 1 and L0(xj) = 0 for 1 ≤ j ≤ n. Thus f(xi)Li(x)
has the value f(xi) at x = xi and is zero at the other abscissas. We can
therefore express the interpolating polynomial pn(x) very simply in terms
of the fundamental polynomials Li(x) as

pn(x) =
n∑

i=0

f(xi)Li(x), (1.10)

for the polynomial on the right of (1.10) is of degree at most n and takes
the appropriate value at each abscissa x0, x1, . . . , xn. We call (1.10) the
Lagrange form of the interpolating polynomial. It is named after J. L.
Lagrange (1736–1813) and generalizes the linear interpolating polynomial
given in the form (1.3).
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As we have seen, an interpolating polynomial pn for a given function
f is constructed by using the values of f at certain abscissas x0, . . . , xn.
We can then evaluate pn at some point x distinct from all the xj , and
use this as an approximation for f(x). This process is called interpolation,
and later in this section we will comment on the accuracy of this process.
Another application involving an interpolating polynomial pn for a given
function f is to integrate pn over some appropriate interval [a, b], and use
this as an approximation to the integral of f over [a, b]. We will pursue this
application in Chapter 3.

Isaac Newton (1642–1727) found a particularly elegant way of construct-
ing the interpolating polynomial. Instead of using the monomials 1, x,
x2, . . . , xn or the fundamental polynomials Li, defined above, as a basis for
the polynomials of degree at most n, he used the polynomials π0, π1, . . . , πn,
where

πi(x) =
{

1, i = 0,
(x− x0)(x− x1) · · · (x− xi−1), 1 ≤ i ≤ n.

(1.11)

The interpolating polynomial pn ∈ Pn, which assumes the same values as
the function f at x0, x1, . . . , xn, is then written in the form

pn(x) = a0π0(x) + a1π1(x) + · · · + anπn(x). (1.12)

We may determine the coefficients aj by setting

pn(xj) = f(xj), 0 ≤ j ≤ n,

giving the system of linear equations

a0π0(xj) + a1π1(xj) + · · · + ajπj(xj) = f(xj), (1.13)

for 0 ≤ j ≤ n. Note that only a0, . . . , aj appear in (1.13), because πi(xj) = 0
when i > j. The system of equations (1.13) has the matrix form

Ma = f, (1.14)

say, where a = [a0, . . . , an]T , f = [f(x0), . . . , f(xn)]T , and the matrix M is

M =




π0(x0) 0 0 · · · 0
π0(x1) π1(x1) 0 · · · 0
π0(x2) π1(x2) π2(x2) · · · 0

...
...

...
. . .

...
π0(xn) π1(xn) π2(xn) · · · πn(xn)



. (1.15)

The matrix M, which we will call the Newton matrix, is said to be lower
triangular, and we will have more to say about lower triangular matrices
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in the next section. If we evaluate the determinant of M via the first row,
we readily obtain

detM = π0(x0)π1(x1) · · ·πn(xn). (1.16)

If the n + 1 abscissas x0, x1, . . . , xn are all distinct, it is clear from (1.16)
that detM �= 0, and so the linear system (1.14) has a unique solution.
The fact that the matrix M is lower triangular is crucial to the success of
this approach to the interpolation problem, since we can solve the linear
system (1.14) by forward substitution. We obtain a0 immediately from the
first equation, and then a1 from the second. In general, we determine aj

from the (j + 1)th equation, and we can see that aj depends only on the
values of x0 up to xj and f(x0) up to f(xj). In particular, we obtain

a0 = f(x0) and a1 =
f(x1) − f(x0)

x1 − x0
. (1.17)

We will write
aj = f [x0, x1, . . . , xj ], 0 ≤ j ≤ n, (1.18)

to emphasize its dependence on f and x0, x1, . . . , xj , and refer to aj as a
jth divided difference. The form of the expression for a1 in (1.17) above and
the recurrence relation (1.22) below show why the term divided difference
is appropriate. Thus we may write (1.12) in the form

pn(x) = f [x0]π0(x) + f [x0, x1]π1(x) + · · · + f [x0, x1, . . . , xn]πn(x), (1.19)

which is Newton’s divided difference formula for the interpolating polyno-
mial. Observe that f [x0] = f(x0). We write f [x0] in (1.19) rather than
f(x0) for the sake of harmony of notation. The formula (1.4), which we
gave earlier for the linear interpolating polynomial, is the special case of
(1.19) with n = 1. Note that since we can interpolate on any set of dis-
tinct abscissas, we can define a divided difference with respect to any set
of distinct abscissas. Later in this chapter we will find it more appropriate
to use another notation for divided differences, where we write

[x0, x1, . . . , xj ]f (1.20)

instead of f [x0, x1, . . . , xj ]. In (1.20) we regard [x0, x1, . . . , xj ] as an oper-
ator that acts on the function f . We now show that the divided difference
f [x0, x1, . . . , xn] is a symmetric function of its arguments x0, x1, . . . , xn.

Theorem 1.1.1 The divided difference f [x0, x1, . . . , xn] can be expressed
as the following symmetric sum of multiples of f(xj),

f [x0, x1, . . . , xn] =
n∑

r=0

f(xr)∏
j �=r

(xr − xj)
, (1.21)

where in the above product of n factors, r remains fixed and j takes all
values from 0 to n, excluding r.
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x0 f [x0]
f [x0, x1]

x1 f [x1] f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f [x2] f [x1, x2, x3]
f [x2, x3] f [x1, x2, x3, x4]

x3 f [x3] f [x2, x3, x4]
f [x3, x4]

x4 f [x4]

TABLE 1.1. A systematic scheme for calculating divided differences.

Proof. Since the interpolating polynomial is unique, the polynomials pn(x)
in (1.10) and (1.19) are the same. If we equate the coefficients of xn in
(1.10) and (1.19), we obtain (1.21) immediately. ■

It is clear from the symmetric form (1.21) that each divided difference
f [x0, x1, . . . , xn] is indeed a symmetric function of its arguments, meaning
that it is unchanged if we rearrange the xj in any order. For example, we
have

f [x0, x1, x2] =
f(x0)

(x0 − x1)(x0 − x2)
+

f(x1)
(x1 − x0)(x1 − x2)

+
f(x2)

(x2 − x0)(x2 − x1)
,

and we can see that f [x0, x1, x2] is equal to f [x1, x2, x0], and to each of the
four other expressions obtained by permuting the xj .

We can use the symmetric form (1.21) to show that

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn] − f [x0, x1, . . . , xn−1]

xn − x0
. (1.22)

For we can replace both divided differences on the right of (1.22) by their
respective symmetric forms and collect the terms in f(x0), f(x1), and so
on, showing that this gives the symmetric form for the divided difference
f [x0, x1, . . . , xn]. By repeatedly applying the relation (1.22) systematically,
we can build up a table of divided differences, as depicted in Table 1.1.

Example 1.1.1 Given the table of values

x 0 1 2 3
f(x) 6 −3 −6 9

let us derive the interpolating polynomial for f of degree at most 3 by using
Newton’s divided difference form (1.19). We first construct the following
divided difference table, like the model given in Table 1.1, but with one
fewer entry in each column.
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0 6
−9

1 −3 3
−3 2

2 −6 9
15

3 9

The values of the xj and f(xj) are given in the first two columns, as in
Table 1.1. To evaluate the divided difference formula (1.19), we require only
the first numbers in columns 2, 3, 4, and 5, together with the first three
numbers in the first column, giving the interpolating polynomial

p3(x) = 6 − 9x+ 3x(x− 1) + 2x(x− 1)(x− 2). (1.23)

Let us rearrange the order of the four pairs (xj , f(xj)) in the above table
and recompute the divided difference table. For example, the table

3 9
1

0 6 7
−6 2

2 −6 3
−3

1 −3

yields the interpolating polynomial

p3(x) = 9 + (x− 3) + 7(x− 3)x+ 2(x− 3)x(x− 2), (1.24)

and we can easily check that the polynomials in (1.23) and (1.24) are, as
we expect, the same. Both may be expressed in the standard form

p3(x) = 2x3 − 3x2 − 8x+ 6. ■

The function f in Example 1.1.1 above is defined at only four points, and
we have no incentive to evaluate its interpolating polynomial at any other
point. In the following example we begin with a function that is defined
on an interval (in fact, on the whole real line), construct an interpolating
polynomial based on the values of the function at five points, and estimate
the value of the function at some other point of our choice by evaluating
the interpolating polynomial in place of the function.

Example 1.1.2 Let us construct the interpolating polynomial p4(x) for
the function 2x based on the points −2, −1, 0, 1, and 2, and hence estimate
21/2 =

√
2 by evaluating p4( 1

2 ).
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For x = −2, −1, 0, 1, and 2, we have 2x = 1
4 , 1

2 , 1, 2, and 4, respectively.
Then, following the method discussed above, we find that the forward dif-
ference form of the interpolating polynomial is

p4(x) =
1
4

+
1
4
(x+ 2) +

1
8
(x+ 2)(x+ 1) +

1
24

(x+ 2)(x+ 1)x

+
1
96

(x+ 2)(x+ 1)x(x− 1).

On evaluating p4(x) at x = 1
2 , we obtain

723
512

≈ 1.4121.

Since
√

2 ≈ 1.4142, this interpolation method has provided an approxima-
tion whose error is in the third digit after the decimal point. ■

In the above example, we were able to determine how close the interpo-
lated value p4( 1

2 ) is to 21/2. What can we say, in general, about the accuracy
of interpolation? The following theorem gives at least a partial answer to
this question.

Theorem 1.1.2 Let x and the abscissas x0, x1, . . . , xn be contained in an
interval [a, b] on which f and its first n derivatives are continuous, and let
f (n+1) exist in the open interval (a, b). Then there exists ξx ∈ (a, b), which
depends on x, such that

f(x) − pn(x) = (x− x0)(x− x1) · · · (x− xn)
f (n+1)(ξx)
(n+ 1)!

. (1.25)

Proof. The proof makes repeated use of Rolle’s theorem, which simply says
that between any two zeros of a differentiable function there must be at
least one zero of its derivative. (See any text on analysis, for example,
Howie [27].) Consider the function

G(x) = f(x) − pn(x) − (x− x0) · · · (x− xn)
(α− x0) · · · (α− xn)

· (f(α) − pn(α)), (1.26)

where α is any point in the interval [a, b] that is distinct from all of the
abscissas x0, x1, . . . , xn. We note that G has at least n + 2 zeros, at α
and all the n + 1 interpolating abscissas xj . We then argue from Rolle’s
theorem that G′ must have at least n + 1 zeros. By repeatedly applying
Rolle’s theorem, we argue that G′′ has at least n zeros (if n ≥ 1), G(3) has
at least n − 1 zeros (if n ≥ 2), and finally that G(n+1) has at least one
zero, say at x = ξα. Thus, on differentiating (1.26) n+1 times and putting
x = ξα, we obtain

0 = f (n+1)(ξα) − (n+ 1)!(f(α) − pn(α))
(α− x0) · · · (α− xn)

.
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To complete the proof we rearrange the last equation to give an expression
for f(α) − pn(α), and then replace α by x. ■

The above expression for the interpolation error is obviously of limited
use, since it requires the evaluation of the (n+1)th-order derivative f (n+1)

at ξx, and in general, we do not even know the value of ξx. We note that
there can also be an error in evaluating pn(x) if there are rounding errors in
the values of f(xj). Despite these shortcomings, Theorem 1.1.2 is valuable
because, as we will see later, it both provides a useful comparison with
Taylor’s theorem and is helpful in establishing a connection between divided
differences and derivatives.

Example 1.1.3 Let us apply (1.25) to estimate the error in the interpo-
lation carried out in Example 1.1.2. In this case, f(x) = 2x, x = 1

2 , and
n = 4. We have

d

dx
2x = 2x log 2 and

d5

dx5 2x = 2x(log 2)5,

where log denotes the natural logarithm, so that log 2 ≈ 0.693147. Using
(1.25), we find that the error of interpolation in Example 1.1.2 is

5
2

· 3
2

· 1
2

· −1
2

· −3
2

· 2ξ(log 2)5

5!
,

where 1
4 < ξ < 4. On inserting the two extreme values of ξ into the above

estimate, we find that the error of interpolation lies between 0.0004 and
0.0076. This is consistent with the known error, which is approximately
0.0021. ■

Our next example shows how the error estimate (1.25) can be used to
estimate the error of linear interpolation for any function f whose second
derivative can be evaluated.

Example 1.1.4 Suppose we have a table of values of sinx, tabulated at
intervals of 0.01. What is the maximum error incurred by using linear
interpolation between two consecutive entries in this table? From (1.25)
the error of linear interpolation between two points x0 and x1 is

f(x) − p1(x) = (x− x0)(x− x1)
f ′′(ξx)

2!
. (1.27)

For any function f such that |f ′′(x)| ≤ M on [x0, x1], we can verify (see
Problem 1.1.8) that

|f(x) − p1(x)| ≤ 1
8
Mh2, (1.28)

where h = x1−x0. In particular, for f(x) = sinx, we have f ′(x) = cosx and
f ′′(x) = − sinx. Thus we can take M = 1 in (1.28), and with h = 0.01, the
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error in linear interpolation is not greater than 1
8 · 10−4. It would therefore

be appropriate for the entries in this table, spaced at intervals of 0.01, to
be given to 4 decimal places. This was well understood in the era, now long
gone, when such tables were in everyday use, and one finds in published
four-figure tables of the function sinx that the entries are tabulated at
intervals of 0.01. ■

We will now derive an alternative error term for the interpolating polyno-
mial that has the merit of being applicable to all functions and not merely
to those that possess high-order derivatives. This error term involves a
divided difference rather than an (n+ 1)th derivative, as in (1.25). We be-
gin by using (1.22) to express the divided difference f [x, x0, x1, . . . , xn] in
terms of f [x0, x1, . . . , xn] and f [x, x0, x1, . . . , xn−1]. On rearranging this,
we obtain

f [x, x0, . . . , xn−1] = f [x0, . . . , xn] + (x− xn)f [x, x0, . . . , xn]. (1.29)

Similarly, we have

f [x] = f [x0] + (x− x0)f [x, x0]. (1.30)

On the right side of (1.30) we now replace f [x, x0], using (1.29) with n = 1,
to give

f [x] = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x, x0, x1], (1.31)

and we note that (1.31) may be expressed as

f(x) = p1(x) + (x− x0)(x− x1)f [x, x0, x1],

where p1(x) is the interpolating polynomial for f based on the two abscissas
x0 and x1. We can continue, replacing f [x, x0, x1] in (1.31), using (1.29)
with n = 2. Continuing in this way, we finally obtain

f(x) = pn(x) + (x− x0) · · · (x− xn)f [x, x0, x1, . . . , xn]. (1.32)

On comparing (1.32) and (1.25), we see that if the conditions of Theorem
1.1.2 hold, then there exists a number ξx such that

f [x, x0, x1, . . . , xn] =
f (n+1)(ξx)
(n+ 1)!

.

Since this holds for any x belonging to an interval [a, b] that contains all
the abscissas xj , and within which f satisfies the conditions of Theorem
1.1.2, we can replace n by n− 1, put x = xn, and obtain

f [x0, x1, . . . , xn] =
f (n)(ξ)
n!

, (1.33)
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where ξ ∈ (x0, xn). Thus an nth-order divided difference, which involves
n+ 1 parameters, behaves like a multiple of an nth-order derivative. If we
now return to Newton’s divided difference formula (1.19) and let every xj

tend to x0, then in view of (1.33), we obtain the limiting form

pn(x) = f(x0) + (x− x0)
f ′(x0)

1!
+ · · · + (x− x0)n f

(n)(x0)
n!

. (1.34)

This is the Taylor polynomial of degree n, consisting of the first n + 1
terms of the Taylor series for f , and if we take the limiting form of the
error formula (1.25), we obtain

f(x) =
n∑

r=0

(x− x0)r f
(r)(x0)
r!

+ (x− x0)n+1 f
(n+1)(ηx)
(n+ 1)!

, (1.35)

where ηx lies between x and x0.
In Chapter 2 we will consider another way of measuring how well an

interpolating polynomial pn approximates f by studying a function, called
a Lebesgue function, that does not depend on f but is derived from the
interpolating abscissas.

There is a very elegant iterative process, called the Neville–Aitken algo-
rithm, that evaluates the interpolating polynomial pn for a function f on a
given set of distinct abscissas X = {x0, x1, . . . , xn}. In this process, which
is named after E. H. Neville (1889–1961) and A. C. Aitken (1895–1967), the
value of pn(x) is the final number obtained from a sequence of 1

2n(n + 1)
similar calculations. Each of these calculations is like the simple process of
linear interpolation, cast in the form

p1(x) =
(x− x0)f(x1) − (x− x1)f(x0)

x1 − x0
, (1.36)

and every such calculation evaluates an interpolating polynomial for f at
some subset of the abscissas in X. Consider the following theorem:

Theorem 1.1.3 Let us define p[i]
0 = f(xi) for 0 ≤ i ≤ n, and then, for

each k such that 0 ≤ k ≤ n− 1, we recursively define

p
[i]
k+1(x) =

(x− xi)p
[i+1]
k (x) − (x− xi+k+1)p

[i]
k (x)

xi+k+1 − xi
, (1.37)

for 0 ≤ i ≤ n − k − 1. Then each p
[i]
k is the interpolating polynomial for

the function f based on the abscissas xi,xi+1, . . . , xi+k. In particular, p[0]
n

is the interpolating polynomial for the function f based on the abscissas
x0, x1, . . . , xn.

Proof. We use induction on k. By definition, each p
[i]
0 (x) is a polyno-

mial of degree zero with the constant value f(xi). Let us assume that
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x− x0 p
[0]
0 (x)

p
[0]
1 (x)

x− x1 p
[1]
0 (x) p

[0]
2 (x)

p
[1]
1 (x) p

[0]
3 (x)

x− x2 p
[2]
0 (x) p

[1]
2 (x)

p
[2]
1 (x)

x− x3 p
[3]
0 (x))

TABLE 1.2. The quantities computed in the Neville–Aitken algorithm.

for some k ≥ 0, each p
[i]
k (x) is in Pk and interpolates f(x) on the abscis-

sas xi,xi+1, . . . , xi+k. (This statement holds for k = 0 and all i such that
0 ≤ i ≤ n.) Then we can verify from (1.37) that if p[i]

k (x) and p[i+1]
k (x) both

have the same value C for a given value of x, then p
[i]
k+1(x) also has the

value C. Therefore, since both p[i]
k (x) and p[i+1]

k (x) take the value f(xj) for
i+ 1 ≤ j ≤ i+ k, so also does p[i]

k+1(x). If we set x = xi and x = xi+k+1 in

(1.37), we can verify that p[i]
k+1(x) takes the values f(xi) and f(xi+k+1), re-

spectively. Thus each p[i]
k+1(x) interpolates f on the abscissas xi, . . . , xi+k+1,

and it follows from (1.37) that p[i]
k+1(x) is in Pk+1. This completes the proof

by induction. ■

The following algorithm gives a precise formulation of the Neville–Aitken
process.

Algorithm 1.1.1 ( Neville–Aitken)
input: x0, . . . , xn, f(x0), . . . , f(xn), and x

for i = 0 to n
p
[i]
0 := f(xi)
ti := x− xi

next i
for k = 0 to n− 1

for i = 0 to n− k − 1
p
[i]
k+1 :=

(
tip

[i+1]
k − ti+k+1p

[i]
k

)
/(ti − ti+k+1)

next i
next k

output: p
[0]
n = pn(x) ■

If we carry out the Neville–Aitken algorithm by hand, it is helpful to
write down the values of p[i]

k in a triangular array, as illustrated in Table
1.2 for the case n = 3. If we are implementing the algorithm on a computer,
this triangular array helps us visualize the algorithm. Note that although
the algorithm could be implemented algebraically, either by hand or with
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the aid of a symbolic mathematics program, such as Maple, it is usually
applied arithmetically, and then the algorithm must be applied separately
to compute each required value of pn(x). If we need to evaluate pn(x) for
many values of x (for example, in order to draw its graph), it would be
more efficient to use Newton’s divided difference formula, since the divided
differences need be evaluated only once.

Example 1.1.5 Let us apply the Neville–Aitken algorithm to evaluate
p3
( 3

2

)
, for the function that is tabulated in Example 1.1.1. In the first

column of the following table, we have the numbers x− xi, with x = 3
2 .

x− xi f(xi)

3
2 6

− 15
2

1
2 −3 − 21

4− 9
2 −6

− 1
2 −6 − 27

4− 27
2− 3

2 9

The numbers in the above table correspond to those in Table 1.2. We
obtain p3

( 3
2

)
= −6, which agrees with the result obtained by evaluating

the polynomial p3(x) defined in (1.23). ■

Let us consider the interpolating polynomial for a function f on the 2n+2
abscissas x0,x1, . . . , xn and x0 + h,x1 + h, . . . , xn + h, and let f ′ exist on
an interval containing all those abscissas. This interpolating polynomial is
of the form

p2n+1(x) =
n∑

i=0

[f(xi)αi(x;h) + f(xi + h)βi(x;h)],

say, where αi and βi are polynomials in x that depend on h. The polynomial
p2n+1 can be rearranged in the form

n∑
i=0

f(xi)[αi(x;h) + βi(x;h)] + h

n∑
i=0

(
f(xi + h) − f(xi)

h

)
βi(x;h).

We then let h → 0, to give

p2n+1(x) =
n∑

i=0

[f(xi)ui(x) + f ′(xi)vi(x)], (1.38)

say. We can show that

ui(x) = [1 − 2L′
i(xi)(x− xi)](Li(x))2, (1.39)
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vi(x) = (x− xi)(Li(x))2, (1.40)

where Li is the fundamental polynomial on the abscissas x0, x1, . . . , xn, as
defined in (1.9). The polynomial p2n+1 is called the Hermite interpolating
polynomial for f on the n+ 1 abscissas x0,x1, . . . , xn, named after C. Her-
mite (1822–1901). Since Li ∈ Pn, it is clear from (1.39) and (1.40) that ui

and vi belong to P2n+1, and it then follows from (1.38) that p2n+1 ∈ P2n+1.
The derivation of (1.40) is easily completed by writing

vi(x) = lim
h→0

hβi(x;h).

The derivation of (1.39) from

ui(x) = lim
h→0

[αi(x;h) + βi(x;h)]

takes a little more work. It is, however, straightforward to verify (1.39) and
(1.40) by checking that

ui(xj) = δi,j , u′
i(xj) = 0, vi(xj) = 0, v′

i(xj) = δi,j ,

for all i and j, where δi,j is the Kronecker delta function, which has the
value 1 for i = j and is zero otherwise.

We can easily derive an error term for Hermite interpolation. Let us begin
with the error term (1.25) and choose interpolating abscissas x0, x1, . . . , xn

and x0 +h,x1 +h, . . . , xn +h. Then, if f (2n+2) exists in some open interval
(a, b) that contains all the interpolating abscissas, we let h → 0 and obtain
the error term

f(x) − p2n+1(x) = (x− x0)2(x− x1)2 · · · (x− xn)2
f2n+2(ηx)
(2n+ 2)!

, (1.41)

where ηx ∈ (a, b).

Example 1.1.6 Let us obtain the Hermite interpolating polynomial (1.38)
for sinπx with interpolating points 0, 1

2 , and 1. With a little work, we find
that (1.38) simplifies to give

p5(x) = (16 − 4π)x2(1 − x)2 + πx(1 − x).

From (1.41) the error of this approximation is of the form

x2
(
x− 1

2

)2

(x− 1)2
f (6)(ηx)

6!
,

where f(x) = sinπx, and we find that the maximum modulus of the poly-
nomial x2

(
x− 1

2

)2 (x− 1)2 on [0, 1] is 1
432 , attained at x = 1

2 ±
√

3
6 . Thus

max
0≤x≤1

| sinπx− p5(x)| ≤ 1
432

π6

6!
< 0.0031. ■
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Problem 1.1.1 Consider the Vandermonde matrix V in (1.7). One term in
the expansion of detV is the product of the elements on the main diagonal,

x1x
2
2x

3
3 · · ·xn

n,

which has total degree

1 + 2 + · · · + n =
1
2
n(n+ 1).

Show that detV is a polynomial in the variables x0, x1, . . . , xn of total
degree 1

2n(n + 1). If xi = xj for any i and j, observe that detV = 0 and
deduce that xi − xj is a factor of detV. Note that there are 1

2n(n + 1)
factors of this form and deduce that

detV = C
∏
i>j

(xi − xj),

where C is a constant, since the right side of the latter equation is also
of total degree 1

2n(n + 1). Verify that the choice C = 1 gives the correct
coefficient for the term x1x

2
2x

3
3 · · ·xn

n on both sides, thus verifying (1.8).

Problem 1.1.2 Show that the fundamental polynomials Li satisfy the
identities

L0(x) + L1(x) + · · · + Ln(x) = 1 (1.42)

for all n ≥ 0 and

x0L0(x) + x1L1(x) + · · · + xnLn(x) = x

for n ≥ 1. Can you find any other identities of this kind?

Problem 1.1.3 Show that the fundamental polynomial Li(x) can be ex-
pressed in the form

Li(x) =
w(x)

(x− xi)w′(xi)
,

where w(x) = (x − x0)(x − x1) · · · (x − xn). By differentiating the above
expression for Li(x) and using L’Hospital’s rule, show further that

L′
i(xi) =

1
2
w′′(xi)
w′(xi)

.

Problem 1.1.4 Show that

detV = detM,

where V and M are defined by (1.7) and (1.15), respectively.
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Problem 1.1.5 Verify the recurrence relation (1.22) for divided differ-
ences.

Problem 1.1.6 Using Newton’s divided difference form of the interpolat-
ing polynomial for the function sinπx based on the five points 0, ± 1

6 , and
± 1

2 , obtain the approximation 91/128 for sin(π/4).

Problem 1.1.7 Apply (1.25) to the function sinπx and thus show that
the estimate obtained in Problem 1.1.6 for sin(π/4) is too large, by an
amount not greater than π5/73728 ≈ 0.004. Compare this error estimate
with the actual error.

Problem 1.1.8 Verify that the derivative of the function (x−x0)(x−x1)
has only one zero, at the midpoint of [x0, x1]. Hence show that

max
x0≤x≤x1

|(x− x0)(x− x1)| =
1
4
(x1 − x0)2

and thus derive the inequality (1.28).

Problem 1.1.9 Apply the Neville–Aitken algorithm to evaluate p4(x) at
x = 1

2 for the function 2x based on the points −2, −1, 0, 1, and 2, and
check that your result agrees with that obtained in Example 1.1.2.

1.2 The Vandermonde Equations

Newton’s solution of the interpolating problem by using divided differences
makes the direct solution of the Vandermonde equations (1.6) unnecessary.
Nevertheless, we will show in this section that the solution of these equa-
tions is not nearly as difficult as one might suppose. We include this mate-
rial for its intrinsic interest, while emphasizing that it is not a recommended
practical method for constructing the interpolating polynomial. We begin
with definitions concerning certain symmetric polynomials in several vari-
ables.

Definition 1.2.1 The elementary symmetric function σr(x0, x1, . . . , xn),
for r ≥ 1, is the sum of all products of r distinct variables chosen from the
set {x0, x1, . . . , xn}, and we define σ0(x0, x1, . . . , xn) = 1. ■

For example,
σ2(x0, x1, x2) = x0x1 + x0x2 + x1x2.

As a consequence of Definition 1.2.1, we have

σr(x0, x1, . . . , xn) = 0 if r > n+ 1. (1.43)

Definition 1.2.2 The complete symmetric function τr(x0, x1, . . . , xn) is
the sum of all products of the variables x0, x1, . . . , xn of total degree r, for
r ≥ 1, and we define τ0(x0, x1, . . . , xn) = 1. ■
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For example,

τ2(x0, x1, x2) = x2
0 + x2

1 + x2
2 + x0x1 + x0x2 + x1x2,

τ3(x0, x1) = x3
0 + x2

0x1 + x0x
2
1 + x3

1.

Note that τr(x0, x1, . . . , xn) contains all of the terms that are contained in
σr(x0, x1, . . . , xn), together with other terms (if r > 1 and n > 0) in which
at least one xj occurs to a power greater than one. It follows immediately
from Definition 1.2.1 that

(1 + x0x) · · · (1 + xnx) =
n+1∑
r=0

σr(x0, . . . , xn)xr, (1.44)

so that (1+x0x) · · · (1+xnx) is the generating function for the elementary
symmetric functions. Likewise, it follows from Definition 1.2.2 that

1
(1 − x0x) · · · (1 − xnx)

=
n∏

j=0

∞∑
r=0

xr
j x

r =
∞∑

r=0

τr(x0, . . . , xn)xr,

so that (1 − x0x)−1 · · · (1 − xnx)−1 is the generating function for the com-
plete symmetric functions. By equating coefficients of xr in the identity

1
(1 − x0x) · · · (1 − xnx)

− 1
(1 − x0x) · · · (1 − xn−1x)

=
xnx

(1 − x0x) · · · (1 − xnx)
,

we deduce that

τr(x0, . . . , xn) − τr(x0, . . . , xn−1) = xn τr−1(x0, . . . , xn) (1.45)

for r ≥ 1. Before taking the next step, let us remember that each τr, being
a symmetric function, is unchanged if we permute its arguments xj . Then,
by interchanging x0 and xn in the recurrence relation (1.45), we obtain

τr(x0, . . . , xn) − τr(x1, . . . , xn) = x0 τr−1(x0, . . . , xn). (1.46)

If we now subtract (1.46) from (1.45) and divide by xn − x0, we find that
τr−1(x0, . . . , xn) is expressed in the divided difference form

τr−1(x0, . . . , xn) =
τr(x1, . . . , xn) − τr(x0, . . . , xn−1)

xn − x0
. (1.47)

Theorem 1.2.1 For any positive integer m and nonnegative integer i,

τm−n(xi, . . . , xn+i) = f [xi, . . . , xn+i], (1.48)

where f(x) = xm and 0 ≤ n ≤ m. It is worth repeating this result in words:
The complete symmetric function of n + 1 variables of order m − n is an
nth-order divided difference of the monomial xm.
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Proof. We prove this by induction on n. Since τm(xi) = xm
i = f [xi], we see

that (1.48) holds for the given value ofm and n = 0. Now let us assume that
(1.47) holds for a value of n such that 0 ≤ n < m. Using this assumption
and the divided difference relation (1.47), we deduce that

τm−n−1(xi, . . . , xn+i+1) =
τm−n(xi+1, . . . , xn+i+1) − τm−n(xi, . . . , xn+i)

xn+i+1 − xi

=
f [xi+1, . . . , xn+i+1] − f [xi, . . . , xn+i]

xn+i+1 − x0
,

and from the recurrence relation for divided differences (1.22) it follows
that

τm−n−1(x0, . . . , xn+1) = f [xi, . . . , xn+i+1],

showing that (1.48) holds for n+ 1. This completes the proof. ■

Example 1.2.1 To illustrate (1.48) for m = 4 and n = 2, we compute the
appropriate first-order divided differences as follows:

xi x4
i

x3
i + x2

ixi+1 + xix
2
i+1 + x3

i+1
xi+1 x4

i+1
x3

i+1 + x2
i+1xi+2 + xi+1x

2
i+2 + x3

i+2
xi+2 x4

i+2

and we can verify that the second divided difference simplifies to give
τ2(xi, xi+1, xi+2), in agreement with (1.48). ■

We now require some definitions concerning matrices.

Definition 1.2.3 Given a square matrix A of order n, its principal sub-
matrix of order m, for 1 ≤ m ≤ n, is the matrix formed from the first m
rows and columns of A. ■

Definition 1.2.4 Given a square matrix A of order n, its principal minor
of order m, for 1 ≤ m ≤ n, is the determinant of the matrix formed from
the first m rows and columns of A. ■

Definition 1.2.5 A square matrix A = (aij) is said to be lower triangular
if aij = 0 for i < j. ■

Definition 1.2.6 A square matrix A = (aij) is said to be upper triangular
if aij = 0 for i > j. ■

We now state and prove a result concerning the factorization of a square
matrix as a product of a lower and an upper triangular matrix.

Theorem 1.2.2 If all principal minors of a square matrix A are nonzero,
then A may be factorized uniquely in the form A = LU, where L is lower
triangular with units on the main diagonal and U is upper triangular.
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Proof. We will prove this by using induction on n, the order of the matrix
A. The result is obviously valid for n = 1. Let us assume that it is valid
for some n ≥ 1. Then consider any (n + 1) × (n + 1) matrix An+1 whose
principal minors are all nonzero. We can write this in block form as

An+1 =


 An bn

cT
n an+1,n+1


 , (1.49)

where An is a matrix consisting of the first n rows and columns of An+1,
bn is a column vector consisting of the first n elements in the last column
of An+1, cT

n is a row vector consisting of the first n elements in the last
row of An+1, and an+1,n+1 is the element in the last row and column of
An+1. It follows from our assumption about An+1 that all principal minors
of its submatrix An are nonzero. Thus, from our inductive hypothesis, we
can express An = LnUn, say, where Ln is lower triangular with units
on the diagonal and Un is upper triangular. We observe that since An is
nonsingular, so are its factors Ln and Un. The expression of An+1 in block
form given in (1.49) suggests how we should now proceed: We should try
to express An+1 as a product, of an appropriate form Ln+1Un+1, where
the first n rows and columns of Ln+1 and Un+1 are the matrices Ln and
Un, respectively. Let us therefore write

An+1 = Ln+1Un+1 =


 Ln 0

dT
n 1




 Un en

0T un+1,n+1


 , (1.50)

where the zero column vector 0, the row vector dT
n , the column vector en,

and the zero row vector 0T all have n elements, and un+1,n+1 is the element
in the last row and column of Un+1. Our next task is to determine values
of the vectors dT

n and en, and the scalar un+1,n+1 for which the above
factorization is valid. We proceed by multiplying the above two matrices in
block form. (Note that this multiplication process obeys the same rules as
ordinary matrix multiplication, as if the blocks were all scalars.) We thus
obtain

An+1 =


 LnUn Lnen

dT
nUn dT

nen + un+1,n+1


 . (1.51)

We can now equate corresponding blocks on the right sides of equations
(1.49) and (1.51). This yields four equations. The first equation is

An = LnUn, (1.52)

which we already know, and the other three equations are

Lnen = bn, (1.53)
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dT
nUn = cT

n , (1.54)

and
dT

nen + un+1,n+1 = an+1,n+1. (1.55)

Since Ln is nonsingular, the solution of the linear system (1.53) determines
a unique value for the vector en, and since Un is nonsingular, the vector dT

n

is uniquely determined by (1.54). Finally, we use (1.55) to give un+1,n+1,
the final element of the upper triangular factor of An+1. Thus, having
determined en, dT

n , and un+1,n+1 uniquely, we have obtained the unique
factorization of An+1, and this completes the proof. ■

The above proof is a constructive proof, since it shows how the fac-
torization of a matrix A can be carried out by factorizing its principal
submatrices in turn. Note also how easily the vectors en and dT

n may be
determined, since they are obtained by solving the linear systems (1.53)
and (1.54), which are triangular.

Example 1.2.2 We can complete the matrix factorization


1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64


 =




1 0 0 0
1 1 0 0
1 2 1 0
d1 d2 d3 1







1 1 1 e1
0 1 3 e2
0 0 2 e3
0 0 0 u4,4


 ,

by using the process employed in the proof of Theorem 1.2.2. From (1.53)
we obtain

[e1, e2, e3] = [1, 7, 12],

and then we find from (1.54) that

[d1, d2, d3] = [1, 3, 3].

Finally, we derive from (1.55) that u4,4 = 6. ■

A more efficient way of factorizing A = LU is to find the elements of L
and U in the following order: We begin by finding the first row of U and
then the first column of L. We continue in this way, finding next the second
row of U and then the second column of L, and so on. Note that before
we commence the factorization of an n×n matrix, given that L and U are
triangular matrices and L has units on the diagonal, only n2 elements out
of the 2n2 elements of L and U remain to be determined.

Example 1.2.3 Let us factorize the following matrix. We have put “bul-
lets” in place of the 42 unknown elements of L and U.

A =




2 1 −1 2
−4 −3 2 −3

2 3 2 −1
−2 −1 4 −2


 =




1 0 0 0
• 1 0 0
• • 1 0
• • • 1







• • • •
0 • • •
0 0 • •
0 0 0 •


 .
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We find that the first row of U is the same as the first row of A. Then, to
give the correct values for the elements in the first column of A, we find
that the first column of L is the vector [1,−2, 1,−1]T . Next, to complete the
second row of A, we find that the second row of U is the vector [0,−1, 0, 1],
and to complete the second column of A we find that the second column of
L is the vector [0, 1,−2, 0]T . We continue the factorization by completing
the third row of U, the third column of L, and then obtain the final element
of the matrix U. The complete factorization is




2 1 −1 2
−4 −3 2 −3

2 3 2 −1
−2 −1 4 −2


 =




1 0 0 0
−2 1 0 0

1 −2 1 0
−1 0 1 1







2 1 −1 2
0 −1 0 1
0 0 3 −1
0 0 0 1


 ,

as may be easily verified. ■

Suppose we wish to solve a system of equations of the form Ax = b,
where A is a square matrix that has been factorized to give A = LU, as
described above. Then

Ax = b ⇔ L(Ux) = b.

If we now write Ux = y, then the solution of the original system of equa-
tions Ax = b is equivalent to solving the two systems

Ly = b and Ux = y. (1.56)

Although, having factorized A, we now have two systems to solve instead
of one, the total number of calculations required is greatly reduced, since
the matrices L and U are triangular. First we find the vector y in (1.56)
by solving Ly = b; we find the first element of the intermediate vector y
immediately from the first equation, substitute it into the second equation
to find the second element of y, and so on. This process of finding the
elements of y one at a time, beginning with the first, is called forward
substitution. Having found the vector y, we then turn to the solution of
the second triangular system of equations in (1.56). This time, in solving
Ux = y we find the last element of the vector x immediately from the last
equation, substitute it into the second-to-last equation to find the second-
to-last element of x, and so on. This process of finding the elements of x
one at a time, beginning with the last, is called back substitution. Note that
the forward and back substitution processes, giving such a simple means
of solving the above linear systems, are possible because the matrices are
triangular.
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Example 1.2.4 Let us solve the system of linear equations Ax = b, given
by 


2 1 −1 2

−4 −3 2 −3
2 3 2 −1

−2 −1 4 −2






x1
x2
x3
x4


 =




9
−14
−2
−9


 . (1.57)

We have already factorized the matrix A = LU in Example 1.2.3. We now
find the vector y by using forward substitution in the equations Ly = b,
which are 


1 0 0 0

−2 1 0 0
1 −2 1 0

−1 0 1 1






y1
y2
y3
y4


 =




9
−14
−2
−9


 .

We obtain y1 = 9, and then evaluate y2, y3, and y4 in turn, to obtain the
vector y = [9, 4,−3, 3]T . Finally, we obtain the vector x by using back
substitution in the equations Ux = y, which are




2 1 −1 2
0 −1 0 1
0 0 3 −1
0 0 0 1






x1
x2
x3
x4


 =




9
4

−3
3


 .

We find that x4 = 3 and then evaluate x3, x2, and x1, in turn, giving the
vector x = [2,−1, 0, 3]T as the solution of (1.57). ■

We now turn to the factorization of the Vandermonde matrix V, defined
by (1.7). Let us assume that the abscissas x0, x1, . . . , xn are all distinct.
Then, as we have already seen from (1.8), this implies that V is nonsingular.
Since every principal submatrix of order m > 1 of a Vandermonde matrix
is itself a Vandermonde matrix of order m, we see that all principal minors
of V are nonzero. Hence, by Theorem 1.2.2, a Vandermonde matrix can be
factorized uniquely as a product of a lower triangular matrix L with units
on the diagonal and an upper triangular matrix U.

We can obtain the factors of the Vandermonde matrices defined by (1.7)
for n = 1, 2, 3, . . . in turn, using the construction employed in the proof of
Theorem 1.2.2 and applied in Example 1.2.2. For n = 1, we obtain

[
1 x0
1 x1

]
=
[

1 0
1 1

] [
1 x0
0 x1 − x0

]
,

and for n = 2 the factors L and U are



1 0 0
1 1 0

1
x2 − x0

x1 − x0
1


 and


 1 x0 x2

0
0 x1 − x0 (x1 − x0)(x0 + x1)
0 0 (x2 − x1)(x2 − x0)


 .
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For n = 3, the matrix V has the lower triangular factor




1 0 0 0
1 1 0 0

1
x2 − x0

x1 − x0
1 0

1
x3 − x0

x1 − x0

(x3 − x1)(x3 − x0)
(x2 − x1)(x2 − x0)

1




and the upper triangular factor



1 x0 x2
0 x3

0
0 x1 − x0 (x1 − x0)(x0 + x1) (x1 − x0)(x2

0 + x0x1 + x2
1)

0 0 (x2 − x1)(x2 − x0) (x2 − x1)(x2 − x0)(x0 + x1 + x2)
0 0 0 (x3 − x2)(x3 − x1)(x3 − x0)


 .

Let us now consider the (n + 1) × (n + 1) matrix V and its factors L
and U for a general value of n. It is convenient to number the rows and
columns of these (n + 1) × (n + 1) matrices from 0 to n instead of, more
usually, from 1 to n+ 1. From the above evidence for n = 1, 2, and 3, it is
not hard to conjecture that for a general value of n, the nonzero elements
of L are given by

li,j =
j−1∏
t=0

xi − xj−t−1

xj − xj−t−1
, 0 ≤ j ≤ i ≤ n, (1.58)

where an empty product (which occurs when j = 0) denotes 1. It is a little
harder to spot the pattern in the elements of U. We note that there appears
to be a common factor in the elements of each row: For example, for n = 3
the elements in the second row of U have the common factor x1 − x0. In
this case, the quantities that remain after removing the common factor are

0, 1, x0 + x1, x2
0 + x0x1 + x2

1,

which are complete symmetric functions. For the matrix U with n = 3,
we see that for 0 ≤ i ≤ 3, the elements in the ith row have the common
factor πi(xi), where πi is defined by (1.11). We therefore conjecture that
the nonzero elements of the general matrix U are given by

ui,j = τj−i(x0, . . . , xi)πi(xi), 0 ≤ i ≤ j ≤ n, (1.59)

where again an empty product (which occurs when i = 0) has the value 1.

Theorem 1.2.3 The (n+ 1) × (n+ 1) matrix V can be factorized as the
product of the triangular matrices L and U whose elements are given by
(1.58) and (1.59), respectively.
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Proof. Let L and U be defined by (1.58) and (1.59), respectively. Then the
(i, j)th element of LU is

n∑
k=0

li,kuk,j .

Note that since U is upper triangular, uk,j = 0 for k > j, and thus we can
replace n by j as the upper limit in the above sum of products li,kuk,j .
Then, using (1.58) and (1.59), we obtain

j∑
k=0

li,kuk,j =
j∑

k=0

k−1∏
t=0

xi − xk−t−1

xk − xk−t−1
· τj−k(x0, . . . , xk)

k−1∏
t=0

(xk − xt).

This gives

j∑
k=0

li,kuk,j =
j∑

k=0

τj−k(x0, . . . , xk)
k−1∏
t=0

(xi − xk−t−1), (1.60)

which, in view of (1.48), yields

j∑
k=0

li,kuk,j =
j∑

k=0

f [x0, . . . , xk]
k−1∏
t=0

(xi − xk−t−1),

where f(x) = xj . But the latter expression is just Newton’s divided differ-
ence form (1.19) of the interpolating polynomial for f(x) = xj , evaluated
at x = xi. Since the interpolating polynomial for f(x) = xj is simply xj , it
follows that

j∑
k=0

f [x0, . . . , xk]
k−1∏
t=0

(xi − xk−t−1) = xj
i ,

completing the proof that

LU = V. ■

A different factorization of V as a product of a lower and upper triangular
matrix was obtained by Gohberg and Koltracht [20]. The factorization de-
scribed above is due to Oruç [39]. (See also Oruç and Phillips [41].) We can
scale the elements of L and U, defined by (1.58) and (1.59), to give lower
and upper triangular matrices L∗ and U∗ whose nonzero elements are

l∗i,j =
j−1∏
t=0

(xi − xj−i−1), 0 ≤ j ≤ i ≤ n, (1.61)

and
u∗

i,j = τj−i(x0, . . . , xi), 0 ≤ i ≤ j ≤ n. (1.62)
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It is clear from (1.58), (1.59), (1.61), and (1.62) that

li,kuk,j = l∗i,ku
∗
k,j ,

and the argument following (1.60) shows that V = L∗U∗. Note that in the
factorization V = LU the lower triangular matrix L has units on the diag-
onal, whereas in the factorization V = L∗U∗ the upper triangular matrix
U∗ has units on the diagonal. For further references on the factorization of
the Vandermonde matrix, see Higham [25].

Example 1.2.5 We consider again the table of values

x 0 1 2 3
f(x) 6 −3 −6 9

for which we found Newton’s divided difference form of the interpolating
polynomial in Example 1.1.1. Let us now evaluate the interpolating poly-
nomial directly from the solution of the appropriate Vandermonde system
(1.6), using the LU factorization. Thus we will first find an intermedi-
ate vector y by solving the lower triangular system, as in (1.56), and use
this as the right side of an upper triangular system to obtain the vector
[a0, a1, a2, a3]T , the solution of the Vandermonde system (1.6), whose ele-
ments are the coefficients of the interpolating polynomial.

On substituting xi = i for 0 ≤ i ≤ 3 in the 4 × 4 triangular factors
L and U defined by (1.58) and (1.59), we obtain the factorization of the
Vandermonde matrix V,

V =




1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27


 =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1







1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6


 = LU.

Then, as in (1.56), we next solve the lower triangular equations


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1






y1
y2
y3
y4


 =




6
−3
−6

9




by forward substitution to obtain y = [6,−9, 6, 12]T . This intermediate
vector y becomes the right side in the upper triangular system


1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6






a0
a1
a2
a3


 =




6
−9

6
12


 ,

which we solve by back substitution to give a3 = 2, a2 = −3, a1 = −8, and
a0 = 6. Thus the required interpolating polynomial is

p3(x) = 2x3 − 3x2 − 8x+ 6,
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which agrees with the result obtained by using Newton’s divided difference
formula in Example 1.1.1. ■

We conclude this section by obtaining a matrix that transforms the Van-
dermonde matrix into the Newton matrix. If we replace x by −1/x and n
by m− 1 in (1.44), and then multiply throughout by xm, we obtain

πm(x) =
m∑

r=0

(−1)rσr(x0, . . . , xm−1)xm−r,

where πm(x) is defined by (1.11). On reversing the order of the summation,
we have

πm(x) =
m∑

r=0

(−1)m−rσm−r(x0, . . . , xm−1)xr. (1.63)

Thus we may write 

π0(x)
π1(x)

...
πn(x)


 = A




1
x
...
xn


 , (1.64)

where A is the lower triangular matrix whose elements are given by

ai,j =
{

(−1)i−jσi−j(x0, . . . , xi−1), i ≥ j,
0, i < j,

for 0 ≤ i, j ≤ n. As we have already remarked, the monomials 1, x, . . . , xn

are a basis for the set of all polynomials of degree at most n, and the set of
polynomials π0, . . . , πn is another basis. The matrix A is a transformation
matrix, which transforms the first of these bases into the second one. If we
now substitute x = xi in (1.64), we see that A transforms a row of the
Vandermonde matrix V, defined by (1.7), into the corresponding row of
the Newton matrix M, defined by (1.15). Thus we have MT = AVT , so
that

M = VA. (1.65)

Problem 1.2.1 Deduce from (1.44) the recurrence relation

σr(x0, . . . , xn) = σr(x0, . . . , xn−1) + xn σr−1(x0, . . . , xn−1),

where r ≥ 1 and n ≥ 1.

Problem 1.2.2 Show that σr(x0, . . . , xn) is a sum of
(

n + 1
r

)
terms.

Problem 1.2.3 Show by induction on r, using the recurrence relation
(1.45), that τr(x0, . . . , xn) is a sum of

(
n + r

r

)
terms.



1.2 The Vandermonde Equations 27

Problem 1.2.4 Verify directly from a divided difference table that

τ3(x0, x1, x2) = f [x0, x1, x2],

where f(x) = x5.

Problem 1.2.5 Deduce directly from Definition 1.2.2 that

τ1(1, 2, . . . , n) =
1
2
n(n+ 1).

Problem 1.2.6 Using the recurrence relation (1.45) and the result of
Problem 1.2.5, show by induction on n that

τ2(1, 2, . . . , n) =
1
24
n(n+ 1)(n+ 2)(3n+ 1).

Problem 1.2.7 Use the recurrence relation (1.45) and the result of Prob-
lem 1.2.6 to show by induction on n that

τ3(1, 2, . . . , n) =
1
48
n2(n+ 1)2(n+ 2)(n+ 3).

Problem 1.2.8 Deduce from (1.45) that

τr(1, . . . , n) =
n∑

s=1

s τr−1(1, . . . , s),

and so show by induction on r that τr(1, . . . , n) is a polynomial in n of
degree 2r.

Problem 1.2.9 With the choice of abscissas xj = j for 0 ≤ j ≤ n, verify
that the nonzero elements of the (n+ 1) × (n+ 1) triangular factors L and
U (see (1.58) and (1.59)) of the Vandermonde matrix V satisfy

li,j =
(
i
j

)
, 0 ≤ j ≤ i ≤ n,

and

ui,j = i! τj−i(0, 1, . . . , n), 0 ≤ i ≤ j ≤ n.
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Problem 1.2.10 Given the table
x 1 2 3 4

f(x) −16 −13 −4 17

derive the interpolating polynomial p3 ∈ P3 for f by factorizing the Van-
dermonde matrix, and hence solve the Vandermonde equations.

Problem 1.2.11 Recalling that

det(BC) = detB detC and detBT = detB,

where B and C are any square matrices of the same order and BT denotes
the transpose of the matrix B, deduce from (1.65) that detM = detV,
where M is the Newton matrix defined by (1.15), and V is the Vander-
monde matrix defined by (1.7).

Problem 1.2.12 Let A = LU, where A is a nonsingular square matrix, L
is upper triangular, and U is lower triangular. Express AT as the product
of a lower and an upper triangular matrix.

1.3 Forward Differences

When we compute divided differences, as in Table 1.1, we repeatedly cal-
culate quotients of the form

f [xj+1, . . . , xj+k+1] − f [xj , . . . , xj+k]
xj+k+1 − xj

, (1.66)

where k has the same value throughout any one column of the divided
difference table. We note that k = 0 for first-order divided differences, in
column 3 of Table 1.1, k = 1 for the second-order divided differences in
the next column, and so on. Now let the abscissas xj be equally spaced, so
that xj = x0 + jh, where h �= 0 is a constant. Then, since

xj+k+1 − xj = (k + 1)h,

we see from (1.66) that the denominators of the divided differences are
constant in any one column. In this case, it is natural to concentrate on
the numerators of the divided differences, which are simply differences. We
write

f(xj+1) − f(xj) = f(xj + h) − f(xj) = ∆f(xj), (1.67)

which is called a first difference. The symbol ∆ is the Greek capital delta,
denoting difference. It follows that with equally spaced xj , we can express
a first-order divided difference in terms of a first difference, as

f [xj , xj+1] =
∆f(xj)

h
,
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since xj+1 − xj = h. If we make the linear change of variable

s =
1
h

(x− x0), (1.68)

then the abscissa xj = x0 + jh is mapped to j. Without any loss of gener-
ality, we will write xj = j. Then

f [xj , xj+1] = ∆f(xj), (1.69)

and

f [xj , xj+1, xj+2] =
f [xj+1, xj+2] − f [xj , xj+1]

xj+2 − xj
=

1
2

(∆f(xj+1) − ∆f(xj)) .

It is convenient to define

∆2f(xj) = ∆f(xj+1) − ∆f(xj),

and consequently, the second-order divided difference may be expressed in
the form

f [xj , xj+1, xj+2] =
1
2

∆2f(xj). (1.70)

We call ∆2f(xj) a second-order forward difference. The reader may wish to
explore what happens when we express a third-order divided difference in
terms of second-order forward differences. Based on such evidence, it then
seems natural to define higher-order forward differences recursively, as

∆k+1f(xj) = ∆
(
∆kf(xj)

)
= ∆kf(xj+1) − ∆kf(xj), (1.71)

for k ≥ 1, where ∆1f(xj) = ∆f(xj). It is helpful to extend the definition
of (1.71) to include k = 0, defining

∆0f(xj) = f(xj). (1.72)

On pursuing the evaluation of a third-order divided difference, we obtain

f [xj , xj+1, xj+2, xj+3] =
1
6

∆3f(xj),

and it is not difficult to guess and justify the following general relation that
connects divided differences and forward differences.

Theorem 1.3.1 For all j, k ≥ 0, we have

f [xj , xj+1, . . . , xj+k] =
1
k!

∆kf(xj), (1.73)

where xj = j.
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Proof. The proof is by induction on k. The result clearly holds for k = 0
and all j ≥ 0. Let us assume that it holds for some k ≥ 0 and all j ≥ 0.
Then

f [xj , . . . , xj+k+1] =
f [xj+1, . . . , xj+k+1] − f [xj , . . . , xj+k]

xj+k+1 − xj

=
1

k + 1

(
∆kf(xj+1)

k!
− ∆kf(xj)

k!

)

=
1

(k + 1)!
∆k+1f(xj),

on using (1.71). This shows that (1.73) holds when k is replaced by k + 1,
which completes the proof. ■

In mathematical tables, functions are usually tabulated at equal inter-
vals, as in the first tables of logarithms, which appeared in the early seven-
teenth century. This gave impetus to the study of interpolation at equally
spaced abscissas. Let us therefore see how Newton’s divided difference for-
mula (1.19) simplifies when we interpolate at the abscissas 0, 1, . . . , n. First
we have

πk(x) = x(x− 1)(x− 2) · · · (x− k + 1),

for k > 0, with π0(x) = 1, and (1.73) gives

f [0, 1, . . . , k] =
1
k!

∆kf(0).

It then follows from (1.19) that the interpolating polynomial for f con-
structed at the abscissas 0, 1, . . . , n may be written in the form

pn(x) = f(0) +
∆f(0)

1!
π1(x) +

∆2f(0)
2!

π2(x) + · · · +
∆nf(0)
n!

πn(x).

We can express pn in terms of binomial coefficients, since we have

1
k!
πk(x) =

x(x− 1)(x− 2) · · · (x− k + 1)
k!

=
(
x
k

)
,

thus giving the simpler form

pn(x) = f(0) + ∆f(0)
(
x
1

)
+ · · · + ∆nf(0)

(
x
n

)
. (1.74)

This is called the forward difference formula for the interpolating polyno-
mial, which we can write more succinctly as

pn(x) =
n∑

k=0

∆kf(0)
(
x
k

)
.
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f(x0)
∆f(x0)

f(x1) ∆2f(x0)
∆f(x1) ∆3f(x0)

f(x2) ∆2f(x1)
∆f(x2) ∆3f(x1)

f(x3) ∆2f(x2)
∆f(x3)

f(x4)

TABLE 1.3. A systematic scheme for calculating forward differences.

Although the forward difference form of the interpolating polynomial is
often attributed to Isaac Newton and his contemporary James Gregory
(1638–1675), it was used before their time by Henry Briggs (1556–1630)
and Thomas Harriot (1560–1621). For further information on the history
of interpolation see, for example, Goldstine [21], Edwards [15], Phillips [44].

To evaluate the forward difference formula (1.74), we first compute a
table of forward differences (see Table 1.3), which is laid out in a manner
similar to that of the divided difference Table 1.1. The only entries in Ta-
ble 1.3 that are required for the evaluation of the interpolating polynomial
pn(x), defined by (1.74), are the first numbers in each column, namely,
f(x0), ∆f(x0), and so on. From the uniqueness of the interpolating poly-
nomial, if f(x) is itself a polynomial of degree k, then its interpolating
polynomial pn(x) will be equal to f(x) for n ≥ k. It follows from (1.74)
that kth-order differences of a polynomial of degree k must be constant,
and differences of order greater than k must be zero.

Example 1.3.1 In Example 1.1.1 we found Newton’s divided difference
form of the interpolating polynomial for the function f , given in a table
that we repeat here:

x 0 1 2 3
f(x) 6 −3 −6 9

This time we will use the forward difference formula (1.74). First we com-
pute the following table of differences, whose entries are defined as in Table
1.3 above:

6
−9

−3 6
−3 12

−6 18
15

9
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Only the first number from each column of this table is needed in con-
structing the interpolating polynomial, which, from (1.74), is

p3(x) = 6
(
x
0

)
− 9
(
x
1

)
+ 6
(
x
2

)
+ 12

(
x
3

)
,

and this can be rewritten in the form

p3(x) = 6 − 9x+ 3x(x− 1) + 2x(x− 1)(x− 2), (1.75)

as we found in Example 1.1.1. ■

Let us suppose that we are given a function f in some implicit form, and
know its value at a sufficiently large number of abscissas. Then if we happen
to know that f is a polynomial, we can obviously determine it explicitly by
evaluating the interpolating polynomial. This is illustrated in the following
example.

Example 1.3.2 We apply this technique to evaluate the complete sym-
metric function τ2(1, . . . , n), given that τ1(1, . . . , n) = 1

2n(n + 1), so that
the recurrence relation (1.45) gives

τ2(1, . . . , n) − τ2(1, . . . , n− 1) =
1
2
n2(n+ 1). (1.76)

Now, τ2(1, . . . , n) is a function of n, which we know from Problem 1.2.8 to
be a polynomial of degree 4, and we know the first differences of τ2 from
(1.76). We can therefore construct a difference table for τ2. In the column
for τ2 we insert its value of 1 for n = 1 and put “bullets” in place of the
other values of τ2:

n τ2(1, . . . , n)

1 1
6

2 • 12
18 10

3 • 22 3
40 13

4 • 35 3
75 16

5 • 51
126

6 •
The third column in the above table contains the values of 1

2n
2(n+ 1) for

2 ≤ n ≤ 6. We have continued the table as far as n = 6, one value of n more
than is necessary, so as to obtain two values in the sixth column of the table,
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corresponding to fourth differences of τ2. These two values, both equal to 3,
give a reassuring check on the fact that fourth differences of a polynomial
of degree four are constant. We can now write down τ2(1, . . . , n) in its
interpolating polynomial form, using the forward difference form (1.74).
We will need to replace x in (1.74) by n − 1, since x = 0 corresponds to
n = 1, which is n − 1 = 0, and insert the appropriate forward differences.
We can thus write τ2(1, . . . , n) in the form
(
n− 1

0

)
+6
(
n− 1

1

)
+12

(
n− 1

2

)
+10

(
n− 1

3

)
+3
(
n− 1

4

)
,

and a small calculation yields

τ2(1, . . . , n) =
1
24
n(n+ 1)(n+ 2)(3n+ 1), (1.77)

as obtained by other means in Problem 1.2.6. Note how, even before ob-
taining the above explicit expression for τ2, we could have determined its
values for 2 ≤ n ≤ 6 by using the column of first differences in the above
table. Thus we obtain, in turn,

τ2(1, 2) = 1 + 6 = 7, τ2(1, 2, 3) = 7 + 18 = 25,

and so on, finally obtaining τ2(1, . . . , 6) = 266, which agrees with (1.77).
We can also add to our above table by inserting numbers, one at a time, be-
ginning with the sixth column by inserting a 3, since the fourth differences
are known to be constant. Then, in turn we can insert

3 + 16 = 19, 19 + 51 = 70, 70 + 126 = 196, 196 + 266 = 462

in columns 5, 4, 3, and 2, respectively. This last number in column 2 then
gives τ2(1, . . . , 7) = 462, in agreement with (1.77). ■

In our above study of interpolation at equally spaced abscissas we found
it convenient to make a linear change of variable so that xj = j. We will
now write down explicit forms, for any set of equally spaced abscissas, for
the main results derived above for the special case where xj = j. Thus we
readily find (see Problem 1.3.1) that when xj = x0 + jh, for all j ≥ 0,
(1.73) becomes

f [xj , xj+1, . . . , xj+k] =
1

k!hk
∆kf(xj), (1.78)

and (see Problem 1.3.2) the forward difference form of the interpolating
polynomial (1.74) becomes

pn(x0 + sh) = f(x0) + ∆f(x0)
(
s
1

)
+ · · · + ∆nf(x0)

(
s
n

)
, (1.79)
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where the new variable s is defined by x = x0 + sh. It also follows immedi-
ately from (1.33) and (1.78) that if the conditions of Theorem 1.1.2 apply,
then

∆nf(x0)
hn

= f (n)(ξ), (1.80)

where ξ ∈ (x0, xn). On letting h → 0, we obtain

lim
h→0

∆nf(x0)
hn

= f (n)(x0), (1.81)

provided that f (n) is continuous.
It is easy to see, by using induction on k, that ∆kf(xj) may be expressed

as a sum of multiples of f(xj), f(xj+1), . . . , f(xj+k). In fact, we may
prove by induction or deduce from (1.21), the symmetric form for a divided
difference, that

∆kf(xj) =
k∑

r=0

(−1)r

(
k
r

)
f(xj+k−r). (1.82)

Let us recall the Leibniz rule for the differentiation of a product of two
differentiable functions: If the kth derivatives of f and g both exist, then

dk

dxk
(f(x)g(x)) =

k∑
r=0

(
k
r

)
dr

dxr
f(x)

dk−r

dxk−r
g(x). (1.83)

This rule is named after Gottfried Leibniz (1646–1716). We now state an
analogous result involving the kth difference of a product. We omit the
proof, since (see Problem 1.3.5) it is easily deduced from Theorem 1.3.3.

Theorem 1.3.2 For any integer k ≥ 0, we have

∆k (f(xj)g(xj)) =
k∑

r=0

(
k
r

)
∆rf(xj) ∆k−rg(xj+r). ■ (1.84)

The Leibniz rule for differentiation (1.83) can be proved directly by in-
duction. However, if we divide both sides of (1.84) by hk and take limits as
h → 0, then the Leibniz rule for differentiation (1.83) follows immediately,
on using (1.81).

In the proof of the Leibniz rule for the divided difference of a product, it
is convenient to use the “operator” notation for divided differences, which
we introduced in (1.20). It is easily verified that

[x0, x1]fg = [x0]f · [x0, x1]g + [x0, x1]f · [x1]g, (1.85)

and, with a little more work, we can show that

[x0, x1, x2]fg = [x0]f · [x0, x1, x2]g+[x0, x1]f · [x1, x2]g+[x0, x1, x2]f · [x2]g.

This beautiful relation suggests the form of the general result, which we
now state:
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Theorem 1.3.3 The kth divided difference of a product of two functions
satisfies the relation

[xj , xj+1, . . . , xj+k]fg =
k∑

r=0

[xj , . . . , xj+r]f · [xj+r, . . . , xj+k]g (1.86)

for k ≥ 0.

Proof. We can set j = 0, without loss of generality, to simplify the pre-
sentation of the proof. It is clear that this result holds for k = 0, and we
saw above in (1.85) that it also holds for k = 1. We complete the proof
by induction. Let us assume that (1.86) holds for some k ≥ 1. Then let us
write

[x0, x1, . . . , xk+1]fg =
[x1, . . . , xk+1]fg − [x0, . . . , xk]fg

xk+1 − x0
. (1.87)

On setting j = 1 in (1.86), we can express the first term in the numerator
on the right of (1.87) in the form

[x1, . . . , xk+1]fg =
k∑

r=0

[x1, . . . , xr+1]f · [xr+1, . . . , xk+1]g. (1.88)

From (1.86), with j = 0, the second term in the numerator on the right of
(1.87) is

[x0, . . . , xk]fg =
k∑

r=0

[x0, . . . , xr]f · [xr, . . . , xk]g. (1.89)

We now replace the rth term on the right of (1.88) by

{[x0, . . . , xr]f + (xr+1 − x0)[x0, . . . , xr+1]f} · [xr+1, . . . , xk+1]g (1.90)

and the rth term on the right of (1.89) by

[x0, . . . , xr]f · {[xr+1, . . . , xk+1]g − (xk+1 − xr)[xr, . . . , xk+1]g}. (1.91)

Note that (1.90) and (1.91) have the term [x0, . . . , xr]f · [xr+1, . . . , xk+1]g
in common. This pair of terms cancel because [x0, . . . , xk]fg has a negative
sign in the numerator on the right of (1.87). This numerator may therefore
be expressed in the form S1 + S2, say, where

S1 =
k∑

r=0

(xr+1 − x0)[x0, . . . , xr+1]f · [xr+1, . . . , xk+1]g, (1.92)

obtained from summing the uncancelled term in (1.90), and

S2 =
k∑

r=0

(xk+1 − xr)[x0, . . . , xr]f · [xr, . . . , xk+1]g, (1.93)
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obtained similarly from (1.91). It remains only to replace r by s − 1 in
(1.92), and then write r in place of s, to give

S1 =
k+1∑
r=1

(xr − x0)[x0, . . . , xr]f · [xr, . . . , xk+1]g. (1.94)

We then obtain from (1.94) and (1.93) that

S1 + S2 = (xk+1 − x0)
k+1∑
r=0

[x0, . . . , xr]f · [xr, . . . , xk+1]g

and, on dividing both sides of the latter equation by xk+1 − x0, we deduce
from (1.87) that

[x0, x1, . . . , xk+1]fg =
k+1∑
r=0

[x0, x1, . . . , xr]f · [xr, . . . , xk+1]g.

This completes the proof. ■
There is a variant of the forward difference formula in which the inter-

polating polynomial is written in terms of backward differences. We define
the first-order backward difference,

∇f(xj) = f(xj) − f(xj−1), (1.95)

where the abscissas xj = x0 + jh are equally spaced. Then we may write

f [xj−1, xj ] =
∇f(xj)

h
.

When we explore how a second-order divided difference might be written
in terms of ∇, we find it natural to define

∇2f(xj) = ∇f(xj) − ∇f(xj−1),

for then

f [xj−2, xj−1, xj ] =
1
2h

(∇f(xj)
h

− ∇f(xj−1)
h

)
=

∇2f(xj)
2h2 .

Recall that the order of the arguments in a divided difference does not
matter, and so we could alternatively write

f [xj , xj−1, xj−2] =
∇2f(xj)

2h2 .

We now proceed in the same way as we did above in our study of forward
differences and, following the behaviour of divided differences, we find it
expedient to define higher-order backward differences recursively, writing

∇k+1f(xj) = ∇ (∇kf(xj)
)

= ∇kf(xj) − ∇kf(xj−1), (1.96)
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f(x0)
∇f(x1)

f(x1) ∇2f(x2)
∇f(x2) ∇3f(x3)

f(x2) ∇2f(x3)
∇f(x3) ∇3f(x4)

f(x3) ∇2f(x4)
∇f(x4)

f(x4)

TABLE 1.4. A systematic scheme for calculating backward differences.

for k ≥ 0, where ∇0f(xj) = f(xj) and ∇1f(xj) = ∇f(xj). It is then easily
verified by induction on k that

f [xn−j , xn−j+1, . . . , xn] = f [xn, xn−1, . . . , xn−j ] =
∇jf(xn)
j!hj

. (1.97)

We now recast the divided difference formula (1.19) by taking the distinct
abscissas x0, x1, . . . , xn in reverse order, to give

pn(x) =
n∑

j=0

f [xn, . . . , xn−j ]
j−1∏
r=0

(x− xn−r), (1.98)

where the empty product (corresponding to j = 0) denotes 1. On making
the change of variable x = xn + sh, we obtain

j−1∏
r=0

(x− xn−r) = hj

j−1∏
r=0

(s+ r) = (−1)jhj

j−1∏
r=0

(−s− r),

and, on using this and (1.97), we have

f [xn, . . . , xn−j ]
j−1∏
r=0

(x− xn−r) = (−1)j

( −s
j

)
∇jf(xn).

If we now sum this last equation over j, we see from (1.98) that

pn(xn + sh) =
n∑

j=0

(−1)j

( −s
j

)
∇jf(xn), (1.99)

which is called the backward difference formula for the interpolating poly-
nomial.

To evaluate the backward difference formula (1.99), we first compute a
table of backward differences (see Table 1.4), which is similar to the forward
difference Table 1.3. The only entries in Table 1.4 required for evaluating
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pn(x), defined by (1.99), are the last numbers in each column, namely
f(xn), ∇f(xn), and so on. Note that the numbers in Tables 1.3 and 1.4 are
the same. Thus, for example, ∇f(x1) = ∆f(x0), ∇2f(x3) = ∆2f(x1), and
in general,

∇kf(xj) = ∆kf(xj−k), (1.100)

for j ≥ k ≥ 0.

Example 1.3.3 Let us evaluate the backward difference formula for the
data that we used in Example 1.3.1 to evaluate the forward difference
formula. Since the abscissas are 0, 1, 2, and 3, we have n = 3, h = 1, and
x3 = 3 in (1.99). To evaluate (1.99) we require the values

f(x3) = 9, ∇f(x3) = 15, ∇2f(x3) = 18, ∇3f(x3) = 12,

obtained from the difference table in Example 1.3.1. We can thus write

p3(s+ 3) = 9 − 15(−s) + 18
(−s)(−s− 1)

2
− 12

(−s)(−s− 1)(−s− 2)
6

,

which simplifies to give

p3(s+ 3) = 9 + 28s+ 15s2 + 2s3. (1.101)

As a check, let us substitute s = x−3 in (1.101), and simplify the resulting
polynomial in x to give

p3(x) = 6 − 8x− 3x2 + 2x3,

which agrees with the expression for p3(x) given in (1.75) at the end of
Example 1.3.1. ■

Problem 1.3.1 If xj = x0 + jh, for j ≥ 0, show by induction on k that

f [xj , xj+1, . . . , xj+k] =
1

k!hk
∆kf(xj).

Problem 1.3.2 Given that xj = x0 + jh, for j ≥ 0, make the change of
variable x = x0 + sh and hence, using the result of Problem 1.3.1, show
that a typical term of Newton’s divided difference formula (1.19) may be
expressed as

f [x0, x1, . . . , xj ] · πj(x) =
∆jf(x0)
j! hj

· hjs(s− 1) · · · (s− j + 1),

and thus derive the forward difference formula,

pn(x0 + sh) = f(x0) + ∆f(x0)
(
s
1

)
+ · · · + ∆nf(x0)

(
s
n

)
.
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Problem 1.3.3 Consider the function 2x evaluated at x = 0, 1, 2, and so
on. Show that

∆ 2x = 2x+1 − 2x = 2x,

and thus show by induction on k, using (1.71), that

∆k 2x = 2x

for all nonnegative integers k. Hence verify that the interpolating polyno-
mial for 2x constructed at x = 0, 1, . . . , n is

pn(x) =
n∑

r=0

(
x
r

)
.

Problem 1.3.4 Let us define

S(n) = 04 + 14 + 24 + · · · + n4,

for n ≥ 0. Evaluate S(n) for 0 ≤ n ≤ 5 and compute a table of forward
differences. Hence, on the assumption that S is a polynomial in n of degree
5, show that

S(n) =
(
n
1

)
+ 15

(
n
2

)
+ 50

(
n
3

)
+ 60

(
n
4

)
+ 24

(
n
5

)
,

and verify that this simplifies to give

n∑
r=1

r4 =
1
30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1), n ≥ 1.

Problem 1.3.5 Beginning with (1.86), the expression for the divided dif-
ference of a product of two functions, use (1.78) to deduce the expression
(1.84) for a forward difference of a product.

Problem 1.3.6 Verify (1.97), the relation between divided differences and
backward differences.

Problem 1.3.7 Beginning with the symmetric form (1.21), show that for
equally spaced xj ,

∆kf(xj) =
k∑

r=0

(−1)r

(
k
r

)
f(xj+k−r),

and deduce that

∇kf(xj) =
k∑

r=0

(−1)r

(
k
r

)
f(xj−r).
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1.4 Central Differences

When we use the forward difference formula (1.74), we begin with f(x0),
and then add terms involving ∆f(x0), ∆2f(x0), and so on. Thus, obviously,
the first term involves only f(x0), the first two terms involve only f(x0)
and f(x1), and so on. As we add more terms in building up the forward
difference formula, we bring in values f(xj) that are increasingly farther
from x0. Likewise, as we add successive terms in the backward difference
formula (1.99), we bring in values f(xj) that are increasingly farther from
xn. These observations motivated the study of central differences. Let
xj = x0 + jh be defined for all integers j, and not just for j ≥ 0. Then we
define

δf(x) = f(x+ 1
2h) − f(x− 1

2h), (1.102)

which we call a first-order central difference. In a similar fashion to the def-
inition of higher-order forward and backward differences, we define higher-
order central differences recursively from

δk+1f(x) = δ
(
δkf(x)

)
, (1.103)

for k ≥ 0, where δ0f(x) = f(x) and δ1f(x) = δf(x). It readily follows from
(1.102) and (1.103) that

δ2f(xj) = f(xj+1) − 2f(xj) + f(xj−1),

so that
δ2f(xj) = ∆2f(xj−1) = ∇2f(xj+1).

Now let us begin with the forward difference formula and, in place of the
original abscissas

x0, x1, x2, x3, x4, . . . ,

where these are distinct, but are otherwise arbitrary, we will use abscissas
taken in the order

x0, x1, x−1, x2, x−2, x3, x−3, . . . ,

where each xj is equal to x0 + jh. On putting x = x0 + sh, we may verify
that the divided difference formula (1.19) begins

f(x0) +
(
s
1

)
δf(x0 + 1

2h) +
(
s
2

)
δ2f(x0) +

(
s+ 1

3

)
δ3f(x0 + 1

2h),

where the general even-order and odd-order terms are
(
s+ k − 1

2k

)
δ2kf(x0) and

(
s+ k
2k + 1

)
δ2k+1f(x0 + 1

2h), (1.104)
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f(x−2)
δf(x−1 − 1

2h)
f(x−1) δ2f(x−1)

δf(x0 − 1
2h) δ3f(x0 − 1

2h)
f(x0) δ2f(x0)

δf(x0 + 1
2h) δ3f(x0 + 1

2h)
f(x1) δ2f(x1)

δf(x1 + 1
2h)

f(x2)

TABLE 1.5. A systematic scheme for calculating central differences.

respectively. The above form of the interpolating polynomial is known as
Gauss’s forward formula, named after C. F. Gauss (1777–1855). If, on the
other hand, we introduce the abscissas in the order

x0, x−1, x1, x−2, x2, x−3, x3, . . . ,

we obtain a form of the interpolating polynomial that begins

f(x0)+
(
s
1

)
δf(x0− 1

2h)+
(
s+ 1

2

)
δ2f(x0)+

(
s+ 1

3

)
δ3f(x0− 1

2h),

where the general even-order and odd-order terms are
(
s+ k
2k

)
δ2kf(x0) and

(
s+ k
2k + 1

)
δ2k+1f(x0 − 1

2h), (1.105)

respectively. This second form of the interpolating polynomial in terms of
central differences is known as Gauss’s backward formula. Table 1.5 shows
a difference table involving central differences. We note how each of the
two formulas of Gauss chooses differences that lie on a zigzag path through
the difference table, beginning with f(x0).

To achieve symmetry about x0, it is tempting to take the mean of these
two interpolating formulas of Gauss. Another item of notation is helpful in
pursuing this idea: Let us write

µf(x0) =
1
2
(
f(x0 + 1

2h) + f(x0 − 1
2h)
)
, (1.106)

where µ is called the averaging operator. Then the means of the odd-order
differences occurring in the two interpolating formulas of Gauss may be
written as µδf(x0), µδ3f(x0), and so on, and the mean of Gauss’s two
formulas begins

f(x0) +
(
s
1

)
µδf(x0) +

s

2

(
s
1

)
δ2f(x0) +

(
s+ 1

3

)
µδ3f(x0),
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where the general even-order (for k ≥ 1) and odd-order terms are

s

2k

(
s+ k − 1
2k − 1

)
δ2kf(x0) and

(
s+ k
2k + 1

)
µδ2k+1f(x0), (1.107)

respectively. This is called Stirling’s interpolation formula, named after
James Stirling (1692–1770). We may verify that

µδf(x0) =
1
2

(f(x1) − f(x−1)) ,

and if we truncate Stirling’s interpolation formula after the first three
terms, we obtain

p2(x0 + sh) = f(x0) +
s

2
(f(x1) − f(x−1)) +

s2

2
(f(x1) − 2f(x0) + f(x−1)).

If we truncate Stirling’s interpolation formula after the term involving
δ2kf(x0), we obtain the interpolating polynomial p2k(x0 + sh), which in-
terpolates f at the abscissas x−k, x−k+1, . . . , xk−1, xk.

Problem 1.4.1 Verify that

µδ3f(x0) = δ3(µf(x0))

and that

µδ3f(x0) =
1
2
(f(x2) − 2f(x1) + 2f(x−1) − f(x−2)).

Problem 1.4.2 Derive an expansion of δ2k+1f(x0) by adapting the cor-
responding relation (see (1.82)) for forward differences. Hence verify that

µδ2k+1f(x0) =
1
2

k∑
r=0

(−1)rar(f(xk+1−r) − f(x−k−1+r)),

where a0 = 1 and

ar =
(

2k + 1
r

)
−
(

2k + 1
r − 1

)

for 1 ≤ r ≤ k.

Problem 1.4.3 Show that

δ2kf(x0) = (−1)k

(
2k
k

)
f(x0)+

k−1∑
r=0

(−1)r

(
2k
r

)
(f(xk−r)+f(x−k+r)).
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1.5 q-Differences

As we saw in Section 1.1, the divided difference formula (1.19) allows us to
interpolate on any set of distinct abscissas. Nevertheless, we derived special
forms of the interpolating polynomial when the intervals between consecu-
tive abscissas are equal, namely the forward difference formula (1.74), the
backward difference formula (1.99), and the interpolating formulas of Gauss
and Stirling based on central differences. In this section we will consider
another special form of the interpolating polynomial, where the intervals
between consecutive abscissas are not equal, but are in geometric progres-
sion. Let us denote the common ratio of the geometric progression by q.
Without loss of generality, we can make a linear change of variable, shifting
the origin so that x0 = 0, and scaling the axis so that x1 − x0 = 1. It then
follows that xj is equal to the q-integer [j], defined by

[j] =
{

(1 − qj)/(1 − q), q �= 1,
j, q = 1.

(More material on q-integers is presented in Chapter 8.) As we observed in
Section 1.3, when we compute divided differences in Table 1.1 we repeatedly
calculate quotients of the form

f [xj+1, . . . , xj+k+1] − f [xj , . . . , xj+k]
xj+k+1 − xj

,

where k has the same value throughout any one column of the divided
difference table, and we noted that the above denominator is independent
of j when the abscissas xj are equally spaced. Let us explore what happens
to this denominator when xj = [j]. We have

xj+k+1 − xj =
1 − qj+k+1

1 − q
− 1 − qj

1 − q
= qj [k + 1], (1.108)

which is not independent of j, although it does have the common factor
[k + 1]. Now when k = 0 we have

f [xj , xj+1] =
f(xj+1) − f(xj)

xj+1 − xj
=
f(xj+1) − f(xj)

qj
.

It is convenient to define

f(xj+1) − f(xj) = ∆qf(xj), (1.109)

so that

f [xj , xj+1] =
∆qf(xj)

qj
. (1.110)

Thus the q-difference ∆qf(xj) is exactly the same as the forward differ-
ence ∆f(xj). However, we will see that the kth-order q-difference ∆k

qf(xj),
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which we define below, and the kth order forward difference ∆kf(xj) are
not the same for k ≥ 2, unless q = 1. From (1.22), the recurrence relation
for divided differences, and (1.110) we next obtain

f [xj , xj+1, xj+2] =
(

∆qf(xj+1)
qj+1 − ∆qf(xj)

qj

)
/ (xj+2 − xj) .

It follows from (1.108) that

xj+2 − xj = qj [2],

and thus the second-order divided difference may be written as

f [xj , xj+1, xj+2] =
∆qf(xj+1) − q ∆qf(xj)

q2j+1[2]
. (1.111)

In view of (1.111) we define

∆2
qf(xj) = ∆qf(xj+1) − q ∆qf(xj),

so that we may write

f [xj , xj+1, xj+2] =
∆2

qf(xj)
q2j+1[2]

.

It is helpful to gather more evidence, by evaluating the third-order divided
difference f [xj , xj+1, xj+2, xj+3] when each abscissa xj is equal to [j]. We
find that

f [xj , xj+1, xj+2, xj+3] =
∆2

qf(xj+1) − q2 ∆qf(xj)
q3j+3[3]!

,

where [3]! = [3] [2] [1]. It thus seems natural to define higher-order q-
differences recursively as follows. We write

∆k+1
q f(xj) = ∆k

qf(xj+1) − qk ∆k
qf(xj) (1.112)

for all integers k ≥ 0, where ∆0
qf(xj) = f(xj) and ∆1

qf(xj) = ∆qf(xj).
Note that (1.112) reduces to (1.71), the corresponding relation for forward
differences, when q = 1. We now state and prove the relation between
divided differences and q-differences.

Theorem 1.5.1 For all j, k ≥ 0, we have

f [xj , xj+1, . . . , xj+k] =
∆k

qf(xj)
qk(2j+k−1)/2 [k]!

, (1.113)

where each xj equals [j], and [k]! = [k] [k − 1] · · · [1].
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Proof. The proof is by induction on k. The result clearly holds for k = 0
and all j ≥ 0. Let us assume that it holds for some k ≥ 0 and all j ≥ 0.
Then

f [xj , . . . , xj+k+1] =
f [xj+1, . . . , xj+k+1] − f [xj , . . . , xj+k]

xj+k+1 − xj

=
1

qj [k + 1]

(
∆k

qf(xj+1)
qk(2j+k+1)/2 [k]!

− ∆k
qf(xj)

qk(2j+k−1)/2 [k]!

)

=
∆k

qf(xj+1) − qk ∆k
qf(xj)

q(k+1)(2j+k)/2 [k + 1]!

=
∆k+1

q f(xj)
q(k+1)(2j+k)/2 [k + 1]!

,

on using (1.112). This shows that (1.113) holds when k is replaced by k+1,
and this completes the proof. ■

Now let us see how Newton’s divided difference formula (1.19) simplifies
when we interpolate at the abscissas xj = [j] for j = 0, . . . , n. First we have

πk(x) = x(x− [1])(x− [2]) · · · (x− [k − 1]),

for k > 0, with π0(x) = 1. On writing x = [t], we have

x− [j] = [t] − [j] =
1 − qt

1 − q
− 1 − qj

1 − q
= qj [t− j],

and so
πk([t]) = qk(k−1)/2 [t][t− 1] · · · [t− k + 1]. (1.114)

Thus, using (1.113) and (1.114), we have

πk([t]) f [x0, . . . , xk] = qk(k−1)/2 [t][t− 1] · · · [t− k + 1]
∆k

qf(x0)
qk(k−1)/2 [k]!

.

This may be expressed more simply in the form

πk([t]) f [x0, . . . , xk] =
[
t
k

]
∆k

qf(x0), (1.115)

where [
t
k

]
=

[t] [t− 1] · · · [t− k + 1]
[k]!

(1.116)

is a q-binomial coefficient, whose properties are discussed in Chapter 8.
Thus, when each xj equals [j], the divided difference formula may be writ-
ten as

pn(x) = pn([t]) =
n∑

k=0

[
t
k

]
∆k

qf(x0), (1.117)
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which we will call the q-difference form of the interpolating polynomial. We
value (1.117) because it is a nice generalization of the forward difference
formula (1.74), which we recover when we choose q = 1. However, if we
wish to evaluate the interpolating polynomial when the abscissas are at
the q-integers, we use the divided difference formula (1.19) rather than
(1.117).

We will now state and verify an explicit expression for a kth q-difference
∆k

qf(xj) as a sum of multiples of values of f .

Theorem 1.5.2 For q > 0 and all j, k ≥ 0,

∆k
qf(xj) =

k∑
r=0

(−1)rqr(r−1)/2
[
k
r

]
f(xj+k−r), (1.118)

where each xj equals [j].

Proof. This obviously holds for k = 0 and all j, when both sides of (1.118)
reduce to f(xj). Let us assume that (1.118) holds for some integer k ≥ 0
and all integers j ≥ 0. We now begin with the recurrence relation (1.112),
which we repeat here for convenience:

∆k+1
q f(xj) = ∆k

qf(xj+1) − qk∆k
qf(xj). (1.119)

On replacing j by j + 1 in (1.118), the first term on the right of (1.119)
may be written as

∆k
qf(xj+1) =

k∑
r=0

(−1)rqr(r−1)/2
[
k
r

]
f(xj+k+1−r), (1.120)

and on replacing r by s− 1 in (1.118) and then writing r in place of s, the
term ∆k

qf(xj) on the right of (1.119) becomes

∆k
qf(xj) =

k+1∑
r=1

(−1)r−1q(r−1)(r−2)/2
[

k
r − 1

]
f(xj+k+1−r). (1.121)

It remains only to check from (1.119), (1.120), and (1.121) that the expan-
sion of ∆k+1

q f(xj) as a sum of multiples of values of f agrees with (1.118)
with k replaced by k+1. It is easy to check that the terms involving f(xj)
and f(xj+k+1) are correct, on putting r = k + 1 in (1.121) and r = 0 in
(1.120), respectively. For 1 ≤ r ≤ k the expansion of ∆k+1

q f(xj) contains
two contributions involving f(xj+k+1−r). We combine these to give

(−1)rqr(r−1)/2
([

k
r

]
+ qk+1−r

[
k

r − 1

])
= (−1)rqr(r−1)/2

[
k + 1
r

]
,

for 1 ≤ r ≤ k, on using the Pascal-type relation (8.8). This verifies that
(1.118) holds when k is replaced by k + 1, and completes the proof by
induction. ■
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As a corollary of the last theorem, on putting q = 1 in (1.118) we obtain a
corresponding expansion for a kth-order forward difference, valid for xj = j.
The latter expansion is the special case of (1.82) where each xj equals j.

The following expression for the kth q-difference of a product was given
by Koçak and Phillips [30]:

∆k
q (f(xj)g(xj)) =

k∑
r=0

[
k
r

]
∆r

qf(xj) ∆k−r
q g(xj+r), (1.122)

where xj = [j]. Observe that if we set q = 1, (1.122) reduces to (1.84), the
summation we gave in Section 1.3 for the forward difference of a product
of two functions, for the case where xj = j. We now show how (1.122) may
be deduced from (1.86), the expression given above for the kth divided
difference of a product of two functions, using the relation (1.113), which
connects q differences and divided differences. For it follows immediately
from (1.86) and (1.113) that

∆k
q (f(xj)g(xj))

qk(2j+k−1)/2 [k]!
=

k∑
r=0

∆r
qf(xj)

qr(2j+r−1)/2 [r]!
∆k−r

q g(xj+r)
q(k−r)(2j+k+r−1)/2 [k − r]!

.

Then, since

k(2j + k − 1) = r(2j + r − 1) + (k − r)(2j + k + r − 1),

the powers of q in the denominators of the above equation cancel, and
(1.122) follows on multiplying throughout by [k]!, since

[k]!
[r]![k − r]!

=
[
k
r

]
.

Problem 1.5.1 If x = [t], show that

t = logq(1 − (1 − q)x).

If 0 < q < 1, verify that the above relation between t and x holds for
−∞ < x < 1/(1 − q).

Problem 1.5.2 Show that for any fixed integer r such that 0 ≤ r ≤ k,
∏
j �=r

([r] − [j]) = (−1)k−rqr(2k−r−1)/2[r]![k − r]!,

where the product is taken over all j from 0 to k, but excluding r. Hint:
Split the product into two factors, one corresponding to the values of j
such that 0 ≤ j < r, and the other to the values of j such that r < j ≤ k.
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Problem 1.5.3 Use (1.113) and (1.21) to show that

∆k
qf(x0) = qk(k−1)/2 [k]!

k∑
r=0

f(xr)∏
j �=r([r] − [j])

,

and use the result in Problem 1.5.2 to deduce that

∆k
qf(x0) =

k∑
r=0

(−1)k−rq(k−r)(k−r−1)/2
[
k
r

]
f(xr).

By reversing the order of the latter summation, replacing r by k− r, show
that

∆k
qf(x0) =

k∑
r=0

(−1)rqr(r−1)/2
[
k
r

]
f(xk−r),

which is (1.118) with j = 0.

Problem 1.5.4 Evaluate the fundamental polynomial Li(x), defined by
(1.9), when the interpolating points are given by xj = [j], for 0 ≤ j ≤ n,
and show that

Li([t]) = (−1)n−i q
(n−i)(n−i+1)/2

[i]![n− i]!

∏
j �=i

[t− j],

where the product is taken over all integers j from 0 to n, but excluding
j = i.

Problem 1.5.5 Deduce from the result in Problem 1.5.4 that if we inter-
polate at the abscissas 0, . . . , n, the fundamental polynomial Li(x) is given
by

Li(x) =
(−1)n−i

i!(n− i)!

∏
j �=i

(x− j).

Problem 1.5.6 Verify the identity

n∑
i=0

(−1)n−i

(
n
i

)∏
j �=i

(x− j) = n!.

Problem 1.5.7 Derive a q-analogue of the identity in Problem 1.5.6.



2
Best Approximation

2.1 The Legendre Polynomials

Given a function f defined on [−1, 1], let us write

‖f‖ =
(∫ 1

−1
[f(x)]2dx

)1/2

. (2.1)

We call ‖f‖ the square norm of f . It can be thought of as a measure of the
“size” of f . The reason for taking the square root in (2.1) is so that the
norm satisfies the condition

‖λf‖ = |λ| · ‖f‖, (2.2)

for all real λ. The square norm, which is analogous to the notion of length in
n-dimensional Euclidean space, obviously satisfies the positivity condition

‖f‖ > 0 unless f(x) ≡ 0, the zero function, when ‖f‖ = 0, (2.3)

and, not so obviously, satisfies the triangle inequality

‖f + g‖ ≤ ‖f‖ + ‖g‖, (2.4)

for all f and g. It is very easy to check that properties (2.2) and (2.3) hold
for the square norm (2.1). The third property (2.4) is a little more difficult
to justify. It may be verified by expressing the integrals as limits of sums
and then applying the result in Problem 2.1.1. The square norm is a special
case of a general norm, which we now define.
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Definition 2.1.1 A norm ‖ · ‖ on a given linear space S is a mapping
from S to the real numbers that satisfies the three properties given by
(2.2), (2.3), and (2.4). ■

Note that a linear space contains a zero element, and the norm of the zero
element is zero. Two examples of linear spaces are the linear space of n-
dimensional vectors, and the linear space of continuous functions defined
on a finite interval, say [−1, 1], which we denote by C[−1, 1]. In the latter
case the three best known norms are the square norm, defined by (2.1), the
maximum norm, defined by

‖f‖ = max
−1≤x≤1

|f(x)|, (2.5)

and the norm defined by

‖f‖ =
∫ 1

−1
|f(x)|dx. (2.6)

The three properties (2.2), (2.3), and (2.4), called the norm axioms, are all
easily verified for the norms defined by (2.5) and (2.6). The norms given
by (2.1) and (2.6) are special cases of the p-norm, defined by

‖f‖ =
(∫ 1

−1
|f(x)|pdx

)1/p

, (2.7)

for any p ≥ 1, and the maximum norm (2.5) is obtained by letting p → ∞
in (2.7). The restriction p ≥ 1 is necessary so that the p-norm satisfies the
triangle inequality, which follows by expressing the integrals as limits of
sums and applying Minkowski’s inequality,


 n∑

j=1

|xj + yj |p



1/p

≤

 n∑

j=1

|xj |p



1/p

+


 n∑

j=1

|yj |p



1/p

, (2.8)

for p ≥ 1. (See Davis [10] for a proof of (2.8).)

Example 2.1.1 Consider the linear space whose elements are the row vec-
tors

x = (x1, x2, . . . , xn),

where the xj are all real, with the usual addition of vectors

x + y = (x1 + y1, x2 + y2, . . . , xn + yn).

We also have multiplication by a scalar, defined by

λx = (λx1, λx2, . . . , λxn),
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where λ is any real number. Then

‖x‖ = max
1≤j≤n

|xj |, (2.9)

‖x‖ = |x1| + · · · + |xn|, (2.10)

‖x‖ =
(
x2

1 + · · · + x2
n

)1/2
(2.11)

are all norms for this linear space. Except for the verification of the tri-
angle inequality for the last norm (see Problem 2.1.1), it is easy to check
that (2.9), (2.10), and (2.11) are indeed norms. (Corresponding to the zero
function in (2.3) we have the zero vector, whose elements are all zero.)
These vector norms are analogous to the norms (2.5), (2.6), and (2.1), re-
spectively, given above for the linear space of functions defined on [−1, 1].
There is also the p-norm,

‖x‖ = (|x1|p + |x2|p + · · · + |xn|p)1/p
, (2.12)

for any p ≥ 1, which is analogous to the norm defined by (2.7). It is easy
to verify that the norm defined by (2.12) satisfies the properties (2.2) and
(2.3), and we can apply Minkowski’s inequality (2.8) to justify that it also
satisfies the triangle inequality (2.4). If we put p = 1 and 2 in (2.12), we
recover the norms (2.10) and (2.11), and if we let p → ∞ in (2.12), we
recover the norm (2.9). ■

Now, given f defined on [−1, 1], let us seek the minimum value of ‖f−p‖,
for all p ∈ Pn, where ‖ · ‖ denotes the square norm. For any given norm,
a p ∈ Pn that minimizes ‖f − p‖ is called a best approximation for f with
respect to that norm. It can be shown (see Davis [10]) that for any norm
and any n ≥ 0, a best approximation always exists. Let us write

p(x) =
n∑

r=0

arqr(x), (2.13)

where {q0, q1, . . . , qn} is some basis for Pn, so that any polynomial in Pn

can be written as a sum of multiples of the qr, as in (2.13). To find a best
approximation, we can dispense with the square root in (2.1), since the
problem of minimizing ‖f − p‖ is equivalent to finding the minimum value
of

‖f − p‖2 =
∫ 1

−1
[f(x) − p(x)]2dx = E(a0, . . . , an),

say, where p is given by (2.13). Thus we need to equate to zero the partial
derivatives of E with respect to each as, and we obtain

0 =
∂

∂as
E(a0, . . . , an) =

∫ 1

−1
2[f(x) − p(x)] · [−qs(x)]dx,
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for 0 ≤ s ≤ n. This gives a system of linear equations to determine the
coefficients as, and we will write these as

n∑
r=0

cr,sar = bs, 0 ≤ s ≤ n,

where

bs =
∫ 1

−1
f(x)qs(x)dx, 0 ≤ s ≤ n,

and

cr,s =
∫ 1

−1
qr(x)qs(x)dx, 0 ≤ r, s ≤ n.

If we can now choose the basis {q0, q1, . . . , qn} so that
∫ 1

−1
qr(x)qs(x)dx = 0, r �= s, 0 ≤ r, s ≤ n, (2.14)

then the above linear system will be immediately solved, giving

as =
∫ 1

−1
f(x)qs(x)dx/

∫ 1

−1
[qs(x)]2dx, 0 ≤ s ≤ n. (2.15)

Definition 2.1.2 The set of functions {q0, q1, . . . , qn} is called an orthog-
onal basis if (2.14) holds, and if, in addition,

∫ 1

−1
[qr(x)]2dx = 1, 0 ≤ r ≤ n, (2.16)

it is called an orthonormal basis. An orthogonal basis can obviously be
made orthonormal by scaling each polynomial qr appropriately. ■

We can construct the elements of an orthogonal basis, beginning with
q0(x) = 1 and choosing each qk so that it satisfies the k conditions

∫ 1

−1
xrqk(x)dx = 0, 0 ≤ r < k. (2.17)

We then say that qk is orthogonal on [−1, 1] to all polynomials in Pk−1,
and thus (2.14) holds. To determine each qk ∈ Pk uniquely, we will scale
qk so that its coefficient of xk is unity. We say that qr and qs are mutually
orthogonal if r �= s. These orthogonal polynomials are named after A. M.
Legendre (1752–1833). Let us now write

qk(x) = xk + dk−1x
k−1 + · · · + d1x+ d0,

and solve a system of k linear equations, derived from (2.17), to obtain
the coefficients d0, d1, . . . , dk−1. Beginning with q0(x) = 1, we find that
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q1(x) = x, and q2(x) = x2 − 1
3 . At this stage, we will refer to any multiples

of the polynomials qk as Legendre polynomials, although we will restrict
the use of this name later to the particular multiples of these polynomials
that assume the value 1 at x = 1. The following theorem shows that the
Legendre polynomials satisfy a simple recurrence relation, and in Theorem
2.1.2 we will show that the recurrence relation can be simplified still further.

Theorem 2.1.1 The Legendre polynomials, scaled so that their leading
coefficients are unity, satisfy the recurrence relation

qn+1(x) = (x− αn)qn(x) − βnqn−1(x), (2.18)

where

αn =
∫ 1

−1
x[qn(x)]2dx/

∫ 1

−1
[qn(x)]2dx, (2.19)

and

βn =
∫ 1

−1
[qn(x)]2dx/

∫ 1

−1
[qn−1(x)]2dx, (2.20)

for all n ≥ 1, where q0(x) = 1 and q1(x) = x.

Proof. It is clear that q0 and q1 are mutually orthogonal. To complete the
proof it will suffice to show that for n ≥ 1, if q0, q1, . . . , qn denote the Legen-
dre polynomials of degree up to n, each with leading coefficient unity, then
the polynomial qn+1 defined by (2.18), with αn and βn defined by (2.19)
and (2.20), respectively, is orthogonal to all polynomials in Pn. Now, since
qn−1 and qn are orthogonal to all polynomials in Pn−2 and Pn−1, respec-
tively, it follows from the recurrence relation (2.18) that qn+1 is orthogonal
to all polynomials in Pn−2. For if we multiply (2.18) throughout by qm(x)
and integrate over [−1, 1], it is clear from the orthogonality property that∫ 1

−1
qn+1(x)qm(x)dx =

∫ 1

−1
xqn(x)qm(x)dx = 0,

for 0 ≤ m ≤ n− 2, since we can write

xqm(x) = qm+1(x) + rm(x),

where rm ∈ Pm. The proof will be completed if we can show that qn+1 is
orthogonal to qn−1 and qn. If we multiply (2.18) throughout by qn−1(x),
integrate over [−1, 1], and use the fact that qn−1 and qn are orthogonal, we
obtain∫ 1

−1
qn+1(x)qn−1(x)dx =

∫ 1

−1
xqn(x)qn−1(x)dx− βn

∫ 1

−1
[qn−1(x)]2dx.

Since xqn−1(x) = qn(x) + rn−1(x), where rn−1 ∈ Pn−1, it follows from the
orthogonality property that∫ 1

−1
xqn(x)qn−1(x)dx =

∫ 1

−1
[qn(x)]2dx.
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From this and the above definition of βn, it follows that qn+1 is orthogonal
to qn−1. If we now multiply (2.18) throughout by qn(x) and integrate over
[−1, 1], it then follows from the orthogonality of qn−1 and qn, and the
definition of αn, that qn+1 is orthogonal to qn. ■

The following two theorems tell us more about the Legendre polynomials.
First we show that the recurrence relation in (2.18) can be simplified.

Theorem 2.1.2 The Legendre polynomials, scaled so that their leading
coefficients are unity, satisfy the recurrence relation

qn+1(x) = xqn(x) − βnqn−1(x), (2.21)

for n ≥ 1, with q0(x) = 1 and q1(x) = x, where βn is defined by (2.20).
Further, qn is an even function when n is even, and is an odd function when
n is odd.

Proof. We begin by noting that q0(x) = 1 is an even function, and q1(x) = x
is odd. Let us assume that for some k ≥ 0, the polynomials q0, q1, . . . , q2k+1
are alternately even and odd, and that αn = 0 in (2.19) for all n ≤ 2k.
It then follows from (2.19) that α2k+1 = 0, and then from the recurrence
relation (2.18) that q2k+2 is an even function. Another inspection of (2.19)
shows that α2k+2 = 0, and then (2.18) shows that q2k+3 is an odd function.
The proof is completed by induction. Later in this section we will determine
the value of βn. ■

Theorem 2.1.3 The Legendre polynomial of degree n has n distinct zeros
in the interior of the interval [−1, 1].

Proof. Since qn is orthogonal to 1 for n > 0,
∫ 1

−1
qn(x)dx = 0, n > 0,

and thus qn must have at least one zero in the interior of [−1, 1]. If x = x1
were a multiple zero of qn, for n ≥ 2, then qn(x)/(x − x1)2 would be a
polynomial in Pn−2 and so be orthogonal to qn, giving

0 =
∫ 1

−1

qn(x)
(x− x1)2

qn(x)dx =
∫ 1

−1

(
qn(x)
x− x1

)2

dx,

which is impossible. Thus the zeros of qn are all distinct. Now suppose that
qn has exactly k ≥ 1 zeros in the interior of [−1, 1], and that

qn(x) = (x− x1) · · · (x− xk) r(x) = πk(x)r(x),

say, where r(x) does not change sign in (−1, 1). Then if k < n, it follows
from the orthogonality property that

0 =
∫ 1

−1
πk(x)qn(x)dx =

∫ 1

−1
[πk(x)]2r(x)dx,
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which is impossible, since [πk(x)]2r(x) does not change sign. Thus we must
have k = n, and consequently r(x) = 1, which completes the proof. ■

We will now obtain an explicit form for the recurrence relation (2.21) for
the Legendre polynomials. Consider derivatives of the function

(x2 − 1)n = (x− 1)n(x+ 1)n.

It is easily verified, using the Leibniz rule for differentiation (1.83), that

dj

dxj
(x2 − 1)n = 0, 0 ≤ j ≤ n− 1, for x = ±1, (2.22)

and
dn

dxn
(x2 − 1)n = 2nn! for x = 1. (2.23)

If we define
Qn(x) =

1
2nn!

dn

dxn
(x2 − 1)n, (2.24)

it is clear that Qn is a polynomial of degree n, and that Qn(1) = 1. The
relation (2.24) is called a Rodrigues formula, after O. Rodrigues. We now
state and prove the following lemma.

Lemma 2.1.1 If u and v are both n times differentiable on [−1, 1], and v
and its first n− 1 derivatives are zero at both endpoints x = ±1, then

∫ 1

−1
u(x)v(n)(x)dx = (−1)n

∫ 1

−1
u(n)(x)v(x)dx, n ≥ 1. (2.25)

Proof. Using integration by parts, we have
∫ 1

−1
u(x)v(n)(x)dx = −

∫ 1

−1
u′(x)v(n−1)(x)dx,

and the proof is completed by using induction on n. ■

In particular, if g is any function that is n times differentiable, we obtain
∫ 1

−1
g(x)

dn

dxn
(x2 − 1)ndx =

∫ 1

−1
g(n)(x)(1 − x2)ndx, (2.26)

and the latter integral is zero if g ∈ Pn−1. We deduce that the polynomial
Qn ∈ Pn is orthogonal to all polynomials in Pn−1, and thus must be a
multiple of the Legendre polynomial qn. It can be shown that

|Qn(x)| ≤ 1, for |x| ≤ 1, (2.27)

the maximum modulus of 1 being attained at the endpoints x = ±1. (This
inequality is derived in Rivlin [48], via a cleverly arranged sequence of
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results involving Qn and its first derivative.) To derive an explicit form of
the recurrence relation (2.21), we write

(x2 − 1)n = x2n − nx2n−2 + · · · ,
and so obtain from (2.24) that

Qn(x) =
1

2nn!

(
(2n)!
n!

xn − n(2n− 2)!
(n− 2)!

xn−2 + · · ·
)
, (2.28)

for n ≥ 2. Since the Legendre polynomial qn has leading term xn, with
coefficient unity, it follows from (2.28) that

Qn(x) = µnqn(x), where µn =
1
2n

(
2n
n

)
, (2.29)

and

qn(x) = xn − n(n− 1)
2(2n− 1)

xn−2 + · · · . (2.30)

If we now use (2.30) in the recurrence relation (2.21), we obtain

xn+1 − (n+ 1)n
2(2n+ 1)

xn−1 + · · · = xn+1 − n(n− 1)
2(2n− 1)

xn−1 − βnx
n−1 + · · · ,

and on equating coefficients of xn−1, we find that

βn =
(n+ 1)n
2(2n+ 1)

− n(n− 1)
2(2n− 1)

=
n2

4n2 − 1
. (2.31)

It was convenient to work with qn, which is scaled so that its coefficient of
xn is unity, in the early part of our discussion on the Legendre polynomials.
This enabled us to simplify the recurrence relation given in Theorems 2.1.1
and 2.1.2. In order to refine the recurrence relation, we then introduced Qn,
the multiple of qn scaled so that Qn(1) = 1. In the mathematical literature
it is Qn that is called the Legendre polynomial. If we use (2.29) to replace
each qn in the recurrence relation (2.21) by the appropriate multiple of
Qn, and use (2.31), we obtain the following remarkably simple recurrence
relation, which deserves to be expressed as a theorem.

Theorem 2.1.4 The Legendre polynomials Qn satisfy the recurrence re-
lation

(n+ 1)Qn+1(x) = (2n+ 1)xQn(x) − nQn−1(x), (2.32)

for n ≥ 1, where Q0(x) = 1 and Q1(x) = x. ■

We find from the recurrence relation (2.32) and its initial conditions that
the first few Legendre polynomials are

1, x,
1
2
(3x2 − 1),

1
2
(5x3 − 3x),

1
8
(35x4 − 30x2 + 3). (2.33)
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The Legendre polynomial Qn(x) (see Problem 2.1.7) satisfies the second-
order differential equation

(1 − x2)Q′′
n(x) − 2xQ′

n(x) + n(n+ 1)Qn(x) = 0. (2.34)

Let us return to a problem that we posed near the beginning of this
section: Given a function f defined on [−1, 1], let us seek the polynomial
pn ∈ Pn that minimizes ‖f − pn‖, where ‖ · ‖ is the square norm. Our
solution to this problem was given in terms of the polynomials qr, and if
we recast this in terms of the Legendre polynomials proper, we obtain the
solution

pn(x) =
n∑

r=0

arQr(x), (2.35)

where

ar =
∫ 1

−1
f(x)Qr(x)dx/

∫ 1

−1
[Qr(x)]2dx, 0 ≤ r ≤ n. (2.36)

We call the polynomial pn the best square norm approximation or, more
commonly, the least squares approximation for f on [−1, 1]. We remark,
in passing, that the partial sum of a Fourier series has this same property
of being a least squares approximation. If we let n → ∞ in (2.35), the
resulting infinite series, if it exists, is called the Legendre series for f . From
(2.36) and Problem 2.1.6, the Legendre coefficients may be expressed in
the form

ar =
1
2
(2r + 1)

∫ 1

−1
f(x)Qr(x)dx, r ≥ 0, (2.37)

and we have the following result.

Theorem 2.1.5 The partial sum of the Legendre series for f is even or
odd if f is even or odd, respectively.

Proof. As we saw in Theorem 2.1.2, the polynomial qn is an even function
when n is even, and is an odd function when n is odd, and (2.29) shows
that this holds also for its multiple, the Legendre polynomial Qn. It follows
from (2.37) that the Legendre coefficient ar is zero if r is odd and f is even,
and is also zero if r is even and f is odd. Thus the Legendre series for f
contains only even- or odd-order Legendre polynomials when f is even or
odd, respectively. This completes the proof. ■

If f is sufficiently differentiable, we can derive another expression for the
Legendre coefficients by expressing Qs(x) in (2.37) in its Rodrigues form,
given in (2.24), and then use (2.26) to give

ar =
2r + 1
2r+1r!

∫ 1

−1
f (r)(x)(1 − x2)rdx. (2.38)

We now give an estimate of the size of the Legendre coefficient ar for f in
terms of f (r).
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Theorem 2.1.6 If f (r) is continuous on [−1, 1], the Legendre coefficient
ar is given by

ar =
2r r!
(2r)!

f (r)(ξr), (2.39)

where ξr ∈ (−1, 1).

Proof. Since f (r) is continuous on [−1, 1], it follows from the mean value
theorem for integrals, Theorem 3.1.2, that

ar =
2r + 1
2r+1r!

f (r)(ξr)Ir,

where

Ir =
∫ 1

−1
(1 − x2)rdx.

Then, using integration by parts, we find that

Ir = 2r
∫ 1

−1
x2(1 − x2)r−1dx = 2r(Ir−1 − Ir).

Hence
Ir =

2r
2r + 1

Ir−1 =
2r

2r + 1
2r − 2
2r − 1

· · · 2
3
I0,

where I0 = 2, and (2.39) follows easily. ■

Example 2.1.2 Let us use (2.38) to compute the Legendre coefficients for
the function ex. First we derive from (2.38)

a0 =
1
2
(e− e−1) ≈ 1.175201, a1 = 3e−1 ≈ 1.103638.

If we write

Jr =
1

2r r!

∫ 1

−1
ex(1 − x2)rdx, (2.40)

then (2.38) with f(x) = ex yields ar = 1
2 (2r + 1)Jr. On using integration

by parts twice on the above integral for Jr, we obtain

Jr = −(2r − 1)Jr−1 + Jr−2,

and hence obtain the recurrence relation
ar

2r + 1
= −ar−1 +

ar−2

2r − 3
, (2.41)

with a0 and a1 as given above. The next few Legendre coefficients for ex,
rounded to six decimal places, are as follows:

n 2 3 4 5 6 7
an 0.357814 0.070456 0.009965 0.001100 0.000099 0.000008
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All the Legendre coefficients for ex are positive. (See Problem 2.1.10.) Be-
fore leaving this example, we remark that the recurrence relation (2.41) is
numerically unstable, since the error in the computed value of ar is approx-
imately 2r+ 1 times the error in ar−1. Thus, if we need to compute ar for
a large value of r, we should estimate it directly from the expression (2.40)
for Jr, using a numerical integration method. ■

It is convenient to write

(f, g) =
∫ 1

−1
f(x)g(x)dx, (2.42)

and we call (f, g) an inner product of f and g. It follows from (2.35), the
orthogonality of the Legendre polynomials Qs, and (2.36) that

(pn, Qs) = as(Qs, Qs) = (f,Qs). (2.43)

Since
(f − pn, Qs) = (f,Qs) − (pn, Qs),

we see from (2.43) that

(f − pn, Qs) = 0, 0 ≤ s ≤ n. (2.44)

For further material on inner products, see Davis [10], Deutsch [14]. The
following theorem describes another property concerning the difference be-
tween f and pn.

Theorem 2.1.7 The error term f−pn changes sign on at least n+1 points
in the interior of [−1, 1], where pn is the partial sum of the Legendre series
for f .

Proof. First we have from (2.44) that (f − pn, Q0) = 0. Since Q0(x) = 1,
it follows that there is at least one point in (−1, 1) where f − pn changes
sign. Suppose that f(x) − pn(x) changes sign at k points,

−1 < x1 < x2 < · · · < xk < 1,

and at no other points in (−1, 1), with 1 ≤ k < n+1. Then f(x)−pn(x) and
the function πk(x) = (x− x1) · · · (x− xk) change sign at the xj , and at no
other points in (−1, 1). Thus we must have (f − pn, πk) �= 0. On the other
hand, since πk may be written as a sum of multiples of Q0, Q1, . . . , Qk, it
follows from (2.44) that (f − pn, πk) = 0, which gives a contradiction. We
deduce that k ≥ n+ 1, which completes the proof. ■

Since, as we have just established, there are at least n+1 points in (−1, 1)
where pn(x) and f(x) are equal, the best approximant pn must be an
interpolating polynomial for f . This observation leads us to the following
interesting expression for ‖f − pn‖, of a similar form to the error term for
the Taylor polynomial or the error term for the interpolating polynomial,
which are given in (1.35) and (1.25), respectively.
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Theorem 2.1.8 Let pn denote the least squares approximation for f on
[−1, 1]. Then if f (n+1) is continuous on [−1, 1] there exists a number ζ in
(−1, 1) such that

‖f − pn‖ =
1

µn+1

√
2

2n+ 3
|f (n+1)(ζ)|
(n+ 1)!

∼
√
π

2n+1

|f (n+1)(ζ)|
(n+ 1)!

, (2.45)

where µn+1 is defined in (2.29).

Proof. We begin with a comment on the notation used in (2.45). We write
un ∼ vn to mean that

lim
n→∞

un

vn
= 1,

and we say that un and vn are asymptotically equal, as n → ∞.
Since the best approximant pn is an interpolating polynomial for f , we

have from (1.25) that

f(x) − pn(x) = (x− x0)(x− x1) · · · (x− xn)
fn+1(ξx)
(n+ 1)!

,

where ξx ∈ (−1, 1), and the xj are distinct points in (−1, 1). Taking the
square norm, and applying the mean value theorem for integrals, Theorem
3.1.2, we find that

‖f − pn‖ =
|f (n+1)(ξ)|
(n+ 1)!

‖(x− x0) · · · (x− xn)‖, (2.46)

for some ξ ∈ (−1, 1). If p∗
n denotes the interpolating polynomial for f on

the zeros of the Legendre polynomial Qn+1, we similarly have

‖f − p∗
n‖ =

|f (n+1)(η)|
(n+ 1)!

‖(x− x∗
0) · · · (x− x∗

n)‖, (2.47)

where η ∈ (−1, 1), and the x∗
j are the zeros of Qn+1. We then see from

(2.47) and Problem 2.1.9 that

‖f − p∗
n‖ =

1
µn+1

√
2

2n+ 3
|f (n+1)(η)|
(n+ 1)!

,

where µn+1 is defined in (2.29). Since pn is the least squares approximation
for f , we have

‖f − pn‖ ≤ ‖f − p∗
n‖ =

1
µn+1

√
2

2n+ 3
|f (n+1)(η)|
(n+ 1)!

, (2.48)

where η ∈ (−1, 1). Also, we may deduce from (2.46) and Problem 2.1.9
that

‖f − pn‖ ≥ 1
µn+1

√
2

2n+ 3
|f (n+1)(ξ)|
(n+ 1)!

, (2.49)
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where ξ ∈ (−1, 1). We can now combine (2.48) and (2.49), and use the
continuity of f (n+1) to give

‖f − pn‖ =
1

µn+1

√
2

2n+ 3
|f (n+1)(ζ)|
(n+ 1)!

, ζ ∈ (−1, 1),

and we complete the proof by applying Stirling’s formula (see Problem
2.1.12) to give

1
µn+1

√
2

2n+ 3
∼

√
π

2n
. ■

Problem 2.1.1 Let

‖x‖ =
(
x2

1 + · · · + x2
n

)1/2
.

Verify the inequality

(x1y1 + · · · + xnyn)2 ≤ (x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n)

by showing that it is equivalent to
∑
i �=j

(xiyj − xjyi)2 ≥ 0,

where the latter sum of 1
2n(n− 1) terms is taken over all distinct pairs of

numbers i and j chosen from the set {1, . . . , n}. Deduce the inequality

|x1y1 + · · · + xnyn| ≤ ‖x‖ · ‖y‖,
and hence justify the triangle inequality for this norm.

Problem 2.1.2 Define

f(x) =
{

0, −1 ≤ x < 0,
x, 0 ≤ x ≤ 1,

and define g(x) = f(−x), −1 ≤ x ≤ 1. Show that

‖f‖ = ‖g‖ =
1

(p+ 1)1/p
and ‖f + g‖ =

21/p

(p+ 1)1/p
,

where ‖ · ‖ denotes the p-norm, defined by (2.7). Deduce that p ≥ 1 is a
necessary condition for the triangle inequality to hold.

Problem 2.1.3 Scale the Legendre polynomials 1, x, 1
2 (3x2 − 1), and

1
2 (5x3 − 3x) so that they form an orthonormal basis for P3.

Problem 2.1.4 Verify (2.22) and (2.23).
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Problem 2.1.5 By writing down the binomial expansion of (x2 − 1)n and
differentiating it n times, deduce from (2.24) that

Qn(x) =
1
2n

[n/2]∑
j=0

(−1)j

(
n
j

)(
2n− 2j

n

)
xn−2j ,

where [n/2] denotes the integer part of n/2.

Problem 2.1.6 We have, from (2.20) and (2.31),

βn =
∫ 1

−1
[qn(x)]2 dx/

∫ 1

−1
[qn−1(x)]

2
dx =

n2

4n2 − 1
,

for n ≥ 1. Use this and (2.29) to deduce that
∫ 1

−1
[Qn(x)]2 dx/

∫ 1

−1
[Qn−1(x)]

2
dx =

2n− 1
2n+ 1

,

for n ≥ 1, and hence show that
∫ 1

−1
[Qn(x)]2 dx =

2
2n+ 1

for n ≥ 0.

Problem 2.1.7 If y(x) and p(x) are functions that are twice differentiable,
use integration by parts twice to show that

∫ 1

−1

d

dx
{(1 − x2)y′(x)} p(x)dx = −

∫ 1

−1
(1 − x2) y′(x)p′(x)dx

=
∫ 1

−1

d

dx
{(1 − x2)p′(x)} y(x)dx.

Now write y(x) = Qn(x) and let p ∈ Pn−1, and deduce that

d

dx
{(1 − x2)Q′

n(x)} = (1 − x2)Q′′
n(x) − 2xQ′

n(x)

is orthogonal to all polynomials in Pn−1, and thus must be a multiple of
the Legendre polynomial Qn. Using (2.28), equate coefficients of xn in

(1 − x2)Q′′
n(x) − 2xQ′

n(x) = µQn(x),

to give
−n(n− 1) − 2n = µ,

and thus show that Qn satisfies the second-order differential equation given
in (2.34).
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Problem 2.1.8 Show that the polynomial p ∈ Pn that minimizes
∫ 1

−1
[xn+1 − p(x)]2dx

is p(x) = xn+1 − qn+1(x), where qn+1 is the Legendre polynomial Qn+1
scaled so that it has leading coefficient unity. Hint: Write

xn+1 − p(x) = qn+1(x) +
n∑

j=0

γjqj(x),

and use the orthogonality properties of the qj .

Problem 2.1.9 Deduce from the result in the previous problem that for
the square norm on [−1, 1], the minimum value of ‖(x−x0) · · · (x−xn)‖ is
attained when the xj are the zeros of the Legendre polynomial Qn+1, and
use the result in Problem 2.1.6 to show that

min
xj

‖(x− x0) · · · (x− xn)‖ =
1

µn+1

√
2

2n+ 3
,

where µn+1 is defined in (2.29).

Problem 2.1.10 Deduce from (2.38) that if f and all its derivatives are
nonnegative on [−1, 1], then all coefficients of the Legendre series for f are
nonnegative.

Problem 2.1.11 Verify that

d

dx
(x2 − 1)n = 2nx(x2 − 1)n−1,

differentiate n times, and use the Leibniz rule (1.83) to show that

dn+1

dxn+1 (x2 − 1)n = 2n
(
x
dn

dxn
(x2 − 1)n−1 + n

dn−1

dxn−1 (x2 − 1)n−1
)
,

for n ≥ 1. Finally, divide by 2nn! and use the Rodrigues formula (2.24) to
obtain the relation

Q′
n(x) = xQ′

n−1(x) + nQn−1(x), n ≥ 1.

Problem 2.1.12 Use Stirling’s formula,

n! ∼
√

2πn
(n
e

)n

,

to show that (see (2.29))

µn =
1
2n

(
2n
n

)
∼ 2n

√
πn

.



64 2. Best Approximation

2.2 The Chebyshev Polynomials

Many of the ideas and formulas presented in the last section concerning
the Legendre polynomials can be generalized by introducing a weight func-
tion. This generalization leads to an infinite number of systems of orthog-
onal polynomials. We will pay particular attention to one such system, the
Chebyshev polynomials, named after P. L. Chebyshev (1821–1894).

Given any integrable function ω that is nonnegative and not identically
zero on [−1, 1], we can construct a sequence of polynomials (qω

n ), where qω
n

is of degree n, has leading coefficient unity, and satisfies

∫ 1

−1
ω(x)xrqω

n (x)dx = 0, 0 ≤ r < n. (2.50)

The polynomials qω
n are said to be orthogonal on [−1, 1] with respect to

the weight function ω, and the scaled Legendre polynomials qn are recov-
ered by putting ω(x) = 1. The generalized orthogonal polynomials qω

n , like
the Legendre polynomials, satisfy a recurrence relation of the form (2.18),
where the coefficients αn and βn are given by

αn =
∫ 1

−1
ω(x)x[qω

n (x)]2dx/
∫ 1

−1
ω(x)[qω

n (x)]2dx (2.51)

and

βn =
∫ 1

−1
ω(x)[qω

n (x)]2dx/
∫ 1

−1
ω(x)[qω

n−1(x)]
2dx. (2.52)

Further, if the weight function ω is even, then αn = 0, the even-order
orthogonal polynomials are even functions, and the odd-order polynomials
are odd, as given by Theorem 2.1.2 for the Legendre polynomials. The
above statements about the generalized orthogonal polynomials are easily
verified by inserting the weight function ω appropriately and repeating the
arguments used above in the special case where ω(x) = 1. See, for example,
Davis and Rabinowitz [11].

Let us now define

‖f‖ =
(∫ 1

−1
ω(x)[f(x)]2dx

)1/2

. (2.53)

It can be shown that ‖ ·‖ in (2.53) satisfies the three properties (2.2), (2.3),
and (2.4), and so indeed defines a norm, which we call a weighted square
norm. When we choose ω(x) = 1, we recover the square norm (2.1). We
then find that

‖f − p‖ =
(∫ 1

−1
ω(x)[f(x) − p(x)]2dx

)1/2
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is minimized over all p ∈ Pn by choosing p = pn, where

pn(x) =
n∑

r=0

arq
ω
r (x), (2.54)

and each coefficient ar is given by

ar =
∫ 1

−1
ω(x)f(x)qω

r (x)dx/
∫ 1

−1
ω(x)[qω

r (x)]2dx, 0 ≤ r ≤ n. (2.55)

If we let n → ∞, we obtain a generalized orthogonal expansion for f
whose coefficients are given by (2.55). In particular, if ω(x) = 1, we obtain
the Legendre series. We can easily adapt Theorem 2.1.5 to show that if the
weight function ω is even, then the partial sum of the generalized orthogonal
series for f is even or odd if f is even or odd, respectively.

The choice of weight function

ω(x) = (1 − x)α(1 + x)β , α, β > −1, (2.56)

leads to a two-parameter system of orthogonal polynomials that are called
the Jacobi polynomials. These include the following, as special cases:

α = β = 0 Legendre polynomials,

α = β = − 1
2 Chebyshev polynomials,

α = β = 1
2 Chebyshev polynomials of the second kind,

α = β ultraspherical polynomials.

Note that the first three systems of orthogonal polynomials listed above are
all special cases of the fourth system, the ultraspherical polynomials, whose
weight function is the even function (1 − x2)α. Thus the ultraspherical
polynomials satisfy a recurrence relation of the form given in Theorem
2.1.2 for the Legendre polynomials. Further, the ultraspherical polynomial
of degree n is even or odd, when n is even or odd, respectively. If we choose
ω as the Jacobi weight function (2.56), then (2.54) and (2.55) define a
partial Jacobi series, and it is clear that when α = β, the resulting partial
ultraspherical series is even or odd if f is even or odd, respectively.

To investigate the Jacobi polynomials, we begin with the function

(1 − x)−α(1 + x)−β dn

dxn
(1 − x)n+α(1 + x)n+β . (2.57)

First, using the Leibniz rule (1.83) for differentiating a product, we can
show that this function is a polynomial of degree n. Then, following the
method we used for the Legendre polynomials, beginning with Lemma



66 2. Best Approximation

2.1.1, we can show that this polynomial is orthogonal on [−1, 1], with re-
spect to the Jacobi weight function given in (2.56), to all polynomials in
Pn−1. We then define the Jacobi polynomial of degree n as

Q(α,β)
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β dn

dxn
(1 − x)n+α(1 + x)n+β . (2.58)

It is easy to adapt the proof of Theorem 2.1.3 to show that the Jacobi
polynomial of degree n has n distinct zeros in the interior of [−1, 1].

The following theorem generalizes Theorem 2.1.4.

Theorem 2.2.1 The Jacobi polynomials satisfy the recurrence relation

Q
(α,β)
n+1 (x) = (anx+ bn)Q(α,β)

n (x) − cnQ
(α,β)
n−1 (x), (2.59)

where

an =
(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
,

bn =
(α2 − β2)(2n+ α+ β + 1)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
,

cn =
(n+ α)(n+ β)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
.

Proof. This can be justified by following the same method as we used to
prove Theorem 2.1.4. See Davis [10]. ■

We can use the Leibniz rule (1.83) again to show that

Q(α,β)
n (1) =

1
n!

(n+ α)(n− 1 + α) · · · (1 + α) =
(
n+ α
n

)
, (2.60)

which is independent of β. Likewise (see Problem 2.2.2), we can show that
Q

(α,β)
n (−1) is independent of α. We can express (2.60) in the form

Q(α,β)
n (1) =

Γ(n+ α+ 1)
Γ(n+ 1)Γ(α+ 1)

, (2.61)

where Γ is the gamma function, defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt. (2.62)

It is not hard (see Problem 2.2.1) to deduce from (2.62) that the gamma
function satisfies the difference equation

Γ(x+ 1) = xΓ(x), (2.63)

with Γ(1) = 1, and hence justify (2.61).
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From (2.55) the Jacobi series has coefficients that satisfy

ar =
∫ 1

−1
ω(x)f(x)Q(α,β)

r (x)dx/
∫ 1

−1
ω(x)

[
Q(α,β)

r (x)
]2
dx, (2.64)

where ω(x) = (1 − x)α(1 + x)β . Then, if f is sufficiently differentiable, it
follows from (2.58) and Lemma 2.1.1 that the numerator on the right of
(2.64) may be written as

∫ 1

−1
ω(x)f(x)Q(α,β)

r (x)dx =
1

2r r!

∫ 1

−1
ω(x)f (r)(x)(1 − x2)rdx, (2.65)

where ω(x) = (1−x)α(1+x)β . The denominator on the right of (2.64) can
be expressed (see Davis [10]) in the form

∫ 1

−1
ω(x)[Q(α,β)

r (x)]2dx =
2α+β+1

(2r + α+ β + 1)
Γ(r + α+ 1)Γ(r + β + 1)
Γ(r + 1)Γ(r + α+ β + 1)

,

and we note that this is consistent with our findings in Problem 2.1.6 for
the special case of the Legendre polynomials.

One might argue that the simplest of all the Jacobi polynomials are the
Legendre polynomials, since these have the simplest weight function. How-
ever, there are good reasons for saying that the simplest Jacobi polynomials
are the Chebyshev polynomials, which have weight function (1 − x2)−1/2.
Note that the latter weight function is singular at the endpoints x = ±1.
The Chebyshev polynomials are usually denoted by Tn(x), and are uniquely
defined by ∫ 1

−1
(1 − x2)−1/2Tr(x)Ts(x)dx = 0, r �= s, (2.66)

where
Tr ∈ Pr and Tr(1) = 1, r ≥ 0. (2.67)

It follows from the above definition of the Chebyshev polynomials that Tn

is a multiple of the Jacobi (also ultraspherical) polynomial Q(−1/2,−1/2)
n .

With α = β = − 1
2 in (2.60), we can show that

Q(−1/2,−1/2)
n (1) =

1
22n

(
2n
n

)
∼ 1√

πn
, (2.68)

and, since Tn(1) = 1, it follows that

Q(−1/2,−1/2)
n (x) =

1
22n

(
2n
n

)
Tn(x). (2.69)

The following theorem shows that the Chebyshev polynomials can be ex-
pressed in a very simple form in terms of the cosine function.
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Theorem 2.2.2 Let us define

tn(x) = cosnθ, where x = cos θ, −1 ≤ x ≤ 1, n ≥ 0. (2.70)

Then tn = Tn, the Chebyshev polynomial of degree n.

Proof. On making the substitution x = cos θ, the interval −1 ≤ x ≤ 1
corresponds to 0 ≤ θ ≤ π, and we obtain

∫ 1

−1
(1 − x2)−1/2tr(x)ts(x)dx =

∫ π

0
cos rθ cos sθ dθ, r �= s.

Since
cos rθ cos sθ =

1
2
(cos(r + s)θ + cos(r − s)θ),

we readily see that
∫ 1

−1
(1 − x2)−1/2tr(x)ts(x)dx = 0, r �= s.

From the substitution x = cos θ, we see that x = 1 corresponds to θ = 0,
and thus tr(1) = 1. Now

cos(n+ 1)θ + cos(n− 1)θ = 2 cosnθ cos θ,

which, using (2.70), yields the recurrence relation

tn+1(x) = 2x tn(x) − tn−1(x), n ≥ 1,

and we see from (2.70) that t0(x) = 1 and t1(x) = x. Thus, by induction,
each tr belongs to Pr. It follows that tr = Tr for all r ≥ 0, and this
completes the proof. ■

We have just shown that

Tn(x) = cosnθ, where x = cos θ, −1 ≤ x ≤ 1, n ≥ 0, (2.71)

and that the Chebyshev polynomials satisfy the recurrence relation

Tn+1(x) = 2xTn(x) − Tn−1(x), n ≥ 1, (2.72)

with T0(x) = 1 and T1(x) = x. We find that the first few Chebyshev
polynomials are

1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1. (2.73)

Given how simply the Chebyshev polynomial is expressed in (2.71), we can
very easily find its zeros and turning values. We write

Tn(x) = 0 ⇒ cosnθ = 0 ⇒ nθ = (2j − 1)
π

2
, (2.74)
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FIGURE 2.1. Graph of the Chebyshev polynomial T4(x).

where j is an integer. Thus

Tn(x) = 0 ⇒ x = cos θj , where θj =
(2j − 1)π

2n
, (2.75)

for some integer j. We see from the graph of x = cos θ that as θ takes all
values between 0 and π, the function x = cos θ is monotonic decreasing,
and takes all values between 1 and −1. The choice of j = 1, 2, . . . , n in
(2.75) gives n distinct zeros of Tn in (−1, 1), and since Tn ∈ Pn, all the
zeros of Tn are given by the n values

xj = cos
(2j − 1)π

2n
, 1 ≤ j ≤ n. (2.76)

Since for x ∈ [−1, 1] we can express Tn(x) in the form cosnθ, where x =
cos θ, it is clear that the maximum modulus of Tn on [−1, 1] is 1. This is
attained for values of θ such that | cosnθ| = 1, and

cosnθ = ±1 ⇒ nθ = jπ ⇒ x = cos(jπ/n) = τj ,

say, where j is an integer. Thus the Chebyshev polynomial Tn attains its
maximum modulus of 1 at the n+ 1 points τj = cos(jπ/n), for 0 ≤ j ≤ n,
and Tn alternates in sign over this set of points. For we have

Tn(τj) = cos jπ = (−1)j , 0 ≤ j ≤ n.

These n + 1 points of maximum modulus are called the extreme points
of Tn. The Chebyshev polynomial Tn is the only polynomial in Pn whose
maximum modulus is attained on n + 1 points of [−1, 1]. Note that al-
though we have expressed Tn(x) in terms of the cosine function for the
interval −1 ≤ x ≤ 1 only, the Chebyshev polynomial is defined by its re-
currence relation (2.72) for all real x. Outside the interval [−1, 1], we can
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(see Problem 2.2.6) express Tn(x) in terms of the hyperbolic cosine. For
further information on the Chebyshev polynomials, see Rivlin [49].

Let us consider the Chebyshev series, the orthogonal series based on the
Chebyshev polynomials. From (2.55) we see that the Chebyshev coefficients
are determined by the ratio of two integrals, and (see Problem 2.2.12) the
integral in the denominator is∫ 1

−1
(1 − x2)−1/2[Tr(x)]2dx =

{
π, r = 0,
1
2π, r > 0. (2.77)

Thus the infinite Chebyshev series for f is

1
2
a0 +

∞∑
r=1

arTr(x), (2.78)

where the first coefficient is halved so that the relation

ar =
2
π

∫ 1

−1
(1 − x2)−1/2f(x)Tr(x)dx (2.79)

holds for all r ≥ 0. By making the substitution x = cos θ, we can express
(2.79) alternatively in the form

ar =
2
π

∫ π

0
f(cos θ) cos rθ dθ, r ≥ 0. (2.80)

We will write

f(x) ∼ 1
2
a0 +

∞∑
r=1

arTr(x) (2.81)

to signify that the series on the right of (2.81) is the Chebyshev series for
the function f . (It should cause no confusion that we used the symbol ∼
earlier in a different sense in the statement of Theorem 2.1.8.)

Example 2.2.1 Let us derive the Chebyshev series for sin−1 x. On substi-
tuting x = cos θ, we have sin−1 x = π

2 − θ, and obtain from (2.80) that

a0 =
2
π

∫ π

0
(π

2 − θ) dθ = 0

and
ar =

2
π

∫ π

0
(π

2 − θ) cos rθ dθ =
2
πr

∫ π

0
sin rθ dθ, r > 0,

on using integration by parts. Thus

ar =
2
πr2

(1 − (−1)r), r > 0,

which is zero when r > 0 is even, and we obtain

sin−1 x ∼ 4
π

∞∑
r=1

T2r−1(x)
(2r − 1)2

. ■
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If f is sufficiently differentiable, we can use (2.65) and (2.69) in (2.79)
to show that the Chebyshev coefficients for f can be expressed in the form

ar =
2r+1 r!
π (2r)!

∫ 1

−1
f (r)(x)(1 − x2)r−1/2dx. (2.82)

We see from (2.82) that if f and all its derivatives are nonnegative on
[−1, 1], then all its Chebyshev coefficients are nonnegative. It is not hard
to see that the same holds for the coefficients of any Jacobi series. We also
have the following estimate for the Chebyshev coefficients, which can be
justified by using a similar method to that used in proving the analogous
result for the Legendre coefficients in Theorem 2.1.6. See Problem 2.2.17.

Theorem 2.2.3 If f (r) is continuous in (−1, 1), then the Chebyshev coef-
ficient ar is given by

ar =
1

2r−1 r!
f (r)(ξr), (2.83)

where ξr ∈ (−1, 1). ■

Example 2.2.2 Consider (2.82) when f(x) = ex, and write

Ir =
∫ 1

−1
ex(1 − x2)r−1/2dx.

Then, on integrating by parts twice, we find that

Ir = −(2r − 1)(2r − 2)Ir−1 + (2r − 1)(2r − 3)Ir−2, r ≥ 2.

From (2.82) we see that the Chebyshev coefficient ar for ex is

ar =
2r+1 r!
π (2r)!

Ir,

and thus we obtain

ar = −(2r − 2)ar−1 + ar−2, r ≥ 2.

Like the recurrence relation that we derived in (2.41) for the Legendre
coefficients for ex, this recurrence relation is numerically unstable and is
thus of limited practical use. ■

The members of any orthogonal system form a basis for the polynomials.
Thus, given an infinite power series, we could transform it to give a series
involving the terms of a given orthogonal system. We will illustrate this with
the Chebyshev polynomials, which are particularly easy to manipulate. Let
us begin by writing

x = cos θ =
1
2
(
eiθ + e−iθ

)
,
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where i2 = −1, and we can also write

Tn(x) = cosnθ =
1
2
(
einθ + e−inθ

)
. (2.84)

Then we have
xn =

1
2n

(
eiθ + e−iθ

)n
,

and on using the binomial expansion, we obtain

xn =
1
2n

n∑
r=0

(
n
r

)
eirθe−i(n−r)θ =

1
2n

n∑
r=0

(
n
r

)
ei(2r−n)θ. (2.85)

We can combine the rth and (n − r)th terms within the latter sum in
(2.85), using (2.84) and the fact that the two binomial coefficients involved
are equal, to give
(
n
r

)
ei(2r−n)θ +

(
n

n− r

)
e−i(2r−n)θ = 2

(
n
r

)
Tn−2r(x). (2.86)

If n is odd, the terms in the sum in (2.85) combine in pairs, as in (2.86), to
give a sum of multiples of odd-order Chebyshev polynomials. We obtain

x2n+1 =
1

22n

n∑
r=0

(
2n+ 1
r

)
T2n+1−2r(x). (2.87)

If n is even in (2.85), we have an odd number of terms in the sum, of which
all but one pair off to give the terms involving the even-order Chebyshev
polynomials Tn, Tn−2, . . . , T2, leaving a single term, which corresponds to
r = 1

2n and gives the contribution involving T0. Thus we obtain

x2n =
1

22n

(
2n
n

)
T0(x) +

1
22n−1

n−1∑
r=0

(
2n
r

)
T2n−2r(x). (2.88)

Now suppose we have a function f expressed as an infinite power series,

f(x) =
∞∑

r=0

crx
r, (2.89)

and let this series be uniformly convergent on [−1, 1]. We then express each
monomial xr in terms of the Chebyshev polynomials, using (2.87) when r
is of the form 2n + 1, and (2.88) when r is of the form 2n. On collecting
together all terms involving T0, T1, and so on, we obtain a series of the
form

f(x) =
1
2
a0 +

∞∑
r=1

arTr(x). (2.90)
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It follows from the uniform convergence of the power series in (2.89) that
the series defined by (2.90) is also uniformly convergent. Thus, for any
integer s ≥ 0, we may multiply (2.90) throughout by (1 − x2)−1/2Ts(x)
and integrate term by term over [−1, 1]. Due to the orthogonality property
(2.66), we obtain

∫ 1

−1
(1 − x2)−1/2f(x)Ts(x)dx = as

∫ 1

−1
(1 − x2)−1/2[Ts(x)]2dx, s > 0,

and when s = 0 we have
∫ 1

−1
(1 − x2)−1/2f(x)dx =

1
2
a0

∫ 1

−1
(1 − x2)−1/2dx.

In view of (2.77) and (2.79), we can see that (2.90) is the Chebyshev series
for f . The relation between the Chebyshev coefficients ar and the coeffi-
cients cr in the power series then follows from (2.87) and (2.88). We obtain

ar =
1

2r−1

∞∑
s=0

1
22s

(
r + 2s
s

)
cr+2s, (2.91)

for all r ≥ 0.

Example 2.2.3 With f(x) = ex in (2.89), we have cr = 1/r!, and we see
from (2.91) that the Chebyshev coefficients for ex are

ar =
1

2r−1

∞∑
s=0

1
22s

· 1
s!(r + s)!

, (2.92)

for all r ≥ 0. The first two Chebyshev coefficients for ex, rounded to six
decimal places, are a0 = 2.532132 and a1 = 1.130318. The next few are
given in the following table:

r 2 3 4 5 6 7
ar 0.271495 0.044337 0.005474 0.000543 0.000045 0.000003

We note from (2.92) that for large r,

ar ∼ 1
2r−1 · 1

r!
,

compared with cr = 1/r!. ■

The inner product (2.42) can be generalized by incorporating a weight
function ω, writing

(f, g) =
∫ 1

−1
ω(x)f(x)g(x)dx. (2.93)
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Then we can show that

(f − pn, q
ω
s ) = 0, 0 ≤ s ≤ n, (2.94)

where pn is the partial orthogonal series for f with respect to the weight
function ω, and the polynomials qω

s are orthogonal on [−1, 1] with respect
to ω. We may justify (2.94) in the same way that we justified its special
case (2.44). Then, using the same method of proof as we used for Theorem
2.1.7, we obtain the following generalization.

Theorem 2.2.4 The error term f−pn changes sign on at least n+1 points
in the interior of [−1, 1], where pn is the partial sum of the orthogonal series
for f with respect to a given weight function ω. ■

In particular, the error term of the partial Chebyshev series f −pn changes
sign on at least n+1 points in the interior of [−1, 1]. We now consider three
theorems that generalize results, stated earlier, related to the Legendre
polynomials.

Theorem 2.2.5 Given a weight function ω, the polynomial p ∈ Pn that
minimizes ∫ 1

−1
ω(x)[xn+1 − p(x)]2dx

is p(x) = xn+1 − qω
n+1(x), where qω

n+1 is the orthogonal polynomial of
degree n + 1, with leading coefficient unity, with respect to the weight
function ω.

Proof. The proof is similar to that used in Problem 2.1.8 to verify the
special case where ω(x) = 1. ■

Theorem 2.2.6 Given the norm (2.53) based on the weight function ω,
the minimum value of ‖(x− x0) · · · (x− xn)‖ is attained when the xj are
the zeros of the orthogonal polynomial qω

n+1.

Proof. This result follows immediately from Theorem 2.2.5. ■

Theorem 2.2.7 Given the norm (2.53) based on the weight function ω,
let pn denote the best weighted square norm approximation, with respect
to ω, for a given function f . Then if f (n+1) is continuous on [−1, 1], there
exists a number ζ in (−1, 1) such that

‖f − pn‖ =
|f (n+1)(ζ)|
(n+ 1)!

‖(x− x∗
0) · · · (x− x∗

n)‖, (2.95)

where the x∗
j denote the zeros of the orthogonal polynomial qω

n+1.
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Proof. This result may be justified in the same way as Theorem 2.1.8,
which is concerned with the special case where ω(x) = 1. ■

A special case of the last theorem is Theorem 2.1.8 concerning the error of
the truncated Legendre series. Another special case of Theorem 2.2.7, which
we now give as a separate theorem, concerns the error of the Chebyshev
series.

Theorem 2.2.8 Let pn denote the truncated Chebyshev series of degree
n for f on [−1, 1]. Then if f (n+1) is continuous on [−1, 1], there exists a
number ζ in (−1, 1) such that

‖f − pn‖ =
√
π

2n+1/2

|f (n+1)(ζ)|
(n+ 1)!

, (2.96)

where the norm is given by (2.53) with ω(x) = (1 − x2)−1/2.

Proof. This result follows from Theorem 2.2.7 and Problem 2.2.18. ■

We continue this section with a brief account of the system of polyno-
mials that are orthogonal on [−1, 1] with respect to the weight function
(1−x2)1/2. As we already mentioned, these are called the Chebyshev poly-
nomials of the second kind, a special case of the ultraspherical polynomials.
Like the Chebyshev polynomials Tn, the Chebyshev polynomials of the sec-
ond kind can be expressed simply in terms of circular functions. For n ≥ 0,
let us write

Un(x) =
sin(n+ 1)θ

sin θ
, where x = cos θ, −1 ≤ x ≤ 1. (2.97)

On making the substitution x = cos θ, the interval −1 ≤ x ≤ 1 is mapped
to 0 ≤ θ ≤ π, and we obtain
∫ 1

−1
(1 − x2)1/2Ur(x)Us(x)dx =

∫ π

0
sin(r + 1)θ sin(s+ 1)θ dθ, r �= s.

Since

sin(r + 1)θ sin(s+ 1)θ =
1
2
(cos(r − s)θ − cos(r + s+ 2)θ),

we find that
∫ 1

−1
(1 − x2)1/2Ur(x)Us(x)dx = 0, r �= s,

showing that the functions Ur are orthogonal on [−1, 1] with respect to the
weight function (1 − x2)1/2. It remains to show that Un ∈ Pn. Now,

sin(n+ 2)θ + sinnθ = 2 sin(n+ 1)θ cos θ,
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and if we divide throughout by sin θ and use (2.97), we obtain the recurrence
relation

Un+1(x) = 2xUn(x) − Un−1(x), n ≥ 1. (2.98)

We observe from (2.97) that U0(x) = 1 and U1(x) = 2x, and it follows from
(2.98) by induction that Un ∈ Pn for each n. Thus (2.97) defines a system
of polynomials that are orthogonal on [−1, 1] with respect to the weight
function (1 − x2)1/2.

Since x = 1 corresponds to θ = 0 under the transformation x = cos θ,
for x ∈ [−1, 1], we have

Un(1) = lim
θ→0

sin(n+ 1)θ
sin θ

= n+ 1, n ≥ 0,

using L’Hospital’s rule. Since, as for all the ultraspherical polynomials, Un

is even or odd when n is even or odd, Un(−1) = (−1)n(n + 1). The zeros
of Un (see Problem 2.2.21) are

x = cos(jπ/(n+ 1)), 1 ≤ j ≤ n.

Let us consider the orthogonal series based on the Chebyshev polyno-
mials of the second kind, whose weight function is (1 − x2)1/2. As we saw
in (2.55), an orthogonal coefficient is determined by the ratio of two inte-
grals. Let us begin with the integral in the denominator on the right side
of (2.55), with ω(x) = (1 − x2)1/2, and make the substitution x = cos θ to
give ∫ 1

−1
(1 − x2)1/2[Un(x)]2dx =

∫ π

0
sin2(n+ 1)θ dθ =

1
2
π,

for all n ≥ 0. Thus if bn denotes the coefficient of Un in the orthogonal
series, it follows from (2.55) that

bn =
2
π

∫ π

0
sin θ sin(n+ 1)θ f(cos θ)dθ, (2.99)

for all n ≥ 0.
We can derive a simple relation between the coefficients bn of a series of

the second kind, defined by (2.99), and the coefficients an of the Chebyshev
series, defined by (2.80). For we can write

2 sin θ sin(n+ 1)θ = cosnθ − cos(n+ 2)θ,

for all n ≥ 0, and thus, comparing (2.80) and (2.99), we have

bn =
1
2
(an − an+2), n ≥ 0. (2.100)

We can obtain the relation (2.100) otherwise by formally comparing the
first and second kinds of Chebyshev expansions of a given function, as we
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did above in deriving (2.91) by comparing a Chebyshev series with a power
series. We begin by writing

sin(n+ 1)θ − sin(n− 1)θ = 2 cosnθ sin θ.

On dividing throughout by sin θ, we obtain

Un(x) − Un−2(x) = 2Tn(x), n ≥ 2, (2.101)

and we also have

U0(x) = T0(x) and U1(x) = 2T1(x). (2.102)

Then

1
2
a0T0(x) +

∞∑
r=1

arTr(x) =
1
2

1∑
r=0

arUr(x) +
1
2

∞∑
r=2

ar(Ur(x) − Ur−2(x)).

If we now express the right side of the latter equation as

1
2

1∑
r=0

arUr(x) +
1
2

∞∑
r=2

ar(Ur(x) − Ur−2(x)) =
∞∑

r=0

brUr(x),

it is clear that the relation between the bn and the an is as given above in
(2.100).

To complete this section on the Chebyshev polynomials, we will consider
again the Hermite interpolating polynomial p2n+1(x), defined in (1.38),
which interpolates a given function f(x), and whose first derivative inter-
polates f ′(x), at n+1 arbitrary abscissas x0, x1, . . . , xn. Let us take the xi

to be the zeros of Tn+1 arranged in the order −1 < x0 < x1 < · · · < xn < 1,
so that

xi = cos
(2n− 2i+ 1)π

2n+ 2
, 0 ≤ i ≤ n.

It then follows from Problem 1.1.3 that the fundamental polynomial on the
zeros of Tn+1 is

Li(x) =
Tn+1(x)

(x− xi)T ′
n+1(xi)

,

and on using the expression for the derivative of the Chebyshev polynomial
in Problem 2.2.11, we can write this as

Li(x) = (−1)n−iTn+1(x)
√

1 − x2
i

(n+ 1)(x− xi)
.

It also follows from Problem 1.1.3 and the expressions for the first two
derivatives of the Chebyshev polynomial in Problem 2.2.11 that

L′
i(xi) =

1
2
T ′′

n+1(xi)
T ′

n+1(xi)
=

1
2

xi

1 − x2
i

.
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On substituting these results into (1.39) and (1.40), we find that the Her-
mite interpolating polynomial on the zeros of Tn+1 is given by

p2n+1(x) =
n∑

i=0

[f(xi)ui(x) + f ′(xi)vi(x)],

where

ui(x) =
(
Tn+1(x)
n+ 1

)2 1 − xix

(x− xi)2
(2.103)

and

vi(x) =
(
Tn+1(x)
n+ 1

)2(1 − x2
i

x− xi

)
. (2.104)

Problem 2.2.1 Use integration by parts on (2.62) to show that

Γ(x+ 1) = xΓ(x).

Show that Γ(1) = 1, and Γ(n + 1) = n!, for all integers n ≥ 0, and thus
verify (2.61).

Problem 2.2.2 Use the Leibniz rule (1.83) to obtain

Q(α,β)
n (−1) = (−1)n

(
n+ β
n

)
= (−1)n Γ(n+ β + 1)

Γ(n+ 1)Γ(β + 1)
,

a companion formula for (2.61).

Problem 2.2.3 Verify that Theorem 2.2.1 reduces to Theorem 2.1.4 when
we put α = β = 0.

Problem 2.2.4 Deduce from (2.60) that

Q(−1/2,−1/2)
n (1) =

1
22n

(
2n
n

)
,

and use Stirling’s formula (see Problem 2.1.12) to show that

Q(−1/2,−1/2)
n (1) ∼ 1√

πn
.

Problem 2.2.5 Verify from Theorem 2.2.1 that

Q
(−1/2,−1/2)
n+1 (x) = anxQ

(−1/2,−1/2)
n (x) − cnQ

(−1/2,−1/2)
n−1 (x),

where

an =
2n+ 1
n+ 1

and cn =
4n2 − 1

4n(n+ 1)
,

with Q(−1/2,−1/2)
0 (x) = 1 and Q(−1/2,−1/2)

1 (x) = 1
2x.
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Problem 2.2.6 For x ≥ 1, write

x = cosh θ =
1
2
(eθ + e−θ).

Verify that cosh θ ≥ 1 for all real θ and show also that

cosh(n+ 1)θ + cosh(n− 1)θ = 2 cosh θ coshnθ.

Hence verify by induction, using the recurrence relation (2.72), that

Tn(x) = coshnθ, where x = cosh θ,

for x ≥ 1. Finally, show that

Tn(x) = (−1)n coshnθ, where x = − cosh θ,

for x ≤ −1.

Problem 2.2.7 Deduce from the recurrence relation (2.72) that Tn(1) = 1
and Tn(−1) = (−1)n for all n ≥ 0.

Problem 2.2.8 Using the recurrence relation (2.72), verify that

T5(x) = 16x5 − 20x3 + 5x and T6(x) = 32x6 − 48x4 + 18x2 − 1.

Write T2(T3(x)) = 2(T3(x))2 − 1, and show directly that this simplifies to
give T6(x). Show also that T3(T2(x)) = T6(x). More generally, show that

Tm(Tn(x)) = Tn(Tm(x)) = Tmn(x),

for all integers m,n ≥ 0.

Problem 2.2.9 Verify that

T2n+2(x) = 2T2(x)T2n(x) − T2n−2(x),

for n ≥ 1, with T0(x) = 1 and T2(x) = 2x2 −1, giving a recurrence relation
that computes only the even-order Chebyshev polynomials. Find a recur-
rence relation that computes only the odd-order Chebyshev polynomials.

Problem 2.2.10 Verify that

Tn+k(x)Tn−k(x) − (Tn(x))2 = (Tk(x))2 − 1

for all n ≥ k ≥ 0.

Problem 2.2.11 Use the chain rule of differentiation to show from the
definition of the Chebyshev polynomials in (2.71) that

T ′
n(x) =

n sinnθ
sin θ

and T ′′
n (x) =

−n2 sin θ cosnθ + n sinnθ cos θ
sin3 θ

,

where x = cos θ, and deduce that Tn satisfies the second-order differential
equation

(1 − x2)T ′′
n (x) − xT ′

n(x) + n2Tn(x).
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Problem 2.2.12 By making the substitution x = cos θ, show that
∫ 1

−1
(1 − x2)−1/2[Tr(x)]2dx =

∫ π

0
cos2 rθ dθ =

1
2

∫ π

0
(1 + cos 2rθ) dθ,

and hence show that∫ 1

−1
(1 − x2)−1/2[Tr(x)]2dx =

{
π, r = 0,
1
2π, r > 0.

Problem 2.2.13 Derive the Chebyshev series for [(1 + x)/2]1/2. Hint:
Make the substitution x = cos θ and use the identity

2 cos
1
2
θ cos rθ = cos

(
r +

1
2

)
θ + cos

(
r − 1

2

)
θ.

Problem 2.2.14 Obtain the Chebyshev series for cos−1 x.

Problem 2.2.15 Find the Chebyshev series for (1 − x2)1/2.

Problem 2.2.16 Assuming that the Chebyshev series for sin−1 x, derived
in Example 2.2.1, converges uniformly to sin−1 x on [−1, 1], deduce that

1
12 +

1
32 +

1
52 +

1
72 + · · · =

π2

8
.

Problem 2.2.17 Let

Jr =
∫ 1

−1
(1 − x2)r−1/2dx.

Verify that J0 = π, as obtained in Problem 2.2.12, and use integration by
parts to show that

Jr = (2r − 1)
∫ 1

−1
x2(1 − x2)r−3/2dx = (2r − 1)(Jr−1 − Jr).

Deduce that

Jr =
π (2r)!

22r (r!)2
,

and hence verify (2.83).

Problem 2.2.18 Let x∗
0, . . . , x

∗
n denote the zeros of the Chebyshev poly-

nomial Tn+1, and let ‖ · ‖ denote the weighted square norm, defined by
(2.53), with weight function (1−x2)−1/2. Use the substitution x = cos θ to
show that

‖(x− x∗
0) · · · (x− x∗

n)‖ =
1
2n

(∫ 1

−1
(1 − x2)−1/2[Tn+1(x)]2dx

)1/2

=
π1/2

2n+1/2 .
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Problem 2.2.19 Begin with the Maclaurin series

cos 1
2πx =

∞∑
r=0

(−1)r (πx)2r

22r(2r)!
,

and use the relation (2.91) to compute the first few Chebyshev coefficients
for cos( 1

2πx).

Problem 2.2.20 In the text it is shown that

Un(1) = n+ 1 and Un(−1) = (−1)n(n+ 1).

Deduce these results alternatively by using an induction argument on the
recurrence relation for Un.

Problem 2.2.21 Deduce from (2.97) that the Chebyshev polynomial of
the second kind Un is zero for values of θ such that sin(n + 1)θ = 0 and
sin θ is nonzero. Show that

sin(n+ 1)θ = 0 ⇒ (n+ 1)θ = jπ ⇒ x = cos(jπ/(n+ 1)),

and hence show that Un has all its n zeros in (−1, 1), at the abscissas
x = cos(jπ/(n+ 1)), for 1 ≤ j ≤ n.

Problem 2.2.22 Use the relations (2.101) and (2.102), which express the
Chebyshev polynomials Tn, to derive an expression for every monomial in
terms of the Un, like those given for x2n+1 and x2n in terms of the Tn, in
(2.87) and (2.88), respectively.

Problem 2.2.23 Deduce from (2.71) and (2.97) that

T ′
n+1(x) = (n+ 1)Un(x),

and hence show that T ′
n(1) = n2.

Problem 2.2.24 Show that

Un(x) = Tn(x) + xUn−1(x), n ≥ 1,

and deduce that

Un(x) =
n∑

r=0

xrTn−r(x), n ≥ 0.

Problem 2.2.25 Deduce from (2.101) that

U2n+1(x) = 2
n∑

r=0

T2n+1−2r(x)

and

U2n(x) = T0(x) + 2
n−1∑
r=0

T2n−2r(x).
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2.3 Finite Point Sets

In the last section we constructed a sequence of polynomials (qω
n ) that are

orthogonal on [−1, 1] with respect to a given weight function ω, and we
used these as a basis for constructing best approximations for functions
defined on [−1, 1].

We will now consider best approximations for functions that are defined
on a finite set of points, say X = {x0, x1, . . . , xN}. Associated with each
point xj we will assign a positive number ωj , called a weight. Then, given
a function f defined on the point set X, we seek a polynomial p ∈ Pn that
minimizes

N∑
j=0

ωj [f(xj) − p(xj)]2, (2.105)

which we will call a least squares approximation to f on X with respect to
the given weights. We now define

‖g‖ =


 N∑

j=0

ωj [g(xj)]2




1/2

, (2.106)

and we can show that this is a norm, as in Definition 2.1.1. It is analogous
to the norm defined by (2.53).

Following the same method as we used in Section 2.2 for weighted square
norm approximations on the interval [−1, 1], we construct a sequence of
polynomials (qω

n )N
n=0, where qω

n is of degree n, has leading coefficient unity,
and satisfies

N∑
j=0

ωjx
r
jq

ω
n (xj) = 0, 0 ≤ r < n. (2.107)

We find that the orthogonal polynomials qω
n satisfy the recurrence relation

qω
n+1(x) = (x− αn)qω

n (x) − βnq
ω
n−1(x), (2.108)

where

αn =
N∑

j=0

ωjxj [qω
n (xj)]2/

N∑
j=0

ωj [qω
n (xj)]2 (2.109)

and

βn =
N∑

j=0

ωj [qω
n (xj)]2/

N∑
j=0

ωj [qω
n−1(xj)]2. (2.110)

Note that the last two relations are analogous to (2.51) and (2.52), respec-
tively. We then discover that

‖f − p‖ =


 N∑

j=0

ωj [f(xj) − p(xj)]2




1/2
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is minimized over all p ∈ Pn, with n ≤ N , by choosing p = pn, where

pn(x) =
n∑

r=0

arq
ω
r (x) (2.111)

and

ar =
N∑

j=0

ωjf(xj)qω
r (xj)/

N∑
j=0

ωj [qω
r (xj)]2, 0 ≤ r ≤ n. (2.112)

We note that pN must be the interpolating polynomial for f on the set
X, since then ‖f − pN‖ = 0, and this shows why we have restricted n to
be not greater than N . We also observe that the sequence of orthogonal
polynomials is unchanged if we multiply all the weights by any positive
constant.

It can sometimes be more convenient to work with orthogonal polynomi-
als that do not have leading coefficient 1. Suppose Qω

r (x) = crq
ω
r (x), where

cr �= 0 may depend on r, but is independent of x. Then it follows from
(2.111) and (2.112) that if we express the best square norm approximation
to f on X as

pn(x) =
n∑

r=0

arQ
ω
r (x), (2.113)

with n ≤ N , then the coefficient ar is given by

ar =
N∑

j=0

ωjf(xj)Qω
r (xj)/

N∑
j=0

ωj [Qω
r (xj)]2, 0 ≤ r ≤ n. (2.114)

Note that the polynomials Qω
r will satisfy the simple recurrence relation

(2.108) only if every cr is equal to 1.

Example 2.3.1 To illustrate the the foregoing material, let us choose the
set X as {−1, 0, 1}, with weights ωj all equal, and let f be defined on X
by the following table:

x −1 0 1
f(x) 1 2 4

We have qω
0 (x) = 1 and qω

1 (x) = x. Then we find that α1 = 0 and β1 = 2
3 ,

so that qω
2 (x) = x2 − 2

3 . On using (2.112) we find that the orthogonal
coefficients are a0 = 7

3 , a1 = 3
2 , and a2 = 1

2 . Thus the best approximation
in P1 is 7

3 + 3
2x, while that in P2 is 7

3 + 3
2x+ 1

2 (x2 − 2
3 ). As expected, the

last polynomial interpolates f on X. ■

We require some further notation, writing
∑ ′

to denote a sum in which
the first term is halved, and

∑ ′′
to denote a sum in which both the first



84 2. Best Approximation

term and the last terms are halved. Thus

N∑
j=0

′
uj =

1
2
u0 + u1 + · · · + uN (2.115)

and
N∑

j=0

′′
uj =

1
2
u0 + u1 + · · · + uN−1 +

1
2
uN . (2.116)

Now let X = {x0, x1, . . . , xN}, where xj = cos(πj/N), 0 ≤ j ≤ N , and let

ωj =




1
2 , j = 0 and N,

1, 1 ≤ j ≤ N − 1.

Thus X is the set of extreme points of the Chebyshev polynomial TN . We
can verify (see Problem 2.3.1) that

N∑
j=0

′′
Tr(xj)Ts(xj) = 0, r �= s, (2.117)

and so the Chebyshev polynomials are orthogonal on the extreme points of
TN with respect to the given set of weights. It then follows from (2.113) and
(2.114) that the best weighted square norm approximation with respect to
this set of points and weights is

pn(x) =
n∑

r=0

arTr(x), (2.118)

where

ar =
N∑

j=0

′′
f(xj)Tr(xj)/

N∑
j=0

′′
[Tr(xj)]2, 0 ≤ r ≤ n. (2.119)

We find (again see Problem 2.3.1) that

N∑
j=0

′′
[Tr(xj)]2 =




N, r = 0 or N,

1
2N, 1 ≤ r ≤ N − 1.

(2.120)

On combining (2.118), (2.119), and (2.120) we see that the best weighted
square norm approximation to f on the extreme points of TN is

pn(x) =
n∑

r=0

′
αrTr(x), n ≤ N, (2.121)
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say, where

αr =
2
N

N∑
j=0

′′
f(xj)Tr(xj), 0 ≤ r ≤ n. (2.122)

If we choose n = N in (2.121), the least squares approximation must co-
incide with the interpolating polynomial for f on the extreme points of
TN . We now derive a connection between the above coefficients αr and the
Chebyshev coefficients ar, defined by (2.79). First we note that

T2kN±r(xj) = cos
(

(2kN ± r)πj
N

)
= cos

(
2kπj ± rπj

N

)
= cos

(
rπj

N

)
,

and thus
T2kN±r(xj) = Tr(xj). (2.123)

Let us assume that the Chebyshev series for f , given by (2.81), converges
uniformly to f on [−1, 1]. Then it follows from (2.122) that

αr =
2
N

N∑
j=0

′′
( ∞∑

s=0

′
asTs(xj)

)
Tr(xj)

=
2
N

∞∑
s=0

′
as

N∑
j=0

′′
Ts(xj)Tr(xj). (2.124)

We observe from (2.123) and the orthogonality property (2.117) that the
only nonzero summations over j in the second line of (2.124) are those for
which s = r, 2N − r, 2N + r, 4N − r, 4N + r, and so on. Thus, for r �= 0
or N ,

αr = ar +
∞∑

k=1

(a2kN−r + a2kN+r), (2.125)

and we find that (2.125) holds also for r = 0 and N , on examining these
cases separately.

We saw in the last section that the Chebyshev polynomials are orthogonal
on the interval [−1, 1] with respect to a certain weight function, and we
have seen above that they are orthogonal on the extreme points of TN

with respect to certain weights. We now show that they satisfy a third
orthogonality property. For the Chebyshev polynomials are also orthogonal
on the set X = {x∗

1, . . . , x
∗
N} with all weights equal, where the x∗

j are the
zeros of TN . We can verify that (see Problem 2.3.2)

N∑
j=1

Tr(x∗
j )Ts(x∗

j ) =




0, r �= s or r = s = N,

1
2N, r = s �= 0 or N,

N, r = s = 0.

(2.126)
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Then, following the same method as we used in deriving (2.121) and (2.122),
we find that the best square norm approximation to the function f on the
zeros of TN is

pn(x) =
n∑

r=0

′
α∗

rTr(x), n ≤ N − 1, (2.127)

where

α∗
r =

2
N

N∑
j=1

f(x∗
j )Tr(x∗

j ). (2.128)

If we choose n = N − 1 in (2.127), the least squares approximation is just
the interpolating polynomial for f on the zeros of TN .

We can express α∗
r as a sum involving the Chebyshev coefficients, using

the same method as we used above to derive the expression (2.125) for αr.
We first verify that

T2kN±r(x∗
j ) = (−1)kTr(x∗

j ). (2.129)

Assuming that the Chebyshev series for f converges uniformly to f on
[−1, 1], we find that

α∗
r = ar +

∞∑
k=1

(−1)k(a2kN−r + a2kN+r) (2.130)

for 0 ≤ r ≤ N − 1, and we see from (2.125) and (2.130) that

1
2
(αr + α∗

r) = ar +
∞∑

k=1

(a4kN−r + a4kN+r). (2.131)

The three expressions (2.125), (2.130), and (2.131), connecting the ar with
the coefficients αr and α∗

r , suggest a practical method of computing the
Chebyshev coefficients ar. We choose a value of N and then compute αr

and α∗
r , using (2.125) and (2.130). If αr and α∗

r differ by more than an
acceptable amount, we increase N and recompute αr and α∗

r . When they
agree sufficiently, we use 1

2 (αr + α∗
r) as an approximation to ar.

Problem 2.3.1 Show that Tr(xj) = cos(πrj/N), where the xj are the
extreme points of TN , and hence express the left side of (2.117) as a sum
of cosines, using the relation

cos(θ + φ) + cos(θ − φ) = 2 cos θ cosφ.

Evaluate the sum by using the identity

cos kθ =
sin(k + 1

2 )θ − sin(k − 1
2 )θ

2 sin 1
2θ

,

and hence verify the orthogonality relation (2.117). Similarly verify (2.120).
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Problem 2.3.2 With x∗
j = cos (2j−1)π

2N , show that

Tr(x∗
j ) = cos

(2j − 1)rπ
2N

and follow the method of the last problem to verify (2.126). Show also that

T2kN±r(x∗
j ) = (−1)kTr(x∗

j ).

Problem 2.3.3 Verify (2.130) and (2.131).

Problem 2.3.4 Show that αr, defined by (2.122), is the approximation to
the Chebyshev coefficient ar that is obtained by estimating the integral

ar =
2
π

∫ π

0
f(cos θ) cos rθ dθ

(see (2.80)) using the composite form of the trapezoidal rule. Show also
that α∗

r , defined by (2.128), is the approximation obtained by applying the
composite midpoint rule to the same integral. (These integration rules are
discussed in Chapter 3.)

2.4 Minimax Approximation

A best approximation with respect to the maximum norm, defined by (2.5),
is called a minimax approximation, since we wish to minimize, over all pn

in Pn, the maximum value of the error |f(x)− pn(x)| over [−1, 1]. For con-
venience, we will continue to work with the interval [−1, 1], although what
we have to say about minimax approximations may be applied to any finite
interval by making a linear change of variable. Minimax approximations,
which are also called uniform approximations, are important because of the
following famous theorem due to Karl Weierstrass (1815–1897).

Theorem 2.4.1 Given any f ∈ C[−1, 1] and any ε > 0, there exists a
polynomial p such that

|f(x) − p(x)| < ε, −1 ≤ x ≤ 1. ■ (2.132)

There are many proofs of this key theorem and we will give two in Chapter
7, based on proofs given by two mathematicians who were born in the
same year, S. N. Bernstein (1880–1968) and L. Fejér (1880–1959). As we
will see in this section, the property that characterizes the error f − pn of
a minimax polynomial pn ∈ Pn for a function f ∈ C[−1, 1] is one that is
shared with the Chebyshev polynomial Tn+1. As we saw in the last section,
the polynomial Tn+1 attains its maximum modulus on [−1, 1] at n + 2
points belonging to [−1, 1], and Tn+1(x) alternates in sign on these points.
It is useful to have a name for this property, which we give now.
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Definition 2.4.1 A function E(x) is said to equioscillate on n+ 2 points
of [−1, 1] if for −1 ≤ x1 < x2 < · · · < xn+2 ≤ 1,

|E(xj | = max
−1≤x≤1

|E(x)|, 1 ≤ j ≤ n+ 2,

and
E(xj+1) = −E(xj), 1 ≤ j ≤ n+ 1. ■

Thus Tn+1 equioscillates on the n + 2 points tj = cos[(j − 1)π/(n + 1)],
1 ≤ j ≤ n + 2, since Tn+1(tj) = (−1)j−1 and the maximum modulus of
Tn+1 on [−1, 1] is 1.

Example 2.4.1 Consider the function

E(x) = |x| − 1
8

− x2

on [−1, 1]. We can easily check that

E(−1) = −E(− 1
2 ) = E(0) = −E( 1

2 ) = E(1).

The function E is differentiable on [−1, 1] except at x = 0. For 0 < x ≤ 1,
we have E(x) = x− 1

8 − x2 and

E′(x) = 1 − 2x = 0 ⇒ x =
1
2
.

Thus E has a turning value at x = 1
2 , and we similarly find that E has

another turning value at x = − 1
2 . It follows that E attains its maximum

modulus on [−1, 1] at the five points x = 0,± 1
2 ,±1, and E equioscillates

on these points. As we will see from Theorem 2.4.2, 1
8 + x2 is the minimax

approximation in P3 for |x| on [−1, 1]. Note that although 1
8 + x2 is a

polynomial of degree two, it is the minimax approximation to |x| on [−1, 1]
out of all polynomials in P3. ■

Theorem 2.4.2 Let f ∈ C[−1, 1] and suppose there exists p ∈ Pn such
that f − p equioscillates on n+ 2 points belonging to [−1, 1]. Then p is the
minimax approximation in Pn for f on [−1, 1].

Proof. Suppose p is not the minimax approximation. We will prove the
theorem by showing that this assumption cannot be true. (We then say
that we have obtained a contradiction to the initial assumption. This style
of proof is called reductio ad absurdum.) If p is not the minimax approxi-
mation, there must exist some q ∈ Pn such that p+ q ∈ Pn is the minimax
approximation. Now let us compare the graphs of f−p, which equioscillates
on n+ 2 points on [−1, 1], and f − p− q. Since the latter error curve must
have the smaller maximum modulus, the effect of adding q to p must be
to reduce the size of the modulus of the error function f − p on all n + 2
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equioscillation points. In particular, this must mean that q alternates in
sign on these n+ 2 points, and thus must have at least n+ 1 zeros. Since
q ∈ Pn, this is impossible, contradicting our initial assumption that p is
not the minimax approximation. ■

Example 2.4.2 For each n ≥ 0, let us define

p(x) = xn+1 − 1
2n
Tn+1(x),

so that p ∈ Pn. (See Problem 2.4.3 for a refinement of this observation.)
Then, since

xn+1 − p(x) =
1
2n
Tn+1(x)

equioscillates on n+ 2 points belonging to [−1, 1], it follows from Theorem
2.4.2 that p is the minimax approximation Pn for xn+1 on [−1, 1]. From
Theorem 2.2.5 we see that the same p is also the best approximation for
xn+1 on [−1, 1] with respect to the weighted square norm, with weight
ω(x) = (1 − x2)−1/2. Finally, if we write ‖ · ‖∞ to denote the maximum
norm, defined by (2.5), we deduce from the minimax approximation for
xn+1 that ‖(x − x0)(x − x1) · · · (x − xn)‖∞ is minimized over all choices
of the abscissas xj by choosing the xj as the zeros of Tn+1. Theorem 2.2.6
shows us that this also holds when we replace ‖·‖∞ by the weighted square
norm, defined by (2.53) with weight function (1 − x2)−1/2. ■

In Theorem 2.4.2 we showed that the equioscillation property is a sufficient
condition for a minimax approximation. The next theorem, whose proof is a
little harder, shows that the equioscillation property is also necessary, which
is why we call it the characterizing property of minimax approximation.

Theorem 2.4.3 Let f ∈ C[−1, 1], and let p ∈ Pn denote a minimax ap-
proximation for f on [−1, 1]. Then there exist n + 2 points on [−1, 1] on
which f − p equioscillates.

Proof. Let us write E(x) = f(x) − p(x) and assume that E equioscillates
on fewer than n + 2 points. We will show that this assumption leads to a
contradiction. We can exclude the case where E is the zero function, for
then there is nothing to prove. Then we argue that E must equioscillate
on at least two points, for otherwise, we could add a suitable constant to
p so as to reduce the maximum modulus. Thus we can assume that E
equioscillates on k points, where 2 ≤ k < n + 2. Now let us choose k − 1
points,

−1 < x1 < x2 < · · · < xk−1 < 1,

so that there is one equioscillation point of E on each of the intervals

[−1, x1), (x1, x2), . . . , (xk−2, xk−1), (xk−1, 1].
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Now we construct a polynomial q such that

q(x) = ±C(x− x1)(x− x2) · · · (x− xk−1),

with C = 1/‖(x− x1)(x− x2) · · · (x− xk−1)‖∞. It follows from the choice
of C that ‖q‖∞ = 1. Finally we choose the plus or minus sign so that q
takes the same sign as E on all points where ‖E‖∞ is attained. Now let
S− denote the set of points on [−1, 1] where E(x)q(x) ≤ 0, and let S+
denote the set of points on [−1, 1] where E(x)q(x) > 0. Thus S+ includes
all points where ‖E‖∞ is attained, and the union of S− and S+ is simply
the interval [−1, 1]. We now define

d = max
x∈S−

|E(x)| < ‖E‖∞, (2.133)

choose any θ > 0, and define ξ as any point in [−1, 1] for which

|E(ξ) − θq(ξ)| = ‖E − θq‖∞. (2.134)

Obviously, ξ ∈ S− or ξ ∈ S+. If ξ ∈ S−, it follows from (2.134) and (2.133)
that

‖E − θq‖∞ = |E(ξ)| + θ|q(ξ)| ≤ d+ θ. (2.135)

On the other hand, if ξ ∈ S+, it follows from (2.134) that

‖E − θq‖∞ < max{|E(ξ)|, θ|q(ξ)|} ≤ max{‖E‖∞, θ}. (2.136)

In view of the definition of d in (2.133), let us now restrict the value of θ
so that

0 < θ < ‖E‖∞ − d.

Then, whether ξ is in S− or in S+, both (2.135) and (2.136) yield

‖E − θq‖∞ < ‖E‖∞.

This contradicts our assumption that k < n+ 2, and completes the proof.
Note that the polynomial q, defined above, is in Pk−1, and so we are able
to force the above contradiction only if k < n + 2, so that k − 1 ≤ n and
thus q is in Pn. ■

The uniqueness of a best approximation for the weighted square norm,
discussed in the previous section, follows from the way we derived it as
the unique solution of a system of linear equations. We now show how the
uniqueness of a minimax approximation can be deduced by deploying the
same ideas used above in the proof of Theorem 2.4.2.

Theorem 2.4.4 If f ∈ C[−1, 1], there is a unique minimax approximation
in Pn for f on [−1, 1].
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Proof. Let p ∈ Pn denote a minimax approximation for f , and if this
approximation is not unique, let p + q ∈ Pn denote another minimax ap-
proximation. Then, using the same kind of argument as in the proof of
Theorem 2.4.2, we argue that q ∈ Pn must be alternately ≥ 0 and ≤ 0 on
the n + 2 equioscillation points of f − p. We deduce that this is possible
only when q(x) ≡ 0, which completes the proof. ■

We saw in the last section that the best approximation with respect to a
weighted square norm is an interpolating polynomial for the given function.
The above equioscillation theorems show that this is true also for minimax
approximations, and we state this as a theorem.

Theorem 2.4.5 Let f ∈ C[−1, 1] and let p ∈ Pn denote the minimax
polynomial for f . Then there exist n+ 1 points in [−1, 1] on which p inter-
polates f . ■

It is convenient to introduce a new item of notation in the following defi-
nition.

Definition 2.4.2 We write

En(f) = ‖f − p‖∞, (2.137)

where ‖ · ‖∞ denotes the maximum norm on [−1, 1], and p ∈ Pn is the
minimax approximation for f ∈ C[−1, 1]. ■

Theorem 2.4.5 leads to an estimate of the minimax error En(f) that
is similar to the estimate given in Theorem 2.2.7 for the error of a best
approximation with respect to a weighted square norm.

Theorem 2.4.6 If f ∈ Cn+1[−1, 1], then the error of the minimax poly-
nomial p ∈ Pn for f on [−1, 1] satisfies

En(f) = ‖f − p‖∞ =
1
2n

|f (n+1)(ξ)|
(n+ 1)!

, (2.138)

where ξ ∈ (−1, 1).

Proof. In the light of Theorem 2.4.5, let the minimax polynomial p inter-
polate f at the points x0, x1, . . . , xn in [−1, 1]. Then, from (1.25),

f(x) − p(x) = (x− x0)(x− x1) · · · (x− xn)
f (n+1)(ξx)
(n+ 1)!

,

where ξx ∈ (−1, 1), and thus

‖f − p‖∞ ≥ ‖(x− x0)(x− x1) · · · (x− xn)‖∞
min |f (n+1)(x)|

(n+ 1)!
, (2.139)



92 2. Best Approximation

the minimum being over [−1, 1]. It follows from our discussion in Example
2.4.2 that

‖(x− x0) · · · (x− xn)‖∞ ≥ ‖(x− x∗
0) · · · (x− x∗

n)‖∞ =
1
2n
,

where the x∗
j denote the zeros of Tn+1, and thus (2.139) yields

‖f − p‖∞ ≥ 1
2n

min |f (n+1)(x)|
(n+ 1)!

. (2.140)

If p∗ denotes the interpolating polynomial for f on the zeros of Tn+1, then,
again using the error term for interpolation (1.25), we obtain the inequality

‖f − p∗‖∞ ≤ ‖(x− x∗
0)(x− x∗

1) · · · (x− x∗
n)‖∞

max |f (n+1)(x)|
(n+ 1)!

,

and so

‖f − p‖∞ ≤ ‖f − p∗‖∞ ≤ 1
2n

max |f (n+1)(x)|
(n+ 1)!

. (2.141)

Finally, the theorem follows from (2.140), (2.141), and the continuity of
f (n+1). ■

Example 2.4.3 If we apply Theorem 2.4.6 to the function ex, we obtain

1
2n

e−1

(n+ 1)!
≤ ‖ex − pn(x)‖∞ ≤ 1

2n

e

(n+ 1)!
,

where pn denotes the minimax polynomial in Pn for ex on [−1, 1]. For
example, with n = 6 and 7, we have the bounds

0.11 × 10−5 < ‖ex − p6(x)‖∞ < 0.85 × 10−5

and
0.71 × 10−7 < ‖ex − p7(x)‖∞ < 0.53 × 10−6. ■

The next theorem shows that the minimax polynomial is not the only
approximant to f that has an error term of the form (2.138).

Theorem 2.4.7 If p∗
n denotes the interpolating polynomial on the zeros

of the Chebyshev polynomial Tn+1 for f ∈ Cn+1[−1, 1] , then

‖f − p∗
n‖∞ =

1
2n

|f (n+1)(η)|
(n+ 1)!

, (2.142)

where η ∈ (−1, 1).

Proof. This is easily verified by adapting the proof of Theorem 2.4.6, and
the details are left to the reader. ■
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Example 2.4.4 Let p∗
n denote the interpolating polynomial for ex on the

zeros of the Chebyshev polynomial Tn+1. Then it follows from Theorem
2.4.7 that

max
−1≤x≤1

|ex − p∗
n(x)| =

eηn

2n(n+ 1)!
, (2.143)

where −1 < ηn < 1. It is clear that the sequence of polynomials (p∗
n)

converges uniformly to ex on [−1, 1]. ■

We saw in Section 2.2 that when the weight function is even, the best
weighted square norm approximation for a function f is even or odd, ac-
cording as f is even or odd, respectively. We can deduce from the equioscil-
lation property (see Problems 2.4.9 and 2.4.10) that a minimax approxi-
mation for a function f is even or odd, according as f is even or odd,
respectively.

It is clear from Example 2.4.1 that 1
8 +x2 is the minimax approximation

in P2 for |x| on [−1, 1]. However, we found that the error function equioscil-
lates on five points, and so, by Theorem 2.4.2, 1

8 + x2 is also the minimax
approximation in P3 for |x|, as stated in Example 2.4.1. This shows that
if we seek a minimax polynomial pn ∈ Pn for a given function f , we could
find that f − pn has more than n + 2 equioscillation points. For example,
the minimax polynomial in P0 (a constant) for the function Tk on [−1, 1],
with k > 0, is simply the zero function. In this case, the error function has
k + 1 equioscillation points. The following theorem gives a condition that
ensures that f − pn has exactly n+ 2 equioscillation points.

Theorem 2.4.8 If f ∈ Cn+1[−1, 1] and f (n+1) has no zero in (−1, 1), then
the error of the minimax polynomial p ∈ Pn for f on [−1, 1] equioscillates
on n+ 2 points, and on no greater number of points.

Proof. Suppose that f − p has k equioscillation points in the interior
of [−1, 1]. Since there can be at most two equioscillation points at the
endpoints x = ±1, Theorem 2.4.3 shows that k ≥ n. This means that
f ′ − p′ has at least k ≥ n zeros in (−1, 1). On applying Rolle’s theorem,
we deduce that f ′′ − p′′ has at least k − 1 zeros in (−1, 1). Since the nth
derivative of p′ is zero, the repeated application of Rolle’s theorem n times
to the function f ′ −p′ shows that f (n+1) has at least k−n zeros in (−1, 1).
Since, by our assumption, f (n+1) has no zero in (−1, 1), we deduce that
k = n, and this completes the proof. ■

Apart from the approximation of xn+1 by a polynomial in Pn, and some
simple cases involving low-order polynomial approximations for a few func-
tions, we have said nothing about how to compute minimax approxima-
tions. We now discuss a class of algorithms based on the work of E. Ya.
Remez (1896–1975) in the 1930s.

Algorithm 2.4.1 The following algorithm computes a sequence of poly-
nomials that converges uniformly to the minimax approximation p ∈ Pn
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for a given function f ∈ C[−1, 1]. Corresponding to each polynomial in the
sequence there is a set X of n+ 2 points. This set of points converges to a
set of points in [−1, 1] on which the error f − p equioscillates.

Step 1 Choose an initial set X = {x1, x2, . . . , xn+2} ⊂ [−1, 1].

Step 2 Solve the system of linear equations

f(xj) − q(xj) = (−1)je, 1 ≤ j ≤ n+ 2,

to obtain a real number e and a polynomial q ∈ Pn.

Step 3 Change the set X (as described below) and go to Step 2
unless a “stopping criterion” has been met. ■

Let us denote a polynomial q ∈ Pn that occurs in Step 2 of the above
Remez algorithm by

q(x) = a0 + a1x+ · · · + anx
n.

We now verify that, provided that the xj are distinct, the system of linear
equations in Step 2 has a nonsingular matrix, and so the linear system has
a unique solution. The matrix associated with these equations is

A =




1 x1 x2
1 · · · xn

1 −e
1 x2 x2

2 · · · xn
2 +e

...
...

...
...

...
...

1 xn+2 x2
n+2 · · · xn

n+2 (−1)n+2e


 .

Now, a necessary and sufficient condition for a matrix to be singular is that
its columns be linearly dependent. If the columns of the above matrix are
denoted by c1, c2, . . . , cn+2, and they are linearly dependent, then there
exist real numbers λ1, λ2, . . . , λn+2, not all zero, such that

λ1c1 + λ2c2 + · · · + λn+2cn+2 = 0, (2.144)

where 0 is the zero column vector with n+ 2 elements. If we write

q(x) = λ1 + λ2x+ · · · + λn+1x
n,

then the vector equation (2.144) is equivalent to the scalar system of linear
equations

q(xj) + λn+2(−1)je = 0, 1 ≤ j ≤ n+ 2.

Since this would imply that q ∈ Pn is alternately ≥ 0 and ≤ 0 on the
n+2 distinct xj , this is impossible, and we conclude that the above matrix
A is nonsingular. Thus, provided that the xj are distinct, the system of
equations in Step 2 of the Remez algorithm always has a unique solution.
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We usually choose the set X in Step 1 of the Remez algorithm to be the
set of n+ 2 extreme points of Tn+1. Then we see from Example 2.4.2 that
for the special case of f(x) = xn+1, this choice of X immediately gives us
the minimax polynomial when we solve the linear system in Step 2.

The solution of the linear system in Step 2 yields a polynomial q ∈ Pn

and some number e. It follows from Theorem 2.4.2 that if ‖f − q‖∞ is
sufficiently close to |e|, then q must be close to the minimax polynomial,
and we would then terminate the algorithm. Otherwise, if ξ is a point such
that |f(ξ) − q(ξ)| = ‖f − q‖∞, we change the point set X by including ξ
and deleting one of the existing points in X so that f − q still alternates
in sign on the new point set. In the scheme that we have just proposed,
we change only one point each time we carry out Step 3. There is a second
version of the algorithm, which converges more rapidly, in which we amend
the point set X by including n+ 2 local extreme values of f − q and delete
existing points of X so that f − q still alternates in sign on the new point
set.

Suppose f is an even function and we seek its minimax approximation
in P2n+1. Let us choose as the initial set X the 2n + 3 extreme points of
T2n+2. Thus X consists of the abscissa x = 0 and n + 1 pairs of abscissas
of the form ±xj . The minimax polynomial p must be an even polynomial
(see Problem 2.4.9), and is therefore of degree 2n or less. We can then
see from the symmetry in the linear equations in Step 2 that the same
is true of the polynomial q. The linear equations in Step 2 thus contain
only n + 2 coefficients, namely, e and the n + 1 coefficients to determine
p. Because of the symmetry in X, we need write down only the n + 2
equations corresponding to the nonnegative abscissas in X. We can see that
this simplification persists as we work through the algorithm. At each stage
the set X is symmetric with respect to the origin, and the polynomial q is
even. A corresponding simplification also occurs when we apply the Remez
algorithm to an odd function.

Example 2.4.5 Let us use the Remez algorithm to compute the minimax
polynomial in P3 for 1/(1 + x2) on [−1, 1]. We require five equioscillation
points, and initially in Step 1 we choose the set of extreme points of T4,

X =
{

−1,− 1
2

√
2, 0, 1

2

√
2, 1
}
.

In Step 2 let us write q(x) = a0+a1x+a2x
2+a3x

3. We see that the solution
of the system of five linear equations is obtained by choosing a1 = a3 = 0
and solving the three equations corresponding to x = 0, 1

2

√
2, and 1. This

is in agreement with our remark above concerning the application of the
Remez algorithm to an even function. We thus have the equations
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1 − a0 = e,
2
3

− a0 − 1
2
a2 = −e,

1
2

− a0 − a2 = e,

whose solution is a0 = 23
24 , a2 = − 1

2 , and e = 1
24 ≈ 0.041667. In this case,

the error function has just one turning value in (0, 1). Although we could
now differentiate the error function to determine the turning value, this
would not be in the spirit of the algorithm. Instead, we simply evaluate the
error function on a suitably dense set of points on [0, 1], say at intervals of
0.01. We find that the extreme values on this finite point set are as follows:

x 0 0.64 1

f(x) − p(x) 0.041667 −0.044112 0.041667

We now change the point set to X = {−1,−0.64, 0, 0.64, 1} and go to Step
2. This time the solution of the linear system is a0 = 0.957111, a2 = − 1

2 ,
and e = 0.042889, to six decimal places. We evaluate the new error function
on the same finite set of points and find that the extreme values are again at
x = 0, 0.64, and 1, where f−q assumes the values 0.042889, −0.042890, and
0.042889, respectively. Since the setX cannot be changed further, we accept
the current polynomial q as being sufficiently close to the true minimax
polynomial p, and terminate the algorithm. If we wish greater accuracy we
can repeat the calculation, but evaluate the error at each stage on a finer
grid of points. If we return to the original error function f − q and evaluate
it at intervals of 0.001 in the vicinity of 0.64, we find that this extreme point
is more precisely given by 0.644, where the value of f − q is −0.044120.
Therefore, we now change the point set toX = {−1,−0.644, 0, 0.644, 1} and
go to Step 2. This time the solution of the linear system is a0 = 0.957107,
a2 = − 1

2 , and e = 0.042893, to six decimal places. We evaluate the new
error function at intervals of 0.01, and again refine the extreme point near
0.64. We find that the extreme values are

x 0 0.644 1

f(x) − q(x) 0.042893 −0.042893 0.042893

Thus we have the polynomial 0.957107 − 0.5x2 as a refined estimate of
p, with minimax error 0.042893. In fact, for the function in this example,
we can find p exactly (see Problem 2.4.7). This serves as a check on our
calculations here. We can see that our last estimate of p above is correct
to six decimal places. ■

We now state and prove a theorem, due to C. J. de la Vallée Poussin
(1866–1962), which we can apply to give lower and upper bounds for the
minimax error after each iteration of the Remez algorithm.
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Theorem 2.4.9 Let f ∈ C[−1, 1] and q ∈ Pn. Then if f − q alternates in
sign on n+ 2 points

−1 ≤ x1 < x2 < · · · < xn+2 ≤ 1,

we have
min

j
|f(xj) − q(xj)| ≤ ‖f − p‖∞ ≤ ‖f − q‖∞, (2.145)

where p ∈ Pn denotes the minimax approximation for f on [−1, 1].

Proof. We need concern ourselves only with the left-hand inequality in
(2.145), since the right-hand inequality follows immediately from the defi-
nition of p as the minimax approximation. Now let us write

(f(xj) − q(xj)) − (f(xj) − p(xj)) = p(xj) − q(xj). (2.146)

If the left-hand inequality in (2.145) does not hold, then the right-hand
inequality in the following line must hold:

|f(xj) − p(xj)| ≤ ‖f − p‖∞ < |f(xj) − q(xj))|, 1 ≤ j ≤ n+ 2.

The left hand inequality above is a consequence of the definition of the
norm. It follows that the sign of the quantity on the left side of (2.146)
is that of f(xj) − q(xj), which alternates over the xj . Thus p − q ∈ Pn

alternates in sign on n+ 2 points, which is impossible. This completes the
proof. ■

The above theorem has the following obvious application to the Remez
algorithm.

Theorem 2.4.10 At each stage in the Remez algorithm, we have

|e| ≤ En(f) ≤ ‖f − q‖∞, (2.147)

where En(f) is the minimax error, and e and q are obtained from the
solution of the linear equations in Step 2 of the algorithm.

Proof. From the way e and q are constructed in Step 2 of the algorithm,
f − q alternates in sign on the n+ 2 points xj belonging to the set X, and

|e| = |f(xj) − q(xj)|, 1 ≤ j ≤ n+ 2.

Hence (2.147) follows immediately from (2.145). ■

Let e(i) and q(i) denote the number e and the polynomial q that occur in
the ith stage of the Remez algorithm. The sequence

(|e(i)|) increases, and

the sequence
(‖f − q(i)‖∞

)
decreases, and in principle both sequences

converge to the common limit En(f). In practice, these limits are usually
not attained, because we evaluate the error function at each stage at only a
finite number of points. However, the inequalities (2.147) provide a reliable
indicator of how close we are to the minimax polynomial at each stage.
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Example 2.4.6 To illustrate the second version of the Remez algorithm,
mentioned above, in which we amend the point set X by including n + 2
local extreme values of f − q, let us find the minimax p ∈ P3 for ex on
[−1, 1]. We will take the initial set X as the set of extreme points of T4,
as we did in Example 2.4.5. The solution of the linear equations in Step 2
then yields, to six decimal places, e = 0.005474, and

q(x) = 0.994526 + 0.995682x+ 0.543081x2 + 0.179519x3.

On evaluating f−q at intervals of 0.01, we find that it has extreme values at
x = −1, −0.68, 0.05, 0.73, and 1. The error f−q has the value e = 0.005474
at x = ±1, by construction, and has the following values at the three
interior extreme points:

x −0.68 0.05 0.73

f(x) − q(x) −0.005519 0.005581 −0.005537

If we now evaluate f − q at intervals of 0.001 in the vicinity of the interior
extreme points, we can refine these to give −0.683, 0.049, and 0.732. We
therefore amend the set X, making three changes to give

X = {−1,−0.683, 0.049, 0.732, 1},

and repeat Step 2. This time we obtain e = 0.005528, and

q(x) = 0.994580 + 0.995668x+ 0.542973x2 + 0.179534x3.

When we evaluate f − p at intervals of 0.01, we find that it has extreme
points at x = −1, −0.68, 0.05, 0.73, and 1, where it assumes the values
±0.005528. We therefore accept this polynomial q as being sufficiently close
to the minimax approximation p. The interior equioscillation points are
more precisely −0.682, 0.050, and 0.732. ■

If a function is defined on a set X = {x0, x1, . . . , xN}, we can define a
norm

‖f‖ = max
0≤j≤N

|f(xj)|,

and seek a polynomial p ∈ Pn, with n ≤ N , that minimizes ‖f −p‖. This is
called a minimax approximation on the set X. Such minimax approxima-
tions behave much like those on a finite interval, as we have discussed in this
section. For example, with n < N , the error function f − p equioscillates
on n+ 2 points in X. Also, when using a Remez algorithm, we can expect
to locate a minimax polynomial on a finite interval only approximately, as
we saw above, whereas we can find a minimax polynomial on a finite point
set X precisely.
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Problem 2.4.1 Show that the minimax polynomial p ∈ P1 for 2/(x + 3)
on [−1, 1] is p(x) = 1

2

√
2 − 1

4x, and find the minimax error.

Problem 2.4.2 Let ax + b denote the minimax polynomial in P1 for the
function 1/x on the interval [α, β], where 0 < α < β. Show that

a = − 1
αβ

and b =
1
2

(
1√
α

+
1√
β

)2

,

and that

max
α≤x≤β

∣∣∣∣ax+ b− 1
x

∣∣∣∣ = 1
2

(
1√
α

− 1√
β

)2

.

Verify that the minimax error is attained at α, β, and at the intermediate
point

√
αβ.

Problem 2.4.3 Use the property that the Chebyshev polynomial Tn is an
odd or even function when n is odd or even, respectively, to show that the
polynomial p defined by

p(x) = xn+1 − 1
2n
Tn+1(x)

is of degree n− 1.

Problem 2.4.4 Let pn ∈ Pn denote the minimax polynomial for sin 1
2πx

on [−1, 1]. Show that

0 < ‖ sin 1
2πx− pn(x)||∞ ≤

(π
4

)n+1 2
(n+ 1)!

.

Problem 2.4.5 Let f ∈ C[−1, 1] and let

m = min
−1≤x≤1

f(x), M = max
−1≤x≤1

f(x).

Show that 1
2 (m+M) ∈ P0 is a minimax approximation for f on [−1, 1].

Problem 2.4.6 By first showing that the error function has turning values
at x = − 2

3 and x = 1
3 , show that the function 1/(3x+ 5) on [−1, 1] has the

minimax approximation 1
48 (6x2−8x+9) in P2, and determine the minimax

error.

Problem 2.4.7 Verify that the minimax approximation in P3 for the func-
tion 1/(1+x2) on [−1, 1] is 1

4+ 1
2

√
2− 1

2x
2, by showing that the error function

equioscillates on the five points 0,±ξ, and ±1, where ξ2 =
√

2 − 1. Find
the minimax error.

Problem 2.4.8 If p ∈ Pn denotes the minimax polynomial for f on [−1, 1],
show that λp + q is the minimax approximation for λf + q, for any real
λ and any q ∈ Pn. Thus show, using the result of Problem 2.4.6, that the
minimax polynomial in P2 for (x+ 3)/(3x+ 5) is (6x2 − 8x+ 21)/36.
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Problem 2.4.9 Let f be an even function on [−1, 1], and let p ∈ Pn

denote the minimax approximation for f . By considering the equioscillation
points, deduce that p(−x) is the minimax approximation for f(−x). Since
f(−x) = f(x) and the minimax approximation is unique, deduce that p is
also an even function.

Problem 2.4.10 By adapting the argument used in the previous problem,
show that a minimax approximation for an odd function is itself odd.

2.5 The Lebesgue Function

Recall equation (1.10),

pn(x) =
n∑

i=0

f(xi)Li(x),

where pn is the Lagrange form for the polynomial that interpolates f on the
abscissas x0, x1, . . . , xn, and the fundamental polynomials Li are defined
by (1.9). If the values f(xi) all have errors of modulus not greater than
ε > 0, what can we say about the resulting size of the error in evaluating
pn(x) at any point on the interval [a, b]? Suppose that instead of evaluating
pn, we evaluate p∗

n, where

p∗
n(x) =

n∑
i=0

f∗(xi)Li(x)

and
|f(xi) − f∗(xi)| ≤ ε, 0 ≤ i ≤ n.

It follows that
|pn(x) − p∗

n(x)| ≤ ε λn(x),

where

λn(x) =
n∑

i=0

|Li(x)|, a ≤ x ≤ b. (2.148)

Hence we have
max

a≤x≤b
|pn(x) − p∗

n(x)| ≤ εΛn, (2.149)

where
Λn = max

a≤x≤b
λn(x). (2.150)

Thus errors in the function values f(xi) of modulus not greater than ε result
in an error in the interpolating polynomial whose modulus is not greater
than εΛn. We call Λn the Lebesgue constant and λn the Lebesgue function
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associated with the point set {x0, x1, . . . , xn} ⊂ [a, b]. These are named
after Henri Lebesgue (1875–1941). Both the textbook by T. J. Rivlin [48]
and the paper by Lev Brutman [6] contain valuable surveys on the Lebesgue
functions.

Now let us consider an infinite triangular array of abscissas,

x
(0)
0

x
(1)
0 x

(1)
1

X : x
(2)
0 x

(2)
1 x

(2)
2

...
x

(n)
0 x

(n)
1 · · · x

(n)
n

...

(2.151)

where for each n ≥ 0,

a ≤ x
(n)
0 < x

(n)
1 < · · · < x(n)

n ≤ b. (2.152)

For any function f defined on [a, b], we can construct a sequence of poly-
nomials p0, p1, p2, . . ., where pn interpolates f on the set of abscissas{
x

(n)
0 , x

(n)
1 , . . . , x

(n)
n

}
, which forms the (n+ 1)th row of the above triangu-

lar array. When we wish to emphasize their dependence on the array X,
we will write Λn(X), n ≥ 0, to denote the Lebesgue constants on [a, b]
associated with this array of abscissas, and write the Lebesgue functions
in the form λn(X;x).

Example 2.5.1 In the above triangular array X let us choose x(0)
0 = 0,

and for each n ≥ 1, let

x
(n)
i = −1 +

2i
n
, 0 ≤ i ≤ n.

Thus the abscissas in each row of X are equally spaced on the interval
[−1, 1]. Let us take [a, b] in (2.152) to be [−1, 1].

If we interpolate on the abscissas in the second row of X, namely {−1, 1},
the fundamental polynomials are L0(x) = 1

2 (1 − x) and L1(x) = 1
2 (1 + x).

Thus the Lebesgue function on [−1, 1] is

λ1(x) =
1
2
(1 − x) +

1
2
(1 + x) = 1, −1 ≤ x ≤ 1,

and the Lebesgue constant on [−1, 1] is Λ1(X) = 1.
Let us also obtain an explicit form for the Lebesgue function λ2(x) on

[−1, 1] for the set of interpolating abscissas in the third row of X, which is
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�
x

�y

1

−1 0 1

FIGURE 2.2. The Lebesgue function λ2(x) defined in Example 2.5.1.

{−1, 0, 1}. In this case the fundamental polynomials are

L0(x) =
1
2
x(x− 1), L1(x) = 1 − x2, L1(x) =

1
2
x(x+ 1).

The Lebesgue function λ2(x) may be expressed as a quadratic polynomial
in each of the intervals [−1, 0] and [0, 1]. We find that

λ2(x) =
1
2
x(x− 1) + (1 − x2) − 1

2
x(1 + x) = 1 − x− x2, −1 ≤ x ≤ 0,

and

λ2(x) = −1
2
x(x− 1) + (1 − x2) +

1
2
x(1 + x) = 1 + x− x2, 0 ≤ x ≤ 1.

It is easily verified that λ2(x) = 1 for x = 0,±1, and that λ2(x) ≥ 1 on
[−1, 1]. We find that Λ2(X), the maximum value of λ2(x) on [−1, 1] is 5

4 ,
and this value is attained at x = ± 1

2 . See Figure 2.2. ■

Theorem 2.5.1 The Lebesgue function λn, defined by (2.148), is contin-
uous on [a, b] and is a polynomial of degree at most n on each of the subin-
tervals [a, x0], [x0, x1], [x1, x2], . . . , [xn−1, xn], and [xn, b]. We also have

λn(xi) = 1, 0 ≤ i ≤ n, (2.153)

and
λn(x) ≥ 1, a ≤ x ≤ b. (2.154)

Proof. Equation (2.153) follows immediately from (2.148). To verify the
inequality (2.154) we deduce from (1.42) that

1 = |L0(x)+L1(x)+ · · ·+Ln(x)| ≤ |L0(x)|+ |L1(x)|+ · · ·+ |Ln(x)| = λn(x)

for a ≤ x ≤ b. Each function |Li(x)|, and therefore the Lebesgue function
λn, is obviously a polynomial of degree at most n on each of the intervals
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[a, x0], [x0, x1], [x1, x2], . . . , [xn−1, xn], and [xn, b]. Also, each |Lj(x)| is con-
tinuous on [a, b], and thus the Lebesgue function λn is continuous on [a, b].
This completes the proof. ■

We now come to the main result of this section.

Theorem 2.5.2 Let pn ∈ Pn denote the minimax approximation for a
given function f ∈ C[a, b], and let p∗

n ∈ Pn denote the interpolating poly-
nomial for f on the abscissas x(n)

i in the (n + 1)th row of the triangular
array X defined in (2.151). Then

‖f − p∗
n‖∞ ≤ (1 + Λn(X))En(f), (2.155)

where ‖·‖∞ denotes the maximum norm on [a, b] and En(f) is the minimax
error, defined in (2.137).

Proof. We have from (1.10) that

p∗
n(x) =

n∑
i=0

f(xi)L
(n)
i (x),

where L(n)
i is the fundamental polynomial that takes the value 1 at the

abscissa x
(n)
i and is zero on all abscissas x(n)

j with j �= i. It then follows
from the uniqueness of the interpolating polynomial that

pn(x) =
n∑

i=0

pn(xi)L
(n)
i (x),

since this relation holds for any polynomial in Pn. On subtracting the last
two equations, we immediately obtain

p∗
n(x) − pn(x) =

n∑
i=0

(f(xi) − pn(xi))L
(n)
i (x),

and thus
|p∗

n(x) − pn(x)| ≤ λn(x) max
0≤i≤n

|f(xi) − pn(xi)|,

where λn is the Lebesgue function. We deduce that

‖pn − p∗
n‖ = ‖p∗

n − pn‖ ≤ Λn(X)En(f). (2.156)

Let us now write

f(x) − p∗
n(x) = (f(x) − pn(x)) + (pn(x) − p∗

n(x)),

from which we can derive the inequality

‖f − p∗
n‖ ≤ ‖f − pn‖ + ‖pn − p∗

n‖,
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and we immediately have

‖f − p∗
n‖ ≤ (1 + Λn(X))En(f),

which completes the proof. ■

Theorem 2.5.3 The Lebesgue constants

Λn(X) = max
a≤x≤b

n∑
i=0

|L(n)
i (x)|, n ≥ 1,

are unchanged if we carry out a linear transformation x = αt + β, with
α �= 0, and the triangular array of interpolating abscissas X =

(
x

(n)
i

)
is

mapped to the triangular array T =
(
t
(n)
i

)
, where x(n)

i = αt
(n)
i + β.

Proof. Let the interval a ≤ x ≤ b be mapped to c ≤ t ≤ d under the linear
transformation x = αt+β, and let the fundamental polynomial L(n)

i (x) be
mapped to

M
(n)
i (t) =

∏
j �=i

(
t− t

(n)
j

t
(n)
i − t

(n)
j

)
,

so that the Lebesgue function λn(x) is mapped to

λ∗
n(t) =

n∑
i=0

|M (n)
i (t)|.

Finally, we define
Λ∗

n(T ) = max
c≤t≤d

λ∗
n(t).

We can verify that
x− x

(n)
j

x
(n)
i − x

(n)
j

=
t− t

(n)
j

t
(n)
i − t

(n)
j

,

and hence Mn
i (t) = L

(n)
i (x). Consequently,

Λ∗
n(T ) = max

c≤t≤d
λ∗

n(t) = max
a≤t≤b

λn(x) = Λn(X),

and this completes the proof. ■

The following result shows that the Lebesgue constants are not increased
if we include the endpoints a and b in the set of interpolating abscissas.

Theorem 2.5.4 Consider an infinite triangular array X, as defined in
(2.151), where

a ≤ x
(n)
0 < x

(n)
1 < · · · < x(n)

n ≤ b, n ≥ 0.
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Now define an infinite triangular array T , where t(0)0 is defined arbitrarily,
and for each n > 0, the elements in the (n+ 1)th row of T satisfy

x
(n)
i = αnt

(n)
i + βn, 0 ≤ i ≤ n.

In keeping with this transformation, we define

M
(n)
i (t) = L

(n)
i (x), where x = αnt+ βn, 0 ≤ i ≤ n.

Then, if αn and βn are chosen so that t(n)
0 = a and t(n)

n = b, we have

Λn(T ) = max
a≤t≤b

|λ∗
n(t)| = max

x
(n)
0 ≤x≤x

(n)
n

|λn(x)| ≤ max
a≤x≤b

|λn(x)| = Λn(X).

Proof. The proof of this theorem is on the same lines as that of Theorem
2.5.3. Note that since

x
(n)
0 = αnt

(n)
0 + βn and x(n)

n = αnt
(n)
n + βn,

we need to choose

αn =
x

(n)
n − x

(n)
0

b− a
and βn =

bx
(n)
0 − ax

(n)
n

b− a
. ■

Example 2.5.2 Let us consider the Lebesgue constants Λn(X) for inter-
polation at equally spaced abscissas. For convenience, we will work on the
interval [0, 1], rather than on [−1, 1], as we did in Example 2.5.1. Thus the
abscissas in the triangular array X are x(0)

0 = 1
2 and

x
(n)
i =

i

n
, 0 ≤ i ≤ n.

Let us evaluate the Lebesgue function λn(x) at

x = ξn =
2n− 1

2n
,

the midpoint of the subinterval [n−1
n , 1]. We already know that λn(x) has

the value 1 at the endpoints of this subinterval. A little calculation shows
that

|Li(ξn)| =
1

|2n− 2i− 1| · (2n− 1)(2n− 3) · · · 3 · 1
2ni!(n− i)!

.

We can simplify this last equation to give

|Li(ξn)| =
1

|2n− 2i− 1| · 1
22n

(
2n
n

)(
n
i

)
, (2.157)
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from which we derive the inequality

|Li(ξn)| ≥ 1
2n− 1

· 1
22n

(
2n
n

)(
n
i

)
. (2.158)

If we now sum the above inequality over i, and evaluate the binomial ex-
pansion of (1 + x)n at x = 1 to give

n∑
i=0

(
n
i

)
= 2n,

we see from (2.148) that

λn(ξn) >
1

2n− 1
· 1
2n

(
2n
n

)
, where ξn =

2n− 1
2n

. (2.159)

Note that the above inequality holds strictly because we have equality in
(2.158) only for i = 0. Thus

λn(ξn) >
µn

2n− 1
, where ξn =

2n− 1
2n

,

and µn is defined in (2.29). If we now apply Stirling’s formula, as we did
to estimate µn in Problem 2.1.12, we find that

Λn(X) ≥ 1
2n− 1

· 1
2n

(
2n
n

)
∼ 2n−1

√
π n3/2 . (2.160)

In view of the factor 2n−1 on the right of (2.160), we have proved that the
Lebesgue constants for equally spaced abscissas tend to infinity at least
exponentially with n. ■

It is natural to seek an infinite triangular array of interpolating abscissas
X that gives the smallest values of Λn(X) for every value of n. It would
be nice if for such an optimal array X, the sequence (Λn(X))∞

n=0 were
bounded. However, this is not so, as the following result of Paul Erdős
(1913–1996) shows.

Theorem 2.5.5 There exists a positive constant c such that

Λn(X) >
2
π

log n− c, (2.161)

for all infinite triangular arrays X. ■

For a proof, see [18]. A simple proof of a slightly weaker version of this
theorem, that

Λn(X) >
2
π2 log n− 1
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for every triangular array X, is proved in Rivlin [48].
Thus, for every choice of the array X, the sequence (Λn(X))∞

n=0 grows
at least as fast as log n. Moreover, as we will see below, interpolation at the
zeros of the Chebyshev polynomials yields a sequence of Lebesgue constants
that grows only logarithmically with n and so is close to the optimal choice
of abscissas. It is therefore clear that as measured by the rate of growth
of the Lebesgue constants, interpolation at the zeros of the Chebyshev
polynomials is substantially superior to interpolation at equally spaced
abscissas.

Let T denote the infinite triangular array, as depicted in (2.151), whose
(n+ 1)th row consists of the zeros of Tn+1, which we will write as

x
(n)
i = cos θi, where θi =

(2n+ 1 − 2i)π
2n+ 2

, 0 ≤ i ≤ n, (2.162)

so that
−1 < x

(n)
0 < x

(n)
1 < · · · < x(n)

n < 1.

We can deduce from the result in Problem 1.1.3 that the fundamental
polynomial L(n)

i can be expressed in the form

L
(n)
i (x) =

Tn+1(x)(
x− x

(n)
i

)
T ′

n+1

(
x

(n)
i

) . (2.163)

From the expression for the derivative of a Chebyshev polynomial given in
Problem 2.2.11, we can see that

T ′
n+1(x

(n)
i ) =

(n+ 1) sin(n+ 1)θi

sin θi
= (−1)n−i

(
n+ 1
sin θi

)
,

and hence, with x = cos θ,

L
(n)
i (x) = (−1)n−i cos(n+ 1)θ

n+ 1
· sin θi

cos θ − cos θi
, (2.164)

so that

λn(T ;x) =
| cos(n+ 1)θ|

n+ 1

n∑
i=0

sin θi

| cos θ − cos θi| . (2.165)

S. N. Bernstein (1880–1968) obtained the asymptotic estimate (see [4])

Λn(T ) ∼ 2
π

log(n+ 1), (2.166)

and D. L. Berman [2] obtained the upper bound

Λn(T ) < 4
√

2 +
2
π

log(n+ 1), (2.167)
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which, together with Bernstein’s asymptotic estimate, tells us more about
Λn(T ). Luttmann and Rivlin [36] conjectured that Λn(T ) = λn(T ; 1), and
showed that

lim
n→∞

[
λn(T ; 1) − 2

π
log(n+ 1)

]
=

2
π

(
γ + log

8
π

)
≈ 0.9625, (2.168)

where

γ = lim
n→∞

[
1 +

1
2

+
1
3

+ · · · +
1
n

− log n
]

≈ 0.5772

is Euler’s constant. The theorem that follows, which verifies Luttmann and
Rivlin’s conjecture, is due to Ehlich and Zeller [16] (see also Powell [46]).
The proof given here is based on that given by Rivlin [48].

Theorem 2.5.6 The Lebesgue constants for the triangular array T , whose
(n+ 1)th row consists of the zeros of Tn+1, are given by

Λn(T ) = λn(T ; 1) =
1

n+ 1

n∑
i=0

cot
θi

2
=

1
n+ 1

n∑
i=0

tan
(2i+ 1)π
4(n+ 1)

, (2.169)

where θi is defined in (2.162).

Proof. We begin by rewriting (2.164) in the form (see Problem 2.5.2)

L
(n)
i (x) = (−1)n−i cos(n+ 1)θ

2(n+ 1)

(
cot

θ + θi

2
− cot

θ − θi

2

)
,

and thus obtain

λn(T ;x) =
| cos(n+ 1)θ|

2(n+ 1)

n∑
i=0

∣∣∣∣cot
θ + θi

2
− cot

θ − θi

2

∣∣∣∣ , (2.170)

where x = cos θ. Let us write

C(θ) = | cos(n+ 1)θ|
n∑

i=0

∣∣∣∣cot
θ + θi

2
− cot

θ − θi

2

∣∣∣∣ . (2.171)

Since C(θ) = C(−θ), this is an even function that is periodic, with period
2π, and is positive for −∞ < θ < ∞. If we replace θ by θ−kπ/(n+1), where
1 ≤ k ≤ n+1, then (see Problem 2.5.3) the only change that occurs on the
right side of (2.171) is that the 2n+ 2 cotangents are paired differently.

Let the maximum value of C(θ) on [0, π] be attained at θ = θ′ such that

(2m− 1)π
2n+ 2

< θ′ ≤ (2m+ 1)π
2n+ 2

, (2.172)

where 0 ≤ m ≤ n. We see from (2.172) that θ′ belongs to an interval of
width π/(n+1) with midpoint mπ/(n+1), and to a smaller interval when
m = 0 or n. In either case, we have∣∣∣∣θ′ − mπ

n+ 1

∣∣∣∣ ≤ π

2(n+ 1)
.
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Let us now define θ′′ = |θ′ −mπ/(n+ 1)|, and then we have

0 ≤ θ′′ ≤ π

2(n+ 1)
. (2.173)

We know that C(θ′′) = C(−θ′′) and that the expressions for C(θ′′) and
C(θ′) differ only in the way the 2n+ 2 cotangents are paired in (2.171).

It follows from (2.162) and (2.173) that

0 ≤ θ′′ + θi

2
≤ π

2
and 0 ≤ −θ′′ − θi

2
≤ π

2
, 0 ≤ i ≤ n,

and thus

cot
θ′′ + θi

2
≥ 0 and cot

θ′′ − θi

2
≤ 0, 0 ≤ i ≤ n.

The latter inequalities make it clear that if we put θ = θ′′ in (2.171), the
resulting expression will have the same value for any permutation of the
2n+ 2 cotangents. This shows that

max
0≤θ≤π

C(θ) = C(θ′) = C(θ′′) = max
0≤θ≤π/(2n+2)

C(θ).

To pursue this further, we see from (2.165), (2.170), and (2.171) that

C(θ) = 2| cos(n+ 1)θ|
n∑

i=0

sin θi

| cos θ − cos θi| .

Then, for 0 ≤ θ ≤ π/(2n+ 2), we have

C(θ) = 2
n∑

i=0

sin θi
cos(n+ 1)θ
cos θ − cos θi

,

and we see from Problem 2.5.4 that

C(θ) = 2n+1
n∑

i=0

sin θi

∏
j �=i

(cos θ − cos θj). (2.174)

Since each factor cos θ−cos θj is a nonnegative function of θ that decreases
monotonically on [0, π/(2n + 2)], we see immediately that the maximum
value of C(θ) is attained at θ = 0. On comparing (2.171) and (2.170), and
putting θ = 0, we see that

Λn(T ) = λn(T ; 1) =
1

n+ 1

n∑
i=0

cot
θi

2
=

1
n+ 1

n∑
i=0

cot
(2n+ 1 − 2i)π

4(n+ 1)
,

and (2.169) follows. This completes the proof. ■
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It is not hard to deduce from (2.169) that the Lebesgue constants Λn(T )
grow logarithmically with n. Let

g(θ) = tan θ − θ,

so that g(0) = 0, and since

g′(θ) = sec2 θ − 1 = tan2 θ,

we see that g′(θ) > 0 for 0 < θ < π
2 . It follows that

0 < θ < tan θ, 0 < θ <
π

2
,

and thus
1
θ

− cot θ =
1
θ

− 1
tan θ

> 0, 0 < θ <
π

2
. (2.175)

Let us now return to (2.169) and write

Λn(T ) =
1

n+ 1

n∑
i=0

cot
θi

2
= Σn − Σ∗

n, (2.176)

say, where

Σn =
1

n+ 1

n∑
i=0

2
θi

and Σ∗
n =

1
n+ 1

n∑
i=0

(
2
θi

− cot
θi

2

)
. (2.177)

The inequality in (2.175) implies that Σ∗
n > 0, and it follows from (2.176)

that

Λn(T ) < Σn =
1

n+ 1

n∑
i=0

2
ψi
, (2.178)

where

ψi = θn−i =
(2i+ 1)π
2n+ 2

,

giving the simple inequality

Λn(T ) <
4
π

n∑
i=0

1
2i+ 1

.

On writing

Sn =
n∑

i=1

1
i
,

and using the result in Problem 2.5.5, we see that

Λn(T ) <
4
π

(S2n+2 − 1
2
Sn+1) <

4
π

(
1 + log(2n+ 2) − 1

2
log(n+ 2)

)
.



2.5 The Lebesgue Function 111

Then, on applying the inequality in Problem 2.5.6, we can deduce that

Λn(T ) <
2
π

log n+
4
π

(
1 +

1
2

log
16
3

)
,

and thus
Λn(T ) <

2
π

log n+ 3. (2.179)

Having obtained this inequality for the Lebesgue constant Λn(T ), let
us estimate how much we “gave away” when we discarded the positive
quantity Σ∗

n from (2.176) to obtain the inequality in (2.178). An inspection
of the expression for Σ∗

n in (2.177) reveals that

lim
n→∞ Σ∗

n =
2
π

∫ π/2

0

(
1
θ

− cot θ
)
dθ =

2
π

log(π/2) ≈ 0.287. (2.180)

In fact, Σ∗
n is the quantity obtained by applying the midpoint rule in com-

posite form with n + 1 subintervals to estimate the integral given as the
limit of the sequence (Σ∗

n) in (2.180). (See Section 3.1.) A more detailed
analysis can confirm what is suggested by the foregoing material, that Σ∗

n

is smaller than the error incurred in estimating Σn.
Let T ′ denote the infinite triangular array whose (n+ 1)th row consists

of the extreme points of the Chebyshev polynomial Tn, and thus

x
(n)
i = cosφn−i, where φi = cos

i

n
, 0 ≤ i ≤ n. (2.181)

Intuitively, in view of Theorem 2.5.4, one would expect the Lebesgue con-
stants Λn(T ′) to be small, since the abscissas in T ′ are distributed in a
similar fashion to those in T , and each row of the array T ′ contains the
endpoints ±1. Using the methods employed in the proof of Theorem 2.5.6,
it is not hard to show that

λn(T ′;x) =
| sinnθ|

2n

n∑
i=0

′′
∣∣∣∣cot

θ + φi

2
+ cot

θ − φi

2

∣∣∣∣ , (2.182)

where x = cos θ and
∑ ′′

denotes a sum whose first and last terms are
halved. It is also not difficult to verify that Λn(T ′) ≤ Λn−1(T ) for all
n ≥ 2, with equality when n is odd. More precisely, we have

Λn(T ′) = Λn−1(T ) =
1
n

n∑
i=1

tan
(2i− 1)π

4n
, n odd, (2.183)

and
n∑

i=2

tan
(2i− 1)π

4n
< Λn(T ′) <

1
n

n∑
i=1

tan
(2i− 1)π

4n
, n even. (2.184)
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n Λn(T ) Λn(T ′) Λn(T ∗)
1 1.414 1.000 1.000
2 1.667 1.250 1.250
3 1.848 1.667 1.430
4 1.989 1.799 1.570
5 2.104 1.989 1.685
6 2.202 2.083 1.783
7 2.287 2.202 1.867
8 2.362 2.275 1.942
9 2.429 2.362 2.008

10 2.489 2.421 2.069
20 2.901 2.868 2.479
50 3.466 3.453 3.043

100 3.901 3.894 3.478
200 4.339 4.336 3.916
500 4.920 4.919 4.497

1000 5.361 5.360 4.937

TABLE 2.1. Comparison of the Lebesgue constants Λn(T ), Λn(T ′), and Λn(T ∗).

Let T ∗ denote the infinite triangular array that is derived from T , the
array whose rows consist of the zeros of the Chebyshev polynomials, by
dividing the numbers in the (n + 1)th row of T by cos(π/(2n + 2), for
n ≥ 1. To be definite, we will choose the sole number in the first row of
T ∗ as zero. We call the numbers in T ∗, from the second row onwards, the
stretched zeros of the Chebyshev polynomials. Thus, if the numbers in the
(n+ 1)th row of T ∗ are denoted by x̄(n)

i , we see that

x̄
(n)
0 = −1 and x̄

(n)
0 = 1.

We know from Theorem 2.5.4 that we must have Λn(T ∗) ≤ Λn(T ), for
n ≥ 1, and Table 2.1 strongly suggests that

Λn(T ) < Λn(T ′) < Λn(T ∗)

for n > 2.
Luttmann and Rivlin [36] show that for every triangular array X whose

abscissas satisfy

−1 = x
(n)
0 < x

(n)
1 < · · · < x(n)

n = 1, n ≥ 1,

each Lebesgue function λn(X;x) has a single maximum

Mj,n(X) = max
x
(n)
j−1≤x≤x

(n)
j

λn(X;x), 1 ≤ j ≤ n,
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on each of the n subintervals
[
x

(n)
j−1, x

(n)
j

]
. As early as 1931 Bernstein [4]

conjectured that if there existed an array X for which

M1,n(X) = M2,n(X) = · · · = Mn,n(X), n ≥ 2, (2.185)

then the array X would be optimal. Subsequently, in 1958, Paul Erdős [17]
further conjectured that there is a unique array X∗ for which (2.185) holds,
and that for any array X,

min
1≤j≤n

Mj,n(X) ≤ Λn(X∗). (2.186)

In 1978 two papers were published consecutively in the same issue of the
Journal of Approximation Theory, one by T. A. Kilgore [29] and the other
by C. de Boor and A. Pinkus [12], in which these conjectures were proved.
It was shown by Lev Brutman [6] that there is little variation in the n
numbers Mj,n(T ∗), since

Λn(T ∗) ≤ min
1≤j≤n

Mj,n(T ∗) + 0.201,

and thus
Λn(T ∗) ≤ Λn(X∗) + 0.201.

We may conclude that even if we do not know the optimal array X∗ ex-
plicitly, it suffices for all practical purposes to use the array of stretched
Chebyshev zeros T ∗.

Example 2.5.3 Let us find the Lebesgue function λ3(x) on [−1, 1] based
on the set of interpolating abscissas {−1,−t, t, 1}, where 0 < t < 1. With
a little simplification, we find that

λ3(x) =
|x2 − t2|
1 − t2

+
(1 − x2)|t− x|

2t(1 − t2)
+

(1 − x2)|t+ x|
2t(1 − t2)

,

so that

λ3(x) =




1 + t2 − 2x2

1 − t2
, 0 ≤ x ≤ t,

−t3 + x+ tx2 − x3

t(1 − t2)
, t < x ≤ 1,

and λ3(x) is even on [−1, 1]. It is obvious that λ3(x) has a local maximum
value at x = 0, say M(t), and that

M(t) =
1 + t2

1 − t2
.

With a little more effort, we find that λ3(x) has local maximum values, say
M∗(t), at x = ±x∗(t), where

x∗(t) =
1
3

[
t+ (t2 + 3)1/2

]
for 0 < t < 1.
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We can verify that t < x∗(t) < 1, and that

M∗(t) =
9t− 25t3 + (t2 + 3)1/2(6 + 2t2)

27t(1 − t2)
.

On the interval 0 < t < 1, M(t) increases monotonically and M∗(t) de-
creases monotonically, and we find that

M(t) = M∗(t) ≈ 1.423 for t ≈ 0.4178.

Thus, as we see from the line above and from Table 2.1,

Λ3(X∗) ≈ 1.423 < Λ3(T ∗) ≈ 1.430,

where X∗ and T ∗ denote respectively the optimal array and the array of
stretched Chebyshev zeros. ■

Problem 2.5.1 Show that the Lebesgue function λ1(x) on the interval
[−1, 1] for interpolation on the abscissas ±t, where 0 < t ≤ 1, is given by

λ1(x) =




−x/t, −1 ≤ x ≤ −t,
1, −t < x ≤ t,
x/t, t < x ≤ 1,

and so verify the value given for Λ1(T ) in Table 2.1.

Problem 2.5.2 Write

cot
θ + θi

2
− cot

θ − θi

2
=

sin θ−θi

2 cos θ+θi

2 − sin θ+θi

2 cos θ−θi

2

sin θ+θi

2 sin θ−θi

2

,

and hence show that

cot
θ + θi

2
− cot

θ − θi

2
=

2 sin θi

cos θ − cos θi
.

Problem 2.5.3 Following Rivlin [48], let us write

c+i = cot
θ + φi

2
and c−i = cot

θ − φi

2
,

where φi = (2i+ 1)π/(2n+ 2), for 0 ≤ i ≤ n. Show that if θ is replaced by
θ − kπ/(n+ 1), where 1 ≤ k ≤ n+ 1, we have

c+i →



c−k−i−1, 0 ≤ i ≤ k − 1,

c+i−k, k ≤ i ≤ n,
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and

c−i →



c−i+k, 0 ≤ i ≤ n− k,

c+2n+1−i−k, n− k + 1 ≤ i ≤ n.

Verify that as a result of the mapping θ �→ θ−kπ/(n+1), the set of 2n+2
cotangents c+i and c−i is mapped into itself.

To justify the above result for c−i with i ≥ n− k + 1, first show that

cot(φ+ π
2 ) = cot(φ− π

2 ) = − tanφ.

Then write φi = π + αi and show that

c−i = cot
θ − π − αi

2
= cot

θ + π − αi

2
= c+2n+1−i−k.

Problem 2.5.4 Show that

1
2n

Tn+1(x)

x− x
(n)
i

=
∏
j �=i

(x− x
(n)
j ),

where the numbers x(n)
i , 0 ≤ i ≤ n, are the zeros of Tn+1. Put x = cos θ

and hence verify that

cos(n+ 1)θ
cos θ − cos θi

= 2n
∏
j �=i

(cos θ − cos θj),

where θi is defined in (2.162).

Problem 2.5.5 With Sn =
∑n

i=1 1/i, deduce from the inequalities

1
i+ 1

<

∫ i+1

i

dx

x
<

1
i
, i ≥ 1,

that ∫ n+1

1

dx

x
< Sn < 1 +

∫ n

1

dx

x
,

and hence
log(n+ 1) < Sn < 1 + logn, n ≥ 1.

Problem 2.5.6 Verify that

(n+ 1)2

n(n+ 2)
= 1 +

1
n(n+ 2)

decreases with n, and thus show that

log(n+ 1) − 1
2

log(n+ 2) =
1
2

log n+
1
2

log
(n+ 1)2

n(n+ 2)
≤ 1

2
log n+

1
2

log
4
3
,

for all n ≥ 1, with equality only for n = 1.
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Problem 2.5.7 Show that Λn(T ), given by (2.169), may be expressed in
the form

Λn(T ) =
1

n+ 1

n∑
i=0

tan
θi

2
,

where θi is defined by (2.162).

2.6 The Modulus of Continuity

Definition 2.6.1 Given any function f ∈ C[a, b], we define an associated
function ω ∈ C[a, b] as

ω(δ) = ω(f ; [a, b]; δ) = sup
|x1−x2|≤δ

|f(x1) − f(x2)|. (2.187)

We call ω(f ; [a, b]; δ) the modulus of continuity of the function f . ■

We have written “sup” for supremum, meaning the least upper bound.
We express the modulus of continuity in the simpler form ω(δ) when it is
clear which function f and interval [a, b] are involved. It is not difficult to
verify that ω ∈ C[a, b], given that f ∈ C[a, b].

Example 2.6.1 For convenience, let us take the interval [a, b] to be [0, 1].
It is obvious from Definition 2.6.1 that

ω(1; [0, 1]; δ) = 0 and ω(δ; [0, 1]; δ) = δ.

To evaluate ω(δ2; δ), let us write

x2
1 − x2

2 = (x1 − x2)(x1 + x2).

Thus, if |x1 − x2| ≤ δ, we have

|x2
1 − x2

2| ≤ δ|x1 + x2|,
and the right side of the above inequality is greatest when one of x1, x2 is
1 and the other is 1 − δ. It is then clear that

ω(δ2; [0, 1]; δ) = δ(2 − δ) = 1 − (1 − δ)2.

More generally, it is not hard to see that

ω(δn; [0, 1]; δ) = 1 − (1 − δ)n

for all integers n ≥ 0. ■

The above example helps give us some familiarity with the modulus of
continuity, although the results obtained in it are of little intrinsic impor-
tance. It is not difficult to justify the following more substantial properties
of the modulus of continuity.
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Theorem 2.6.1 If 0 < δ1 ≤ δ2, then ω(δ1) ≤ ω(δ2).

Theorem 2.6.2 A function f is uniformly continuous on the interval [a, b]
if and only if

lim
δ→0

ω(δ) = 0. ■

We conclude this chapter with the statement of two important results
due to Dunham Jackson (1888–1946) that express the minimax error for a
function f in terms of moduli of continuity.

Theorem 2.6.3 Let f ∈ C[−1, 1] and let

En(f) = ‖f − p‖∞, (2.188)

where ‖ · ‖∞ denotes the maximum norm on [−1, 1], and p ∈ Pn is the
minimax approximation for f ∈ C[a, b]. Then

En(f) ≤ 6ω
(

1
n

)
. ■ (2.189)

The second result of Jackson that we cite is applicable to functions that
belong to Ck[a, b], and gives an inequality that relates En(f) to the modulus
of continuity of the kth derivative of f .

Theorem 2.6.4 If f ∈ Ck[−1, 1], then

En(f) ≤ c

nk
ωk

(
1

n− k

)
(2.190)

for n > k, where ωk is the modulus of continuity of f (k), and

c =
6k+1ek

1 + k
. ■

For proofs of these two theorems of Jackson, see Rivlin [48].
In addition to the modulus of continuity, there are other moduli that

measure the “smoothness” of a function. These include moduli concerned
with kth differences of a function. See the text by Sendov and Popov [51].

Problem 2.6.1 Show that

ω(eδ; [0, 1]; δ) = e− e1−δ.

Problem 2.6.2 Verify that for the sine function on the interval [0, π/2],
we have

ω(δ) = sin δ.

Find a class of functions f and intervals [a, b] for which

ω(f ; [a, b]; δ) = f(δ).
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Problem 2.6.3 If |f ′(x)| ≤ M for a ≤ x ≤ b, show that

En(f) ≤ 6M
n
,

where En(f) is defined in (2.188).



3
Numerical Integration

3.1 Interpolatory Rules

Every student who takes a calculus course learns that differentiation and in-
tegration are inverse processes, and soon discovers that integration presents
more difficulties than differentiation. This is because the derivatives of com-
positions of the standard functions, which traditionally include the polyno-
mials, the rational functions, functions of the form xα with α real, the
circular and inverse circular functions, the exponential and logarithmic
functions, the hyperbolic and inverse hyperbolic functions, are themselves
compositions of the standard functions. On the other hand, the indefinite
integral of a composition of standard functions does not necessarily belong
to this class. For example,

F (x) =
∫ x

0
et2dt (3.1)

cannot be expressed as a finite composition of standard functions.
This is why we need numerical integration processes, which give us nu-

merical approximations to integrals even in cases where we know very little
about the integrand, that is, the function being integrated. However, in
an individual case where we know more about the integrand, we can often
find a better method. For example, if we wished to estimate the integral
in (3.1) for a value of x in the interval [0, 1], we could begin by integrating
the Maclaurin series for the integrand term by term.
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The commonest numerical integration processes are based on interpo-
lation. Let us replace an integrand f by its interpolating polynomial pn,
based on the abscissas x0, x1, . . . , xn, and integrate over [a, b]. We obtain

∫ b

a

f(x)dx ≈
∫ b

a

pn(x)dx = Rn(f),

say, and it follows from the Lagrange form (1.10) that

Rn(f) =
n∑

i=0

w
(n)
i fi, (3.2)

where fi denotes f(xi), and

w
(n)
i =

∫ b

a

Li(x)dx. (3.3)

We call Rn an interpolatory integration rule, and refer to the numbers w(n)
i

as the weights and the numbers xi as the abscissas of the rule. It is clear
from (3.3) that the weights depend only on the abscissas x0, . . . , xn, and
are independent of the integrand f . Indeed, it is this very property that
makes integration rules so useful. An obvious choice is to let the abscissas
xi be equally spaced, so that xi = x0+ih, for some fixed nonzero value of h.
We can then introduce a new variable s such that x = x0 +sh. Then x = xi

corresponds to s = i. If we now integrate over the interval x0 ≤ x ≤ xn,
we obtain

w
(n)
i =

∫ xn

x0

∏
j �=i

x− xj

xi − xj
dx = h

∫ n

0

∏
j �=i

s− j

i− j
ds. (3.4)

Observe that the second integrand in (3.4) is just the fundamental poly-
nomial corresponding to the abscissa i in the set of abscissas {0, 1, . . . , n}.
Thus, to within the multiplicative constant h, the weights w(n)

i depend
only on i and n and are independent of the value of x0. The rules with
weights defined by (3.4) are called the closed Newton–Cotes rules, named
after Isaac Newton and Roger Cotes (1682–1716). If we interpolate f at
x1, . . . , xn−1, and integrate over [x0, xn], we obtain a sequence of formulas
called the open Newton–Cotes rules. The simplest of these, corresponding
to n = 2, is ∫ x2

x0

f(x)dx ≈ 2hf(x1), (3.5)

where x1 − x0 = h. This is called the midpoint rule.

Example 3.1.1 Let us evaluate the weights for the Newton–Cotes rules
corresponding to n = 1 and n = 2. For n = 1, we obtain

w
(1)
0 = h

∫ 1

0

s− 1
0 − 1

ds =
1
2
h
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FIGURE 3.1. Area under a curve approximated by the area of a trapezoid.

and

w
(1)
1 = h

∫ 1

0

s− 0
1 − 0

ds =
1
2
h.

This gives the Newton–Cotes rule of order one,∫ x1

x0

f(x)dx ≈ 1
2
h(f0 + f1), (3.6)

where x1−x0 = h. This is known as the trapezoidal rule, because it approxi-
mates the integral by the area of the quadrilateral whose vertices are (x0, 0),
(x0, f0), (x1, 0), and (x1, f1). This is a trapezoid, defined as a quadrilateral
with one pair of opposite sides parallel. See Figure 3.1.

For n = 2, we have

w
(2)
0 = h

∫ 2

0

(s− 1)(s− 2)
(0 − 1)(0 − 2)

ds =
1
3
h,

and we similarly find that w(2)
2 = 1

3h and w
(2)
1 = 4

3h. Thus the Newton–
Cotes rule of order two is∫ x2

x0

f(x)dx ≈ 1
3
h(f0 + 4f1 + f2), (3.7)

where x2 − x0 = 2h. This is called Simpson’s rule, after Thomas Simpson
(1710–1761). ■

There is a symmetry in the weights of the trapezoidal rule, and the same
holds for Simpson’s rule. This symmetry holds for the general Newton–
Cotes rule, where we have

w
(n)
i = w

(n)
n−i, 0 ≤ i ≤ n. (3.8)

To verify (3.8), let us begin with (3.4) and write

w
(n)
n−i = h

∫ n

0

∏
j �=n−i

s− j

n− i− j
ds.
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If we make the substitution s = n− u, we obtain

w
(n)
n−i = h

∫ n

0

∏
j �=n−i

n− u− j

n− i− j
du,

and on writing j = n− k, it is clear that

w
(n)
n−i = h

∫ n

0

∏
k �=i

k − u

k − i
du = h

∫ n

0

∏
k �=i

u− k

i− k
du = w

(n)
i ,

which justifies (3.8).
If f ∈ Pn, it follows from the uniqueness of the interpolating polynomial

that ∫ xn

x0

f(x)dx = Rn(f) =
n∑

i=0

w
(n)
i fi.

Thus, when the integrand is a polynomial of degree n or less, the Newton–
Cotes rule of order n gives a value equal to that of the integral. We say that
the rule is exact in this case. Again, let us make a linear change of variable
and work with the interval [0, n] in place of [x0, xn], so that we have

∫ n

0
g(s)ds =

n∑
i=0

w
(n)
i g(i), (3.9)

whenever g is a polynomial in s of degree at most n. We can therefore
determine the weights w(n)

i by putting g(s) equal to sj and writing down
the system of linear equations

n∑
i=0

w
(n)
i ij =

nj+1

j + 1
, 0 ≤ j ≤ n, (3.10)

where the right side of the above equation is the result of integrating sj

over the interval 0 ≤ s ≤ n.

Example 3.1.2 Let us derive the Newton–Cotes rule that is obtained by
solving the linear system (3.10) when n = 3. On putting j = 0 and j = 2
in (3.10) with n = 3, and using the relations w(3)

3 = w
(3)
0 and w

(3)
2 = w

(3)
1

obtained from (3.8), we obtain the equations

2w(3)
0 + 2w(3)

1 = 3,

9w(3)
0 + 5w(3)

1 = 9,

whose solution is w(3)
0 = 3

8 , w(3)
1 = 9

8 . This gives the Newton–Cotes rule of
order three, ∫ x3

x0

f(x)dx ≈ 3h
8

(f0 + 3f1 + 3f2 + f3), (3.11)
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where x3 − x0 = 3h. This is also called the three-eighths rule.
Note that we wrote down only two (corresponding to j = 0 and j = 2)

of the four possible equations that we could have used, given that this rule
is exact for the four monomials 1, x, x2, and x3. ■

As we have already deduced from (3.4), the Newton–Cotes weights w(n)
i

for integrals over an arbitrary interval [x0, xn] are a constant multiple of
the Newton–Cotes weights of the same order for integrals over the interval
[0, n]. Thus the weights of a given order for integrals over any two intervals
differ only by a multiplicative constant. Let w(n)

i , for 0 ≤ i ≤ n, denote the
Newton–Cotes weights for integrals over the interval [−1, 1], so that

∫ 1

−1
f(x)dx ≈

n∑
i=0

w
(n)
i fi, (3.12)

where fi = f(xi), with xi = −1 + 2i/n. The Newton–Cotes rules are exact
when the integrand f is in Pn and, in particular, are exact for f(x) = 1. It
then follows from (3.12) with f(x) = 1 that

n∑
i=0

w
(n)
i = 2, (3.13)

and so the Newton–Cotes rule of order n for integrals over a general interval
[a, b] is ∫ b

a

f(x)dx ≈ 1
2
(b− a)

n∑
i=0

w
(n)
i fi,

where fi = f(xi), with xi = a + i(b − a)/n, and the weights w(n)
i satisfy

(3.13). On the interval [−1, 1], the Newton–Cotes abscissas are symmetri-
cally placed with respect to the origin, with one abscissa at x = 0 when n
is even. For we have

xi = −1 +
2i
n

=
1
n

(2i− n),

and so
xn−i =

1
n

(−2i+ n) = −xi.

It thus follows from (3.12) that each Newton–Cotes rule is exact for every
odd function, that is, for every function f such that f(−x) = −f(x), for
then both sides of the approximate equality (3.12) are zero. In particular,
when n is even, (3.12) is exact for the odd-order monomial xn+1. Thus the
Newton–Cotes rule of order 2n is exact not just for all integrands f ∈ P2n,
but for all f ∈ P2n+1. For example, the Newton–Cotes rule of order two
(Simpson’s rule) and that of order three (the three-eighths rule) are both
exact for f ∈ P3.
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We will now seek error terms for the Newton–Cotes rules by using the
error formula of interpolation (see Theorem 1.1.2), thus obtaining an error
term for the trapezoidal rule and, with a little more work, for Simpson’s
rule. First let us recall two results from analysis, both concerned with
continuity, which we now state as Theorems 3.1.1 and 3.1.2. The first is
the intuitively obvious result that a continuous function attains every value
between its minimum and maximum values, and the second is the mean
value theorem for integrals.

Theorem 3.1.1 If f is continuous on [a, b] and y is any number such that

min
a≤x≤b

f(x) ≤ y ≤ max
a≤x≤b

f(x),

then there exists a number ξ, with a ≤ ξ ≤ b, such that y = f(ξ). ■

Corollary 3.1.1 If F is continuous on [a, b] and

a ≤ t1 ≤ t2 ≤ · · · ≤ tN ≤ b,

then there exists a number ξ in (a, b) such that

F (ξ) =
1
N

(F (t1) + F (t2) + · · · + F (tN )).

Proof of Corollary. Since the inequalities

min
a≤x≤b

F (x) ≤ F (tr) ≤ max
a≤x≤b

F (x)

hold for 1 ≤ r ≤ N , the same inequalities hold for the mean of the N
numbers F (tr), and the corollary follows from Theorem 3.1.1. ■

Theorem 3.1.2 If F is continuous, and G is integrable and is nonnegative
on [a, b], then there exists a number ξ in (a, b) such that

∫ b

a

F (x)G(x)dx = F (ξ)
∫ b

a

G(x)dx. (3.14)

It is clear, on replacing G by −G, that the same result holds if G(x) ≤ 0
in (a, b). Proofs of Theorems 3.1.1 and 3.1.2 may be found in any text on
elementary analysis. ■

To derive the error term for the trapezoidal rule, let us choose n = 1
in (1.25) and integrate over [x0, x1], assuming that f ′′ is continuous on
[x0, x1]. We obtain

∫ x1

x0

f(x)dx− 1
2
h(f0 + f1) = ET (f),
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say, where the error term ET (f) is given by

ET (f) =
1
2

∫ x1

x0

(x− x0)(x− x1)f ′′(ξx)dx. (3.15)

It follows from the error formula (1.25) that f ′′(ξx) is a continuous function
of x, and we also note that (x− x0)(x− x1) ≤ 0 on [x0, x1]. Thus we may
apply Theorem 3.1.2, to give

ET (f) =
1
2
f ′′(ξ1)

∫ x1

x0

(x− x0)(x− x1)dx,

where x0 < ξ1 < x1. On making the change of variable x = x0 + sh, we
obtain

ET (f) =
h3

2
f ′′(ξ)

∫ 1

0
s(s− 1)ds = −h3

12
f ′′(ξ1),

so that the error of the trapezoidal rule satisfies∫ x1

x0

f(x)dx− 1
2
h(f0 + f1) = −h3

12
f ′′(ξ1), (3.16)

where x0 < ξ1 < x1.
In practice, integration rules are used in composite form, where the in-

terval of integration is split into a number of subintervals and the same
basic rule is applied to each subinterval. Thus, if we write

∫ xN

x0

f(x)dx =
N∑

r=1

∫ xr

xr−1

f(x)dx

and apply the trapezoidal rule (3.6) to each of the integrals in the latter
sum, we obtain∫ xN

x0

f(x)dx ≈ 1
2
h(f0 + 2f1 + 2f2 + · · · + 2fN−1 + fN ) = TN (f), (3.17)

say. This is the composite form of the trapezoidal rule. It is equivalent to
the sum of N numbers, each denoting the area of a trapezoid. Thus TN (f)
is the integral of the function defined by the polygonal arc that connects
the N + 1 points (x0, f0), (x1, f1), . . . , (xN , fN ). To obtain an error term
for this composite rule, we can adapt (3.16) to give the basic trapezoidal
rule plus error term for a general interval [xr−1, xr],∫ xr

xr−1

f(x)dx− 1
2
h(fr−1 + fr) = −h3

12
f ′′(ξr),

where xr−1 < ξr < xr. Then, on summing this from r = 1 to N , we obtain

∫ xN

x0

f(x)dx− TN (f) = −h3

12

N∑
r=1

f ′′(ξr).
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Since f ′′ is continuous, it follows from Corollary 3.1.1 that∫ xN

x0

f(x)dx− TN (f) = −Nh3

12
f ′′(ξ),

where x0 < ξ < xN . On writing xj = a + jh, for 0 ≤ j ≤ N , and putting
xN = b, so that x0 = a and b − a = Nh, we may express the composite
trapezoidal rule plus error term in the form

∫ b

a

f(x)dx− TN (f) = − 1
12

(b− a)h2f ′′(ξ), (3.18)

where a < ξ < b. Notice that if f ′′ is positive on [a, b], the error term (3.18)
shows that the trapezoidal approximant TN (f) is greater than the value
of the integral. This is in agreement with what we should expect from a
geometrical argument. For if f ′′(x) > 0, the function f is convex, and the
polygonal arc that connects the points (x0, f0), (x1, f1), . . . , (xN , fN ) lies
above the graph of f , and consequently, the area under this polygonal arc,
TN (f), is greater than the area under the graph of f . Likewise, if f ′′ is
negative, then f is concave, the polygonal arc lies below the graph of f ,
and TN (f) underestimates the value of the integral of f .

There is a simple modification of the composite trapezoidal rule, in which
TN (f) is replaced by T ′

N (f), defined by

T ′
N (f) = TN (f) − h2

12
(f ′(b) − f ′(a)), (3.19)

that is valid for integrands f whose first derivative exists. The rule T ′
N (f)

is called the trapezoidal rule with end correction. It is somewhat surprising
that (see Problem 3.1.9) by making such a simple change to the trapezoidal
rule, involving the values of the derivative of the integrand at the endpoints
a and b only, we obtain a rule that, like Simpson’s rule, is exact for f ∈ P3.

Example 3.1.3 Let us illustrate our findings on the composite trapezoidal
rule with the function f(x) = ex2

on [0, 1]. This is a useful test integral,
because we can easily estimate it by integrating the Maclaurin series for
ex2

term by term, giving
∫ 1

0
ex2

dx =
∫ 1

0

( ∞∑
r=0

x2r

r!

)
dx =

∞∑
r=0

1
(2r + 1)r!

≈ 1.462652. (3.20)

In the table below, the values of TN (f) are rounded to four places after
the decimal point. For comparison later with Simpson’s rule (see Example
3.1.4), we also give the corresponding results for T ′

N (f), the composite
trapezoidal rule with end correction, defined in (3.19).

N 2 4 10 20
TN (f) 1.5716 1.4907 1.4672 1.4638
T ′

N (f) 1.4583 1.4624 1.4626 1.4627
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The values of TN (f) are all larger than the value of the integral, which is
consistent (see (3.18)) with the fact that f ′′ is positive, since

f ′′(x) =
d2

dx2 e
x2

= (2 + 4x2)ex2 ≥ 2

on [0, 1]. Since f ′′ is monotonically increasing, we have

2 ≤ f ′′(x) ≤ 6e

on [0, 1], and so from (3.18) the error in TN (f) lies between 1/(6N2) and
e/(2N2). Thus, for example, N would have to be of the order of 1000 to
estimate the integral to six decimal places. ■

We will now derive an error term for Simpson’s rule. We begin by writing
down (1.25) with n = 3,

f(x) − p3(x) =
1
24

(x− x0)(x− x1)(x− x2)(x− x3)f (4)(ξx), (3.21)

and we will assume that f (4) is continuous. As we observed above, Simp-
son’s rule is exact if the integrand belongs to P3, and thus

∫ x2

x0

p3(x)dx =
1
3
h(p3(x0) + 4p3(x1) + p3(x2)). (3.22)

Since p3 interpolates f at x0, x1, x2, and x3, we deduce from (3.22) that
∫ x2

x0

p3(x)dx =
1
3
h(f0 + 4f1 + f2).

If we now integrate (3.21) over the interval [x0, x2], we obtain
∫ x2

x0

f(x)dx− 1
3
h(f0 + 4f1 + f2) = ES(f), (3.23)

say, where

ES(f) =
1
24

∫ x2

x0

(x− x0)(x− x1)(x− x2)(x− x3)f (4)(ξx)dx. (3.24)

The polynomial (x − x0)(x − x1)(x − x2)(x − x3) obviously changes sign
in the interval [x0, x3], at x = x1 and at x = x2, and so we cannot apply
Theorem 3.1.2 to simplify (3.24) further, as we did with (3.15) in obtaining
the error of the trapezoidal rule.

We therefore turn to (1.32), the alternative error term for the interpolat-
ing polynomial that involves a divided difference rather than an (n+ 1)th
derivative. Let us use (1.32) with n = 2,

f(x) − p2(x) = (x− x0)(x− x1)(x− x2)f [x, x0, x1, x2],
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and integrate over the interval [x0, x2]. The integral of the interpolating
polynomial p2 just gives Simpson’s rule, as we obtained by integrating p3 in
(3.21). Thus we obtain an alternative expression for the error of Simpson’s
rule, namely,

ES(f) =
∫ x2

x0

(x− x0)(x− x1)(x− x2)f [x, x0, x1, x2]dx. (3.25)

In preparation for using integration by parts on the latter integral, we find
that

d

dx
(x− x0)2(x− x2)2 = 2(x− x0)(x− x2)

d

dx
(x− x0)(x− x2),

and since

d

dx
(x− x0)(x− x2) = 2x− x0 − x2 = 2(x− x1),

we obtain

d

dx
(x− x0)2(x− x2)2 = 4(x− x0)(x− x1)(x− x2).

Thus, using integration by parts on the integral in (3.25), we find that

ES(f) = −1
4

∫ x2

x0

(x− x0)2(x− x2)2
d

dx
f [x, x0, x1, x2]dx. (3.26)

It is encouraging that we can now apply Theorem 3.1.2, since the integrand
in (3.26) is of the form F (x)G(x), where G(x) = (x−x0)2(x−x2)2 does not
change sign on the interval of integration. The other factor in the integrand
is

F (x) =
d

dx
f [x, x0, x1, x2] = lim

δx→0

f [x+ δx, x0, x1, x2] − f [x, x0, x1, x2]
δx

,

and using the recurrence relation (1.22), the divided differences simplify to
give

F (x) = lim
δx→0

f [x, x+ δx, x0, x1, x2] = f [x, x, x0, x1, x2].

Thus, on applying Theorem 3.1.2 to (3.26), we obtain

ES(f) = −1
4
f [η, η, x0, x1, x2]

∫ x2

x0

(x− x0)2(x− x2)2dx,

say, where x0 < η < x2. Finally, we can replace the fourth-order divided
difference by a fourth-order derivative, using (1.33), and integrate the latter
integral by means of the substitution x = x0 + sh, to give

ES(f) = −1
4
h5 f

(4)(ξ)
4!

∫ 2

0
s2(s− 2)2ds = −h5

90
f (4)(ξ). (3.27)
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By pursuing a similar method to that used above for Simpson’s rule, we
can derive an error term for the midpoint rule (3.5) of the form

∫ x2

x0

f(x)dx = 2hf(x1) +
h3

3
f ′′(ξ), (3.28)

where ξ ∈ (x0, x2). For more details, see Problem 3.1.3.
We can now write down a composite form of Simpson’s rule. Beginning

with ∫ x2N

x0

f(x)dx =
N∑

r=1

∫ x2r

x2r−2

f(x)dx

and applying Simpson’s rule (3.7) to each of the integrals in the latter sum,
we obtain the composite form of Simpson’s rule,∫ x2N

x0

f(x)dx ≈ SN , (3.29)

where

SN =
1
3
h(f0 + 4f1 + 2f2 + · · · + 2f2N−2 + 4f2N−1 + f2N ), (3.30)

and the values of fj are multiplied by 4 and 2 alternately, for 1 ≤ j ≤ 2N−1.
To obtain an error term for the composite form of Simpson’s rule, we begin
with (3.23) and (3.27) and adapt these formulas to the interval [x2r−2, x2r],
to give

∫ x2r

x2r−2

f(x)dx− 1
3
h(f2r−2 + 4f2r−1 + f2r) = −h5

90
f (4)(ξr),

where x2r−2 < ξr < x2r. We now sum from r = 1 to N , so that

∫ x2N

x0

f(x)dx− SN = −h5

90

N∑
r=1

f (4)(ξr),

and assuming continuity of f (4), the application of Corollary 3.1.1 yields
∫ x2N

x0

f(x)dx− SN = −Nh5

90
f (4)(ξ),

where x0 < ξ < x2N . Finally, writing xj = a + jh, for 0 ≤ j ≤ 2N , and
putting x2N = b, so that x0 = a and b − a = 2Nh, we may express the
composite form of Simpson’s plus error term as

∫ b

a

f(x)dx− SN = − 1
180

(b− a)h4f (4)(ξ), (3.31)

where a < ξ < b.
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Example 3.1.4 We will use the function f(x) = ex2
on [0, 1] to illustrate

the results given above on Simpson’s rule, for comparison with our findings
in Example 3.1.3 on the trapezoidal rule. In the table below, the values
of SN (f) are rounded to four places after the decimal point. In making a
comparison of the composite rules TN (f) and SN (f), we need to take into
account the fact that these rules require respectively N + 1 and 2N + 1
evaluations of the integrand f . Thus corresponding entries in the table
below and the table in Example 3.1.3 are computed using the same number
of values of the integrand, namely, 3, 5, 11, and 21, respectively.

N 1 2 5 10
SN (f) 1.4757 1.4637 1.4627 1.4627

We see from the above table and the table in Example 3.1.3 that the results
from Simpson’s rule are much more accurate than those from the trape-
zoidal rule, and are comparable with those from the trapezoidal rule with
end correction. The error term (3.31) requires f (4), and we find that

d4

dx4 e
x2

= (12 + 48x2 + 16x4)ex2
.

This fourth derivative is positive on [0, 1], and thus the above estimates
obtained by Simpson’s rule are all greater than the value of the integral.
Since f (4) is monotonically increasing,

12 ≤ f (4)(x) ≤ 76e

on [0, 1], and so from (3.31) the error in SN (f) satisfies

1
240N4 ≤

∣∣∣∣∣
∫ b

a

f(x)dx− SN

∣∣∣∣∣ ≤
19e

720N4 .

If we compute the numbers in the above table with greater precision, we
find that S20 ≈ 1.462652, and as we see from (3.20), this is correct to six
decimal places. ■

It is not difficult to show that if f is integrable, for example, if f is con-
tinuous, then TN (f) converges to the value of the integral as N → ∞. The
same is true of SN (f), and indeed, for the composite form of any Newton–
Cotes rule. Examples 3.1.3 and 3.1.4 illustrate the point that unless f (4) is
very much larger than f ′′, Simpson’s rule is greatly to be preferred to the
trapezoidal rule. However, we will see in Section 3.2 that an adaptation of
the trapezoidal rule, Romberg’s method, can be extremely efficient when
the integrand is many times differentiable. Finally, the following example
shows that we should not always expect Simpson’s rule to be very much
better than the trapezoidal rule.



3.1 Interpolatory Rules 131

Example 3.1.5 Let us apply the trapezoidal rule and Simpson’s rule to
estimate the integral of x1/2 over the interval [0, 1]. Since all the derivatives
of the integrand are undefined (since they are infinite) at x = 0, the error
estimates for both TN (f) and SN (f) tell us nothing, and we cannot use the
trapezoidal rule with end correction. The table below gives a comparison
of T2N (f) and SN (f), both of which require 2N + 1 evaluations of the
integrand, for this integral, whose value is 2

3 .

N 1 2 5 10
T2N (f) 0.6036 0.6433 0.6605 0.6644
SN (f) 0.6381 0.6565 0.6641 0.6658

The table shows that although SN (f) does give better results than T2N (f)
for all the values of N used, there is not a dramatic difference in the per-
formance of the two rules such as we saw for the integrand ex2

. ■

We were able to use Theorem 3.1.2 directly to obtain an error term for the
trapezoidal rule, and with the aid of a clever argument involving integration
by parts, we were able to use it to give an error term for Simpson’s rule. We
need to turn to other methods to find error terms for higher-order Newton–
Cotes rules. In the next chapter we will show how Peano kernel theory can
be used for this purpose.

Problem 3.1.1 Replace the integrand f(x) by the approximation f(x0)
on [x0, x1], and so derive the integration rule

∫ x1

x0

f(x)dx ≈ hf(x0).

This is called the rectangular rule.

Problem 3.1.2 Write f(x) = f(x0) + (x− x0)f ′(ξx), where ξx ∈ (x0, x1),
and integrate over [x0, x1] to give an error term for the rectangular rule.

Problem 3.1.3 To derive the error term (3.28) for the midpoint rule, be-
gin with the expression

f(x) = f(x1) + (x− x1)f [x, x1],

obtained by putting n = 0 in (1.32) and replacing x0 by x1. Then integrate
(x− x1)f [x, x1] over the interval [x0, x2], and show that

∫ x2

x0

(x− x1)f [x, x1] dx =
1
2

∫ x2

x0

d

dx
{(x− x0)(x− x2)} f [x, x1] dx.

Complete the derivation of (3.28) by following the method that we used in
deriving (3.26), using integration by parts and Theorem 3.1.2.
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Problem 3.1.4 Show that Simpson’s rule SN may be expressed as the
following linear combination of the two trapezoidal rules TN and T2N :

SN (f) =
1
3
(4T2N (f) − TN (f)).

Problem 3.1.5 Verify that

SN (f) =
1
3
(2T2N +MN ),

where SN and T2N denote Simpson’s rule and the trapezoidal rule in com-
posite form, each requiring 2N + 1 evaluations of the integrand, and MN

denotes the composite form of the midpoint rule that requires N evalua-
tions of the integrand.

Problem 3.1.6 Let us apply the composite trapezoidal rule

T2(f) =
1
2
(f(−1) + 2f(0) + f(1))

to estimate the integral
∫ 1

−1 f(x)dx. Find an integrand f for which T2(f)
is exact and for which Simpson’s rule, based on the same three abscissas,
is not exact.

Problem 3.1.7 Derive the open Newton–Cotes rule of the form

∫ 3

0
f(x)dx ≈ w1f(1) + w2f(2)

that is exact for f ∈ P3.

Problem 3.1.8 Derive the open Newton–Cotes rule of the form

∫ 2

−2
f(x)dx ≈ w−1f(−1) + w0f(0) + w1f(1)

that is exact for f ∈ P3.

Problem 3.1.9 Show that the integration rule
∫ x1

x0

f(x)dx ≈ h

2
(f(x0) + f(x1)) − h2

12
(f ′(x1) − f ′(x0)),

where h = x1 − x0, which may be applied to any integrand f whose first
derivative exists, is exact for f ∈ P3. Deduce that the composite form of
the above rule, the trapezoidal rule with end correction, is also exact for
f ∈ P3.
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3.2 The Euler–Maclaurin Formula

The trapezoidal rule with end correction (3.19) is a special case of the
Euler–Maclaurin formula, which is named after Leonhard Euler (1707–
1783) and Colin Maclaurin (1698–1746). Assuming that f is sufficiently
differentiable, let us write

∫ h/2

−h/2
f(x)dx ≈ h

2
(f(−h/2) + f(h/2))

−
m∑

r=1

h2rc2r

(
f (2r−1)(h/2) − f (2r−1)(−h/2)

)
, (3.32)

for any positive integer m. First we note that (3.32) is exact when f(x) = 1
and when f(x) = x2n−1, for any integer n ≥ 1. We next observe that (3.32)
is exact for all f ∈ P2m+1 if and only if it is exact for f(x) = x2, x4, . . . , x2m.
On substituting f(x) = x2s into (3.32), and dividing by h2s+1/22s, we have
equality if

1
2s+ 1

= 1 −
s∑

r=1

22r2s(2s− 1) · · · (2s− 2r + 2)c2r, 1 ≤ s ≤ m. (3.33)

Since this is a nonsingular lower triangular system, we can solve these
equations by forward substitution to determine the c2r uniquely, and then
(3.32) will be exact for all f ∈ P2m+1. Note that the coefficients c2r do not
depend on m. On solving these equations, we find that the first few values
of the coefficients c2r are

c2 =
1
12
, c4 = − 1

720
, c6 =

1
30240

, c8 = − 1
1209600

, c10 =
1

47900160
.

The value obtained for c2 is that already found in (3.19), the trapezoidal
rule with end correction. We now make a linear change of variable, mapping
[−h/2, h/2] onto [xj , xj+1], where xj = x0 +jh. Under this transformation,
(3.32) becomes

∫ xj+1

xj

f(x)dx ≈ h

2
(f(xj) + f(xj+1))

−
m∑

r=1

h2rc2r

(
f (2r−1)(xj+1) − f (2r−1)(xj)

)
, (3.34)

and with the values of c2r as derived above, this equation is exact for all
f ∈ P2m+1. If we evaluate (3.34) with j = 0, x0 = 0, h = 1, and f(x) = x2s,
we obtain

1
2s+ 1

=
1
2

−
s∑

r=1

2s(2s− 1) · · · (2s− 2r + 2)c2r, (3.35)
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giving an alternative linear system to (3.33) for determining the c2r.
We now show that for all r ≥ 1,

c2r =
B2r

(2r)!
, (3.36)

where the B2r are the Bernoulli numbers, named after Jacob Bernoulli
(1654–1705). These are defined by

x

ex − 1
=

∞∑
r=0

Brx
r

r!
. (3.37)

Thus B0 = 1, B1 = − 1
2 , and (see Problem 3.2.1) B2r−1 = 0 for all r > 1.

On multiplying (3.37) throughout by ex − 1, we obtain

x = (ex − 1)

(
1 − 1

2
x+

∞∑
r=1

B2rx
2r

(2r)!

)
. (3.38)

If we now compare the coefficient of x2s+1 on both sides of (3.38) and
multiply throughout by (2s)!, we obtain the same equation as (3.35), with
c2r replaced by B2r/(2r)!, thus justifying (3.36). The next few nonzero
values of the Bernoulli numbers after B1 are

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42
, B8 = − 1

30
, B10 =

5
66
. (3.39)

Now let us sum (3.34) from j = 0 to N − 1, and use (3.36) to express
the coefficients c2r in terms of the Bernoulli numbers. Finally, we replace
x0 by a and xN by b, to give

∫ b

a

f(x)dx ≈ TN (f) −
m∑

r=1

h2r B2r

(2r)!

(
f (2r−1)(b) − f (2r−1)(a)

)
, (3.40)

where TN (f) denotes the trapezoidal sum, defined in (3.17). We note that
(3.40) is exact for all f ∈ P2m+1.

If f ∈ C1[a, b], we can use (3.40) with the series on the right truncated
after one term. As we have already noted, this is just the trapezoidal rule
with end correction. If f ∈ C3[a, b], we can use (3.40) with the series on
the right truncated after two terms, and so on. Note that although we
have introduced the Euler–Maclaurin formula as a means of estimating
an integral, we could equally use it to express a sum as an integral plus
correction terms involving odd-order derivatives of the integrand at the
endpoints of the interval of integration.

Having derived the Euler–Maclaurin formula in a constructive manner,
as we have done above, we can appreciate so much more the following very
elegant way of building it up by the repeated use of integration by parts.
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This approach has the advantage of leading us naturally to an error term,
and to a deeper understanding of the Euler–Maclaurin formula. Otherwise,
it would not seem very useful, since we need to know that it has the form
given by (3.40) in order to follow this route. For simplicity of presentation,
we will take x0 = 0 and h = 1. We define a sequence of functions (pn), for
n ≥ 1 such that each pn(x) is a polynomial of degree n for 0 ≤ x < 1 and
is periodic elsewhere in (−∞,∞), with period 1, so that

pn(x+ 1) = pn(x), −∞ < x < ∞, (3.41)

for all n ≥ 1. We define, for n ≥ 1,

pn(x) =
1
n!

n∑
s=0

(
n
s

)
Bsx

n−s, 0 ≤ x < 1, (3.42)

and we can show that

p′
n+1(x) = pn(x), 0 ≤ x < 1, (3.43)

for all n ≥ 1. The polynomial pn(x) is commonly written as Bn(x)/n!,
where Bn(x) is called the Bernoulli polynomial of degree n. However, we
need to be careful with references to the Bernoulli polynomials, because
there is more than one definition of these, as indeed there is for the Bernoulli
numbers. It follows from (3.42) that

p1(x) = x− 1
2
, 0 ≤ x < 1. (3.44)

It is also clear from (3.42) that for all r ≥ 1,

p2r(0) =
B2r

(2r)!
and p2r+1(0) = 0. (3.45)

The first few members of the sequence (pn), following p1, are defined by

p2(x) =
1
2
x2 − 1

2
x+

1
12
,

p3(x) =
1
6
x3 − 1

4
x2 +

1
12
x,

p4(x) =
1
24
x4 − 1

12
x3 +

1
24
x2 − 1

720
,

p5(x) =
1

120
x5 − 1

48
x4 +

1
72
x3 − 1

720
x,

for 0 ≤ x < 1, and they satisfy the periodicity condition (3.41) elsewhere
in (−∞,∞). These functions are called piecewise polynomials or splines,
about which we have more to say in Chapter 6. We see that p1(x) is a “saw-
tooth” function that is discontinuous at every integer value of x. However,
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as we see from its above explicit form for 0 ≤ x < 1 and the periodic-
ity condition, the function p2 is continuous on the whole real line, and an
induction argument based on (3.43) shows that pn is continuous on the
whole real line for all n ≥ 2. Indeed, such an argument reveals that these
functions become increasingly smooth as n is increased, and we can deduce
that pn ∈ Cn−2(−∞,∞) for n ≥ 2. From the periodicity property (3.41)
and the continuity of pn for n ≥ 2, we see from (3.45) that

p2r(0) = p2r(1) =
B2r

(2r)!
and p2r+1(0) = p2r+1(1) = 0, r ≥ 1. (3.46)

On [0, 1], the polynomial pn is symmetric about the midpoint x = 1
2 , when

n is even, and is antisymmetric about x = 1
2 , when n is odd; that is,

pn(1 − x) = (−1)npn(x), 0 ≤ x ≤ 1, (3.47)

for all n ≥ 2. (See Problem 3.2.4.) It follows from (3.47) that p2r+1( 1
2 ) = 0

for all r ≥ 0.
Let us use integration by parts. Because p1 is discontinuous, we will work

with the interval [0, 1 − ε], where 0 < ε < 1, instead of [0, 1], and write∫ 1−ε

0
p1(x)f ′(x)dx = [p1(x)f(x)]1−ε

0 −
∫ 1−ε

0
f(x)dx,

since p′
1(x) = 1 on [0, 1 − ε]. Now we let ε tend to zero from above, which

we write as ε → 0+. We have

lim
ε→0+

p1(1 − ε) = lim
ε→0+

(1 − ε− 1
2 ) =

1
2
,

and as ε → 0+, we obtain∫ 1

0
p1(x)f ′(x)dx =

1
2
(f(0) + f(1)) −

∫ 1

0
f(x)dx.

It then follows from the periodicity of p1 that∫ j+1

j

p1(x)f ′(x)dx =
1
2
(f(j) + f(j + 1)) −

∫ j+1

j

f(x)dx, (3.48)

for any integer j. Now, for any integer n ≥ 1, we have∫ j+1

j

pn(x)f (n)(x)dx =
[
pn+1(x)f (n)(x)

]j+1

j
−
∫ j+1

j

pn+1(x)f (n+1)(x)dx,

and if we write down the latter equation with n replaced by 2r− 1 and 2r,
in turn, apply (3.46), and add those two equations together, we obtain∫ j+1

j

p2r−1(x)f (2r−1)(x)dx =
B2r

(2r)!

(
f (2r−1)(j + 1) − f (2r−1)(j)

)

+
∫ j+1

j

p2r+1(x)f (2r+1)(x)dx.
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If we now use (3.48) and the latter equation with r = 1, . . . ,m, we obtain∫ j+1

j

f(x)dx =
1
2
(f(j) + f(j + 1))

−
m∑

r=1

B2r

(2r)!

(
f (2r−1)(j + 1) − f (2r−1)(j)

)

−
∫ j+1

j

p2m+1(x)f (2m+1)(x)dx, (3.49)

which holds for all functions f that are sufficiently differentiable. If we now
sum (3.49) from j = 0 to N − 1, we obtain

∫ N

0
f(x)dx = TN (f) −

m∑
r=1

B2r

(2r)!
(f (2r−1)(N) − f (2r−1)(0))

−
∫ N

0
p2m+1(x)f (2m+1)(x)dx, (3.50)

where, in the trapezoidal sum TN (f), the function f is evaluated at the
integers 0, 1, . . . , N . Finally, we obtain (3.40) plus an error term from (3.50)
by making the linear transformation that maps [0, N ] onto [x0, x0 + Nh].
An alternative derivation of the error term is given in Section 4.2.

Before leaving this topic, we note that p1(x) has the Fourier expansion

p1(x) = −
∞∑

n=1

2 sin 2πnx
2πn

. (3.51)

(See Problem 3.2.5.) Let us repeatedly integrate this series formally, term
by term. We note from (3.47) that each p2r must have a Fourier expansion
containing only cosine terms, and the expansion for each p2r+1 contains
only sine terms. We obtain

p2r(x) = (−1)r−1
∞∑

n=1

2 cos 2πnx
(2πn)2r

, (3.52)

p2r+1(x) = (−1)r−1
∞∑

n=1

2 sin 2πnx
(2πn)2r+1 . (3.53)

It is clear that the Fourier expansions in (3.52) and (3.53), for r ≥ 1,
converge uniformly on [0, 1] and so, by periodicity, converge uniformly ev-
erywhere. Then, by the well-known result on the uniform convergence of
Fourier expansions (see, for example, Davis [10]), since for n > 1, pn is
continuous and is periodic with period 1 and its Fourier series is uniformly
convergent, the Fourier series converges to pn. Note that this does not hold
for p1, since

p1(0) = p1(1) = −1
2

and lim
ε→0+

p1(1 − ε) =
1
2
,
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whereas its Fourier expansion assumes the value 0 at both x = 0 and 1.
If we put x = 0 in (3.52) and evaluate p2r(0) from (3.45), we obtain

∞∑
n=1

1
n2r

= (−1)r−122r−1π2r B2r

(2r)!
, r ≥ 1. (3.54)

The first few such sums are
∞∑

n=1

1
n2 =

π2

6
,

∞∑
n=1

1
n4 =

π4

90
,

∞∑
n=1

1
n6 =

π6

945
,

∞∑
n=1

1
n8 =

π8

9450
.

The relation (3.54) also shows us that the Bernoulli numbers B2r alternate
in sign, as the reader may have suspected from (3.39), and thus, from (3.45),
the values of p2r(0) alternate in sign.

Example 3.2.1 Let us use the Euler–Maclaurin formula to compute the
sum S =

∑∞
n=1 1/n2 = π2/6. Although the value of S is known from (3.54),

this example will serve to demonstrate the great power of this method. We
will write S = SN−1 +RN , where

SN−1 =
N−1∑
n=1

1
n2 and RN =

∞∑
n=N

1
n2 ,

and use the Euler–Maclaurin formula to estimate the “tail” of the series,
RN . We begin with (3.40), letting b → ∞ and setting h = 1 and a = N .
Finally, we let m → ∞, to give

RN =
∫ ∞

N

f(x)dx+
1
2
f(N) −

∞∑
r=1

B2r

(2r)!
f (2r−1)(N),

where f(x) = 1/x2. Note that the term 1
2f(N) is required, since the Euler–

Maclaurin formula involves a “trapezoidal” sum, where the first and last
terms are halved. Note that all the derivatives of the function 1/x2 exist
at x = 1 and all tend to zero as x → ∞. Since for f(x) = 1/x2, we have
f (2r−1)(N)/(2r)! = −1, for all r, we obtain

RN =
1
N

+
1

2N2 +
1

6N3 − 1
30N5 +

1
42N7 − 1

30N9 +O

(
1
N11

)
.

With N = 10, for example, we estimate R10 from the line above and add
it to the sum S9, to give the following estimate of S, with the correct value
below it:

S ≈ 1.64493 40668 47,
1
6
π2 ≈ 1.64493 40668 48.

Both numbers are rounded to 12 places after the decimal point. ■
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There is a finite difference analogue of the Euler–Maclaurin formula,
where the correction terms at the endpoints of the interval of integration are
expressed in terms of differences rather than derivatives. This is Gregory’s
formula,

∫ xN

x0

f(x)dx ≈ TN (f) − h

2m∑
r=1

ar (∆rf0 + (−1)r∇rfN ) , (3.55)

obtained by James Gregory before Euler and Maclaurin were born. The
coefficients ar are given by

ar =
∫ 1

0

(
s

r + 1

)
ds. (3.56)

Let us now recast the Euler–Maclaurin formula (3.40), writing the trape-
zoidal sum TN (f) as T (h), and writing

B2r

(2r)!
(f (2r−1)(b) − f (2r−1)(a)) = −E2r.

Then (3.40) is now expressed in the form

∫ b

a

f(x)dx ≈ T (h) +
m∑

r=1

h2rE2r, (3.57)

which emphasizes its dependence on the parameter h. We will use (3.57)
to justify a numerical integration process known as Romberg’s method,
named after Werner Romberg (born 1909). In the account that follows, we
will see that we do not need to know the values of the coefficients E2r in
(3.57) in order to implement Romberg’s method.

To concentrate our attention on the first of the terms in the sum on the
right of (3.57), let us write

∫ b

a

f(x)dx = T (h) + h2E2 +O(h4). (3.58)

If we now also write down the latter equation with h replaced by h/2, we
obtain ∫ b

a

f(x)dx = T (h/2) +
1
4
h2E2 +O(h4). (3.59)

Let us now eliminate the principal error term, involving h2, between the
last two expressions: We multiply (3.59) by 4, subtract (3.58), and divide
by 3 to give ∫ b

a

f(x)dx = T (1)(h) +O(h4), (3.60)
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where

T (1)(h) =
4T (h/2) − T (h)

3
.

The process of eliminating the term in h2 is called extrapolation to the limit,
or Richardson extrapolation, after L. F. Richardson (1881–1953). Note that
we do not have to know the value of E2 in order to carry out this process,
nor do we have to know the values of any of the error coefficients E2j

in the repeated extrapolations that follow. The first extrapolation gives
us nothing new, for T (1)(h) is just the estimate of the integral given by
Simpson’s rule. However, we can continue by eliminating the error term
involving h4, then that involving h6, and so on, assuming that the value of
m in (3.57) is sufficiently large. When we have eliminated the error term
involving h4, we obtain

∫ b

a

f(x)dx = T (2)(h) +O(h6),

say, where

T (2)(h) =
42T (1)(h/2) − T (1)(h)

42 − 1
.

Note that in order to compute T (2)(h), we need the numbers T (h), T (h/2),
and T (h/4). In general, we compute, recursively,

T (k)(h) =
4kT (k−1)(h/2) − T (k−1)(h)

4k − 1
,

and we have ∫ b

a

f(x)dx = T (k)(h) +O(h2k+2).

This is valid, provided that the integrand f is sufficiently differentiable.
Romberg’s method gives the accuracy of the Euler–Maclaurin formula with-
out the need to evaluate any derivatives of the integrand.

Example 3.2.2 Let us use Romberg integration to estimate the integral
of ex2

over the interval [−1, 1]. The results are displayed in the following
table.

h T (h) T (1)(h) T (2)(h) T (3)(h)

1 1.859141 1.475731 1.462909 1.462654

1
2 1.571583 1.463711 1.462658

1
4 1.490679 1.462723

1
8 1.469712
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All the numbers in the above Romberg table overestimate the value of
the integral, which is 1.462652, rounded to six decimal places. Compare
T (3)(1) = 1.462654, with error 2 · 10−6, and the best trapezoidal approx-
imant in the table, 1.469712, which has an error of 7 units in the third
decimal place. ■

In the above example on Romberg integration, all derivatives of the in-
tegrand exist, and we obtained excellent results. We should not expect
Romberg’s method to be as successful when the integrand has a singularity
in a low-order derivative.

Example 3.2.3 Let us use Romberg integration to estimate the integral
of x1/2 over the interval [0, 1]. The results are displayed in the following
table.

h T (h) T (1)(h) T (2)(h) T (3)(h)

1 0.500000 0.638071 0.657757 0.663608

1
2 0.603553 0.656526 663516

1
4 0.643283 0.663079

1
8 0.658130

This is only a test example, for we know the value of the integral to be 2
3 . All

entries in the table underestimate the integral. The closest estimate, with
an error of more than 0.003, shows an improvement of only one decimal
place of accuracy on the best trapezoidal approximant. All derivatives of
the integrand are singular at x = 0, and thus the Euler–Maclaurin formula,
on which Romberg’s method depends, is not applicable. ■

Problem 3.2.1 Show that
x

ex − 1
+

1
2
x

is an even function, and deduce from (3.37) that

x

ex − 1
= 1 − 1

2
x+

∞∑
j=1

B2jx
2j

(2j)!
.

Problem 3.2.2 Express pn+1 as a sum, using (3.42) , and differentiate the
sum term by term to verify (3.43).

Problem 3.2.3 Deduce from (3.43) and (3.46) that
∫ 1

0
pn(x)dx = 0, n ≥ 2,
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and show also that

lim
ε→0+

∫ 1−ε

0
p1(x)dx = 0.

Problem 3.2.4 Verify that p2(1 − x) = p2(x) on [0, 1], and prove by in-
duction on n, using (3.43) and the result in Problem 3.2.3, that (3.47) holds
for all n ≥ 2.

Problem 3.2.5 The Fourier expansion for a function f defined on [0, 1] is
given by

f(x) ∼ 1
2
a0 +

∞∑
n=1

(an cos 2πnx+ bn sin 2πnx),

where

an = 2
∫ 1

0
f(x) cos 2πnx dx, n ≥ 0,

bn = 2
∫ 1

0
f(x) sin 2πnx dx, n ≥ 1.

For f(x) = p1(x), defined by (3.44), show that every an is zero and

bn = 2
∫ 1

0
x sin 2πnx dx = − 1

πn
, n ≥ 1,

as given in (3.51).

Problem 3.2.6 Using the identity

1 − cos 2πnx = 2 sin2 πnx,

deduce from (3.52) that

p2r(x) − p2r(0) = (−1)r
∞∑

n=1

4 sin2 πnx

(2πn)2r
,

and show that p2r(x) − p2r(0) does not change sign.

Problem 3.2.7 Compute the sum S =
∑∞

n=1 1/n3 by applying the Euler–
Maclaurin formula, following the method used for estimating the sum in
Example 3.2.1.

Problem 3.2.8 Use Romberg’s method, with three repeated extrapola-
tions, to estimate the integral of 1/(1 + x) over the interval [0, 1].
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3.3 Gaussian Rules

The best-known interpolatory integration rules are the Newton–Cotes rules,
which we discussed in Section 3.1, and the Gaussian rules, named after C. F.
Gauss. As we will see, these are naturally defined on the interval [−1, 1], and
can be used on any finite interval [a, b] by making a linear change of variable.
The abscissas of these rules are the zeros of the Legendre polynomials. The
Gaussian integration rules are obtained by seeking an interpolatory rule
on the interval [−1, 1] whose abscissas x1, . . . , xn are chosen so that the
rule is exact for all integrands in Pm, where m is as large as possible.
One might expect that the greatest possible value of m is 2n − 1, since
a polynomial of degree 2n − 1 has 2n coefficients, and a rule based on n
abscissas has 2n parameters, since it has n weights and n abscissas. This
turns out to be correct. For as we will show, the rule obtained by integrating
the interpolating polynomial based on the zeros of the Legendre polynomial
Qn over the interval [−1, 1] is exact for all integrands in P2n−1. This is called
a Gaussian rule or a Gauss–Legendre rule. Thus we find that the one-point
Gaussian rule is ∫ 1

−1
f(x)dx ≈ 2f(0). (3.61)

This is the midpoint rule, the simplest open Newton–Cotes rule, which we
have already met in Section 3.1. (See Problem 3.1.3 for the derivation of
an error term for this rule.) The two-point and three-point Gaussian rules
are as follows:

∫ 1

−1
f(x)dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
, (3.62)

∫ 1

−1
f(x)dx ≈ 5

9
f

(
−
√

3
5

)
+

8
9
f(0) +

5
9
f

(√
3
5

)
. (3.63)

It can be shown (see Davis and Rabinowitz [11]) that the n-point Gaussian
rule plus error term is of the form

∫ 1

−1
f(x)dx =

n∑
i=1

w
(n)
i f

(
x

(n)
i

)
+

22n+1(n!)4

(2n+ 1)((2n)!)3
f (2n)(ξn), (3.64)

where −1 < ξn < 1, the abscissas x(n)
i are the zeros of the Legendre

polynomial Qn, and the weights w(n)
i are all positive.

We will now justify our above statement that the n-point Gaussian rule
is exact for all integrands in P2n−1. As a first step, we state and prove the
following lemma.

Lemma 3.3.1 If the divided difference f [x, x1, . . . , xk] is a polynomial in
x of degree m > 0, then f [x, x1, . . . , xk+1] is a polynomial of degree m− 1.
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Proof. From the recurrence relation (1.22), we have

f [x, x1, . . . , xk+1] =
f [x1, . . . , xk+1] − f [x, x1, . . . , xk]

xk+1 − x
.

The lemma then follows from the fact that the numerator on the right side
of the latter equation is a polynomial of degree m, and the denominator is
a factor of the numerator. The last assertion follows from the observation
that the numerator is zero when we put x = xk+1, for the numerator then
becomes

f [x1, . . . , xk+1] − f [xk+1, x1, . . . , xk].

This is indeed zero, since a divided difference is unchanged if we rearrange
the order of its arguments. ■

Theorem 3.3.1 The n-point Gaussian rule,
∫ 1

−1
f(x)dx ≈

n∑
i=1

w
(n)
i f

(
x

(n)
i

)
= Gn(f),

say, where x(n)
1 , x

(n)
2 , . . . , x

(n)
n denote the zeros of the Legendre polynomial

Qn, is exact if f ∈ P2n−1.

Proof. Let pn−1 denote the interpolating polynomial for a given function
f on the zeros of the Legendre polynomial Qn, and write the error of
interpolation in the divided difference form

f(x) − pn−1(x) = qn(x) f
[
x, x

(n)
1 , . . . , x(n)

n

]
, (3.65)

where
qn(x) =

(
x− x

(n)
1

)
· · ·
(
x− x(n)

n

)
.

Then, from (2.29), we have

qn(x) =
1
µn
Qn(x),

where

µn =
1

qn(1)
=

1
2n

(
2n
n

)
.

If we integrate (3.65) over [−1, 1], we obtain an error term for the n-point
Gaussian rule,

∫ 1

−1
f(x)dx−Gn(f) =

1
µn

∫ 1

−1
Qn(x) f

[
x, x

(n)
1 , . . . , x(n)

n

]
dx. (3.66)

If f(x) is a polynomial in x of degree 2n − 1, an argument like that used
in Lemma 3.3.1 shows that the first divided difference f

[
x, x

(n)
1

]
is a poly-

nomial of degree 2n − 2, and the repeated use of the lemma shows that
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f
[
x, x

(n)
1 , . . . , x

(n)
n

]
is a polynomial of degree n − 1. Since the Legendre

polynomial Qn is orthogonal to all polynomials in Pn−1, the integral on
the right side of (3.66) is zero, and this completes the proof. ■

We have from Theorem 2.1.2 that Qn(−x) = (−1)nQn(x). Thus, if we
order the zeros of Qn so that

−1 < x
(n)
1 < x

(n)
2 < · · · < x(n)

n < 1,

we have
x

(n)
n−i = −x(n)

i , 1 ≤ i ≤ n.

In particular, x = 0 is a zero when n is odd. Then, in the same way that
we verified the symmetry in the weights of the Newton–Cotes rules, we can
show that the weights of the n-point Gaussian rule satisfy

w
(n)
n−i = w

(n)
i , 1 ≤ i ≤ n.

We can deduce from this symmetry in abscissas and weights, as we did
with the Newton–Cotes rules, that the Gaussian rules are exact for all
integrands that are odd functions. A Gaussian rule may be applied on any
finite interval, by using a linear transformation to map the given interval
onto [−1, 1], and like the Newton–Cotes rules, Gaussian rules are generally
used in composite form.

We conclude this section by mentioning a simple generalization of the
Gaussian rules. As we saw in Section 2.2, corresponding to any integrable
function ω that is nonnegative on [−1, 1], there exists a sequence of poly-
nomials (qω

n ) that satisfy

∫ 1

−1
ω(x)xrqω

n (x)dx = 0, 0 ≤ r < n. (3.67)

The polynomials qω
n are said to be orthogonal on [−1, 1] with respect to

ω, which is called a weight function, and the scaled Legendre polynomials
are recovered by putting ω(x) = 1. The generalized orthogonal polynomials
qω
n , like the Legendre polynomials, satisfy a recurrence relation of the form

(2.18), where the coefficients αn and βn are given by (2.19) and (2.20),
amended by inserting the factor ω(x) into each integrand. Further, if the
weight function ω is even, these orthogonal polynomials satisfy Theorem
2.1.2, where again we need to insert the factor ω(x) into both integrands
in (2.20), which defines βn. Corresponding to any given weight function
ω there exists a system of orthogonal polynomials (qω

n ), and each system
yields a sequence of Gaussian-type rules of the form

∫ 1

−1
ω(x)f(x)dx ≈

n∑
i=1

w
(n)
i f

(
x

(n)
i

)
= Gω

n(f), (3.68)
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say, where x(n)
1 , x

(n)
2 , . . . , x

(n)
n denote the zeros of the polynomial qω

n . This
generalized Gaussian rule is exact if f ∈ P2n−1.

Of all the Jacobi polynomials, those whose related integration rules are
the most widely known are the Legendre polynomials, which we discussed
above, and the Chebyshev polynomials, whose related rules are

∫ 1

−1
(1 − x2)−1/2f(x)dx ≈ π

n

n∑
i=1

f
(
x

(n)
i

)
, (3.69)

where the x(n)
i are the zeros of the Chebyshev polynomial Tn. (See (2.76).)

Note that in (3.69), which is called the Gauss–Chebyshev rule of order n,
all the weights are equal.

Problem 3.3.1 Verify directly that the two-point Gaussian rule, given in
(3.62), is exact for integrands 1 and x2, and thus for all integrands in P3.

Problem 3.3.2 Verify directly that the three-point Gaussian rule, given
in (3.63), is exact for integrands 1, x2, and x4, and thus for all integrands
in P5.

Problem 3.3.3 Assuming that the error of the n-point Gaussian rule is
of the form cnf

(2n)(ξn), determine the values of c1, c2, and c3 by putting
f(x) = x2, x4, and x6 in (3.61), (3.62), and (3.63), respectively. Verify that
the resulting error terms agree with those given by (3.64).

Problem 3.3.4 Verify that the abscissas of the four-point Gaussian rule
are ± (15 ± 2

√
30
)1/2

/
√

35, and hence find its weights, so that the rule is
exact for the integrands 1, x2, x4, and x6. Apply the rule to the integrand
x8 and, making the same assumption as we did in Problem 3.3.3, show that
the error is given by (3.64) with n = 4.

Problem 3.3.5 By making the substitution x = cos θ, show that the
Gauss–Chebyshev rule (3.69) becomes

∫ π

0
f(cos θ)dθ ≈ π

n

n∑
i=1

f(cos θi),

where θi = (2i−1)π/(2n). Note that this is simply the composite midpoint
rule in the variable θ.

Problem 3.3.6 Show that the Gauss–Chebyshev integration rule of order
three is∫ 1

−1
(1 − x2)−1/2f(x)dx ≈ π

3

(
f
(
−

√
3/2
)

+ f(0) + f
(√

3/2
))

,

and verify that it is exact for all integrands in P5.



4
Peano’s Theorem and Applications

4.1 Peano Kernels

We begin with a verification of the expansion of f(x) as a Taylor polynomial
plus an error term expressed as an integral. If f (n+1) exists on [a, b], then

f(x) = f(a) + f ′(a)(x− a) + · · · +
f (n)(a)
n!

(x− a)n +Rn(f), (4.1)

for a ≤ x ≤ b, where

Rn(f) =
1
n!

∫ x

a

f (n+1)(t)(x− t)ndt. (4.2)

To justify (4.1) and (4.2), we use integration by parts in (4.2) to obtain

Rn(f) = −f (n)(a)
n!

(x− a)n +Rn−1(f).

A second application of this recurrence relation yields

Rn(f) = −f (n)(a)
n!

(x− a)n − f (n−1)(a)
(n− 1)!

(x− a)n−1 +Rn−2(f).

The required result is then established by applying the recurrence relation
n times, and noting that

R0(f) =
∫ x

a

f ′(t)dt = f(x) − f(a).
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If f (n+1) is continuous, we can apply Theorem 3.1.2 to (4.2), since (x−t)n

does not change sign over the interval of integration, to give

Rn(f) =
f (n+1)(ξx)

n!

∫ x

a

(x− t)ndt =
f (n+1)(ξx)
(n+ 1)!

(x− a)n+1,

where a < ξx < x. This is the more familiar version of the error in repre-
senting a function by its Taylor polynomial.

When n > 0 the factor (x − t)n, regarded as a function of t, is zero for
t = x, the upper limit of integration in (4.2). It is useful to define a function
of t that coincides with (x− t)n for x− t ≥ 0, where x is fixed, and is zero
for x− t < 0. We now give a formal definition of this function.

Definition 4.1.1 For any fixed real number x and any nonnegative integer
n, we write (x − t)n

+ to denote the function of t defined for −∞ < t < ∞
as follows:

(x− t)n
+ =

{
(x− t)n, −∞ < t ≤ x,
0, t > x.

(4.3)

This is called a truncated power function. ■

The function (x−t)0+ has the value 1 for −∞ < t ≤ x, and is zero for t > x,
and so is not continuous at t = x. For n = 1, we usually write (x − t)1+
more simply as (x− t)+. As n is increased, the truncated power functions
become increasingly smooth, in the sense that derivatives of increasingly
higher order are continuous. It is not difficult to prove directly from the
definition of derivative that for n ≥ 1,

d

dt
(x− t)n

+ = −n(x− t)n−1
+ , (4.4)

and thus the derivative of a truncated power is just a multiple of the trun-
cated power function of one order less. For n > 1, the application of (4.4)
n− 1 times shows that the (n− 1)th derivative of (x− t)n

+ is a multiple of
(x− t)1+, which is continuous on −∞ < t < ∞. However, the nth derivative
of (x− t)n

+ behaves like a multiple of (x− t)0+, which is not continuous at
t = x. We say that (x − t)n

+, for n ≥ 1, is a spline in Cn−1(−∞,∞). (We
will have much more to say about splines in Chapter 6.) Thus (x − t)1+ is
continuous, and its first derivative is not; (x − t)2+ and its first derivative
are continuous, and its second derivative is not; and so on.

With the introduction of the truncated power function, the expansion of
f as a Taylor polynomial plus remainder may be written in the form

f(x) = f(a) + f ′(a)(x− a) + · · · +
f (n)(a)
n!

(x− a)n +Rn(f),

where

Rn(f) =
1
n!

∫ b

a

f (n+1)(t)(x− t)n
+dt. (4.5)
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Thus, by merely substituting the truncated power function for the factor
(x− t)n, we have obtained an integral form of the remainder in which the
limits of integration are independent of x. We need one more definition,
and then we will be ready to apply (4.5).

Definition 4.1.2 A linear functional L is a mapping from the space of
functions f defined on [a, b] to the real numbers such that

L(αf + βg) = αL(f) + βL(g),

where f, g are any functions, and α, β are any real numbers. ■

Example 4.1.1 Let pn ∈ Pn denote the interpolating polynomial for a
given function f on n + 1 distinct abscissas. Let Lx map f to the real
number pn(x). We have included the suffix x in Lx to remind ourselves
that this mapping depends on x. As we can easily verify by writing down
the Lagrange form of the interpolating polynomial, Lx is a linear functional.
Two further examples of linear functionals are

L(f) =
∫ b

a

f(x)dx and L(f) =
n∑

i=1

wif(xi),

where the wi and xi are any real numbers. ■

We can now state and prove the main result of this section, the well-
known theorem named after Giuseppe Peano (1858–1932).

Theorem 4.1.1 Let us define

gt(x) = (x− t)n
+, (4.6)

and let L denote a linear functional that commutes with the operation of
integration, and satisfies the further conditions that L(gt) is defined and
that L(f) = 0 for all f ∈ Pn. Then, for all f ∈ Cn+1[a, b],

L(f) =
∫ b

a

f (n+1)(t)K(t)dt, (4.7)

where
K(t) = Kg(t) =

1
n!
L(gt). (4.8)

Proof. We need to be rather careful here. For we have been treating the
truncated power function (x − t)n

+ as a function of t, with x behaving as
a parameter. In the statement of this theorem we have written L(gt), with
gt(x) = (x − t)n

+, to emphasize that L is applied to the truncated power
function (x− t)n

+, regarded as a function of x, with t as a parameter. Thus
the linear functional L maps (x− t)n

+ to a real number that depends on t,
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that is, to a function of t. The functional L is said to annihilate functions
belonging to Pn. Let us now write f(x) in the form (4.1), with the remainder
Rn(f) expressed as in (4.5), which involves the truncated power function.
If we now apply the linear functional L to (4.1), because L is linear and
annihilates the Taylor polynomial, we obtain

L(f) =
1
n!
L

∫ b

a

f (n+1)(t)(x− t)n
+dt.

Since the linear functional L commutes with the operation of integration,
we have

L(f) =
1
n!

∫ b

a

f (n+1)(t)L
(
(x− t)n

+
)
dt,

and we need to keep in mind that the linear functional L is applied to
(x− t)n

+ as a function of x. This completes the proof. ■

Corollary 4.1.1 If, in addition to the conditions stated in Theorem 4.1.1,
the kernel K(t) does not change sign on [a, b], then

L(f) =
f (n+1)(ξ)
(n+ 1)!

L
(
xn+1) , (4.9)

where a < ξ < b.

Proof. Since f (n+1)(t) is continuous and K(t) does not change sign on [a, b],
we can apply Theorem 3.1.2 to (4.7) to give

L(f) = f (n+1)(ξ)
∫ b

a

K(t)dt, a < ξ < b.

This holds for all f ∈ Cn+1[a, b]. In particular, on replacing f(x) by xn+1

in the latter equation, we obtain

L
(
xn+1) = (n+ 1)!

∫ b

a

K(t)dt,

which completes the proof. ■

Remark 1 Suppose that L is a linear functional that commutes with
the operation of integration, and that L(f) = 0 for all f in, say, P3. Then,
in seeking a kernel K for this linear functional, we would usually define K
by (4.8) where gt is given by (4.6) with the largest admissible value of n for
which L(gt) is defined. But it is worth emphasizing that we could choose
any value of n ≤ 3 for which L(gt) is defined. ■

Remark 2 The above theorem shows that ifK is defined by (4.8), then it
satisfies the equation (4.7). Later (see (4.15)), we will find another function
K that also satisfies (4.7). This prompts an obvious question: Is there a
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unique function K that satisfies (4.7)? To answer this, let Kg denote the
function defined by (4.8). Then, if K is any function that satisfies (4.7),
we have ∫ b

a

f (n+1)(t)(K(t) −Kg(t))dt = 0

for all f ∈ Cn+1[a, b]. Thus K(t) − Kg(t) must be zero on [a, b], except
possibly on a set of measure zero. For example, if we change K(t) at a finite
number of points, the value of the integral in (4.7) will be unchanged. In
particular, if Kg is continuous on [a, b], then K = Kg is the only continuous
function that satisfies (4.7). ■

In the example and problems that follow in this section, the linear func-
tional is of the form

L(f) =
∫ b

a

f(x)dx+
N∑

i=1

cif(xi) +
N ′∑
i=1

c′if
′(x′

i), (4.10)

where the term involving the integral may be absent, as in Problems 4.1.1
and 4.1.2. We will say that the xi and x′

i in (4.10) are abscissas of the
linear functional L. Such linear functionals commute with the operation of
integration, and the same is true of linear functionals obtained by adding
terms involving evaluations of higher-order derivatives of f to the right side
of (4.10).

Example 4.1.2 Let us find the error term for the trapezoidal rule, which
we obtained by other means in Section 3.1. We begin with

L(f) =
∫ b

a

f(x)dx− h

2
(f(a) + f(b)),

where h = b− a. This linear functional L annihilates all functions f in P1,
and we may choose gt(x) = (x− t)+ in (4.8), since L(gt) exists. Then

K(t) = L(gt) =
∫ b

a

(x− t)+ dx− h

2
((a− t)+ + (b− t)+).

Note that L is applied to (x−t)+, regarded as a function of x. For a ≤ t ≤ b,
we have (a− t)+ = 0 and (b− t)+ = b− t. Since (x− t)+ = 0 for x < t in
the above integral, we may write

K(t) =
∫ b

t

(x− t)dx− h

2
(b− t) =

1
2
(b− t)2 − h

2
(b− t),

and since h = b− a, this simplifies to give

K(t) =
1
2
(b− t)(a− t) ≤ 0 for a ≤ t ≤ b.
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Since the kernel K(t) does not change sign on [a, b], we can apply Corollary
4.1.1, assuming the continuity of f ′′. We thus need to evaluate

L(x2) =
∫ b

a

x2dx− h

2
(a2 + b2) =

1
3
(b3 − a3) − 1

2
(b− a)(b2 + a2),

which simplifies to give L(x2) = −h3/6. Finally, we apply (4.9) to give

L(f) =
∫ b

a

f(x)dx− h

2
(f(a) + f(b)) = −h3

12
f ′′(ξ),

where a < ξ < b. ■

Problem 4.1.1 Let L denote the linear functional

L(f) = f(x) − f(−1) − 1
2
(x+ 1)[f(1) − f(−1)],

which gives the error of linear interpolation at the abscissas −1 and 1. Show
that

L(f) =
∫ 1

−1
f ′′(t)K(t)dt,

where

K(t) =




1
2 (x− 1)(t+ 1), t ≤ x,

1
2 (x+ 1)(t− 1), t > x.

Problem 4.1.2 Let L denote the linear functional defined by

L(f) = f ′(0) − 1
2h

(f(h) − f(−h)).
Show that L annihilates all functions f ∈ P2, and deduce that, with n = 2
in (4.6), the Peano kernel satisfies

2!K(t) = L((x− t)2+) =




− 1
2h (h+ t)2, −h ≤ t ≤ 0,

− 1
2h (h− t)2, 0 < t ≤ h.

Verify that K is an even function that does not change sign on [−h, h], and
apply Corollary 4.1.1 to show that

f ′(0) − 1
2h

(f(h) − f(−h)) = −h2

6
f (3)(ξ), −h < ξ < h.

Problem 4.1.3 Apply the Peano kernel theory to find the error term for
the midpoint rule, given by∫ x2

x0

f(x)dx = 2hf(x1) +
h3

3
f ′′(ξ),

where ξ ∈ (x0, x2), which we obtained by other means in Problem 3.1.3.
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Problem 4.1.4 The linear functional that is associated with the two-point
Gaussian rule is

L(f) =
∫ 1

−1
f(x)dx− f

(
−1/

√
3
)

− f
(
1/

√
3
)
,

and L annihilates all f ∈ P3. Show that, with n = 3 in (4.6), the Peano
kernel for L is the even function K defined by

3!K(t) =




a− 1
4 t

2(b− t2), 0 ≤ t ≤ 1√
3
,

1
4 (1 − t)4, 1√

3
< t ≤ 1,

where

a =
1
4

−
√

3
9

> 0 and b = 4
√

3 − 6 > t2, 0 ≤ t ≤ 1√
3
.

Verify that on [−1, 1], K(t) is continuous, nonnegative, and attains its
maximum modulus at t = 0. Hence apply Corollary 4.1.1 to justify the
error term for the two-point Gaussian rule given by (3.64) with n = 2.

Problem 4.1.5 The trapezoidal rule with end correction on [−1, 1] is
∫ 1

−1
f(x)dx ≈ f(−1) + f(1) − 1

3
(f ′(1) − f ′(−1)).

This rule is exact (see Problem 3.1.9) for all f ∈ P3. Apply (4.8) where gt

is defined by (4.6) with n = 2, and obtain the kernel

K(t) =
1
3
t(1 − t2), −1 ≤ t ≤ 1.

4.2 Further Properties

The Peano kernel in Example 4.1.2,

K(t) =
1
2
(b− t)(a− t), a ≤ t ≤ b,

is zero at both endpoints of the interval on which it is defined. We now
show that this condition holds for a very large class of kernels.

Theorem 4.2.1 Let L denote a linear functional of the form (4.10) such
that L(f) = 0 for all f ∈ Pn, where the abscissas xi and x′

i all belong to
the interval [a, b], and let the Peano kernel K be defined by (4.8), with gt

defined by (4.6). Then if n ≥ 2, the kernel K(t) is zero at both endpoints
t = a and t = b. Further, if all coefficients c′i in (4.10) are zero, then the
above result holds for n ≥ 1.
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Proof. If f(x) = (x− t)n
+, the integral on the right of (4.10) is a continuous

function of t. Also, for any fixed x, both (x − t)n
+ and its derivative are

continuous functions of t if n ≥ 2. Thus, if n ≥ 2 and f(x) = (x − t)n
+,

we see from (4.10) that L(f) is a continuous function of t, and so from
(4.8) and (4.6), the kernel K(t) is continuous. For any linear functional
L that satisfies the conditions of the theorem, with n ≥ 2, let us evaluate
L
(
(x− t)n

+
)

at t = a, which we will write as L
(
(x− a)n

+
)
. Then we observe

that for a ≤ x ≤ b,

L
(
(x− a)n

+
)

= L ((x− a)n) = 0,

since L annihilates all polynomials in Pn. We also observe that

L
(
(x− b)n

+
)

= L(0) = 0,

where L(0) denotes the result of applying the linear functional L to the
zero function. It then follows from (4.8) that when n ≥ 2,

K(a) = 0 and K(b) = 0.

This result is obviously valid when n = 1 if all coefficients c′i are zero in
(4.10). This completes the proof. ■

Example 4.2.1 Consider the three-eighths rule on [−3, 3]. (See Example
3.1.2.) The corresponding linear functional is

L(f) =
∫ 3

−3
f(x)dx− 3

4
(f(−3) + 3f(−1) + 3f(1) + f(3)).

Note that L annihilates all f in P3. Let us define K by (4.8), where gt is
given by (4.6) with n = 3. Thus we obtain

3!K(t) =
∫ 3

−3
(x− t)3+dx− 3

4
(
3(−1 − t)3+ + 3(1 − t)3+ + (3 − t)3+

)
,

since (−3 − t)3+ = 0 on [−3, 3]. Now
∫ 3

−3
(x− t)3+dx =

∫ 3

t

(x− t)3dx =
1
4
(3 − t)4,

and we find thatK(t) is a polynomial of degree 4 in t in each of the intervals
[−3,−1], [−1, 1], and [1, 3]. On the first interval, [−3,−1], we have

3!K(t) =
1
4
(3 − t)4 − 3

4
(
3(−1 − t)3 + 3(1 − t)3 + (3 − t)3

)
=

1
4
t(3 + t)3.

On the second interval, [−1, 1], we find that

3!K(t) =
1
4
(3 − t)4 − 3

4
(
3(1 − t)3 + (3 − t)3

)
=

1
4
(t2 − 3)(t2 + 3),
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and on the third interval, [1, 3], we have

3!K(t) =
1
4
(3 − t)4 − 3

4
(3 − t)3 = −1

4
t(3 − t)3.

On combining the above results, we find that the kernel is given by

K(t) =




1
24 t(3 + t)3, −3 ≤ t ≤ −1,

1
24 (t2 − 3)(t2 + 3), −1 ≤ t ≤ 1,

− 1
24 t(3 − t)3, 1 ≤ t ≤ 3.

As predicted by Theorem 4.2.1, K(−3) = K(3) = 0. Let us extend the defi-
nition of K to (−∞,∞) by setting K(t) = 0 outside the interval [−3, 3]. We
can then easily adapt the above representation of K on [−3, 3] to (−∞,∞)
by using truncated power functions, expressing K(t) by 1

24 t(3 + t)3+ for
−∞ ≤ t ≤ −1, and by − 1

24 t(3 − t)3+ for 1 ≤ t ≤ ∞. We see that K is an
even function, that is, K(−t) = K(t), and K(t) ≤ 0 for all real t. Also, by
examining the continuity of K and its derivatives at t = ±1 and t = ±3, we
see that K belongs to C2(−∞,∞). On applying Corollary 4.1.1, assuming
continuity of f (4), we find that L(x4) = −144/5, and thus

∫ 3

−3
f(x)dx =

3
4
(f(−3) + 3f(−1) + 3f(1) + f(3)) − 6

5
f4(ξ). (4.11)

If we make the linear change of variable x = 2(u− x0)/h− 3, the interval
−3 ≤ x ≤ 3 is mapped onto x0 ≤ u ≤ x3, where xj = x0 + jh, and then
(4.11) gives the form of the three-eighths rule in (3.11), with error term
−3h5f (4)(η)/80, where x0 < η < x3. ■

Perhaps it is not surprising that the Peano kernel in Example 4.2.1 is an
even function, given that the linear functional is symmetric with respect to
x = 0. Also, in Example 4.1.2, the Peano kernel 1

2 (b− t)(a− t) becomes the
even function − 1

2 (1 − t2) when we transform [a, b] to the interval [−1, 1],
and the linear functional of Example 4.1.2 is then symmetric about x = 0.
We will now show that for a large class of linear functionals with this kind
of symmetry, the corresponding Peano kernels are even or odd, depending
on whether n is respectively odd or even in (4.6) and (4.8). We begin by
finding an alternative form of the error term for the approximation of f(x)
by its Taylor polynomial, given by (4.1) and (4.2). If f (n+1) exists on [a, b],
we can write

f(x) = f(b) + f ′(b)(x− b) + · · · +
f (n)(b)
n!

(x− b)n +R′
n(f), (4.12)

for a ≤ x ≤ b, where

R′
n(f) = (−1)n+1 1

n!

∫ b

x

f (n+1)(t)(t− x)ndt.
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We can use integration by parts to show that

R′
n(f) = −f (n)(b)

n!
(x− b)n +R′

n−1(f),

and thus verify (4.12) in the same way that we justified (4.1) and (4.2).
Then we can express R′

n(f) in terms of a truncated power function, in the
form

R′
n(f) = (−1)n+1 1

n!

∫ b

a

f (n+1)(t)(t− x)n
+dt. (4.13)

The truncated power function (t−x)n
+ has the value (t−x)n when t−x ≥ 0

and is zero otherwise. This is consistent with Definition 4.1.1.
Now define

ht(x) = (−1)n+1(t− x)n
+, (4.14)

and let L denote a linear functional that commutes with the operation of
integration, and satisfies the conditions that L(f) = 0 for all f ∈ Pn and
that L(ht) is defined. Let us write f(x) as in (4.12), where R′

n(f) is given
by (4.13), and evaluate L(f). Then, in the same way as we derived (4.7),
we obtain

L(f) =
∫ b

a

f (n+1)(t)K(t)dt,

where the kernel K is given by

K(t) = Kh(t) =
1
n!
L(ht). (4.15)

Thus we now have two expressions for the Peano kernel: K = Kh, defined
by (4.15), involving the truncated power function (t − x)n

+, and K = Kg,
defined by (4.8), involving the truncated power function (x− t)n

+. We know
(see Remark 2 after the proof of Theorem 4.1.1) that Kg(t) and Kh(t) must
be equal on [a, b], except possibly on a set of measure zero. In the following
theorem we will refine this result for a class of symmetric linear functionals,
and give conditions that ensure that the associated Peano kernels are even
or odd functions.

Theorem 4.2.2 Let L be a linear functional of the form

L(f) =
∫ a

−a

f(x)dx+ c0f(0) +
N∑

i=1

ci(f(xi) + f(−xi))

+
N ′∑
i=1

c′i(f
′(x′

i) − f ′(−x′
i)), (4.16)

where xi > 0 and x′
i > 0 belong to the interval [−a, a]. Further, let L

annihilate all functions f ∈ Pn and have the additional properties that
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L(gt) and L(ht) both exist, where gt and ht are defined by (4.6) and (4.14),
respectively. Then the Peano kernels Kg and Kh, defined by (4.8) and
(4.15), respectively, satisfy

Kg(−t) = (−1)n+1Kh(t). (4.17)

If n ≥ 2 in (4.6) and (4.14), the kernels Kg and Kh are equal, belong to
Cn−2[−a, a], and are even or odd, depending on whether n is odd or even,
respectively. If, with n ≥ 2, there are no derivative terms present in (4.16),
then we can improve the smoothness property, to say that

Kg = Kh ∈ Cn−1[−a, a].
Proof. From (4.8) we have

n!Kg(−t) = L
(
(x+ t)n

+
)
,

and we note that∫ a

−a

(x+ t)n
+dx =

∫ a

−t

(x+ t)ndx =
(a+ t)n+1

n+ 1
.

Thus, for linear functionals L of the form (4.16), we obtain

n!Kg(−t) =
(a+ t)n+1

n+ 1
+c0 (t)n

+ +
N∑

i=1

ci
(
(xi + t)n

+ + (−xi + t)n
+
)

+ n
N ′∑
i=1

c′i
(
(xi + t)n−1

+ − (−xi + t)n−1
+
)
,

where we need to omit the terms involving the truncated power functions
of order n − 1 when n = 0. Let us now use (4.15) to evaluate the kernel
Kh(t). Since

∫ a

−a

(t− x)n
+dx =

∫ t

−a

(t− x)ndx =
(t+ a)n+1

n+ 1
,

we obtain

(−1)n+1n!Kh(t) =
(t+ a)n+1

n+ 1
+c0 (t)n

+ +
N∑

i=1

ci
(
(t− xi)n

+ + (t+ xi)n
+
)

+ n
N ′∑
i=1

c′i
(−(t− xi)n−1

+ + (t+ xi)n−1
+
)
,

where again we need to omit the terms involving the truncated power
functions of order n− 1 when n = 0. A comparison of the latter expression
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for (−1)n+1n!Kh(t) with that given above for n!Kg(−t) justifies (4.17).
It is also clear from the nature of the truncated power functions that for
n ≥ 2, both kernels are in Cn−2[−a, a], and are in Cn−1[−a, a] if there
are no derivative terms in (4.16). This, together with the fact that Kg and
Kh must be equal on [−a, a], except possibly on a set of measure zero,
shows that they are equal on the whole interval [−a, a] when n ≥ 2, and
thus Kg = Kh is even or odd, depending on whether n is odd or even,
respectively. ■

Example 4.2.2 The trapezoidal rule with end correction (see Problem
3.1.9) on [−1, 1] is

∫ 1

−1
f(x)dx ≈ (f(−1) + f(1)) − 1

3
(f ′(1) − f ′(−1)).

The related linear functional L annihilates all integrands f in P3, and in
Problem 4.1.5 we applied (4.8) with n = 2. Here let us apply (4.8) with
n = 3 to give

3!K(t) =
∫ 1

−1
(x−t)3+dx−((−1 − t)3+ + (1 − t)3+) + ((1 − t)2+ − (−1 − t)2+

)
.

Now, on −1 ≤ t ≤ 1, since (−1 − t)3+ and (−1 − t)2+ are always zero, and
(1 − t)3+ and (1 − t)2+ are always nonnegative, we may write

3!K(t) =
∫ 1

t

(x− t)3dx− (1 − t)3 + (1 − t)2 =
1
4
(1 − t2)2.

Again, let us extend the definition of this kernel to the whole real line, by
setting K(t) = 0 outside the interval [−1, 1]. It is easily verified that K
belongs to C1(−∞,∞). Since the kernel K is nonnegative, we may apply
Corollary 4.1.1, assuming continuity of f (4). We find that L(x4) = 16/15
and (4.9) gives L(f) = f (4)(ξ)L(x4)/4!. Thus we have

∫ 1

−1
f(x)dx = (f(−1) + f(1)) − 1

3
(f ′(1) − f ′(−1)) +

2
45
f (4)(ξ).

We will now make the linear change of variable x = 2(u−x0)/h− 1, which
maps [−1, 1] onto [x0, x1]. If we then replace u by x, we obtain∫ x1

x0

f(x)dx =
h

2
(f(x0) + f(x1)) − h2

12
(f ′(x1) − f ′(x0)) +

h5

720
f (4)(η),

where x0 < η < x1 = x0+h. By writing down the above rule plus error term
over the intervals [xj−1, xj ] of equal length, and summing from j = 1 to N ,
we find that all but two of the derivative terms cancel, and we obtain the
following expression for the composite trapezoidal rule with end correction,∫ b

a

f(x)dx = TN (f) − h2

12
(f ′(b) − f ′(a)) +

h4

720
(b− a)f (4)(ζ),
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where a < ζ < b and TN denotes the composite trapezoidal rule. ■

Example 4.2.3 As we saw, Simpson’s rule is exact for all integrands in
P3. Thus, in seeking an error term, it is natural (see Problem 4.2.1) to
evaluate the kernel K defined by (4.8), where gt is given by (4.6) with
n = 3. However (recall Remark 1 that follows Corollary 4.1.1), we will
choose n = 2 in (4.6). We will work with the interval [−1, 1], and define

L(f) =
∫ 1

−1
f(x)dx− 1

3
(f(−1) + 4f(0) + f(1)).

Then the resulting kernel K satisfies

2!K(t) =
∫ 1

−1
(x− t)2+dx− 1

3
(
(−1 − t)2+ + 4(−t)2+ + (1 − t)2+

)
,

and since (−1−t)2+ is always zero, and (1−t)2+ is always nonzero on [−1, 1],
we see that

2!K(t) =
∫ 1

t

(x− t)2dx− 1
3
(
4(−t)2+ + (1 − t)2

)
.

Thus

2!K(t) =
1
3
(1 − t)3 − 1

3
(
4(−t)2 + (1 − t)2

)
, −1 ≤ t ≤ 0,

and

2!K(t) =
1
3
(1 − t)3 − 1

3
(1 − t)2, 0 < t ≤ 1.

We simplify these expressions for K(t) on [−1, 0] and [0, 1], to give

K(t) =




− 1
6 t(1 + t)2, −1 ≤ t ≤ 0,

− 1
6 t(1 − t)2, 0 < t ≤ 1.

We see that K changes sign in [−1, 1] and is an odd function. If we extend
the definition of K to (−∞,∞) by putting K(t) = 0 outside [−1, 1], we
may verify that K ∈ C1(−∞,∞). This error term for Simpson’s rule is

∫ 1

−1
f(x)dx− 1

3
(f(−1) + 4f(0) + f(1)) =

∫ 1

−1
f (3)(t)K(t)dt,

and it holds for all f ∈ C3[−1, 1]. ■

In Example 4.2.2 we applied the Peano kernel theory to derive an error
term for the trapezoidal rule with end correction, which is a special case of
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the Euler–Maclaurin formula. Let

L(f) =
∫ 1

0
f(x)dx− 1

2
(f(0) + f(1))

+
m∑

r=1

B2r

(2r)!

(
f (2r−1)(1) − f (2r−1)(0)

)
. (4.18)

On the right of (4.18) we have the Euler–Maclaurin formula on a single
interval with h = 1, that is, (3.40) with N = 1 and h = 1. Therefore, L
annihilates all f ∈ P2m+1, and we find that the kernel defined by (4.8) with
n = 2m+ 1 satisfies

(2m+ 1)! Km(t) =
1

2m+ 2
(1 − t)2m+2 − 1

2
(1 − t)2m+1

+
m∑

r=1

B2r

(2r)!
(2m+ 1) · · · (2m− 2r + 3)(1 − t)2m−2r+2.

We have written the kernel as Km to emphasize its dependence on m. With
m = 1, this simplifies to give

3!K1(t) =
1
4
t2(1 − t)2 =

1
4
u2,

where u = t(1 − t). All of the kernels Km can be expressed as polynomials
in u. The next few expressions for Km simplify to give

5!K2(t) = − 1
12
u2(1 + 2u),

7!K3(t) =
1
24
u2(3u2 + 4u+ 2),

9!K4(t) = − 1
20
u2(1 + u)(2u2 + 3u+ 3),

11!K5(t) =
1
24
u2(2u4 + 8u3 + 17u2 + 20u+ 10),

with u = t(1 − t), and we note that 0 ≤ t ≤ 1 corresponds to 0 ≤ u ≤ 1
4 .

The above Peano kernels obviously do not change sign, and we will show
that this holds for every Km(t). First, by extending Theorem 4.2.2 in an
obvious way to deal with the linear operator defined in (4.18), we see that
Km(t) = Km(1− t). Let us replace 1− t by t on the right side of the above
expression for Km(t), differentiate, and compare the expression for K ′

m(t)
with that for p2m+1(t) given by (3.42). Recalling that B0 = 1, B1 = − 1

2 ,
and that Br = 0 when r > 1 is odd, we see that

K ′
m(t) = p2m+1(t).

If we now integrate this equation, using (3.43) and (3.45), we obtain

Km(t) = p2m+2(t) − p2m+2(0),
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since Km(0) = 0, and we see from Problem 3.2.6 that Km(t) indeed has
constant sign. Thus we may apply Corollary 4.1.1, and find that

L(x2m+2) =
1

2m+ 3
− 1

2
+

m∑
r=1

B2r

(2r)!
(2m+ 2) · · · (2m− 2r + 4). (4.19)

Now let us consider (3.35) and (3.36). On putting s = m+ 1 in (3.35), we
see that the right side of (4.19) would be zero if we replaced m by m + 1
in the upper limit of the sum. Thus (4.19) greatly simplifies to give

L
(
x2m+2) = −B2m+2, (4.20)

and (4.9) then gives

L(f) = − B2m+2

(2m+ 2)!
f (2m+2)(ξ), 0 < ξ < 1, (4.21)

where f (2m+2) is continuous on [0, 1]. In (4.18) let us map [0, 1] onto
[xj , xj+1], with xj+1 − xj = h, and sum from j = 0 to N − 1. If f (2m+2)

is continuous on [x0, xN ], we can combine the N error terms, as we did in
deriving the error term for the composite trapezoidal rule, given in (3.18).
Thus we obtain

∫ b

a

f(x)dx = TN (f) −
m∑

r=1

h2rB2r

(2r)!

(
f (2r−1)(xN ) − f (2r−1)(x0)

)

− h2m+2(b− a)
B2m+2

(2m+ 2)!
f (2m+2)(ζ), (4.22)

where a = x0, b = xN , and a < ζ < b.

Problem 4.2.1 Use the Peano kernel theory with n = 3 in (4.6) to find
an error term for Simpson’s rule based on the interval [−1, 1]. Show that
the resulting kernel is the even function K defined by

K(t) = − 1
72

(1 − t)3(3t+ 1), 0 ≤ t ≤ 1.

Set K(t) = 0 outside [−1, 1], and verify that K belongs to C2(−∞,∞).

Problem 4.2.2 Use (4.6) with n = 0 to find an error term for Simpson’s
rule based on the interval [−1, 1]. Show that

∫ 1

−1
f(x)dx− 1

3
(f(−1) + 4f(0) + f(1)) =

∫ 1

−1
f ′(t)K(t),
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for all f ∈ C1[−1, 1], where

K(t) =




0, t = −1,

− 2
3 − t, −1 < t ≤ 0,

2
3 − t, 0 < t ≤ 1.

Problem 4.2.3 Let us apply (4.8) and (4.15) in turn, with n = 0, to derive
Peano kernels, say Kg and Kh, for the midpoint rule on [−1, 1]. Show that

Kg(t) =
{ −1 − t, −1 ≤ t ≤ 0,

1 − t, 0 < t ≤ 1,

and

Kh(t) =
{ −1 − t, −1 ≤ t < 0,

1 − t, 0 ≤ t ≤ 1.

Note that Kg(0) = −1 and Kh(0) = 1, and that Kg(t) = Kh(t) for all
other values of t on [−1, 1].

Problem 4.2.4 Consider the integration rule with error term
∫ 1

−1
f(x)dx = f(−1) + f(1) − 2

5
(f ′(1) − f ′(−1))

+
1
15

(f ′′(−1) + f ′′(1)) − 2
1575

f (6)(ξ),

where a < ξ < b. Verify that the rule is exact for all f ∈ P5. Apply (4.8)
with n = 5 to show that the resulting Peano kernel is

K(t) = − 1
720

(1 − t2)3, −1 ≤ t ≤ 1,

and hence justify the above error term.



5
Multivariate Interpolation

5.1 Rectangular Regions

Multivariate interpolation is concerned with interpolation of a function
of more than one variable, and we will find that it is by no means as
simple and straightforward as interpolation of a function of one variable
(univariate interpolation). As we saw in Section 1.1, given the values of
a univariate function f at n + 1 distinct abscissas x0, x1, . . . , xn, we can
choose the n+ 1 monomials 1, x, x2, . . . , xn as a basis for Pn, and we can
always find a linear combination of these, a polynomial pn, that provides a
unique solution to the following interpolation problem: Find pn ∈ Pn such
that pn(xj) = f(xj) for 0 ≤ j ≤ n. We also saw how the choice of the
fundamental polynomials Lj(x) or Newton’s polynomials πi(x), defined in
(1.9) and (1.11) as alternative bases for Pn, led respectively to the Lagrange
and Newton forms of the interpolating polynomial in one variable.

There is no theoretical difficulty in setting up a framework for discussing
interpolation of a multivariate function f whose values are known at, say,
N abscissas in real d-dimensional Euclidean space R

d. Let x1, x2, . . . ,xN

denote N distinct abscissas in R
d, and let φ1, φ2, . . . , φN denote N linearly

independent functions in C[Rd], the linear space of all continuous mappings
from R

d to R, the real numbers. Thus none of the functions φj can be
expressed as a linear combination of the others. Finally, let Sφ ⊂ C[Rd]
denote the span of φ1, φ2, . . . , φN , that is, the set of all linear combinations
of the φj , and let f ∈ C[Rd] denote a function that is not in Sφ. Then we
can obtain a unique solution of the interpolating problem of determining
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a1, a2, . . . , aN ∈ R such that

a1φ1(xj) + a2φ2(xj) + · · · + aNφN (xj) = f(xj), (5.1)

for 1 ≤ j ≤ N , if and only if the matrix

A =




φ1(x1) φ2(x1) · · · φN (x1)
φ1(x2) φ2(x2) · · · φN (x2)

...
...

...
...

φ1(xN ) φ2(xN ) · · · φN (xN )


 (5.2)

is nonsingular. As a special case, let us take d = 1, choose the φj as the
first N monomials, and then Sφ is simply PN−1, the set of polynomials of
degree at most N−1. Then the above matrix A is the N×N Vandermonde
matrix, whose (n+1)×(n+1) form is given in (1.7). The following example
warns us of possible pitfalls in multivariate interpolation.

Example 5.1.1 Suppose we have a mapping f from R
2 to R, and that the

values of f(x, y) are known at the points (1, 0), (−1, 0), (0, 1), and (0,−1).
Let us construct an interpolating function of the form

p(x, y) = a1 + a2x+ a3y + a4xy.

In this case, the system of equations (5.1) becomes



1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0






a1
a2
a3
a4


 =



f(1, 0)
f(−1, 0)
f(0, 1)
f(0,−1)


 .

Let rT
1 , rT

2 , rT
3 , and rT

4 denote the rows of the above matrix. Since the
matrix is obviously singular, its rows must be linearly dependent, and we
find that r1 + r2 = r3 + r4. The above system of linear equations has a
solution if and only if

f(1, 0) + f(−1, 0) = f(0, 1) + f(0,−1).

If this condition holds, a1, a2, and a3 are uniquely determined, and a4 may
be chosen arbitrarily. ■

In this book we confine our discussion of multivariate interpolation to
two classes of abscissas in d-dimensional Euclidean space R

d. For the re-
mainder of this section we consider rectangular arrays of abscissas in R

2,
with an obvious extension to boxlike arrays in higher dimensions, and in
Section 5.2 we consider abscissas arranged in triangular formations, with
obvious extensions to higher dimensions. We will find that the methods
of interpolation on both rectangular and triangular classes of abscissas,
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and their extensions to higher dimensions, nicely generalize those used for
interpolation of a function of one variable.

We begin with the equation z = f(x, y), which corresponds to a surface in
three-dimensional Euclidean space. The coordinates of each point (x, y, z)
in the surface satisfy z = f(x, y). For example, the equation z = 1 + 2x+
3y corresponds to the unique plane that passes through the three points
(− 1

2 , 0, 0), (0,− 1
3 , 0), and (0, 0, 1), and the equation z = (1 − x2 − y2)1/2

corresponds to that part of the sphere with centre at (0, 0, 0) and radius
1 that lies above the xy-plane. This is the hemisphere of points such that
x2 + y2 + z2 = 1 and z ≥ 0. If for a general function f(x, y), we now fix the
value of x, choosing x = xi, then the equation z = f(xi, y) corresponds to
the curve defined by the intersection of the plane x = xi and the surface
z = f(x, y). We can envisage, say, m + 1 such curves, corresponding to
x = x0, x1, . . . , xm. Then, using our experience with univariate Lagrange
interpolation, we construct an interpolating function

ξ(x, y) =
m∑

i=0

f(xi, y)Li(x), (5.3)

where

Li(x) =
∏
j �=i

(
x− xj

xi − xj

)
,

as defined in (1.9), the above product being taken over all j from 0 to m,
but excluding j = i. Note how (5.3) follows the form of (1.10), with f(xi, y)
in place of f(xi). We call ξ(x, y) a blending function. We will write ξ(f ;x, y)
to denote this blending function when we want to emphasize its dependence
on the function f . The blending function ξ(f ;x, y) agrees with f(x, y) at
all points where the plane x = xi intersects z = f(x, y), for 0 ≤ i ≤ m.

Example 5.1.2 Let us derive the blending function for 2x+y that coincides
with the given function for x = −1, 0, and 1. Following the model in (5.3),
we obtain the blending function

ξ(x, y) = 2−1+y · 1
2
x(x− 1) + 2y · (1 − x2) + 21+y · 1

2
x(x+ 1),

which simplifies to give

ξ(x, y) = 2y−2(x2 + 3x+ 4). ■

We can interchange the roles of x and y in the construction of a blending
function, and interpolate at y = y0, y1, . . . , yn. To avoid confusion, we will
denote fundamental polynomials in the variable y by Mj(y), where

Mj(y) =
∏
k �=j

(
y − yk

yj − yk

)
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and the product is taken over all k from 0 to n, but excluding k = j. Then
we can construct the alternative blending function

η(x, y) = η(f ;x, y) =
n∑

j=0

f(x, yj)Mj(y), (5.4)

which agrees with f(x, y) along each of the n + 1 curves defined by the
intersection of the plane y = yj with the surface z = f(x, y), for 0 ≤ j ≤ n.
It is then of interest to apply this second blending process, defined by (5.4),
not to f(x, y), but to the first blending function ξ(x, y), defined by (5.3).
We obtain, say,

p(x, y) = η(ξ;x, y) =
n∑

j=0

(
m∑

i=0

f(xi, yj)Li(x)

)
Mj(y), (5.5)

and we note that p(x, y) is a polynomial in x and y. On writing the repeated
summation (5.5) as a double summation, we obtain

p(x, y) =
m∑

i=0

n∑
j=0

f(xi, yj)Li(x)Mj(y). (5.6)

Thus we have first derived ξ(x, y), the x-blended function for f(x, y), and
then derived the polynomial p(x, y), the y-blended function for ξ(x, y), as
approximations to f(x, y). Denoting the two sets of abscissas defined above
by

X = {x0, x1, . . . , xm} and Y = {y0, y1, . . . , yn},
we now construct a rectangular grid of (m+ 1) × (n+ 1) points, which we
will write as

X × Y = {(xi, yj) |xi ∈ X, yj ∈ Y }.
We read X×Y as “X cross Y ” and call it the Cartesian product of the two
sets X and Y . Then we see that Li(x)Mj(y) has the value 1 at the point
(xi, yj), and the value zero at all other points in X × Y . We call Li(x),
Mj(y), and their product, Li(x)Mj(y), the fundamental polynomials of
Lagrange interpolation for the sets X, Y , and X × Y , respectively. Since
Li(x)Mj(y) is a fundamental polynomial for the set X×Y , it is clear from
(5.6) that p(x, y) interpolates f(x, y) on all (m + 1) × (n + 1) points of
X×Y . This interpolatory property of p(x, y) should also be clear from the
way we derived it via the double blending process. For ξ(x, y) agrees with
f(x, y) along the m + 1 curves defined by the intersection of the planes
x = xi with the surface z = f(x, y), for 0 ≤ i ≤ m, and p(x, y) agrees
with ξ(x, y) along the n+1 curves defined by the intersection of the planes
y = yj with the surface z = ξ(x, y). Thus p(x, y) agrees with f(x, y) on all
points in X × Y .
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Example 5.1.3 Let X = Y = {−1, 1}. Then the Cartesian product of X
and Y is the set of points

{(−1,−1), (−1, 1), (1,−1), (1, 1)},

and the interpolating polynomial for a function f defined on these points
is given by

p(x, y) = f(−1,−1) · 1
4
(x− 1)(y − 1) − f(−1, 1) · 1

4
(x− 1)(y + 1)

−f(1,−1) · 1
4
(x+ 1)(y − 1) + f(1, 1) · 1

4
(x+ 1)(y + 1),

so that, for instance, p(0, 0) is just the arithmetic mean of the values of
f on the four given points. If the four function values are all equal to
some constant C, then we may easily verify that p(x, y) = C. Let us write
z = p(x, y). The coefficient of xy in the above expression for p(x, y) is

1
4
[f(−1,−1) − f(−1, 1) − f(1,−1) + f(1, 1)],

and it is not hard to see that this is zero if and only if the four points

(− 1,−1, f(−1,−1)), (− 1, 1, f(−1, 1)), (1,−1, f(1,−1)), (1, 1, f(1, 1))
lie in a plane. In this special case, the surface z = p(x, y) is a plane. Oth-
erwise, we can divide p(x, y) by the nonzero coefficient of xy (which corre-
sponds to scaling the z-axis), giving an expression for p(x, y) of the form

p(x, y) = xy + ax+ by + c = (x+ b)(y + a) + c− ab.

If we now change the origin from (0, 0, 0) to (−b,−a, c−ab), then in the new
coordinate system, the surface z = p(x, y) becomes z = xy. Shifting the
origin and scaling (multiplying by a constant factor) does not change the
shape of the original surface, which is a hyperbolic paraboloid. Although this
is a curved surface, it has straight lines “embedded” in it, which are called
generators. We can see this by looking at the above expression for p(x, y).
For if we replace y by a constant C, we see that z = p(x,C) is the equation
of a straight line. This shows that if we look at a “slice” of the surface
z = p(x, y), where the plane y = C intersects the surface z = p(x, y), we
obtain the straight line z = p(x,C). As we vary C we obtain an infinite
system of generators parallel to the zx-plane. Similarly, by putting x = C,
we obtain z = p(C, y), revealing a second system of generators that are
parallel to the yz-plane. ■

We will now obtain a divided difference form for the two-dimensional
interpolating polynomial that is given in a Lagrangian form in (5.6). It is
helpful to use the operator form of the divided differences, as in (1.20). We
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need to use divided differences with respect to x, and divided differences
with respect to y. Let us write

[x0, . . . , xi]x f

to denote the effect of the operator [x0, . . . , xi] acting on f(x, y), regarded
as a function of x, with the value of y being fixed. Thus, for example,

[x0, x1]xf =
f(x1, y) − f(x0, y)

x1 − x0
.

Then, using Newton’s form of the interpolating polynomial (1.19) applied
to f(x, y) as a function of x, with y fixed, we can rewrite (5.3) in the form

ξ(f ;x, y) =
m∑

i=0

πi(x) [x0, . . . , xi]x f, (5.7)

where πi(x) is defined in (1.11). We can now apply Newton’s form of the
interpolating polynomial to ξ(f ;x, y), regarded as a function of y, with x
fixed, giving

p(x, y) = η(ξ;x, y) =
n∑

j=0

πj(y) [y0, . . . , yj ]y ξ. (5.8)

Henceforth, when there is no danger of ambiguity, we will write [x0, . . . , xi]x
more simply as [x0, . . . , xi], and similarly drop the suffix y from [y0, . . . , yj ]y.
We may combine (5.7) and (5.8) to give

p(x, y) =
n∑

j=0

πj(y) [y0, . . . , yj ]

(
m∑

i=0

πi(x) [x0, . . . , xi]f

)
. (5.9)

It is not difficult to see that the operators [x0, . . . , xi] and [y0, . . . , yj ] com-
mute; that is, they may be applied in either order to give the same result.
(This is equivalent to the result that is the subject of Problem 5.1.2.) Thus
the interpolating polynomial for f on the set X×Y , which we wrote above
in (5.6) in a Lagrange form, may now be expressed in the divided difference
form

p(x, y) =
m∑

i=0

n∑
j=0

πi(x)πj(y) [x0, . . . , xi] [y0, . . . , yj ] f. (5.10)

Example 5.1.4 Let us write down the divided difference form (5.10) of
the interpolating polynomial for the following data:

(x, y) (−1,−1) (−1, 1) (1,−1) (1, 1)
f(x, y) 1 5 −5 3
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We compute

[−1, 1]x f(x,−1) =
−5 − 1
1 + 1

= −3,

[−1, 1]y f(−1, y) =
5 − 1
1 + 1

= 2,

[−1, 1]x f(x, 1) =
3 − 5
1 + 1

= −1,

and so derive

[−1, 1]x[−1, 1]y f(x, y) = [−1, 1]x

(
f(x, 1) − f(x,−1)

1 + 1

)
=

−1 + 3
1 + 1

= 1.

Hence we may write down the divided difference form of the interpolating
polynomial,

p(x, y) = 1 − 3(x+ 1) + 2(y + 1) + (x+ 1)(y + 1),

which simplifies to give

p(x, y) = 1 − 2x+ 3y + xy. ■

In the divided difference form (5.10), and in the Lagrange-type formula
(5.6), the xi are arbitrary distinct numbers that can be in any order, and
the same holds for the yj . Now let us consider the special case where both
the xi and the yj are equally spaced, so that

xi = x0 + ihx, 0 ≤ i ≤ m, and yj = y0 + jhy, 0 ≤ j ≤ n,

where the values of hx and hy need not be the same. Following what we
did in the one-dimensional case, we make the changes of variable

x = x0 + shx and y = y0 + thy.

We define forward differences in the x-direction and forward differences in
the y-direction:

∆xf(x, y) = f(x+ hx) − f(x, y) and ∆yf(x, y) = f(x, y+ hy) − f(x, y).

We also define
∆x∆yf(x, y) = ∆x (∆yf(x, y)) .

We find (see Problem 5.1.5) that the two difference operators ∆x and ∆y

commute, as we found above for the divided difference operators, so that

∆x∆yf(x, y) = ∆y∆xf(x, y).
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Then, for this “equally spaced” case, we can follow the method used for
interpolation of a function of one variable (see Section 1.3) to transform
the divided difference form (5.10) into the forward difference form

p(x0 + shx, y0 + thy) =
m∑

i=0

n∑
j=0

(
s
i

)(
t
j

)
∆i

x ∆j
yf(x0, y0). (5.11)

In Section 1.5 we defined q-integers, and obtained a q-difference analogue
of the univariate forward difference formula. We now derive a q-difference
analogue of (5.11). Let us interpolate on the set

X × Y, with X = {x0, . . . , xm} and Y = {y0, . . . , yn}, (5.12)

where

xi =
1 − qx

i

1 − qx
= [i]x and yj =

1 − qy
j

1 − qy
= [j]y. (5.13)

We also write

x =
1 − qx

s

1 − qx
= [s]x and y =

1 − qy
t

1 − qy
= [t]y,

for all real s and t. Note that we have chosen q = qx and q = qy as
the bases of the q-integers for the x and y variables, respectively. We will
denote q-differences with respect to x and y by ∆x and ∆y, respectively. (It
should cause no confusion that we have used ∆x and ∆y above to denote
forward differences, since these are just q-differences with q = 1.) Thus, as
in (1.112), we have

∆k+1
x f(xi, yj) = ∆k

xf(xi+1, yj) − qk
x ∆k

xf(xi, yj) (5.14)

for k ≥ 0, with

∆0
xf(xi, yj) = f(xi, yj) and ∆1

xf(xi, yj) = ∆xf(xi, yj),

and
∆k+1

y f(xi, yj) = ∆k
yf(xi, yj+1) − qk

y ∆k
yf(xi, yj) (5.15)

for k ≥ 0, with

∆0
yf(xi, yj) = f(xi, yj) and ∆1

yf(xi, yj) = ∆yf(xi, yj).

The q-difference operators ∆x and ∆y commute, like their forward differ-
ence counterparts. As a consequence of (5.14), we have

∆k+1
x ∆l

yf(xi, yj) = ∆k
x∆l

yf(xi+1, yj) − qk
x∆k

x∆l
yf(xi, yj),

and it follows from (5.15) that

∆l+1
y ∆k

xf(xi, yj) = ∆l
y∆k

xf(xi, yj+1) − ql
y∆l

y∆k
xf(xi, yj).
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Since the q-difference operators ∆x and ∆y commute, we have

∆k
x∆l+1

y f(xi, yj) = ∆k
x∆l

yf(xi, yj+1) − ql
y∆l

y∆l
yf(xi, yj).

Then, following the way we derived (1.115), we obtain

πi([s]x)πj([t]y)[x0, . . . , xi] [y0, . . . , yj ] f =
[
s
i

]
x

[
t
j

]
y

∆i
x ∆j

yf(x0, y0),

where the suffixes x and y on the q-binomial coefficients indicate that they
are based on q-integers with q = qx and q = qy, respectively. By summing
the last relation over i and j, we derive from (5.10) the interpolation formula

p([s]x, [t]y) =
m∑

i=0

n∑
j=0

[
s
i

]
x

[
t
j

]
y

∆i
x ∆j

yf(x0, y0). (5.16)

Note that if we set qx = qy = 1 in (5.16), we obtain (5.11) with x0 = y0 = 0
and hx = hy = 1.

In this section we have shown how the Lagrange form, the Newton di-
vided difference form, the forward difference formula, and the q-difference
form of the interpolating polynomial can all be generalized from one di-
mension to rectangular arrays in two dimensions, and it is easy to see how
all these ideas can be extended to boxlike regions in d-dimensions, that is,
to interpolate on a set of points

X1 ×X2 × · · · ×Xd, where Xr =
{
x

(r)
1 , x

(r)
2 , . . . , x

(r)
jr

}
, 1 ≤ r ≤ d.

Example 5.1.5 Consider the circular cylinder defined by the set

C = {(z, r, θ) | 0 ≤ z ≤ 1, 0 ≤ r ≤ 1, 0 ≤ θ < 2π},

and let

Z = {z0, . . . , zl}, R = {r0, . . . , rm}, Θ = {θ0, . . . , θn}.

Then define

p(z, r, θ) =
l∑

i=0

m∑
j=0

n∑
k=0

Li(z)Mj(r)Nk(θ)f(zi, rj , θk),

where Li(z), Mj(r), and Nk(θ) are fundamental polynomials defined on Z,
R, and Θ, respectively. We see that p(z, r, θ), a polynomial in each of the
three variables z, r, and θ, interpolates f(z, r, θ) on the set defined by the
Cartesian product Z ×R× Θ. ■
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Because it is easy to extend one-dimensional interpolation processes to
rectangular and boxlike sets of points, it is also easy to build on our knowl-
edge of one-dimensional integration rules to construct integration rules over
rectangular regions in two dimensions, and over boxlike regions in higher
dimensions. Consider the integral

∫ d

c

(∫ b

a

f(x, y)dx

)
dy, (5.17)

and let

X = {x0, x1, . . . , xm} ⊂ [a, b] and Y = {y0, y1, . . . , yn} ⊂ [c, d].

Then, we can replace the inner integral in (5.17) by an integration rule
with weights w0, . . . , wm, to give

∫ d

c

(∫ b

a

f(x, y)dx

)
dy ≈

∫ d

c

(
m∑

i=0

wif(xi, y)

)
dy.

If we now apply an integration rule with weights w′
0, . . . , w

′
n to the latter

integral, we obtain

∫ d

c

(∫ b

a

f(x, y)dx

)
dy ≈

n∑
j=0

w′
j

(
m∑

i=0

wif(xi, yj)

)
,

giving the integration rule

∫ d

c

(∫ b

a

f(x, y)dx

)
dy ≈

m∑
i=0

n∑
j=0

wiw
′
jf(xi, yj). (5.18)

Thus the weight corresponding to the point (xi, yj) is just the product of
the weights wi and w′

j , and an integration rule of the form (5.18) is called a
product rule. If we have error terms for the one-dimensional rules involving
the wi and the w′

j , it is not difficult to derive an error term for the rule
given by (5.18). It is also easy to see that we can extend these ideas to
higher dimensions.

Example 5.1.6 Let us estimate the integral

I =
∫ 1

−1

∫ 1

−1

dx dy

1 + x2 + y2 ,

using product rules. Let us choose m = n in (5.18), and choose wi = w′
i

as the weights of a Gaussian rule. The simplest is the one-point Gaussian
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rule (3.61), also called the midpoint rule. For any integrand f(x, y), the
one-point Gaussian rule gives

∫ 1

−1
f(x, y) dx dy ≈ 4f(0, 0),

and hence I ≈ 4, which is not very accurate. On applying the two-point,
three-point, and four-point Gaussian rules (see (3.62), (3.63), and Problem
3.3.4), which require 4, 9, and 16 evaluations of the integrand, respectively,
we obtain 2.4, 2.586, and 2.554, respectively, as estimates of I. We could ap-
ply any of the above rules, or any other one-dimensional rule, in composite
form. The midpoint rule is the easiest to apply in composite form, since the
weights are all equal. With 4, 100, and 1600 evaluations of the integrand,
the composite midpoint rule gives 2.667, 2.563, and 2.558, respectively, and
the last estimate is correct to three decimal places. ■

As we have seen, we can use product rules to integrate over a region that
is a Cartesian product of one-dimensional regions. Examples of such regions
are the cylinder, which we encountered in Example 5.1.5, the square, the
cube, and the hypercube in higher dimensions. Another approach, which
works whether the region is a Cartesian product or not, is to design inte-
gration rules that are exact for certain monomials.

Example 5.1.7 Consider an integration rule with 13 abscissas, (0, 0) with
weight w1, (±r, 0) and (0,±r) with weight w2, and (±s,±t), (±t,±s) with
weight w3, for the square S = {(x, y) | − 1 ≤ x, y ≤ 1}. We seek values of
the parameters r, s, t, w1, w2, and w3 such that the rule is exact for all
monomials xiyj with i + j ≤ 7, and so it is said to be of degree 7. Any
rule with these abscissas is exact for all monomials xiyj where at least one
of i and j is odd. Thus the rule will be exact for all monomials xiyj with
i+ j ≤ 7 if and only if it is exact for 1, x2, x4, x2y2, and x6. This gives the
equations

w1 + 4w2 + 8w3 = 4,

2r2w2 + 4(s2 + t2)w3 =
4
3
,

2r4w2 + 4(s4 + t4)w3 =
4
5
,

8s2t2w3 =
4
9
,

2r6w2 + 4(s6 + t6)w3 =
4
7
.
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It may be verified that these equations are satisfied by

r2 =
12
35
, s2 =

93 + 3
√

186
155

, t2 =
93 − 3

√
186

155
,

w1 =
4
81
, w2 =

49
81
, w3 =

31
162

.

Note that all of the abscissas lie within the square S, and the weights are
all positive. This rule was published by the distinguished mathematician
and physicist James Clerk Maxwell (1831–1879) in 1877. ■

Example 5.1.8 Let C = {(x, y, z) | −1 ≤ x, y, z ≤ 1} denote the cube with
side 2 and centre at the origin. Consider an integration rule for C with 14
abscissas, namely, the six abscissas (±r, 0, 0), (0,±r, 0), and (0, 0,±r) with
weight w1, and the eight abscissas (±s,±s,±s) with weight w2. We seek
values of the parameters r, s, w1, and w2 such that the rule is exact for
all monomials xiyjzkwith i + j + k ≤ 5, and so it is said to be of degree
5. Any rule with these abscissas is exact for all monomials xiyjzk where at
least one of i, j, and j is odd. Thus, because of the symmetry in x, y, and
z, the rule will be exact for all monomials xiyjzk with i+ j+ k ≤ 5 if and
only if it is exact for 1, x2, x4, and x2y2. This gives the equations

6w1 + 8w2 = 8,

2r2w1 + 8s2w2 =
8
3
,

2r4w1 + 8s4w2 =
8
5
,

8s4w2 =
8
9
.

We can verify that the above equations are satisfied by

r2 =
19
30
, s2 =

19
33
, w1 =

320
361

, w2 =
121
361

.

Note that the abscissas all lie within the cube C, and the weights are
positive. This rule was published by Hammer and Stroud in 1958. ■

A large number of integration rules for the square and the cube, in-
cluding those given in Examples 5.1.7 and 5.1.8, and also for the general
hypercube, the circle, sphere, and general hypersphere, the triangle, tetra-
hedron, and general simplex, and other regions, are to be found in the book
by Stroud [53].

Problem 5.1.1 Show that if in Example 5.1.1 we choose the four interpo-
lating abscissas as (0, 0), (1, 0), (0, 1), and (1, 1), we can always construct
a unique interpolating function of the form

p(x, y) = a1 + a2x+ a3y + a4xy.
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Problem 5.1.2 Verify that

p(x, y) = ξ(η;x, y) = η(ξ;x, y),

where p(x, y) is the interpolating polynomial for f(x, y) on the set X × Y ,
and ξ(f ;x, y) and η(f ;x, y) are the blending functions defined in (5.3) and
(5.4), respectively.

Problem 5.1.3 Extend the result obtained in Example 5.1.2 to find the
polynomial p(x, y) that interpolates the function 2x+y on the set X × Y ,
where X = Y = {−1, 0, 1}.

Problem 5.1.4 Verify that

det




1 x0 y0 x0y0
1 x1 y0 x1y0
1 x0 y1 x0y1
1 x1 y1 x1y1


 = (x1 − x0)2(y1 − y0)2,

and thus prove that there is a unique interpolating function of the form

p(x, y) = a1 + a2x+ a3y + a4xy

on the set of points {(x0, y0), (x1, y0), (x0, y1), (x1, y1)}, provided that x0
and x1 are distinct, and y0 and y1 are distinct.

Problem 5.1.5 Verify that if ∆x and ∆y are q-differences or forward dif-
ferences, then

∆x∆yf(xi, yj) = f(xi+1, yj+1) − f(xi, yj+1) − f(xi+1, yj) + f(xi, yj)
= ∆y∆xf(xi, yj),

so that the operators ∆x and ∆y commute. Deduce that

∆k
x∆l

yf(xi, yj) = ∆l
y∆k

xf(xi, yj),

for any integers k, l ≥ 0.

Problem 5.1.6 Derive an integration rule with 8 abscissas, of the form
(±r, 0) and (0,±r), with weight w1, and (±s,±s), with weight w2, for the
square S = {(x, y) | − 1 ≤ x, y ≤ 1}, that is exact for all monomials xiyj

with i+ j ≤ 5, and so is of degree 5. Argue that the rule must be exact for
the monomials 1, x2, x4, and x2y2, giving the equations

4w1 + 4w2 = 4,

2r2w1 + 4s2w2 =
4
3
,

2r4w1 + 4s4w2 =
4
5
,

4s4w2 =
4
9
.
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Verify that these are satisfied by

r2 =
7
15
, s2 =

7
9
, w1 =

40
49
, w2 =

9
49
.

Problem 5.1.7 Let C = {(x, y, z) | − 1 ≤ x, y, z ≤ 1}. Consider the 15-
point integration rule for the cube C that has the abscissa (0, 0, 0) with
weight 16

9 , the six abscissas (±1, 0, 0), (0,±1, 0), and (0, 0,±1) with weight
8
9 , and the eight abscissas (±1,±1,±1) with weight 1

9 . Verify that this rule
is exact for all monomials xiyjzk with i+ j + k ≤ 3.

5.2 Triangular Regions

In this section we will explore interpolation methods on triangular sets of
abscissas, and indicate generalizations to higher dimensions. The simplest
case is to construct an interpolating polynomial in x and y of the form
a1 + a2x + a3y for a function f on the three points (x0, y0), (x1, y0), and
(x1, y1), where x0 and x1 are distinct, and y0 and y1 are distinct. Since

det


 1 x0 y0

1 x1 y0
1 x1 y1


 = (x1 − x0)(y1 − y0), (5.19)

the above determinant is nonzero when x0 and x1 are distinct and y0 and
y1 are distinct, and then the above interpolation problem has a unique so-
lution. This follows from the geometrical property that there is a unique
plane passing through three noncollinear points in three-dimensional Eu-
clidean space. Having thus started with a polynomial of degree one in x
and y that interpolates f(x, y) at three noncollinear points, it is natural to
consider next a polynomial of total degree two in x and y, of the form

a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2.

As we will see, we can choose values of the six coefficients so that this
polynomial interpolates f(x, y) uniquely at six appropriately chosen points.
In this way, we are led inevitably to triangular numbers of coefficients and
interpolating points. The nth triangular number is the sum of the first n
natural numbers, the first four being

1, 1 + 2 = 3, 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10.

The monomials in x and y of total degree j are

xj , xj−1y, xj−2y2, . . . , x2yj−2, xyj−1, yj ,
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y3

y2 y2 xy2

y y xy y xy x2y
1 1 x 1 x x2 1 x x2 x3

TABLE 5.1. The monomials in x and y of degree 0, 1, 2, and 3. Each diagonal
contains the monomials of the same total degree in x and y.

and there are j+1 of these. Thus the number of monomials of total degree
not greater than n is the (n+ 1)th triangular number

1 + 2 + · · · + (n+ 1) =
1
2
(n+ 1)(n+ 2) =

(
n+ 2

2

)
.

The monomials in x and y of total degree not greater than n, for 0 ≤ n ≤ 3,
are depicted in Table 5.1, and the layout of this table shows why it is natural
to seek an interpolating polynomial in x and y of total degree n to match
a function on a triangular array of 1 + 2 + · · · + (n+ 1) abscissas.

Example 5.2.1 Let us consider the problem of constructing an interpo-
lating polynomial for a given function f on the six points defined by

(xi, yj), i, j ≥ 0, i+ j ≤ 2,

where the xi are distinct and the yj are distinct. We will show that

det




1 x0 y0 x2
0 x0y0 y2

0
1 x1 y0 x2

1 x1y0 y2
0

1 x2 y0 x2
2 x2y0 y2

0
1 x0 y1 x2

0 x0y1 y2
1

1 x1 y1 x2
1 x1y1 y2

1
1 x0 y2 x2

0 x0y2 y2
2




= −ψ(x0, x1, x2)ψ(y0, y1, y2), (5.20)

where
ψ(x0, x1, x2) = (x2 − x0)(x2 − x1)(x1 − x0)2.

First, an argument similar to that used in Problem 1.1.1 shows that x2−x0
and x2 − x1 are factors of this determinant. By putting x0 = x1 in rows 1
and 2, and again in rows 4 and 5, we see that (x1 − x0)2 is a factor, and
thus ψ(x0, x1, x2) is a factor of the determinant. (To see that the factor
x1 − x0 occurs twice, we could replace x0 in row 4 by x′

0, say, and replace
x1 in row 5 by x′

1. We then argue that x′
1 − x′

0 must be a factor. Then,
letting x′

0 and x′
1 tend to x0 and x1, respectively, we see that the factor

x1 − x0 occurs twice in the expansion of the determinant.) Similarly, we
find that ψ(y0, y1, y2) is a factor. Since both sides of (5.20) are polynomials
of the same degree in the same variables, (5.20) must be correct to within
a multiplicative constant, and it will suffice to compare the coefficients of
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x2
1x

2
2y

2
1y

2
2 , say, on both sides. The coefficient on the left is the same as the

coefficient of x2
1x

2
2y

2
1 in the 5×5 determinant obtained by deleting the sixth

row and column of the above determinant. This, in turn, is the same as the
coefficient of −x2

1y
2
1 in the 4×4 determinant obtained by deleting the third

and sixth rows and the fourth and sixth columns of the above determinant.
This 4 × 4 determinant is that which appears in Problem 5.1.4, and we
see that the coefficient of −x2

1y
2
1 is indeed −1. This shows that there is a

unique polynomial of total degree in x and y not greater than two that
matches a given function f on the six points defined above. ■

The following theorem is concerned with a generalization of the result in
Example 5.2.1.

Theorem 5.2.1 Given any positive integer n and a set of points

Sn
∆ = {(xi, yj) | i, j ≥ 0, i+ j ≤ n}, (5.21)

where the xi are distinct and the yj are distinct, there is a unique polyno-
mial of the form

pn(x, y) =
n∑

k=0

k∑
r=0

cr,k−rx
ryk−r

that takes the same values as a given function f(x, y) on the set Sn
∆.

Proof. Let An denote the square matrix each of whose 1
2 (n+1)(n+2) rows

consists of the 1
2 (n+ 1)(n+ 2) elements

1, x, y, x2, xy, y2, . . . , xyn−1, yn

evaluated at the points (xi, yj) of the set Sn
∆, taken in the order

(x0, y0), (x1, y0), · · · (xn−1, y0), (xn, y0),
(x0, y1), (x1, y1), · · · (xn−1, y1),
· · ·
· · ·
(x0, yn−1), (x1, yn−1),
(x0, yn).

The matrix A1 is the 3 × 3 matrix that appears in (5.19), and A2 is the
6×6 matrix in Example 5.2.1. We can extend the method used in Example
5.2.1 to show (see Problem 5.2.3) that the matrix An is nonsingular for a
general value of n. Thus there is a unique interpolating polynomial of total
degree n in x and y that interpolates a given function f(x, y) on the set
Sn

∆. ■

The set of points Sn
∆ defined by (5.21) lie in a triangular formation when

xj = yj = j. However, the set of points Sn
∆ may lie in a formation that

bears no resemblance to a triangle, as shown by the formation in Figure
5.1, in which n = 2.
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FIGURE 5.1. An example of the set S2
∆, defined by (5.21).

Having shown in Theorem 5.2.1 that there is a unique polynomial pn(x, y)
of total degree n in x and y that interpolates a given function f(x, y) on Sn

∆,
we now show how to construct this interpolating polynomial and obtain an
error term. We achieve this by generalizing the one-dimensional relation
(1.32),

f(x) = pn(x) + (x− x0) · · · (x− xn)f [x, x0, x1, . . . , xn], (5.22)

which we obtained by repeatedly applying (1.29),

f [x, x0, . . . , xn−1] = f [x0, . . . , xn] + (x− xn)f [x, x0, . . . , xn]. (5.23)

When we derived (5.22) we already knew from our study of Newton’s di-
vided difference formula that the polynomial pn(x) interpolates f(x) on
the set of points {x0, x1, . . . , xn}. We can deduce directly from (5.22) that
pn(x) is the interpolating polynomial for f(x). For we see from (5.23) that

(x− xn)f [x, x0, . . . , xn] = f [x, x0, . . . , xn−1] − f [x0, . . . , xn],

and this is zero when x = xn, since a divided difference is unaltered when
we change the order of its parameters. If we interchange xn and xj , we also
have

(x−xj)f [x, x0, . . . , xn] = f [x, x0, . . . , xj−1, xj+1, . . . , xn]−f [x0, . . . , xn] = 0

when x = xj , for 0 < j < n, and we have a similar result when j = 0. It
follows that

(x− x0) · · · (x− xn)f [x, x0, x1, . . . , xn] = 0

for x = xj , 0 ≤ j ≤ n, and thus the polynomial pn(x) that is defined by
(5.22) interpolates f(x) on the set of points {x0, x1, . . . , xn}.

We now give a generalization of the Newton divided difference formula
plus error term (5.22) from the one-dimensional set {x0, x1, . . . , xn} to the
two-dimensional set Sn

∆.
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Theorem 5.2.2 Given any function f defined on some subset of R
2 that

includes Sn
∆, let

f(x, y) = pm(x, y) + rm(x, y), 0 ≤ m ≤ n, (5.24)

where the sequence of polynomials (pm) is defined recursively by

pm(x, y) = pm−1(x, y) + qm(x, y), m ≥ 1, (5.25)

with

qm(x, y) =
m∑

k=0

πk(x)πm−k(y) [x0, . . . , xk] [y0, . . . , ym−k] f, (5.26)

for m ≥ 1, beginning with

p0(x, y) = [x0] [y0] f = f(x0, y0). (5.27)

Then, for m ≥ 0, the error term rm(x, y) satisfies

rm(x, y) =
m∑

k=0

πk+1(x)πm−k(y) [x, x0, . . . , xk] [y0, . . . , ym−k] f

+ πm+1(y) [x] [y, y0, . . . , ym] f, (5.28)

and the polynomial pm(x, y) interpolates f(x, y) on the set Sm
∆ .

Proof. We will verify by induction that (5.24) and (5.28) hold for all m,
and then justify that pn(x, y) interpolates f(x, y) on the set Sn

∆. It is easily
verified, by simplifying the right side of the equation, that

f(x, y) = [x0] [y0] f + (x− x0) [x, x0] [y0] f + (y − y0) [x] [y, y0] f, (5.29)

and so (5.24) and (5.28) both hold for m = 0. Let us assume that (5.24) and
(5.28) both hold for some m ≥ 0. Now, using (5.23), we split the summation
in (5.28) into two sums, S1 and S2, and then express the final single term
on the right side of (5.28) as the sum of the three terms T1, T2, and T3,
defined below. The sums S1 and S2, which are obtained by writing

[x, x0, . . . , xk]f = [x0, . . . , xk+1]f + (x− xk+1)[x, x0, . . . , xk+1]f,

are

S1 =
m∑

k=0

πk+1(x)πm−k(y) [x0, . . . , xk+1] [y0, . . . , ym−k] f

and

S2 =
m∑

k=0

πk+2(x)πm−k(y) [x, x0, . . . , xk+1] [y0, . . . , ym−k] f,
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and, similarly, we can write

T1 = πm+1(y) [x0] [y0, . . . , ym+1] f,
T2 = π1(x)πm+1(y) [x, x0] [y0, . . . , ym+1] f,
T3 = πm+2(y) [x] [y, y0, . . . , ym+1] f.

It follows immediately from (5.26) and (5.25) that

S1 + T1 = qm+1(x, y) = pm+1(x, y) − pm(x, y). (5.30)

If we now replace k by k − 1 in the above expression for S2, we have

S2 =
m+1∑
k=1

πk+1(x)πm+1−k(y) [x, x0, . . . , xk] [y0, . . . , ym+1−k] f,

and we see that
S2 + T2 + T3 = rm+1(x, y). (5.31)

It then follows from (5.30) and (5.31) that

rm(x, y) = S1 + S2 + T1 + T2 + T3 = rm+1(x, y) + qm+1(x, y). (5.32)

Thus

pm(x, y) + rm(x, y) = (pm(x, y) + qm+1(x, y)) + rm+1(x, y),

so that

f(x, y) = pm(x, y) + rm(x, y) = pm+1(x, y) + rm+1(x, y),

and by induction, this completes the main part of the proof. The interpo-
lation property of pn(x, y) is easily verified by showing that with m = n in
(5.28), each of the n + 2 terms in (5.28) is zero for every (x, y) ∈ Sn

∆, so
that the error term rn(x, y) is zero on Sn

∆. ■

Note that in view of the relation between divided differences and deriva-
tives (see (1.33)) we can construct, from (5.28) with m = n, an error term
for interpolating the function f on the set Sn

∆ that involves the n+2 partial
derivatives of f of total order n+ 1; that is,

∂n+1f

∂xn+1 ,
∂n+1f

∂xn∂y
, . . . ,

∂n+1f

∂x∂yn
,
∂n+1f

∂yn+1 ,

provided that these derivatives all exist.
We see from (5.25), (5.26), and (5.27) that the interpolating polynomial

on Sn
∆ can be expressed explicitly in the form

pn(x, y) =
n∑

m=0

m∑
k=0

πk(x)πm−k(y)[x0, . . . , xk][y0, . . . , ym−k]f. (5.33)
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The divided difference form in (5.33) for interpolation on the triangular set
Sn

∆ complements the similar formula obtained in (5.10) for interpolation on
a rectangular grid. Let us now examine separately the special case of the
set Sn

∆ where the xi and yj are equally spaced, so that

xi = x0 + ihx and yj = y0 + jhy, (5.34)

for 0 ≤ i, j ≤ n, where the values of hx and hy need not be the same. By
making a linear change of variable in x and a linear change of variable in
y we can put x0 = y0 = 0 and hx = hy = 1, so that the set Sn

∆ defined by
(5.21) becomes, say, Sn, where

Sn = {(i, j) | i, j ≥ 0, i+ j ≤ n}. (5.35)

Beginning with the divided difference form for pn(x, y) on Sn
∆, given by

(5.33), we can deduce a forward difference form for the interpolating poly-
nomial for f(x, y) on the triangular grid Sn. We follow the same method as
we adopted in the one-variable case, in Section 1.3, where we showed (see
(1.73)) that

f [j, j + 1, . . . , j + k] =
1
k!

∆kf(j).

For interpolation on Sn, we need to evaluate

πk(x) = x(x− 1) · · · (x− k + 1)

for k > 0, with π0(x) = 1, and

[0, 1, . . . , k]x [0, 1, . . . ,m− k]y f =
∆k

x∆m−k
y f(0, 0)

k!(m− k)!
.

Then it follows from (5.33) that

pn(x, y) =
n∑

m=0

m∑
k=0

(
x
k

)(
y

m− k

)
∆k

x∆m−k
y f(0, 0). (5.36)

If we put y = 0 in (5.36), we see that pn(x, 0) is expressed as the one-
dimensional forward difference formula (1.74) for the function f(x, 0) on
the point set {0, 1, . . . , n}. Likewise, if we put x = 0 in (5.36), pn(0, y) is
given by the one-dimensional forward difference formula for f(0, y) on the
point set {0, 1, . . . , n}.

We will now obtain a Lagrange form of the polynomial pn(x, y) that
interpolates a given function f on Sn. To achieve this, we need to find a
fundamental polynomial Li,j(x, y) of degree at most n in x and y that takes
the value 1 at (x, y) = (i, j) and the value zero at all the other points in
the set Sn. For example, let us seek the fundamental polynomial L4,0(x, y)
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for the set of interpolating points depicted in Figure 5.2, which is the set
S4. We see that the polynomial

x(x− 1)(x− 2)(x− 3)

is zero at all the interpolating points except (4, 0), since all of the other
points lie on one of the four lines whose equations are

x = 0, x− 1 = 0, x− 2 = 0, x− 3 = 0. (5.37)

Then we can scale the above polynomial to give

L4,0(x, y) =
1
24
x(x− 1)(x− 2)(x− 3),

which indeed takes the value 1 when (x, y) = (4, 0) and the value zero on
all the other points in S4. We now make use of the fact that the point
(i, j) lies on three lines, one from each of the three systems of parallel lines
that appear in Figure 5.2. One system is that parallel to the y-axis, already
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FIGURE 5.2. A triangular interpolation grid.

given in (5.37); there is also a system of lines parallel to the x-axis,

y = 0, y − 1 = 0, y − 2 = 0, y − 3 = 0, (5.38)

and a system parallel to the third side of the triangle,

x+ y − 1 = 0, x+ y − 2 = 0, x+ y − 3 = 0, x+ y − 4 = 0. (5.39)

The point (1, 2), for example, has the line x = 0 to the left of it, that is,
moving toward the y-axis. (See Figure 5.3.) It also has the lines y = 0 and
y− 1 = 0 below it, moving toward the x-axis, and has the line x+ y− 4 in
the direction of the third side of the triangle. Thus the polynomial that is
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the product of the left sides of these four equations, xy(y − 1)(x+ y − 4),
is zero on all points in S4 except for (1, 2). On scaling this polynomial, we
find that

L1,2(x, y) = −1
2
xy(y − 1)(x+ y − 4)

is the fundamental polynomial for (1, 2), since it has the value 1 at (1, 2)
and is zero on all the other points.

This gives us sufficient insight to derive the fundamental polynomials for
all points in the set Sn. These points are all contained in the triangle defined
by the x-axis, the y-axis, and the line whose equation is x + y − n = 0.
Given any (i, j) in Sn, consider the following three sets of lines associated
with the point (i, j).

1. Lines of the form x− k = 0 that lie between (i, j) and the side of the
triangle formed by the y-axis.

2. Lines of the form y− k = 0 that lie between (i, j) and the side of the
triangle formed by the x-axis.

3. Lines of the form x+ y − k = 0 that lie between (i, j) and the third
side of the triangle, defined by the equation x+ y − n = 0.
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FIGURE 5.3. How the fundamental polynomial for (1, 2) is constructed.

There are no lines in the first of the three sets enumerated above if i = 0,
and if i > 0, we have the lines

x = 0, x− 1 = 0, . . . , x− i+ 1 = 0.

If j = 0, there are no lines in the second set, and if j > 1, we have the lines

y = 0, y − 1 = 0, . . . , y − j + 1 = 0.
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If i + j = n, the point (i, j) is on the line x + y − n = 0 and there are no
lines in the third set; otherwise, we have, working toward the third side of
the triangle, the lines

x+ y − i− j − 1 = 0, x+ y − i− j − 2 = 0, . . . , x+ y − n = 0.

Note that the total number of lines in the three sets enumerated above is

i+ j + (n− i− j) = n.

Now if we draw all of these n lines that are associated with the given point
(i, j) on a grid like that of Figure 5.2, as we did in Figure 5.3 for the point
(1, 2), we see that between them they cover all the points on the triangular
grid except for the point (i, j). Thus, taking the product of the left sides of
all these n equations, we see that

i−1∏
s=0

(x− s)
j−1∏
s=0

(y − s)
n∏

s=i+j+1

(x+ y − s) (5.40)

is zero at all points on the triangular grid except for the point (i, j). If
i = 0 or j = 0 or i+ j = n, the corresponding product in (5.40) is said to
be empty, and its value is defined to be 1. We then just need to scale the
polynomial defined by this triple product to give

Li,j(x, y) =
i−1∏
s=0

(
x− s

i− s

) j−1∏
s=0

(
y − s

j − s

) n∏
s=i+j+1

(
x+ y − s

i+ j − s

)
, (5.41)

which simplifies to give

Li,j(x, y) =
(
x
i

)(
y
j

)(
n− x− y
n− i− j

)
, (5.42)

the fundamental polynomial corresponding to the point (i, j), where it takes
the value 1. Thus the interpolating polynomial for a function f(x, y) on the
triangular grid defined by (5.35) is given by

pn(x, y) =
∑
i,j

f(i, j)Li,j(x, y), (5.43)

where the above summation is over all nonnegative integers i and j such
that i + j ≤ n. Note from (5.41) that the numerator of each fundamental
polynomial is a product of n factors, and so the interpolating polynomial
pn(x, y) is a polynomial of total degree at most n in x and y.

Let us write λk, µk, and νk to denote the lines x − k = 0, y − k = 0,
and x+ y − (n− k) = 0, respectively. Then the point (i, j) lies on each of
the lines λi, µj , and νn−i−j . We could use the notation {λi, µj , νn−i−j} to
denote the point (i, j), to emphasize that it lies on these three lines.
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Example 5.2.2 When n = 2 in (5.43) we have six interpolating points,
and the interpolating polynomial is

p2(x, y) =
1
2

(2 − x− y)(1 − x− y) f(0, 0) + x(2 − x− y) f(1, 0)

+ y(2 − x− y) f(0, 1) +
1
2
x(x− 1) f(2, 0)

+ xy f(1, 1) +
1
2
y(y − 1) f(0, 2).

If we evaluate p2(x, y) at the centroid of the triangle with vertices (0, 0),
(2, 0), and (0, 2), we find that

p2

(
2
3
,
2
3

)
=

1
3
(4α− β),

where β is the mean of the values of f on the vertices of the triangle, and
α is the mean of the values of f on the other three points. ■

In Section 1.1 we saw that the interpolating polynomial in one variable
can be evaluated iteratively by the Neville–Aitken algorithm. We can also
derive an iterative process of Neville–Aitken type for evaluating the in-
terpolating polynomial for f(x, y) on the triangular set of points defined
above in (5.35). Let us define p[i,j]

k (x, y) as the interpolating polynomial for
f(x, y) on the triangular set of points

S
[i,j]
k = {(i+ r, j + s) | r, s ≥ 0, r + s ≤ k} . (5.44)

The set S[i,j]
k contains 1 + 2 + · · · + (k + 1) = 1

2 (k + 1)(k + 2) points
arranged in a right-angled triangle formation, with (i, j) as the bottom
left-hand point. Figure 5.2 illustrates the set S[0,0]

4 . Thus p[i,j]
0 (x, y) has

the constant value f(i, j). We can compute the interpolating polynomials
p
[i,j]
k (x, y) recursively in a Neville–Aitken style, as we will now see.

Theorem 5.2.3 For k ≥ 0 and i, j ≥ 0,

p
[i,j]
k+1(x, y) =

(
i+ j + k + 1 − x− y

k + 1

)
p
[i,j]
k (x, y)

+
(
x− i

k + 1

)
p
[i+1,j]
k (x, y) +

(
y − j

k + 1

)
p
[i,j+1]
k (x, y). (5.45)

Proof. From its definition above, each p[i,j]
0 (x, y) interpolates f(x, y) at the

point (i, j). We now use induction. Let us assume that for some k ≥ 0
and all i and j, the polynomial p[i,j]

k (x, y) interpolates f(x, y) on the set
S

[i,j]
k . Then we see that if all three polynomials p[i,j]

k (x, y), p[i+1,j]
k (x, y),
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and p
[i,j+1]
k (x, y) on the right of (5.45) have the same value C for some

choice of x and y, then the right side of (5.45) has the value

C

k + 1
[(i+ j + k + 1 − x− y) + (x− i) + (y − j)] = C,

and thus p[i,j]
k+1(x, y) = C. Next we observe that these three polynomials all

interpolate f(x, y) on all points (i + r, j + s) for which r > 0, s > 0, and
r+s < k+1, and so p[i,j]

k+1(x, y) also interpolates f(x, y) on all these points.

We further show from (5.45) that p[i,j]
k+1(x, y) interpolates f(x, y) also on the

three “lines” of points, these being subsets of the set S[i,j]
k+1 corresponding

to taking r = 0, s = 0, and r+ s = k+ 1 in turn. This completes the proof
by induction. ■

Further references on bivariate interpolation may be found in Stancu [52].

Problem 5.2.1 Show that

A =


 1 x0 y0

1 x1 y0
1 x1 y1


 =


 1 0 x0

1 0 x1
0 1 x1




 1 0 y0

1 0 y1
0 1 0




and hence verify that detA = (x1 − x0)(y1 − y0).

Problem 5.2.2 Let A denote the 10× 10 matrix concerned with the con-
struction of the interpolating polynomial in x and y of total degree 3 on
the 10 abscissas defined by

(xi, yj), i, j ≥ 0, i+ j ≤ 3,

where the xi are distinct and the yj are distinct, and the points (xi, yj) are
taken in the order specified in the proof of Theorem 5.2.1. By following the
argument that we used in Example 5.2.1, show that

detA = C ψ(x0, x1, x2, x3)ψ(y0, y1, y2, y3),

where C is a nonzero constant and

ψ(x0, x1, x2, x3) =
∏
i>j

(xi − xj)4−i.

Deduce that this interpolation problem has a unique solution.

Problem 5.2.3 Generalize the result in Problem 5.2.2 from 3 to n, as
follows. Let An denote the 1

2 (n+1)(n+2)× 1
2 (n+1)(n+2) matrix defined

in the proof of Theorem 5.2.1, and let

ψ(x0, . . . , xn) =
∏
i>j

(xi − xj)n+1−i.
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Verify that ψ(x0, . . . , xn) is a polynomial of degree 1
6n(n + 1)(n + 2), and

that detAn is a polynomial of degree 1
3n(n+ 1)(n+ 2), and deduce that

detAn = C ψ(x0, . . . , xn)ψ(y0, . . . , yn),

where C is a nonzero constant.

Problem 5.2.4 Verify (5.29), and show also that

f(x, y) = [x0] [y0] f + (x− x0) [x, x0] [y] f + (y − y0) [x0] [y, y0] f.

Problem 5.2.5 Extend the result in the last problem from two to three
variables, showing that

f(x, y, z) = [x0] [y0] [z0] f + (x− x0) [x, x0] [y] [z] f
+ (y − y0) [x0] [y, y0] [z] f + (z − z0) [x0] [y0] [z, z0] f.

Problem 5.2.6 Let S denote the set of points in R
3 defined by

S = {(xi, yj , zk) | i, j, k ≥ 0, i+ j + k ≤ n},
where the xi are distinct, the yj are distinct, and the zj are distinct, and
let pn(x, y, z) denote a polynomial that interpolates a given function f on
the set S. Using the result in the last problem, determine pn(x, y, z) when
n = 0 and n = 1. Also determine pn(x, y, z) when n = 2.

5.3 Integration on the Triangle

We now discuss integration rules over the triangle. If we integrate the inter-
polating polynomial pn(x, y), defined by (5.43), over the triangle Tn with
vertices (0, 0), (n, 0), and (0, n), we obtain an integration rule

Rn(f) =
∑
i,j

w
(n)
i,j f(i, j), (5.46)

where the summation is over all nonnegative integers i and j such that
i+ j ≤ n. Thus the weight w(n)

i,j is obtained by integrating the fundamental
polynomial Li,j(x, y), defined in (5.42), over the triangle Tn, and we see
that

w
(n)
i,j =

∫ n

0

(∫ n−y

0
Li,j(x, y) dx

)
dy. (5.47)

We say that Rn is an interpolatory integration rule on the triangle Tn.
From the uniqueness of the interpolating polynomial it follows that when
f(x, y) is a polynomial of total degree at most n in x and y,

Rn(f) =
∫ n

0

(∫ n−y

0
f(x, y) dx

)
dy.
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We say that the rule is exact for such functions. In particular, we have

Rn(xrys) =
∫ n

0

(∫ n−y

0
xrysdx

)
dy (5.48)

for r, s ≥ 0 and r + s ≤ n. On evaluating the inner integral in (5.48), we
obtain

Rn(xrys) =
1

r + 1

∫ n

0
(n− y)r+1ysdy,

and on making the substitution y = nt, we find that

Rn(xrys) =
nr+s+2

r + 1

∫ 1

0
(1 − t)r+1tsdt.

It is then not difficult to show, using integration by parts (see Problem
5.3.1), that

Rn(xrys) = nr+s+2 r! s!
(r + s+ 2)!

. (5.49)

If we now replace f(x, y) in (5.46) by xrys, and use (5.49), for r, s ≥ 0 and
r+ s ≤ n, we obtain a system of linear equations to determine the weights
w

(n)
i,j . This is preferable to evaluating the weights directly by integrating

the fundamental polynomials, using (5.47). There are some symmetries in
the weights that we can use to simplify the solution of the linear equations.
For we have

w
(n)
i,j = w

(n)
j,i = w

(n)
i,n−i−j = w

(n)
n−i−j,i = w

(n)
j,n−i−j = w

(n)
n−i−j,j . (5.50)

Let us consider w(n)
i,j and w

(n)
j,i . If we interchange i and j in (5.47), then

from (5.42) this is equivalent to interchanging x and y, which leaves the
integral unchanged, since the domain of integration is symmetric in x and
y. This establishes the relation w

(n)
i,j = w

(n)
j,i . It now remains only to show

that, say,
w

(n)
i,j = w

(n)
i,n−i−j ,

and the whole chain of equalities in (5.50) will follow. From (5.47) and
(5.42) we can express w(n)

i,n−i−j as the double integral

w
(n)
i,n−i−j =

∫ n

0

∫ n−y

0

(
x
i

)(
y

n− i− j

)(
n− x− y

j

)
dx dy.

Let us now make the change of variables

x = ξ,

y = n− ξ − η,
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and we note that the domain of integration of the latter double integral,
the triangular region x, y ≥ 0, x+y ≤ n, is transformed into the triangular
region ξ, η ≥ 0, ξ + η ≤ n. Thus we obtain

w
(n)
i,n−i−j =

∫ n

0

(∫ n−η

0

(
ξ
i

)(
n− ξ − η
n− i− j

)(
η
j

)
|J | dξ

)
dη, (5.51)

where |J | denotes the modulus of the Jacobian,

J = det




∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η


 = det


 1 0

−1 −1


 = −1.

On replacing |J | by unity in (5.51), we see that w(n)
i,n−i−j = w

(n)
i,j .

Example 5.3.1 With n = 1, we see from (5.49) with r = s = 0 and (5.46)
with f(x, y) = 1 that

w
(1)
0,0 + w

(1)
1,0 + w

(1)
0,1 =

1
2
.

It follows from (5.50) that all three weights are equal, and thus

w
(1)
0,0 = w

(1)
1,0 = w

(1)
0,1 =

1
6
.

With n = 2, we note from (5.50) that there are at most two distinct weights,
since

w
(2)
0,0 = w

(2)
2,0 = w

(2)
0,2

and
w

(2)
1,0 = w

(2)
0,1 = w

(2)
1,1.

Then, using (5.46) with f(x, y) = 1 and f(x, y) = xy, say, together with
(5.49), we obtain the equations

3w(2)
0,0 + 3w(2)

1,1 = 2,

w
(2)
1,1 =

2
3
,

and hence find that the weights are

w
(2)
0,0 = w

(2)
2,0 = w

(2)
0,2 = 0

and
w

(2)
1,0 = w

(2)
0,1 = w

(2)
1,1 =

2
3
.

For n = 3 we see from (5.50) that there are at most three distinct weights.
We have the weights at the vertices of the triangle T3,

w
(3)
0,0 = w

(3)
3,0 = w

(3)
0,3 ;
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the weight w(3)
1,1 at (1, 1), the centroid of the triangle T3; and the remaining

weights
w

(3)
1,0 = w

(3)
0,1 = w

(3)
1,2 = w

(3)
2,1 = w

(3)
0,2 = w

(3)
2,0.

Using (5.46) with f(x, y) = 1, x2, and x3, say, together with (5.49), we
obtain the equations

3w(3)
0,0 + w

(3)
1,1 + 6w(3)

1,0 =
9
2
,

9w(3)
0,0 + w

(3)
1,1 + 10w(3)

1,0 =
27
4
,

27w(3)
0,0 + w

(3)
1,1 + 18w(3)

1,0 =
243
20

,

whose solution is

w
(3)
0,0 =

3
20
, w

(3)
1,1 =

81
40
, w

(3)
1,0 =

27
80
. ■

It is instructive to generalize our above account of interpolatory integra-
tion rules on the triangle. Instead of the triangle Tn, with vertices at (0, 0),
(n, 0), and (0, n), let us consider any triangle T , with vertices at (x1, y1),
(x2, y2), and (x3, y3), and area ∆ > 0. We now write

x = x1u1 + x2u2 + x3u3, (5.52)
y = y1u1 + y2u2 + y3u3, (5.53)

where
u1 + u2 + u3 = 1. (5.54)

We call u1, u2, and u3 the barycentric coordinates of the point (x, y). We
can express (5.52), (5.53), and (5.54) in the matrix form


 x
y
1


 = A


 u1
u2
u3


 , (5.55)

where

A =


 x1 x2 x3
y1 y2 y3
1 1 1


 . (5.56)

Thus

A−1 =
1

detA


 η1 −ξ1 τ1
η2 −ξ2 τ2
η3 −ξ3 τ3


 , (5.57)

where
ξ1 = x2 − x3, η1 = y2 − y3, τ1 = x2y3 − x3y2,
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and ξi, ηi, and τi are defined cyclically for i = 2 and 3. It follows that

ui = ui(x, y) =
ηix− ξiy + τi
ηixi − ξiyi + τi

, 1 ≤ i ≤ 3. (5.58)

It is easily verified that the denominator in (5.58) is independent of i and
is nonzero, since

ηixi − ξiyi + τi = detA = ±2∆, (5.59)

for i = 1, 2, and 3. Each of the linear functions ui(x, y) defined in (5.58)
has the value 1 at the vertex (xi, yi) and is zero at the other two vertices.

In place of Sn, defined by (5.35), we have the set of interpolation points

ST =

{(
3∑

i=1

λixi

n
,

3∑
i=1

λiyi

n

)| λ1, λ2, λ3 ≥ 0,
3∑

i=1

λi = n

}
, (5.60)

where the λi are integers. Observe that ST reduces to Sn when we replace
the vertices of T with the vertices of Tn. Let us now write fλ to denote the
value of f(x, y) at the point

(x, y) =

(
3∑

i=1

xiui,

3∑
i=1

yiui

)
=

(
3∑

i=1

λixi

n
,

3∑
i=1

λiyi

n

)
, (5.61)

where λ1, λ2, and λ3 are nonnegative integers such that λ1 + λ2 + λ3 = n,
and let us define

Lλ(x, y) =
3∏

i=1

1
λi!

λi−1∏
j=0

(nui − j),

where, as usual, an empty product is taken to have the value 1. We can see
that Lλ(x, y) takes the value 1 at the point (x, y) defined by (5.61) and is
zero at all the other points in the set ST , defined by (5.60). Thus Lλ(x, y) is
a fundamental polynomial for the set ST . Let us now define the polynomial

pn(x, y) =
∑

λ

fλLλ(x, y),

where the summation is over all the points, enumerated by λ1, λ2, and λ3,
in the set ST . It is clear that pn(x, y) interpolates f(x, y) on the set ST .
We now integrate this interpolating polynomial over the triangle T , giving∫ ∫

T

pn(x, y) dx dy =
∑

λ

wλfλ = RT (f), (5.62)

say, where the weight wλ is given by

wλ =
∫ ∫

T

Lλ(x, y) dx dy. (5.63)
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We see from (5.52), (5.53), and (5.54) that the Jacobian of this transfor-
mation is

J = det




∂x
∂u1

∂x
∂u2

∂y
∂u1

∂y
∂u2


 = det


 x1 − x3 x2 − x3

y1 − y3 y2 − y3


 = detA. (5.64)

We also note that under this transformation, the set of all points (x, y) in
the triangle T corresponds to the set of points (u1, u2) in the triangle T ′,
say, defined by

T ′ = {(u1, u2) | u1, u2 ≥ 0, u1 + u2 ≤ 1}.

It follows from (5.52), (5.53), and (5.54) that x and y are linear in u1 and
u2, and so any polynomial in x and y of total degree at most n may be
expressed as a polynomial in u1 and u2 of total degree at most n. Let us
evaluate integrals of the monomials in the variables u1 and u2. We have

∫ ∫
T

ur
1u

s
2 dx dy =

∫ ∫
T ′
ur

1u
s
2 |J | du1 du2,

where the Jacobian J is given by (5.64), so that

∫ ∫
T

ur
1u

s
2 dx dy = 2∆

∫ 1

0

(∫ 1−u2

0
ur

1u
s
2 du1

)
du2.

Thus, following the method used in evaluatingRn(xrys) in (5.49), we obtain
∫ ∫

T

ur
1u

s
2 dx dy = 2∆

r! s!
(r + s+ 2)!

. (5.65)

To determine the weights wλ for the interpolatory integration rule over the
triangle T , we follow the method used earlier to find the weights for the
rule over the triangle Tn. We therefore set up and solve a system of linear
equations, where each equation is of the form

∑
λ

wλfλ = RT (f), (5.66)

and f is chosen as each of the monomials ur
1u

s
2 in turn, so that

RT (ur
1u

s
2) = 2∆

r! s!
(r + s+ 2)!

. (5.67)

It follows from (5.66) and (5.67) that, apart from a multiplicative constant
that depends on the area of the triangle, the weights wλ for these interpo-
latory rules on ST , with n fixed, are otherwise independent of the triangle.
Let us suppose we have a set of numbers w′

λ that have been obtained by
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n = 1 n = 2 n = 3

1 0 4
1 1 1 1 9 9

0 1 0 9 54 9
4 9 9 4

n = 4 n = 5

0 11
4 4 25 25

−1 8 −1 25 200 25
4 8 8 4 25 25 25 25
0 4 −1 4 0 25 200 25 200 25

11 25 25 25 25 11

TABLE 5.2. Relative weights for interpolatory integration rules of order n on the
triangle, for 1 ≤ n ≤ 5.

multiplying all the weights wλ by some positive constant. We call the num-
bers w′

λ a set of relative weights. An interpolatory integration rule of order
n interpolates all polynomials of total degree n or less exactly, and so, in
particular, integrates the constant function 1 exactly. Thus we see from
(5.66) and (5.67) that ∑

λ

wλ = ∆,

and it follows from this last equation that if w′
λ are a set of relative weights,

the true weights are given by

wλ =
∆∑
λ w

′
λ

· w′
λ,

where the summation is over all the points, enumerated by λ1, λ2, and λ3,
in the set ST . It is clear that the weights wλ are rational numbers, since
they are derived from a system of linear equations with rational coefficients.
It is convenient to produce relative weights from these, consisting of a set
of integers with no common factor. Relative weights for interpolatory rules
on all triangular sets defined by (5.60), for 1 ≤ n ≤ 5, are given in Table
5.2. The weights for the cases n = 1, 2, and 3 were derived in Example
5.3.1, and those for n = 4 and 5 may be obtained similarly.

Many other integration rules for the triangle and the general simplex are
given in Stroud [53].

Problem 5.3.1 Let

Ir,s =
∫ 1

0
(1 − t)rtsdt.
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Use integration by parts to show that

Ir,s =
r

s+ 1
Ir−1,s+1,

and deduce that
Ir,s =

r! s!
(r + s+ 1)!

.

5.4 Interpolation on the q-Integers

Consider the following set of points, illustrated in Figure 5.4 for the case
where n = 4, defined in terms of q-integers (see Section 1.5) by

Sn
q = {([i], [j]′), | i, j ≥ 0, i+ j ≤ n}, (5.68)

where, with q > 0,

[i] = 1 + q + q2 + · · · + qi−1 and [j]′ = 1 + q−1 + q−2 + · · · + q−j+1,

for i, j > 0, and where [0] = [0]′ = 0. When q = 1 we have [i] = i and
[j]′ = j, and the grid Sn

q reduces to the simple triangular grid Sn defined
in (5.35). The grid Sn

q has the property, shared with the grid Sn, that it
is created by points of intersection of three systems of straight lines. As
we saw in Figure 5.2, the set of points in Sn consists of three systems of
parallel lines, one parallel to each axis and the third parallel to x+y−n = 0.
The new set of points Sn

q is created by points of intersection of the three
systems

x− [k] = 0, 0 ≤ k ≤ n− 1,
y − [k]′ = 0, 0 ≤ k ≤ n− 1,

x+ qky − [k + 1] = 0, 0 ≤ k ≤ n− 1. (5.69)

Note that the straight line with equation x+ qky− [k+1] = 0 connects the
two points ([k + 1], 0) and (0, [k + 1]′, and contains all points of the form
([i], [k + 1 − i]′), 0 ≤ i ≤ k + 1.

We define a pencil of lines as a set of lines that are all parallel, or all pass
through a common point, which is called the vertex of the pencil. In the
case where the lines are all parallel, we can think of the vertex as being at
infinity, in the direction of the set of parallel lines. Thus, in (5.69) we have
three pencils of lines. The first two pencils are systems of lines parallel to
the axes. The third system is obviously not a parallel system except when
q = 1. On substituting the values x = 1/(1 − q) and y = −q/(1 − q) into
(5.69), with q �= 1, we can see that every line in the third system passes
through the vertex (1/(1 − q),−q/(1 − q)). Thus the x-coordinate of this
vertex is negative for q > 1, as in Figure 5.4. We can say that this grid is
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FIGURE 5.4. A triangular interpolation grid based on q-integers.

created by two pencils of lines with vertices at infinity, and a third pencil
of lines that meet at a finite vertex. We can now write down the Lagrange
form of an interpolating polynomial for a function f(x, y) on this triangular
grid, as we did for the special case of q = 1. The fundamental polynomial
for the point ([i], [j]′) in this new grid is given by

Li,j(x, y) = ai,j(x, y) bi,j(x, y) ci,j(x, y), (5.70)

where

ai,j(x, y) =
i−1∏
s=0

(
x− [s]
[i] − [s]

)
, bi,j(x, y) =

j−1∏
s=0

(
y − [s]′

[j]′ − [s]′

)
,

ci,j(x, y) =
n∏

s=i+j+1

(
x+ qs−1y − [s]

[i] + qs−1[j]′ − [s]

)
,

and, as usual, an empty product denotes 1. With q = 1, this reduces to
the expression (5.42) for the fundamental polynomial corresponding to the
point (i, j).

The mesh Sn
q and its special case Sn illustrate the following result due

to Chung and Yao [8].

Theorem 5.4.1 Let S denote a set of points in Euclidean space R
2, and

suppose that to each point pi ∈ S, there corresponds a set of n lines li,1,
li,2, . . . , li,n, such that p ∈ S lies in the union of li,1, li,2, . . . , li,n if and only
if p �= pi. Then there is a unique polynomial of the form

pn(x, y) =
n∑

k=0

k∑
r=0

cr,k−rx
ryk−r

that interpolates a given function f(x, y) on the set S. ■
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Later in this section we will give other meshes that fulfil the conditions of
this theorem. We continue by giving a Neville–Aitken algorithm for evaluat-
ing the interpolating polynomial for f(x, y) on the set of points Sn

q defined
in terms of q-integers in (5.68). This generalizes the algorithm given in The-
orem 5.2.3 for computing the interpolating polynomial for f(x, y) on the
set Sn, which is the special case of Sn

q with q = 1. Let us define p[i,j]
k (x, y)

as the interpolating polynomial for f(x, y) on the triangular set of points

S
[i,j]
k = {([i+ r], [j + s]′) | r, s ≥ 0, r + s ≤ k} . (5.71)

These interpolating polynomials can be computed recursively, as stated in
the following theorem.

Theorem 5.4.2 For k ≥ 0 and i, j ≥ 0,

p
[i,j]
k+1(x, y) =

([1 + i+ j + k] − x− qi+j+ky)
qi[k + 1]

p
[i,j]
k (x, y)

+
(x− [i])
qi[k + 1]

p
[i+1,j]
k (x, y) + qj+k (y − [j]′)

[k + 1]
p
[i,j+1]
k (x, y).

Proof. The recurrence relation reduces to (5.45) when we put q = 1, and
is justified in the same way as the special case in Theorem 5.2.3. ■

Recall the grid of points

Sn
∆ = {(xi, yj) | i, j ≥ 0, i+ j ≤ n},

defined in (5.21), where the xi are distinct, and the yj are distinct. We
showed in Theorem 5.2.1 that there is a unique polynomial of total degree
n in x and y that interpolates a given function f(x, y) on the set Sn

∆,
and in (5.33) showed that this polynomial can be expressed in the divided
difference form

pn(x, y) =
n∑

m=0

m∑
k=0

πk(x)πm−k(y)[x0, . . . , xk][y0, . . . , ym−k]f, (5.72)

where the polynomials πk are defined in (1.11). If in (5.72) we now let

xi = [i] =
1 − qi

1 − q
and yj = [j]′ =

1 − q−j

1 − q−1 ,

for some choice of q > 0, and write x = [u] and y = [v]′, we can write the
polynomial pn(x, y) in (5.72) in the form

pn([u], [v]′) =
n∑

m=0

m∑
k=0

[
u
k

] [
v

m− k

]′
∆k

x∆m−k
y f(0, 0), (5.73)
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where ∆x and ∆y are q-difference operators with respect to q and q−1,
respectively, and the two factors that multiply the differences are q-binomial
coefficients, involving q and q−1, respectively, as defined in (1.116). We can
justify (5.73) in the same way as we verified (5.36), the special case of (5.73)
when q = 1.

Note that the points of the grid Sn
q , defined by (5.68), all lie on the

triangle whose vertices are the three grid points (0, 0), ([n], 0), and (0, [n]′).
Let us scale the grid Sn

q , dividing the x-coordinates by [n] and the y-
coordinates by [n]′, to give a grid of points lying in the “unit” triangle,
with vertices (0, 0), (1, 0), and (0, 1). Since

[j]′

[n]′
=

1 − q−j

1 − q−n
= 1 − [n− j]

[n]
,

the scaled grid is the set of points(
[i]
[n]
, 1 − [n− j]

[n]

)
, i, j ≥ 0, i+ j ≤ n,

which is more conveniently described as the set of points(
[i]
[n]
, 1 − [j]

[n]

)
, 0 ≤ i ≤ j ≤ n. (5.74)

We saw that Sn
q has a finite vertex (1/(1−q),−q/(1−q)), the point where

the n lines defined by (5.69) intersect. After scaling, this point becomes
(1/(1− qn),−qn/(1− qn)), the finite vertex for the mesh defined by (5.74).
As q → 1, this vertex tends to infinity along the line x + y = 1, and its
pencil is a system of lines parallel to x + y = 1. This limiting form of
the grid defined by (5.74) is just a scaled version of Sn, defined in (5.35).
The grid Sn

q or, equivalently, its scaled version given by (5.74), belongs
to a family of grids based on q-integers derived by Lee and Phillips [32].
This family also contains grids created by one pencil of parallel lines and
two pencils with finite vertices, and grids created by three pencils each of
which has a finite vertex. All of these may be derived by a geometrical
construction that relies on Pappus’s theorem, which we state and prove
below. We begin by defining homogeneous coordinates, in which we use
a triple of numbers (x, y, z), not all zero, to denote a point. If λ �= 0,
then (x, y, z) and (λx, λy, λz) denote the same point, and if z �= 0, the
point (x, y, z) coincides with the point (x/z, y/z) in R

2, two-dimensional
Euclidean space. The straight line denoted by ax + by + c = 0 in R

2 is
written in the form ax + by + cz = 0 in homogeneous coordinates. The
three rather special points (1, 0, 0), (0, 1, 0), and (0, 0, 1) are denoted by X,
Y , and Z, respectively. We refer to XY Z as the triangle of reference. We
can see that the line Y Z is given by

det


 x y z

0 1 0
0 0 1


 = 0,
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or x = 0, since the determinant is zero (two rows equal) when we replace
the coordinates (x, y, z) by those of Y or Z. Similarly, ZX and XY have
the equations y = 0 and z = 0, respectively. We note also that any straight
line through X has an equation of the form by + cz = 0, and any point on
Y Z can be expressed in the form (0, y1, z1).

There is another “special” point, (1, 1, 1), called the unit point. Its use-
fulness lies in the simplifications that we gain from the following property:
We can find a coordinate system in which any point not on a side of the
triangle of reference XY Z has coordinates (1, 1, 1). To justify this, suppose
that in a given coordinate system, a point U has coordinates (α, β, γ), and
that U does not lie on a side of triangle XY Z. This implies that the three
coordinates α, β, and γ are all nonzero. We now carry out a transformation
that maps (x, y, z) to (x′, y′, z′), where

x′ = x/α, y′ = y/β, z′ = z/γ.

Thus, in the new coordinate system, U has the coordinates of the unit
point (1, 1, 1), and because of the property that (x, y, z) and (λx, λy, λz)
denote the same point when λ is nonzero, the triangle of reference XY Z
is unchanged by this simple transformation. Under the more general trans-
formation 

 ξ
η
ζ


 = A


 x
y
z


 , (5.75)

the special points X, Y , and Z, represented by column vectors, are mapped
to the points, say, X ′, Y ′, and Z ′, represented by the columns of the matrix
A. The points X ′, Y ′, and Z ′ will be collinear if and only if the columns of
A are linearly dependent, that is, if and only if the matrix A is singular.
Likewise, beginning with any three noncollinear points X ′, Y ′, and Z ′, we
can construct a (nonsingular) matrix A whose columns are obtained from
their coordinates. Then the matrix A−1 will map X ′, Y ′, and Z ′ to the
special points X, Y , and Z, respectively. It is easy to see that under such
nonsingular transformations, straight lines are mapped to straight lines.
We will now state and prove Pappus’s theorem.

Theorem 5.4.3 Let A1, A2, A3, B1, B2, and B3 be six distinct points
lying in a plane, where A1, A2, and A3 lie on a straight line lA, and B1,
B2, and B3 lie on a straight line lB . We now construct the points C1, C2,
and C3, as follows:

C1 is the point where A2B3 and A3B2 intersect;
C2 is the point where A3B1 and A1B3 intersect;
C3 is the point where A1B2 and A2B1 intersect.

Then the points C1, C2, and C3 lie on a straight line lC . See Figure 5.5.
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FIGURE 5.5. Pappus’s theorem: The points C1, C2, and C3 are collinear.

Proof. Before commencing the proof note that, having defined the point C1
above, we obtain the definitions of C2 and C3 by permuting the subscripts
1, 2, and 3 cyclically. We remark also that this geometrical construction
is fully symmetric in the Aj , Bj , and Cj . For not only do the Aj and Bj

determine the Cj , but the Bj and Cj determine the Aj , and the Cj and
Aj determine the Bj . For example, having constructed the points C1, C2,
and C3, suppose we were to remove the points A1, A2, and A3 from our
diagram. Then we could restore them by defining A1 as the point where
B2C3 and B3C2 intersect, and defining A2 and A3 similarly. The following
proof is based on that of Maxwell [37]. Let lA and lB intersect at P . We
need to allow the possibility that lA and lB are parallel, because Pappus’s
theorem holds whether they are parallel or not. If lA and lB are parallel,
we can represent them by the equations

ax+ by + cz = 0,
ax+ by + c′z = 0,

where c �= c′. In this case we can take the point P as (−b, a, 0), since the
coordinates of P satisfy the equations of both lines. Let Q denote any other
point on lB , and let R denote any other point on lA. We then apply the
unique linear transformation that maps P , Q, and R onto X, Y , and Z,
respectively. In this coordinate system, lA becomes XZ. Thus any point on
the line lA may be expressed in the form (α, 0, 1), and we recover the point
Z on putting α = 0. If we multiply by 1/α, the point with homogeneous
coordinates (α, 0, 1) is the same as (1, 0, 1/α), and we recover X on letting
α → ∞. Any point on the line lB may be expressed in the form (β, 1, 0),
and we recover Y on putting β = 0, and X by dividing throughout by β
and then letting β → ∞. We may therefore write

Ai = (αi, 0, 1), Bi = (βi, 1, 0), i = 1, 2, 3.
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We can now determine the coordinates of the Ci. The line A2B3 has the
equation x− β3y − α2z = 0, and on interchanging the subscripts 2 and 3,
we see that the equation of the line A3B2 is x − β2y − α3z = 0. We then
find the point of intersection of these two lines,

C1 = (α2β2 − α3β3, α2 − α3, β2 − β3).

By permuting the subscripts 1, 2, and 3 in cyclic order, we see that the
points C2 and C3 are

C2 = (α3β3 − α1β1, α3 − α1, β3 − β1),
C3 = (α1β1 − α2β2, α1 − α2, β1 − β2).

Now consider any three points xi, yi, zi, i = 1, 2, 3. These will lie on a
straight line ax+ by + cz = 0 if and only if there exist a, b, and c, not all
zero, such that 

 x1 y1 z1
x2 y2 z2
x3 y3 z3




 a
b
c


 =


 0

0
0


 ,

and there exist such numbers a, b, and c if and only if the above matrix
is singular. The corresponding matrix formed from the coordinates of C1,
C2, and C3 is 

 α2β2 − α3β3 α2 − α3 β2 − β3
α3β3 − α1β1 α3 − α1 β3 − β1
α1β1 − α2β2 α1 − α2 β1 − β2


 .

The rows of this matrix are evidently linearly dependent, since their sum
is the zero row vector. Thus the matrix is singular, and the points C1, C2,
and C3 indeed lie on a straight line. This completes the proof. ■

We now derive the three-pencil mesh obtained by Lee and Phillips [32].
It is convenient to use X, Y , and Z to denote the vertices of these pencils.
Each point P of the mesh lies on three lines, say, lPX , lPY , and lPZ , where
lPX is a member of a pencil of lines that has X as its vertex. Similarly, we
write lPY and lPZ to denote members of pencils of lines that have Y and Z,
respectively, as their vertices. The mesh is generated by constructing one
line in each of the three pencils at a time, as we now describe.

To construct the first line in each pencil, we draw arbitrary lines l(1)X

throughX, and l(1)Z through Z that are not sides of the triangle of reference.
These intersect at an arbitrary point that is not on a side of triangle XY Z.
Thus, without loss of generality, we can take this to be the unit point
U = (1, 1, 1), as we justified above. Since l(1)X joins X and U , it has equation

det


 x y z

1 0 0
1 1 1


 = 0,
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FIGURE 5.6. The first stage in constructing the three-pencil mesh.

which is y = z, and similarly, l(1)Z , which joins Z and U , has equation x = y.
We now draw an arbitrary line l(1)Y through Y that does not pass through
X, Z, or U . This must be of the form x = qz, where q �= 0 or 1. (If q = 0,
the line would pass through Z, and if q = 1, it would pass through U .)
The lines l(1)X and l

(1)
Y intersect where y = z and x = qz, which gives the

point (q, 1, 1). Likewise, l(1)Y and l
(1)
Z intersect where x = qz and x = y,

which gives the point (q, q, 1). At this stage we have the lines l(1)X , l(1)Y , and
l
(1)
Z , and the first three points of the mesh, (1, 1, 1), (q, 1, 1), and (q, q, 1),
as depicted in Figure 5.6.

Next we construct the second lines of the X, Y , and Z pencils. We denote
the line joining X and the mesh point (q, q, 1) by l(2)X , with equation

det


 x y z

1 0 0
q q 1


 = 0,

which is y = qz. The line l(2)Z is defined as that joining Z and the mesh
point (q, 1, 1), which has equation x = qy. We continue by finding the point
where l(2)X and l(2)Z intersect, which is where

y = qz and x = qy.

This gives our fourth mesh point, (q2, q, 1). We choose the line joining this
latest point (q2, q, 1) to Y as l(2)Y , and find that it has equation x = q2z. We
then find the fifth and sixth mesh points, where l(2)Y intersects l(1)X and l(1)Z .
These are (q2, 1, 1) and (q2, q2, 1), respectively. This completes the second
stage of the construction of the three-pencil mesh, giving Figure 5.7.

It is worthwhile to pause and review the construction we have carried
out so far, and to realize that it is more general than the emerging pattern



5.4 Interpolation on the q-Integers 203

�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
��

X Z

U

Y

(1, 1, 1)

(q, 1, 1) (q, q, 1)
(0, 1, 0)

(1, 0, 0) (0, 0, 1)

(q2, q, 1)

(q2, q2, 1)
(q2, 1, 1)

�

� �

�

�

�

FIGURE 5.7. The second stage in constructing the three-pencil mesh.

in the coordinates might lead us to suppose. We began with essentially any
lines l(1)X , l(1)Y , and l

(1)
Z , through X, Y , and Z, respectively. However, the

second set of lines, l(2)X , l(2)Y , and l(2)Z , is then completely determined, as are
all the remaining lines, whose construction we now describe.

We continue to criss-cross, as we did above in creating the fourth mesh
point, with coordinates (q2, q, 1). Let l(3)X be the line joining X and the
mesh point (q2, q2, 1), and let l(3)Z be the line joining Z and the mesh point
(q2, 1, 1). Further, let C2 denote the point of intersection of l(3)X and l

(2)
Z ,

and let C3 denote the point of intersection of l(3)Z and l
(2)
X . Let us, for the

present, relabel Y as C1. This is the moment of truth: We find that C1,
C2, and C3 are collinear! The reader will not be surprised that this is a
consequence of Pappus’s theorem. For if we choose

A1 = (1, 0, 0), A2 = (q2, 1, 1), A3 = (q, 1, 1),
B1 = (0, 0, 1), B2 = (q, q, 1), B3 = (q2, q2, 1),

and apply the Pappus construction, we obtain the collinear points Y = C1,
and C2, C3, as defined above. We find that l(3)X has equation y = q2z, and it
intersects with l(2)Z , whose equation is x = qy, at the point C2 = (q3, q2, 1).
Similarly, we find that l(3)Z has equation x = q2y and that C3 = (q3, q, 1).
The algebraic power of the homogeneous coordinates makes it obvious that

C1 = Y = (0, 1, 0), C2 = (q3, q2, 1), and C3 = (q3, q, 1)

lie on the straight line with equation x = q3z, which we denote by l
(3)
Y .

We complete this third stage of our construction by finding also the points
(q3, 1, 1) and (q3, q3, 1), where l(3)Y intersects l(1)X and l(1)Z , respectively. Thus,
at this third stage, we have constructed three new lines, l(3)X , l(3)Y , and l(3)Z ,
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FIGURE 5.8. The third stage in constructing the three-pencil mesh.

and four new mesh points,

(q3, 1, 1), (q3, q, 1), (q3, q2, 1), (q3, q3, 1).

After k stages, suppose we have the three pencils of lines

l
(i)
X with equation y = qi−1z, 1 ≤ i ≤ k,

l
(i)
Y with equation x = qiz, 1 ≤ i ≤ k,

l
(i)
Z with equation x = qi−1y, 1 ≤ i ≤ k,

with vertices X, Y , and Z, respectively, and the 1
2 (k+1)(k+2) mesh points

(qi, qj , 1), for 0 ≤ j ≤ i ≤ k.

At the (k + 1)th stage, we define l
(k+1)
X as the line that joins X and

(qk, qk, 1), and thus has equation y = qkz. Similarly, we define l(k+1)
Z as the

line joining Z and (qk, 1, 1), that has equation x = qky. We then find the
point, a “new” C2, where the lines l(k+1)

X and l
(2)
Z intersect, and a “new”

C3, where l(k+1)
Z and l

(2)
X intersect. We find that C2 = (qk+1, qk, 1) and

C3 = (qk+1, 1, 1). The points C2, C3, and C1 = Y are collinear, lying on
the line x = qk+1z, which we denote by l

(k+1)
Y . We obtain further mesh

points by finding all the points where this new line l(k+1)
Y intersects l(i)X ,

1 ≤ i ≤ k+ 1, and l(i)Z , 1 ≤ i ≤ k+ 1. This yields two sets, each with k+ 1
points,

(qk+1, qi−1, 1), 1 ≤ i ≤ k + 1, and (qk+1, qk+2−i, 1), 1 ≤ i ≤ k + 1.
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We see that the two sets have k points in common, and at stage k + 1, we
have added the k + 2 mesh points

(qk+1, qi, 1), 0 ≤ i ≤ k + 1,

and three lines, l(k+1)
X , l(k+1)

Y , and l
(k+1)
Z . Thus, by induction, our above

assumption about the mesh points and lines at stage k is justified. Figure
5.8 shows the three-pencil mesh after the third stage of its construction.

If we terminate the construction of the three-pencil mesh after the nth
stage, the mesh consists of the 1

2 (n+ 1)(n+ 2) points

(qi, qj , 1), for 0 ≤ j ≤ i ≤ n. (5.76)

These are contained within the triangle UVW , say, where U is the unit
point (1, 1, 1), V = (qn, 1, 1), and W = (qn, qn, 1). We have constructed n
lines in each of the three pencils, and every mesh point except U , V , and
W lies on one line of each pencil. If we add one further line to each pencil,
to give the three pencils

x = qiy, y = qiz, x = qiz, 0 ≤ i ≤ n, (5.77)

then every mesh point will lie on one line of each pencil. Now recall how
we constructed fundamental polynomials for points in the set

Sn = {(i, j) | i, j ≥ 0, i+ j ≤ n},
which we introduced in (5.35). We found the fundamental polynomial for
the point (i, j) by considering all lines in the three-pencil mesh associated
with Sn that lie between (i, j) and the sides of the triangle containing the
mesh points. We can adapt this process to find the fundamental polynomial
for the point (qi, qj , 1) in the mesh contained in the triangle UVW . We
begin by writing down the product of the linear forms of all lines of the
form l

(r)
X , l(r)Y , and l(r)Z lying between (qi, qj , 1) and the sides of the triangle

UVW . This gives

Λi,j(x, y, z) =
j−1∏
r=0

(y − qrz)
n∏

r=i+1

(x− qrz)
i−j−1∏
r=0

(x− qry),

a homogeneous polynomial in x, y, and z that is zero at all 1
2 (n+1)(n+2)

points of the three-pencil mesh except at (qi, qj , 1). Thus, if we write

Li,j(x, y, z) = Λi,j(x, y, z)/Λi,j(qi, qj , 1),

the homogeneous polynomial

n∑
i=0

i∑
j=0

f(qi, qj , 1)Li,j(x, y, z)
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interpolates f at all points of the mesh.
Now that we have a three-pencil mesh on the triangle UVW , we can

apply a linear transformation to it. Let A denote the transformation that
maps U to (0, 0, a), V to (b, 0, b), and W to (0, c, c), where a, b, and c
are all positive. The images of U , V , and W under this transformation
correspond to the points (0, 0), (1, 0), and (0, 1) in the Euclidean space R

2.
Then, representing these points by column vectors, we have (see (5.75))

 0 b 0
0 0 c
a b c


 = A


 1 qn qn

1 1 qn

1 1 1


 , (5.78)

and since 
 1 qn qn

1 1 qn

1 1 1




−1

=
1

1 − qn


 1 0 −qn

−1 1 0
0 −1 1


 (5.79)

if the positive number q is not equal to 1, we find that

A =
1

1 − qn


 −b b 0

0 −c c
a− b b− c c− qna


 . (5.80)

Under this transformation, the point (qi, qj , 1), with 0 ≤ j ≤ i ≤ n, is
mapped onto the point (xi,j , yi,j , zi,j), where

xi,j = bqj [i− j]
[n]

, (5.81)

yi,j = c
[j]
[n]
, (5.82)

zi,j = xi,j + yi,j + aqi [n− i]
[n]

. (5.83)

If we write 
 ξ
η
ζ


 = A


 x
y
z


 , (5.84)

where A is given in (5.80), then
 x
y
z


 = A−1


 ξ
η
ζ


 , (5.85)

and we find that

A−1 =


 qnb−1 − a−1 qnc−1 − a−1 a−1

b−1 − a−1 qnc−1 − a−1 a−1

b−1 − a−1 c−1 − a−1 a−1


 . (5.86)
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Then, under the transformation A, we see from (5.85) that the lines

x = qiy, y = qiz, x = qiz

become
r1 = qir2, r2 = qir3, r1 = qir3,

respectively, where rj = a−1
j1 ξ + a−1

j2 η + a−1
j3 ζ, and a−1

jk denotes the (j, k)th
element of A−1. If zi,j �= 0, the point whose homogeneous coordinates are
given by (5.81), (5.82), and(5.83) corresponds to the point

Pi,j = (xi,j/zi,j , yi,j/zi,j) (5.87)

in the Euclidean space R
2.

We also see from (5.84) that the vertices X, Y , and Z are mapped onto
the points whose homogeneous coordinates are given by the columns of the
transformation matrix A, and if a �= b, b �= c, and c �= qna, these correspond
to the points

( −b
a− b

, 0
)
,

(
b

b− c
,

−c
b− c

)
,

(
0,

c

c− qna

)
, (5.88)

respectively, in R
2. Let us now write

α =
a

b− a
, β =

b

c− b
, γ =

c

qna− c
. (5.89)

Then, from (5.88), the vertices of the three pencils may be expressed in the
form

(1 + α, 0), (−β, 1 + β), (0,−γ). (5.90)

If αβγ �= 0 and (
1 +

1
α

)(
1 +

1
β

)(
1 +

1
γ

)
> 0, (5.91)

we see from (5.89) that

b

a
= 1 +

1
α
,

c

b
= 1 +

1
β
, (5.92)

and

qn =
(

1 +
1
α

)(
1 +

1
β

)(
1 +

1
γ

)
> 0. (5.93)

Thus any nonzero values of α, β, and γ that satisfy the inequality(5.91)
determine unique positions of the three vertices, a unique value of q > 0,
unique values of the ratios b/a and c/b, and hence a unique three-pencil
mesh, determined by equations (5.81) to (5.87).
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Example 5.4.1 Let us consider the special case where a = b = c �= 0. It
is easily verified that the points Pi,j , whose homogeneous coordinates are
defined by equations (5.81) to (5.83), correspond to points in R

2 given by

Pi,j =
(
qj [i− j]

[n]
,
[j]
[n]

)
, 0 ≤ j ≤ i ≤ n. (5.94)

We note from (5.89) that when we put a = b = c �= 0, we have α → ±∞
and β → ±∞. Then we see from (5.90) that the vertex (1 + α, 0) tends to
infinity along the x-axis, and the vertex (−β, 1+β) tends to infinity in the
direction of the line x+y = 1. Also, since γ = −1/(1−qn), where q > 0, we
see from (5.90) that the third vertex, (0, 1/(1 − qn)), is finite unless q = 1,
when γ → ±∞ and the vertex (0,−γ) tends to infinity along the y-axis.

The set of points defined by (5.94) all lie in the standard triangle with
vertices (0, 0), (1, 0), and (0, 1). If we carry out the linear transformation
that maps the point (x, y) to (y, 1−x−y), the triangle with vertices (0, 0),
(1, 0), and (0, 1) is mapped onto itself, and the grid of points given in (5.94)
is mapped to that defined by

Pi,j =
(

[j]
[n]
, 1 − [i]

[n]

)
, 0 ≤ j ≤ i ≤ n. (5.95)

This is the mesh we have already encountered in (5.74), which is just a
scaled version of the mesh Sn

q , defined in (5.68). As we saw, the three-pencil
mesh defined by (5.74) has one pencil parallel to the x-axis, one parallel to
the y-axis, and a third pencil with vertex (1/(1 − qn),−qn/(1 − qn)). On
putting q = 1, we have the mesh consisting of the points

Pi,j =
(
i

n
,
j

n

)
, i, j ≥ 0, i+ j ≤ n,

a scaled version of the mesh Sn given in (5.35), which consists of three
pencils of parallel lines. ■

Example 5.4.2 If we choose a = b �= 0, b �= c, and c �= qna, the vertex
(1 + α, 0) is sent off to infinity and the corresponding pencil of lines is
parallel to the x-axis. The other two vertices are finite, since β and γ are
finite. In particular, let us choose β = 1

4 and γ = 1
3 , and let n = 4. It then

follows from (5.92) and (5.93) that a = b = 1, c = 5, and q4 = 20. The
resulting mesh is illustrated in Figure 5.9. The two finite vertices are at
(− 1

4 ,
5
4 ) and (0,− 1

3 ). ■

Example 5.4.3 To obtain a three-pencil mesh with all three vertices fi-
nite, we need only choose finite values of α, β, and γ. Let us choose
α = β = γ = 1

3 in (5.90), and let n = 4. This determines the ratios



5.4 Interpolation on the q-Integers 209

�

�

�
�

�
�

�
�

�
�

�
�

�

� �

� � �

� � � �

� � � � �

�

�

0

1

1 x

y

(− 1
4 ,

5
4 )

(0,− 1
3 )

FIGURE 5.9. A three-pencil mesh with two finite vertices.

b/a and c/b. Without loss of generality we may choose a = 1, and it fol-
lows from (5.92) that b = 4 and c = 16. Also, we obtain from (5.93) that
q = 2

√
2. To display the full symmetry of this mesh, let us map the point

(x, y) to (x + 1
2y,

1
2

√
3y), so that the standard right-angled triangle with

vertices (0, 0), (1, 0), and (0, 1) is mapped to the equilateral triangle with
vertices U ′ = (0, 0), V ′ = (1, 0), and W ′ = ( 1

2 ,
1
2

√
3). See Figure 5.10. The

points U ′, V ′, and W ′ correspond to the points U = (1, 1, 1), V = (qn, 1, 1),
and W = (qn, qn, 1), respectively, in the original mesh of points given in
homogeneous coordinates by (5.76). The vertices X ′, Y ′, and Z ′ in Figure
5.10 correspond, respectively, to the vertices X = (1, 0, 0), Y = (0, 1, 0),
and Z = (0, 0, 1) of the original mesh. ■

It is not difficult to generalize the above account of three-pencil meshes
from R

2 to R
d, for any integer d > 2. For notational simplicity, we will

discuss the extension to R
3 only, and the extension of these ideas for d > 3

is obvious. Again, it is convenient to work in homogeneous coordinates. We
use a quadruple of numbers (x, y, z, t), not all zero, to denote a point. If λ �=
0, then (x, y, z, t) and (λx, λy, λz, λt) denote the same point, and if t �= 0,
the point (x, y, z, t) coincides with the point (x/t, y/t, z/t) in the Euclidean
space R

3. The plane denoted by ax+ by+ cz+d = 0 in R
3 is written in the

form ax + by + cz + dt = 0 in homogeneous coordinates. The four special
points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) are denoted by X, Y ,
Z, and T , respectively. We refer to XY ZT as the tetrahedron of reference.
(In higher dimensions, the generalizations of the plane and the tetrahedron
are called the hyperplane and the simplex, respectively.) We also have the
unit point, U = (1, 1, 1, 1).
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FIGURE 5.10. A symmetric three-pencil mesh with three finite vertices.

We can see that the plane Y ZT is given by

det



x y z t
0 1 0 0
0 0 1 0
0 0 0 1


 = 0,

or x = 0, since the determinant is zero when we replace the coordinates
(x, y, z, t) by those of Y , Z, or T . Similarly, ZTX, TXY , and XY Z have
equations y = 0, z = 0, and t = 0, respectively. Note also that any plane
through X has an equation of the form by + cz + dt = 0, and any point
on ZT can be expressed in the form (0, 0, z1, t1). We can always find a
coordinate system in which any point not on a face of the tetrahedron of
reference XY ZT has the coordinates (1, 1, 1, 1) of the unit point. This is
proved in the same way as we verified the analogous result concerning the
unit point (1, 1, 1) with three homogeneous coordinates.

We define a mesh of points

(qi, qj , qk, 1), 0 ≤ k ≤ j ≤ i ≤ n, (5.96)

and the four pencils of planes

x = qiy, y = qiz, z = qit, x = qit, 0 ≤ i ≤ n, (5.97)

which have common lines ZT , TX, XY , and Y Z, respectively. Then, cor-
responding to (5.78), we have


0 b 0 0
0 0 c 0
0 0 0 d
a b c d


 = A




1 qn qn qn

1 1 qn qn

1 1 1 qn

1 1 1 1


 , (5.98)
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where a, b, c, and d are all positive. If q �= 1, we find that




1 qn qn qn

1 1 qn qn

1 1 1 qn

1 1 1 1




−1

=
1

1 − qn




1 0 0 −qn

−1 1 0 0
0 −1 1 0
0 0 −1 1


 , (5.99)

and thus the transformation matrix A is given by

A =
1

1 − qn




−b b 0 0
0 −c c 0
0 0 −d d

a− b b− c c− d d− qna


 , (5.100)

and its inverse is

A−1 =



qnb−1 − a−1 qnc−1 − a−1 qnd−1 − a−1 a−1

b−1 − a−1 qnc−1 − a−1 qnd−1 − a−1 a−1

b−1 − a−1 c−1 − a−1 qnd−1 − a−1 a−1

b−1 − a−1 c−1 − a−1 d−1 − a−1 a−1


 . (5.101)

It should be clear from (5.100) and (5.101) how to write down the coun-
terparts of A and A−1 in higher dimensions.

Let us introduce new variables ξ, η, ζ, and τ , defined by


ξ
η
ζ
τ


 = A



x
y
z
t


 . (5.102)

Then, under the transformation A, the planes

x = qiy, y = qiz, z = qit, x = qit

become

r1 = qir2, r2 = qir3, r3 = qir4, r1 = qir4, (5.103)

respectively, where rj = a−1
j1 ξ + a−1

j2 η + a−1
j3 ζ + a−1

j4 τ , and a−1
jk denotes the

(j, k)th element of A−1.
Let us write

α =
a

b− a
, β =

b

c− b
, γ =

c

d− c
, δ =

d

qna− d
. (5.104)

Then, from (5.100), the vertices of the tetrahedron of reference, X, Y ,
Z, T , are mapped to points X ′, Y ′, Z ′, and T ′, say, whose homogeneous
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coordinates are given by the columns of the matrix A in (5.100). Thus their
coordinates in R

3 are

X ′ = (1 + α, 0, 0), Y ′ = (−β, 1 + β, 0),
(5.105)

Z ′ = (0,−γ, 1 + γ), T ′ = (0, 0,−δ).
If αβγδ �= 0 and(

1 +
1
α

)(
1 +

1
β

)(
1 +

1
γ

)(
1 +

1
δ

)
> 0, (5.106)

we see from (5.104) that

b

a
= 1 +

1
α
,

c

b
= 1 +

1
β
,

d

c
= 1 +

1
γ
, (5.107)

and

qn =
(

1 +
1
α

)(
1 +

1
β

)(
1 +

1
γ

)(
1 +

1
δ

)
. (5.108)

Thus any nonzero values of α, β, γ, and δ that satisfy the inequality (5.106)
determine unique positions of the four points X ′, Y ′, Z ′, and T ′, a unique
value of q > 0, unique values of the ratios b/a, c/b, and d/c, and hence a
unique four-pencil mesh.

Under the transformation A, defined by (5.100), the mesh point whose
homogeneous coordinates are (qi, qj , qk, 1) is mapped to the point with
coordinates given by

xi,j,k = bqj [i− j]
[n]

, (5.109)

yi,j,k = cqk [j − k]
[n]

, (5.110)

zi,j,k = d
[k]
[n]
, (5.111)

ti,j,k = xi,j,k + yi,j,k + zi,j,k + aqi [n− i]
[n]

. (5.112)

Example 5.4.4 When a = b = c = d �= 0, we see from equations (5.109)
to (5.112) that ti,j,k = a for all i and j, and we obtain the grid in R

3 whose
mesh points are

Pi,j,k =
(
qj [i− j]

[n]
, qk [j − k]

[n]
,
[k]
[n]

)
, 0 ≤ k ≤ j ≤ i ≤ n. (5.113)

These points lie on four pencils of planes whose equations in homogeneous
coordinates are

(qn − 1)ξ + (qn − 1)η + (qn − 1)ζ + τ = qi[(qn − 1)η + (qn − 1)ζ + τ ],
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(qn − 1)η + (qn − 1)ζ + τ = qi[(qn − 1)ζ + τ ],
(qn − 1)ζ + τ = qiτ,

(qn − 1)ξ + (qn − 1)η + (qn − 1)ζ + τ = qiτ,

where the coefficients of ξ, η, ζ, and τ are taken from the rows of A−1, as
noted in (5.103). Then, in view of our observation following (5.97), we see
that the above pencils of planes have common lines Z ′T ′, T ′X ′, X ′Y ′, and
Y ′Z ′, respectively. From (5.104) and (5.105), the conditions a = b = c =
d �= 0 imply that the points X ′, Y ′, and Z ′ go off to infinity and, unless
q = 1, the point T ′ remains finite. It follows that the first two pencils have
finite common lines and the last two pencils are systems of parallel planes.
Indeed, if we write x = ξ/τ , y = η/τ , and z = ζ/τ , we see that the first
pencil has common line given by the intersection of the planes x = 0 and
y + z = 1/(1 − qn), and the second pencil has common line given by the
intersection of the planes y = 0 and z = 1/(1 − qn). The third and fourth
pencils are the parallel systems

z =
[i]
[n]
, 0 ≤ i ≤ n, and x+ y + z =

[i]
[n]
, 0 ≤ i ≤ n,

respectively. ■

Example 5.4.5 If we choose a = b = c and d = qna, we see from equations
(5.109) to (5.112) that ti,j,k = aqk, and we obtain the grid in R

3 whose
mesh points are

Pi,j,k =
(
qj−k [i− j]

[n]
,
[j − k]

[n]
, qn−k [k]

[n]

)
, 0 ≤ k ≤ j ≤ i ≤ n. (5.114)

It is easily verified that each mesh point lies on one of each of the four
pencils of planes

x+ y =
[i]
[n]
, 0 ≤ i ≤ n,

y =
[i]
[n]
, 0 ≤ i ≤ n,

z = 1 − [i]
[n]
, 0 ≤ i ≤ n,

x+ y + qi−nz =
[i]
[n]
, 0 ≤ i ≤ n.

The first three pencils are systems of parallel planes, and the fourth is the
pencil of planes with common line

x+ y =
1

1 − qn
, z =

−qn

1 − qn
. ■
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Because the application of homogeneous coordinates proved to be so
helpful in our treatment of three-pencil meshes in R

2 earlier in this sec-
tion, it was natural to use homogeneous coordinates right from the start in
our discussion of four-pencil meshes in R

3. This turned out to be equally
fruitful, as we have seen, and it is clear that we can use homogeneous coor-
dinates to discuss (N + 1)-pencil meshes in N dimensions, for any N ≥ 2.
We showed how the construction of a three-pencil mesh in R

2 can be carried
out geometrically, and justified the geometrical construction by applying
Pappus’s theorem. Lee and Phillips [33] discuss a theorem that justifies an
analogous construction for obtaining four-pencil meshes in R

3.

Problem 5.4.1 Verify that the n lines defined by

x+ qky − [k + 1] = 0, 0 ≤ k ≤ n− 1,

form a pencil with vertex (1/(1 − q), 1/(1 − q′)), where q′ = 1/q.

Problem 5.4.2 Derive the q-difference form (5.73) from the divided dif-
ference form (5.72).

Problem 5.4.3 Let C1 = (α2β2 −α3β3, α2 −α3, β2 −β3), with C2 and C3
defined cyclically, as in the proof of Theorem 5.4.3. Show that C1, C2, and
C3 lie on the line ax+ by + cz = 0, where

a = (α2β3 − α3β2) + (α3β1 − α1β3) + (α1β2 − α2β1),
b = α1β1(β3 − β2) + α2β2(β1 − β3) + α3β3(β2 − β1),
c = α1β1(α2 − α3) + α2β2(α3 − α1) + α3β3(α1 − α2).

Problem 5.4.4 Construct a three-pencil mesh for which, in (5.90), both
α and β are finite, γ is infinite, and n = 4.

Problem 5.4.5 Construct a three-pencil mesh for which, in (5.90), α is
finite, both β and γ are infinite, and n = 4.



6
Splines

6.1 Introduction

In our study of numerical integration in Chapter 3 we discussed interpo-
latory rules, in which the integrand is replaced by an interpolating poly-
nomial. When such a rule is applied in composite form the interval of
integration is split into subintervals and the integrand is approximated by
an interpolating polynomial on each subinterval. An approximation of this
kind is called a piecewise polynomial. In general, a piecewise polynomial
can be a discontinuous function, with discontinuities at the points where
the constituent polynomials meet, or the constituent polynomials can join
together smoothly to form a function that is continuous. A piecewise poly-
nomial can be even smoother, possessing a first or higher-order derivative
that is continuous. This leads us to the concept of a spline, which we define
as follows.

Definition 6.1.1 Given a = t0 < t1 < · · · < tN = b, a function S is called
a spline of degree n ≥ 1 with respect to the ti, which are called the knots,
if the following two conditions hold:

(i) S restricted to [tj , tj+1] is a polynomial of degree at most n,

(ii) S ∈ Cn−1[a, b].

We refer to the latter property as the smoothness condition. A spline may
also be defined on an infinite interval. ■
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We can define splines where the smoothness condition is chosen differently
or, more radically, we can define splines that are constructed from func-
tions other than polynomials. However, in this account, we will restrict our
attention to the particular splines defined above. Many of the early and im-
portant results concerning splines are due to I. J. Schoenberg (1903–1990),
who is often referred to as the father of splines.

From the above definition, we see from the first condition that a linear
spline S (with n = 1) is a sequence of straight line segments, and the
second condition tells us that S is continuous. Thus a linear spline is just
a polygonal arc. Two conditions are required to determine the first line
segment of a polygonal arc, and then one further condition per line is
required to determine each of the remaining line segments forming the
spline, which is thus determined by N + 1 conditions.

Example 6.1.1 Let S denote the polygonal arc that connects the N + 1
points (ti, yi), 0 ≤ i ≤ N , where

ti =
(

i(i+ 1)
N(N + 1)

)2

, yi = t
1/2
i +

1
4N(N + 1)

, (6.1)

so that t0 = 0 and tN = 1. The function S is continuous on [0, 1], and
so is a spline approximation of degree one (a linear spline). We can verify
(see Problem 6.1.3) that S restricted to the interval [ti−1, ti] is the linear
minimax approximation for x1/2 on [ti−1, ti], for 1 ≤ i ≤ N . ■

Consider a spline of degree n defined on N + 1 knots. We require n+ 1
conditions to determine each of the N polynomials that make up the spline,
less n conditions at each of the N −1 interior knots to satisfy the property
that S ∈ Cn−1[a, b]. Thus, to determine a spline of degree n defined on
N + 1 knots, we require

N(n+ 1) − (N − 1)n = N + n

conditions. We can look at this in a more constructive way, using the trun-
cated power function, defined by (4.3). Let the spline S be represented on
[t0, t1] by the polynomial

p1(x) = a0 + a1(x− t0) + a2(x− t0)2 + · · · + an(x− t0)n.

Suppose that S is represented by the polynomial p2 on the interval [t1, t2].
It follows that p2 must have the form

p2(x) = p1(x) + an+1(x− t1)n,

for some choice of an+1, since p1 and p2 must be equal, and their first n−1
derivatives must be equal, at the knot t1. Thus, using the truncated power
function, we may express S on the double interval [t0, t2] in the form

a0 + a1(x− t0) + a2(x− t0)2 + · · · + an(x− t0)n + an+1(x− t1)n
+.
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Note that this last expression is valid because (x− t1)n
+ and its first n− 1

derivatives are zero for x < t1. Clearly, we can use the above argument
repeatedly to build up an expression for S that is valid on the whole of
[t0, tN ], and we obtain

S(x) =
n∑

i=0

ai(x− t0)i +
N−1∑
j=1

an+j(x− tj)n
+, t0 ≤ x ≤ tN . (6.2)

This last expression contains N + n parameters, as we predicted before
carrying out this construction. Thus any spline of degree n on the interval
[t0, tN ], with intermediate knots at t1, . . . , tN−1, may be written as a sum
of multiples of the N + n functions

1, x, x2, . . . , xn, (x− t1)n
+, (x− t2)n

+, . . . , (x− tN−1)n
+.

Since these functions are linearly dependent, they are a basis for this set
of splines, which is a linear space.

Problem 6.1.1 What can be said about the function S if we were to
amend Definition 6.1.1 and define S as a polynomial of degree at most n
on any interval of [a, b] not containing a knot, but ask that S ∈ Cn[a, b]
rather than S ∈ Cn−1[a, b]?

Problem 6.1.2 Let us amend the expression for the spline S in (6.2) by
choosing a0 = a1 = · · · = an−1 = 0 and replacing (x− t0)n by (x− t0)n

+ in
the first summation, to give the function

S∗(x) =
N−1∑
j=0

an+j(x− tj)n
+, −∞ ≤ x < ∞.

Verify that S∗(x) and its first n− 1 derivatives are zero for −∞ < x ≤ t0,
so that S∗(x) is a spline of degree n on the interval −∞ < x < ∞.

Problem 6.1.3 Consider the spline S with knots t0, . . . , tN , as defined in
Example 6.1.1. Verify that S restricted to the interval [ti−1, ti] is the linear
minimax approximation for x1/2 on [ti−1, ti], by showing that

max
ti−1≤x≤ti

|x1/2 − S(x)| =
1

4N(N + 1)
= eN

is attained at both endpoints ti−1 and ti, and also at

τi =
1
4

(
t
1/2
i−1 + t

1/2
i

)2
=

i4

N2(N + 1)2
,

where ti−1 < τi < ti. Show that S approximates x1/2 on [0, 1] with an error
of maximum modulus eN , which is attained at each of the N + 1 knots ti
and also at each of the N points τi.
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6.2 B-Splines

We saw in the last section that the n + 1 monomials 1, x, . . . , xn together
with N − 1 truncated power functions of degree n are a basis for the linear
space of splines of degree n on an interval with N − 1 interior knots. It is
convenient to extend the sequence of N + 1 knots t0, . . . , tN so that they
become a subset of the infinite sequence of knots

· · · < t−2 < t−1 < t0 < t1 < t2 < · · · ,
where t−i → −∞ as i → ∞ and ti → ∞ as i → ∞, with i > 0. In this
section we will show that an alternative basis for this linear space is the
set of B-splines of order n, which we will now define recursively.

Definition 6.2.1 The B-splines of degree zero are piecewise constants de-
fined by

B0
i (x) =

{
1, ti < x ≤ ti+1,
0, otherwise, (6.3)

and those of degree n > 0 are defined recursively in terms of those of degree
n− 1 by

Bn
i (x) =

(
x− ti
ti+n − ti

)
Bn−1

i (x) +
(

ti+n+1 − x

ti+n+1 − ti+1

)
Bn−1

i+1 (x). ■ (6.4)

�
x

�

�

ti ti+1

FIGURE 6.1. Graph of B0
i (x). Note that B0

i (ti) = 0 and B0
i (ti+1) = 1.

Definition 6.2.2 Let S denote a spline defined on the whole real line. The
interval of support of the spline S is the smallest closed interval outside
which S is zero. ■

Theorem 6.2.1 The interval of support of the B-spline Bn
i is [ti, ti+n+1],

and Bn
i is positive in the interior of this interval.

Proof. Since the interval of support of B0
i is [ti, ti+1] and B0

i is positive in
the interior of this interval, the above statement holds for n = 0 and all i.
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We complete the proof by induction on n. Let us assume that the above
result is true for n− 1 ≥ 0 and all i. We then deduce from (6.4) that it is
true for n and all i. Thus, by induction, the theorem holds for all n ≥ 0
and all i. ■

As we will prove later in this section, for n > 0, the B-spline Bn
i (x)

is indeed a spline of degree n, as its name and its notation suggest. It
is remarkable that splines of increasing smoothness are generated by the
simple recurrence relation (6.4), beginning with functions of such utter
simplicity as the B-splines of degree zero, which are not even continuous.
We can easily deduce from Definition 6.2.1 that

B1
i (x) =




x− ti
ti+1 − ti

, ti < x ≤ ti+1,

ti+2 − x

ti+2 − ti+1
, ti+1 < x ≤ ti+2,

0, otherwise.

(6.5)

The graphs of B0
i and B1

i are shown in Figures 6.1 and 6.2, respectively.
(In the graph of B0

i , which has discontinuities at ti and ti+1, we have put a
dot at each of the points (ti, 0) and (ti+1, 1) to emphasize that these points
belong to the graph.)

�
x

�
�

�
�

�
���

�
�
�
�
�

ti ti+1 ti+2

FIGURE 6.2. Graph of the B-spline B1
i (x).

Example 6.2.1 Consider the function

S(x) =
N∑

i=0

f(ti)B1
i−1(x), t0 ≤ x ≤ tN , (6.6)

where f is any function defined on [t0, tN ]. Since the only B-splines of degree
one that make a nonzero contribution to S on the subinterval [tj , tj+1] are
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B1
j−1 and B1

j , we see from (6.5) that

S(x) = f(tj)
(
tj+1 − x

tj+1 − tj

)
+ f(tj+1)

(
x− tj
tj+1 − tj

)
, tj ≤ x ≤ tj+1. (6.7)

We observe that S(tj) = f(tj), S(tj+1) = f(tj+1), and S is linear on
[tj , tj+1]. Thus the expression on the right of (6.7) is the linear interpolating
polynomial for f on [tj , tj+1], and the function S defined on [t0, tN ] by (6.6)
is the polygonal arc that connects the N + 1 points (ti, f((ti)), 0 ≤ i ≤ N .
We call S an interpolating first-degree spline. ■

It follows from Definition 6.1.1 that the derivative of a spline of degree
n ≥ 2 is a spline of degree n−1. As we will see later, in Theorem 6.2.8, any
spline of degree n − 1 can be expressed as a sum of multiples of B-splines
of degree n− 1. In particular, since the interval of support of the B-spline
Bn

i is [ti, ti+n+1], its derivative must be expressible as a sum of multiples
of those B-splines of degree n−1 whose intervals of support overlap that of
Bn

i . The following theorem shows that in fact, the two B-splines Bn−1
i and

Bn−1
i+1 suffice, and we will deduce the smoothness properties of the B-splines

from this theorem

Theorem 6.2.2 For n ≥ 2, we have

d

dx
Bn

i (x) =
(

n

ti+n − ti

)
Bn−1

i (x) −
(

n

ti+n+1 − ti+1

)
Bn−1

i+1 (x) (6.8)

for all real x. For n = 1, (6.8) holds for all x except at the three knots ti,
ti+1, and ti+2, where the derivative of B1

i is not defined.

Proof. We will first show that the equation in (6.8) holds for all real x
excluding the knots tj . It is easily verified from (6.5) and (6.3) that

d

dx
B1

i (x) =
B0

i (x)
ti+1 − ti

− B0
i+1(x)

ti+2 − ti+1
,

except at the knots ti, ti+1, and ti+2. Thus (6.8) holds for n = 1 and all
i, except at some of the knots. We will assume that (6.8) holds for some
n ≥ 1 and all i, except at the knots. Now let us write down (6.4) with n
replaced by n+ 1, and differentiate it, using (6.8), to give

d

dx
Bn+1

i (x) =
Bn

i (x)
ti+n+1 − ti

− Bn
i+1(x)

ti+n+2 − ti+1
+ nC(x), (6.9)

say, where

C(x) =
(

x− ti
ti+n+1 − ti

)(
Bn−1

i (x)
ti+n − ti

− Bn−1
i+1 (x)

ti+n+1 − ti+1

)

+
(

ti+n+2 − x

ti+n+2 − ti+1

)(
Bn−1

i+1 (x)
ti+n+1 − ti+1

− Bn−1
i+2 (x)

ti+n+2 − ti+2

)
.
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Guided by the terms Bn−1
i (x) and Bn−1

i+2 (x) in the latter equation, and
having the recurrence relation (6.4) in mind, we find that we can rearrange
the terms involving Bn−1

i+1 (x) in the expression for C(x) to give

C(x) =
(

1
ti+n+1 − ti

)(
(x− ti)Bn−1

i (x)
ti+n − ti

+
(ti+n+1 − x)Bn−1

i+1 (x)
ti+n+1 − ti+1

)

−
(

1
ti+n+2 − ti+1

)(
(x− ti+1)Bn−1

i+1 (x)
ti+n+1 − ti+1

+
(ti+n+2 − x)Bn−1

i+2 (x)
ti+n+2 − ti+2

)
.

We now see from the recurrence relation (6.4) that

C(x) =
Bn

i (x)
ti+n+1 − ti

− Bn
i+1(x)

ti+n+2 − ti+1
,

and (6.9) shows that (6.8) holds when n is replaced by n+1. This completes
the proof of the theorem for all real values of x, except at the knots. By
an induction argument using the recurrence relation (6.4) we see that for
n ≥ 1, Bn

i is continuous for all real x. It follows that for n ≥ 2, the right
side of (6.8) is continuous for all x. Since we have just proved that (6.8)
holds for all x except at the knots, this continuity argument shows that for
n ≥ 2, the relation (6.8) is valid for all x. ■

Note that if we choose the knots as ti = i, for all integers i, then (6.8)
simplifies to give

d

dx
Bn

i (x) = Bn−1
i (x) −Bn−1

i+1 (x). (6.10)

Let us now replace n by n + 1 in (6.8), divide throughout by n + 1, and
integrate over [ti, ti+n+2]. Noting that Bn+1

i (x) is zero at the endpoints of
this interval, which is its interval of support, we find that

1
ti+n+1 − ti

∫ ti+n+2

ti

Bn
i (x)dx =

1
ti+n+2 − ti+1

∫ ti+n+2

ti

Bn
i+1(x)dx. (6.11)

Since Bn
i (x) is zero on [ti+n+1, ti+n+2] and Bn

i+1(x) is zero on [ti, ti+1], we
deduce from (6.11) that the average value of a B-spline Bn

i over its interval
of support is independent of i and so is independent of the choice of knots.
We can show (see Problem 6.2.2) that

1
ti+n+1 − ti

∫ ti+n+1

ti

Bn
i (x)dx =

1
n+ 1

(6.12)

for all integers i.
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Theorem 6.2.3 For n ≥ 1 the B-spline Bn
i is a spline of degree n on

(−∞,∞), with interval of support [ti, ti+n+1].

Proof. We have already shown in Theorem 6.2.1 that Bn
i has interval of

support [ti, ti+n+1]. It remains only to show that Bn
i ∈ Cn−1(−∞,∞). As

we have seen, this holds when n = 1, since B1
i ∈ C(−∞,∞), and we will

complete the proof by induction on n. Let us assume that for some n ≥ 2,
Bn−1

i ∈ Cn−2(−∞,∞). Then it follows from (6.8) that the derivative of
Bn

i belongs to Cn−2(−∞,∞), and hence Bn
i ∈ Cn−1(−∞,∞). ■

It is obvious from (6.3) that the B-splines of degree zero form a partition
of unity, that is,

∞∑
i=−∞

B0
i (x) = 1, (6.13)

and it is easy to verify that the B-splines of degree one have this property.
We now state and prove a most helpful identity named after M. J. Marsden
(born 1937), and deduce from it that the B-splines of any degree form a
partition of unity.

Theorem 6.2.4 (Marsden’s identity) For any fixed value of n ≥ 0,

(t− x)n =
∞∑

i=−∞
(t− ti+1) · · · (t− ti+n)Bn

i (x). (6.14)

When n = 0 the empty product (t− ti+1) · · · (t− ti+n) is taken to be 1.

Proof. We have already seen from (6.13) that (6.14) holds for n = 0. For
our next step in the proof we require the identity
(
t− ti+n+1

ti − ti+n+1

)
(ti − x) +

(
t− ti

ti+n+1 − ti

)
(ti+n+1 − x) = t− x. (6.15)

This is just the linear interpolating polynomial for t − x, regarded as a
function of t, that interpolates at t = ti and t = ti+n+1. Let us assume
that (6.14) holds for some n ≥ 0. We then multiply both sides of (6.14) by
t − x. In the ith term on the right of (6.14) we replace t − x by its linear
interpolant, given in (6.15), and so obtain

(t− x)n+1 =
∞∑

i=−∞
(t− ti+1) · · · (t− ti+n+1)

(
ti − x

ti − ti+n+1

)
Bn

i (x)

+
∞∑

i=−∞
(t− ti) · · · (t− ti+n)

(
ti+n+1 − x

ti+n+1 − ti

)
Bn

i (x).

In the second summation above, we replace i by i + 1, which leaves this
sum unaltered, and we also make a trivial change in the first summation,
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to give

(t− x)n+1 =
∞∑

i=−∞
(t− ti+1) · · · (t− ti+n+1)

(
x− ti

ti+n+1 − ti

)
Bn

i (x)

+
∞∑

i=−∞
(t− ti+1) · · · (t− ti+n+1)

(
ti+n+2 − x

ti+n+2 − ti+1

)
Bn

i+1(x).

Finally, we combine the ith terms in the above two summations, using the
recurrence relation (6.4), giving

(t− x)n+1 =
∞∑

i=−∞
(t− ti+1) · · · (t− ti+n+1)Bn+1

i (x), (6.16)

which completes the proof by induction. ■

Theorem 6.2.5 Given any integer r ≥ 0, we can express the monomial
xr as a linear combination of the B-splines Bn

i , for any fixed n ≥ r, in the
form (

n
r

)
xr =

∞∑
i=−∞

σr(ti+1, . . . , ti+n)Bn
i (x), (6.17)

where σr(ti+1, . . . , ti+n) is the elementary symmetric function of order r in
the variables ti+1, . . . , ti+n (see Definition 1.2.1), with generating function
given in (1.44). In particular, with r = 0 in (6.17), we obtain

∞∑
i=−∞

Bn
i (x) = 1, (6.18)

and thus the B-splines of degree n form a partition of unity.

Proof. We see from (1.44) that

(1 + ti+1x) · · · (1 + ti+nx) =
n∑

r=0

σr(ti+1, . . . , ti+n)xr.

On replacing x by −1/t, and multiplying throughout by tn, we find that

(t− ti+1) · · · (t− ti+n) = tn
n∑

r=0

σr(ti+1, . . . , ti+n)(−t)−r,

and we obtain (6.17), multiplied throughout by the factor (−1)r, on equat-
ing coefficients of tn−r on both sides of Marsden’s identity (6.14). ■
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�
xti ti+1 ti+2 ti+3

FIGURE 6.3. Graph of the B-spline B2
i (x).

Example 6.2.2 Let us derive an explicit expression for the quadratic B-
spline B2

i (x), using the recurrence relation (6.4) and the expressions for
B1

i (x) given in (6.5). The B-spline B2
i (x) is zero outside its interval of sup-

port, [ti, ti+3], and we need to evaluate B2
i separately on the three subin-

tervals [ti, ti+1], [ti+1, ti+2], and [ti+2, ti+3]. On the first of these intervals,
we find that

B2
i (x) =

(x− ti)2

(ti+2 − ti)(ti+1 − ti)
, ti < x ≤ ti+1, (6.19)

and on the third subinterval, we similarly obtain

B2
i (x) =

(ti+3 − x)2

(ti+3 − ti+2)(ti+3 − ti+1)
, ti+2 < x ≤ ti+3. (6.20)

Since, as we know, B2
i and its derivative are continuous on the whole real

line, we can use (6.19) and (6.20) to find the values of B2
i and its derivative

on the closed intervals [ti, ti+1] and [ti+2, ti+3]. From (6.19) it is clear that
on [ti, ti+1], B2

i increases monotonically from zero at x = ti, where B2
i has

a zero derivative, to x = ti+1. Similarly, B2
i decreases monotonically from

x = ti+2 to x = ti+3, where B2
i and its derivative are both zero. We also

note that

0 < B2
i (ti+1) =

ti+1 − ti
ti+2 − ti

< 1, (6.21)

0 < B2
i (ti+2) =

ti+3 − ti+2

ti+3 − ti+1
< 1. (6.22)

In the middle interval, [ti+1, ti+2], we have

B2
i (x) =

(x− ti)(ti+2 − x)
(ti+2 − ti)(ti+2 − ti+1)

+
(ti+3 − x)(x− ti+1)

(ti+3 − ti+1)(ti+2 − ti+1)
. (6.23)

If we use (6.23) to evaluate B2
i (x) at the endpoints of [ti+1, ti+2], we ob-

tain values that agree with those given by (6.21) and (6.22), as we should
expect from the continuity of B2

i . We also know that the derivative of B2
i

is continuous at these points. On differentiating the quadratic polynomial
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in (6.23), we obtain a linear expression that is zero for x = x∗, say, where

x∗ =
ti+3ti+2 − ti+1ti

ti+3 + ti+2 − ti+1 − ti
. (6.24)

We now determine the values of x∗ − ti+1 and ti+2 − x∗, and find that

x∗ − ti+1 =
(ti+3 − ti+1)(ti+2 − ti+1)
ti+3 + ti+2 − ti+1 − ti

> 0

and

ti+2 − x∗ =
(ti+2 − ti)(ti+2 − ti+1)
ti+3 + ti+2 − ti+1 − ti

> 0,

which shows that ti+1 < x∗ < ti+2. Thus the quadratic B-spline B2
i has

a unique turning value at the point x∗, given by by (6.24), in the interior
of [ti+1, ti+2]. Since the derivative of B2

i is positive at x = ti+1 and is
negative at x = ti+1, B2

i has a local maximum at x = x∗. We now see that
the function B2

i is unimodal : It increases monotonically from zero at ti to
its maximum value at x∗ and then decreases monotonically to zero at ti+3.
Let us now substitute x∗ ∈ [ti+1, ti+2], given by by (6.24), into the right
side of (6.23). After a little manipulation, we obtain

0 < max−∞<x<∞B2
i (x) = B2

i (x∗) =
ti+3 − ti

ti+3 + ti+2 − ti+1 − ti
< 1. (6.25)

The right-hand inequality in (6.25) is consistent with the upper bound
obtained for the general B-spline in Problem 6.2.3. Observe also from (6.25)
that the maximum value of B2

i (x) can be made as close to 1 as we please,
by taking ti+2 sufficiently close to ti+1. ■

In Section 6.1 we used the monomials and truncated powers as a basis
for splines. Our next theorem adds greatly to our understanding of the
connection between splines and truncated powers, for it shows that a B-
spline of degree n can be expressed as a linear combination of n+2 truncated
powers of degree n. Not only that, but this linear combination of truncated
powers is simply a multiple of a divided difference of a truncated power.

Theorem 6.2.6 For any n ≥ 0 and all i,

Bn
i (x) = (ti+n+1 − ti) · [ti, . . . , ti+n+1](t− x)n

+, (6.26)

where [ti, . . . , ti+n+1] denotes a divided difference operator of order n + 1
that is applied to the truncated power (t− x)n

+, regarded as a function of
the variable t.

Proof. The proof is by induction on n. We begin by showing that (6.26)
holds for n = 0. (Because both B0

i (x) and (t − x)0+ are discontinuous, we
need to check carefully what happens at x = ti and x = ti+1.) Then we
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assume that (6.26) holds for some n ≥ 0, and use the recurrence relation
(6.4) to write

Bn+1
i (x) =

(
x− ti

ti+n+1 − ti

)
Bn

i (x) +
(

ti+n+2 − x

ti+n+2 − ti+1

)
Bn

i+1(x). (6.27)

Let us now write

(t− x)n+1
+ = (t− x) · (t− x)n

+, n ≥ 0.

Thus we may express a divided difference of (t − x)n+1
+ as a divided dif-

ference of the product of the two functions t − x and (t − x)n
+, and apply

(1.86) to give

[ti, . . . , ti+n+1](t− x)n+1
+ = (ti − x) · [ti, . . . , ti+n+1](t− x)n

+

+ [ti+1, . . . , ti+n+1](t− x)n
+. (6.28)

From (6.26) the first term on the right of (6.27) is equivalent to

(x− ti) · [ti, . . . , ti+n+1](t− x)n
+ = βi,

say. Then, on using (6.28), we obtain

βi = [ti+1, . . . , ti+n+1](t− x)n
+ − [ti, . . . , ti+n+1](t− x)n+1

+ . (6.29)

Similarly, the second term on the right of (6.27) is equivalent to

(ti+n+2 − x) · [ti+1, . . . , ti+n+2](t− x)n
+ = γi,

say. We now write

γi = {(ti+1 − x) + (ti+n+2 − ti+1)} · [ti+1, . . . , ti+n+2](t− x)n
+,

and apply (6.28) to give

γi = [ti+1, . . . , ti+n+2](t− x)n+1
+ − [ti+2, . . . , ti+n+2](t− x)n

+

+ (ti+n+2 − ti+1) · [ti+1, . . . , ti+n+2](t− x)n
+. (6.30)

If we now add βi, given by (6.29), to γi, given by (6.30), we find that βi +γi

is the sum of five terms, of which three cancel, leaving only the second term
on the right of (6.29) and the first term on the right of (6.30). Thus we
obtain

βi + γi = [ti+1, . . . , ti+n+2](t− x)n+1
+ − [ti, . . . , ti+n+1](t− x)n+1

+ ,

so that from this last equation and (6.27),

Bn+1
i (x) = βi + γi = (ti+n+2 − ti) · [ti, . . . , ti+n+2](t− x)n+1

+ ,
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which completes the proof. ■

Having shown in the last theorem that a B-spline of degree n can be
expressed as a sum of multiples of truncated powers of degree n, we now
obtain a converse result, that a truncated power can be written as a sum
of multiples of B-splines.

Theorem 6.2.7 For any knot tj and any integer n ≥ 0,

(tj − x)n
+ =

j−n−1∑
i=−∞

(tj − ti+1) · · · (tj − ti+n)Bn
i (x). (6.31)

Proof. We begin by writing

(tj − x)n =
∞∑

i=−∞
(tj − ti+1) · · · (tj − ti+n)Bn

i (x), (6.32)

using Marsden’s identity (6.14). Since in (6.32), Bn
i (x) is multiplied by

the product (tj − ti+1) · · · (tj − ti+n), there is no contribution to (tj − x)n

from terms involving Bn
i (x) for which j − n ≤ i ≤ j − 1. In addition, by

considering the interval of support of Bn
i (x), there is no contribution to

the truncated power (tj −x)n
+ from terms involving Bn

i (x) for which i ≥ j,
and this justifies (6.31). ■

Theorems 6.2.5 and 6.2.7 lead us to the following result, which shows the
importance of the B-splines.

Theorem 6.2.8 For any integer n ≥ 0, the B-splines of degree n are a
basis for splines of degree n defined on the knots ti.

Proof. This result is obviously true for n = 0. We saw earlier that the
monomials 1, x, . . . , xn, together with the truncated powers (x− ti)n

+, are
a basis for splines of degree n defined on the knots ti. Since (see Problem
6.2.6) we have

(ti − x)n = (ti − x)n
+ + (−1)n(x− ti)n

+,

for any integer n ≥ 1, we can replace each function (x− ti)n
+ in the basis by

(ti −x)n
+. It then follows from Theorems 6.2.5 and 6.2.7 that each spline of

degree n can be expressed as a sum of multiples of the Bn
i , and since these

B-splines are linearly independent, they are a basis. ■

Problem 6.2.1 When ti = i for all integers i, deduce from (6.10), using
induction on k, that

dk

dxk
Bn

i (x) =
k∑

r=0

(−1)r

(
k
r

)
Bn−k

i+r (x), 0 ≤ k ≤ n.
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Problem 6.2.2 For ti ≤ t ≤ ti+n+1, write∫ ti+n+1

ti

(t− x)n
+ dx =

∫ t

ti

(t− x)ndx =
(t− ti)n+1

n+ 1
,

deduce from (6.26) that

1
ti+n+1 − ti

∫ ti+n+1

ti

Bn
i (x)dx =

1
n+ 1

[ti, . . . , ti+n+1](t− ti)n+1,

and hence, using (1.33), show that

1
ti+n+1 − ti

∫ ti+n+1

ti

Bn
i (x)dx =

1
n+ 1

.

Problem 6.2.3 Deduce from Theorem 6.2.1 and (6.18) that

0 < max−∞<x<∞Bn
i (x) ≤ 1

for all n ≥ 0 and all i.

Problem 6.2.4 Verify (see Example 6.2.2) that

B2
i (x∗) −B2

i (ti+1) =
x∗ − ti+1

ti+2 − ti
> 0

and
B2

i (x∗) −B2
i (ti+2) =

ti+2 − x∗

ti+3 − ti+1
> 0,

where x∗, given by (6.24), is the point where B2
i attains its maximum value.

Problem 6.2.5 Use the recurrence relation (6.4) and the formulas ob-
tained for the general quadratic B-spline in Example 6.2.2 to derive the
cubic B-spline, say C(x), on the knots −1, −t, 0, t, and 1, where 0 < t < 1.
Show that C(x) is the even function for which

C(x) =




0, x ≤ −1,

(1 + x)3

1 − t2
, −1 < x ≤ −t,

t2 − 3tx2 − (1 + t)x3

t2(1 + t)
, −t < x ≤ 0.

Verify that C(±1) = 0, C(±t) = (1 − t)2/(1 + t), and that the maximum
value of C(x) is 1/(1+ t), attained at x = 0. Note that this maximum value
can be made as close to 1 as we please, by taking t sufficiently close to zero.

Problem 6.2.6 Show, by checking the two cases x ≤ ti and x > ti, that

(ti − x)n = (ti − x)n
+ + (−1)n(x− ti)n

+,

for any positive integer n.
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6.3 Equally Spaced Knots

The B-splines are greatly simplified when we choose the knots ti to be
equally spaced. It is easiest to choose ti = i, for all integers i, and then
any system of equally spaced knots is obtained by shifting the origin and
scaling. When ti = i, the recurrence relation (6.4) becomes

Bn
i (x) =

1
n

(x− i)Bn−1
i (x) +

1
n

(i+ n+ 1 − x)Bn−1
i+1 (x), (6.33)

and the B-spline B0
i (x) is given by

B0
i (x) =

{
1, i < x ≤ i+ 1,
0, otherwise. (6.34)

These are called uniform B-splines, and all such B-splines of the same
degree are translates of one another, for we have

Bn
i (x) = Bn

i+1(x+ 1), −∞ < x < ∞, (6.35)

for all integers i. We also find that each B-spline Bn
i is symmetric about

the centre of its interval of support [i, i+ n+ 1], so that

Bn
i (x) = Bn

i (2i+ n+ 1 − x), −∞ < x < ∞, (6.36)

for all integers i. Both (6.35) and (6.36) can be proved by induction on n.

Example 6.3.1 If we replace ti by i in Example 6.2.2, we see from (6.19),
(6.23), and (6.20) that

B2
i (x) =




1
2 (x− i)2, i < x ≤ i+ 1,

3
4 − (x− (i+ 3

2 )
)2
, i+ 1 < x ≤ i+ 2,

1
2 (i+ 3 − x)2, i+ 2 < x ≤ i+ 3,

0, otherwise.

(6.37)

We see from (6.37) that the quadratic B-spline B2
i takes the value 1

2 at each
of the knots i+1 and i+2, and the form in which B2

i (x) is expressed on the
interval [i+1, i+2] makes it clear that B2

i (x) attains its maximum value of 3
4

at x = i+ 3
2 , the midpoint of the interval of support [i, i+ 3]. It is obvious

from (6.37) that B2
i (x) is symmetric about the point x = i + 3

2 . These
observations are consistent with our findings in Example 6.2.2. Finally, we
note that the derivative of B2

i (x) has the value 1 at x = i + 1, the value
−1 at x = i+ 2, and is zero at all the other knots. ■
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Example 6.3.2 Let us now derive the uniform cubic B-spline B3
i (x), by

applying the recurrence relation (6.33) with n = 3, and using (6.37). Since
this B-spline is symmetric about the midpoint of its interval of support
[i, i+4], it will suffice to compute the value of B3

i (x) on the two subintervals
[i, i+1] and [i+1, i+2]. Thus we find that B3

i (x) is the function that satisfies

B3
i (x) =




0, x ≤ i,

1
6 (x− i)3, i < x ≤ i+ 1,

2
3 − 1

2 (x− i)(i+ 2 − x)2, i+ 1 < x ≤ i+ 2,

(6.38)

and is symmetric about the knot x = i+ 2, so that

B3
i (x) = B3

i (2i+ 4 − x). (6.39)

Thus (6.38) defines B3
i (x) on (−∞, i + 2), and the symmetry condition

(6.39) extends the definition of B3
i (x) to the whole real line. We see that

B3
i (x) has the value 1

6 at the knots i + 1 and i + 3, attains its maximum
value of 2

3 at the knot i+2, and is zero on all the other knots. We also note
that the derivative of B3

i (x) has the value 1
2 at x = i+ 1, the value − 1

2 at
x = i+ 3, and is zero at all the other knots. ■

Having determined the uniform cubic B-spline explicitly in Example 6.3.2,
we now evaluate all the uniform B-splines at the knots.

�
xti ti+1 ti+2 ti+3 ti+4

FIGURE 6.4. Graph of the B-spline B3
i (x).

Theorem 6.3.1 Consider the uniform B-splines whose knots are at the
integers. Then we have

Bn
0 (j) =

1
n!

j−1∑
r=0

(−1)r

(
n+ 1
r

)
(j − r)n, 1 ≤ j ≤ n, (6.40)

and Bn
0 (j) = 0 otherwise.

Proof. This is a special case of Theorem 6.4.4, which we will prove later in
this chapter. We obtain (6.40) by putting q = 1 in (6.85). ■
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Suppose we wish to construct a spline of degree n to approximate a given
function f on the interval [0, N ]. We can write such a spline in the form

S(x) =
N−1∑
r=−n

arB
n
r (x), (6.41)

a sum of multiples of all the uniform B-splines of degree n whose interval
of support contains at least one of the N subintervals [j − 1, j], where
1 ≤ j ≤ N .

If we put n = 1 in (6.41), we have a linear spline, which is simply a
polygonal arc, as we saw in Example 6.2.1. On putting n = 2 in (6.41) we
obtain the quadratic spline

S(x) =
N−1∑
r=−2

arB
2
r (x), 0 ≤ x ≤ N. (6.42)

We see from Example 6.3.1 that B2
i has the value 1

2 at each of the knots
i + 1 and i + 2 and is zero at all other knots. If we choose S so that it
interpolates a given function f at the knots, it follows from (6.42) with
x = i that

1
2
(ai−2 + ai−1) = f(i), (6.43)

and this holds for 0 ≤ i ≤ N , giving N+1 equations. We require one further
equation, since in (6.42) we need to determine N + 2 coefficients ar. For
example, we may impose the condition S′(0) = f ′(0), and (see Example
6.3.1) this gives the further equation

−a−2 + a−1 = f ′(0). (6.44)

Then we find from (6.44) and equation (6.43) with i = 0 that

a−2 = f(0) − 1
2
f ′(0) (6.45)

and
a−1 = f(0) +

1
2
f ′(0). (6.46)

Thus, given a function f defined on [0, N ], and differentiable at x = 0,
we can derive the quadratic spline in (6.42) as follows. We first compute
a−2 from (6.45) and a−1 from (6.46). Then, using (6.43), we compute a0,
a1, . . . , aN−1 recursively from

ai = 2f(i+ 1) − ai−1, 0 ≤ i ≤ N − 1. (6.47)

Example 6.3.3 Let us compute a quadratic spline approximation to ex

on [0, 1] with N + 1 equally spaced knots. This is equivalent to finding
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an approximation to ex/N on [0, N ]. Thus we will compute the quadratic
spline S on [0, N ], as defined by (6.42), for the function ex/N . We obtain

a−2 = 1 − 1
2N

, a−1 = 1 +
1

2N
,

and
ai = 2e(i+1)/N − ai−1, 0 ≤ i ≤ N − 1.

For example, with N = 5 the coefficients a−2, a−1, . . . , a4 are 0.9, 1.1,
1.3428, 1.6408, 2.0034, 2.4477, and 2.9889, where the last five coefficients
are rounded to four decimal places. Note that when we evaluate the result-
ing spline S(x) for any given value of x, there are at most three nonzero
terms in the sum on the right of (6.42). In the table that follows we evaluate
the spline and the exponential function at the midpoints between consec-
utive knots, to test the accuracy of the approximation. The values of the
spline are obtained using the relation

S

(
i+

1
2

)
=

1
8
ai−2 +

3
4
ai−1 +

1
8
ai, (6.48)

which follows from (6.42) and (6.37):

x 0.5 1.5 2.5 3.5 4.5

S(x) 1.1054 1.3497 1.6489 2.0136 2.4598
ex/5 1.1052 1.3499 1.6487 2.0138 2.4596

Of course, by construction, S(x) and ex/5 are equal at the knots, x = 0, 1,
2, 3, 4, and 5. ■

The above uniform quadratic spline, which interpolates a given function
f at the knots, is so easily computed that it may scarcely seem worthwhile
to consider any other uniform quadratic interpolatory spline. However, it
is aesthetically more pleasing to construct a quadratic spline that interpo-
lates f at those points where the uniform quadratic B-splines have their
maximum values. This requires us to interpolate at the points x = i + 1

2 ,
for 0 ≤ i ≤ N − 1. In view of (6.48), this gives the N conditions

1
8
ai−2 +

3
4
ai−1 +

1
8
ai = f

(
i+

1
2

)
, 0 ≤ i ≤ N − 1. (6.49)

We require two further conditions to make up the N+2 conditions required
to determine the N + 2 coefficients ai on the right of (6.42). It seems
appropriate to ask that S interpolate f also at the endpoints x = 0 and
x = N , which gives the conditions

1
2
(a−2 + a−1) = f(0) (6.50)
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and
1
2
(aN−2 + aN−1) = f(N). (6.51)

We remark, in passing, that the conditions imposed on this quadratic spline
are symmetric with respect to the interval [0, N ]. This is not true of the first
type of quadratic spline, as constructed in Example 6.3.3. Continuing with
our construction of this second type of quadratic spline, we now eliminate
a−2 between equation (6.49) with i = 0 and (6.50), to give

5
8
a−1 +

1
8
a0 = f

(
1
2

)
− 1

4
f(0), (6.52)

and eliminate aN−1 between equation (6.49) with i = N − 1 and (6.51), to
give

1
8
aN−3 +

5
8
aN−2 = f

(
N − 1

2

)
− 1

4
f(N). (6.53)

Thus (6.52), (6.53), and (6.49) for 1 ≤ i ≤ N − 2 only, give an N × N
system of linear equations to determine a−1, a0, . . . , aN−2. It is convenient
to multiply each equation throughout by the factor 8, and we obtain the
tridiagonal system

Ma = b, (6.54)

where
aT = [a−1, a0, . . . , aN−2],

bT =
[
8f
(

1
2

)
− 2f(0), 8f

(
3
2

)
, . . . , 8f

(
N − 3

2

)
, 8f
(
N − 1

2

)
− 2f(N)

]
,

and M is the N ×N matrix

M =




5 1
1 6 1

1 6 1
. . .

. . .
1 6 1

1 5



. (6.55)

The elements of the matrix M are zero except on the main diagonal and the
diagonals immediately above and below the main diagonal. Such a matrix is
called tridiagonal. It is also a strictly diagonally dominant matrix, a square
matrix in which the modulus of each element on the main diagonal is greater
than the sum of the moduli of all the other elements in the same row. It
is well known (see, for example, Phillips and Taylor [45]) that a strictly
diagonally dominant matrix is nonsingular. Thus M is nonsingular, and the
system of linear equations (6.54) has a unique solution. After solving the
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linear equations to determine the values of a−1, a0, . . . , aN−2, we compute
a−2 and aN−1 from

a−2 = 2f(0) − a−1 and aN−1 = 2f(N) − aN−2, (6.56)

respectively. A tridiagonal system is much easier to solve than a linear sys-
tem with a full matrix, that is, one whose elements are mostly nonzero. In
solving a tridiagonal system we first “remove” the elements in the diagonal
immediately below the main diagonal, using the row operations of Gauss-
ian elimination (see, for example, Phillips and Taylor [45]), and then solve
the resulting system of linear equations by using back substitution.

Example 6.3.4 Let us again obtain an approximation to the exponential
function, this time finding the uniform quadratic spline that interpolates
the function f(x) = ex/N at the knots x = 0 and x = N , and at the
midpoint of each interval [i, i + 1], for 0 ≤ i ≤ N − 1. We will choose
N = 5 and solve the 5 × 5 tridiagonal system defined by (6.54). We use
Gaussian elimination to remove the elements below the main diagonal of
the tridiagonal matrix M and then use back substitution to find, in turn,
a3, a2, . . . , a−1. Then we find a−2 and a4 from (6.56). The coefficients
a−2, a−1, . . . , a4 are 0.90035, 1.09965, 1.34312, 1, 64049, 2.00370, 2.44731,
and 2.98925, to five decimal places. As a check on the accuracy, we will
compare the values of the spline and the exponential function at the interior
knots x = 1, 2, 3, and 4, remembering that the spline interpolates the
exponential function at x = 0 and x = 5:

x 1 2 3 4

S(x) 1.22139 1.49181 1.82210 2.22551
ex/5 1.22140 1.49182 1.82212 2.22554

Note that S(i) = 1
2 (ai−2 + ai−1). ■

Let us now consider a cubic spline on [0, N ], of the form (6.41) with
n = 3. We will write

C(x) = B3
−2(x), (6.57)

as an alternative notation for the uniform cubic B-spline whose interval
of support is [−2, 2]. Then, in view of (6.35), we can express any uniform
cubic B-spline on [0, N ] as

S(x) =
N−1∑
r=−3

arC(x− r − 2). (6.58)

Now we will seek an interpolating spline S, of the form given in (6.58), that
interpolates a given function f at the knots 0, 1, . . . , N . This gives N + 1
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conditions, and since there are N + 3 coefficients ai in (6.58), we need
to impose two further conditions on S to determine a unique spline. One
possibility is to choose the interpolating spline so that S′′(0) = S′′(N) = 0.
This is called a natural spline. Another possibility, which is the one we will
pursue here, is to choose the interpolating spline S for which

S′(0) = f ′(0) and S′(N) = f ′(N). (6.59)

It follows from (6.57) and the results derived in Example 6.3.2 that

C(0) =
2
3
, C(±1) =

1
6
, (6.60)

and C(x) is zero at all other knots. We also have

C ′(−1) =
1
2
, C ′(1) = −1

2
, (6.61)

and C ′(x) is zero at all other knots. If we put x = i in (6.58), we see from
(6.60) that the only nonzero terms in the summation are those for which
r = i− 3, i− 2, and i− 1, and this yields

S(i) =
1
6
(ai−3 + 4ai−2 + ai−1), 0 ≤ i ≤ N. (6.62)

On differentiating (6.58), we obtain

S′(x) =
N−1∑
r=−3

arC
′(x− r − 2). (6.63)

When x = i, the only nonzero terms in the latter summation are those
corresponding to r = i− 3 and r = i− 1, which gives

S′(i) =
1
2
(ai−1 − ai−3), 0 ≤ i ≤ N. (6.64)

We now determine a cubic spline S that interpolates a given function f at
the N+1 knots 0, 1, . . . , N and whose derivative matches that of f at x = 0
and x = N . It is clear from (6.62) and (6.64) that the N + 3 coefficients ai

for such a spline must satisfy the N + 3 linear equations

1
2
(a−1 − a−3) = f ′(0), (6.65)

1
2
(aN−1 − aN−3) = f ′(N), (6.66)

and
1
6
(ai−3 + 4ai−2 + ai−1) = f(i), 0 ≤ i ≤ N. (6.67)
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We can simplify this a little by eliminating the coefficient a−3 between
equation (6.65) and (6.67) with i = 0, to give

1
6
(4a−2 + 2a−1) = f(0) +

1
3
f ′(0), (6.68)

and also eliminate aN−1 between equation (6.66) and (6.67) with i = N ,
to give

1
6
(2aN−3 + 4aN−2) = f(N) − 1

3
f ′(N). (6.69)

We therefore solve the system of N +1 linear equations consisting of (6.68)
and (6.69), together with (6.67) for 1 ≤ i ≤ N − 1 only, to determine the
N + 1 unknowns a−2, a−1, . . . , aN−2. After solving this linear system, we
need to compute a−3 and aN−1 from (6.65) and (6.66), respectively. Before
solving the linear system it is helpful to multiply throughout by the factor
6, to give

Ma = b, (6.70)

where

aT = [a−2, a−1, . . . , aN−2],

bT = [6f(0) + 2f ′(0), 6f(1), . . . , 6f(N − 1), 6f(N) − 2f ′(N)],

and M is the (N + 1) × (N + 1) matrix

M =




4 2
1 4 1

1 4 1
. . .

. . .
1 4 1

2 4



. (6.71)

Since this matrix M is diagonally dominant, the above system of linear
equations has a unique solution. In fact (see Problem 6.3.4), for the above
matrix M,

detM = 2
√

3
(
(2 +

√
3)N − (2 −

√
3)N
)
, (6.72)

for N ≥ 1. When N = 1, the matrix M is simply

M =
[

4 2
2 4

]
.

If we wish to compute a cubic spline approximation to a given function f
on an interval [a, b], we can choose a positive integer N and map [a, b] onto
[0, N ] by making a linear change of variable. We then evaluate the spline
as described above.
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Example 6.3.5 As in Examples 6.3.3 and 6.3.4, let us obtain approxima-
tions to ex on [0, 1], but this time we will use cubic splines. Let us choose
N = 5 and solve the 6 × 6 tridiagonal system defined by (6.70). We use
Gaussian elimination to remove the elements below the main diagonal of the
tridiagonal matrix M. This gives an upper triangular system that we solve
by back substitution to find, in turn, a3, a2, . . . , a−2. Finally, we obtain a−3
and a4 from (6.65) and (6.66), respectively. The coefficients a−3, a−2, . . . , a4
are 0.813287, 0.993357, 1.213287, 1.481912, 1.810012, 2.210754, 2.700217,
and 3.298067, to six decimal places. As a check on the accuracy of the inter-
polating spline, let us compare the values of the spline and the exponential
function at the midpoints of the intervals between consecutive knots, as
shown in the following table:

x 0.5 1.5 2.5 3.5 4.5

S(x) 1.105167 1.349853 1.648714 2.013745 2.459592
ex/5 1.105171 1.349859 1.648721 2.013753 2.459603

The values of S(x) in the table are computed from

S

(
i+

1
2

)
=

1
48
ai−3 +

23
48
ai−2 +

23
48
ai−1 +

1
48
ai,

which follows from (6.58), (6.57), and (6.38). Note that C(± 1
2 ) = 23

48 and
C(± 3

2 ) = 1
48 . ■

Problem 6.3.1 Deduce from (6.26) and (1.73) that

Bn
i (x) =

1
n!

∆n+1(i− x)n
+,

where Bn
i is a uniform B-spline, and the forward difference operates on i.

Problem 6.3.2 Deduce from the result in Problem 6.2.2 that∫ ∞

−∞
Bn

i (x)dx = 1,

for all n ≥ 0 and all integers i, where Bn
i is a uniform B-spline.

Problem 6.3.3 Let Bn
0 (j) = aj,n, where Bn

0 is a uniform B-spline. Deduce
from (6.33) and (6.35) that for n ≥ 1,

aj,n =
(

1 +
1
n

)
[λjaj,n−1 + (1 − λj)aj−1,n−1], 1 ≤ j ≤ n,

where λj = j/(n + 1), noting that a0,n = an+1,n = 0 for all n. Beginning
with a0,1 = a2,1 = 0 and a1,1 = 1, use the above recurrence relation
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to compute the aj,n for n = 2, 3, and 4. Deduce that aj,n lies between
(1 + 1/n)aj−1,n−1 and (1 + 1/n)aj,n−1. Finally, show by induction on n
that the aj,n increase monotonically from zero to a maximum value, which
is attained twice when n is even, and then decrease monotonically to zero.

Problem 6.3.4 Let us define a sequence of matrices (Aj), where Aj is
the j × j matrix

Aj =




4 1
1 4 1

1 4 1
. . .

. . .
1 4 1

2 4



,

for j ≥ 3, and

A1 = [4], A2 =
[

4 1
2 4

]
.

Expand detAj by its first row to show that

detAj = 4 detAj−1 − detAj−2, j ≥ 3,

and verify by induction on j that

detAj = (2 +
√

3)j + (2 −
√

3)j , j ≥ 1.

Observe that we obtain the matrix M, defined in (6.71), on replacing 1 by
2 in the first row of AN+1. On expanding detM by its first row, show that

detM = 4 detAN − 2 detAN−1, N ≥ 2,

and thus justify (6.72).

Problem 6.3.5 Solve the linear system (6.70) with N = 1 and f(x) = ex,
and so find the coefficients a−2 and a−1. Then determine the values of a−3
and a0 from (6.65) and (6.66), respectively. Thus show that the resulting
cubic spline S, defined by (6.58) with N = 1, is given explicitly by

S(x) =
2
3
(−5 + 2e)C(x+ 1) +

1
3
(8 − 2e)C(x)

+
2
3
(−2 + 2e)C(x− 1) +

1
3
(8 + 4e)C(x− 2).

Verify that the error of greatest modulus, attained at x = 1
2 , is approxi-

mately 4.4 × 10−3.
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6.4 Knots at the q-Integers

Having explored the topic of B-splines with knots at the integers, the uni-
form B-splines, we devote this section to an examination of B-splines with
knots at the q-integers, which we introduced in Section 1.5. For any choice
of q > 0, let us put ti = [i] in (6.3) and (6.4). We find that the B-splines
on the q-integers are defined by

B0
i (x) =

{
1, [i] < x ≤ [i+ 1],
0, otherwise, (6.73)

and, recursively, beginning with n = 1,

Bn
i (x) =

(x− [i])
qi[n]

Bn−1
i (x) +

([i+ n+ 1] − x)
qi+1[n]

Bn−1
i+1 (x). (6.74)

Although the B-splines of degree n on the q-integers are not translates of
one another as we found in (6.35) for the uniform B-splines, they are very
simply related to each other, as the following theorem shows.

Theorem 6.4.1 The B-splines with knots at the q-integers satisfy the re-
lation

Bn
i (x) = Bn

i+1(qx+ 1), (6.75)

for all n ≥ 0 and all integers i.

Proof. Let us express (6.75) in the form

Bn
i (x) = Bn

i+1(t), where t = qx+ 1. (6.76)

We observe that
x− [i]
qi

=
t− [i+ 1]
qi+1 , (6.77)

and see that [i] < x ≤ [i + 1] if and only if [i + 1] < t ≤ [i + 2]. It then
follows immediately from (6.73) that (6.76) holds for n = 0 and all i. We
complete the proof by induction on n. Suppose that (6.76) holds for some
n ≥ 0 and all i. Then we see from the recurrence relation (6.74) that

Bn+1
i+1 (t) =

(t− [i+ 1])
qi+1[n+ 1]

Bn
i+1(t) +

([i+ n+ 3] − t)
qi+2[n+ 1]

Bn
i+2(t),

and, using the inductive hypothesis and (6.77), we have

Bn+1
i+1 (t) =

(x− [i])
qi[n+ 1]

Bn
i (x) +

([i+ n+ 2] − x)
qi+1[n+ 1]

Bn
i+1(x).

Again using (6.74), we see that the right side of the latter equation yields
Bn+1

i (x), which completes the proof. ■
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Example 6.4.1 We find from (6.73) and (6.74) that the linear B-spline
with knots at [i], [i+ 1], and [i+ 2] is

B1
i (x) =




x− [i]
qi

, [i] < x ≤ [i+ 1],

[i+ 2] − x

qi+1 , [i+ 1] < x ≤ [i+ 2],

0, otherwise.

(6.78)

It is clear that B1
i (x) increases monotonically from zero for x ≤ [i] to

its maximum value of 1 at x = [i + 1]. For x ≥ [i + 1], B1
i (x) decreases

monotonically to the value zero for x ≥ [i+ 2].
The quadratic B-spline with knots at the q-integers is

B2
i (x) =




(x− [i])2

q2i[2]
, [i] < x ≤ [i+ 1],

[3]
[2]2

− (βi(x))2, [i+ 1] < x ≤ [i+ 2],

([i+ 3] − x)2

q2i+3[2]
, [i+ 2] < x ≤ [i+ 3],

0, otherwise,

(6.79)

where

βi(x) =
([i+ 1] − x) + q([i+ 2] − x)

qi+1[2]
. (6.80)

In deriving the above expression for B2
i in the interval [ [i+ 1], [i+ 2] ], we

find that the corresponding form in (6.37) for the case q = 1 is a useful
guide. We note that

([i+ 1] − x) + q([i+ 2] − x) = 0 for x =
[i+ 1] + q[i+ 2]

1 + q
,

and we see that this value of x lies between [i + 1] and [i + 2]. Thus the
maximum value of B2

i (x) on the interval [ [i+ 1], [i+ 2] ] is

[3]
[2]2

=
1 + q + q2

(1 + q)2
,

which is attained at x = ([i+1]+q[i+2])/(1+q), and this is the maximum
value of B2

i (x) over all x. This spline increases monotonically from the value
zero at x = [i] to its maximum value, and then decreases monotonically to
zero at x = [i+ 3]. ■
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The B-splines with knots at the q-integers, with q �= 1, are not symmetric
about the midpoint of the interval of support as we found in (6.36) for the
uniform B-splines. However, in the two theorems that follow, we give two
generalizations of (6.36). We will replace Bn

i (x) by Bn
i (x; q) in Theorem

6.4.2, since this theorem involves B-splines with two different values of the
parameter q.

Theorem 6.4.2 The B-splines with knots at the q-integers satisfy the re-
lation

Bn
i (x; q) = Bn

i (q−2i−n([2i+ n+ 1] − x); 1/q), (6.81)

for all integers n > 0 and i, all real q > 0 and x, and for n = 0 and all x
except for x = [i] and [i+ 1]. ■

Theorem 6.4.3 The B-splines with knots at the q-integers satisfy the re-
lation

Bn
i (x) = q−n(2i+n+1)/2(1 − (1 − q)x)nBn

i

(
[2i+ n+ 1] − x

1 − (1 − q)x

)
, (6.82)

for all integers n > 0 and i, all real q > 0 and x, and for n = 0 and all x
except for x = [i] and [i+ 1]. ■

Proofs of these theorems are given in Koçak and Phillips [30].

We can extend (6.75) to give

Bn
i (x) = Bn

i+m(qmx+ [m]), (6.83)

and this is easily verified by induction on m. In particular, we obtain from
(6.83) that

Bn
i ([j]) = Bn

i+m([j +m]), (6.84)

showing that although these B-splines are not translates of one another
unless q = 1, all B-splines of the same degree n and fixed q take the same
values at corresponding knots. We derive the values of the B-splines at the
knots in the following theorem.

Theorem 6.4.4 Consider the B-splines whose knots are at the q-integers,
so that Bn

i (x) has interval of support [ [i], [i+ n+ 1] ]. Then

Bn
0 ([j]) =

1
[n]!

j−1∑
r=0

(−1)rqr(r−1)/2
[
n+ 1
r

]
[j − r]n, 1 ≤ j ≤ n, (6.85)

and Bn
0 ([j]) = 0 otherwise.

Proof. In view of (6.84), if we know the values of Bn
0 ([j]) for 1 ≤ j ≤ n,

we can evaluate any spline Bn
i at the knots. We begin with the divided
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difference representation of the general B-spline, (6.26), replace each tj by
[j] and apply (1.113) to give

Bn
i (x) =

∆n+1
q ([i] − x)n

+

qn(2i+n+1)/2[n]!
, (6.86)

where the q-difference operator acts on ([i]−x)n
+ as a function of i. We now

put i = 0 and x = [j] in (6.86), and use (1.118) to expand the q-difference,
giving

Bn
0 ([j]) =

q−n(n+1)/2

[n]!

n+1∑
r=0

(−1)rqr(r−1)/2
[
n+ 1
r

]
([n+ 1 − r] − [j])n

+.

Since it follows from Definition 4.1.1 and the properties of q-integers that

([n+ 1 − r] − [j])n
+ =




0, r ≥ n+ 1 − j,

qjn[n+ 1 − r − j]n, 0 ≤ r < n+ 1 − j,

we obtain

Bn
0 ([j]) =

q−n(n+1−2j)/2

[n]!

n−j∑
r=0

(−1)rqr(r−1)/2
[
n+ 1
r

]
[n+ 1 − r − j]n.

Now replace j by n+ 1 − k to give

Bn
0 ([n+ 1 − k]) =

qn(n+1−2k)/2

[n]!

k−1∑
r=0

(−1)rqr(r−1)/2
[
n+ 1
r

]
[k − r]n.

On multiplying this last equation throughout by q−n(n+1−2k)/2 and using
the result (see Problem 6.4.4)

Bn
0 ([k]) = q−n(n+1−2k)/2Bn

0 ([n+ 1 − k]),

we find that

Bn
0 ([k]) =

1
[n]!

k−1∑
r=0

(−1)rqr(r−1)/2
[
n+ 1
r

]
[k − r]n,

which is just (6.85) with k in place of j. ■

Example 6.4.2 For n ≥ 1 the B-spline Bn
0 has n knots in the interior

of its interval of support, namely, x = [j], for 1 ≤ j ≤ n. Let us apply
Theorem 6.4.4 with n = 1, 2, 3, and 4. We find that B[1]

0 (1) = 1,

B2
0([1]) =

1
[2]!

, B2
0([2]) =

q

[2]!
,
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B3
0([1]) =

1
[3]!

, B3
0([2]) =

2q(1 + q)
[3]!

, B3
0([3]) =

q3

[3]!
,

and

B4
0([1]) =

1
[4]!

, B4
0([2]) =

q(3 + 5q + 3q2)
[4]!

,

B4
0([3]) =

q3(3 + 5q + 3q2)
[4]!

, B4
0([4]) =

q6

[4]!
.

We can verify that for any value of n above, the sum of the n coefficients is
unity, in keeping with the general result stated in Problem 6.4.5. ■

In the last section we discussed two methods for computing an interpola-
tory quadratic spline, and a method for computing an interpolatory cubic
spline, at equally spaced knots. We can adapt all of these algorithms to com-
pute interpolatory splines with knots at the q-integers. We conclude this
section by adapting the second of the methods for computing a quadratic
spline. We thus interpolate the given function f at x0 = [0], xN+1 = [N ],
and also at the points

xi =
[i− 1] + q[i]

1 + q
, 1 ≤ i ≤ N, (6.87)

where, as shown in Example 6.4.1, xi is the point where the B-spline B2
i−2,

with interval of support [ [i− 2], [i+ 1] ], has its maximum value, given by

B2
i−2(xi) =

[3]
[2]2

. (6.88)

Then, using the explicit representation of the quadratic B-spline in Example
6.4.1, we find that

B2
i−2(xi−1) =

q2

[2]3
and B2

i−2(xi+1) =
q

[2]3
, (6.89)

where xi−1 and xi+1 are given by (6.87).
We now derive a spline of the form

S(x) =
N−1∑
r=−2

arB
2
r (x), 0 ≤ x ≤ [N ], (6.90)

that satisfies the above N + 2 interpolatory conditions. Note that the first
B-spline in the above summation, B2

−2(x), has an interval of support that
includes knots at the q-integers [−2] and [−1]. These have the values

[−2] =
1 − q−2

1 − q
= −1 + q

q2
and [−1] =

1 − q−1

1 − q
= −1

q
.
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We proceed as in the case with equally spaced knots. First we find from
(6.90), (6.88), and (6.89) that

q

[2]3
ai−3 +

[3]
[2]2

ai−2 +
q2

[2]3
ai−1 = f(xi), 1 ≤ i ≤ N, (6.91)

where xi is defined in (6.87), and setting S(x) = f(x) at x = 0 and [N ]
gives the two further equations

q

1 + q
a−2 +

1
1 + q

a−1 = f(0) (6.92)

and
q

1 + q
aN−2 +

1
1 + q

aN−1 = f([N ]). (6.93)

We eliminate the coefficient a−2 between (6.92) and (6.91) with i = 1, and
also eliminate aN−1 between (6.93) and (6.91) with i = N . Thus we obtain
a system of linear equations, consisting of those obtained from (6.91), which
we will write as

αai−3 + βai−2 + γai−1, 2 ≤ i ≤ N − 1, (6.94)

where

α =
q

[2]3
, β =

[3]
[2]2

, γ =
q2

[2]3
, (6.95)

together with a first and last equation. The first equation is

δa−1 + γa0 = f(x1) − 1
[2]2

f(0), (6.96)

where γ is given above in (6.95) and

δ =
q

[2]
+

q

[2]3
, (6.97)

and the last equation is

αaN−3 + εaN−2 = f(xN ) − q2

[2]2
f([N ]), (6.98)

where α is given above in (6.95) and

ε =
1
[2]

+
q2

[2]3
. (6.99)

This is a system of tridiagonal equations of the form

Ma = b,
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where aT = [a−1, a0, . . . , aN−2] and bT = [b−1, b0, . . . , bN−2]. The first and
last elements of bT are

b−1 = f(x1) − 1
(1 + q)2

f(x0), bN−2 = f(xN ) − q2

(1 + q)2
f(xN+1),

and its other elements are bi = f(xi+2), for 0 ≤ i ≤ N − 3. Finally, M is
the N ×N tridiagonal matrix

M =




δ γ
α β γ

α β γ
. . .

. . .
α β γ

α ε



.

For q > 0 every element of M is positive, and we find that

δ − γ =
q(2 + q + q2)

[2]3
> 0, ε− α =

1 + q + 2q2

[2]3
> 0,

and

β − α− γ =
[4]
[2]3

=
1 + q2

[2]2
> 0.

Thus the matrix M is strictly diagonally dominant, and is therefore nonsin-
gular, for all q > 0. We solve the tridiagonal system to find the coefficients
a−1, a0, . . . , aN−2, and then we find the two remaining coefficients a−2 and
aN−1 from

a−2 = ((1 + q)f(0) − a−1)/q and aN−1 = (1 + q)f([N ]) − q aN−2.

Example 6.4.3 Let us construct a quadratic B-spline of the kind we have
derived immediately above. Let us choose the function f(x) as ex/[N ], with
N = 5, and let us take q = 0.95. We solve the tridiagonal system to find
a−1, a0, . . . , a3, and then find a−2 and a4, as described above. We find
that the coefficients a−2, a−1, . . . , a4 are 0.8841719, 1.1100367, 1.3778033,
1.6917329, 2.0559284, 2.4742331, and 2.9501281, to seven decimal places.
As a check on the accuracy, we compare the values of the spline and the
exponential function at the interior knots x = [1], [2], [3], and [4]:

x [1] [2] [3] [4]

S(x) 1.247353 1.538793 1.878500 2.270444

ex/[5] 1.247354 1.538793 1.878499 2.270441
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It is interesting to compare the accuracy of the above results, in which we
used q = 0.95, with the results in Example 6.3.4, where we solved the same
problem with q = 1. ■

Problem 6.4.1 Show that the B-splines with knots at the q-integers, de-
fined by (6.73) and (6.74), satisfy Bn

i ([j]) = Bn
i+m([j +m]).

Problem 6.4.2 Verify (6.86), which expresses a spline on the q-integers
as a q-difference of a truncated power.

Problem 6.4.3 Show that for the quadratic B-spline defined in Example
6.4.1, the only nonzero values of the derivative at the knots are

d

dx
B2

i ([i+ 1]) =
2

qi(1 + q)
and

d

dx
B2

i ([i+ 2]) =
−2

qi+1(1 + q)
.

Problem 6.4.4 Deduce from Theorem 6.4.3 that

Bn
0 ([n+ 1 − j]) = qn(n+1−2j)/2Bn

0 ([j]).

Problem 6.4.5 Deduce from (6.18) that

n∑
j=1

Bn
0 ([j]) = 1.

Problem 6.4.6 Show, using (6.74) and (6.84), that

Bn
0 ([j]) =

[j]
[n]
Bn−1

0 ([j]) +
qj−1[n+ 1 − j]

[n]
Bn−1

0 ([j − 1]).

Problem 6.4.7 Use the result in Problem 6.4.6 to show, by induction on
n, that we can write

Bn
0 ([j]) =

pj,n(q)
[n]!

,

where pj,n(q) is a polynomial in q of degree 1
2 (j−1)(2n−j) with nonnegative

coefficients. Deduce from the result in Problem 6.4.4 that

pn+1−j,n(q) = qn(n+1−2j)/2 pj,n(q).

Problem 6.4.8 Construct a quadratic spline S of the form (6.90) that
interpolates a given function at the N +1 knots x = [i], for 0 ≤ i ≤ N , and
also satisfies the condition S′(0) = f ′(0).



7
Bernstein Polynomials

7.1 Introduction

This chapter is concerned with sequences of polynomials named after their
creator S. N. Bernstein. Given a function f on [0, 1], we define the Bernstein
polynomial

Bn(f ;x) =
n∑

r=0

f
( r
n

)(
n
r

)
xr(1 − x)n−r (7.1)

for each positive integer n. Thus there is a sequence of Bernstein polynomi-
als corresponding to each function f . As we will see later in this chapter, if f
is continuous on [0, 1], its sequence of Bernstein polynomials converges uni-
formly to f on [0, 1], thus giving a constructive proof of Weierstrass’s The-
orem 2.4.1, which we stated in Chapter 2. There are several proofs of this
fundamental theorem, beginning with that given by K. Weierstrass [55] in
1885. (See the Notes in E. W. Cheney’s text [7]. This contains a large num-
ber of historical references in approximation theory.) Bernstein’s proof [3]
was published in 1912. One might wonder why Bernstein created “new”
polynomials for this purpose, instead of using polynomials that were al-
ready known to mathematics. Taylor polynomials are not appropriate; for
even setting aside questions of convergence, they are applicable only to
functions that are infinitely differentiable, and not to all continuous func-
tions. We can also dismiss another obvious candidate, the interpolating
polynomials for f constructed at equally spaced points. For the latter se-
quence of polynomials does not converge uniformly to f for all f ∈ C[0, 1],
and the same is true of interpolation on any other fixed sequence of abscis-
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sas. However, L. Fejér [19] used a method based on Hermite interpolation
in a proof published in 1930, which we will discuss in the next section.

Later in this section we will consider how Bernstein discovered his poly-
nomials, for this is not immediately obvious. We will also see that although
the convergence of the Bernstein polynomials is slow, they have compensat-
ing “shape-preserving” properties. For example, the Bernstein polynomial
of a convex function is itself convex.

It is clear from (7.1) that for all n ≥ 1,

Bn(f ; 0) = f(0) and Bn(f ; 1) = f(1), (7.2)

so that a Bernstein polynomial for f interpolates f at both endpoints of
the interval [0, 1].

Example 7.1.1 It follows from the binomial expansion that

Bn(1;x) =
n∑

r=0

(
n
r

)
xr(1 − x)n−r = (x+ (1 − x))n = 1, (7.3)

so that the Bernstein polynomial for the constant function 1 is also 1. Since

r

n

(
n
r

)
=
(
n− 1
r − 1

)

for 1 ≤ r ≤ n, the Bernstein polynomial for the function x is

Bn(x;x) =
n∑

r=0

r

n

(
n
r

)
xr(1 − x)n−r = x

n∑
r=1

(
n− 1
r − 1

)
xr−1(1 − x)n−r.

Note that the term corresponding to r = 0 in the first of the above two
sums is zero. On putting s = r − 1 in the second summation, we obtain

Bn(x;x) = x

n−1∑
s=0

(
n− 1
s

)
xs(1 − x)n−1−s = x, (7.4)

the last step following from (7.3) with n replaced by n− 1. Thus the Bern-
stein polynomial for the function x is also x. ■

We call Bn the Bernstein operator ; it maps a function f , defined on [0, 1],
to Bnf , where the function Bnf evaluated at x is denoted by Bn(f ;x).
The Bernstein operator is obviously linear, since it follows from (7.1) that

Bn(λf + µg) = λBnf + µBng, (7.5)

for all functions f and g defined on [0, 1], and all real λ and µ. We now
require the following definition.
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Definition 7.1.1 Let L denote a linear operator that maps a function f
defined on [a, b] to a function Lf defined on [c, d]. Then L is said to be a
monotone operator or, equivalently, a positive operator if

f(x) ≥ g(x), x ∈ [a, b] ⇒ (Lf)(x) ≥ (Lg)(x), x ∈ [c, d], (7.6)

where we have written (Lf)(x) to denote the value of the function Lf at
the point x ∈ [a, b]. ■

We can see from (7.1) that Bn is a monotone operator. It then follows from
the monotonicity of Bn and (7.3) that

m ≤ f(x) ≤ M, x ∈ [0, 1] ⇒ m ≤ Bn(f ;x) ≤ M, x ∈ [0, 1]. (7.7)

In particular, if we choose m = 0 in (7.7), we obtain

f(x) ≥ 0, x ∈ [0, 1] ⇒ Bn(f ;x) ≥ 0, x ∈ [0, 1]. (7.8)

It follows from (7.3), (7.4), and the linear property (7.5) that

Bn(ax+ b;x) = ax+ b, (7.9)

for all real a and b. We therefore say that the Bernstein operator repro-
duces linear polynomials. We can deduce from the following result that the
Bernstein operator does not reproduce any polynomial of degree greater
than one.

Theorem 7.1.1 The Bernstein polynomial may be expressed in the form

Bn(f ;x) =
n∑

r=0

(
n
r

)
∆rf(0)xr, (7.10)

where ∆ is the forward difference operator, defined in (1.67), with step size
h = 1/n.

Proof. Beginning with (7.1), and expanding the term (1 − x)n−r, we have

Bn(f ;x) =
n∑

r=0

f
( r
n

)(
n
r

)
xr

n−r∑
s=0

(−1)s

(
n− r
s

)
xs.

Let us put t = r + s. We may write

n∑
r=0

n−r∑
s=0

=
n∑

t=0

t∑
r=0

, (7.11)

since both double summations in (7.11) are over all lattice points (r, s)
lying in the triangle shown in Figure 7.1. We also have(

n
r

)(
n− r
s

)
=
(
n
t

)(
t
r

)
,
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FIGURE 7.1. A triangular array of 1
2 (n + 1)(n + 2) lattice points.

and so we may write the double summation as
n∑

t=0

(
n
t

)
xt

t∑
r=0

(−1)t−r

(
t
r

)
f
( r
n

)
=

n∑
t=0

(
n
t

)
∆tf(0)xt,

on using the expansion for a higher-order forward difference, as in Problem
1.3.7. This completes the proof. ■

In (1.80) we saw how differences are related to derivatives, showing that

∆mf(x0)
hm

= f (m)(ξ), (7.12)

where ξ ∈ (x0, xm) and xm = x0 + mh. Let us put h = 1/n, x0 = 0, and
f(x) = xk, where n ≥ k. Then we have

nr∆rf(0) = 0 for r > k

and
nk∆kf(0) = f (k)(ξ) = k! . (7.13)

Thus we see from (7.10) with f(x) = xk and n ≥ k that

Bn(xk;x) = a0x
k + a1x

k−1 + · · · + ak−1x+ ak,

say, where a0 = 1 for k = 0 and k = 1, and

a0 =
(
n
k

)
k!
nk

=
(

1 − 1
n

)(
1 − 2

n

)
· · ·
(

1 − k − 1
n

)

for k ≥ 2. Since a0 �= 1 when n ≥ k ≥ 2, this justifies our above statement
that the Bernstein operator does not reproduce any polynomial of degree
greater than one.
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Example 7.1.2 With f(x) = x2, we have

f(0) = 0, ∆f(0) = f

(
1
n

)
− f(0) =

1
n2 ,

and we see from (7.13) that n2∆2f(0) = 2! for n ≥ 2. Thus it follows from
(7.10) that

Bn(x2;x) =
(
n
1

)
x

n2 +
(
n
2

)
2x2

n2 =
x

n
+
(

1 − 1
n

)
x2,

which may be written in the form

Bn(x2;x) = x2 +
1
n
x(1 − x). (7.14)

Thus the Bernstein polynomials for x2 converge uniformly to x2 like 1/n,
very slowly. We will see from Voronovskaya’s Theorem 7.1.10 that this rate
of convergence holds for all functions that are twice differentiable. ■

We have already seen in (7.7) that if f(x) is positive on [0, 1], so is
Bn(f ;x). We now show that if f(x) is monotonically increasing, so is
Bn(f ;x).

Theorem 7.1.2 The derivative of the Bernstein polynomial Bn+1(f ;x)
may be expressed in the form

B′
n+1(f ;x) = (n+ 1)

n∑
r=0

∆f
(

r

n+ 1

)(
n
r

)
xr(1 − x)n−r (7.15)

for n ≥ 0, where ∆ is applied with step size h = 1/(n+ 1). Furthermore, if
f is monotonically increasing or monotonically decreasing on [0, 1], so are
all its Bernstein polynomials.

Proof. The verification of (7.15) is omitted because it is a special case of
(7.16), concerning higher-order derivatives of the Bernstein polynomials,
which we prove in the next theorem. To justify the above remark on mono-
tonicity, we note that if f is monotonically increasing, its forward differences
are nonnegative. It then follows from (7.15) that B′

n+1(f ;x) is nonnegative
on [0, 1], and so Bn+1(f ;x) is monotonically increasing. Similarly, we see
that if f is monotonically decreasing, so is Bn+1(f ;x). ■

Theorem 7.1.3 For any integer k ≥ 0, the kth derivative of Bn+k(f ;x)
may be expressed in terms of kth differences of f as

B
(k)
n+k(f ;x) =

(n+ k)!
n!

n∑
r=0

∆kf

(
r

n+ k

)(
n
r

)
xr(1 − x)n−r (7.16)

for all n ≥ 0, where ∆ is applied with step size h = 1/(n+ k).
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Proof. We write

Bn+k(f ;x) =
n+k∑
r=0

f

(
r

n+ k

)(
n+ k
r

)
xr(1 − x)n+k−r

and differentiate k times, giving

B
(k)
n+k(f ;x) =

n+k∑
r=0

f

(
r

n+ k

)(
n+ k
r

)
p(x), (7.17)

where

p(x) =
dk

dxk
xr(1 − x)n+k−r.

We now use the Leibniz rule (1.83) to differentiate the product of xr and
(1 − x)n+k−r. First we find that

ds

dxs
xr =




r!
(r − s)!

xr−s, r − s ≥ 0,

0, r − s < 0,

and

dk−s

dxk−s
(1 − x)n+k−r =




(−1)k−s (n+ k − r)!
(n+ s− r)!

(1 − x)n+s−r, r − s ≤ n,

0, r − s > n.

Thus the kth derivative of xr(1 − x)n+k−r is

p(x) =
∑

s

(−1)k−s

(
k
s

)
r!

(r − s)!
(n+ k − r)!
(n+ s− r)!

xr−s(1 − x)n+s−r, (7.18)

where the latter summation is over all s from 0 to k, subject to the con-
straints 0 ≤ r − s ≤ n. We make the substitution t = r − s, so that

n+k∑
r=0

∑
s

=
n∑

t=0

k∑
s=0

. (7.19)

A diagram may be helpful here. The double summations in (7.19) are over
all lattice points (r, s) lying in the parallelogram depicted in Figure 7.2.
The parallelogram is bounded by the lines s = 0, s = k, t = 0, and t = n,
where t = r − s. We also note that

(
n+ k
r

)
r!

(r − s)!
(n+ k − r)!
(n+ s− r)!

=
(n+ k)!
n!

(
n

r − s

)
. (7.20)



7.1 Introduction 253

�

�

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

r

s

k

n n+ k0

FIGURE 7.2. A parallelogram of (n + 1)(k + 1) lattice points.

It then follows from (7.17), (7.18), (7.19), and (7.20) that the kth derivative
of Bn+k(f ;x) is

(n+ k)!
n!

n∑
t=0

k∑
s=0

(−1)k−s

(
k
s

)
f

(
t+ s

n+ k

)(
n
t

)
xt(1 − x)n−t.

Finally, we note from Problem 1.3.7 that

k∑
s=0

(−1)k−s

(
k
s

)
f

(
t+ s

n+ k

)
= ∆kf

(
t

n+ k

)
,

where the operator ∆ is applied with step size h = 1/(n+k). This completes
the proof. ■

By using the connection between differences and derivatives, we can de-
duce the following valuable result from Theorem 7.1.3.

Theorem 7.1.4 If f ∈ Ck[0, 1], for some k ≥ 0, then

m ≤ f (k)(x) ≤ M, x ∈ [0, 1] ⇒ ckm ≤ B(k)
n (f ;x) ≤ ckM, x ∈ [0, 1],

for all n ≥ k, where c0 = c1 = 1 and

ck =
(

1 − 1
n

)(
1 − 2

n

)
· · ·
(

1 − k − 1
n

)
, 2 ≤ k ≤ n.

Proof. We have already seen in (7.7) that this result holds for k = 0. For
k ≥ 1 we begin with (7.16) and replace n by n−k. Then, using (7.12) with
h = 1/n, we write

∆kf
( r
n

)
=
f (k)(ξr)
nk

, (7.21)

where r/n < ξr < (r + k)/n. Thus

B(k)
n (f ;x) =

n−k∑
r=0

ckf
(k)(ξr)xr(1 − x)n−k−r,
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and the theorem follows easily from the latter equation. One consequence
of this result is that if f (k)(x) is of fixed sign on [0, 1], then B(k)

n (f ;x) also
has this sign on [0, 1]. For example, if f ′′(x) exists and is nonnegative on
[0, 1], so that f is convex, then B′′

n(f ;x) is also nonnegative and Bn(f ;x)
is convex. ■

Bernstein’s discovery of his polynomials was based on an ingenious prob-
abilistic argument. Suppose we have an event that can be repeated and has
only two possible outcomes, A and B. One of the simplest examples is the
tossing of an unbiased coin, where the two possible outcomes, heads and
tails, both occur with probability 0.5. More generally, consider an event
where the outcome A happens with probability x ∈ [0, 1], and thus the
outcome B happens with probability 1−x. Then the probability of A hap-
pening precisely r times followed by B happening n−r times is xr(1−x)n−r.

Since there are
(

n
r

)
ways of choosing the order of r outcomes out of n,

the probability of obtaining r outcomes A and n − r outcomes B in any
order is given by

pn,r(x) =
(
n
r

)
xr(1 − x)n−r.

Thus we have

pn,r(x) =
(
n− r + 1

r

)(
x

1 − x

)
pn,r−1(x),

and it follows that

pn,r(x) > pn,r−1(x) if and only if r < (n+ 1)x.

We deduce that pn,r(x), regarded as a function of r, with x and n fixed,
has a peak when r = rx ≈ nx, for large n, and is monotonically increasing
for r < rx and monotonically decreasing for r > rx. We already know that

n∑
r=0

pn,r(x) = Bn(1;x) = 1,

and in the sum
n∑

r=0

pn,r(x)f
( r
n

)
= Bn(f ;x),

where f ∈ C[0, 1] and n is large, the contributions to the sum from values
of r sufficiently remote from rx will be negligible, and the significant part
of the sum will come from values of r close to rx. Thus, for n large,

Bn(f ;x) ≈ f
(rx
n

)
≈ f(x),

and so Bn(f ;x) → f(x) as n → ∞. While this is by no means a rigorous
argument, and is thus not a proof, it gives some insight into how Bernstein
was motivated in his search for a proof of the Weierstrass theorem.
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Example 7.1.3 To illustrate Bernstein’s argument concerning the poly-
nomials pn,r, let us evaluate these polynomials when n = 8 and x = 0.4.
The resulting values of pn,r(x) are given in the following table:

r 0 1 2 3 4 5 6 7 8

pn,r(x) 0.02 0.09 0.21 0.28 0.23 0.12 0.04 0.01 0.00

In this case, the largest value of pn,r is attained for r = rx = 3, consistent
with our above analysis, which shows that rx ≈ nx = 3.2. ■

Theorem 7.1.5 Given a function f ∈ C[0, 1] and any ε > 0, there exists
an integer N such that

|f(x) −Bn(f ;x)| < ε, 0 ≤ x ≤ 1,

for all n ≥ N .

Proof. In other words, the above statement says that the Bernstein poly-
nomials for a function f that is continuous on [0, 1] converge uniformly to
f on [0, 1]. The following proof is motivated by the plausible argument that
we gave above.

We begin with the identity

( r
n

− x
)2

=
( r
n

)2
− 2
( r
n

)
x+ x2,

multiply each term by
(

n
r

)
xr(1 − x)n−r, and sum from r = 0 to n, to

give

n∑
r=0

( r
n

− x
)2
(
n
r

)
xr(1 − x)n−r = Bn(x2;x) − 2xBn(x;x) + x2Bn(1;x).

It then follows from (7.3), (7.4), and (7.14) that

n∑
r=0

( r
n

− x
)2
(
n
r

)
xr(1 − x)n−r =

1
n
x(1 − x). (7.22)

For any fixed x ∈ [0, 1], let us estimate the sum of the polynomials pn,r(x)
over all values of r for which r/n is not close to x. To make this notion
precise, we choose a number δ > 0 and let Sδ denote the set of all values
of r satisfying

∣∣ r
n − x

∣∣ ≥ δ. We now consider the sum of the polynomials
pn,r(x) over all r ∈ Sδ. Note that

∣∣ r
n − x

∣∣ ≥ δ implies that

1
δ2

( r
n

− x
)2

≥ 1. (7.23)
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Then, using (7.23), we have

∑
r∈Sδ

(
n
r

)
xr(1 − x)n−r ≤ 1

δ2

∑
r∈Sδ

( r
n

− x
)2
(
n
r

)
xr(1 − x)n−r.

The latter sum is not greater that the sum of the same expression over all
r, and using (7.22), we have

1
δ2

n∑
r=0

( r
n

− x
)2
(
n
r

)
xr(1 − x)n−r =

x(1 − x)
nδ2

.

Since 0 ≤ x(1 − x) ≤ 1
4 on [0, 1], we have

∑
r∈Sδ

(
n
r

)
xr(1 − x)n−r ≤ 1

4nδ2
. (7.24)

Let us write
n∑

r=0

=
∑
r∈Sδ

+
∑
r/∈Sδ

,

where the latter sum is therefore over all r such that | r
n − x| < δ. Having

split the summation into these two parts, which depend on a choice of δ
that we still have to make, we are now ready to estimate the difference
between f(x) and its Bernstein polynomial. Using (7.3), we have

f(x) −Bn(f ;x) =
n∑

r=0

(
f(x) − f

( r
n

))(
n
r

)
xr(1 − x)n−r,

and hence

f(x) −Bn(f ;x) =
∑
r∈Sδ

(
f(x) − f

( r
n

))(
n
r

)
xr(1 − x)n−r

+
∑
r/∈Sδ

(
f(x) − f

( r
n

))(
n
r

)
xr(1 − x)n−r.

We thus obtain the inequality

|f(x) −Bn(f ;x)| ≤
∑
r∈Sδ

∣∣∣f(x) − f
( r
n

)∣∣∣
(
n
r

)
xr(1 − x)n−r

+
∑
r/∈Sδ

∣∣∣f(x) − f
( r
n

)∣∣∣
(
n
r

)
xr(1 − x)n−r.
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Since f ∈ C[0, 1], it is bounded on [0, 1], and we have |f(x)| ≤ M , for some
M > 0. We can therefore write∣∣∣f(x) − f

( r
n

)∣∣∣ ≤ 2M

for all r and all x ∈ [0, 1], and so

∑
r∈Sδ

∣∣∣f(x) − f
( r
n

)∣∣∣
(
n
r

)
xr(1 − x)n−r ≤ 2M

∑
r∈Sδ

(
n
r

)
xr(1 − x)n−r.

On using (7.24) we obtain

∑
r∈Sδ

∣∣∣f(x) − f
( r
n

)∣∣∣
(
n
r

)
xr(1 − x)n−r ≤ M

2nδ2
. (7.25)

Since f is continuous, it is also uniformly continuous, on [0, 1]. Thus, cor-
responding to any choice of ε > 0 there is a number δ > 0, depending on ε
and f , such that

|x− x′| < δ ⇒ |f(x) − f(x′)| < ε

2
,

for all x, x′ ∈ [0, 1]. Thus, for the sum over r /∈ Sδ, we have

∑
r/∈Sδ

∣∣∣f(x) − f
( r
n

)∣∣∣
(
n
r

)
xr(1 − x)n−r <

ε

2

∑
r/∈Sδ

(
n
r

)
xr(1 − x)n−r

<
ε

2

n∑
r=0

(
n
r

)
xr(1 − x)n−r,

and hence, again using (7.3), we find that

∑
r/∈Sδ

∣∣∣f(x) − f
( r
n

)∣∣∣
(
n
r

)
xr(1 − x)n−r <

ε

2
. (7.26)

On combining (7.25) and (7.26), we obtain

|f(x) −Bn(f ;x)| < M

2nδ2
+
ε

2
.

It follows from the line above that if we choose N > M/(εδ2), then

|f(x) −Bn(f ;x)| < ε

for all n ≥ N , and this completes the proof. ■

Using the methods employed in the above proof, we can show, with a
little greater generality, that if f is merely bounded on [0, 1], the sequence
(Bn(f ;x))∞

n=1 converges to f(x) at any point x where f is continuous. We
will now discuss some further properties of the Bernstein polynomials.
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Theorem 7.1.6 If f ∈ Ck[0, 1], for some integer k ≥ 0, then B
(k)
n (f ;x)

converges uniformly to f (k)(x) on [0, 1].

Proof. We know from Theorem 7.1.5 that the above result holds for k = 0.
For k ≥ 1 we begin with the expression for B(k)

n+k(f ;x) given in (7.16), and
write

∆kf

(
r

n+ k

)
=

f (k)(ξr)
(n+ k)k

,

where r/(n+ k) < ξr < (r + k)/(n+ k), as we did similarly in (7.21). We
then approximate f (k)(ξr), writing

f (k)(ξr) = f (k)
( r
n

)
+
(
f (k)(ξr) − f (k)

( r
n

))
.

We thus obtain

n!(n+ k)k

(n+ k)!
B

(k)
n+k(f ;x) = S1(x) + S2(x), (7.27)

say, where

S1(x) =
n∑

r=0

f (k)
( r
n

)(
n
r

)
xr(1 − x)n−r

and

S2(x) =
n∑

r=0

(
f (k)(ξr) − f (k)

( r
n

))(
n
r

)
xr(1 − x)n−r.

In S2(x), we can make |ξr − r
n | < δ for all r, for any choice of δ > 0, by

taking n sufficiently large. Also, given any ε > 0, we can choose a positive
value of δ such that ∣∣∣f (k)(ξr) − f (k)

( r
n

)∣∣∣ < ε,

for all r, because of the uniform continuity of f (k). Thus S2(x) → 0 uni-
formly on [0, 1] as n → ∞. We can easily verify that

n!(n+ k)k

(n+ k)!
→ 1 as n → ∞,

and we see from Theorem 7.1.5 with f (k) in place of f that S1(x) converges
uniformly to f (k)(x) on [0, 1]. This completes the proof. ■

As we have just seen, not only does the Bernstein polynomial for f
converge to f , but derivatives converge to derivatives. This is a most re-
markable property. In contrast, consider again the sequence of interpolating
polynomials (p∗

n) for ex that appear in Example 2.4.4. Although this se-
quence of polynomials converges uniformly to ex on [−1, 1], this does not
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hold for their derivatives, because of the oscillatory nature of the error of
interpolation.

On comparing the complexity of the proofs of Theorems 7.1.5 and 7.1.6,
it may seem surprising that the additional work required to complete the
proof of Theorem 7.1.6 for k ≥ 1 is so little compared to that needed to
prove Theorem 7.1.5.
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FIGURE 7.3. A and B are the points on the chord CD and on the graph of the
convex function y = f(x), respectively, with abscissa x3 = λx1 + (1 − λ)x2.

We now state results concerning the Bernstein polynomials for a convex
function f . First we define convexity and show its connection with second-
order divided differences.

Definition 7.1.2 A function f is said to be convex on [a, b] if for any
x1, x2 ∈ [a, b],

λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2) (7.28)

for any λ ∈ [0, 1]. Geometrically, this is just saying that a chord connecting
any two points on the convex curve y = f(x) is never below the curve. This
is illustrated in Figure 7.3, where CD is such a chord, and the points A
and B have y-coordinates λf(x1) + (1 − λ)f(x2) and f(λx1 + (1 − λ)x2),
respectively. ■

If f is twice differentiable, f being convex is equivalent to f ′′ being non-
negative. Of course, functions can be convex without being differentiable.
For example, we can have a convex polygonal arc.

Theorem 7.1.7 A function f is convex on [a, b] if and only if all second-
order divided differences of f are nonnegative.

Proof. Since a divided difference is unchanged if we alter the order of its
arguments, as we see from the symmetric form (1.21), it suffices to consider
the divided difference f [x0, x1, x2] where a ≤ x0 < x1 < x2 ≤ b. Then we
obtain from the recurrence relation (1.22) that

f [x0, x1, x2] ≥ 0 ⇔ f [x1, x2] ≥ f [x0, x1]. (7.29)
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On multiplying the last inequality throughout by (x2 −x1)(x1 −x0), which
is positive, we find that both inequalities in (7.29) are equivalent to

(x1 − x0)(f(x2) − f(x1)) ≥ (x2 − x1)(f(x1) − f(x0)),

which is equivalent to

(x1 − x0)f(x2) + (x2 − x1)f(x0) ≥ (x2 − x0)f(x1). (7.30)

If we now divide throughout by x2 −x0 and write λ = (x2 −x1)/(x2 −x0),
we see that x1 = λx0 + (1 − λ)x2, and it follows from (7.30) that

λf(x0) + (1 − λ)f(x2) ≥ f(λx0 + (1 − λ)x2),

thus completing the proof. ■

The proofs of the following two theorems are held over until Section 7.3,
where we will state and prove generalizations of both results.

Theorem 7.1.8 If f(x) is convex on [0, 1], then

Bn(f ;x) ≥ f(x), 0 ≤ x ≤ 1, (7.31)

for all n ≥ 1. ■

Theorem 7.1.9 If f(x) is convex on [0, 1],

Bn−1(f ;x) ≥ Bn(f ;x), 0 ≤ x ≤ 1, (7.32)

for all n ≥ 2. The Bernstein polynomials are equal at x = 0 and x = 1,
since they interpolate f at these points. If f ∈ C[0, 1], the inequality in
(7.32) is strict for 0 < x < 1, for a given value of n, unless f is linear in
each of the intervals

[
r−1
n−1 ,

r
n−1

]
, for 1 ≤ r ≤ n − 1, when we have simply

Bn−1(f ;x) = Bn(f ;x). ■

Note that we have from Theorem 7.1.4 with k = 2 that if f ′′(x) ≥ 0, and
thus f is convex on [0, 1], then Bn(f ;x) is also convex on [0, 1]. In Section
7.3 we will establish the stronger result that Bn(f ;x) is convex on [0, 1],
provided that f is convex on [0, 1].

We conclude this section by stating two theorems concerned with esti-
mating the error f(x) − Bn(f ;x). The first of these is the theorem due to
Elizaveta V. Voronovskaya (1898–1972), which gives an asymptotic error
term for the Bernstein polynomials for functions that are twice differen-
tiable.

Theorem 7.1.10 Let f(x) be bounded on [0, 1]. Then, for any x ∈ [0, 1]
at which f ′′(x) exists,

lim
n→∞n(Bn(f ;x) − f(x)) =

1
2
x(1 − x)f ′′(x). ■ (7.33)
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See Davis [10] for a proof of Voronovskaya’s theorem.

Finally, there is the following result that gives an upper bound for the
error f(x)−Bn(f ;x) in terms of the modulus of continuity, which we defined
in Section 2.6.

Theorem 7.1.11 If f is bounded on [0, 1], then

‖f −Bnf‖ ≤ 3
2
ω

(
1√
n

)
, (7.34)

where ‖ · ‖ denotes the maximum norm on [0, 1]. ■

See Rivlin [48] for a proof of this theorem.

Example 7.1.4 Consider the Bernstein polynomial for f(x) = |x− 1
2 |,

Bn(f ;x) =
n∑

r=0

∣∣∣∣ rn − 1
2

∣∣∣∣
(
n
r

)
xr(1 − x)n−r.

The difference between Bn(f ;x) and f(x) at x = 1
2 is

1
2n

n∑
r=0

∣∣∣∣ rn − 1
2

∣∣∣∣
(
n
r

)
= en,

say. Let us now choose n to be even. We note that(
1
2

− r

n

)(
n
r

)
=
(
n− r

n
− 1

2

)(
n

n− r

)

for all r, and that the quantities on each side of the above equation are
zero when r = n/2. It follows that

2nen =
n∑

r=0

∣∣∣∣ rn − 1
2

∣∣∣∣
(
n
r

)
= 2

n/2∑
r=0

(
1
2

− r

n

)(
n
r

)
. (7.35)
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FIGURE 7.4. The function f(x) = |x − 1
2 | on [0, 1].
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Let us split the last summation into two. We obtain
n/2∑
r=0

(
n
r

)
=

1
2

((
n
n/2

)
+

n∑
r=0

(
n
r

))
=

1
2

(
n
n/2

)
+ 2n−1,

and since
r

n

(
n
r

)
=
(
n− 1
r − 1

)
, r ≥ 1,

we find that

2
n/2∑
r=0

r

n

(
n
r

)
= 2

n/2∑
r=1

(
n− 1
r − 1

)
=

n∑
r=1

(
n− 1
r − 1

)
= 2n−1.

It then follows from (7.35) that

en =
1

2n+1

(
n
n/2

)
∼ 1√

2πn
for n large. The last step follows on using Stirling’s formula for estimating
n! (see Problem 2.1.12). This shows that ‖f −Bnf‖ → 0 at least as slowly
as 1/

√
n for the function f(x) = |x− 1

2 |, where ‖ · ‖ denotes the maximum
norm on [0, 1]. ■

Problem 7.1.1 Show that

Bn(x3;x) = x3 +
1
n2x(1 − x)(1 + (3n− 2)x),

for all n ≥ 3.

Problem 7.1.2 Show that

Bn(eαx;x) = (xeα/n + (1 − x))n

for all integers n ≥ 1 and all real α.

Problem 7.1.3 Deduce from Definition 7.1.2, using induction on n, that
a function f is convex on [a, b] if and only if

n∑
r=0

λrf(xr) ≥ f

(
n∑

r=0

λrxr

)
,

for all n ≥ 0, for all xr ∈ [a, b], and for all λr ≥ 0 such that

λ0 + λ1 + · · · + λn = 1.

Problem 7.1.4 Find a function f and a real number λ such that f is a
polynomial of degree two and Bnf = λf . Also find a function f and a real
number λ such that f is a polynomial of degree three and Bnf = λf .

Problem 7.1.5 Verify Voronovskaya’s Theorem 7.1.10 directly for the two
functions x2 and x3.
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7.2 The Monotone Operator Theorem

In the 1950s, H. Bohman [5] and P. P. Korovkin [31] obtained an amazing
generalization of Bernstein’s Theorem 7.1.5. They found that as far as
convergence is concerned, the crucial properties of the Bernstein operator
Bn are that Bnf → f uniformly on [0, 1] for f = 1, x, and x2, and that
Bn is a monotone linear operator. (See Definition 7.1.1.) We now state the
Bohman–Korovkin theorem, followed by a proof based on that given by
Cheney [7].

Theorem 7.2.1 Let (Ln) denote a sequence of monotone linear operators
that map a function f ∈ C[a, b] to a function Lnf ∈ C[a, b], and let Lnf →
f uniformly on [a, b] for f = 1, x, and x2. Then Lnf → f uniformly on
[a, b] for all f ∈ C[a, b].

Proof. Let us define φt(x) = (t − x)2, and consider (Lnφt)(t). Thus we
apply the linear operator Ln to φt, regarded as a function of x, and then
evaluate Lnφt (which is also a function of x) at x = t. Since Ln is linear,
we obtain

(Lnφt)(t) = t2(Lng0)(t) − 2t(Lng1)(t) + (Lng2)(t),

where
g0(x) = 1, g1(x) = x, g2(x) = x2.

Hence

(Lnφt)(t) = t2[(Lng0)(t) − 1] − 2t[(Lng1)(t) − t] + [(Lng2)(t) − t2].

On writing ‖ · ‖ to denote the maximum norm on [a, b], we deduce that

‖Lnφt‖ ≤ M2‖Lng0 − g0‖ + 2M‖Lng1 − g1‖ + ‖Lng2 − g2‖,

where M = max(|a|, |b|). Since for i = 0, 1, and 2, each term ‖Lngi − gi‖
may be made as small as we please, by taking n sufficiently large, it follows
that

(Lnφt)(t) → 0 as n → ∞, (7.36)

uniformly in t.
Now let f be any function in C[a, b]. Given any ε > 0, it follows from

the uniform continuity of f that there exists a δ > 0 such that for all
t, x ∈ [a, b],

|t− x| < δ ⇒ |f(t) − f(x)| < ε. (7.37)

On the other hand, if |t− x| ≥ δ, we have

|f(t) − f(x)| ≤ 2‖f‖ ≤ 2‖f‖ (t− x)2

δ2
= αφt(x), (7.38)
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say, where α = 2‖f‖/δ2 > 0. Note that φt(x) ≥ 0. Then, from (7.37) and
(7.38), we see that for all t, x ∈ [a, b],

|f(t) − f(x)| ≤ ε+ αφt(x),

and so
−ε− αφt(x) ≤ f(t) − f(x) ≤ ε+ αφt(x). (7.39)

At this stage we make use of the monotonicity of the linear operator Ln. We
apply Ln to each term in (7.39), regarded as a function of x, and evaluate
each resulting function of x at the point t, to give

−ε(Lng0)(t) − α(Lnφt)(t) ≤ f(t)(Lng0)(t) − (Lnf)(t)
≤ ε(Lng0)(t) + α(Lnφt)(t).

Observe that (Lnφt)(t) ≥ 0, since Ln is monotone and φt(x) ≥ 0. Thus we
obtain the inequality

|f(t)(Lng0)(t) − (Lnf)(t)| ≤ ε‖Lng0‖ + α(Lnφt)(t). (7.40)

If we now write Lng0 = 1 + (Lng0 − g0), we obtain

‖Lng0‖ ≤ 1 + ‖Lng0 − g0‖,
and so derive the inequality

|f(t)(Lng0)(t) − (Lnf)(t)| ≤ ε(1 + ‖Lng0 − g0‖) + α(Lnφt)(t). (7.41)

We now write

f(t) − (Lnf)(t) = [f(t)(Lng0)(t) − (Lnf)(t)] + [f(t) − f(t)(Lng0)(t)],

and hence obtain the inequality

|f(t) − (Lnf)(t)| ≤ |f(t)(Lng0)(t) − (Lnf)(t)|
+|f(t) − f(t)(Lng0)(t)|. (7.42)

In (7.41) we have already obtained an upper bound for the first term on
the right of (7.42), and the second term satisfies the inequality

|f(t) − f(t)(Lng0)(t)| ≤ ‖f‖ ‖Lng0 − g0‖. (7.43)

Then, on substituting the two inequalities (7.41) and (7.43) into (7.42), we
find that

|f(t) − (Lnf)(t)| ≤ ε+ (‖f‖ + ε) ‖Lng0 − g0‖ + α(Lnφt)(t). (7.44)

On the right side of the above inequality we have ε plus two nonnegative
quantities, each of which can be made less than ε for all n greater than
some sufficiently large number N , and so

|f(t) − (Lnf)(t)| < 3ε,
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uniformly in t, for all n > N . This completes the proof. ■

Remark If we go through the above proof again, we can see that the
following is a valid alternative version of the statement of Theorem 7.2.1.
We will find this helpful when we discuss the Hermite–Fejér operator.

Let (Ln) denote a sequence of monotone linear operators that map func-
tions f ∈ C[a, b] to functions Lnf ∈ C[a, b]. Then if Lng0 → g0 uniformly
on [0, 1], and (Lnφt)(t) → 0 uniformly in t on [0, 1], where g0 and φt are
defined in the proof of Theorem 7.2.1, it follows that Lnf → f uniformly
on [0, 1] for all f ∈ C[a, b]. ■

Example 7.2.1 We see from Examples 7.1.1 and 7.1.2 that

Bn(1;x) = 1, Bn(x;x) = x, and Bn(x2;x) = x2 +
1
n
x(1 − x).

Thus Bn(f ;x) converges uniformly to f(x) on [0, 1] for f(x) = 1, x, and
x2, and since the Bernstein operator Bn is also linear and monotone, it
follows from the Bohman–Korovkin Theorem 7.2.1 that Bn(f ;x) converges
uniformly to f(x) on [0, 1] for all f ∈ C[0, 1], as we already found in Bern-
stein’s Theorem 7.1.5. ■

We now recall the Hermite interpolating polynomial p2n+1, defined by
(1.38). If we write

q2n+1(x) =
n∑

i=0

[aiui(x) + bivi(x)], (7.45)

where ui and vi are defined in (1.39) and (1.40), then

q2n+1(xi) = ai, q′
2n+1(xi) = bi, 0 ≤ i ≤ n. (7.46)

If we now choose

ai = f(xi), bi = 0, 0 ≤ i ≤ n, (7.47)

where the xi are the zeros of the Chebyshev polynomial Tn+1 and f is a
given function defined on [−1, 1], it follows that

q2n+1(x) =
n∑

i=0

f(xi)ui(x) = (Lnf)(x), (7.48)

say, where ui is given by (2.103), and so

(Lnf)(x) =
(
Tn+1(x)
n+ 1

)2 n∑
i=0

f(xi)
1 − xix

(x− xi)2
. (7.49)
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We call Ln the Hermite–Fejér operator. It is clear that Ln is a linear oper-
ator, and since

0 ≤ 1 − xix ≤ 2 for − 1 ≤ x ≤ 1, (7.50)

for all i, we see that Ln is monotone. We also note that Ln reproduces
the function 1, since the derivative of 1 is zero and (Ln1)(x) interpolates
1 on the Chebyshev zeros. It is also obvious that Ln does not reproduce
the functions x and x2, since their first derivatives are not zero on all the
Chebyshev zeros. Let us apply Ln to the function φt(x) = (t − x)2. We
obtain

(Lnφt)(t) =
(
Tn+1(t)
n+ 1

)2 n∑
i=0

(1 − xit),

and it follows from (7.50) that

|(Lnφt)(t)| ≤ 2
n+ 1

,

so that (Lnφt)(t) → 0 uniformly in t on [−1, 1]. Thus, in view of the
alternative statement of Theorem 7.2.1, given in the remark following the
proof of the theorem, we deduce the following result as a special case of
the Bohman–Korovkin Theorem 7.2.1.

Theorem 7.2.2 Let (Ln) denote the sequence of Hermite–Fejér operators,
defined by (7.49). Then Lnf → f uniformly for all f ∈ C[−1, 1]. ■

Theorem 7.2.2, like Bernstein’s Theorem 7.1.5, gives a constructive proof
of the Weierstrass theorem. A direct proof of Theorem 7.2.2, which does
not explicitly use the Bohman–Korovkin theorem, is given in Davis [10].
We will give another application of the Bohman–Korovkin theorem in the
next section.

We can show (see Problem 7.2.1) that the only linear monotone operator
that reproduces 1, x, and x2, and thus all quadratic polynomials, is the
identity operator. This puts into perspective the behaviour of the Bernstein
operator, which reproduces linear polynomials, but does not reproduce x2,
and the Hermite–Fejér operator, which does not reproduce x or x2.

Problem 7.2.1 Let L denote a linear monotone operator acting on func-
tions f ∈ C[a, b] that reproduces 1, x, and x2. Show that (Lnφt)(t) = 0,
where φt(x) = (t − x)2. By working through the proof of Theorem 7.2.1
show that for a given f ∈ C[a, b], (7.40) yields

|f(t) − (Lf)(t)| ≤ ε

for all t ∈ [a, b] and any given ε > 0. Deduce that Lf = f for all f ∈ C[a, b],
and thus L is the identity operator.
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Problem 7.2.2 Deduce from Theorem 7.2.2 that

lim
n→∞

(
Tn+1(x)
n+ 1

)2 n∑
i=0

1 − xix

(x− xi)2
= 1,

where the xi denote the zeros of Tn+1.

7.3 On the q-Integers

In view of the many interesting properties of the Bernstein polynomials,
it is not surprising that several generalizations have been proposed. In
this section we discuss a generalization based on the q-integers, which are
defined in Section 1.5. Let us write

Bn(f ;x) =
n∑

r=0

fr

[
n
r

]
xr

n−r−1∏
s=0

(1 − qsx) (7.51)

for each positive integer n, where fr denotes the value of the function f at
x = [r]/[n], the quotient of the q-integers [r] and [n], and

[
n
r

]
denotes

a q-binomial coefficient, defined in (1.116). Note that an empty product
in (7.51) denotes 1. When we put q = 1 in (7.51), we obtain the classical
Bernstein polynomial, defined by (7.1), and in this section we consistently
write Bn(f ;x) to mean the generalized Bernstein polynomial, defined by
(7.51). In Section 7.5, whenever we need to emphasize the dependence of
the generalized Bernstein polynomial on the parameter q, we will write
Bq

n(f ;x) in place of Bn(f ;x).
We see immediately from (7.51) that

Bn(f ; 0) = f(0) and Bn(f ; 1) = f(1), (7.52)

giving interpolation at the endpoints, as we have for the classical Bernstein
polynomials. It is shown in Section 8.2 that every q-binomial coefficient is
a polynomial in q (called a Gaussian polynomial) with coefficients that are
all positive integers. It is thus clear that Bn, defined by (7.51), is a linear
operator and, with 0 < q < 1, it is a monotone operator that maps functions
defined on [0, 1] to Pn. The following theorem involves q-differences, which
are defined in Section 1.5. This result yields Theorem 7.1.1 when q = 1.

Theorem 7.3.1 The generalized Bernstein polynomial may be expressed
in the form

Bn(f ;x) =
n∑

r=0

[
n
r

]
∆r

qf0 x
r, (7.53)

where
∆r

qfj = ∆r−1
q fj+1 − qr−1∆r−1

q fj , r ≥ 1,

with ∆0
qfj = fj = f([j]/[n]).
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Proof. Here we require the identity,

n−r−1∏
s=0

(1 − qsx) =
n−r∑
s=0

(−1)sqs(s−1)/2
[
n− r
s

]
xs, (7.54)

which is equivalent to (8.12) and reduces to a binomial expansion when we
put q = 1. Beginning with (7.51), and expanding the term consisting of the
product of the factors (1 − qsx), we obtain

Bn(f ;x) =
n∑

r=0

fr

[
n
r

]
xr

n−r∑
s=0

(−1)sqs(s−1)/2
[
n− r
s

]
xs.

Let us put t = r + s. Then, since
[
n
r

] [
n− r
s

]
=
[
n
t

] [
t
r

]
,

we may write the latter double sum as

n∑
t=0

[
n
t

]
xt

t∑
r=0

(−1)t−rq(t−r)(t−r−1)/2
[
t
r

]
fr =

n∑
t=0

[
n
t

]
∆t

qf0 x
t,

on using the expansion for a higher-order q-difference, as in (1.121). This
completes the proof. ■

We see from (1.33) and (1.113) that

∆k
qf(x0)

qk(k−1)/2 [k]!
= f [x0, x1, . . . , xk] =

f (k)(ξ)
k!

,

where xj = [j] and ξ ∈ (x0, xk). Thus q-differences of the monomial xk of
order greater than k are zero, and we see from Theorem 7.3.1 that for all
n ≥ k, Bn(xk;x) is a polynomial of degree k.

We deduce from Theorem 7.3.1 that

Bn(1;x) = 1. (7.55)

For f(x) = x we have ∆0
qf0 = f0 = 0 and ∆1

qf0 = f1 − f0 = 1/[n] , and it
follows from Theorem 7.3.1 that

Bn(x;x) = x. (7.56)

For f(x) = x2 we have ∆0
qf0 = f0 = 0, ∆1

qf0 = f1 − f0 = 1/[n]2 , and

∆2
qf0 = f2 − (1 + q)f1 + qf0 =

(
[2]
[n]

)2

− (1 + q)
(

[1]
[n]

)2

.
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We then find from Theorem 7.3.1 that

Bn(x2;x) = x2 +
x(1 − x)

[n]
. (7.57)

The above expressions for Bn(1;x), Bn(x;x), and Bn(x2;x) generalize their
counterparts given earlier for the case q = 1 and, with the help of Theorem
7.2.1, lead us to the following theorem on the convergence of the generalized
Bernstein polynomials.

Theorem 7.3.2 Let (qn) denote a sequence such that 0 < qn < 1 and
qn → 1 as n → ∞. Then, for any f ∈ C[0, 1], Bn(f ;x) converges uniformly
to f(x) on [0, 1], where Bn(f ;x) is defined by (7.51) with q = qn.

Proof. We saw above from (7.55) and (7.56) that Bn(f ;x) = f(x) for
f(x) = 1 and f(x) = x, and since qn → 1 as n → ∞, we see from (7.57) that
Bn(f ;x) converges uniformly to f(x) for f(x) = x2. Also, since 0 < qn < 1,
it follows that Bn is a monotone operator, and the proof is completed by
applying the Bohman–Korovkin Theorem 7.2.1. ■

We now state and prove the following generalizations of Theorems 7.1.8
and 7.1.9.

Theorem 7.3.3 If f(x) is convex on [0, 1], then

Bn(f ;x) ≥ f(x), 0 ≤ x ≤ 1, (7.58)

for all n ≥ 1 and for 0 < q ≤ 1.

Proof. For each x ∈ [0, 1], let us define

xr =
[r]
[n]

and λr =
[
n
r

]
xr

n−r+1∏
s=0

(1 − qsx), 0 ≤ r ≤ n.

We see that λr ≥ 0 when 0 < q ≤ 1 and x ∈ [0, 1], and note from (7.55)
and (7.56), respectively, that

λ0 + λ1 + · · · + λn = 1

and
λ0x0 + λ1x1 + · · · + λnxn = x.

Then we obtain from the result in Problem 7.1.3 that if f is convex on
[0, 1],

Bn(f ;x) =
n∑

r=0

λrf(xr) ≥ f

(
n∑

r=0

λrxr

)
= f(x),

and this completes the proof. ■
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Theorem 7.3.4 If f(x) is convex on [0, 1],

Bn−1(f ;x) ≥ Bn(f ;x), 0 ≤ x ≤ 1, (7.59)

for all n ≥ 2, where Bn−1(f ;x) and Bn(f ;x) are evaluated using the same
value of the parameter q. The Bernstein polynomials are equal at x = 0 and
x = 1, since they interpolate f at these points. If f ∈ C[0, 1], the inequality
in (7.59) is strict for 0 < x < 1 unless, for a given value of n, the function
f is linear in each of the intervals

[
[r−1]
[n−1] ,

[r]
[n−1]

]
, for 1 ≤ r ≤ n − 1, when

we have simply Bn−1(f ;x) = Bn(f ;x).

Proof. In the proof given by Davis [10] for the special case of this theorem
when q = 1, the difference between two consecutive Bernstein polynomials
is expressed in terms of powers of x/(1 − x). This is not appropriate for
q �= 1, and our proof follows that given by Oruç and Phillips [40]. For
0 < q < 1, let us write

(Bn−1(f ;x) −Bn(f ;x))
n−1∏
s=0

(1 − qsx)−1

=
n−1∑
r=0

f

(
[r]

[n− 1]

)[
n− 1
r

]
xr

n−1∏
s=n−r−1

(1 − qsx)−1

−
n∑

r=0

f

(
[r]
[n]

)[
n
r

]
xr

n−1∏
s=n−r

(1 − qsx)−1.

We now split the first of the above summations into two, writing

xr
n−1∏

s=n−r−1

(1 − qsx)−1 = ψr(x) + qn−r−1ψr+1(x),

say, where

ψr(x) = xr
n−1∏

s=n−r

(1 − qsx)−1. (7.60)

On combining the resulting three summations, the terms in ψ0(x) and
ψn(x) cancel, and we obtain

(Bn−1(f ;x) −Bn(f ;x))
n−1∏
s=0

(1 − qsx)−1 =
n−1∑
r=1

[
n
r

]
arψr(x), (7.61)

where

ar =
[n− r]

[n]
f

(
[r]

[n− 1]

)
+ qn−r [r]

[n]
f

(
[r − 1]
[n− 1]

)
− f

(
[r]
[n]

)
. (7.62)
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It is clear from (7.60) that each ψr(x) is nonnegative on [0, 1] for 0 ≤ q ≤ 1,
and thus from (7.61), it will suffice to show that each ar is nonnegative.
Let us write

λ =
[n− r]

[n]
, x1 =

[r]
[n− 1]

, and x2 =
[r − 1]
[n− 1]

.

It then follows that

1 − λ = qn−r [r]
[n]

and λx1 + (1 − λ)x2 =
[r]
[n]
,

and we see immediately, on comparing (7.62) and (7.28), that

ar = λf(x1) + (1 − λ)f(x2) − f(λx1 + (1 − λ)x2) ≥ 0,

and so Bn−1(f ;x) ≥ Bn(f ;x). We obviously have equality at x = 0 and
x = 1, since all Bernstein polynomials interpolate f at these endpoints.
The inequality will be strict for 0 < x < 1 unless every ar is zero; this can
occur only when f is linear in each of the intervals between consecutive
points [r]/[n− 1], 0 ≤ r ≤ n− 1, when we have Bn−1(f ;x) = Bn(f ;x) for
0 < x < 1. This completes the proof. ■

We now give an algorithm, first published in 1996 (see Phillips [42]), for
evaluating the generalized Bernstein polynomials. When q = 1 it reduces
to the well-known de Casteljau algorithm (see Hoschek and Lasser [26]) for
evaluating the classical Bernstein polynomials.

Algorithm 7.3.1 This algorithm begins with the value of q and the values
of f at the n+ 1 points [r]/[n], 0 ≤ r ≤ n, and computes Bn(f ;x) = f

[n]
0 ,

which is the final number generated by the algorithm.

input: q; f([0]/[n]), f([1]/[n]), . . . , f([n]/[n])
for r = 0 to n
f

[0]
r := f([r]/[n])

next r
for m = 1 to n

for r = 0 to n−m
f

[m]
r := (qr − qm−1x)f [m−1]

r + xf
[m−1]
r+1

next r
next m

output: f
[n]
0 = Bn(f ;x) ■

The following theorem justifies the above algorithm.

Theorem 7.3.5 For 0 ≤ m ≤ n and 0 ≤ r ≤ n−m, we have

f [m]
r =

m∑
t=0

fr+t

[
m
t

]
xt

m−t−1∏
s=0

(qr − qsx), (7.63)
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and, in particular,
f

[n]
0 = Bn(f ;x). (7.64)

Proof. We use induction on m. From the initial conditions in the algorithm,
f

[0]
r := f([r]/[n]) = fr, 0 ≤ r ≤ n, it is clear that (7.63) holds for m = 0

and 0 ≤ r ≤ n. Note that an empty product in (7.63) denotes 1. Let us
assume that (7.63) holds for some m such that 0 ≤ m < n, and for all r
such that 0 ≤ r ≤ n−m. Then, for 0 ≤ r ≤ n−m− 1, it follows from the
algorithm that

f [m+1]
r = (qr − qmx)f [m]

r + xf
[m]
r+1,

and using (7.63), we obtain

f [m+1]
r = ( qr − qmx)

m∑
t=0

fr+t

[
m
t

]
xt

m−t−1∏
s=0

(qr − qsx)

+ x

m∑
t=0

fr+t+1

[
m
t

]
xt

m−t−1∏
s=0

(qr+1 − qsx).

The coefficient of fr on the right of the latter equation is

(qr − qmx)
m−1∏
s=0

(qr − qsx) =
m∏

s=0

(qr − qsx),

and the coefficient of fr+m+1 is xm+1. For 1 ≤ t ≤ m, we find that the
coefficient of fr+t is

(qr− qmx)
[
m
t

]
xt

m−t−1∏
s=0

(qr − qsx) +
[

m
t− 1

]
xt

m−t∏
s=0

(qr+1 − qsx)

= atx
t

m−t−1∏
s=0

(qr − qsx),

say. We see that

at = (qr − qmx)
[
m
t

]
+ qm−t(qr+1 − x)

[
m
t− 1

]

and hence

at = qr

([
m
t

]
+ qm+1−t

[
m
t− 1

])
− qm−tx

(
qt

[
m
t

]
+
[

m
t− 1

])
.

It is easily verified (see (8.7) and (8.8)) that
[
m
t

]
+ qm+1−t

[
m
t− 1

]
= qt

[
m
t

]
+
[

m
t− 1

]
=
[
m+ 1
t

]



7.3 On the q-Integers 273

and thus

at = (qr − qm−tx)
[
m+ 1
t

]
.

Hence the coefficient of fr+t, for 1 ≤ t ≤ m, in the above expression for
f

[m+1]
r is [

m+ 1
t

]
xt

m−t∏
s=0

(qr − qsx),

and we note that this also holds for t = 0 and t = m+ 1. Thus we obtain

f [m+1]
r =

m+1∑
t=0

fr+t

[
m+ 1
t

]
xt

m−t∏
s=0

(qr − qsx),

and this completes the proof by induction. ■

The above algorithm for evaluating Bn(f ;x) is not unlike Algorithm 1.1.1
(Neville–Aitken). In the latter algorithm, each quantity that is computed
is, like the final result, an interpolating polynomial on certain abscissas.
Similarly, in Algorithm 7.3.1, as we see in (7.63), each intermediate number
f

[m]
r has a form that resembles that of the final number f [n]

0 = Bn(f ;x).
We now show that each f

[m]
r can also be expressed simply in terms of

q-differences, as we have for Bn(f ;x) in (7.53).

Theorem 7.3.6 For 0 ≤ m ≤ n and 0 ≤ r ≤ n−m, we have

f [m]
r =

m∑
s=0

q(m−s)r
[
m
s

]
∆s

qfr x
s. (7.65)

Proof. We may verify (7.65) by induction on m, using the recurrence rela-
tion in Algorithm 7.3.1. Alternatively, we can derive (7.65) from (7.63) as
follows. First we write

m−t−1∏
s=0

(qr − qsx) = q(m−t)r
m−t−1∏

s=0

(1 − qsy),

where y = x/qr, and we find with the aid of (7.54) that

m−t−1∏
s=0

(qr − qsx) =
m−t∑
j=0

(−1)jqj(j−1)/2+(m−t−j)r
[
m− t
j

]
xj .

On substituting this into (7.63), we obtain

f [m]
r =

m∑
t=0

fr+t

[
m
t

]
xt

m−t∑
j=0

(−1)jqj(j−1)/2+(m−t−j)r
[
m− t
j

]
xj .
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If we now let s = j + t, we may rewrite the above double summation as
m∑

s=0

q(m−s)r
[
m
s

]
xs

s∑
j=0

(−1)jqj(j−1)/2
[
s
j

]
fr+s−j ,

which, in view of (1.121), gives

f [m]
r =

m∑
s=0

q(m−s)r
[
m
s

]
∆s

qfr x
s,

and this completes the proof. ■

Problem 7.3.1 Verify (7.65) directly by induction on m, using the recur-
rence relation in Algorithm 7.3.1.

Problem 7.3.2 Work through Algorithm 7.3.1 for the case n = 2, and so
verify directly that f [2]

0 = B2(f ;x).

7.4 Total Positivity

We begin this section by defining a totally positive matrix, and discuss
the nature of linear transformations when the matrix is totally positive.
We will apply these ideas in Section 7.5 to justify further properties of the
Bernstein polynomials concerned with shape, such us convexity.

Definition 7.4.1 A real matrix A is called totally positive if all its minors
are nonnegative, that is,

A
(

i1, i2, . . . , ik
j1, j2, . . . , jk

)
= det



ai1,j1 · · · ai1,jk

...
...

aik,j1 · · · aik,jk


 ≥ 0, (7.66)

for all i1 < i2 < · · · < ik and all j1 < j2 < · · · < jk. We say that A is
strictly totally positive if all its minors are positive, so that ≥ is replaced
by > in (7.66). ■

It follows, on putting k = 1 in (7.66), that a necessary condition for a
matrix to be totally positive is that all its elements are nonnegative.

Theorem 7.4.1 A real matrix A = (aij) is totally positive if

A
(

i, i+ 1, . . . , i+ k
j, j + 1, . . . , j + k

)
≥ 0 for all i, j, and k. (7.67)

Similarly, the matrix A is strictly totally positive if the minors given in
(7.67), which are formed from consecutive rows and columns, are all posi-
tive. ■
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For a proof, see Karlin [28]. In view of Theorem 7.4.1, we can determine
whether A is totally positive or strictly totally positive by testing the pos-
itivity of only those minors that are formed from consecutive rows and
columns, rather than having to examine all minors.

Example 7.4.1 Let us consider the Vandermonde matrix

V = V(x0, . . . , xn) =




1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

...
...

...
...

...
1 xn x2

n · · · xn
n


 . (7.68)

As we showed in Chapter 1 (see Problem 1.1.1),

detV(x0, . . . , xn) =
∏
i>j

(xi − xj). (7.69)

Let 0 < x0 < x1 < · · · < xn. Then we see from (7.69) that detV > 0, and
we now prove that V is strictly totally positive. Using Theorem 7.4.1, it is
sufficient to show that the minors

det




xj
i xj+1

i · · · xj+k
i

xj
i+1 xj+1

i+1 · · · xj+k
i+1

...
...

...
xj

i+k xj+1
i+k · · · xj+k

i+k




are positive for all nonnegative i, j, k such that i+k, j+k ≤ n. On removing
common factors from its rows, the above determinant may be expressed as

(xi · · ·xi+k)j detV(xi, . . . , xi+k) > 0,

since
detV(xi, . . . , xi+k) =

∏
i≤r<s≤i+k

(xs − xr) > 0.

This completes the proof that V is strictly totally positive. ■

If A = BC, where A, B, and C denote matrices of orders m×n,m× k,
and k × n, respectively, then

A
(
i1, . . . , ip
j1, . . . , jp

)
=
∑ · · ·∑
β1<···<βp

B
(
i1, . . . , ip
β1, . . . , βp

)
C
(
β1, . . . , βp

j1, · · · , jp
)
. (7.70)

This is known as the Cauchy–Binet determinant identity. It follows imme-
diately from this most useful identity that the product of totally positive
matrices is a totally positive matrix, and the product of strictly totally
positive matrices is a strictly totally positive matrix.
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Definition 7.4.2 Let v denote the sequence (vi), which may be finite or
infinite. Then we denote by S−(v) the number of strict sign changes in the
sequence v. ■

For example, S−(1,−2, 3,−4, 5,−6) = 5, S−(1, 0, 0, 1,−1) = 1, and
S−(1,−1, 1,−1, 1,−1, . . .) = ∞, where the last sequence alternates +1 and
−1 indefinitely. It is clear that inserting zeros into a sequence, or deleting
zeros from a sequence, does not alter the number of changes of sign. Also,
deleting terms of a sequence does not increase the number of changes of
sign. We use the same notation to denote sign changes in a function.

Definition 7.4.3 Let

vi =
n∑

k=0

aikuk, i = 0, 1, . . . ,m,

where the uk and the aik, and thus the vi, are all real. This linear trans-
formation is said to be variation-diminishing if

S−(v) ≤ S−(u). ■

Definition 7.4.4 A matrix A, which may be finite or infinite, is said to
be m-banded if there exists an integer l such that aij �= 0 implies that
l ≤ j − i ≤ l +m. ■

This is equivalent to saying that all the nonzero elements of A lie on
m + 1 diagonals. We will say that a matrix A is banded if it is m-banded
for some m. Note that every finite matrix is banded. We have already
met 1-banded and 2-banded (tridiagonal) matrices in Chapter 6. In this
section we will be particularly interested in 1-banded matrices, also called
bidiagonal matrices, because of Theorem 7.4.3 below.

We now come to the first of the main results of this section.

Theorem 7.4.2 If T is a totally positive banded matrix and v is any
vector for which Tv is defined, then

S−(Tv) ≤ S−(v). ■

For a proof of this theorem see Goodman [22].
When we first encounter it, the question of whether a linear transfor-

mation is variation-diminishing may not seem very interesting. However,
building on the concept of a variation-diminishing linear transformation,
we will see in Section 7.5 that the number of sign changes in a function f
defined on [0, 1] is not increased if we apply a Bernstein operator, and we
say that Bernstein operators are shape-preserving. This property does not
always hold, for example, for interpolating operators.
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Example 7.4.2 Let v denote an infinite real sequence for which S−(v) is
finite. Consider the sequence w = (wi)∞

i=0 defined by

wi = vi + vi−1 for i ≥ 1, and w0 = v0.

Then w = Tv, where

T =




1 0 0 0 · · ·
1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1 · · ·
...

...
...

...
...



.

Let us consider the minors of T constructed from consecutive rows and
columns. Any such minor whose leading (top left) element is 0 has either a
whole row or a whole column of zeros, and so the minor is zero. It is also not
hard to see that any minor constructed from consecutive rows and columns
whose leading element is 1 has itself the value 1. Thus, by Theorem 7.4.1,
the matrix T is totally positive, and so we deduce from Theorem 7.4.2 that
S−(w) = S−(Tv) ≤ S−(v). ■

Theorem 7.4.3 A finite matrix is totally positive if and only if it is a
product of 1-banded matrices with nonnegative elements. ■

For a proof of this theorem, see de Boor and Pinkus [13]. An immediate con-
sequence of Theorem 7.4.3 is that the product of totally positive matrices is
totally positive, as we have already deduced above from the Cauchy–Binet
identity.

Example 7.4.3 To illustrate Theorem 7.4.3, consider the 1-banded fac-
torization

 1 1 1

1 2 4
1 3 9


 =


 1 0 0

0 1 0
0 1 1




 1 0 0

1 1 0
0 1 1




 1 1 0

0 1 2
0 0 2




 1 0 0

0 1 1
0 0 1


 .

The four matrices in the above product are indeed all 1-banded matrices
with nonnegative elements, and their product is totally positive. ■

We now state a theorem, and give a related example, concerning the
factorization of a matrix into the product of lower and upper triangular
matrices.

Theorem 7.4.4 A matrix A is strictly totally positive if and only if it can
be expressed in the form A = LU where L is a lower triangular matrix,
U is an upper triangular matrix, and both L and U are totally positive
matrices. ■
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For a proof, see Cryer [9].

Example 7.4.4 To illustrate Theorem 7.4.4, we continue Example 7.4.3,
in which the matrix

A =


 1 1 1

1 2 4
1 3 9




is expressed as a product of four 1-banded matrices. If we multiply the first
two of these 1-banded matrices, and also multiply the third and fourth, we
obtain the LU factorization

A =


 1 0 0

1 1 0
1 2 1




 1 1 1

0 1 3
0 0 2


 = LU,

and it is easy to verify that L and U are both totally positive. ■

The matrix A in Example 7.4.4 is the 3×3 Vandermonde matrix V(1, 2, 3).
In Section 1.2 we gave (see Theorem 1.2.3) the LU factorization of the
general Vandermonde matrix.

Example 7.4.5 Let

A =


 1 0 1

1 0 1
0 0 0


 .

Then we can easily verify that A is totally positive, and it is obviously not
strictly totally positive. We give two different LU factorizations of A:

A = LU =


 1 0 0

1 0 0
0 0 0




 1 0 1

0 1 0
0 0 0


 ,

where L is totally positive but U is not, and

A = LU =


 1 0 0

1 1 0
0 1 1




 1 0 1

0 0 0
0 0 0


 ,

where both L and U are totally positive. This example shows that we can-
not replace “strictly totally positive” by “totally positive” in the statement
of Theorem 7.4.4. ■

Definition 7.4.5 For a real-valued function f on an interval I, we define
S−(f) to be the number of sign changes of f , that is,

S−(f) = supS−(f(x0), . . . , f(xm)),

where the supremum is taken over all increasing sequences (x0, . . . , xm) in
I, for all m.



7.4 Total Positivity 279

Definition 7.4.6 We say that a sequence (φ0, . . . , φn) of real-valued func-
tions on an interval I is totally positive if for any points 0 < x0 < · · · < xn

in I, the collocation matrix (φj(xi))n
i,j=0 is totally positive. ■

Theorem 7.4.5 Let ψi(x) = ω(x)φi(x), for 0 ≤ i ≤ n. Then, if ω(x) ≥ 0
on I and the sequence of functions (φ0, . . . , φn) is totally positive on I, the
sequence (ψ0, . . . , ψn) is also totally positive on I.

Proof. This follows easily from the definitions. ■

Theorem 7.4.6 If (φ0, . . . , φn) is totally positive on I, then for any num-
bers a0, . . . , an,

S−(a0φn + · · · + anφn) ≤ S−(a0, . . . , an). ■

For a proof of this theorem see Goodman [22].

Definition 7.4.7 Let L denote a linear operator that maps each function
f defined on an interval [0, 1] onto Lf defined on [0, 1]. Then we say that
L is variation-diminishing if

S−(Lf) ≤ S−(f). ■

Problem 7.4.1 Show that an n×n matrix has (2n −1)2 minors, of which
1
4n

2(n + 1)2 are formed from consecutive rows and columns. How many
minors are there in these two categories for an m× n matrix?

Problem 7.4.2 Show that the matrix



a0 a1 a2 a3 a4
0 a0 a1 a2 a3
0 0 a0 a1 a2
0 0 0 a0 a1
0 0 0 0 a0




is totally positive, where ai ≥ 0 for all i, and a2
i −ai−1ai+1 ≥ 0 for 1 ≤ i ≤ 3.

Problem 7.4.3 Let v denote an infinite real sequence for which S−(v) is
finite. Consider the sequence w defined by

wr =
r∑

s=0

vs for r ≥ 0.

Show that S−(w) ≤ S−(v).
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Problem 7.4.4 Repeat Problem 7.4.3 with the sequence w defined by

wr =
r∑

s=0

(
r
s

)
vs for r ≥ 0,

again showing that S−(w) ≤ S−(v).

Problem 7.4.5 Show that the matrix


(x0 + t0)−1 (x0 + t1)−1 1 x0
(x1 + t0)−1 (x1 + t1)−1 1 x1
(x2 + t0)−1 (x2 + t1)−1 1 x2
(x3 + t0)−1 (x3 + t1)−1 1 x3




is totally positive if 0 < x0 < x1 < x2 < x3 and 0 < t0 < t1.

7.5 Further Results

This section is based on the work of Goodman, Oruç and Phillips [23]. We
will use the theory of total positivity, developed in the last section, to justify
shape-preserving properties of the generalized Bernstein polynomials. We
will also show that if a function f is convex on [0, 1], then for each x
in [0, 1] the generalized Bernstein polynomial Bn(f ;x) approaches f(x)
monotonically from above as the parameter q increases, for 0 < q ≤ 1.

In the last section we saw that for 0 < x0 < x1 < · · · < xn, the Vander-
monde matrix V(x0, . . . , xn) is strictly totally positive. It then follows from
Definition 7.4.6 that the sequence of monomials (xi)n

i=0 is totally positive on
any interval [0,∞). We now make the change of variable t = x/(1−x), and
note that t is an increasing function of x. Thus, if ti = xi/(1 − xi), and we
now let 0 < x0 < x1 < · · · < xn < 1, it follows that 0 < t0 < t1 < · · · < tn.

Since the Vandermonde matrix V(t0, . . . , tn) is strictly totally positive,
it follows that the sequence of functions

(
1,

x

1 − x
,

x2

(1 − x)2
, . . . ,

xn

(1 − x)n

)

is totally positive on [0, 1]. We also see from Theorem 7.4.5 that the se-
quence of functions

(
(1 − x)n, x(1 − x)n−1, x2(1 − x)n−2, . . . , xn−1(1 − x), xn

)
(7.71)

is totally positive on [0, 1]. Since the n+ 1 functions in the sequence (7.71)
are a basis for Pn, the subspace of polynomials of degree at most n, they
are a basis for all the classical Bernstein polynomials of degree n, defined
by (7.1), and we can immediately deduce the following powerful result from
Theorem 7.4.6.
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Theorem 7.5.1 Let Bn(f ;x) denote the classical Bernstein polynomial of
degree n for the function f . Then

S−(Bnf) ≤ S−(f) (7.72)

for all f defined on [0, 1], and thus the classical Bernstein operator Bn is
variation-diminishing.

Proof. Using Theorem 7.4.6, we have

S−(Bnf) ≤ S−(f0, f1, . . . , fn) ≤ S−(f),

where fr = f(r/n). ■

For each q such that 0 < q ≤ 1, and each n ≥ 1, we now define

P q
n,j(x) = xj

n−j−1∏
s=0

(1 − qsx), 0 ≤ x ≤ 1, (7.73)

for 0 ≤ j ≤ n. These functions are a basis for Pn, and are thus a basis
for all the generalized Bernstein polynomials of degree n, defined by (7.51).
We have already seen above that (P 1

n,0, P
1
n,1, . . . , P

1
n,n) is totally positive on

[0, 1], and we will show below that the same holds for (P q
n,0, P

q
n,1, . . . , P

q
n,n),

for any q such that 0 < q ≤ 1.
Since the functions defined in (7.73) are a basis for Pn, it follows that

for any choice of q and r satisfying 0 < q, r ≤ 1, there exists a nonsingular
matrix Tn,q,r such that



P q

n,0(x)
...

P q
n,n(x)


 = Tn,q,r



P r

n,0(x)
...

P r
n,n(x)


 . (7.74)

Theorem 7.5.2 For 0 < q ≤ r ≤ 1 all elements of the matrix Tn,q,r are
nonnegative.

Proof. We use induction on n. Since T1,q,r is the 2 × 2 identity matrix,
its elements are obviously nonnegative. Let us assume that the elements of
Tn,q,r are all nonnegative for some n ≥ 1. Then, since

P q
n+1,j+1(x) = xP q

n,j(x), 0 ≤ j ≤ n, (7.75)

for all q such that 0 < q ≤ 1, we see from (7.75) and (7.74) that




P q
n+1,1(x)

...
P q

n+1,n+1(x)


 = Tn,q,r




P r
n+1,1(x)

...
P r

n+1,n+1(x)


 . (7.76)
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Also, we have

P q
n+1,0(x) = (1 − qnx)P q

n,0(x) = (1 − qnx)
n∑

j=0

tn,q,r
0,j P r

n,j(x), (7.77)

where (tn,q,r
0,0 , tn,q,r

0,1 , . . . , tn,q,r
0,n ) denotes the first row of the matrix Tn,q,r.

If we now substitute

(1 − qnx)P r
n,j(x) = P r

n+1,j(x) + (rn−j − qn)P r
n+1,j+1(x)

in the right side of (7.77) and simplify, we obtain

P q
n+1,0(x) = t n,q,r

0,0 P r
n+1,0(x) + (1 − qn)tn,q,r

0,n P r
n+1,n+1(x)

+
n∑

j=1

(
(rn+1−j − qn)tn,q,r

0,j−1 + tn,q,r
0,j

)
P r

n+1,j(x). (7.78)

Then, on combining (7.76) and (7.78), we find that



P q
n+1,0(x)
P q

n+1,1(x)
...

P q
n+1,n+1(x)


 =



tn,q,r
0,0 vT

n+1

0 Tn,q,r







P r
n+1,0(x)
P r

n+1,1(x)
...

P r
n+1,n+1(x)


 , (7.79)

so that

Tn+1,q,r =



tn,q,r
0,0 vT

n+1

0 Tn,q,r


 . (7.80)

In the block matrix on the right side of (7.80) 0 denotes the zero vector
with n + 1 elements, and vT

n+1 is the row vector whose elements are the
coefficients of P r

n+1,1(x), . . . , P
r
n+1,n+1(x), given by (7.78). On substituting

x = 0 in (7.80), it is clear that tn,q,r
0,0 = 1. We can deduce from (7.78) that

if 0 < q ≤ r ≤ 1, the elements of vT
n+1 are nonnegative, and this completes

the proof by induction. ■

It follows from (7.80) and the definition of vT
n+1 that

tn+1,q,r
0,0 = tn,q,r

0,0 (7.81)

and
tn+1,q,r
0,j = (rn+1−j − qn)tn,q,r

0,j−1 + tn,q,r
0,j , 1 ≤ j ≤ n. (7.82)

We will require this recurrence relation, which expresses the elements in
the first row of Tn+1,q,r in terms of those in the first row of Tn,q,r, in
the proof of our next theorem. This shows that the transformation matrix
Tn,q,r can be factorized as a product of 1-banded matrices. First we require
the following lemma.
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Lemma 7.5.1 For m ≥ 1 and any real r and a, let A(m, a) denote the
m× (m+ 1) matrix




1 rm − a
1 rm−1 − a

· ·
· ·

1 r − a


 .

Then
A(m, a)A(m+ 1, b) = A(m, b)A(m+ 1, a). (7.83)

Proof. For i = 0, . . . ,m− 1 the ith row of each side of (7.83) is
[
0, . . . , 0, 1, rm+1−i + rm−i − a− b, (rm−i − a)(rm−i − b), 0, . . . , 0

]
. ■

For 1 ≤ j ≤ n−1, let B(n)
j denote the 1-banded (n+1)× (n+1) matrix

that has units on the main diagonal, and has the elements

rj − qn−j , rj−1 − qn−j , . . . , r − qn−j , 0, . . . , 0

on the diagonal above the main diagonal, where there are n − j zeros at
the lower end of that diagonal. Thus, for example,

B(n)
2 =




1 r2 − qn−2

1 r − qn−2

1
·

·
1



.

The matrix B(n+1)
j can be expressed in a block form involving the matrix

B(n)
j . We can verify that

B(n+1)
1 =


 1 cT

0

0 I


 (7.84)

and

B(n+1)
j+1 =


 1 cT

j

0 B(n)
j


 (7.85)

for 1 ≤ j ≤ n−1, where each cT
j is a row vector, 0 denotes the zero vector,

and I is the unit matrix of order n+ 1.
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Theorem 7.5.3 For n ≥ 2 and any q, r, we have

Tn,q,r = B(n)
1 B(n)

2 · · ·B(n)
n−1, (7.86)

where B(n)
j is the 1-banded matrix defined above.

Proof. We use induction on n. For all n ≥ 2 let

Sn,q,r = B(n)
1 B(n)

2 · · ·B(n)
n−1. (7.87)

It is easily verified that

T2,q,r = S2,q,r = B(2)
1 =


 1 r − q 0

0 1 0
0 0 1


 .

Let us assume that for some n ≥ 2, Tn,q,r = Sn,q,r. It follows from (7.84)
and (7.85) that

Sn+1,q,r =


 1 cT

0

0 I




 1 cT

1

0 B(n)
1


 · · ·


 1 cT

n−1

0 B(n)
n−1


 . (7.88)

If we carry out the multiplication of the n block matrices on the right of
(7.88), then, using (7.86), we see that

Sn+1,q,r =


 1 dT

0 Tn,q,r


 ,

where dT is a row vector. Thus it remains only to verify that the first rows
of Tn+1,q,r and Sn+1,q,r are equal. Let us denote the first row of Sn,q,r by

[
sn,q,r
0,0 , sn,q,r

0,1 , . . . , sn,q,r
0,n

]
.

We will show that sn,q,r
0,n = 0. Let us examine the product of the n − 1

matrices on the right of (7.87). We can show by induction on j that for
1 ≤ j ≤ n−1, the product B(n)

1 B(n)
2 · · ·B(n)

j is j-banded, where the nonzero
elements are on the main diagonal and the j diagonals above the main
diagonal. (See Problem 7.5.2.) Thus Sn,q,r is (n − 1)-banded, and so the
last element in its first row, sn,q,r

0,n , is zero.

Now let us write the matrix B(n+1)
j in the block form

B(n+1)
j =


 A(j, qn+1−j) O

Cj Dj


 ,
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where A(j, qn+1−j) is the j × (j + 1) matrix defined in Lemma 7.5.1, O
is the j × (n + 1 − j) zero matrix, Cj is (n + 2 − j) × (j + 1), and Dj is
(n+ 2 − j) × (n+ 1 − j). Thus

B(n+1)
1 B(n+1)

2 · · ·B(n+1)
j =


 A(1, qn) · · ·A(j, qn+1−j) 0T

Fj Gj


 , (7.89)

where A(1, qn) · · ·A(j, qn+1−j) is 1× (j+1) and 0T is the zero vector with
n + 1 − j elements. In particular, on putting j = n in (7.89), we see from
(7.87) that the first row of Sn+1,q,r is[

A(1, qn)A(2, qn−1) · · ·A(n− 1, q2)A(n, q), 0
]

=
[
wT , 0

]
, (7.90)

say, where wT is a row vector with n + 1 elements. (We note in passing
that this confirms our earlier observation that the last element of the first
row of Sn+1,q,r is zero.) In view of Lemma 7.5.1, we may permute the
quantities qn, qn−1, . . . , q in (7.90), leaving wT unchanged. In particular,
we may write

wT = A(1, qn−1)A(2, qn−2) · · ·A(n− 1, q)A(n, qn). (7.91)

Now, by comparison with (7.90), the product of the first n− 1 matrices in
(7.91) is the row vector containing the first n elements in the first row of
Sn,q,r, and thus

wT = [sn,q,r
0,0 , . . . , sn,q,r

0,n−1]




1 rn − qn

. . . . . .
1 r − qn




= [tn,q,r
0,0 , . . . , tn,q,r

0,n−1]




1 rn − qn

. . . . . .
1 r − qn


 .

This gives
sn+1,q,r
0,0 = tn,q,r

0,0

and
sn+1,q,r
0,j = (rn+1−j − qn)tn,q,r

0,j−1 + tn,q,r
0,j , 1 ≤ j ≤ n,

where we note that tn,q,r
0,n = 0. It then follows from (7.81) and (7.82) that

sn+1,q,r
0,j = tn+1,q,r

0,j , 0 ≤ j ≤ n,

and since sn+1,q,r
0,n+1 = 0 = tn+1,q,r

0,n+1 , (7.86) holds for n+1. This completes the
proof. ■

If 0 < q ≤ rn−1 ≤ 1, all elements in the 1-banded matrices B(n)
j on the

right of (7.86) are nonnegative. Then, from Theorem 7.4.3, we immediately
have the following result concerning the total positivity of Tn,q,r.
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Theorem 7.5.4 If 0 < q ≤ rn−1 ≤ 1, the transformation matrix Tn,q,r is
totally positive. ■

Theorem 7.5.4 has the following important consequence for the generalized
Bernstein polynomials.

Theorem 7.5.5 For 0 < q ≤ 1, the set of functions (P q
n,0, . . . , P

q
n,n), which

are a basis for all generalized Bernstein polynomials of degree n, is totally
positive on [0, 1].

Proof. Let Aq
n denote the collocation matrix (P q

n,j(xi))n
i,j=0, where we have

0 ≤ x0 < · · · < xn ≤ 1. Then we see from (7.74) that

Aq
n = Tn,1,qA1

n. (7.92)

For every q such that 0 < q ≤ 1, Aq
n is the product of two totally positive

matrices, and so is itself totally positive. It then follows from Definition
7.4.6 that (P q

n,0, . . . , P
q
n,n) is totally positive on [0, 1]. ■

Let p denote any polynomial in Pn, and let q, r denote any real numbers
such that 0 < q, r ≤ 1. Since (P q

n,0, . . . , P
q
n,n) and (P r

n,0, . . . , P
r
n,n) are both

bases for Pn, there exist real numbers aq
0, . . . , a

q
n and ar

0, . . . , a
r
n such that

p(x) = aq
0P

q
n,0(x) + · · · + aq

nP
q
n,n(x) = ar

0P
r
n,0(x) + · · · + ar

nP
r
n,n(x), (7.93)

and we can deduce from (7.74) that

[aq
0, a

q
1, . . . , a

q
n]Tn,q,r = [ar

0, a
r
1, . . . , a

r
n]. (7.94)

If 0 < q ≤ rn−1, the matrix Tn,q,r is totally positive and (see Problem
7.5.1) so is its transpose. In particular, the matrix Tn,r,1 is totally positive
for all r such that 0 < r ≤ 1. Thus we see from (7.94) and Theorem 7.4.2
that

S− (a1
0, . . . , a

1
n

) ≤ S− (ar
0, . . . , a

r
n) ≤ S− (aq

0, . . . , a
q
n) ,

where
p(x) = a1

0P
1
n,0(x) + · · · + a1

nP
1
n,n(x). (7.95)

Since (P 1
n,0, . . . , P

1
n,n) is totally positive, it follows from Theorem 7.4.6 that

for 0 < q ≤ rn−1 ≤ 1 and with p defined by (7.93) and (7.95),

S−(p) ≤ S− (a1
0, . . . , a

1
n

) ≤ S− (ar
0, . . . , a

r
n) ≤ S− (aq

0, . . . , a
q
n) . (7.96)

We can now state a generalization of Theorem 7.5.1.

Theorem 7.5.6 Let Bq
n(f ;x) denote the generalized Bernstein polynomial

that we denoted by Bn(f ;x) in (7.51). Then

S−(Bq
nf) ≤ S−(f) (7.97)

on [0, 1], and thus the operator Bq
n is variation-diminishing.
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Proof. Let us choose

p(x) = Bq
n(f ;x) = aq

0P
q
n,0(x) + · · · + aq

nP
q
n,n(x)

in (7.97). We have already noted that the q-binomial coefficient
[

n
r

]
is a

polynomial in q with positive integer coefficients, and so is positive if q > 0.
Thus, for q > 0,

S−(Bq
nf) ≤ S−(f0, f1, . . . , fn) ≤ S−(f),

where fr = f([r]/[n]). ■

Let p denote any linear polynomial; that is, p ∈ P1. Then, since Bq
n

reproduces linear polynomials, we may deduce the following result from
Theorem 7.5.6.

Theorem 7.5.7 For any function f and any linear polynomial p, we have

S−(Bq
nf − p) ≤ S−(Bq

n(f − p)) ≤ S−(f − p), (7.98)

for 0 < q ≤ 1. ■

The next two theorems readily follow from Theorem 7.5.7.

Theorem 7.5.8 Let f be monotonically increasing (decreasing) on [0, 1].
Then the generalized Bernstein polynomial Bq

nf is also monotonically in-
creasing (decreasing) on [0, 1], for 0 < q ≤ 1.

Proof. We have already proved this in Theorem 7.1.2 when q = 1. Let us
replace p in (7.98) by the constant c. Then, if f is monotonically increasing
on [0, 1],

S−(Bq
nf − c) ≤ S−(f − c) ≤ 1

for all choices of constant c, and thus Bq
nf is monotonically increasing or

decreasing. Since

Bq
n(f ; 0) = f(0) ≤ f(1) = Bq

n(f ; 1),

Bq
nf must be monotonically increasing. On the other hand, if f is monoton-

ically decreasing, we may replace f by −f , and repeat the above argument,
concluding that Bq

nf is monotonically decreasing. ■

Theorem 7.5.9 If f is convex on [0, 1], then Bq
nf is also convex on [0, 1],

for 0 < q ≤ 1.

Proof. Let p denote any linear polynomial. Then if f is convex, the graph of
p can intersect that of f at no more than two points, and thus S−(f−p) ≤ 2.
It follows from (7.98) that for any q such that 0 < q ≤ 1,

S−(Bq
nf − p) = S−(Bq

n(f − p)) ≤ S−(f − p) ≤ 2. (7.99)
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Suppose the graph of p intersects that of Bq
nf at a and b. Then we have

p(a) = Bq
n(f ; a) and p(b) = Bq

n(f ; b), where 0 < a < b < 1, and we see
from (7.99) that Bq

nf − p cannot change sign in (a, b). As we vary a and b,
a continuity argument shows that the sign of Bq

nf − p on (a, b) is the same
for all a and b, 0 < a < b < 1. From the convexity of f we see that in the
limiting case where a = 0 and b = 1, 0 ≤ p(x) − f(x) on [0, 1], so that

0 ≤ Bq
n(p− f ;x) = p(x) −Bq

n(f ;x), 0 ≤ x ≤ 1,

and thus Bq
n is convex. ■

We conclude this section by proving that if f is convex, the generalized
Bernstein polynomials Bq

nf , for n fixed, are monotonic in q.

Theorem 7.5.10 For 0 < q ≤ r ≤ 1 and for f convex on [0, 1], we have

f(x) ≤ Br
n(f ;x) ≤ Bq

n(f ;x), 0 ≤ x ≤ 1. (7.100)

Proof. It remains only to establish the second inequality in (7.100), since
the first inequality has already been proved in Theorem 7.3.3. Let us write

ζq
n,j =

[j]
[n]

and aq
n,j =

[
n
j

]
.

Then, for any function g on [0,1],

Bq
n(g;x) =

n∑
j=0

g(ζq
n,j)a

q
n,jP

q
n,j(x) =

n∑
j=0

n∑
k=0

g(ζq
n,j)a

q
n,jt

n,q,r
j,k P r

n,k(x),

and thus

Bq
n(g;x) =

n∑
k=0

P r
n,k(x)

n∑
j=0

tn,q,r
j,k g(ζq

n,j)a
q
n,j . (7.101)

With g(x) = 1, this gives

1 =
n∑

j=0

aq
n,jP

q
n,j(x) =

n∑
k=0

P r
n,k(x)

n∑
j=0

tn,q,r
j,k aq

n,j

and hence
n∑

j=0

tn,q,r
j,k aq

n,j = ar
n,k, 0 ≤ k ≤ n. (7.102)

On putting g(x) = x in (7.101), we obtain

x =
n∑

j=0

ζq
n,ja

q
n,jP

q
n,j(x) =

n∑
k=0

P r
n,k(x)

n∑
j=0

tn,q,r
j,k ζq

n,ja
q
n,j .
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Since
n∑

j=0

ζr
n,ja

r
n,jP

r
n,j(x) = x,

we have
n∑

j=0

tn,q,r
j,k ζq

n,ja
q
n,j = ζr

n,ka
r
n,k, 0 ≤ k ≤ n. (7.103)

Let us write

λj =
tn,q,r
j,k aq

n,j

ar
n,k

,

and we see from (7.102) and (7.103), respectively, that

n∑
j=0

λj = 1 and ζr
n,k =

n∑
j=0

λjζ
q
n,j .

It then follows from Problem 7.1.3 that if f is convex,

f(ζr
n,k) = f


 n∑

j=0

λjζ
q
n,j


 ≤

n∑
j=0

λjf(ζq
n,j),

which gives

f(ζr
n,k) ≤

n∑
j=0

(ar
n,k)−1tn,q,r

j,k aq
n,jf(ζq

n,j). (7.104)

On substituting

P q
n,j(x) =

n∑
k=0

tn,q,r
j,k P r

n,k(x),

obtained from (7.74), into

Bq
n(f ;x) =

n∑
j=0

f(ζq
n,j)a

q
n,jP

q
n,j(x),

we find that

Bq
n(f ;x) =

n∑
k=0

ar
n,kP

r
n,k(x)

n∑
j=0

(ar
n,k)−1tn,q,r

j,k f(ζq
n,j)a

q
n,j .

It then follows from (7.104) that

Bq
n(f ;x) ≥

n∑
k=0

ar
n,kP

r
n,k(x)f(ζr

n,k) = Br
n(f ;x),

and this completes the proof. ■
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Problem 7.5.1 Given that

detA = detAT ,

for any square matrix A, deduce from Definition 7.4.1 that if the matrix
A is totally positive, so also is AT .

Problem 7.5.2 Let A1,A2, . . . denote m×m matrices that are 1-banded,
and whose nonzero elements are on the main diagonal and the diagonal
above the main diagonal. Show by induction on j that for 1 ≤ j ≤ m− 1,
the product A1A1 · · ·Aj is a j-banded matrix.



8
Properties of the q-Integers

Had I been content to write only three or four pages on the topics in this
chapter, such material could have been incorporated in Chapter 1, since
it is required in Chapters 1, 5, 6, and 7. However, I wished to say a little
more about q-integers than is strictly necessary for the applications in these
earlier chapters, and thought it would be misleading to begin a book on
approximation theory with even a very short chapter on such material.
Therefore, I hope that the reader, having worked with q-integers and q-
binomial coefficients in these earlier chapters, will endorse my decision to
say a little more about them in this final chapter.

8.1 The q-Integers

It is convenient to begin by repeating the definitions of a q-integer, a q-
factorial, and a q-binomial coefficient, which we stated in Section 1.5. Let
N denote {0, 1, 2, . . .}, the set of nonnegative integers.

Definition 8.1.1 Given a value of q > 0 we define [r], where r ∈ N, as

[r] =
{

(1 − qr)/(1 − q), q �= 1,
r, q = 1, (8.1)

and call [r] a q-integer. Clearly, we can extend this definition, allowing r to
be any real number in (8.1). We then call [r] a q-real. ■
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For any given q > 0 let us define

Nq = {[r], with r ∈ N}, (8.2)

and we can see from Definition 8.1.1 that

Nq = {0, 1, 1 + q, 1 + q + q2, 1 + q + q2 + q3, . . . }. (8.3)

Obviously, the set of q-integers Nq generalizes the set of nonnegative inte-
gers N, which we recover by putting q = 1.

Definition 8.1.2 Given a value of q > 0 we define [r]!, where r ∈ N, as

[r]! =
{

[r][r − 1] · · · [1], r ≥ 1,
1, r = 0, (8.4)

and call [r]! a q-factorial. ■

Definition 8.1.3 We define a q-binomial coefficient as[
t
r

]
=

[t] [t− 1] · · · [t− r + 1]
[r]!

, (8.5)

for all real t and integers r ≥ 0, and as zero otherwise. ■

Since for the rest of this chapter we will be concerned with q-binomial
coefficients for which t = n ≥ r ≥ 0, where n is an integer, it seems
appropriate to make these the subject of a separate definition.

Definition 8.1.4 For any integers n and r, we define[
n
r

]
=

[n][n− 1] · · · [n− r + 1]
[r]!

=
[n]!

[r]![n− r]!
, (8.6)

for n ≥ r ≥ 0, and as zero otherwise. These are called Gaussian polynomi-
als, named after C. F. Gauss. We will show in the next section that they
are indeed polynomials. ■

The Gaussian polynomials satisfy the Pascal-type relations[
n
r

]
=
[
n− 1
r − 1

]
+ qr

[
n− 1
r

]
(8.7)

and [
n
r

]
= qn−r

[
n− 1
r − 1

]
+
[
n− 1
r

]
. (8.8)

Although the identities (8.7) and (8.8) hold for all real n and all integers
r ≥ 0, we will be concerned with their application to integers n ≥ r ≥ 0
only. To verify (8.7) for integers n ≥ r ≥ 0 we write, using (8.6),[

n− 1
r − 1

]
+ qr

[
n− 1
r

]
= ([r] + qr[n− r])

[n− 1]!
[r]![n− r]!

. (8.9)
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Since

[r] + qr[n− r] =
1 − qr

1 − q
+
qr(1 − qn−r)

1 − q
=

1 − qn

1 − q
= [n],

the right side of (8.9) indeed simplifies to give
[

n
r

]
, thus justifying (8.7).

We may verify (8.8) similarly. Note that when we put q = 1, both identities
(8.7) and (8.8) reduce to the more familiar Pascal identity for ordinary
binomial coefficients,

(
n
r

)
=
(
n− 1
r − 1

)
+
(
n− 1
r

)
. (8.10)

It is obvious from the relation(
n
r

)
=

n!
r!(n− r)!

, n ≥ r ≥ 0,

that the ordinary binomial coefficient is a positive rational number. How-
ever, we know that we can say more than this, that for n ≥ r ≥ 0 it is
always a positive integer. We may deduce this from the Pascal identity
(8.10), using induction on n. Likewise, we can verify from (8.6) that

[
n
r

]
=

(1 − qn−r+1)(1 − qn−r+2) · · · (1 − qn)
(1 − q)(1 − q2) · · · (1 − qr)

, (8.11)

and thus
[

n
r

]
is a rational function of the parameter q. However, just

as the ordinary binomial coefficient is an integer rather than merely a ra-
tional number, we can deduce from either one of the Pascal-type identities
(8.7) and (8.8) that the expression on the right side of equation (8.11) is a
polynomial in q rather than a rational function of q. The details are given
in the proof of Theorem 8.2.1 in the next section.

Consider the identity

n∏
s=1

(1 + qs−1x) =
n∑

s=0

qs(s−1)/2
[
n
s

]
xs, (8.12)

which reduces to the binomial expansion

(1 + x)n =
n∑

s=0

(
n
s

)
xs (8.13)

when we set q equal to 1. To justify (8.12), we begin by writing

Gn(x) = (1 + x)(1 + qx) · · · (1 + qn−1x) =
n∑

r=0

crx
r. (8.14)
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We replace x by qx and deduce from (8.14) that

(1 + qnx)Gn(x) = (1 + x)Gn(qx),

so that

(1 + qnx)
n∑

r=0

crx
r = (1 + x)

n∑
r=0

cr(qx)r.

Then we equate coefficients of xs to obtain

cs + qncs−1 = qscs + qs−1cs−1,

so that

cs = qs−1
(

1 − qn−s+1

1 − qs

)
cs−1 = qs−1 [n− s+ 1]

[s]
cs−1,

for 1 ≤ s ≤ n, and we also have c0 = 1. It readily follows that

cs = qs(s−1)/2 [n− s+ 1][n− s+ 2] · · · [n]
[s][s− 1] · · · [1]

c0 = qs(s−1)/2
[
n
s

]
, (8.15)

which verifies (8.12).
We now examine the expression

n∏
s=1

(1 + qs−1x)−1 =
∞∑

s=0

[
n+ s− 1

s

]
(−x)s (8.16)

for the inverse of the q-binomial expansion (8.12). We can verify (8.16) by
adapting the method we used above to verify (8.12). Let us write

Hn(x) = (1 + x)−1(1 + qx)−1 · · · (1 + qn−1x)−1 =
∞∑

s=0

dsx
s,

replace x by qx, and obtain the relation

(1 + x)Hn(x) = (1 + qnx)Hn(qx),

so that

(1 + x)
∞∑

s=0

dsx
s = (1 + qnx)

∞∑
s=0

ds(qx)s.

On equating coefficients of xs, we obtain

ds = −
(

1 − qn+s−1

1 − qs

)
ds−1 = − [n+ s− 1]

[s]
ds−1

for s ≥ 1, with d0 = 1. We deduce that

ds = (−1)s

[
n+ s− 1

s

]
,
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which justifies (8.16).
The identities (8.12) and (8.16), which have applications in the theory

of partitions, both go back to Euler. See Hardy and Wright [24].

Problem 8.1.1 Show that for any real numbers s, t, and u,

[s] [t+ u] − [s+ u][t] = qt[u] [s− t].

Problem 8.1.2 Verify the Pascal-type identity (8.8).

Problem 8.1.3 Show that for all integers n ≥ r ≥ 0,[
n
r

]
=
[

n
n− r

]
.

Problem 8.1.4 Replace r by n− r in the identity (8.7). Apply the result
of Problem 8.1.3 to both terms on the right side of the identity and so
deduce the second Pascal identity (8.8) from the first.

Problem 8.1.5 Deduce from (8.5) that
[ −n

r

]
= (−1)rq−(2n+r−1)r/2

[
n+ r − 1

r

]
,

for all n ≥ r ≥ 0.

Problem 8.1.6 With Gn(x) as defined by (8.14), verify that the relation

Gn(x) =
n∑

s=0

qs(s−1)/2
[
n
s

]
xs, (8.17)

whose coefficients were derived above in (8.15), holds for n = 1. Write
Gn+1(x) = (1+qnx)Gn(x) and deduce that the coefficient of xs in Gn+1(x)
is

qs(s−1)/2
[
n
s

]
+ qn · q(s−1)(s−2)/2

[
n

s− 1

]
.

Show, using (8.8), that this simplifies to give

qs(s−1)/2
([

n
s

]
+ qn−s+1

[
n

s− 1

])
= qs(s−1)/2

[
n+ 1
s

]
,

justifying that (8.17) holds when n is replaced by n + 1, thus completing
an induction argument that (8.12) holds for all n ≥ 1.

Problem 8.1.7 By comparing coefficients of xk on both sides of the iden-
tity Gn(x)Hn(x) = 1, show that for 1 ≤ k ≤ n,

k∑
t=0

(−1)k−tqt(t−1)/2
[
n
t

] [
n+ k − t− 1

k − t

]
= 0.
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Problem 8.1.8 Use induction on n to verify that

s∑
i=0

(−1)iqi(i−1)/2
[
n+ 1
i

]
= (−1)sqs(s+1)/2

[
n
s

]
,

for 0 ≤ s ≤ n.

8.2 Gaussian Polynomials

In this section we discuss properties of the Gaussian polynomials, which
are defined above by (8.6).

Theorem 8.2.1 For 0 ≤ r ≤ n, the q-binomial coefficient
[

n
r

]
is a

polynomial of degree r(n− r) in q, and all its coefficients are positive.

Proof. We will use induction on n. The above result is clearly true for
n = 0. Now let us assume that the result holds for some fixed value of
n ≥ 0 and all n+ 1 values of r satisfying 0 ≤ r ≤ n. Then let us consider

[
n+ 1
r

]
=
[

n
r − 1

]
+ qr

[
n
r

]
, (8.18)

which is just (8.7) with n replaced by n+1. From our inductive hypothesis,
we note that both terms on the right of (8.18) are polynomials with positive
coefficients, the first term being the zero polynomial when r = 0. The degree
of the first term is (r − 1)(n + 1 − r), when r > 0, and the degree of the
second term is

r + r(n− r) = r(n+ 1 − r).

Thus
[

n + 1
r

]
is a polynomial of degree r(n+ 1 − r) with positive coeffi-

cients, and this completes the proof. ■

Example 8.2.1 Using (8.6), we find that

[
5
2

]
=

[5]!
[2]![3]!

=
[5][4]
[2][1]

=
(1 − q5)(1 − q4)
(1 − q2)(1 − q)

,

which simplifies to give
[

5
2

]
= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6, (8.19)

and we note the symmetry in the coefficients of this polynomial. ■
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Definition 8.2.1 We say that a polynomial

p(x) = a0 + a1x+ · · · + am−1x
m−1 + amx

m (8.20)

is reciprocal if its coefficients satisfy the condition

ar = am−r, 0 ≤ r ≤ m. ■

Definition 8.2.2 We say that the polynomial p in (8.20) is unimodal in
its coefficients if for some integer k, 0 ≤ k ≤ m,

a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ am. ■

Thus the polynomial in (8.19) is both reciprocal and unimodal in its coef-
ficients. Since

xmp

(
1
x

)
= am + am−1x+ · · · + a1x

m−1 + a0x
m,

the property that a polynomial p of degree m is reciprocal is equivalent to
saying that

xmp

(
1
x

)
= p(x). (8.21)

Let us now write

[j]′ =
1 − q−j

1 − q−1 , (8.22)

so that [j]′ is derived from [j] by substituting 1/q for q. We note that

qj−1[j]′ = [j]. (8.23)

Similarly, let us write [r]′ ! and
[

n
r

]′
to denote the expressions we obtain

when we substitute 1/q for q in [r]! and
[

n
r

]
, respectively. We then have

[r]′ ! =
(

1 − q−r

1 − q−1

)(
1 − q−r+1

1 − q−1

)
· · ·
(

1 − q−1

1 − q−1

)
, r ≥ 1,

so that
qr(r−1)/2 [r]′ ! = [r]!. (8.24)

We note that (8.24) holds for all r ≥ 0, and since

1
2
n(n− 1) − 1

2
r(r − 1) − 1

2
(n− r)(n− r − 1) = r(n− r),

it follows from (8.6) and (8.24) that

qr(n−r)
[
n
r

]′
=
[
n
r

]
. (8.25)
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Since the degree of the Gaussian polynomial
[

n
r

]
is r(n − r), it follows

from (8.25) and (8.21) that every Gaussian polynomial is reciprocal, as we
found for the particular case given in Example 8.2.1.

Let us return to (8.14), from which we obtain

Gi+j(x) = Gi(x)(1 + qix) · · · (1 + qi+j−1x),

so that
Gi+j(x) = Gi(x)Gj(qix),

and using (8.17), we derive the relation

Gi+j(x) =
i∑

s=0

qs(s−1)/2
[
i
s

]
xs

j∑
s=0

qs(s−1)/2
[
j
s

]
(qix)s.

On equating powers of xr in the last equation, we find that

qr(r−1)/2
[
i+ j
r

]
=

r∑
t=0

qα

[
i
t

] [
j

r − t

]
, (8.26)

where
α =

1
2
t(t− 1) +

1
2
(r − t)(r − t− 1) + i(r − t),

and since
α− 1

2
r(r − 1) = (r − t)(i− t),

we see that (8.26) yields the identity
[
i+ j
r

]
=

r∑
t=0

q(r−t)(i−t)
[
i
t

] [
j

r − t

]
. (8.27)

This is a q-analogue of the Chu–Vandermonde identity,
(
i+ j
r

)
=

r∑
t=0

(
i
t

)(
j

r − t

)
. (8.28)

If we choose i = 1 and j = n − 1, we obtain only two nonzero terms on
the right of (8.27) for r ≥ 1, and indeed this choice of i and j shows that
(8.27) is a generalization of the Pascal identity (8.7).

Example 8.2.2 With i = 4, j = 3, and r = 5 in (8.27), we obtain
[

7
5

]
= q6

[
4
2

] [
3
3

]
+ q2

[
4
3

] [
3
2

]
+ q0

[
4
4

] [
3
1

]
.

Since [
4
2

] [
3
3

]
= (1 + q + 2q2 + q3 + q4) · 1,
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[
4
3

] [
3
2

]
= (1 + q + q2 + q3) · (1 + q + q2),

and [
4
4

] [
3
1

]
= 1 · (1 + q + q2),

the above expression simplifies to give[
7
5

]
= 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 3q6 + 2q7 + 2q8 + q9 + q10.

Alternatively, since
[

7
5

]
=

[
7
2

]
, we can apply (8.27) with i = 4, j = 3,

and r = 2 to give[
7
5

]
= q8

[
4
0

] [
3
2

]
+ q3

[
4
1

] [
3
1

]
+ q0

[
4
2

] [
3
0

]
,

which simplifies to give the same result for
[

7
5

]
. ■

Gaussian polynomials arise in the theory of partitions. (See Andrews [1]
or Hardy and Wright [24] for further material on partitions.) Let p(s) denote
the number of partitions of the positive integer s, meaning the number of
ways of representing s as the sum of positive integers, which are called the
parts of s. In counting the number of partitions, we ignore the order of the
parts. For example, since

5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1,

we say that there are seven partitions of the positive integer 5, and write
p(5) = 7.

Let us now consider a function whose power series, in powers of q, has
p(s) as the coefficient of qs. This function, which was first obtained by
Euler, is

1
(1 − q)(1 − q2)(1 − q3) · · · =

∞∑
s=0

p(s)qs, (8.29)

where we conveniently define p(0) = 1. The function on the left side of
(8.29) is called a generating function. Each partition of s supplies one unit
to the coefficient of qs. For example, the partition 5 = 3+1+1 corresponds
to constructing q5 by multiplying q3 chosen from the expansion

1
1 − q3

= 1 + q3 + (q3)2 + · · ·

by q1+1 = q2 chosen from the expansion

1
1 − q

= 1 + q + q2 + · · · .
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• • • •
• • • •
• • •
• •
•
•

TABLE 8.1. The partition 15 = 4 + 4 + 3 + 2 + 1 + 1.

We can represent a partition by an array of nodes, arranged in rows and
columns. Each row of nodes represents one part, and the parts are arranged
in decreasing order, with the largest part in the first row. This is called a
Ferrers graph, named after N. M. Ferrers (1829–1903). Table 8.1 gives a
Ferrers graph for the partition 15 = 4 + 4 + 3 + 2 + 1 + 1. Many interesting
results can be deduced with the aid of a Ferrers graph. For example, we
can “read” a graph by columns rather than rows. Then Table 8.1 would
represent the partition 15 = 6 + 4 + 3 + 2. A partition read by rows and its
corresponding partition read by columns are said to be conjugate to each
other. By considering conjugate partitions we can see immediately that the
number of partitions of s into exactly m parts is the same as the number of
partitions of s whose largest part is m. A graph is said to be self-conjugate
if its graph and the corresponding conjugate graph are equal.

Example 8.2.3 The partitions of 10 into 3 parts are 8 + 1 + 1, 7 + 2 + 1,
6 + 3 + 1, 6 + 2 + 2, 5 + 4 + 1, 5 + 3 + 2, 4 + 4 + 2, and 4 + 3 + 3, while the
partitions of 10 into parts whose largest is 3 are 3+3+3+1, 3+3+2+2,
3+3+2+1+1, 3+3+1+1+1+1, 3+2+2+2+1, 3+2+2+1+1+1,
3+2+1+1+1+1+1, and 3+1+1+1+1+1+1+1. There are eight of each
kind of partition, in accord with the result deduced above. As an exercise,
the reader is encouraged to determine which pairs of partitions, one being
chosen from each of the above sets with eight members, are conjugate to
each other. ■

Let p(m,n; s) denote the number of partitions of s into at most m parts
of size at most n, and let p′(m,n; s) denote the number of partitions of s
into exactly m parts of size at most n. These are defined for all integers
m ≥ 1 and n ≥ 1, and p′(m,n; s) is obviously zero for s < m. It follows
immediately from these definitions that

p′(m,n; s) = p(m,n; s) − p(m− 1, n; s). (8.30)

If we extend the definition of p(m,n; s) to m = 0, writing p(0, n; s) = 0,
(8.30) will hold for all m,n ≥ 1. We also write p′′(m,n; s) to denote the
number of partitions of s into exactly m parts, the largest being exactly n.
It follows from this and the definition of p′(m,n; s) that

p′′(m,n; s) = p′(m,n; s) − p′(m,n− 1; s), (8.31)
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and (8.31) will hold for all m,n ≥ 1 if we extend the definition of p′(m,n; s)
by writing p′(m, 0; s) = 0.

Example 8.2.4 From the partitions of 5 given just above (8.29), we may
verify that p(4, 3; 5) = 4, p(3, 3; 5) = 3, p′(4, 3; 5) = 1, p′(4, 2; 5) = 1, and
p′′(4, 3; 5) = 0. ■

We are now ready to derive a generating function for p′′(m,n; s) and
hence, via (8.30) and (8.31), obtain generating functions for p′(m,n; s)
and p(m,n; s). Our approach is to consider the Ferrers graphs for the par-
titions enumerated by p′′(m,n; s). Such partitions are either in the set S1,
say, whose smallest part is 1, or in the set S2 whose smallest part is greater
than 1. The number of partitions in the set S1 (think of removing the last
part, of size 1, from all such partitions) is just the number of partitions of
s − 1 into m − 1 parts, with largest part n, which is p′′(m − 1, n; s − 1).
If we remove the first column from the Ferrers graphs of all partitions in
the set S2, we see that the number of partitions in S2 is the same as the
number of partitions of s−m into m parts, with largest part n− 1, which
is p′′(m,n− 1; s−m). We have thus established the recurrence relation

p′′(m,n; s) = p′′(m− 1, n; s− 1) + p′′(m,n− 1; s−m), (8.32)

and it is clear from the definition of p′′(m,n; s) that

p′′(m,n; s) = 0 if s < m+ n− 1. (8.33)

We will show by induction that

qm+n−1
[
m+ n− 2
m− 1

]
=

∞∑
s=m+n−1

p′′(m,n; s)qs. (8.34)

To verify (8.34), let us write

qm+n−1
[
m+ n− 2
m− 1

]
=

∞∑
s=m+n−1

a(m,n; s)qs. (8.35)

Now it follows from (8.7) that

qm+n−1
[
m+ n− 2
m− 1

]
= qm+n−1

[
m+ n− 3
m− 2

]
+ q2m+n−2

[
m+ n− 3
m− 1

]
,

and on equating coefficients of qs in the last equation, we obtain

a(m,n; s) = a(m− 1, n; s− 1) + a(m,n− 1; s−m). (8.36)

We note that this recurrence relation for a(m,n; s) is the same as the
recurrence relation (8.32) for p′′(m,n; s), and since

a(1, 1; 1) = p′′(1, 1; 1) = 1,
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we can say that a(m,n; s) = p′′(m,n; s) for all m,n ≥ 1 such that m+n = 2
and all s such that m+n− 1 ≤ s ≤ mn. We now assume that a(m,n; s) =
p′′(m,n; s) for all m,n ≥ 1 such that m + n = k, for some integer k ≥ 2
and all s such that m + n − 1 ≤ s ≤ mn. It follows from the recurrence
relations (8.32) and (8.36) that a(m,n; s) = p′′(m,n; s) for all m,n ≥ 1
such that m + n = k + 1 and all s such that m + n − 1 ≤ s ≤ mn. Thus,
by induction, the sequences a(m,n; s) and p′′(m,n; s) are the same, which
justifies (8.34). In view of (8.31) and the relation

qm+n−1
[
m+ n− 2
m− 1

]
= qm

[
m+ n− 1

m

]
− qm

[
m+ n− 2

m

]

we readily deduce that

qm

[
m+ n− 1

m

]
=

∞∑
s=m

p′(m,n; s)qs. (8.37)

Similarly, we deduce from (8.30) and the relation

qm

[
m+ n− 1

m

]
=
[
m+ n
m

]
−
[
m+ n− 1
m− 1

]

that [
m+ n
m

]
=

∞∑
s=0

p(m,n; s)qs. (8.38)

Observe that since [
m+ n
m

]
=

[m+ n]!
[m]![n]!

,

the generating function for p(m,n; s) is symmetric in m and n. We deduce
that

p(m,n; s) = p(n,m; s),

which also follows by considering conjugate Ferrers graphs and employing
a similar argument to that used just before Example 8.21.

Next we determine a one-to-one correspondence between the partitions
of s into at most m parts of size at most n and the partitions of mn − s
of the same kind. We obtain this by “subtracting” the Ferrers graph of
such a partition of s from the Ferrers graph of the partition of mn into
m parts of size n, the latter being a rectangular array of nodes. Table 8.2
illustrates this correspondence for partitions into at most 7 parts of size
at most 5, between the two partitions 15 = 4 + 4 + 3 + 2 + 1 + 1 and
20 = 5 + 4 + 4 + 3 + 2 + 1 + 1. In the general case, corresponding to any
partition of s into at most m parts of size at most n,

s = c1 + c2 + · · · + cm,
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• • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

TABLE 8.2. The partitions 15 = 4+4+3+2+1+1 and 20 = 5+4+4+3+2+1+1.

where n ≥ c1 ≥ c2 ≥ · · · ≥ cm ≥ 0, we have the partition

mn−s = (n−cm)+(n−cm−1)+ · · ·+(n−c1) = d1 +d2 + · · ·+dm, (8.39)

where each dr is defined by dr = n− cm−r+1. Since

n ≥ d1 ≥ d2 ≥ · · · ≥ dm ≥ 0

(8.39) does indeed define a partition of mn− s into at most m parts of size
at most n. From this one-to-one correspondence between such partitions of
s and mn− s, we deduce that

p(m,n; s) = p(m,n;mn− s). (8.40)

From (8.38), this shows that every Gaussian polynomial is reciprocal, as
we showed by other means earlier in this section. It can also be shown that
every Gaussian polynomial is unimodal. This is equivalent to showing that

p(m,n; s− 1) ≤ p(m,n; s)

for 0 ≤ s ≤ 1
2mn. Somewhat surprisingly, there does not seem to be any

simple proof of this depending on combinatorial arguments of the sort we
have used in this section, and we therefore omit the proof. See Andrews [1].

Problem 8.2.1 Consider the n+ 1 Gaussian polynomials
[

n
r

]
, where n

is fixed and 0 ≤ r ≤ n. Show that the greatest degree of these polynomials
is 1

4n
2 when n is even, this being attained when r = 1

2n, and the greatest
degree is 1

4 (n2 − 1) when n is odd, attained when r = 1
2 (n± 1).

Problem 8.2.2 Repeat the proof given in the text that
[

n
r

]
is a poly-

nomial of degree r(n− r), but apply the induction argument to the second
Pascal-type relation (8.8) instead of (8.7).

Problem 8.2.3 By reversing the order of summation in (8.27), obtain the
following alternative expression for the Chu–Vandermonde identity:[

i+ j
r

]
=

r∑
t=0

qt(i+t−r)
[

i
r − t

] [
j
t

]
.
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Problem 8.2.4 Display the Ferrers graphs of the self-conjugate partitions
of 5 and 10.

Problem 8.2.5 Show that the number of self-conjugate partitions of s is
the same as the number of partitions of s into distinct odd numbers.

Problem 8.2.6 Show that the generating function for self-conjugate par-
titions is the infinite product

(1 + x)(1 + x3)(1 + x5)(1 + x7) · · · .

Problem 8.2.7 Show that p′′(m,n,m+ n− 1) = p′′(n,m,m+ n− 1) = 1
for all m,n ≥ 1. What are the values of p′′(m,n,m+n), p′′(m,n,m+n+1)
and p′′(m,n,m+ n+ 2)?

Problem 8.2.8 Show that

p(m,n; s) =
m∑

i=1

n∑
j=1

p′′(i, j; s),

noting that p′′(i, j; s) is zero if s < i+ j − 1.

Problem 8.2.9 Show that p(6, 6; 18) = 58 by determining the largest co-

efficient in the Gaussian polynomial
[

12
6

]
, using (8.27).

Problem 8.2.10 Show that
[

2n
n

]
=

n∑
t=0

qt2
[
n
t

]2
.
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