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Preface

Modern physics is confronted with a large variety of complex spatial structures;
almost every research group in physics is working with spatial data. Pattern for-
mation in chemical reactions, mesoscopic phases of complex fluids such as liquid
crystals or microemulsions, fluid structures on planar substrates (well-known
as water droplets on a window glass), or the large-scale distribution of galax-
ies in the universe are only a few prominent examples where spatial structures
are relevant for the understanding of physical phenomena. Numerous research
areas in physics are concerned with spatial data. For example, in high energy
physics tracks in cloud chambers are analyzed, while in gamma ray astronomy
observational information is extracted from point patterns of Cherenkov photons
hitting a large scale detector field. A development of importance to physics in
general is the use of imaging techniques in real space. Methods such as scanning
microscopy and computer tomography produce images which enable detailed
studies of spatial structures.

Many research groups study non-linear dynamics in order to understand
the time evolution of complex patterns. Moreover, computer simulations yield
detailed spatial information, for instance, in condensed matter physics on config-
urations of millions of particles. Spatial structures also derive from fracture and
crack distributions in solids studied in solid state physics. Furthermore, many
physicists and engineers study transport properties of disordered materials such
as porous media.

Because of the enormous amount of information in patterns, it is difficult
to describe spatial structures through a finite number of parameters. However,
statistical physicists need the compact description of spatial structures to find
dynamical equations, to compare experiments with theory, or to classify patterns,
for instance. Thus they should be interested in spatial statistics, which provides
the tools to develop and estimate statistically such characteristics. Nevertheless,
until now, the use of the powerful methods provided by spatial statistics such
as mathematical morphology and stereology have been restricted to medicine
and biology. But since the volume of spatial information is growing fast also in
physics and material science, physicists can only gain by using the techniques
developed in spatial statistics.

The traditional approach to obtain structure information in physics is Fourier
transformation and calculation of wave-vector dependent structure functions.
Surely, as long as scattering techniques were the major experimental set-up in
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order to study spatial structures on a microscopic level, the two-point correlation
function was exactly what one needed in order to compare experiment and the-
ory. Nowadays, since spatial information is ever more accessible through digitized
images, the need for similarly powerful techniques in real space is obvious.

In the recent decades spatial statistics has developed practically indepen-
dently of physics as a new branch in statistics. It is based on stochastic geometry
and the traditional field of statistics for stochastic processes. Statistical physics
and spatial statistics have many methods and models in common which should
facilitate an exchange of ideas and results. One may expect a close cooperation
between the two branches of science as each could learn from the other. For in-
stance, correlation functions are used frequently in physics with vague knowledge
only of how to estimate them statistically and how to carry out edge corrections.
On the other hand, spatial statistics uses Monte Carlo simulations and random
fields as models in geology and biology, but without referring to the helpful and
deep results already obtained during the long history of these models in statis-
tical physics. Since their research problems are close and often even overlap, a
fruitful collaboration between physicists and statisticians should not only be pos-
sible but also very valuable. Physicists typically define models, calculate their
physical properties and characterize the corresponding spatial structures. But
they also have to face the ‘inverse problem’ of finding an appropriate model for
a given spatial structure measured by an experiment. For example, if in a given
situation an Ising model is appropriate, then the interaction parameters need to
be determined (or, in terms of statistics, ‘estimated’) from a given spatial con-
figuration. Furthermore, the goodness-of-fit of the Ising model for the given data
should be tested. Fortunately, these are standard problems of spatial statistics,
for which adequate methods are available.

The gain from an exchange between physics and spatial statistics is two-sided;
spatial statistics is not only useful to physicists, it can also learn from physics.
The Gibbs models used so extensively today in spatial statistics have their origin
in physics; thus a thorough study of the physical literature could lead to a deeper
understanding of these models and their further development. Similarly, Monte
Carlo simulation methods invented by physicists are now used to a large extent
in statistics. There is a lot of experience held by physicists which statisticians
should be aware of and exploit; otherwise they will find themselves step by step
rediscovering the ideas of physicists.

Unfortunately, contact between physicists and statisticians is not free of con-
flicts. Language and notation in both fields are rather different. For many statis-
ticians it is frustrating to read a book on physics, and the same is true for
statistical books read by physicists. Both sides speak about a strange language
and notation in the other discipline. Even more problems arise from different
traditions and different ways of thinking in these two scientific areas. A typical
example, which is discussed in this volume, is the use of the term ‘stationary’
and the meaning of ‘stationary’ models in spatial statistics. This can lead to seri-
ous misunderstandings. Furthermore, for statisticians it is often shocking to see
how carelessly statistical concepts are used, and physicists cannot understand
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the ignorance of statisticians on physical facts and well-known results of physical
research.

The workshop ‘Statistical Physics and Spatial Statistics’ took place at the
University of Wuppertal between 22 and 24 February 1999 as a purely German
event. The aim was simply to take a first step to overcome the above mentioned
difficulties. Moreover, it tried to provide a forum for the exchange of fundamen-
tal ideas between physicists and spatial statisticians, both working in a wide
spectrum of science related to stochastic geometry. This volume comprises the
majority of the papers presented orally at the workshop as plenary lectures, plus
two further invited papers. Although the contributions presented in this volume
are very diverse and methodically different they have one feature in common: all
of them present and use geometric concepts in order to study spatial configura-
tions which are random.

To achieve the aim of the workshop, the invited talks not only present recent
research results, but also tried to emphasize fundamental aspects which may
be interesting for the researcher from the other side. Thus many talks focused
on methodological approaches and fundamental results by means of a tutorial
review. Basic definitions and notions were explained and discussed to clarify dif-
ferent notations and terms and thus overcome language barriers and understand
different ways of thinking.

Part 1 focuses on the statistical characterization of random spatial config-
urations. Here mostly point patterns serve as examples for spatial structures.
General principles of spatial statistics are explained in the first paper of this vol-
ume. Also the second paper ‘Stationary Models in Stochastic Geometry - Palm
Distributions as Distributions of Typical Elements. An Approach Without Lim-
its’ by Werner Nagel discusses key notions in the field of stochastic geometry
and spatial statistics: stationarity (homogeneity) and Palm distributions. While
a given spatial structure cannot be stationary, a stationary model is often ade-
quate for the description of real geometric structures. Stationary models are very
useful, not least because they allow the application of Campbell’s theorem (used
as Monte Carlo integration in many physical applications) and other valuable
tools. The Palm distribution is introduced in order to remove the ambiguous
notion of a ‘randomly chosen’ or ‘typical’ object from an infinite system.

In the two following contributions by Martin Kerscher and Karin Jacobs et
al. spatial statistics is used to analyze data occurring in two prominent phys-
ical systems: the distribution of galaxies in the universe and the distribution
of holes in thin liquid films. In both cases a thorough statistical analysis not
only reveals quantitative features of the spatial structure enabling comparisons
of experiments with theory, but also enables conclusions to be drawn about the
physical mechanisms and dynamical laws governing the spatial structure.

In Part 2 geometric measures are introduced and applied to various exam-
ples. These measures describe the morphology of random spatial configurations
and thus are important for the physical properties of materials like complex
fluids and porous media. Ideas from integral geometry such as mixed measures
or Minkowski functionals are related to curvature integrals, which characterize
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connectivity as well as content and shape of spatial patterns. Since many phys-
ical phenomena depend crucially on the geometry of spatial structures, integral
geometry may provide useful tools to study such systems, in particular, in com-
bination with the Boolean model. This model, which is well-known in stochastic
geometry and spatial statistics, generates random structures through overlapping
random ‘grains’ (spheres, sticks) each with an arbitrary random location and ori-
entation. Wolfgang Weil focuses in his contribution on recent developments for
inhomogeneous distributions of grains. Physical applications of Minkowski func-
tionals are discussed in the paper by Klaus Mecke. They range from curvature
energies of biological membranes to the phase behavior of fluids in porous media
and the spectral density of the Laplace operator. An important application is
the morphological characterization of spatial structures: Minkowski functionals
lead to order parameters, to dynamical variables or to statistical methods which
are valuable alternatives to second-order characteristics such as correlation func-
tions.

A main goal of stereology, a well-known method in statistical image anal-
ysis and spatial statistics, is the estimation of size distributions of particles in
patterns where only lower-dimensional intersections can be measured. Joachim
Ohser and Konrad Sandau discuss in their contribution to this volume the es-
timation of the diameter distribution of spherical objects which are observed
in a planar or thin section. Rüdiger Hilfer describes ideas of modeling porous
media and their statistical analysis. In addition to traditional characteristics of
spatial statistics, he also discusses characteristics related to percolation. The
models include random packings of spheres and structures obtained by simu-
lated annealing. The contribution of Helmut Hermann describes various models
for structures resulting from crystal growth; his main tool is the Boolean model.

Part 3 considers one of the most prominent physical phenomena of random
spatial configurations, namely phase transitions. Geometric spatial properties of
a system, for instance, the existence of infinite connected clusters, are intimately
related to physical phenomena and phase transitions as shown by Hans-Otto
Georgii in his contribution ‘Phase Transition and Percolation in Gibbsian Parti-
cle Models’. Gibbsian distributions of hard particles such as spheres or discs are
often used to model configurations in spatial statistics and statistical physics.
Suspensions of sterically-stabilized colloids represent excellent physical realiza-
tions of the hard sphere model exhibiting freezing as an entropically driven phase
transition. Hartmut Löwen gives in his contribution ‘Fun with Hard Spheres’ an
overview on these problems, focusing on thermostatistical properties.

In many physical applications one is not interested in equilibrium configu-
rations of Gibbsian hard particles but in an ordered packing of finite size. The
question of whether the densest packing of identical coins on a table (or of balls in
space) is either a spherical cluster or a sausage-like string may have far-reaching
physical consequences. The general mathematical theory of finite packings pre-
sented by Jörg M. Wills in his contribution ‘Finite Packings and Parametric
Density’ to this volume may lead to answers by means of a ‘parametric density’
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which allows, for instance, a description of crystal growth and possible crystal
shapes.

The last three contributions focus on recent developments of simulation tech-
niques at the interface of spatial statistics and statistical physics. The main rea-
son for performing simulations of spatial systems is to obtain insight into the
physical behaviour of systems which cannot be treated analytically. For exam-
ple, phase transitions in hard sphere systems were first discovered by Monte
Carlo simulations before a considerable amount of rigorous analytical work was
performed (see the papers by H. Löwen and H.-O. Georgii). But also statisti-
cians extensively use simulation methods, in particular MCMC (Markov Chain
Monte Carlo), which has been one of the most lively fields of statistics in the
last decade of 20th century. The standard simulation algorithms in statistical
physics are molecular dynamics and Monte Carlo simulations, in particular the
Metropolis algorithm, where a Markov chain starts in some initial state and then
‘converges’ towards an equilibrium state which has to be investigated statisti-
cally. Unfortunately, whether or not such an equilibrium configuration is reached
after some simulation time cannot be decided rigorously in most of the simu-
lations. But Elke Thönnes presents in her contribution ‘A Primer on Perfect
Simulation’ a technique which ensures sampling from the equilibrium configu-
ration, for instance, of the Ising model or the continuum Widomn-Rowlinson
model.

Monte Carlo simulation with a fixed number of objects is an important tool
in the study of hard-sphere systems. However, in many cases grand canonical
simulations with fluctuating particle numbers are needed, but are generally con-
sidered impossible for hard-particle systems at high densities. A novel method
called ‘simulated tempering’ is presented by Gunter Döge as an efficient alter-
native to Metropolis algorithms for hard core systems. Its efficiency makes even
grand canonical simulations feasible. Further applications of the simulated tem-
pering technique may help to overcome the difficulties of simulating the phase
transition in hard-disk systems discussed in the contribution by H. Löwen.

The Metropolis algorithm and molecular dynamics consider each element
(particle or grain) separately. If the number of elements is large, handling of
them and detecting neighbourhood relations becomes a problem which is ap-
proached by Jean-Albert Ferrez, Thomas M. Liebling, and Didier Müller. These
authors describe a dynamic Delaunay triangulation of the spatial configurations
based on the Laguerre complex (which is a generalization of the well-known
Voronoi tessellation). Their method reduces the computational cost associated
with the implementation of the physical laws governing the interactions between
the particles. An important application of this geometric technique is the simu-
lation of granular media such as the flow of grains in an hourglass or the impact
of a rock on an embankment. Such geometry-based methods offer the potential
of performing larger and longer simulations. However, due to the increased com-
plexity of the applied concepts and resulting algorithms, they require a tight
collaboration between statistical physicists and mathematicians.
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Basic Ideas of Spatial Statistics

Dietrich Stoyan

Institut für Stochastik, TU Bergakademie Freiberg
D-09596 Freiberg

Abstract. Basic ideas of spatial statistics are described for physicists. First an overview
of various branches of spatial statistics is given. Then the notions of stationarity or
homogeneity and isotropy are discussed and three stationary models of stochastic ge-
ometry are explained. Edge problems both in simulation and statistical estimation are
explained including unbiased estimation of the pair correlation function. Furthermore,
the application of Gibbs processes in spatial statistics is described, and finally simula-
tion tests are explained.

1 Introduction

The aim of this paper is to describe basic ideas of spatial statistics for physi-
cists. As the author believes, methods of spatial statistics may be useful for many
physicists, in particular for those who study real irregular or ‘random’ spatial ge-
ometrical structures. Stochastic geometry and spatial statistics offer many useful
models for such structures and powerful methods for their statistical analysis.

Spatial statistics consists of various subfields with different histories. The
book [4] is perhaps that book which describes the most branches of spatial
statistics and gives so the most complete impression. The perhaps largest field,
geostatistics, studies random fields, i.e. random structures where in every point
of space a numerical value is given as, for example, a mass density or an air pol-
lution parameter. There are many special books on geostatistics, e.g. [3] and [45].
Other branches of spatial statistics are described also in the books [2,29,37] and
[40]. An area with a rather long history is point process statistics, i.e. the statis-
tical analysis of irregular point patterns of, for example, positions of galaxies or
centres of pores in materials. Note that statisticians use the word ‘process’ where
physicists would prefer to speak of ‘fields’; typically, there is no time-dependence
considered.

There are attempts to analyse statistically also fibre processes and surface
processes. A fibre process (or field) is a random collection of fibres or curves
in space as, for example, dislocation lines ([39]). Also the random system of
segments in the last figure of the paper by H.-O. Georgii in this volume can
be interpreted as a fibre process. A surface process is a stochastic model for
a random system of two-dimensional objects, modelling perhaps boundaries of
particles in space or cracks in soil or rocks.

Point processes, fibre and surface processes are particular cases of random
sets. Here for every deterministic point x the event that it belongs to the set

K.R. Mecke and D. Stoyan (Eds.): LNP 554, pp. 3–21, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



4 Dietrich Stoyan

depends on chance. It is possible to interpret a random set as a particular random
field having only the values 0 and 1, but the theory of random sets contains also
ideas which do not make sense for random fields in general; an example are
random chord lengths generated by intersection with test lines. A very valuable
tool in the statistics of random sets (but also for filtration and image analysis)
is mathematical morphology, see the classical book [33], and the more recent
books [16] and [35].

There are widely scattered papers on the statistics of fractals, i.e. on the
statistical determination of the fractal dimension for given planar or spatial
samples. A recent reference to the particular case of rough surfaces is [5].

In the last five years several books have been published on shape statistics,
see [7,34] and also [40]. The aim is here the statistical analysis of objects like
particles or biological objects like bones, the description of statistical fluctua-
tions both of shape and size. Until now, mainly that case is studied (which is
typical for biology) where the usually planar objects are described by charac-
teristic points on their outline, called ‘landmarks’. But there are also attempts
to create a statistical theory for ‘particles’ (such as sand grains), where usually
such landmarks do not make sense. The simplest approach is via shape rations
or indices ([40]) or ‘shape finders’ as in Sect. 3.3.7 of M. Kerscher’s contribution
in this volume.

A special subfield of random set statistics is stereology. The aim of classical
stereology is the investigation of spatial structures by planar sections, to analyse
statistically the structures visible on the section planes and to transform then
the results into characteristics of the spatial structure. This is a very elegant
procedure, and the most famous stereological result is perhaps the solution of
the Wicksell problem, which yields the diameter distribution of spheres in space
as well as the mean number of spheres per volume unit based on measurement of
section circle diameters. The paper by J. Ohser and K. Sandau in this volume de-
scribes modern stereological methods in the spirit of the classical approach. The
experience that important spatial characteristics cannot be estimated stereolog-
ically and new microscopical techniques (e.g. confocal microscopy) have led to
new statistical methods which also go under the name stereology though they use
three-dimensional measurement. But also there difficult problems remain such
as, for example, spatial measurement of particles. Local stereology (see [19])
shows e.g. how mean particle volumes can be estimated by length measurement.

Spatial statisticians try to develop statistical procedures for determining gen-
eral characteristics of structures such as

– intensity ρ (mean number of points of a point process per volume unit;
in spatial statistics frequently the character λ is used, and in stereological
context NV ;NV = number per volume);

– volume fraction η (mean fraction of space occupied by a random set; in spa-
tial statistics frequently the character p is used and in stereological context
VV ;VV = volume per volume);
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– specific surface content (mean surface area of a surface process per volume
unit; in stereological context the character SV is used; SV = surface per
volume);

– pair correlation function g(r), see Sect. 4;
– covariance (often not called ‘covariance function’; C(r) = probability that

the members of a point pair of distance r both belong to a given random
set).

Statistical research leads to so-called ‘non-parametric estimators’ for these and
other characteristics. The aim is to obtain unbiased estimators, which are free of
systematic errors. Furthermore, a small estimation variance or squared deviation
is wanted.

An important role play stochastic models, both in statistical physics and
spatial statistics. In the world of mathematics such models are developed and
investigated in stochastic geometry. As expressed already in the foreword, both
sides, physicists and statisticians could learn a lot from the other side, since the
methods and results are rather different. Two statistical problems arise in the
context of models: estimation of model parameters and testing the goodness-of-
fit of models, see Sect. 6.

In the last years a further topic of statistical research has appeared: the
problem of efficient simulation of stochastic models. Starting from ideas which
came originally from physicists, simulation algorithms have been developed and
investigated systematically which improve the original Metropolis algorithm.
The aim is to save computation time and to obtain precise results. The papers
by G. Döge, J.-A. Ferrez, Th. M. Liebling and D. Müller, H.-O. Georgii and E.
Thönnes in this volume describe some of these ideas.

Mathematically, two general ideas play a key role in spatial statistics: ran-
dom sets and random measures. With the exception of random fields all the
geometrical structures of spatial statistics can be interpreted as random sets.
Fundamental problems can be solved by means of the corresponding theory cre-
ated by G. Matheron and D.G. Kendall, which is described in texts such as [21]
and [27]; physicists may begin with the simplified descriptions in [33,36] and [37].

A measure is a function Φ which assignes to a set A a number Φ(A), satisfying
some natural conditions such as that the measure of a union of disjoint sets is
equal to the sum of the measures of the components. A well-known measure is
the volume or, in mathematical terms, the Lebesgue measure denoted here by
ν; generalizations are the Minkowski measures. Any random set is accompanied
by random measures. If the random set is a fibre process then e.g. the following
two random measures may be of interest, the total fibre length or the number
of fibre centres. In the first case, Φ(A) is the total fibre length in A. Here A is a
deterministic set (sometimes called ‘test set’ or ‘sampling window’), and the value
Φ(A) is a random variable. Characteristics such as intensity and pair correlation
function have their generalized counterparts in the theory of random measures;
in particular, η is the intensity and C(r)/η2 is the pair correlation function of
the volume measure associated with the random set. The idea of using random
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measures in the context of stochastic geometry and spatial statistics goes back
to G. Matheron and J. Mecke.

2 Stationarity and Isotropy

A frequently used basic assumption in spatial statistics is that the structures
analysed are stationary. Similarly as with the use of the word ‘process’, the
physicist should be aware that ‘stationary’ means in spatial statistics typically
‘homogenous’. It means that the distribution of the structure analysed is trans-
lation invariant. Mathematically, this is described as follows.

Let Φ be the random structure. The probability that Φ has some propoerty,
can be written as

P (Φ ∈ Y ), (1)

where Y is a subset of a suitable phase space N and P denotes probability.

Example. Let Φ be a point process and Y be the set of all point patterns in
space which do not have any point within the ball b(o, r) of radius r centred at
the origin o. Then P (Φ ∈ Y ) is the probability that the point of Φ closest to o
has a distance larger than r from o. As a function of r, this probability is often
denoted as 1−Hs(r), and Hs(r) is called spherical contact distribution function.

The structure Φ is called stationary if for all r ∈ Rd and all Y ∈ N

P (Φ ∈ Y ) = P (Φr ∈ Y ), (2)

where Φr is the structure translated by the vector r.
This can be rewritten as

P (Φ ∈ Y ) = P (Φ ∈ Yr), (3)

where Yr is the shifted set Y in the phase space.

Example. In the case of a stationary point process Φ it is

P (Φ does not have any point in b(o, r)) =
P (Φ does not have any point in b(r, r))

(4)

for all r and r, i. e., the position of the test sphere is unimportant.
The definition of stationarity makes only sense for infinite structures, since

a bounded structure can be never stationary.
Isotropy is analogously defined. The structure Φ is called isotropic if for all
rotations r around the origin o and all Y ∈ N

P (Φ ∈ Y ) = P (rΦ ∈ Y ), (5)

where rΦ is the structure rotated by r. A structure which is both stationary and
isotropic is called motion-invariant.
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Mathematicians know that there are strange stationary sets such as the
empty set or the infinite set of lines y = n+u in the (x, y)-plane, n = 0,±1, . . . ,
where u is a random variable with uniform distribution on the interval [0, 1]. A
stronger property is ergodicity, which ensures that spatial averages taken over
one sample equal local averages over the random fluctuations. Implicitly ergod-
icity is quite often assumed in spatial statistics, where frequently only a unique
sample is analysed, for example a particular mineral deposit or forest. The dif-
ficult philosophical problems in this context are discussed in [22].

The properties of stationarity and ergodicity can never be tested statistically
in their full generality. They can be proved mathematically for the stochastic
models below, but in applications the decision is leaved to the statistician. She
or he can test aspects of the invariance properties, can visually inspect the
sample(s), look for trends or use a priori knowledge on the structure investigated.

Note that stationarity is defined without limit procedures, and the same is
true for characteristics related to stationary structures such as volume fraction
η. For a stationary random set X, η is simply the volume of X in any test set of
volume 1. It is a mathematical theorem that for an ergodic X, η is obtained as
a limit for large windows. This limit-free approach is discussed in the paper by
W. Nagel in this volume. The following section describes three stochastic models
of spatial statistics as models in the whole space. In Sect. 5 a similarly defined
stationary Gibbs process is discussed.

Mathematicians consider their approach as natural and are perhaps not quite
happy with texts such as passages in Löwen’s paper in this volume (around
formulas (2) or (20)). So to say, they start in the thermodynamical limit, and
consider ρ, η and g(r) as quantities corresponding only to the stationary case.

3 Three Stationary Stochastic Models

The Homogeneous Poisson Process
For spatial statisticians, the homogeneous (or stationary) Poisson process is

the most important point process model. It is the model for a completely random
distribution of points in space, without any interaction. Its distribution is given
by one parameter λ, the intensity, the mean number of points per volume unit.
The process has two properties which determine its distribution:

(a) For any bounded set B, the random number of points in A,Φ(A), has a
Poisson distribution with parameter λν(A), where ν(A) is the volume of A.
That means,

P (Φ(A) = i) =
[λν(A)]i

i!
exp(−λν(A)), i = 0, 1, . . . (6)

(b) For any integer k and any pairwise disjoint sets B1, . . . , Bk the random point
numbers in the sets, Φ(B1), . . . , Φ(Bk), are independent.

These properties imply stationarity and isotropy because of the translation and
rotation invariance of volume. A further implication is that under the assumption
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that in a given set A there are just n points, the point positions are independent
and uniformly distributed within A. This property is important for the simula-
tion of a Poisson process in A: first a Poisson random number n for parameter
λν(A) is determined and then n independent uniform positions within A. Figure
1 shows a simulated sample of a Poisson process.

Fig. 1. A simulated sample of a homogeneous Poisson process.

The Boolean Model
Also the Boolean model is defined from the very beginning as a model in

the whole space. It is a mathematically rigorous formulation of the idea of an
‘infinite system of randomly scattered particles’. So it is a fundamental model for
geometrical probability, stochastic geometry and spatial statistics. The Boolean
model has a long history. The first papers on the Boolean model appeared in
the beginning of the 20th century, see the references in [37], which include also
papers of various branches of physics. The name “Boolean model” was coined in
G. Matheron’s school in Fontainebleau to discriminate this set-theoretic model
from (other) random fields appearing in geostatistical applications.
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The Boolean model is constructed from two components: a system of grains
and a system of germs. The germs are the points r1, r2, . . . of a homogeneous
Poisson process of intensity ρ. (The paper by W. Weil in this volume considers
the inhomogeneous case.) The grains form a sequence of independent identically
distributed random compact sets Kn. Typical examples are spheres (the most
popular case in physics), discs, segments, and Poisson polyhedra. A further ran-
dom compact set K0 having the same distribution as the Kn is sometimes called
the ‘typical grain’.

The Boolean model Ξ is the union of all grains shifted to the germs,

Ξ =
∞⋃
n=1

(Kn + rn),

see Fig. 2, which shows the case of circular grains.

Fig. 2. A simulated sample of a Boolean model with random circular grains, which is
the set-theoretic union of all disks shown. The disk centres coincide with the points in
Fig. 1.
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Very often it is assumed that the typical grain K0 is convex; only Boolean
models with convex grains are discussed henceforth. But this does not mean that
non-convex grains are unimportant. For example, the case where K0 is a finite
point set corresponds to Poisson cluster point processes.

The parameters of a Boolean model are intensity ρ and parameters charac-
terizing the typical grain K0. While for simulations the complete distribution of
K0 is necessary, for a statistical description it often suffices to know that the
basic assumption of a Boolean model is acceptable and to have some parameters
such as mean area A, mean perimeter U or, if a set-theoretic characterization is
needed, the so-called Aumann mean of K0.

The distribution of the Boolean model Ξ is, as for any random set, deter-
mined by its capacity functional, P (Ξ ∩ K �= ∅), the probability that the test
set K does not intersect Ξ. It is given by the simple formula

P (Ξ ∩K �= ∅) = 1− exp(−λ〈ν(K0 ⊕ Ǩ)〉) for K ∈ K.

Here ⊕ denotes Minkowski addition, A⊕ B = {a+ b : a ∈ A, b ∈ B}, Ǩ is the
set {−k : k ∈ K}, and 〈 〉 is the mean value operator. The derivation of this
formula is given in [21] and [37]. Its structure is quite similar to the emptiness
probability of the Poisson process or to the probability that a Poisson random
variable does not vanish. It can perhaps be partially explained when applied to
the particular case K0 = {o}. Then, the Boolean model is nothing else but the
random set consisting of all points of the Poisson process of germs. Consequently,

P (Ξ ∩K �= ∅) = 1− exp(−λν(K)),

which coincides with the general formula for K0 = {o}.
The calculation of the capacity functional of a Boolean model poses a non-

trivial geometrical problem, viz. the determination of the mean

〈ν(K0 ⊕ Ǩ)〉.
Here formulas of integral geometry are helpful, see [37]. They lead to many nice
formulas for that model.

Again the translation invariance of volume ensures that the Boolean model
is stationary; it is also isotropic if the typical grain is isotropic, i.e. rotation
invariant. The planar section of a Boolean model is again a Boolean model.

In [26] statistical methods for the Boolean model are analysed. The contri-
bution of H. Hermann in this volume shows a typical application of the Boolean
model.

The Random Sequential Adsorption Model
The RSA model is a famous model of hard spheres in space, which is called
SSI model in spatial statistics (simple sequential inhibition). In the physical
literature (see, for example, [17]) it is often defined for a bounded region B as
follows. Spheres of equal diameter σ = 2R are placed sequentially and randomly
in B. If a new sphere is placed so in B that it intersects a sphere already existing
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then the new sphere is rejected. The process of placing spheres is stopped when
it is impossible to place any new sphere. Clearly the distribution of the spheres
in B depends heavily on shape and size of B. But very often it is obvious that
physicists have in mind a homogeneous or stationary structure in the whole
space which is observed only in B, see [8]. Figure 3 shows a simulated sample in
a square.

Fig. 3. A simulated sample of a planar RSA model in a quadratic region.

There are two ways to define the RSA model as a stationary and isotropic
structure. One was suggested by J. Møller. It uses a random birth process as in
[30] and [37], p. 185 (a birth-and-death process with vanishing death rate). Such
a process starts from a homogeneous Poisson process on the product space of
R
d × [0,∞), where the latter factor is interpreted as ‘time’. With each ‘arrival’

(xi, ti) of the process a sphere of radius R is associated. It is assumed that an
arrival is deleted when its sphere overlaps the sphere of any other arrival (xj , tj)
with ti > tj . Then as time tends to infinity the retained spheres give a packing of
the space, the RSA model; no further sphere of radius R can be placed without
intersecting one of the existing spheres. The corresponding birth rate at r for
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the point configuration of sphere centres ϕ is

b(x, ϕ) = 1− 1ϕ⊕b(o,R)(x) ,

where 1A(x) = 1 if x ∈ A and 0 otherwise.
The second form of modeling, which is related to the idea of the dependent

thinning procedure which leads to Matérn’s second hard core process (a partic-
ular model for centres of hard spheres), see [37], p. 163, was suggested by M.
Schlather, see for more details [38]. Take a Poisson process of intensity one in
R
d × [0,∞) consisting of (d+1)-dimensional points (r, t). The Matern thinning

rule applied to this process works as follows: A point (r, t) produces a point
r ∈ R

d of the hard core process if there is no other point (r′, t′) with

‖r − r′‖ < h and t′ < t . (7)

The result is a system of hard spheres which is rather thin. For all points retained
construct (d+1)-dimensional cylinders of radius σ and infinite height centred at
the points. Delete all points of the original Poisson process in the cylinders and
reconsider the Poisson process points outside. A point (r, t) of them is retained
if it satisfies (7) for all (r′, t′) outside of the cylinders, and this procedure is re-
peated ad infinitum, increasing stepwise the density of hard spheres and yielding
eventually the stationary RSA model. Both forms of definition are suitable for
a generalisation to the case of an RSA model with variable sphere diameters.

4 Edge Problems

For physicists and materials scientists edges and boundaries are fascinating ob-
jects; surfaces of solids are studied in many papers. In contrast, for a statistician
boundaries pose annoying problems. There are few papers which study struc-
tures with a gradient (towards a boundary) or with layers, see [13] and [14].
But in general, edges are considered as objects which make special corrections
necessary, both in statistical estimation and simulation.

Edge-Correction in Simulation
The simulation of stationary structures is an important task. Clearly, it is only
possible to simulate them in bounded windows and it is the aim to simulate
typical pieces which include also interaction to structure elements outside of the
window.

Often it is sufficient for obtaining an ‘exact sample’ to simulate the structure
in an enlarged window. However, this is not recommendable for hard-core Gibbs
processes. It cost the author a lost bet for a crate of beer to be paid to H. Löwen
to learn this. He tried to simulate a planar hard disk Gibbs process with free
boundary and disk diameter 1 in a square window of side length 20 in order
to obtain a stationary sample of about 180 points in the central square of side
length 14 and had to learn that the area fraction obtained was considerably
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smaller (0.696) than the result with periodic boundary conditions in the smaller
square (0.738).

It seems that the method of periodic boundary conditions (or simulation on
a torus if the window is a planar rectangle) is a good ad-hoc method. More
sophisticated methods are finite-size scaling (see [46]) and perfect simulation in
space, see E. Thönnes’ and H.-O. Georgii’s papers in this volume.

Statistical Edge-Correction
The spatial statistician wants to avoid systematic errors or biases in estimation
procedures. This aim implies in many cases edge-correction. It is explained here
for a particular problem, the estimation of the pair correlation function of a
stationary and isotropic point process of intensity ρ based on the points observed
in a bounded window of observation W , see for details [42]. The pair correlation
(or distribution) function g(r) can be defined heuristically as follows. (See also
H. Löwen’s paper in this volume.) Consider two infinitesimal balls of volumes
dV1 and dV2 of distance r. The probability to find in both balls each a point is

λ2g(r)dV1dV2.

The statistical estimation follows this definition. A naive estimator, which is
quite good for very large samples and small fluctuations of local point density, is

ĝn(r) =
∑ �=

i,j

k(‖Ri − Rj‖ − r)
ν(W )

/
ρ̂2.

The summation goes here over all pairs of different points ((Ri,Rj) as well as
(Ri,Rj)) of a distance between r−h and r+h. The sampling window is denoted
by W , its volume (or area) by ν(W ), and

k(z) = 1[−h,h](z)/2h

where h is called bandwidth. Finally, ρ̂ is the intensity estimator

ρ̂ = number of points in W/ν(W ) = N/Ω.

For large r and smallW , the estimator ĝn(r) has a considerable bias (= difference
of estimator minus true value), since for a point close to the boundary ∂W of
W some of the partner points of distance r are outside of W . Therefore the bias
will be negative.

A naive way to improve this situation could be to include in ĝn(r) only
point pairs for which at least one member has a distance r from ∂W . This
method is called ‘minus-sampling’ and means of course a big loss of information.
‘Plus-sampling’ would mean that for all points inW additionally the neighbours
outside of W within a distance r are known. One can usually not hope to be
able to apply plus-sampling, but sometimes (for estimating other characteristics)
there is no better idea than to use minus-sampling.

A much better idea of edge-correction, which can be applied in pair corre-
lation estimation, is to use a Horvitz-Thompson estimator, see [1]. The idea is



14 Dietrich Stoyan

here to weight the point pairs according to their frequency of observation. The
observation of a point pair of large distance r is less likely than that of a small
distance. Therefore pairs with a large distance get a big weight and so on. One
can show that the weight

(ν(W ∩WRi−Rj ))
−1

where Wr =W + r = {y : y = w+ r, w ∈W}, is just the right weight, yielding
an unbiased estimator of p(r) = λ2g(r),

p̂(r) =
∑ �=

i,j

k(‖Ri − Rj‖ − r)
ν(W ∩WRi−Rj )

. (8)

Then g(r) is estimated by division by the squared intensity ρ2. It is not the
best solution to use simply ρ̂2, to square ρ̂ = N/Ω. The mean of the unbiased
estimator ρ̂ is not ρ̂2. It is better to use an adapted estimator ρS(r), which
depends on r and, particularly for large r, to replace ρ̂S(r)2 by a better estimator
of ρ2, see [42].

5 Gibbs Point Processes

Some statisticians say that the 19th century was the century of the Gaussian
distribution, while the 20th century was that of Gibbs distributions ; probably
many physicists will agree. In many situations distributions appear which are of
the form

probability of configuration = exp{– energy of configuration}.
Even the Gaussian distribution can be seen as a particular case. Physicists know
that such distributions result from a maximization problem and use the idea of
maximum entropy in some statistical problems (see [9,18] and [23]).

Until now in this approach the configurations have been mainly point config-
urations, and here only this case is considered. The ‘points’ may be ideal points
or centres of objects such as hard spheres or locations of trees. Some exceptions
are structures studied in [24] and their statistical counterparts (see [20] and [25])
and the fibre model in [12], p. 109.

For physicists Gibbs point processes (or ensembles) are models of their own
interest. Typically they start with a potential function and then study the sta-
tistical properties of the ensemble in the belief so to study physically relevant
structures. This is very well demonstrated in the paper by H. Löwen in this
volume. One of the most important questions in this context is that of phase
transition, the existence of different distributions for the same model parameters.

The approach of statisticians is quite different. For them the point pattern is
given, they assume that it follows the Gibbs process model and want to estimate
its parameters. Typically, they look for simple models and therefore prefer in the
Gibbs approach models which are based on pair potentials. If they are successful,
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they have then the problem of interpretation of the estimated pair potential in
terms of the data, for example biologically, which is not always simple, see [44].
Finally, they have then to simulate the process for carrying out Monte Carlo
tests (see Sect. 6) and visualisation.

Statisticians study Gibbs processes (or Markov point processes) both in
bounded regions and in the whole space, see also the text by H.-O. Georgii
in this volume. Before the latter case, which is for physicists perhaps not so nat-
ural, will be discussed, the case of a bounded region is considered. Here both the
canonical and the grand canonical ensemble are used, where the grand canonical
case poses existence problems, particularly in the case of clustering or a pair po-
tential with attraction. In the case with fixed point number n and pair potential
V the joint density of the n points in W is

f(R1, . . . ,Rn) = exp{−
N∑
i<j

V (|Ri − Rj |)}
/
Z. (9)

Here the normalizing constant Z is the classical canonical partition function
which is very difficult to determine. Usually, V depends on some parameters,
which have to be estimated and which also have influence on Z. If the statis-
tician has n points R1, . . . ,Rn in W she or he could start the estimation of
the parameters using the maximum likelihood method. It consists just in the
task to determine that parameters which maximize f(R1, . . . ,Rn) for the given
R1, . . . ,Rn. But this is very difficult since Z is unknown. Ogata and Tanemura
(1981) used approximations of Z derived by statistical physicists. An alternative
solution is based on simulation, and the method is then called ‘Monte Carlo like-
lihood inference’, see [11]. Many point patterns (mainly of forestry) have been
analysed by these methods. By the way, for modelling inhomogeneous tree dis-
tribution even Gibbs process with external potential are applied, see [41]. Other
approaches for this problem consist in thinning homogeneous Gibbs processes or
in transforming them.

Stationary Gibbs Point Processes
Statisticians have developed a theory of stationary Gibbs point processes, which
are as the models in Sect. 3 defined in the whole space, without any limiting pro-
cedure. A sketch of the theory is given in [37], where also the relevant references
are given, to which [10] should be added.

A stationary Gibbs point process Φ satisfies the Georgii-Nguyen-Zessin equa-
tion

ρ〈(f(Φ \ {o})〉o = 〈(f(Φ) exp{−E(o, Φ)}〉 (10)

Here ρ is the intensity of the process and f is any non-negative function which
assignes a number to the whole point process. 〈 〉o means expectation with respect
to the Palm distribution; this is a conditional mean under the condition that
in the origin o there is a point of Φ, see Nagel’s paper in this volume for an
exact definition. The term ‘\{o}’ means that o is not included in the left-hand
mean. E(o, Φ) is the ‘local energy’, the energy needed to add the point o to
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the configuration Φ; if the energy of the Gibbs point process is given by a pair
potential V , then

E(o, Φ) = −µ+
∑
x∈Φ

V (‖x‖),

where µ is a further parameter called chemical activity. Analogs of (10) are known
in statistical physics under the name ‘excess particle equations’ (or similar) and
have been used since 1960 in the ‘scaled particle theory’, see Sect. 3.5 of H.
Löwen’s contribution to this volume and [15], Sect. 2.4 and formula (2.4.30).
The author confesses that he (as a trained mathematician) prefers clearly the
stationary formalism rather than that in [15], which uses N points. By the way,
Formula (10) is given in a bastard notation; formula (5.5.18) in [37] is perhaps
nicer.

An important particular case is the hard core Gibbs process, with the simple
pair potential

V (r) =
{∞ for r < σ

0 otherwise .

The corresponding stationary Gibbs point process is an important stochastic
model for a system of hard spheres of diameter σ or rods of length σ in the
one-dimensional case. For this process, (10) simplifies as

ρ〈f(Φ \ {o})〉o = eµ〈f(Φ)1Yσ (Φ)〉 (11)

where Yr is the set of all point patterns with no point in the ball b(o, r). The
particular choice of

f(Φ) = 1Yr (Φ), r ≥ σ

yields
λPo(Yr) = eµP (Yr) for r ≥ σ, (12)

where Po is the Palm distribution of Φ and P the usual stationary distribution
of Φ. Formula (12) can be rewritten as

ρ
[
1−D(r)

]
=
[
1−Hs(r)

]
eµ for r ≥ σ . (13)

Here D(r) is the nearest neighbour distance distribution function (the d.f. of the
random distance from a randomly chosen point to its nearest neighbour in Φ)
and Hs(r) is the spherical contact distribution function (the d.f. of the random
distance from the origin o to its nearest neighbour in Φ, see also section 3.3.2
of M. Kerscher’s paper in this volume). This equation already appears in other
notation in [31]. It yields a very rough approximation of the intensity ρ, which
is for fixed σ a function of µ,

eµ

1 + bdσdeµ
≤ ρ(µ) ≤ eµ

1 + bd(σ2 )
deµ

,

where bd is the volume of the unit sphere in R
d. The function ρ(µ) is increasing in

µ, see section 4.3 of H.-O. Georgii’s paper in this volume. The paper by G. Döge
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in this volume describes how ρ(µ) can be investigated by simulated tempering,
a particular simulation method.

Note that all results for the one-dimensional stationary hard core Gibbs point
process (see Section 2.2 of Löwen’s paper) in the physical literature can be
obtained (without any limiting procedure) by using (10) for suitable functions
f . It can be shown that the point process Φ of rod centres is a renewal process,
i.e. the random distances between subsequent points are completely independent.
The distribution function F of the distance between any two subsequent points
is given by

F (r) = 0 for r ≤ σ

and
F (r) = 1− e−β(r−σ) for r > σ

with β satisfying
lnβ + βσ = µ.

The mean inter-point distance is m = σ + β−1.
Spatial statisticians use the stationary Gibbs point process for statistical

analyses for point patterns which were considered as samples of stationary point
process. The aim is then to estimate the chemical activity µ and the pair po-
tential V . As an approximation the methods for finite Gibbs point process can
be used, while a true stationary approach is the Takacs-Fiksel method. (Both
approaches were compared in [6].) The idea of the Takacs-Fiksel method is to
determine empirical analogues of both sides of equation (10) for a series of ‘test
functions’ f and to chose µ and V so that the sum of squared differences be-
comes a minimum. Details of the method are described in [40], an example is
discussed in [37], p. 183. There the points are positions of 60 years old spruces
in a German forest. The pair potential was estimated as

V̂ (r) =


∞ for r < 1m
6.0e−1.0r for 1 ≤ r < 3.5m
0 otherwise .

6 Statistical Tests

A honest spatial statistician does not stop her/his work when she/he has found
a stochastic model for her/his data. No, she/he will also test the goodness-of-
fit of the model. But this is a difficult task, since the classical goodness-of-fit
tests such as χ2 or Kolmogorov-Smirnov are usually not applicable in spatial
statistics. These tests are designed to test that an unknown distribution function
is equal to a theoretical function, perhaps a distribution function of a normal
distribution and it is assumed that the data come from independent observations.
In contrast, the data of spatial statistics are typically highly correlated and often
the distribution cannot be characterized by a distribution function only.
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A fundamental hypothesis of spatial statistics is that of complete spatial ran-
domness (CSR) of a given point pattern. If a homogeneous pattern is assumed,
the CSR hypothesis is the same as that the point pattern is a sample of a ho-
mogeneous Poisson process. For this hypothesis there exist various tests. Their
application depends on the data. If they are counts in cells then the dispersion
index test is used. This is in essence a χ2 goodness-of-fit test of the hypothesis
that the counts follow a uniform distribution. (Here property (b) and the con-
ditional uniformity property of the homogeneous Poisson process are used.) A
more powerful test is the L test. It is explained here to give a typical example
for a test in spatial statistics.

The L function of a point process Φ is defined as follows. Consider the mean
number of points in a sphere of radius r centred at a randomly chosen point
of Φ. (A ‘randomly chosen point’ or a ‘typical point’ is a point of Φ obtained
in a sampling scheme where every point has the same chance to be chosen;
an exact definition needs the use of Palm distributions, see W. Nagel’s text in
this volume.) Denote this mean, which depends on r, by ρK(r), where ρ is the
intensity of Φ. The function K(r) appearing here is called Ripley’s K function.
It is related to the pair correlation function g(r) by

g(r) =
d

dr
K(r)

/
dbdr

d−1.

For a Poisson process it is
K(r) = bdr

d.

It makes sense to transform the K function to obtain the L function given by
L(r) = d

√
K(r)/bd.

It satisfies in the Poisson case
L(r) = r.

For a given point pattern, the L function can be estimated statistically (see
[32,40] and [42]); the root transform stabilizes estimation variances. If the em-
pirical L function, L̂(r), shows large deviations from r, then the statistician
may conclude that the data do not come from a Poisson process. The deviation
measure used is

δ = max
(r)

|r − L̂(r)|.

Since usually the maximum deviations appear for smaller r, no upper bound on
r appears here. The distribution of δ under the Poisson hypothesis depends on
window size and process intensity. Ripley [32] (see also [40], p. 225) gives for the
planar case the critical value

τ0.95 = 1.45

√
window area

point number

for the error probability of α = 0.05, a value which was found by simulation.
(The factor is 1.68 for α = 0.01.) If δ for a given pattern is larger than τ0.95 then
at the level of 0.95 the CSR hypothesis is rejected.
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An analogous test is possible for any other point process, to test the hy-
pothesis that a given point pattern can be considered as a sample of certain
point process. Assume that the L function of the process under the hypothesis
is known, perhaps only after simulation. Then

δ = max
(r)

|L(r)− L̂(r)|

is calculated for the given sample, yielding the value δ∗. Furthermore the theo-
retical point process is simulated 999 times in just the same window. For each
simulation the δ value is determined. Then the obtained 1000 δ values are or-
dered in ascending order. If δ∗, the empirical value, is too big, i. e. belongs to
the 50 biggest values, the hypothesis is rejected at the level 0.95.

Such a test is called a Monte Carlo test, and tests of this type are frequently
used in spatial statistics. There not only the L function is used, but also the D
function and Hs function mentioned in section 5, or the J function defined by
J(r) = (1 −D(r))/(1 −Hs(r)), see [43]. Also quite other characteristics can be
used, for example, intensity ρ or volume fraction η. Then again the deviation of
the empirical and theoretical values can be investigated, usually by simulation.

It is also possible (and perhaps more convenient) to consider fluctuations of
real-valued charateristics without regard to theoretical values. Such a value can
be L(r) for a particularly important distance r. Then there is given an empirical
value L̂(r) and 999 values obtained by simulation. If then L̂(r) belongs to the 25
smallest or 25 largest L(r) values, the model hypothesis is rejected. Often this
test is made sharper by considering the graph of L̂(r) and the 2.5 % and 97.5
% envelope of the simulated L functions, see section 15.8 in Stoyan and Stoyan
(1994). The level of this test is smaller than 0.95 but the true level is unknown.

Often not 999 simulations are carried out. Instead, sometimes only 19 simu-
lations are made and the hypothesis is rejected if the empirical value is outside
of the interval formed by the extreme simulated values or the empirical function
is outside of the band formed by the 19 simulated functions. The statistician
then believes to work close to a level of 0.95.

Note a subtle difficulty. Typically, the model parameters are estimated from
the same data which are later used for determining the deviation measure δ.
Then of course δ should tend to be smaller than for the simulated samples, and
the test is a bit favourable to the hypothesis. To determine then the true test
level is difficult or at least time-consuming.
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Stationary Models in Stochastic Geometry –
Palm Distributions as Distributions of Typical
Elements. An Approach Without Limits

Werner Nagel

Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena
D-07740 Jena, Germany

Abstract. The text introduces basic notions for stationary models in Stochastic Ge-
ometry. Those are the models themselves, the intensity and the Palm distribution as
the distribution of the typical object in a random geometric structure. The Campbell
theorem is presented as the main tool to investigate relations between quantitative
characteristics without considerations of limits in space. The application to random
tessellations is demonstrated as an example.

1 Introduction

The present introductory text is written to encourage the reader in taking note of
models, tools and results provided in the field of Stochastic Geometry. There has
been considerable progress during the last decades, mainly due to a successful
application of the theory of point processes.

Two key notions are those of stationarity or - synonymously - homogeneity
and of the Palm distribution. With a minimum of formalism and appealing to
the intuition the basic concepts are introduced here.

Possible applications are illustrated in some examples. For detailed and com-
prehensive presentations we refer to monographs, see [1,3,5,6].

In Stochastic Geometry one deals with random geometric structures in the
Euclidean plane R

2, in the space R
3 or more general in R

d, d ≥ 1. The spatial
structures are considered as random variables Φ with domain N, the set of all
possible realisations ϕ of Φ. Thus N is the set of all geometric patterns which
may occur in the model of interest. Usually, these realisations ϕ are understood
as geometric structures which extend over the whole R

d. The probability distri-
bution of Φ is denoted by PΦ, and this is a distribution on the set N.

From a mathematical point of view most of the spaces and sets (Rd, N and
so on) have to be endowed with an appropriate σ-algebra, and all the occurring
functions have to be measurable functions. In order to facilitate reading we will
not mention these assumptions in the following. Notice that an exact formulation
of definitions and theorems would require to explicate them.

K.R. Mecke and D. Stoyan (Eds.): LNP 554, pp. 22–35, 2000.
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2 Quantitative Analysis
of Irregular Geometric Structures

Its a key task in Stochastic Geometry to choose and to define quantities or
parameters which reflect certain features of a structure. Their choice depends on
the application. For precise definitions of such quantities there are two principal
ways: the ergodic approach or the method based on Palm distributions.

In order to explain these two approaches we start with two simple examples.

Example 1: Point pattern in the Euclidean plane R
2.

Quantitative features are

• the mean number of points per unit area,
• the mean number per unit area of points with a distance d to the next

neighbour smaller than a given r,
• the mean number of points in a certain sector of a disk, given that the centre

of the disk lies in a point of the pattern.

Example 2: Marked point pattern.
Starting from a point pattern, a geometric figure - e.g. a segment, a circle, a
polygon - is attached to each point. These figures are referred to as marks. For
such structures the quantitative analysis of the underlying point pattern can
also be of interest but, furthermore, the probability distribution of the marks
has to be taken into consideration. For the example of segments as marks one
can investigate

• the mean total length of segments per unit area,
• the mean number per unit area of points marked with segments of a direction

in a certain sector of angles,
• the mean total length per unit area of segments with its direction in a certain

sector of angles.

A further class of models is formed by random tessellations (‘mosaics’) of R
d.

These are treated in section 7.
In the ergodic approach limits are used in order to define the notions rig-

orously. For example, the mean number of points per unit area is introduced
as the limit, for an infinitely expanding window W , of the ratio of the number
of points in that window and the area of the window. This limit is considered
for a fixed realisation ϕ of the point process, and the ergodic assumption says
that this limit is the same for (almost) all realisations of a given process. This
means that each of the realisations ϕ bears the whole information about the
process Φ. Notice that in a bounded window some of the quantitative features
can be determined only up to edge effects. For example, if the distance to the
next neighbour is the parameter of interest then it can happen that a point in
W has its next neighbour outside W . Such edge effects have to be taken into
consideration when the ergodic limit is determined.

In the alternative approach which uses Palm distributions no limit in space is
used. It is assumed that in an arbitrarily chosen window all essential information
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can be gained, if sufficiently many realisations or samples are considered. That
means for the example of the mean number of points that in a fixed window W
several realisations ϕ are observed and the mean number of points is divided by
the area of W .

This is based on the concepts of spatial stationarity and the Palm distribu-
tion. It is the purpose of the present text to explain this concept and to illustrate
its use. It has to be mentioned that also here the problem of edge effects occurs.

3 Stationary Models for Random Geometric Structures

At the beginning, it should be emphasised, that ‘randomness’ in Stochastic Ge-
ometry does not mean ‘Poisson distribution’ or ‘independence’. Sometimes in ap-
plied papers the term ‘purely random’ is used as a synonym for ‘Poisson process’.
In random structures spatial interdependencies may occur between elements or
particles such as clustering or repulsion.

Stationarity or homogeneity means the invariance with respect to translations
of the distribution of a random geometric structure Φ. This means that the
distribution of the part of the structure which is visible inside a window W does
not change if the window is shifted. Of course, this invariance is not valid for
single realisations ϕ of Φ. For a fixed realisation the observed sample depends
on the location of the window.

In order to formalise the notion of stationarity consider the group of trans-
lations of the Euclidean space R

d:

{Tx : x ∈ R
d}, Tx = R

d → R
d, with Txy = y − x for all y ∈ R

d.

Thus Tx can be interpreted as the shift of the coordinate system such that its
origin o is translated to the point x. It is clear how Tx acts on subsets of R

d

and hence how it acts on the set N of all realisations ϕ of a random geometric
structure Φ. We write TxΦ for the shift of Φ by −x. If PΦ is the distribution of
Φ then the distribution of the shifted structure TxΦ is denoted by PΦ ◦ T−1

x ; it
is the image of the probability measure PΦ under the operation Tx.

Definition 3.1: The random geometric structure Φ in R
d is stationary (ho-

mogeneous), iff

PΦ = PΦ ◦ T−1
x for all x ∈ R

d. (1)

Formula (1) means that for any set A ⊆ N holds

PΦ(A) = PΦ(T−1
x A),

i.e. the set T−1
x A of shifted realisations has the same probability as the set A.

The translation T−1
x is the inverse to Tx, i.e. T−1

x = T−x, x ∈ R
d.
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When a model is chosen to describe a real structure the question has to be
answered whether a stationary model is adequate. Basically, each image of a
structure can be considered as an cutting of a realisation ϕ of a stationary ran-
dom structure Φ. Hence, one should not ask whether a real geometric structure
is stationary, but whether a stationary model is useful to treat the problem of
interest and what the consequences of such a model choice are. It is clear that
in a stationary model any spatial stochastic trend is a-priori neglected.

4 The Intensity and the Campbell Theorem

From now on, let Φ be a stationary point process in R
d. For a bounded observation

window W ⊂ R
d - e.g. a rectangle or a parallelepiped, respectively - denote by

Φ(W ) the random number of points of Φ in W . The stationarity of Φ implies
that the expectation EΦ(W ) is invariant with respect to translations of W , i.e.

EΦ(W ) = EΦ(TxW ) for all x ∈ R
d.

Thus EΦ(W ) is a translation invariant measure on R
d. This yields that there is

a non-negative real number λΦ such that

EΦ(W ) = λΦ · νd(W ) (2)

where νd denotes the d-dimensional volume (corresponding to the Lebesgue mea-
sure). This is a consequence of the assertion that the volume measure is, up to
a constant, the only translation invariant measure in the Euclidean space.

Definition 4.1: For a stationary point process Φ in R
d the constant

λΦ = fracEΦ(W )νd(W ) (3)

is called the intensity or density of Φ.

The value of λΦ does neither depend on the location of W nor on its shape
or size even if W occurs on the right hand side of (3).

The interpretation is simple: λΦ is the mean number of points of Φ per unit
d-dimensional volume. In the literature, the density is also denoted by NA or
NV in the planar or spatial cases respectively.

Remark: Also for other stationary structures Φ than point processes and
other functionals F (Φ ∩W ) instead of the number Φ(W ) the intensity

λF,Φ =
EF (Φ ∩W )
νd(W )

can be introduced. To do this, the functional must be appropriately chosen, i.e.
F must be translation invariant itself and σ-additive. Such considerations lead
to several mean values per unit volume or more abstractly to the notion of the
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intensity of stationary random measures, in particular of Minkowski measures,
see [3,5]. An example is LA, the mean total length per unit volume of a sta-
tionary planar segment process, which was described above as a marked point
process.

From formula (2) the Campbell theorem can be derived relatively easy. De-
note the indicator function of W by 1W , i.e.

1W (x) =
{

1 if x ∈W,
0 if x �∈W, x ∈ R

d.

Then (2) can be rewritten as

E

(∑
x∈Φ

1W (x)

)
= λΦ

∫
1W (x)dx. (4)

Now it can be shown by standard methods of integration theory that (4)
remains true if 1W is replaced by more general functions h. This yields the
Campbell Theorem which is basic in point process theory, and it is impossible
to trace back where it appeared for the first time.

Theorem 4.1: [Campbell Theorem]
Let Φ be a stationary point process in R

d with intensity 0 < λΦ < ∞ and let
h : R

d → [0,∞) be a nonnegative function. Then

E

(∑
x∈Φ

h(x)

)
= λΦ

∫
h(x)dx. (5)

Notice that h is a function depending on the location of a single point x of
the point pattern but not on the whole realisation ϕ of Φ, i.e. relations of x ∈ Φ
to other points of the process, e.g. the distance to the next neighbour, cannot
be expressed in this way.

An application of formula (5) is Monte-Carlo-integration of a function h.
The integral on the right hand side can be approximated by an averaged sum of
h-values in simulated random points x ∈ R

d of a point process.

5 The Palm Distribution
and the Refined Campbell Theorem

The key notion of the Palm distribution of a stationary (point) process formalises
the idea of ‘a typical point’ or ‘a typical object’ in a random geometric structure.

It may be ambiguous to speak of a ‘randomly chosen’ element (point, parti-
cle, ...) in a structure. Therefore the way of such a choice has to be described
and formalised precisely. Here this is done for point processes but the method
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can be extended to other structures and to attached random measures.

Definition 5.1: Let Φ be a stationary point process with intensity 0 < λΦ <
∞ and distribution PΦ. The Palm distribution P0 of Φ is defined by

P0(A) =
1

λΦ · νd(W )
E

(∑
x∈Φ

1A(TxΦ) · 1W (x)

)
(6)

for all events A ⊆ N and windows W ⊂ R
d with 0 < νd(W ) <∞.

It can be proven that - due to stationarity - this definition does not depend
on the particular choice of the window W .

The idea behind (6) is the desire to consider the conditional probability
‘PΦ(A|o ∈ Φ)′, i.e. the probability that a realisation has the property expressed
by A under the condition that the process Φ has a point in the origin o. The
problem is that for stationary processes PΦ(O ∈ Φ) = 0. Therefore, as done in
(6), one considers all points x ∈ Φ∩W . In a windowW of finite volume there are
(almost surely) finitely many points x of Φ. Each of these points is ‘visited’ by
the origin of the coordinate system - this is expressed by TxΦ. It is checked for
each of the shifted realisations whether they belong to A ⊆ N or not. Therefore
the Palm distribution is also interpreted as the distribution of the point process
when the process is considered from its ‘typical’ point. Formula (6) yields the
expression

P0(A) =
mean number of points x ∈ Φ ∩W with TxΦ ∈ A

mean number of points x ∈ Φ ∩W (7)

This formula also suggests the way of generalising this concept to other geo-
metric structures than point processes: Replace ‘number of points x...’ by ‘func-
tional of the set of all x...’

An example of an eventA ∈ N which is considered in the quantitative analysis
of point patterns is, for given B ⊂ R

d and k = 0, 1, 2, ...,
Ak(B) = {ϕ ∈ N : o ∈ ϕ, ϕ(B \ {o}) = k}
i.e. the set of all realisations ϕ with one point in the origin and exactly k further
points within the set B. This set B may or may not contain the origin. Important
examples for B are circles, circular sectors or circular rings, respectively.
Such events Ak(B) are suitable to express the so-called second reduced moment
measure K of Φ which is

λK(B) =
∞∑
k=0

k · P0(Ak(B)) =
∫
ϕ(B \ {o})P0(dϕ) = E0Φ0(B \ {o}),

see [5], chapter 4. Thus λK(B) is the mean number of points in B \ {o} with
respect to the Palm distribution. It can be estimated by visiting all points x ∈ ϕ,
counting the number of points different from x in the set B + x, and then
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averaging this number. Notice that an edge effect correction is necessary in order
to get unbiased estimates of λK(B) form observations in a window W .
The second reduced moment measure K is closely related to the pair correlation
function g which is used in physics. This function is given by

g(r) =
r

d · νd(b(o, r))
d
dr

K(b(o, r))

where b(o, r) is the ball with radius r and center o.

Replacing the function 1A · 1W in the definition (6) by a more general func-
tion yields

Theorem 5.1: [Refined Campbell Theorem (J. Mecke, 1967)]
Let Φ be a stationary point process in R

d with intensity 0 < λΦ < ∞ and
f : R

d × N → [0,∞) a nonnegative function. Then

E

(∑
x∈Φ

f(x, TxΦ)

)
= λΦE0

(∫
f(x, Φ0)dx

)
(8)

where Φ0 is a point process with distribution P0, i.e. the Palm distribution of Φ,
and E0 is the expectation with respect to P0.

Notice that Φ0 is a point process which has a point in the origin o with
probability 1.

Another version of (8) can be derived by substituting g(x, Φ) = f(x, TxΦ).

E

(∑
x∈Φ

g(x, Φ)

)
= λΦE0

(∫
g(x, T−xΦ0)dx

)
(9)

In contrast to the Campbell Theorem 4.1, in the refined version, functions
f or g respectively, are considered which may depend on single points x of the
process and also on the whole realisation ϕ to which x belongs. Applications of
the Refined Campbell Theorem will be given in section 7 on random tessellations.

6 Marked Point Processes

A realisation ϕ of a point process Φ is an enumerable subset {x1, x2, ...} ⊂ R
d.

In order to describe tessellations or ensembles of particles it is often appropriate
to use marked point processes as models. A mark mi ∈ M is attached to each
point xi ∈ ϕ. The set M is the set of all possible marks. Thus the realisations
of a marked point process are of the form

{(x1,m1), (x2,m2), ...} ⊂ R
d ×M.

Examples are
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Example 3: Process of balls in the space with xi as the centre and positive
random radius mi, i = 1, 2, ...,

Example 4: Process of segments in the plane given by the midpoints xi and
length and direction mi = (li, αi) ∈ (0,∞)× [0, π), i = 1, 2, ...

For a window W ⊂ R
d and a set of marks B ⊆M

Φ(W ×B) =
∑

(x,m)∈Φ
1W (x) · 1B(m) (10)

denotes the random number of points located in W which have marks in B.
Notice that formally a marked point process is a usual point process on the

space R
d ×M . But often, from a methodological angle it is more convenient to

distinguish between points and marks.
In order to deal with stationary marked point processes, translations have

to be defined adequately. Examples (3) and (4) suggest that a translation of a
marked point has to be defined as

Tx(xi,mi) = (xi − x,mi), x ∈ R
d. (11)

The translation of the point by minus x means that in particular x itself goes to
o. The marks remain unchanged. This can be applied to a whole marked point
process Φ, and the translated version of it is denoted by TxΦ. As before, the
distribution of Φ is PΦ and that of TxΦ is written as PΦ ◦ T−1

x , respectively.

Definition 6.1: The marked point process Φ on R
d with mark space M is

stationary if

PΦ ◦ T−1
x = PΦ for all x ∈ R

d

with Tx according to (11).

For a stationary marked point process Φ consider the expectation of the
random number given in (10). Stationarity implies that

EΦ(W ×B) = EΦ((TxW )×B) for all x ∈ R
d.

Thus for all B ⊆M the measure EΦ(·×B) as a functional ofW ⊆ R
d is invariant

with respect to translations and hence equals the d-dimensional volume measure
up to a factor. This yields the following factorisation.

Theorem 6.1: Let Φ be a stationary marked point process in R
d with the

mark space M . Then there are a number λΦ and a probability measure µ on M
such that for all W ⊂ R

d with 0 < νd(W ) <∞ and B ⊆M

λΦ =
EΦ(W ×M)
νd(W )

(12)
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and

EΦ(W ×B) = λΦ · νd(W ) · µ(B). (13)

The probability measure µ on M is referred to as mark distribution. With
respect to the Palm distribution, µ can also be interpreted as the distribution of
the mark attached to the ‘typical point’ of the process.

Rewrite (13) as

µ(B) =
EΦ(W ×B)
λΦνd(W )

=
EΦ(W ×B)
EΦ(W ×M)

, (14)

i.e. µ(B) is the ratio of the mean number of points in W with mark in B to the
mean total number of points in W .

For stationary marked point processes the above mentioned factorisation of
the intensity yields the following version of the Refined Campbell Theorem.

Theorem 6.2: Let Φ be a stationary marked point process in R
d with mark

space M , intensity 0 < λΦ <∞ and mark distribution µ. Then for all nonnega-
tive functions f : R

d ×M × N → [0,∞)

E

 ∑
(x,m)∈Φ

f(x,m, TxΦ)

 = λΦE0

(∫ ∫
f(x,m,Φ0)dx µ(dm)

)
. (15)

Notice that here N denotes the set of all realisations of a marked point
process.

7 Application to Random Tessellations of the Plane

A random tessellation of the Euclidean plane R
2 can be modelled as a random

variable Φ with values in

N - the set of all tessellations of R
2 into convex and bounded polygonal cells,

such that any circle in R
2 intersects only finitely many of these cells.

In the following we assume that Φ is stationary, i.e. its distribution is invariant
with respect to translations of the tessellations.

In order to apply point process methods it is useful to endow the tessellation
with point processes:

α0 - the point process of nodes,
α1 - the point process of centres of the cell edges,
α2 - the point process of centroids of the cells,
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and
β = α0 ∪ α1 ∪ α2 - the union of these point processes.

There are several ways to define the centroid of a polygonal cell. For our
purposes it must not be specified. Of course, one has to settle the same type of
centroid for all cells of the tessellation.

The stationarity of Φ implies the stationarity of all these point processes.
Their intensities, as they have been defined in (3), are denoted by λ0, λ1, λ2, λβ ,
respectively.

These point processes can be marked in several ways. Examples of marks are:

for α0: the number of edges emanating from a node,
for α1: the length of the edge, the direction of the edge,
for α2: the area, the perimeter of the cell, the number of edges of the cell.

The choice of appropriate marks depends on the questions to be answered.
Here, we will consider some basic mean values and their interdependencies

inherent in all stationary tessellations with convex polygonal cells.
As an example for the derivation of such a relation consider the point process

α2(Φ) of cell centroids of Φ. The Refined Campbell Theorem 5.1 yields

EΦ

 ∑
x∈α2(Φ)

f(x, TxΦ)

 = λ2E0,2

(∫
f(x, Φ0,2)dx

)
(16)

for all f : R
2 × N → [0,∞). Here EΦ denotes the expectation with respect to

the distribution PΦ of Φ, and E0,2 the expectation with respect to the Palm
distribution P0,2 of the point process α2, and Φ0,2 is a random tessellation with
distribution P0,2. Notice that, with probability 1, the random tessellation Φ0,2
has a cell centroid in the origin o.

Insert f(x, Φ) = 1C0Φ(x) into (16), where C0Φ denotes that cell of Φ which
contains the origin o. Thus we obtain

EΦ

∑
x∈α2(Φ)

1C0Φ(x) = 1 = λ2E0,2ν
2(C0Φ0,2) (17)

The left equality is due to the fact that C0Φ contains exactly one centroid point.
On the right hand side occurs the mean area ν2 of the typical cell of Φ, since it is
the mean area with respect to the Palm distribution. Notice that in contrast to
this, EΦν

2(C0Φ) would be the mean area of the cell of Φ containing the origin.
This is a random cell which is chosen from the tessellation by a mechanism
which prefers larger cells proportional to their area. Therefore, the corresponding
distribution of the cell of Φ which contains the origin is referred to as the area
weighted cell distribution.

Formula (17) provides

E0,2ν
2(C0Φ0,2) =

1
λ2

(18)
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This means that the mean area of the typical cell equals the reciprocal of the
mean number of cell centroids per unit area. This is plausible but a strict formal
proof of it without the tool of Palm distributions would by no means be as
short as that one given above. For example, the determination of ergodic limits
requires subtle considerations concerning edge effects.

Reconsider (16) and put f(x, Φ) = [ν2(C0Φ)]−11C0Φ(x). This yields

EΦ
1

ν2(C0Φ)

∑
x∈α2(Φ)

1C0Φ(x)

︸ ︷︷ ︸
1

= λ2E0,2

(
1

ν2(C0Φ)

∫
1C0Φ(x)dx

)
︸ ︷︷ ︸

1

. (19)

Thus

EΦ
1

ν2(C0Φ)
= λ2. (20)

This formula says that the mean reciprocal area of the area weighted cell equals
the mean number of cell centroids per unit area. This is not obvious. The con-
nection between (18) and (20) can be stated by explicating the area weighted
distribution of cells.

Now consider a more complicated application of the Refined Campbell The-
orem. Denote
n02 - the mean number of cells meeting in the typical node,
n20 - the mean number of nodes on the boundary of the typical cell.
Then

λ2 n20 = λ0 n02 (21)

Even if this relation appears plausible it is not trivial. Notice that there arise
products of mean values of random variables which do not necessarily coincide
with the mean of the product. The formula can be proven by using the following
symmetry property of the Palm distribution.

Theorem 7.1: (J. Mecke, 1967)
Let Φ be a stationary point process in R

d with intensity 0 < λΦ < ∞ and
f : R

d × N → [0,∞) a nonnegative function. Then

E0

(∑
x∈Φ0

f(x, Φ)

)
= E0

(∑
x∈Φ0

f(−x, TxΦ)
)

(22)

Denote by E0,β and E0,0 the expectations with respect to the Palm distri-
butions of the point processes β and α0 respectively. Random tessellations with
these Palm distributions are denoted by Φ0,β and Φ0,0, respectively. Further,
C(Φ) denotes the set of all cells of Φ.
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Then the consecutive application of the definition of n20, of (16) and the
analogue to (16) for E0,β respectively, yield

λ2 n20

= λ2 E0,2

∑
y

1α0(Φ0,2)∩(C0Φ0,2)cl(y)

= λ2 E0,2

∑
y

1α0(Φ0,2)∩(C0Φ0,2)cl(y)
∫
1[0,1]2(x)dx

= EΦ

∑
x∈α2(Φ)

1[0,1]2(x)
∑
y

1α0(TxΦ)(y)1(C0TxΦ)cl(y)

= EΦ

∑
x∈β(Φ)

1α2(Φ)(x)1[0,1]2(x)
∑
y

1α0(TxΦ)(y)1(C0TxΦ)cl(y)

= λβ E0,β

∑
y

1α0(Φ0)(y)1(C0Φ0)cl(y)
∫
1[0,1]2(x)1α2(T−xΦ0)(x)dx

= λβ E0,β

∑
y

1α0(Φ0)(y)1(C0Φ0)cl(y)1α2(Φ0)(o)

Now the application of Theorem 7.1 and of the relation between λβ E0,β and
λ0 E0,0 which can be derived in analogous steps as above provide

λβ E0,β

∑
y

1α0(Φ0)(y)1(C0Φ0)cl(y)1α2(Φ0)(o)

= λβ E0,β

∑
y

1α0(Φ0)(y)
∑

C∈C(Φ0)

1Ccl(o)1Ccl(y)1α2(Φ0)(o)

= λβ E0,β

∑
y

1α0(TyΦ0)(−y)
∑

C∈C(TyΦ0)

1Ccl(o)1Ccl(−y)1α2(TyΦ0)(o)

= λβ E0,β1α0(Φ0)(o)
∑
y

1α2(Φ0)(y)
∑

C+y∈C(Φ0)

1Ccl+y(y)1Ccl+y(o)

= λβ E0,β1α0(Φ0)(o)
∑
y

1α2(Φ0)(y)
∑

C∈C(Φ0)

1Ccl(y)1Ccl(o)

= λ0 E0,0(‘ number of cells which contain the origin′)

= λ0 n02
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The upper index ‘cl’ indicates the topological closure of a set in R
2, i.e. the set

including its boundary. Thus formula (21) is shown.

We conclude with a survey of relations for mean values of stationary planar
tessellations, see [2] or [5]. Supplementary notations are

LA - mean total edge length per unit area,
l0 - mean total length of edges emanating from the typical node,
l1 - mean length of the typical edge,
l2 - mean perimeter of the typical cell,
a2 - mean area of the typical cell.

Then

λ1 = λ0 + λ2,

a2 = 1
λ2
,

l1 = LA
λ0+λ2

,

n02 = 2 + 2λ2
λ0
, n20 = 2 + 2λ0

λ2
,

l0 = 2LA
λ0
, l2 = 2LA

λ2
.

Observe the duality of the formulae when the indices 0 and 2 are inter-
changed. The first formula is the classical Euler formula in terms of intensities.

This system of equations shows that for planar stationary tessellations the
system of ten mean values {λ0, λ1, λ2, LA, n02, n20, l0, l1, l2, a2} can be reduced
to three parameters, e.g. {LA, λ0, λ2} without loss of information, since all the
others can be expressed by them. This reflects interdependence of parameters
inherent to all planar tessellations.

An example of a corollary from this equations is

1
n02

+
1
n20

=
1
2
.

Since each node in R
2 has at least three emanating edges, also the mean n02 ≥ 3

and consequently,

n20 ≤ 6.

This means that there exists no stationary planar tessellation where the mean
number of edges of the typical polygon is greater than six. Notice that n20 = 6
if and only if n02 = 3, i.e. if all nodes have exactly three emanating edges.

The results in the present section have been given as examples for the appli-
cation of Palm distributions and of the Refined Campbell Theorem. Much more
comprehensive presentations of random tessellations can be found in [2,4,5].



Stationary Models in Stochastic Geometry 35

References

1. Kallenberg, O. (1986): Random Measures (Akademie-Verlag and Academic Press,
Berlin and Orlando)

2. Mecke, J. (1984): ‘Parametric representation of mean values for stationary random
mosaics’, Math. Operationsf. Statist., Ser. Statistics 15, pp. 437–442

3. Mecke, J., R. Schneider, D. Stoyan, W. Weil (1990): Stochastische Geometrie
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Statistical Analysis of Large-Scale Structure
in the Universe

Martin Kerscher

Ludwig–Maximilians–Universität, Sektion Physik, Theresienstraße 37
80333 München, Germany

Abstract. Methods for the statistical characterization of the large–scale structure in
the Universe will be the main topic of the present text. The focus is on geometrical
methods, mainly Minkowski functionals and the J function. Their relations to standard
methods used in cosmology and spatial statistics and their application to cosmological
datasets will be discussed. A short introduction to the standard picture of cosmology
is given.

1 Introduction

A fundamental problem in cosmology is to understand the formation of the
large–scale structure in the Universe. Normally theoretical models of large–scale
structure, whether involving analytical predictions or numerical simulations, are
based on some form of random or stochastic initial conditions. This means that a
statistical interpretation of clustering data is required, and that statistical tools
must be deployed in order to discriminate between different cosmological models.
Moreover the identification and characterization of specific geometric features in
the galaxy distribution like walls, filaments, and clusters will deepen our un-
derstanding of structure formation, assist in the construction of approximations
and also help to constrain cosmological models.

During the past two decades enormous progress has been made in the map-
ping of the distribution of galaxies in the Universe. Using the measured redshifts
of galaxies as distance indicators, and knowing their angular positions on the sky,
we can obtain a three–dimensional view of the distribution of luminous matter
in the Universe. Presently available redshift surveys already permit the detailed
study of the statistical properties of the spatial distribution of galaxies. Surveys
of galaxy redshifts that cover reasonable solid angles and are significantly deeper
than those presently available present important challenges, and not just for the
observers. A precise definition of the statistical methods is needed to extract
most out of the costly data, and this is an important goal for theorists.

A complete review of the variety of statistical methods used in cosmology is
not attempted. The focus of this overview will be on methods of point process
statistics using geometrical ideas like Minkowski functionals and the J function;
moment based methods will also be mentioned. For reviews with a different
emphasis see e.g.[14,15,30,68,84] and [86].

This text is organized as follows:
In Sect. 2 we will give a short introduction to the common theoretical “prejudice”

K.R. Mecke and D. Stoyan (Eds.): LNP 554, pp. 36–71, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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in cosmology and describe some observational issues. We briefly comment on
two–point correlations (Sect. 3.1) and moment based methods (Sect. 3.2), and
focus on Minkowski functionals (Sect. 3.3) and the J function, as well as its
extensions the Jn functions (Sect. 3.4). In Sect. 4 we summarize and provide an
outlook.

2 Cosmological Models and Observations

Most cosmological models studied today are based on the assumption of homo-
geneity and isotropy (see however [20] and [21]). Observationally one can find
evidence that supports these assumptions on very large scales, the strongest be-
ing the almost perfect isotropy of the cosmic microwave background radiation
(after assigning the whole dipole to our proper motion relative to this back-
ground). The relative temperature fluctuations over the sky are of the order of
10−5 as shown in Fig. 1. This tells us that the Universe was nearly isotropic
and, with some additional assumptions, homogeneous at the time of decoupling
of approximately 13Gy (Giga years) ago.

Fig. 1. Projection of the temperature fluctuations in the microwave background radi-
ation as observed by the COBE satellite (from [100]). The relative fluctuations are of
the order of 10−5.

For such a highly symmetric situation the universal expansion may be de-
scribed by a position vector xH(t) at time t that can be calculated from the
initial position xi

xH(t) = a(t) xi (1)

using the scale factor a(t) with a(ti) = 1. The dynamical evolution of a(t) is
determined by the Friedmann equations (see e.g. [82]). As a direct consequence
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the velocities may be approximated by the Hubble law,

vH(t) = H(t) xH(t) (2)

relating the distance vector xH(t) with the velocity vH(t) by the Hubble param-
eter H(t) = ȧ(t)/a(t). Indeed such a mainly linear relationship is observed for
galaxies (see Fig. 2). The deviations visible may be assigned to peculiar motions,
as caused by mass density perturbations.

Fig. 2. Hubble law for galaxy clusters and groups taken from [93].
The x–axis is proportional to distance indicator obtained from the a certain luminosity
of the clusters and groups, whereas the y–axis is proportional to the redshift.

However, on small and on intermediate scales up to several hundreds of Mpcs,
there are significant deviations from homogeneity and isotropy as visible in the
spatial distribution of galaxies. (Mega parsec (Mpc) is the common unit of length
in cosmological applications with 1pc=3.26 light years.) Large holes, filamentary
as well as wall–like structures are observed (Fig. 3, see also sect. 3.3.4).

One of the goals in cosmology is to understand how these large scale struc-
tures form, given a nearly homogeneous and isotropic matter distribution at
some early time. In the Newtonian approximation the process of structure for-
mation is modeled using a self gravitating pressure–less fluid, with the mass
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Fig. 3. In the upper two panels, the position of the galaxies in two neighboring slices
with an angular extent of 135 × 5 deg2, and a maximum distance of 120h−1Mpc from
our galaxy which is located at the tip of the cone. The galaxies are shown projected
along the angular coordinate spanning only 5deg. In the lower plot both slices are
shown projected on top of each other (data from [48] and [49]).
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density D(x, t) and the velocity field v(x, t):

∂tD+∇(Dv) = 0,
∂tv + (v · ∇)v = g,

∇× g = 0, (3)
∇ · g = −4πGD.

The first equation is the continuity equation, stating mass–conservation, the
second comes from momentum conservation with the gravitational acceleration
g(x, t) self–consistently determined from the mass density. With small fluctu-
ations in D and v given at some early time, this system of partial differential
equations constitutes a highly non–linear initial value problem. Up to now no
general solution is known. Approximate solutions may be constructed using a
perturbative expansion around the homogeneous background solutions either for
the fields D and v directly or for the characteristics. The first one is called Eule-
rian perturbation theory (see e.g. [86]), whereas the second is named Lagrangian
perturbation theory (see e.g. [19]). Also numerical integration with N–body sim-
ulations is used.

The initial conditions are often chosen as realization of a Gaussian random
field for the density contrast (D− DH)/DH . In principle a Gaussian random field
model for the density contrast allows for unphysical negative mass densities,
however we find that the initial fluctuations in the mass density are by a factor
of 105–times smaller than the mean value of the field, and therefore negative
densities are practically excluded. Using the methods mentioned above we can
follow the nonlinear time evolution of the density field, leading to a highly non–
Gaussian field. In this evolved mass density field galaxies are identified sometimes
also utilizing the velocity field. Moreover, our understanding of the physical
processes determining the galaxy formation is still limited.

Two popular stochastic models used to describe the distribution of galaxies
are the Poisson model and the peak selection. In the Poisson model we assume
that the mean number of galaxies inside a region C is directly proportional to the
total mass inside this region (see e.g. [86], often also called Poisson sampling).
Hence the intensity measure Λ(C) – the mean number of galaxies inside C – is

Λ(C) ∝
∫
C

dx D(x). (4)

If the mass density D is modeled as a random field the Poisson model results in
a double–stochastic point process, i.e. a Cox process [109].

Within the peak selection model, galaxies appear only at the peaks of the
density field above some given threshold [7]. This model is an example for an
“interrupted point process” [109]. In Fig. 4 we illustrate both models in the one–
dimensional case. There are also dynamically and micro–physically motivated
models for the identification of galaxies in simulations we do not cover here
([52,53,126]).

As we have seen several “parameters” enter these partly deterministic, partly
stochastic models for the galaxy distribution. Before describing the statistical
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ρ( )x ρ( )x

Fig. 4. The left figure illustrates the Poisson model, whereas the right figure shows the
peak selection for the same density field.

methods used to constrain these parameters, typical observational problems en-
tering the construction of galaxy catalogues will be mentioned.

The starting point is the two–dimensional distribution of galaxies on the ce-
lestial sphere. Their angular positions are known to a high precision compared to
their radial distance r. In most galaxy catalogues the radial distance is estimated
utilizing the redshift:

z =
λobs − λlab

λlab
, (5)

with the observed wavelength of a spectral line λobs and with the wavelength of
the same spectral line measured in a laboratory λlab. Out to several hundreds of
Mpc’s the relation between the radial distance r and the redshift z is to a good
approximation

cz ≈ |vH |+ u = H0r + u, (6)

with the velocity of light c, and the Hubble parameter H0 at present time (see
(2)). u is the radial component of the peculiar velocity, i.e. the local deviation
from the global expansion due to inhomogeneities. Galaxy catalogues sampled
homogeneously and with r determined independently from the redshift are still
rare. Therefore the distance is simply estimated by

r =
cz
H0
, (7)

neglecting the peculiar velocities u. This is often called “working in redshift
space”. There is still some controversy about the actual value of the Hubble
parameter which is parameterized by the number h:H0 = h 100km sec−1 Mpc−1.
Likely values are in the range h = 0.5− 0.8.

Furthermore we have to face another problem. The majority of galaxy cata-
logues is flux (i.e. magnitude) limited. This means that the catalogue is complete
for galaxies with a flux higher than some minimum flux fmin. As a first approxi-
mation the absolute luminosity L of a galaxy with observed flux fobs at distance
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r may be calculated by L = 4πr2 fobs. Hence at larger distances we observe
only the brightest galaxies as can be seen in Fig. 5, resulting in a systemati-
cally in–homogeneously sampled point–set in three dimensions. To construct a

Fig. 5. In the left figure the spatial distribution of the galaxies taken from the
IRAS 1.2Jy galaxy catalogue [35], projected along one axis. The horizontally cones
indicate the region where the observation was obscured due to the absorption in our
own galaxy. In the right plot the absolute luminosity of a galaxy against its radial
distance is shown, each point represents one galaxy. The volume limited subsample
with limiting distance of 100h−1Mpc includes only the galaxies in the marked upper
left corner of the figure.

homogeneously sampled point set from such a galaxy catalogue we may restrict
ourselves to galaxies closer than rlim with a absolute luminosity higher than
Llim = 4πr2 fmin. This procedure is called “volume limitation”. Such a set of
galaxies for rlim = 100h−1Mpc is marked in Fig. 5 and the spatial distribution
is shown in Fig. 6. Especially in the direction of the disc of our galaxy, in the
galactic plane, we suffer from extinction mainly due to dust. To take care of this
we use a cut of 5 to 30 degrees (depending on the catalogue under consideration)
around the galactic plane, resulting in a deformed sampling window as it can be
seen in Fig. 6.

The following discussion will refer to a set of points X = {xi}Ni=1. The ob-
jects located at these points are either galaxies, or galaxy clusters, and also
super–clusters (clusters of galaxy clusters). Galaxies are well defined objects in
space, with an extent of typically 0.03h−1Mpc. Similarly, galaxy clusters are well
defined objects, clearly visible in the two–dimensional distribution of galaxies,
with a typical extent of 1-3h−1Mpc. Whether the combination of galaxy clusters
to super–clusters is a reasonable concept is still some matter of debate [55].
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Fig. 6. The spatial distribution of IRAS galaxies in a volume limited sample with a
depth of 100h−1Mpc, projected along one coordinate axis. This volume limited sample
is formed by the galaxies shown in the upper left corner of the plot with luminosity
against radial distance (Fig. 5).

3 Statistics of Large Scale Structure

New observations of our Universe will give us an increasingly precise mapping
of the galaxy distribution around us ([39,66]). But we will have only one realiza-
tion. This makes a statistical analysis problematic, especially model assumptions
like stationarity (homogeneity) and isotropy may be tested locally only. For an
interesting discussion of such problems see [69]. Still, global methods like the
Minkowski functionals give us information on the shape and topology of this
point set.

A pragmatic interpretation is that with a statistical analysis of a galaxy
catalogue, one wants to constrain parameters of the cosmological models. These
models incorporate some randomness, quantifying our ignorance of the initial
conditions, or our limited understanding of the exact physical processes leading
to the formation of galaxies.

3.1 Two–point Statistics

Second–order statistics, also called two–point statistics, are still among the major
tools to characterize the spatial distribution of galaxies. With the mean number
density, or intensity, denoted by ρ, the product density

ρ2(x1,x2)dV (x1)dV (x2) = ρ2g(r) dV (x1)dV (x2) (8)

describes the probability to find a point in the volume element dV (x1) and
another point in dV (x2), at the distance r = |x1 − x2|; | · | is the Euclidean
norm (we assume stationarity and isotropy). The product density ρ2(x1,x2) is



44 Martin Kerscher

the Lebesgue density of the second factorial moment measure (e.g. [109]). Often
the (full) two–point correlation function, also called pair correlation function,
g(r) and the normed cumulant ξ2(r) = g(r)− 1 are considered. Throughout the
cosmological literature ξ2(r) is also called (two–point) correlation function [86].
For a Poisson process one has g(r) = 1. Closely related is the correlation integral
C(r) (e.g. [38]), the average number of points inside a ball of radius r centred
on a point of the distribution

C(r) =
∫ r

0
ds ρ 4πs2g(s), (9)

which is related by K(r) = C(r)/ρ to Ripley’s K function, see Stoyans’s paper in
this volume. Another common way to characterize the second–order properties
is the excess fluctuation of the number density inside of C with respect to a
Poisson process:

σ2(C) =
1

|C|2
∫
C

dx
∫
C

dy ξ2(|x− y|). (10)

Often the power spectrum P (k) is used to quantify the second order statistical
properties of the point distribution [86]. P (k) may be defined as the Fourier
transform of ξ2(r) = g(r)− 1:

P (k) =
1

(2π)3

∫
dx e−ik·xξ2(|x|), (11)

with k = |k|.

Observed Two–Point Correlations The first analysis of a galaxy cata-
logue using the two–point correlation function was presented by Totsuji and
Kihara [121]. Following the work of Peebles [86], today the two–point correla-
tion function has become the standard tool, applied to nearly every cosmological
dataset. The need for boundary corrected estimators was recognized early. Sev-
eral estimators have been introduced, with differing claims on their applicability
([43,56,65,89,111]). A clarification for cosmological applications is attempted in
[62].

Figure 7 shows the (full) correlation function g(r) and the normed cumulant
ξ2(r) determined from a volume limited sample of the Southern Sky Redshift
Survey 2 (SSRS2; [26]) with 1179 galaxies. The strong clustering of galaxies, due
to their gravitational interaction, is shown by large values of g(r) and ξ2(r) for
small r.

Of special physical interest is, whether the two–point correlations are scale–
invariant. A scale–invariant g(r) ∝ rD−3 is an indication for a fractal distribution
of the galaxies ([67,113]). A scale–invariant ξ2(r) ∝ r−γ is expected in critical
phenomena (see [36,37]).

Now lets look at the log–log plot in Fig. 7. Willmer et al. [128] give a scale–
invariant fit of ξ2(r) ∝ r−γ with a scaling exponent γ = 1.81 in the range of
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Fig. 7. Estimated two–point correlation function g(r) (solid) and the normed cumulant
ξ2(r) = g(r) − 1 (dashed) in a double logarithmic plot for the volume limited sample
from the SSRS2 with 100h−1Mpc depth. The results of the minus (reduced–sample)
estimator and the Fiksel [34] estimator are shown, illustrating that only on large scales
differences occur. The straight lines correspond to g(r) ∝ r−1 (solid) and ξ2(r) ∝ r−1.81

(dashed).

3-12h−1Mpcfor the volume limited sample with 100h−1Mpc. However on smaller
scales the slope of ξ2 is flattening, suggesting that a scale–invariant function
∝ r−γ gives only a poor description of the observed ξ2(r) in this SSRS2–sample.
If we look at the correlation function g(r) in Fig. 7, the observed data may
be approximated by g(r) ∝ r3−D with D = 2 over the larger range from 0.5-
20h−1Mpc. However the scale–invariance of g(r) is observed over less than 2
decades only, and therefore an estimate of a fractal dimension D from the scaling
exponent of g(r) may be misleading ([56,71,72,108]). On large scales the observed
g(r) also deviates from a purely scale invariant model, and shows a tendency
towards unity. This however depends on the estimator chosen. In this specific
sample, a scale–invariant g(r) seems to be suitable, but this is not so clear from
other data sets. Also the result on small scales might be unreliable due to the
small number of pairs with a short separation. For a comprehensive analysis of
the SSRS2 catalogue focusing on two–point properties and scaling see [22].

Hence, currently we cannot exclude a scale–invariant g(r), a scale–invariant
ξ2(r), or no scale–invariance at all, with the limited observational range provided
by the available three–dimensional catalogues. Hopefully this controversial issue
will be clarified in the near future by the advent of deeper galaxy catalogues
([39,66]).

3.2 Higher Moments

The two–point correlation function plays an important role in cosmology, since
the inflationary paradigm suggests that the initial deviations from the homoge-
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neous density field may be modeled as a Gaussian random field, stochastically
completely specified by its mean density and its two–point correlation func-
tion (see e.g. [16]). The analogous construction for point distributions is the
Gauss–Poisson process [77], with subtle but important differences from the Gaus-
sian random field model. However, the nonlinear evolution of the mass density
given by (3) generates high order correlations, not explainable within a Gaus-
sian model. Hence, assuming an initial Gaussian density field, these higher order
correlations give us information on the process of structure formation.

To investigate these nonlinear structures several methods are used. In Sects.
3.3 and 3.4 we will focus on morphological tools like the Minkowski functionals
and on the J function. A geometrical method we do not cover in this text is per-
colation analysis as introduced to cosmology by [105] (see also [91]). Yet another
one is the analysis based on the minimal spanning tree ([8,29]). A description of
the direct, moment based methods employed in cosmology is given now [86]:

As a generalization of the product density (8) one considers n–th order prod-
uct densities

ρn(x1, . . . ,xn) dV1 . . .dVn. (12)

giving the probability of finding n points in the volume elements dV1 to dVn,
respectively. Again ρn is the Lebesgue densities of the n–th factorial moment
measures [109]. In physical applications the (normalized) cumulants are often
considered. As an example we look at the three–point correlations:

ρ3(x1,x2,x3) =

ρ3
(
1 + ξ2(|x1 − x2|) + ξ2(|x2 − x3|) + ξ2(|x1 − x3|) + ξ3(x1,x2,x3)

)
. (13)

The three–point correlation function , i.e. the cumulant ξ3, describes the corre-
lation of three points in addition to their correlations determined from the pairs.
For a Poisson process all ξn with n ≥ 2 equal zero. A general definition of the n–
point correlation functions ξn is possible using generating functions (e.g. [15,27]).
Although the interpretation is straightforward, the application is problematic,
because a large number of triples etc. are needed to get a stable estimate. There-
fore, one looks for ξn, n = 3, 4, . . . mainly in angular, two–dimensional, surveys
(e.g. [117]); for a recent three dimensional analysis see [50].

More stable estimates of n–point properties, but with reduced informational
content, may be obtained using counts–in–cells [86]. For a test volume C, typi-
cally chosen as a sphere, we are interested in the probability PN (C) of finding
exactly N points in C. These PN (C) determine the one–dimensional (marginal)
distributions considered in spatial statistics [109]. For a Poisson process we have

PN (C) =
(ρ|C|)N
N !

exp(−ρ|C|), (14)

with the volume |C| of the set C. Of special interest is the “void probability”
P0(C), which serves as a generating functional for all the PN (C), and relates
the PN (C) with the n–point correlation functions discussed above (see [27, 112,
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127] and [6]). For a sphere Br we have P0(Br) = 1−F (r) = 1−Hs(r), with the
spherical contact distribution F (r), also denoted by Hs(r) (see Sect. 3.4).

To facilitate the interpretation of the counts–in–cells one considers their n–th
moments: ∞∑

N=0

NnPN (C). (15)

They can be expressed by the n–th moment measures µn (for their definition
see e.g. [109]):

µn(C, . . . , C) =
∞∑

N=0

NnPN (C). (16)

Especially the centered moments can be related easily to the n–point correlation
functions. As an example consider the third centered moment with N = ρ|C|
(e.g.[24]):

∞∑
N=0

(
N −N)3 PN (C) = N + 3N

2
σ2(C) + ρ3

∫
C

dx
∫
C

dy
∫
C

dz ξ3(x,y, z)

(17)

where |C| is the volume of C, and σ2(C) given by (10). This centered moment
incorporates information from the two–point and three–point correlations inte-
grated over the domain C. One may go one step further. The factorial moments

∞∑
N=0

N(N − 1) · · · (N − n+ 1)PN (C). (18)

attracted more attention recently, since they may be estimated easier with a
small variance ([115,118]), and offer a concise way to correct for typical observa-
tional problems ([25,116]). The factorial moments may be expressed by the n–th
factorial moment measures αn [109] or the n–th order product densities:

∞∑
N=0

N(N − 1) · · · (N − n+ 1)PN (C) = αn(C, . . . , C)

=
∫
C

dx1 . . .
∫
C

dxn ρn(x1, . . . ,xn), (19)

yielding a simple relation with the integrated n–point correlation functions by
(13) and its generalizations for higher n.

The moments and the factorial moments are well defined quantities for a
stationary point process. Especially the relation of the (factorial) moments to
the n–point correlation functions in (17) and (19) is valid for any stationary
point process. It is worth to note that this does not depend on Poisson sampling
from a density field (4). A lot of work is devoted to relate the properties of
the counts in cells with the dynamics of the underlying matter field (see e.g.
[13,17,51,83]). However, this relation is depending on the galaxy identification
scheme. Typically the Poisson model is assumed (4).
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3.3 Minkowski Functionals

Minkowski functionals, also called Quermaß integrals are well known in stochas-
tic and integral geometry (see e.g. [41,63,104,124]). Quantities like volume, sur-
face area, and sometimes also integrated mean curvature and Euler characteristic
were used to describe physical processes and to construct models. Such models
and significant extensions of them were put into the context of integral geometry
just recently ([73,75]), see also the article by K. Mecke in this volume. The first
cosmological application of all Minkowski functionals is due to [74], marking the
advent of Minkowski functionals as analysis tools for point processes. In the fol-
lowing years Minkowski functionals became more and more common in cosmol-
ogy. The interested reader may consider the articles [12,28,47,60,61,81,87,92,95-
102,129]. In the next section a short introduction to Minkowski functionals will
be given. See also the articles by K. Mecke and W. Weil in this volume.

A Short Introduction Usually we are dealing with d–dimensional Euclidean
space R

d with the group of transformations G containing as subgroups rotations
and translations. One can then consider the set of convex bodies embedded in
this space and, as an extension, the so called convex ring R of all finite unions
of convex bodies. In order to characterize a body B from the convex ring, also
called a poly-convex body, one looks for scalar functionals M that satisfy the
following requirements:

• Motion Invariance: The functional should be independent of the body’s po-
sition and orientation in space,

M(gB) =M(B) for any g ∈ G, and B ∈ R. (20)

• Additivity: Uniting two bodies, one has to add their functionals and subtract
the functional of the intersection,

M(B1 ∪B2)=M(B1)+M(B2)−M(B1 ∩B2) for any B1, andB2 ∈ R. (21)

• Conditional (or convex) continuity : The functionals of convex approxima-
tions to a convex body converge to the functionals of the body,

M(Ki) →M(K) as Ki → K for K,Ki ∈ K. (22)

This applies to convex bodies only, not to the whole convex ring. The con-
vergence for bodies is with respect to the Hausdorff–metric.

One might think that these fairly general requirements leave a vast choice of
such functionals. Surprisingly, a theorem by Hadwiger states that in fact there
are only d+ 1 independent such functionals in R

d. To be more precise:
Hadwiger’s theorem [41]: There exist d+1 functionals Mµ on the convex ring R

such that any functional M on R that is motion invariant, additive and condi-
tionally continuous can be expressed as a linear combination of them:

M =
d∑

µ=0

cµMµ, with numbers cµ. (23)
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In this sense the d + 1 Minkowski functionals give a complete and up to a
constant factor unique characterization of a poly-convex body B ∈ R. The four
most common normalizations are Mµ, Vµ, Wµ, and the intrinsic volumes V µ

defined as follows (ωµ is the volume of the µ–dimensional unit ball):

Vµ =
ωd−µ

ωd
Mµ, V d−µ =

ωd−µ

ωd

(
d

µ

)
Mµ,

Wµ =
ωµωd
ωd−µ

Mµ, with ωµ =
πµ/2

Γ (1 + d/2)
.

Table 1. The most common notations for Minkowski functionals in three–dimensional
space expressed in terms of the corresponding geometric quantities.

geometric quantity µ Mµ Vµ Wµ V 3−µ ωµ
V volume 0 V V V V 1
A surface 1 A/8 A/6 A/3 A/2 2
H int. mean curvature 2 H/2π2 H/3π H/3 H/π π
χ Euler characteristic 3 3χ/4π χ 4πχ/3 χ 4π/3

In three–dimensional Euclidean space, these functionals have a direct geometric
interpretation as listed in Table 1.

The Germ–Grain Model Now the Minkowski functionals are used to describe
the geometry and topology of a point set X = {xi}Ni=1. Direct application gives
rather boring results, Vµ(X) = 0 for µ = 0, 1, 2 and V3(X) = N . However,
one may think of X as a skeleton of more complicated spatial structures in the
universe (see e.g. Fig. 3). Decorating X with balls of radius r puts “flesh” on
the skeleton in a well defined way. Also non–spherical grains may be used.

The Minkowski functionals for the union set of these balls Ar =
⋃N

i=1Br(xi)
give non–trivial results, depending on the point distribution considered. We will
use r as a diagnostic parameter specifying a neighborhood relations, to explore
the connectivity and shape of Ar.

Let X be a finite subset of a realization of a Poisson process inside some
finite domain W . Then Ar is a part of a realization of the Boolean grain model,
illustrated in Fig. 8. For these randomly placed balls the mean volume densities
mµ of the Minkowski functionals are known (e.g. [75,104], also called intensities
of Minkowski functionals).

m0(Ar) = 1− e−ρM0 , m2(Ar) = e−ρM0 (M2ρ−M2
1 ρ

2),

m1(Ar) = e−ρM0 M1ρ, m3(Ar) = e−ρM0 (M3ρ− 3M1M2ρ
2 +M3

1 ρ
3),

(24)



50 Martin Kerscher

Fig. 8. Randomly distributed points decorated with balls of varying radius r – a
realization of the Booelean grain model.

with the number density ρ and

M0 =
4π
3
r3, M1 =

π

2
r2, M2 =

4
π
r, M3 =

3
4π
. (25)

Starting from a general point process, decorating it with spheres, we ar-
rive at the germ–grain model (see also [109]). The Minkowski functionals or
their volume densities calculated for the set Ar may be use as tools to describe
the underlying point distribution, directly comparable to standard point pro-
cess statistics like the two–point correlation function (Sect. 3.1) or the nearest
neighbor distribution (Sect. 3.4). Indeed, the volume density m0(Ar) equals the
spherical contact distribution or equivalently the void probability minus one:
m0(Ar) = F (r) = Hs(r) = P0(Br) − 1 (see also Sect. 3.2). Expressions relating
the Minkowski functionals of such a set Ar, with the n–point correlation func-
tions of the underlying point–process may be found in [73,74] and [101] and the
contribution by K. Mecke in this volume.

Already for moderate radii r nearly the whole space is filled with up by Ar,
leading tom0(Ar) ≈ 1 andmµ(Ar) ≈ 0, with µ > 0. This illustrates the different
role the radius r plays for the Minkowski functionals compared to the distance r
as used in the two–point correlation function g(r). Already for a fixed radius, the
Minkowski functionals of Ar are sensitive to the global geometry and topology
of Ar and, hence, of the decorated point set (see also Sect. 3.3.5). Indeed point
sets with an identical two–point correlation function, but with clearly different
large scale morphology may be generated easily (see e.g. [5,114]).

All galaxy catalogues are spatially limited. To estimate the volume densities
of Minkowski functionals for such a realization of the germ–grain model given
by the coordinates of galaxies, we use boundary corrections based on principal
kinematical formula (see [75,102,109]):

mµ(Ar) =
Mµ(Ar ∩W )
M0(W )

−
µ−1∑
ν=0

(
µ
ν

)
mν(Ar)

Mµ−ν(W )
M0(W )

, (26)
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We use the convention
∑j

n=i xn = 0 for j < i. An example illustrating these
boundary corrections is given in [58].

In the following an application of these methods to a catalogue of galaxy
clusters [61] (an earlier analysis of a smaller cluster catalogue was already given
by [74]) and to a galaxy catalogue will illustrate the qualitative and quantitative
results obtainable with global Minkowski functionals.

Cluster Catalogues The spatial distribution of centers of galaxy clusters ,
using the Abell/ACO cluster sample of [88], was analyzed with Minkowski func-
tionals applied to the germ–grain model [61]. At first a qualitative discussion of
the observed features is presented, followed by a comparison with models for the
cluster distribution.

Fig. 9. Densities of the Minkowski functionals for the Abell/ACO (solid line) and a
Poisson process (shaded area) with the same number density. The shaded area gives
the statistical variance of the Poisson process calculated from 100 different realizations.

The most prominent feature of the volume densities of all four Minkowski
functionals are the broader extrema for the Abell/ACO data as compared to the
results for the Poisson process (see Fig. 9). This is a first indication for enhanced
clustering. Let us now look at each functional in detail:
The density of the Minkowski functional m0 measures the density of the covered
volume. On scales between 25h−1Mpc and 40h−1Mpc, m0 as a function of r
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lies slightly below the Poisson data. The volume density is lower because of the
clumping of clusters on those scales.
The density of the Minkowski functional m1 measures the surface density of the
coverage. It has a maximum at about 20h−1Mpc both for the Poisson process
and for the cluster data. This maximum is due to the granular structure of
the union set on the relevant scales. At the same scales, we find the maximum
deviation from the characteristics for the Poisson process. The lower values of
m1 for the cluster data with respect to the Poisson are again an indication of a
significant clumping of clusters at these scales. The functional m1 shows also a
positive deviation from the Poisson on scales of (35 . . . 50)h−1Mpc where more
coherent structures form in the union set than in the Poisson process, keeping
the surface density larger.
The densities of the Minkowski functionals m2 and m3 characterize in more
detail the kind of spatial coverage provided by the union set of balls in the
data sample. The density of the total mean curvature m2 of the data reaches a
maximum at about 10h−1Mpc produced by the dominance of convex (positive
m2) structures. The density m2 at the maximum is reduced with respect to the
Poisson process to about 70% (or more than three standard deviations). The
integral mean curvature m2 has a zero at a scale of 25h−1Mpc (almost the scale
of maximum of m1) corresponding to the turning–point between structures with
mainly convex and concave boundaries (negativem2). Significant deviations from
the Poisson process occur between this turning point and 40h−1Mpc due to the
smaller mean curvature of the union set of the data, probably caused by the
interconnection of the void regions in the cluster distribution.
The density of the Euler characteristic m3 describes the global topology of the
cluster distribution. On small scales all balls are separated. Therefore, each ball
gives a contribution of unity to the Euler characteristic andm3 is proportional to
the cluster number density. As the radius increases, more and more balls overlap
and m3 decreases. At a scale of about 20h−1Mpc it drops below zero due to the
emergence of tunnels in the union set (a double torus has χ = −1). The positive
maximum for the Poisson process at scales � 40h−1Mpc is the signature for the
presence of cavities. The nearly linear decrease of the Euler characteristic for
the Abell/ACO sample indicates strong clustering on scales ≤ 15h−1Mpc. The
lack of a significant positive maximum after the minimum shows that only a few
cavities form. This suggests a support dimension for the distribution of clusters
of less than three. The presence of voids on scales of 30 to 45h−1Mpc is shown
by the enhanced surface area m1 and the reduced integral mean curvature m2,
while on these scales the Euler characteristic m3 is approximately zero.

The emphasis of [61] was on the comparison with cosmological model pre-
dictions. For this purpose artificial cluster distributions were constructed, from
the density field of N–body simulations. Such simulations are still quite costly,
and therefore only four specific models were investigated. In Fig. 10 the compar-
ison of the observations with the Standard Cold–Dark–Matter (SCDM) model is
shown. This model shows too little clustering on small scales, as it is clearly seen
by the enhanced maxima of the surface area m1 and the integral mean curvature
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m2, as well as in the flatter decrease of the Euler characteristic m3. Additionally,
the higher volume m0 indicates weak clumping and to few coherent structures
also on large scales. These deviations may be quantified using some norm for

Fig. 10. Densities of the Minkowski functionals for the Abell/ACO (solid line in both
panels) compared to the SCDM (shaded area in top panel). The shaded area gives
1σ-error bars of the variance among different realizations.

the comparison of the observational data with the model prediction (for details
see [61]). A comparison of the clusters distribution with CDM–models using the
power spectrum (11) lead to similar conclusions [90].

Large Fluctuations A physically interesting point is how well defined are the
statistical properties of the galaxy or cluster distribution, determined from one
spatially limited realization only. Or in other words, how large are the fluctua-
tions of the morphology for a domain of given size? Kerscher et al. [60] inves-
tigate this using Minkowski functionals, the J function (see Sect. 3.4), and the
two–point statistic σ2 defined by (10).

By normalizing with the functional Mµ(Br) of a single ball we can introduce
normalized, dimensionless Minkowski functionals Φµ(Ar),

Φµ(Ar) =
mµ(Ar)
ρMµ(Br)

, (27)
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where ρ is the number density. In the case of a Poisson process the exact mean
values are known (24). For decorating spheres with radius r one obtains:

ΦP0 = (1− e−η) η−1, ΦP1 = e−η,

ΦP2 = e−η (1− 3π2

32 η), Φ
P
3 = e−η (1− 3η + 3π2

32 η
2),

(28)

with the dimensionless parameter η = ρM0(Br) = ρ 4πr3/3. For µ ≥ 1 the
measures Φµ(Ar) contain the exponentially decreasing factor e−η(r). We employ
the reduction

φµ(Ar) =
Φµ(Ar)
ΦP1 (Ar)

, µ ≥ 1, (29)

and thereby remove the exponential decay and enhance the visibility of differ-
ences in the displays shown below.

We now apply the methods introduced above to explore a redshift catalogue
of 5313 IRAS selected galaxies with limiting flux of 1.2 Jy [35]. A volume lim-
ited sample of 100h−1Mpc depth contains 352 galaxies in the northern part,
and 358 galaxies in the southern part (with respect to galactic coordinates), as
shown in Fig. 6. As far as the number density, i.e. the first moment of the galaxy
distribution is concerned, the sample does not reveal significant differences be-
tween north and south. However, we want to assess the clustering properties of
the data and, above all, tackle the question whether the southern and north-
ern parts differ or not. A characterization of the global morphology using the

Fig. 11. Minkowski functionals φµ of a volume limited sample with 100h−1Mpc depth
extracted from the IRAS 1.2 Jy catalogue; the dark shaded areas represent the southern
part, the medium shaded the northern part, and the dotted a Poisson process with
the same number density. The shaded areas are the 1σ errors estimated from twenty
realizations for the Poisson process and from twenty errors using a Jackknife procedure
with 90% sub–sampling, for the data.

Minkowski functionals (Fig. 11) shows that in both parts of the 1.2 Jy catalogue
the clustering of galaxies on scales up to 10h−1Mpc is clearly stronger than in
the case of a Poisson process, as inferred from the lower values of the functionals
for the surface area, φ1, the integral mean curvature, φ2, and the Euler charac-
teristic, φ3. Moreover, the northern and southern parts differ significantly, with
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the northern part being less clumpy. The most conspicuous features are the en-
hanced surface area φ1 in the southern part on scales from 12 to 20h−1Mpc and
the kink in the integral mean curvature φ2 at 14h−1Mpc. This behavior indicates
that dense substructures in the southern part are filled up at this scale (i.e. the
balls in these substructures overlap without leaving holes).

These strongly fluctuating clustering properties are also visible in the J func-
tion (Sect. 3.4), and the σ2(Br) (see (10)). An analysis of possible contaminations
and systematic selection effects showed that these fluctuations are real structural
differences in the galaxy distribution on scales of 100h−1Mpc even extending to
200h−1Mpc (see also [59]). It is interesting to note that an N–body simulation
in a periodic box with side–length of 250h−1Mpc [64] was not able to reproduce
these large–scale fluctuations.

Minkowski Functionals of Excursion Sets In the preceding section the Min-
kowski functionals were used to characterize the union set of balls, the body Ar.
Consider now a smooth density or temperature field u(x). We wish to calculate
the Minkowski functionals of an excursion set Qν over a given threshold ν (see
Fig. 12), defined by

Qν = {x | u(x) ≥ ν}. (30)

This threshold ν will be used as a diagnostic parameter. The geometry and

Fig. 12. The black set marks the excursion set Qν of a Gaussian density field with
increasing ν from left to right. Only the highest peaks remain for large ν.

topology of random fields u(x) and their excursion sets was studied extensively
by Adler [2]. Two complementary calculation methods for the Minkowski func-
tionals of the excursion set Qν were presented by Schmalzing and Buchert [97].

Starting with a given point distribution a density field may be constructed
with a folding employing some kernel kε(z) of width ε

u(y) =
N∑
i=1

kε(xi − y). (31)
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Often a triangular or a Gaussian kernel sometimes with an adaptive smoothing
scale ε(y) are used. A discussion of smoothing techniques may be found in [107].

The Euler characteristic χ of the excursion set is directly related to the genus
G of the iso–density surface separating low from high density regions:

G(∂Qν) = 1− 2χ(Qν). (32)

The analysis of cosmological density field using the genus of iso–density surfaces
is a well accepted tool in cosmology (see [23,76,125 and refs. therein), now in-
corporated in the more general analysis using Minkowski functionals. Especially
the Euler characteristic of excursion sets has also applications in other fields like
medical image processing [130].

Gaussianity of the Cosmic Microwave Background As already mentioned
in Sect. 3.2 it is physically very interesting, whether the observed fluctuations
in the temperature field of the cosmic microwave background radiation (CMB),
as shown in Fig. 1, are compatible with a Gaussian random field model. For
a Gaussian random field Tomita [120] obtained analytical expressions for the
Minkowski functionals of Qν in arbitrary dimensions. Since the temperature
fluctuations are given on the celestial sphere, an adopted integral geometry for
spaces with constant curvature must be used ([94]). Schmalzing and Górski [100]
took this geometric constraint and further complications due to boundary and
binning effects, as well as noise contributions into account. They find no signif-
icant deviation from a Gaussian random field for the resolution of the COBE
data set.

Other methods to test for Gaussianity are based on a wavelet analysis [47]
on high–order correlation functions [45] or on the two–point correlation function
of peaks in the temperature fluctuations [46].

Geometry of Single Objects – Shape–finders Looking at high thresholds
ν, the excursion set is mainly composed out of separated regions (see Fig. 12).
The morphology of these regions may be characterized using Minkowski func-
tionals and the derived shape–finders [92]. Employing the following ratios of the
Minkowski functionalsH1 = V0/(2V1),H2 = 2V1/(πV2) andH3 = 3V2/(4V3) one
may construct the dimensionless shape–finders planarity P and filamentarity F

P =
H2 −H1

H2 +H1
and F =

H3 −H2

H3 +H2
. (33)

A simple example [98] is provided by a cylinder of radius r and height λr with
the Minkowski functionals

V0 = πr3λ, V1 = π
3 r

2(1 + λ), V2 = 1
3r(π + λ), V3 = 1. (34)

The shape–finders planarity P and filamentarity F for this specific example are
plotted against each other in Fig. 13. Indeed this is nothing else but an inverted
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Fig. 13. On the left side a plot of the shape–finders for the cylinder with varying λ is
shown, illustrating the turnover from λ ≈ 0, a plane geometry (P ≈ 1, F � 1), through
a roughly spherical (P ≈ 0, F ≈ 0) to a mainly line like geometry (P � 1, F ≈ 1)
for λ � 1. On the right side a frequency histogram of the shape–finders determined
from the excursion sets of an N–body simulation is shown. Larger circles correspond
to more objects within the shape–finder bin (from [98]).

Blaschke diagram for the form factors ([40,103]). Following [98] the shape–finders
may be written in terms of the form factors. With

x =
πV0V2
4V 2

1
, y =

8V1V3
3πV 2

2
(35)

one obtains
P =

1− x
1 + x

and F =
1− y
1 + y

. (36)

The isoperimetric inequalities [103] assure that 0 ≤ P, F ≤ 1 for convex bodies.
For a sphere one gets P = 0 = F .

One of the results obtained with the shape–finders applied to single objects in
the excursion sets of N–body simulations [98] is given in Fig. 13. This histogram
shows that the majority of the regions inside the excursion set has P ≈ 0 ≈ F ,
and a smaller fraction has P ≈ 0, F > 0, whereas only a few of the regions have
F ≈ 0 P > 0. Interpreting regions with e.g. P ≈ 0, F > 0 as filamentary or
line–like structures is tempting but dangerous, since also non–convex regions are
considered. Also, the histogram was constructed from the excursion sets of all
thresholds under consideration.

It does not seem to be possible to construct shape–finders based on the
global scalar Minkowski functionals facilitating a unique interpretation for non–
convex sets. Abandoning the density field approach, and going back to the
germ–grain model, and the Minkowski functional of a union set of balls Ar =
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i=1Br(xi), one may assign a partial Minkowski functional to each ball. These

partial Minkowski functionals may be used to extract information on the spatial
structure elements – whether the ball around xi is inside a cluster, a sheet or a
filament (see [73,87,99]). Another promising global method for extracting shape
and symmetry information from non-convex bodies is provided by the global
Quermaß vectors [11].

Other Applications of Minkowski Functionals In the preceding appli-
cations we analyzed the union set of balls Ar or the excursion set Qν with
Minkowski functionals. Another possibility is to consider Minkowski function-
als of the Delauney– or Voronoi–cells, as determined from the corresponding
tessellation defined by the given point distribution ([54,79,80]).

Going beyond motion invariance, instead demanding motion equivariance,
one can construct vector–valued extensions of the Minkowski functionals, the
Quermaß vectors ([12,42]). Beisbart et al. [11] investigate the dynamical evo-
lution of the substructure in galaxy clusters using Quermaß vectors (see also
[10]).

3.4 The J Function

Other methods to characterize the spatial distribution of points, well known
in spatial statistics, are the spherical contact distribution F (r) (also denoted
by Hs(r)), i.e. the distribution function of the distances r between an arbitrary
point and the nearest object in the point setX, and the nearest neighbor distance
distribution G(r), that is defined as the distribution function of distance r of
an object in X to the nearest other object in X. F (r) is related to the void
probability P0(Br) by F (r) = 1−P0(Br). For a Poisson distribution it is simply

G(r) = F (r) = 1− exp
(
−ρ4π

3
r3
)
. (37)

Recently, van Lieshout and Baddeley [122] suggested to use the ratio

J(r) =
1−G(r)
1− F (r)

(38)

as a further distributional characteristic. For a Poisson distribution J(r) = 1
follows directly from (37). As shown by [122], a clustered point distribution
implies J(r) ≤ 1, whereas regular structures are indicated by J(r) ≥ 1. However,
Bedford and van den Berg [9] showed that J = 1 does not imply a Poisson
process. For several point process models J(r), or at least limiting values for J(r),
are known ([122]). The J function was considered by White [127] as the “first
conditional correlation function” and used by Sharp [106] to test hierarchical
models. The relation between J(r) and the cumulants ξn(r) was used by Kerscher
[55]. An empirical study of the performance of the J function for several point
process models is given by [119]. A refined definition of the J function “without
edge correction” may be especially useful for a test on spatial randomness [4].
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Clustering of Galaxies The J function may be used to characterize the distri-
bution of galaxies or galaxy clusters and for the comparison with the results from
simulations, similar to the application of the Minkowski functionals in sect. 3.3.3.
This approach was pursued by [57]. The Perseus–Pisces redshift survey ([123]
and refs. therein) was compared with galaxy samples constructed from a mixed
dark matter simulation. The observed J(r) determined from a volume limited
sample with 79h−1Mpc depth differs significantly from the results of the sim-
ulations (Fig. 14). Especially on small scales the galaxy distribution shows a
stronger clustering, as seen by steeper decreasing J(r). We also could show that
modeling the galaxy distribution with a simple Poisson cluster process is not
appropriate.

Fig. 14. J(r) for the volume limited sample from Perseus–Pisces redshift survey (solid
line) and the 1σ range determined from galaxy samples generated by a mixed dark
matter simulation.

Regularity in the Distribution of Super–Clusters? Einasto et al. [32]
report a peak in the 3D–power spectrum (the Fourier transform of ξ2) of a
catalogue of clusters on a scale of 120h−1Mpc. Broadhurst et al. [18] observed
periodicity on approximately the same scale in an analysis of 1D–data from a
pencil–beam redshift survey. As is well known from the theory of fluids, the
regular distribution (e.g. of molecules in a hard–core fluid) reveals itself in an
oscillating two–point correlation function and a peak in the structure function
respectively (see e.g. [44], and the contribution of H. Löwen in this volume). In
accordance with this an oscillating two–point correlation function ξ2(r) or at
least a first peak was reported on approximately the same scale (e.g. [31] and
[78]). The existence of regularity on large scales implies a preferred scale in the
initial conditions, which would be of major physical interest.
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Using the J(r) function [55] investigates the super–cluster catalogue [33]
constructed from an earlier version of the cluster catalogue by [3] using a friend–
of–friends procedure. (The friend–of–friends procedure is called single linkage
clustering in the mathematical literature). Comparing with Poisson distributed
points one clearly recognizes that the super–cluster catalogue is a regular point
distribution (Fig. 15). However, a similar signal for J(r) may be obtained by
starting with a Poisson process followed by a friend–of–friends procedure with
the same linking length as used in the construction of the super–cluster cata-
logue. Only some indication for a regular distribution on large scales remains,
showing that this super–cluster catalogue is seriously affected by the construc-
tion method.

Fig. 15. J(r) determined from the super–cluster sample (solid line) is shown together
with the 1–σ range determined from a pure Poisson process (dotted area) and a Poisson
process followed by a similar friend–of–friends procedure (dashed area) as used to
construct the super–cluster catalogue.

Gn and Fn As a direct generalization of the nearest neighbor distance dis-
tribution one may consider the n–th neighbor distance distributions Gn(r), the
distribution of the distance r to the n–th nearest point (e.g. [110]). For a Poisson
process in three dimensions we have

Gn(r) = 1− Γ
(
n, ρ 4π

3 r
3
)

Γ (n)
, (39)

shown in Fig. 16. Γ (n, x) =
∫∞
x

ds sn−1e−s is the incomplete Gamma–function,
Γ (n) = Γ (n, 0) the complete. Clearly G1(r) = G(r). In Fig. 16 the curves for
the first five Gn(r) for a Poisson process are shown, together with their densities
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pn(r) defined by

Gn(r) =
∫ r

0
ds pn(s). (40)

The sum of these densities is directly related to the two–point correlation func-
tion [70]

g(r) ρ 4πr2 =
∞∑
n=1

pn(r). (41)

Fig. 16. In the left plot you see the Gn(r) with n = 1, . . . , 5 for a Poisson process
with ρ = 100. In the right plot the corresponding densities pn(r) are shown.

The n–th spherical contact distribution Fn(r) is the distribution function of
the distances r between an arbitrary point and the n–th closest object in the
point set X (we assume that the n–th closest point is unique). Clearly F1(r) =
F (r). For stationary and isotropic point processes Fn(r) is the probability to
find at least n points inside a sphere Br with radius r, and therefore

Fn(r) =
∞∑
i=n

Pi(Br) = 1−
n−1∑
i=0

Pi(Br), (42)

where Pi(Br) are the counts–in–cells as discussed in Sect. 3.2.
For a Poisson process with number density ρ we obtain directly from (14)

Fn(r) = 1− exp(−ρ|Br|)
n−1∑
i=0

(ρ|Br|)i
i!

, (43)
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which is essentially the series expansion of the incomplete gamma function (see
e.g. [1]). Therefore,

Fn(r) = 1− Γ
(
n, ρ 4π

3 r
3
)

Γ (n)
, (44)

and we explicitely see that for a Poisson process

Fn(r) = Gn(r) (45)

This is a special case of the “Slivnyak’s theorem” [109].
A very interesting feature of the Gn(r) and Fn(r) is their sensitivity to struc-

tures on large scales increasing with n. As an illustration consider the interval
∆n ⊂ R

+ specified by
∫
∆n

ds pn(s) = 0.9. Then ∆n is the interval in which
90% of the distances to the n–th neighbor lie. (The choice of 0.9 is arbitrary
and may certainly be adopted to the problem considered. Also the interval ∆n

is “centered” as shown in Fig. 16.) The empirical Gn(r) may be used to probe
structures within this specific radial range as illustrated in Fig. 16. Going to
larger n one considers distance intervals for larger radii.

The Jn Function A drawback of the J(r) function in empirical investigations
is that it becomes ill defined for large radii, since the empirical F (r) reaches unity
and the quotient in (38) diverges. In the following we will discuss the straight-
forward generalization of the J function (38), introducing the Jn(r) functions:

Jn(r) =
1−Gn(r)
1− Fn(r) . (46)

From (45) we obtain directly for a Poisson process

Jn(r) = 1 for all n. (47)

Qualitatively we expect the same behavior of the Jn(r) functions as for the J(r)
function, but now for a radius r in the interval ∆n (defined at the end of Sect.
3.4.3).

• If a point distribution shows clustering on scales r in ∆n, the Gn(r) increases
faster than for a Poisson process since the n–th nearest neighbor is typically
closer. Fn(r) increases more slowly than for a random distribution. Both
effects result in a Jn(r) ≤ 1.

• On the other hand, for a point distribution regular on the scale r in∆n,Gn(r)
increases more slowly than for a Poisson process, since the n–th neighbor
is found at a finite characteristic distance. Fn(r) increases stronger since
the distance from a random point to the n–th closest point on the regular
structure is typically smaller. This results in Jn(r) ≥ 1.

• Jn(r) = 1 indicates the transition from regular to clustered structures on
scales r in ∆n.
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With a simple point process model we illustrate these properties. In a Matérn
cluster process a single cluster consists out of µ points in the mean, randomly
distributed inside a sphere of radius R, where the number of points follows a
Poisson distribution. The clusters centers (not belonging to the point process)
form a Poisson process with a density of ρ/µ [109]. In Fig. 17 the strong clustering
in the Matérn cluster process is visible from a decline of the Jn(r). This decline
becomes weaker with increasing n. For large radii r the Jn acquire a constant
value. Investigating larger scales, i.e. for large n, the constant value of Jn shows a
trend towards unity, i.e. we start to “see” the Poisson distribution of the clusters
centers.

Fig. 17. The Jn(r) with n = 1, . . . 10 (bending up successively) for a Matérn clus-
ter process with µ = 10 and R = 1.5h−1Mpc calculated using the reduced sample
estimators.

On our Way to Large Scales A similar behavior may be identified in the
galaxy distribution. We calculate the Jn functions for a volume limited sample
of galaxies extracted from the IRAS 1.2 Jy catalogue with 200h−1Mpc depth
using the reduced sample estimator for both Fn and Gn. For small n, i.e. small
scales, the Jn(r) are all smaller than unity, indicating clustering out to scales of
40h−1Mpc(see Fig. 18). For large n the Jn are consistent with no clustering, i.e.
Jn = 1. However a trend towards a Jn larger than unity, indicating regularity is
observed. Clearly, the results obtained from this sparse sample with 280 galaxies
only may serve mainly as an illustration of the method – to obtain decisive
results we will have to wait for deeper surveys.
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Fig. 18. In the left plot the Jn of the IRAS galaxies are shown with n = 1, 4, 7 (solid,
dotted, dashed), in the right plot the Jn with n = 10, 15, 20 (solid, dotted, dashed).

4 Summary and Outlook

In Sects. 3.3.3 and 3.4.1 we discussed that advanced geometrical methods like
the Minkowski functionals and the J function are able to constrain parameters
of cosmological models. However, these geometric methods are not only limited
to the parameter estimation in cosmological simulations, they are also valuable
tools as point process statistics in general. The direct probe of galaxy surveys
with geometrical methods showed that the large–scale structure exhibits strong
morphological fluctuations (Sect. 3.3.4). Such fluctuations are often attributed
to “cosmic variance” in an Universe homogeneous on very large scales. However
the fluctuations are astonishingly large even on scales of 200h−1Mpc. A preferred
scale, may be viewed as an indication for a homogeneous galaxy distribution on
large scales. Especially geometric methods like the J and Jn functions may be
helpful to identify a preferred scale in the galaxy distribution.

Perspectives for future research might be as follows:
Starting with the Minkowski functionals or other well founded geometrical tools,
more specialized methods may be constructed to understand certain features in
the galaxy distribution in detail. An example are the vector valued extension of
the Minkowski functionals, the Quermaß–vector, used in the investigation of the
substructure in galaxy clusters.
In empirical work, one has to determine these geometrical measures from a given
point set. The construction of estimators with well understood distributional
properties is crucial to be able to draw decisive conclusions from the data.
Using these geometrical methods as tools for constraining the cosmological pa-
rameters will be one way to go. Currently this is mainly performed by compar-
isons with N–body simulations. Clearly a more direct link between the geometry
and the dynamics of matter in the Universe promoting our understanding how
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structures form is desirable. Carefully constructed approximations may be the
key ingredient.
Another way in trying to understand structure formation is to directly investi-
gate the appearance of geometric features like walls, filaments, and clusters – or
to identify a preferred scale showing up in a regular distribution on large scales.
Such findings will guide us in the construction of approximations, which are able
to reproduce such geometric features.
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cietà Italiana di Fisica, Varenna sul Lago di Como), pp. 281–291

103. Schneider, R. (1993): Convex bodies: the Brunn–Minkowski theory (Cambridge
University Press, Cambridge)

104. Schneider, R., W. Weil (1992): Integralgeometrie (Bernd G. Teubner, Leipzig,
Berlin)

105. Shandarin, S.F. (1983): ‘Percolation theory and the cell–lattice structure of the
Universe’, Sov. Astron. Lett., 9, pp. 104–106

106. Sharp, N. (1981): ‘Holes in the zwicky catalogue’, Mon. Not. Roy. Astron. Soc.,
195, pp. 857–867

107. Silverman, B.W. (1986): Density Estimation for Statistics and Data Analysis
(Chapman and Hall, London)

108. Stoyan, D. (1998): ‘Caution with “fractal” point–patterns’, Statistics, 25, pp.
267–270

109. Stoyan, D., W.S. Kendall, J. Mecke (1995): Stochastic Geometry and its Applica-
tions, 2nd ed., (John Wiley & Sons, Chichester)

110. Stoyan, D., H. Stoyan (1994): Fractals, Random Shapes and Point Fields (John
Wiley & Sons, Chichester)

111. Stoyan, D., H. Stoyan (2000): ‘Improving ratio estimators of second order point
process statistics’, Scand. J. Statist., in press

112. Stratonovich, R.L. (1963): Topics in the theory of random noise, volume 1 (Gor-
don and Breach, New York)

113. Sylos Labini, F., M. Montuori, L. Pietronero (1998): ‘Scale invariance of galaxy
clustering’, Physics Rep., 293, pp. 61–226

114. Szalay, A.S. (1997): ‘Walls and bumps in the Universe’. In: Proc. of the 18th Texas
Symposium on Relativistic Astrophysics, ed. by A. Olinto (AIP, New York)

115. Szapudi, I. (1998): ‘A new method for calculating counts in cells’, Ap. J., 497,
pp. 16–20

116. Szapudi, I., S. Colombi (1996): ‘Cosmic error and statistics of large scale struc-
ture’, Ap. J., 470, pp. 131–148

117. Szapudi, I., E. Gaztanaga (1998): ‘Comparison of the large–scale clustering in
the APM and the EDSGC galaxy surveys’, Mon. Not. Roy. Astron. Soc., 300, pp.
493–496

118. Szapudi, I., A.S. Szalay (1998): ‘A new class of estimators for the n–point corre-
lations’, Ap. J., 494, pp. L41–L44

119. Thönnes, E., M.-C. van Lieshout (1999): ‘A comparative study on the power of
van Lieshout and Baddeley’s J–function’, Biom. J., 41, pp. 721–734

120. Tomita, H. (1986): ‘Statistical properties of random interface systems’, Progr.
Theor. Phys., 75, pp. 482–495

121. Totsuji, H., T. Kihara (1969): ‘The correlation function for the distribution of
galaxies’, Publications of the Astronomical Society of Japan, 21, pp. 221–229



Statistical Analysis of Large-Scale Structure in the Universe 71

122. van Lieshout, M.N.M., A.J. Baddeley (1996): ‘A nonparametric measure of spatial
interaction in point patterns’, Statist. Neerlandica, 50, pp. 344–361

123. Wegner, G., M.P. Haynes, R. Giovanelli (1993): ‘A survey of the Pisces–Perseus
supercluster. v – the declination strip +33.5 deg to +39.5 deg and the main super-
cluster ridge’, A. J., 105, pp. 1251–1270

124. Weil, W. (1983): ‘Stereology: A survey for geometers’. In: Convexity and its ap-
plications, ed. by P.M. Gruber, J.M. Wills (Birkhäuser, Basel), pp. 360–412

125. Weinberg, D.H., J.R. Gott III, A.L. Melott (1987): ‘The topology of large–scale–
structure. I. topology and the random phase hypothesis’, Ap. J., 321, pp. 2–27

126. Weiß, A.G., T. Buchert (1993): ‘High–resolution simulation of deep pencil beam
surveys – analysis of quasi–periodicty’, Astron. Astrophys., 274, pp. 1–11

127. White, S.D.M. (1979): ‘The hierarchy of correlation functions and its relation
to other measures of galaxy clustering’, Mon. Not. Roy. Astron. Soc., 186, pp.
145–154

128. Willmer, C., L.N. da Costa, L. N., P. Pellegrini (1998): ‘Southern sky redshift
survey: Clustering of local galaxies’, A. J., 115, pp. 869–884

129. Winitzki, S., A. Kosowsky (1997): ‘Minkowski functional description of microwave
background Gaussianity’, New Astronomy, 3, pp. 75–100

130. Worsley, K. (1998): ‘Testing for a signal with unknown location and scale in a χ2

random field, with an application to fMRI’, Adv. Appl. Prob., accepted

One may find some of the more recent articles on the preprint servers
http://xxx.lanl.gov/archive/astro-ph or
http://xxx.lanl.gov/archive/gr-qc.
Numbers like astro-ph/9710207 refer to preprints on these servers. An abstract
server for articles appaering in several astrophysical journals is
http://ads.harvard.edu/.
Articles older than a few years are scanned and and may be donloaded from
there.



Dynamics of Structure Formation in Thin Liquid
Films: A Special Spatial Analysis

Karin Jacobs1, Ralf Seemann1, and Klaus Mecke2

1 Abteilung Angewandte Physik, Universität Ulm
D-89069 Ulm, Germany

2 Fachbereich Physik, Bergische Universität Wuppertal
D-42097 Wuppertal, Germany

Abstract. The characterization of morphologies that are not perfectly regular is a very
difficult task, since there is no simple ”measure” for imperfections and asymmetries.
We faced this problem by trying to describe the pattern that evolves in the course of
the dewetting of a thin polymer film as compared with the scenario that takes place
in a thin gold film. With the help of the Minkowski functionals we found significant
differences in the pattern of the two systems: We were able to distinguish a spinodal
dewetting mechanism for the gold film from heterogeneous nucleation for the polymer
film. Moreover, we show how a temporal development of a pattern can be characterized
by Minkowski functionals.

1 Introduction

What catches our eye in Fig. 1 on page 80? The form of the artishokes and the
clover, their color or the way of stacking? Where are the guiding lines for the
eye? Some of the photograph’s fascination might be explained by the symmetry
of the arrangement of the artishokes, which is nearly a hexagonal closest packing,
and some might arise from the contrast of the different morphologies: radially
arranged leaves for the artishokes and a linearly layered structure for the clover.
The patterns are not perfect, yet clearly visible by eye. How can one describe
such patterns scientifically?

Researchers in crystallography and in solid state physics found a nomencla-
ture which is able to characterize symmetrical, recurring patterns by sorting
them into 32 possible point groups. An example for such a regular pattern is
shown in Fig. 2. Still, there is no room for characterizing imperfections or asym-
metries in the pattern.

In nature, symmetry and symmetry-breaking lie close together. Symmetry-
breaking occurs for instance when a tree trunk ramifies or a cell divides in two. In
our experiments, we probe such a symmetry-breaking process by characterizing
its morphology. They are performed in an easily controllable model system, a thin
liquid film lying uniformly and smoothly on a solid substrate. Here, symmetry-
breaking takes place when the film does not like to wet the solid surface and
beads off. This is actually an everyday phenomenon, it comprises - just to name
a few - the dewetting of a water film from a freshly waxed car, the printing of ink
on paper or transparencies or the trickling of water droplets down water-repellent
textiles or leaves (”the lotus effect” [1]).
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Thin liquid films on solid surfaces are of enormous importance in many fields
of modern technology. A vast amount of research has thus been dedicated to
these systems, and the interest in this field is still growing. However, most of
the fundamental processes are not yet fully understood. Among them are the
symmetry-breaking mechanisms in the early as well as in the late stage of dewet-
ting. In the present study, we investigate two systems, a thin metal film and a
thin polymer film, which give insight into the morphology and the dynamics of
liquid structures.

2 Results and Discussion

2.1 Early Stage of Dewetting: Formation of Holes

In many experiments involving different films and substrates, it has been invari-
ably observed that rupture proceeds by the formation of circular holes whose
radius grows in time until they finally merge and lead to dewetting of the entire
film [9,10,11,20,21,22,29,30,33,36] as shown in Fig. 3. The mechanism of initial
hole formation is still under discussion. Let us first concentrate on this early
stage of dewetting.

It is generally accepted that there are two possible mechanisms that may
give rise to the formation of dry patches initiating the dewetting process. Ei-
ther there is nucleation, e. g. from dust particles or impurities in the film, or,
if long-range interactions (such as van der Waals forces) between the liquid film
material and the substrate disfavor wetting, fluctuations in film thickness ex-
perience a driving force. (Fluctuations by thermal motion are always present
on liquid surfaces.) Their amplitudes then grow exponentially with time, finally
leading to dewetting when their size becomes equal to the film thickness. From
the apparent analogy with symmetry-breaking mechanisms involved in decom-
position processes [7,13], the scenario has been termed spinodal dewetting. In
this kind of dynamical instability, there is usually a certain wavelength λmax the
amplitude of which grows fastest, and thus determines the dominant length scale
of the emerging structure. This wavelength scales as the square of the film thick-
ness under certain, quite general conditions, as was shown experimentally [2,35]
and theoretically [3,24]. Since the number density of holes appearing during the
rupture process was found in several studies to depend on the film thickness
according to this scaling law, it was widely believed that spinodal dewetting is
the standard mechanism leading to the rupture of polymer films. In contrast, we
show in the present paper that nucleation by defects is in fact the dominating
mechanism leading to the generally observed rupture scenario of polymer films.

As a convenient model system, we chose polystyrene (PS) films on silicon
wafers, which is frequently used as a standard system, in particular for most of
the work dedicated to the study of rupture mechanisms. The polymer films were
prepared by spin casting PS from a toluene solution onto freshly cleaved mica
sheets. From there they were floated onto a clean deionized water surface and
picked up with silanized Si wafers. More experimental details can be found in
[11]. Figure 3 shows the temporal evolution of the symmetry-breaking process



74 Karin Jacobs et al.

and Fig. 4a displays details of the typical rupture scenario of a thin PS film on
a non-wettable substrate. Here, a 47 nm PS film (molecular weight 600 kg/mol)
on a silanized Si wafer is shown, annealed for 7 min at 130 oC. The average
diameter of the holes, whose shape was found invariably to be circular, is 8.4
µm, the width of the distribution 0.2 µm. The narrow size distribution reflects
the fact that almost all of the holes appear within a sharp time window. The areal
density of the holes was found to scale in accordance with the above mentioned
results obtained by other authors. Similarly, the (apparently) random spatial
distribution of holes is qualitatively identical to what has been generally observed
before [21,22]. It is this spatial distribution onto which we will concentrate next.

Radial Pair Correlation Analysis If hydrodynamically unstable surface rip-
ples (spinodal dewetting) were responsible for the formation of the holes, corre-
lations were to be expected in the geometry of the hole arrangement reflecting
the presence of a critical wavelength λmax. In contrast, a distribution of posi-
tions of holes following a Poisson point process would be a clear counterevidence
of a spinodal process. We thus determined the two-point correlation function
g(r) of the point set represented by the positions of the centers of the holes and
plotted it in Fig. 5b. Obviously, no feature indicative of a dominant wavelength
is found. Let us consider for comparison the dewetting pattern of a liquid gold
film on a quartz glass, as shown in Fig. 4b and determine g(r), too (Fig. 5b).
Again, as Fig. 5b demonstrates, no modulation in g(r) can be detected. For this
system, however, unstable surface ripples with a dominant wavelength λmax had
been clearly identified as the dewetting mechanism [2]. These surface ripples can
even be seen with a light microscope (Fig. 6a). We have analyzed the positions
of the valleys of the observed undulations (data taken from [2]), as depicted in
Fig. 4b. They have been used as a point set onto which the same calculation of
the correlation function g(r) was applied. The result is shown in Fig. 6b. The
modulation in g(r) with a wavelength λmax corresponding to the mean distance
of the valleys in the gold film indicates correlated sites. Moreover, two valleys
are at least 0.6 mean distances separated. (Experimentally, two valleys could be
resolved for distances larger than about 0.1 mean distances.) The existence of
such a minimum distance and of the modulation=20in g(r) thus demonstrate
that the dewetting structure of a thin liquid gold film on a quartz substrate
is indeed strongly different from a Poisson point process. Further experiments
showed that the preferred wavelength λmax (also observable ’by eye’ in Fig. 6a)
scales as the square of the film thickness [2], as is theoretically expected for a
spinodal rupture scenario.

At this point, there are two open questions: i) Can we rule out a spinodal
dewetting mechanism for the PS films by looking only at g(r)? ii) Why is no
modulation visible in g(r) for the holes in the gold film?

The answer to i) and ii) is that g(r) is only a two-point correlation function
and therefore not sensitive for higher-order correlations. So from the point of view
of g(r), we can neither exclude nor corroborate spinodal dewetting as rupture
mechanism for any of the systems. For the gold film it is not clear yet, whether
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the holes stem from valleys that reached the substrate surface or if nucleation
led to holes.

Characterization by Means of Minkowski Functionals The answers to i)
and ii) urge us to analyze the spatial distribution of the sites of holes (or valleys,
resp.) in greater detail. We could either perform standard statistical tests like the
L-test [32], or alternatively, characterize the samples with the help of Minkowski
functionals.

We decided to use the latter, since the Minkowski functionals are connected
to physically useful parameters like the threshold of percolation. Moreover, they
are very handy to describe the spatial structure of the pattern directly and to
record - for instance - structural changes as a function of time, as we will demon-
strate later. Besides, characteristics based on Minkowski functionals are known
to yield stable results with small statistical errors even for small samples, which
is of particular importance for the analysis of experimental data. They provide
statistical descriptors which contain features of n-point correlation functions at
any order n and are efficient in discriminating theoretical models [15,23,27].

Let us consider the centers of the holes in a film as an ensemble of points in
the plane. On each point, we put a circular disk, each with the same radius r,
as depicted in Fig. 7. The set is now defined as the set union of all disks, the
”coverage”. The scale-dependent morphological features of this coverage are then
explored by varying the disk radius and calculating the Minkowski functionals
of the coverage as functions of r. In two dimensions, the Minkowski functionals
are the area F , the boundary length U , and the Euler characteristic χ of the
coverage. The latter is defined as the integral over the boundary curvature,
extended along the entire boundary [16]. Moreover, the Euler characteristic is a
measure of the connectivity of a structure.

For testing the Poisson process, we used the normalized length x := 3Dr/L
(L denoting the average hole distance) and the normalized functions

F ∗(x) = 3D − |Ω|
πr2N ln

(
1− F (x)

|Ω|
)

U∗(x) = 3D U(x)
2πrN(1−F (X)/|Ω|)

χ∗(x) = 3D χ(x)
N(1−F (X)/|Ω|)

(1)

where |Ω| denotes the area of the sampling window andN the number of holes. In
the case of a Poisson process it is F ∗ = 3D1, U∗ = 3D1, and χ∗(x) = 3D1−πx2.

In Fig. 8, the behavior of the three functions is shown as open squares for the
point set given by the centers of the holes displayed in Fig. 5a (left) for the PS
film. The theoretical values for a Poisson point process are represented as solid
lines. Excellent agreement is found for all three functionals; the small deviations
for larger radii being solely due to finite size effects which occur when r comes
within the range of the system size. This suggests that no lateral correlations
are present in the distribution of the holes in the polymer film. We employed
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the same analysis also to published data of hole distributions [21,28] and found,
again, no significant deviation from a Poisson point process.

Let us consider for comparison the spinodal-dewetting pattern of the liquid
gold film, the positions of the holes are shown in Fig. 5a (right). The measured
functions F ∗, U∗, and χ∗ are shown as solid circles in Fig. 8. The deviation
from a Poisson process is evident; here, correlations between the sites of the
holes are present. Also classical tests of point process statistics (the L-test [32]
and an analogous test using Ripley’s K-function [25]) reject the Poisson process
hypothesis [26,31]. For the L-test, the Poisson process hypothesis was rejected
for significance level α = 3D0.01 [31].

Correlations in the distance of holes could surely also be detected with the
help of a Voronoi construction [34], but this costs a little larger computational
effort and is not as versatile as the Minkowski measures. Using a Fourier trans-
formation to find out a preferred wavelength requires large point sets and a
thorough consideration of the boundaries. Besides, a Fourier transformation is
unsuitable to check for a Poisson distribution.

It is thus demonstrated that not only the valleys of the undulation in the
gold film are correlated in their distance, but also the emerging holes. Therefore,
we can conclude that the holes in the gold film stem from unstable hydrody-
namic surface ripples. An involvement of a spinodal process in the rupture of
the polymer films shown here, however, is very unlikely.

2.2 Late Stage of Dewetting: Growth of Holes

Up to this point, we analyzed the static features of the morphology, namely the
statistical distribution of the holes. To gain further insight in the two dewetting
modes, we investigated the dynamics of the rupture process, too. Here, we enter
the late stage of dewetting, the growth of holes.

Characterizing the Growth of Single Holes According to the theory of
spinodal dewetting, the rupture time, τ , which denotes the time after which
the formation of the holes begin, should be equal for all holes and scale as
τ ∝ h5 [3]. For the gold films, τ is experimentally not accessible due to the
specific annealing method using short laser pulses. In order to obtain the rupture
time of the polystyrene films, the diameters of a number of single holes were
recorded as a function of time and extrapolated to zero radius [12]. This gave
a reasonable estimate of τ with a statistical scattering of less than 10%. The
rupture times obtained this way are only weakly dependent on film thickness
(a fit yields τ ∝ h0.6±0.3). Even films with thicknesses of more than 300 nm,
which is beyond the range of the van der Waals-interaction, break up within
some hundred seconds. It is thus demonstrated that there is neither a lateral
correlation in the hole distribution nor a temporal behavior even close to what is
predicted for spinodal dewetting. This rules out completely a spinodal dewetting
process to be responsible for the hole formation.
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It should be noted here that a thermally activated hole formation process
would proceed independently at different places on the sample, and hole forma-
tion would necessarily continue to take place as long as the sample is not fully
dewetted. This contradicts observation, since almost all of the holes are present
immediately after the start of dewetting, as it is clearly seen in Fig. 3. We have
thus ruled out any dynamical instability as well as thermally activated hole for-
mation as processes responsible for the generic polymer film rupture scenario.
The only remaining possibility is heterogeneous nucleation from defects in the
film or at the substrate surface. This is our knowledge at the moment and further
experiments should clarify the kind of defect leading to rupture.

Characterizing the Entire Structure Formation Process Deeper explo-
ration of the temporal behavior as well as the dynamics of the structure forma-
tion process by recording the radii of the holes in the case of the polymer film
is limited to the roundness of these holes. As soon as the holes coalesce, or the
surrounding rim of the hole gets unstable, this method is at its limits. Here, the
Minkowski functionals again come into play.

By determining the three Minkowski functionals F , U and χ for every single
snapshot of the time sequence, we can characterize the structure formation pro-
cess from the very beginning to the final state, where the droplets of material
are lying on the substrate, as shown in Fig. 3. Here, two thresholds are set such
that the gray scale of the usually bright substrate is above the first threshold
and the typically dark rims are below the second one. So F , U and χ of only the
uniform film are analyzed, as illustrated in Fig. 9. (Note that now F character-
izes the area of the uniform film, and not the area of the holes, in contrast to the
analysis of the point distribution depicted in Fig. 7.) The Euler characteristic
χ(t) is determined by calculating the mean curvature of the boundary line. The
Minkowski functionals F (t), U(t) and χ(t) for the entire sequence are shown in
Fig. 10. On one hand, F (t), U(t) and χ(t) serve as a kind of ”fingerprint” for
the temporal development of the specific morphology and, on the other hand,
simultaneously, they characterize the morphology itself.

Here, the interesting question arises whether or not the growth behavior of
the holes changes as soon as the holes come close to each other. Does a hole feel
the neighborhood of another hole? Nearby the small liquid neck between two
large holes, does the draining of the liquid change? By fitting a theoretical curve
to the data in Fig. 10, we can compare the growth rate of the holes with the
growth rate of the morphology. In one model, the radius of the holes, r, grows
linearly with time, in the other, r grows as r ∝ t2/3. The former is applicable
to simple liquids flowing with viscous energy dissipation only [4,5], the latter for
complex fluids where energy is dissipated only as sliding friction between the
liquid and the solid (’slippage’) [6]. We expect slippage to play a role since the
chain length of the polystyrene is exceeding the so-called ’entanglement length’,
which means that by pulling one chain, a hole bunch of chains will be moved.
From the fits shown in Fig. 10 we learn that for the growth of the morphology,
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slippage does not play a prominent role and that purely viscous flow can be
assumed to be the main mechanism of energy dissipation.

This is at variance with the results for the growth law obtained by recording
the radius of single holes described above where both mechanism had to be taken
into account to fit the data [12]. From these experiments we know that slippage
is especially important in the early regime of hole growth. Why don’t we see this
with the Minkowski functionals? The explanation is the optical resolution that
we have for characterizing the r(t)-diagram of single holes, 1 µm, in comparison
with that of the dozens of holes, as shown in Fig. 3, where features smaller than
roughly 10 µm cannot be resolved. This means that the magnification is too
small to see deviations from a linear growth mode in the early times of hole
growth with the help of the Minkowski functionals.

Another access to the growth law of the pattern is to combine the results of
the ”simulated” growth of holes as shown in Fig. 7, where we get the functions
F (r), U(r) and χ(r), with the measured functionals in the form of F (t), U(t)
and χ(t). This way, we get three independent grow laws r(t), Fig. 11. For guiding
the eye, a linear growth law is plotted. Substantial deviations from this law can
be found for very small and very large annealing times. Here, the scatter of data
is quite high indicating that at these times (or for the corresponding pictures of
the holes, resp.) the Minkowski functionals are extremely sensitive to the height
of the threshold within the pictures. In other words, the resolution of the images
for very small and very large annealing times is too low to characterize the
small features correctly with the help of the Minkowski functionals. However,
from the correspondence of all three r(t)-curves in Fig. 11, we can derive that
the holes indeed grow like the overlapping disks shown in Fig. 7 and that the
growth of a hole is not changed by the vicinity of other holes. This behavior
is unexpected, but is characteristic for our system and particularly convincing
since it is obtained for all three functions. Further experiments should clarify
whether or not this behavior changes in other systems, e.g. polystyrene films of
very short chain lengths (below the entanglement length) or of films on top of
other substrates.

3 Conclusions and Outlook

Before the analysis with Minkowski functionals, we knew that the surface of
dewetting gold films oscillates with a certain wavelength λmax that also scales
with the film thickness as predicted for a spinodal dewetting scenario [2]. How-
ever, it was not clear whether the emerging holes in the gold film stem from these
hydrodynamically unstable surface waves or were nucleated by defects. With the
help of the Minkowski functionals we found out that the sites of the holes are
correlated. This is a counterevidence for heterogeneous nucleation. We therefore
conclude that in the case of gold films, spinodal dewetting is the dominating
rupture mechanism.

For the polystyrene films it was known that the areal density of holes scales
with film thickness in accordance with spinodal dewetting theories [21,22]. The
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rupture time τ , though, did not. In our experiment it is only weakly dependent
on film thickness. Our analysis by Minkowski functionals shows that the holes are
most likely randomly distributed. We conclude that in the experiments shown
here, heterogeneous nucleation is responsible for symmetry-breaking. Besides, by
characterizing the complete structure formation process of a polystyrene film,
we found that neighboring holes do not influence each other, they rather behave
like overlapping disks.

It can be summarized that Minkowski functionals are powerful tools to quan-
tify morphological properties of patterns. Moreover, structure formation pro-
cesses can be followed and characterized. In this way the ”fingerprints” of differ-
ent processes can be compared, independently of any statistical assumptions and
without any limitation of boundary conditions or minimum number of objects.
Our vision for the future is that functions based on Minkowski functionals will
become standard image analysis tools in real space, like Fourier transformation
is in k-space.
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Fig. 1. Artichokes and clover, the load of an Egyptian farmer’s tractor [18].
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Fig. 2. Example for a geometric pattern: a ceramic tile of the Alhambra Palace
(Granada, Spain).



82 Karin Jacobs et al.

Fig. 3. Series of photographs of a dewetting film, viewed through a reflection light
microscope. The 80 nm thick polystyrene film on a specially treated Si wafer is liquid
and beads off the non-wettable surface. Due to mass conservation, the material that
formerly covered the hole has been accumulated in the form of a liquid rim surrounding
the hole. The annealing time in seconds is given on each photograph.
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a) b)

Fig. 4. a) Light microscopy image of a 60 nm thick polystyrene film on a silanized Si
wafer, annealed for 7 min at 133 oC, b) Atomic force microscopy (AFM) image of a
100 nm thick gold film on a quartz glass. The film was molten by a short laser pulse.
The height scale is represented in shades of grey, entirely ranging 150 nm from black
(deep) to white (elevated area).
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a)

b)

Fig. 5. a) Positions of holes in the PS film (left) and in the Au film (right), as extracted
from Fig. 4a) and Fig. 4b). b) g(r) of the Au and the PS film for the above shown
point pattern. r is given in units of the mean distance of objects.
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Fig. 6. a): Detail taken by a light microscope of a dewetting Au film [19]. The snapshot
characterizes the situation some fractions of nanoseconds prior to the one shown in
Fig. 4: The undulations of the film are slightly visible. The dominant wavelength λmax
of the system is 2.4(2)µm, as determined in [19]. Width of the image: 24 µm. b) Pair
correlation function, g(r), for the valley positions of the dewetting Au film shown on
the left. r is given in units of the mean distance of objects.

Fig. 7. The positions of the holes, marked with a cross, are decorated each with a disk,
whose radius increases from left to right. The Minkowski functionals in two dimensions
include area F (the grey area), boundary length U between grey and white area and
the Euler characteristic χ, which is a measure of the connectivity of the grey structure.
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Fig. 8. Normalized morphological measures F ∗, U∗ and χ∗ of the Au (full circles) and
of the PS film (open squares) as a function of the normalized radius x, x =3D r/L, of
the disks with mean distance L. The solid lines mark the expected behavior for Poisson
point process.
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Fig. 9. Analyzing structures with the Minkowski functionals - measuring area (right),
boundary length (middle) and Euler characteristic of the structure (left). As an example
serves a snapshot of a dewetting polystyrene film.
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Fig. 10. The functions F (t), U(t) and χ(t) of a temporal series of photographs, some of
which are shown in Fig. 3. The diagram serves as a ”fingerprint” of the entire structure
formation process. The solid lines mark a fit to the data assuming a linear growth
behavior of the radii of the holes. χ(t) is normalized to the total number of holes per
area, ρ.
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Fig. 11. Growth laws r(t) as derived from comparing the functions in the form of F (r),
U(r) and χ(r) with the time dependent curves F (t), U(t) and χ(t). The dashed line is
a guide to the eye for a linear growth of r(t).
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Abstract. The Boolean model is the basic random set model for many applications.
Its main advantage lies in the fact that it is determined by a single measure-valued pa-
rameter, the intensity measure. Whereas classically Boolean models were studied which
are stationary and isotropic, some of the methods and results have been extended to
the non-isotropic situation. More recent investigations consider inhomogeneous Boolean
models, i.e. random sets without any invariance property. Density formulae for inhomo-
geneous Boolean models make use of local variants of the classical quermassintegrals,
the surface area measures and curvature measures. Iterations of translative integral
formulae for curvature measures lead to further measures of mixed type.

In this survey, we describe some of these local and mixed-type functionals from
integral geometry and show how they can be used to extend density formulae for
Boolean models from the stationary and isotropic case to the non-isotropic situation,
and finally to inhomogeneous Boolean models.

1 Motivation

Throughout the following, we describe some recent developments in the study
of random collections X of particles and their union sets Z. Random systems
of particles are observed and investigated in many applied sciences and often
overlappings of the particles make the direct measurement of particle character-
istics difficult or even impossible. In these practical situations, the dimension is
usually 2 or 3. In order to give a unified exposition of the problems and results,
we work here in the space R

d with a general dimension d, d ≥ 2.
In the worst case, only the union set

Z =
⋃

K∈X
K

of the particles is visible and sometimes only the part Z ∩W of this union set
Z in a sampling window W (which we assume to be a full dimensional, compact
and convex set) is observable. The main goal is then to determine (or better:
estimate) characteristical quantities of the particle systemX (like mean values or
distributions) from observations of Z, respectively Z ∩W . An important aspect
of random sets Z which arise as the union of particle systems X is that they can
be an appropriate model even in situations where there are no particles in the
background of the physical situation. If a given complicated structure has to be
modelled by a random closed set Z, the class of particle models is often the only
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practicable class to start with. Here again the statistical task is to estimate the
characteristical quantities of the (artifical) particle system X from observations
of Z.

Of course, this is only a realistic task if we make a suitable assumption
on the distribution of the particles. A simple, yet very effective assumption is
the following: We assume that the number N of particles of X which hit the
sampling window W (hence have visible parts in W ) is a random variable with
the additional property that, given N = k, these k particles are independent and
identically distributed. Although this is a slightly vague formulation, it specifies
a unique model for X, namely the Poisson process on the space of particles. For
simplicity, we assume here that the particles are compact and convex (so-called
convex bodies), although some of the methods and results we describe can be
extended to non-convex particles as well. Thus, we consider a Poisson process
X on the space Kd of convex bodies in R

d. This process is characterized by the
property

P(X(A) = k) = e−Θ(A)Θ(A)k

k!
, for k = 0, 1, . . . .

Here, A is a subset of Kd and X(A) denotes the number of particles of X in A.
Examples for subsets A of interest are

A = {K ∈ Kd : K ∩W �= ∅}
or

A = {K ∈ Kd : K ⊂W}.
(Mathematically, a more rigorous setting is necessary which requires to supply
Kd with a natural distance (the Hausdorff metric) and the corresponding system
of Borel sets; A then runs through all Borel subsets of Kd.) Θ(A) is the parameter
of the Poisson distribution, hence it equals the expectation of X(A),

Θ(A) = EX(A)

(thus, Θ(A) gives the mean number of particles of X which belong to the set
A). As a function of A, Θ is a measure on Kd (a σ-additive set function on the
Borel subsets of Kd), it is called the intensity measure of X. The measure Θ
need not be finite, in fact in most of the applications, which we discuss later,
we have Θ(Kd) = ∞. However, we assume that Θ is locally finite in the sense
that Θ({K ∈ Kd : K ∩ M �= ∅}) < ∞, for all M ∈ Kd. Another natural
assumption we make is that Θ({K}) = 0, for all singleton sets {K},K ∈ Kd (we
then say that Θ is atom-free). The following existence and uniqueness theorem
is a classical result in abstract point process theory (see, for example, [1]).

Theorem. Each measure Θ on Kd, which is locally finite and atom-free, is the
intensity measure of some Poisson process X on Kd. This Poisson process X is
uniquely determined (in distribution).

If X is a Poisson process on Kd, the union set Z is a random closed set (RACS)
in the sense of [10]. Z is called a Boolean model (with convex grains); see also
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Sect. 3 of the paper by D. Stoyan in this volume. The basic statistical problem
mentioned at the beginning can now be reformulated: Determine (or estimate)
Θ on the basis of observations of Z.

We also understand now why the Boolean model is an appropriate model
for many different random structures in practice. Its main advantage is that it
is completely determined by the single parameter Θ. The estimation of Θ is a
problem which belongs to the area of Spatial Statistics. In the general situation
considered so far, Θ is an arbitrary (locally finite and atom-free) measure on
Kd, hence much too complicated to be accessible in practice. The situation be-
comes easier if further assumptions are made, for example on the shape of the
particles. A simple model of that kind consists of balls with random radii which
are independent of the location. In this case, Θ can be expressed by the spatial
density of the midpoints and the radii distribution. We discuss corresponding
formulae at the end of this paper. For the main part, we allow quite general
intensity measures Θ, but concentrate on the estimation of certain mean values.
We refer to [23], for general information about Boolean models, and to [14], for
further results concerning the estimation of Θ.

In order to see which mean values of X can be estimated from observations
of Z, we consider a geometric functional ϕ and assume that ϕ(Z ∩W ) is observ-
able. The following assumptions on ϕ are partially enforced by the mathematical
methods which we will use later, partially they are also reasonable from a prac-
tical point of view.

(a) ϕ is defined on the convex ring Rd; this is the collection of all finite unions
of convex bodies (the reason for this assumption is that, for our Boolean model
Z, we have Z ∩W ∈ Rd almost surely),
(b) ϕ is additive,

ϕ(C ∪D) + ϕ(C ∩D) = ϕ(C) + ϕ(D), for C,D ∈ Rd,

(c) ϕ is translation invariant,

ϕ(C + x) = ϕ(C), for C ∈ Rd, x ∈ R
d,

(d) ϕ is continuous (on Kd),

ϕ(Ki) → ϕ(K), as Ki → K in the Hausdorff metric on Kd.

Volume and surface area are functionals which fulfill these conditions, further
examples are discussed in Sect. 2.

Concerning such a functional ϕ, the mean information about Z contained
in the sampling window W is Eϕ(Z ∩W ), this is also the quantity for which
ϕ(Z ∩W ) is an unbiased estimator. Hence, we shall try to express Eϕ(Z ∩W ) in
terms of Θ. By the independence properties of Poisson processes, the additivity
of ϕ (in form of the inclusion-exclusion principle), and the theorems of Fubini
and Campbell, we obtain for any convex body K0 ∈ Kd
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Eϕ(Z ∩K0) = Eϕ

( ⋃
K∈X

(K ∩K0)

)

=
∞∑
k=1

(−1)k+1

k!
E

∑
(K1,...,Kk)∈Xk

�=

ϕ(K0 ∩K1 ∩ · · · ∩Kk)

=
∞∑
k=1

(−1)k+1

k!

∫
Kd

· · ·∫
Kd

ϕ(K0 ∩K1 ∩ · · · ∩Kk)Θ(dK1) · · ·Θ(dKk), (1)

whereXk
�= denotes the process of k-tupels fromX with pairwisely disjoint entries.

The question arises how to simplify this expression.
Let us first make the additional assumption that the Boolean model Z is

stationary, hence has a distribution which is invariant under translations (in
other words, Z and Z + x have the same distribution for all x ∈ R

d). The
stationarity of Z is equivalent to the corresponding property of X and thus
equivalent to the translation invariance of Θ. This invariance has important
consequences for the structure of Θ. In order to describe these, we decompose
each particle K ∈ Kd into its ”location” and its ”shape”. As location parameter,
we choose the Steiner point s(K) of K (the centroid of the Gaussian curvature
measure on the boundary of K). Other centre points (like the midpoint of the
circumsphere of K) are also possible, but the Steiner point is especially adapted
to the later representations. We let

Kd
0 = {K ∈ Kd : s(K) = 0}

denote the set of convex bodies with Steiner point at the origin (the space of
”shapes”). Each particle K ∈ Kd has a unique representation (z,M) ∈ Rd ×Kd

0
withK =M+z, namely z = s(K) andM = K−s(K). Using this representation,
we can interpret Θ as a measure on the product space R

d × Kd
0. Moreover,

for stationary Z, this measure is translation invariant with respect to the first
component. Such a measure necessarily has a product form,

Θ = γ(λd ⊗ P0), (2)

where γ ∈ (0,∞) is a constant (the intensity of X), λd is the Lebesgue measure
on R

d, and P0 is a probability distribution on Kd
0, the distribution of the typical

grain. (The finiteness of γ stems from the local finiteness of Θ which we assumed;
we also exclude the case γ = 0 in the following, since it belongs to the process
X with no particles at all.) For stationary Z, we thus obtain from (1)

Eϕ(Z ∩K0)

=
∞∑
k=1

(−1)k+1

k!
γk
∫

Kd
0

· · ·
∫

Kd
0

φ(K0,K1, . . . ,Kk)P0(dK1) · · ·P0(dKk)(3)
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with

φ(K0,K1, . . . ,Kk)

=
∫

Rd
· · ·
∫

Rd

ϕ(K0 ∩ (K1 + x1) ∩ · · · ∩ (Kk + xk))λd(dx1) · · ·λd(dxk).(4)

In order to obtain more explicit formulae here, we face two problems:

(1) Find appropriate geometric functionals ϕ.

(2) Find, for such ϕ, translative integral formulae (in particular, iterated ver-
sions).

2 Geometric Functionals

The class of functionals ϕ : Rd → R which fulfill conditions (a) - (d) is still rather
big. By a theorem of [5] it is sufficient to consider additive, translation invariant
and continuous functionals on Kd since any such functional ϕ can be extended
to a functional on Rd which fulfills (a) - (d). Additive functionals on Kd are
also called valuations and there is an extensive theory on valuations including
translation invariant and continuous ones (see the surveys [11] and [12], as well
as the book [19]). A complete description of continuous translation invariant
valuations is however not known, in this generality.

An approach which is reasonable from a geometric point of view is to restrict
the class of functionals further by replacing condition (c) by
(c′) ϕ is motion invariant,

ϕ(gK) = ϕ(K), for K ∈ Kd, g ∈ Gd,

where Gd denotes the group of (rigid) motions in R
d (and where we already used

the fact that it is sufficient to assume invariance on Kd).
We already mentioned the most simple example of a continuous, motion in-

variant valuation, the volume functional ϕ = Vd (the Lebesgue measure). Further
examples like the surface area can be obtained from Vd by differentiation, due
to the Steiner formula for the outer parallel body,

Vd((K ⊕ εBd) \K) =
d−1∑
j=0

εd−jκd−jVj(K), for ε > 0. (5)

Here, we used ⊕ to denote vector addition of sets, Bd for the unit ball in R
d, and

κd−j = λd−j(Bd−j), j = 0, . . . , d−1. The coefficients V0(K), . . . , Vd−1(K) in the
polynomial expansion (5) are called the intrinsic volumes of K. The functional
ϕ = Vj satisfies conditions (a)–(d) as well as (c′). The intrinsic volumes are
proportional to the classical quermassintegrals Wi(K), namely we have

κd−jVj(K) =
(
d

j

)
Wd−j(K), for j = 0, . . . , d− 1.
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The advantage of the intrinsic volumes is that they only depend on the dimension
of K and not on the dimension d of the surrounding space. In particular, for a
j-dimensional body K in R

d, j < d, Vj(K) is the j-dimensional volume of K,
Vj(K) = λj(K). The intrinsic volumes can be represented as curvature integrals
over the boundary of K, but some of them have a more direct interpretation.
Namely, V0(K) is the (Euler) characteristic, that is, V0(K) = 1 if K �= ∅ and
V0(∅) = 0. V1(K) is proportional to the mean width of K and, at the other end,
Vd−1(K) is half the surface area of K.

The importance of the intrinsic volumes is expressed by the following funda-
mental theorem [9], for a more recent and simplified proof).

Theorem (Hadwiger). For each motion invariant, continuous valuation ϕ on
Kd there are constants c0, . . . , cd such that

ϕ =
d∑

j=0

cjVj .

Intrinsic volumes do not give any information on the orientation of a set. Such
direction dependent quantities can be obtained by suitable variations of (5).

The first possibility is to replace the unit ball in (5) by a more general convex
bodyM , which is possible with the use of Minkowski’s mixed volumes. We obtain

Vd((K ⊕ εM) \K) =
d−1∑
j=0

εd−j

(
d

j

)
V (K [j],M [d− j]), for ε > 0. (6)

The mixed functionals V (K [j],M [d− j]) on the right-hand side may be defined
by this polynomial expansion, but they are also special cases of a general expan-
sion of the volume of sum-sets (see [19], for definitions and properties of these
mixed volumes).

A second possibility is to consider local counterparts of (5). There are two
approaches in this direction. For each Borel set β in R

d and ε > 0, we may
consider the local outer parallel set

Aε(K,β) = {x ∈ (K ⊕ εBd) \K : p(K,x) ∈ β},

where p(K, ·) denotes the metric projection onto K. Then,

λd(Aε(K,β)) =
d−1∑
j=0

εd−jκd−jΦj(K,β), for ε > 0. (7)

By this expansion, local functionals Φ0(K, ·), . . . , Φd−1(K, ·) are defined which
are (finite and nonnegative) measures on R

d and are actually supported by the
boundary bdK of K. These are the curvature measures of [4]. Φ0(K, ·) measures
the Gaussian curvature in the boundary points of K and Φd−1(K, ·) is half the
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(d− 1)-dimensional Hausdorff measure on bdK. Alternatively, we may define a
local parallel set Bε(K,ω) for each Borel set ω in the unit sphere Sd−1 of R

d,

Bε(K,ω) = {x ∈ (K ⊕ εBd) \K : u(K,x) ∈ ω}.

Here, u(K,x) = (x−p(K,x))/‖x−p(K,x)‖ is the outer normal vector in p(K,x),
pointing in direction of x. Then, as a counterpart to (7), we get

λd(Bε(K,ω)) =
d−1∑
j=0

εd−jκd−jΨj(K,ω), for ε > 0. (8)

By (8), the surface area measures Ψ0(K, ·), . . . , Ψd−1(K, ·) of K are defined. They
have been introduced first by Aleksandrov, Fenchel and Jessen (see [19], for
details, connections and generalizations). Here, Ψ0(K, ·) plays a special role since
it is the spherical Lebesgue measure (and hence independent of K). For each j,
the curvature measure Φj(K, ·) determines K uniquely. For the surface area
measures, this is true for j ≥ 1 and uniqueness holds only up to translations. We
remark that there are common generalizations of curvature measures and surface
area measures, the support measures which are supported by the generalized
normal bundle ofK. We also refer to [19] for the relations between these measures
and mixed volumes. For the following, we mention that

Vj(K) = Φj(K,Rd) = Ψj(K,Sd−1), for j = 0, . . . , d− 1,

and

V (K [d− 1],M [1]) =
2
d

∫
Sd−1

h(M,u)Ψd−1(K, du), (9)

where h(M, ·) = maxx∈K〈x, ·〉 is the support function of M .
Mixed volumes, curvature measures and surface area measures share a num-

ber of properties with the intrinsic volumes. In particular, they are additive and
continuous (where we use the weak convergence for measures), hence they have
a (unique) additive extension to the convex ring Rd. Obviously, they are no
longer motion invariant, but translation invariant (mixed volumes and surface
area measures), respectively translation covariant (curvature measures).

3 Integral Geometry

In order to approach our second problem, namely to find translative integral
formulae for the geometric functionals ϕ under consideration, we proceed sim-
ilarly to the last section. Again, we first replace the translative situation by a
motion invariant one, that is, we consider kinematic integral formulae. For this
purpose, we make use of the (up to a normalizing constant unique) invariant
measure µ on the group Gd of rigid motions (for more details on this measure
and the following integral geometric formulae, see [21]). The classical result of
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integral geometry is the Principal Kinematic Formula, due to Blaschke, Santalò
and Chern,∫

Gd

Vj(K ∩ gM)µ(dg) =
d∑

k=j

αdjkVk(K)Vd+j−k(M), for j = 0, . . . , d, (10)

which holds for K,M ∈ Rd. The constants αdjk depend on the normalization of
µ and can be given explicitly.

The following local version of (10) for curvature measures is due to Federer,

∫
Gd

Φj(K ∩ gM, β ∩ gβ′)µ(dg)

=
d∑

k=j

αdjkΦk(K,β)Φd+j−k(M,β′), (11)

for j = 0, . . . , d,

K,M ∈ Rd, and Borel sets β, β′ ⊂ R
d. Here, we have also used the measure

Φd(K, ·) which is defined as the Lebesgue measure λd restricted to K. Both
formulae, (10) and (12) can be iterated easily.

The corresponding translative versions look naturally more complicated. The
Principle Translative Formula has the form∫

Rd

Vj(K ∩ (M + x))λd(dx) =
d∑

k=j

V
(j)
k,d+j−k(K,M), for j = 0, . . . , d (12)

and K,M ∈ Rd, with mixed functionals V (j)
k,d+j−k. The indices here indicate the

degree of homogeneity, hence V (j)
k,d+j−k(K,M) is homogeneous of degree k in K

and of degree d+ j − k in M . A special case is j = 0, since

V
(0)
k,d−k(K,M) =

(
d

k

)
V (K [k],M∗ [d− k]), for k = 0, . . . , d

and K,M ∈ Kd, whereM∗ denotes the reflection ofM in the origin. For K,M ∈
Rd, the formula holds true if, in case k = 0, the right-hand mixed volume is
interpreted as V0(K)Vd(M∗) (and symmetrically for k = d).

The iteration of (12) is possible but produces new mixed functionals,∫
Rd

· · ·
∫

Rd

Vj(K0 ∩ (K1 + x1) ∩ · · · ∩ (Kk + xk))λd(dx1) · · ·λd(dxk)

=
d∑

m0,...,mk=j
m0+···+mk=kd+j

V (j)
m0,...,mk

(K0, . . . ,Kk), (13)

for j = 0, . . . , d.
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Fortunately, the sequence of mixed functionals V (j)
m0,...,mk(K0, . . . ,Kk) is limited

in view of the condition

m0 + · · ·+mk = kd+ j, for m0, . . . ,mk ∈ {j, . . . , d},

and the fact that

V (j)
m0,...,mk

(K0, . . . ,Kk) =
1

κd−j
V

(0)
m0,...,mk,d−j(K0, . . . ,Kk, B

d),

as well as

V
(j)
m0,...,mk−1,d

(K0, . . . ,Kk−1,Kk) = V (j)
m0,...,mk−1

(K0, . . . ,Kk−1)Vd(Kk).

If we replace the intrinsic volume by the corresponding curvature measure,
we get a result, analogous to (12)∫

Rd

Φj(K ∩ (M + x), β ∩ (β′ + x))λd(dx)

=
d∑

k=j

Φ
(j)
k,d+j−k(K,M ;β × β′), (14)

for j = 0, . . . , d,

with mixed measures Φ(j)
k,d+j−k(K,M ; ·) on R

d×R
d. The iteration of (14) yields∫

Rd

· · ·
∫

Rd

Φj(K0 ∩ (K1 + x1) ∩ · · · ∩ (Kk + xk), β0 ∩ (β1 + x1) ∩ · · ·
∩(βk + xk))λd(dx1) · · ·λd(dxk)

=
d∑

m0,...,mk=j
m0+···+mk=kd+j

Φ(j)
m0,...,mk

(K0, . . . ,Kk;β0 × · · · × βk), (15)

for j = 0, . . . , d,

where the mixed measure Φ(j)
m0,...,mk(K0, . . . ,Kk; ·) is now a measure on the k-fold

product space (Rd)k = R
d × · · · × Rd.

4 Boolean Models

Returning to equations (3) and (4) for a stationary Boolean model Z, we first
assume that Z is, in addition, isotropic. Then, the distribution of the typical
grain, P0, is rotation invariant and hence we can replace the iterated translation
integral by an iterated kinematic integral. Thus, for a stationary and isotropic
Boolean model Z and the intrinsic volume Vj , we obtain

EVj(Z ∩K0)
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=
∞∑
k=1

(−1)k+1

k!
γk
∫

Kd
0

· · ·∫
Kd

0

φ(K0,K1, . . . ,Kk)P0(dK1) · · ·P0(dKk) (16)

with

φ(K0,K1, . . . ,Kk)

=
∫
Gd

· · ·
∫
Gd

Vj(K0 ∩ g1K1 ∩ · · · ∩ gkKk)µ(dg1) · · ·µ(dgk). (17)

We define
V j(X) = γ

∫
Kd

0

Vj(K)P0(dK)

and call this the j-th quermass density of the particle system X, j = 0, . . . , d. A
corresponding quantity for Z can be defined by a limit process,

V j(Z) = lim
r→∞

EVj(Z ∩ rK)
Vd(rK)

,

for an arbitrary ‘window’ K ∈ Kd with inner points. By (16), (17), and the
iterated version of (10), it is easily seen that this limit exists and is independent
of K. We even get an explicit expression for the alternating sum in (16) and
the series expansion of the exponential function leads to the following classical
result.

Theorem. For a stationary and isotropic Boolean model Z in R
d, we have

V d(Z) = 1− e−V d(X)

and

V j(Z) = e−V d(X)
{
V j(X)

+
d−j∑
k=2

(−1)k+1

k!

d−1∑
m1,...,mk=j+1

m1+···+mk=(k−1)d+j

c(j)m1,...,mk
V m1(X) · · ·V mk

(X)
}
,

for j = 0, . . . , d− 1.

The constants c(j)m1,...,mk occurring here are known explicitly.
For dimension d = 2, the intrinsic volumes equal (or are proportional to)

the area A, the boundary length L, and the Euler characteristic χ. The formulae
then reduce to

A(Z) = 1− e−A(X),
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L(Z) = e−A(X)L(X),

χ(Z) = e−A(X)
(
γ − 1

4π
L
2
(X)

)
.

For dimension d = 3, we have correspondingly the volume V , the surface area S,
the integral of mean curvature M , and the Euler characteristic χ. The formulae
are then the following,

V (Z) = 1− e−V (X),

S(Z) = e−V (X)S(X),

M(Z) = e−V (X)
(
M(X)− π2

32
S
2
(X)

)
χ(Z) = e−V (X)

(
γ − 1

4π
M(X)S(X) +

π

384
S
3
(X)

)
.

An interesting aspect of these formulae is that they allow an estimation of the
intensity γ of the particle system X solely on the basis of measurements of
the union set Z. Since the formulae extend to particles in Rd, this is even true
for non-convex particles, provided they belong to the class Rd and are simply
connected.

Now we consider the non-isotropic case. Here, we have to use (13) in (4) and
obtain the following generalization of the last theorem (see [24]).

Theorem. For a stationary Boolean model Z in R
d, we have

V d(Z) = 1− e−V d(X)

and

V j(Z) = e−V d(X)
{
V j(X)

+
d−j∑
k=2

(−1)k+1

k!

d−1∑
m1,...,mk=j+1

atopm1+···+mk=(k−1)d+j

V
(j)
m1,...,mk

(X, . . . ,X)
}
,

for j = 0, . . . , d− 1.

The two-dimensional version now reads

A(Z) = 1− e−A(X),

L(Z) = e−A(X)L(X),

χ(Z) = e−A(X) (γ −A(X,X∗)
)
,
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where we used the mixed area A(K,M) for the mixed volume V (K [1],M [1]) in
the plane and where M∗ denotes the reflection of the set M in the origin. Since
the density A(X,X∗) of the mixed area cannot be expressed in terms of A(X)
or L(X), the three equations cannot be used, as in the isotropic case, to obtain
an estimator for γ (by only measuring A(Z), L(Z) and χ(Z)).

The solution in this situation is to use a local counterpart of the second
equation, namely

Ψ1(Z, ·) = e−A(X)Ψ1(X, ·). (18)

In view of the symmetry of the mixed area A(K,M) (in K and M) and (9),
(18) is equivalent to a corresponding equation for densities of support functions
(where we use again additive extension on the left-hand side),

h(Z, ·) = e−A(X)h(X, ·). (19)

The measure Ψ1(Z, ·) is the mean normal measure of the random set Z, its nor-
malized version gives the distribution of the outer normal in a typical boundary
point of Z. In the symmetric case (that is, the case where Ψ1(Z, ·) is an even
measure), Ψ1(Z, ·) can be estimated from random lines or line segments (see
[15]), an estimation procedure in the general case is given in [18]. The mean
support function h(Z, ·) is convex (as follows from (19)), it is thus the support
function of a convex bodyM(Z), the mean body of Z. The mean normal measure
Ψ1(Z, ·) is the surface area measure of the mean body,

Ψ1(Z, ·) = Ψ1(M(Z), ·).
Since

A(X,X∗) = γ2
∫

K2
0

∫
K2

0

A(K,M∗)P0(dK)P0(dM)

=
∫
S1
h(X,−u)Ψ1(X, du),

we thus can use the equation for χ(Z) to get an estimator for γ. More details
can be found in [25].

A similar method still works for d = 3 and d = 4 (see [26,28]).
Finally, we consider the non-stationary case. Non-stationary random sets

and, in particular, non-stationary Boolean models have been of recent interest
and a number of authors have considered appropriate definitions of the volume
density, the surface area density and densities of other quermass integrals for
three-dimensional random set models, in particular for Boolean models of balls
(see [6,7,8,13,16,17]). We describe here a general approach for non-stationary
Boolean models, due to [2,3].

If X (and hence Z) is inhomogeneous (not stationary), (2) does not hold
anymore, and we have to replace it by an appropriate desintegration property
of the intensity measure Θ,

Θ(A) =
∫

Kd
0

∫
Rd

1A(M + x)f(x)λd(dx)P0(dM), (20)
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for all Borel sets A ⊂ Kd. The function f may be called the local intensity (or
spatial density), P0 is again the distribution of the typical particle (in [2,3] a
more general situation is discussed where the local intensity may even depend
on M). The definition of the quermass densities of Z as a limit for increasing
sampling windows, which worked in the stationary case, is not applicable in the
non-stationary case anymore. However, the quermass density V j(Z) of Z (in the
stationary case) fulfills also the alternative representation

EΦj(Z, ·) = V j(Z)λd,

hence V j(Z) is the (constant) density of the measure EΦj(Z, ·) with respect to
the Lebesgue measure (similar results hold for the densities and mixed densities
of X). This shows how to define local densities in the inhomogeneous case. As
was shown in [2,3],

(1) EΦj(Z, ·) is absolutely continuous to λd. We denote the Radon-Nikodym
derivative by V j(Z; ·) and call this the (local) quermass density of Z.

(2) E
∑

(K1,...,Kk)∈Xk
�=
Φ
(j)
m1,...,mk(K1, . . . ,Kk, ·) is absolutely continuous to the

product measure λkd = λd ⊗ · · · ⊗ λd. We denote the corresponding Radon-

Nikodym derivative by V
(j)
m1,...,mk

(X, . . . ,X; ·).
Note that the quermass density V j(Z; ·) is now a function on R

d which is almost

everywhere defined (accordingly, the mixed density V
(j)
m1,...,mk

(X, . . . ,X; ·) is a
function on (Rd)k).

The following theorem of [2,3] is the counterpart to the results in the station-
ary, respectively stationary and isotropic case. Its proof is based on the iterated
translative formula (15) for curvature measures.

Theorem. For a general Boolean model Z in R
d fulfilling (20), we have for

almost all z ∈ R
d

V d(Z; z) = 1− e−V d(X;z)

and

V j(Z; z) = e−V d(X;z)
{
V j(X; z)

+
d−j∑
k=2

(−1)k+1

k!

d−1∑
m1,...,mk=j+1

m1+···+mk=(k−1)d+j

V
(j)
m1,...,mk

(X, . . . ,X; z, . . . , z)
}
,

for j = 0, . . . , d− 1.

Generalizations to densities of mixed volumes are considered in [28].
In order to interpret this result, we concentrate on the planar case again

and assume a process X of discs with random radii. Let G be the distribution
function of the radii, and let us assume that G has a density g (the following
formulae can be easily extended to more general situations). Let

G̃(x) = 1−G(‖x‖),
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g̃(x) = g(‖x‖),

ĝ(x) =
g(‖x‖)
‖x‖ ,

for all x ∈ R
2 \ {0}. Then,

A(X; ·) = f ∗ G̃,

L(X; ·) = f ∗ g̃,

χ(X; ·) = f ∗ ĝ,
where ∗ denotes the (ordinary) convolution of functions. As a consequence, we
get the following theorem.

Theorem. Let Z be a general Boolean model of discs in R2 with radius dis-
tribution function G (and corresponding density function g) and local intensity
function f . Then, we have for almost all z ∈ R

2

A(Z; z) = 1− e−(f∗G̃)(z),

L(Z; z) = e−(f∗G̃)(z)(f ∗ g̃)(z),

χ(Z; z) = e−(f∗G̃)(z) [(f ∗ ĝ)(z)− ((f ⊗ f) ∗α·sinα (g̃ ⊗ g̃))(z, z)] ,
with the α · sinα-convolution of the tensor products defined as

((f ⊗ f) ∗α·sinα (g̃ ⊗ g̃))(z, z)

=
∫

R2

∫
R2
f(z − x)f(z − y)α(x, y) sinα(x, y)g̃(x)g̃(y)λ2(dx)λ2(dy)

(α(x, y) is the angle between x and y).

This and other results are discussed in [28]. Related formulae have also been
given in dimensions 2 and 3 by [13]. In the recent paper [29], the formulae for
discs are extended to more general particle shapes and it is shown that, also in
the inhomogeneous planar case, the quermass densities and mixed densities of
Z determine the density χ(X; ·) of the Euler characteristic of X uniquely.
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Additivity, Convexity, and Beyond:
Applications of Minkowski Functionals
in Statistical Physics
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Abstract. The aim of this paper is to point out the importance of geometric function-
als in statistical physics. Integral geometry furnishes a suitable family of morphological
descriptors, known as Minkowski functionals, which are related to curvature integrals
and do not only characterize connectivity (topology) but also content and shape (ge-
ometry) of spatial patterns. Since many physical phenomena depend essentially on the
geometry of spatial structures, integral geometry may provide useful tools to study
physical systems, in particular, in combination with the Boolean model, well known in
stochastic geometry. This model generates random structures by overlapping ‘grains’
(spheres, sticks) each with arbitrary location and orientation. The integral geometric
approach to stochastic structures in physics is illustrated by applying morphological
measures to such diverse topics as complex fluids, porous media and pattern formation
in dissipative systems. It is not intended to cover these topics completely but to em-
phasize unsolved physical problems related to geometric features and to present ideas
and proposals for future work in possible collaboration with spatial statisticians and
statistical physicists.

1 Motivation: Complex Patterns in Statistical Physics

The spatial structure of systems becomes more and more important in statistical
physics. For instance, transport properties in porous media depend on the shape
and statistical distribution of the pores (see Figs. 1 and 2, [13,49], and the
paper by Hilfer in this volume). Also the interest in microemulsions and colloidal
suspensions rests primarily on the complex spatial structures of mesophases,
e.g., the bicontinuous phases on a mesoscopic scale of an emulsion of oil and
water stabilized by amphiphiles [17]. Consider, for instance, an ensemble of hard
colloidal particles (black points in Fig. 1) surrounded by a fluid wetting layer
(white). The interactions between these colloids are then given by the free energy
of the spatially complex structured fluid film which may cause eventually a phase
separation of the hard particles (see the paper by H. Löwen in this volume).

Dissipative structures in hydrodynamics, mesophases of liquid crystals, or
Turing patterns occurring in chemical reactions are other examples where physics
has to focus on the spatial patterns when trying to understand the physical
properties of these systems [25,40]. For instance, inhomogeneous concentrations
of molecules can occur spontaneously in chemical reactions when diffusion of
the species plays a role. The regular hexagonal cells, the stripe patterns and the
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c© Springer-Verlag Berlin Heidelberg 2000



112 Klaus R. Mecke

turbulent, time dependent structures shown in Fig. 4 are only a few examples of
the many different morphologies which may occur [25]. Rapid cooling of a fluid
from above the critical point deep into the two-phase coexistence of liquid and
vapor is probably the easiest way to generate inhomogeneous concentrations
of particles. The so-called spinodal decomposition of liquid and vapor exhibit
transient spatial structures so that size and shape of homogeneous phases are
changing in time [7,20].

The physical properties of such complex spatially fluctuating structures are
studied in statistical physics combined with many different disciplines and meth-
ods. For instance, pattern growth is a phenomenon of nonlinear dynamics, ran-
dom spatial structures are considered in stochastic geometry and integral ge-
ometry, whereas digital image analysis and mathematical morphology have been
developed mainly in biology, medical and material science. Therefore, the aim of
morphology in statistical physics is the application of mathematical models,
particularly models using overlapping grains of arbitrary size and shape (germ
grain models), to describe stochastic geometries which occur in physical systems
and to use the methods of spatial statistics and integral geometry to analyze
them [43,61]. The present paper attempts to present different applications of
Minkowski functionals grouped in four main sections, where at the end of each
subsection problems are mentioned which will be solved hopefully in the near
future.

First, Minkowski functionals Mν are introduced as additive functionals of
spatial patterns in Sect. 2. Minkowski functionals play a crucial role in inte-
gral geometry, a mathematical discipline aiming for a geometric description of
objects using integral quantities instead of differential expressions. In the three-
dimensional Euclidean space the family of Minkowski functionals consists of the
volume V = M0, the surface area S = 8M1 of the pattern, its integral mean
curvature H = 2π2M2, and integral of Gaussian curvature, i.e., the Euler char-
acteristic χ = 4π

3 M3. Additivity of the functionals is the relevant condition for
Hadwiger’s theorem which is the backbone of integral geometry. Therefore, not
only theorems and formula but also many physical applications depend on addi-
tivity. Three examples are given where such geometric measures are important
in physics: the energy of a biological membrane is determined by its curvature.
Phase coexistence of fluids in porous media depends on the structure function
of the substrate and therefore on the geometry of the pores. And the spectral
density of the Laplace operator, which is needed whenever a field in a domain is
oscillating, is given in geometric terms of the domain. All three examples reveal
a limited applicability of Minkowski functionals due to non-additive features
of the physical system considered. The hope of future work is that the additive
frame given by Minkowski functionals can be extended to additional non-additive
measures without loosing the appealing features of integral geometry.

In Sect. 3 a major problem in statistical physics is considered, namely the
definition of relevant order parameters of spatial structures. Since the amount
of spatial information is growing fast in physics and material science due to
scanning microscope techniques, digital image recording, and computer simula-
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Fig. 1. Porous media (left) can be described by overlapping grains (spheres, discs)
distributed in space. If the density of grains (white) decreases below a threshold, an
infinite cluster of connected pores (black area) is spanning through the whole system.
This cluster of pores enables the transport of fluids, for instance. The knowledge of
the dependence of the so-called percolation threshold on the shape and distribution
of the grains is essential for many applications. Inhomogeneous domains of thermo-
dynamic stable phases of complex fluids may also be described by overlapping grains
[9,35,38,39,43]. Such configurations resemble, for instance, the structure of microemul-
sions (figure in the middle) or an ensemble of hard colloidal particles (black points
in the figure on the right) surrounded by a fluid wetting layer (white). The interac-
tions between these colloids, as well as the free energy of the homogeneous oil phase
in a microemulsion are given by a bulk term (volume energy), a surface term (surface
tension), and curvature terms (bending energies) of the white region covered by the
overlapping shapes. Thus, the spatial structure of the phases, i.e., the morphology of
the white regions determines the configurational energy which determines itself the
spatial structure due to the Boltzmann factor in the partition function of a canonical
ensemble. A main feature of complex fluids is the occurrence of different length scales:
the clusters of the particles, i.e., the connected white regions are much larger than the
‘microscopic’ radius of the discs and the typical nearest neighbor distance within a
cluster.

tions, the scientist faces the problem of reducing the information to a limited
number of relevant quantities. So far powerful methods have been developed
in Fourier space, namely structure functions and more recently wavelet anal-
ysis. But techniques to analyze spatial information directly in real space may
be very useful for physicists in order to get more relevant spatial information
out of their data which may be complement to structure functions measured
by scattering techniques in Fourier space. Such techniques and measures have
been developed in spatial statistics and the interested reader is referred to the
papers by D. Stoyan and W. Nagel in this volume. To this world also belong
the additive Minkowski functionals which may offer robust morphological mea-
sures as powerful tools which is illustrated by three examples: they can be used
as order parameters characterizing pattern transitions in dissipative systems, as
dynamical quantities characterizing spinodal decomposition, or as generalized
molecular distribution functions characterizing the atomic structure of simple
fluids. The additivity of the Minkowski functionals seems to be the relevant
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property which causes the interesting features of robustness and universal form
of these morphological order parameters. But all three examples reveal a need
of theory in statistical physics: so far there exist no Landau theory as for usual
order parameters of phase transitions, no dynamic theory as for time dependent
two-point correlation functions, and no perturbation theory (integral equations)
as for structure functions of fluids. Since fractal patterns occur in many physical
systems we consider in a fourth subsection the scaling behavior of Minkowski
functionals for self-similar structures which generalizes naturally the concept of
fractal dimensions.

In Sect. 4 mathematical properties of Minkowski functionals are directly re-
lated to problems occurring in statistical physics: the kinematic formula helps
to calculate virial coefficients and to find accurate density functionals; the no-
tion of an ‘excluded volume of a grain’ helps to predict percolation thresholds;
and the completeness of additive functionals allows the formulation of a general
morphological model for complex fluids. All three examples exhibit promising
advances although severe drawbacks occur: third and higher virial coefficients
in a cluster expansion are not yet tractable in terms of Minkowski functionals;
the accuracy of threshold estimates gained by local Minkowski functionals need
to be improved; and the thermodynamics of complex fluids require analytic ex-
pressions for Minkowski functionals in the Boolean model beyond mean values
of additive measure.

The previous problem immediately leads to Sect. 5 where the Boolean model
is used to obtain explicit analytic expressions for thermal averages needed in
statistical physics: mean values (intensities) of Minkowski functionals for inho-
mogeneous distributions of grains which are necessary for an improved density
functional theory; mean values of correlated distributions of grains which are
necessary for the morphology of most spatial patterns in physics; second order
moments of the Minkowski functionals which are necessary for high tempera-
ture expansions and fluctuation theory in thermal systems. Since many models
in statistical physics are using lattices as a basis for spatial configurations, the
concepts of integral geometry on lattices are introduced in the last subsection.
Applying an adopted kinematic formula one can calculate not only exact mean
values and variances of Minkowski functionals but also distribution functions of
local configurations.

The aim of this paper is neither to introduce or review geometric functionals
and integral geometry (recent developments are presented by W. Weil in this
volume), nor to give a complete list of references. Also, it is not intended to
cover every interesting phenomenon related to the physical topics considered but
only to apply the concepts of integral geometry and the notion of morphological
measures such as Minkowski functionals to selected problems among them and
to focus on applications, problems and possible advances in the near future.
The synopsis at the end of this paper may help to give an overview of Integral
Geometry in Statistical Physics.

But let us first define the stage of most physical applications considered here:
typical spatial configurations in statistical physics show striking similarities to
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configurations of the so-called Boolean model (see also Fig. 2 in the paper by
D. Stoyan in this volume). This stochastic model generates spatial structures
by overlapping grains of arbitrary shape and size. For convenience, spheres or
discs of fixed radius are often used. Such configurations are shown in Fig. 1 of
the present paper where correlations between the grains are introduced by phys-
ically motivated interactions. But also the structures in Fig. 4 can be described
as configurations of an ‘overlapping grain model’, because they consist of a lat-
tice of squared pixels on a non-visible ‘microscopic’ scale. Since a number of
lattice models have been defined and extensive computer simulations have been
performed for percolation phenomena [60] and microemulsions [18,46] not many
continuum models have been studied. A model based on correlated overlapping
grains (germ grain model, see Fig. 1) seems to be a promising starting point. Also
for the morphological analysis of point patterns - experimentally observable as
holes in thin liquid films (see Fig. 6 and the paper by K. Jacobs et al. in this vol-
ume), as positions of particles in a fluid (Fig. 9), or as distribution of the galaxies
in the universe (see the paper by M. Kerscher in this volume) - the overlapping
grain model and the Minkowski functionals may be used. For instance, if one
decorate each point of the pattern, i.e., each particle in Fig. 9 and each galaxy
in the universe with a sphere of varying radius R one obtains a scale dependent
covering of space which can be morphologically characterized in the same way as
the configurations shown in Fig. 1 and 2 for each radius r. Computer algorithms
have been developed in two and three dimensions to calculate these r-dependent
Minkowski functions and in particular the Euler characteristic of such coverings
which can be compared with analytic results of stochastic models [9,10,36].

Integral geometry turns out to be an important mathematical method to de-
scribe complex patterns in space because of a complete family of morphological
measures, the so-called Minkowski functionals [21,52]. These measures are in-
creasingly used in digital picture analysis, in particular due to their stereological
properties [50,57,64]. A prominent member of this family is the Euler character-
istic which describes the connectivity of spatial structures. Thus, these measures
do not only describe size (volume) and geometry (curvatures) of domains such
as shown in Figs. 1, 2, and 4 but also the topology of the pattern. Besides the
definition of morphological measures integral geometry provide theorems, for-
mulae, and elegant calculus in order to derive exact results, in particular, for the
Boolean model [34], a standard model of stochastic geometry [61]. This will be
considered in detail in Sect. 5. Sections 2-4 focus solely on the measures them-self
and their occurrence in statistical physics.

2 Geometric Functionals: Curvatures in Physics

Let us first recall in this section some basic facts from integral geometry since the
methods are perhaps not widely known among physicists. We compile only some
pertinent facts in order to introduce the notations and refer to the literature
[21,52,54,64) and to the contribution by W. Weil in this volume for more details
and thorough derivations of the theorems and formulae.
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Geometric functionals, known as Minkowski functionals or intrinsic volumes
(quermassintegrale, curvature integrals) in integral geometry, may be introduced
as integrals of curvatures using differential geometry of smooth surfaces. Let A
be a compact domain in IRd with regular boundary ∂A ∈ C2 and d− 1 principal
radii of curvature Ri (i = 1, . . . d− 1). The functionals Wν(A), with ν ≥ 1, can
be defined by the surface integrals

Wν+1(A) =
1

(ν + 1)
(

d
ν+1

) ∫
∂A

Sν(
1
R1
, . . . ,

1
Rd−1

)dS (1)

where Sν denotes the ν-th elementary symmetric function and dS the (d-1)-
dimensional surface element. Especially in three dimensions one obtains

W1 =
1
3

∫
dS , W2 =

1
3

∫
HdS , W3 =

1
3

∫
GdS (2)

with the Gaussian

G =
1

R1R2
(3)

and the mean curvature

H =
1
2

(
1
R1

+
1
R2

)
. (4)

Although the Minkowski functionals are introduced as curvature integrals, they
are well-defined for polyhedra with singular edges [52]. Therefore, one can define
these functionals naturally for lattice configurations (Sect. 5.4). It is convenient
to normalize the functionals

Mν(A) =
ωd−ν

ωνωd
Wν(A) , ν = 0, . . . , d , (5)

using the volume ωd of a d-dimensional unit sphere ωd = πd/2/Γ (1 + d/2),
namely ω1 = 2, ω2 = π, and ω3 = 4π/3. In three dimensions the family
of Minkowski functionals consists of the volume V = M0, the surface area
S = 8M1 of the coverage, its integral mean curvature H = 2π2M2, and the
Euler characteristic χ = 4π

3 M3. In the mathematical literature the normaliza-
tion Vν(A) =

(
d
ν

)
Wd−ν(A)/ωd−ν is frequently used, for instance, by W. Weil in

this volume, where Vν are called the intrinsic volumes of A (also ‘quermassinte-
gral’ or ‘curvature integral’ are used).

Before the main theorems and formulae of integral geometry are used in Sect.
4, let me first give some interesting properties of Minkowski functionals and
examples of physical systems where they play a major role. The most important
property of Minkowski functionals is additivity, i.e., the functional of the union
A∪B of two domains A and B is the sum of the functional of the single domains
subtracted by the intersection

Mν(A ∪B) = Mν(A) + Mν(B)− Mν(A ∩B) . (6)
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Fig. 2. Parallel sets of non-convex spatial configurations [2]: (A) the parallel body
AR of distance R of Poisson distributed points is the Boolean model of overlapping
spheres of radius R; but the parallel body of facets (B) and edges (C) of a Voronoi
tessellation yields completely different spatial structures and Minkowski functionals
Mν(AR) as functions of R. The fraction of the covered volume is v = 0.25 in all
three configurations. Parallel surface can not only be used to characterize spatial non-
convex patterns such as point distributions (Sect. 3.3), foams, gels, fractals (Sect. 3.4),
or chemical patterns (Sect. 3.1), but also to define appropriate stochastic models for
porous media, network models for percolation, and fluid wetting layers near substrates
(Sect. 2.2).

This relation generalizes the common rule for the addition of the volume of two
domains to the case of a general morphological measure, i.e. the measure of the
double-counted intersection has to be subtracted.

A remarkable theorem is the ‘completeness’ of the Minkowski functionals
proven 1957 by H. Hadwiger [21]. This characterization theorem asserts that any
additive, motion-invariant and conditionally continuous functional M is a linear
combination of the d+ 1 Minkowski functionals Mν ,

M(A) =
d∑

ν=0

cνMν(A) , (7)

with real coefficients cν independent of A. Motion-invariance of the functional
means that the functional M does not dependent on the location and orientation
of the grain A. Since quite often the assumption of a homogeneous and isotropic
system is made in physics, motion-invariance is not a very restrictive constraint
on the functional. Nevertheless, in the case where external fields are applied
which are coupled to the orientation of the grains, motion invariance cannot
further be assumed and extensions are necessary (see Problem: Anisotropy in
Sect. 5).

The Minkowski functionalWν is homogeneous of order d−ν, i.e. for a dilated
domain λA one obtains

Wν(λA) = λd−νWν(A) . (8)

This scaling property will be used below to study fractals (Sect. 3.4) and domain
growth during phase separation (Sect. 3.2), for instance.
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An important consequence of the additivity and the characterization theo-
rem (7) is the possibility to calculate analytically certain integrals of Minkowski
functionals. For instance, the kinematic fundamental formula [6,52]∫

G

Mν(A ∩ gB)dg =
ν∑

µ=0

(
ν

µ

)
Mν−µ(B)Mµ(A) . (9)

describe the factorization of the Minkowski functionals of the intersection A ∩
B of two grains A and B if one integrates over the motions g = (r, Θ), i.e.
translations r and rotations Θ of B. The integration

∫
dg =

∫
dr× ∫

dΘ is the
direct product of the integrations over all translations and orientations. Similar
kinematic formula can be derived for oriented cuboids (see Eq. (86) in Sect.
5.2) and for configurations on lattices (Eq. (110), Sect. 5.4). Kinematic formulae
are extremely useful tools to calculate mean values of Minkowski functionals for
random distributions of grains (see Eqs. (61) and (74)).

In the case that B is a sphere Bε(x) of radius ε centered at x and A = K
is a convex grain K the kinematic formula (9) for ν = d reproduces Steiner’s
formula for convex sets

Vε(K) =
∫
IRd

χ(K ∩Bε(x))ddx =
d∑

ν=0

(
d

ν

)
Wν(K)εν . (10)

Interesting applications of Steiner’s formula (10) for the excluded volume of
a body concern an effective interaction potential for non-spherical molecules
(introduced in Sect. 4.1) and the estimation of percolation thresholds (Sect. 4.2).
Whereas in the Sects. 2 and 3 mainly the elementary properties of Minkowski
functionals given by Eqs. (6) - (8) are used, physical applications of the kinematic
formula are considered in the Sects. 4 and 5.

The finite sum for the parallel volume in Eq. (10) and the decomposition of
the integral in Eq. (9) into products of Minkowski functionals is a direct con-
sequence of the additivity relation (6). Additivity is the relevant condition in
Hadwiger’s theorem (7) which is the backbone of integral geometry. To summa-
rize this short introduction an early attempt is made to answer the question why
Minkowski functionals should be used in statistical physics:

(i) Curvatures are widespread in physics and integral geometry defines them
even on edges of polyhedra (Sect. 2).

(ii) The additivity and scaling relations qualify them as order parameters for
spatial structures (Sect. 3).

(iii) Statistical physics of fluids uses often the concept of parallel bodies which
can be expressed by Minkowski functionals (Sect. 4).

(iv) Thermal averages require integrals over the group of motions so that the
kinematic formula can be applied naturally (Sect. 5).
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2.1 Curvature Energy of Membranes

Integrals over curvatures of a surface occur in many applications in physics: For
instance, biological cells are bounded by membranes which consist of a bilayer of
amphiphilic lipid molecules. From a physical point of view one can neglect not
only attached proteins and other biological relevant details and consider solely
the membrane as a flexible two-dimensional sheet. Cells and membranes show a
remarkable variety of shapes which changes with temperature and the chemical
nature of the surrounding fluid. The knowledge of the energy which is necessary
to bend a membrane is essential for a physical study of such systems. Motivated
by the elastic energy of a thin sheet, Helfrich [23] proposed the energy of a
membrane

H =
∫

M

σdS +
∫
κ

2
(H −H0)2dS + 2πκ̄

∫
GdS =

3∑
ν=1

hνWν +
κ

2
Ĥ2 (11)

given in terms of the mean and Gaussian curvature integrated over the membrane
M. Here, H0 denotes a spontaneous mean curvature, σ the surface tension, and
κ, κ̄ bending rigidities determined by the molecular details of the membrane.
Except of the integral over the squared mean curvature

Ĥ2 :=
∫
H2dS , (12)

the energy (11) is additive and therefore given by the Minkowski functionalsWν

of the cell weighted by material constants hν . Although the Helfrich Hamilto-
nian (11) describes accurately the energy of membranes, one should notice that
the curvature energy of a simple liquid interface is more difficult, i.e., contains
additional ‘non-additive’ terms due to long range attrative interactions between
the molecules [44].

Problem: Non-additivity of the Squared Mean Curvature Ĥ2 In many
studies of microemulsion phases (Sect. 4.3) the Helfrich Hamiltonian (11) is
used for random configurations of interfaces [17,18,30]. Using configurations on
a lattice (Sect. 5.4) or a model of overlapping grains (Sect. 5.1) to generate such
random interfaces (membranes) one has difficulties to define the integral of the
squared mean curvatures due to singularities at the edges where two or three
grains meet (Sect. 5). Unfortunately, the squared mean curvature Ĥ2 is not an
additive functional, what causes several problems.

From a differential geometric point of view there is no relevant difference be-
tween the mean H and the squared mean curvature H2. The essential difference
occurs only within the context of integral geometry where one can define mean
curvatures (but not H2) even at singular edges by using Steiner’s formula (10) or
Crofton’s definition of Minkowski functionals [43,52]. Of course, it is possible to
define a mean curvature H̄(x) = dW2(K ∪K ′,x) locally at such an intersection
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point x ∈ ∂K ∩ ∂K ′ and to integrate the square of the local mean curvature
H̄(x) along the intersection line

Ĥ2 =
∫

∂K/K′

(H(x))2 dS +
∫

∂K′/K

(H(x))2 dS +
∫

∂K∩∂K′

(
H̄(x)

)2
dS . (13)

But the properties of this functional are not studied yet and it is definitely not
the only possible definition of Ĥ2 for surfaces with singular edges. Mean values
of Ĥ2 have been calculated for the germ grain model of overlapping spheres so
that at least thermal averages of the non-additive functional Ĥ2 can be used for
applications in physics [35].

An interesting feature of the squared mean curvature Ĥ2 is revealed by study-
ing thermal fluctuations of the membrane. Short-wavelength thermal undula-
tions, i.e., capillary waves of wavelengths smaller than a given scale ξ yields a
renormalization of the material constants hν , in particular, of the bending rigid-
ity κ. Thus, on a scale ξ one observes an effective scale ξ-dependent bending
energy H(ξ) obtained by replacing κ (hν , respectively) in the Helfrich Hamilto-
nian (11) with a renormalized rigidity κ(ξ) (hν(ξ)) to account for the reduction
of the bare rigidity κ caused by the short-wavelength undulations. The scale-
dependence of κ(ξ) is known explicitly only to leading order in kBT/κ < 1, and
reads [37,46]

κ(ξ) = κ− 3
4π
kBT ln

(
ξ

δ

)
, (14)

where the membrane thickness δ is used to provide a microscopic cutoff. The
length ξκ at which κ(ξ) has dropped to values of the order kBT is estimated from
κ(ξκ) = 0. The persistence length ξκ defines the basic structural length scale in
this approach. In the rigidity-dominated regime, ξ < ξκ, an isolated membrane is
likely to be locally flat; for ξ > ξκ, so that κ(ξ) is negligible compared with kBT ,
thermal fluctuations dominate over the rigidity and the membrane is crumpled.
Thus, for lengths beyond ξκ one can neglect the squared mean curvature Ĥ2 in
the Hamiltonian (11).

2.2 Capillary Condensation of Fluids in Porous Media

Another example where naturally integrals of curvature occur is the phase be-
havior of fluids in a porous medium. Foams, gels, and porous structures become
increasingly important for technological applications due to their special ma-
terial properties as spatially structured matter. The physical properties depend
crucially on the morphology, i.e., on shape and connectivity of the pores [13]. For
instance, knowledge of the dependence of percolation phenomena, in particular
of the percolation threshold on the distribution of pores is necessary for many
applications ranging from oil recovery to conductivities of modern materials (see
Sect. 4.2 below).

An important phenomenon is capillary condensation, i.e., the reduction of
the critical point and the shift of the equilibrium chemical potential and the
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equilibrium pressure towards lower values due to the interaction of the fluid with
a substrate. In other words, a liquid starts to boil at a higher temperature if it is
enclosed by a small box. This phenomenon is quite general and can be explained
straightforwardly using a simple geometric configuration. Consider, for instance,
two plates of distance D then the grand canonical potentials Ω of a homogeneous
vapor and liquid phase are given by Ωg = −pV +2Aσsg and Ωl = −p+V +2Aσsl,
respectively. Here, p is assumed to be the unaltered bulk vapor pressure whereas
p+ is the pressure of a metastable fluid phase stabilized by the substrate. A
is the surface area of the substrate and σ denotes the surface tension between
the solid substrate and the fluid phases. Thermodynamic equilibrium requires
Ωg = Ωl and one obtains the well-known Kelvin equation

p− p+ = 2
σsg − σsl

D
� 2

σlg
D

> 0 (15)

for the coexistence of a fluid and a vapor phase between two planar walls of dis-
tance D. Thus, if the distance of the walls becomes small the pressure difference
p − p+ forces a vapor to condense while it remains gaseous in the bulk outside
of the slit. But what happens in a real porous substrate?

Using a density functional theory (see the paper by H. Löwen in this volume
and also Sects. 5.1 and 4.1) for fluids in a porous medium one can calculate
the shift of the critical point and of the boiling temperature in terms of ge-
ometric measures of the porous substrate. The present analysis is based on a
simple version of density functional theory for one-component fluids which con-
sist of particles with a rotationally symmetric pair interaction potential φ(r).
Within this approach the interaction potential φ(r) = ws(r) + w(r) is split into
a short-ranged repulsive part ws(r) and a long-ranged attractive part w(r) [14].
The interaction between the fluid and the substrate is taken into account by a
potential VS(r). The grand canonical density functional reads

Ω [ρ(r)] =
∫
V

d3r [fh(ρ(r))− µρ(r) + ρ(r)VS(r)]

+
1
2

∫
V

d3r

∫
V

d3r′w(‖r− r′‖)ρ(r)ρ(r′) (16)

where V is the volume of the sample, ρ(r) the number density of the fluid
particles at r = (x, y, z), r = |r|, and fh(ρ) is the reference free energy of a
system determined by the short-ranged contribution to the interaction potential
ws(r). For these calculations we adopt the Carnahan-Starling expression fh(ρ) =
kBTρ

{
ln(ρλ3)− 1 + 4η−3η2

(1−η)2

}
, where λ is the thermal de Broglie wavelength and

η = π
6 ρr

3
0 the packing fraction (see [14] and the paper by H. Löwen in this

volume).
Within this density functional approach the equilibrium density ρ(eq)(r) of

the fluid inside the porous medium minimizes the functional Ω [ρ(r)] in Eq. (16)
which yields the grand canonical potential Ω = Ω

[
ρ(eq)(r)

]
. The equilibrium
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profile depends not only on the temperature T , the chemical potential µ, and
the substrate potential VS(r) but also on the position r inside the pores. Nev-
ertheless, one can show that the shift in the critical point and, accordingly, the
difference in the equilibrium pressures of the fluid bulk phases is given by the
simple expansion

(p− p+)V =
3∑

ν=1

hν [φ(r)]Wν +
κ

2

∫
H2dS + . . . (17)

with coefficients hν depending on the system parameters and the interaction
potential φ(x) of the fluid particles. For a slit of parallel flat walls of distance D
one obtains W2 = W3 = Ĥ2 = 0 and recovers immediately the result given by
Eq. (15). In other words, the relation (17) generalizes Kelvin’s equation, which
turns out to be the first term in a curvature expansion of the pressure difference
p−p+. The density functional approach gives also expressions for the coefficients
hν [φ(r)], i.e., for surface tensions σsg and bending rigidities in terms of the mi-
croscopic interaction potential φ(r). Assuming that the equilibrium fluid density
ρ(eq)(r) ≡ ρ is constant inside the pores one can derive an alternative expression
to Eq. (17) based on the structure function S(r) of the porous substrate K. One
finds, for instance, for the critical point shift

δTc =
∫
V

d3r
w(r)
w(0) e

nv (S(0)− S(r)) (18)

and for Poisson distributed grains S(r) = e−nv+nV (K∩Kr) (see the Boolean model
in Sect. 5). Expanding the structure function in powers of the distance r [62]

S(r) =
W0(K)
V

− 3r
4
W1(K)
V

− r3

32
W3(K)
V

+
r3

32V

∫
∂K

H2 dS + O(r5) . (19)

one recovers an expression in terms of Minkowski functionals Wν of the porous
structure K. Since the expansion (19) is only valid for sharp interfaces, the
contribution proportional to the mean curvature H vanishes and the bending
rigidities κ and κ̄ are identical, which is not the case for smooth density profiles
ρ(r) across the interface. Inserting (19) in Eq. (18) one recovers a curvature
expansion for the critical point shift δTcV analogous to the generalized Kelvin
equation (17) with explicitly given coefficients

h1[φ(r)] = π

∞∫
0

dr r3w(r) , h2[φ(r)] =
π

24

∞∫
0

dr r5w(r) . (20)

Of course, the assumption of a homogeneous density of the fluid inside the pores
is not valid near the critical point because the thickness of a fluid adsorption
layer at the substrate wall is determined by the correlation length ξ(T ) which
becomes large at Tc. Instead of the critical point shift δTc ∼ D−1 as implied by
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Eq. (18) for a fluid between walls of distance D, one obtains δTc ∼ D−2 if density
inhomogeneities of size ξ are taken into account. This might be done by applying
the concept of parallel surfaces as indicated below. Although the expression (18)
has to be improved it indicates a direction of future work, namely the predic-
tion of thermodynamic properties of materials when the morphology is known.
The structure function of a porous substrate, for instance, can be measured by
scattering experiments independently from a calorimetric determination of the
critical point.

Curvature expansions such as Eqs. (11), (17), and (18) are quite common in
physics and very useful for practical purposes. Integral geometry and Minkowski
functionals provide precisely the mathematical backbone and technical calculus
for physical applications of curvature measures. In Sect. (5), for instance, den-
sities of the geometric functionals Wν are given for the Boolean model, so that
explicit expressions for the phase behavior of fluids in porous media modeled by
overlapping grains can be derived.

The complicated pore structure of an interconnected three-dimensional net-
work of capillary channels of nonuniform sizes and shapes distinguishes a porous
medium from any other solid or planar substrate. The connection of the two
main features of fluids in porous media, namely morphology and interfacial ef-
fects such as surface energies and wettability, may help in future studies to
understand the influence of the random geometric structure on phase behavior
and transport properties, which are inherently determined by inhomogeneous
spatial structures on all length scales of the porous material.

Problem: Parallel Surfaces and Non-additivity of Effective Proper-
ties Starting from a microscopic density functional for inhomogeneous fluids in
porous media the dependence of thermodynamical quantities on the geometry
of the substrate has been determined and it was shown that the free energy,
pressure, or the critical point of a fluid can be written approximatively as an
additive functional of pore space. But so far wetting behavior of the fluid has
been neglected although one knows that close to the substrate a fluid layer may
form which influence the thermodynamic behavior. Consequently, one has to
take into account inhomogeneouities of the fluid density which essentially de-
pend on the distance to the substrate. Therefore, the integral geometric concept
of parallel sets (see Steiner’s theorem (10) and Sect. 3.1) may help to define an
inhomogeneous fluid density to clarify how physical phenomena such as capil-
lary condensation and two-phase flow depend on the wetting behavior of the
fluid. Additionally, parallel sets can be used to define effective network models
of porous structures in order to refine inversion percolation theories where well-
defined morphological quantities such as pore volume distributions, throat sizes,
and connectivities of pores are needed.

The parallel body Aε of a structure A is defined as the set of all points
with distances less than ε to A (see Fig. 2). Measuring the Minkowski function-
als Mν(Aε) one obtains detailed morphological information when ε is used as a
diagnostic parameter. Changing ε corresponds to dilation (ε > 0) and erosion
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Fig. 3. Minkowski functions Mν(ε) of the parallel body (distance ε) of four different
configurations: (A) Boolean model of overlapping oriented cubes (edge length L = 16)
and (B) of spheres of radius R = 8; (C) a Gaussian random field and (D) of a sandstone -
a real porous material. The three dimensional structures are digitized on a 1283 lattice
and lengths are given in units of the pixel size (for details see [2]). The Minkowski
functions Mν(ε) as functions of the volume V (ε) of the parallel body are completely
different for the four spatial structures and none of the models can reproduce the
functions for the sandstone.

(ε > 0) of the spatial structure. For instance, in Fig. 3 the Minkowski func-
tions Mν(ε) are shown for four different configurations: random overlapping but
oriented cubes of edge length L = 16, overlapping spheres of radius R = 8, a
Gaussian random field, and an image of a sandstone. Since experimental data
are always digitized, a lattice of 1283 pixels is used in order to digitize also the
configurations of the models [38]. These functions may be used to characterize
the spatial structure and to test the accuracy of model reconstructions of porous
media (see paper by R. Hilfer in this volume). First results indicate that none of
the models in Fig. 3 can reproduce the Minkowski functions of the sandstone [2].
Since not only the amplitudes but also the functional shape of the Minkowski
functions Mν(ε) depend on many parameters such as the size of the grains and
the porosity, a thorough analysis has to be done.

Another problem of applying Minkowski functionals is related to the mea-
surement of the permeability k = 106.6 (ΦmVp/S)

2.1 or the NMR-relaxation time
T1 = 103.08 (Vp/S)

0.9 in materials as function of porosity Φ and surface to volume
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ratio S/Vp of the pore space [56]. For a wide class of materials one finds for the
elasticity logE ≈ b(Vp − Vc) with constants b and Vc. There are no explanations
yet for the experimentally found relations which are obviously not additive func-
tions. Hopefully it is possible to re-express these material properties (or their
logarithms log k, log T1) by taking into account all of the additive Minkowski
functionals and to predict the conductivities and elasticity properties of mul-
tiple phases in porous materials more accurately. If it is possible, for instance,
to relate the Minkowski functions shown in Fig. 3 to the physical properties of
the sandstone, it would be sufficient for the prediction of experimental results
to measure the geometry of the porous sample.

2.3 Spectral Density of the Laplace Operator

The short distance expansion (19) of the structure functions S(r) corresponds
to an asymptotic expansion in Fourier space

S̃(q) =
S

V

2π
q4

+
π

V

1
q6

∫
∂K

dS
(
3H2 −K)+ O(q−8) . (21)

Often one assumes that structure functions or ‘propagators’ in field theory are
solutions of the Laplace equation

∆f(r) = γf(r) , r ∈ D (22)

for a function f(r) defined on a domain D. For instance, in quantum mechanics
the Laplace operator is used for the kinetic energy of a classical particle. In
condensed matter it describes so diverse physical phenomena as diffusion in
porous medium D, the oscillation of a membrane (D), electro-magnetic fields
and waves in cavities D, and even the scattering of particles.

In his seminal paper ‘Can one hear the shape of a drum?’ M. Kac asked if
it is possible to determine the shape of a membrane D knowing the frequencies,
i.e. the eigenvalues γn of the differential equation (22) with f(r) = 0 for r ∈ ∂D
[28]. He showed that the sum

Z :=
∑
n

etγn ∼ M0(D)
4πt

− M1(D)
4

√
π

t
+M2(D)

π

6
+ O(t) (23)

does indeed contain information on the shape of the membrane but only the
so-called Minkowski functionals Mν(D). In particular, for a two-dimensional
membrane they are the area F =M0 of the membrane, the boundary length U =
2πM1, and the Euler characteristic χ = πM2 as a measure of the connectivity of
D. Since the Laplace equation (22) is an adequate description of many physical
problems one may try to express physical quantities such as conductivities in
porous structure D in terms of Minkowski functionals (Sect. 2.2).
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Problem: Non-additivity of Edge Contributions The expansion (23) is
only valid for smooth boundaries ∂D. But models of overlapping grains which
are used widely in physics (see Fig. 1 and the Boolean model in Sect. 5) gen-
erate singular edges and corners where the boundaries of two or three grains,
respectively, intersect. Additional terms in the expansion have then to be taken
into account when overlapping grain models with singular edges are used or
even lattice configurations as introduced in Sect. 5.4. These terms cannot be
expressed in terms of Minkowski functionals and a careful geometric analysis is
required. Similar problems occur for the asymptotic expansion of structure func-
tions which are introduced in Sect. 2.2, because the expression (19) does not take
into account the contribution due to singular edges of the grain boundaries in
germ-grain models.

Fig. 4. Inhomogeneous density profiles of iodide occur spontaneously in a chemical re-
action (CIMA) (dark regions correspond to high concentrations, [38]). One can observe
in reaction-diffusions systems not only regular Turing patterns such as hexagonal cells
(left) and parallel stripes (middle) but also irregular, turbulent structures (right pat-
tern). The reversible transitions between these patterns can be quantitatively described
by morphological order parameters which reduce the details of the spatial structures to
relevant quantities without neglecting essential differences.

3 Morphology: Characterization of Spatial Structures

Spatial statistics, in particular, morphology and stereology have a wide field
of applications in medicine, epidomology, and biology because of the enormous
amount of spatial information in patterns occurring in biological systems. But
the amount of spatial information is growing fast also in physics and material
science. Scanning microscopy techniques, digital image recording, and computer
simulations provide the scientist with spatial information which are usually not
analyzed in a systematic way beyond standard methods such as correlation func-
tions and Fourier transformations. The techniques to analyze spatial information
developed in spatial statistics may be very useful for physicists in order to get
more out of their data.

Most of the patterns considered in statistical physics contain an enormous
amount of spatial information. Therefore, the physics of such spatial systems
faces the problem of reducing the details to a finite number of relevant quan-
tities, so-called order parameters. Minkowski functionals seems to be promising
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measures to work as such morphological order parameters. They can, for instance,
distinguish quantitatively the turbulent and regular dissipative structures (Tur-
ing patterns) in chemical reaction-diffusion systems shown in Fig. 4 (Sect. 3.1).
The functional form of the morphological order parameter change the symme-
try if the pattern type is changed, so that pattern transitions can be classified
analogously to thermodynamic phase transitions.

Another example is the morphological analysis of holes in thin polymer films
which allow insight into the dynamical mechanisms which leads to the rupture
of the film and finally to the visible stochastic point process (see Sect. 3.2 and
Fig. 6). Also the different dynamical mechanisms of the phase separation during
spinodal decomposition can be determined by measuring the time dependent
morphological measures of the homogeneous domains (Sect. 3.2). An ambitious
aim of the time dependent study is the formulation of dynamic equations for the
morphological measures as relevant order parameters. Spinodal decomposition
kinetics and the rupture of thin films are just first examples out of a huge number
of dynamical pattern formation.

Since the Minkowski functionals in these cases depend on parameters such
as a density threshold ρ (Sect. 3.1), the time t (Sect. 3.2), the radius of a sphere
r (Sect. 3.3), or the scaling length L (Sect. 3.4) we use the notion of Minkowski
functions in contrast to a functional which assigns a pure number to a spatial
configuration. Nevertheless, the term functional is used whenever the mathe-
matical properties of these measures are important and not the dependence on
a parameter.

3.1 Minkowski Functions as Order Parameters

In 1952 A. Turing predicted the existence of inhomogeneous spatial patterns in
chemical reactions when diffusion of the species plays a role [25]. These patterns
consist of regular and stationary spatially structured concentration profiles of
the reactants. He showed that the homogeneous solution of reaction-diffusion
equations may become unstable and hexagonal or stripe patterns emerge. It was
only in 1991 when a group in Bordeaux followed by another in Austin could
report the first experimental realization of such Turing patterns. Moreover, also
a turbulent, irregular, and time-dependent pattern was found which is shown in
Fig. 4(c). A pattern converts reversible into another depending on system param-
eters, such as the temperature or the concentrations of the species. For example,
defects occur in the hexagonal structure when the parameters are changed in
such a way that the turbulent pattern becomes stable. Because of the prolifera-
tion of defects when the system is turning into the turbulent pattern, it is hard
to tell whether the intermediate state of the pattern is hexagonal or turbulent
already. The typical length scale or the correlation function do not change dras-
tically. Naturally, the question arises how one can describe irregular patterns
in order to characterize the patterns in a unique way and, in particular, the
transitions between them. There is a need to find measures which are capable to
describe the morphology and topology of the patterns and which are sensitive
to the pattern transitions.
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Fig. 5. The Euler characteristic per boundary length Pχ(ρ) = χ/U (averaged local
curvature) is shown as function of the black/white threshold parameter ρ for the same
patterns as in Fig. 4. The thin full lines are best fits to the experimental data using
cubic polynomials. Pχ(ρ) is negative (positive) if many disconnected black (white)
components dominate the image. The asymmetry of the function for the hexagonal
pattern (triangles) is due to the asymmetry of white dots isolated in a black connected
structure shown in Fig. 4 whereas the stripe (circles) and turbulent patterns (stars)
are symmetric in black and white. The polynomials Pχ(ρ) on the right indicates a
transition from hexagonal point patterns to turbulent structures as a function of the
concentration [H2SO4]B0 (mM) at constant [ClO−

2 ]
A
0 = 20 mM. The inset shows the

value Pχ(ρ = 0) which can be used as an order parameter for the symmetry breaking of
the polynomial. A vanishing Euler characteristic indicates a highly connected structure
with equal amount of black and white components. The transition at a concentration
of 17mM seems to be continuous with decreasing cubic and quadratic terms in the
polynomial for hexagonal patterns which remain zero for turbulent patterns.

In order to study the spatial concentration profile of iodide in greater detail
the concept of level contours can be introduced. The grey value at each pixel is
reset to either white or black depending on whether the original value is larger
or lower than a threshold value ρ, respectively. The qualitative features of the
images varies drastically when the threshold parameter ρ is changed. For high
thresholds ρ the regions of maximum concentration are studied, i.e. one obtains
information concerning the shape of the peaks in the profile. For low thresholds
the deep valleys of the concentration profile are examined and for intermediate ρ
one obtains more or less the same visual impression as from the gray-scale pat-
tern. Thus, the spatial information depends strongly on the threshold. For each
threshold ρ one can calculate the area F of the white structure, the total length
U of the boundaries, and the integral of the curvature along the boundaries, i.e.
the Euler characteristic χ as functions of ρ [38]. Surprisingly, it turns out that the
morphological quantities F (ρ), U(ρ), and χ(ρ) are given by cubic polynomials.
That is, these functionals F, U, and χ may be described by a few parameters
for different patterns since the functional form is universal in character.

The Euler characteristic per boundary length Pχ(ρ) is shown in Fig. 5 for
a hexagonal pattern (triangles), a lamellar stripe structure (circles), and a tur-
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bulent state (stars). The lines are the best fits with a cubic polynomial to the
data (symbols), which can hardly be distinguished from the experimental data.
The accuracy is remarkable and could not be achieved with polynomials of lower
orders nor be improved by using higher orders. Since the functional form of the
measures F , U , and χ is always a cubic polynomial, the dependence of the mor-
phology on the experimental conditions, i.e. on control parameters such as the
concentration of malonic acid is reflected only in a finite number of coefficients.
The most striking result of this integral geometric method for pattern analysis
is the dependence of the coefficients of the polynomials on control parameters
shown in the inset of Fig. 5. One can observe a symmetry breaking of the polyno-
mials when the type of the pattern changes. Therefore, it is possible to describe
the pattern transitions quantitatively using morphological measures and it may
be possible to classify them in a way similar to thermodynamic phase transitions
(for details see [38,40]). Concluding we emphasize that Minkowski functions, in
particular the Euler characteristic, describe quantitatively irregular spatial pat-
terns and their transitions in a morphological way and can be used as order
parameters.

Problem: Parallel Surfaces of Non-convex Patterns Related to the two
main results one may focus on two questions: Why are the morphological mea-
sures F (ρ), U(ρ), and χ(ρ) polynomials in the threshold ρ? In many models
for statistical geometries such as the Boolean model or Gaussian random fields,
similar polynomial behaviors of Minkowski functionals do occur (Sect. 5). But
what is an adequate statistical model for pattern formation in reaction-diffusion
system, i.e., what is the connection of the morphological measures to the dynam-
ical equations in such systems? The second problem is related to the observed
symmetry breaking in the mean curvature, i.e., in the Euler characteristic of the
patterns? Is it possible to formulate a mesoscopic theory of pattern-transitions
analogous to the Landau theory for thermodynamic phase transitions? Is it pos-
sible to define Minkowski functions as order parameters in an effective theory.

The universal form of the morphological order parameter, i.e., the cubic poly-
nomial, seems to be related to the additivity of the Minkowski functionals. The fi-
nite sum in the expression (10) for the parallel volume of konvex grains (Steiner’s
formula) and the decomposition of the kinematic integral (9) into products of
Minkowski functionals is a direct consequence of the additivity relation (6). In
Sect. 5 it turns out that for the Boolean model additive functionals are essentially
polynomials where the coefficients depend on shape, orientation and correlations
of the grains. Thus, the physical and morphological properties of configurations
enter only into a finite number of relevant quantitites.

A fundamental problem of characterizing irregular non-convex patterns may
be addressed when looking at Figs. 4 and 7 where the main feature is obviously
the complex shape of intertwined black and white regions. For simplicity, one
may consider first a single convex shape K and calculate the d-dimensional vol-
ume V (ε) = V (Kε) of its parallel body Kε. Using Steiner’s formula (10) one
knows how this function looks like: it is a polynomial in ε where the coefficients
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are given by the Minkowski functionals Mν(K) of the grain K. Thus, if one
knows the Minkowski functionals Mν of a convex structure, one knows the ‘vol-
ume function’ V (ε) and vice versa: measuring the parallel volume of a convex
shape one knows its Minkowski functionals. Obviously, that is not the case for
irregular, non-convex shapes A as shown in Figs. 1, 2 and 4, because the volume
function V (ε) = V (Aε) contains more information about the spatial structure
than just the Minkowski functionals Mν(A) (Fig. 3). For instance, the paral-
lel body Aε includes all points of distance less than ε to A which depends on
‘non-local’ properties of A such as narrow throats or bottle necks where distant
parts of A come close together. Thus, the parallel surface ∂Aε contains spatial
information about the embedding of the surface ∂A in space in addition to the
Minkowski functionals Mν(A) of the grain A itself (analogous to a generalized
contact distribution function). In Fig. 3, for instance, the Minkowksi functions
Mν(ε) = Mν(Aε) are shown for three stochastic models and for a sandstone.
The differences in these geoemtric measures are remarkeable since the porosity
V (A) is the same for all configurations. Thus, parallel surfaces may be used
to describe the morphology of irregular, non-convex patterns going beyond the
additive Minkowski functionals. Measuring the parallel volume or, in general,
the Minkowski functions of a non-convex shape one may characterize the spatial
structure and be able to extended Steiner’s formula to non-convex shapes. But
nothing is gained without knowledge of the functional form of these functions
for relevant configurational shapes. If it is possible to find a suitable ‘basis set’
of Minkowski functions for special non-convex structures (e.g. periodic minimal
surfaces or the models shown in Fig. 2) one may decompose the Minkowski func-
tions of an arbitrary spatial structure in terms of the basic structures. Of course,
the linear superposition of modes like a Fourier analysis of periodic functions is
not reasonable and feasible for Minkowski functions. But one might find at least
signatures of the morphology of a spatial structure in the functional form of its
Minkowski functions. A polynomial, for instance, would be a hint for a convex
shape.

The number of possible applications of such a morphological analysis us-
ing parallel sets and Minkowski functions would be enormous. For instance,
mesophases in systems of block-polymers can be described by periodic minimal
surfaces. But in general one does not observe in an experiment a pure regular
structure but a mixture of many different phases. Therefore, experimentalists
face the problem of characterizing irregular mixtures of phases and of quanti-
fying the content of a specific periodic minimal surface in a measured spatial
structure. The knowledge of Minkowski functions is also important if one wants
to calculate volume integrals

∫
dxF (u(x)) of functions F (u) which depends only

on the normal distance u to a non-convex surface. For instance, the density of
a fluid in a porous medium is mainly a function of distance to the substrate
wall and one needs such integrals over the pore volume for the description of
transport and thermodynamic properties of the fluid (Sect. 2.2). In Sect. (3.3)
parallel bodies are used to define Minkowski functions of point patterns which
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can then be used as alternative method to correlation functions to characterize
the stochastic properties of point processes.

Fig. 6. Growing holes (white) in a thin (106 nm) polystyrene film on OTS-silizium
(T = 130oC) leads to a complex net-like structure of drops (dark; see the paper by
K. Jacobs et al. in this volume). A morphological analysis reveals that the locations
of the holes (white dots in the left figure) are distributed independently without any
correlations and that the dynamics of the morphology does not change during the
growth even if the holes are touching and merging (see Fig. 8).

3.2 Minkowski Functions as Dynamical Quantities

The rupture of a thin fluid film on a substrate, such as a water film on a freshly
cleaned window, proceeds by the formation of holes whose radius grows in time
until they finally merge which leads to a drying of the substrate (see the paper
by K. Jacobs et al. in this volume and [24,27]. An example of such growing and
finally merging circular holes in a thin polymer film is shown in Fig. 6. The
study of this dynamical behavior by measuring the radius of the holes is limited
since finally the holes coalesce. But measuring the Minkowski functionals of the
undisturbed film yields the temporal behavior of the morphology of the holes
which can now be recorded from the very beginning to the final state of an
almost dry substrate. The time dependent Minkowski functions are shown in
Fig. 8 and compared with a theoretical model (solid line) where one assumes
that the centers of the holes follow a Poisson process (see D. Stoyan in this
volume), that they remain circular, and that the only time dependence can be
described by the radius R(t). The latter is well studied for single holes yielding
R(t) ∼ t in good agreement with the measured Minkowski functions shown in
Fig. 8. The dynamical equations for the Minkowski functions of growing holes in
thin liquid films turn out to be quite simple. Because the holes remain spherical
discs even when they merge and because the dynamics does not change after
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merging the dependence of the functionals on the size, i.e. on the radius R of
the holes remains unaltered and the dynamics of R(t) is known already from the
growth of a single hole. But the situation is much more complicated in other
physical systems such as spinodal decomposition of simple fluids.

Fig. 7. Spinodal decomposition: a homogeneous fluid phase decomposes spontaneously
into coexisting vapor (white) and liquid (dark) phases if the system is cooled rapidly
below the boiling point. The characteristic length scale L of the homogeneous domains
is growing with time t according a power law L ∼ tα (see Fig. 8). But does the
morphology scale with this length L or does the shape of the domains change with time?
Is it possible to formulate dynamic equations for morphological measures analogous to
the dynamics of structure functions.

Phase separation kinetics is probably the most common way of producing
irregular spatial patterns on a mesoscopic scale [7,20]. A fluid system above the
critical temperature is usually homogeneous. But after a sudden quench below
the critical point into the two-phase coexistence region the fluid separates into
the coexisting liquid and vapor phase. A typical example of patterns that emerge
during spinodal decomposition in a two-dimensional liquid system is shown in
Fig. 7. In order to describe the morphology of the homogeneous phases [40,41],
in particular the scaling behavior, Minkowski functions provide means to define
the characteristic length scale L(t) of the homogeneous domains, to study the
time evolution of the morphology, and to define the cross-over from the early
stage decomposition (figure on the left) to the late stage domain growth (figure
on the right). For instance, the magnitudes of the morphological measures U(t)
and χ(t) shown in Fig. 8 increase during the early stage due to the formation
of homogeneous domains, i.e. of sharp boundaries separating the phases. After
domains have been formed, the boundary length U(t) as well as the connectivity
χ(t) decrease due to the growth of the domains. Thus, their maximum values Ū
and χ̄ mark a transition time t̄, i.e. the end of the phase decomposition and the
beginning of domain growth. The details of a morphological study of spinodal
decomposition can be found in [59]. In Fig. 8, for instance, the time dependence
of U−1(t) and χ−1/2(t), i.e., of the scaling length L(t) (see Eq. (8)) is shown
as function of time confirming the scaling relation L(t) ∼ tα with a scaling
exponent α depending on the viscosity τ . One can use the scaling relation (8)
of the Minkowski functionals to test the scaling behavior of the morphology
during spinodal decomposition of fluid phases. It turns out that the morphology
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indeed does not scale in certain circumstances, for instance, at early times due
to shape relaxation of the domains or even at late times in binary fluids where
the symmetry of the fluid phases causes a breakdown of scale invariance [59,63].
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Fig. 8. (a) Time evolution of the morphological measures Mν of holes in thin liquid
polymer films (see Fig. 6). The solid lines are given by the dynamical evolution of
the radius R(t) ∼ t. (b) Time evolution of the morphological measures F , U , and χ
during spinodal decomposition of a fluid at the mean density ρ = 3 and the viscosity
τ = 0.6 (see Fig. 7, [41]). Two different regimes of the time evolution show up in the
functional form of the Minkowski functions: for early times one observes an increase
of the measures due to the formation of homogeneous domains whereas in the late
stage the measures decrease due to domain growth. (c) The boundary length w1/U(t)
(dashed line), and the connectivity w2/χ(t)−1/2 (thick solid line) exhibit the scaling
relation (8) with L ∼ tα and the exponents α = 2/3 (τ = 0.53), α = 1/2 (τ = 0.6),
and α = 1/3 (τ = 1.5) indicated by thin solid lines. The coefficients wi are chosen to
separate the curves.

Problem: Dynamical Equations for Minkowski Functions The linear
dependence R(t) = v · t on time t of the radius R of a hole in a fluid film (see
Fig. 6) can easily explained by the dynamical equation

∂F (t)
∂t

= vU(t) (24)

i.e., by the assumption that the rate of increase in the area F is strictly pro-
portional to the perimeter U of the merging holes. Of course, it remains to
be proven that the underlying microscopic dynamics can indeed be described by
this macroscopic rule, but the important point is that Equation (24) is expressed
solely in terms of Minkowski functionals.

For the spinodal decomposition dynamics the physics is much more com-
plicated and requires the knowledge of the time dependent density correlation
functions. Dynamical equations for such structure functions have been derived
and tested experimentally in detail [7,20]. But is it possible to formulate dy-
namical equations for the Minkowski functionals of the homogeneous domains
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during spinodal decomposition analogous to the simple example (24) describing
the growth of holes?

In the late stage the time dependence of the Minkowski functionals is given by
a single scaling function L(t) and by the scaling relation (8). But the details of the
morphology in the beginning of the time evolution cannot be described by L(t)
and should be explained by dynamical equations for the Minkowski functions
Mν(t). Maybe differences between a nucleation scenario of phase separation and
spinodal decomposition kinetics can be found even in the late stage by studying
the morphology of the homogeneous domains.

3.3 Minkowski Functions versus Structure Functions

Figure 9 shows three snapshots of the spatial position of 500 particles projected
onto a two dimensional plane. Depending on temperature T or density ρ the in-
teraction between the particles yields quite different spatial structures. Whereas
at low densities the particles are so distant that they merely influence the lo-
cations of each other yielding a vapor of particles, at high density the mutual
repulsion leads to a regular order of the positions, i.e., to a crystalline phase.
If the interaction is attractive a middle phase at intermediate densities can be
stable resembling the properties of a liquid. Such phase transitions in Gibbsian
ensembles are well studied and the papers by H.-O. Georgii and H. Löwen in
this volume present analytic and numerical results. The difference in the position
patterns of the vapor and the solid phase is obvious, but a thorough analysis is
required in order to distinguish the vapor and liquid structures.

Fig. 9. Three-dimensional positions of 500 atoms in a Lennard-Jones fluid at different
densities ρ = 0.05 (vapor), ρ = 0.7 (liquid), ρ = 1.0 (solid) are projected on a two-
dimensional plane. Whereas the solid phase can clearly be distinguished from the fluid
phases, a thorough morphological analysis is necessary in order to find differences
between the vapor and the fluid phase. If the two-point structure function is essentially
similar (Fig. 11) Minkowski functionals may help.

A very important method of point process statistics, i.e. statistical structure
analysis of point patterns, are structure functions (point-point correlation func-
tions) or, in general, second order characteristics. But in many experiments the
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number of observable points is too small in order to draw conclusions about the
distribution of the points because of large variability. For instance, the num-
ber of galaxies for which three-dimensional distances are measured are yet a
few thousand and in many catalogue even only a few hundred. The situation is
similar for the observable number of holes in thin films (Fig. 6) or the number
of particles in simulations of fluids in confined geometries (Fig. 9). Therefore,
spatial statistics (see D. Stoyan in this volume and [61]) provides alternative
methods and tools such as the nearest-neighbor distance distribution function
D(r) and the spherical contact distribution function Hs(r) (or void probability).
In this context also morphological measures such as the Minkowski functionals
are helpful.
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Fig. 10. (a) Minkowski functions mν(r) = Wν(A)/Wν(Br)/ρ (ν = 1, 2, 3) and m0 =
1−Wν(A) in the vapor phase (ρ = 0.01, see Fig. 9), where l denotes the mean distance
of the particles and A = ∪iBr(xi) the union of spheres of radius r centered at the
position of the particles. The structure of the particle distribution measured in terms
of these morphological functions (circles) is well resembled by a Poisson distribution
of points (solid lines). In contrast to structure functions (S(r) ≈ 1 in the vapor phase)
the measures mν(r) also include higher correlations. Thus, they provide additional
information about the statistical distribution of the particles beyond the second order
moments. (b) Minkowski functions mν(r) in the solid phase (circles, ρ = 1.1) are close
to the morphological measures of a perfect fcc structure (solid lines). The differences,
in particular, for m2 and m3 are due to thermal fluctuations in an ensemble of 500
particles.

In order to apply the Minkowski functionals to point processes in IRd one may
decorate each point at x with a d-dimensional sphere Br(x) of radius r centered
at x. The scale-dependent morphological features of the coverage Ar = ∪iBr(xi),
i.e. of the parallel body Ar of the point pattern A = ∪ixi can then be explored by
varying the radius of the spheres. Depending on the size of the sphere the pattern
Ar exhibit quite different topological and geometric properties. For instance, the
spheres may be disconnected (isolated) for small radius, whereas for large ra-
dius the grains overlap yielding a connected structure. The morphology of the
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emerging pattern can be characterized by the Minkowski functionals, i.e., by the
covered volume W0 (or area, respectively), the surface area 3W1 (or boundary
length), the integral mean curvature 3W2, and the Euler characteristic W3/ω3,
i.e., connectivity of the penetrating grains as functions of the radius r. Figure 10
shows these Minkowski functionsMν(r) =Mν(∪iBr(xi)) for the vapor and solid
configurations given in Fig. 9 (Note thatMν(r) is closely related to the spherical
contact distribution function). Obviously, the surface area and curvatures van-
ishes for large radii whereas the normalized covered volume approaches unity.
In both phases one finds radii of the spheres where the Euler characteristic, for
instance, is negative indicating a highly connected bicontinuous pattern. But
the structure is quantitatively much more pronounced in the solid phase than in
the vapor indicating a regular distribution of the particles. The morphology of
the particle distribution measured in terms of these Minkowski functions is well
resembled by a fcc structure in the solid phase and by a Poisson point process in
the vapor phase (solid lines) which can both be calculated explicitly (see Sect.
5).

The Minkowski functionals are additive measures so that they can be mea-
sured for a given coverage effectively by summing up their local contributions.
Moreover, the functionals are numerically robust against short-scale spatial ir-
regularities in the coverage, which may arise due to the variation of the disc
radius. A further advantage is that the computation does not rely on statistical
assumptions concerning the point process and that edge corrections are easy.

Finally, these morphological measures contain implicitly information about
higher order moments (n-point correlation functions) which enables one to draw
conclusions about the statistical distribution of point patterns which are not
accessible by two-point structure functions. For instance, the vapor and liquid
phase shown in Fig. 9 show almost no difference in the structure function while
the Minkowski functions reveal significant differences hidden in the higher corre-
lations of the point distribution. A further disadvantage of structure functions is
the lack of almost any information about the geometric shape (morphology) of a
point pattern. The occurrence of one-dimensional filaments or two-dimensional
sheets of points as obviously relevant geometric structures seen in the distri-
bution of galaxies, for instance, is difficult to be revealed by the knowledge of
the correlation functions (see the statistical analysis of large scale structures
in the universe by M. Kerscher in this volume). It is even possible to construct
completely different point distributions which nevertheless exhibit the same two-
point structure function [3]. This example demonstrates that alternative statis-
tical methods may be important in order to gain relevant spatial information in
physical systems and that morphological measures may serve as a complemen-
tary method of statistical structure analysis in physics.

Morphological measures are important tools particularly for the compari-
son of experiment and theory. They reveal not only relevant difference between
simulations of non-linear dynamical equations and experimental data of chem-
ical reaction-diffusion systems (Sect. 3.1, [38]). Also the measures of the hole
distribution in thin films are not consistent with the concept of spinodal decom-
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Fig. 11. Structure function S(r) and Minkowski functions mν(r) =
Mν(∪Ni=1Br(xi))/(NMν(Br) for three different configurations of the Lennard-
Jones fluid at the critical density ρc = 0.01 and temperature Tc = 1.0 (Fig. 9). Higher
order correlations are visible in the fluctuations of the morphological measures which
may be relevant for the understanding of critical behavior of fluids. The radius r is
normalized by the mean distance l of the particles.

position but with a nucleation scenario (see Sect. 3.2 and K. Jacobs et al. in
this volume). Cosmological models of the early universe can be discriminated
because of the observed morphology of the present galaxy distribution (see M.
Kerscher in this volume, [36]). These examples demonstrate the importance of
spatial information and the reduction to relevant measures if one studies spatial
structures of physical systems.

Finally, let us discuss the fluid structures shown in Fig. 9. Whereas the solid
and vapor phases are well understood (see Fig. 10) the statistical physics of
the fluid phase is still a challenging problem. In particular, the existence of a
critical point where the difference of a vapor and liquid phase vanishes is a
fascinating phenomenon. Figure 11 shows the structure function S(r) and the
Minkowski functions mν(r) = Mν(∪N

i=1Br(xi))/(NMν(Br) for three different
configurations of a Lennard-Jones fluid at the critical density ρc = 0.01 and
temperature Tc = 1.0. Because of large scattering of the data one can observe no
differences in the structure function S(r) in contrast to the Minkowski functions
which are statistically robust due to the additivity relation (6). The origin of
the visible differences between the configurations at the critical point is yet not
understood and requires a detailed study. Obviously, higher order correlations
are visible which may be important to understand the critical behavior of a
fluid. Because of the self-averaging of the Minkowski functionals even in small
samples, structure differences of single configurations can be studied near the
critical point where such spatial fluctuations become large.

Problem: Minkowski Functions of Fluid Phases and Critical Points In
contrast to the solid and the vapor phase where the Minkowski functions can be
calculated analytically (see Fig. 10), no expressions are known for the Minkowski
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functions in the fluid phase. Structure functions are well studied using cluster
expansions, perturbation theory, and integral equations such as Ornstein-Zernike
equation with a closure approximation (HNC or Percus-Yevick for hard spheres)
for the direct correlation function [22]. Nothing similar is developed for geometric
measures, in particular, for Minkowski functions. A statistical theory for such
measures should be able to clarify the origin of the large fluctuations of the
morphology of configurations near the critical point which are visible in Fig. 11.
A first step is made by the analytic expressions for the intensities of Minkowski
measures for correlated point processes which will be derived in Sect. 5.2.

3.4 Minkowski Functions of Fractals: Scaling

The Minkowski functionals Mν(A) of a spatial configuration A are ‘dimensional’
measures which scale according to Eq. (8), i.e., they depend on the length scale L
of structures in the pattern A. For instance, spatial domains of homogeneous fluid
phases evolving during spinodal decomposition (see Fig. 7) exhibit an enormous
amount of information which is normally reduced to a single time-dependent
characteristic length L(t) of a typical homogeneous domain. If the inhomoge-
neous pattern consists of homogeneous domains A with sharp interfaces the
domain growth is due to a rearrangement the domains without changing the
area F of the fluid phase. Because the geometric measures Wν(A) are homoge-
neous functions of order d − ν (see (8)) one can assume for their densities the
scaling behavior

f ∼ 1 , u ∼ L−1 , χ ∼ L−2 (25)

with a scaling length L. This scaling is indeed confirmed by the time dependence
shown in Fig. 8. One can test the scaling assumption further by changing system
parameters such as surface tension and viscosity which should not influence the
ratio U2/χ, for instance.

But in the last 20 years a large variety of spatial structures has been detected
in nature which exhibit a quite different scaling behavior of the volume density
than the one given by Eq. (25). It is well known that fractals [19,32,33] can
be characterized by a non-integer dimension which describes the increase of the
‘content’ of the spatial structures with the size of an observation window. Usually
under ‘content’ the d-dimensional volume of the fractal is meant. But integral
geometry provides us with a complete family of so-called ‘intrinsic volumes’ or
Minkowski functionals in d-dimensional space which can be used to define a
complete family of fractal dimensions based on the scaling property (8) of the
Minkowski functionals.

Three different fractals generated as percolating clusters on a lattice Λ are
shown in Fig. 13 for three different lattice models. Instead of occupying each
lattice site of Λ independently one can introduce correlations by occupying the
neighbored sites on a rectangular of edge lengths λ1 and λ2 simultaneously, in
particular, of a square λ1 = λ2 or a stick of length λ1 and λ2 = 1. Examples
of such constitutional shapes are shown in Fig. 12. It is necessary to introduce
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Fig. 12. A deterministic fractal and the constitutional grains of the lattice percola-
tion models which are used to generate the random fractals shown in Fig. 13. In two
dimensions two types are considered in order to study the dependence of percolation
thresholds (Sect. 4.2) and of the fractal scaling behavior (Sect. 3.4) on shape and ori-
entation: squares K(2) and sticks S(2) of edge length λ. On a three-dimensional lattice
three shapes are possible: cubes K(3) (isotropic), plaquettes P (3) (oblate), and sticks
S(3) (prolate) of size λ.

an upper cut-off L for structures by imposing periodic boundary conditions,
i.e. the spatial structure within a box Ω of edge length L is repeated in all
space directions. Thus, each lattice configurations A is periodic and scaling of
geometric measures of a fractal is expected only for lengths smaller than L. One
finds that the number of occupied sites, i.e., the area f of the black structures
shown in Fig. 13 scales according to

f(L) ∼ Ldf−2 (26)

with the fractal dimension df = 91/48 in two dimensions instead of d = 2 for
the scaling of homogeneous domains given by Eq. (25). The fractal dimension
is universal and does not depend on the details of the percolation model, i.e.,
on the local correlations given by λν > 1 (see Fig. 12). The same relation (26)
holds also for the total perimeter u(L) ∼ Ldf−2 within a window of size L which
can be found in many papers on fractals and percolation (see references in [33]).
But this scaling relation for the perimeter is at least only half of the answer.
In the following integral geometry is used to derive the scaling behavior of the
Minkowski functionals Mν(L). Without loss of generality we focus on lattice
configurations in two dimensions. Since boundaries of fractals are typically huge
and of the same size as the volume itself, it is better to be careful about boundary
corrections defining geometric quantities and their densities. For this purpose
an observation window D, i.e., a square of size lD is introduced, so that one
measures the covered area F = V0(A∩D), the boundary length U = 4V1(A∩D),
and the Euler characteristic X = V2(A ∩D) only for the ‘visible’ configuration
A ∩ D of a fractal A. Because the observation window D is placed at random
one is interested in the mean values of these measures M̄ν(A, D) =

∫
Λ

Mν(A ∩
D) dD/

∫
Λ

dD defined by averaging over all positions of D on the lattice Λ, i.e.,

by moving a given point of D (e.g. the midpoint) on each lattice site of Λ. Using
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the kinematic formula (110) for lattices one obtains

F̄ (A, D) = f(A)F (D)

Ū(A, D) = u(A)F (D) + f(A)U(D)

X̄(A, D) = χ(A)
(
F (D) + 1

2U(D) + 1
)
+ u(A)

( 1
8U(D) + 1

2

)
+ f(A)

(27)

where the coefficients mν(A) denote the densities of the Minkowski functionals,
i.e. the measures per unit volume of the lattice configuration. Integral geometry
guarantees that these densities do not depend on the chosen observation window
D but are intrinsic measures of the configuration A. The contributions propor-
tional to Mµ(D) in Eq. (27) describe effects due to the finite size and shape of
the observation window D.

Fig. 13. Three percolating clusters at the critical volume fraction vc with grains of size
λ (see Fig. 12, [58]): (A) squares (λ = 5, vc = 0.615), (B) sticks (λ = 5, vc = 0.422),
and (C) mixture of squares (λ1 = 2, λ2 = 5).

In contrast to non-fractal lattice configurations (considered below in Sect.
5.4) fractal configurations yield densitiesmν(A, L) which depend on the size L of
the largest structure. For instance, one obtains for the deterministic fractal shown
in Fig. 12 (left) the mean values F̄ (A, D) = Ly0−2l2D, Ū(A, D) = 4Ly0−2(l2D +
lD)− 4Ly1−2l2D, and X̄(A, D) = Ly0−2(l2D + 2lD + 2)− 2Ly1−2(l2D + 3lD + 2) +
2(lD + 1)2 of the Minkowski functionals and therefore the densities

f(A, L) = Ly0−2

u(A, L) = 4Ly0−2 − 4Ly1−2

χ(A, L) = −2Ly1−2 + 2
(28)

with the non-trivial exponents y0 = log(5)/ log(3) and y1 = log(2)/ log(3). Gen-
erally, one obtains the scaling relations

f(A) = f (0)Ly0−2

u(A) = u(0)Ly0−2 + u(1)Ly1−2

χ(A) = χ(0)Ly0−2 + χ(1)Ly1−2 + χ(2)Ly2−2

(29)
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with coefficients v(µ)ν , µ = 0, . . . , ν, and scaling exponents yν , ν = 0, . . . , d (par-
ticularly yd = 0). Thus, one finds d scaling dimensions in a d-dimensional space
and not only the one given by the volume, y0 = df . For random fractals such as
the percolating clusters shown in Fig. 13 the scaling exponents are found to be
simply related by yn = y0−n and yd = 0. We emphasize that the scaling behav-
ior of the boundary length and the Euler characteristic is not just a correction
to the leading scaling given by Eq. (26) but an intrinsic property of theses mor-
phological quantities. Assuming self similarity on all scales, i.e., a perfect scaling
behavior for the volume M0 we still get deviations of scaling for the other mea-
sures Mν due to their geometric definition and the importance of boundaries for
fractal geometries.

Problem: Universality of Scaling Amplitudes and Dimensions Although
the scaling exponents yn are found to be related to y0 for the percolating clusters,
the configurations shown in Fig. 13 show obvious differences in their morphology.
Naturally one may ask if the amplitudes u(ν) and χ(ν) of the scaling behavior
given by Eq. (29) are universal? Or do the amplitudes characterize the mor-
phology of fractals beyond their fractal dimension y0 = df . Since the fractal
dimensions yn of a deterministic fractal are non-trivial due to different scaling
behaviors of the occupied sites on the boundary of the observed fractal, one may
ask under which circumstances models for random fractals can be defined with
different, i.e. non-trivial scaling exponents yn?

4 Integral Geometry: Statistical Physics of Fluids

Whereas in the previous Sects. 2 and 3 only elementary properties of Minkowski
functionals have been used, we consider now applications of the ‘completeness’
of the additive functionals, the notion of a parallel body, and of the kinematic
formulae. In Sect. 4.1 the kinematic formula (9) is used to describe the thermo-
dynamic phase behavior of real fluids. Section 4.2 uses the excluded volume of
a particle and Steiner’s formula (10) to estimate the occurrence of an infinite
connected cluster of particles. This percolation phenomenon is important for the
transport of fluids in porous media, for instance, and depends on the morphology
of the pores. The excluded volume of a pair of grains K and K ′ is defined as the
volume around a given particle K which would be excluded for another particle
K ′ if they were hard impenetrable objects. In terms of the Euler characteristic χ
the excluded volume can be measured by the relative positions where an overlap
occurs

Vex(K,K ′) =
∫
G

χ(K ∩ gK ′)dg . (30)

The excluded volume V (d)
ex (K) = Vex(K,K) can be calculated for any shape K

in d dimensions by using the kinematic formula (9). One obtains in terms of the
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Minkowski functionals Mν(K) the explicit expressions

V (2)
ex (K) = 2M0(K) + 2πM1(K)2 and V (3)

ex (K) = 2M0(K) + 8πM1(K)M2(K) .
(31)

Section 4.3 focuses on the characterization theorem (7) of additive measures.
Thermodynamic potentials are extensive quantities which can usually be decom-
posed in volume, surface, and curvature contributions, i.e. in terms of Minkowski
functionals. Assuming additivity of thermodynamic potentials on a mesoscopic
scale one can define naturally a general Hamiltonian for mesophases and study
the corresponding thermodynamic properties in terms of morphological mea-
sures.

We use the notion of Minkowski functionals again instead of functions as
in the previous section where the dependence on parameters was relevant, be-
cause the mathematical properties of these morphological measures of spatial
configurations shall be emphasized.

4.1 Kinematic Formula: Cluster Expansion
and Density Functional Theory

One of the main goals of thermodynamics is the calculation of the equation of
state. The pressure p of a fluid is given by the temperature T and the density
ρ, for instance, p = kBTρ for an ideal gas where molecular interactions between
the fluid particles are neglected. This assumption is justified at low densities or
high temperatures but not for real fluids like water at room temperature and
not, in particular, in the vicinity of a phase transition such as condensation
(vapor-liquid coexistence) or freezing. Statistical physics of condensed matter
developed several methods in order to obtain equations of state for real fluids
and to describe phase transitions. One of them are cluster expansions in terms
of virial coefficients and another one are density functional theories yielding an
adequate description of inhomogeneous fluids.

Virial Coefficients The equation of state, i.e., the dependence of the pressure
p on the density ρ and temperature T of a real fluid can be expanded in powers
of the density

p = kBT
(
1 +B(T )ρ+ C(T )ρ2 + O(ρ3)

)
, (32)

where the functions B(T ) and C(T ) are called the second and third virial coeffi-
cient, respectively. The ideal gas is given by B(T ) = C(T ) = 0 but in general the
virial coefficients depend on the molecular interactions between the particles. In
particular, for hard particles K one obtains for the second virial coefficient

B =
1
2

∫
G

χ(K ∩ gK)dg = V (K) +
1
4π
S(K)H(K) . (33)
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where the overlap of two particles K and gK are averaged over all relative po-
sitions and orientations g ∈ G of the group of motion G. Thus, the second virial
coefficient B is half of the excluded volume Vex(K) of K and using the kinematic
formula (9) one obtains an explicit expression (31) in terms of Minkowski func-
tionals of an arbitrarily shaped hard particle K. Of course, a realistic modeling
of real fluids and a liquid-vapor phase transition requires not only a tempera-
ture independent hard repulsions of the molecules but also an attractive force.
The attractive interaction U(r) between spherical symmetric atoms is often well
described by the Lennard-Jones potential. But for structured molecules this rota-
tional invariant potential does not take into account the shape of the molecules.
Therefore, T. Kihara [29] proposed that the shortest distance s between the
molecules is the relevant parameter in the interaction potential U(s) instead of
the distance r of the centers of mass. The parallel bodies Ks/2 and K ′

s/2 of two
interacting molecules touches at the half of the minimal distance so that the
second virial coefficient can given by the integral

B = 4

∞∫
0

ds
(
1− e−βU(s)

)
S||(Ks/2) (34)

where the parallel surface S||(Ks/2) is given by the Minkowski functionalsMν(K)
and particularly in d = 3 by

S||(Ks/2) = S(K)s+H(K)
s

2
+
π

2
s3 . (35)

Assuming a single point as the shape of a molecule one recovers with V = S =
H = 0 and χ = 1 the standard expression B = 2π

∫∞
0 dr

(
1− e−βU(r)

)
for the

second virial coefficient. This result may motivate to look for statistical theories
for simple fluids by applying concepts of integral geometry, in particular, the
kinematic formula (9). One prominent example is the density functional theory
recently developed by Rosenfeld [51], which is the most elaborated and reliable
functional for hard spheres.

Rosenfeld’s Fundamental Measure Density Functional The main idea of
density functional theory is to express the grand canonical free energy Ω[ρ(r)]
as a functional of the averaged inhomogeneous density ρ(r) of the particles. The
equilibrium one-particle density minimizes Ω[ρ(r)] at a given chemical potential
µ and one obtains the thermodynamic potential Ω(µ). Density functional theory
provides a unified picture of the solid and fluid phase as described by H. Löwen
in this volume.

One of the most valuable and accurate functionals for hard spheres BR of
radius R is the ‘fundamental measure theory’ proposed by Rosenfeld. The main
idea is to decompose the local excess free energy at low densities

βfex[ρ(r)] ∼ − 1
2

∫
dr ′ρ(r)ρ(r ′)f(r− r ′) = −

(
V̄ (r)χ̄(r) + S̄(r)H̄(r)

4π

+ S̄(r)H̄(r)
4π

)
(36)
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in terms of the averaged Minkowski functionals (compare Eq. (2))

V̄ (r) =
∫

BR(r)
d3r′ρ(r ′) , S̄(r) =

∫
∂BR(r)

d2r′ρ(r ′)

H̄(r) =
∫

∂BR(r)
d2r′H(r ′)ρ(r ′) , χ̄(r) = 1

4π

∫
∂BR(r)

d2r′ρ(r ′)G(r ′)

S̄(r) =
∫

∂BR(r)
d2r′ρ(r ′)n(r) , H̄(r) =

∫
∂BR(r)

d2r′ρ(r ′)H(r ′)n(r)

(37)

with the normal vector n(r), the mean H(r) and Gaussian G(r) curvature at the
position r ∈ ∂BR(r) on the boundary of the sphere. This definition is possible
because the Meyer f-function for spheres centered at r and r ′ is given by the
Euler characteristic of the overlap f(r − r ′) = χ(BR(r) ∩ BR(r ′)) so that the
kinematic formula (9) can be applied. Notice: one immediately recovers for an
homogeneous density ρ(r) ≡ ρ with B = −βfex[ρ]/ρ2 the expression (33) for
the second virial coefficient. The proposed density functional for the local excess
free energy then reads [51]

βfex[ρ(r)] = −χ̄ ln(1− V̄ ) +
S̄H̄ − S̄ · H̄
4π(1− V̄ )

+
V̄ 3 − 3S̄2S̄

24π(1− V̄ )2
, (38)

which gives excellent results for thermodynamical quantities and for structures
in the fluid phase. As a direct consequence of the geometric approach (38) to
define a density functional one finds that the crossover to lower dimensional
systems is straightforward and works very well.

Problem: Cluster Integrals and Non-spherical Soft Particles It is not
known yet, if kinematic formulae or geometric measures can be used to evaluate
not only the second virial coefficient but also cluster integrals of higher order in
a cluster expansion (for instance, the third virial coefficient C(T ) in Eq. (32)).
Is it possible to evaluate a whole subset of cluster integrals so that one might
apply kinematic formulae on integral equations and closure relations [22]? Is it
possible to give upper or lower bounds for cluster integrals and therefore for the
equation of state, Eq. (32)?

The Rosenfeld density functional has only been applied for hard spheres
and hard oriented cubes. Naturally the question arise if it is possible to use
integral geometry to develop a general ‘fundamental measure’ functional for
non-spherical and soft particles? It would be helpful to reformulate the existing
papers on Rosenfeld’s functional using integral geometry in order to emphasize
the geometric features of the theory and to make future developments visible.

4.2 Excluded Volumes: Percolation Thresholds

The characterization and realistic modeling of random disordered materials as
diverse as soils, sedimentary rocks, wood, bone, paper, polymer composites, cat-
alysts, coatings, ceramics, foams, gels and concretes has been a major problem
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for physicists, material scientists, earth scientists and engineers for many years.
Nevertheless, the prediction of mechanical and optical properties of the mate-
rial, as well as the prediction of transport and phase behavior of fluids in porous
structures from measures of the morphology and topology is still an unsolved
problem. In Fig. 1 a sketch of a porous medium is shown where pores (black
regions) of different size and shape are distributed in a solid material (white
region). For practical purposes one wants to know whether the pores percolate
or not, i.e. if water can flow inside the pores through the system from the upper
edge to the bottom. Generally, one observes a threshold in the volume density
of the pores above which the system supports water flow, whereas for densities
below this critical density the pores do not percolate. A main aim of the integral
geometric approach to porous media is the description of macroscopic transport
properties such as the diffusion constant of the material in terms of the mor-
phology of the pores. Although we focus on percolation in this section, we finally
look for a general effective theory of porous media in terms of the morphology
of its spatial structure [13,49].

Since 1957, the year of introduction of ‘percolation processes’ by Broadbent
and Hammersley [8], percolation models became important for the understand-
ing of many physical properties such as the fluid transport through a porous
medium. Most of the effort did focuse on critical exponents of the percolation
transition, which exhibit a universal behavior and can therefore be described
by the simplest model with a percolation threshold. But in designing compos-
ite materials it is more important to understand the non-universal behavior of
transport quantities such as electrical and thermal conductivity, diffusion con-
stants or elastic moduli. These non-universal features include the location of the
critical threshold and also the dependence of physical quantities on the spatial
details of the component phases away from the critical region. In particular, the
prediction of the percolation threshold as a function of volume fraction, disper-
sity, shape, and orientation of the component phases remains a key problem in
studying random multi-phase structures (for references see [16]). Also the de-
pendence on interactions of the constituents of random materials and on the
stochastic properties (correlations) of the spatial model are important for many
practical applications. For spatial structures such as gels or cement-based ma-
terials which evolve in time the knowledge of the non-universal quantities even
may provide insight into kinetic processes.

Already at the very beginning of percolation studies various criteria for the
onset of percolation have been developed. In 1970 Scher and Zallen [53] proposed
that the critical fractional occupied volume vc (i.e., area in two dimensions) is
almost constant in many percolation models and in 1985 Balberg [4] presented
numerical limits for two and three-dimensional continuum percolation: 0.551 <
vc < 0.675 for d = 2 and 0.084 < vc < 0.295 for d = 3. These limits can be
rewritten in terms of the particle density in the so-called ‘excluded volume’ Bc

defined by Eq. (30), i.e., by vc = 1−e−Bc2−d
for spheres in d dimensions, yielding

3.2 < Bc < 4.5 for d = 2 and 0.7 < Bc < 2.8 for d = 3. In a series of papers [5]
argued that the excluded volume, i.e., the average critical number Bc of bonds
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per particle is an approximate dimensional invariant and therefore, may be used
as an estimate for the percolation threshold.

The prediction of the percolation threshold in composite media remained an
unsolved problem in statistical physics. For instance, in the case of continuum
percolation models, such as the random distribution of penetrable objects K, ex-
act values of the percolation threshold are not known. Certainly, the threshold
depends on size and shape of the pores K and on their statistical distribution.
Therefore, we have to study the relevance of the morphology of the stochastic
spatial structure for the percolation behavior. A widely used criterion for the
percolation of randomly placed penetrable objects K is based on the mean num-
ber of neighbors B = ρVex(K) which is given by the density ρ of the objects and
by the excluded volume Vex, i.e., the volume around a given particle K which
is excluded for another particle in the case of hard impenetrable objects. If the
system percolates, each particle has at least one neighbor, therefore

Bc = ρcVex = 1 (39)

is a reasonable percolation criterion. Thus, an estimate of the percolation thresh-
old ρc is given by the excluded volume (30) and therefore by well-known geo-
metric quantities of the distributed objects. Let us consider, for instance, sticks
of length L in two dimensions with M0 = 0 and M1 = L/π. Using the criterion
(39) and the expression (31) one finds the estimate ρc = A/L2 with A = π/2.
Computer simulations shows indeed over a wide range of lengths L a percolation
threshold ρc ∼ 5.7/L2 [48], i.e., the same functional dependence but a somewhat
larger coefficient A.

Although for a number of systems the excluded volume of a particle provides
a first insight of the threshold dependence on size, shape and orientation of the
grains in the ensemble, it is far from being satisfactory. Unfortunately, for arbi-
trary non-spherical particles the criterion in not very accurate and even for discs
and spheres one wishes a better estimate. One finds numerically 0.5 < Bc < 3 for
a large number of shapes and Bc = 2.8 for spheres [4], so that a better estimate
than that given by Eq. (39) is necessary. In particular, for continuous percola-
tion a more accurate but nevertheless explicit expression of threshold estimates
would be an important tool for various practical applications. In a more recent
paper [1] proposed a more elaborate criteria which is more accurate but needs a
tremendous effort to calculate it. They postulate that percolation occurs when
the mean distance l between two connected neighbors and the average distance
L between grains which have at least two grains connected to them obey L = 2l.
Another approach applied topological arguments based on the observation that
the Euler characteristic χ vanishes near the threshold [34]. It was argued that
the zero χ(ṽc) = 0 may provide an interesting estimation of the percolation
threshold vc based on the topological connectivity of the configurations. Various
percolation models were tested numerically in order to confirm the assumption
that the analytical available zero ṽc of the Euler characteristic is a better esti-
mate than any other proposed criteria. Of course, analytic calculations based,
for instance, on the cluster expansion of the pair-connectedness function can
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in principle provide more accurate values, but they have to be performed for
each model separately. The advantage of a heuristic criterion should be the ex-
plicit availability of the formula which does not need any further evaluations for
specific models.
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Fig. 14. (a) Minkowski functionals for squares (stars) and sticks (circles) of size λ at
pc [58]. Whereas vc ≈ v∞

c is nearly constant for squares one finds the scaling behavior
vc ≈ ρ∞

c /λ for sticks. Numerical errors are smaller than the symbol sizes. The solid
line is the prediction using the zero of the Euler characteristic ρ0 and the mean values
vν(ρ) of the morphological measures given by Eq. (118). (b) Minkowski functionals
at criticality for a mixture of squares of sizes λ1 = 2, λ2 = 4, 6, 8 (stars, circles,
triangles), where r = p1/(p1 + p2) denotes the density fraction at pc. In contrast to the
monodisperse systems shown in (a) the Euler characteristic at pc deviates considerably
from zero so that the prediction of the critical volume fraction m0(pc) fails.

In order to study percolation thresholds in detail one can define a whole
family of lattice models by introducing parameters for size, shape, orientation,
and dispersity of the constituents. Let us consider three different types of en-
sembles on a two and three-dimensional lattice (see Fig. 12), namely random
distributions of

(A) squares K(2)(λ) and cubes K(3)(λ) of edge length λ · a, λ = 1, 2, . . . .
(B) sticks S(d)(λ) =

⋃λ
i=1K

(d)
i (1), i.e., prolate unions of neighbored cells on the

d-dimensional lattice where one edge length is chosen to be λ, λ = 1, 2, . . . .
Additionally, on the three-dimensional lattice we consider also oblate grains,
i.e., plaquettes P (3)(λ) where two edge lengths are chosen λ.
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(C) mixture of squares (cubes) K(d)(λ1) and K(d)(λ2) on the d-dimensional lat-
tice, i.e. two grains with different edge lengths λ1 and λ2.

The details of the lattice models are described in Sect. 5.4. Figure 13 shows three
percolating clusters at the critical threshold pc with grains of size λ: namely (A)
squares (λ = 5), (B) sticks (λ = 5), and (C) mixture of squares (λ1 = 2, λ2 = 5).
The purpose of these different ensembles is to study the dependence of the per-
colation threshold on the spatial resolution, i.e, the size λ, the orientation of the
grains parameterized by length of the sticks, and the homogeneity given by the
ratio λ1/λ2 of the grain sizes. Focusing on a morphological description of ran-
dom configurations on lattices one might be able to distinguish systematically
and quantitatively between the different percolating spatial structures. Figure 14
shows computer simulation results of the Minkowski measures for configurations
at the percolation threshold pc on a two-dimensional square lattice. Assuming
that the probability p0 where the mean Euler characteristic m2(p0) = 0 vanishes
is an estimate of the percolation threshold one can try to predict the morpho-
logical measures at pc. The solid lines are the morphological measures mν(p0)
where the Euler characteristic vanishes. Particularly the mean boundary length
m1 is predicted very accurately because the maximum ofm1(p) (vanishing slope)
is close to pc. Notice: the solid lines are given analytically and no fit parameter
is used. Although the mean Euler characteristic m2 is small at pc (p0 is close
to pc) one observes systematic deviations. In particular, for polydisperse ensem-
bles such as a mixture of squares of different sizes (bottom row in Fig. 14) the
systematic deviations from the topological estimate p0 = pc become large with
increasing size ratio λ2/λ1. One should notice that neither the volume fraction
vc = m0(pc), nor the excluded volume argument Bc = const provide a better
description of the morphology or a better estimate of the percolation threshold.
The excluded volume Bc is neither for an ensemble of sticks nor for a mixture
of squares constant and varies considerably with λ, λ2/λ1, and r. Therefore, a
more accurate estimate of percolation thresholds is still needed.

Problem: Accurate Estimation of Percolation Thresholds Three heuris-
tic criteria to estimate the percolation thresholds were presented: the volume
fraction [53], the excluded volume argument [4], and the zero of the Euler char-
acteristic [34]. All three of them are based on additive measures, i.e, on the
Minkowski functionals introduced in Sect. (3). Does another additive measure
exist which is more accurate, i.e., which is almost invariant at pc and does barely
depend on other system parameters such as size, shape, and orientation of the
grains? Is there a heuristic argument to determine the morphology near perco-
lation thresholds? A detailed morphological analysis of spatial configurations at
percolation thresholds as shown in Fig. 13 may help to find an estimate based
on additive measures. A final goal would be a proof of useful (‘sharp’) upper and
lower bounds on the percolation threshold based on Minkowski functionals.



Additivity, Convexity, and Beyond 149

4.3 Additivity and Completeness:
Curvature Model for Complex Fluids

In Sect. 2 is was shown that not only the curvature energy (11) of biological
cells can be written as an additive functional but also the the pressure difference
(17) of coexisting phases of fluids in porous media and the partition sum (23)
of the eigenvalues of the Laplacian. Of course, the additivity of these quantities
holds only approximatively, i.e., only for the leading terms of an expansion in
curvature, distance, or time, respectively. But these examples may motivate to
have a closer look on additivity in statistical physics and to examine which
physical properties are related to it. In physics many quantities are known to
be additive functions of subsystems. For instance, thermodynamic potentials
such as free energy or entropy are extensive quantities if long range interactions
can be ignored. For the union of two disjoint subsystems A and B one finds
immediately the free energy F (A ∪ B) = F (A) + F (B). But also probabilities
are additive functions, so that one may speculate if it is possible to relate the
signed probability measures used in quantum mechanics (Wigner functions) to
the additive Minkowski functionals. Here, only the thermodynamic consequences
of an additive free energy of fluid systems are discussed.

Complex Fluids: Microemulsions and Colloidal Suspensions Amphiphi-
lic surfactants added to oil and water tend to assemble spontaneously at the inter-
face of the immiscible solvents and are capable to form polymorphic aggregates
by separating oil-rich from water-rich domains. Apparently, the complex phase
diagrams observed in these mixtures originate from the variety of sizes, shapes
and topologies displayed by the spatial structure, i.e. by the interfacial patterns.
Globular and bicontinuous microemulsions are particular examples among the
structured liquid phases occurring at low surfactant concentration [31,45].

The attempt to work out the phase diagram of such mixtures by starting at
the microscopic level with realistic molecular forces and covering the full range
of compositions is still a problem for the future. However, considerable progress
has already been made with idealized models constructed to explain salient fea-
tures in the phase behavior of microemulsions in particular [12,17,18]. From a
geometric point of view one should tie the thermodynamics of such composite
media with the statistical morphology of their supra-molecular structures.

Therefore, let us consider an ensemble of random interfaces ∂A whose Hamil-
tonian

H =
d∑

ν=0

ενMν(A) (40)

is taken to be a linear combination of the geometric measures volume V = M0,
area S = 8M1, integral mean curvature H = 2π2M2, and Euler characteristic
χ = 4π

3 M3 of the spatial domain A. The criteria underlying the choice of the
Hamiltonian (40) are natural; in particular, the requirement of additivity leads
to extensive thermal averages 〈Mν〉 ∝ V for the model, and this secures a close
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linking of morphology with thermodynamics which will be considered below.
The bending energy of a membrane, arising from splay deformations and usu-
ally described by a mean curvature-squared term in the Helfrich Hamiltonian
(11) is missing in the Hamiltonian (40), formally because this term is not addi-
tive; The resulting problems are already discussed in Sect. 2.1. Without going
into the details [30,39,42], we note that this random surface model defined by
the Hamiltonian (40) reproduces quite a few salient features observed in mix-
tures of oil, water and surfactants, namely a coexistence regime of oil-rich and
water-rich phases with an isotropic bicontinuous middle phase, originating from
a tricritical point; an ordered phase, known as “plumbers nightmare”; a peak in
the liquid structure factor at a nonzero wave-vector; and a drastic reduction of
surface tensions in the three-phase coexistence regime, caused by incipient crit-
ical endpoints. For details we refer to the mentioned literature and focus next
on the general thermodynamic properties of a physical system if the Hamilto-
nian is given by the morphological expression (40). Since the statistical averages
< Mν(A) > of these functionals qualify as extensive thermodynamic variables
which may be interpreted as morphological order parameters to characterize the
spatial structure of the configurations on a macroscopic scale it is important to
relate thermodynamical quantities such as free energy, specific heat, and pressure
to the morphology of the spatial structure. This will be done in the following
Sect. 5 assuming that A is given by the union of convex grains.

Problem: Renormalization Group Theory for Minkowski Functionals
The completeness theorem (7) guarantees that the Hamiltonian (40) includes all
additive geometrical invariants, whose thermal averages are extensive. However,
the thermodynamic requirement of extensive internal energy does not imply that
the Hamiltonian must be manifestly additive. The currently popular statistical
models [17,18,30] for an ensemble of surfactants films (“membrane models”) em-
ploy the Helfrich Hamiltonian (11) which is of the form (40) but contains an
additional bending energy contribution Hbend = κ

2 Ĥ
2 given by Eq. (12) where

H is the mean curvature of the surfactants film S and κ is a (bare) bending
rigidity. In the studies of microemulsion phases employing the Helfrich Hamil-
tonian the Euler characteristic is ignored and attention is focused on a scale
ξ-dependent bending energy Hbend(ξ) obtained by replacing κ with a renor-
malized rigidity κ(ξ) to account for the reduction of the bare rigidity κ caused
by short-wavelength thermal film undulations (see Eq. (14)). The morphologi-
cal model (40) incorporates the energetics of an ensemble of randomly folded,
multiply connected and self-avoiding films, and thus deals with lengths beyond
ξκ where Hbend(ξ) may indeed be omitted. Thus, one avoids the difficulty to
define appropriately the integral Ĥ2 of the squared mean curvature for configu-
rations on lattices (Sect. (Sect. 5.4) or for germ grain models (Sect. 5.1) if one
renormalizes the bending rigidity κ.

In the morphological model (40) one assumes that the scale-dependence of
the parameters εα, viewed as renormalized effective couplings, can be approxi-
mated by their “naive” scaling behavior, εα(ξ) ∼ ξα−3 (compare Eq. (8)), since
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a non-perturbative renormalization theory as required for length scales exceed-
ing the persistence length is still lacking. Although the additivity relation (6)
and the completeness theorem (7) provide a promising frame for studying the
Hamiltonian (40), a renormalization theory which includes the Minkowski func-
tionals, in particular, the Euler characteristic, is still not yet developed [30]. In
the following Sect. 5.4 integral geometry is defined on lattices which may open
the possibility to renormalize the Minkowski functional and not only the bending
rigidity κ [37].

5 Boolean Model: Thermal Averages

Homogeneous spatial domains of phases on a mesoscopic scale are a character-
istic feature of many composite media such as porous materials shown in Fig. 1
or complex fluids discussed in the previous Sect. 4.3. The spatial structure of
such composite media may be described by randomly distributed, overlapping
spheres, i.e., by configurations of a germ grain model (Fig. 1). In contrast to the
Boolean model used in stochastic geometry it is necessary for physical applica-
tions to introduce interactions between the grains in order to describe particle
correlations. In contrast to microscopic pair interactions, the statistical model
for a two-component system on a mesoscopic scale should rest on the morphology
of the homogeneous domains and should take into account geometric properties
such as the volume, shape, and connectivity of the domains, for instance, the
white area shown in Fig. 1. For instance, colloidal hard particles undergo a phase
separation (aggregation) induced by fluid wetting layers which can be described
by overlapping spheres so that the interaction of the colloids are given by the
bulk free energy of the film proportional to its volume (see contribution ‘Fun
with hard spheres’ by H. Löwen in this volume). The Widom-Rowlinson model
is an important example of such an interacting model of stochastic geometries
used mainly in the statistical physics of fluids where the interaction is given by
the volume of overlapping spheres [65]. A general extension of this model rest
on the Minkowski functionals of the overlapped region in space, i.e., on sur-
face tension and curvature energies additionally to the volume of the spheres
[35,39,43]. A density functional theory for the Widom-Rowlinson model and for
its extension in terms of Minkowski functionals is introduced in Sect. 5.1 where
explicit expressions are required for the intensities of Minkowski measures for
inhomogeneous distributions of grains. These density dependent mean values
are derived in Sect. 5.2 for various special cases such as oriented cylinders and
inhomogeneous distributed spheres.

Since the Minkowski functionals are extensive quantities and not well de-
fined for infinite systems we use the notion of Minkowski measure in contrast to
functional. Nevertheless, the physical notions of ‘mean value’ or ‘variance’ of a
functional is still used instead of the appropriate mathematical terms ‘intensity’
or ‘second order moment measure’. The term functional is also used whenever
the mathematical properties of these measures are important.
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5.1 Widom-Rowlinson Model and Density Functional Theory

The thermodynamics and bulk properties of such composite media depend often
on the morphology of its constituents, i.e. on the spatial structure of the ho-
mogeneous domains. Therefore, a statistical theory should include morpholog-
ical descriptors to characterize size, shape and connectivity of the aggregating
mesophases. In the context of integral geometry one focus on the morphologi-
cal aspects of two component media by employing the Minkowski functionals as
suitable descriptors of spatial patterns. Such a morphological thermodynamics
may be outlined as follows: Each configuration of component (I) is assumed to
be the union of mutually penetrable convex bodies (‘grains’)

KN =
N⋃
i=1

giK . (41)

embedded in the host component (II). The form of the grains is otherwise ar-
bitrary; they may be balls, flat discs, thin sticks, etc. Typical configuration are
shown in Fig. 1. Let G denote the group of motions (translations and rotations)
in the Euclidean space IRd. The location and orientation of the grains are spec-
ified by the action of gi ∈ G on a tripod fixed at the centroid of each grain K,
Ki = giK. The Boltzmann weights are specified by the Hamiltonian (40),

H(KN ) =
d∑

ν=0

hν

(
Mν

(
N⋃
i=1

Ki

)
−NMν(K)

)
(42)

which is a linear combination of Minkowski functionals on the configuration space
of the grains. We emphasize that the Hamiltonian (Eq. (42)) constitutes the most
general model for composite media assuming additivity of the energy of the
homogeneous, mesoscopic components. The configurational partition function is
taken to be

ZN (T, V ) =
1

N !ΛNd

∫
exp

{
−βH

(
N⋃
i=1

giK

)}
N∏
j=1

dgj . (43)

The integral denotes averages over the motions of the grains with dg being the
invariant Haar measure on the group G. The length Λ is a scale of resolution for
the translational degrees of freedom of the grains which are restricted to a cube
of volume V . The grand canonical partition sum

Ξ(T, µ, V ) =
∞∑

N=0

eβµNZN (T, V ) (44)

determines the grand canonical potential Ω(T, µ, V ) = −kBT logΞ(T, µ, V ) as
function of the chemical potential µ. The thermodynamics of such composite
materials are then given in terms of additive, morphological measures of its
constituents. Depending on the relative strength of the energies related to the
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volume, surface area, mean curvature, and Euler characteristic of the domains
one finds qualitative different phase diagrams and spatial structures. Monte-
Carlo simulations of the model and also applications to colloidal systems are
work in progress.

Morphological Thermodynamics Let us first recall some basic facts from
thermodynamics. Given the partition function ZN (T,D) of the spatial configu-
rations A∩D in a domain D (volume V = |D|) at fixed particle number N and
temperature temperature T , the free energy is given by the logarithm

F (T,N,D) = −kBT logZN (T,D) . (45)

The thermodynamic potentials are related by Legendre transformations so that
the grand canonical potential Ω(T, µ,D) = F − µN = −kBT logΞ(T, µ,D) is
given by the grand canonical partition sum (44). The internal energy is the
expectation value of the energy given by the Hamiltonian (42), i.e.,

U(N,T,D) =
∂βF

∂β

∣∣∣∣
NV

=< H >TNV =
d∑

ν=0

hνM̄ν(N,T, V ) (46)

with the mean value M̄ν(N,T, V ) =< Mν(A) >TNV of the Minkowski function-
als in the Gibbsian ensemble where averages at constant particle number N are
denoted by < · >NTV . Naturally one can assume that the averaged Minkowski
functionals are additive functionals of the domain D so that the thermodynamic
potential

U(N,T,D) =
d∑

µ=0

uµ(T,N)Mµ(D) , uµ(T,N) =
d−µ∑
ν=0

(
µ+ ν
µ

)
h̃
(µ)
µ+νmν(T,N)

(47)

is an additive quantity and can be written as a sum of volume M0, surface M1,
and curvature terms of the domain D, where the related bulk internal energy
u0(T,N), surface tension u1(T,N), and bending energies u2(T,N) and u3(T,N)
depend explicitly on the intensities mν(T,N) of the morphological measures.
The tilde h̃(µ) denotes that the interaction parameters hν depend one the di-
mension d− µ of the boundary due to additional interactions between particles
and boundary. Of course, we neglected that the interaction of the grains with
the wall influences the equilibrium configurations of the homogeneous domains
A and finally the coefficients mν , too. In principle, the geometric quantities mν

have to be determined as function of temperature T and particle number N for
an inhomogeneous distribution of grains. This will be done for the Boolean model
in the following sections. Notice: all Minkowski measures mν and coefficients hν
are needed for the bulk energy u0 whereas the topological energy contribution
ud depend solely on the topological parameter hd and the intensity m0(T,N) of
the volume.
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An explicit expression for the free energy F = U − TS in terms of the
geometric measures is more complicated due to the contribution of the entropy
S . One obtains in the thermodynamic limit

f(T, ρ) = lim
N,V →∞

1
V
F (T,N, V ) = kBT (ρ log ρ− ρ)− kBT

ρ∫
0

dρ′ log z(T, ρ′)

(48)

with ρ = N/V and the fugacity z(T, ρ) = ρZN+1/ZN . Then, the chemical po-
tential

µ(T, ρ) =
∂F

∂N

∣∣∣∣
T

= kBT log ρ− kBT log z(T, ρ) (49)

and the pressure

p = − ∂F

∂V

∣∣∣∣
T

= ρ
∂f(T, ρ)

ρ
− f(T, ρ) = kBTρ− kBT

ρ∫
0

dρ′ ρ′

z(T, ρ′)
∂z(T, ρ′)
∂ρ′

(50)

can be expressed in terms of the fugacity z(T, ρ). The second derivatives of the
free energy, namely the specific heat

CN = T ∂S
∂T

∣∣
NV

= −T ∂2F (T,N,V )
∂T 2

∣∣∣
NV

= <(∆H)2>k
kBT 2

= V
kBT 2

∑d
ν,µ=0 hνhµm

(k)
νµ (ρ)

(51)

is given by the second order moment of the Hamiltonian (42), i.e., by the the
second order moments

m(k)
νµ (N,T, V ) =

< Mν(A)Mµ(A) >NTV −M̄ν(N,T, V )M̄µ(N,T, V )
V

(52)

of the Minkowski measures. Here, the index (k) refers to a canonical ensemble
where the average is performed at constant particle number N and temperature
T . Using the thermodynamic relation

Cµ = T
∂S

∂T

∣∣∣∣
µV

= CN + T
(
∂µ(T,N, V )

∂T

∣∣∣∣
NV

)2

/
∂µ(T,N, V )

∂N

∣∣∣∣
TV

(53)

between the specific heats at constant chemical potential Cµ and constant par-
ticle number CN one obtains

Cµ − CN =
NkBz(T, ρ)

z(T, ρ)− ρ∂z(T,ρ)∂ρ

(
βµ+ β

∂ log z(T, ρ)
∂β

)2

. (54)

Because the specific heat

Cµ = −T ∂2Ω

∂T 2

∣∣∣∣
V

=
µ(T, ρ)2

kBT 2 < (∆N)2 > +
< (∆H)2 >
kBT 2 − 2µ(T, ρ)

kBT 2 < ∆N∆H >

(55)
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is related to the second order moments

< (∆N)2 >= − ∂2βΩ

∂βµ2

∣∣∣∣
V

= kBT
∂N

∂µ

∣∣∣∣
TV

=
Nz(T, ρ)

z(T, ρ)− ρ∂z(T,ρ)∂ρ

, (56)

< (∆H)2 >gk=< (∆N)2 >
(
∂ log z(T, ρ)

∂β

)2

+ < (∆H)2 >k , (57)

one obtains the relation

m(gk)
νµ (ρ)−m(k)

νµ (ρ) = ρ
∂mν(ρ)
∂ρ

∂mµ(ρ)
∂ρ

+ O(β2) (58)

for the grand-canonical and canonical second order moments of the Minkowski
measures. Thus, we derived a relation between the moments of morphological
measures based only on thermodynamic arguments. Of course, it remains to
calculate mνµ(N,V ) and M̄ν(N,V ) in a canonical ensemble which will be done
in the Sect. 5.3 for the Boolean model of overlapping grains.

Mean-Field Theory It was shown that one needs only to calculate the fugacity

z(T, ρ) = ρ
ZN+1

ZN
=< eβH(

⋃N
i=1 Ki∩K) >TN (59)

as function of temperature and particle density in order to obtain the thermo-
dynamical quantities. In particular, this important function is the generating
functional for the cumulants of the geometric measures in a Gibbsian ensemble.
Expanding in powers of the inverse temperature β = 1/(kBT ) and using the
kinematic formulae (9) for the average over the position and orientation of iden-
tical grains K in a homogeneous and isotropic ensemble one obtains the explicit
expression

z(T, ρ) = 1 +
d∑

ν=0

βhν

ν∑
µ=0

(
ν

µ

)
mµ(K)mν−µ(ρ) + O(β2) . (60)

The intensities mν(ρ) do not depend on the temperature and can be calculated
within the Boolean model using again the kinematic formula (9). Following the
method in [34] one obtains for the mean values of the Minkowski measures (cf.
Eq. (5)) per unit volume [61]

mν(ρ) = ∂ν

∂tν

1− e−ρ
d∑

α=0
mα(K)tα/α!

∣∣∣∣∣∣
t=0

= δν0 − e−ρm0(K)∑ν
µ=1

(−ρ)µ

µ! m̄µ
ν (K) ,

(61)

in particular, m0(ρ) = 1 − e−ρm0(K), m1(ρ) = ρm1(K)e−ρm0(K), and m2(ρ) =
(ρm2(K)−m1(K)2ρ2)e−ρm0(K). Notice: the coefficients

m̄µ
ν (K) ≥ m̄µ

ν (B
(d)) (62)
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for non-spherical convex grains K are always larger than the coefficients for a
d-dimensional sphere B(d). This relation is directly related to the well-known
isoperimetric inequalities(

M0(K)
M0(B(d))

)d−ν

≤
(
Mν(K)
Mν(B(d))

)d

,
Mν(K)
Mν(B(d))

≤ Md−1(K)
Md−1(B(d))

(63)

for the Minkowski functionals of arbitrary convex grainsK in d dimensions. Such
inequalities causes a liquid drop to relax into a spherical shape which minimizes
its free energy because of its minimal surface area. It would be interesting to
find analogous ‘laws of minimal shape’ by applying the generalized inequalities
(62) on the fugacity (60), i.e., on the free energy of mesoscopic phases.

Using the mean values (61) of the morphological measures for configurations
A and the relation

ν∑
µ=0

(
ν

µ

)
mµmν−µ(ρ) = mν − ∂mν(ρ)

∂ρ
(64)

one obtains the pressure

p(T, ρ) = kBTρ+
d∑

ν=0

hν

(
ρ
∂mν(ρ)
∂ρ

−mν(ρ)
)

+ O(β) (65)

as function of density and temperature. The details of the phase behavior given
by the equation of state (65) can be found in [30,35,38,42] and [9]. Notice: the
critical points of the phase diagram are given by the equations

∂p

∂ρ
= 0 ,

∂2p

∂ρ2
= 0 ⇒ ρ

∂z(T, ρ)
∂ρ

= z(T, ρ) ,
∂2z(T, ρ)
∂ρ2

= 0 . (66)

Thus, critical temperatures can be expressed within the mean field approxima-
tion (60) in terms of the morphological measures

kBTc = −ρc
d∑

ν=0

hνm
′′
ν(ρc) , (67)

where the critical density is determined by the equation
∑d

ν=0 hν(ρcm
′′′
ν (ρc) +

m′′
ν(ρc)) = 0. For overlapping grains in two and three dimension these equa-

tions yield two critical points if the coefficient hd of the Euler characteristic is
large. Such an energy contribution may induce an additional continuous phase
transition and a triple point. Thus, the topology of the phase diagram changes
qualitatively if the Hamiltonian contains terms proportional to the Euler char-
acteristic χ of the configuration.

The main aim of this section was to relate thermodynamical quantities to
the morphology of the spatial configuration. Of course, Eq. (67) is only valid
within the high temperature expansion (60) and second order moments of the
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Minkowski measures are required already for the first correction term propor-
tional to β2 in Eq. (60). Therefore, it remains to calculate variancesmνµ(N,T, V )
and not only mean values mν(N,T, V ) given by Eq. (61). This will be done in
Sect. 5.3 for the Boolean model and more conveniently for lattice models in Sect.
5.4. Monte-Carlo simulation indicates that the mean values mν(N,T, V ) ∼ β de-
pend linearly on the inverse temperature for a large range of values for β so that
the second order moments should be capable to describe the thermodynamic
behavior even for low temperatures close to the critical point [9].

Notice: physical quantities such as the variances (56) and the compressibil-
ity κT ∼ κ(0)(T − Tc)−γ diverges at the critical point with a universal expo-
nents γ (γ = 1 for the mean field approximation). It is not known yet how the
non-universal amplitudes κ(0) depend on the morphology of typical spatial con-
figurations at the critical point. A similar question was already asked in Sect.
3.4 where the scaling behavior of fractals were studied and non-trivial scaling
properties of the Minkowski functionals were found.

Density Functional Theory So far only phases with a homogeneous den-
sity ρ are studied. But Monte-Carlo simulations indicate that at high densities
the morphological model defined by the Hamiltonian (42) exhibit not only a
solid phase of regular arranged grains with a periodic density ρ(r) but also an
interesting inhomogeneous ‘glassy’ phase similar to a dense packing of styrene
spheres[9]. Expanding the partition sum (43) of the Hamiltonian (42) in powers
of β one can define a grand canonical density functional by

Ω [ρ(r)] = Ωref [ρ(r)] +
d∑

ν=0

hν

∫
d3r [mν [ρ(r)]− ρ(r)mν(K)] , (68)

where Ωref [ρ(r)] denotes the reference free energy of a system determined by
pair interactions additional to the morphological Hamiltonian (42). The reference
density functional for an ideal gas in an external potential V (r), for instance,
reads Ωref [ρ(r)] =

∫
d3r [ρ(r) ln (ρ(r)Λ)− ρ(r) + µρ(r) + V (r)ρ(r)] (chemical

potential µ, thermal de Broglie wavelength Λ). The inhomogeneous intensities
mν [ρ(r)] of the Minkowski measures are given below for an ensemble of indepen-
dent overlapping spheres K (Eq. (99)). Instead of perturbing around the ideal
gas equation of state one may use hard-core particles as reference system so
that Ωref [ρ(r)] is given by Eq. (16). (compare Sect. 2.2, Rosenfeld’s functional
in Sect. 4.1, and the paper by H. Löwen in this volume). Then the intensities
mν [ρ(r), c(r; r′)] of the Minkowski functionals depend not only on the mean den-
sity ρ(r) of the fluid particles at r but also on the correlation functions c(r, r′) of
the system due to the two-particles interaction potential Φ(r). The equilibrium
density profile ρ(eq)(r) minimizes the density functional in Eq. (68) and yields
the grand canonical potential Ω(µ) as function of the chemical potential µ. The
equilibrium profile depends not only on the temperature T and a possible ex-
ternal potential V (r) but also on the morphological interaction parameters hi.
Of course, the minimization of the density functional (68) is not feasible yet
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and remains to be performed approximatively in future works. But first one has
to derive explicit expressions for the inhomogeneous intensities mν [ρ(r, c(r; r′))]
of the Minkowski measures. This will be done in the next section for several
special examples: homogeneous but correlated grain distributions (ρ[r] ≡ ρ) and
inhomogeneous but Poisson distributed grains (c(r; r′) = 0).

Concluding we emphasize that integral geometry (kinematic formula) com-
bined with the Boolean model enables us to find a general expression for the
grand canonical free energy of complex fluids in terms of the density dependent
volume, surface area, and curvatures of the spatial configurations. Applications
for colloids and composite media are straightforward and we expect to find qual-
itative rich phase diagrams and spatial structures. But many problems occur if
one tries to evaluate the partition sum (43) determined by the morphological
Hamiltonian (42).

Problem: Evaluating Partition Sums Besides mean field approximations
and density functional theories as described above, computer simulations are
one of the most important tools in statistical physics for an understanding of
the configurational partition sum (43). Unfortunately, the computational cost
to evaluate the energy (42) of a configuration is enormous so that efficient algo-
rithms have to be invented in order to make Monte-Carlo simulations feasible.
In two dimensions this has been done by Brodatzki [9] but computational cost is
still large. The implementation of perfect simulation algorithm for the Hamilto-
nian (42) may help to reach equilibrium configurations effectively (see the paper
by E. Thönnes in this volume). In usual Monte-Carlo Simulations the initial
state converges with a characteristic time scale towards a configuration sampled
from the equilibrium distribution. Unfortunately, whether or not such an equi-
librium configuration is reached cannot be decided in most of the simulations.
But the technique of perfect simulation allows the sampling of a configuration
from the equilibrium distribution. Crucial for the practicality of such an algo-
rithms is a way of determining complete coalescence of extreme states in an
efficient manner. Because interactions in many models in spatial statistics and
statistical physics allow a partial order of spatial configurations and a mono-
tonic transition rule one can apply perfect simulation on standard statistical
systems such as the Ising model [26] or the continuum Widom-Rowlinson model
[65]. The perfect simulation technique might help to overcome the computational
cost when simulating the interacting germ grain model [9], i.e. the generalized
Widom-Rowlinson model defined by the morphological Hamiltonian (42).

A second problem concerns the critical points (Eq. (67)) obtained within a
high temperature approximation of the partition sum (43). H.-0. Georgii showed
in his contribution to this volume on phase transitions and percolation in Gibb-
sian particle models that the existence of critical points can be proven for a class
of models including the Ising model and the the continuum Widom-Rowlinson
model. Naturally, the question arises if it is possible to proof the existence of the
second critical point of the generalized Widom-Rowlinson model (42).
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A third problem is related to the renormalization of the energy parameters hν
already discussed in Sect. 4.3. Because of the universal form of the mean values
(61) of the Minkowski functionals for the Boolean model it might be possible to
capture the temperature dependence of the intensity measures < Mν(T,K) >∼
mν(ρ) by the expressions given in Eq. (61) but with temperature dependent
shapesmν(T,K) of single grainsK instead of the constantsmν(K). Is it possible
to use relation (64), for instance, to find such temperature dependent effective
mean values mν(ρ, T )? Or can one use mean-field renormalization techniques
to renormalize the shape of single grains yielding temperature dependent mean
values. A renormalization group theory for Minkowski measures can be used to
study the critical scaling behavior of the configurational morphology. A similar
question has already been discussed in the context of the critical behavior of
Lennard-Jones fluids in Sect. 3.3.

5.2 Correlated, Inhomogeneous and Anisotropic Distributions

In the previous Sect. 5.1 thermal averages of morphological measures are used to
calculate thermodynamical quantities such as the pressure and free energy of a
physical system. But the calculus was restricted to a high temperature expansion
where only the intensity measures of the Boolean model are required. Adding
additional interaction potentials between the particles such as the Lennard-Jones
potential discussed in Sect. 4.1 (see Fig. 9) one needs to derive expressions anal-
ogous to Eq. (61) but for correlated grains. Also the density functional theory
(68) requires intensity measures mν [ρ(r)] of the Boolean model for inhomoge-
neous and anisotropic distributed grains and not only for a constant density ρ
as in Eq. (61). The main purpose of this section is to illustrate the capability
of the calculus. Integral geometry provide not only an interesting concept for
the description of spatial structures, but also powerful techniques to calculate
Minkowski functionals, for instance. Although this section contains a lot of tech-
nical details, it hopefully also illustrates that the mathematical results might
be helpful for the applications in statistical physics mentioned in the previous
sections.

Mean Values for Correlated Grains Repeating the additivity relation (6)
of Minkowski functionals one obtains the inclusion-exclusion formula

Mν(
N⋃
i=1

Ki) =
∑

iMν(Ki)−
∑

i<jMν(Ki ∩Kj)

+ . . .+ (−1)N+1Mν(K1 ∩ . . . ∩KN ) . (69)

Generally the statistics of a homogeneous point process in a domain Ω with vol-
ume |Ω| is specified by a sequence of density correlation functions ρ(n)(r1, . . . , rn)
with the homogeneous density ρ ≡ ρ(1)(r1). The intensity of the ν-th Minkowski
measure for the augmented coverage per unit volume are then obtained from the
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additivity relation (6) in the form

M̄ν

[{
ρ(n)

}]
=

∞∑
n=1

(−1)n+1

n!|Ω|
∫
Ω

dΓ (n) Mν [
n⋂
i=1

BR(ri)] ρ(n)(Γ (n)) (70)

where we introduced, for convenience, the variable Γ (n) = (r1, . . . , rn) with
the integration measure

∫
Ω
dΓ (n) =

∏n
i=1

∫
Ω
dri. Obviously, the Minkowski

measures embody information from every order n of the correlation functions
ρ(n)(r1, . . . , rn). If the density correlation functions ρ(n)(r1, . . . , rn) were in-
dependent of position, the integrals in Eq. (70) could be performed using the
fundamental kinematic formula (9). But this is not the case for most physical
applications.

An alternative and sometimes more convenient expression for the densities
M̄ν can be obtained in terms of so-called connected correlation functions, i.e.,
the centered cumulants k(n)(Γ (n)) with k(1)(r1) = ρ, k(2)(r1, r2) = ρ(2)(r1, r2)−
ρ(1)(r1)ρ(1)(r2), and, in general,

ρ(n)(Γ (n)) =
∑
{P}

|P|∏
i=1

k(mi)(Γ (mi)) (71)

Thus, the correlation functions of order n is given by a sum over all possible
partitions P of Γ (n) = (r1, . . . , rn) into |P| parts of mi elements. Each vector
rj ∈ Γ (n) occurs exactly once as an argument of a cumulant function k(mi) on
the right side, i.e.,

∑|P|
i=1mi = n.

Using additivity (6) and kinematic formula (9) of the Minkowski function-
als one can follow the derivation in [34] so that one immediately obtains the
expression for the intensities [35]

M̄ν

[{
k(n)

}]
=
∂ν

∂tν

(
1− eM(ρ,t)

)∣∣∣∣
t=0

(72)

due to the factorization of the integral in Eq. (70). The averaged Minkowski
polynomial

M(ρ, t) =
∞∑
n=1

(−ρ)n
n!

 n∏
i=1

∫
G

dg1

 d∑
ν=0

tν

ν!
Mν(Kg1 . . . ∩Kgn)k

(n)(r1, . . . , rn)

(73)

dependent now on the correlation functions k(n)(r1, . . . , rn) in contrast to (61).
Here, g = (r, Θ) denotes not only the location r of the grain K but also the
orientations Θ. The integration

∫
dg =

∫
dr × ∫

dΘ is the direct product of
the integrations over all locations and orientations. In particular, one obtains
(compare the analogous result (61) for Poisson distributed grains)

m0(ρ, {k(n)}) = 1− e−ρm̄0

m1(ρ, {k(n)}) = ρm̄1e
−ρm̄0

m2(ρ, {k(n)}) = (ρm̄2 − m̄2
1ρ

2)e−ρm̄0

m3(ρ, {k(n)}) = (ρm̄3 − 3m̄1m̄2ρ
2 + m̄3

1ρ
3)e−ρm̄0 .

(74)
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with the averaged volume m̄0[k(n)] = V̄ (ρ, {k(n)})/ρ and the averaged Minkowski
functionals

m̄ν [k(n)] =Mν(K)−
∞∑
n=2

(−1)n

n!ρ

n∏
i=2

∫
K

dgi Mν(K0

n⋂
i=2

Kgi) k
(n)(0, r2, . . . , rn)

(75)

for single grains K. Poisson distributed grains have vanishing cumulants
k(n)(Γ (n)) = 0 and one recovers m̄ν [k(n)] = Mν(K). The void probability func-
tion of a domain K is simply P0(ρ,K) = exp

{−V̄ } and the probability to find
exactly N points in the domain K is given by

PN (ρ,K) = −ρ
N

N !

(
∂

∂ρ

)N

P0(ρ,K) . (76)

Notice: we have used analogous expressions to Eq. (75) already for the formula-
tion of Rosenfeld’s fundamental measure functional (36) introduced in Sect. 4.1,
where the Minkowski functionals are averaged over an inhomogeneous density
ρ(r).

The universal, i.e., polynomial form of the mean values (74) is related to the
additivity of the Minkowski functionals due to the decomposition into local terms.
Thus, the dependence on shape, orientation and correlations of the grains (see
also Eqs. (89) and (94)) enters only into a finite number of relevant coefficients.
We have used this property of additive functionals already in Sect. 3.1 to define
morphological order parameters where the reduction of spatial information to a
finite number of measures is essential.

An important approximation for many applications in physics is the assump-
tion that the cumulants k(n)(Γ (n)) for n ≥ 3 are small compared to the second
centered two-point correlation function ξ(r) = k(2)(0, r)/ρ2. Within this Gaus-
sian approximation one obtains

m̄0[ξ(r)] = V (K)− ρ

2

∫
G

dgV (K ∩ gK)ξ(r)

m̄1[ξ(r)] =M1(K)− ρ
∫
G

dgM1(K ∩ gK, ∂K)ξ(r) ,

m̄2[ξ(r)] = M2(K)− ρ
∫
G

dg(M2(K ∩ gK, ∂K)

+
1
2
M2(K ∩ gK, ∂K ∩ g∂K))ξ(r) . (77)

If the correlation function decays algebraicly ξ(r) = k2(r1, r2) =
(
r0
r

)γ , r =
|r1−r2|, with an scaling exponent γ and a correlation length r0 one finds for the
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Fig. 15. Intensities mν(x)/mν(x = 0) of the area F (ν = 0), perimeter U (ν = 1), and
Euler characteristic χ (ν = 2) for correlated discs of radius R in two dimensions as
function of the density x = πR2ρ [35]. The correlation function of the ‘Poisson-Gauss
process’ is given by ξ(r) = (r0/r)γ with γ = 1.8 - a commonly used expression for the
distribution of galaxies in the universe (compare Sect. 3.1.1 and Fig. 7 in the paper by
M. Kerscher in this volume).

intensities of the Minkowski measures (74) for homogeneously distributed discs
B

(2)
R of radius R in two dimensions

m0(ρ) = 1− exp

{
−ρπR2 + ρ2πR2r20

(
2R
r0

)2−γ (
π

2− γ − g(γ)− f(γ)
)}

m1(ρ) = (1−m0(ρ))ρR

(
1− ρr20

(
2R
r0

)2−γ

(
π

2− γ − g(γ))
)

m2(ρ) =
m1(ρ)
πR

− m1(ρ)2

1−m0(ρ)
− (1−m0(ρ))

ρ2r20
π

(
2R
r0

)2−γ

g(γ)

(78)
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with the functions

f(γ) = 2

1∫
0

dyy2−γ
√

1− y2 =
Γ (3/2)Γ (3/2− γ/2)

Γ (3− γ/2) ,

g(γ) = 2

1∫
0

dy y1−γ arcsin(y) .

The results are shown in Fig. 15 for γ = 1.8 and several correlation lengths
r20ρ. In order to archive a positive covered volume m0 = 1 − P0 > 0 the density
is constraint by the inequality (2x)2−γ( π

2−γ − g(γ) − f(γ)) < (ρr20)
γ/2. For

larger densities the Gaussian approximation fails so that the curves in Fig. 15
are plotted only for the density regime with m0(ρ) > 0.

The main result of this Sect. is Eq. (74) which can immediately be used
for the density functional theory (68) if the correlation function of the reference
system is known. For hard spheres, for instance, one may use the Percus-Yevick
approximation to obtain analytic expressions for ξ(r) (see the paper by H. Löwen
in this volume, [22]) and calculate mν [ρ, ξ(r)] within the Gaussian approxima-
tion. Further physical applications of the intensity measures (74) for correlated
grains are obvious if one remembers the problems considered in the previous sec-
tions. The mean Euler characteristic (74) can be used, for instance, to estimate
percolation thresholds for correlated processes (see Sect. 4.2). Using dynamical
equations for the structure function ξ(r, t) one immediately obtains the dynamics
of the Minkowski functionals by applying the expressions (77). Of course, higher
order correlations which are neglected in Eq. (77) should be taken into account in
a complete dynamical theory for geometric measures (see Sect. 3.2). One can use
the intensity measures (74) to analyze point processes as described in Sect. 3.3.
For the configurations of the Lennard-Jones fluid shown in Fig. 9, for instance,
or for an ensemble of hard particles (Fig. 1 on the right) one knows the two-
point structure function very well theoretically by integral equations (see [22])
and also experimentally (scattering experiments with neutrons or X-rays). The
Gaussian approximation (77) can be used to quantify the importance of higher
order correlations in point patterns if the Minkowski functions can be measured
directly for particle configurations as described in Sect. 3.3. It is not known yet
if the Gaussian approximation (77) describes the Minkowski functions for flu-
ids accurately or if an effective theory for the intensity measures for correlated
processes such as an ensemble of hard spheres have to be developed (compare
the problem considered in Sect. 3.3. For many applications in statistical physics
it might be helpful to find explicit expressions for so-called hierarchical Pois-
son processes where the cumulants can be written as the product of two-point
functions

k(n)(x1, . . . ,xn) = cn
∑
rj

n−1∏
j=1

k(2)(rj) . (79)
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The sum runs over all nn−2 tree-graphs with n-1 lines rj = |xl − xm| so that all
points xj are connected. The dimensionless constant cn depends on the model
used, for instance, nn−2cn = 1, nn−2cn = (n− 1)!, or nn−2cn = (2n− 3)!! [15].

Inhomogeneous and Anisotropic Distributions of Grains In many phys-
ical applications spatial structures are neither isotropic nor homogeneous. Con-
sider, for example, magnetic particles in an external electro-magnetic field, or
the influence of gravitation on the density of a fluid. In these cases the con-
figurational averages have to be weighted with position dependent intensities
which breaks the rotational and translational symmetry of the system. But the
kinematic formulae (9) requires an integration over a motion-invariant measure
so that they cannot be used for applications in inhomogeneous and anisotropic
systems.

A first step towards a solution of this problem is the formulation of trans-
lational kinematic formulae introduced by Weil in his contribution ‘Mixed mea-
sures and inhomogeneous Boolean models’ to this volume. Nevertheless, the
mixed measures which occur in these formulae are difficult to calculate for ar-
bitrary shapes, so that special ensembles may be interesting to look at. In this
section the configurations of the Boolean model are restricted first to an ensem-
ble of oriented, overlapping cylinders with arbitrary basis, i.e., to shapes which
are much more restricted in orientation then the configurations of the random
coverage introduced in the beginning of this section (see Eq. (41). A special case
are rectangular polyhedra (quader, cubes) which are oriented parallel to the co-
ordination axes of the Euclidean space. Such statistical models have been used
widely, for instance, as oriented percolation models [1], or models for colloidal
particles [11].

Oriented Cylinders In a first step oriented cylinders Zi = Ai ⊕ Si(x) are
considered where Ai ∈ H denote arbitrary shaped, closed, and convex sets in a
hyper-plane H = IRd−1, Si(x) is a line segment in the orthogonal complement
H⊥ = IR centered at x ∈ IR, and ⊕ denotes the union of all points z = a + s,
which can be written as a sum of a point a ∈ Ai and s ∈ Si contained in Ai and
Si, respectively. Using the relation (A⊕S)∩ (A′ ⊕S′) = (A∩A′)⊕ (S ∩S′) one
finds the expression [21](

d

µ

)
Vµ(A⊕ S) =

µ∑
ν=0

(
p

ν

)(
d− p
µ− ν

)
V ′
ν(A)V ′

µ−ν(S) , (80)

for the Minkowski functionals Vµ =Wµ/ωµ of cylinders where the prime denotes
that V ′

ν is the Minkowski functional in the p-dimensional subspace H or in the
complementH⊥, respectively. The configurations of the Boolean model are given
by unions of oriented cylinders Zi ZN =

⋃N
i=1 giAi ⊕ Si(xi), where gi denotes

translations and rotations in the hyper-plane H = IRd−1. The intensity measures
v
(d−1)
µ (ρ), i.e., the mean values of the Minkowski functionals per d−1-dimensional
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unit volume in H are given by Eq. (61). Using the one-dimensional kinematic
formulae ∫

IR
V ′
0(S

′ ∩ S(x))dx = V ′
0(S

′)V ′
0(S)∫

IR
V ′
1(S

′ ∩ S(x))dx = V ′
1(S

′)V ′
0(S) + V ′

1(S)V
′
0(S

′) , (81)

the additivity relation (6), and the decomposition rule (80) one finds for the
intensity measure (Vµ =Wµ/ωµ, ρ = N/|Ω|)

v(cyl)µ (ρ) =
N∏
i=1

 1
|Ω|

∫
G

dgi

∫
IR

dxi

Vµ(Z) , |Ω| =
∫
G

dg

∫
IR

dx (82)

the relation [35]

v(cyl)µ (ρ) =
d− µ
d

v(d−1)
µ (aρ) +

µ

d

∂

∂a
v
(d−1)
µ−1 (aρ) (83)

with the mean length a =< V ′
0(Si) > of the line segments in H⊥ and the inten-

sities v(d−1)
µ (ρ) for configurations ∪iAi ⊂ H in the d − 1-dimensional subspace

H which are given by Eq. (61). Thus, mean values of Minkowski functionals for
randomly distributed but oriented d-dimensional cylinders are determined by
the mean values v(d−1)

µ of the (d− 1)-dimensional basis sets Ai.

Oriented d-dimensional Rectangles In a second step one can additionally
restrict the orientation of the cylinders in the hyper-plane H. Let us consider
d-dimensional oriented rectangles Q(d) of edge lengths qi (i = 1, . . . , d), for
instance, where the edges are parallel respectively to the axes of the coordination
system in IRd. Using the intensity measures V (1)

0 = 1− e−ρq1 and V (1)
1 = ρe−ρq1

for sticks of length q1 in one dimension, one can apply relation (83) recursively
yielding the explicit expression [35]

V̄ (d)
ν (ρ) = Sν

(
q−1
1 , . . . , q−1

d

) ν∑
n=1

[
n∑
i=1

iν(−1)i+1

(n− i)!i!

]
αne−α (84)

for the intensities (mean values) of the Minkowski measures for oriented rectan-
gles Q(d) with α = ρ

∏d
i=1 qi and the ν-th elementary symmetric function

Sν
(
q−1
1 , . . . , q−1

d

)
=

1(
d
ν

) ∑
i(1)<i(2)<...<i(ν)

1
qi(1)qi(2) · · · qi(ν)

(85)

of the inverse edge lengths qi. In particular, one obtains dS1 =
∑d

i=1
1
qi

,
(
d
2

)
S2 =∑

i<j
1

qiqj
,
(
d
3

)
S3 =

∑
i<j<k

1
qiqjqk

, and therefore, V̄0 = 1 − e−α, V̄1 = S1αe
−α,

V̄2 = S2(α−α2)e−α, and V̄3 = S3(α−3α2+α3)e−α. These expressions differ from
the solution (61) where the average was performed over arbitrary orientations
of the rectangles. Notice: the intensities (84) do not depend on the dimension of
space IRd in contrast to the orientational-averaged results (61).
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Oriented Averaged Cuboids Of course, one may rotate the oriented rectan-
gles by 90o motions so that the edges parallel to the coordinate axes permutate
yielding Sν(q−1

1 , .., q−1
d ) = q−ν with an averaged edge length q = 1

d

∑
i qi. Notice:

in general Sν(q−1
i ) �= q−ν so that the Minkowski measures of oriented rectangles

differ by an amplitude qνSν(q−1
i ) from an averaged ensemble where 90o rota-

tions are performed. For this special case of oriented d-dimensional rectangles
Qd) with permutated edges it is even possible to derive analogously to Eq. (9)
the kinematic formula [35]∫

G

Vµ(Q ∩ gQ′)dg =
µ∑

ν=0

(
µ

ν

)
Vν(Q)Vµ−ν(Q′) (86)

for unions Q, Q′ of rectangles. Here, G denotes the restricted group of motion, i.e.,
translations and 90o-rotations (point group of a d-dimensional cube). Following
the same method as for Eq. (61) one obtains for the mean values of the Minkowski
measures per unit volume with m =

∑d
i=0 q

d−iti/i! the recursion relation [34]

vν(ρ) =
∂ν

∂tν
e−ρm|t=0 =

∂ν−1

∂tν−1

ρ

q
(−m+

td

d!
)e−ρm|t=0 =

ρ

q

∂vν−1(ρ)
∂ρ

(87)

instead of Eq. (83). Solving this reduced recursion relation one immediately
recovers the expression (84) with Sν = q−ν .

Orientational Distribution P (Θ) In the ensembles considered above the
grains are strictly oriented parallel to perpendicular axes. In most physical sit-
uations this extreme case is not realized but only a partial orientation, i.e., the
orientational degrees of freedom Θ of a grain K are weighted with a probability
P (Θ). The orientation of a magnetic particle, for instance, depends gradually on
the intensity of an external magnetic field. Since the intensities mν [ρ, P (Θ)] do
not only depend on the density ρ of the grains but also on the distribution of the
orientations Θ we refer to them as intensity functionals of Minkowski measures.

In order to derive intensities of Minkowski measures for unions of oriented
grains we extend the notion of Minkowski functionals to local functionals. Instead
of using integrals over the total surface ∂A of a grain A (see Eq. 1) we define
local Minkowski functionals [64]

Wν(A,B) =
1
ν
(
d
ν

) ∫
(∂A)∩B

Sν−1dS , W0(A,B) =
∫

A∩B
χ(A ∩ x)dx (88)

by integrating only over a part ∂A∩B of the surface ∂A. Then, one obtains for
an ensemble of grains with density ρ the mean values
mν(ρ) = δν0 − e−ρm0(K)∑ν

µ=1
(−ρ)µ

µ! m̄µ
ν [P (Θ)] (compare Eq. (61)) with

m̄1
ν [P (Θ)] =Mν(K) and

m̄µ
ν [P (Θ)] =

µ∏
i=1

∫
G

dgi P (Θi)Mν(
µ⋂
i=1

giKi,

µ⋂
i=1

gi∂Ki) (89)
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where the integration over the motions gi = (ri, Θi) of the grain Ki is weighted
with respect to the orientation Θi [35]. Notice: the mean volume m0(ρ) = 1 −
e−ρV and surface aream1(ρ) = m1ρe

−ρV do not depend on the probability P (Θ),
i.e., on the orientational distribution. W. Weil shows in his paper in this volume
that for the volume and surface area the kinematic formula (9) remains the
same even for oriented grains where the integration is performed only over the
translational part. This is not the case for the integral mean curvature H and the
Euler characteristic so that the intensities m2(ρ;P (Θ)) and m3(ρ;P (Θ)) depend
sensitively on the orientational distribution P (Θ). Notice: due to the kinematic
formula (9) for P (Θ) = 1 the coefficients m̄µ

ν [P (Θ)] factorize into products of
Minkowksi functionalsMα(K) of single grainsK so that one recovers the solution
(61).

Let us consider independently distributed rectangles in two dimensions, for
instance. Similar results can be obtained in d dimensions but with an inconve-
nient increase of notation. Then, expression (89) for the mean value of the Euler
characteristic reduces to m2[ρ;P (φ)] = e−ρab

(
πρ− ρ2

2 m̄
2
2[P (φ)]

)
with

m̄2
2[P (φ)] =

∫ 2π∫
0

dφdφ′

4π
P (φ)P (φ′)

[
(a2 + b2) sin |φ− φ′|+ 2ab cos |φ− φ′|]

(90)

where a and b denotes the length of the edges [35]. One recovers the solutions
(61), (84), and (87) for oriented rectangles by using the probabilities P (φ) =
1, P (φ) = 2πδ(φ), and P (φ) = π/2(δ(φ) + δ(φ − π/2) + δ(φ − π) + δ(φ −
3π/2)), respectively. The advantage of Eq. (90) is the explicit dependence on
the distribution P [φ] so that it can be used within a density functional theory
with orientational degrees of freedom of the particles (see Sects. 4.1 and 5.1).

Let us consider independent distributed particles in a constant electric or
magnetic field B = Bez, where ez denotes the normal direction of the field.
Then the Boltzmann factor, i.e., the probability of an orientation θ between the
dipole d of the particle and ez is given by P (θ) ∼ e−βB cos(θ) with cos(θ) = dez.
Using the approximation

P (θ) =
B

sinh(B)

{
e−B+2θB/π 0 ≤ θ < π
e3B−2θB/π π ≤ θ < 2π ,

(91)

for the Boltzmann factor P (θ) one obtains (x = (2B/π)2)

w2(ρ;B) = e−ρab
(
πρ− ρ2

2
B

sinhB
1

1+x

[
B

sinhB (a2 + b2 + 2ab coshB)+

(a2 + b2) coshB(1 + 2x
1+x ) + 2ab(1 + 2x

1+x (1 +
√
x sinhB))

]) (92)

In Fig. 16 the intensity measure w2(ρ;B) is shown as function of the magnetic
field B. The Euler characteristic of an ensemble of rectangles (edge length a and
b), i.e., the difference of components and holes in two dimensions, change even
its sign when the magnetic field is increased. Oriented rectangles (|B| >> 1,
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compare Eq. (84)) are less connected than random oriented grains (compare
Eq.(61)). The difference can induce a phase transition in an ensemble of magnetic
rod like particles what is well-known in the theory of liquid crystals.

Inhomogeneous Density ρ(r) of Grains In order to apply the density func-
tional (68) on inhomogeneous fluids one has to find first explicit expressions
for the intensity measures mν [ρ(r)] on the density ρ(r) of the grains. In the
previous subsections oriented grains were studied, here, isotropic but spatially
inhomogeneous distribution of grains are considered. Since the intensities de-
pend on the density function ρ(r) of the grains mν [ρ(r)] are intensity function-
als of Minkowski measures. In contrast to the result (89) for a homogeneous but
anisotropic distribution even the mean volume and surface area do depend on
the local density. One obtains for the volume intensity

m0[ρ(r)] = 1− e−V̄ [ρ(r)] (93)

with the averaged volume V̄ [ρ(r)] =
∫
G

χ(r∩ gK)ρ(r)dg already used in Eq. (37)

for the formulation of the Rosenfeld density functional in Sect. 4.1. Accordingly,
the intensities of the Minkowski measures read (g = (r, Θ))

mν [ρ(r)] = e−V̄ [ρ(r)]
ν∑

µ=1

(−1)µ+1

µ!

µ∏
i=1

∫
G

dgiρ(ri)Mν(
µ⋂
i=1

giKi, r
µ⋂
i=1

gi∂Ki) (94)

(see the paper by W. Weil in this volume and [35]). These expressions are similar
in structure than the mean values (61) for a Poisson distribution of grains but
with weighted integrals of local Minkowski functionals of µ grains. The local
density functions ρ(ri) make an explicit calculation via a kinematic formula
impossible but for special shapes one can at least find explicit expressions for
the densities mν [ρ(r)] which then can be evaluated numerically. Let us discuss
a few examples illustrating the dependence of the Minkowski measures on the
distribution of the grains, particularly of the Euler characteristic which is more
sensitive to inhomogeneous features than the covered volume or the surface area.
For sticks of length L in one dimension one obtains w0[ρ(r)] = 1− e−L[ρ(r)] and
2Lw1[ρ(r)] = L[ρ(r)]e−L[ρ(r)] with the local length L[ρ(r)] =

∫ L/2
−L/2 ρ(x−y)dy. A

homogeneous gravitational field V = mgx, x ∈ [−D,D], yields the local density

ρ(x) = cosh−1(βmgD) ·

eβmgD x1 ≤ −D
e−βmgx1 −D < x1 < D
e−βmgD x1 ≥ D

(95)
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for grains with mass m in the center and in thermal equilibrium at temperature
kBT = β−1. The local length is then given by

L(x) =

eβmgD x ≤ −D − L
2

e−βmgx 1−eβmg(x+D+L/2)

1−eβmgL
+ eβmgD(L2 − x−D) −L

2 < x+D < +L
2

c · e−βmgx −D + L
2 < x < D − L

2

c · e−βmgx 1−eβmg(x−D−L/2)
1−e−βmgL + e−βmgD(L2 + x−D) −L

2 < x−D < L
2

e−βmgD x ≥ D + L
2

(96)

with c = 2 sinh(βmgL/2)
βmgL (Fig. 16). The transition from a homogeneous phase (ρ+)
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Fig. 16. Intensity measures w0 and w1 for one-dimensional sticks in a gravitational
field (L << D) and the mean Euler characteristic w2(B) of rectangles (edge lengths a
and b) in a magnetic field B [35].

to another with lower density (ρ−) is accompanied by an increase of the Euler
characteristic w1 (number of components in one dimension) in the interfacial
zone [−D,D], whereas the covered volume w0 is decreasing monotonously.

For discs of radius R in two dimensions one obtains the averaged area and
boundary length (compare Eq. (37))

V̄ [ρ(r)] =

R∫
0

2π∫
0

dφdx xρ(r+ xeφ) Ū [ρ(r)] = R

2π∫
0

dφ ρ(r+Reφ) (97)

with the normal direction eφ = (cos(φ), sin(φ)) and the intensity of the Euler
characteristic

w2[ρ(r)] = e−V̄ (r)

 Ū(r)
2R

− R2

2

2π∫
0

π∫
−π

dφdφ′ρ(r+Reφ)ρ(r+Reφ+φ′)
φ′

2
sin(φ′)

 .

(98)
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The factor |φ′|/2 denotes the curvature at r where two discs centered at Reφ
and Reφ+φ′ have a common boundary point. The factor sin |φ′| is the Jacobian
due to the coordinate transition to φ. Accordingly, for spheres of radius R in
three dimensions one obtains the averaged volume and surface area (compare
Eq. (37))

V̄ [ρ(r)] =
R∫
0

2π∫
0

π∫
0
dφdθdx x2 sin(θ)ρ(r+ xeφθ) ,

S̄[ρ(r)] = R2
2π∫
0

π∫
0
dφdθ sin(θ)ρ(r+Reφθ) ,

with the spherical surface element dΩ = sin(θ)dφdθ and the normal directions

e′
φ′θ′ = cos(φ) sin(θ) cos(θ′) + cos(φ) cos(θ) cos(φ′) sin(θ′)− sin(φ) sin(φ′) sin(θ′)
sin(φ) sin(θ) cos(θ′) + sin(φ) cos(θ) cos(φ′) sin(θ′)− cos(φ) sin(φ′) sin(θ′)

cos(θ) cos(θ′)− sin(θ) cos(φ′) sin(θ′)



eφθ =

 cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)


the intensities of the Minkowski measures [35]

w0[ρ(r)] = 1− e−V̄ (r) , w1[ρ(r)] =
S̄(r)
3
e−V̄ (r)

w2[ρ(r)] = e−V̄ (r)
(
S̄(r)
3R

− R4

2

∫ ∫
dΩdΩ′ρ(r+Reφθ)ρ(r+Re′

φ′θ′)
θ′

6
sin(θ′)

)

w3[ρ(r)] = e−V̄ (r)
(
S̄(r)
3R2 − R4

2

∫∫
dΩdΩ′ρ(r+Reφθ)ρ(r+Re′

φ′θ′) 4
3R sin2(θ′/2)

+R6

6

∫∫∫
dΩdΩ′dΩ′′ρ(r+Reφθ)ρ(r+Re′

φ′θ′)ρ(r+Re′
φ′+φ′′θ′′)

|∆(φ′′,θ′,θ′′)|
3 sin(θ′) sin(θ′′) sin(φ′′)

)
.

(99)

The factor |∆|/3 denotes the Gaussian curvature at r where the boundary of
three spheres centered at Reφθ, Re′

φ′θ′ , and Re′
φ′+φ′′θ′′ meet. It is given by

L’Huiliers formula

tan2 ∆

4
= tan

α1 + α2 + α3

4
tan

α1 + α2 − α3

4

tan
α1 − α2 + α3

4
tan

−α1 + α2 + α3

4
(100)

in terms of the angles α1 = 2arcsin(|r|/2R), α2 = 2arcsin(|y|/2R), α3 =
2arcsin(|r − y|/2R) of a spherical triangle. Taking into account the relation
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∆(Φ, θ′, θ′′) + ∆(Φ, π − θ′, π − θ′′) = 2∆(Φ, π/2, π/2) = 2Φ one can perform
the integration in Eq. (99) for homogeneous density ρ(r) ≡ ρ and one recovers
the mean value (61). The factor sin(θ′) sin(θ′′) sin |φ′′| is a Jacobian due to the
change to spherical coordinates φ, θ for the motion of a sphere.

The evaluation of the integrals in Eq. (99) is only necessary if the charac-
teristic length σ of the inhomogeneous density is comparable to the size of the
grains, i.e., of the radius R of the discs and spheres. In the limit R << σ the
dependence of the Minkowski functionals on the inhomogeneity is well described
locally by Wν [ρ, r] = Wν(ρ(r)), i.e., by using the local density ρ(r) instead of a
global parameter ρ.

Possible applications of the main results (98) and (99) (or Eq. (94) in gen-
eral) of this section are numerous. One may use them to analyze inhomogeneous
distributions of galaxies in a cluster (see M. Kerscher in this volume), the esti-
mation of percolation threshold in inhomogeneous porous rocks (Sect. 4.2), and
the formulation of a density functional theory for the morphological model of
complex fluids introduced in Sect. 5.1. Several variational problems, for instance,
the minimization of surface energies (Minkowski functionals) with respect of the
density of grains or the determination of the shape of vesicles or drops in an
inhomogeneous environment are now possible.

Problem: Effective Approximations The above formulae are often quite
useless since the cumulants are not known or difficult to calculate. So for many
important physical models effective expressions for the mean values of the Min-
kowski measures are not known. For instance, it would be very helpful for many
applications to have at least approximative expressions for the mean values for
distributions of hard spheres or discs where the cumulant expression in the Gaus-
sian approximation (77) completely fails.

5.3 Second-Order Moments of Minkowski Measures

In Sect. 5.1 a high temperature expansion for the partition sum of the general-
ized Widom-Rowlinson model were derived. Thermodynamical quantities such
as specific heats or susceptibilities are related to second order moments, i.e.,
variances of geometric measures. Thus, starting from the Hamiltonian (42) it
is necessary to calculate not only the mean values but also the second order
moments

mνµ(ρ) = lim
N→∞

< Mν(A)Mµ(A) > − < Mν(A) >< Mµ(A) >
|Ω| (101)

of the Minkowski measures Mν(A). For the Boolean model of independent dis-
tributed grains K these second order moments are given by the integrals [35]

mνµ(ρ) =
ν∑

λ1=1

µ∑
λ1=1

∫
IRd

dxMλ1λ2
νµ (N ;0,x) (102)
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Fig. 17. Grand-canonical second order measures wνµ(ρ) for the area F (ν = 0), perime-
ter U (ν = 1), and Euler characteristic χ (ν = 2) of Poisson distributed discs of radius R
(m0 = πR2) in two dimensions as function of the density πR2ρ. Notice: the functional
form of the variances becomes more complex with increasing index ν. The boundary
length w11 exhibit two fluctuation maxima and the Euler characteristic shows a single
(large) maxima but two additional shoulders.

with the structure functions

Mλ1λ2
ν1ν2

(N ;x1,x2) = −(−1)λ1+λ2

(
N

λ1

)(
N

λ2

)
Mλ1λ2

ν1ν2;0(0,∞)
|Ω|λ1+λ2

(
1− V

|Ω|
)2N−λ1−λ2

+ (−1)λ1+λ2

λ2∑
l=0

(
N

λ1

)(
λ1
l

)(
N − λ1
λ2 − l

)
Mλ1λ2

ν1ν2;l(x1,x2)
|Ω|λ1+λ2−l

(
1− V (x1,x2)

|Ω|
)N−λ1−λ2+l

(103)

and (λi > 0, Y (1)
j := rj∂K̂x1/rjK̂x2 , Y

(2)
j := rj∂K̂x2/rjK̂x1 , Y

(12)
j := rj∂K̂x1 ∩

rj∂K̂x2)

Mλ1λ2
ν1ν2;l(x1,x2) =

λ1+λ2−l∏
i=1

∫
R

dri

λ1∏
j=λ1−l+1

∫
Y

(12)
j

dyj
sinΦj

λ1−l∏
j′=1

∫
Y

(1)
j′

dyj′

λ1+λ2−l∏
j′′=λ1+1

∫
Y

(2)
j′′

dyj′′

×∆11(n1
y1
n1

y2
)∆21(n1

y1
n1

y2
n1

y3
) · · ·∆(λ1−1)1(n1

y1
· · ·n1

yλ1
)

×∆11(n2
yλ1−l+1

n2
yλ1−l+2

) · · ·∆(λ2−1)1(n2
yλ1−l+1

· · ·n2
yλ2

)

×Mν1(
λ1⋂
j=1

rjKyj ,x1)Mν2(
λ1+λ2−l⋂
j=λ1−l+1

rjKyj ,x2) (104)

where Φj is the angle between the normals n1
j and n2

j of K̂x1 and K̂x2 at yj . The
Jacobians ∆ij are given explicitly by Santaló [52], particularly ∆11 = | sinΦ|. For
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a distribution of Poisson distributed sticks of length r in one spatial dimension
the expressions (102)-(104) reduce to

m00(ρ) = 2
ρ

(
e−ρr − (1 + ρr)e−2ρr

)
m10(ρ) = − (e−ρr − (1 + 2ρr)e−2ρr

)
/2

m11(ρ) = ρ
(
e−ρr − 2ρre−2ρr

)
/4

(105)

which are shown in Fig. 18. For discs of radius R and density ρ in two dimensions
one obtains with V̄ (x̄1, x̄2) = πR2 + 2R2 arcsin(s) + 2R2s

√
1− s2, V = πR2,

s = (|x1 − x2|)/(2R), and sin(Φ/2) = s (0 ≤ Φ ≤ π) the Minkowski functions
(ν = 1, 2)

M10
ν0 = R2−νπ1−νρe−2ρV −R2−ν π+Φ

2πν ρe
−ρV̄ ,

M20
20 = ρ2R2

4π2 e
−ρV̄ (4πΦ+ 4 + 4 cosΦ− 2(π − Φ) sinΦ)−R2ρ2e−2ρV

M11
νµ = R2−ν−µ

(
R2ρ2 (π+Φ)2

4πν+µ e
−ρV̄ + ρ

2πν+µ sinΦe
−ρV̄ − π2−ν−µR2ρ2e−2ρV

)
M21

2µ = −R4−µρ3 π+Φ
2π2+µ e

−ρV̄
(
πΦ+ 1 + cosΦ− π−Φ

2 sinΦ
)

− R2−µ
2π2+µ sinΦρ

2e−ρV̄ (2π − sinΦ− (π − Φ) cosΦ) + π1−µR4−µρ3e−2ρV

M22
22 =

(
Rρ
π

)4
e−ρV̄

(
πΦ+ 1 + cosΦ− π−Φ

2 sinΦ
)2

+ ρ2
(
π−Φ
2π2

)2
e−ρV̄

+ρ3 R2

2π4 sinΦe
−ρV̄ (2π − sinΦ− (π − Φ) cosΦ)2 − (Rρ)4e−2ρV

+ 1
2ρ

2R2
( 1
π − 4

π3

)
e−ρV δ(x1 − x2) .

(106)

In Fig. 17 the exact grand-canonical second order moments of the Minkowski
measures are shown for discs in two dimensions. Notice: the variances for the
Euler characteristic w22 are large. It is well known that the difference δC = Cp−
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Fig. 18. (a) Second order measures wνµ(ρ) of length L (ν = 0) and Euler characteristic
χ (ν = 1) for Poisson distributed sticks of length r in one dimension as function
of the density ρr (see Eq. (105)). (b) Second order measures δ2χd/(p(1 − p)) of the
Euler characteristic χ on a d-dimensional cubic lattice Λ (see Eq. (119)). Notice: the
variances as functions of the probability p that a lattice site is occupied becomes more
and more complex with increasing index ν. In contrast to the results (106) for random
distributions in space IRd (Fig. 17), the second order moments for lattice configurations
are more convenient to calculate.
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CV > 0 between the specific heat at constant pressure Cp and at constant volume

Cv is given by δC = T
(
∂p
∂T

)
V

(
∂V
∂T

)
p
. Accordingly, one finds for the difference

δmν1ν2(ρ) = m
(gk)
ν1ν2 −m(k)

ν1ν2 of the moments at constant grain number (canonical
ensemble, Bernoulli distribution) and at constant density but fluctuating number
(grand canonical ensemble, Poisson distribution) the expression

δmν1ν2(ρ) =
ν1∑

µ1=1

ν2∑
µ2=1

δMµ1µ2
ν1ν2

= ρ
∂mν1(ρ)
∂ρ

∂mν2(ρ)
∂ρ

, (107)

given by the derivatives of the densities mν(ρ) (see Eq. (58) in Sect. 5.1).

Problem: Dependence on Shape, Orientation, and Interaction of the
Grains Although it is possible to derive the explicit expression (103) for second
order moments of Minkowski functionals, the actual evaluation is quite difficult
for non-spherical shapes. In order to study the dependence on shape and ori-
entation of the grains similar general results as for the mean values (see Sect.
5.2) or at least reliable approximations would be useful for many applications
in statistical physics. Recent Monte-Carlo simulations of hard spheres decorated
with larger penetrable spherical shells (compare the statistical model for colloidal
particles introduced in Sect. 4.3; see Fig. 1) showed that second order moments
of the Minkowski measures depend essentially on the interactions between the
grains [10].

5.4 Lattices: Models for Complex Fluids and Percolation

Since Lenz and Ising introduced the so-called Ising model in the early 1920s,
lattice models became the backbone of statistical physics (see the papers by H.-
0. Georgii and by E. Thönnes in this volume). Therefore, introducing integral
geometry for lattice configurations, i.e., for spatial sets generated by unions of
regular, space-filling polyhedra is a natural way to go. Let me sketch the main
ideas without being mathematical rigorous (for details see [35,38]). Although
this section contains a large amount of rather technical details without referring
explicitly to statistical physics. But the main aim is to provide a mathemat-
ical basis in order to make lattice approximations feasible for morphological
image analysis (Sect. 3.1), fractals (Sect. 3.4), percolation models (Sect. 4.2),
and complex fluid theories (Sect. 4.3). In principle, any continuous black/white
pattern in the Euclidean space IRd can be discretized by applying a mesh of
finite lattice spacing a and erasing or filling a lattice cells completely. This pro-
cedure is done automatically by a digital recording of a continuous shape anyway
so that every picture of a realistic structure is actually a lattice configuration.
Such discretized shapes can be translated and rotated according finite lattice
spacings and angles. Integral geometry guarantees that curvature measures are
well-defined on lattices irrespectively of edges and corners of lattice configura-
tions. Although realistic models for non-universal properties should rely on a
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continuum description of materials, lattice models exhibit all possibilities for a
systematic study of the dependence of physical quantities on dispersity, shape,
and orientation of the constituents (see Fig. 12). Lattice models allow a system-
atic study of orientational effects though isotropy is not attained. The advantage
of lattice configurations in contrast to continuum models is the straightforward
implementation and calculation of configurations and clusters yielding efficient
and fast algorithms for the accurate determination of physical quantities such as
Minkowski functionals as order parameters, size and shape of connected fractal
clusters, percolation thresholds, or phase diagrams of fluids.
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Fig. 19. Lattice configurations on a 2-dimensional lattice Λ(2) (L = 6a): ν-dimensional
cubes (plaquettes) K(2), edges K(1), corners K(0), ν-dimensional lattice planes E(ν)

and the dual lattice configurations K∗, E∗, respectively.

In the following, we try to adopt the notions and definitions of integral ge-
ometry for lattice configurations and lattice groups of motions (finite transla-
tions and 900-rotations, point group of a hypercube). In particular, Minkowski
functionals are defined and fundamental kinematic formulae are derived. Let us
consider a d-dimensional hyper-cubic lattice Λ(d) ≡ aZZd, where a denotes the
lattice constant. At each point x(d)i ∈ ZZd one can fix a d-dimensional cube K(d)

i

of edge length a with x(d)i as midpoint, i.e., the Wigner-Seitz or unit cell of
the lattice, where i = 1, . . . Ld numerates the lattice sites inside a hyper-cubic
window of size L (see Fig. 19). Let E(ν) ⊂ Λ(d) denote a ν-dimensional planar
sublattice, i.e. a ν-dimensional plane cutting Λ(d) with lattice points x(ν)j ∈ E(ν),

j = 1, . . . Lν . Analogous, we denote by K(ν)
j (E(ν)) a ν-dimensional unit cells of

E(ν) located at x(ν)j . Notice: the lattice sites x(d)j = K
(0)
j ∈ ZZd can be consid-
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ered as the corners Ē(0) of a hyper-cubic unit cell K̄(d)
j of the dual lattice Λ̄ with

sites x̄(d)j (Fig. 19). One can define ν-dimensional dual lattice planes Ē(ν) and

analogously unit cells K̄(ν)
j ⊂ Ē(ν). Of course, one finds that x̄(d)i = K̄

(0)
i is a

corner E(0) of a unit cell K(d)
j .

Let us now define the spatial configurations which constitutes the stage for
our model. R denotes the class of all subsets A of the Euclidean space IRd, which
can be represented in terms of a finite union of unit cells K(ν) or boundary cells
B(µ) of any dimension on a d-dimensional hyper-cubic lattice; also, ∅ ∈ R. The
intersection of two cells B(µ) = K(ν)∩K(ν′) ∈ R is a boundary cell with µ < ν, ν′,
i.e., belongs to the class R of considered sets, also the intersections of boundary
cells B(ν) ∩ B(ν′) ∈ R or of unit and boundary cells K(ν) ∩ B(ν′) ∈ R. Thus,
the class R of considered configurations is closed under mutual intersections
and unions, and also under intersections with hyper-planes E(ν) and Ē(ν) of
the lattice Λd and the dual lattice Λ̄d, respectively. But the dual unit cells K̄(ν)

(except of K̄(0)) and the dual boundary cells B̄(ν) (except of B̄(0)) do not belong
to R.

The Minkowski functionals Vν(A) of domains A ∈ R can now be defined by

Vν(A) =
1(
d
ν

) ∑
Eν

χ(A ∩ Eν) , ν = 0, . . . , d− 1 (108)

and Vd(A) = χ(A). Here, Eν is a ν−dimensional plane in IRd. The integral runs
over all positions (induced by translations and rotations) of Eν , From definition
(108) it is clear that the Minkowski functionals inherit additivity from χ and that
they are related to familiar quantities, namely the number V0 of occupied unit
cells, the number dV1 of boundary plaquettes. In particular, for a j-dimensional
cube K(j) one obtains

Vν(K(j)) =
ν!j!

d!(ν + j − d)! , d− j ≤ ν ≤ d (109)

and Vν(K(j)) = 0 for 0 ≤ ν < d− j.
Analogous to the kinematic formula (9) for the continuous motion of grains

one finds for the integral over the lattice group of motion the kinematic formula
[35]

Iµ(K,K ′) =
∫
Vµ(K ∩K ′)dK ′ =

µ∑
ν=0

ν∑
κ=0

(
µ

ν

)(
ν

κ

)
Vν(K)Vµ−κ(K ′) , (110)

in particular, for the integrated volume I0(K,K ′) = V0(K)V0(K ′) and surface
area I1(K,K ′) = V0(K)V1(K ′) + V1(K)V0(K ′) + V1(K)V1(K ′). The kinematic
formula (110) can be used to obtain immediately the excluded volume V (d)

ex (K) =
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Id(K,K) in d dimensions for convex grains K

V
(2)
ex (K) = 2V0(K) + 2V1(K)2 + 4V1(K) + 1

V
(3)
ex (K) = 2V0(K) + 6V1(K) + 6V2(K) + 6V1(K)V2(K) + 6V 2

2 (K) + 1 .
(111)

Let us now consider random distributions of convex grains K ∈ R with
density ρ on the lattice. In Fig. 13 three clusters of random distributed grains
on the lattice are shown, namely configurations of squares of edge length λ = 5
(see Fig. 12), sticks of length λ = 5, and mixtures of squares of different size
(λ = 2 and λ = 5). The probability that a grain K is not touched by any other
is then given by the void probability

Pvoid(K) = (1− p)Vex(K) , (112)

where the probability p = 1−e−ρ, q = 1−p is defined that a specific orientation
and location of a grain is occupied at least once. Applying Eq. (110) the void
probability is given by the Minkowski functionals Vν(K) of the grains K. Also
the probabilities

P (A) = qV0+2V1p
P (B) = qV0+V1(1− qV1+1 − 2qV1p)
P (C) = qV0+2V1−V2p2

P (D) = qV0(1 + q2V1+1 + q2V1p
−q2V1−1p2 − 2qV1)

P (E) = qV0+2V1+1

P (F ) = 1− P (E)− 4P (A)− 4P (B)− 2P (C)− 4P (D)

(113)

of the local coverages X of a unit cell K̄(2) shown in Fig. 20 are expressible in
terms of the morphological measures Vν(K) of the single grains K. The graphs
indicate if one (A), two (B,C) or three (D) quarters of a unit cell K̄(2) are covered.
The first term is the void probability of the empty lattice sites at the corners
of the cells (white sites in Fig. 20). Such probabilities are needed for lattice
approximations and real-space renormalization group theory for the generalized
Widom-Rowlinson model introduced in Sect. 5.1). The mean value of the Euler
characteristic, for instance, can now be expressed by the sum χ̄(ρ) = v2(ρ) =
P (A)−B(C)− P (D).

Using Morse’s theorem of counting critical points one can define the Euler
characteristic χd in d dimensions recursively by

χd(A) =
∑

Ē(d−1)

χd−1(A ∩ Ē(d−1))−
∑

E(d−1)

χd−1(A ∩ E(d−1)) . (114)

Repeating Eq. (114) and using the definition (108) one obtains the decomposition
of the morphological measures in terms of edge and corner contributions

Vα(A) =
d∑

ν=d−α

(−1)d−α+να!ν!
d!(α+ ν − d)!

∑
x (ν)

χ(A ∩ x (ν)) , (115)
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where the sum runs of all midpoints x (ν) of the ν-dimensional boundary cell
B(ν). Applying the kinematic formula (110) the differential equation [35]

∂vµ(ρ)
ρ

= Vµ −
µ∑

ν=0

ν∑
κ=0

(
µ

ν

)(
ν

κ

)
vν(ρ)Vµ−κ . (116)

for the mean values vµ(ρ) of the Minkowski functionals can be derived. With
the initial condition v(ρ = 0) = 0 the differential equation (116) can be solved
readily for any dimension d

vν(ρ) = δ0ν −
ν∑

µ=0

(−1)µ
(
ν

µ

)
e−ρ

∑ν
µ=0 (νµ)Vµ(K) . (117)

Thus, the intensities of the Minkowski measures for random distributed grains
K on a hypercubic lattice are given by

v0(ρ) = 1− e−ρV0

v1(ρ) = e−ρV0
(
1− e−ρV1

)
v2(ρ) = e−ρV0

(−1 + 2e−ρV1 − e−2ρV1−ρV2
)

v3(ρ) = e−ρV0
(
1− 3e−ρV1 + 3e−ρ(2V1+V2) − e−ρ(3V1+3V2+V3)

) (118)

where Vν denotes the functionals for the single grains K.

(A) (B) (C) (D)

Fig. 20. Local coverages in a unit cell K̄(2) of a two-dimensional lattice. The graphs
indicate if one (A), two (B,C) or three (D) quarters of a cell K̄(2) are covered. The
complete empty (E) and occupied (F) cell, i.e., the configurations without a boundary
within the cell are not depicted.

Morse’s theorem does not only help to calculate probabilities of local cover-
ages and mean values, but also second order moments of the Minkowski func-
tionals. One obtains, for instance, on a d-dimensional cubic lattice for unit cubes
Ki of edge length λ = 1 the variance of the Euler characteristic [35]

δχ2d = χ(d)(A)χ(d)(A)− χ(d)(A) χ(d)(A) =
d∑

i=0

(
d

i

)
f2i (q

2d−i
) gd−i(q2

d−i
)

(119)

with the functions fi(q) =
i∑

ν=0

(
i
ν

)
(−2)νq2

ν

and gi(q) = (−1)i+1+
i∑

ν=0

(
i
ν

)
(−2)νq−2−ν

. In Fig. (18) the second order moments
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of the Euler characteristic

δχ21 = q(1− q)(1− 3q + 3q2)
δχ22 = q(1− q)(1− 6q + 14q2 + q3 − 23q4 + 5q5 + 9q6)
δχ23 = q(1− q)(1− 9q + 33q2 + 3q3 − 117q4 + 39q5 + 99q6

−3q7 + 61q8 − 59q9 − 107q10 + 7q11 + 7q12 + 19q13 + 27q14)

(120)

are shown for the dimensions d = 1, 2, 3, respectively.
The mathematical definition of lattice configurations, kinematic formula (110)

and excluded volumes (111), as well as the explicit expression of mean values
(118) of Minkowski measures, second order moments (120), and even probabil-
ities of local spatial configurations (113) are only first steps towards physical
applications. Statistical models for microemulsions [30, Sect. 4.3], percolation
[58, Sect. 4.2], and fluids in porous media [2, Sect. 2.2] can now be studied
within a lattice approximation.

Problem: Lattice Approximation The problems mentioned already in the
Sects. 5.2 and 5.3 occur analogously when lattice configurations are considered.
It is necessary to calculate not only mean values and second order moments
for independent and homogeneously distributed grains but also correlated, inho-
mogeneous, and anisotropic distributions. Additionally a renormalization group
theory for lattice models including the Minkowski functionals is required for the
study of complex fluids. As shown earlier, straightforward real-space methods
such as Migdal-Kadanof bond moving schemes do not work due to the inherent
geometric features of the Minkowski functionals which should be preserved un-
der the renormalization group [37,35]. But finite-cell approximations might be
possible since local probabilities (113) are known for grains of arbitrary size.
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Integral Statistical Problems
Geometry Physics

convex grains K spatial configurations hyperbolic surfaces
unions of grains A = ∪iKi (Figs. 1 and 2,
(convex ring) Sects. 4.2 and 5.1)
group of motions partition sum (Sec. 5.1) inhomogeneity
(translations, rotations)

Minkowski functionals Mν spectral density of edge contributions
intrinsic volumes Vν =Md−ν Laplace operator

(scattering, diffusion,
see Sec. 2.3)
curvature energy squared curvature Ĥ2

of membranes (2.1)
volume V ∼ M0 capillary condensation non-convex parallel

of fluids (2.2) body
surface area S ∼ M1 order parameters effective theory

for patterns (3.1)
mean curvature generalized contact dynamical equations
H ∼ M2 ∼ ∫

dS
(

1
R1

+ 1
R2

)
distribution
n-point correlation non-convex parallel
functions (3.3) body
(galaxy distribution, holes
in thin films)

Euler characteristic percolation criteria accuracy
χ ∼ Md ∼ ∫

dS
R1R2

χ(ρc) ≈ 0 (4.2)
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Integral Statistical Problems
Geometry Physics

additivity robustness (critical critical fluctuations
M(K ∪K′) =M(K) fluid, Sec. 3.3)
+M(K′) −M(K ∩K′) thermodynamic potentials

(entropy)
signed probability measures
QM: projections, Wigner
functions

completeness general Hamiltonian squared curvature Ĥ2

of additive functionals for fluids (4.3,5.1)

M(K) =
d∑
ν=0

cνMν(K) (colloids, complex fluids) renormalization

scaling behavior fractals (3.4), critical universality
Mν(λK) = λd−νMν(K) phenomena (3.3)

spinodal decomposition (3.2) dynamical equations

kinematic formulae thermal averages (Sec. 5) correlation (hard
particle)∫

G

Mν(A ∩ gB)dg = second order moments (5.3) non-isotropic

ν∑
µ=0

(
ν
µ

)
Mµ(A)Mν−µ(B) distributions

Rosenfeld density non-spherical
functional (4.1) particles

excluded volume percolation threshold polydispersity
Vex =

∫
χ(K ∩K′)dK′ ρc ≈ V −1

ex (4.2)
Steiner’s formula: second virial coefficient (4.1) cluster expansion
V (Kε) = V (K) + S(K)
+ε2H + 4π

3 ε
3

Crofton’s formula stereology,
porous media (2.2)

curved spaces cosmology (3+1)-Minkowski space

lattice geometry (Sec. 5.4) models for complex squared
fluids + percolation curvature Ĥ2
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Distribution in Wicksell’s Corpuscle Problem
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Abstract. Wicksell’s corpuscle problem deals with the estimation of the size distribu-
tion of a population of particles, all having the same shape, using a lower dimensional
sampling probe. This problem was originary formulated for particle systems occurring
in life sciences but its solution is of actual and increasing interest in materials science.
From a mathematical point of view, Wicksell’s problem is an inverse problem where
the interesting size distribution is the unknown part of a Volterra equation. The prob-
lem is often regarded ill-posed, because the structure of the integrand implies unstable
numerical solutions. The accuracy of the numerical solutions is considered here using
the condition number, which allows to compare different numerical methods with dif-
ferent (equidistant) class sizes and which indicates, as one result, that a finite section
thickness of the probe reduces the numerical problems. Furthermore, the relative error
of estimation is computed which can be split into two parts. One part consists of the
relative discretization error that increases for increasing class size, and the second part
is related to the relative statistical error which increases with decreasing class size. For
both parts, upper bounds can be given and the sum of them indicates an optimal class
width depending on some specific constants.

1 Introduction

Wicksell’s corpuscle problem is one of the classical problems in stereology [1,29,
30]. A set of spheres having an unknown distribution of diameters is hit by a
section, see Figs. 1a) to 1d). The unknown distribution has to be estimated us-
ing the observable distribution of the diameters of the section profiles. A large
number of papers have been published since the first paper of Wicksell in 1925.
Different types of solutions and different kinds of generalizations are studied in
those papers. The reviews of Exner [6] and Cruz-Orive [5] can give a first impres-
sion, reflecting also the historical development and the amount of publications.
The various methods are summarized in the book [28], where also more recent
developments are considered. One kind of generalization deals with the thick-
ness of the probes and with the dimension of sampling. We will distinguish here
sections of a given thickness (thin sections) and ideal sections (planar sections).
The cases of sampling are shown in Table 1.

K.R. Mecke and D. Stoyan (Eds.): LNP 554, pp. 185–202, 2000.
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Table 1. Survey of sectioning and sampling used for stereological estimation of particle
size distribution. Using planar sampling design, a microstructure is observed in a planar
window while linear sampling design uses test segments (commonly a system of parallel
equidistant segments).

Planar section Thin section

Planar sampling

✟✟✟

✟✟✟
✟✟✟

✟✟✟

✟✟✟
✟✟✟

✟✟✟

✟✟✟
✟✟✟

✟✟✟

✟✟✟✟✟✟
✟✟✟

Linear sampling

✟✟✟

✟✟✟
✟✟✟

✟✟✟
✟✟✟

✟✟✟

✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟

✟✟✟

✟✟✟
✟✟✟

✟✟✟

✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟
✟✟✟

Another kind of generalization concerns the shape of the objects (or parti-
cles). In materials science it is convenient to use particle models, more often than
in life sciences. The following models are in use:

• Spheres, spheroids, ellipsoids,
• cubes, regular polyhedra, prisms,
• lamellae, cylinders, and
• irregular convex polyhedra (with certain distribution assumptions).

A survey of stereological methods for systems of non-spherical particles is given
in [21].

Assuming that only one of the mentioned shapes appears in a particle pop-
ulation but with varying size, it is possible to completely transfer the principles
of the solution, see [16] and [22], which are shown below for spheres. It should be
mentioned that the section profiles of all other shapes are more informative than
the sections of a sphere. In particular, if the particles are cubic in shape then the
section profiles form convex polygons, and from the size and shape of any section
polygon with more than three vertices the edge length of the corresponding cube
can be determined, see [19] and [22].

Stereological methods always depend on the assumptions of randomness. In
materials analysis the spatial particle system is assumed to be homogeneous
and isotropic. The principle behind this assumption of randomness is called the
model-based approach. In this case information about the spatial structure can
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be obtained from an arbitrarily chosen planar or thin section. We use this model-
based approach here instead of the design-based approach. The latter requires
a deterministic aggregate of non-overlapping particles sampled by means of a
planar section randomized in position and direction, see [11] and [12].

In the last 15 years other stereological methods, working without assuming
a particular shape were often preferred in applications. A recently published
book about stereology does not even mention Wicksell’s classical problem [9].
However, if stronger assumptions on the particle system are justified, they can
help to get comparable results with less effort. Methods, which estimate the
size distribution of particles without shape assumption need considerably more
effort in measuring than methods assuming spherical shape of the particles. Even
probing and sampling can be simplified if stronger assumptions are fulfilled.

There is a considerable number of mathematically orientated papers dealing
with Wicksell’s corpuscle problem. This becomes understandable, looking to the
interesting mathematical part of the problem in more detail. Considering the
probability of appearing profiles in the section one yields an integral equation,
determining the wanted distribution of the particle size, but only in an implicit
form. We call this the direct equation. Wicksell’s problem is often called an
inverse problem because inversion of the equation leads to an explicit integral
representation of the diameter distribution of the spheres. However, the kernel
of the integration has now a singularity, and because of the resulting numerical
problems it is called ill-posed or improperly posed. Jakeman and Anderssen [10]
characterize this property in the following way: Small perturbations of the data
can correspond to arbitrarily large perturbations of the solution.

The solution given here, follows in a first step the proposal of Saltykov [25],
who solved the implicit equation numerically. To do this, the range of the size
must be partitioned into classes. The size of the classes plays an important role.
The smaller the class size, the better the approximation of the wanted distribu-
tion by a step function. The larger the class size, the more each class is occupied
with data, thereby improving the statistical estimation of the class probability.
Finally, the larger the class size, the better also the numerical stability. Obvi-
ously, the advantages go into different directions and thus we have to seek an
optimum size.

In this paper we want to show some relations, illuminating in which way this
optimum is affected. Discretization and regularization of the integral changes
the direct equation to a matrix equation i.e. a system of linear equations. The
relative deviation of the estimation of the outcome has an upper bound, depend-
ing on the product of relative deviation of the input and the so-called condition
number. The condition number is a specific number for the matrix of a system of
linear equations indicating the behavior of the system under small deviations of
the input vector (i.e. the right-hand side of the linear equation). A smaller condi-
tion number indicates an outcome with smaller deviation. We use the condition
number to evaluate different methods and different class sizes. The results we
show in §4 are in contradiction to the numerical supposition that a regularization
with a quadrature rule of higher order should be preferred [15]. This is demon-
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a) b)

c) d)

Fig. 1. Systems of spherically shaped objects observed in a planar or thin section.
a) A metal powder embedded in a resin matrix. The section profiles of the spherical
particles are observed in a planar section. b) Cast iron with spherolitic graphite, pla-
nar section. c) Pores in gas concrete, planar section. d) Particles in the nickel-base
superalloy Nimonic PE16, orthogonal projection of a thin section.

strated here for rectangular and trapezoidal quadrature rule. The results using
the condition number also quantify the reduction of instability with respect to
growing section thickness.

An extension of this classical method is offered by the EM algorithm, see
[14], which is first applied in stereology by Silverman et al. [27]. This algorithm
is presented here as an alternative method for the solution of the discretized
stereological equation. In the EM algorithm, an approximation is calculated not
only with respect to numerical but also with respect to the statistical aspects.
Practical experience shows that the EM algorithm works even under weak as-
sumptions [28, p. 359]. The results based on the condition number can be trans-
ferred in a similar way to the EM algorithm. In conclusion, these results suggest
that the recommended method is in particular well suited for practical use.
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2 The Stereological Equation

In the following we confine ourselves to the classical case where the particles
form a system of spheres having random diameters. Other shape assumptions
are touched on only briefly. Figures 1a) to 1d) show typical examples of spher-
ically shaped particles (or pores) occurring in materials science. The Cu-35Sn
powder shown in Fig. 1a) has been embedded in an opaque resin in order to es-
timate the sphere diameter distribution by means of stereological methods. Cast
iron with spherolitic graphite, see Fig. 1b), is the playground for the application
of stereology in materials science. The graphite form occurs by inoculation with
metals such as manganese and cerium. The spherolites consist of a number of
crystallites which grow outward from a common center. The microstructure of
gas concrete, see Fig. 1c), can be described by a system of overlapping spheres.
The spherically shaped pores were infiltrated with black resin. Since the spher-
ical pores touch each other, it is a delicate problem of image analysis to isolate
the section circles. Anyway, if a representative sample of circle diameters is
available, the sphere diameter distribution can be estimated by means of stere-
ological methods. Fig. 1d) shows a dark-field transmission electron micrographs
of coherent γ′-particles in the nickel-base superalloy Nimonic PE16 (undeformed
state). The image can be considered as an orthogonal projection of a thin section
through a system of opaque spheres lying in a matrix which is transparent with
respect to the applied radiation. For a sphere with its center lying in the slice,
the diameter is equal to the diameter of its projected circle. In the other case,
when the sphere center is outside the slice, a section circle is observed. In the
projection image the two cases cannot be distinguished.

We are interested in the stereological determination of the following two
spatial characteristics:

NV – the mean number of spheres per unit volume (density of spheres),
FV – the distribution function of the diameters of the spheres, FV (u) :=
IP (diameter ≤ u).

It is possible to estimate these two quantities using data sampled in images
of planar or thin sections, and in both cases planar or linear sampling designs
can be applied. As a first step, one usually estimates the following quantities:

λ – the density of the section profiles,
F – the size distribution function of the section profiles, F (s) := IP (profile size ≤
s).

The second step consists of the solution of a stereological equation which can
be given in the form

λ [1− F (s)] = NV

∞∫
s

p(u, s) dFV (u), s ≥ 0. (1)

This integral equation is a Volterra equation of the first kind. Here FV (u) is
the unknown distribution while the left-hand side λ [1 − F (s)] is known from
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measurement in a planar or thin section. The function of two variables p(u, v) is
called the kernel of the integral equation.

The analytical expression for the kernel p(u, s) of (1) depends on the applied
sampling design, see Table 2. The kernel also carries information about the shape
of the objects, which are in our case spheres. Kernels for non-spherical particles
are given e.g. in [4,8] and [22]. The function F (s) in (1) stands for the distribution
function FA(s) of the circle diameters and the distribution function FL(s) of the
chord lengths, respectively. In the case of planar sampling design, the density λ
is the mean number of circles per unit area, λ = NA, and for linear sampling
design the density λ is the mean number of chords per unit length.

Table 2. The kernel p(u, s) of the stereological integral equations for 0 ≤ s ≤ u
corresponding to the four sampling methods applied in stereology, see Table 1, in the
case of spherically shaped particles. The parameter t is the thickness of the slice.

Planar section Thin section

Planar sampling
√
u2 − s2

√
u2 − s2 + t

Linear sampling π
4 (u2 − s2) π

4 (u2 − s2) + t
√
u2 − s2

The problem of estimation of FV is said to be an inverse problem, and when
using this term one is tempted to ask for the direct problem. Consider for example
planar sampling design in a planar section. Let λ = NA be the density of the
section circles (the mean number of section circles per unit area). Using

NA[1− FA(s)] = NV

∞∫
s

√
u2 − s2 dFV (u), s ≥ 0, (2)

the circle diameter distribution function FA can be straightforwardly computed
from FV . This is the direct problem. In the given case an analytical solution of
the inverse problem is known:

NV [1− FV (u)] = NA
2
π

∞∫
u

dFA(s)√
s2 − u2 , u ≥ 0, (3)

i.e. we obtain analytically FV from FA. Since the formulation of one problem
involves the other one, the computation of FA from FV and the computation
of FV from FA are inverse to each other. Frequently, the solutions of such in-
verse problems do not depend continuously on the data. Furthermore, given any
distribution function FA then the formal solution FV of the inverse problem
is not necessarily a distribution function. Mathematical problems having these
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undesirable properties are referred to as ill-posed problems. Indeed, the stereo-
logical estimation of sphere diameter distribution is often criticized because of
the ill-posedness of the corresponding stereological integral equation.

Applying a kernel to a function, as on the right-hand side of (1), is generally
a smoothing operation (convolution). Therefore, numerical solution (deconvolu-
tion) which requires inverting the smoothing operator will be sensitive to small
errors (noise) of the experimentally determined left-hand side, and thus integral
equations such as Fredholm equations of the first kind are often ill-conditioned.
However, the Volterra equation (1) tends not to be ill-conditioned since the lower
limit of the integral yields a sharp step that destroys the smoothing properties of
the kernel function. Hence, stereological estimation of sphere diameter distribu-
tion is a ‘good-natured’ ill-posed problem. As we will see, the condition numbers
of the operators which correspond to the kernels in Table 2 are relatively small.

3 Numerical Solutions of the Stereological Equation

There is a close correspondence between linear integral equations which specify
linear relations among distribution functions and linear equations which specify
analogous relations among vectors of relative frequencies. Thus, for the purpose
of numerical solution, the stereological integral equation (1) is usually trans-
formed into a matrix equation

y = P ϑ (4)

where ϑ is the vector of frequencies of the sphere diameters and y is the vector
of frequencies of the profile sizes. Comparing with (1), we see that the kernel
of the Volterra integral equation corresponds to a matrix P = (pki) that is
upper triangular, with zero entries below the diagonal. This matrix equation is
straightforwardly soluble by backward substitution.

To facilitate reconstruction, we introduce a discretization of the size s, i.e. the
estimation of the distribution function F (s) is carried out in histogram form. For
simplification we consider a discretization where the bins (classes) are equally
spaced. Given a constant class width ∆ such that yk = λ[F (k∆) − F ((k −
1)∆)], k = 1, . . . , n, from (1) one can easily derive the formula

yk = NV

∞∫
s

[p(u, (k − 1)∆)− p(u, k∆)] dFV (u), k = 1, . . . , n. (5)

The next step in the solution of (1) is a discretization of FV (u). A possible
discretization is based on the Nystrom method which requires the choice of some
approximate quadrature rule of the kind

∫
f(x) dx =

∑
wi f(xi), where the wi

are the weights of the quadrature rule. This method involves O(n3) operations,
and so from the numerical point of view the most efficient methods tend to use
high-order quadrature rules like Simpson’s rule or Gaussian quadrature to keep
n as small as possible. Mase [15] suggests using the Gauss-Chebychev quadrature
rule. For smooth, nonsingular problems, Press et al. [23, p. 792] concluded that
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nothing is better than Gaussian quadrature. However, as pointed out by Nippe
and Ohser [19], for many stereological problems concerned with non-spherical
particles, analytical expressions for the corresponding kernel are not available,
and the coefficients pki of P have to be computed numerically, see also [20].
For this reason, a geometric or probabilistic interpretation of the pki may be
helpful. This is in fact possible only for the rectangular quadrature rule. Since
in practical application experimental noise dominates, the accuracy of approx-
imation is not as important as in numerical mathematics, and thus low-order
quadrature rules are preferred to solve stereological integral equations. Further-
more, as shown in the following, low-order quadrature rules involve some kind
of regularization. Two simple examples of low-order methods are given in the
following, the repeated rectangular quadrature rule and the repeated trapezoidal
quadrature rule.

3.1 Repeated Rectangular Quadrature Rule

We will focus attention on one particular interval [(i − 1)∆, i∆). The sphere
diameter is assumed to be a discrete random variable, i.e. the quadrature rule
described here is based on the assumption that FV (u) is constant within each
bin,

F app
V (u) = ai, (i− 1)∆ ≤ u < i∆, i = 1, . . . , n, (6)

with a0 = 0, ai−1 < ai and an = 1. Let ϑi be the mean number of spheres per
unit volume with diameters equal to i∆, ϑi = NV [ai − ai−1]. Then (1) can be
rewritten as a linear equation system

yk = NV

n∑
i=1

pki [ai − ai−1] =
n∑
i=1

pki ϑi, k = 1, . . . , n, (7)

whose matrix analog is as (4). The coefficients pki are given by

pki = p(i∆, (k − 1)∆)− p(i∆, k∆), i ≥ k,

and pki = 0 otherwise. Note that for p(u, s) =
√
u2 − s2 the well-known Scheil-

Saltykov-Schwartz method is obtained, see e.g. [26], while p(u, s) = (π/4)(u2−s2)
yields the Bockstiegel method [3].

3.2 Repeated Trapezoidal Quadrature Rule

Now we turn to linear interpolation of FV (u) in the interval [(i− 1)∆, i∆),

F app
V (u) = ai + bi [u− (i− 1)∆],

i.e. the sphere diameter distribution is assumed to be uniform within the single
histogram class. Furthermore, we suppose that the distribution function FV (u) is
continuous, even at the points i∆, i.e. ai+bi∆ = ai+1. Hence ϑi = NV [ai+1−ai]
and

NV bi = NV
ai+1 − ai

∆
=
ϑi
∆
.
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In this particular case the integral equation will be solved with a repeated trape-
zoidal quadrature rule:

yk = NV

n∑
i=1

bi

i∆∫
(i−1)∆

[p(u, (k − 1)∆)− p(u, k∆)] du

=
n∑
i=1

pki ϑi, k = 1, . . . , n.

We obtain an equation system analogous to (7), but now the coefficients pki are
given by

pki =
1
∆

i∆∫
(i−1)∆

[p(u, (k − 1)∆)− p(u, k∆)] du, i ≥ k,

and pki = 0 otherwise. With q(u, s) =
∫ u
0 p(u

′, s)du′ this formula can be rewrit-
ten as

pki = 1
∆

[
q
(
i∆, (k−1)∆

)
−q
(
i∆, k∆

)
−q
(
(i−1)∆, (k−1)∆

)
+q
(
(i−1)∆, k∆

)]
for i ≥ k.

Notice that the repeated trapezoidal quadrature rule was first suggested for
the special case of planar sampling in a planar section by Blödner et al. [2]. For
this particular case the function q(u, s) is given by

q(u, s) =
1
2

(
u
√
u2 − s2 − s2 arccosh

u

s

)
, 0 ≤ s ≤ u,

and q(u, s) = 0 otherwise.

3.3 Application of the EM Algorithm

The stereological estimation of the vector ϑ of relative frequencies of sphere
diameters entails both statistical and numerical difficulties. A natural statistical
approach is by maximum likelihood, conveniently implemented using the EM
algorithm. The EM algorithm was first applied in stereology by Silverman et
al. [27]. In the EM approach, y is said to be the vector of incomplete data
obtained by planar or linear sampling, while ϑ represents the parameter vector
to be estimated. The EM algorithm is an iterative procedure which increases the
log-likelihood of a current estimate ϑλ of ϑ.

Each iteration step consists of two substeps, an E-substep and an M-substep,
where E stands for ‘expectation’ and M for ‘maximization’. Let cki be the number
of events occurring in bin i which contribute to the count in bin k; thus (cki)
is called the matrix of complete data. The E-substep yields the expected value
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of the cki, given the incomplete data y, under the current estimate ϑν of the
parameter vector ϑ. The M-substep yields a maximum likelihood estimate of
the parameter vector ϑ using the estimated complete data c from the previous
E-substep.

0
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%

0 50 100 µm

a)

0

10

20

%

0 50 100 µm

b)

Fig. 2. Stereological estimation of the sphere diameter distribution for the cast iron
with spherolitic graphite shown in Fig. 1b): a) Histogram of the sizes of section profiles
observed in a planar section, b) histogram of the particle size. The sample size was
6995 and the total area of the sampling windows was A(W ) = 18.207mm2. (The data
have been obtained from 144 sampling windows.) This yields NA = 384mm−2, and
the particle density NV is obtained from NV =

∑
i ϑi = 17 545mm−3. The coefficients

of the discretized stereological equation system have been obtained from the repeated
rectangular quadrature rule, and the equation system has been solved by means of the
EM-algorithm (32 EM-steps).

Define qi and rk to be qi =
∑i

k=1 pki and rk =
∑n

i=k pki ϑ
ν
i , respectively.

Then the E-substep is cki = ϑνi yk pki/rk for each i and k, and the M-substep
is given by ϑν+1

i = 1
qi

∑i
k=1 cki, i = 1, . . . , n. Combining these two substeps we

obtain an EM-step given by the updating formula

ϑν+1
i =

ϑνi
qi

i∑
k=1

pki
rk
yk, i = 1, . . . , n. (8)

This formula yields a sequence {ϑν , ν = 0, 1, . . . } of solutions for the vector ϑ.
The convergence of the algorithm is guaranteed in theory, but the solution de-
pends on the chosen initial value ϑ0i . We propose using ϑ0i = yi for i = 1, . . . , n,
see [20]. The choice of non-negative initial values ensures that each of the ϑν is
automatically non-negative. Furthermore, when ν is not too big the EM algo-
rithm includes some kind of regularization.

An example of application of the EM algorithm is shown in Fig. 2.
We remark that the M-substep can be theoretically justified as a maximiza-

tion step when the sphere diameters are independent and the sphere centers form
a Poisson point field. In practice these assumptions are frequently unrealistic.
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However, the EM algorithm has been found by long experience to be reasonably
adequate for practical purposes (cf. also the remarks in [28], p. 359).

4 Accuracy of Estimation and Choise of Bin Size
of Stereological Estimation

The question most frequently asked of a statistican by the experimental re-
searcher is: How large a sample size do I need? Vice versa, given the sample
size, one may ask the question: What is the optimal bin size? In fact, the an-
swer can be given if the estimation error is known. Unfortunately, there is no
simple way to derive an expression for the error in the stereological estimation.
A practical method for the error estimation is to divide the sample into two
subsamples of equal size, say, and treat the difference between the two estimates
as a conservative estimate of the error in the result obtained for the total sample
size. However, this method cannot be used to compare properties of stereological
estimation methods in general.

4.1 The Condition Number of the Operator P

In numerical mathematics it is common to describe the behavior of a linear
equation system like (4) by the condition number of the matrix P . We attempt
to give a statistical interpretation: Let ŷ be an estimator of the vector y. The
difference ŷ − y is the experimental measurement noise, and IE|ŷ − y|/|y| is
the relative statistical error of ŷ. The estimator ϑ̂ of ϑ may be obtained via
ϑ̂ = P−1 ŷ where P−1 is the inverse matrix of P . A well-known estimate of the
relative statistical error IE|ϑ̂− ϑ|/|ϑ| of ϑ̂ is given by

IE|ϑ̂− ϑ|
|ϑ| ≤ cond(P )

IE|ŷ − y|
|y| . (9)

The condition number is defined as cond(P ) = |P | · |P−1| where the matrix
norm corresponds to the Euclidean vector norm. It is an essential quantity giving
an indication of the accuracy of numerical solutions of stereological problems;
it describes the accuracy of numerical solutions independently of assumptions
made for the sphere diameter distribution, see [7,13,18].

The Tables 3 and 4 present numerical values of the condition number of the
matrix P based on the spectral norm |P | = max

x�=0

|Px|
|x| . To compare the statistical

accuracy of several numerical methods, the data space is divided into n bins of
constant width ∆. There are significant differences in the condition numbers:

1. With decreasing class width∆ (increasing number n of classes) the statistical
accuracy decreases.

2. The trapezoidal quadrature rule has no clear advantages over the rectan-
gular one: the approximation is surely improved but the statistical error of
the estimates increases rapidly. Hence, for a small sample size the repeated
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rectangular quadrature rule is preferable to higher-order quadrature rules.
Obviously, one cannot improve approximation and regularization simultane-
ously.

3. With increasing slice thickness t the statistical accuracy increases. Formally,
the slice thickness t can be considered as a parameter of regularization.
However, in the orthogonal projection of a ‘thick’ slice, overlapping cannot
be avoided and overlapping destroys the information available from the slice.

4. In general, the condition numbers corresponding to linear sampling design
are greater than those corresponding to planar sampling design. Thus, stere-
ological estimation based on linear sampling design is more unstable than
that based on planar sampling design (cf. also the discussion in [24], p. 212).

Table 3. The condition number of the matrix P for the repeated rectangular quadra-
ture rule, depending on the class number n and a normalized slice thickness t0 = t/dV
where dV is the mean sphere diameter. The left table gives numerical values of the con-
dition number for planar sampling design, and the right one presents those for linear
sampling design.

n t0 = 0 t0 = 1
4 t0 = 1

2 t0 = 1
4 3.10 2.04 1.69 1.41
8 5.68 2.53 1.91 1.50
12 8.28 2.77 2.00 1.53
16 10.88 2.92 2.05 1.55
20 13.48 3.01 2.09 1.56
24 16.08 3.08 2.11 1.57
28 18.68 3.14 2.13 1.58
32 21.29 3.18 2.14 1.58

n t0 = 0 t0 = 1
4 t0 = 1

2 t0 = 1
4 10.82 6.40 5.19 4.30
8 38.30 14.53 10.77 8.42
12 82.69 23.05 16.42 12.55
16 143.98 31.72 22.10 16.69
20 222.19 40.47 27.79 20.83
24 317.30 49.25 33.49 24.97
28 429.31 58.06 39.19 29.12
32 558.25 66.88 44.90 33.26

Table 4. The condition number of the matrix P for the repeated trapezoidal quadra-
ture rule, depending on the class number n and a normalized slice thickness t0 = t/dV
where dV is the mean sphere diameter. The left table gives numerical values of the con-
dition number for planar sampling design, and the right one presents those for linear
sampling design.

n t0 = 0 t0 = 1
4 t0 = 1

2 t0 = 1
4 5.49 2.39 1.81 1.44
8 11.22 2.86 2.01 1.52
12 16.92 3.05 2.08 1.55
16 22.60 3.16 2.12 1.57
20 28.28 3.22 2.14 1.58
24 33.96 3.27 2.16 1.58
28 39.63 3.30 2.17 1.59
32 45.30 3.32 2.18 1.59

n t0 = 0 t0 = 1
4 t0 = 1

2 t0 = 1
4 33.67 13.53 10.11 7.97
8 156.38 32.35 22.55 17.07
12 374.37 51.40 34.97 26.13
16 691.13 70.55 47.39 35.16
20 1 108.98 89.76 59.82 44.19
24 1 629.63 108.99 72.24 53.21
28 2 254.70 128.23 84.66 62.24
32 2 985.27 147.49 97.08 71.26
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In comparison with other ill-conditioned equations which occur in practice,
the condition numbers in Table 3 and Table 4 are rather small and thus the nu-
merical methods for solving the stereological integral equations presented above
can be considered as relatively stable. If experimental measurement noise does
not dominate then one can expect that the variances of stereological estimators
of sphere diameter distribution function are also small.

Finally, we remark that the consideration of weighted sphere diameter dis-
tributions can provide smaller condition numbers than the classical (number-
weighted) sphere diameter distribution considered in this paper, see [18].

4.2 The Optimal Discretization Parameter

Consider now the discretization error of stereological estimation. The discretiza-
tion error can be expressed in terms of the L2-norm of the difference between
the probability densities of the distribution functions F app

V (u) and FV (u), re-
spectively, where F app

V (u) is a discretization of the sphere diameter distribution.
The statistical error and the discretization error – considered as functions of the
bin size ∆ – are schematically shown in Fig. 3. The errors behave in an opposite
way. The relative total error of statistical estimation is the sum of the relative
statistical error and the relative discretization error. It depends on the sample
size and the unknown sphere diameter distribution.

Without loss of generality, let [0, d] be the interval covered by the n bins,
i.e. d = n∆, and let w be the size of the sampling window (the area of a planar
window or the length of a test segment). Then an upper bound of the relative
total error can be given by the expression

d√
3
c∆+

(
1 +

d√
3
c∆

)
cond(P )

√
2 d

π λw∆
,

see Appendix, where c is a constant, c > 0. The graphs of the relative errors
shown in Fig. 3 are obtained for λw = 1000, d = 1, and c = 8.

The choice of the optimal discretization parameter ∆opt would minimize the
total error, but even in optimal circumstances one always gets a loss of accuracy.
Unfortunately, the optimal discretization parameter cannot be obtained from
only the sample data. In conclusion, the results give some hints for designing the
statistics and it turns out that the ‘simple ways are good ways’. That means that
the bin size should not be chosen to be too small and a low-order quadrature rule
can be taken. The condition numbers confirm that planar sampling design gives
more stable results than linear sampling design, and a positive slice thickness
reduces the estimation error as well.

The computation of the upper bound of the error in the stereological esti-
mation presented in the Appendix is based on the particular case of trapezoidal
quadrature rule. These considerations can be transferred to other quadrature
rules. Finally, we remark that the EM algorithm can be understood as a sta-
tistically motivated iterative method for solving the linear equation (4). The
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Fig. 3. Errors of stereological estimation of particle size distribution based on the
upper bounds computed in the Appendix. If the bin size ∆ becomes too small, the
relative statistical error increases. Vice versa, if∆ is too large, the relative discretization
error increases. There is an ‘optimal’ discretization parameter ∆opt ≈ 0.125 (8 bins)
which can only be computed explicitly in special cases since it depends on unavailable
information on the relative measurement error as well as the distribution function
FV (u) to be estimated.

application of the EM algorithm does not change any properties of the oper-
ator P . Thus, in principle, the results of this section can also be extended to
maximum likelihood estimators.
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Appendix

Let the probability density of FV be fV . We assume fV = 0 outside the interval
[u0, d], and fV is Lipschitz with the Lipschitz constant c > 0. The interval [0, d]
is divided into n equally spaced bins of width ∆, so that n∆ = d. Let b be a
piecewise constant approximation of fV ,

b(u) =
n∑
i=1

bi 1[(i−1)∆,i∆)(u), u ≥ 0,

where 1A(·) is the indicator function of the set A, and bi are suitable constants
as described in Section 3 for F app

V . Section 3 also shows the relation between
the relative frequencies (class probabilities) ϑi with respect to the distribution
function FV , the relative frequencies yi with respect to F and furthermore the
relation ϑi = NV ∆bi, i = 1, . . . , n.

A sample of sizes of section profiles gives an estimate ŷ of y which gives an
estimate ϑ̂ of ϑ where ϑ̂ = P−1 ŷ, and ϑ̂ gives an estimate b̂(u) of the function
b(u).

We are interested to find upper bounds on the relative error. These bounds
illustrate the interaction between the statistical error and the discretization error
using the L2-norm ‖ · ‖. There is an correspondence between the piecewise con-
stant function b, and the values bi that form a vector b which can be considered
with respect to the Euclidean vector norm | · |. These cases shall be distinguished
here. Clearly, for a function b as defined above, the relationship ‖b‖ =

√
∆ |b|

holds.
We get the following chain of inequalities

IE‖fV − b̂‖
‖fV ‖ ≤ ‖fV − b‖

‖fV ‖ +
IE‖b− b̂‖
‖fV ‖ =

‖fV − b‖
‖fV ‖ +

‖b‖
‖fV ‖

IE‖b− b̂‖
‖b‖

=
‖fV − b‖
‖fV ‖ +

‖b‖
‖fV ‖

IE|b− b̂|
|b|

≤ ‖fV − b‖
‖fV ‖ +

‖b‖
‖fV ‖

IE|ϑ− ϑ̂|
|ϑ|

≤ ‖fV − b‖
‖fV ‖ +

(
1 +

‖fV − b‖
‖fV ‖

)
IE|ϑ− ϑ̂|

|ϑ| .

Now the two parts are considered separately.
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For the term IE|ϑ − ϑ̂|/|ϑ| an upper bound is obtained from (9). To find a
global bound of IE|y − ŷ|/|y|, we give bounds of numerator and denominator
separately.

A lower bound of the denominator can be obtained in the following way:

|y| =
√√√√ n∑

i=1

y2i ≥
√√√√ n∑

i=1

(
λ

n

)2

=
λ√
n

where λ is the density of the section profiles, λ =
∑n

i=1 yi.
An upper bound of the numerator can be get using the extreme case of only

one class (n = 1). Then it is

IE |y − ŷ| ≤ IE

√
(λ̂− λ)2 = IE |λ̂− λ|.

Using Stirling’s formula one gets the approximation

IE |λ̂− λ| ≈
√

2
π

√
wλ

w
=

√
2λ
π w

,

see Nippe (1998, p. 45). Here, w is the size of the sampling windowW (for planar
sampling design the area of W , and for linear sampling design the length of W ).

From the above relationships we get

IE |y − ŷ|
|y| �

√
n

λ

√
2λ
π w

=

√
2n
π λw

.

The second term ‖fV − b‖/‖fV ‖ is considered using the Lipschitz condition
and the elementary property that there is a ξi ∈ ((i−1)∆, i∆) with fV (ξi) = bi.
Then

‖fV − b‖2 =

d∫
0

[fV (u)− b(u)]2 du

=
n∑
i=1

i∆∫
(i−1)∆

[fV (u)− fV (ξi)]2 du ≤
n∑
i=1

i∆∫
(i−1)∆

c2[u− ξi]2 du

=
n∑
i=1

c2

3
[
(i∆− ξi)3 − ((i− 1)∆− ξi)3

] ≤ c2

3
∆3n =

c2

3
d∆2

and this results yields

‖fV − b‖
‖fV ‖ ≤

√
d

3
c

‖fV ‖ ∆

which is a bound, depending on ‖fV ‖. For an independent bound we are looking
for a lower bound of ‖fV ‖ which is obviously larger than the norm of the uniform
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distribution fuV on the closed interval [0, d] because the Lipschitz condition must
be satisfied. So we have for all probability densities fV

‖fV ‖ ≥ ‖fuV ‖ =
1√
d
.

Bringing all these results together we obtain

IE ‖fV − b‖
‖fV ‖ ≤ ‖fV − b‖

‖fV ‖ +
(
1 +

‖fV − b‖
‖fV ‖

)
IE |ϑ− ϑ̂|

|ϑ|

≤
√
d

3
c

‖fV ‖∆+

(
1 +

√
d

3
c

‖fV ‖∆
)

cond(P )
IE |y − ŷ|

|y|

� d√
3
c∆+

(
1 +

d√
3
c∆

)
cond(P )

√
2n
π λw

=
d√
3
c∆+

(
1 +

d√
3
c∆

)
cond(P )

√
2 d

π λw∆
.
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Abstract. The paper reviews recent developments in local porosity theory, and dis-
cusses its application to the analysis of stochastic reconstruction models for sedimentary
rocks. Special emphasis is placed on the geometric observables in local porosity theory
and their relation with the Hadwiger theorem from stochastic geometry. In addition
recent results for the exact calculation of effective physical transport properties are
given for a Fontainebleau sandstone. The calculations pertain to potential type prob-
lems such as electrical conduction, dielectric relaxation, diffusion or Darcy flow. The
exact results are compared to the approximate parameterfree predictions from local
porosity, and are found to be in good agreement.

1 Introduction

An important subclass of heterogeneous and disordered systems are porous ma-
terials which can be loosely defined as mixtures of solids and fluids [1,20,30,55].
Despite a long history of scientific study the theory of porous media or, more
generally, heterogeneous mixtures (including solid-solid and fluid-fluid mixtures)
continues to be of central interest for many areas of fundamental and applied
research ranging from geophysics [26], hydrology [7,43], petrophysics [36] and
civil engineering [19,21] to the materials science of composites [17].

My primary objective in this article is to review briefly the application of
local porosity theory, introduced in [27,28,30], to the geometric characterization
of porous or heterogeneous media. A functional theorem of Hadwiger [23, p.39]
emphasizes the importance of four set-theoretic functionals for the geometric
characterization porous media (see also the paper by Mecke in this volume).
In contrast herewith local porosity theory has emphasized geometric observ-
ables, that are not covered by Hadwigers theorem [25,29,31]. Other theories
have stressed the importance of correlation functions [60,63] or contact distri-
butions [38,46,61] for characterization purposes. Recently advances in computer
and imaging technology have made threedimensional microtomographic images
more readily available. Exact microscopic solutions are thereby becoming pos-
sible and have recently been calculated [11,66,68]. Moreover, the availability of
threedimensional microstructures allows to test approximate theories and geo-
metric models and to distinguish them quantitatively.

Distinguishing porous microstructures in a quantitative fashion is important
for reliable predictions and it requires apt geometric observables. Examples of
important geometric observables are porosity and specific internal surface area

K.R. Mecke and D. Stoyan (Eds.): LNP 554, pp. 203–241, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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[6,20]. It is clear however, that porosity and specific internal surface area alone
are not sufficient to distinguish the infinite variety of porous microstructures.

Geometrical models for porous media may be roughly subdivided into the
classical capillary tube and slit models [6], grain models [61], network models
[15,22], percolation models [16,54], fractal models [34,53], stochastic reconstruc-
tion models [1,49] and diagenetic models [4,51]. Little attention is usually paid
to match the geometric characteristics of a model geometry to those of the ex-
perimental sample, as witnessed by the undiminished popularity of capillary
tube models. Usually the matching of geometric observables is limited to the
porosity alone. Recently the idea of stochastic reconstruction models has found
renewed interest [1,50,70]. In stochastic reconstruction models one tries to match
not only the porosity but also other geometric quantities such as specific internal
surface, correlation functions, or linear and spherical contact distributions. Simi-
lar ideas have been proposed in spatial statistics [61]. As the number of matched
quantities increases one expects that also the model approximates better the
given sample. My secondary objective in this review will be to compare simple
stochastic reconstruction models and physically inspired diagenesis models with
the experimental microstructure obtained from computer tomography [11].

2 Problems in the Theory of Porous Media

2.1 Physical Problems

Many physical problems in porous and heterogeneous media can be formulated
mathematically as a set of partial differential equations

F P(r, t,u, ∂u/∂t, . . . ,∇ · u,∇ × u, . . . ) = 0, r ∈ P ⊂ R
3, t ∈ R (1a)

F M(r, t,u, ∂u/∂t, . . . ,∇ · u,∇ × u, . . . ) = 0, r ∈ M ⊂ R
3, t ∈ R (1b)

for a vector of unknown fields u(r, t) as function of position and time coordinates.
Here the two-component porous sample S = P ∪ M is defined as the union of
two closed subsets P ⊂ R

3 and M ⊂ R
3 where P denotes the pore space (or

component 1 in a heterogeneous medium) and M denotes the matrix space (or
component 2). In (1) the vector functionals F P and F M may depend on the
vector u of unknowns and its derivatives as well as on position r and time t. A
simple example for (1) is the time independent potential problem

∇ · j(r) = 0, r ∈ S (2)
j(r) + C(r)∇u(r) = 0, r ∈ S (3)

for a scalar field u(r). The coefficients
C(r) = CPχ

P
(r) + CMχ

M
(r) (4)

contain the material constants CP �= CM. Here the characteristic (or indicator)
function χ

G
(r) of a set G is defined as

χ
G
(r) =

{
1 for r ∈ G

0 for r /∈ G.
(5)
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Hence C(r) is not differentiable at the internal boundary ∂P = ∂M, and this
requires to specify boundary conditions

lim
s→r

n · j(r + s) = lim
s→r

n · j(r − s), r ∈ ∂ P (6)

lim
s→r

n × ∇u(r + s) = lim
s→r

n × ∇u(r − s), r ∈ ∂ P (7)

at the internal boundary. In addition, boundary conditions on the sample bound-
ary ∂S need to be given to complete the formulation of the problem. Inital condi-
tions may also be required. Several concrete applications can be subsumed under
this formulation depending upon the physical interpretation of the field u and
the current j. An overview for possible interpretations of u and j is given in
Table 2.1. It contains hydrodynamical flow, electrical conduction, heat conduc-
tion and diffusion as well as cross effects such as thermoelectric or electrokinetic
phenomena.

Table 1. Overview of possible interpretations for the field u and the current j produced
by its gradient according to (3).

j \ u pressure el. potential temperature concentration
volume Darcy’s law electroosmosis thermal osmosis chemical osmosis
el. charge streaming pot. Ohm’s law Seebeck effect sedim. electricity
heat thermal filtration Peltier effect Fourier’s law Dufour effect
particles ultrafiltration electrophoresis Soret effect Fick’s law

The physical problems in the theory of porous media may be divided into
two categories: direct problems and inverse problems. In direct problems one is
given partial information about the pore space configuration P. The problem is
to deduce information about the solution u(r, t) of the boundary and/or initial
value problem that can be compared to experiment. In inverse problems one is
given partial information about the solutions u(r, t). Typically this information
comes from various experiments or observations of physical processes. The prob-
lem is to deduce information about the pore space configuration P from these
data.

Inverse problems are those of greatest practical interest. All attempts to vi-
sualize the internal interface or fluid content of nontransparent heterogeneous
media lead to inverse problems. Examples occur in computer tomography. In-
verse problems are often ill-posed due to lack of data [39,52]. Reliable solution
of inverse problems requires a predictive theory for the direct problem.

2.2 Geometrical Problems

The geometrical problems arise because in practice the pore space configuration
χ

P
(r) is usually not known in detail. The direct problem, i.e. the solution of

a physical boundary value problem, requires detailed knowledge of the internal
boundary, and hence of χ

P
(r).
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While it is becoming feasible to digitize samples of several mm3 with a res-
olution of a few µm this is not possible for larger samples. For this reason the
true pore space P is often replaced by a geometric model P̃. One then solves the
problem for the model geometry and hopes that its solution ũ obeys ũ ≈ u in
some sense. Such an approach requires quantitative methods for the comparison
of P and the model P̃. This raises the problem of finding generally applicable
quantitative geometric characterization methods that allow to evaluate the accu-
racy of geometric models for porous microstructues. The problem of quantitative
geometric characterization arises also when one asks which geometrical charac-
teristics of the microsctructure P have the greatest influence on the properties
of the solution u of a given boundary value problem.

Some authors introduce more than one geometrical model for one and the
same microstructure when calculating different physical properties (e.g. diffusion
and conduction). It should be clear that such models make it difficult to extract
reliable physical or geometrical information.

3 Geometric Characterizations

3.1 General Considerations

A general geometric characterization of stochastic media should provide macro-
scopic geometric observables that allow to distinguish media with different mi-
crostructures quantitatively. In general, a stochastic medium is defined as a prob-
ability distribution on a space of geometries or configurations. Distributions and
expectation values of geometric observables are candidates for a general geomet-
ric characterization.

A general geometric characterization should fulfill four criteria to be useful
in applications. These four criteria were advanced in [30]. First, it must be well
defined. This obvious requirement is sometimes violated. The so called “pore size
distributions” measured in mercury porosimetry are not geometrical observables
in the sense that they cannot be determined from knowledge of the geometry
alone. Instead they are capillary pressure curves whose calculation involves phys-
ical quantities such as surface tension, viscosity or flooding history [30]. Second,
the geometric characterization should be directly accessible in experiments. The
experiments should be independent of the quantities to be predicted. Thirdly,
the numerical implementation should not require excessive amounts of data. This
means that the amount of data should be mangeable by contemporary data pro-
cessing technology. Finally, a useful geometric characterization should be helpful
in the exact or approximate theoretical calculations.

For simplicity only two-component media will be considered throughout this
paper, but most concepts can be generalized to media with an arbitrary finite
number of components.

3.2 Geometric Observables

Well defined geometric observables are the basis for the geometric characteriza-
tion of porous media. A perennial problem in all applications is to identify those
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macroscopic geometric observables that are relevant for distinguishing between
classes of microstructures. One is interested in those properties of the microstruc-
ture that influence the macroscopic physical behaviour. In general this depends
on the details of the physical problem, but some general properties of the mi-
crostructure such as volume fraction or porosity are known to be relevant in
many situations. Hadwigers theorem [23] is an example of a mathematical result
that helps to identify an important class of such general geometric properties of
porous media. It will be seen later, however, that there exist important geometric
properties that are not members of this class.

A two component porous (or heterogenous) sample S ⊂ R
d consists of two

closed subsets P ⊂ R
d and M ⊂ R

d called pore space P and matrix M such
that S = P ∪ M. Its internal boundary is denoted as ∂P = ∂M = P ∩ M. The
boundary ∂G of a set is defined as the difference between the closure and the
interior of G where the closure is the intersection of all closed sets containing
G and the interior is the union of all open sets contained in G. A geometric
observable f is a mapping (functional) that assigns to each admissible P a real
number f(P) = f(P∩S) that can be calculated from P without solving a physical
boundary value problem. A functional whose evaluation requires the solution of
a physical boundary value problem will be called a physical observable.

Before discussing examples for geometric observables it is necessary to specify
the admissible geometries P. The set R of admissible P is defined as the set of
all finite unions of compact convex sets [23,44,57,58,61] (see also the papers by
M. Kerscher and K. Mecke in this volume). Because R is closed under unions
and intersections it is called the convex ring. The choice of R is convenient for
applications because digitized porous media can be considered as elements from
R and because continuous observables defined for convex compact sets can be
continued to all of R. The set of all compact and convex subsets of R

d is denoted
as K. For subsequent discussions the Minkowski addition of two sets A,B ⊂ R

d

is defined as

A + B = {x + y : x ∈ A,y ∈ B}. (8)

Multiplication of A with a scalar is defined by aA = {ax : x ∈ A} for a ∈ R.
Examples of geometric observables are the volume of P or the surface area

of its boundary ∂P. Let
Vd(K) =

∫
Rd

χ
P
(r)ddr (9)

denote the d-dimensional Lebesgue volume of the compact convex set K. The
volume is hence a functional Vd : K → R on K. An example of a compact convex
set is the unit ball B

d = {x ∈ R
d : |x| ≤ 1} = B

d(0, 1) centered at the origin 0
whose volume is

κd = Vd(Bd) =
πd/2

Γ (1 + (d/2))
. (10)

Other functionals on K can be constructed from the volume by virtue of the
following fact. For every compact convex K ∈ K and every ε ≥ 0 there are
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numbers Vj(K), j = 0, . . . , d depending only on K such that

Vd(K + εBd) =
d∑

j=0

Vj(K)εd−jκd−j (11)

is a polynomial in ε. This result is known as Steiners formula [23,61]. The num-
bers Vj(K), j = 0 . . . , d define functionals on K similar to the volume Vd(K).
The quantities

Wi(K) =
κiVd−i(K)(

d
i

) (12)

are called quermassintegrals [57]. From (11) one sees that

lim
ε→0

1
ε
(Vd(K + εBd)− Vd(K)) = κ1Vd−1(K), (13)

and from (10) that κ1 = 2. Hence Vd−1(K) may be viewed as half the surface
area. The functional V1(K) is related to the mean width w(K) defined as the
mean value of the distance between a pair of parallel support planes of K. The
relation is

V1(K) =
dκd

2κd−1
w(K) (14)

which reduces to V1(K) = w(K)/2 for d = 3. Finally the functional V0(K) is
evaluated from (11) by dividing with εd and taking the limit ε→ ∞. It follows
that V0(K) = 1 for all K ∈ K \ {∅}. One extends V0 to all of K by defining
V0(∅) = 0. The geometric observable V0 is called Euler characteristic.

The geometric observables Vi have several important properties. They are
Euclidean invariant (i.e. invariant under rigid motions), additive and monotone.
Let Td ∼= (Rd,+) denote the group of translations with vector addition as group
operation and let SO(d) be the matrix group of rotations in d dimensions [5].
The semidirect product Ed = Td%SO(d) is the Euclidean group of rigid motions
in R

d. It is defined as the set of pairs (a, A) with a ∈ Td and A ∈ SO(d) and
group operation

(a, A) ◦ (b, B) = (a +Ab, AB). (15)

An observable f : K → R is called euclidean invariant or invariant under rigid
motions if

f(a +AK) = f(K) (16)

holds for all (a, A) ∈ Ed and all K ∈ K. Here AK = {Ax : x ∈ K} denotes the
rotation of K and a + K = {a}+ K its translation. A geometric observable f is
called additive if

f(∅) = 0 (17a)
f(K1 ∪ K2) + f(K1 ∩ K2) = f(K1) + f(K2) (17b)

holds for all K1,K2 ∈ K with K1∪K2 ∈ K. Finally a functional is called monotone
if for K1,K2 ∈ K with K1 ⊂ K2 follows f(K1) ≤ f(K2).
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The special importance of the functionals Vi(K) arises from the following
theorem of Hadwiger [23]. A functional f : K → R is euclidean invariant, additive
and monotone if and only if it is a linear combination

f =
d∑

i=0

ciVi (18)

with nonnegative constants c0, . . . , cd. The condition of monotonicity can be
replaced with continuity and the theorem remains valid [23]. If f is continuous
on K, additive and euclidean invariant it can be additively extended to the
convex ring R [58]. The additive extension is unique and given by the inclusion-
exclusion formula

f

(
m⋃
i=1

K1

)
=

∑
I∈P(m)

(−1)|I|−1f

(⋂
i∈I

Ki

)
(19)

where P(m) denotes the family of nonempty subsets of {1, . . . ,m} and | I | is the
number of elements of I ∈ P(m). In particular, the functionals Vi have a unique
additive extension to the convex ring R [58], which is again be denoted by Vi.

For a threedimensional porous sample with P ∈ R the extended functionals
Vi lead to two frequently used geometric observables. The first is the porosity of
a porous sample S defined as

φ(P ∩ S) = φ3(P ∩ S) =
V3(P ∩ S)
V3(S)

, (20)

and the second its specific internal surface area which may be defined in view of
(13) as

φ2(P ∩ S) =
2V2(P ∩ S)
V3(S)

. (21)

The two remaining observables φ1(P) = V1(P ∩ S)/V3(S) and φ0(P) = V0(P ∩
S)/V3(S) have received less attention in the porous media literature. The Euler
characteristic V0 on R coincides with the identically named topological invariant.
For d = 2 and G ∈ R one has V0(G) = c(G) − c′(G) where c(G) is the number
of connectedness components of G, and c′(G) denotes the number of holes (i.e.
bounded connectedness components of the complement).

3.3 Definition of Stochastic Porous Media

For theoretical purposes the pore space P is frequently viewed as a random set
[30,61]. In practical applications the pore space is usually discretized because of
measurement limitations and finite resolution. For the data discussed below the
set S ⊂ R

3 is a rectangular parallelepiped whose sidelengths are M1,M2 and
M3 in units of the lattice constant a (resolution) of a simple cubic lattice. The
position vectors ri = ri1...id = (ai1, . . . , aid) with integers 1 ≤ ij ≤ Mj are



210 Rudolf Hilfer

used to label the lattice points, and ri is a shorthand notation for ri1...id . Let
Vi denote a cubic volume element (voxel) centered at the lattice site ri. Then
the discretized sample may be represented as S =

⋃N
i=1 Vi. The discretized pore

space P̃ defined as
P̃ =

⋃
{i:χ

P

(ri)=1}
Vi. (22)

is an approximation to the true pore space P. For simplicity it will be assumed
that the discretization does not introduce errors, i.e. that P̃ = P, and that each
voxel is either fully pore or fully matrix. This assumption may be relaxed to allow
voxel attributes such as internal surface or other quermassintegral densities. The
discretization into voxels reflects the limitations arising from the experimental
resolution of the porous structure. A discretized pore space for a bounded sample
belongs to the convex ring R if the voxels are convex and compact. Hence,
for a simple cubic discretization the pore space belongs to the convex ring. A
configuration (or microstructure) Z of a 2-component medium may then be
represented in the simplest case by a sequence

Z = (Z1, . . . , ZN ) = (χ
P
(r1), . . . , χ

P
(rN )) (23)

where ri runs through the lattice points and N =M1M2M3. This representation
corresponds to the simplest discretization in which there are only two states for
each voxel indicating whether it belongs to pore space or not. In general a voxel
could be characterized by more states reflecting the microsctructure within the
region Vi. In the simplest case there is a one-to-one correspondence between P

and Z given by (23). Geometric observables f(P) then correspond to functions
f(Z) = f(z1, . . . , zN ).

As a convenient theoretical idealization it is frequently assumed that porous
media are random realizations drawn from an underlying statistical ensemble. A
discretized stochastic porous medium is defined through the discrete probability
density

p(z1, . . . , zN ) = Prob{(Z1 = z1) ∧ . . . ∧ (ZN = zN )} (24)

where zi ∈ {0, 1} in the simplest case. It should be emphasized that the prob-
ability density p is mainly of theoretical interest. In practice it is usually not
known. An infinitely extended medium or microstructure is called stationary or
statistically homogeneous if p is invariant under spatial translations. It is called
isotropic if p is invariant under rotations.

3.4 Moment Functions and Correlation Functions

A stochastic medium was defined through its probability distribution p. In prac-
tice p will be even less accessible than the microstructure P = Z itself. Partial
information about p can be obtained by measuring or calculating expectation
values of a geometric observable f . These are defined as

〈f(z1, . . . , zN )〉 =
1∑

z1=0

. . .

1∑
zN=0

f(z1, . . . , zN )p(z1, . . . , zN ) (25)
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where the summations indicate a summation over all configurations. Consider
for example the porosity φ(S) defined in (20). For a stochastic medium φ(S)
becomes a random variable. Its expectation is

〈φ〉 =
〈V3(P)〉
V3(S)

=
1

V3(S)

∫
S

〈
χ

P
(r)

〉
d3r

=
1

V3(S)

N∑
i=1

〈zi〉V3(Vi) =
1
N

N∑
i=1

〈zi〉

=
1
N

N∑
i=1

Prob{zi = 1} =
1
N

N∑
i=1

Prob{ri ∈ P} (26)

If the medium is statistically homogeneous then

〈φ〉 = Prob{zi = 1} = Prob{ri ∈ P} =
〈
χ

P
(ri)

〉
(27)

independent of i. It happens frequently that one is given only a single sample,
not an ensemble of samples. It is then necessary to invoke an ergodic hypothesis
that allows to equate spatial averages with ensemble averages.

The porosity is the first member in a hierarchy of moment functions. The
n-th order moment function is defined generally as

Sn(r1, . . . , rn) =
〈
χ

P
(r1) . . . χ

P
(rn)

〉
(28)

for n ≤ N . (If a voxel has other attributes besides being pore or matrix one may
define also mixed moment functions Si1...in(r1, . . . , rn) = 〈φi1(r1) . . . φin(rn)〉
where φi(rj) = Vi(P ∩ Vj)/Vi(Vj) for i = 1, . . . d are the quermassintegral den-
sities for the voxel at site rj . ) For stationary media Sn(r1, . . . rn) = g(r1 −
rn, . . . , rn−1−rn) where the function g depends only on n−1 variables. Another
frequently used expectation value is the correlation function which is related to
S2. For a homogeneous medium it is defined as

G(r0, r) = G(r − r0) =

〈
χ

P
(r0)χ

P
(r)

〉
− 〈φ〉2

〈φ〉 (1− 〈φ〉) =
S2(r − r0)− (S1(r0))2

S1(r0)(1− S1(r0))
(29)

where r0 is an arbitrary reference point, and 〈φ〉 = S1(r0). If the medium is
isotropic then G(r) = G(|r|) = G(r). Note that G is normalized such that
G(0) = 1 and G(∞) = 0.

The hierarchy of moment functions Sn, similar to p, is mainly of theoretical
interest. For a homogeneous medium Sn is a function of n − 1 variables. To
specify Sn numerically becomes impractical as n increases. If only 100 points
are required along each coordinate axis then giving Sn would require 102d(n−1)

numbers. For d = 3 this implies that already at n = 3 it becomes economical to
specify the microstructure P directly rather than incompletely through moment
or correlation functions.
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3.5 Contact Distributions

An interesting geometric characteristic introduced and discussed in the field
of stochastic geometry are contact distributions [18,61, p. 206]. Certain special
cases of contact distributions have appeared also in the porous media literature
[20]. Let G be a compact test set containing the origin 0. Then the contact
distribution is defined as the conditional probability

HG(r) = 1− Prob{0 /∈ M + (−rG)|0 /∈ M} = 1− Prob{M ∩ rG = ∅}
φ

(30)

If one defines the random variable R = inf{s : M ∩ sG �= ∅} then HG(r) =
Prob{R ≤ r|R > 0} [61].

For the unit ball G = B(0, 1) in three dimensions HB is called spherical
contact distribution. The quantity 1−HB(r) is then the distribution function of
the random distance from a randomly chosen point in P to its nearest neighbour
in M. The probability density

p(r) =
d
dr

(1−HB(r)) = − d
dr
HB(r) (31)

was discussed in [56] as a well defined alternative to the frequently used pore
size distrubution from mercury porosimetry.

For an oriented unit interval G = B
1(0, 1; e) where e is the a unit vector one

obtains the linear contact distribution. The linear contact distribution written
as L(re) = φ(1 −HB1(0,1;e)(r)) is sometimes called lineal path function [70]. It
is related to the chord length distribution pcl(x) defined as the probability that
an interval in the intersection of P with a straight line containing B

1(0, 1; e) has
length smaller than x [30,61, p. 208].

3.6 Local Porosity Distributions

The idea of local porosity distributions is to measure geometric observables in-
side compact convex subsets K ⊂ S, and to collect the results into empirical his-
tograms [27]. Let K(r, L) denote a cube of side length L centered at the lattice
vector r. The set K(r, L) is called a measurement cell. A geometric observable
f , when measured inside a measurement cell K(r, L), is denoted as f(r, L) and
called a local observable. An example are local Hadwiger functional densities
f =

∑d
i=1 ciψi with coefficients ci as in Hadwigers theorem (18). Here the local

quermassintegrals are defined using (12) as

ψi(P ∩ K(r, L)) =
Wi(P ∩ K(r, L))
Vd(K(r, L))

(32)

for i = 1, . . . , d. In the following mainly the special case d = 3 will be of interest.
For d = 3 the local porosity is defined by setting i = 0,

φ(r, L) = ψ0(P ∩ K(r, L)). (33)
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Local densities of surface area, mean curvature and Euler characteristic may be
defined analogously. The local porosity distribution, defined as

µ(φ; r, L) = 〈δ(φ− φ(r, L))〉 , (34)

gives the probability density to find a local porosity φ(r, L) in the measurement
cell K(r, L). Here δ(x) denotes the Dirac δ-distribution. The support of µ is
the unit interval. For noncubic measurement cells K one defines analogously
µ(φ;K) = 〈δ(φ− φ(K))〉 where φ(K) = φ(P∩K) is the local observable in cell K.

The concept of local porosity distributions (or more generally “local geom-
etry distributions” [28,30]) was introduced in [27] and has been generalized in
two directions [30]. Firstly by admitting more than one measurement cell, and
secondly by admitting more than one geometric observable. The general n-cell
distribution function is defined as [30]

µn;f1,... ,fm(f11, . . . , f1n; . . . ; fn1, . . . , fnm;K1, . . . ,Kn) =
〈δ(f11 − f1(K1)) . . . δ(f1n − f1(Kn)) . . . δ(fm1 − f1(K1)) . . . δ(fmn − fm(Kn))〉

(35)

for n general measurement cells K1, . . . ,Kn and m observables f1, . . . , fm. The
n-cell distribution is the probability density to find the values f11 of the local
observable f1 in cell K1 and f12 in cell K2 and so on until fmn of local observable
fm in Kn. Definition (35) is a broad generalization of (34). This generalization is
not purely academic, but was motivated by problems of fluid flow in porous media
where not only ψ0 but also ψ1 becomes important [28]. Local quermassintegrals,
defined in (32), and their linear combinations (Hadwiger functionals) furnish
important examples for local observables in (35), and they have recently been
measured [40].

The general n-cell distribution is very general indeed. It even contains p from
(24) as the special case m = 1, f1 = φ and n = N with Ki = Vi = K(ri, a).
More precisely one has

µN ;φ(φ1, . . . , φN ;V1, . . . ,VN ) = p(φ1, . . . , φN ) (36)

because in that case φi = zi = 1 if Vi ∈ P and φi = zi = 0 for V /∈ P. In
this way it is seen that the very definition of a stochastic geometry is related
to local porosity distributions (or more generally local geometry distributions).
As a consequence the general n-cell distribution µn;f1,... ,fm is again mainly of
theoretical interest, and usually unavailable for practical computations.

Expectation values with respect to p have generalizations to averages with
respect to µ. Averaging with respect to µ will be denoted by an overline. In the
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special case m = 1, f1 = φ and Ki = Vi = K(ri, a) with n < N one finds [30]

φ(r1, a) · · ·φ(rn, a)

=

1∫
0

. . .

1∫
0

φ1 · · ·φnµn;φ(φ1, . . . , φn;V1, . . . ,Vn)dφ1 · · ·dφn

=

1∫
0

. . .

1∫
0

φ1 · · ·φnµN ;φ(φ1, . . . , φN ;V1, . . . ,VN )dφ1 · · ·dφN

=

1∫
0

. . .

1∫
0

φ1 · · ·φn 〈δ(φ1 − φ(r1, a)) · · · δ(φN − φ(rN , a))〉dφ1 · · ·dφN

= 〈φ(r1, a) · · ·φ(rn, a)〉
=
〈
χ

P
(r1) . . . χ

P
(rn)

〉
= Sn(r1, . . . , rn) (37)

thereby identifying the moment functions of order n as averages with respect to
an n-cell distribution.

For practical applications the 1-cell local porosity distributions µ(r, L) and
their analogues for other quermassintegrals are of greatest interest. For a homo-
geneous medium the local porosity distribution obeys

µ(φ; r, L) = µ(φ;0, L) = µ(φ;L) (38)

for all lattice vectors r, i.e. it is independent of the placement of the measurement
cell. A disordered medium with substitutional disorder [71] may be viewed as a
stochastic geometry obtained by placing random elements at the cells or sites
of a fixed regular substitution lattice. For a substitutionally disordered medium
the local porosity distribution µ(r, L) is a periodic function of r whose period
is the lattice constant of the substitution lattice. For stereological issues in the
measurement of µ from thin sections see [64].

Averages with respect to µ are denoted by an overline. For a homogeneous
medium the average local porosity is found as

φ(r, L) =

1∫
0

µ(φ; r, L)dφ = 〈φ〉 = φ (39)
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independent of r and L. The variance of local porosities for a homogeneous
medium defined in the first equality

σ2(L) = (φ(L)− φ)2 =

1∫
0

(φ(L)− φ)2µ(φ;L)dφ

=
1
L3 〈φ〉 (1− 〈φ〉)

1 +
2
L3

∑
ri,rj∈K(r0,L)

i�=j

G(ri − rj)


(40)

is related to the correlation function as given in the second equality [30]. The
skewness of the local porosity distribution is defined as the average

κ3(L) =
(φ(L)− φ)3
σ(L)3

(41)

The limits L → 0 and L → ∞ of small resp. large measurement cells are of
special interest. In the first case one reaches the limiting resolution at L = a and
finds for a homogeneous medium [27,30]

µ(φ; a) = φδ(φ− 1)− (1− φ)δ(φ). (42)

The limit L → ∞ is more intricate because it requires also the limit S → R
3.

For a homogeneous medium (40) shows σ(L) → 0 for L→ 0 and this suggests

µ(φ,L→ ∞) = δ(φ− φ). (43)

For macroscopically heterogeneous media, however, the limiting distribution may
deviate from this result [30]. If (43) holds then in both limits the geometrical
information contained in µ reduces to the single number φ = 〈φ〉. If (42) and
(43) hold there exists a special length scale L∗ defined as

L∗ = min{L : µ(0;L) = µ(1;L) = 0} (44)

at which the δ-components at φ = 0 and φ = 1 vanish. In the examples below
the length L∗ is a measure for the size of pores.

The ensemble picture underlying the definition of a stochastic medium is
an idealization. In practice one is given only a single realization and has to
resort to an ergodic hypothesis for obtaining an estimate of the local porosity
distributions. In the examples below the local porosity distribution is estimated
by

µ̃(φ;L) =
1
m

∑
r

δ(φ− φ(r, L)) (45)

where m is the number of placements of the measurement cell K(r, L). Ideally
the measurement cells should be far apart or at least nonoverlapping, but in
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practice this restriction cannot be observed because the samples are not large
enough. In the results presented below K(r, L) is placed on all lattice sites which
are at least a distance L/2 from the boundary of S. This allows for

m =
3∏

i=1

(Mi − L+ 1) (46)

placements of K(r, L) in a sample with side lengths M1,M2,M3. The use of µ̃
instead of µ can lead to deviations due to violations of the ergodic hypothesis
or simply due to oversampling the central regions of S [10,11].

3.7 Local Percolation Probabilities

Transport and propagation in porous media are controlled by the connectivity
of the pore space. Local percolation probabilities characterize the connectivity
[27]. Their calculation requires a threedimensional pore space representation, and
early results were restricted to samples reconstructed laboriously from sequential
thin sectioning [32]

Consider the functional Λ : K × K × R → Z2 = {0, 1} defined by

Λ(K0,K∞;P ∩ S) =

{
1 : if K0 ❀ K∞ in P

0 : otherwise
(47)

where K0 ⊂ R
3,K∞ ⊂ R

3 are two compact convex sets with K0 ∩ (P ∩ S) �= ∅
and K∞ ∩ (P ∩ S) �= ∅, and “K0 ❀ K∞ in P” means that there is a path
connecting K0 and K∞ that lies completely in P. In the examples below the sets
K0 and K∞ correspond to opposite faces of the sample, but in general other
choices are allowed. Analogous to Λ defined for the whole sample one defines for
a measurement cell

Λα(r, L) = Λ(K0α,K∞α;P ∩ K(r, L)) =

{
1 : if K0α ❀ K∞α in P

0 : otherwise
(48)

where α = x, y, z and K0x,K∞x denote those two faces of K(r, L) that are normal
to the x direction. Similarly K0y,K∞y,K0zK∞z denote the faces of K(r, L)
normal to the y- and z-directions. Two additional percolation observables Λ3
and Λc are introduced by

Λ3(r, L) = Λx(r, L)Λy(r, L)Λz(r, L) (49)
Λc(r, L) = sgn(Λx(r, L) + Λy(r, L) + Λz(r, L)). (50)

Λ3 indicates that the cell is percolating in all three directions while Λc indicates
percolation in x- or y- z-direction. The local percolation probabilities are defined
as

λα(φ;L) =
∑

r Λα(r, L)δφ,φ(r,L)∑
r δφ,φ(r,L)

(51)
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where

δφ,φ(r,L) =

{
1 : if φ = φ(r, L)
0 : otherwise.

(52)

The local percolation probability λα(φ;L) gives the fraction of measurement cells
of sidelength L with local porosity φ that are percolating in the “α”-direction.
The total fraction of cells percolating along the “α”-direction is then obtained
by integration

pα(L) =

1∫
0

µ(φ;L)λα(φ;L)dφ. (53)

This geometric observable is a quantitative measure for the number of elements
that have to be percolating if the pore space geometry is approximated by a
substitutionally disordered lattice or network model. Note that neither Λ nor Λα

are additive functionals, and hence local percolation probabilities have nothing
to do with Hadwigers theorem.

It is interesting that there is a relation between the local percolation prob-
abilities and the local Euler characteristic V0(P ∩ K(r, l)). The relation arises
from the observation that the voxels Vi are closed, convex sets, and hence for
any two voxels Vi,Vj the Euler characteristic of their intersection

V0(Vi ∩ Vj) =

{
1 : if Vi ∩Vj �= ∅
0 : if Vi ∩Vj = ∅ (54)

indicates whether two voxels are nearest neighbours.A measurement cell K(r, L)
contains L3 voxels. It is then possible to construct a (L3 +2)× (L3 +2)2-matrix
B with matrix elements

(B)i (i,j) = V0(Vi ∩ Vj) (55)
(B)i (j,i) = −V0(Vi ∩ Vj) (56)

where i, j ∈ {0, 1, . . . , L3,∞} and the sets V0 = K0 and V∞ = K∞ are two
opposite faces of the measurement cell. The rows in the matrix B correspond to
voxels while the columns correspond to voxel pairs. Define the matrix A = BBT

where BT is the transpose of B. The diagonal elements (A)ii give the number of
voxels to which the voxel Vi is connected. A matrix element (A)ij differs from
zero if and only if Vi and Vj are connected. Hence the matrix A reflects the local
connectedness of the pore space around a single voxel. Sufficiently high powers
of A provide information about the global connectedness of P. One finds

Λ(K0,K∞;P ∩ K(r, L)) = sgn (|(Am)0∞|) (57)

where (Am)0∞ is the matrix element in the upper right hand corner and m is
arbitrary subject to the condition m > L3. The set P ∩ K(r, L) can always be
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decomposed uniquely into pairwise disjoint connectedness components (clusters)
Bi whose number is given by the rank of B. Hence

V0(P ∩ K(r, L)) =
rankB∑
i=1

V0(Bi) (58)

provides an indirect connection between the local Euler characteristic and the lo-
cal percolation probabilities mediated by the matrix B. (For percolation systems
it has been conjectured that the zero of the Euler characteristic as a function
of the occupation probability is an approximation to the percolation threshold
[45].)

4 Stochastic Reconstruction of Microstructures

4.1 Description of Experimental Sample

The experimental sample, denoted as SEX, is a threedimensional microtomo-
graphic image of Fontainebleau sandstone. This sandstone is a popular reference
standard because of its chemical, crystallographic and microstructural simplicity
[13,14]. Fontainebleau sandstone consists of monocrystalline quartz grains that
have been eroded for long periods before being deposited in dunes along the sea
shore during the Oligocene, roughly 30 million years ago. It is well sorted con-
taining grains of around 200µm in diameter. The sand was cemented by silica
crystallizing around the grains. Fontainebleau sandstone exhibits intergranular
porosity ranging from 0.03 to roughly 0.3 [13].

Table 2. Overview of geometric properties of the four microstructures displayed in
Figs. 1 through 4

Properties SEX SDM SGF SSA

M1 300 255 256 256
M2 300 255 256 256
M3 299 255 256 256
φ(P ∩ S) 0.1355 0.1356 0.1421 0.1354
φ2(P ∩ S) 10.4mm−1 10.9mm−1 16.7mm−1 11.06mm−1

L∗ 35 25 23 27
1 − λc(0.1355, L∗) 0.0045 0.0239 0.3368 0.3527

The computer assisted microtomography was carried out on a micro-plug
drilled from a larger original core. The original core from which the micro-plug
was taken had a measured porosity of 0.1484, permability of 1.3D and forma-
tion factor 22.1. The porosity φ(SEX) of the microtomographic data set is only
0.1355(see Table 2). The difference between the porosity of the original core and
that of the final data set is due to the heterogeneity of the sandstone and to the
difference in sample size. The experimental sample is referred to as EX in the
following. The pore space of the experimental sample is visualized in Fig. 1.
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Fig. 1. Sample EX: Threedimensional pore space PEX of Fontainebleau sandstone. The
resolution of the image is a = 7.5µm, the sample dimensions are M1 = 300, M2 = 300,
M3 = 299. The pore space is indicated opaque, the matrix space is transparent. The
lower image shows the front plane of the sample as a twodimensional thin section (pore
space black, matrix grey).
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4.2 Sedimentation, Compaction and Diagenesis Model

Fontainebleau sandstone is the result of complex physical, chemical and geolog-
ical processes known as sedimentation, compaction and diagenesis. It is there-
fore natural to model these processes directly rather than trying to match gen-
eral geometrical characteristics. This conclusion was also obtained from local
porosity theory for the cementation index in Archie’s law [27]. The diagenesis
model abbreviated as DM in the following, attempts model the main geological
sandstone-forming processes [4,48].

In a first step porosity, grain size distribution, a visual estimate of the de-
gree of compaction, the amount of quartz cement and clay contents and texture
are obtained by image analysis of backscattered electron/cathodo-luminescence
images made from thin sections. The sandstone modeling is then carried out in
three main steps: grain sedimentation, compaction and diagenesis described in
detail in [4,48].

Sedimentation begins by measuring the grain size distribution using an ero-
sion-dilation algorithm. Then spheres with random diameters are picked ran-
domly according to the grain size distribution. They are dropped onto the grain
bed and relaxed into a local potential energy minimum or, alternatively, into the
global minimum.

Compaction occurs because the sand becomes buried into the subsurface.
Compaction reduces the bulk volume (and porosity). It is modelled as a lin-
ear process in which the vertical coordinate of every sandgrain is shifted ver-
tically downwards by an amount proportional to the original vertical position.
The proportionality constant is called the compaction factor. Its value for the
Fontainebleau sample is estimated to be 0.1 from thin section analysis.

In the diagenesis part only a subset of known diagenetical processes are
simulated, namely quartz cement overgrowth and precipitation of authigenic clay
on the free surface. Quartz cement overgrowth is modeled by radially enlarging
each grain. If R0 denotes the radius of the originally deposited spherical grain,
its new radius along the direction r from grain center is taken to be [48,59]

R(r) = R0 + min(b[(r)γ , [(r)) (59)

where [(r) is the distance between the surface of the original spherical grain
and the surface of its Voronoi polyhedron along the direction r. The constant
b controls the amount of cement, and the growth exponent γ controls the type
of cement overgrowth. For γ > 0 the cement grows preferentially into the pore
bodies, for γ = 0 it grows concentrically, and for γ < 0 quartz cement grows
towards the pore throats [48]. Authigenic clay growth is simulated by precipitat-
ing clay voxels on the free mineral surface. The clay texture may be pore-lining
or pore-filling or a combination of the two.

The parameters for modeling the Fontainebleau sandstone were 0.1 for the
compaction factor, and γ = −0.6 and b = 2.9157 for the cementation parameters.
The resulting model configuration of the sample DM is displayed in Fig. 2.
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Fig. 2. Sample DM: Threedimensional pore space PDM of the sedimentation and diage-
nesis model described in the text. The resolution is a = 7.5µm, the sample dimensions
are M1 = 255, M2 = 255, M3 = 255. The pore space is indicated opaque, the ma-
trix space is transparent. The lower image shows the front plane of the sample as a
twodimensional thin section (pore space black, matrix grey)
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4.3 Gaussian Field Reconstruction Model

A stochastic reconstruction model attempts to approximate a given experimen-
tal sample by a randomly generated model structure that matches prescribed
stochastic properties of the experimental sample. In this and the next section
the stochastic property of interest is the correlation function GEX(r) of the
Fontainebleau sandstone.

The Gaussian field (GF) reconstruction model tries to match a reference
correlation function by filtering Gaussian random variables [1,2,49,69]. Given the
reference correlation function GEX(r) and porosity φ(SEX) of the experimental
sample the Gaussian field method proceeds in three main steps:

1. Initially a Gaussian field X(r) is generated consisting of statistically inde-
pendent Gaussian random variables X ∈ R at each lattice point r.

2. The field X(r) is first passed through a linear filter which produces a corre-
lated Gaussian field Y (r) with zero mean and unit variance. The reference
correlation function GEX(r) and porosity φ(SEX) enter into the mathematical
construction of this linear filter.

3. The correlated field Y (r) is then passed through a nonlinear discretization
filter which produces the reconstructed sample SGF.

Step 2 is costly because it requires the solution of a very large set of non-linear
equations. A computationally more efficient method uses Fourier Transformation
[1]. The linear filter in step 2 is defined in Fourier space through

Y (k) = α(GY (k))
1
2X(k), (60)

where M = M1 = M2 = M3 is the sidelength of a cubic sample, α = M
d
2 is a

normalisation factor, and

X(k) =
1
Md

∑
r

X(r)e2πik·r (61)

denotes the Fourier transform of X(r). Similarly Y (k) is the Fourier transform
of Y (r), and GY (k) is the Fourier transform of the correlation function GY (r).
GY (r) has to be computed by an inverse process from the correlation function
GEX(r) and porosity of the experimental reference (details in [1]).

The Gaussian field reconstruction requires a large separation ξEX ' N1/d

where ξEX is the correlation length of the experimental reference, and N =
M1M2M3 is the number of sites. ξEX is defined as the length such thatGEX(r) ≈ 0
for r > ξEX. If the condition ξEX ' N1/d is violated then step 2 of the recon-
struction fails in the sense that the correlated Gaussian field Y (r) does not have
zero mean and unit variance. In such a situation the filter GY (k) will differ from
the Fourier transform of the correlation function of the Y (r). It is also difficult
to calculate GY (r) accurately near r = 0 [1]. This leads to a discrepancy at small
r between GGF(r) and GEX(r). The problem can be overcome by choosing large
M . However, in d = 3 very largeM also demands prohibitively large memory. In
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Fig. 3. Sample GF: Threedimensional pore space PGF with GGF(r) ≈ GEX(r) con-
structed by filtering Gaussian random fields. The resolution is a = 7.5µm, the sample
dimensions are M1 = 256, M2 = 256, M3 = 256. The pore space is indicated opaque,
the matrix space is transparent. The lower image shows the front plane of the sample
as a twodimensional thin section (pore space black, matrix grey)
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earlier work [1,2] the correlation function GEX(r) was sampled down to a lower
resolution, and the reconstruction algorithm then proceeded with such a rescaled
correlation function. This leads to a reconstructed sample SGF which also has a
lower resolution. Such reconstructions have lower average connectivity compared
to the original model [9]. For a quantitative comparison with the microstructure
of SEX it is necessary to retain the original level of resolution, and to use the orig-
inal correlation function GEX(r) without subsampling. Because GEX(r) is nearly
0 for r > 30a GEX(r) was truncated at r = 30a to save computer time. The
resulting configuration SGF with M = 256 is displayed in Fig. 3.

4.4 Simulated Annealing Reconstruction Model

The simulated annealing (SA) reconstruction model is a second method to gen-
erate a threedimensional random microstructure with prescribed porosity and
correlation function. The method generates a configuration SSA by minimizing
the deviations between GSA(r) and a predefined reference function G0(r). Note
that the generated configuration SSA is not unique and hence other modeling
aspects come into play [42]. Below, G0(r) = GEX(r) is again the correlation
function of the Fontainebleau sandstone.

An advantage of the simulated annealing method over the Gaussian field
method is that it can also be used to match other quantities besides the corre-
lation function. Examples would be the linear or spherical contact distributions
[42]. On the other hand the method is computationally very demanding, and can-
not be implemented fully at present. A simplified implementation was discussed
in [70], and is used below.

The reconstruction is performed on a cubic lattice with side length M =
M1 = M2 = M3 and lattice spacing a. The lattice is initialized randomly with
0’s and 1’s such that the volume fraction of 0’s equals φ(SEX). This porosity is
preserved throughout the simulation. For the sake of numerical efficiency the
autocorrelation function is evaluated in a simplified form using [70]

G̃SA(r)
(
G̃SA(0)− G̃SA(0)2

)
+ G̃SA(0)2 =

=
1

3M3

∑
r

χ
M
(r)

(
χ

M
(r+ re1) + χ

M
(r+ re2) + χ

M
(r+ re3)

)
(62)

where ei are the unit vectors in direction of the coordinate axes, r = 0, . . . , M2 −1,
and where a tilde ˜ is used to indicate the directional restriction. The sum

∑
r

runs over all M3 lattice sites r with periodic boundary conditions, i.e. ri + r is
evaluated modulo M .

A simulated annealing algorithm is used to minimize the ”energy” function

E =
∑
r

(
G̃SA(r)−GEX(r)

)2
, (63)

defined as the sum of the squared deviations of G̃SA from the experimental
correlation function GEX. Each update starts with the exchange of two pixels, one
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Fig. 4. Sample SA: Threedimensional pore space PSA with GSA(r) = GEX(r) con-
structed using a simulated annealing algorithm. The resolution is a = 7.5µm, the
sample dimensions are M1 = 256, M2 = 256, M3 = 256. The pore space is indicated
opaque, the matrix space is transparent. The lower image shows the front plane of the
sample as a twodimensional thin section (pore space black, matrix grey)
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from pore space, one from matrix space. Let n denote the number of the proposed
update step. Introducing an acceptance parameter Tn, which may be interpreted
as an n-dependent temperature, the proposed configuration is accepted with
probability

p = min
(
1, exp

(
−En − En−1

TnEn−1

))
. (64)

Here the energy and the correlation function of the configuration is denoted
as En and G̃SA,n, respectively. If the proposed move is rejected, then the old
configuration is restored.

A configuration with correlation GEX is found by lowering T . At low T the
system approaches a configuration that minimizes the energy function. In the
simulations Tn was lowered with n as

Tn = exp
(
− n

100000

)
. (65)

The simulation was stopped when 20000 consecutive updates were rejected. This
happened after 2.5× 108 updates (≈ 15 steps per site). The resulting configura-
tion SSA for the simulated annealing reconstruction is displayed in Fig. 4.

A complete evaluation of the correlation function as defined in (29) for a
threedimensional system requires so much computer time, that it cannot be car-
ried out at present. Therefore the algorithm was simplified to increase its speed
[70]. In the simplified algorithm the correlation function is only evaluated along
the directions of the coordinate axes as indicated in (62). The original motivation
was that for isotropic systems all directions should be equivalent [70]. However,
it was found in [41] that as a result of this simplification the reconstructed sam-
ple may become anisotropic. In the simplified algorithm the correlation function
of the reconstruction deviates from the reference correlation function in all di-
rections other than those of the axes [41]. The problem is illustrated in Figs. 5(a)
and 5(b) in two dimensions for a reference correlation function given as

G0(r) = e−r/8 cos r. (66)

In Fig. 5a the correlation function was matched only in the direction of the x- and
y-axis. In Fig. 5b the correlation function was matched also along the diagonal
directions obtained by rotating the axes 45 degrees. The differences in isotropy of
the two reconstructions are clearly visible. In the special case of the correlation
function of the Fontainebleau sandstone, however, this effect seems to be smaller.
The Fontainebleau correlation function is given in Fig. 7 below. Figure 6a and
6b show the result of twodimensional reconstructions along the axes only and
along axes plus diagonal directions. The differences in isotropy seem to be less
pronounced. Perhaps this is due to the fact that the Fontainebleau correlation
function has no maxima and minima.
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(a) (b)

Fig. 5. Twodimensional stochastic reconstruction for the correlation function of
G0(r) = e−r/8 cos r (a) for the direction of the x- and y-coordinate axes only, and
(b) for the directions of the coordinate axes plus diagonal directions.

(a) (b)

Fig. 6. A Twodimensional stochastic reconstruction for the correlation function
G0(r) = GEX(r) displayed as the solid line in Fig. 7a along the direction of the x-
and y-coordinate axes only, and Fig. 7b along the directions of the coordinate axes
plus diagonal directions.
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5 Quantitative Comparison of Microstructures

5.1 Conventional Observables and Correlation Functions

Table 2 gives an overview of several geometric properties for the four microstruc-
tures discussed in the previous section. Samples GF and SA were constructed to
have the same correlation function as sample EX. Figure 7 shows the direction-
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Fig. 7. Directionally averaged correlation functions G(r) = (G(r, 0, 0) + G(0, r, 0) +
G(0, 0, r))/3 of the samples EX,DM,GF and SA

ally averaged correlation functions G(r) = (G(r, 0, 0) +G(0, r, 0) +G(0, 0, r))/3
of all four microstructures where the notation G(r1, r2, r3) = G(r) was used.

The Gaussian field reconstruction GGF(r) is not perfect and differs from
GEX(r) for small r. The discrepancy at small r reflects the quality of the lin-
ear filter, and it is also responsible for the differences of the porosity and specific
internal surface. Also, by construction, GGF(r) is not expected to equal GEX(r)
for r larger than 30. Although the reconstruction method of sample SSA is intrin-
sically anisotropic the correlation function of sample SA agrees also in the diago-
nal directions with that of sample EX. Sample SDM while matching the porosity
and grain size distribution was not constructed to match also the correlation
function. As a consequence GDM(r) differs clearly from the rest. It reflects the
grain structure of the model by becoming negative. GDM(r) is also anisotropic.
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If two samples have the same correlation function they are expected to have
also the same specific internal surface as calculated from

S = −4 〈φ〉 (1− 〈φ〉)dG(r)
dr

∣∣∣∣
r=0

. (67)

The specific internal surface area calculated from this formula is given in Table 2
for all four microstructures.

If one defines a decay length by the first zero of the correlation function then
the decay length is roughly 18a for samples EX, GF and SA. For sample DM it is
somewhat smaller mainly in the x- and y-direction. The correlation length, which
will be of the order of the decay length, is thus relatively large compared to the
system size. Combined with the fact that the percolation threshold for continuum
systems is typically around 0.15 this might explain why models GF and SA are
connected in spite of their low value of the porosity.

In summary, the samples SGF and SSA were constructed to be indistinguish-
able with respect to porosity and correlations from SEX. Sample SA comes close
to this goal. The imperfection of the reconstruction method for sample GF ac-
counts for the deviations of its correlation function at small r from that of sample
EX. Although the difference in porosity and specific surface is much bigger be-
tween samples SA and GF than between samples SA and EX sample SA is
in fact more similar to GF than to EX in a way that can be quantified using lo-
cal porosity analysis. Traditional characteristics such as porosity, specific surface
and correlation functions are insufficient to distinguish different microstructures.
Visual inspection of the pore space indicates that samples GF and SA have a
similar structure which, however, differs from the structure of sample EX. Al-
though sample DM resembles sample EX more closely with respect to surface
roughness it differs visibly in the shape of the grains.

5.2 Local Porosity Analysis

The differences in visual appearance of the four microstructures can be quantified
using the geometric observables µ and λ from local porosity theory. The local
porosity distributions µ(φ, 20) of the four samples at L = 20a are displayed as
the solid lines in Figs. 8a through 8d. The ordinates for these curves are plotted
on the right vertical axis.

The figures show that the original sample exhibits stronger porosity fluctu-
ations than the three model samples except for sample SA which comes close.
Sample DM has the narrowest distribution which indicates that it is most ho-
mogeneous. Figures 8a–8d show also that the δ-function component at the ori-
gin, µ(0, 20), is largest for sample EX, and smallest for sample GF. For samples
DM and SA the values of µ(0, 20) are intermediate and comparable. Plotting
µ(0, L) as a function of L shows that this remains true for all L. These results
indicate that the experimental sample EX is more strongly heterogeneous than
the models, and that large regions of matrix space occur more frequently in sam-
ple EX. A similar conclusion may be drawn from the variance of local porosity
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Fig. 8. Local percolation probabilities λα(φ, 20) (broken curves, values on left axis)
and local porosity distribution µ(φ, 20) (solid curve, values on right axis) at L = 20 for
sample EX(Fig. 8a), sample DM(Fig. 8b), sample GF(Fig. 8c), and sample SA(Fig. 8d).
The inset shows the function pα(L). The line styles corresponding to α = c, x, y, z, 3
are indicated in the legend.
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fluctuations which will be studied below. The conclusion is also consistent with
the results for L∗ shown in Table 2. L∗ gives the sidelength of the largest cube
that can be fit into matrix space, and thus L∗ may be viewed as a measure for
the size of the largest grain. Table 2 shows that the experimental sample has
a larger L∗ than all the models. It is interesting to note that plotting µ(1, L)
versus L also shows that the curve for the experimental sample lies above those
for the other samples for all L. Thus, also the size of the largest pore and the
pore space heterogeneity are largest for sample EX. If µ(φ,L∗) is plotted for all
four samples one finds two groups. The first group is formed by samples EX and
DM, the second by samples GF and SA. Within each group the curves µ(φ,L∗)
nearly overlap, but they differ strongly between them.

Figures 9 and 10 exhibit the dependence of the local porosity fluctuations
on L. Figure 9 shows the variance of the local porosity fluctuations, defined in
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Fig. 9. Variance of local porosities for sample EX(solid line with tick), DM(dashed
line with cross), GF(dotted line with square), and SA(dash-dotted line with circle).

(40) as function of L. The variances for all samples indicate an approach to a
δ-distribution according to (43). Again sample DM is most homogeneous in the
sense that its variance is smallest. The agreement between samples EX, GF and
SA reflects the agreement of their correlation functions, and is expected by
virtue of eq. (40). Figure 10 shows the skewness as a function of L calculated
from (41). κ3 characterizes the asymmetry of the distribution, and the difference
between the most probable local porosity and its average. Again samples GF and
SA behave similarly, but sample DM and sample EX differ from each other,
and from the rest.
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Fig. 10. Skewness of local porosities for sample EX(solid line with tick), DM(dashed
line with cross), GF(dotted line with square), and SA(dash-dotted line with circle).

At L = 4a the local porosity distributions µ(φ, 4) show small spikes at
equidistantly spaced porosities for samples EX and DM, but not for samples
GF and SA. The spikes indicate that models EX and DM have a smoother sur-
face than models GF and SA. For smooth surfaces and small measurement cell
size porosities corresponding to an interface intersecting the measurement cell
produce a finite probability for certain porosities because the discretized inter-
face allows only certain volume fractions. In general whenever a certain porosity
occurrs with finite probability this leads to spikes in µ.

5.3 Local Percolation Analysis

Visual inspection of Figs. 1 through 4 does not reveal the degree of connectivity of
the various samples. A quantitative characterization of connectivity is provided
by local percolation probabilities [10,27], and it is here that the samples differ
most dramatically.

The samples EX, DM , GF and SA are globally connected in all three
directions. This, however, does not imply that they have similar connectivity.
The last line in Table 2 gives the fraction of blocking cells at the porosity 0.1355
and for L∗. It gives a first indication that the connectivity of samples DM and
GF is, in fact, much poorer than that of the experimental sample EX.

Figures 8a through 8d give a more complete account of the situation by
exhibiting λα(φ, 20) for α = 3, c, x, y, z for all four samples. First one notes that
sample DM is strongly anisotropic in its connectivity. It has a higher connectivity
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in the z-direction than in the x- or y-direction. This was found to be partly due
to the coarse grid used in the sedimentation algorithm [47]. λz(φ, 20) for sample
DM differs from that of sample EX although their correlation functions in the
z-direction are very similar. The λ-functions for samples EX and DM rise much
more rapidly than those for samples GF and SA. The inflection point of the
λ-curves for samples EX and DM is much closer to the most probable porosity
(peak) than in samples GF and SA. All of this indicates that connectivity in cells
with low porosity is higher for samples EX and DM than for samples GF and SA.
In samples GF and SA only cells with high porosity are percolating on average.
In sample DM the curves λx, λy and λ3 show strong fluctuations for λ ≈ 1 at
values of φ much larger than the 〈φ〉 or φ(SDM). This indicates a large number of
high porosity cells which are nevertheless blocked. The reason for this is perhaps
that the linear compaction process in the underlying model blocks horizontal
pore throats and decreases horizontal spatial continuity more effectively than in
the vertical direction, as shown in [4], Table 1, p. 142.

The absence of spikes in µ(φ, 4) for samples GF and SA combined with the
fact that cells with average porosity (≈ 0.135) are rarely percolating suggests
that these samples have a random morphology similar to percolation.

The insets in Figs. 8a through 8d show the functions pα(L) = λα(φ,L) for
α = 3, x, y, z, c for each sample calculated from (53). The curves for samples
EX and DM are similar but differ from those for samples GF and SA. Figure 11
exhibits the curves p3(L) of all four samples in a single figure. The samples fall

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

L

 
EX
DM
GF
SA

p3
(L
)

Fig. 11. p3(L) for sample EX(solid line with tick) DM(dashed line with cross)
GF(dotted line with square), and SA(dash-dotted line with circle).

into two groups {EX,DM} and {GF,SA} that behave very differently. Figure 11
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suggests that reconstruction methods [1,70] based on correlation functions do
not reproduce the connectivity properties of porous media. As a consequence,
one expects that also the physical transport properties will differ from the exper-
imental sample, and it appears questionable whether a pure correlation function
reconstruction can produce reliable models for the prediction of transport.

Preliminary results [42] indicate that these conclusions remain unaltered if
the linear and/or spherical contact distribution are incorporated into the simu-
lated annealing reconstruction. It was suggested in [70] that the linear contact
distribution should improve the connectivity properties of the reconstruction,
but the reconstructions performed by [42] seem not to confirm this expectation.

6 Physical Properties

6.1 Exact Results

One of the main goals in studying the microstructure of porous media is to
identify geometric observables that correlate strongly with macroscopic physical
transport properties. To achieve this it is not only necessary to evaluate the geo-
metric observables. One also needs to calculate the effective transport properties
exactly, in order to be able to correlate them with geometrical and structural
properties. Exact solutions are now becoming available and this section reviews
exact results obtained recently in cooperation with J. Widjajakusuma [10,65,67].
For the disordered potential problem, specified above in equations (2) through
(7), the effective macroscopic transport parameter C is defined by

〈j(r)〉 = −C 〈∇u(r)〉 (68)

where the brackets denote an ensemble average over the disorder defined in (25).
The value of C can be computed numerically [33,66]. For the following results
the material parameters were chosen as

CP = 1, CM = 0. (69)

Thus in the usual language of transport problems the pore space is conducting
while the matrix space is chosen as nonconducting. Equations (2) through (7)
need to be supplemented with boundary conditions on the surface of S. A fixed
potential gradient was applied between two parallel faces of the cubic sample S,
and no-flow boundary condition were enforced on the four remaining faces of S.

The macroscopic effective transport properties are known to show strong
sample to sample fluctuations. Because calculation of C requires a disorder
average the four microsctructures were subdivided into eight octants of size
128 × 128 × 128. For each octant three values of C were obtained from the
exact solution corresponding to application of the potential gradient in the x-,
y- and z-direction. The values of C obtained from dividing the measured cur-
rent by the applied potential gradient were then averaged. Table 3 collects the
mean and the standard deviation from these exact calculations. The standard



236 Rudolf Hilfer

deviations in Table 3 show that the fluctuations in C are indeed rather strong.
If the system is ergodic then one expects that C can also be calculated from the
exact solution for the full sample. For sample EX the exact transport coeffi-
cient for the full sample is Cx = 0.02046 in the x-direction, Cy = 0.02193 in the
y-direction, and Cz = 0.01850 in the z-direction [65]. All of these are seen to fall
within one standard deviation of C. The numerical values have been confirmed
independently by [47].

Finally it is interesting to observe that C seems to correlate strongly with
p3(L) shown in Fig. 11. This result emphasizes the importance of non-Hadwiger
functionals because by construction there is no relationship between C and
porosity, specific surface and correlation functions.

Table 3. Average and standard deviation σ for effective macroscopic transport prop-
erty C calculated from subsamples (octants) for CP = 1 and CM = 0.

SEX SDM SGF SSA

C 0.01880 0.01959 0.00234 0.00119
σ ±0.00852 ±0.00942 ±0.00230 ±0.00234

6.2 Mean Field Results

According to the general criteria discussed above in Section 3.1 a geometrical
characterization of random media should be usable in approximate calculations
of transport properties. In practice the full threedimensional microstructure is
usually not available in detail, and only approximate calculations can be made
that are based on partial geometric knowledge.

Local porosity theory [27,28] was developed as a generalized effective medium
approximation for C that utilizes the partial geometric characterization con-
tained in the quantities µ and λ. It is therefore useful to compare the predictions
from local porosity theory with those from simpler mean field approximations.
The latter will be the Clausius-Mossotti approximation with P as background
phase

Cc(φ) = CP

(
1− 1− φ

(1− CM/CP)−1 − φ/3

)

= CP

(
3CM + 2φ(CP − CM)
3CP − φ(CP − CM)

)
, (70)
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the Clausius-Mossotti approximation with M as background phase

Cb(φ) = CM

(
1− φ

(1− CP/CM)−1 − (1− φ)/3

)

= CM

(
2CM + CP + 2φ(CP − CM)
2CM + CP − φ(CP − CM)

)
, (71)

and the self-consistent effective medium approximation [35,37]

φ
CP − C
CP + 2C

+ (1− φ) CM − C
CM + 2C

= 0 (72)

which leads to a quadratic equation for C. The subscripts b and c in (71) and (70)
stand for ”blocking” and ”conducting”. In all of these mean field approximations
the porosity φ is the only geometric observable representing the influence of
the microstructure. Thus two microstructures having the same porosity φ are
predicted to have the same transport parameter C. Conversely, measurement of
C combined with the knowledge of CM, CP allows to deduce the porosity from
such formulae.

If the microstructure is known to be homogeneous and isotropic with bulk
porosity φ, and if CP > CM, then the rigorous bounds [8,24,62]

Cb(φ) ≤ C ≤ Cc(φ) (73)

hold, where the upper and the lower bound are given by the Clausius-Mossotti
formulae, eqs. (71) and (70). For CP < CM the bounds are reversed.

The proposed selfconsistent approximations for the effective transport coef-
ficient of local porosity theory reads [27]

1∫
0

Cc(φ)− C
Cc(φ) + 2C

λ3(φ,L)µ(φ,L)dφ+

1∫
0

Cb(φ)− C
Cb(φ) + 2C

(1− λ3(φ,L))µ(φ,L)dφ = 0

(74)

where Cb(φ) and Cc(φ) are given in eqs. (71) and (70). Note that (74) is still
preliminary, and a generalization is in preparation. A final form requires general-
ization to tensorial percolation probabilities and transport parameters. Equation
(74) is a generalization of the effective medium approximation. In fact, it reduces
to eq. (72) in the limit L → 0. In the limit L → ∞ it also reduces to eq. (72)
albeit with φ in eq. (72) replaced with λ3(φ). In both limits the basic assump-
tions underlying all effective medium approaches become invalid. For small L
the local geometries become strongly correlated, and this is at variance with the
basic assumption of weak or no correlations. For large L on the other hand the
assumption that the local geometry is sufficiently simple becomes invalid [27].
Hence one expects that formula (74) will yield good results only for interme-
diate L. The question which L to choose has been discussed in the literature
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[3,10,12,33,66]. For the results in Table 4 the so called percolation length Lp has
been used which is defined through the condition

d2p3
dL2

∣∣∣∣
L=Lp

= 0 (75)

assuming that it is unique. The idea behind this definition is that at the inflection
point the function p3(L) changes most rapidly from its trivial value p3(0) = φ at
small L to its equally trivial value p3(∞) = 1 at large L (assuming that the pore
space percolates). The length Lp is typically larger than the correlation length
calculated from G(r) [10,11].

The results obtained by the various mean field approximations are collected
in Table 4 [65,67]. The exact result is obtained by averaging the three values
for the full sample EX given in the previous section. The additional geometric
information contained in µ and λ seems to give an improved estimate for the
transport coefficient.

Table 4. Effective macroscopic transport property C calculated from Clausius-
Mossotti approximations (Cc ,Cb), effective medium theory CEMA and local porosity
theory CLPT compared with the exact result Cexact (for CP = 1 and CM = 0).

Cc Cb CEMA CLPT Cexact
0.094606 0.0 0.0 0.025115 0.020297
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Stochastic Models as Tools
for the Analysis of Decomposition
and Crystallisation Phenomena in Solids
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Abstract. Random models are explained that are capable to describe decomposi-
tion and crystallisation phenomena in solids. The description is based on the physi-
cal nucleation-and-growth model and on methods developed within the framework of
stochastic geometry. It is shown that the Boolean model easily reproduces the theory
proposed by Kolmogorov, Johnson, Mehl, and Avrami for the kinetics of random sec-
ond phase formation in solids. Additionally, the mathematical properties of the Boolean
model are used to formulate an approach to the transformation kinetics of systems with
interacting components. This approach is applied to the formation of nanocrystalline
materials from the amorphous state. Finally, random tessellations are considered that
are useful for the description of mosaic structures such as three-dimensional and planar
polycrystals.

1 Introduction

Physical properties of many technologically important materials such as me-
chanical strength or superconducting and magnetic properties are essentially
controlled by their microstructure. It is, therefore, advantageous to have avail-
able experimental methods which allow to generate solids with well-tailored mi-
crostructural parameters. Thermally activated decomposition and crystallisation
of metastable solids such as supersaturated alloys or amorphous materials belong
to the most important type of processes to attain this object.

Decomposition phenomena may show spinodal or binodal behaviour. If the
starting material is unstable against small periodic fluctuations of the chemical
concentration and if fluctuations with a certain characteristic length increase
exponentially with time, the mechanism is called spinodal. Figure 1a illustrates
this behaviour (see also Sect. 3.2 of the paper by K. Mecke in this volume). A
detailed review of experimental and theoretical aspects of spinodal decompo-
sition is given in [5]. The binodal mechanism is characterised by the existence
of a phase boundary already at the very beginning of the decomposition pro-
cess. Local fluctuations of chemical composition lead to the nucleation of small
precipitates. If the size of a precipitate exceeds a certain critical value it grows
according to a given growth law (see Fig. 1b) whereas it disappears otherwise.

In this paper, we consider binodal meachnisms, i.e. nucleation and growth of
precipitates following [52], who summarised the current physical ideas which are
important for the understanding of nucleation and growth of particles in a solid

K.R. Mecke and D. Stoyan (Eds.): LNP 554, pp. 242–264, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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Fig. 1. Spinodal (a) and binodal (b) decomposition; c(x) is the chemical composition;
x is a spatial coordinate which is perpendicular to the fluctuation front in (a) and
crosses the centre of a growing precipitate in (b).

matrix. The origin of nucleation of precipitates and the derivation of growth laws
for existing particles are subject of atomistic considerations (see, e.g. [18]). Here,
we assume the existence of a nucleation rate, µ(t), and a growth law, r(t′). The
nucleation process starts at t = 0. The size of a particle created at τ, 0 ≤ τ ≤ t,
and measured at time t is given by r(t−τ). The quantities µ(t) and r(t′) describe
intrinsic properties of the material considered. That means the properties µ(t)
and r(t′) are valid if the volume fraction, η(t), of precipitates is small. With
increasing volume fraction the microstructure may get significant influence on
nucleation rate and growth law, and the corresponding effective properties will
depend both on the intrinsic ones and on the properties of the microstructure.

The evolution of a microstructure can be observed by means of different
experimental methods, and parameters such as volume fraction, mean size and
size distribution of precipitates (or particles), correlation functions and specific
interface area can be measured. It is, of course, not possible to give a complete
description of the microstructure because only few structure parameters can
be experimentally estimated. Therefore, it is helpful to develop models for the
decomposition (and/or crystallisation) process. The experimental data available
can be used to estimate the parameters of the model. Once the model is specified
for the material under consideration, one can draw conclusions with respect to
type and details of the decomposition mechanisms, and it may be possible to
estimate structure parameters which are not directly accessible by experimental
methods.

We consider models which are based on random point fields (point processes).
The points give the nucleation sites where decomposition and/or crystallisation
may start. The number density, λ(t), of points (or the intensity of the point field)
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Fig. 2. Examples for random point fields: Poisson (a), hardcore (b), and cluster (c)
point field.

at time t is given by the integral

λ(t) =
∫ t

0
µ(τ)dτ. (1)

There are different types of point processes. Among them, the homogeneous
Poisson point field plays an exceptional role (see Stoyan, this volume, or [46]).
Its distribution is completely determined by the parameter λ, the mean number
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Fig. 3. Impinging of neighbouring particles during growth. Set-theoretical union of
grains (a) and particles plus interface (b).

density of points. In this process there is no interaction between the points. If
interactions have to be taken into account, e.g. by introducing pair potentials
(see Stoyan, this volume), the situation becomes more difficult. Hardcore and
cluster point fields are examples for such interactions (see Fig. 2).

Consider some nuclei created at neighbouring points of an arbitrary point
field. They start to grow getting particles and after a certain time they will im-
pinge. Then, their growth is finished at the common interface but continues at
the free part of their surfaces (see Fig. 3). Constructing models for structures
which develop according to this process one has to decide whether the interface
between impinging particles should be considered in the model or not. If not,
random germ-grain models are the right choice. If the interface is essential, one
arrives at tessellations (or mosaic structures). The most powerful germ-grain
model is probably the Boolean model, which is based on a Poisson process of
germs. Among tessellations, the Poisson line and plane model, the Voronoi mo-
saic and the Johnson-Mehl tessellation are the most important ones.

In Sect. 2 the Boolean model is considered and used to re-derive the formulae
for the well-known Kolmogorov-Johnson-Mehl-Avrami model. Despite the fact
that the Boolean model describes random systems without any interaction, its
properties are helpful to formulate an approach to the decomposition kinetics of
materials with interacting components. This is demonstrated in Sect. 3. Finally,
models for the generation of random tessellations are discussed in Sect. 4.
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2 The Boolean Model and Crystallisation Kinetics

The kinetics of decomposition or crystallisation is often analysed by measuring
the transformed volume fraction and its evolution during isothermal annealing.
The standard model for the interpretation of the corresponding data was devel-
oped by Kolmogorov, Johnson, Mehl, and Avrami (KJMA model) in the thirties.
Several authors, e.g. [6], re-derived the model and discussed it from actual points
of view. The KJMA model has been successfully applied to the analysis of the
transformation kinetics of very different materials. The continuous success is
probably attributed to the simple form of the expression

η(t) = 1− exp(−ktn) (2)

for the volume fraction η transformed during the time interval (0, t). When a
set (ηi, ti), i = 1, 2, ..., k, of experimental data is given one can plot the data as
log log(1− η)−1 versus log(t). If a straight line is obtained the model may be as-
sumed to be applicable and the ascent of the line gives directly the parameter n
called the Avrami exponent. The value of the exponent is correlated to the mech-
anism of the transformation process and can be used to discriminate between
diffent possible physical processes. Recent examples for experimental investiga-
tions and applications of the KJMA model are given in [4,10,11,12,31,36,49].

In recent papers the suppositions and the range of validity of the KJMA
model have been discussed. Clearly, equation (2) is exact if neither during nu-
cleation nor during growth of particles any interaction occurs, and if the growth
rate, i.e. the velocity of the propagation of the transformation front, is constant
(see [21,38,48,51]). If the transformation process is controlled by diffusion pro-
cesses the growth rate of a given particle decreases with increasing size. In this
case, which is quite important, the KJMA model can, however, be used as an
approximation because the deviation of expression (2) for η(t) from correct data
obtained by computer simulations [50] is less than 1%. The deviations become
more serious if the decrease of the growth rate gets stronger or if the condition
of absence of any interaction between particles is violated, e.g. if the centres of
particles follow a hardcore or a cluster process [50].

Recent attempts to apply the ideas of the KJMA model to more general the-
oretical descriptions of transformation phenomena concern non-isothermal and
non-equilibrium processes [9,10,13,17,24,32,43,44,45]. There are also alternative
models for decomposition and crystallisation phenomena, see, e.g., [22-26] and
[39-41].

The main result of the KJMA model is the expression (2) for the volume
fraction transformed. The volume fraction is a structure parameter reducing
all information of the system to a single number. So it is not surprising that
conclusions drawn from the interpretation of corresponding experimental data in
terms of any model are not unambiguous. In case of the KJMA model the Avrami
exponent n is calculated for a series of typical possible situations. Concerning
the nucleation rate the following limiting cases exist: (i) All nuclei are preformed
at t = 0 and start to grow at the same instant. (ii) The number of nuclei created
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Fig. 4. Planar Boolean model with circular grains of uniform distribution of diameters.
Such a structure corresponds to the physical situation of a partially crystallised thin
film, randomly distributed nuclei and constant growth rate of crystallites.

at random is uniformly distributed in the time interval (0, t), i.e. continuous
nucleation.

Considering the growth of the particles one has to distinguish between growth
in one (rods), two (platelets), and three (spheres etc.) spatial dimensions. The
size of the particles (counted in one, two, or three spatial directions) increases
proportional to time (interface controlled growth) or, if the growth is controlled
by diffusion, proportional to

√
t. (Remember that the latter case is not treated

exactly in the KJMA model but may be considered as a reasonable approxima-
tion.) In three-dimensional case, it is 3 ≤ n ≤ 4 for interface controlled growth
while 1.5 ≤ n ≤ 2.5 is obtained for diffusion. The lower and upper limit of n
corresponds to the nucleation rate according to (i) and (ii), respectively. The
application of expression (2) to a certain set of experimental data yields a value
for n which can be related to one or more possible mechanisms.

Now we consider the Boolean model. Its construction is explained in Stoyan
(this volume). A detailed description and a summary of its properties is given
in [46]. Applications to problems of materials science and solid state physics
are discussed [19]. Figure 4 shows a two-dimensional realisation of the Boolean
model.

The volume fraction, η(t), occupied by the grains of the Boolean model is

η(t) = 1− exp[−λ(t)V̄ (t)]. (3)

In terms of the Boolean model, λ(t) is the intensity of the Poisson point field,
i.e. the mean number of points created until t per unit volume, and V̄ (t) is the
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mean volume of the grains. The parameter λ(t) is related to the nucleation rate,
µ(τ), by (1). The mean volume of the grains is calculated in the following way:
A nucleus created at time τ grows, and at time t the size, σ(t, τ), of this particle
is given by

σ(t, τ) =
{

0 , t < τ
r(t− τ) , t ≥ τ

(4)

and its volume is
V (t, τ) = ωdσ(t, τ)d. (5)

(For spherical particles, σ(t, τ) is the radius, d = 3, and ω3 = 4
3π.) The most

important special cases for (4) concern interface controlled growth, i.e. r ∝ (t−τ),
and diffusion controlled growth, i.e. r ∝ √

t− τ . Remember that for the latter
case the KJMA model and also the Boolean model represents an approximation
and expression (2) is not exact. In this case, an unphysical but formally permitted
nucleus created in a region already crystallised may grow into noncrystallised
regions and, consequently, contribute to the crystallised volume fraction. The
reason for this is that at diffusion controlled growth the growth rate of an older
crystallite is less than that of a younger one.

The volume of a single grain develops according to (5) and the mean volume,
V̄ (t), of all grains created in the time interval (0, t) is given by the average
of the volume V (t, τ) of all grains created in the time interval (0, t) weighted
by the fraction µ(τ)dτ/λ(t) of grains nucleated during the time increment dτ .
Therefore,

λ(t)V̄ (t) =
∫ t

0
µ(τ)V (t, τ)dτ. (6)

Expressions (3) and (6) correspond to (2) developed for the JMAK model. In
case of instantaneous creation of nuclei, i.e. µ(t) = µ0δ(t), one obtains (2) from
(3) and (6) with n = 3 and n = 1.5 for interface and diffusion controlled growth,
respectively. (δ(t) is Dirac’s delta function). Nucleation with constant rate µ =
µ1 yields n = 4 and n = 2.5 for the same growth rates.

3 Decomposition and Interaction

3.1 Microstructure and Nucleation Rate

The limitations of the KJMA model consist in the supposition that there is not
any interaction between the structural components of the decomposing system.
Additionally, the growth rate of the particles must obey the condition r(t−τ) ∝
(t− τ)a, a ≥ 1.

In many cases, the processes controlling the decomposition of the material
considered do not correspond to these suppositions. This is evident for amor-
phous alloys that transform into a nanocrystalline state during annealing. There,
the growth rate of the crystallites tends rapidly to zero after nucleation. The fi-
nal size distribution of the particles becomes quite narrow with a mean value of
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the order of 10nm, and the microstructure is more similar to a dense random
packing of spheres than to a Boolean model realized with spherical grains. This
points to the existence of non-negligible interactions between the particles during
nucleation and growth.

The theoretical treatment of a system of interacting particles is always diffi-
cult and, in any case, it requires some approximations. The approximation made
here is to describe the arrangement of the particles at a certain time by a Boolean
model having the same volume fraction and the same specific surface area as a
hardcore arrangement. The increment of transformed volume due to nucleation
and growth is, however, not calculated via growth of the grains of the Boolean
model but through the consideration of particles interacting with the existing
microstructure. So, the increase of transformed volume can be described rea-
sonably despite the details of the microstructure are considered only within the
approximation explained. This approximation is reasonable at least at low and
medium volume fraction, and in this range of validity it goes significantly be-
yond the KJMA model. It takes into account the interaction of particles formed
in the amorphous matrix and considers also that the composition of the matrix
changes during decomposition.

The amorphous alloy, i.e. the starting material, is supposed to be homo-
geneous at a certain length scale. Below a characteristic scale, fluctuations of
the chemical composition appear. The fluctuations are modelled by a space-
filling mixture of three components distributed at random. There is a random
set As that characterises the geometrical distribution of regions where the local
chemical composition is favourable for the spontaneous nucleation of crystallites
whithout the necessity of diffusion. We call this active chemical composition
where the (intrinsic) nucleation rate µs(t) applies. Af describes those regions
where the chemical composition deviates from that realised in As. There, nucle-
ation is not possible and it is called passive chemical composition. Finally, An

denotes the set of so-called inhibitors, i.e. of atoms which diffuse very slowly
compared to the mean diffusity of the atoms forming the crystallites. Addition-
ally, the inhibitors are not allowed to be incorporated in the atomic lattice of
crystallites. The union of these components is denoted by A0 and represents the
amorphous sample.

A0 = As ∪Af ∪An. (7)

When crystallisation goes on, an additional component, Aη, appears which de-
scribes the geometrical distribution of the crystallites. Then,

A = As ∪Af ∪An ∪Aη (8)

where A(η = 0) = A0. In the model discussed here, the inhibitors ,Aη, are
assumed to be point-like forming a Poisson process, whereas Af and Aη are
described by Boolean models with identical spherical grains (radii rf and rη,
respectively). Figure 5 shows possible realisations of the structural components
explained above. The number density of the grains and the volume fraction, VV ,
are the parameters of the models, i.e. λf , f = VV (Af ) and λη, η = VV (Aη) for
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Fig. 5. Illustration of the structure of the amorphous (a) and the partially crystallised
(b) state. Dark area: passive regions; points: inhibitors; circles: crystallites.

Af and Aη, respectively. Remembering that

η = 1− exp(−λη 4π
3
r3η) (9)

is the volume fraction of the model Aη one can also use the parameter set
(η, rη). This choice is more appropriate because the correlation length of chemical
fluctuations can (in principle) be measured by scattering experiments whereas
it is rather difficult to get an estimate for the number density of the grains.
The same argument holds for Af , and the parameter set (f, rf ) is used instead
of (f, λf ). During crystallisation, the volume fraction occupied by the passive
chemical composition increases outside the crystallised area, Aη, since the total
volume of Af is distributed over the decreasing volume available to the remaining
amorphous matrix. Denoting the fraction of the total volume of the passive
regions in the sample by δ, one obtains for the local volume fraction of Af in the
non-crystallised part of the sample, i.e. in the amorphous matrix, the expression

f(t) =
δ

1− η(t) . (10)

The quantity (1 − δ) gives the upper limit for the crystalline volume fraction
η(t) after long annealing time, t, and δ = f(0).

The nucleation rate that would be valid for a hypothetical homogeneous
amorphous sample with active chemical composition is denoted by µs(t). It is
called the intrinsic nucleation rate. This rate is modified by the presence of the
components Af , Aη, and An in the real material. It is well-known (see, e.g., [52])
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that a nucleus created disappears if its radius is smaller than a critical value rc.
A nucleus can only exist and grow if its radius is greater than rc and if it fulfils
the following conditions:

(i) The nucleus can only be created outside the crystallised regions and its
midpoint must have a minimum distance rmin to the boundary of the next-
nearest crystallite. Clearly, this distance must be larger than or equal to the
critical radius, rc. If the growth of particles is controlled by diffusion then
depletion zones around the particles appear where the chemical composi-
tion is not suitable for the creation of nuclei. This depletion zones may also
contribute to rmin.
Let P be the probability that a random point thrown into A has the men-
tioned property and, therefore, may act as a nucleation centre for a new
crystallite. Then, P is equal to the probability that the distance of the mid-
point of the nucleus to the centre of the next-nearest crystallite is greater
than (rmin + rη). Since the crystallised part of the alloy is approximated by
the Boolean model Aη, the centres of the existing crystallites are supposed
to form a Poisson point process characterised by parameter λη. Eliminating
the number density λη by means of expression (3) and V̄ = 4

3π(rmin + rη)3

one obtains

P = (1− η)a, a =
(
1 +

rmin

rη

)3

. (11)

(ii) A nucleus matching condition (i) is subjected to further requirements. It can
only be created in a region with active composition, and the smallest distance
of its midpoint to the passive region must be at least rc. The geometrical
distribution of the passive component is approximated by a Boolean model
with parameters f and rf . That means, the probability, Q, that a nucleus
created at random in the amorphous matrix has the property required can
be calculated by means of the Poisson distribution in the same way as P .
One obtains

Q = (1− f)b, b =
(
1 +

rc
rf

)3

. (12)

(iii) A new nucleus should not contain any of the inhibitors since this would cause
strong distortions of the local atomic order, and the distortions would prevent
the creation of a locally well-ordered crystalline structure. The probability,
R, of finding a region G containing no inhibitor and having volume V (G) =
4
3πr

3
c of a nucleus with critical radius rc is given by the emptiness formula

for the Poisson point process as

R = exp
(
−λn 4

3
πr3c

)
. (13)

The inhibitors are accumulated in the amorpous matrix where two different
limiting cases of their arrangement are possible. Either they are all dis-
tributed randomly in the amorphous matrix according to a Poisson point
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process, or the inhibitors which were situtated previously in the volume oc-
cupied by a crystallite are deposited at the surface of this crystallite. In
the first case the number density of inhibitors in the amorphous matrix is
enhanced according to

λn(t) =
ν

1− η(t)) (14)

where ν = λn(0). In the second case the number density of inhibitors in the
amorphous matrix keeps constant and

λn(t) = ν. (15)

Expression (13) is valid for point-like inhibitors. There might be situations
where the size of inhibitors should be taken into account, e.g. if the critical
radius, rc, of the nuclei is very small or if the inhibitors are not realised
by single atoms but by clusters or aggregates of atoms. Then, the same
arguments as used in items (i) and (ii) apply and rc in expression (13) has
to be replaced by rc + rn where rn is the radius of an inhibitor.

The conditions (i) to (iii) characterise the influence of the microstructure of
the decomposing and crystallising alloy on the nucleation rate. In homogeneous
regions with suitable (active) chemical composition the (intrinsic) nucleation
rate is given by µs(t). This rate depends on specific properties of the alloy
and on the temperature realised during the annealing process. The existence
of different microstructural components leads to a modification of µs(t). Since
the random events described by µs(t), P,Q, and R are statistically independent,
the nucleation rate in a partially crystallised alloy with fluctuating chemical
composition and randomly distributed inhibitors is given by

µ(t) = P (t)Q(t)R(t)µs(t). (16)

Inserting the expressions (11) to (14) into (16) one obtains

µ(t) = [1− η(t)]a−b [1− η(t)− δ]b exp
(
−λn 4

3
πr3c

)
µs(t). (17)

3.2 Growth Rate of Crystallites

There are two important intrinsic processes which may define the growth of a
particle, the interface controlled growth r ∝ t and diffusion, r ∝ √

t. The latter
relation is a solution of the diffusion equation derived by Zener (see, e.g., [1]) for
a single particle in a matrix the chemical composition of which is kept constant
at large distances from the particle. If many particles exist and grow in a matrix
there is only a limited volume available for each particle. This case was considered
by [36] who introduced time-dependent boundary conditions with respect to the
chemical composition of the matrix. A similar model was developed by [35]. The
result consists in growth rates that are reduced compared to the Zener’s solution.
Further aspects of size-dependent growth rates of particles were analysed, e.g.,
by Kelton [24] and Shneidman and Weinberg [42].
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Here we use the expression

r(t) = rb{1− (1− rc
rb

) exp[−r0(t)/rb]}. (18)

for the effective growth of crystallites in the amorphous matrix. Parameter rb
denotes the maximum size of crystallites (limt→∞ r(t) = rb) and r0(t) charac-
terizes the intrinsic growth law. For rb → ∞, and zero critical radius, rc = 0,
equation (18) can be expanded and one obtains r(t) = rc + r0(t). Expression
(18) was derived in [21] and used in [20] for the interpretation of experimental
data on nanocrystalline metallic alloys.

3.3 Transformed Volume Fraction

The calculation of the volume fraction of a Boolean model with spherical grains is
straightforward. This is a consequence of the random distribution of the centres
of the grains and the neglection of interaction effects. The model explained in
Sect. 3.1, however, takes into account distance correlations between the particles
already formed and the nucleus under consideration.

As pointed out in Sect. 3.1 the centre of a new nucleus is subjected to the
condition that it should have at least the distance rmin to the region already
crystallised, i.e. to the phase boundary. While the radius, r, of the new particle is
less than its distance to the crystallised region it contributes its entire volume to
the increment of the crystallised fraction of the sample. Otherwise, there will be
an overlap volume, δVov, common to the considered particle and the crystallised
region already existing. Of course, this overlap is fictitious because the growth
of the particle stops if it impinges on another crystallite.

Clearly, the contribution of the considered crystallite to the increment of the
crystallised volume of the sample is ( 4π3 r

3−δVov). This concerns each crystallite
the distance, ρ, of which to the phase boundary is between the minimum distance
rmin and its radius r, rmin < ρ < r. Assuming the distance ρ to be uniformly
distributed in the interval rmin < ρ < r and neglecting the curvature of the
intersectional area between the crystallite considered and the existing crystallised
region, the mean overlap volume is given by

δVov =
1

r − rmin

∫ r

rmin

π

3
(r − ρ)2(2r + ρ)dρ (19)

and
δVov ≈ π

4
r3
(
1− 5rmin

3r

)
for rmin/r << 1. (20)

If the centre of the crystallite considered is situated in that part of the amor-
phous matrix where its distance to the crystallised region, Aη, of the sample is
larger than r, it contributes the increment 4π

3 r
3 to Aη. If rmin < ρ < r, the

increment to Aη is given by (4π3 r
3 − δVov). The part of the amorphous matrix

where ρ > rmin and ρ > r applies is denoted by Cc and Cr, respectively. The
probability of finding the centre of the considered crystallite within Cr is given
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by V (Cr)/V (Cc), where V (C) is the volume of C. With this probability, the con-
sidered crystallite contributes the amount 4π

3 r
3 to Aη. The probability that the

centre of the crystallite has a distance between rmin and r to the amorphous-
crystalline interface is [1 − V (Cr)/V (Cc)] and a particle having this property
contributes (4π3 r

3 − δVov). The mean contribution of a crystallite is therefore
4π
3 r

3f(r, rmin, rη, η) with

f(r, rmin, rη, η) =
V (Cr)
V (Cc)

+
(
1− V (Cr)

V (Cc)

) 4π
3 r

3 − δVov
4π
3 r

3
. (21)

Expression (21) can be evaluated remembering that the crystallised region of
the sample is approximated by a Boolean model with spherical grains of radius
rη. According to (3) the volume fraction, (1 − η), of the amorphous part of the
alloy is given by exp(−λ 4π

3 r
3
η). Replacing the spheres of this Boolean model by

spherical grains with radius (rη+r) and (rη+rmin) one obtains models decribing
the complements of the regions Cr and Cc, respectively, and the corresponding
volume fractions. Then,

V (Cr)
V (Cc)

=
exp

[− 4π
3 λ(rη + r)3

]
exp

[− 4π
3 λ(rη + rmin)3

] , (22)

and replacing λ by means of the expression for the volume fraction of the Boolean
model with spherical grains of radius rη, i.e. the model for the crystallised region,
one obtaines

V (Cr)
V (Cc)

= (1− η)ε, ε =
(
1 +

r

rη

)3

−
(
1 +

rmin

rη

)3

. (23)

Inserting (23) into (22) and using (20) one obtains the expression

f(r, rmin, rη, η) =
13
16

+
3
16

(
1− 5rc

3r

)
(1− η)ε +

5rc
16r

, rmin/r << 1 (24)

for the fractional contribution of a new crystallite to the increment of the crys-
tallised part of the considered alloy. A nucleus created at time τ and growing
according to (18) contributes the amount f(r, rmin, rη, η) 4π3 [r(t− τ)]3 at time t,
t > τ , to the increment of the crystallised part of the alloy. Taking into account
that at time τ the nucleation rate is given by expression (17), the integration over
all crystallites in the amorphous matrix yields the value of the volume fraction
of crystallites

η(t) =
∫ t

0
µ(τ)f(r, rmin, rη, η)

4π
3

[r(t− τ)]3 dτ. (25)

3.4 Discussion and Application

The integral equation (25) is a Volterra type II equation. It is nonlinear but it
can be solved numerically using standard methods. Figure 6 shows numerical
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Fig. 6. Numerical solutions of (25) specified for the amorphous metallic alloy of the
composition Fe75.5Si15.5B7Cu1Nb1 and with parameters rf = 1.5nm, δ = 0.25, rη =
30nm, and rc = 0 (a), rc = 0.2nm (b), rc = 0.6nm (c).

solutions of (25). There, the value of the critical radius, rc, of nuclei is varied.
It is shown that the critical radius controls essentially the value for the Avrami
exponent n that can be estimated in the range of low volume fraction.

For the derivation of expression (17) it was assumed that the particles have
a spherical shape. This supposition was made because it makes the derivation
quite simple and lucid. It should be noted that a more general derivation is
possible if one uses the concept of contact distribution functions (see, e.g., [46]).
The spherical contact distribution function is a measure for the distribution of
distances, r, between a point chosen at random outside the set B of a Boolean
model and the next nearest point of B (B is the set covered by the grains of
the Boolean model). It can be defined for all types of grains suitable for the
construction of Boolean models, e.g. also for random polyhedra.

On the other hand, expression (17) implies two approximations. One consists
in the description of the crystallised regions of the alloy by means of a Boolean
model with equally sized grains. At a certain stage of the evolution of the system
there are, however, particles which have already reached their final diameter but
other ones are still growing and have therefore smaller diameters. Thus, the
particles obey a certain size distribution. It would be possible to incorporate the
actual size distribution in the derivation of the expression for the nucleation but
this would make the calculation more complicated. However, the essential effects
are already taken into account in the present simple version.
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Another point is that the microstructure is approximated by a Boolean
model. The positions of the grains of the Boolean model are random without any
interaction. This seems to be in contrast to the existence of interactions between
the position of a nucleus to be created in the system and the particles already
formed. However, it is not a serious restriction. If a new nucleus is considered the
existing microstructure is approximated by a Boolean model, but the interac-
tions between them are correctly calculated. Then, the changed microstructure is
again approximated by a Boolean model with modified parameters (the volume
fraction has increased) and the interaction of the next nucleus with the actual
microstructure is considered. Comparing the volume fraction and the internal
surface area of a hardcore arrangement with the corresponding properties of a
Boolean model with equally sized spherical grains one obtains

rη = rb
1− η
η

log
1

1− η (26)

for the grain radius.
It should be noted that it is also possible to consider complementary ap-

proaches using thermodynamic arguments for the decrease of the nucleation
rate. This has been discussed by [55].

Expression (24) for the fractional contribution of a new crystallite to the
increment of the crystallised volume fraction is an approximation which is valid
for low and medium values of η. This is consistent with the approximation made
for the description of the microstructure of the partially crystallised alloy dis-
cussed above. It is important that there are no restrictions to the type of the
growth law of the crystallites. For the present purpose, (18) is suitable but other
expressions may also be used.

Now we consider amorphous metallic alloys of the composition
Fe77.5−x−ySi15.5B7CuxIy (I = V, Mo, W, Ta, Nb, Hf, Nd), x = 0 to 1, y = 0 to
5, prepared by rapid quenching from the liquid state. The amorphous ribbons
obtained are subjected to isothermal annealing whereby they transform into a
nanocrystalline state. The nanocrystals have the composition Fe3Si. They are
embedded in a remaining amorphous matrix. The volume fraction of the crys-
tallites ranges from 50% to 75% in the final stage and their diameter is between
about 10nm and 30nm. Figure 7a shows the evolution of the crystallised volume
fraction determined by X-ray scattering measurements (see [20] and references
therein). The data do not follow straight lines as predicted by the KJMA model
except at the early stage of the crystallisation process. The values for the Avrami
exponent estimated there are about n ≈ 1, which is outside the range of valid-
ity of the KJMA model (n ≥ 1.5 for three-dimensional growth, see Sect. 2). In
Fig. 7b the mean particle diameter is plotted vs. time for the alloy with I =
Nb, x = 1, y = 3. The experimental data show the behaviour predicted by (18)
with rb = 8nm and r0(t) − rc ∝ √

t, i.e. diffusion controlled intrinsic growth.
As discussed in Sect. 2 decrasing growth rates of the particles are not consistent
with assumptions made in the KJMA model. The present theoretical approach
is, however, applicable because decreasing growth rates of the particles are al-
lowed. The low values of the parameter n estimated by formal application of
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Fig. 7. Experimental data for the crystallisation of 1at%Cu3at%Nb alloys connected
by a solid line for each annealing temperature; Avrami plot of the crystallised volume
fraction (a) and mean diameter of crystallites (b).

(2) to the data at the early stage of the crystallisation process can already be
understood if the existence of a critical radius of the nuclei is taken into account
(see Fig. 6).

From X-ray scattering experiments, data for the mean size of the particles
and the crystallised volume fraction are available, and one can estimate the
number and, consequently, the nucleation rate of particles. Defining µa(η) =
µ(t)/[1− η(t)] we compare now the experimental values for the 1at%Cu3at%Nb
alloy with expression (17). Figure 8 shows the result for two samples crystallised
at different annealing temperatures. For the theoretical curves the parameter
values δ = 0.25, rc/rb = 0.1, rb = rf = 8nm are chosen according to experimental
data, and rmin/rb is varied in order to obtain a quantitative agreement with
the experimental curves. The values for rmin/rb (0.8 and 0.3 at TA = 475oC
and 565oC, respectively) show that at high temperatures the minimum distance
between a nucleus to be created and existing crystallites is smaller than at low
annealing temperatures.

4 Random Tessellations

A completely crystallised solid may be considered as a random or partially or-
dered tessellation of the 3- (bulk materials) or 2-dimensional (thin films) space.
The crystallites are described by the cells of the mosaic, and the grain boundaries
between adjacent crystallites form the faces (or the edges in 2-dimensional case)
of the mosaic. Both the atomic arrangement at the grain boundaries (see, e.g.,
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Fig. 8. Nucleation rate of the amorphous matrix of the 1at%Cu3at%Nb alloy. Solid
lines: experimental; dashed line: theoretical. TA = 475oC, rmin/rb = 0.8 (a), TA =
565oC, rmin/rb = 0.3 (b).

[3,7,8,47]) and the geometric characteristics of the mosaic (see, e.g., [2,34,56])
are of great scientific and technological interest. Mathematical models that can
be used as approximate descriptions of polycrystalline microstructures are the
Poisson plane and line mosaics, the Dirichlet-Voronoi mosaic and the Johnson-
Mehl tessellation model. Of course, these models cannot explain details of the
microstructure of specific materials. Models for real materials require, in gen-
eral, computer simulations where properties such as the relationship between the
grain boundary energy and the crystallographic orientation of adjacent crystal-
lites or the anisotropy of growth rates can be taken into account (see, e.g., [16]).
The dynamics of mosaic structures can be simulated, e.g. by minimising the in-
terface energy of the system considered. Frost [14] summarised physical models
describing the evolution of the grain size distribution during grain growth and
considered peculiarities of grain growth in thin films ([15,53]). In recent studies
of recrystallisation processes ([29]) the concept of cellular automata (see [54])
has been used to simulate the evolution of mosaic structures.

Despite the rapid development of computer simulation techniques the math-
ematical models mentioned above are keeping their significance. One of the rea-
sons for this is that there is a series of exact results that can be used either as
a base for the construction of more realistic models or as special case for testing
of simulation methods.

4.1 Poisson Line and Plane Tessellations

The Poisson line mosaic is generated by a random distribution of straight lines
in the plane where the distribution of the lines is isotropic and stationary. The
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Fig. 9. Poisson line mosaic.

model is characterised by the mean number, ρ, of lines intersected by a test
line line of unit length. Figure 9 illustrates the model. The Poisson plane model
is produced by a random distribution of planes in the three-dimensional space.
Then, parameter ρ is the number density of intersection points of planes on the
test line. The mathematical foundations of the model are given in [30] and [37].
A compilation of the results obtained for characteristic quantities of the model
can be found in [46]. This concerns mean values and second-order moments of
parameters such as area, perimeter, edge number of cells and the probability
that a polygon has n sides, and corresponding parameters for the Poisson plane
model. Here we consider the distance probability function

γ0(r) = 〈 1
4π

∫
Ω

∫
V

s(x + r)s(x)dV dΩ〉 (27)

where

s(x) =
{

1 , x ∈ B0
0 , otherwise (28)

is the shape function of a single Poisson polyhedron, B0, and 〈...〉 denotes the
average over all polyhedra of the mosaic. The result is

γ0(r) =
6
πρ3

exp(−ρr). (29)

Expression (29) is quite important for applications. It can be used, e.g., for
analyses of small-angle scattering data. The small-angle scattering intensity, I(q),
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is given by

I(q) = 4π(∆p)2
∫ ∞

0
r2
[
C(r)− η2] sin(qr)

qr
dr (30)

where ∆p is the scattering contrast of the decomposed material considered, q
is the absolute value of the scattering vector and η is the volume fraction of
the scattering particles (see [19] and references therein). The covariance, C(r),
defined by the probility of finding two random test points with distance r both
lying in scattering particles, can be expressed in terms of γ0 (see [46]). For a
dilute system of random polyhedral precipitates one can write

C(r) = ηγ0(r)/γ0(0). (31)

If the cells of the Poisson plane model are filled at random with material of type
1 or 2 then

C1(r) = η21 + η1(1− η1)γ0(r)/γ0(0) (32)

is the covariance of the set of all cells filled with material 1. The small-angle
scattering function is given by (30) where (∆p)2 = (p1 − p2)2 and p1 (p2) is the
scattering density in 1 (2).

Poisson polyhedra can also be used as grains for the Boolean model. Then,
(see[46])

C(r) = 2η − 1 + (1− η)2 exp
[
λγ0(r)

]
. (33)

4.2 Voronoi and Johnson-Mehl Tessellations

The process of nucleation and growth of particles is often accompanied by the
impingement of growing particles (see Fig. 3). During this process the volume
fraction, η, of the particles and the number of interfaces created by impingement
of neighbouring particles increase. At η = 1 the microstructure consists of a
spacefilling arrangement of particles separated by their interfaces. Such types
of microstructures can be modelled by Voronoi and Johnson-Mehl tessellations.
(The two-dimensional Voronoi tessellation is also called Dirichlet tessellation.)
If all particles nucleate at the same time and if the growth rate is constant and
the same for all particles one obtains a Voronoi mosaic. Note that the increase
of the volume fraction during this process is described by the KJMA model and
(2). In this case it is not necessary to consider details of the nucleation-and-
growth process for the construction of the Voronoi mosaic. The mosaic can be
generated immediately starting from the distribution of the nucleation sites. The
cell belonging to an arbitrary nucleation site comprises all points of the space
that are closer to this site than to any other one. There are no restrictions to the
distribution of the nucleations sites. Figure 10 shows a two-dimensional example
for a Voronoi mosaic where the distribution of the nucleation sites corresponds
to a Poisson point field.

The Poisson-Voronoi mosaic was analysed by many authors (see, e.g., [27,28]).
The main results are summarised in [46]. It should be noted that the cells of the
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Fig. 10. Two-dimensional Poisson-Voronoi tessellation.

Poisson-Voronoi mosaic can be used also as grains for the Boolean model. This
is discussed in [19].

More general than the Voronoi mosaic is the Johnson-Mehl tessellation. It
can be used to simulate arbitrary nucleation-and-growth processes. Exact re-
sults are, however, available only for special cases. Møller [33] studied random
Johnson-Mehl tessellations generated by time-inhomogeneous Poisson processes
and established results for first- and second-order moments for various charac-
teristics. The most important results are summarised in [46].

Acknowledgement

Sincere thanks are due to D. Stoyan and K. Mecke for critical and helpful com-
ments on an earlier version of this article.

References

1. Aaron, H. B., D. Fainstein, G. Kotler (1970): ‘Diffusion-limited phase transforma-
tions: A comparison and critical evaluation of the mathematical approximations’,
J. Appl. Phys. 41, pp. 4404-4410

2. Abbruzzese, G., P. Brozzo (Eds.) (1992): Grain Growth in Polycrystalline Materials
(Trans Tech Publications, Zurich)

3. Alber, U., H. Müllejans, M. Rühle (1999): ‘Bismuth segregation at copper grain
boundaries’, Acta mater. 47, pp. 4047-4060



262 Helmut Hermann

4. Bhargava, A., I. P. Jain (1994): ‘Growth kinetics of the crystalline phase in Se70Te30
glass’, J. Phys. D: Appl. Phys. 27, pp. 830-833

5. Binder, K. (1991): ‘Spinodal Decomposition’. In: Phase Transformations in Mate-
rials, ed. by P. Haasen (VCH Verlagsges., Weinheim), pp. 405-472

6. Cahn, J. W. (1996): ‘The time cone method for nucleation and growth kinetics on
a finite domain’, Mat. Res. Soc. Symp. Proc. 398, pp. 425-437

7. Campbell, G. H., J. Belak, J. A. Moriarty (1999): ‘Atomic structure of the Sigma-5
(319)/[001] symmstry tilt grain boundary in molybdenum’, Acta mater. 47, pp.
3977-3985

8. Chang, L.-S., E. Rabkin, B. B. Straumal, B. Baretzky, W. Gust (1999): ‘Thermo-
dynamic aspects of the grain boundary segregation in Cu(Bi) alloys’, Acta mater.
47, pp. 4041-4046

9. Chen, L. C., F. Spaepen (1991): ‘Analysis of calorimetric measurement of grain
growth’, J. Appl. Phys. 69, pp. 679-688

10. Clavaguera, N. (1993): ‘Non-equilibrium crystallization, critical cooling rates and
transformation diagrams’, J. Non-Cryst. Solids 162, pp. 40-50

11. Danzig, A., N. Mattern, S. Doyle (1995): ‘An in-situ investigation of the Fe3Si
crystallization in amorphous Fe73.5Si15.5B7Cu1Nb3’, Nucl. Instr. Meth. Phys. Res.
B 97, pp. 465-567

12. Dimitrov, D., M. A. Ollazarizqueta, C. N. Afonso, N. Starbov (1996): ‘Crystalliza-
tion kinetics of SbxSe100−x thin films’, Thin Solid Films 280, pp. 278-283

13. Dobreva, A., A. Stoyanov, S. Tzuparska, I. Gutzov (1996): ‘Non-steady-state ef-
fects in the kinetics of crystallization of organic polymer glass-forming melts’, Ther-
mochimica Acta 280, pp. 127-151

14. Frost, H. J. (1992): ‘Stochastic models of grain growth’, Materials Sci. Forum 94-
96, pp. 903-908

15. Frost, H. J., C. V. Thompson, D. T. Walton (1992): ‘Abnormal grain growth in
thin films due to anisotropy of free.surface energies’, Materials Sci. Forum 94-96,
pp. 543-550

16. Gottstein, G., L. S. Shvindlerman (1999): Grain Boundary Migration in Metals:
Thermodynamics, Kinetics, Applications (CRC Press, Boca Raton)

17. Graydon, J. W., S. J. Thorpe, D. W. Kirk (1994) Determination of the Avrami
exponent for solid state transformations from nonisothermal differential scanning
calorimetry. J. Non-Cryst. Solids 55, pp. 14071-14073

18. Haasen, P. (Ed.) (1991): Phase Transformations in Materials (VCH Verlagsges.,
Weinheim)

19. Hermann, H. (1991): Stochastic Models of Heterogeneous Materials (Trans Tech
Publications, Zurich)

20. Hermann, H., N. Mattern (1999): ‘Nanocrystallization in amorphous metallic alloys
- experiment and theory’, Recent Res. Devel. Nanostructures 1, pp. 97-113

21. Hermann, H., N. Mattern, S. Roth, P. Uebele (1997): ‘Simulation of crystallization
processes in amorphous iron-based alloys’, Phys. Rev. B 56, pp. 13888-13897

22. Jou, H. J., M. T. Lusk (1997): Comparison of Johnson-Mehl-Avrami-Kolmogorov
kinetics with a phase field model for microstructural evolution driven by substruc-
ture energy. Phys. Rev. B 55, pp. 8114-8121

23. Kelton, K. F. (1993): ‘Numerical model for isothermal and non-isothermal crystal-
lization of liquids and glasses’, J. Non-Cryst. Solids 163, pp. 283-296

24. Kelton, K. F. (1997): ‘Analysis of crystallization kinetics’, Mater. Sci. Eng. A 226,
pp. 142-150

25. Kelton, K. F., K. L. Narayan, L. E. Levine, T. C. Cull, C. S. Ray (1996): ‘Computer
modelling of nonisothermal crystallization,’ J. Non-Cryst. Solids 204, pp. 13-31



Stochastic Models as Tools 263
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Phase Transition and Percolation
in Gibbsian Particle Models
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Mathematisches Institut der Universität München, Theresienstr. 39
D-80333 München, Germany

Abstract. We discuss the interrelation between phase transitions in interacting lattice
or continuum models, and the existence of infinite clusters in suitable random-graph
models. In particular, we describe a random-geometric approach to the phase transition
in the continuum Ising model of two species of particles with soft or hard interspecies
repulsion. We comment also on the related area-interaction process and on perfect
simulation.

1 Gibbs Measures: General Principles

This section contains a brief introduction to the basic physical and stochastic
ideas leading to the concept of Gibbs measures. The principal question is the
following:

Which kind of stochastic model is appropriate for the description of
spatial random phenomena involving a very large number of components
which are coupled together by an interaction depending on their relative
position?

To find an answer we will start with a spatially discrete situation; later we will
proceed to the continuous case. Consider the phenomenon of ferromagnetism.
A piece of ferromagnetic material like iron or nickel can be imagined as con-
sisting of many elementary magnets, the so-called spins, which are located at
the sites of a crystal lattice and have a finite number of possible orientations
(according to the symmetries of the crystal). The essential point is that these
spins interact with each other in such a way that neighboring spins prefer to be
aligned. This interaction is responsible for the phenomenon of spontaneous mag-
netization, meaning that at sufficiently low temperatures the system can choose
between several distinct macrostates in which typically all spins have the same
orientation.

How can one find a mathematical model for such a ferromagnet? The first fact
to observe is that the number of spins is very large. So, probabilistic experience
with the law of large numbers suggests to approximate the large finite system
by an infinite system in order to get clear-cut phenomena. This means that we
should assume that the underlying crystal lattice is infinite. The simplest case to
think of is the d-dimensional hypercubic lattice Z

d. (As the case d = 1 is rather
trivial, we will always assume that d ≥ 2.) On the other hand, to keep the model
simple it is natural to assume that each spin has only finitely many possible
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orientations. In other words, the random spin ξi at lattice site i takes values in
a finite state space S. The set of all possible spin configurations ξ = (ξi)i∈Zd is
then the product space Ω = SZ

d

. This so-called configuration space is equipped
with the Borel σ-algebra F for the natural product topology on Ω. Since the
spins are random, we are interested in probability measures P on (Ω,F). Such
probability spaces are known as lattice systems. For any ξ ∈ Ω and Λ ⊂ Z

d we
write ξΛ = (ξi)i∈Λ for the part of the configuration that occurs in Λ. By abuse
of notation, we use the same symbol ξΛ for the projection from Ω onto SΛ.

Which kind of probability measure on (Ω,F) can serve as a model of a fer-
romagnet? As we have seen above, the essential feature of a ferromagnet is the
interaction between the spins. We are thus interested in probability measures
P on Ω for which the spin variables ξi, i ∈ Z

d, are dependent. A natural way
of describing dependencies is to prescribe certain conditional probabilities. This
idea, which is familiar from Markov chains, turns out to be suitable also here.
Since our parameter set Z

d admits no natural linear order, the conditional prob-
abilities can, of course, not lead from a past to a future. Rather we prescribe the
behavior of a finite set of spins when all other spins are fixed. In other words, we
are interested in probability measures P on (Ω,F) having prescribed conditional
probabilities

GΛ(ξΛ|ξΛc) (1)

for a configuration ξΛ ∈ SΛ within a finite set Λ ⊂ Z
d given a fixed configuration

ξΛc ∈ SΛc off Λ. In the following we write Λ ⊂⊂ Z
d when Λ is a finite subset of

Z
d. The specific form of these conditional distributions does not matter at the

moment. Two special cases are

• the Markovian case: the conditional distribution (1) only depends on the
value of the spins along the boundary ∂Λ = {i /∈ Λ : |i− j| = 1 for some j ∈
Λ} of Λ, i.e.,

GΛ(ξΛ|ξΛc) = GΛ(ξΛ|ξ∂Λ) (2)

(with a slight abuse of notation); | · | stands for the Euclidean norm.
• the Gibbsian case: the conditional distribution (1) is defined in terms of a

Hamilton function HΛ by the Boltzmann–Gibbs formula

GΛ(ξΛ|ξΛc) = Z−1
Λ|ξΛc exp[−HΛ(ξ)] , (3)

where ZΛ|ξΛc =
∑

ξ′∈Ω:ξ′≡ξ off Λ exp[−HΛ(ξ′)] is a normalizing constant.
Physically, HΛ(ξ) describes the energy excess of the total configuration ξ
over the energy of the outer configuration ξΛc . (Physicists will miss here the
factor β, the inverse temperature; we will assume that β is subsumed into
HΛ or, equivalently, that the units are chosen in such a way that β = 1.)

In the following, GΛ( · |ξΛc) will be viewed as a probability measure on Ω for
which the configuration outside Λ is almost surely equal to ξΛc .

The above idea of prescribing conditional probabilities leads to the following
concept introduced in the late 1960’s independently by R.L. Dobrushin, and
O.E. Lanford and D. Ruelle.



Phase Transition and Percolation in Gibbsian Particle Models 269

Definition 1 A probability measure P on (Ω,F) is called a Gibbs measure, or
DLR-state, for a family G = (GΛ)Λ⊂⊂Zd of conditional probabilities (satisfying
the natural consistency condition) if

P (ξΛ occurs in Λ | ξΛc occurs off Λ) = GΛ(ξΛ | ξΛc)

for P -almost all ξΛc and all Λ ⊂⊂ Z
d.

If G is Gibbsian for a Hamiltonian H as in (3), each Gibbs measure can be
interpreted as an equilibrium state for a physical system with state space S and
interaction H. This is because the Boltzmann–Gibbs distribution maximizes the
entropy when the mean energy is fixed; we will discuss this point in more detail
in the continuum setting in Sect. 4.2 below.

A general account of the theory of Gibbs measures can be found in the mono-
graph [5]; here we will only present the principal ideas. In contrast to the situ-
ation for Markov chains, Gibbs measures do not exist automatically. However,
in the present case of a finite state space S, Gibbs measures do exist whenever
G is Markovian in the sense of (2), or almost Markovian in the sense that the
conditional probabilities (1) are continuous functions of the outer configuration
ξΛc . In this case one can show that any weak limit of GΛ( · |ξΛc) for fixed ξ ∈ Ω
as Λ ↑ Z

d is a Gibbs measure.
The basic observation is that the Gibbs measures for a given consistent family

G of conditional probabilities form a convex set G. Therefore one is interested
in its extremal points. These can be characterized as follows.

Theorem 1 Let T =
⋂
σ(ξΛc : Λ ⊂⊂ Z

d) the tail σ-algebra, i.e., the σ-algebra
of all macroscopic events not depending on the values of any finite set of spins.
Then the following statements hold:

(a) A Gibbs measure P ∈ G is extremal in G if and only if P is trivial on T,
i.e., if and only if any tail measurable real function is P -almost surely constant.

(b) Any two distinct extremal Gibbs measure are mutually singular on T.
(c) Any non-extremal Gibbs measure is the barycenter of a unique probability

weight on the set of extremal Gibbs measures.

A proof can be found in [5], Theorems (7.7) and (7.26). Statement (a) means
that the extremal Gibbs measures are macroscopically deterministic: on the
macroscopic level all randomness disappears, and an experimenter will get non-
fluctuating measurements of macroscopic quantities like magnetization or en-
ergy per lattice site. Statement (b) asserts that distinct extremal Gibbs measures
show different macroscopic behavior. So, they can be distinguished by looking
at typical realizations of the spin configuration through macroscopic glasses.
Finally, statement (c) implies that any realization which is typical for a non-
extremal Gibbs measure is in fact typical for a suitable extremal Gibbs measure.
In physical terms: any configuration which can be seen in nature is governed
by an extremal Gibbs measure, and the non-extremal Gibbs measures can only
be interpreted in a Bayesian way as measures describing the uncertainty of the
experimenter. These observations lead us to the following definition.
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Definition 2 Any extremal Gibbs measure is called a phase of the corresponding
physical system. If distinct phases exist, one says that a phase transition occurs.

So, in terms of this definition the existence of phase transition is equivalent to the
non-uniqueness of the Gibbs measure. In the light of the preceding theorem, this
corresponds to a “macroscopic ambivalence” of the system’s behavior. We should
add that not all critical phenomena in nature can be described in this way: even
when the Gibbs measure is unique it may occur that it changes its qualitative
behavior when some parameters of the interaction are changed. However, we
will not discuss these possibilities here and stick to the definition above for
definiteness. In this contribution we will ask:

What are the driving forces giving rise to a phase transition? Is there
any mechanism relating microscopic and macroscopic behavior of spins?

As we will see, in a number of cases one can give the following geometric answer:

One such mechanism is the formation of infinite clusters in suitably de-
fined random graphs. Such infinite clusters serve as a link between the
local and global behavior of spins, and make visible how the individual
spins unite to form a specific collective behavior.

In the next section we will discuss two lattice models for which this answer is
correct. In Sect. 4 we will show that a similar answer can also be given in a con-
tinuum set-up. A useful technical tool is the stochastic comparison of probability
measures.

Suppose the state space S is a subset of R and thus linearly ordered. Then
the configuration space Ω has a natural partial order, and we can speak of
increasing real functions. Let P, P ′ be two probability measures on Ω. We say
that P is stochastically smaller than P ′, and write P ) P ′, if

∫
f dP ≤ ∫

f dP ′

for all local increasing functions (or, equivalently, for all measurable bounded
increasing functions) f on Ω. A sufficient condition for stochastic monotonicity
is given in the proposition below. Although this condition refers to the case
of finite products (for which stochastic monotonicity is similarly defined), it is
also useful in the case of infinite product spaces. This is because (by the very
definition) the relation ) is preserved under weak limits.

Proposition 1 (Holley’s inequality) Let S be a finite subset of R, Λ a finite
index set, and P, P ′ two probability measures on the finite product space SΛ

giving positive weight to each element of SΛ. Suppose the single-site conditional
probabilities at any i ∈ Λ satisfy

P ( · |ξΛ\{i} occurs off i) ) P ′( · |ξ′
Λ\{i} occurs off i) whenever ξ ≤ ξ′.

Then P ) P ′. If this condition holds with P ′ = P then P has positive correlations
in the sense that any two bounded increasing functions are positively correlated.

For a proof (and a slight extension) we refer to Theorems 4.8 and 4.11 of [10].
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2 Phase Transition and Percolation: Two Lattice Models

To provide the necessary background for our results on continuum particle sys-
tems let us still stick to the lattice case. We will consider two classical models
which allow an understanding of phase transition in random-geometric terms.
Many further examples for the relation between random geometry and phase
transition can be found in [10].

Let us start recalling some basic facts on Bernoulli percolation on Z
d for

d ≥ 2. Consider Z
d as a graph with vertex set Z

d and edge set E(Zd) = {e =
{i, j} ⊂ Z

d : |i − j| = 1}. We fix two parameters 0 ≤ ps, pb ≤ 1, the site and
bond probabilities, and construct a random subgraph Γ = (X,E) of (Zd, E(Zd))
by setting

X = {i ∈ Z
d : ξi = 1} , E = {e ∈ E(X) : ηe = 1} ,

where E(X) = {e ∈ E(Zd) : e ⊂ X} is the set of all edges between the sites of X,
and ξi, i ∈ Z

d, and ηe, e ∈ E(Zd), are independent Bernoulli variables satisfying
P (ξi = 1) = ps, P (ηe = 1) = pb. This construction is called the Bernoulli mixed
site-bond percolation model ; setting pb = 1 we obtain pure site percolation, and
the case ps = 1 corresponds to pure bond percolation.

Let {0 ↔ ∞} denote the event that Γ contains an infinite path starting from
0, and

θ(ps, pb;Zd) = Prob(0 ↔ ∞)

be its probability. By Kolmogorov’s zero-one law, we have θ(ps, pb;Zd) > 0 if and
only if Γ contains an infinite cluster with probability 1. In this case one says that
percolation occurs. The following proposition asserts that this happens in a non-
trivial region of the parameter square, which is separated by the so-called critical
line from the region where all clusters of Γ are almost surely finite. The change
of behavior at the critical line is the simplest example of a critical phenomenon.

Proposition 2 The function θ(ps, pb;Zd) is increasing in ps, pb and d. More-
over, θ(ps, pb;Zd) = 0 when pspb is small enough, while θ(ps, pb;Zd) > 0 when
d ≥ 2 and pspb is sufficiently close to 1.

Sketch proof: The monotonicity in ps and pb follows from Proposition 1, and the
one in d from an obvious embedding argument. To show that θ = 0 when pspb
is small, we note that the expected number of neighbors in Γ of a given lattice
site is 2dpspb. Comparison with a branching process thus shows that θ = 0 when
2dpspb < 1.

Next, let d = 2 and suppose 0 ∈ X but the cluster C0 of Γ containing 0 is
finite. Consider ∂extC0, the part of ∂C0 belonging to the infinite component of
Cc

0. For each site i ∈ ∂extC0, either this site or all bonds leading from i to C0 do
not belong to Γ . This occurs with probability at most 1−pspb. So, the probability
that ∂extC0 has a fixed location is at most (1−pspb)L with [ = #∂extC0. Counting
all possibilities for this location one finds that 1− θ < 1 when 1 − pspb is small
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enough. By the monotonicity in d, the same holds a fortiori in higher dimensions.
✷

The above proposition is all what we need here on Bernoulli percolation; an
excellent source for a wealth of further rigorous results is the book of [13].

We now ask for the role of percolation for Gibbs measures, and in particular
for the existence of phase transitions. Of course, in contrast to the above this will
involve dependent , i.e., non-Bernoulli percolation. We consider here two specific
examples. In these examples, the family G of conditional probabilities will be
Gibbsian for a nearest-neighbor interaction; this means that both (2) and (3)
are valid.

2.1 The Ising Model

This is by far the most famous model of Statistical Mechanics, named after E.
Ising who studied this model in the early 1920s in his thesis suggested by W.
Lenz. It is the simplest model of a ferromagnet in equilibrium. One assumes that
the spins have only two possible orientations, and therefore defines S = {−1, 1}.
The family G is defined by (3) with

HΛ(ξ) = J
∑

{i,j}∩Λ�=∅:|i−j|=1

1{ξi �=ξj} , (4)

where J > 0 is a coupling constant which is inversely proportional to the ab-
solute temperature. This means that neighboring spins of different sign have
to pay an energy cost J . There exist two configurations of minimal energy, so-
called ground states, namely the configuration ‘+’ which is identically equal to
+1, and the configuration ‘−’ identically equal to −1. The behavior of the model
is governed by these two ground states. To see this we begin with some useful
consequences of the ferromagnetic character of the interaction. First, it is intu-
itively obvious that the measures G+

Λ = GΛ( · |+) decrease stochastically when Λ
increases (since then the effect of the + boundary decreases). This follows easily
from Holley’s inequality, Proposition 1. Since the local increasing functions are
a convergence determining class, it follows that the weak infinite-volume limit
P+ = limΛ↑Zd G

+
Λ exists. Likewise, the weak limit P− = limΛ↑Zd GΛ( · |−) exists

(and by symmetry is the image of P+ under simultaneous spin flip). These limits
are Gibbs measures and invariant under translations. Holley’s inequality also im-
plies that they are stochastically maximal resp. minimal in G, and in particular
extremal. This gives us the following criterion for phase transition in the Ising
model.

Proposition 3 For the Ising model on Z
d with any coupling constant J > 0 we

have #G > 1 if and only if P− �= P+ if and only if
∫
ξ0 dP

+ > 0.

The last equivalence follows from the relation P− ) P+, the translation invari-
ance of these Gibbs measures, and the spin-flip symmetry. A detailed proof of
the proposition and the previous statements can be found in Sect. 4.3 of [10].
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How can we use this criterion? This is where random geometry enters the
scenery. The key is the following geometric construction tracing back to [4] and
in this form to [3]. It is called the random-cluster representation of the Ising
model.

Let E+
Λ = {E ⊂ E(Zd) : E ⊃ E(Λc)} be the set of all edge configurations in

Z
d which include all edges outside Λ, and define a probability measure φΛ on

E+
Λ by setting

φΛ(E) = Z−1
Λ 2k(E) p#E\E(Λc) (1− p)#E(Zd)\E when E ⊃ E(Λc), (5)

where p = 1 − e−J , k(E) is the number of clusters of the graph (Zd, E), and
ZΛ is a normalizing constant. φΛ is called the random-cluster distribution in Λ
with wired boundary condition. This measure turns out to be related to G+

Λ =
GΛ( · |+). It will be convenient to identify a configuration ξ ∈ Ω with the pair
(X+, X−), where X+ and X− are the sets of all lattice sites i for which ξi = +1
resp. −1.

Proposition 4 For any hypercube Λ in Z
d there exists the following correspon-

dence between the the Gibbs distribution G+
Λ for the Ising model and the random-

cluster distribution φΛ in (5).
(G+

Λ ❀ φΛ ) Take a spin configuration ξ = (X+, X−) ∈ Ω with distribution
G+
Λ , and define an edge configuration E ∈ E+

Λ as follows: Independently for all
e ∈ E(Zd) let e ∈ E with probability

pΛ(e) =


1− e−J if e ⊂ X+ or e ⊂ X−, and e ∩ Λ �= ∅,

1 if e ⊂ Λc,
0 otherwise,

and e /∈ E otherwise. Then E has distribution φΛ.
(φΛ ❀ G+

Λ ) Pick an edge configuration E ∈ E+
Λ according to φΛ, and define

a spin configuration ξ = (X+, X−) ∈ Ω as follows: For each finite cluster C of
(Zd, E) let C ⊂ X+ or C ⊂ X− according to independent flips of a fair coin;
the unique infinite cluster of (Zd, E) containing Λc is included into X+. Then ξ
has distribution G+

Λ .

Proof. A joint description of a spin configuration ξ ∈ Ω with distribution G+
Λ

and an edge configuration E ∈ E+
Λ with distribution φΛ can be obtained as

follows. Any edge e ∈ E(Zd) is independently included into E with probability
p = 1 − e−J resp. 1 according to whether e ∩ Λ �= ∅ or not; each spin in Λ is
equal to +1 or −1 according to independent flips of a fair coin; the spins off
Λ are set equal to +1. The measure P thus described is then conditioned on
the event A that no spins of different sign are connected by an edge. Relative
to P ( · |A), ξ has distribution G+

Λ and E has distribution φΛ. This is because
exp[−HΛ(ξ)] is equal to the conditional P -probability of A given ξ, and 2k(E)−1

is proportional to the conditional P -probability of A given E. Now, it is easy
to see that the two constructions in the proposition simply correspond to the
conditional distributions of E given ξ resp. of ξ given E relative to P ( · |A). ✷
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Intuitively, the edges in the random-cluster representation indicate which pairs of
spins “realize” their interaction, in that they decide to take the same orientation
to avoid the dealignment costs. On the one hand, this representation is the basis
of an efficient simulation procedure, the algorithm of Swendsen-Wang [20], which
together with its continuous counterpart will be discussed at the end of Sect. 4.4.
On the other hand, it is the key for a geometric approach to the phenomenon of
phase transition, as we will now show.

The construction φΛ ❀ G+
Λ implies that, for 0 ∈ Λ, the conditional expecta-

tion of ξ0 given E is 1 when 0 is connected to ∂Λ by edges in E, and 0 otherwise.
Hence ∫

ξ0 dP
+
Λ = φΛ(0 ↔ ∂Λ) . (6)

By Proposition 1, the measures φΛ decrease stochastically when Λ increases, so
that the infinite-volume random-cluster distribution φ = limΛ↑Zd φΛ exists. Let-
ting Λ ↑ Z

d in (6) we thus find that
∫
ξ0 dP

+ = φ(0 ↔ ∞) . Combining this with
Proposition 3 we obtain the first statement of the following theorem, the equiv-
alence of percolation and phase transition. This gives us detailed information on
the existence of phase transition.

Theorem 2 Consider the Ising model on Z
d with Hamiltonian (4) for any cou-

pling constant J > 0. Then #G > 1 if and only if φ(0 ↔ ∞) > 0. Consequently,
there exists a coupling threshold 0 < Jc <∞ (corresponding to a critical inverse
temperature) such that #G = 1 when J < Jc and #G > 1 when J > Jc.

Sketch proof. It only remains to show the second statement. This follows from
Holley’s inequality, Proposition 1. First, this inequality implies that φΛ is stochas-
tically increasing in the parameter p = 1 − e−J . Hence φ(0 ↔ ∞) is an increas-
ing function of p. Moreover, one finds that φ is stochastically dominated by the
Bernoulli bond percolation measure, whence φ(0 ↔ ∞) = 0 when p is so small
that θ(1, p;Zd) = 0. Finally, φ is stochastically larger than the Bernoulli bond
percolation measure with parameter p̃ = p/(p+ 2(1− p)). Hence φ(0 ↔ ∞) > 0
when p is so large that θ(1, p̃;Zd) > 0. Details of this computation can be found
in Sect. 6 of [10], which deals in fact with the extension of these results to the
Potts model in which each spin has q different values. ✷

One may ask whether the connection between percolation and phase transition
can be seen more directly in the behavior of spins. The following corollary gives
an answer to this question. Let {0 +←→ ∞} denote the event that 0 belongs to
an infinite cluster of the graph (X+, E(X+)) induced by the set of plus-spins.

Corollary 1 For the Ising model on Z
d with arbitrary coupling constant J > 0

we have P+(0 +←→ ∞) > 0 whenever #G > 1. The converse holds only when
d = 2.

The first part follows readily from the construction in Proposition 4 which shows
that P+(0 +←→ ∞) ≥ φ(0 ↔ ∞). For its second part see [10]. Pursuing the idea
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of plus-percolation further one can obtain the following result independently
obtained in the late 1970s by Aizenman and Higuchi on the basis of previous
work of L. Russo; a simpler proof has recently been given by [11].

Theorem 3 For the Ising model on Z
2 with J > Jc, there exist no other phases

than P+ and P−.

A celebrated result of Dobrushin asserts that in three or more dimensions there
exist non-translation invariant Gibbs measures which look like P+ in one half-
space and like P− in the other half-space.

2.2 The Widom–Rowlinson Lattice Gas

The Widom–Rowlinson lattice gas is a discrete analog of a continuum model to
be considered in Sect. 4. It describes the random configurations of particles of
two different types, plus or minus, which can only sit at the sites of the lattice
Z
d. Multiple occupations are excluded. So, at each site i of the lattice there are

three possibilities: either i is occupied by a plus-particle, or by a minus-particle,
or i is empty. The configuration space is thus Ω = SZ

d

with S = {−1, 0, 1}.
The basic assumption is that there is a hard-core repulsion between plus- and
minus-particles, which means that particles of distinct type are not allowed to
sit next to each other. In addition, there exists a chemical “activity” z > 0 which
governs the overall-density of particles. The Hamiltonian thus takes the form

HΛ(ξ) =
∑

{i,j}∩Λ�=∅:|i−j|=1

U(ξi, ξj)− log z
∑
i∈Λ

|ξi| , (7)

where U(ξi, ξj) = ∞ if ξiξj = −1, and U(ξi, ξj) = 0 otherwise. The associated
family G of conditional probabilities is again given by (3). Just as in the Ising
model, for z > 1 there exist two distinguished configurations of minimal energy,
namely the constant configurations ‘+’ and ‘−’ for which all sites are occupied by
particles of the same type. Moreover, one can again apply Holley’s inequality to
show that the Gibbs distributions G+

Λ = GΛ( · |+) and G−
Λ = GΛ( · |−) converge

to translation invariant limits P+, P− ∈ G which are stochastically maximal
resp. minimal in G, and therefore extremal. This implies that Proposition 3
holds verbatim also in the present case.

Is there also a geometric representation of the model, just as for the Ising
model? The answer is yes, with interesting analogies and differences. There exists
again a random-cluster distribution with an appearance very similar to (5), but
this involves site percolation rather than bond percolation. Namely, consider the
probability measure ψΛ on the set X+

Λ = {Y ⊂ Z
d : Y ⊃ Λc)} which is given by

ψΛ(Y ) = Z−1
Λ 2k(Y ) p#Y \Λc (1− p)#Z

d\Y for Y ⊃ Λc ; (8)

here p = z
1+z , k(Y ) is the number of clusters of the graph (Y,E(Y )), and ZΛ is a

normalizing constant. ψΛ is called the site random-cluster distribution in Λ with
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parameter p and wired boundary condition. We will again identify a configuration
ξ ∈ Ω with a pair (X+, X−), where X+ and X− are the sets of all lattice points i
such that ξi = +1 resp. −1; thus X+∪X− is the set of occupied sites, and ξ ≡ 0
on its complement. Here is the random-cluster representation of the Widom–
Rowlinson lattice gas which is analogous to Proposition 4.

Proposition 5 For any hypercube Λ in Z
d there exists the following correspon-

dence between the the Gibbs distribution G+
Λ for the Widom–Rowlinson model

and the site random-cluster distribution ψΛ in (8).
(G+

Λ ❀ ψΛ ) For a random spin configuration ξ = (X+, X−) ∈ Ω with
distribution G+

Λ , the random set Y = X+ ∪X− has distribution ψΛ.
(ψΛ ❀ G+

Λ ) Pick a random set Y ∈ X+
Λ according to ψΛ, and define a spin

configuration ξ = (X+, X−) ∈ Ω with X+ ∪X− = Y as follows: For each finite
cluster C of (Y,E(Y )) let C ⊂ X+ or C ⊂ X− according to independent flips
of a fair coin; the unique infinite cluster of (Y,E(Y )) containing Λc is included
into X+. Then ξ has distribution G+

Λ .

The random-cluster representation of the Widom-Rowlinson model is simpler
than that of the Ising model because the randomness involves only the sites of
the lattice. (This is a consequence of the hard-core interaction; in the case of a
soft repulsion the situation would be different, as we will see in the continuum
setting in Sect. 4.) On the other hand, there is a serious drawback of the site
random-cluster distribution ψΛ: it does not satisfy the conditions of Proposition
1 for positive correlations. This is because the conditional probabilities in (10)
below are not increasing in Y . So, we still have a counterpart to (6), viz.∫

ξ0 dG
+
Λ = ψΛ(0 ↔ ∂Λ) , (9)

but we do not know if the measures ψΛ are stochastically increasing in z and
stochastically decreasing in Λ. So we obtain a somewhat weaker theorem.

Theorem 4 Consider the Widom–Rowlinson model on Z
d, d ≥ 2, defined by

(7) with activity z > 0. Then #G > 1 if and only if limΛ↑Zd ψΛ(0 ↔ ∂Λ) > 0. In
particular, we have #G = 1 when z is sufficiently small, and #G > 1 when z is
large enough.

Sketch proof. The first statement follows immediately from (9) and the analog
of Proposition 3. To prove the second statement we note that ψΛ has single-site
conditional probabilities of the form

ψΛ(Y - i |Y \ {i}) = p
/

[p+ (1− p) 2κ(i,Y )−1] , (10)

where κ(i, Y ) is the number of clusters of Y \ {i} that intersect a neighbor of i.
Since 0 ≤ κ(i, Y ) ≤ 2d, it follows from Proposition 1 that ψΛ is stochastically
dominated by the site-Bernoulli measure with parameter p∗ = p/(p+(1−p)2−1),
and dominates the site-Bernoulli measure with parameter p∗ = p/(p + (1 −
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p)22d−1). Combining this with Proposition 2 we thus find that #G = 1 when z is
so small that θ(p∗, 1;Zd) = 0, and #G > 1 when z is so large that θ(p∗, 1;Zd) > 0.
✷

Let us note that, in contrast to Theorem 2, the preceding result does not extend
to the case when there are more than two different types of particles; this is
related to the lack of stochastic monotonicity in this model. However, due to
its simpler random-cluster representation the Widom–Rowlinson model has one
advantage over the Ising model, in that it satisfies a much stronger counterpart
to Corollary 1. In analogy to the notation there we write {0 +←→ ∞} for the
event that the origin belongs to an infinite cluster of plus-particles.

Corollary 2 For the Widom–Rowlinson lattice gas on Z
d for arbitrary dimen-

sion d ≥ 2 and with any activity z > 0, we have #G > 1 if and only if
P+(0 +←→ ∞) > 0.

Sketch proof. The construction in Proposition 5 readily implies that

ψΛ(0 ↔ ∂Λ) = G+
Λ(0 +←→ ∂Λ) .

Combining this with (9) and letting Λ ↑ Z
d one obtains the result. ✷

The above equivalence of phase transition and percolation even holds when Z
d

is replaced by an arbitrary graph.
As noticed before Theorem 4, we have no stochastic monotonicity in the activ-

ity z, and therefore no activity threshold for the existence of a phase transition.
We are thus led to ask if, at least, the particle density is an increasing func-
tion of z. This can be deduced from general thermodynamic principles relying
on convexity of thermodynamic functions rather than stochastic monotonicity.
This will be described in Sect. 4.2 in the continuum set-up.

3 Continuum Percolation

In the rest of this contribution we will show that quite a lot of the preceding
results and techniques carry over to models of point particles in Euclidean space.
In this section we deal with a simple model of continuum percolation. Roughly
speaking, this model consists of Poisson points which are connected by Bernoulli
edges. To be precise, let X denote the set of all locally finite subsets X of R

d.
X is the set of all point configurations in R

d, and is equipped with the usual
σ-algebra generated by the counting variables X → #XΛ for bounded Borel
sets Λ ⊂ R

d; here we use the abbreviation XΛ = X ∩ Λ. Next, let E be the set
of all locally finite subsets of E(Rd) = {{x, y} ⊂ R

d : x �= y}. E is the set of all
possible edge configurations and is equipped with an analogous σ-algebra. For
X ∈ X let E(X) = {e ∈ E(Rd) : e ⊂ X} the set of all possible edges between
the points of X, and EX = {E ∈ E : E ⊂ E(X)} the set of edge configurations
between the points of X. We construct a random graph Γ = (X,E) in R

d as
follows.
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• Pick a random point configuration X ∈ X according to the Poisson point
process πz on R

d with intensity z > 0.
• For given X ∈ X, pick a random edge configuration E ∈ EX according

to the Bernoulli measure µpX on EX for which the events {E - e}, e =
{x, y} ∈ E(X), are independent with probability µpX(E - e) = p(x − y);
here p : R

d → [0, 1] is a given even measurable function.

The distribution of our random graph Γ is thus determined by the probability
measure

P z,p(dX, dE) = πz(dX)µpX(dE) (11)

on X × E. It is called the Poisson random-edge model, or Poisson random-
connection model, and has been introduced and studied first by M. Penrose
[19]; a detailed account of its properties is given in [18].

A special case of particular interest is when p(x − y) is equal to 1 when
|x − y| ≤ 2r for some r > 0, and 0 otherwise. This means that any two points
x and y are connected by an edge if and only if the balls Br(x) and Br(x)
with radius r and center x resp. y overlap. The connectivity properties of the
corresponding Poisson random-edge model are thus the same as those of the
random set Ξ =

⋃
x∈X Br(x), for random X with distribution πz. This special

case is therefore called the Boolean model, or the Poisson blob model.
Returning to the general case, we consider the percolation probability of a

typical point. Writing x↔ ∞ when x belongs to an infinite cluster of Γ = (X,E),
this is given by the expression

θ(z, p;Rd) =
∫

#{x ∈ XΛ : x↔ ∞}
|Λ| P z,p(dX, dE) (12)

for an arbitrary bounded box Λ with volume |Λ|. By translation invariance,
θ(z, p;Rd) does not depend on Λ. In fact, in terms of the Palm measure π̂z of
πz and the associated measure P̂ z,p(dX, dE) = π̂z(dX)µX(dE) we can write

θ(z, p;Rd) = P̂ z,p(0 ↔ ∞) .

The following result of M. Penrose [19] is the continuum analog of Proposition
2.

Theorem 5 θ(z, p;Rd) is an increasing function of the intensity z and the edge
probability function p(·). Moreover, θ(z, p;Rd) = 0 when z

∫
p(x) dx is suffi-

ciently small, while θ(z, p;Rd) > 0 when z
∫
p(x) dx is large enough.

Sketch proof: The monotonicity follows from an obvious stochastic comparison
argument. Since z

∫
p(x) dx is the expected number of edges emanating from a

given point, a branching argument shows that θ(z, p;Rd) = 0 when z
∫
p(x) dx <

1. It remains to show that θ(z, p;Rd) > 0 when z
∫
p(x) dx is large enough.

By scaling we can assume that
∫
p(x) dx = 1. For simplicity we will in fact

suppose that p is bounded away from 0 in a neighborhood of the origin, i.e.,
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p(x − y) ≥ δ > 0 whenever |x − y| ≤ 2r. (The following is a special case of an
argument of [10].)

We divide the space R
d into cubic cells ∆(i), i ∈ Z

d, with diameter at most
r. We also pick a sufficiently large number n and introduce the following two
concepts.

• Call a cell ∆(i) good if it contains at least n points which form a connected
set relative to the edges of Γ in between them. This event does not depend
on the configurations in all other cells and has probability at least

πz(Ni ≥ n) [1− (n− 1)(1− δ2)n−2] ≡ ps ;

here, Ni is the random number of points in cell ∆(i), and the second term in
the square bracket is an estimate for the probability that one of the n points
is not connected to the first point by a sequence of two edges. The essential
fact is that ps is arbitrarily close to 1 when n and z are large enough.

• Call two adjacent cells ∆(i), ∆(j) linked if there exists an edge from some
point in ∆(i) to some point in ∆(j). Conditionally on the event that ∆(i)
and ∆(j) are good, this has probability at least 1− (1− δ)n2

= pb, which is
also close to 1 when n is large enough.

Now the point is the following: whenever there exists an infinite cluster of linked
good cells (i.e., an infinite cluster in the countable graph with vertices at the
good cells and with edges between pairs of linked cells) then there exists an
infinite cluster in the original Poisson random-edge model. Hence θ(z, p;Rd) ≥
n
v θ(ps, pb;Z

d), where v is the cell volume and θ(ps, pb;Zd) is as in Proposition
2. Hence θ(z, p;Rd) > 0 when z is large enough. ✷

How can one extend a percolation result as above from the Poisson case to point
processes with spatial dependencies? Just as in the lattice gas, one can take
advantage of stochastic comparison techniques. To this end we need a continuum
analog of Holley’s theorem.

A simple point process P on a bounded Borel subset Λ of R
d (i.e., a probabil-

ity measure on XΛ = {X ∈ X : X ⊂ Λ}) is said to have Papangelou (conditional)
intensity γ : Λ× XΛ → [0,∞[ if P satisfies the identity∫

P (dX)
∑
x∈X

f(x,X \ {x}) =
∫
dx

∫
P (dX) γ(x|X) f(x,X) (13)

for any measurable function f : Λ × XΛ → [0,∞[. (This is a non-stationary
analog of the Georgii–Nguyen–Zessin equality discussed in the contribution of
D. Stoyan to this volume.) This equation roughly means that γ(x|X) dx is pro-
portional to the conditional probability for the existence of a particle in an
infinitesimal volume dx when the remaining configuration is X. Formally, it is
not difficult to see that (13) is equivalent to the statement that P is absolutely
continuous with respect to the intensity-1 Poisson point process πΛ = π1Λ in Λ
with Radon–Nikodym density g satisfying g(X ∪ {x}) = γ(x|X) g(X), see e.g.
[12]. In particular, the Poisson process πzΛ of intensity z > 0 on Λ has Papangelou
intensity γ(x|X) = z.
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Proposition 6 (Holley-Preston inequality) Let Λ ⊂ R
d be a bounded Borel

set and P, P ′ two probability measures on XΛ with Papangelou intensities γ resp.
γ′. Suppose γ(x|X) ≤ γ′(x|X ′) whenever X ⊂ X ′ and x /∈ X ′\X. Then P ) P ′.
If this condition holds with P ′ = P then P has positive correlations.

Of course, the stochastic partial order P ) P ′ is defined by means of the in-
clusion relation on XΛ. Under additional technical assumptions the preceding
proposition was first derived by Preston in 1975; in the present form it is due to
Georgii and Küneth [12]. In the next section we will see how this result can be
used to establish percolation in certain continuum random-cluster models, and
thereby the existence of phase transitions in certain continuum particle systems.

4 The Continuum Ising Model

The continuum Ising model is a model of point particles in R
d of two different

types, plus and minus. Rather than of particles of different types, one may also
think of particles with a ferromagnetic spin with two possible orientations. The
latter would be suitable for modelling ferrofluids such as the Au-Co alloy, which
have recently found some physical attention. Much of what follows can also be
extended to systems with more than two types, but we stick here to the simplest
case. A configuration of particles is then described by a pair ξ = (X+, X−),
where X+ and X− are the configurations of plus- resp. minus-particles. The
configuration space is thus Ω = X2.

We assume that the particles interact via a repulsive interspecies pair poten-
tial of finite range, which is given by an even measurable function J : R

d → [0,∞]
of bounded support. The Hamiltonian in a bounded Borel set Λ ⊂ R

d of a con-
figuration ξ = (X+, X−) is thus given by

HΛ(ξ) =
∑

x∈X+,y∈X−: {x,y}∩Λ�=∅
J(x− y) . (14)

In view of its analogy to (4) this model is called the continuum Ising model.
Setting J(x− y) = ∞ when |x− y| ≤ 2r and J(x− y) = 0 otherwise, we obtain
the classical Widom–Rowlinson model [22] with a hard-core interspecies repulsion
(which in spatial statistics is occasionally referred to as the penetrable spheres
mixture model). Of course, this case corresponds to the Widom–Rowlinson lattice
gas considered above. Here we make only the much weaker assumption that J
is bounded away from zero on a neighborhood of the origin. That is, there exist
constants δ, r > 0 such that

J(x− y) ≥ δ when |x− y| ≤ 2r. (15)

An interesting generalization of the Hamiltonian (14) can be obtained by
adding an interaction term which is independent of the types of the particles.
In a ferrofluid model this would mean that in addition to the ferromagnetic
interaction of particle spins there is also a molecular interaction which is spin-
independent. Such an extension is considered in [10].
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Given the Hamiltonian (14), the associated Gibbs distribution in Λ with ac-
tivity z > 0 and boundary condition ξΛc = (X+

Λc , X
−
Λc) ∈ X2

Λc is defined by the
formula

GΛ(dξΛ|ξΛc) = Z−1
Λ|ξΛc exp[−HΛ(ξ)] πzΛ(dX+

Λ )πzΛ(dX−
Λ ) (16)

which is completely analogous to (3). The corresponding set G = G(z) of Gibbs
measures is then defined as in Definition 1 (with Λ running through the bounded
Borel sets in R

d instead of the finite subsets of Z
d).

In general, the existence of Gibbs measures in continuum models is not easy
to establish. In the present case, however, it is simple: Thinking of X2

Λ as the
space of configurations on two disjoint copies Λ+ and Λ− of Λ, we see that
GΛ( · |ξΛc) has the Papangelou intensity

γ(x|X+, X−) =
{
z exp[−∑y∈X− J(x− y)] if x ∈ Λ+

z exp[−∑y∈X+ J(x− y)] if x ∈ Λ−

}
≤ z . (17)

Proposition 6 therefore implies that GΛ( · |ξΛc) ) πzΛ × πzΛ. Standard compact-
ness theorems for point processes now show that for each ξ ∈ X2 the sequence
GΛ( · |ξΛc) has an accumulation point P as Λ ↑ R

d, and it is easy to see that
P ∈ G.

4.1 Uniqueness and Phase Transition

We will now show that the Gibbs measure is unique when z is small, whereas a
phase transition occurs when z is large enough. Both results rely on percolation
techniques. As in the Widom–Rowlinson lattice gas, it remains open whether
there is a sharp activity threshold separating intervals of uniqueness and non-
uniqueness.

Proposition 7 For the continuum Ising model we have #G(z) = 1 when z is
sufficiently small.

Sketch proof: Let P, P ′ ∈ G(z). We show that P = P ′ when z is small enough. Let
R be the range of J , i.e., J(x) = 0 when |x| ≤ R, and divide R

d into cubic cells
∆(i), i ∈ Z

d, of linear size R. Let p∗
c be the Bernoulli site percolation threshold

of the graph with vertex set Z
d and edges between all points having distance 1 in

the max-norm. Consider the Poisson measure Qz = πz×πz on the configuration
space Ω = X2.

Let ξ, ξ′ be two independent realizations of Qz, and suppose z is so small that
Qz×Qz(Ni+N ′

i ≥ 1) < p∗
c , whereNi andN ′

i are the numbers of particles (plus or

minus) in ξ resp. ξ′. Then for any finite union Λ of cells we have Qz×Qz(Λ ≥1←→
∞) = 0, where {Λ ≥1←→ ∞} denotes the event that a cell in Λ belongs to an
infinite connected set of cells ∆(i) containing at least one particle in either ξ
or ξ′. Proposition 6 together with (17) imply that P × P ′ ) Qz × Qz. Hence

P × P ′(Λ ≥1←→ ∞) = 0. In other words, given two independent realizations ξ
and ξ′ of P and P ′ there exists a random corridor of width R around Λ which is
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completely free of particles. In particular, this means that ξ and ξ′ coincide on
this random corridor. By a spatial strong Markov property of Gibbs measures,
it follows that P and P ′ coincide on the σ-algebra of events in Λ. As Λ can be
chosen arbitrarily large, this proves the proposition. ✷

After this result on the absence of phase transition (following from the absence of
some kind of percolation) we turn to the existence of phase transition. This will
follow from the existence of percolation in a suitable random-cluster model. In
analogy to Propositions 4 and 5, we will derive a random-cluster representation
of the Gibbs distribution

G+
Λ =

∫
πzΛc(dY

+
Λc) GΛ( · |Y +

Λc , ∅) (18)

with a Poisson boundary condition of plus-particles and no minus-particle off Λ.
Its random-cluster counterpart is the following probability measure χΛ on X×E

describing random graphs (Y,E) in R
d:

χΛ(dY, dE) = Z−1
Λ|YΛc 2k(Y,E) πz(dY )µp,ΛY (dE) . (19)

In the above, k(Y,E) is the number of clusters of the graph (Y,E), ZΛ|YΛc =∫
2k(Y,E) πzΛ(dYΛ) normalizes the conditional probability of χΛ given YΛc =

Y ∩Λc (so that YΛc still has the Poisson distribution πzΛc), and µ
p,Λ
Y is the proba-

bility measure on E for which the edges e = {x, y} ⊂ Y are drawn independently
with probability p(x − y) = 1 − e−J(x−y) if e �⊂ YΛc , and probability 1 other-
wise. The probability measure χΛ in (19) is called the continuum random-cluster
distribution in Λ with connection probability function p and wired boundary con-
dition. Note that (in contrast to (5) and (8)) this distribution describes random
configurations of both points and edges. In the Widom–Rowlinson case of a
hard-core interspecies repulsion the randomness of the edges disappears, and χΛ
describes a dependent Boolean percolation model which is the direct continuum
analog of (8). The random-cluster representation of the continuum Ising model
now reads as follows.

Proposition 8 For any bounded box Λ in R
d there is the following correspon-

dence between the Gibbs distribution G+
Λ in (18) for the continuum Ising model

and the random-cluster distribution χΛ in (19).
(G+

Λ ❀ χΛ ) Take a particle configuration ξ = (X+, X−) ∈ Ω with distribu-
tion G+

Λ and define a random graph (Y,E) ∈ X×E as follows: Let Y = X+∪X−,
and independently for all e = {x, y} ∈ E(Y ) let e ∈ E with probability

pΛ(e) =

1− e−J(x−y) if e ⊂ X+ or e ⊂ X−, and e ∩ Λ �= ∅,
1 if e ⊂ Λc,
0 otherwise.

Then (Y,E) has distribution χΛ.
(χΛ ❀ G+

Λ ) Pick a random graph (Y,E) ∈ X × E according to χΛ. Define
a particle configuration ξ = (X+, X−) ∈ Ω with X+ ∪X− = Y as follows: For
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each finite cluster C of (Y,E) let C ⊂ X+ or C ⊂ X− according to independent
flips of a fair coin; the unique infinite cluster of (Y,E) containing YΛc is included
into X+. Then ξ has distribution G+

Λ .

Just as in the lattice case, the random-cluster representation above gives the
following key identity: for any finite box ∆ ⊂ Λ,∫

[#X+
∆ −#X−

∆ ] G+
Λ(dX+, dX−)

=
∫

#{x ∈ Y∆ : x↔ YΛc} χΛ(dY, dE) ; (20)

in the above, the notation x↔ YΛc means that x is connected to a point of YΛc
in the graph (Y,E). In other words, the difference between the mean number of
plus- and minus-particles in ∆ corresponds to the percolation probability in χΛ.
How can one check that the latter is positive for large z? The idea is again a
stochastic comparison.

Let νΛ = χΛ(· × E) the point marginal of χΛ. Then
χΛ(dY, dE) = νΛ(dY )φΛ,Y (dE) with an obvious analog φΛ,Y of (5). An ap-
plication of Proposition 1 shows that φΛ,Y is stochastically larger than the
Bernoulli edge measure µp̃Y for which edges are drawn independently between
points x, y ∈ Y with probability p̃(x − y) = (1 − e−δ)/[(1 − e−δ) + 2 e−δ] when
|x−y| ≤ 2r, and with probability 0 otherwise. Here, δ and r are as in assumption
(15). Moreover, νΛ has the Papangelou intensity

γ(x|Y ) = z

∫
2k(Y ∪{x}, · ) dφΛ,Y ∪{x}

/∫
2k(Y, · ) dφΛ,Y .

To get a lower estimate for γ(x|Y ) one has to compare the effect on the number
of clusters in (Y,E) when a particle at x and corresponding edges are added. In
principle, this procedure could connect a large number of distinct clusters lying
close to x, so that k(Y ∪ {x}, · ) was much smaller than k(Y, · ). However, one
can show that this occurs only with small probability, so that γ(x|Y ) ≥ αz for
some α > 0. By Proposition 6, we can conclude that χΛ is stochastically larger
than the Poisson random-edge measure Pαz,p̃ defined in (11). The right-hand
side of (20) is therefore not smaller than θ(αz, p̃;Rd). Finally, since G+

Λ ) πz×πz
by (17), the Gibbs distributions G+

Λ have a cluster point P+ ∈ G(z) satisfying∫
[#X+

∆ −#X−
∆ ] P+(dX+, dX−) ≥ θ(αz, p̃;Rd) .

By spatial averaging one can achieve that P+ is in addition translation invariant.
Together with Theorem 5 this leads to the following theorem.

Theorem 6 For the continuum Ising model on R
d, d ≥ 2, with Hamiltonian

(14) and sufficiently large activity z there exist two translation invariant Gibbs
measures P+ and P− having a majority of plus- resp. minus-particles and related
to each other by the plus-minus interchange.
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This result is due to [10]. In the special case of the Widom-Rowlinson model it
has been derived independently in the same way by Chayes, Chayes, and Kotecký
[2]. The first proof of phase transition in the Widom-Rowlinson model was found
by Ruelle in 1971, and for a soft but strong repulsion by Lebowitz and Lieb in
1972. Gruber and Griffiths [14] used a direct comparison with the lattice Ising
model in the case of a species-independent background hard core.

As a matter of fact, one can make further use of stochastic monotonicity. (In
contrast to the preceding theorem, this only works in the present case of two
particle types.) Introduce a partial order ‘≤’ on Ω = X2 by writing

(X+, X−) ≤ (Y +, Y −) when X+ ⊂ Y + and X− ⊃ Y −. (21)

A straightforward extension of Proposition 6 then shows that the measures G+
Λ

in (18) decrease stochastically relative to this order when Λ increases. (This can
be also deduced from the couplings obtained by perfect simulation, see Sect. 4.4
below.) It follows that P+ is in fact the limit of these measures, and is in par-
ticular translation invariant. Moreover, one can see that P+ is stochastically
maximal in G in this order. This gives us the following counterpart to Corollary
2.

Corollary 3 For the continuum Ising model with any activity z > 0, a phase
transition occurs if and only if∫

P̂+(dX+, dX−)µpX+(0 +←→ ∞) > 0 ;

here P̂+ is the Palm measure of P+, and the relation 0 +←→ ∞ means that the
origin belongs to an infinite cluster in the graph with vertex set X+ and random
edges drawn according to the probability function p = 1− e−J .

It is not known whether P+ and P− are the only extremal elements of G(z)
when d = 2, as it is the case in the lattice Ising model. However, using a technique
known in physics as the Mermin–Wagner theorem one can show the following.

Theorem 7 If J is twice continuously differentiable then each P ∈ G(z) is
translation invariant.

A proof can be found in [8]. The existence of non-translation invariant Gibbs
measures in dimensions d ≥ 3 is an open problem.

4.2 Thermodynamic Aspects

Although we were able to take some advantage of stochastic comparison tech-
niques in the continuum Ising model, the use of Proposition 6 is much more
limited than that of its lattice analog. The reason is that its condition requires
some kind of attractivity, which is in conflict with stability (preventing the ex-
istence of infinitely many particles in a bounded region). This implies that a
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continuum Gibbs distribution GΛ with a pair interaction cannot satisfy the con-
ditions of Theorem 6 with P = P ′ = GΛ, which would imply thatGΛ has positive
correlations and is stochastically increasing with the activity z. Fortunately, this
gap can be closed to some extent by the use of classical convexity techniques of
Statistical Mechanics. These will allow us to conclude that at least the particle
density of Gibbs measures is an increasing function of the activity z.

It should be noted that these ideas are standard in Statistical Physics; they
are included here because they might be less known among spatial statisticians,
and because we need to check that the general principles really work in the
model at hand. One should also note that this technique does not depend on
the specific features of the model; in particular, it applies also to the gas of hard
balls discussed in H. Löwen’s contribution to this volume.

Let us begin recalling the thermodynamic justification of Gibbs measures.
Let Λ ⊂ R

d be a finite box. For any translation invariant probability measure P
on Ω = X2 consider the entropy per volume

s(P ) = lim
|Λ|→∞

|Λ|−1 S(PΛ) .

Here we write PΛ for the restriction of P to X2
Λ, the set of particle configurations

in Λ, and

S(PΛ) =
{− ∫ log f dPΛ if PΛ ' π1Λ × π1Λ with density f ,

−∞ otherwise

for the entropy of PΛ relative two the two-species Poisson process π1Λ×π1Λ on X2
Λ

with intensity 1. The notation |Λ| → ∞ means that Λ runs through a specified
increasing sequence of cubic boxes with integer sidelength. The existence of s(P )
is a multidimensional version of Shannon’s theorem; see [5] for the lattice case
to which the present case can be reduced by identifying Ω with (X2

C)Z
d

for a
unit cube C.

Next consider the interaction energy per volume

u(P ) =
∫
P̂ (dX+, dX−)

[
1{0∈X+}

∑
x∈X−

J(x) + 1{0∈X−}
∑

x∈X+

J(x)
]

(22)

defined in terms of the Palm measure P̂ of P . u(P ) can also be defined as a
per-volume limit, cf. [6], Sect. 3. Also, consider the particle density

D(P ) = P̂ (Ω) = |Λ|−1
∫

[#X+
Λ + #X−

Λ ] dPΛ

of P ; by translation invariance the last term does not depend on Λ. The term
−D(P ) log z is then equal to the chemical energy per volume.

Finally, consider the pressure

p(z) = −min
P

[
u(P )− D(P ) log z − s(P )

]
; (23)
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the minimum extends over all translation invariant probability measures P on Ω.
The large deviation techniques of Georgii [6] show that
p(z) = lim|Λ|→∞ |Λ|−1 logZΛ|ξΛc for each ξ ∈ Ω. (The paper [6] deals only
with particles of a single type and superstable interaction, but the extension
to the present case is straightforward because J is nonnegative and has finite
range.) The variational principle for Gibbs measures then reads as follows.

Theorem 8 Let P be a translation invariant probability measure on Ω = X2.
Then P ∈ G(z) if and only if u(P )−D(P ) log z−s(P ), the free energy per volume,
is equal to its minimum −p(z).

The “only if” part can be derived along the lines of [6] and Proposition 7.7 of
[7]. The “if” part follows from the analogous lattice result (see Sect. 15.4 of [5])
by the identification of Ω and (X2

C)Z
d

mentioned above.
What does the theorem tell us about the particle densities of Gibbs measures?

Let us look at the pressure p(z). First, it follows straight from the definition (23)
that p(z) is a convex function of log z. In other words, the function p̃(t) = p(et)
is convex. Next, inserting P = πz × δ∅ into the right-hand side of (23) we see
that p̃ > −∞, and that the slope of p̃ at t tends to infinity as t→ ∞.

Now, suppose P ∈ G(z) is translation invariant. The variational principle
above then implies that the function t → (t − log z)ρ(P ) + p(z) is a tangent to
p̃ at log z. For, on the one hand we have

u(P )− D(P ) log z − s(P ) = −p(z) <∞

and thus u(P )− s(P ) <∞, and on the other hand

u(P )− D(P ) t− s(P ) ≥ −p̃(t) for all t.

Inserting the former identity into the last inequality we get the result. As a
consequence, the particle density D(P ) lies in the interval between the left and
right derivative of p̃ at log z. By convexity, these derivatives are increasing and
almost everywhere identical. In fact, they are strictly increasing. For, if they
were constant on some non-empty open interval I then for each t0 ∈ I and
P ∈ G(et0) the function t → D(P ) t − p̃(t) would be constant on I, and thus
by the variational principle P ∈ G(et) for all t ∈ I. This is impossible because
the conditional Gibbs distributions depend non-trivially on the activity. We thus
arrive at the following conclusion.

Corollary 4 Let 0 < z < z′ and P ∈ G(z), P ′ ∈ G(z′) be translation invariant.
Then D(P ) < D(P ′), and D(P ) → ∞ as z → ∞.

In the present two-species model it is natural to consider also the case when each
particle species has its own activity, i.e., the plus-particles have activity z+ and
the minus-particles have activity z−. It then follows in the same way that the
pressure p(z+, z−) is a strictly convex function of the pair (log z+, log z−), and
therefore that the density of plus-particles is a strictly increasing function of z+,
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and the density of minus-particles is a strictly increasing function of z−; these
densities tend to infinity as z+ resp. z− tends to infinity. Moreover, Theorem 6
implies that p(z+, z−) has a kink at (z, z) when z is large enough; this means
that the convex function t→ p(zet, ze−t) is not differentiable at t = 0.

4.3 Projection on Plus-Particles

As the continuum Ising model is a two-species model, it is natural to ask what
kind of system appears if we forget all minus-particles and only retain the plus-
particles. The answer is that their distribution is again Gibbsian for a suitable
Hamiltonian. This holds also in the case of different activities z+ and z− of plus-
and minus-particles, which is the natural context here. To check this, take any
box ∆ ⊂ R

d and let Λ ⊃ ∆ be so large that the distance of ∆ from Λc exceeds
the range R of J . Integrating over X−

Λ in (16) and conditioning on X+
Λ\∆ one

finds that the conditional distribution of X+
∆ for given X+

Λ\∆ under GΛ( · |ξΛc)
does not depend on Λ and ξΛc and has the Gibbsian form

G̃∆(dX+
∆|X+

∆c) = Z̃−1
∆|X+

∆c
exp[−z− H̃∆(X+)] πz

+

∆ (dX+
∆) (24)

with the Hamiltonian

H̃∆(X+) =
∫
∆

(
1− exp

[
−

∑
x∈X+

J(x− y)
])
dy . (25)

Thus, writing G(z+, z−) for the set of all continuum-Ising Gibbs measures on
Ω = X2 with Hamiltonian (14) and activities z+ and z−, and G̃(z+, z−) for the
set of all Gibbs measures on X with conditional distributions (24), one obtains
the following corollary.

Corollary 5 Let P ∈ G(z+, z−) and P̃ be the distribution of the configuration
of plus-particles. Then P̃ ∈ G̃(z+, z−). In particular, #G̃(z, z) > 1 when z is
large enough.

The last statement follows from Theorem 6.
In the Widom–Rowlinson case when J = ∞ 1{| · |≤2r}, the relationship be-

tween G(z+, z−) and G̃(z+, z−) has already been observed in the original paper
by Widom and Rowlinson [22]. The plus-Hamiltonian (25) then takes the simple
form

H̃∆(X+) = |∆ ∩
⋃

x∈X+

B2r(x)|

that is, H̃∆(X+) is the volume in ∆ of the Boolean model with radius 2r induced
by X+. In this case, the model with distribution G̃∆(dX+

∆|X+
∆c) was reinvented

by Baddeley and van Lieshout [1]. Having the two-dimensional case in mind,
they coined the suggestive term area-interaction process. From here one can go
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one step further to Hamiltonians which use not only the volume but also the
other Minkowski functionals. This has been initiated by Likos et al. [16] and
Mecke [17]; see also Mecke’s contribution to this volume.

One particularly nice feature of the area-interaction process and its general-
ization (25) is that it seems to be the only known (non-Poisson) model to which
Proposition 6 can be applied for establishing positive correlations of increasing
functions. This attractiveness property makes the model quite attractive for sta-
tistical modelling. (By way of contrast, repulsive point systems can be modelled
quite easily, for example by a nonnegative pair interaction.)

However, some caution is necessary due to the phase transition when z+ =
z− = z is large: The typical configurations of G̃∆( · | ∅ ) for a large finite window
∆ then can be typical for either phase, P̃+ or P̃−, and thus can have different
particle densities. Due to finite size effects, this phenomenon already appears
when z+ and z− are sufficiently close to each other. So, the spatial statisti-
cian should be aware of such an instability of observations and should examine
whether this is realistic or not in the situation to be modelled.

Finally, one can use Proposition 6 to show that the Gibbs measures P̃ ∈
G̃(z+, z−) are stochastically increasing in z+ and decreasing in z−. In partic-
ular, the density of plus-particles for any P ∈ G(z+, z−) increases when z+

increases or z− decreases, as can also be seen using the partial order (21). The
monotonicity results in the last paragraph of Sect. 4.2 thus follow also from
stochastic comparison techniques, but Corollary 4 cannot be derived in this way.

4.4 Simulation

There are various reasons for performing Monte–Carlo simulations of physical
or statistical systems, as discussed in a number of other contributions to this
volume. In the present context, the primary reason is to sharpen the intuition
on the system’s behavior, so that one can see which properties can be expected to
hold. This can lead to conjectures which then hopefully can be checked rigorously.

Here we will show briefly how one can obtain simulation pictures of the
continuum Ising model. We start with a continuum Gibbs sampler which is
suggested by Proposition 8; in the Widom–Rowlinson case it has been proposed
by Häggström, van Lieshout and Møller [15].

Consider a fixed window Λ ⊂ R
d and the Gibbs distributionGfree

Λ = GΛ( · |∅, ∅)
for the continuum Ising model in Λ with activity z and free (i.e., empty) bound-
ary condition off Λ. We define a random map F : XΛ → XΛ by the following
algorithm:

• take an input configuration X ∈ XΛ,
• select a Poisson configuration Y ∈ XΛ with distribution πzΛ,
• define a random edge configuration E ⊂ {{x, y} : x ∈ X, y ∈ Y } by

independently drawing an edge from x ∈ X to y ∈ Y with probability
p(x− y) = 1− e−J(x−y),

• set F (X) =
{
y ∈ Y : {x, y} /∈ E for all x ∈ X

}
.
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That is, F (X) is a random thinning of πzΛ obtained by removing all points
which are connected to X by a random edge. Its distribution is nothing other
than the Poisson point process πz,JΛ|X on Λ with inhomogeneous intensity mea-
sure ρJX(dy) = z 1Λ(y) exp

[−∑x∈X J(y − x)
]} dy . (Of course, this could also

be achieved by setting F (X) = {y ∈ Y : Uy ≤ exp
[−∑x∈X J(y − x)

]} for
independent U(0, 1)-variables Uy, y ∈ Y . Although this was simpler in the
case of the MCMC below, it would considerably increase the running time
of the perfect algorithm of Theorem 9, as will be explained there.) Now the
point is that πz,JΛ|X+ is the conditional distribution of X− given X+ relative to
the Gibbs distribution Gfree

Λ , and similarly with + and − interchanged. So, if
ξ = (X+, X−) has distribution Gfree

Λ and F+, F− are independent realizations
of F then (F+(X−), F− ◦ F+(X−)) has again distribution Gfree

Λ . This observa-
tion gives rise to the following Markov chain Monte Carlo algorithm (MCMC).

Proposition 9 Let F+
n , F

−
n , n ≥ 0, be independent realizations of F , and X+

0 ∈
XΛ any initial configuration. Define recursively

X−
0 = F−

0 (X+
0 ), X+

n = F+
n (X−

n−1), X
−
n = F−

n (X+
n ) for n ≥ 1.

Then the distribution of (X+
n , X

−
n ) converges to Gfree

Λ in total variation norm at
a geometric rate.

Proof. It suffices to observe that F ≡ ∅ with probability δ = e−z |Λ|. This shows
that for any two configurations X,X ′ ∈ XΛ and any A ⊂ XΛ

|Prob(F (X) ∈ A)− Prob(F (X ′) ∈ A)| ≤ 1− δ .
So, if one looks at the process (X+

n , X
−
n ) for two different starting configurations

then each application of F reduces the total variation distance by a factor of
1− δ. ✷

A nice property of the random mapping F is its monotonicity: if X ⊂ X ′ then
F (X) ⊃ F (X ′) almost surely. This allows to modify the preceding algorithm to
obtain perfect simulation in the spirit of Propp and Wilson, as described in the
contribution of E. Thönnes to this volume. According to (17), Gfree

Λ is stochasti-
cally dominated by independent Poisson processes of plus- and minus-particles.
So one can use the idea of dominated perfect simulation in her terminology. We
describe here only the algorithm and refer to her contribution for more details.

Roughly speaking, the perfect algorithm consists of repeated simultaneous
runs of the preceding MCMC, starting from two particular initial conditions at
some time Nk < 0 until time 0. The two initial conditions are chosen extremal
relative to the ordering (21), namely with no initial plus-particle (the minimal
case), and with a Poisson crowd of intensity z of plus-particles (which is maximal
by stochastic domination). Since the same realizations of F are used in both
cases, the two parallel MCMC’s have a positive chance of coalescing during the
time interval from Nk to 0. If this occurs, one stops. Otherwise one performs a
further run which starts at some time Nk+1 < Nk.
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Theorem 9 Let F+
n , F

−
n , n ≤ 0, be independent realizations of F , and (Nk)k≥1

a strictly decreasing sequence of negative run starting times. For each run indexed
by k ≥ 1 let

Φk = F+
0 ◦ F−

−1 ◦ F+
−1 ◦ . . . ◦ F−

Nk+1 ◦ F+
Nk+1 ◦ F−

Nk

be the random mapping corresponding to the MCMC of Proposition 9 for the
time interval from Nk to 0, and consider the processes

X+
k,min = Φk(∅), X+

k,max = Φk ◦ F+
Nk

(∅) .

Then there exists a smallest (random) K <∞ such that X+
K,min = X+

K,max, and
the random particle configuration ξK = (X+

K,min, F
−
0 (X+

K,min)) has distribution
Gfree
Λ .

Since the random mapping F can be simulated by simple standard procedures,
the implementation of the preceding algorithm is quite easy; a Macintosh appli-
cation can be found at http://www.mathematik.uni-muenchen.de/˜georgii/
CIsing.html . The main task is to store the random edge configuration E in
each application of F during a time interval {Nk, . . . , Nk−1 − 1} for use in the
later runs (which should be done in a file on the hard disk when z|Λ| is large).
As a matter of fact, once the set E is determined one can forget the positions
of the particles of Y and only keep their indices. In this sense, E contains all
essential information of the mapping F . As a consequence, knowing E one needs
almost no time to apply the same realization of F in later runs. This is not the
case for the alternative definition of F mentioned above.

However, there are some difficulties coming from the phase transition of
the model. Running the perfect algorithm for small z is fine and raises no
problem. But if z is large then the algorithm requires a considerably longer
time to terminate. This is because for each run k the distribution of ξk,max =
(X+

k,max, F
−
0 (X+

k,max)) will be close to P+ and thus show a large crowd of plus-
particles giving the minus-particles only a minimal chance to spread out. Like-
wise, the distribution of ξk,min = (X+

k,min, F
−
0 (X+

k,min)) will be close to P−, so
that the minus-particles are in the great majority. The bottleneck between these
two types of configurations is so small that K will typically be much too large for
practical purposes, at least for windows Λ of satisfactory size. In order to reduce
this difficulty, one should not simulate the Gibbs distribution Gfree

Λ with free
boundary condition (as we have done above for simplicity), as this distributes
most of its mass on two quite opposed events. Rather one should simulate one
of the phases, say P+. For a finite window, this can be achieved by imposing a
random boundary condition of Poisson plus-particles outside Λ as in (18). Such
a boundary condition helps X+

k,max and X+
k,min quite a lot to coalesce within rea-

sonable time. (If one is willing to accept long running times, one should impose
periodic boundary conditions to reduce the finite-size effects.)

The pictures shown are obtained in this way. The underlying interaction
potential is J(x) = 3 (1 − |x|)2 for |x| ≤ 1, J(x) = 0 otherwise. The size of
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Fig. 1. Perfect samples of the continuum Ising model.
Top: z = 4, with particle density ρ = 4.22. Bottom: z = 4.5, with ρ = 4.89.
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Fig. 2. Random-cluster representation.
Top: the subcritical case z = 4. Bottom: the supercritical case z = 4.5.
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the window is 20 × 20. Outside of the window there is an invisible boundary
condition of white Poisson particles. The activities are z = 4.0 (top) and z = 4.5
(bottom), and the corresponding coalescence times are −NK = 300 resp. 400.

In the subcritical case z = 4, the particles in the bulk do not feel the bound-
ary condition: there is no dominance of white over black. In the supercritical
case z = 4.5 however, the influence of the white boundary condition is strong
enough to dominate the whole window, and the phase transition becomes man-
ifest. This is nicely illustrated by the random-cluster representation, which ac-
cording to Proposition 8 is obtained from the point configuration (X+, X−) by
adding random edges within X+ and X− separately. Here one sees that in the
subcritical case the influence of the plus-boundary condition is only felt by a the
particles near the boundary, while in the supercritical case the global behavior
is dominated by a macroscopic cluster reaching from the boundary far into the
interior of Λ. This visualizes the equivalence of phase transition and percolation
derived in Corollary 3.

To conclude we mention two other algorithms. First, there is another perfect
algorithm using a rejection scheme due to Fill, which has been studied in detail
by Thönnes [21] in the Widom-Rowlinson case; its extension to the present
case is straightforward. A further possibility, which is particularly useful in the
supercritical case, is to use a continuum analog of the Swendsen–Wang algorithm
[20]. In its classical version for the lattice Ising model, this algorithm consists in
alternating applications of the two procedures in Proposition 4. In its continuum
version, one can again alternate between the two procedures of Proposition 8,
but one has to combine this with applications of the random mapping F in order
to obtain a resampling of particle positions. Unfortunately, this algorithm does
not seem to admit a perfect version because of its lack of monotonicity, but it
has the advantage of working also for the many-species extension of the model.
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Fun with Hard Spheres
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Abstract. Thermostatistical properties of hard sphere and hard disk systems are dis-
cussed. In particular we focus on phase transitions such as freezing in the thermody-
namic limit. Results based on theory and computer simulations are given. It is empha-
sized that suspensions of sterically-stabilized colloids represent excellent realizations of
the hard sphere model. Finally a survey of current research activities for hard sphere
systems is presented and some recent results are summarized.

1 Motivation

This article aims at several points: First, it is a brief introduction to classical
statistical physics of hard sphere-like systems ranging from elementary defini-
tions to recent research activities. In this respect it represents both a tutorial
and a review. Second, it is written by a physicist, not by a mathematician. This
implies that emphasis is put on simple physical pictures omitting any mathemat-
ical rigour. However, it is tried to link to the literature of mathematical physics
and to establish thereby a connection between physics and mathematics. Third,
if possible, relations between statistical physics and geometry are discussed.

2 Introduction: The Model

The hard sphere model is defined by a pair interaction between two classical
particles that only involves a non-overlap condition. The potential energy of a
pair of hard spheres is

V (r) =
{∞ if r < σ

0 else (1)

where σ is the diameter of the spheres and r is the distance between the two
centers of the spheres, see Fig. 1 on page 315. The potential V (r) is sketched
in Fig. 2. It is very “steep” for touching spheres. More formally, the peculiarity
of the hard sphere (or any other hard body) potential is that it sets a length
scale (namely σ) but it does not set any energy scale. Clearly, a configuration of
two overlapping spheres is punished by an infinite energy. Having a Boltzmann
factor in mind, this implies that such overlapping configurations do not occur,
i.e., they have no statistical weight in a thermal average. If one sphere is fixed,
a second sphere can possess any center position except for a sphere around the
first sphere with a radius σ. This is the reason why one calls the potential (1)
an “excluded volume” interaction.

K.R. Mecke and D. Stoyan (Eds.): LNP 554, pp. 295–331, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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Interesting questions and non-trivial effects arise when many hard spheres
are interacting at high density. To be specific we consider N hard spheres in a
system volume Ω at a temperature T . The particle number density is then

ρ = N/Ω (2)

An equivalent dimensionless measure of the number density is provided by the
so-called packing fraction (or volume fraction) η which is the ratio of the volume
of the N spheres and the total accessible volume Ω:

η = NΩs/Ω = πρσ3/6 (3)

where Ωs = πσ3/6 is the volume of a single sphere.
Let the set of three-dimensional vectors {R1,R2, ...,RN} denote an arbitrary

configuration of N spheres, see Fig. 3. Then the total potential energy associated
to this configuration is

V (R1,R2, ...,RN ) =
N∑

i,j=1;i<j

V (|Ri − Rj)|) (4)

where we distinguish different functions by giving them different arguments.
Obviously, as V (R1,R2, ...,RN ) is a sum over hard sphere potentials, it only
takes the two values 0 and ∞. Consequently, for the Boltzmann factor, we get

exp(−βV (R1,R2, ...,RN )) ≡ exp(−V (R1,R2, ...,RN )) (5)

with β = 1/kBT , kB denoting Boltzmann’s constant. This implies that the tem-
perature scales out trivially. Or, in other words, hard objects are athermal; all
their structural and thermodynamical properties do not depend on temperature
so that the density ρ (or the packing fraction η) is the only relevant thermody-
namical variable. The only relevance of temperature is that kBT sets the natural
energy scale. This can directly be seen by defining the classical canonical parti-
tion function

Z =
1

Λ3NN !

∫
Ω

d3R1...

∫
Ω

d3RN exp(−V (R1,R2, ...,RN )) (6)

Here, the de Broglie thermal wave-length Λ is just an arbitrary length scale to
make the partition function dimensionless. Λ is irrelevant since multiplying Λ
by a scaling factor simply means that the chemical potential µ is shifted by an
(irrelevant) constant (the definition of µ is given later, see (27) and [18]). In
(6), the factor 1/N ! avoids multiple counting of configurations that arise simply
from interchanging particle labels. Then the classical canonical (Helmholtz) free
energy is

F = −kBT lnZ (7)

from which we can extract all information required for equilibrium thermody-
namics. Here, it becomes again evident that the thermal energy kBT simply sets
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the energy scale of the Helmholtz free energy but the reduced quantity F/kBT
is independent of temperature.

Interesting collective phenomena are conveniently studied in the so-called
thermodynamic limit (TDL) where the number of particles, N , and the system
volume, Ω, become infinite such that the particle number density ρ = N/Ω
stays finite. A phase transition is signalled by a nonanalytical dependence of
the Helmholtz free energy on the thermodynamic parameters such as density ρ
and temperature T . The non-analyticities determine the phase diagram of the
system. At this stage we shall not study the existence of the thermodynamic limit
but simply take it for granted. Unfortunately the thermodynamic limit implies
many integrations in (6) for the partition function Z. Hence one has either to
rely on Monte Carlo techniques to evaluate this high-dimensional integral or to
perform approximation methods. As far as I know, there is no exact solution for
a phase transition in D-dimensional hard sphere systems if D is larger than 1,
for a more detailed discussion see below.

One can also add an external potential Vext(r) to the system. If Vext(r)
vanishes, one speaks about a bulk system. The presence of an external potential
means that the total potential energy now reads

V (R1,R2, ...,RN ) =
N∑
i=1

Vext(Ri) +

N∑
i,j=1;i<j

V (|Ri − Rj)|) (8)

Typical examples for sources of an external potential are system walls and sy-
stem boundaries, a gravitational field, external laser-optical fields etc. For a
fixed external potential one can also perform the thermodynamic limit. In cases
of a symmetry-breaking phase transition, one can force the system to be in
a symmetry-broken phase by imposing a suitable external potential Vext(r) =
εf(r). Now the sequence of the TDL and the limit ε → ∞ is crucial and inter-
changing both leads to different results. While one always gets a homogeneous
bulk system if the limit ε→ ∞ is performed first, a symmetry-broken state may
be reached if the limit ε→ ∞ is performed after the TDL.

One basic question concerns the problem of close-packing in the TDL: A first
part of the problem addresses the maximum of the packing fraction which defines
the socalled close-packed fraction ηcp. The second part is the corresponding close-
packed configuration which leads to this close-packed density. Physicists have
assumed over centuries that the close-packed situation of spheres is a stack of
intersecting two-dimensional triangular lattices. This gives

ηcp = π/3
√

2 = 0.740... (9)

In fact, a rigorous mathematical proof for this was lacking until 1998 when Hales
discovered one (see e.g. [19]). The problem was that locally one can achieve
closer packings by icosahedral structures but these packings cannot be joint
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together to fill the whole space. In fact, it is much simpler to prove that ηcp =
π/3

√
2 among all periodic lattice structures which was done in 1831 by Gauss.

See the contribution of J. Wills in this volume for different problems of close-
packing. It is clear that there are many configurations leading to the same close-
packed fraction ηcp, or, in other words, there is a high degeneracy of close-packed
configurations. In one of them, the spheres are sitting on face-centered-cubic
(fcc) lattice positions which corresponds to a stacking sequence ABCABC....
Another structure is the hexagonal-close-packed (hcp) lattice corresponding to
a stacking sequence ABAB.... A more exotic structure is the double hcp lattice
with a stacking sequence ABACABAC..., but also a random stacking sequence
as ABCBACBABCA... is conceivable.

One may now look for a phase transition in the range of intermediate densities
0 < η < ηcp. In fact, it is by now well-established and accepted that hard spheres
exhibit a freezing transition which we shall discuss in detail in chapter 3 and 4.

Let us finish with two more general remarks on the hard sphere model: First,
due to its temperature-independence, it is the simplest non-trivial model for
an interaction. In this sense, it is useful as a reference system for systems with
more complicated interactions and particle shapes. Since a theoretical physicist
typically first tries to incorporate the essential ingredients in a simple model
in order to study the principle mechanisms, the hard sphere model is the first
choice of a reasonable approximation. This is illustrated in the cartoon of Fig. 4:
if a theoretician studies a herd of elephants, his first thought is to approximate
them by hard spheres neglecting any details (trunks, tails, etc.). On a length
scale compatible with the overall size of an eliphant this approximation is not
completely ridiculous!

The second important fact is that the equilibrium thermodynamical proper-
ties of the hard sphere model can actually be probed in nature by examining
suspensions of spherical sterically-stabilized colloidal particles (for a review, see
[75]). Such particles have a mesoscopic size between 1nm and 1µm. They are
coated by polymer brushes and suspended in a microscopic solvent. A schematic
picture is given in Fig. 5. A typical colloidal material is polymethylmethacrylate
(PMMA). The omnipresent van-der-Waals attraction between two colloidal par-
ticles can be tuned to be extremely small by “index-matching” the particles. If
the typical length [ of the adsorbed polymer brushes is much smaller than the
diameter σ of the colloidal spheres, the total interaction between the particles
is dominated by excluded-volume effects. This enables one to directly compare
experimental data with predictions from the hard-sphere model. An electron-
micrograph of colloidal particles is shown in Fig. 6. Indeed one sees that all the
spheres have the same diameter, i.e. the socalled size-polydispersity is small.
Still, in an actual quantitative comparison, there are three caveats: i) Is the size-
polydisperity really small in the samples? ii) Are the colloidal particles really
spherical i.e. isotropic? iii) Are the interactions stiff or is there still a penetrabil-
ity of spheres? In recent experiments it has been proved that all these possible
problems can be avoided by carefully “cooking” the suspensions [75].



Fun with Hard Spheres 299

3 The Hard Sphere Model
in Arbitrary Spatial Dimension

3.1 General

It is instructive to generalize the hard sphere model to an arbitrary spatial
dimension D. The reason to do so is twofold: First, one can formally embed
the three-dimensional case in a general context. Second, in some special spatial
dimensions, exact results are available.

The interaction between two hard “hypersphere” in spatial dimension D is

V (|r|) =
{∞ if |r| < σ

0 else (10)

Here, r = (r1, r2, ..., rD) is a D-dimensional position vector and |r| =
√∑D

i=1 r
2
i

is the distance between the centers of two hyperspheres. It is straightforward
to generalize the formalism developed in the last chapter to arbitrary D. The
canonical partition function now is

Z =
1

ΛDNN !

∫
Ω

dDR1...

∫
Ω

dDRN ·
exp(−V (R1,R2, ...,RN )) (11)

where Ri now is the D-dimensional position vector of the ith particle. Let us
subsequently discuss some special cases.

3.2 One-Dimensional Case

In the one-dimensional case (D = 1) we are dealing with N hard rods of width
σ on a line of length L, see Fig. 7. Here the number “line” density is ρ = N/L
and the packing fraction is simply η = ρσ. The close-packed situation is trivial
in this case leading to ηcp = 1. This case is remarkable insofar as the partition
function Z and the Helmholtz free energy F can be calculated analytically even
in the thermodynamic limit. This was done by Tonks [83] in the early days of
statistical mechanics. The final result for the reduced Helmholtz free energy per
particle is

F

kBTN
= ln(ρΛ)− 1− ln(1− ρσ) (12)

As a result, there is no phase transition as F is analytic in the particle density
ρ in the domain 0 < ρ < 1/σ. The only nonanalyticity occurs at the boundaries
for ρ → 1/σ (close-packing) where F diverges to infinity as all rods are forced
to touch each other. But this is not a true phase transition.
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3.3 Two-Dimensional Case

In the two-dimensional case (D = 2) of hard disks the close-packed area fraction
is ηcp ≡ πρcpσ

2/4 = π/2
√

3 = 0.907... corresponding to a perfect triangular
lattice with long-ranged translational order. The proof is attributed to Lagrange
who did it as early as in 1773. Note that apart from trivial translations, there is
no degeneracy as in the three-dimensional case. As far as phase transitions are
concerned, no rigorous result is known so far. The Fröhlich-Pfister argument for
the absence of long-ranged translational order [35] is not possible for hard disks
as some smoothness conditions are required for the mathematical proof which are
not fulfilled for hard disks. The nature of the freezing transition for hard disks
is still debated in recent literature [49,60] but at least there is evidence from
computer simulations for a freezing transition into a triangular lattice occuring
for a density well-separated from close-packing. Most probably the transition is
in accordance with the Kosterlitz-Thouless scenario [49].

3.4 Arbitrary Dimension

Situations of hyperspheres with D > 3 are also conceivable, at least formally.
If one restricts the consideration within periodic lattice types, the close-packed
density is known for D = 4, 5, 6, 7, 8 and only for peculiar higher dimensions but
not in general, see [55] for a compilation of recent data. Apart from very recent
work [30], I am not aware of any investigation of phase transitions in higher
dimensions.

3.5 Degenerate Cases

Finally let us discuss two “degenerate” situations, namely D = 0 and the limit
D → ∞. The zero-dimensional case can be viewed as a sphere in a cavity that
holds only one particle. In this case one can compute the partition function
exactly, of course. This limiting case is important to check the validity of different
density functional approximations. The limit of infinite dimension is more tricky.
There are bounds for the close-packed density proved at the beginning of this
century by Minkowski and by Blichfeld (in [55]). In fact, one knows

ζ(D)
2D−1 ≤ ηcp ≤ D + 2

2
2−D/2 (13)

where ζ(D) denotes the Riemannian zeta-function. This implies that the close-
packed density vanishes in the limitD → ∞. A virial analysis shows that only the
first and the second virial coefficients survive in the limit D → ∞ such that one
can use an Onsager-type analysis to extract the instability of the fluid, see [32,
33] and [89]. The rigorous location of the freezing which should also depend on
the structure of the crystalline phase is still an open question. However there are
recent investigations using diagrammatic expansions [34]. The question might be
easier to answer for parallel hard hypercubes where the problem of close-packing
is trivial and an instability analysis suggest a second-order transition from a fluid
phase into a hypercubic lattice [50].



Fun with Hard Spheres 301

4 Hard Spheres and Phase Transitions: Theory

In this chapter we review some popular theories for the many-body hard sphere
system. Most theories are constructed in such a way that they only work in a
certain phase. The easiest theory which applies to the solid phase is the cell or
“free volume” approach. We also mention the Percus-Yevick and scaled-particle
theory which describes the fluid state. Finally a unifying theory which works in
both phases can be obtained by exploiting the density functional technique.

4.1 Intuitive Arguments

Why is there a fluid-solid transition in the hard sphere system? This is not
obvious at all from intuition and it is still not accepted by everybody in the
physics community. In order to discuss this further, we stress that the averaged
potential energy vanishes, i.e.

< V (R1,R2, ...,RN ) >= 0 (14)

as configuration where spheres are at contact have zero statistical weight. Here
< A > denotes the canonical average of the quantity A

< A > =
1

ZΛ3NN !
·∫

Ω

d3R1 ...

∫
Ω

d3RN A exp(−V (R1,R2, ...,RN )) (15)

This immediately implies that the total free energy can be written as

F = H̄kin − TS =
3
2
NkBT − TS (16)

where H̄kin = 3NkBT/2 is the averaged kinetic energy of the spheres and S
is the entropy. Hence, apart from the trivial constant 3

2NkBT , there is only
entropy. This is the reason why one says that hard spheres are an entropic
system. The intuitive feeling is that high entropy means low order. According
to this intuition, an ordered phase should have a lower entropy or a higher
free energy than a disordered phase. Hence a disordered phase has minimal
free energy and should be the thermodynamically stable phase. This simple
argument, however, is wrong. In fact, at high densities, the entropy of hard
spheres is smaller in the ordered (solid) phase than in the disordered (fluid)
phase! A more refined argument splits the entropy into two different parts which
is visualized for hard disks in Fig. 8. For any random or disordered situation,
one has many possible configurations but as the density grows more and more of
these configurations are blocked by touching nearest neighbours. In an ordered
solid-like phase, on the other hand, there is only one basic lattice configuration
possible, but one can generate further non-overlapping configurations by moving
the disks slightly away form their lattice position. Hence, a fluid phase has a high
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configurational entropy but a small “free volume” entropy, while a solid phase has
a low configurational entropy but a high correlational (or “free volume”) entropy.
Both kind of entropies depend on the density. The configurational entropy is
dominating for small densities whereas the “free volume” entropy is dominating
near close-packing. Consequently there has to be a phase transition between
these two situations for intermediate densities. It has to be emphasized that the
freezing transition is not driven by competition between potential energy and
entropy but by competition between these two different kinds of entropies. This
is even the generic mechanism for freezing which also works for soft repulsive
potentials. We finally remark that these two different kinds of entropies can be
properly defined and calculated by density functional theory [9].

4.2 The Cell Model

The cell theory or free volume approach (for a general introduction and histor-
ical remarks see [61]) starts from a given hard sphere solid. We now draw the
Wigner-Seitz (or Voronoi) cells of this lattice, see Fig. 9. Let us assume that
each sphere can move freely only within its own Wigner-Seitz cell. Obviously
we are neglecting some further configurations by this restriction, therefore this
theory clearly is an approximation. But this approximation should be justified
near close-packing. Equivalently, this means that any center of the spheres can
move within a small “free volume” Ωf which has the same form as the Wigner-
Seitz cell, see again Fig. 9. By counting the configurations and considering trivial
particle exchanges we estimate the partition function as follows:

Z ≥ ZCT =
1
Λ3N Ω

N
f (17)

and the free energy is

F

kBTN
≤ FCT

kBTN

= ln
√

2 + 3 ln(Λ/σ)− 3 ln[(
π
√

2
6η

)1/3 − 1] (18)

The cell theory thus establishes a rigorous upper bound to the free energy.
Clearly, the free energy diverges as η → ηcp. The leading logarithmic divergence
becomes in fact asymptotically exact as η → ηcp [61]. In the one-dimensional case
(D = 1) the cell theory gives the exact equation of state which is the pressure

P = −∂F
∂Ω

|N,T (19)

as a function of density, but the free energy itself is not exact.

4.3 Percus-Yevick Theory

Another obvious approach is to start from very low densities where the system
is an ideal gas and calculate perturbatively the next leading corrections. The
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equation of state can be expressed in powers of the density. Clearly the starting
point here is the fluid phase. It is known that the virial expansion has a finite
radius of convergence in the density for any spatial dimension D [53] but the
actual convergence radius might be much larger. One could surmise that all the
virial coefficients are positive but a rigorous mathematical proof is still lacking.

The virial expansion can be improved by solving socalled liquid-integral equa-
tions [41]. In fact the following Percus-Yevick closure relation has been found
to give good result even for intermediate packing fractions up to η ≈ 0.3. The
closure is expressed in terms of two correlation functions. The first is the pair
distribution function g(r) defined as

g(r) =
1
ρN

<
N∑

i,j=1;i<j

δ(r − (Ri − Rj)) > (20)

This function gives the probability of finding a particle at distance r from a given
fixed particle. A typical g(r) for hard spheres is shown in Fig. 10. For r < σ,
g(r) vanishes which is just the non-overlap condition:

g(r) = 0 for r < σ (21)

For r → ∞, g(r) is normalized to 1. For very small densities, g(r) = Θ(r − σ)
where Θ(x) denotes the unit step function while for large densities, g(r) exhibits
a structure from neighbouring shells of particles. At very high densities η ≈ 0.5,
the contact value g(r → σ+) ≡ g(σ+) increases to large values and the second
neighbour shell becomes split exhibiting a shoulder [84], see Fig. 10, which is
in accordance with confocal microscopy measurements on sterically-stabilized
colloidal suspensions [85]. The pair correlation function is also discussed in the
contribution of Döge et al. in this volume. The equation of state can exactly be
related [41] to the contact value of g(r) by using the virial expression:

P

ρkBT
= 1 + 4ηg(σ+) (22)

So once one knows g(σ+) for any density one gets F by integrating (22).
The second correlation function is the Ornstein-Zernike or direct correlation

function. It is implicitly defined via the Ornstein-Zernike relation

g(r)− 1 = c(r) + ρ
∫
d3r′(g(r′)− 1)c(|r − r′|) (23)

The Percus-Yevick closure combines the exact relation (21) with the approxima-
tion

c(r) = 0 for r > σ (24)

The advantage of the Percus-Yevick theory is that it can be solved analytically
for c(r). Using the Ornstein-Zernike relation and the virial expression one can
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deduce an analytical form for the Helmholtz free energy as follows

F

kBTN
≈ FPY

kBTN
= 3 ln(Λ/σ)− 1 + ln(6η/π)

− ln(1− η) +
3
2
[

1
(1− η)2 − 1] (25)

This expression clearly diverges when η → 1 being an artifact of the approxima-
tion which is meant only for small η. Finally we remark that the Percus-Yevick
direct correlation function and the free energy are exact in one spatial dimension.

4.4 Estimation of the Freezing Transition

Knowing analytical expressions (18) and (25) for the free energy in the solid and
fluid state, we can estimate the location of the freezing transition. There are three
conditions for phase coexistence. The first concerns thermal equilibrium, i.e. the
temperature in the two coexisting phases has to be equal, T1 = T2. Due to the
trivial temperature dependence of the free energy for hard sphere, this condition
is fulfilled. Second, the pressure in the two coexisting phases has to coincide,
P1 = P2, (mechanical equilibrium). Third, chemical equilibrium requires the
same chemical potential in the two coexisting phases, µ1 = µ2. The latter two
conditions are equivalent to Maxwell’s common-tangent construction. This is
easily explained in terms of the free energy per volume fi = Fi/V = fi(T, ρ)
of the two phases (i = 1, 2). The two pressures and chemical potentials can be
written as

Pi = −∂Fi
∂Ω

|T,N = fi − ρi ∂fi(T, ρ = ρi)
∂ρ

|T (26)

and
µi =

∂Fi
∂N

|T,Ω =
∂fi(T, ρ = ρi)

∂ρ
|T (27)

where i = 1, 2 labels the two different phases. The two conditions P1 = P2 and
µ1 = µ2 hence are expressed as

f ′
1(ρ1) = f ′

2(ρ2) (28)

and
f2(ρ2) = f1(ρ1) + f ′

1(ρ1)(ρ2 − ρ1) (29)

with f ′
1(ρ) ≡ ∂fi/∂ρ|T . These equations mean that one finds the two coexisting

densities ρ1 and ρ2 by a common tangent construction for the two free energy
densities plotted as a function of density. In our case of hard sphere freezing this
is visualized in Fig. 11. Assuming that the cell theory (solid line in Fig. 11) and
the Percus-Yevick expression (dashed line in Fig. 11) are valid for any density
the Maxwell common tangent construction leads to coexisting packing fractions
of ηf = 0.57 for the fluid phase and ηs = 0.65 for the solid phase. Of course,
actual data for free energies are required for intermediate densities where the
two theoretical expressions are expected to fail. Nevertheless, we shall see later
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that the coexisting densities and the relatively large density jump across the
transition are in fairly good agreement with “exact” computer simulations.

These considerations also give a clue of how to prove rigorously the existence
of the freezing transition. The solid cell model gives an upper bound to the free
energy in the solid phase. If one would know a lower bound of the free energy in
the fluid phase and could show that this lower bound hits the upper bound of
the cell model, then the existence of the phase transition would be proven. The
construction of a lower bound in the fluid phase is strongly linked to the virial
coefficients which determine the convergence of the virial expansions in powers
of the density. If all the virial coefficients would be positive, then there has to
be a freezing transition. Even if only the virial expansion truncated after the
second coefficient would be a lower bound, then it hits the solid cell theory for
spatial dimensions D > 8 [30]. However, although all these assumptions seem to
be plausible for physicists, they need to be proved mathematically. Therefore,
to establish rigorously the exostence of the freezing transition is still an open
unsolved problem.

4.5 Scaled Particle Theory

The scaled particle theory ([76]; for a review see [8]) considers the reversible
work to create a spherical cavity of radius R0 in a hard sphere fluid. Formally
the cavity can be regarded as a further “scaled” particle. One knows the relation
of this work to the bulk pressure for the special case R0 = 0. For R0 → ∞,
this work is connected to the interfacial free energy γ between a planar hard
walls and a hard sphere fluid. Interpolating between these special cases one gets
the work for R0 = σ from which one deduces the contact value g(σ+). Using
the exact virial expression (22), one gets the free energy. Remarkably, though a
completely different phyical picture is used, the scaled-particle results coincides
with the Percus-Yevick virial expression (25). The scaled-particle theory cannot
be applied to the solid but it has the advantage that it can be generalized to hard
convex bodies with non-spherical shapes as e.g. hard spherical-capped cylinders.

4.6 Density Functional Theory

Density functional theory (DFT) provides a unified picture of the solid and fluid
phase. In fact as we shall show below, it is a way to combine the cell theory for
the solid with the Percus-Yevick (or scaled particle) theory of the liquid. As for
general reviews, see e.g. [57] and [29]. The cornerstone of DFT is the Hohenberg-
Kohn-Sham theorem which was generalized to finite temperatures by Mermin.
It guarantees the existence of a functional for the excess free energy Fexc[ρ] of
the (in general inhomogeneous) one-particle density ρ(r). This functional has
the unique property that the functional for the grandcanonical free energy

Ω̄[ρ] := Fexc[ρ] +
∫
Ω

d3rρ(r){Vext(r)− µ

− 1 + kBT ln(Λ3ρ(r))} (30)
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is minimized by the equilibrium one-particle density

ρ0(r) =<
N∑
i=1

δ(r − Ri) > (31)

and the minimum Ω̄[ρ0(r)] is the actual grandcanonical free energy which is
equal to −PΩ in the bulk case. The problem, however, is that nobody knows
the actual form of the functional Fexc[ρ]. It is only for the trivial case of an
(non-interacting) ideal gas that Fexc[ρ] is known to vanish.

Different approximations for Fexc[ρ] designed for strongly interacting systems
(in particular for hard spheres) are on the market. Most of them make use of
the fact that the direct (Ornstein-Zernike) correlation function introduced in
chapter 3.3 is the second functional derivative of Fexc[ρ] in the homogenous bulk
fluid [41]:

c(|r1 − r2|) =
1
kBT

δ2Fexc

δρ(r1)δρ(r2)
|hom (32)

The most elaborated and reliable functional for hard spheres is that recently
developed by [79]. It is fixed by approximating

Fexc[ρ] ≈ kBT

∫
Ω

d3rΦ[{nα(r)}] (33)

where one introduced a set of weighted densities

nα(r) =
∫
Ω

d3r′ρ(r′)wα(r − r′) (34)

Here, the index α = 0, 1, 2, 3, V 1, V 2 labels six different weighted densities and
six different associated weight functions. Explicitly these six weight functions
are given by

w0(r) =
w2(r)
πσ2

(35)

w1(r) =
w2(r)
2πσ

(36)

w2(r) = δ(
σ

2
− r) (37)

w3(r) = Θ(
σ

2
− r) (38)

wV 1(r) =
wV 2(r)
2πσ

(39)

and
wV 2(r) =

r

r
δ(
σ

2
− r) (40)
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Note that the index V denotes a vector weight function. We can express this
fact by writing wV 1 ≡ wV 1, nV 1 ≡ nV 1,... Finally the function Φ is given by

Φ = Φ1 + Φ2 + Φ3 (41)

with
Φ1 = −n0 ln(1− n3) (42)

Φ2 =
n1n2 − nV 1 · nV 2

1− n3 (43)

and
Φ3 =

n23(1− (nV 2/n2)2)3

24π(1− n3)2 (44)

Let us emphasize few points: First, the six weight functions are connected
to the geometrical (fundamental) Minkowski measures. In fact, the derivation
of the Rosenfeld functional requires a convolution property which can nicely be
evaluated by using the linear decomposition into the four Minkowski measures
for an arbitrary additive measure. One might therefore conjecture that there is
a deeper connection between the geometry and density functional theory which,
however, still has to be discovered and worked out! Second, Rosenfeld’s functional
gives the analytical Percus-Yevick direct correlation function as an output by us-
ing the relation (32). Consequently the Percus-Yevick theory is included in this
density functional approach. Also the cell model is included near close-packing
[77]. Hence the density functional approach provides a unifying theory of fluid
and crystal. In particular, a configuration of overlapping spheres (which implies
n3 → 1) is avoided as the functional gives an infinite energy penalty to such
densities, see again (42) and the denominator in (43). From this respect, the
Rosenfeld functional is superior to weighted density approximations proposed
earlier where c(r) is taken as an input and overlapping configurations of hard
spheres are not excluded, for a more detailed discussion see e.g. [70]. Third, one
can test the quality of any density functional by subjecting the three-dimensional
functional to a strongly confining external potential such that the resulting sy-
stem lives in a reduced spatial dimension. For instance, by applying a hard tube
of diameter σ one can squeeze the three dimensional hard sphere system into a
system of hard rods. As the density functional for hard rods is exactly known, one
can test whether the resulting projected three-dimensional functional respects
this dimensional crossover [78]. The ultimate reduction occurs for an external
hard cavity potential that can hold only a single particle. For this trivial situa-
tion, the exact functional is known. It was shown that this limit requires some
conditions which can be exploited to fix some freedom in the original functional
[78]. Finally, the freezing transition can be calculated by plugging in a constant
density field for the fluid phase and a lattice sum of Gaussian peaks in the solid
phase. If the width of the Gaussians and the prefactor are taken as variational
parameters one gets a first-order freezing transition with coexisting packing frac-
tions of ηf = 0.491 and ηs = 0.540 which are very close to “exact” simulation
data.
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5 Hard Spheres and Phase Transitions:
Computer Simulations

Most of our knowledge for hard sphere systems is based on “exact” results ob-
tained by computer simulations, see e.g. [1]. In a bulk computer simulation the
system is typically confined to a finite cubic box with periodic boundary condi-
tions in all three directions to minimize finite-size effects. The typical number of
particles is in the range from N = 100 to N = 1000000.

The recipe is as follows: one starts from a given overlap-free configuration
of spheres. Then one generates a new configuration by using either a Molecular
Dynamics code or a Monte Carlo technique. Using Molecular Dynamics means
that Newton’s equation of motion are solved. The hard spheres are then moving
along the classical trajectories which are straight lines interrupted by elastic col-
lisons. In Monte Carlo one randomly displaces a randomly chosen particle and
checks for particle overlap: if the new configuration is free of any overlaps the
move is accepted, if not it is rejected. Then one carefully has to equilibrate the
system. Finally statistics is gathered to perform the canonical averages. We re-
mark that Monte Carlo techniques are also possible in different ensembles where
the pressure is fixed instead of the system volume, or the chemical potential is
fixed instead of the particle number. For an example, see the method described
in the contribution of Döge et al. in this volume.

A problem is that only averages are readily calculated by a simulation. The
key quantity for phase transitions, however, is the Helmholtz free energy, which
cannot be written as an average. One possible solution of this problem is to
calculate the contact value g(σ+) of the pair distribution function which can
clearly be written as an average, see (20). One thereby gains the pressure (or
the reduced equation of state) by using the virial expression (22). In doing so for
arbitrary densities, one can plot directly P (ρ) and look for van-der-Waals loops
indicating a first order phase transition, see Fig. 12. Typically the hysteresis is
small decreasing with increasing system size and therefore it is difficult to see
whether really a phase transition takes place. A more accurate alternative is to
obtain the Helmholtz free energy F by integration as follows

F

N
= kBT [ln(ρrΛ3)− 1] +

∫ ρ

ρr

dρ′P (ρ′)
ρ′2 (45)

Here, the reference density ρr is so small that the system can be considered to be
an ideal gas where the free energy is known. This is the simplest way of so-called
thermodynamic integration starting from a well-known reference system. This
strategy readily applies to the fluid phase.

As a remark, the virial expression also works in the solid phase if the contact
value of the spherically averaged pair distribution function is inserted into (22).
However there are technical problems in applying this recipe to the solid phase
as the pair distribution function strongly piles up near contact and extrapolation
of g(r) to contact bears a large extrapolation error. A smarter way of thermo-
dynamic integration in the hard sphere solid is to start from an Einstein solid
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[31]. Here, all particles are harmonically bound to a lattice position of a given
lattice as described by an external potential Hext

Hext =
N∑
i=1

K

2
(Ri − R

(0)
i )2 (46)

where {R(0)
i } are the positions of the given lattice. If the spring constantK which

confines the particles to their lattice positions is very large, then the particles
do not feel the hard sphere interaction. Hence the system is practically a set a
decoupled harmonic oscillators for which the reference free energy F0 can readily
be calculated. Now the harmonic external potential is switched off continuously,
i.e. we consider the total Hamiltonian

Htot = Hkin + (1− λ)Hext + Vint (47)

where Hkin is the total kinetic energy, Vint is the pairwise hard core interaction,
and the parameter λ is a formal coupling parameter by which we can switch off
continuously the external harmonic potential and turn on the hard-core interac-
tion.. It is readily calculated that the derivative ∂F/∂λ|T,Ω,N can be written as
an average:

∂F

∂λ
= −kBT

∂Z
∂λ

Z
= − < Hext >λ

= −NK
2

< (Ri − R
(0)
i )2 >λ (48)

Here the canonical average < ... >λ means that an external potential of strength
1−λ is present. (48) implies that one has to calculate the Lindemann parameter
(or the mean-square-displacement) of the solid in order to access ∂F/∂λ. Finally
integration with respect to λ yields the desired free energy:

F = F0 +
∫ 1

0
dλ
∂F

∂λ
(49)

It is important to remark that one needs a whole set of simulations (for different
λ) to access a single free energy. In practice typically 10-30 integration points
are needed to get a good accuracy. Apart from numerical integration errors and
statistical and finite-system-size errors, this methods leads in principle to exact
results for the free energy. The only requirement is that one should not cross a
phase boundary during the integration. Also the lattice structure is not known
a priori but different lattice types have to be tried and the resulting free energy
which is minimal corresponds to the realized structure.

Computer simulations of the hard sphere system have given a coherent pic-
ture of what is going on as far as phase transformations of the system are con-
cerned. By a careful study of finite system size effects it has been established
from the early days of computer simulation [45] that the hard sphere system
freezes indeed from a fluid into an ordered solid with a strongly first-order tran-
sition, i.e. the density jump across the transition is pretty large. The data of the
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coexisting packing fractions are ηf = 0.494 and ηs = 0.545. The phase diagram
is sketched in Fig. 13. The combination of Percus-Yevick and cell theory gives
coexistence densities that are too high while there is perfect agreement with
density functional theory.

There is another interesting non-equilibrium phase transition for η = ηG ≈
0.58 where a rapidly compressed hard sphere fluid freezes into an amorphous
glass as signalled by a very slow decay of dynamical correlations. However, if one
waits for a long time, the system will recrystallize in its thermodynamically stable
solid [27]. Above a certain threshold density ηRCP ≈ 0.64 called random-closed
packing there is no glass transition possible and the system is forced to freeze into
a regular solid. We finally mention that the whole phase diagram including the
glass transition was confirmed in detail by experiments on sterically-stabilized
colloidal suspensions [75].

What is the stable crystal lattice away from close-packing? This question has
attracted some attention in the past years. A simple cubic and body-centered-
cubic lattice can be ruled out from the very beginning, since these lattices are
mechanically unstable with respect to shear. A tricky competition arises between
the possible close-packed structures fcc, hcp, double hcp, and random stacking,
see again chapter 1. It was shown by computer simulation [14,17,58,74] that for
ηs < η < ηcp an fcc solid has a slightly lower free energy than all other stacking
sequences, but the relative difference in the free energy per particle is smaller
than 10−3kBT .

As already mentioned in chapter 2, the freezing transition in the hard disk
system is much more difficult to compute by simulation and is still controversial.
The reason is that the transition is not strongly first order as for the hard sphere
system. Therefore the free energy differences are tiny and also finite system size
effects are much more pronounced in two spatial dimensions.
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6 A Selection of Recent Research Activities
on Hard-Sphere-Like Systems

6.1 Binary Mixtures

It is straightforward to generalize the one-component hard-sphere model to two
species. The three parameters determining the system are now the diameter ratio
q = σ1/σ2 ≤ 1 and the two partial packing fractions, ηs and ηl of the small and
big spheres. Obviously, the one-component model is obtained as the special case
q = 1.

Depending on the ratio q, one might expect quite different phase diagrams.
If q is not much different from 1, then an fcc crystal is stable which is randomly
occupied by the two species. Computer simulations [52] and numerous density
functional calculations (see e.g.[22,23] have been performed here. The results for
the phase diagram are in accordance with measurements on sterically-stabilized
colloidal suspensions.

For intermediate q, there are more exotic crystalline phases. For certain val-
ues of q there are crystalline solids with an AB AB2 and AB13 (superlattice)
structure. These structures were obtained by experiments [4], computer simu-
lation [28], density functional [90] and cell theory [5] studies and demonstrate
nicely the fruitful interaction between these different approaches. The existence
of such solid lattices crucially depends on the close-packed structure. Even more
complicated lattice structures can be expected upon further reducing q. Also it
has been speculated about the existence of stable quasicrystals for certain ratios
q although they can most probably be ruled out for q > 0.85 [59]. The stabil-
ity of quasicrystals is closely related to the question whether the close-packed
structure is a periodic lattice or not. There is no mathematical proof known for
general q.

Another interesting case is the limit of small q. Here there has been some de-
bate about possible phase separation over the last decade. An analytical Percus-
Yevick solution is possible predicting no fluid-fluid phase separation for hard
sphere mixtures but the theory fails in the limit of q → 0 if ηs and ηl is kept finite
[10]. The phase diagram of strongly asymmetric hard sphere mixtures was re-
cently obtained by computer simulations by Dijkstra, van Roij and Evans [25,26]
which answered the story after all. For three different ratios q = 0.2, 0.1, 0.05 the
phase diagrams are shown in Fig. 14. In fact a fluid-fluid phase separation is
preempted by the fluid-solid transition but an isostructural solid-solid transition
shows up for high packing fractions of the large particle due to the strong and
short-ranged depletion attraction induced by the small particles [38].

Finally we remark that the kinetic glass transition is different for large and
for small q. While both particle species freeze-in simultaneously for q ≈ 1, there
is a crossover at qc ≈ 0.15 where the big spheres are frozen-in on a lattice and
the small spheres are still liquid-like. This was found theoretically [16,64,65] and
confirmed experimentally for colloidal suspensions [46,47].
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6.2 Size Polydispersity

A size-polydisperse hard-sphere system can be understood as a mixture with an
infinite number of different species whose diameter is distributed according to a
normalized probability function p(σ). A relative small distribution is character-
ized by its first two moments, or equivalently by its mean diameter σ̄ =

∫
dσp(σ)

and the relative polydispersity s2 = σ̄2/σ̄2 − 1. A study of effects induced by
polydispersity is important if one has a quantitative comparison with a real col-
loidal sample in mind. It has been established by density functional theory [3]
and computer simulation [12,13,51] that above a certain critical polydispersity of
roughly 6% a solid lattice is no longer stable. The corresponding phase diagram
is shown in Fig. 15. A regular random occupied solid lattice structure coexists
with a fluid that has a higher polydispersity as the solid as indicated by the
tie-lines in Fig. 15. For high densities the solid exhibits reentrant melting into
an amorphous phase [7].

At higher polydispersities, the phase behaviour depends more and more on
the details of the diameter distribution p(σ). A randomly occupied solid is ex-
pected to separate into two or more solids with different lattice constants [5,82].
Also fluid-fluid phase separations are probable to occur 21,87]. We finally men-
tion that the Percus-Yevick direct correelation fucntion can be explicitly calcu-
lated involving only the first three moments of the diameter distribution [11] and
that the cell model is again a reliable description of the solid for high densities
and small polydispersities [72].

6.3 Hard Spheres near Hard Plates

A planar hard wall can be described as an external potential

Vext(z) =
{∞ if z < σ/2

0 else (50)

where z is the coordiante perpendicular to the wall. The insertion of such a
planar hard plate costs free energy as there are less configurations possible. This
additional free energy scales with the plate surface and gives rise to a positive
surface free energy γ. For a fluid phase in contact with a wall, scaled particle
theory makes a theoretical prediction for γ. In Fig. 16, γ is plotted versus the
bulk packing fraction η. The agreement between scaled particle theory, density
functional theory [37] and computer simulation [42,43] is convincing. If a solid
is in contact with a hard wall, γ depends on the orientation. It has recently be
shown that the cell model provides a reasonable analytical theory for γ which
agrees perfectly with the computer simulation data [43].

For a fluid in contact with a hard wall, there is an interesting wetting effect
if the bulk density is slightly below bulk freezing. Precrystallization on the hard
walls [20] occurs, i.e. few layers on top of the wall have an in-plane long-ranged
order corresponding to a intersecting triangular lattice sheets.

Other interesting phase transitions occur for two parallel hard plates with a
slit distanceH. The phase diagram depends solely on two parameters, namely the
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reduced density ρH = Nσ3/(AH) (where A is the system area) and the reduced
plate distance h = H/σ − 1. Clearly one can continuously interpolate between
two and three spatial dimensions by tuning the plate distance: For H = σ,
our model reduces to that of two-dimensional hard discs while for H → ∞ the
three-dimensional bulk case is recovered.

The equilibrium phase diagram as obtained by Monte-Carlo computer simu-
lation in the ρH−h-plane [80,81] is shown in Fig. 17 for moderate plate distances
h. The phase behaviour is very rich and much more complicated than in the bulk.
Cascades of different solid-solid transitions are found. For low densities the stable
phase is an inhomogeneous fluid. All possible stable solid phases are also realized
as close-packed configurations [71,73] for a certain plate distance. Accordingly
one finds stable layered structures involving intersecting triangular lattices (1.,
2.) and intersecting square lattices (2✷). Also a buckled phase (b) and a phase
with a rhombic elementary cell (rhombic phase (r)) are stable. All transitions
are first-order. Results of the cell model together with a simple fluid state theory
are given in Fig. 18. Clearly the simple cell theory gives the correct topology of
the phase diagram.

Similar phases were found in experiments of highly salted charged colloids
between glass plates [62,63,68,86,88]. Here even higher reduced plate distances
were studied. There is compelling evidence that a prism-phase consisting of
alternating prisms built up by spheres is the close-packed configuration in certain
domains of h [68]. Still a full quantitative mapping of the experimental data onto
the theoretical phase digram of Fig. 17 has to be performed.

Let us comment on further related aspects: First it would be nice to perform
a full theoretical calculation for the phase diagram of hard spheres between
hard plates using a density functional calculation with Rosenfeld’s functional.
Second, one should investigate different confining shapes. Intriguing examples are
circular and polyhedral boundaries in two dimensions. Studies have been made
for confined hard discs [66] and confined hard spheres within spherical cavities
[67]. Finally it is an unsolved mathematical problem to rigorously establish the
close-packed structure for different h.

6.4 Hard Spherocylinders

Finally let us discuss phase transitions for hard convex bodies that are non-
spherical, for a recent review see [2]. In particular, if these bodies are rotational
invariant around one axis they may serve as a model for colloidal liquid crystals
[54]. In particular hard spherocylinders with an additional orientational degree
of fredom have been studied. These are spherical capped cylinders of cylindri-
cal length L and diameter σ whose anisotropy is characterized by the aspect
ratio p = L/σ. For p = 0 one recovered the case of hard spheres. The phase
diagram of hard spherocylinders depends on the aspect ratio p as well as on the
particle density ρ. It has recently been explored by computer simulations [14]
and is shown in Fig. 19. A number of mesophases or liquid-crystalline phase are
stable in the plane spanned by p and ρ. There is a plastic (or rotator) crystals
for small p. For larger p, a nematic and a smectic A phase become stable for
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intermediate densities. Possible stacking sequences in the solid phase are AAA
where all triangular sheets are put directly on top of each other and ABC which
is the close-packed structure. Note that the AAA stacking sequence is not a
close-packed situation but is still stable for intermediate densities. Cell theory
combined with scaled particle theory can reproduce this diagram satisfactorily
[39]. Also density functional theory studies have been performed [40,44]. How-
ever, it is not easy to generalize Rosenfeld’s theory to the case of anisotropic
particles.

7 Conclusions

To summarize: Systems of hard spheres and its variants show interesting phase
transitions. Although they are purely entropically driven, they exhibit ordering
transitions. These transitions are seen in theory, computer simulation and in real
matter, namely in sterically-stabilized colloidal suspensions.

A few final remarks are in order: First, there are further fascinating phenom-
ena occurring for dynamial correlations and non-equilibrium situations of hard
sphere systems [36] which have not been addressed at all in this article. Another
field of physics where hard sphere system play an important role are simulations
of granular matter [56]. Second, most stable crystalline phases observed in phase
diagrams of hard sphere problems are close-packed ones. Therefore it would be
very helpful to provide mathematical proofs for the close-packed structures in
confining geometry.

As a final perspective, such simple intuitive systems as hard spheres are
nontrivial enough to be studied also over the next decades. One might surmise
that further interesting unexpected transitions will be discovered in the near
future. Hence the final conclusion is that hard spheres are fun both for physicists
and for mathematicians.
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Fig. 1. Two hard spheres of diameter σ at center-of-mass distance r.

Fig. 2. Pair potential of hard spheres V (r) as a function of their center-of-mass distance
r.
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Fig. 3. Configuration {Ri} (i = 1, 2, 3, 4) of four hard spheres.
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Fig. 4. The hard sphere model at work: zeroth approximation for almost any problem
in the brain of the theoretician.
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Fig. 5. Sterically-stabilized colloidal suspensions of PMMA spheres with coated block
copolymer brushes of length A.
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Fig. 6. Electron micrograph of colloidal microspheres. From [69].
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Fig. 7. Hard sphere model in one spatial dimensions: hard rods along a line of length
L.

Fig. 8. Random configuration in the fluid phase and regular packed configuration in
the solid phase of a hard disk system.
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Fig. 9. Cell theory for the hard sphere crystal. The Wigner-Seitz cell (dashed line) and
the free-volume cell is shown schematically.
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Fig. 10. Pair distribution function g(r) for hard spheres as a function of distance r
for small densities (dashed step function), for η = 0.2 (dotted line) and for η = 0.494
(solid line).

Fig. 11. Reduced free energy per unit volume f∗ = fσ3/kBT versus packing fraction
η. The dashed line is the Percus-Yevick virial expression, the solid line is from solid
cell theory. The Maxwell common tangent is also shown.
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Fig. 12. Isothermal equation of state P as a function of density. The Maxwell equal-
area construction is shown.

Fig. 13. Phase diagram of hard spheres versus packing fraction η. The freezing transi-
tion together with the two coexisting packing fractions ηf and ηs are shown. Also the
glass transition is indicated.
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Fig. 14. Phase diagram of a binary hard-sphere mixtures with size ratio (a) q = 0.2,
(b) q = 0.1, (c) q = 0.05 as a function of the large sphere packing fraction ηl and the
small sphere packing fraction ηs. F and S denote the stable fluid and solid (fcc) phase.
F + S, F + F , and S + S denote, respectively, the stable fluid-solid, the metastable
fluid-fluid and (meta) stable solid-solid coexistence region. The solid and dashed lines
are from one effective one-component depletion potential. The symbols joined by lines
to guide the eye are from computer simulations of the full binary system. From [26].
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Fig. 15. Phase diagram of polydisperse hard spheres in the η, s plane. The fluid and
solid phase together with their tie-lines are shown. The terminating polydispersity for
a solid phase is roughly 6%. From [12,13].

Fig. 16. Reduced interfacial free energy γ∗ = γσ2/kBT of the hard sphere fluid in
contact with a hard wall versus bulk packing fraction η. Solid line: scaled-particle
theory; ∗: simulation data from [42] and [43]; diamonds: density functional results from
[37].
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Fig. 17. Phase diagram for hard spheres of reduced density ρH between parallel
plates with effective reduced distance h. Symbols indicate different system sizes:
N = 192(+);N = 384, 512(�);N = 576(�· );N = 1024, 1156(✷). Six phases occur
(fluid, 1�, b, 2✷, r and 2�) . The closed-packed density is marked by a dashed line.
Solid lines are guides to the eye. Thin horizontal lines represent two-phase coexistence.
From [80].

Fig. 18. Same as Fig. 17, but now obtained within the cell model for the solid phases
and a simple mapping theory for the fluid phase. From [81].
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Fig. 19. Phase diagram of hard spherocylinders obtained by cell and scaled-particle
theory in the ρ∗ – p plane where ρ∗ ≡ η/ηcp. The coexistence regions are shown as
shaded areas. Simulation results from [15] are shown as dots. There is an isotropic
fluid (I), an ABC-stacked solid, an AAA stacked solid, a plastic crystal (P), a nematic
(N) and a smectic-A (SmA) phase. The meaning of the symbols for the simulational
data are: (+) I-ABC transition, (♦) I-P transition, (✷) I-SmA transition, (♦• ) I-N
transition, (×) N-SmA transition, (∗) SmA-ABC transition, (�♠ ) P-ABC transition.
From [39].
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Finite Packings and Parametric Density
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Abstract. Finite Packings of circles, spheres or other convex bodies are investigated
in various fields. We give a broad survey of planar results based on parametric density,
because there is no such survey yet. For 3–dimensional packings we describe the atom-
istic approach to Wulff shape for general crystals, i.e. via periodic packings of balls of
different size. The corresponding approach for quasicrystals is in the survey by [7].

1 Introduction

Packings of atoms, molecules or particles are investigated in various branches
of physics (see [10,21]), chemistry (see [17]), crystallography (see next section),
geology (see [23]), biology and biotechnology (see [18]), astronomy (see [19] and
[33]) and ceramics and polymers (see [16]). Of course all these reference lists are
far from being complete.

The packings can be ordered in a lattice or periodically as in ideal crystals (see
[20,26,35,46]) or quasiperiodically as in quasicrystals (see [1,4,5,6,8,27,31,37,38])
or they can be partially or totally disordered as e.g. in liquids, colloids or in
gases (see [17,18,19,25]). The packing objects can be hard or soft, randomly
distributed or not (see [23]), they can be assumed as balls, or ellipsoids, or as
convex or nonconvex objects.

Usually one considers packings in 3–space or 3D, but in many cases, e.g.
for observations by the microscope, the plane, i.e. 2D is appropriate. Clearly
all packings in real world are finite, but in many cases (e.g. crystal structure
classifications) one can simplify and assume the packing as infinite. In this case
boundary effects and their difficulties can be avoided, which is an essential ad-
vantage as formulated in the wellknown saying: “The bulk was created by god,
and the boundary by the devil”.

But here finite packings are considered and in the 3D case they are di-
vided into: small packings (cluster, microcluster) (see [10,15,26]), local packings
(growth in facets, whiskers) and global packings (crystals and quasicrystals) (see
[5,6,37,38]), in particular for spheres of different size. It is the goal of this article
to consider just finite packings and coverings, and we will use methods from
geometry, in particular discrete and convex geometry, and asymptotic methods
for the Wulff shape. In fact we use only one method (parametric density), but
this one is very flexible and uses classical tools of convex and discrete geome-
try, in particular mixed volumes and Minkowski functionals (see e.g. [32]). Of
course finite packings include also infinite packings as limit case. There are two
principal types of packings (see [13] and Fig. 1 in Sect. 2):

K.R. Mecke and D. Stoyan (Eds.): LNP 554, pp. 332–348, 2000.
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a) Bin Packings, i.e. packings of objects in a given Container or Bin, or in other
words: with prescribed external boundaries and

b) Free Packings, i.e. packings without external boundaries, which are generated
by inner forces, e.g. Coulomb, van der Waal, or by no forces at all.

For the following reasons we consider Free Packings; and mention Bin Packings
only briefly in Sect. 2:

a) Packings in nature (cluster, crystals, etc) usually are Free Packings.
b) For Bin Packings there is no general mathematical theory, although various

algorithms exist.
c) For Free Packings there is the well developed theory of mixed volumes and

Minkowski functionals, which are used for the parametric density.

After the general introduction the next section deals with basic definitions. As
2D packing theory is much better developed than 3D (and higher–dimensional)
theory, we consider 2D and 3D separately, namely 2D in Sects. 3 and 4 and
3D in Sects. 6 – 8. In many cases physical objects can also overlap, partially or
completely. So we add Sect. 5 on finite coverings in 2D (see [2]). In all cases,
except in the last section, we consider translates of a given 0–symmetric convex
body. So we do not allow rotations (except for the trivial case of circles or balls),
which is of course a strong restriction. For rotations one needs an individual
approach.

In 2D we give a rather comprehensive approach, as the general theorems in
Sects. 4 and 5 are not so wellknown, and the literature is scattered (but see [29]).
In particular packings and coverings of nonconvex cell complexes are considered,
which are useful for some applications.

In 3D we describe global packings, i.e. the Wulff shape for the general case
of periodic packings in detail. For the Wulff shape of quasicrystals we refer to
the detailed description by Böröczky and Schnell in 1998 and 1999 [5,6]. We
further refrain from describing our method for online packings, which model
whiskers (see [43]) and for microclusters (see [10,15,26]), because these are still in
progress. In particular there is a current project supported by DFG on modelling
of microclusters.

2 Density Definitions

Throughout this paper we consider packings und coverings in ordinary (Eu-
clidean) 2–space E2 or 3–space E3 which we also denote by 2D and plane or
by 3D and space. In many cases definitions and results hold for all dimensions
d ≥ 2; we then write Ed, but one can read E2 or E3. We always understand
packings or coverings as a static situation and not as a dynamic process. The
packing (or covering) objects are always convex bodies and in most cases these
convex bodies are translates of a given convex body, e.g. of a ball. If one wants to
measure or to compare two packings, one needs an appropriate density measure.
Most physical density measures are based on energy, as e.g. the Lennard–Jones
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potential and Morse potential, but of course also geometric tools, methods and
intuition is used. Geometric densities are based on volume V (Jordan, Riemann
or Lebesgue), which means the area in the plane. For simplicity we also use V
in the planar case.

By a packing we always mean that any two objects do not overlap, i.e. have
at most boundary points in common. As mentioned in Sect. 2, finite packings can
be classified into Bin Packings (with a given container or bin) and Free Packings
without a bin.

So, if nonoverlapping convex bodies Ki, i = 1, . . . , n and a container or bin
C with

⋃n
i=1Ki ⊂ C are given, then the packing density is

δBin = (Σn
i=1 V (Ki))/V (C) (2.1)

This notion traces back to Archimedes who first observed that the ratio of vol-
umes of a ball packed into its circumscribed cylinder is 2/3.

Fig. 1. Bin packing of 10 circles in a square (left) and free packing of 11 circles
in their convex hull.

If no container (bin) is given, then (the Norwegian mathematician) A. Thue pro-
posed in 1892 to use instead the convex hull conv(K1, . . . ,Kn), i.e. the smallest
convex body containing the Ki. So

δThue = (Σn
i=1 V (Ki))/V (conv(

n⋃
i=1

Ki)) (2.2)

Both definitions are useful for explicit density calculation in 2D and 3D, but
they are too general to permit a theory with nontrivial general results.

So we restrict ourselves to translates of a given convex body and moreover we
assume that all convex bodies are centrally symmetric, or briefly 0-symmetric.
This includes balls, ellipsoids, parallelotopes, cylinders, but exlcudes e.g. sim-
plices. The same restriction holds for coverings. Parametric density is a general-
ization of Thue’s density and will be introduced in Sects. 4 and 6.
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A main goal for estimating finite packings and coverings it to compare them
with optimal lattice packing or covering. For this we remind the reader that a
lattice L ⊂ Ed is a packing lattice for a convex body K, if L +K is a packing
(see [14,28] or [29]). The packing density V of L+K is δL(K) = V (K)/detL.

The minimum of all determinants of packing lattices of K exists and is called
the critical packing determinant of K and denoted by ∆p(K).

A packing lattice of K with critical determinant is called a critical lattice
and it provides the densest lattice packing of K:

δe(K) = V (K)/∆p(K)

Similarly for coverings (see [14]): Any lattice L with the property that L + K
covers Ed (or equivalently: L + K = Ed), is called a covering lattice and the
covering density is ϑL(K) = V (K)/detL.

Again the extremum, here the maximum of all determinants of covering lat-
tices exists and is called the critical covering determinant ∆c(K). The corre-
spoding lattice is the thinnest or most economic covering lattice of K and its
density is

ϑe(K) = V (K)/∆c(K)

Fig. 2. Parts of the densest lattice packing (left) and the thinnest lattice covering
(right) of unit circles. The circumscribed hexagons (left) have area ∆p(B2) =
2
√

3; the inscribed hexagons (right) have area ∆c(B2) = 3
√

3/2.

Examples in 3–space: For the ball B3 we have δe(B3) = 4π
3 /4

√
2 = 0, 74048...

(Gauss 1831) and ϑe(B3) = 1, 464... (Bambah 1954).

3 Cell Complexes in the Plane

Packings and coverings in the plane can be considered in cell complexes, in
particular in simplicial complexes and hence in a very general setting, so that
most planar packing and covering problems of translates of convex bodies can
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be subsumed. Further the proofs for the most general results in the following
sections use simplicial complexes.

As the notion of density only makes sense for convex sets, but not for general
simplicial complexes and cell complexes, the inequalities in Sects. 4 and 5 are
given in terms of volumes, and only in the convexity case also for densities.
The best known simplicial complexes are Delone (or Delauney, same author)
triangulations, see [12].

A planar simplicial complex C is a collection of points, segments and triangles
with the following 3 properties:

1. Every segment (or edge or 1–face) of C connects 2 vertices (or 0–faces) of C,
and contains no other vertex of C.

2. The intersection of any 2 edges of C is either empty or a vertex of C,
3. Every triangle (or 2–face) T of C is the convex hull of 3 vertices of C, and its

3 edges are also edges of C,and T contains no other vertices or edges of C.

Fig. 3. Two simplicial complexes in Z
2

If the number of vertices of C is finite, C is called finite; otherwise infinite. In
the first case the number of vertices, edges and triangles is denoted by fi(C), i =
0, 1, 2. For f0(C) we also write n, the number of packing or covering objects. The
alternating sum

χ(C) = f0(C)− f1(C) + f2(C)

is called the Euler characteristic of C.

Examples: If C is a full triangle, then f0 = f1 = 3 and f2 = 1, hence χ(C) = 1.
If C is a triangle without its interior, then f0 = f1 = 3, and f2 = 0, hence
χ(C) = 0. If C consists of n isolated points, then χ(C) = n.
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The volume or area of C is the sum of areas of its triangles and denoted by
V (C). Here we underline that the cell complex C has to be distinguished from
its underlying point set, the so–called support of C or simply set C. So V (C) =
V (setC). The elements of C are the vertices, edges and triangles: the elements of
set C are points of the plane.

Example: If C is an edge with its endpoints, then C has 3 elements, but set C

has infinitely many elements.

The boundary bdC of a cell complex C is a cell complex itself, namely the union
of the boundary edges and boundary vertices, which form finitely many Jordan-
polygons which do not cross each other and which have at most vertices of C in
common. The number of vertices of C on the boundary is denoted by ṅ(C) or
briefly by ṅ.

Finally we introduce the normed perimeter P (C), which is less obvious than
the other functions on C. For this let u ∈ S1 be a unit vector and lu(K) the
length of the intersection of K with a line through 0 in direction of u.

For any edge of bdC let e′ be the parallel line through 0 and l(e′ ∩ K) the
length of the segment. Then

P (C) =
∑

l(e)/l(e′ ∩K)

where the summation is over all edges of bdC.

4 Finite Packings in the Plane

A finite packing Cn +K is called a lattice packing, if there is a packing lattice
L of K (i.e. L+K is a packing) with Cn ⊂ L. In this case one has (for the next
sections see also the survey by [13] or the book by [29]):

Theorem 4.1 (Pick 1899) Let K ∈ K2
0, n ∈ N and Cn +K be a finite lattice

packing. a) Then for any simplicial complex C with vertC = Cn is

n(C) ≤ V (C)
∆p(K)

+
1
2
ṅ(C) + χ(C) (4.1)

b) Equality holds for all simplicial complexes of the critical lattice.

The result is a trivial consequence of Pick’s identity. With the weighted lattice
point enumerator n̂(C) = n(C)− 1

2 ṅ(C)− χ(C) the theorem simplifies to

n̂(C) ≤ V (C)/∆p(K) (4.2)

Unfortunately this elegant inequality does not hold for nonlattice packings, as
the following simple example shows:
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Example: Let K = B2 be the unit circle and Cn = {(2i, 0)|i = 1, . . . , n −
2} ∪ {(0, ε), (2n− 2,−ε)}. Then Cn + B2 is a packing and ṅ = 4, V (convCn) =
2ε(n− 1), χ(convCn) = 1, ∆p(B2) =

√
3/2 and (5.1) becomes

n ≤ (4/
√

3)ε(n− 1) + 2 + 1

which is false for each ε <
√

3/4, if n is sufficiently large.
The search for the appropriate packing inequality in the nonlattice case began

with A. Thue 1892 and ended with the following general result:

Theorem 4.2 (Folkman, Graham, Witsenhausen and Zassenhaus 1969
/ 72): Let K ∈ K2

0, n ∈ N and Cn +K be a packing. a) Then for any simplicial
complex C with vertC = Cn is

n(C) ≤ V (C)
∆p(K)

+
1
2
P (C) + χ(C) (4.3)

b) Equality holds for all simplicial complexes of the critical lattice of K, whose
edges are all shortest edges.

Remarks:
a) The equality case is Pick’s identity for the critical packing lattice of K.
b) Theorems 4.1 and 4.2 are closely related, but theorem 4.2 is much harder to
prove. Clearly P (C) is harder to determine than ṅ(C).
c) For any given Cn, n ≥ 2 there are finitely many simplicial complexes C with
vertC = Cn. Among them those with setC = convCn are distinguished, be-
cause their setC is maximal with respect to the volume. Besides this maximality
property convCn has by definition the minimality property to be the smallest
convex body containing Cn. It turns out that for this relevant case one obtains
an elegant formula, which can be generalized to higher dimensions.

Theorem 4.3 (Groemer, Oler 1960/61)
a) For a finite packing Cn +K and Pn = convCn is

(n− 1)∆p(K) + V (ρpK) ≤ V (Pn + ρpK) (4.4)

Here ρp = ρp(K) = ∆p(K)/Zp(K), where Zp(K) is the area of the smallest
parallelogram circumscribed at K.

b) Equality holds for all convex lattice polygons of the critical lattice ofK, whose
edges are all shortest edges.

Remarks: One can show that 3/4 ≤ ρp(K) ≤ 1. In particular, ρp = 3/4 for
the regular hexagon, ρp = 1 for a parallelogram and ρp =

√
3/2 for B2. The

definition of ρp permits another version of (5.4):

V (Sn + ρpK) ≤ V (Pn + ρpK) (4.5)
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where Sn is a segment such that Cn +K is a linear packing of translates
Ki = si +K and Sn +K a “sausage” (this name was created by L. Fejes Toth).
Inequality (4.5) was the motivation to introduce in [40] and in [2] the

Definition 4.1 Let K ∈ K2
0, Cn +K be a packing and ρ > 0. Then

δ(K,Cn, ρ) = nV (K)/V (convCn + ρK)

is the parametric density.

Fig. 4. A packing of 19 circles, with ρ = 1 and ρ = 3.

From this definition and (4.5) follows with S′
n = {s1, . . . , sn}, i.e. convS′

n = Sn:

δ(K,Cn, ρ) ≤ δ(K,S′
n, ρ) for all ρ ≥ ρp.

From (4.4) one gets with δe(K) = V (K)/∆p(K) and the parametric density
δ(K,Cn, ρ) = nV (K)/V (Pn + ρK):

δ(K,Cn, ρp) ≤ δe(K) + εn

for all Cn. With εn → 0 for n→ ∞ follows by simple standard arguments:

Corollary 4.1 (Rogers 1952) Let K ∈ K2
0. Then

δ(K) = δe(K)

and for the special case of K = B2 unit circle:
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Corollary 4.2 (Thue, L. Fejes Toth, Segre, Mahler 1892/1940)

δ(B2) = δe(B2)

These results complete the theory of packings by translates of 0–symmetric con-
vex bodies in the plane.

5 Finite Coverings in the Plane

We use the notation of Sects. 2 and 3 (see also [2] and [13]). In the covering
case the same tight inequality holds for lattice coverings as well as for nonlattice
coverings. Let Cn = {c1, . . . , cn} be a finite set and C a simplicial complex
with vert C = Cn. An edge xy of a simplicial complex is called a short edge, if
xy ⊂ (x +K) ∪ (y +K). Again we write V (C) rather than V (setC). Again let
n̂(C) = n(C)− 1

2 ṅ (C)− χ(C) and K ∈ K2
0. Then Cn +K is called a covering of

C if set C ⊂ Cn +K, and we have the general result:

Theorem 5.1 (Bambah, Rogers, Zassenhaus 1964)
a) Let K ∈ K2

0 and let C be a simplicial complex with short boundary edges
and vertC = Cn and setC ⊂ Cn +K. Further let ∆c(K) be the critical covering
determinant of K. Then

n̂(C) ≥ V (C)/∆c(K) (5.1)

b) For each K ∈ K2
0 and each n ∈ N there is a C such that equality holds.

c) The equality case is Pick’s identity for the critical covering lattice of K.

Remarks. a) In (5.1) low dimensional parts of C (2–sided edges or isolated
points) can be cancelled as they count 0 on both sides of (5.1)
b) Equality holds for all lattice polygons of the critical lattice of K, which are
covered by the corresponding lattice translates of K. There are also nonlattice
complexes, for which (5.1) holds with equality, e.g. two disjoint triangles, which
do not belong to one lattice.
c) The condition of short boundary edges is necessary, because Theorem 5.1 does
not hold for general simplicial complexes as the following simple example shows:
Example: Let K = B2. Then ∆c(B2) = 3

√
3/2. Let Cn = {0, X, Y, Z} with

0 = (0, 0), X = (2, 0), Y = (0, 2 − ε), Z = (1, 1) and 0 < ε < 1/2. Let C be
the simplicial complex with vertC = Cn and set C = conv{0, X, Y } ∪XZ. Then
χ(C) = 1, n̂(C) = 1

2 , V (C) = 2 − ε and set C ⊂ Cn + B2. So n̂(C)∆c(B2) =
3
√

3/4 < V (C), which contradicts (5.1).
d) One can avoid counterexamples of this like the previous one either by the
requirement of short boundary edges as in theorem 5.1 or by the condition that
the intersection of any translate Ki = K + ci with set C is starshaped.
e) Restriction to the simplicial complex C with setC = convCn leads to the most
important special case of the convex hull, where no further restriction is needed:
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Theorem 5.2 (Bambah, Woods 1972)
a) Let K ∈ K2

0 and Pn = convCn ⊂ Cn +K. Then

n̂(Pn) ≥ V (Pn)/∆c(K) (5.2)

b) For any K ∈ K2
0 and any n ∈ N there is a Cn such that equality holds.

Fig. 5. Two circle coverings with n = 10, n̂ = 5 and n = 12, n̂ = 6

Remarks. (5.2) is equivalent to the density inequality

ϑ̂(K,Pn) = (n̂(Pn)V (K))/V (Pn) ≥ V (K)/∆c(K) = ϑe(K) (5.3)

Now lim inf
n→∞ ϑ̂(K,Pn) = ϑ(K) and one gets with ϑe(K) ≥ ϑ(K):

Corollary 5.1 (L. Fejes Toth 1949) Let K ∈ K2
0. Then

ϑ(K) = ϑe(K)

and for the special case K = B2:

Corollary 5.2 (Kershner 1939).

ϑ(B2) = ϑe(B2)

Examples:
1) Let K = B2, n = 3 and conv Cn a regular triangle with edgelength

√
3. Then

conv Cn ⊂ Cn + B2, V (convCn) = 3
4

√
3, n̂ = 3 − 3/2 − 1 = 1

2 , ∆c(B2) = 3
2

√
3

and (6.1) holds with equality.
2) LetK = B2, n = 3 and convCn be a triangle with 2 edges of length

√
3 and one

of length 3. Again convCn ⊂ Cn+B2, V (convCn) = 3
4

√
3, n̂ = 1

2 ∆c(B2) = 3
2

√
3

and (6.1) holds again with equility.
3) Any union of triangles from 1) and 2), which is edge–to–edge, gives a simplicial
complex, such that (5.1) holds with equality.
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The previous results complete the theory of coverings by translates of 0–symmetric
convex bodies in the plane. Different from the packing case here one has several
independent approaches cf. theorems 5.1, 5.2 and 5.3.

The covering density in (5.3) differs from the parametric density in Sect. 4.
This is due to the fact that the theorems 4.3 by Groemer and Oler and 5.2 by
Bambah and Woods do not correspond directly to each other and that packing
and covering are no direct dual operations of each other. In particular there
is another classical definition of covering density: For a convex body C with
C ⊂ Cn +K, the covering density is

ϑ(K,C) = nV (K)/V (C)

For V (C) and hence for ϑ(K,C) one has:

Theorem 5.3 (Bambah, Rogers 1961)

V (C) ≤ (n− 1)∆c(K) + V (K) (5.4)

Remarks:Obviously (5.1) and (5.4) are closely related and (5.4) can be derivated
from (5.1). In (5.4) equality holds for n = 1 and for parallelograms and all n.
(5.4) can not be generalized to simplicial complexes. But corollary 5.1 and 5.2
can also be easily deduced from (5.4).
In general it is hard to characterize the optimal convex bodies C in (5.4), whereas
the characterization in (5.1) is much simpler.

6 Large Packings of Spheres

In the following three sections we describe large periodic packings of spheres
which model crystals or quasicrystals. The structure is for physical and chem-
ical reasons prescribed, and with the help of parametric density and its first
“derivative”, the density deviation, the Wulff shape is modeled. We describe the
general case of crystals (see [35,45]). The simplest case was described in [41] and
the quasicrystal case in [5,6]. We start with the basic definitions:

Let Bd denote the unit ball in Euclidean d–space Ed, d ≥ 2. Let V denote the
volume and V (Bd) = κd. For x, y ∈ Ed let 〈x, y〉 denote their scalar product and
〈x, x〉 = ‖x‖2. Let L ⊂ Ed be a lattice with detL > 0 and L∗ its dual or polar
lattice. For tj ∈ Ed let Lj = L+ tj , j = 1, . . . , n translates of L or briefly grids.
Let Cj ⊂ Ed , j = 1, . . . , n be convex bodies such that (L1+C1) ∪. . .∪ (Ln+Cn)
is a packing. Then M = L1 ∪ . . .∪Ln is a periodic set and also called a periodic
packing for C1, . . . , Cn. With V (Cj) = vj , j = 1, . . . , n , V = (v1, . . . , vn) and

v =
n∑

j=1
vj the classical density of an infinite periodic packing is

δM (V) = v/detL

For the applications we always assume Cj = rjB
d , j = 1, . . . , n, i.e. the Cj are

balls of radius rj . This is no essential restriction, because the density depends
on the volume of the packings objects, not on their shape.
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Concerning M we need some simple notations: An x ∈ M is called M–point, a
finite subset M ′ ⊂M is called a finite M–set. The Cj are called the decoration
of M or M ′. Any finite M ′ with its decoration is called a finite M–packing. We
are interested in dense finite M–packings. So we consider only finite M ′ ⊂ M ,
which are saturated with respect to M , i.e. with

M ′ =M ∩ (convM ′).

For a finite saturated M–set M ′ we call P = convM ′ its M–polytope. For any
convex body K ⊂ Ed we define its lattice point enumerator L(K) = card (K∩L)
and for the grids:

Lj(K) = card (K ∩ Lj) j = 1, . . . , n.

We are now ready for the generalized parametric density:

Definition 6.1 Let M,V and D > 0 be given. Then for an M–polytope P its
parametric density is

δM (V, P, D) =

n∑
j=1

vjLj(P )

V (P + DBd)
.

In general P is “large” , namely a crystal with many atoms, i.e. points. So rthe
quotient in definition 6.1 can be written as a Taylor expansion. The Lj(P ) can
be written as polynomials (Ehrhart polynomials, see e.g. [14] and V (P + ρBd)
can be written as the Steiner polynomial, see e.g. [32]. This makes the Taylor
expansion simple and this is the idea for the central theorem 8.1.
For any polytope P let Fi(P ) , i = 1, . . . , k denote its facets. For simplicity Fi

denotes the point set as well as its (d − 1)–volume. Hence
k∑

i=1
Fi(P ) = F (P ),

where F is the surface area. Further

fi(P ) = Fi(P )/(V (P ))1−1/d, i = 1, . . . , k

denotes the relative surface area of a facet. With r(P ) and R(P ) we denote the
inradius and the circumradius of P .

7 Facet Densities

Any u ∈ L∗(u �= 0) determines an array of lattice–hyperplanes in L with normal
vector u. If M = L is a lattice, then there is only one type of lattice–hyperplane
and so the packing density of a facet with (outer) normal u is easy to determine.
In the general case, if M is the superposition of translates Li of L equipped
with spheres of different size, the determination of the facet density is more
complicated. One has to investigate the packing density for each of the Li and
has to take into consideration the influence of the packing density of the parallel
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layers of balls coming from the Lj , j �= i. This needs a careful, but elementary
analysis which is given in this section.

For any M–polytope P its parametric density can easily be calculated. Clearly
one cannot expect general results for densest packings. But for suitable ‘large’
M–polytopes one obtains good asymptotic results. For this we need a rather
technical but useful definition: For any ui ∈ L∗ and Lj = L + tj , j = 1, . . . , n
let εij = {〈ui, tj〉}, where {x} = x − [x] and [x] denotes as usual the largest
integer ≤ x. Now we define the appropriate class of polytopes:

Definition 7.1 Let L and M be given and U = (u1, . . . , uk) ⊂ L∗ with pos
U = Ed (positive hull). Further let zi ∈ N , i = 1, . . . , k , ji ∈ {1, . . . , n} and
P ′ = {x ∈ Ed|〈x, ui〉 ≤ zi+εiji , i = 1, . . . , k}. Then P = conv (P ′∩M) is called
an (M,U)–polytope.

Remarks: (M,U)–polytopes are M–polytopes. By Definition 7.1 a facet with
normal ui intersects an Lji in a (d− 1)–grid with determinant ‖ui‖detL.

If the zi are ‘large’, the other facets with normals �∈ U are ‘small’ and lie ‘near’
the (d− 2)–faces of P ′. In general P ′ is not the convex hull of M–points, hence
no M–polytope. In [35] and [45] it is shown that V (P )−V (P ′) < c(V (P ))1−2/d,
where c depends only on M and U . For any i one can choose ji ∈ [1, . . . , n]. It
turns out that the choice of ji is essential for the local packing density at the
surface of P .

The following local density functions were introduced in [35]:

Definition 7.2 For m ∈ {1, . . . , n} let τ(i,m) = 1
2 −

n∑
j=1

vj
v {εim − εij} and

τi = max
m
τ(i,m). τ(i,m) is called the local density distribution. τ(i,m)/‖ui‖

is called the facet density and τi/‖ui‖ the optimal facet density in direction of
ui.

Remarks: Clearly τ(i,m) ∈ (−1/2, 1/2]. If M = L is a lattice, then τi = 1/2 ,
i = 1, . . . , k. The facet density measures the volume of the balls per unit of the
surface area. So it has homogeneity degree 1 rather than 0 as densities usually
have. We use this notation, because it gives the appropriate density description.

8 Wulff Shapes

The first result is a Taylor expansion of parametric density, already mentioned
after definition 6.1:

Theorem 8.1. Let M,U and V be given, let P be an (M,U)–polytope with
r(P )/R(P ) > ε0, µ = (V (P ))1/d , ji ∈ [1, . . . , n] and D > max(τ(i, ji)/‖ui‖).
Then (for µ→ ∞)

δM (V, P, D) = δM − µ−1∆M (P, D) +O(µ−2) (8.1)
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and

∆M (P, D) = δM

k∑
i=j

fi(P )(D− τ(i, ji)/‖ui‖) (8.2)

Definition 8.1 ∆M (P, D) is called the Density Deviation of P and D.

Remarks: The first error term in (8.1) ∆M (P, D) measures the average differ-
ence between δM and parametric density. The second error term (or edge term)
O(µ−2) depends on M,U,V, ε0 and D, but not on the size of P or of the fi.

If V (P ) and hence µ is large, then ∆M (P, D) is the essential error term. The
choice of D guarantees that all summands are > 0 and hence ∆M (P, D) > 0.

So among all (M,U)–polytopes of same volume, i.e. of same µ, those with
minimal ∆M (P, D) are best packings and it is the central problem to find the
shapes which minimize ∆M (P, D). We minimize ∆M (P, D) in two steps:

First we minimize the coefficients of the fi(P ) in ∆M (P, D), i.e. we replace
τ(i,m)/‖ui‖ by τi / ‖ui‖, for which we have:

Proposition: 1
2n ≤ τi ≤ 1

2 , and both bounds are tight.

A short proof is in [35]. Second we observe that the density deviation in (8.2)
can be written as

∆M (P, D) =
k∑

i=1

σifi(P )

with some σi > 0. If the σi are energies, then the problem of minimizing this sum
for all polytopes with given unit normals U = {u1, . . . , uk} and fixed volume
V (P ), hence for fixed µ, is the famous Gibbs–Curie energy problem and solved
in Wulff’s theorem (1901): The optimal polytope is the Wulff shape

{x ∈ Ed|〈x, ui〉 ≤ σi, i = 1, . . . , k}.

Now σi = ρ− τi/||ui|| implies that ρ can be interpreted as an energy. But from
the mathematical point of view the meaning of the numbers σi > 0 is irrelevant.
In fact, if we consider the facet density (Def. 7.2) as weighted sum with weights
vj/v, the vj can be volumes as well as weights, potentials or energies. So we get,
independent of the physical meaning of the σi, in our case with the unit vectors
ui/‖ui‖ the classical result:

Theorem 8.2. (Wulff 1909) Let M,U,V and D > max
i

(τi/‖ui‖) be given.

Then ∆M (P, D) is minimal for the Wulff shape

WM (U, D) = {x ∈ Ed|〈x, ui〉 /‖ui‖ ≤ D− τi / ‖ui‖ , i = 1, . . . , k}.
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Remarks: The Wulff shape is a polytope with at most k facets; but as it is a
normalized asymptotic shape, it is no (M,U)–polytope. The choice of D guaran-
tees that WM (U, D) is nonempty. There are many proofs of Wulff’s theorem so
that we do not give one. The most famous one, based on energetic arguments, is
due to [20]. The first geometric proof is by [9]; the shortest one by P.M. Gruber
(unpubl.). In fact we got the first hint on the relation between theorem 8.1 and
Wulff shape by P.M. Gruber in 1994.

If M and V and D are prescribed, the Wulff shape of course depends strongly
on U . So there is the natural question, if the artificial restriction of prescribing
U ⊂ L∗ can be replaced by admitting all infinitely many ui ∈ L∗. It is one of
the most surprising results, that even then WM (L∗, D) is a polytope, i.e. only
finitely many ui contribute to WM .

Theorem 8.3. The Wulff shape WM (L∗, D) is a polytope.

Remarks: a) The first proof of Theorem 8.3 for the special case M = L was
given in [41,43] and it can easily be generalized to general M . In [35] the general
case was proved with a different method, and moreover an upper bound for the
number of facets of WM (L∗, D) was given, if M is rational with respect to L. So
for a proof of Theorem 8.3 we refer to these papers. An interesting application
of theorem 8.3 is in [36], cf. also [46].
b) Theorems 8.1, 8.2 and 8.3 have been checked for various examples and in all
cases the obtained Wulff shapes coincide for a certain interval of the parame-
ter ρ with the shapes of the corresponding ideal crystals. Increasing parameter
increases the number of facets. U. Schnell has developed an algorithm, which
generates Wulff shapes from the given crytallographic data for any parameter.
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A Primer on Perfect Simulation

Elke Thönnes

Mathematical Statistics, Chalmers University of Technology

Abstract. Markov Chain Monte Carlo has long become a very useful, established tool
in statistical physics and spatial statistics. Recent years have seen the development of a
new and exciting generation of Markov Chain Monte Carlo methods: perfect simulation
algorithms. In contrast to conventional Markov Chain Monte Carlo, perfect simulation
produces samples which are guaranteed to have the exact equilibrium distribution.
In the following we provide an example-based introduction into perfect simulation
focussed on the method called Coupling From The Past.

1 Introduction

A model that is sufficiently realistic and flexible often leads to a distribution over
a high-dimensional or even infinite-dimensional space. Examples for such com-
plex distributions include Markov random fields in statistical physics and Markov
point processes in stochastic geometry. For many of these complex distributions
direct sampling is not feasible. However, there is a very useful tool which may
produce (approximate) samples, Markov Chain Monte Carlo (MCMC).

MCMC methods base the sampling of a distribution on a Markov chain. An
ergodic Markov chain whose equilibrium distribution is the target distribution
is sampled after it has run for a long time. There are many standard methods,
like the Metropolis-Hastings algorithm or the Gibbs Sampler, see [10], which
allow the construction of Markov chains whose distribution, under regularity
conditions, converges to the target distribution. A notoriously difficult problem
however remains: when has the chain run for long enough to be sufficiently close
to equilibrium? The MCMC literature refers to the initial time the Markov chain
is run until it is assumed to be close enough to stationarity as the burn-in period.

In the last years a new variant of MCMC methods have been developed, so-
called perfect simulation algorithms. These are algorithms which automatically
ensure that the Markov chain is only sampled after equilibrium has been reached.
Thus they produce samples which are guaranteed to have the target distribution
and solve the problem of choosing an adequate burn-in period.

The aim of this paper is to give the reader a detailed introduction to the ideas
of perfect simulation. We concentrate on one particular method called Coupling
From The Past (CFTP) and its extensions. This algorithm was developed by [27]
and, at the moment, is the more widely used method. However, we would like to
point out that there is an alternative general perfect simulation method, Fill’s
perfect rejection sampling algorithm, see [5]. In contrast to Coupling From The
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Past, this method is interruptible, that is the state sampled by the algorithm
and its runtime are independent. Thus the algorithm is also known as Fill’s
interruptible algorithm. The interested reader is referred to [5,6] as well as [25]
for a presentation of the method. Further applications and extensions of Fill’s
algorithm may be found in [7,22] and [35].

In the first section of this paper we will motivate the problem of choosing a
burn-in period using the example of a random walk. The next section then dis-
cusses couplings for Markov chains which are a basic tool in perfect simulation.
In Sect. 4 we present Coupling From The Past as developed in [27]. This is fol-
lowed by the discussion of two very useful extensions of the method, Dominated
Coupling From The Past and perfect simulation in space.

Before we embark on our journey into the world of perfect simulation, let
us introduce some assumptions which we make throughout the paper. We con-
sider Markov chains which live on a state space E which is equipped with a
separable σ-algebra E. We assume that the Markov chain of interest is ergodic,
that is irreducible, aperiodic and positive recurrent. For a general introduction
into Markov chain theory the reader may consult [19] or [26]. Standard Markov
chain theory tells us that the distribution of an ergodic Markov chain converges
towards the limit distribution, see for example [19]. This distribution is called
the equilibrium or stationary distribution and is denoted by π throughout this
paper. Our aim is to produce an exact sample from the distribution π.

2 Conventional Markov Chain Monte Carlo

As a simple introductory example let us consider the following urn model which
leads to a random walk on the four integers {0, 1, 2, 3}. Urn models, like for
example the Ehrenfest urn model, are useful tools as they provide simple models
which may describe the movements of molecules. Because of their simplicity and
amenability to the method, simple random walks are also often used to introduce
the ideas of perfect simulation, see [14,17].

Example 1 A random walk: Suppose we have three balls which are distributed
over two urns. With probability 1/2 we pick a ball from the left urn and put it
into the right urn. Alternatively, we take a ball from the right urn and put it into
the left urn. If we find a chosen urn empty we do nothing. What is the long-run
average number M of balls in the right urn?

We may describe the number of balls in the right urn as a Markov chain X whose
state-flow diagram is shown in Fig. 1. Suppose P denotes the transition matrix
of X then, in this example, it is straightforward to compute the equilibrium
distribution π by solving the linear equation system πP = π. Then we can
determine M as the mean of π. However, let us assume that we would like to
estimateM using simulation. We can do so by simulating the chain X for s steps
and by estimatingM as the average 1

s

∑s
n=1Xn. The chain X may be simulated

by flipping a fair coin. Everytime the coin comes up heads we go a step upwards
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Fig. 1. State-flow diagram for the Markov chain in Example 1.

or if we are in state 3 we stay in state 3. If the coin comes up tails we go a step
downwards or if we are in state 0 we stay in state 0.

But how do we choose the initial configurationX0? Suppose we start in 3, that
is we assume that in the beginning all 3 balls are in the right urn. Then the first
samples X1, X2, . . . will be slightly higher than we expect in the long run. This
is called the initialisation bias and it is due to choosing an initial state which
is not sampled from the equilibrium distribution. Nevertheless, for any initial
state the distribution of the Markov chain converges towards π. So a common
procedure is to simulate the chain for a while without using the initial samples
in the estimate. We choose a time m ∈ N and estimate M by 1

s

∑m+s
n=mXn. Thus

the samples we produce before time m, during the burn-in period, are ignored.
But how long should we choose the burn-in period? We would like the effect of
the initial state to wear off, but when can we assume this?

The choice of an appropriate burn-in period is a difficult problem which may
be approached in different ways. One possibility is to try to examine analyti-
cally the convergence properties of the chain and thus to assess how fast the
chain approaches equilibrium. It is usually a hard task to find bounds on the
convergence rate and often the resulting bounds are not tight enough to be of
any practical value. There is a vast literature on convergence rate computations
and the interested reader is referred to a very incomplete selection: [29,30] and
[31].

Another approach to determine an adequate burn-in period is to use conver-
gence diagnostics. These are methods which observe the output of the MCMC
algorithm and warn if convergence has not been reached yet. However, although
these diagnostics may increase our confidence in that the Markov chain has con-
verged, they do not guarantee convergence. For an overview on the large variety
of convergence diagnostics see for example the reviews in [1,2].

A recent development are a new variant of MCMC methods which automat-
ically decide whether the chain has reached equilibrium. These methods have
become known as perfect simulation algorithms and have been particularly suc-
cessful for models in statistical physics and stochastic geometry. The basis of
perfect simulation are couplings and the next section is devoted to a detailed
introduction into the coupling method.

3 Coupling

In the last section we encountered the problem of determining the length of
the burn-in period. During this burn-in we would like the effect of choosing an
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initial state, which was not drawn from the equilibrium distribution, to wear off.
A reasonable idea seems to start a path of the chain from each possible state and
then to wait until they all produce the same results. The intuition is that then
the results are no longer influenced by the starting value of the chain. To give the
paths started from different initial states a chance to agree we adopt a method
which is called the coupling method. A coupling specifies a joint distribution for
given marginals. The couplings considered in our setting are of a more restrictive
nature: two stochastic processes are coupled if their paths coincide after a random
time, the coupling time. Couplings are an extremely useful tool in probability
theory and are often used to determine convergence properties of Markov chains.
For an introduction into the coupling method we refer the interested reader to
the book by Lindvall [18]. As we will see at the end of this section, “forward”
couplings as described here are not sufficient to produce a sample with the exact
equilibrium distribution. Nevertheless, couplings are an essential tool for perfect
simulation and thus we will discuss in greater detail how we may couple paths
of a Markov chain which are started in different initial states.

3.1 Random Walks

Let us first consider the random walk from the previous section. Here we would
like to start a path of the chain in each of the possible initial states {0, 1, 2, 3}.
Recall that we can use a fair coin to produce paths of the chain. This also
provides us with a simple way of coupling paths from different initial states.
Whenever the coin comes up heads all paths go a step upwards or stay in 3 if in
3. Alternatively, if the coin comes up tails then all paths move a step downwards
or stay in 0 if in 0. Figure 2 illustrates the procedure. Each of the resulting paths
behaves like a path of the random walk started in the corresponding initial state.
The coupling is such that once the state of two paths coincides subsequent states
of the two paths also coincide. In other words, if paths meet then they merge, we
say they coalesce. As we continue evolving the paths they all merge eventually
and we reach complete coalescence. At this point the current state of the chain is
the same regardless in which state it was started. Note from Fig. 2 that the paths
started from the intermediate states 1 and 2 always lie between the path started
in state 0 and the path started in state 3. This is due to the fact that we use
a monotone transition rule to make the updates. A transition rule is a random
map which specifies a transition for each state according to the transition kernel
of the chain. If all realisations of the random map are monotone functions then
we call it a monotone transition rule. In our example the transition rule is given
by

f(n,C) =
{

min(n+ 1, 3) if C = H
max(n− 1, 0) if C = T

n ∈ {0, 1, 2, 3} (1)

where C describes whether the coin comes up heads (H) or tails (T ). The transi-
tion rule is thus a random map whose realisations are specified by the realisations
of the coin toss. We achieve the coupling of paths by applying the same realisa-
tion of the random map f to all paths.
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Notice that P(f(n,C) = m) = pn,m for n,m ∈ {0, 1, 2, 3} where pn,m are the
transition probabilities of the target chain X. Furthermore, observe that

P

(
f(n,C) = f(m,C)

)
≥

3∑
j=0

pn,j pm,j for all n,m ∈ {0, 1, 2, 3}. (2)

This means that at each step of our coupling the probability of two paths merging
when using the transition rule f is greater or equal than the probability of two
paths merging in an independent coupling. An independent coupling is achieved
if we use an independent coin for each path. This does not hold for every coupling.
For example consider the simple symmetric random walk on the vertices of a
square as given in Fig. 3. If we take a fair coin and move from each state clockwise
if it comes up heads and anti-clockwise if it comes up tails, then paths started
from different initial states will never meet. The perfect simulation algorithm,
which is presented in the next section, assumes that we use a transition rule for
which the analogue of (2) holds. This can always be satisfied as we can choose
an independent coupling of paths. However, the speed of the algorithm is greatly
increased if we choose a coupling such that paths coalesce quickly.

The realisations of the random map f in (1) are monotone and so f is a
monotone transition rule. Thus the use of f leads to paths which maintain the
initial order between the starting states. A necessary requirement for the exis-
tence of such a monotone transition rule is the stochastic monotonicity of the
transition kernel of the Markov chain, for a definition see [18] or [32]. Due to the
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Fig. 2. Coupled paths of the random walk in Example 1 produced by applying the same
outcomes of coin flips to all paths. Note how paths coalesce as they meet. Complete
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Fig. 3. For this random walk we may define a coupling such that paths started in
different states do not meet.
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monotonicity of f we can determine the time of complete coalescence simply by
monitoring the path started in state 3 and the path started in state 0. Complete
coalescence occurs if and only if these two paths merge and this occurs in finite
time almost surely. For our random walk this may seem not such a big improve-
ment. However, for many Markov chains on large state spaces the determination
of complete coalescence is not practical if we have to monitor the paths from all
initial states. One example for such a chain is the Gibbs Sampler for the Ising
model, which will be presented in Sect. 3.2. But first let us discuss another urn
model.

Example 2 Another random walk: As before, we assume we have three balls
distributed over two urns. However, in this example if we choose the left urn and
it is empty, then we take a ball from the right urn and put into the left one. If
we find the right urn empty we do nothing. Below is the state flow diagram of
the resulting random walk. It only differs from the previous example in the type
of moves the chain can make from state 3.

� � � �0 1 2 3
❥
1
2

❥
1
2

❥
1
2


1
2


1
2


1

✒
1
2

Fig. 4. State-flow diagram for the Markov chain in Example 2.

Again we can simulate the chain by flipping a fair coin. We choose the following
strategy. Everytime the coin comes up heads we remain in state 0 if we are in
0, we move a step up if we are in state 1 or 2 and we move a step down if we
are in state 3. Alternatively, if the coin comes up tails, we move a step up from
state 0 and we move a step down if we are in state 1, 2 or 3.

Similar to the previous example we may produce a coupling of paths by
using the same realisation of a coin flip when updating the paths. Unfortunately
the resultant coupling is not monotone. (This is easily verified by drawing some
sample paths). However, by using a cross-over trick we may still determine the
time of complete coalescence by keeping track of two paths only. This cross-over
technique was first used in [15] and is further examined for Markov random fields
in [12].

As before, we may describe the coupling using a transition rule given by

f(n,C) =


n+ 1 if C = H and n ∈ {1, 2}
n− 1 if C = T and n ∈ {1, 2}
0 if C = H and n = 0
1 if C = T and n = 0
2 if n = 3

(3)

where C is the realisation of the coin flip. Suppose we impose the following
partial order on the state space: 2 ) 0 ) 1 ) 3. Then for fixed C and n ) m
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the above transition rule satisfies f(n,C) / f(m,C). For example if C = H,
then 0 = f(0, H) / f(1, H) = 2. Thus the transition rule is anti-monotone. In
Figure 5 we have ordered the states according to ) and drawn some coupled
sample paths of the chain. The anti-monotonicity of our coupling can easily be
seen in the figure. For example in the first update, the highest state 3 moves to
the lowest state 2 and the lowest state 2 moves to the highest state 3.

The anti-monotonicity of the transition rule allows us to monitor complete
coalescence by evolving two paths only. We denote the two paths by Xmin and
Xmax. We start the minimal path in the minimal state and the maximal path
in the maximal state, that is

Xmin
0 = 2 and Xmax

0 = 3.

We then evolve the two paths as follows

Xmin
k+1 = f

(
Xmax

k , Ck

)
Xmax

k+1 = f
(
Xmin

k , Ck

)
,

where Ck is the kth coin toss. Hence the two paths evolve as a two-component
Markov chain in which the update of one component is made according to the
current state of the other component. The two components are not individually
Markov and, as long as they differ, they do not evolve according to the transition
probabilities of our random walk. However, once the two components coincide
they do evolve like our random walk. Most importantly, the minimal and maxi-
mal path sandwich between them all paths of our random walk if evolved using
the same coin flip realisations. Thus coalescence of the minimal and maximal
path implies complete coalescence of the paths started from all initial states.
In Fig. 5 we have drawn the maximal and the minimal path as dotted lines. In
this realisation the minimal and the maximal path (Xmin, Xmax) start in (2, 3)
respectively and then evolve as (2, 3), (2, 3), (2, 3), (2, 1), (0, 1), (2, 0) and finally
coalesce after 6 steps in state 1. In the seventh step they jointly reach state 2.
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Fig. 5. Coupled sample paths of the random walk in Example 2. Note that we re-
ordered the initial states and that the coupling is anti-monotone with respect to the
new ordering. The dotted lines show the maximal and the minimal path.
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3.2 The Ising Model

The next example, the Ising model as described for example in [37], is taken from
statistical physics and was one of the first models to be considered for perfect
simulation, see [5,27]. The Ising model is probably the simplest form of a Markov
random field. Markov random fields are defined on a discrete lattice Λ of sites
where each site may take a value from a finite set of states S. The distribution
of a Markov random field is given by the expression

π(x) =
1
Z

exp
(
−H(x)

)
,

where Z is the normalizing constant known as the partition function and H(x) is
the energy function. For most Markov random fields there is no closed form ex-
pression for the partition function and therefore direct sampling of these models
is not feasible. However, we may produce (approximate) samples of these models
using MCMC.

Example 3 Ising model:
The Ising model has energy function

H(x) = − 1
KT

[
J
∑
j∼k

xjxk −Bm
∑
k

xk

]
where j, k are sites on a square lattice Λ. Here j ∼ k, that is site j is a neighbour
of site k, if j and k are sites at Euclidean distance one. We may imagine the
Ising model as a lattice which at each site has a small dipole or spin which is
directed either upwards or downwards. Thus each site j may take a value xj ∈
{−1,+1} representing a downward respectively an upward spin. The constant
K is the Boltzmann factor and T is the absolute temperature in the system.
The external field has intensity B and m describes a property of the material.
For the ferromagnetic Ising model the constant J is positive, whereas for the
anti-ferromagnetic Ising model it is negative.

A standard method of constructing a Markov chain whose distribution con-
verges to the target Markov random field is the Gibbs Sampler, see [9]. The
Gibbs Sampler is based on sampling from the full conditional distributions of
a multi-dimensional Markov chain. For Markov random fields these full condi-
tional distributions reduce to the local characteristics of the model. The following
Gibbs Sampler, in the statistical physics literature also known as the heat bath
algorithm, see for example [3], produces a Markov chain whose distribution con-
verges to the Ising model. We start by choosing some initial configuration on the
sites of a finite lattice Λ. Then, step by step we go from one site to the next and
update its spin. At site n we assign an upward spin with probability

P

(
xn = +1

∣∣∣ x−n

)
=

π(xn = +1, x−n)
π(xn = +1, x−n) + π(xn = −1, x−n)

.
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Here x−n denotes the configuration x on Λ excluding the site n and so the above
is the conditional probability of the Ising model having an upwards spin at site
n given the current spin configuration on all other sites. The reader may verify
that

P

(
xn = +1

∣∣∣ x−n

)
=

(
1 + exp

(
− 2
KT

[
mB + J

∑
j∼n

xj

]))−1
,

which, notably, does not depend on the partition function Z.
More specifically, at each step k we independently draw a random number

Uk which is uniform on the interval (0, 1) and a random number Nk which is
uniform on the lattice Λ. We then assign an upward spin to the site Nk if

Uk ≤ P

(
xNk = +1

∣∣∣ x−Nk

)
,

otherwise, we assign a downward spin.
As the lattice Λ is finite we need to specify how we treat sites which are on

the boundary of Λ. One possibility is to impose periodic boundary conditions
(also called the torus condition). Here the lattice is mapped onto a torus by
identifying opposite boundaries. However, edge-effects may occur, that is the
sample we draw may not behave exactly like a finite lattice sample of an Ising
model defined on an infinite grid. In Sect. 6 we discuss how these edge-effects
may be avoided but for now let us assume the torus condition.

We can couple paths of the Gibbs Sampler started from different initial states
by reusing the sampled random variates Nk and Uk, k ∈ N. At time k we update
the same site Nk in each path using the same realisation of Uk for all paths.
As in the previous example we may describe our updating procedure using a
transition rule. We set

f(x, U,N) =
{{xN = +1, x−N} if U ≤ P(xN = +1 | x−N )
{xN = −1, x−N} otherwise (4)

where {xN = +1, x−N} is the configuration which we obtain by setting xN = +1
and leaving the spins of all other sites in x unchanged.

One problem we encounter is that the set of all initial states of the Ising model
is usually very large. Thus it may be prohibitively expensive to monitor all paths.
However, as for the random walk examples, we may exploit the monotonicity
or anti-monotonicity of the transition rule to determine efficiently the time of
complete coalescence. Let us have a closer look at the update rule which we are
using. We assign an upward spin to site N if

U ≤ P

(
xN = +1

∣∣∣ x−N

)
=
(
1 + exp

(
− 2
KT

[
mB + J

∑
j∼N

xj

]))−1
.

First consider the case when J > 0, that is the ferromagnetic Ising model. Then
the probability P(xN = +1 | x−N ) is the greater the more neighbours of N have
an upward spin. We may exploit this fact by equipping the state space of the
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Ising model with an appropriate partial order ). We say the spin configuration
x is smaller than y, that is x ) y if

xj ≤ yj for all j ∈ Λ.
This partial order, which was used in [27], may seem counter-intuitive from a

physical point of view as a larger state may not necessarily have smaller energy.
However, we do not attempt to attach any physical meaning but simply define a
partial order for which our transition rule is monotone. Figure 6 shows a triple
of configurations which are ordered with respect to ).

Now, if x ) y then

P

(
xN = +1

∣∣∣ x−N

)
≤ P

(
yN = +1

∣∣∣ y−N

)
for any N ∈ Λ.

It follows that, for fixed U and N , whenever f assigns an upwards spin to xN
then it also assigns an upwards spin to yN as

U ≤ P

(
xN = +1

∣∣∣ x−N

)
≤ P

(
yN = +1

∣∣∣ y−N

)
.

Analogously, for fixed U and N , whenever f assigns a downward spin to yN then
it assigns a downward spin to xN . Thus if x ) y then the updated configurations
maintain their partial ordering, that is f(x, U,N) ) f(y, U,N) for fixed U and
N . It follows that our transition rule is monotone with respect to ) and so
the partial ordering between paths is preserved. The state space has a maximal
state xmax with respect to ) which is the configuration consisting of upward spins
only. Similarly, the minimal state xmin is given by the configuration consisting
of downward spins only. Due to the monotonicity of the transition rule f the
paths are coupled in such a way that all paths lie between the path started in
the maximal state and the path started in the minimal state, see also Fig. 7.
Complete coalescence occurs if and only if these two paths coalesce which will
occur in almost surely finite time.

Now let us discuss the anti-ferromagnetic case, that is if J < 0. Careful
inspection of the transition rule leads to the observation that f is anti-monotone
because for x ) y

P

(
xN = +1 | x−N

)
≥ P

(
yN = +1 | y−N

)
.

Moreover, if we start two paths in two states which are comparable with respect
to ) then after some updates the states of the two paths may no longer be
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Fig. 7. Coupled paths of the Gibbs Sampler for the ferromagnetic Ising model on a 4×4
lattice. Black sites have an upward spin, white sites a downward spin. The site that has
just been updated is encircled. The uppermost path is started in xmax, the lowermost
path in xmin. Observe how the path started from the intermediate configuration is
sandwiched between the two paths started in the maximal and minimal state.

comparable. However, we can still monitor complete coalescence by monitoring
a minimal and a maximal path which are evolved according to a cross-over. We
start a path Xmax in xmax and another path Xmin in xmin. We then update the
two paths according to

Xmin
k+1 = f

(
Xmax

k , Uk, Nk

)
and Xmax

k+1 = f
(
Xmin

k , Uk, Nk

)
.

This leads to a maximal path Xmax and a minimal path Xmin which sandwich
between them the paths which are started from all initial states and evolved
according to the transition rule f and same realisations of Uk and Nk, k ∈ N.
Thus we may determine complete coalescence by monitoring whether Xmax and
Xmin coalesce. This can be shown to occur in almost surely finite time. Figure 8
illustrates the coupling and cross-over procedure.

3.3 Immigration-Death Process

Our final example is an immigration-death process on the natural numbers and
thus a Markov chain on an infinite state space.

Example 4 Immigration-Death process:
Consider the number of dust particles contained in a given small volume. If there
are N particles in the system, then new particles enter at a rate λ (N+1)/(N+2),
where λ is some positive constant. Thus the immigration rate increases the more
particles are already in the system. Particles stay in the system for an exponential
amount of time with unit mean.
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Fig. 8. Coupled paths of the Gibbs Sampler for the anti-ferromagnetic Ising model
on a 4 × 4 lattice. The uppermost and lowermost path are the maximal and minimal
path respectively and evolved according to a cross-over. The two intermediate paths
in the middle are evolved according to the standard coupling construction. Note that
although these two paths are comparable at time T = 0, they are no longer comparable
at time T = 6. However they are still comparable to the states of the minimal and the
maximal path.

The number of particles N in the given volume is an immigration-death
process with transition rates

N → N + 1 at rate λ (N + 1)/(N + 2),
N → N − 1 at rate N for N ∈ N	. (5)

We may simulate N as follows. We start by simulating an immigration-death
process D with transition rates

D → D + 1 at rate λ
D → D − 1 at rate D for D ∈ N0. (6)

Observe that D and N have the same death rate, but the immigration rate of D
is larger than for N . In mathematical terms, D stochastically dominates N . A
description on how to simulate a constant rate immigration-death process may
be found in [28].

Given a realisation of D we may derive a realisation of the process N . As
the initial configuration N0 at time 0 we choose a number from {0, 1, . . . , D0}.
Now, whenever a particle arrives in D say at time t, it enters the given volume
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with probability (Nt−+1)/(Nt−+2) where Nt− is the number of particles in the
system immediately before the arrival of the new particle. We may achieve this
by marking every immigration time t of D with an independent random variable
Ut which is uniform on the unit interval. The new particle enters the system if
and only if

Ut ≤ Nt− + 1
Nt− + 2

.

Finally consider a death in D at time t which leads to a death in N at time
t with probability Nt−/Dt−. Again we may achieve this by marking any death
time t in D with a mark Ut which is uniform on the unit interval. A death occurs
in N at time t if

Ut ≤ Nt−
Dt−

.

In the following whenever we speak of the dominating process D we implicitly
mean the process D and its jump time marks. By coupling N to D we not only
define a simulation procedure, but, as we will see in Sect. 5, we also make the
process N amenable to a perfect simulation algorithm. Perfect simulation of
birth-and-death processes on the natural numbers like the one above was first
described in [14].

The coupling procedure may be illustrated using a Hasse diagram as in
Fig. 9. It consists of a sequence of horizontal levels which stand for the states
{0, 1, 2, . . . }. On each level we have arrows representing the jump times of D. An
arrow pointing upwards indicates an immigration time and an arrow pointing
downwards a death time. The arrow corresponding to the jump time t is marked
with Ut. Now, for each level we may delete arrows according to the rules described
above. For example, on level 3 corresponding to state 3 we delete any upwards
arrow whose associated mark Ut exceeds (Nt− + 1)/(Nt− + 2) = 4/5. We delete
any downwards arrow whose associated mark Ut exceeds Nt−/Dt− = 3/Dt−.
The process N started in some state j ∈ {0, . . . , D0} may now be constructed
as follows. We start on level j and move from left to right. Whenever we come
across an upward arrow we go a level upwards. Alternatively, whenever we come
across a downward arrow then we go a level downwards, see Fig. 9.

For the immigration-death process in Example 4 we may produce a coupling
by using the same realisation of D and the associated jump time marks Ut, t ≥ 0,
and applying the above procedure to all paths started in a state j ∈ {0, . . . , D0}.
From Fig. 9 we may see that two paths can never cross each other but can only
meet and then merge. Thus the paths maintain the partial ordering of their initial
states and so the coupling is monotone. It follows that complete coalescence of
paths started from every state in {0, . . . , D0} occurs if and only if the path
started in state 0 and the path started in state D0 coalesce. The state space of
the target process N are the natural numbers N0 which, of course, is much larger
than the finite set {0, . . . , D0}. However, as we will see in Sect. 5, to produce a
perfect sample we only need complete coalescence for the set bounded above by
D. Complete coalescence occurs in almost surely finite time as a sufficient event
is that D hits zero, in which case all relevant paths of N also hit zero.
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Fig. 9. The Hasse diagram for the immigration-death process in Example 4. The dashed
line showsD which was started at time 0 in state 5. Some of the jump times were deleted
according to our decision rules. Notice that the more jump times of D are deleted the
lower the level. The solid line shows a path of N started in state 0 and evolved coupled
to D.

3.4 Forward Coupling and Exact Sampling

We started this section with the motivation of finding a time when the effect of
the initial state of the chain has worn off. We may argue now that this has hap-
pened when complete coalescence occurs as in this case the chain is in the same
state regardless of its starting value. Let S be the time of complete coalescence
which is a random stopping time. We may think that XS has the equilibrium
distribution, however, this intuition is flawed! Even if the chain had been started
in equilibrium we cannot conclude that XS has the equilibrium distribution.
This is due to the fact that S is not a fixed but a random time. As an illustra-
tion let us consider again our random walk from Example 1. From Figure 2 we
can see that at the time of complete coalescence, that is at time S, the chain
is necessarily either in state 0 or in state 3. Clearly, this is not a sample of the
equilibrium distribution which is uniform on the integers {0, 1, 2, 3}.
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Fortunately, a rather simple but very effective modification enables us to
sample X in equilibrium. This modification is called Coupling From The Past
and is due to [27].

4 Coupling from the Past

The last section showed how to couple paths of a Markov chain from different
initial states such that after a random time S, the time of complete coalescence,
all paths have merged into one. Although the state of any of these paths at time
S does not depend on its starting value we have seen that sampling the chain
at time S may give a biased sample which is caused by the fact that S is not
a fixed time but a random stopping time. In the following we discuss an alter-
native approach called Coupling From The Past (CFTP) which was introduced
by Propp and Wilson [27]. It is also based on coupling and complete coalescence
but samples the chain at a fixed time, namely time 0.

Recall from the previous section that we produced coupled sample paths of
the chain X started from every initial state by sampling transition rules. At each
time step k ∈ N we independently sampled a transition rule fk and produced a
sample path starting in x ∈ E by setting

Xk(x) = fk(Xk−1(x)) = fk ◦ fk−1 ◦ · · · ◦ f1(x).
For instance, for our random walk in Example 1 we sampled an independent
coin Ck−1 and set

Xk(x) = f(Xk−1(x), Ck−1)

where f is defined as in (1). We have also seen in the previous section that an
adequate choice of transition rules eventually leads to complete coalescence of
the sample paths. Or, in other words, the image of the composite map defined
as

F0,k = fk ◦ fk−1 ◦ · · · ◦ f1 (7)

eventually becomes a singleton as k approaches infinity. Let S be the time of
complete coalescence then, unfortunately, the unique image of F0,S does not have
the equilibrium distribution in general.

In 1995, Propp and Wilson made a simple but ingenious observation: if we
reverse the order in which we compose the sampled transition rules and continue
sampling until the image of the composite map becomes a singleton then this
unique image has the equilibrium distribution!

Let us look at this in more detail. At time k we sample the transition rule
fk but now we define a composite map by

F̃0,k = f1 ◦ · · · ◦ fk.
Thus we have reversed the order of composition compared to (7). The above is
equivalent to the following procedure. We go backwards in time and sample at
time −k the transition rule f−k and now define a composite map by

F−k,0 = f−1 ◦ · · · ◦ f−k k ∈ N. (8)
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A nice illustration of the difference between forward coupling as in (7) and
backward coupling as in (8) on the example of Matheron’s dead leaves model
can be found in [17]. It is also illustrated in an animated simulation on
http://www.warwick.ac.uk/statsdept/Staff/WSK/dead.html.

How can we interpret the composite map in (8)? If we set

X−k
j (x) = f−j−1 ◦ · · · ◦ f−k(x)

then {X−k
j (x),−k ≤ j ≤ 0} behaves like a path of X started at time −k in state

x. Thus F−k,0(x) is the state at time 0 of a path of X started at time −k in state
x. It follows that F−k,0 has a singleton image if and only if the corresponding
coupled paths of X started at time −k in all initial states achieve complete co-
alescence by time 0. Thus the above procedure produces coupled paths started
in all initial states at earlier and earlier times until they achieve complete coa-
lescence by time 0. The time when all paths coalesce is not necessarily time 0
but can occur earlier. Nevertheless, we only ever sample at the fixed time 0. If
complete coalescence is achieved then the common state at time 0 is an exact
sample from π.

We may describe the procedure using the pseudo-code notation from com-
puter science. Suppose we have an algorithm RandomMap(−k) which samples the
transition rule f−k. Then we can describe the CFTP algorithm as follows:

CFTP:
k ← 0
F0 ← identity map
Repeat

k ← k − 1
f ← RandomMap(k)
Fk ← Fk+1 ◦ f
until image of Fk is a singleton

return image of Fk

We will first give a heuristical argument which provides an intuitive expla-
nation why this method produces an exact sample. This is followed by some
examples. A rigorous proof for the correctness of the procedure is given at the
end of the section.

Let −T be the first time when the image of F−k,0 becomes a singleton, that
is T = min{k : F−k,0 has a singleton image}. Suppose we could start the chain
X at time −∞ and run it up to time −T . As the chain is ergodic and has run for
an infinite amount of time, the heuristic suggests that the chain is in equilibrium
at time −T . Suppose now that the value of the infinite time simulation at time
−T is x, then x is a sample from π. The transition rules f−k, k ∈ N describe
transitions according to the transition kernel P of X. As πP = π the transition
rules preserve the equilibrium distribution and so it follows that F−T,0(x) is also
a sample from π. Of course, we do not know x but, as the image of the composite
map is unique, it does not matter which value x the infinite time chain takes at
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time −T . Hence, if the image of the composite map becomes a singleton then
we may deduce the state of the infinite time simulation at time 0. Thus, by
extending backwards in time until the image of the composite map becomes a
singleton, we reconstruct the path of the infinite time simulation in the recent
past. In other words, we create a “virtual simulation from time −∞”.

Let us now apply the above algorithm to our examples. For the random walk
in Example 1 the procedure runs as follows. Recall that we may simulate the
random walk using fair coin flips. We go step by step backwards in time and
perform the following routine.

1. At time −k, k ∈ N, we independently flip a fair coin C−k.
2. We then start a path from all initial states {0, 1, 2, 3} and evolve them from

time −k till time 0 according to the coin flips C−k, C−k+1, . . . , C−1 (note
the order of the coins!).

3. If all paths coalesce at time 0 then we return their common state as a sample
from π.

If the paths do not coalesce, then we go a step further backwards in time and
repeat the above steps. Thus we independently flip another biased coin C−k−1,
and again evolve the paths started in all initial states from time −k−1 to time 0
using the coin flips C−k−1, C−k, . . . , C−1. We continue going successively further
backwards in time until we finally reach complete coalescence at time 0.

Remark 1 It is essential that in the kth iteration the coins are used in the
order C−k, C−k+1, . . . C−1 and that we reuse all previously sampled coin flips in
the appropriate order. Only then is the sample guaranteed to have the equilibrium
distribution.

We can make the above procedure more efficient by noting the following.
It is not necessary to evolve paths started in all initial states till time 0. As
discussed in the previous section, due to the monotonicity of the transition rule,
complete coalescence occurs if and only if the path started in state 0 and the
path started in state 3 coalesce. Thus we only need to monitor these two paths
for coalescence.

Neither is it necessary to check for coalescence at each time step. Recall that
complete coalescence of paths started from time −T means that the map F−T,0
has a singleton image. But then the composite map F−T−1,0 = F−T,0◦f−T−1 has
exactly the same singleton image and, by induction, so has any F−S,0 with S > T .
Thus we may proceed as follows. Let 0 = T0 < T1 < T2 . . . be an increasing
sequence of time points. Then for k = 1, 2, . . . , we perform the following steps
until we reach complete coalescence:

1. Sample independent coin flips C−Tk , C−Tk+1, . . . , C−Tk−1−1.
2. Evolve one path started in state 0 and one started in state 3 from time −Tk

to time 0 using the coin flips C−Tk , C−Tk+1, . . . , C−1.
3. Check for coalescence at time 0.
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A recommended choice for the sequence of time points is Tk = 2k−1, which in
[27] is shown to be close to optimal.

For simulation purposes we do not need to store all coin toss realisations.
Instead we can reproduce them by resetting the seed of a seeded pseudo-random
number generator.

Figure 10 illustrates the CFTP algorithm for the random walk from Example
1.
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Fig. 10. CFTP for Example 1. The paths started in state 0 and in state 3 are shown
as solid lines. The dotted lines are the paths started from intermediate states. However
we do not need to monitor these to determine complete coalescence. Note how the coin
toss realisations of the previous iteration are reused! Complete coalescence occurs at
time −1, however we continue till time 0 and sample state 2.

For the random walk in Example 2 we may proceed in a similar fashion.
As discussed earlier, in this setting we may use a cross-over to detect com-

plete coalescence of all paths by monitoring two paths only, a minimal and a
maximal path. At time −Tk we start a path in the minimal state 2 and a path
in the maximal state 3. (Recall that we chose a partial ordering ) which differs
from the natural partial ordering on the integers.) We then evolve the minimal
and the maximal path by updating the minimal path according to the current
configuration of the maximal path and vice versa. If coalescence of these two
paths occurs by time 0, then their common state at time 0 has the equilibrium
distribution.

For the Ising model we may proceed as follows. In iteration k we sample
independent random variables U−Tk , U−Tk+1, . . . , U−Tk−1−1 which are uniform
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on the unit interval and random variables N−Tk , N−Tk+1, . . . , N−Tk−1−1 which
are uniform on the lattice Λ. In the ferromagnetic case, we start a path in xmax,
that is the configuration consisting of only upwards spins, and a path in xmin,
that is the configuration with only downward spins. The two paths are evolved
from time −Tk to time 0 using the transition rule f as defined in (4) together
with the realisations of U−Tk , U−Tk+1, . . . U−1 and N−Tk , N−Tk+1, . . . N−1. If the
two paths coalesce then we output their common state at time 0 as a sample
from the equilibrium distribution. If coalescence has not been achieved yet then
we extend further backwards in time.

In the anti-ferromagnetic case we adopt the following procedure. In iteration
k we also sample independent random variables U−Tk , U−Tk+1, . . . , U−Tk−1−1
and N−Tk , N−Tk+1, . . . N−Tk−1−1. We again start two paths at time −Tk, one
in xmax and one in xmin. However, we now evolve the two paths according to
a cross-over as described in the previous section. As before, if coalescence of
these two paths occurs then we may deduce complete coalescence of the paths
started in all initial values. The unique state at time 0 is then a perfect sample.
If coalescence has not occurred yet then we extend further backwards in time.

Remark 2 The heat bath algorithm is known to mix slowly for temperatures
close to criticality. To produce samples of the Ising model close to the critical
temperature [27] apply Coupling From The Past to a Gibbs Sampler for the
random cluster model. (This type of Gibbs Sampler is also known as single bond
heat bath.) By assigning random colours to the obtained clusters a realisation of
a random cluster model is turned into a realisation of an Ising or Potts model.
Propp and Wilson [27] produced samples of the Ising model at critical temperature
on a 512×512 toroidal grid in about 20 seconds on a Sparcstation. CFTP needed
to go back only to about time -30 to produce such a sample. The authors also
show how to produce samples from the Ising model simultaneously for a range of
temperature values.

We now give a rigorous proof for the correctness of the CFTP algorithm for
finite state spaces, see also [27].

Theorem 1 Let X be an ergodic Markov chain with transition matrix P and
stationary distribution π. Coupling From The Past as presented above produces
an exact sample of the target equilibrium distribution π.

Proof: For k ∈ N consider the composite map

F−k,−j = f−j−1 ◦ · · · ◦ f−k where j ≤ k.

We will first show that the image of F−k,0 almost surely becomes a singleton as
k approaches infinity. We then proceed to show that this unique image has the
distribution π.

Let z ∈ E be an arbitrary state in the state space of X. As the chain X
is irreducible and aperiodic there is a finite N > 0 such that PN (y, z) > 0
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for all y ∈ E. Here PN denotes the N−step transition matrix of X, that is
PN (y, z) = P(XN = z|X0 = y). It follows the existence of a constant ε > 0 such
that for any k ∈ N we have

P

(
image of F−kN,−(k−1)N is a singleton

)
> ε.

Now, the events{
image of F−kN,−(k−1)N is a singleton

}
, k ∈ N

are independent and have a probability of at least ε. Thus by Borel-Cantelli

S = min
{
k ∈ N : image of F−kN,−(k−1)N is a singleton

}
is almost surely finite. But then the composite map

F−SN,0 = F−SN,−(S−1)N ◦ F−(S−1)N,0

has also a unique image.
Like the “forwards” composite map

F0,k = fk ◦ · · · ◦ f1
the map F−k,0 is composed of k independent transition rules and thus X−k

0 (x) =
F−k,0(x) has the same distribution as Xk(x) = F0,k(x). Now, Xk(x) for k ∈ N0
is a path of X started at time 0 in x and so, due to the ergodicity of X, the
distribution of Xk(x) converges to π as k approaches infinity. As X−k

0 (x) has
the same distribution as Xk(x) it follows that its distribution also converges to
π. Moreover, by the definition of X−k

0 we have

lim
k→∞

X−k
0 (x) = lim

k→∞
F−k,0(x) = unique image of F−SN,0

where S is defined as above. As X−k
0 (x) tends in distribution to π it follows that

the unique image of F−SN,0 must also have the equilibrium distribution π.

5 Dominated Coupling from the Past

In this section we discuss an extension of the original CFTP algorithm as in
[27]. This extension is called Dominated Coupling From The Past, or Coupling
Into And From The Past, and is due to [14], see also [15]. Suppose T ≥ 0 is the
smallest random time such that coupled paths of the target chain started in all
initial states at time −T have coalesced by time 0. Foss and Tweedie [8] showed
that T is almost surely finite if and only if the chain is uniformly ergodic. Thus
CFTP as described in the previous section only applies to uniformly ergodic
Markov chains. However, many Markov chains of interest, in particular chains
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which converge to point process distributions, are not uniformly, but only geo-
metrically ergodic. Fortunately, Dominated Coupling From The Past may enable
us to sample the stationary distribution of these Markov chains.

Dominated CFTP essentially specifies a time-evolving bounded random set
Θt, t ∈ R, such that

1. there exists an almost surely finite time T such that paths started at time
−T from all initial states in Θ−T coalesce at time 0,

2. if coalescence as in 1. occurs then the unique state at time 0 has equilibrium
distribution.

Heuristically we may think of Θt as a random set which provides a stochastically
varying upper and lower bound on the values at time t of an infinite time simula-
tion. This is best explained using an example, so consider our immigration-death
process from Example 4. In Sect. 3 we showed how to couple paths of the process
started from different initial states. We have seen that this coupling is monotone
with respect to the natural ordering on the integers. The state space has a min-
imal state with respect to this partial order, the state 0, but it does not have
a maximal state. However, due to our coupling construction, we do know that
the process N is bounded above at any time by the process D. Thus, although
we do not have a fixed bound on Nt for any t ∈ R, we do have a random bound
given by Dt and we may set Θt = {0, . . . , Dt}.

How can we exploit this in a CFTP-type algorithm? Let us first use the
heuristic of an infinite time simulation to provide the intuition; a formal proof
follows later. Consider an infinite time simulation of the target Markov chain N
started at time −∞. We denote the infinite time simulation by N−∞. Our aim
is to reconstruct the path of N−∞ in the recent past. Clearly, N−∞ is bounded
below by 0. But how about an upper bound? If we assume that the infinite time
simulation N−∞ is started in state 0 and coupled to an infinite time simulation
of D then N−∞ is bounded above by D−∞. So our first task is to reconstruct
the path of D−∞ in a finite interval [−T, 0]. A little thought shows that this
is easily done. If D was started at time −∞ then heuristics suggest that it is
in equilibrium at time −T . Now, the stationary distribution of D is a Poisson
distribution which is easy to sample. Thus, if we start D at time −T in its
equilibrium and simulate it till time 0 then we may interpret this realisation as
the path of D−∞ on [−T, 0].

Because N−∞ is coupled to and thus bounded above by D, we may deduce
that the path of N−∞ on [−T, 0] lies below the given realisation of D on the
same time interval. In particular we have that N−∞

−T ≤ D−T . Suppose that the
paths of N started at time −T from all initial states in {0, 1, . . . , D−T } and
coupled to the realisation of D on [−T, 0] coalesce by time 0. Then, according to
our heuristic, their common state at time 0 is also the state of the infinite time
simulation N−∞ at time 0. Therefore this state is a sample from the equilibrium
distribution. Recall that the coalescence of the path of N started in state 0
and the path of N started in state D−T implies the coalescence of all paths
started in {0, . . . , D−T }. Thus it is sufficient to monitor only these two paths
for coalescence.
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If the paths started from {0, 1, . . . , D−T } do not coalesce by time 0, then we
need to extend backwards in time and repeat the above procedure. To do this we
need to extend the realisation of D on [−T, 0] backwards in time, that is we need
to produce a realisation of D on [−T − S, 0] which coincides with the previous
realisation on [−T, 0]. We can do this by exploiting the time-reversibility of D.
We start D at time 0 in equilibrium and simulate it up to time T . Then we set

D̃−t = Dt for t ∈ [0, T ]

that is we reverse the path of D in time. This produces a path of D on [−T, 0].
If we extend backwards then we just continue our simulation of D from time T
to time T + S and again reverse the resulting path in time.

Here is a pseudo-code description of the algorithm, which is also illustrated in
Fig. 11. The algorithm Extend(D,−T) extends a given path of D to a path on
[−T, 0] and assigns marks to any new jump times. The algorithm Evolve(D,−T)
then starts a path of N in 0 and one in D−T and evolves them coupled to the
path D till time 0.

Dominated CFTP:
T ← 0
D ← ∅
Repeat

T ← T − 1
D ← Extend(D,−T)
N0 ← Evolve(D,−T )
until N0 is a singleton

return Y0

What are the characteristics of the above procedure? Firstly, we started with
a time-homogeneous process D which stochastically dominated N . This process
D had a standard stationary distribution which is easy to sample. Furthermore,
we made use of the fact that D was time-reversible.

Paths of the target process N were derived as an adapted functional of D.
The coupling between D and N ensured that if we started N at time t ∈ R in
a configuration bounded above by D then the path of N was bounded by the
path of D at any later time.

We determined coalescence by starting a path of N at time −T in D−T and
one in state 0. Let the “upper” path started at time −T in D−T be denoted
by U−T and the “lower” path started at time −T in state 0 by L−T . The two
processes U and L have the following properties, some of which can also been
seen in Fig. 11.

1. Conditional on a realisation of D on [−T−S, 0] we have a funneling property,
that is

L−T
t ≤ L−T−S

t ≤ U−T−S
t ≤ U−T

t for t ∈ [−T, 0]. (9)

Thus the earlier we start U and L the closer the two paths get.
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2. If L−T
t = U−T

t for t ∈ [−T, 0] then L−T
u = U−T

u for u ∈ [t, 0]. Hence once
the upper and lower path coalesce they remain coalesced. We call this the
coalescence property.

3. Suppose we start a path of N at time −T in some j ∈ {0, . . . , D−T } and
evolve it coupled to the same realisation D as the lower and upper path,
then we have the following sandwiching property:

L−T
t ≤ N−T

t ≤ U−T
t for t ∈ [−T, 0]. (10)

Therefore a path of N started at time −T in some state bounded above
by D−T and evolved according to D lies between the upper and lower path
started at time −T and coupled to the same realisation of D. Together with
the funneling property it follows that any path of N started at time −T −S
in a state bounded above by D−T−S lies on [−T, 0] between the lower and
upper path started at time −T and evolved according to the same realisation
of D.

We now prove rigorously that our Dominated CFTP algorithm does in fact
sample the desired equilibrium distribution. The proof is a special case of the
proof in [16] for general Dominated CFTP algorithms.

Theorem 2 Suppose U and L are defined as above and satisfy the funneling,
coalescence and sandwiching properties. If

TC = inf
{
T ≥ 0 : U−T

0 = L−T
0

}
is almost surely finite then U−TC

0 has the distribution π.

Proof: As TC is almost surely finite the funneling property implies that the
limit limT→∞ U−T

0 exists and that

lim
T→∞

U−T
0 = lim

T→∞
L−T
0 = U−TC

0 .

Now, let N−T
0 be the state at time 0 of a path of N started at time −T in state

0. Then the distribution of N−T
0 is the same as of NT , that is a path of N started

at time 0 in state 0 and run up to time T . Due to the ergodicity of N , it follows
that the distribution of N−T

0 converges to π as T → ∞. The limit of N−T
0 may

be interpreted as our infinite time simulation. The sandwiching property ensures
that

lim
T→∞

L−T
0 ≤ lim

T→∞
N−T

0 ≤ lim
T→∞

U−T
0

and so
lim
T→∞

N−T
0 = U−TC

0

which implies that U−TC
0 has the equilibrium distribution π.
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Fig. 11. The immigration-death process example 4. The dashed-dotted line is the
immigration-death process D. The solid line marked with squares shows the maximal
path and the solid line marked with disks the minimal path started at time −T − S.
The two paths have coalesced by time 0. The shaded area is the area in which any path
of N started at time −T − S in some state smaller than D−T−S lies. The dashed lines
show an earlier CFTP iteration started from time −T in which coalescence of the lower
and upper path did not occur. Note how the process D has been extended backwards
in time. Observe also that the lower process lies below the upper process and how both
processes satisfy the funneling property.

Dominated Coupling From The Past was originally developed for locally
stable Markov point processes, see [14,15,16]. Markov point processes are usually
specified by a density π with respect to a unit rate homogeneous Poisson point
process on a bounded window W . For example the Strauss process, which is
described in [34] and which models repulsive point patterns, is given by

π(x) = α βn(x) γt(x) x ⊂W,

where β > 0 and 0 < γ < 1. Here n(x) counts the number of points in x and
t(x) the number of pairs of neighbour points, that is points which are less than
the interaction range R apart. Like for many other point process models, the
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normalizing constant α cannot be computed in closed form. From the density of
a Markov point process we may derive its Papangelou conditional intensity

λ(x, ξ) =

{
π(x∪{ξ})

π(x) if π(x) > 0
0 otherwise,

where x ⊂ W is a point pattern and ξ ∈ W an individual point. For example,
for the Strauss process the Papangelou conditional intensity is given by

λ(x, ξ) = β γt(x,ξ),

where t(x, ξ) counts the number of neighbours of ξ in x. More information on
Papangelou conditional intensities may be found in [4]. A Markov point process
that is locally stable has a Papangelou conditional intensity which is uniformly
bounded above by some constant λ∗. For example, for the Strauss model λ∗ = β.

Spatial birth-death processes may converge in distribution to point processes.
These birth-and-death processes are Markov jump processes whose states are
point patterns and which evolve in time through births and deaths of individual
points. For an introduction see [33] or [21]. A spatial birth-death process is
specified by its birth rate and its death rate. If we choose a unit death rate and
a birth rate which is equal to the Papangelou conditional intensity of a Markov
point process then, under regularity conditions specified for example in [21], the
resultant spatial birth-death process Y converges to the distribution of the point
process.

Similar to the immigration-death process example, we can produce exact
samples for locally stable Markov point processes using Dominated CFTP. Sup-
pose the ergodic spatial birth-and-death process Y converges to the distribution
of such a Markov point process with density π. Note that we may derive a real-
isation of Y from a realisation of a spatial birth-and-death process Z with the
same death rate and a higher birth rate. In our setting we may choose Z to have
unit death rate and birth rate λ∗. Then Z is time-reversible and has a Poisson
point process as its equilibrium. We mark every birth time t of Z with a mark
Vt which is uniform on (0, 1). We then can derive a path of Y from a path of
Z as follows. A birth of a point ξ in Z at time t leads to the birth of the same
point at the same time in Y if

Vt ≤ λ(Yt−, ξ)/λ∗.

Thus the acceptance rule for births is very similar to our acceptance rule for
births in the immigration-death process example. The acceptance rule for deaths
differs from the procedure for the immigration-death process. For spatial birth-
and-death processes we can distinguish the individual elements of a configura-
tion. Thus we may adopt the following simple procedure. Whenever a point η
dies in Z we check whether this point exists in Y and if so, let it die at the same
time in Y . The reader may verify that this coupling construction leads to the
correct birth and death rate for Y .
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The above coupling is very similar to the coupling we chose for our im-
migration-death process. Careful inspection leads to the observation that Yt is
always a subset of Zt if we start it in a configuration which is a subset of Z at
the starting time. We can use the set-up for a Dominated CFTP algorithm as
follows. We produce a stationary path of Z on [−T, 0] and mark all birth times.
Then we start a path of Y at time −T in every point pattern which is a subset of
Z−T . We evolve the paths according to the above coupling till time 0 and check
for complete coalescence. If all paths have coalesced at time 0 their common
state has the distribution π. If they have not coalesced, then we need to extend
backwards in a similar manner as for the immigration-death process.

We can detect complete coalescence more efficiently if λ(x, ξ) is monotone,
that is λ(x, ξ) ≤ λ(y, ξ) if x ⊆ y. Then we only need to monitor a path started
at time −T in the empty set and a path started at time −T in the point pattern
Z−T . If the two paths coalesce by time 0 then their common state at time 0
is a perfect sample. If λ(x, ξ) is anti-monotone, as for example for the Strauss
process, then we may use a cross-over to monitor coalescence efficiently.

For a more detailed introduction into the perfect simulation of locally stable
Markov point processes see [16]. Further examples may found in [14,15] and [21].
The method is extended to random set processes in [17]. It may also be applied
to general distributions, see for example [20,23] or [24].

6 Perfection in Space

When introducing the Ising model we promised the reader a simulation method
which avoids edge-effects. A perfect sample in space may be achieved by extend-
ing not only backwards in time but also in space. This idea was first presented
in [14] and for Markov random fields is discussed in more detail in [13] or in [36].
We explain the method using the example of a ferromagnetic Ising model.

Suppose we would like to produce a perfect sample on the m × m lattice
Λ = Λ0. For k ∈ N let Λ−k−1 = Λ−k ∪ ∂(Λ−k) be the lattice we achieve by
adding the neighbours of the boundary sites of Λ−k to the lattice.

In the kth iteration of the CFTP algorithm we now perform the following
procedure.

1. Sample independent random variables U−Tk , U−Tk+1, . . . , U−Tk−1−1 which
are uniform on the unit interval and random variables N−Tk , N−Tk+1, . . . ,
N−Tk−1−1 which are uniform on the lattice Λ−k+1.

2. Start one path of the Gibbs Sampler in xmax and one in xmin on the lattice
Λ−k. Evolve the paths from time −Tk to time 0 using the transition rule h
as defined in (4) together with the realisations of U−Tk , U−Tk+1, . . . U−1 and
N−Tk , N−Tk+1, . . . N−1.

If the two paths coalesce at time 0 on Λ0, then we output their common state at
time 0 as a sample from the equilibrium distribution. If coalescence has not been
achieved yet we extend further backwards in time and space. Figure 12 further
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illustrates the procedure. The reader is invited to compare this algorithm to the
standard CFTP procedure on page 366.

The algorithm is set up such that from time −Tj until time −Tj−1 − 1 only
sites on the interior of the lattice Λ−j are updated but taking into account the
configuration on the boundary sites.
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Fig. 12. Two iterations of the “perfect in space” CFTP algorithm for the ferromagnetic
Ising model on a 4×4 lattice. Sites with upward spins are black and sites with downward
spins white. The upper path is started in xmax and the lower in xmin. The encircled site
has just been updated. Only sites in the interior of each lattice are updated, taking
into account the configuration on the boundary sites. We need to achieve coalescence
on the centre 4× 4 lattice, which for clarity we have drawn at the end of each path. In
the second iteration, we reduce the site of the lattice after time T = −2 because from
then onwards only sites of the centre 4 × 4 lattice are updated.

If the two paths coalesce at time 0 on Λ then their common state is not only
independent from the starting configuration on Λ but also independent from any
starting configuration on the infinite lattice Z

2. For a formal proof see [13]. Of
course, it can happen that we do not achieve coalescence in finite time. This
crucially depends on the strength of interaction between sites. In [13] a bound
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on the strength of interaction is given such that coalescence in almost surely
finite time is ensured.

Many refinements of the algorithm presented here are possible. If we use a
cross-over then we may also apply the method to the anti-ferromagnetic Ising
model. An application to general Markov random fields can be found in [13,36].
Furthermore, the point process setting is discussed in [14].

7 Conclusion

Our aim was to introduce the reader to the concept of Coupling From The Past,
one of the new perfect simulation methods which allow the exact sampling of
the equilibrium distribution of Markov chains.

We have seen that CFTP is based on couplings of paths of the target Markov
chain started in different initial states such that after an almost surely finite time
the paths coincide. Crucial for the practicality of CFTP algorithms is a way of
determining complete coalescence in an efficient manner. We have shown how
monotonicity or anti-monotonicity of the chosen coupling may provide us with a
practical procedure of checking for complete coalescence. Many models in spatial
statistics and statistical physics are amenable to the method as modelling spatial
interaction may lead to (anti-)monotonicity of a Markov chain converging to
these distributions. (Anti-)Monotonicity is with respect to a partial order and,
as was illustrated in the examples, we can choose any partial ordering for our
purposes. However, there are also CFTP algorithms which determine coalescence
efficiently without exploiting (anti-)monotonicity, see for example [11,24]. They
are usually based on a coupling where paths started in all initial states coalesce
very quickly into a small number of paths which can then be monitored efficiently.

If the target chain is uniformly ergodic, then we may proceed as in Sect. 4. If
not, then we have to use Dominated CFTP as in Sect. 5. In the (anti-)monotone
setting, we define an upper and a lower path such that if they coalesce at time 0,
their common state is an exact sample from the equilibrium distribution. Note
that the lower and upper path do not need to evolve like the target chain if they
have not coalesced yet. Before coalescence they may even live on an augmented
state space, for an example see [17]. However, once they coalesce, they behave
like the target chain.

All in all, there is a lot of freedom in setting up a CFTP algorithm. The
challenge is to construct an algorithm which is efficient enough to be prac-
tical. An annotated bibliography which contains a multitude of examples of
perfect simulation algorithms may be found on the perfect simulation website
www.dimacs.rutgers.edu/˜dbwilson/exact.
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Abstract. For the simulation of hard core Gibbs point processes simulated tempering
is shown to be an efficient alternative to commonly used Markov chain Monte Carlo
algorithms. The behaviour of the area fraction and various spatial characteristics of
the hard core process is studied using simulated samples.

1 Introduction

The nature of the two-dimensional melting transition has been a matter of hot
debate for the past three decades. Whereas a conventional first-order transition
between the isotropic liquid and the solid was assumed since the pioneering work
in 1962 by Alder and Wainwright [2], the scenario of dissociation of dislocations
and disclinations in the solid phase was proposed 1979 by Nelson, Halperin and
Young [22] which leads to two second order transitions according to the the-
ory by Kosterlitz and Thouless [15]. The intermediate, so-called ’hexatic’, phase
displays an exponential decay of translational order but an algebraic decay of
bond orientational order, in contrast to the two-dimensional solid phase, where
the bond orientational order is long ranged and the translational order decays
algebraicly. Even for a very simple system like hard disks, the issue of the order
of the melting transition is not settled yet. For instance, hysteresis loops occur-
ing at first order transitions depend strongly on systems size in any simulation
at fixed particle numbers. Therefore, large scale computer simulations or novel
algorithms are needed which circumvent the ambiguities of the results obtained
by conventional techniques.

Simulation algorithms such as the usual Metropolis algorithm (M) [20] and
molecular dynamics (MD) [3,25] play an important role in statistical physics (see
[5,6,8]). These methods are also important tools in the study of canonical Gibbs
hard-disk and hard-sphere systems with a fixed number of objects in a bounded
set. Recent Monte Carlo simulations were done in the NVT ensemble (constant
volume) [30,28,29] and in the NPT ensemble (constant pressure) [16,7] but none
in the grand-canonical µVT ensemble (constant chemical potential), because of
the obvious difficulty to add a hard core particle at high densities. Although
numerical investigations of the two-dimensional melting could be done in several
ways, these simulations do not give conclusive results neither on the location of
the melting and freezing densities nor on the nature of the transition itself.
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The aim of this paper is to point out that previous simulations performed at
fixed particle number have several serious drawbacks and that grand canonical
simulations may help to overcome these difficulties.

Two-dimensional solids differ from three-dimensional ones in lacking long-
range translational order which arises from a divergence of long-wavelength fluc-
tuations. Therefore, large system sizes are important for simulations of two-
dimensional systems at fixed particle number in order to allow for significant
fluctuation contributions to the entropy. It is found in many simulations that
for small particle number the system exhibits significantly more order than for
larger numbers with the same density. In order to explore the properties of these
less ordered states one has either to simulate very large ensembles or to allow for
fluctuations in the particle number by sampling a grand canonical system. Oth-
erwise the solid structure is stabilized what eventually may suppress a transition
into a less ordered phase completely until the solid structure becomes unstable
at the melting density ηf . This results in a tie line between a liquid and a solid
phase which moves to smaller chemical potentials µ and becomes shorter than
in an equilibrium simulation.

In particular at high densities, simulations with a fixed number of parti-
cles suppress in a systematic way configurational fluctuations. Similar to the
single-occupancy cell approximation, particles are almost surely constrained to
motions within a single cell defined by their neighbours. This unrealistic restric-
tion is due to the low acceptance rate of large moves in conventional Monte-Carlo
simulations, i.e. of deleting and adding a particle at another position. Usually
all particles are moved maximally only one tenth of the radius at each update
in order to achive an acceptable rate, which nevertheless makes the convergence
very slow and suppress large scale fluctuations. Thus in usual computer simula-
tions with fixed particle number each particle almost never leaves its cell. This
is obviously the case for fixed volume simulations (NVT ensemble) but even in
fixed pressure simulations (NPT ensemble) only an overall scaling of distances,
i.e. an isotropic change of volume is performed which does not change the con-
figuration or the respective arrangement of the particles. Thus we expect the
solid phase to be stabilized by all simulation techniques so far applied, making
the need of another method obvious.

The second possibility, namely simulating a grand canonical ensemble with
fluctuating particle number, is commonly rejected because of ‘obvious reasons’.
But we will show in Sect. 2 that simulated tempering (ST) makes such simu-
lations possible even for hard disks at high densities, so that grand canonical
simulations are not hampered in the high-density regime anymore.

Due to the irregular spatial structure of a fluid it is difficult to invent a
simulation method (such as a grand canonical simulated tempering technique)
which stabilizes a fluid in the transition regime. Such a technique would allow to
determine ηs more precisely than ηf and would be a complementary approach
to simulations at fixed particle number.

Since one can suspect that most simulations stabilize the solid phase at densi-
ties for which it would melt already (i.e., determining ηf is possibly more precise
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than ηs), it seems to be necessary to implement a simulation technique which sta-
bilizes the fluid phase, i.e., which allows for metastable fluid configurations but
decreases the stability of solid configurations. Large systems sizes are expected
to be not relevant for such a simulation method since large scale fluctuations are
introduced by particle exchange, i.e., deleting and adding hard disks.

There are two other important reasons for an implementation of grand canon-
ical simulations, first, the direct determination of the entropy in the solid phase
and, second, to overcome the constraints on the lattice structure induced by
periodic boundary conditions.

In the fluid phase both the pressure and the free energy (or entropy) are
known since one has a continuous path to the ideal gas limit which can serve
as a reference system with known thermodynamic quantities. But in the solid
phase the entropy is by integration techniques also known, except for an addi-
tive constant which cannot be determined directly. This difficulty arises because
the entropy, a part of the chemical potential, is not a function of coordinates
(dynamical variable) which can be averaged but is defined relative to a reference
system by integrating along a reversible path to the considered state. In simu-
lations with a fixed number of particles one has no possibility to determine the
entropy and thus to compare the amount of disorder with analytical results on
the solid side of the transition. This is only possible for grand canonical simula-
tions. Additionally, a grand canonical simulation would not only allow the direct
determination of the entropy and the additional constant in the solid phase but
also the measurement of the van-der-Waals loop η(µ) in the transition regime.

In order to minimize the influence of the simulation box upon the spatial
structure of the solid phase one can apply periodic boundary conditions on a
rectangular box of aspect ratio

√
3 : 2 allowing hexagonal lattice structures.

Nevertheless, in canonical systems with fixed particle numbers such devices are
by no means sufficient to avoid influences of the boundary conditions on the
solid structure. For instance, the net number of vacancies, i.e., the difference of
vacancies and interstitial particles is constant [26]. Since in most canonical sim-
ulations the net number of vacancies is set equal to zero, the configurations will
probably never reach full equilibrium globally. The hope of applying large scale
simulations is that local subsystems exhibit random boundaries and resemble a
multicanonical system which is large enough to reach equilibrium values of ther-
modynamic quantities. In principle one could avoid such problems by applying
grand canonical simulations.

The grand canonical case with a random number of objects cannot be at-
tacked by MD and is difficult with M in the neighborhood of the melting and
freezing point. In this situation and probably in many other cases a novel method
called simulated tempering (ST) [10,18] may be helpful. It is able to improve
greatly the mixing properties of M.

The idea of ST applied to a system with a high degree of order is to carry
out simulations for a series of coupled systems which work under different ‘tem-
peratures’. The ‘coldest’ system is that system which has really to be simulated,
where M has unsatisfactory mixing properties, while the ‘hotest’ is completely
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random. In the case of simulation of hard-disk systems, overlappings of disks
in different extent in the stages above the cold system are possible. During the
simulation, the process moves randomly between the various systems, produc-
ing samples of the cold systems during stays in that system. The price of this
procedure is a more sophisticated simulation approach and a bit more computer
storage space. Perhaps, the simulated complex system with the various stages
may have an own physical meaning.

Note that ST is different from simulated annealing: during a ST simulation
the temperature changes in both directions (cold and warm) even in the equi-
librium state, while Simulated annealing is based on continuously decreasing
temperature.

The aim of the present paper is to explain the application of ST to simulation
of grand canonical Gibbs hard-disk systems. In Sect. 2 we introduce and compare
the algorithms. The results of simulated tempering simulations are reported in
Sect. 4. It represents, for instance, the functional relationship between packing
fraction η and the chemical potential µ. For values of µ below the freezing point
the Padé approximation for the fluid phase [12,13] and the simulation results
are in very good agreement. Similarly, a cell model approximation and the sim-
ulation results for µ above the melting point are close together. Finally, the ST
simulations produce the same pair correlation functions as those presented in
Truskett et al. [27], which are obtained by MD.

2 Grand Canonical Simulations for Hard-Disk Systems

The hard core Gibbs process is a common model for systems of hard disks (d = 2)
or hard spheres (d = 3). The local Gibbs process is defined on a bounded region
W and has the unnormalized density

f(ϕ) = exp

µ ·#ϕ−
∑

1≤i<j≤#ϕ

V (|xi − xj |)
 , (1)

for ϕ = {x1, . . . ,x#ϕ} ⊂ W , where #ϕ is the number of disks. The parameter
µ is called chemical potential, it is related to the chemical activity z = eµ. Larger
values of µ mean closer packings of disks; the value µ = ∞ corresponds to the
maximum packing, a hexagonal pattern of disks in the two-dimensional case.
The (normalized) probability density for a variable number of disks is given by
f(ϕ)/Ξ, where

Ξ =
∞∑

N=0
(#ϕ=N)

1
|W |NN !

∫
WN

f(ϕ) dϕ

is the well-known grand partition function onW , where |W | is the d-dimensional
volume of W . For a fixed number #ϕ = N of disks the canonical partition
function

Z =
1

|W |NN !

∫
WN

f(ϕ) dϕ
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is used as normalizing factor instead of Ξ, see the paper of H. Löwen in this
volume. The pair potential V for the hard core Gibbs process with disk diameter
σ is

V (r) =
{∞, r < σ

0, r ≥ σ.

The simulations are performed for case d = 2 on a square W = [0, a]2 with
periodic boundary conditions, i.e. our target density with respect to the unit
rate Poisson process on W is proportional to

f(ϕ) =
{

exp (µ ·#ϕ) , if |xi − xj | > σ for all i �= j
0 else . (2)

Here and henceforth,

|x|2 =
(
min(x1, a− x1)

)2 +
(
min(x2, a− x2)

)2
, x = (x1, x2) ∈W,

denotes the geodesic distance when W is wrapped on a torus.
Samples of this local process are used as representatives of the global hard

core Gibbs process Φ, ignoring edge effects. λ = λ(µ), denotes the intensity, the
mean number of disks per area, as a function of µ. Equivalently we may consider
the area fraction

η(µ) = λ(µ)πσ2/4 (3)

of the set of all disks; note that λ(µ) but not η(µ) depends on the diameter σ.
η = η(µ) is a decreasing function, see Sect. 4.2 of the paper by H.-O. Georgii in
this volume. Many other questions concerning the qualitative behaviour of η(µ)
are still open, in particular the question concerning existence of discontinuities
of η(µ) or its derivatives.

The simulation problem becomes difficult when µ increases. In order to
obtain a simulation algorithm with good mixing properties we combine vari-
ous Metropolis-Hastings algorithms with simulated tempering, as described in
Sect. 3. The experimental results concerning area fraction, pair correlation func-
tion and some other characteristics are discussed in Sect. 4.

3 Algorithms

Our basic algorithm is the Metropolis-Hastings algorithm (MH) studied in [9,11]
and [21]. Section 3.1 provides a short description of this algorithm; note that it
is applicable for the canonical ensemble, i.e. fixed number of disks, as well as the
grand canonical ensemble, i.e. when the number of points fluctuates. However,
in this paper the grand canonical ensemble is mainly considered, as mentioned
and explained in the introduction. The combination of the MH algorithm and
simulated tempering [10,18] is introduced in Sect. 3.2.
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3.1 Basic Algorithm

To understand the Simulated Tempering (ST) algorithm, it is convenient to
describe the MH algorithm for the case when we want to simulate samples from
any unnormalized density f of a point process on W (in particular (1)), i.e. f is
a non-negative integrable function with respect to the unit rate Poisson process
on W .

Assume that ϕ with f(ϕ) > 0 is the current state of the Markov chain
generated by the MH algorithm. It is then proposed to either (a) add, (b)
delete, or (c) move a point with probabilities p1(ϕ), p2(ϕ), and 1−p1(ϕ)−p2(ϕ),
respectively. The proposal ϕ′ for the next state in the chain is given as follows:

(a) ϕ′ = ϕ ∪ {x} where the new point x ∈ W is sampled from a density
b(ϕ, ·) on W ;

(b) ϕ′ = ϕ \ {x} where x ∈ ϕ is chosen with probability d(ϕ,x)
(if ϕ = ∅ we set ϕ′ = ϕ);

(c) ϕ′ = (ϕ \ {x}) ∪ {y} where x ∈ ϕ is chosen with probability d(ϕ,x)
and y is sampled from a density m(ϕ \ {x},x, ·) (if ϕ = ∅ we set

ϕ′ = ∅).
The probability resp. density functions b, d and m can be chosen arbitrarily

under mild regularity conditions. The proposed state ϕ′ is finally accepted with
probabilities min{1, r(ϕ,ϕ′)}, where the Hastings ratio r(ϕ,ϕ′) depends on the
type of transition and is given by

(a)
f(ϕ′)p2(ϕ′)d(ϕ′,x)
f(ϕ)p1(ϕ)b(ϕ,x)

;

(b)
f(ϕ′)p1(ϕ′)b(ϕ′,x)
f(ϕ)p2(ϕ)d(ϕ,x)

(if ϕ = ∅ then r(ϕ,ϕ′) = r(∅, ∅) = 1);

(c)
f(ϕ′) (1− p1(ϕ′)− p2(ϕ′)) d(ϕ′,y)m(ϕ \ {x},y,x)
f(ϕ) (1− p1(ϕ)− p2(ϕ)) d(ϕ,x)m(ϕ \ {x},x,y)

.

If ϕ′ is rejected, the Markov chain remains in ϕ. These acceptance probabilities
are affected by the choice of b, d and m; a bad choice can cause inefficient low
acceptance probabilities, i.e., a Markov chain with bad mixing properties.

In the simulations, p1(ϕ) = p2(ϕ) = p are constant; the densities d(ϕ, ·) and
b(ϕ, ·) are uniform on ϕ and W , respectively; and the density m(ϕ \ {x},x, ·)
is uniform on a square of side length 2 × ε centered in x, where ε is small with
respect to the edge length a of W . Note that the Metropolis algorithm [20] is
the special case p = 0 where the number of points is fixed.

Theoretical properties of the MH algorithm are studied in [9,11] and [21]. By
construction the Markov chain is reversible with invariant density specified by
f with respect to the unit rate Poisson process on W if p > 0 or with respect
to the Bernoulli process on W if p = 0. In particular, if f is the target density
(2), the Markov chain is uniformly ergodic when p > 0, and also when p = 0
provided that σ is sufficiently small (this is needed to ensure irreducibility).

For large values of µ, however, the chain, despite the property of uniform
ergodicity, converges very slowly and produces highly autocorrelated samples.
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3.2 Simulated Tempering

Much better results are obtained when the MH algorithm is combined with
simulated tempering as described in the following.

The equilibrium distribution of our implementation of simulated tempering
is a mixture of distributions of repulsive point process models with unnormalized
densities f1, . . . , fn, n ≥ 2, where the MH algorithm for fi mixes well when i is
small, while it produces highly autocorrelated samples when i increases towards
n. Specifically, for i = 1, . . . , n,

fi(ϕ) = exp

µi ·#ϕ− γi
2

∑
x,y∈ϕ
x�=y

[
1(|x − y| ≤ σ) + c

|B(x, σ/2) ∩ B(y, σ/2)|
|B(0, σ/2)|

]
with 0 = γ1 < γ2 < · · · < γn−1 < γn = ∞ and c > 0, and where we set
0 ×∞ = 0. B(x, r) denotes the disk with centre x and radius r and | · | means
the area. The terms γi1(|x−y| ≤ σ) and γic|B(x, σ/2)∩B(y, σ/2)|/|B(0, σ/2)|
both introduce a penalty whenever two disks overlap; the latter term enables
us to distinguish between point patterns with the same number of overlapping
pairs of disks, but where the degree of overlap differs. In particular, fn is the
target density with µ = µn, while f1 specifies the Poisson process with rate
exp(µ1). The penalizing parameter γi is, by analogy with physics, referred to as
an inverse temperature, so that the Poisson process is the “hot” distribution and
the target process is the “cold” distribution. For the simulations reported in this
paper, the value c = 10 was chosen as a result of some pilot simulations. Below
is discussed how to choose the other parameters in order to obtain an algorithm
which inherits the good mixing properties of the MH algorithms for small i.

Simulated tempering generates a Metropolis-Hastings chain (Xl, Il)l≥0, where
I is a ‘auxiliary variable’; X describes the disk configuration and I the value of i.
The equilibrium distribution of this chain is given by the (unnormalized) density

f̃(ϕ, i) = fi(ϕ)δi, i = 1, . . . n,

where the δi > 0 are specified as follows. Suppose that (X, I) ∼ f̃ . The marginal
distribution of X is then the mixture

∑n
i=1 fiδi; fi is the (unnormalized) condi-

tional density of X|I = i; and P (I = i) ∝ δici, where ci denotes the normalizing
constant (grand partition function) of fi. Estimates ĉi of ci can up to a constant
of proportionality be obtained in different ways as described in [10]. One pos-
sibility is to use stochastic approximation, another is reverse logistic regression
[11] where the normalizing constants are estimated from preliminary samples ob-
tained with Metropolis-coupled Markov chains. Our experience is that stochas-
tic approximation is not feasible for large n while reverse logistic regression is
computationally demanding but secure. By choosing δi = 1/ĉi an approximate
uniform mixture is obtained.

Now, for the simulated tempering algorithm a proposal kernelQ on {1, . . . , n}
is defined by Q(i, i + 1) = Q(i, i − 1) = 1/2 for 1 < i < n and Q(1, 2) =
Q(n, n − 1) = 1. Given a current state (ϕ, i), the two components are updated
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in turn using first the MH update ϕ → ϕ′ using the density fi(·), and sec-
ondly the kernel Q is used to propose an update (ϕ′, i) → (ϕ′, i′): we return
(ϕ′, i′) with probability min{1, r(i, i′|ϕ′)} and retain (ϕ′, i) otherwise, where
r(i, i′|ϕ′) = f̃(ϕ′, i′)Q(i′, i)/(f̃(ϕ′, i)Q(i, i′)). By construction the Markov chain
(Xl, Il) is reversible with invariant density f̃ ; in particular (Xl)l≥1:Il=n has equi-
librium density fn.

Regeneration may be useful for estimation of Monte Carlo errors as explained
in [10]. In the ST algorithm a regeneration step can be done at the hot temper-
ature, i.e. if the simulated tempering chain reaches a state (Xl, Il) with Il = 1,
the point pattern Xl is replaced by a completely new generated point pattern
with the Poisson process density f1.

Provided that the pairs of parameter values (µi, γi) and (µi+1, γi+1) are cho-
sen sufficiently close so that reasonable acceptance rates between 20% and 40%
for transitions (ϕ, i) ↔ (ϕ, i ± 1) are obtained, (Xl)l≥1:Il=n yields a well-mixed
sample from the target model fn. Let (pi, εi) denote the parameter values of the
MH algorithms combined in the simulated tempering algorithm, i = 1, . . . , n.
We choose the parameter εi to be decreasing as a function of i so that reason-
able acceptance rates for proposed moves are obtained for each temperature. The
values of pi are also taken to be decreasing since insertion or deletion proposals
have low acceptance probabilities for the low temperatures. The intensity of the
Poisson process with density f1 is chosen as exp(µ1) = 1/σ2. This value corre-
sponds to the area fraction η = π/4 = 0.785 of a planar global pure hard core
Gibbs process with the same intensity. The remaining parameters are chosen as

µi = µ1 + ti (µn − µ1)

and

γi =
{
tiγ

∗ for 1 ≤ i < n
∞ for i = n

with n normalized ‘temperatures’ 0 = t1 < t2 < . . . < tn = 1 and a value
of γ∗ such that there are almost no overlapping disks in the (n − 1)th chain
(Xl)l≥1:Il=n−1. Finally, the adjustment of n and (ti)i=1,... ,n to obtain reasonable
acceptance rates for transitions (ϕ, i) ↔ (ϕ, i ± 1) are done similarly to [10,
Sect. 2.3]. Typically the number n of temperatures lies between 20 and 50.

4 Results

In the following we report on some simulated results for the hard-core model
(2):

• area fraction (Sect. 4.1),
• pair correlation function (Sect. 4.2),
• point process order characteristics: alignment function (Sect. 4.3) and hexag-

onality statistics (Sect. 4.4).
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These characteristics seem to describe various aspects of the phase transition
described in the introduction. Moreover, these characteristics (except area frac-
tion) measure the degree of order in the point patterns compared to an equilateral
triangular lattice.

For each considered value of µ we used the simulated tempering algorithm for
the grand canonical ensemble (i.e. all pi > 0) in the simulation study of the area
fraction, while for the other characteristics we used the less computer intensive
method of simulated tempering for the canonical ensemble (i.e. all pi = 0).

4.1 Area Fraction

Because of the periodic boundary condition the area fraction η(µ) can be esti-
mated by

η̂(µ) =
πσ2N(µ)

4|W |

where N(µ) is the empirical mean number of disks in the cold chain. For W =
[0, 10]2, σ = 1 and µ between 3 and 14 the increasing curve of estimated area
fraction η̂(µ) shown in Fig. 1 is obtained. For each considered value of µ, the
simulated tempering chain has a length between 5×108 and 1010. The calculation
of N(µ) is based on point samples ϕ at the lowest temperature, i.e., when I = n.
The numbers of such point samples are usually between 2 × 107 and 108; here
we used an appropriate burn-in (about 10% of the sample).

Figure 1 shows that for a wide range of µ values the curve of η̂(µ) nearly
coincides with the curve obtained by a Padé approximation:

µ = log
4η
πσ2

+
4η − 6.04η2 + 3.1936η3 − 0.59616η4 + 0.03456η5

(1− 1.34η + 0.36η2)2
.

This approximation is derived from

µ = λ
∂βF/N

∂λ
+
βF

N

(Hansen and McDonald [12]) using a Padé approximation

βF

N
= log λ− 1 + bλ

1− 0.28bλ+ 0.006b2λ2

1− 0.67bλ+ 0.09b2λ2

from Hoover and Ree [13]. λ is the intensity (see (3)) and b = πσ2/2. The cell
approximation is based on disk configurations in the solid phase, i.e., for high
area fractions near the maximum. It is described in Sect. 3.2 of the paper by
H. Löwen in this volume and is based on the fact, that a disk never leave its
(Voronoi) cell in the solid phase, i.e., the topology of the neighbourhood relations
between disks is stable over the time.

The graph indicates that for values of µ < 9 (corresponding to η < 0.65) both
the Padé formula and our simulations yield good approximations of η(µ). Notice
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Fig. 1. Estimated values of η(µ) using simulated tempering (�), Padé approximation
(solid line) and cell approximation (dotted line).

the change in the η̂(µ) curve at values close to the freezing point η = 0.69 and
the melting point point η = 0.716 mentioned after equation (3); in particular this
may indicate a discontinuity in the curve at the melting point. The behaviour of
the curve of η̂(µ) for µ > 13.3 raises doubt about if sufficiently long simulated
tempering chains have been used for the values of µ > 13.3. Particularly we
believe that the curve should increase further and not show a flat behaviour as
for the largest values of µ in Fig. 1.

4.2 Pair Correlation Function

For the results in this and subsequent sections we used W = [0, 20]2, σ = 1 and
determined the number N of points for every value of area fraction η = 0.65,
0.67, 0.69, 0.696, 0.701, 0.707, 0.71, 0.715, 0.721, 0.735, so that η = πσ2N/(4|W |)
in accordance with (3). Hence N is ranging from 331 to 374. For the estimation
of each considered statistic (pair correlation function, hexagonality number, and
so on) we used for various reasons subsamples of 100 point patterns of the cold
chain obtained from mucher longer runs of the ST chain: The estimation was
first done for each point pattern, then we averaged over the 100 estimates; but
the cost of the estimation for one point pattern is about 500 times the cost of one
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step in the simulated tempering chain. Moreover, because of the small changes
in the simulated tempering chain, estimates based on subsequent point patterns
look almost the same. Therefore, for the 100 point patterns, we used a spacing
of at least 10Nn.

The pair correlation function g is a well-known characteristic for point pro-
cesses, see e.g. [24,25] and [27]. In R2, assuming stationarity and isotropy of
the hard core Gibbs point process, λ(µ)2g(r)(πδ2)2 can be interpreted as the
probability of observing a point in each of two infinitesimally small disks of ra-
dius δ and with arbitrary but fixed centers located in distance r > 0 from each
other. Under the target model (2), when the number of points is fixed and W is
identified with a torus, (N/|W |)2g(r)(πδ2)2 has a similar interpretation (using
the periodic boundary condition when calculating inter point distances).

The pair correlation function can be estimated by non-parametric kernel
methods as described in [25] apart from the following modifications. We replaced
the intensity λ with N/|W |. Furthermore, because of the the high number of
points per sample and since we averaged over 100 samples, we used a very small
band width in the kernel (of value 0.03, see [25], page 285). Reducing the band
width reduces the bias in the estimator at the cost of higher variances, by the
averaging we still obtain a smooth curve. Furthermore, because of the averaging,
the variance in the estimator is substantially reduced.

Estimated pair correlation functions with η = 0.65 and η = 0.735 are shown
in Fig. 2. As expected, with increasing η the pair correlation function reflects
more order. The peaks of the estimated pair correlation functions can be com-
pared with the modes at r = 1, 1.732, 2, . . . for the pair correlation function of
the limiting regular hexagonal pattern of hard disks with diameter σ = 1. Clearly
the curve for η = 0.735 is in better agreement to the limiting case than the curve
for η = 0.65. In particular, the second mode for the curve with η = 0.65 splits
into two modes as η increases.

As mentioned at the end of Sect. 1, in statistical physics mostly the ordi-
nary Metropolis algorithm (i.e. the MH algorithm for the canonical ensemble)
and molecular dynamics have been used for simulations. Molecular dynamics
(MD) is based on the equations of motion of N molecules described by a local
Gibbs process (see e.g. [3,26]). The theoretical convergence properties of MD
are not well understood, but numerical evidence, e.g. obtained by comparison
with results produced by the ordinary Metropolis algorithm, supports that MD
produces reliable results for pure hard core Gibbs processes (Torquato, 1998,
personal communication). This is also supported by our results: Figure 2 is in
agreement with the results in [28] obtained by MD.

4.3 Alignment Function

The alignment function zB(r) is a kind of third-order characteristic which is
well adapted to show if there are linear chains of points as for lattice-like point
patterns [25]. For r > 0, consider any r ∈ R2 with ‖r‖ = r and let Br be
a square centered at r/2 and of side length ξr, where one side is parallel to r
and 0 < ξ < 1 is a user-specified parameter. In R2, assuming stationarity and
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Fig. 2. Estimated pair correlation functions for η = 0.65 (dashed line) and η = 0.735
(solid line).

isotropy of the hard core Gibbs point process, λ(µ)|Br|zB(r) can be interpreted
as the mean number of points in Br under the condition that there is a point in
each of the locations o = (0, 0) and r. For r = 2, this mean number is exactly
1 in the limiting case of a regular hexagonal pattern of disks with diameter
1. For a stationary Poisson point process we have that zB ≡ 1, while if e.g.
zB(r) > 1, then Br contains on the average more points than an arbitrarily
placed rectangle of the same area. Large and small values of zB(r) for suitable
r may thus indicate a tendency of alignment in the point pattern. In particular,
if ξ is sufficiently small, one may expect zB(2) to be an increasing function of η
with limit 0.2165/ξ2 obtained at the maximal area fraction η = 0.907.

The statistical estimation of zB(r) follows the same lines as in [25], page 294,
except that we again replace λ(µ) with N/|W | (since the number of points is
fixed) and use the torus convention. After some experimentation we decided to
use ξ = 0.1.

Simulations show as expected that zB(2) increases with increasing η; but it
is zB(2) = 1.83 for η = 0.735 and this is still far from the maximum value 21.65
obtained at η = 0.907. The alignment of the point patterns is more apparent
for slightly increased r, e.g. r = 2.2. Figure 3 shows estimates of zB(2.2) and
zB(3) as functions of η. Also zB(2.2) is an increasing function of η. Note that
the curve of zB(2.2) is steepest for values of η between the freezing and melting
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points. The value 14.96 of zB(2.2) for η = 0.735 is not very far from the upper
bound 17.89 obtained by assuming that λ(µ)|Br|zB(r) ≤ 1 (which holds as
µ→ ∞). However the curve of zB(3) decreases nearly linearly and slowly towards
0; perhaps surprisingly, this curve does not show any change at the freezing and
melting points.
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Fig. 3. The alignment functions zB(2.2) (�) and zB(3) (�) versus area fraction (left
figure). Estimated hexagonality number H(1.3) (�) and hexagonality statistic ψ(1.3)
(�) versus area fraction (right figure).

4.4 Hexagonality Number

The idea behind any hexagonality characteristic is to look for deviations from
the hexagonal arrangement of neighbouring points to a point in an equilateral
triangular lattice.

A first possibility is to use Ripley’sK function (see e.g. [25]). InR2, assuming
stationarity, λ(µ)K(r) is the mean number of points in a disk of radius r centred
at the typical point (which is not counted). It vanishes for r < 1 and takes the
value 6 for values of r a bit larger than 1 in the case of an equilateral triangular
lattice with side length 2. Thus, for the hard core Gibbs point process when r
is a bit larger than 1 and the number of points is fixed, one should expect an
abrupt change of the values of K(r) for η in the phase transition region. This,
however, was not observed in our simulations, where we observed for K(r) a
continuous and nearly linear dependence of η.

Quite different is the behaviour of the hexagonality number H(r), the proba-
bility that a disk of radius r centred at the typical point contains exactly 6 other
points. Figure 3 shows the estimated H(1.3) as an increasing function of η. The
curve is steepest when η is between the freezing and melting points.

Weber et al. (see [30]) consider the bond-orientational number ψ(r) defined
as the norm of the mean of the following sum taken over all points of the hard
core Gibbs point process contained in a disk of radius r centred at the typical
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point: ∑
j

e6iφj

where i denotes the imaginary unit and φj is the angle between the x-axis and the
line through the typical point and the jth point contained in the disk. Clearly,
this characteristic is well adapted to quantify the degree of hexagonality in a
point pattern. Figure 3, which shows the estimated ψ(1.3) as a function of η, is
similar to Fig. 3.
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Abstract. We present an efficient method for the computer simulation of granular
media based on dynamic triangulations. Round and polygonal grains are considered.
In both cases, we explain the theoretical principles on which the methods are based.
The simulation schemes are outlined and several examples are given.

1 Introduction

The distinct element method (DEM) is a natural tool for computer simulations of
highly discontinuous phenomena. By considering each element, particle, or grain
separately, it allows to take into account their local behavior while providing
global measures. Classical examples include molecular dynamics and granular
media simulations. The main drawback of this approach is traditionally associ-
ated with the high computational cost of detecting and resolving the interactions
between the elements. To be more precise, there is a non-compressible cost asso-
ciated with the implementation of the physical law governing those interactions,
and an overhead associated with finding where those interactions occur. Efficient
neighborhood functions can greatly reduce this overhead, thus allowing larger
and longer simulations to be performed. The following sections present two such
neighborhoods based on dynamic triangulations. One of them is restricted to
round grains, in two or three dimensions, the other allows grains of any polyg-
onal shape, but in 2D only. For both cases, the structures and algorithms are
described, the underlying physics is briefly sketched, and several examples are
given.

2 Simulation of Granular Media

Granular media cannot be assimilated to any of the three states of matter: solid,
liquid, gas. The typical sandpile, for example, offers a wide range of behavior
modes that violate some of the characteristics of each state. A granular medium
is not a solid, because it does not resist stretching, but is not a gas either, because
it resists compression. And unlike a liquid, its surface at rest may not be flat.
The study of such behaviors conducts naturally to considering not the medium
itself, but each grain independently, and to perform simulations with distinct
element methods. Those methods only make sense if the number of grains is
large enough to accurately replicate natural behaviors. This requires either very
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powerful computers, or extremely efficient simulation methods, or both! The
main issues with a distinct element approach are:

1. The detection of the interactions between grains. A large number of grains
means a very large number of potential collisions, especially if the medium is
volatile. Various approaches exist to reduce this number: regular or adaptive
grids (quadtrees, see [22]), distance-based neighborhood, etc. Coarse and
fine detection are often combined: first decide which grains may collide, then
locate the contact point (see [17]).

2. Applying a contact model that will ensure realistic behavior at the local
as well as at the global level. Two approaches exist: The hard body model
considers instantaneous impacts, with only one such impact happening at
any given time and an immediate update of the grain trajectories. This works
well for sparse, volatile media. The soft body model on the other hand allows
a small continuous deformation of the grains at the contact point to absorb
and restitute the energy of the shock. This works well for dense, static media.

Computer simulations are expected to bring a better understanding of qual-
itative phenomena like convection, segregation, arching effects, etc, as well as
trustable values for quantitative parameters like local density, homogeneity, en-
ergy dissipation, etc.

One particular area of interest is the study of the packing process. The ques-
tion is simple: “How to put as many elements as possible in a given container”,
but the answers are many and often difficult. Kepler’s conjecture about the max-
imal density of balls of equal size, for example, was stated almost 400 years ago
and only recently [10] proposed a proof. And if the packing of equal spheres
finally seems to be mastered, optimal packings of spheres of unequal radii - or of
general polyhedral grains - still cannot be determined analytically and require
either experiments or simulations. They are, though, a key parameter of many
industrial processes, and a better understanding of their principles would ben-
efit both research and production in areas such as pharmacy, chemistry, civil
engineering, etc.

3 When the Grains Are Round

In this section we describe a collision detection method that can be used when
the grains are round. The idea is to identify a small subset of the pairs of grains
where a collision may take place (Fig. 1), ignoring the vast majority of pairs for
which we have an a priori criterion to exclude any contact.

3.1 Dynamic Triangulations

Let us first see how a static triangulation can be used to detect collisions. Given
a set of n disjoint spheres where sphere Si has center ci and radius ri (Fig. 2),
we associate with each sphere its Laguerre cell Li defined as:

Li = {x | Pi(x) ≤ Pj(x) ∀j �= i} where Pi(x) = ||ci − x||2 − r2i
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Fig. 1. The triangulation used to detect collisions among discs. Including the four
corners in the triangulation is not mandatory, but has a nice side effect: the number of
edges does not depend on the position of the discs in the box.

This definition is similar to that of the well known Voronoi cell. It essentially
means that Li contains all the points that are “closer” to Si than to any other
sphere, but using the power function to a sphere as a “distance”. In particular,
we have the following properties:

Pi(x) ≤ 0 ∀x ∈ Si and Pi(x) > 0 ∀x �∈ Si
So, if the spheres do not overlap, Si ⊂ Li. Therefore, there is a potential contact
between Si and Sj only if Li∩Lj �= ∅, and the detection of the collisions between
two spheres is reduced to the adjacency detection among the Laguerre cells. The
weighted Delaunay triangulation is the dual structure of the Laguerre com-
plex1, that is: edge (i, j) exists if and only if Li ∩ Lj �= ∅. Collision detection is
now reduced to the enumeration of the edges in the weighted Delaunay triangu-
lation.

It is possible to slightly relax one of the constraints: the spheres need not
be disjoint. Overlaps are allowed and will appear as edges in the triangulation
(Fig. 3) as long as they remain small, thus allowing soft body contact models to
be used. Problems arise when four or more spheres intersect each other at the
same point, but this never happens in granular media.

So far we have made no assumption about the dimension of the space, because
these properties are valid in any dimension. Real life applications, though, are
in dimensions two and three. In 2D, the number of edges in any triangulation is
at most three times the number of points, yielding a very efficient ratio of edges
to test for potential collision versus effective collisions. In 3D, there are nasty
configurations, but for most practical uses, the Delaunay triangulation still has
a linear number of edges (see [3]).
1 The Laguerre complex is also known as Power Diagram (see [1] and references
therein). The Delaunay triangulation of weighted sites used here is also known as
regular triangulation. Boissonnat and Yvinec [3] made an extensive review of these
fundamental computational geometry tools.
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L3L4

P1(x)
x

Fig. 2. The spheres Si, the Laguerre cells Li, and the weighted Delaunay triangulation
on the center of the spheres. The power P1(x) of x to S1 is shown, measured as the
squared distance along the tangent from x to the contact point.

Fig. 3. The Laguerre cells and weighted Delaunay triangulation with overlapping
spheres. Here the overlaps are exagerated, but the detection still works. In practice,
the overlaps are about 1% of the size of the balls.

This collision detection mechanism seems quite appealing, but what happens
when the positions ci of the spheres move? The distances Pi(x) change and the
minimum for a given x can be attained for a different i, yielding a different
Laguerre complex and a different weighted Delaunay triangulation, as shown in
Fig. 4. Recomputing the whole triangulation from scratch is not an option: it
takes too much time and the expected benefit of the method vanishes.

Fortunately, another property of the Delaunay triangulation helps maintain-
ing it efficiently. So far we have seen the Delaunay triangulation as the dual of
the Laguerre complex. It is also among all possible triangulations the only one
satisfying the incircle criterion: in 2D, every disc enclosing a triangle contains
no other points, see Fig. 5.

It is therefore possible at any time to identify all the portions of the triangula-
tion that have become invalid under the motion of the sites by checking whether
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Fig. 4. As the spheres move, the original Delaunay triangulation may fail to detect
contacts. Maintaining the triangulation is mandatory: a new edge appears while another
one disapears.

Fig. 5. The incircle test: in the right picture, the top grey triangle is valid while
the bottom one is not. After flipping (right picture) the triangulation becomes the
Delaunay triangulation.

the enclosing discs are empty. More precisely, for the configuration shown in
Fig. 6 (left), the sign of the determinant

∆ =

∣∣∣∣∣∣∣∣
x1 y1 r

2
1 − (x21 + y21) 1

x2 y2 r
2
2 − (x22 + y22) 1

x3 y3 r
2
3 − (x23 + y23) 1

x4 y4 r
2
4 − (x24 + y24) 1

∣∣∣∣∣∣∣∣
where xi (resp. yi) is the x (resp. y) coordinate of the center ci and ri the

radius of the sphere i, tells whether the triangulation is locally valid or not.
Such a local Delaunay criterion is also valid higher dimensions. In 3D, the

discs enclosing triangles are replaced by spheres enclosing tetrahedra. It also
extends to the weighted generating sites used for our purpose.
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Once illegal portions have been identified, local transformations - called flips -
are then performed to re-enforce the Delaunay criteria in the triangulation. Flip-
ping means alternating between the valid triangulations of a closed area defined
by 4 (2D) or 5 (3D) points (see [6]). In 2D, only one operation is necessary, while
in 3D two cases occur: the addition or the removal of an edge (Fig. 6).

2

1

4

3

TTE 1

TTE 2

1

2
3

4

5

Fig. 6. The flips in 2D and in 3D.

Two common problems in Computational Geometry arise when computing
the determinant ∆:

Degeneracy : If ∆ = 0, the four points are exactly on the same circle, and
both possible triangulations can be seen as valid or invalid. This degenerate
case is carefully avoided in theory. Since it clearly happens in practice, we just
choose arbitrarily one of the two, knowing this does not break our collision
detection. Some time later when the positions have evolved, chances are high
that the degeneracy will have been lifted.
Numerical stability : The points may be very close to being on the same circle.
In this case, the absolute value of ∆ will be very small. So small that the
limited precision of the computer is defeated, and it may give a false result to
the incircle test. The problem here is twofold: again we could obtain a valid
triangulation that is temporarily not the Delaunay triangulation, without
jeopardizing our collision detection scheme, but we could also end up with
inconsistencies in our data structures. This second case is dangerous for the
whole simulation, and the workaround consists in detecting possibly false
evaluations of ∆ and repeating the computation with exact arithmetics.

At this stage, there only remains the construction of the initial triangulation,
indeed a well known problem in numerical simulation. The theory and compu-
tational implementation closest to our needs is that of Joe [11,12]. We need a
more elaborate version, though, because we are dealing with weighted generating
sites and we want to transform the triangulation over time. While the former
constraint is easily satisfied, the latter forces us to use elaborate data structures
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to represent the triangulation as well as proximity relations. This is achieved
with doubly connected edge lists (DCEL) introduced by [8] in 2D, and doubly
connected face lists (DCFL) introduced by [5] in 3D.

3.2 Distinct Element Modeling and Simulation

The use of the dynamic Delaunay triangulation as neighborhood function implies
some changes in the general scheme of a distinct element simulation algorithm.
To illustrate this, we decompose the algorithm used to perform soft particle
simulation: steps 1 and 5 would not appear in a strait-forward method, while
step 2 would require another way to find the collisions.

1. Construct the initial Delaunay triangulation T
This is the startup overhead, paid only once. As mentioned before, the prob-
lem is well covered in the literature and many software packages exist that
compute this triangulation efficiently, both in 2D or in 3D. We adapted these
methods to the weighted case and dynamic data structures.

2. Detect contact along edges of T
Along each edge (i, j) of T, if ||ci − cj || ≤ ri + rj then there is a contact
between spheres i and j. There may be edges with no contact, but there may
not be a contact without an edge. This is where the use of the triangulation
shows its strength, reducing the average detection complexity from O(n2) to
O(n).

3. Apply some law at every contact point
Once all the contact points have been identified, proper action must be taken
according to the nature of the simulation. This action can be based on values
like the size of the overlap, relative normal and shear speeds, particle types,
etc. Upon completion of this step, all the forces acting on the particles at
every contact point should be known.

4. Update the trajectories
After summing the forces contributed by the contacts in step 3 and external
forces (gravitation, etc), it is now possible to integrate the motion equations
over the duration of the iteration, resulting in new particle positions.

5. Update the triangulation T with local operations
This is the running overhead of the triangulation. It involves
5a. checking if every edge (2D) or triangle (3D) is locally legal and
5b. performing the necessary flips.
However, if the motions of the grains are relatively slow (as in a static, dense
granular media), the triangulation changes seldom. Furthermore, the elapsed
time between the appearance of an edge in the triangulation and the actual
contact between the corresponding grains is such that this step may safely
be skipped most of the time. The net result is a much faster algorithm that
still detects all the collisions, even if the triangulation slightly breaks the
Delaunay criterion.

6. Go back to 2
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The iteration duration δt must be chosen carefully. Small values will require
many more iterations for the same result, but too large values might introduce
instabilities in the triangulation (step 5) and a loss of accuracy in the model
(step 3). The soft body theory assumes a contact duration of about 10−5 sec-
onds and requires at least 100 iterations for every contact to be on the safe
side, thus setting δt = 10−7. This is too small for today’s computers, though,
and most authors admit using a much larger value, in the 10−4 to 10−5 range.
The triangulation usually needs to be updated 100 to 1000 times per second,
depending of the volatility of the media, so step 5 is only executed every 100
iterations or so.

If a hard body model is used for the contacts, time is not sliced in iterations
of equal duration δt anymore. The trajectories of the grains and the evolution of
the triangulation give the exact time of each contact. A global scheduler is then
used to deal with these collisions in chronological order. See [9] and references
therein for a complete theoretical study of what they call a kinetic data structure.

3.3 The Physical Models

In the algorithm presented above, steps 1, 2 and 5 are “support” steps, in that
they deal with creating, utilizing and maintaining the triangulation. On the other
hand, steps 3 and 4 perform the actual simulation.

In step 4 we assume that all the forces acting on each grain i are known.
These forces come from contacts with other grains - as computed in step 3 - or
from contacts with the walls or floor, or from external factors like gravitation.
From the sum of all these forces we compute the new speed and position of each
grain by integrating the motion equations:

ai(t) =
1

massi

∑
forcesi(t)

vi(t) = vi(t− δt) + δtai(t)
ci(t) = ci(t− δt) + δtvi(t)

Step 3 holds most of the magic that turns a distinct element computer simu-
lation into a realistic representation of real life phenomena. The complete study
of the shock between two spheres is beyond the scope of this article. We give a
brief description of the soft body models we have used. The interested reader
will find extensive coverage of this topic for example in [19].

The shock can be seen as a two phase process: in the first phase, the kinetic
energy is absorbed and transformed into an elastic deformation of the grains; in
the second phase, a part of this deformation is given back as kinetic energy.

The force at the contact point can be decomposed into a normal and a
tangential part. The normal force also has two distinct components: one elastic
and one viscous. The elastic component acts like a spring. It is a function of the
size of the overlap between the two spheres: the bigger this overlap, the stronger
the repulsion force, although the relation may not be linear.
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The viscous component acts like a dash. It is a function of the relative speed
between the two spheres: in the first phase, it will add to the elastic part and
further absorb the kinetic energy. In the second phase, however, it acts in the
opposite direction and accounts for the permanent deformation of the grain, the
heat dissipation, etc.

The pioneer model of [4] is based on linear expressions for both elastic and
viscous components of the normal and tangential forces. Later additions include
non-linear versions of the elastic component by [13] and hysteretic forces by [18].

The simplest form of tangential force is given by Coulomb’s law that only
consider a friction coefficient. More elaborate versions also take into account an
elastic and a viscous component.

3.4 Parallelism

Besides efficient collision detection, an obvious way to tackle larger simulations is
to use very powerful computers. Nowadays, this statement often involves some
form of parallelism, either with shared memory parallel servers or with dis-
tributed clusters of machines.

The hard body models rely on a global scheduler to treat the degeneracies
in chronological order. The amount of work required to locally update the tri-
angulation is relatively small compared to the number of events. Therefore, the
degree of parallelism inherent to the method is small, which means that the
expected benefit only happens for small numbers of processors.

The soft body models, on the other hand, allow a spatial decomposition of
the simulated area with a very high proportion of independent, local operations.
Furthermore, clever design of the data structures avoids concurrent accesses
throughout most of the simulation. Thus, that method has a high degree of
parallelism and the performances still grow with large numbers of processors.

The algorithm given in Sect. 3.2 was implemented on a CRAY T3D with
very good results (see [7]). Steps 2, 3, 4 and 5a were performed in parallel on
up to 128 processors. The remaining parts of the code, step 1 and 5b, were left
sequential because their impact on the overall running time is small and their
efficient parallelization is much more difficult. Access and efficient use of this
supercomputer was critical when performing some of the the more demanding
experiments (see below). For example, one run of the “falling rock” simulation
that would take a whole week-end of computation on a standard workstation
was typically completed in two hours on the T3D!

3.5 Examples

Many simulations were performed using 2D discs as grains, the reader is referred
to [15] for a complete description and to [14] for more images and videos. Both
hard and soft body models were used. Here are a few examples.

Figure 7 comes from the simulation of a rock fall on an embankment, a joint
project with Prof. Descoeudres of the Civil Engineering Department of EPFL.
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Fig. 7. Rock fall on an embankment.

Many mountain roads in Switzerland have to be protected against rock falls by
galleries composed of a concrete slab topped with a granular bed. The absorption
of falling rock impacts by this bed is the key issue. Physical experiments were
performed and then duplicated by computer simulation. This allowed us to fit the
model more precisely. The real experiment involved a 1000 Kg bloc of concrete
fall with a 10 meters vertical drop. The simulation was performed with the
same initial conditions. The picture shows the final position of the rock after
absorption by a bed composed of approx. 20’000 grains. The colors identify the
horizontal layers and their deformation due to the impact. No special technique
was used to differentiate the falling rock from the other grains, proving the great
versatility and robustness of the method.

→

↙

→

Fig. 8. Impact absorption by the granular bed and pressure distribution on the slab.

The four images in Fig. 8 were produced from the same simulation, at four
different times immediately after the impact. They show the impact wave prop-
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agation inside the media (grains under higher pressure have a lighter shade of
gray) as well as the repartition of the pressure on the bottom and sides of the
bed. Only the soft body model allows such an aggregate representation of the
forces in a dense media. The situation shown in Fig. 8 corresponds to a bed
formed of grains of various sizes, the bed itself was obtained by a natural pack-
ing process. The experiment was repeated with regular beds formed of identical
grains disposed on a grid, but the results were quite different: the pressure is not
well distributed in the media, and transmitted mostly in a single spot on the
slab.

Fig. 9. Pressure distribution. All edges in the triangulation that actually correspond
to a contact between two spheres are drawn with a thickness proportional to the force
at that contact point. Forces against the walls are represented identically.

Figure 9 is a packing of 2D discs where the forces at each contact point are
drawn. The only external element is the gravitation force acting on each grain.
As expected, the forces increase near the bottom, since the grains there have to
“carry” the grains above them. The numerous arches, on the other hand, are not
so intuitive but are nevertheless a key phenomenon of granular media. Similar
effects are simulated with a different approach by [2] and can also be observed
in experiments by photo-elasticity.

Figure 10 adds the third dimension to those simulations. It represents the
packing of about 1000 spheres of 3 different radii subject to gravitation (to
initiate the packing) and vibration of the enclosing box (to further improve the
packing).

4 When the Grains Are Polygonal

We describe in this section a collision detection method that can be used when
the grains are represented by polygons. The idea is to decompose the interstices
between the grains, maintaining a dynamic triangulation of this space, updating
it according to the motion of the grains and rely on it to report any collision. 2D
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Fig. 10. A 3D packing of about 1000 spheres in the unit cube. Left: 3D view. Right:
bottom view.

simulations based on this technique have been performed by [16]. Unfortunately,
it does not generalize trivially to 3D; we will list the problems that occur as well
as possible solutions.

4.1 In 2D

In 2D, the grains may have any simple polygonal shape: convex or not, “round”
or “flat”, etc. (Fig. 11).

Fig. 11. The triangulation used for detecting collisions among 2D polygonal grains.

A triangulation is built on the vertices of the grains and constrained by the
edges of the grains, resulting in a decomposition of the free space between the
grains. Any movement - translation, rotation or both - of the grains will thus
be transmitted to the triangulation, possibly causing a degeneracy, that is the
disappearing of a triangle due to one of its vertices reaching the opposite edge.
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• If that edge belongs to a grain, then there has been a contact, and an ap-
propriate hard-body, instantaneous collision model is used to update the
trajectories of those two grains.

• If that edge does not belong to a grain, a local transformation of the trian-
gulation is performed to guarantee it remains valid (Fig. 12).

Fig. 12. A degeneracy in the triangulation and the local re-triangulation.

Given the positions and trajectories of all the grains, therefore of all ver-
tices, it is possible to compute exactly for every triangle when it will become
degenerate. All these events are inserted in a scheduler. The simulation then
loops forever, taking care of the next degeneracy, updating the triangulation
and adjusting future events.

Computer simulations of the flow of grains through an hourglass were per-
formed. As long as enough grains remain in the upper part, the flow through the
opening is independent of time (Fig. 13). Again, more examples and videos can
be found on the web pages of [14].

4.2 In 3D

The technique of the preceding paragraph cannot be used in 3D as it is, because
a 3D polyhedral shape may not admit a decomposition into tetrahedra. The
smallest and simplest example of a non-triangulable polyhedron was already
given in 1928 by Schönhart (reported, among others, by [3]). This means, if at
any time the position of the grains is such that some part of the space between
them cannot be triangulated, the whole detection process fails.

Here are two ways to possibly get around this limitation and still apply this
method in 3D, both of which are still under theoretical study:

1. Restrict the shapes of the grains
Even the restriction of the grains to regular tetrahedra of the same size
may not be enough to guarantee the existence of a triangulation between
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Fig. 13. The flow of grains in an hourglass.

Fig. 14. Schönhart’s polyhedron, 3D view (left) and deformed top view (right). It is
basically a twisted, triangular-based cylinder.

them. Furthermore, such a restricted model would not be a big improvement
over spheres. Using non-regular tetrahedra certainly leads to potentially non-
triangulable area such as Schönhart’s polyhedron.

2. Use additional points
By adding enough auxiliary points (Steiner points, see Weil’s paper in this
volume), any space bouded by piecewise linear surfaces can be triangulated.
The problem here is to balance between adding enough points to succeed,
and not adding too many (or even remove some when they are not needed
anymore) in order to remain efficient, especially in a dynamic context.

Since none of the two possibilities seems promising, our current plan is to
encapsulate each polyhedral grain in a sphere, use the Delaunay triangulation
as in Sect. 3 for a first stage, global detection scheme, and then perform local,
pairwise contact detection where necessary. However, this will probably impose
some restrictions on the shape and relative sizes of the grains.
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Once the collision detection issues will be solved, the local contact model,
either soft or hard bodies, will also require some attention to be applied to 3D
polyhedral grains.

5 Conclusion

Computer simulation of granular media is a difficult topic, but an exciting re-
search area where close multidisciplinary collaboration among e.g. physicists,
materials scientists, mathematicians and computer scientists is mandatory. Al-
though no universal solution seems underway, specific cases benefit from various
techniques and models. Our collision detection methods and the tools we built
using them allowed us to perform realistic large scale simulations of specific phe-
nomena like grain flows, convection and segregation, pressure absorption and
distribution in the special cases of round or 2D polygonal grains.

Although 2D models sometimes give a good approximation of the 3D world,
there are many cases where a 3D model is necessary. This calls for more elaborate
detection mechanisms, more efficient contact models, many more grains, better
visualization tools, etc. We have achieved this goal with spherical grains and are
now able to consolidate previous results obtained in 2D as well as undertake new
simulations that did not fit in a 2D model.

Polyhedral grains still require more attention. The current knowledge in 3D
space decomposition is not very helpful for our purpose, so maybe a completely
different approach than that used in 2D is needed to efficiently detect collisions
among polyhedra. A contact model must then take into account at least two
cases: point against face and edge against edge. And besides spherical and poly-
hedral grains, one may wish to simulate more general grain shape, which in turn
will require other detection schemes and contact models.
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