I0312 23:23:10.648330  2676 caffe.cpp:218] Using GPUs 0
I0312 23:23:10.663291  2676 caffe.cpp:223] GPU 0: GeForce GTX 1070
I0312 23:23:10.862406  2676 solver.cpp:44] Initializing solver from parameters: 
test_iter: 56
test_interval: 28
base_lr: 0.001
display: 20
max_iter: 5000
lr_policy: "step"
gamma: 0.1
momentum: 0.9
weight_decay: 0.0005
stepsize: 100000
snapshot: 4999
snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_sinatrain"
solver_mode: GPU
device_id: 0
net: "examples/alexnetfinetune/train_valsina.prototxt"
train_state {
  level: 0
  stage: ""
}
type: "SGD"
I0312 23:23:10.863147  2676 solver.cpp:87] Creating training net from net file: examples/alexnetfinetune/train_valsina.prototxt
I0312 23:23:10.863476  2676 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer data
I0312 23:23:10.863488  2676 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I0312 23:23:10.863648  2676 net.cpp:53] Initializing net from parameters: 
name: "AlexNet"
state {
  phase: TRAIN
  level: 0
  stage: ""
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 227
    mean_file: "examples/Mydataset_train_lmdb/mean_imagetest.binaryproto"
  }
  data_param {
    source: "examples/Mydataset_train_lmdb"
    batch_size: 256
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "conv1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "norm1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "norm2"
  type: "LRN"
  bottom: "conv2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "norm2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "xavier"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu5"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "xavier"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "xavier"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc8"
  type: "InnerProduct"
  bottom: "fc7"
  top: "fc8"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4
    weight_filler {
      type: "xavier"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "accuracy_training"
  type: "Accuracy"
  bottom: "fc8"
  bottom: "label"
  top: "accuracy_training"
  include {
    phase: TRAIN
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc8"
  bottom: "label"
  top: "loss"
}
I0312 23:23:10.863792  2676 layer_factory.hpp:77] Creating layer data
I0312 23:23:10.990649  2676 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_train_lmdb
I0312 23:23:11.008492  2676 net.cpp:86] Creating Layer data
I0312 23:23:11.008553  2676 net.cpp:382] data -> data
I0312 23:23:11.008602  2676 net.cpp:382] data -> label
I0312 23:23:11.008659  2676 data_transformer.cpp:25] Loading mean file from: examples/Mydataset_train_lmdb/mean_imagetest.binaryproto
I0312 23:23:11.035311  2676 data_layer.cpp:45] output data size: 256,3,227,227
I0312 23:23:11.238029  2676 net.cpp:124] Setting up data
I0312 23:23:11.238059  2676 net.cpp:131] Top shape: 256 3 227 227 (39574272)
I0312 23:23:11.238076  2676 net.cpp:131] Top shape: 256 (256)
I0312 23:23:11.238080  2676 net.cpp:139] Memory required for data: 158298112
I0312 23:23:11.238086  2676 layer_factory.hpp:77] Creating layer label_data_1_split
I0312 23:23:11.238109  2676 net.cpp:86] Creating Layer label_data_1_split
I0312 23:23:11.238113  2676 net.cpp:408] label_data_1_split <- label
I0312 23:23:11.238123  2676 net.cpp:382] label_data_1_split -> label_data_1_split_0
I0312 23:23:11.238131  2676 net.cpp:382] label_data_1_split -> label_data_1_split_1
I0312 23:23:11.238162  2676 net.cpp:124] Setting up label_data_1_split
I0312 23:23:11.238167  2676 net.cpp:131] Top shape: 256 (256)
I0312 23:23:11.238169  2676 net.cpp:131] Top shape: 256 (256)
I0312 23:23:11.238170  2676 net.cpp:139] Memory required for data: 158300160
I0312 23:23:11.238173  2676 layer_factory.hpp:77] Creating layer conv1
I0312 23:23:11.238183  2676 net.cpp:86] Creating Layer conv1
I0312 23:23:11.238185  2676 net.cpp:408] conv1 <- data
I0312 23:23:11.238189  2676 net.cpp:382] conv1 -> conv1
I0312 23:23:15.377827  2676 net.cpp:124] Setting up conv1
I0312 23:23:15.377876  2676 net.cpp:131] Top shape: 256 96 55 55 (74342400)
I0312 23:23:15.377888  2676 net.cpp:139] Memory required for data: 455669760
I0312 23:23:15.377938  2676 layer_factory.hpp:77] Creating layer relu1
I0312 23:23:15.377962  2676 net.cpp:86] Creating Layer relu1
I0312 23:23:15.377979  2676 net.cpp:408] relu1 <- conv1
I0312 23:23:15.377995  2676 net.cpp:369] relu1 -> conv1 (in-place)
I0312 23:23:15.378617  2676 net.cpp:124] Setting up relu1
I0312 23:23:15.378645  2676 net.cpp:131] Top shape: 256 96 55 55 (74342400)
I0312 23:23:15.378654  2676 net.cpp:139] Memory required for data: 753039360
I0312 23:23:15.378662  2676 layer_factory.hpp:77] Creating layer norm1
I0312 23:23:15.378685  2676 net.cpp:86] Creating Layer norm1
I0312 23:23:15.378693  2676 net.cpp:408] norm1 <- conv1
I0312 23:23:15.378708  2676 net.cpp:382] norm1 -> norm1
I0312 23:23:15.379875  2676 net.cpp:124] Setting up norm1
I0312 23:23:15.379904  2676 net.cpp:131] Top shape: 256 96 55 55 (74342400)
I0312 23:23:15.379911  2676 net.cpp:139] Memory required for data: 1050408960
I0312 23:23:15.379918  2676 layer_factory.hpp:77] Creating layer pool1
I0312 23:23:15.379935  2676 net.cpp:86] Creating Layer pool1
I0312 23:23:15.379943  2676 net.cpp:408] pool1 <- norm1
I0312 23:23:15.379958  2676 net.cpp:382] pool1 -> pool1
I0312 23:23:15.380061  2676 net.cpp:124] Setting up pool1
I0312 23:23:15.380084  2676 net.cpp:131] Top shape: 256 96 27 27 (17915904)
I0312 23:23:15.380090  2676 net.cpp:139] Memory required for data: 1122072576
I0312 23:23:15.380096  2676 layer_factory.hpp:77] Creating layer conv2
I0312 23:23:15.380120  2676 net.cpp:86] Creating Layer conv2
I0312 23:23:15.380129  2676 net.cpp:408] conv2 <- pool1
I0312 23:23:15.380141  2676 net.cpp:382] conv2 -> conv2
I0312 23:23:15.395615  2676 net.cpp:124] Setting up conv2
I0312 23:23:15.395655  2676 net.cpp:131] Top shape: 256 256 27 27 (47775744)
I0312 23:23:15.395663  2676 net.cpp:139] Memory required for data: 1313175552
I0312 23:23:15.395686  2676 layer_factory.hpp:77] Creating layer relu2
I0312 23:23:15.395700  2676 net.cpp:86] Creating Layer relu2
I0312 23:23:15.395706  2676 net.cpp:408] relu2 <- conv2
I0312 23:23:15.395717  2676 net.cpp:369] relu2 -> conv2 (in-place)
I0312 23:23:15.396646  2676 net.cpp:124] Setting up relu2
I0312 23:23:15.396669  2676 net.cpp:131] Top shape: 256 256 27 27 (47775744)
I0312 23:23:15.396675  2676 net.cpp:139] Memory required for data: 1504278528
I0312 23:23:15.396682  2676 layer_factory.hpp:77] Creating layer norm2
I0312 23:23:15.396697  2676 net.cpp:86] Creating Layer norm2
I0312 23:23:15.396703  2676 net.cpp:408] norm2 <- conv2
I0312 23:23:15.396713  2676 net.cpp:382] norm2 -> norm2
I0312 23:23:15.397075  2676 net.cpp:124] Setting up norm2
I0312 23:23:15.397091  2676 net.cpp:131] Top shape: 256 256 27 27 (47775744)
I0312 23:23:15.397096  2676 net.cpp:139] Memory required for data: 1695381504
I0312 23:23:15.397100  2676 layer_factory.hpp:77] Creating layer pool2
I0312 23:23:15.397111  2676 net.cpp:86] Creating Layer pool2
I0312 23:23:15.397116  2676 net.cpp:408] pool2 <- norm2
I0312 23:23:15.397125  2676 net.cpp:382] pool2 -> pool2
I0312 23:23:15.397186  2676 net.cpp:124] Setting up pool2
I0312 23:23:15.397199  2676 net.cpp:131] Top shape: 256 256 13 13 (11075584)
I0312 23:23:15.397203  2676 net.cpp:139] Memory required for data: 1739683840
I0312 23:23:15.397208  2676 layer_factory.hpp:77] Creating layer conv3
I0312 23:23:15.397222  2676 net.cpp:86] Creating Layer conv3
I0312 23:23:15.397229  2676 net.cpp:408] conv3 <- pool2
I0312 23:23:15.397238  2676 net.cpp:382] conv3 -> conv3
I0312 23:23:15.411098  2676 net.cpp:124] Setting up conv3
I0312 23:23:15.411116  2676 net.cpp:131] Top shape: 256 384 13 13 (16613376)
I0312 23:23:15.411120  2676 net.cpp:139] Memory required for data: 1806137344
I0312 23:23:15.411131  2676 layer_factory.hpp:77] Creating layer relu3
I0312 23:23:15.411139  2676 net.cpp:86] Creating Layer relu3
I0312 23:23:15.411144  2676 net.cpp:408] relu3 <- conv3
I0312 23:23:15.411149  2676 net.cpp:369] relu3 -> conv3 (in-place)
I0312 23:23:15.411316  2676 net.cpp:124] Setting up relu3
I0312 23:23:15.411324  2676 net.cpp:131] Top shape: 256 384 13 13 (16613376)
I0312 23:23:15.411326  2676 net.cpp:139] Memory required for data: 1872590848
I0312 23:23:15.411329  2676 layer_factory.hpp:77] Creating layer conv4
I0312 23:23:15.411339  2676 net.cpp:86] Creating Layer conv4
I0312 23:23:15.411340  2676 net.cpp:408] conv4 <- conv3
I0312 23:23:15.411360  2676 net.cpp:382] conv4 -> conv4
I0312 23:23:15.419447  2676 net.cpp:124] Setting up conv4
I0312 23:23:15.419461  2676 net.cpp:131] Top shape: 256 384 13 13 (16613376)
I0312 23:23:15.419462  2676 net.cpp:139] Memory required for data: 1939044352
I0312 23:23:15.419467  2676 layer_factory.hpp:77] Creating layer relu4
I0312 23:23:15.419473  2676 net.cpp:86] Creating Layer relu4
I0312 23:23:15.419476  2676 net.cpp:408] relu4 <- conv4
I0312 23:23:15.419479  2676 net.cpp:369] relu4 -> conv4 (in-place)
I0312 23:23:15.419606  2676 net.cpp:124] Setting up relu4
I0312 23:23:15.419612  2676 net.cpp:131] Top shape: 256 384 13 13 (16613376)
I0312 23:23:15.419615  2676 net.cpp:139] Memory required for data: 2005497856
I0312 23:23:15.419615  2676 layer_factory.hpp:77] Creating layer conv5
I0312 23:23:15.419622  2676 net.cpp:86] Creating Layer conv5
I0312 23:23:15.419625  2676 net.cpp:408] conv5 <- conv4
I0312 23:23:15.419628  2676 net.cpp:382] conv5 -> conv5
I0312 23:23:15.424048  2676 net.cpp:124] Setting up conv5
I0312 23:23:15.424058  2676 net.cpp:131] Top shape: 256 256 13 13 (11075584)
I0312 23:23:15.424062  2676 net.cpp:139] Memory required for data: 2049800192
I0312 23:23:15.424083  2676 layer_factory.hpp:77] Creating layer relu5
I0312 23:23:15.424088  2676 net.cpp:86] Creating Layer relu5
I0312 23:23:15.424090  2676 net.cpp:408] relu5 <- conv5
I0312 23:23:15.424094  2676 net.cpp:369] relu5 -> conv5 (in-place)
I0312 23:23:15.424257  2676 net.cpp:124] Setting up relu5
I0312 23:23:15.424263  2676 net.cpp:131] Top shape: 256 256 13 13 (11075584)
I0312 23:23:15.424264  2676 net.cpp:139] Memory required for data: 2094102528
I0312 23:23:15.424266  2676 layer_factory.hpp:77] Creating layer pool5
I0312 23:23:15.424271  2676 net.cpp:86] Creating Layer pool5
I0312 23:23:15.424273  2676 net.cpp:408] pool5 <- conv5
I0312 23:23:15.424291  2676 net.cpp:382] pool5 -> pool5
I0312 23:23:15.424348  2676 net.cpp:124] Setting up pool5
I0312 23:23:15.424352  2676 net.cpp:131] Top shape: 256 256 6 6 (2359296)
I0312 23:23:15.424355  2676 net.cpp:139] Memory required for data: 2103539712
I0312 23:23:15.424355  2676 layer_factory.hpp:77] Creating layer fc6
I0312 23:23:15.424374  2676 net.cpp:86] Creating Layer fc6
I0312 23:23:15.424377  2676 net.cpp:408] fc6 <- pool5
I0312 23:23:15.424397  2676 net.cpp:382] fc6 -> fc6
I0312 23:23:15.601073  2676 net.cpp:124] Setting up fc6
I0312 23:23:15.601089  2676 net.cpp:131] Top shape: 256 4096 (1048576)
I0312 23:23:15.601091  2676 net.cpp:139] Memory required for data: 2107734016
I0312 23:23:15.601097  2676 layer_factory.hpp:77] Creating layer relu6
I0312 23:23:15.601117  2676 net.cpp:86] Creating Layer relu6
I0312 23:23:15.601121  2676 net.cpp:408] relu6 <- fc6
I0312 23:23:15.601125  2676 net.cpp:369] relu6 -> fc6 (in-place)
I0312 23:23:15.601327  2676 net.cpp:124] Setting up relu6
I0312 23:23:15.601332  2676 net.cpp:131] Top shape: 256 4096 (1048576)
I0312 23:23:15.601335  2676 net.cpp:139] Memory required for data: 2111928320
I0312 23:23:15.601336  2676 layer_factory.hpp:77] Creating layer drop6
I0312 23:23:15.601359  2676 net.cpp:86] Creating Layer drop6
I0312 23:23:15.601361  2676 net.cpp:408] drop6 <- fc6
I0312 23:23:15.601366  2676 net.cpp:369] drop6 -> fc6 (in-place)
I0312 23:23:15.601413  2676 net.cpp:124] Setting up drop6
I0312 23:23:15.601418  2676 net.cpp:131] Top shape: 256 4096 (1048576)
I0312 23:23:15.601419  2676 net.cpp:139] Memory required for data: 2116122624
I0312 23:23:15.601433  2676 layer_factory.hpp:77] Creating layer fc7
I0312 23:23:15.601438  2676 net.cpp:86] Creating Layer fc7
I0312 23:23:15.601439  2676 net.cpp:408] fc7 <- fc6
I0312 23:23:15.601456  2676 net.cpp:382] fc7 -> fc7
I0312 23:23:15.681016  2676 net.cpp:124] Setting up fc7
I0312 23:23:15.681032  2676 net.cpp:131] Top shape: 256 4096 (1048576)
I0312 23:23:15.681035  2676 net.cpp:139] Memory required for data: 2120316928
I0312 23:23:15.681041  2676 layer_factory.hpp:77] Creating layer relu7
I0312 23:23:15.681061  2676 net.cpp:86] Creating Layer relu7
I0312 23:23:15.681063  2676 net.cpp:408] relu7 <- fc7
I0312 23:23:15.681114  2676 net.cpp:369] relu7 -> fc7 (in-place)
I0312 23:23:15.681531  2676 net.cpp:124] Setting up relu7
I0312 23:23:15.681540  2676 net.cpp:131] Top shape: 256 4096 (1048576)
I0312 23:23:15.681541  2676 net.cpp:139] Memory required for data: 2124511232
I0312 23:23:15.681543  2676 layer_factory.hpp:77] Creating layer drop7
I0312 23:23:15.681547  2676 net.cpp:86] Creating Layer drop7
I0312 23:23:15.681550  2676 net.cpp:408] drop7 <- fc7
I0312 23:23:15.681566  2676 net.cpp:369] drop7 -> fc7 (in-place)
I0312 23:23:15.681596  2676 net.cpp:124] Setting up drop7
I0312 23:23:15.681617  2676 net.cpp:131] Top shape: 256 4096 (1048576)
I0312 23:23:15.681620  2676 net.cpp:139] Memory required for data: 2128705536
I0312 23:23:15.681622  2676 layer_factory.hpp:77] Creating layer fc8
I0312 23:23:15.681638  2676 net.cpp:86] Creating Layer fc8
I0312 23:23:15.681641  2676 net.cpp:408] fc8 <- fc7
I0312 23:23:15.681644  2676 net.cpp:382] fc8 -> fc8
I0312 23:23:15.682404  2676 net.cpp:124] Setting up fc8
I0312 23:23:15.682410  2676 net.cpp:131] Top shape: 256 4 (1024)
I0312 23:23:15.682412  2676 net.cpp:139] Memory required for data: 2128709632
I0312 23:23:15.682416  2676 layer_factory.hpp:77] Creating layer fc8_fc8_0_split
I0312 23:23:15.682420  2676 net.cpp:86] Creating Layer fc8_fc8_0_split
I0312 23:23:15.682436  2676 net.cpp:408] fc8_fc8_0_split <- fc8
I0312 23:23:15.682440  2676 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_0
I0312 23:23:15.682445  2676 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_1
I0312 23:23:15.682493  2676 net.cpp:124] Setting up fc8_fc8_0_split
I0312 23:23:15.682497  2676 net.cpp:131] Top shape: 256 4 (1024)
I0312 23:23:15.682499  2676 net.cpp:131] Top shape: 256 4 (1024)
I0312 23:23:15.682502  2676 net.cpp:139] Memory required for data: 2128717824
I0312 23:23:15.682503  2676 layer_factory.hpp:77] Creating layer accuracy_training
I0312 23:23:15.682507  2676 net.cpp:86] Creating Layer accuracy_training
I0312 23:23:15.682523  2676 net.cpp:408] accuracy_training <- fc8_fc8_0_split_0
I0312 23:23:15.682526  2676 net.cpp:408] accuracy_training <- label_data_1_split_0
I0312 23:23:15.682543  2676 net.cpp:382] accuracy_training -> accuracy_training
I0312 23:23:15.682548  2676 net.cpp:124] Setting up accuracy_training
I0312 23:23:15.682564  2676 net.cpp:131] Top shape: (1)
I0312 23:23:15.682567  2676 net.cpp:139] Memory required for data: 2128717828
I0312 23:23:15.682569  2676 layer_factory.hpp:77] Creating layer loss
I0312 23:23:15.682572  2676 net.cpp:86] Creating Layer loss
I0312 23:23:15.682588  2676 net.cpp:408] loss <- fc8_fc8_0_split_1
I0312 23:23:15.682592  2676 net.cpp:408] loss <- label_data_1_split_1
I0312 23:23:15.682595  2676 net.cpp:382] loss -> loss
I0312 23:23:15.682615  2676 layer_factory.hpp:77] Creating layer loss
I0312 23:23:15.682878  2676 net.cpp:124] Setting up loss
I0312 23:23:15.682898  2676 net.cpp:131] Top shape: (1)
I0312 23:23:15.682898  2676 net.cpp:134]     with loss weight 1
I0312 23:23:15.682929  2676 net.cpp:139] Memory required for data: 2128717832
I0312 23:23:15.682930  2676 net.cpp:200] loss needs backward computation.
I0312 23:23:15.682936  2676 net.cpp:202] accuracy_training does not need backward computation.
I0312 23:23:15.682951  2676 net.cpp:200] fc8_fc8_0_split needs backward computation.
I0312 23:23:15.682953  2676 net.cpp:200] fc8 needs backward computation.
I0312 23:23:15.682955  2676 net.cpp:200] drop7 needs backward computation.
I0312 23:23:15.682957  2676 net.cpp:200] relu7 needs backward computation.
I0312 23:23:15.682973  2676 net.cpp:200] fc7 needs backward computation.
I0312 23:23:15.682976  2676 net.cpp:200] drop6 needs backward computation.
I0312 23:23:15.682976  2676 net.cpp:200] relu6 needs backward computation.
I0312 23:23:15.682979  2676 net.cpp:200] fc6 needs backward computation.
I0312 23:23:15.682981  2676 net.cpp:200] pool5 needs backward computation.
I0312 23:23:15.682983  2676 net.cpp:200] relu5 needs backward computation.
I0312 23:23:15.682986  2676 net.cpp:200] conv5 needs backward computation.
I0312 23:23:15.682987  2676 net.cpp:200] relu4 needs backward computation.
I0312 23:23:15.682998  2676 net.cpp:200] conv4 needs backward computation.
I0312 23:23:15.683001  2676 net.cpp:200] relu3 needs backward computation.
I0312 23:23:15.683002  2676 net.cpp:200] conv3 needs backward computation.
I0312 23:23:15.683006  2676 net.cpp:200] pool2 needs backward computation.
I0312 23:23:15.683007  2676 net.cpp:200] norm2 needs backward computation.
I0312 23:23:15.683010  2676 net.cpp:200] relu2 needs backward computation.
I0312 23:23:15.683012  2676 net.cpp:200] conv2 needs backward computation.
I0312 23:23:15.683014  2676 net.cpp:200] pool1 needs backward computation.
I0312 23:23:15.683017  2676 net.cpp:200] norm1 needs backward computation.
I0312 23:23:15.683018  2676 net.cpp:200] relu1 needs backward computation.
I0312 23:23:15.683020  2676 net.cpp:200] conv1 needs backward computation.
I0312 23:23:15.683023  2676 net.cpp:202] label_data_1_split does not need backward computation.
I0312 23:23:15.683025  2676 net.cpp:202] data does not need backward computation.
I0312 23:23:15.683027  2676 net.cpp:244] This network produces output accuracy_training
I0312 23:23:15.683029  2676 net.cpp:244] This network produces output loss
I0312 23:23:15.683043  2676 net.cpp:257] Network initialization done.
I0312 23:23:15.683274  2676 solver.cpp:173] Creating test net (#0) specified by net file: examples/alexnetfinetune/train_valsina.prototxt
I0312 23:23:15.683326  2676 net.cpp:296] The NetState phase (1) differed from the phase (0) specified by a rule in layer data
I0312 23:23:15.683336  2676 net.cpp:296] The NetState phase (1) differed from the phase (0) specified by a rule in layer accuracy_training
I0312 23:23:15.683465  2676 net.cpp:53] Initializing net from parameters: 
name: "AlexNet"
state {
  phase: TEST
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
    crop_size: 227
    mean_file: "examples/Mydataset_test_lmdb/mean_imagetest.binaryproto"
  }
  data_param {
    source: "examples/Mydataset_test_lmdb"
    batch_size: 50
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "conv1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "norm1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "norm2"
  type: "LRN"
  bottom: "conv2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "norm2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "xavier"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu5"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "xavier"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "xavier"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc8"
  type: "InnerProduct"
  bottom: "fc7"
  top: "fc8"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4
    weight_filler {
      type: "xavier"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "fc8"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc8"
  bottom: "label"
  top: "loss"
}
I0312 23:23:15.683547  2676 layer_factory.hpp:77] Creating layer data
I0312 23:23:15.724110  2676 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_test_lmdb
I0312 23:23:15.734433  2676 net.cpp:86] Creating Layer data
I0312 23:23:15.734490  2676 net.cpp:382] data -> data
I0312 23:23:15.734519  2676 net.cpp:382] data -> label
I0312 23:23:15.734539  2676 data_transformer.cpp:25] Loading mean file from: examples/Mydataset_test_lmdb/mean_imagetest.binaryproto
I0312 23:23:15.775971  2676 data_layer.cpp:45] output data size: 50,3,227,227
I0312 23:23:15.841073  2676 net.cpp:124] Setting up data
I0312 23:23:15.841104  2676 net.cpp:131] Top shape: 50 3 227 227 (7729350)
I0312 23:23:15.841121  2676 net.cpp:131] Top shape: 50 (50)
I0312 23:23:15.841122  2676 net.cpp:139] Memory required for data: 30917600
I0312 23:23:15.841127  2676 layer_factory.hpp:77] Creating layer label_data_1_split
I0312 23:23:15.841150  2676 net.cpp:86] Creating Layer label_data_1_split
I0312 23:23:15.841153  2676 net.cpp:408] label_data_1_split <- label
I0312 23:23:15.841158  2676 net.cpp:382] label_data_1_split -> label_data_1_split_0
I0312 23:23:15.841166  2676 net.cpp:382] label_data_1_split -> label_data_1_split_1
I0312 23:23:15.841298  2676 net.cpp:124] Setting up label_data_1_split
I0312 23:23:15.841322  2676 net.cpp:131] Top shape: 50 (50)
I0312 23:23:15.841325  2676 net.cpp:131] Top shape: 50 (50)
I0312 23:23:15.841352  2676 net.cpp:139] Memory required for data: 30918000
I0312 23:23:15.841354  2676 layer_factory.hpp:77] Creating layer conv1
I0312 23:23:15.841364  2676 net.cpp:86] Creating Layer conv1
I0312 23:23:15.841378  2676 net.cpp:408] conv1 <- data
I0312 23:23:15.841385  2676 net.cpp:382] conv1 -> conv1
I0312 23:23:15.845085  2676 net.cpp:124] Setting up conv1
I0312 23:23:15.845110  2676 net.cpp:131] Top shape: 50 96 55 55 (14520000)
I0312 23:23:15.845113  2676 net.cpp:139] Memory required for data: 88998000
I0312 23:23:15.845135  2676 layer_factory.hpp:77] Creating layer relu1
I0312 23:23:15.845140  2676 net.cpp:86] Creating Layer relu1
I0312 23:23:15.845142  2676 net.cpp:408] relu1 <- conv1
I0312 23:23:15.845146  2676 net.cpp:369] relu1 -> conv1 (in-place)
I0312 23:23:15.845297  2676 net.cpp:124] Setting up relu1
I0312 23:23:15.845304  2676 net.cpp:131] Top shape: 50 96 55 55 (14520000)
I0312 23:23:15.845319  2676 net.cpp:139] Memory required for data: 147078000
I0312 23:23:15.845320  2676 layer_factory.hpp:77] Creating layer norm1
I0312 23:23:15.845327  2676 net.cpp:86] Creating Layer norm1
I0312 23:23:15.845329  2676 net.cpp:408] norm1 <- conv1
I0312 23:23:15.845346  2676 net.cpp:382] norm1 -> norm1
I0312 23:23:15.845508  2676 net.cpp:124] Setting up norm1
I0312 23:23:15.845515  2676 net.cpp:131] Top shape: 50 96 55 55 (14520000)
I0312 23:23:15.845530  2676 net.cpp:139] Memory required for data: 205158000
I0312 23:23:15.845531  2676 layer_factory.hpp:77] Creating layer pool1
I0312 23:23:15.845536  2676 net.cpp:86] Creating Layer pool1
I0312 23:23:15.845538  2676 net.cpp:408] pool1 <- norm1
I0312 23:23:15.845556  2676 net.cpp:382] pool1 -> pool1
I0312 23:23:15.845613  2676 net.cpp:124] Setting up pool1
I0312 23:23:15.845618  2676 net.cpp:131] Top shape: 50 96 27 27 (3499200)
I0312 23:23:15.845619  2676 net.cpp:139] Memory required for data: 219154800
I0312 23:23:15.845621  2676 layer_factory.hpp:77] Creating layer conv2
I0312 23:23:15.845639  2676 net.cpp:86] Creating Layer conv2
I0312 23:23:15.845641  2676 net.cpp:408] conv2 <- pool1
I0312 23:23:15.845644  2676 net.cpp:382] conv2 -> conv2
I0312 23:23:15.849257  2676 net.cpp:124] Setting up conv2
I0312 23:23:15.849267  2676 net.cpp:131] Top shape: 50 256 27 27 (9331200)
I0312 23:23:15.849269  2676 net.cpp:139] Memory required for data: 256479600
I0312 23:23:15.849277  2676 layer_factory.hpp:77] Creating layer relu2
I0312 23:23:15.849294  2676 net.cpp:86] Creating Layer relu2
I0312 23:23:15.849297  2676 net.cpp:408] relu2 <- conv2
I0312 23:23:15.849299  2676 net.cpp:369] relu2 -> conv2 (in-place)
I0312 23:23:15.849706  2676 net.cpp:124] Setting up relu2
I0312 23:23:15.849714  2676 net.cpp:131] Top shape: 50 256 27 27 (9331200)
I0312 23:23:15.849716  2676 net.cpp:139] Memory required for data: 293804400
I0312 23:23:15.849719  2676 layer_factory.hpp:77] Creating layer norm2
I0312 23:23:15.849740  2676 net.cpp:86] Creating Layer norm2
I0312 23:23:15.849742  2676 net.cpp:408] norm2 <- conv2
I0312 23:23:15.849758  2676 net.cpp:382] norm2 -> norm2
I0312 23:23:15.849923  2676 net.cpp:124] Setting up norm2
I0312 23:23:15.849930  2676 net.cpp:131] Top shape: 50 256 27 27 (9331200)
I0312 23:23:15.849931  2676 net.cpp:139] Memory required for data: 331129200
I0312 23:23:15.849947  2676 layer_factory.hpp:77] Creating layer pool2
I0312 23:23:15.849951  2676 net.cpp:86] Creating Layer pool2
I0312 23:23:15.849954  2676 net.cpp:408] pool2 <- norm2
I0312 23:23:15.849972  2676 net.cpp:382] pool2 -> pool2
I0312 23:23:15.850024  2676 net.cpp:124] Setting up pool2
I0312 23:23:15.850028  2676 net.cpp:131] Top shape: 50 256 13 13 (2163200)
I0312 23:23:15.850042  2676 net.cpp:139] Memory required for data: 339782000
I0312 23:23:15.850044  2676 layer_factory.hpp:77] Creating layer conv3
I0312 23:23:15.850049  2676 net.cpp:86] Creating Layer conv3
I0312 23:23:15.850064  2676 net.cpp:408] conv3 <- pool2
I0312 23:23:15.850069  2676 net.cpp:382] conv3 -> conv3
I0312 23:23:15.858925  2676 net.cpp:124] Setting up conv3
I0312 23:23:15.858939  2676 net.cpp:131] Top shape: 50 384 13 13 (3244800)
I0312 23:23:15.858969  2676 net.cpp:139] Memory required for data: 352761200
I0312 23:23:15.858994  2676 layer_factory.hpp:77] Creating layer relu3
I0312 23:23:15.859000  2676 net.cpp:86] Creating Layer relu3
I0312 23:23:15.859017  2676 net.cpp:408] relu3 <- conv3
I0312 23:23:15.859021  2676 net.cpp:369] relu3 -> conv3 (in-place)
I0312 23:23:15.859175  2676 net.cpp:124] Setting up relu3
I0312 23:23:15.859181  2676 net.cpp:131] Top shape: 50 384 13 13 (3244800)
I0312 23:23:15.859182  2676 net.cpp:139] Memory required for data: 365740400
I0312 23:23:15.859184  2676 layer_factory.hpp:77] Creating layer conv4
I0312 23:23:15.859191  2676 net.cpp:86] Creating Layer conv4
I0312 23:23:15.859207  2676 net.cpp:408] conv4 <- conv3
I0312 23:23:15.859210  2676 net.cpp:382] conv4 -> conv4
I0312 23:23:15.866523  2676 net.cpp:124] Setting up conv4
I0312 23:23:15.866536  2676 net.cpp:131] Top shape: 50 384 13 13 (3244800)
I0312 23:23:15.866539  2676 net.cpp:139] Memory required for data: 378719600
I0312 23:23:15.866544  2676 layer_factory.hpp:77] Creating layer relu4
I0312 23:23:15.866550  2676 net.cpp:86] Creating Layer relu4
I0312 23:23:15.866554  2676 net.cpp:408] relu4 <- conv4
I0312 23:23:15.866557  2676 net.cpp:369] relu4 -> conv4 (in-place)
I0312 23:23:15.866735  2676 net.cpp:124] Setting up relu4
I0312 23:23:15.866740  2676 net.cpp:131] Top shape: 50 384 13 13 (3244800)
I0312 23:23:15.866757  2676 net.cpp:139] Memory required for data: 391698800
I0312 23:23:15.866760  2676 layer_factory.hpp:77] Creating layer conv5
I0312 23:23:15.866766  2676 net.cpp:86] Creating Layer conv5
I0312 23:23:15.866768  2676 net.cpp:408] conv5 <- conv4
I0312 23:23:15.866772  2676 net.cpp:382] conv5 -> conv5
I0312 23:23:15.871409  2676 net.cpp:124] Setting up conv5
I0312 23:23:15.871439  2676 net.cpp:131] Top shape: 50 256 13 13 (2163200)
I0312 23:23:15.871443  2676 net.cpp:139] Memory required for data: 400351600
I0312 23:23:15.871454  2676 layer_factory.hpp:77] Creating layer relu5
I0312 23:23:15.871460  2676 net.cpp:86] Creating Layer relu5
I0312 23:23:15.871464  2676 net.cpp:408] relu5 <- conv5
I0312 23:23:15.871469  2676 net.cpp:369] relu5 -> conv5 (in-place)
I0312 23:23:15.871618  2676 net.cpp:124] Setting up relu5
I0312 23:23:15.871624  2676 net.cpp:131] Top shape: 50 256 13 13 (2163200)
I0312 23:23:15.871640  2676 net.cpp:139] Memory required for data: 409004400
I0312 23:23:15.871642  2676 layer_factory.hpp:77] Creating layer pool5
I0312 23:23:15.871649  2676 net.cpp:86] Creating Layer pool5
I0312 23:23:15.871651  2676 net.cpp:408] pool5 <- conv5
I0312 23:23:15.871655  2676 net.cpp:382] pool5 -> pool5
I0312 23:23:15.871695  2676 net.cpp:124] Setting up pool5
I0312 23:23:15.871712  2676 net.cpp:131] Top shape: 50 256 6 6 (460800)
I0312 23:23:15.871714  2676 net.cpp:139] Memory required for data: 410847600
I0312 23:23:15.871716  2676 layer_factory.hpp:77] Creating layer fc6
I0312 23:23:15.871721  2676 net.cpp:86] Creating Layer fc6
I0312 23:23:15.871722  2676 net.cpp:408] fc6 <- pool5
I0312 23:23:15.871726  2676 net.cpp:382] fc6 -> fc6
I0312 23:23:16.052088  2676 net.cpp:124] Setting up fc6
I0312 23:23:16.052119  2676 net.cpp:131] Top shape: 50 4096 (204800)
I0312 23:23:16.052122  2676 net.cpp:139] Memory required for data: 411666800
I0312 23:23:16.052131  2676 layer_factory.hpp:77] Creating layer relu6
I0312 23:23:16.052139  2676 net.cpp:86] Creating Layer relu6
I0312 23:23:16.052141  2676 net.cpp:408] relu6 <- fc6
I0312 23:23:16.052148  2676 net.cpp:369] relu6 -> fc6 (in-place)
I0312 23:23:16.052384  2676 net.cpp:124] Setting up relu6
I0312 23:23:16.052388  2676 net.cpp:131] Top shape: 50 4096 (204800)
I0312 23:23:16.052390  2676 net.cpp:139] Memory required for data: 412486000
I0312 23:23:16.052392  2676 layer_factory.hpp:77] Creating layer drop6
I0312 23:23:16.052397  2676 net.cpp:86] Creating Layer drop6
I0312 23:23:16.052398  2676 net.cpp:408] drop6 <- fc6
I0312 23:23:16.052414  2676 net.cpp:369] drop6 -> fc6 (in-place)
I0312 23:23:16.052464  2676 net.cpp:124] Setting up drop6
I0312 23:23:16.052467  2676 net.cpp:131] Top shape: 50 4096 (204800)
I0312 23:23:16.052494  2676 net.cpp:139] Memory required for data: 413305200
I0312 23:23:16.052510  2676 layer_factory.hpp:77] Creating layer fc7
I0312 23:23:16.052515  2676 net.cpp:86] Creating Layer fc7
I0312 23:23:16.052516  2676 net.cpp:408] fc7 <- fc6
I0312 23:23:16.052520  2676 net.cpp:382] fc7 -> fc7
I0312 23:23:16.134677  2676 net.cpp:124] Setting up fc7
I0312 23:23:16.134694  2676 net.cpp:131] Top shape: 50 4096 (204800)
I0312 23:23:16.134696  2676 net.cpp:139] Memory required for data: 414124400
I0312 23:23:16.134716  2676 layer_factory.hpp:77] Creating layer relu7
I0312 23:23:16.134722  2676 net.cpp:86] Creating Layer relu7
I0312 23:23:16.134726  2676 net.cpp:408] relu7 <- fc7
I0312 23:23:16.134730  2676 net.cpp:369] relu7 -> fc7 (in-place)
I0312 23:23:16.135211  2676 net.cpp:124] Setting up relu7
I0312 23:23:16.135232  2676 net.cpp:131] Top shape: 50 4096 (204800)
I0312 23:23:16.135236  2676 net.cpp:139] Memory required for data: 414943600
I0312 23:23:16.135237  2676 layer_factory.hpp:77] Creating layer drop7
I0312 23:23:16.135241  2676 net.cpp:86] Creating Layer drop7
I0312 23:23:16.135243  2676 net.cpp:408] drop7 <- fc7
I0312 23:23:16.135262  2676 net.cpp:369] drop7 -> fc7 (in-place)
I0312 23:23:16.135287  2676 net.cpp:124] Setting up drop7
I0312 23:23:16.135303  2676 net.cpp:131] Top shape: 50 4096 (204800)
I0312 23:23:16.135304  2676 net.cpp:139] Memory required for data: 415762800
I0312 23:23:16.135306  2676 layer_factory.hpp:77] Creating layer fc8
I0312 23:23:16.135311  2676 net.cpp:86] Creating Layer fc8
I0312 23:23:16.135313  2676 net.cpp:408] fc8 <- fc7
I0312 23:23:16.135315  2676 net.cpp:382] fc8 -> fc8
I0312 23:23:16.135507  2676 net.cpp:124] Setting up fc8
I0312 23:23:16.135512  2676 net.cpp:131] Top shape: 50 4 (200)
I0312 23:23:16.135514  2676 net.cpp:139] Memory required for data: 415763600
I0312 23:23:16.135517  2676 layer_factory.hpp:77] Creating layer fc8_fc8_0_split
I0312 23:23:16.135560  2676 net.cpp:86] Creating Layer fc8_fc8_0_split
I0312 23:23:16.135562  2676 net.cpp:408] fc8_fc8_0_split <- fc8
I0312 23:23:16.135566  2676 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_0
I0312 23:23:16.135571  2676 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_1
I0312 23:23:16.135610  2676 net.cpp:124] Setting up fc8_fc8_0_split
I0312 23:23:16.135617  2676 net.cpp:131] Top shape: 50 4 (200)
I0312 23:23:16.135619  2676 net.cpp:131] Top shape: 50 4 (200)
I0312 23:23:16.135622  2676 net.cpp:139] Memory required for data: 415765200
I0312 23:23:16.135637  2676 layer_factory.hpp:77] Creating layer accuracy
I0312 23:23:16.135642  2676 net.cpp:86] Creating Layer accuracy
I0312 23:23:16.135643  2676 net.cpp:408] accuracy <- fc8_fc8_0_split_0
I0312 23:23:16.135646  2676 net.cpp:408] accuracy <- label_data_1_split_0
I0312 23:23:16.135650  2676 net.cpp:382] accuracy -> accuracy
I0312 23:23:16.135655  2676 net.cpp:124] Setting up accuracy
I0312 23:23:16.135658  2676 net.cpp:131] Top shape: (1)
I0312 23:23:16.135659  2676 net.cpp:139] Memory required for data: 415765204
I0312 23:23:16.135661  2676 layer_factory.hpp:77] Creating layer loss
I0312 23:23:16.135665  2676 net.cpp:86] Creating Layer loss
I0312 23:23:16.135668  2676 net.cpp:408] loss <- fc8_fc8_0_split_1
I0312 23:23:16.135669  2676 net.cpp:408] loss <- label_data_1_split_1
I0312 23:23:16.135673  2676 net.cpp:382] loss -> loss
I0312 23:23:16.135677  2676 layer_factory.hpp:77] Creating layer loss
I0312 23:23:16.135888  2676 net.cpp:124] Setting up loss
I0312 23:23:16.135893  2676 net.cpp:131] Top shape: (1)
I0312 23:23:16.135895  2676 net.cpp:134]     with loss weight 1
I0312 23:23:16.135917  2676 net.cpp:139] Memory required for data: 415765208
I0312 23:23:16.135920  2676 net.cpp:200] loss needs backward computation.
I0312 23:23:16.135922  2676 net.cpp:202] accuracy does not need backward computation.
I0312 23:23:16.135937  2676 net.cpp:200] fc8_fc8_0_split needs backward computation.
I0312 23:23:16.135939  2676 net.cpp:200] fc8 needs backward computation.
I0312 23:23:16.135941  2676 net.cpp:200] drop7 needs backward computation.
I0312 23:23:16.135967  2676 net.cpp:200] relu7 needs backward computation.
I0312 23:23:16.135984  2676 net.cpp:200] fc7 needs backward computation.
I0312 23:23:16.135987  2676 net.cpp:200] drop6 needs backward computation.
I0312 23:23:16.135988  2676 net.cpp:200] relu6 needs backward computation.
I0312 23:23:16.135990  2676 net.cpp:200] fc6 needs backward computation.
I0312 23:23:16.135993  2676 net.cpp:200] pool5 needs backward computation.
I0312 23:23:16.136008  2676 net.cpp:200] relu5 needs backward computation.
I0312 23:23:16.136008  2676 net.cpp:200] conv5 needs backward computation.
I0312 23:23:16.136010  2676 net.cpp:200] relu4 needs backward computation.
I0312 23:23:16.136013  2676 net.cpp:200] conv4 needs backward computation.
I0312 23:23:16.136014  2676 net.cpp:200] relu3 needs backward computation.
I0312 23:23:16.136016  2676 net.cpp:200] conv3 needs backward computation.
I0312 23:23:16.136018  2676 net.cpp:200] pool2 needs backward computation.
I0312 23:23:16.136021  2676 net.cpp:200] norm2 needs backward computation.
I0312 23:23:16.136023  2676 net.cpp:200] relu2 needs backward computation.
I0312 23:23:16.136024  2676 net.cpp:200] conv2 needs backward computation.
I0312 23:23:16.136026  2676 net.cpp:200] pool1 needs backward computation.
I0312 23:23:16.136041  2676 net.cpp:200] norm1 needs backward computation.
I0312 23:23:16.136044  2676 net.cpp:200] relu1 needs backward computation.
I0312 23:23:16.136045  2676 net.cpp:200] conv1 needs backward computation.
I0312 23:23:16.136047  2676 net.cpp:202] label_data_1_split does not need backward computation.
I0312 23:23:16.136065  2676 net.cpp:202] data does not need backward computation.
I0312 23:23:16.136065  2676 net.cpp:244] This network produces output accuracy
I0312 23:23:16.136067  2676 net.cpp:244] This network produces output loss
I0312 23:23:16.136093  2676 net.cpp:257] Network initialization done.
I0312 23:23:16.136191  2676 solver.cpp:56] Solver scaffolding done.
I0312 23:23:16.136680  2676 caffe.cpp:248] Starting Optimization
I0312 23:23:16.136683  2676 solver.cpp:273] Solving AlexNet
I0312 23:23:16.136685  2676 solver.cpp:274] Learning Rate Policy: step
I0312 23:23:16.138639  2676 solver.cpp:331] Iteration 0, Testing net (#0)
I0312 23:23:16.161350  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:23:16.401897  2676 blocking_queue.cpp:49] Waiting for data
I0312 23:23:22.186173  2676 solver.cpp:398]     Test net output #0: accuracy = 0.545357
I0312 23:23:22.186219  2676 solver.cpp:398]     Test net output #1: loss = 1.26114 (* 1 = 1.26114 loss)
I0312 23:23:22.457931  2676 solver.cpp:219] Iteration 0 (-7.07474e-05 iter/s, 6.31881s/20 iters), loss = 1.38639
I0312 23:23:22.460357  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.335938
I0312 23:23:22.460372  2676 solver.cpp:238]     Train net output #1: loss = 1.38639 (* 1 = 1.38639 loss)
I0312 23:23:22.460417  2676 sgd_solver.cpp:105] Iteration 0, lr = 0.001
I0312 23:23:33.165230  2676 solver.cpp:219] Iteration 20 (1.86903 iter/s, 10.7008s/20 iters), loss = 1.13092
I0312 23:23:33.165272  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.605469
I0312 23:23:33.165280  2676 solver.cpp:238]     Train net output #1: loss = 1.13092 (* 1 = 1.13092 loss)
I0312 23:23:33.165285  2676 sgd_solver.cpp:105] Iteration 20, lr = 0.001
I0312 23:23:36.300024  2676 solver.cpp:331] Iteration 28, Testing net (#0)
I0312 23:23:36.300057  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:23:38.279549  2676 solver.cpp:398]     Test net output #0: accuracy = 0.545357
I0312 23:23:38.279577  2676 solver.cpp:398]     Test net output #1: loss = 1.16134 (* 1 = 1.16134 loss)
I0312 23:23:41.725931  2676 solver.cpp:219] Iteration 40 (2.33717 iter/s, 8.55736s/20 iters), loss = 1.20381
I0312 23:23:41.738235  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.515625
I0312 23:23:41.738255  2676 solver.cpp:238]     Train net output #1: loss = 1.20381 (* 1 = 1.20381 loss)
I0312 23:23:41.738261  2676 sgd_solver.cpp:105] Iteration 40, lr = 0.001
I0312 23:23:45.567281  2676 solver.cpp:331] Iteration 56, Testing net (#0)
I0312 23:23:45.567314  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:23:47.537325  2676 solver.cpp:398]     Test net output #0: accuracy = 0.545714
I0312 23:23:47.537364  2676 solver.cpp:398]     Test net output #1: loss = 1.14157 (* 1 = 1.14157 loss)
I0312 23:23:48.830137  2676 solver.cpp:219] Iteration 60 (2.7988 iter/s, 7.14593s/20 iters), loss = 1.18281
I0312 23:23:48.842432  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.523438
I0312 23:23:48.842471  2676 solver.cpp:238]     Train net output #1: loss = 1.18281 (* 1 = 1.18281 loss)
I0312 23:23:48.842490  2676 sgd_solver.cpp:105] Iteration 60, lr = 0.001
I0312 23:23:54.134619  2676 solver.cpp:219] Iteration 80 (3.7488 iter/s, 5.33504s/20 iters), loss = 1.20185
I0312 23:23:54.146620  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.539062
I0312 23:23:54.146651  2676 solver.cpp:238]     Train net output #1: loss = 1.20185 (* 1 = 1.20185 loss)
I0312 23:23:54.146656  2676 sgd_solver.cpp:105] Iteration 80, lr = 0.001
I0312 23:23:54.778365  2676 solver.cpp:331] Iteration 84, Testing net (#0)
I0312 23:23:54.778399  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:23:56.768332  2676 solver.cpp:398]     Test net output #0: accuracy = 0.545357
I0312 23:23:56.768355  2676 solver.cpp:398]     Test net output #1: loss = 1.10908 (* 1 = 1.10908 loss)
I0312 23:24:01.276773  2676 solver.cpp:219] Iteration 100 (2.79421 iter/s, 7.15766s/20 iters), loss = 1.10751
I0312 23:24:01.288919  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.550781
I0312 23:24:01.288950  2676 solver.cpp:238]     Train net output #1: loss = 1.10751 (* 1 = 1.10751 loss)
I0312 23:24:01.288956  2676 sgd_solver.cpp:105] Iteration 100, lr = 0.001
I0312 23:24:04.057387  2676 solver.cpp:331] Iteration 112, Testing net (#0)
I0312 23:24:04.057422  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:24:06.030336  2676 solver.cpp:398]     Test net output #0: accuracy = 0.548214
I0312 23:24:06.030366  2676 solver.cpp:398]     Test net output #1: loss = 1.05868 (* 1 = 1.05868 loss)
I0312 23:24:08.410758  2676 solver.cpp:219] Iteration 120 (2.8032 iter/s, 7.1347s/20 iters), loss = 1.07986
I0312 23:24:08.422947  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.542969
I0312 23:24:08.422967  2676 solver.cpp:238]     Train net output #1: loss = 1.07986 (* 1 = 1.07986 loss)
I0312 23:24:08.422972  2676 sgd_solver.cpp:105] Iteration 120, lr = 0.001
I0312 23:24:13.330821  2676 solver.cpp:331] Iteration 140, Testing net (#0)
I0312 23:24:13.330871  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:24:15.309830  2676 solver.cpp:398]     Test net output #0: accuracy = 0.571786
I0312 23:24:15.309869  2676 solver.cpp:398]     Test net output #1: loss = 1.00978 (* 1 = 1.00978 loss)
I0312 23:24:15.570574  2676 solver.cpp:219] Iteration 140 (2.7953 iter/s, 7.15487s/20 iters), loss = 1.1149
I0312 23:24:15.573030  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.503906
I0312 23:24:15.573060  2676 solver.cpp:238]     Train net output #1: loss = 1.1149 (* 1 = 1.1149 loss)
I0312 23:24:15.573066  2676 sgd_solver.cpp:105] Iteration 140, lr = 0.001
I0312 23:24:20.904796  2676 solver.cpp:219] Iteration 160 (3.74837 iter/s, 5.33566s/20 iters), loss = 1.15146
I0312 23:24:20.916966  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.488281
I0312 23:24:20.916983  2676 solver.cpp:238]     Train net output #1: loss = 1.15146 (* 1 = 1.15146 loss)
I0312 23:24:20.916988  2676 sgd_solver.cpp:105] Iteration 160, lr = 0.001
I0312 23:24:22.625000  2676 solver.cpp:331] Iteration 168, Testing net (#0)
I0312 23:24:22.625020  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:24:24.634449  2676 solver.cpp:398]     Test net output #0: accuracy = 0.5775
I0312 23:24:24.634475  2676 solver.cpp:398]     Test net output #1: loss = 0.970126 (* 1 = 0.970126 loss)
I0312 23:24:28.095824  2676 solver.cpp:219] Iteration 180 (2.78425 iter/s, 7.18325s/20 iters), loss = 1.03344
I0312 23:24:28.108048  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.5625
I0312 23:24:28.108081  2676 solver.cpp:238]     Train net output #1: loss = 1.03344 (* 1 = 1.03344 loss)
I0312 23:24:28.108086  2676 sgd_solver.cpp:105] Iteration 180, lr = 0.001
I0312 23:24:31.963044  2676 solver.cpp:331] Iteration 196, Testing net (#0)
I0312 23:24:31.963080  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:24:33.957167  2676 solver.cpp:398]     Test net output #0: accuracy = 0.576429
I0312 23:24:33.957206  2676 solver.cpp:398]     Test net output #1: loss = 0.958613 (* 1 = 0.958613 loss)
I0312 23:24:35.273638  2676 solver.cpp:219] Iteration 200 (2.78957 iter/s, 7.16956s/20 iters), loss = 0.960444
I0312 23:24:35.285887  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.5625
I0312 23:24:35.285918  2676 solver.cpp:238]     Train net output #1: loss = 0.960444 (* 1 = 0.960444 loss)
I0312 23:24:35.285924  2676 sgd_solver.cpp:105] Iteration 200, lr = 0.001
I0312 23:24:40.657598  2676 solver.cpp:219] Iteration 220 (3.72122 iter/s, 5.37458s/20 iters), loss = 0.904809
I0312 23:24:40.669728  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.578125
I0312 23:24:40.669744  2676 solver.cpp:238]     Train net output #1: loss = 0.904809 (* 1 = 0.904809 loss)
I0312 23:24:40.669764  2676 sgd_solver.cpp:105] Iteration 220, lr = 0.001
I0312 23:24:41.304330  2676 solver.cpp:331] Iteration 224, Testing net (#0)
I0312 23:24:41.304366  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:24:43.297623  2676 solver.cpp:398]     Test net output #0: accuracy = 0.595
I0312 23:24:43.297662  2676 solver.cpp:398]     Test net output #1: loss = 0.935005 (* 1 = 0.935005 loss)
I0312 23:24:47.847645  2676 solver.cpp:219] Iteration 240 (2.78486 iter/s, 7.18169s/20 iters), loss = 0.964164
I0312 23:24:47.859764  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.582031
I0312 23:24:47.859781  2676 solver.cpp:238]     Train net output #1: loss = 0.964164 (* 1 = 0.964164 loss)
I0312 23:24:47.859800  2676 sgd_solver.cpp:105] Iteration 240, lr = 0.001
I0312 23:24:50.647053  2676 solver.cpp:331] Iteration 252, Testing net (#0)
I0312 23:24:50.647089  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:24:52.633581  2676 solver.cpp:398]     Test net output #0: accuracy = 0.599286
I0312 23:24:52.633618  2676 solver.cpp:398]     Test net output #1: loss = 0.980615 (* 1 = 0.980615 loss)
I0312 23:24:55.028817  2676 solver.cpp:219] Iteration 260 (2.78831 iter/s, 7.17279s/20 iters), loss = 0.988547
I0312 23:24:55.041051  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.59375
I0312 23:24:55.041085  2676 solver.cpp:238]     Train net output #1: loss = 0.988547 (* 1 = 0.988547 loss)
I0312 23:24:55.041091  2676 sgd_solver.cpp:105] Iteration 260, lr = 0.001
I0312 23:24:59.975488  2676 solver.cpp:331] Iteration 280, Testing net (#0)
I0312 23:24:59.975523  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:25:01.941673  2676 solver.cpp:398]     Test net output #0: accuracy = 0.6
I0312 23:25:01.941711  2676 solver.cpp:398]     Test net output #1: loss = 0.919044 (* 1 = 0.919044 loss)
I0312 23:25:02.204524  2676 solver.cpp:219] Iteration 280 (2.79049 iter/s, 7.1672s/20 iters), loss = 1.0459
I0312 23:25:02.206957  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.585938
I0312 23:25:02.206985  2676 solver.cpp:238]     Train net output #1: loss = 1.0459 (* 1 = 1.0459 loss)
I0312 23:25:02.207006  2676 sgd_solver.cpp:105] Iteration 280, lr = 0.001
I0312 23:25:07.572079  2676 solver.cpp:219] Iteration 300 (3.72585 iter/s, 5.36791s/20 iters), loss = 0.892142
I0312 23:25:07.584277  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.605469
I0312 23:25:07.584297  2676 solver.cpp:238]     Train net output #1: loss = 0.892142 (* 1 = 0.892142 loss)
I0312 23:25:07.584317  2676 sgd_solver.cpp:105] Iteration 300, lr = 0.001
I0312 23:25:09.297149  2676 solver.cpp:331] Iteration 308, Testing net (#0)
I0312 23:25:09.297185  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:25:11.270056  2676 solver.cpp:398]     Test net output #0: accuracy = 0.617857
I0312 23:25:11.270094  2676 solver.cpp:398]     Test net output #1: loss = 0.876603 (* 1 = 0.876603 loss)
I0312 23:25:14.751806  2676 solver.cpp:219] Iteration 320 (2.78891 iter/s, 7.17125s/20 iters), loss = 0.935945
I0312 23:25:14.763928  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.601562
I0312 23:25:14.763962  2676 solver.cpp:238]     Train net output #1: loss = 0.935945 (* 1 = 0.935945 loss)
I0312 23:25:14.763967  2676 sgd_solver.cpp:105] Iteration 320, lr = 0.001
I0312 23:25:18.636039  2676 solver.cpp:331] Iteration 336, Testing net (#0)
I0312 23:25:18.636075  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:25:20.618952  2676 solver.cpp:398]     Test net output #0: accuracy = 0.634643
I0312 23:25:20.618978  2676 solver.cpp:398]     Test net output #1: loss = 0.85954 (* 1 = 0.85954 loss)
I0312 23:25:21.936133  2676 solver.cpp:219] Iteration 340 (2.7871 iter/s, 7.17593s/20 iters), loss = 0.869285
I0312 23:25:21.948242  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.636719
I0312 23:25:21.948276  2676 solver.cpp:238]     Train net output #1: loss = 0.869285 (* 1 = 0.869285 loss)
I0312 23:25:21.948282  2676 sgd_solver.cpp:105] Iteration 340, lr = 0.001
I0312 23:25:27.332120  2676 solver.cpp:219] Iteration 360 (3.71286 iter/s, 5.38669s/20 iters), loss = 0.899806
I0312 23:25:27.344280  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.613281
I0312 23:25:27.344297  2676 solver.cpp:238]     Train net output #1: loss = 0.899806 (* 1 = 0.899806 loss)
I0312 23:25:27.344303  2676 sgd_solver.cpp:105] Iteration 360, lr = 0.001
I0312 23:25:27.983243  2676 solver.cpp:331] Iteration 364, Testing net (#0)
I0312 23:25:27.983280  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:25:30.007056  2676 solver.cpp:398]     Test net output #0: accuracy = 0.645357
I0312 23:25:30.007093  2676 solver.cpp:398]     Test net output #1: loss = 0.844139 (* 1 = 0.844139 loss)
I0312 23:25:32.783954  2676 blocking_queue.cpp:49] Waiting for data
I0312 23:25:34.568060  2676 solver.cpp:219] Iteration 380 (2.7672 iter/s, 7.22753s/20 iters), loss = 0.840824
I0312 23:25:34.580109  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.664062
I0312 23:25:34.580127  2676 solver.cpp:238]     Train net output #1: loss = 0.840824 (* 1 = 0.840824 loss)
I0312 23:25:34.580132  2676 sgd_solver.cpp:105] Iteration 380, lr = 0.001
I0312 23:25:37.373685  2676 solver.cpp:331] Iteration 392, Testing net (#0)
I0312 23:25:37.373728  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:25:39.393951  2676 solver.cpp:398]     Test net output #0: accuracy = 0.652143
I0312 23:25:39.393977  2676 solver.cpp:398]     Test net output #1: loss = 0.85232 (* 1 = 0.85232 loss)
I0312 23:25:41.798810  2676 solver.cpp:219] Iteration 400 (2.76914 iter/s, 7.22245s/20 iters), loss = 0.829997
I0312 23:25:41.811102  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.65625
I0312 23:25:41.811122  2676 solver.cpp:238]     Train net output #1: loss = 0.829997 (* 1 = 0.829997 loss)
I0312 23:25:41.811127  2676 sgd_solver.cpp:105] Iteration 400, lr = 0.001
I0312 23:25:46.767246  2676 solver.cpp:331] Iteration 420, Testing net (#0)
I0312 23:25:46.767431  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:25:48.779335  2676 solver.cpp:398]     Test net output #0: accuracy = 0.664286
I0312 23:25:48.779371  2676 solver.cpp:398]     Test net output #1: loss = 0.804686 (* 1 = 0.804686 loss)
I0312 23:25:49.040144  2676 solver.cpp:219] Iteration 420 (2.76518 iter/s, 7.2328s/20 iters), loss = 0.937281
I0312 23:25:49.042621  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.597656
I0312 23:25:49.042652  2676 solver.cpp:238]     Train net output #1: loss = 0.937281 (* 1 = 0.937281 loss)
I0312 23:25:49.042657  2676 sgd_solver.cpp:105] Iteration 420, lr = 0.001
I0312 23:25:54.423571  2676 solver.cpp:219] Iteration 440 (3.71489 iter/s, 5.38374s/20 iters), loss = 0.970864
I0312 23:25:54.435729  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.597656
I0312 23:25:54.435745  2676 solver.cpp:238]     Train net output #1: loss = 0.970864 (* 1 = 0.970864 loss)
I0312 23:25:54.435765  2676 sgd_solver.cpp:105] Iteration 440, lr = 0.001
I0312 23:25:56.153745  2676 solver.cpp:331] Iteration 448, Testing net (#0)
I0312 23:25:56.153781  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:25:58.141585  2676 solver.cpp:398]     Test net output #0: accuracy = 0.673214
I0312 23:25:58.141623  2676 solver.cpp:398]     Test net output #1: loss = 0.799573 (* 1 = 0.799573 loss)
I0312 23:26:01.631712  2676 solver.cpp:219] Iteration 460 (2.77788 iter/s, 7.19972s/20 iters), loss = 0.886954
I0312 23:26:01.643872  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.613281
I0312 23:26:01.643903  2676 solver.cpp:238]     Train net output #1: loss = 0.886954 (* 1 = 0.886954 loss)
I0312 23:26:01.643908  2676 sgd_solver.cpp:105] Iteration 460, lr = 0.001
I0312 23:26:05.524873  2676 solver.cpp:331] Iteration 476, Testing net (#0)
I0312 23:26:05.524893  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:26:07.525322  2676 solver.cpp:398]     Test net output #0: accuracy = 0.674643
I0312 23:26:07.525360  2676 solver.cpp:398]     Test net output #1: loss = 0.781635 (* 1 = 0.781635 loss)
I0312 23:26:08.875036  2676 solver.cpp:219] Iteration 480 (2.773 iter/s, 7.21241s/20 iters), loss = 0.790123
I0312 23:26:08.887622  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.644531
I0312 23:26:08.887660  2676 solver.cpp:238]     Train net output #1: loss = 0.790123 (* 1 = 0.790123 loss)
I0312 23:26:08.887665  2676 sgd_solver.cpp:105] Iteration 480, lr = 0.001
I0312 23:26:14.376476  2676 solver.cpp:219] Iteration 500 (3.70628 iter/s, 5.39625s/20 iters), loss = 0.727805
I0312 23:26:14.388772  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.660156
I0312 23:26:14.388804  2676 solver.cpp:238]     Train net output #1: loss = 0.727805 (* 1 = 0.727805 loss)
I0312 23:26:14.388809  2676 sgd_solver.cpp:105] Iteration 500, lr = 0.001
I0312 23:26:15.037009  2676 solver.cpp:331] Iteration 504, Testing net (#0)
I0312 23:26:15.037044  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:26:17.052551  2676 solver.cpp:398]     Test net output #0: accuracy = 0.678572
I0312 23:26:17.052588  2676 solver.cpp:398]     Test net output #1: loss = 0.757533 (* 1 = 0.757533 loss)
I0312 23:26:21.647141  2676 solver.cpp:219] Iteration 520 (2.77673 iter/s, 7.20271s/20 iters), loss = 0.833957
I0312 23:26:21.659446  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.648438
I0312 23:26:21.659463  2676 solver.cpp:238]     Train net output #1: loss = 0.833957 (* 1 = 0.833957 loss)
I0312 23:26:21.659482  2676 sgd_solver.cpp:105] Iteration 520, lr = 0.001
I0312 23:26:24.474599  2676 solver.cpp:331] Iteration 532, Testing net (#0)
I0312 23:26:24.474622  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:26:26.479739  2676 solver.cpp:398]     Test net output #0: accuracy = 0.706072
I0312 23:26:26.479763  2676 solver.cpp:398]     Test net output #1: loss = 0.735266 (* 1 = 0.735266 loss)
I0312 23:26:28.900995  2676 solver.cpp:219] Iteration 540 (2.77077 iter/s, 7.21822s/20 iters), loss = 0.796514
I0312 23:26:28.913269  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.660156
I0312 23:26:28.913302  2676 solver.cpp:238]     Train net output #1: loss = 0.796514 (* 1 = 0.796514 loss)
I0312 23:26:28.913308  2676 sgd_solver.cpp:105] Iteration 540, lr = 0.001
I0312 23:26:33.882889  2676 solver.cpp:331] Iteration 560, Testing net (#0)
I0312 23:26:33.882967  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:26:35.880746  2676 solver.cpp:398]     Test net output #0: accuracy = 0.701429
I0312 23:26:35.880770  2676 solver.cpp:398]     Test net output #1: loss = 0.724797 (* 1 = 0.724797 loss)
I0312 23:26:36.143487  2676 solver.cpp:219] Iteration 560 (2.77038 iter/s, 7.21922s/20 iters), loss = 0.798369
I0312 23:26:36.145952  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.6875
I0312 23:26:36.145998  2676 solver.cpp:238]     Train net output #1: loss = 0.798369 (* 1 = 0.798369 loss)
I0312 23:26:36.146019  2676 sgd_solver.cpp:105] Iteration 560, lr = 0.001
I0312 23:26:41.539515  2676 solver.cpp:219] Iteration 580 (3.71042 iter/s, 5.39022s/20 iters), loss = 0.653225
I0312 23:26:41.551695  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.742188
I0312 23:26:41.551728  2676 solver.cpp:238]     Train net output #1: loss = 0.653225 (* 1 = 0.653225 loss)
I0312 23:26:41.551734  2676 sgd_solver.cpp:105] Iteration 580, lr = 0.001
I0312 23:26:43.272722  2676 solver.cpp:331] Iteration 588, Testing net (#0)
I0312 23:26:43.272761  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:26:45.273249  2676 solver.cpp:398]     Test net output #0: accuracy = 0.720357
I0312 23:26:45.273273  2676 solver.cpp:398]     Test net output #1: loss = 0.69917 (* 1 = 0.69917 loss)
I0312 23:26:48.760844  2676 solver.cpp:219] Iteration 600 (2.77404 iter/s, 7.20969s/20 iters), loss = 0.766637
I0312 23:26:48.773182  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.671875
I0312 23:26:48.773214  2676 solver.cpp:238]     Train net output #1: loss = 0.766637 (* 1 = 0.766637 loss)
I0312 23:26:48.773221  2676 sgd_solver.cpp:105] Iteration 600, lr = 0.001
I0312 23:26:52.661382  2676 solver.cpp:331] Iteration 616, Testing net (#0)
I0312 23:26:52.661420  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:26:54.657719  2676 solver.cpp:398]     Test net output #0: accuracy = 0.683929
I0312 23:26:54.657742  2676 solver.cpp:398]     Test net output #1: loss = 0.751855 (* 1 = 0.751855 loss)
I0312 23:26:55.990639  2676 solver.cpp:219] Iteration 620 (2.77134 iter/s, 7.21672s/20 iters), loss = 0.716449
I0312 23:26:56.002892  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.683594
I0312 23:26:56.002925  2676 solver.cpp:238]     Train net output #1: loss = 0.716449 (* 1 = 0.716449 loss)
I0312 23:26:56.002931  2676 sgd_solver.cpp:105] Iteration 620, lr = 0.001
I0312 23:27:01.403511  2676 solver.cpp:219] Iteration 640 (3.70404 iter/s, 5.39951s/20 iters), loss = 0.686625
I0312 23:27:01.415530  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.742188
I0312 23:27:01.415561  2676 solver.cpp:238]     Train net output #1: loss = 0.686625 (* 1 = 0.686625 loss)
I0312 23:27:01.415566  2676 sgd_solver.cpp:105] Iteration 640, lr = 0.001
I0312 23:27:02.059046  2676 solver.cpp:331] Iteration 644, Testing net (#0)
I0312 23:27:02.059067  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:27:04.075769  2676 solver.cpp:398]     Test net output #0: accuracy = 0.728214
I0312 23:27:04.075808  2676 solver.cpp:398]     Test net output #1: loss = 0.672072 (* 1 = 0.672072 loss)
I0312 23:27:08.655361  2676 solver.cpp:219] Iteration 660 (2.76324 iter/s, 7.23788s/20 iters), loss = 0.61903
I0312 23:27:08.667495  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.753906
I0312 23:27:08.667526  2676 solver.cpp:238]     Train net output #1: loss = 0.61903 (* 1 = 0.61903 loss)
I0312 23:27:08.667531  2676 sgd_solver.cpp:105] Iteration 660, lr = 0.001
I0312 23:27:11.481791  2676 solver.cpp:331] Iteration 672, Testing net (#0)
I0312 23:27:11.481827  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:27:13.467962  2676 solver.cpp:398]     Test net output #0: accuracy = 0.738214
I0312 23:27:13.467988  2676 solver.cpp:398]     Test net output #1: loss = 0.633847 (* 1 = 0.633847 loss)
I0312 23:27:15.883911  2676 solver.cpp:219] Iteration 680 (2.77234 iter/s, 7.21412s/20 iters), loss = 0.621791
I0312 23:27:15.896040  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.742188
I0312 23:27:15.896075  2676 solver.cpp:238]     Train net output #1: loss = 0.621791 (* 1 = 0.621791 loss)
I0312 23:27:15.896080  2676 sgd_solver.cpp:105] Iteration 680, lr = 0.001
I0312 23:27:20.870307  2676 solver.cpp:331] Iteration 700, Testing net (#0)
I0312 23:27:20.870440  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:27:22.878713  2676 solver.cpp:398]     Test net output #0: accuracy = 0.744286
I0312 23:27:22.878738  2676 solver.cpp:398]     Test net output #1: loss = 0.618683 (* 1 = 0.618683 loss)
I0312 23:27:23.141259  2676 solver.cpp:219] Iteration 700 (2.7614 iter/s, 7.24269s/20 iters), loss = 0.676554
I0312 23:27:23.143703  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.707031
I0312 23:27:23.143733  2676 solver.cpp:238]     Train net output #1: loss = 0.676554 (* 1 = 0.676554 loss)
I0312 23:27:23.143739  2676 sgd_solver.cpp:105] Iteration 700, lr = 0.001
I0312 23:27:28.554875  2676 solver.cpp:219] Iteration 720 (3.69742 iter/s, 5.40918s/20 iters), loss = 0.570761
I0312 23:27:28.566990  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.757812
I0312 23:27:28.567008  2676 solver.cpp:238]     Train net output #1: loss = 0.570761 (* 1 = 0.570761 loss)
I0312 23:27:28.567013  2676 sgd_solver.cpp:105] Iteration 720, lr = 0.001
I0312 23:27:30.292814  2676 solver.cpp:331] Iteration 728, Testing net (#0)
I0312 23:27:30.292850  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:27:32.317675  2676 solver.cpp:398]     Test net output #0: accuracy = 0.766429
I0312 23:27:32.317713  2676 solver.cpp:398]     Test net output #1: loss = 0.59132 (* 1 = 0.59132 loss)
I0312 23:27:35.824728  2676 solver.cpp:219] Iteration 740 (2.75672 iter/s, 7.25499s/20 iters), loss = 0.562286
I0312 23:27:35.836900  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.796875
I0312 23:27:35.837059  2676 solver.cpp:238]     Train net output #1: loss = 0.562286 (* 1 = 0.562286 loss)
I0312 23:27:35.837067  2676 sgd_solver.cpp:105] Iteration 740, lr = 0.001
I0312 23:27:39.736904  2676 solver.cpp:331] Iteration 756, Testing net (#0)
I0312 23:27:39.736940  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:27:41.320724  2676 blocking_queue.cpp:49] Waiting for data
I0312 23:27:41.724932  2676 solver.cpp:398]     Test net output #0: accuracy = 0.778929
I0312 23:27:41.724970  2676 solver.cpp:398]     Test net output #1: loss = 0.561568 (* 1 = 0.561568 loss)
I0312 23:27:43.058217  2676 solver.cpp:219] Iteration 760 (2.77065 iter/s, 7.21853s/20 iters), loss = 0.60303
I0312 23:27:43.070521  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.722656
I0312 23:27:43.070555  2676 solver.cpp:238]     Train net output #1: loss = 0.60303 (* 1 = 0.60303 loss)
I0312 23:27:43.070560  2676 sgd_solver.cpp:105] Iteration 760, lr = 0.001
I0312 23:27:48.485563  2676 solver.cpp:219] Iteration 780 (3.69265 iter/s, 5.41616s/20 iters), loss = 0.535647
I0312 23:27:48.497586  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.78125
I0312 23:27:48.497617  2676 solver.cpp:238]     Train net output #1: loss = 0.535647 (* 1 = 0.535647 loss)
I0312 23:27:48.497622  2676 sgd_solver.cpp:105] Iteration 780, lr = 0.001
I0312 23:27:49.140836  2676 solver.cpp:331] Iteration 784, Testing net (#0)
I0312 23:27:49.140872  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:27:51.124541  2676 solver.cpp:398]     Test net output #0: accuracy = 0.7775
I0312 23:27:51.124577  2676 solver.cpp:398]     Test net output #1: loss = 0.565756 (* 1 = 0.565756 loss)
I0312 23:27:55.714097  2676 solver.cpp:219] Iteration 800 (2.77081 iter/s, 7.21811s/20 iters), loss = 0.538049
I0312 23:27:55.726258  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.785156
I0312 23:27:55.726303  2676 solver.cpp:238]     Train net output #1: loss = 0.538049 (* 1 = 0.538049 loss)
I0312 23:27:55.726310  2676 sgd_solver.cpp:105] Iteration 800, lr = 0.001
I0312 23:27:58.538839  2676 solver.cpp:331] Iteration 812, Testing net (#0)
I0312 23:27:58.538875  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:28:00.541971  2676 solver.cpp:398]     Test net output #0: accuracy = 0.798929
I0312 23:28:00.542008  2676 solver.cpp:398]     Test net output #1: loss = 0.513049 (* 1 = 0.513049 loss)
I0312 23:28:02.957697  2676 solver.cpp:219] Iteration 820 (2.76539 iter/s, 7.23224s/20 iters), loss = 0.516776
I0312 23:28:02.969964  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.789062
I0312 23:28:02.970010  2676 solver.cpp:238]     Train net output #1: loss = 0.516776 (* 1 = 0.516776 loss)
I0312 23:28:02.970016  2676 sgd_solver.cpp:105] Iteration 820, lr = 0.001
I0312 23:28:07.946287  2676 solver.cpp:331] Iteration 840, Testing net (#0)
I0312 23:28:07.946333  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:28:09.939030  2676 solver.cpp:398]     Test net output #0: accuracy = 0.794643
I0312 23:28:09.939067  2676 solver.cpp:398]     Test net output #1: loss = 0.525727 (* 1 = 0.525727 loss)
I0312 23:28:10.201859  2676 solver.cpp:219] Iteration 840 (2.76546 iter/s, 7.23208s/20 iters), loss = 0.550795
I0312 23:28:10.204303  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.769531
I0312 23:28:10.204332  2676 solver.cpp:238]     Train net output #1: loss = 0.550795 (* 1 = 0.550795 loss)
I0312 23:28:10.204339  2676 sgd_solver.cpp:105] Iteration 840, lr = 0.001
I0312 23:28:15.605336  2676 solver.cpp:219] Iteration 860 (3.70313 iter/s, 5.40083s/20 iters), loss = 0.433974
I0312 23:28:15.617573  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.828125
I0312 23:28:15.617605  2676 solver.cpp:238]     Train net output #1: loss = 0.433974 (* 1 = 0.433974 loss)
I0312 23:28:15.617610  2676 sgd_solver.cpp:105] Iteration 860, lr = 0.001
I0312 23:28:17.345782  2676 solver.cpp:331] Iteration 868, Testing net (#0)
I0312 23:28:17.345818  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:28:19.325099  2676 solver.cpp:398]     Test net output #0: accuracy = 0.803571
I0312 23:28:19.325136  2676 solver.cpp:398]     Test net output #1: loss = 0.47534 (* 1 = 0.47534 loss)
I0312 23:28:22.825062  2676 solver.cpp:219] Iteration 880 (2.77514 iter/s, 7.20685s/20 iters), loss = 0.478455
I0312 23:28:22.837374  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.808594
I0312 23:28:22.837409  2676 solver.cpp:238]     Train net output #1: loss = 0.478455 (* 1 = 0.478455 loss)
I0312 23:28:22.837415  2676 sgd_solver.cpp:105] Iteration 880, lr = 0.001
I0312 23:28:26.740339  2676 solver.cpp:331] Iteration 896, Testing net (#0)
I0312 23:28:26.740376  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:28:28.738651  2676 solver.cpp:398]     Test net output #0: accuracy = 0.776071
I0312 23:28:28.738687  2676 solver.cpp:398]     Test net output #1: loss = 0.570051 (* 1 = 0.570051 loss)
I0312 23:28:30.070143  2676 solver.cpp:219] Iteration 900 (2.76557 iter/s, 7.23179s/20 iters), loss = 0.382397
I0312 23:28:30.082314  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.863281
I0312 23:28:30.082353  2676 solver.cpp:238]     Train net output #1: loss = 0.382397 (* 1 = 0.382397 loss)
I0312 23:28:30.082358  2676 sgd_solver.cpp:105] Iteration 900, lr = 0.001
I0312 23:28:35.504490  2676 solver.cpp:219] Iteration 920 (3.68917 iter/s, 5.42127s/20 iters), loss = 0.394418
I0312 23:28:35.516649  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.847656
I0312 23:28:35.516667  2676 solver.cpp:238]     Train net output #1: loss = 0.394418 (* 1 = 0.394418 loss)
I0312 23:28:35.516688  2676 sgd_solver.cpp:105] Iteration 920, lr = 0.001
I0312 23:28:36.158797  2676 solver.cpp:331] Iteration 924, Testing net (#0)
I0312 23:28:36.158833  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:28:38.178876  2676 solver.cpp:398]     Test net output #0: accuracy = 0.803214
I0312 23:28:38.178915  2676 solver.cpp:398]     Test net output #1: loss = 0.493671 (* 1 = 0.493671 loss)
I0312 23:28:42.767585  2676 solver.cpp:219] Iteration 940 (2.7588 iter/s, 7.24952s/20 iters), loss = 0.368876
I0312 23:28:42.779748  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.875
I0312 23:28:42.779781  2676 solver.cpp:238]     Train net output #1: loss = 0.368876 (* 1 = 0.368876 loss)
I0312 23:28:42.779786  2676 sgd_solver.cpp:105] Iteration 940, lr = 0.001
I0312 23:28:45.597579  2676 solver.cpp:331] Iteration 952, Testing net (#0)
I0312 23:28:45.597618  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:28:47.598242  2676 solver.cpp:398]     Test net output #0: accuracy = 0.817143
I0312 23:28:47.598280  2676 solver.cpp:398]     Test net output #1: loss = 0.505942 (* 1 = 0.505942 loss)
I0312 23:28:50.013950  2676 solver.cpp:219] Iteration 960 (2.76525 iter/s, 7.23261s/20 iters), loss = 0.39874
I0312 23:28:50.026216  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.859375
I0312 23:28:50.026249  2676 solver.cpp:238]     Train net output #1: loss = 0.39874 (* 1 = 0.39874 loss)
I0312 23:28:50.026254  2676 sgd_solver.cpp:105] Iteration 960, lr = 0.001
I0312 23:28:55.011466  2676 solver.cpp:331] Iteration 980, Testing net (#0)
I0312 23:28:55.011608  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:28:56.987771  2676 solver.cpp:398]     Test net output #0: accuracy = 0.858571
I0312 23:28:56.987810  2676 solver.cpp:398]     Test net output #1: loss = 0.39668 (* 1 = 0.39668 loss)
I0312 23:28:57.250288  2676 solver.cpp:219] Iteration 980 (2.76918 iter/s, 7.22234s/20 iters), loss = 0.406421
I0312 23:28:57.252743  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.8125
I0312 23:28:57.252770  2676 solver.cpp:238]     Train net output #1: loss = 0.406421 (* 1 = 0.406421 loss)
I0312 23:28:57.252789  2676 sgd_solver.cpp:105] Iteration 980, lr = 0.001
I0312 23:29:02.665797  2676 solver.cpp:219] Iteration 1000 (3.6957 iter/s, 5.4117s/20 iters), loss = 0.294406
I0312 23:29:02.677963  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.894531
I0312 23:29:02.677981  2676 solver.cpp:238]     Train net output #1: loss = 0.294406 (* 1 = 0.294406 loss)
I0312 23:29:02.677986  2676 sgd_solver.cpp:105] Iteration 1000, lr = 0.001
I0312 23:29:04.405819  2676 solver.cpp:331] Iteration 1008, Testing net (#0)
I0312 23:29:04.405855  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:29:06.397883  2676 solver.cpp:398]     Test net output #0: accuracy = 0.843929
I0312 23:29:06.397920  2676 solver.cpp:398]     Test net output #1: loss = 0.438704 (* 1 = 0.438704 loss)
I0312 23:29:09.909572  2676 solver.cpp:219] Iteration 1020 (2.76637 iter/s, 7.2297s/20 iters), loss = 0.363993
I0312 23:29:09.921815  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.871094
I0312 23:29:09.921834  2676 solver.cpp:238]     Train net output #1: loss = 0.363993 (* 1 = 0.363993 loss)
I0312 23:29:09.921840  2676 sgd_solver.cpp:105] Iteration 1020, lr = 0.001
I0312 23:29:13.822978  2676 solver.cpp:331] Iteration 1036, Testing net (#0)
I0312 23:29:13.823012  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:29:15.791075  2676 solver.cpp:398]     Test net output #0: accuracy = 0.863571
I0312 23:29:15.791116  2676 solver.cpp:398]     Test net output #1: loss = 0.378179 (* 1 = 0.378179 loss)
I0312 23:29:17.124424  2676 solver.cpp:219] Iteration 1040 (2.77753 iter/s, 7.20064s/20 iters), loss = 0.31136
I0312 23:29:17.136637  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.894531
I0312 23:29:17.136672  2676 solver.cpp:238]     Train net output #1: loss = 0.31136 (* 1 = 0.31136 loss)
I0312 23:29:17.136677  2676 sgd_solver.cpp:105] Iteration 1040, lr = 0.001
I0312 23:29:22.559360  2676 solver.cpp:219] Iteration 1060 (3.68923 iter/s, 5.42119s/20 iters), loss = 0.317804
I0312 23:29:22.571579  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.867188
I0312 23:29:22.571599  2676 solver.cpp:238]     Train net output #1: loss = 0.317804 (* 1 = 0.317804 loss)
I0312 23:29:22.571604  2676 sgd_solver.cpp:105] Iteration 1060, lr = 0.001
I0312 23:29:23.216394  2676 solver.cpp:331] Iteration 1064, Testing net (#0)
I0312 23:29:23.216416  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:29:25.206918  2676 solver.cpp:398]     Test net output #0: accuracy = 0.872143
I0312 23:29:25.206955  2676 solver.cpp:398]     Test net output #1: loss = 0.345706 (* 1 = 0.345706 loss)
I0312 23:29:29.798655  2676 solver.cpp:219] Iteration 1080 (2.76816 iter/s, 7.225s/20 iters), loss = 0.234061
I0312 23:29:29.810819  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.9375
I0312 23:29:29.810850  2676 solver.cpp:238]     Train net output #1: loss = 0.234061 (* 1 = 0.234061 loss)
I0312 23:29:29.810855  2676 sgd_solver.cpp:105] Iteration 1080, lr = 0.001
I0312 23:29:32.624083  2676 solver.cpp:331] Iteration 1092, Testing net (#0)
I0312 23:29:32.624104  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:29:34.633342  2676 solver.cpp:398]     Test net output #0: accuracy = 0.86
I0312 23:29:34.633378  2676 solver.cpp:398]     Test net output #1: loss = 0.361714 (* 1 = 0.361714 loss)
I0312 23:29:37.051342  2676 solver.cpp:219] Iteration 1100 (2.76304 iter/s, 7.23839s/20 iters), loss = 0.233078
I0312 23:29:37.063549  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.910156
I0312 23:29:37.063581  2676 solver.cpp:238]     Train net output #1: loss = 0.233078 (* 1 = 0.233078 loss)
I0312 23:29:37.063587  2676 sgd_solver.cpp:105] Iteration 1100, lr = 0.001
I0312 23:29:42.050027  2676 solver.cpp:331] Iteration 1120, Testing net (#0)
I0312 23:29:42.050062  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:29:44.046098  2676 solver.cpp:398]     Test net output #0: accuracy = 0.897143
I0312 23:29:44.046136  2676 solver.cpp:398]     Test net output #1: loss = 0.308057 (* 1 = 0.308057 loss)
I0312 23:29:44.310664  2676 solver.cpp:219] Iteration 1120 (2.76054 iter/s, 7.24495s/20 iters), loss = 0.241999
I0312 23:29:44.313117  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.910156
I0312 23:29:44.313146  2676 solver.cpp:238]     Train net output #1: loss = 0.241999 (* 1 = 0.241999 loss)
I0312 23:29:44.313153  2676 sgd_solver.cpp:105] Iteration 1120, lr = 0.001
I0312 23:29:49.729884  2676 solver.cpp:219] Iteration 1140 (3.69336 iter/s, 5.41513s/20 iters), loss = 0.248057
I0312 23:29:49.742183  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.898438
I0312 23:29:49.742218  2676 solver.cpp:238]     Train net output #1: loss = 0.248057 (* 1 = 0.248057 loss)
I0312 23:29:49.742223  2676 sgd_solver.cpp:105] Iteration 1140, lr = 0.001
I0312 23:29:51.471709  2676 solver.cpp:331] Iteration 1148, Testing net (#0)
I0312 23:29:51.471745  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:29:52.632112  2676 blocking_queue.cpp:49] Waiting for data
I0312 23:29:53.471439  2676 solver.cpp:398]     Test net output #0: accuracy = 0.857857
I0312 23:29:53.471462  2676 solver.cpp:398]     Test net output #1: loss = 0.41419 (* 1 = 0.41419 loss)
I0312 23:29:56.975296  2676 solver.cpp:219] Iteration 1160 (2.76473 iter/s, 7.23398s/20 iters), loss = 0.205069
I0312 23:29:56.987603  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.929688
I0312 23:29:56.987637  2676 solver.cpp:238]     Train net output #1: loss = 0.205069 (* 1 = 0.205069 loss)
I0312 23:29:56.987643  2676 sgd_solver.cpp:105] Iteration 1160, lr = 0.001
I0312 23:30:00.894788  2676 solver.cpp:331] Iteration 1176, Testing net (#0)
I0312 23:30:00.894824  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:30:02.892915  2676 solver.cpp:398]     Test net output #0: accuracy = 0.896071
I0312 23:30:02.892940  2676 solver.cpp:398]     Test net output #1: loss = 0.304438 (* 1 = 0.304438 loss)
I0312 23:30:04.234632  2676 solver.cpp:219] Iteration 1180 (2.75867 iter/s, 7.24988s/20 iters), loss = 0.237971
I0312 23:30:04.246827  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.910156
I0312 23:30:04.246846  2676 solver.cpp:238]     Train net output #1: loss = 0.237971 (* 1 = 0.237971 loss)
I0312 23:30:04.246865  2676 sgd_solver.cpp:105] Iteration 1180, lr = 0.001
I0312 23:30:09.661489  2676 solver.cpp:219] Iteration 1200 (3.69245 iter/s, 5.41646s/20 iters), loss = 0.230362
I0312 23:30:09.673662  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.90625
I0312 23:30:09.673696  2676 solver.cpp:238]     Train net output #1: loss = 0.230362 (* 1 = 0.230362 loss)
I0312 23:30:09.673702  2676 sgd_solver.cpp:105] Iteration 1200, lr = 0.001
I0312 23:30:10.316509  2676 solver.cpp:331] Iteration 1204, Testing net (#0)
I0312 23:30:10.316542  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:30:12.316997  2676 solver.cpp:398]     Test net output #0: accuracy = 0.888214
I0312 23:30:12.317036  2676 solver.cpp:398]     Test net output #1: loss = 0.310524 (* 1 = 0.310524 loss)
I0312 23:30:16.907405  2676 solver.cpp:219] Iteration 1220 (2.76405 iter/s, 7.23577s/20 iters), loss = 0.201871
I0312 23:30:16.919622  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.917969
I0312 23:30:16.919641  2676 solver.cpp:238]     Train net output #1: loss = 0.201871 (* 1 = 0.201871 loss)
I0312 23:30:16.919661  2676 sgd_solver.cpp:105] Iteration 1220, lr = 0.001
I0312 23:30:19.735288  2676 solver.cpp:331] Iteration 1232, Testing net (#0)
I0312 23:30:19.735324  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:30:21.744154  2676 solver.cpp:398]     Test net output #0: accuracy = 0.878572
I0312 23:30:21.744191  2676 solver.cpp:398]     Test net output #1: loss = 0.376121 (* 1 = 0.376121 loss)
I0312 23:30:24.159935  2676 solver.cpp:219] Iteration 1240 (2.76169 iter/s, 7.24195s/20 iters), loss = 0.265296
I0312 23:30:24.172222  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.921875
I0312 23:30:24.172255  2676 solver.cpp:238]     Train net output #1: loss = 0.265296 (* 1 = 0.265296 loss)
I0312 23:30:24.172260  2676 sgd_solver.cpp:105] Iteration 1240, lr = 0.001
I0312 23:30:29.161650  2676 solver.cpp:331] Iteration 1260, Testing net (#0)
I0312 23:30:29.161741  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:30:31.143518  2676 solver.cpp:398]     Test net output #0: accuracy = 0.91
I0312 23:30:31.143555  2676 solver.cpp:398]     Test net output #1: loss = 0.277132 (* 1 = 0.277132 loss)
I0312 23:30:31.408638  2676 solver.cpp:219] Iteration 1260 (2.76331 iter/s, 7.23769s/20 iters), loss = 0.180875
I0312 23:30:31.411087  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.933594
I0312 23:30:31.411118  2676 solver.cpp:238]     Train net output #1: loss = 0.180875 (* 1 = 0.180875 loss)
I0312 23:30:31.411123  2676 sgd_solver.cpp:105] Iteration 1260, lr = 0.001
I0312 23:30:36.829504  2676 solver.cpp:219] Iteration 1280 (3.69061 iter/s, 5.41916s/20 iters), loss = 0.146877
I0312 23:30:36.841655  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.964844
I0312 23:30:36.841683  2676 solver.cpp:238]     Train net output #1: loss = 0.146877 (* 1 = 0.146877 loss)
I0312 23:30:36.841689  2676 sgd_solver.cpp:105] Iteration 1280, lr = 0.001
I0312 23:30:38.570597  2676 solver.cpp:331] Iteration 1288, Testing net (#0)
I0312 23:30:38.570631  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:30:40.577872  2676 solver.cpp:398]     Test net output #0: accuracy = 0.909643
I0312 23:30:40.577893  2676 solver.cpp:398]     Test net output #1: loss = 0.277754 (* 1 = 0.277754 loss)
I0312 23:30:44.083091  2676 solver.cpp:219] Iteration 1300 (2.7616 iter/s, 7.24218s/20 iters), loss = 0.256302
I0312 23:30:44.095170  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.917969
I0312 23:30:44.095202  2676 solver.cpp:238]     Train net output #1: loss = 0.256302 (* 1 = 0.256302 loss)
I0312 23:30:44.095208  2676 sgd_solver.cpp:105] Iteration 1300, lr = 0.001
I0312 23:30:47.997551  2676 solver.cpp:331] Iteration 1316, Testing net (#0)
I0312 23:30:47.997588  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:30:50.009754  2676 solver.cpp:398]     Test net output #0: accuracy = 0.8925
I0312 23:30:50.009794  2676 solver.cpp:398]     Test net output #1: loss = 0.319198 (* 1 = 0.319198 loss)
I0312 23:30:51.349707  2676 solver.cpp:219] Iteration 1320 (2.75671 iter/s, 7.25503s/20 iters), loss = 0.193846
I0312 23:30:51.361913  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.921875
I0312 23:30:51.361948  2676 solver.cpp:238]     Train net output #1: loss = 0.193846 (* 1 = 0.193846 loss)
I0312 23:30:51.361953  2676 sgd_solver.cpp:105] Iteration 1320, lr = 0.001
I0312 23:30:56.793694  2676 solver.cpp:219] Iteration 1340 (3.68189 iter/s, 5.43199s/20 iters), loss = 0.181212
I0312 23:30:56.805820  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.949219
I0312 23:30:56.805851  2676 solver.cpp:238]     Train net output #1: loss = 0.181212 (* 1 = 0.181212 loss)
I0312 23:30:56.805855  2676 sgd_solver.cpp:105] Iteration 1340, lr = 0.001
I0312 23:30:57.449738  2676 solver.cpp:331] Iteration 1344, Testing net (#0)
I0312 23:30:57.449772  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:30:59.448271  2676 solver.cpp:398]     Test net output #0: accuracy = 0.911428
I0312 23:30:59.448293  2676 solver.cpp:398]     Test net output #1: loss = 0.27244 (* 1 = 0.27244 loss)
I0312 23:31:04.041152  2676 solver.cpp:219] Iteration 1360 (2.76417 iter/s, 7.23543s/20 iters), loss = 0.101827
I0312 23:31:04.053272  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.972656
I0312 23:31:04.053288  2676 solver.cpp:238]     Train net output #1: loss = 0.101827 (* 1 = 0.101827 loss)
I0312 23:31:04.053308  2676 sgd_solver.cpp:105] Iteration 1360, lr = 0.001
I0312 23:31:06.868304  2676 solver.cpp:331] Iteration 1372, Testing net (#0)
I0312 23:31:06.868325  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:31:08.883689  2676 solver.cpp:398]     Test net output #0: accuracy = 0.910714
I0312 23:31:08.883728  2676 solver.cpp:398]     Test net output #1: loss = 0.287065 (* 1 = 0.287065 loss)
I0312 23:31:11.306362  2676 solver.cpp:219] Iteration 1380 (2.75748 iter/s, 7.25301s/20 iters), loss = 0.0753419
I0312 23:31:11.318665  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.984375
I0312 23:31:11.318699  2676 solver.cpp:238]     Train net output #1: loss = 0.0753419 (* 1 = 0.0753419 loss)
I0312 23:31:11.318704  2676 sgd_solver.cpp:105] Iteration 1380, lr = 0.001
I0312 23:31:16.307917  2676 solver.cpp:331] Iteration 1400, Testing net (#0)
I0312 23:31:16.307952  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:31:18.326223  2676 solver.cpp:398]     Test net output #0: accuracy = 0.925357
I0312 23:31:18.326246  2676 solver.cpp:398]     Test net output #1: loss = 0.239625 (* 1 = 0.239625 loss)
I0312 23:31:18.592233  2676 solver.cpp:219] Iteration 1400 (2.74978 iter/s, 7.27331s/20 iters), loss = 0.0991599
I0312 23:31:18.594676  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.972656
I0312 23:31:18.594702  2676 solver.cpp:238]     Train net output #1: loss = 0.0991599 (* 1 = 0.0991599 loss)
I0312 23:31:18.594722  2676 sgd_solver.cpp:105] Iteration 1400, lr = 0.001
I0312 23:31:24.013437  2676 solver.cpp:219] Iteration 1420 (3.69108 iter/s, 5.41847s/20 iters), loss = 0.107285
I0312 23:31:24.025619  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.953125
I0312 23:31:24.025655  2676 solver.cpp:238]     Train net output #1: loss = 0.107285 (* 1 = 0.107285 loss)
I0312 23:31:24.025660  2676 sgd_solver.cpp:105] Iteration 1420, lr = 0.001
I0312 23:31:25.758661  2676 solver.cpp:331] Iteration 1428, Testing net (#0)
I0312 23:31:25.758697  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:31:27.764217  2676 solver.cpp:398]     Test net output #0: accuracy = 0.925714
I0312 23:31:27.764256  2676 solver.cpp:398]     Test net output #1: loss = 0.253493 (* 1 = 0.253493 loss)
I0312 23:31:31.272397  2676 solver.cpp:219] Iteration 1440 (2.76004 iter/s, 7.24627s/20 iters), loss = 0.102318
I0312 23:31:31.284703  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.972656
I0312 23:31:31.284739  2676 solver.cpp:238]     Train net output #1: loss = 0.102318 (* 1 = 0.102318 loss)
I0312 23:31:31.284744  2676 sgd_solver.cpp:105] Iteration 1440, lr = 0.001
I0312 23:31:35.189929  2676 solver.cpp:331] Iteration 1456, Testing net (#0)
I0312 23:31:35.189951  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:31:37.209007  2676 solver.cpp:398]     Test net output #0: accuracy = 0.933571
I0312 23:31:37.209045  2676 solver.cpp:398]     Test net output #1: loss = 0.225641 (* 1 = 0.225641 loss)
I0312 23:31:38.545217  2676 solver.cpp:219] Iteration 1460 (2.75487 iter/s, 7.25988s/20 iters), loss = 0.120464
I0312 23:31:38.557488  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.953125
I0312 23:31:38.557521  2676 solver.cpp:238]     Train net output #1: loss = 0.120464 (* 1 = 0.120464 loss)
I0312 23:31:38.557526  2676 sgd_solver.cpp:105] Iteration 1460, lr = 0.001
I0312 23:31:43.982724  2676 solver.cpp:219] Iteration 1480 (3.68685 iter/s, 5.42469s/20 iters), loss = 0.0925529
I0312 23:31:43.994879  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.96875
I0312 23:31:43.994912  2676 solver.cpp:238]     Train net output #1: loss = 0.0925529 (* 1 = 0.0925529 loss)
I0312 23:31:43.994917  2676 sgd_solver.cpp:105] Iteration 1480, lr = 0.001
I0312 23:31:44.639364  2676 solver.cpp:331] Iteration 1484, Testing net (#0)
I0312 23:31:44.639400  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:31:46.645072  2676 solver.cpp:398]     Test net output #0: accuracy = 0.930357
I0312 23:31:46.645110  2676 solver.cpp:398]     Test net output #1: loss = 0.258542 (* 1 = 0.258542 loss)
I0312 23:31:51.239519  2676 solver.cpp:219] Iteration 1500 (2.76097 iter/s, 7.24383s/20 iters), loss = 0.0513216
I0312 23:31:51.251762  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.980469
I0312 23:31:51.251782  2676 solver.cpp:238]     Train net output #1: loss = 0.0513216 (* 1 = 0.0513216 loss)
I0312 23:31:51.251788  2676 sgd_solver.cpp:105] Iteration 1500, lr = 0.001
I0312 23:31:54.071509  2676 solver.cpp:331] Iteration 1512, Testing net (#0)
I0312 23:31:54.071529  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:31:56.074208  2676 solver.cpp:398]     Test net output #0: accuracy = 0.932857
I0312 23:31:56.074246  2676 solver.cpp:398]     Test net output #1: loss = 0.253556 (* 1 = 0.253556 loss)
I0312 23:31:58.501843  2676 solver.cpp:219] Iteration 1520 (2.75893 iter/s, 7.24918s/20 iters), loss = 0.0631661
I0312 23:31:58.513955  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.984375
I0312 23:31:58.513990  2676 solver.cpp:238]     Train net output #1: loss = 0.0631661 (* 1 = 0.0631661 loss)
I0312 23:31:58.513995  2676 sgd_solver.cpp:105] Iteration 1520, lr = 0.001
I0312 23:32:03.509240  2676 solver.cpp:331] Iteration 1540, Testing net (#0)
I0312 23:32:03.509333  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:32:04.005400  2676 blocking_queue.cpp:49] Waiting for data
I0312 23:32:05.520295  2676 solver.cpp:398]     Test net output #0: accuracy = 0.937857
I0312 23:32:05.520334  2676 solver.cpp:398]     Test net output #1: loss = 0.24086 (* 1 = 0.24086 loss)
I0312 23:32:05.784499  2676 solver.cpp:219] Iteration 1540 (2.7512 iter/s, 7.26955s/20 iters), loss = 0.103841
I0312 23:32:05.786963  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.964844
I0312 23:32:05.786994  2676 solver.cpp:238]     Train net output #1: loss = 0.103841 (* 1 = 0.103841 loss)
I0312 23:32:05.786999  2676 sgd_solver.cpp:105] Iteration 1540, lr = 0.001
I0312 23:32:11.207936  2676 solver.cpp:219] Iteration 1560 (3.68991 iter/s, 5.42019s/20 iters), loss = 0.0426333
I0312 23:32:11.220110  2676 solver.cpp:238]     Train net output #0: accuracy_training = 1
I0312 23:32:11.220142  2676 solver.cpp:238]     Train net output #1: loss = 0.0426333 (* 1 = 0.0426333 loss)
I0312 23:32:11.220161  2676 sgd_solver.cpp:105] Iteration 1560, lr = 0.001
I0312 23:32:12.950600  2676 solver.cpp:331] Iteration 1568, Testing net (#0)
I0312 23:32:12.950635  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:32:14.952039  2676 solver.cpp:398]     Test net output #0: accuracy = 0.943571
I0312 23:32:14.952078  2676 solver.cpp:398]     Test net output #1: loss = 0.227019 (* 1 = 0.227019 loss)
I0312 23:32:18.464334  2676 solver.cpp:219] Iteration 1580 (2.76124 iter/s, 7.24312s/20 iters), loss = 0.0886056
I0312 23:32:18.476521  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.976562
I0312 23:32:18.476539  2676 solver.cpp:238]     Train net output #1: loss = 0.0886056 (* 1 = 0.0886056 loss)
I0312 23:32:18.476546  2676 sgd_solver.cpp:105] Iteration 1580, lr = 0.001
I0312 23:32:22.385947  2676 solver.cpp:331] Iteration 1596, Testing net (#0)
I0312 23:32:22.385984  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:32:24.370674  2676 solver.cpp:398]     Test net output #0: accuracy = 0.926785
I0312 23:32:24.370699  2676 solver.cpp:398]     Test net output #1: loss = 0.288649 (* 1 = 0.288649 loss)
I0312 23:32:25.715095  2676 solver.cpp:219] Iteration 1600 (2.76342 iter/s, 7.23741s/20 iters), loss = 0.0739714
I0312 23:32:25.727288  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.984375
I0312 23:32:25.727321  2676 solver.cpp:238]     Train net output #1: loss = 0.0739714 (* 1 = 0.0739714 loss)
I0312 23:32:25.727327  2676 sgd_solver.cpp:105] Iteration 1600, lr = 0.001
I0312 23:32:31.149646  2676 solver.cpp:219] Iteration 1620 (3.68905 iter/s, 5.42145s/20 iters), loss = 0.127903
I0312 23:32:31.161710  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.964844
I0312 23:32:31.161742  2676 solver.cpp:238]     Train net output #1: loss = 0.127903 (* 1 = 0.127903 loss)
I0312 23:32:31.161747  2676 sgd_solver.cpp:105] Iteration 1620, lr = 0.001
I0312 23:32:31.809602  2676 solver.cpp:331] Iteration 1624, Testing net (#0)
I0312 23:32:31.809638  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:32:33.796406  2676 solver.cpp:398]     Test net output #0: accuracy = 0.922857
I0312 23:32:33.796447  2676 solver.cpp:398]     Test net output #1: loss = 0.277072 (* 1 = 0.277072 loss)
I0312 23:32:38.398217  2676 solver.cpp:219] Iteration 1640 (2.76424 iter/s, 7.23526s/20 iters), loss = 0.0360228
I0312 23:32:38.410373  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.992188
I0312 23:32:38.410404  2676 solver.cpp:238]     Train net output #1: loss = 0.0360228 (* 1 = 0.0360228 loss)
I0312 23:32:38.410409  2676 sgd_solver.cpp:105] Iteration 1640, lr = 0.001
I0312 23:32:41.233564  2676 solver.cpp:331] Iteration 1652, Testing net (#0)
I0312 23:32:41.233599  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:32:43.231456  2676 solver.cpp:398]     Test net output #0: accuracy = 0.934643
I0312 23:32:43.231490  2676 solver.cpp:398]     Test net output #1: loss = 0.253163 (* 1 = 0.253163 loss)
I0312 23:32:45.651796  2676 solver.cpp:219] Iteration 1660 (2.76238 iter/s, 7.24013s/20 iters), loss = 0.0863931
I0312 23:32:45.663851  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.972656
I0312 23:32:45.663884  2676 solver.cpp:238]     Train net output #1: loss = 0.0863931 (* 1 = 0.0863931 loss)
I0312 23:32:45.663889  2676 sgd_solver.cpp:105] Iteration 1660, lr = 0.001
I0312 23:32:50.653645  2676 solver.cpp:331] Iteration 1680, Testing net (#0)
I0312 23:32:50.653681  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:32:52.647557  2676 solver.cpp:398]     Test net output #0: accuracy = 0.945714
I0312 23:32:52.647593  2676 solver.cpp:398]     Test net output #1: loss = 0.239182 (* 1 = 0.239182 loss)
I0312 23:32:52.910799  2676 solver.cpp:219] Iteration 1680 (2.76029 iter/s, 7.24561s/20 iters), loss = 0.0613022
I0312 23:32:52.913255  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.976562
I0312 23:32:52.913285  2676 solver.cpp:238]     Train net output #1: loss = 0.0613022 (* 1 = 0.0613022 loss)
I0312 23:32:52.913293  2676 sgd_solver.cpp:105] Iteration 1680, lr = 0.001
I0312 23:32:58.327962  2676 solver.cpp:219] Iteration 1700 (3.69434 iter/s, 5.41369s/20 iters), loss = 0.033861
I0312 23:32:58.340250  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.988281
I0312 23:32:58.340270  2676 solver.cpp:238]     Train net output #1: loss = 0.033861 (* 1 = 0.033861 loss)
I0312 23:32:58.340276  2676 sgd_solver.cpp:105] Iteration 1700, lr = 0.001
I0312 23:33:00.073436  2676 solver.cpp:331] Iteration 1708, Testing net (#0)
I0312 23:33:00.073472  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:33:02.110150  2676 solver.cpp:398]     Test net output #0: accuracy = 0.938928
I0312 23:33:02.110188  2676 solver.cpp:398]     Test net output #1: loss = 0.250893 (* 1 = 0.250893 loss)
I0312 23:33:05.622922  2676 solver.cpp:219] Iteration 1720 (2.74765 iter/s, 7.27896s/20 iters), loss = 0.0755461
I0312 23:33:05.632652  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.96875
I0312 23:33:05.632681  2676 solver.cpp:238]     Train net output #1: loss = 0.075546 (* 1 = 0.075546 loss)
I0312 23:33:05.632686  2676 sgd_solver.cpp:105] Iteration 1720, lr = 0.001
I0312 23:33:09.548780  2676 solver.cpp:331] Iteration 1736, Testing net (#0)
I0312 23:33:09.548804  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:33:11.557363  2676 solver.cpp:398]     Test net output #0: accuracy = 0.942142
I0312 23:33:11.557402  2676 solver.cpp:398]     Test net output #1: loss = 0.232101 (* 1 = 0.232101 loss)
I0312 23:33:12.893023  2676 solver.cpp:219] Iteration 1740 (2.75522 iter/s, 7.25894s/20 iters), loss = 0.0302835
I0312 23:33:12.905261  2676 solver.cpp:238]     Train net output #0: accuracy_training = 1
I0312 23:33:12.905295  2676 solver.cpp:238]     Train net output #1: loss = 0.0302835 (* 1 = 0.0302835 loss)
I0312 23:33:12.905302  2676 sgd_solver.cpp:105] Iteration 1740, lr = 0.001
I0312 23:33:18.338508  2676 solver.cpp:219] Iteration 1760 (3.68177 iter/s, 5.43217s/20 iters), loss = 0.06192
I0312 23:33:18.350666  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.984375
I0312 23:33:18.350698  2676 solver.cpp:238]     Train net output #1: loss = 0.06192 (* 1 = 0.06192 loss)
I0312 23:33:18.350703  2676 sgd_solver.cpp:105] Iteration 1760, lr = 0.001
I0312 23:33:18.994849  2676 solver.cpp:331] Iteration 1764, Testing net (#0)
I0312 23:33:18.994885  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:33:21.028154  2676 solver.cpp:398]     Test net output #0: accuracy = 0.927857
I0312 23:33:21.028192  2676 solver.cpp:398]     Test net output #1: loss = 0.283865 (* 1 = 0.283865 loss)
I0312 23:33:25.627306  2676 solver.cpp:219] Iteration 1780 (2.74907 iter/s, 7.27518s/20 iters), loss = 0.0653128
I0312 23:33:25.639580  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.988281
I0312 23:33:25.639614  2676 solver.cpp:238]     Train net output #1: loss = 0.0653128 (* 1 = 0.0653128 loss)
I0312 23:33:25.639619  2676 sgd_solver.cpp:105] Iteration 1780, lr = 0.001
I0312 23:33:28.458091  2676 solver.cpp:331] Iteration 1792, Testing net (#0)
I0312 23:33:28.458127  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:33:30.467082  2676 solver.cpp:398]     Test net output #0: accuracy = 0.943214
I0312 23:33:30.467120  2676 solver.cpp:398]     Test net output #1: loss = 0.22913 (* 1 = 0.22913 loss)
I0312 23:33:32.888509  2676 solver.cpp:219] Iteration 1800 (2.75959 iter/s, 7.24745s/20 iters), loss = 0.0399365
I0312 23:33:32.900758  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.996094
I0312 23:33:32.900791  2676 solver.cpp:238]     Train net output #1: loss = 0.0399365 (* 1 = 0.0399365 loss)
I0312 23:33:32.900796  2676 sgd_solver.cpp:105] Iteration 1800, lr = 0.001
I0312 23:33:37.896623  2676 solver.cpp:331] Iteration 1820, Testing net (#0)
I0312 23:33:37.896724  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:33:39.885713  2676 solver.cpp:398]     Test net output #0: accuracy = 0.944285
I0312 23:33:39.885751  2676 solver.cpp:398]     Test net output #1: loss = 0.232312 (* 1 = 0.232312 loss)
I0312 23:33:40.148910  2676 solver.cpp:219] Iteration 1820 (2.75989 iter/s, 7.24666s/20 iters), loss = 0.0454593
I0312 23:33:40.151473  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.984375
I0312 23:33:40.151504  2676 solver.cpp:238]     Train net output #1: loss = 0.0454593 (* 1 = 0.0454593 loss)
I0312 23:33:40.151510  2676 sgd_solver.cpp:105] Iteration 1820, lr = 0.001
I0312 23:33:45.579064  2676 solver.cpp:219] Iteration 1840 (3.68565 iter/s, 5.42645s/20 iters), loss = 0.028868
I0312 23:33:45.591228  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.992188
I0312 23:33:45.591262  2676 solver.cpp:238]     Train net output #1: loss = 0.028868 (* 1 = 0.028868 loss)
I0312 23:33:45.591267  2676 sgd_solver.cpp:105] Iteration 1840, lr = 0.001
I0312 23:33:47.322468  2676 solver.cpp:331] Iteration 1848, Testing net (#0)
I0312 23:33:47.322490  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:33:49.315287  2676 solver.cpp:398]     Test net output #0: accuracy = 0.946428
I0312 23:33:49.315312  2676 solver.cpp:398]     Test net output #1: loss = 0.232146 (* 1 = 0.232146 loss)
I0312 23:33:52.824077  2676 solver.cpp:219] Iteration 1860 (2.76574 iter/s, 7.23133s/20 iters), loss = 0.0465076
I0312 23:33:52.836303  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.988281
I0312 23:33:52.836321  2676 solver.cpp:238]     Train net output #1: loss = 0.0465076 (* 1 = 0.0465076 loss)
I0312 23:33:52.836325  2676 sgd_solver.cpp:105] Iteration 1860, lr = 0.001
I0312 23:33:56.744417  2676 solver.cpp:331] Iteration 1876, Testing net (#0)
I0312 23:33:56.744454  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:33:58.743549  2676 solver.cpp:398]     Test net output #0: accuracy = 0.947142
I0312 23:33:58.743587  2676 solver.cpp:398]     Test net output #1: loss = 0.236239 (* 1 = 0.236239 loss)
I0312 23:34:00.080644  2676 solver.cpp:219] Iteration 1880 (2.76136 iter/s, 7.2428s/20 iters), loss = 0.0632973
I0312 23:34:00.093142  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.984375
I0312 23:34:00.093181  2676 solver.cpp:238]     Train net output #1: loss = 0.0632973 (* 1 = 0.0632973 loss)
I0312 23:34:00.093188  2676 sgd_solver.cpp:105] Iteration 1880, lr = 0.001
I0312 23:34:05.528113  2676 solver.cpp:219] Iteration 1900 (3.68066 iter/s, 5.43381s/20 iters), loss = 0.141142
I0312 23:34:05.540240  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.964844
I0312 23:34:05.540271  2676 solver.cpp:238]     Train net output #1: loss = 0.141142 (* 1 = 0.141142 loss)
I0312 23:34:05.540277  2676 sgd_solver.cpp:105] Iteration 1900, lr = 0.001
I0312 23:34:06.184927  2676 solver.cpp:331] Iteration 1904, Testing net (#0)
I0312 23:34:06.184963  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:34:08.188815  2676 solver.cpp:398]     Test net output #0: accuracy = 0.941071
I0312 23:34:08.188855  2676 solver.cpp:398]     Test net output #1: loss = 0.250776 (* 1 = 0.250776 loss)
I0312 23:34:11.808614  2676 blocking_queue.cpp:49] Waiting for data
I0312 23:34:12.791224  2676 solver.cpp:219] Iteration 1920 (2.75755 iter/s, 7.25282s/20 iters), loss = 0.035214
I0312 23:34:12.803364  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.988281
I0312 23:34:12.803396  2676 solver.cpp:238]     Train net output #1: loss = 0.035214 (* 1 = 0.035214 loss)
I0312 23:34:12.803401  2676 sgd_solver.cpp:105] Iteration 1920, lr = 0.001
I0312 23:34:15.624873  2676 solver.cpp:331] Iteration 1932, Testing net (#0)
I0312 23:34:15.624908  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:34:17.618657  2676 solver.cpp:398]     Test net output #0: accuracy = 0.951785
I0312 23:34:17.618696  2676 solver.cpp:398]     Test net output #1: loss = 0.226289 (* 1 = 0.226289 loss)
I0312 23:34:20.037569  2676 solver.cpp:219] Iteration 1940 (2.76299 iter/s, 7.23853s/20 iters), loss = 0.0472051
I0312 23:34:20.049713  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.996094
I0312 23:34:20.049732  2676 solver.cpp:238]     Train net output #1: loss = 0.0472051 (* 1 = 0.0472051 loss)
I0312 23:34:20.049751  2676 sgd_solver.cpp:105] Iteration 1940, lr = 0.001
I0312 23:34:25.038463  2676 solver.cpp:331] Iteration 1960, Testing net (#0)
I0312 23:34:25.038498  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:34:27.059917  2676 solver.cpp:398]     Test net output #0: accuracy = 0.946785
I0312 23:34:27.059942  2676 solver.cpp:398]     Test net output #1: loss = 0.235603 (* 1 = 0.235603 loss)
I0312 23:34:27.325182  2676 solver.cpp:219] Iteration 1960 (2.74754 iter/s, 7.27925s/20 iters), loss = 0.0221539
I0312 23:34:27.327626  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.992188
I0312 23:34:27.327656  2676 solver.cpp:238]     Train net output #1: loss = 0.0221539 (* 1 = 0.0221539 loss)
I0312 23:34:27.327661  2676 sgd_solver.cpp:105] Iteration 1960, lr = 0.001
I0312 23:34:32.754545  2676 solver.cpp:219] Iteration 1980 (3.68365 iter/s, 5.4294s/20 iters), loss = 0.0225337
I0312 23:34:32.766762  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.992188
I0312 23:34:32.766795  2676 solver.cpp:238]     Train net output #1: loss = 0.0225337 (* 1 = 0.0225337 loss)
I0312 23:34:32.766801  2676 sgd_solver.cpp:105] Iteration 1980, lr = 0.001
I0312 23:34:34.501754  2676 solver.cpp:331] Iteration 1988, Testing net (#0)
I0312 23:34:34.501788  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:34:36.490181  2676 solver.cpp:398]     Test net output #0: accuracy = 0.944642
I0312 23:34:36.490207  2676 solver.cpp:398]     Test net output #1: loss = 0.232204 (* 1 = 0.232204 loss)
I0312 23:34:39.991500  2676 solver.cpp:219] Iteration 2000 (2.76715 iter/s, 7.22765s/20 iters), loss = 0.0507981
I0312 23:34:40.003767  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.988281
I0312 23:34:40.003788  2676 solver.cpp:238]     Train net output #1: loss = 0.0507981 (* 1 = 0.0507981 loss)
I0312 23:34:40.003806  2676 sgd_solver.cpp:105] Iteration 2000, lr = 0.001
I0312 23:34:43.910578  2676 solver.cpp:331] Iteration 2016, Testing net (#0)
I0312 23:34:43.910599  2676 net.cpp:678] Ignoring source layer accuracy_training
I0312 23:34:45.930817  2676 solver.cpp:398]     Test net output #0: accuracy = 0.948928
I0312 23:34:45.930855  2676 solver.cpp:398]     Test net output #1: loss = 0.241619 (* 1 = 0.241619 loss)
I0312 23:34:47.266039  2676 solver.cpp:219] Iteration 2020 (2.75301 iter/s, 7.26478s/20 iters), loss = 0.0206446
I0312 23:34:47.278142  2676 solver.cpp:238]     Train net output #0: accuracy_training = 0.996094
I0312 23:34:47.278175  2676 solver.cpp:238]     Train net output #1: loss = 0.0206446 (* 1 = 0.0206446 loss)
I0312 23:34:47.278180  2676 sgd_solver.cpp:105] Iteration 2020, lr = 0.001