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Preface 

The purpose of this book is to present up-to-date theory and techniques 
of statistical inference in a logically integrated and practical form. Essentially, 
it incorporates the important developments in the subject that have taken 
place in the last three decades. It is written for readers with a background 
knowledge of mathematics and statistics at the undergraduate level. 

Quantitative inference, if it were to retain its scientific character, could 
not be divested of its logical, mathematical, and probabilistic aspects. The 
main approach to statistical inference is inductive reasoning, by which we 
arrive at “ statements of uncertainty.” The rigorous expression that degrees 
of uncertainty require are furnished by the mathematical methods and prob- 
ability concepts which form the foundations of modern statistical theory. It 
was my awareness that advanced mathematical methods and probability 
theory are indispensable accompaniments in a self-contained treatment of 
statistical inference that prompted me to devote the first chapter of this book 
to a detailed discussion of vector spaces and matrix methods and the second 
chapter to a measure-theoretic exposition of probability and development of 
probability tools and techniques. 

Statistical inference techniques, if not applied to the real world, will lose 
their import and appear to be deductive exercises. Furthermore, it is my belief 
that in a statistical course emphasis should be given to both mathematical 
theory of statistics and to the application of the theory to practical problems. 
A detailed discussion on the application of a statistical technique facilitates 
better understanding of the theory behind the technique. To this end, in this 
book, live examples have been interwoven with mathematical results. In 
addition, a large number of problems are given at the end of each chapter. 
Some are intended to complement main results derived in the body of the 
chapter, whereas others are meant to serve as exercises for the reader to test 
his understanding of theory. 

The selection and presentation of material to cover the wide field of 
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statistical inference have not been easy. I have been guided by my own 
experience in teaching undergraduate and graduate students, and in conduct- 
ing and guiding research in statistics during the last twenty years. I have 
selected and presented the essential tools of statistics and discussed in detail 
their theoretical bases to enable the readers to equip themselves for consulta- 
tion work or for pursuing specialized studies and research in statistics. 

Why Chapter 1 provides a rather lengthy treatment of the algebra of 
vectors and matrices needs some explanation. First, the mathematical treat- 
ment of statistical techniques in subsequent chapters depends heavily on vector 
spaces and matrix methods; and second, vector and matrix algebra constitute 
a branch of mathematics widely used in modern treatises on natural, biological, 
and social sciences. The subject matter of the chapter is given a logical and 
rigorous treatment and is developed gradually to an advanced level. All the 
important theorems and derived results are presented in a form readily adapt- 
able for use by research workers in different branches of science. 

Chapter 2 contains a systematic development of the probability tools 
and techniques needed for dealing with statistical inference. Starting with the 
axioms of probability, the chapter proceeds to formulate the concepts of a 
random variable, distribution function, and conditional expectation and 
distributions. These are followed by a study of characteristic functi0ns;proba- 
bility distributions in infinite dimensional product spaces, and all the important 
limit theorems. Chapter 2 also provides numerous propositions, which find 
frequent use in some of the other chapters and also serve as good equipment 
for those who want to specialize in advanced probability theory. 

Chapter 3 deals with continuous probability models and the sampling 
distributions needed for statistical inference. Some of the important distribu- 
tions frequently used in practice, such as the normal, Gamma, Cauchy, and 
other distributions, are introduced through appropriate probability models 
on physical mechanisms generating the observations. A special feature of this 
chapter is a discussion of problems in statistical mechanics relating to the 
equilibrium distribution of particles. 

Chapter 4 is devoted to inference through the technique of analysis of 
variance. The Gauss-Markoff linear model and the associated problems of 
estimation and testing are treated in their wide generality. The problem of 
variance-components is considered as a special case of the more general 
problem of estimating intraclass correl?tion coefficients. A unified treatment 
is provided of multiclassified data under different sampling schemes for classes 
within categories. 

The different theories and methods of estimation form the subject 
matter of Chapter 5 .  Some of the controversies on the topic of estimation are 
examined ; and to remove some of the existing inconsist,encies, certain modi- 
fications are introduced in the criteria of estimation\ in large samples. 

Problems of specification, and associated tests of homogeneity of parallel 
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samples and estimates, are dealt with in Chapter 6. The choice of a mathe- 
matical model from which the observations could be deemed to have arisen 
is of fundamental importance because subsequent statistical computations 
will be made on the framework of the chosen model. Appropriate tests have 
been developed to check the adequacy of proposed models on the basis of 
available facts. 

Chapter 7 provides the theoretical background for the different aspects 
of statistical inference, such as testing of hypotheses, interval estimation, 
experimentation, the problem of identification, nonparametric inference, and 
so on. 

Chapter 8, the last chapter, is concerned with inference from multi- 
variate data. A special feature of this chapter is a study of the multivariate 
normal distribution through a simple characterization, instead of through 
the density function. The characterization simplifies the multivariate theory 
and enables suitable generalizations to be made from the univariate theory 
without further analysis. I t  also provides the necessary background for study- 
ing multivariate normal distributions in more general situations, such as 
distributions on Hilbert space. 

Certain notations have been used throughout the book to indicate 
sections and other references. The following examples will help in their inter- 
pretation. A subsection such as 4f.3 means subsection 3 in section f of Chapter 
4. Equation (4f.3.6) is the equation numbered 6 in subsection 4f.3 and Table 
4f.3p is the table numbered second in subsection 4f-3. The main propositions 
(or theorems) in each subsection are numbered: (i), (ii), etc. A back reference 
such as [(iii). 5d.21 indicates proposition (iii) in subsection 5d.2. 

A substantial part of the book was written while I was a visiting professor 
at the Johns Hopkins University, Baltimore, in 1963-1964, under a Senior 
Scientist Fellowship scheme of the National Science Foundation, U.S.A. At 
the Johns Hopkins University, 1 had the constant advice of G. S. Watson, 
Professor of Statistics, who read the manuscript at the various stages of its 
preparation. Comments by Herman Chernoff on Chapters 7 and 8, by Rupert 
Miller and S. W. Dharmadhikari on Chapter 2, and by Ralph Bradley on 
Chapters 1 and 3, have been extremely helpful in  the preparation of the final 
manuscript. I wish to express my thanks to all of them. The preparation and 
revision of the manuscript would not have been an easy task without the help 
of G. M. Das, who undertook the heavy burden of typing and organizing the 
manuscript for the press with great care and diligence. 

Finally, I wish to express my gratitude to the late Sir Ronald A. Fisher 
and to Professor P. C. Mahalanobis under whose influence 1 have come to 
appreciate statistics as the new technology of the present century. 

Calcutta, India 
June, 1965 

C. R. Rao 



Preface to the 
Second Edition 

As in the first edition, the aim has been to provide in a single volume a 
full discussion of the wide range of statistical methods useful for consulting 
statisticians and, at same time, to present in a rigorous manner the mathematic- 
al and logical tools employed in deriving statistical procedures, with which a 
research worker should be familiar. 

A good deal of new material is added, and the book is brought up to date 
in several respects, both in theory and applications. 

Some of the important additions are different types of generalized 
inverses, concepts of statistics and subfields, MINQUE theory of variance 
components, the law of iterated logarithms and sequential tests with power 
one, analysis of dispersion with structural parameters, discrimination between 
composite hypotheses, growth models, theorems on characteristic functions, 
etc. 

Special mention may be made of the new material on estimation of 
parameters in a linear model when the observations have a possibly singular 
cooariance matrix. The existing theories and methods due to Gauss (1809) 
and Aitken (1935) are applicable only when the covariance matrix is known 
to be nonsingular. The new unijied approaches discussed in the book 
(Section 4i) are valid for all situations whether the covariance matrix is 
singular or not. 

A large number of new exercises and complements have been added. 
1 wish to thank Dr. M. S. Avadhani, Dr. J. K. Ghosh, Dr. A. Maitra, 

Dr. P. E. Niiesch, Dr. Y. R. Sarma, Dr. H. Toutenberg, and Dr. E. J. Wil- 
liams for their suggestions while preparing the second edition. 

New Delhi C .  R. Rao 
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Chapter 1 

ALGEBRA OF VECTORS 
AND MATRICES 

Introduction. The use of matrix theory is now widespread in both pure 
mathematics and the physical and the social sciences. The theory of vector 
spaces and transformations (of which matrices are a special case) have not, 
however, found a prominent place, although they are more fundamental and 
offer a better understanding of problems. The vector space concepts are 
essential in the discussion of topics such as the theory of games, economic 
behavior, prediction in time series, and the modern treatment of univariate 
and multivariate statistical methods. 

The aim of the first chapter is to introduce the reader to the concepts of 
vector spaces and the basic results. All important theorems are discussed in 
great detail to enable the beginner to work through the chapter. Numerous 
illustrations and problems for solution are given as an aid to further under- 
standing of the subject. To introduce wide generality (this is important and 
should not cause any difficulty in  understanding the theory) the elements used 
in the operations with vectors are considered as belonging to any Field in 
which addition and multiplication are defined in a consistent way (as in the 
ordinary number system). Thus, the elements e , ,  e2 ,  . . . (finite or infinite in  
number) are said to belong to a field F, if they are closed under the operations 
of addition (e i  + e j )  and multiplication (e ,e j ) ,  that is, sums and products of 
elements of F also belong to F, and satisfy the following conditions: 

( A , )  ei + ej  = e j  + ei (commutative law) 

( A 2 )  e, + (e j  + ek) = ( e ,  + e j )  + f?k 

( A 3 )  For any two elements e , ,  e j ,  there exists an element e, such that 
ei + ek = e j  . 

(associative law) 

The condition ( A 3 )  implies that there exists an element e,  such that e, + e, = e, 
for all i. The element c,, is like 0 (zero) of the number system. 

1 
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2 ALGEBRA OF VECTORS AND MATRICES 

(M,) e , e j  = e j e i  (commutative law) 
(M2)  ei(ej e k )  = ( e i  ellet (associative law) 

(M,) e,(ej + ek) = e i  e j  + e,  ek (distributive law) 
(M4) For any two elements ei and e j  such that e ,  # e,  , the zero element, 

there exists an element f?k such that e ,  ek = ej  . 
(M4) implies that there is an element e, such that e ie l  = e,  for all i. The 

element e, is like 1 (unity) of the number system. 
The study of vector spaces is followed by a discussion of the modern matrix 

theory and quadratic forms. Besides the basic propositions, a number of 
results used in mathematical physics, economics, biology and statistics, and 
numerical computations are brought together and presented in a unified way. 
This would be useful for those interested in applications of the matrix theory 
in the physical and the social sciences. 

l a  VECTOR SPACES 

1a.l Definition of Vector Spaces and Subspaces 

Concepts such as force, size of an organism, an individual’s health or mental 
abilities, and price level of commodities cannot be fully represented by a 
single number. They have to be understood by their manifestations in different 
directions, each of which may be expressed by a single number. The mental 
abilities of an individual may be judged by his scores ( x l ,  x 2 ,  . . . , x k )  in k 
specified tests. Such an ordered set of measurements may be simply represen- 
ted by x, called a row vector. If y = ( y , ,  yz  , . . . , Yk) is the vector of scores for 
another individual, the total scores for the two individuals in the various tests 
may be represented by x + y with the definition 

x+Y=(xl +Yl,xZ + Y 2 , * . . , x k + Y k ) *  (la.l.1) 

This rule of combining or adding two vectors is the same as that for obtaining 
the resultant of two forces in two or three dimensions, known as the parallelo- 
gram law of forces. Algebraically this law is equivalent to finding a force 
whose components are the sum of the corresponding components of the 
individual forces. 

Given a force f = (f,, . f 2 ,  f3), i t  is natural to define 

cf = (Cfli, cf2 9 cf3) ( I a. I .2) 

as a force c times the first, which introduces a new operation of multiplying 
a vector by a scalar number such as c .  Further, given a force f, we can counter- 
balance it by adding a force g = (-f,, -f2, -f3) = (-  I)f, or by applying f 
in the opposite direction, we have the resulting force f + g = (0, 0,O). Thus 
we have the concepts of a negative vector such as ‘-f and a null vector 
0 = (0, 0, 0), the latter having the property x + 0 -L x for all x. 
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It is seen that we are able to work with the new quantities, to the extent 
permitted by the operations defined, in the same way as we do with numbers. 
As a matter of fact, we need not restrict our algebra to the particular type of 
new quantities, viz., ordered sets of scalars, but consider a collection of 
elements x, y, z, . . . , finite or infinite, which we choose to call vectors and 
cI ,  c2 ,  , . . , scalars constituting a field (like the ordinary numbers with the 
operations of addition, subtraction, multiplication, and division suitably 
defined) and lay down certain rules of combining them. 

VectorAddition. The operation of addition indicated by + is defined for 
any two vectors leading to a vector in the set and is subject to the following 
rules : 

(9  x + y = y + x  (commutative law) 

(ii) x + (y + z) = (x + y) + z (associative law) 

Null Element. There exists an element in the set denoted by 0 such that 

(iii) x + 0 = x, for all x. 

Inverse (Negative) Element. For any given element x, there exists a corre- 
sponding element < such that 

(iv) x + { = O .  

Scalar Multiplication. The multiplication of a vector x by a scalar c leads to 
a vector in the set, represented by cx, and is subject to the following rules. 

(v) 
(vi) 
(vii) c,(c2 x) = (clc2)x (associative law) 
(viii) ex = x 

c(x + y) = cx + cy 

(cl + c2)x = clx + c2 x 

(distributive law for vectors) 
(distributive law for scalars) 

(where e is the unit element in  the field of 
scalars). 

A collection of elements (with the associated field of scalars F )  satisfying the 
axioms (i) to (viii) is called a linear vector space V or more explicitly V ( F )  
or V,  . Note that the conditions (iii) and (iv) can be combined into the single 
condition that for any two elements x and y there is a unique element z such 
that x + z = y. 

The reader may satisfy himself that, for a given k, the collection of all 
ordered sets (xl, . . . , xk)  of real numbers with the addition and the scalar 
multiplication as defined in (la.l.1) and (la.l.2) form a vector space. The 
same is true of all polynomials of degree not greater than k, with coefficients 
belonging to any field and addition and multiplication by a constant being 
defined in the usual way. Although we will be mainly concerned with vectors 
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which are ordered sets of real numbers in the treatment of statistical methods 
covered in this book, the axiomatic set up will give the reader proper insight 
into the new algebra and also prepare the ground for a study of more com- 
plicated vector spaces, like Hilbert space (see Halmos, 1951), which are being 
increasingly used in the study of advanced statistical methods. 

A linear subspace, subspace, or linear manijold in a vector space Y is any 
subset of vectors A closed under addition and fcalar multiplication, that is, 
if x and y E A, then (cx + dy) E 4 for any pair of scalars c and d. Any such 
subset A is itselfa vector space with respect to the same definition of addition 
and scalar multiplication as in Y .  The subset containing the null vector alone, 
as well as that consisting of all the elements in “Ir, are extreme examples of 
subspaces. They are called improper subspaces whereas others are proper 
subspaces. 

As an example, all linear combinations of a given fixed set S of vectors 
a], . . . , ak is a subspace called the linear manifold 4 ( S )  spanned by S. This 
is the smallest subspace containing S. 
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Consider k linear equations in n variables x , ,  , . . , x , ,  

ail  x1 + - + ainxn = 0, i = 1, . , . , k,  

where a,] belongs to any field F. The reader may verify that the totality of 
solutions (xI, . . . , x,) considered as vectors constitutes a subspace with 
the addition and scalar multiplication as defined in ( 1  a. I .  1) and ( 1  a. 1.2). 

la.2 Basis of a Vector Space 

A set of vectors ul, . . . , uk is said to be linearly dependent if there exist scalars 
c,, . . . , ck, not all simultaneously zero, such that clul + + ckuk = 0, 
otherwise it is independent. With such a definition the following are true: 

1 .  The null vector by itself is a dependent set. 

2. Any set of vectors containing the null vector is a dependent set. 

3. A set of non-zero vectors u, ,  . . . uk is dependent when and only when a 
member in the set is a linear combination of its predecessors. 

A linearly independent subset of vectors in a vector space Y ,  generating or 
spanning Y is called a basis (Hamel basis) of Y .  

(i) Every vector space Y has a basis. 

To demonstrate this, let us choose sequentially non-null vectors a], a2 , . . . , 
in Y such t l r . i l  no ai is dependent on its predecessors. In this process it  may 
so happen that after the kth stage no independent vector is left in V ,  in which 
case al ,  . . . , ak constitute a basis and V is said to be a finite ( k )  dimensional 
vector space. On the other hand, there may be no limit to the process of 
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choosing a i ,  in which case Y is said to have infinite dimensions. Further 
argument is needed to show the actual existence of an infinite set of inde- 
pendent vectors which generate all the vectors. This is omitted as our field of 
study will be limited to finite dimensional vector spaces. The following results 
concerning finite dimensional spaces are important. 

(ii) I f a , ,  . . . , ak and P I ,  . . . , p, are two alternative choices for a basis, then 

Let, if possible, s > k .  Consider the dependent set pl, a , ,  . . ., a k .  If ai 
depends on the predecessors, then Y can also be generated by P I ,  a , ,  . . . , ui -  
a i + l ,  . . . , a k ,  in which case the set p 2 ,  P I ,  a , ,  . . . , a i - , ,  . . , ak is depend- 
ent. One more a can now be omitted. The process of adding a p and omitting 
an a can be continued (observe that no p can be eliminated at any stage) till 
the set p,,  . . . , p k  is left, which itself spans Y and hence (s - k )  of the p vectors 
are redundant. The cardinal number k common to all bases represents the 
minimal number of vectors needed to span the space or the maximum 
number of independent vectors in the space. We call this number as the dimen- 
sion or rank of V and denote it by d [ Y ] .  

s = k .  

(iii) Every vector in *Y has a unique representation in terms of a given basis. 

If (ai  - bi)ai = 0, 
which is not possible unless ai - bi = 0 for all i, since ai  are independent. 

The Euclidean space &(F) of all ordered sets of k elements ( x l ,  . . . , xk) ,  
x i  E F ( a  field of elements) is of special interest. The vectors may be considered 
as points of k dimensional Euclidean space. The vectors e ,  = (1,0, . . . , 0), 
e, = (0, 1, 0, . . . , O), . . . , ek = (0, 0,  . . . , 1) are in Ek and are independent, and 
any vector x = ( x , ,  . . . , xk) = x l e l  + + & e k .  Therefore d[Ek] = k,  and 
the vectors e l ,  . . . , ek constitute a basis and thus any other independent set of 
k vectors. Any vector in Ek can, therefore, be represented as a unique linear 
combination of k independent vectors, and, naturally, as a combination (not 
necessarily unique) of any set of vectors containing k independent vectors. 

When F is the field of real numbers the vector space Ek(F) is denoted simply 
by Rk. In the study of design of experiments we use Galoisjelds (GF)  with a 
finite number of elements, and consequently the vector space has only a 
finite number of vectors. The notation Ek(GF) may be used for such spaces. 
The vector space Ek(F) when F is the field of complex numbers is represented 
by Uk and is called a k dimensional unitary space. The treatment of Section 
la.3 is valid for any F. Later we shall confine our attention to Rk only. We 
prove an important result in (iv) which shows that study of finite dimensional 
vector spaces is equivalent to that of Ek . 

a , a ,  and 1 b i a ,  represent the same vector, then 

(iv) Any vector space “v, for which d [ Y ]  = k is isomorphic to Ek . 
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I f  a l ,  , , , , ak is a basis of VF, then an element u E “u;; has the representation 
u = alul + + akak where a,  E F, i = 1, . . . , k. The correspondence 

u --* u* = (a ] ,  . . * 3 ak), u* E Ek(F) 

establishes the isomorphism. For if u + u*, v + v*, then u + v -+ u* + v* and 
cu + cu*. This result also shows that any two vector spaces with the same di- 
mensions are isomorphic. 

la.3 Linear Equations 

Let a I ,  . . . , a,  be mjixed vectors in an arbitrary vector space 9; and consider 
the linear equation in the scalars x l ,  . . . , x ,  E F (associated Field) 

xla l  + + x,a, = 0. (la.3.1) 

(i) A necessary and suflcient condition that (la.3.1) has a nontrivial 
solution, that is, not all xi  simultaneously zero, is that a I ,  . . , , a,n should be 
dependent. 

(ii) The solutions considered as (row) vectors x = ( x l ,  . . . , x,) in E,(F) 
constitute a vector space. 

This is true for if x and y are solutions then ax + by is also a solution. Note 
that a , ,  themselves may belong to any vector space VF. 

(iii) Let 9’ be the linear manifold or the subspace of solutions and 4, that 
of the vectors a l l  . . . , a,. Then d [ Y ]  = m - d [ A ]  where the symbol d denotes 
the dimensions of the space. 

Without loss of generality let a I ,  . . . , ak be independent, that is, d [ 4 ]  = k, 
in which case, 

a j  = ajlal + 
We observe that the vectors 

+ a jkak ,  j = k + I ,  . . . , m. 

P I  = (ak+l, 1, . . . 9 ak+I, k 9  - 1, 0, . . . , 0) 
. . .  (1 a.3.2) 

are independent and satisfy the equation (la.3.1). The set (la.3.2) will be 
a basis of the solution space Y if it spans all the solutions. Let y = (yl, , . . , y,) 
be any solution and consider the vector 

Y + yk + 1 P I  + ’ * + y m  P m  - k 3 ( 1 a.3.3) 

which is also a solution. But this is of the form (zl, . . . , zk, 0, . . . , 0) which 
means zlal + . + Zkak = 0. This is possible only when z1 = - - * = zk = 0. 

. . .  . . .  
Pm - k = (am, 1 9 . . . $  k 1 o,o, . . . )  - 1) 
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Thus (la.3.3) is a null vector or any solution y is expressible in terms of the 
m - k independent vectors p,, . . . , pm-k,  where k is the same as the number of 
independent a vectors, which proves the result. 

(iv) The nonhomogeneous equation 

xlal  + * * * t x, a, = a. ( 1 a.3.4) 

admits a solution, if and only if, a. is dependent on a,, . . . , ak . 
The result follows from the definition of dependence of vectors. 

(v) A general solution of the nonhomogeneous equation (la.3.4) is the sum 
of any particular solution of (la.3.4) and a general solution of the homogeneous 
equation (la.3.1). 

The result follows since the difference of any two solutions of (la.3.4) is a 
solution of (la.3.1). 

Note that the set of solutions of (la.3.4) no doubt belong to E m ,  but do not 
constitute a subspace as in the case of the solutions of the homogeneous equ- 
ation (la.3.1). From (v), the following result (vi) is deduced. 

(vi) The solution of a nonhomogeneous equation is unique when the corre- 
sponding homogeneous equation has the null vector as the only solution, that is, 
d [ Y ]  = m - k = 0 or when a l ,  . . . , a, are independent. 

A special and an important case of linear equations is where a, E En. If 
ai = (a,,, . . . , an,), then (la.3.1) may be written 

a l lx l  + ... + almxm = 0 
... ( 1 a.3.5) 

anlx ,  +*-.+an,x,=O 
which are n linear equations in m unknowns. The column vectors of the equa- 
tions (la.3.5) are a l ,  . . . , a,  . Let the row vectors be represented by fl, = 
(a,,, . . . , a,,), i = 1, . . . , n. Let onlyrrows be independent and let k = d[A(a ) ] ,  
the dimension of the manifold generated by the column vectors. If we retain 
only the r independent rows, the solution space Y will still be the same. Since 
d [ Y ]  = m - k, some k columns in the reduced set of equations are independ- 
ent. But now the column vector has only r elements, that is, it belongs to E, 
and therefore the number of independent column vectors cannot be greater 
than r.  Therefore r 2 k. We can reverse the roles of columns and rows in the 
argument and show that k 2 r. Hence r = k and we have: 

(vii) Considering only the coeficients ail in (la.3.5), the number of indepen- 
dent rows is equal to the number of independent columns and 

d [ A ( a ) ]  = d[A(fl)] ,  d ( Y )  = m - d [ A ( a ) ]  = m - d[A( f l ) ] .  
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Let us consider the nonhomogeneous equations obtained by replacing 
(0, . . . , 0) on the R.H. S .  of (1 a.3.5) by a. = (u,, . . . , u,,). To verify the existence 
of a solution we need satisfy ourselves that any one of the following equivalent 
necessary and sufficient conditions is true. 

1. The column vector a. is dependent on a,, . . . , a,,, by (iv), or 

d[A(a,, . . . , a,,,)] = d[A(al,  . . , a,,,, aoll. 

2. Let yi be an (rn + 1)-vector obtained from pi by adding the (rn + 1)th 
element ui. Then d[A(yl, . . . , y,)] = d [ A ( f l l ,  . . . , fl,,)]. This is true for 
the former is equal to d[A(a,,  . . . , a,,,, ao)] being its column equivalent 
and the latter to d[A(a,, . . . , a,,,)]. 

3. Ifc,, ..., c,aresuchthatc ,~,  + ~ ~ ~ + c , ~ , , = O , t h e n c l a ,  + * * . + c , u , =  
0 or equivalently clyl + + c,y, = 0. To prove this we need only 
observe that the solutions (c,, . . . , c,) of C ci pi = 0 and C c i y i  = 0 are 
the same, which follows from the results that every solution of cy, = 0 
is obviously a solution of 1 ci pi = 0 and d [ A ( p ) ]  = d [ A ( y ) ] .  

4. If the row vectors P I ,  . . . , p, are independent, the nonhomogeneous 
equation admits a solution for any arbitrary a. . 

18.4 Vector Spaces with an Inner Product 

So far we have studied relationships between elements of a vector space 
through the notion of independence. It would be fruitful to consider other 
concepts such as distance and angle between vectors which occur in the 
study of two- and three-dimensional Euclidean geometries. When the asso- 
ciated scalars belong to real or complex numbers, it appears that theextension 
of these concepts is immediate for vector spaces, through a complex valued 
function known as the inner product of two vectors x, y, denoted by (x, y), 
satisfying the following conditions 

(a) (x, y) = ( r x ) ,  the complex conjugate of (y, x) 
(b) (x, x) > 0 if x # 0, = 0 if x = 0 
(c) ( t x ,  y) = t ( x ,  y), where t is a scalar 

(dl (x + Y, 4 = (x, 2)  + (Y, 4 
For R", that is, n-dimensional Euclidean space with real coordinates, the 

real valued function (x, y) = 1 x i y i  satisfies the conditions (a) to (d). We 
choose this function as the inner product of vectors in R". For U", the unitary 
space with complex coordinates, (x, y) may be defined as x i p i .  In fact it 
can be shown that every inner product in U" is of the form ui j  xipi where 
ai, are suitably chosen (see Example 19.5 at the end of this chapter). 
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The positive square root of (x, x) is denoted by Ilxll-the norm of x or 
length of x. The function IIx - yII satisfies the postulates of a distance in a 
metric space and may be considered as the distance between x and y. It would 
be interesting to verify the triangular inequality 

IIX - YII + IIY - 41 IIX - 41. 
and the Cauchy-Shwarz inequality 

I(x, Y) l  I l lX l l l lY l l  

Two vectors, x, y are said to be orthogonal if their inner product, (x, y) = 0. 
The angle 0 between non-null vectors x, y E Rk is defined by 

which lies in the closed interval [- 1, I]. We examine the properties of vector 
spaces furnished with an inner product. 

(i) A set of non-null vectors a l ,  . . . , ak orthogonal in pairs is necessarily 
independent. 

If this is not so, let c a iu i  = 0 and uj # 0. Taking the inner product of aj  
and 1 a,  ai and putting ( a i ,  a j )  = 0, i # j ,  we find aj(aj , a j )  = 0, which implies 
aj = 0 since ( a j ,  a j )  > 0, contrary to assumption. 

(ii) GRAM-SCHMIDT ORTHOGONALIZATION. A set of orthogonal vectors 
spanning a vector space 9'- is called an orthogonal basis (0.b.). If, further, 
each vector is of unit norm, it is called an orthonormal basis (0.n.b.). We 
assert that an 0.n.b. always exists. Let a I ,  a 2 ,  . . . be any basis and construct 
sequentially 

51 = a1 
5 2  = a2 - a2141 

~ i = a i - a i , i - l t i - l  - a + . -  ail41 

... ... . I .  

. ... . . I  (la.4.1) 

where the coefficients in the ith equation are determined by equating the 
inner product o f t , ,  with each of  t l ,  . . . , t i -  to zero. Thus having determined 
g l ,  . . . , the coefficients a, , ,  . . . , a,, i - l  defining gi are obtained as follows: 

(ai 9 41) = ail(t1,51>, . * * 9 (ai, ti-1) = ui , i - l (5 i - l ,  ti-1). 
The vectors gl, sz, . . . provide an 0.b. The set defined by q i  = 4,/115,ll, 
i = 1, 2, . . .  is an 0.n.b. Observe that llgill # 0, for otherwise 6, = O  which 
implies dependence of a,, . . . , a , .  Also kl, . . . , ti constitutes an 0.b. of the 
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linear manifold spanned by a,, . . . , a i ,  that is, A(gl,.. . , S i )  = A ( a l , .  . . ,ai),  
i = I, 2, , . . . The constructive method of establishing the existence of an 0.n.b. 
is known as Gram-Schmidt orthogonalization process. 

Let W be a finite dimen- 
sional subspace and a, a vector q! W .  Then there exist two vectors y, p, such that 
a = p +  y, fl E W and y # 0 is orthogonal to W(y I" W).  Furthermore, y and 
P are unique. 

Let a,, . . ., a, be a basis of W .  Then construct el, ..., 5,, 4r+1 from 
all . . . , a,, a,+l (= a) by the Gram-Schmidt orthogonalization process. We 
find from the last equation in ( I  a.4.1) 

(iii) ORTHOGONAL PROJECTION OF A VECTOR. 

a=5r+i + ( a r + l , r % + . . . + a r + l , 1 5 1 ) = 5 r + 1 + P = r + P ,  

which defines y and p. Since W = &(al, . . . , a,) = A&, . . . , t,), we find 
P E W and 5 r + i  = y is, by construction, orthogonal to each of el,  . . . , 5, and 
therefore to the manifold &(el, . . . , 5,) or to W .  Let P1 + y, be another reso- 
lution. Then 0 = (y - yl)  + (P - P,). Taking the inner product of both sides 
with (y - yi) we find (y - yi,  y - yl) = 0, which implies y - yI = 0, and also 
P - 0, = 0. The vector y is said to b: the I" from a to W and fl the projection 
of a on W .  y = 0 if a €  W .  

(iv) The Le' y from a to W has the property 

llyll = inf lla - X I [ ,  XEW. (la.4.2) 

Let a = P + y, P E W and y le' W .  Then (x - P, y) = 0 for x E W .  Hence 
verify that 

(x - a ,  x - a )  = (x - f! - y, x - P -  y) 

= (x - Pl x - PI + (YI Y) 117112 
= lly(I2 when x = p. 

Therefore, the shortest distance between a and an element of W is the length 
of the I" from a to W .  

(v) BESSEL'S INEQUALITY Let a,, . . . , a, be an orthonormal set of vectors 

( I a. 4.3) 

in an inner product space and fl be any other vector. Then 

I@,* P) l 2  + . . . + K a m 1  P I  l 2  G 11P1I2 
with equality ir p belongs to the subspace generated by ai, . . . , a,. 

by proposition (iii) /3 = 6 + r where (6, r) = 0. Hence 
Let 6 = ( a i ,  /3)ai. Then 6 is the projection of /3 on .&(ai, . . . , a,) and 

11P11~ = 1 1 ~ 1 1 2  + llrllZ 2 116112 = c I b i ,  P) 1 2 .  
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(vi) The set of all vectors orthogonal to a given set o j  vectors S which is a 
subspace or not, is a subspace represented by S'. 

This follows from the definition of a subspace. Let the whole vector space Y 
be of dimension n (finite) and al, . . . , a, be a basis of the manifold A ( S )  
spanned by S. If p l ,  . . . , p, is a basis of S', the set of vectors al ,  . . . , a,, B1, 
. . . , p, are independent, since every pi is I" to every aj . Obviously ( r  + s) 3 11. 

If ( r  + s) < n, there exists at least one vector independent of al, . . . , a,, ol, 
. . , , p, and hence we can find by (iii) a non-null vector orthogonal to all of 
them. Since such a vector is necessarily orthogonal to each of al, . . . , a, it 
must belong to S *, that is, depend on pl, . . . , p, which is a contradiction. 
Hence ( r  + s) = n.  We thus obtain an important result 

d [ A ( S ) ]  + d[S'] = d [ Y ] .  (la.4.4) 

Furthermore, every vector in Y can be written as x + y, x E A ( S )  and 

A vector space Y is said to be the direct 
sum of subspaces ^Yl , . . . , Y, and written Y = Y1 GI * * GI Y,  if a E Y  can 
be uniquely expressed as ai + * * * + a, where ai E Y i  . In such a case 

y E s'. 
(vii) DIRECT SUM OF SUBSPACES. 

Y i  n Y j  = (0) and d ( Y )  = d(Yl) + * * *  + d(Y,) .  (la.4.5) 

The resolution of Y = A ( S )  + S' in (vi) is an example of direct sum. 

COMPLEMENTS AND PROBLEMS 

1 If al, . . . , a, are k independent vectors in a vector space "Ir, show that it 
can always be extended to a basis of Y ,  that is, we can add ak+l, . . . , a, such 
that al, . . . , a, form a basis of Y ,  where r = d [ Y ] .  

2 The dimension of the space generated by the following row vectors is 4. 

1 1 0 1 0 0 [Hint: The dimensions of the spaces formed by 
1 1 0 0 1 0 the rows and columns are the same. Consider 
1 1 0 0 0 1 the last 4 columns which are obviously in- 
1 0 1 1 0 0 dependent and note that the first two depend on 
1 0 1 0 1 0 them.] 
1 0 1 0 0 1  

3 Generalize the result of Example 2 to p q  row vectors written in q blocks 
ofp  rows each, thejth vector in the ith block having unity in the Ist, (i + l)th, 
and (q  + j + 1)th columns and zero in the rest of ( p  + q - 2) columns. Show 
that the dimension of the space generated is (p + q - 1). 
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4 Jfpq elements a,,, i = I ,  . . . , p ; j  = I ,  . . . , q are such that the tetra differ- 
ence ail + a,. - a,, - a,, = 0 for all i, j ,  r ,  s, then ai j  can be expressed in 
the form a,, = a, + 6, where al ,  . . . , a,, and bl ,  . . , , b, are properly chosen. 

[Examples 2 ,3 ,  and 4 are useful in the study of two way data by analysis of 
variance of Section 4e, Chapter 41. 
5 Find the number of independent vectors in the set (a, b, . . . , b), (b, a, b, . . . , 
b), . . . , (b, b, . . . , a) when the sum of elements in each vector is zero. 
6 Let Y and J be subspaces and denote the set of vectors common to Y and 
J by Y n Y, the intersection of Y and J, and the set of vectors x + y, 
x E 9, y E J by Y + Y. Show that (i) Y n J and Y + J are also sub- 
spaces, (ii) Y n J is the largest subspace contained in both Y and J, (iii) 
Y + J is the smallest subspace containing both Y and J and, (iv) 

d[Y + J] = d [ Y ]  + d [ J ]  - d [ Y  n F]. 

7 Show that R" can be expressed as the direct sum of r subspaces, r < n. 

8 Let S be any set of vectors and S1 the set of all vectors orthogonal to S. 
Show that (Sl)' =I S and is equal to S only when S is a subspace. 
9 Let S and T be any two sets of vectors containing the null vector. Then 
( S  + T)' = S1 n P. 
10 If Y and J are subspaces, then (9 n 9)' = 9'' + J1, 
11 Let a l ,  . . . , a,  be vectors in an arbitrary vector space V,.  Then the 
collection of vectors ?,al + . + tma,, t i  E F as ( t l ,  . . . , t,) varies over all 
the vectors in Em is the linear manifold &(a) whose dimension is equal to k, 
the number of independent vectors in the set a l ,  . . . , a, .  What can we say 
about the collection ?,a,  + + t,a, when (tl ,  . . . , t,) is confined to a 
subspace Y of dimension s in Em? Show that the restricted collection is also a 
subspace c &(a) and the dimension of this space is s - d[Y  n 9-1 where J 
is the subspace of Em representing the solutions ( t l ,  . . . , t,) of the equation 
tlal + * 

12 Let al  in Example 11 belong to En,  
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+ ?, a, = 0. 

ai = (ail, . . . , a,,,), i = 1, . . . , m 

j = 1, . . . , n. 

and represent the column vectors by 

p, = (a1 j ,  . . . , U"J, 

Let t = (tl ,  . . . , t,) satisfy the equations 

( t ,y i )=O,  i = l ,  ..., k,  

where yl, . . . , yk are fixed vectors in E m .  Show that the dimension of the sub- 
space generated by C tiai is 

d[A@l, * ' ' 9 P n  9 y1, * . 3 Yk)] - d[&(yl~ * . * , Y k ) ] .  
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13 Find the value of 6 for which the equations admit a solution 

2x1 - x2 + 5x3 = 4, 

- 2x2 + 4x3 = 7 + 6. 
4x1 + 6x3 = 1 ,  

14 The equations 

4x, + 3x2 + 2x3 + 8x4 = 6, 

3 X 1  + 4 X 2  + X3 + 7 X 4  = 6, 

x , +  x ,  + x3 + x 4 = 6 3  

admit a solution for any arbitrary S , ,  6, ,  6 , .  [Note that there are three equa- 
tions and all the three rows are independent.] Determine the totality of the 
solutions and find the one with a minimum length. 
15 Let 0, 1,2  represent the residue classes (mod 3) .  They form a Galois Field 
with three elements, GF (3 ) ,  with the usual definition of addition and multi- 
plication of residue classes. In this system find a basis of the solutions of 

x1 + x2 + x3 = o  
x , +  2x2 = o  

and examine whether there is a solution which depends on the row vectors of 
the equations. [Note that such a thing is not possible if we are considering 
equations in real numbers.] Also solve the equations 

X I  + 2x2 + 0 + xq = 1 

2 x ,  + 0 + x 3  + 2 x 4 = 2  

16 Show that the projection of x on the manifold spanned by a,, . . . , a, is 
given by alal + + a,a, where a,, . . . , a, is any solution of 

ai(ai9 a,)  + * * * + arn(a1, am) = (x, a, )  
... ... ... ... 

a,(a,, a , )  + * - - + a,(a,, a,) = (x, a,). 

This is obtained by expressing the condition that (x - a,a, - - amam) is 
I" to each of a,, . . . , a,. The equations are soluble because the projection 
exists (prove otherwise using the conditions for solubility of equations given 
in la.3). Furthermore, 1 a, a,  is unique and so also the length of the perpendi- 
cular, a,(x, a,)  + . * .  + a,(x, a,), whatever may be the solution (a l ,  . . . , a,). 
17 Let a l ,  . . . , a, be vectors in Rk. Find the minimum value of (b, b) = 
1 b,2 subject to the conditions (b, a1)  = p , ,  . . . , (b, a,,,) = p , ,  wherep,, . . . , pm 
are given scalars. 



14 

18 Steinitz replacement result. If a, ,  . . . , ak is a basis of a vector space ^Y 
and fll, . . . , p,, arep( < k )  independent vectors in V ,  we can select k - p vectors 
a(l) ,  . . . , a(&-,,) from the a vectors such that fll, . . . , f l p ,  a ( l ) ,  . . . , is a 
basis of V .  
19 Let a and fl be normalized vectors. Then I(a, p) I = I e- a = cfl where 
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ICI = 1. 

l b  THEORY OF MATRICES AND DETERMINANTS 

1b.l Matrix Operations 

A matrix is an  arrangement of pq elements (belonging to any field) in p 
rows and q columns. Each element is identified by the pair ( i ,  j )  representing 
the numbers of the row and column in which it occurs. Matrices are generally 
represented by capital letters such as A or more explicitly, if necessary, by the 
symbol (ai j ) ,  a,, being the ( i , j )  entry. The following operations are defined on 
matrices. 

Addition. If A = (ai j )  and B = (b , j )  are two matrices of the same order 
p x q, that is, each with p rows and q columns, then the sum of A and B is 
defined to be the matrix A + B = (a i j  + b,,), of the same order p x q. It may 
be easily verified that 

A + B = B + A  
A + (B + C) = ( A  +B)  + C = A + B + C. 

Scalar Multiplication. As for vectors, a matrix may be multiplied by a scalar 
c, the result being a matrix of the same form 

cA = (caij), 

that is, each element is multiplied by the scalar c. Verify that 

(C + d)A = CA + dA 
c(A + B) = cA + cB. 

Matrix Multiplication. The product AB is defined only when the number of 
columns in A is the same as that of the rows in B. The result is a matrix with 
the ( i , j )  entry as the product of the ith row vector of A with the j t h  column 
vector of B. If A = (a i j )  and B = (bi j ) ,  the product is obtained by the formula 

AB = (ci,), cij = air brj . 
r 
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If A is p x q and B is q x t ,  then C = AB is p x t .  Note the formula for 
determining the order of the product matrix, (p x q)(q x t )  = ( p  x t ) .  Verify 
that 

The commutative law does not hold good for matrix multiplication, that is, 
AB # BA in general. It may also be that AB is defined but not BA. The asso- 
ciative law is satisfied, however, 

A(BC) = (AB)C = ABC. 

For the multiplication to be compatible, the matrices A, B, C should be of 
the orders p x q, q x r ,  r x s, in which case ABC is of the order p x s. The 
distributive law also holds : 

A(B + C) = AB + AC 
(A + B)(C + D) = A(C + D) + B(C + D) 

Null and Identity Matrices. A null matrix, denoted by 0, is one with all its 
elements zero. A square matrix, that is, of the order q x q is said to be a unit 
or identity matrix if all its diagonal elements are unity and the off diagonal 
elements are zero. Such a matrix is denoted by I or I,, when it is necessary to 
indicate the order. Verify that 

A + O = A ,  
I A = A ,  A I = A ,  

when the products are defined, so that the matrices 0 and I behave like the zero 
and unit element of the number system. 

Transpose of a Matrix. The matrix A’ (also represented by AT) obtained by 
interchanging the rows and columns of A is called the transpose of A. This 
means that the ( i , j )  entry of A‘ is the same as the ( j ,  i) entry of A. From the 
definition, 

(AB)’ = B’A’, (ABC)‘ = C’B’A’, etc. 

A vector in Rn written as a column is a matrix of order n x 1 .  If X and Y 
are two column vectors, their inner product (X, Y) can be written in matrix 
notation as X’Y. If A is m x n matrix, observe that AX is a column vector 
which is a linear combination of the column vectors of A. We shaYl, in further 
work, refer to a column vector simply as a vector. 
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Conjugate Transpose. This is defined in the special case where the elements 
of A belong to the field of complex numbers. The matrix A* is said to be the 
conjugate transpose of A, if the ( i , j )  entry of A* is the complex conjugate of 
the ( j ,  i )  entry of A. From the definition, 

(AB)* = B*A*, (ABC)* = C*B*A*, etc. 

ALGEBRA OF VECTORS AND MATRICES 

Rank of a Matrix. A matrix may be considered as a set of row (or column) 
vectors written in a particular order. The rank of a matrix is defined as the 
number of independent rows, or which is the same as the number of inde- 
pendent columns it contains [see (vii), la.31. 

Inverse of a Matrix. A square matrix A of order (m x m) is said to be non- 
singular if its rank is m. In such a case there exists a unique matrix A-', known 
as the reciprocal of A such that 

AA-' = A - ~ A  = I. (1 b.l.l) 

To establish this let A- ' = (bij) exist. If A = (aij),  then (aij)(bij)  = I. Expand- 
ing the left-hand side and equating the elements of the first column on both 
sides, leads to the linear equations in bll,  621,  . . . , b,, (i.e., the first column of 

a l lb l l  + . * .  + almbml = 1 

A-1): 

a2'bl1 + + u2,bml = 0 
... ... ... ( 1 b. I .  2) 

a,,,,b,, + + a,,b,, = 0 

Since (aij) has full rank, equations (1  b.l.2) have a unique solution [(vi), la.31. 
Similarly the other columns of A-' are determined such that AA-' = I. The 
same argument shows that we can find a matrix C such that CA = I. Post 
multiplying by A-' we find 

CAA-' = IA-' = A-' j CI = A-'  j C = A-', 

which proves (lb.l.1). If A and B are such that A-' and B-' exist, then 
(AB)" = B-IA-', which is true because ABB-'A-' = I. Verify that 

( ~ ~ q - 1  = c - ~ B - ~ A - '  

and so on, provided that all the inverses exist. Also observe that (A')-' = 
(A-')' and (A*)-' = (AT')*. 

Consider a matrix B of order m x n. If there exists a matrix C such that 
BC = I,,,, then C is called a right regular inverse of B and is represented by 
BR-' ,  Similarly, a left regular inverse B;' may exist. 
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A right inverse exists iff R(B) = m < n. In  such a case we can write equa- 
tions for columns of C as in (1 b. l .2). Solutions exist in view of [(iv), la.3.1 
Similarly a left inverse exists iff R(B) = n Q m. 
Unitary Matrix. A square matrix A of complex elements is said to be unitary 
if A*A = I. In such a case, A* = A- ' a nd AA* = I. When the elements of A 
are real, the matrix is said to be orthogonal if A'A = AA' = 1. 

Partitioned Matrices. Sometimes it is convenient to represent a matrix by 
the juxtaposition of two or more matrices in a partitioned form. Thus a 
partitioned matrix is represented by 

P I Q  P Q  

(R I S ) = ( R  s). (1 b.1.3) 

with or without dotted lines, when there is no chance of confusion, whereas in 
(1 b. 1.3) the rows in P equal in number of those in Q, the columns in P equal 
those in R, and so on. From the definition of a transpose it follows that 

A = _ _ _  ___.,________ 

The product of two partitioned matrices is obtained by the rule of row by 
column multiplication and treating matrices as elements. Thus, for examples 

PE+QG P F + Q H  
RE+SG R F + S H  

provided the products PE etc., exist. 

A = A*. 
A square matrix A is said to be symmetric if A = A' and hermitian if 

lb.2 Elementary Matrices and Diagonal Reduction of a Matrix 

Consider the following operations on a matrix A of order m x n: 

(el) = Multiplying a row (or a column) by a scalar c. 
(e2) = Replacing the rth row (column) by the rth row (column) 

( e 3 )  = Interchanging two rows (columns). 

All these operations obviously preserve the rank of a matrix. We shall show 
that they are equivalent to multiplications by nonsingular matrices. The opera- 
tion (el) of multiplying the rth row by the scalar c is equivalent to premulti- 
plying A by a square matrix of order m x m, known as Kronecker A, i.e., a 

+ 3, times the sth row (column). 
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square matrix with only diagonal elements possibly different from zero and 
the rest zero, with special values for its elements as follows: 

ALGEBRA OF VECTORS AND MATRICES 

A = (a i j ) ,  S,, = c ;  ai i  = 1 ,  i # r ;  a,, = 0, i # j .  

The operation (e2)  on rows is same as premultiplying A by the square matrix 
E,,(A) of order m x m defined as follows: 

EJA) = (ei,), eii  = I for all i ,  e,, = A, ei j  = 0 otherwise. 

For similar operations on the columns we need to postmultiply by n x n 
square matrices of the type A and Ers(A). Verify that the operation (e3)  of 
interchanging two rows, say the rth and sth, is equivalent to premultiplication 
of A successively by the matrices Esr( - 1), Ers( 1), E,,( - l), A. Similarly, inter- 
changing columns is equal to a series of postmultiplications. The following 
results regarding the reduction of a matrix to simpler forms are important. 

(i) ECHELON FORM. Let A be a matrix of order m x n. There exists an 
m x m nonsingular matrix B such that BA is in echelon form. 

A matrix is said to be in an echelon form if and only if (a) each row con- 
sists of all zeroes or a unity preceded by zeroes and not necessarily succeeded 
by zeroes, and (b) any column containing the first unity of a row has the rest 
of the elements as zeroes. 

Choose the first non-zero element (if it exists) in the first row, and let 
it be in the ith column. Divide the first row by the chosen element known 
as the first pivotal element. If we multiply the row so obtained by a constant 
and if we subtract from the second, the element in the ith column of the second 
row can be made zero. By similar operations all the elements in the ith 
column can be liquidated (or swept out) except the one in the pivotal position. 
Next we move to the second row and repeat the operations. If a row at any 
stage consists of all zeroes, we proceed to the next row. It is easy to see that 
the resulting matrix is in an echelon form, but this is obtained only by opera- 
tions of the type (e , ) ,  (e2).  Hence the reduction is secured through a series of 
premultiplications by square matrices of the form A or Ers(A), whose product 
is precisely B. Any product of matrices of the form A, E,,(A) has the same 
rank m, since multiplication by any such matrix does not alter the rank and 
each such matrix has rank m. Hence B is nonsingular. 

(ii) HERMITE CANONICAL FORM. Let A be a square matrix of order m. 
Then there exists a nonsingular matrix C of order m such that CA = H where H 
is in Hermite canonical form satisfying the property H2 = H (idempotent). 

A matrix is said to be in Hermite canonical form if its principal diagonal 
consists of only zeroes and unities and all elements, below the diagonal are 
zero, such that when a diagonal element is zero, the entire row is zero and 
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when a diagonal element is unity, the rest of the elements in the column are all 
zer 0. 

Let B be such that BA is in echelon form. It needs only interchange of 
some rows to reduce it to the form H. But interchange of rows is secured by 
operations of type ( e J ,  that is, premultiplications with elementary matrices. 
If the product of elementary matrices employed to reduce BA to the form H is 
G, the required matrix to reduce A to the form H is C = GB. Obviously 
R(A) = R(CA) = R(H) which is equal to the number of diagonal unities in H 
[using the notation rank A = R(A)]. It is easy to verify that H2 = H. 

The Hermite canonical reduction is useful in solving linear equations, 

AX = Y, (1 b.2.1) 

specially when A is singular. Multiplying both sides of (lb.2.1) by C we obtain 
the equivalent equations, HX = CY which has a solution if and only if the ith 
element of CY is zero when the ith diagonal element of H is zero. The solution 
in such a case is X = CY. The matrix C is said to be a generalized inverse of A 
when the rank of A is not full and is represented by A-.  A more detailed dis- 
cussion of generalized inverses is given in lb.5. 

(iii) DIAGONAL REDUCTION. Let A be m x n matrix of rank r.  Then there 
exist nonsingular square matrices B and C of order m and n respectively such 
that 

BAC = (: :) (1  b.2.2) 

where I, is the identity matrix of order r and the rest of the elements are zero. 

We start with the echelon reduction of A and by using the unit element in 
any row as a pivot sweep out all the succeeding non-zero elements if any. 
This is accomplished by operations of the type ( e z )  on the columns, that is, 
adding constant times one column to another or postmultiplication by an 
elementary matrix. In the resulting form we need only interchange rows and 
columns to bring the unit elements to the principal diagonal. Matrix C is 
simply the product of all elementary matrices used in the postmultiplications 
and B that of matrices used in the premultiplications. 

Also from (lb.2.2) we have for m x n matrix 
A of rank r, 

(iv) RANK FACTORIZATION. 

= BICl (1 b.2.3) 

where B1 and C, are m x r and r x n matrices each of rank r.  
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Let A be m x n matrix of rank r. Then there exists a nonsingular m x m 
matrix M and an orthogonal n x n matrix N such that 

The result is easily established. 

(v) TRIANGULAR REDUCTION. Let A be a square matrix of order m. Then 
there exists a nonsingular matrix, B, m x m such that BA is in a triangular form, 
that is, all elements below the diagonal are zero. 

Let the first diagonal element of A be non-zero, in which case by multiplying 
the first row by constants and subtracting from the other rows, the first 
column can be swept out. If the first element is zero, add any row with a non- 
zero first element to the first row and then sweep out the column. If all the 
elements in the first column are zero, proceed to the second row. Repeat the 
operations disregarding the first row and column. All the operations are of 
type (e2) only. The product of the premultiplying matrices is B. 

(Vi) REDUCTION OF A SYMMETRIC MATRIX TO A DIAGONAL FORM. Let A 
be a square symmetric matrix. Then there exists a nonsingular matrix B such 
that BAB' is in a diagonal form, that is, A can be expressed as product CAC' 
where C is nonsingular and A is a diagonal matrix. 

Consider the first diagonal element of A. If it is not zero, then by using 
it as a pivot the first row and column elements can be swept out, leaving a 
reduced matrix. This is equivalent to pre- and postmultiplications successively 
by elementary matrices which are transposes, because of symmetry. The 
reduced matrix is also symmetrical. The first diagonal element in the reduced 
matrix is considered and if it is not zero, the non-zero elements in the second 
row and column are swept out. This process does not alter the already 
reduced first row and column. The process can be continued unless the first 
diagonal element is zero in a reduced matrix at  any stage. If the corresponding 
row and column have all their elements zero, we consider the next diagonal 
element and proceed as before. Otherwise we can, by adding (or subtracting) 
a scalar multiple of a suitable row and the corresponding column, bring a 
non-zero element to the first position in the reduced matrix and continue the 
foregoing process. This is also a symmetric operation on the rows and columns 
using elementary matrices. The result follows from choosing B as the product 
of the elementary matrices used for premultiplication. Finally C = B-I. 

(vii) TRIANGULAR REDUCTION BY ORTHOGONAL MATRIX. Let A be 
m x n matrix and m 2 n. Then there exists an orthogonal matrix B of order 
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m x m such that BA = where T is an upper triangular matrix of order n (3 . ,  
and 0 is a matrix order m - n x n and consists of zeroes only. 

Observe that (I - 2uu’) for any vector u of unit length is an orthogonal 
matrix. We shall show that u can be determined in such a way that the first 
column of the matrix (I - 2uu’)A contains all zeroes except possibly the first 
element. For this we need to solve the equation 

(I - 2ulu;)al = p, 
where a1 is the first column of A and fl is a vector with the first element p1 
possibly different from zero and the rest of the elements as zeroes. It is 
easy to verify that if al = 0, or if only its first element is non-zero then 
u1 = 0. Otherwise compute 

P1 =J&q 
u1 =- 

2b 

(1 b.2.4) 

where 4b2 = (al - fl)’(al - p). Verify that for the choice of u1 as in (1 b.2.4), 
the result of multiplying A by (I - 2u,u;) is to liquidate (sweep out) the first 
column except for the first element. Omitting the first column and row we 
have a reduced matrix. We apply a similar operation on the first column of 
the reduced matrix by an orthogonal matrix (I - 2u2u;) of order (m - 1) 
x (m - 1). This is equivalent to multiplying (I - 2u,u;)A from the left by the 
partitioned matrix 

(l  0 I -  2u,u; O‘ 1 
which is also orthogonal. We repeat the operation until all the columns are 

swept out, which results in a matrix of the type . The matrix B of the 

theorem is then the product of orthogonal matrices, which is also orthogonal. 
The method of reduction is due to Householder (1964). 

(3 
(viii) QR DECOMPOSITION. Let A be m x n real matrix of rank r ,  with 

m 2 n. Then there exists an m x (m - n) matrix Q,  which is suborthogonal, i.e., 
Q‘Q = I, and an n x n matrix R which is upper triangular such that 

A = Q R  (lb.2.5) 

The result follows by choosing Q as the submatrix formed by the first 
m - n rows of the matrix B in (vii) and by writing T as R. 
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Note that if R(A) = n and the diagonal elements of R are required to  be 
non-negative (always possible), then the decomposition is unique. If R(A) = n, 
then any two decompositions are related by Q1 = Q, S and R, = SR, where S 
is a diagonal matrix of + 1's and - 1 's. 

(ix) GRAM-SCHMIDT TRIANGULAR REDUCTION. Let A be m x n matrix. 
Then there exists a n x n upper triangular matrix T and m x n matrix S with its 
columns orthonormal such that A = ST. 

Let al, . . . , a,, be the columns of A, ul, . . . , a,, the columns of S, and tl  i, . . . , 
t i i  the upper diagonal elements in the ith column of T. Then we have 

ai = t,,a, + + ti iai ,  

which gives t j i  = @Jail j = 1, . . ., i - 1 and 
2 112 

ti- 1, i )  I . .  = (a;ai - t I i 2  - * * - 
I 1  

as in the Gram-Schmidt orthogonalization process described in [(ii), la.41. The 
coefficients t i j  and the vectors al, u2, . . . are constructed sequentially: 

a1 = tllal 
a2 = t I 2  a1 + t z z  a2 

. .  . .  
with the convention that if any t i i  = 0, then t i j  = 0 f o r j  > i and ai is chosen 
arbitrarily. 

lb.3 Determinants 

The determinant of a square matrix A = (aij) of order m is a real valued 
function of the elements ai, defined by 

1A I = k a I i a z j . .  . anlp, 

where the summation is taken over all permutations (i ,  j, . . . , p )  of (I, 2, . . . , m) 
with a plus sign if (i, j, . . . , p )  is an even permutation and a minus sign if it is 
an odd permutation. For an axiomatic derivation of the determinant of a 
matrix, see Levi (1942) and Rao (1952). 

times the determinant obtained by omitting the ith row andjth column. It is 
easy to establish the following properties. 

The cofactor of the element aij, denoted by A i j  , is defined to be (- 

(a) [A  [ = 0 if and only if R(A) # m. 
(b) [A  [ changes sign if any two rows (or columns) are interchanged. 
(c) IA[ = x a , i A r i  for any r 

- 1 ariAri for any i. 
i 

r 
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(d) C a, ,ASi  = 0 if Y # s. 
i 

(e) If IA I # 0, A-' = (A,, /  IA 1)'. 
(f) If A is a diagonal matrix or a triangular matrix, IA 1 is the product of 

(g) If A and B are square matrices IAB I = !A I IB I .  
diagonal elements. 

lb.4 Transformations 

Some authors treat matrix theory through linear transformations. A linear 
transformation from En (Euclidean space of n dimensions) to Em has the pro- 
perty that if X -+ Y and 5 -P q, then aX + bg + aY + bq where g, X E E n ,  
9, Y E  Em and a, b, E F, the field of scalars associated with the vector spaces 
En and Em.  We shall show the correspondence between linear transforma- 
tions and matrices. 

Consider a linear transformation (from En to Em) which transforms the 
elementary vector e,, . . . , en E En as follows: 

4 = (1,0, . . . , 0) 3 (all, . . . , a,,), 
... ... 

e: = (0, 0, . . . , 1) +(a,,, ,  . :. , am,,) 

L e t X = ( x , ,  ..., x,,)=x,e; + a * . +  x,e:EE,, .  Duetolinearity 

X' --t (1 a, xi , . . . , C ami xi) = Y' 
which means that X -+ Y is secured by the relation Y =AX where A is the 
m x n matrix 

... 
A =  (? ... a!) 

am, ... a m n  

If Z = BY and Y = AX, then Z = (BA)X provides a direct transformation 
from X to Z, which involves a product of two matrices. 

The transformation from X to Y need not be one-to-one; it is so only when 
A is nonsingular in which case A-' exists and the inverse transformation is 
given by X = A- 'Y (showing one-to-one correspondence). 

ORTHOGONAL TRANSFORMATION. A linear transformation Y = CX is said to 
be orthogonal if CC' = I. Since IC l 2  = I ,  the transformation is nonsingular. 
The condition CC' = I implies that the row vectors of C are mutually ortho- 
gonal and are of length unity, or in other words they constitute an 0.n.b. of 
the space R". It is easy to verify that 

IC l=  51, C ' = c - '  , and therefore C'C = I. 

The last result implies that columns also form an 0.n.b. 
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(i) An important property of an orthogonal transformation is that it keeps 
distances and angles invariant. 

Let X - Y  and g-.q then 

(Y - q)’(Y - q) = (CX - Ct)‘(CX - c g )  
= (X - t)’C’C(X - 5) = (X - t)’(X - g>, 

so that distance between two points is invariant. Similarly 

(Yl - tll)’(Y, - q z )  = (Xl - Sl)’(X, - 521,  

which implies that the angle between vectors is also invariant. In fact a 
necessary and sufficient condition for distance to be invariant is that the 
transformation is orthogonal. 
PROJECTION. An example of linear transformation in R” is the projection of 
vectors on a subspace A, for if Y,, Y, are projections of X, and X, , then 
aY, + bY, is the projection of a x ,  +bX,  . Hence projection is secured through 
a matrix P, i.e., Y = PX. An explicit representation of P is given in lc.4. 

lb.5 Generalized Inverse of a Matrix 

Dejinition. Consider an rn x n matrix A of any rank. A generalized inverse 
(or a g-inverse) of A is a n x m matrix, denoted by A-,  such that X = A-Y 
is a solution of the equation AX = Y for any Y E A ( A ) I  

We establish the existence of a g-inverse and investigate its properties. 

(i) A- is a g-inverse + AA-A = A. 

Choose Y as the ith column ai  of A. The equation AX = ai  is clearly con- 
sistent and hence X = A-a, is a solution, that is, AA-a, = ai for all i which is 
the same as AA-A = A. Thus the existence of A- =5 AA-A = A. Conversely 
if A- is such that AA-A = A and AX = Y is consistent, then AA-AX = 

AX or AA-Y = Y. Hence X = A-Y is a solution. Thus, we have an alternative 
definition of a generalized inverse as any matrix A- such that 

AA-A = A. ( 1  b.5.1) 

A g-inverse as defined by (1 b.5.1) is not necessarily unique; so some authors 
define a g-inverse as a matrix A- that satisfies some further conditions 
besides (lb.5.1) which are unnecessary in many applications (Rao, 1955a, 
1962f). We may, however, impose suitable conditions on a g-inverse in parti- 
cular applications in which case we may refer to it as a g-inverse with the 
stated properties. 



l b  THEORY OF MATRICES AND DETERMINANTS 25 

(ii) Let A- be any g-inverse of A and A-A = H. Then: 

(a) H2 = H, that is, H is idempotent. 
(b) AH = A and rank A = rank H = trace H. 

(d) A general solution of a consistent equation AX = Y is A-Y + (H - I)Z 

(e) Q'X has a unique value for all X satisfying AX = Y, if and only if 

Since AA-A = A, A-AA-A = A-A, that is, H2 = H. The rest are easy to 

(iii) A- exists and rank A- 2 rank A. 

In [(iii), lb.21, it is shown that, given a matrix A, there exist nonsingular 
square matrices B and C such that BAC = A or A = B-IAC-' where A is a 
diagonal (not necessarily square) matrix. Let A- be a matrix obtained by 
replacing the nonzero elements of A' by their reciprocals. Then it may be easily 
seen that Ah-A = A. Consider A- = CA-B. Verify that 

AA-A = B-'AC-'CA-BB-'AC-' = B-'AC-' = A, 

so that A- is a generalized inverse. Obviously rank A- 2 rank A. 
In fact A- as constructed has the additional property A-A A- = A-, that 

is, (A-)- = A and rank A- = rank A. Every g-inverse need not satisfy this 
additional condition as shown in (v). 

(iv) A- is a g-inverse o A-A is idempotent and R(A-A) = R(A) or AA- is 
idempotent and R(AA-) = R(A). 

The result is easy to establish. The propositions (i) and (iv) provide alterna- 
tive definitions of a g-inverse. (A matrix B is said to be idempotent if B2 = B, 
see lb.7.) 

. (c) A general solution of AX = 0 is (H - 1)Z where Z is arbitrary. 

where Z is arbitrary. 

Q'H = Q'. 

prove. 

(v) CLASS OF ALL g-INVERSES. 

(a) X = A- + U - A-AUAA- 
(b) X = A- + V(I - AA-) + (I - A-A)W 
( c )  x = A- + v(I - PA) + (I - P A I ) ~  

The general solution of AXA = A ( i , e . ,  

(1 b.5.2) 
(1 b.5.3) 

(lb.5.4) 

where A- is any particular g-inverse, PA and PA, are the projection operators 
onto &(A) and &(A*) respectively, and U, V, W are arbitrary matrices. 

Obviously X as in (lb.5.2) satisfies the equation AXA = A. Further, any 
given solution X can be put in the form (lb.5.2) by choosing U = X - A-.  

g-inverse of A) can be expressed in three alternative forms: 
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Similarly X as in (lb.5.3) satisfies the equation AXA = A. Further, any 
given solution X can be put in the form (1 b.5.3) by choosing V = G - A-  and 
W = GAA-. The result (lb.5.4) can be established in the same way. 

Definition. A choice G of g-inverse of A satisfying the conditions AGA = A 
and GAG = G is called a reflexive g-inverse of A and denoted by A,-. The 
conditions can be equivalently written as AGA = A and R(G) = R(A). 

The g-inverse given in (iii) is indeed a reflexive g-inverse. But (lb.5.2) 
through ( I  b.5.4) show that not all g-inverses need be reflexive. 

(vi) The following results hold for any choice of g-inverse. 

(a) A(A*A)-A*A = A and A*A(A*A)-A* = A* (lb.5.5) 

(b) A necessary and suficient condition that BA-A = B is that &(B') c 

(c) Let B and C be non-null. Then BA-C is invariant for any choice of A- 

&(A'). 

iflA'(B') c &(A') and &(C) c A(A).  

The result (a) is proved by multiplying A(A*A)-A*A - A by its conjugate 
transpose and showing that the product is zero. The results (b) and (c) are 
similarly proved. 

(vii) A(A*A)-A* is hermitian and invariant for any choice of the g-inverse 

Consider the difference D = A(A*A)-A* - A[(A*A)-]*A* and show that 
DD* = 0 using (a) of (vi), which establishes the hermitian property. Invariance 
follows since A* E &(A*A). 

(viii) MOORE INVERSE. Moore (1935) and Penrose (1955) defined a gener- 
alized inverse as a matrix A +  to distinguish it from a general g-inverse A- 
satisfying the properties 

(A*A)-. 

(a) AA'A = A, 
(c) (AA')* = AA', (d) (A+A)* = A'A. (lb.5.6) 

(b) A+AA+ = A + ,  

Such an inverse exists and is unique. 

It is shown in (lc.3.8) of lc.3 that there exists a diagonal reduction of A 
such that BAC = A where B and C are orthogonal and A is a diagonal (not 
necessarily square) matrix. It is easy to verify that A+ = CA-B satisfies the 
conditions (a) through (d) and also that if D is any other matrix satisfying (a) 
through (d), then D = A + .  

Further results on g-inverses are given in Section lc.5. 
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Some Computations of a g-inverse. Let A be a m x n matrix of rank r. Then 
there exists a nonsingular submatrix B of order r, obtained by omitting some 
rows and columns of A, if necessary. By a suitable interchange of columns and 
rows we can write A as the partitioned matrix 

Consider 

B-’ 0 
A-  = ( 0 0). 

(lb.5.7) 

It is easy to verify (observing that E = DB-’C) that AA-A = A so that A- 
defined in ( 1  b.5.7) is a g-inverse with rank A-  = rank A and has the additional 
property A-AA- = A- .  

Consider 

( 1 b. 5 .8 )  

where K is such that BK = C and DK = E. Then rank A-  = min(m, n) and 
A -  is a g-inverse with the maximum rank. 

For other methods of computing a g-inverse see Example 5 at the end 
of Section lb.6. 

lb.6 Matrix Representation of Vector Spaces, Bases, etc. 

We have not made full use of the concepts of vector spaces in the study of 
matrices except in defining the rank of a matrix as the dimension of the vector 
space generated by the columns or rows of a matrix. We shall now establish 
some results on matrices using vector space arguments, which are used 
repeatedly in the later chapters. Let X be n x m matrix. The vector space 
generated by the columns of X is denoted by A ( X )  which is also called the 
range space of X. The subspace of all vectors Z in Em such that X Z  = 0 is 
called the null space of X and denoted by .N(X). The dimension, d[.N(X)] is 
called the nullity of X. 

(i) A ( X )  = A(XX’).  That is, the vector spaces generated by the columns of 

Verify that if a is a column vector such that a’X = 0 * a’XX’ = 0. Con- 
versely a’XX’ = 0 * a’XX’a = 0 e- a’X = 0. Hence every vector orthogonal to 
X is also orthogonal to XX’. Therefore A ( X )  = .M(XX‘). Furthermore, it is 
easy to establish that, for any matrix B, A ( X )  = A(XB) = A(XBB’) ifand 
onry i fA(B) =I A(X’) .  

X and XX’ are the same. Hence d[A(X)] = d[.M(XX’)] = R(X) = R(XX’). 
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(ii) If a and y are vectors such that a = Xy, then there exists a vector /I 

The result is true because a E A ( X )  =>a E A(XX’) .  

(iii) The set of vectors {Xy:y subject to the condition Hy = 0} where H is a 

such that a = XX’S 

given k x m matrix is a subspace Y c &(X). Furthermore, 

d [ Y ]  = rank(;) - rank H. (lb.6.1) 

Observe that the set of all vectors Xy, where y is arbitrary is the same as 
&(X). But when y is restricted as indicated, only a subspace is spanned, 
whose dimension is computable by the formula (1 b.6.1). 

lb.7 Idempotent Matrices 

Definition. A square matrix A is said to be idempotent if A2 = A. 

The following propositions concerning idempotent matrices are of interest. 

(i) The rank of an idempotent matrix is equal to its trace, i.e., the sum of its 
diagonal elements. 

Consider the rank factorization ( 1  b.2.3) of A = BICl. Then A’ = A * 
B,CIB,Cl = B,C1. But B, has a left inverse L and C, a right inverse R. Then 

LBICIBICIR = LBICIR * CIBl = I,. 

Trace A = Trace BICl = Trace CIB, = Trace I, = r = R(A). 

(ii) A’ = A o  R(A) + R(1 - A) = m, the order of A. 

The proof is simple. 

(iii) Let A,, i = 1, . . . , k be square matrices of order m and A = Al + - * - 

(a) A,’ = A, for all i. 
(b) A,A, = 0 for all i # j ,  R(A12) = R(A,) for all i. 
(c )  A’ = A. 

+ A,. Consider the following statements: 

( d )  R(A) = R(A1) + * * * + R(AJ. 

Then any two of (a), (b) and (c) imply all the four. Further, (c) and ( d )  * (a)  
and (b). 

That (a) and (b) * (c) is simple to prove. Since the rank of an idempotent 
matrix is equal to its trace, (a) and (c) =$ (d )  and hence (a) and (6) * (c)  
and (d). 
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To prove (6) and ( c )  * (a),  observe that (6) and (c) *Ai’ = AA, = 
A’A, = A,’ * A,’(I - A,) = 0. Also R(Ai) = R(A,’) *A, = DA,’ for some 
D. Hence Ai2(I - A,) = O*A,(I - A,) = 0. It is already shown (a) and 
(b) * (c) and (d). Hence (6) and (c )  =- (a)  and ( d ) .  

To prove (c)  and (d) * (a)  and (b), define A, = I - A. Observe that (c)  and 
(d)-A, + A l  + + A, = I  and R(A,) + R(A,) + ...  + R(Ak) = m. Fur- 
ther R(I - A,) = R(C A, - A,) < 1 R(A,) - R(A,) = m - R(A,). However, 
&(A,) + R(I - A,) 2 m. Hence &(A,) + R(I - A,) = m, and using the result of 
(ii), A,’ = A, for all i .  Similarly (A, + A,)’ = A, + A,. Then 

A,’ = A , ,  A,’ = A, (A, + A,)’ = A, + A,, 
*AiAj + A,A, = 0 

*(AiAj + AjAi)Aj = AiAj + AjAiAj = O (lb.7.1) 

Aj(AiA, + AjAiAj) = 2Aj A, Ai = 0. (lb.7.2) 

Using (1 b.7.2) in (1 b . 7 4 ,  A, A, = 0 for all i # j .  The results are due to Khatri 
(1968). 

+ rk = m, 
ihen the statements 

(iv) Let G ,  be m x pi matrix of rank r , ,  i = 1, . . . , k. I f r ,  + 

(a) G:G, = 0, i # j  

(b) I = Gl(G:Gl)-G: + * * * + Gk(G:Gk)-G,* 

( 1 b.7.3) 

(1 b.7.4) 

are equivalent. 

The proof follows by using the result, (c )  and (d) =s (a) and (6) in (iii). 

lb.8 Special Products of Matrices 

matrices, respectively. Then the Kronecker product 
(i) KRONECKER PRODUCT. Let A = (a,,) and B = (b,,) be m x n andp  x q 

A @ B  = (aijB) (lb.8.1) 

is an mp x nq matrix expressible as a partitioned matrix with a,,B as the 
(i,j)th partition, i = 1, . . . , m a n d j  = 1, . . . , n.  

The following results are consequences of the definition (lb.8.1). 

(a) O @ A = A @ O = O  

(b) (A1 + A2) @B = (A1 @ B) + (A, @ B) 
(c) A @ (Bi + B2) = (A 6 Bi) + (A @ B2) 

(e) AlA2 @BIB’ = (A1 @Bl)(A’ @B2) 

(d) a A @ b B = a 6 A @ B  

(f) (A @B)-’ = A-’ @B-’, if the inverses exist 
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(g) (A @B)- = A- @B- using any g-inverses 

(h) (A@B)’=A’QB’ 

(i) (A QB)(A-’ @B-’)  = I 

(ii) HADAMARD PRODUCT. If A = (a i j )  and B = (b i j )  be each m x n matri- 

A * B = (u j jb i j ) .  ( I  b. 8.2) 

ces, their Hadamard product is the m x n matrix of elementwise products 

We have the following results involving Hadamard products. 

(a) A * O = O  

(b) A ee’ = A = ee’ * A where e’ = ( I ,  . . . , 1) 
(c) A * B = B * A  
(d) (A + B )  * C = A  * B + B * C 

(e) tr AB = e’(A * B’)e. 

(iii) A NEW PRODUCT. 1 Bk) be 
two partitioned matrices with the same number of partitions. Khatri and Rao 
(1968) defined the product 

Let A = (A,; * i A,) and B = (B, 

A O B  = (A, @B, i i A, @B,) ( 1  b.8.3) 

where @ denotes Kronecker product. It is easy to verify that 

( A 0  B) 0 C = A 0 (B 0 C), (TI @ T2)(A 0 B) = T,A OT2 B, 

and so on. 

COMPLEMENTS AND PROBLEMS 

1 Rank of matrices. Let R(A) denote the rank of A. 

1.1 R(AB) < min[R(A), R(B)I 

[The rows of AB are linear combinations of rows of B, and therefore the 
number of independent rows of AB is less than or equal to that of B. Hence 
R(AB) G R(B). Similarly the other inequality follows.] 
1.2 (a) R(AA’) = R(A). 

(b) R(AB) = R(A) if B is square and nonsingular. 
[R(AB)  < R(A) by Example I .  I .  A = (AB)(B-’). 
Therefore R(A) = R[(AB)(B-’)] < R(AB). Hence R(AB) = R(A). J 

(c) Let A be m x n with rank m and S be r x m with rank r .  Then 
R(SA) = r.  
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1.3 If R(A) = s, then all subdeterminants of order greater than s vanish, 
and conversely, if all subdeterminants of order greater than s vanish and at  
least one sub-determinant of order s does not vanish, then R(A) = s. 

1.4 Syluester's law. If A and B are square matrices of order n and R(A) = 
r ,  R(B) = s, then R(AB) 2 r + s - n. 

1.5 Every matrix of rank r can be written as the sum of r matrices each of 
rank unity. 

1.6 Frobenius inequality. If A, B, C are any three matrices such that the 
products considered are defined, then 

R(AB) + R(BC) G R(B) + R(ABC). 

By putting B = I of order (n x n) in which case A is (m x n) and B is (n x p), 

R(A) + R(C) - R(AC) < n, 

and if AC = 0, R(A) + R(C) 6 n. 

1.7 If p and q are the ranks of A - I and B - I, then the rank of AB - I is 

1.8 For any two matrices A and B such that A + B is defined, R(A + B) d 
R(A) + R(B). R(A + B) = R(A) + R ( B ) o  &(A) n &(B) = (0) and A ( A ' )  
n &(B') = (0). 

1.9 The following statements are equivalent: 

<(P + 4). 

(a) R(A) = R(A2). 
(b) &(A) n N ( A )  = {0}, where N(A) is the null space of A. 

(c) There exists a nonsingular matrix P, such that A = P(o o)P-l ,  
D O  

where D is nonsingular. 

1.10 R(A'") = R(A" + ') =r R(Am) = R(A") for all n 2 rn. 
1.11 For any square matrix A there exists a positive integer rn such that 
R(A'") = R(A'"+ '). (The smallest such positive integer iscalled the index of A). 

2 Determinants 

2.1 A square matrix A = (a,,) of order n is said to  be skew symmetric if 
a,i = 0 and ai, = - a i i .  Prove that: 

(a) IAl = 0 if n is odd and a perfect square if n is even. 
(b) R(A) is always even. 
(c) Every matrix can be written as the sum of a symmetric and a skew 

symmetric matrix. 
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2.2 If A is m x n, then: 

(a) (AA' I 2 0 if m < n, and equal to 0 if m > n and > 0 if R(A) = m. 
(b) IAA' I = sum of squares of all m columned determinants of A when 

m < n. 

2.3 Vandermonde determinant defined by 

has the value ni< (dj  - dj) .  
2.4 Show that 

where A and D are square matrices (may be of different orders) and A is non- 
singular. The result is obtained by premultiplication with a determinant of 
unit value 

Satisfy yourself that 

2.5 Expansion of a bordered determinant. Let A be n x n and X a n x I 
matrices. Further let adj A = (Aij ) '  where A i j  is the cofactor of a i j .  Then 

A 
x c  

x - 1  

I = c JAJ  - X'(adj A)X 

= - IA + XX'I = - [ A  

= -IAl(1 + XA-'X) 

- X(adj A)X 

if JAI # 0 
f U is a matrix with all its elements unity and V is a column vector with 

all its entries unity then 

IA + cUJ = IAI + cV' (adj A)V 
V' adj (A + cU) = V' (adj A) 
[adj (A + cU)]V = (adj A)V 
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2.6 Determinant of theproduct of rectangular matrices. Let A be m x n and B 
be n x m and suppose that m < n. Then 

lABl = c IAmI IBmI 

where the summation is over all submatrices of order m. The B,, is the square 
submatrix of order m obtained from the rows of B which have the same indices 
as the columns of A specifying A,,, . 
2.7 Verify, when A, D are symmetric matrices such that the inverses which 
occur in the expressions exist, that 

(A B)-'  - - (A-' + FE-'F' -:-El-') 

where E = D - B'A-'B, F = A-'B. The example provides a method by 
which the inverse of a higher order matrix can be obtained by inverting only 
matrices of lower orders. An interesting case is when B is a column vector 
which gives a method of finding the inverse of a matrix of order (n + 1) given 
the inverse of the principal matrix of order n. Use the formula deduced in the 
example to find the inverse of 

B' D -E-'F' 

[Hint: Take A =  0 1 0 = A - '  c :) (; ; ; !) B' = (3, 4, 2), D = (5 ) ]  

2.8 Let A be a nonsingular matrix, and U and V be two column vectors. 
Then 

(A-'U)(V'A-') 
(A + UV')-' = A-' - 

1 + V'A-'U ' 

which gives a method of computing the inverse of (A + UV') knowing the 
inverse of A. 
2.9 Let A and D be nonsingular matrices of orders m and n and B be m x n 
matrix. Then 

(A + BDB')-' = A-' - A-'B(B'A-'B + D-')-'B'A-', 
= A-' - A-lBEB'A-' + A-'BE(E + D)-'EBA'-' 

where E = (B'A-'B)-'. 
3 Trace of a matrix. The trace of a square matrix A is defined as the sum of 
its diagonal elements and is denoted by Tr A. Prove the following: 

(a) Tr(A + B) = Tr A + Tr B. 
(b) Tr AB = T r  BA. 
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(c) T r  S ' A S  = Tr  A 
(d) T r  A = R(A), if A is idempotent. 
(e) Tr(AA-) = R(A), where A- is a generalized inverse of A. 
(f) X'AX = Tr  AXX', where X is a column vector. 

4 Construction of transformation matrices useful in mathematical statistics. 
4.1 Let A be n x m matrix of rank r. Show that there exists an  orthogonal 
matrix (B, i B,) of order n x n such that the partition B, is n x r and 
&(B1) = &(A). 
4.2 Let A, be n x m matrix of rank r and A2 be n x k matrix of rank s, 
such that &(A,) n &(A2) is of dimension t .  Then there exists an  orthogonal 
matrix (B, i B2 i B3) such that B, is n x r and A ( B l )  = A(A,),  and B, is 
n x (s - t )  and &(B2) c A(A,). 
5 Computation of a 9-inverse. Let A be n x m matrix of rank r. Then there 
exists B of order s x m and rank (m - r )  such that .&(A') n A(B') is the null 
vector. Show that 

(a) A'A + B'B is of rank m, and 
(b) A'A(A'A + B'B)-'A'A = A'A 

(c) If s = m - r ,  then 
so that (A'A + B'B)-' is, in fact, a g-inverse of A'A. 

A'A B' 
is of full  rank, and 

(B 0 )  
(d) C, is a g-inverse of A'A, where C, is defined by 

A'A B' CI c; 
(B 0 ) - ' = ( C 2  C,) 

6 Let A and B be matrices having the same number of columns, and let 
A(A') n A(B') = {O}. Then 

(a) R(AA + B'B) = R(A) + R(B), and 
(b) A'A(A'A + B'B)-A'A = A'A for any choice of g-inverse. 

7 ABB' = CBB' 0 AB = CB. 

lc EIGENVALUES AND REDUCTION OF MATRICES 

1c.l Classification and Transformation of Quadratic Forms 

A quadratic form in n variables x,, . . . , xn is a homogeneous quadratic func- 
tion of the variables 
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where X is the column vector of variables and A = [(aij + aji)/2],  which is 
symmetric, is called the matrix of the quadratic form. 

Classification of Quadratic Forms. A real quadratic form X'AX is said to be 
(a) positive definite (p.d.) if X'AX > 0 for all non-null X and negative definite 
(n.d.) if -X'AX is p.d., and (b) positive semidefinite (p.s.d.) if X'AX 2 0 and 
= 0 for at least one non-null X and negative semidefinite (n.s.d.) if -X'AX is 
p.s.d. 

It is useful to have a general term non-negative definite, n.n.d., for a 
quadratic form which is p.d. or p.s.d., and n.p.d. for a form which is n.d. 
or n.s.d. It is also customary to refer to the matrix A as p.d., n.d., etc., when 
the associated quadratic form X'AX is p.d., n.d., etc. 

Transformation of Quadratic Forms. Let us consider a nonsingular linear 
transformation Y = B-'X or X = BY. Then 

Q = X'AX + Y'B'ABY = Y'CY 

which is a quadratic form in the new variables with the matrix C = B'AB. The 
following results hold under linear transformations. 

(i) The dejiniieness of Q is invariant under nonsingular linear transformations. 

If X'AX = g (a given real number) for some X, then for Y = B-'X, where 
Y is non-null if X is non-null, 

Y'CY = X ' B - ~ ~ B ' A B B - ~ X  = X'AX = 9, 

and conversely if Y'CY = g for some Y, there is an X such that X'AX = g. 
Thus the values assumed by X'AX for non-null X are the same as those of 
Y'CY for non-null Y. We have proved more than what is necessary for prov- 
ing definiteness. 

(ii) Every Q can be reduced to a form containing square terms only by a 
nonsingular linear transformation. 

In [(vi), lb.21 it was shown that there exists a matrix B such that IBI # 0 
and B'AB = A a diagonal matrix. Choose such a B and construct the trans- 
formation Y = B-'X or X = BY. Then 

X'AX 4 Y'B'ABY = Y'AY = d,y12 + - * .  + dnyn2,  (Ic. 1.1) 

where d,, . . . , d,, are the diagonal elements of A. 
Let R(A) = r. Since R(A) = R(A), the number of non-zero di in (1c.l . l )  is 

equal to r .  Let p and q be the numbers of positive and negative di . For any 
nonsingular transformation which reduces Q to a form with only the square 
terms, it can be easily shown that the values of p, q, and hence p - q which is 
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called the signature of the quadratic form, are invariant. Obviously p + q = r 
which is the same for all reductions. 

Let d,, , . . , d, be positive without loss of generality. By a further trans- 
formation, u, = J d i y i ,  i = 1, ..., p ;  ui = J-diyi, i = p  + 1, . . - ,  r and 
ui = y , ,  i = r + 1, . . . , n, (lc.l.l), and hence the original form X’AX, by a 
direct transformation form X to U, can be reduced to the form 
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- 

(lc.1.2) uIz + . . * + upz - u,’+l - . . . - 2 4 3 

where p and r are the invariant numbers associated with the quadratic form 
X‘AX. 

(iii) If X’AX is p.d., there exists a nonsingular transformation X = BY such 

( 1 c. 1.3) 

Since definiteness is preserved it is clear that all the terms in the reduced 
form (lc. 1.1) have positive coefficients d, , and therefore a further trans- 
formation J d , y ,  = ui gives the form (lc.1.3). Let X = BY be such a trans- 
formation. Then 

X’AX --t Y’B’ABY = Y’Y =- B’AB = I or A = CC’ (Ic. 1.4) 

where C’ = B-’. This means that a p.d. matrix A can be expressed as the 
product of a matrix and its transpose. The reader may verify that if A is n.n.d. 
and of rank r < n, then there exists a nonsingular transformation X = B Y  
such that X‘AX -+ y 1 2  + * *  * + y,’. As in (lc.I.4) a n.n.d. matrix A of rank r 
can be written as CC’ where C is n x r matrix of rank r. 

that 

X’AX Y’Y = y I z  + * - * + yn2. 

(iv) A necessary and suficient condition that a real quadratic forwi X’AX 
is p.d. is that gi  > 0 for i = 1, . . . , n where 

a,, a1 I . . .  9i = la,, * * .  ,,,I. 
By (iii), there is a nonsingular transformation such that 

X’AXoY‘B’ABY = Y’Y, 

that is, B’AB=I ,  IB’ABI = IBI2(AI = 111 = 1. Hence (BI2gn > O  or 
gn > 0. Consider the quadratic form with the last variable x, as zero, which 
is also p.d. in (n - 1) variables. Hence, by the preceding argument, the 
determinant of its matrix gn-l > 0, and so on, which establishes the necessity. 

Since al , > 0, the first row and column of A can be swept out symmetrically 



l c  EIGENVALUES AND REDUCTION OF MATRICES 37 

by pre- and postmultiplication with elementary matrices. The resulting 
matrix is 

0 ... 

... 
0 bn2 b,, 

where a, ,b , ,  = g2, because the value of any subdeterminant including the 
first row and column is unaltered. Since g2 > 0, b,, = g,/g, > 0. By using 
b , ,  as pivot, the second row and column can be swept out, yielding 

a , ,  0 0 * * .  

0 c,,3 * * 

where a, ,b , , c33  = g 3  > 0. Hence c33 = g3 /g2  > 0 .  The process can be 
continued unt i l  the matrix is reduced to the form 

(Ic. 1.5) 

where each diagonal element is positive. We have demonstrated the existence 
of a matrix B, which is the product of the elementary matrices used in sweep- 
ing out the columns, such that B'AB = A [in the special form (Ic. 1.5)]. Hence 
X = BY transforms X'AX to 

(Ic. 1.6) 

which is positive definite. This equation establishes sufficiency. It also follows 
from a consideration of the quadratic form -X'AX that n necessary and 
siificiertt condition f o r  X'AX to be negatiw definite is that g1  < 0, g2  > 0, 

We have seen in (iv) that a p.d. quadratic form Q can be reduced to a sum 
of squares by a nonsingular transformation. We now investigate the conditions 
on the transformation Y = CX, which transforms a p.d. Q as the sum of p.d. 
quadratic fornis in exchisire subsets of the new variables y , .  . . . , y,. For this 
purpose let us write Y in the partitioned form Y' = (Y,' i . . . iY;)  where Y i  is 
the column vector of the ith exclusive subset of the variables yl ,  . . .  , y n .  

gz gn 2 

91 9 0 - 1  
91Y12+ - y,2 + * * *  + - y,, 9 

g3<0, . . . .  
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The transformation Y = CX can then be written Y, = C,X, . . . , Y, = C,X, 
where C,, . . . , C, constitute a partition of C, that is C' = (Cl, i * * .  i CA). The 
following proposition then holds. 

(v) A necessary and suflcient condition that under a nonsingular transforma- 
tion Yi = CiX, i = 1 , .  . . , k ,  

X'AX- Y;B,Yl + + Y;B,Y, (lc. 1.7) 

where A is  p.d. is that CiA-'CJ = 0, i # j ,  in which case Bi = (CiA-'C;)-'. 

Writing A-'l2C; = Gi in ( I  b.7.3) and (1 b.7.4) of lb.7 we observe that the 
following statements 
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(a) C,A-'C; = 0 for all i # j  
(b) A = CCi(CiA-'CI)-'Ci 

(lc. 1.8) 
(lc. 1.9) 

are equivalent. Then 

(lc.1.9) X'AX = CY;(CiA-'C;)-'Yi 

which proves sufficiency. 
To prove necessity, (lc.l.7) * A = C'BC where B = diag. (B,, . . . , B,) is 

nonsingular. Therefore B-'  = CA-'C', from which it clearly follows that 
CiA-'CJ = 0 for i # j  and (CiA-'C;)-' = B,. 

lc.2 Roots of Determinantal Equations 

Consider the determinantal equation I A - I11 = 0, also called the character- 
istic equation of A, which is of degree < m in L if A is m x m. Corresponding 
to any root l i  (called a latent or a characteristic root or an eigen value of A) 
there exists a non-null column vector Pi (called latent, characteristic or eigen 
vector) such that APi = l i p i  and P:Pi  = 1. The following results are of 
interest when A is a real symmetric matrix. 

(i) I f  R(A) = r ,  the equation 1 A - 11 1 = 0 has zero as a root of multiplicity 
(m - r ) .  

(ii) All the latent roots are real and the latent vectors can be chosen to be real. 

Let A(X + iY) = (A + ip)(X + iY) where i is imaginary. Equating real and 
imaginary parts, premultiplying by Y' and X' respectively and subtracting we 
find p = 0. Y can be chosen to be zero. 

(iii) The latent vectors P i ,  P j  corresponding to l i ,  l j( l i  # l j )  are orthogonal. 

From the definition 

AP, = AiPi, A P j  = l j P j  . 
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Multiplication of the first by P; and the second by Pi and subtraction gives 

(iv) I f A  is p.d. ,  all the roots are positive; i f  A is n.n.d., all the roots are 
non-negative. 

Consider 

( A i  - Aj)PiPj = 0 *Pip, = 0. 

AP, = &Pi * P;APi = AiP;P,. 

If A is p.d., then P;APi and Pip, are both positive. Hence Ai > 0. If A is 
n.n.d., then P;AP, is non-negative. Hence Ai 3 0. 

(v) IfX is an arbitrary non-null vector, there exists a latent vector Y belonging 
to the linear manifold A ( X ,  AX, A2X, . . .). 

The vectors X, A X , .  . . cannot all be independent. Let k be the smallest 
value such that 

Factorizing (lc.2.1), we see that 
AkX + bk-,Ak-'X + + box = 0. (lc.2.1) 

(A - ~ 1 1 )  * (A - pJ)X = 0 * (A - p1I)Y = 0 

where 

Y = (A - ~ 2 1 )  * * * (A - pJ)X # 0. (lc.2.2) 

Furthermore, (A - plI)Y = 0, that is, Y is a latent vector with the associated 
latent root p,. Since A is real, p, is real using result (ii). Similarly each p i  is 
real and the equation (lc.2.2) shows 

Y E J Z ' ( A ~ - ~ X ,  . . . , X). 

lc.3 Canonical Reduction of Matrices 

(i) REAL SYMMETRIC MATRIX. Let A be a m x m real symmetric matrix. 
Then there exists an orthogonal matrix P such that P'AP = A or A = P A P  
where A is a diagonal matrix. 

Actually, it will be shown that if A, 2 9 * 2 A,,, denote the latent roots of A, 
including the multiplicities, then the ith diagonal element of A is A, and the 
ith column vector of P is Pi,  a latent vector corresponding to Ai . 

Suppose there exist s orthonormal vectors P,, . . . , P, such that 

AP, = l ipi ,  i = 1, . . . , s. (lc.3.1) 

The result (lc.3.1) * A2Pi = AiAPi = ,$'Pi,. . . , A'Pi = A'P, , . . . . Choose 
a vector X I" to A ( P 1 ,  . . . , P,), then 

X'A'P, = X'A,'Pi = J.,'X'P, = 0 
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f o r a l l r a n d i =  1, ..., s.Hence 
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A ( X ,  AX, A2X, . . .) 1'' A(Pl ,  . . . , P,). (lc.3.2) 

From result [(v), lc.21, there exists a latent vector Ps+l E &(X, AX, A2X, . . .), 
which in view of (lc.3.2) is orthogonal to P,, . . . , P,. 

Since P1 can be chosen corresponding to any latent vector to start with, we 
have established the existence of m mutually orthogonal latent vectors 
P1, . , . , P, such that 

(lc.3.3) 
which may be written 

AP=PA, P P ' = I  (lc.3.4) 

where P is the orthogonal matrix with Pi as its columns and A is the diagonal 
matrix with 1, as its ith diagonal element. 

AP, = l ipi ,  i = 1, . . . , m, 

The result (lc.3.4) can be written in the following useful form: 

A = PAP' = A1PlP; + * * + A,p,Ph 
(lc.3.5) 

I=PP'  = PIP; + ' " +  p,,,p;, 

which is known as the spectral decomposition of A. The result (lc.3.4) also 
implies that there exists an orthogonal transformation Y = P'X which irans- 
forms the quadratic form X'AX into 

(lc.3.6) 

It has been established in (lc. I .  I )  that a quadratic form can always be reduced 
to a simpler form involving square terms only by a transformation not 
necessarily orthogonal. 

Y'AY = I1yl2 + . * * + 

Since P'AP = A, P'(A - AI)P = A - 11 which implies that 

( A  - A11 = [ A  - A11 = ( A  - A,)...(A - A,,,), (lc.3.7) 

that is, the constants A1, . . . , 1, are the same as the roots of [ A  - 111 = 0 
including the multiplicities, so that we have identified the matrix A. 

There must be r orthogonal vectors satisfying the equation AX = 1,X if 
Ai is a root of multiplicity r .  If there is one more vector, then by [(iii), lc.21, it is 
orthogonal to all Pi and hence must be null. Thus the rank of (A - Air) is 
m - r .  The r latent vectors corresponding to the latent root l i  of multiplicity 
r generate a subspace called the latent subspace. The latent subspaces corres- 
ponding to two different roots are orthogonal so that A decomposes the entire 
vector space Em as a direct sum of orthogonal subspaces 

Em = 4, @ * * 6 Erk 

where E,, is the eigen subspace corresponding to the eigen value of multi- 
plicity r, . Note that ri + * + rk = m. 
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(ii) PAIR OF REAL SYMMETRIC MATRICES. Let A and B be real m x m 
symmetric matrices of which B is p .d .  Then there exists a matrix R such that 
A = R-l'AR-' and B = R-''R-',  where A is a diagonal matrix. 

Let I ,  2 . . .  2 I,, be the roots of IA - I B J  = 0. Then it is shown that the 
it11 diagonal element of A is I i  and the ith column vector Ri  of R satisfies 
the equation ARi = I iBRi .  

Since B is p.d., there exists a nonsingular matrix T such that B = T'T. 
Consider 

/ A  - IBI = 0 = [ A  - IT'TJ 1T-l'AT-l - I11 = 0. 

If C = T-I'AT, it is symmetric. Hence using (i), there exists a matrix P 
such that 

(lc.3.8) P'CP = A, P'P = I 
P'T'-'AT-'P = A, P'P = I. 

Choosing R = T-'P,  we can write (lc.3.8) as 

R'AR = A, R'BR = I, ( 1 c. 3.9) 

which is the desired result. 
An alternative form of (lc.3.9) is 

(lc.3.10) A = IISIS; + . + I,S,Sl, 
B = S , S ;  + * * a  + S,Sl, 

if we write the ith column of R-" as Si, analogous to (lc.3.5). 
The result (lc.3.10) also implies that there exists a transformation Y = 

R-'X such that the two quadratic forms X'AX and X'BX are simultaneously 
reduced to simpler forms containing square terms only: 

(lc.3.12) 
XIAX+ I l y 1 2  + * * *  + I,ym2 
X'BX + y 1 2  + * * + ym2.  

Commuting Matrices. I t  is shown in (i) that a real quadratic form can be 
reduced to a simpler form by an orthogonal transformation. A natural 
question that arises is whether or not two quadratic forms can be reduced to 
simpler forms by a single orthogonal transformation. The answer is true for 
commuting matrices A and B, i.e., AB = BA. 

Let A and B be symmetric matrices. A n.s. 
condition for simultaneous diagonalization ofA and B by pre andpost multiplica- 
tion by C' and C where C is orthogonal is that AB = BA(i.e., A and B commute). 

Let Q l  be an eigenvector of B and AB = BA. Then BQ, = IQ1 for some A. 
Multiplying by A, 

(iii) COMMUTING MATRICES. 

ABQ, = IAQ, = BAQ, 
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so that AQ,, and similarly A2Q1, A3Q,, . . . belong to the eigen space of B 
corresponding to the same eigenvalue 1. But by [(v), lc.21, (Q1, AQ,, . . . )  
contain an eigenvector of A. Hence there is a common eigenvector of A and B 
which we designate by P,. Now choose Q, ler to P1 as an eigenvector B. 
Applying the same argument we find a common eigenvector P, I“ P, and so 
on. The matrix with P,, P, , . . . as columns is precisely the desired matrix C, 
which proves sufficiency. 

If C’AC = M 1  and C’BC= M, where MI and M, are diagonal then 
AB = (CM,C‘)(CM,C’) = CM1M2C’ = CM2MIC’ = CM2C’ CMIC’ = BA, 
which proves necessity. 

Hermitian Matrix. Matrix A is said to be a Hermitian matrix if A = A* 
where A* is the conjugate transpose of A. Thus a Hermitian matrix is the 
counterpart of a symmetric matrix when A has complex elements. The follow- 
ing results for Hermitian matrixes are proved in exactly the same way as (i) 
and (ii). 

(iv) Let A be Hermitian of order m. Then: 

(a) The eigenvalues of A are real. 
(b) There exists a unitary matrix U (i.e., U*U = I) such that A = UAU* 

where A is the diagonal matrix of the eigenvalues of A. 
(c) Let B be Hermitian matrix andp.d. (i.e., X*BX > 0 for all X). Then there 

exists a nonsingular matrix P such that P*BP = I  and P*AP= A 
where A is diagonal with elements as the eigenvalues of the matrix B-’A. 

(v) SINGULAR VALUE DECOMPOSITION. Let A be m x n matrix of rank r. 
Then A can be expressed as 

A = UAV* (lc.3.11) 

where A is r x r diagonal matrix with positive diagonal elements, U is m x r 
matrix such that U*U = I and V is n x r matrix such that V*V = I .  

Let U i ,  i = 1, . . . , r, be orthonormal eigenvectors corresponding to the 
non-zero eigenvalues I,’, i = 1, . . . , r, o f  AA*. Further let V i  = Ii-’A*U,. 
Then Vi ,  i = 1, . . . , r ,  are orthonormal. 

Let Ur+,, . . . , U, be such that U1, . . . , U, is a complete set of orthonormal 
vectors, i.e., U,U: + + .  . + U,U: = I. Then 

A = ( u , u ~  + + U,U;)A 
= (U,U: + + U, U,*) A, since UTA = 0 for i > r, 
= ~ , U , V : + . . . + I , U , V : = U A V *  
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taking U = (U, ! ... i U,) and V = (V, i . * *  ! V,). The diagonal values of A 
are called the singular values of A. It may be seen that Vi, i = I ,  . . . , r, are 
orthonormal eigenvectors of A*A corresponding to the eigenvalues Ai2 ,  i = 
1, . . . , r.  Note the alternative ways of representing A: 

A = UAV* 
= AIUIV? + * * * + 2,u,v: 

= P ( t  :) Q*, P, and Q are unitary. (lc.3.12) 

(vi) DECOMPOSITION OF A NORMAL MATRIX. Let A be an n x n normal 
matrix, i.e., AA* = A*A. Then there exists a unitary matrix U such that 

where A is  a diagonal matrix. 

The result follows from the singular value decomposition of A, observing 
that U and V can be chosen to  be the same in (lc.3.11) when AA* = A*A. 

(vii) NONSYMMETRIC MATRIX. The determinantal equation 1 A - A1 I = 0 
has rn roots, some of which may be complex even if A is real. Corresponding 
to a root A,, there are two vectors 

APi = AiPi, A'Qi = AiQi, (1 c.3.13) 

called the right and left latent vectors. Let us assume that all the roots are 
distinct and let 

P = (P, i * * ' i P,) and Q = (Q, i * i Q,), 

A = U*AU 

which leads to AP = PA and A'Q = QA. 

(a) Pi are all independent and so also Qi. Let there exist constants such that 
c,P, + 1 * + c,P, = 0. Using (lc.3.13), c,A,P, + * + c,A,P, = 0. 
By eliminating one of the terms, say the mth from the two linear 
relations connecting P i ,  we obtain d,P, + + dm-lP,,,.-l = O *  
dll,Pl + * . .  + dm-lAm-lPm-l = 0. We can eliminate one more term 
and eventually show that one of the P, is null, which is a contradiction. 
Hence P is nonsingular and so also is Q, which leads to the representa- 
tions 

A = PAP-', A = QAQ-'. 

(b) P;Q, = 0, i # j a n d P ; Q ,  # 0. 
APi = Ai Pi * QiAPi = 1, QjPi = A, PiQj 

A'Qj = AjQj *Q;APi = AjQJPi = 1, P;Q, 

and since I ,  # A,, PiQ, = 0. Furthermore, if P;Q, = 0 for all j, then 
Pi = 0 which is not true, and hence Q;Pi # 0. 
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(c) Let P,'Qi = d , ,  D be the diagonal matrix containing d , ,  and A be the 
diagonal matrix containing 6, = Ai/di. Then A has the spectral decom- 
position 

A = 61PlQ; + * * * + S,P,QL. jlc.3.14) 

Since Q'P = D, P-'(Q')-' = D-' or P-'  = D-'Q'. Substituting for 
P-' in A = PAP-', we see that 

A = PAD-'Q' = PAQ' = C SiP,Q:, 

analogous to (lc.3.5). The decomposition of a nonsymmetric A may not be 
as simple when the latent roots are not distinct. For a study of this problem 
the reader is referred to books by Aitken (1944), Gantmacher (1959), and 
Turnbull and Aitken (1932). 

One of the applications of the results (lc.3.5, lc.3.14) is in obtaining simple 
expressions for powers of A. Considering (lc.3.14) and multiplying by A, 
we have 

(1 c.3.15) A Ai2 

dl di 
A2 = C A PiQ;A = C -PPrQi. 

Similarly, 

For a symmetric matrix, using (lc.3.5), we see that 

A" = C A;PiPi. 

An application of (lc.3.15) to genetics is given in a book by Fisher (1949). 

Every square matrix A satisJes its own 
characteristic equation. 

(viii) CAYLEY-HAMILTON THEOREM. 

Consider the identity 

(A - AI) adj(A - AI) = IA - 13111 (lc.3.16) 

(adj B is the matrix of cofactors of B). By definition 

adj(A - AI) = C, + L,C, + . * .  + A"-lC,,-l 

where C, are suitably chosen matrices and 

[ A  - 111 = a ,  + alA + + a,A" 

the characteristic polynomial. Comparing the coefficients of A in (lc.3.16) 

AC, = a,I, AC, - C, = a,I, . . . , - C,,-' = a,I. 
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Multiplying the first equation by I, the second equation by A, the third by 
A2, . . . and adding 

(lc.3.17) a,I + a ,A  + * - + a,An = 0 

which proves the desired result. 
Note that if A-' exists, then multiplying (lc.3.17) by A-' we have 

-a,A-' = a l l  + a,A + + a,A"-' (lc.3. I 8 )  

which gives an expression for A-' as a polynomial in A. 

(ix) Let A be a square matrix of order m. Then there exists a unitary matrix P 
xuch that P*AP is triangular. 

The result may be proved by induction noting that it is true for a one-by-one 
matrix. 

(x) JORDAN DECOMPOSITION. Let A be a square matrix of order W I .  Then 
there exists a nonsingular matrix T such that 

T-'AT = diag(A,, A 2 ,  . . . , A,,) 

where 

l i  1 0 - * *  

Ai =(! ? ::: ... i )  
0 0  

and Li is an eigenvalue of A. 

For a proof see Gantmacher (1959). 

NON-NEGATIVE MATRICES (SPECTRAL THEORY). An m x n matrix A = ( a i j )  
is called non-negative if a i j  2 0 and positive if a i j  > 0 for all i andj .  

A non-negative matrix is indicated by A 2 0 and a positive matrix by A > 0. 
We use the notation C 2 D if C - D is non-negative and C > D if C - D is 
positive. 

A matrix A is said to be reducible if by the same permutation of columns 
and rows it can be written as 

(: ;) 
where 0 is a null matrix and B, D are square matrices. Otherwise A is ir- 
reducible. 
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(xi) PERRON’S THEOREM. A positive square matrix A has a positive 
characteristic value A,(A) which is a simple root of the characteristic equation 
andexceeds the moduli of all the other characteristic values. To this b‘maximal” 
root 1,(A) there corresponds a positive characteristic vector (i.e., all coordinates 
positive). 

(xii) FROBENIUS THEOREM. An irreducible matrix A 2 0 always has a 
positive characteristic value A,(A) which is a simple root of the characteristic 
equation and not smaller than the moduli of other characteristic values. To the 
“ maximal” root A,(A) there corresponds a positive characteristic vector. 

(xiii) An irreducible matrix A 2 0 cannot have two linearly independent 

(xiv) A non-negative matrix A always has a non-negative characteristic 
value A,(A) such that the moduli of all the characteristic tialues of A do not 
exceed Ao(A). To this “ maximal” root there corresponds a non-negative 
characteristic vector. 

non-negative characteristic vectors. 

(xv) If A 2 B 2 0, then A,(A) 2 Ao(B). 

(xvi) IfA 2 0, X, > 0 and p, = inf { p  : Af < pf, f > 0}, then 
I‘AX I’AX 

sup inf - = inf sup - .  
x r o  f > O  f’X r > o  x>o f ’X  

X ’ x r = l  z J i = l  z j l=l  Ex,- 1 

METZLER MATRIX. A matrix C = ( c i j )  is called a Metzler matrix if 
cij > 0 ( i  # j ) .  I t  may be seen that by adding PI, choosing f l  large enough, we 
can achieve 

A = C +PI  2 0 

so that the study of Metzler or M-matrices is equivalent to that of non-  
negative matrices. Thus we have the following: 

(xvii) (a) The eigenralue of M an M-matrix with the largest real part is real 
and has an associated non-negative eigenvector. 

(b) Let o(M) be the maximum of real parts of the eigenvaliies of M. Then 
o(M) < 0 i f  there exists X > 0 such that MX < 0. 

The proofs of the propositions can be found in Gantmacher (1959). 

lc.4 Projection Operator 

Definition. Let 9, and 9, be two disjoint subspaces such that .Y = 
9, 0 Y,, so that any vector X E Y has the unique decomposition X = 
XI + X , ,  X ,  E Y l  and X, E 9,. The mapping P, X -+ X , ,  (PX = X,) is 
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called the projection of X on Y1 along 9, and P is called the projection 
operator. 

We have the following propositions regarding the projection operator P. 
(i) P is a linear transformation and is unique. 
Obviously P(aX + b y )  = aPX + bPY, which means that P can be rep- 

resented by a matrix which is denoted by the same symbol P. P is neces- 
sarily unique. 

(ii) P is an idempotent matrix, i.e., P2 = P. 
For an arbitrary vector X 

P2X = P(PX) = PX, = x1 = PX 
which implies P2 = P. 

(iii) I - P is a projector on Y 2  along Y 1 .  
(iv) Let Y = 9, @ Y 2  + * 

The results follow from the unique decomposition' 

@ 9,. Then there exist matrices Pl, . . . , Pk 
s u c h t h a t ( a ) P i 2 = P i , ( b ) P i P , = 0 , i # j a n d ( c ) I = P l  + . . . + P k .  

X = X , + * - * + X , ,  X i ~ Y , ,  i = l ,  ..., k. 
Definition. Let Y be a subspace of Y and Y* the orthogonal complement 
of Y .  Then Y = Y @ 9'. The operator P which projects on Y along 9' is 
called an orthogonal projector. 

We have the following propositions regarding orthogonal projectors. 

(v) Let the inner product in *Y be dejined by ( X ,  Y) = Y*CX where C is a p.d. 

(a) P2 = P and (b) Z P  is hermitian. (lc.4.1) 

The result (a) is true in view of proposition (ii). Further P X E Y  and 
( I  - P)Y E 9'' for any X and Y, i.e., X*P*C(I - P)Y = Oe=P*Z(I - P )  = 
O o P * C P  = CP which establishes (b). It is easily seen that if (lc.4.1) holds, 
then P projects vectors onto M ( P )  along the orthogonal space &I - P).  

Note. I f  72 = I, then P is an orthogonal projector iff P is idempotent and 
hermitian. 

(vi) EXPLICIT EXPRESSION FOR AN ORTHOGONAL PROJECTOR. Consider the 
subspace .&(A), i.e., spanned by the columns of a matrix A and the inner 
product be as in proposition (v). Then the orthogonal projector onto &(A) is 

P = A(A*EA)-A*C (lc.4.2) 

matrix. Then P is an orthogonal projector iff 

which is unique for any choice of the g-inverse involv,ed in (lc.4.2). 
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Let X E Y and write X = Aa + Alp. Multiplying both sides by A*C 

A*CAa = A*CX. 

Choosing solution a = (A*CA)-A*CX, we have Aa = A(A*CA)-A*CX * 
P = A(A*CA)-A*C is the required operator. If C = I, 

P = A(A*A)-A*. (lc.4.3) 

It is already shown in [(vii), lb.51 that A(A*A)-A* is symmetric, hermitian 

(v) Let P1 and Pz be projectors. Then P1 + P, is a projector iff PIP2 = 

and invariant for any choice of g-inverse. 

P,P, = 0. 

lc.5 Further Results on g-Inverse 

A general definition of g-inverse of a matrix A, with elements from any field, 
is given in lb.5. Such an inverse denoted by A- is shown to exist but is not 
unique. In this section we define subclasses of g-inverses which are useful in 
solving some optimization problems. For this purpose we consider matrices 
A with complex elements. 

(i) MINIMUM NORM g-INVERSE. Let AX = Y be a consistent equation and 
G be a g-inverse of A such that GY is a solution of AX = Y with a minimum 
norm. If  the norm of a vector a is defined by )(a11 = (a*Na)’/’ where N is u 
p.d. matrix, then G satisfies the conditions 

AGA = A, (GA)*N = NCA. (lc.5.1) 

Using [(ii), lb.51, a general solution of AX = Y is GY + (I - GA)Z where 

Such a G is denoted by A,(,, and by A; when N = I .  

Z is an arbitrary vector. If GY has minimum norm, then 

IIGYII < IIGY + (I - GA)Z(I for all Y E  A(A) ,  arbitrary Z 
o ( G Y ,  (I - GA)Z) = 0 for Y E &(A), Z 

0 (GA)*N(I - GA) = 00 (GA)*N = NGA 

which, together with the condition that G is a g-inverse, i.e., AGA = A, 
establishes (lc.5.1). 

It may be seen that one choice of 

A&) = N-’A*(AN-’A*)-. ( 1 c. 5.2) 

(ii) LEAST SQUARES 9-INVERSE. Let AX = Y be a possibly inconsistent 
equation and G be a matrix such that X = GY minimizes (Y - AX)*M(Y - AX) 
where M is a p.d. matrix. Then it is n.s. that 

AGA = A, (AG)*M = MAG. (lc.5.3) 
Such a C is denoted by A,& and by A; when M = I .  



lc  EIGENVALUES AND REDUCTION OF MATRICES 49 

By hypothesis 

(AGY - Y)*M(AGY - Y) < (AX - Y)*M(AX - Y) for all X, Y, i.e., 
IIAGY - YII < llAX - YJI = IIAX - AGY + AGY - YII for all X, Y 

*A*MAG = A * M o  AGA = A, (AG)*M = MAG. 

It may be seen that one choice of 

A,&) = (A*MA)-A*M (lc.5.4) 

and a minimizing vector X satisfies the equation 

A*MAX = A*MY, 

for which a general solution is GY + (I - GA)Z, where G satisfies (lc.5.3). 

(iii) MINIMUM NORM LEAST SQUARES g- INVERSE.  Let AX = Y be apossibly 
iiiconsistent equation and G be a matrix suck that CY has minimum norm 
[as defined in (i)] in the class of X for which (Y - AX)*M(Y - AX) is a mini- 
mum. Then it is n s .  that 

AGA = A, (AG)*M = MAG, GAG = G ,  (GA)*N = NCA. (lc.5.5) 

Such a G is denoted by A&N and by A+ when M = I and N = I. 

Since GY minimizes (Y - AX)*M(Y - AX), the first two conditions of 
(lc.5.5) are satisfied. The general solution for X with this property is, as 
shown in (ii), GY + (I - GA)Z where Z is arbitrary. Then 

(IGYll < IIGY + (I - GA)Z)I for all Y, Z 
o ( C Y ,  (I - GA)Z) = 0 for all Y, Ze -G*N(I  - GA) = 0 

which is equivalent to the last two conditions of (lc.5.5) 

(iv) A,& as defned in (iii) is irnique if M and N are p.d.  matrices. 

The result is true since the minimum norm solution of a linear equation is 
unique. 

It is easy to verify that 

ALN = N -  'A*MA(A*MAN- 'A*MA)-A*M (lc.5.6) 

satisfies the conditions (lc.5.5). The special case A+ when M = I, N = I is 
already introduced as Moore-Penrose inverse in [(viii), lb.51. 

An important result which establishes a duality relationship between a 
minimum norm and least squares inverses is given in (v). 

(v) Let M be p.d.  and A be any m x n matrix. Then 

(A*)&, = [A&#- I)]*. (lc.5.7) 
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Let G denote the left hand side of (lc.5.7). Then by definition 

A*GA* = A*, (GA*)*M = M(GA*) 

which can be rewritten as AG*A = A, (AG*)*M-' = M-'(AG*), i.e., 
G* = A&-1). Then G = [AI(M-~)]*. 

(vi) IfM and N are p.d.  matrices, then 

( 1 c. 5.8) 

( I  c. 5.9) 

The results follow from the definition of AhN.  
For further results on g-inverse see the book by Rao and Mitra (1971). 

lc.6 Restricted Eigenvalue Problem 

In some problems we need the stationary points and values of a quadratic 
form X'AX when the vector X is subject to the restrictions 

X'BX = 1, C'X = 0 (lc.6.1) 

where B is p.d. and C is m x k matrix. Let P = C(C'B-'C)-C'B-' be the 
projection operator onto Jt'(C). We have the following proposition. 

(i) The stationary points and values of X'AX when X is subject to the 
restrictions (lc.6.1) are the eigenvectors and values of (I - P)A with respect 
to B. 

Introducing Lagrangian multipliers A and p we consider the expression 

X'AX - A(X'BX - 1) - 2X'Cp 

and equate its derivatives to zero 

AX - ABX - Cp = 0 

C'X = o  
X'BX = 1  

Multiplying the first equation of (lc.6.2) by I - P we have 

(I - P)AX - ABX = 0 

which proves the desired result. For further results, see Rao (1964). 

(lc.6.2) 

Note. In the special case A = aa' where a is nz vector, X A X  has the maxi- 
mum at 

(lc.6.3) 
which is an important result. 

The problem where in (Ic.6.1), the condition C'X = 0 is replaced by 
C'X 2 0 (i.e., each element of C'X is non-negative) is considered in Rao (1964). 

x oc B-'(I - P)a 
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Id CONVEX SETS IN VECTOR SPACES 

1d.l Definitions 

A subset C of a vector space is called convex, if for any two points x I ,  x 2  E C, 
the line segment joining x1 and x 2  is contained in C, i.e., Axl + (1 - I )x2 E C 
for 0 < 1 < 1. Examples of convex sets are points on lines, points inside 
spheres, half spaces, etc. 

Given any set A ,  the set A* of points generated from finite sets of points 
by convex combinations, 

21x1 + ' * '  + Ikxk 

1,>,0, 21, = 1, X i E A ,  

is clearly a convex set containing A.  In fact, A* is the smallest convex set 
containing A and is called the convex hull of A .  The convex hull of two points 
is the line segment joining the two points, and the convex hull of a sphere is 
the sphere and all points inside the sphere. 

Inner, boundary and exterior points, open and closed sets, and bounded 
sets are defined as in the theory of sets. Thus x is an inner point of a set A 
if there is a sphere with a center x which is a subset of A .  The set of all inner 
points of A is said to be open; a set is closed if its complementary set is open. 
A boundary point of A (not necessarily belonging to A) is such that every 
sphere around it contains points in A as well as in A', the complement of A .  
The closure of a set is obtained by adjoining to it all its boundary points not 
already in it and is represented by if. The set 2 is also the smallest closed set 
containing A. An exterior point of A is a point of A", the complement of if. 

The following properties of convex sets are easily established. (1) The 
intersection of any number of convex sets is convex. (2) The closure of a 
convex set is a convex set. (3) A convex set C and its closure C have the same 
inner, boundary, and exterior points. (4) Let x be an inner point and y a 
boundary point of C. Then the points (1 - I ) x  + l y  are inner points of C for 
0 < 1 < 1, and exterior points of C for 1 > 1. 

ld.2 Separation Theorems for Convex Sets 

(i) Let C be a convex set and y an exterior point. Then there exists a vector a, 

(ld.2.1) 
with llall = 1, such that 

inf (a, x) > (a, y). 
X E C  

Let b be a boundary point such that 

inf IIY - XI1 = Ilb - YII .  
X € C  
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If x E C, the points (1 - I ) x  + Ab E C for 0 Q I < I and therefore 
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11(1 - 4 x  + - YII 2 Ilb - YII. (ld.2.2) 

Expanding (ld.2.2), we see that 

(1 - tI)’Ilx - bll’ + 2(1 - I)(x - b, b - y) 2 0 

for all I Q 1. Hence (x - b, b - y) 2 0, giving 

(x, b - Y) 2 (b, b - Y) > (Y, b - Y). 
The result (ld.2.1) is established by choosing a = b - y. Surely a could be 
normalized. 

(ii) Let C be a convex set and y be on the boundary of C. Then there exists u 

inf (a, x) = (a, y) ,  that is, (a, x) 2 (a, y) for  all x E C. (ld.2.3) 

Let y,, be a sequence of exterior points such that lim yn = y. Consider 
a,, as determined from y,, by (ld.2.1). Since IIa,,II is bounded, there is a sub- 
sequence a, tending to a limit, say, a. Hence 

(x, a) = lim (x, a,) 2 lim (y,, a,) = (y, a). 

supporting plane through y,  i.e., there exists a non-null vector a such that 

x e C  

V + o 3  V‘W 

(iii) Let C and D be convex sets with no inner point common. Then there 
exists a vector a and a scalar a such that (a, x) 2 u for all x E C and (a, y )  < u 
for all y E D, that is, there is a hyperplane separating the two sets. 

Consider the convex set of points x - y, x E C, y E D, which does not 
contain 0 as an interior point. By (ld.2.1) and (ld.2.3) there exists a such that 

(a, x - y) 2 (a, 0) = 0 or (a, x) 2 (a, y). 

Hence there exists an a such that 

(a,x) 2 a, X E  C and (a, y) < u, Y E  D. (ld.2.4) 

If C and D are closed convex sets with no common point then 0 is an 
exterior point of the closed set of points x - y, in which case, by an applica- 
tion of (ld.2.1), we have the strict separation 

(a, x) > u, x E C and (a, y) -= u,  Y E  D. (ld.2.5) 

A vector x E En is said to be > 0 if all its coordinates are non-negative and at 

(iv) If  C is a convex set in En such that none of its points is negative, then 

least one is positive. A negative vector is one with all coordinates negative. 

there exists a vector a > 0 such that (a, x) 2 0 for all x E C. 
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Consider the convex sets C and Y the set of all negative vectors. By result 
(iii) there exist a and a such that 

(a ,x)  2 a for x E C and (a, y) < a for y E Y. (ld.2.6) 

Since (a, y) -, 0 as y -, 0, a 2 0. Furthermore, a > 0, for otherwise we can 
find some negative vector y such that (a, y) 2 a contrary to (ld.2.6). Hence 
there exists an a > 0 such that (a, x) > 0. 

A simple treatment of convex sets is contained in a book by Berge (1963). 
The reader may easily verify the following results. 

(v) FARKA'S LEMMA. Let $ and a,, . . . , ah be vectors in R" and let x exist 
such that aix 2 0 for all i .  Then an n.s. condition that $'x 2 0 for all x such that 
a'x 2 0 is that $ can be written as $ = 1 a ,  ai , a ,  2 0.  

The proof is omitted. 

1. If C* is the convex hull of a subset C of E n ,  every point of C* can be 
represented as a convex combination of at most n + 1 points of C .  

2. Let C be a bounded set in En and 

Then x E C*. 

3. A point x E C is an extreme point of C if there are no distinct points 
x, and x2 E C such that x = Ax, + (1 - I ) x 2  for some I ,  (0 -= I < 1). I f  
C is a closed, bounded, convex set, it is spanned by its extreme points, 
that is, every x E C can be represented in the form 

k 
x = ~ I X , x , ,  ai20, p i =  1 .  

1 

where x,, . . . , xk are extreme points of C .  

hyperplane. 

is the intersection of a finite number of closed half spaces. 

4. A closed, bounded, convex set has extreme points in every supporting 

5 .  A closed convex set in En has a finite number of extreme points iff it 

le INEQUALITIES 

Some standard inequalities based on vectors, matrices, and determinants are 
assembled in this section because of their applications in mathematical 
statistics. 
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1e.l Cauchy-Schwarx (C-S) Inequality 

(i) For any two column vectors X, Y of real elements 

(x ’Y)~  < (x‘x)(Y’Y) or (1 xi yi)2 6 (1 xi2)(C yi2)  (Ie.1. I )  

written in terms of the elements of X and Y, the equality being attained when 
and only when AX + pY = Ofor real scalars 1 and p. 

The quadratic form in 1, p,  

(AX + pY)’(AX + pY) = A2X‘X + 2lpX’Y + p2Y’Y 

is non-negative. Hence if we apply [(v), lc.11 or elementary algebra, the dis- 
criminant of the quadratic form is greater than or equal to zero, 

The equality is attained when the determinant is zero, which implies that 
there exist A and p such that A times the first row plus p times the second row 
is zero. Hence (AX + pY)’(AX + pY) = 0 or AX + pY = 0. 

Two other forms of C-S inequality which are of interest are as follows. 

(ii) Let X, Y be two column vectors and A, a Gramian matrix, that is, 

(a) (X’AY)’ 6 (X’AX)(Y‘AY), with equality when X cc Y. 
(b) (X’Y)’ < (X’AX)(Y’A-’Y) 

A = B’B. Then; 

(le. 1.3) 

(le. 1.4) 

if A - ’  exists, with equality when X a A -  ‘Y. 

The result (a) is obtained by choosing U = BX, V = BY and applying the 
C-S inequality on U and V. Similarly (b) is obtained by choosing 

U = (B-’)’Y, V = BX. 

(iii) The integral version of the C-S inequality is 

( 1 e. 1 . 5 )  

where f and g are real functions defined iiz some set A and f 2,  g2 are integrable 
with respect to a measure v .  

T o  prove the result we consider the non-negative quadratic form in A, p,  

( A f +  p g ) 2 d u  = 1’ f’h + 241 JA fg do + p‘ JAg’ do. (le.l.6) 
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In particular if o is a probability measure we obtain the result 

[C0V(XY)l2 < W )  V Y ) ,  ( 1  e. 1.7) 

where x and y are random variables, cov and V stand for covariance and 
variance respectively. 

The Lagrange Identity. The inequality (le. 1 . 1 )  can be derived immediately 
from the identity 

(le. 1.8) (C xi')(C Yi') - (C Xiyi)' = C (XiYj - X j Y i ) ' ,  
i < /  

where xi and y j  are the components of vectors X and Y respectively. 

le.2 Holder's Inequality 

I f x , , y i > O , i =  1 ,  ..., n a n d ( l / p ) + ( l / q ) =  l , p >  1 ,  then 

(le.2.1) 

with equality when and only when y i  K xp- The integral version is f o r 5  g 2 0 

First we establish by differentiation, or otherwise, 

Substituting x = ullqv-l lp ,  (u,  v 2 0) in t ( x )  2 1, we find 

u p  vq 

P 4  
u v < - + - ,  (le.2.2) 

with equality when 2, = u p - ' ,  

ming over k, we have 
Let u, = xk/(c  Xkp) ' / ' ,  v k  = y k / ( c  ykq)l/'. Substituting in (le.2.2) and sum- 

and obtain the desired inequality. The integral form is proved similarly. More 
generally we have the inequality 

C x ,  yi zi ' * * < (1 x i p ) y c  y?)'/q(C z p  ' 

(le.2.3) 
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Minkowski's Inequality. It is easy to deduce from Holder's inequality, that 
i f x i , y i 2 0 a n d k 2  1 

(le.2.4) 
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[C ( X i  + yi)k]l'k < (C X i y k  + (1 y:)"k. 

(A1 < a l l  

le.3 

For a 

a22  a2 n - - 
an2 ann 

Hadamard's Inequality 

nonsingular real (n x n) matrix, B = ( b f j ) ,  

(le.3.1) 

As special cases 

(0 I B I < l ,  if x b i k 2 = 1 ,  i = l ,  . . . ,  n, (le.3.2) 

(ii) ( B (  < M"n"/2, if (bijI < M. (le.3.3) 

To prove (le.3.1) we consider the positive definite matrix A = BB' and apply 
the inequality 1 A 1 < a,  ,, . , . , a,,,, , the product of diagonal elements. Consider 
the expansion 

IAl = a l ,  I::: - * :.. " . . . .  

le.4 Inequalities Involving Moments 

Let x be a random variable such that E(x)  = p and moments 

E ( x - p ) ' = p r ,  r =  1 ,  ..., 2N 

exist. The quadratic form 11 p i + j - 2 y i y j  in y, is 

E[Yl + Y 2 ( X - P )  + " ' + ~ , + , ( ~ - P ) N 1 2  20. (le.4.1) 

Hence ( , u ~ + ~ - ~ )  is non-negative definite. This is not, however, a sufficient 
condition for p r  to be a moment sequence of a random variable. The condition 
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is necessary whether the moments are of a discrete or continuous distribution, 
or calculated from a given set of observations. In particular, for N = 2, 

or p2 - fll - 1 > 0, (le.4.2) 

where p1 = p32/p23 and p2 = p4/p22 are some measures of asymmetry and 
kurtosis of a distribution. 

le.5 Convex Functions and Jensen’s Inequality 

A functionf(x) is said to be convex if for a, p > 0,  ct + p = 1 

f(ax + PY> < af (4  + Pf(y) for all x, Y .  (le.5.I) 

For such a function we shall first show that at any point xo ,fi(xo),fL(xo), 
the right and left derivatives exist. Let xo < xl < x 2 .  Choosing ct = (x2 - xl)/ 
(x2 - xo), P = (xl - x0)/(x2 - xo), x = xo , and y = x2 so that ctx + fly = xl, 
and using (IeS.l), we see that 

(x2 - xo>f(xA G (x2 - Xl)f(XO> + (XI - xo)f(x2> (le.5.2) 

after multiplication by (x2 - xo).  Adding xof(xo) to both sides and rearrang- 
ing the terms in (le.5.2), we have 

Y (le.5.3) 
x1 -xo x2 - xo 

which shows that [f(x) -f(xo)]/(x - xo) decreases as x -+ xo . By adding 
xlf(xl) to both sides of (le.5.2) and rearranging the terms, 

f ( X l >  -f(xo> ~ f ( x 2 )  -f(xo) 

( 1 e. 5.4) f b o )  -f(xA f(x2) -f(x1> < 
xo - x1 x2 - xi 

Equation (le.5.4) in  terms of x - ~  < xo < xl becomes 

which shows that [f(x) -f(xo)]/(x - xo) is bounded from below, and since 
it decreases as x -, xo , the right-hand derivative f;(xo) exists. Similarly, 

.fL(xo) exists and obviouslyfL(x,) <f;(xo). Let L be such thatfi(x,) < L G 
J;(xo). Then, for all x, 

f w  2f(xo)  + L(x - xo), (le.5.5) 
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for if x1 > x o ,  

and the reverse relation is true when x1 < x o .  The inequality (le.5.5) has 
important applications; it leads to Jensen's inequality. 

Jensen's Inequality. 
a convex function, then 

If  x is a random uariable such that E(x) = p and f ( x )  is 

E [f ( X I 1  2 f [E(x ) l  (le.5.6) 

with equality when and only when x is a degenerate distribution at p ,  

Consider the equation (le.5.5) with p for x o ,  

and take expectations of both sides. The expectation of the second term on 
the right-hand side of (le.5.7) is zero, yielding the inequality (le.5.6). 

le.6 Inequalities in Information Theory 

(i) Let C a, and c b, be convergent sequences of positive numbers such that 
a, 2 1 b i t  Then 

6 .  
Cailog'<O 

ai 
(le.6.1) 

the equality being attained when and only when a, = bi . Further if a, < 1 and 
bi < 1 for all i, then 

To prove the inequalities, note that for x =- 0, the expansion of log x at 
x = 1 yields 

log x = (x - 1) - ( x  - 1)'(2yz)-' with y E ( I ,  x). (le.6.3) 

Using the expansion (le.6.3) for each term in (le.6.1), we have 

b, c a, log- = (1 bi - c a,) - al(bi - ai)2(2yi2)-' < 0, (le.6.4) 
ai 
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thus proving (le.6.1). In (le.6.4), y i z  E (a,', b i z ) ,  and if ai d 1, bi  d 1, the 
maximum value of y i 2  is not greater than unity. Hence 

(le.6.5) 

Combining (le.6.4) and (le.6.9, we obtain (le.6.2). 

The results (le.6.1) and (le.6.2) are true if a, and b, are non-negative and 
the summations are extended over values of i for which ai > 0. In other 
words we admit the possibility of some of the bl  being zero (but not the a,). 

(ii) Let f and g be non-negative and integrable functions with respect to a 
measure p and S be the region in which f > 0 .  I f s s (  f - g )  dp 3 0 ,  then 

(1 e. 6.6) 

with equality only when f = g(a.e.p). 

The proof is the same as that of (le.6.1) with summations replaced by 
integrals. The reader may directly deduce the inequalities (le.6.1) and 
(le.6.6) by applying Jensen's inequality (le.5.6). 

le.7 Stirling's Approximation 

This is a convenient approximation to factorials, which is useful for the 
practical computation of large factorials and also in studying the limiting 
forms of the Binomial, Poisson, Hypergeometric distributions etc. The 
approximation states 

n! == J2nn nne-n, 

which implies that 

1 * 2 . . . n  
= 1. !E J2nnnne-n 

For finite n we have more precisely 

n!  =J% nfie-neW(n)/'Z, 

where (n + * ) - I  < w(n) < n-I .  It may be noted that the absolute error in the 
approximation J2& n"e-" increases with n but the relative error tends to zero 
rapidly. The formula is useful when quotients of large factorials have to be 
evaluated. For proof the reader may consult any book on numerical mathe- 
matics. 
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If EXTREMA OF QUADRATIC FORMS 

This section contains a number of useful results on the extreme values of 
quadratic forms under linear and quadratic restrictions on the variables. 

1f.l General Results 

(i) Let A be a p .d .  m x m matrix and U E En,,  that is, U is an m-vector. Then 

= U’A-lU, sup - 
X E E ,  X’AX 

(U’X)2 
(If. 1.1) 

and the supremum is attained at X, = A- ’ U. 

C-S inequality. 
The result (lf.l.1) is only a restatement of one of the versions (le.1.4) of 

As a corollary to (i), for any given m x m matrix T 

( 1 f. 1 .2) 

(ii) Let A be a p . d .  m x m matrix, B be a m x k matrix, and U be a k-vector. 
Denote by S -  any generalized inverse of B’A-’B. Then 

inf X’AX = U’S-U, 
B’X = U 

( 1 f. 1.3) 

where X is a column vector and the injimum is attained at X, = A-lBS-U. 

Observe that the problem is one of seeking the minimum of a quadratic 
form when X is subject to the linear restrictions B’X = U, which must be 
consistent. 

If B’X = U is consistent, a 5 E Ek exists such that B’A-lBI = U or S5 = U. 
As a consequence we have 

B’X, = B’A-lBS-U = SS-SL = S3, = U 
(If. 1.4) 

We need only show that for any X, X‘AX 2 U’S-U, which is arrived at by 
applying the C-S inequality to the vectors Y1 = A’I’X, Y2 = A’I‘X, and 
observing that Y;Y2 = X’BS-U = U’S-U. As a corollary to (ii): 

X,‘AX, = (U’S-’B’A-’)A(A-’BS-U) = U’S-U. 

inf (X - G)’A(X - 6) = (U - B’t)‘S-(U - B’k) ( 1 f. 1 .5) 
B’X=U 

for given 5 E Em and the infimum is attained at X, = 5 + A-lBS-U - 
A-’BS-Bg. This is obtained by putting Y = X - 5 and applying (lf.1.3). 
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As a particular case of (lf.l.3) we obtain 

inf X’X = U’S-U, 
B’X = u 

(lf.l.6) 

where S- is a g-inverse of B‘B and the infimum is attained at X, = BS-U. 
Observe that in the results (lf.l.3, If.1.5, lf.l.6), S -  will be a true inverse 

S-’ if the rank of B is full, that is, equal to k ,  the number of rows in B. 
An important generalization of (lf.1.6) is to determine the minimum of 

X;X1 where X, is a part of X, say the vector of the first q ( < k )  components 
of X, subject to the condition B’X = U. Then we may write the condition 
B’X = U in the partitioned form 

X 
(B; i B;)( --!) = U. 

X2 
Let 

( 1 f. 1 .7) 

( 1 f. 1 -8) 

by choosing any g-inverse. 

(iii) Let B,, B,,  andC, beasdejnedby (lf.l.7) and(lf.1.8). Then 

inf X;X, = (X,*)’(X,*) = U’C,U (lfJ.9) 
B’X = U 

where XI, = B,C;U. 

The condition (lf.1.7) implies that column vectors E and F exist such that 

U = B;B,E + B;F 

0 = B,E. 

Then it is easy to verify that 

XI, = B,C;U, Xz* = C; U 

satisfies the condition B’X = U and (XI*)’(Xl*) = U’C,U. Furthermore, 
(X,*)’X, = U‘C,U, where X, is any other vector satisfying the condition 
(1f.1.7). The result (lf.l.9) is obtained by applying the C-S inequality to the 
vectors X, and X,*. 

(iv) Let A be an n.n.d. matrix of order m, B be a ni x k matrix and U be a 
k vector such that U E &(B‘). Further, let 

be one choice of g-inverse. Then 

inf X‘AX = U’C, U. 
B’X = U 

( 1 f. 1 . I  0) 

(If. 1.11) 
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lf.2 Results Involving Eipenvalues and Vectors 

Let A be a m x m symmetric matrix, I ,  2 . .* >, A,,, be its eigenvalues, and 
P,, . , , , P, be the corresponding eigenvectors. It has been shown (lc.3.5), that 

A = I,P,P; + + I,P,Pk 
I =PIP; + * * *  + P,Pd. 

The following propositions hold. 

X'AX 
= I l ,  inf- =A,. X'AX 

sup - 
x X'X x X'X 

Observe that any X can be written CIP, + + C,P,. Then 

(ii) 

(lf.2.1) 

(lf.2.2) 

The sup and inf with respect to the vector (Cl, . . . , C,) are obviously I, and 
I,. The sup is attained when X = P, and the inf at X = P,. 

(ii) sup -- - I k +  1, - Am. (lf.2.3) inf -- X'AX 
P,'X=O X'X P,'X=O X'X 

X' AX 

-.-- ~ 

i = l ,  ..., k i =  1, ..., k 

Under the given conditions x = ck + ,P, + , + . . * + C, P, . Hence we obtain 
(lf.2.3) with the argument used in (i). 

(iii) Let B be a m x k matrix. Then 

X'AX 
inf sup -- - I k + l  

B'X=O x'x (lf.2.4) 

(lf.2.5) 

The value & + ,  is attained in (lf.2.4) when B is the matrix with P,, . . . , Pk as 
its columns, and the value 2m-k  is attained when B is the matrix with P,-k+ l ,  

. . . , P, as its columns. 

As in (i) let X = CIPl + * . *  + C,P, = PC where P is the m x m matrix 
with P, as its ith column. Then the restriction B X  = OoB'PC = 0 or 
G'C = 0 where G = P'B. The problem of (lf.2.4) reduces to the determination 
of 

C,2I1 + * * *  + C,ZI, 
c C'C=O c,2 + * . '  + c,2 * 

inf sup (lf.2.6) 
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But 

if we choose the subset of C such that G’C = 0, c k + z  = = C ,  = 0. Such 
a subset of C is not empty. The result (lf.2.7) is independent of G. Hence 
(lf.2.6) 2 & + I .  But, by (ii), there exists a matrix B, viz., the matrix with P,, 
. . . , Pk as its columns and an X such that the value l k + l  is attained which 
establishes (lf.2.4). Similarly (lf.2.5) is proved. 

(iv) Let XI,  . . . , ?fk be k mutually orthogonal vectors. Then 

- c 1, 
and the supremum is attained when X i  K Pi ,  i = 1, . . . , k. 

(1 f. 2.8) 

Choose X i  = CilP, + - * * + Cin, P,, with the additional condition Xi X i  = 1 
(without loss of generality). Then 

where the coefficient of each Ai is < 1 and the sum of the coefficients is k .  The 
optimum choice of coefficients, to maximize the left-hand side of (lf.2.9), is 
unity for A1, ..., & and zero for the rest, which is possible by choosing 
X i = P i ,  i =  1, ..., k. 

(v) Let B be any matrix ofrank k ,  then 

inf (JA - Bll = (121, , + * * * + (lf.2.10) 
B 

and the infimum is attained when 

The symbol JICJI denotes the Euclidean norm of a matrix C = (C i j ) ,  defined 
by (c Ci jZ) l / ’ .  Thus IlCJl is a measure of smallness or the largeness of a 
matrix. The result (lf.2.11) shows that the choice of B as in (lf.2.11) provides 
the closest fit to A among all matrices with the given rank k. 

Observe that 

( ( A  - BllZ = (IP‘AP - P’BP11’ = IIA -‘G(IZ 
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where G = ( g r j )  = P’BP and of rank k, and A is the diagonal matrix with A1, 
. . . , A, as the diagonal elements. 

Let G = CD be the rank factorization (iv, 1 b.2) of G. Then min IIA - CD1f with 
respect to D is trA2 - trC‘A’C, which is attained when D = C’A. From (lf.2.8), 
sup C’A’C with respect to C is attained when C,, the i-tr column of C is ei, the i-tr 
elementary vector. Hence 
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min IIA - G1I2 = A:+ + . . . + Am2 (lf.2.12) 
G 

Thus the optimum choice of B is P’GP where G is as chosen above, i.e., B is as 
defined in (lf.2.11). [Also see Example 10, p.701. 

(vi) A STURMIAN SEPARATION THEOREM. Consider the sequence of matrices 
A, = (aij), i ,  j = 1, . . . , r for r = 1, . . . , m. Let Al(Ar) 2 * * 2 A,(A,) denote the 
eigenvalues of A,. Then 

Ak+l(Ai+l) G Ak(Ai) G )‘k(Ai+l)* (lf.2.13) 

The result (lf.2.13) is easily obtained by using the interpretation (lf.2.1, 
lf.2.3) ofthe eigenvalues of a matrix. As a corollary to (vi), we have the follow- 
ing theorem. 

(vii) THE POINCARE SEPARATION THEOREM. Lei B be ni  x k matrix such 
that B’B = 1, (identity matrix of order k ) .  Then 

i =  1, ..., k 
(2.lf. 14) 

(viii) Let A be p.d.  matrix of order m and B, a m x k matrix of rank k such 

( 1 f. 2.1 5 )  

Ai(B’AB) G &(A), 

&-j(B’AB) 2 A,,,-j(A), j = 0, 1, . . . , k - 1. 

that the diagonal elements of B‘B are given numbers g l ,  . . . , gk . Then 

max)B‘ABI = g l  * * ‘ g k &  * * * A k ,  
B 

Observe that 

max I B’AB I = g 1  . * gk max I C‘AC 1, 
B C 

where the diagonal elements of C’C are all unity. 
Further, let yl, . . . , Yk be the eigenvalues of c’c. Since yl  + * * + Y k  = k ,  it  

follows that y1 . * .  Yk < 1. Choose the matrix G such that its ith column is 
Y,:”~ times the ith eigenvector of C’C. Then we have the following: 

(a) D’D = I, choosing D = CG 
(b) ID’ADI = IG’C’ACGI = IC’ACI IG‘CI 

= IC’ACI(Y, yk)-’ 2 IC’ACI. 
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Hence 
max I C’AC I = max I D’AD 1 .  

C D’D=I  

Now, an  application of (lf.2.14) gives 
k k 

I D’AD I = i= n 1 Ai(D’AD) < i= n l i ( A ) .  1 

But the equality is attained when the columns of D are the first k eigenvectors 
of A, thus proving (lf.2.15). [Also see Examples 20-22.1 

min (B’ABI =gl “ ‘ g k ~ , n - k + l  . * * A , , ,  

Observe that the result 

R 

is not true unless the columns of B are assumed to be orthogonal. 
Let V1 be the class of m x n matrices A such that AX = 0 and tr  AV! = p i ,  

i = 1, . . . , k ,  where X, Vi and p i  are given matrices and scalars, g2 be the 
same class as %?, with square symmetric matrices A and Vi . Further let P be 
the orthogonal projection operator onto &(X), and Q = I - P, with the inner 
product definition, (x, y) = y*x. 

lf.3. Minimum Trace Problems 

(i) Min tr  AA’ when A E is attained at 

(lf.3.1) 

where A,, . . . , Ak are solutions of 
k 

C t r  Vi QVJ = pi, j = 1,. . ., I<. (1  f.3.2) 
i= 1 

Observe that A,X = 0. Now consider an alternative A, + D such that 
tr DV; = 0 and DX = 0 + QD’ = D’. Check that 

trA,D’ = z A i t r V i Q D ’ = C A i t r V i D ’  = O .  

tr(A, + D)(A, + D)’ = tr  A, A; + tr  DD‘ 2 tr A, A; 

which proves the desired result. It may be noted that the equations (lf.3.2) 
are consistent. 

Then 

(ii) Min tr AA when A E W2 is attained at 

A* = C AiQViQ (1 f.3.3) 

( 1 f. 3.4) 

where Ai , . . . , are solutions of 

1 A ,  tr QViQVj = p i ,  j = 1, . . . , k .  

The result is proved on the same lines as (i). 
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(iii) Let V be a p.d,  matrix. Then min tr AVAV when A E W 2  is attained at 

A, = 1 IiQ;V-'ViV-'Qv (lf.3.5) 

where I , ,  . . . , 1, are solutions of 

~ L i t r Q ~ V - ' V i V - ' Q , V j = p j ,  j =  I ,  ..., k ( 1 f. 3.6) 

and Q, = I - P,, P, = x(x'v-~x)-xv-',  the orthogonal projection operator 
onto.M(X) with the inner product definition (x, y) = y*V-'x. 

The result is proved by considering the matrix B = V1/'AV'/' and applying 
the result of (ii). 

Let V 3  be the class of symmetric matrices A such that X'AXO = and 
tr  AVi = p i ,  i = 1, . . . , k where Vi are symmetric. 

(iv) Min tr  AA when A E q3 is aftained at 

A, = C Ii(V, - PViP) ( 1 f. 3.7) 

where 11, . . . , Ik are solutions of 

C A i t r ( V i - P V i P ) V j = p j ,  j =  1 ,..., k .  (lf.3.8) 

We note that a general solution of X'AX = 0 is of the form T - PTP and 
an  alternative to A, can be written as A, + T - PTP with the condition 
tr(T - PTP)Vi = 0. Now 

tr(Vi - PViP)(T - PTP) = tr Vi(T - PTP) = 0. 

Then 

tr(A, + T - PTP)(A, + T - PTP) = tr A, A, + tr(T-PTP)(T-PTP) 

2 tr A,A, 

which proves the desired result. 

(v) Let V be a p.d.  matrix. Then min tr  AVAV when A E W3 is attained at 

A, = IiV-'(Vi- PyViP;)V-' (lf.3.9) 

where I , ,  . . . , 1, are solutions of 

1 I i  tr  V-'(Vi - PvViP;)V-'Vj =pi, j =  1, . . . , k .  (lf.3.10) 

The result is obtained by applying the result of (iv) after making the trans- 

Definitions of special matrices discussed in this Chapter are assembled in 
formation VLJ2AV'12 = B. 

Table 1. 
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TABLE 1 

Type of Matrix A Definition 
~ ~ ~~~~ 

Symmetric 
Hermitian 
Idempotent 
Tripotent 
Nilpotent 
pad. (positive definite) 
p.s.d. (positive semidefinite) 

n.n.d. (non-negative definite) 
Normal 
Semisimple 
Orthogonal 
Unitary 
9-Inverse 
Reflexive g-inverse 
Minimum N-norm g-inverse 
M-Least squares g-inverse 
Minimum N-norm, M-least squares 

g-inverse 

~~~ ~ 

A = A' (A' is the transpose) 
A = A* (A* is the conjugate transpose) 
A2 =A 
A 3  = A  
Ak = 0 for some integer k 
XAX > 0 for all non-null X 
XAX 2 0 for all X and 
XAX = 0 for some non-null X 
X*AX 2 0 for all X 
AA* = A*A 
A =PAP - ' for some P and diagonal A 
AA' = A'A = I 
AA* = A*A = I 
A -  
A; 

[see (1~.5.1)] 
A:M) [see (lc.5.3)] 

A&N [see (lc.5.5)] 

COMPLEMENTS AND PROBLEMS 

1 Latent roots  of matrices 

1.1 For the  nz x nt matrix 

establish the following: 
- 

(i) IaijI = (a - b)"-'(a + n - Ib). 
(ii) T h e  inverse is also o f  the  same form 

- b  - - , i # j .  
a + n - 2 b  

(a + n - Ib)(a - b) 
= = 

(a + n - Ib)(a - b) 
- 

(iii) T h e  latent roots of the  matrix are (a + n - 16) with t h e  latent vector 
( I ,  1,  . . . , 1) a n d  (a - b) of multiplicity (n  - 1) with (n - 1) latent 
(any set of) vectors or thogonal  t o  (1, 1, . . . , 1). 
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1.2 For the circulant 
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prove the following results: 

(i) IaijI = ny=l [al + a 2 w i  + a3miz + . . .  + a f , o ; - ’ ] ,  

where mi is the ith root of unity. 
(ii) The latent roots are A, = a, + a, mi + 

the associated vectors (1, m i ,  . . . , my-’), i = 1, . . . , n. 
+ ancoy-’, i = 1, . . . , n with 

1.3 Generalize the results of Example 1 to a matrix of the form 

where A and B are themselves square matrices of order k. Show in particular 
that the value of the determinant is I A - BI n - l  1 A + n - IB 1 .  
1.4 Let U be an m x n matrix. The nonvanishing roots of IUU’ - I I J  = 0 
and of I U’U - A11 = 0 are identical. [If A* is a non-zero root of I UU’ - 111 = 
0, there exists a vector L such that UU’L = l*L.  By multiplying both sides by 
U‘, U’UU’L = A*U‘L or (U‘U - A*I)U’L = 0. Hence A* is a latent root of 
U‘U.] 
1.5 Prove that I UU’ - 11 = (A, - 1) . (I, - 1)(0 - ,)“‘-‘and I U‘U - 11 = 
(Al - 1) * (I, - l)(O - I)”-, where ,Il, . . . , I, are the non-zero latent roots 
of UU‘ or U’U. 
1.6 Let U be an m x n matrix of rank r. The stationary values of [C’,UC,12 
for variations of vectors C ,  and C ,  of unit length are the latent roots of UU’. 
1.7 Show that for an orthogonal matrix, (a) all the latent roots are of 
modulus unity, (b) if I is a latent root, 1 / 1  is also a latent root, and (c) if the 
matrix is of odd order, at least one root is +_ 1. 
1.8 If A,, A,, . . . are the latent roots of a square matrix A, then (a) Trace A 
= x A i , ( b ) t r a c e A ’ A 2 C A i 2 , a n d  [ A [  = I l  * - * I k ,  

1.9 Let A and B be symmetric matrices of order m. If I i (C)  denotes the ith 
rank latent root of C, 

- 

Ii(A + B) < Aj(A) + &(B) 

A n +  i - 1(AB) 2 Am - j+ l(A)Im - k +  ,(B) 
) j + k < i + l  

(Anderson and Dasgupta, 1963). 
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2 Let A be n x n i  matrix of rank r, 11, . . . , Ar be the non-zero eigenvalues 
and PI, . . . , P, be the eigenvectors of A‘A. Then Al-’PIPi + + Ar-’PrP; 
is a g-inverse of A’A. 
3 A p.d. or p.s.d. matrix is also called a Gramian and is represented by G. 
The following results, some of which have been already proved, have impor- 
tant applications. 
3.1 If M is k x p and of rank r, MM’ is Gramian of rank r. 
3.2 A matrix G of order k and rank r admits the decomposition G = FF‘ 
where F is k x r and of rank r .  If M is k x s suck that MM’ = FF’ = G, an 
orthogonal matrix U exists such that M = (F i 0)U. 
3.3 If G is nonsingular, all its principal minors are nonsingular. 
3.4 MGM’ is Gramian for any M provided the product MGM’ exists. 
3.5 G admits a unique Gramian square root. 
[There exists an orthogonal matrix U such that G = UAU’, A being the diag- 
onal matrix of latent, non-negative rootsl,, . . . , 1,. Verify that M = UA’/’U’ 
is (a) symmetric and (b) has latent roots L f ” ,  . . . , A!/’ and hence Gramian. 
Furthermore, MM = UA’/2U’UA’/2U’ = UAU’ = C. M is, therefore, the 
required root. This is indeed unique, for all such roots have the same latent 
roots A:/’, . . . , A i l z  and vectors.] 
3.6 G has the unique decomposition G = TT’ where T is a triangular 
matrix with diagonal elements non-negative. 
[Proof consists i n  showing one-to-one correspondence between G and such a 
matrix T.] 
3.7 If Gland G ,  are n.n.d., then so is G ,  + G ,  and Ji!(G,) c &(Gl + G,)  
and A ( G , )  c A ( G ,  + C, ) .  

4 Lagrange’s theoren?. Let S be any square matrix of order n and rank 
r > 0, and X, Y be column vectors such that X’SY # 0. Then the residual 
matrix 

S Y  X’S 
X’SY 

s , = s - -  

is exactly of rank r - 1. 
More generally, if S is n x m of rank r > 0, A and B are of orders s x n and 

s x n7 respectively, where s < r and ASB‘ is nonsingular, the residual matrix 

S1 = S - SB’(ASB’)-lAS 

is exactly of rank (r - s) and S, is Gramian if S is Gramian. 
5 Consider the matrix (xij), i = I ,  . . . , in ;  j = I ,  . . . , n, and define 

1 X i j  = nxi, s,, = c (x,j  - x,)(x,,j - 2,). 
j J 
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Then the in x m matrix (S,,,) is 
(i) positive definite when the rank of ( x i j  - Xi) is m, 
(ii) positive semidefinite when the rank of (x i ,  - X i )  is less than m, in which 

case there exist constants p l ,  . . . , p,,, such that 

C p i ( x i j  - xi) = 0, j = 1, . . . , n, 

(iii) necessarily positive semidefinite when n < p .  

6 Reduction of matrices. 
6.1 If A is a square matrix of order m, there exists an orthogonal matrix C 
such that AC is triangular with all elements below the main diagonal zero and 
with diagonal elements 2 0. 
6.2 Polar reduction. I f  (A1 # 0, then A = GH where G is p.d. and H is 
orthogonal. [Let G be the unique Gramian square root of A'A. G is p.d. as 
IA( # 0. H is then G-'A.] 
6.3 Let A be symmetric of order m and rank m. There exists a triangular 
matrix T such that A = T'A-IT where A is a diagonal matrix with diagonal 
elements the same as those in  T. 
7 If A = B + C, B is p.d., and C is skew symmetric, then IAl > 1 BI. 
8 If A and B are real, p.d., and of order n, then 

(i) IAA + (1  - A)B1 2 IAIaIBI1-', 
(ii) IA +BI''" 2 IAI"" + IBI'I". 

0 < A  < 1, 

9 If B is pad. and (A - B) is n.n.d., then 

(i) I A - 1B I = 0 has all its roots A 2 I and conversely if all roots 1 2 1, 
then (A - B) is n.n.d.; 

(ii) I A I 2 1 BI [as a consequence of (i), 1 A I / I B I = A l l 2  * - 2 1 .  I t  follows 
from thisresultthat i fCisp.d.andDisn.n.d.  then ICI ,<lC+DI];  

(iii) (B-' - A-') is n.n.d. [this is true if IB-I - PA-' I = 0 has all its 
roots 11 2 1 .  But the roots of IB-' - PA-' I = 0 are the same as the 
roots of IA - pBI = 0, and by (i), p 2 11; 

(iv) If A, is a principal minor of A of order r and B,, the corresponding 
minor of B, then A, - B, is n.n.d. 

10 Let A be an m x n matrix. Determine an m x n matrix B of given rank r 
such that IJA - BJ( is a minimum. 

[Hint: Consider the first r eigenvectors of the matrix AA'. Let them be 
PI, . . . , P,. If ai is the ith column vector of A, then the ith column of B, for 
which JJA - BI( is a minimum is (P;ai)P, + ... + (P;a,)P,. Show that for 
any other choice of r orthonormal vectors which constitute a basis of B the 
Euclidean norm ( \A - BIJ possibly has a higher value.] 
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11 Let (a i j )  be n z  x t matrix of non-negative terms and 

The following then are true: 

(i) mf C C aijai. 0 . j  2 (a. . l3 

(ii) C C aij(pi aisqs)(qj (C'Y arjpr) 2 (C C aijpiqj) ,  for any Pi 3 q j  

such that 
m t 

C Pi = 
1 1 

4 j = 1, Pi 9 q j  > 0. 

(iii) As a special case when m = t ,  ai j  = aj i  and p i  = q i ,  we have 

C C aijpip; 2 C C a i j ~ i ~ j  9 

where pi(C a i j p , p j )  = 2 a i s p s .  (This inequality arises in a natural 
way in genetical theory. Let aij 2 0 represent the relative viability of 
a diploid individual with the genotype A i  A j  where A , ,  . . . , A m  are the 
alleles at a single locus. I f p ,  is the frequency of A,, in a particular gen- 
eration, the mean viability of the population under random mating is 
1 a i j p i p j  I The frequency p i  o f  A ,  is  changed to (C a,,p,)/(C a l j  
p i p j ) ,  and the mean viability in the next generation is 11 a i ,p ;p ; .  
The inequality asserts that the mean viability cannot decrease from 
one generation to the next.) [Atkinson, Watterson, andMoran, 1960.1 

12 Let X be a column vector k x 1 and A be a square symmetric matrix of 
order k ,  with all elements non-negative. Then for any integer n, 

(X'A"X)(X'X) 2 (X'AX)" 

with equality if and only if X is a latent vector of A .  This inequality occurs in 
genetical theory. (Mulholland and Smith, 1959.) 
13 Rules for obtaining simultaneous derivatives. 
13.1 Let f(X) be a scalar function of vector variable X and denote by 
8faX the column vector of elements, aflax,, . . . , ?flax,,, where X' = 
(XI, . . . , X,,). Similarly we define dy/8X2 as the matrix (8y/dXi axj). Verify 
the following: 

Scalar Vector Matrix 
Function Derivative Derivative 

f (XI afiax ay/ax2 
M'X M 0 
X'A Z A Z  0 
X'X 2 x  21 
X'AX 2AX 2A (when A is symmetric) 
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13.2 Let f(B) be a scalar function of a matrix B = (b i j )  and denote by 
af(B)/aB the matrix (af(B)/i7bij). Verify that: 

a 
(i) -(Y'BZ) =YZ' 

aB 

a 
(ii) - tr B = I 

aB 

a 
Ciii) - X'BX 

aB 
= XX', if B is asymmetric 

= 2XX' - diag XX', if B is symmetric 

= IBl(B-')', if B is asymmetric 

= IBI(2B-l - diag B-'), if B is symmetric 

(iv) alBl - 
dB 

8 tr BC 
(v) aB = C', if B is asymmetric 

= C + C' - diag C, if B is symmetric 

= T', if B is asymmetric 
8 tr BCBD 

(vi) aB 

= T +T' - diag T, if B is symmetric 

where T = DBC + CBD, and diag T is the diagonal matrix with the 
same diagonal as T. 

Apply these rules to minimize (Y - AX)'(Y - AX) with respect to X, where 
A of order m x n and Y of order m x 1 are given. Show that the minimizing 
equation is A'AX = A'Y. 

14 Let R be a correlation matrix (non-n.d. with unity as diagonal elements) 
and D2, adiagonal matrix with 0 6 di2 < 1. Prove that inf, rank(R - D2) 2 s, 
the number of latent roots of R greater than unity. (Guttman, 1954.) 

15 Let A,, A , ,  . . . , A, be symmetric square matrices. A necessary and 
sufficient condition for an orthogonal matrix C to exist such that CA,C', . . . , 
CA, C' are all diagonal is that Ai Aj be symmetric for all i and j, that is, Ai and 
Aj commute. 
16 A matrix A is said to  be idempotent if A' = A. Establish the following 
results for a symmetric idempotent matrix A. 
16.1 Every latent root of A is either 0 or I .  
16.2 I A1 # 0 * A  = I (identity). 

16.3 A is non-negative definite and admits the representation A = L,L; 
+ + L,L;, where L,, . . . , L, are orthonormal vectors and r = rank A. 
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16.4 If the ith diagonal element of A is zero, all the elements in the ith row 
and column are zero. 
16.5 Trace A = Rank A .  
17 Let A , ,  . . . , A, be symmetric. If A i  is idempotent and A,A, = 0 for 
i # j ,  then each Ai is idempotent and hence rank(1 A;) = 1 rank A , .  
18 Using the notation of the spectral decomposition of a nonsymmetric 
matrix (lc.3.14) 

show that A can be written 

A = SIA, + * * .  + S,,,A,,, 

where 
L,(z) is the Lagrange interpolation polynoniial, 

Ai = I, A i  is idempotent, and A i A j  = 0,  i # j .  Furthermore, if 

2 - s i  
Lj(Z) = n - 

i =  1 S j  - Si' 
i + j  

then Ai  = Lj (A) .  [Hint: Choose A i  = Pi QI .] 
19 Relation between Two Inner Products in a Finite Dimensional Vector 
Space 9. Let X ,  Y be two vectors and define by (X,  Y), and (X, Y)z two pos- 
sible inner products. 
19.1 Show that a necessary and sufficient condition for a vector P, to 
exist such that 

is that (PI, U), = O-(P1, U), = 0 for any U, that is, the spaces orthogonal to 
P, according to the two definitions are the same. [Hint: Make use of the 
properties (la.4) of the inner product only.] 
19.2 There exists an orthonormal basis of 9' relative to both the definitions 
of inner product. 
19.3 Let PI, . . . , PI,, be the orthonormal basis arranged in order such that 
A, 2 . . 2 All, where A i  = (Pi ,  Pi)l/(Pi, Pi)z . Then Ai and Pi are called eigen- 
values and vectors of one inner product relative to the other. Note that if A 
and B are p.d. matrices, then X'AY and X'BY are valid inner products and 
A , ,  . . . , A,,, are the roots of the determinantal equation IA - AB1 = 0. 
19.4 (IAXIJ < llAX + BY(\  for all X, Y o A * A B  = 0, where (X, Y) = Y*AX. 
19.5 In  U", the unitary space of n dimensions, every inner product is of the 
type (X, Y) = Y'AX where A is a p.d. matrix. 
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20. Properties of p.d. and p.s.d. matrices. 
20.1 If A = (a i j )  is p.d. or p.s.d. and a , ,  = 0, then a i j  = 0 for all j .  
20.2 If A is p.d. and A-' = (a i j ) ,  then 
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(a) a i i  3 l / a i i ,  with equality if and only if ai j  = 0 f o r j  = 1, . . . , i - 1, i + 1 ,  

(b) a i i  = l / a i i  for all i implies a i j  = 0, i Z j ;  
(c) I A1 < a , ,  * - - a p p  with equality if and only if a i j  = 0, i # j .  

. . . ,  m ;  

20.3 Let A be p.d. and 

where A,, is square. Then A" - A;/ is n.n.d. 
21 Kantorocich Inequality. If A is p.d. Hermitian with latent roots A, 2 

2 I,,, > 0, then 

1 A ,  1'2 

4 Am 
I < (x*Ax)(x*A- 1x) 5 - [ (-) + k) '"1 '. 

where X is normalized, i.e., X*X = 1 .  
22 Extensiort of the Results of 1 f. Let A be a symmetric matrix and C be a 
p.d. matrix. Denote by Al 3 ... 2 A,,,, the roots of IA - ACI = 0. 

X'AX 
= ),,, inf- = A,,, * 22.1 sup- 

x X'CX x X'CX 

X'AX 
22.2 inf sup - = & + l ,  - 2 1 , - k  7 

X' AX 

X'AX 
inf - - 

B B ' C X = O x ' c x  s:p B'CX=O x'cx 
where B is m x k matrix. 
22.3 Let X,, . . . , X, be such that Xf CX, = 0, i # j .  Then 

- A ,  + . . . + A k ,  

23 Computatiori of itwerse matrices and certain products. Let A be a p.d. 
matrix of order ni and D be an ni x k matrix. In statistical problems we need 
the computation of the matrices A-'  and D'A-'D. 
23.1 Show that there exists a lower triangular matrix B such that BA = T 
where T is an  upper triangular matrix and A = T'T. Hence show that 

A-'  = B'B, D'A-'D = (BD)'(BD). 
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23.2 The same formulas are applicable for the computation of A- and 
D’A-D when A is p.s.d. 

23.3 Satisfy yourself that T and B can be obtained simultaneously by the 
following computational device. 

For purposes of illustration take a fourth-order matrix for A (the elements 
below the diagonal are omitted) and set out the matrix A and a unit matrix as 
shown in Table 2. 

(i) Row (2.1) is obtained by dividing each element of (1.1) by r,  , = ,/z 
Such an operation is indicated by (2.1) = (1  .l)/r, 

(ii) The element f,, =Jazz - t,,’. Row (2.2) is obtained by the operation 
[(1.2) - t12(2.1)] -+ t 2 2 ,  if t , ,  # 0, otherwise by [(1.2) - rl2(2.1)]. 

(iii) The element t 3 ,  = ,/a,, - ti,’ - t,,’, and Row (2.3) = [(1.3) - 
tI3(2.1) - f2,(2,.2)] + t , ,  if t 3 ,  # 0, otherwise by using unity instead of 
t , ,  . Similarly the last row (2.4) is obtained. 

Row 
No. 

1.1 
I .2 
1.3 
1.4 

2.1 
2.2 

2.4 
2.3 

For numerical computations involving matrices see books by Dwyer (1951) 
and Householder (1964). 

A 

0 1 1  0 1 2  0 1 3  0 1 4  

a 2 2  a Z 3  a24 
u33 a34 

a44 

t l l  t 1 2  f 1 3  114 

1 2 2  1 2 3  I 2 4  

t 4 4  

1 3 3  t 3 4  

T 

TABLE 2. Sweep Out by the Square Root Method 

I 

1 
. I  

. 1  
. 1  

B 

24 Computation of (A’A)-’, D’(A’A)-’D, etc. Let A‘ be m x k matrix of 
rank k and D be m x p matrix. One method of computing (A’A)-’, etc., is to 
compute first A’A and apply the method of Example 23. But these can be 
done directly without computing A’A. 
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24.1 Use the triangular reduction RA = c) of [(vi), lb.21 where R is or- 
thogonal and T is upper triangular. Prove that A'A = T'T and (A'A)-' = 
T-'(T-')'. [It is easy to compute T-', the inverse of a triangular matrix. 
Also D'(A'A)-'D = (D'T-')(D'T-')'.] 

24.2 Use the Gram-Schmidt reduction A = ST where the columns of S are 
orthonormal. Show that A'A = T'T and further that T is the same as in 
Example 24.1. Thus we have two ways of computing T, and it is believed that 
the computation of T as in (24.1) is nunierically more stable. 

25 A square matrix A is said to be similar to a matrix B if there exists a non- 
singular matrix P such that PAP-' = B. 

(a) Similarity is an equivalence relation on n x n matrices. 
(b) Let A be similar to B. Then A and B possess the same characteristic 

polynomial and hence the same eigenvalues, the same trace and deter- 
minant. 

26 A square matrix A is said to be semisimple if there exists a nonsingular 
matrix P such that P-'AP = A, a diagonal matrix. The diagonal elements of 
A are the eigenvalues and the columns of P are the corresponding eigen- 
vectors of A. 

A is a semisimple if, and only if, the eigen space is the whole of U",  the 
n-dimensional unitary space. 

27 Let A be m x n matrix. Let (X, 6) = 6*NX for all X, 6 E U "  and 
(q, Y) = Y*Mq for all q, Y E  U'" where M and N are p.d. The adjoint 
A# of A is defined by the relation (AX, Y) = (X, A'Y) for all X E U" and 
Y E  U'". Take M = N if m = n. Show that 

(i) ( A ' ) # = A  

(ii) A# = N-'A*M 
(iii) (AB)' = B # A #  
(iv) (A#)-'  = (A-')# 
(v) A = A #  for some choice of the inner product if, and only if, A is semi- 

28 Let A = U ( t  :)V* be the singular value decomposition of A where U 

and V are unitary and A is a diagonal matrix with positive diagonal elements. 
Then 

*-' U* where L, M, (a) G is a g-inverse of A if, and only if, G = V 

simple with real eigenvalues. 

(M N) 
and N are arbitrary matrices of proper orders. 
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(b) G = A , - o G  = V ( k l  t A L ) U *  where L and M are arbitrary. 

(c) G = A , , , - e G  = V ( t - '  k ) U *  where L and N are arbitrary. 

(d) G = A , - o G  = V U* where M and N are arbitrary. 

(e) G = A + o G = V  (;-I ;)u*. 

29 Let A be a square matrix and A be an eigenvalue of A. The set of all eigen- 
vectors of A corresponding to A together with the null vector form a subspace. 
The subspace is called the eigen space of A corresponding to A. The dimension 
of this subspace is called the geometric multiplicity of A. The multiplicity of A 
as a root of the equation I A - 1.11 = 0 is called the algebraic multiplicity of Ib. 
Show that: 

(a) Algebraic multiplicity 2 geometric multiplicity for each eigenvalue. 
(b) Algebraic multiplicity = geometric multiplicity for all the eigenvalues of 

(c) I f  A is real and symmetric, then for each eigenvalue the algebraic multi- 

30 Let T = G + XUX' where G is n.n.d., U is symmetric, such that 
&(C) c A ( T )  and M(X) c A'(T). Then R(X'T-X) = R(X'), where T- is 
any g-inverse. 

[Note that X = (G + XUX')A for some A, and hence X'T-X = X'A = 

A'X. Then I'X'T-X = I 'X'A = I'A'X = 0 

A - A  is semisimple. 

plicity is equal to its geometric multiplicity. 

= I'A'(G + XUX')A = 0 3 I'A'GA = 0 + I'A'G = 0. 

Hence I'A'(G + XUX') = 0 = S'X', i.e., I'X'T-X = 0 S'X' = 0. Hence 
A ( X ' )  c A(X'T-X) .  The other way is obvious.] 

31 If A = (i:: 'I2) is a p.s.d. matrix, then &(Az1) c A ( A z z )  and con- 
'42 2 

sequently A,, A-22  A2, = A,, for any choice of the g-inverse. 
32 Schur's lemma. Let A = (a i j )  and B = (bi,) be n.n.d. matrices.. Show 
that their Hadamard product C = ( u i j b i j )  is also n.n.d. 
33 Let B be k x p matrix of rank k and C be ( p  - k )  x p matrix of rank 
(p - k )  such that BC' = 0. Then 

C~CEC')-~C + Z-~B'(BC-~B')-'BZ-~ = E-' 

(The result follows by multiplying both sides by B and CE). 
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Chapter 2 

PROBABILITY THEORY, 
TOOLS AND TECHNIQUES 

Introduction. This chapter is intended to  provide the basic concepts of 
probability theory and the tools used in statistical inference. Familiarity 
with set algebra and elements of measure theory is sufficient to understand 
the axiomatic development of probability in Section 2a. 

More advanced results of measure theory used in later sections of the 
chapter, such as Stieltjes integral, Lebesgue monqtone and dominated 
convergence theorems, and Radon-Nikodym theorem, are quoted in the 
appendix for ready reference. A proper understanding of these theorems 
is necessary to follow their applications to probability theory. 

This chapter covers most of the basic results needed for a study of mathe- 
matical statistics. Detailed proofs are given for most of the propositions 
stated. Students will find it useful to work through the various steps of the 
proofs for a better understanding of the mathematical arguments involved. 

Advanced concepts such as invariance of a family of probability measures, 
invariance of a statistical procedure, subfields in the probability space, sub- 
fields induced by statistics and conditional expectation with respect to sub- 
fields are discussed in Appendices 2C and 2D at the end of the chapter. 

A number of limit theorems in probability are assembled in this chapter; 
some are proved and others are quoted in the Complements and Examples. 
A fairly complete treatment of characteristic functions is given. 

The material presented in this chapter should give adequate preparation for 
those interested in specializing in specific areas of advanced probability and 
stochastic processes. 

For further study, the reader may refer to books by Doob (1953), Feller 
(1966), Gnedenko and Kolmogorov (1954), Grenander (1963), Kagan, 
Linnik, and Rao (1972), Kolmogorov (1953, 1950), Levy (1937), Loeve (1955), 
Linnik (l960), Parthasarathy (1967), Ramachandran (1967), and others. 

79 

Linear Stalisticdlnference and ih Applicafioni 
C. RADHAWSHNA MC 

Ilnnvl.hl D IM’ 1w1 hr hh” wru* Q””. nw 



80 PROBABILITY THEORY, TOOLS AND TECHNIQUES 

2a CALCULUS OF PROBABILITY 

2a.l The Space of Elementary Events 

Events arising out of an experiment in nature or in a laboratory may not 
be predicted with certainty; but certain events occur more often than others, 
so that there is a natural enquiry as to whether such phenomenon can be 
described by attaching precise measures or indices (to be called probabilities) 
to events. These quantities, to be useful in practice, should satisfy some 
consistency conditions based on intuitive notions. The calculus of probability 
is devoted to the construction and study of such quantities. Their applicability 
to problems of the real world, that is, an examination of the relevance of 
hypothetical probabilities in a contingent situation or the estimation of 
appropriate probabilities and prediction of events based on them constitute 
the subject matter of statistical theory and methods to which the present book 
is mostly devoted. 

As a first step, we must specify the set of all outcomes of an experiment 
which are distinguishable in some sense. We shall call them elementary 
events for some practical reasons demanding the definition of an event as 
a more general statement governing an elementary event (i.e., possibly as a 
set of elementary events). 

Consider 10 tokens numbered 1, 2, ..., 10 from which one is drawn at 
random. Any one of the numbers can occur so that the elementary events 
are specified by the numbers 1, 2, . . . , 10. We may ask the question whether 
a number drawn is a prime, a statement which refers to a set of elementary 
events, the occurrence of any one of which will ensure the description of the 
event, viz., "a number drawn is a prime." We might have argued that when the 
characteristic, primeness of a number, is considered, there are only two alter- 
natives or events to be recognized (prime or not prime). But such a description 
would not enable us to characterize an observed number in many other ways 
in which it could possibly be done and which might be of interest, such as 
whether it is odd or even. It would then be more general to consider an event 
as a set ofelementary events. In the example considered there are 

subsets consisting of single numbers, pairs of numbers, etc., to which we 
may add a hypothetical event that a token drawn is unnumbered, the cor- 
responding set being called the empty set, to make 21° possible events. 
We may not be interested in all subsets, but in a theoretical development 
it is necessary to consider all subsets for which a consistent calculus can be 
constructed. 
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As another example, consider heights of individuals drawn from a pop- 
ulation. The observations can theoretically assume continuous values on the 
entire real line, or if height is measured in intervals of 0.5 cm, the elementary 
events will be confined to a countable set of points on the real line. Events 
of interest in such cases may be the occurrence of individuals with heights 
in specified intervals. The number of such subsets is not finite, however, 
and it would be worthwhile to  examine the widest possible collection of 
subsets for which probabilities can be defined. 

2a.2 The Class of Subsets (Events) 

Let the set of all elementary events be R, also called the sample space, 
with elements or points w representing elementary events. If an event (subset) 
A is defined by a property n possessed by an element (like a number being 
prime in the example of 2a.l), it is natural to consider the event where x 
does not hold. The subset corresponding to this is the set of all elements in R 
not belonging to  A .  Such a set is called the complement of A and is represented 
by A'. The complement of R is the empty set containing no element of R 
and is represented by a. If A , ,  A ,  are two events with corresponding prop- 
erties n,, 71, (like prime and even), then two other natural events can be 
defined: either n1 or n2 holds (a number is either prime or even) and both 
R ,  and 77, hold (a number is prime as well as even). The set corresponding to 
the former is the set of all elements belonging to either A,  or A, and is rep- 
resented by A ,  u A,  called set union. The latter consists of elements belonging 
to both A ,  and A ,  and is represented by A ,  n A ,  called set intersection. 
Our class C of sets on which probabilities are to be defined should at least 
have the property that if A ,  and A ,  E C, then A,', A ,  u A ,  and A ,  n A ,  E C 
to enable us to make useful statements. Such a class of sets is called a Boolean 
field and is represented by 9. 

It is useful to define another set operation known as the difference A ,  - A , ,  
the set of elements in A ,  which are not elements of A,;  thus A ,  - A ,  = 
A ,  n A,'. Of course, A ,  - A ,  E 9 if A , ,  A ,  E 9. 

2a.3 Probability as a Set Function 

For each set A €9 we have to assign a value P ( A )  to be called the prob- 
abilify of A ,  or in other words define a set function P over the members 
of 9. If the notion of probability is to be related to relative frequencies of 
occurrence of events, the function P has to satisfy some intuitive requirements, 
First, its range should be [0, I ] ,  the value 0 corresponding to impossibility 
and 1 to certainty. Second, let A,, , , . , Ak, ( A ,  E 9) be disjoint sets whose union 
is R, which means that any'elementary event that occurs has one and only 
one of k possible descriptions A , ,  . . . , Ak.  The relative frequencies of the 
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events A,,  . . . , Ak must then add up to unity which suggests the requirement 

Let A i  €9, i = 1, 2,  . . . be a countable number of disjoint sets such 
that U A ,  = R. What can we say about x y P ( A i ) ?  From the second intuitive 
requirement that x P ( A i )  = 1 for any finite decomposition of R, it only follows 
that x y P ( A i )  < I .  To examine the consequences of x T P ( A , )  -= 1, let us 
consider the sequence of events B, = U , " A i .  The sets B , ,  B , ,  . . . form a 
decreasing sequence tending in the limit to the empty set 0. We may then 
expect P(B,) to decrease to zero as k increases. This does not happen if 
x ; " P ( A i )  < 1 .  It appears, then, that we need as a convenient condition, 
z P ( A i )  = 1 for a finite or a countable decomposition of R. The intuitive 
requirements examined can now be stated in the form of two fundamental 
axioms governing the set function P on the chosen field 9. 

AXIOM 1. P ( A )  >, 0, A E 9. 

AXIOM 2. ug , A i  = R, A i  n A j  = @ f o r  all i # j = .  x y  P ( A i )  = 1. 

A set function P defined for all sets in 9 and satisfying the axioms 1 and 2 
is called a probability measure. The following results are consequences of 
these axioms. 
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P(A, )  + . . . + P(A,) = 1 .  

(i) 0 G P(A)  < 1, A E 9 
(ii) P ( 0 )  = 0 (follows from axiom 2 observing that 0 u ( U F A , )  = 

(iii) P(R) = 1 [since R u 0 u 
(iv) P ( U A i )  = z P ( A i )  for any counrable union of disjoint sets in 9, whose 

R = U y A , ) .  Then axiom 2 holds for a finite decomposition of R. 
= R] 

union also belongs to 9. 

( U A , )  u ( U A , ) ' =  R = (UA,) '  u A ,  u A , . . .  
P ( U A , )  + P [ ( U A i ) ' ]  = 1 = P [ ( U A i ) ' ]  + P ( A , )  + P ( A , )  + * * . .  

Hence the required result follows. 

(v) P ( A ,  u A , )  = P ( A , )  + P ( A , ) ,  if A ,  n A ,  = 0 (a  special case of iv) 
(vi) Let A i  be a nonincreasing sequence of sets in 9 such that Iirni-+* A ,  = 

The complements A: form a nondecreasing sequence and 

0.4, E 9. Then limi+w P ( A i )  = P(limi+m A,). 

U A :  = ( n ~ , y  = A +  ( A , c - A , c )  (A+ A , c ) - .  

Using the consequence (iv) of axiom 2 we see that 

P [ ( ~ ) A ~ ~ I  = P(A,C) + P(A,C - A J  + . - .  
= P(A,') + [P(A,') - P(AlC)J + * * .  

=limP(Aic) as i + m ,  ' 
, 
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that is, 

or 
1 - P( n A , )  = lim[l - P ( A , ) ]  as i + 00. 

P(limA,)=P(r)A,)=lirnP(A,) as i -+co .  (2a.3.1) 

Similarly, if A ,  , i = 1, 2, . . . is a nondecreasing sequence of sets in 9 such 
that Jim A i  = u A,  E 9, then 

lim P(A,)  = P(U A ~ )  = P lim A (2a. 3.2) 

(vii) The reader may easily establish the following: 

(a) P(AC)  = 1 - P ( A )  

(c) P ( A ,  u A,) = P ( A , )  + P(A,)  - P ( A ,  n A,)  giving the inequality, 
P(A,  u A,)  < P(A, )  + P(A,)  and by induction, P ( u  A , )  < C P ( A , )  
for any arbitrary sets A , ,  A , ,  . . . . 

i+m 

(b) A1 c A2 a P ( A 2  - A , )  = P ( A , )  - P(A1) * P ( A , )  6 P(A2) 

(viii) Axioms 1, 2 o results (i), (iii), (iv) o results (i), (iii), (v), (vi). 

Kolmogorov (1933) originally stated (i), (iii), (v), (vi) as axioms governing 
a probability function. The equivalences in (viii) are easy to establish. 

2a.4 Borel Field (a-field) and Extension of Probability Measure 

A Boolean field need not contain unions of all countable sequences of 
sets. A field which contains all such unions (and therefore countable inter- 
sections) is called a BorelJield or a a-field. Given a field 9 (or any collection 
of sets) there exists a minimal Borel field containing 9 which we denote by 
g(9) and which may be shown as follows. There is at least one Borel field, 
viz., the class of all sets in R, which contains 9. Further arbitrary intersections 
of Borel fields are also Borel fields. Hence the intersection of all Borel fields 
containing 9 is precisely the minimal Borel field, W ( 9 ) .  A set function defined 
on 9 and satisfying axioms 1, 2 can be uniquely extended to all sets in W ( 9 ) ,  
that is, there exists a unique function P* such that: 

(a)  0 < P*(A)  < 1, A E W ( 9 ) ,  
(b )  P * ( u  A,) = xP*(A, )  for a countable sequence A, of disjoint sets in 

( c )  P*(A) = P(A),  if A E 9. 
W ( 9 ) ,  and 

The function P* is defined as follows. Consider a set A in B ( 9 )  and a collec- 
tion of sets A i  in 9 such that A c U Y A , .  Then 

P*(A) = inf C P ( A i ) .  
AI 
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The extension P* of P is a standard result in measure theory (see Halmos, 
1950; Munroe, 1959). 

It may then be of some advantage to consider the wider field W(F) as 
our basic class of sets for defining the probability function, if we observe 
that it is enough to specify the function on a Boolean field generating it. 
We are now in a position to build up a calculus of probability based on the 
basic space R of elements w (elementary events), a Borel or a a-field W of 
sets (events) in R, and a probability measure P on W. The triplet (R, W, P) 
is called a probability space, while R or (R, W) is called the sample space. 
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2a.5 Notion of a Random Variable and Distribution Function 

It is convenient at this stage to introduce some notations which we use 
throughout this chapter. We have already defined the probability space 
(a, W, P). The real line (- 00, 00) is represented by R and the n-dimensional 
real Euclidean space by R". The points of R" can be represented by ordered 
set of real coordinates (xl, . . . , x,,). These are particular cases of R. 

In R", consider the class '3 of open sets or closed sets or n-dimensional closed 
or open rectangles or the field generated by finite unions of sets of the form 

a, <xi  c b,, where 
i =  1, ..., n. 

The minimal Borel field containing 9 is the same in each case and is denoted 
by W,, . The probability spaces (R", W,, , P) play an important role in practical 
applications. The concepts of W m  related to R" and (R", 3?, , P) are devel- 
oped in 2c.l. 

Random Variable (r.v.). A real valued point function X(.) defined on the 
space (0, W, P) is called a random variable (or measurable in the language of 
measure theory) if the set (0: X(o) c x} E W for every x in R. 

The function X may be regarded as a mapping of R into R which may 

be written R - R. Consequently, given a set S of points in R, there exists 
a set of points in R mapped into S which is called the pre-image of S and is 
represented by X - ' ( S ) .  With this notation Xis a random variable if and only 
if 

Distribution Function (d.f.). The point function 

-03 <a ,  < 6 ,  < co, 

X 

X-'( - 03, x) E W for every x. 

F(x) = P(0: X ( 0 )  < x} = P [ X - ' ( -  03, x)] 

defined on R is called a distribution function (d.f.). A d.f. so defined has 
a number of important properties. We use the notation P(X < x) = 
P(0: X ( 0 )  < x}. 
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(i) F(-co)  = 0, F(o0) = 1. 

The limit of X-'(- co, x) as x --t - co is 525, the empty set in 33. Hence 
lim F(x) = 0 as x + - co, that is, F( - 01)) = 0. Otherwise there is a contradic- 
tion by (2a.3.1). Similarly, F(o0) = 1 .  

(ii) F is nondecreasing. 

Let x1 < x 2 .  Since (- 03, x,) r) ( -  03, x,), X - ' ( -  00, x 2 )  3 X-' (  - 03, x I )  
and, therefore, P [ X - l (  - 03, x,)]  2 P [ X - l (  - 03, q)]. 

(iii) F is continuous at least from the left. 

Let xl, x , ,  . . . be an increasing sequence of numbers and A,, A 2 ,  . . . the 
corresponding increasing sequence of sets in W. I f  lim x ,  = x ,  then lirn A, = u A, = A, with A = X- ' [ ( -w ,  x) ] .  Using (2a.3.2), we have 

lirn F(x,) = lim P(A,) = P ( l h  A,) = P(A)  = F(x) .  

Notice that if we are approaching the limit from above the pre-image of x 
is in every A,  and the limiting set is X- ' ( ( -oo ,  X I )  whose probability is 
F(x) + P(X = x) .  Thus discontinuity can arise by a single point set having 
non-zero probability. 

Note that left continuity is a consequence of the definition F(x)  = P(X < x) .  
Some authors define the d.f. F(x) as P ( X  < x )  in which case it would be right 
continuous. The values according to two definitions coincide at all continuity 
points and differ byP(X = x )  at discontinuity point x .  We follow thedefinition 
F(x) = P(X < x ) ,  observing that the two definitions are equivalent and the 
choice is a matter of convention. 

(iv) The set S of points of discontinuity of F is at most countable. 

Denote by S, the set of points at which F has a jump 2 I/n. Then 
S = u S, . For every n, the set S, is finite, for otherwise F would exceed 
unity. Hence S is at most countable. 

(v) Two distribution functions are the same ifthey agree on a dense set in R .  

(Vi) DECOMPOSlTION OF A D.F. F(x) = Fl(x)  + F,(x) where F, is every- 
where continuous and F, is a step function. Such a decomposition is unique. 

Let D = (x , ,  x2, . . .) be the discontinuity points of F(x) and define 

F l W  = c [F(x, + 0) - F(x,)l.  
x,<* 

Obviously F,(x) is a step function. Then F2(x) = F(x)  - F,(x)  can be easily 
seen to be a continuous function. 
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There is a more general decomposition which expresses the continuous 
part as 

F2W = F21(x) + F22(4, 
where F,, is absolutely continuous, that is, can be expressed as an indefinite 
integral of a function and F22 has derivative equal to zero almost everywhere. 
For a proof see Loeve (1955). 

(vii) The random variable A'(.) on (a, 9, P )  induces a probability measure 
on ( R ,  93'). The probability measure is completely specijied by F(x). 

Let S E 9, ; then it is easy to see that X - ' ( S )  E W. Define Q(S) = P [ X - ' ( S ) ] .  
Obviously, Q(S)  is a probability measure on Bl ,  as may be verified from the 
fundamental axioms 1, 2, with the property 

Q(S) = F(x), if S = (- co, x). (2a.5.1) 

We shall show that if Q'(S) is another probability measure on Wl with the 
property (2a.5.1), then Q(S) = Q'(S) for all S E W,, which will prove the 
required proposition. 

Let S = [a, b) ;  since ( -  00, b) = (- co, a) + [a, b) 

F(b) = F@) + Q(b, b)) = F(a) + Q'(h b)). 

Hence Q and Q' agree on intervals of the form [a, b). 
Let F,, be the class of finite unions of sets of the form [a, b) in [ -n ,  n). 

Then F,, is a field and a set S E S,, can always be expressed as union of disjoint 
sets of the form Si = [a i ,  bi). Therefore 

Q(s) = C Q([ai 9 bi)) = Q'([ai 9 bi)) = Q'(s), 
so that Q and Q' agree on 9,, and therefore on B(9,). 

Q'[S n [ -  n, n) and letting n -, 00, Q(S) = Q'(S). 
Now let S E Then S n [- n, n) E W(2F"). So Q[S n [- n, n)]  = 

(viii) The random variable X(*) dejines a a-jeld of sets i?dx t g, that 

Let S € W 1  and consider Bx = { X - ' ( S ) :  S E B ~ } .  W x  is a a-field since: 

(a) X - ' ( - o o ,  00) = Q, that is, R € B X ,  
(b) X-' (Sc)  = [X-'(S)] ' ,  that is, the complements of sets in Wx belong to 

(c) X - ' ( u F S i )  = u F X - ' ( S i ) ,  that it, countable union of sets in i?dx 

is, Bx is a sub a-jeld of o sets. 

W x ,  and 

also belongs to ax. It is obvious that BX c W. 
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(ix) A Borel function of a random variable is also a random variable. 

A function f which maps points of R, the real line, into R is said to be a 
Borel function if 

More generally, a function f which maps points of R", the n dimensional space, 
into R is said to be a Borel function if 

s E a1 * f - 1(s) E a,. 

SESY,*f-'(S)fSY". 

Let X be a random variable, that is, X - ' ( S )  E B. Consider f ( X ( w ) )  =g(o). 
Then it is seen that g- ' (S )  = X - ' [ f - ' ( S ) ]  E a. 

(x) Every F(x), with the following properties: 

(a) F(x) is nondecreasing, 
(b) F( - 00) = 0, F(co) = 1, and 
(c) F(x) is continuous at least from the left, 

defines a random variable of which F is the d.f .  

Let Q = [0, 11, ii? the Borel field generated by intervals in [0, 11, and 
P, the Lebesgue measure so that P([O, w))  = w ,  0 < w < 1. Then the random 
variable (r.v.) 

X(w) = inf y,  (0 < w < 1) 

has the d.f. 
F ( Y ) > ~  

P[w: X(w) < x ]  = P(w: inf y < x ]  
F ( Y ) > w  

= P[w:  0 < 0 < F(x)] = F(x). 

We have thus exhibited F(x)  as arising out of a function (rev.) defined on a 
suitable probability space, (a, &Y, P). 

In practice, two types of distribution functions are of interest. One is 
the step function corresponding to a random variable assuming discrete 
values a,  < a,  < ..., finite or countable in number, with probabilities p , ,  
p 2 ,  . . . ( C p ,  = 1) respectively. The d.f. has jumps at  points a, ,  a 2 ,  . . . and 
stays constant in the interval (ai, a , ,  The saltus at a,  is p i .  The second type 
called absolutely continuous has a representation of the form 

F(x) = lX f ( x )  dx (2a.5.2) 

in which case f ( x )  is said to be the probability density (p.d.). If f ( x )  is 
continuous at x ,  F'(x) = f ( x ) .  There can be other types of distribution 
functions which are mixtures of the two types considered and which may 
not be representable in the form (2a.5.2). 

-m 
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Some examples of discrete distributions with finite and countable alterna- 
tives useful in statistics are as follows. In each example the variable is rep- 
resented by X and P(X = r )  by pr. Other values known as parameters 
occurring in the specification of pr are represented by Greek letters. The 
ranges of the variable and parameters are indicated. 

Binomial Distribution 

pr = (r)nr(l- n ) d - r ,  o < n < 1 ,  n any integer 

r =0, 1, ..., n. 

Geometric Distribution 

pr = (1 - n)n', 0 < n < 1 

r = O ,  1 , . . . ,  oo. 
Poisson Distribution 

X' 
p r = e - ' - ,  

r !  

r = 0 , 1 ,  ..., oo. 
Negative Binomial Distribution 

r = 0 ,  1 ,...,a. 

Logarithmic Distribution 

1 a* 
P r  = -, O < a < l  

-log(l - a) r 

r = l , 2  ,..., oo. 
Hypergeometric Distribution 

A < N (both integers) 

r = max(0, n - N + A), . . . , min(A, n). 

An important example of a continuous distribution is the 
distribution with the density function 

1 
-a < p  < a , o  < I3 < oo f ( x )  - e - (X- l c ) ' / 2a  

J2Rb 

-a < x  < a. 

(2a. 5.3) 

(2a. 5.4) 

(2a.5.5) 

(2a. 5.6) 

(2a. 5.7) 

(2a. 5.8) 

normal 

(2a. 5.9) 
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It is easily verified that 

d y ,  substituting y = x - p =-j 2 "  e - y 2 / 2 a *  

J%a o 

Other continuous distributions of interest are given in Chapter 3. 

2a.6 Multidimensional Random Variable 

The collection of m single-valued real functions XI(*), . . . , XI,,(.) mapping 
R into R" is called an m dimensional random variable if the set 

S(x) = {a: X,(a) < xi ,  . . . , X,,,(w) < x,,,} E 98 for all x, 

where x stands for (xl, . . . , x,,,). As in the case of one dimensional random 
variable we define the distribution function 

P[S(X)] = F ( x , ,  . * * ,  X"). 

By following the arguments of 2a.5, it can be shown that F is nondecreasing 
and continuous at least from the left in each of its arguments and defines a 
probability measure on 98". 

The d.f. Fi of X ,  alone is seen to be 

F,(x) = F(co, . . . , 00, x ,  co, . . . , OO), 

with x in the ith position and is called the marginal distribution of Xi. 
Similarly, the marginal distribution of any subset of the variables is obtained 
by substituting 00 for the other variables in F(x, ,  . . . , xm).  

Two important cases we shall be considering are the step functions and 
absolutely continuous functions. For step functions the probabilities for 
different combinations of values taken by xl, . ., x,, are specified. For 
the absolutely continuous functions a density function ,f(x,, . . . , x,,) is given 
such that 

Iff(x,, . . . , x,,,) is continuous in  all the variables, then 
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2a.7 Conditional Probability and Statistical Independence 

If, in the example of 10 tokens of 2a.1, we assign a probability of r/10 
to any subset of r numbers, the axioms I ,  2 of a probability measure are 
satisfied. With the measure so defined, the probability of the event A ,  a 
number being prime, is 4/10; that of the event C, a number being even, is 
5/10; and that of the event AC (even prime) is 1/10. 

Suppose a token is drawn and is noted to  contain a prime number, 
that is, the event A has occurred. Can we then ask the question: What is 
the probability that the number is even (prime) or that the event AC has 
occurred? Naturally the degree of uncertainty about AC is reduced by 
our knowledge that A has occurred leading us to consider only the possibilities 
where A is true. In our example we have to consider only the outcomes 
2, 3, 5 ,  7 which are all prime and assign probabilities to their subsets. A 
natural way of doing this is to assign probabilities to the elementary events 
2, 3, 5 ,  7 in the same ratio as their original probabilities for their relative 
occurrences are not altered by the knowledge we have. The new probabilities 
are then P * ( i )  a P(i ) ,  or 

1 P * ( i )  = 1 

where P ( A )  = P(2) + P(3) + P(5)  + P(7) is the probability of a number 
being prime. Now the probability that a given number is even (event C) 
knowing that it is a prime is 

The ratio P ( A C ) / P ( A )  when P ( A )  # 0 is called the conditional probability 
of C given A and is denoted by P(CI A). P ( C J  A )  = 0 when P ( A )  = 0. 

In the general case (f2, B, P), consider a set A such that P ( A )  # 0 and 
sets of the form AC, C E W and define 

(2a.7.1) 

The set function P(.I A )  for fixed A,  defined for all sets C E 
1 and 2 and is called the conditional probability measure given A .  

Independence of Events. 
event A if P(CIA) = P(C), in which case 

satisfies axioms 

Event C is said to be statistically independent of 

P ( A C )  = P(A)P(C) .  (2a .7.2) 
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Then P(AIC) = P(A) ,  i.e., A is independent of C. Thus two events A and C 
are said to be independent if (2a.7.2) holds, including the case P(A)  or P(C)  
is zero. 

Events A, ,  A , ,  ... are independent if for every selection of n events 
Ai, , . . ., Ai“ 

P(Ai, * * * Aim) = P(A,,) * * P(Ain) 

n = 2,3, .  . . 

2a.8 Conditional Distribution of a Random Variable 

Consider a pair of random variables (XI, X , )  and a set S E ~ ,  such that 
P ( X ,  E S) # 0. Following the definition (2a.7.1) of conditional probability, 
we can interpret the ratio 

P[w: X,(o) E s, X,(w) c x,]  

P [ X , ( o )  E SI 
= F ( X 2  I XI E S )  (2a.8.1) 

as the conditional probability of X ,  < x, , given that X ,  E S. The expression 
(2a.8.1) considered as a function of x ,  may be called the conditional d.f. of 
X ,  , given that XI E S and denoted by 

FA.1 XI E S). (2a. 8.2) 

If, however, a function F2( * I .) exists such that 

(2a. 8.3) 

for all S and x2 where Fl is the d.f. of XI, then F,(*Ix,) could be called 
the conditional d.f. of X ,  given XI = xl. It is difficult toestablish theexistence 
of such a function in the general case (see 2b.3 where the existence is estab- 
lished. We consider R2 as the sample space of two random variables XI, X, 
and use the argument employed for R”). 

In most of the applications considered in this book, however, we have 
d.f.’s which are absolutely continuous or which correspond to a discrete 
distribution. In such cases it is simple to define a conditional distribution. 
Let f ( x l ,  x,)  be joint density of X,, X ,  and fl(xl) that of X ,  alone. (For a 
discrete distribution, “ density ” is replaced by “probability *’ and integration 
is replaced by summation). By definition, 
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which shows that 
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(2a.8.4) 

satisfies the definition of a conditional distribution. Furthermore, the ratio 
f ( x l ,  x2)/f1(x,)  may be considered as the conditional p.d. of X2 given Xi = x , .  
It is immaterial as to how the conditional d.f. and p.d. are defined when 
fl(X1) = 0. 

Two random variables XI, X2 are said to be independent if 

F2(x2 I XI E S) = Fz(x2) for all x2 and S E W , .  (2a.8.5) 

The choice of S as an interval implies, by (2a.8.5) 

F(x1, x2) = ~l(X,)FZ(X2), (2a. 8.6) 

and it is trivially true that (2a.8.6) implies (2a.8.5). When the densities exist, 
the condition for independence may be stated as 

mi, x2) = fi(Xl)fZ(XZ). 

2b MATHEMATICAL EXPECTATION AND MOMENTS OF 
RANDOM VARIABLES 

2b.l Properties of Mathematical Expectation 

The mathematical expectation of a random variable X ,  also called the mean 
value, is defined by 

E ( X )  = /.x dF, (2b. 1.1) 

where F(x) is d.f. of X and the integral is Lebesgue-Stieltjes, explained in 
Appendix 2A to this chapter. When X has p.d.,f(x), we see that 

E ( X )  = J x dF = 1 x ~ ( x )  dx (2b. 1.2) 

reduces to  a Riemann integral. For a discrete probability distribution with 
F(x)  as a step function, 

(2b. 1.3) 

which is a summation. In (2b.1.3), each x, is a discontinuity point of F 
and p ,  is the saltus at x,. It is interesting to note that in all the three cases 
the same symbol Jx dF could be employed. 
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Let Y = g ( X )  be a Borel function of X and denote by G(y) the d.f. of Y. 
Then by using the definition of integration it is easy to establish that 

(2b. 1.4) 

so that the expected value of a function of an r.v. can be computed directly 
without determining first the d.f. of the function of the r.v. 

More generally, if we are considering a k-dimensional random variable 
(A’,, . . . , X,) and Y = h(X, ,  . . . , X,) is a Borel function, it may be shown that 

E( Y )  = Jy dG(y) = J / i ( x , ,  . . . , x,) dF(xI, . . . , xk). 

The following results are easily established: 

(i) E ( c X )  = c E ( X ) ,  where c is constant. 
(ii) E(Xl + X,) = E ( X , )  + E ( X , )  whether Xl and X ,  are independent 

or not, and more generally 

E(c,X, + * * * + Ck X,) = c , E ( X , )  + * * * + Ck E(X,) .  

(iii) E ( X 1 X 2 )  = E(A’,)E(X,) when XI and X ,  are independent. 

2b.2 Moments 

The 8th moment and absolute moment about a given constant a of a random 
variable X are defined as 

a, = E(X - = (x - dF, in general s 
= /(x - a)”fx) dx, when p.d. exists 

= (x, - a)’p,, for a discrete distribution, 
r 

y, = El X - a (  = 1 ( X  - Q I  dF. 

For some theoretical reasons we say a, exists only when ys exists, which is  
true when the integral defining a, is of Lebesgue-Stieltjes type (Appendix 
2A). When a = E(X) ,  the moments are said to be central and are represented 
by p, . The following relationships between central moments and moments 
about an arbitrary origin may be easily verified. 

2 
po = 1, 
p3 = a3 - 3a,a2 + 2aI3  

p4 = a4 - 4u1a3 + 6ai2a2 - 3a, 

p1 = 0, pz = a2 - a1 

4 
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and in general 
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which is established as follows: 

p,l = E [ X  - E(X)Y = E [ X  - a - E(X - a)Y 

= E ( X  - a - ul)n 

The mean p and the second central moment p 2  (variance), generally 
represented by the symbol o', play an important role in statistical data 
analysis. Purely as descriptive measures of the distribution, the mean 
represents a central value of the random variable and the variance represents 
the scatter around the central value. A few results concerning the mean and 
variance of a distribution are given. 

(i) The second moment a2(a) is a minimum when taken about the mean p. 

E ( X -  a)' = E ( X -  p + p - a)' 

= E ( X  - p)' + (p - a)' + 2(p - a)E(X - p) 
= E ( X  - p)* + (p - a)' 2 E ( X  - p)'. 

(ii) If X is a non-negative random variable and if E ( X )  exists, then 

E ( X )  = 1[1 - F(x)] dx. (2b.2.1) 

Integrating by parts, we see that 
T T 

Jo x d F ( x )  = TF(T) - J F ( x )  d x  
0 

.T 

0 
= -T[I - F(T)]  + J [I - F(x) ]  d x .  (2b.2 -2) 

But 
m 

T[l - F(T)] = 7 1 d F ( x )  < x d F ( x )  -, 0 as T + co. 
T JTm 

Hence the result (2b.2.1) follows by taking limits of both sides of (2b.2.2). 
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Note that if X is any random variable and E ( X )  exists, then 
m 

E ( X )  = J [ I  - F(x) + F(-x) l  dx (2 b.2.3) 
0 

and that 

lim xF(x) = lim x [ l  - F(x)]  = 0 
x-1-m x+m 

is a necessary condition for the existence of E(x) .  

g andf,  then 
Furthermore, if G and Fare  distribution functions with finite mean values 

+ m  

[ [G(x)  - F(x)] dx  = g - f. (2b.2.4) 
m J _. 

Savage (1970) has shown the more general result 

Jtm[(G * H ) ( x )  - (F * H)(x)]  dx = g - f (2b.2.5) 
-m 

where H is any distribution function and G * H denotes the convolution 
distribution (see 2b.4.12). 

p and variance ts2 
(iii) CHEBYSHEV'S INEQUALITY. For any random variable X with mean 

(2b.2.6) 

This is an important inequality as it is independent of the exact nature of 
the distribution of X. By definition, 

= ( X  - p ) ' d F ( x )  

p - A a  W 

2 s  
- p)' d F  + ( x  - p)2 d F .  

Jp + .ia 

Dropping the middle term and replacing ( x  - p)2 by the smallest value in 
the first and third terms, we have 

J - m  J p + A a  

2 AZuZP(lx - p i  2 nu), 

which yields the inequality (2b.2.6). The result (21.3.2.6) is true when p is 
not the mean, provided that u2 is replaced by E(X - P ) ~ .  
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(iv) Let X be a non-negative random variable with E ( X )  = p. Then 

(v) Let Xl, X, be two random variables with means p t ,  p,  , variances 
o12, oZ2 and d.j?s F,, F , .  Then 

Fi(X + Pi)  - Fi(-x + 111) 2 F ~ ( x  + ~ 2 )  - Fz( - X  + ~ 2 )  (2b.2.7) 

2 for each x implies that a,, Q 0, . 
Let GI and G, be the d.f.’s of I XI - p1 I and I X ,  - p21 respectively. 

Then integrating by parts, we have 

u12 - a,’ = lim 
T - r m  

T 

= lim Tz[Gl(T) - G,(T)] - 2lim 

= 0 - 2 1  y ( G t - G z ) d y < O ,  

y(Gl - G 2 )  dy 
T-r m T - m  0 

m 

0 

since the condition (2b.2.7) implies that G, 2 G, . The converse proposition 
is not true, however. If at2 < a,,, then it implies that for at least one value of 
x the inequality (2b.2.7) is true but not necessarily for all values of x.  

2b.3 Conditional Expectation 

In 2a.8 the conditional d.f. of X, given X, was defined in some special 
cases. We now introduce more general concepts by defining conditional 
expectation without reference to a conditional distribution. It will be seen 
that conditional probability is a special case of conditional expectation. 

Consider a pair of random variables ( Y, T) where T may be n-dimensional. 
The conditional expectation of Y given T is defined as a function of T with 
value at T = t denoted by E( Y( t) such that 

(2b.3.1) 

for all S E gn, where R1 x S is the cylinder set in the (Y, T)-plane with 
base S in the T-plane. The left-hand side of (2b.3.1) is a set function Q(S) 
which is absolutely continuous with respect to P(S), 

P(S)  = dFW, (2b.3.2) 
S 
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that is, P(S) = 0 Q(S) = 0. Furthermore, if E( Y )  exists, Q(S) is countably 
additive. Under these conditions it follows from the Radon-Nikodym theorem 
(see Appendix 2B) that there exists a function g of T defined a.e. [dF(t)] such 
that 

QG) = j g(t )  d p  = 1 At) dF(t). (2b.3.3) 

The function g( t )  is denoted by E( Yl t ) .  We shall consider some general 
properties of conditional expectation which have important applications 
in mathematical statistics. 

E( Y )  = I E (  YI t )  dF(t) = E [E( YI T ) ]  

s S 

(2b.3.4) 
T 

(i> 

where T under E denotes expectation with respect to the d.f: of T.  

It may be noted that when a further expectation is taken, E ( Y I t )  = 

E( YI T = 1 )  is replaced by E( YI T ) .  We shall follow this convention through- 
out. 

Result (2b.3.4) is an immediate consequence of (2b.3.1) if we take S to be 
the entire plane. The reader may easily establish the result when densities 
exist and the conditional expectation is defined as expectation with respect 
to the conditional distribution (density). 

Consider random variables Y and Y 2  and define the conditional variance 
of Y given T = t 

(2 b. 3.5) V( Y I t )  = E (  Y 2  I I) - [E( Y I t ) ] 2 .  

(ii) V ( Y ) =  E [ V ( Y I T ) ] +  v [ E ( Y I T ) ] .  

Integrating both sides of (2b.3.5) with respect to dF(t), we see that 

T T 

E [ V (  YI T ) ]  = E( Y 2 )  - E  [E( YI T)]’ 
T T 

= V( Y )  - v [E( Yl T ) ] .  
T 

Hence 

V( Y )  = E [ V (  YI TI1 + V [E( YI T)1, (2b.3.6) 

which provides a decomposition of the total variance of Y as the sum of 
two components: (a) the average conditional variance, and (b) the variance 
of conditional average. (See also Example 19 at the end of the chapter.) 

(iii) Letg(T)beaBorelfuncrionofTandEl YI < 00, El Yg(T)I < co. Then 

T T 
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The assumption that g is a Bore1 function of T is to ensure that g ( T )  is itself 
a random variable with respect to the probability measure induced by T, 
so that expectations, etc., may be taken. The result (2b.3.8) is a trivial 
consequence of (2b.3.7). To prove (2b.3.7), consider a simple function of T, 
which is the indicator function CA(t) of a set A E g,,, in the T plane. Then 
it is easy to see that, for any set S E a,, 

YC,(t) W Y ,  t )  = 1 CA(t)E(Y I t )  (2b.3.9) 

so that (2b.3.7) is true for simple functions of T. The equation (2b.3.9) is 
true if g is a finite linear combination of simple functions. In  general, by 
approximating g by finite linear combinations of simple functions in bounded 
sets of Tand using the condition EJg(7‘)  YI < co, the result (2b.3.7) is deduced. 

The conditional probability of a set A E d, given T = t, can be exhibited 
as a conditional expectation, by choosing the random variable Y(.j as 
the indicator function of the set A. Thus P ( A  I t) = E( YI t), as may be verified 
froni the definition of conditional probability. It must be noted that the 
R-N theorem establishes the existence of P(A I t )  as a function o f t  for fixed A 
only a.e. [dF(r)] and the exceptional t-set may depend on A.  Hence it may not 
be possible to define P(A 1 t) for all A over a t-set of probability I-unless 
the union of exceptional sets is of probability zero-so that a conditional 
probability measure over ($2, a) given T = t may not always exist. 

Kolmogorov (1933) and Doob (1953) have, however, provided a suggestive 
evaluation of conditional expectation of a random variable Y using only 
conditional probabilities, not first constructing a conditional probability 
measure over (a, a). They achieved this by considering the sum 

s,, X S  S 

m 
S ( A ) = C ( j +  l )APbA< Y ( w ) < ( j +  I)Alt] (2 b. 3.1 0) 

-m 

which is absolutely convergent for given A if E ( Y )  exists. Then 

lim S(1) = E( YI r). 

But it is of some interest to recognize the situations in  which a conditional 
probability measure exists. 

Discrete Sample Space. If the sample space has only a countable number of 
points, the conditional probability measure is always defined. The conditional 
probability of any set A E d is in fact defined by P(A n {T  = t})/P(T = t) 
provided the denominator is not zero. 

Euclidean Sniiiple Space. If the sample space is R’’, the conditional prob- 
ability measure exists. The proof depends on the fact that a probability 

1-0 
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measure over (R", an) need only be defined on a countable number of sets, 
for instance on all rectangles with corners having rational coordinates. 
The union of exceptional sets is then of zero probability measure. The 
probability measure so obtained over rectangles can be uniquely extended to 
all sets in  a,,. For further details, the reader is referred to Doob (1953). 

Conditional Density on the Sample Space. In  many applications the sample 
space is R" (n-dimensional Euclidean space) and the probability density at 
any point x = ( x , ,  . . . , x,,) exists. Ifp(x) represents the density, the probability 
of a set A E a,, is given by 

P ( A )  = 5 p ( x )  dx, * * dx,, . 

Let us consider a measurable function T which may be multidimensional, 
with a p.d. q(t). We may then define a probability density, p(x) /q( t )  over 
the surface T = t. The function p ( x ) / q ( t )  of x may be called the conditional 
density at the point x of R", given T = t .  I f  T admits continuous partial deriv- 
atives with respect to the variables, it follows from the theory of multiple 
integration that the volume element 

dx, * * dx,, = dt dS, (2b.3.11) 

where dS is the surface element and integration of any function, can be 
performed by integrating first with &-keeping t fixed-and then integrating 
with dr. This property is sufficient to establish all the results considered in this 
section. If Y is any measurable function of x, then its conditional expectation 
given T = t is 

A 

(2b.3.12) 

which is a function of 1. 

2b.4 Characteristic Function (c.f.) 

The characteristic function f ( t )  of a random variable X with the d.f. F is 
defined by (the range of integration is ( -  00, 00) unless otherwise stated) 

f ( t )  = f e i f x  d ~ ( x )  

= l cos  tx  dF(x) + i l s in  tx  dF(x)  (2b.4.1) 

where i = J-1. The integral on the right-hand side of (2b.4.1) exists 
since 1 eifx I = I cos tx  + i sin tx  I = 1, bounded for all x. We have the following 
results, which may be proved by using standard results of analysis. 
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(i) f ( o )  = I ,  Ij(t> I < I ,  f( - t )  = fj, the complex conjugate of f ( t ) .  
(ii) f (t) is uniformly continuous on the entire real line. 

The result follows since cos tx and sin tx  are continuous and bounded on 
the entire real line. 

(iii) f(t) is the c.f. of - X .  f ( t )  is real if, and only if, X is symmetrical. The 

(iv) Z f g  = E(X") exists, then the rth deriuatiue o f f ( t )  
c.J o f 6 X  + a is f(bt)exp(ita). 

f"'(t)  = (i)' 1 x e i'x dF(x) (2b.4.2) 

exists and is uniformly continuous. Further, 

a, = E(Xs)  = ( i ) -" fs (O) ,  s < r .  (2b.4.3) 

Since ( x r e i f X )  d I x r l  and E ( x r )  exists, the integral on the right-hand side of 
(2b.4.2) is absolutely convergent in which case differentiation and integration 
can be interchanged (see 2B.14 of Appendix 2B). Thus 

- = I-; d F ( x )  = (i)' / x e 'Ix d F ( x ) .  d'f dreifx 

dtr dz 

Continuity off") follows because of continuity and boundedness of e"". 
The result (2b.4.3) follows easily. 

(v) r f  f ('"'(0) exists and is finite, then E( X r )  < co for r < 2n. 

We observe that 

sin ux  Zn 
= lim 1 (F) x'" d F ( x )  2 1 x 2 n  d F ( x )  (2b.4.4) 

u+o 

using Fatou's lemma (see 2B.5 in Appendix 2B) for interchanging limits and 
integration. Then (v) follows from the inequality (2b.4.4), and the result that 
the finiteness of E(Xs) implies that of E(Xk) for k < s in view of the inequality 
lxkl < 1 + ( X I S .  

(vi) If E(X') exists, f ( t )  admits the Taylor expansion 

(it)' 
f(t)  = C a/ 7 + o(tr) (as t -, 0). 

0 
(2b.4.5) 
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(vii) Let Q(t )  = log f ( t )  which is called the second characteristic of X (or 
of F, its d.f.).  If E(X') exists, then Q(t )  admits the expansion 

r ( i t ) '  
$(r) = C uj -1 + o(rr) (as t -+ 0). 

0 J .  
(2b.4.6) 

The coefficients uj in the expansion of Q ( t )  are called cumulants or semi- 
inoariants (semi-invariants because (except for ul) they are invariant for 
translations of the random variable). If we consider the random variable 
X + a, its c.f. is e""f(t) and the second characteristic is 

log e""f(t) = ita + log f ( t )  = ita + Q(t ) ,  

so that only the coefficient of t is altered, whereas this property is not true 
of the moment coefficients uj . 

From the expansions in (vi) and (vii) we have the relations connecting 
u j ,  aj , and the central moments pj , 

K 1  = P = a1 = P  
K 2  = u2 - a12 = P2 

K 3  = u3 - 3a1a2 + 2a13 = P3 

u4 = u4 - 3a2' - 4a1N3 + 12aI2u2 - 6uI4 = p4 - 

and conversely 

a1 = K 1 ,  c 1 ~  = K3 + 3 K 2  K1 + K 1 3  

a2 = K 2  + K12, U 4  = K 4  + 3 U z 2  + 4 K 1 K 3  + 6 ~ 1 ~ ~ 2  + K14. 

The coefficients 

are called measures of skewness and kurtosis respectively. 

Moment Generating Function (m.g.f.). The function 

M ( t )  = Sefx dF(x), (2b.4.7) 

if it exists for an interval of t containing the origin on the real line, is called 
the moment generating function. 

Probability Generating Function (p.g.f.). The functions f ( t ) ,  Q ( r )  and M ( t )  
are defined for any random variable although M ( t )  may not exist in all cases. 
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For a discrete random variable X, taking values 0, 1, . . . , we can define still 
another function 
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called the p.g.f. The p.g.f. is also useful in determining the moments of X. 
For this purpose we use the relation 

= E [ X ( X  - 1)  . . . (X - s + l)], 
dt" 

where the right-hand side is called the s-th factorial moment of X ,  denoted 
by 4". The factorial moments are connected with the raw moments a, by 
the relations 

41 = a l ,  42 = az - al ,  43 = u3 - 3a2 + 2a, 
4 4  = a4 - 6a3 + 1 l a 2  - 6 ~ 1 ,  

or conversely 

a1 = h,  az = 4z + h, 
a4 = 4 4  + 643 + 742 + A. 

a3 = 43 + 342 + 

We will derive the p.g.f., m.g.f., and c.f. [ P ( t ) ,  M( t ) ,  andf(t)] of certain 
random variables, which are used in later work. 

Binomial Distribution 

r = O , l ,  ... . n  

P ( t )  = p ( 1  - n)n-rtr = ( 1  - 7.2 + nty, 
1 

M ( t )  = P(e') = (1 - n + Ire')", 

f ( t )  = M ( i t )  = (1 - n + ne")" 

Poisson Distribution 

(2 b.4.8) 

(2b.4.9) 
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Normal Distribution 

1 e - ( x - p ) ' / 2 a 2  
P(X) = - 

aJ2n 

oJ2n -a  

elp+r'a2/2 - e-  (y--Iu2)2/2uz 

m 
M ( t )  = - I e f X e - ( X - M ) 2 / 2 c 2  dx 

dy,  Y = X - C C  Im - - 
a,/% - m  

- - t r2o2/2 (2b.4.10) 

(2b.4.11) 

The d.f. F is said to be degenerate if it has only one point of increase 
a E R with F(a + 0) - F(a - 0) = 1. In such a case the c . f .  of F is 
f ( t )  = exp (ita). 

(viii) .f is the c . 5  of a degenerate d .5  if its modulus equals 1 for two values 
o f t  # Oandat # Owhereaisirrational. Inparticular, f isdegenerateif I f ( t ) I  = 1 
in a non-degenerate interval. 

A function F on R is 
said to be the convolution of d.f.'s Fl and F2 and written F = Fl * F 2 ,  if 

F(x)  = - Y )  dFz(y), x E R (2b.4.12) 

(a) F as defined in (26.4.12) is a d . 5  and if5 fi and f i  are the c.f . 's  of F, 

As Fl is nondecreasing, so also is F. Since F,(x - y )  is bounded by unity, 
by LDC (Lebesgue dominated convergence theorem, 2B. 11 of Appendix 
2B), it follows that F( - co) = 0 and F(co) = 1.  Further, F, is left continuous 
so that the left continuity F again follows by applying the LDC theorem. 
The first assertion is proved. 

x,k) --t 0 as n -, co. For every t E R 

f ( t )  = ~ ( j ~ )  = eiw- f2&2 

(ix) CONVOLUTION OF DISTRIBUTION FUNCTIONS. 

Fl and F2, respectively, then f = fl f 2 .  

To prove the second part, let a c xnl < . < x n ,  k. + 1 = with ,k + 1 - 

jabeifx dF(x)  = lim eifXnkF[Xnk , X , , k +  1) 
k 

from which we have 
b 

ja eifX d F ( x )  = 1 [ ~ a ~ y y e i f x  dF,(x))e"' d F 2 ( y ) ,  
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where F[c, d )  = F(d) - F(c). Letting a --t - co and b -+ 00 

je'lx d ~ ( x )  = jellx d ~ , ( x )  Se'ty d ~ ( y )  

PROBABILITY THEORY, TOOLS AND TECHNIQUES 

so that f = fi f 2 .  

Note that if f = fi f2 ,  then from uniqueness of the c.f. (see 2b.5), 
F = Fl * F 2 .  We observe that the product of c.f.'s is also a c.f., and in par- 
ticular iff is a c.f., so is I f 1  '. 

(b) If X and Y are independent r.u.'s with c.f.'s fi and f2 ,  and f is the c.f 
of T =  X +  Y, then 

Using result of (a), we note that the convolution F, * F2 provides the d.f. 
of the sum of two independent random variables with d.f.'s Fl and F 2 .  
F = Fl * F2 is also called the composition of Fl and F2 . 

2b.5 Inversion Theorems 

Given a d.f. there exists a c.f. defined by (2b.4.1). The question naturally 
arises as to whether a c.f. uniquely determines a d.f. The answer is yes and 
the precise result is stated in (i). 

Suppose a d.f. admits moments ulr  u 2 ,  . . . of all orders. Does a given 
moment sequence define a d.f. uniquely? The result is not true in general. 
A sufficient condition for uniqueness is given in (ii). 

(i) Iff ( t )  is the c.5 corresponding to F(x) and (a - c, a + c) is a continuity 
interval of F(x), then 

1 sin ct 
F(a + c )  - F(a - c )  = lim - 1- - e-""f(t)  dt,  (2b.5.1) 

T + m n  T 2 

so that if there are two distribution functions, they agree at all continuity 
points of both the distributions and are therefore identical. 

Consider 
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Since I (sin ct/t)eir(x-P)( < [ c I ,  the order of integration can be interchanged 
so that J can be written 

where g(T, x) is equal to 

Using the formula, 2 sin A cos B = sin(A + B )  + sin@ - B),  we have 

d t  (2b.5.2) 
sin(x - a + c)t 1 sin(c + a - x)t 

r d t + - l  n o  t 

1 *) sin(x - a + c)f 1 sin(c + a - x)r 
dr. 

T +  m n o  t d r + - /  7 1 0  t 
lim g ( z  x )  = - 1 

Next we use the result 

f if a>O -1 1 m sin - d r = [  at 0 if u = O  
n o  t -3 if a < O  

for each term in (2b.5.2). Then we have 

for x < a - c  or x > ( a + c )  
limg(T,x) = -f for x = a - c  or x = a +  c 

T - a ,  e 1 for a - c < x < a - t c  

for in the first case the values of the two terms are -4, f or f, - f ;  in the 
second case, 0, f or -f, 0; and in the third case f, f. Thus, we have established 
that lim g(T, X) exists. 

Furthermore Ig(T, x) I is bounded since j,T(sin bt/?) dt is uniformly 
bounded in T.  Hence by the Lebesgue dominated convergence theorem 
(Appendix 2B), we see that 

m m 

lim s- g(T, x )  dF(x) = 1 Iim y(T, x) d F ( x )  
T + m  m -03 T+m 

a + c  

d F ( x )  = F(a + c )  - F(a - c) ,  

which establishes (2b.5.1). 
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In particular, if If( t ) l  is integrable, by dividing both sides of (2b.5.1) 
by c and taking limits, we have 

sin ct 
e -""f( t )  d t  lim =- /  lim- 

c - 0  2c 2n - m  c+o ct 
(2b. 5.3) 

F(a + c )  - F ( a  - c )  1 

1 "  
2n -m 

F'(a) = - / e-""f(t) d t  (2 b. 5 -4) 

so that the derivative of F(x) exists and is also continuous. Notice that the 
integrand in (2b.5.3) is less than If(t)I in absolute value and the integrability 
of J f ( t )  I validates, by dominated convergence theorem, carrying the limit inside 
the integral. For this purpose, the integrability of I f ( t )  I appears to be a strong 
condition. 

(ii) THE MOMENT PROBLEM. Let a l ,  a 2 ,  . . . be the moment sequence of a 
d . f .  They do not, in general, determine the d . f .  uniquely. A suficient 
condition for the d.f. to be unique is that the series 

ai  

1 1 .  
C q t i  (2b.5.5) 

is absolutely convergent for some t > 0. 

The proof of this proposition, known as Stieltjes moment problem, consists 
in  showing that under the condition (2b.5.5) the c.f. is uniquely determined. 
For details of the proof, refer to original papers by Hamburger (1920, 1921). 
A sufficient condition in the case of a two-dimensional random variable is 
given by Cramer and Wold (1936). 

That the condition (2b.5.5) is not necessary may be seen by showing that 
the moments of 2 = Xlog(1 + Y) where X and Y are independent variables 
with densities e-' and e - y  determine the distribution of 2 uniquely by (b) 
below although (2b.5.5) is not satisfied (see Dharmadhikari, 1965). 

Any one of the following is a sufficient condition for the moment sequence 
a l ,  a 2 ,  . . . to define a unique d.f.: 

(a) The range of the random variable is finite. 

(b) 2 (u2,)-"'j = co, when the range of the variable is ( -  co, 00). 

(c) 1 (aj)-'I2j = co, when the range of the variable is (0, co). 

(d) lim ~ u p [ ( a ~ , , ) ' / ~ " / 2 n ]  is finite. 

0 
m 

0 

n+m 



2b EXPECTATION AND MOMENTS 107 

2b.6 Multivariate Moments 

If F(xl, . .., &) is the joint d.f. of the random variables XI, . .., X k ,  the 
multivariate moment ar, . . . rk about the constants ul ,  . . . , a, is 

E[(X1 - sly' ' * ' (Xk - ak)rr] = $ * * *  -a l )"***(xk  -akPdF(Xl, . . . ,Xk) .  

When a, = E(X,)  = p,, we have central moments as in the case of a single 
random variable. The second-order moment 

E(Xi - Pi)(Xj - P j )  

is called the covariance between X i ,  X, and is represented by cov(X,, X,) 
or simply C ( X i ,  A',). Denoting C ( X i ,  X,) by aij we have the following results: 

1. a,, = C ( X , ,  X i )  = ai2 (variance of x,) 
2. aij2 < aii ojf (by an application of C-S inequality) 

3. - 1 < pi j  < 1, where pu = o , ~ / , / ~ ~  is called the product moment 

4. If a,, . . . , ak are fixed coefficients V(alXl + * * * + ak &), the variance 

E[C ai(Xi - P,)]' = C aiaj aij. (2b.6.1) 

correlation coefficient between X, and Xj  [(3) follows from (2)]. 

of alXl + *.. +a ,&,  is 

Similarly the covariance between 2 a, X ,  and C b,  X ,  is 

C C a i b j ~ i j .  (2b.6.2) 

In matrix notation, if C = (aij) and A, B, X, M are the column vectors 
of the coefficients a,, bi, random variables Xi and mean values pi, 

E(A'X) = A'E(X) = A'M 
Y(A'X) = A'CA, V(BX) =B'ZB (2b.6.3) 

C(A'X, B'X) = ACB =B'CA 

where V stands for variance and C for covariance. 
5. The matrix E is non-negative definite since the quadratic form 

C C a,af a,j is not negative being the variance of a random variable 
(see 2b.6. I). 

6. C is positive definite if and only if there is no linear relation among the 
random variables XI, . . , & (with probability 1). 

7. Let the dispersion (i.e., variance-covariance) matrix C (which is n.n.d.) 
of k-vector random variable X be of rank r < k. ThenXcan be expressed 
as 

X = B Y + C  (2b.6.4) 
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where Y is an r-vector random variable with dispersion matrix I, B is a 
k x r matrix of rank r and C is a k-vector of constants. 

In multivariate problems, the conditional distribution of a subset of the 
variables, say A',, . . ., X,., given the rest X,.+,, . . ., X , ,  is often studied. 
I n  particular the conditional expectation and variance of a variable, given 
other variables, play an important part. A detailed discussion of the problems 
based on these conditional moments and their computation is given in 
4g.1, 4g.2 of Chapter 4. 

2c LIMIT THEOREMS 

2c.l Kolmogorov Consistency Theorem 

Let (0, 8, P) be the basic probability space, {A',(.)}, i = I ,  2, . . . be an 
infinite sequence of random variables, and F, be d.f. of (A',(*), . . ., A',,(.)) defined 
on R". Then we have the following consistency property F,(r,, . . . , r n )  = 

Now we consider the converse problem: Given a sequence of d.f.'s F,, on 
R", n = I ,  2, . . . which have the consistency property does there exist a 
(0, 8, P) and a sequence of r.v.3 X i ( . )  such that F,, is the d.f. of ( X I ( . ) ,  . . . , 
A',(.)), n = 1, 2, . . . , A theorem of Kolmogorov says that this is the case, 
which we shall prove. 
In fact we shall choose R as R", the Euclidean space of infinite sequences, 

and the ith random variable as a function whose value at a point is the ith 
coordinate, and define W and P suitably. 

Take a finite dimensional subsample space of the random variables 
X i , ,  . . . , Xi" and a Borel set A ,  in  it. By associating with each point ( x i l ,  
. . . , xi,) in Ai ,  arbitrary values of other coordinates, we generate infinite 
sequences which constitute a set A, in  R". Such a set is called a Borel cylinder 
set with base Ai ,  in some E n .  Let P,(Ai,) be the probability of the set A,, 
induced by distribution function of A', I ,  . . . , A',,, on 8, in the appropriate En, 
as considered in 2a.6. Now define 

F,+lUl,. . ., t,, 00). 

Pm(Ai) = Pn(Ain)- (2c. I .  1) 

Thus, the function P, is defined for all Borel cylinder sets obtained by 
considering all finite subsets of the random variables X , ,  X z ,  ... . The 
class of cylinder Borel sets form a field, Fo (say). P, defined by (2c.l.l) 
constitutes a probability measure over So. 

We have only to establish countable additivity of P, to qualify P, as a 
probability measure, that is, if there is a decreasing sequence of sets A, ,  A, ,  
, , . , in Fo tending to the empty set Qr, then P,(Ai)  -+ 0 as i 3 00. 
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We can assume without loss of generality that the base of A ,  is a set 
A , ,  on the A', axis, the base of A ,  is a set A , ,  in (XI, X,) space, . . . , the base 
of A ,  is a set A,, in the (XI, . . . , X,) space, and so on. Given A,, , there exists 
a bounded closed set B,,, in the (A',, . . , , X,) space such that B,, c A,, and 
P,(A,, - B,,) < 6/2". Now let B, be the cylinder set with base B,,. Then 
B, c A ,  and 

Consider A, = n ; A j  and C, = n Y B j .  Now 
n 

P,(A,  - C,) < C P , ( A ,  - B , ) <  6 
1 

Let us assume that P,(A,) > E for every n so that it does not approach 
zero. Choosing 6 = 4 2 ,  we find from (2c.1.2) that 

P,(C,) > P,(A,) - 6 > E/2 > 0, 

that is, the set C, is not empty for any n. Let t, = (t,,, t n 2 ,  . . .) be a point of 
R" belonging to C, . Since C, = n ; B i ,  C, E B, for every n. The first coordi- 
nates ofthe points t,, t2 , . . . belong to B , , ,  and since B , ,  is closed and bounded 
there is a subsequence of the points such that the first coordinate tends to a 
limit, say, b,.  The points t2 , t 3 ,  . . . belong to  B , ,  and therefore the first 
two coordinates of the points t,, t 3 ,  . , . belong to  B,, . Consider only the 
points of the first subsequence which belong to C,, t 3 ,  . . . . Since B2,  is 
bounded and closed there is a subsequence of the first subsequence for which 
the second coordinate tends to a limit b,  and the first coordinate to  b,, and 
so on. Consider the point b = (b,, b , ,  . . .). Now the point (b,, . . . , bk) €Bkk 
and therefore b E Bk,  for every k .  Hence b E Bk = n ck, that is, rick # @. 
Now 

which is a contradiction. Hence P,(Ai)  --t 0. 
The function P ,  defines a unique probability measure Q on the Bore1 

extension 9J(2F0) of F0, which we designate by 9,. The measure space 
(Rm, 9Jm, Q), is thus completely specified by all finite dimensional distri- 
butions. 

In particular we are interested in the distributions of some limit functions 
of the sequences with values at w such as 

lim X,,(w), sup X,(w), fi X,(o), lim X,(o),  etc. 

The reader should satisfy himself that such functions are also random vari- 
ables (i.e., measurable functions) provided they are finite. 
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2c.2 Convergence of a Sequence of Random Variables 

A sequence of random variables {X,,}, n = 1, 2, . . . is said to converge to a 
constant c: 

(a) weakly or in probability (written X , , s  c )  if, for every given E > 0, 

limP(IXn-cl > ~ ) = 0 ,  
n-r m 

(2c.2.1) 

(b) strongly or almost surely (written limn+" A',, = c with probability 1 or 
X,, 3 c) if 

P IimX, = c  = 1, 
( n - m  ) (2c.2.2) 

or equivalently, 

= O  forevery&, (2c.2.3) 

(c) in quadratic mean (written X ,  2% c) if 

lim E(X,, - c)* = 0. 
n + m  

(2c.2.4) 

Definitions (2c.2.1) and (2c.2.4) offer no difficulty since they depend on the 
computation of probabilities and expectations with respect to a finite di- 
mensional random variable and the taking of limits as the number of variables 
increase. The concept involved in the definition (2c.2.2) or (2c.2.3) is some- 
what deeper. The probability refers to the set in R" where the sequences 
(points) satisfy the stated property. 

A sequence of random variables {X, , ( - )} ,  n = 1, 2, . . . is said to converge 
to a random variable X ( * )  in the sense of (a), (b), or (c) according as the 
sequence {A',,(*) - A'(.)}, n =; 1,  2, . . . converges to zero in the sense of (a), (b), 
or (c). 

The following results establish the relationships among various types of 
convergence : 

(i) (c) 3 (a), that is, convergence in q.m. 

This follows at once from Chebyshev's inequality (2b.2.3) 

convergence in probability. 

(ii) (b) (a), that is, convergence a.s. convergence in probability. 
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Since 

from which the desired result follows. No other relations need be true among 
(a), (b), or (c) without further conditions. 

(iii) X, 

Since z y E ( X , ,  - c)' < 03, the infinite sum 

c in such a way that C y E ( X , ,  - c)' c 03, then X, 8.9, c. 

f (Xn - c)2 (2c.2.5) 

must converge except for a set of sequences of measure zero in R". Suppose 
that (2c.2.5) diverges on a set of measure p. Let AN be the set in R" such that 
c r ( X i  - c)? > A. The sequence {AN} is nondecreasing and hence by (2a.3.1) 

1 

lim P(AN) = P(lim A N )  2 p ,  

since a divergent series eventually exceeds any given value A. Consequently, 

which contradicts the assumption, C y E ( X ,  - c)' < 03 if A is chosen sufficiently 
large. 

Hence P ( c p ( X ,  - c)' converges) = 1. But if an infinite series converges 
the nth term -+ 0 as n -+ 00. Hence 

P(IX,, - c I  +o as n - ,  00) 2 P  2 (X,, - c)' converges = 1. (: 1 
Jncidentally we have proven that if Y,, , n = 1, 2, . . . , is a sequence of 

random variables, then 

(2c.2.6) 

provided CTEI Y,, I c 03, which ensures the convergence of x F  Y,, with prob- 
ability 1. 

2c.3 Law of Large Numbers 

In practice, estimates are made of an unknown quantity (parameter) by 
taking the average of a number of repeated measurements of the quantity, 
each ofwhich may be in error. It is, therefore, of interest to stidy the properties 
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of such an estimate. An initial enquiry is made concerning its behavior as the 
number of measurements increases (-+ 00). Does the estimate converge in some 
sense to the true value of the parameter under study? The problem can be 
formulated in the following way. 

Let {X,,}, n = 1, 2, . . . , be a sequence of observations and X,,, the average 
of the first n observations. Under what conditions can we assert that 

X, -+ t (the unknown quantity) (2c.3.1) 

in one or other of the modes of convergence (a), (b), or (c) considered in 
2c.2? We shall generalize the problem further and ask for the conditions 
under which 

X” - e . 4 0  (2c.3.2) 

where {t,,}, n = 1, 2, . . . is a sequence of constants sought to be measured 
by the sequence of observations {X,,} ,  n = 1, 2, . . . . We shall say that the 
law of large numbers holds if the convergence such as (2c.3.1) or (2c.3.2) 
takes place. When the convergence is “in probability” (2c.2.1) we shall say 
that the weak law of large numbers (W.L.L.N) holds, and when it is “with 
probability 1 ” or ass. (2c.2.2), the strong law of large numbers (S.L.L.N.) 
holds. 
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(i) CHEBYSHEV’S THEOREM (W.L.L.N.). Let E ( X i )  = pi, V ( X , )  = cri 2 , 
cov(Xi , A’,) = 0, i # j .  Then 

(2c. 3.3) 

By Chebyshev’s inequality, we see that 

Hence the result (2c.3.3). If p,  = p and cri2 = 02, the condition of the theorem 
is automatically satisfied and we have the result 

I,, p. 

(ii) KHINCHINE’S THEOREM (W.L.L.N.). Let { X , } ,  i = 1, 2, . . . be inde- 

(2c. 3.4) 

It is interesting to note that the existence of the second moment as in 
Chebyshev’s theorem is not assumed, but the observations are considered 
to be i.i.d. The proof of this theorem based on the convergence of c.f.’s 
is given in Example 4.3 at the end of the chapter. A stronger version of the 

pendent and identically distributed (i.i.d.) and E(Xi)  exists. Then 

E(X,)  = p < 03 * X n L p .  
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theorem based on certain deeper propositions of measure theory is given in 
(iv). We shall, however, give a simple proof (using only elementary results) 
by Markoff. 

Define a pair of new random variables for i = 1, . . . , n and a fixed 6 

Yi = X .  1 9  Zi = 0, if I Xi l  < 6n, 
Yi = 0, Zi = X i  if IXiI 6n, 

so that X i  = Yi  + Zi. Let E( Y i )  = for i = 1, . . . , n. Since E ( X i )  = p 

IP" - PI < E (2c.3.5) 

for any given E ,  if n is chosen sufficiently large. Now 
dn dn 

V ( Y , )  = [ x2 d F ( x )  - p: < 6n 1 1x1 d F ( x )  < b 6n,  
. J-dn 

where b = El XI exists by hypothesis. 
see that 

J - d n  

Using Chebyshev's inequality we 

or by using (2c.3.5), we have 

Since 
1 6 

( X I  d F ( x )  < - 
1x1 Bdn 6n lx ladn n 

P ( Z ,  # 0) = 1 d F ( x )  < - 1 
by choosing n sufficiently large, we have 

P($ zi # 0) < P ( Z ,  # 0) < 6. 
1 

Consider 

(2c. 3.6) 

Since 6 is arbitrary 
the required result. 

(2c. 3.7) 

the last quantity can be made small, thus establishing 

b6 b6 < 2 + P(C 2, # 0) < + 6. 
& 
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Note that we have used the inequality 

P ( C Z i  # 0)  < C P ( Z ,  # 0) 

at (2c.3.6) and a similar one at (2c.3.7) which the reader can easily verify. 

Let { X i } ,  i = 1, 2, . . . be a se- 
quence of independent random variables such that E ( X i )  = p i  and V ( X i )  = ai2. 
Then 

(iii) KOLMOGOROV THEOREM 1 (S.L.L.N.). 

(2c.3.8) 

that is, the sequence XI, X, , . . . obeys the strong law of large numbers. 

To prove this let us consider the random variables Yi = Xi - p i  and 
apply the Hajek-Renyi inequality proved in Example 3.3 at the end of the 
chapter. The inequality states that 

Choosing ci = I/i,  we have 

Letting n + 00, we see that 

Since uiz/i2 converges, it follows from (2c.3.9) that 

max 1 Yil > E = 0. I 
But this means that 

P l imYm=O = I ,  
m - r m  1 

which proves the required result. 
If in the statement of the theorem we replace independence of random 

variables by orthogonality of the centered variables, that is, cov(Xi, X i )  = 0 
for all i Z j ,  then (we need a stronger condition) 

(2c.3.10) 
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For a proof of this and related results concerning orthogonal variables, the 
reader is referred to Doob (1953). 

(iv) KOLMOGOROV THEOREM 2 (S.L.L.N.). Let X , ,  X 2 ,  . . . be a sequence 
of i.i.d. variables. Then a necessary and suflcient condition that 1, z+ p 
is that E ( X i )  exists and is equal to p. 

Necessity: Let En be the event that I Xnl 2 n. Then 

X ,  - n - l -  
n n 
_ -  -x,-- xn-l =+ 0, (2c.3.11) 

since X n z +  p. The result (2c.3.11) implies that the probability of infinitely 
many events En occurring is zero. Furthermore, the independence of Xn 
implies the independence of En,  and by the Borel-Cantelli lemma (proved in 
Appendix 2B), we see that 

W W c P(IXnI 2 n )  = P(En)  < co. (2c.3.12) 
n = l  n =  1 

Now, let pi = P( I XI 2j). Then 

E(1-q) < 1(1 -P1) +2@, -P2)  + * * *  
W 

= 1 +p1 + p 2  + * I *  = 1 + CP(E”) .  (2c.3.13) 

From (2c.3.12), the last expression in (2c.3.13) is less than w, Hence E( I X I )  
exists, and from the sufficiency condition it follows that E ( X )  = p. 

n= 1 

Sufficiency : Consider the sequence of truncated variables 

x,* =(o” for I X n l < n  

for 1X.l 2 n. 
We then obtain 

+ n  n- 1 

V ( X x )  < E(X,*)’ = x2 d F ( x )  < z ( k  + 1)2P(k < 1x1 < k + 1) 
- n  k = O  

and 

m m 1  

< C P ( k - l <  1x1 < k ) k 2  c f 
k = l  n = k  n 

w 1  1 1 2  
< 2  CkP(k-1  < 1x1 < k ) ,  since c T < p + T E < T E  

m 

k =  1 n = k  n 

< 2[1 + E( I X I)] < co, since E ( X )  exists. 
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Hence by Kolmogorov theorem proved in (iii), the sequence X,* obeys 
the law of large numbers, that is, 

PROBABILITY THEORY, TOOLS AND TECHNIQUES 

1 "  

n l  
x: - - c E ( X : )  - 0. 

Next, E(X,*) + E(X,,) = p as n + co and hence 

(2c. 3.14) 

(2c. 3.1 5 )  

Combining (2c.3.14) and (2c.3.15), we have 

x: + 11. 

We shall now show that X,, and X,* are equivalent sequences, that is. 

P{X,, # X,* , for some values of n z N }  + 0 as N + 00, 

which implies that X,, obeys the S.L.L.N. if X,* does and that the limits are 
the same. Consider 

P { X ,  # X,* for some n z N) 

m 

n=N 
d c nP{n < 1x1 c ( n  + l)}, since all X ,  have the same d.f. 

1x1 d F ( x ) + O  as N + c o .  < J;,,,, 
2c.4 Convergence of a Sequence of Distribution Functions 

Let us denote by {F,,} or simply by {F,,}, n = 1, 2, . . . the sequence of dis- 
tribution functions of the random variables {A',,}, n = 1, 2, . . . . 
Definition. The sequence of random variables {X,,} is said to converge 
in distribution (or in law) to a random variable X with d.f. F, (simply denoted 
by F) if F,, + F as n + co at all continuity points of F. Such a convergence is 
expressed as X,, A+ X. 

The reader may satisfy that it is enough to specify that F,, + F for a set 
S of points which is everywhere dense on the real line (- co, 00). 

The approximating distribution F is called the limiting or asymptotic 
distribution of X,, . In statistical applications, limiting distributions play 
an important role. The random variable X,, stands for a statistic computed 
from a sample of size n, whose actual distribution is difficult to find. In  
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such a case it may be approximated by the limiting distribution, at least 
for large values of n. The following results are important in studying limit 
distributions. 

Every sequence of distribution functions is weakly 
compact, that is, there is a subsequence which tends to a function (not necessarily 
a d.C) at all continuity points of the latter. 

Let D = {rk} be the set of all rationals. Since I?,,(rl) is bounded, there exists, 
by Bolzano- Weierstrass compactness theorem, a convergent subsequence. 
Consider the sequence {Fn1(x)} which converges for the particular value x = r l .  
From the sequence {Fnl(x)}  we can extract another subsequence {Fn2(x)}, 
in a similar way, which converges at x L- r 2 ,  and of course such a sequence 
will converge at x = r ,  also, and so on. Let us consider a sequence formed by 
the first member of {I?,,,}, the second member of {F,,J, . . .. Such a sequence of 
functions {F,} necessarily converges for all x E D, and the limiting function 
F D  defined for all x E D is bounded and nondecreasing. Let, for any x 

(i) HELLY LEMMA. 

F(x) = upper bound FD(r,). 
r f < x  

(2c.4.1) 

By definition F is continuous from the left, bounded, and nondecreasing. 
We shall show that the subsequence determined actually converges to 

F(x) as defined in (2c.4.1) at all continuity points of F. Let x be such a point. 
Then we can find a sequence of rational values (x;  , x;l) such that x;  < x < x;l 
and F(x;‘) - F(xi) + 0 as i 4 w. For any pair ( x i ,  x; )  we have the obvious 
relationship 

FAX;) < FX-9 < FAX;‘) (2c.4.2) 

for each s, where {F,(x)} is the sequence tending towards F,(x). Taking limits 
of functions in (2c.4.2), we have 

F D ( X ; )  < F,(x) < fi I?s(x) < FD(x;) 

for each i. Since the difference FD(x;’) - F,(x;) can be made arbitrarily 
small, lim F,(x) exists and is equal to F(x)  defined in (2c.4.1). Observe that 
F(x) is also in the interval [FD(x;), FD(,xy)] .  

(ii) HELLY-BRAY THEOREM. F,, + F a  s g dF, + g dF for every bounded 
continuous function g. 

Choose two continuity points a,  b (a < b)  of F and write 
03 

J: m g d F n - J  - m  g d ~  

b m 

a b 
g(dF, ,  - LIF) + 1 g(dF,,  - d F )  + g(dF, ,  - d F ) .  (2c.4.3) 
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Let 191 < c. Then the modulus of the first integral in (2c.4.3) gives 

g d F ,  - J”‘ g dF < c dFn + c J”: d F  = c[F,,(a) + F(a) ] .  
- m  I J” lm m 

If a is sufficiently small, F(a)  is small and so also is F,,(a) for all n > n o .  
Hence c[F,,(a) + F(a)] < &/5 for a suitable choice of u and n o .  Similarly 
the modulus third integral in (2c.4.3) is <&/5  for a suitable choice of b 
and n o .  

In the finite interval (a, b), g is uniformly continuous. Let us divide (a, b) 
into m intervals 

x , = a < x ,  < ‘ * * < x , - ,  < b = x ,  

where x , ,  . . . , x l n - ,  are continuity points of F and such that 

[ d x )  - g(xi)I < ~ / 5  

for ( x i  < x < x i  + ,) uniformly for all i .  Define the function 

gm(x) = g(xi), xi G x < x i + l *  

Then 

as n + 03, so that for any given m 

for sufficiently large n. But 

for sufficiently large n. Hence the modulus of the difference (2c.4.3) is < E  

which proves the desired result. 

(iii) EXTENDED HELLY-BRAY THEOREM. F,, 3 G, not necessurily a d.f: us 
g dF,, assumed ill (ii), and g a continuous function such that g( +_ 03) = 0 

4 1 d g G .  
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We consider the equation (2c.4.3) and note that the second term on the 
right-hand side --+ 0 by the same argument used in (ii) whether G is d.f. or 
not. Since g is bounded g dF,, and J g dG exist. By choosing a sufficiently 
small the first term is bounded by 2 sup g(x) for x in ( - 00, a), which is small 
since g( - 00) = 0 and g is continuous irrespective of the value of n. Similarly, 
by choosing b sufficiently large, the third term can be made small. Hence the 
difference (2c.4.3) can be made as small as we please by choosing sufficiently 
large n. 

(iv) CONTINUITY THEOREM. Letf,,(t) be c.5  of X,, . If X , , A  X thenf,(t) -+ 

f ( t ) ,  wheref(t)  is the c.f  of X .  If h(t) --+ f ( t )  and the limit function is con- 
tinuous at t = 0, then X,, & X andf( t )  is the c.J of X .  

The first assertion is an immediate consequence of Helly-Bray theorem. 
We prove the second assertion by using the continuity of f ( t )  at t = 0. 

Let F,, be the d.f. of X,, and {F,,}, a subsequence tending to G, a bounded 
nondecreasing left-continuous function as in (i), Helly lemma. Consider 

= IdF, ~ouei'x d t  = (2c.4.4) 

The function (eiux - l)/ix -+ 0 as x -+ 'F: 00. Hence using (iii), Extended Helly- 
Bray Theorem, we obtain by taking limits on both sides of (2c.4.4) 

( 2 ~ 4 . 5 )  

Dividing both sides by u and taking limits as t, -+ 0, we have 
p - 1 

f(0) = l l i m  - dG = SdG = G(m) - G ( -  co). (2c.4.6) 
u+o 1x 

But limfm(0) = 1 = f ( 0 )  and therefore G is a distribution function. Since 
F, + G, we have by (ii), Helly-Bray Theorem, 

f(t)  = limf,(t) = lim seirx d F ,  = el'* dG. 

Thusf(t) is a c.f. and G is, of course, unique for all convergent subsequences of 
F,, . Then F,, --+ G. 

m-rm ,+a, s 
(v) By combining (ii) and (iii), the following results are equivalent, 

(a) Fn -+ F, (b) h(t) -+ f ( t ) ,  (c) 19 df'n --t s g  dF, (2c.4.7) 

where g andf( t )  are as defined in (ii) and (iii) respectiuely. 
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From (v) it easily follows that if A’,,& X, then ax, + b - b  aX + b when 
a and b are constants. Further, X, L+ c (constant) c> F, -, Fc , where F, is 
the d.f. of the random variable X which takes the value c with probability 1, 
that is, the step function, Fc(x) = 0, if x < c, F,(x) = 1, if x > c. 

(vi) POLYA’S THEOREM. If F, + F and F is continuous then the convergence 
is uniform, that is, 

(2c.4.8) lim sup1 F,(x) - F(x)I = 0.  
n - r m  x 

The proof is easy. 

(vii) Let g be a continuous function and F, 

(a) Jim inf! (91 dFn 2 1191 dF, 

(b) j 19) dF, is uniformly integrable 

Since 

F. Then 

n- m 

[ g  dF, -+ jg dF. 

lim inf j I g 1 d F ,  2 lim J’I Ig 1 d F ,  
n-m n - m  c 

C  

= j - , l g l  d F  for any c ,  

which proves (a). Because of uniform integrability there exists an E inde- 
pendent of n such that 

Taking limits, since c,  d, c‘, d‘  are finite, we see that 

But cf and d’ are arbitrary. Hence 191 and therefore g is integrable wijh 
respect to dF. Now 

j g  d F ,  - 1 9  d F  = J c  g ( d F ,  - d F )  + 1 g d F ,  - /, g d F .  (2c.4.9) 
- C  I 4 ’ C  x l > c  

All the terms on the right-hand side of (2c.4.9) can be made small by 
choosing c and n sufficiently large. Hence (b) is proved. 
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(viii-A) Let yrn be the rtli absolute moment of X, . If for some r > 0, yrn is 

(a) there is a subsequence F, converging to a distribution function G, 
(b) a,, 4 a, for s < r where a,, and a, are the sth moments of F, and G. 

By the Helly lemma, Fnl-+ G, a nondecreasing bounded function. If c 

bounded by a constant for all large n, then 

(Both s and r may not be integers.) 

is a continuity point of G,  then 

j, d F ,  < c-' Jl IxI 'dF, < c-'k for large m.  (2c.4.10) 
X I  * c  X I  * c  

The first term in (2c.4.10) is 

1 - [F,(c) - F,(-c)] < c-'k. 

Taking limits as m + 00, we have 

1 - [G(c) - G( - c)] < c-'k, 

and by letting c -+ co, we see that 

1 - [G(co) - G(-  a)] < 0 

or G(m) - G( - 00) 2 1, which shows that G is a d.f., which proves (a). 
Since 

jl Ixl"dF,  < cs-' 4 l x l r  d F ,  < cS-'k,  
X I  * c  X I  * c  

1x1 is uniformly integrable if s < r. So, (b) follows by using (vii). 

finite for all s and all large n. Then 
(viii-B) Let a,,, be the sth moment of F, and a,, + a,, where a, and a,, are 

(a) F, 4 F =e- a, is the sth moment of F, 
(b) a, define a unique d.5 F (2c.4.1 I ) 

The result (a) follows directly from (vii). Again by (vii) there is a subsequence 
tending to a d.f. G, and a, are the moments of G. If a, determine a unique d.f., 
every subsequence has the same limit and hence F, 4 F. 

F,, 4 F. 

A sufficient condition for uniqueness of F given the moments is that 

so that the result (b) could be stated 
m 1 ( M ~ , ) - ~ ' ~ ~  = 00 F,, -+ F. 
1 
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(ix) Let { X,, , Y,,}, n = 1, 2,  . . . be a sequence of pairs of variables. Then 

I & -  Y,,le*O, Y , A  Y=+X,,-% Y, 

that is, the limiting distribution of Xn exists and is the same as that of Y .  

x be a continuity point of F, .  Then 

(2c.4.12) 

Denote by Fxn the d.f. of X,, and by Fy that of Y. Let Y,, - X,, = 2, and 

FXn(x) = P(X,  < X) = P( Y,, < x + 2,) 
= P(Yn < x + z,,, 2, < E )  + P( Y,, < x + z,, z, 2 E )  

< P( Y, < x + E )  + P(Z, 2 E) .  

Taking limits, we have 

Similarly, 

lim sup Fxn < Fy(x  + E) .  

lirn inf Fxn 2 F,(x - E ) .  

n-m 

n-m 

Since E is arbitrary and x is a continuity point of F , ,  by letting E 0, 

lim F,,(x) = Fy(x), 
n- m 

which proves (2c.4.12). As a particular case we have 

X,-L x=+ X,"+ x. 
(x) Let {X,, , Y,,}, n = 1, 2, . . . be a sequence of pairs of random variables. 

(a) X , , L X ,  Y , ,P+O*X, ,  Y , , A O .  

(b) X , , + X ,  Y , , L c * X , +  Y , A X  + c  

Then : 

* X , Y , i , C X  
* X , , / Y , , A X / c ,  if c # 0. 

(c) X n L +  X ,  Y , Z +  c * that the limit of the joint distribution of (X,, , Y,,) 
exists and is equal to that of ( X ,  c). 

(d) X,, - Y , , L O ,  X , , L +  X=> Y , , A  X 

To prove (a), consider 

P(IXn YnI > E )  = P I X n  Y n I  > 6, I YnI IXn Y,J  > E ,  I YnI > 

lim sup P( I X,, Y,, 1 > E )  Q P( I XI > k) for any fixed k. (2c.4.13) 
n-m 
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But k is arbitrary and hence the R.H.S. of (2c.4.13) can be made small by 
choosing k large. Hence P( I X,, Y,, I > E )  -+ 0. 

To prove (b), X , L  X* X,, + c L +  X + c. Now 

(X,, + Y,,) -(Xn + c) = Yn - c p + o .  
Hence by (ix), Xn + Y , , 4  X + c. Furthermore X n L +  X* c X , , A  c X .  
Now 

Hence by (ix), X ,  Y , , z +  cX. Similarly X,,/ Y , , A  X/c.  

a number y > c. Now 

X,, Y,, - cX,  = Xn( Y,, - c )  A 0, by (a), (x). 

To prove (c) consider a continuity point x of the distribution of X and 

P(X,  < x)  2 P(Xn < x ,  Y,, < y )  = P(X,  < x)  - P(X,  < x, Yn > y) 

2 P(Xn < x) - P( Y,, > y) .  

if y > c. 

Taking limits, we see that 

lim P(X,, < x, Yn < y) = P ( X  < x), 
n-tm 

Similarly, 
lim P(X,, < x ,  Y,, < y) = 0, if y < c. 
n-+m 

Note that when y = c, the limit is indeterminable and (x ,  c) for any x is a 
discontinuity point of the joint distribution of ( X ,  c). 

(d) follows from (b). 

(xi) Let { X ( i ) ,  . . ,  , X$)} ,  n = 1, 2, . .. be a sequence of vector random 
variables and let, for any real A,, . . . , & ,  

A I n  x(1) + . . . + A k x i k ) A  AlX") + ' ' ' + A k  X'k', 

where 
joint distribution function of X'f,), . . . , 

. . ., X ( k )  have a joint distribution, F(x,, . . . , xk). Then the limiting 
exists and is equal to F(x,, . . . , xk). 

The proof is trivial because 

A X(l)+ ... +A,xAk )-L,A1x(l)+ ... + J k x ( k )  
1 n  

implies that the corresponding c.f.'s converge. If &(t1, . . . , tk) is the c.f. 
of (Xi ' ) ,  . . . , Xi')', and f ( t , ,  . . . , tk) that o f  ( X ( ' ) ,  . . . , X(k)) ,  then 

f . ( t lA, ,  . .* ,  tkAk)-+f(flAl,  . . * )  tkAk)* 
Since 4, . . . , A k  are arbitrary, 

f . ( t l ,  * * 9 tk) * f(t1, - * 3 t k ) ,  

which establishes the desired result. 



124 

(xii) 

PROBABILITY THEORY, TOOLS AND TECHNIQUES 

Zfg is a continuous function and X , L +  X ,  then g ( X , ) A g ( X ) .  

, q e ~ w ( ~ " ) ]  = 1 e i l g ( X )  dF,(x) 

=Ices tg(x) dF,(x) + i I sin tg(x) dF,(x) 

+Jcos tg(x) dF(x) + i Is in  tg(x) dF(x), 

= E[ei'u(X) 1 
using (2c.4.7), since cos tg(x) and sin tg(x) are bounded continuous functions 
of x. 

(xiii) l f g  is a continuous function and X , L  X ,  then 

dxn) p+ dx). (2c.4.14) 

Let I be a finite interval such that P(X E I )  = 1 - 4/2 and n 2 no such that 
P ( ( X , - X I  < a ) >  1 -4/2. Now 1g(X,)-g(X)I < E ,  if I X , - X I  < 6  for 
any X E 1. Hence 

P(Ig(Xn) - g(X)l < 8 )  P(IX,  - XI < 6, X E I )  

2 P(IX,  - XI < 6) - P(X # I )  
2 1 - r ]  for n a n , .  

An important application of (2c.4.14) is that when X , A  c (a constant), 

(xiv) Let g be a continuous function. Then 

g(X,)'+g(c), provided g is a continuous function. 

x, - Y , L O ,  Y , L  Y *g(X,)  - g ( Y , ) P . , O .  

Note. Mann and Wald (1943) proved the results (xii)-(xiv) under more 
general conditions assuming g to be Bore1 measurable but placing a restriction 
on the set of discontinuities of g. 

It may also be mentioned that the results (i) to (xiv) are true even when 
X, , Y, are vector variables. The proofs are exactly the same. 

(xv) A CONVERGENCE THEOREM INVOLVING DENSITIES (Scheffe, 1947) : Let 
the random variable X ,  admit the probability density p,(x) and p,(x) + p(x)  
asn + co. Then 

(a) p(x)  is a density function * 

(b) Ip,(x) 1 < q(x)  and jq(x)  dx exists =+p(x) is a density function and hence 

Ip,,(x) - p(x)  I d x  + 0, 
R 

b ~ ( a ) ,  jIpn(x) - P ( x ) I  dx+O* 
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In either (a) or (b), the result implies 

jS[p,(x) - p(x) ]  dx -+ 0 uniformly for all Bore1 sets S 

so that X , A  X, where Xis  the random variable defined by the probability 
density p(x).  

Let 6,(x) = p,(x) - p(x)  and define 

6: = + ( 6 n + ) 6 n l ) > O ,  6; = - f ( S n -  IS, l ) ,<O,  

the positive and negative parts of 6,. Obviously 6: + O  and 6; 4 0  as 
6, + 0 for almost all x in R .  

Since p,,(x) and p(x) are densities and 6, = 6: + 6; 

0 = 1 [ p , ( x )  - p ( x ) ]  d x  = j 6, d x  = 6, d x .  (2~~4.15)  
R R 

Now p,(x) - p ( x )  = 6,(x) => 6,(x) 2 - p ( x )  whether 6(x) is positive or negative. 
Hence 6;(x)  satisfies the condition 0 2 6;(x) 2 -p(x) ,  that is, 16;(x)1 
< p(x) and p ( x )  dx exists. Applying Lebesgue dominated convergence 
theorem (Appendix 2B), we have 

s,6, dx + J]plim 6; dx = 0, 

since lim 6; is zero and from (2c.4.15), 

and hence 

jR16,1 d x  = 1:: d x  - 6, d x - 0 ,  

which proves (a). The result (a) also follows by a direct application of Lemma 
2B.3 of Appendix 2B. The result (b) follows from the dominated convergence 
theorem since 

Jh 

1 = sRp, dx -+ S p(x) dx. 
R 

(xvi) Let X, be a discrete variable and P(X ,  = r )  = p,,(r), r = 0,  1, 2, . . . . 
Consider Y, = (A’, - np)/& where p is a constant. Zfp,(&y + np) - p ( y )  
andp(y) is a density function of a random variable Y, then Y , L +  Y.  

The proof depends on Scheffe’s theorem given in (xv), and reader may work 
out the actual details. For applications of this result, see Okomoto (1960). 
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(xvii) CONVERGENCE OF DISCRETE DISTRIBUTIONS. Let P,,(t), 0 < t < 1 be a 
sequence of probability generating functions, so that for any index n, there 
exists a discrete probability distribution defined by Pn(t)  = c pxn t X .  Further 
let P ( t )  = C px t X .  Then 

pxn -+px ( for  each x ) o P , , ( t )  -+ P ( t )  ( for  each t ) .  

The terms p x  define a distribution if and only if c p x  = 1, in which case 
m 

x = o  
pxn + p x *  1 lpxn -pxI -+O* 

The proof is similar to that of (xv). 

2c.5 Central Limit Theorems 

For a sequence {X,,}, n = 1, 2, .. . of independent and identically distributed 
random variables, Section 2c.3 showed that X,, -+ p in the weak or strong 
sense provided p = E ( X )  exists. But this gives us no idea as to how the dis- 
tribution of X, can be approximated in large samples. To study this we con- 
sider the sequence of random variables 

(2c.5.1) 

where u is some constant. Under some conditions the limiting d.f. is 

@(x) = J;m 5 * e - x = / 2  dx ,  (2c. 5.2) 

which is known as the normal distribution function with mean zero and vari- 
ance unity introduced in (2a.5.8). The p.d. for the more general form of the 
normal variable with mean p and variance uz is 

' e - ( x - l c ) z / 2 a z  

F U  

The c.f. of (2c.5.2) as derived in (2b.4.11) is 

1 "  J2n I_ m e i ' ~ e - ~ 2 / 2  d x  = e-"/'. 

(2c.5.3) 

(2c. 5.4) 

The technique employed to prove the convergence of (2c.5.1) to a normal r.v. 
is to obtain the c.f. f , ( t )  of Y,, and to show that 

Iim L(t) = e-"", 
n-tm 

from which, by an application of (2c.4.7), the desired result follows. 
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We also consider more general problems such as the convergence of r.v.'s 

where {p,, , a,,}, n = 1, 2, . . . is a sequence of pairs of numbers. 

(i) LINDBERG-LEVY THEOREM (C.L.T.). Let XI, X 2 ,  . . be a sequence of 
i.i.d. random variables such that E(X, )  = p and V(X,) = a2 # 0 exist. Then 
the d.f of Y, + @(x), where Y, is as defined in (2c.5.1) and 0, in (2c.5.2). 

Let f ( t )  be the c.f. of A', - p. Since the first two moments exist, then 

f ( t )  = 1 - * a 2 t 2  + o(t2). (2c. 5.5)  

The c.f. of Y, = C ; ( X ,  - p)/&a is 

t 2  
f , ,( t)  = [ f (g*)]" = [l - + off)] ', using (2c.5.5). 

log[l-  & + 0(:)]" = n log[l- t 2  + .(:)I + 2, - t2  

that is, 
~ ( t ) - + e - r * / 2  as n + co. 

Since the limiting distribution is continuous, the convergence of the d.f. 
of Y, is actually uniform, and we have the more general result 

(2c. 5.6) 

where x, may depend on n in any manner. 
The result (2c.5.6) implies that the d.f. of 8, can be approximated by 

that of a normal variable with mean p and variance a2/n for sufficiently 
large n, which is called the central limit theorem (C.L.T.). 

(ii) LIAPUNOV THEOREM (C.L.T.). Let {A',}, n = 1, 2, . . . be a sequence 
of independent random variables. Let E(X,,) = p n ,  E(X, - p,,)' = an2 # 0, 
and El X, - p, I = p,, exist for each n. Furthermore let 

Then iflim(B,,/C,) = 0 as n + co, the d.f .  of 

tends to @(x).  
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The proof of this theorem is similar to that of Lindberg-Levy (C.L.T.) 
theorem and consists in expanding c.f. of Y, and taking the limit as n + co. 
For details the reader is referred to (Gnedenko, 1962). 

(iii) LINDBERG-FELLER THEOREM. Let { X,} be a sequence of independent 
random variables and C,, be the d.f of X,, . Further, let E(X,,) = p,, and V(X,,) = 
un2 # 0 exist. Define 

Then the relations 
61 

n-+m I <i<n C, lim max--0, FY" -b 0 

hold if and only i f ,  for every E > 0, 

( X  - dGi(x) = 0. 
1 

lim - J; 
n-m C,2 i = l  x-pil>eCn 

For a proof of this theorem and other forms of central limit theorems 
see Gnedenko (1962) and Gnedenko and Kolmogorov (1954). 

(iv) MULTIVARIATE CENTRAL LIMIT THEOREM (Varadarajan, 1958, Wald 
and Wolfowitz, 1944). Let F, denote the joint d.f. of the k-dimensional random 
variable (X,"), . . . , Xjk">, n = 1 ,  2, . . . and F,,, the d.f. of the linear function 

1 n  x"' + .. . + & XAk'. A necessary and suflcient condition that F,, tends to a 
k-variate d.f F is that F,, converges to a limit for each vector A. 

For a proof see Varadarajan (1958). For applications considered in this 
book the weaker version of the theorem proved in [(x), 2c.41 is sufficient. 

Define F, and F,, as in (iv). Let F be the joint d.5 of a k-dimensional random 
variable X('), . . . , If for  each vector 1, F,, 3 FA, the d.5 of A l  X " )  + 
. - + A k  then F, 3 F. 

As an application, consider i.i.d. k-dimensional variables 

u A = ( u 1 n , - . . ,  uk,), n = l , 2 , . . .  

admitting first- and second-order moments, E( U,) = p and D( U,) = C. Define 
the sequence of r.v.'s 

1 "  

n~ 
, U l n = - C  U I j .  

Then the a.d. of &(U, - p) is Nk(O, E), that is, k-variate normal with zero 
mean and dispersion matrix E with the density function 

Nk(uI0. E) = (2n)-k'21 XI -'I2 exp -j[(u - p)'E-'(u - p)]. (2c.5.7) 
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To demonstrate this result, it is enough to show that with respect to  any 
fixed vector 5 the a.d. of &5’(U,, - p) is N,(O, 5’Z5), since N1(O, 5‘CX) is 
the distribution of 5’U if U is distributed as Nk(0, Z). [The reader may 
establish the latter result by computing the c.f. of 5‘U when U has the density 
(2c.5.7).] Now consider the sequence of one-dimensional r.v.’s 

u, = k’u, = A1 u,, + * ’ ’ + 1, ukn 

with E(U,,) = S’p, V(U,,) = l’C5. Applying the central limit theorem 
(Lindberg-LCvy) to the sequence U,,, the a.d. of &(on - 5’p) is N,(O, 5’72). 
The required result follows from the observation that B,, = n’u,,. 

For other limit theorems see Examples 4.1 to 4.17 at the end of the chapter. 

2c.6 Sums of Independent Random Variables 

Let XI, X,, . . . be a sequence of independent random variables and S,, 
denote the partial sum XI + * * * + X,, . The law of large numbers (see 2c.3) 
and the central limit theorem (see 2c.5) were concerned with the behavior of 
(S,, - a,,)/b,,, (a,,, b,,) being a suitably defined sequence of pairs of numbers. 
We pursue this investigation further and quote a few general theorems which 
are useful in statistical applications. Proofs are omitted, and the interested 
reader may consult Loeve (1955). 

(i) KOLMOGOROV THEOREM. Let E(X,,) = 0 and E(X,,’) = a,,’ < 00 and 
b,, 00. I f ~ ~ ( a n 2 / b n 2 )  < co, then 

(2c.6.1) 

For instance, if XI, X,, . . . are i.i.d. such that &XI) = 0, V ( X , )  = a’ < 00, 

then S,,/,/n log n z+ 0.  

(ii) LAW OF ITERATED LOGARITHM. Ler XI, X, , . . . be i.i.d. random variables 
such that E ( X , )  = 0, V ( X , )  = a2 < co. Further, let h(n) = a(2n log log n)’”. 
Then 

(2c.6.2) 
(2c.6.3) 

lim sup[S,,/h(n)] = I a.s. 

lim inf[S,,/h(n)] = - 1 a s .  

The statements (2c.6.2) and (2c.6.3) imply that for every E > 0, 

P( I S,, I 2 (1 - ~ ) h ( n )  infinitely often) = I, 
P( I S,, I 2 (1 + E)h(n) infinitely often) = 0. 

(2c.6.4) 
(2c.6.5) 
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From the law of iterated logarithm it readily follows that for any k, however 

P(S, 2 k J i  infinitely often) = 1 (2c. 6.6) 

large, 

since (1  - c)h(n) > k& for sufficiently large n. 

(iii) Let XI, X, , . . . be independent random variables such that E(Xi )  = 0 
and V ( X i )  = oi2 < 00. Further, let s,,’ = aI2 + ... + a,,’. r f  s,,’ -+ co, 
I A’,, I Is,, = o (s,,’/Jlog log s,,) and I, = (2 log log s , , ~ ) ” ~ ,  then 

Sn 

t n  Sn 
lim sup - = I a.s. 

sn 
1, sn 

lim inf - = - 1 a.s. 

(2c.6.7) 

(2c.6.8) 

For a proof, see Loeve (1955). 

2d FAMILY OF PROBABILITY MEASURES AND PROBLEMS 
OF STATISTICS 

2d.l Family of Probability Measures 

In practice the exact probability measure P applicable to the outcomes of an 
experiment is unknown, but it may be specified as a member of a class (family) 
of measures, Po, 8 E 0, indexed by a parameter 8 belonging to a set 0. 
The problems of statistics are concerned with making useful statements about 
the unknown parameter 0 .on the basis of an observed event (corresponding 
to a point in the sample space of outcomes). 

A sample space with a family of probability measures is denoted by (Q, W, 
pel 8 E 0). 

2d.2 The Concept of a Sufficient Statistic 

A statistic T (a random variable) is said to be sufficient for the family of 
measures Po, if and only if any one of the following equivalent conditions 
holds : 

(a) P(A I t )  is independent of 8 for every A E A!?. 
(b) E(YIt)  is independent of 0 for every random variable Y such that 

(c) The conditional distribution of every random variable Y given T = t ,  
E( Y) exists. 

which always exists, is independent of 8. 
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Observe that (b) implies (a) by choosing Y as the characteristic function of 
A.  I t  is obvious that (a) implies (c) and also that (c) implies (b), thus establish- 
ing the equivalence of all the three conditions. 

For the definition of P(AIt)  and E( Y ( t )  see 2b.3 and for conditional d.f., 
see 2a.8. 

2d.3 Characterization of Sufficiency 

The criteria given in Section 2d.2 for a sufficient statistic are difficult to apply 
in particular situations. The form of the probability density function, if it 
exists, however, enables us to check whether a given statistic is sufficient or 
not. 

(i) Let the sample space be discrete and let Po(w) be the probability of the 
point set w. Then a necessary and sujicient condition for T to be suficient for 0 
is that there exists a factorization 

Pdw) = g&"w)lh(o) (2d.3.1) 

where the$rst factor may depend on 8 but depends on w onIy through T(w) 
whereas the second factor is independent of 8. 

Suppose (2d.3.1) is true. Then 

Pe(T = t )  = C PAW) = Se(0 C h(w) 
T(o,)=t T ( o )  = t 

= ge(l)N(th 

The conditional probability of w given T = t is 

which is independent of 8. Hence T is sufficient. 
The necessity is obvious for if we let 

be independent of 0, then 

Pe(w) = Pe(t)Mw, 11. 
(ii) GENERAL FACTORIZATION THEOREM. Let Pe be a family of probability 

measures and let Pe admit a probability density Pe = dPo/dp with respect 
to a @-finite measure p. Then T is suficient for Po (or simply for O), if and 
only if there exist non-negative measurable functions ge[T(w)] and h (o )  such that 

Pe(w) = ge[T(w)lh(w). (2d.3.2) 
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The most general proof of the factorization (2d.3.2) involves some deeper 
theorems in measure theory (see Halmos and Savage, 1949. Bahadur, 1954). 
The proof is easy when the sample space is R" and T admits continuous 
first-order partial derivatives using the concept of conditional density over 
surfaces of constant T as developed in (2b.3.12). 

Sufficiency and Huzurbazar's Conjecture. Let XI, . , , , X,  be i.i.d. r.v. 
with distribution function F,, 8 E 0. According to definition, a measurable 
function T = f ( X , ,  . . . , X,,) is a sufficient statistic if the conditional distribu- 
tion of any other statistic Y given T is independent of 8. Huzurbazar conjec- 
tured that to establish sufficiency of T i t  is enough to examine only marginal 
sufficiency, i.e., the conditional distribution of X i  given T is in independent 
of 8 for any i. A partial proof of this proposition is given by J. K. Ghosh, and 
a more complete proof of a somewhat more general statement is given by 
V. N. Sudakov (1971). 

APPENDIX 2A STIELTJES AND LEBESGUE INTEGRALS 

Let F(x) be a function of bounded variation and continuous from the left 
such as a distribution function. Given a finite interval (a, b) and a function 
f ( x )  we can form the sum 

n 
(2A.1) 

for a division of (a, b) by points xi such that a < x, < * * * < x, < b and 
arbitrary xi E (xi-,, xi). It may be noted that in the Riemann integration 
a similar sum is considered with the length of the interval (xi - xi- ,) instead 
of F(xi )  - F(xi-,). If the sum (2A.1) tends to a limit 

J = lim J,, 

where n + co such that the length of each interval + 0, then J is called the 
Stieltjes integral of&) with respect to F(x) and is denoted by 

n-tm 

b 

J = 1 f(x) dF(x). 
a 

The improper integral is defined by 

.b 
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One point of departure from Riemann integration is that it is necessary to 
specify whether the end points are included in the integration or not. From 
the definition it is easily shown that 

b Jah W x )  = 1 f(x> m x )  +.f(a)CF(a + 0) - F(a)l 
n + o  

where a + 0 indicates that the end point a is not included. If  F(x) jumps 
at a, then 

ff(x) W x )  - { f ( x )  W x )  = f ( a ) [ F ( a  + 0) - F(a - 011, 
a t 0  

so that the integral taken over an interval that reduces to zero need not 
be zero. We shall follow the convention that the lower end point is always 
included but not the upper end point. With this convention, we see that 

fbdF(x) = F(b) - F(a). 
* a  

I f  there exists a function p ( x )  such that 

F(4 =I* p ( 4  dx, 
-OD 

the Stieltjes integral reduces to a Riemann integral 

sf (4 dFb-1 = if ( x M 4  dx. 

We shall consider a general definition of integral with respect to a finite 
measure space. 

Let (a, @, p)  be a measure space and s be a simple measurable function, 
i.e., s = xr a, z A , ,  where a,,, . . . , u, are the distinct values of s and zA, is the 
indicator function of the set A ,  E B. Then we define the integral of s over 
R as 

when the range of integration is understood, where the convention 0. co = 0 
is used when ui  = 0 and p ( A J  = a. Letfbe a nonnegative measurable func- 
tion. Then we define the Lebesgue integral off as 

the supremum being taken over all simple measurable functions s such that 
O G s G f .  
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We say that a general function f is Lebesgue integrable [ L ,  (p) ]  if 

in which case the Lebesgue integral off is 

where f + and f - are the positive and negative parts off. 

fwith range in [- co, 001 to be 
Occasionally it is desirable to define the integral of a measurable function 

I f  dP = jf + 4 - J f  - dP 

provided that at least one integral is finite. Then the value of the integral is a 
number in [ -  co, 001. 

In the special case, p is generated by a distribution function Fthe Lebesgue 
integral is called Stieltjes-Lebesgue integral. 

APPENDIX 2B SOME IMPORTANT THEOREMS IN MEASURE 
THEORY AND INTEGRATION 

In this appendix we quote a number of results in measure theory and integra- 
tion, proofs of which can be found in standard books on measure and inte- 
gration. A knowledge of these results will be useful in the study of advanced 
theoretical statistics and in research. 

We consider measurable functions g ,  g,, , n = 1 ,  2, . . . defined on a measure 
space (a, Ail, p )  and the following modes of convergence. 

(a) g,, + g ,  a.e. p (almost everywhere with respect to measure p)  if g,, -+g, 

(b) g , , L +  g ,  (weakly) if for all integrable functionsf, J g,, f dp --t J gf dp. 
(c) g , , L p + g ,  (in pth mean) if J lg,, - g l P d p - + O .  Whenp = 1, we say the 

(d) g n L + g ,  (in measure) if limn-rm p{ lg,, - g1 2 E }  = 0 for every E > 0, 

The following lemmas are easy to prove from definitions. 

pointwise outside a null set. 

convergence is in the mean. 

the definition being restricted to  a.e. finite valued functions g,, . 

LEMMA 2B.1. (i) g,,*g*g,,&g for 0 < r < p ,  when p(Q) < co. 

(ii) Jig,, - g )  dp --t 0- JAgn dp + fAg dp uniformly for  all A E 97 as n -+ 

co, where{g , , ,g )  c L , .  F u r t h e r g , b g = . g , , A g .  
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LEMMA 2B.2. The sequence g, of unvormly bounded (or only integrable) 
functions converges to a bounded (or only integrable) function g weakly i# 

JAg,dp+IAgdp f o r a N A :  p ( A ) c m .  (2B. 1) 

LEMMA 2B.3. Let g, be a sequence of measurable functions such that g, + g, 
a.e. p, and g, 2 f (or g, < h) a.e. where f (or h) is integrable. I f g  is integrable 
and 

(2B.2) 

In particular if p, p , ,  n = I ,  2, . . . is a sequence of probability density 
functions relative to p, such that p ,  + p  (a.e. p) then j l p ,  - pI dp 3 0. 

LEBESGUE MONOTONE CONVERGENCE (LMC) THEOREM. Let 
g,, be a sequence of non-negative, nondecreasing, and measurable functions, 
and let g, + g, a.e. p. Then g is measurable and 

(2B.3) 

As a consequence of the LMC theorem, we have the following corollaries. 

The integral is a-additive on the family ofnon-negative func- COROLLARY 1. 
tions, or in other words 

(2B.4) 

i f g ,  is a sequence of non-negative functions. 

COROLLARY 2. (FATOU’S LEMMA). Let g, 2 f (integrable) be a sequ- 
ence of integrable functions. Then lim inf g, is integrable and 

lim infg, dp < lim inf gn dp (2B.5) J n-tm n-r m I 
COROLLARY 3. Let g be non-negative. Then 

(a) g dp -+ 0 as p(E) -+ 0. (2B.6) 
E 

(b) 1(E) = / g dp, E E is a measure on (0, 28). 
E 

(2B.7) 

(2B.8) (c) g = 0 a.e., fl J g dp = 0. 



136 

COROLLARY 4. Let gn < h (integrable) be a sequence of integrable func- 
tions, then 

lim s u p  g n  dp < lim s u p  g n  dp. (28.9) 

COROLLARY 5. Let f < gn < F, where f and F are integrable and gn -9. 
Then 

Jgn d~ jJ .9 d ~ *  (2B.10) 

LEBESGUE DOMINATED CONVERGENCE (LDC) THEOREM. Let 
gn be a sequence of measurable functions such that lgn(o)l < G(w) for all n 
and w, where G is integrable over a set S of jinite or infinite p measure. If 
gn --+ g,  a.e. p in S, or only in measure, then 
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n+m 1 J n- tm 

(2B. 1 1) 

uniformly in A. (This is equivalent to saying that {gn} c L, is uniformly integrable, 
and gn -+ g in measure.) 

As consequences of  LDC theorem, we have the following corollaries. 

COROLLARY 1. Let g(w, 0)  be a measurable function of w E R, for each 
0 E R, and g(w,  0) -, g(w, 0,) as 0 -, 0, for each w.  Furthermore, ler I g(w, 0)  I 
< G(o) for all w and I3 in some open interval including B,, and let G be 

integrable over S. Then 

Is do, dp --t do, 0,) 4 (2B. 13) 

COROLLARY 2. Let dg(w, B)/dB exist in an interval (a,  b) of 8, and 
Idg(o, B)/dOI < G(o) integrable, then in (a, b) 

as 8 -, 8, . 
S 

EXTENDED LDC THEOREM (Pratt, 1960). Let 

(a) f n  G gn G Fn, 
(b) fn -+A gn + g,  Fn + F, all a.e. p and, 
(c) fn , Fn , S, and F are integrable with 

(2B. 14) 
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Then j g dp isfinite and j g,, dp -+ j g dp. Further, 

(2B.15) 

In particular, iff, 2 11 or f, < k a.e. p, then j I gn - g I dp -+ 0. 

As a consequence, we have the following corollary. 

COROLLARY 1. Let 8 be a real parameter, D denote differentiation with 
respect to 0 and integration with respect to p. WOO is an interior point of an 
interval I and 

(i) Dg(w, O ) ,  Of (0, 0), DF(w,  0) exist f o r  all 0 E I 
(ii) D f ( w ,  0) < Dg(w, 0) G DF(w, @for all 0 E I 
(iii) D J h(w,  8,) dp = SDlt(o, 0,) dp for  h = f u n d  F with all the quantities 

D Js(w 00) dP = J Dg(o,80)  dP. (2B.16) 

FUBINI THEOREM. Let (ZZ,,  Bi , p i ) ,  i = 1,2 ,  be twofinite measure spaces. 
If the function g(w, ,  w,) defined on R, x R, is measurable with respect to 
Ql x B2 and is either non-negative or integrable on ZZ = R, x 0, with respect 
to the measure p = ji, x p, , then 

jinite, then 

RADON-NIKODYM THEOREM. Let p and v be o-Jinite measures ouer 
(a, 9). Then there exists a measurable function g such that 

v(A)  = g dp, f o r  all A E 93 
A 

(2B. 18) 

i f  and only if v is absolutely continuous with respect to p (i.e., p ( A )  = 0 => 

v(A) = 0 f o r  all A E Q, in which case the relationsliip is written v < c p). 

Note that a measure is said to be finite if p(R) < co and o-finite if there 
exist disjoint sets A , ,  A , ,  . . . such that u A i  = R and p ( A i )  c 00 for each i. 

For proofs of these theorems see Halmos (1950) and Munroe (1953). 
An introduction to measure theory and related topics with special reference 
to probability is also contained in a book by Cramer (1946). 

BOREL-CANTELLI LEMMA. Let {A, } ,  n = 1, 2, . . . , be a sequence of 
sets, A be the set of elements common to aninjinity of these sets, and P be a 
probability set function. Then 

(a) 
(b) 1 P(A,,) = 00 and the events A,  are independant * P ( A )  = 1. 

P(A,,)  c co * P ( A )  = 0 
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It is easy to identify the set A as 
m m  

A =  n UA,, 
r = 1  n = r  

from which it follows that 

A c 6 A , ,  for each r 
n = r  

and 

for sufficiently large r since 1 P(An) converges, that is, P ( A )  = 0, thus prov- 
ing (a). 

Let A' be the complvnent of A,  that is, the set of points conimon only 
to a finite number of stts of {A,,}. Hence A' is the set of points contained in all 
but a finite number of sets of { A d } .  Thus 

m m  

A'=  (J ( ) A n C  
r = l  n = r  

r = l  i i = r  

m m  

r = l  n = r  
= n [(l - P(An)]  using independence ofevents. 

Since 
P ( A )  = 1, which proves (b). 

P(A, )  = co, the infinite product diverges to zero for each r.  Hence 

APPENDIX 2C INVARIANCE 

Invariance of a Family of Probability Spaces. Consider a family of prob- 
ability spaces 

(R,9?, Po 3 0 E 0) (2C. 1) 

as in  2d. Let g be any one-to-one transformation of R onto R. The sigma 
field { g B :  B E g} is denoted by ga. Corresponding to a given measure Po, 
we define gPo as the induced measure on ga satisfying the relation gPo(gB) = 
P,(B) for all B E 33. Any function 4 on R generates a new function g 4  such 
that g$(gw) = $(w), o E R. Then g produces an isomorphism between 
(0, a, Po) and (Q, g a ,  gf'e). 

Let G be a group of transformations. Then the family (Q, a, P o ,  B E 0) 
is said to be invariant under G if for any g E G 

gn = R, g a  = 33, g.P, =Po*, 0, O'E 0. (2C.2) 

The 0' determined by g by the last condition in (2C.2) is denoted by SO. 
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It can be shown (see Ferguson, 1967) that G = { S :  g E G }  is a group of one- 
to-one transformations of @ onto @, and G is a homomorphic image of G 
(G and G need not be isomorphic). 

Invariance of Statistical Procedure. In practice, we have an observed event 
(a point in R) but the true value of 8 or the exact underlying probability 
measure in the class PO, 8 E 0 is unknown. The statisticalproblem is one of 
making a statement on unknown 8 given the observed event. Let the class of 
all possible statements (or decisions) be represented by D (called the decision 
space). Then, what we need is a function 6 (called decision function) which 
maps R into D. We represent by L(8, d ) ,  the loss incurred in making the deci- 
sion d E D when 8 is the true value. An optimum statistical procedure is one 
which uses a decision function 6 for which the loss is a minimum in some sense. 

Let G be a group of transformations for which the family (Q, B, Pe, 
8 E 0) is invariant. For each g E G,  let there exist a transformation g* of 
the decision space D onto itself such that g* is a homomorphism, i.e., 

(919*)* = s:sr 
and the loss function is unchanged under the transformation, i.e., 

L(ge, g*d) = L(e, d) ,  e E 0, d E D. (2C.3) 

Then the statistical procedure or the decision function 6 is said to be invariant 
under C if 

&go)  = g* 6(w) for all o E R, g E C. (2C.4) 

APPENDIX 2D STATISTICS, SUBFIELDS, AND SUFFICIENCY 

Let (Q, 99) be any measurable space and Rk be the Euclidean space of k 
(finite) dimensions and X the Bore1 field in Rk. 

DeJinition 1. In  2a.5, a statistic T is defined as a function on R into Rk 
such that T - ’ ( X )  E .fd for every X E 3. 

For any function T on R into Rk, denote by W T  the collection of sets 
(T- ’ (X) :  X E a}. Then T is a statistic (l), i.e., according to Definition 1, iff 

We say that a subsigma field V c 93 is induced by a statistic T if V = W r .  
Not all subsigma fields are induced by a statistic (1) as the proposition (i) 
shows. 

(i) A subsigma field V c 99 is induced by a statistic (1) Y and only if W is 
countably generated. 

The only if part follows since X in Rk is separable, the subfield induced 
by T,  statistics (1) is separable. 

G?T c9. 



140 PROBABILITY THEORY, TOOLS AND TECHNIQUES 

To prove the converse, let % c W be countably generated, and consider T 
on R into the real line R given by 

where I is the indicator function and {C,, , n 3 1) is a countable family which 
generates W. It is easy to see that T is a statistic (1) and L'dT C V. To go the 
other way, let n > 1 and B,, be the set of reals in [0, 11 in whose ternary 
expansion 2 occurs in the nth place. It is easy to see that (a) B,, is a Bore1 set 
and (b) T-'(Bn) = C,,. Consequently, {C,,, n 2 1)  c W T  SO that % = L'dT ,  
which proves the proposition. 

Definition 2. Bahadur (1954, 1955) defines a statistic T as any function on R 
with the range space arbitrary (not necessarily Euclidean) and with no measur- 
ability restrictions. A statistic satisfying Bahadur's definition is denoted as 
statistic (2). 

The notion of a subsigma field induced by T, a statistic (2), is now defined 
as follows. Denote by %T the collection {A C Y: T - ' ( A )  E a}, where Y is the 
exact range space of T, i.e., Y = T(R). It is clear that (a) g T  is a sigma field 
on Y, and that (b) T is a measurable transformation from (Q, W) to (Y, % T ) .  

Next denote by L'dT the collection {T- ' (B) :  B E % T } .  Then W T  is a subsigma 
field of W. 

A subsigma field V c W is said to be induced by a statistic (2) if there is a 
function T such that 48 = W T .  The question arises whether every subsigma 
field of W is induced by statistic (2) or even whether every countably generated 
subsigma field of $ is induced by a statistic (2). The answer is no as the follow- 
ing result of Blackwell shows. 

(ii) Let 5%' be a proper subsigmaJield of W, suclz that {w} E %for every w E R. 
Then % is not induced by a statistic (2) .  

Suppose W is induced by a statistic Tso that gT = W. As {w}  E V, {o} E W T  
and hence there exists B E g T  such that { w }  = T- ' (B) .  As B is contained in 
the exact range of T, it follows easily that B = {T(w)}. Consequently, for every 
o E R, {o} = T- ' {T(o ) } .  In other words, T is a one-to-one function on R 
onto Y so that for any A E R, A = T-'(T(A)) .  Now let A E 9. From the 
preceding argument, it follows that A c B T ,  i.e., A E %. Thus B = 59 which 
is a contradiction. 

Bahadur and Lehmann (1955) provide a characterization of subsigma 
fields of W which are induced by statistic (2). 

We have two notions of subsigma fields of W induced by statistics (1) and 
(2). Now we show that neither notion implies the other. 
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Let R be the real line, W be the sigma field of countable and co-countable 
subsets of the real line and let %' = 48. Taking T as the identity mapping on R, 
we see that %' is induced by a statistic (2). But 'X, being not countably generated, 
is not generated by statistic (1). 

Now let R be the real line, M be a fixed but arbitrary non-Bore1 subset of 
the real line, and W be the smallest sigma field on R containing all Borel 
sets of the real line as well as M .  Takeqas the Borel sigma field of the real line. 
Then %', being countably generated, is induced by a statistic (1). But as %' 
contains all singletons and is a proper subsigma field of W, by Blackwell's 
proposition, %' is not induced by a statistic (2). 

Conditional Expectation with Respect to a Subfield. Consider any subsigma 
field W o  cW. If 4 is any (W, P) integrable function on R, the conditional 
expectation of 4 given W o  is defined as any W o  measurable function 
Ep(4 I Wo) which satisfies 

JB E ( 4  I go) dP = 4 d P  for every Bo E go. (2D. 1) 

The Radon-Nikodym theorem ensures the existence and, up to an equivalence 
among all W o  measurable functions, the uniqueness of Ep(r$)Wo), i.e., if 
alternative functions satisfying (2D. 1) exist, then they differ only on P-null 
sets. 

A subfield Wo is said to be sufficient for the family (R, a, P o ,  8 E 0), if 
for every (W, Po) integrable function 4 on R there exists a W o  measurable 
function 4o on R equivalent to 

EB(4 I B0) for all 0 E 0. (2D.2) 

For further study of subfields, sufficient subfields etc., the reader is referred 

0 Bo 

to Bahadur (1954, 1955) and Bahadur and Lehmann (1955). 

APPENDIX 2E NON-NEGATIVE DEFINITENESS OF A 
CHARACTERISTIC FUNCTION 

BOCHNER'S THEOREM. 
definite and continuous withf'(0) = 1 iff it is a c.J 

A function f(.) defined on R is non-negative 

[A complex valued function f is n.n.d. if for each integer n, real numbers 
t , ,  . . . , t ,  and a function h ( t )  on R .  

(2E.1) 

The necessity is easy to prove. To prove sufficiency observe that (2E.1) * 
(2E.2) Jj, f(u - u)exp{ - i(u - u)x - (u2 + v2)a2} du du 2 0 
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for each x and a2 > 0 because the integral (2E.2) can be approximated by 
means of sums of the form (2E.1). Letting t = u - u and s = u + u so that 
uz + uz = ( tZ  + sz)/2 in (2E.2) and integrating over s, we obtain 
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g(x, a) = jf(t)exp( - i tx - r ’a2/2) dt/2n 2 0. 

By monotone convergence theorem (2B.3 of Appendix 2B) 

sg(x, a) dx = lim /g (x ,  a)exp( -x2j2/2) dx 
P-0 

= lim /[ f (t)exp( - itx - tza2/2 - xzp2/2) dx dt/2n 

= lim J”f(t)exp(-tz/2~2 - tza2/2) c i t / / I j G  

= lim J’f(u/3)exp( - u2/2 - u2/12a2/2) du/J2& 

P-+O 

a -0  

0-0 

= 1.- u‘12 du/& = 1. 

Thus g(x, a) as a function in x is a density function for each a. A similar 
argument shows 

ig(x, a)exp(itx) n x  = lini g(x, a)exp(irx - x2p2/2) t/x 
P - 0  J‘ 

= liin j,f(t + up>exp[ - ( t  + up2/2) - u2/21 du 

= f( t)exp( - t 2a2/2) 

0-0 

by virtue of continuity off(/). Hence for each a,f(t)exp(-tza2/2) is a c.f. 
Then by continuity theorem, lim,,of(t)exp(-t2a2/2) = f ( r )  is in fact a 
c.f. This proof is due to Pathak (1966). 

COMPLEMENTS AND PROBLEMS 

1 Characteristic, functioris 

1.1 A d.f. is said to be symmetric about zero if F ( x )  = I - F( - x - 0). Show 
that F(x)  is symmetric if, and only if, its c.f. is real and even. 
1.2 Iff(r) is a c.f., then &‘)- ’ and I , f ( t )  I are also c.f.’s. 
1.3 Find the distribution functions corresponding to the c.f.’s 

cos I ,  (COSll /)- ’ ,  cos2 I ,  (cosh2 / ) - I .  
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1.4 Every c.f. can be written in the form 

. f ( t )  = C l f d ( f )  + c 2 f A t )  + C 3 M )  

with c1 + c2 + c3 = 1, c1 2 0, c2 2 0, c3  2 0, where fd ( t ) ,  f , , ( t) ,  and f s ( r )  
respectively are c.f.'s of (purely) discrete, absolutely continuous, and singular 
distributions. 
1.5 Show that for any c.f. f ( t )  

1 - I f ( 2 0  I 6 4P - I f ( f )  I 211 

and for any real c.f. f ( t )  

1 - f ( 2 t )  < 411 - f ( t ) ] ,  1 + f ( 2 t )  b 2 [ f ( 1 ) l 2 .  

1.6 Let XI, X , ,  and X ,  be the independent random variables such that 
XI + X ,  and X ,  + X ,  have the same distribution. Does it follow that X ,  
and X ,  have the same distribution? 
2 Moments of a distribution. Let a, and 7, denote the sth moment and 
absolute moment of a random variable X .  
2.1 Establish the following inequalities 

(a) 7:- 1 < vs- 2 v s  

(b) y1 < ?;I2 < * < vf I". 
2.2 Let ps be the sth central moment and define p1 = p32 /p23  and p2 = 
p4/p22. Then 0, - 0, - 1 2 0. [Hint: The determinant 

1E, ;,l20.1 

3 Inequalities for probabilities 

3.1 
P ( X  2 E )  < ,(eaX)/eaC. 

3.2 Kolmogorov's inequality. 
variables such that , (Xi) = 0 and V ( X i )  = oi2 < 03. Prove that 

If X is a random variable such that E(eaX) exists for a > 0, then 

Let X , ,  . . . , Xn be n independent random 

3.3 Hiijek-RZnyi (1955) inequality. Let X , ,  X , ,  . . .  be independent 
random variables such that E ( X i )  = O  and V ( X i )  = oi2 < 00. I f  el, e l ,  ... 
is a nonincreasing sequence of positive constants, then for any positive 
integers m, n with m < n and arbitrary E > 0, 



144 

To prove the inequality, consider the quantity 
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where s k  = X, + * * + X, . It is easy to show that 

Let Ei ( i = m ,  m + l ,  ..., n) be the event c,IS,I<& for m < j < i  and 
ci 1 Si I 2 8. The events Ei are mutually exclusive and 

P max c,lSkl > &  = C P(Ei) .  1 m 4 k < n  I n  k = m  

Let Eo denote the event that c, I Sj I < E for m < j d n. Then by the definition 
of conditional expectation 

n 

E( Y )  = 2 E( Y 1 E,)P{E,} 2 2 E( Y I E,)P{E,} .  
i = o  i= 1 

Fork 2 i, 

E(Sk’ I Ei) = E[{si2 + (Xi+, + * * * + Xk)’ + 2si(Xi+1 + ’ + xk)} I Ei] 
> l!?(Si’ 1 Ei) + 2E[Si(X(+ 1 + ’ ’ ’ + Xk) I Ei]. 

But the occurrence of the event E, only imposes a restriction on the first i of 
the variables X, and the following variables, under this condition, remain in- 
dependent of one another and of Si . Hence, for j > i, E(Si  Xi I E,)  = 0, thus 
giving the inequality E(Sk2 I E ~ )  >/ E(S,* I Ei). When E, is given, I S, I 2 &/ci so 
that E(Si2 I E,) 2 &’/c,’. Then we have E(S,’ I E,) 2 &’/ci’. But 

andtherefore E( Y) > E ’ C ; = ~  P(E,). The required result follows from the exact 
expression derived for E( Y). 

Kolmogorov’s inequality of Example 3.2 follows, as a special case, 
choosing m = 1, c1 = cz = = cn = 1. 
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3.4 Let XI, . . . , X ,  be m independent random variables such that 
P( I X ,  + * * + X ,  I > E )  < a, i = 1, . . , , m. Then 

3.5 Clzebyscheu-type inequalities. Let X be a random variable such that 
E ( X ) = p ,  E ( X - P ) ~ = O ~ ,  E l X - p I r = P r ,  E ( l x - p l ) = v  and 6=v /o .  
Prove the following: 

P r  
(c)  P(IX - p1 2 i) < - Ar . 
(d) Cantelli inequality 

a2 
P ( X  - p g A) < - 

a2 + A 2  ’ A < o ,  

a2 

a2 + l2 ’ 
21-- A 2 0. 

(e) Peek inequality 

(f)  Camp-Meidell inequality. Let the distribution of X have a single mode 
at p o .  Let T = a2 + (p  - po)2,  and s = lp  - polla. Then 

3.6 Berge inequality. 
p i ,  V ( X i )  = a,’ and cov(X,, X 2 )  = pala,. Then 

Let XI, X 2  be a pair of variables such that E(Xi )  = 
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3.7 Show that for x > 0 

3.8 
for any E > 0 

XI, X , ,  . . , are independent and the range of each X i  is [0, I] .  Then 

4 Limit problems 
4.1 Construct an example to show that Scheffe’s convergence theorem 
(xv, 2c.4) is not true if the limit function p ( x )  is not a probability density. 
4.2 Let X,“+ X and p,, be a median of X,, . Then any limit point of p,, is 
a median of X .  
4.3 Khinchin’s theorem (W.L.L.N.). Let XI, X 2  , . , , be a sequence of i.i.d. 
variables. Then € ( X i )  = p is finite 
[Hint: Let4(t) bethec.f. of X i  .Then thec.f. of X,, is [cj(t/n)l”. Since€(X)exists 

.$?,A p. 

which is the c.f. of a degenerate distribution at p. ]  

4.4 Kolmogorov theorem (1929). Let X , ,  X 2  , X ,  , . . . be independent 
variables all having the same d.f. F(x) and put 1, = (XI + + X,,)/n. A 
necessary and sufficient condition for the existence of a sequence of constants 
pl ,  p 2 ,  . . . such that X,, - p n L +  0 is that 

j, d ~ ( x )  = o(l/t) as t - +  a. 

If this condition is satisfied we can always take p,, = J Y , x  dF(x). If in addition 
the generalized mean value p = limr-tm r - , x  dF(x) exists, it follows that 
.$?,A p. Show that in the case of the Cauchy distribution, the necessary and 
sufficient condition is not satisfied. Hence, although the generalized mean 
value exists, j;?, does not converge to any constant in probability. 
4.5 Let XI, A’, , . . . be a sequenceof independent variables such that E ( X i )  = 
p i .  Put 8, = (XI + * - .  + X,)/n and ji,, = (pl + * + p,)/n. Show that 
X, - ji,,A 0, if 

X I > (  

for a positive 6 < 1 
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4.6 Let X,,  X ,  , . . . be independent r.v.’s such that E ( X i )  = p i  and V ( X J  = 
oi2. Put S,, = XI + + on2. 
Then a sufficient condition for the d.f. of (S,, - M,,)/V,, to tend to N(0,  1) 
is that 

+ X,,,  M,, = pl + + p,, and Vn2 = u12 + 

for a positive 6 .  [Hint: Show that the sufficient condition implies Lindberg- 
Feller condition, (iii), 2c.5.1 
4.1 Multivariate central limit theorem. Let XI,  X , ,  ... be a sequence of 
independent k-dimensional random variables such that E(Xi) = 0 and D(X,) 
= X i .  Suppose that as n + 00, 

1 
n 

n iZ -(Ixl\>e-/ii 

- c 72, --* I; # 0 

and for every E > 0 
1 ”  

llXllZ dFi --* 0 - 

where Fi is the d.f. of X, and llXll is the Euclidean norm of vector X. Then the 
r.v. (X, + * . + X,,)/Jn converges to the k-variate normal distribution with 
mean zero and dispersion matrix C. 
4.8 Let X , ,  X,,  . . . beindependentr.v.’swithd.f.’sF,, F 2 ,  . . . . T h e n X , , A p  
a constant, if and only if, 

Observe that the existence of the expectations is not required. For a proof see 
Lobve (1955). 
4.9 Suppose that the random variables X ,  X , ,  X,,  . . . are uniformly 
bounded. Show that X,,& X if and only if lim E(X,, - X ) ,  = 0 as n + co. 
4.10 If for all real t 

lim e fx  dF,(x)  = J etx d F ( x )  = M ( t )  
,,-+a, J 

and if M(t)  is entire (i.e., there exists an entire function M(z) with a complex 
argument, which reduces to M(t)  on the real line), then F,, + F. For a proof 
see Kac (1959). 
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4.11 Let X , L +  X, and suppose there are constants a,, > 0, b, such that 
a, X,, + b, & Y, where X and Yare nondegenerate. Then there exist constants 
a and b such that aX + b A Y (4  indicates that the distributions are same). 

4.12 Znvariance Principle. Show that if there is one sequence Y,, Y,, . . . 
of i.i.d. variables such that E( Y,)  = 0, 0 c E( Y,') = a' c 03 such that 
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Y, + " ' +  Y,L- 

Jn 
then the same limiting distribution holds for all sequences X , ,  X ,  , . . . of i.i.d. 
variables such that E(X,)  = 0, 0 < E(X12)  < co. 

4.13 Show that if X , , L  X ,  then there exists a subsequence X,,, such that 
X,, + X,  as .  

4.14 For X, ,  X ,  , . . . independent variables 

4.15 Let X, ,  X,, ... be independent such that E(&) =0,  V(X,)  c 00. 

Further, let there exist constants b, c 6 ,  c -+ 03 such that Cy[V(&) /  
b k 2 ]  < 00. Then b,,-'X, converges and 

X ,  + '.. + X" 
b n  

' 0 ,  a s .  

[Hint: Use Kronecker's lemma. Let xk be an arbitrary numerical sequence and 
0 c b, c b2 < * -+ a. If the series 1 61, x, converges then { (x ,  + * * * + x,,)/ 

4.16 X,,% X (converges in the rth mean) if El Xn - XI' -+ 0. Show that 

bnl+ 01. 

(a) X ,  % X* El X,, I 
(b) X,,Lrn4 X* X,,% X,O < s < r ,  

El XI ', 

(c) X,,* X* X , - L  X .  

4.17 Give an example where X,,r*O but E(Xn) 4 c # 0. 
5 Zero-or-one law. Let XI, X2 , . . . be any random variables and let 
g ( X , ,  X ,  , . . .) be a Baire function of the variables such that the conditional 
probability 

P(g = 01 X ,  = XI, . . . , X,, = x,) 

is the same as the absolute probability P(g = 0) for every n and every vector 
(x , ,  . . . , x,,). Then P(g = 0) is  either zero or one. 
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Show in particular that if X,,  X 2  , . . , are mutually independent the prob- 
ability of the convergence of the series 

6 Show that if F,(x) and F2(x) are monotonic functions of bounded vari- 
ation and c,, c2 are arbitrary constants 

X,, is either zero or one. 

7 If X,,  X ,  are two independent random variables with d.f.'s, Fl and F 2 ,  
then the d.f.'s of 2 = X, + X 2  and Y = X J X ,  are 

F ( z )  = J F , ( Z  - x )  dF,(x) = J F 2 ( z  - x) dF,(x)  

8 Using the inequalities of Section le, verify the following for random vari- 
ables X ,  Y. 

(a) E J X +  Y J ' < C , ( E J X ( ' + E l  Yl') 

(b) Holder's inequality 

where C, = 1 for r Q 1, = 2 r - 1  for r > 1. 

1 1  
1 < r < 00, - + - = 1. 

r s  (i) 

(ii) (El XY1)2 Q E(X2)E(  Y2) ,  Cauchy-Schwarz 
(iii) E I  X I  Q ( E I  X I ' ) ' ' ' ,  r > 1. 
(iv) ( E [  XI '),I' Q ( E (  X I ' ) ' / ' ,  O < t < r .  

E I  X Y I  < ( E I  X ' I ) ' / ' ( E I  Y ~ ) ) ' / ~ ,  

(c) Minkowski inequality 

( E I  X + Yl')''' < ( E I  X I ' ) ' / '  + ( E I  Y I ' ) " ' ,  1 Q r < CQ. 

(d) log El XI' is a convex function of r .  
(e) Jensen's inequality. If g is a convex function and E ( X )  exists, then 

9 Infinitely divisible distributions. A d.f. F is called infinitely divisible 
(weakly) if, for every n ,  it can be written as a convolution distribution of 
nondegenerate d.f.'s F, ,  . . . , F,, . Or in other words, the random variable X 
with d.f. F can be expressed as the sum of n nondegenerate i.r.v.'s. The d.f. F 
is called infinitely divisible if, for every i t ,  X can be expressed as the sum of n 
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independent and identically distributed random variables. Prove the following 
with respect to infinitely divisible distributions. 

9.1 For any given n the c.f. of X i s  the nth power of some other c.f. 

9.2 The c.f. of X never vanishes. 

9.3 The distribution functions of normal and Poisson variables are infinitely 
divisible. 
9.4 The d.f. of a sum of independent random variables having infinitely 
divisible d.f.’s is itself infinitely divisible. 

9.5 The (weak) limit d.f. of a sequence of infinitely divisible d.f.’s is itself 
infinitely divisible. 
[Note: For a canonical representation of an infinitely divisible d.f., refer to 
books on probability by Doob, Gnedenko, Lohe ,  Ramachandran, etc.] 

10 Discrete distributions 

10.1 Let Pl(r), . . . , Pk(t) be the p.g.f.’s of k independent discrete random 
variables XI, . . ., X , .  Show that the p.g.f. of the sum XI + + X ,  is the 
product P l ( t )  . - Pk(t) .  

10.2 Let S,  = X ,  + - * - + X ,  be the sum of N independent discrete random 
variables each having the same p.g.f., P( t ) .  Further let N itself be a random 
variable with the p.g.f. G(t). Show that the p.g.f. of the random variable S 
defined as the sum of a random number of independent random variables is 

10.3 Using the result of Example 10.2, obtain the distribution of S when each 
X i  has a Poisson distribution with parameter 1 and N has a Poisson distribu- 
tion with parameter p. 

10.4 Also show that when each Xi has a binomial distribution with param- 
eters (n, n = 1) and N is a Poisson variable with parameter p,  S is a Poisson 
variable with parameter pn. 
11 

11.1 Let X and Y be independent binomial variables with parameters 
(n, n , )  and (n, n z ) .  Then the conditional distribution of X ,  Y given X + Y is 
hypergeometric and is independent of n. 

11.2 Let X and Y be independent negative binomial variables with param- 
eters ( p ,  K , )  and ( p ,  K ~ ) .  Then the conditional distribution of ( X ,  Y )  given 
X + Y is the negative hypergeometric defined by 
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G[P(t)l. 

Establish the following conditional distributions. 

where B(nz, n) is the beta function. 
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12 Characteristic functions of special distributions. 

Normal : 

Laplace : 

Rectangular 

Gamma : 

Beta : 

Cauchy: 

Triangular: 
1x1 < a  

Triangular: 

Density Function Characteristic Function 

e-(x-a)2/202 e i p ~ - a V / 2  J20 

1 - cos at 

a a a2 t2  

1 1 
n cosh x cosh(nt/2) 

Hyperbolic 
cosine : 
- -oo<x<co  

1 
Rectangular: - 

28 
1x1 < e  

sin B t  
et 

Degenerate: X = a e i f o  

(with Prob. 1) ' 

13 The concept of large and small 0. Let {r,,} be a sequence of positive 
numbers and { X,,} be a sequence of random variables. We say X,, = Op(r,,) or 
X,,/r,, is bounded in probability if for each E there is an Me and N ,  such that 
P[ I x,, I / r ,  > M,] < E for n > N, . We say x,, = op(r,,) if X,,/r,, L+ 0. 
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Let X,, - a = o,(r,) where r,, -, 0 as n + 00 and g(x) have a kth order 
Taylor expansion at a, that is, 

Show that g(X, )  - T,(X,, a) = op(r:). 

14 Let Y be a number uniformly distributed over the unit interval (0, I). 
Let X , ,  X 2  , . . . be the successive digits in the decimal expansion of Y, that is, 

g(x) = Tk(x, a) + o( I x - a 1 k). 

XI X2 X y =  -+++.. .++"+ .... 
10 lo2 10" 

Prove that X, ,  X 2 ,  . .  . are independent discrete valued random variables 
uniformly distributed over the integers 0 to 9. Consequently, conclude that for 
any integer k, the set of numbers Y for which the relative frequency of k in 
the decimal expansion of Y is has probability 1 .  Does this contradict the 
fact that only threes occur in the decimal expansion of + ?  
15 Let {a,} be a sequence of numbers such that a, -+a and f ( o J  + b as 
n -+ a. Consider a sequence {X,,} of r.v.3 such that X,,&a. Show that 
f (X,)&b.  Suppose X,/n9*0. Does this imply that max(X,/n, . . . , 
X,,/n) 
16 Give examples to show: 

01 r h e  result is true for a nonstochastic sequence of numbers.] 

(a) Two distinct c.f.'s can coincide within a finite interval. 
(b) The relation F * Fl = F * F2 z> Fl = F ,  . 

17 Moment problem. Show that the moments for the two densities of a 
positive random variable X 

p l ( x )  = (2n)- ' /2~-1  exp[ -(log x),/2] 

p2(x)  = p,(x)[l + a sin(2n log x)], - 1 < a < 1, 

are the same. This interesting example, which shows that the moments may 
not uniquely define a distribution function, is due to C. C. Heyde. 
18 If XI, X ,  are i.i.d.; then for r > 0 

P{ I Xl - X2 I > 1 )  G 2P{ 1 X ,  I > t/2}. 

If X,, . . . , X,, are independent with a common distribution function F, then 

2P{IX1 + + X,,( 2 t }  3 1 - exp{-n[l - F(t) + F ( - t ) ] } ,  

19 If X, Y, and 2 are random variables, prove the following results on 
conditional expectation using the method of 2b.3. 

(a) Cov(X, Y) = Cov[X, E( Y J  X)] 
(b) E(z )  = Jwr-wI Y )  I XI}, 

V(Z)  = E{E[V(ZI Y) I XI) + E{ f m Z l  Y) I XI} + W[W I Y )  I XI}, 
Cov(X, 2) = Cov{X, E[E(Z( Y)l XI} .  
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20 If (Cl, . . . , C,) is a partition of the sample space, show that 
k 

PtA I B) = c W C i  I B) 
1 

k 

= c P(Ci 1 B)P(A I BCi). 
1 

21 Consider the probability space (R, 9, P). Let Y be a space of points y ,  
d a a-algebra of sets of Y,  and T:  R -, Y a function such that A E d* 
T - ’ A  E 37. Let f ( w ,  y )  be a real valued x d measurable function on 
R x Y .  Then show that (see Bahadur and Bickel, 1968) 

E [ f ( o ,  T(o)) I T(o)  = yl = E [ f ( o ,  Y )  I T(w) = ~ l .  
22 Let X be a vector valued random variable whose distribution depends on 
a vector parameter 8. Further, let T be a statistic such that the distribution of 
T depends only on 4, a function of 8. Then T is said to be inference sufficient 
for $ if the conditional distribution of X given T depends only on functions 
of 8 which are independent of @ (see Rao, 1965b). 

Let XI, . . , , X ,  be n independent observations from N ( p ,  a’). Show that 
c ( X i  - 1)’ is inference sufficient for the parameter a’. 
23 Give a simple proof to show that if E(X,) + 0 and V ( X J  -, 0, then 
x, L O .  
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Chapter 3 

CONTINUOUS 
PROBABILITY MODELS 

Introduction. In Chapter 2 we introduced the concept of a random variable 
(r.v.1 specified by a distribution function (d.f.). In practice, the d.f. F is 
unknown and the problem is one of drawing inferences about F on the basis 
of concrete realizations of the r.v. But it  would be of great help if it is known a 
priori that F E  C, a specified class of d.f.’s, for in such a case our enquiry is 
restricted to a particular class and not to the wide class of all d.f.’s. The in- 
formation we use that F E C is called specification. Sometimes i t  is possible to 
determine the class C from a knowledge of the mechanism generating the 
observations by a suitable characterization of the randomness involved, called 
a model. 

For example consider n urns each of which contains unknown but fixed 
numbers of white and black balls. One ball is drawn from each urn and its 
color noted, What is the probability that out of the n balls drawn, r are 
white? Suppose that all the balls within any urn are distinguishable and 
that each urn contains a white and b black balls. Then we have (a + b)” 
possible combinations of n balls. I f  each ball is drawn from an urn after 
thorough mixing we may also make the primitive assumption that all the 
combinations (a + b)” are equally likely to occur. It is now easy to show 
that the proportion of the combinations with r white balls is 

where ~t = a/(a + b), the unknown proportion. We thus deduce the binomial 
distribution (2a.5.3) from a simple model. 

In the present chapter, we consider a number of models leading to the 
well-known continuous distributions. The properties of these distributions 
are also examined. The probability distributions of certain functions of the 
observations, which are used in statistical inference, have also been obtained. 

The reader will find it useful to study in detail the three fundamental 
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theorems of the least squares theory in 3b.5, which provide the key to all 
distribution problems in the univariate and multivariate analyses. Some 
extensions of these theorems given as examples at the end of the chapter are 
also useful. 

The bivariate normal distribution is introduced in 3d where sampling 
distributions of some important statistics are obtained by the use of trans- 
formations. These methods could be extended to the multivariate case, but 
they are not since more sophisticated methods are available as shown in 
Chapter 8 on multivariate analysis. 

Transformation of Variables. Let X be a r.v. with p.d. p x  . What is the 
p.d. of Y = f ( X ) ?  

By definition 

P(  y < Yo)  = P b : f ( x )  < Y o )  = J P x ( X )  dx 
A 

where A is the region f ( x )  < y o .  Suppose (a) the tranformation y = f ( x )  is 
one-to-one and the inverse transformation x = g ( y )  exists and (b) g’(y) the 
derivative of g exists and is continuous. Then from the theory of change of 
variable in Riemann integration 

/ A  P X ( 4  dx = s, PX[B(Y)I I B’(Y) I dY. (3.1) 
< Y O  

Hence by definition the p.d. of Y is p x [ g ( y ) ]  Ig‘(y) I .  
Suppose the transformation is not one-to-one but the range of x can be 

divided into a finite number of exclusive regions R, ,  . . . , Rk with the cor- 
responding regions R ; ,  . . . , R; (may be overlapping) in the range of Y such 
that the transformation from R, to Ri is one-to-one. Let x = g i (y )  be the 
transformation from R; to Ri and let g; (y )  be continuous. Then the density at y 
is 

k 

i = l  

where n, = 1 if y E R; and n, = 0, otherwise. 
For instance if Y = X 2 ,  there are two regions to be considered: R, = 

(- co, 0) and R,  = (0, 00). The corresponding regions in the space of Y are 
R; = (0, 00) and R; = (0, 00) which are completely overlapping. The inverse 
functions are x = - Jy corresponding to ( R , ,  R ; )  and x = J j  corresponding 
to (R,, R;). Every y E R; and R; and therefore the p.d. at y is 
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The results can be extended to several variables in an analogous manner. 
Let Yi  =f i (Xl , .  . . , X,,), i = 1, . . . , n be the given transformation and 
p ( x , ,  . . . , x,,) be the p.d. of XI, . . . , X,, .  Consider the regions ( R l ,  R i ) ,  . . ., 
(Rk, R;) where R ,  is in the space of X’s and R; is in the space of Y’s and a 
one-to-one correspondence holds for each pair ( R , ,  Ri). Let 

be the inverse transformation for ( R i ,  Ri). If the partial derivatives of g,, 
are continuous and the Jacobian (J , )  of the transformation does not vanish in 
R ; ,  then the p.d. at y l ,  . . . , y,, is 

where n, = 1 if (yl, . . . , y,,) E R; and n, = 0, otherwise, and I J i  I is the absolute 
value of the Jacobian. 

Notation. In Chapter 2 and in the example of transformations just considered 
we denoted a random variable (r.v.) by X and its probability density (p.d.) 
by px(x) or simplyp(x) when there is no chance of confusion about the under- 
lying r.v. This cannot be strictly adhered to, for in statistics both capital and 
lower case letters R ,  r ,  FJ T, t ,  etc. have been used to denote specific functions 
of r.v.’s. We should therefore be free to use any symbol to denote a r.v. With 
such a concession it is also convenient to use the same symbol for the r.v. 
and in the expression for its p.d., observing that the symbol in the p.d. is 
only of a dummy character. Thus we may say that x is an r.v. with p.d. f ( x )  
instead off(x*), using a different symbol like XI. Such a convention has the 
advantage insofar as that a given expression for density can be identified as 

.that of a particular r.v. (with a conventional symbol) that is being considered. 
Furthermore, most of the propositions we consider involve an application of 
the formulas (3.1), (3.2), and (3.3) for determining the density function of 
functions of r.v.’s. For this purpose it is immaterial which symbol (same as 
that used for the r.v. or a matching symbol like x for the r.v. X) we use for 
expressing the transformations and in the evaluation of the Jacobians. How- 
ever, in the derivation of the formulas (3.1) to (3.3) from first principles such a 
distinction is necessary for purposes of clarity. 

We frequently refer to a family of distributions by a symbol such as N for 
the class of all normal distributions and to a particular member of the 
family by specifying its parameters in addition such as N ( p ,  02) for a normal 
distribution with mean p and variance a2. We use the notation X N N(p ,  a’) 
to indicate that X is a r.v. distributed as N ( p ,  c2). The density function of 
~ ( p ,  a*) is written ~ ( x l p ,  a’) or N ( x I ~ ,  a2) using Xitself. 
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3a UNIVARIATE MODELS 

3a.l Normal Distribution 

(i) HITTING THE BULL’S EYE (HERSCHEL’S HYPOTHESIS). Consider a distribu- 
tion of shots fired at a target (ideally a point) and let (X, Y) be the coordi- 
nates (r.u.’s) representing the deviation (errors) of a shot with respect to two 
orthogonal axes through the target point. 

Let the following hypotheses be true. 
(a) The marginal density functions p ( x ) ,  q(y) of the errors X and Y are 

(b) The probability density at ( x ,  y )  depends only on the distance r = 

(c) The errors in x and y directions are independent. 

continuous . 

( x 2  + y2)1’2 from the origin (radial symmetry). 

Then the p.d. of deuiation Z in any direction is the normal density 

- z ~ / Z d ,  

.J2,‘ 
Using (b) and (c), the density at ( x ,  y )  is 

p(x)q(y) = s(r), r2  = x2 + y2.  (3a. 1.1) 

Putting x = 0, we find that the functions s and q are proportional and putting 
y = 0, that s and p are proportional. Therefore the functional equation 
(3a.l.l) reduces to, writingf(x) = log[p(x)/p(O)] ,  

f ( x )  + f ( y )  = f ( r ) ,  r 2  = x 2  + y z .  (3a. 1.2) 

Further, f ( x )  = f ( - x )  = f ( I x I ) ,  obtained by putting y = 0, x = -x  in 
(3a. 1.2). Hence, if 

x 2  = x12 + x22 ,  

f ( r )  = f ( y )  + f ( x , )  + f ( x 2 ) ,  r 2  = Y 2  + x * 2  + xz2,  

and so in general 

f ( r )  =f(xl) + + f ( x k ) ,  Cxi2  = r 2 .  
Choosing k = n2 and putting x = x1 = * = x k ,  we see that 

f ( n x )  = n2f(x)  or f ( n )  = n 2 f ( l )  for x = 1. 

For x = m/n where m is an integer, 
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where c =f(l), so that f ( x )  = cx2 for all rational x,  and because of con- 
tinuity the relation is true for all x.  Hence 

p(x )  = p(0)ecxl. (3a. I .3) 

For (3a.1.3) to be a probability density, c must be negative and may be 
written as - 1/2a2. Integrating (3a. I .3) from - co to co and equating the 
result to unity we find p(0) = l/a,/%, so that 

(3a.l.4) 

which is the famous normal distribution, N(0, a’) with E(x) = 0 and V(x)  = a2 
already introduced in 2c.5. 

The joint p.d. of the errors X, Y is 

The error in any direction (cos 0, sin 8) is Z = Xcos 8 + Ysin 8. To find the 
p.d. of Z, consider the transformation 

z = x cos 6 + y sin 8, 
u = x sin 0 - y cos 8. 

The Jacobian of the transformation D(z, u) /D(x ,  y )  = 1. The density (3a.1.5) 
transforms to 

which shows that U and Z are independent and the p.d. of 2 is 

1 e - 2 2 / 2 a 2  

aJ2n 

which is the required result. 
The normal distribution with E ( X )  = p and variance o2 has the density 

(3a.1.6) 
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(ii) MAXWELL'S HYPOTHESIS. Maxwell arrived at the normal distribution 
in deriving the distribution of velocities of molecules under the following 
assumptions : 

(a) The components of velocity u, v ,  MI in three orthogonal directions are 

(b) The marginal distributions of u, v ,  w are the same. 
(c) The phase space is isotropic, that is, the density of molecules with given 

velocity components is a function of total velocity and not the direction. 

Iff(.) denotes the probability density of any component of velocity, the 

v 2  = uz + v 2  + w 2 ,  (3a. 1.7) 

similar to the equation (3a.1.1). Hence f ( u )  is of the form (3a.1.4) which is 
normal distribution for any single component of velocity and 

g ( v )  = const. e-a(u2+u2+w*). (3a. 1.8) 

It has been pointed out by Mayer and Mayer (1940) that the assumptions 
(a) and (b) are not necessary to establish the normal law. 

Using the assumption (c), let g(V)  be the density at the point (u, v,  w). From 
the principles of physics (preservation of kinetic energy under collision of 
molecules) it can be deduced that 

g(VI)g(v,) = g(v;Ig(v;) ,  (3a. 1.9) 

independently distributed. 

assumptions (a) to (c) lead to the functional equation 

f ( u )  f ( v ) f ( w )  = g ( V ) ,  

when the velocities V, ,  V , ,  V;,  V; satisfy the relation 

V,2 + V22 = (V;) ,  + (V$. (3a.1.10) 

The only solution of g ( V )  under the condition (3a.1.9) with the restriction 
(3a.1.10) is (3a.1.8), that is, each component of velocity is normally distributed 
and the distributions of the components are independent. 

(iii) LIMIT OF THE BINOMIAL (DE MOIVRE'S THEOREM). Let r be the number 
of successes in n Bernoulli trials with probability n for  success and define the 
random variable 

r - nn 
x = -  4 = (1 - n). 

J+' 
Then the limit d.f. of x is normal. 

The c.f. of  I' is, as shown in (2b.4.8), 
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and the c.f. f,(t) of x is 

q e i t x )  = ,qeit(r-nx)/Jn"d 1 
1 = e-  i tnn lJn~+E(e i t r / Jnn+ 

= e- i tnn /JnZj  

= ( 4 e - i t n / J n 3  + n e ~ ~ + / J n i i  n 

(4 + n e i t / J n 4  n 1 
) .  

Observing that 

err = 1 + (iz) + * - + (iz)k/k! + O ( Z ) ~ ,  

and expanding the exponentials inside (3a. 1. I I ) ,  we find 

(3a.l.11) 

t2  
f , ( t )  = [I - + ~ f ~ ) ] ~ + e - ~ ' i :  as n + co (3a.1.12) 

which is the c.f. of N(0,  1). Hence by the continuity theorem [(iv), 2c.41, the 
limit d.f. of x is normal. In effect the result (3a. 1.12) means that for large n, the 
d.f. of the binomial variable r can be approximated by the d.f. of a normal 
variable with mean nn and variance nn+. 

The result (3a.l. 12) is, however, a special case of the central limit theorem 
established in 2c.5, which says that the limiting distribution of the average of n 
identical and independently distributed random variables with finite mean and 
variance is normal in some suitably defined sense. 

(iv) HAGEN'S HYPOTHESES (THEORY OF ERRORS). Hagen based his proof 

(a) An error is the sum of a large number of infinitesimal errors, all of equal 

(b) The direrent components of errors are independent. 
(c) Each component of error has an equal chance of being positive or negative. 

By assumption (c), each component of error takes the values fs with 
If 

of the normal law of error under the following assumptions: 

magnitude, due to different causes. 

probability f- for each, so that the mean is zero and the variance is 
x = el + * + E ,  is  the total error due to n independent components, then 

E(x) = E ( E ~ )  + * * + E(E,) = 0, 
V(x) = C V(EJ = n 2  = cr2 (say). 

Let us find the limiting distribution of x as n + 00 and E -+ 0 in such a way 
that g2 is finite and fixed. The c.f. of E, is 

+(elrc + e-  
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and that of x = c1 + + E, is 

which is the c.f. of N(0,  a2). 

(v) SUM OF n INDEPENDENT NORMAL VARIABLES. Let x I ,  . . , , x,  be n 
independent normal variables with the mean and variance of x, as pj and 
a,'. The c.f. of the sum x = x1 + + x,  is the product of the c.f.'s of 
xlr . . . , x,. Using the result (3a.1.6), we have 

so that the sum is exactly normalb distributed with the mean equal to sum of 
the means and the variance equal to sum of the variances. Hence the average 
2 = (xl  + . . + x,)/n - N ( p ,  a'), where 

al' + + a,' 
n' , a 2 =  PI + * * *  + P n  P =  

The central limit theorem establishes the asymptotic normality of the sum 
of random variables, independently to some extent of the nature of the dis- 
tributions of the variables. If the sum of n independent variables is exactly 
normally distributed what can we say about the distribution of each variable? 
There is a famous theorem due to Cramer (1937) which asserts that ifthe sum 
of n independent variables is normally distributed, then each variable is normally 
distributed. 

(vi) MAXIMUM ENTROPY FOR GIVEN MEAN AND VARIANCE. Consider a 
one-dimensional random variable with probability density (p.d.), p(x)  and 
define entropy of a distribution by 

The significance of entropy and its role in the study of distribution of particles 
in physics are discussed in 3a.6. Let us determine p(x)  defined on the range 
(- co, oc)) such that (3a.1.13) is a maximum subject to the conditions 

where p and a' have given values. 
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I t  is shown in (le.6.6) that for any two alternative densities p and q 

- J p  log P 4 d” < 0. 

Choosing log q = a + p(x - p )  + y(x - p)’ where a, p, y are determined such 
that (3a.1.14) is satisfied with q in the place ofp, we find 

- j p  log p dx < - I p  log q d x  = - J p [ a  + P(x - p )  + y(x  - p)’] dx 

= - (a  + yo’) 

by using the condition (3a.1.14) for p .  Hence - (a + yo’) is a fixed upper 
bound to entropy when p(x )  satisfies the conditions (3a. 1.14). But this value is 
attained when p is chosen as 

Iogp = a + P(x - p)  + y(x - p)2 

or 

P = expb + P(x - P)  + v(x - d21. (3a. 1 . 1 5) 

We have to satisfy ourselves that a, p, y can be determined to satisfy (3a. 1.14). 
From the form of (3a.1.15) it  is clear that the choice 

a = -log(JG a), p = 0,  y = -fa2 

satisfies (3a. 1.14). Thus the normal distribution is characterized by the property 
of having the maximum entropy for given mean and uariance and the range 
(- 00, co) for the tlariable. The reader may satisfy himself that the solution 
(3a. I .  15) is essentially unique, since 

P l p  log 4 dx = 0 

implies that p and q are almost everywhere equal (see le.6.6). 

(vii) SQUARE OF A NORMAL VARIABLE. Let x - N@, a’). The problem 
is to determine the distribution of y = x 2 .  For a given y there are two values 
of x ,  (kx )  so that the transformation is not one-to-one. The p.d.’s for x and 
- x  transform to (observing that dy  = 2x dx) 

and 

exp[ -<-& - 4 2 1  

2a2 
( 2 a J C y )  - ’ 
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so that the total density of y is, using (3.2), 

(zaJ2ny)- 1 e- (Y+a2) /2az  Ce r J W  + e-'J;/"'] 

(3a. 

If p = 0, the p.d. of y is 

.16) 

.17) 

= 0, y G O  

which is known as Rayleigh distribution in theoretical physics. 
This is a particular case of a more general density function, G(yla,p)  = 

c. e-ayyp-l ,  which is called gamma distribution, C(a, p), whose properties are 
discussed in 3a.2. 

3a.2 Gamma Distribution 

The general gamma distribution has the p.d. 

o < x < m .  

(i) The rth raw moment is seen to be r@ + r ) / a T ( p )  so that 

E(x)  = p / a  and V(x)  = p/a2. 

(ii) Let x i  - C(a, pi) ,  i = 1, . . . , k be all independent. Then 

X i  + " '  -t Xk G(a,p = c p i ) ,  (3a.2.2) 

that is, the gamma distribution has the reproductive property like the normal 
distribution but not for variations in both the parameters. 

The c.f. of xi is 

seifxJC(xjI a ,  pi) d x j  = - 
(a :  it)". (3 a. 2.3) 

Then the c.f. of x1 + * * * + xk is [a/(. - it)]p, which establishes the result. The 
result is not true ij'the parameter a is not the same for  all x i .  

(iii) Let x - G(ac,p,) and y - G(a,p2) be independent. Then r = x + y and 
f = x/y  are indl  , wdently distributed. The distribution of r is C(a, p1 + p2)  and 
that o f f  ib ,' (2pl, . 'p2) as defined in (3a.2.6). 
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The joint distribution of x and y is 

c, e - a x - a ~  x p i - 1  y PI- 1 d x d y .  (3a. 2.4) 

Make the transformation x = r sin’ 8, y = r cos’ 8, (0 < r < o0,O < 8 < n/2), 
so that dx dy = 2r sin 8 cos 8 dr do. Expression (3a.2.4) transforms to 

c. e-arrJ’l +PZ-I(sin 8)’Pl-1(cos 8)2pz-1  dr do, 

which shows that r and 8 and hence r and f are independently distributed. The 
distribution of r is G(a, p1 + p2)  and 8 alone is 

with the constant supplied. Now 

x sin2 8 
f=-=-= tan’ 8 

y C O S ~ ~  

df = 2 tan 8 sec’ 8 d8 = 2 sin B/cos3 8. 

By substituting in (3a.2.5), the p.d. off which is the ratio of two independent 
gamma variables is 

(3a.2.6) 

A converse of proposition (iii) characterizing a gamma distribution is given 

(iv) Let x - C(a, p I )  and y - G(a, p2).  Then the p.d. of g = x/ (x  + y )  is 

by Khatri and Rao (1968b). 

which is called the beta distribution, B@,, pz ) .  

(3a.2.5). 
The result (3a.2.7a) is obtained by making the substitution g = sin2 8 in 

In the special case when p1 = p z  = f, the beta distribution has the p.d. 

n- Ig- I/Z(] - g)- I/’ (3a.2.7b) 

and the d.f. 

2n-1 sin-’ g 112 (3a.2.7~) 

and, for this reason, (3a.2.7b) is called the arc sine density. 
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(v) WAITING TIME DISTRIBUTION. Consider the occurrence of events over 
a period of time subject to the condition that the occurrences in two non- 
overlapping intervals of time are independent. Let q(t) be the probability 
that in a time interval t no event has occurred. If tl and t, are two consecu- 
tive intervals, then by the hypothesis of independence we have 

q(t,)q(t2) = d t ,  + f2)1 

which if q is continuous has a solution of the form 

q(t) = e-". 

Hence the distribution function of waiting time for an event to happen is 
1 - e-". The probability density is 

(3a.2.8) 
d 
- (1 - e-A:) = Ae-if = G(t l l ,  11, dr 

which is a special case of the Gamma distribution (3a.2.1). It is easy to 
deduce that the waiting-time distribution for k events to happen is G(1, k). 

Suppose the waiting-time distribution for an event to happen is as (3a.2.8). 
What is the probability P(n, t) that n events happen in given time t ?  Let t,, . . . , 
t, be the time intervals at which the n events happen, and let no event happen 
in the period t i  to t. Then the probability for n events up to t is 

over the region R: t1 + * * + t,  < 1. lntegrating over R, we find that P(n, t )  = 
e-"(At)"/n! which is the Poisson probability. 

The 1' Distribution. The special case of the gamma distribution with 
o! = f. and p = k/2,  where k is an integer is called the x 2  distribution on k 
degrees of freedom (D.F.). The density function is 

from which we have the following results. 

(vi) Let xi N ~'(k,), i = 1, . . . , m, be independent; then 

(3a.2.9) 

(3a.2.10) 
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(vii) Let x1 - ~ ’ ( k , ) ,  x2 - x2(k2) be independent, then thep.d. off = xl/x2 is 

and the p .d .  of g = xl/(xl + x2) is 

(3a.2.11) 

(3a. 2.1 2) 

(3a.2.13) 

(3a.2.14) 

The result (3a.2.10) is the same as (3a.2.2), and (3a.2.11) is the same as 
(3a.2.6) except for change of notation. The result (3a.2.12) is obtained by 
changing the variable f to F =fk2/k ,  in (3a.2.11). By transforming the variable 
F to z = 2- ’  log F in (3a.2.12), we have (3a.2.13). (3a.2.14) is the same as 
(3a.2.7a). 

The distribution (3a.2.12) is called Fisher’s variance ratio distribution 
and (3a.2.13) is Fisher’s z distribution (Fisher, 1924). These distributions are 
important in tests of significance. 

(viii) The c . 5  of ~’(k) is (1 - 2it)-k/2, by substituting o! = (1/2), p = k/2 in 
(3a.2.3). 

The first four moments of x2(k)  are 

pi = k (degrees of freedom) 

p 2  = 2k, p 3  = 8k, p4 = 48k + 12kZ. 
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3a.3 Beta Distribution 

The beta distribution involving two parameters y ,  6 has the p.d. 

0 < x < 1, B(xl y ,  6) = [P(y, 6)]-'xY-'(l - x)'-', (3a.3.1) 

where p(y, 6) is the beta function r(y)r(b)/r(y + 6). 

(i) The sth moment about the origin is 

[P(y, 6)l-I / ~ ' + ~ - ' ( l  - x)'-' dx = p(s + y ,  6)/p(y, 6)  (3a.3.2) 

so that E(x)  = y / ( y  + S), V(x)  = yS/(y  + S)'(y + 6 + 1). 

(ii) I f  x and y are independent beta variables with parameters (y,,  6,) and 
( y 2 ,  6J, the distribution of u = x y  is also beta with parameters ( y 2 ,  6 ,  + 6,) 

To establish this, make the transformation u = xy,  u = x. The region 
(0 < x < 1,O < y < 1) in the ( x ,  y )  plane transforms to the region 
(u < v < 1,O < u < 1) in the (u, u) plane. The Jacobian is D(x,y) /  
D(u, u)  = l/u and 

i f r ,  = Y2 + 8 2  * 

c. xYI-'(l - x)'l-'yYl-'(l - y)Jl- '  dx dy 
= c. (1 - u ) J I - l u Y l - I  (U - u)"-' du du. 

By integrating over v, from u to 1, the distribution of u is 

c. uYa-'(l - u ) d i + d l - l  du. (3a.3.3) 

(iii) In general the product of k beta variables with parameters (yl, d1), . . . , 
(Yk, 6,) such that y ,  = y l +  I + a l +  ,, i = 1, . . . , k - 1, is also a beta uariable with 
parameters (n, 6, + 

(iv) A special case of the beta distribution is the rectangular distribution 
B(xl 1, 1) dx = dx, where the density function is unity. This distribution 
arises in a natural way when we consider any stochastic variable u with the 
probability differential f ( u )  du and wish to find the distribution of the variable 
x defined by 

* + dk). 

(3a.3.4) 

which represents the d.f. of u. Since dx = f (u) du, the p.d. of x is simply 1. 

(v) PEARSON'S pA STATISTIC. Let x have a rectangular distribution. If 
y = -2 log, x ,  then dy = ( - 2 / x )  dx and therefore the distribution of y is 
2-1e-Y/2 dy, which is G(i ,  1) or ~ ~ ( 2 )  as defined in (3a.2.9). If x, ,  . . . , x k  



3a UNIVARIATE MODELS 169 

are k probabilities (3a.3.4) associated with k independent observations u l ,  . . . , 
uk from k possibly different populations, then the statistic 

PA = -2 log, x1 - * * *  - 2 loge xk 3, (3a. 3.5) 

being the sum of k independent x 2  variates each on 2 D.F., is itselfdistributedas 
x 2  on 2k D.F. 

This distribution is useful in combining several independent significance 
tests of statistical hypotheses. 

3a.4 Cauchy Distribution 

Consider a radioactive source from which a-particles are emanating and 
let us find the distribution of particles hitting a two-dimensional screen. 
Let the screen be at a perpendicular distance 6 from the source. Consider 
orthogonal axes (x‘, y’)  through the source in a plane parallel to the screen. 
The direction in which an a particle emanates may be specified by two 
coordinates-the angle 4 of the direction with the perpendicular to the plane 
and the angle 0 the projection of the direction on (x’,  y’) plane makes with the 
x‘ axis. We assume that the statement, “the direction in which an a particle 
emanates is random” is equivalent to, “that equal areas on a sphere round 
the source have the same probability of receiving an a particle.” Or, in’other 
words, the probability that a particle hits the region defined by (8, 8 + do), 
(+,$ + &) on the sphere is 

c. sin 4 d8 d4 ,  (3a.4.1) 

which is the element of area on the surface of the sphere. What we wish to 
find is the joint distribution of the coordinates (x ,  y )  of hits by particles, in 
reference to (orthogonal) axes with an arbitrary origin, on the screen. In 
reference to the (x, y )  axes, let the coordinates of the foot of the perpendicular 
from the source to the screen be (p,, p2). Then we have the relations (8 being 
the length of the perpendicular), assuming that the x and y axes are parallel to 
the x‘ and y’ axes, 

x = p1 + 6 tan 4 cos 8 
y = p2 + 6 tan 4 sin 8 

dx dy = b2 sin 4 cos-’ r j  d8 drj. (3a.4.2) 

The substitution in (3a.4.1) yields the joint distribution of ( x ,  y )  

C. [a2 + (X - ~ 1 ) ~  + @ - ~ 2 ) ~ ] - ’ ’ ~  dx dy (3a.4.3) 
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which may be called a bivariate Cauchy distribution. Integrating with respect 
to y the marginal p.d. of x alone, with range (- oo, oo), is 

(3a.4.4) 

where p is written for pl, which is known as the one-dimensional Gauchy 
distribution with a location parameter p and scale parameter 6. The same 
distribution (3a.4.4) arises when we consider a one-dimensional barrier and a 
point source at a perpendicular distance 6, the variable being the distance 
measured from an arbitrary origin of a point where the o! particle hits the 
barrier. 

The distribution (3a.4.4) is symmetrical with.modal value at x = p/6. The 
expected value of x is 

6 t m  x d x  
E ( x )  = ;Im 6 2  + (x - p)2' 

but the integral does not exist, although it has the principal value 

6 t m  x d x  
lim - 

m-+m I, 6 2  + ( x  - = p *  

The second moment is infinite. We thus have an example of a continuous 
distribution for which the mean and variance do not exist. 

The c.f. of (3a.4.4) is 
eiwe- 1w. (3a.4.5) 

The c.f. of the mean of n independent observations from n Cauchy populations 
with location parameters pl, . . . , p,, and same scale parameter 6 is 

eJtPe-lfdl, (3a.4.6) 

where p = (pl + + p,,)/n. Hence the mean of n observations has again a 
Cauchy distribution with the location parameter as the average of individual 
location parameters. For observations from the same Cauchy population, we 
see that the mean of any number of observations has the same distribution as 
any single observation. 

Thus, the law of large numbers of 2c.3 describing the behaviour of the mean 
as the number of observations increases does not hold in the case of the 
Cauchy distibution. 

3a.5 Student's t Distribution 

defined the statistic 
(i) Let y - N(0,l) and x - xz(k) be independent variables. Student (1908) 

(3a.5.1) 
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which is the ratio of a normal variable to the square root of an independent 
x2  variable divided by the D.F. The joint distribution of y and x is 

c* e - Y * / 2 e - x / 2 x ( w ) -  1 d y  d x .  (3 a. 5.2) 

By making the transformation to polar coordinates (0 < r < a, - 4 2  < 

(3a.5.3) 
8 < m, 

y = r sin 0, x = r 2  cos2 0, dx dy = 2r2 CDS 0 dr d0 

c. e-'z'2rk(cos S)k-' dr d0. 
(3a. 5.2) transforms to 

(3a.5.4) 

The distribution of 8 alone, which is seen to be independent of r ,  is 

c. (cos O ) k - l  do = [/?(:, 5)] -'(COS O)k-'  do, (3a.5.5) 

thus supplying the constant to make the total integral unity. The statistic 
whose distribution is to be found is 

dt = Jk sec2 8 d8 = dk 1 + - do. ( 3 
The expression (3a.5.5) transforms to 

2 - ( k + l ) / 2  

S ( t I k ) d t =  [dL/?6,9]-'(1 + @  d t ,  (3a. 5.6) 

which is called Student's t distribution on k degrees of freedom and is repre- 
sented by S(k) .  

(ii) Let y - N ( p ,  a2) and (x/a2)  - xz(k)  be independent. Then 

(3a.5.7) 

Result (3a.5.7) is obtained by observing that ( y  - p)/a - N(0,  1) and apply- 

(iii) Let y - N ( p ,  u2) and (x /02)  - x2(k) be independent. Then theprobability 
ing (3a.5.6) to the ratio of [ (y  - p)/a] to ( X / ~ U * ) ~ / ~ .  

density o f t  = y/(x/k)'/' is 

f .(" + + ')($( 2r2 )'", (3a.5.8) 
kh/2 ,-a'/2 

2 k + t 2  
S ( t ) k , d ) = - 1 -  r ( k / 2 ) ( k  + t 2 ) ( k + 1 ) / 2  s = o  

where 6 = p/u, which is called the noncentral t distribution. 
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The joint distribution of y and x is 
e-  ( Y  - l ~ ) " / 2 " ' ~  - x / a ; ( ( k / 2 ) -  1 d y  dx, 

c 1 - '  = J% a0~2~/ ' r (k/2) .  

If we make the transformation as in (3a.53,  

y = r sin 8, x = r 2  cos2 8, 

we see that the joint density of r and 8 is 
c 2  ,-(r'-2prsinb')/Za' r k (cos 8)k-1 d r  do, (3a. 5.9) 

- C l e - ~ 1 / 2 a 1  cle-d2/2, 
c2 - 

which shows that r and 8 are not independent as in (3a.5.4). Let us expand 
exp(pr sin 8/a2) and write (3a.5.9) in an infinite series 

( p  sin 8 ) s r k + s  
s !  a zs 

c 2  e-r*/2a1(cos qk- (3a.5.10) 

Integrating out term by term with respect to r in (3a.5.10) we obtain the 
density of 8 as 

But t = J k  tan 8. Transforming from 8 to t and using the value of c2 in 
(3a.5.9), we finally obtain the distribution o f t  as (3a.5.8). 

The noncentral beta and f distributions are derived in Example 17 at the 
end of the chapter. 

3a.6 Distributions Describing Equilibrium States in Statistical Mechanics 

Consider a general space (for instance, phase space in physics) with the 
coordinate system xl, . . . , x, and define a density function p ( x l ,  . . . , x,) 
which is the limit of ratio of number of particles (such as molecules) in a 
small volume Av around the point (xl, . . . , x,) to Av. A system may be 
said to be in equilibrium if the distribution of particles is as close as possible 
to equidistribution over the space consistent with the kinematic restrictions. 
For instance, a particle occupying the position (xl, . . . , x,) will have an energy 
E(x , ,  . . . , x,,,). One restriction that may be imposed is that the average energy 
per particle be a given constant c, which is expressed by the relation 

/ E p d u = c ,  (3a.6.1) 

where dv represents the volume element. Our aim is to determinep which is as 
close as possible to the uniform distribution subject to the condition (3a.6.1). 
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For this we need an index of closeness of a given distribution to a uniform 
distribution. One such measure with large values indicating a high degree of 
closeness, 

- J P  log P dv (3a.6.2) 

is called entropy of the system. The problem then, is one of maximizing (3a.6.2) 
subject to the condition (3a.6.1). 

(i) The optimum choice of p ,  for which - Jp log p dv is a maximum subject to 
JEp dv = c is 

(3a.6.3) p = elE+fi = uelE, 

where u is chosen such that j p  do = 1. 

In (le.6.6) we proved the inequality 

j p  log P do 2 0 (3a.6.4) 

for any two alternative densities, which implies 

if we choose log q = I E  + p and make use of (3a.6.1) and the fact that 
integral of p is unity. Let I and p exist such that 

I q  do = 1 =/eAE’p do, 

I Eq do = c =I EelEE+” do. 

Then from (3a.6.5), i t  follows that the quantity ( - I c  - p)  is a fixed upper 
bound to (3a.6.2), which is attained for the choice 

p = exp(IE + p) = u exp(IE). 

Solution (3a.6.3) is known as the Maxwell-Boltzmann distribution. The 
constant I is written - l /kT where T is temperature and k is Boltzmann’s 
constant. We shall consider a few applications. 

Helly’s Law for the Equilibrium of Sedimentation. Assume that the energy of 
a particle of mass m depends only on position coordinates. For example, let 
the particles be in the earth’s gravitational field and have a potential energy 
E = mgz at altitude z.  The number of particles between heights z and z + dz, 
in an equilibrium state according to the distribution (3a.6.3), is 

Ae-mPlkT dz. (3a.6.6) 
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Thus, if the particles are in suspension in a liquid the number of particles must 
decrease exponentially with height, and this is actually observed. 

Angular Distribution of Axis of Elementary Magnets in a Magnetic Field. The 
potential energy of a small magnet of moment p in a field H i s  given by 

E = - p ~ c o s  8, 

where 8 is the angle that the axis of diapole makes with the field. The space 
in this case is the surface of a sphere representing the direction cosines of the 
axis of diapole. The density at any point of sphere is 

9 (3a.6.7) A ~ P H  cos8lkT = A ~ K  cos8 

writing K for pH/kT. Observing that the surface element in polar coordinates 
is sin 8 d8 dc$ we can evaluate the constant A by the relation 

The density (3a.6.7) can then be written 

e K C O S 8  

471 sinh K 
(3a. 6.9) 

This distribution is used by Fisher (1953), Watson (1956), and Watson and 
Williams (1956) in analyzing samples of directions of remanent magnetism in 
rocks. 

Maxwell’s Distribution of Velocities. Let x, y, z be position coordinates and 
u, u, w be velocities in three orthogonal directions of particles in ideal gas. 
The kinetic energy of a particle with coordinates (x, y, z, u, II, w )  is E = 
u3 + u2 + w z .  Hence the probability differential corresponding to the optimum 
distribution (3a.6.3) of particles is 

Ae-(”2+”’+w’)lhT du do dw d x  d y  d z .  

By integrating over x, y ,  z ,  the distribution of velocities alone is 

du dv dw,  (3a. 6.1 0) 

which shows that the velocities in the three directions are independently dis- 
tributed and each component has a normal distribution. For further applica- 
tions of (3a.6.3) the reader is referred to Theoretical Physics by Joos (1951). 

We can try other measures of closeness to a uniform distribution such as 

(u2 t v l +  w’)/kT 

(3a.6.1 I) 
1 - a  
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as an alternative to (3a.6.2) and find p to maximize (3a.6.11) subject to the 
condition (3a.6.1). Instead of (3a.6.1 I )  we may choose 

JP' do (3a.6.12) 

and maximize or minimize according as a < 1 or > 1. Using the mean value 
theorem to the integrand, we can write 

/ ( p a  - q') do = / ( p  - y)aq'-' do + /m(m - l)(p - 4)*ra- '  du, (3a.6.13) 

where r E (p, q). Let us choose f-' = (1E + p) where L and p are such that 
from the condition (3a.6.1), 

14 dv = 1 = j ( 1 E  + p)""- ' )  du 

S E q  do = c = E(LE + p)"('-') du. I 
By substituting for @ - I ,  the right-hand side of (3a.6.13) reduces to 

I a(ct - I)(p - q)'ra-* do >< 0 according as a >< 1, 

which give Jp"  do >< q" dv according as a >< 1,  for the special choice of q. 
Thus the extremum of 5 pa du is attained when 

p = (A5 + p)l'(a- I ) ,  (3a.6.14) 

which provides a family of equilibrium distributions alternative to (3a.6.3). 
The relevance of these distributions in actual physical situations is worth 
examining. 

3a.7 Distribution on a Circle 

There are many practical situations where the basic variable under observation 
is a direction in two dimensions or simply an angle. In such a case, the sample 
space consists of points on a unit circle, and we have to consider probability 
measures on Bore1 sets on the circumference of a circle. Such distributions are 
called circular distributions (CD). When the disliibution is absolutely con- 
tinuous with respect to Lebesgue measure on the circumference of the unit 
circle, i t  can be specified by its density functionf(x), where x is the angle 
measured from a chosen direction, which is a periodic function (with period 
2n) satisfying \ 

f ( x )  3 0, jo2>(x) dx = 1, 0 < x < 2n. (3a.7.1) 
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Before discussing special cases of CD’s, we consider some peculiarities of 
these distributions in general. Let x be the angle measured from a chosen 
direction and y be the angle measured from another direction at an angle c 
from the original direction. Then 

x = c + y ,  O < y < 2 n - c  
x = y - 2n + c, 2n - c < y 6 2n (3 a. 7.2) 

so that E ( x )  = c + E(y)  need not hold as in the case of translation on an 
infinite straight line. This shows that E ( x )  does not indicate any “preferred 
direction” or a central value of the distribution on the circle. 

Thus if we have independent observations of directions of flights of birds 
(in studying bird migrations) the average of the angles may not be a mean- 
ingful estimate of the direction of their habitat. 

Similarly, i t  can be shown that the variance of x in (3a.7.1) is not invariant 
for a shift of the origin. Thus the usual measures of location and dispersion 
are not meaningful in summarizing data from a CD. 

More meaningful measures in such cases can, however, be constructed. Let 
us represent a point on the circle by the pair of direction cosines, (cos x ,  sin x )  
corresponding to angle x .  It may be seen that if x and y are as defined in 
(3a.7.2), then cos x = cos(c + y) and sin x = sin(c + y)  giving 

- - 
E(cos x )  = E(cos c + y) ,  E(sin x )  = E(sin c + y )  (3a.7.3) 

from which it  easily follows 

E(cos x )  E(cos Y )  cot-’- - - c + cot-’ - 
E(sin x )  E(sin y )  * 

Then a meaningful measure of preferred direction (angle) is 

E (cos x )  
cot-’ -. 

E(sin x )  

(3a.7.4) 

(3a. 7.5) 

From (3a.7.3), it also follows that 

R’ = [E(cos x)]’ + [E(sin x)]’ = [E(cos y)]’ + [E(sin y)]’ (3a.7.6) 

is independent of c. Further, 0 < R’ < 1, where the value 0 obtains when x is 
uniformly distributed (the dispersion is a maximum) over the circle and the 
value 1 when x is concentrated at a single point (dispersion is a minimum). 
Then we may use J1 - R’ as a measure of dispersion. 

Thus, if x l r  . . . , x, are n observed angles from any zero direction, the pre- 
ferred direction may be estimated by the formula 

~. 

c cos xi 
x = cot-’ - C sin x, 

(3a.7.7) 
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and the dispersion by ,/1 - r 2  where 

(3a.7.8) 

Let c;l,. . . , 5; be unit vectors of n observed points on a unit circle 
(corresponding to the angles xl, . . . , x,) and -dp the resultant vector obtained 
by applying the usual parallelogram law on n vectors. Then (3a.7.7) is simply 
the direction of G?, and r as defined by (3a.7.8) is its length divided by n. 
Thus (3a.7.7) and (3a.7.8) constitute a natural way of summarising directional 
data. 

Uniform Distribution. As a basic CD, we may consider uniform distribution 
on a circle with the density 

1 
f ( x )  = G ,  0 < x < 2n (3a.7.9) 

where all directions are equally likely. There is no preferred direction, and the 
measure (3a.7.5) is not defined. 

Circular Normal Distribution. Among the unimodal CD's, the one that has 
found many applications is the circular normal distribution, or what is called 
the von Mises distribution with the density 

f ( X )  = [hIo(K)]-' eXp[K COS(X - P ) ]  (3a.7.10) 
O < X < 2 n ,  0</?,<27t,  O < K < C I ) ,  

where Io(x) is Bessel function of purely imaginary argument. The more general 
function with index n, I,@) is defined by the series 

(3a.7.11) 

Using the density function (3a.7.10) 

E(cos x)  = p cos p, E(sin x) = p sin p, (3a.7.12) 

P = Il(K)/IO(K). 
Then 

P cot-' - = 
E(cos x )  
E(sin x) 

(3a.7.13) 

which shows that P is the parameter representing the preferred direction. The 
dispersion ,/1 - p2 depends only on the other parameter K, small values of K 
representing higher dispersion. Then we may interpret K as a measure of dis- 
persion. 
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If we have n independent observations xl, . . . , xn, then f i  and K are esti- 
mated by the formulae 

c c o s x i  Zl(K) 
cot p = - 9 -- - r  c sinxi I o ( ~ )  

(3a.7.14) 

where r is as defined in (3a.7.8). 

Wrapped-up Distributions. One can obtain a CD by “wrapping a distribu- 
tion on a straight line around the unit circle.” For instance, wrapping an 
N(0, a’) we obtain the wrapped normal with the density 

(3a.7.15) 

Similarly, choosing the Cauchy density 6/n(s2 + x’), - co < x < 00, we 
obtain the wrapped Cauchy with the density 

(3a.7.16) 

where 0 < x < 211 and 0 < o = e-* 6 1. 

Bimodal Distributions. When the circular data have more than one pre- 
ferred direction, we have to consider multimodal, circular distributions. For 
instance, the density 

f(x) = [2ah , (~ ) ] - ’  exp[x cos 2(x - p)] (3a.7.17) 

provides a distribution with an axial symmetry with modes at j and n + /I. 
Another interesting bimodal density is 

(3a.7.18) 

It is easily shown that if (XI, X,) has bivariate normal density with means 
zero, unit variances, and correlation p ,  then x = tan-’(X,/X,) has the density 
(3a.7.18). 

Similarly, one can consider distributions on a sphere when directions are 
observed in three dimensions. An example and characterization of such a 
distribution is already considered in (3a.6.9). 

A detailed treatment of directional data is contained in Mardia (1972). 
Appendix 2.2 of this book contains a table for obtaining K for given r in 
(3a.7.14). See also J. S. Rao and Sengupta (1972) for applications. 
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3b SAMPLING DISTRIBUTIONS 

3b.l Definitions and Results 

The method employed to derive sampling distributions is transformation of 
variables. Usually, a linear transformation Y = AX is made from X + Y 
(column vectors of the same size) by using a nonsingular matrix A. The 
Jacobian of transformation DY/DX is ( A ]  with a positive sign, so that the 
differential elements are connected by the relation 

d y 1 d y 2 * . * d y , =  IAl dxldx2***dxn (3b.l.l) 

which we will represent by dY = IAl dX. When A is an orthogonal matrix, 
IAl = l .  

Two types of transformation matrices are generally used. One is a com- 
pletely orthogonal matrix. It is shown in lb.4 that if A is an orthogonal 
matrix, Y = AX transforms quadratic forms in a simple way 

X‘X + Y’Y 

(X - P)’@ - rc) + (Y - 1)‘(Y - 11, 1 = AP (3b.1.2) 

n, = n) 
that is, preserving distances. 

Another type is the partitioned matrix (where Ai is n, x n and 

A =  ( A1) 

Ak 

with A,A; = 0, i # j, so that the submatrices are orthogonal to one another 
but may not themselves be orthogonal. The transformation Y = AX is 
written using the submatrices 

Y1 = A l X , .  . ., Yk = AkX, 

where Y,, . . . , Yk are exclusive subsets of new variables. Under such a trans- 
formation it is shown in [(vii), lc.11, that 

X’X+Y;B,Yi t ” ’  + YLBkYk 

(x - - p) -9 (yl - 1l)lBl(Yl - ql) + ’ * + (Yk - lk)’Bk(Yk - q k ) ,  
(3b.1.3) 

where Bl = (AiA;)-’ and 1, = A,p.  Result (3b.1.3) shows that the trans- 
formed expression splits up into quadratic forms in exclusive subsets of 
the new variables. When A is fully orthogonal, that is, when each row is 
orthogonal to every other row, full splitting occurs, as in (3b.1.2). 



180 CONTINUOUS PROBABILITY MODELS 

We also make use of some basic notions of vector spaces. A linear manifold 
generated by the columns of a matrix B is represented by A(B).  It is easy to 
see that A ( B )  = A(BB'). 

If H is a matrix of rank k and A(H) c A ( B )  = A(BB'), then there exists a 
matrix C such that 

H = BB'C and k = rank B'C. (3b. 1.4) 

I t  may also be noted that a set of linear equations GX = F admits a solution 

We also record a few other results to make matters simple in  the rest of 
if rank G = number of rows in G ,  whatever F may be. 

our discussions. Let us represent 

ITJ.(xI, . . . , x,,) CIX, . - dx, = h(T) 

T =  dx,,  . , x,), 

asthe result of transformingthevariables xl, . . . , x,, to another set involving T 
as one of the new variables and integrating out with respect all the other new 
variables and dropping the differential dT. Then h(T)  is the probability 
density function of T.  

We also use the following notations of density which have already been 
introduced in Section 3a. 

~ ( x  1 p, a') = (aJZk)- I e - ( x - ~ ) 2 / 2 a 2 ,  - co < x < co 

~ ( x l a ,  p )  = [ ~ P / r ( p ) ] e - " ~ x P - I ,  0 < x < 03 

B ( ~ I p , q ) = [ B ( p , q ) ] - ' ~ ~ - ' ( l  -x) ' - ' ,  O < X  < 1 

X ~ ( X  I k )  = [2"2r(kp)]- l e - x / Z X ( k ' z ) -  I , o < x < o 3  

- ( k  t 1 ) / 2  

S ( x ( k ) =  [&p(;,f)]-'(I +;) I - c o < x < c o  

From what have been proved in Section 3a, we have the following: 
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Results (j) and (k) are the same as (3a.1.17) and (3a.l.16). 

3b.2 Sum of Squares of Normal Variables 

Let x f  - N ( p l ,  02), i = 1, . . . , k be independent variables. What is the distri- 
bution of x = xf2 /a2?  

If  p1 = 0 for all i ,  x12 /02  N ~ ' ( 1 )  and by an application of the reproductive 
property of x 2  under convolution (3b.1.9), x = 1 x , ~ / u ~  - X2(k), or C xi2  - 
a2X2(k). 

If pi  # 0 for at least one i, make the orthogonal transformation Y = BX 
such that the first row of B is ( p l / p , .  . . , C(k/p) where pz = p12 + . - *  + pk2. 
Since the transformation is orthogonal, then 

1 (xi - pi)' = (y1 - PI2 + y2' + ' + yk2- 
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since (pl, . . . , p,,) +(p, 0, . , . , o), so that the joint density of x l ,  . . ., xk 

~1 e x ~ [ - C  (xi - ~li)’/20~1 

transforms to 

c1 exp{ - [(yl - p)’ + y,’ + . * * + ykzI/2az), 

which shows that yI,  . . . , yk are independent and normal, with E(y , )  = 1.1 and 
E(y i )  = 0, i > 1. Since X’X + Y’Y, the given statistic reduces to 

yl’ y,’ + * + y,’ 
X = - +  

6’ a’ 
9 

= u + v .  

Thus v - x2(k - 1) or G[$, (k - 1)/2] and u has the distribution (3b.1.15) 
independently of v .  Therefore the joint distribution of u and u is 

I p‘ 1 k - 1  
e-p2’2“2 r! ($) G ( u  I i, r + f )  du G ( u  1 2 ,  -I-) do. (3b.2. I ) 

Applying (3b.1.5) to each term of the series in the product (3b.2.1), we obtain 
the distribution of x = u + t‘ = c xi ’ /02  as 

(3b.2.2) 

which is called noncentral x’ on k degrees of freedom with the noncentrality 
parameter, A = (p’la’) and denoted by x’(k, A). Note that the noncentrality 
parameter is the value of the quadratic form when expected values are sub- 
stituted for the variables. 

Since the characteristic function (c.f.) of G ( a , p )  is known [see (ii), 3a.21 the 
determination of the c.f. of x2(k, A) reduces to a summation of c.f.’s of 
gamma distributions with coefficients as in (3b.2.2). Hence the c.f. of X‘(k, A) is 

From (3b.2.3) we observe, at once, that the noncentral x’ satisfies the repro- 
ductive property with respect to k and 1. Thus if x i  - x2(ki, &), i = 1, . . . , m 
and are all independent, then 

x = x1 + * * * + x,, - x’(c ki, C Ai). (3b.2.4) 

3b.3 Joint Distribution of the Sample Mean and Variance 

Let x i  - N ( p ,  c’), i = 1, . . . , n be all independent. To find the joint distribu- 
tion of X = (xl  + * * * + xJn and s’ = 1 ( x i  - X)’/(n - I) .  
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Make an orthogonal transformation Y = BX such that the first row of B is 

(a) y, = J ~ x .  
(b) y12 + 

(n-l/’, . . . , n-1/2). The following then are true. 

+ yn2 = x12 + + x,’ = C (xi - X)’ + nXz 
yz2 + ‘ ‘ * + y,z = (n - I)?. 

(c) ( j l  - Jip)’ + yz2 + . + + y.2 = ( X I  - p)2 + . * .  + (x, - p y .  

Because of (c), the density 

(.. - u x ,  -11P l29 .2  

transforms to 

c. p - [ ( y l  - p J n ) ’ t y 2 2  t... ty , ,2 ] /2o’  , 

so that yI,  . . . , y, are independently distributed. Hence 

JnX = y ,  - N ( J n p ,  0’) 

and are independently distributed. Making a change of scale, the joint dis- 
tribution of X and s2 is 

Defining t = J i ( X  - p)/s, we find that i t  is the ratio of J n < X  - p)/o N 

N(0 ,  1) and s/a such that s2 /u2  - (n - l ) - ’~’ (n  - I ) .  Hence, by applying 
Student’s distribution (3b.1.8), f - S(n - 1). 

Distribution of Linear Functions of Normal Variables. Let xi - N ( p i ,  0’) 
i = I ,  . . . , n be n independent variables. To find the joint distribution o f p  < n 
independent linear functions of x,, . . . , x,, which can be written in matrix 
notation, Z = BX, where Z’ = (zl ,  . . . , zp )  and B i s  a p x n matrix of rank p. 

Let p‘ = (pl, . . . , pn). Transform X to U + p so that the new variables U 
have zero mean. In terms of U, Z = B(U + p) or Z - Bp = BU. We shall find 
the distribution of V = BU starting from the distribution of U observing that 
the distribution of Z is obtained by replacing V by Z - Bp. 

Consider the case where the rows of B are orthonormal and thus the matrix 
B can be completed by n - p orthonormal vectors leading to an orthogonal 
matrix C. Let us transform from (u,, . . . , u,) to (ul ,  . . . , t i p ,  u p + , ,  . . . , D,) using 
C. The density 

(.. , - ( r u r ~ ) l Z b ~  ~ (.* , - ( P U l 2 ) / 2 0 2  (3 b. 3.2) 
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so that ui are all independent and normal. The joint density of the subset 
u l ,  . . , , up which are precisely the elements of BU, is 

c. , - ( u , l + - . + v p ~ ) / 2 a ~ =  c. , - V ’ V / 2 d  (3 b. 3.3) 

If the rows of B are not orthonormal, there exists a nonsingular square 
matrix D of order p such that DB has its rows orthonormal. Consider the 
variables W = DV = (DB)U. Since the rows of DB are orthonormal, the 
distribution of W = (DB)U is, using (3b.3.3), 

c. ,-w’W/Zo’ dW = (2n62)-P/2e-w’w/20’ dW 

The distribution of V = D-’W is therefore (if we observe that dW = I DI dV) 

(2na2)- p/2,- V’D’DVIZa’ ( D l  dV. 

But the rows of DB are orthonormal and therefore DBB’D’ = I => (BB’)-’ = 
D’D and IBB’I = 1/)DI2. By denoting (BB’) = A ,  the distributions of V 
and hence that of Z are 

The density function in (3b.3.4), with Bp replaced by an arbitrary vector and 
A by any positive definite matrix is called a p-variate normal density. 

Suppose the number p of functions 2 = BX is greater than n or R(B) < p. 
What is the distribution of Z? The method outlined above leading to the 
density (3b.3.4) fails as BB’ is no longer nonsingular. In fact as the com- 
ponents of Z are linearly related the p.d. of X with respect to Lebesgue measure 
does not exist. However, the distribution is well defined through its charac- 
teristic function 

E(e“’Z) = E(eit’BX) = E(e‘T‘X), T = B’t 
- - ,iT‘p-o2T‘T/2 , using (3a.l.6) 

(3 b. 3.5) - - ,it’Bp-o2t‘BB’tj2 = e -  l t ’ v -  t’rnt/2 

which shows that the distribution depends on the two parameters, 

E(Z)  = v and D ( Z ) = Z  (3 b. 3.6) 

We call the distribution as determined by the c.f. (3b.33, whether density 
exists or not, ap-variate normal distribution and represent i t  by Np(v, C). The 
expression for p.d. exists when 1 C I # 0 as shown in (3b.3.4). Some properties 
of the distribution defined by (3b.3.4) are studied in Section 3b.6, while the 
general case where C may be singular is considered in Chapter 8. A represen- 
tation of the density function when I: is singular is given in 8a.4. 
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3b.4 Distribution of Quadratic Forms 

We shall consider n independent normal variables y ,  N N ( p , ,  I), i = 1, . . . , n 
and discuss the distribution of quadratic forms. Let Y' = (y,, . . . , y,,) and 

(i) FISHER-COCHRAN THEOREM. Let Q , ,  . . . , Qk be k quadratic forms with 

P' = ( P I ,  . . ., Pn)* 

ranks n , ,  . . . , n k ,  such that 

Y'Y = Q, + * a *  + Q k .  

Then an n.s. condition that Q, - x2(ni ,  A,) and are independent is n = 2 n , ,  
in which case A ,  = p'A, p if Qi = Y'A, Y and 1 p12 = 

We use the result proved in (lc.l.2) that any quadratic form Y'AY in n 
variables of rank m < n can be reduced to & x12 & & xm2 by a suitable 
linear transformation from Y to X, that is, Y'AY can be expressed as a 
combination, with coefficients & 1 of squares of m linear functions of Y. 

Let Qi = Y'A,Y. Since rank A, = n , ,  there exist n,  linear functions of 
Y such that 

A i .  

QI = & ( ~ , I Y I  + +b1nyJ2 k . * .  _+ ( b , , , ~ ,  + + b n , n ~ " ) ~ .  

Consider the n ,  linear functions associated with Q,, n2 with Q 2 ,  and so on. 
If n = c n, , there are n linear functions which may be written as BY, where B 
is an n x n matrix. Now c Q, is a combination of squares of n linear functions 
with coefficients k 1, which means 

1 Q ,  = Y'B'ABY, 

where A is a diagonal matrix with each diagonal element equal to + 1  or 

Y'Y = Q, = Y'B'ABY for all Y I = B'AB. (3b.4.1) 

Rank B must be n, and then A = (B')-'B-', which is positive definite, 
Therefore A must have all + 1  in the diagonal, and hence from (3b.4.1), 
B is an orthogonal matrix. The transformation X = BY is orthogonal; 
hence the components (x,, . . . , x,) of X are all independent and normal, But Q, 
is the sum of squares of the first n ,  linear functions in BY and therefore Q, trans- 

and so on. 
Hence Q, are independent since they depend on exclusive subsets of 

independent variables xi. Furthermore, Q ,  is the sum of squares of n,  normal 
variables and therefore by (3b.2.2), Q, - xz(ni ,  A,), noncentral x 2  with 
A, = p'A,p, i = I ,  , , . , k.  ButY'Y - x2(n, p,'), and therefore 1 p12 = C A , ,  
using (3b.2.4). The sufficiency of n = 1 n, is established; the necessity is 
obvious. 

-1. But 

forms to x I 2  + + x,,'. Similary, Q, transforms to xi,+, + + x,,+,,~, 2 
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It may be seen that Q, - x'(ni), that is, a central x 2  when p'Aip = 0, which 
is true if p, = 0 , j  = 1 ,  . . , , n. On the other hand, if all Q, have central x 2  dis- 
tributions, p, = 0 for allj. 

If the readcr is not familiar with noncentral x 2 ,  the Fisher-Cochran theorem 
may be read, substituting 0 for ail p, and l i .  

In the rest of the discussion we shall take p, = 0 for all j for simplicity of 
notation. But the conditions given on the matrices and the results remain 
valid if, instead of a central x2(k), a noncentral x2(k, A) is written. Observe 
that 1 is the value of the quadratic form when the variables are substituted by 
their expected values. The general result established in (i) validates all these 
results. 

(ii) An n.s. condition that Y A Y  has a chi-square distribution is that A is 
idempotent, that is, A' = A ,  in which case the degrees of freedom of x2  is 
rank A = trace A. 

Sufficiency is immediately established since 

Y'Y = Y'AY + Y'(1- A)Y, 

and because A' = A, rank A + rank(1- A) = n (see Example 1.7 at the end 
of Section lb), the Fisher-Cochran theorem applies leading to the desired 
result . 

To prove the necessity we observe that there exists an orthogonal matrix 
C (see lc.3.5) such that under the transformation Y = CX 

Y'AY --* X'C'ACX = AlxlZ + * . * + A, x,' 
(3b.4.2) 

Y'Y --* X'X = XI' + . * .  + X"2 

where Al ,  . . . , A, are the nonzero eigenvalues of A. 
Since xiz - ~ ' ( 1 )  = G(+, +), the c.f. of x j 2  is (1 - 2it ) - ' / ' .  Hence the c.f. of 

A,xlz + a . 9  + AmxmZ is 

(3b.4.3) 

But Y'AY is given to be a x 2 ,  say on p d.f., in which case its c.f. is 

( I  - 2it)-p/'. (3b.4.4) 
Comparing (3b.4.3) and (3b.4.4), p = m and l i  = 1 for all i. Hence from 
(3b.4.2), C'AC is a diagonal matrix with diagonal elements zero or unity and 
is therefore idempotent. This leads to 

[ ( l  - 2iA1t)(l - 2iA2 1) * . *  (1 - 2iA,,,t)]-'/'.  

C'AC = C'ACC'AC 
= C'A~C=. A = A~ (3b.4.5) 

The c.f. of x,' is that of noncentral x' when p, # 0. This brings in an 
extra term in (3b.4.3) and (3b.4.4). The reader may then deduce that (3b.4.5) is 
true. 
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The D.F. of the x 2  is equal to rank A which is the same as trace A since 

(iii) Let Y'Y = Q ,  + Q,, where Q1 - x2(a). Then Q ,  - x2(n - a). 

I f  Q ,  = Y'AY, then by (ii), A' = A. But Q, = Y'(I - A)Y. Since 

A is idempotent [(ii), lb.41. 

(I -A)' = I  + A' - 2A = I - A 

I - A is idempotent. Hence the result. 

Then Q2 - xZ(a - b). 

that Q+xl2  + 
Q2 + X'B, X, both of which are non-negative. Since 

(iv) Let Q = Q ,  + Q,  , where Q - x2(a), Q ,  - x2(b) and Q, is non-negatiue. 

Since Q - x2(a), by (3b.4.2) there exists an orthogonal transformation such 
+ x,' and Y'Y -, xI2 + * + x,'. Let Q ,  + X'B,X and 

x1 + . . + x,' = X'BIX + X'B, X. 

i t  follows that each of the quadratic forms on the right-hand side must involve 
x , ,  . . . , x, only, in which case result (iii) can be applied to establish that 
Qz - ~ ' ( a  - b). 

I t  follows from this result that if A, B, A - B are matrices of non-negative 
quadratic forms and A and B are idempotent, then A - B is also idempotent. 
A direct proof of this result would imply the result of (iv). 

(v) Let Y'AIY - x2(a) and Y'A, Y - x2(b). An n.s. condition that they are 

Since A,' = A,,  AZ2 = A, i t  follows that 

independently distributed is AIA, = 0. 

A1(I - A, - A,) = Az(I - A1 - A,) = 0 

if A,A, = 0. This means 

rank(A,) + rank(A,) + rank(1 - A, - A,) = n. 

But Y'Y = Y'A,Y + Y'A, Y + Y'(1- A, - AJY. Hence an application of 
the Fisher-Cochran theorem shows that the quadratic forms are inde- 
pendently distributed. The necessity is easily established by expressing the 
condition that (A, + A,) is idempotent since Y'(A, + A,)Y - XZ(a + b). 

(vi) Let Y'Y = Y'A,Y + - * * + Y'A, Y. Then either of the following condi- 
tions is n.s. for  Y'A, Y - x2(n1, A l )  where n, is the rank A l ,  i = 1, . . . , k and for  
the set Y'AIY, . . . , Y'Ak Y to be independently distributed. 

(a) Al ,  . . . , A, are each idempotent matrices. 
(b) A , A , = Q f o r a N i # j .  
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Since Ai2 = A;, . -  
n = c trace Ai = I 
establishing the n.s. 

trace Ai = rank Ai and I = A, + 9 * + Ak =$ trace I = 

ni . Hence the Fisher-Cochran theorem applies, thus 
condition (a). Now 

I = A 1  + * * ’ + A k  and AiAj=O+A, ( I -Ai )=O,  

that is, At is idempotent. Hence condition (b) is equivalent to (a). 
We extend some of the above results to the case where yl,. . . , yn are corre- 

lated, more precisely when Y - N,,(v, C) as defined by the c.f. (3b.3.5). We 
observe that when R(C) = r ,  the vector Y has the representation 

Y = v + B X  (3b.4.6) 

where X is an r-vector of independent N(0,  1) variables and BB’ = C. A study 
of a quadratic form in Y can be reduced by the relation (3b.4.6) to the study of 
a quadratic function of X, i.e., of independent normal variables. 

(vii) Ogasawara and Takahashi (1951). Let Y - N,(v, C). An n.s. condition 
that (Y - v)‘A(Y - v) has x 2  distribution is 

ZAZAZ = ZAZ (3b.4.7) 

in which case the degrees of freedom is R(AZ). 

the result (ii), an n.s. condition is that B’AB is idempotent 
Observe that (Y - v)‘A(Y - v) = X’B’ABX using (3b.4.6). Then applying 

B’AB B’AB = B’AB o BB’ABB‘ABB’ = BB‘ABB’, 

or, 
XAZAC = CAZ. 

The degrees of freedom is tr B’AB = tr ABB’ = tr AX, 
If I C I # 0, then the condition (3b.4.7) reduces to 

ACA = A. (3 b .4.8) 

(viii) Let Y - N,,(v, C). A n  n.s. condition that P‘Y and (Y - v)’A(Y - v) 

CAZP = 0. (3b.4.9) 

are independently distributed is 

(ix) Let Y - N,,(v, C). An n.s. condition that 

(Y - v)’A(Y - v) and (Y - v)’B(Y - v) 

are independently distributed is 

CAZBZ = 0 (3b.4.10) 

The results (viii) and (ix) are established in the same way as in the case of 
independent variables. 
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For other results, the reader is referred to Chapter 9 of Rao and Mitra 
(1971). 

There is considerable literature on the distribution of quadratic forms. 
Some references on which the results of 3b.4 are based are, Cochran (1934), 
Craig (1943), Hogg and Craig (1958), Ogasawara and Takahashi (1951), 
Ogawa (1949), Rao (1951a, 1953b, 1961a) and Sakamoto (1944). For further 
references, see Graybill (1961). 

3b.5 Three Fundamental Theorems of the Least Squares Theory 

Consider independent variables 

y i - N ( x I I P I  +. - .+x im/ lm,u2) ,  i = l ,  ..., n, (3b.5.1) 

where xij are known coefficients and pi are unknown parameters. In matrix 
notation, if Y stands for the column vector of the variables y i  , fl for the param- 
eters pi  and X = (xij) for the matrix of coefficients, then 

1 (yi - xila1 - * * - XimPm)’ = (Y - XP)’(Y - XP). 
Hence the p.d. of y,, . . . , y, can be written 

(3b.5.2) 

In this section we shall derive distributions of certain statistics which are 
fundamental to the theory of least squares (discussed in Chapter 4). 

-(Y-XP)’(Y-XP)/Za~* c. e 

(i) THE FIRST FUNDAMENTAL THEOREM. Let 

R,’ = min (Y - XP)‘(Y - XP). 
B 

Then RoZ - a2X2(n - r )  where r is the rank of X. 

Let F be a matrix of order (n x r )  such that its columns constitute an 
orthonormal basis of A(X) .  Supplement the matrix F by G of order (n x n - r )  
such that (F i C )  is an orthogonal matrix. By construction 

F’G = 0, X‘G = 0, G’X = 0, 

and the transformation from Y to Z = (”) = (Z1)Y giving 
ZZ 
Zz = G‘Y ZI = F’Y, 

is orthogonal. The vector XP transforms to 

= F’XP, Tz = G’XP = 0. 

Hence by applying (3b. 1.2) (invariance of distance under orthogonal trans- 
formation), 

(Y - Xfl)’(Y - X N  = (Zl -G1)’(Z1 - TI) + z; 2 2  * 
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The p.d. of Z is therefore 

c. - [(Z, -F‘XB)’(ZI -F’XB) +Z2’Z~l /Za2 
9 

which shows that Z, and Z2 are independently distributed and that of 2, 
alone is 

(.* e-z1’21/2a’. (3b. 5.3) 

But 2, is a vector of (n - r )  variables, which by (3b.5.33 are all independent, 
and N(0 ,02) .  Hence Z; Z, - cr2~’(n - r ) .  Now 

Ro2 = min (Y - XP)’(Y - XP) = min [(Z, - cI)’(Zl - c,) + Z2 Z,] 
P B 

(Z, - F‘XB)’(Z, - F’XB) + Z; 2, = Z; Z,, 1 (3 b. 5.4) 

if we choose B such that Z, = F’XP, which is possible since the number of 
equations is r equal to the rank of F’X, as shown below (see condition 4, p. 8) ,  

r = rank X’ = rank X‘(F i C) 
= rank(X‘F j X’C) = rank(X’F i 0) = rank X’F. 

Note. A more elegant (alternative) approach to the problem of distribu- 
tion of RO2, which uses the knowledge of a projection operator is as follows. 

Observe that (Y - XP)’(Y - XP) is a minimum when XP is the projection of 
Y on A(X). But projection of any vector on A(X) is secured through an 
operator, a matrix P, which is symmetric, idempotent, and of rank equal to 
r = rank X (see lc.4). Thus the projection Y on A(X) equals PY and there- 
fore Y - YP is the perpendicular. Hence 

RoZ = (Y - PY)’(Y - PY) = Y’(1- P)(I - P)Y = Y’(1- P)Y. 

The matrix I - P is also idempotent and therefore 

rank(1 - P) = trace(1 - P) = trace I - trace P = n - r.  

Hence, by applying the n.s. condition of [(ii), 3b.41 on the distribution of 
quadratic forms, we have 

Y’(I - P)Y N oZx2(n - r ,  A),  (3 b. 5.5) 

where 1 is the value of the quadratic form Y’(1- P)Y/a2 at the expected value 
of Y (see 3b.2.2). Thus 

o z l  = E(Y’)(I - P)E(Y) 

= P’X’(1- P)XP = P’(X’X - X‘PX)P = 0, 

since PX = X (since vectors of A(X) remain unaltered by the projection 
operator P). Hence the distribution (3b.5.5) is in fact central. 
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(ii) THE SECOND FUNDAMENTAL THEOREM. Ler H be a matrix of order 
(rn x k )  and rank k such that &(H) c A(X’)  and 

R I 2  = min (Y - XP)’(Y - XP) 
b 

subject to the condition H‘fl = 5 (giuen). Then: 

(a) Ro2 and R I 2  - Ro2 are independently distributed. 
(b) RO2 - a2X2(n - r )  and R I 2  - Ro2 - as a noncentral x 2  on k degrees of 

(c) If H’P = 6 is true, rhen R12 - Ro2 - a2X2(k) and 
freedom. 

R12 - Ro2 Ro2 
-- - F(k, n - r ) .  

k *  n - r  

Since A(X’) = A(X‘X), the condition A(H) c &(X’)* A(H) c 
&(X’X) and therefore there exists by (3b.1.4) a matrix C such that H = X’XC 
and rank XC = k. Make the transformation 

ZI  = D’Y, Z, = G’Y, Z, = C’X‘Y 

where G is as in (i) and D’ is chosen such that D’D = I and orthogonal to G 
and XC. We may note that the numbers of variables in Z1, Z , ,  and Z, are 
r - k, n - r ,  and k respectively. The vector XP transforms to 

rl = D’XP, (2 = G’XP = 0, c3 = C’X’XS = H’P. 

Since the submatrices in the transformation are orthogonal to each other the 
result (3b.1.3) applies. Hence 

(Y - Xfl)’(Y - Xp) = (Zl - D’Xp)’(ZI - D’Xp) + Z; Z, 
+ (Z3 - H’p)’(C’X’XC)-‘(Z3 - H’P). (3b.5.6) 

Writing the p.d. of Z l ,  Z, ,  Z, we find that they are independently distributed. 
In particular Z 3  has the density 

c, e - ( Z 3  -H’P)(C‘X’XC)-’(Z, - H‘B)/202 , 
which is the same as that of k linear functions of normal variables. 

With the result (3b.4.7), the quadratic form 

Q = (Z3 - k)’(C’X’XC)-’(Z, - 5 )  - a ’ ~ ~ ( k ,  A), 
where the noncentrality parameter is, by (3b.2.2), 

1 = a-,(H’fl- S)’(C‘X’XC)-l(H’p - 5). 
Furthermore, R,’ = Z; Z, - a2X2(n - r )  as shown in (i) and is inde- 

pendent of Q. When H’P= 6 is true, A = 0, in which case Q - 02X2(k). 
Results (a), (b), and consequently (c) will be proved if i t  can be shown that 
Q = RI2 - Ro2. 
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Let us evaluate 

R12 = min (Y - XP)’(Y - XP) 
H‘P=k 

min (Z, - D‘Xfl)‘(Z, - D’XP) + Ro2 + Q, [using (3b.5.6)] 
H’p = C 1 

= Ro2 + Q 
provided P exists such that Z, - D’XP = 0 and H’P = 6. This existence is pos- 
sible since the number of equations is r and also 

r = rank X‘ = rank X’(D i G i XC) = rank(X’D j 0 j H) = rank(X‘D j H). 

Note.  An alternative approach using projection operators is as follows. 
First observe that if H’P = 6, then fl = Po + y where Po is a particular solution 
of H’P = 6 and y is a general solution of H‘P = 0. Hence 

min (Y - XP)’(Y - Xfl) = min (Y - XP, - Xy)’(Y - XP, - Xy). (3b.5.7) 

But Xy with the restriction H’y = 0 is a subspace Y c M(X) with 
H’p = 6 H’y = 0 

49“ = rank(X’ i H) - rank H = s (say), 

whether or not H satisfies the condition A(H) c &(X’). Let P be the operator 
for projecting a vector on &(X) and U the operator for projecting on 9’. 
Then rank P = r and rank U = s. Now 

R12 = (Y - XPo)’(I - U)(Y - XPO) 
Ro2 = Y’(1 - P)Y = (Y - Xflo)’(I - P)(Y - XP,). 

Introduction of the factor Xflo in the expression for Ro2 does not alter its 
value. Since (I - U) is idempotent and of rank (n - s), 

R12 - 02x2(n - s, I,) 

where 

a21. = (XP - XP0)’(I - U)(XP - XP,). (3 b. 5.8)  

Now Ro2 - 02X2(n - r )  by the first fundamental theorem and R,’ - R,’ 2 0. 
Hence, applying [(iv), 3b.41, we have 

R 1 2  - Ro2 - a2X2(r - s, I.) independently of Ro2, 

If H’P = 6 is true, then P = flo + y where H’y = 0. Hence 

0 2 i  = (xy)’(~ - u)(xy) = (xy)’(xy) - (xy’)(xy> = 0, 

since UXy = Xy. Thus R,’ - Ro2 N a2x2(r - s), a central x 2 .  
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In the special case A(H) c A(X’) and H is of rank k, 

s = rank(X’ i H) - rank H = r - k * r  - s = k .  (3 b. 5.9) 

Hence RI2 - RO2 - 02,y2(k). 

(iii) THE THIRD FUNDAMENTAL THEOREM. Let Y’ = (Y; j Y;) with the 
corresponding partition of the expectation vector P‘X‘ = B‘(X; i X;) = 
(P’X; j P‘X;). Then the statistic 

(3b. 5.10) 

where q is the number of coluriins in XI, r1 = rank XI and n,  r are as defined 
in ( i ) .  

B y  making a transformation similar to that in ( i i )  the statistic U can be 
expressed as 

x2(4 - r l )  

x2(q - r l )  + X2(n - r - q + r l ) ’  

where the two x 2  variables are independent. Hence by (3b.1.6) the ratio has 
the beta distribution (3b.5.10). 

(iv) A GENERAL THEOREM. Let W be a p-cector and Y be p x k matrix 
of random cariables such that the conditional distribution of W gicen Y 

W 1 Y - N,(Ya, a2G), 

R(Y‘GY) = r ( f i x e d )  with probability 1, 

R(G) = s,  G is  f ree  of Y. (3b.5.11) 

Define the statistics 
TI = d’Y(Y’GY)-Y’d, 

T2 = d’G-d, d = W - Ya,  (3b.5.12) 

for any choice of the g-incierses. Then Tl - a2XZ(r) and T2 - TI - a 2 ~ ’ ( s  - r )  
and are independently distributed so that ( s  - r)T,/r(T2 - TI)  has the F(r, s - r )  
distribution. 

The result is just a restatement of the propositions, (iv)-(ix), in 3b.4. Of 

See also examples 2.1-2.11 at  the end of the Chapter for alternative 
course the theorem is true when Y is nonstochastic. 

proofs and further results. 
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3b.6 The p-Variate Normal Distribution 

Following the expression (3b.3.4) we consider a p-variate normal distribution 
with the probability density 

c. e- (x-p)’z- ‘(X- p)/2 (3b. 6.1) 

where Z, a p.d. matrix, and p a p-vector are parameters of the distribution. 
A more general definition is given in Chapter 8 where the density of X with 

respect to Lebesgue measure may not exist, However, the expression (3b.6.1) 
is of classical interest, and it may be of some interest to study its properties. 

(i) The value ofthe constant c in (3b.6.1) is 

(274 - P I 2  I I: 1 - (3 b.6.2) 

Let us make the transformation Y = I:-’/2X where Ell2 is a square root of 

c. 1 q 1/2e-(Y-v)‘(Y-v)/2, = c- l / Z P .  (3 b. 6.3) 

The components of Y are independently and normally distributed. Hence 
integrating (3b.6.3) term by term we have 

E. The differential dY = 1x1 -‘l2dX, so that the density of Y is 

c. I CI 1’2(2n)P/2 = 1 

giving the value of c as in (3b.6.2). 
Note the significance of the transformation Y = E-1/2X. It shows that the 

study of a p-variate normal distribution reduces to that of p independent 
univariate normal variables considered in 3b.2-3b.5. For instance, to study 
the behavior of a statisticf(X) based on a p-variate normal variable X we 
need only consider the statistic f (I:’l2Y) based on independent univariate 
normal variables Y. We shall illustrate this in the following propositions. 

(ii) E(X) = p, i.e. p is the vector of mean values ofrhe components of X. 

Since X = C1/2Y, E(X) = c ~ / ’ E ( Y )  = c ~ / ~ c - ~ / ~  p = p, using (3b.6.3). 

(iii) D(X), the dispersion (the variance-covariance) matrix of X is C. 

Again we use the transformation (X - p) = Z1/2(Y - v )  and note that 
D(Y) = I, since the components of (Y - v )  are independent N(0, 1) variables. 
Then 

D(X) = D[C’/2(Y - v)] = C’/2D(Y - V)Z”2 

- - C1/2Z1/2 = Z. 

The propositions (ii) and (iii) show that a p-variate normal distribution is 
completely specified by the mean and dispersion of the rhndom vector X. The 
distribution with the density (3b.6.1) is denoted by”,(p, C). 
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(iv) The marginal distribution of any subset of the components of X, say the 

Let X' = (X', ! Xi)  where X1 is the subvector with the first k components of 

first is k is k-variate normal. 

X. Then 

X' = (Xi j Xi) = Y'E1'z = Y'(C, i C1)* x, = c;y. 
Hence using (3b.3.4), X, has k-variate normal distribution, Nk(pl, El l )  where 

W,) = P1, 4x1) = C11. 

Then p, and C,, are appropriate partitions of p and E respectively. 

referred to Chapter 8. 
For further study of the multivariate normal distribution, the reader is 

3b.7 The Exponential Family of Distributions 

Let (R, 9, p)  be a measure space and T,,  . . . , Tq represent q-real valued 
measurable functions over R. Then a typical exponential family of distri- 
butions is characterized by probability density of the form 

f ( W ,  6) = C(e)h(o)exp[C ni(e)Ti<o>], 0 E (3b.7.1) 

with respect to the measure p ,  where 0 E 0, a specified parameter space and 
ni are given functions. The expression (3b.7.1) can also be written in the alter- 
native form 

f (w,  0) = ex~[n(@ + T(w) + 1 ni(e)Ti(o)I (3 b. 7,2) 

where n(0) is obtained from the relation, f(o, 0) = 1 in the discrete case, 
and I f ( w ,  0) dp = 1 in the general case. We may assume without loss of 
generality that there is no linear relationship among I ,  T , ( o ) ,  . . . , T,(o) or 
among 1, n,(e), . . . , n,(e). The functions T,, . . . , Tq may otherwise be func- 
tionally related. 

Many discrete and continuous distributions belong to the class (3b.7. I). The 
reader may verify that the discrete distributions binomial, Poisson, negative 
binomial, etc., and the continuous distributions, gamma, normal, uniform, 
etc., are particular cases. 

For example, if R is the space RP with general coordinates A', , . . . , Xp then 
the family of p-variate normal distributions considered in 3b.6 is determined 

(Ti , . . . ,T ,  )=(Xi,...,A'p,xi2,...,A'P2, xiA'z,A'iA'3,...,A'p-ixp) 

by 

(3b.7.3) 

where q = p + p@ + 1)/2. Thus the exponential family includes the multi- 
variate normal as a special case. Note that in (3b.7.3), T I ,  . . . , Tq are related. 
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Applying the factorization theorem for densities (see 2d.3), we find that 
(T,, , . . , T,) constitutes a sufficient statistic for the exponential family. A 
special class of the exponential family is 

f ( w ,  e) = exp[h(e) + T(O) + el T,(o) + + + e, T,(W)I (3b.7.4) 

where 8 = (el, . . . , 0,) is considered as a vector of free parameters belonging 
to a set 0 c Rq. In such a case, the following propositions are of interest. 

(i) The nalural parameter space is convex. 

(ii) The distribution of a subset (T,, . . . , T,) of statistics also belongs to the 

(iii) The set (TI ,  . . . , T,) is suficient for 0 and their distribution is complete, 

exponential family. 

i.e., 

Ef(T,, . . ., T,) = 0 for each 8 E 03 f ( T ' ,  . . . , T,) = 0 a.e. 

provided 0 contains a q-dirnensional rectangle. 

The model (3b.7.4) can be extended by the introduction of a set of variables, 
XI, . . . , X , ,  defined over a space S. Each response w E R is paired with an 
observable vector (XI, . . . , A',) which influences the response. An extended 
model may be defined by the density 

where a, the normalizing constant, depends on +ij, the parameters, and X i .  
The model (3b.7.5) includes as special cases the conditional distribution of a 
subset of the variables given the rest in a multivariate normal distribution and 
the multinomial logit considered by Bock (1969). Thus the families considered 
in (3b.7.1), (3b.7.4), and (3b.7.5) provide a wide variety of models for use in 
practical work (see Dempster, 1971). 

3c SYMMETRIC NORMAL DISTRIBUTION 

3c.l Definition 

The variables xl, . . . , x, are said to have a symmetric normal distribution if 
their distribution is p-variate normal with &xi) = p (same for all i )  and their 
dispersion matrix is of the form 
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Make an orthogonal transformation 

Y = C X  (3c. 1.1) 

with the first row of C as (1/& . . . , 1/,,/;). It is a straightforward computa- 
tion to show that 

E(Y1) = P J i ,  U Y l )  = (1 + p - l P k 2  (3c. 1.2) 

E(yi )  = 0, v ( y i )  = ( I  - p)a2, i = 2, . . . , p .  (3c. 1.3) 
cov(yi y j )  = 0 for i #j, (3c. 1.4) 

that is, the transformed variables are all uncorrelated. The results (3c.1.2) to 
(3c.1.4) show that 

Yl - N P J i  [1 + (P - 1)pla2> 
yi - "0, (1 - p)a2], i = 2,  . . . , p (3c. 1.5) 

and are all independent. It may be noted that C is precisely the matrix of 
eigenvectors of the matrix D. 

3c.2 Sampling Distributions 

Joint Distribution of Mean and Variance. 
normal distribution. Then the mean X = (xl + 
W = 2 ( x i  - Z)2 i (p - 1) are independently distributed; 

Let xl,  . . . , x,  have a symmetric 
+ xJp  and the variance 

- 
X - N ( p ,  (1 + p  - Ip)a2/p)  and W - (1 - p)u2x2(p - 1). 

Under the orthogonal transformation (3c. 1. l), 

y1  = ,/$ and 

C xi2 = C yi2 
W = y 2 2  + * * + yr2 ,  

and by the result (3c.1.5), y 1  and Ware independently distributed. y1 is normal 
as in (3c.1.5) and W N (1 - p)a2x2(p  - 1). 

As for uncorrelated variables (3b.3.1), the sample mean and the sample 
tlariance of the observations are independently distributed. 

Let us define t as in 3b.3 

Then it easily follows that 

t -  + - I p  S(p  - 1). 
1 - P  

- 
or (1 - p ) t / ( l  + p  - lp) has Student's distribution on ( p  - 1) D.F., S ( p  - 1). 
However, no inference can be drawn on p when p is unknown. 
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Ratio of Sum of Squares between and within Samples. Consider repeated ob- 
servations on ap-dimensional symmetric normal variable. Let the ith obser- 
vation be 

(xli, . . . , xpi) ,  i = 1, . . . , n. 

Define 

(3c.2.1) 

where E is the grand average. If T =  1 c ( x i j  - E)’, we have the relation 
T = B + W. We call B and Was sums of squares between and within samples. 

It has already been established that for each i, X i  and Wi are independent, 
W,, ..., W, are independent as they arise from different samples. Since 

w= w, + * . .  + w, - (1 - p)02x2(np - n). (3c.2.2) 

Similarly, Zl, . . . , X,, are independent and each is normal with the same mean 
and variance (1 + p - lp )a2/p .  Therefore 

w, - (1 - P)02X2(P - 11, 

- 

1 + p - l p  
a2Xz(n - I )  

B 

P P 
- = c ( X i  - E)2 N 

or 
- 

B N (1 + p - l p ) d ~ ~ ( n  - 1). 

Combining the results (3c.2.2) and (3c.2.3) and applying (3b. 1. lo), we have 

(3c.2.3) 

wherefis the distribution of ratio of two chi-squares. When p = 0, 

B W - - f [ n  - I ,  n(p - l)], W B 
- - f [ n ( p  - l ) ,  n - I]. (3c.2.5) 

Also by (3h 1.12), when p = 0, 

(3c. 2.6) 
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Intraclass Correlation Coefficient. Let it be required to estimate the correla- 
tion coefficient between heights of brothers on the basis of measurements 
taken on p brothers in  each of n families. The p measurements on a family 
provide p ( p  - 1) pairs of observations ( x ,  y)-x being the height of one 
brother and y that of another. From the n families we generate a total of 
np(p-  1) pairs from which a correlation coefficient is computed in the ordinary 
way. Let the observations be 

(xli, . . . , x P J ,  i = 1, . . . , n (families). (3c.2.7) 

It will be a good exercise to show, using the notations (3c.2.1) that the cor- 
rected sum of squares S and products P for np(p - 1) pairs ( x ,  y )  obtained 
from (3c.2.7) are 

S = ( p -  1)T, P = p B -  T, 

so that the intraclass correlation is 

which gives the relation 

When p = 0, i t  is shown (3c.2.6) that 

Hence 

U =  (1 - r ) ( p  - 1) ,(n(P - ' 1 ,  "'), 
P 2 2 

The density of u is (by writing the beta distribution) 

c. u [ " ( P -  1)/21- I ( 1  - 

r p  - 1 ) W  1)/21- I ,  (1  + 

1)/21- 1 

and hence that of r (the intraclass correlation) is 
- c, (1 - ).)["(P-1)/21-1 

To find the distribution of r when p # 0, we observe that 

B 1 + ( p  - 1)r 

w - (1 - r ) ( p  - I )  
_ -  

(3c.2.8) 
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and using (3c.2.4) 
- 

n - 1 n ( p -  1 )  
(3c.2.9) 

We can then obtain the distribution of r by change of variable from (3c.2.9). 

A Test for Symmetry with Respect to Means. Suppose that there is a natural 
order for thevariables (x,, . . . , xp),aswhenxi stands forthe heightofa brother 
with parity i in the family. On the basis of observations on n families, is i t  
possible to test whether there are differences in average heights of brothers of 
different parities? 

From the np observations (3c.2.7) let us compute the average height of 
brothers with parity i 

l + p - l r  1 - P  -!(T9 + 
(1 - r ) (P  - 1 )  1 + (P - 1)p 

- (Xi1 + * * .  + Xi”) x .  = , i = I ,  . . . , p  n 

and the sum of squares arising from them: 

Let R = n c  (El,- E)’. We find the distribution of R, as a statistic which 
reflects the differences between parities. 

We recall that the transformation (3c.l.l), Y = CX on the .ith set 
( x , , ,  . . . , xpi) leads to new variables 

.Yli,YZi,-.*,,Ypi, i =  l , . . . , n  
where y l j  are all independent and 

V(yij) = ( I  - p ) d ,  i > I ,  j = I ,  . . ., n. 

We observe the identity 

p n  P ~n 

C 1 Y i j 2  = n c 11.’ + C 2 (Pij - Yi.)’, 
2 1  2 2 1  

W =  PI + Q 2 .  
Since ,/. J , .  - N(0 ,  (1  - p)a2), then Q ,  - (1  - p)a2,y2(p - I ) ,  and since 
y ,  - N(0,  ( I  - p)a2) ,  then W - (1  - ~ ) a ~ ~ ~ ( n ( p  - I)]. Q, is obviously posi- 
tive and hence by an application of [(iv), 3b.41, 

and furthermore Ql and Q, are independently distributed. 

to j l . ,  .. ., j p . .  Hence 
The orthogonal transformation Y = CX on the averages .TI., . . . , f P .  leads 

c x i , ,  = c J,.,. 
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But y, = &X where I is the average of all the np observations. Hence 

Therefore, R has the same distribution as Q,, that is, (1 - p)a2X2(p - 1). 
Since the distribution of R involves the unknown parameters let us define the 
statistic 

R Q 2  (3c.2.10) 

The statistic F of (3c.2.10) has Fisher's distribution F [ p  - 1, (n - l)(p - l)] 
which is independent of unknown parameters p and a. The statistic Freflects the 
differences due to parities as measured by R since Q2 does not involve parity 
differences. Hence it  provides a reasonable criterion for the hypothesis under 
test. Note that T = B + W = B + R + Q2 where T and B are as defined 
earlier in (3c.2.1). Thus Q2 can be computed by the formula T -  B - R 
(using the original observations x,]). The expressions for T, B, R in an easily 
computable form are 

T = x x x i I 2  -npX2 

F=-A 
p - 1 ' (n - l ) ( p  - 1)' 

i.2 - npx2 
1 

R = - ~ x  
n 

3d BIVARIATE NORMAL DISTRIBUTION 

3d.l General Properties 

The multivariate normal distribution has already been introduced as providing 
the sampling distribution of linear functions of independent normal variables. 
The bivariate distribution is no doubt a special case, but it is of some interest 
to examine its properties. The general multivariate normal distribution is dis- 
cussed in detail in Chapter 8, from a different point of view. 

A pair of variables ( x .  y )  is said to have a bivariate normal distribution if the 
density function is 

c. e-QI2  (3d. I .  1) 
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where Q = All(x - <)’ + 2A12(x - t ) ( y  - q)  + AzZ(y - q)’ is positive definite. 
Let us write 

(3d. 1.2) 

where u and u are defined by the equation (3d.1.2). Substituting for Q in 
terms of u and u in (3d.l. 1) we find that u and u are independent and normal. 
A number of results follow as a consequence of this. 

1. It is seen that u - N(0, AZ2/A) where A = A l 1 A z 2  - A l z 2 .  Since u = x - 5 ,  
it follows that E(x) = t and V(x) = AZ2/A = a12 (say). 

2. Similarly by symmetry, E(y) = q and V(y)  = All/A = aZ2. 
3. Independence of u and u implies 0 = cov(u, u) = cov(x, y )  + (Al2/AZ2) 

V(x) = 0, yielding cov(x, y) = -&/A = pala,, where p is the correlation 
between x and y. 

4. In terms of a l ,  c 2 ,  p, 

2P(X - 0 (v - r l )  + (Y - rlI2 
0 1  

5. The marginal distribution of x is N(5,  a12), being same as that of u and 

6. The conditional density of y given x [dividing (3d. I .  1) by the marginal 
similarly that of y is N(q, aZ2). 

density of x] is 

- 1  
= c. exp [Y - r l -  p(’,(x - 4’) 

61 

which is also normal with variance of aZ2(1 - p 2 )  and mean (regression 
function) 

which is linear in x. 
7. By writing aZ2(l - p 2 )  = &, the density at (x, y)  can be written 
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8. From (3d. 1.3), (x - t) and ( y  - tl - Bx) are independent and their joint 
c.f. is (using the formula for the univariate case) 

e-(112a1~+12'a1.12)/Z 9 

from which the joint c.f. of (x - t )  and ( y  - q) is obtained as 

- ( r 1 2 a , ' t  2pa1a211r2+122.2~) /2  (3d.l.4) 

If the joint c.f. of x and y is needed, the expression (3d. 1.4) is multiplied by 

,it I C+ i f i t r .  

9. Substituting fa = tl and f b  = t2 in (3d.1.4) we find the c.f. of a(x - t) 
+ b(y - q) which is seen to be normally distributed with mean zero and 
variance a2012 + 2pabo1a, + b20,'. 

Let us suppose that two variables (x,y) are distributed in such a way that 
every linear function of x and y has a normal distribution. What can be 
said about the joint distribution of x and y ?  

Let E(x) = E(y) = 0,  without loss of generality, and V(x) = u12, V ( y )  = 
uZ2 and cov(x, y )  = pula2. Consider the linear function ax + by with vari- 
ance u2 = a2a12 + 2abpala2 + b2oZ2. Its c.f. is 

E [exp it(ax + by)] = e-0'1z/2 by hypothesis. 

Hence 

~ [ ~ ~ ~ ( j t , ~  + i t ,  y) ]  = e - ( a ~ 2 ~ ~ 2 + 2 ~ a ~ u z ~ ~ ~ z + 0 2 2 1 1 2 ) / 2  (3d. 1.5) 

if we write at = t ,  and bt = f z .  Equation (3d.1.5) holds good for all a and 
b and hence for all t ,  and t , .  But the right-hand side of (3d.1.5) is the c.f. 
of a bivariate normal distribution, as in (3d.1.4). We have already seen 
that if (x, y) has a bivariate normal distribution, every linear function has a 
normal distribution. The converse is now established. 

3d.2 Sampling Distributions 

Let ui - N(0,  u2),  i = 1,  . . . , n, be n independent variables and define 

(u, + ' * *  + u,) 
i j =  

n 

s,, = u,(u1 - ij) + * * * + u,(u, - 8) 

s,,, = (241 - ii)2 + ... + (u, - a)2 

S," = (u, - ij)2 + ..* + (u, - ij)2 
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where v,, . . . , v,, are fixed numbers. I t  is easy to see that since ii and S,, are 
linear functions of u , ,  

nii2 
ii - N(O, :) and hence - ~ ' ( 1 )  (3d.2.1) 

~'(1). (3d.2.2) S,, - N(0, a2Suv) and hence - - S U V 2  

UZSUV 

Furthermore, cov(E, SUu) = 
Let us write 

(vi - ij)az/n = 0. Hence they are independent. 

s,, = c uiz - nii2 = - + s,,, - - , suvz S"U ( ::v2) 

which gives 

(3d.2.3) 

x 2 ( n )  = ~ ' ( 1 )  + ~ ' ( 1 )  + X2(n - 2). 

The distribution of the last term is deduced by an application of [(iv), 3b.41, 
because it is positive (by the C-S inequality or otherwise) and the distributions 
of the others (3d.2.1,3d.2.2) are known. The result (3d.2.3) can be established 
in many other ways, for instance by making an orthogonal transformation on 
(u , ,  . . . , u,). From (3d.2.1) to (3d.2.3) we note that the statistics 

(3d.2.4) 

are all independent. If (q, . . . , 0,) is now considered as a random variable 
independent of (ul, . . . , u,,), then (v , ,  . . . , 0,) is independent of T,, Tz , T3 . Let 
us add two more statistics which are mutually independent under the assump- 
tion ui 7 N(O, no2), i = I ,  . . . , n :  

T4 = - J'O - N(0, 1) 
=0 

(3d.2.5) 
s u u  T, = - X2(n - 1). 
00 
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The five statistics T,,  Tz , T 3 ,  T4, and T5 are all independent. We shall now 
deduce the sampling distributions of a number of statistics from a bivariate 
sample. 

Joint Distribution of Means from a Bivariate Sample. If (x, y)  is an observa- 
tion from a bivariate normal distribution, then it is shown in (3d.1.3) that 

u = x - r - N(0,  012), 

24 = y - 'I - PCx - 0 N O ,  at.,), 
(3d.2.6) 

and are independent. A sample of n pairs ( x ,  y )  gives n pairs (u, u)  with the 
relation 

B = E - r ,  ii = j j  - 'I - p(E - t). 
Hence by (3d.2.4) and (3d.2.5), we see that 

(3d.2.7) 

are independent and each is N(0,  1). The density of TI and T4 is 

c. - (TI * + T4')/2. 

Changing over to variables E, j j  by the transformation (3d.2.7), we see that 
the density of E, j j  is const. exp(Q) where 

which is bivariate normal. 

Joint Distribution of Variances and Covariances. 
(3d.2.6) between (u, u) and ( x ,  y), we find 

Using the relationship 

s v v  = s x x  

s u v  = s x y  - P S X X  
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We use the three statistics T 2 ,  T 3 ,  and T5 as follows: 

SI,,, - s x y  - P S X X  

%. ,JSUU ~ 2 . I J L  

T 2  = - 

The Jacobian of transformation is 

The joint density of T 2 ,  T 3 ,  T, is (from 3d.2.4, 3d.2.5) 

(3d. 2.9) c. e -  2 - ‘(TI*+ T J +  TI) ( n  4 ) / 2 ~ ( n -  3) /2  
7-3 - 5 

But 

Hence by writing (3d.2.9) in terms of S,,, Sxyy Syy and introducing the 
Jacobian the joint density of sample variances and covariance is 

c. e-Q’2(Sx,S,,y - S x g 2 ) ( n - 4 ) / 2 .  (3d. 2.1 0) 

Distribution of the Correlation Coefficient. The distribution (3d.2.10) may 
be used to find that of r = Sxy t aX3G by integrating out with respect to 
twosuitablychosen functions as shown by Fisher(l9lS)in hisoriginal memoir. 
But we shall determine the distribution of r directly by using the fundamental 
statistics T 2 ,  T 3 ,  T , .  

Introducing r and writing ci.l = ~ ~ ~ ( 1  - p2) ,  we can write the relationships 
(3d.2.8) as 
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Using T3 and T, to eliminate S,, and S,,, from T, , we obtain 

(3d.2.11) 

which is a fundamental equation due to Fraser and Sprott. The distribution 
of r is obtained from the joint distribution of T2 , T 3 ,  and T, by using equation 
(3d.2.1 I). When p = 0 

r 

1 - r  
. . 

and the distribution of r/Jl - r 2  is therefore that of T 2 / J T 3 .  But 

Student’s distribution (3b. 1.8). Hence 

(3d.2.12) 

so that the significance of r can be tested by using tables of percentage points 
oft. From (3d.2.12) we find the distribution of r by change of variable as 

To determine the non-null distribution we use the joint distribution of T, ,  T 3 ,  
and T, .  Let ! = r/JI--r2 and 0 = p/ , / i  - p2 ,  in which case (3d.2.1 I )  
reduces to 

The joint density of T, ,  T 3 ,  T, is 

(3d.2.15) 

and the problem is reduced to finding the distribution of t which is the 
function of T, ,  T 3 ,  T, defined in (3d.2.14). Substituting 

c. e-(T2’+T,+T,)/2 ( n - 4 ) / 2 ~ 1 n - 3 ) / 2  T3 5 

T, = tJT3 - OJE 
dT2 = JE dt 

in (3d.2.15), we find the joint density o f t ,  T 3 ,  T, to be 

c .  e - [ T s ( I  + I * ) + T s ( l  t 0 2 ) - 2 f 0 J ? 3 T s ] / 2 ( 7 3  T5)01;3)/2 
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Let us transform T,, T5 to 

u = T3(l + t ' ) ,  u = T5(l + 6'), 

which leads to the joint density of 1,  u, v 

e - ( ~ t  u - Z p r J G ) / 2  (n- 3) /2  (4 
_ _ ~  

and to that of r ,  u, u ( t  = r /J1  - r 2 ) ,  which is 

The density of r alone can be expressed as an integral 

If we expand ePrJ i"  and integrate out term by term, the non-null distribu- 
tion of r is obtained as 

2 ( !1-4) /2  f r 2 ( n  (3d.2.16) 
+ 

2 
c. ( I  - r ) 

s = o  

where the constant may be evaluated as 

Distribution of the Regression Coefficient. The regression coefficient ofy on x 
is estimated by 

To find its distribution, the relevant statistics are 

T, =--y. S X X  

0 1  

The most useful distribution is of the statistic 

(3d.2.17) 
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which is Student’s distribution on (n - 2) D.F. The significance of an observed 
deviation of the estimate from the hypothetical value 4 is tested by the t 
statistic. If the distribution of b alone is desired, however, we have to con- 
sider the statistics T2 and T, with the joint density 

c. - ( T i 2  + T 5 ) / 2 ~ ( n -  3 ) P .  
5 

By transforming to b and T5 by the relation (3d.2.17) the density transforms to 

c, e - T s [ a i . ~ i + a ~ i ( b - P ) 2 1 / ~  T , -  ( n  2 ) P  . 

If we integrate out for T 5 ,  the density of b alone is 

c. [a:., + a,’(b - p ) 2 ] - ” ” *  (3d.2.18) 

COMPLEMENTS AND PROBLEMS 

1 Independence of linear and quadratic forms. Let yi - N(p i  a’), i = 1 . . . , 
n be all independent and denote Y’ = ( y , ,  . . . , y,) and p‘ = (pl,. . . , p,). Prove 
the following results. 

1.1 A sufficient condition for Y‘AY and Y‘BY to be independently distri- 
buted is AB = BA = 0. [Hint: by the spectral decomposition (lc.3.4, lc.3.5) 
of A and B 

A=) . ,PIP;  + . * . + R r P r P : ,  l i # 0 ,  i =  1 , . . . ,  r 
B = v , Q 1 Q ; + * * * + v , Q S Q I ,  v j # O ,  j =  1, ..., s 

where I’ = rank A and s = rank B and Pi are mutually orthonormal and so 
also are Q, . AB = 0 = 1 Eni  Pi Pf Q, Qi . Pre- and postmultiplying by P: and 
Q,, we find P: Q, = 0 so that Pi  and Q, are all orthonormal. Then Pi Y and 
QJY are all independent and normal. The sufficiency of the condition follows 
by observing that Y‘AY = A,(P;Y)’ + + Ar(P:Y)2 and Y’BY = vl(Q;Y)’ 
+ * . * + v,(Qi Y)* depend on exclusive sets of independent variables. Note that 
Y‘AY and Y’BY need not have x z  distributions.] 

1.2 Let BY be m linear functions of Y, that is, B is m x n matrix. A sufficient 
condition for BY to be distributed independently of the quadratic form 
Y’AY is that BA = 0. 

[Use the spectral decomposition of A as in Example 1.1. The condition 
BA = 0 implies that BP, = 0, i = 1, . . . , r.  This means that BY is inde- 
pendent of the linear functions P;Y, . . . , PiY. But Y’AY = x ,li(Pi Y)’.] 

1.3 The condition BA = 0 is also necessary for the results of Examples 1.1 
and 1.2 to hold. 
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[The proof of the necessity is somewhat complicated and employs character- 
istic functions. See Ogawa (1949). It may be noted that in 3b.4 the necessity is 
established under the additional condition that the matrices of the quadratic 
forms are symmetric and idempotent.] 
1.4 Show that the c.f. of Y‘AY is I I - 2ia2tAI and the joint c.f. of Y‘AY 
and Y’BY is I I - 2ia2tlA - 2ia2f2 BI ‘Iz. 
1.5 Sakamoto-Craig theorem. If Y’AY and Y’BY are independently dis- 
tributed ( I  - 2i02tlA - 2i02t2BI = 11 - 2ia2tlAI ( I  - 2ia2t2BI for all fl, 
t 2 .  Hence deduce that AB = 0. 
2 Consider the setup of 3b.5 of n independent variables 

y i  - N(xi1S, + * .  + x imf lm,  a*), 

Let Y’ = (yl, . . . , yn), p’ = (pl, . . . , Sm), X = ( x j j )  of rank r, and (X’X)- be 
a generalized inverse of X’X (lb.5). Further let p = (X’X)-X’Y so that B is a 
solution of the equation X’Xg = X’Y. 
2.1 Show that (a) X = X(X’X)-X’X and (b) the matrix I - X(X’X)-X’ is 
idempotent. [Hint: Let G = XII - (X‘X)-X‘X]. Compute G’G and show 
that it is zero, from which it  follows that G = 0. To prove (b), take the square 
of I - X(X’X)-X’ and use result (a).] (c) Also X’ = X’X(X’X)-X’. 
2.2 Let H be a m x k matrix such that &(H) = &(X’). Show that Z = 
HB’ and Ro2 = (Y - X@)’(Y - Xb) are independently distributed. [Hint: 
Since &(H) = &(X’), there exists a matrix C such that H = X’C. Hence 

HB = C’X(X‘X)-X’Y = BY. 

i = 1, . . . , n, 

Ro2 = Y’Y - Y’X(X’X)-X’Y = Y’[I - X(X’X)-X’]Y = Y’AY. 

We want to establish the independence of a set of linear functions and a quad- 
ratic function of Y. We find 

BA = [C’X(X‘X)-X’][I - X(X’X)-X’] = 0, 

since the product of the first two terms is zero by (c) of Example 2.1. The 
result follows from the condition of sufficiency of Example 1.2.1 
2.3 Z = H’B has a k-variate normal distribution with mean H p  and dis- 
persion matrix a2D, where D = H(X’X)-H and Ro2 - 02x2(n - r ) .  [Hint: 
Z = C’X(X’X)-X’Y = BY, that is, linear functions of normal variables. By 
applying (3b.3.4), Z has a k-variate normal distribution. Consider 

Ro2 = Y’[I - X(X’X)-X’IY. 

The matrix I - X(X’X)-X’ is idempotent. Hence Ro2 - a2x2(n - r) where 
n - r = trace I - trace X(X’X)-X’ = n - trace(X’X)-X‘X = n - rank X‘X = 
n - rank X. Furthermore, by applying the sufficiency condition of Example 
1.2, Z and Ro2 are independently distributed] 
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2.4 Let P*, 1* be a solution of the equations 

X’XP + HA = X’Y 
H’P = 0, (a given value), 

which are obtained by differentiating (Y - XP)’(Y - XP) with respect to P 
subject to the condition H’P = 0,. Show that 

R12 = (Y - XP*)’(,Y - XP*) 
= (Z - 0,-,)D-’(Z - 00) + RO2, 

where Z and D are as defined in Example 2.3. [Hint: Observe that R I 2  = 

(Y - Xb)’(Y - Xs) + (1 - P*)’X’X(b- b*), and it  is enough to show that 
the second term is (Z - 0,)D-’(Z - 0,). Since A(H) c A(X’X) ,  H = X’XC. 
From the equations for P*, 1*, X‘X(1 - P*) = H1* = X’XCX* so that 
(b - P*)‘X’X(b - P*) = 1*’C’X’XC1*. Also from the equations, C’X’XP* 
- H’P* + C‘H*k = C’X’Y - e0 or C’H5* = Z - 0, or C’X‘XCA* = Z 
- 0, =+A* = D-’(Z - 0,) where D = C’X’XC by substituting for H in the 
expression for D in Example 2.3. Hence the result.] 

[Note: In Examples 2.1 to 2.4, we have alternative proofs of the first two 
fundamental theorems of least squares provided we can assert that the expres- 
sions RO2 and R12  correspond to actual minima, when P are unrestricted and 
restricted to H’P = 0, respectively.] 
2.5 Relax the condition A(H)  c A(X’) in (ii), 3b.5. Then R,, - RO2 is a 
noncentral x 2  on t degrees of freedom, where t = rank[A(H) n A ( X ’ ) ] .  
Find the noncentrality parameter. 
2.6 Let Ro2, R12,  and R,’ be the minima of (Y - XP)‘(Y - XP) with no 
restriction on P, with H’P = p, and with H’P = 6, G’P = q. Then R,’, R12 
- RO2, and R,’ - R12, are independently distributed. RO2 - a2z2(n - r )  and 
R12 - Ro2 and R 2 ,  - R I 2  are noncentral x2’s  with k and t degrees of free- 
dom respectively, where r = rank X, k = rank[A(H) n &(X’)] and r + k 
= rank[d(H) u A(G)  n .M(X’)]. The noncentrality parameters are zero if  
the restrictions are true. 
2.7 Generalize the results of Example 2.6 to Ro2, RI2,  R2, ,  R,, ,  . . . suitably 
defined. 
2.8 Consider a vector Y of n independent normal variables with a common 
variance a2 and a mean vector p. Let wl, a,, . . . , wk be subspaces of the n- 
dimensional Euclidean space and R12, R , , , .  . . , Rk2 be the minima of (Y - p)’ 
(Y - p) subject to the restrictions p~ wl, p E w1 n w2 , . . . , p~ w1 n w2 . n wk 
respectively. Show that R12, R 2 ,  - R12, R3,  - R,,,  . . . are independent non- 
central x 2  variables with degrees of freedom k, = n - d[w,], k, = 
d[w,] - d[o, n w,], k3 = d[wl n wz] - d[wl n w2 n w,] ,  . . . and so on, 
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where d represents the dimension of the subspace indicated. The problem 
is a special case of (2.6) with homogeneous restrictions. [Hint: Construct 
an orthogonal transformation by taking an 0.n.b. of wl n n wk and by 
adding vectors build up an 0.n.b. of w1 n ' - 9  n wk-1, and so on until an 
0.n.b. of the entire space is obtained.] 
2.9 In Example 2.8, state the condition under which RiZ - R:- is equal to 
the minimum of (Y - p)'(Y - p) subject to the restriction p E oi. 

2.10 Show that the dimensions of the subspace generated by the vectors 
Xp (where X is n x m matrix) when the column vector fl is restricted to  the 
condition H'P=O(where H' is k x m matrix) is d{.M(X')} - d { A ( X ' )  nA0).  
2.11 Satisfy yourself that the results of 3b.5 and of the Examples 2.5 to 
2.9 remain the same if Y has an n-variate normal distribution with mean 
Xp and dispersion matrix A and RoZ, R12,  . . . are defined as the minima of 

3 Let xi - N ( p ,  d), i = 1,  . . . , n, be n independent variables. If m,, . . . , m, 
are fixed quantities, find the distribution of the correlation coefficient 

(Y - Xp)'A-'(Y - Xp). 

r = 1 xi(rni  - f i )  + [C (mi - i@ . C (xi - F ) ~ ] ~ / ~ .  

[Hint: By a suitable transformation or otherwise show that r = x/,/x2 + y 
where x - N ( 0 ,  1) and y - x2(n - 2) are independent. Then use (3b. 1.13).] 
4 Laplace distribution. The density of Laplace distribution is of the form 

L ( x l p ,  n) = ( 2 4 - l  exp(- ( x  - pI /A) .  

Show that the c.f. is (1 + I.'t2)-' exp(itp). I t  has moments of all orders and is 
not preserved under convolution. 
5 Pareto distribution. The random variable has the density 

a +  1 

, x > x , ,  a > o ,  

and zero otherwise. Examine the moments of this distribution. Show that 
the mean is finite only when a > 1, in which case it  is equal to a/xo(l - a). The 
distribution function has the simpler form 1 - (xo/x)a. Hence show that the 
median is xo  2l'". Distribution of incomesof individuals whose incomeexceeds 
a certain limit xo (a truncated distribution) sometimes has Pareto's form. 
6 Log normal distribution. Consider a series of independent random im- 
pulses occurring in the order t l ,  tz, . . . , the effect o f t ,  being to increase the 
momentary size of an organism from x, to x , + ~  by the relation 
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If w = log x - log xo-the logarithmic difference between the sizes at the 
final stage and initial stage-then 

IY = log v o  + ..* + lOgv"-l, 

where log q ,  are independent. Let each impulse give only a slight growth and 
n be large. As in [(iii), 3a.11 let n + 00, such that V(w) is finite. In the limit, 
H' = log x - log x,, has a normal distribution or x has the distribution 

1 e - ( l o g x - P ) z / 2 a z  xaJZn 
If x is measured from a, we have a more general form 

1 e - [ l o s ( x - d - l c l * / 2 a ~ ,  , 
a(x - a)JG 

The log normal distribution provides, in some cases, a good fit to income dis- 
tribution. Find the mean and variance of log normal .distribution. 
7 Logistic distribution. The distribution function is given by 

with a > 0. 
1 

1 + e - ( a + B X )  
F(x) = 

Find the c.f. and moments of x. This is used as a tolerance distribution in bio- 
assay problems. 
8 Pearsoniun system of frequency curves. Let y = f(x) denote the density 
function. From general considerations, Karl Pearson obtained the differential 
equation 

1 dY x + a  

i d x = b o +  b,x+ b 2 x 2 '  

Almost all the distributions considered in Chapter 3 are special cases of this 
system and can be deduced by special choices of the constants a, bo,  b, ,  and 
b 2 .  Show that the constants can be expressed in terms of the first four mo- 
ments of the distribution, if they exist. 
9 Life testing models. Let F(t) be the probability that a structure fails by 
time t and A(t)At + O(At), the probability of failure in a small interval At 
having survived up to t .  

9.1 Show that F(t) satisfies the differential equation 

where is the p.d. 
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leading to the functional form 

F( t )=  1 -exp[-Il(l)dt]. 

9.2 For the special case A(t)  = c (constant), deduce the exponential distribu- 
tion 

F(t) = 1 - e-“ or f ( t )  = ce-‘‘. 

9.3 Show that the exponential distribution is characterized by the property 
that the conditional distribution of further life, given that a structure has 
survived up to time T, is independent of T, and is the same as the distribution 
of life from the start. [There are some structures which obey this property such 
as an electric fuse and a jeweled bearing in a watch.] 
9.4 Show that for the special case A(t)  = cat”-’, Q > 1, c > 0, the d.f. is 
1 - exp( - ct”), which is called Weibull distribution. 
9.5 Derive the expression for F(t) when A(t) = y + de”‘ which is called 
Makeham’s law. The function F(t) so derived is used in the construction of 
mortality tables. 

10 Order statistics. Let xi, . . . , x,, be n independent observations from a 
continuous d.f. F(x) and let yl, . . . , y,, be the order observations (or statistics 
as they are called). The p.d. if it exists is denoted byf(x). 

10.1 The d.f. of y1 is 1 - [ I  - F(yl)y. [Hint: the probability that the 
minimum is less than y ,  is equal to one minus the probability that all the 
observations are not less than yl.] Iff(x) exists, then the p.d. of y l  is 

n[l - ~(Yl)l”--’S(Y,). 

10.2 Similarly the d.f. and p.d. of the maximum yn are 

[&n)l” and n[F(Yn)l”-If(Yn). 

10.3 The joint d.f. of y ,  and y,, is 

[F(~n)l” - [F(Yn) - F(~1)l”.  

Note that the first term represents the probability that the maximum is less 
than y,, and the second that all the observations are between y l  and y ,  . The 
p.d. is obtained by differentiation 

This is the starting point for finding the distribution of the range (y,, - yl). 
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10.4 The kth order statistic is less than yk  if the number of observations less 
than yk is k or k + 1 or k + 2 * . *  or n, the probability for which is 

1 -kkl(:)[F(Yk)r[l - F(yk)r-' (by binomial theorem) 

(k - l)!(n - k)! o 

r=O 
n! 1 - F  

= I -  j x"-k(l - x y - 1  dx 

which is an important result. The p.d. is 

The distribution of the median and other useful fractiles can be obtained as 
special cases. 
10.5 
10.6 
is 

Show that the distribution of F(Yk) is B(k, n - k + 1). 
Show that the joint p.d. of yk , y,, . . . , yu (k  < s 3 * . < u)  order statistics 

11 
with parameters (a, pl), . . . , (a, P k + l ) .  Show that 

Dirichlet distribution. Let x , ,  . . . , X k + L  be independent gamma variates 

y r  = xI/(xl  + * * * + xi ) ,  i = 2, . . . , k + 1 

are independently distributed. Further, show that 

z ,  = xi/(xl  + * + X k + , ) ,  i = 1, . . . , k 

have the joint p.d. 

which may be called Dirichlet distribution. 
12 If x , ,  x2 are two independent observations from N ( 0 , l )  find the distribu- 
tion of z = x l / x 2 .  
13 Let x = xl + + x, be the sum of n independent observations from a 
rectangular distribution R(0, 1). Show that (Rao, 1942a) 

X" (X-1)" ( X - 2 ) "  (X - ry 
P(X < X) = - - + . ' .  + ( - I Y  , r = [ X ] .  

n ! O !  (n - l ) ! l !  (n - 2)!2! ( n  - r ) ! r !  

14 If f ( x )  is pad. of a, random variable x ,  af(ay) is the p.d. of y = x/a.  
Consider random variables y l ,  y ,  with p.d.'s alf(aly,) and a2f (a2  y 2 ) .  Find 
the functional form f if the p.d. of y = y ,  + y2 is of the same form af(ay) 
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with respect to some a. Deduce that if the first two moments offexist then it  is 
normal [Polya, 19231. 
15 On the circumference of a circle of unit length, n arcs each of length x 
are marked off at random. (a) Show that the probability that every point of 
the circle is included in at least one arc is 

(b) Show that the probability for i gaps is 

(:)[(I - ixy-1-  (n - i ) [ l -  ( i  + l ) x ~ - l +  

( n  - i ) !  
( k  - i ) ! ( n  - k)! * *  k (1 - kx)”-’] [Stevens, 19391. 

16 If x, has x 2  distribution on 2 d.f., r = 1, . . . , n, and x, are independent, 
then the probability that i of the fractions x , / x ?  x, exceed x is  the same as the 
expression (b) in Example 15. Similarly, the probability for the largest fraction 
to exceed x is the same as the expression (a). These distributions are used by 
Fisher (1929) for tests of significance in Harmonic analysis. 
17 Noncentral f and beta distributions. Let xI2  N x2(k, A) [noncentral 
chi-square (3b.2.2)] and x Z 2  - x2(m) be independent. Definef= xI2/xz2 and 
g = xI2/(xl2 + x2’). It was shown that when A = 0, f has the distribution 
(3b.1.10) of the ratio of central x 2 ’ s  andg  has the beta distribution (3b.1.12). 
When # 0, the joint p.d. of x12  and x 2 2  is 

17.1 Apply the result (3b.1.7) to each term to obtain the p.d. o f f =  x12/x22 

which is called noncentralf(rati0 of x 2 ’ s )  and denoted byf(k, m, A). This can 
also be written in the form using the hypergeometric function lFl, 

e - A ’ / 2  

substituting F = mfk we have the noncentral F distribution, F(k, m, A). 
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17.2 Obtain by change of variable, the p.d. of g = x12/(x12 + x 2 ' )  as 

which is called the noncentral beta distribution and is denoted by B(k, rn, A). 
This can also be written in the alternative form 

e-a2/2B ( 1 '  g -, " )  - 2 1 1  F ( k + m  2'- 2 ' 2  A 2 g ) = B ( g l k , m , l . ) .  

18 Let p(x)  be p.d. of a random variable and define entropy by - p logp dx. 
18.1 Show that when the random variable is bounded by a finite interval, say 
a < x < b ,  the entropy is a maximum for the uniform distribution between a 
and b. 
18.2 Let X be a random variable which takes only non-negative values and 
is such that E ( X )  = p > 0 (a fixed number). Show that the entropy is a maxi- 
mum when the p.d. is of the form p-'  exp( - x / p )  that is, when the distribution 
is exponential. [Hint: Follow the method outlined in the equations (3a.1.13) 
to (3a. 1.15) and also (3a.6.1) to (3a.6.5).] 
19 Bessel function distribution. The function 

(32k+p 
m 

IJx)  = &k! r (p  + k + 1) z 
is called a modified Bessel function (see 3a.7.10). 

Consider a random variable Xwith the gamma distribution C(a, p + k + 1) 
and take k as an integer valued random variable with a Poisson distribution 
P(A). The compound distribution of X obtained by summing over k has the 
density 

20 A random variable X is said to have a normal component if it can be 
expressed as U + V where U and V are independent and V has a normal dis- 
tribution. Then show that there is a unique maximal decomposition, X =  
U + V ,  where I!/, V are independent, V is normal and U has no normal com- 
ponent. 

When X is a vector variable, give an example to show that a maximal de- 
composition exists but may not be unique. 
21 Characterization of the normal law. 
21.1 Let XI, X ,  be independent variables. Show that if XI + X ,  and 
X ,  - X 2  are also independent then X, and X 2  are normally distributed. 
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21.2 Darmois-Skitovic theorem. Let X , ,  . . . , X,, be independent random 
variables. If alXl + - * + a,, X,, and b ,X ,  + * * + b,, X,, are independently 
distributed then X i  must be normal if a,  b, # 0. [(Darmois (1951), Skitovic 
(1954))l 
21.3 If XI, X ,  are i.i.d. variables such that E ( X , )  = 0, then 

E ( u ~  Xi + a2 Xz I bl Xi + b ,  X z )  = 0 

implies that XI is normal provided a,b, + a2 6 ,  = 0. 
21.4 If X , ,  . . . , X,, are i.i.d. variables such that E ( X , )  = 0, then 

E ( X I X , - W ) = O  
implies that XI is normal. 
(For proofs and a variety of other results see the book by Kagan, Linnik, 
and Rao, 1972. See also Pathak and Pillai, 1968.) 
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Chapter 4 

THE THEORY OF LEAST 
SQUARES AND ANALYSIS OF 
VARIANCE 

Introduction. This chapter deals with statistical inference based on linear 
models for the expectations and certain specified structures for the variances 
and covariances of the observations. 

The theory of least squares is concerned with the estimation of parameters 
in a linear model. The foundations of the theory were laid by Gauss (1809) 
and more recently by Markoff (1900). Certain improvements have been made 
by recent writers (Aitken, 1935; Bose, 1950-1951 ; Neyman and David, 1938; 
Parzen, 1961; and Rao 1945b,c, 1946b, 1962f). However, the problem 
remains unsolved in its generality, especially when the observations have a 
singular dispersion matrix. Specific solutions for the latter case have been 
given by Goldman and Zelen (1964), Mitra and Rao (1968f), Zyskind and 
Martin (1969), and others. 

Unified approaches to the problem in full generality, which do not de- 
pend on nonsingularity or otherwise of the dispersion matrix, are given by 
Rao, 1971e, 1972d, 1973a) and Rao and Mitra (1971h). These are described 
in Section 4i of this chapter. In this approach, we use the generalized inverse 
(g-inverse) of a matrix developed in lb.5 and lc.5 as a principal tool. 

While 4f deals with theestimation of intraclass correlations in a linear model 
for a two-way classified balanced data, the general problem of estimation of 
variance components is considered in 4j using what has been called MINQUE 
(Minimum Norm Quadratic Unbiased Estimation) theory recently developed 
by the author (Rao, 1970a, 1971c, 1971d, 1972b). 

Section 4g on regression and least square prediction is treated in the 
general context of a multivariate distribution and can be studied independ- 
ently of the least square theory. Measures of association such as multiple 
and partial correlation coefficients and ratios have been developed from 
a new point of view with special reference to practical problems. 
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A brief discussion is given of the design of observations by which obser- 
vations are generated in such a way that maximum precision is attained in 
the estimation of certain parameters. 

4a THEORY OF LEAST SQUARES (LINEAR ESTIMATION) 

4a.l Gauss-Markoff Setup (Y, Xp, 021) 

Consider uncorrelated observations (yl, . . . , y,,) such that 

i =  1,2, ..., n, (4a. 1.1) 
= XilPl  + * . '  + x 

V(YJ = o2 

where (pl, . . . , pfn) and o2 are unknown parameters and (xu) = X is a matrix 
of known coefficients. If Y and p stand for column vectors of the variables 
y i  and the parameters /Ij, equation (4a. 1.1) can be written in matrix notation 

Y = Xp + E ,  E(E) = 0, D(E) = 0'1 * E(Y)  = Xp, D(Y) = 0'1 (4a.1.2) 

where D stands for dispersion (variances and covariances) and I for the 
unit matrix of order n. The problem is that of estimating the unknown 
parameters P j  on the basis of observations y ,  . 

A set up slightly more general than (4a. 1.2) considered by Aitken (1935) is 

E(Y) = xp 
D(Y) = dG, IGI # 0 

(4a. 1.3) 

which introduces correlations among the observations. In (4a.1.3) G is 
supposed to be a known matrix and p, o2 are unknown. The model (4a.1.3) 
can be reduced to the model (4a.1.2) by considering Z = G-'/'Y giving 

E(Z)  = G-'12XP = Up 
D ( Z )  = 021. 

A special case of (4a.1.3) is 

E(Y) = xp 
D(Y)=Z, 1Z1 #O, 

where Z is known. Then under the transformation Z = Z-1/2Y, 

E(Z)  = c-'/*xp= up, 
D(Z)  = I, 

(4a. 1.4) 

(4a.1.5) 

(4a.1.6) 
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so that the setup (4a.1.5) is reduced to that of (4a.1.2). For all these cases 
we need only consider the model (4a.1.2) in detail, which will be referred to 
as (Y, Xfl, 0’1). 

The general case of (Y, Xfl, 0%) where G may be singular, so that the 
transformation of (4a. 1.4) is not applicable, is considered in Section 4i. 

We shall use the following notations and results which the reader may 
verify and with which he should be familiar. 

(a) L’Y, M’Y, ... denote linear functions of Y; P‘p, R’fl, denote linear 
functions of p, where L, M, ..., P, R, ... denote column vectors. 

(b) E(L’Y) = L’E(Y) = L’Xfl. 
(c) V(L’Y) = L’CL, where Z is the dispersion matrix of Y 

= o’L‘L, when Z = 0’1 
cov(L’Y, M’Y) = L’ZM, for general Z 

LEAST SQUARES AND ANALYSIS OF VARIANCE 

= o’L’M, when C = 0’1. 
(d) More generally, if B is an n x k matrix, then B’Y denotes k linear 

functions of Y. It is easy to verify that E(B’Y) = B’Xfl and D(B‘Y) = 
B’CB which reduces to o’B’B when C = 0’1. 

(e) Expectation of a quadratic form: 

E(Y’GY) = trace GZ + E(Y’)GE(Y), where Z = B(Y) 
= O‘ trace G + E(Y‘)GE(Y), when Z = 0’1. (4a. 1.7) 

(f) If A is an idempotent matrix, rank A = trace A. 
(g) Given a matrix S there exists a matrix S- called a g-inverse, with the 

SS-S = S, trace S - S  = rank S. (4a. 1.8) 

A general solution of a consistent equation Sp = Q is S-Q + 
(I - S-S)Z where Z is arbitrary. When S is square and nonsingular 
S- = S-’, the true inverse. 

(h) The linear manifolds generated by the columns of A’ and A A  are 
the same, A ( A ’ )  = A ( A A ) ,  which implies that if there exists a vector 
L such that P = A’L, then there exists a vector A such that P = A’AL 
Observe that for any L, A’L E A(A’)  = A(A‘A). 

property (see lb.5) 

4a.2 Normal Equations and Least Square (I.s.) Estimators 

The equation in fl (see Example 13.2, at the end of Chapter 1) 

X’Xfl = X‘Y (4a.2.1) 

obtained by differentiating (to minimize) 

(Y - Xp)’(Y - Xfl) = 1 (y ,  - xil& - * * - xi,,,/3,,,)’ (4a.2.2) 
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the sum of squares of differences between the observations and the expectations 
is called normal equation. The observational equation Y = Xfl is in general 
inconsistent. But the normal equation (4a.2.1) always admits a solution, 
since X’Y E .M(X’X), which implies that there exists a p such that (4a.2.1) 
is true. Let b be any solution of (4a.2.1). Then 

(Y - XP)’(Y - xp, = [Y - xb + x@ - p)]“Y - xb + X(b - p)] 
= (Y - Xb)’(Y - Xb) + (B - P)’X‘X(b - p) 
z (Y - XB)‘(Y - Xb), (4a. 2.3) 

which shows that the minimum of (Y - Xfl)’(Y - Xp) is 

(Y - Xb)’(Y - Xb), 

and is attained at fi = b and is unique for all solutions B of (4a.2.1). 
A least squares estimator of the parametric function P’p is defined to be 

P’b where fl is any solution of the normal equation (4a.2.1). What are the 
properties of the estimator P’b and in what sense is it a good estimator of 

(i) P’b is linear in Y and unbiased for  P‘p, if and only $ P‘p is unique 
for all solutions b of the normal equation or equivalently P E A(X’)  which is 
the same as P E A(X’X),  or equivalently there exists a linear function of Y 
with expectation P’p. 

We do not make any assumption about the number m of unknown param- 
eters Bj or the rank of the matrix X. 

Let P E .M(X’X), that is, P = X’XI where 1 is some vector. Then for any 
solution il, 

P’B = I ‘ X ’ X ~  = X’X’Y, since X ’ X ~  = X’Y. (4a. 2.4) 

Thus P’b is unique, linear in Y, and E(5’X’Y) = 1‘X’Xp= P’p, that is 
unbiased for P’p. Further 5’X’ is unique although X‘may not be. 

Let P’b be unique. Corresponding to any vector 1 such that X ’ X 1 =  0, 
there is a solution p = p - I of (4a.2.1). And 0 = P‘(B - p) = P’1 for all 1 
such that X’X1= 0. Therefore P E A(X’X)  and the rest follow. 

Let L’Y be such that E(L’Y) =P‘p. Then L’Xp =P‘O or L’X = P’, 
that is, P E .M(X’). We shall say P’p is estimable if any of the conditions 
in (i) holds. 

(ii) If P’fl is estimable, then P‘b has minimum variance in the class of 
linear unbiased estimators (LUE)  of P‘p. 

Since P‘p is estimable, 9 E A(X’X),  that is, P = X‘X1 for some 1. Hence 

(4a.2.5) 

PI$? 

P’p = X’X’Xfr = I’X‘Y. ’ 
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If L’Y is any unbiased estimator of P’P, then L’X = P‘. Consider 

LEAST SQUARES AND ANALYSIS OF VARIANCE 

V(L’Y) = V(L’Y - L’X‘Y + L‘X’Y) 

= V(L’Y - X’X’Y) + V(P’1) 
= V(L’Y - X’X‘Y) + V(L’X‘Y) 

(4a.2.6) 

where in (4a.2.6) the covariance of (L’ - L’X’)Y and X’X’Y is 

(L‘ - L’X’)XLa2 = (L’X - X‘X’X)La2 = (P’ - P’)La2 = 0. 

From (4a.2.6), V(L’Y) 2 V(P’B). We call P’B, the BLUE (best LUE) of P’p. 

(iii) All  linear parametric functions are estimable, if and only if R(X) = m, 
the number of unknown parameters pi, where R(X) denotes the rank of X. 

If R(X)=m,  then R(X’X)=m and hence the normal equation has a 
unique solution and naturally P’b is unique for any given P. 

If P’P is estimable, then P E .H(X’X). If P is arbitrary, R(X’X) must be 
full, thus establishing the converse. 

If R(X) < m, then some parametric functions do not admit unbiased 
estimators, and under our setup nothing can be inferred about such parametric 
functions, which are said to be nonestimable or confounded. 

What the results (i) and (ii) tell us then is that if we are seeking for linear 
unbiased estimators with minimum variance, of parametric functions, the I.s.  
estimatorofGaussistheanswer.Theconcept ofestimabi1ityisduetoR.C. Bose. 

(iv) Let C be a g-inverse of X‘X and let H = CX‘X. Then a necessary 
and suffjcient condition that P’P is estimable is that P’(1 - H) = 0. 

It is shown in [(vi), lb.51 that a general solution of X’XP = X’Y is CX’Y + 
(I - H)Z where Z is arbitrary. Using the n.s. condition in (i) for estimability, 
viz., that P’P is unique for all solutions 1, we find P‘(1 - H)Z = 0 for all 
ZoP’(1 - H) = 0. 

4a.3 gdnverse and a Solution of the Normal Equation 

It is already shown that the normal equation X’XP = X’Y is consistent. 
Hence if a g-inverse C of X‘X is found, a particular solution is given by 
CX’Y. In practice the computation of C can be reduced to that of determining 
the true inverse of a suitable matrix. We consider some methods of comput- 
ing C. 

I .  If rank X = m, the number of unknown parameters, then R(X‘X) = m 
and C = (X’X)-’ is the true inverse. 

2. Let R(X) = r < m. Let it be possible to determine a matrix H of order 
(m - r )  x m such that R(X‘ i H’) = m, that is, we add some rows to X to 
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meet the deficiency in the rank. Then R(X'X + H'H) = m ,  and the true 
inverse (X'X + H'H)-' exists. It is easily shown that C = (X'X + H'H)-' 
is a g-inverse of X'X, that is, X'XCX'X = X'X (see Example 5, p.34). 

3. Having determined H as in (2), we have an alternative method of com- 
puting a g-inverse. Observe that the rank of 

-_-_____ _ _  ---_____. (EX I Ho) 
is 2m - r and, therefore, the true inverse 

(4a.3.1) 

exists. The matrix Cl which appears in the partitioned form of the inverse 
matrix (4a.3.1) is indeed a generalized inverse of X'X, that is, it satisfies 
the equation X'XCIX'X = X'X. 

4. A modification of (3) is to determine matrices C;, C; such that 

Then C, is a g-inverse of X'X. In many statistical problems the matrices 
C; and C; can be written after inspection. 

5 .  Suppose it is possible to find the dependent rows in X'X. By omitting 
these rows and the corresponding columns we obtain an r x r matrix with 
rank r, which admits a true inverse. Now increase the order of this inverse 
matrix by inserting rows and columns of zeroes from where the dependent 
rows and columns are removed. The matrix so obtained is a g-inverse. This is 
a useful method for in practice we may know where deficiency in X'X occurs. 

6. Let A,,  . . ., Ar be the non-zero eigenvalues and let P,, . . ., P, the cor- 
responding eigenvectors of X'X. Then 

X'X = A,P,P; + . * .  + ArPrPi. 

It is easy to verify that 

1 1 c = (x'x)- = - PIP; + * * - + - p,p; 
1, 2, 

is a g-inverse. 

For a general discussion of the computation of a g-inverse, the reader is 
referred to Rao and Mitra (1971, B3). 
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4a.4 Variances and Covariances of 1,s. Estimators 

It is convenient at this stage to denote the normal equation X’XP = X’Y 
as Sp = Q, where S = X‘X, Q = XY. An intrinsic property of the normal 
equation is D(Q) = a%. Let C be a pinverse of S, that is, SCS = S, which 
gives an explicit representation of a solution of the normal equation, B = CQ. 

(i) Let P‘b, R‘b be the I.s.  estimators of the estimable functions PI$, R‘P 

V(P’(5) = o’P’CP, COV(P‘~,  R’B) = oZP’CR (4a.4.1) 

so that aZC can be formally considered as the dispersion matrix of 1 so long 
as formulas (4a.4.1) are applied to estimable parametric functions. 

and C be any g-inverse of S. Then 

Since P’p is estimable, P = X’XX = SX. Now 

V(P’P) = V(P‘CQ) = P’CD(Q)C’P 
= O2P’CSC’P = OZS’SCSC‘P = aZP’CP. 

The result on the covariance is similarly proved. 

/?, is the 1.s. estimator of pi and 
When C = (C,j) is a true inverse, all parametric functions are estimable; 

V(bi,  = a2cii, COV(j,, j j )  = a2cij. (4a.4.2) 

The expressions (4a.4.2) are not meaningful when C is not a true inverse, 
but nonetheless can be used to compute the variance of any linear function 
of fli provided the corresponding linear function in pi is estimable. 

It is not always necessary to obtain C in advance to compute the I . s .  
estimators and the expressions for the variances and covariances. Suppose 
from the normal equation Sp= Q we find that on multiplying by a vector 
X, S‘Sp = S’Q reduces to P’fl = S’Q. Then L‘Q is the I . s .  estimator of P’P, 
and 

V(S’Q) = d1’SX = dS’P, (4a.4.3) 

so that we have an expression for the variance depending only on 1 and P. 
Similarly if A’S = P’ and p’S =R, then S‘Q and p’Q are the I . s .  estimators 
of P’P and R’$ and 

COV(~I’Q, p’Q) = a2S’R = aZp‘P. (4a.4.4) 

In many practical problems, formulas (4a.4.3) and ‘(4a.4.4) can be applied, 
thus avoiding the computation of a g-inverse. 
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4a.5 Estimation of u2 

The minimum sum of squares Ro2 = (Y - X))’(Y - Xb), introduced in 
(4a.2.3) has the following alternative expressions, which the reader may verify. 

Ro2 = Y’Y - Y‘Xb = Y’Y - )‘X’Xb 
= Y’Y - Q’B = Y’Y - Q’CQ 

= Y’Y - Y’X(X’X)-X’Y = Y’(1- X(X’X)-X’)Y. (4a.5.1) 

When JX’X 

The vector 

# 0, Ro2 can be expressed as the ratio 

(4a. 5 .2 )  

Y - X)) is called the residual vector. In some problems it is 
necessary to examine the residuals. We prove the following, 

(i) E(Y - x b )  = 0. 
E(Y - Xb) = E(Y) - E(X)) = Xp - Xp = 0. Observe that the step 

(ii) Cov(P’), Y - X)) = 0, where P’fl is the esfimator of an estimable 
parametric function PIP. 

This statement follows from the more general result, cov(P’1, L’Y) = 0 
where L’Y is a linear function of Y such that E(L’Y) = 0. The latter condition 
implies L’X = 0. Now P’) = X‘X’Y where P = X’XX and 

cov(P’jj, L‘Y) = cov(X’X‘Y, L‘Y) = u2L’XX = 0. (4a. 5.3) 

By (i), Y - X) is a set of linear functions with zero expectations. Hence 
the desired result follows. 

E(X)) = Xfl has to be justified, since E ( ) )  # p in general. 

(iii) The variance-covariance (dispersion) matrix of Y - X) is the difference 
of the dispersion matrices, 

D(Y - x@) = D(Y) - D ( x ~ ) =  U’(I - X(X’X) - x’). (4a.5.4) 

From (ii), cov(Y - XB. Xb) = 0. Hence (4a.5.4) follows. 

(iv) E(Ro2) = ( n  - r)u2, so that an unbiased estimator of u2 is 

(4a. 5 .5 )  
n - r  

where r = R(X). 
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The simplest way to  demonstrate this result is t o  use the orthogonal 
transformation of [(i), 3b.51 from Y to  Z and the representation (3b.5.4), 
RO2 = z:, + . . + z,’, in terms of new variables, with E(zJ = 0, V(z i )  = a’, 
i = r + 1, . . . , n. Hence E(Ro2) = (n - r ) d .  

Or we may use the representation (4a.5.1) 

Ro2 = Y’Y - Y‘X(X‘X)-X‘Y 

= Y’(I - x(x‘x)-x’)Y 

By applying the property (Ex. 2.1, Chapter 3) X’X(X’X)-X’ = X’, we find 
that the introduction of Xp does not alter the value of Ro2. 

Ro2 = (Y - Xfl)’(I - X(X’X)-X’)(Y - Xp) 
E ( R ~ ’ )  = u2 trace(1 - X(X’X)-X‘) 

= nu2 - u2 trace(X’X)-(X’X) = (n - r)a2 

since trace(X’X)-(X’X) = R(X’X) = r by (4a. 1.8). 

(v) In what sense is RO2/(n - r )  an optimum estimator of u2 beyond 
being unbiased? Hsu (1938) and Rao (1952a, 1971d) investigated this question 
by considering quadratic estimators of the form Y’GY unbiased for u2 and 
trying to minimize its variance. Hsu imposed the condition that V(Y’GY) 
is independent of f l ,  the unknown parameters, and Rao imposed the condition 
that Y’GY is non-negative. Under eithercondition, it is shown that RO2/(n  - r )  
has minimum variance when (a) p2 = 3 or (b) the coefficients of y12, . . . , y,, 
in the expansion of R,* are the same when p2 # 3, where p2 is Pearsonian 
coefficient of kurtosis of the distribution of individual y i .  Further results 
cannot be established without knowing the exact value of p2 or the distribu- 
tion of y, .  In many situations condition (b) is not satisfied when we cannot 
claim minimum variance property for the estimator of u2 based on least 
squares. 

2 

4a.6 Other Approaches to the I.s. Theory (Geometric Solution) 

Let U be a projection operator (matrix, lc.4) which projects vectors onto the 
column space of X. By definition UX = X and U is symmetric and idern- 
potent (U2 = U). Let L be such that E(L’Y) = P‘P, that is, L’X = P‘. 
Consider UL and the linear function (UL)’Y = L’UY. Then 

E(L’UY) = L’UXfl = L’xp = P’p 
V(L‘Y) = V[L’(I - U)Y + L’UY] 

= V[L(I - U)Y] + V(L’UY) 2 V(LUY), 
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since cov[L’(I - U)Y, L‘UY] = aZL’(I - U)UL = 0. Hence L’UY is un- 
biased for P’p and has smaller variance than L‘Y. If M’Y is another un- 
biased estimator of P‘p, then (L’ - M’)X = 0 (L - M) is orthogonal 
to colurnns of X and therefore U(L - M) = 0, that is, M‘UY = L U Y .  
Hence V(M’Y) 2 V(M’UY) = V(L’UY), i.e., L U Y  is a 1.s. estimator. 

If X5 is the projection of L on the column space of X, then X’(L - Xk) = 
0, that is, 5 satisfies the equation X’Xk=X’L. Hence 5 =(X’X)-X’L 
and Xh =X(X’X)-X’L where (X’X)- is a generalized inverse of X’X. 
Therefore the projection matrix U can be chosen as X(X’X)-X’. Now 

UL = X(X’X)-X’L = X(X’X)-P, using P = X’L 
L U Y  = P’(x’x)-x’Y = P’fi. 

Thus P‘(X’X)-X’Y or P’fi is the 1.s.e. of P’p. Note that P’[(X’X)-]’X’ = 
P’(X’X) -XI. 

Extremum of a Quadratic Form. The problem of I .s .  estimators may be 
posed as one of determining a linear function L’Y unbiased for a given 
parametric function P’p and as having minimum variance. Now V(L’Y) = 
d L ’ L  and E(L’Y) = P’P * X’L = P, so that the problem is one of minimizing 
L’L subject to the condition, X‘L = P,  or of determining a solution L of 
X’L = P with minimum length. This problem is a special case of the one 
considered in [(ii), lf.11 (with A = l), where it is shown that the infimum of 
L‘L is attained at 

(L*)’ = P’(X’X) - X’, 

which gives the minimum variance estimator 

(L*)’Y = P’(x’x)-x’Y = P’fi, 

the I.s.  estimator. 

4a.7 Explicit Expressions for Correlated Observations 

It is shown in 4a.l that the problems (Y, Xp, a2G) and (Y, Xp, Z) can be 
reduced to (Y, Xp, a21) by a suitable transformation of the variable Y. 
We shall give explicit expressions to normal equations, I . s .  estimators, etc., 
in terms of original correlated observations. By substituting for Y and X 
in the expressions for the case (Y, Xp, 0’1) the transformed values, explicit 
expressions in terms of original observations are obtained. Table 4a.7 
summarizes the results. 
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The essential difference is seen to be only in the computation of the normal 
equation Sp = Q. The rest of the formulas depend only on S and Q. 

4a.8 Some Computational Aspects of the 1,s. Theory 

The application of the least squares technique involves the numerical reduction 
of X’X, the m x m matrix of normal equations, which may offer some 
difficulty. A method which has been found to be convenient for computations 
both on desk calculators and high-speed computers is as follows. First, a 
matrix T is found such that X’X = T’T where T is upper triangular of order 
m. When X’X is singular, T has the property that if a diagonal entry is zero, 
the entire row is zero. The number of non-zero diagonal entries is equal to 
R(X) which is less than m if X‘X is singular. Given such a matrix, it is easy to 
find T-, its g-inverse. This is done by omitting the zero rows, determining 
the true inverse of the reduced triangular matrix, and finally restoring the 
order by inserting the zero rows in the proper positions. The rest of the 
computations involve only matrix multiplications. 

A g-inverse of X’X is C = T-(T-)’, and a solution to normal equation 
is S = CQ. The dispersion matrix of 1 for computing the variances and co- 
variances of estimable parametric functions is 0%. The least sum of squares 
which provides an estimate of 0’ is Ro2 = Y’Y - S’Q. 

A numerically stable method has to be used to compute T itself. Ordinarily 
the square root method will work provided the matrix X’X is not badly 
conditioned. A better alternative is the triangular reduction of X by premulti- 
plication with Householder orthogonal matrices [see (vii), lb.21. 

4a.9 Least Squares Estimation with Restrictions on Parameters 

Consider the problem (Y, Xp, 0’1) where f! is subject to consistent linear 
restrictions H’p = 6 (given) and rankH = m - s. A general solution of 
H’O= 6 is Po + BB where Po is a particular solution and B is an m x s 
matrix of ranks such that H’B = 0 and 8 is an arbitrary vector of s elements, 
which are, so to speak, new parameters. 

E(Y) = X p  = X(po + SO) or E(Y - Xp,) = XBO. 

Let Z = Y - Xpo. Then E(2)  = XBB, and the problem is reduced to that of 
(4a.1.2). by considering (Z, XBB, aZI), with new variables Z and new par- 
ameters 8. To estimate P’p = P’(p0 + SO) = P’p, + P’BO, we need only 
consider P‘BB = R’B. For the estimation of cr’ as in 4a.4, the rank of F = XB 
is needed. It is easy to establish 

rank(Xi H’) = rank XB + rank H, using H’B = 0. (4a.9.1) 

The rank of XB can thus be deduced from (4a.9.1) by studying the matrices 
X and H without actually computing B and F. 
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But we can approach the problem without introducing a smaller number of 
parameters by applying the result of [(iii), lf.11 on the extremum of a quadratic 
form. 

The problem may be posed as one of finding a linear function L’Y + d 
such that 

V(L’Y + d) = ~ L ‘ L  is a minimum 

subject to the condition 

E(L’Y + d) = P’B, given H’P = 6. (4a. 9.2) 

The condition (4a.9.2) implies that the equation 

L’XP + d = P’B, (4a.9.3) 

is satisfied for all fl such that H’P - 6 = 0. Then there exists a vector M such 
that 

and d = M’g. The problem then reduces to 

minimizing L L  

subject to (X’ i H) ---- = P. (it;) 

(4a. 9.4) 

(4a. 9.5) 

By an application of the result of [(iii), lf.11, the optimum choice of L and 
M are 

L, = XCiP, M, = C;P (4a.9.6) 

where CI and C2 are the submatrices of a generalized inverse 

X’X H - C, C2 
( H ’  0) = ( C ,  C.)* 

(4a.9.7) 

Hence we have the following result: 

The minimum variance unbiased estimator of P‘p is (L,)‘Y + (MJ6 = 
P’(C,X’Y + C26), which may be written as P’b where fi is a solution of the 
equations 

X’XP + H5 = X’Y, 

H’B = 6. (4a.9.8) 

It may be observed that equations (4a.9.8) are the same as the normal 
equations obtained by minimizing (Y - XP)’(Y - XP) subject to the restriction 
H’P = 6 using a Lagrangian multiplier I. 
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Variances and Covariance of Estimators. Since 

P’g = P’CIX’Y + c2 5,  

V(P‘6) = a2P’C,X’XC1P = aZP’C,P 

then 

if we use the properties of the generalized inverse (4a.9.7). Similarly, 

COV(P’B, R’B) = a2P’CIR = 02R‘C,P. 

Suppose the matrix C, is not computed but it is known that P’fi = 
y’X’Y + 6‘5 and R’fi = $’X’Y + J1‘5 and H’y = H’+ = 0. Then the variances 
and the covariance 

V(P’B) = a2P’y, V(R’1) = a2R’+ 
COV(P’B, R’fi) = 02P’+ = aZR’y 

involve only the vectors P, R and y, $. If the condition H’y = H’+ = 0 
is not satisfied, then 

V(P’B) = 02y’X’Xy and cov(P’b, R‘B) = a2y’X’X+. 

Estimation of a’. An unbiased estimator of a2 is 

(Y’Y - B’x’Y - R‘g)  + (n  - s) 

where s = rank(X’ j H) - rank H as shown in (4a.9.1) and (b, x) is any 
solution of (4a.9.8). In terms of the submatrices of the g-inverse (4a.9.7) 
we see that 

g = C,X‘Y + c 2 5 ,  t = C3X‘Y + c,g. 

4a.10 

Consider the general set up (Y, Xp, C) with or without restrictions on the 
parameter p. Let Pip, . . . , P; be the individual least squares estimators 
of the parametric functions Pip, . . . , Pi p. Furthermore, let A be the dispersion 
matrix of the estimators P;B, . . . , Pi b. We then have the following optimum 
property of the I.s. estimators. 

(i) Let L’,Y, . . ., LLY be any unbiased estimators of Pip, . . ., P;Q and 
let the dispersion matrix of the estimators be B. Then B - A is nonnegative 
definite, implying 

Simultaneous Estimation of Parametric Functions 

(a) Trace B 2 Trace A, 

(c) Trace QB 2 Trace QA, where Q is any n.n.d. matrix, and 
(d) maximum latent root of B 2 maximum latent root of A. 

(b) IBI 2 IAl ,  
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Consider the linear parametric function 
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a1P;p + . . ’  + akP;p 

whose I.s. estimator is alp; B + * .  . + a, Pi 1 with variance a‘Aa where 
a‘ = (al, . . . , ak). The variance of the alternative estimator alL;Y + * + 
a,L;Y is a’Ba. Then we have a‘Ba 2 a‘Aa for all a, which proves all the results 
(a) - ( 4 .  

4a.11 Least Squares Theory when the Parameters are Random Variables 

Consider (Y, Xfl, C )  where fl itself is a random variable with mean p and 
dispersion matrix T. What is the best linear estimator (or predictor) of 
the random variable P’p. Let us observe that C = D(Y I P), that is, the con- 
ditional dispersion matrix of Y given P. Then we have the following formulas 
connecting the total dispersion and covariance matrices with the conditional 
matrices. 

D(Y) = EDWI B) + D [ W I  PI1 

C(Y, P’P) = E[C(Y, P’S) I PI 1 + C [ W  I 8), P’PI 

= C + D(Xp) = C + XTX’ 

= 0 + XTP. 

We determine a linear function a + L’Y such that 

I E(P’p - u - L’Y) = 0 

V(P‘p - a - L’Y) is a minimum 

(i) CASE 1, p KNOWN. The optimum choice ofL and a are 

L, = (C + XTX’)-’XTP = C-’X(T-’ + X’C-’X)-’ 
a, = p’P - p’X’L,, 

and the prediction variance is 

V(P’p - a, - (L,)’Y) = P’TP - P’TX’L, 
= P‘(T-’ + X’C-’X)-’P. 

(4a. I 1  . I )  

(4a. 1 1.2) 

(4a. 1 1.3) 

(4a. 1 1.4) 

(4a. 1 1.5) 

Proof consists in verifying that the choice (4a. 1 1.4) satisfies the first con- 
dition in (4a.ll.3) and showing that, for any other choice of L and a, 

V(P’p - a - L Y )  = V(P‘P - a, - (L,)’Y) + V[(L - L,)’Y] 

2 Y(P’fl - a, - (L*)’Y). (4a. 1 1.6) 

(ii) CASE 2, p UNKNOWN. The optimtrm choice of L and a are 

L, =C-’x(x’c-’x)-’P, a,  = 0 (4a. 1 1.7) 
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provided there exists an L such that X'L = P, and the prediction variance is 

P'(X'I; - 1 X) - ' P. (4a. 11.8) 

Observe that the best estimator and the prediction variance are the same 
as the I . s .  estimator and its variance when p is considered as a fixed param- 
eter as in (4a.1.2). 

In (4a.11.8) it is assumed that (X'C-'X)-' exists. Otherwise we can sub- 
stitute a g-inverse of X'C-'X. 

It is easy to verify that X'L, = P, thus satisfying the condition (4a.ll.3). 
Consider 

V[P'P - (L*)'Y - (L - L*)'Y] = V[P'P - (L*)'Y] + V[(L - L*)'Y], 

(4a. 1 1.9) 
the covariance term being zero as shown below. 

C[(P'p - (L*)'Y), (L - L*)'Y] = (L - L*)'XTP - (L - L*)'CL* 
= 0 - (L - L*)'CC-'x(x'C-'x)-'P = 0 - 0, 

(4a. 11.10) 

by using the condition L'X = (L,)'X = P. Equation (4a.ll.9) proves the 
desired result. The prediction variance is easily shown to be as given in 
(4a. 11 3). 

4a.12 Choice of the Design Matrix 

We have not discussed how the choice of X arises in practice. Each row of 
X represents a combination of " factors " (or instrumental variables whose 
values may be arbitrarily assigned and are not the results of an experiment) at 
which a certain response (the result of an experiment) is observed. The 
matrix X, which may be predetermined, is called the design matrix. In the 
setup (Y, XP, Z), the expected response is assumed to be a linear function of 
the factor variables. 

Given X, it is shown that the dispersion matrix of the 1.s. estimators 
. . . , /?, is (X'Z-'X)-' (or a g-inverse when the rank is not full). We now 

raise the question as to how X may be chosen to make (X'C-'X)-' as small 
as possible. 

If we are allowed to choose the factor values in  an unlimited range, the 
entries of (X'C-'X)-' can be made arbitrarily small, since by choosing X 
as ax, (X'CX)-' changes to a-*(X'C-'X)-' + 0 as a -+ 00. But in practice 
it may be wrong to do so since the response model may not be valid for a 
wide range of the factor values. We have to limit the ranges to small regions 
in which we are interested and within which we want to explore the re- 
sponse function. 
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Then we may make a restriction of the form 

Xiz-’Xi = Ci2 (given), i = I ,  . . . , m, (4a. 12.1) 

where Xi is the column vector of X representing the n levels of the ith factor 
used in an experiment. Subject to the conditions (4a.12.1) we wish to choose 
the combinations of the factor values or the rows of X which lead to  estimators 
of PI,  . . . , p,,, with the least possible variance. 

(i) Let X be a design matrix and Bi be the 1.s. estimator of pi. Then, under 

V(Bi) 2 1/ci2 (4a.12.2) 

and the minimum is attained when XiZ-’Xj = 0 for j = 1, . . . , i - 1, i + 1, 
. , . , m .  

We shall prove the result for i = 1 .  The matrix X’E-’X can be written in 

the conditions (4a. 12.1) on X, 

the partitioned form 

(4a. 12.3) 

Hence I X’Z-’XI = I FI (X;Z-’X, - B’F-’B), which gives 

1 1 
(4a. 12.4) IF1 - 

IX’Z-IXI - x;c -1x, - B ’ F - ~ B  X;C - I X ,  

since B’F-IB is positive. But, V@,) = IF(/IX’C-’XI. Hence V@,) 2 1/Cl2. 
The equality in (4a.12.4) is attained when B = 0, that is, X;X-’Xj = 0, 
j # 1.  As a special case when 72 = u21, we have the following. 

(ii) Under the condition Xi Xi = Ci2, the optimum choice of combinations 
(rows of X) is when Xi Xj = 0, that is, the columns of X are orthogonal. 

4b TESTS OF HYPOTHESES AND INTERVAL ESTIMATION 

The 1.s.e. of a parametric function is only a point estimate, and no exact 
statement of probability of its deviation from the true value of the parametric 
function can be made without a specific distribution for the variable Y being 
considered. We shall assume that Y N N(Xfl ,  a21), the setup under which the 
sampling distributions of several statistics were investigated in 3b.5. Let H’ 
be a matrix of order k x m of rank k,  such that its rows depend on the rows 
of X. This implies [see (i), 4a.21 that the k parametric functions H’P are 
individually estimable under the setup (Y, XP, a21), in which case, the I . s .  
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estimators are H’D = Z (say). In terms of X, Y, we have H’P = H’(X’X)-X‘Y 
and Ro2 = Y’(1- X(X’X)-X’)Y. Then 

H’(X’X)-X’(1 - X(X’X)-X’) = 0 

showing that H’p and Ro2 are independently distributed. (See also Examples 
2.2 and 2.3 at  the end of Chapter 3.) 

From (3b.3.4) the distribution of Z is k variate normal with mean H’fl 
and dispersion matrix a2D (say), and of Ro2 is u2zZ(n - r ) .  We shall use this 
result in drawing inferences about unknown values of parametric functions. 

4b.l  Single Parametric Function (Inference) 

Given an estimable parametric function 8 = P‘P, let u be its 1.s.e. with variance 
(say) p2a2.  Then 

u - N ( 0 ,  p2a2)  and Ro2 - u2x2(n - r )  

are independent, so that if s2 = Ro2/(n - r ) ,  then 

u - o .  u - e  
t = - .  - - =  - - S(ti - r) (4b. 1.1) 

which is Student’s distribution on (n - r )  D.F. [using (3b.1.8)]. If 1, is the a 
probability point of I r 1, that is, P( I t I > I,)  = a, then 

Pa 0 PS 

P[? ,, < t ) = 1 - a ,  (4b. 1.2) 

that is. 

P(U - p ~ t ,  G e G u + psr,) = I - a.  (4b. 1.3) 

The results (4b.1.2) and (4b.1.3) are extremely important for drawing in- 
ferences on 8, the value of the given parametric function. 

Testing of Hypothesis. Let the null hypothesis be P’fl = B0 (an assigned 
value). If the null hypothesis is true, then using (4b.1.2), we have 

(4b. 1.4) 

The null hypothesis is thus rejected at u level of significance if, for an observed 
u, we have 

> 1,. 
lu - 001 

PS 
(4 b . 1 .5 )  
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Interval Estimation. Equation (4b.1.3) implies that for an observed u the 
interval 

(u - pst, 9 u + psr,) (4b. 1.6) 

is a (1 - a) confidence interval of 8. (See 7b of Chapter 7 for detailed treat- 
ment of confidence intervals.) 
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4b.2 More than One Parametric Function (Inference) 

Let us consider k independent estimable linear parametric functions 

8, = Hip, . . . , 8k = Hi 0, (4b.2.1) 

which, in matrix notation, may be written 8 = H'P where H' is a k x m 
matrix and 8 is the column vector of 8,, . . . , 8,. The 1.s. estimators of 
(01, . . . , 8,) are represented by (z , ,  . . . , zk) = Z' and its dispersion matrix 
by 02D. Then since E ( Z )  = 8, D(Z)  = a2D, by applying (3b.4.7), we see that 

(Z - 8)'D-'(Z - 8) - a2X2(k) and Ro2 - a2X2(n - r )  

and are independent. Hence by (3b. 1.1 l), 

(Z - e)'D-'(Z - 8) . RoZ 
k n - r  

-- - F(k, n - i-). (4b.2.2) F =  

The statistic F and its distribution (4b.2.2) play a fundamental role in drawing 
simultaneous inference on a number of parametric functions. We shall study 
the various aspects of this statistic. 

Test of Multiple Hypotheses. Let it be required to test the null hypothesis 
that k parametric functions have assigned values, 

H;P=O,,-,, . . . ,  H;fl=8ko, 

which may be written in matrix notation, H'fl = 8,. The vector of deviations 
between I . s .  estimators and assigned values is (Z - 8,). If in fact 8, is not true, 
the deviations (Z - a,) are likely to be large. Let us consider the compound 
deviation (a single measure of deviations) 

(Z - 8,)'D- '(Z - 8,). 

By using the formula (4a. 1 . 9 ,  we see that 

E(Z - e0)'D-'(Z - 8,) 
k 

a' I 
k k 

= - trace(D-'D) + - E(Z - B,)D-'E(Z - 8,) 

= a2 + - (H'P - O,)D-'(H'P - 0,) 

= 02, only if H'P = O 0 ,  that is, the hypothesis is true. (4b.2.3) 

1 
k 
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Since (H’P - O,)D-’(H’P - 0,) is positive definite, (4b.2.3) exceeds oz 
if and only if the hypothesis is not true. On the other hand, the expected 
value of s2 = [Ro2/ (n  - r ) ]  is o2 without any assumption on the unknown 
parameters P. Hence in the ratio 

(Z - O,)’D-’(Z - 0,) . RO2 
-- (4 b. 2.4) 

k n - r  
F =  

the numerator is, on the average, larger in magnitude than the denominator 
if the null hypothesis is not true, depending on the non-null quantity 
(H’P - O,)D-’(H’P - O,)/k. Thus large values of F indicate departure from 
null hypothesis. Choosing a value Fa such that 

P(F > Fa) = a, where F - F(k,  n - r ) ,  

we may set up the test criterion 

(Z - O,)’D-’(Z - 0,) 
ks2 

F =  ’ Fa (4b. 2.5) 

for rejecting the hypothesis at  a-significance level. 
For purposes of computing F, we have an alternative procedure which 

directly provides the numerator without obtaining the I . s .  estimates of 
individual parametric functions. It was shown in [(ii), 3b.51 and also in 
Example 2.4 of Chapter 3 that 

R I Z  = min (Y - XP)’(Y - XP) 
H‘B = 00 

= (Z - O,)’D-’(Z - 0,) + Ro2.  (4b.2.6) 

If R 1 2  can be obtained directly as the restricted minimum with p subject to 
condition H’P = O,,  then (4b.2.6) gives the formula 

(Z - 0,)’D-’(Z - 0,) = R I Z  - RO2,  (4b.2.7) 

so that we may write the test criterion (4b.2.4) as 

R 1 2  - RO2 RoZ -- 
k *  n - r  

F= (4 b. 2.8) 

The equation (4b.2.7) is important in the sense that it provides an explicit 
representation of R I Z  - R,’, which appears in the numerator of the Fstatistic 
in (4b.2.8), as a compound measure of the deviations between I . s .  estimators 
and hypothetical values. 

The computations leading to the F statistic (4b.2.8) may be presented in 
tabular form, called the Analysis of Variance. 
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TABLE 4b.2. The Analysis of Variance 

Sum of Squares Mean Square 
D.F. (S.S.) (M.S.) 

k 
Deviation from 

hypothesis H’ p = Oo 
RIZ - Ro’ 

k 

Residual 

Total 

Ro2 
ti - r min (Y - Xp)’(Y - Xp) = Ro2 - 

I n - r  
Y 

n - r + k min (Y - Xp)’(Y - xp) = R,* 
H‘B = 00 

The entry marked by * is obtained by subtraction. The F statistic is the ratio 
of M.S. values. 

Simultaneous Confidence Intervals (Scheffe, 1959). 
that 

From (4b.2.2) it follows 

(4b.2.9) 

where 8 = H’P stands for k independent estimable parametric functions 
of P. The set of all possible 8, satisfying the inequality inside the brackets 
of (4b.2.9) for given Z and s2, is a closed region, which may be called the 
(1 - a)-confidence region of 8 = H’P. Let us represent such a set by C. 
Then simultaneous confidence intervals for functions gi(8), i = I ,  2, . . . , k 
with confidence coefficient possibly greater than ( I  - a), are given by 

min gi(8),  max gi(8) , i = 1 ,  . . . , k .  (4b.2.10) LC BE C 1 
It may be noted that for any particular g(8) 

P min g(O), max g(8)  2 1 - a, (4b.2.11) 

so that the confidence coefficient for any particular function is greater than 
1 - a. In (4b.2.9) Fa is the upper a probability value of the F statistic. 

Another method applicable to simultaneous confidence intervals of linear 
parametric functions depends on the Cauchy-Schwarz inequality (see le. 1.4) 

LC 0 € C  I 

(U’A)* 
A B - ~ A  = max - 

u U’BU ’ (4b.2.12) 

where U and A are column vectors and B is a positive definite matrix. 
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Applying the result (4b.2.12) with A = Z - 0, B = D, we have 

(4b.2.13) (Z - 0)’D-’(Z - 0) 1 [U’(Z - 0)]2 
=- max 

ks2 ks2 u U’DU * 

Hence from (4b.2.9) and (4b.2.13), we see that 

that is, 
_ _ _ _ _  

P( 1 U’(Z - 0) I G sJkF, U’DU for all U) = 1 - a 

P(uie E U’Z ~J~F ,u’Du for all U) = 1 - ct. 

or (4b.2.14) 

Equation (4b.2.14) provides simultaneous confidence intervals for all functions 
of the form U’0 = U’H’P, that is, all linear combinations of the given para- 
metric functions H’B. It also follows from (4b.2.14), as pointed out by Scheffe 
(1959), that for any particular function U’0 

P(U’0 E U’Z k s,/kF,U‘DU) 2 1 - u 

so that the confidence coefficient is greater than (1 - a) .  

Confidence Interval for the Ratio of Two Linear Parametric Functions. Let 
8, = P; p and 8, = P, p be two linear parametric functions. We want 
a confidence interval for the ratio l = O l / ~ z .  Let z1 and z2 be the 1.s. esti- 
mators of P; p and Pi p and Cl 1cr2, C, ,  6’ and C12 6’ be the variances and 
covariance of the estimators. The 1.s.e. of the function 0, - 10, is z1 - l z ,  
with 

E(zl - lz,) = 0, if I is the true ratio 

and 

V(Z1 - lz , )  = (C11 - 2 K , ,  + lZCZ2)t72. 

Therefore, 

- F(1, n - r )  (4b.2.15) (z1 - w 
syc,, - 2IC,2 + 12C,2) 

F =  

and 

P[(z~ - AZ,), - F , S ~ ( C , ~  - 21c1, + Pc,,) G 01 = I - a. (4b.2.16) 
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The inequality within the brackets of (4b.2.16) provides a ( 1  - a)-confidence 
region for 1. Since the expression in (4b.2.16) is quadratic in 1, the confidence 
region is the interval between the roots of the quadratic equation or outside 
this interval, depending on the nature of the coefficients. 
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4b.3 Setup with Restrictions 

Suppose, in the original setup (Y, XP, a21), the parameters are subject to some 
natural restrictions, RP = q, and we are required to draw inferences on para- 
metric functions whose values are not specified by the restrictions. This situ- 
ation presents no difficulty in theory, for as shown in 4a.6 we can replace the 
original parameters with restrictions by new (smaller-number) parameters 
without restrictions. If Q represents the new parameters, the problem is one of 
(Y, B+, 0’1). Any parametric function P’P estimable in the original setup is 
equivalent to a parametric function U’Q estimable in the new setup and so on, 
and therefore no further theoretical discussion of the problem with restric- 
tions is necessary. In practice, however, all the computations may be carried 
out without introducing any new set of parameters, as shown below. The 
residual sum of squares is 

Ro2 = min (Y - BQ)’(Y - BQ) = min (Y - XP)’(Y - XP), 
0 RP’tl 

with D.F. equal to (n  - f), where 

f = rank B = rank(X’ i R‘) - rank R’. 

Let H’P = 8, be a multiple hypothesis of rank k to be tested, such that the 
value of no linear combination of the individual functions in H‘P is implied 
by the restrictions RB =q. Let the equivalent hypothesis in terms of O be 
G’O = 6. Then 

R I 2  = min (Y - B@)’(Y - BO) 
C‘+ = c 

w p  = eo, up = ,, - - min (Y - XP)’(Y - XP), 

and the test criterion is 

R I 2  - Ro2 . Ro2 -- 
k *  n - f  

If R,’ - Ro2 is sought to be computed by first determining I . s .  estimates 
of H’P and the dispersion matrix of estimates, it has already been explained 
in 4a.9 how to obtain the latter without changing over to new parameters. 

It would then appear that all the computations can be carried out without 
introducing new parameters. 
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4c PROBLEMS OF A SINGLE SAMPLE 

4c.l The Test Criterion 

Let y I ,  . . . , y,, be observations drawn from a population with niean 11 and 
variance u2. The following computations are made. 

Ro2 = niin (yi - p ) 2  = y i 2  - n j 2  
U 

The normal equation for p is y = np, so that the I . s .  estimate of 1.1 is 

The t-statistic defined in (4b.l.l) for drawing inference on p is 

4c.2 Asymmetry of Right and Left Femora (Paired Comparison) 

The mean difference (right femur-left femur) in length between the right and 
left femora of 36 skeletons of a certain series is found to be 2.0234; the cor- 
rected sum of squares Ro2 of these 36 differences is 418.6875. The estimated 
variance s2 on 35 degrees of freedom is 418.6875/35 = 11.9625. 

Two-sided Test. Are the left and right femora of equal length on the average? 
We use the statistic 

- 

= 3.5193, 
Jn(Z - p)  - J36(2.0234) 

I =  
S - JI1-9625 

putting p = 0. If there is no a priori information as to whether the left measure- 
ment exceeds the right or otherwise, a large value of t in either direction 
would be evidence against the null hypothesis. We compare the observed 
value of t ,  disregarding its sign, with chosen significant points of the dis- 
tribution of I t 1, which are given in most statistical tables (see the references 
at the end of the chapter). For 35 D.F., the 5% value of It1 is 2.03 from 
R.M.M. Tables, which is the same as the 5 %  value of t as given in F.Y. 
Tables. The observed t is significant at  the 5 ;< level. 

One-sided Test. If it is known a priori that the alternative to the null 
hypothesis is that the right femur is longer than the left or if the purpose of 
the test is to discriminate only asymmetry due to the right femur being 
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longer than the left, then the sign of t is important. The hypothesis of equality 
is rejected in favor of the suggested alternative only when t exceeds the 
upper 504 value o f t  which is 1.69 for 35 D.F. from R.M.M. Tables (which is 
the same as 10% value of t in F.Y. Tables). If the alternative hypothesis is 
that the left femur has a greater length, then ( - t )  should exceed the upper 
5 % tabulated value for significance. In the foregoing, 1 certainly exceeds the 
upper 5 %value oft ,  showing that the data are in agreement with the suggested 
alternative that the right femur is longer than the left. In any problem the 
decision to use a two-sided or a one-sided test should be taken on some 
logical grounds. 

These tests are useful in situations where the mean values of two series are 
to be compared, but the observations are such that there is a one-to-one 
correspondence between a member of one series and a member of the other. 
In the preceding example, two measurements belong to the same skeleton. 
The 36 pairs of measurements give rise to 36 differences that can now be treated 
as a single series in which the expected value of the mean is zero. 

On the other hand, the two series may not have any correspondence; for 
instance, no two measurements are made on the same skeleton, in which 
case the method of analysis of variance applied to groups (see 4d) has to 
be used. In the second test the variation due to skeletons has also to be 
taken into account, and therefore the precision of the comparison decreases 
and such a small difference as the foregoing may go undetected, even in a 
large sample. The variance of femur length is about 400, in which case the 
variance for difference in means of two independent series of 36 is 
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400(& + A) = 22.22, 

whereas the corresponding variance for the difference in a correlated series 
is 1 1.9625 t 36 = 0.33, which admits a considerably more precise assessment 
of asymmetry. This aspect should be kept in view while conducting any 
investigation. When two measurements are to be compared, the experiment 
may be designed so as to obtain correlated series of measurements. The 
higher the correlation, the greater the advantage. The association should be 
positive, otherwise the test based on correlated pairs becomes less efficient. 

4d ONE-WAY CLASSIFIED DATA 

4d.l  The Test Criterion 

Let there be k samples of sizes n,,  . . . , nk from k populations with unknown 
means p , ,  . . . , pk and with a common unknown variance a*. The hypothesis 
which may be desired to be tested is 

(4d. 1. I )  p, = p 2  = * * = I l k  * 



46 ONE-WAY CLASSIFIED DATA 245 

The observational equations, n ,  + * * * + nk = n in number, are given below 

First Sample kth Sample 

Variable Expectation , . . Variable Expectation 

Yl 1 c 1 1  ... Y k  1 p k  

I . .  

Y l “ 1  P 1  ... Y k n ,  p k  - 
Total T T  ... Tk 

The minimum value of 
pothesis (4d.l.l), that is, with common p, is 

( y i j  - pi)’ subject to the condition of the hy- 

which is the total corrected sum of squares of all the observations. The 
minimum value of cc (yrl  - pi)’ without any restriction is 

The sum of squares due to deviation from the hypothesis with (k - 1) D.F. 
is then 

(4d. 1.4) 

T = T I  + * * 9 + T k  , 
which depends on the totals of the samples only. It is easier to calculate the 
expressions (4d. I .2) and (4d. I .4) in practice and derive the expression (4d. 1.3) 
for Ro2 by subtraction. The scheme of computation is set out in Table 4d.Ia. 
The quantities marked by * are obtained by subtraction. The F statistic is 
constructed using the mean squares derived from Table 4d.la. 

TABLE 4.1  u. Analysis of Variance, One-way Classification 

Deviation from hypothesis or TI’ T a  
2T-T k - 1  between samples 

Residual or within samples * * 

Total 
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4d.2 An Example 

The following data relate to head breadth of 142 skulls belonging to three 
series. Can the true mean head breadth be considered the same in the three 
series? 
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Head Breadth 
Sample 

Series Size Total Mean 

1 83 11,277 135.87 
2 51 7,049 138.22 

1,102 137.75 3 
Total I42 19,428 136.817 

-~ 8 - 

The sum of squares between series is 

11,277 x 135.87 + 7049 x 138.22 + I102 x 137.75 
- 19,428 x 136.817 = 238.59 

The total sum of squares is found to be 4616.64. The analysis of variance 
is set out in Table 4d.2. 

TABLE 4 . 2 .  Analysis of Variance 

D.F S.S. M.S. F 

Between 2 238.59 119.29 3.79 
Within 139 4378.05 31.50 

Total 141 4616.64 

The variance ratio 3.79 on 2 and 139 D.F. is significant at the 5 %  level, 
indicating real differences in mean values (see the R.M.M. Tables for signifi- 
cant values of F at the upper end). We can now examine the nature of these 
differences by writing the mean values in a descending order. 

Series 2 3 1 
Mean 138.22 137.75 135.87 

It appears that the observed inequality between (2) and (3) is in doubt 
because the values are close. To examine this we may compute the 5 %  
critical difference 
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where n2 and n3 are sample sizes, 6’ is the estimate of cr2, which is 31.50 
on 139 D.F. from the Table 4d.2, and 1, is the a-level significant value of 
I r I on 139 D.F. Inserting numerical values, the critical difference is 

[(+i + ~)31.50]1’2t, = 2.132, = 2.13 x 1.96 = 4.17. 

the 5 % value of I I I on 139 D.F. being I .96. The critical value is considerably 
larger than the observed difference 138.22 - 137.75 = 0.47 so that the 
entire difference in the mean values may be attributed to series ( I )  being 
different from (2) and (3). In general, we may compute all possible critical 
differences arising out of all the pairs in the manner explained and compare 
with the observed differences. On the basis of such detailed comparisons it 
should be possible to decide on the order of the groups under comparison 
with respect to the mean values and on the subsets within which the order 
is somewhat in doubt. In the present example we could conclude that series 
( I )  takes the last place whereas the order between (2) and (3) is in doubt. 

In practical situations, besides the order, the actual magnitudes of differ- 
ences are also important. The analysis of variance of data, the presentation 
of mean values, and the examination of individual differences enables us to 
interpret the magnitudes of differences in a useful way. 

4e TWO-WAY CLASSIFIED DATA 

4e.l 

Let there be p q  observations, each of which can be specified in terms of the 
categories of two classes. The observations may be set out as in Table 4e. lu. 

The different categories of A may be varieties of wheat, of B, ovens, 
and the measurement may be quality of baked bread. A may represent 
different types of machines and B a number of operators, and the measure- 
ment may be efficiency of production. Or A may be different levels of an 

Single Observation in Each Cell 

TABLE 4e.la 

Class B 

Class A B, B2 * * *  Bp Total 

A I  Y I I  Y12 ... YIP Y 1 .  
A2 y21 Y 2 2  “ *  YlP Y 2 ,  

A, 

... 
Y ,  . - Y P P  - Yq1 Y,, ’ * ’  - 

Total Y . ~  Y . ~  Y.P Y . .  
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organic manure and B of an inorganic manure applied to crops. In all 
these situations, the object is to determine an optimum combination of 
categories of A and B or to study the differences in categories of one factor 
for suitably defined categories of another. 

Let E(yij)  = ui + / I j  and V(y i j )  = 02. There are n = p q  observations 
and p + q parameters, but the rank of the matrix of observational equations 
is only ( p  + q - 1) (see Example 3, p. 11). The normal equations obtained 
by minimizing cc (JJ,, - u i  - pi)’ are 

p u i + C p j = y i ,  i = I ,  . . . , q  

LEAST SQUARES AND ANALYSIS OF VARIANCE 

C u i + + p j = Y . j ,  j =  1, . . . T P  

and a solution is seen to be 

&.=- ,  Y i .  p . = - - -  Y . j  Y..  
q P 4 ’  

I P . .~ 

which is not, however, unique. But we need only one solution for the rest of 
the computations. 

Using the formula (4a.5.1) for the residual sum of squares we see that 

(4e. 1.1) 

on n - r = p q  - ( p  + q - I )  = ( p  - I)(q - I )  D.F. Suppose we want to test 
the hypothesis 

(4e. I .2) 

in which case E(y,,) = u + Pj with a common u.  Writing the normal equations, 
solving for a, P I ,  . . . , p, and applying the formula for residual sum of squares, 
we find 

a, = a ‘ .  = uq, 

R f  = min c 1 ( y i j  - u - pj)’ 

so that the sum of squares for testing (4e.1.2) is 

(4e. 1.3) 

with (q  - 1)  D.F. Similarly the sum of squares for testing the hypothesis 
P - . * . =  - p, can be determined. The scheme of computation is presented 
in Table 4e. ID. The variance ratio for testing the hypothesis (4e.1.2) is 
VAlVe. 
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TABLE 4e. lp. Analysis of Variance, Two-way Classification 

D.F. S.S. M.S. 

y .  .= V A  Between A classes 4-1 S” =- x y , . z - -  

V S  Between B classes P-1 

1 1 

P P4 

ss =- 1 z y . 1 2 -  - 1 2  y . .  
4 P4 

* Residual (Interaction) ( p  - l)(q - 1) SAs = V. 
A x B  (by subtraction) 

P 4 -  1 

The components of analysis of variance in Table 4e.lp are also useful in 
testing differences between categories of a factor under more general as- 
sumptions on the data. Let us take a concrete example where the factor 
A represents different kinds of machines and B, operators. If the assumption 
E(yi j )  = a i  + f l j  is true, then differences in machines are the same for each 
operator and are measured by differences in the parameters a t .  On the 
other hand, we may ask the question whether there exist differences between 
machines on the average with reference to a wider group (population) of 
operators of whom the p operators included in the experiment constitute 
a sample, although the diflerences between machines may not be the same for 
each operator. Let us, however, consider a wider null hypothesis that the q 
observations for an operator on q different machines have a symmetrical 
distribution, that is, with equal means, variances, and the same correlation 
for all pairs of observations. Or in other words, the machines are basically 
the same, except possibly for difference in names. Under these conditions it 
has been shown in (3c.2.10) that V,/V, has the same variance ratio distri- 
bution [on q - 1 and ( p  - I)(q - 1) D.F.] provided the mean values for the q 
machines are the same over the population of operators. The test V,/V, is, 
however, effective only in detecting differences in mean values for the machines 
and not other departures in the wider null hypothesis considered. Thus the 
test V,/V, admits different interpretations depending on the model assumed. 

Tukey’s (1949) Test for Nonadditivity. Let us suppose that departure from 
additivity can be specified by writing the expectation of y i j  as 

(4e. 1.4) 
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by introducing a product term. If we can construct a test for the hypothesis 
lb = 0, it will serve as a test for nonadditivity, specijcally for detecting depar- 
tures of the type (4e. I .4). Since the expectations are not linear when l. # 0, 
the least squares theory is not applicable. 

LEAST SQUARES AND ANALYSIS OF VARIANCE 

But let us observe that whether A = 0 or not 

E(Fi. - F.,) = ri 

E(IJ = /J 

E(7.j - Y,,) = Pj 

so that unbiased estimators of z i ,  f l j ,  and 11 are given by 

* -  - ai = y i . - y , . ,  PT=J.j-J..9 p * = Y . .  

Furthermore, 

E(Yij - Ji, - F.j + V . , )  = lzib’j 

and an estimate of 1. may be written, when a i  and bj are known, by using the 
I . s .  theory on equations (4e. 1.4), as 

Substituting estimates a: and PT, we obtain an estimate of 1. in terms of known 
quantities 

which simplifies to 

(4e. 1.5) 

with variance, for given a: and P;, as 

Hence, if 3. = 0, ,??(I.* 1 a:, Pf for all i ,  j) = 0 and the statistic 

- x2( I ) .  (4e. 1.7) 
(4e. 1.5)’ 

(4e. 1.6) s, s, 0‘ 
P ~ [ C C  (Fi. - V . . N I . j  - I . . ) ~ i j ] ~  -= 

But 
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and we observe that [since y i j  in (4e. 1.7) can in fact be written (y i j  - J i .  - 
y , j  + p,.)], (4e. 1.8)-(4e. 1.7) is non-negative. Hence applying [(iv), 3b.41 

has an exact F distribution on 1 and ( p  - I)(q -- I )  - I D.F. We can now 
write the complete analysis of variance, including the component for non- 
additivity as in Table 4e.ly, where S,, S,, and S are as in Table 4e.lp and 
SN is 

SN = p q [ C C  (Vi. - V..U., - J . . ) ~ i j l ~ / s A  SB. 

as defined in (4e.1.7). The variance ratio for nonadditivity is V N / V R  with 
1 and ( p  - l ) (q  - 1) -- I D.F. 

TABLE 4e.ly. Analysis of Variance of Two-way Data 

D.F. S.S. M.S. 

A 4- 1 S A  V” 
B P-1 SB VB 

Nonadditivi ty 1 SN V N  

Residual (P - 1)(4 - 1) - 1 V R  
* 

(by subtract ion) 

Total P4- 1 S 

Our method of derivation and interpretation of Tukey’s test (4e. 1.8) 
suggests the following generalization in testing the specification in a Gauss- 
Markoff model (Y, Xp, &). 

Let us suppose that the actual model is 

Y = Xp + F I  + E (4e. 1.9) 

where F is n x k matrix whose (i,.j)th element is Fij(XP), a given function of 
Xp. We wish to test the hypothesis 1 = 0. 

= (X’X)-X’Y be the least squares estimator of p from the model 
(Y, Xp, 0’1). Further, let 

Let 

d = Y - X B  
M = (I - X(X’X)-X’)P, 

(4e. 1 . 1 0) 

where the ( i ,  ,j)th element of P is Fij(XB), and consider (formally) the model 
(d, MA, a’I), and derive the statistic (4b.2.8) to test the hypothesis 1 = 0 
using (formally) the least squares theory of 4b. 
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Using the notation of 4b.2, 

R, ’  = d’d, Ro2 = d’(1- M(M’M)-M’)d 

so that the required statistic is 

u R I - Ro2  - u d‘M(M’M)-M’d - - -  
b ‘  Ro2 b d’(1 - M(M’M)-M’)d 

(4e.1.11) 
U Y’M(M’M) - M‘Y - _ -  
b ’ Y’[I - X(X’X)- X’ - M(M’M)-M‘]Y 

The statistic (4e. 1 .  I 1) is distributed as F(b, a) where 

b = R(M), u = n - R ( X )  - b (4e. 1 . 1 2) 

and b is supposed to be fixed with probability 1. If b # k, then we will be 
testing a subhypothesis that certain linear functions of h vanish. 

The proof of (4e.l.11) is the same as that used in the formulae (4e.1.7) 
and (4e. 1.8). However, the result (4e. 1 .1  1) is derived more simply by applying 
the general theorem [(iv), 3b.51, observing that E’ and d are independent. 
Millikin and Graybill ( I  970) obtained the test (4e. I .  11) though the degrees 
of freedom a and b are defined differently in their case. 

4e.2 Multiple but Equal Numbers in Each Cell 

In 4e.l we considered a partial test of the hypothesis E(yi j )  = a i  + p j ,  
that is, the effects due to the classes of A (say machines) and B (say operators) 
are additive. This can, however, be fully tested when each cell contains more 
than one observation. If there are c observations in the cell ( i ,  j )  they may be 
represented by 

(4e.2.1) 

The hypothesis we wish to test is 

P i j  = ai + P j .  (4e. 2.2) 

When the additive hypothesis (4e.2.2) is not true, there is said to be inter- 
action between the factors A and B. In the presence of interaction, differences 
between A classes cannot be specified without reference to a particular B 
class. 

Let 
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Then under the setup (4e.2.1), we have 

and under the hypothesis (4e.2.2), as in (4e.I.l), we have 
2 2 2 2 

Y 2  vi. - ") - (1 y./ - ") . R12 = (c c c Y h k  - ;) - (c pc  
pqc 9 c  P9C 

The sum of squares for interaction is R I 2  - Ro2 on ( p  - I)(q - 1) D.F. 
The scheme of computation is given in Table 4 e . 2 ~ .  

TABLE 4e.Za. Analysis of Variance, Two-way Classification 

D.F. S.S. M.S. 

Between machines ( A )  

Between operators (B) P -  

* Interaction ( A  x B) V" t3 
(by subtraction) 

y.. '  v Between p9 cells P 9 -  1 

Residual P d C  - 1) V. 

1 

C CP9 
- C C Y t J *  - - 

* 
(by subtraction) 

Total 

With the analysis of variance of two-way data as in Table 4e.2a, a variety 

1. Is the interaction significant? The variance ratio for testing this hypo- 
thesis is VA,/Ve as already shown. 

2. Are there differences between machines (A classes) when averaged 
over all operators (B classes) employed in the experiment although there 
may be differences between machines for particular operators ? If pi, is 
the effect of the combination (A,B,), the hypothesis to be tested is 

The variance ratio appropriate for this is VA/ V,  . 

of hypotheses can be tested. 

1 9 .  
p 1 . = p 2 . = " ' =  
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3. Siniilarly the variance ratio V,/V,  is appropriate for the hypothesis 

P.1 = P.2 = * * *  = P . P .  

4. Are there differences between machines on the average over a wider 
set (population) of operators of whom those examined constitute a 
sample? The situation is similar to what has been discussed in 4e.l .  
The appropriate variance ratio is Y A / V A B ,  that is, the interaction mean 
square is the valid denominator whether additivity holds or not. The 
ratio V,/VAB is used for testing a similar hypothesis on B classes. 

The difference between the hypotheses considered in (2) and (4) should 
be understood. In either case, interaction may be present. In (2) we are 
interested in average differences between particular operators employed 
in the experiment, whereas in (4) the differences are with respect to a pop- 
ulation of operators not all of whom are included in the experiment but only 
a small sample. If there is no interaction (2) and (4) are the same. 

4e.3 Unequal Numbers in Cells 

The following notations are used : 

y i j  = the total of all observations in the (i, j)th cell 
yij = mean in the (i, j)th cell 
y . j  = c i y i j  (total for thejth column) 
y i .  = c j y i j  (total for the ith row) 
y, .  = total of all observations 
j , .  = mean of all observations 

n i j ,  n . j ,  n i . ,  and n.. are the numbers of observations for the (i, j) th cell, 
j th column, ith row, and all the cells, respectively. 

The data in Table 4e.3a refer to the mean values and totals of nasal height 
of skulls excavated from three different strata by three observers. It is desired 
to test for stratum and observer differences. 

In problems of this nature it is convenient to set up the figures as in Table 
4e.3a for the computation of the various sums of squares. The analysis 
is carried out in three stages. The total (corrected) sum of squares of all the 
observations, with 309 degrees of freedom is found to be 5398.4206. For 
further calculations the entries in Table 4e.3a are sufficient. 

The Computation of Between-Cell Sum of Squares. The between-cell sum of 
squares on p q  - 1 = 8 degrees of freedom is cc y i j J i j  - y. ,J . .  = 931.5204. 
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TABLE 4e.3a. Mean Values and Totals 

Stratum 

Observer SI s1 S, Y1.  . F l .  

yI1  1071.00 1572.48 91 3.50 3556.98 
0, r11 51.00 49.14 50.75 50.098 

n11 (21) (32) (18) (71) 

1966.86 23 15.40 1721.52 6003.78 

(42) (51) (36) ( 129) 

1219.00 2091.60 1849.20 5 159.80 

0, 46.83 45.40 47.82 46.541 

48.76 46.48 46.23 46.907 
0 3  (25) (45 1 (40) ( I  10) 

Y . 1  4256.86 5979.48 4484.22 14720.56 
Y . 1  48.373 46.715 47.704 = y . .  47.4857 

(88) (128) (94) (310) =).. 

Computation of Main Effects and Interaction. Let the expected value of an 
observation in the (i,j)th cell be ai + Pj representing the additive effects of the 
ith row and j th  column. The normal equations obtained by minimizing 

are, omitting the entries below the diagonal because of symmetry, 

Observers Strata 

a1 a2 r3 P I  P 2  P 3  

71 21 32 18 = 
129 42 51 36 = 

110 25 45 40 = 
88 . -  

128 . - 
94 = 

- 
- 

Marginal 
total 

3556.98 
6003.78 
5159.80 
4256.86 
5979.48 
4484.22 

The method of writing these equations is simple. Start with any marginal 
total say 3556.98, based on 71 observations for observer 1 distributed over 
the strata as 21, 32, 18. This gives the first equation. There are six marginal 
totals corresponding to' A and B classes which give rise io six equations. 

\ 
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We need not actually solve these equations for setting the analysis of variance 
table, Let us eliminate a l ,  a 2 ,  a3 from the last set of equations for P, ,  P 2 ,  P 3 .  
The rule is to write the equations for ai or Pi first, which ever contain a larger 
number of alternatives and eliminate the corresponding constants from the 
latter set of equations. To eliminate a l ,  a 2 ,  a3 from the equation for PI, we 
have to multiply the first equation by 21/71, the second by 42/129 and the 
third by 25/110 and subtract their sum from the equation for PI.  Similarly 
multiply the first, second, and third equations by 32/71, 51/129, and 45/110 
respectively and subtract their sum from the equation for and so on, 
obtaining the equations 

LEAST SQUARES AND ANALYSIS OF VARIANCE 

P I  P 2  P 3  

62.432498 - 46.2967 I7 . . . . , . . . . . = 77.394630 
64.844662 . . . . . . . . . . = - 108.080590 

The coefficients of p3 and the last equation need not be computed. The 
equations in P i  are solved by taking the last f l  to be zero. In the present 
problem there are only two equations giving 8, = 0.559250, j2 = - 1.170335. 
The sum of squares for the main effect of B is simply obtained as 

8,(77.394630) + D2(- 108.080590) = 171.8919 

where the values 77.493630, etc., are the right-hand side elements in the reduced 
equations for P i .  We need not solve for ai to set up the analysis of variance 
table. But, two more expressions have to be computed. If the E classes are 

TABLE 4e.3p. Analysis of Variance for Two-way Data (Unequal Numbers 
in Cells) 

~ ~~~ 

Source D.F. S.S. S.S. D.F. Source 
~ 

Strata B 2 147-6319? 634.1516t 2 Observers A 

0 bservers 2 658.4116* 171.8919t 2 Strata 
Interaction 4 125.4769 +- 125.4769* 4 Interaction 

(ignoring A )  (ignoring E )  

Between cells 8 931.52Mt -.931.52M 8 
Within cells 301 4466.9002* 

Total 309 5398.4206t 

t Calculated directly as explained in the text. 
* Obtained by subtraction. -+ denotes transfer of a figure (directly computed or ob- 
tained by subtraction) from one position to another for further computations. 
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ignored, the data have only a one-way classification with respect to A and 
the S . S .  due to A (ignoring B) on 2 D.F. is obtained from marginal totals of A 

C y i , y i . - y , . ~ , , = 3 5 5 6 . 9 8  x 50 .098+* .*  - 14720.56 ~47 .4857~634 .1516 .  

Similarly, the S.S. due to B (ignoring A )  is obtained. The rest of the com- 
putations are explained in the Analysis of Variance Table 4e.3P. 

The test for interaction on 4 and 301 D.F. is 

125.4769 4466.9002 
4 301 

= 2.11, F=-L 

and although it is less than the 5 % value of F on 4 and 301 D.F., it is some- 
what high. Presence of interaction in the present problem would have been 
most disgusting as it would mean that observer differences exist but are not 
consistent over the strata and hence no meaningful conclusions could be 
drawn from the data. On the other hand, some interaction would arise due to 
samples being not strictly random in any particular stratum for any observer, 
which may be true (under difficult field conditions) if skulls are taken out 
from different locations of a stratum by different observers. Since the inter- 
action mean square is more than the within-cell mean square the former is 
used for testing differences between observers and strata. 

The variance ratio on 2 and 4 D.F. for observers is 

+ 31.3692 = 10.49, 
658.41 16 

2 

which is significant at the 5 %  level, and the variance ratio on 2 and 4 D.F. 
for strata is 

171.8919 
2 

+ 31.3692 = 2.74, 

which is not very high (not significant at the 5 % level). 

The analysis would then be 
Suppose we ignored the observers and examined stratum differences. 

D.F. M.S. Ratio 

Between strata 2 73.8159 4.31 
Within strata 307 17.1035 

with a significant ratio of 4.31, leading to the conclusion that stratum differ- 
ences exist. A closer analysis reveals that observer differences are important, 
so some caution is necessary in combining the results of the three different 
investigators. The stratum differences are not very prominent when the differ- 
ences due to observers are corrected for. 
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4f A GENERAL MODEL FOR TWO-WAY DATA AND 
VARIANCE COMPONENTS 

4f.l A General Model 

We have already seen in 4e how the analysis of variance of two-way data 
enables us to draw a variety of inferences under different models for the 
observations. We shall now consider a very general model for which analysis 
of variance of Table 4e.2a provides a useful reduction of the observations. 
Let the pqc observations, with c observations in each of p4 cells, be rep- 
resented by 

Y i j k ,  i =  1, . . . , q ; ~ = l , . . . , p ; ~ = l , . . . , c .  (4f. 1.1) 

and let their expectations, variances, and covariances be as follows: 

E(Yijk) = ~ i j  9 V(~i jk)  = 0'9 cov(Yijk Y i j r )  = ~8 
~ W i j k ,  Y i m r )  = ~ 1 0 ~ ;  cov(Yijk9 Y m j r )  = ~ 2 0 ' 9  

cov(Yijk 9 Y s m r )  = ~3 0 ' 3  (4f.1.2) 

so that the correlation (which may be + ve or - oe) between any two observ- 
ations depends only on the nature of the common suffixes. 

4f.2 Variance Components Model 

We shall consider a special case, known as the variance components model, 
which leads to observations of the type (4f. 1.1) with the variance covariance 
structure (4f.1.2). Let fup  be a function of a pair of random variables (a, p). 
Define 

Then it is easy to establish 

m f , p  - f..Y = E ( f , ,  - f J 2  + E(f .0  - f.>* + EE(fup - f a .  - L p  + f..Y 
OJ2 = CTA2 + ug2 + uAtJ 2 * (4f. 2.2) 

The variable a may be thought of as representing the categories of a 
fuctor A and fl  those of a factor B andf.@ is the yield resulting from the choice 
of a and f l .  Thus oAz may be interpreted as the variance in yield due to the 
categories of A and bg2 as that due to B under a given sampling scheme for 
the choices qf the categories of A and B. The last component in (4f.2.2), 
oAB2 represents interaction between factors A and B, that is, a situation 
in which f a p  cannot be represented as the sum of two fundions, one depending 
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on a only and another depending on fl  only. If such a decompositionf,B = 
,f.. + f,. + f,@ is true, then the effects of A and B are said to be additive and 
the component uAB2 vanishes. 

Let us generate random variables in the following manner (sampling 
scheme). First choose independent samples a l ,  . . ., aq of u and /I1, . . . , /3, 
of p and associate with each combination (ai, pj), c variables: 

Y i j k  = fa,@, + eijk, k = 1, . . * 9 c (4f. 2.3) 
where 

E(eijk I $ pj) = O, V(ei/k I (Ti I pj) = Ue2? 

CNeijk , eijm 1 ai I Pj) = 0. 

The components eijk may be thought of as independent errors in the repeated 
measurement of falo,. Now it may be seen that with the components oA2, 
ogZ, and nABZ defined in (4f.2.2) with respect to the particular distribution of 
(a, p) generated by independent choices on u and p, 

E(yijk) =f.., V(yijk) = 0; + 00’ = 0 ’ 3  

cov(yijk, yijm) = a,’ = p O u 2 v  cov(yijk 9 Yimr) = 0”’ = p l U 2 ,  

cov(yijk , ysmr) = 0 = p3 0 ’ 9  cov(yfj, I ymjr) = U g 2  = p2 a2, 

U,2 = U” 2 + ug2 + CAB’. (4f.2.4) 

We thus have a particular case of the general model (4f.1.2) with the corre- 
spondence between the parameters as shown in (4f.2.4). A model for observ- 
ations (4f.2.3) with the covariance structure (4f.2.4) is known as the variance 
componenrs model. Other formulations of variance components are given 
in 4j. 

In theory we may admit other types of sampling such as without replacement 
in the case of finite alternatives and/or with equal or unequal probabilities 
or in such a way that u and p are correlated. We shall consider the most 
general model and show how to estimate the parameters (i.e., the covariance 
structure) by analysis of variance of two-way data as in 4e.2. To derive the 
results in particular cases we have to  express the parameters ocZ, cA2, ng2, 
and oAB2 in terms of the general parameters a’, po , pl, p 2 ,  p 3 ,  as is done in 
(4f.2.4) for a special sampling scheme on (a, 8). 

4f.3 Treatment of the General Model 

Our object is to determine the expectations of the entries in the analysis of 
variance Table 4e.2a under the general covariance structure (4f. 1.2) for the 
observations. To do this, we construct an orthogonal transformation from 
variables Y i j k  to a set of uncorrelated variables. This is achieved in three stages. 
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Stage 1. 
in the cells obtaining new variables (where y i j  = x k  Y i j k ) ,  
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Make an orthogonal transformation 0, on each set of c variables 

(4f.3.1) 

i =  I, . . . , q ,  j = l ,  . . . , p .  
Verify that 

E(gijk) = O, V ( g i j k )  = - E(Ui,) = & Pij 9 

- 
V ( U i j )  = ( I  + c - lp,)a2, 

C0V(Uij, Um,J = c p ,  0 2 ,  

C0V(Ui,, Uim) = c p p 2  

C0V(Ui,, U m r )  = c p ,  02. 

Stage 2. Apply an orthogonal transformation 0, on p variables uil , . . . , uip 
in ith row to obtain new variables 

(4f.3.2) 

IP 

Stage 3. If we see a method in this madness, a third and a final orthogonal 
transformation 0, is called for on each set of q variables zl j ,  . . . , zqj to obtain 
new variables 

(4f. 3.3) 

j =  1, . . . , p ,  

which are all uncorrelated, but with unequal variances as follows: 
- 

o,, = V(u,,)  = [I + c - I p ,  + c(p - l)p, 

0 ~ 0  = V(ui,) = [l + c - Ip, - cp ,  + c(p - I)(p, - p,)]02, 

oOl = V(uIj) = [ I  + c - l p ,  - cp ,  + c(q - I ) (p2  - p3)]02, 

oll = V(V,,) = [ I  + c - Ip, - cp, - cp, - c p , ] 0 2 ,  

C ( q  - l)P2 + d P  - I)(q - l)P,Ioz - 
i > I 

j > 1 
- 
- 

i, j 2 2 
0,' = V(gijk) = (1  - p o ) 0 2 ,  k 2 2. (4f. 3.4) 
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For a variance components model, substituting for p ,  and u2 from (4f.2.4) 
in terms of 6.2, uA2, uB2 and uAB2,  we have 

0 0 0  = P e 2  + C 6 A B 2  + cpuA2 + cquB2 
2 

~ 1 0  = U, + CUAB' + cpA2, 

011 = U, 2 + CUAB', 

~ 0 1  = ue2 + CUAB' + cquB2 
= U, 2 . (4f.3.5) 

Let us now express the sum of squares of the analysis of variance Table 
4 f . 3 ~  in terms of ui j  and g,Jk, the new uncorrelated variables. As a consequence 
of the first transformation 

TABLE 4f .3~ .  Expected Values of Mean Squares in a Two-way Analysis of 
Variance Under the General Setup (4f.1.2) 

S.S. S.S. 
(Original) (New Expected 

D.F. Variables) Variables) M.S. M.S. 

A 

B 

P O  Between Y1,* ya.. 
cells CZV1,- U l l '  v 0'+c8'  

that is, the sum of squares within cells, on pq(c - 1) D.F. is 
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The transformation from yU to uil is orthogonal. Therefore 
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= S A  + SB + S A B .  

In virtue of the orthogonal transformations 0, and 0, , 

and therefore 

Using the identity (4f.3.6) on the mean values p i ] ,  we have 

(4f.3.7) 

+ c c c (pi]  - pi. - j., + p J 2  
= c(q - 1)6A2  + c ( p  - 1)6B2  + c ( p  - 1)(q - 1)6AB 2 . 

Hence 
4 

2 
E[SA] = E($ ui12)  = [ v ( v , l )  + = (q - l ) (OlO + cbA2) .  

Similarly 

The results are summarized in the analysis of variance Table 4f.3c(, where 
oil and 6,' are as defined in (4f.3.4) and (4f.3.7) respectively. 

It may be noted that in the variance components model, bA2, dB2, d A B 2  
are zero, a,, have the values given in (4f.3.9, and we have the estimates 

E[SflI = ( p  - l)(OOI + c s f 1 2 ) ,  EISAB1 = (P - ')(q - I)(OOO + c 6 A B 2 ) .  

(4f.3.8) 
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In the general case when dA2, d B 2 ,  6 A B 2  are not zero, it is not possible to 
estimate all the unknowns. 

Let us now assume that the variables yi,,  have a multivariate normal dis- 
tribution in which case the transformed variables uij and gi]k are independent 
and normal. Hence the sum of squares SA , S B ,  S A B ,  and S, due to A ,  B, A B  
and within cells are all independently distributed in the most general case, 
depending on exclusive sets of variables uij  and g i j k .  Thus 

s e  - x2[pq(c - I)], a central x 2 ,  
o e  

a noncentral xz if 6,,’ z 0 

These distributions are basic to all inference problems concerning unknown 

For instance in the variance-components model, since (SA/al0) - x 2  (q  - I )  
parameters. 

and (Se/oe2) N x2[pq(c - I)], then 

(4f. 3.9) 

and therefore a lower confidence limit for the ratio u10/~e2 is obtained by 
equating the left-hand side of (4f.3.9) to a percentage point of F, 

4g THE THEORY AND APPLICATION OF STATISTICAL 
REGRESSION 

4g.l Concept of Regression (General Theory) 

The theory of regression is concerned with the prediction of one or more 
variables (yI, . . . , y,) on the basis of information provided by other rneasure- 
ments or concomitant variables, (xl, . . . , xp)  = x’. It is customary to call 
the latter independent or predictor variables and the former dependent or 
criterion variables. 
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Prediction is needed in several practical situations. A meterologist wants to 
forecast weather several hours ahead on the basis of suitable atmospheric 
measurements taken at a point in time. An educational institution has to 
assess the abilities of candidates in particular fields by appropriate tests. An 
establishment wishes to recruit personnel who will be successful on the jobs 
assigned to them, by using a suitable test battery. A plant or an animal 
breeder is interested in choosing individuals whose progeny will give him the 
maximum return or “ pay off.” 

In all these situations the criteria are some variables observable in the future, 
which are sought to be predicted by the available measurements for taking 
decisions. How should the predictors be chosen? 

Minimum Mean Square Error Predictor. Consider a single criterion variable 
y and p predictor variables xl, . . . , xp denoted by vector x. Let f ( x l ,  . . , , xp) 
be a predictor of y. 

(i) Let M(x)  be E(yl x). Then E[y  - f(x)12 is a minimum whenf(x)  = M(x).  

From the definition of conditional expectation 

E[(Y - M)(M - f)l  = EKM - f ) E ( y  - MI x)] = 0 

so that 

E(y - f)’ = E(y - M + M - f)’ 
= E(y - M)’ + E(M - f)’ 2 E(y - My. (4g. 1.1) 

The lower bound of E(y - f)’ is attained when f = M, so that the best 
choice of the predictor which minimizes the mean square error (m.s.e.) 
is M(x),  the conditional expectation of y given x, which is called the regression 
of y on xl, . . . , x p .  The m.s.e., E(y - M)’ is the average conditional variance 
of y given x and is denoted by &. 

Predictor Having Maximum Correlation with the Criterion. Let us find f 
to maximize the product moment correlation between y and f, p ( f ,  y) = 

COV(Y, f)b/ g y .  

(ii) Let M(x)  be as in (i). Then p(y, M) is non-negatioe and p(y, M )  2 
I p(y, f) 1 for any function S. 

For any f 
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When f = M ,  cov(y, M )  = cov(M, M )  by using (4g.1.2). Hence p(y, M )  = 
aM/a,, 2 0 where aM2 = cov(M, M )  = V(M)  and ay2 = V(y). NOW 

(4g. 1.3) 

The upper bound of p(f, y )  is attained when p(f, M )  = 1, which implies 
that f is a linear function of M. Again the regression function is the answer. 
The square of the maximum correlation attained aM2/oY2 is known as 
correlation ratio and is represented by qyx2.  By definition, 0 ,< qyx2 ,< 1. 
We observe the decomposition (or analysis of variance) 

E[y - E(y)]2 = E(y - M ) 2  + E [ M  - E(M)I2 
2 (4g. 1.4) 

uy2 - - a;., + =M 3 

so that qyx2 = 1 - oy2,x/ay2, which approaches unity as a;,, the error of 
prediction -+ 0, and approaches zero when there is no reduction in error 
due to the use of x. Thus qyx2, written more explicitly as q&.,,..,,xp) or 

... p ) ,  provides a measure of association between y and xl, . . . , x p  or of 
accuracy of prediction, which may be useful in comparing different situations 
or different choices of predictor variables in any given problem. 

Maximizing Expected Performance in Selection. Suppose we want to truncate 
the distribution of x in such a way that a given proportion a of the popu- 
lation is left and the expected value of y in the retained distribution of 
x is maximized. That is, we want to characterize an ct proportion of the 
population on the basis of x, with the maximum possible average value of y. 
If F(x, y )  is the joint distribution function, then we need a region w of x 
such that 

// d ~ ( x ,  y )  = tl (given), 
w w R  

jj y d ~ ( x ,  y )  is a maximum. 

where R is the entire range of y. Integrating with respect to y,  the problem 
reduces to 

w x R  

maximizing J ~ ( x )  ~F(x) ,  (4g. 1.5) 
W 

subject to jwdF(x) = u.  (4g. 1.6) 
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(iii) (Cochran, 1951). The region nj defined by M(x)  B i., n h e  1 is chosen 
to satisfy (4g. I .6), maximizes (4g. I . 5 ) .  

The result is an immediate consequence of the Neyman-Pearson lemma 
proved in Section 7a.2. Again the answer is based on the regression function. 

Linear Regression. The special case when the regression function is linear 
in x has been studied extensively. Since E(y - M)’ is a minimum when M 
is the regression function, we can consider an  arbitrary linear function 
a +pix, + . * * + ppx,  and determine the coefficients by minimizing, 

E(y  - u - p l x l  - * * * - / lPxp)’  = b2 + B’Cp - 2 p ’ ~ o  + V(y) ,  (4g. 1.7) 

where C is the dispersion matrix of x l ,  . . . , x p ,  uo is the vector of covariances 
of y with xi, . . . , x p  and b = a - €(y) + p ,E(x , )  + * + PpE(xp). The op- 
timum choice of b and fl are 

b* = 0, Cp* = u0, 

for it is easily shown by writing p = p* + 6, that 

b2 + P’Cp - ~P’u, = (b*)‘Cp* - 2 4 p *  + 6’CS + b2 
3 (p*)‘cp* - 2u;p* + (b*)2. 

The optimum value of u is 

u* = E(y)  - (P*)’E(x) .  

V(y)  + (p*)’cp* - 2(B*)’uo = uoo - u; c- luo, 

The minimum value of (4g.1.7) is 

(4g. I .8) 

(4g. I .9) 

(4g.1.10) 

where coo = V(y) .  Thus we see that if the regression is linear, then it can 
be completely specified by mean values and variances and covariances of the 
variables only and a knowledge of the exact distribution of the variables is not 
necessary. 

The correlation ratio qyx2 in the case of linear regression, is then 

(4g. 1.11) 

and the coefficient p so defined by using only the variances and covariances 
of variables is known by the special name of the multiple correlation co- 
eflcient whether regression is linear or not. If linear regression does not 
hold, then qz  and p2 as defined in (4g.l.l I )  are different and in fact ‘1’ 2 p 2 .  

Best Linear Predictors. We have seen that when the regression is linear, the 
best predictor can be determined in terms of the first- and second-order mo- 
ments only. Now we ask, what is the best linear predictor of y in terms of x 
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whether the regression is linear or not? That is, instead of considering the 
class of all functions of x, we restrict our enquiry to linear functions of x only. 

(iv) The linear function u* + XI$* determined by the equations (4g. 1.8) 
and (4g. 1.9) is the minimum m.s.e. linear predictor of y .  I t  is also the linear 
function having the maximum correlation with y.  

The first part follows since a* and p* are, in fact, determined to minimize 

To prove the second part, let us observe that 
E(y - c1 -B’x)2. 

cov(y, P’X) = p’u, = p’cp* 
cov(y, X’P*) = (p*)’cp* = V(X’P*). 

Hence. we see that 

by using the C-S inequality (P‘CP*,’ < (p*’Cp*)(P‘CP) and noting that 

Yhe square of the maximum correlation is 

p*‘cp* u;c-’u, 
pyxz = - = 9 

000 goo 

which is the expression (4g.1.11) derived earlier. Since qvx is the maximum 
correlation between y and any function of x and pyx is the maximum corre- 
lation between y and linear functions of x, we find that qyx2 > pyx2.  The 
coefficient pyx2 is written more explicitly as P ~ Z [ ~ , .  ..., .+) or pOc ,... p ) .  

Alternative Expressions for p 2 .  Let ( p i j ) ,  i ,  j = 0, I ,  . . . , p be the correlation 
matrix of the variables y, x , ,  . . . , x p  and (pi’) be the reciprocal of ( p i j ) .  
Similarly, let (dj) be the reciprocal of (o,), the dispersion matrix of all the 
variables. Writing the equation Cp* = uo in full, we have 

fl:n,, + + flagpi = g O i ,  i = 1 , .  . . , p .  (4g.l. 12) 

2 

But from the definition, we have 

a ’ o a , i + * * . + a P o a p i =  -goiuoo, i =  1, . . . ,  p .  (4g.1.13) 

Comparing (4g. 1.12) and (4g. 1. I3), we have 
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Furthermore, 
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1 (4g. 1.14) 
= I - -  

aoo uoo 

1 
= 1 - oo (substituting for p* in terms of p"). 

P 

The last equation shows that p i c ,  ... p )  is a function of the correlations only. 

4g.2 Measurement of Additional Association 

In practice, it is necessary to examine the extent to which accuracy of pre- 
diction of the criterion y could be improved by bringing in extra predictor 
variables. The m.s.e. of prediction of the criterion when variables x,, . . . , x,, 
are used is aY2[1 - and when x l ,  . . . , xpr p > k, are used is 
aY2[1 - ...,,,I. The latter is not greater than the former, and the reduction 
in mean square error is 

2 2  2 
Oy [ f I O ( l  . , . p )  - q O ( 1  *..k)l, 

and the proportional reduction due to the use of the extra variables 
xk+l 9 . G .  3 x, (in addition to x1, . . . 9 xk) is 

(4g.2.1) 

which may be called partial correlation ratio and denoted by & k +  I ... p ) .  ... k ) .  

This must be distinguished from the correlation ratio t& + I ... p )  which is a 
measure of the direct association between y and xk+ , . . . , x,. 

If we are considering only linear predictors, the corresponding expression 
for proportional reduction in m.s.e. is 

(4g. 2.2) 

which may be called the (square of) partial multiple correlation of y on 
& + I ,  . . . , xp eliminating, so to speak, the association by xl, . . . , x k ,  

The measurement of partial association may be also considered in a slightly 
different way. The error in predicting y on the basis of x l ,  . . . , xk is e = y - 
M(x, ,  . . . , xk), where M stands for the true regression (or a linear predictor). 



2 
1 - P o ( l - . p )  - 2 

(4g. 2.7) 

1 * a .  P l p - 1  * I  I . .  

P l p - 1  a * .  1 

so that from the formula (4g.2.6), we have 

which shows that the measure of partial association is symmetrical in the 
symbols 0 and p and . (1 ... p -  1)  and p:co) . ( 1  ... p -  1)  have the same value. 
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If this error could be predicted to some extent by considering extra variables 
x ~ + ~ ,  . . . , x p  (in addition to the available variables x l ,  . . . , xk), then the in- 
clusion of the latter would be useful. The measure then depends on the m.s.e. 
in the prediction of the error e, which is the correlation ratio of (or multiple 
correlation in the case of a linear prediction) e on x l ,  . . . , x p .  It is instructive 
to verify that the predictor of e is 

with the variance 

whereas the total variance of e is 

The required correlation ratio is, therefore, the ratio of (48.2.4) to (4g.2.5), 
which is the same as the measure defined in (4g.2.1). Replacing t,~ by p we 
obtain the corresponding expressions for linear predictors. The coefficient 
p o ( p )  , ... p -  which measures the partial association between y and x p  
eliminating xl, . . . , x p - l  is of special interest because it enables us to judge 
the importance of an individual variable added to an existing set. From 
(4g.2.2), we have 

2 

by using the formula (4g. 1.14) for 1 - ... k ) ,  where I pi, I p - ,  denotes the 
determinant of correlations for y, x l ,  . . . , x p -  only. Furthermore, from the 
properties of the elements of the reciprocal matrix, we have 

so that from the formula (4g.2.6), we have 

which shows that the measure of partial association is symmetrical in the 
symbols 0 and p and p&,) . (1 ... p -  1)  and p:(o) . ( 1  ... p -  1)  have the same value. 
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Dropping the bracket of the second symbol we may write, after taking square 
root. 

(4g. 2.8) 
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and give the coefficient (48.2.8) the special name of partial correlation between 
y and x,, eliminating xl, . . . , x , , - ~ .  

is generally defined as the correlation 
between the residuals 

The partial correlation pol,.  ... p -  

(4g. 2.9) 

after subtracting, the corresponding regressions on xlr . . . , x p - l  from y 
and x,,. It would be a good exercise to show that the correlation so deter- 
mined is exactly (48.2.8). But the approach leading to the definition of (48.2.8) 
appears to be more intuitive, natural, and general. 

In the example of Section 4g.3 we shall consider tests of significance for 
multiple and partial correlations on the assumption of normality of the dis- 
tribution of variables. 

I el = y  -(a + Blxl + 
ez = x p -  (a’ + Pixl + 

+ B,,-lx,,-l) 
+ B~-lx,,-l) 

4g.3 Prediction of Cranial Capacity (a Practical Example) 

The problem is to estimate the capacity of a skull, which may be broken or 
damaged so that the capacity cannot be directly measured. In such a case 
the capacity may be’predictable with some accuracy, if at least some external 
measurements are available (Rao and Shaw, 1948e). 

The basic data needed are complete records of capacity as well as external 
measurements on a number of well-preserved skulls, from which we estimate 
the regression function for prediction in other cases. 

Choice of Regression Equation. Three important measurements from which 
the cranial capacity C may be predicted are the glabella-occipital length L, 
the maximum parietal breadth B, and the basio-bregmatic height H’. Since 
the magnitude to be estimated is a volume, it is appropriate to set up a regres- 
sion formula of the type 

c = y ~ f i 1 ~ f i 2 ~ i f l ’ ,  (4g.3.1) 

where y,  Bl, P2, B3 are constants to be determined. By transforming the 
variables to 

y = log10 C, X I  = IOgIoL, X? = log10 B, ~3 = log10 H‘, 

we can write the formula (4g.3.1) as 

y = a + B l x l  + 8 Z X 2 + P J x 3 ,  (4g.3.2) 
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where a = log,, y .  Fortunately, formula (4g.3.1) could easily be reduced 
to the linear form (4g.3.2). We might ask why a linear regression function of 
the type 

C = a + P , L + p , B + p 3 H ’  (4g. 3.3) 

in terms of L, B, H’ was not adopted. To answer this we must examine the 
performance of the two functions (4g.3.1) and (48.3.3) in the prediction of 
capacity. We choose that which gives a closer prediction in some sense. A 
wrong choice of formula may lead to grossly inaccurate prediction, and we 
may have to use our experience and try a number of alternatives before arriving 
at a reasonable formula. 

Estimation of Constants. When the formula is linear in the unknown constants 
as in (4g.3.2), the method of least squares may be employed to estimate the 
unknowns. We rewrite the equation (4g.3.2) in the form 

where X,, Z2,  E3 are the observed averages for the measurements xl, x2 , x3 
and 

a’=a-/31i1 - /? ,ZZ-p3Z3 .  

Let us suppose there are n sets (yr, xlr ,  xZr, xJr) of measurements. The 
reader may verify that the normal equations obtained by minimizing 

n 

C [Yr - a’ - P I ( X I ~  - 21) - PZ(XZr - XZ) - P ~ ( x 3 r  - E3>I2 
r =  1 

are, by writing a‘, b,, b, , b3 for estimates of a’, pl, p2 , p 3 ,  

where Si, is the usual corrected sum of products, 
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Using the measurements on n = 86 male skulls from Farringdon Street 
series obtained by Hooke (1926) the following values are computed: 

j j  = 3.1685, Xl = 2.2752, X2 = 2.1523, 5 3  = 2.1128 

1 

1 

0.01875 0.00848 0.00684 
(Sij) = 0.00848 0.02904 0.00878 i 0.00684 0.00878 0.02886 

So1 = 0.03030, 5’0, = 0.04410, So3 = 0.03629 

5’00 = C - njj2 = 0.02781. 

These are all the preliminary computations necessary for further analysis. 
The reciprocal of the matrix (5‘J denoted by (C , )  [the notation should 

be (S‘j), but in statistical literature this is already known as the C matrix 
with elements (C,j)]  is 

64.21 -15.57 -10.49 

( -10.49 -9.00 39.88 
(Clj) = -15.57 41.71 -9.00 . 

The estimates of the parameters (solutions of the normal equations) are 

bl = 64.215’0, - 15.57802 - 10.495‘03 = 0.878 

by using the first row of (CJ, and 

b2 = -15.575’0, +41.725’02 -9.005’0, = 1.041 

by using the second row of (C,j) .  Similarly b3 = 0.733, and finally a’ = j j  = 
3.1685, thus giving the estimate of u as 

u = j j  - b1Rl - bz Ez - b3 E3 = -2.618. 

The estimated formula in terms of original measurements is then 
c = 0.00241~0.87 Sgl .04  1 ~ 0 . 7 3 3  (4g.3.4) 

[The capacity of the Farringdon Street skulls was determined by packing 
them tightly with mustard seeds and then weighing them. The formula 
(4g.3.4) is strictly applicable only for predicting capacity determined in 
this way.] 

The residual sum of squares is 

Ro2 = 5‘00 - C b,Sol = 0.12692 - 0.0991 1 = 0.02781. 

The multiple correlation, which provides a measure of accuracy of prediction 
or the association between the dependent and independent variables, is 
estimated by 

b,Sol + * . .  + b3So3 0.09911 
R2 = = - = 0.7809. 

5’00 0.12692 
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The variance c2, of y given xlr x 2 ,  x 3 ,  is estimated by 

0.0278 1 
8 2  = Ro2 = - = 0.0003391, 

n - p - 1  82 

where p is the number of independent variables. The variances and co- 
variances of bl are computed by the formulas 

V(b,) = Cli  o2 and cov(b, b,) = C ,  c2. 

This completes estimation of unknown parameters and standard errors by 
the method of least squares. 

Tests of Hypotheses. We now consider a number of problems that arise in 
the estimation and use of regression equation. These are stated and examined 
by using the estimates already obtained. 

1. Is there a significant association between the dependent and independent 
variables? In terms of the parameters the hypothesis is PI =pz = p3 = 0. 
This is also equivalent to the statement that the true multiple correlation 
(4g. 1.11) is zero. 

We use the analysis of variance technique. The unconditional sum of 
squares Ro2 on n - p  - 1 = 82 D.F. is already obtained as 0.02781. If 
the hypothesis PI = j2 = p3 = 0 is true, then RI2,  the minimum value of 
1 (yi - a)2, is y I 2  - n j2  = So, = 0.12692, which has (n - 1) D.F. The 
reduction in the residual sum of squares R12 - Ro2 is due to regression and 
has p = 3 D.F. The analysis of sum of squares is shown in Table 4g.301. 

TABLE 4g.301. Test of the Hypothesis /I1 = p2 = p3 = 0 
(source: Rao and Shaw, 1948e) 

D.F. S.S. M.S. F 
~~ ~ 

Regression 3 0.0991 1 0.033037 97.41 
Residual 82 0.02781 0.0003391 - -  

Total 85 0.12692 

We observe that the variance ratio of Table 4 g . 3 ~  can be simply obtained 
from the value of R2, the square of the multiple correlation, n, the sample 
size, and p, the number of independent variable, by the formula 

R2 n - p  - 1 0.7809 86 - 3 - 1 
= 97.41, - F=- - 

1 - R 2 '  P 1 - 0.7809 ' 3 
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using the computed value of R2, so that we can carry out the test of the 
hypothesis under consideration, knowing only the value of the observed 
multiple correlation. The variance ratio 97.41 on 3 and 82 D.F. is significant 
at the 1 % level, which indicates the usefulness of the variables in prediction. 

2. It may now be examined whether the three linear dimensions appear to 
the same degree in the prediction formula. From the estimates it is seen that 
the index bz for maximum parietal breadth is higher than the others. This 
means that a given ratio of increase in breadth counts more for capacity than 
the corresponding increase in length or height. 
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The hypothesis relevant to examine this problem is 

P1 = P z  = P 3  = P. 
[yi - a -  P(xlr + xzi + x3,)l2 has to be found. The minimum value of 

The normal equation giving the estimate of is 

[Sil + Szz + 5’33 + 2G‘iz + sz3 + & J I b  = Q = (Qi + Qz + QJ 
0.124856 = 0.1 1069, 

The minimum value with (n - 2) D.F. is 

b = 0.8866. 

( c y i 2  - nJz) - bQ = 0.12692 - 0.09814 = 0.02878. 

The F ratio of Table 4g.3P is small, so there is no evidence to conclude that 
Pi, P z ,  p3 are different. The differences, if any, are likely to be small, and a 
large collection of measurements may be necessary before anything definite 
can be said about this. Evolutionists believe that the breadth is increasing 
relatively more than any other magnitude on the skull. If this is true, it is of 
interest to examine how far the cranial capacity is influenced by the breadth. 

So far as the problem of prediction is concerned, the formula 

C = 0.002342(LBH)0*8866 

obtained by assuming PI = Pz = /I3, may be as useful as the formula derived 
without such assumption. The variance of the estimate b of P is n”/CC S , ,  
where 0‘’ is the estimate based on 84 D.F. with the corresponding sum of 
squares given in Table 4g.38. 

TABLE 4g.3p. Test of the Hypothesis 8, = p1 =p3 

D.F. S.S. M.S. F 

Deviation from equality 2 0.00097 0.000485 1.430 
Residual 82 0.02781 0.0003391 - -  

Total 84 0.02878 
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3. A simple formula of the type C =  u‘LBH‘ is sometimes used for 
predicting the cranial capacity. A test of the adequacy of such a formula 
is equivalent to testing the hypothesis 

p, =p ,  = p 3  = 1. 

(yi - a - p l x l i  - /I2 x2 i  - p3 x 3 J 2 ,  when The minimum value of = 

p2 = p3 = I is 

( X Y i ’  - ny2) + s11 + s 2 2  + s 3 3  + 2(s12 + s23 + S31) 

- 2(So1 + So2 + So,) = 0.03039, 

which has (n  - 1 )  D.F. The residual has ( n  - 4) D.F. so that the differ- 
ence with 3 D.F. is due to deviation from the hypothesis. 

The ratio 2.544 on 3 and 82 D.F. is just below the 5 %  significance level. 
It would be of interest to examine this point with more adequate material. 

In Table 4g .3~  the sum of squares due to deviation from the hypothesis 
could be directly calculated from the formula, thus providing a compound 
measure of the deviations of the estimates b,,  b , ,  b ,  from the expected 
values 1, 1, 1, as 

CC Si,(b, - l)(b, - 1 )  = 0.00258, 

which is the same as that given in Table 4g.37. 
coefficients differ individually from 

unity, it is of some interest to examine whether the indices add up to 3 
while distributing unequally among the three dimensions used. This requires 
a test of the hypothesis p1 + p2 + p, = 3. The best estimate of the deviation 
is b, + b, + b3 - 3 = 2.652 - 3 = -0.348. 

The ratio on 1 and 82 D.F. is 

4. Having found evidence that the 

V(b1 + b2 + b3 - 3) =(EX Cij)a2 = 75.68~~. 

= 4.72, 
1 

X 
(0.348)’ 
75.68 0.0003391 

which is significant at the 5 % level. This shows that the number of dimensions 
of the prediction formula is not 3. 

TABLE 4g.3~. Test of the Hypothesis = p2 =p3 = 1 

D.F. S.S. M.S. F 

Deviation from 

Residual 
11 = 8 2  =po = 1 3 0.00258 0.00086 2.544 

Total 85 0.03039 
82 0.02781 0.0003391 - -  
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5 .  It is often desirable to test whether the inclusion of an extra variable 
increases the accuracy of prediction. For instance, in the foregoing example 
we can test whether H is necessary in addition to L and B. This is equivalent 
to testing whether /I3 = 0. The estimate b, = 0.733 has the variance Cj3 0’. 

The ratio on 1 and 82 D.F. is 

1 
X 

b,’ (0.733)2 -- 
C33 6’’ - 39.88 0.0003391 

0.01347 
0.000339 1 

= 39.72, - - 

where for 6’’ the estimate based on 82 D.F., is used. This is significant at  the 
1 % level, showing that H‘ is also relevant. If b, were not significant, the sum 
of squares due to b 3 ,  

63’ 
c3 3 
- = 0.01347, 

could be added to the residual sum of squares 0.02781 to obtain a sum 
0.04128 based on 83 D.F., giving the estimate of 0’ as 0.0004973. 

If b, is declared to be zero, the best estimates of 6, and bz have to be 
revised, starting with the equation 

Y = ~ + P , x 1 + 8 2 x ’ .  

It is, however, not necessary to start afresh. The C matrix 

64.21 -15.57 -10.49 
-15.57 41.71 -9.00 
-10.49 -9.00 39.88 

is reduced by the method of pivotal condensation, starting from the last row 
and using Cj3 as the pivot. Thus 

61.45 -17.94 (10.49)‘ (9.00)( 10.49) 
39.88 39.88 

64.21 - - - 15.57 - 

- 15.57 - (9.00)(10.49) 41,’71 - (9.00)’ - ] =[ -17.94 39.88 39.88 

gives the reduced C matrix -for the evaluation of b, and b2. 

61 = 6I.45Sol - 17.94soz = 1.071 
62 = - 17.94so1 + 39.68562 = 1.206 
a = jj - b,X, - bz Xz = - 1.864 
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The residual sum of squares is 

which agrees with the value obtained by adding the sum of squares due to 
b3 to the residual, thus providing a check on the calculation of b, and b2. 
The variance-covariance matrix of b,,  b2 is a2 times the new C matrix. 

If more variables are omitted, the method of pivotal condensation has to 
be carried further. The reduced matrix at  each stage gives the C matrix 
appropriate to the retained variables. It would avoid some confusion if the C 
matrix could be written in the order in which the variables are eliminated 
before attempting the method of pivotal condensation. Thus if x l ,  x2 ,  x 3 ,  
x4 are the original variables and if x2 and x4 are to be eliminated, we may 
write the C matrix as 

c22 

c4 2 

ct 2 

c24 

c44 

4 

c2 1 

Cl 1 

c4 1 

c2 3 

c43 

c1 3 

which is obtained by bringing the second and fourth rows and columns to 
the first two positions. Now this matrix can be reduced in two stages by 
the method of forward pivotal condensation. 

6. Confidence interval for the value in an individual case. Let x l ,  x2, x3 
be the observed values of independent variables in an individual case and 
y the value to be predicted. Consider y - Y(xI ,  x2, x , )  where Y(x l ,  x2,  x 3 )  
is the value of estimated regression for given values of xl, x2,  x3 . 

Hence 

1 112 

I = ( y  - Y )  f s 1 + - + ( x ,  - E,)(x, - X,)C,) L 
has a t distribution on (n - p  - 1) D.F., corresponding to the estimate s of 
a. We substitute for t ,  the upper and lower ( 4 2 )  probability points of t 
and obtain the corresponding two values of y, which provide a (1 - a) 
confidence interval for the unknown value. A skull with L = 198.5, B = 147, 
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H‘ = 131, that is, xl = 2.298, xt = 2.167, x3 = 2.1 17, has the value of regres- 
sion 
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Y = j + b,(x,  - 31) + * * + b 3 ( ~ 3  - 23) = 3.2069 

+Ex (xi - Xi)(xj - 3j)Cij = 0.0003391(1.04187) 

= 0.0003533. 

To find 0.95 confidence interval, the equations are 

y - 3.2069 
= k2.00, 

(0.000353 3) /’ 

where 2.00 is approximately the 5 %  value of ( 1 )  on 84 D.F., or the 0.95 
confidence interval for the individual’s log capacity is 

3.2069 2.00(0.01880) = (3.1693, 3.2445). 

It is an important property that from a confidence interval for y, the interval 
for any one-to-one function of y can be obtained. Hence the 0.95 confidence 
interval for the capacity (= antilog y) is (1476, 1755). The interval is somewhat 
wide, indicating that prediction in any individual case may not be good. 

7. Estimation of mean of the dependent variable (log capacity). If the 
problem is one of estimation of the mean log capacity of skulls with L, B, H‘ 
as chosen previously then the estimate is obtained as 

Y = j + b,(x,  - 3, )  + * * . + b 3 ( ~ 3  - X3) = 3.2069 

with 

I V( Y )  = fJ2 - + ( X i  - X&j - Xj)C,j 1: 
= 0.0003391(0.04187) = 0.00001420 (using s for a). 

The 0.95 confidence interval is 

3.2069 f 2.00(0.0000142)”2 = (3.1994, 3.2144), 

where 2.00 is the 5 % value of I t I on 84 D.F. Unfortunately, the confidence 
interval for mean capacity cannot be obtained from the confidence interval 
for mean of log capacity. This difficulty would not arise, if capacity itself had 
linear regression on the concomitant measurements. 

It is seen that in the preceding formula for variance of the estimated value 
Y, the precision of the estimate depends on the closeness of x,, x 2 ,  xj to the 
averages E,, 7 . T 3  realized in the sample from which the prediction formula 
was estimated. In iact, the variance is least (equal to a 2 / n )  for the estimate 
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when the measurements on the new specimen coincide with the average values 
in the earlier sample. The accuracy of prediction diminishes as x,, x2, x3 
depart more and more from the average values, and the prediction may be- 
come completely unreliable if x,, x 2 ,  x3 fall outside the range of values observ- 
ed in the sample. 

For prediction with a single variable, the regression equation is 

Y = u + b(x - X) 

and 

1 (x - Z)2 
V ( Y ) =  -+- ( n s11 

where S , ,  is the corrected sum of squares for x in the observed sample. 
As before, accuracy is higher for prediction near the mean. The formula 
also depends on SI1, the scatter of x in the sample; the larger the scatter, 
the higher the precision of the estimate for any x. Therefore, in choosing 
the sample for the construction of the prediction formula, we should observe 
the values of x at the extremities of its range if we want to construct a best 
prediction formula. This is, no doubt, a theoretically sound policy which can 
be carried out with advantage when it is known for certain that the regression 
equation is of the linear form. But, data collected in such a manner are not 
suitable for judging whether the regression is linear or not, and there is no 
reason to believe that linearity of regression is universal. The biometric 
experience is that the regressions are very nearly linear, deviations from linear- 
ity being detectable only in large samples. If this is so, the regression line 
fitted to the data is only an approximation to the true regression function, 
and the data should allow a closest possible fit of the straight line to the ideal 
curve. The best plan for this is to choose x from all over its range, or, prefer- 
ably, to choose x at random so that different values of x may occur with their 
own probability and exert their influence in the determination of the straight- 
line fit. 

Estimation of Mean Capacity of a Population. The prediction formula 
obtained can also be used to estimate the mean cranial capacity from a 
sample of skulls on which only measurements of L, B, H’ are available. 
For this purpose, two methods are available. We may estimate the cranial 
capacity of each individual skull and calculate the mean of these estimates, 
or we may apply the formula directly to the mean values of L, B, H’ for the 
sample. It is of interest to know whether these two methods give the same 
results. For this purpose estimates were made of the mean cranial capacity 
of an additional 29 male skulls of the Farringdon Street series for which 
measurements of L, B, H i  but not of C were available. 
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For these 29 skulls the mean of L is 191.1, of B is 143.1, and of H' is  129.0. 
Applying the formula C = 0.00241 B'.04' H'0.733 to these mean values, 
we estimate the mean of C to be 1498.3. If we estimate C for the 29 skulls 
individually and take the mean of the 29 estimates, we have an estimate of 
the mean value of C equal to 1498.2. 

The same estimates were calculated for the 22 male skulls of the Moorfields 
series (Hooke, 1926), for which all four measurements were available. 
For these 22 skulls the mean of L is 189.5, of B is 142.5, and of H' is 128.8, 
giving an estimate of the mean of C equal to 1479.0. If we estimate C for the 
22 skulls individually and calculate the mean, we get an estimate of the mean 
of C equal to 1480.0. Thus it appears that the two methods give very nearly 
the same estimates. 

Are Only Small Skulls Preserved? A point of some interest is that, whereas 
the mean value of C for Farringdon Street series as calculated from 86 
measured values is 1481.3, the mean value of C as estimated by our formula 
from the 29 skulls for which measurements of L, B, H' but not of C are 
available is 1498.3. 

Again, for the Moorfields series the mean of L is 189.2 based on 44 
measurements, of B is 143.0 based on 46 measurements, and of H' is 129.8 
based on 34 measurements. Applying our formula to  these mean values (as 
we may do with some confidence as shown earlier), we obtain an estimate of 
the mean of Cequal to 1490.7. The mean of Cas  calculated from 22 measured 
values on well-preserved skulls is only 1473.8. 

These results suggest that the skulls that are damaged to such an extent 
that the cranial capacity cannot be measured are on the whole larger than 
those that remain intact. 

This raises a serious issue. Are not the published mean values of cranial 
capacities gross underestimates? Can a suitable method be suggested to  
correct these values? One way would be to  use the samples that provide 
observations on C, L, B, and H' for merely constructing the prediction formula. 
As observed earlier, the prediction formula, provided the nature of the 
regression function used is appropriate, could be obtained from samples 
providing observations on all the measurements although the samples are not 
drawn at random from the population. For instance, if only small skulls 
are preserved, the measurements obtained are not strictly random from the 
population of skulls. Such material is being used just to  establish a relation- 
ship. Having obtained this formula, the mean values of L, B, H' computed 
from all the available measurements may be substituted to  obtain an estimate 
of the mean capacity. This value will be higher than the average of the avail- 
able measurements of the cranial capacity but less than the predicted value on 
the basis of mean L, B, H' from skulls providing these measurements only. 
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The extent of underestimation depends on the proportion of the disinte- 
gration of the large skulls. This may vary from series to series, and hence for 
a proper comparison of the mean capacities the correction indicated pre- 
viously may have to be applied. 

4g.4 Test for the Equality of Regression Equations 

It is very often necessary to test whether regression functions constructed 
from two series are the same. Thus if the formula for the prediction of the 
cranial capacity from a different series is 

a‘ + pix1 + p; x2 + p; x j  9 

two types of hypotheses may be tested: 

(i) a=a ’  p1 = p i  p2 = p i  p3 = &  
(ii) PI = /I2 = p; p3 = P i ,  irrespective of whether a equals a’ 

or not. 

If (i) is true, the whole regression function is the same in both series; if (ii) is 
true, the regression functions are the same apart from a change in the constant. 
These two hypotheses are relevant because many problems arise where a 
prediction formula constructed from one series may have to  be used for a 
specimen from an entirely different series. An extreme and rather ambitious 
case of such a use is the prediction of stature of prehistoric men from the 
length of fossil femur by using a formula connecting the stature of modern 
man with the length of his long bones (K. Pearson, 1898). Some sort of 
justification for such a procedure will be available if the first hypothesis is 
proved to be correct in analogous situations. We first deal with the test 
procedures when the prediction formulas are estimated for both the series. 

Let the derived quantities for the second series be: 

Sample size: n’ 

Mean values: 

Corrected sums of products: 

Xi, Xi, Xi, and J’ 

c (xir - a:)(x;, - 2;) = s;, 
c (xir - z;)(jj; - J‘)  = S&. 

c ( Y ;  - n2 = Sbo 

These are sufficient to determine the regression function 

y = a’ + b i x ,  + b ; x ,  + b i x , .  
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The residual sum of squares 
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Ro2 = S& - b;Sb,  - b;Sbz - b ; S &  (for the second sample) 

(for the first sample) + Soo - b ,So l  - bzSO2 - b3SOj 

has (n’ - 4) + (n - 4) = (n + n‘ - 8) D.F., where 4 represents the number of 
constants estimated. 

We now throw the two samples together and consider them as a single 
sample of size(n + n’) and determine the regression line and residual sum 
of squares. The necessary quantities can be computed from those already 
available : 

Sample size: n + n’ 
Mean values: 

(n?, + n’z:) 
(n + n‘) 

= x; 

Corrected sums of products : 
nn’ 

n + n  
s;, = s,, + s;, + - (Zi - 2; (Xi - EJ) 

nn‘ 
n + n’ s;;i = soi + Sbi + - (ii - x;)(y - j i ’ )  

nn’ 
n + n ‘  s;;o = so, + Sbo + - ( J  - J ’ ) 2  

If bi, b ; ,  . . . are the regression coefficients, then the residual sum of 
squares R I 2  on (n + n‘ - 4) D.F. is 

Stt -bl!Stt -b!l  
00 1 01 z s s z  - 4 % 3 ‘  

We set up the analysis of variance as in Table 4g .4~.  

TABLE 4 g . h .  Analysis of Variance for Testing Equality of Re- 
gression Coefficients 

Due to D.F. S.S. 
~ ~~ ~ 

Deviation from hypothesis 4 * 

Separate regressions 

Common regression 

(by subtraction) 

(residual) n + n ’ - 8  R O ‘  

(residual) n + n ’ - 4  Ria  
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The significance of the ratio of mean squares due to deviation from hypo- 

If the object is to test for the equality of the b coefficients only, we calculate 
thesis to residual due to separate regressions is tested. 

the quantities 

y - s  0 ,  - oi + S& s;; = si, + s;, 
and obtain the constants by, by, bi from the equations 

Sri = b;’S’;:. + b;”SI;; + bTS’;’i, i = 1, 2,3 ,  

and find the residual sum of squares R Z 2  on (n + n’ - 5 )  D.F., where 5 
represents the number of regressioncoefficients plus two for different constants 
in the series. 

The test depends on the variance ratio 

Rz2 - Ro2 - . R02 

3 .  n + n’ - 8 ’  

on 3 and (n - n’ - 8) D.F., where 3 represents the number of regression 
coefficients under comparison. 

The extension of analysis for any number of predictor variables and com- 
paring any number of regression functions is fairly clear. 

In biological data it is often found that the mutual correlations and vari- 
abilities of measurements are approximately the same for all allied series, in 
which case the coefficients PI ,  f l z ,  j3 in the regression formula will not 
differ much. On the other hand, the mean values differ to some extent 
from series to series, in which case the constant term will not be the same. 
This leads us to consider a different problem whether (r = (r’ given p1 = p i ,  
f12 = fl; , . . . . A test for this can be immediately obtained from the sums of 
squares calculated earlier. The suitable statistic is the variance ratio 

R I 2  - R Z 2  - . RZ2 
1 ‘ n + n ’ - 5  

on 1 and (n + n’ - 5 )  degrees of freedom. If the foregoing hypothesis is 
true, the difference in the mean value of y could be completely explained 
by differences in the other variables xlr x 2 ,  x 3 .  It appears that when a 
sufficient number of measurements is considered, the extra difference con- 
tributed by any other measurement independently of the set already con- 
sidered is negligibly small. In such situations the equality of the dispersion 
matrix in both series is sufficient to ensure the equality of the regression 
functions as whole. Much caution is necessary when the prediction formula 
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based on one or two variables is so used. Such a statistical adventure under- 
taken by Karl Pearson in predicting the stature of prehistoric men is justi- 
fiable, however, if we agree with the last statement of his article (K. Pearson, 
1898). 

“No scientific investigation is final; it merely represents the most probable 
conclusion which can be drawn from the data at  the disposal of the writer. 
A wider range of facts, or more refined analysis, experiment, and observation 
will lead to new formulas and new theories. This is the essence of scientific 
progress.” 

4g.5 The Test for an Assigned Regression Function 

In 4g.3 it was assumed that the regression function for log capacity is linear 
in the logarithms of length, breadth, and height. If, at  least for some given sets 
of values of the independent variables, multiple observations on the dependent 
variable have been recorded, the validity of such an assumption can be tested. 

Table 4 g . 5 ~  gives the mean values of nasal index of people living in various 
parts of India together with the mean annual temperature and relative humidity 
of the places. The corrected total sum of squares for nasal index has been 
found to be 11,140.209 on (344-1) D.F. 
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TABLE 4g.5a. Nasal Index of the Inhabitants and the Temperature and Humidity of the 
Region 

Temperature Relative Humidity 
Nasel Index 

Sample Mean Mean 
size Mean Annual Total Annual Total 

Region (4 (F) Total ( f )  (n f )  (b (nh) 

Assam 36 83.0 2,988.0 72.6 2,613.6 85 3.060 
Orissa 40 80.4 3,216.0 80.3 3,212.0 69 2,760 
Bihar 30 80.1 2,403.0 74.8 2,244.0 88 2,640 
Malabar 45 71.0 3,465.0 80.2 3,609.0 81 3,645 
Bombay 26 76.2 1,981.2 77.6 2,017.6 66 1,716 
Madras 35 75.9 2,656.5 81.8 2,863.0 16 2,660 
Punjab 28 71.4 1,999.2 76.4 2,139.2 63 1,764 
United 

Province 32 80.8 2,585.6 77.2 2,470.4 69 2,208 
Andhra 41 76.8 3,148.8 80.3 3,292.3 69 2,829 
Ceylon 31 80.3 2,490.0 80.2 2,486.2 82 2,542 

Total 344 26,933.3 26,947.3 25,824 
Mean 78.294 18.335 15.010 
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If no assumption is made about the regression of nasal index on temper- 
ature and relative humidity, the analysis of variance between and within 
groups is obtained as in Table 4g.5p. The mean square between groups is 

TABLE 4g.5P. Analysis of Variance for Nasal Index 

D.F. S.S. M.S. 

m - 
z n  

9 2 ( j ) ( n j )  - - 2 ny = 3,169.900 352.21 Between groups , 

Within groups 334 7,970.309 23.863 
(by subtraction) - 

Total 343 11,140.209 

very large, indicating real differences in nasal index. Can these differences 
be explained by a linear regression of nasal index y on temperature t and 
relative humidity h of the form 

y = a + p,t + P2h? 

so1 = bISI1 + b2S12 

so2  = bIS12 + 62 s22 

The normal equations leading to the estimates b , ,  b,  of pl, p2 are 

where 

Solving the foregoing equations, we obtain b,  and 6 2  as 

b,  = -0.237113 b2 = 0.182963. 
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With these values the regression analysis can be set up as the Table 4g.57. 
If the hypotheses concerning the regression is true, the mean square obtained 
from “Within groups” of Table 4g.4p’ and ‘‘ Residual about regression” 
of Table 5 g . 5 ~  will be of the same magnitude. A significant difference would 
disprove the hypothesis. 

The ratio 12.4 on 7 and 334 D.F. is significant at  the 1 % level, so that the 
regression of nasal index on temperature and relative humidity cannot be 
considered linear. It is also seen from Table 4g.57 that the variance ratio 
18.55 on 2 and 341 degrees of freedom is significant, but this may not mean 
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TABLE 4g.S~. Regression Analysis 

D.F. S.S.  M.S. F 

Due to regression 2 b,&, + b2SO1 = 1,093.45 546.72 18.55 
Residual about 

regression 34 1 * 10,046.759 29.463 
(by subtraction) - 

Total 343 11,140.209 

that nasal index depends entirely on the weather conditions of the place 
where the individuals live. The observed differences may be more complex 
than can be explained by weather differences, or the nature of dependence 
on weather may itself be very complicated. 

In some cases, as in the distribution of heights of father and daughter, 
it may be desired to test whether the regression of one variable on the other 
is linear. For such a test, the range of the independent variable has to be 
divided into a suitable number of class intervals and the variance of the 
dependent variable analyzed between and within classes. To find an estimate 
of within variation it is necessary that at least some of the classes contain 
more than one observation. The regression analysis can be done without the 
use of the class intervals, or if the data are already grouped the midpoint of 
the class interval is taken as the value of the independent variable for each 
observation of the dependent variable in that class. The final test can be 
carried out as in Table 48.56. 

For further examples the reader is referred to books by Fisher (1925), 
Linnik (1961), Plackett (1960), Scheffe (1959), Williams (1959), and Yates 
(1949). Applications to design of experiments are contained in papers by 
Box (1954), Rao (1947~  1956a, 1971B2), and books by Cochran and Cox 
(1957) and Kempthorne (1952). 
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TABLE 4g.56. Test for the Specified Regression Function 

D.F. S.S. M.S. F 

Deviation from specified 

Within groups 
Residual about regression 341 10.046,759 

regression 7 2,076.45* 296.636 12.4 
334 7,970.309 23.863 - 

* Obtained by subtraction 

4g.6 Restricted Regression 

In some selection problems (see Kempthorne and Nordskog, 1959) we need 
a linear selection index based on concomitant (or predictor) variables A',, . . . , 
A',, such that in the selected population we have maximum gain in a criterion 
variable Yl and status quo is maintained in other criterion variables Y2,  
. . . , Yk. Or, in other words, we need to find a linear function (an index), 
I = L'X = L,X ,  + ... + L, A', such that pfY, is a maximum subject to the 
conditions pIY2 = . . = pIYk  = 0, where pov indicates the correlation between 
the variables U and V .  

Let Ci be the vector of covariances between Yi  and (A'], . . . , A',). Then the 
algebraic problem is one of maximizing (L'C,)' subject to L'C2 = = 
L'ck = O  and L'CL = 1, where C is the dispersion matrix of X. Consider the 
expression 

where A,,  . . . , 1, are Lagragian multipliers. Differentiating with respect to L 
and equating to zero we have 

where pl is written for L'C,, or the optimum L is proportional to 

Expressing the conditions L'C, = 0, we have the equations 
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satisfied by p 2 ,  . . . , pk . If / I 2 ,  . . . , Pk is a solution then the selection index may 
be written as 

I = ( c ;  - p 2 2  C’ - * * *  - pkC;)z- lX (4g. 6.5) 

which may be standardized to have variance unity, if necessary, by multiplying 
by a constant. 

The more general problem of maximizing L’C1 subject to L‘C, > 0, 
i = 2, . . . , k and L‘CL = I is solved in Rao (1962d, 1964a). 

4h THE GENERAL PROBLEM OF LEAST SQUARES WITH 
TWO SETS OF PARAMETERS 

4h.l Concomitant Variables 

Suppose that the growth rates of groups of animals receiving different diets 
are to be compared. The observed differences in growth rates can be attributed 
to diet only if all the animals treated are similar in some observable aspects 
such as age, initial weight, or parentage, which influence the growth rate. 
In fact, if the groups of animals receiving different diets differ in these 
aspects, it is desirable to compare the growth rates after eliminating these 
differences. 

It may be noted, however, that no bias is introduced in the experiment 
if the animals which might differ in these aspects are assigned at random 
to the groups to be treated differently. This procedure enhances the residual 
variation calculable from the differences in the growth rates of animals 
receiving the same treatment and thus decreases the efficiency of the experi- 
ment. 

If the magnitudes of these additional variables are known, it is possible 
to eliminate the differences caused by them independently of the treatments 
both from within and between groups and to test for the pure effects of the 
treatments with greater efficiency. The computational technique relating to 
this process is known as the adjustment for concomitant variation. 

For significant reduction in the residual variation, it must be known that 
the effects under study are influenced by the concomitant variables. This is 
important in experimental studies where due consideration is to be given to 
the cost and time involved in recording the concomitant variables, and can be 
tested as shown in the example considered in 4h.3. 

On the other hand, the concomitant variables chosen must not have been 
influenced by the treatments under consideration. Sometimes, in assessing 
the differences in yields of plants treated differently, concomitant variables 
such as the number of branches or the quantity of straw are chosen. Some 
caution is necessary in adopting such a procedure. 
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4h.2 Analysis of Covariance 

Assuming that the regression of y on the concomitant variables c,, . . . , c, 
to be linear, the observational equations containing the parameters 
(PI, . . . , /I,,,) = p’ under consideration and the regression coefficients (rl, 
. . . , yk) = y‘ can be written 

&yi)=xil/Il + “ ‘ + ~ i m ~ m + ~ I C l i + ’ “ + ~ k C k i  

i =  I ,  ..., n, 

or in the matrix notation 

E(Y) = xp + c y ,  (4h.2.1) 

where X is the design matrix as before and C is an n x k matrix with its 
ith column as Ci representing the n observations on the ith concomitant 
variable. If, therefore, we consider the observations on concomitant variables 
as fixed, the setup (4h.2.1) is the same as that of the theory of least squares 
with (m + k )  unknown parameters (p’iy’), a new “design matrix” (XiC), 
and the observation vector Y. 

No new problem arises in adjustment for concomitant variables either in the 
estimation of parameters or testing of linear hypotheses. We shall present a 
computational scheme, however, which enables us to carry out tests of a 
number of hypotheses of interest in practical situations. The normal equations 
corresponding to the observational equations (4h.2.1) are 

C’XP + C’Cy = C’Y 1 ’ X’XS + X’Cy = X’Y 
(4h.2.2) 

Let Bo be a solution of the normal equation 

X’XSO = X’Y, 

ignoring the concomitant variables, and let 1, be a solution of the normal 
equation 

X’XP, = X’C,, 

considering the values of the ith concomitant variable instead of Y (i.e., 
substituting C, for Y). Define the residual sum of squares and products 

Roo = (Y - XB,)‘(Y - XB,) = Y’Y - Bb X’Y 
R,i=(C,-XBi)’(Ci-XBi)=C;Ci-~iXfCi, i =  1,2 ,  ..., k 

Roi = (Y - XBo)’(C, - XBJ = Y‘Ci - fioX’Ci, i = 1 ,  2, . . . , k 

R~~ = (Ci - XB,)’(C, - XBj) = C;C, - b,x’c,, i , j =  I ,  . .  . ,  k 

(4h.2.3) 
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Multiplying the first equation of (431.2.2) by 6; and subtracting from ith 
component of the second equation of (4h.2.2) we obtain equations 

Ri iy ,  + * * *  Rkiyk = Roi (4 h. 2.4) 

i =  I ,  ..., k 

for the regression parameters only. If 9 is a solution of (4h.2.4), the solution 
6 satisfying the normal equations (4h.2.2) is seen to  be 
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P = P o - Q P  1 1  - * . * -  Qk 6 k  7 

which gives the adjustment to be made in P o  due to concomitant variables. 
The residual sum of squares appropriate to the setup (4h.2. I )  is then 

Ro2 = Roo - PlRoI - * . .  - fk ROk (4h. 2.5) 

on (n - r - k )  D.F., where r = rank X (assuming I C’CI # 0). 

Test of the Hypothesis y = 0. The adjustment for concomitant variables is 
not profitable if y = 0, and it is therefore important to test this hypothesis. 
Let us recognize that 

R 1 2  = min (Y - XP - Cy)’(Y - XP - Cy) = R O O ,  
7 = 0 . $  

so that the S.S. due to deviation from hypothesis is 

R,’ - Ro2 = PIRol + ... + PkROk 

on k D.F. The variance ratio for testing y = 0 is 

R12 - Ro2 . Ro2 - 
k *  n - r - k ‘  

Test of the Hypothesis H’P = 6. We have to find 

(4h. 2.6) 

(4 h .2.7) 

R2* = min (Y - XP - Cy)’(Y - XP - Cy), 
H ’ p = <  

Let Rb,, Rb,, Rij be the residual sum of squares and products as in (4h.2.3) 
when P is subject to the restriction H’P = 4. Let f;, . . . , 9; be solutions using 
Rjj in the equations (4h.2.4). Then 

(4 h .2.8) 

The variance ratio test is 
R2= = Rb, - Q;Rd, - * - f ; R b k  * 

RZ2 - Ro2 . Ro2 - 
S ‘ n - r - k ’  

(4h.2.9) 

where s is the D.F. of the hypothesis H’P = 5 and Ro2 is the pure residual 
sum of squares (4h.2.5) without any hypothesis on fl ar y .  This completes 
the formal theory. The method is further explained ip the illustrative example 
of 4h.3. 
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4h.3 An Illustrative Example 

The following data relate to the initial weights and growth rates of 30 pigs 
classified according to pen, sex, and type of food given. 

The problem is to study the effect of food after eliminating the initial weight. 

TABLE 4h.3a. Data for Analysis (Wishart, 1938) 

Initial Growth Rate in 
Weight Pounds per Week 

Pen Treatment Sex ( w )  (9) 

A G 48 9.94 
B G 48 10.00 

I C G 48 9.75 
C H 48 9.11 
B H 39 8.5 I 
A H 38 9.52 

B G 32 9.24 
C G 28 8.66 

I1 A G 32 9.48 
C H 37 8.50 
A H 35 8.21 
B H 38 9.95 

~ 

C G 33 7.63 
A G 35 9.32 

I11 B G 41 9.34 
B H 46 8.43 
C H 42 8.90 
A H 41 9.32 

C G 50 10.37 
A H 48 10.56 

IV B G 46 9.68 
A G 46 10.98 
B H 40 8.86 
C H 42 9.51 

B G 31 9.67 
A G 32 8.82 

V C G 30 8.57 
B H 40 9.20 
C H 40 8.76 
A H 43 10.42 
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The first step in the analysis is to analyze the sum of squares of both the 
dependent and independent variables and also the sum of products. The 
analysis of the sum of products is done in the same manner as the analysis 
of the sum of squares by adopting the rule that the square of a variable in 
the latter is replaced by the product of the variables involved in the former. 

The total sums of squares and products are 

I 1s’ - g C g  = 16.6068 

C Wg - @ C 9 = 78.979 29 D.F. 

C W’ - i3 C w = 1108.70 

If wi  and gi denote the totals of 6 observations for the ith pen, the sums of 
squares and products for pens are 

&Cgi’ - g C g =  4.8518 

& C gi ~i - g C w = 39.905 

& C ~ 1 ’  - E C w = 605.87 

Similarly, the sums of squares and products for food and sex can be obtained. 
If wi, and gij denote the total of 5 observations for the ith type of food 

and j th sex, the sums of squares and products for the joint effects of food 
and sex are 

1 3 gi,’ - g = 3.2422 

4 CCgj, wi, - g C w = -0.885 

4 CC w,,’ - I C w = 59.90 

5 D.F. 

If from these the corresponding expressions for food (2 D.F.) and sex 
( 1  D.F.) are subtracted, the expressions for food x sex interaction are obtained. 

TABLE 4h.3P. Analysis of Variance and Covariance 

D.F. g2 WQ W 2  

Pen 4 4.9607 40.324 605.87 
Food 2 2.3242 -0.171 5.40 
Sex 1 0.4538 -4.813 32.03 
Food x Sex 2 0.4642 4.099 22.47 
Error 

Total 29 16.6068 78.979 1 108.70 
20 8.4039 = R o o  39.540 = Ro, 442.93 = R ,  - -  
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Table 4h.3P gives the whole analysis. The error line is obtained by subtraction 
from the total. There is only one regression coefficient to be estimated: 

RllY = ROl 
442.93~ = 39.540, 9 = 0.089269. 

The ratio is significant at the 1 % level so that the comparisons can be made 
more efficiently by eliminating the concomitant variations. 

TABLE 4h .3~ .  Test for Regression from Error Line Above 

D.F. S.S. M.S. F 

Regression 1 PRO, = 3.5279 3.5297 13.76 
19 R o o  - PRO, = 4.8742 0.2565 - Residual 

Total 20 Roo = 8.4039 

If the hypothesis specifies that there are no differences in food, the residual 
sums of squares and products are obtained by adding the rows corresponding 
to food and error: 

RbO = 10.7281 R b ,  = 39.369 R;, = 448.33. 

The new regression coefficient is 

y'R; I = Rbl , 9' = 39,3691448.83 = 0.087813. 

The residual sum of squares when the hypothesis is true is 

Rho - $"Rbl = 7.2710 on 21 D.F. 

TABLE 4h.38. Test for Differencesln Fosd, Eliminating the Effects of Initial 
Weight 

D.F. S.S. M.S. F 

Food 2 * 2,3968 1.1984 4.67 

Residual 
(by subtraction) 

19 Roo - 9Rol  = 4.8742 0.2565 - 
Food + Error 21 Rob - P'Rb, = 7.2710 
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The ratio is significant at  the 5 % level. To test for food without adjustment 
for concomitant variation, we have to construct the ratio on 2 and 20 D.F. 
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2.3242 F =  - - ( 2 ) (8.i i39) = 2*’6 

which is not significant at the 5 % level. The quantities used to calculate Fare  
taken from the analysis of variance table (Table 4h.3P). The differences caused 
by food could be detected when the concomitant variation is eliminated. 
Similarly, any other effect such as sex or interaction can be tested. 

4i UNIFIED THEORY OF LINEAR ESTIMATION 

4i.l A Basic Lemma on Generalized Inverse 

The problem of estimation of p in the model (Y, XP, a2G) was considered in 
4a under the assumption that G is nonsingular. However, the theory of least 
squares developed for the purpose cannot be used when G is singular. 

In this section, we present two unified approaches to the problem, which are 
applicable in all situations whether G is singular or not. One is a direct ap- 
proach obtained by minimizing the variance of an unbiased estimator. 
The other is an analogue of the least squares theory 

First, we prove a lemma on generalized inverse of a partitioned matrix 
which plays a basic role in the unified theory. 

(i) A BASIC LEMMA. Let G be an n.n.d. matrix of order n and X be 
n x m matrix. Further, let 

(4i. 1.1) 

be one choice of g-inverse. Then the following results hold: 

(a) XC;X = X, XC,X = X (4;. 1.2) 

(b) (4i.1.3) 
(c) XCIX, X’CIG, GCIX are all null matrices (4;. 1.4) 
(d) GC,GCIG = GCIG = CC;GC,G = GC’,G (4;. 1.5) 

(e) Tr GC, = R(G:X) - R(X) = Tr CC; (4;. 1.6) 

(f) GCIG and XC4 X’ are invariant for any choice of C1 and C4 (4i. 1.7) 

We observe that the equations 

XC4 X’ = XC: X’ = GC; X’ = XC, C = GC2 X’ = XC; C 

Ga + Xb = 0 

X’a = X‘d 
(4i. 1.8) 
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are solvable for any d, in which case, using (4i. 1.1) 

a = CIX’d, b = -C4X‘d (4i. 1.9) 

is a solution. Substituting (4i.1.9) in (4i.1.8) 

GC2 X’d - XC, X‘d = 0, X’C, X‘d = X‘d for all d 

GC, X‘ = XC., X’ and X’C, X’ = X‘. (4;. 1.10) 

Since 

G X’ C; C; G X’ 
(x o)(c; -c;)(x o ) = ( E  :) 

the transpose of the matrix on the right-hand side of (41.1) is also a 9-inverse. 
Then replacing C2 by C; and C, by C; in (4i.1.10) we have 

GC; X‘ = XC; X’ and X‘C; X‘ = X‘. (4i. 1.1 1) 

Multiplying both sides of the first equation in (4i. 1.1 1) by XC3 

XC3 GC; X’ = XC3 XC; X‘ = XC; X’ (4i. 1.12) 

so that XC; X’ is symmetric. Then (4;. 1.10-4i. I .  12) prove the results (a) and 
(b). 

To prove (c), we observe that the equations 

Ga + Xb = Xd 

X’a = 0 
(4i. 1 . 1 3) 

can be solved for any d. Then 

a = C,Xd, b = C3 Xd (4i. 1.14) 

is a solution. Substituting (4i.l.14) in (4i.1.13) and omitting d 

GCIX + xc3 x = x ,  X’C,X = 0. (4i. 1.15) 

But XC3X = X. Thus (c) is proved. Next we observe that the equations 

Ga + Xb = Gd (4i. 1.16) 
X’a = 0 

can be solved for any d. One solution is 

a = C,Gd and b = C3 Gd. (4i.l. 17) 

Substituting (4i. 1.17) in (4i. 1.16) and omitting d 

GCIC + XC3C = C, X’C,G = 0 

*CCICC,G + GC,XC3G = GC,C = GCIGCIG 

(4i. 1 . 1 8) 

(4i.1.19) 
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since GC,X = 0. (4i.1.18) also -CC’,CC,C = GC,G which proves (d). 
Now we use the result R(AA-) = R(A) = Tr(AA-), where A -  is any g- 
inverse of A [(iv), lb.5, (i), lb.71. We have 
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= Tr(GC, +XC3) + Tr(X’C2) 

= Tr(GC,) + R(XC3) + R(X’C2) 
= Tr(GC,) + R(X) + R(X’). (4i. 1.20) 

But 

R ( g ,  t) = R(G : X) + R(X). (4i.1.21) 

Equating (4;. 1.20) and (41. I .21) we have the result (e). 
The result (f) follows from definition by using the results (4i.l.2-4i.1.6). 

(ii) (:, :) is nonsingular @ R  = n and R(X) = m. (9 
(iii) Let U be a matrix such that A ( X )  c A ( G  + XUX’) and A ( G )  c 

A(C + XUX’). Then 

c3 -u-c4 c2 ) (C ,  x)- =(C1 C2)*(G+XUX’ X’ ”)- 0 =(C1 
x o  c3 -c4 

The propositions (ii) and (iii) are easy to establish. 

(iv) EXPLICIT EXPRESSIONS FOR C,, C2,  C, , C4 in (4;. 1.1) 

(a) I f A ( X )  t A(C) ,  then one choice for C,, C 2 ,  C 3 ,  C4 is 

c1 = G -  - G-XC, ,  

c2 = c; 
c3 = (X’G-X)-X’G- 

c4 = ( x ’ c - x ) -  

c3 = (X‘G-’X)-X’G-’ 

c4 = ( x ’ c - ’ x ) -  

(6) ZfR(G) = n,  then one choice for C,, C 2 ,  C , ,  C, is 

c, = G - ’  - c - ’ x c 3 ,  

c2 = c; 
(c) I n  general, one choice for C,, C 2 ,  C3, C, is 

C1 = W - WXC3 

c2 = c; C 4 = - U + T  

C3 = TX’W, 

where T = (X’(G + X‘UX)-X)-, W = (C + X’UX)- and U is any 
marrix such that A ( X )  c A ( C  + XUX’) and A ( G )  c A ( C  + XUX‘). 
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The proposition (iv) is established by verification or by solving an equation 
of the type 

Ga + Xb = a  
X'a = p 

by the usual method of elimination. 

4i.2 The General Gauss-Markoff Model (GGM) 

Now we consider a general Gauss-Markoff (GGM) model 

(Y, xp, u2G) (4i.2.1) 

where there may be deficiency in R(X) and G is possibly singular. We note 
that the GGM model includes the case of any specified constraints on the 
parameter p. Thus if RP = C is a set of constraints we can consider 

in which case 

(0" :) u2Ge = D(Ye) = u2 (4i. 2.3) 

and write the extended model 

(Ye 9 Xe P, u2Ge) (4i. 2.4) 

in the same form as (4i.2.1). 
When G is singular, there are some natural restrictions on the dependent 

variable Y, which may be examined to make sure that there is no obvious 
inconsistency in the model. 

(i) TEST FOR CONSISTENCY. Y E d ( G i  x ) .  

Suppose a is a vector such that a'X = 0 and a'G = 0. Then obviously 

(ii) Y the random n-vector, and the unknown p are such that (Y - Xp) E G .  

The result follows since a'G = 0 a'(Y - Xp) = 0. Thus the singularity of 
G imposes some restrictions on Y and p. 

If G is singular, there exists a matrix H such that HY = 0 with probability 1, 
which implies that HXP = 0 is a restriction on p. Of course, H is known only 
when Y is known. When H is known, the condition X'L = p is not necessary 
for L'Y to be unbiased for p'p. 

(iii) An n.s. condition that L'Y is unbiased for p'p is that there exists a 
vector 1 such that X'(L + H'X) = p, where H is a matrix of maximum rank 

E(a'Y) = 0 and E(a'Y)' = 0 * a'Y = 0 Y E &(Gi X) with probability. 
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such that HY = 0. However, given L such that L'Y is unbiased for p'p, we can 
find M such that M'Y = L'Y and X'M = p. Note that R ( H )  = n - R(G) or 
n - R(G) - 1. 

The result which is easily established is important. It says that in searching 
for the BLUE of p'p we need only consider linear functions L'Y such that 
X'L = p, or behave as if fl is a free parameter. Also if L Y  has zero expectation 
we can find a vector K such that L'Y = K'Y and K'X = 0. 
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4i.3 The Inverse Partitioned Martix (IPM) Method 

We consider the GGM model (4i.2.1) and show how the problem of inference 
on unknown parameters can be reduced to the numerical evaluation of a g-  
inverse (Rao, 1971e, 1972c) 

(4i.3. I )  

More precisely, if by a suitable algorithm (computer program) the matrix on 
the left-hand side of (4i.3.1) is inverted to obtain C,, C2,  C3 ,  C,, then we 
have all that is necessary to obtain the BLUE'S, their variances and co- 
variances, an unbiased estimator of d, and test criteria for testing linear 
hypotheses. Propositions (i) and (ii) contain the basic results which hold 
whether G is singular or not. 

Then the following hold: 

The BLUE of an estimable (Le., admitting an 

fi=c3y or B = c ; Y  (4i. 3.2) 

(i) Let C,, C 2 ,  C3 and C4 be as defined in (4.3.1) .  

(a) (Use of C2 or CJ. 
unbiased estimator) parametric .function p'p, is p'B where 

(b) (Use of C,) The dispersion matrix of 1 is a2C, in the sense 

V(p'B) = rJ2p'C4p 

cov(p'B, q'B) = dp'C, q = 02q'C4 p (4i. 3.3) 

whenever p'p and q'p are estimable. 

(c) (Use of C,). An unbiased estimator of a2 is 

a2 = f -'Y'clY 

where f = R(GIX) - R(X). 

(4i.3.4) 

Proofof(a): If L'Y is such that E(L'Y) = p'p, then X'L = p. Subject to this 
condition ['(L'Y) = 02L'GL or L'CL has to be minimized. Let L, be an 
optimum choice and L any other vector such that X'L = X'L, . Then 

L'GL = (L - L, + L,)'G(L - L, + L,) 
= (L - L,)'G(L - L,) + L; GL, + 2L;G(L - L,) 2 L; GL 
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iff L; G(L - L,) = 0 whenever X’(L - L,) = 0, i.e., GL, = - XK, for a suit- 
able K , .  Then there exist L, and K, to satisfy the equations 

GL, + XK, = 0, 

X‘L, = p. 

Since (4i.3.5) is consistent 

(4i. 3.5) 

L, = C 2 p  or Cip, K, = -C4p 

is a solution. Then the BLUE of p‘p is L; Y = p’C; Y = p’C, Y. 

Pvoofof(6): We use the fact p = X’M for some M. Then 

V(p’C, Y) = aZM’(XC; G)C, X’M 

= a2M’XC4(X’C2 X’)M using (4i. I .3) 
= a’M’XC, X’M using (4i. 1.2) 

= a2p‘C4 p. 
Similarly, 

cov(p’CL Y, q’c; Y) = a2p’C4 q = a2q’C4 p. 

Y’C1Y = (Y - xp)’c,(Y - xp) 

Proofof(c): Since X‘CIG = 0 and X’C,X = 0 using (4i.1.4), 

E[(Y - Xp)’C,(Y - XP)] = cr2 TrC,E[(Y - Xp)(Y - XP)‘] 

= a’ TrC,G = a2[R(GjX) - R(X)] 
using (4;. 1.6). 

functions P’p, Ro2 = Y’CIY and f be us dejined in (i). 
(ii) Let P‘B be the vector of BLUE’S of a set of k estimable parametric 

IfY - N,(XP, a2G), then: 

(a) P$ and Y‘CIY are independently distributed, with 

P‘B - N,(P’p, dD) ,  D = P’C,P 

Ro2 = Y‘CIY - a2xfz. 
(4i. 3.6) 

(4i. 3.7) 

(b) Let P’p = w be a null hypothesis. The null hypothesis is consistent iff 

DD-u = u, where u = P’b - w. (4;. 3.8) 

If the hypothesis is consistent, then 

u’D-u . Ro2 
F = - - -  , h =  R(D) (4i. 3.9) 

h . f  
has a central F distribution on h and f degrees of freedom when the 
hypothesis is true and otherwise noncentral. 
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Proof of (n): Since E(P’@) = P‘p and D(P’B) = 02P’C,P, P’@ - N,(P’p, 
02P‘C,P) using (3b.3.5). 

Let F = (C, + C;)/2. Then Y’C,Y = Y’FY and GFGFG = GFG using 
(4;. IS). Hence Y’CI Y has 02x2 distribution by (3b.4.7). 

P’p = P’C; Y = H’XC; Y since A ( P )  c A(X’).  Then GFGCz X’H = 0 
using (4i,1.3), which shows by (3b.4.9) that Y’C,Y and P’B are independently 
distributed. [Note that GF(GC,X’)H = GF(XC;GH) = 0 since GFX = 0.1 

Proof of (b) :  The hypothesis is consistent if V(u’P’B) = 0 * u’(P’B - w) = 
0 => P’b - w E A ( D ) ,  an n.s. condition for which is DD-u = u, where 
u = P’B - w. If the hypothesis is true then u‘D-u has central 0 2 x 2  distribution 
since DD-D = D, with degrees of freedom h = R(D). Since u and ROZ are in- 
dependently distributed, u’D-u and RO2 are independent, and hence the 
statistic (43.3.9) has the F distribution on h and f degrees of freedom. If the 
hypothesis is not true, the distribution will be noncentral. 
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4i.4 Unified Theory of Least Squares 

Let us consider the model (Y, Xp, a2G). In 4a.7 (see Table 4a.7), it is shown 
that when I G 1 # 0, the estimating normal equations for p are obtained by 
equating the derivative of 

(Y - Xp)’G-’(Y - xp> 
with respect to p to the null vector. Such a procedure is not available when 
I GI = 0. A general method different from least squares applicable to all 
situations is given in 4i.3. We shall investigate whether an analogue of least 
squares theory applicable to all situations can be developed. More specifically, 
can we find a matrix M such that the estimate @ of p is a stationary value of 

(Y - XP)’M(Y - Xp) 

i.e., where the derivative with respect to p vanishes, whether I GI = 0 or # 0, 
and an estimate of o2 is obtained as 

(Y - XB)’M(Y - XB) + f 
where f = R(G j X) - R(X) as in (4i.3.4)? 

We show that one choice of M is (C + XUX’)- for any g-inverse, where 
U is any symmetric matrix such that R(G: X) = R(G + XUX’), the neces- 
sity of which was established in (Rao, 1973a). One simple choice of U = 
k21 for k # 0 as shown in (Rao and Mitra, 1971h). k can be zero when 
A ( X )  c &(G). Let us write T = G + XUX’ and T- any g-inverse (not 
necessarily symmetric). 
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(i) Let (Y, X$, t?G) be GGM model (i.e.,  G is possibly singular and X 

(a) The BLUE of an estimable function p‘$ is p’b where b is a stationary 

possibly deficient in rank), and T, T-, U be as deJined above. 

value of (Y - X$)‘T-(Y - XP). 
(b) V(p’B) = dp‘[(X’T-X)- - VIP, 

COV(P’~, q’b) = &’[(X’T-X)- - U]q. 

(c) An unbiased estimator of d is 

(4i.4.1) 
@ 

13’ = f -‘(Y - Xb)’T-(Y - Xb) = f -lRO2 (43.4.2) 

where 

f = R(G j X) - R(X). 

Proof of’@): b satisfies the equation 

X’T-XI = X’T-Y (43.4.3) 

observing that X’T-X = X’(T-)’X and X’T-Y = X’(T-)’Y since X and Y E 
&(T) and T is symmetric. Let 1 = (X’T-X)-X‘T-Y be a solution, which exists 
since R(X’T-X) = R(X‘) as shown in Example 30, p. 77 (end of Chapter 1). 

Let p‘fl be an estimable function, i.e., p =X’L for some L. Then 

p’B = L’X(X‘T-X)-X’T-Y 
E(p’1) = L’X(X’T-X)-X’T-X$ = L’X$ = p’p. 

since X‘ E &(X’T-X) using [vi(b), lb.51. Further, if Z is such that Z’X = 0, 
then 

COV(P$, Z‘Y) = G~L‘X(X’T-X)-X’T-GZ = o 
since X’T-GZ = X T - ( G  + XUX’)Z = X‘T-TZ = X’Z = 0, as X E &(T). 
Thus p’b is the BLUE. 

Proof of (b):  

V( p‘b) = V(L’X(X’T - X) - X’T - Y) 

= V(L‘WY), W = X(X’T-X)-X’T- 

= O’L’W(C + XUX‘)W’L - L’WXUX’W’L 
= ~[L’x(x’T-x)-x’L - L’XUX‘L] 
= o’p’[(X‘T-X)- - U]p. 

Similarly, the expression for covariance is established. 
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Proofof(c): It is easily shown, along the lines of (4a.5.4), 
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E(Y - X&(Y - XI)’ = D(Y) - D(Xb) 
= a2{C - X[(X‘T-X)- - UJX’} 
= a2(T - X(X’T-X)-X’)} 

a-’E(Y - XI)’T-(Y - Xb) = T r T-[T - X(X’T-X)-X’] 
= Tr T-T - Tr(X’T-X)(X’T-X)- 
= R(T) - R(X) = I; 

which proves (c). 

Tests of linear hypotheses are carried out in the same way as in proposition 
(ii) of 4i.3, by taking C4 in (4i.3.6) as X[(X’T-X)- - U] X’ and Y’C,Y as 
Ro2 defined in (4i.4.2). 

Note that U can be chosen, if necessary, such that T = G + XUX’ is n.n.d., 
in addition to the condition R(GiX) = R(T). In such a case (Y - Xp)’T- 
(Y - Xp) is non-negative for any choice of T- and the expression attains a 
minimum at a stationary point I. 

In general T- is not a g-inverse of G. However, we can choose U in such a 
way that G and XUX’ generate virtually disjoint spaces, in which case T- 
is a g-inverse of T. Unfortunately for any testable hypothesis P‘p = W, 
the result u’D-u = min (Y - XP)’M(Y - Xp) - min (Y - X@)’M(Y - Xp) 

where u’D-u is as defined in (41.3.9) is not true when G is singular how- 
ever M is chosen unless A ( X )  c A ( G ) .  (See Rao 1972d.) 

P 4 = W  P 

4j ESTIMATION OF VARIANCE COMPONENTS 

4j.l Variance Components Model 

In 4f we introduced a general two-way classification model and considered 
a special problem of estimation of variance components. Now we consider 
the general linear model, Y = Xp + E ,  where the error component E has the 
structure 

E = u, 5 1  + ” ’  + UkSk (4j. 1.1) 

ti being a n,-vector of hypothetical (unobservable) variables such that 

~ ( 4 ~ )  = 0, ~ ( 4 , )  = o , ~ I ,  i = I ,  . . . , k, 
E(Si S j )  = 0, i # i, (4j. I .2) 

so that 

D(&)=a,2UIU; + ’* ‘+ak2U,U;=o12V1 + “ ‘ + a k 2 v k .  (4J.1.3) 
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The design matrices X, Ui (or V i ) ,  and the observation vector Y are known 
while fl and cr = (crI2, . . . , ok2) are unknown parameters under estimation. 
The variances o , ~ ,  . . . , ak2 of the hypothetical variables in G I ,  . . . , g k  are called 
variance components. 

Let a l ,  . .., ak be a priori (or approximate) values of crlr ..., b k .  (If no 
a priori information is available, then each ai may be taken to be unity.) 
Then we can rewrite (4j. 1.1) and (4j. I .3) as 

E = Wlql + + W,qk,  Wi = a ,Ui ,  ti = a i q i ,  
D(E) = yI2T, + ' ' + yk2Tk, T, = w,w; = ai2v,  (4j. 1.4) 

where y i 2  = ui2/ai2,  the scaled variance components to be estimated. 

4j.2 MINQUE Theory 

Let us consider the estimation of a linear function 

(4j.2.l) 

of the variance components by a quadratic function Y'AY subject to the follow- 
ing conditions. 

If instead of fl, we consider fld = fl - Po, 
then the model becomes Yd = Xfld + E ,  where Yd = Y - Xflo. In such a case, 
the estimator is Y;AYd, which is the same as Y'AY for all flo, iff AX = 0, 
which may be called the condition of invariance for translation in the 
parameter. Now for such an estimator 

E(Y'AY) = Tr AD(&) = C y i 2  Tr ATi = 1 y i 2 q i  

(a) Invariance and Unbiasedness. 

*Tr AT, = q i ,  i = 1, . . . , k (4j.2.2) 

If the hypothetical variables qi  were known, then a 

(ql/nl)q;ql + ' ' + (qk/nk)q; f l k  = qlAq (say) (4j. 2,3) 

where A is a suitably defined diagonal matrix and q' = (q; i * i q;). But 
the proposed estimator is 

Y'AY = E'AE = q'W'AWq (4j. 2.4) 
since AX = 0, where W = (W, i * i Wk). The difference between (4j.2.3) and 
(4j.2.4) is q'(W'AW - A)q which can be made small, in some sense, by mini- 
mizing 

[(W'AW - All (4j. 2.5) 

which are the conditions for unbiasedness under invariance. 

natural estimator of y i 2  is qi qi/ni and hence that of 
(b) Minimum norm. 

q,yi2 is 

where the norm is suitably chosen. 
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An estimator Y'AY where A is such that IIW'AW - AJI is a minimum, 
subject to AX = 0 and Tr  AT, = q,, i = 1, . . , , k is called the MINQUE 
(Minimum Norm Quadratic Unbiased Estimator) of the parametric function 

In the literature (Rao, 1970a, 1971c, 1971d, 1972b), MINQUE is also 
obtained with the condition X'AX = 0, instead of AX = 0, to ensure unbiased- 
ness only and not invariance, and a distinction is made between MINQUE's 
with and without invariance. But for the present discussion we shall impose the 
invariance condition. The condition X'AX = 0 was first considered by Focke 
and Dewess (1972) for estimation of variance components. 

C qiY i 2 .  

4j.3 Computations under the Euclidean Norm 

If we choose the Euclidean norm (i.e., (IB1I2 = the sum of squares of all the 
elements of B), then 

IIW'AW - All2 = Tr W'AWW'AW - 2 Tr W'AWA + Tr Ah 
= Tr AWW'AWW' - Tr AA =Tr ATAT - Tr AA 

where T = Ti = 1 a i 2 V i ,  observing that 

Tr W'AWA = Tr AWAW' = Tr x(qi/ni)ATi = Tr AA. 

Thus, in the case of the Euclidean norm, the problem reduces to  that of 
determining A such that Tr ATAT is a minimum subject t o  the conditions 
A X = O a n d T r A T , = q , , i =  I ,  , . . ,  k. 

The algebraic problem is already solved in [(iii), lf.31, where it is shown 
that the minimum is attained at  

A = AiRTiR, R = T-'  - T-'X(X'T-'X)-X'T-' (4j.3.1) 

where 1, satisfies the equations 
k 

1 li Tr RT,RT, = q j ,  j = 1,  . . . , k .  
i = l  

(4j. 3.2) 

Then the MINQUE of 1 q i y i 2  is S'Q where 1' = (A,, . . . , i k )  is a solution of 
(4j:3.2) and Q' = (Q,, . . . , Qk), Q, = Y'RT,RY. We may write the equa- 
tion (4j.3.2) in the form SS = q, in which case 1 = S-q is a solution and 

S'Q = q'(S-)'Q = q'S-Q = q'f 

where 4 is a solution of Sy = Q. 
Thus the computational procedure consists in first setting up the equation 

Sy = Q where the (i , j) th element of S is Tr  RT, RTj and the ith element of 
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Q is Y’RT, RY and obtaining a solution .O = S-Q. The solution for the original 
variance components is 

6 = (a,’, . . . 3 6k2) = (aI2 PI2,  . . @ k 2 p k 2 )  

in the sense that the estimate of any estimable function p‘a is p’b. [p’a or 
equivalently q’y is said to be estimable provided a matrix A exists such that 
A X = O a n d T r A T , = q , , i =  1 ,  . . . ,  k ] .  

It may be verified that Tr ATAT is proportional to V(Y‘AY) when Y has 
the n-variate normal distribution (which is equivalent to saying that all the 
hypothetical variables in (4J. 1.1) have univariate normal distributions) 
and the true variance components are aI2,  . . . , tlk2. Thus the MINQUE is 
the locally minimum variance unbiased quadratic estimator under normal 
distribution for the hypothetical variables. 

4k BIASED ESTIMATION IN LINEAR MODELS 

4k.l Best Linear Estimation (BLE) 

Let us consider the GGM model (Y, Xfl, 02G) and let L’Y be an estimator of 
p’p, the given linear parametric function. The MSE (mean square error) of 
L‘Y is 

E(L’Y - p’p)’ = O~L‘GL + ( x z  - p)‘pp’(x’~ - P) (4k. 1.1) 

which involves both the unknown parameters a2 and p and as it stands is not 
a suitable criterion for minimizing. Then we have three possibilities. 

(a) Choose an apriorivalue of a-’P, say b, based on our previous knowledge 
and substitute a2W = o’bb’ for pp’ in (4k.l.l) which then takes the 
form a2S where 

S = L’GL + (X’L - p)’W(X’L - p). (4k. 1.2) 

(b) If p is considered as a random variable with an a priori mean dispersion 
E(pp‘) = a2W, then (4k.l . l )  reduces to u2S when a further expectation 
of (4k. 1.1) with respect to p is taken. 

(c) We observe that (4k. 1.1) consists of two parts, one representing the 
variance and the other bias. In such a case, the choice of W in S rep- 
resents the relative weight we attach to bias compared to variance. 
Then W may be suitably chosen depending on the relative importance of 
bias and variance in the estimator. 

In the cases (b) and (c), the matrix W is n.n.d. and of rank possibly greater 
than one. The result (4k.1.3) of (i) is true for any choice of W whatever its 
rank may be provided Y E A ( V  + XWX’). 
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Thus we are led to choose S as the criterion and the proposition (i) provides 

(i) The BLE ofp‘fl is p‘p where 

the answer to BLE. 

p = WX’(G + XWX’)-Y. (4k. 1.3) 

The minimum value of S is attained when 

(G + XWX’)L = XWp or ML = XWp, M = G + XWX’, 

so that L = M-XWp is a solution and the BLE of p’fl is 

L‘Y = p‘WX‘M-Y = p’p. (4k. I .4) 

BLE always exists whether p’P admits a linear unbiased estimator or not. 
In order to compare BLE with BLUE, let us assume that X is of full rank 

so that fl admits unbiased estimation and R(M) = R(G + XWX’) = R(G: X). 
Then $, the BLUE of fl, is 

$ = (x’M-x)-~x’M-Y, using (4.4.3) (4k. 1.5) 

whereas the BLE of P is 

p = WX’M-Y = WX‘M-Xb = T$ say (4k. I .6) 

which establishes the relationship between $ and 8. The mean dispersion 
error of p is 

E(P - P>(P - P)’ = TE(B - fl>(Ci - fl)’T’ + (T - I>pP‘(T - I)’ 
F = TDT’ + (T - I)Pfl‘(T - I)’ (4k. I .7) 

where D is the dispersion matrix of $ and P is the true value. 
The matrix D - TDT is n.n.d. so that D - F will be n.n.d. for a certain 

range of p. Thus, if we have some knowledge about the domain in which 
fl is expected to lie then we may chose W suitably to ensure that BLE has 
uniformly smaller mean square error than the BLUE. 

The reader may refer to related work by Hoerl and Kennard ( I  970a, 1970b). 
Note that T in (4k. 1.6) is a sort shrinkage factor bringing $ towards zero, 
which is the usual technique employed in improving unbiased estimators at 
least in some range of the parameter space. 

4k.2 Best Linear Minimum Bias Estimation (BLIMBE) 

Let us consider the GGM model (Y, Xfl, a2G) which includes the case of 
constraints on the fl parameter. When R(X) is not full, not all linear para- 
metric functions admit linear unbiased estimators (LUE). In fact, an n.s. 
condition for p‘fl to have a LUE is that p E &(X’). We raise two questions. 
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(a) What is the nlinimum restriction to be put on p such that every para- 

(b) In what sense can we find a BLIMBE of p’p if it does not admit a LUE? 

The answer to question (a) is contained in proposition (i) and to (b) in (iii). 

(i) Let R(X) = r < m, the number of parameters. The niininiuni restriction 

metric function admits a LUE and hence the BLUE? 

on p can be expressed in two alternative forms: 

(a) RP = c,  R ( R )  = ni - r and A ( R ’ )  n &(X’) = (0). 
(b) p = d + TX’y where T is any matrix such that R(XTX’) = R(X) and 

y is arbitrary parameter. 

The first restriction is obvious, and the second can be deduced from the 
first. Both the restrictions imply that p is confined to a hyperplane of dimen- 
sion r. 

To answer the second question, we follow the method due to Chipman, 
(1964). The bias in L’Y as an estimator of p’p is (X’L - p)’ p which may be 
made small by finding L such that IIX’L - pII is a minimum, choosing a 
suitable norm. 

(ii) Let IIX’L - pllz = (X’L - p)’B(X’L - p) where B is p .d .  Then a LIMBE 

(4 k. 2.2) 

The result (4k.2.2) follows from the definition of a least squares g-inverse 
and its equivalent as a minimum norm g-inverse (see lc.5.7). 

LIMBE may not be unique. In such a case, we choose one with the smallest 
variance, which may be called BLIMBE (Best linear minimum bias estimator). 

(Linear rnininiurn bias estitnator) of p‘fl is 

P”(X’),,,l’Y = P’X,,e- 1)Y. 

(iii) The BLIMBE of p‘p i .e.,  a linear function L’Y such that L’GL is a 
minimum in the class ofL which inininiizes (X’L - p)’B(X’L - p) is p’p \\.here 

(4k. 2.3) 

and (X‘),,’ is the minimum G-norm B-least squares g-inverse of X‘ 

The result (4k.2.3) follows from the definition of a minimum norm least 
squares g-inverse [(iii), Ic.51. 

If G is of full rank then 

jl = [(X’),,+]’Y = xG+-IB-!Y (4k. 2.4) 

using the result (lc.5.9). 
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COMPLEMENTS AND PROBLEMS 

1 Linear estimation. Consider the setup (Y, Xp, 021) of 4a and a parametric 
function P’p. Let P, p, L, D, A denote column vectors. 
1.1 Show that if P = X’L admits a solution for L, then L’Y is unbiased for 
P’p. Let Lo be a solution E&(X) (which exists and is unique). Then V(Lb Y) < 
V(L’Y) for any other solution. [See examples 16 and 17, p. 13.1 

1.2 Find P such that P’p is estimable and the ratio of the variance of its 
1.s.e. to P’P is a maximum (or minimum). 
1.3 Show that in general a linear function L’Y has minimum variance as an 
unbiased estimate of E(L’Y) if and only if cov(L‘Y, D’Y) = 0, that is, L‘D = 0 
for all D such that E(D’Y) = 0 that is D’X = 0. 
1.4 Show that the number of independent linear functions of Y with zero 
expectation is n - r where r = R(X). 
1.5 From the results of Examples 1.3 and 1.4 deduce that minimum variance 
estimators are of the form A’X‘Y, and conversely. 

1.6 Show that in the setup (Y, Xp, 021) of the least squares theory the con- 
ditions of linearity and unbias of an estimator are equivalent to the conditions 
of linearity and bounded mean square error, assuming that the unknown 
parameters are unbounded in range. (See Example 4 for other conditions 
leading to least square estimators.) 
2 Combination of estimators 

2.1 If t , ,  . . ., t k  are unbiased estimators of a (single) parameter 8 and 
cov(ti, t j )  = o i j ,  find the linear function of f l ,  , . , , t k  unbiased for 0 and 
having minimum variance. 

2.2 Let t , ,  . . t k  be uncorrelated estimators of 8, with variances g12, 

. . . , b k 2 .  Show that ci t i ,  (2 ci = 1) has minimum variance when c i  = 
o l - 2 / 2 a i - 2 .  Find the minimum variance attained. 

2.3 Show that if t,, . . . , t k  are unbiased minimum variance estimators of 
the parameters el, . . . , 8, , then c,t ,  + * . + ck t k  is the unbiased minimum 
variance estimator of c1 O1 + * * + c, 8 k I  

3 Consider the observations (yl, , , , , y,) = Y’ such that 

E(yi) = X i l P l  + . * * + X i m  fin 

and cov(y,, y j )  = po2, V(yi)  = 0’. Make an orthogonal transformation from 
Y to Z such that z1 =(y l  + . . * + y,)/,/n. Show that Z; = ( z 2 ,  . . . , 2,) are 
uncorrelated and have the same variance a’( 1 - p)  and E(Z,) = Us, where U 
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depends on X and the particular matrix of transformation. Show that when p 
and a2 are unknown, unbiased minimum variance linear estimators of para- 
metric functions are 1,s. estimators under the setup [Z,, Up, a2(1 - p)I]. 

4 In the set up (Y, Xp, a21) we have constructed an orthogonal traiisforma- 
tion Z, =BY, 2, = DY [see (i), 3b.51 such that E(Z,) 3 0, R(D) = n - r, 
E ( Z , )  =BXp # 0, and all components of Z1, Z2 are uncorrelated. We may 
agree that Zz is superfluous for fl since E(Z,) E 0 and C(Z1, Z,) = 0. Let 
f(Z,) be any general function of Z1 which provides a consistent estimator of 
a parametric function P’p, that is, f(BXp) = P’p, where BXp is the expected 
value of Z1 or the value of Z1 when there are no errors in the observations. 
Show thatf(Z,) is linear in ZI and is the 1,s. estimator. [We thus have a logical 
justification of I . s .  estimation without appealing to  unbias, linearity of esti- 
mator, or minimum variance. Superfluity in the observations Y is, in general, 
deliberately introduced to obtain an estimate of precision. Thus, the com- 
ponents of Z2 enable us to estimate the precision of estimators of the unknown 
parameters p, although, by themselves they do not provide information on p.] 
5 Suppose that there are m objects whose individual 
weights have to be ascertained. One method is to weigh each object r times and 
take the average value as the estimate of its weight. Such a procedure needs a 
total of mr weighings and the precision of each estimated weight is 0 2 / r ,  where 
u2 is the variance of error in an individual observation. Another method is to 
weigh the objects in combinations. Each operation consists in placing some of 
the objects in one balance pan and others in the other pan and placing weights 
to achieve equilibrium. This results in an observational equation of the type 

Weighing designs. 

where w,,  . . . , w, are hypothetical weights of the objects, xi = 0, 1, or - 1 
according as the ith object is not used, placed in the left pan or in the right pan 
and y is the weight required for equilibrium. The n operations described as 
using different combinations of the objects for the left and right pans yield n 
observational equations, from which the unknown weights wl, . . . , w, may 
be estimated by the method of least squares. The n x m design matrix of the 
observational equations X is a special type where each entry is 0, 1, or - 1. 
The problem is to choose X in such a way that the precision of the individual 
estimates is as high as possible. 
5.1 Using the result of 4a.12, show that maximum precision is attained 
when each entry of X is either 1 or - 1 and the columns of X are orthogonal. 

5.2 For the optimum design in (5.1) the precision of each estimate is 0 2 / n  
for n weighing operations. Show that to achieve the same precision by weighing 
each object individually the number of weighing operations required is mn. 
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5.3 Estimate the weights of 4 objects from the following observational 
equations (ignoring bias). 
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o1 w2 w3 wq Weight 

1 1 1 1 
1 - I  1 - 1  
1 1 - 1  - 1  
1 - 1  - 1  1 
1 1 1 1 
1 - 1  1 - 1  
1 1 - 1  - 1  
1 - 1  - 1  1 

20.2 
8.1 
9.7 
1.9 

19.9 
8.3 

10.2 
1.8 

Find the dispersion matrix of the estimates and also the least square estimate of 
02, the variance of each measurement. 
5.4 For the following weighing design, show that the individual estimates 
of w2 and o3 cannot be found, but that their sum is estimable. Find the g- 
inverse of the matrix of normal equations and estimate the linear function 
o2 + w3 and the standard error of the estimate. 

w1 w2 w3 Weight 
~ 

1 5.1 
1 1 8.2 

1 - 1  - 1  4.9 
- I  1 1 3.1 

6 Let a, + b,(x - 3,) and u2 + b2(x - X2) be two estimated regression 
functions from independent samples of sizes n, and n2 . Further let Si;), Sik), 
S(ii be the corrected sum of squares and products for the first sample and with 
index (2) for the second sample. Find the confidence interval for the value of 
x at which the true regression functions cut. 

Hint: let z = a, + b,([  - 3,) - u2 - b2([ - X2), then E(z) = 0 and V(z )  = 
cu2, where 

1 
n ,  S$) n2 Si,) ' 

(t - Z A 2  + i + (t - a2 
C = - +  

The (1 - a) confidence region is obtained by solving the quadratic in [ 

Z2 

C a 2  
- =Fa(l, + nz-4), 

where 
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7 Show that a random variable can be written as the sum of two variables, 
one of which has multiple correlation unity (perfectly determined) with a given 
set of variables and another uncorrelated with any of the given variables. 
8 Let ( p i j )  be the correlation matrix of p variables xl, . . . , x p .  From the 
definitions of partial and multiple correlation coefficients given in 4g.1, 
show that 

(a) 

(b) P12.3 = ( P I 2  - P13P23)/(1 - P132)1/2(1 - P232)1/2. 

(c) pl2 = (P12.3 - P13.2p23.1)/(1 - p:3.2)1/2(1 - Pi3.1)1'2 

- P ? ( 2 . . . p )  = ( I  - P122)(1 - P;3.2)***(l  - P f p .  ( 2 . . . p - l ) ) *  

9 Let us define Pl(2.34 ... p )  as the correlation between x1 and the residual 
of x2 removing the regression on x3, . . . , x p  . Such a coefficient is called part 
correlation. Unlike partial correlation it is not symmetrical in symbols 1 and 
2. Show that 

2 2 
(a) P1(2.34. . .p)  P12 . (3 . . . p ) '  

(b) P:(234...p) = P : p  + Pl(p-1.p) + * ' *  + P 1 ( 2 . 3 4 . . . p ) .  
2 2 

10 Estimation of horizontal distance between two parallel regression lines 
(Fieller's theorem). Let j ( ' ) ,  F(l' be the mean values and Sb;), Sk;), SY!, the 
sum of squares and products from a sample of size n, on a pair of variables 
(y ,  x), and with index (2) for an independent sample of size n 2 .  If the true 
regressions are given to be parallel, show that the estimate of the common 
regression coefficient is 

If q is the horizontal distance between the two regression lines then the statistic 
d = a, - a, + bq where a, = j j ( ' )  - bK(') and a2 = y(2) - bE(*) has zero ex- 
pectation and variance 

An estimate of a2 is 
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on (n,  + n, - 3) D.F. Hence show that the confidence interval for g is given 
by solving the quadratic in g 

LEAST SQUARES AND ANALYSIS OF VARIANCE 

G(1, n, + n, - 3). 
d2  

a2C 
-= 

11 Robustness of estimators in linear models. Consider (Y, Xp, 02G) and let 
P’B be the BLUE of P’p assuming G = I. If P’B is also the BLUE under 
(Y, Xp, a%) for all estimable P’p, then it is n.s. that 

G = XAX’ + ZBZ‘ 

where A and B are arbitrary symmetric matrices and Z is a matrix of maxi- 
mum rank such that X‘Z = 0. [For a proof and a further discussion of the 
problem, see Rao (1967c, 1968a, 1971e).] 
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Chapter 5 

CRITERIA AND 
METHODS OF 
ESTIMATION 

Introduction. In Chapter 4 we considered the estimation of parameters using 
only the specified structure of the first and second moments of the observa- 
tions. In the present chapter we consider more general situations where the 
distribution function (d.f.) of the observations is specified to be a member 
of a family 9 of d.f.’s. Then the wider problem of estimation is one of choos- 
ing a d.f. belonging to 9 on the basis of observed data or a given realization 
of the observations. In some problems our interest may lie only in a particular 
characteristic (parameter or a function) of the d.f., in which case we need only 
estimate the parameter and not necessarily the entire d.f. 

In either case what is needed is a function of the observations, to be called 
an estimator whose value at a given realization of the observations is the 
estimate of the unknown quantity (which may be a d.f. or a parameter). 
To determine an estimator we need a set of criteria by which its performance 
can be judged. Obviously any set of criteria depends on the purpose for which 
an estimate is obtained. Consequently there need not be a single set of criteria 
by which all estimators can be judged or a single estimator of any given 
parameter, which is appropriate for all situations. Our attempt in the present 
chapter is to discuss various criteria of estimation and lay down appropriate 
procedures for obtaining estimates. 

The subject is full of controversies both with respect to the methods of 
estimation and the expression of uncertainty in the estimates. Some discussion 
is devoted to these controversies. 

The examples at the end of the chapter contain numerous results on 
estimation. They may be read as additional material on theories and methods 
of estimation. A numerical example is given at the end of the chapter to 
illustrate the scoring method for maximum likelihood estimation. 

314 

Linear Stalisticdlnference and ih Applicafioni 
C. RADHAWSHNA MC 

Ilnnvl.hl D IM’ 1w1 hr hh” wru* Q””. nw 



5a MINIMUM VARIANCE UNBIASED ESTIMATION 315 

5a MINIMUM VARIANCE UNBIASED ESTIMATION 

511.1 Minimum Variance Criterion 

In Chapter 4 we have introduced the method of least squares for estimating 
parametric functions. It was shown that, for any given parametric function, 
the least squares estimator possesses the least variance in the class of linear 
unbiased estimators. The status of the least squares estim'ator in the entire 
class of unbiased estimators could not be studied as the specification of the 
distribution of the observations was confined to the first two moments only. 
It is, therefore, of some interest to examine some general methods of obtaining 
minimum variance estimators by considering the entire class of unbiased 
estimators in cases where the distribution of the observations is restricted to  
a smaller class. 

Intuitively, by an estimator of a parameter 8 we mean a function T of 
the observations (x,, . . . , x,) which is closest to the true value in some sense. 
In laying down criteria of estimation one attempts to provide a measure of 
closeness of an estimator to the true value of a parameter and to impose 
suitable restrictions on the class of estimators. An optimum estimator in the 
restricted class is determined by minimizing the measure of closeness. Some 
restrictions on the class of estimators seem to be necessary to  avoid trivial 
estimators such as T = c (a constant), which is best in any sense when the 
unknown value of the parameter is c. 

There need not be a single set of criteria of estimation useful in all situations. 
We shall examine some sets of criteria available in statistical literature and 
discuss the merits and demerits of each. 

It would, of course, be ideal if there exists a function T such that, compared 
to any other statistic T', the probabilities satisfy the relationship 

p(e - < T < e + 2 p(e  - A ,  c T' < e + &) (5a.l.l) 

for all possible 1, and 1, in  a chosen interval (0, A) and for all 0. If the 
condition (5a. 1.1) is satisfied for all 1, a necessary condition is 

E(T - q2 G E(T' - qZ, (5a. 1.2) 

where E stands for expectation, that is, the mean square error (m.s.e) of T is 
a minimum. If, further, it is assumed that the estimator should be unbiased, 
it follows that 

V ( T )  Q V(T' ) ,  (5a.1.3) 

where I/ stands for variance. 
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Estimators satisfying the criterion of highest concentration (5a. 1.1) or the 
criterion of minimum mean square error (5a.1.2) do not generally exist. The 
restriction that the estimator should be unbiased, however, provides us with 
optimum estimators, in the sense of having minimum variance, in some 
problems. The condition of unbiasedness may be particularly unattractive 
in that many biased estimators with possibly smaller m.s.e. lose their claim 
as estimating functions. There are also situations in which unbiased estimators 
do not exist and in which no minimum variance estimator exists although 
unbiased estimators exist. [See Example 12 at the end of the chapter.] 

Consider the statistic 

n - 1  

based on n observations xl, . . . , x, from N ( p ,  a2). It is known that E(s2)  = a2, 
so that s2 is unbiased for a2. Since (n - l)s2/a2 - x2(n  - l), 

v"" -y] = v[xZ(n - l)]  = 2(n - 1) 

giving V ( s 2 )  = 2a4/(n - 1). Let us consider 

E(cs2 - a2)' = E[c(s2 - a2) - a2(1 - c)I2 

which attains the minimum when c = (n - l)/(n + l), the minimum value 
being 

2a4 2a4 
-<- 
n + l  n - 1 '  

Therefore, for all n and a 

If we use the criterion of m.s.e. the estimator (xi - f ) * / ( n  + 1) which is 
biased for u2 is better than s2. Which then should be preferred? The answer 
obviously depends on the purpose for which an estimate is obtained. 

Let r be the number of successes in n Bernoulli trials with an unknown 
probability of success n. But there is no function f of r such that E ( f )  = I/n, 
a situation in which unbiased estimation is not possible. 

The most important role of unbiased minimum variance estimation is in 
the pooling of information supplied by independent estimators of a parameter. 
Let T,, T 2 ,  . . . be estimators of 8 such that 

E(T) = 8, v(Ti) = ai2 < a2, 
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and suppose that nothing is specified about the actual distribution of T i .  
If Tk = (TI + * * *  + T,)/k,  then 

so that as k + co, v(Tk) + 0, which implies that Tk gets closer and closer to 
the true value ask + co. On the other hand if Ti is biased, and has an unknown 
bias p, then Tk approaches the wrong value 8 + p, instead of the true value 8. 

A bias in any individual estimator may not be serious if it is small compared 
to its (standard) error. But when several such estimators are pooled in the 
manner indicated, the bias remains the same while the variance+O as 
k -+ co. The bias becomes large compared to the standard error after some 
stage. 

Or suppose that we wish to examine the relationship between a response 
y and a factor variable x by obtaining independent estimates of y at some 
values of x. There is a possibility of making systematic errors in the estimated 
relationship if the estimators of y for different values of x are not unbiased. 
It is clear that if it is desirable to be unbiased in these situations, estimators 
with smaller variances are preferable to ensure rapid convergence to the true 
value. 

5a.2 Some Fundamental Results on Minimum Variance Estimation 

Let 9, be a class of probability measures over the sample space of observa- 
tions X, indexed by a parameter 8 (which may be vector valued) with values 
in a specified parameter space 0. In most applications X is generally an 
n-dimensional vector, but it could be more general for purposes of the present 
discussion. Let U, be the class of all unbiased estimators (functions of X) 
of g, a specified function of 8, and Uo be the class of all functions with zero 
expectation. Thus T E U,, iff E(T 18) = g(8) for each 8 E 0, and f E U,, 
iff E(fl8) = 0 for each 8. We shall prove a number of results concerning 
minimum variance unbiased estimators (m.v.u.e.). 

(i) A necessary and suficient condition that an estimator T E  U ,  has minimum 
variance at the value 8 = 8, is that cov( T, f I 8,) = 0 for every f E Uo such that 
V ( f  18,) < co provided V(TI8,) < 03. 

The necessity is easily proved by considering (T + ,If) E U, for arbitrary I, 

(5a.2.1) 

and showing that, for any I, in the interval [0, -2 cov(T,f)/V(f)] 

V(T + 1.) = V ( T )  + 22 cov(T,f) + ,12V(f)  ,< V ( T )  
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unless cov(T, f) = 0. To prove sufficiency, let T' E U, be another estimator 
such that V(T')  c 00 at 8,. Then (T - T') E U, , and by the condition given 

E[T(T - T') (  6,] = 0, 

CRITERIA AND METHODS OF ESTIMATION 

that is, 

V(T)  = cov(7', T') or ,/V(T) = p,/V(T') 4 ,/V(T'), (5a.2.2) 

where p is the correlation between T and T'. Hence (i) is proved. [In the proof 
all variances and covariances are computed at O,]. 

Nore. (a) The correlation between a m.v.u.e., and any unbiased estimator 
is non-negative (5a.2.2). 
(b) If there are two unbiased estimators with the same minimum variance, 
their correlation ~ ( 6 , )  is unity, that is, they are the same except for a set of 
samples of probability measure zero for 8, [follows from (5a.2.2)]. 
(c) If we restrict estimators to a particular class of functions GI such as the 
class of linear or continuous functions etc., then besides being unbiased 
the necessary and sufficient condition is E(Tf1 8,) = 0 for all f~ U, n G, 
and V(f I 8,) c 00. 

(d) Let us restrict T to any class H. Then a necessary and sufficient 
condition that the m.s.e., E(T - 8),, is a minimum at 8, is that 

E[(T - O0)(T - W)1O0] = 0 

for any W E H. 
(e) If TI and T, are m.v.u. estimators of gl(8), g,(8), then b,T, + b,T, is 
a m.v.u. estimator of b,g,(8) + b2g2(8) when b,, b, are fixed constants. 
[This is an immediate consequence of result (i).] 
(f) If T has minimum variance for each 8, it is said to be a uniformly 
m.v.u. estimator. 
For example, consider the observational setup (Y, XP, a21) of the theory 

of least squares discussed in Chapter 4. Let Y - N(XP, 0'1) and f(Y) E LI, , 
so that 

or 

1 f (y) e-Y'Y/2'J2+P'X'Y/a2dU 0 (5a. 2.3) 

Differentiating (5a.2.3) with respect to pi, the ith component of P, we see 
that 
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which shows that 

Q i = x l i y ,  + * * * + x n i y n ,  

and, therefore, any linear function of Q,, Alp1 + + A,, Q, = 51Q = I’X‘Y 
(in matrix notation) is a uniformly m.v.e. of its expected value. But for any 
vector 5, 5’X‘Y is the least squares estimator (1.s.e.) of a parametric function 
as derived in (4a.2.5) (where it was only shown that it has minimum variance 
in the class of linear unbiased estimators). Thus the assumption of normality 
enables us to prove the stronger result that the 1.s.e. has minimum variance in 
the entire class of unbiased estimators. 

It was shown by the author (Rao, 1959c) that if each component of (Y - Xp) 
has the same distribution with moments of all orders finite and the 1.s. 
estimators have minimum variance in the class of all unbiased estimators, 
then each component of (Y - Xp) has a normal distribution. We thus have 
a new type of characterization of the normal distribution. 

By differentiating (5a.2.4) with respect to pi we find E(fQl Q,) = 0 so 
that Qi Q, is an m.v.e. Differentiating (5a.2.3) with respect to a’ we find that 
Y’Y is an m.v.e. Hence for any arbitrary constants b,, ,  Y’Y - x b i ,  Q i  Q, 
is an m.v.e. But for a suitable choice of bi, , 

[where B = (b,,)] is the residual sum of squares in the least squares theory and 
is unbiased for (n - r)a’. Thus, under the normality assumption, R,’/(n - r )  
is the m.v.u.e. of a’ in the entire class of unbiased estimators. 

As examples of estimators with restrictions on the functional form, let 
us consider a p.d. of the type P ( x ,  - 8, . . . , x,  - 8) of n observations 
x , ,  . . . , x , .  Let us restrict the class of estimating functions to those which 
satisfy the translation property, 

(5a.2.5) 

The function X = ( x ,  + * * + x,)/n satisfies the property (5a.2.5). Any other 
function differs from X by h, which is a function of the differences yl = 
x2  - x , ,  . . . , y,-, = x, - x,-, only. Let y represent the set y,, . . . , y,,-,. 
Then it is easily seen that 

f ( x l  + u, . . . , x,  + u )  = u + f ( x l ,  . . . , x,) for any u. 

W l Y )  = 0 + e(y)  

where e(y) does not involve 8 and 

E[E + h(y) - 81’ = E E [E - 8 - e(y) + e(y) + h(y)]’ 
Y P  
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where v(y)  = E([X - 0 - e(y)12 I y )  does not involve h(y).  The minimum of 
(5a.2.6) is, therefore, attained when h(y) = -e (y) .  For such a choice the 
statistic 2 - e (y )  satisfies (5a.2.5) and uniformly has the least mean square 
error, as well as being unbiased. For other examples see (Rao, 1952a, 1952b). 

(ii) If the sample consists of n independent observations from the same 
distribution, then minimum variance unbiased estimators are symmetric in the 
obser va t ions. 

It is easy to establish that if T ( x , ,  . . . , x,) is an unbiased estimator of a 
parameter, the symmetric function C T ( x , ,  Xb, . . . ) /n!  where the summation 
is over all possible permutations of x , ,  . . . , x, is also unbiased and has no 
larger variance than that of T. 

Let V [ T ( x , ,  . . . , x,)] = u2. Then by symmetry V [ T ( x , ,  x,, , . . .)] = u2 for 
any permutation of x, ,  . . . , x,. Furthermore, for any two permutations 
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Xa,  Xb, . . . and x,, , Xb, , . . . , COV[T(X,, Xb, . . .), T ( X , ,  , Xb,, . . .) ] 6 u2. NOW 

n!  + n!(n! - 1) 
(n! )2  

= u2. 

The importance of result (ii) is realized in the estimation of parameters 
when the exact form of the underlying distribution is not known. For instance 
X = ( x l  + * - + x,) /n is symmetric and unbiased for the mean of the distribu- 
tion. This is unique as an unbiased estimator when nothing is known about 
the form of the distribution except that its first moment exists. For, if an 
alternative to X is X + S where 6 is symmetric in x i  and E[d] = 0, then it can 
be shown by taking particular distributions that S E 0. Similarly if x, ,  . . . , x, 
are i.i.d. variables, then 

x12 + . * + x,2 - n K 2  
s2 = 

n - l  

is the m.v. unbiased estimator of the population variance when nothing is 
specified about the distribution of x l .  

(iii) Let T be a sufficient statistic for 0 where both T and 0 may be vector 
valued and T, any other statistic. I fg is any function of 8, then 

HT, - 9(e)lz 2 E"T) - 9(0)1* 
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where h(t) = E(Tl 1 T = t )  is independent of 8. h(T) is unbiased for g(8) if 
TI is unbiased. 

Since T is sufficient for 8, the conditional expectation of Tl given T = t is 
independent of 8. Thus h(t) is independent of 8. Using the result (2b.3.4) for 
conditional expectation, we seen that 

E(TJ = E[E(Tl I TI1 = E[h(T)I (5a. 2.7) 

which shows that TI and h(T) have the same expectation. Furthermore, by 
using (2b.3.7), 

T 

~{h(T)[Tl - h(T)1) = E{h(T)[E(Tl - h(T)l T)1) 
= 0, since E(Tl I T = t )  = A(?). (5a.2.8) 

Consider 

E[T,  - g(e)iz = E[T,  - h ( ~ )  + h ( ~ )  - g(e)i2 
= E[T, - h ( ~ ) 1 2  + E [ ~ ( T )  - g(e)l2 
2 E K T )  - g(e)i2, (5a. 2.9) 

since the product term 

m - 1  - h(T)l"T) - ml = EWl  - W)lh(T)l - s(e)EtTi - W)1 
= o - o = o ,  

if we use (5a.2.8) and (5a.2.7). The equality in (5a.2.9) is attained only when 
T, = h(T) almost everywhere. From (5a.2.7), E[h(T) ]  = g(8) if E(TJ = g(8). 

The result (iii) proved by the author (Rao, 1945d) and also by Blackwell 
(1947) establishes an important property of the sufficient statistic. Given any 
statistic, we can find a function of the sufficient statistic which is uniformly 
better in the sense of mean square error or minimum variance (if no bias 
is imposed). 

Note 1. A sufficient statistic is said to be complete if no function of it 
has zero expectation unless it is zero almost everywhere with respect to each 
of the measures P@. Zfa complete suflcient statistic exists, then every function 
of it is a uniformly m.u.u.e. of its expected value. In view of (iii) we have to 
search for m.v. estimators only in the class of functions of a sufficient statistic. 
The condition of completeness implies that there is a unique function of the 
sufficient statistic unbiased for any given parametric function. In such a case, 
to find the m.v.e. it is enough to start with any unbiased estimator and take 
its conditional expectation, given the sufficient statistic Rao (1946h, 1948d). 

Note 2. It is seen that in (5a.2.7), sufficiency of T is used only to ensure 
that h(T) is a statistic independent of the unknown parameter. Then the 
proposition (iii) remains valid for any two particular statistics ( K ,  T) which 



322 

satisfy the property that E(T, I T = t) is independent of 0 for all 1,  without 
demanding that T is sufficient, as pointed out by Arnold and Katti (1972). 
The proof remains the same. 

(iv) Instead of mean square error, let us consider any convex loss function 
W(T,,  0). By using Jensen’s inequality (le.5.6) we have E[W(T,,  0)l TI 3 
W(h(T),  0). Hence, taking expectations over T, we see that 

E[w(T, ,  e)i 2 E[w(h(T) ,  eii, (5a.2.10) 

which gives a generalization of (5a.2.9) to more general functions that measure 
the deviation between the estimator and the parameter. 

Example 1. Consider the statistic r, the observed number of successes in n 
Bernoulliin trials with probability n of success. Let f ( r )  be a function such 
that E [  f ( r ) ]  = 0 for all n, that is, 
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n 
= 0, where x = - . (5a.2.11) 

1-?I 

The vanishing of the polynomial (5a.2.11) in x for 0 c x < co implies that all 
its coefficients are zero, or, f ( r )  = 0 for all r. Hence r is a complete sufficient 
statistic and, therefore, any function of r is an m.v.e. It may be verified that 

E ( X )  = n, 

so that the functions inside the expectation are m.v. estimators of the corre- 
sponding expected values. We see that not only n but n(l  - n), which occurs 
in the variance of the estimator of n, also admits m.v.u. estimation. For other 
examples see (Lehmann and Scheffe, 1950; Rao, 1945d, 1946h, 1948d, 1949~). 

Example 2. An extremely interesting application of (iii) by Kolmogorov 
(1950) is in the unbiased estimation of the proportion n of the normal popula- 
tion above a given value c on the basis of a sample xl, . . . , x,, . In this 
application, 

x1 + . * ’  + x, 
n f =  and S2 = (xl - a)’ + + (x ,  - Z)2 

are sufficient for the unknown mean p and variance a2 of the population. 
It may be verified that they are also complete. Let us consider the statistic 

if “1 where xI  is the first observation, Ti = 0, 
= 1, if x 1  > c  
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which is clearly unbiased for n. An application of result (iii) shows that the 
minimum variance unbiased estimator of n is E(T, I X, S). To find an explicit 
value of this statistic, consider 

E( TI 12, S )  = P[x,  > c I X, S ]  

= P[u  > uo I f, s], 
-. - - 

where u = &(x, - Z)/Jn - 1 S and uo = Jn(c - X ) / J n  - 1 S .  But the 
random variable u is distributed independently of T, S and has the density, 
const. (1  - u ~ ) ( ~ - ~ ) ' ~  as shown in Example 3, Chapter 3 if we choose m, = 
I - n-', m, = = m, = n-'.  Hence 

1 

P [ u  > uo 12, S ]  = 1 const. ( I  - u2)(n-4)/2 du. 

To obtain the numerical value of this integral corresponding to an observed 
value of u o ,  that is, the value of the estimator E(T, I X, S) for observed values 
of E, S, we use a table of the beta distribution B[1, (n  - 2)/2] and determine 
the probabilityp of a beta variable exceeding uO2. If uo is positive, the required 
estimate is p/2, and if u is negative, the estimate is 1 - p/2. 

uo 

(v) Let 8, admit a probability density (or probability in the case of a discrete 
variable) P(*, 0 )  for each 0 with respect to a offinite measure P ;  let T be any 
unbiased estimator ofg(0)  and A($ ,  0) = V[P(X, 4)/P(X, O)I0]. Then 

Where So = {X : P(X,0)> 0) and C = {+: Sb c So}. Then 

Hence 

which gives 

(5a.2.12) 
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Therefore, by using the C-S inequality [cov(x, y)I2 < V(x)V(y )J ,  we see that 
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and hence (5a.2.12) of (v) is established without any regularity conditions 

(a) Let g(8) admit the first derivative g’(8) and A(+,  8)/($J - 8)2 -+ J ( 8 )  

The result is obtained by dividing the numerator and denominator of the 

(b) Let g(8) and P ( X ,  8) admit the first derivative and for a fixed 8 and 

on P ( x ,  8) or g(8). 

as + --* 8. Then V(  T )  2 [g’(8)I2/J(8). 

right-hand side of (5a.2.13) by (4 - 8)2 and taking the limit as 4 -+ 8. 

14 - 8 I < E (given), let 

and E { [ G ( X ,  0)12 I 8} exist. Then 

(5a.2.14) 

(5a.2.15) 

where 

is Fisher’s information measure on the parameter 8 in an observation from 
the sample space of X [see 5a.5 for further discussion on 9(0)]. 

Under the conditions assumed, 

(5a.2.16) 

if we take the limit in (5a.2.16) inside the integral, by Lebesgue dominated 
convergence theorem using (5a.2.14). Instead of this we may have any other 
sufficient condition for taking the limit inside integration. 

Hence if we substitute Y(8) for J ( 8 )  in the result V ( T )  2 [g’(8)lZ/J(8), 
we get the result (5a.2.15), which may be called the information limit (see 
Cramer, 1946; Kao, 1945d). The inequality in the form (5a.2.12) is due to  
Chapman and Robbins (1951). A number of other inequalities are now avail- 
able (see Bhattacharya, 1946; Gart, 1959; Hodges and Lehmann, 1951; and 
Stein, 1950). 



5a MINIMUM VARIANCE UNBIASED ESTIMATION 325 

A direct proof of (5a.2.15) may be given using (5a.2.14). Since T is unbiased 
for &I), then 

Let V ( T )  be finite, in which case 

where E [  I T G ( X ,  8)l] e,xists since E(T’) and E[G(X,  S)]’ exist. Hence by 
taking limits of both sides of (5a.2.17) as 4 + 8, we see that 

that is, cov[T, P’(X ,  e ) /P (X ,  e)] = g’(8). Hence V(T)  2 [g’(8)l2/Jf(0). 

P’(O)/P(O> is unity, in which case 
When the equality in (5a.2.15) is attained, the correlation between T and 

P’ 
T = A - + g(Q, 

P 
(A being independent of X) (5a.2.18) 

except for a set of X of probability measure zero with respect to P ( * ,  8). 
Integrating (5a.2.18) with respect to 8, we see that P ( X ,  0) has the form 

exP~g,(wYX) + 92(8> + W X ) l  

and shows that T is sufficient for 8. 

Example 1. Consider n independent observations xl, . . . , x, from a popu- 
lation with probability density p ( ~ ,  8). In such a case P ( X ,  0) = p ( ~ , ,  8) + 

p(x ,  , 0) and J ( 0 )  = ni(0) where 

If p ( x ,  0) = N(x l8 ,  D’), it may be easily verified that i(8) = l/o*, and hence a 
lower bound to the variance of an unbiased estimator of 8 is I/ni = a’/n. 
The statistic X is unbiased for 0 and 

and therefore X is an m.v.u.e. of 0. 
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Example 2. If p(x ,  0)  hqs the gamma form 

then i(0) = k /02 .  The statistic (X/k) is unbiased for 1/0 and 

so that (X/k) is an m.v.u.e. of l/0. 

5a.3 The Case of  Several Parameters 

Suppose that 0 in P(X,  0)  is vector valued and let 

a 2  log P 
a, ae, p ,  = - - and &Pi,) = 9,,. 

The matrix f = (X , j ) ,  i, j = I ,  . . . , k is called the information matrix. Let 
T be a sufficient statistic for 8. The following main result may now be proved. 

(i) Lef f l ,  . . . , f, be r statistics such that 

) i , j =  I , . . . ,  r. (a) E ( h )  = gi(01, * * 0 9 0,) 
(b) E[(fi - g i ) ( f j  - ~ j ) l  = vij 

Then the following are true. 

(A) There exist functions m,, . . . , m, of the suflcient statistic T such that 
(A.1) E(mJ = g i ( 4 ,  . . . , 0 A  
(A.2) if U = ( U i j )  where U i j  = E[(mi - gi)(mj - gj) ]  and V = (Vi j ) ,  then 

the matrix (V - U) is non-negative dejnite. 

and let A be the matrix (ag,/aO,), i = 1, . . . , r ;  j = 1, . . . , k. Then V - A 9 - l A ’  
is non-negative definite, where 9-’ is the inverse of 9, the information matrix. 
[9- is replaced by a g-inverse 9- if 9 is singular.] 

To prove (A), consider a linear function L’F where F = (f,, . . . , f,) and 
L is a fixed vector and let E(f,I T )  = m,. Then E(L’F( T )  = L’M where 
M’ = (m, ,  . . . , m,). Applying result [(iii), 5a.21 to the single function L‘F, 
V(LF) 2 V(LM), gives 

C’VL 2 L’UL or L ( V  - U)L 2 0 

for any fixed A,. Hence V - Z, is non-negative definite, which proves (A). 
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To prove (B), consider the relation 

and the dispersion matrix off, ,  . . , , h, ( l /P ) (dP /dO, ) ,  . . ., (I/P)(dP/dO,), 
which may be written as the partitioned matrix 

(11 ;)a 

The determinants (denoting a unit matrix by I) 

are non-negative and so also their product 

This result holds true even for a subset of the statistics fi, . . . ,h which means 
that V - A#-'A' is non-negative definite. This proves (B). 

A series of results can be obtained from the main results (A) and (B). 

(a) By considering only the diagonal elements in V - 64-  'A' 

(5a.3.1) 

where P" are the elements of rhe matrix reciprocal to the information 
matrix (9,"). 

This shows that the variance of the estimator of g ,  is not less than a quantity 
which is defined independently of any method of estimation. This is the 
generalization to many parameters of the expression derived in (5a.2.15). 
If g i  = 0, ( i  = 1, . . . , k), the relationship (5a.3.1) reduces to 

v,, 2 Yi'. (5a. 3.2) 

Observe that .#', is not less than 1/Yii which is the limit obtained in (5a.2.15) 
for the estimate of 0, .  When the values of O,, . . ., O i - l ,  . . . , 0, are 
known, the limit (5a.2.15) is applicable. If not, the estimate of 0, has to be 
independent of the other parameters and for this reason the limit is possibly 
increased. 

(b) Since the matrix (V - U) is non-negative definite, it follows rhat 
V,, >, Uii, ( i  = 1, . . , , r ) ,  which shows thar estimators with the minimum 
attainable variances are explicit functions of the suficienr sratisric. 

(c) Since the matrix V - A#-'A' is non-negative dejinite, it follows that 
J V I  z ) A # - ~ A ' I .  (5a.3.3) 
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The quantity 1 V 1 is called the generalized variance of the estimators. The 
result (5a.3.3) shows that this is not less than a quantity which is defined 
independently of any method of estimation. 

(d) Since (V - U) is non-negative definite, it follows that 1 V I 2 1 U 1 .  
This shows that the estimates with the minimum possible generalized 

variance are functions of the sufficient statistic. 

( e )  0- 

in which case the estimate of gi has the minimum variance, then 

(5a. 3.4) 

(5a. 3.5) 

so that the covariance of an m.v.u.e. with any unbiased estimator of any 
other parametric function has a $xed value defined independently of any 
method of estimation. 

This follows from the fact that the determinant 

which is a subdeterminant of I V - A$-'A'I, is not less than zero. 

Example. Consider n independent observations from the normal population 
N ( 8 ,  u2). It is easy to verify that the information matrix for 6 and a2 is 

9 =  

with its reciprocal 

n 
U2 

0 -  
n 

'- 2u4 O I  

6 2  

n 

0 -  

0 - 

2a4 
n 
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Since X, as an estimate of 8, has the minimum possible variance, it follows that 
any unbiased estimator of u2 has zero correlation with X, since Joe’ = 0. 
This result can be extended to the case of a multivariate normal population 
where it can be shown that the means are uncorrelated with all possible 
unbiased estimators of the variances and covariances. 

For the estimation of 02, let us consider s2 = c(xi - X)2/(n - 1) with 

2u4 
V(s2) = - E(s2) = 02, 

n - 1  
(5a.3.6) 

showing that the lower limit 2u4/n is not attained. But this is the minimum 
attainable, as shown below. If any estimator of o2 differs from s2 by f ( s ,  Z), 
then 

/f(s, Z)exp{ - [n(Z - 0)2 + n-l s2]/20z} dtl = 0. 

Twice differentiation with respect to 8 leads to the result 

E[(E - e)y(S, 3 1  = 0. 

Differentiation with respect to uz gives 

E[n(X - 0)2f(s, X) + (n - l)s2f(s, a)] = 0 

or cov[s2, f (s ,  x)] = 0, giving 

V [ s 2  +f(E, $11 = V(s2)  + V [  f(s, Z)] 

which means that V ( s 2 )  is the least possible variance for an unbiased estimator 
of u2. Thus X and s2 are the m.v. unbiased estimators of 8 and 02. 

5a.4 Fisher’s Information Measure 

Let X be a vector valued or any general random variable (r.v.) with values in 
space S and having probability density P(., 0) with respect to a-finite measure 
v. Further let P(., 8) be differentiable with respect to 8 and for any measurable 
set C c S 

(5a.4.1) 

Fisher’s information measure on 8 contained in the r.v. X is defined by 

S(0) = E ( 7 ) ’  d log P = V ( T ) ,  d log P since E ( 7 )  d log P = 0. (5a.4.2) 

We shall study some properties of the information measure (5a.4.2). 

(i) Let S, and S2 be informalions contained in two independent variables 
X, and X, respectively and 9 contained in (XI, X,) jointly. Then J = 9, + N 2  . 
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If PI(., 0) and Pz(*, 0) are the densities of XI,  X,, the joint density of 
(XI, X,) is PI(., 0)P,(., 0). By definition 

2 

=91 +f2, 

since 

~ ( ~ - 2 )  dlogP,  d l o g P  = E ( ~ ) E ( ~ )  d log PI d log P2 = o  
d 0  

(ii) Let XI, . . , , Xk be independent and identically distributed random 
variables and Y be the information in each. The information in (XI, . . . , xk) 
is then k9. 

(iii) Let T be a measurable function of X, with a density function + ( a ,  0) 
with respect to a o-jinite measure v ,  satisfying a condition similar to (5a.4.1). 
Further let Y T  be the information contained in T, that is, 

9, = a" e)/+(T, @I2 
Then 

(b) J f > Y T .  (5a.4.3) 

Let A be a measurable set in the T space and A' be the corresponding set 
in the X space. Then (using the same symbols X and T in the densities for 
convenience) 

d 
P ( X ,  0 )  do = - 

d 0  14, 
P(X, 0)  du 

for any A. It then follows from the definition of conditional expectation that 



5a MINIMUM VARIANCE UNBIASED ESTIMATION 331 

Consider 

Now 

= y + + T - 2 9 T = c f - c f T a o .  

If X stands for an entire sample and T for a statistic, the result (ii, b) shows 
that there is generally loss of information in replacing X by T. When there is 
no loss of information, that is, 9 = YT, 

E ( F - T )  P’ 4‘ = O  

a.e. (u), 
P’ 4’ 
p 4  

* -=-  

or P ( X ,  6 )  = &(T, 0)Y(X, T ) ,  where Y is independent of 0, a situation in 
which T is sufficient for 0. 

(iv) In the multiparanieter case, let 

9rs = E r s .  ’x), r, s = 1, . . . , k. 
’0,  

Then the matrix 9 = (dfrs) is defined to be the information matrix. 
It is easy to prove as in the case of a single parameter that 

(a) 9 = 9, + 92,  where and 92 are information matrices due to two 
independent random aariables X ,  and X ,  and 9, due to ( X I ,  X , )  jointly. 

(b) The matrix 4 - 9T is non-n.d. (positive or semi-positice definite), where 
gT is the information matrix in a function T of X .  

Information as a Measure of the Intrinsic Accuracy of a Distribution. By 
information on an unknown parameter 8 contained in a random variable or 
in its distribution, we mean the extent to which uncertainty regarding the 
unknown value of 8 is reduced as a consequence of an observed value of the 
random variable. If there is a unique observation with probability 1 cor- 
responding to each value of the parameter, we have a situation where the 
random variable has the maximum information. On the other hand if the 
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random variable has the same distribution for all values of the parameter, 
there is no basis for making statements about 8 on the basis of an observed 
value of such a random variable. The sensitiveness of a random variable with 
respect to a parameter may then be judged by the extent to  which its distribu- 
tion is altered by a change in the value of the parameter. If P(., 8) and P(*, 0’)  
denote the probability densities of X for two values 8, 8’ of the parameter, 
the difference in the distributions could be measured by some distance 
function, such as Hellinger distance, 
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(5a .4.4) 

If we let 0‘ = 8 + 68 and expand P ( X ,  8‘)  by Taylor series, (5a.4.4) reduces to 

where Y(0) is Fisher’s information, neglecting higher powers of 68. Since 
4(8)  is positive, the distance (5a.4.5) increases with increase in the value of 
4 ( 8 )  and is thus a measure of sensitivity of the random variable with respect 
to an infinitesimal change in the value of the parameter. 

The reader may verify that a variety of distance measures yield Fisher’s 
information as an index of sensitivity for small changes in the value of the 
parameter (Rao, 1962e,g). In the multiparameter case we obtain the quadratic 
differential metric 

in the place of 9(8)(68)2 in (5a.43, as the distance between the distributions 
of the random variable for the parameters (01, 02,  . . . )  and (8, + do,, 
O2 + 68,, . . .). The sensitivity of the random variable with respect to changes 
in the parameter may then be judged by examining the information matrix 
as a whole (Rao, 1945d). 

5a.5 An Improvement of Unbiased Estimators 

In Section 4k, it is shown that biased estimators of parameters in a linear 
model may be found with a smaller mean square error than the BLUE’S 
in a certain region of the parameter space around an a priori value. Indeed 
improvements can always be made over unbiased estimators if we have some 
a priori information about the unknown parameters. 

Suppose we are estimating the unknown mean 11 of a normal distribution 
for which the sample average X is sufficient and also the minimum variance 
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unbiased estimator. If it is known that p E (a,  b), then we can construct the 
alternative estimator 

a i f R < a  I b i f X > a .  
T =  X i f a < X < b  (5a.5.1) 

It is readily seen that T is not unbiased for X, but 

E(T - p)2 < E(X - p)’ when a < p < b 
so that T is uniformly better than X as an estimator of p if the a priori 
information p E (al b) is correct. 

Suppose T’ = (Tl, . . . , q) is an unbiased estimator of t6 = (q(8), . , . , 
tk(8)) with the nonsingular dispersion matrix Ve . Sometimes it may be possible 
to find a constant b independent of 8 such that 

Ve - Ee[(bT - te)(bT - to)’], (5a.5.2) 

where the second term in (5a.5.2) is the mean dispersion error of bT, is 
n.n.d. for the entire range of the unknown parameter 8. If so, then (5a.5.2) 
implies that bT is a uniformly better estimator of t than T under any quad- 
ratic loss function. Examples of such improvement have been known, and 
the following proposition due to Perlman (1972) provides a general result. 

An n.s. condition that a constant 6, 0 < b < 1 exists such that (5a.5.2) holds 
is that the quantity zbVe-’ze is bounded over the range of 8. 

We rewrite (5a.5.2) as V, - b2Ve + (1 - b)’tet; which is n.n.d. iff 
mV, - t e t b  is n.n.d., where rn = (1 + b)/(1 - b). The latter implies 

(5a.5.3) 

using C.S. inequality (P.54). Thus the existence of b, 0 < b < 1 implies that 
TbVe-’t, is bounded for all 8. Conversely, if sup tbVv,-’t, = rn, < 00, then 
for any b such that 0 < b < 1 and b > (rno - l)/(rno + l) ,  (5a.5.2) is satisfied. 

Note that (5a.5.2) cannot be a null matrix for that would imply rnI - 
V,’/’t,t;V,’/’ isnul1,whichisnot possible since the rank of V,’ / ’ t~tbV~’’ ’  
is unity. 

Thus if we have the apriori information (5a.5.3), we can uniformly improve 
on unbiased estimators. 

The reader may verify that if E(y) = p, V ( y )  = 6’ and 8 = a/p ,  then 

~ ( y  - p)2 z E[(l + c’)-’y - p]* for all p (5a.5.4) 

if c2( 1 - 0’) 6 0’. An approximate knowledge of the coefficient of variation 
8, may enable us to improve upon the unbiased estimator y by a suitable 
choice of c. The best advantage is obtained when c equals 8. 
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5b GENERAL PROCEDURES 

5b.l Statement of a General Problem (Bayes' Theorem) 

Consider a probability space (n, a) and random variables [o functions] 

of which 8 ,  are hypothetical (unobservable) and X, are observable. The 
problem of inference which is of practical interest is the prediction of certain 
unobservable variables in terms of the observables. It is clear that the general 
problem requires the study of the conditional distribution of 8, the vector of 
O r  variables, given X, the vector of X, variables as in the case of classical 
regression problem. We consider different situations depending on the un- 
certainty of the specification of the joint d.f. of (8, X). 

To simplify the problem and to avoid certain difficulties associated with 
conditional distributions let us suppose that the conditional p.d. of X, given 
8, exists and represent it by P(*I*). If F is the marginal d.f. of 8, then the 
marginal p.d. of X at Xo is 

GWO) = J'WO 10) d W )  (5b. I .  1) 

ol, ..., e m ;  x,, .. ., x, 

and the conditional probability distribution of 8 given X = X, is 

(5b.1.2) 

The d.f. F may be called a prior d.f. of 8 and F( . IX , )  a posterior d.f. 
of 8 given X = X,-terms which may not be of particular significance in the 
context of the general problem posed. We consider some examples. 

The result (5b.1.2) is known as Bayes theorem. 

9 . 2  Joint d.f. of (8, X) Completely Known 

When the joint d.f. of (8, X) is completely known the expression (5b.1.2) 
provides the most satisfactory form of expressing the uncertainty about 8 
based on the knowledge of X. Given X = X,, we can specify the probability 
of 8 lying in any given region A by computing the value of 

(5b.2.1) 

If a (1 - &confidence interval is desired for a function g(8) of 8, we may 
determine (a, 6) such that (b - a) is of minimum length subject to the condition 

(5 b. 2.2) 
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A point estimate of g(0) is provided by its expected value with respect to the 
conditional distribution 

(5 b. 2.3) 

which is the regression of g(0) on X (at X,) and iiqhich minimizes the mean 
square error (see 4g. 1. l), and so on. 

As an illustration, let us consider the prediction of the unknown binomial 
probability on the basis of an observed number of successes r out of n trials. 
If the prior (marginal) p.d. of n is 

the joint probability distribution of r and II is 

and that of r alone, integrating with respect to n, is 

n B(a + r, y + n - r )  (I) P(a.r> 

(5b.2.4) 

(5b.2.5) 

(5 b. 2.6) 

where P(p, q)  is the beta function. The posterior distribution of n given r is 
(5b.2.5)/(5b.2.6), which is 

* a t r -  '(1 - n ) y t n - r -  1 

dn. ( 5  b. 2.7) 

The consequences of selecting any particular value of n as an estimate can be 
completely studied by using the distribution (5b.2.7). 

If a point estimate of n is desired we may take the mean or the mode of 
the distribution (5b.2.7). The mean, which minimizes the mean square error 
for given r, is 

P(a + r ,  y + n - r )  

a + r  
a + y + n '  

(5 b. 2.8) 

which may be called a Bayes estimator with respect to the minimum mean 
square error criterion and the prior d.f. (5b.2.4). The estimator (5b.2.8) 
is seen to be different from the traditional estimator r/n. 

We can use the distribution (5b.2.7) in determining the probability of s 
successes in a further sequence of m trials. For a given n, the probability 
of s successes is [m! /s ! (m - s)!]ns(l - n)"-'. Integrating $his with respect to 
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the posterior distribution (5b.2.7), we obtain the probability distribution of 
s given r as 
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rn! 
(m - s)! s! 

/.?(a + r + s, y + m + n - r - s) 

P(a + r, y + n - r )  
(5b. 2.9) 

5b.3 The Law of Equal Ignorance 

Unfortunately, the joint d.f. of (8, X) is seldom completely known in practical 
situations. The functional form of P(*I a), the conditional density of X given 8, 
can be specified with at least a reasonable degree of approximation, but the 
specification of prior F is difficult. It is sometimes suggested that in the absence 
of any knowledge about the prior distribution of 8 some consistent rules may 
be given for their choice. Some attempts made by Jeffreys (1939) and others in 
this direction do not seem to have yielded any useful results. 

In the problem of the binomial parameter discussed in 5b.2, let us use the 
law of equal ignorance which gives a uniform distribution for a, which is a 
special case of (5b.2.4) with a = 1 and y = 1. In such a case the posterior 
distribution of a given r successes is 

(5b.3.1) 

The probability of a further observation being a failure, using the formula 
(5b.2.9) with a = y = 1, nz = 1, s = 0, is (n  + 1 - r ) / (n  + 2). In particular the 
probability that n successive failures will be followed by failure is (n + 1)/ 
(n + 2) which is the celebrated law of succession. 

But the procedure leading to (5b.3.1) is quite arbitrary, for if instead of 
the parameter n, we consider the parameter 8 such that sin 8 = 2n - 1 and if 
uniform distribution of 0 is considered, the posterior distribution of 8 given 
r is seen to be proportional to 

(1 + sin 8)l(l - sin 8)A--l do. (5b.2.3) 

The posterior distribution of the original parameter a derived from (5b.2.3) 
is then proportional to 

,f-1/2(1 - n ~ - r - l / 2  dn (5 b. 3.3) 

which is different from (5b.3.1). Such arbitrariness or inconsistency noted in 
(5b.3.3) is inherent in any rule of assigning prior distributions. 

5b.4 Empirical Bayes Estimation Procedures 

It is clear that when F is not completely known the conditional distribution 
(5b.1.2) cannot be used to make probability statements concerning the un- 
known variables. But in some situations it may be possible to compute 
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the regression of g on X without the complete knowledge of the d.f. of 8. But 
the estimate may involve unknown parameters which are characteristics of the 
marginal distribution of X alone. If past data on X are available, the marginal 
distribution of X can be estimated empirically and consequently an estimate 
of the regression estimate can be made available. We shall illustrate the 
procedure by some examples. 

Let the joint p.d. of a single parameter 0 and random variables X1, . . . , X, 
(to be denoted by the symbol X) be 

where p,  o12, crZ2 are unknown. The marginal density of X1,. . . , X n  [obtained 
by integrating (5b.4.1) with respect to 01, is proportional to 

(5b.4.2) 

where X = ( X ,  + . * * + X,)/n and Sz =c ( X i  - X)’. The conditional 
density of 0 given X is then proportional to 

(5b.4.3) - (e- a ) z / z p 2  

where 
ol%zz 

no1’ + ozz 9 p =  (Pbl2)  + (nX/azZ)  
(lb12> + (n/oz2) 

a =  

From (5b.4.3), E(0l X) = a, that is, the regression of 0 on Xis c1 which involves 
the unknown constants p,  o,’, and oz2, which are the parameters of the 
marginal probability density (5b.4.2) of X only. If we have past observations 
on X, all the unknown parameters can be estimated as shown below. 

Let the past data consist of p independent sets of n observations 

X I ,  * * *  X n 1  

xi, ’ * *  xnp .  
An analysis of variance between and within sets yields the following table 
with expectations involving olz, ozz, which is a special case of the variance 
components estimation studied in 4f.l to 4f.3. 

S.S. Expectation 

Between sets B (p - l)(oz2 + n01’) 

Within sets W P(n - 1)oz2 

The estimates of o12 and oz2 are 
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An estimate of p is provided by the grand mean of the observations 
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Thus, an estimate of the regression of 0 on any future observation X’ = 
(XI, . . . , X,) is 

involving only X, the average of the observations, and estimates of p, bI2,  
8z2 based on past data. 

The reader may note that the present problem differs from the classical 
regression problem which requires past data simultaneously on 0 and X. 
This is because the parameters occurring in the regression are estimable from 
the observations on X alone which may not be always possible. 

An interesting example by Robbins (1955) arises in the estimation of the 
Poisson parameter p given the observation, without making any assumption 
on the prior distribution of p. The situation we consider is (p, X) where the 
distribution X given p is Poisson. 

Let x be an observation on the random variable X. The conditional 
distribution of p given X = x is, using the formula (5b.1.2), 

PX e-’ dF(p) f G(x), 
X. 

where 

is the marginal probability of x. The regression of p on X at X = x is 

We do not know G(x) and G(x + 1). But if we have past observations 

X19x29 * * . , x N  

on the random variable X, an estimate of G(x) is 

No of past observations equal to x 
N 

C(x) = 9 

and similarly an estimate e(x + 1) of G(x + 1) is obtained. Hence an estimate 
of the regression estimate of p is (x + I)G(x + l)@(x). 
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The reader may note that the regression of p on X is estimable although 
simultaneous observations on p and X are not possible. 

We have seen in 5b.2 to 5b.4, how various degrees of knowledge concerning 
F,  the prior distribution of 8, affect the procedure of estimation. A particularly 
difficult case of the general problem of section 5b.l is when F is taken to be 
a single point distribution with an unknown point of concentration. This 
situation leads to the classical theory of estimation where the parameter is 
considered as fixed but unknown. 

5b.S Fiducial Probability 

A question may be raised as to whether statements of probability concerning 
an unknown parameter can be made independently of the prior distribution. 
Such an approach was developed by Fisher using what is known as Fiducial 
argument. Without going into the complications of the theory, the method is 
briefly indicated. Let T be a sufficient statistic for 8 and g(T, 0) a function of 
6 and T such that the distribution of g(T,  0) is independent of 8. Let 

&(T, 0) < 11 01 = fa) (5b.5.1) 

g(T, e) < A 0 e > h ( ~ ,  A), (5  b. 5.2) 

and g(T, 0) be such that 

in which case the equation (5b.5.1) may be written 

zqe > h ( ~ ,  4 1  = ~ ( 2 ) .  (5  b. 5.3) 

The argument leading to (5b.5.3) involving two variables 0 and T is perfectly 
valid. The next step, which is controversial, consists of asserting that 

p[e  > MT,,  A)] = F(A) (5 b. 5.4) 

For instance, if X is the average of a sample of n observations from a normal 
where To is an observed value of the random variable T. 

population N(8,  I ) ,  the function y = (X - 8) - N(0,  1/&) and 

Suppose the value of X in a particular sample is 5.832, the fiducial argument 
leads to the statement 

( 5  b. 5 .5 )  

Several objections may be raised against such a statement. First, that 
“ 6  need not be a random variable and has a fixed but unknown value, such 
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as the distance between the sun and the earth at a particular point of time,” 
which is sought to be estimated by the observations. Second, that even if 8 is 
a random variable with an unknown prior distribution, a statement such as 
(5b.5.5) cannot be true independently of the prior distribution. For we can 
always find a prior distribution with respect to which the posterior distribu- 
tion given Z is different from (5b.5.5). The interpretation of (5b.5.5) as a 
probability statement has to be sought in a different way. Some attempts have 
been made in this direction by Dempster (1963), Fraser (1961), and Sprott 
(1961). 
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5b.6 Minimax Principle 

Let us consider the (8, X) situation of 5b.l and an estimator T(X)  of g(8). 
Denote by 

M T ( e )  = { [ T ( X )  - de)l2 1 (5b.6.1) 

the expected mean square error for given 8, which depends only on the 
conditional distribution of X given 8. Instead of the squared error we could 
have chosen any other measure of deviation between T and g(8) and denoted 
its expectation by MT(0) which may be called loss function. The particular 
choice of the squared error is made for illustrating the arguments. If the prior 
d.f. F of 8 is known, the overall mean square error is 

X 

MT = E [MT(O)] = 1 MT(8) dF(8). (5  b .6.2) 

It has already been shown in (5b.2.3) that when MT(8) is as defined in (5b.6.1), 
M ,  attains the minimum value when T is chosen as the regression of g(8) 
on X, that is, T =Ee[g(8)(X]. We thus have a satisfactory solution when F is 
known. 

When F is unknown we have no integrated measure such as (5b.6.2) for 
judging the goodness of an estimator. The choice between any two estimators 
T, T‘ then poses a serious problem when a comparison of two functions 
MT(8), MT@) are involved. If there exists a T such that MT(8) 4 MT,(8) for 
all 8 and T’,  then T is indeed the best choice. But since this does not generally 
happen we are forced to bring in other considerations. 

We say that T is better than T‘ iff MT(8)  < MT,(8) for all 8, and for at  
least one value of 8 the strict inequality holds. An estimator T is said to be 
admissible if there is no other estimator better than T. The class of admissible 
estimators is generally very wide, and for any two estimators T and T‘ in 
this class there exist non-empty sets S and S’ of 8 such that 

MT(8) < M,@),  8 E S and M T @ )  G MT(8) for 8 E S’. 

9 



5b GENERAL PROCEDURES 341 

Consider the problem of estimating the binomial proportion n on the basis 
of n Bernoullian trials. If r denotes the number of successes the mean square 
error of the estimator ( r  + a)/(n + 8) considered in (5b.2.8) is 

(5b.6.3) 

For the special choice u = $12, 8 = &, the estimator 

T' = (r + Ji/2)/(n + J.> (5  b. 6.4) 

has the mean square,error n/4(n + &)' which is independent of n. The mean 
square error of the traditional estimator T = r/n is n(1 - n)/n. Now T' is 
better than T for values of n such that 

n n(l - n) <--- 4(n + Ji>' n 

or in the interval 

n : ~ ( f f a ) ,  where a = 

In the complementary intervals (0, f - a), (4 + a, I), T is better than T'.  
The interval in which T' is better than T, however, tends to zero as n 03. 

But for a finite n the choice between T and T' cannot be made without 
other considerations. We have already seen that a restriction such as an 
unbiased estimator selects T as one with minimum mean square error. We 
shall now consider another principle which prefers T' to T. 

Minimax Principle. The philosophy behind this principle is to judge the 
goodness of an estimator T by supeMT(0), that is by the worst that can 
happen. The minimax principle suggests the choice of an estimator for  which 
Sup, MT(0) is a minimum. 

With respect to the single measure Sup, MT(0), TI is better than T2 if 

SUP MT@) < SUP M T , ( W ,  
e e 

and if there exists a T* such that 

SUP MT.(0) G SUP MT(0)  for all T, 
e e 

then T* is said to be a minimax estimator. 
There is, however, no simple method of computing minimax estimators. 

But the following result is important in that it enables us to recognize 
minimax estimators in certain situations. 
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Consider the (8, X )  situation of 5b.l and let the loss in estimating g(8) by 
T(X) be measured by the squared error [T(X) - g(8)I2. Suppose that there 
exists a prior d.f. F* of 8, such that for the associated regression estimator 
T* of g given X (see 5b.2.3), the loss function 

M'I'*(@) = { [T*(X)  - de)I2 1 
X 

is independent of 8. Then T* is a minimax estimator with respect to the 
specified loss function. 

Since T* is a regression estimator corresponding to the prior d.f. F* of 8, 
the overall mean square error 

S MT.(e) dF*(e). 

j MTI(e)  dF*(e) G j MT(e) dF*(e). 

c G SM,(e) nF*(e), 

is a minimum. That is, if T is any other estimator, 

But it is given that the left-hand side quantity is a constant, say c, hence 

which implies c 6 sup MT(8) for any T, that is, T* is a minimax estimator. 
In the problem of estimating the binomial proportion we find that the 

estimator T' considered in (5b.6.4) is in fact the Bayes estimator (5b.2.8) 
with the choice a = Jn/2 and y = &/2 for the prior probability density 
(5b.2.4). Furthermore, the associated loss function is n/4(n + A)' which is 
independent of 71. Hence 

r + J i / 2  

n+& 
T* = 

is the minimax estimator of n with respect to the minimum mean square 
error criterion. 

In a general loss function W[T(X),  g(8)], there is first the problem of 
determining the Bayes estimator, that is, of determining a function T(X)  
such that 

is a minimum. If we can find a prior distribution F* such that for the 
corresponding Bayes estimator T*, the expected loss function 

M T m  = 1 W T * ( X ) , - ~ I P ( X  I 0) du 

is independent of 8,  then T* can be recognized to be a minimax estimator, 
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The reader should not be surprised to find that different criteria lead to 
different solutions (estimators). The choice of a criterion in any given situation 
depends on the purpose for which an estimate is obtained. For instance, a 
minimax estimator may give higher losses than another estimator in a wide 
range of the parameter space, but may indeed be useful if we want some 
insurance against undue loss resulting from our estimate in certain situations. 

5b.7 Principle of Invariance 

In (5a.2.5), we restricted the class of estimators to those having the translation 
property , 

f ( x 1  + a , .  . . , x, + a) = a + f ( X l ,  . * .  , x,) (5b.7.1) 

without explaining the rationale of such a procedure. The pad. of xl, . . , , x, 
was of the form p(x,  - 0, . . . , x, - e), which is invariant under translation, 
i.e., if instead of xi we consider yi = xi + a as our observations, where a is 
a known constant, then y i  would have the density p ( y ,  - O’,  . . . , y, - 0‘) 
where 8’ = 8 + a. Since the p.d.’s are ofthe same form, the estimating function 
of 8 in terms of xi or 8’ in terms of y ,  should be of the same form. Thus if 
f’(x,, . . ., x,) estimates 0, then f(yl, . . . , y,) estimates 8’ = 8 + a and con- 
sistency demands that (5b.7.1) should hold. We have already formulated, 
in Appendix 2C of Chapter 2, the principle of invariance in a more general 
setup applicable to the general decision problem (to cover estimation, testing 
of hypotheses, etc.). 

Although the principle of invariance is very much discussed in literature, 
there is some controversy about its application. [See comments by Barnard 
in Rao (1962d) and Stein (1962).] 

Let us consider independent random variables X i  - N ( p i ,  I) ,  i = 1 ,  . . , , n 
and the problem of simultaneous estimation of p,, . . . , p, using the loss 
function 

(5b. 7.2) 

I t  is seen that the decision problem is invariant under translations of the 
random variables. In such a case, the estimators ti should have the translation 
property (See Appendix 2C of Chapter 2) 

i = 1, . . . , n. (5b.7.3) 

Subject to (5b.7.3), the expected value of the loss (5b.7.2) is a minimum when 
t l  = xi, the observed value of the r.v. X i .  However, let us consider an alter- 
native estimator 

(11 - p l y  + * ’ + (1, - pJ2. 

t i(xl  + a,, . . . , x, + a,) = ai + t , (x , ,  . . . , x,), 

n - 2  
/ *  , = ( ’1 - - zx,l).i. i = l , 2 , . . . , n .  (5b.7.4) 
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Then it is shown by Stein (1962) that 
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E[C(r* - p y ]  = n - (n - 2)2E[(2K + n - 2) - ' ]  (5b.7.5) 

where K is a Poisson variable with mean (&ir2)/2. But E [ x ( x ,  - p J Z ]  = n 
which is larger than (5b.7.5) for n Z 3. In fact, (5b.7.5) has the value 2 when 
C p i 2  = 0 and approaches n as x p r Z  + co. Thus the gain is appreciable but 
the estimators t: do not satisfy the principle of invariance. 

This example only illustrates that any principle, however attractive it may 
appear, may not have universal validity and its relevance in any particular 
problem has to be judged by the reasonableness of the solution it provides, 

5c CRITERIA OF ESTIMATION IN LARGE SAMPLES 

5c.l Consistency 

Let {x,,}, n = I ,  2, . . . be a sequence of observations (random variables) 
providinginformation on aparameter 8 and let T, be an estimator of f3 based on 
the first n variables. Our object is to examine the properties of the sequence 
{ T,} as n + co. 

The estimator T, is said to be consistent for B if T,, -+ 8 in probability or 
with probability 1. The former may be called weak consistency (W.C.) and 
the latter, strong consistency (S.C.). 

Consistency as defined refers only to a limiting property of the estimator 
T,, as n -+ 00. Therefore, a certain amount of caution is necessary in applying 
i t  as a criterion of estimation in practical situations. For if 7;, is a consistent 
estimator, we can replace it by another defined as 

(5c. 1.1) 

which is also consistent, but would indeed be rejected as an estimate in any 
practical situation where the sample size may be large but not indefinitely 
large. 

Thus the criterion of consistency is not valid with reference to a particular 
sample size. One of the desirable properties to be satisfied, however, is that, 
with increase in the observations, the estimator tends to a definite quantity 
which is the true value to be estimated. 

For instance, let xl, xz , . . . be observations from a Cauchy population with 
the density function proportional to [I  + ( x  - p)']-'. It is known that X,, = 
(xl + ... + x,,)/n has the same distribution as that of a single observation 
(see 3a.4). Hence the probability of If,, - pi > 6 remains the same for all 11, 

so that X,, is not consistent for p. The median of the observations is known, 
however, to be a consistent estimator. 
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By the strong law of large numbers it follows that X, is a consistent 
estimator of the mean provided {x,} is a sequence of i.i.d. variables and 
E(xi) exists. The latter condition is not satisfied for the Cauchy distribution. 

By using Tschebyshev’s inequality [(iii), 2b.21, it is easy to establish that 
if E(T,) = 8, + 8 and V(T,) -+ 0,  then T, is weakly consistent for 8. Consider 
the estimator T, = (xi  - X)2/n of u2, where xl ,  . . . , x, are n independent 
observations from N(8, u2). 

n - 1  
n 

E(T,) = - u2 +02 

Hence T, is consistent for o’, although biased. 

Fisher Consistency (F.C.). (Fisher, 1922, 1956) Fisher introduced another 
definition of consistency which seems to place a restriction on the estimating 
function and thus eliminate the possibility of statistics such as (5c.l . l )  being 
considered. The definition is applicable to any sample size and may, therefore, 
be more meaningful in practical applications. 

We shall first consider samples from a finite multinomial distribution with 
the cell probabilities n,(8), . . . , nk(8) depending on a vector parameter 8. 
Let n be the total sample size, n, be the observed frequency in the ith cell, 
p i  = nr/n be the observed proportion in the ith cell, and g(8) be the parametric 
function to be estimated. 

An estimator T is said to be F.C. for g(8) iff, (i) T is defined as a continuous 
function over the set of vectors (xl, . . . , x k )  such that xi  2 0 and x1 + * * * + xk 
= 1 with the value of T at xi = p i ,  i = 1, , . , , k,  as the estimate of g(0) based 
on the sample, and (ii) the value of T at x ,  = A,(€)), i = 1, . . . , k ,  is g(8) for all 
admissible values of 8, that is, T[nl(8), . . . , nk(8)] = g(8). 

What, in effect. the definition demands is that the estimator should be an 
explicit function of the observed proportions only, which may be written as 
T(p, ,  . . . , pk), and that it should have the true value ofg(8) when the observed 
proportions happen to coincide with the true proportions (probabilities). It 
would be, indeed, anomalous if we happen to realize the true proportions 
but the method of estimation does not automatically lead to the true value of 
g(8). In this sense, F.C. may also be called method consistency (M.C.). 

It is  easy to see that an F.C. estimator as defined above is also S.C. since 
p i =  n,@) and the continuity of T implies that [(xiii), 2e.41 

T@I,  * * * T [ m ,  - * * 9 nk(e)l = 
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In the general case let xl, . . . , x, be i.i.d. observations on a random variable 
with a distribution function F(. ,  8) and S,  be the empirical d.f. based on the 
observations. An estimator T is said to be F.C. iff: 

(a) T is defined as a weakly continuous functional on the space of d.f.3 
with the value of T for given S,, as the estimate of g(8) based on the 
observations, and 

(b) T[F(., O)] 3 g(0) identically in 8. 

As for the multinomial distribution, F.C. * S.C. since, as shown in (6f.1.3) 
of Chapter 6, 

SUP 1 s,(x) - F ( X ,  e) I L 0, 

T [ S , J ~  T[F( . ,  ell = g(e) 

X 

which implies that 

It may be observed that the application of F.C. as stated is limited to i.i.d. 
observations only. 

Sc.2 Efficiency 

There is some amount of confusion in statistical literature regarding the 
concept of efficiency of an estimator. 

It is shown in (5a.2.15) that if T is an unbiased estimator ofg(O), a function 
of the parameter 8, then under some conditions 

(5c.2.1) 

where J(0) is Fisher's information on 8 contained in the sample. From 
the inequality (5c.2.1), some authors define T to be an efficient (unbiased) 
estimator of g(8) if 

that is, when the lower bound in (5c.2.1) is attained. 
Logically, this does not appear to be a good definition, for the expression 

[g'(8)12/Y(8) is only one possible lower bound and there do exist a large 
number of sharper lower bounds any one of which could have been equally 
chosen to define efficiency. Further in many cases it is known that the 
minimum attainable variance is larger than the lower bound (5c.2.1). For 
instance the unbiased estimator of o2 based on n observations from a normal 
population, s2 = (xi - @ / ( n  - l), has the least possible variance 
2a4/(n - l), whereas the lower bound (5c.2.1) has the value 2a4/n (see 5a.3.6). 
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If i t  is desired to link efficiency with variance, an unbiased estimator of a 
parameter may be defined to be efficient if it has the least possible variance 
and not necessarily a particular value which may not be attainable for any 
estimator in a given situation. In such a case, however, the term, efficiency, 
would be synonymous with minimum variance and would not refer to any 
intrinsic property of the estimator such as concentration around the true 
value, etc. 

Sometimes efficiency is defined as a limiting property.. An estimator T, 
(based on a sample of size n) is said to be asymptotically efficient for g(0) if 

Efficiency so defined is not applicable to situations where E(T,) and V(Tn) 
do not exist but the distribution of T, becomes concentrated at g(0) as n + 00. 

CAN Estimators. A slightly different concept of asymptotic efficiency which 
has been in use for a long time is based on the asymptotic variance of an 
estimator. The class of estimators is restricted to what are called consistent 
asymptotically normal (CAN) estimators. An estimator T, is said to be a 
CAN estimator of g(0) if the asymptotic distribution of &[T, - g(0)l is 
normal. A CAN estimator T, is said to be the best or efficient if the variance 
of the limiting distribution of &[T, - g(0)] has the least possible value. 
It was thought that when i.i.d. observations are considered, the variance of 
the limiting distribution of &[T, - g(0)J has the lower bound [g'(0)J2/i, 
where i is Fisher's information on 0 in a single observation. An estimator T,, 
for which the stated lower bound is attained for the asymptotic distribution 
is taken to be efficient. But unfortunately the result concerning the lower limit 
to asymptotic variance is not true without further conditions on the estimator 
(Kallianpur and Rao, 1955d; Rao, 1963a). In fact, the asymptotic variance 
of a consistent estimator can be arbitrarily small so that the concept of 
efficiency based on asymptotic variance is void. 

An example to this effect is provided by Hodges (see Le Cam, 1953). 
Let T, be any consistent estimator such that the asyniptotic variance of 
&(T, - 0) is v(0). Consider the estimator 

(5c.2.3) 

where a is a constant. It is easy to see that &(T' - 0) is also asymptotically 
normally distributed but with variance rw2c(0) at 0 = 0 and e(0) elsewhere, 
Since a is arbitrary, the asymptotic variance of T' can be made smaller than 
that of T at 0 = 0 and equal elsewhere. Therefore, there is no lower bound to 
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the asymptotic variance of a CAN estimator, so there does not exist any best 
CAN estimator, without any further conditions on the estimator. In statistical 
literature a best CAN estimator is referred to as a best asymptotically normal 
(BAN) estimator. What we have demonstrated is that BAN estimators do 
not exist unless possibly when suitable restrictions are placed on the class of 
estimators. We shall examine some of the restrictions in later sections. 

Fisher's (1925) Definition of Asymptotic Efficiency. Let us consider i.i.d. 
observations and let i(8) be the information on 8 in a single observation. It is 
shown in (5a.4.3) that if T, is an estimator of 0 and niTn is the information on 
8 contained in T,, then 

niT, < ni or iTn < i. 
Fisher defines the ratio iTn/i (which is < 1) as the efficiency of an estimator T, 
for finite n and the limit of iTJ as n -P co as the (asymptotic) efficiency of an 
estimator in large samples. 

It may be noted that efficiency so defined does not refer to properties such 
as bias or consistency with respect to any function of the parameter. In fact, 
if T, is efficient in the sense (iTn/i)  = 1 or -P 1 as n + 00, then any one-to-one 
function of T, is also equally efficient for 8. 

We have seen in 5a.5 that Fisher's information measures an intrinsic 
character of the distribution of a random variable with respect to an unknown 
parameter. The intrinsic character considered is the discriminatory power 
between close alternative values of the parameter. The information in a sample 
of size n is ni and that in the statistic is niTn < ni. When equality obtains the 
discriminatory powers of the sample and the statistic are the same. But a 
statistic involves reduction of data and consequently its discriminatory power 
is not greater than that of the entire sample. Hence if a choice has to be made 
among several statistics it is preferable to choose one for which niTn/ni is a 
maximum. 

It has already been shown that when T, is a sufficient estimator of 8, 
niTn = ni, so that there is no loss of information for any given n. But a 
sufficient estimator (one-dimensional measurable random variable) does not 
always exist It is possible, however, to find a large class of estimators (as 
shown in Section 5d) with the property, lini iTn/i = 1. 

A New Definition of Asymptotic Efficiency. Let P(., . . . , * 16) be the p.d. of 
the r.v.'s xl, . . . , x, and define the r.v. 
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1 d log P ( x , ,  . . . , x,le) 
d8 

2, = - 
n 

(5c.2.4) 

A consistmt estimator T, of 8 is said to be first order'eficient (J0 .e . )  if 

Jil T, - e - p(e)z,l -+o (5c.2.5) 
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in probability or with probability 1, where p does not involve the observations 
(Rao, 1961a, 1961b, 1962d,g, 1963a, 1965a). 

The condition (5c.2.5) also implies that the asymptotic correlation between 
Tn and z, is unity, so that the f.0.e. of any estimator may be measured 
by the square of the (asymptotic) correlation between T, and z, .  

In the multiparameter case we have a vector of derivatives 

z, = @,I, . . . , 22) 

and a vector of deviations of the estimators from the true values 

Dh= (T, - 0)’ = (Td- 0,, . .. , T,Q - 0,) 

and T, is said to bef.0.e. if 

,/.IDn - BZ,I 4 0  (5c. 2.6) 

in probability or with probability 1 ,  n,here B is a matrix of constants which 
may depend on 0. 

We have the following results as a consequence of the definitions (5c.2.5) 
and (5c.2.6) of asymptotic efficiency. 

(i) Let x,, x 2 ,  . . . be a sequence of i.i.d. random variables ~ r d t h  probability 
density p(x,  0). Further let 

/p’(x,  0 )  dx = 0 and ,f dx = i(0) > 0. (5c.2.7) 

Then the condition (5c.2.5) implies that the myniptotic distribution of &(T, - 0) 

Under the conditions (5c.2.7), by the central limit theorem, the asymptotic 

is N(0, pi). 

distribution of 

is “0, i(0)l. B y  (5c.2.5), the asymptotic distribution &(Tn - 0) is the same 
as that of P&z, by [(ix), 2c.41. Hence the result. 

(ii) If TL and T,’ are bothf.o.e., then they are equivalent in the sense thar 
there exist y (0 )  and a(0) = 0[l - y(0)J such that 

Jil T, - a(0) - y(e)T: I -+ o (5c.2.8) 

in probability or witlt probability 1. That is, asymptotically one is a linear 
function of the other. 
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(iii) In the multiparameter case, under conditions similar to those in (i), 
the asymptotic distribution of ,/. Z, is q-cariate normal with mean zero and 
dispersion matrix 9 = (irs), it’hich is the information matrix. The limit 
condition (5c.2.6) implies that &(T, - 0) is also asymptotically q-tiariate 
normal with the dispersion matrix B9B’.  

The asymptotic normality of &Z, follows by an application of the multi- 
variate central limit theorem [(iv) 2c.51. Hence the rest follow. 

(iv) 
n - + o o .  

The result (iv) shows that the definition (5c.2.5) of efficiency implies Fisher’s 
efficiency. The proof of the result is somewhat involved (see Doob, 1934, 
1936; Rao, 1961a). 

It is shown in later sections that the class of estimators satisfying the defini- 
tions (5c.2.5) or (5c.2.6) is not empty. Thus the definitions (5c.2.5) and (5c.2.6) 
of asymptotic efficiency appear to be satisfactory. 

Best CUAN Estimators. One of the advantages in considering CAN esti- 
mators is that inferences on B based on the estimator T, can be drawn using 
the normal distribution. Thus if the asymptotic distribution of &(T, - 8) is 
“0, o(B)], then to test the hypothesis 0 = Bo , we can use the critical region 

Tn - 0 - jz,l -+O in probability implies that lim(iTn/i) + 1 as 

(5c. 2.9) 

where dais the two-sided a point of N(0, 1). If  o(B) is continuous in 0, then the 
test (5c.2.9) is equivalent to, by (xb),  2c.4, 

(5c.2.10) 

From the form of the test, we may be tempted to construct a (1 - a )  
confidence interval of the type 

(5c.2.11) 

for the parameter 8. The procedure (5c.2.11) is not justified, however, unless 
the convergence to normality of &(T, - 8) is uniform in compact intervals 
of 8. If, therefore, we intend to use an estimator for inferences of the type 
(5c.2.9) and (5c.2.11), that is, both for testing simple hypotheses and con- 
structing confidence intervals, it is necessary that the estimator be consistent 
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and uniformly asymptotically normal (CUAN). It has been shown (Rao, 
1963a), under suitable regularity conditions on the probability density of i.i.d. 
observations, that if T. is CUAN,  then the asymptotic cariance u(0)  has the 
lower bound l / i(0).  Thus the best CUAN estimator is one for which the asymp- 
totic variance c(0) has the value lli(0). Therefore the concept of minimum 
variance is not void when the further condition of uniform convergence to 
normality is imposed on the CAN estimator (Rao, 1965a). 

5d SOME METHODS OF ESTIMATION IN LARGE SAMPLES 

5d.l Method of Moments 

Let x,, . . . , x,, be i.i.d. observations from a distribution involving unknown 
parameterso,, . . . , 0,. Further, let the first q raw moments of the distribution 
exist as explicit functions ct,(0,, . . . , O,), r = 1, . . . , q of the unknown param- 
eters. I f  

a, =(I x,') + n 

denote the moment functions, then the method of moments consists of 
equating the realized values a,, in a sample and the hypothetical moments 

(5d. 1.1) 

and solving for O , ,  . . . , 0,. 
We observe that a, is the mean of n random variables, and if E(x,3, the 

rth raw moment, exists, then by the law of large numbers a, + u,(O,, . . . , 0,) 
with probability 1, so that a, is a consistent (besides being unbiased) estimator 
of a,. It is easy to see that if the correspondence between O,, ..., 0, and 
a,, . . . , a, is one-to-one and inverse functions 

c t r ( O 1 , .  . . , 0,) = a,,, r = 1, . . . , q 

0 ,  =f i (a , ,  .. ., a,), i = 1, ..., q 
are continuous in a,, . . . , aq , then 

~ i = . M a l o ,  ..., a,o>, i = l , . . . , q  

are solutions of (5d.l.l) and f i (a , ,  . .. , a,) is a consistent estimator of B i ,  
i =  1, . . . ,q. 

Thus the method of moments provides, under suitable conditions, consistent 
estimators and the estimating equations are simple in many situations. The 
method is not applicable when the theoretical moments do not exist as in the 
case of a Cauchy distribution. 

But the estimators obtained by this method are not generally efficient. 
For some numerical computations of the loss of effici'ency the reader is 
referred to Fisher (1922). 
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5d.2 Minimum Chi-square and Associated Methods 

These methods are applicable in situations where the observations are 
continuous measurements but are grouped in suitable class intervals, or the 
observations themselves are frequencies of a finite number of mutually 
exclusive events. In either case we have a set of observed frequencies n, ,  . . . , nk 
in k cells with the hypothetical probabilities A, ,  . . . , nk as functions of q 
unknown parameters. We first define a measure of discrepancy between the 
observed frequencies n , ,  . . . , nk and the hypothetical expectations nnI(O), . . . , 
nn,(O), where n = 1 n , .  The estimates are obtained by minimizing such a 
measure with respect to 8. Some of the measures used for the estimation of 
parameters are as follows: 

CRITERIA AND METHODS OF ESTIMATION 

(a) Chi-square 

(b) Modijied chi-square 

with ni replaced by unity, if its value is zero. 
(c) Hellinger Distance 

H.D. = COS-' C J(ni/n)ni(e) 

(d) Kullback-Leibler separator 

(e) Haldane's discrepancy 

1 
D -  , = - - 

n ni  log xi@).  

All these methods provide reasonably good estimators in the sense that, 
under suitable regularity conditions, they are consistent and f.0.e. according 
to the criteria (5c.2.5) and (5c.2.6). For a detailed study of these methods 
the reader is referred to papers by Neyman (1949) and Rao (1955c, 1961a, b, 
1963a). 

There are, however, differences between these methods brought out by 
considering what has been termed as the second-order efficiency. On the 
basis of second-order efficiency, it  is shown that there exists, under some 
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regularity conditions, a method of estimation superior to all those considered 
in this section (see Rao, 1961a, b, 1962d). This is the method of maximum 
likelihood which will be discussed in greater detail in the rest of the chapter. 

5d.3 Maximum Likelihood 

Let X denote the realized value of a set of observations and P ( X ,  8) denote 
the joint density, where 8 = (el, . . . , O,), the vector of parameters belongs to 
a set 0 c E, .  The likelihood of 8 given the observations is defined to be a 
function of 8: 

q e  I x) cc P ( X ,  el. (5d.3.1) 

The principle of maximum likelihood (m.1.) consists of accepting 6 = 
(8,, . , , , 8,) as the estimate of 8, where 

(5d.3.2) 

The supremum may not always be attained, in which case it may be possible 
to obtain a “near m.1.” estimate 

L(e* I x) 2 c SUP q e  1 x), 
B E 8  

where c is a fixed number such that 0 < c < 1. There may be a set of samples 
for which 8 or 8* does not exist. Under regularity conditions on P ( X ,  O), 
the frequency of such samples will be shown to be negligible. 

In practice it is convenient to work with r(8l X )  = log L(9l X), in which case 
6 of (5d.3.2) satisfies the equation 

I@ I x) = SUP r(e 1 x). 
BE 8 

(5d.3.3) 

When the supremum in (5d.3.3) is attained at an interior point of 0 and 
48 I X )  is a differentiable function of 8, then the partial derivatives vanish 
at that point, so that 6 is a solution of the equations 

(Sd. 3.4) 

Equations (5d.3.4) are called m.1. equations and any solution of them an 
m.1. equation estimate. 

The function 8 defined by (5d.3.3) over the sample space of observations 
X is called an m.1. estimator. Important results concerning m.1. estimators 
are given in 5e and 5f. 
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We shall consider some simple examples to illustrate the wide applicability 
of the m.1. method before discussing general results. Let xl, .. ., x, be 
observations from N(p, u2), - 00 < p < o 0 , O  < u2 < 00. It may be seen that 

which give the estimates 

(5d.3.5) 

Now 
n 
2 

/ (P ,  alx) = - n  logs - -, 

ns2 + n(x - p)2 

2a2 
/ (p,  d 1 X )  = - n log d - 

To show that /2, I3 actually provide a supremum of the likelihood we examine 
the inequality / (p,  0 1  X) < /(/I, I31 X), that is, 

ns2 + n(x - p)2 
- n  log u - n < - n l o g s - -  

2a2 2 

(5d. 3.6) 

But for any x > 0, log x < (x2 - 1)/2 so that the first term in brackets of 
(5d.3.6) is not negative. The second term is also not negative so that the 
inequality (5d.3.6) is true. 

Let xl, . . . , x, be observations from a Poisson distribution with parameter 
p. It is seen that 

l ( p  I XI, . . . , x,) = -np + (x I + * * + x,)log p,  

giving the estimate + xJn, which may be shown to provide 
the supremum of the likelihood. 

In the two examples we find that the m.1. estimators are functions of the 
minimal sufficient statistic. This is true in general because of the factorization 
of the density function into two parts-one involving the sufficient statistic 
and the parameter and another independent of 8. Maximizing the likelihood 
is equivalent to iliaximizing the first factor so that 8 is an explicit function of 
the sufficient statistic. 

= (xI + 
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Limitation of the Likelihood Principle. Let us suppose that there are N 
counters numbered 1 ,  ..., N with unknown values X I ,  , .  . ,  X, written on 
them. We draw n counters at random without replacement and record for 
each counter drawn the pair of values 

(a = number of the counter, b = the value of X on it). 

We may represent the sample outcome as 

S : [(a, 9 bl), . , (0” 3 UI. 
Given S, how do we estimate the unknown parameter T = X I  + * * + X ,  ? 

I t  is seen that the probability of S i s  n ! ( N  - n ) ! / N !  irrespective of what the 
observations are, and consequently the likelihood of the unknown parameters 
X , ,  . . . , X, given S is zero if the values not consistent with those observed 
on the counters drawn, and constant otherwise irrespective of the values on 
unobserved counters. Thus the likelihood principle, as pointed out by 
Godambe, does not enable us to prefer any one set of parametric values for 
the unobserved counters against others (or in other words no estimation of 
the unknown parameters is possible by this principle). 

While the likelihood is uninformative on unknown values, we cannot say 
that the sample does not contain information on T. For instance the estimator 

61 + * . .  + 6, 
N 

n 

is unbiased for T, which provides evidence that the sample has information 
on T. Thus, the likelihood approach seems to have some limitations. 

For a discussion on the subject, the reader is referred to a paper by Rao 
(1971 b) and others in Godambe and Sprott (1971). 

5e ESTIMATION OF THE MULTINOMIAL DISTRIBUTION 

5e.l Nonparametric Case 

A multinomial distribution is specified by a vector n = (nl ,  . . . , nk) of 
probabilities of k mutually exclusive events. If n independent trials yield n, 
events of the first kind, n2 of the second kind, and so on, the probability 
of n,, . . . , nk given n l ,  . . . , 7tk is 

n! 
XIn ’  . . . nknk. 

n , !  ... nk! 
(5e. I .  1) 

Let us denote the expression (5e. I .  1) by L(n I n , ,  . . . , nk)  or simply by L(n) 
as a function of II. The true distribution n applicable to any particular situation 
is unknown but is given to be a member of a set A (admissible set). The object 
is to estimate the true distribution on the basis of n independent observations. 
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In practice, a distribution is usually estimated by first estimating some 
parameters which may be used as an index to identify the distribution. In  
theory, we need not make any distinction between the estimation of a distribu- 
tion or of its parameters identifying it; however, in some situations estimation 
of parameters may be of prime interest. We shall consider such problems in 
5e.2. In the present section we prove some important results concerning 
the m.1. estimator of A,  that is, of the distribution as a whole. The same results 
are true of some other methods of estimation such as minimum Chi-square, 
minimum Hellinger distance, etc. The reader may easily supply the proofs 
for these methods on similar lines. 

We define n* to be an approximate m.1. estimator of rc i f  

L(n*) 2 c sup L ( A ) ,  0 < c < 1. (5e. 1.2) 

The reason for defining an approximate m.1. estimator (which always exists) 
is to cover the situations where an m.1. estimator 2 such that 

n s A  

L(R) = sup L(n) 
n 

(5e. 1.3) 

may not exist. We have the following results concerning an estimator of the 
distribution. 

(i) Let n* be an approximate m.l. estimator o f n  and no be the true distribu- 
tion. Then n* + no with probability 1, without any assumption (restrictions) 
on the admissible set A .  

There may be a multiplicity of estimators n* satisfying (5e. 1.2) including 
the m.l., estimator when it exists. The result (i) asserts the convergence of 
n* for any choice (and, in fact, uniformly for all choices). We denote by p, 
the vector with elements p l ,  

Let p i  = ni/n be the observed proportion of events of the ith kind. By the 
strong law of large numbers p i  --* ni0, i = I ,  . . . , k with probability 1, and to 
prove the desired result it is enough to show that n* as a function of p and n 
tends to no as p + n o  and n -+ 03. Without loss of generality let xi0 > 0, 
i = I ,  . . . , k .  Taking logarithms of (5e. 1.2) and dividing by n, we have 

, p k .  

log c 
pi log 7r: > - + sup c pi log 7ri 

n n e A  

log c > - + 1 pi log 7rio 
n 

(5e. 1.4) 

We also haw,  however, the obvious inequality (le.6.1) in information theory 

(5e.1.5) 
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Combining (5e.1.4) and (5e.1.5), we see that 

log c c pi log pi 2 c pi log 7r: 3 - + c pi log 7c: 
I1 

As p +no and n + 00, the last term +O. Hence, as a function of the rev.% 
PI, * * . , P k ,  

(5e. 1.6) 4 lim c p i  log - = 0 
n-rm ' Pi 

with probability 1. 

By Taylor expansion of the logarithm in each term of (5e.1.6) at the value of 
the argument equal to 1, 

2 C pi($ - pi)2, since zi G 1. 

By using (5e.1.61, c p , ( n :  -pi)' + 0 with probability 1. Then p i  -+7ri0+ 

7r: -+ 7r? with probability 1, for otherwise there is a contradiction. 

(ii) Let A, = {n : 1 xi0 log(a,/niO) 3 - E }  and for all sufficiently small E ,  

let A ,  be in the interior of A .  Then an m.1. estimator exists with probability 1. 

Consider the set A,' = A - A, where 

1 7r i0  log 7ri < - E  + C l l i o  log 11,'. 

Let S be the set of n in A,' such that 

(7ri0 - El)l0g 711 < - &  + c 7rio log 7rio 

where > 0. As p i  + xio, p i  > ni0 - E , ,  in which case 

c p i  log 711 < c ( X i 0  -El)log 7ri < -& + 7rio log 7rio 

< - 62 + C P i  log ni0, 

where e2 < E .  Outside S and within A,', log ni are bounded, and therefore 
as p i  -+ 1110, 

711 

ni 
C P r l o g ~ <  - E 2 .  
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Hence in A:, when p is sufficiently close to no, 
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or by taking exponentials we see that 

(5e. 1.7) 

which implies that 

L(n0) > sup L(n), 
neAeC 

and hence, with probability 1, 

sup L(n) = sup t(n), since no E A , .  (5e. 1.8) 

But L(n) is a continuous function of n, and for sufficiently small E ,  A ,  belongs 
to the interior of A. Hence the supremum is attained in A,, 

Thus as n -+ co, an m.1. estimator of n exists, and by result (i) it converges 
to the true distribution. 

(iii) Let 1 be an a priori probability measure on A and let A, be the set as 
defined in (ii). Further let P(A,(ni)  be the posterior probability that n E A ,  
given n,, . . . , n k ,  that is, 

n 6 A  n E  Ar 

Then P(A, ni) -+ 1 with probability I as n -+ co with respect to the true distribic- 
tion no, if there exists an E' < E such that 

P(A,.) = d1 > 0. 
A', 

The result P(A,(ni) -+ I implies that the posterior probability distribution 
is concentrated at no with probability 1 as n -+ co. As in (i) and (ii), we observe 
that P(A,(ni)  is a function of p and n and show that P(A,/ni)  -+ 1 as p -PIC' 
and n -+ 00, which would imply the desired convergence in probability. 

Within A,, 

and log xi are bounded. Hence as p -+ no, 
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If we multiply by n and take exponentials, we see that 

L(n) 3 e-""L(no), in Ae,. 

In equation (5e.1.7) of (ii) we can choose E~ such that el < E~ < E ,  so that 
in A,C 

L(n) < e-"&*L(no), 

and hence 

But 

2 e-"elL(no)P(A,,). 

Taking the ratio of (5e.1.9) to (5e.1.10), we see that 

(5e. 1.9) 

(5e. 1.10) 

-0 as n - t o o ,  

which is the required result. 

5e.2 Parametric Case 

The results of 5e.l in terms of the estimators and the true values of parameters 
specifying the distribution need not be true without further assumptions. 
The difficulty arises when the parameters identifying the distribution are not 
well-behaved functionals of the distribution. Let us consider ni as a function 
of 8 =(el,  . . . , Oq),  a vector valued parameter belonging to an admissible 
set 0. The true value 8' is supposed to be an interior point of 0. We therefore 
make the following assumptions. 

ASSUMPTION 1.1 Given a 6 > 0, i t  is possible to find an E such that 

(5e.2.1) 

where 18 - 8'1 is the distance between 8 and 8'. 
Assumption 1.1, which may be called srrong identifiability condition, 

implies that outside the sphere 18 - 8'1 < 8 ,  there is no sequence of points 
8, such that n(8,) dn(8') as r + co, that is, there are no values of 8 remote 
from 8' but yielding nearly the same set of probabilities nl(Bo). 
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ASSUMPTION 1.2. xi(€) )  # x i @ )  for at least one i when 8 # p, which is a 
weaker identifiability condition. 

ASSUMPTION 2.1. The functions ni(8), i = I ,  . . . , k are continuous in 8. 

ASSUMPTION 2.2. The functions x i @ )  admit first-order partial derivatives. 

ASSUMPTION 2.3. The functions ni(8) admit first-order partial derivatives 
which are continuous at 8'. 

ASSUMPTION 2.4. The functions x i @ )  are totally differentiable at 8'. 

ASSUMPTION 3. Let the information matrix (irs) be non-singular at 8'. 
where 

As in 5e.l we define 8* to be an approximate m.1. estimator if 

~ [ n ( e * ) i  a c SUP ~ [ n ( e ) i  
e E e  

(i) Assumption 1.1 

It is shown in [(i), 5e.11, (equation 5e.1.6), that 

8* --* 8' litit/? probability 1 as n + a. 

from which it follows that, since log x i @ * )  are bounded as p --f no, 

(5e. 2.2) 

(5e. 2.3) 

Hence from Assumption 1.1,  lo* - 0'1 < 6 with probability 1. Since 6 is 
arbitrary, 8* -8' with probability 1. 

(ii) Assumptions I .  1 and2.1 =$ that an m.1. estimator of 8 exists and converges 
to 8' with probability 1. 

From (5e.1.8), we have as p -no 

sup L(n) = sup L(n), 
n s A  U E A ,  

which in terms of the parameter reduces to 

sup ~ [ n ( e ) l =  sup ~ [ ~ ( e ) ] .  
B E 0  le - 801 s 6 

Since L[n(8)] is continuous in 8, the supremum is attained in the closed 
sphere 18 - 8'1 Q 6. We denote an m.1. estimator by 8. 
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(iii) Assumptions 1.1 and 2.2 imply that an m.1. estimator can be obtained 
as a root of the equations 

aL - = o ,  aei i = l ,  ..., k (5e.2.4) 

with probability I .  

We need only choose 6 in such a way that the sphere ( 8  - 8'1 < 6 is in 
the interior of 0, so that the supremum of L[n(fJ)] is attained in an open 
interval at, say, 6. If then L[n(8)] is differentiable, the partial derivatives 
must vanish at 6. 

(iv) Let the Assumptions 1.2, 2.3, and 3 be true, Further let (i") be the 
reciprocal of ( irJ and 

Then there exists a consistent root 0 of the likelihood equation (5e.2.4), which 
may not be an ni.1. estimator and 

(Se. 2.5) J i l ( O ,  - era) - i r l z l  - - irqzq I 50 
r = 1, ..., 4 ,  

that is, the m.1. equation estimators are f.0.e. in the sense of (5c.2.6) and 
their asymptotic distribution is q-variate normal. 

Consider the sphere 18 - 8'1 < 6 of radius 6 with its center at 8' and the 
function 

(5e.2.6) 

over the sphere. Since ni(8), i = 1, ..., k are continuous, the infimum of 
(5e.2.6) is attained on the sphere and Assumption 1.2 ensures that the infimum 
is not less than, say, E > 0. Thus 

(5e.2.7) 

Further, log ni(8) are bounded on the sphere and when p is close to n(8') we 
may write (5e.2.7) in the form 
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for every point on the sphere 18 - O 0 (  = 6. Hence there is a point 8 in the 
open sphere 18 - 8'1 < 6 at which the function p i  log ni(8) has a local 
maximum. Since ni(B) are differentiable, the derivative of C pi  log ni(8) 
vanishes at 8. Since 6 is arbitrary, 0 is a consistent solution of the likelihood 
equation. 
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The m.1. equations are 

Pi an. 
aa, n C = - = O ,  r = ~  ,..., q .  (5e. 2.8) 

Dividing by Ji, the rth equation can be written 

Expanding (zi - nio) at 8' 

and substituting in the right-hand side of (5e.2.9), we see that 

where 

Since Jn(Pi - nio) has a limiting distribution and iii + nio and (an,/aO,) + 
(ani/dO:), an application of the result [(x), 2c.41 shows that the left-hand side 
of (5e.2.10) is asymptotically equivalent to 

c & (Pi  - niO) a n .  
-+j = Jn z,, 

niO ae, 

which leads to the relation (using the symbol 
in probability) 

for asymptotic equivalence 

By inverting the relation (5e.2.1 l), we have 

(5e.2.11) 

,/;(a, - e,"$ 2 ,/izrysg c J i z , i r ~ ,  (5e. 2.1 2) 

sincej" + irs, which is the desired result. 
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Note I .  I f  in the statement of (iv), Assumption 1.2 is replaced by Assump- 
tion 1.1, then the m.1. estimator is a consistent solution of the likelihood 
equation so that the property (5e.2.5) and the derived result on the asymptotic 
distribution can be claimed for the m.1. estimator. 

It has been shown by Birch (1964) that Assumption 2.3 of 
continuity of the first derivatives of ni(8) can be replaced by the weaker 
Assumption 2.4 of total differentiality of ni(8) for each i to assert the asymp- 
totic normality of the m.1. estimator. More precisely, Birch’s result is as 
follows : Assumptions 1. I ,  2.4, and 3 imply that the m.1. estimator is eficient 
in the sense (5e.2.5), and its asymptotic distribution is as stated in (iv). The proof 
is a bit involved and the details can be found in Birch (1964). The result of 
(iv) is more general in the sense that it refers to a root of the likelihood equa- 
tion whether it is an m.1. estimator or not, but it uses the stronger Assumption 
2.3. 

Note 3. The assumptions under which the results of Sections 5e.l and 
5e.2 are proved are much weaker than those found in the literature on 
estimation. A surprising result is the deduction of the asymptotic normality 
of the m.1. estimators of parameters assuming only the continuity of the first 
derivatives or the total differentiability of the cell probabilities as functions 

It is possible to extend the results established for a finite multinomial to 
a general discrete distribution with a countable number of alternatives. 
For instance if II = (n,, n2, . . . ,) denotes a general discrete distribution 
belonging to an admissible set A ,  the condition x i o  log nt0 is finite, where 
no is the true distribution, is sufficient to ensure the consistency of an approxi- 
mate m.1. estimator (Rao, 1957a, 1958~;  Kiefer and Wolfowitz, 1956). For 
parametric estimation we need the assumption that it is a continuous 
functional of n, It can be shown that, under this condition and continuity 
of ni as functions of 8, an m.1. estimator of 8 exists with probability 1. If nt 
are differentiable functions of 8, then an m.1. estimator is also an m.1. equation 
estimator. The asymptotic normality of the estimator may, however, require 
further assumptions (Rao, 1958~). 

Note 2. 

of 8. 

5f ESTIMATION OF PARAMETERS IN THE GENERAL CASE 

5f.l Assumptions and Notations 

Very little is known about the estimation of a distribution function in the 
continuous case except through the estimation of parameters. Even then, the 
problems are complicated. We shall consider only the case of a single param- 
eter and prove some results whose validity does not require undue assump- 
tions on the probability density. 



364 CRITERIA AND METHODS OF ESTIMATION 

Let x be a random variable with probability density p ( * ,  8) with respect 
to a a-finite measure p, where 8 belongs to a nondegenerate interval of the 
real line. For a discrete random variable, p ( y ,  0 )  denotes the probability 
of x = y. The following assumptions are made. 

ASSUMPTION 1. The derivatives d logpld8, d2 log p/d02,  and d 3  logp/d03 
esist, for almost all x in an interval A of 8 including the true value. 

ASSUMPTION 2. At the true value of 0, 

where the primes denote differentiation with respect to 8. 

ASSUMPTION 3. For every 8 in A ,  

where K is independent of 8. 
Let x l r  . . . , x,  be n independent observations (r.v.’s) and put 

[(0 I X )  = C log p ( x i ,  8) 

5f.2 Properties of m.1. Equation Estimators 

(i) If log p(x ,  8) is diyerentiable in an interval including the true value, then 
the m.1. equation has a root with probability 1 as n -P co, which is consistent 
for 8. 

( 1  e.6.6) we have 
Let 0, be the true value and consider two values B0 f 6. Using the inequality 

€( log  p(Oo - 10.) < 0, E (  log ’(‘O + ’) 1 0,) < 0. (5f.2.1) 
P(00) P(00) 

Strict inequalities in (5f.2.1) are possible unless p ( x ,  0 )  is independent of 0 
in an interval enclosing 0,.  In  such a case the result we are trying to prove is 
automatically true. 
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The inequalities (5f.2.1) imply, by an application of the strong law of 
large numbers, that, with probability I ,  as n 3 00 

1 
- [i(e, ~ I X )  - r(e,ix)i < o (5f.2.2) 
n 

that is, for almost all sample sequences I(eIx) will eventually be greater at 
8, than at 0, + 6 and 0, - 6. Since I(e1x) is continuous in (8, rf a), there is 
a local maximum of l (8Ix)  within (8, k 6). If l (8 lx)  is differentiable, its 
derivative must vanish at that point. Since 6 is arbitrary a root 0 so located is 
consistent for 8,. 

(ii) Let 0 be a consistent root of the likelihood equation and Assumptions 
1-3 be true. Then 

&[(O - eo)i(eo) - -+ 0 in probability. (5f.2.3) 
n doo 

The result (5f.2.3) shows that a is f.0.e. in the sense of (5c.2.5) and the 

Since satisfies the likelihood equation (dl/dO) = 0; we have, by Taylor 
asymptotic distribution of &(a - 8,) is N(0, i - ’ ) .  

expansion of ( d l / d )  at 8, , 

from which we derive the equation 

1 dl  

(5f.2.5) 

Consider 

where 

We shall show that 6, + - 1 in probability, in which case the convergence 
of (I  /&)(dl/dO,) to an asymptotic distribution implies that the right-hand 
side of (5f.2.6) 4 0, establishing the desired result. 
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Now, under Assumption 2, we see that 

and by applying the strong law of large numbers, we have 

Again under Assumption 3, 

with probability 1 as n + 00 and since (0 - 0,) -+ 0, the product 

(8 - 60); 1 d8,3 d31 I +O in  probability, 

(5f.2.7) 

(5f.2.8) 

using the convergence result [(x), 2c.41. By combining (5f.2.7) and (5f.2.8), 
b, -+ - 1 in probability. 

(iii) Zf 8, and 8, are two consistent roots of the likelihood equation, they are 
equivalent in the sense that 

v/15(8, - 8,) +O in probability. (5f.2.9) 

The result follows since 8, and 8, are both efficient if we apply the result 
[(ii), 5c.21 observing that y(0) = I [see Huzurbazar (1948) for an equivalent 
result]. 

Results (i), (ii), and (iii) of this section do not enable us to identify a con- 
sistent root of the likelihood equation. It would be more satisfying to show 
that the consistent root corresponds to the supremum of the likelihood with 
probability 1. For this, the density function has to satisfy some further 
conditions such as those given by Wald (1949). For a rigorous treatment of 
the asymptotic properties of m.1. estimators, see Le Cam (1953, 1956). Other 
papers of interest in large sample estimation are by Bahadur (1958), Daniels 
(1961), Dugue (1937), Haldane (1951), and Neyman (1949). 

5g. THE METHOD OF SCORING FOR THE ESTIMATION 
OF PARAMETERS 

The maximum likelihood equations are usually complicated so that the 
solutions cannot be obtained directly. A general method would be to assume 
a trial solution and derive linear equations for small additive corrections. 
The process can be repeated until the corrections become negligible. A great 
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mechanization is introduced by adopting the method known as the scoring 
system for obtaining the linear equations for the additive corrections. 

The quantity d log L/dO, where L is the likelihood of the parameter 8, 
is defined as the efficient score for 8. The maximum likelihood estimate is 
the value of 8 for which the efficient score vanishes. If 8, is the trial value 
of the estimate, then expanding d log L/dO and retaining only the first power 
of So = 8 - 8, leads to 

d log L d logL d 2  log L 

d e  dB0 do,’ 
---- -- + 68- 

where Y(8,), the information at the value 0 = B 0 ,  is the expected value of 
-d’ log L/d8,’. In large samples the difference between -Y(O,) and 
d 2  log L/dOo2 will be O(l/n), where n is the number of observations, so that 
the above approximation holds to the first order of small quantities. The 
correction 68 is obtained from the equation 

dlog L d log L 
seYa(o,) = - , se=-- : j(e,). 

do0 do0 
The first approximation is (0, + &I), and the foregoing process can be 
repeated with this as the new trial value. 

Example 1. Consider a sample of size n from the Cauchy distribution; 

1 dx  - 
x 1 + (X - el2 ’ 

The likelihood equation is 

2(x, - 0) -- c 1 + (Xi - 8)2 = O. 
- d log L 

ne 
The efficient score for any 8 is 

Information in a single observation is 4 so that Y(6) = 4 2  and the additive 
correction to a trial value 0, is simply 2S(00)/n. This process can be continued 
until a stable value is attained. Fortunately in the foregoing example Y(0) 
happens to be independent of 8 so that Y(0) need not be calculated at each 
trial value. 

(C X, = l), be the probabilities in k mutually exclusive classes defined as 
Example 2. Score and *Znformation for Grouped Data. ,Let nl, . . I , =k 9 
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functions of a single parameter 0. I f f i ,  . . . , fk, ( I f i  =f) are the observed 
frequencies, then 

The score at 0 is 
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log L =fi log n1 + " '  +f; ,  log nk. 

d l o g L  f l  dnl f k  dnk 

do n1 d0 ??k dfl 
+- -=-+... 

W v = V ( 7 ) = f Z ; ( - & $  d log L 

-_ 1 drr, and (".)', 
711 d8 ni d8 

which may be called the score and information supplied by the ith class, will 
be computed in any particular problem before proceeding with the process 
of estimation. 

Estimation of Linkage in Genetics. If two factors are linked with a recom- 
bination fraction 8, the intercrosses AB/ab x AB/ab (coupling) and 
Ab/aB x Ab/aB (repulsion) give rise to the expected proportions and informa- 
tion shown in Table 5g.la. The amount of information can be used to judge 

1 drr - 
The quantities 

TABLE 5g. 1 a 

Coupling Repulsion 

Class Probability Score Probability Score 

Ab 2e - e 2  
2(1 - e) - 2e 
2e - e 2  I - e 2  

I - e 2  

2(1 - e) - 2e 
2e - e 2  1 - e 2  

-2(1- e) 
e 1 - 2 e +  e 2  

aB 28- e 2  1 - e 2  

ab 1 - 2e + e 2  e 2  

2 - 

20 - 4e + 282) 
e(2 - e)(3 - 2e + e 2 )  

Information. 
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the relative efficiency of one type of cross with respect to the other for the 
estimation of the recombination fraction. For instance, if 0 = 4, the amounts 
of information for coupling and repulsion are 3.7909 and 1.1636, respectively. 
This means that, using intercrosses with repulsion, the number of offsprings 
needed will be three times as great as that for coupling to estimate the re- 
combination fraction with the same precision. 

Consider coupling data with values for AB, Ab, aB, and ab as shown below. 
With the trial value 0 = 0.21, the score and information are obtained. 

1 dn Observed dn 
4- dB n dB Frequency 

-- 4n 

AB 2.6241 -1.58 -0.60211 125 
Ab 0.3759 1.58 4.20325 18 
aB 0.3759 1.58 4.20325 20 

34 ab 0.6241 - 1.58 -2.53164 
11.54025 197 

- 
- Absolute sum 

Information per observation 

dn, I dni - (-, -) = 1.58 (11.54025) = 4.55840 
de n de 4 

Efficient score = -0.60211(125) + 4.20325(18 + 20) - 2.53164(34) 
= -1.61601 

1.61601 
197(4.55840) 

= -0.0018 Correction term = - 

First approximation = 0.21 - 0.0018 = 0.2082. 

The correction is small so that the process may not be repeated. The variance 
for determining the precision of the estimate is given by 

= 0.001 1 1357. 
1 

197(4.55840) 

A better estimate of the variance is the reciprocal of the information at the 
valuep = 0.2082. 

The scores for trial values from I to 50% are given in F.Y. Tables. They 
can be directly used by retaining two decimal places at  each stage of approxi- 
mation, and finally when two places are stabilized a complete round of 
calculations with more places may be carried out as indicated in the numerical 
illustration. 
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Example 3, Scoring for Several Parameters. The method of scoring 
developed in Example 2 can be extended to the case of the simultaneous 
estimation of several parameters. If el, 0, , . . . , 8, are the parameters, the ith 
efficient score is defined by 
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a log L 

80, 
si = - , i = 1 , 2  ,..., q, 

where L is the likelihood of the parameters, and the information matrix is 
defined by (Yij) where 

Y,, = E(S ,  S,). 

If the values of the efficient scores and information at the trial values 
elo, . . . , 8,' are indicated with index zero, then small additive corrections 
SO,, . . . , 68, to the trial values are given by the simultaneous equations 

Y,,O 68, + f,,O 68, + I + Y,,O 68, = sl0 

Y,,O 68, + Y,,O 68, + . . a  + 9,; 68, = sq0. 
I . .  

This operation is repeated with corrected values each time until stable values 
of el, . . . ,8, are obtained. The variance of the final estimate 8, of 8, is given by 
Y", the ith diagonal element in the reciprocal of (j,)). 

In this method the main difficulty is the computation and inversion of the 
information matrix at each stage of approximation. In practice this is found 
to be unnecessary. The information matrix may be kept fixed after some stage 
and only the scores recalculated. This procedure should reduce the computa- 
tions considerably. At the final stage when stable values are reached, the 
information matrix may be computed at the estimated values for obtaining 
the variances and covariances of estimates. 

In grouped distributions with IC, andf, as probability and frequency in the 
ith class, 

and 

1 all, an, f,, =fC - - - , ae, ae, 
so that the calculations become simple as illustrated in the next section. 

Estimation of Gene Frequencies of Blood Groups, A B 0 Systems. Every 
human being can be classified into one of four blood,groups 0, A, B, AB. 
The inheritance of these blood groups is controlled by three allelomorphic 

\ 
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genes 0, A, B of which 0 is recessive to A and B. I f  r ,  y ,  and q are gene 
frequencies of 0, A, and B, then the expected probabilities of the six genotypes 
(four phenotypes) in random mating are as follows: 

Phenotype Genotype Probabilities 

0 00 r 2  

A 

B 

AB AB 21w 

Given 8, A, B, and AB, are observed frequencies adding to N ,  the problem 
is to estimate the gene frequenciesp, q, and r .  A rough estimate is supplied by 

These may not necessarily add to unity, whereas the true values should. 
Let D denote the deviation 

- D = p ‘ + q ‘ + r ‘ -  1. 

Better estimates due to Bernstein are obtained as follows: 

r = ( 1  + tD ) ( r ’  + fD) 
p = ( 1  + f D ) p ‘  
q = ( I  + fD)q’. 

There is still some deviation, ( 1  - p  - q - r )  = $D2.  I f  this is small, then 
Bernstein’s method supplies fairly good estimates. We shall now show how 
these estimates can be improved by the method of maximum likelihood, 
using the frequencies 0 = 176, A = 182, B = 60, and A B  = 17. Approximate 
solutions obtained by Bernstein’s method are 

po  = 0.26449, qo = 0.09317, 1’0 = 0.644234. 

In general, the probabilities and derivatives, with respect to the independcnt 
parameters p and q, are as follows: 
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Probabilities Derivatives 

an a n  

aP 84 
- - 71 

0 r 2  -2r -2r 
A P(P + 2r) 2r -2p 
B d 9  + 2r) - 29 2r 

The probabilities and coefficients for the calculation of efficient scores at the 
approximate values obtained above are set out in Table 5g.lfl. 

A B  2Pq 2q 2P 

TABLE 5g.lp. Coefficients for Scores 

1 277 1 an 0 bserved 
77 77 2q n c"q Frequency 

_ _  -- Probability 

0 0.4 I260 -3.1 1362 -3.1 1362 176 
A 0.40974 3.13543 -1.27104 182 
B 0.12838 - 1.45217 10.00685 60 
A B  0.04928 3.75086 10.73307 17 

435 = N 

The scores are 

4, = (-3.11362)176 + (3.13543)182 + (-  1.45217)60 + (3.75086)17 

= -0.20444 

4, = (-3.1 1362)176 + (-1.27104)182 + (10.00685)60 + (10.73307)17 

= -0.09324 

The information matrix for a single observation is 

i,, = C (3)(- 1 ani -) = 9.00315, i,, = 1 (") (- 1 ani -) = 2.47676 
a~ xi 8~ a P  n dq 

i,, = 2.47676 
ani I ani 

i,, = 1 (%) (6 &) = 23.2162 

The inverse of the information niatrix per single observation is 

i p p  = 0.1 I4430 ipq = -0.01 2208 
ipq = -0.012208 iqq = 0.044376 
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The solutions for corrections are 

iPp& + iP9rj9 - 
s p  = - - 0.00005 1 16 

N 

iP94, + i 9 9 ~ 9  - 
sq = - -0.00000377 

N 

The corrections are hardly necessary in this particular case. If the corrections 
are not small, the whole process has to be repeated with the second approxi- 
mations. It is important to note that after some stage the information matrix 
need not be recalculated for each approximation. Only the new scores have 
to be calculated at each stage and used in conjuction with the same inverse 
information matrix (kept constant from some stage) to obtain closer approxi- 
mations. When convergence is achieved, the information matrix and scores 
may be calculated for obtaining the last approximate values. 

The maximum likelihood estimates and the variances are 

i P P  

N 
j =  0.26444, V ( j )  = - = 0.00026305 

i99 

N 
9 = 0.09317, V ( 4 )  = - = 0.00010202 

i P P  + 2 iP9  + i99 

P = 0.64239, V(P) = = 0.00030893 
N 

For other applications of the scoring method in complicated cases reference 
may be made to Finney (1952), Fisher (1950), and Rao (1950a). 

In the case of 0, A, B blood group data there is another algorithm which 
yields the m.1. estimates, which appears to be more suitable for desk and 
electronic computers, and which avoids the repeated computation of the 
information matrix and its inverse. 

Let p o ,  qo ,  ro be provisional estimates, and compute Po =po/ro and 
Qo = q O / r o .  Let us represent by Pk and Qk the kth approximations ofp/r and 
q/r. The (k + 1)th approximations are found from the formulas 
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The iteration may be repeated until stable values of P and Q are obtained, 
from which the estimates of p ,  q, r are computed as 
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By adopting the provisional estimates 

p ,  = 0.26449, q,  = 0.09317, r ,  = 0.64234 

with Po = 0.41 176, Q, = 0.14505, the first round of computations yields 
PI = 0.41167, Q, = 0.14503 indicating stability. The m.1. estimates of p ,  q, r 
are 

P = 0.64238, fi  = 0.26445, 4 = 0.09316, 

which agree closely with the estimates obtained by the iterative procedure 
using the information matrix. With the estimates so obtained, the expected 
probabilities of the phenotypic classes and the information matrix may be 
obtained as before to compute the standard errors of the estimates. 

Combination of Data. The advantage of the scoring system can best be seen 
in the mechanization it introduces when various sets of data giving informa- 
tion on the same parameters have to be combined for estimation, If L is the 
joint likelihood based on all the data and Li for the ith part, then 

L = L,L,  .. , 
aiog L aiog L ,  a i o g L 2  
-=- +-+... 

which shows that the efficient scores are additive. Also, if J,, is an element of 
the information matrix for the whole body of data and 42' for the j th  part, 
then 

a e r  88, 38, 
, 

4rs=4p+4:: )+  * * ' .  

Thus, to obtain the best estimates it is necessary to replace each part of the 
data by the scores and information matrix at a trial value and obtain the 
total scores and information matrix by simple addition. The correction to 
trial values can be obtained by solving simultaneous equations as shown in 
the numerical examples. 

COMPLEMENTS AND PROBLEMS 

1 Consider a rectangular distribution in the range 0 to 8. Let x,,, be the 
maximum of n independent observations from such a distribution. Show the 
following. 
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1.1 x,,, is a complete sufficient statistic for 0. 
1.2 (n + l)xma,/n is the m.v.u. (minimum variance unbiased) estimator of 0. 
Find the minimum variance. 
1.3 x,,, is the m.1. estimator of 0 and x,,, is biased but consistent for 0. 
1.4 Any function t(x,,,) of x,,, unbiased for 0 has the terminal value 
t(0) = (n + 1)0/n. 
2 Let x,,, and xmin be the maximum and minimum of n observations from 
a rectangular distribution in the range 0 to 4. Show the following: 
2.1 xmaX and xmin are complete sufficient statistics for 0 and 4. 
2.2 The m.v.u. estimators of the midpoint (0 + 4)/2 and the range (4  - 0) 
are 

2.3 Let 4 = 20, so that there is only one parameter. Still, x,,, and xmin are 
jointly sufficient for 0 but they are not complete. 
2.4 The m.1. estimator of 0, when 4 = 20, is ~ , ~ ~ , / 2 ,  which is biased for 0. 
An unbiased estimator based on the m.1. estimator, that is, correcting for bias 
is T, = ( n  + I)x,,,/(2n + I) .  
2.5 Show that T2 = (n + 1)(2xmux + xmi,,)/(5n + 4) is another estimator of 0, 
whose variance is uniformly smaller than that of TI. Thus, we have an example 
of an m.1. estimator being inferior as judged by the criterion of minimum 
variance. 
3 Mininium variance unbiased estimators of probabilities of a discrete distri- 
bution. Consider a random variable X taking integer values, 0, 1 ,  . . . and let 
P(X = r )  = q(0) where 0 is an unknown parameter. Let xl,  . . . , x, be n 
independent observations on X and let T be a complete sufficient estimator of 
0. To estimate n,(O), consider the statistic p = (number of x i  equal to r)/n.  
3.1 Show that the m.v.u. estimator of q ( 0 )  is E(pl T) ,  using the result [(iii), 
5a.21. 
3.2 Apply the result to find the m.v.u. estimator of the Poisson probability, 
P(X = 0) = e -” ,  on the basis of n independent observations xI, , . . , x, . 
3.3 Find the m.v.u. estimator ofP(X = 0) when X has the negative binomial 
distribution, on the basis of n independent observations. 
4 More stringent inequalities for the variance of an unbiased estiniator. Let 
T be an unbiased estimator of g(0) and P ( X ,  0 )  the probability density at X. 
Differentiating the relation 

J T P ( X ,  0) L I ~  = g(e)  
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k times, we obtain 
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d k P  dkg 
T zi d o  = 3. 

4.1 Show that v(t) 2 [dks/dok]*/Jkk where 

Jkk = (-)' d k P  ' d o  
dok P 

4.2 More generally, if J k r  = cov(i$, fg), show that the multiple 

correlation of T on [diP/P do'], i = 1, 2, , . , , is 

where (.Ikr) is the reciprocal of ( J k , . ) .  Hence deduce the inequality 

dkg  d'g 
dok do' 

V ( T ) ~ C C J ~ ~ - - - - .  

4.3 Show that the lower bound obtained in (4.2) is not smaller than 
[g'(O)]'/$(O). The above inequality is due to Bhattacharya (1947). 
5 Human twins are of two types, identical and nonidentical. Let n be the 
probability of a child being male and a the probability of twins being identical. 
If identical twins arise from the splitting of a fertilized egg, show that the 
probabilities of 6.6, 6.9, 99 types of twins are n(n +a+), 2n4(1 -a ) ,  
+(an + +), where 4 = 1 - r. Let n,, n, , n, be observed frequencies of these 
types in a sample of n = n, + n2 + n3 twins. 
5.1 Obtain the estimates of u,  R .  

5.2 If n = 0.516, find the estimate of u by m.1. and min. chi-square methods. 
5.3 Compare the standard errors of estimates in Problem 5.2 with that of 
Weinberg's estimate, a* = (1 - n2)/2nn$. 
6 M.v.u. estimation of parameters of a power series distribution. Consider a 
power series distribution with probability 

Let x,, . . . , x, be a sample of size n with a total, T = xI + 9 . -  + x,, . 
6.1 
T is of the same form 

Show that T is a complete sufficient statistic for 6 and the distribution of 

P(T  = t )  = b,%' + [ f ( e ) ]" ,  I = nc, nc + 1, . . . co. 
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6.2 Show that the m.v.u. estimator of 0‘ is 

u,(t) = 0,  t < r 

and a m.v.u. estimator of its variance is 

[ur(t)12 - ~ 2 r ( t )  

[Roy and Mitra, 1957) 

[Note: Examples 6.1 and 6.2 cover all the well-known discrete distributions 
with infinite range including those truncated at the left.] 
6.3 Show that the results of (6.1) and (6.2) are not true if the range of the 
variable is not infinite. [Patil, 1963.1 
7 Maximum likelihood estimators of parameters in discrete distributions. 
Consider a power series distribution 

P ( X  = r )  = arOr/f(8),  r = 0, 1,. . ,, 
where a, may be zero for some r .  Let xl ,  . . . , x, be n independent observations 
and E = (xi + - - * + xJn. 
7.1 Show that the m.1. estimator of 8 is a root of the equation K = 
0f’(O)/f(0, = p(0 ) ,  the theoretical mean. The estimating equation is the same 
for the method of moments. 
7.2 Show that i(0), the information in a single observation, is (dp/0 do) = 
p2(0)/02 where p 2 ( 0 )  is the second moment of the distribution. 
7.3 Obtain the explicit equations for estimating the parameters for the 
complete Poisson, binomial, and logarithmic series and the truncated Poisson 
and binomial series omitting zero. 
8 Let x l ,  . . . , x, be n independent observations on a random variable with 
a probability densityp(x, 0). Further letf(x,, . . . , x,, 0) = 0 be an estimating 
equation for 0. Show that if E(f) = 0, then (by differentiating under the 
integral sign and applying the C-S inequality to one of the terms) 

V ( f )  2 [ ~ ( f ’ ) l 2 / . 9  or [E(f’)I2/V(f) G $9 

wheref’ = df(x,, . . . , x,  , 0)/d0 and 4 is the total information in the sample. 
Satisfy yourself that the upper bound of [E(f’)I2/V(f) is attained for the 
choice f = d log L/dO where L = p ( x , ,  0). . p (x , ,  0). 
[Note: This example shows that if we define the efficiency of an estimating 
equationf= 0 by E ( f ’ ) 2 / V ( f ) ,  the maximum likelihood estimating equation 
has the maximum efficiency; an attempt to justify the method of maximum 
likelihood in small samples is due to Godambe, 1960.1 
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9 Let x l ,  . , , , x ,  be a sample of n independent observations on a random 
variable with a d.f. F(x,  O), 0 E A, a nondegenerate interval of the real line. 
Denote by S,  the empirical d.f. Consider an estimating equation of the type 
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I g c . ,  e) ds ,  = o = [g(x , ,  e) I- + a + g ( x , ,  e)] + n, 

where g(x ,  8) is such that 

where K is independent of 8. 
9.1 Show that there exists a consistent root 0* of the equation g ( x , ,  8) = 0. 
9.2 Prove, following the arguments of 5f.2, that the asymptotic distribution 
of &(8* - 8) is N(0,a2)  where o2 = h(O)/[tt1(0)]~. 
9.3 Let F(x,  0) admit a density function p(x ,  0). Show that under suitable 
conditions 

where i(0) = E[p'(x, 8) /p(x,  @Iz. 
9.4 Verify that the lower bound to the asymptotic variance is attained when 
g(x,  8) =p' (x ,  8)/p(x, 0), that is, when the estimating equation is the m.1. 
equation. 
[Thus we have a characterization of the m.1. method as providing estimates 
with minimum asymptotic variance, in a certain class of estimating equations.] 
10 Maximum likelihood characterization of distributions. 
10.1 Let {F(x  - 0), 0 E R'} be a translation family of absolutely continuous 
distribution functions on the real line and let the version of the probability 
density functionf(x) be lower semicontinuous at x = 0. If for all samples of 
sizes 2 and 3, an m.1. estimate of 8 is the sample arithmetic mean, then F(x)  
is N(0,02) .  
10.2 Let F(x/u) ,  u > 0 constitute a scale parameter family of absolutely 
continuous distributions with the version of the probability density satisfying 
the following conditions: 
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(a) f(x) is continuous in (0, oo), 
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f (AY) 
f(Y) 

(b) lim - = 1 as y 4 0. 

If an m.1. estimate o f 0  is the arithmetic mean for all samples, the d.f. belongs 
to the exponential family, that is 

f(x) = e - x ,  

f(X) = 0, x,<o 

x > 0 

10.3 If in (lO.2),f(x) satisfies the conditions 
(a) f(x) is continuous in ( -  co, co) 
(b) limf(Jy)/f(v) = I as Y 4 0  

and an m.1. estimate of a2 is Ex,'/., then the distribution is N(0,  1). 
[Note: These propositions have been vaguely known in literature but have 
been stated in a rigorous form by Teicher, 1961.1 
10.4 Let {F(x - 8, 8 E R')} be the same family as defined in example 10.1. 
If the sample median is the m.1.e. of 8 for n = 4, then F'(x) = f(x) = (a/2) 
exp(-a)xl), i.e., Laplace distribution. (See Kagan, Linnik and Rao, 3972B4 
and Rao and Ghosh, 1971g). 
11 Let X be a discrete random variable such that P ( X  = - 1) = a, P(X =.n) 
= (1 - a)'a", n = 0, I ,  . . . , where 0 < a  < 1. 
11.1 Show that X is minimal sufficient for a although it is not complete 

11.2 A function of X unbiased for zero is necessarily of the form c X .  Hence 
show that T ( X )  = 1 for X = 0 and zero otherwise is the m.v.u. estimator of 
(1 - a)2 for all a. 

11.3 Show that there is no uniformly m.v.u. estimator of a itself, although 
unbiased estimators of a exist. 
12 Let there be only two alternative values 0, 1 which 0 can take, and define 
the probability densities 

[ E ( X )  = 01. 

I ,  O < x < l  

0 otherwise 
p ( x l 0  = 0) = 

O < x < l  

otherwise 
p * ( x ( 0  = I )  = (8"- 

Show that unbiased estimators of 0 exist and the variance at 0 = 0 can be made 
arbitrarily'small but the infimum zero is not attained for any unbiased 
estimator. 
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Chapter 6 

LARGE SAMPLE 
THEORY AND 
METHODS 

Introduction. This chapter deals with statistical inference when large samples 
are available. It covers a wide variety of statistical methods useful in practical 
applications. Special emphasis is given to the analysis of categorical data with 
reference to problems of specification, homogeneity of samples, independence 
of attributes, etc. Some general classes of large sample criteria for testing 
simple and composite hypotheses have also been discussed. The asymptotic 
efficiency of tests is discussed in 7a.7 of Chapter 7. 

The theoretical developments in this chapter rest heavily on the basic 
convergence theorems discussed in Chapter 2 and the asymptotic properties 
of the maximum likelihood estimators given in Chapter 5 .  The reader is 
advised to study the propositions of the subsections 2c.3 to 2c.5 in Chapter 
2 which deal with the laws of large numbers, univariate and multivariate 
central limit theorems, and convergence theorems for functions of random 
variables and Sections 5c to 5f in Chapter 5 which deal with asymptotic 
efficiency of estimators, large sample methods of estimation, and the method 
of maximum likelihood. 

6a SOME BASIC RESULTS 
6a.l Asymptotic Distribution of Quadratic Functions of Frequencies 
Let there be k mutually exclusive events and let the probability of the ith 
event be n,, i = 1, . . . , k. Suppose n independent events have been observed 
resulting in n, events of the first kind, n2 of the second kind, and so on 
c n ,  = n. Define the column vectors V, 4 

(6a. 1.1) 

I J 7 [ h ) .  (6a. 1.2) 
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Our object is to study the asymptotic distributions (a.d.) of linear and 
quadratic functions of V (i.e., of the frequencies n,, . . , , n, considered as 
r.v.’s). We establish the following results. 

with mean zero and variance b’b - (b’@)’ = b’(1- ++’)b. 

the ith kind of event occurs. Hence P(X = bi/,,&,) = x i ,  giving 

(i) The a.d. of the linear function b‘V, where b is a fixed vector, is normal 

Consider a discrete random variable X which takes the value bi/J: when 

biz V ( X )  = C - xi  - (b’4)’ = b’b - (b’+)’. 
xi 

We have nindependent observationswith X = b,/,/Goccurringn, times, i = 1, 
. . . , k. The average of the n observations is 

Hence by the central limit theorem [(i), 2c.51, we see that 

,/.(x,, - b4) -% Y - “0, b‘b - (b’$)’]. (6a. 1.3) 

But &(A?,, - b’+) = b V .  Hence the result. 

is multivariate normal with mean zero and dispersion matrix B’(I - @+’)B. 
(ii) The a.d. of p linear functions B’V, where B is k x p matrix of rank p 

To establish this we need only examine the a.d. of a linear function of the 
p variables B’V. Consider 1’B‘V which is linear in  V, however, and hence by 
result (i) we see that 

L’B’VL+ Y N “0, L’B’(1 - ++‘)Bk]. (6a. 1.4) 

Let Z be a p-variate normal variable with mean zero and dispersion 
matrix B’(I - +@’)B. The distribution of a linear function L‘Z is the same as 
that on the right-hand side of (6a.1.4). Hence by the multivariate normal 
convergence theorem [(iv), 2c.51, we see that 

B V L +  Z - Np[O, B ( I  - @4’)B], (6a. 1.5) 

where N p  denotes a p-variate normal distribution. (See 3b.3 for definition 
of N p  and Chapter 8 for a detailed study of N p . )  
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(iii) Let A be k x k - 1 matrix such that the partitioned matrix (4 i A) 
of order k x k is orthogonal. Then the a.d. of the (k  - 1) linear functions 
G = A'V is that of (k  - 1) independent normal variables each with zero mean 
and unit variance. 

Using result (ii) and the condition A4 = 0, we see that the dispersion 

which is a (k - 1) x (k  - 1) matrix. 

matrix of the a.d. of A'V is 

A'(1 - $+')A = A'A = I, 

Hence the result. Thus G L +  Y - Nk-l(O, I). 

(iv) A su8cient condition for a d .  of the quadratic form V'CV to be xz is 

C2 = C  and C ~ = U +  (6a. 1.6) 

where u is a constant, in which case the degrees of freedom (D.F.) of x2  is 
R(C) if. = 0 and [R(C) - I] i f u  # 0 where R(C) denotes the rank oJC. 

Consider the equations 

0 = 4'V 
G = A'V 

where A is as defined in (iii). Solving for V, we have 

V = (+;A) (:) = AG, 

since (QiA) is an orthogonal matrix. Hence 

V'CV = G'A'CAG. 

The a.d. of V'CV is the same as that of G'A'CAG which is a continuous 
function of G .  Hence the a.d. of G'A'CAG can be computed from the a.d. 
of G [see (xii), 2c.41. 

But the a.d. of G is that of (k - 1) independent normal variables each 
with zero mean and unit variance. A necessary and sufficient condition that 
G'A'CAG has a x 2  distribution is then A'CA is idempotent, [(ii), 3b.41, that is, 

A'CAA'CA = A'CA. (6a. 1.7) 

Since the matrix (Q !A) is orthogonal, then 

(4jA) (x;) 4' = 4w + AA' = I. 

Substituting for AA' in (6a. 1.7), we have 

A'C(1- 44')CA = A'CA (6a. 1.8) 



6a SOME BASIC RESULTS 385 

for all A such that (+:A) is an orthogonal matrix. A sufficient condition 
for (6a.1.8) to hold is 

c2 = c and C $ = a @ ,  (6a. 1.9) 

that is, C is idempotent and $ is an eigenvector of C. The D.F. of x 2  is R(A'CA) 
the rank of A'CA, if we use [(ii), 3b.41. Now 

A'C+ A'CA 

= R(A'CA), if C$ = O  
= R(A'CA) + 1,  if C$ = a$, a #  0. 

Hence the desired result. 

(v) A necessary and suficient condition for the a.d. of V'CV to be x 2  is 

(I - $$')C(I - $$')C(I - $4') = (I - +$')C(I - +$'). 

In (iv), it is shown that a necessary and sufficient condition is (6a.1.7): 

(6a. 1.10) 

A'C(1- $$')CA = A'CA. (6a. 1.1 1) 

But the linear manifolds &(A) and &(I - $$') are the same. Hence in the 
relation (6a. 1.1 l), A can be replaced by (I - @@'), which gives (6a. 1.10). 

X - x2(b), and V'DV is non- 
negative, then B = C + D e V'DV -5 X - z2(b - c).  

(vi) If V'CV L, X - x2(c),  V'BV 

The result follows from [(iv), 3b.41. 

6a.2 Some Convergence Theorems 

We shall be considering in this chapter the a.d. of a linear or  a quadratic 
function h of the variables (x,, , y,,, . . .) or of the variables (cI,,~,, , p,,y,,, . . .) 
where a,, a, pn p, etc., a, p, . . . being constants. In such a case, 
it follows from [(x) and (xiv), 2c.41 that 

h(a,x" 9 pnyn 3 * . . ) - 9 9 . . - ) 0, 

provided (x,,, y , , ,  ...) have a limiting distribution. Hence the a.d. of 
h(a,,x,,, p,y, , . . ) is the same as that of h(ax,, , By,, , . . . ). Let us consider a few 
applications of this result. 

(i) Let (T,,), n = 1, 2 ,  . . . , be a sequence of statistics such that 

J~(T, ,  - e) -L x - "0, d(e)l. 
Let g be a function of a single variable admitting the j irst derivative g' .  Then 

J&(T") - de) l  x - N O ,  [s'(e)4e)12) (6a.2.1) 
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ifg '(8) # 0. Further let g' be continuous, then 

LARGE SAMPLE THEORY AND METHODS 

and ifa(0) is also continuous, then 

(6a.2.2) 

(6a. 2.3) 

By Taylor expansion, under the assumptions on g ,  we see that 

g(TJ  - s(e) = (T, - O)(g'(@ + 4 7  

where E ,  -+ 0 as T, + 8. This implies that for any given small quantity e ,  
I E , ~  <ewhenever 1T',-O1 <6.HenceP(IEnI < e ) > P ( ( T , - 8 1  < 6 ) - + I  as 
n + 00 by assumption. Since e is arbitrary, E, L+ 0. Now 

J i [ g ( q , )  - ~ ( e ) ]  - J ~ ( T ,  - e)gye) = J ~ ( T ,  - e)E,e+ 0, 

since &(T, - 0) has an a.d. and E, 2, 0, by using [(x) a, 2c.41. Then the 
a.d. of J i [g(T, )  - g(8)] is the same as that of &(T, - 0)g'(O) which is 
N(0, [g'(0)aI2. Equation (6a.2.2) follows immediately because g'(T,) p-, 
g'(0) as T , A +  8. Similarly, we have (6a.2.3) by using [(x), 2c.41. 

Standard Error. When the a.d. of &(T, - 0) is "0, a2(e)], it is customary 
to refer to a(B)/Ji as the standard error (s.e.) of T,. The estimated s.e. is 
a(T,)/Ji. We may say that T, is distributed approximately the same as 
N(8, a2(8)/n). The results (6a.2.1 to 6a.2.3) show that the formula for the 
see. ofg(T,)is 

g'(8) (s.e. of T,). (6a. 2.4) 

Note. The results (6a.2.1) to (6a.2.3) are not, ingeneral, applicable if, 
instead of g ,  we have a function g,  depending on n explicitly and we are 
required to find the a.d. of g(T,, n) with a suitable normalizing factor. For 
this purpose, consider g as a function of two variables (x, y)  and suppose 
that ag/ax exists and -C(8) # 0 as y + 00, x -+ 8. Under the conditions 
assumed on g ,  expanding g(T, , n) at T, = 0 fo r  fixed n and following the proof 
of (i), wefind that 

(6a. 2.5) 
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where h may be any one of the.following forms:  

(b) G(T,)a(T,), if G and a are continuous, 
(c) (ag/aTn)a(Tn) if a is continuous. 

( 4  G(foa(0), 

Furthermore, g(0,  n )  can be replaced by f ( 0 ) ,  if J n [ g ( e ,  n)  -f(0)] + O  as 

(ii) Let T, be a k-dimensional stafisfic (T,,,, . . . , Tkn) such that. the a.d. of 
&(TI,, - e,), . . . , &I(&,, - 0,) is k-variate normal with mean zero and 
dispersion matrix 7 l  = (aij). Further let g be afirnction o f  k variables which is 
totallv di~erenfiable.  Then  the a.d. of 

n + o .  

J iun  = Jn[g(TIn t * * .  9 T k n )  - g(o1, . * . > O d l  
is normal with mean zero and variance 

(6a. 2.6) 

provided v(8) # 0. 

Since g is a totally differentiable function, then 

g(Ti,, , . . . , Tkn) - . . 3 0,) = (Tin - 01)  - -k EnI ITn  - 811, (2) 
where E, -+ 0 as Ti, + Oi. By argument similar to that used in  (i) E, p+ 0 as 
n + 00 and since &IIT - 8,(1 = [ c n ( T l n  - O i ) z ] ' / z  has an a.d. 

But the a.d. of &I 1 (TI,  - 0,) ag/dOl, being a linear function of limiting 
normal variables is normal with zero mean and variance as given in  (6a.2.6). 
By [(ix), 2c.41, the a.d. of 

As in  (6a.2.3), if oij and the partial derivatives of g are also continuous 
functions of 8, 

[J. U , / J v ( T , ) ]  x N O ,  I ) ,  (6a. 2.7) 

where u(T,) is the value of u(8) at 8 = T,. For an extension of this result to 
cases where g is also a function of n ,  see Example 9 at the end of the chapter. 

In practical applications we shall refer to the distribution of un,  itself, as 
asymptotically normal with mean zero and asymptotic variance v/n, where 
v is as defined in (6a.2.6). It is also convenient to drop the suffix n when there 
is no chance of confusion. 

u, is the same. 



388 

6 Method. The method of determining the s.e. of g(T,,, . . . , TJ can be 
formally exhibited as follows. Taking the total differential of g,  we have 

LARGE SAMPLE THEORY AND METHODS 

where dTi, stands for (Ti ,  - Oi) etc. Now compute the 
that the variances and covariances of (Ti,  - Oi) exist 

(6a. 2.8) 

variance, assuming 

(6a. 2.9) 

(iii) Let T, be a k-dimensional statistic (TI, , . . . , 6") with the a.d. as in (ii). 
Let g, , . . . , gq be q functions of k variables and each gi be totally diyerentiable. 
Then the a.d. of 

Jnllin = J i [g i (T , ,  , . . . , Tkn) - gi(o,, . . . , 
i =  I ,  . . . , q  

is' q-variate normal with zero means and dispersion matrix GCG', where 
G = (agi/JOj). The rank ofthe distribution is equal to R(GCG') (see Chapter 8 ) .  

A practically equivalent statement of the result of ( i i i )  is as follows. If 
( T , , ,  . . . , 6,) is distributed approximately as k-variate normal with mean 
(O,, . . ., 0,) and dispersion matrix n - ' Z ,  then (g , ,  . , . , gq) is distributed 
approximately as q-variate normal with mean [g,(O), . . . , g,(O)J and dispersion 
matrix n-'GZG'. 

To prove the result we need only consider a linear function g = b,g, + * * 

+ b,gq and apply the result of (ii). Let 6 = blg,(0) + * . .  + bqgq(8). Then the 
a.d. of &(g - 6) is normal with zero mean and variance 

(6a.2.10) 

where b' = (b, ,  . . . , b,). Since b is arbitrary we obtain the desired result. 
The result of (iii) as stated is not useful in  practical applications since the 

dispersion matrix GEG' depends on the parameters which may be unknown. 
We can state the stronger result as in (iv) below provided u i j ,  as functions of 
the parameters U,, . . . , e k ,  are continuous. 

(iv) Let G,, Z, be the values of G and C at ei = Ti,, i = I ,  . . . , k. Further, 
i = 1,  . . . , q and H,, be the d.J of a q-variatenormal let F ,  be the d.J of 
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distribution with mean zero and dispersion matrix G,,ZnG,,. Then i f X  and G are 
continuous in 0, 

lim sup (F,,  - H,)= 0. (6a.2.11) 
n-m X I .  ..., xcl 

The result (6a.2.11) follows from the fact that both F,, and H,, have the 
same limit and the limit is continuous in the variables. The result shows that 
F,, can be approximated by a q-variate normal distribution with the dispersion 
matrix G,,C,,G:, , which involves only the sample statistics. 

Pooling of Estimates. In practice, we are often faced with the problem of 
pooling of independent estimates of a parameter obtained from different 
sources. Generally, each estimate is reported as a number with an estimated 
standard error. I n  such cases two problems are to be considered. First, can 
all the estimates be considered as homogeneous, that is, are they estimating 
the same quantity? Second, if the estimates are homogeneous, what is the 
best way of combining them to obtain a single estimate? With these objects 
in view, we shall consider the following propositions. 

Let T l ,  . . . , Tk be independent consistent estimators of parameters el,  . . . , 
o k ,  based on sample sizes n , ,  . . . , n, respectively. Let the a.d. of Jni(Ti - ei) 
be "0, s i 2 ( O i ) ] ,  as ni  -+ 00. Consider the statistic H (for homogeneity) 

(6a.2.13) 

If each Ti does not estimate the same quantity, the differences are reflected in  
the statistic (6a.2.12), and therefore it may be used to test the hypothesis 
0 - . . .  = 

(v) Let n = n ,  + 9 * .  + nk and denote by ni the ratio ni/n, i = I ,  . . . , k. 
O k .  1 -  

The a .d .  of 

(6a.2.14) 

is x 2  on ( k  - 1) D.F. as n -+ 00, ifwe keep nl, . . . , n k j x e d ,  under the hypothesis 
6 1 -  - . . .  = Ok and the assumption that si  , i = I, . . . , k are continuous functions. 

Let us observe that, when 0, = * = 8, = 0 (say), 
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where 
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&!=I-- XiTi . - Xi 

siz(Ti)  ‘ $(Ti)’ 

It is then easy to establish, because of continuity of si, that 

P - 0  X i ( ~ i  - e l 2  ~ i ( T i  - 0)2 ‘ s;(Ti) - C siz(e) 

n. X .  
n(4  - 8)2 1 2  - n(e* - e)z 1 2 -LO, 

where 8* is the same as 8 of (6a.2.16) with siz(Ti) replaced by si2(0). Hence 
the a.d. of H is the same as that of 

sZ (Ti) sz (0) 

X , ( T ~  - el2 II. 

( T ~  - e)2 1 

H ‘ = n x  

= n C  

- n(8* - q2 C 1 
Si2(8) $(o) 

- n(O* - e)2 C7, 
Ci2 C i  

where ciz = s i2(0) /Xi  and 8* = (c Ti/ci2) t x( I/ciz). Writing 

(6a. 2.16) 

(6a. 2.17) 

(6a.2.18) 

where the a.d. of y i  is N ( 0 ,  I ) .  Since H’ is quadratic (and therefore continuous 
in) in  y,, . . . , y L ,  the a.d. of H’ is the same as that of the quadratic form 
(6a.2.18) under the assumption that yi is N(0 ,  1) and y i  are independent. 
If we apply the criteria given in [(ii) 3b.41, it is easily seen that the quadratic 
form (6a.2.18) is distributed as x 2  on (k - 1) D.F. 

When H is not large, or not significant at a chosen probability level, the 
(natural) pooled estimate is 

with the estimated asymptotic variance 

(6a.2.19) 

(6a. 2.20) 

In practice, the formula (6a.2.12) in terms of Ti is useful in computing the 
statistic H. 
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Note. It is shown in (ii) that when the a.d. of J i i (T i  - 0,) is “0, si2(0,)], 
the a.d. of &[g(Ti) - g(O,)] is “0, ui2(0, ) ]  where ui depends on si and the 
derivative of g .  If g is a one-to-one function of its argument, the hypothesis 
0 -... - 

faced with the problem of choosing a suitable function g and applying the H 
test on g(T, ) ,  . . . , g(T,) instead of on TI, . . . , Tk. Similarly we may obtain a 
pooled estimate of g(6) and then by inversion obtain a pooled estimate of 0. 
There is no satisfactory answer to  this problem, but when s , ~  = * = sk2, the 
corresponding ui2 are also equal and g can be determined in  such a way that 
the ui are independent of Oi (see 6g). Such a choice of g seems to have some 
advantage. We consider applications of the H test on transformed statistics 
in  6g. 

= 6, is equivalent to the hypothesis g(0 , )  = . * * = g(0k). We are then 

6b CHI-SQUARE TESTS FOR THE MULTINOMIAL 
DISTRIBUTION 

6b.l Test of Departure from a Simple Hypothesis 

Let n, ,  . . . , nk be the observed frequencies and n, ,  . . . , 7 [ k  be the hypothetical 
probabilities of a multinomial distribution. To test the hypothesis ni = nio, 
i = 1,  . . . , k (assigned values), K. Pearson (1900) suggested the criterion 

(ni - (observed - expected)2 
(6b. 1.1) x’=‘ nni =‘ expected 

(i) The a.d. of x 2  as defined in (6b.l.l) is X2(k - I ) .  

To prove this we apply the sufficient condition of (6a.1.6). The statistic 
(6b.l.l) is the quadratic form V‘CV with C = I. The conditions (6a.1.6) 

c2 = 1 2  = 1 = c, c(J) = I +  = gj) 

are satisfied with a = I # 0. Hence a.d. of (6b.l.l) is x2 on D.F. equal to  
(rank I - 1) = ( k -  1). Hence the result. 

6b.2 Chi-square Test for Goodness of Fit 

The general problem in judging goodness of fit is to test whether the cell 
probabilities are specified functions of a fewer number of parameters whose 
values may be unknown. 

(i) Let the cell probabilities be the specijied functions n,(O), . . . , nk(e) 
involving q unknown parameters (el, . . . , 0,) = 0‘. Further let (a)  4 be an 
efficient estimator of 0 in the sense of (5c.2.6), (6) each ni(0) admit continuous 
partial derivatives of the first order (only) with respect to 0, , j = 1, . . . , q or 
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each ni(8) be a totally differentiable function of 01, . . . , 8,, and (c)  the matrix 
M = (R;“’ dn,/d8,) of order (k  x q )  computed at the true values of 8 is of rank 
q.  Then the a. .d of 
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(6b.2. I )  

is ~ ’ ( k  - 1 - q) ,  where fii = ni(8). 
We note that efficient estimates in the sense of (5c.2.6) exist under the 

condition (b) as shown in  [(iv), 5e.21. Hence the a.d. of (6b.2.1) is established 
under the sole assumption of the existence and continuity of first-order 
partial derivatives of ni(8) or simply the total differentiability of xi (@) .  
For simplicity in the proof we write X, E Y, (asymptotically equivalent) to 
represent the statement X, - Y , L +  0. Let 

n(fi1 - n l )  n ( f i k  - nk) U ‘ =  ( 
JG 

M = - - , matrix of order (k  x q )  and rank q. 
(J.r 3 

D‘ = [J&, - el), . . . , J i (0 ,  - o ~ j ,  
Z = M’V, where V is as defined in  (6a. 1 .  I )  

The information matrix (i,J = M’M = 9 (say). By the assumption that the 
rank of M is q, 9 is nonsingular at the true value of 8 and since 6 is efficient 
in the sense of (5c.2.6), 

D f - ’ M ’ V .  (6 b. 2.2) 

Expanding xi(@ at 8 under the condition (b), we see that 

The relationship (6b.2.3) for i = 1, . . . , k can be written in matrix notation 
U h MD. By substitution for D from the relation (6b.2.2), U I M9-’M’V. 
Finally, subtracting V from either side, we have 

V - U (I - MS-’M’)V. (6b.2.4) 

The x’ statistic of (6b.2.1) is, replacing R i  by 7ci in the denominator, 

(V - U)’(V - U) V’(1- MS-’M’)(I - M 9 - ’ M ) V  
= V’(1- MS-’M’)V, since M’M = 9. 
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The sufficient condition (6a. 1.6) for a x2 distribution 

(I - M$-'M')' = I - M$-'M', since M'M = 9 
(I - M$-'M')$ = $, since M'$ = 0 

is satisfied with IX = 1 # 0. Furthermore, because of idempote,ncy 

rank (I - M K ' M ' )  =trace (I - M$-'M') 
= k - trace M9-'M'  = k - trace $-'M'M 

= k - trace I, = k - q 

where I, is a u n i t  matrix of order q. Hence by using the result [(iv), 6a.11, 
the a.d. of (6b.2 1) is x2(k - q - I ) ,  so that the rule for D.F. is (k  - 1 - the  
number of parameters estimated) provided the rank of (rr;'/2dni/d6j) is q. 

Note. One of the conditions under which the distribution of (6b.2.1) is 
established is that the estimator 8 used in obtaining the expected frequencies 
is efficient. I n  Chapter 5 we discussed the various conditions under which 
efficient estimators exist and the methods leading to the computation of such 
estimators. There is indeed a large class of efficient estimators, the choice of 
any one of which would make the a.d. of (6b.2.1) valid. There is, however, 
some advantage i n  using the maximum likelihood estimators provided the 
conditions under which they are efficient are satisfied (see Rao, 1961a, 1962d). 

6b.3 Test for Deviation in a Single Cell 

The xz  goodness of fit test provides an overall test of differences between 
observed and expected frequencies specified by a model. Sometimes it is of 
interest to examine whether the departure from expected is due to deficiency 
or otherwise of the observed frequency in a particular cell. For instance, in  
studying a frequency distribution of accidents, we may suspect that there is 
underrecording of individuals with no accidents. Cochran (1954) proposed 
as the test criterion the residual 

(6b.3.1) 

to examine the deviation in thejth cell. To determine the a.d. of the statistic 
(6b.1.3), i t  is enough to compute its asymptotic variance (a.v.), that is, the 
variance of its a.d. 

From (6b.2.4), we see that 

V - U& (I - M$-'M')V, u A MY-~M'V.  
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The covariance between the asymptotic equivalents of V - U and U is 
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(I - M 9  - ' M') [ E ( V V ' ) ]  MY- ' M' 
= ( I  -MS-'M')(I - ++')M9-'M' = 8, since +'M = 0. 

Therefore each component of V - U is uncorrelated, asymptotically, with al l  
the components of U, which is an important result, similar to the result in  
least squares theory that the residuals are uncorrelated with best estimates 
[(ii), 4a.41 

Hence the a. cov. of thejth components of U and V is zero, which is the 
same as 

a. cov 

that is, 

a.v.( n j  - n n j w  1 = 

JnKfXe) 
But 

and 

by using the formula (6a.2.6). Hence 

The test based on a normal deviate N(0, I ) ,  for deviation in thejth cell, is 

For a single parameter, formula (6b.3.2) becomes 

1 dnj ' 1 
n, ( d o )  i(e) 

o(e) = ( 1  - n j )  - - - 

(6 b. 3.3) 

(6 b. 3.4) 

where i(e) is the information per observation. 
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As an example let us consider the deviation i n  the zero cell of an observed 
distribution of a Poisson variable. Here, 

The value of (6b.3.4) is 
1 - e - p  - p e - ” .  

Suppose in an observed distribution we have 

n = 200, no = 15, and fi  (estimate of p )  = 2.1055 
no .- nfi,  = 15 - 200e-P 

= 15 - 24.356 = -9.356 
nfioo(fl) = ne-fl(1 - e-0 - f ie -0)  

= 24.356(0.62181) = 15.1448. 

The statistic (6b.3.3) has the absolute value 

9.356 
~ = 2.40, 

JI 5. I 4413 

which is high for a normal deviate indicating a deficiency in the zero cell. 

6b.4 Test Whether the Parameters Lie in a Subset 

Assuming the specification ni(8) to be true, let us examine whether 8 belongs 
to a subset of the admissible values, specified by the locus 

O i = g i ( r  ,,..., T,), i = l ,  ..., 9; r < 9 ,  (6b.4.1) 

where g l  admit continuous first derivatives and T ~ ,  . . . , T, are new parameters. 
To test the hypothesis (6b.4.1), the author proponed the test criterion (Rao, 
1961a) 

(6 b. 4.2) 

where El and E2 stand for the estimated frequencies when there is no restric- 
tion on 8 and when subjected to the restrictions (6b.4.1) respectively. 

More specifically, let 6 be an efficient estimate of 8 without any restriction. 
When the hypothesis (6b.4.1) is true, nl is a function o f t ’  = (T,, . . . , T,) and 
let 9 be an efficient estimate o f t .  Then the a.d. of 

(6 b .4.3) 

is that of x2(q - r ) ,  provided ni( t )  satisfy conditions similar to those of 
n,(8) as functions of 8. 
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This proposition can be proved on the same lines as in  6b.2. We note that 
the information matrices 9, and 9 for z and 0 are connected by the relation 
91 = A ’ 9 A  where A = (20,/2rj) is the matrix of the derivatives. The difference 
,/i[ni(@ - ni(?)J can be expanded in  terms of observed frequencies as in the 
case of Jn[n,(6) - ni(0) ] .  The statistic (6b.4.3) is then equivalent to a quad- 
ratic form i n  V. An application of (6a. 1.6) yields the result. 

6b.5 Some Examples 

Example 1. Bateson gives the following data concerning the segregation of 
two genes for purple-red flower color and long-round pollen shape in  sweet 
peas. 

The results come from an intercross so that the expected frequencies, on the 
hypothesis of independent segregation, are in the ratio 9 : 3 : 3 : 1. Are the 
data in  agreement with the expected frequencies? We can apply the x2 test 
of 6b.l. 

Purple-long Red-long Purple-Round Red-Round Total 

0 bserved 296 27 19 85 427 
Expected 3843+16 1281t16 1 2 8 1 ~ 1 6  427+16 427 
(Observed)’ 

Expected 364.78 I7 9.1054 4.5090 270.7260 649.122 1 

0’ 
E 

x 2  = 2 - - 2 0 = 649.1221 - 421 = 222.1221 on 3 D.F. 

The probability of x2 on 3 D.F. exceeding 222.1221 is very small showing 
that there is departure from the expected. For the large sample test to hold, it 
is necessary that each cell expected frequency should be greater than 5 .  An 
exact test may be made i n  some situations when the expected frequencies are 
small, as shown in  Example 2. Other devices for dealing with small expec- 
tations are considered in 6d.2 and 6d.3. 

Example2. Test whether the frequencies 8, 3, I could have arisen from a 
trinomial with equal probabilities. 

The expected values 4, 4, 4 are all small so that the x 2  approximation may 
not be valid. If we ignore this condition, the x 2  on 2 D.F. is 

8’ 3 l 2  
- + - + - - 12 = 6.5, 
4 4 4  

which has a probability between 2 % and 5 %. In the present example as the 
expected frequencies are all small, we are in doubt about the validity of the 



6b TESTS FOR THE MULTINOMIAL DISTRIBUTION 397 

x 2  approximation. This doubt necessitates the evaluation of the actual prob- 
abilities of x 2  being equal to or exceeding the observed value 6.5. The 
probability for any observed set of frequencies x, y,  z is 

12 2 (!) 
x ! y ! z !  3 

There are 91 partitions of 12 and the probabilities for partitions yielding 
a x 2  2 6.5 are computed as follows: 

Partitional Type Number Proba bi My Chi-square 

12 0 0 
1 1  1 0 
10 2 0 
10 1 1 
9 3 0  
9 2 1  
8 4 0  
8 3 1  
7 5 0  

0.0’ 1882 
0.042258 
0.03 1242 
0.032484 
0.034140 
0.02 1242 
0.0393 14 
0.0’3726 
0.02 1490 

24 
18.5 
14 
13.5 
10.5 
9.5 
8 
6.5 
6.5 

When we add these probabilities, the exact probability of x2  being greater 
than or equal to 6.5 is found to be 0.04844, which is slightly higher than the 
value found from the asymptotic distribution. But in general the agreement 
may not be so close. The agreement will be fairly good when the expected 
value in each cell is greater than 5 .  

6b.6 Test for Deviations in a Number of Cells 

In addition to U, M defined in 6b.2 and V in 6b.1, we denote 

(6b.6.1) 

the vector denoting deviations in the k cells. It may seem that the x 2  test of 
goodness of fit described in 6b.l is W’W. 

In 6b.3 we developed a test for examining deviation in a single cell. We 
shall now develop a test for deviations in r specified cells. For this we find 
the asymptotic dispersion (a.D) matrix of W which is equivalent to V - U. 
Then 

a.D(W) = a.D(V - U) = a.D(V) - a.D(U) (6b.6.2) 
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since the asymptotic covariance matrix between V - U and U is null as 
shown in 6b.3. Hence 
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a.D(V) - a.D(U) = (I -cpcp’) - MY-’M’. (6 b. 6.3) 

Let d denote the sub-vector of W containing only the terms corresponding 
to the subset of cells in which the deviations have to be tested and let B 
denote the dispersions matrix of d obtained from (6b.4.3) by retaining only 
the relevant elements. The elements of B involve the unknown 8. Substituting 
8 for 8 we obtain the matrix 8. The xz test for examining the deviations in r 
specified cells is 

xz = d’B-’d (6 b. 6.4) 

on r D.F provided R(B) = r. Otherwise a g-inverse of 8 has to be used in 
which case the D.F. of xz is R(B). 

6c TESTS RELATING TO INDEPENDENT SAMPLES 
FROM MULTINOMIAL DISTRIBUTIONS 

6c.l General Results 

Suppose that we have samples of sizes n,. . . . , n,,,. from m finite multinomial 
populations, all not necessarily having an equal number of cells. As for a single 
multinomial, two types of problems arise. First, to test the specifications 
(i.e.y of cell probabilities as given functions of a certain number of parameters) 
simultaneously for all the multinomial distributions. Second, to test whether 
the parameters belong to a subset of the admissible values. 

For example, we may have samples from two different populations 
providing the frequencies of 0, A, B, AB blood groups. First we may examine 
whether the frequencies in  each group are in accordance with Bernstein’s 
hypothesis, as discussed in 5g of Chapter 5.  A second question that naturally 
arises is whether the gene frequencies are the same in both the populations. 
Let p ,  q represent the A, B gene frequencies in  the first population and p ’ ,  q’ 
represent the corresponding gene frequencies in  the second population. The 
hypothesis states that p = p’  and q = q’, 

Let us consider a general problem where the cell probabilities of the ith 
population are specified functions 

nil(e), * * * I ni,,(e) (6c. 1.1) 

of q unknown parameters O I i ,  . . . , Oqi. Let n i l ,  . . ., n i k , ,  (1 n i j  = n i , )  be the 
observed frequencies in the ith sample, and B I i ,  . . ,, Bqi be the m.1. estimators 
based on the ith sample. Let the probabilities (6c.I.l) satisfy the conditions 
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for an application of the x2 goodness of fit test of 6b.2. Then the goodness 
of fit x2 for the ith sample is 

(6c. I .2) 

on D.F. equal to ( k i  - 9 - I ) ,  where R i j  are obtained by substituting . . . , 
Oqi for the unknown parameters. The total x2 arising from the in samples 
(i.e., m individual goodness of fit xz ’s), 

(6c. 1.3) 

has then 1 k i  - m9 - m D.F., which provides an overall test of the specifica- 
tions of the probabilities. 

Now let O,i = 8, for all r and i so that the same parameter values are applic- 
able to all the rn populations, and denote by 07, . . . , 0: the m.1. estimators of 
e l ,  . . . , 0, obtained from the combined sample. Let r$ be the value of ni j (0)  
when O:, . . . , 0: are substituted for O,, . . . , 0,. We thus have two estimated 
expected values for the observed frequency n i j ,  

El = (expected), = n i ,  R i j ,  

E2 = (expected), = n i ,  nt, 

where it  may be noted that R i j  is obtained by substituting the m.1. estimators 
obtained from the ith sample alone as in  (6c. I .2). The x2 test for the hypothesis 
that the same parameter values are applicable to all the samples is 

which is asymptotically x2[9(rn - 1)) The proof is similar to  that of (6b.4.2). 

6c.2 Tests of Homogeneity of Parallel Samples 

Let the frequencies in k classes for two samples be as in  Table 6c .2~ .  

TABLE 6c.ta. Observed Frequencies in Two Parallel Samples 

Classes 

First rill n12 f l l k  111 . 
Second 1111 n 2 2  . . *  n 2 k  112 . 

Total F1.1 11 .2  ’ ’ *  f l  . k  n . .  
First/total p1 p~ ... 

. . .  

Pk ‘P 
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The classes may refer to a discrete classification or to intervals of a continuous 
variable. I f  nothing is specified about the hypothetical cell probabilities (i.e., 
as functions of a smaller number of parameters), how can it be tested that the 
two samples have come froni the same population ? 

Let n l I , .  . . , n,,, and n z l ,  . . . , n2k be the probabilities of the cells in  the two 
populations. The hypothesis to be tested is n l i  = 7 ~ ~ ~ .  i = I , .  . . , k .  The estimate 
of r l  from the first sample is 

and that of nIZi from the second sample is 

If n l i  = 7 r 2 i  = ni (say), the estimate of the common value (from the combined 
sample) is 

The x 2  of (6c. 1.4) for the hypothesis under test is 

( 1 1 , ,  - y2 - y)2 
"2. ".i = c  i= I + c  i=  I E2 

(6c.2.1) 

where p i  and 11 are as defined i n  Table 6 c . 2 ~ .  The x 2  defined in (6c.2.1) has 
(k - 1 )  D.F. as the hypothesis specifies the equality of ( k  - 1)  independent 
cell probabilities. 

In  general, when there are 111 samples to be compared, the formula is 
2 

(l l i i  - 7) "i. " . j  

9 D.F. = ( 1 ~  - l)(k - 1). (6c.2.2) 
"i. I1.j 

n.. 

x ' = Z C  
- 

The formula for xz cannot be simplified further i n  the general case. 
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6c.3 An Example 

The distribution in  four blood group classes 0, A, B, AB of 353 individuals 
belonging to community C and 364 individuals of community D are given 
in Table 6c .3~ .  The test (6c.2.1) is applied to examine the equality of the 
hypothetical proportions of the blood group classes in the two communities. 
The x 2  = 11.77 on 3 D.F. computed in Table 6 c . 3 ~  is significant at the 5 %  
level indicating differences between communities. 

TABLE 6c3a. Classification of Individuals by Blood Groups 

0 A B AB Total 

Community C 121 120 79 33 353 
364 
717 

- - - 30 
63 
- 118 95 121 

200 21 5 239 
- Community D 

- - - - - Total 

Community C 
= Total 

0.5063 0.5581 0.3950 0.5238 0.4923 

Z'n~rpt - .p = 121(0.5063) + 120(0.5581) + . * *  - 353(0.4923) = 2.9428 
p(1 - p) = 0.24994, x 2  = 2.942810.24994 = 11.77 on 3 D.F. 

The x 2  test on 3 D.F. is not, however, the best for the available data if the 
object is to establish differences between communities. The intrinsic (or 
genetic) difference, if any, between the communities, is in  the relative frequen- 
cies of the 0, A, B genes. A test of the hypothesis of equality of gene fre- 
quencies is more fundamental than that of the equality of frequencies of the 
phenotypes without recognizing that the latter are known functions of the 
former. Only when such functional dependence on more intrinsic characters 
like the gene frequencies is unknown or is in  doubt, is a test of the type (6c.2.1) 
involving the phenotypical frequencies valid. 

TABLE 6c.3P. Maximum Likelihood Estimates 

B B i = ( l - f i - C j )  

Community C 0.24649 0.1731 7 0.58034 
Community D 0.19025 0.23573 0.5 740 1 
Combined sample 0.21762 0.20435 0.57803 
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The specification of the probabilities of the phenotypes 0, A, B, AB in 
terms of gene frequencies p, q,  r is given in the illustrative example of Section 
5g. By applying the method of m.1. as indicated in  that section, the estimates 
of p, q, r for the first sample, second sample, and the combined sample are 
obtained. Using these estimates, the expected values (E, and E2) on the basis 
of individual estimates and combined estimates are obtained for each com- 
munity and shown in Table 6c .3~ .  

TABLE 6c .3~ .  Expected Values under the Two Hypotheses 

Community C Community D 

Classes Probabilities Observed R EZ Observed El El 

0 r 2  121 118.89 117.94 118 119.93 121.62 
A p a  + 2pr 120 122.44 105.52 95 92.68 108.81 
B q 2  + 2qr 79 81.54 98.14 121 118.74 101.19 

AB 2P9 33 30.13 31.40 30 32.65 32.37 

Total 1 353 353 353 364 364 364 

x2 (goodness of fit) 

for comrnunit.1 - 1 D.F. 

=0.35, 1 D.F. 
(0 - El)' 

El 
for community D = 2 

=11.04, 2D.F.  
x 2  for homogeneity (El - E d 2  

The values of x2 for the individual communities are small, which indicates 
that the specification of cell probabilities in  terms of gene frequencies are 
valid. The last x z  establishes the difference between communities in a better 
way than the x 2  of 11.77 on 3 D.F. obtained from a direct comparison of 
phenotypic frequencies. The two x z  's are nearly of the same magnitude, 
but the x z  based on a comparison of gene frequencies has 1 D.F. less, giving 
a lower probability in  favor of the null hypothesis. 

The test can be extended to examine differences between several communi- 
ties simultaneously. We need to obtain m.1. estimates for individual samples 
and for the combined sample. We then compute two sets of expectations for 
comparison by the xz-test. 
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6d CONTINGENCY TABLES 

6d.l The Probability of an Observed Configuration and Tests in Large Samples 

If the individuals of a population can be described as belonging to one of r 
categories, A , ,  . . . , A ,  with respect to an attribute A ,  and to one ofs  categories, 
B , ,  . . . , B, with respect to an attribute B, and so on, then we have a frequency 
distribution of individuals in  r x s x . . *  classes, a typical class being re- 
presented by A i B j  . . . . If there are k attributes the arrangement described 
earlier is called a k-fold contingency table. No new distribution problems arise 
since a contingency table as considered i n  the present section is only a special 
case of a multinomial with r x s x . . .  classes and the general results of the 
section 6b apply. 

In this section the various problems connected with two attributes are 
discussed, the treatment being similar in  the general case. Let the observed 
frequency i n  the class A i B j  be denoted by n i j  and the probability by n i j .  
Also let 

n,, + ni, + * "  + n ,  = ni, nil + ni2 + * . *  + n[is = ni, 
n , j + n 2 j + . . . + n , j = n , j  7 1 ~ ~ + n ~ ~ + . * ~ + n , . ~ = n , ~  

n1, + n2.  + . * .  = n.1 + n.2  + ... = n, , 
n,. + n 2 ~  + ... = 11.1 + n.2 + . * '  = 1.  

The probability of the observed frequencies is that of multinomial in r x s 
classes 

If n i j  = r c i , n , j ,  a situation in which the attributes (events) A i  and Bj are 
independent, then (6d. I .  I )  becomes 

The first two expressions give the probability of the marginal totals, and the 
third gives the probability of the class frequencies for fixed values of the 
marginal totals. The conditional probability of all n i j  given the marpinal 
totals n,,, . . . , n,, and n , l ,  . . . , n,s, is 

(6d. I .3) 



404 

It is interesting to observe that the expression (6d. I .3) is independent of the 
hypothetical values of the proportions ni , ,  n ,  j ,  p rovided, of course, that the 
attributes are independent. 

In  some situations, especially in designed experiments, one set of marginals 
is determined in advance. [Thus, for instance, we might choose a number of 
individuals and inoculate them against an infection. Another chosen number 
of individuals could be kept as controls. In each group (inoculated or not 
inoculated) we obtain the actual numbers of individuals infected and not 
infected from which a 2 x 2 contingency table can be set up.] I n  general, if the 
row totals are fixed in  advance, then, assuming the same set of probabilities 
n l r  . . . , n,s for different categories in  each row, the joint probability of the 
observations is 
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The probability of the marginal totals n, in this case is 

P ( n , , ,  .. ., n . s l n l , ,  . . ., n,,) = . . . R:”, n..! nn. l  

n . l !  . . . n , s !  ’ 
(6d. 1.5) 

which is obtained by summing (6d.1.4) over n, = xi n i j ,  for j = 1,  . . . , s. 
Hence the conditional probability of n i j  given the marginal totals is (6d. 1.4)/ 
(6d. 1 . 9 ,  

(6d. 1.6) 

which is the same as the expression (6d.1.3) obtained in the general case. 

6d.2 Test of Independence in a Contingency Table 

If the probabilities nij  of the cells in  a contingency table are assigned, then to  
test the hypothesis that the data are in agreement with these hypothetical 
values, the statistic 

(nij  - n.. nij)’ (0’ - E)’ x ’=CC = I 7  (over all classes) (6d.2.1) 
i j n.. nij 

can be used as x’ on (rs - 1) D.F., the only restriction being n i j  = n, 
If the attributes are independent, the cell probabilities satisfy the relations 

nij  = xi, n,  for all i and j .  (6d. 2.2) 

How can this hypothesis be tested on the basis of the observed data? Two 
situations may arise: 
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I .  The hypothetical probabilities n,, and n, specifying the marginal 
distributions may be known, in which case we are required to examine 
whether the cell probabilities could be constructed by the law (6d.2.2). 

2. The hypothetical proportions of the marginal frequencies not being 
known, we are required to test whether the attributes are independent. 

In the first problem we have 

, D.F. = rs - 1, (6d. 2.3) (nil - n. . ni.n. j)’ 
n .  .ni .n.  j 

x z  =cc 
which measures the overall discrepancy between the observed and the 
expected frequencies. From this we can single out two components 

(6d. 2.4) 

(6dI 2.5) 

which measure the discrepancy between the observed marginal frequencies 
and the expected. With these statistics we can test whether the observed 
marginal totals are as expected. On subtracting xlZ and xZ2 from the total, 
we obtain 

h2 = x L  - X 1 2  - x z 2  

(6d. 2.6) 

Since the total xz of (6d.2.3) has (rs - 1) D.F., xlZ and xz2 have ( r  - 1) and 
(s - I )  D.F.; and x3’ is positive, it follows from an extension of the result 
[(iv), 3b.41 that x3’ has (rs - I )  - (r  - 1) - (s - I )  = ( r  - l)(s - I )  D.F. 
The component (6d.2.6) can be used to test the departure from independence. 

As an example, consider the fourfold contingency table with the marginal 
hypothetical proportions (pl, q l )  for A and ( p ,  , 4,) for B. 

Bl B, Total 

A1 a b a + b  
C d c + d  A2 - - -  

Total a + c b + d n 

The total x 2  is 
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The components are 
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(a + b - npA2 

nP1 

(a + c - n p d 2  

(c + d - n q , ) 2  

( b  + d - nq,)’ 

( n  + b - npIl2  

(a  + c - t ~ p , ) ~  

np2 q 2  

+ - - , 1 D.F. 
nq 1 nPIq1 

X I 2  = 

x2’ = + - - ., 1 D.F. 
np2 nq2 

Example 1. Table 6d.2a gives Bateson’s distribution of sweet pea plants 
obtained from an intercross. The marginal frequencies are expected to be in 
the ratio 3’: 1, and if the two characters, flower color and pollen shape, are 
independently inherited, then the cell frequencies are expected to be in  the 
r a t i o 9 : 3 : 3 :  1. 

TABLE 6d.2a. Distribution of Plants by Pollen 
Shape and Flower Color 

Flower Color 

Pollen 
Shape Purple Red Total 

Long 296 27 323 
104 Round 

Total 315 112 427 
- 85 - 19 - 

It was seen (Example 1, 6b.5) that the total x 2  of discrepancy on 3 D.F. is 
222.1221, which is very high. The first component is 

(a + b - t1p1)~ (323 - 2 x 427)2 
- - = 0.0945, 

X I 2  = *PI 4 1 427 x x 4 
which is quite small for 1 D.F., showing that the single factor segregation 
with respect to the pollen shape is as expected. Similarly, x22  = 0.3443 which 
again is quite small, showing that the single factor segregation with respect 
to flower color is as expected. The third component is 

(a4142 - bP24, - CP142  + 4 w 2 ) 2  
x 3 2  = 

nPlP2ql92 

(296 - 27 x 3 - 19 x 3 + 85 x 9)’ 
= 221.6833, - - 

427 x 3 x 3 x 1 x 1 
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which is very high for I D.F. The total of the three x 2  values is 

0.0945 + 0.3443 + 22 I .6833 = 222. I22 I ,  

and thus agrees with the total calculated earlier. It is seen that the whole 
discrepancy is concentrated i n  one component with a single degree of freedom. 
This shows that the departure of the observed from the expected cell frequen- 
cies is due to the dependence of the characters inherited but not to single 
factor segregations. The success of all statistical tests lies i n  isolating the more 
efficient components for judging the points at issue. 

Suppose the hypothetical values of the marginal probabilities are not 
known. Then we estimate their values on the hypothesis 

n.. = n .  7[ ., 
I J  I . . J  

The m.1. estimates are 

These values may be substituted i n  the total x 2 ,  

(6d. 2.7) 

‘ I .  

Since ( r  - I )  + (J - I )  parameters have been estimated, the x 2  of (6d.2.7) has 
(rs - 1) - ( r  - I )  - (s - I )  = ( r  - I ) ($  - I )  degrees of freedom, using the 
result on the goodness of fit x 2  distribution derived in 6b.2. At the estimated 
values of n i ,  and T ,  j ,  the components xIz and x Z 2  have zero values so that 
x 3 2  = x 2 .  Thus x3’ measures the departure from independence. 

This test is useful in two situations: 

I .  Suppose that i n  Bateson’s problem of the segregation of factors i t  is 
found that the marginal frequencies deviate significantly from the 
expected. This indicates that the assigned marginal probabilities may not 
be correct. I n  fact, if the single factor segregations are disturbed owing 
to unequal viability of the two types of plants, the marginal frequencies 
will not be i n  the ratio 3 : I .  I n  such a case the third component x3’ of 
(6d.2.6) loses its validity, or, i n  other words, the significance of x3’ may 
result from the use of wrong proportions. The best course is then to 
substitute the estimated proportions and use the test (6d.2.7) obtained 
earlier. 

2. The second situation occurs when nothing is specified about the marginal 
proportions. In this case (6d.2.7) supplies the test for independence. 
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In  a 2 x 2 table when the hypothetical marginal proportions are not known, 
the x‘ test (6d.2.7) of independence is 

[a  - (a + b)(a + c)/n]’ 
( a  + b)(a + c) /n 

[b - (a + b)(b + d)/n]’ + . . . + * * .  , 
( a  + b)(b + d)/H 

+ 
which reduces. to 

n(ad - bc)’ + (a + c)(b + d)(a + b)(c + d )  

with the numerical value 

427(296 x 85 - 27 x 19)’ 
315 x 112 x 323 x 104 

= 218.8722 

on 1 D.F. in Bateson’s problem of the segregation of factors. The x’ value 
of 218.8722 is lower than that obtained by using the hypothetical values of 
the marginal proportions. Such discrepancies will not i n  general lead to 
contradictory conclusions. The earlier test makes use of the information sup- 
plied by a total of 427 plants whereas the latter makes use of the information 
supplied by the set of configurations having the same marginal totals. Some 
marginal totals are more informative than the average, whereas others are less. 

Example 2. The data of Table 6d.2j give the number of skulls excavated 
from a locality i n  three different seasons and the sex distribution as sexed by 
investigator A working i n  the first two seasons and by investigator B working 
in  the third season. What information do the data supply on the sex ratio of 
the population buried in the locality? 

TABLE 6d.2P. The Distribution of Skulls by Sex 
and Seasons 

Season 

First Second Third 

d 162 180 210 552 
8 110 125 200 435 

Total 

How do we approach this problem? First, it is natural to examine whether 
the sex ratio is 1 : I in each season. The expected values undersuchahypothesis 
are given in Table 6d .2~ .  The x’ for the first season is 

(162 - 136)’ 
136 

( 1  10 - 136)’ 
136 

= 9.9412, + 
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and similarly the x 2 ’ s  for the second and third seasons are 9.9180 and 0.2440 
giving a total x 2  of 20.1032 on 3 D.F. The ,y2 is too high, indicating departure 
from the 1 : 1 sex ratio. Individually the deviations in  the first two seasons 
( x 2  = 9.9412 and 9.9180 on 1 D.F. each) are significaht. The x 2  from the 
marginal total measuring the deviation from the 1 : 1 sex ratio is 

987 = 13.8692, 
(552)2 (435)’ -+-- 
493.5 493.5 

which leaves a x 2  = 20.1032 - 13.8692 = 6.2340 on 2 D.F. for testing the 
differences in  the ratio i n  the three seasons. This is no doubt significant at the 
5 % ,  level, showing differences i n  sex ratio, but the test is not strictly valid 
owing to the fact that the marginal totals are not compatible with sex ratio 
1 : 1, the x2 = 13.8692 on 1 D.F. being large. Since we have observed 

TABLE 6 d . 2 ~ .  The Expected Values under 
the Hypothesis of Equal Sex Ratios 

Season 

First Second Third 

6 136 152.5 205 
0 136 152.5 205 

that there is an overall discrepancy from the 1 : 1 sex ratio, we might ask 
whether the sex ratio is the same for the three seasons although it may not be 
1 : 1. A straight test of independence with fixed marginals (6d.2.7) or of 
homogeneity of parallel samples (6c.2.2) can now be calculated This gives a 
x 2  equal to 6.3222 on 2 D.F., showing significant differences in sex ratios in 
the three seasons. The agreement of this x 2  with the earlier value of 6.2340 
obtained by using the hypothetical ratios is, perhaps, accidental. 

We must be careful in  drawing conclusions from data ofthis nature. It must 
be observed that the skulls are sexed by a subjective method of anatomical 
appreciation, and different investigators may have different methods of 
sexing, leading to different ratios. The observed discrepancy in the sex ratios 
for different seasons may be due to the result of there being a different 
investigator in  the third season. The proportions of males as observed are: 
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Investigator A Investigator B 

Season First Second Third Overall 
Proportion 0.5956 0.5902 0.5122 0.5593 

The discrepancy between the two investigators is then tested by the x 2  test 
of independence from the 2 x 2 table: 

First and Second Third 
Seasons Seasons 

d 342 210 
Q 235 200 

The xz on 1 D.F. is 6.3055, which is significant. Thus, out of a total x z  of 
6.3222 on 2 D.F., measuring the differences in sex ratios, 1 degree alone ac- 
counts for 6.3055, which shows that the whole discrepancy between seasons 
is due only to the differences between investigators. 

What then are our conclusions? There is difference between the investigators 
in the technique of sexing the skulls, assuming that the investigators had 
worked in  the same regions of the locality, so that the observations of the 
two investigators are not comparable. 

The data also suggest a preponderence of males but it is not known to what 
extent the observed deviation from 1 : I is due to a wrong technique of sexing 
of the skulls. There is also the question of differential preservation of male 
and female skulls, the latter being more delicate and fragile. It appears that 
" we can never solve a problem without creating ten more." 

Example 3. Consider the following data, collected from a number of schools, 
regarding speech defects (S,, S ,  , S,) and physical defects (PI, P,, P3)  of 
school children. 

S, S2 S ,  Total 

PI 45 26 12 83 

p3 
p2 32 50 21 103 

31 4 10 17 
Total 81 86 50 217 

- - - - 
- - - - 

The expected values on the hypothesis of independence are: 

30.982 32.894 19.124 
38.447 40.820 23.733 
11.571 12.286 7.143 
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The x2 on 2 x 2 = 4 D.F. is 34.8828, which is significant at the 1 % level. It 
is seen that, although the frequency in one cell is as small as 4, the expected 
frequency is large enough for the x2 approximation to hold. The frequency 
also should be large enough, however, for the approximation to be good. In 
such cases i t  is reasonable to  combine two cells by adding their frequencies 
and treating them as one cell for purposes of tests of significance. In the fore- 
going example, 4 and 10 may be added to yield an observed frequency of 14 
with the corresponding expected value 11.571 + 12.286 = 23.857. The new x 2  
computed by the formula (0 - E ) 2 / E  over the 8 cells is 33.5763. But the 
distribution to which this value can be referred is no longer a x2, although it 
has been the practice to refer it to a x2 distribution with 1 D.F. less, that 
is, on 4 - 1 = 3 D.F. Although the summation is now taken over one cell 
less, theoretically I D.F. is not lost. So to use the new x2 on (4 - 1) = 3 D.F. 
is to overestimate significance whereas to consider it as on 4 D.F. is to under- 
estimate significance. Although definite conclusions can be drawn either when 
the new x2 is not significant on 3 D.F. or when it is significant on 4 D.F., as 
in  the present case, it is not possible to infer about the actual level of signifi- 
cance when the new x2 is significant on 3 D.F. and not on 4 D.F. 

The appropriate distribution of the x 2  i n  such cases has been investigated 
by Chernoff and Lehmann (1954). They show it  to be the distribution of a 
linear combination of x2 variables. Since it is difficult to  use such a distribution 
the following approach is suggested. We first obtain a new set of expected 
values by considering the cells SIP, and S , P ,  a5 constituting a single cell. 
If pl ,  yl, r ,  and p z  , 92, r2  are the marginal proportions for physical defects 
and speech defects, the probability of the observed frequencies on the hypo- 
thesis of independence is proportional to 

(pip2)45(pi92)26(Pir2)12 * ’ * [(P2 -t- q z ) r ~ I ~ ~ ( r i r d ~ ’ -  

The maximum likelihood equations for p I ,  91, p 2 ,  92 are 

217p1 = 83, 217q1 = 103 
2 17( I - p2 - 92) = 50 76p2 = 7742, 

which give the estimates 

f12 = 0.387308, d 2  = 0.382278, P2 = 0.230414. 

The estimates ofp, ,  91, r ,  are the same as before. The new expectations are 

32. I47 3 1.729 19.124 
39.893 39.375 23.733 

(12.006 + 11.851) 7.143 

and the x2 on (7 - 4) D.F. is 31.2472. This test is valid in the sense that when 
significance is noted the hypothetis of independence is rejected. 
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Fisher recommended a test based on likelihood (see 6e), which is more 
appropriate when the cell frequencies are small. This is defined by 

L = 2 nij  log, ni j  - 1 n i .  log, n i ,  - x n, log, n. -t n., log, n., . 
Here, L is approximately distributed as x2 on ( r  - I)($ - I )  D.F. The value 
of L in the foregoing problem is 30.4448, which is significant on 4 D.F. 
Even the use of L requires a large sample. 

It must be emphasized that the object of a test is first to establish departure 
from independence i n  a general way. For this it is enough to use a valid test 
which is simple to  compute. If necessary more refined tests may be used to 
examine different portions of the contingency table. For instance, we may 
inquire whether the two physical defects P ,  and P, and the speech defects S1 
and S ,  are associated. This needs a refined technique as discussed in the 
next section. 

6d.3 Tests of Independence in Small Samples 

I n  testing for any hypothesis specifying some relations satisfied by the para- 
meters, we see that the unknown parameters do not enter into the large sample 
distribution of the xz statistic. But in  small samples it might happen that the 
x2 approximation breaks down and/or the unknown parameters appear in  
the exact distribution of xz. I n  the latter, no exact test of significance is 
possible, owing to the presence of the unknown parameters, called nuisance 
parameters, in the probability distribution. 

One way to remove the nuisance parameters is to compare the particular 
observed sample, not with the whole population of samples with which a 
comparison might be made if the exact values of the nuisance parameters 
were known, but with a subpopulation selected with reference to the sample 
in such a way that the distribution of a statistic in this subpopulation does 
not involve any unknown parameter. For instance, it is shown that on the 
hypothesis of independence of two attributes the probability of cell frequencies 
given the marginal totals, is 

nd n, ,. , thus which does not contain the hypothetical values n,, dmi tt ing 
the possibility of determining the exact probabilities in tests-of independence. 

Example 1. Do the following data on sociability ( S )  and nonsociability ( N S )  
of soldiers recruited in  cities (C) and villages ( V )  suggest that the city soldiers 
are more sociable than the village soldiers ? 
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S N S  Total 

C 13 4 17 
20 6 14 V 
37 Total 19 18 
- - -  
- - - 

The smaller frequencies in  one diagonal suggest that city soldiers are more 
sociable. But it must be ascertained whether such a configuration as the 
observed and those indicating a higher degree of sociability of the city recruits 
can occur by chance if in  fact there was no difference in the sociabilities of the 
city and the village recruits. Since for fixed marginals the probability of a 
given configuration a, b, c,  din the four cells is 

17! 20! 19! 18! 1 
37 a!  b !  c !  d!’ 

we find that the probabilities for configurations with 4, 3, 2, 1 and 0 in the 
northeast corner cell (these being less favorable to the hypothesis of independ- 
ence and more to the alternative suggested) are, respectively, 0.0’5218, 
0.035966, 0.043607, 0.051097, and 0.0’1075, adding up to 0.0059. The chances 
are very small, thus indicating that city soldiers are more sociable than village 
soldiers. 

If the cell frequencies are not small, this result could be established by 
calculating a x’ for testing independence and determining the probability of 
a normal deviate with zero mean and unit variance exceeding x .  In the fore- 
going example, 

37(13 x 14 - 6 x 4)’ 
x 2  = = 7.9435, 

17 x 20 x 19 x 18 
-__ 

x = 47.9435 = 2.8181, 

so that the normal probability is 0.0025, which is smaller than the actual 
value 0.0059, the discrepancy being due to  the smallness of the sample. 

Yates (1934) suggested that by calculating x2 from a table obtained by 
increasing the smaller frequency* by 1/2 without altering the marginal totals 
a closer approximation to the actual probability is realized. In the present 
example, the new x’, said to be corrected for continuity, is 

37(12.5 x 13.5 - 6.5 x 4.5)’ x’ = = 6.1922. 
17 x 20 x 19 x 18 

* The reference is to the smaller frequency in the diagonal (6.4) under consideration, 
indicating nonsociability of the village recruits. In the general test of independence, 4 is to 
be added to a frequency to obtain a smaller XI. 



414 

The value of x is 2.4884, so that the normal probability is 0.0064, which is 
closer to the actual value than in the case of the uncorrected x 2 .  

A slightly different method suggested by V. M. Dandekar involves the 
calculation of xo2 ,  x-12,  and x12 for the observed configuration and those 

increasing and decreasing the smallest frequency by unity. 
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corrected x 2  can be obtained by the formula 
obtained by 
From these a 

2 2 
x o  - x - 1  

X I  - x - 1  
2 (X I2  - x o 2 )  

2 
x c  = x o 2  - 2 

In the present example, xo2 = 7.9435, x12 = 12.0995, x-12 = 4.6587, and 

7.9435 - 4.6587 
12.0995 - 4.6587 

xc2 = 7.9435 - (12.0995 - 7.9435) = 6.1086 

x c  = 2.4715. 

The normal probability is 0.0068, which is also close to the actual value. 
The likelihood test 

E 
0 

L = 2 c 0 log, - 

- -  

in this case gives the value 8.281 I .  The value of x is J8.281 I = 2.8778, so that 
the probability is much smaller than the actual value. Thus the likelihood 
test does not improve the situation. 

Example 2. In Example I ,  the object of investigation was to study whether 
city soldiers are more sociable than village soldiers. For this purpose we 
considered the deviations from the expected in one way only. But, in general, 
if the object is to discover association between two attributes without specify- 
ing the nature of the association, it is necessary to consider deviations from the 
expected in either direction. The configurations giving a x 2  value higher than 
the observed are not only those with 3, 2, I, 0 frequency in the northeast cell 
but also 4, 3, 2, 1,0 in the northwest cell. The probabilities for the latter are, 
respectively 0.O22O88,0.O31864, 0.0’8733, 0.061828, and 0.0’1 132 adding up to 
0.0023. The probability of small frequencies in  the northeast cell as calculated 
earlier is 0.0059 giving a total probability of 0.0059 + 0.0023 = 0.0082, which 
is small, thus indicating departure from independence. 

If the sample is large, we can find the probability by directly entering the 
uncorrected x 2  in a x 2  table on 1 D.F. In the present example x 2  is 7.9435 with 
the associated probability of about 0.005, which is smaller than the actual 
value 0.0082. 

Using Yate’scorrection for continuity, the x 2  is 6.1922, with the correspond- 
ing probability 0.0128, which is higher than the actual value. 
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To extend Dandekar’s correction to this example we first note that the 2’ 
values below and above the observed x 2  = 7.9435 are 6.0598 and 9.7448 
corresponding to the partitions 

5 12 and 4 13 
14 6 15 5 

The corrected x 2  is 
7.9435 - 6.0598 
9.7448 - 6.0598 

x c 2  = 7.9435 - (9.7448 - 7.9435) 

= 7.0228, 

which gives a probability 0.0082, almost exactly equal to the actual value. In 
general, Dandekar’s correction is slightly better than that of Yates although 
the correction is simpler in Yates’ method. 

In testing for linkage on the basis of data classified according to two factors, 
it is enough to test for association one way if i t  is known that the recombina- 
tion fraction is less than 1/2. It is now known that the recombination fraction 
can exceed 1/2, as demonstrated by Fisher. So it is better first to disprove the 
hypothesis of independence without inquiring as to the nature of association. 
Furthermore, it must be noted that departure from independence may occur 
in experimental data owing to various causes, and it  is better to use a test 
which gives a direct appraisal of the data as to its compatibility with the 
hypothesis of independence. 

For further examples illustrating the use of x 2  tests on categorical data see 
Fisher (1925). 

6e SOME GENERAL CLASSES OF LARGE SAMPLE TESTS 

6e.l Notations and Basic Results 

Let xI, . . , , x, be i.i.d. random variables, which may be multidimensional 
and let p(x, 0) be the common probability density depending on a q dimen- 
sional parameter 8’ = (O1, . . . , 0,). The admissible set of 8 is taken to be a 
nondegenerate interval of the q-dimensional Euclidean space. The log 
likelihood of n independent observations and the ith efficient score as defined 
in 5f and 5g are 

r(e) = log p(xl, e) + . . . + log p(x ,  , e) 
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Let 9 be the information matrix on 8 in a single observation x, that is, if 
9 = (Y,,), then 

LARGE SAMPLE THEORY AND METHODS 

(6e.l.2) 

(i) Let V' = (41(f3), . . . , 4,(0)). Then the a.d. of V is q variate normal with 

To prove the result, we need only show that the a.d. of a linear function 
b'V = b,4,(8) + - - + b,4,(0) is univariate normal with mean zero and 
variance b ' 9 b .  Consider 

mean zero and dispersion matrix 9. 

Then E(yi)  = 0 and 

= C C 6,b, f, ,  = b ' y b .  

Thus y,,  . . . , y,, are i.i.d. variables each with mean zero and variance b'9b.  
Hence the a.d. of ( y ,  + * * + y,)/& is N ( 0 ,  b'9b) as n -+a. But 

( y ,  + * 3 * + y,,)/Jn = b'V. (6e. 1.4) 

Hence the result of (i) is established. 

(ii) Let p(x,  8) satisfy the regularity conditions of 5f.l. Denote by 0 the 
consistent root of the likelihood equation based on n observations and by D' 
the vector of deviations [,/n(o, - O,), . . . , Jn@, - O J ] .  Furthermore, let 
9, the information matrix, be nonsingular. Then we have the following 
asymptotic equivalences . 

(6e. 1.5) 

(6e. 1.6) 

The results (6e. 1.5) and (6e. 1.6) are easily established following the argu- 
ments of 5f.2. In most of the examples the maximum likelihood estimator is 
found to be the consistent root of the likelihood equation, and we shall 
assume that they are the same in the rest of the discussion of the present 
section. 

(iii) Suppose that the qparameters O,, . . . , 0, are subject to k < q restrictions 
R,(8) = 0,  . . . , Rk(0) = 0,  where R , ,  . . . , Rk admit continuouspartial derivatives 



6e SOME GENERAL CLASSES OF LARGE SAMPLE TESTS 417 

of the first order. Let these restrictions be equivalent to specifying each 0, 
as a function of s = q - k new parameters, PI,  . . . , P,,  

0, =gi (PI ,  * . . $ P s )  

where g i  admit continuous partial derivatives of t he j r s t  order. Let fl be the m.1. 
estimator of fl and denote by 

yi(p) = dl/Jn a p i l  u' = [yYl(p), . . . y,(p)1, 
F' = [ J d I  - PI)], ' * ' 9 Jd, - P S ) L  

and by H the information matrix on p in a sSngle observation x. Then we have 
the following: 

(a) U 4L HF or H-'U F, applying (6e.1.5), (6e. 1.7) 
(b) 2[@) - I @ ) ]  I F'HF, (6e. 1.8) 
(c) U = M ' V  and H = M ' 9 M ,  (6e. I .9) 

where M = (dg,/dPj) is a matrix of order q x s. 

Result (b) is similar to (6e.1.6) and i t  is easy to verify (c), 

6e.2 Test of a Simple Hypothesis 

Under the setup of 6e.1, to test the hypothesis 8 = O0 (an assigned value), 
Neyman and Pearson (1928) proposed the likelihood ratio criterion 

(6e.2. I )  

where the supremum is taken ove,r the admissible set of 8 values. Taking 
logarithms and using the m.1. estimator 6 of 8, the test criterion (6e.2.1) may 
be written 

-2 log, A = 2[1(@ - i(e0)j. (6e. 2.2) 

Let Do, V,, ,F0 denote the values of D, V, 9 when O0 is substituted for 
8 and Y(@, the value of 9 at 8 = 8. To test the hypothesis 8 = 8,, Wald 
(1943) proposed the criterion 

wo = D ~ [ ~ ( @ I D O  9 (6e. 2.3) 

and the author (Rao, 1947e) proposed the criterion based on efficient scores 

so = v;s,-'vo, (6e. 2.4) 
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which does not require the explicit computation of the m.1. estimates. From 
(6e.1.6), we see that 

2[1(0) - @,)] Db f o  Do Db[f(@]D,. 

LARGE SAMPLE THEORY AND METHODS 

and from (6e. 1.5) 

D ~ B ~ D ,  V ~ , . ~ ~ - I V ~  

so that the three statistics -2 log A,, W , ,  and So are equivalent in large 
samples, when the null hypothesis is true. From [(i), 6e.11, the a.d. of V is 
q-variate normal with mean zero and dispersion matrix 9. Hence the a.d. 
of VdSo-'Vo is that of x2(q) ,  and since all three statistics are equivalent to 
VbS,-'Vo they have the same a.d. 

There is no adequate discussion as yet in statistical literature on the relative 
merits of these tests i n  detecting departures from the null hypothesis. 

6e.3 Test of a Composite Hypothesis 

Let the composite hypothesis specify Oi, i = 1, . . . , q as functions of 

di = gi(P1, . . >  B s ) ,  (6e.3.1) 

B, ,  . . ., A ,  

or, alternatively let di be subject to k = q - s restrictions 

Ri(8) = 0, i =  I ,  ..., k, (6e. 3.2) 

where g l  and Ri are functions admitting continuous partial derivatives of 
the first order. Let 8 be the unrestricted and 8* the restricted m.1. estimators 
of 8. In terms of the m.1. estimator b of p, 

0: = gitBI, * * 9 8,). (6e. 3.3) 

The Neyman-Pearson likelihood ratio test for a composite hypothesis is 

- 2 log, A, = 2[1(d) - l(9*)] = 2[1(d) - I(@], (6e. 3.4) 

where l(B) is computed with the log likelihood considered as a function of p. 
It may be seen that 

(6e.3.5) 

where in the numerator the supremum is when 8 is subject to the restrictions 
Ri(8) = 0, i = 1, . . . , k and in  the denominator, the supremum is over all 
admissible values of 8. 

The efficient score test of Rao for the composite hypothesis is 

S ,  = V*'9*-'V*, where V* 7 V(O*) etc., (6e. 3.6) 
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and Wald's test is 

w, =EL 2j (6)Rj(6)Ri(6) ,  (6e. 3.7) 

which uses only the unrestricted m.1. estimators of 0. I n  the expression (6e.3.7), 
( n ' j )  is the reciprocal of (Aij), the asymptotic dispersion matrix of Ri(6),  defined 
by 

( n i j )  = T'PT, T = f?), q x k matrix. (6e.3.8) 

All three statistics (6e.3.5) to (6e.3.7), have the same a.d. x2(q - s). From 
(6e. 1.6), we have 

2[1(6) - [(e)] z D ' ~ D  1 v'$-'v 

2[@) - 4p)l z F'HF U ' H - ~ U  V'MH-'M'V 

and from (6e. 1.7) to (6e. I .9), we see that 

2[@) - @)] 2 V'(9-I -MH-'M')V. 

Therefore, 

2[1(6) - @)I A V ' ( 9 - '  - MH-'M')V. (6e. 3.9) 

The necessary and sufficient condition that the right-hand side of (6e.3.9) 
has a x2 distribution is 

( 9 - I  - MH-'M')9(9-'  - MH-'M') = (9-' - MH-lM'). 
(6e.3.10) 

The left-hand side of (6e.3.10) is 

~ ~ 9 9 - l  - J-~JMH-M'' - MH-'M's.Y-~ + MH-~(M'$M)H-'M 
= 3 - l  - 2MH-lM' + MH-'HH-'M' = 9 - l  - MH-IM', 

using (6e.1.9), so that the condition (6e.3.10) is satisfied. The degrees of 
freedom of x2 is 

trace (3-' - MH-'M')9 = trace (I - MH-'M'9)  
= q - trace MH-~M'S  
= q - trace H-'M'9M = q - trace H-'H 
= q - s .  

We have thus proved the desired result for the Neyman-Pearson statistic 
(6e.3.4). The a.d. of the statistics S ,  and W, can be established in a similar 
manner. 

In practice we need more general results than those considered in 6e. 
For instance, the observations x , ,  . . . , x, may not have identical distributions. 
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In such a case we can define the test criteria A, W ,  S in exactly the same way 
by considering the appropriate likelihood function and the efficient scores. 
The derivation of the asymptotic distributions need some further conditions 
on the probability densities to ensure the applicability of the multivariate 
central limit theorem to nonidentically distributed random variables and to 
ensure the desired properties (6e. 1.5) of the maximum likelihood estimators. 

LARGE SAMPLE THEORY AND METHODS 

6f ORDER STATISTICS 

6f.l The Empirical Distribution Function 

Let x l ,  ..., x, be a sample of n independent observations on a random 
variable X with d.f. F(x) .  Let x ( ~ )  be an observation such that the number of 
observations < x ( , )  is <(i- 1 )  and the number of observations > x ( ~ )  is 
< ( n  - i ) .  Then the observations can be arranged in increasing order, allow- 
ing repetitions and indexed by distinct numbers so that 

X ( 1 )  < X ( 2 )  < . . ' G X(,) 3 (6f. 1.1) 

where x ( ~ )  is the minimum and x( , )  the maximum of the observations. 

called the i th  order statistic. 
The function X , i ,  of sample values such that X ( i ) ( x , ,  . . . , x,) = x ( , )  is 

Let us define a function S,( . )  or more precisely SJ.1 xl, . . . , x,) such that 

0, x < X ( , )  

lk 

l,l, x(n) < x 

S,(X) = ' 2  x(r)  < x < x(k+ l ) ,  if x(r- 1 )  < x(r)  = X(r+ 1 ) = ' ' * = X ( k )  < X(k+ 1 )  

Function S,( . )  is a random function since it depends on the observations, and 
it is called an empirical distribution function. It is easy to see that S,(x) is 
nondecreasing, continuous from the left and S,(-  co) = 0, S,(co) = 1 so that 
it is in the strict sense a distribution function. It is a step function with dis- 
continuities at n points. For any fixed point x ,  S,(x) simplygiues theproportion 
of observations less than x in the sample, so that it is a random variable 
taking values O/n, I/n, . . . , 1.  But the hypothetical probability of an observa- 
tion being less than xis F(x) ,  the value of the d.f. at x.  Hence the probability 
that S,(x) = m/n is the same as the binomial probability for m successes out 
of n with F(x)  as the probability of success, that is, 

P S,(X) = - = [F(x)]""l - F(x)]"-" .  [ :I (3 (6f. 1.2) 
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As a consequence of (6f. 1.2), using the strong law of large numbers, we have 

P lim S,(x) = F(x)  = 1, for fixed x ,  (6f. 1.3) 
(n+m 1 

or using the weak law of large numbers, we have 

S,(x) -% F(x) ,  for fixed x .  (6f. 1.4) 

We shall state without proof some results of the limiting behavior of some 
functions of S(,x). 

(i) GLIVENKO ( I  933) THEOREM. The probability that the sequence S,(x) + 

F(x), as n -t 03, uniformly in x( - 00 < x < 03) is equal to unity. Or in symbols, 
if D,(x) = supx I S,(x) - F(x)  I, then 

P lim Dn = O  = I .  (6f.1.5) 
(n-m 1 

The result (6f. I .5)  is much stronger than the results (6f. 1.3, 6f. 1.4). 

( i i )  KOLOMOGOROV (1933) THEOREM. Let D, be as defined in (i) and let 

P(Jn D, < A), 1 >, 0 
1 Q 0. Qn(A) = (0, 

If F(x) is continuous, then 

(- I ) k  exp( - 2k2L2), 1 > 0 

A < 0. 
lim Q,(/J = Q ( A )  = 
n-tm 

Observe that the limit distribution Q(A) is independent of F ,  except that it 
is continuous. This is a characteristic of all the large sample criteria discussed 
in  this chapter. For a proof of this proposition see Doob (1949). 

D, may be used for testing the hypo- 
thesis that a given sample arose from a specified distribution. Some of the 
percentage points of & D, as obtained from the limit distribution are as 
follows (Smirnov, 1939): 

It is suggested that the statistic 

0.5% 1 % 2.5% 5 %  10% 

Lower 0.42 0.44 0.48 0.52 0.57 
Upper 1.73 1.63 1.48 1.36 1.23 

As an alternative to Kolmogorov-Smirnov test based on & D , ,  we have 
the x2 test developed in  6b.l. This test, however, needs the frequency distri- 
bution of observations in  some chosen class intervals of x .  The observed 
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frequencies (0) are then compared with the hypothetical or expected frequen- 
ies (E) (computed from the specified distribution), by using the criterion 

LARGE SAMPLE THEORY AND METHODS 

(0 - E)2 X 2 = X T  
as defined in 6b.l. Although the Kolmogorov-Smirnov test may be sensitive 
in some respects it does not afford a comparison of the observed distribution 
with the hypothetical over the entire range of x. The x2 test followed by an 
examination of the deviations in the individual class intervals would give a 
better insight into departures from specification. 

(iii) SMIRNOV (1944) THEOREM. Let S,,,(x) and S2,,* (x) be two empirical 
distribution functions based on two independent samples of sizes n, and n, 
drawn from a population with a continuous d .  f .  Let n = n1n2/(n1 + n2)  and 

+ 
Dntnz = max (slnl(x) - S 2 n 2 ( ~ ) )  

- m < x < m  

D n , n 2  = max I S,q,(x) - S2n,(x) 1 * 
- m < x < m  

Then 

For a proof of this theorem see Gihman (1952). The statistic ,/h D,,,, 
can be used to test the hypothesis that two samples arise from the same 
population. The percentage points are same as those of & Dn in (ii) as 
the limiting distributions are identical. An alternative to this is the x 2  test 
for testing homogeneity of parallel samples, discussed in 6c.2. The apparent 
difference between the two tests is again in the type of departures which we 
wish to detect. 

6f.2 Asymptotic Distribution of Sample Fractiles 

The pth fractile of a d.f. F is defined as any value tp such that 

P(x < t,) 2 P, P(x  2 e,, 2 4, (6f.2.1) 

where q = 1 - p ,  which imply 

m$ G P, W$ + P(x  = t,) 3 p .  (6f. 2.2) 
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There may be a multiplicity of values of t,, satisfying (6f.2.1) and (6f.2.2) 
unless the d.f. F(x) is strictly monotonic. 

Thepth fractile statistic ofn observations is defined in an analogous manner. 
It is a value g p  such that the number of observations < p, is 2 [np] and the 
number of observations 2 ep  is 2 [nq]. It is easy to see then that in terms 
of quantities defined i n  (6f.l.l) the function e,  of the observations can be 
defined as 

Pp(x1v * * * 9 xn) 
- - x([,,,, + if np # an integer 

= any value in the closed interval [x( , , ) ,  x ( , , , + ~ ) ]  if np is an integer 
(6f. 2.3) 

We shall consider two propositions concerning the asymptotic distribution 
where [ a ]  denotes the greatest integer. 

ofe,whenp # 1. 

(i) If there is a unique value t;, such that (6f.2.1) is true, then p, 

By definition for any L > 0, 

t p  as 
n -, co with probability 1. 

F ( t ,  + L )  L F(5,) + P(x  = 5,) 2 p ,  using (6f.2.2). (6f.2.4) 

Suppose F ( t ,  + E )  = p, then t p  + E also satisfies the condition (6f.2.1) 
contrary to assumption. Therefore F(t;, + E )  > p, and thus by Glivenko's 
theorem, lim Sn(tp + E )  > p with probability I .  But S,,(t,, + E )  > p implies e, < t p  + E .  Hence 4, < t p  + E for sufficiently large n with probability I ,  
and a similar result is true of the inequality {,2 tp  - E .  Since E is arbitrary 
the desired result follows. 

(ii) Let F(x) admit a pad. f (x) continuom in x .  Further let {,, be unique and 
f(t;,) > 0. Then 

(6f.2.5) 

The probability that g p  < x is the same as the probability that the number 
of observations less than x is greater than or equal to np,  which is equal to the 
sum of binomial probabilities 

n !  2 [F(x) ]*[ l  - F(x)]"-' ,,, r!(n - r)! 

~ F ( x ) t m - l ( l  - t)"-"dt, (6f.2.6) 
n! 

(rn - l)!(n - m)! 
- - 
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where m = np if np is an integer and m = [np]  + 1 if np is not an integer. 
The equivalence (6f.2.6) of the incomplete summation of binomial terms and 
an incomplete beta integral is easily established. The p.d. function of e p  is 
obtained by differentiating (6f.2.6) with respect to x ,  

LARGE SAMPLE THEORY AND METHODS 

n !  
[F(x)]"-"l - F(x)]"-"y(x) .  (m - 1 !)(n - m)!  

(6f.2.7) 

Let y = F(x) ,  so that dy = f ( x )  dx .  The probability density of the variable 
y is 

I7 ! 
(m - I ) ! ( n  - m)! 

y l n - l ( l  - y)"-m* (6f.2.8) 

Let 11s introduce a new variable 
.- 

Z =  J 4 Y  - PI , J' = P(1 + zp-). 
Jp4 

The p.d. of z is obtained as the product of two factors 

P 4  
111-112 a - m + 1 / 2  1 n !  

3 (m - I)!(n - m ) !  

x (1 + r&/JG)"-'( I - r&/&q)"-'". (6f.2.9) 

Taking the logarithm of (6f.2.9) and using Stirling's approximation to the 
factorials, we find that the logarithm of the first term not involving z is 

p~~~ - 1 / 2  n - iii + 1 /2  1 n !  143 (m - l)!(n - m)! q ) -+ constant 

as n + 03. The logarithm of the terms involving z is 

as n 4 03. Hence the limit of (6f.2.9) as n "03 is const. e-z2/2, which is the 
density of the normal distribution. Hence by Scheffe's theorem [(xv), 2c.41, 
the a.d. of z is N(0 ,  1). Hence the a.d. of ,,/icy - p )  is N(0,  p q ) .  

But y = F(e,) or t, = F - ' ( y )  and dl,/dy = f ( f , ) .  The value of the deriva- 
tive at y = p  is [ f( tP)]- ' .  Applying [(i), 6a.21, the a.d. of ,/,((, - t,) is 

In praticular, the a.d. of the median is normal with the population median 
N O  Y P41[f(t,)l2). 

/i as the mean and asymptotic variance 

[f (d1- 
4n 

(6f.2.10) 



6f ORDER STATISTICS 425 

Thus if the original distribution is normal, the asymptotic variance of the 
sample median as an estimate of the mean of the normal distribution is 
na2/2n, since the ordinate of the normal distribution at the median value is 
l/aJ2;, I t  may be observed that the variance of E, the average of n observa- 
tions, is a2/n giving the ratio of asymptotic variance of the average to that of 
the median as 2/n. (Thus according to the earlier definition of efficiency of an 
estimator, the efficiency of the median as an estimator of the population 
mean is 2/71 or of the order of 63 ”/, .) 

In  deriving (6f.2.6), which is the exact d.f. of g p ,  we used the equality 

(6f.2.11) P ( < ,  < x )  = P(nS, (x)  2 np) 

where S,,(x) is the binomial variable defined in (6f. 1.2). Weiss (1970) used 
the relation (6f.2. I I )  to deduce the a.d. of e p  directly without going through 
the exact p.d. (6f.2.7). Substituting x = r,, + t/Jn in (6f.2.1 I ) ,  

P(Jn(<, - t,) < 0 

I JL [S , , ( t p  + t / J i )  - F(5,  + [ / J I ~ ) ]  > - [ p  - F ( t ,  + r / J i ) ]  
JP4 

(6f.2.12) 

as n 4 0 0  where X N N ( 0 ,  1 )  by using the central limit theorem [ ( i ) ,  2c.51 on 
the binomial variable S,,(t,), which is exactly the result (6f.2.6). 

Note that in deriving (6f.2.12), we use the result 

since the expectation of the left hand side is zero and its (binomial) variance 
-+ 0 as 17 -+ 00. Further 

J a P  - F(5, + t/J.>I - !f(t,) 

as n 4 co because of the assumption on F, noting that p = F(5,). 

Bahadur (1966) and Kiefer (1967). 
Other papers of interest on the asymptotic behaviour of t, are due to 
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6g TRANSFORMATION OF STATISTICS 

6g.l A General Formula 

In [(i), 6a.21, it was shown that if {T,,}, n = I ,  2, . . . , is a sequence of statistics, 
then 

&T, - el& x "0, 02(e)i2 

=> JnMTn) - s(o)i"-. x - NO, [~~(o)o(o)i~)  
where g is a function admitting the first derivative and g'(0) # 0. 

If we now choose the function g such that 

g'(O)o(o) = c (independent of o),  (6g.l.l) 

the asymptotic variance of the transformed statistic g(T,) will be independent 
of 8.  The differential equation (6g.l.l) is solved to obtain the function g, 

(6g. 1.2) 

The result (6g.1.2) is applied to a number of important statistics in Sections 
6g.2 to 6g.4, where the use of transformed statistics is explained in greater 
detail. 

6g.2 Square Root Transformation of the Poisson Variate 

If x is a Poisson variate with 

E(x) = p, V ( x )  = p, 

then ( x  -p ) /&&+X-  N(0, 1) as p +  00. We wish to determine a 
function g such that the a.d. of g(x) - g(p) is N(0, c)  where c is a constant 
independent of p. Using the formula (6g.1.2), we see that 

by choosing c suitably. The transformed variable ,/. has the asymptotic 
mean and variance 

when p is large. It was found by Anscombe (1948) that the transformation 
, / x T  where b is a suitably determined constant has some theoretical 
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advantages. Let ( x  - p) = t and ( p  + b) = p'; then by using Taylor's expan- 
sion we find 

5 -  1 

(6g. 2.2) 
where 

( - 1 ) ( - 3 ) * * * ( - 2 ~  + 3) 
s! 2s 

a , = ( - I ) " + '  

Observing that the Poisson moments are 

we find, by taking expectations of both sides of the expansion (6g.2.2), that 

_ _  - 3 - 86 326' - 526 + 17 
32p V(JX + 6 )  = a( 1 + - + 

Q 
which, when we choose the value b = i, reduce to 

The variance of f i i  is more stable than that of ,/. because the second 
term in the expansion of the variance of J x  ++ is O(l/pz). 

6g.3 Sin-' Transformation of the Square Root of the Binomial Proportion 

The binomial proportion r/n has the mean value R and variance n(l - z)/n. 
The transformation is obtained by solving the equation 

C g(n)  =/ ___ drr = sin-' ,,&, choosing c suitably (6g.3.1) 
J.<1 - 4 

I 
a.v. (sin-' $) = 4n -, 
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Anscombe (1948) has shown that a slightly better transformation achieving 
more stability in  variance is 

sin-'J(r + $1 + (n + +>, (6g. 3.2) 

which has the asymptotic variance 1/(4n + 2). If n is large, the simpler 
transformation sin-',/* can be used; for moderately large sample sizes the 
transformation sin-',/(r + +)/(n + 4) may be used. 

Example. R. A. Fisher (1949) found the following recombination fractions 
between undulated and agouti loci in  house mice. The data relate to back- 
crosses so that the estimate of the fraction is the ratio of recombinants to the 
total offsprings. 

~~ 

TABLE 6g.3a. Recombination Fractions Observed for Twenty Classes of 
Heterozygous Parents at the Agouti Locus 

A ' A L  A ' A  A 'a' A ' a  ALA 

2 12 12 

194 118 235 146 78 

7 6 ' 128 126 160 243 214 

- 10 - - 5 - - 

- 16 - - 9 - 9 - 

ALa' ALa Aa' Aa a'a Total 

1 1  83 - 8 - - - - 10 4 - 9 
182 210 23 1 178 159 1731 

7 

? 

13 87 - 3 - 13 - 4 - - * 213 144 21 8 159 238 184j 

In  Table 6g.3cr, the number in the denominator gives the number of animals 
contributing to the ratio. 

Sex Difference. Is there sex difference in the recombination fraction for each 
heterozygote? Considering the heterozygote A ' A  ', we have the fourfold 
table: 

Recombinations Old combinations Total 
- 

? 12 182 194 
d 9 119 128 
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The x’ test of independence has the value 0.0905 on 1 D.F. The sum of the 
x’ values for the ten types of heterozygotes is 4.827 on 10 D.F. The probability 
of x’ on 10 D.F. exceeding the value 4.827 is high, indicating no sex difference. 

Differences between Heterozygotes. Since the sex differences can be ignored 
the data may be pooled over sex to obtain a 2 x 10 contingency table with 
the type of heterozygote as one attribute and nature of combinations (old and 
new) as the other. 

The x’ test of homogeneity has the value 16.315 on 9 D.F. which is signifi- 
cant at the 5 % level indicating differences in the recombination values for the 
various heterozygotes. 

Interaction between Sex and Heterozygotes. This example is not suitable for 
further analysis on sex differences. Suppose we find that sex differences exist 
in some or all the ten types of mating. Then the further problem arises as to 
whether the sex difference is the same in all the cases. That is, we need to test 
whether there is interaction between sex and the nature of the heterozygote. 
This can be done by using the angular transformation and then applying 
analysis of variance. Corresponding to each observed proportion p, an angle 4 
is determined such that p = sin’ 4. If 4 is given in degrees, as in R.M.M. 
or F.Y. Tables, then 4 has the variance 8100/nn2 or approximately 820.7/n. 
The 20 angles and the necessary computational steps are as given in Table 
6g.3p. 

The x’ on 10 D.F. for testing sex differences in  each of the ten types is 

d2w + 820.7 = 4434.10 t 820.7 = 5.40. 

This is slightly above the value 4.827 obtained earlier by a direct x’ analysis. 
From the 10 degrees of freedom x’ we subtract the x’ on 1 D.F. 

(1 77.92)’ -- (‘ dw)’ : 820.7 = - t 820.7 = 0.05, 
c w  856.62 

owing to overall sex differences. The residual 

5.40 - 0.05 = 5.35 

is xz on 9 D.F. for testing the interaction between sex and type of hetero- 
zygote. The interaction x’ is not significant, nor is that because of sex 
difference. In such a case, the differences in  the various types of heterozygotes 
can be studied by summing over sex. We shall illustrate, however, the appro- 
priate test assuming that sex difference exists but not the interaction. 
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TABLE 6g.3~. Differences in Heterozygotes 

c " c c n42 = 820.1~' X 2  
P 1731 21,470.9 274,666.21 8,346.43 10.17 

13.40 
Overall 3574 44,170.3 565,242.29 19.351.02 23.58 

- - d 1843 22,699.4 290,576.08 10,997.81 

Differences in Heterozygotes Eliminating Sex Difference. The total x2 on 
(20 - 1) = 19 D.F. is 

the summation extending over the 20 angles. The further computations are 
shown in Table 6 g . 3 ~  where the summations extend over all heterozygotes. 
The total of x2 for 9 and 6 

10.17 + 13.40 = 23.57 

has 18 D.F. Subtracting the interaction component of 5.35 on 9 D.F. the 
residual x2 on 9 D.F. for testing differences in heterozygotes eliminating sex is 

23.57 - 5.35 = 18.22 

which is significant. This can also be calculated in a slightly different way. 
The sex x', ignoring differences in heterozygotes, is obtained as follows 

21,470.92 22,699.42 44,170.32 -- 
1843 3574 

8 2 0 . 7 ~ ~  = + 
X2 = 0.01, 

1731 

the values being obtained from the columns n of Table 6 g . 3 ~ .  
The valid X' for heterozygotes is obtained by subtracting from the total the 
value 0.01 and the interaction sum of squares. This leads to the value, 
23.58 - 0.01 - 5.35 = 18.22, the same as before. 

nq5 and 

TABLE 6g.36. Analysis of x 2  

D.F. XI 

Sex 1 0.05 
Heterozygotes 9 18.22 

9 5.35' Interaction 
Total 19 211.58 - 
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The total x2  on 19 D.F. is significant, showing overall differences. The 
various components of x 2  do not add up to the total because the proportion 
are based on different numbers. 

6g.4 Tanh- ' Transformation of the Correlation Coefficient 

The asymptotic variance of the product moment correlation coefficient r is 

( 1  - P2I2 
n 

(6g.4.1) 

Applying the formula (6g. 1.2) for determining the transformation to remove 
the unknown parameter p in  the expression for asymptotic variance, 

C 
g(p) = 17p2p = tanh-' p, choosing c suitably 

1 
n 

a.v. (tanh-' r )  = -. 

We shall study the distribution of tanh-' r ,  through its moments. Define 

[=g(p)=Zlog-=tanh-' 1 (1 + P) p, 
( 1  - P) 

z = g(r) = -log ( l  - - t r )  = tanh-l 
2 ( I  - r )  

By putting z - [ = x, the distribution of x may be derived from the 
distribution of r .  The first four moments of z were found by Fisher and later 
revised by Gayen (1 95 1). 

E(z) = tanh-' p + - ( l+ -  5+p2 + ...], 
2(n - 1) 4(n - 1) 

4-p2 22 - 6p2 - 3p4 + 

p3 + ..., 
p3 =m 

14 - 3p2 
3 +  - P4 = - (n - 1)' 

I84 - 48p2 - 21p4 
+ 4(n - 1)2 
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Using the expansions for the first four moments, we find the p1 and /I2 
coefficients to be 

2 + 4 + 2 p 2 - 3 p 4 + * , *  
p 2 = 3 + -  n - I  (n-1)2 

Since PI and (pz - 3) are small, even for moderate n, it follows that ( z  - l )  
can be considered to be approximately a normal variate with 

P Mean = ~ 

2(n - 1) 

1 -- 1 4 - p 2  
Variance = - 

n - 1 + 2(n - 1)z-n - 3 
(6g.4.2) 

Test for a given p. In a sample of 28 independent pairs of observations, the 
correlation coefficient is found to be 0.6521. Can such a value have arisen 
from a population in which the coefficient p has the value 0.721 I ? Using 
appropriate tables (F.Y. or R.M.M.) of transformation of the correlation 
coefficient, we have 

1 l + r  
2 1 - r  

z = - log, - = 0.7790 

1 l + P  P Mean z = - log, - 
2 1 - p + 2 ( n - 1 )  

0.72 1 1 
54 

= 0.9100 + - = 0.9233. 

The normal deviate is 
~. 

,/n - 3(2 - mean z )  = J28 - 3(0.7790 - 0.9233) 

= 5(-0.1443) = -0.7215. (6g.4.3) 

The chance of exceeding the value 0.721 5 in either direction is about 45 % 
so that the hypothesis cannot be rejected. 

The correction term p/2(n - 1) for mean z is unimportant if n is large. 
The probability will be more precisely obtained by its inclusion. 

Test for the Equality of Two Correlation Coefficients. Two samples consisting 
of nl and n2 observations give the correlation coefficients rl and r 2 .  Are these 
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values compatible with the hypothesis that the samples arose from two 
populations having the same correlation coefficient ? Let 

LARGE SAMPLE THEORY AND METHODS 

1 1 + r ,  1 1 + r 2  
2 1 - r ,  2 1 - r ,  

z, = -log- and z, = - log - . 

The statistic z, - z2 is distributed about the mean 

(6g. 4.4) 

where p is the common correlation coefficient, with asymptotic variance 

1 1 
n , - 3  n , - 3  

+-. 

If the samples are not small, the statistic 

(6g.4.5) 

(6g.4.6) 

can be used as a normal deviate. 

Test for Homogeneity of a Set of Correlation Coefficients. Let r , ,  . , . , rk be 
k correlation coefficients based on samples of sizes n , ,  . . . , nk. By means of 
the tanh-' transformation, the quantities z,, . . . , zk corresponding to r , ,  . . . , rk 
can be obtained. If the bias in mean z can be neglected, the test for homogeneity 
of the correlation coefficients is equivalent to the test of equality of the mean 
values of z. The scheme of computation is as follows. 

TABLE 6g.4a. Test of Homogeneity of Parallel Estimates of Correlation Coefficients 
~ ~~ ~ 

Sample Sample Correlation Reciprocal 
No. Size Coefficient tanh-' r of Variance 

t n r = Z  n - 3  ( f l  - 3)Z (n - 3)z2 

n1 - 3 (n1 - 3)z1 ( f l ,  - 3)z,2 1 nl rl Zi 
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The best estimate of tanh-' p ,  when a common p is applicable, is TJN. 
The statistic for testing homogeneity is (see 6a.2.12 and (v), 6a.2) 

Tl H = T 2 - -  
N 

(6g.4.7) 

which can be used as x z  on (k  - 1)  D.F. 
As an example, consider the correlations obtained from 6 samples of sizes 

10, 14, 16,20,25, 28 to be0.318,0.106,0.253,0.340,0.116,0.112. Canthese 
be considered homogeneous ? 

Correlation Sample size 
Coefficient Minus 3 

r n - 3  Z (n - 3)z (n - 3)z2 

0.318 7 
0.106 l i  
0.253 13 
0.340 17 
0.116 22 

25 0.1 12 
95 Total 
- 
- 

0.3294 2.3058 
0.1064 1.1704 
0.2586 3.3618 
0.3541 6.0197 
0.1164 2.5608 
0.1125 2.8125 

0.7595 
0.1245 
0.8694 
2.1316 
0.2981 
0.3164 

18.2310 4.4995 - 
TI 18.2310 
95 95 

- 0.191905 _ -  

Tl T2 - TI - = 4.9995 - 3.4986 = 1.0009 
95 

The value 1.0009 as x 2  on 5 D.F. is not significant, so the estimates of correla- 
tions may be considered homogeneous. 

Correction for Bias in Tests and the Best Estimate of p. When the sample 
sizes are not large and not nearly equal, there is a certain amount of bias 
(extraneous to the hypothesis tested) introduced in  the H statistic used in  
(6g.4.7). This bias is due to the term p/2(n - 1) i n  the mean value of z being 
neglected. Even if the bias introduced in the H statistic is small; the bias 
introduced in the best estimate of p when H is not significant will not be small 
when compared to the standard error of the estimate. This can be corrected 
by a slightly different procedure. 

Since z can be considered as a normal deviate with mean 
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and variance I/ (n - 3) ,  the score for p obtained from k samples is 
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2 1 - p 2 ( 4  - 1) 
1 

Zi - - log l+p - 
(68.4.8) 

2 
1 

1 - p 2 ( 4  - 1) 1 9  

Zi - - log l+p - ~ 

1 1 
= c (4  - 3 4 7  + -)I [ 

(68.4.8) 
and the information 

9 = E(S2) = c (ni - 3) [m 1 + 2(ni L] - 1) 2. (6g. 4.9) 

If the value of p obtained in  the last section is taken as a first approximation, 
then the additive correction S p  to this value is given by 

S S p  = -0 
1 0  

where So and j 0  are the values of (68.4.8) and (68.4.9) calculated at the 
approximate value chosen. This process may be repeated until the correction 
becomes negligible. Having obtained the best estimate b of p,  the H statistic 
with (k - 1) degrees of freedom for testing homogeneity is 

zi - - 1 log, - l + P  - ~ )'. 
2 1 - P 2 ( n i - 1 )  

6h STANDARD ERRORS OF MOMENTS AND RELATED 
STATISTICS 

6h.l Variances and Covariances of Raw Moments 

Let (xl, . . . , x,) be independent observations from any population (on a 
random variable x). The rth raw and central moments of the r.v. x are 
denoted by 

u, = E(x') and p, = E(x - ul)'. 

The raw and corrected moment functions (of observations) are 

0, = c x i r /n  and 

E(0,) = C E(x[) /n  = v, 

m, = c (xi - 0,y i n. 

It is easy to see that 

2 ,- 
xizr  + 2 11 X i y  

n €(Or - 

nu2, + n(n - l)u,Z 
n2 

V(0,) = E(0,Z) - EZ(0,) = ~ 

- - 
2 u2r - ur 

n 
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Similarly, 
Vr+s - VrVs COV(0, , 0,) = 

n 
If the origin is the population mean, in  the foregoing expressions v is 

replaced by p. 

6h.2 Asymptotic Variances and Covariances of Central Moments 

The rth central corrected moment (about the observed mean) is 

m , = ~ , -  ( ~ ) O , - ~ O ~  + ( ; )O,-~O~'- . . . ( -~) 'O~' .  

Since this is invariant for origin, we may consider 0, to be the raw moment 
about the population mean. We now use the b-method (6a.2.9) for determining 
the asymptotic variance of m,. We have to compute the derivatives of m, 
with respect to 0,, . . . , 0, at the expected values E(0,) = 0, E(0,) = pi ,  
i = 2 ,  ..., r. 

dm 
2 = (- 1)$ r) 0,' = 0 (at the expected values) _ -  - I ,  am, 

80, 80, - s S 

= -rpr-l (at the expected values). 

Hence we have the equivalence 
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6h.3 Exact Expressions for Variances and Covariances of Central Moments 

Since central moments involve only powers and products of powers of the 
observations, it is possible to find exact expressions for their variances and 
covariances. The computations are complicated, however, systematic 
methods were developed by Fisher (1928). We shall give the straightforward 
computation in one or two cases, which we need for statistical applications. 

LARGE SAMPLE THEORY AND METHODS 

m, = (0, - 0,’) 
~(02,) = ~ ( 0 , ~ )  - 2~(0,0,2) + ~ ( 0 , ~ )  - [ E ( ~ , ) I ~ .  

Assuming, without loss of generality, that the origin is the population mean, 
we compute 

+ (n - 1)P22  P4 + 3(n - 1)P,* 
n3 E(OZ2) = ” 9 W I 4 )  = n 

which leads to 

(n i31)2 (K4 + z) in terms of cumulants. (6h.3.1) - -- 
n - 1  

If k2 is defined by (0, - O12)/(n - I ) ,  then 

is obtained by dividing (6h.3.1) by (n - l)’/nZ. Similarly, we find 

(6h. 3.2) 

(6h. 3.3) 

(6h. 3.4) K 3  

n 
Cov(k, , 0,) = - , 

Using the formulas (631.3.2) and (631.3.4) we can develop a test for examining 
the significance of the difference between the estimated mean X and the 
estimated variance k2 of a sample of size n from a Poisson population (for 
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which the theoretical mean and variance are the same). This test will be useful 
in detecting overdispersion or heterogeneity of the population sampled. 

V(E - k2) = V(X) + V(k2) - 2 COV (F, k2) 

Icy ti4 2Kz2 2K3 = -  +-+---  
n n n - 1  n 

where p is the Poisson parameter. If n is large, the statistic 

(X - k,) /JV/(X - k2), 

which may be written, if we substitute E for p i n  the expression for 

V ( 2  - k2), 
as 

x - k2) (6h. 3.5) 

can be used as a standard normal deviate. Suppose that i n  a sample of 29 
observations the sample mean and variance k2 were found to be 1.5172 and 
1.3300 respectively. The value of (6h.3.5) is 

= 0.462, 
J28(0.1872) 

Jz(1.5172) 

which is small, indicating no significant difference. 

COMPLEMENTS AND PROBLEMS 

1 Four samples of sizes 120,100, 100, and 125 from four Poisson populations 
gave the mean values, 251/120,323/100, 180/100, and 426/125. Do the popula- 
tions have the same mean value ? 

[Let T,,  T 2 ,  T 3 ,  T4 be totals based on samples of sizes n,, n 2 ,  n 3 ,  n4. If the 
hypothesis is true the relative distribution of T,,  . . . , T4 given T = T, + T2 + 
T3 + T4 is multinomial with cell probabilities proportional to n,, n 2 ,  n 3 ,  n4, 
which can be tested by x 2 .  Thus the x 2  on 3 D.F. is 

+ * * *  + 
nl T n,T 

where T = T/(n, + n2 -I n, + n4). Verify that the numerical value is 81.12 on 
3 D.F.] 

(T, - n,T)? (T4 - HAT)’ 
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2 The following estimates of the correlation coefficients between intelligence 
test scores were found in an investigation of the relative influences of environ- 
mental and heredity factors. Comment on the figures using tests of significance 
if necessary. 

LARGE SAMPLE THEORY AND METHODS 

Two brothers Twins 

Reared Lving Reared Living 
Apart Together Apart Together 

Correlation 
coefficient 0.235 0.342 0.45 1 0.513 

Sample size 50 40 45 55 

3 In an investigation to estimate the number of births in  a city during a 
particular month the following data were obtained. Out of 450 families 
surveyed, 350 reported no birth and 100 reported a single birth, of which 25 
took place in a hospital. If the total number of births in  the hospital is 1000, 
estimate the total number of births in the city. Find the standard error of the 
estimate. 
4 A total number of 130 heads was observed when 100 rupee coins and 
100 half rupee coins were thrown together. Assuming that the rupee coin is 
unbiased, what can you say about the haif-rupee coin? 
5 Consider a x 2  variable on n D.F. and the transformation a,/n((~*/n)@ + 
( y /n )  - I}. By comparing the first three moments of this statistic with those of 
a normal distribution with mean zero and unit variance, obtain the values of a, 
/?, and y. Show that 

c1=,/%, p = + .  and y = $  

is a good choice for rapid approach of the transformed statistic to normality 
a s n d c o .  
6 The data in the following table relate to the distribution of animals bred 
for linkage between two factors A and B. 

Sex of 
Sex of 

Animals Phenotype 

Heterozygotes Phase Bred AB Ab aB ab 

Coupling ? 12 13 I 1  8 
66 6 13 I5 16 16 

Repulsion ? I 1  13 13 19 
6 15 10 10 16 

Coupling ? 30 17 20 13 
% 6 18 18 20 24 

Repulsion ? 17 12 13 17 
6 15 12 I 1  14 
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Examine for differences in  linkage between mating types (sex of heterozygotes 
and phase) and between sexes within a mating type. 
7 Determine the likelihood ratio tests in the following situations. 

(a) To test the hypothesis p = 0, when a’ is unknown on the basis of a 
sample of size n from N ( p ,  a’). Show that the test criterion can be reduced to 
Student’s t-test. 

(b) To test the hypothesis that a’ has a given value when p is unknown on 
the basis of a sample of size n from N ( p ,  0’). 

(c) To test the hypothesis al2 = a2’ on the basis of samples of sizes n l ,  n2 
from N(pl, a12), N ( p 2 ,  0’’) when the parameters p l ,  p2 are unknown. 

(d) To test the hypothesis p1 = p 2  = * * = pk on the basis of samples of 
sizes n,, n, , . . . , n k  from ~ ( p ~ ,  a’), ~ ( p ~  , a’), . . . , ~ ( p ~ ,  a*) when the common 
0’ is unknown. Show that this test reduces to the anslysis of variance test for 
one way classification (4d.l). 

(e) Determine the likelihood ratio test for the linear hypotheses under the 
general setup of the least squares theory (4b.2). Show that the test is the same 
as the  analysis of variance set. 
8 Show that the distribution function of Students’ f under the normality 
assumption for the observations, tends to normal as the degrees of freedom 
tends to infinity. [Hint: Consider the probability density function of the t 
distribution on n D.F. Find the limit as n -+ 00. Identify the limit as a density 
function and apply Scheffe’s theorem [xv, 2c.41. 

More generally let x l ,  . . . , xn be independent observations on a random 
variable x with E ( x )  = p and V ( x )  = cr2 c co. Define t = &(Z - p)/s.  Show 
that t L+ X - N(0, 1). 

[Hint: By the central limit theorem ,,h(? - p)/a >+ X - N(0,  l ) ,  and 
s L+ a. Then apply (x), 2c.4.1. 
9 Let (Tin, . . . , Tkn) be a sequence of k-dimensional statistics such that 
the a.d. of [J;(T,, - o1), . . . , Ji(Tk, - &.)] is multivariate normal with 
mean zero and covariance matrix oij. Consider a function g(T ln  , . . . , qn, n) 
involving n explicitly such that the first-order derivatives of the function 
g ( x l ,  . . . , x , ,  n)with respect to xl, . . . , xk exist, and that ag/axi -+Gi(Ol, . . . ,Ok) 
as n -+ 00 and x i  + O i ,  i = 1, . . . , k. Then the a.d. of 

v,-’ J i [ g ( T l n ,  . . , Tkn I n) - 9 ( k  . - ,  O k ,  n)] 

is normal with mean zero and variance unity, where 

provided un # 0 when the true values of the parameters are substituted for 
T ,,,, i =  1,  ..., k. 
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10 Determine the So criterion of (6e.2.4) to test the hypothesis that the 
observed frequencies i n  a multinoniial distribution are in agreement with 
assigned expected values. Show that it reduces to the x2 test of 6b.l. Observe 
that the tests Wo of (6e.2.3) and ( -2  log, Ao) of (6e.2.2) are different from the 
x2 test. Siniilarly the S ,  criterion of (6e.3.6) for testing the goodness of fit is 
the same as the x 2  test of goodness of fit of 6b.2, whereas W ,  and ( -  2 log, Ac) 
are different from the xz test. 

11 Let X, >+ X. Then g, , (X,)  -L g ( X ) ,  provided g,(x) -g(x) as a 
function of x uniformly in compacts of x and g ( x )  is continuous. 

LARGE SAMPLE THEORY AND METHODS 
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Chapter 7 

THEORY OF 
STATISTICAL INFERENCE 

Introduction. In the previous chapters we have already encountered problems 
involving some aspects of inference such as testing of hypotheses, interval 
estimation, Bayesian procedures, principle of likelihood, and fiducial infer- 
ence. Besides these there are other aspects such as the problem of identification 
(or discrimination), decision functions and acceptance sampling, sequential 
tests and estimation, and nonparametric methods. Each one of these aspects 
has a logical basis of its own and has an important part to play in drawing 
inferences from data. In recent literature on statistics, there has been a 
tendency on the part of each individual aurhor to select a particular aspect 
of inference and advocate i t  in preference to the others. This is clearly not 
justifiable for the simple fact that the same form of inference is not applicable 
or not relevant in all situations. 

In the present chapter we provide a theoretical discussion of all the impor- 
tant aspects of inference with the purpose of conveying to the reader the 
essential features and the different forms in which inferences may be drawn 
from given data. 

Crisis in Statistics? Statistical inference is in the nature of inductive logic 
involving generalizations from the particular, and naturally any tool (statis- 
tical method)employed for this purpose will be subject to some controversy. A 
research worker using a suggested statistical procedure in the analysis of 
live data should be aware of these controversies and also of the modern 
trends (not necessarily improved techniques) in statistical inference. Some of 
these controversies have been referred to briefly in the discussion of the 
statistical methods presented in this book. The following literature is suggested 
for further study: Barnard (1949), Barnard, Jenkins, and Winston (1962), 
Birnbaum (l962), Fisher (1956), Hogben (1957), Jeffreys (1948), Kyburg 
(1961), Lindley (1953, 1957), Neyman (1961), and Savage (1954, 1963). See 
also the proceedings of a symposium edited by Godambe and Sprott (1971). 
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7a TESTING OF STATISTICAL HYPOTHESES 

7a.l Statement of the Problem 

This section devoted to the theory of testing statistical hypotheses may 
appear to be a post mortem examination, since so many test procedures 
have been set forth and illustrated in the earlier chapters. Historically it is so. 
Furthermore, no consistent theory of testing statistical hypotheses exists 
from which all tests of significance can be deduced as acceptable solutions. 
In many situations test criteria may have to be obtained from intuitive con- 
siderations. Formal theories leading to a clear understanding of the prob- 
lems of hypothesis testing are, nontheless, important. One such theory, 
contributed by Neyman and Pearson (1933), marked an important develop- 
ment because it unfolded the various complex problems in testing statistical 
hypotheses and led to the construction of general theories in problems of 
discrimination (identification), sequential analysis, decision functions, etc., 
which are discussed in this chapter. 

Let S denote the sample space of outcomes of an experiment and x denote 
an arbitrary element of S. Further let Ho be a hypothesis (to be called a null 
hypothesis) which specifies partly or completely the probability measure over 
a Bore1 field 49 of sets in S. The problem is to decide, on the basis of an 
observed x, whether H, is true or not. 

For instance, H, may be the hypothesis that a coin is unbiased and we 
have to test this hypothesis on the basis of an observed number r of suc- 
cesses out of n independent trials. The null hypothesis in this situation 
completely specijes the probability distribution of r. 

Or we may have an observed frequency distribution of heights, in suitable 
class intervals, of a certain number of individuals, and the null hypothesis 
H, specifies the theoretical distribution of heights as normal with unknown 
mean and variance. The null hypothesis in the latter instance does not 
provide the exact numerical values of the probabilities for the class intervals; 
but it does specify the probabilities as particular functions of two unknown 
parameters. The former type of hypothesis is called simple and the latter, 
composite. 

Whatever procedure may be employed for testing a null hypothesis H ,  , 
that is, deciding on the basis of observed data whether to reject Ho or not, 
there are two types of errors involved, viz., that of (a) rejecting H, when it 
is true, called thefirst-kind, and (b) not rejecting Ho when, in fact, an alterna- 
tive hypothesis is true, called the second-kind. 

A (nonrandomized) test procedure consists in dividing the sample space 
into two regions w and S - w and deciding to reject Ho if the observed 
x E w and not reject H, otherwise. The region w is called the critical region. 
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In later sections we consider more general test procedures known as random- 
ized decision rules, but for the purposes of the present discussion we shall 
confine our attention to nonrandomized procedures. 

Let Ho be a simple hypothesis in which case the probability of the first 
kind of error is [denoting the probability measure of a set A c S, under a 
given hypothesis g by P(A Ig)] 

which is called the level of signijicance. The probability of the second kind 
of error for a particular alternative hEH,  the class of alternative hypotheses, 
is 

P ( S  - w I h) = /?(h). (7a. 1.2) 

The function y(h) = [l - p(h)]  defined over H is called the power function. 
When Ho is a composite hypothesis, that is, a class of simple null hypo- 
theses, we may define the level of significance as 

a = sup P(w I h). 
h o H o  

(7a.1.3) 

The problem posed by Neyman and Pearson is that of determining a 
critical region such that for a given level of significance the second kind of 
error is as small or the power function as high as possible. To solve this 
problem, and some related problems, we shall consider a few mathematical 
lemmas. 

In practice, the points of S will be regarded as the realizations of a r.v. X 
such that P(A 1 H) = P ( X  E A 1 H) for A c S. We may then write a function T 
defined over S as a function T ( X )  of X with the value T(x)  when X = x .  
Then T(X)  > 1 = {x: T(x)  > A} and P ( { x :  T(x)  > A}) = P ( T ( X )  > A). 

7a.2 Neyman-Pearson Fundamental Lemma and Generalizations 

LEMMA 1. Let f o  , f , ,  . . . be integrable functions over space S with respect 
to a measure v and let w be any region such that 

lw/I do = ci (given), i = 1, 2, . . . . (7a.2. I )  

Further, let there exist constants k,, k, , . , . such that for  the region w0 within 
which fo 2 k, f, + k2 f2 + * * and outside which fo < k,fi + k, f2 + * ., the 
conditions (7a.2.1) are satisfied. Then 

(7a.2.2) 
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Let the common part of the regions w and wO be denoted by w w o .  From 
(7a.2.1), subtracting the common part, we have 

f i d u = /  f i d u ,  i = 1 , 2  , . . . .  (7a. 2.3) 
Jw - W W O  w o - w w o  

Jwoso do - J f o  dv = j so dv - j 
Consider the difference 

s o  do 
w o - w w o  w - w w o  

2 1 k i  f i  du - 1 C k i f i  dv. (7a.2.4) 
w o - w w o  w - w w o  

The expression (7a.2.4) is zero, using (7a.2.3). Hence the result (7a.2.2). 

LEMMA 2. (A Generalization of Lemma 1.) Let f o ,  f l ,  f 2 ,  . . , be as 
in Lemma 1, and 9 be a point function over S such that 0 < 4 < 1 and 

IS, 9 do = ci (given), i = 1,2,  . . . (7a .2.5) 

Further, let there exist a $* such that 

(a) the conditions (7a.2.5) are satisfed, 
(b) $* = 0, if f o  < k j f ,  + k2 f2 + * * + 

= I ,  g f o  > kih + k2 f2 + * * .  

= arbitrary, if f o  = k,fl + k ,  f 2  + 
Then 

J f o  9* do 2 J f o  9 dv. (7a. 2.6) 

Let S,, S2 , and S 3  be the regions f o  -= C kiJi ,yo > C k ,  f, andf, = C k iS , .  
In S, , $J* - 4 2 0 and in S , ,  (r$* - 4) < 0 since 4* = 0. Therefore, 

So($* - 4) 2 (C kifiNd* - 9) 
in each of S,, S2, and trivially in S ,  and therefore at all points in S. Thus 

J”s~o(+* - 4) do 2 J” (C kifi)(+* - $1 dv = 0, 
S 

using the condition (7a.2.5), and hence the result (7a.2.6). 

LEMMA 3. be integrable functions over S pith respect to a 
measure v and 4i(x) 2 0 be such that (4, + + (Pk = 11. Consider the choice 
4:+, = * * * = 4; = 0 and c#(, . . . , 4: are non-negative but arbitrary subject to 

Let f,, . . . , 
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theconditioncPi:+...+cPi*,=I, whenfi,  = * * . = f i ,  
Then 

j f i  4; 2 Jfi 4i do* 
1 1 

Iff i ,  = . * .  =A, >A,+, 2 2A.k, then 

(7a. 2.8) 

By taking integrals of both sides of (7a.2.8), we obtain the result (7a.2.7). A 
slight variation of Lemma 3 is Lemma 4, which is easily proved. 

LEMMA 4. Let S , ,  . . ., S, be a division of the space S into k mutually 
exclusive regions. Let S:, . . . , S l  be a division into k mutually exclusive regions 
such that 

Then 
x E S,? *f i (x)  >s j (x ) ,  . j  = I ,  . . . , k .  

f, dv + + 1 f k  dv 2 1 f, du + . * .  + / f k  do. (7a.2.9) 
s*k SI s k  

7a.3 Simple Ho against Simple H 

Let P(xl H , )  and beP(x1 H) the densities at x under H ,  and H respectively 
with respect to a a-finite measure u. The problem is that of determining a 
critical region w such that 

P ( x  I H , )  dv = c1 (assigned value), 

P(xl  H )  dv is a maximum. 

(7a.3.1) 

(7a. 3.2) 

The solution is provided by Lemma 1. The optimum region w is defined by 
[choosingf, = P(x I H) and fl  = P(x I H , ) ]  

{ x  : P(x I H )  2 kP(x I H , ) } ,  (7a. 3.3) 

s, 
I 

provided there exists a k such that (7a.3.1) is satisfied. 
We observe that using the r.v. X the test (7a.3.3) can be written as 

We determine the distribution of T with respect 
continuous, then there exists a k such that 

P ( T 2  k ( H o )  = a  

(7a.3.4) 

to H , .  If the distribution is 

(7a. 3.5) 
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for any assigned a. The test, T 2  k ,  depends on the simple alternative H .  But 
in some situations the critical region T 2  k is independent of the particular 
alternative used in its derivation among a class of alternative hypothesis. 
Then we have a test which is uniformly most powerful (U.M.P.) with respect 
to all such alternatives against a simple hypothesis H o  . Let us consider some 
examples. 

In most of the illustrations, the space S is R", the Euclidean real space of n 
dimensions in which case the r.v. X is the vector variable x = (xl, . , . , x,), 
We refer to tke r.v.'s x,, . . . , x, as observations from a population or inde- 
pendent observations on a r.v. Occasionally we use the same symbols x], . . . , 
x, as dummy variables in integrating with respect to the density at xl, . . , , x,. 

Consider the class of normal distributions N(p ,  a) with a fixed and known 
and p lying in some range of the real line. Let xl, . , . , x,, be n independent 
observations on a random variable and let H ,  be the null hypothesis specifying 
its distribution as N ( p o ,  o), where p0 is a specified value of the mean p. In the 
present example the space S is R" and X is an n dimensional vector. For an 
alternative value of p, the optimum test (7a.3.4) is, with the vector (xl, . . . , x,) 
denoted by x, 

that is, 
U ( x  I P )  2 k P ( x  I P o )  

With logarithms, we can reduce (7a.3.6) to 

(p - p o )  C x i  3 c (constant). (7a. 3.7) 

If the class of alternatives is defined by p > p o ,  then the region (7a.3.7) is the 
same as R 2 clr where cI is chosen such that P(R 2 c1 Ip0)  = a. Hence c1 
is independent of p so that a U.M.P. test exists for the class of alternatives 
p > p,. Similarly the test R 6 c2 is U.M.P. for the class of alternatives 
p < p o  . But if the entire class of alternatives, p < p o ,  p > p o  , is considered 
there is no U.M.P. test. 

Since R N N ( p o ,  02 /n )  under the null hypothesis p = p o ,  we can find c1 such 
that P(?i 2 c1 Ip,) = a (for any given value of a). Thus an optimum test 
exists for any assigned level of significance for the set of alternatives p > p o  
and similarly for p < jio . 

Consider the problem of testing that the probability of success is no on the 
basis of an observed number of successes r in n Bernoulliun trials. If n is an 
alternative value of the probability of success, an application of Lemma 1 or 
the result (7a.3.4) gives the critical region 

nr(l - I [ )n-*  2 kn,'(I - n o y .  (7a. 3.8) 
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With logarithms, the region (7a.3.8) is seen to be r 3 ro when the class of 
alternatives is II > no. We have to determine ro such that 

P(r 3 ro I no) = a. (7a. 3.9) 

Since the distribution of r is discrete there may not exist an ro such that 
(7a.3.9) is true. There exist, however, rl and rz ( =rl + 1) such that 

P(r 2 rllnO) = al > a  > a2 = P(r 2 r21nO). (7a.3.10) 

Of course, when r < rl the hypothesis cannot be rejected at the level of 
significance a. Suppose we decide to reject H o  when r 2 rz  , and when r = rl 
we indulge in a random experiment by tossing a coin with a chosen probability 
8 for heads and decide to reject the hypothesis when a head appears. It is 
easy to see that when 8 = (a - az)/(al - az), the ultimate probability of 
rejection of H ,  is az + (al  - az)8 = a, which satisfies the requirement of an 
assigned level of significance. 

The randomized rule employed in the case of the discrete distribution (due 
to discontinuity in the d.f.) may be generalized to any problem. Given an 
observed x E S, we toss a coin with a probability 4 ( x )  for heads and decide to 
reject the hypothesis H o  when a head appears. The function 4 is called a 
critical function where as the critical region w is a special case, obtained by 
choosing 4 = 1 inside w and 4 = 0 outside w. The problem of testing H o  
against H reduces to the determination of 4 such that 

1 p ( x  I H o ) 4 ( x )  dv = a 

s, P(xl H ) 4 ( x )  do is a maximum, 

where S is the whole space. Lemma 2 provides the answer. The optimum 
critical function is 

$*(x) = 1, if P ( x (  H )  > kP(x1 H o )  
= 0, if P(x I H )  < kP(x I H , )  
= arbitrary if P(x 1 H )  = kP(x  I H ) .  (7a.3.11) 

It may be noted the k in (7a.3.11) always exists to satisfy the condition 
E [4(x)l  H,] = a [any given value in (0, l)]. 

To prove this, let us consider the random variable Y = P ( X  I H ) / P ( X  I H,)  
and its distribution under H ,  . If F, the d.f. of Y, is continuous, then for any 
0 c a < 1, there exists y,  such that I - F(y,) = a so that k = y,  . In other cases, 
F is at least continuous from the left [see (iii) of 2a] and for given a there 
exists a y ,  such that 

1 - F(y,) 2 2 1 - F(y, + 0). 
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Then k = y , ,  and when the observed Y has the value y , ,  we reject H ,  with 
probability 8, where 0 is determined from the equation 

1 - F(Ya 0) + o[F(Y, + 0) - F(Y,)l = 

The solution is practically the same as that obtained in (7a.3.3), except that 
it covers the situations where a k does not exist-as in the binomial example- 
such that the region (7a.3.3) has a given size a. We have three regions cor- 
responding to the solution (7a.3.1 l), w , ,  w z ,  and S - wI - w2. If x E w l ,  H ,  
is rejected, and if x E w 2 ,  H o  is not rejected. If x E S - w,  - wz , we decide by 
tossing a coin with a chosen probability 0 for heads as in (7a.3.10). It may be 
seen that 0 is determined from the equation P(w, )  + 0P(S - w1 - w2)  = a. 

Thus the randomized rule suggested for binomial distribution is optimum 
and leads to the maximum power for the class of alternatives n > no. Such a 
procedure involving a random experiment after an event is observed however, 
may appear arbitrary to a scientific worker who wants to interpret and draw 
inferences from the data he has collected. We must concede that his mental 
reservation is justified, as the arbitrariness is introduced just to satisfy the 
requirement that the so-called level of significance should be exactly equal to a 
value specified in advance. In examining the hypothesis n = no, he may, 
judging from the circumstances of the case, decide to adopt the lower level 
attained a 2 ,  and reject the hypothesis whenever r 2 r z .  Or if a l  is not much 
greater than a, he may decide to include rl also in the critical region. 

We shall consider some general properties of the test (7a.3.1 l),  which may 
be called the probability ratio test (P.R.T.). 

(i) The P.R.T. is a function of the minimal sufficient statistic when the fac- 
torization theorem for the density holds. 

The result is true since the likelihood ratio is a function of the sufficient 
statistic using the factorization (2d.3.2). 

(ii) The P .  R.T. is unbiased in the sense that the power of the test is greater 
than the level of signijcance ci i f a  c 1 and the distributions under H and H ,  are 
direrent. 

Consider the test +(x) = a for all x .  Then the level of significance E($l H,) = 
a and so also the power E ( 4 I H )  = a. Then obviously E ( $ * J H )  2 a. If 
E(4*  I H )  = a  c 1, then it would imply that P(X I H )  = P(XI H , )  a.e. u contrary 
to assumption. Hence E(4* 1 H )  > a. 

(iii) Consider independent observations x , ,  . . . , x,, on a random variable with 
density p(  * I H , )  under H o  andp( * I H )  under H .  Let 

(7a.3.14) 
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where 6 > 0 (by the inequality le.6.6), and 

be a sequence of likelihood ratio tests such that the first kind of error a, 3 a, 
0 < ci < 1. Then 

(7a.3.16) 

where fl, is the second kind of error. 

By definition 

P n  =[ P ( X ,  1 ~ )  . * . p ( x n l ~ )  < nn(l - an) (7a.3.17) 

where w,' = S - w,, the complement of the critical region w, . But under Ho , 
by the law of large numbers, 

W"C 

which implies that 
lG n-' log A,, < - 6  
I-+ w 

(7a.3.18) 

(7a.3.19) 

for a, to approach a > 0. Taking logarithms of both sides of (7a.3.17) and 
dividing by n, we have 

n-I log fl, < n - '  log(1 - a,) + n - '  log A f i .  

Since c i , + a < l ,  n- ' log(1-an)+O as n - t c o ,  and thus we have the 
required result 

Iim n-' log P, < limn-' log A, < -6 
- 

(7a.3.20) 
n-tm n+m 

by using (7a.3.19). 

critical regions such that a, is bounded away from unity 
It is shown further (see Rao, 1962d, for details) that for any sequence of 

(7a.3.21) lim n-' log P, 2 -6. - 

Combining (7a.3.20) and (7a.3.21), we find that for a L.R.T 

lim n-' log Pn = -6. 
n-. w 

(7a.3.22) 

The result (7a.3.22) implies, however, that fl, < O(e-"") for 6' < 6 so that 
p, + 0 at an exponential rate. 
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(iv) Suppose that it is decided to accept Ho ifthe ratio in (7a.3.15) is < 1 and 
reject H, otherwise. Let a, and p, be thejirst and second kind of errors for 
such a procedure. Then a,, + 0 and p, + 0 as n -+ 00. 

The result implies that complete discrimination between the hypotheses 
Ho and H ,  is possible as the sample size becomes indefinitely large. By the 
law of large numbers, 

when H o  is true. Therefore 

By symmetry /I, also -+ 0. 

Chernoff (1952) has obtained more precise estimates of c(, and B, and of the 
minimum value of (p, + la,) for a test of the type P(x  1 H ) / P ( x  I H,) 3 k ,  when 
minimized with respect to k. 

7a.4 Locally Most Powerful Tests 

When a U.M.P. test does not exist, there is not a single region which is best 
for all alternatives. We may, however, find regions which are best for alterna- 
tives close (in some sense) to the null hypothesis and hope that such regions 
will also do well for distant alternatives. We consider the special case where 
the density P(xl H) is a function P(x,  0) of 8, a (single) parameter assuming 
values in an interval of the real line. The null hypothesis Ho specifies a 
value 8 = 6,  of the parameter. If w is any critical region such that 

then the power of the test as a function of 0 is 

Let y(8) admit Taylor expansion [writing y(8,) = a]  
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If H is the class of one-sided alternatives 0 > do, we need to maximize 
y’(0,) to obtain a locally most powerful one-sided test. We shall assume 
differentiation under the integral sign so that the quantity to be maximized is 

yye,) = 1 p y x ,  e,) do. 
W 

(i) Let w be any region such that 

r(e,) = J ~ ( x ,  e,) du = ~1 (7a.4.2) 

and w, be the region { x  : P’(x,  6,) 2 kP(x, 6,)}, where k exists such that the 
condition (7a.4.2) is satisjied for w, . Then 

W 

P’(x, 0,) du 2 P ( x ,  0,) du. (7a.4.3) 

The result (7a.4.3) is obtained by an application of Lemma 1. Note that x 

Similarly if the alternatives are 8 c go, the locally most powerful (one- 

s,. I 
stands for the entire sample and P(x,  0) the density at x .  

sided) critical region is 

{x :  p y x ,  e,) G kP(x, e,)}. (7a.4.4) 

If the alternatives are both sided we impose the local unbiased restriction 
y’(0,) = 0, in which case the locally most powerful test is obtained by maxi- 
mizing y”(e,), the coefficient of (0 - 8,)’/2 in the expansion (7a.4.1). Such a 
test is called a locally most powerful unbiased test. The problem is that of 
determining a region w such that 

(7a.4.5) 

(7a.4.6) 

y”(6,) = 1 P”(x, 6,) du is a maximum. (7a.4.7) 
W 

The optimum region is obtained again by the use of Lemma 1. 

(ii) The optimum region wo for which (7a.4.7) is a maximum is dejined by 

{ x : p ~ ( x ,  e,) 2 k , ~ ‘ ( x ,  e,) + k,P(x, e,)}, (7a.4.8) 

provided there exist k ,  and k z  such that the conditions (7a.4.5) and (7a.4.6) 
are satisfed. 
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(i) and (ii) only establish the sufficiency of the solutions (7a.4.3), 
(7a.4.4), and (7a.4.8) provided k, k , ,  k ,  exist to satisfy the side conditions. 
Under some conditions on the probability densities, Dantzig and Wald 
(1951) established the necessity of these types of solutions and also the 
existence of k, and k, . We shall consider some applications of the results of 
(i) and (ii). 

Let x , ,  . . . , x,, be n independent observations from N(p,  a') and let it be 
required to test the hypothesis p = po when the alternatives are both sided 
assuming that a is known. 

Note. 

It is easy to verify that (representing the n observations by x) 

so that the optimum test (region wo) defined by (7a.4.8) is 

(7a.4.9) 

By symmetry it  may be inferred that the unbiased condition (7a.4.6) is satisfied 
if k, = 0, so that the test (7a.4.9) can be written 

(7a.4.10) 

The constant k ,  can be determined such that the probability of the relation 
(7a.4.10) is a given value a, since [n(f - - ~ ' ( 1 ) .  We thus see that 
the test (7a.4.10) for both-sided alternatives is different from the test (7a.3.7) 
for one-sided alternatives. 

Let x , ,  . . . , x, be n independent observations on a random variable with 
probability density p( . ,  8). The locally powerful one-sided test of H o :  8 = B0 , 
against 8 > B0 is, applying (7a.4.3, 

(7a.4.11) 

Let the density function p(* ,  8) satisfy regularity conditions such that 

exist, where it may be noted that i(8,) is Fisher's information at 0,. If n is 
large, by an application of the central limit theorem, 

(7a. 4.1 3) 
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asymptotically. Hence if d, is the upper u-point of N(0, 1) an approximate 
value of k (in 7a.4.11) is 

d,,/niceo>. (7a.4.14) 

We thus have a general solution for the problem of a locally powerful one- 
sided test when n is large. 

On the basis of the statistic (7a.4.13) we may set up a two-sided test 

(7a.4.15) 

which may not be locally most powerful unbiased but is shown to have 
some optimum properties in large samples (Rao, 1947e; Rao and Poti, 19463; 
Wald, 1941). 

7a.5 Testing a Composite Hypothesis 

As mentioned earlier, a null hypothesis H, is said to be composite if i t  does 
not specify completely the probability measure over the sample space S, 
but only specifies the true probability measure as a member of a subset of a 
wider set of possible probability measures. Some examples of composite 
hypotheses involving the parameters p and g of a normal distribution are: 

(a) H,: p < 0, 0’ = 1, 
(b) H , :  p = 0, g’ arbitrary 
(c) H,: 6’ = oo2 (a given value), p arbitrary, 
(d) p < 0, 0’ arbitrary. 

In a composite hypothesis the size of the critical region w is defined by 

SUP a(h) = SUP P(w I h).  
h e H o  h s H o  

(7a.5.1) 

If u(h) = u for every member h E H o t  the critical region w has size u and 
is said to be similar to the sample space. It is of interest to determine the 
entire class of similar regions in any given problem where we may restrict 
the choice of an optimum critical region to similar regions only. The following 
results are concerned with the existence and construction of similar region 
tests. 

(i) Let a similar region w of size u exist and T be a boundedly complete 
sufficient statistic ,for the family of measures admissible under H, . Then the 
conditional size of w given T = t is u. 

Define tFc indicator function of the region w 

~ ( x )  = 1, if X E  w 
=0 ,  i f x 4 w  
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and choose a simple hypothesis h E H,, . Then the sufficiency of T implies 

E[xJ T = t ,  h]  = q ( t )  independent of h E H,. (7a. 5.2) 

Since w is a similar region, we have for every h E H,. 

= E[X I hl = M E [ X  I T, hl) = &(TI I hl. (7a. 5.3) 

Since T is boundedly complete, q(t)  = a for almost all t ,  that is, the condi- 
tional size of w given T = t is u. [Note that Tis said to be boundedly complete 
iff (.) is bounded and E [  f (T)] = 0 for all h E H ,  * f ( t )  = 0 for almost all t . ]  

(ii) Let h E Ho and g E H ,  the class of alternative hypotheses. The problem 
of determining w such that 

J P(xIh)du=aforeveryhEH,  
W 

P(x1g) du is a maximum for a given g E H 
Jw 

is the same as that of determining an indicator function x such that 

E[xIT= 1, h]  = a (7a.5.4) 

E[xI T = t ,  g ]  is a maximum (7a.5.5) 

when a statistic T exists such that it is suflcient and boundedly complete for the 
family ofprobability measures specijied by Ho and not necessarily for those of H. 

The proof is simple and is based on the result obtained in (i). The problem 
of determining an optimum similar region is thus reduced to that of deter- 
mining an optimum critical region of a given size considering the conditional 
probability measures given T over S with respect to the hypotheses h and g .  

(iii) Let P(* I h) and P(- Ig)  be the probability densities corresponding to 
h E Ho and g E H and T, a boundedly complete su8cient statistic for the family 
of measures specijied by H, , Consider a region wo , inside which 

P(x I g )  2 A(T)P(x I h) (7a.5.6) 

and outside which 

P(xlg)  G W ) P ( x l h ) .  (7a. 5.7) 

I fA(T)  exists such that the conditional size of w, given T = t is u, then w, is 
the best similar region for testing Ho . Further, the test is unbiased. 

The proof is similar to that of the problem of a simple null hypothesis 
against a simple alternative considered in 7a.3 except that the discussion is 
restricted to similar regions which satisfy the property deduced in (i). If 
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in (iii) Tis known to be only sufficient and not necessarily boundedly com- 
plete, the construction of wo as in (7a.5.6) and (7a.5.7) does provide a similar 
region test satisfying the property of (i). But we would not be able to say 
that wo so obtained is the best for there may exist a similar region for which 
the property of (i) is not true when T is not boundedly complete and no 
comparison with such regions has been made. We shall consider some 
examples to explain the method described in (iii). 

Let Ho be the hypothesis-p = po and a’ is arbitrary-to be tested on 
the basis of n independent observations xl, . . . , x, from N(p, a’). The prob- 
ability density under H o  , regarding a’ as a parameter, is 

(2na2)- “/Ze -Z(xr - Ica)’/’u’ 

which shows that T =  (xi-p0)’ is sufficient for a’. Choose a particular 
hypothesis h E H,: p = po, a’ = uo2, and g E H: p = pl ,  6’ = a,’. Then 
using (7a.5.6, 7a.5.7), the critical region we have to try is 

(7a. 5.8) a, - ne - Wr - PI P/2u1 2 A ( T ) ~ ~  - ne- Z(xr  - P O ) ’ / ~ O O ’  

If we take logarithms and write T = (xi - p0)’, (7a.5.8) reduces to 

(PI - Po)@ - Po) 2 4(T)  =. (X - Po) > U T )  
if pi > po . The test is equivalent to 

(7a. 5.9) 

We have to determine A,(T) such that the conditional size of the region 
(7a.5.9) given T is a. It is easy to see that 

are independently distributed and hence the conditional distribution of 
,/;(a - po)/,/?given Tis the same as the marginal distribution of 

The distribution of &(X - p o ) / f i  under the hypothesis Ho is obtained in 
(3b.1.9) of Chapter 3. The distribution is seen to be independent of the 
unknown a. If b, is the upper a-point of the distribution, then the region 

(7a.5.10) 
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has the required properties. Thus with the choice I , (T)  = b, in (7a.5.9), 
the condition of result (iii) is satisfied and, therefore, (7a.5.9) is the best 
similar region test for any alternative hypothesis with p > po. We note that 

where 

is the Student’s t-statistic introduced in Chapters 3 and 4. The region (7a.5.9) 
may be written in terms off as 

t 
3 b, or equivalently t 2 t, 

J t 2  + (n  - I )  

where t ,  is the upper cr-point of the t distribution on (n - 1) degrees of free- 
dom. 

Similarly, when p < p o ,  the test is t < - f a .  When the nature of the alter- 
natives is unknown we may apply the concept of the locally most powerful 
unbiased region. It may be shown that such a test is provided by It1 2 
the upper (a/2)-point of the t-distribution. 

The reader may apply the same method to deduce the similar region test 
for the hypothesis--a2 = -ao’ and p is arbitrary. If S = 1 (xi - X)’, the critical 
region is 

where a,,  a2 are constants, according as the alternatives are -a2 > -ao’ or 
-a2 < -ao’. To obtain the locally most powerful unbiased region we first find 
the distribution of u = S/-ao2 under an alternative value -a2. The density of u 
for an alternative -az is 

p(u, 6 2 )  = c.(a,/-a)”- le-uao’/2a2 U ( n - 3 ) / 2  

We must determine two values (u , ,  uJ such that 

(>(u, -at) du = 1 - a (a being the level of significance) (7a.5.1 I )  

u* dP(u, -ao’) 
du = 0 (unbiased). 

fu, doo2 
(7a. 5.12) 
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It is easy to verify by straightforward computation that 

Hence the equation (7a.5.12) reduces to 

uy- 1 ) / 2 e - u ~ / 2  = u2 ( n -  1) /2  e - u d 2  . (7a.5.13) 

Equation (7a.5.11) is 

The values of u l ,  u2 can be found by solving equations (7a.5.13) and (7a.5.14). 
The values of unbiased partitions ( u , ,  u2)  for various values of n and a = 0.05 
and 0.01 are given in R.M.M. Tables. 

Let x , ,  ..., xn be n independent observations from N(8, 1) and H o  be 
8 ,< 0. Let us construct a similar region test for H o  . The statistic Z is sufficient 
for 8, for its entire range, -co < 8 < 03. If x is the indicator function of a 
similar region w ,  then 

E [ X  I x, el = U, e 6 0. (7a.5.15) 

Since X is sufficient for 8, for the whole range - co < 8 < co, the result 
(7a.5.15) is true for 8 > 0 also. The power of w for any 8 > 0 is then 

E { E [ X  I Z, el} = E ( U )  = U, 
x 

which is independent of 8 and is the same as the first kind of error. The 
condition that the test should be based on a similar region thus gives a useless 
test. On the other hand, let us choose the simple hypothesis 0 = 0 in H o  and 
construct a test against an alternative 8 > 0. As shown earlier the test criterion 
is Z 2 1 where 1 is determined such that P(X 2 11 0 = 0) = a. In such a case, 
it may be seen that 

and 

so that the condition of the size as defined in (7a.5.1) is satisfied and the 
power is always greater than u and in fact increases with 8, which is a 
desirable property. Thus a reasonable test of the composite hypothesis 
0 ,< 0 exists and is superior to the similar region test. This example shows 
that a certain amount of caution is necessary in accepting test criteria derived 
by any of the principles stated without examination of their performance 
(nature of the power curve, etc.). 

P(Z 2 118 G 0)  G a P(Z 2 118 > 0) > u 
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Let us now consider composite hypotheses in one parameter family of 
distributions, where similar regions may not exist. If 8 is the parameter, we 
may have the following null (H,) and alternative (H) hypotheses: 

HO H 

(a) e G 8, 
(b) e G eo or e z e, 
(c) e, G e G e, 

e > eo 
eo < e < el 
e < e,, or e > e, 

Let a(e) = E(Q I e), where 4 is a critical function. In general, the problem is 
one of determining Q such that a(&) is a maximum when 8' E H subject to the 
condition 

a(@ G LY when 8 E H,. (7a.5.16) 

The problem may not have a reasonable solution in general. Proposition 
(iv) relates to a satisfactory situation when the families of densities P(x,  0) have 
a nionotone likelihood ratio, i.e., there exists a real-valued function T(x) such 
that for any 0 < O', the distributions of X are distinct and the ratio P(x ,  6')/ 
P(x, 0) is a nondecreasing function of T(x).  

(iv) Let 0 be a realparameter, and let the random variable X have probability 
density P(x ,  0) with a monotone likelihood ratio in T(x) .  For testing H ,  : 8 < 0, 
against 0 > O 0 ,  there exists a U.M.P. fest, which is given by 

1 ifT(x) > c 
Q*(x )  = 6 i f T ( x )  = c I 0 i f T ( x ) < c  

where c and 6 are determined such that E(Q* 10,) = a. Further a*(e) = E ( 4 *  I fl) 
is a strictly increasing function for points 8 at which a*@) < 1. 

Consider H o  : 0, against H: 8, > 8,. The most powerful test (7a.3.11) is 
based on the regions P ( x l 6 , )  > , =, < kP(xl0,)  which are equivalent to 
T(x)  > , =, < c  so that the test $* is U.M.P. for 8 = 0, against f3 > O 0 .  We 
show that Q* is also U.M.P. for 8 G 0, against 0 > 8,. 

Of course, the same test is most powerful for any 8' against 6" > 8' at a 
level u*(O'), in which case a*(e") > a*(€J') using the proposition (ii), 7a.3. Then 
a*(e) G a for 0 G Bo, so that 4* satisfies (7a.5.16). Suppose 4 is another test 
satisfying (7a.5.16), i.e., E(+ 10,) G a. Then E(4It9) G E(Q* 10) for 0 > 0, for 
otherwise there is a contradiction, since Q* is the most powerful test of H ,  : 0,, 
at level a against H : 0 > 8,. 

A typical example of monotone likelihood ratio family is the one-para- 
meter exponential family of distributions (See 3b.7) 

P(x,  0) = a(e)b(x)exP[d(e)T(x)l (7a.5.17) 
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where d(8) is strictly monotone in the range of 0. The family has a monotone 
likelihood ratio in T(x)  or in - T(x) according as d(8) is increasing or decreas- 
ing in 8. It may be seen that a number of well-known, discrete (binomial, 
Poisson, negative binomial, etc.), and continuous distributions (normal, 
gamma, etc.) belong to this family. Proposition (v) relates to the family 
(7a.5.17). 

(v) For testing the hypothesis H o  : 8 < 8 ,  or 8 2 8, against the alternative 
H : 8, c 8 < 0, in the family (7a.5.17) there exists a U.M.P. test given by 

1 

0 

when cI < T(x)  c c 2 ,  

when T(x )  < cl or T ( x )  > c, , 
Ji when T(x) = ci , i = I ,  2, 

(7a.5.18) 

where the c’s and 6’s are determined such that 

E($* I el) = ~ ( 4 *  1 e,) = a. (7a.5.19) 

Let us consider Ho : 8=8, or 8 = 8, and determine 4 such that E(4J 8)  for 
given 8, < 8 < O2 is a maximum subject to the conditions E ( 4  18,) = 
E ( 4  18,) = a. In such a case, Lemma 2 of 7a.2 is applicable giving 

1 if P(xl8)  > k , P ( x p , )  + k ,P(xIe2 )  
4 * ( x )  = 6 if P ( x J 0 )  = k p ( x l 8 , )  + kZP(x1e2)  (7a.5.20) 1 0 ifP(xI8) < k,P(xle,) + k,P(xIe , ) .  

Substituting the special form (7a.5.17) for P(x l0 )  in (7a.5.20), we find that the 
test (7a.5.20) is equivalent to (7a.5.18). [The result is proved by showing that 
the three regions in (7a.5.20) correspond to y a  2 b + cy, where y = edT and 
hence to intervals of Tspecified in (7a.5.18)]. Then the test (7a.5.20) depending 
only on T is U.M.P. for Ho : 8 = 8, or 6 = 6 2 .  Now we apply an argument 
similar to that used in proposition (iv) to establish that the test is U.M.P. for 
~ , : e ~ e , o r e 2 e , .  

Unbiased Test. A test is said to be unbiased if E ( 4  18) G a when 0 E Ho and 
2 a when 8 E H. We have already seen in 7a.3 that U.M.P. does not exist 
for testing H, : 8 = 8, against 8 # 8, where 8 is the mean of the normal dis- 
tribution. In such a situation, we may impose the restriction of unbiasedness 
and look for an U.M.P. test. Proposition (vi) provides an answer in particular 
cases. 

(vi) Let P(x  18) belong to the one-parameter exponential family of distribu- 
tions. Then U.M.P.U. (U.M.P. unbiased) tests (a) of H ,  : 8 = 8, against 
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0 # 0, and (b)  of H o  : 0, G 0 G 0, against H I  : 8 < 0, or 8 > 0, at level Q 

exist and each test is de$ned by the critical function. 

1 i fT(x)  < c ,  or >c2 

$(x )  = d i  i f  T(x) = c i ,  i = 1, 2,  [ 0 i f c ,  < T(x) < c2 

where c , ,  c2 , d, ,  6, are determined by the equations E ( 4  I 0,) = a, E(T4 10,) = 
ME( T I 0,)for problem (a)  and E ( 4  18,) = E ( 4  10,) = a for problem (b). 

For a detailed proof, the reader is referred to Lehmann (1959), Chapter 4. 

7a.6 Fisher-Behrens Problem 

Let n , ,  X, ,  sI2 and n 2 ,  X,, s22 be the size, sample mean, and variance of 
independent observations from N ( p , ,  ol2) and N ( p 2 ,  a22) respectively. 
What is an appropriate test based on these statistics of the hypothesis, 
p ,  - p 2  = [ (a given value) when aI2 and u2, are unknown and possibly 
different ? 

It may be noted that when 0, = c2,  the statistic 

(7a.6.1) 
S 

where s2 = [(n,  - l)sI2 + (n2 - l ) ~ ~ ~ ] / ( n ~  + n2 - 2), has a t distribution on 
( n ,  + n2 - 2) D.F., and provides a similar region test for any hypothesis 
concerning the difference p, - p 2 .  The test (7a.6.1) may be derived in the 
same way as the t-test in 7a.5, first, by observing that when p, - p2 = ( 
(given) and 0, = 02, complete sufficient statistics exist for the unknown para- 
meters and, second, by applying the method of [(iii), 7a.51. 

When 0, # 0, and p, - p2 = [ (given), i t  is not known whether complete 
sufficient statistics exist for the unknown parameters and hence the method 
of [(iii), 7a.51 cannot be applied for the determination of a similar region test. 
But does any similar region test exist? The question has been recently an- 
swered by Linnik, who showed that similar regions based on incomplete 
sufficient statistics exist; the test procedure is, however, complicated. 

Fisher and Behrens (see Fisher, 1935, 1956) proposed a test based on the 
fiducial distribution of p, - p 2 ,  which does not satisfy thecriteriaof testingof 
hypotheses as laid down in 7a . l .  For instance, the first kind of error is not 
below a specified value for all alternatives of the null hypothesis. 

Various approximate tests have been suggested; one, due to Banerji 
(1960), strictly satisfies the inequality concerning the first kind of error. The 
proposed test is 
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where ti is the upper (a/2)-point of the t distribution on (ni - I )  D.F. The 
first kind of error for the test is <a. For other approximate tests see, Chernoff 
(1949), Cochran and Cox (1957), Linnik (1963) and Welch (1947). 

7a.7 Asymptotic Efficency of Tests 

Consider the problem of testing a simple hypothesis that the value of a 
parameter 8 is 8, against the alternatives such as 8 # 8,, 8 > B 0 ,  or 8 < 8,. 
Let the data consist of n observations and denote by a,(8,) the first kind of 
error and P,(8) the second kind of error for the alternative 8. The power 
function is y,(0) = I - p,(0). 

We have already seen that there is usually no test for which y,(8) has the 
largest value for each 8 compared to any other test with the same value of 
cc,(8,). Nonetheless, we will have occasion to compare two given tests and 
choose one in preference to the other. But given two tests with thesarne 
value of the first kind of error ct,(OO), we may find that the power functions 
y!,')(O) and y!,*)(8) satisfy one kind of inequality for some values of 8 and 
the reverse inequality for the other values of 8 in the admissible range. Such 
a knowledge is extremely useful, but in practice the computation of the 
power functions is extremely difficult and we may have to depend on some 
criterion, preferably a single numerical measure which is easily computable, 
for making a choice between tests. It is clear that such an approach is unsatis- 
factory for test criteria based on finite samples. We shall therefore consider 
the case of the large samples, where the distinctions between tests are expected 
to be clearcut. 

For any reasonable sequence of tests y,(8) + 1 as n 4 co, for any fixed 
alternative 8 (#  0,). Such a test is called a consistent test. A test which is not 
consistent has, indeed, a poor performance in the sense that it does not 
enable us to detect the alternative-with certainty if it is true-as n -+ 00. 

Since for any consistent test, r,(8) -, 1 as n + co for fixed 8, the limiting value 
of the power function y , (0)  cannot serve as a criterion for distinguishing 
between tests. But for any n, however large it may be, there will be alternative 
values of 8 possibly close to 8, such that y,(8) is less than unity. We shall 
therefore study the behavior of y,(8) as 8 + 0, and n + 00 in some specified 
way and develop some measures of asymptotic efficiency. 

Measures of Asymptotic Efficiency. In the context of sequences of tests based 
on i.i.d. observations, some of the alternative measures of efficiency proposed 
are as follows: 

(a) e, = lim n-l[y:(eo)]Z - 
n+m 

where yA(8,) is the first derivative of y,(8) at 8 = 8, 

(7a.7.1) 
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(b) e2 = lim n-'y;(d,) 
__ 
n-m 

where yi(8,) is the second derivative of yJ8) at 8 = 8, . 

2n- log !,(el 
(8 - 8,)2 ' 

(c) e ,  = - lim lim __ .- 
8-00 n-rm 

(7a.7.2) 

(7a.7.3) 

, for some chosen 6. (7a.7.4) 
n-rm 

Each measure, el to e4, provides a description of the local behavior of the 
power curve at 0 = 8, in large samples. Let us denote by e,(T',), the value of 
the measure e, for a sequence of tests {T,}. If e,(T,,) > er(T2,), it would 
imply that in large samples, the power curve for {Tin} is higher than that for 
{T2,} in the neighborhood of 8,. 

Under mild regularity conditions on the common p.d. (probability density) 
of each observation, all the measures e ,  to e4 are bounded above by quanti- 
ties independent of any test procedure and which are easily computable. If 
for any sequence of tests {T,}, the upper bound is attained for e,(T,), then 
{T,} is asymptotically best according to the measure e, .  The upper bounds are 
quoted without proof and with reference to the original papers where the 
proofs can be found. The upper bounds are in fact forlim supin (7a.7.1-7a.7.4). 

(a') e ,  < (i/2n)1/2exp( -a2/2), where i is Fisher's information on 0 con- 
tained in a single observation and a is the upper a-point of N(0, l), (Rao, 
1962d). 

(b') e2 < i .  
(c') e3 < i, (Rao, 1962d). 
(d') e4 < 1 - @(a - a$), where @ is the distribution function of N(0, I), 

The computations of these measures are not easy for any general test 
criterion. The most important cases are, however, tests based on asymp- 
totically normally distributed statistics. We shall illustrate the computation 
of some of the measures in such cases. 

(Rao, 1963a). 

Computation of el. From the definition it is seen that el provides an estimate 
of the slope of the power curve at 8 = 8, and the measure is useful for com- 
paring one-sided tests (i.e., when the alternatives are 8 > 8, or 8 < 8,). For 
unbiased tests, the value of el would be zero, in which case e,  , which measures 
the curvature of the power curve at  8 = 8, , is relevant. 



466 THEORY OF STATISTICAL INFERENCE 

Let us consider i.i.d. observations each with p.d. p ( x ,  U )  such that i = 
E(d logp/d0)2 < 00, at 0 = 0,.  Let xl, . . . , x, denote the first n observations 
and P ( X , ,  U )  = p ( x I ,  0 ) .  . . p ( x n ,  U). Then 

(7a. 7.5) 

has asymptotic normal distribution with mean zero and variance i .  Let T, 
be a consistent estimator of 6 such that the a.d. of &(T, - 0,) is “0, a2(U,)]. 
We have the following proposition leading to the computation of e l  for the 
sequence of tests based on &(T, - 0,). 

(i) Let the sequence of test criteria be U ,  2 a ,  itthere U,, = ,/n(T, - do)/ 
a(@,) and a is the c1 probability point of N(0,  1). Further, let the asymptotic 
joint distribution of U,, andZ, be bivariate normal with the correlation cofiecient 
equal to p .  If differentiation under the iiitegral sign is valid for the jirnction 
P ( x , ,  e), then e ,  = (ip2/2n)exp( -a2 /2 )  cc p 2 .  

By definition 

n-1/2yi(00) = 1 n-”2P’(X, ,  0,) dun 
U, ,Ba  

4 ZP(Z,  U )  dZ dU, as it -+ co, (7a.7.6) 

where P ( Z ,  U )  is the bivariate normal density with V ( Z )  = i, V ( U )  = 1, and 
cov(2, U )  = p J i  The integral (7a.7.6) is easily evaluated to be 

(7a. 7.7) 

which proves the result of ( i ) .  
If the statistic T, is efficient in the sense of (5c.2.5 and 5c.2.6) then p = 1 and 

e ,  attains the upper bound. Thus efficient estimators provide asymptotically 
best test criteria according to the e l  measure. If TI, and T2, are two sequences 
of statistics satisfying the conditions of (i) with p I  and p 2  as the asymptotic 
correlations with Z,, ,  the relative efficiency of T,, compared with TI, is 
(pz/p1)2, so that we may define the efficiency of a test by p 2  itself instead of 
by (7a.7.7) as in the case of estimating efficiency. We will denote p 2  as the 
measure e;. 

The computations of e2  and e3  are difficult and require far more assump- 
tions on the sequence of statistics T,. We shall pow consider e 4 ,  which is 
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called Pitman eficiency and which has been frequently used to compare large 
sample tests. 

(ii) Let Tn be a test statistic based on tlie first n observations and let the 
critical region be Tn 2 A,,. Suppose that 

(a) lim P(Tn 2 A,,) = c1 (fixed ualue) > 0, 

(b) there exist a positive quantity r and functions p(O) ,  u(0) such that 
n- m 

for every real y ,  where @(y)  is the d.5 of N(0,  l ) ,  
p ( 0 )  has a derivative p’(0,) at 0 = 0, , which is positive and o(U) is con- 
tinuous at 8, . 
Then 

(7a. 7.9) 

wliere a is the upper a probability point of N(0, 1). 

In many practical applications r = f ,  which is chosen in the definition of 
e4.  We could have defined e4 as the limit of y(0, + an-*) by choosing the 
value of r to satisfy assumption (b). Now, by definition 

yn(O, + an-‘) = P(Tn 2 A n l U o  + an-‘ ) 

(7a. 7.10) 

where &,,(a) -+ 0 as n -+ co, observing that theconvergence of(7a.7.8) isuniform 
in y ,  although not in 6.  Substituting 6 = 0, we have 

Taking limits of both sides of (7a.7.1 I )  

n-tm 

which shows that 

(7a.7.11) 

n -+ 00. 
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Therefore A,, = n*(a t q,,)a(Oo) + ~ ( 8 , ) .  Hence the argument of @ in (7a.7.10), 

p(O0 + 6n-7  - A8,) - (a + % M O O )  dn-' 
6 

- - I,, - p(Bo + 6n-I) - nr 
a(O, + an-') a(8, + an-') 

a ,  
6P'(O,) - a@,) W ( ~ 0 )  

400) 4 B O )  

-+ =-- 

which proves the required result. 

(iii) A suficient condition for the assumption (6) o f ( i i )  to hold is 

(7a.7.12) 

uniformly in 8 for 8, < O < 8, + q, where q is any positive number. 

The result of (iii) is easy to prove. In practice i t  is easier to verify the con- 
dition (7a.7.12) instead of (b) of (ii). Furthermore, if we consider only test 
criteria satisfying the conditions of (ii) or (iii), the efficiency may be defined as 
[p'(80)/a(Oo)]1/r, which is an increasing function of (7a.7.9) for given 6 and a. 
We call the measure [p'(O,)/o(Oo)]'~' as ek . 
The Concept of Relative Sample Sizes. Let us consider the measure el and 
two sequences of tests TI,, and T Z n .  Denote by y,!,,(O,), the slope of the power 
curve for given n for the ith test, i = 1, 2. Let us suppose that for a given n, 
there exists a number N,, such that 

yin(eO) = y $ N n ( O O ) ,  (7a.7.13) 

that is, the slopes are equal and that N,, -+ 03 as n + 00. The efficiencies 
e l (T , )  and e1(T2)  are, by definition, 

e , ( T I )  = Iim[n-'/2y;,,(80)]2, 

e , ( ~ ~ )  = iim [ N ;  1'2y;N,(&,)]2. 

fl -i m 

N n -  a2 

But el(?',) is equal to, from the relation (7a.7.13), 

(7a .7.14) 
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Hence lim (n/N,,) = el(Tz)/el(Tl) as n -P a, that is, in large samples the 
ratio of the asymptotic efficiencies is equal to the limit of the inverse ratio 
of sample sizes needed for the two tests to have the same slope for the power 
curves. Thus, we have a practically useful interpretation of the measure el. 

Let us consider the measure e l .  It is seen that under the assumptions of the 
proposition (ii) or (iii) 

lim y,,(Bo + 6 n - 3  = @ 
n-r m 

Let us consider two sequences of test statistics {TI,,} and {T2,,} and denote by 
p l ,  al, and pz , a2 the relevant functions for T,,, and T,, . As before, let n and 
N,, be such that 

Yl,,(eo + 6n-r)  = Y2N.(eo + 6n-r) (7a.7.15) 

and suppose that N ,  -+ 00 as n -+ 00. Now 

= limy,N,,[8, + 6Nn-r(n-r/Nn-r)]  
n-m 

= lim yZNn(80 + 6A-rN,,-r) (7a.7.16) 
N n + m  

(7a.7.17) 

where I = lim(n/N,,) as n -, 00. The transition from (7a.7.16) to (7a.7.17) 
needs careful demonstration following the arguments used in the proof of (ii). 
The equation (7a.7.17) gives 

or 

eXT2) 
ek( T 1) * 

=- 

Thus, the relative efficiency of T2 with respect to T, is equal to the inverse 
ratio of sample sizes needed to have the same power at a sequence of values 
8, -P 8, such that y,,(8,,) -+ y (any assigned value) < 1, as n -+ co. 
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There are a few other measures of interest of asymptotic efficiency of tests 
due to Bahadur (1960), Chernoff (1952), Noether (1959, and others, but they 
are somewhat more specialized than those considered in this section. For 
further details on asymptotic efficiency of tests and applications to certain 
parametric and nonparametric tests, reference may be made to Chernoff and 
Savage (1958), Pitman (1949), Hodges and Lehman (1956), Hoeffding and 
Rosenblatt (1955). 

7b CONFIDENCE INTERVALS 

7b.l The General Problem 

Numerous examples have been given in the previous chapters of estimating 
parameters by intervals. We shall formulate the problem in a general way 
due to Neyman (1935, 1937) and examine the extent to which satisfactory 
solutions can be obtained. 

Let x denote a sample point and 8 a parameter (which may be multi- 
dimensional) specifying the probability distribution over the sample space. 
Let 0 denote the set of admissible values of 8. For given x let I (x)  denote a 
set of 8 values. l i s  said to be a confidence set estimator of 8 with a confidence 
coefficient (1 - a), or in short (1 - a) confidence set estimator, if 

P [ x :  8 E I(x)IO] = 1 - a, for every 8 E 0. 

A confidence set estimator I is said to be unbiased if 

(7b.l.I) 

(7b. 1.2) 

Let Z and J be two set estimators of 8 with the same confidence coefficient. I 
is said to be shorter than J if 

(7b. I .3) 

The conditions (7b.1.2) and (7b.1.3) correspond to unbias and power of a 
test in the theory of testing of hypothesis. 

In practice we are generally interested in interval estimators of individual 
parameters and not of any general set estimators. In theory, however, i t  is 
simpler to consider the more general problem of set estimation. 

7b.2 A Gericral Method of Constructing a Confidence Set 

The problem of set estimation is closely linked with that of testing a simple 
hypothesis concerning the unknown parameters. We shall prove some results 
which establish the relationship between the two problems. 
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( i )  Let HI, be a critical region of size u for testing the simple hypothesis 
8 = a (given value) and let waC be the region coniplernentary to W, . Then for  
given x, the set of a 

/(x) = {a : x E weC} (7b.2.1) 

is a (1 - a) cotlJidence set for 8 for giveti x. 

By construction 

x E wac o a  E /(x). (7b.2.2) 

Hence 

P(wpC 18 = a) = P ( x  : a E /(x) 18 = a). (7 b. 2.3) 

The left-hand expression of (7b.2.3) has the value ( I  - x ) ,  which proves 
the required result. 

( i i )  Let /(x) be a ( I  - 2 )  confidence set of 8. Then the set of x caliies 

war = {x : a E /(x)} (7 b, 2.4) 

constitutes an acceptance region for the hypothesis 8 = a. 

(iii) I f  wa is unbiased as a critical region for testing the hypothesis 8 = a, the 
set estimator / based on we is unbiased in the sense of (7b. 1.2). Conversely i f1  is 
unbiased in the sense of (7b. I .2), the critical region w, based on / provides an 
unbiased test of the hypothesis 8 = a. 

The result follows from the equivalence relation (7b.2.2) by taking prob- 
abilities for 8 = b # a. 

(iv) Let / be shorter rhan J ,  another set estiniator, mid w , ( / )  and w , ( J )  be 
the associated critical regions. Then the test based on n,(/) is wore powerful 
than that based on w , ( J ) .  

From the equivalence relation (7b.2.2), we see that 

P ( ~ v ~ ~ ( l ) l O )  = P(a E I ( Q ) ,  
< P(a E J lo), since I is shorter 
= P ( ~ J J )  I el. 

8 f a 

(v) The converse of (iv) is also true. 

Results (iv) and (v) show that i f  a U.M.P. test exists for the hypothesis 
8 = a (any given value), then the shortest confidence set exists and vice-versa. 

In general we have a satisfactory set estimator if there is a reasonable test 
criterion for simple hypotheses concerning 8. For example, on the basis of a 
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sample (x,, . . . , x,) from N(p ,  02), a reasonable test for 
unknown is Student's t-test with the critical region 

= a when o2 is 

where k is the upper (42)  point of the t-distribution on (n - I )  D.F. Then 
by (7b.2. I ) ,  

l ( x )  = {a : x E w,'} 

= a :  [ 
J i I n  - a1 

S 
bk) 

which gives 

as a (1 - a) confidence set (interval) estimator of p.  
It  is also seen that, corresponding to the one-sided test, 

where k is the upper a-point of the r-distribution on (n - 1)  D.F., we obtain 
the one-sided (1 - a) confidence interval 

(7 b. 2.5) 

In the two examples considered, the set estimator turned out to be an 
interval. We shall now consider an example to show that the method of 
inversion (7b.2.1) does not always lead to an interval estimator even for a 
one-dimensional parameter. 

Let x N N ( p ,  1) andy N N ( @ ,  1) and be independent. To test the hypothesis 
1 = a we may use the test criterion 

(7 b. 2.6) 
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The critical region of size a is (ax - Y ) ~  2 (a2 + l)k, where k is the upper 
ct probability point of ~ ~ ( 1 ) .  The set estimator of I is the set of values of a 
such that (ax - y)' < k(a2 + I ) ,  that is, 

a2(X2 - k )  - Z U X ~  + y 2  - k < 0. (7b.2.7) 

The set derived from the inequality (7b.2.7) will not be an interval if, for 
instance, (x2 - k )  is negative and the roots of the quadratic in a are real. 
This can happen since x and y can have any arbitrary values. The set of 
values of (x, y )  for which the estimate is not an interval, however, may have 
a low probability, in which case the suggested solution may be acceptable. 
A different procedure is needed if the set estimator is restricted to intervals 
only. 

7b.3 Set Estimators for Functions of 8 

Let 0 be a one-dimensional parameter, f be a set estimator of 0, and g(8) be 
any function of 0. Consider the set g[f(x)] of g(0) values corresponding to the 
0 values of the set I (x ) .  If g(8) is a one-to-one function of 0, then 

in which case g[f ] is a set estimator of g(0) with the same confidence as I is of 
8. On the other hand, if g(0) is not a one-to-one function, then 

and therefore the confidence coefficient of the estimator g[/] is higher than 
that of I .  This may not be the desired solution, however. To obtain a set 
estimator of g(8) with a given confidence coefficient for such instances, it may 
be necessary to find a test criterion for testing simple hypotheses concerning 
g(8) itself. 

Suppose 8 is a multidimensional parameter and I is a ( I  - a)-confidence set 
estimator. As before, let g[f(x)] be the set ofg(0) values corresponding to the 8 
values of the set f(x). In general, we can only assert that 

and therefore g [ f ]  is a set estimator of g(6) with a confidence coefficient 
greater than ( 1  - a). The reader is referred to the examples and the discussion 
on simultaneous confidence intervals given in 4b.2. 
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7c SEQUENTIAL ANALYSIS 

7c.l Wald’s Sequential Probability Ratio Test 

In practice all investigations are sequential. Experiments are continued until 
sufficient evidence accumulates to come to a decision or are discontinued after 
some stage owing to lack of resources or because further continuance is 
judged to be unprofitable. It is also conlmonplace that evidence collected up 
to any stage is utilized in planning further investigations. The concept of a 
pilot survey, introduced by Mahalanobis (1940) to collect preliminary inform- 
ation for efficient planning of a larger survey of jute acreage in Bengal, is a 
typical application of sequential analysis. In a slightly different context of 
acceptance sampling where the quality of a lot or a batch of items is judged 
by examining a small sample of items, Dodge and Roming (1929) introduced a 
two-stage sampling plan. Let r ,  be the number of defective items in a first 
sample of size n, .  If rl < cl, accept the lot, and if r1 2 c2 ,  reject the lot. If 
c, < r,  < c2 take a further sample of size n2 and if the total number of defects 
r in both the samples is not greater than c, accept the lot and reject otherwise. 
A general theory of sequential analysis was developed by Wald in connection 
with acceptance sampling during the second world war. We shall consider in 
this section some basic concepts and methods of sequential analysis as de- 
veloped by Wald (1947). 

Sequential Probability Ratio Test. Let H, and HI be two alternative 
hypotheses concerning a sequence of random variables ( x , ,  x 2 ,  ...) not 
necessarily i i d .  Denote by P(* , . . . , I Hi) i = 0, I the probability densities 
under Ho and HI based on the first m observations. The likelihood ratio based 
on the first m observations is 

(7c. 1.1) 

Wald‘s sequential probability ratio test (S.P.R.T) for deciding between the 
two alternatives H, and HI (or of testing H, against an alternative HI) is 
defined as follows. 

Choose and fix two constants A and B such that 0 < B < 1 < A < 00. 

Observe the random variables (xl, x 2 ,  . . .) one after the other. At each stage 
compute the likelihood ratio. At the mth stage, if (a) R,,, < B, stop sampling 
and accept If,, (b) R, 2 A, stop sampling and accept HI,  and (c) B < R, < A,  
continue sampling by taking an additional observation. The constants A 
and E are called the boundary points of the S.P.R.T. 

As in the theory of testing of hypotheses based on a fixed sample size, two 
kinds of errors arise. If a is the probability of rejecting H, when it is true and p 
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of accepting H ,  when H ,  is true, the pair ( 2 ,  p)  is called the strength of the 
sequential test. 

7c.2 Some Properties of the S.P.R.T. 

We shall prove some results concerning the performance of an S.P.R.T. 

(i) I f  the S .P .R.T.  ojstrength (a,  p) and the boundary points ( A ,  B )  termin- 
ates with probability 1, then 

(7c.2.1) 

Let ~v, , ,  be the region B < R, < A ,  i = I ,  . . . , ni - 1 and R,,, 2 A .  The prob- 
ability of rejecting H ,  when i t  is true is 

m 

a = c j P ( x  I , . . ' ,  Xn, )HO)dd"' )  
ni = I w,~, 

rn 

A - ' P ( x  , . , , , x,,, I H , ) do(',')= A - ( 1 - P),  "2 L 
where du"") = dx , 
Similarly, the second inequality follows. 

. dx,,,, which establishes the first inequality in (7c.2.1). 

(ii) If,for the choice 

(7c .2.2) 

the S.P.R.T.  terminates with probability 1 arid is ofstrength (a' ,  PI ) ,  their 

a 
ff'<- p' < p, and (a' + p') < a + P. (7c.2.3) 

1 - p '  I - a  

Applying (7c.2.1) and substituting the expressions for A and B as in 
(7c.2.2), we have 

P' p 2-. 1 - P  1-p '  -<-, 
a a' 1 - a  1 - a '  

From the first inequality in (7c.2.4), we see that 

(7~2.4) 

a a 
a' < ( 1  - /3')- d - 

1 - 0  1 - p  
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Similarly, p' < p/(1 - a). Further from (7c.2.4), we have 

1 - a '  1 - a  l - a ' - P '  1 - a - p  

p' 2 p * B' > B  
1-1' 1 - p  1 - a b ) - p P )  1 - a - p  

2- * 2 
a' a' 

Hence if (1 - a - p) > 0, which is true when a and p are small, then 

a' + p' a + p  * a ' + p ' < a + p .  
1 - a ' - / 3 '  < 1 - a - p  

The inequalities (7c.2.3) show that when a and p are small, a' and p' are 
close to a and fl and at least one of the inequalities a' G a ,  p' < p is true (since 
a' + p' < a + p). Generally, both the inequalities are likely to be true and 
the special choice of A,  B as in (7c.2.2) leads to a more stringent test than the 
one with the correct choice of A and B. 

(iii) Suppose the successive observations ( x , ,  x 2 ,  . . .) are independent and 
identically distributed. Let z(x) = log[p(xl  Hl)/p(xl  H,) ]  where p ( .  I H , )  and 
p(.l H I )  are the probability densities of a single observation x under H ,  and 
H I  respectively. Further, denote by n the number of observations (which 
is a random variable) needed for reaching a decision by using the S.P.R.T. 
With respect to any hypothesis H (not necessarily H ,  or H I )  for  which 
P( I z(x) I > 0 I H )  > 0 ,  the following results are true. 

(a) P(n < co) = 1, that is, the S.P.R.T. eventually terminates. 
(b) E(e'") < 00, for - co < t < t o ,  where to > 0. 

Result (a) shows that the S.P.R.T. terminates with probability 1, whatever 
may be the distribution from which the observations are drawn provided 
only P( I z (x )  I > 0) > 0. Result (b) shows that all moments of n are finite. 

Let zi = log [ p ( x i  1 Hl)/p(x,  I FIJI. Then (zl, z 2 ,  . . .) is a sequence of i.i.d. 
random variables. The sequential process continues as long as 

b =log B < (zl + + z,) = S, c logA = a ,  i = 1,2, .  . ., 
that is, S ,  E (6, a). Let r be the greatest integer in (m/k )  where m and k are 
fixed and consider s k ,  S 2 k  - & ,  s,k - S Z k ,  . . . , s r k  - S ( r - l ) k .  If n ,  the sample 
size needed, exceeds m ,  then S ,  E (b,  a)  for i = 1,2, . . . , m and in particular for 

r ,  which implies that 
i = k ,  2k, . . . , rk. Hence I T i 1  = I Sik - S ( i - 1 ) k l  C (I  bl + l a l )  = c, i = 1, . . . , 

P(n>rn)<P(IT,I  C C ,  i =  1, ..., r )  

lim P(n > m )  = lim [ P( I T, I c c]', keeping k fixed 
= [P(  I TI I < c)]', since Ti are independent. (7c.2.5) 

rn-m r + w  

=0,  if P(IT,I < c ) < I .  
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Since P( I z 1 > 0) > 0, there exists a constant h such that P(z > h)  and/or 
P ( z  < -h)  is >O. Now 

P( I T1 I > c) = P( 121 + * "  + zk( > c) 
C C 

> P  z i > - , i = l  ,..., k 
( k  

2 [P(z > h)Ik + [P(z < - h)Ik > 0 

choosing k to be a fixed integer greater than c/h. Hence P(ITl I < c) = 6 < 1 
and the proposition (a) of (iii) is proved. 

To prove (b), consider 

ca 
E(e'") = efmP(n = rn) 

m= 1 

m - 1  < C elm S', r = [TI, 6 = P( 1 T ,  I -= c) using (7c.2.5) 

- - C ,tm p / k  g ( r - m / k )  

< 6 -  I l k  C erm g m l k  = 8- I l k  C ( e f  81lk)m. 

The series (e' 61/k)m is convergent if e' 8'lk < 1 or t < (-log 6)/k = t o ,  
where i t  may be noted that to > 0 and that its value can actually be deter- 
mined. 

(iv) For any random variable n which takes the values 0, I ,  2, . . , 
m 

m = l  
E(n) = 1 P(n > m). (7c.2.6) 

By definition 
E(n) = P(n = 1) + 2P(n = 2) + 3P(n = 3) + * * - 

+ P(n = 2) + P(n = 3) + * * 

= P(n = 1 )  + P(n = 2) + P(n = 3) + * * 

+ + ... 
= P(n 2 I )  + P(n 3 2)  + P(n > 3) + . * a .  

(v) A GENERAL LEMMA. Consider a sequence of i.i.d. Observations, x, , x2, 
. . . on a random variable x and a sequential decision procedure with a given 
stopping rule. Let n be the number of observations needed to come to a decision, 
z(x) be any measurable function of x ,  and H be some hypothesis specifying the 
probability distribution of x. Then 

E( 1 z(x)  1 I H )  < co and E(n 1 H )  < 03 * E(Sn I H )  = E(z I H)E(n 1 H),  
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where S, = z ( x l )  + - + z(x,), that is, the cuniulatiue sum of z d u e s  up to the 
stage of taking a decision. 

Note that the problem need not be one of testing of hypothesis but can 
be of a more general nature with specified rules for continuing sampling 
and for stopping to make a decision. 

Define 
1 if no decision is taken up to the ( i  - 1)th stage 

'' = ( 0 if a decision is taken at an earlier stage. 

Then y i  is clearly a function of X I ,  . . . , x i -  I only and is, therefore, independent 
of xi and hence independent of zi  = z(xi) .  Consider the sum 

Z l Y ,  + Z Z Y Z  + -. .  + Z,Y, + Z " + l Y " + l  + . * . ,  
which is easily seen to be S, . Taking expectations 

E(Sn) = E(C zi yi)  = C E(ziyi) 

= C J W i ) E ( Y , )  = E(YJ 
= E(z)  P(n 3 i )  = E(z)E(n),  using (7c.2.6). 

The interchanging of E and C is justified since 
a, 

C E(lziyi l )  = E ( l z l )  C P ( n  > i )  = E ( l z l ) E ( n )  < a 
I 

by assumption. 

7c.3 Efficiency of the S.P.R.T. 

Let the sequence of observations (xl, xz  , . . .) be independent and identically 
distributed and let the probability densities of a single observation x under 
H, and HI be p(* I H , )  and p ( *  I HI). As in [(iii), 7c.21, let 

Z ( X )  = log [-A, a = log A and b = log B. 

Under these conditions we shall show that the S.P.R.T. is superior to a fixed 
sample size test in the sense that the average sample number (A.S.N.) for the 
former is smaller than the fixed size of the latter, provided the two types of 
tests are of the same strength (tl, p). Furthermore, compared to any other 
sequential test procedure the S.P.R.T. has the least A.S.N. We prove the 
following results. 

(i) The S.P.R.T. terminates with probability 1 both under H ,  and H I .  

It is shown in (le.6.6) that unless z(x)  = 1 with probability 1 

E [z(x)  I H01 < 0 
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which implies 

P ( z < O I H , ) > O  or P(Iz1 > O I H , ) > O .  

Hence by applying the result (a) of [(iii), 7c.21, the S.P.R.T. terminates with 
probability 1 when H ,  is true. The proof is similar when H ,  is true. 

( i i )  Let E(IzI I H,) < 00 and E(Iz1 I HI)  < 00. Then approxinzate expres- 
sions,for the A.S.N.  under H , ,  H I  are 

(7c.3.1) 

(7c. 3.2) 

where (a, /I) is the strength of the S.P.R.T.  

From (b) of [(iii), 7c.21, E(n) < 00 and from [(v), 7c.21, 

I H,)E(z I H,) = E(S, I Ho). (7c. 3.3) 

~ ( 1  -cr)b+aa (7c. 3.4) 
E(S,  I H,) = P ( S ,  < b)E(S, I S,  < b) + P(S,  2 a)E(S,, 1 S,  2 a) 

if we use the approximations E(S,  I S,, < b) A b, E(S,  I S, 2 a) & a, that is, by 
neglecting the excess of S,, over the boundary when the S.P.R.T. terminates. 
Combining (7c.3.3) and (7c.3.4), we obtain (7c.3. I). Similarly (7c.3.2) is 
established. 

(iii) For any sequential test procedure which terminates with probability 1, 

For the S.P.R.T., as shown in (7c.3.1), 

( 1  - a)b + cra 
E(n 1 H , )  G 

E(z  I H , )  

(7c.3.5) 

(7c. 3.6) 

where a and b have the approximate values 

P , b = l O g - - .  1 - P  a = log- 
a 1 - a  

Suppose the result (7c.3.5) is true. Then (7c.3.6) is approximately the lower 
bound in (7c.3.5) thus showing that the A.S.N. for the S.P.R.T. is nearly the 
least. 
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To prove the inequality (7c.3.5) we use the result [(v), 7c.21, 

E(fi I Ho)E(zl Ho)  E E(Sn I Ho) (7c. 3.7) 

and compute E(S, I H , )  for any sequential test. 

E(S,  I H,) = P ( H o  is accepted)E(S, 1 H o  , H o  is accepted) 
+ P(Ho is rejected)E(S, I H, , H, is rejected) 

= ( I  - a)E(S, I H, , H, is accepted) 
+ aE(S, I Ho , H, is rejected). (7c. 3.8) 

By Jensen's inequality (le.5.6), 

E(S, 1 Ho , Ho is accepted) 

< log E(eSn I Ho , Ho is accepted) 

1 *  
= log - es**lp(x, I H , )  . p(xm I H , )  ddm) 

1 - a c Iwn, (7c. 3.9) 

where w,,, is the region in R" leading to the acceptance of H ,  . Observing that 

we can reduce the expression (7c.3.9) to 

1 "  P log - p(x,~H,)'.~p(x,"~H,)dU(") = log-. 
1 - a c i.. 1 - a  

Similarly, E(S,  I Ho , Ho is rejected) < log[( 1 - p)/a]. Hence from (7c.3.8), 
we see that 

1 - P  + a  log-. E(S,  I H,) < (1 - a) log - P 
1 - a  a 

Furthermore, E ( z I H , )  c 0, and hence the equation (7c.3.7) gives the in- 
equality (7c.3.5). 

7c.4 An Example of Economy of Sequential Testing 

Let x - N(8 , ,  a2) under H ,  and N N ( 8 , ,  a2) under H , ,  where 8, > 8, and a2 
is known. The logarithm of the likelihood ratio based on the first m inde- 
pendent observations is 
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At the mth stage the procedure is as follows: 

(a) Accept H , ,  if 

* m(Ol + 0,) b d  <- 
2 el - 8,’ p i -  1 

(b) Reject H , ,  if 
m(el + e,) 

2--. 
2 01 - 00 

5 X  - 
1 

(c) Continue sampling if 

m(el + e,) a d  <- 
ba2 

2 0, - 8,’ < i X , -  el - eo 
where a = log[(l - P)/a] and b = log[P/(l - a)]. 

To determine the A.S.N. we use the approximate expression 

b(1 - a) + aa 

E(z I Ho) 
E(n I H , )  i 

Now 

(X - - (X - eo)2 
2U2 

z = -  

(6, - eo)2 E(z~ H,) = - 
2a2 

(7c.4.1) 

(7c.4.2) 

For given values of a, /I, a, b, the value of (7c.4.1) can be computed sub- 
stituting the value (7c.4.2) for E(zl H,). Similarly, 

(7c.4.3) 

can be computed. 

fixed sample size test at a level of significance is 

f i ( F  - 0,) 2 daa, 

Let us consider a fixed sample size test of the same strength (a, 8). The 

where N is the sample size and d, is the upper a-point of N(0, 1). Now 

P = P ( ~ ( X  - e,) < dual el) 
= P(JN(z  - el) c da u - JZ(el - e,) I el). 

-d,  o + ace, - e,) = d, U ,  

Hence, if dp is the upper P-point of N(0, 1)) then 
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which gives 

a2(da + do)' N =  
(4 - OOl2 * 

(7c.4.4) 

The ratio of A.S.N. (7c.4. I )  when Ho is true to the fixed sample size N, (7c.4.4) 
is 

(7c.4.5) 

which is independent of (0,  - O0). Similarly, the ratio when H ,  is true is 

(7c.4.6) 

When ct = 0.05, P = 0.05, we find that d,, = dp = 1.6449 and the values of a 
and b are 

The values of the ratios (7c.4.5) and (7c.4.6) are each equal to 0.4897, which 
shows that the saving in the observations by the sequential method is of the 
order of 50%. 

Chernoff (1959) investigated the saving in observations in the general case, 
when ct and P are small and the alternative hypothesis is close to the null 
hypothesis. It appears that the ratio of fixed sample size to the expected size of 
the S.P.R.T. is of the order of 4 : 1 in large samples. 

7c.S The Fundamental Identity of Sequential Analysis 

LEMMA 1. Let z be a random variable such that 

(a) P(z > 0) > 0 andP(z < 0) > 0, 
(b) + ( t )  = E(e") exists for any real value t ,  and 
(c) E ( z )  # 0. 

Then there c w h  a T # @ such fhat $(T) = 1 .  If E(z) -= 0, then T > 0 and if 
E(r) > 0, then T < 0. 

Since P(z  > 0) > 0, there exists a c such that P(z > c) = 6 > 0. Hence 

+(t) = E(e") = l e"  dF 

>[ e" dF > etcP(z > c), if t > 0. (7c.5. I )  
Z > C  
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The result (7c.5.1) => $ ( t )  -+ co as t -+ 03. Similarly, 4(t) -+ + 00 as t -+ - 00. 

Furthermore, &O) = 1 and the slope of 4(t), 
4'(t) = E(ze") 

at t = 0 is E(z ) .  If E ( z )  < 0, the curve of d ( t )  has value uni ty  at t = 0, slopes 
downwards, and then tends to 03 as t -+ co. Since 4(t) is analytic, i t  must 
assume the value unity again for some other value T > 0 oft .  Similarly, when 
E(z)  > 0, there exists a 7 < 0 such that 4 ( ~ )  = 1. 

Since $ " ( t )  = E(z2ef2),  the condition (a) of lemma 1 implies that +"(t )  > 0 
for all t ,  which in turn implies that it can have one minimum at the utmost. 
Hence there is only one value T of f other than 0 at which @(t )  = 1, for i f  
$ ( t )  = 1 at T ~ ,  T ~ ,  besides zero, then at least two minima are implied. 

L E M M A  2. Let x I ,  x2,  . . . be a sequence of i.i.d. observations on a random 
variable x with probability density p(* I H )  under a hypothesis H .  Consider any 
sequential procedure with a given stopping rule and let n be the number of 
observations needed for coming to a decision. If z i  = z ( x i )  is any measurable 
function, then P ( n  < 00 I H )  = 1 * 

E {efsn[+(t)]-"l H }  = P(n < co I HI), (7c. 5.2) 

where under HI the probability density of x is 

P(' I HI) = - P(' I H ) ,  (7c. 5.3) 
4co 

S,, = z1 + * * + z, , and 4(t) = E(e" I H ) .  

procedure at the rnth stage. Then 
Let w,, denote the region in R"' leading to the termination of the sequential 

= P(r1 < co 1 IfI). 
The Fundamental Identity of Sequential Analysis. Consider the S.P.R.T. 
based on a sequence of i.i.d. observations and let z be as defined in [(iii), 
7c.21, the logarithm of the ratio of probability densities under the hypotheses 
H ,  and H , .  If H is any hypothesis such that P(( z1  > 01 H )  > 0, then 

E ( e f S - [ ~ ( t ) ] - " I I f }  = 1, (7c.5.4) 

which is called the fundamental identity of sequential analysis. 
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I t i s e a s y t o s e e t h a t P ( l z l > O J H ) > O = > P ( l z l > O I H , ) > O ,  whereH, isas  
defined in (7c.5.3). Hence by [(iii) (a), 7c.21, P(n c w(H, )  = 1. The result 
(7c.5.4) follows from (7c.5.2). The proofs of propositions in 7c.J are due to 
Bahadur. 

Operating Characteristic (O.C.) Function of a Sequential Plan. Let us con- 
sider a sequential plan for coming to a decision like accepting or rejecting a 
batch of goods offered for inspection or taking some action or not. A sequen- 
tial plan consists in drawing goods one by one, making measurements, and 
applying certain rules of continuing sampling and stopping to take a decision, 
based on the measurements available at each stage. Let us denote by n(H) the 
probability of accepting a batch under a given procedure when the probability 
distribution of the measurements is as specified by hypothesis H.  Then n, 
considered as a function of H belonging to a set of possible hypotheses, is 
called a O.C. fiincfion of the sequential plan. We shall compute the O.C. 
function for an important class of sequential plans. 

We impose the restriction that the probability of accepting a batch is 
( 1  - a )  if the probability distribution of the measurements is as specified 
by a chosen hypothesis H ,  and /? if i t  is according to another chosen hypothe- 
sis H I .  Suppose that this specification is realized by using the S.P.R.T. based 
on the likelihood ratio of the hypotheses H o  and HI with the convention of 
accepting a batch when H ,  is accepted under S.P.R.T. and of rejecting a 
batch when H I  is accepted. We shall obtain an approximate value of n(H) 
for such a plan under the conditions of lemmas 1 and 2 on the distribution of 
z-the logarithm of the likelihood ratio of the hypotheses H ,  and HI for a 
single observation. 

Let 4(1) be the c.f. of z under H.  Then by lemma 1,  T exists such that 
4 ( ~ )  = 1.  Substituting this value in the fundamental identity (7c.5.4), we have 

I = E(erS” I H )  = P {S,, < 6}E(erS*i 1 s,, < 6) + P {s,, 2 a)E(erSn I s,, 2 a)  
= n(H)e’’’ + [ l  - n(H)]era, 

which gives 

Average Sample Number (A.S.N.). Using an 
(7c.3.4), we have the approximate expression 

(7c. 5 . 5 )  

argument similar to that of 

E(S,,) H )  f h ( H )  + a[( I - n(H) ] .  

But from [(v), 7c.21 

E ( n  I H)E(z I H )  = E(S, I H ) ;  
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and since E(zl H )  # 0, then 

ANALYSIS 485 

(7c. 5.6) 

which is an approximate evaluation of the average sample number for coming 
to a decision under the hypothesis H by using the sequential plan based on the 
S.P.R.T. for testing H o  against H I .  

Let us compute the approximate O.C. and A.S.N. functions for the normal 
distribution for the S.P.R.T. constructed in 7c.4. It may be recalled that Ho is 
N(O0, c2) and HI is N(8, ,  a’). Let H be N(8,  a’) where 8 is arbitrary. We shall 
study the behavior of the test for Oo against the alternative 8, when the true 
value is 0 different from 8, and 8,. Now 

The value o f t  # 0, such that $(t) = I is 

in which case using (7c.53, the O.C. function is 

and by using (7c.5.6), the A.S.N. function is 

where E(z l0)  = [(0 - 0,)’ - (8 - 01)’]/2a2. 

7c.6 Sequential Estimation 

The basic idea of sequential estimation of a parameter is to do just enough 
sampling to be able to obtain an estimate with apredeterminedprecision or to 
maximize the precision (i.e., minimizing the risk) for a given cost of sampling. 
In the context of interval estimation, the precision may be expressed by the 
length of the interval with a given confidence coefficient. For a point estimate 
it may be the mean square error or some suitable loss function. The subject of 
sequential estimation is not, however, fully developed. Some problems have 
been considered by Anscombe (1952, 1953), Wolfowitz (1947), and others. In 
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this section we shall consider an interesting method of Stein (1945) for deter- 
mining an interval estimate of a given length for the mean of a normal dis- 
tribution when the variance is unknown, by sampling in two stages. 

It may be recalled [v, 7b.21 that on the basis of a sample of fixed size n 
providing an average X and an unbiased estimator of variance s2, we found 
the (1 - a) confidence interval estimator for the mean p of a normal distribu- 
tion as 

(7c.6.1) Sta/ 2 Xk- 
J. 

where is the upper (a/2)-point of the t-distribution on (n  - 1) D.F. But 
the length of the confidence interval ( 2 ~ t . , ~ ) / J -  n is itself a random variable 
and in any particular case it may be large. It is known, however, that it is not 
possible to find a confidence interval of an assigned length, when o2 is 
unknown on the basis of a single sample (Dantzig, 1940). The problem can be 
solved, however, by using sequential sampling in two stages. 

Draw a sample xi, . . . , x, of size m, fixed in advance and compute X, s2. 
Let n be the smallest integer a m  for which 

s2 c2 - G p 9  n (7c. 6.2) 

where b2 is the variance of the t-distribution on (m - 1) D.F. and c is an 
assigned constant. Then draw a further sample of (n - m) observations. Let 
3 = (x + 9 + xJn  be the average based on all the observations. Then we 
have the following results. 

(i) X is an unbiased estimate of p with a standard deviation GC. 

It is easy to verify that 

J.CZ - 11) and (m - 1)s’ 
(T a’ 

(7c. 6.3) 

are independently distributed as N(0, I )  and x 2  on (m - 1) D.F. respectively, 
and hence 

on (m - 1) D.F. (7c.6.4) 

= 0. 
E,/n(X - p) 

U 
(7c.6.5) 
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Observe that (7c.6.5) does not automatically imply that E(X - p) = 0, since n 
itself is a random variable. Now 

- E [  f ($2 ,  o)] 
= E [  Q I 

since n depends on s2 

(7c.6.6) 

= 0, using (7c.6.5). 

The step in (7c.6.6) follows because of the independence of &(f - p)/a and 
s2 as observed in (7c.6.3). 

Furthermore, we see that 

E(i - p)’ = 

c2 n(Z - p)2 c2 

p E [  s2 ] b2 
_ - .  - b 2 -  - C  2 .  (7c.6.7) 

(ii) Let 21 be the preassigned lengrh of rhe confidence interual estimator of p. 
Then the confidence coeficient of ihe estimator f & I is not less than 1 - a by 
choosing c = bl + z a j 2 .  

The last probability (7c.6.8) has the value 1 - tl if 

bl 61 
- = ta12 or c = -. 
C L 1 2  

(7c.6.8) 

The two sample procedure for obtaining an interval estimator of assigned 
length is thus completely specified for any fixed choice of m, the size of the 
first stage sample. The consequences of different choices of m may be ex- 
amined. It may be observed that the information supplied by the second 
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sample on a2 is not utilized in the solution of the problem, which throws 
open the possibility of improving on Stein's procedure. 

7c.7 Sequential Tests with Power One 

In 7c.l-7c.5 we have considered sequential tests which terminate with prob- 
ability one in favor of one or the other of the two alternative hypotheses. On 
the other hand, there are situations, as in continuous production, where no 
action need be taken so long as goods are being produced according to speci- 
fication (null hypothesis) but necessarily take action otherwise (when the 
alternative hypothesis is true). Or, in other words, we need a sequential plan, 

(a) which terminates rarely when the null hypothesis is true, and 
(b) which terminates with probability one, as quickly as possible, when the 

Such sequential plans have been recently suggested by Barnard (1969), 
Darling and Robbins (see Robbins and Siegmund, 1969) using the celebrated 
law of iterated logarithm mentioned in 2c.6 which may be restated as follows. 

Law of Iterated Logarithm. Let XI, X,, . . . bei.i.d.,r.v.'ssuch that E ( X , ) = p  
and V ( X , )  = a2 < 03. Let Z, = (XI + + X, - np)/a\/- n. Then 

alternative is true. 

P { Z ,  > ( I  + ~ ) ( 2  log log n)'I2 infinitely often} = 0, 

P { Z ,  > (1 - ~ ) ( 2  log log r t ) ' I 2  infinitely often} = 1. 

(7c.7.1) 

(7c.7.2) 

As a consequence of (7c.7.1) and (7c.7.2) we have 

P { Z ,  > ( I  - ~ ) ( 2  log log o ) " ~  for some n 2 1) = 1,  

lim P { Z ,  c (1 + ~ ) ( 2  log log n)'/, for all n 2 nz} = 1. 

(7c.7.3) 

(712.7.4) 

We shall consider the sequential plan with power one first given by Barnard 
in 1964 (see Barnard, 1969) for testing H ,  : p<O.Ol against H : ~20.01,  where 
p is the probability of an item produced being defective. The plan consists of 
drawing items one after the other and rejecting H ,  as and when 

i n -m 

R, > 0.01 n + a& for some n 2 1 (7c.7.5) 

where R, is the number of defectives in n successive items and a is a suitably 
chosen constant. If H ,  : p c 6 and H :  p 2 6, we replace .01 by 6 in (7c.7.5). 

Let 2, = (R, ,  - np)/J&q, q = (1  - p )  in which case (7c.7.5) can be written 
as 

(0.01 - p ) &  a 
+ - = b n  

dP9 Jp4 
Zn > (7c. 7.6) 
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In (7c.7.6), b,, < ( 1  - ~ ) ( 2  log log n)”’ ifp 2 0.01 so that with probability one 
(7c.7.5) holds by using (7c.7.3). Thus the sequential plan terminates with prob- 
ability one in favor of the alternative hypothesis, if true. On the other hand, if 
p < 0.01 then b, in (7c.7.6) exceeds ( 1  + e) (2  log log n)’/’, and the probability 
of (7c.7.5) can be made small by choosing a suitably. The larger the a the 
smaller is the Probability. In fact we can choose a such that the Probability 
of (7c.7.5) has an assigned value CI for given p = p o  < . O l e  

A second example due to Robbins and Darling (see Robbins and Siegmund, 
1969) is that of testing 0 < 0 against 0 > 0, where 0 is the mean of a normal 
population with variance one. Independent observations XI, X,, . . . are 
drawn one by one, and sampling is terminated as and when 

s,, = X ,  + - * * + X ,  2 ,/if, for some n 2 I (7c. 7.7) 

in favor of the hypothesis 6’ > 0, where 

(7c.7.8) 

for any chosen values of a and m. 
Writing 2, = (s, - no)/&, (7c.7.7) can be written as 

Z,2 f, - J n O  = b,. (7c. 7 * 9) 

If 8 > 0, then b, in (7c.7.9) < (1 - ~ ) ( 2  log log n)’/’ so that (7c.7.7) holds with 
probability one by using (7c.7.3). Thus the power of detecting the alternative 
is one. If 0 < 0, then it  is shown by Robbins and Siegmund (1969) that 

P { Z ,  <h - J i e  for a11 n l ~  < 01 (7c.7.10) 

(7c.7.11) 
e - a l / 2  

> P {Z,, <f, for all n ( 8  = 0} > 1 - - 
2@(a) ’ 

where @ (a) is P ( X  < a) and X - N ( 0 ,  I ) .  For example, if m = 1 and a = 3, 

f, = (1 + n- ’ ) ’ /2 [ (9  + log (n + 1 p  (7c.7.12) 

and the probability (7c.7.10) that the sampling continues indefinitely is not 
less than 

e-  9/2  

2@(3) 
I - - -  - 1 - 0.0056 = 0.9944 (7c.7.13) 

so that the test will rarely terminate. 
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FIGURE 1. The O.C. curve (probability of termination as a function of 
the parameter) is continuous in the case of Barnard's plan as shown in (a) 
and discontinuous in the case of Darling-Robbins as shown in (b). 
The first kind of error is always less than an assigned value a for H ,  in 
the latter while it is so only for values of the parameter less than a chosen 
value in H, in the former. 
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76 PROBLEM OF IDENTIFICATION- DECISION THEORY 

7d.l Statement of the Problem 

Consider the problem of assigning an individual to one of a finite number of 
groups to which he may belong on the basis of a set of characteristics observed. 
Such a problem arises when an anthropologist tries to identify a jaw bone 
excavated from a burial ground as having belonged to a male or a female, or 
when a doctor decides on the basis of some diagnostic tests whether a patient 
suffering from jaundice requires surgery or not. Or a biologist wants to 
identify an observed specimen as a member of one out of k possible known 
species. In all these situations the problem is one of deciding among a number 
of alternative hypotheses and not of testing any particular hypothesis against 
a set of alternatives as considered in Sections 7a and 7c. In statistical literature 
such a problem is referred to as one of classijication or discrimination, but 
idenfijication seems to be more appropriate terminology. 

In any practical situation we must consider the possibility that an observed 
individual does not belong to any of the specified groups as when a biologist 
discovers a member of a new species. There appears to be no general theory 
including such a possibility. We shall, however, consider an example in 
8e.2 of Chapter 8 and show how the problem can be approached in particular 
cases. In the discussion of the present section the knowledge regarding the 
alternative hypotheses is taken to be complete. 

7d.2 Randomized and Nonrandomized Decision Rules 

Let x denote the measurements on an individual and S the (sample) space of 
possible values of x.  On the basis of observed x, a decision has to be reached 
about the membership of an individual to one of k specified populations. The 
problem is the same as that of choosing one among a given set of alternative 
hypotheses as appropriate to an observed event. 

A nonrandumized decision rule consists in dividing the space S into k 
mutually exclusive regions w , ,  . . . , wk with the rule of assigning an individual 
with measurements x to the ith population if x E w i t  that is, choosing the ith 
alternative hypothesis if x E wi . 

A randomized decision rule consists in determining a vector function of 
x ,  [A,(x), . . . , Ak(x)], such that A,(x) 2.0, and C A,(x) = 1, with the rule of 
assigning an individual with measurements x to the ith population with prob- 
ability Ai(x), i = 1, . . . , k. That is, after x is observed, a random experiment is 
performed to generate an observation on a random variable which takes the 
values 1, . . . , k with probabilities A,(x), . . . , &(x) respectively. If the result is i ,  
the individual is assigned to the ith population. 
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Loss Vector. Let P l ( x ) ,  . . . , Pk(x) be the probability densities at x with 
respect to a a-finite measure u in the k populations and r i j  the loss in assigning 
a member of ith population to the jth. The expected loss in applying a given 
rule, when in fact the individuals come from the ith population, is 

Li = 1 r i l P i ( x )  do + . * *  + jw, rik p i (x )  do (7d.2.1) 
w1 

for a nonrandomized rule and 

(7d. 2.2) 

for a randomized rule. In either case we have a loss vector 

(Ll ,  * ' * Lk) (7d.2.3) 

corresponding to the k alternative hypotheses, as the operating characteristic 
of a decision rule, which plays a key role in our investigation. 

If there are two decision rules S,, S2 with associated loss vectors ( L , , ,  . . . , 
&.I), ( L I 2 ,  . . . , LkZ), then 6, is obviously better than S, if 

L i ,  < L i z ,  i = 1, ..., k, (7d.2.4) 

and for at least one i, L i ,  -= L,,  . If the equality holds for all i ,  the two rules 
are equivalent. On the other hand, any two decision rules may not be com- 
parable, that is, for some values of i ,  L i ,  > L , ,  , and for the rest the reverse 
relationship may hold. There is no method of choosing between such rules 
without bringing in additional criteria. This leads us to the concept of admis- 
sible decision rules. 

Admissible Rules. A decision rule is admissible if there is no other decision 
rule which is better in the sense of (7d.2.4). If the class of admissible decision 
rules consists of a single member, we have an optimum solution. But generally 
the class is very wide and no two decision rules in the admissible set are com- 
parable. We need additional criteria for selecting one among the admissible 
set of decision rules. The problem, however, admits a simple solution when 
the prior probabilities of the k populations are known as shown in 7d.3. 

7d.3 Bayes Solution 

Let n,, ..., nk be a priori probabilities of the k populations, that is, an 
observed individual is regarded as chosen from a mixture of populations with 
individuals of the k populations in the ratios n,, . . . , nk. The expected loss in 
such a situation reduces to a single quantity 

L = nIL1 + * * '  + XkLk, (7d.3.1) 
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where L , ,  . . . , Lk are as defined in (7d.2.3). In a nonrandomized decision 
rule which uses the expression (7d.2.1) for L , ,  (7d.3.1) reduces to 

- S ,  dv + * * * + Jw, - Sk do, (7d. 3.2) 

where Si = -(nlrl,Pl + * * *  + nkrkiPk)  is called the ith discriminant score of 
an individual (for the ith population). In a randomized decision rule, 

= s,, 

L = I - [c Ai(x)S,(x)] do. (7d. 3.3) 

(i) Let wf, . . . , wz be mutually exclusive regions covering the whole sample 

x E w: =$ Si(x)  2 Sj(x) for all j, (7d.3.4) 

space such that 

i =  1, ..., k.  

Then for such a choice of w i ,  the expected loss L of (7d.3.2) is a minimum. 

The result is an immediate consequence of lemma 4 of 7a.2. 
It may be observed that the condition (7d.3.4) does not specify w, uniquely 

because of the equality signs. For instance, if for a particular x 

S,,(x) = ' ' * = S,,(x) > S,+,(x) 2 ' ' * 2 S;,(x), (7d. 3.5) 

then x may be placed in any one of the regions wc, . . . , wt arbitrarily. The 
minimum loss remains the same, however, so long as the condition (7d.3.4) 
is satisfied. Indeed in a situation like (7d.3.5) we may choose to place x in w$ 
with probability Ai,(x) where A,,(x), , . , , A,,(x) are chosen arbitrarily with the 
condition that the sum is unity. 

(ii) Let ,Ii($ = I ,  A,(x) = 0, j # i ,  i f  Si(x) is greater than every other Sj(x)  
and let , I i , (x) ,  . . . , &(x) be arbitrary subject to the condition Ai,(x) + - 
+ A&) = 1 and A,, + , (x) = * - = Ai,(x) = 0 if 

SJx) = ' * * = Sir(X) > sir+ ,(XI 2 S i r + 2 ( X ) .  . . , 2 Si*(X). 

For such a choice of Iz,(x), the loss L of (7d.3.3) is a minimum. 

The result is an immediate consequence of lemma 3 of 7a.2. 
Let us observe that the optimum solutions for the randomized and non- 

randomized rules are essentially the same. We shall call the decision rule 
specified by (ii) as the Bayes rule with respect to the prior distribution or 
prior probability vector 11' = (K, , . . . , nk). The corresponding loss vector is 
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denoted by Li = (L 
the property 

. . . , Lkx). The Bayes solution is then characterized by 

II’L, < n’L, (7d. 3.6) 

where L is the loss vector for any other decision rule (randomized or non- 
randomized). 

The Bayes rule can also be deduced by a different kind of argument. The 
conditional probability of an individual with measurements x belonging to 
the ith population or the posterior probability of the ith population when x is 
observed is, by the Bayes theorem, 

ni Pi 
i = 1 ,  . . . , k. c. ’ (7d. 3.7) 

If it is decided to assign an individual with measurements x to thejth popula- 
tion, the conditional loss is 

(7d. 3.8) 

which is the same as - S j ( x ) / c  ni Pi where S ,  is as defined in (7d.3.2). For 
given x the conditional loss is a minimum when the individual is assigned to a 
population for which (7d.3.8) is the least or the discriminant score is the highest. 
Since the conditional loss is a minimum for such a decision rule, the overall 
expected loss is obviously at a minimum. This decision rule is, indeed, the 
same as Bayes with respect to II. 

When ri j  = l , . i  # j ,  and rii = 0, L ,  represents the expected proportion of 
wrong identifications for individuals of the ith population and L for all indi- 
viduals using the prior probability vector II. The discriminant score for the ith 
population when ri j  = 1, i # j ,  and ri i  = 0 is 

k 

s, = - 2 R j P j  -k K i P i  = R i P i  -k C, (7d. 3.9) 

where c is a constant independent of i. Then the individual with measurement 
x is assigned to any one of the populations i such that 

1 

niPi(x) + c 2 njPj(x) + c for all j ,  

or 

ni Pi@) 2 nj Pj(x) for all j .  (7d.3.10) 

The rule (7d.3.10) minimizes the expected number of wrong identifications. 
For this purpose we may define Si , the ith discriminant score as simply ni P, . 
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7d.4 Complete Class of Decision Rules 

In many practical problems the prior probabilities may not be known or 
may not be relevant, in  which cases we need some criterion for'choosing 
one among all possible decision rules. With this end in view, let us first 
examine the method by which we can arrive at the minimal class of rules 
from which a choice has to be made. 

A class of decision rules C is said to be complete if corresponding to any 
decision rule 6 outside C,  there exists a member of C better than 6. 

A complete class which does not contain a complete subset is said to be 
a minimal complete class. We now prove some propositions characterizing 
complete and minimal complete classes of decision rules. 

(i) A necessary and sujicient condition for the existence of a minimal 
complete class is that the class of admissible decision rules be complete. 

The proof is easy. 

(ii) The class 49 of all loss vectors corresponding to all decision functions 

The proof is omitted. Reference may be made to Wald (1950). 

(iii) The class A of all admissible decision rules is a minimal complete class. 

We need only prove that A is complete. Consider a rule 6, 4 A and there- 
fore inadmissible. Let A be the class of decision rules better than 6, and 
denote by f ( 6 ) ,  the sum of the components of the loss vector corresponding 
to 6. Choose 6, such that 

is a closed convex set in Ek (k-dimensional Euclidean space). 

1 
f ( S j )  < inff(8) + -, 

d E A  J 

Since 49 is closed by (ii) then there exists a subsequence of j values such 
that lim d j  = 6* exists and is better than 6,. Further for any rule 6, E A 

1 

66 .6  J 
f(&) 2 inff (6) > J ( S j )  - 7 + f ( d * )  

so that 6* is admissible. A is thus complete since 6* E A. 

tribution. 
(iv) Every admissible rule is a Bayes rule with respect to some prior dis- 

Let Lo be the loss vector corresponding to a rule a, E A .  Then the totality 
of vectors L - Lo, for L varying and Lo fixed in 9, is a convex set and no 
member of this has all its components negative since a,  is admissible. Hence 
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by an application of the supporting plane theorem [(iv), ld.21, there exists a 
vector x with non-negative components such that 

x‘(L - Lo) > 0 for all L E 9. (7d.4.1) 

The result (7d.4.1) shows that Lo is the loss vector for the Bayes rule with 
respect to n. 

(v) The class .%’ of all Bayes rules is a complete class. 

This result follows from (iii). 

(vi) The Bayes rule with respect to any x is admissible ifall  the cornponents 

Let L, be the loss vector corresponding to the Bayes rule with respect to 

of x are positive. 

x .  Then 

x’L, < n’L, 

x’L, < R’L, < n‘L,. 

L E 9 
If there exists Lo E Y such that Lo is better than L,, we have 

Since all the components of x are positive, L, = Lo.  

7d.5 Minimax Rule 

Section 7d.4 shows that the class of admissible rules is very wide, and there- 
fore i t  is necessary to have further criteria for choosing a decision rule. One 
such principle is known as minimax, which leads to the choice of a decision 
rule whose maximum component in the loss vector has the minimum value. 
It is that rule S* with the loss vector (LT, , . . , Lz),  if i t  exists, such that 

max (Lr  . . . , L,*) = min max(L,, . . . , L,), (7d.5.1) 

where i runs over the indices 1, . . . , k and S over the set of admissible decision 
rules. The determination of such a rule, even if i t  exists, may be difficult. But 
there exist situations where a decision rule may be identified as a minimax 
rule. 

( i )  Let there exist a vector of positive probabilities E’ = ( E , ,  . . . , E,) such 
that for  the corresponding Bayes solution the components of the loss vector 
are all equal. Then E is called the least favourable prior distribution, and the 
Bayes decision rule corresponding to E is a minimax rule. 

1 d i  

By definition, the loss vector for such a rule is 

(t, * * * , t), (7d. 5.2) 
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and since every Bayes decision rule with positive prior probabilities is admis- 
sible, there is no loss vector whose maximum component is not greater than 
L, for otherwise (7d.5.2) would not be admissible. 

For a proof of the existence of the minimax solution and an extension of 
the results of 7d.4 and 7d.5 to countable or uncountably many alternatives, 
the reader is referred to books by Blackwell and Girshick (1954) and Wald 
(1950). The problem of identification discussed in 7d is a particular case of the 
general decision theory or the more general game theory. For a good and 
elementary introduction to the subject the reader is referred to the book on 
decision theory by Chernoff and Moses (1959). 

7.e NONPARAMETRIC INFERENCE 

7e.l Concept of Robustness 

The aim of statistical methods discussed in the various chapters has been 
the following. In any problem we have a set of observations and some 
partial information regarding the probability distribution of the observations. 
Assuming the given information to be true, optimum procedures have been 
found for analyzing the data and drawing inferences on the unknown aspects 
(or characteristics) of the probability distribution. Strictly speaking, the 
validity of any particular method depends on the information supplied being 
correct. Let us review the situation with reference to Student’s t-statistic used 
extensively in practice for drawing inferences on the unknown mean of a 
population from which observations are obtained. Now the distribution 
of the t-statistic defined by 

(7e. 1.1) 

where X and s are computed from n observations xl, . . . , x, on a random 
variable X ,  is obtained on the following assumptions: 

(a) The distribution of the random variable Xi s  normal. 
(b) The observations drawn are mutually independent. 
(c) There are no errors in recording the observations. 
(d) The mean in the population is exactly po . 
Suppose we wish to use the t-distribution to test the hypothesis that the 

average height of individuals in a given population is po = 70 inches on the 
basis of n observations. What inference can we draw when a large value 
of t, significant at some (small) chosen level, occurs? One or more of the 



498 THEORY OF STATISTICAL INFERENCE 

assumptions (a) to (d) may be wrong, thus setting aside the possibility that a 
rare event has occurred while all the assumptions are true. Let us examine 
each. 

The number of individuals in a population, although large, is finite. Con- 
sequently a characteristic, such as the height of an individual, has only 
a finite number of alternatives. The assumption of a continuous distribution 
such as the normal for the heights of individuals, cannot be strictly true. But 
it is known from partly theoretical and partly empirical studies that the 
t-distribution is not sensitive to moderate departures from normality so that 
its application is not strictly governed by the normality assumption (a). Such 
a property is described as robustness (Box and Anderson, 1955). A significant 
r may not, therefore, be interpreted as indicating departure from normality of 
the observations. 

What is the effect of dependence of observations on the t distribution? 
Suppose that all the observations are mutually correlated with a common 
correlation p for any two. Then 

a2 

n 

- 
V(X) = - (1 + n - I p )  = E(E - po)2 (7e. 1.2) 

E(s2)  = d ( 1  - p).  (7e. 1.3) 

Instead of the t-statistic (7e. 1. I ) ,  let us consider 

t Z  = n(E - p0)Z +s2, (7e. 1.4) 

which is distributed as F on 1 and (n - 1) D.F. From (7e.1.2) and (7e.1.3) 
the expected values of the numerator and denominator of t Z  are 

- 
a2(1 + n - I p )  and oz(l - p). (7e. I .5)  

The ratio of the expectations is unity when p = 0, but is greater than unity 
when p > 0 and + infinity as p + 1. Thus a large value of t is expected to 
occur when p is positively large, even when po is the true value of the mean. 
A significant t may therefore be due to departure in the assumption (b). 

There is no way to study the effect of recording errors on the distribution of 
1, but with a little care departure from assumption (c) can be avoided. 

Finally, when the assumptions (a) to (c) are true and the true value of 
the mean is p # p o ,  the ratio of the expected values of the numerator and 
denominator of t2  of (7e.1.4) is 

(7e.1.6) 
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compared to 1 when p = p o ,  so that large values of I t I  do occur when 
assumption (d) is wrong. This is exactly the reason why the t-test is used to  
test the null hypothesis concerning the mean of a distribution. 

In computing expressions (7e. 1.5) we have considered the extreme case 
of mutual dependence with a common correlation p .  But in general we 
may expect that any dependence giving positive correlations to pairs of 
variables to overestimate the significance of I .  Once we are satisfied that 
the random mechanism employed, such as the use of random numbers in 
selecting individuals, is not likely to introduce correlations among the 
observations, the significance of t may be interpreted as indicating departure 
from the specified mean value. 

For a similar examination of other test criteria, see Examples 1, 2, and 3 
at the end of the chapter, and for examination of test criteria based on the 
analysis of variance technique, see books by Plackett (1960) and Scheffe 
(1959). 

7e.2 Distribution-Free Methods 

In 7e.l we have seen the importance of studying the performance or the 
operating characteristic of a statistical procedure under widely different 
conditions. This is necessary in examining the nature of the new knowledge 
any statistical procedure is expected to provide and the prerequisites to be met 
to validate particular inferences. It would not be a tool for creating new 
knowledge if a statistical procedure were to depend on assumptions that have 
to be taken for granted, or that cannot be verified by data themselves, or 
that cannot be justified on some other logical grounds. Thus a statistical tool 
is not to be considered as appropriate for a particular model but more appro- 
priately as an aid in interpreting experimental data through different models. 

Having observed a significant 1,  i t  would not be a useful statement to 
make that, “ i f  the assumptions (a) to (c) of 7e.l are satisfied, then possibly 
the specified mean value is wrong.” Motivated by this philosophy, statisticians 
tried to develop statistical procedures which depend on the least possible 
assumptions. Thus were evolved procedures known as nonparametric 
methods-more appropriately called distribution-free methods since their 
application is independent of the distribution of the random variable on which 
observations have been obtained. 

Such tests may not be very sensitive. On the other hand, in many practical 
situations it  may be possible to make a transformation of the observations in 
such a way that the assumption of approximate normality is met, in which 
case many of the optimum test procedures based on the normal theory will be 
applicable. We shall briefly consider some non-parametric tests to indicate 
their variety. 
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7e.3 Some Nonparametric Tests 

Sign Test. Let x I ,  . . . , x, be independent and identically distributed (i.i.d.) 
observations on a r.v. X with a continuous d.f. Consider the hypothesis that 
the median of X is po (a given value). 

Let r of the quantitites (xl - po), . . . , (x ,  - po) be negative and s, positive, 
where r + s < n. The reader may verify that the conditional distribution of r 
given r + s is binomial with probability of success TL equal to 1/2. The hypo- 
thesis under examination is equivalent to testing the hypothesis that II = 1/2, 
given that r successes have occurred out of r + s Bernoulli trials. We may use 
an exact test based on the binomial probability tables or a chi-square test on I 
D.F. when Y + s is large. 

Two Sample Tests. Let x I ,  , . . , x, be i.i.d. observations on X with a con- 
tinuous d.f. Fl and similarly y l ,  , , , , y, on Y with a continuous d.f. F2. To 
test the hypothesis F, = F2 we have a number of nonparametric tests. The 
chi-square and Kolmogorov-Sniirnov tests for this purpose have already 
been described in Sections 6b, 6c, and 6f. They are useful in detecting de- 
partures of a wide variety from the null hypothesis F, = F 2 .  But if the main 
interest is in detecting differences in.the mean values alone, some of the 
following tests will be useful. 

Wald-Wolfowitz (1940) Run Test. The (m + n) observations of the two 
samples put together are first arranged in increasing order of magnitude. 
Each observation of the first sample is replaced by 0 and of the second 
sample by 1 to obtain a sequence of 0’s and 1’s. If Fl = F2, then all possible 
[(n + m)!/(n!  m!)] arrangements of m zeros and n unities are equally likely 
and hence the distribution of any statistic based on a sequence of 0’s and 1’s 
can be exactly determined. One statistic is the number of runs of 0’s and 1’s. 
If Fl # F2 and specially when F, differs from F2 by a shift in the distribution, 
the expected number of runs will be small and hence the observed number of 
runs can be declared as significant if it is smaller than a number specified by a 
chosen level of significance. 

Wilcoxon (1945) Test. The (m + n) observations are arranged in increasing 
order of magnitude as in the Wald-Wolfowitz test, and the ranks of the 
observations of the second sample are obtained. Let the ranks be s,, . . . , s,. 
The test criterion is the sum of the ranks. If the null hypothesis is true, any 
selection of n ranks (numbers) from 1,2, , . . , (m + n) has the same probability 
n! m!/(n  + m)! and hence the distribution of the sum of ranks can be obtained. 
If one-sided alternatives are considered, a large value of the statistic (sum of 
ranks) would indicate departure from null hypothesis. If the alternatives are 
two sided, both small and large values of the statistic have to be considered in 
the specification of the region of rejection. 
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Fisher-Yates Test. Let s,, . . . , s, be the rank values for the second sample. 
The test criterion is C c(si) where c(si) is the expected value of the sith order 
statistic in a sample of size (m + n )  from N(0,  1). Tables of expected values of 
order statistics up to sample size 20 from N ( 0 ,  1) are given in R.M.M. Tables 
and up to 50 in Biometrika Tables, Vol. 1. One- and two-sided tests can be 
built up on the basis of the statistic 1 c(si) as in the case of Wilcoxon test. 

Van der Waerden’s Test. The test criterion is @-‘[s, / (m + n + l)] where 
is the cumulative distribution of the standard normal variable. Tables 

facilitating this test are given by van der Waerden and Nievergelt (1956). 
These are only a few nonparametric tests now available. Applications of 

nonparametric tests and significance values of some of the test statistics 
are contained in a book by Siege1 (1956). Some theory of nonparametric 
tests and inference is found in books by Fraser (1957), Puri and Sen (1970) and 
Lehmann (1959). A bibliography of nonparametric statistics and related 
topics is compiled by Savage (1953) and Walsh (1962). 

7e.4 Principle of Randomization 

Suppose we wish to test the difference between the effects of two treatments 
A and B on a population of individuals. We obtain a random sample of m 
individuals and measure the effects of treatment A, 

XI ,  * a ,  x, , (7e.4.1) 

which constitute a set of independent observations on a random variable X 
which represents the effect of A on an individual. Similarly, we obtain 
another independent sample of n individuals and measure the effects of B, 

Y l ,  * . * , Y ”  (7e.4.2) 

which are then observations on a random variable Y representing the effect 
of B. If F, and F2 denote the d.f.’s of X and Y, the null hypothesis may be 
interpreted as the equality of Fl and F 2 .  In such a case some of the non- 
parametric tests of 7e.3 can be applied on the observations (7e.4.1) and 
(7e.4.2) to draw valid inferences on the difference between A and B with 
respect to the population of individuals under consideration. 

But, generally, at least in the preliminary stages of an enquiry, it is not 
desirable to conduct an experiment involving samples of individuals from 
the population for which an ultimate recommendation has to be made. 
Experiments may be conducted on a laboratory scale by using volunteers 
or individuals specially chosen on the basis of some characteristics or even 
experimental animals which respond to the treatments. The results of such 
experiments may not be applicable to the whole population but they would 
provide the basis for a decision to plan and try out a suitable experiment on 
the individuals of a population. 
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We then have the problem of experimenting with the available subjects 
and generating observations which yield information on the difference 
between treatments. Since the basis of statistical inference is the available 
knowledge on the probability model governing the observations, it is 
necessary to generate the observations in such a way that the probability 
measure related to the various outcomes can be specified at least to the 
extent necessary for carrying out a test of significance of the null hypothesis. 
This is exactly what is achieved by the principle of randomization, a remark- 
able contribution by Fisher, which fornied the basis of the now widely ex- 
plored field of Design of Experiments. 

According to the principle of randomization, the assignment of a test 
subject to a treatment is based on the result of a random experiment. If 
there are two treatments A and B, we may in each individual case decide 
on A or B by tossing a coin (giving A if head appears and B otherwise). Or 
we may divide the available subjects at random into two groups (of chosen 
sizes), by using random sampling numbers, and administer A to members 
of one group and B to another. If we decide to have m subjects for A and n 
for B, there are (m + n)! /m!  n! ways of dividing the total number N =  
(m + n) of individuals into two groups of sizes m and n. By the random 
mechanism used, we give equal chance to each such division being chosen 
for the experiment. How does such a procedure specify the probability 
measure on the space of outcomes of the experiment? 

Let the null hypothesis be that the effect of A or of B is rhe same on any 
given individual, although this effect may be different from individual to indi- 
vidual (natural variation). Under the null hypothesis, let z , ,  . . . , zN represent 
the effects of A or B on the N individuals. If the individuals are divided into 
two groups of sizes m and n, the first group receiving A and the second B, 
the observed effects of A would be a subset of z,, . . . , zN, 

X I ,  * * * 1 x ,  9 (7e.4.3) 

in which case the complementary subset 

YI 9 * . * , Y .  (7e.4.4) 

would be the observed effects of B. Thus a single experiment would provide 
us with the observations (7e.4.3), (7e.4.4), which taken together are the 
same as the set zl, . . . , zN. Since every subset of m individuals has the same 
chance of being assigned to A, every subset of m values of zl, . . . , z, has the 
same chance, n !  m ! / N ! ,  of being observed as effects of A. If we define the 
statistic 

d =  I X - J I ,  (7e.4.5) 
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which is the difference between the averages of (7e.4.3) and (7e.4.4), its 
distribution can be computed by considering all divisions into two sets of 
given sizes of z,, . . . , zN, which values are known from any particular experi- 
ment. Such a distribution is known as a permutation distribution, and its 
validity depends only on the perjection of the mechanism used in assigning 
individuals to the treatments. The permutation distribution of d provides us 
with a value d, such that P(d 2 d,) < a, a chosen level of significance. The 
null hypothesis is rejected when an observed d is 2 d,. 

In practice, i t  may be difficult to determine the exact distribution of d as 
the number of divisions to be considered is large unless N is small. But if m 
and n are large, the statistic 

(7e.4.6) 

can be used as Student’s t on (m + n - 2) D.F. 
How should a significant t or d be interpreted? The null hypothesis that 

the treatments A and B are identical in their effects on any individual stands 
rejected. But there may be the possibility that in each individual case there is 
difference between A and B but the oueraff (or average) difference is zero. It is 
therefore necessary to examine what specific departures from the null hypo- 
thesis the test is capable of detecting. This question can be answered by 
studying the O.C. (operating characteristic) of the test procedure when the 
null hypothesis is not true. 

We therefore consider the most general case by letting arbitrary numbers 

denote the effects of A and B on the N individuals. Define 
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Let x , ,  . . . , x,, and y,, . . . , y ,  be the observed effects of A and B. Under the 
general set up (7e.4.7) the expectations, variances, and covariances of x i ,  y i  
of the permutation distribution are 

E(xi) = 8A, E(yi)  = 

VA COV(Xi, X j )  = - - , ( N  - l I V A  

N N 
V(Xi) = (7e.4.8) 

C A  B C0V(Xi, y,) = - - . 
N 

Let us consider the statistic t ’ ,  instead o f t  defined in (7e.4.6); then 

nin 
m + n  

t’ = - (X - j j) ’  -+ sz = u’ + b’ (say) (7e.4.9) 

By using the formulas (7e.4.8) i t  is a straightforward computation to show that 

( m  - 1)VA + (n  - 1 ) V B  
m + n - 2  

E(bz)  = (7e.4.11) 

The second expression in (7e.4.10) is of the same order of magnitude as 
(7e.4.1 I),  especially when m = n. If A = 0, the expected value of the numera- 
tor of t’ actually tends to be smaller than that of the denominator since 
VA + V B  - 2CAB 2 0; so a significantly large t could not arise if in fact the 
treatment effects were different for each individual but the average difference 
A = 0. If A # 0, the numerator of t’ is expected to  have a larger value and, 
therefore, i t  appears to be reasonable to assert that a significant t is mainly 
due to A # 0, that is, a real difference in the averages rather than in some other 
aspects of the effects (7e.4.7). 

For the variety of ways that the principle of randomization can be exploited 
to enable valid inferences to be drawn from experimental data, the reader is 
referred to books on Design of Experiments by Cochran and Cox (1957), 
Fisher (1935), and Kempthorne (1952). Some papers of interest in connection 
with permutation distribution and nonparametric inference are by Chernoff 
and Savage (1958), Heoffding (1951), Mitra (1955), Neyman (1935), Pitman 
(1937, 1938), Rao (1959b), and Wolfowitz (1949). 
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7f ANCILLARY INFORMATION 

In 6e.3, we introduced a conditional test of independence of attributes in a 
2 x 2 contingency table, where the significance of the test statistic was judged 
using its conditional distribution given the marginal totals as observed in the 
sample. Barnard (1945) has shown that an alternative test exists, which is 
more powerful, although the suggestion did not find favor with Fisher (1956) 
who advocated conditional tests on the basis of what is called ancillary 
information. The exact ground rules of such conditional tests have not been 
fully worked out. However, we shall explain the principle enumerated 
by Fisher. The interested reader is referred to papers by Barnard (1945), 
Barnard, Jenkins, and Winsten (1962), Basu (1964), Birnbaum (1962), Cox 
(1958) and Fisher (1956). 

Definition. Consider a family of probability measures, Po defined on 
( X ,  a), and PoT,  the family of distributions induced by a statistic Tdefined on 
X. Tis said to be an ancillary statistic iff PoT is independent of 8. 

Fisher suggested that for purposes of inference one should consider the 
family of conditional probability measures on X given T =  1, the observed 
value of the ancillary statistic in the sample, as a starting point. It would 
have been nice if there existed what may be called a maximal ancillary T* in the 
sense that every other ancillary Tis a function of T,, in which case we could 
condition on T*. Unfortunately, a maximal ancillary may not exist as pointed 
out by Basu (1964). However, we shall consider some examples to underline 
the importance of ancillary information. Suppose there is an urn containing 
five balls out of which an unknown number ct are red and others are white. 
An experiment consists in first tossing an unbiased coin and drawing five 
balls, one after the other, with replacement if the coin falls head upwards and 
observing all the five balls in the urn otherwise. 

In such a situation the m.1. estimate of ct is r, the observed number of 
red balls, and the standard error of r is ,/ct(S - ct)/SJG. Such an inference, 
or reduction of data to an m.1. estimate and its standard error, does not 
recognize ancillary information. 

Let us observe that the event head or tail provides ancillary information in 
which case the estimator of tl is as follows, where the standard error is based 
on the conditional distribution depending on the ancillary statistic. 

Standard Ancillary 
Estimator Error Information 

r , /c((5) /5 , /$  Head 
r 0 Tail 
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It appears that nonrecognition of ancillary information has led to a 
peculiar situation where we are forced to attach a standard error although 
there is no error in the estimate! Thus the reduction of data to an m.1. estima- 
tor without supplementing it with ancillary information may result in an 
anomalous situation as in the present example. 

More generally, let us consider a mixture of experiments El,  . . . , Ek where 
El is chosen with a known probability n, but each experiment contains infor- 
mation on the same unknown parameter 8. If the problem isoneoftestingthe 
null hypothesis H o  : 8 = B 0 ,  against the alternative H : 8 = el,  the optimum 
procedure according to Neyman Pearson lemma is to reject H o  if 

PI(xl Ei)/Po(xl Ei) 2 k (7f. 1) 

where P,(xI E,) is the probability density at the observed value x when Ei is 
performed and H, is true. In (7f.l), k is determined such that 

k 

I - 1  
C ni Prob. {Pl (x l  E,)/Po(xI E,) 2 k I E i }  = u (given). (7f.2) 

However, the recognition of ancillary information tells us that when E ,  is 
chosen, the inference should be based solely on the conditional probability 
given El ,  ignoring other possibilities of experimentation. Thus the test statis- 
tic when E l  is chosen would be 

P1(xlEi)/Po(x(Ei) 2 ki (7f.3) 

(7f.4) 

where k I  is determined such that 

Prob. { P l ( X  I Ei)/Po(X I E , )  2 ki  1 E i }  = u (given). 

The test procedure (7f.3) has lower power than that of (7f.l) in the long 
run. Which procedure should one prefer? It is left to the reader to reflect and 
decide although the author is inclined to choose the latter. 

COMPLEMENTS AND PROBLEMS 

1 Departure from Normality Assumption on the t Test. The &statistic based 
on a sample of size n is &(Z - p)/s where K is the average and s2 is the cor- 
rected sum of squares divided by (n - 1). 
1.1 Determine the distribution o f t  when the parent population is exponen- 
tial, 8-' exp(-x/8), x > 0 for the sample size n = 2. Compute the actual 
probability of a type I error by using the 5 % point of I t I distribution based on 
the normal theory and show that it is divided unequally between the two 
tails of the distribution of t. [Note that for the exponential distribution the 
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measures of skewness and kurtosis J E l  and p2 have the values 2 and 9 widely 
different from the values 0 and 3 for a normal distribution]. 
1.2 Draw size-5 samples from a rectangular population and compute the 
t-statistic in each case. Obtain the frequency distribution of the observed t 
values and compare with the t distribution on 4 D.F. derived from the normal 
theory. Estimate from the observed frequency distribution, the actual prob- 
abilities of type I error corresponding to the 5 % and 1 % values o f t  on normal 
theory. [It is necessary to have from 200 to 500 samples to make proper 
comparisons. This is an example which can be given as a joint project to the 
students in a class.] 
2 Departure from Independence Assumption on the t Test. Let x l ,  . . . , x ,  
be observations such that E(xi )  = 0, V(xi )  = a2, and cov(xi, x j )  = pa2 if 
Ji - j (  = 1 and 0 otherwise. 

2.1 Show that the asymptotic distribution of the 1-statistic &k/s, is 
N [0, ( 1  + 2 p ) ] ,  and hence that the significance of t is overestimated when 
p > 0 and underestimated when p < 0 in large samples. For finite n, compute 
the expected values of the numerator and denominator of t 2  = nX2/s2 and 
study the effect of p # 0 in interpreting significant values o f t  as contradicting 
the hypothesis E(xi )  = 0. 
2.2 Show that a valid inference can be drawn on the expected value of x i  by 
considering the observations 

x1 + x2 X n - 1  + X ,  

Y1 = ~ * * * * > Y n / 2 =  2 ’  

when n is even and by applying a t test on they sample (with (n/2) - 1 D.F.). 
3 Departure from normality assumption on the x 2  test for an assigned value of 
02. Consider the statistic 

( n  - l)s2 
x 2  =- 

C O 2  

where a. is the assigned value of a, which is distributed as x2(n - I )  when the 
observations x , ,  . . . , x ,  are on a r.v. X N N ( p ,  a’). 
3.1 Let X be distributed with variance o2 and /I2 - 3 = y 2  # 0 (non- 
normal). Show that 

E(s*) = a2 and V(s2) = a*(- 2 + :). 
n - 1  

3.2 Show that the asymptotic distribution of 
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where oo2 is the true value of 02, is N ( 0 ,  1) when y z  = 0 and N ( 0 ,  1 + y2/2)  in 
general. 
3.3 Deduce that the x 2  test based on ( n  - l)s2/ao2 for testing the null 
hypothesis, a2 = go2, is not robust for departures from normality. 
4 Let x i  - G ( a i ,  p i ) ,  i = 1 ,  . . . , k and independent. Derive appropriate 
tests for the hypotheses: 

(a) a1 = = ak given p ,  = = p k  
(b) p1 = * = Pk given a1 = - * = ak 
(C) = * * '  = c(k and p1 = =Pk 

[Hint: Try likelihood ratio criteria.] 
5 Let xI, . . . , x, be m independent observations on a r.v. X with density 

exp(-x/8,) and y , ,  . . . , y, on Y with density 02- '  exp(-y/8,). 
5.1 Show that the likelihood ratio test for H,: 8, = 8, is a function of T / j .  
Find the distribution of S / j .  

5.2 Characterize the class of similar region tests and derive optimum similar 
region tests when (a) the alternatives are O1 > O,, and (b) the alternatives are 
both sided (locally unbiased and most powerful test). Show that these tests 
also depend on the statistic Z / j .  [Observe that when O1 = O2 = 0, T = Exi  
+ C y j  is sufficient for 8, and then apply the method of 7a.5.1 
5.3 Derive the power functions of these tests. 
6 Let x,, x2 ,  . . . , x, be independent observations from a Poisson distribu- 
tion p ( p )  andf, , f l ,  . . . the frequencies of 0, 1, . . . . 
6.1 Find the conditional probability of f o  , fi, . . . given T = x1 + x, + * * * 

+ x,, which is sufficient for p. 

6.2 Derive in particular ihe exact conditional probability distribution off,, 
the frequency of zero observation, given T. Show that 

E(f , (T)=m 1 - -  ( : I T  
V ( f , I T ) = m ( m - 1 )  I - -  + m  I - -  - m 2  I - -  ( : I T  ( Ijl)l ( 

6.3 Show that the asymptotic distribution of 

[I0 - E ( f 0  I TI1 + J V(f0 I T )  
is N ( 0 ,  1) as m and T + ol). 

6.4 Show that the similar region test for the hypothesis that the frequency 
of zero observation is as expected in sampling from a Poisson distribution is 
based on the conditional distribution off, given T(Rao and Chakravarthy 
1956d). 
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6.5 Let z , ,  . . . , z , - ,  be theoretical fractiles of a continuous d.f. F(x) such 
that F(z i )  = i/m, i = 1 ,  . . . , m - 1. Further let x,, . . . , xT be T independent 
samples from F(x) and f, the number of intervals (- co, z , ) ,  ( z , ,  z2), . . . , 
( z , - , ,  co) containing r of the observations x,, . . . , x T .  Show that the distribu- 
tion offo ,A ,  . . . is the same as that derived in Example (6.1) and that offo is 
the same as that derived in Example (6.2). 
7 Nonparametric Tests. 
7.1 Let x,, . . . , x, and y,, . . . , y,, be independent observations from popula- 
tions with continuous d.f.’s F, and F 2 .  Define by m ,  and n, the number of 
x’s and y’s exceeding the kth order statistic of the combined sample. If 
F, = F2 show that the probability of given values of m , ,  n, is 

fo 
c, 

Based on this probability distribution of (m,, n,), derive a nonparametric test 
of the hypothesis, F, = F 2 .  
7.2 In an experiment to test the difference between two skin ointments A and 
B, the treatments were assigned at random to the right and left hand of 
each patient and the improvement is scored as bad, fair, and good. The data 
on 50 patients are summarized as follows. 

Treatment A 

Bad Fair Good 

Bad 2 7 10 
Fair 4 4 16 
Good 3 4 0 

mnV - = F ,  d F 2  + ( 1 1  - 1) s ( 1  - F 2 ) 2  d F ,  
(:n) 

2 + ( m  - 1 )  j F I 2  d F 2  - (m + n - l ) ( S F ,  d F 2 )  . 
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In particular, when Fl = Fz 

n i + n + l  

8 Show that the sequential test for testing a binomial probability no 
against an alternative n1 > no, can be written in the following form. At the 
mth stage let rn, be the number of successes. Then: 

(a) accept x0  if m, < cm + d , ,  
(b) reject no if rn, 2 cm + d , ,  
(c) continue sampling otherwise, 

where c, d,, d, are constants depending on (a, p) ,  the strength of the test, and 
no, 11,. 

9 Truncation of S.P.R.T. If the S.P.R.T. does not terminate for n = 1, 
. . . , N - 1, suppose the following rule is adopted for terminating the test at 
the Nth stage; accept Ho if log B <  z ,  + ... + zN < 0 and accept H, if 0 < 

Obtain the O.C. function and A.S.N. of the foregoing S.P.R.T. 

z1 + ... + ZN c l o g  A. 
Let yo = -,/%E(zI Bo)/a(zl 8,) and yb = ,/N [(I/N)log A - E(zl 8,)]/ 

o(zl O0), where a2(zl 8,) is the variance of z. Show that an upper bound to the 
first kind of error is 

where CD is the d.f. of N ( 0 ,  1). Find the upper bound to PN. 
10 O.C. of a Control Chart. In operating a control chart with a central line 
L o ,  two lines L,, L2 above Lo and two lines L; , L; below Lo,  some of the 
suggested rules for taking action are one or a combination of the following 
depending on the configuration of the successive plotted points: 

(a) If a point falls above L,  or below L',. 
(b) Two successive points between L,, L or between L; ,  L; . 
(c) A configuration of three points such that the first and third are between 

L , ,  L 2  and the second between L o .  L 2 ,  and a similar situation with 
respect to L o ,  L; , L; . 

Let a l ,  a,, and a3 be the probabilities of a plotted point being above L ,, 
between L * ,  L ,, and between L o ,  L , . Similarly, a; ,  a ; ,  and a; are defined 
with respect to L ; ,  L; , L o .  Let P,, be the probability of taking action at the 
nth stage and Q,(L i ,  L j )  be the probability of a point falling between L i ,  L 
and no action being taken. 
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10.1 Show that when rules (a) and (b) are jointly used, P,, Q, satisfy the 
recurrence relations 

p, = ai + 4 + a2 + a; - Q,(Li, L.2) - Q,(L;, L;)  

QALi 9 L2) = a2 - a2 Q,- ~ ( L I  9 ~ 5 2 )  

Q,(L;, L ; )  = a; - a; Qn-l(Li, Li). 

10.2 If A = lim c:= PJn,  as n --t 00 and p i j  = lim c:= Q,(L i ,  L j ) /n ,  pij  = 
lim EL Q,(L!, L;)/n as n + co, show that 

L = a1 + a; -t. a, + a; - p12 - p i 2  

P I 2  = a2 - f fZPI29  

Observe that A is the proportion of occasions when action is taken in the long 
run on any hypothesis specifying the values of a i ,  a ; .  

10.3 Deduce that the O.C. function for the rules (a) and (b) jointly is 

Pi2 = a; - a ; p ; , .  

a2 4 A: = a ,  f a ;  + a2 + a; - - - - 
1 +a ,  1 + a ;  

10.4 Similarly obtain the O.C. function for the rules (a) and (c) jointly 

a; 
1 + a, + a,a3 1 + a; +.;a;' 

- a2 L = a ,  + a ; + a , + a ; -  

10.5 Suppose that each observation is drawn from N ( 0 ,  a2) and a control 
chart is made up of a horizontal line L o  at 6 = 50 with L , ,  L; placed at 
distances of k 2a from L and L L', placed at distances of k 30. Tabulate 
the O.C. function L of Examples (10.3) and (10.4) for the following values of 6 

a a 
2 2 

50, 50+- ,  50-- ,  50+0, 50-0, 50+2a, 5 0 - 2 ~ .  

10.6 In the situation of Example (10.5) and for the rules of Examples (10.3) 
and (10.4), obtain an optimum placing of the lines L , ,  L 2 ,  L; ,  L; when the 
value of A at 0 = 50 is fixed at a given value (first kind of error). You may 
have to impose some restrictions such as symmetrical placing of L , ,  L ;  and 
L , , L; and so on and then maxiniize the O.C. function in some sense (locally 
or at specified values of 6). 
11 Consider the sequence of children N N N N D D D N D  scored as normal 
( N )  and defective ( D )  in the sequence of their birth orders. Satisfy yourself 
that the sum of the parities of defective children is a good criterion with which 
to test the association between birth order (parity) and defectiveness. In this 
example the sum is 5 + 6 + 7 + 9 = 27. Find the probability of the sum 
being equal to or greater than 27 under the hypothesis that all sequences of 
5 N's and 4 D's are equally likely. [Haldane and Smith, 1948.1 
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12 Suggest a sequential test of the hypothesis H ,  against HI, setting an  
upper limit to the number of observations to be drawn. [See Rao (195Oe) for a 
test of the null hypothesis placing an upper limit on the number of observa- 
tions.] 

13 A Statistical Paradox (Lindley, 1957). Let X be the average of n observa- 
tions from N ( 0 ,  I ) ,  and the prior probability of 8 be c at the single point 
0 = 8, and uniform in an interval around 0, but excluding 0,. Suppose we 
want to test the hypothesis 0 = 0,, and I = O0 + A,/,/; is observed, where A= 
is the a percent significant value of N ( 0 ,  I). Show that the posterior probability 

that 8 = 0, at X = 0, + A,/& is 

E ' =  C e - ( m a . 2  f [ c e - ( 1 / 2 ) ~ . z  + (1 - c ) J 2 T ]  

and ? + 1 as n + 00. Thus there exists an n such that C = (1  - a) where c1 is 
the level of significance. If a = 0.05, we have then situations where the null 
hypothesis is rejected at 5 % since (X - 0,)& = A,, but the posterior proba- 
bility of the null hypothesis being true is 95 %. 

REFERENCES 

Anscombe, F. J. (1952), Large sample theory of sequential estimation, Proc. 

Anscombe, F. J. (1953), Sequential estimation, J.  Roy. Statist. SOC. B 15, 1-29. 
Bahadur, R. R. (1960), Stochastic comparison of tests, Ann. Mafit. Statist. 31. 

Banerji Saibal Kumar (1960), Approximateconfidence interval for linear functions 
of means of k populations when the population variances are not equal, Sankhyfi 22, 

Camb. Phil. SOC. 48, 600-607. 

276-295. 

3 57-358. 
Barnard, G. A. (1942), A new test for 2 x 2 tables, Nature 156, 177. 
Barnard, G. A. (1949), Statistical inference, J. Roy. Statist. SOC. B 11, 115-149. 
Barnard, G. A. (1969), Practical applications of tests with power one, Bull. Inst. 

Barnard, G. A., G. M. Jenkins and C. B. Winsten (1962), Likelihood inference 

Basu, D. (1964), Recovery of ancillary information, Sankhyn 26, 3-16. 
Birnbaum, A. (1962), On the foundations of statistical inference (with discussion), 

J. Am. Sfat .  Assn. 57, 269-326. 
Blackwel1,D. and M. A. Girshick (1954), Theory ofGames and Statistical Decisions, 

Wiley, New York. 
Box, G. E. P. and S. L. Anderson (1955), Permutation theory in the derivation of 

robust criteria and study of departures from assumptions, J. Roy. Statist. SOC. 

Inter. Statist. XLIII(i), 389-393. 

and time series (with discussion), J.  Roy. Statist. SOC. A 125, 321-372. 

B 17,l-34. 



REFERENCES 513 

Chernoff, H. (l949), Asymptotic studentization in testing of hypothesis, Ann. 

Chernoff, H. (1952), A measure of asymptotic efficiency of tests of a hypothesis 

Chernoff, H. (1959), Sequential design of experiments, Ann. Math. Statist. 30, 

Chernoff, H. and L. E. Moses (1959), Elementary Decision Theory, Chapman and 

Chernoff, H. and R. I. Savage (1958), Asymptotic normality and efficiency of 

Cochran, W. G. and G. M. Cox (1957), Experimental Designs (second edition), 

Cox, D. R. (1958), Some problems connected with statistical inference, Ann. 

Dantzig, G. B. (1940), On the non-existence of tests of ‘Student’s’ hypothesis 

Dantzig, G. B. and A. Wald (1951), On the fundamental lemma of Neyman and 

Dodge, H. F. and H. G. Romig (1929), A method of sampling inspection, Bell 

Fisher, R. A. (1935a), The Design of Experiments, Oliver and Boyd, Edinburgh. 
Fisher, R. A. (1935b), The fiducial argument in statistical inference, Ann. Eugen. 

Fisher, R. A. (1 936), Uncertain inference, Proc. Am. Acad. ofArts and Sciences 71, 

Fisher, R. A. (1956), Statistical Methods and Scientific Inference, Oliver and Boyd, 

Fraser, D. A. S. (1957), Nonparametric Methods in Statistics, Wiley, New York. 
Godambe, V. P. and D. A. Sprott (1971), Foundations of Statistical Inference, 

Holt, Reinhart and Winston, Canada. 
Haldane, J. B. S. and C. A. B. Smith (1948), A simple exact test for birth-order 

effect, Ann. Eugen. 14, 117-124. 
Hodges, J. L. Jr. and E. L. Lehmann (1956), The efficiency of some nonparametric 

competitors of the t-test, Ann. Math. Statist. 27, 324-335. 
Hoeffding, Wassily (1951), “Optimum” nonparametric tests, Proc. (Second) 

Berkeley Symp. on Math. Statist. Prob. Berkeley Univ. California Press, 83-92. 
Hoeffding, Wassily and J. R. Rosenblatt (1955), The efficiency of tests, Ann. Math. 

Statist. 26, 52-63. 
Hogben, L. (1957), Statistical Theory: the relationship of probability, credibility, 

and error; an examination of the contemporary crisis in statistical theory from a 
behaviouristic viewpoint. George Allen and Unwin, London. 

Jeffreys, H. (l948), Theory of Probability (second edition), Clarendon Press, 
Oxford. 

Math. Statist. 20, 268-278. 

based on the sum of observations, Ann. Math. Statist. 23,493-507. 

755-770. 

Hall, London. 

certain nonparametric test statistics, Ann. Math. Statist. 29, 972-994. 

Wiley, New York. 

Math. Statist. 29, 357-372. 

having power functions independent of a, Ann. Math. Statist. 11, 186-192. 

Pearson, Ann. Math. Statist. 22, 87-93. 

System Tech. Jour. 8, 613-631. 

6, 391-398. 

245-258. 

London. 



514 THEORY OF STATISTICAL INFERENCE 

Kempthorne, 0. (1952), Design and Analysis of Experiments, Wiley, New York. 
Kyburg, H. E., Jr (1961), Probability and the Logic of Rational Belie/; Wesleyan 

Lehmann, E. L. (1959), Testing Statistical Hypotheses, Wiley, New York. 
Lindley, D. V. (1953), Statistical inference, J. Roy. Stat. SOC. B 15, 30-76. 
Lindley, D. V. (1957). A statistical paradox, Biometrika 44, 187-192. 
Linnik, Yu. V. (1963), On the Behrens-Fisher problem, Proc. Int. Stat. Conference, 

Ottawa. 
Mahalanobis, P. C. (1940), A sample survey of acreage under jute in Bengal with 

discussion on planning of experiments, Proc. (Second) Indian Stat. Conference, 
Calcutta. 

Mitra, Sujit Kumar (1960), On the F-test in the intrablock analysis of a balanced 
incomplete block design, Sankhyi? 17, 279-284. 

Neyman, J. (1935), On the problem of confidence intervals, Ann. Math. Statist. 

Neyman, J. (1937), Outline of a theory of statistical estimation based on the 
classical theory of probability, Philos. Trans. Roy. SOC. A 236, 333-380. 

Neyman, J. (1961), Silverjubilee of my dispute with Fisher, J. Operations Research 
SOC. (Japan) 3, 145-154. 

Neyman, J. with the cooperation of K. Iwaszkiewicz and St. Kolodziesezyk 
(1935), Statistical problems in agricultural experimentation, J.  Roy. Statist. SOC. 

Neyman, J. and E. S. Pearson (1933), On the problem of the most efficient tests 

Noether, G. E. (1955), On a theorem of Pitman, Ann. Math. Statist. 26, 64-68. 
Pitman, E. J. G. (1937), Significance tests which may be applied to samples from 

any population, J. Roy. Statist. SOC. (suppl.) 4,119-1 30,225-232, and Biometrika 29, 

Pitman, E. J. G. (1949), Lecture notes on nonparametric statistical inference, 

Plackett, R. L. (19601, Principles of Regression Analysis, Clarendon Press, Oxford. 
Puri, M. L. and P. K. Sen ( I  970), Nonparametric Methods in Multivariate Analysis, 

Robbins, H .  and D. Seigmund (1969), Confidence sequences and interminable 

Savage, I. R. (1953), Bibliography of nonparametric statistics and related topics, 

Savage, L. J. (l954), Foundation of Statistics, Wiley, New York. 
Savage, L. J. (1962), Foundations of Statistical Inference, A discussion, Methuen, 

Scheffe, H. (1959), The Analysis of Variance, Wiley, New York. 

Univ. Press, Middletown, Connecticut. 

6, 111-116. 

(SUPPI.) 2, 107-154. 

of statistical hypotheses, Phil. Trans. Roy. SOC. A 231, 289-337. 

322-335. 

Columbia University. 

Wiley, New York. 

tests, Bull. Inst. In?. Statist. XLIII(l), 379-387. 

J. Am. Stat. Assoc. 48, 844-906. 

London. 



REFERENCES 515 

Siegel, Sidney (1 956), Nonparametric Statistics for the Behavioural Sciences, 

Stein, Charles (1945), A two-samples test for a linear hypothesis whose power is 

Van der Waerden, B. L. and E. Nievergelt (1956), Tables for Comparing Two 

Wald, A. (1941), Asymptotically most powerful tests of statistical hypotheses, 

Wald, A. (1947), Sequential Analysis, Wiley, New York. 
Wald, A. (1950), Statistical Decision Functions, Wiley, New York. 
Wald, A. and J. Wolfowitz (1940), On a test whether two samples are from the 

Walsh, J. E. (1962), Handbook of Nonparametric Statistics. Investigation of 

Welch, W. L. (1947), The generalization of Student’s problem when several 

Wilcoxon, Frank (1945), Individual comparisons by ranking methods, Biometrics 

Wolfowitz, J. (1947), The efficiency of sequential estimates and Wald’s equation 

Wolfowitz, J. (1 949), Nonparametric statistical inference, Proc. (First) Berkeley 

McGraw-Hill, New York, Toronto, London. 

independent of the variance, Ann. Math. Statist. 16, 243-258. 

Samples by X-Test and Sign Test, Springer-Verlag, Berlin. 

Ann. Math. Statist. 12, 1-19. 

same population, Ann. Math. Statist. 11, 147-162. 

Randomness, Moments, Percentiles and Distributions, Nostrand, London. 

population variances are involved, Biometrika 34, 28-35. 

1,80-83. 

for sequential processes, Ann. Math. Statist. 18, 21 5-230. 

Symp. on Math. Statist. Prob. Berkeley Univ. California, 93-1 13. 



Chapter 8 

MULTIVARIATE ANALYSIS 

Introduction, The general concepts of a multivariate distribution and a 
conditional distribution are introduced in Chapter 2. The properties of 
regression, which is the mean of a conditional distribution of one random 
variable given the others, have been studied in 4g.l to 4g.2. We shall now 
consider a particular class of distributions known as the multivariate normal, 
which plays an important role in statistical inference involving multiple 
measurements. 

The multivariate normal distribution has already been encountered in 
3b.3 as the distribution of linear functions of independent univariate normal 
variables. The special cases of the p-variate normal distribution when all the 
variances are equal and all the covariances are equal and the general bivariate 
normal distribution have been considered in great detail in 3c.l and 3d.1, 
respectively. In this chapter we shall investigate the properties of a general 
p-variate normal distribution, derive the distributions of some sample 
statistics, and illustrate their use in practical problems. 

The theoretical approach to the p-variate normal distribution in this 
chapter is not along the usual lines and therefore needs some attention. 
First, the distribution is not defined by a probability density function. It is 
characterized by the property that every linear function of the p-variables has 
a univariate normal distribution. Second, such a characterization is exploited 
in deriving the distributions of sample statistics. It is shown that corresponding 
to any known result in the univariate theory, the generalization to the 
multivariate theory can be written down with a little or no further analysis. 
The method of doing this is stated in 8b.l to 8b.2. For instance, knowing the 
joint distribution of the sample mean and sample variance in the univariate 
theory we can write down the joint distribution of the sample means of 
multiple measurements and the sample variances and covariances. The entire 
theory of multivariate tests of significance by analysis of dispersion is obtained 
as a gerierdization of the univariate analysis of variance. The reader should 
familiarize himself with this general approach. 

A number of other characterizations of the multivariate normal distribution 
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have been given, which the reader may omit on first reading since they are 
not used in the derivation of the later results. But these characterizations will 
be useful for those who want to study the theory of normal distributions in 
Hilbert and more general spaces. 

An important aspect of the multivariate analysis which is not emphasized 
in statistical literature is the examination of additional information provided 
by some measurements when some others are already available. This is 
important. Since in practice there is no limit to the number of multiple 
measurements which can be obtained in any problem, it is relevant to examine 
whether some are superfluous in the presence of the others. This problem is 
investigated in 8c.4. A number of practical problems are considered in 8d.l to 
8d.5. 

8a MULTIVARIATE NORMAL DISTRIBUTION 

8a.l Definition 

We have already encountered the multivariate density in 3b.3, while studying 
the sampling distribution of linear functions of independent univariate 
normal variables. Denoting by U, a p-dimensional random variable 
( U , ,  . . , , Up)  and (for convenience) by the same symbol the values it can take, 
the density function of a p-variate normal distribution was defined to be 

(271)-~'' 1 AJ 'I2 exp[ -j(U - p)'A(U - p)], (8a. 1.1) 

where A is a positive definite matrix. It was also observed that E(U) = p and 
D(U) = A-', where D(U) is the matrix of variances and covariances of the 
components of U. We shall refer to the variance covariance matrix as the 
dispersion matrix and use the symbol D for the operator leading to the vari- 
ances and covariances. 

We shall not, however, choose the density function (8a.l.l) as basic to 
our study of the multivariate normal distribution. Instead, we shall characterize 
the distribution in such a way that the concepts involved can be extended to 
more complex random variables with countable or uncountable dimensions. 
Further, the density function such as (8a.l.l) does not exist if D(U) is singular; 
a more general approach is necessary to include such cases. 

For this purpose we shall exploit a result due to Cramer and Wold which 
states that the distribution of a p-dimensional random variable is completely 
determined by the one-dimensional distributions of linear functions T'U, for 
every fixed real vector T. To prove the result, let $(?, T) be the c.f. of T'U. 
Then 

$ ( f ,  T) = E[exp (irT'U)], (8a. 1.2) 
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giving 4(1, T) = E[exp(iT’U)], which as a function of T is the c.f. of U. The 
distribution of U is then uniquely defined by the inversion theorem of the 
c.f. Motivated by this result we define the p-variate normal distribution as 
follows. 
Definition 1. A p-dimensional random variable U, that is, a random 
variable U taking values in E ,  (Euclidean space of p-dimensions) is said to 
have a p-variate normal distribution N p  if and only if every linear function of 
U has a univariate normal distribution. 

The result (8a.1.2) only shows that if a random variable U exists satisfying 
definition 1, then its distribution is uniquely determined. We shall, however, 
establish the existence of N p  as defined, in Section 8a.2. 

It may be noted that the definition I of N p  can be extended to the definition 
of a normal probability measure on more general spaces such as Hilbert or 
Banach spaces by demanding that the induced distribution of every linear 
functional is univariate normal (Frechet, 1951). In this chapter we shall 
confine our attention to the study of only finite dimensional random variables. 
But the treatment and the nature of problems discussed should serve as a 
good preparation for those interested in studying the distributions of more 
general random variables which are considered in many areas of applied 
research. (See Grenander and Rosenblatt, 1957; Prohorov and Fisz, 1957; 
Rao and Varadarajan, 1963b; Wold, 1938; etc.) 

Notations and Operations. The following notations and operations with 
vector random variables will be used in the proofs of the various propositions, 
Let X‘ = (XI, . . . , X,) and Y’ = ( Yi ,  . . . , Y,) be two random variables. 
Then denoting by E, D, C, V, expectation, dispersion matrix, covariance, and 

(8a. 1.3) 

(8a. 1.4) 

(8a.l.5) 
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If XI,  , . . , Xk are k, p-dimensional r.v.’s and A,,  . . . , Ak are fixed constants 
then 

D(AIX] + ’ “  + AkXk) = 1 Ai’D(Xf) -k 2 c c A,AjC(Xi, xj) 

= Af’D(Xi) ,  when Xi are uncor- 

= (1 A i2 )D(X) ,  when X, are uncor- 

related 

related and have the 
same dispersion. (8a. 1.6) 

If X is ap-dimensional r.v. and B is a (q x p )  matrix, then BX is a q-dimensional 
r.v. and 

D(BX) = BD(X)B’ I * E(BX) = BE(X) 
(8a. 1.7) 

We denote the rank of a matrix A by rank A or R(A). 

8a.2 Properties of the Distribution 

Let U N Np according to definition 1. Then the following results hold. 

( i )  E(U) and D(U) exist which we denote by p and C respectively. Further, 
for  a fixed oecfor T, T’U N Nl(T’p, T’ET), that is univariate normal 
with mean T’p and variance T’CT. 

Let the components of U be ( U , ,  . . . , Up). By definition U, is univariate 
normal so that E(UJ c 00 and V(U,)  c 00. Cov(U,, U,) exists since V(U, )  
and V ( V j )  exist. Let E(UJ = p i ,  V(Vi)  = n i l ,  and cov(Uf, U,) = uij. Then 

(8a.2.1) 
E(TU) = T’p, 
V(T‘U) = T’CT, where C = (aij), 

where p’ = (pl, . . . , p,) 

and therefore T’U - Nl(T’p, T’ET). 

(ii) The characteristicfunction of U is 

exp(iT’p - +TCT). (8a.2.2) 

The c.f. of a univariate normal variable u - N,(p ,  a’) is (p. 103) 

exp(itp - +t2a’), (8a.2.3) 

By applying (8a.2.3) the c.f. of the r.v. T U  - N,(Tp, T’CT) is 

exp(itT’p - t lZTCT). (8a.2.4) 

Substituting t = 1 in (8d.2.4), we see that the c.f. of U is as in (8a.2.2). The 
following are immediate consequences of (8a.2.2). 
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The p-variate normal distribution is completely specified by the mean 
vector p and the dispersion matrix I: of the random variable, since the c.f. 
(8a.2.2) involves only p and C. We may therefore, denote a p-variate normal 
distribution by N p  (p, C), involving p and I: as parameters. 

(a) !f there exist a vector p and matrix Z such that for every T, T'U - 
(b) VC = A (a diagonal matrix), the components U,, . , . , Up are independent 

Note that the c.f. (8a.2.2) is then the product of p factors showing indepen- 
dence of variables. Thus, zero values of all the product moment correlations- 
independence of the components of U .  

N,(T'p, TZT), then U - Np(p,  C). 

and each is univariate normal. 

(c) Let U, and U, be two subsets of the variable U .  We can write 

where El ,  and C2, are the dispersion matrices of U,,  U,, and I:,, is 
covariance matrix of U2, U, (i.e., the matrix of covariances of the 
components of U, with those of U,). The random variables U, ,  U, are 
independently distributed i f  and only i f  I:,, = 0. 

The result follows since the quadratic form in (8a.2.2) can be written in 
subsets TI, T, of components of T as 

T'I:T=T;C,,T, + 2T;CI2T2 +T;C2,T2 
= T;C,,T, + T;C2,T2, when ZI2 = 0 

in which case, the c.f. of U is seen to be the product of two factors. The 
result is important since the independence of two subsets of a multivariate 
normal variable can be deduced by examining the covariance matrix between 
the subsets. 

(d) If the subsets U,, U2 ,  . . . , Uk oJ U are independent pairwise, they are 

(e) The function (8a.2.2) is indeed a c.5 so that N p  of dejinition 1 exists. 

Since C is non-negative definite (being a dispersion matrix), the quadratic 

mutually independent. 

form TZT can be written (p. 36) 

T'CT = (B;T)2 + * * + (BLT), 

where B,, . . . , B, are linearly independent vectors and m = R(C). The function 
(8a.2.2) can be written 

9 (8a. 2.6) e - i T ' ~  . e - ( B ~ ' T ) 2 / 2 . .  . e- (Bm'T)2/2  
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and the desired result is proved if each factor of (8a.2.6) is a c.f. since the 
product of c.f.’s is a c.f. 

The first factor of (8a.2.6) is the c.f. of the p-dimensional r.v., 

Yb = (plr . . . , pp) with probability 1. (8a.2.7) 

The factor exp[ -f(B; T)’] is easily shown to be the c.f. of the p-dimensional 
r.v. 

(8a.2.8) 

where BI = ( E l i ,  . . . , Epi) .  The number m is called the rank of the distribution 

Y; = (Eli GI 9 . . - 3 BpiGi), Gi N N,(O, I), 

N P @ ,  E)* 

(f) U - N p ( p ,  C) with rank m i f ,  and only i f ,  

U = p + B G ,  BB’=C (8a.2.9) 

where B is ( p  x m)  matrix of rank m and G - N,(O, I), that is, the 
components G, ,  . . . , G ,  are independent and each is distributed as 
N,(O, 1). [See 8g for an alternative derivation of (8a.2.9).] 

To prove the “ i f ”  part, consider a linear function of U 

T’U = T’p + T’BG. 

But G N N,(O, I), and from the univariate theory (T’B)G, which is a linear 
function of independent NI(O,  1) variables, is distributed as N,(O, TBB’T). 
Hence 

T’U = T p  + TBG - N1(T’p, T’BB’T) 

* u - N J P ,  BB‘) = NP@, 

since T is arbitrary. 
To prove the “only if” part we observe from the factorization (8a.2.6) 

that the distribution of U is a convolution of the distributions of independent 
p-dimensional random variables 

Yo, Y,, * - * , Y, 

defined in (8a.2.7) and (8a.2.8). Thus U can be written 

U = Y , + Y 1  + * . . + Y ,  
= p + GIB, + * * - + G, B, = p + BG, 

choosing B as the partitioned matrix (B,:*-*:B,), where B, and Gj are as 
defined in (8a.2.8). Thus we have an alternative definition of the multivariate 
normal distribution. 
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Definition 2. A p-dimensional random variable U is said to have a normal 
distribution N, if it can be expressed in the form U = p + BG, where B is 
p x m matrix of rank n7 and G is a nt x 1 vector of independent N I  (univari- 
ate normal) variables, each with mean zero and unit variance. 

Note 1. The relationship U = p + BG shows that the random vector 
U E M(p: C), the linear manifold generated by the columns of p and E, with 
probability 1. 

Note 2. Let Ui - N p , ( p i ,  X i ) ,  i = I , .  , . , k ,  be independent and T be a 
function (statistic) of U,,  . . . , Uk . Using the representation Ui = p i  + Bi Gi, 
we have 

T(U,, * * 3 UA = T(PI + BIG,,  * * ,  pk -I- Bk Gk) 
= t (G, ,  . . . , GJ. 

Then the study of T, a statistic based on U,, . . . , uk, reduces to the study of a 
function f of independent univariate normal variables G , ,  . . . , Gk. Such a 
reduction helps, as the known results in the univariate theory can be immed- 
iately applied to deduce the results in the multivariate theory. 

Nore 3. It is easy to see that U = p + BG, with p, B, G as in definition 2 
and U = p + CF, where C is p x q matrix and F is a q-vector of independent 
N(0, 1) variables, have the same distribution if BB‘ = CC’, so that no res- 
triction on q or R(C) need be imposed. But a representation with restriction 
on B as in definition 2 is useful in practical applications. 

(iii) If U - N , ,  the marginal distributiori of any subset of q components of U 
is Np. [Follows from definition 1 since every linear function of the subset is 
also univariate normal.] 

(iv) The joint distribution of q linear functions of U is N,, which ,follows 
from definition I. IfY = CU, where C is (q  x p ) .  represerits the q linear,func- 
tions, then 

Y - N,(Cp, CCC’). (8a.2.10) 

Consider a linear function L’Y = L‘CU = (L’C)U. From (i) ,  

(L’C)U - N, [(L’C)p, (L’C)C(C’L)] 

L Y  - N,(L’Cp, L’CCC’L) * Y = N,(Cp, CCC’). 

(v) Let U; = ( U , ,  . . . , V,), U; = ( U , + , ,  . . . , U p )  be two subsets of U and 
C,,, E12,  ZZ2 be the partitions of I: as defined in (8a.2.5). Then the conditional 
distribution of U2 gioen U, is 

N p - r ( P 2  +CZICY,(UI - I,)* EZZ - ~ ~ 1 E Y l ~ ~ d ,  (8a.2.1 I )  

or 

where E(Ui) = p i ,  i = 1, 2, and C;, is a generalized inverse of E l , .  
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The reader may verify that &(CI2) c &(El,), where A represents the 
linear space spanned by the columns of a matrix (by showing that any vector 
orthogonal to columns of C,, is also orthogonal to columns of XI,). Hence 
there exists a matrix B such that C,, = BE,,. Now by using the property 
C , , C ~ , C , ,  = E l ,  of a generalized inverse, we see that 

C2IC;ICIl = BZI,C;,C,I = BE11 =C21 (8a.2.12) 

which is obvious if C;, is a true inverse. Readers not familiar with a generali- 
zed inverse may assume that C;,' exists and thus avoid the argument leading 
to (8a.2.12). 

Consider the covariance matrix : 

C[U2 - P2 - ~ z l ~ ; l ~ ~ l  - P A  Ul - PI1 

= C(U2 - 112 9 u, - 11.1) - ~ z l ~ ; l ~ w l  - PI, u, - P I )  

=C2, -C21C;1ZIl = 0, using (8a.2.12). (8a.2.13) 
Similarly, 

mJ, - Pz - - ~ z I ~ ; l ~ ~ l  - PI11 
= C(U2 -%,K,U, ,  u2 -CzIC;IuI) 

= CW, 9 U,) - C(U2 9 ~ l ~ ~ ; l ~ l z  

= x 2 2  - 22=21~1;1C12 + ~ 2 1 ~ ~ 1 ~ 1 1 ~ ~ 1 ~ 1 2  

- ~21~;1c(u,, U,) + ~ z l ~ ; l ~ ~ ~ l ~  u,)z=;,~:,z 

= CZ2 -Zz1C;1C,2, using ~ , , Z ~ , C , ,  =&,. (8a.2.14) 

Since E[U2 - p, -C , ,C~ , (U ,  - vl)] = 0, the result (8a.2.14) shows that 

UZ - PI - &IC;I(U~ - rl) - Np-,(O, CZ, - ~ 2 1 G l W .  (8a.2.15) 

The result (8a.2.13) shows that U2 - pz - C21C~1(U1 - a,) and U, - p, are 
independently distributed. Hence (8a.2.15) can be interpreted as the condi- 
tional distribution of U2 - p, - C,, C;,(U, - p,) given U,, which is equiva- 
lent to the result (8a.2.11) on the conditional distribution of U, given U,. The 
computations (8a.2.13) and (8a.2.14) are simpler when the true inverse of Zll  
exists. 

An important special case of (8a.2.15) is when U, consists of a single com- 
ponent, say Up and U; = (Ul, . . . , Up- ,> .  The conditional distribution of 
Up given U, is univariate normal with mean (regression of Up on U,, . . . , 
U p - , )  as p p  + Cz,C;,(UI - p,), which is of the form 

a + /?,U1 + ... + f l P - , U p - ,  (8a.2.16) 

linear in U, ,  . . . , Up-,  and variance (residual variance) as oPp -C2,C;,C1,, 
When Ell  is nonsingular (using Example 2.4 at the end of lb.8), then 

P l l I ( ~ p p  - C21C;l%2) = 1x1, 
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which gives the explicit expression to the variance 

(8a.2.17) 

where oPp is the last element in the reciprocal of C. 

(vi) REPRODUCTIVE PROPERTY OF N p .  Let Ui - Np(pl, Xi), i = 1, . . . , n be 

(8a.2.18) 

all independent. Then for fixed constants A , ,  . . . , A , ,  

Y = A,U, + * * *  + A,U, - N p ( c  A,pi ,  E A i 2 C i ) .  

To establish (8a.2.18) we need consider a linear function L’Y, 

L’Y = A,(L’Ul) + * - .  + A,(L‘U,), 

which is univariate normal since L’U,, . . . , L’U are all independent and 
univariate normal. Hence Y - N p .  Furthermore, 

E(L’Y) = AIL’pl + . * .  + A,L’p, = L’(A,p, + + A,p,) 

~ ( L ’ Y )  = A , ~  ~ ( L ’ u , )  + . + A , ~  ~(L’u,)  
= 1 A , ~ L ’ & L  = L(C A ~ ~ & ) L ,  

which shows that 
of Y. 

N,,(p, C). Then 

A i p i  and 1 A i 2 C i  are the parameters of the distribution 

(vii) Let U , ,  i = 1, . . . , n ,  be independent and identically distributed as 

1 1 
- c U, = u N n z), (8a.2.19) 
n 

The result (8a.2.19), which follows from (8a.2.18), provides the distribution 

(viii) Let U - N,(p, Z). Then an n.s. condition that 

Q = (U - p)’A(U - p) N xz(k)  

of the mean of n independent observations. [Choose A ,  = I/n in 8a.2.181. 

is E(ACA - A)Z = 0 in which case k = trace (AX). 

From (8a.2.9), U - p = BG where G - N,,(O, I) and C = BB’. 

Q = (U - p)’A(U - p) = G’B’ABG, (8a.2.20) 

so that Q is expressed as a quadratic form involving independent normal 
variables G i .  In independent variables, an n.s. condition for a quadratic 
form Q to have a x2 distribution is that the matrix of Q is idempotent [(ii), 
3b.41. Hence, 

(B‘AB)(B’AB) = B‘AB, that is, B’(ACA - A)B = 0. 
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But B‘(AEA - A)B = OoBB’(AEA - A)BB‘ = 0 = Z(AXA - A)C. The D.F. 
of x 2  is (from the univariate theory) 

rank (B‘AB) = trace (B’AB) = trace (ABB’) = trace (AC). 

If C is of full rank, an n.s. condition is AEA = A. 

8a.3 Some Characterizations of Np 

sional variables such that 
(i) CHARACTERIZATION 1 OF N p  , Let U, and U2 be two independent p-dimen- 

U = U , + U , - N , .  

Then both U, and U2 are N , .  

Consider L’U = L’U, + L’U, - N1 by hypothesis. But L‘U, and LU,  are 
independent. Hence by Cramer’s (1937) theorem, L’U, and L’U, are each N,. 
Since L is arbitrary, U, and U, are each N,. 

(ii) CHARACTERIZATION 2 OF N, . Consider two linear functions of n inde- 
pendent p-dimensional random variables U,, . + . , U,, , 

V, = B,U, + a * *  + B,U,,, V2 = CIU, + * a *  + C,,U,,. 

Let B’ = (B, ,  . , . , B,,) and C’ = ( C , ,  , . . , C,,). Then: 

(a) U, are i.i.d. as Np and B‘C = 0 3  V, and V, are independently dis- 

(b) V,, V, are independently distributed * U i  - Np for any i such that 

To prove (a), it follows from definition 1 that the joint distribution of 
V,, V, is NZp. Hence to establish independence we need only show that 

tributed. 

B ,  C ,  # 0 and U, need not be identically distributed. 

COV(V,, V,) = 0. 

c0v(V1, V,) = cov(B,U, + . * *  + B,U,, C,U, + . . *  + C,U,) 
= B,C1 COV(U,, U,) + . * .  + B,, C, COV(U,,, U,) 
= (B,CI + * .  * + B,, C,,)C = 0. 

The result (b) is a generalization of the univariate Darmois-Skitovic the- 
orem to a p-dimensional random variable (Ex.21, Chapter 3). Darmois-Skitovic 
theorem states that if u , ,  , . . , u, are independent one-dimensional variables 
the independence of 

B,u, + + B,u,, and C,u, + . . .  + C,,t/, 
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for fixed values of B , ,  C, implies that u, - N ,  provided B, Ci # 0 and can be 
arbitrarily distributed otherwise, i = 1, . . . , n.  To apply the theorem we need 
only consider linear functions of V,, V, : 

LV, = L(B,U, + ' ' ' + B,U,) = B,(L'U,) + a * + B,(L'U,), 
L'V2 = L'(C,U, + - ' ' + c, U,) = C,(L'U,) + * ' * + C,(L'U,), 

where now L U ,  are all one-dimensional independent variables. Hence L'U, is 
N 1  and therefore U, is N p .  

Characterization 3 of Np.  According to definition 2 of N,,, Y = p + BG 
where G N N,,(O, I), that is, the components of G are independent and each 
component is distributed as N,(O, 1). The representation Y = p + BG is not, 
however, unique. If Y = p + BIG, and Y = p + B, G, are two different 
representations, then D(Y) = BIB; = B,B; = Z. We shall utilize the non- 
uniqueness of the representation of Y to characterize N p  . 

(iii) Let Y = p, + BIG, and Y = p, + B, G2 be two representations of a 
p-dimensional random variable Y in terms of vectors C , ,  G2 of nondegenerate 
independent random variables (not necessarily univariate normal), where B, and 
B, arep x m matrices of rank m such that no column of B, is a multiple ofsome 
column of B, . Then Y is a p-variate normal variable. 

Let m < p  in which case consider anyp-vector C orthogonal to the columns 
of B,. Then 

C'Y = C'p, = C'p, + C'B, G2 

which implies that C'B, G ,  is a degenerate random variable contrary to 
assumption unless C'B, = 0. Hence, the columns of B, and B, belong to the 
same vector space implying the existence of a square matrix H of order and 
rank m such that B, = B, H. If m = p, the relationship B, = B, H is automa- 
tically true. Now 

Y - pz = Bz G2 3 (B; B,)-'B;(Y - ~ 2 )  = G2 

Y - p1 = BIG1 = B2 HGI* (B; B,)-'B;(Y - pl) = HG, 

Thus G ,  and HG, have the same distribution apart from translation. Hence 
the components of HG, are independently distributed. Thus the transforma- 
tion G ,  s HG, preserves independence of random variables. 

The condition that no column vector of B, depends on a column vector 
of B, implies that no column of H contains (m - 1) zeros. This means 
that we can find two linear combinations of exclusive sets of the rows of 
H such that the coefficients in the ith and j th positions in both are different 
from zero. Thus we have two linear combinations of the components of G ,  
which are independently distributed, and by Darmois-Skitovic theorem 
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mentioned in (ii), the ith and j th  components are normally distributed. 
Since i a n d j  are arbitrary, the desired result is established. 

For other characterizations of N,, the reader is referred to the book by 
Kagan, Linnik, and Rao (1972B4), and papers by Khatri and Rao (1972f) and 
Rao (1966a, 1967d, 1969a, b). 

8a.4 Density Function of the Multivariate Normal Distribution 

We have not made use of the density function of the multivariate normal 
variable (or established the existence of the density function) in the discussion 
of 8r.l and 8a.2. In what form can we determine the density function? The 
answer depends on R(C), the rank of the dispersion matrix C. 

CASE 1. R(C) = p .  Let U - N,(p, C). Then as shown in (8a.2.9), 

U - p = BG, where C - N,,,(O, I), BB’ = C (8a.4.1) 

a n d m = r a n k C = p .  Then 1x1 = (BB’I ZOor ( B (  Z0, inwhichcase the  
inverse relationship exists as 

G = B-’(U - p). (8a.4.2) 

Since G - N,(O, I), the density of G is 

(2n)-P’2 exp[ -fG’G]. (8a.4.3) 

By changing over to (U - p), using the relation (8a.4.2), the Jacobian is 
I BI -’ = I ZI -l/’ (since BB’ = C) and the density (8a.4.3) transforms to 

(27~)-p’*lCl-~’~ exp[-f(U - p)‘x-’(U - p)], (8a.4.4) 

which is the density of U with respect to the Lebesgue measure in RP. 

CASE 2. R(C) = k < p .  When R(C) -= p, the inversion (8a.4.2) is not pos- 
sible and therefore no explicit determination of the density function with 
respect to Lebesgue measure in RP is possible. However, the density function 
exists on a subspace. 

Let B be a p x k matrix of orthonormal column vectors belonging to 
A ( C )  and N be p x ( p  - k) matrix of rank (p - k )  such that N‘C = 0. Con- 
sider the transformation U‘ + (X’: Z’), X = B’U, Z = N’U. Then 

E(2) = N’p, D ( Z )  = N’ZN = 0 (8a.4.5) 

so that 

Z = N’p with probability I .  (8a.4.6) 

Further, 

E(X) = B‘p, D(X) = B‘ZB (8a.4.7) 
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so that 

X Nk(B’p, B‘CB). (8a.4.8) 

It may be seen that IB’CBI = A,, . . . , I , ,  the product of the nonzero eigen- 
values of C, and hence B Z B  nonsingular. In such a case X has the density 

(2n)-k/2 e -  (X -B’p)’(B’ZB) - ‘ (X -B’p)/2 

IB’ZBI ‘ i 2  
(8a.4.9) 

Thus the distribution of U or equivalently that of X, Z is specified by (8a.4.6) 
and (8a.4.9). 

Let us observe that 

(X - Bp)’(B’CB)-*(X - B’p) 

= (u - ~)’B(B’cB)- ‘B’(u - p) 

= (U - p)’C-(u - p) (8a.4.10) 

for any choice of the g-inverse C-.  Then the density (8a.4.9) can be written as 

(8a.4.11) 

while (8a.4.6) can be written as 

N’U = N’p with probability 1. (8a.4.12) 

Thus the distribution of U is specified by (8a.4.11) and (8a.4.12) where the 
former is interpreted as the density on the hyperplane N’U = N‘p. (The 
above representation is due to Khatri, 1968.) 

8a.5 Estimation of Parameters 

We consider n, p-variate populations and an independent observation from 
each. Let Ui be the observation from the ith p-variate population. The observ- 
ations can be written in the form of a matrix 

: I 

Y; 1 u,, u,2 * . -  u 1 n  1 
y; 1 u p 1  u p 2  * * *  u p n  I 

. . *  . I = @ ’  (8a.5.1) 

where the ith row vector Y: represents n independent observations on the 
ith component of the p-dimensional variable. @ represents the overall matrix 
of the order n x p .  We shall use the notations (8a.5.1) throughout this chapter. 
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Estimation of p and E from i.i.d. Variables. Let U,,  . . . , U, be independent 
and have the same distribution with mean p and dispersion matrix C. Then 

ui,, * * 9 uiii 

are i.i.d. observations from a univariate distribution with mean pi and 
variance a i i .  Hence from the univariate computations, we see that 

- 1 
Yi = Ui = -1 U i j  is unbiased for p i  

Sii  = 1 (Uij - U i ) 2  
“ i  

is unbiased for (n - I ) U , ~  
j 

is unbiased for a i i .  Sii s.. = - 
” n - 1  

Consider 

ui, + uj1, * * * 9 Uin + ujii 5 

which are i.i.d. observations from a univariate distribution with mean 
p i  + p j  and variance aii + 2aij  + u j j .  Hence 

c (Ui ,  + u,, - Di - Uj)2 = sii + s, + 2 s i j  

sij  = c (U,, - U i ) ( U j ,  - Dj). 

is unbiased for (n - l)(aii + 2aij + ajj), where 

Hence S i j / ( n  - 1)  is unbiased for a i j ,  since Sii/(n - 1 )  and Sjj/(n - 1) are 
unbiased for aii and a j j  respectively. 

Thus we have unbiased estimators of p‘ and C as 

( S i j )  = - ‘ s  1 
ti‘ = (D1, . . . , U p ) ,  - 

n - l  n - 1  

in the general case without assuming normality of the distributions of U i .  It is 
of interest to give the different matrix representations of (Sij) using the nota- 
tion (8a.5.1), which the reader may verify. 

- _  s,, = Y;Y, - nui u j  
n n 

1 1 
S = ( S i j )  = (U, - n)(U,  - n)’ = c U, U: - nUU’ (8a.5.2) 

= we - nUU’ 

Estimation by the Method of Maximum Likelihood. When i t  is known that 
R(X) = y ,  the density function for a single observation U is, as shown in 
(8a. 4.4), 

(2n)-PiZ I(&) I ‘ I 2  exp[ - 4 trace(C-’(U - p)(U - p)’}] 
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where (ai') = (aij)-' = 72-l. The joint density of the observations (UI, . . . , U,) 
is apart from a constant 

(U, - p)(U, - p)')]. (8a.5.3) 

Observing that 
n n 

we see that 

trace 72-l C (U, - p)(U, - p)' 1 :  
= trace{Z-'S} + n trace{z-'(U - p)(D - p)'} 
= C C oilSi, + n(U - p ) ' ~ - l ( U  - p). 

Hence the logarithm of (8a.5.3) can be written 

n 1 n 
Tlogl(a")l - -c c oiiSij - -(u - p)'C-'(u - p), 

2 2 
(8a.5.4) 

or in the alternative form 

n 1 
- logl(ai')l - - c 2 2 ai'[Sij + n(u i  - pi)@, - pj) ] .  (8a.5.5) 

We use the form (8a.5.4) to differentiate with respect to p and obtain 

Z-'(O-p)=O or U-p=O,  

which leads to the estimator p = U or Pi = U i ,  i = 1, . . . , p. 

ail, thus giving the equation 
The second form (8a.5.5) is convenient for differentiating with respect to 

n --- - [S, ,  + n(U, - p,)(O, - p,)]. 
l(ai')l da" 

It is easy to see that 

(8a. 5.6) 

so that 
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Furthermore, by substituting (oi - pi) = 0, the equation (8a.5.6) reduces to 

n g i j  - S ,  = 0, 

thus giving the estimator of oi j  as 

E ( S . . )  n - 1 
, E(aij) = IJ -- - Qij 9 

6 . .  = - Si j 
" n n n 

which is slightly biased. The estimator of aij is then nS", where ( S i j )  = 

The value of log likelihood (8a.5.4) at the estimated values of the param- 
(Si j )  - 1. 

eters is 

(8,. 5.7) 

We now establish that the estimators p = U and (a i j )  = n - ' ( S i j )  = n*-'S 
obtained by equating the derivatioes of the log likelihood to zero are, in fact, 
the maximum likelihood estimators. 

It is enough to prove that (8a.5.5) < (8a.5.7) for all p and E. The difference 
(8a.5.7) - (8a.5.5) is equal to 

n 
2 

= - [ - log(2, ' * * Ap)  - p + ( A ,  + * * + Q], 

(8a. 5.8) 

where A,, . . . , AP are the roots of thedeterminantal equation In- 'S - AE I = 0. 
But for any non-negative x, x < e x - ' ,  or by taking logarithms we have 

-1ogx- 1 + x 2 0 .  (8a. 5.9) 

The quantity inside the bracket of (8a.5.8) is 
P 

i =  c 1 (-log - 1 + A J ,  (8a.5.10) 

which is 20, if we apply the inequality (8a.5.9) to each term in (8a.5.10). 
This elegant proof is by Watson (1 964). 
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It may be verified that the m.1. estimators U and n-’S are also sufficient 
for the parameters p and C, since the log likelihood is an explicit function 
of the estimators and the parameters only. 

If R(Z) is unknown, we have to admit the possibility of R(C) being less than 
p, in which case we have to use the density function (8a.4.1 I )  or (8a.4.9), 
determining the appropriate hyperplane (8a.4.12) or (8a.4.6). 

Adopting the density (8a.4.9) and utilizing the results already established, 
the m.1. estimators of B’p and B’ZB satisfy the equations 

B’U = B p ,  B‘SB = nB’ZB, 

while (8a.4.6) gives 

B’U = N’p, N’SN = n N’ZN = 0, 

which yield the same solution as in the case of full rank for 72, 

p = U  and e = n - ’ S .  

8a.6 N p  as a Distribution with Maximum Entropy 

In 3a.1, we have shown that the univariate normal density has the maximum 
entropy subject to the condition that mean and variance are fixed. A similar 
result is true for N p .  

Let P(U) be the density of a p-dimensional random variable U. The prob- 
lem is to maximize 

- IP(U)log P(U) du (8a.6.1) 

where du stands for the volume element, subject to the conditions that the 
mean and dispersion matrix have given values 

(8a.6.2) I* jP(U) du = 1, jUP(U) du = p 

SKU - p)(U - p)’IP(U) du = Z 

Choose the normal density 

Q(U) = ( 2 ~ ) - ~ ’ ~  1 C( - ‘ I 2  exp[ - f ( U  - p)’C-’(U - p)], (8a.6.3) 

which satisfies the conditions (8a.6.2). From the information theory inequality 
(le.6.6) we have for any two alternative densities P(U), Q(U), 

- log Pdu < - I P l o g  Q do, 
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where the equality is attained when P = Q almost everywhere (du). Substitut- 
ing the choice (8a.6.3) for Q we have 

1 
- j P  log P du < - log(2n) - 5 log( Cl 

1 1 
2 

- - (U - p)’C-’ (U -p) do, 

1 
2 2 

= log(274 + - log1 X I 

1 1 
= log(2n) + - log1 XI + 5 trace C-’E (8a.6.4) 

by using (8a.6.2). The expression (8a.6.4) is thus a fixed upper bound to 
entropy which is attained for the normal density (8a.6.3). The entropy of the 
distribution so determined is 

2 2 

P 1  log(2n) + - + - log] El 
2 2 2  

8b WISHART DISTRIBUTION 

8b.l Definition and Notation 

Let Ui N N&, X), i = 1, . . . , k be all independent and Y, , 4 be as defined 
in (8a.5.1) with k in the place of n. Further, let M’ be a p x k matrix with 
pl, . . . , pk as its columns. Thus 

u, ... Uk 

(8b. 1 .l) 

Y’ L‘U, ... L’U, = L’4’  

where L is a fixed vector with elements L,,  . . . , Lp . 

L U ,  of Ui for each i. Now E(L’U,) = L‘pi and V(LU,) = LCL. Then 
In our discussion, there will be frequent references to  a linear function 

L’Ui - N1(L’p,, UL2), UL2 = L’CL, (8 b. 1.2) 
i = l , . , , , k ,  



534 MULTIVARIATE ANALYSIS 

and are all independent since Ui are independent. The vector Y’= 
(L’U,, . . . , L’uk) of k independent N ,  variables has the representation 

Y = L,Y, + * * *  + L,Y, = %L. (8b. 1.3) 

The distribution of Y = %L is that of k independent N ,  variables with the 
same variance 0‘’ but different means L’p,, . . . , L’pk, that is 

Y - Nk(ML, ~ L ~ I ) .  (8 b. 1.4) 

We also consider linear combinations of the vector variables Ul ,  which are 
also distributed as N,, by the reproductive property [(vi), 8a.21. Let B’ = 

( E l ,  . . . , &) be a fixed vector. Then 

(8b.1.5) 

from the result (8a.2.18). Furthermore, it is shown in [(ii), 8a.31, that %”B, and 
WB, are independently distributed if B;B, =O. Hence it follows that the linear 
combinations 

(8b. I .6) 

are all independently distributed as N ,  with the same dispersion matrix C, 
when the vectors B,, . . . , B, are orthonormal. 

BlU, ’ ‘ * 4- Bk uk = %’B N N,,(M‘B, (c Bj*)C), 

V, = WB,, . . . , V, = WB,, r < k 

Let H be an orthogonal matrix of order k .  Then the transformation 

Y = %‘H (8b. 1.7) 

takes the cohmn vectors U,, . . . , Uk into column vectors V,,  . , . , Vk where 
each V, is a linear combination of U,, . . . , Uk . The result (8b.1.6) shows that 
Vi are independently distributed (as in the univariate case, an orthogonal 
transformation preserves independence). 

Definition of Wishart (1928) Distribution. The joint distribution of the 
elements of the matrix 

k 

(Sij) = s = c u, u; = (Y;Yj) = %’%, (8 b. 1.8) 

where U,, Y,, and 92 and M are as defined in (8b.l.l), is said to  be Wishart 
on k D.F. and is denoted by W,(k, C, M). The distribution is said to be central 
when M = 0 and written W,(k, C). We use the symbol W,,(k, C, .) to indicate a 
central or a noncentral distribution. When p = I ,  W,(k ,  d) is the same as 
a ’~ ’ (k ) ,  the x2  distribution on k D.F. Thus the Wishart distribution is a multi- 
variate generalization of the x 2  distribution. 

As in the case of N , ,  the density function of W ,  does not always exist. It  
exists when k 2 p as derived in Example 1 I at the end of the Chapter. We shall 
not need the density of W, in our study. We derive very general results from 
the definition of W,.  

1 
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The matrix S = ( S i j )  in a more explicit form is 

Y;Y, Y;Y2 ... Y;Y, 
(S i j )  = 42‘42 = . ... . ), i YbY, YbY, ... YbY, 

where the ith diagonal entry is the sum of squares of the ith components of 
the vector variables U, and the ( i , , j )  entry is the sum of products of the ith 
and j th components. The representation %‘% resembles that of the sum of 
squares in the univariate theory. A generalization of the quadratic form is the 
matrix %‘A%, 

YiAY, ... YiAY, 

YbAY, ... YbAY, 
(8b.1.9) 

which consists of quadratic and bilinear forms involving Y,, . . . , Y,. Then we 
raise the following question. Under what conditions does %‘A% have a 
Wishart distribution? The answer is 

@’A@ N W, 0 L’%’A%L - xz (8b. 1.10) 

for any fixed L. But the R.H.S. of (8b. 1.10) is (%L)’A(%L) which is the quad- 
ratic form Y‘AY of the k independent N, variables (L’U,, . . . , L’U,). Since the 
distribution of quadratic forms of independent N, variables is extensively 
studied in 3b.4, the result (8b.l. 10) enables us to obtain suitable generalization 
to the distribution of matrices. A proof of the result (8b.1.10) is given in 8b.2. 

%‘A% = ( . ... 

8b.2 Some Results on Wishart Distribution 

and if W, is central then x 2  is so. 
(i) Let S - WJk, E, a )  and L be any fixed vector. Then L’SL - oL2X2(k, .), 

By definition S = C U,U:. Pre- and postmultiplication by L’, L gives 

LSL = c (L’U,)(ULL) = 1 (L’UJ2 
= Y’Y - oL2X2(k, a), 

since Y is a vector of independent N ,  variables with a common variance oL2 
(see 8b.1.4). If W ,  is central, M = 0, in which case E(Y) = M L  = 0 and hence 
the xz is central. 

Note that the strict converse of (i) is not true as shown by Mitra (1970). 
However, the weaker version of the converse given in (ii) is useful. 

(ii) Let Ui - N,,(pi ,  C), i = I ,  . . . , k be independent and %, Y i ,  Y be as 
defined in (8b.I.l). An n.s. condition that %‘A% - Wp(r, C, .) is that Y’AY N 

aL2x2(r, - ) for  any fixed L, in which case r = rank A = trace A. And %‘A% - 
Wp(r, C ) ,  ifand only ifY’AY - aL2X2(r) for every L. 
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The necessity follows from the more general result (i). To prove sufficiency 
let us observe (from the univariate theory, (ii), 3b.4) 

Y'AY - aLzX2(r, .) * A is idempotent of rank r .  

Then there exist r orthonormal vectors B , ,  . . . , B, such that 

A =BIB',  + . * *  + B,B: (8b.2.1) 

%/'A"%/ = %'BIB',% + + %'B,Bi% 

= v,v; + * . .  + v,v;, (8 b .2.2) 

where V, = W B i .  Since Bi are orthonormal. Vi are independent N, variables 
(8b. I .6). The result, then, follows from the definition of Wishart distribution. 

Since Y - NJML, u,*I), the noncentral parameter of the distribution of 
Y'AY is the value of Y'AY/oL2 at Y = ML, which is Lf~M'AIML/aLZ (see 
3b.2.2). If Y'AY - X Z ( r ) ,  a central x 2  for every L, then 

= 0 for every L* M'AM = 0. 
L'M'AML 

L C L  

But from (8b.2.1), we have 

A = BIB; + * * *  + B,Bi 
M'AM = C (M'Bi)(M'Bi)' = 0 

*M'Bi=O, i =  1 ,..., r .  

Hence from (8b.2.2), we see that 

WA% = Vi Vi ,  where E(V,) = M'B, = 0, 

and by definition the distribution is Wishart and central. 
We could have stated the result of (ii) in a more direct form that an n.s. 

condition that %'A% - W, is that A is idempotent and the distribution is 
central when AM = 0. The reason for stating the result in an indirect form is 
that i t  enables us to generalize known results of the univariate theory in the 
following way. 

Suppose it is known that the quadratic,form Y'AY N x 2  uhere Y is a vector 
of independent N, variables. Then we substitute @L for Y and obtain the 
quadratic form L'%'A%L in L and by dropping L assert that the associated 
matrix %'A% N W ,  . 

I t  is easy to establish the result stated in ( i i i )  following the arguments of (ii). 

( i i i )  Under the conditions and notations of ( i i ) ,  the matrices WA,Q and 
@'A2@ have independent Wishart distributions if and only if Y'A,Y and 
Y'A, Y have independent x2 distribirtions for any L. Furthermore, W B  and 
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%!'A% are independently distributed as N ,  and W ,  if Y'B and Y'AY are inde- 
pendently distributed as N ,  and x2 for  any L. 

We could have stated the result (iii) in the form that the n.s. condition for 
%'A,%, %'A2 % to be independently distributed (whether in Wishart's 
form or not) is that A,A2= 0 and for W B  and @'A'% to be independently dis- 
tributed (whether the latter as Wishart or not) is that B'A = 0. 

But what we wish to do is to consider quadratic forms in independent 
N ,  variables known to have independent x2 distributions and write the 
corresponding generalizations to the multivariate case without explicitly 
determining the matrices involved. As an immediate example we have the 
result (iv). We shall continue to explore this technique throughout this 
chapter and avoid any direct attempt to derive distributions in the multivariate 
case as is done in books on this subject using heavy transformations. 

Let U,,  . . . , U, be i.i.d. each as N,(p,  C). Consider the r.v.'s 
( iV)  THE JOINT DISTRIBUTION OF SAMPLE MEAN AND DISPERSION MATRIX. 

L'U,, . . . , L'U, 

which are i.i.d. each as N,(L'p ,  L'EL). From the univariate theory we know 
that the sample mean 

l )  n ( n  

1 
- C L U , = L U - N ,  L p , - L C L ,  (8 b. 2.3) 

and the corrected sum of squares 

= L'(Sij)L - (L'EL)XZ(n - l) ,  a central xz, (8b.2.4) 

for any L, and that they are independent. Thus the independence of 

LU and L'(Sij)L 

where (S , , )  = U,U: - nun' is the corrected sum of squares and products 
defined in (8a.5.2), for any L implies (by dropping L)  the independence of the 
distributions of U and (S i j ) .  From (8b.2.3) U - N,,(p, ( l /n)C) and from 
(8b.2.4), ( S i j )  - W,(n - I ,  C), a central Wishart [using (ii)]. 

(v) Let S, - W,(k,,  C )  and S2 - W , ( k 2 ,  C )  be independent. Then S = 

S, + S, - W,(k, + k , ,  C ) ,  a similar result being true for noncentral dis- 
tributions. 

We can write 
k i  k i  + k i  

1 k , + l  
S, = c U i U i  and S2 = c U,U; 
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where Ul, . . . , Uk,+k2 are i.i.d. each as Np(O, E). Hence by definition 
k l  + k l  

S = C Uj U; - W p ( k l  + k2,  Z). 
1 

(vi) Let S - Wp(k, Z) and B be (q x p )  matrix. Then BSB’ - W,(k, BCB’). 
k 

I =  1 
S = C U, U; * BSB’ = B(C U, U;)B’ 

k 

I =  1 
BSB’ = C (BU,)(BU,)’ - W,(k, BCB’) 

since BU, - N,(O, BZB), i = 1 ,  . . . , k and are independent. 

singular square matrix of order p .  Then the density function of S, = CSC‘ is 
(vii) Let Wp(S I k, C) denote the density function of S and let C be a non- 

1 c I - p - I  wp(c-’s*c-”I  k, c - ’ Z c - ” ) .  

The result is obtained by change of variable and a computation of the 
Jacobian 

-- Dm - lcl-P-l* 

D@*) 

(viii) Let (S‘j )  be the reciprocal of S = ( S l j )  and (d’) the reciprocal of 
(aij) = I: exist. I f S  - Wp(k, C), then 

UPP 

s p p  

- 
(a) - N xZ(k - p - 1) and is independent of (S, , ) ,  i, j = 1, . . . , ( p  - I) .  

LC-’L - 
(b) wL - x2(k - p - 1) for any fixed vector L. 

Consider k independent variables U,, . . . , Uk each distributed as Np(O, Z). 
The conditional distribution of VPj given U, j ,  . . . , Up-,, is shown to be (see 
8a.2.16, 8a.2.17) 

NI(BIUL,+*** + P p - l U p - l , j *  l /uPp) j =  I ,  ..., k. (8b.2.4) 

The setup (8b.2.4) is the same as in the theory of least squares with Gauss- 
Markoff model. Hence by using the first fundamental theorem [(i), 3b.51 of the 
theory of least squares 

k 

P 1  
R d  = min C ( U p ,  - p1 U , ,  - - * - pp- Up- I ,  ,)2 (8b.2.5) 

is distributed as (aPP)- ’~’ (k  - r )  where r is the rank of (U,j ) ,  i = 1, . . . , p - 1 ; 
j = 1, . . . , k. The distribution of RO2 is conditional but since it does not 
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involve the conditioning variables ( U i j ) ,  i = 1, . . . , p - 1 ; j = 1,  . . . , k, it is 
also unconditional and is independent of (Ui j ) ,  i = 1, . . . , p - 1 ; j  = I ,  . . . k. 

Since S - WJk, C) and 1 C I # 0, we can represent S in the form 
k 

i=l 
S = 1 UjUj, Uj - Np(O, Z), (8b.2.6) 

and the rank of (Urj ) ,  i = 1, . . . , p - I ; j  = 1, . . . , k is therefore(p - 1) with 
probability 1, if k > (p - 1). The result (a) is proved if Ro2 = l/Spp which is 
already established in the univariate theory (see 4a.5.2). 

Instead of Up,, we could have chosen any component of Ui and considered 
its conditional distribution. Hence the distribution of or’/Si‘ is the same for 
all i. 

The result (b) follows from (a) if we consider BSB‘ where B is an orthogonal 
matrix with its first row proportional to L. We have by the result (vi), BSB’ - 
W,(k, BCB’). Furthermore, 

j = 1, . . . , k,  

(BSB’)-’ = BS-~B’, (BCB’)-~ = BPB‘. 

The first diagonal element in BS-IB’cc L’S-’L and the first element in 
BC-’B’ cc L’C-IL with the same constant of proportionality. Hence 
applying result (a), (LZ-~L/L‘S-~L) - z2(k - p - 1). 

(ix) Let S - Wp(k, C) and consider the partition of S 

- 

(8 b. 2.7) 

where SI1, S,, , S,, are (r x r ) ,  (r  x s), and (s x s) matrices, with (r + s) = p .  
Then 

s,, - ~ 2 1 ~ 1 1 - 1 ~ 1 2  - Ws(k - r 3  Z 2 2  -Z21~,1-1Z12) 

where Elj constitute a partition of C similar to (8b.2.7). 

Since S N WJk, C) 
k 

1 
s =c u,u; , ui - NP(O, Z). 

Consider a partition of U; = (Uii / UiJ and the (r + 1) dimensional variable 
(Uii ! L‘U,,) with the Wishart matrix 

(L‘S,, L’S,, L 

where L is a fixed column vector of s elements. 
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Using the result (a) of (viii), we see that 

'11 I + IS,, I - q 2 ( k  - r ) .  1 L'S,, L'S,2L 

The left-hand side expression is 

L'S22L - L'S21Sll-'S12L = L'(S2, - S21S11-'S1JL, (8b.2.8) 

and similarly c = L(C22 - C 2 , C 1 1 ~ i ~ , , ) L .  By dropping L from (8b.2.8), the 
distribution of 

s 2 2  - s1zsII-1s12 - W,(k - r ,  Z 2 2  - ~ 2 1 ~ 1 1 - 1 ~ 1 * ~ ~  

(x) Let S - Wp(k,  C) and I C 1 # 0. Then I Sl l lC I is distributed as the 
product o f p  independent centralx' variables with D.F., k - p + 1 , .  . . , k - 1, k .  

Observe the decomposition (writing IS I = I (S i j )  I, i, j = 1, . . . , r )  

where each factor, by an application of (a) of (viii) is an independent x2  with 
appropriate D.F. 

(xi) Let S, - Wp(k, ,  C) and S2 - W p ( k 2 ,  C )  be independent. Then if 
k ,  2 p ,  A = IS, I I IS, + S2 I is distributed as the product of p independent 
beta variables, with parameters 

In the special case k ,  = 1, the product of beta variables has the same dis- 
tribution (applying iii, 3a.3) as a single beta variable with the parameters 

( k l  -:+ ' ' ?  * 

Consider independent vector variables U,, . . . , UkI, Ukl +,, . . . , U,,+,, such 
that 

The conditional distribution of Up,  given U l i ,  . . . , Up-l, is 

i = 1, . . . , k ,  + k , .  
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We now use the third fundamental theorem of the least square theory (see 
3b.5) which states that 

k i  

P 1  
min C ( u p ,  - 81 u1i - * * * - P p -  1 u p -  1. i Y  

min c (Up, -Plul,- ' . '  - B p - , u p - 1 . i )  

(8 b.2.9) ki + k i  
Bp = 

2 

P 1  
is distributed as 

The numerator of (8b.2.9) is IS, 1 , + ISl and the denominator 
IS, + S,I, i IS, + S ,  I p - l  if we use formula (8b.2.5). We, then use the de- 
composition of A 

* ' *  x [lSlIl,+ IS1 + S 2 I 1 1  

= B, x B p - i  x * * *  x B1, (8 b. 2.10) 

where Bp, Bp- ,, . . . , B, are all independent. Since the distribution of (8b.2.9) is 
independent of (Ui j ) ,  i # p ,  so that B, is independent of the rest of B,, i < p .  
Similarly, Bp-l is independent of Bi , i < p - 1, and so on. The parameters 
of the distribution of E, are substituting j for p in (8b.2.9) 

(kl -;+ 1,;) - .  

We denote the distribution of the A statistic by A(p,  kl,  k2) .  

be independent. Hotelling's generalized T2 statistic is defined by 
(xii) HOTELLING'S DISTRIBUTION. Let S - WJk, E) and d N Np(6, c-*E)  

TZ = ckd'S-'d 

kd'S-'d 
=- dlE:-ld cd'C-'d. 

For given d, 

(8b.2.11) 

if we use result (b) of (viii). The distribution (8b.2.11) does not involve d. 
Therefore the ratio d'E-'d/d'S-'d is distributed independently of d. Since 
d - N,(6, c-'E), 

cd'C-'d - ~ ' ( p ,  c?) (8b.2.12) 
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where r2 = S'C-'6. The distributions (8b.2.11) and (8b.2.12) are inde- 
pendent. Thus the statistic T 2 / k  is the ratio of a noncentral x'(~, ct2) to an 
independent central X2(k -p  + 1). Hence 

k - p +  1 T 2  - N F@, k - p + 1, cr2 )  
P k  

(8b.2.13) 

which is a noncentral F distribution defined in Example 17.1 of Chapter 3. 
If 6 = 0, both the 2''s are central and hence 

k - p + l  T 2  
- N F(p, k -p  + 1) 

P k  
(8 b. 2.14) 

which is a central F distribution (3a.2.13). 
The representation of T' as the ratio of independent x2's leading to an 

elegant derivation of its distribution is due to Wijsman (1957). See also 
Bowker (1960). For earlier literature see Bose and Roy (1938), Hotelling 
(1931), Hsu (1938, 1947), K. S. Rao (1951) and Rao (1946f, 1949b). 

It may be seen that 

(8b.2.15) 

where cdd' - W,(l, E) when 6 = 0. Thus Hotelling's T Z ,  after a monotonic 
transformation is a special case of the statistic A = I S, 1 / I  S, + S, I considered 
in (xi) with k2 = 1. From the relationship (8b.2.15), and by using the distribu- 
tion (8b.2.14) of T 2  we find that 

which has been independently derived in (xi). Then using the relation (8b.2.15) 
we could have obtained the distribution (8b.2.14) of T 2 .  Thus we have two 
simple proofs for the Hotelling's distribution. 

(xiii) ROOTS OF A DETERMINANTAL EQUATION. Fisher introduced some 
tests of hypotheses depending on the roots of the determinantal equation 

IS,- A(S, +S,)J = o  (8b.2.16) 

where S, - W,(k,, E) and S2 - Wp(kz ,  C) are independent. We shall not 
derive the exact distribution of the roots but shall observe that the density 
function involves onlyp, k,, and kz and not the unknown C. For a derivation 
of the density function the reader is referred to the original papers by Fisher 
(1939), Girshick (1939), Hsu (19391, Roy (1939), and an interesting proof by 
James (1954). Detailed proofs are given in books by Anderson (1958), Roy 

1 
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(1957), and Wilks (1962). We do not need the density function in our study. 
The reader is referred to Rao (1972a) for a review of the work on the roots of 
(8b.2.16) by Bagai, Constantine, Khatri, Krishnaih, Mathai, Pillai and others. 

8c ANALYSIS OF DISPERSION 

8c.l The Gauss-Markoff Setup for Multiple Measurements 

The least squares theory under the Gauss-Markoff setup, as developed in 
Chapter 4, is applicable in situations where a single measurement is taken 
(i,e., the value of a particular characteristic is ascertained) on an experi- 
mental unit or individual. The expectation of the measurement (ie., of 
a one-dimensional r.v.), is considered to be a linear function of unknown 
parameters, the compounding coefficients being specified by a particular 
design of experiment adopted. If a second measurement is taken (or another 
characteristic is examined) on the same chosen individual, it is natural to 
consider its expectation as the same linear function as in the case of the first 
measurement, but of a different set of unknown parameters, and so on. 
Thus the parameters are specific to the characteristic examined whereas the 
coe#icients of the linear function are specific to the design of experiment 
adopted. 

Thus, if the expectation of yield of a plant receiving a particular treatment 
, j  in an experimental block i is written p i l  + T~~ representing the effect of the 
ith block and j th  treatment, the expectation of another character such as the 
height of a plant may be written as the sum of two other parameters f l ,2  + T , ~  
representing similar effects. 

Let p characters be observed on each of n independent experimental units 
or individuals. The observations can be written 

Individual Character 
(1) (2) ( P )  

(8c. 1.1) 
(1) (Y1 71 "') ,~~ 

(n) u,ll u2ll up" 

Let Y, denote the ith column vector in 1. Then the model we consider is 

E(Y,) = XPi, i = 1, . . . , p ,  
(8c. 1.2) 

Or, in other words, the model is Gauss-Markoff (Y,, XP,, gil  I) for each Y, 
with a specific unknown vector parameter Pi for each i but the same n x m 

Cov(Y1, Yj) = q j l ,  i , j  = 1 ,  * . . , p .  
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design matrix X for all i. The variance of the ith character is o i i .  The depend- 
ence of the characters examined is expressed by the relation 

cov(Y i , Y,) = oi, I, (8c.1.3) 

where a,j is the covariance between the ith and j th  characters of an individual. 
Let B be an m x p matrix with PI,  . . . , p,, as its columns and C = (olj). 

Then the multivariate model (8c.1.2) with (8c.1.3) can be simply expressed as 

(a, XB, I: 81) (8c. 1.4) 

where the Kronecker product matrix I: @ I is to  be interpreted as the covari- 
ance matrix of the np-vector variable Y obtained by writing the columns of 9 
one below the other, i.e., Y’ = (Y; j * .  j Y;). 

We can also write the model (8c. 1.4) as a univariate Gauss-Markoff model 
involving Y, its expectation and dispersion matrix. Let P be the mp-vector 
defined by p’ = (Pi ! j ... i pi). Then it is readily seen that 

(8c. 1.5) 

so that the multivariate linear model may be written as the triplet 

(Y, (1 0 X)P, C €31) (8c. 1.6) 

of the Gauss-Markoff model of Chapter 4. One may then use the results on 
estimation in linear models developed in Chapter 4. However, because of the 
special covariance structure, it is better to exhibit the model as (8c.1.4) or as 
(8c. 1.2), i.e., as Gauss-Markoff for each individual character supplemented by 
(8c. 1.3) to show the correlations between characters. This has great advantage 
in showing the intimate connection between the univariate and multivariate 
theories (see 8c.2-8c.5). 

8c.2 Estimation of Parameters 

As in the univariate Gauss-Markoff setup we shall consider the estimation of 
unknown parameters, utilizing only the structure (8c.1.2), (8c.1.3) of the 
first- and second-order moments of the variables and not assuming any 
particular distribution. 

Let us first consider the estimation of a parametric function of the type 
P’pi which involves only the parameters specific to the ith character, by a 
linear function of all the observations such that the estimator is (a) unbiased 
and (b) has minimum variance. A linear function of all the observations can 
be written as 

A;Y, + + AbY,. (8c.2.1) 
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Using criterion (a) of unbiasedness, we see that 

E(AIY ,) + * * * + E(A’, Yp) = KIXfiI + * * * + Ap Xpp = P’p, 

A;X = P’, A;X = 0, j # i .  (8c.2.2) 

Since A;X = P’, there exists a vector L such that P = X’XS. Consider the 
linear function S’X’Y, [which we know (see4a.2.3) is the least squares estimator 
of P’p, utilizing only Y,, with the setup E(Y,) = Xp,]. The estimator is 
unbiased, since 

E(S’X’Y ,) = S’X’XP, = P’pi. (8c.2.3) 

Furthermore, 

V ( C  A; Yj) = V(C A; Yj - S’XY 1) + V(S’X’Yi) 
+ 2 COV(S’X’Y~, 1 A; Yj - S’X’YJ. (8c.2.4) 

But 

COV(S’XY,, C A> Y, - S’X’Y ,) = 2 S‘X’ COV(Y i, Yj)Aj - S’X’ COV(Y,, YJXX 
I 

= S’X’A, alj - S’X’XSa,, 
= S’X’A, ail - S’X’XSa,, = (S’P - S’P)a,, = 0 

if we use (8c.2.2). Hence from (8c.2.4), we see that 

V ( c  A;Yj) 2 V(L’X’Yi) 

that is, S’X’Y, is the minimum variance unbiased estimator (m.v.u.e.) of 
P‘p,. Thus the desired estimator of P’p, is the same as the least squares 
estimator based on Y,-the observations on the ith character only. Let fr, be 
a solution of the normal equations (considering only Y, , Pi) 

X’XP, = X’Y, . (8c.2.5) 

Then the least squares estimator of P’fiI can be written as P’B,. The variances 
and covariances of estimators of P’pl and Q’P, are same as in the least 
squares theory. The variances and covariances of P’fr, and Q’Bi are then of the 
form 

V(P’6,) = ad,,, VCQ’BJ = bait 
(8c.2.6) 

where the coefficients, a, b, c are independent of i and depend only on X‘X, 
P, Q (see 4a.3). For instance, if (X’X)- is a g-inverse of X‘X, then a = 
P’(X’X)-P, b = Q‘(X’X)-Q, and c = P(X’X)-Q. 

cov(P’bi Q’DJ = C a l i  
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Let B,, . , . , B, be the solutions of the corresponding normal equations 

(8c.2.7) 

(8c.2.5) for i = 1, . . , , p ,  Pi E &(x’), i = 1, . . . , p. Then it follows that 

P$, + . * *  t P;bp 

is the m.v.u.e. of 

Pip, + . * *  + p;pp, 
since the sum of m.v. estimators is also an m.v. estimator [see (i), 5a.21. From 
the structure of the expressions (8c.2.6), it easily follows that 

cov(P’j$, P’Bj) = ab,] 

cOv(Q‘Bi, Q’Ij) = boij 

COvP’Ci , Q’Ij) = coil 9 

where a, b, c are the same as in (8c.2.6) depending only on P and Q, which 
enable us to  write the variance of (8c.2.7). We need only to know the expres- 
sions for the variances and covariances of Pi P i ,  , . . , Pi If for any i, which can 
be determined from the univariate least squares theory. The variance of 
(8c.2.7) is seen to be tr P’(X’X)-PE where P = (PI, ! 

The estimators of bfi  and ail do not present any difficulty. From the univa- 
riate theory of least squares, we know that an unbiased estimator of ai, is 
Ro(i, i)/(n - r )  where 

i , Pp). 

Ro(i, i )  = min (Yf - Xp,)’(Y, - Xpi) 
Pd 

Now consider the vector random variable Yf + Y, = Y with its expectation 
X(Pf + P,) = Xp and D(Y) = 6’1, where a’ = ail  + 2ai, + a,, . l h e  normal 
equation for fl is 

X’XP = X’Y 

with a solution 
i and j. An unbiased estimator of a2 is Ro2/(n - r), where 

= B, + I,, where Bi  and 1, are solutions of (8c.2.5) for 

Ro2 = (Y - XB)’(Y - XC) = (Y - X s i  - XB,)’(Y - XCi - XB,) 
= (Yf - XB,)’(Y, - XBi) + (Y, - XB,)’(Y, - XB,) 

+ 2(Y, - XB,)‘(Y, - XB,) 
= Ro(i, i )  + R 0 ( h A  

+ 2 R 0 W  
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where R,(i, j )  = (Y, - Xai)‘(Yj - Xp,). Now 

E(Roz) = (n - r)a2 = (n - r ) (a i ,  + 2aij + a,j), (by the univariate theory) 

= EIRo(i, ill + E[R0(j, j) l  + 2E[Ro(iJ)l  
= (ail + ajj)(n - r )  + 2E[R0(i, j ) ]  

EIRo(i,j) + (n - r ) ]  = a l j .  (8c.2.9) 

We thus have unbiased estimators of all the elements of C. The expression 

R d 4 d  = (Y, - Xlj,)’(Y, - XSj) 
= Y;Y, - y;x@, = Y;Y, - Y;  XI* (8c.2.10) 

is called the residual sum of products just as Ro(i, i )  is the residual sum of 
squares. The entire matrix 

RoU, 1) ... R, ( l ,P )  
(8c.2. I I )  

may be called the residual sum of squares and products matrix (residual S.S.P. 
or residual S.P. matrix) on (n - r )  D.F. as a generalization of the residual sum 
of squares in the univariate least square theory. 

A solution of the normal equation X’XP, = X‘Y, can be written P, = 
CX‘Y, where C is a generalized inverse of X‘X. Then R,(i, . j )  = Y;Y, - 
YiXCX’Y, = Y;(I - XCX)Y,. Hence the S.P. matrix R, can be written 
explicitly as 

R O h  1) * ’ R o b  4 P) 
R o =  ( * 

R, = %’(I - XCX’)% = @’[I - X(X’X)-X’]% 

in terms of the matrix of observations %’ as in (8c. 1.1) and the design matrix 
X. If R(X) = m, then (X’X)- = (X’X)-’ the true inverse. 

The estimation of parameters of the model (8c.1.2, 8c.1.3) is thus complete 
without assuming any particular distribution of the random variables 
involved. But for the purpose of testing linear hypotheses we shall assume 
a p-variate normal distribution for each Ui . 

8c.3 Tests of Linear Hypotheses, Analysis of Dispersion (A.D.) 

Consider the problem of testing simultaneously the sets of linear hypotheses 

HP, = g l ,  i = 1, .. . , p ,  (8c.3.1) 

where the matrix H’, of order (y x m) and rank q, and vectors t i  are given. 
Let us reduce the problem to the univariate case by considering the hy- 

pothesis H’P = 6, where $ = LIPl + . a -  + L p P p  and 5 = L,k ,  + I . .  + L p t p  
and set of variables Y = L,Y1 + * * *  + L,,Yp. We then have a univariate 
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Gauss-Markoff setup, E(Y) = Xp, D(Y) = a21, with the hypothesis H‘P = 6 
to be tested. The appropriate test criterion is based on the two minimum sums 
of squares 

Ro2 = min (Y - Xp)’(Y - Xp) 
D (8c. 3.2) 

R12  = min (Y - Xp)‘(Y - Xp). 
H’D = c 

Under the null hypothesis H’P = 4, R,’ - RO2, and ROZ are independently 
distributed as central xz’s on q and (n - r) D.F. respectively where r = R ( x ) .  

Let Bi be the value of pi for which (Y, - Xp,)’(Y, - Xp,) is a minimum and 

Ro( iJ )  = (Yi - XB,)’(Y, - XBj)  

= YIY, - y;xg, = Y;Yj - y;x@,, (8c.3.3) 

as defined earlier. It is easy to see that 1 = LIDl + ... t L, 8, minimizes 
(Y - Xp)’(Y - Xp) and 

(Y - X&Y - XB) = [C L i(Y, - XB,)]’[C L ,(Y[ - Xp,)] 
= c c L iLj(Yi - XPi)’(Yj - XBj) 

= 1 C L i L j  R , ( i , j )  = L‘R,L, (8c. 3.4) 

be the value of pi for which (Y, - Xp,)‘(Y, - Xp,) is a 
where R, = (R , ( j , j ) )  is the residual S.P. matrix defined in (8c.2.11). 

minimum subject to  the hypothesis H’P, = ti and 
Similarly let 

Rl(j,.d = (Yi - W:)’(Yi - W f ) ,  R l  = (Rl ( j , .N.  

Then as in (8c.3.4) 

R,’ = min (Y - Xp)’(Y - Xp) = L’R,L (8c.3.5) 
H‘@=c 

giving 

The matrix R, - R, may be called the S.P. matrix due to deviation from 
the hypothesis. We thus have two matrices Ro and R, - R, , the S.P. matrices 
due to “ residual ” and “ deviation from hypothesis ’’ just as the residual 
and deviation from hypothesis sum of squares in the univariate case. Such a 
decomposition of the matrix R, = Ro + (R, - R,), obtained as a generaliza- 
tion of analysis of variance, R,’ = RO2 + ( R 1 2  - R,’) is called analysis of 
dispersion (A.D.). 

Joint Distribution of Ro and (R, - R,). If the null hypothesis (8c.3.1) is 
true, then for every L [with RO2 and R,’ as defined in (8c.3.2)] 

R,’ - RoZ = L’(R1 - R0)L. 

Ro2 N aLz~’(n - r ) ,  R I Z  - Ro2 N a L 2 x 2 ( q )  



8c ANALYSIS OF DISPERSION 549 

and are independent. But Ro2 = L R , L  and R12 = L R , L .  Hence (dropping 
L) by applying the result [(iii), 8b.21, the matrices Ro and R ,  - Ro have the 
independent Wishart distributions: 

R, - W,(n - r, C) ,  (8c.3.6) R ,  - Ro - W,(q, V. 
If the null hypothesis (8c.3.1) is not true, then for each L 

RO2 N oL2X2(n - r),  R12  - Ro2 N oL2X2(q, .)(central or noncentral) 

and are independent (again using the univariate theory). Hence the matrices 
R, and R ,  - R, have the independent Wishart distributions: 

R, N Wp(n - r,  C) ,  R, - R, - Wp(q, X, .)(noncentral). 

The latter has a central distribution if and only if RI2 - RO2 has a central 
distribution for every L. Departure from the null hypothesis (8c.3.1) may then 
be detected by comparing the matrices R, and R1 - R, . 
Test Criteria. If the null hypothesis (8c.3.1) is true, then for each L, the 
hypothesis H P  = 6 is true. An appropriate test is the analysis of variance F 
test based on the least squares theory, 

RI2 - Ro2 . RO2 -- F =  
4 n - r  

where Ro2, R I 2  are as defined in (8c.3.2). 
Instead of F, we may use the statistic 

R02 1 
=-= R02 B =  3 

Ro2 + (R1’ - Ro2) RI2  qF 1 + -  
n - r  

which is a monotonically decreasing function of F and which has the beta 
distribution, 

Small values of B would indicate significance. 

L’Ro L B = -  
L R , L  ‘ 

In terms of L 

(8c.3.7) 

Up to  now L is arbitrary but fixed. 
We have already observed that the effect of deviation from the hypothesis 

(8c.3.1) is to decrease the value of B (stochastically). Let us then choose L 
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for which B has the smallest value in an attempt to discredit the hypothesis. 
The test criterion then reduces to 

L’RO L 
A = min B = min - 

L L’RILy 

or A is the smallest root of the determinantal equation 

(Ro - IRlI =O. (8c.3.8) 

To determine the extent to which deviations from the null hypothesis 
(8c.3.1) are reflected in the roots of the equation (8c.3.8), let us replace Ro 
and R, by their expected values, which can again be found using the univariate 
formulas. In (4b.2.3) the expectations of RoZ and R,’ - Ro2 have been found 
to be 

E(Ro2) = (n - r)aLz = E(LR0 L) 
E(RIZ - RoZ) = 40,’ + (H’B - g)‘D-’(H’B - 5)  = E[L’(R, - RJL] 

where D is the dispersion matrix of the estimate of (HB - 5). Writing atz and 
HB - 5 in terms of L, 

E(L’Ro L) = (n - r)L‘ZL (8c.3.9) 

1 EIL’(Rl - Ro)L] = qL’CL + [f L,(HP, - 6,) D- L,(HP, - 6,) 

(8~3.10) 
where A = 0 when the null hypothesis (8c.3.1) is true and otherwise non- 
negative definite. Since (8c.3.9) and (8c.3.10) are true for every L, 

E(Ro) = (n - r)C 

1 1 [ l  

= qL’CL + L‘AL, 

E(R1 - Ro) = YC + A, E(R1) = A + (n - r + q)C. 

The equation (8c.3.8) with the expected values of R, and R, can be written 

I (n - r)C - A*(A + n - r + qC) I = 0, 

which may be written in the alternative form 

lA-O*C] =O, 

Small values of A* correspond to large values of 8*. The number of non- 
zero roots 0: depends on the rank of A, and the deviation from A = 0 is thus 
reflected in all the nonzero roots 0: or the corresponding A:. If A = 0, all 
8: are zero and when the rank of A is 1, the entire deviation is concentrated in 
the one nonzero root 0* which corresponds to the smallest I*. But when 
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nothing is known about the alternative A, more than one root may be useful 
in detecting departures from the null hypothesis. We have only estimates of 
the roots 1* in the roots of the equation (8c.3.8). But a study of the true roots 
in relation to the deviation matrix has shown the relevance of the estimated 
roots in tests of hypotheses concerning A. 

Although the minimum root of (8c.3.8) is the single root which records 
the maximum deviation from null hypothesis it may not provide an adequate 
comparison of the “residual ” and “deviation from the hypothesis ” matrices 
R, and R, - R, . We, therefore, consider some functions (symmetrical) of all 
the roots which seem to provide an overall comparison of the matrices 
involved. The individual roots, however, play an important part in investigat- 
ing the rank of A as already indicated. A detailed discussion of such tests is 
given in 8c.6. 

Some possible test criteria involving all the roots are 

(a) A = AIL2 * * A, = I R, I + I R, 1 ,  product of the roots, 
1 - I ,  

21 4 
1-A1 1 - 1 2  1-1, 

(c) - x - * * .  x -, 
I ,  I2 I ,  

1 - Ap 
(b) - + * * a  + -9 

and so on. The first criterion is known as the A criterion derived by Wilks 
(1932) applying the principle of likelihood ratio in some special cases and 
later extended by Bartlett (1947) for general use in multivariate analysis. 

Observe that the computation of R, and R, involve no new formulas other 
than those used in the univariate analysis of variance (A.V.). Since formulas 
for obtaining the various entries of the A.V. table are available in many 
situations, the generalization to analysis of dispersion (A.D.) in such cases is 
immediate. We have only to consider a linear function L’U of the p measure- 
ments U and apply the known formulas of A .  V. to obtain RO2 and R12 ,  which 
are, now, quadratic forms in the compounding coeflcients L. The matrices of 
these quadratic forms in L are precisely R ,  and R,. Under the null hypothesis, 
the distribution of A = I R, 1 + I R, 1 is A(p, n - r , q) as denoted in [(xi), 8b.21. 

8c.4 Test for Additional Information 

In 8c.3 we have considered simultaneous hypotheses concerning parameters 
associated with each character. Thus in an experiment with different diets on 
chickens, differences between diets as reflected in a number of characters 
(such as age at maturity, size of egg, weight of bird) are tested simultaneously 
for significance. Each character chosen for study may be of some special 
interest to the experimenter but the differences in some characters may be 
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concomitant on the differences in others so that the additional information 
supplied by the former (independently of the latter) may be negligible. Then 
it may be uneconomical to obtain observations on such characters. Further- 
more, it is of interest to determine, if possible, those characters directly 
influenced by diets and those in which the changes are only of a concomitant 
nature. In this section we shall develop some tests for this purpose. 

Out of the p characters measured, let us ask whether the (additional) 
information supplied by the last ( p  - s) characters independently of the 
first s characters is significant. This is different from asking whether there 
are significant differences in the last ( p  - s) characters. The difference 
between these questions will be clear from the mathematical formulations in 
(8c.4.1) and (8c.4.2). To answer the former problem we consider the con- 
ditional distribution of the observations Y,+l ,  . . . , y,, for which case the 
Gauss-Markoff model may be written 

E(Y,) = xz, + y,1Y, + . ’ *  + y,,Y, 
= xz, + @1y, (8c.4.1) 

i = s + l ,  . . . , p ,  

where X is the design matrix as before in the model (8c.1.2) and 
(Y1 
p p ,  we see that 

= 

Y,) and y: = (y i l ,  . . . , y,,). In terms of the original parameters PI,  . . . , 
(8c.4.2) ti = p i  - y .  I1  p I - . * .  - Y i s  P s  

i = s +  I ,  . . . , p a  

In terms of unconditional expectations the Gauss:Markoff setup for 
Ysfl, . . . , Y, is 

(8c.4.3) 

Let H’P, = 0 be a hypothesis of interest concerning the ith character without 
reference to the other characters. The same hypothesis applied to the param- 
eters of the conditional expectation (8c.4.1) is H’z, = 0. In terms of PI ,  . . . , P p  

E(Y,) = Xp,, i = s + 1, . . . , p .  

H‘t, = 0 = H’Pi - yilH’P1 - * . - YisHps,  

so that the hypotheses H’P, = 0 and H’z, = 0 are different. It may so happen 
that H’P, # 0, but H‘z, = 0, that is, when the deviation in H’P, is a particular 
linear function of (or explained by) the magnitudes H P l ,  , . . , H’P,. 

The hypotheses H’zi = 0, i = s + 1, . . . , p will be referred to  as the null 
hypotheses concerning additional information provided by the last p - s 
characters. We shall consider the problem of testing such hypotheses under 
the setup of (8c.4.1). The problem is, in fact, a generalization of the least 
squares theory with two sets of parameters or with covariance adjustment for 
concomitant variables as discussed in 4h.2. 
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No new problem of testing arises since the setup (8c.4.1) is again Gauss- 
Markoff, that is, of the same form as (8c.l.2) except that more parameters are 
involved. To derive the explicit expressions for the S.P. matrices due to 
deviation from hypothesis and residual, we need only consider a linear 
function of Ys+l, . . . , Y, and determine the corresponding sum of squares 
using the formulas of 4h.2. The S.P. matrices for testing the hypotheses 
H‘.ri = 0 are then obtained as follows. First consider the setup (8c.1.2) and 
obtain in the usual way the S.P. matrices Ro and R, for testing H’P, = 0, i = 1, 
. . . , p .  Let us write these matrices in the partitioned form 

1 RlU,  1 )  R lU ,  2) ). R , = (  Ri(2, 1) R1(2,2) O - Ro(Z 1) R0(2,2) 
R - (Ro(’, I )  Ro(1?2)  

D.F. = n - r D.F. = (n - r )  + q 

where the arguments 1 and 2 stand for the first and second sets of s and p - s 
variables and R(H) = q. The S.P. matrix due to residual for the setup (8c.4.1) is 

Ro(2.1) = R0(2,2) - Ro(2, 1)Wo(1, 1)1“R0(13 2) (8c.4.4) 
D.F. = n - r - s, 

and due to “residual + deviation’’ from hypothesis is 

Rl(2.1) = Ri(2, 2) - Ri(2, 1)[Ri(lV l)J-’Ri(l, 2) 
D.F. = (n - r - s) + q. 

(8c.4.5) 

We then have the two matrices 

Rd2.1) - W,-,(n - r - s, &.,), 

Rl(2.1) - Ro(2.1) W,-s(q, &.1)1 

which are independently distributed as central Wishart when the null hypoth- 
esis is true. Hence we can apply any test criterion based on the roots of 

I Ro(2.1) - LRl(2.1) I = 0. 

If the test criterion is the product of the roots 

(8c.4.6) 

then its distribution is that of A(p - s, n - r - s, 4). (8c.4.6) can be written 
in the simpler form depending explicitly on the determinants of the matrices 
Ro,  R , ,  and their submatrices 

(8c.4.7) 
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where 
1) . * *  k )  

Ro(k, 1)  * * *  Ro(k, k )  
[ R o l k = /  * 

and so on. The result (8c.4.7) follows from the identities 

IRolp= IROISIRO(2.1)1, IR1lp= l ~ l l S I ~ * ~ ~ . ~ ~ l .  

We can write the relationship (8c.4.7) as a decomposition of the A criterion 
for testing the hypotheses H’P, = 0 simultaneously for all the p characters as 
follows : 

Ap = As x A(p-s).s, (8c.4.8) 

where As is the A criterion for the first s characters. It is important to note 
that the derived distribution of A(p-s).s depends only on the hypotheses 
Hq = 0, i = s + 1, . . . , p being true irrespective of what the true values 
are of PI,  . . . , &-the parameters associated with the first s characters (i.e., 
irrespective of whether H P ,  = 0 or not for i = 1, . . . , s). 

Simplification when q = 1 .  It is shown in [(xii), 8b.21 that when the D.F. of 
the hypothesis q = 1 ,  the ratio I Ro I p /  I R, I can be written in terms of Hotel- 
ling’s T’: . 

1 
where k = D.F. of Ro . -- P o l p  - 

P l l p  1 + T,2/kY 

If the null hypothesis H P ,  = 0 is true for all i, then 

k - p + l T ’  
J- N F(p, k - p + 1). 

P k  
(8c.4.9) 

If T: is the Hotelling’s statistic based on the first s characters (i.e., to test 
the single hypothesis HIi = 0, i = 1 ,  . . . , s), then 

IRols - 1 

IRIIS 1 + W k ‘  
-- 

If we then write 

we have the relationship 
2 - T(p-s,.s - T,’ - Ts2 U(p-s).r - - - 

k - s  k + T S 2  ’ (8c.4.10) 
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which leads to the variance ratio on (p - s, k - p + 1) D.F. 

k - p -t 1 TpZ - Ts2 
p - s  ’ k + T s 2  

(8c.4.11) 

when the null hypothesis H’r, = 0, i = s + 1, . . . , p ,  of no additional informa- 
tion is true whatever H’Di may be for i = l ,  . . . , s. 

8c.5 The Distribution of A 

The following notation will generally be used in the application of A test. 

TABLE 8c.5~. Analysis of Dispersion (p Characters) 

Due to D.F. S.P. matrix 

Deviation from hypothesis (1 Ri - Ro 
Residual (error) t - q  RO 

Total t R,  
A =  lRol + lRil 

- 

It is shown in [(xi), 8b.21 that A with parameters ( p ,  t - q, q)  is distributed 
as the product of independent beta variables with parameters 

(8c.5.1) 

In some cases the distribution of the product reduces to an exact variance 
ratio after a transformation (Nair, 1939, Wilks, 1932). The results are sum- 
marized in Table 8c.5p. 

TABLE 8c.Sp. The Exact Variance Ratios in Special Cases 

Values of p ,  q Variance ratio D.F. 

1 - A t - p  
q = 1 ,  for any p - - 

A P  
P, t - P  

1 - d i t - p - 1  
q = 2, for any p - - 2 P , 2 ( f - P - 1 1 )  dn P 

p = 1, for any 9 
A q  

1-dAt-q-1 
p = 2, for any q dA 9 

I - A t - q  
~ - (I* t - -Y  

2% 20 - rl - 1) ~ - 
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For other values ofp, q, good approximations are available for A(p, t - q, q). 
One due to Bartlett (1947) is to use 

(8c. 5.2) 

as central x 2  on pq degrees of freedom. Another due to the author (Rao, 
1951d) which provides a better approximation, is to use 

as a variance ratio on pq and (nzs - 2i) degrees of freedom, where 

P9 - 2 
).=-. 

4 

(8c. 5.3) 

(8c. 5.4) 

It may be noted that (nu - 2 4  need not be integral. But this does not cause 
any difficulty in consulting a table of significant values of the variance ratio. 
The appropriate value lies between the significant values for [nis - 2A] and 
[ms - 211 + 1. For practical purposes, it is safer to use [nzs - 211, the greatest 
integer in nw - 23., as the degrees of freedom of the denominator. For other 
approximations and asymptotic expansions of the distribution function the 
reader is referred to Rao (1948b, 195 1 d) and J. Roy ( I  95 I ) .  For references to 
work on exact distribution of A, see Rao ( I  972a). 

8c.6 Test for Dimensionality (Structural Relationship) 

Hypothesis of Dimensionality. Consider k ,  p-variate normal populations 
N,(pl, E), . . . , N , ( p n ,  E). It may be of interest to examine whether there is 
any structural relationship among the components of the mean values 
(Fisher, 1939). A linear structural relationship is of the form 

H p i = k ,  i = I ,  . . . ,  k (8c.6.1) 

where H is (s x p )  matrix and 5 is (s x I )  vector. H and 5 are unknown but 
they are tixed for all i in the equation (8c.6.1). The hypothesis (8c.6.1) implies 
that the points pl ,  . . . , pk in E ,  actually lie on a r = p - s dimensional plane. 
Indeed, the equation Hp = 5 where p represents a point of E ,  is that of a 
( p  - s)-dimensional plane. It may be noted that the hypothesis (8c.6.1) is of 
interest only when r c k - I .  
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Data. Let N ,  observations be available from Np(pi, C) and 

Ui and (S!f') 

be the sample mean and corrected S.P. matrix based on the N i  observations, 
i =  1, . . . ,  k .  

The analysis of dispersion between and within populations is as follows: 

D.F. S.P. matrix 

Between k - 1 B = C N i U i U ;  - (C NJUU' 

Within E N ,  - k W = C SyJ 

Total Ni - 1 T = (SJ 

( i  1 
where is the grand average and (SJ the corrected S.P. matrix from the 
combined sample of N ,  + * * * + Ark observations. 

Test Criterion. Let E be known and nonsingular. Then the density of the 
observed mean values, is, apart from a constant, 

Considering (8c.6.2) as a function of p,, . . . , p k ,  we derive the likelihood 
ratio criterion for testing the hypothesis If, : pi  lie on an r-dimensional plane, 

(8c.6.3) 

In the numerator of (8c.6.3), the supremum is sought with the restriction 
that the pi, i = 1, . . . , k are confined to an r-dimensional plane whereas in the 
denominator the p i  are unrestricted. From the general theory of the likelihood 
ratio criteria the asymptotic distribution of the statistic (8c.6.3), when the 
sample sizes N , ,  . . . , Nk are large, is 1' on D.F. equal to the number of res- 
trictions on thepk parameters imposed by the hypothesis Ho . This number can 
be easily computed by observing that an r-dimensional plane is specified by 
( r  + 1)  points and any point on the plane can be expressed as a combination 
of (r + 1) points with coefficients adding to unity. Each point is represented 
by p coordinates or parameters. The number of free (arbitrary) parameters 
is therefore p(r + 1) + (k  - r - I ) r ,  giving the number of restrictions 

pk - p(r  + I )  - (k  - r - 1)r = ( p  - r)(k - r - 1). 

Thus the D.F. of the x 2  is ( p  - r)(k - r - 1). 
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Now sup log L(pI, . . . , pk) = 0 when p, are unrestricted, and it will be 
shown later in this section that 

suplogL = -f(A,+, + . * *  + A,,) 
HO 

(8c.6.4) 

where A,.+ 
tion I B - AE I = 0. Hence the x2  of (8c.6.3) is 

. . . ,A, are the smallest p - r eigenroots of the determinantal equa- 

x z  = (8c.6.6) 

If n = N, - k is large and C is unknown, the estimate n-'W may be 
substituted for E, in which case the x 2  test of (8c.6.6) would remain valid, 
although approximate. If we consider the determinantal equation 

IB-vWI = O  (8c.6.7) 

+ . * *  + A,,, D.F. = ( p  - r)(k - r - 1). 

without dividing W by n, then 

x2 = n(v,+l + * . .  + v,,), D.F. = ( p  - r)(k - r - 1) 

where v , + ~ ,  . . . , vp are the smallest p - r roots of the equation (8c.6.7). 
In many situations the problem will be one of determining the dimen- 

sionality of the configuration of mean values. This may be approached as 
follows by listing the roots in decreasing order and the corresponding D.F. 
and cumulating upwards. 

Root D.F. Cumulated 

Roots D.F. 

1 1  p + k - 2  xO2 = A1 + * * * + 1, P(k - 1) 
A2 p + k - 4  x12 = A 2  + ' * *  + A, ( p  - l)(k - 2)  

p + k - 2r - 2 xr2 = + + 1, ( p  - r)(k - r - 1) 

If I,', xp+ 1, . . . are significantly small compared to their D.F. while x,"- 1, 

The procedure described suggests an alternative test criterion based on the 

I W - 8 ( B + W ) I  = O  (8c. 6.8) 

x r - 2 ,  2 . . . are large, then the dimensionality may be inferred as r.  

product of the residual roots of 

where A and 8 are connected by the relation 

( I  +n") =!. 0 
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The statistic corresponding to A,+ + * * + A, is 

Bartlett (1947b) suggests that 

- (pi - 1 - - + 2 k ,  (log 0,+1 + - * * + log 0,) (8c.6.9) 

may be used approximately as x 2  on ( p  - r)(k - r - 1) D.F. 

Proof of the Result (8c.6.4). The problem is one of showing 

min C i’vi(Ui - pi)’~-’(U, - pi) = ).r+l + + A,, (8c.6.10) 
H o  

where ,Il 2 a , Ip  are the roots of 

( B  - 3.CI = O ,  (8c.6.11) 

the matrix B being 1 NiUiU; -(c Ni)BU’. Let Zi =C-1/2Ui and T i  = 
C-1/2pi, in which case the expression (8c.6.10) is the same as 

k 
(8c.6.12) 

where Ho is the same hypothesis on Ci, that is, they are confined to an 
r-dimensional plane. An r-dimensional plane is determined by a point X, and 
r orthonormal directions XI,  . . . , X,.  And a point C i  on this plane has the 
representation 

(i =x, + CilX, + + ci,x,. (8c.6.13) 

The ith term in (8c.6.12) without the multiplier Ni can be written 

(Zi - xo - c CijXj)‘(Zi - xo - c CijXj). (8c.6.14) 

For given X,, XI ,  . . . , X,, the expression (8c.6.14) has the minimum value 
(using the usual regression theory and the expression for residual sum of 
squares) of 

(Zi - Xo)’(Zi - X,) - [(Zi - XO)’X1l2 - . . - [(Zi - Xo)’X,l2 (8c.6.15) 

by making use of the fact that XI,  . . . , X, are orthonormal. Multiplying by N, 
and taking the summation over i ,  we find the expression to be minimized with 
respect to X,,  XI,  . . . , X, to be 

k k r  

C N,(Zi  - Xb)’(Z, - Xo) - C C Ni[(Zi LXo)’Xj]2. 
I =  1 i = 1  j= l  

(8~~6.16)  
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By introducing Z = c Ni Z i / c  Ni , (8c.6.16) can be written 

r 

+ N ( Z  - Xo)’(Z - Xo) - N C [(Z - XO)’Xjl2. (8~6.17)  
j= 1 

The expression involving (Z - X,) is positive and therefore for given XI,  . . . , 
X,, (8c.6.17) is a minimum when X, = Z. Then the expression to be minimized 
with respect to X1, . . . , X, is 

k k r  

C Ni(Zi - Z)’(Zi - Z) - c C Ni[(Zi - Z)’Xj]’. 
i =  1 i = 1  j = l  

(8~6 .18)  

Since the first term is independent of X i ,  we need to maximize the second term 
with respect to XI,  . . . , X,.  Now 

k 

i = l  j = 1  

r 

= cx;cxj, 
j= 1 

where C = c N i ( Z i  - Z)(Zi - Z)’. Let PI,  P, ,  . . . , P, be the eigenvectors 
and %,, ..., 1, the eigenroots associated with the determinantal equation 
IC - 1,II = 0. Then, as shown in ( lf .2.Q we have 

, 

= 1 1  + * ”  + A r .  

But 1, + * * .  + A, = trace C = 
minimum of (8c.6.18) is + + 1,. Since 

Ni(Zi - Z)’(Zi - Z), and therefore the 

z i -  - c - q J , ,  z =c-’/’U 
c Ni(Zi - Z)(Zi  - Z)’ = E-’ /z [c  Ni(Ui  - n)(ui - u)’]c-”2 

C = E:-1/2BC-1/2. 

Hence 

IC - 111 = O  = IB - 1CJ.  

Thus I . , ,  . . . , 1, are the roots of the determinantal equation IB - ,El = 0 
which proves the desired result. 
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8c.7 Analysis of Dispersion with Structural Parameters (Growth Model) 

Let us consider the general multivariate linear model 

(0, XB, 72 0 1,) (8c.7.1) 

introduced in 8c.1, where % is of order n x p ,  X of order n x m, B of order 
m x p and X of order p x p .  In the analysis of 8c.2-8.c.6, we considered the 
mp parameters in B as free. Let us now introduce linear restrictions on the 
parameters in each row of B, which can be done by considering a relation of 
the form 

B = O o + O H  

where 0 is m x k matrix of free parameters, and 0, of order m x p and H of 
order k x pare given matrices. In such a case, the model (8c.7.1) can be written 
as 

(42 - XOo , XOH, Z 01,) (8c. 7.2) 

which is used in a number of investigations (Rao, 1959a, 1961g, 1965b) on 
growth data. The general formulation of the model (8c.7.2) is due to Pothoff 
and Roy (1964). 

Reduction of the Model. Let R(H) = k and Z be a p x ( p  - k )  matrix of 
rank ( p  - k) such that HZ = 0. Further let Zo be an a priori value of Z, 
assumed to be nonsingular. [For the purpose of our theory Zo may be any 
p.d. matrix. It may be chosen as I, if no a priori value is available.] Consider 

W1 = (@ - XOO)ZO-'H'(HZ=,-'H')-', 
w, = (@ - XO0)Z. (8c.7.3) 

Then E(Wl) = XO, E(WJ = 0, and in terms of the variables W1, W,, the 
model (8c.7.1) becomes 

[(Wi i W J ,  (XO i O), A 8 I,] (8c.7.4) 

where A is the matrix of variances and covariances of the variables in 
(W, i W,). Since E(WJ = 0, we can use W, as observations on concomitant 
variables and write our model (8c.7.4) as 

(W1, X@ + Wj?r ,  A, 8 I n )  (8c.7.5) 

with additional regression parameters r as i n  (8c.4.1). Thus the model 
(8c.7.1) is reduced to a model with free parameters 0, I'. Then the analysis 
using covariance adjustment applies, and no new problem is involved. 
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If R(H) = r < k, we proceed as follows. Construct a nonsingular matrix 
(H, i H,) such that HH, = 0 and the columns of H, form a basis of the 
vector space generated by the rows of H. Then make the transformation 

W, = (% - XOo)H, 

W1 =(% - XOo)Co-'H; 
(8c. 7.6) 

so that E(W,) = XOHE0-'H; and E(W,) = 0. Now R(HC,-'H;) = r, and 
hence OHC,-'H', can be replaced by a rn x Y matrix @ of free parameters. 
Then the model (8c.7.1) reduces to 

(W1, X@ + Wz r, A1 @ In) (8c.7.7) 

which is again of the same form as (8c.7.5). 
In practice, we have the problem of examining the usefulness of the con- 

comitant observations W2 . If Zo is a good approximation to C, then we may 
omit W, and consider the model (W,, XO, A, @In) or (W,, X@, A, @In), for 
drawing inferences on 0 or a. The usefulness of covariance adjustment is, 
however, a matter of empirical verification (Rao, 1965b). 

8d SOME APPLICATIONS OF MULTIVARIATE TESTS 

8d.l Test for Assigned Mean Values 

Observations were obtained on 28 trees for thickness of cork borings in the 
north (N), east (E), south (S), and west (W)  directions. The problem is to 
examine whether the bark deposit is same in all the directions. We may 
consider the three characters (contrasts) 

U , = ( N + S ) - ( E +  W ) ;  U , = N - S ,  U s = E -  W, (8d.I.l) 

and test whether the expected values of U , ,  U ,  , U3 are zero. Instead of the 
constrasts (8d.I.l), any others could have been chosen. But the choice 
(8d.I.l) is motivated by the suggestion that bark deposit is likely to be 
uniform in north and south directions and so also in east and west directions. 
The maximum deviation is then expected in (N + S) - (E + W). The con- 
trasts (8d. 1. I )  chosen enable a direct examination of these hypothetical sug- 
gestions. 

The sample means and the sample dispersion matrix (i.e., corrected sum 
of squares and products after dividing by 27, D.F.) are 

- 
U1 = 8.8571, EJ, =0.8571, EJ3  = 1.0000 

63.5344 21.3544 
128.7200 -21.0211 -26.9259 

( 96.$761 
(Sij) = 

The reciprocal of the matrix (s i j )  is represented by (s ' j ) .  
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Hotelling’s T 2  can be applied to test for assigned values of the means, 
the general formula being [for number of characters p, sample size N, estima- 
ted means D1, . . . , 0, and estimated dispersion matrix s i j  on (N - 1) D.F. 
and expected values tl ,  t2 ,  . . . , under test.] 

Tp2 = N x x d’(Ui - tJ(Dj - 5,). (8d. 1.2) 

If N is large, Tp2 has the x 2  distribution o n p  D.F. For small N the appropriate 
procedure is to use 

N - P  F =  - 
(N - 1)p T,z 

(8d. I .3) 

as the variance ratio statistic on p and (N - p) D.F. In the present sample 
p = 3, N = 28, and t i  = 0, i = 1, 2, 3. A simple method of computing the 
quadratic form 

1 C s”(ui  - ti)(uj - t j )  (8d. 1.4) 

is as follows. Start with the matrix 

Dispersion matrix ( s i j )  Deviation (B, - t i )  

128.7200 -21.021 I -26.9259 8.8571 
63.5344 21.3544 0.8571 

96.5761 1 .om0 
0 

and reduce it by pivotal condensation. The last value with the sign changed is 
the value of the quadratic form (8d.1.4). In the present example the value is 
found to be 0.7408, thus giving 

Tp2 = N(0.7408) = 20.7424 

N - p  2 -  25 28 (0.7408) = 6.4019. 
Tp - 27 x 3 (N - I)P 

F =  

The value 6.4019 as a variance ratio on 3 and 25 D.F. is significant at the 
1 % level. 

Let us make individual tests based on each Di ignoring the rest. Each 
is T12 with a variance ratio on 1 and 27 D.F. 

N(B1 - t1)2 28(8.8571)2 
F for N + S - E - W = TI2 = - - = 17.0645 

$1 1 128.7200 

F f o r N - S  
N(U2 - ( 2 ) 2  - 28(0.8571)2 

= TI2 = - < 1  
s2 2 63.5344 

Ffor  E -  W 
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That the F for N + S - E - W is large and the rest are small indicates the 
truth of the suggested hypotheses. Suppose the F values for N - S and 
E - W had been large. We could then ask the question whether the large 
differences in ( N  - S) and (E - W) were solely due to their correlations 
with (N + S - E - W). This could be examined by the test for additional 
information developed in 8c.4. Since the D.F. of the hypothesis is unity the 
formula (8c.4.11) is applicable. The criterion for testing the significance of 
additional information due to p - s characters independently of s characters 
is the variance ratio (see 8c.4.11) 

N - p  T i - T s 2  F = -  
p - s  ( N - 1 ) + T S Z ’  

(8d. I . 5 )  

by substituting ( N  - 1) for k in the formula (8c.4.11). In the present example, 
p = 3, s = 1, and the value of T,2 for (N + S - E - W )  is 17.0645. Substi- 
tuting in (8d.1.5), we have 

25 20.7424 - 17.0645 p = -  = 1.0431, 
2 44.0645 

which is small as a variance ratio on 2 and 25 D.F. 

Nore. Since T: can be computed in a number of ways, we shall give some 
alternative formulas. Let (S i j )  = S be the matrix of the corrected sum of 
squares and products, ( s i j )  = s = ( N  - l)-’S and d’ = (Ul - t l , ,  , , , U p  - tp).  
Then 

T p 2  = N C C Sii(Ui - t i ) (Uj  - t j )  
= N ( N  - 1) 2 c Sij(Ui - <,)(Oj - t j )  

1 S + Ndd’ 1 
= ( N -  I){ IsI - 1). 

8d.2 Test for a Given Structure of Mean Values 

Suppose N independent observations are available from ap-variate population. 
Let 01, . . . , U p  be sample means and ( s i j )  the sample (estimated) dispersion 
matrix on ( N  - 1) D.F. as in 8d.l. Further, let the theoretical mean values be 
pl,  . . . , p p .  Some hypotheses of interest are as follows: 

1. p, = p for all i (i.e., all the characters have the same mean value). 
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2. p i  = P,.+~, i = 1, . . . , r with p = 2r. Such a hypothesis arises when we 
have multiple measurements on the right and left sides of an organism 
and we wish to test for symmetry. 

3. p i  = u + & t i  + .. + PI fir, where u, ply . . . , PI are unknown para- 
meters and f i  are known. For instance, t i  may be the time at which the 
ith measurement is taken and the hypothesis specifies a polynomial trend 
for the mean values. 

All such hypotheses can be tested by the statistic 

Ro2 = min C C s'j(Bi - p l ) ( U j  - p j ) ,  (8d.2.1) 
Ho 

where Ho stands for the restiictions on p i ,  i = 1, , . . , p. The variance ratio 
based on (8d.2.1) is 

(8d.2.2) 

on q and ( N  - q )  D.F., where q is the number of independent restrictions on 
ply . . , , p p ,  Thus q = p - 1 in situation ( l ) ,  q = r in (2), and q = p - (r + 1) in 
(3) and so on. 

The situation in ( l ) ,  involving a composite hypothesis on the mean values, 
is the same as in the illustrative example of 8d.l. We have seen that the prob- 
lem can be reduced to one of testing a simple hypothesis on the mean values 
by considering ( p  - 1) contrasts of the p components of the random variable. 
This meant transformation of the original p variables to ( p  - 1) variables and 
working with the new variables. We will now give an explicit formula for the 
Hotelling's T 2  in terms of the estimated means and variances and covariances 
of the original variables. Let U1, . . . , I/, be the mean values and ( s i j )  be the 
sample dispersion matrix on ( N  - 1) D.F. The statistic Ro2 of (8d.2.1) for 
testing the hypothesis pl = * * . = pp is 

RO2 = min c 1 s"(UI - p ) ( U j  - p), 

- 

Ir 

which, as the reader may easily verify, has the explicit form 

For explicit forms in other situations, see the illustrative examples in Rao 
(1959a). 

8d.3 Test for Differences between Mean Values of Two Populations 

Let N , ,  N 2  samples be available from two p-variate populations. The sample 
means in the two cases are represented by 

- - 
Ull ,  .. ., Upl and U 1 2 , .  . . , U P 2  
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and the corrected S.P. matrices within samples by 

(Siy 9, (s,!:’) 
D.F. = N1 - 1, D.F. = N ,  - 1 

and the pooled matrix by 

(S$) )  = (S,!,?) + S$) )  on N 1  + N2 - 2 D.F. 

To test the hypothesis that the differences in population means (simul- 
taneously for all characters) are zero, Hotelling’s test which is same as 
Mahalanobis Dz test can be used. Mahalanobis Dz is defined by 

0,’ = 2 2 sii di dj  (8d.3.1) 

where di = U i z  - Oil,  (siJ) = (sij)-’ and si j  = S,!io’/(Nl + N ,  - 2). The vari- 
ance ratio based on 0: is 

on p and (N, + N2 - p  - 1) D.F. Let us consider the example shown in 
Table 8d.3a. 

TABLE 8 d . 3 ~ .  

Sample Means Based on 50 Observations Each for Two 
Species (Source: Fisher, 1936) 

Iris Iris 
Character Versicolor Serosu Difference 

Sepal length 5.936 5.006 0.930 

Petal length 4.260 1.462 2.189 
Petal width 1.326 0.246 1.080 

Sepal width 2.770 3.428 -0.658 

TABLE 8d.3P. 

Pooled Matrix (st,) on 98 D.F. 

0.195340 0.092200 0.099626 0.033055 
0,121079 0.047175 0.025251 

0.125488 0.039586 
0.025 106 
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Fisher's Discriminant Function. Fisher defined the discriminant function 
between two populations as that linear function of the characters for which 
the ratio 

(mean difference)2 + variance 

is a maximum. Let I ,  U ,  + . . + I,, Up be the linear function and h i  the dif- 
ference of the expected values of Ui  in the two populations. Then the quantity 
to be maximized is 

(C li Ji)2 f c I; I j  Oij. (8d. 3.3) 

Differentiating with respect to l i  and equating to zero, we obtain the equations 

(8d. 3.4) 

where c is a constant, which may be chosen as unity since only the ratios of li 
can be uniquely determined. 

I,oi, + + Ipoip = chi, i = 1, . . . , p 

The coefficients can be estimated by solving the equations 

I,si, + + Ipsi,, = d i ,  i = 1, . . . , p. (8d. 3.5) 

In the problem of Iris Serosa and Iris Versicolor, using the mean differences of 
Table 8 d . 3 ~ ~  and (sij) of Table 8d.3P, we find the solution as 

I ,  = -3.0692, l2 = - 18.0006, I ,  = 21.7641, l4 = 30.7549. 

The estimated discriminant function is therefore 

-3.0692U1 - 18.OOO6U2 + 21.7641 U3 + 30.7549U4. 

Computation of DP2. It is easy to see that 

0: = C C sij di dj  = C l i  di (8d. 3.6) 

so that DP2 can be easily computed once the discriminant function coefficients 
are obtained by solving the equations (8d.3.5). If the discriminant function is 
not required, the quadratic form (8d.3.6) may be computed as in (8d.1.4). In 
the present example, using the formula (8d.3.6), we have 

D42 = (-3.0692)(0.930) + + (30.7549)(1.080) = 103.2119. 

To test the hypothesis J i  = 0, i = 1, . . . , 4, the F of (8d.3.2) is 

95 50 x 50 
4 100 x 98 

F = - .  103.21 19 = 625.3256, 

which as a variance ratio on 4 and 95 D.F. is significant at the 1 level. 
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Test for Additional Information. Denote by Dq2, the D2 based on a subset q 
of the characters. To test the hypothesis that the rest of ( p  - 4 )  characters do 
nut provide additional discrimination, the variance ratio test is (8c.4.11) 

o n p  -4 and (Nl + N ,  - p  - 1) D.F. 
In the example of Iris versicolor and Iris setosa, we may ask whether sepal 

and petal lengths alone are sufficient for discrimination. The Dz2 corres- 
ponding to lengths alone is found to be 76.7082, and D42 for all the measure- 
ments is 103.21 19 giving 

95 50 x 50(103.2119 - 76.7082) 95 
F = - .  - (0.3287) = 15.6132, 

2 100 x 98 + 50 x 50(76.7082) - 7 
which is significantly high on 2 and 95 D.F. indicating that widths provide 
additional discrimination and that the differences in widths are not solely 
dependent on differences in lengths. 

Test for an Assigned Discriminant Function (Fisher, 1940). The discriminant 
function between the two species was estimated to be 

-3.O692Ul - 18.OOO6U2 + 21.7641 U3 + 30.7549U4 

with the value of D,2 = 103.21 19. Since the mean measurements for versicolor 
exceed those for sefosa except in  sepal width, a discriminant function of the 
type 

y = u1 - u, + u, + u4 (8d. 3.8) 

may be suggested. In such a case it might be of interest to know whether 
the linear function (8d.3.8) is sufficient to discriminate between the two 
species. For this purpose we can apply the test (8d.3.7) computing Ol2 based 
on the linear function y, 

(Y1 - j 2 I 2  D I 2  = 
SYY 

where j , ,  j ,  are the mean values of y in the two samples and syy is estimated 
variance of y. Now 

j 1  - J 2  = dl - d2 + d3 + d4 
= 0.930 - 0.658 + 2.798 + 1.080 = 5.466 

V(Y) = V(U1) + V(U2) + V(U3) + VU4) - 2C(Ul U,) + 2C(Ul U3) 

2c(u i ,  u4) - 2c(u2 3 u,) - 2c(u2,  u4) 4- 2c(u3 u4), 



8d SOME APPLICATIONS OF MULTIVARIATE TESTS 569 

which gives the estimate of V(y)  

syy = $ 1  + $22 + S33 + S44 - 2S1, + 2S13 + 2S14 - 2 S z 3  - 2S24 + 2S34 

= 0.482295 

if we use s i j  values of Table 8d.3P. The value of 0,’ is 

= 61.9479. 
(5.466)‘ 
0.482295 

The variance ratio on ( p  - 1) and (Nl + N 2  - p  - 1) D.F. for testing the 
adequacy of the assigned discriminant function is 

N 1 +  N ,  - p  - 1 NINz(DpZ - D12) F =  
P - 1  ‘ (N1 + Nz)(N,  + Nz - 2) + N1Nz D,’. 

Substituting the values of 0,’ and D,’, we obtain 

F = y(0.6265) = 19.8392 

which is significant at the 1 % level, on 3 and 95 D.F., showing that the linear 
function (8d.3.8) is not the best discriminant. 

Test for Discriminant Function Coefficients. Standard errors of discriminant 
function coefficients have been evaluated in an attempt to judge the signifi- 
cance of any single coefficient. There is some difficulty in this approach, 
however, because the discriminant function coefficients are not unique in the 
sense that they are estimates of definite population parameters. But what is 
unique is the ratio of any two coefficients, and an exact test is possible for any 
assigned ratio. For instance, if the hypothetical ratio for the ith and j th  
characters is p,  we consider the characters 

U 1 , .  . , , Ui-1, U i + l ,  . . . , Uj-1,  U j + l , .  . . , Up,  Ui + pUj  (8d.3.9) 

( p  - 1) in number, obtained by replacing Ui and U, by Ui + pU,.  Let 
D i - l  be the D2 based on the set (8d.3.9) and let DP2 be that based on the 
entire set of p characters. The variance ratio for testing whether p is the true 
value is 

on 1 and Nl + N2 - p  - 1 D.F. [Also see example 15, p. 600.1 

8d.4 Test for Differences in Mean Values between Several Populations 

Let N , ,  . . . , Nk, ( N  = 
denote by 

N i )  samples be available from k populations and 

- 
U l r ,  .. ., Opr; (S,‘;)) on N, - 1 D.F. 
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the sample mean values and corrected S.P. matrix from the rth sample of 
size Nr . Further let 

01, . .., O,,; (S, j )  with Nr - 1 D.F. 

be the overall mean values and corrected S.P. matrix by throwing all the 
samples together. The sum of products between populations is computed by 
the formula 

k 

r =  1 
Bij = C Nr gir u j r  - N u ,  uj 

by using the totals instead of the means. The sum of products within popula- 
tions is 

so that Wij  can be obtained without actually computing the individual cor- 
rected S.P. matrices. We then obtain the analysis of dispersion as between and 
within populations as in the univariate analysis of variance. 

Analysis of dispersion 

D.F. S.P. matrix 
- 

Between k - 1 (4 j )  

Within N - k  ( W, j )  

Total N - 1 (Sij) 

- 

The A criterion is 
A = ( W ( + l W + B I  

and in the notation of 8c.5, for an application of (8c.5.3) 

A = -  "- 2 ,  s = J(p2q2 - 4 ) I J p r 5 ,  r = P' -. 
4 2 

We may use -m log, A as x 2  on p(k - 1) D.F. or more accurately 

ms - 2A 1 - Alls 

2r A'/' 
F=-- (8d.4.1) 

as variance ratio on 2r and (ms - 2A) D.F. 
Table 8 d . 4 ~  gives the analysis of dispersion for three characters, head 
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length U , ,  head breadth U,, and weight U, measured on 140 school boys 
of almost the same age belonging to six different schools in an Indian city. 
The value 26.0559 as xz on 15 D.F. is significant at the 5% level. To use 
the variance ratio approximation we find 2r = 15, s = 2.67, ms - 2A = 364.79. 
The variance ratio (8d.4. I )  is found to be I .77, which is significant at the 5 % 
level on 15 and 364.79D.F. Both the approximations agree closely in view of 
the large number of degrees of freedom for within S.P. matrix. 

8d.5 Barnard’s Problem of Secular Variations in Skull Characters 

The measurement of secular variations in skull characters studied by Barnard 
(1935) is of some importance in biometric research. Two problems involved in 
her study are: 

1. The selection of a smaller number, out of seven skull characters, which 
give significant information, so far as is possible, as to changes taking 
place with time in Egyptian skulls belonging to four different time 
periods. 

2. The determination of an expression linear in the measurements, which 
characterizes most effectively an individual skull with respect to pro- 
gressive secular changes. 

Taking the four measurements, basialveolar length U,, nasal height U ,  , 
maximum breadth U ,  , and basibregmatic height U4, we have the relevant 
analysis of dispersion given in Table 8 d . 5 ~ .  

TABLE 8d.5. Analysis of Dispersion 

~~ 

Regression Deviation Total Within Total 
Characters (1 D.F.) (2 D.F.) (3 D.F.) (394 D.F.) (397 D.F.) 

U ,  
U2 = 
UJ2 
1/4= 

u, u2 
u, u3 
Ul u4 
u2 v 3  

u, u4 
u, u4 

119.9303 
459.7344 

39.0429 
124.8741 

68.4282 
-234.8108 

- 122.3772 
- 133.9752 
- 149.6016 
- 69.8243 

3.2503 
26.6126 
61.3686 

51 5.8598 
3.4352 

18.8771 

26.4696 
274.9149 

- 6.3868 

-67.7565 

123.1806 
486.3459 
100.4115 
640.7339 

87.3053 
- 23 1.3756 

- 128.7640 
- 107.5056 

125.3 I 33 
- 137.5808 

9661.9975 
9073.1 150 
3938.3203 
8741.5088 
445.5733 

1 130.6239 
2 148.5842 
1239.2220 
2255.8127 
1271.0547 

9785.178 I 
9559.4609 
4088.73 I9 
9382.2427 
2 14. I 977 

1217.9292 
201 9.8202 
1131.7164 
238 I .  1260 
1133.4739 
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The S.P. matrices for between (3 D.F.) and within the four series (397 D.F.) 
are obtained as in 8d.4. Then a regression analysis is carried out to  analyze the 
between S.P. elements as due to linear regression (1  D.F.) with time and 
deviation from regression (2 D.F.). The values of t, the time variable for the 
four series, are taken as - 5 ,  - I ,  1, and 5. The calculation of linear regression 
involves the quantities 

C ( t  - ?)2 = 4307.6683 
C V,(t  - t )  = 718.7628, C V,(t - ?) = +410.1019 

V2(t - t )  = - 1407.2608, C V d ( t  - I) = -733.4276 

The sum of products due to regression are obtained from the formulas 

RI1 = (1 Vl(r - ?))2 + 1 ( t  - I ) ~  = 119.9304 

and so on. 

Problem I. Do the characters U 3 ,  V4 show significant variation between 
the series independently of U1, U2? 

The test criterion for examining additional information is the ratio of 
A4 to A 2 ,  the values of Wilks A for U,, U 2 ,  U, , U4 , and U1, V ,  respectively. 

Substituting the values of Sf:) and W i j  from Table 8d.5a, we see that A4/A2 = 
0.87806, in the notation of 8c.5, p = 2, q = 3, f = 395 giving m = 392 and 

x 2  = -392 log, (0.8781) = 51.39 on 6 D.F. 

which is high thus showing the importance of all the four characters. 

Problem 2. Can the regression of each of the characters on time be con- 
sidered linear? 

The appropriate test for this is 

A =  I w I  = 0.9031 
ID+ WI 

with p = 4, q = 2, f = 396. The x 2  approximation 40.02 on 8 D.F. is high, 
indicating nonlinearlity of regression. It is easy to see that the test can be 
extended to examine whether parabolic regression with time can explain the 
differences in mean values, and so on. 

For other applications refer to Bartlett (1947), Riffenburgh and Clunies- 
Ross (1960), Williams (1952, 1955, 1959), and the papers by the author, Rao 
(1948b, 1949b, 1954c, 1955a, 1958b, 1959a, 1961g, 1962c, 1965b, 1965d, 
1966c, f, 1967c, 1972a). See also Roy, Gnanadesikan and Srivastava (1972) 
and Williams (1967) for a discussion of related problems and applications. 
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8e DISCRIMINATORY ANALYSIS (IDENTIFICATION) 

8e.l Discriminant Scores for Decision 

In 7d.l to 7d.6 of Chapter 7 on statistical inference, we have discussed the 
problem of identification, that is, of deciding on the membership of an 
observed individual to one of a given set of populations to which he can 
possibly belong. For a satisfactory solution of the problem we need to know 
the following: 

1. The probability densities, P1(U), . . . , Pk(u), for a given set of measure- 
ments U on an individual in the k alternative populations. 

2. Prior probabilities nl, . . . , nk for the populations, which are relative 
frequencies of individuals of the k populations in the composite popula- 
tion from which an individual to be identified has been observed. 

3. The assignment of a loss function, that is, the specification of values 
rij representing the loss in  identifying an individual of the ith population 
as a member of thejth population. 

Then, given an individual with measurements U, his discriminant score 
for the ith population is computed as (see 7d.3.8) 

and the individual is assigned to that population for which his discriminant 
score is the highest. Such a rule is shown to minimize the expected loss (in the 
long run, see 7d.3). 

The decision rule (8e.I.l) is ideal when individuals have to be identified 
in a routine manner as in vocational guidance and selection problems. In 
such cases the true identification may become available at a later point 
of time, and the accumulating data would provide progressively satisfactory 
estimates of the densities Pi(U) and prior probabilities n, so that an applica- 
tion of the rule (8e. 1.1) becomes feasible. 

In many practical problems, the losses due to wrong identification may 
be difficult to assess, in which case the criterion of minimizing the frequency 
of wrong identification (in the long run) may serve the purpose. The optimum 
rule in such a case is to assign the individual with measurements U to that 
population for which the posterior probability has the highest value. Or in 
other words the discriminant score for the ith population is 

si = n,Pi(u). (8e. 1.2) 
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Let us consider the case where the distribution of U is p-variate normal 

(8e.1.3) 

in each of the populations. Choose Pi(U)  as the normal density 

( 2 n ) - ~ / ~ l  X i  I -‘I2 exp[ -+(U - pi)’Ci-’(U - pi)] 

i = l ,  ..., k, 
that is, with mean pi and dispersion Ci for the ith population. Taking the 
logarithm of niP i (U)  and omitting the factor ( 2 7 ~ ) - ~ / ~  common to all i, we see 
that the equivalent discriminant score (8e. 1.2) for the ith population is 

Si = -4 logIXiI - t(U - pi)’Ci-’(U - p i )  + log ni (8e.1.4) 

involving the mean pi and the dispersion matrix Ei of the ith population. 
The function (8e.1.4) is quadratic in U and may be called a quadratic dis- 
criminant score. An individual is assigned to that population for which the 
quadratic discriminant score has the highest value. 

- 4  log ICI - + U ‘ P  u (8e. 1.5) 

are common to all S i .  Subtracting the terms (8e.1.5) from (8e.1.4), the 
equivalent discriminant score for the ith population may be written 

si = (p , z -  ‘)U - + p ; r  , p i  + log It( (8e. I. 6 )  

which is linear in  U and may be called a linear discriminant score. 
It may be seen that when there are only two populations, only one com- 

parison is involved and the decision can be taken by computing the difference 
S, - S, , which is L(U) - c where 

If the populations do not differ in the dispersion matrices, the terms 

L(U) = (pi - p;)C- ‘u 
c = +(p’,E-’p1 - pL;C-‘p,) + log n2 - log n,. (8e.1.7) 

The function (8e.1.7) is the linear discriminant function of Fisher derived in 
8d.3. The decision rule may then be expressed in the form 

assign to the first population if L(U) 2 c, 

assign to the second population if L(U)  < c. (8e. 1.8) 

But the approach in terms of discriminant scores (8e. 1.6) brings the special 
case of two populations in the general frame work of identification rules. 
The computation of individual scores even for two populations is preferable 
in practice since they are more informative. 

As an application, let us consider the problem of identifying the neurotic 
state of an individual referred for psychiatric examination. Table 8e. la: 
gives the mean values and the dispersion matrix estimated from previous data 
for three measurements A, B, C. 
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TABLE 8e.lcr. Mean Scores for Neurotic Groups (Rao and Slater, 1949) 

Mean Score 

Group Sample Size A B C 

Anxiety state 114 2.9298 1,1667 0.728 I 
Hysteria 33 3.0303 1.2424 0.5455 
Psychopathy 32 3.8125 1.8438 0.8125 
Obsession 17 4.7059 1.5882 I .  1 176 
Personality change 5 1.4000 0.2000 0.0000 
Normal 55 0.6000 0.1455 0.2182 

Within Group Dispersion 
Matrix (a,,) Reciprocal (a',) 

A B C A B C 

A 2.3008 0.2516 0.4742 A 0.5432 -0.2002 -0.4208 
B 0.2516 0.6075 0.0358 B -0.2002 1.7258 0.0558 
C 0.4742 0.0358 0.5951 C -0.4208 0.0558 2.0123 

For any group, the linear discriminant score is 

I ,  A + 1, B + I, C - f ( l , m ,  + I ,  m, + I, m 3 )  + log R ,  

where A ,  B, C are the observed values of the measurements, inl ,  m2 , m3 are 
the mean values, and R is the prior probability. The coefficients I,, I,, l3  are 
computed from the formulas 

I ,  = al'rn, + aI2m2 + d3m3 
I, = u2'ml  + aZ2m2 + aZ3m3 

l3 = ~ ~ ~ ~ 1 1 3 ,  -t a3,in2 + ~ 9 ~ n 1 , .  

The coefficients I,, I,, I, and the other terms needed for computing the 
discriminant score for each neurotic group are given in Table 8e.lp. 

TABLE 8e.lp. The Coefficients and Other Terms for Discriminant Scores 

Group I* 

Anxiety state 1.0515 
Hysteria 1.1678 
Psychopathy 1.3599 
Obsessittii 1.7680 
Personality change 0.7204 
Normal 0.2050 

I2 

1.4676 
I .5679 
2.4641 
1.861 1 
0.0649 
0.1431 

1 3  

0.2974 

0. I336 
0.3573 

-0.5780 
0.1947 

-0.1081 

4 2 I j  171, log 7T - 4 2 Ij Wlj 
2.5047 -3.3137 
2.71 39 -4.7626 
4.9182 - 6.9977 
5.8375 -8.5495 
0.5107 -4.4465 
0.093 1 - 1.631 1 
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In computing the last column of Table 8e. lp we take the prior probabilities 
to be proportional to observed sample sizes, which may not be estimates of 
true prior probabilities. The appropriate estimates are the relative frequencies 
of individuals of different psychiatric conditions referred to the hospital in the 
past. Given the measurements A ,  B, C for any individual, the six scores 

Si = 1, A + 12 B + I ,  C + (log ni - 3 C IJ in,) 

i = 1, . . . , 6,  

are computed, and the individual is assigned to the group for which the score 
is the highest. 

8e.2 Discriminant Analysis in Research Work 

The procedure of 8e.l is feasible and appropriate in a routine decision- 
making situation where the object is to minimize the loss (or frequency of 
wrong identification) in the long run. Now, consider a problem like that of 
examining whether Australopethicus africanus, a fossil discovered in Africa, 
was more hominid than anthropoid. It is clear that the measurements on A .  
africanus have to be compared with those of known groups of hominid and 
anthropoid fossils in order to identify his affinities. 

It is not realistic in such situations to accept as a datum of the problem 
that the observed fossil is a member of one of the known groups of fossils. 
In statistical analysis we have to take into account the possibility that he 
might belong to an unknown group whose existence has yet to be established. 
Although it may be possible to have even crude estimates of the means and 
dispersion of measurements for each known group, there does not seem to be 
any method of obtaining the prior probabilities. The available numbers of 
fossils in different groups need not be good indicators of their relative abund- 
ance in the population of fossils. Furthermore, there is no possibility of 
attaching prior probabilities to the undiscovered groups. Finally, the concept 
of loss function is not meaningful in the present context. Consequently the 
method of 8e.l is neither applicable nor feasible in answering the present 
problem. 

We shall now discuss a general approach for examining the membership 
of an individual to one of two known groups or possibly to a third unknown 
group. With this end in view we establish the following. 

(i) Given two p-variate normal populations iVp(pl, E) and Np(p2, Z) with the 
same dispersion matrix, the linear discriminant function (which is same as the 
logarithm of the ratio of densities apart from a constant) as dejined in (8e. 1.7) is 

L(U) = (p2 - pJC-'u. (8e.2.1) 
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Let pl, p2 , and C be all known. Then the statistic L(U) is suficient for the class 
of normal densities Np(up, + Bp2 , C )  where u,  vary such that u + B = 1, that 
is, the conditional distribution of U given L(U) is the same for all values of 
up1 + m 2 ,  a + B = 1. 

Consider the density of Np(upl + flp2, C ) ,  

( ~ K ) - ~ ” I Z : )  - l I 2  exp[-+(U - p, - flS)’Z-’(U - pl - PS)], (8e.2.2) 

where u = 1 - fl and 6 = p2 - p,. The expression in the exponential (omitting 
-4) is 

(U - p1)’C-l(U - p,) - 2p6’C-lU + 2p6’s-’p1 + p2s‘C-’ 6 
= H(U) - 2PL(U) + G(P), (8e.2.3) 

where H(U) and L(U) do not involve p and G(B) does not involve U. The 
density (8e.2.2) can then be written as the product (omitting the constant 
multiplier) 

where the first factor is independent of p and the second factor involves 
only L(U) and 8. Hence L(U) is sufficient for /?, that is, the conditional dis- 
tribution of U given L(U) is the same for all values of up, + pp2, (u + f l )  = 1. 

The result of (i) is a generalization of a theorem due to Smith (1947) who 
established the sufficiency of L(U) only for the special cases fl = 0 and p = 1. 

Suppose we have the problem of examining whether an observed individual 
belongs to one of two given populations A, B, or to an unspecified population. 
The result of (i) shows that the discriminant function constructed from the 
densities for A and B is sufficient to examine an individual’s membership not 
only with respect to A and B but to the wider set of populations with mean 
values lying on the line joining the mean values of A and B. Thus, to use the 
discriminant function constructed with reference to A and B to infer on the 
membership of an individual, it is necessary to test whether the individual 
belongs to the wider set of populations defined by the line joining the mean 
vectors of A and B. Such a test is considered in (ii) below. 

(ii) Let Ho be the null hypothesis that an individual with measurements U 
comes from Np(upl + Bp,, C), where p is arbitrary such that u + j? = 1 and 
p,, p2 , X are known or estimated on large samples. The test criterion for testing 
HO 9 

is distributed as x2  on ( p  - 1) D. F. 
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The reader should not find any difficulty in establishing the distribution of 
(8e.2.4) by using the results on quadratic forms. Observe that the first term is 
distributed as x*(p ) ,  the second as x2(1), and the difference is positive. Then 
apply [(iv), 3b.41. 

By applying the test (8e.2.4) to A. africanus, choosing chimpanzee and 
human fossils as alternative groups and length and breadth of tooth as 
characters, we find the value of x 2  as nearly 5, which is high for (p - 1 = 1) 
D.F. Thus the A.  africanus possibly belongs to a group with mean dimensions 
not related in any simple way to those of chimpanzee and human fossils. 

If the test (8e.2.4) had not been significant, some further analysis based 
on the discriminant function would have been necessary. The membership 
to one of the groups (chimpanzee) is examined by the statistic 

and to the other (human) by 

If both are significantly large as X2 's  on 1 D.F., then again there is the pos- 
sibility of the individual belonging to a third group but with the mean vector 
collinear with the mean vectors for chimpanzee and human fossils. If one x 2  
is small and the other is large, there is an indication that the individual 
belongs to one of the groups. There is also the possibility that both the x2's 
are small, in which case the affinity of the individual to any one of the groups 
is not clearcut. 

In the example of A. africanus, the x 2  for chimpanzee is 3.80, which is 
nearly at the 5 %  level, and that for human is 0.03, which is very small. 
But these tests are not valid (may be misleading) since the discriminant 
function is not appropriate to infer about the position of A. africanus in 
relation to the two groups considered. An indiscriminate use of the dis- 
ciminant function without the prior test (8e.2.4) would have led to the 
wrong conclusion that A.  africanus has strong affinities with the human 
group. On the other hand we have demonstrated that the fossil possibly 
belongs to a third unknown group (by the test of 8e.2.4). 

The foregoing analysis can be extended to the case of several alternative 
groups (see Rao, 1962~). For further details on A. africanus and references 
to previous work the reader is referred to Ashton, Healy, and Lipton (1957). 

The problem becomes complicated when the parameters of the alternative 
hypotheses are unknown, but can be estimated (see John, 1961 ; Rao, 1954a; 
and Wald, 1944). 
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8e.3 Discrimination between Composite Hypotheses 

Let U be a p-variate random variable and P(.18) its density depending on a 
parameter 0 E 0. Let Hl be the hypothesis that 8 E 0, and H ,  that 8 E 0, 
where 0, and 0, are two disjoint subsets of 0. The problem is one of choosing 
between H ,  and H 2  on the basis of an observed value of U. 

The problem admits a nice solution if there exists an ancillary S such that 
its density 

Pl(s)  for any 8 E a,, 
P2(s)  for any 0 E 0,. 

P ( ~  1 e) = (8e.3.1) 

When PI( ) and Pz( * ) are different and independent of 8, the discriminant 
function for choosing between H ,  and H ,  is provided by the likelihood ratio 

(8e. 3.2) 

which is independent of the particular hypotheses in 0, and 0,. Let us con- 
sider some examples. 

Example 1. Let U be a p-vector normal variable such that 

E(UlO,, H , )  =al + B'B,, D(UIO1, H , )  =C,  
E(U)8,,  H 2 )  =a2 +B'8, ,  D(UlO,, H,)  =C.  (8e. 3.3) 

The parameters 8, and 8, are unknown but belong to given sets specified by 
the composite hypotheses Hl and H ,  . The problem is to decide on the basis 
of observed U whether H1 or H ,  is true. Such a problem was faced by Burnaby 
(1964) when he had to discriminate between. two fossil groups, each group 
being a mixture of subpopulations with different stages of growth of 
individuals. The problem is to identify a fossil as belonging to one of the two 
groups when the age of the fossil is not known. In Burnaby's case 

(8e. 3.4) 

where I represents age and p is the vector of growth rates for different char- 
acters. Let us consider the general setup (8e.3.3) of which (8e.3.4) is a parti- 
cular case. Consider a ( p  - k )  x p matrix C of lank p - k such that BC' = 0 
where k = R(B). Then 

E(U(r, H I )  = a, + tP,  E(U)r, H2)  = a, + r f l  

E(CU) HI) = Ca,, D(CUI H , )  = CCC', 
(8e. 3.5) 

independent of el, 8, , which shows that CU is an ancillary of the type (8e.3.1). 
Using the normal density, the discriminant function based on CU is 

(Ca, - Ca,)'(CEC')-'CU = (a, - a,)'C'(CEC')-'CU. (8e.3.6) 

E(CU( H , )  = Ca, , D(CU( H , )  = CEC', 
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Using the identity of Example 33 (p. 77) at the end of Chapter 1 

c'(ccc')- lc = z- 1 - C- IB'(BC- 1 ~ ' ) -  ,BE- 1 (8e. 3,7) 

(8e.3.6) reduces to 

( a ,  - a,)'(I;-' - C-'B'(BC-'B')-'BC-')U. (8e.3.8) 

The result (8e.3.8) involves only the known matrices a,, a, ,  B, and I;. 

Example 2. Let us now consider the alternative composite hypotheses 

(8e. 3.9) 
E W l 0 , , H l ) = a l  + W ,  W l 0 , , H 1 ) = ~ , ,  

J W J l ~ , , H , ) = a ,  +B'0, ,  WJl~,,H,)=c,, 
where 0, and 0, are unknown. 

hypotheses in (8e.3.9). The distributions under H ,  and H ,  are specified by 
The same statistic CU defined in Example 1 is ancilliary under both the 

E(CU1 H , )  = Ca, ,  

E(CU I H,) = Ca,  , 
D(CU1 H,) = CC,C', 

D(CU I H,) = CC, C' 
(8e.3.10) 

so that the log likelihood ratio is the quadratic function in U 

u'c"(cI;,c')-' - (CC, c')-']cu 
- 2 [a;C'(CC,C')-' - a; C'(CC, C')-'ICU. (8e.3.11) 

Using the identity (8e.3.7) for each Ci , (8e.3.11) can be expressed in terms of 
a i ,  X i ,  and B only. We shall study the properties of the discriminant functions 
(8e.3.8) and (8e.3.11) without making any assumption on the distribution of 
U .  While doing so we will also consider the situation where the past data on U 
is available only on mixtures of populations in H, and H2 , Thus we may not 
know or have estimates of a,,  a , ,  El, C2 but only of 

E(UI H I )  = a, + B'8,, 
E(U 1 H , )  = a2 + B'8, , 

D(Ul H,)  = I;, + BD,B 
D(U 1 H,) = C, + B'D, B 

where 8,, 8, are the unknown average values of 8, and 0, and D,, D, are 
unknown matrices depending on mixtures in H1 and in H2. 

Let 6 ,  = a, - a, + B'(8, - a,), A, = C1 + B'D,B and A, = C, + B'D, B. 
We show that the discriminant functions (8e.3.8) and (8e.3.11) remain un- 
changed if we use 6, for a, - a , ,  A = C + 2-'B'(D1 + D2)B for C and 
A, = 72, + B'DIB, A, = C, + B'D, B for C,, C, whatever 8,, a,, D,, D, may 
be, which is indeed a very fortunate situation. 



582 MULTIVARIATE ANALYSIS 

First we characterize the linear discriminant function (8e.3.8). 

(i) Let U be a vector random variable such that 

E(UI H , )  = a, + B'B,, 
E(UI H,) = a, + B'B, , 

D(Ul H,) = C + B'D,B, 

D(Ul H,) = C + B'D, B. 
(8e.3.12) 

Then 

[E(L'U I H,) - E(L'U I H2)]2 
SUP 
BL=O 2-"v(L'uJH,) + V(L'UIH,)] 

(8e.3.13) 

is attained at 

L, = [X-' - C-'B'(B'C-'B)-lBC-l](al - a2). (8e.3.14) 

Under the condition BL = 0, the expression (8e.3.13) reduces to 

(8e.3.15) 

and the result follows by an application of (lc.6.3), (p. 50). 
Note that the discriminant function (8e.3.8) is LiU where L, is as defined 

in (8e.3.14). It may be recalled that the linear discriminant for two simple 
hypotheses is obtained by taking the supremum in (8e.3.13) without the 
restriction BL = 0. L, is same if we use 6 for a, - a, and (AI + A2)/2 for C. 

(ii) The quadratic discriminant function (8e.3.11) is invariant i f 6  is usedfor 
a, - a, and A,, A, are used for C,, Z2 . 

The result can be proved by direct verification. 

8f RELATION BETWEEN SETS OF VARIATES 

8f.l Canonical Correlations 

Multiple correlation as defined in (4g. 1 . 1 1 )  measures association between one 
variable and a set of other variables. In fact, it is shown to be the maximum 
correlation between one variable and a linear function of the others, which is 
also the same as the correlation between a variable and its minimum mean 
square error predictor based on other variables [iv, 4g.11. This concept was 
generalized by Hotelling (1935, 1936) to study the association between two 
sets of variables. 

Let U; = (U, ,  . . . , U,), U; = ( U , + I ,  . . . , Up) be two sets of variables with 

D(U,) = C,,, cov(U,, U,) = c,, , D(U,) = c,, (8f.l.l) 
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We consider two linear functions L’U, and M’U, of unit variance and choose 
L, M such that the correlation between L’U, and M’U, is a maximum. The 
problem is then one of maximizing LZ, ,  M subject to the conditions L’C,,L = 

1 = M’C,, M. Introducing Lagrangian multipliers, the expression to be 
differentiated is 

I I 
L’E,, M - 2 L Z , l L  - 2 M’C,, M 

2 2 

giving the equations 

C1, M - A,C, IL = 0, - 1, C,, M + Cz1L = 0 (8f. 1.2) 

From the first equation, L’C,, M = I , ,  and from second, I ,  = M’C,,L, which 
shows that Al = I 2  = p (say). Multiplying the first equation of (8f.1.2) by 
EzlCll-l and by adding it to p times the second we obtain 

~ ~ z l ~ l l - ~ ~ l z  - P2C,,)M = 0. (8f. 1.3) 

Thus p 2  and M are an eigenroot and vector corresponding to the determin- 
antal equation 

1 ~ 2 1 ~ 1 1 - 1 ~ 1 2  - P2C,21 = 0. (8f. 1.4) 

Let plz,  . . . , ps2(s = p  - r )  be the roots and M,,  . . . , M, the corresponding 
vectors. Further let A = (M, i . . . ! Ms). Then we have the following 

where R, is the diagonal matrix of the eigenroots p12, . . . , ps2 (see ii, lc.3 
on canonical reduction of two quadratic forms). 

Similarly we obtain the determinantal equation 

1 ~ 1 2 ~ z 2 - 1 ~ 3 2 1  - P2C11 I = 0, (8f. 1.6) 

with roots p,’, . . . , pr2 and eigenvectors L,, . . . , L,. The non-zero roots of 
(8f.1.4) and (8f.1.6) are the same so that the same symbols can be used to 
represent the roots. The multiplicity of the zero root is however different in 
the two cases. If 9 and R, correspond to A and R, in (8f.1.5). then 

9 ’ C , , 9  = I ,  c - 9’-1’Y-1 
(8f. 1.7) 

11 - 
9’Clz C z z ~ 1 ~ z l  9 = R , ,  E12Ezz-’C21 = 9’-1R1L?-1. 

The non-zero roots pl 2 p,  > . . * are called the canonical correlations and the 
linear functions 

‘LiU,,  ..., L:U, and M;U2, . . . ,  M:Uz 

the canonical variables: 
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8f.2 Properties of Canonical Variables 

I t  may be seen that Li and M i  as determined from (8f.1.4) and (8f.1.6) 
satisfy (8f.1.2) with + p i  where pi  is the positive square root of p i 2 .  But 
it is possible, by changing the sign of Li or Mi if necessary, to have L i ,  Mi 
and pi as a solution of (8f.1.2). By convention we take all the canonical cor- 
relations to be positive. We have the following results. 

(i)  The number of non-zero roots of (8f. I .4) or (8f. 1.6) is equal to tlie rank 

(ii) (a) cov(L:U,, LJU,) = 1 for i = j ,  and0 for i # j  

of X I , .  

(b) cov(MI U,, MJ U,) = I for i = , j ,  and 0 for i # j  
that is, the canonical variables arising out of U, are all uncorrelated and have 
unit standard deviation and tlie same is true of the canonical variables of U, . 

The results (a) and (b) follow from the equations Y ’ C l 1 9  = I  and 
A’X2,& = I  of (8f.1.7) and (8f.1.5) respectively. 

(iii) (a) cov(LI U,, MI U,) = p i  # 0, i = 1 ,  . . . , k 
= O , i > k  

(b) cov(L: U, ,  MJU,) = 0, i # j  
wliere k = R(C, 2 ) .  

Consider one of the equations of (8f.1.2) 

CI2Mi =piC, ,Li .  

Multiplying by L: , we have 

LjCl2 Mi = pi LIZl ,Li = p i .  

Multiplying by Lj ,  we have 

LJC,, Mi = piLjEl ILi  = 0. 

But L&, Mi = cov(L:U,, MIU,) and LJX,, Mi = cov(L~U,,  MIU,) which 
prove the required results. 

We thus see that the result of the simultaneous transformation Y’U,,  
d ’ U 2  of U, ,  U2 is to reduce the dispersion matrix of the transformed vari- 
ables (Y’U,, Jd‘U,) to the simpler form 

(k 
where I, and I, are unit matrices of order r and s and R is an r x s matrix 
with the first k diagonal elements as p , ,  . . . , pk and the rest of the elements 
zero. 



8f RELATION BETWEEN SETS OF VARIATES 585 

(iv) Let qi be the ith column of Y'-' and mi the ith column of A'-'. Then 
we have the following representations: 

(a) Cll = (9-')'(9-') =qlq; + 9 .  + q,q: 
(b) C,, = ( A % - ' ) ' ( & - ' )  = mlm; + . . .  + m,ml 

The results (a), (b), and (c) follow if we consider the dispersion matrix of the 

(C) =(-Y-')'R(A%-') =P1Qlm; + ' * *  + Pkqkm; 

transformed variables Y'U,, A'U,  . 

8f.3 Effective Number of Common Factors 

To understand the practical significance of canonical correlations let us 
consider the following situation. Suppose that the observed measurements 
are linearly dependent on a number of uncorrelated hypothetical (un- 
observable) factors (measurements). Certain factors may influence the 
components of both the variables U1 and U2,  whereas others may influence 
only the components of Ul or U1. The former are called common factors 
of U1, U, and the latter are specific factors. The structure of the variables 
U1, U, can be expressed in the form 

U, = AIF + GI 

U2 = A, F + G , ,  

(8f.3.1) 

where F' = (F1, . . . , F,) is the vector of common factors, A, and A, are the 
matrices of compounding coefficients, and GI, G2 are the total effects of 
specific factors. By definition 

COV(F, GI) = 0, COV(F, C , )  = 0, cOv(G,, G2) = 0. (8f.3.2) 

Let D(F) = I without loss of generality. Then using (8f.3.2) 

D(U1) = = AiA; + D(G1) 
D(U,) = C,2 = A, A; + D(G2) (8f.3.3) 

C(U,, U2) = El2 = C(A1F, A2 F) = A1 A;. 

It is seen that the association between U,, U2 is solely due to influence of com- 
mon factors. 

The question naturally arises as to what is the smallest number (m) of 
common factors such that the representation (8f.3. I )  with the restrictions 
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(8f.3.2, 8f.3.3) is possible. This number is called the eflective number of com- 
mon factors. 

We shall show that the effective number of common factors is equal to 
R(E12), which is same as the number of non-zero roots of (8f.1.4) or (8f.1.6). 

From (8f.3.3), C,, = A,A; - R(C12) < min @(Al), R(A,)). But m 2 
max(R(A,), R(A,)). Hence m 2 R(C12). In fact, m can be arbitrary subject to 
this restriction. However, m = R(C12) is an admissible value. The last result 
follows from the representation 

El2 = Plqlm; + * ’ *  + Pkqkm; (8f. 3.4) 

by choosing 

A1 = (Jblql 

A2 = (Jilm, ! “ *  ! Jikm,), 

* * *  i JPkqk) 

where it may be noted that k = rank El, .  To prove that the choice of A,,  A, 
is consistent, we have to show that 

D(G,) = C l l  - A,A; and D(G,) = C,, - A, A; (8f.3.4) 

are non-negative definite [c.f. (8f.3.3)]. But 

C l l  =q1q; + “ ‘ + q r d - ( P l q l q ;  + ’ * *  +Pkqkq;) 

where pi d 1, i = 1, . . . , k, which shows that C,, - A,A; is non-negative 
definite. The same is true of C,, - A, A;. 

The estimation of effective number of factors from an estimated dispersion 
matrix poses a serious problem. The rank of S,,, the estimate of C,, , will be 
min(r, s) with probability 1, even when rank C,, -= min ( r ,  8) .  Hence no infer- 
ence can be made on the effective number of factors from the rank of s,,. 
The only method is then to determine the roots of the determinantal equation 

1 ~ 2 1 ~ 1 1 - 1 ~ 1 2  - rZS221 =o,  (8f. 3.5) 

where estimates S , , ,  S , ,  , S , ,  are substituted for Ell ,  C,, , E,, in the equation 
(8f.1.4), and to examine the magnitude of the different roots. If only k of 
the roots p12, pZ2 ,  . . . of (8f.1.4) are non-zero, then the roots r;,,, I-,?+,, . . . 
of (8f.3.5) corresponding to the zero values of the hypothetical roots are 
likely to be small. Hence it may be possible to infer on the effective number of 
common factors by testing the significance of the smaller roots. 

But in any real problem the effective number of common factors is likely 
to be very large so that the problem we have posed and the method of estima- 
tion suggested are not meaningful. But what may be true is that a smaller 
number of common factors account for a large portion of the association be- 
tween the two sets of variables. Such factors may be called dominant common 
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factors, and the problem of estimation of their number can be formulated in 
a meaningful way and in rigorous mathematical terms if necessary. 

The representation (8f.3.4) 

x 1 2 = P q l m l  + ‘ “ + P k q k m ;  

shows that the major contribution to C,, comes from terms with larger 
values of p i ,  and consequently the number of dominant factors may be 
determined by the number of dominant roots p i .  We may then utilize the 
estimated values of the roots (of equation 8f.3.5) for drawing inferences 
on the number of dominant hypothetical roots and hence on the number of 
dominant factors. 

8f.4 Factor Analysis 

Let U be a p-dimensional r.v. with the structure 

U = A F + G  (8f.4.1) 

where F’ = (Fl, . . . , FJ and G’ = (Gl, . . . , G,) are all uncorrelated variables 
and A is a p x m matrix of (unknown) constants. Using the terminology of 
8f.3, we can call F,,  . . . , F,,, common factors and G,, . . . , G, specific factors. 
Let V(G,) = Si and V(FJ = 1 without loss of generality. Then 

D(U) = Z = AA’ + A (8f.4.2) 

where A is the diagonal matrix with S,, . . . , 6 ,  in the diagonal. As in the 
problem of relation between two sets of variables, let us define as the effective 
number of common factors the minimum value of m for which the repre- 
sentation (8f.4.1) with the restriction (8f.4.2) is possible. The problem as 
stated is not realistic since the effective number of common factors in 
any given situation is likely to be large. But it may be reasonable to  enquire 
how many of the common factors are important in explaining the mutual 
correlations of the variables. A suitable approach to  such a problem is given by 
the author (Rao, 1955b). There exists a vast literature on the subject, and the 
interested reader is referred to a recent book by Lawley and Maxwell (1963). 
The problem of simultaneous factor analysis in several populations has been 
investigated by Rasch (1953) see also Rao (1966a, 1967d, 1969a). 

8g ORTHONORMAL BASIS OF A RANDOM VARIABLE 

8g.l The Gram-Schmidt Basis 

Let U,,  . . . , U p  be p (one-dimensional) r.v.’s such that E(Ui )  = 0 and the 
dispersion matrix C is of rank m < p .  Denote by A ( U l ,  . . . , Up),  or simply by 
A(U), the collection of all r.v.’s c1 U1 + * + c, U p  with real coefficients ci. 
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By definition .X(U) is a vector space. Let us define the inner product of any 
two elements Y , ,  Y2 of A(U) as cov( Yl, Y2). The norm of Y ,  is then the 
standard deviation, 11 Yl 11 = [ V( Yl)]’’2. The vector space A(U) of one- 
dimensional r.v.’s is then a normed vector space. 

From the theory of vector spaces it follows that A ( U )  has an 0.n.b. 
(orthonormal basis) GI, . . . , G,, each with unit norm, and inner products 
zero (i.e., Gi are r.v.3 with unit standard deviation and zero covariances). 
Every element (r.v.) of A(U) can then be expressed as a linear combination of 
the elements (r.v.’s) G,, . . . , G,. In particular 

Ui =ailGl + + ai,,,G,, i = 1 , .  . . , p .  (8g. 1. I )  

If G’ = (Gl, . . . , G,,,), the relationship (8g. I .  1) can be expressed in matrix 
notation 

Conversely, since A ( U )  = A ( G ) ,  G can be expressed in terms of U, 
U = A G ,  C = A A ’ .  (8g. 1.2) 

G = BU, I = BCB’. (8g.1.3) 

Furthermore, we know from the theory of vector spaces that the dimen- 
sion of M(U) is the rank of the matrix of inner products of the elements 
U,, . . . , U p  which in the present case is 72. Hence the number of variables in 
the 0.n.b. is m = R(C). An 0.n.b. is not unique. Some special bases are, how- 
ever, of statistical interest, which we shall consider. 

Linear Predictor as a Projection. Let P(Ui )  be the projection of Ui  on 
A ( U l ,  . . . , U i - l ) .  By definition it is a linear function of U,, . . . , U i - l  such 
that 

(8g. 1.4) 

is a minimum. Hence P ( U i )  is the minimum mean square error linear predictor 
of U, based on U,, . . . , U i - , .  Furthermore, U ,  - P ( U i )  is l e r  to 

A(U1, . . - 9 Ui-l)? 

so that the coefficients of the best linear function are determined by expressing 
the condition that the inner products of (Ui  - b,U,) with Us, s = 1, . . . , 
i - 1 are all zero. Since inner product is a covariance, the equations are 

=0, s = l ,  ..., i - 1 ,  (8g. 1.5) 
1 

which imply that 

cov[U,, Ui - P(Ui ) ]  = 0, 

cov[(l, - P(Ui) ,  Uj - P(U,)] = 0, 

s = 1, . . . , i - 1 

i # j .  (8g. 1.6) 
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If we denote the residual Ui  - P(Ui )  by Ui.12 , , , ( i - l ) ,  then (8g.1.6) is equiva- 
lent to the statement that the residuals 

Ul, u2.1, u3.12 9 * * * 7 Up.12 . . . ( p -  1) (8g. 1.7) 

are all uncorrelated. 

Gram-Schmidt 0.n.b. Let t i i  = 11 U,  - P(U,)Il, which is the standard deviation 
of the residual Ui.12 . . . ( i - l ) .  Consider 

41Gl = u1 = u1 

tppGp = Up - P(Up)  = Up - tplG1 - * * *  - t P ,  p -  1 G p -  1 .  

1 2 2 6 2  = U2 - P(U, )  = U2 - t 2 l G I  (8g.l.8) 
... ... ... 

Note that the projection of Ui on d ( U l ,  . . . , UiT1) can be expressed in 
terms of G,, . . . , G i - l  and the coefficients can be sequentially determined as in  
Gram-Schmidt orthogonalization process [(ii), la.41. If t i i  = 0, Ui  is complete- 
ly determined by the previous variables. Then put G, = 0. Otherwise 

Gi = [Ui - P(Ui)] t t i i  = Ui.12 . . . ( i - 1 )  + t i i  

so that llGill = 1, and by using (8g.1.7) the GI corresponding to non-zero l i i  
constitute an 0.n.b. The inverse relationship of (8g.1.8) is 

UI = 4 l G l  
u2 = t2lGl + t 2 2  G22 (8g. 1.9) 

UP=tplGl  + t p 2 G 2  + * * + + t P P G P  

which can be written as U = TG, where T is the lower triangular matrix as in 
(8g. 1.9). Then 

C = E(UU’) = TE(GG’)T’ = TT‘. (8g. 1.10) 

Equation (8g.1.10) shows that T is exactly the matrix obtained by the square 
root method of reduction of C ,  which is simple and well known. When 
R(C) = p ,  all the diagonal elements of T are non-zero. Otherwise ( p  - m) 
diagonal elements and the corresponding columns are zero so that the rela- 
tionship (8g.1.9) involves only m of the Gi variables. 

In practice the two relationships expressing (correlated variables) U in 
terms of (uncorrelated variables) G, and G in terms of U may be obtained 
simultaneously if necessary by applying the square root technique to C with a 
unit matrix I appended to the right: 

c i I. (8g.1.11) 
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After reduction by the square root method, one obtains 

T' I W, (8g. 1.12) 

where T' is an upper triangular matrix and W is a lower triangular matrix. Then 
the transformation from G to U and from U to C are given by 

U = T G  and G=WU. (8g.1.13) 

8g.2 Principal Component Analysis 

Consider ap-dimensional rev. U with the dispersion matrix C. Let I l  2 - . > I p  
be the eigenvalues and P,, . . . , P, be the corresponding eigenvectors of Z. Then 
it is shown in (lc.3.5) that 

x = A,P,P; + . * *  + A,P,Pi 
I = P,P; + * ' .  + P,Pi 

(8g.2.1) 

P;CPi = I i ,  PjZPj = 0, i # j .  (8g.2.2) 

Consider the transformed r.v.3 

Yi = PjU, i = 1, .. . , p .  

If Y denotes the vector of the new r.v.'s, and P denotes the orthogonal matrix 
with P,, . . . , P, as its columns, then Y is obtained from U by the orthogonal 
transformation Y = PU. The r.v. Yi is called the ith principal component of 
U. We shall examine some of the properties of the principal components and 
their interpretations. 

(i) The principal Components are all uncorrelated. The variance of the ith 
principal components is 1 , .  

These results follow from (8g.2.2) 

V(P{U) = PpP, = I, 
cov(P;u, PJU) = PiCP, = 0, i Z j .  

Thus the linear transformation Y = PU reduces a correlated set of variables 
into an uncorrelated set by an orthogonal transformation. 

(ii) Let G ,  = 1;"2P/U for 1, # 0 and further let r be the rank of C so that 
only thefirst r eigenvalues of I; are non-zero. Then G, ,  . . . , G, is an 0.n.b. of 
the r.u. U. 

(iii) Let B be any vector such that IlBll = 1. Then V(B'U) is a maximum 
when l3 = PI and the maximum variance is I,. 
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Since V(B’U) = R’CB, we need the max B‘CB subject to the condition 
IlBll = 1. But it is shown in (lf.2.1) that the maximum is attained when 
B = P1. 

In fact we have the following as a consequence of the results established in 
lf.2. 

(iv) 

(b) 

(a) min V(B’U) = ,Ip = V(PAU). 
llBll = I 

max 
llBll = 1 , B l P l  o . . . ,  P,- I 

s*-  1 

V(B’U) = ,Ii = V(PiU). 

(c) min max V(B’U) = L i  = V(PJJ). 

where Si-l is a space of ( i  - 1) dimensions in E p .  

IlBll = 1,BlSl- 1 

(d) Let B,, . . . , B, be a set of orthonormal vectors in Ep . Then 

Ll + * - + Ak = max [ V(B; U) + + . + V(B;U)] 
BI.. . . ,Bk 

= V(P;u) + * * ’  + V(P;u). 

(v) Let B; U, . . . , BLU be k linear functions of U and cri2 be the residual 
variance in predicting Ui by the best linear predictor based on B;U, . . . , BiU. 
Then 

min fo iz  

is attained when the set B;U, . . . , B;U is equivalent to P;U, . . . , P;U, that 
is, each BIU is a linear combination of the first k principal components. 

We can, without loss of generality replace B;U, . . . , B;U by an equivalent 
set of uncorrelated functions and each with variance unity. It is also clear 
that the functions B;U, ..., B;U should be linearly independent for the 
optimum solution. The residual variance in predicting Ui on the basis of 
B;U, , , . , B;U is 

BI. ..., Br i =  1 

0: - [cov(U~, B;U)]’ - * * a  - [ C O V ( U i ,  B;U)]’ 

= oil - (Bizi)’ - * * * - (B; Ci)’ 

= Oii - B;CiC;B, - * * * - BiCiCiBk, 

where Ci is the ith column of C and oii is the variance of U i .  Now 

P P P 

i =  1 i =  1 i =  1 
xu: = x u i i  - B;( xCiCi)Bl  - - - .  - B; 
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To minimize aiz, we need maximize 

BiCCB, + * * + BiCCB, (8g.2.3) 

subject to the conditions 

BiCB, = 1, BiCB, = 0, i # j  (88.2.4) 

(i.e,, B;U, . . . , B;U are uncorrelated and each has variance unity). The 
optimum choice of Bi in such a case, as shown in Example 22 at the end 
of Chapter I ,  is 

(8g. 2.5) &(B,, . . . , B,) =&’PI, . . ., Pk) 
where PI, . . , , P, are the first k eigenvectors of 

IC-AI( =o.  (8g.2.6) 

The result (v) provides an interesting interpretation of the principal com- 
ponents. Suppose we wish to replace the p-dimensional r.v. U by k < p  
linear functions without much loss of information. How are the best k linear 
functions to be chosen? The efficiency of any choice of k linear functions 
depends on the extent to which the k linear functions enable us to reconstruct 
the p original variables. One method of reconstructing the variable U, is by 
determining its best linear predictor on the basis of the k linear functions, in 
which case the efficiency of prediction may be measured by the residual 
variance oi2. An overall measure of the predictive efficiency is 1 ui2. The best 
choice of the linear functions, for which ai2 is a minimum, is the first k 
principal components of U. We shall show in (vi) that a much stronger 
measure of overall predictive efficiency yields the same result. 

Let us represent the k linear functions B;U, . . . , B;U by the transformation 
Y = B’U where B is a p x k matrix, with B,, . . . , B, as its columns. Now the 
joint dispersion matrix of U and Y is 

(8g.2.7) 

and the residual dispersion matrix of U subtracting its best linear predictor 
in terms of Y is 

C - CB(B’CB)-’B’C. (8g.2.8) 

The smaller the values of the elements of (8g.2.8), the greater is the predictive 
efficiency of Y. In (v) we found B in such a way that 

trace (C - CB(B’CB)-’B’C) (8g.2.9) 

is a minimum. We now prove the stronger result. 
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(vi) The Euclidean norm 

IIC - C B(B’ZB)- B’CII (8g.2.10) 

is a minimum when the set of vectors B,, . . . , Bk is equivalent to the eigen- 
vectors P,, . . . , Pk . 

Thus the two measures of overall predictive efficiency, uiz., 

(a) trace(C - ZB(B‘ZB)-’B’C), 
(b) IIC - CB(B’XB)-’B’C[[, 

lead to the same optimum choice of the vectors B, .  

the minimum of (8g.2.10) is attained when 
To prove the result of (vi) we apply the result (lf.2.10) which shows that 

CB(B’CB)-’B’C  PIP; + . * *  + IkPkP;. (8g.2.11) 

It is easy to verify that the choice B, = Pi satisfies the equality in (8g.2.11). 
For a study of estimated principal components and tests of significance 

associated with them reference may be made to Kshirsagar (1961, 1972). The 
book by Kshirsagar ( I  972) contains a good account of multivariate distribu- 
tion problems. 

COMPLEMENTS AND PROBLEMS 

1 Let U,, . . . , U, be n points in a p-dimensional Euclidean space E p .  The 
point tf = n-l 1 Ui is the center of gravity of the points. Denote by %, the 
p x n matrix with its ith column as Ui - ti. Consider the matrices %@‘ and 
%’%. It is known that both the matrices have the same non-zero eigenvalues. 
If Pi and Q, are the eigenvectors of $24’ and %‘a corresponding to the eigen- 
value A ,  # 0, then &Q, = %‘Pi and &Pi = %Q,. 
1.1 Determine points V,, . . . , V, in E, such that they lie on a k-dimensional 
plane and 

n 

i =  1 
C (U, - V,)’(U, - Vi) is a minimum. 

[Show that the k-dimensional plane s k  on which the optimum points V:, , . , , 
V,* lie is specified by the point u and the k orthonormal vectors P,, . , . , Pk, 
the first k eigenvectors of WE!’. Hence show that 

v: = u + P;(u, - U)P, + * ‘ * + Pi(u, - u)Pk = 1, * 9 n.] 

Also show that min 1 (U, - V,)’(U, - V,) = &+ + 
are the eigenvalues of 9%’. 

* + I, where I,, . . . , ,Ip 
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1.2 Show that the k-dimensional plane s k  defined in (1.1) is the best fitting 
k-dimensional plane to the given points U,, . . . , U, in the sense that the sum of 
squares of the perpendiculars from the points to Sk is a minimum compared 
to any other k dimensional plane. 

1.3 Let Y = B,9, where B is a k x p matrix, represent a transformation of 
the points in Ep into points in E k ,  k c p .  Further let Yi = BUi , i = I ,  . . . , n be 
the transformed points corresponding to the points U,, . . . , U, in E,, . Show 
that 

xk (Y, - yj)’(yi - yj) is a maximum 
i , j =  I 

when the columns of B‘ are P,, . . . , Pk, the first k eigenvectors of %6‘. Show 
that the maximum value of the above sum is I, + * * * + & ,  where l i  are eigen- 
values of 96‘. 
1.4 Consider the matrix 9’4. The ith diagonal element of the matrix is 
IIU, - UI12, the square of the distance of the point Ui  from the centre of 
gravity. The (i,j)th element is the product of the cosine of the angle between 
the vectors Ui - and U j  - U and the distances I(Ui - UII, IIUj - UII. Thus 
9’% is a matrix characterizing the configuration of the points U,, . . . , U, as 
measured by the distances and mutual angles between the lines joining the 
points to the center of gravity. Let Y = B 9  be a transformation of the points 
of Ep into Ek as in Example 1.3. The configuration of the transformed points 
is represented by the matrix Y’Y = q’B’B9 .  Determine the matrix B such 
that there is a minimum distortion in the configuration, due to the transforma- 
tion, as measured by the Euclidean norm I(6‘9 - 9’B’BQ(I. 

[Hint: Use the result (lf.2.10) which shows that for the optimum choice of B 

where Q,,  . . . , Qk are the eigenvectors of %’%. But Qi = I,71’2%‘Pi. Hence 

6’B‘B% = 6’(PlP\ + * . * + PkPi)%, 

which gives B’B = P,P; + . . * + PkPi or the columns of B’ are the eigenvectors 

2 Let u,, .. ., uk and u,, . . ., urn be two sets of k and m one-dimensional 
random variables. Their joint dispersion matrix may be written in the parti- 
tioned form 

PI, * 7 pkl. 

Some or all of ui may be a subset of the variables u i .  
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2.1 Consider a linear function b,u, + * * .  + b, , ,~ , , , .  The residual variance in 
predicting ui by its linear regression on b,u, + * * * + b, u, is 

[cov(ui 9 biui + * * + b,,, u,,J12 
Oi2 = V(u,) - 

V(blul + + b , , ~ , )  

Show that the vector (b , ,  . . . , b,,,) which minimizes c: oi2 is the eigenvector 
that corresponds to the dominant root of 

Ic2lCl2 - 1 x 2 2  I = 0. 

2.2 Show that the best r linear functions of ul,  . . . , u,, for predicting u,, . . . , 
uk in the sense of minimizing the sum of residual variances correspond to the 
first r eigenvectors that arise out of the determinantal equation in (2.1). 
2.3 Observe that when u l ,  . . . , uk is a subset of u, ,  . . . , v,,,, the first k eigen- 
vectors give rise to linear functions of u,, . . . , u, only, which are the principal 
components of u,, . . . , uk. 
3 Let ul, ..., uk be k one-dimensional random variables. Determine a 
linear function b,u, + . . . + bk uk such that 

is a minimum where wI2, . . . , wkz are given weights. 
4 Let U,, . . . , U, be n points in E,, . Determine n points V,,  . . . , V, such that 
they lie on a k-dimensional plane and 

n 

1 (Ui - Vi)’A(Ui - V,) is a minimum 

where A is a given positive definite matrix. 
5 Show that Hotelling’s T 2  test for testing the hypothesis that the mean 
vector of ap-variate normal population has an assigned value, on the basis of 
a sample of size n, can be obtained by the likelihood ratio principle. 
6 Consider two alternative distributions of a p-dimensional random 
variable U, with means ti,, ij2 and common dispersion matrix C. Mahalanobis 
(1936) distance D2 between the populations is defined by 

1 

D2 = (61 - 62)’C-’(61 - 62). 

Show that D2 is invariant under a linear transformation of the variable U. 
Find the linear transformation which reduces D2 to  a sum of squares. 
7 Let U i  - Np(aip ,  C), i = 1 ,  . . . , n be independent. Show that 

Q =CU,U;  - ZZ‘ and ZZ’ 
~ 

are independently distributed, where Z = b i U i ,  bi = ai/J 1 ui2. 
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[Hint: From the notation of (8b.l.I), Z = %'B,B' =(bl ,  . . . , b,,), and 
Q = 9'4% - %'BB'% = %'A%, Verify that AB = 0 and apply (iii), 8b.2.1 
8 Let S - Wp(k, C) and I C 1 # 0. Show that the c.f. of S is 

The result follows from the definition of W,(k, C) by first obtaining 

E exp(iC c t,, u, Us) 
where (U,, . . . , Up) - N,(O, C). 
9 Consider a partition U' = (U; i U;) of the random variable and the cor- 
responding partition of C. 

Consider independent observations on U and let ( S l j )  be the corrected sum of 
squares and products. Choose a linear function L'U2 of U, and carry out a 
regression analysis of L U 2  on the components of UI. 
9.1 Show that the sum of squares due to regression and deviation from regres- 
sion are (using the univariate formula) 

L'S,,S,,-1S,2L and L'(S2, - S21SlI-1S12)L, 
where S,,, S12,  S2, are the partitions of S similar to that of C. 
9.2 Let the number of components in U, and U, be r and s. Observe that 
when C,, = 0, from the univariate theory, then 

L'S21SI,-'S,,L and L(S,, - S21S,1-1S,,)L 

are independently distributed as central x2's on r and (n - 1 - r )  D.F. 
Deduce that, by the technique of dropping L (ii, 8b.2), 

S21SLl-'S12 - Wkr, C), 

and are independent. 
9.3 Show that when C,, = 0, 

S22 - S21Sll-'S12 - Ws(n - 1 - r ,  C) 

is distributed as a product of independent beta variables. 
10 Let p measurements on each of two brothers be made from n families. 
Determine the best linear compound of the measurements which maximizes 
the sample intraclass correlation. Devise a test for examining the significance 
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of correlation between measurements of brothers. [For details see Rao 
(1945a).] 
11 Rectangular Coordinates. Let Ui  N Np(O, C), i = 1, . . . , k be inde- 
pendent. The Wishart matrix is defined by S = x U, Ui. Furthermore, let T be 
a (lower) triangular square root of S. The elements Ti, of .T are called rec- 
tangular coordinates by Mahalanobis, Bose and Roy (1937). 
11.1 Consider the transformation from (S,,) to (Ti,). Show that the Jacobian 
of transformation is (using the relation S = TT') 

D(S1l'*'"Spp) =(2Tll)(2TllTzz)~~*(2T,lT2z * * *  Tpp) 

= 2pTllpTf;1 * a *  Tpp. 
mil, . . * , TPJ 

11.2 Let (S") = (S l j ) - ' .  Then 

(a) lS11/2 = T11Tz2 ... Tpp, 
1 

S p p  
(b) Tpp =-s 

2 1  ( 4  Tpp - --@ XZ(k - P + 1). 

[Note that (c) is same as the result (a), (viii), 8b.2.1 
11.3 Let C = 1. From the relation S = TT', observe that Tpl, . . . , Tp, p - l  are 
linear and T p i  is quadratic in Upl, . . . , up,. Furthermore, 

k 
Upr2= S,, = TPl2  + a * *  + T,Z,,-i + T,:, 

r = l  

and T,; is a quadratic form of rank (k - p + 1) since it is a x 2  on (k - p + 1) 
D.F. Since C = I, Uplr . . . , up, are independent N1(O, 1) variables. Hence, by 
applying Cochran's theorem, we see that 

Tp, - Nl(O, I), 

and Tp; - X2(k - p + I )  and are all independent. Now establish that all T,, 
are independently distributed and that 

Ti, - Nl(O, l), i # j  and T,lZ - x2(k - i + 1). 

TPiz N ~ ' ( 1 )  or i = 1, . , . , ( p  - 1) 

11.4 The joint density of Ti, when C = I is, therefore, 
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11.5 .The joint density of(Sij) when C = I is obtained by dividing the density 
in (11.4) by the Jacobian in (11.1) and writing the expressions in terms of 
(S,,). Thus, we obtain the density of (Si j )  

A ~ -  (Sr I + h a  + **.+ Spp)/2 (k-p- 1)/2 PI  
where the constant A is as in (1 1.4). 
11.6 The joint density of (Si j )  for general C is obtained by making the trans- 
formation 

CC' = C 

where S* has the density as in (11.5). Observe that 

s = CS*C', 

(b) IS1 = IS*( 1x1 
(c) C S: =trace S* = trace(C-'SC'-') = trace(C'-'C-'s) 

= trace C - ' S  = 1 C o'Jsij.  

Hence establish the required density as 
A ( C I  - k l 2 ~  ~ ~ 1 ( k - p - l ) l 2 ~ -  iracc(E-~S) /2  

which is the density of Wishart distribution Wp(k, Z) when k 3 p. The density 
,function does not exist when k c p .  
11.7 Hence, or directly from Example 11.4, show that the density of rec- 
tangular coordinates for general X is 

2 p ~ l q  -k/ZTk-lTk-Z ... k - p  - Irsce(T'E-~S) /Z 
11 2 2  Tpp f? 

11.8 Observe that the density function P(U I 72) = p(U, I C) . . .p(U, I Z) 
of U,, . . . , U, involves only S and C. Then show that (due to Malay Ghosh) 

where P(SI C) is the density of S for general C. (Since P(SI I) is derived in 
11.4, the expression for P(SI C) can be written down readily using the above 
formula without the heavy algebra involved in 11.6). 
Hint: Let us transform from U to S, Z and let the Jacobian be J(S, 2). Then 

P(SI C )  =SP(UI C)J(S, Z )  dZ = P(UI Z) / J ( S ,  Z )  d Z .  

Putting C = I 
P(S 11) = P(U I 1) SJCS, Z) dZ 

Then P(S I C)/P(S I I) = P(U I C)/P(U I I) which also follows from sufficiency of 
S for C.] 
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12 Let U be the sample mean and (S , j )  be the corrected S.P. matrix of n 
independent samples U,, . . ., U, from N,(p,  E). Then Hotelling’s T 2  is 
defined by 

T~ = n(Pf - p)(sij)-’(U - p), sij = Slj / (n - I), 

and it was shown in [(xii), 8b.21 that 

n - p  T 2  
F(P, n -PI* - -N 

p n - 1  

12.1 Show that 

12.2 Hence, if Fa is the upper a point of the F distribution on p and (n - p) 
D.F., deduce that 

p{n[L(U - p)12 < L’(sij)L[(n - l ) p ~ , / ( n  - p ) ]  for all L) = 1 - a. 

Observe that 
-- 

P{L’U - c m j j L  < ~ ‘ p  < L U  + cJL’(sij)L, for any L )  2 1 - a 

where c2 = (n - l)pF,/n(n - p), leading to simultaneous confidence intervals 
for all linear functions of p. [Roy and Bose, 1953.1 

13 Distriburion of fhe Multiple Correlation (Fisher, 1928). Let U,, . . . , IJ,, 
be n independent observations from Np(p,  Z) and (SIj lk  be the corrected S.P. 
matrix for the first k components of U. The multiple correlation of the pth 
component on the others is estimated by 

I Sij I p where RO2 = min 1 (Up, - a - PI U , ,  - * * - U p - ,  , J2 = - 
a ,  Pd I Sijl p - 1  

13.1 
that 

From the second fundamental theorem of least squares (p. 191) deduce 

Ro2 N a2X2(n - p ) ,  R I 2  - Ro2 N a2x2(p - 1, a2), 
P- 1 

i , j =  1 
where d2 = S l j  pi pi f u2 in  which u2 is the residual variance of Up given 
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U , ,  . . . ,  U p - , .  Hence the conditional density of R2 given U i r ,  i =  I ,  ..., 
p - I ; r = 1, . . . , n is that of x 2 ( p  - I ,  S 2 ) / [ x 2 ( p  - I ,  6') + xZ(n - p ) ]  which 
is noncentral beta (Examples 17.1 and 17.2 of Chapter 3): 

where B(xla,  8) = r(a + p)x"-'(I - ~)~-'/r(a)r(B). 
13.2 Observe that the conditional distribution of R2 involves only 6,. But 
S2a2 - (2 aijf l i  f l j )xz(n - I ) .  Multiplying the conditional density of R2 by 
the density of 6, and integrating term by term with respect to a', obtain the 
unconditional density of R2 as 

where p 2  is the population multiple correlation coefficient, 

1 P -  1 

p2 = c c U,]pJ3] + u2 = 1 - - 
I ,  I =  1 up, u p p  

= I - - - .  1 I % l p  
f f P P  I"i1Ip-1 

14 Let S, - W,(k,,  C) and S2 - W,(k , ,  C) be independently distributed. 
Use only the definition of Wishart distribution or the density function for the 
random matrix S, to establish the following. 
14.1 The roots of the equation IS, - A(S, + S,) 1 = 0 and the elements of 
(S, + S,) are independently distributed. 
14.2 In particular I S, I / I S, + S, I is distributed independently of S, + S, . 
14.3 Hence deduce that if Si - W,(ki ,  C), i = 1, 2, . . . and are all independ- 
ent and k, 2 p, then 

... IS11 IS, + s21 
IS, + S2l' IS1 + s 2  + s3 I ' 

are all independently distributed. 
15 In 8d.3 we have considered the tests for an assigned discriminant function 
and for an assigned ratio of the coefficients of any two specified variables. 
What is the test for assigned ratios p , ,  . . . , ps of s specified variables say x,, . . . , 
x, out of x,, . . . , x,? 
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[Hint: The test is the same as that of examining the sufficiency of the 
p - s + 1 variables 

P I X ,  + . . 4 + P , x , ,  X S + l , . . . , X P .  

If D:-,+ I is the D2 based on them and Dp2 is the D2 based on all thevariables, 
the variance ratio is 

on (s - 1) and (N, + N 2  - p - 1)  D.F. See 8d.3 for notation.] 
16 Let Ap2 and Aq2 denote the Mahalanobis distances between two popula- 
tions based on p characters and a subset of q characters respectively. Show 
that the test (8d.3.2) is for the hypothesis Ap2 = 0 whereas the test (8d.3.7) 
is for the hypothesis Apz = Aq2. Observe that A,' 2 Aq2 in general. 

17 Complex Normal Distribution. A complex randomp-vector Z = X, + iXz 
is said to be distributed as complex p-variate normal distribution if for every 
complex vector L, 

R.P.(L*Z) N N,(R.P.(L*p), L*QL) 

where R.P. denotes real part, p is a complex p-vector and Q is p x p hermi- 
tian, non-negative definite matrix. In such a case we write: 

Z - CNP(v, Q )  
Denote p = p1 + i p 2 ,  Q = Q1 + iQ2,v' = (pi :pi) and 

Show that 

(ii) R.P.(L*Z) and I.P.(L*Z) are independently distributed for any L. 
(iii) I.P.(L*Z) - N ,  (I.P.(L*p), L*QL) where I.P. denotes imaginary part. 
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chi-square (central), 166, 181 
chi-square (noncentral), 182 
circular normal, 174, 177 
correlation coefficient (null). 207 
correlation coefficient (non-null), 208 
degenerate, 151 
Dirichlet, 215 
directional data, 175 
equilibrium state of particles, 172 
exponential family, 195 
f (cen tral), 165 
f(noncentral), 172, 216 
F (central), Fisher, 167 
F (noncentral), Fisher. 216 
gamma, 151, 164 
geometric, 88 
Hotelling’s T’ (non-null), 542 
Hotelling’s T’ (null), 542 
Hyperbolic cosine, 151 
hypergeometric, 88 
Laplace, 151,212 
life testing model, 213 
logarithmic, 88 
logistic, 213 
lognormal, 2 12 
Makeham’s law, 214 
Maxwell, 173 
multinomial, 355 
multiple correlation (central), 273 
multiple correlation (noncentral), 599,600 
multivariate normal, 184, 194,527 
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Density, fCon tinued) 
negative binomial, 88 
normal, 88 
order statistics, 214 
Pareto, 212 
Pearsonian curves, 213 
Pearson PA, 168 
Poisson, 88, 102 
Rayleigh, 164 
rectangular, 151 
regression coefficient, 208 
Student’s t (central), 170, 183, 197 
Student’s f (noncentral), 171 
symmetric normal, 196 
triangular, 15 1 
Von Mises, 177 
waiting time, 166 
Weibull, 214 
Wishart, 597,598 
wrapped-up distributions, 178 
z (Fisher), 167 

Determinantal equation, 38 
Determinants, 22, 31 
Discriminatory analysis, discriminant 

scores, 574 

580 
discrimination of composite hypotheses, 

Fisher’s discriminant function, 56 7 
sufficiency of discriminant function, 578 
tests on discriminant functions, 568, 

569,601 
Dispersion matrix, 107, 517 
Distribution free methods, 499 
Distribution function, conditional, 91 

convergence. See Convergence of distribu- 
tion functions 

convolution of, 103 
decomposition of, 85 
definition, 84 
properties of, 85-87 

Distributions (sampling, asymptotic), X1 

X’ for goodness of fit (Pearson), 391 
deviation in a single cell, 393 
deviation in specified cells, 397 
fractiles, 423-425 
functions of statistics, 385-388 
H-test for homogeneity, 389 
Kolmogorov-Smirnov test, 42 1 
likelihood ratio tests (Neyman-Pearson), 

for contingency tables, 403,404-41 2 

417 

Distributions (sampling, asymptotic), 
(Continued) 

linear functions of frequencies, 383, 384 
quadratic function of frequencies, 384 
scoring test (Rao), 4 17,4 18 
standard errors, 386-388 
Wald’s large sample tests, 4 17,4 19 
Wilk’s A, 556 

Distributions (sampling, exact), chi-square 
(central), 181 

chi-square (noncentral), 182 
correlation, intraclass (non-null), 200 
correlation, intraclass (null), 199 
Correlation, multiple (non-null), 599,600 
correlation, multiple (null), 273 
correlation, product moment (non-null), 

correlation, product moment (null), 207 
Fisher’s F (null), 167 
Fisher’s F (non-null), 216 
Fisher’s I ,  167 
Hotelling’s T’ (non-null), 542 
Hotelling’s Ta (null), 542 
Mahalanobis’ D2, 542 
PA (Pearson), 168 
quadratic forms, 185-193 
regression (bivariate), 208 
sample mean and dispersion, 537 
sample mean and variance, 182 
square of normal variable, 163 
Student’s t (non-null), 171 
Student’s t (null), 170 
U-statistic (additional information, Rao), 

Wishart distribution, 597, 598 

208 

5 54 

Eigen values, 38 
Eigen values (restricted), 50 
Empirical distribution function, convergence 

(Glivenko), 421 
definition, 420 
Kolmogorov-Smirnov statistic, 4 2 1 
Kolmogorov theorem, 421 
Smirnov theorem, 422 

Entropy, 173 
Estimation, B A N estimator, 348 

Bayes’ estimator, 335 
biased estimator, 332 
C A N estimator, 347 
confidence set, 334,470 
consistency (Fisher), 345 
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Gauss-Markoff theory (multivariate), 

(Con tinu ed) 
applications, 562-573 
covariance analysis, 552 
estimation (BLUE etc.), 544-547 
growth model, 56 1 
model (general), 543,544 
structural relationship (dimensionality), 

tests of linear hypotheses, 547-551 
Gauss-Markoff theory (univariate), BLE 

BLIMBE (best linear minimum bias), 

BLUE (best linear unbiased), correlated 

556,564 

(best linear), 305 

3 06 

observations, 229 
efficiency of estimators, 233 
geometric solution, 228 
least squares theory, 223 
normal equations, 222, 230 
random parameters, 234 
simultaneous confidence intervals, 240 
simultaneous estimation, 233 
singular covariance for observations. 

See Linear estimation-Unified theory 
choice of design matrix, 235 
Gauss-Markoff model, 221 
random parameters, 234 
restricted parameters, 231 
tests of hypotheses, 237-240 
variance of estimator, 226,230 

Gram-Schmidt orthogonalization, 10 
Growth model (Pothoff, Roy), 561 

Estimation, (Continued) 
consistency (method), 345 
consistency (probability), 344 
C U A N estimator, 350 
efficiency (asymptotic variance), 346 
efficiency (first order, Rao), 348 
efficiency (Fisher), 348 
efficiency (second order, Rao), 352 
empirical Bayes estimator (Robbins), 336 
fiducial inference (Fisher), 339 
general estimation problem, 334 
Haldane’s discrepancy, 352 
Hellinger distance, 352 
inadmissibility of sample mean (Stein), 

343 
information limit to variance (Cramer, 

Rao), 324-326 
information matrix, 33 1 
information measure, 329-33 1 
Kullback-Leibler separator, 352 
law of equal ignorance, 336 
law of succession, 336 
least squares. See Linear estimation, 

Gauss-Markoff 
maximum likelihood. See Maximum 

likelihood 
method of moments, 351 
method of scoring, 367-370 
minimax, 34 1 
minimum variance, 3 17-3 29 
minimum chi-square, 352 
pooling of estimators, 389 
sufficient statistic. See Sufficiency 

conditional (given subfield), 141 
conditional (substitution in), 153 
definition and theorems, 92 
moments, 93 

Expectation, conditional (given statistic), 96 

Exponential family of distributions, 195 

Factor analysis, 587 
Factorial moments, 102 
Fiducial probability, 339 
Fisher’s F ,  167 
Fisher’s z, 167 
Fraser-Sprott equation, 207 

g-inverse. See Matrix inversion 
Gauss-Markoff theory (multivariate), addi- 

analysis of dispersion. See Analysis of 
tional information (test for), 551 

dispersion 

HoteUing’s P, 542 
Huzurbazar’s conjecture (sufficiency), 13 2 
Hypothesis. See Testing of hypotheses 

Independence of events, 90 
Identification problem, 491 
Inequalities (algebraic), Bessel, 10 

Cauchy-Schwarz, 54 
Frobenius, 3 1 
Hadamard, 56 
Halder, 55 
information theory, 58 
Jensen, 58 
Kantorovich, 74 
Lagrange identity, 55 
Minkowski, 56 
moments, 56 
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Inequalities (algebraic), (Continued) 

Inequalities (Probability), Berge, 145 
Sylvester’s law, 3 1 

Camp-Meidell, 145 
Cantelli, 145 
Chebyschev, 95 
Chebyschev type, 145 
Hajek-Renyi, 114, 143 
Hblder, 149 
Jensen, 149 
Kolrnogorov, 143 
Minkowski, 149 
Peek, 145 

Infinitely divisible distribution, 149 
Information limit to variance (Cramer, 

Information measure (Fisher), 329-33 1 
Intrinsic accuracy (Fisher), 33 1 
Invariance, principle in estimation, 343 

Rao), 324-326 

principle for CLT, 148 
probability measures, 138 
statistical procedure, 139 

Law (zero or one), 148 
Law of equal ignorance, 336 
Law of iterated logarithms, 129, 130,488 
Law of large numbers, Chebychev’s theorem 

(WLLN), 112 
definition (WLLN, SLLN), 112 
Kinchin’s theorem (WLLN), 112, 146 
Kolmogorov (SLLN), 114,115 
Kolmogorov (WLLN), 146 
other theorems, 146 

Law of succession, 336 
Least squares. See Gauss-Markoff, Linear 

estimation 
Lebegue integral, 133, 134 
Lebegue-Stieltjes integral, 132 
Lemmas named after authors, Botel- 

Cantelli, 137 
Farka, 53 
Fatou, 135 
Helly, 11 7 
Kronecker, 148 
Neyman-Pearson, 446 
Schur, 77 

Likelihood, 353 
Likelihood ratio (monotone), 46 1 
Likelihood ratio test (Neyman-Pearson), 

417,418 

Limit theorems. See Central limit theorems, 
Law of large numbers, Distributions 
(asymptotic), Convergence of random 
variables and Convergence of distribu- 
tion functions 

Linear equations, 6 
Linear estimation (Unified theory), basic 

lemma on g-inverse, 294 
general Gauss-Markoff model, 297 
Gauss-Markoff model. See Gauss-Markoff 

I. P. M. method, 298 
test for consistency, 297 
test of linear hypotheses, 299 
U. L. S. method, 300 
variances and covariances, 298,301 

theory 

Mahalanobis D” 542 
Matrix, adjoint, 76 

Cayley-Hamilton theorem, 44 
circulant, 6 8  
conjugate transpose, 16 
derivatives, 71, 72 
eigen values and vectors, 38 
elementary, 17 
g-inverse. See Matrix inversion 
gramian, 69  
hermitian, 17 ,42  
idempotent, 28 
identity (or unit), 15 
inverse, 16 
inverse, generalized. See Matrix inversion 
non-negative, 45 
normal, 43 
null, 15 
nullity, 27 
null space, 27, 3 1 
orthogonal, 17 
partitioned, 17 
range space, 27 
rank, 16 
symmetric, 17 
trace, 28,33,65 
transpose, 15 
unit (or identity), 15 
unitary, 17 

Matrix inversion, computation of g-inverse, 
27,34, 224 

duality between A-m and A-1,49 
g-inverse, 24 
least squares inverse, 48 
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Multivariate moments, 107 
Multivariate normal distribution, bivariate 

normal, ,201 
characteristic function, 184, 5 19 
characterization, 525,526,532 
definition, 184,518,522 
density (nonsingular dispersion), 184, 194, 

density (singular dispersion), 527 
estimation of parameters, 528 
properties of, 519-524 
symmetric, 197 

517,527 

Matrix inversion, (Continued) 
left inverse, 16 
minimum norm inverse, 48 
minimum norm least squares inverse, 49 
Moore-Penrose inverse, 26,49 
reflexive g-inverse, 26 
right inverse, 16 

new product (Khatri-Rao), 30 
Kronecker, 29 

diagonal form, 19, 20 
echolon form, 18 
Frobenius theorem, 46 
Hermite canonical form, 18 
Hermitian matrix, 42 
Householder transformation, 21 
Jordan form, 45 
Metzler matrix, 46 
non-negative matrix, 45 
nonsymmetric matrix, 43 
normal matrix, 43 
pairs of matrices, 4 1 
Perron’s theorem, 46 
polar form, 70 
Q-R-decomposition, 21 
rank factorization, 19 
triangular form, 20, 22 
symmetric matrix, 20, 39 
singular value decomposition, 43 
spectral decomposition, 40,45,46 

Matrix product, Hadamard, 30 

Matrix reduction, commuting matrices, 4 1 

Maximum likelihood (m.l.), characterization 
by m.1. estimators, 378 

distribution of m.1. estimators, 365 
limitation of m.1. method, 355 
m.1. equation estimator, 353 
m.1. estimation of multinomial, 355, 

m.1. estimator, 353 
near m.1. estimator, 353 
properties of m.1. estimator, 364 
scoring for m.1. estimation, 366 

Minimum trace problems, 6 5 4 7  
Minque theory (variance components), 303 
Moment generating function, binomial, 102 

356-363 

definition, 101 
normal, 103 
Poisson, 102 

Moment problem, 106 
Multinomial distribution, definition, 355 

estimation, 356-363 

Nonparametric inference, distribution free 
method, 499 

Fisher-Yates test, 501 
permutation distribution, 503 
randomization principle, 501 
robustness, 497 
sign test, 500 
Van der Waerden test, 501 
Wald-Wolfowitz test, 500 
Wilcoxon test, 500 

Normal distribution, characteristic function, 
103, 159 

circular normal, 174, 177 
moment generating function, 101 

Normal distribution (characterization), 
Cramer’s theorem, 162 

Darmois-Skitovic theorem, 218 
De Moivre’s theorem, 160 
Hagen’s hypothesis, 16 1 
Herschell’s hypothesis, 158 
maximum entropy, 162 
Maxwell’s hypothesis, 160 
other theorems. 218 
Polya’s theorem, 215, 216 

Order statistics, 214,410 
Orthogonal basis of a random variable, 587 

Permutation distribution, 503 
Principal components, 590 
Probability, axioms, 82 

conditional, 90 
density (p.d.), 87, 89 
family of measures, 130 
generating function, 101 
independence, 90 
measure, 83 
posterior, 334 
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Probability, (Continued) 

prior, 334 
space, 84 

Probability generating functions, binomial, 
102 

convergence of, 126 
definition, 101 
Poisson, 102 

explicit expressions, 47,48 
orthogonal, 10,47 

Projection operator, definition, 46 

Quadratic forms, classification, 35 
distribution of, 185-193 
extremum problems, 60-65 
reduction of one form, 20,40 
reduction of two forms, 41  
transformation, 35 

Random variables, conditional distribution, 

convergence. See Convergence of random 

definition, 84, 87, 89 
independence of, 92 
Kolmogorov consistency theorem, 108 

91 

variables 

Randomization principle, 501 
Regression and association, best linear 

predictor, 266, 267 
best predictor, 264 
canonical correlations, 582 
canonical variables, 584 
common factors, 585 
correlation ratio, 265 
covariance analysis, 289 
factor analysis, 587 
general theory of, 263-270 
intraclass correlation, 268 
linear predictor, 266,267 
multiple correlation, 266, 268 
part correlation, 3 11 
partial correlation coefficient, 268, 269 
partial correlation ratio, 268 
partial multiple correlation, 268 
restricted coefficients, 287 

equality of coefficients, 281 
specification (test of), 284 

Regression (examples), cranial capacity, 270 

Robustness, 497 

Scoring test (Rao), 417,418 

Second order efficiency (Rao), 352 
Sequential analysis, A. S. N. function, 484 

control charts (O.C. of), 5 10 
efficiency of S. P. R. T., 478 
estimation (Stein), 485 
fundamental identity, 482 
O.C. function, 484 
S. P. R. T. (Wald), 475-478 
test with power one, 488 
truncation of S. P. R. T., 5 10 

Singular value decomposition, 42 
Statistics and subfields, 139 
Stieltje’s integral, 132 
Stirling’s approximation, 59 
Subfield, 86, 139, 141 
Sufficient statistic, bounded completeness, 

457 
completeness, 321 
definition, 130 
factorization theorem, 13 1 
Huzurbazar’s conjecture, 132 
use in estimation (Rao, Blackwell), 321 

Sufficient sub-field, 14 1 
Sylvester’s law (matrix rank), 3 1 

t-test (Student), 170, 183, 197, 237, 243, 

Testing of hypotheses (theory), ancillary 
459 

information, 505 
asymptotic efficiency, 464 
composite hypothesis, 445,456 
critical function, 450 
critical region, 445 
distribution free methods, 493 
Fisher-Behren’s problem, 463 
level of significance, 446 
Lindley’s paradox, 5 12 
locally most powerful test, 453,454 
monotone likelihood ratio, 461 
Neyman-Pearson lemma, 446 
nonparametric tests. See Nonparametric 

permutation test, 503 
Pitman efficiency, 467 
probability ratio test, 451 
randomized test, 450 
robustness, 498 
sequential test. ’See Sequential analysis 
similar region test, 456 
two kinds of errors, 445 
unbiased test, 454 

inference 
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Testing of hypotheses (theory), (Continued) Sakamoto-Craig, 210 

Scheffe, 124 
Theorems (named after authors), Bayes, 334 Smirnov, 422 

uniformly most powerful test, 449 

Bochner (n.n.d. of characteristic function), Strumian separations 64 

Caley-Hamilton (matrix), 44 
Chebychev (W.L.L.N.), 112 
Cramer (normal), 162 
Darmois-Skitovic, 218, 526 
DeMoivre, 160 
Fieller, 3 11 
Fisher-Cochran, 185 
Frobenius (positive matrix), 46 
Fubini, 137 
Glivenko, 421 
Helly-Bray, 1 17 definition, 3 
Helly-Bray (extended), 118 
Kinchin (W.L.L.N.), 112, 146 
Kolmogorov (consistency of distributions, 

Kolmogorov (d.f. of Dn),  421 
Kolmogorov (S.L.L.N.), 114, 115 
Kolmogorov (sums of random variables), 

Kolmogorov (W.L.L.N.), 146 

Lebesgue dominated convergence, 136 

14 1 Transformation (linear), 23, 24 
Transformation of statistics. binomial pro- 

portion (sin-’ ), 427 
correlation coefficient (tanh-’l ), 432 
Poisson variable (r), 426 

Transformation of variables, 156 

Variance and covariance components, 
general model, 302 

minque theory, 303 
two way data, 258 

Vector space, basis (Hamel), 4 

direct sum, 11,40 
Gram-Schmidt orthogonalization, 9 
inner product, 8~ 74 

orthonormal basis, 9 
subspace, 4 

108 orthogonal basis, 9 

Wald’s large sample tests, 4 17, 4 19 
Wald’s S.P.R.T., 475 
Wilks’ A criterion, Bartlett’s approximation, 

129 

5 56 
Lebesgue monotone convergence, 135 
Liapunov (C.L.T.), 127 
Lindberg-Feller (C.L.T.), 128 
Lindberg-Levy (C.L.T.), 127 
Perron (positive matrix), 46 
Poincare separation, 64 
Polya (convergence of d.f.), 120 
Polya (normal law), 215, 216 
Radon-Nikodym, 137 

decomposition, 554 
definition, 551 
distribution (exact), 555 
distribution (asymptotic), 556 
variance ratio approximation (Rao), 556 

Wishart distribution, 533,597, 598 

Yates’ continuity correction, 413, 415 

Zero-one law, 148 



 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
            
       D:20090126002317
       841.8898
       a4
       Blank
       595.2756
          

     1
     Tall
     602
     323
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
            
       D:20090126002317
       841.8898
       a4
       Blank
       595.2756
          

     1
     Tall
     602
     323
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
            
       D:20090126002317
       841.8898
       a4
       Blank
       595.2756
          

     1
     Tall
     602
     323
    
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base





