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Preface

These notes have been prepared to assist students who are learning Advanced Cal-
culus/Real Analysis for thérst time in courses or self-study programs that are
using the texPrinciples of Mathematical Analysis (3rd Edition) by Walter Rudin.
References to page numbers or general location of results that mention “our text
are always referring to Rudin’s book. The notes are designed to

e encourage or engender an interactive approach to learning the material,
e provide more examples at the introductory level,
o offer some alternative views of some of the concepts, and

e draw a clearer connection to the mathematics that is prerequisite to under-
standing the development of the mathematical analysis.

On our campus, the only prerequisites on the Advanced Calculus course include
an introduction to abstract mathematics (MAT108) course and elementary calculus.
Consequently, the terseness of Rudin can require quite an intellectual leap. One
needs to pause andfiect on what is being presentestopping to do things like
draw pictures, construct examples or counterexamples for the concepts the are being
discussed, and learn thefadtions is an essential part of learning the material.
TheseCompanion Notes explicitly guide the reader/participant to engage in those
activities. With more math experience or maturity such behaviors should become
a natural part of learning mathematics. A math text is not a neualply reading
it from end to end is unlikely to give you more than a sense for the material. On
the other hand, the level of interaction that is needed to successfully internalize an
understanding of the material varies widely from person to person. For optimal
bendit from the combined use of the text (Rudin) and @ampanion Notes first
read the section of interest as offered in Rudin, then work through the relevant

vii



viii PREFACE

section or sections in the Companion Notes, and follow that by a more interactive
review of the section from Rudin with which you started.

One thing that should be quite noticeable is the higher level of detail that is
offered for many of the proofs. This was done largely in response to our campus
prerequisite for the course. Because most students would have had only a brief
exposure to some of the foundational material, a very deliberate attempt has been
made to demonstrate how the prerequisite material that is usually learned in an
introduction to abstract mathematics course is directly applied to the development
of mathematical analysis. You always have the elegant, “no nonsense” approach
available in the text. Learn to pick and choose the level of detail that you need
according to your own personal mathematical needs.

0.0.1 About the Organization of the Material

The chapters and sections of tBempanion Notes are not identically matched with
their counterparts in the text. For example, the material related to Rudin’s Chapter
1 can be found in Chapter 1, Chapter 2 and the beginning of Chapter 3 of the
Companion Notes. There are also instances of topic coverage that haven’'t made it
into the Companion Notes; the exclusions are due to course timing constraints and
not statements concerning importance of the topics.

0.0.2 About theErrors

Of course, there are errors! In spite of my efforts to correct typos and adjust errors
as they have been reported to me by my students, | am sure that there are more errors
to be found and | hope for the assistance of studentsfimaathings that look like

errors as they work through the notes. If you encounter errors or things that look like
errors, please sent me a brief email indicating the nature of the problem. My email
address is emsilvia@math.ucdavis.edu. Thank you in advance for any comments,
corrections, and/or insights that you decide to share.



Chapter 1
TheField of Realsand Beyond

Our goal with this section isto develop (review) the basic structure that character-

izes the set of real numbers. Much of the material infirst section is a review

of properties that were studied in MAT10Bowever, there are a few slight differ-
ences in the dinitions for some of the terms. Rather than prove that we can get
from the presentation given by the author of our MAT127A textbook to the previous
set of properties, with one exception, we will base our discussion and derivations
on the new set. As a general rule thefidgions offered in this set o€Compan-

ion Noteswill be stated in symbolic form; this is done to reinforce the language

of mathematics and to give the statements in a form that clarifies how one might

prove satisfaction or lack of satisfaction of the properties. YOUR GLOSSARIES
ALWAY S SHOULD CONTAIN THE (IN SYMBOLIC FORM) DEFINITION AS
GIVEN IN OUR NOTES because that is the form that will be required for suc-
cessful completion of literacy quizzes and exams where such statements may be
requested.

1.1 Fields

Recall the followingDEFINITIONS:

e TheCartesian product of two setsA andB, denoted byA x B, is

{(@,b)y:ae AADbe B}.



CHAPTER 1. THE FIELD OF REALS AND BEYOND

e A function h from Ainto B isasubset of A x B such that
(i) (Va)[ae A= (db)(be B A(a,b) € h)];i.e,domh = A, and
(i) (va) (vb) (Vc)[(a,b) e h A (a,c) e h= b =(];i.e, hissingle-valued.

e A binary operation on a setA is a function fromA x Ainto A.

e A field is an algebraic structure, denoted (&, +, -, e, f), that includes a
set of objectsF, and two binary operations, additiga-) and multiplication
(+), that satisfy the Axioms of Addition, Axioms of Multiplication, and the
Distributive Law as described in the following list.

(A) Axiomsof Addition ((F, +, e) is a commutative group under the binary
operation of additiorf+) with the additive identity denoted l®);

(Al) +:FxF—>F

(A2) (V) (YY) (X,y € F = (X + y =y + X)) (commutative with respect
to addition)

(A3) (VX) (VY) (V2) (X, y,ze F = [(X+Y) +Z= X+ (Y + 2)]) (asso-
ciative with respect to addition)

(A4) (Fe)[e e F A (VX) (X € F =X + e = e+ x = X)] (additive identity
property)

(AS) W) (xeF= @(—X)[(=x) e FA X+ (=X) = (=X) + X =€)])
(additive inverse property)

(M) Axiomsof Multiplication ((F, -, f) is a commutative group under the

binary operation of multiplicatior(-) with the multiplicative identity
denoted byf);

M1) -:FxF—>F

(M2) (¥x) (VY)(X,y e F = (x-y =Yy X)) (commutative with respect
to multiplication)

(M3) (vx) (Vy) (V2) (X, y,ze F= [(x-y)-z= X (y- 2)]) (associative
with respect to multiplication)

(M4) @f)[feFAf#ern(Wx)(xeF=x-f="f.x=x)] (mul-
tiplicative identity property)

(M5) (Vx)(x e F —{e} =

[B(x)) (xTeFAX- xH=x1-x=1)]

(multiplicative inverse property)
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(D) TheDistributive Law
(V) (YY) (VD) (X, y,ze F=[x-(y+2) = (X-y) + (X-2)])

Remark 1.1.1 Properties (Al) and (M1) tell usthat IF is closed under addition and
closed under multiplication, respectively.

Remark 1.1.2 The additive identity and multiplicative identity properties tell us
that a field has at |east two elements; namely, two distinct identities. To see that two
elementsisenough, notethat, for F = {0, 1}, the algebraic structure (F, &, ®, 0, 1)
where® :F x F > Fand ® : F x F — [ are defined by the following tables:

D[ O0[1] ®[0[1]
O0]1

0|00}
101

1110

isafield.

Remark 1.1.3 The fields with which you are probably the most comfortable are
therationals (Q, +, -, 0, 1) and thereals (R, +, -, 0, 1). A field that we will discuss
shortly isthe complex numbers (C, +, -, (0, 0), (1, 0)) Snce each of these distinctly
different sets satisfy the same list of field properties, we will expand our list of
propertiesin search of ones that will give us distinguishing features.

When discussing fields, we should distinguish that which can be claimed as
a basic field property ((A),(M), and (D)) from properties that can (and must) be
proved from the basic field properties. For example, given that (F, +, -) isafield,
we can claim that (Vx) (Vy) (X,y € F = x + y € F) as an alternative description
of property (A1) while we can not claim that additive inverses are unique. The
latter observation isimportant because it explains why we can’t claim e = w from
(F, +, -, e, f) being afield andx + w = X + e = x; we don’'t have anything that
allows us to “subtract from both sides of an equation”. The relatively small number
of properties that are offered in thefaetion of afield motivates our search for
additional properties dfelds that can be proved using only the bdstd properties
and elementary logic. In general, we don't claim as axioms that which can be
proved from the “minimal” set of axioms that comprise théwiéon of afield. We
will list some properties that require proof and offer some proofs to illustrate an
approach to doing such proofs. A slightly different listing of properties with proofs
of the properties is offered in Rudin.
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Proposition 1.1.4 Properties for the Additive Identity of afield (F, +, -, e, f)
1L (WX)(XxXeFAX+X=X=X=¢)
2. (W) (xeF=x-e=e-x=¢)
B (W) (VY)[(x,yeFAXx-y=€e)= (x=evy=¢)]

Proof. (of #1) Suppose that x € I satisfies x + x = X. Since x € F, by the
additive inverse property, —x € Fissuchthat X + —x = —x + X = e. Now by
substitution and the associativity of addition,

e=X+(—X)=XX+X)+(—X) =X+ X+ —-X)=xX+e=X.

(of #3) Supposethat X,y € F aresuchthat x - y = eand x # e. Then, by the
multiplicative inverse property, x ! e F satisfiesx - x™t = x™1.x = f. Then
substitution, the associativity of multiplication, and #2 yields that

y:f-y:(x_l-x)-y:x_l'(x-y):x_l'e:e.

Hence, for X,y € F, x -y = e A X = eimpliesthat y = e. The claim now follows
immediately upon noting that, for any propositions P, Q, and M, [P = (Q v M)]
islogically equivaentto [(P A —=Q) = M]. m

Excursion 1.1.5 Use #1 to prove #2.

***The key herewastowork from x - e = X (e + €).***

Proposition 1.1.6 Uniqueness of Identities and Inverses for a field (F, +, -, e, f)

1. The additive identity of a field is unique.
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2. The multiplicative identity of a field is unique.
3. The additive inverse of any element in IF is unique.
4. The multiplicative inverse of any element in IF — {e} is unique.
Proof. (of #1) Supposethat w € F is such that
(") XeF=X4+w=w+X=X).

In particular, since e € I, we have that e = e + w. Since e is given as an additive
identity and w € F, e + w = w. From the trangitivity of equals, we conclude that
e = w. Therefore, the additive identity of afield isunique.

(of #3) Suppose that a € I is such that there existsw € F and x € [F satisfying
atw=w+a=e and at+tx=x+a=e.
From the additive identity and associative properties

w=w+e = w+(@+x)
= (w+a)+Xx
= e+X
= X

Since a was arbitrary, we conclude that the additive inverse of each element in a
field isunique. m

Excursion 1.1.7 Prove #4.

***Completing this excursion required only appropriate modification of the proof

that was offered for #3. You needed to remember to take you arbitrary element in F

to not be the additive identity and then simply change the operation to multiplica-

tion. Hopefully, you remembered to start with one of the inverses of your arbitrary
element and work to get it equal to the other &nhé.
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Proposition 1.1.8 Sums and Products Involving Inverses for a field (F, +, -, e, )

1. (va)(vb)(a,beF = —(a+b) =(—a) + (=h))
2. (Va)(ae F = —(—a)=a)
3. (Va)(vb)(a,be F= a-(—b)=—(a-b))

4. (Vva)(Vb)(a,beF= (—a)-b=—(a-b))

ol

. (Va)(vb)(a,be F= (-a)- (—=b) =a-b)

[o2]

. (Va) (a eF—{el = (a‘l £en [a‘l]_l =an—(al) = (—a)‘l))
7. (Va) (vb) (a,b e F—{e} = (a-b)~* = (a71) (b7}))

Proof. (of #2) Suppose that a € F. By the additive inverse property —a € F
and — (—a) € F isthe additiveinverse of —a;, i.e.,, — (—a) + (—a) = e. Snce —a
Isthe additive inverse of a, (—a) + a = a + (—a) = e which also justifies that a
Is an additive inverse of —a. From the uniqueness of additive inverses (Proposition
1.1.6), we concludethat — (—a) = a. m

Excursion 1.1.9 Fill inwhat ismissing in order to complete the following proof of
#6.
Proof. Suppose that a € F — {e}. From the multiplicative inverse property,
a~! e F satisfies . If a~! = e, then, by Proposition
@
1.1.4(#2), a~1 - a = e. Since multiplication is single-valued, this would imply that
which contradicts part of the prop-
@ (©)
erty. Thus, al #e.
Sinceal e F—{e}, by the property,(a‘l)_1 €
4
F and sati;ﬁes(a‘l)_1 cal=a"1. (a‘l)_1 = f, but this equation also jugtes
that (a‘l)_l is a multiplicative inverse for al. From Proposition ,
)

we conclude tha(a‘l)_1 = a.
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From (#5), (— (a™%)) - (—a) = a='-a = f from which we conclude
that — (a~?1) isa for —a. Snce (—a)~tisa mul-
(6)
tiplicative inverse for(—a) and multiplicative inverses are unique, we have that
—(a™) = (-a) ! as claimed.m

*** A\ coeptable responsesare: (1) a-a~! = f,(2) e = f, (3) multiplicative identity,
(4) multiplicative inverse, (5) 1.1.6(#4), and (6) multiplicative inverse.***

Proposition 1.1.10 Solutions to Linear Equations. Giverpald (F, +, -, 0, 1),
1. Va)(vb)(a,beF= @'x)(x e FAa+x =Dh))
2. (Va)(vb)(a,beFra#0= A'x)(x e FAa-x=Dh))

Proof. (of #1) Suppose that,® € F and a # 0. Since ae F — {0} there
exists @l e Fsuchthata a! =a1.a = 1. Becausea! e Fandbe F,

X = a~l.b e F from (M1). Substitution and the associativity of multiplication
e

yield that
a-x=a- (a‘l-b) = (a-a‘l)-bzl-bzb.
Hence, x satjges a- x = b. Now, suppose that € [ also satigies a-w = b. Then
w=1w= (a_l-a)-wza_l-(a-w)za_l-b=x.
Since a and b were arbitrary,
(Va) (Vb)(a,be F= (Ax)(x e FAa+x =D)).
|

Remark 1.1.11 As a consequence of Proposition 1.1.10, we now can claim that, if
X,w,z € Fand x+w = X+ z,thenw =z and if w,z € F, x € F— {0} and

w - X = z- X, thenw = z. The jusfication is the uniqueness of solutions to linear
equations in geld. In terms of your previous experience with elementary algebraic
manipulations used to solve equations, the propositionfjastivhat is commonly
referred to as “adding a real number to both sides of an equation” and “dividing
both sides of an equation by a nonzero real number”
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Proposition 1.1.12 Addition and Multiplication Over Fields Containing Three or
More Elements. Supposethat (F, +, -) isafieldanda, b, c,d € F. Then

l. a+b+c=a+c+b=---=c+b+a
2.a-b-c=a-c-b=.---=c-b-a
3 @+o)+(b+d)=@+Db)+(c+d)
4. (a-c)-(b-dy=(a-by-(c-d)
Proposition 1.1.13 Multiplicative Inversesin afield (F, +, -, 0, 1)

(a,b,c,deFAb#A0Ad#0)
L (va)(Vb)(vc)(Vd)[ —b-d#0A(a-bY) - (c-dY) =(@-c) (b-d) }
2. (va)(vb) (vo)[(a,b,ce FAC#0) = (a-c )+ (b-c7t) =(@a+b)-c?]

3. (va)(vh)[(a,be FAb#0) = ((-a)-b™Y) = (a- (-b)™!) = — (a-b71)]
4. (va) (vb) (vc) (vd)[(ae FAb,c,de F—{0})) = c-d1+#£0
Afa-b™).(c.d )t =(@-d)-(b- 0 =(a-b"Y-(d-cY)]

. (va) (vb) (Vvc) (Vd)[(a,ce FAb,de F—{0})) = b-d #0OA
(a-b™)+(c-d=@-d+b-c)-(b-d)™}

ol

Proof. (of #3) Suppose a,b € F and b # 0. Snce b # O, the zero of the
field is its own additive inverse, and additive inverses are unique, we have that
—b # 0. Sncea € Fandb € F— {0} impliesthat —a € F and bt € F — {0}, by
Proposition 1.1.8(#4), (—a) - b™! = — (a- b™1). From Proposition 1.1.8(#6), we
know that — (b=1) = (—b)~*. Fromthe distributive law and Proposition 1.1.8(#2),

a-(<b)l+a.bl=a. ((—b)—1+b—1) —a. (— (b—l) +b—1) —a.0=0
from which we conclude that a - (—b)~! is an additive inverse for a - b~1. Since

additive inverses are unique, it follows that a - (—b)™! = — (a- b_l). Combining
our resultsyields that

(-a)-bt=— (a- b_l) =a-(=b)7!

asclaimed. m
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Excursion 1.1.14 Fill in what is missing in order to complete the following proof
of #4.
Proof. (of #4) Supposethata € Fand b, c,d € F— {0}. Snced € F— {0}, by
Proposition , d~1 £ 0. From the contrapositive of Proposition 1.1.4(#3),
1)
c# 0andd~! # Oimpliesthat . In the following, the justifications

@
for the step taken is provided on the line segment to the right of the change that has
been made.

@b ea ™ = (@b (o @)

©)

@

(®

)

-d))
©)

+d)

)

(N

®)
= (@ -dy-(b-o%

®

From Proposition 1.1.8(#7) combined with the associative and commutative prop-
erties of addition we also have that

@-dy-(b-c)™*

@@-dy-(b7t.c™
(@-dy-b™1).ct
fa- (a5 -

(10
(a. [2—1) . d) .(i—l
(a-b™1) . (d-cY).

Consequentlya - b=1) - (c- d‘l)_1 =@-dy-(b-ot=(ab?.(d-ctas
claimed. m

*** A coceptable responses are: (1) 1.1.8(#6), (2) c-d~1 £ 0, (3) Proposition 1.1.8(#7),
(4) Proposition 1.1.8(#6), (5) associativity of multiplication, (6) associativity of
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multiplication, (7) commutativity of multiplication, (8) Proposition 1.1.8(#7), (9)
associativity of multiplication, (10) (a- (bt - d)) - c=Lx**
Thelist of properties given in the propositionsis, by no means, exhaustive. The

propositions illustrate the kinds of things that can be concluded (proved) from the
core set of basic field axioms.

Notation 1.1.15 We have listed the properties without making use of some nota-
tional conventionsthat can make things look simpler. The two that you might find
particularly helpful are that

e theexpression a+ (—b) may bewritten asa—b; (—a) + (—b) may bewritten
as—a—b;and
e the expression a - b~ may be written as a . (Note that applying this nota-

tional convention to the Properties of Multiplicative Inverses stated in the last
proposition can make it easier for you to remember those properties.)

Excursion 1.1.16 On the line segments provided, fill in appropriate justifications
for the steps given in the following outline of a proof that for a, b, ¢, d in a field,
(@+b)y—(c—d)=(@—-c)+ (b+d).

| Observation | | Justification |

(a+b)— (c—d) = (@+b) + (~(c + (~d))) noational
(@+Db)+ (=(c+(=d)) = @+b) + ((—0) + (=(=d)))

@+b) + ((—=0) + (=(=d))) = (@+b) + ((—¢) + d)

(€

2
@+b)+(-c)+d)y=a+ (b+ ((—-c) +d))

(©)
a+ b+ ((—c)+d)=a+((b+(-c)+d)

(4)
a+ ((b+ (—c)+d)=a+ (((—c) + b) +d)

5)
a+ (((—c)+b)+d)y=a+ ((—c) + (b+d))

(6)
a+((—c)+(b+d) =@+ (-c))+ (b+d)

@
@+ (—c)+bO+dy=(@—c)+ (b+d)

®
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*** A cceptable responses are: (1) Proposition 1.1.8(#1), (2) Proposition 1.1.8(#2),
(3) and (4) associativity of addition, (5) commutativity of addition, (6) and (7) as-
sociativity of addition, and (8) notational conventibi:

1.2 Ordeed Fidds

Our basicfield properties and their consequences tell us how the binary operations
function and interact. The set of basield properties doesn’t give us any means of
comparison of elementsnore structure is needed in order to formalize ideas such
as “positive elements in &eld” or “listing elements in dield in increasing order.”
To do this we will introduce the concept of an ordefesdd.

Recall that, for any se$, arelation on Sis any subset 08 x S

Definition 1.2.1 An order, denoted by <, on a set Sisarelation on Sthat satisfies
the following two properties:

1. TheTrichotomy Law: If x € Sand y € S, then one and only one of
X<y)yor (x=y)or (y<Xx)
istrue.

2. TheTransitiveLaw: (Vx) (Vy) (V2) [X,Y,Z€ SAX <YyAYy <Z= X < Z].
Remark 1.2.2 Satisfaction of the Trichotomy Law requires that
(") (YY) X,y e S= (X=Yy) VX <Y) V(Y <X))
be true and that each of

(") (YY) X,y e S= (x=y) = ~(X <y) A= (y <X))),
(M) (VY) (X, ye S= (X <y) = ~(X=Yy) A~ (y <X))),and
(") (YY) X,y e S= ((y <X) = ~(X=y) A= (X <Y)))
be true. The first statement, (VX) (Vy) (X, Yy € S= X=Yy) V(X <Y) V (Y < X))

is not equivalent to the Trichotomy Law because the digunction is not mutually
exclusive.
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Example 1.2.3 For S= {a, b, c} witha, b, and cdigtinct, < = {(a, b), (b, ©), (a, ¢)}

isan order on S. The notational convention for (a, b) e<isa < b. The given or-
dering has the minimum and maximum number of ordered pairs that is needed to
meet the dénition. This is because, given any two distinct elements of S, x and
y, we must have one and only one(®fy) €< or (y, X) e<. After making free
choices of two ordered pairs to go into an acceptable ordering for S, the choice
of the third ordered pair for inclusion will be determined by the need to have the
Transitive Law satiged.

Remark 1.2.4 The dgnition of a particular order on a set S is, to a point, up to
the dé¢iner. You can choose elements ok S almost by preference until you start
having enough elements to force the choice of additional ordered pairs in order
to meet the required properties. In practice, orders argrasl by some kind of
formula or equation.

Example 1.2.5 For Q, the set of rationals, letc Q x Q be dgined by(r, s) e<<
(s+ (—r)) is a positive rational. TheQ, <) is an ordered set.

Remark 1.2.6 The treatment of ordered sets that you saw in MAT108 derived the
Trichotomy Law from a set of properties thayaed a linear order on a set. Given

an order < on a set, we write X< y for (x < y) v x = y. With this notation, the

two linear ordering properties that could have been introduced and used to prove
the Trichotomy Law are the Antisymmetric law,

("X) (VY) (X, y € SA(X,Y) eSS A(Y,X) €)= X =Y),
and the Comparability Law,
(VX) (YY) (X, y € S= (X, y) €< V (Y, X) € 2)).

Now, because we have made satisfaction of the Trichotomy Law part of the def-
inition of an order on a set, we can claim that the Antisymmetric Law and the
Comparability Law are satfged for an ordered set.

Definition 1.2.7 Anordered field (I, +, -, 0, 1, <) is an ordered set that safises
the following two properties.

(OF1) (vx) (YY) (V2) [X, ¥, Ze FAX <y=X+Z <y +7]
(OF2) (vx) (Vy) (V2) [X, ¥, ze FAX <yAO<z=Xx-z<Yy-Z]
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Remark 1.2.8 Inthe definition of ordered field offered here, we have deviated from
one of the statements that is given in our text. The second condition given in the
text isthat

(V) (YY) [x,ye FAX>0AYy>0=x-y>0];

let’'s denote this proposition bfalt O F2). We will show that satisfaction ¢O F1)
and(altOF2) is, in fact, equivalent to satisfaction @@ F1) and (O F2). Suppose
that (O F1) and(O F2) are satigied and let xy € F be such tha® < x and0 < vy.
From (O F2) and Proposition 1.1.4(#2) = 0-y < x-Yy. Since x and y were arbi-
trary, we conclude thatvx) (vy) [x,y e FAXx > 0Ay > 0= x -y > 0]. Hence,
(OF2) = (altOF2) from which we have thafOF1) A (OF2) = (OF1) A
(altOF2). Suppose thatO F1) and (altO F2) are satigied and let xy, z € F be
such that x< y andO < z. From the additive inverse property-x) € F is such
that[x + (—X) = (—x) + x = 0]. From (O F1) we have that

0=X+4+(=X) < y+ (—X).

From (alt O F2), the Distributive Law and Proposition 1.1.8 (#4),< y + (—X)
and0 < z implies that

O<y+(=x)-z2=-2+(=x)-=( -+ (=(X-2).

Becauset and- are binary operations offf, x-z € Fand(y - z) + (— (X - 2)) € FF.
It now follows from(O F1) and the associative property of addition that

0+Xx-2<((Y D+ (~(X-DN+X-2=(Y- D+ (= (X-2)+X-2) =y -2+0.
Hence, x z < y- z. Since X, y, and z were arbitrary, we have shown that
(VX) (VY) (V2) [X, ¥, Ze FAX <yAO<z=X-Z2<Yy-Z]

which is(OF2). Therefore(OF1) A (altOF2) = (OF1) A (OF2). Combining
the implications yields that

(OF1) A (OF2) & (OF1) A (altOF2) as claimed.

To get from the requirements for a field to the requirements for an ordered field
we added a binary relation (a description of how the elements of the field are or-
dered or comparable) and four properties that describe how the order and the binary
operations “interact.” The following proposition offers a short list of other order
properties that follow from the basic set.
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Proposition 1.2.9 Comparison Properties Over Ordered Fields.
For an ordered field (FF, +, -, 0, 1, <) we have each of the following.

1. 0<1

2. (W) (VYY) [X,yeFAXx>0Ay>0=x-y> 0]

3 (W) [xeFAx>0= (—x) <0]

4. (W) (VY)[x,yeFAx <y= -y < —X|

5. (VX) (VYY) (V2) [X, ¥, ZEFAX <YyAZ<O0=Xx-2>Yy-Z]
6. (VX)[x eFAX#0= x-x=x%> 0]

7. (V) (VYY) [x,yeFAO<x <y=0<y?t<x7!]

In the Remark 1.2.8, we proved the second claim. We will prove two others.
Proofs for al but two of the statements are given in our text.

Proof. (or #1) By the Trichotomy Law one and only oneof 0 < 1,0 = 1, or
1 < Oistruein the field. From the multiplicative identity property, 0 # 1; thus,
we have oneand only oneof 0 < 1 or 1 < 0. Supposethat 1 < 0. From OF1,
we havethat 0 = 1+ (-1) < 0+ (-1) = —-1;i.e, 0 < —1. Hence, OF2
impliesthat (1) - (—1) < (0) - (—1) which, by Proposition 1.1.8(#3), is equivalent
to —1 < 0. But, from the trangitivity property, 0 < —1 A =1 < 0 = 0 < O which
Isacontradiction. m

Excursion 1.2.10 Fill in what is missing in order to complete the following proof
of Proposition 1.2.9(#4).

Proof. Suppose that x,y € F are such that X < y. In view of the additive
inverse property, —x € F and —y € FF satisfy

—X+X=X+-—-Xx=0 and

@

From ,0=X+—-X <y+—X e,
2 3

and0+ -y < ( ) + —y. Repeated use of commutativity and as-

(4)
sociativity allows us to conclude th&y + —x) + —y = —x. Hence-y < —x as
claimed. m
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*** Acceptableresponsesare: (1) —-y+y=y+-y=0,(2) OFL, (3)0 < y+ —X,
(4) y + —X.***

Remark 1.2.11 From Proposition 1.2.9(#1) we see that the two additional prop-
erties needed to get from an ordered set to an ord¢edd led to the requirement
that (0, 1) be an element of the ordering (binary relation). Frén 1 and(OF1),
we also havethat < 1+1 =22 < 2+ 1 = 3; etc. Using the convention
1+1+1---+41=n,the general statement beconles n < n+ 1.

nof them

1.2.1 Special Subsetsof an Ordered Field

There are three special subsets of any ordered field that are isolated for special con-
sideration. We offer their formal di@itions here for completeness and perspective.

Definition 1.2.12 Let (F, +, -, 0, 1, <) be an ordered field. A subset Sof F is said
to beinductiveif and only if

1. 1e Sand
2. (™) (xeS=>x+1€)S).
Definition 1.2.13 For (F, +, -, 0, 1, <) an ordered field, define
Nr=[)S
Se&
where S = {S C F : Sisinductive}. We will call Ny the set of natural numbers of
F.

Note that,T = {x € F : x > 1} is inductive because & T and closure oF un-
der addition yields that+ 1 € F whenevex € F. Becausévu) (U <1=u¢ T)
andT e S, we immediately have that amye Ny satidiesn > 1.

Definition 1.2.14 Let (F, +, -, 0, 1, <) be an ordered field. The set of integers of
I, denoted Zg, is

Zrp={aeF:aeNprv —aeNpva=0}.
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It can be proved that both the natural numbers of a field and the integers of a
field are closed under addition and multiplication. That is,

(Vm)y(vn)(neNrFAMeNr=n+meNrAN-me Np)
and
(Vmy(vny(neZrpArmeZr=n+meZr AN-meZp).

This claim requires proof because the fact that addition and multiplication are bi-

nary operations ofi only placesn+mandn-min IF becaus®&y c F andZr C F.
Proofs of the closure dNr = N under addition and multiplication that you

might have seen in MAT108 made use of the Principle of Mathematical Induction.

This is a useful tool for proving statements involving the natural numbers.

PRINCIPLE OF MATHEMATICAL INDUCTION (PMI). If Sis an inductive
set of natural numbers, theh= N.

In MAT108, you should have had lots of practice using the Principle of Mathe-
matical Induction to prove statements involving the natural numbers. Recall that to
do this, you start the proof by flaing a setSto be the set of natural numbers for
which a given statement is true. Once we show that9.and
(Vk) (k e S= (k+ 1) € S), we observe tha® is an inductive set of natural num-
bers. Then we conclude, by the Principle of Mathematical Induction,ShatN
which yields that the given statement is true forfall

Two other principles that are logically equivalent to the Principle of Mathemat-
ical Induction and still useful for some of the results that we will be proving in this
course are the Well-Ordering Principle and the Principle of Complete Induction:

WELL-ORDERING PRINCIPLE (WOP). Any nonempty set S of natura num-
bers contains a smallest element.

PRINCIPLE OF COMPLETE INDUCTION (PCI). SupposeS is a nonempty
set of natural numbers. If

(VMmy(meNAkkeN:k<mlcS=>me9

thenS=N.
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Definition 1.2.15 Let (F, +, -, 0, 1, <) be an ordered field. Define
Q= {r e F: (3m)(@n) (m,n eZr AN#OAT = mn‘l)}.
The set Qr iscalled the set of rational numbers of .

Properties #1 and #5 from Proposition 1.1.13 can be used to show the set of
rationals of afield isalso closed under both addition and multiplication.

The set of real numbers R isthe ordered field with which you are most familiar.
Theorem 1.19 in our text asserts that R is an ordered field; the proof is given in
an appendix to the first chapter. The notation (and numerals) for the corresponding
specia subsetsof R are:

N=J=1{123,4,5, ...} the set of natura numbers
Z=M: MmeN)yv(im=0v(-meN)}={.,-3-2,-1,0,1,2,3,...}
Q={p-qg'={:p.qeZAq#0}

Remark 1.2.16 The set of natural numbers may also be referred to as the set of
positive integers, while the set of nonnegative integersis.J U {0}. Another common
termfor JU{0} isthe set of whole numberswhich may be denoted by W. In MAT108,
the letter N was used to denote the set of natural numbers, while the author of our
MAT127 text isusing the letter J. To makeit clearer that we are referring to special
sets of numbers, we will use the “blackboard bold” form of the capital letter. Feel
free to use either (the oldY or (the new)J for the natural numbers in thgeld of
reals.

While N and Z are not fields, both Q and R are ordered fields that have severa
distinguishing characteristics we will be discussing shortly. Since @ ¢ R and
R — Q # @, it is natural to want a notation for the set of elements of R that are not
rational. Towards that end, we let Irr = R — Q denote the set of irrationals. It

was shown in MAT108 that /2 isirrational. Because /2 + (—ﬁ) =0¢ Irr

and v/2- /2 = 2 ¢ TIrr, we see that Irr is not closed under either addition or
multiplication.

1.2.2 Bounding Properties

Because both Q and R are ordered fields we note that “satisfaction of the set of
orderedfield axioms” is not enough to characterize the set of reals. This natu-
rally prompts us to look for other properties that will distinguish the two algebraic
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systems. The distinction that we will illustrate in this section is that the set of ra
tionals has “certain gaps.” During this (motivational) part of the discussion, you
might find it intuitively helpful to visualize the “old numberline” representation
for the reals. Given two rationalsands such thatr < s, it can be shown that
m=(r +s)-2-1eQissuchthat <m <s. Thenr; = (r + m)- 2~ e Q and

st =(m+s)-271 e Qare suchthat <r; < mandm < s; < s. Continuing this
process indgnitely and “marking the new rationals on an imagined numberline”
might entice us into thinking that we cafill'in most of the points on the number
line betweernr ands.” A rigorous study of the situation will lead us to conclude
that the thought is shockingly inaccurate. We certainly know that not all the reals
can be found this way because, for exampl&,could never be written in the form

of r +s)-271forr,s e Q. The following excursion will motivate the property
that we want to isolate in our formal discussion of bounded sets.

Excursion 1.2.17 Let A={peQ: p> 0A p*> <2} and
B={peQ:p>0Aap®>2}. Now we will expand a bit on the approach used
in our text to show that A has no largest element and B has not smallest element.
For p a positive rational, let

p?—2 2p+2
p+2 p+2°

a=p

Then

2_2:2(p2—2)
(p+23?

(@) For p e A justifythatq > pandq € A.

(b) For p € B, justifythatq < pand g € B.
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***Hopefully you took afew momentsto find some elementsof A and B inorder to
get afeel for the nature of the two sets. Finding aq that correspondstoa p € A and
a p € B would pretty much tell you why the claims are true. For (a), you should
have noted that q > p because (p2 — 2) (p+ 21 < 0whenever p? < 2; then
—(P?=2) (p+2)~* > Oimpliesthatq = p+(— (p>—2) (p+2)7!) > p+0=
p. That q isrationa follows from the fact that the rationals are closed under multi-
plication and addition. Finallg?—2 = 2 (p? — 2) (p + 2) ™% < Oyields thag € A
as claimed. For (b), the same reasons extend to the discussion needdaehenty
change is that, fop € B, p? > 2 implies that(p? — 2) (p + 2)~* > 0 from which
it follows that— (p? —2) (p+2)™* <0andg = p+ (— (p>=2) (p+2)7}) <
P+ 0= p'***

Now we formalize the terminology that describes the property that our example
is intended to illustrate. LS, <) be an ordered sgite., < is an order on the set
S. A subsetA of Sis said to bébounded abovein Sif

@u)(ue SA(Va)(ae A= a<u)).

Any elementu € S satisfying this property is called arpper bound of Ain S.

Definition 1.2.18 Let (S, <) be an ordered set. For A ¢ S, u is a least upper
bound or supremum of Ain Sif and only if

1l ueSA(Ma)(ae A= a<u))ad

2. (Vb)[(be SA(Va)(ae A=>a<h)=u<h].

Notation 1.2.19 For (S, <) anordered set and A C S, the least upper bound of A
is denoted by lub (A) or sup(A).

Since a given set can be a subset of several ordered sets, it is often the case that
we are simply asked tfind the least upper bound of a given set without specifying
the “parent ordered set.” When asked to do this, sinfiplgl, if it exists, theu that
satidies

(Va)y(ae A=>a<u and (Vb)[(Va)(ae A= a<b)y=u<b.

The next few examples illustrate how we can use basic “pre-advanced calculus”
knowledge tdind some least upper bounds of subsets of the reals.
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Example 1.2.20 Find thelub {%

+X2:XGR}.

From Proposition 1.2.9(#5), we know that, for x € R, (1—x)? > 0; thisis
equivalent to

1+X222x

1
< —
14+x2~ 2

1
from which we conclude that (Vx) (x eR= ) Thus, > is an upper

1.
= —, it follows that

1
bound for
N [ 1412 2

X
:xeRt. Snce
14x2 7€ ]

X 1
ub > ixeR}=2.
u{1+x2 € ] 2

The way that this example was done and presented is an excellent illustration
of the difference between scratch work (Phase 1) and presentation of an argument
(Phase 111) in the mathematical process. From calculus (MAT21A or its equivalent)

X . . ,
we can show that f (X) = 12 has arelative minimum at x = —1 and arelative
maximum at x = 1; we aso know that y = 0 is a horizontal asymptote for the

graph. Armed with the information that (1, %) is a maximum for f, we know

X 1
that all we need to do is use inequalities to show that 12 < > In the scratch

work phase, we can work backwards from this inequality to try to find something
that we can claim from what we have done thus far; simple agebra gets use from

1 : .
T < > to 1 — 2x + x2 > 0. Once we see that desireto claim (1 — x)? > 0,
we are home free because that property is given in one of our propositions about

ordered fields.

Excursion 1.2.21 Find the lub (A) for each of the following. Snce your goal is
simply to find the least upper bound, you can use any pre-advanced calculus infor-
mation that is helpful.
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1 Az{wmeﬂ]

2I’H—1
2. A= {(gnx)(cosx) : x € R}

3+ (=" (. .
***For (1), let X, = %; then xp; = 2211 is a sequence that is strictly

. 1 . . : 1
decreasing from > to O; while x2j_1 is also decreasing from > to 0. Consequently

, 1 . 1 . :
the termsin A are never greater than — with the value of — being achieved when
n = 1 and the terms get arbitrarily close to 0 as n approaches infinity. Hence,

1 1
lub(A) = > For (2), it is helpful to recall that sSinx cosx = Esian. The well

known behavior of the sine function immediately yields that lub (A) = %.***

Example 1.2.22 Find lub (A) where A= {x e R : x*> + x < 3}.
What we are looking for hereissup (A) where A = f =1 ((—o0, 3)) for f (x) =
x2 4+ x. Because

=x+x e +1— X+l 2
y_ y 4_ 2 ’

. . 1 1
f isa parabola with vertex (_E’ _Z)' Hence,

A— f_l((—oo,3))=[xe R:_l_—\/l_?’ < <_1+—\/f3}

2 X 2
-1+ 413

from which we conclude that sup (A) = 5
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Notethat theset A= {peQ: p> 0A p? < 2} isasubset of Q and a subset
of R. We have that (Q, <) and (R, <) are ordered sets where < is defined by
r < s (s+ (—r)) ispositive. Now lub (A) = +/2 ¢ Q; hence, thereis no least
upper bound of Ain S= Q, but A c S= R hasaleast upper bound in S = R.
Thistellsusthat the “parent set” is important, gives us a distinction betw&eand
R as orderedields, and motivates us to name the important distinguishing property.

Definition 1.2.23 An ordered set (S, <) hasthe least upper bound property if and
only if

VE (ECSAE#0A@GL)(BeSA(NVa)(ae E=ax<p)))
(VE) = (Au) (u=Iub(E) Au € )

Remark 1.2.24 As noted above, (Q, <) does not satisfy the “ lub property”, while
(R, <) does satisfy this property.

The proof of the following lemmais left an exercise.

Lemma 1.2.25 Let (X, <) be an ordered set and & X. If A has a least upper
bound in X, itis unique.

We have analogous or companion definitions for subsets of an ordered set that
are bounded below. Let (S, <) bean ordered set; i.e., < isanorder ontheset S. A
subset A of Sissaid to be bounded below in Sif

Fo) (v e SA(Va)(ae A= v < a)).
Any element u € Ssatisfying this property is called alower bound of Ain S.

Definition 1.2.26 Let (S, <) be a linearly ordered set. A subset A of S is said to
have agreatest lower bound or infimumin S if

1. 3g)(ge SA(Va)(ae A= g < a)), and
2. (ve)[(ce SA(Va)(ae A=>c<a)=c<g]

Example 1.2.27 Find theglb (A) where A= [(—1)“ (% - %) ‘ne N].

SN

and, for n even,

NN

1 2
Let ¥, = (=1)" (Z — ﬁ)" then, for n odd, x =
1 2
Xn=7 -

4
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N
w

1
Quppose that n > 4. By Proposition 129(#7) it follows that - <
2 2 1 1 1 1
Th F2 F1) yield that = < = = = ———<———
en (OF2) and (O )1y|eldtatn_4 > and 4_224
and Proposition 1.2.9(#4), we have that — > ——.

PRI RPA

2
1

2 =7 from (OF1). Now, it follows from Proposition

1.2.9(#1) that n > 0, for any n € N . From Proposition 1.2.9(#7) and (OF1),

N

1 2 n
Thus———>

, 2
respectively. From — <
1 1

2 2 1
n> 0and2 > Oimpliesthat — > 0and — — = > —=. Smilarly, from Proposition
2 i " 2 1 2 1 1
1.29(#3) and (OF1), — > Oimpliesthat —— < Qand- —— < -+ 0= -.
n n 4 n 4 4

Combining our observations, we have that

(Vn)[(neN—{l,Z,B}/\ZJ(n):-%gxnsﬂ

and

(Vn)|:(neN {123}/\2|n):>—%<xn_%1]

. 7 3 5 11
Finally, X1 = =, Xo = ——, and X3 = each of which is outside of | ——, - |.
4 4 12’ 4’4

Comparing the values leads to the conclusion that glb (A) = —-

Excursion 1.2.28 Find glb (A) for each of the following. Snce your goal issimply
to find the greatest lower bound, you can use any pre-advanced calculus informa-
tion that is helpful.

3+ (="

1. A= 2n+1

el
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1 1
2. A:{?+3_m'n’m€N]

***Qur earlier discussion in Excursion 1.2.21, the set given in (1) leads to the con-

. 1 .
clusion that glfA) = 0. For (2), note that each 02%“ and3—m are strictly de-
creasing to 0 as andm are increasing, respectively. This leads us to conclude that

5
glb (A) = 0; although it was not requested, we note that(Sp= (—5.***

We close this section with a theorem that relates least upper bounds and greatest
lower bounds.

Theorem 1.2.29 Suppose (S, <) isan ordered set with the least upper bound prop-
erty and that B is a nonempty subset of S that is bounded below. Let

L={geS:(Va)(ae B=g<a)l.

Thena = sup (L) exists in S, and = inf (B).

Proof. Supposethat (S, <) isan ordered set with the least upper bound property
and that B is anonempty subset of Sthat isbounded below. Then

L={geS:(Va)(ae B= g<a)l.

is not empty. Note that for eachb € B wehavethat g < bforal g € L; i.e,
each element of B isan upper bound for L. Since L C Sis bounded above and S
satisfies the least upper bound property, the least upper bound of L existsandisin
S Leta =sup(L).
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Now we want to show that « isthe greatest lower bound for B.

Definition 1.2.30 An ordered set (S, <) has the greatest lower bound property if
and only if

VE (ECSAE#0AEy)(y e SA(Va)(ae E=y <a)))
(VE) = (@w)(w =gb(E) Aw € S) :

Remark 1.2.31 Theorem 1.2.29 tells us that every ordered set that satisfies the
least upper bound property also satisfies the greatest lower bound property.

1.3 TheReal Fied

The Appendix for Chapter 1 of our text offers a construction of “the reals” from

“the rationals”. In our earlier observation of special subsets of an ordesleldwe
offered formal dénitions of the natural numbers offeeld, the integers of eld,

and the rationals of field. Notice that the diitions were not tied to the objects
(symbols) that we already accept as numbers. It is not the form of the objects in the
orderedield that is importantit is the set of properties that must be siid. Once

we accept the existence of an ordefesiid, all orderedields are alike. While this
identification of orderedields and their corresponding special subsets can be made
more formal, we will not seek that formalization.

It is interesting that our mathematics education actually builds up to the formu-
lation of the real numbefield. Of course, the presentation is more hands-on and
intuitive. At this point, we accept our knowledge of sums and products involving
real numbers. | want to highlight parts of the building process simply to put the
properties in perspective and to relate the least upper bound property to something
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tangible. None of this part of the discussion is rigorous. First, define the sym-

bols 0 and 1, by{} = 0 and{¢} = 1 and suppose that we have an ordedietl

(R, +, -, 0,1, <). Furthermore, picture a representation of a straight horizontal line
(«——>) on which we will place elements of thield in a way that attaches some
geometric meaning to their location. The natural numbers offibid Ng is the
“smallest” inductive subseit is closed under addition and multiplication. It can be

proved (Some of you saw the proofs in your MAT108 course.) that
(") (xeNg=x>1)
and
Vw) (w eNg= = (F) (v e NrAW < <w +1)).

This motivates oufirst set of markings on the representative line. Let’s indicate the
first mark as a “place for 1.” Then the next natural number ofitfld is 1+ 1, while

the one after that i€l + 1) + 1, followed by [[1 + 1) + 1] + 1, etc. This naturally
leads us to choose faxed length to represent 1 (or “1 unit”) and place a mark
for each successive natural number 1 away from and to the right of the previous
natural number. It doesn'’t take too long to see that our collections of “addéd 1

IS not a pretty or easy to read labelling sysiéhis motivates our desire for neater
representations. The symbols that we have come to accept2rg, 4,5, 6, 7, 8,

and 9. In the space provided draw a picture that indicates what we have thus far.

The fact that, in an ordereikld, 0 < 1 tells us to place 0 to the left of 1 on our
representative linghen 0+ 1 = { } U {#} = {@#} = 1 justifies placing 0 “1 unit”
away from the 1. Now the dmition of the integers of &eldZg adjoins the additive
inverses of the natural numbers di@d; our current list of natural numbers leads to
acceptance of1, —2, -3, —4, -5, —6, —7, —8, and—9 as labels of the markings
of the new special elements and their relationship to the natural numbers mandates
their relative locations. Use the space provided to draw a picture that indicates what
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we have thus far.

Your picture should show severa points with each neighboring pair having the
same distance between them and “lots of space” with no labels or markings, but
we still have the third special subset of the ordefiett; namely, the rationals of
the field Qr. We are about to prove an important result concerning the “density
of the rationals” in an orderefield. But, for this intuitive discussion, our “grade
school knowledge” of fractions will stite. Picture (or use the last picture that you
drew to illustrate) the following process: Mark the midpoint of the line segment

: 1 N
from 0 to 1 and label it 21 or E; then mark the midpoint of each of the smaller
. 1 1
line segments (the one from Oannd the one fror‘rE to 1) and label the two new
1 3 . . .
points— and-, respectivelyrepeat the process with the four smaller line segments

to geté, 18287 g as the marked rationals between 0 and 1. It doesn’t take
too many iterations of this process to have it look like you hidlled the interval.

Of course, we know that we haven't because any rational in the frogrT! where

0 < p < gandqg # 2" for any n has been omitted. What turned out to be a
surprise, at the time of discovery, is that all the ratiomalich the O< r < 1

will not be “enough tofill the interval [Q 1].” At this point we have the set of
elements of thdield that are not in any of the special subs@&s;- Qg, and the

“set of vacancies” on our model line. We don’t know that there is a one-to-one
correspondence between them. That there is a correspondence follows from the
what is proved in the Appendix to Chapter 1 of our text.

Henceforth, we uséR, +, -, 0, 1, <) to denote the orderefield (of reals) that
satidies the least upper bound property and may make free use of the fact that for
any X € R we have thak is either rational or the least upper bound of a set of
rationals. Note that the sfibld (Q, +, -, 0, 1, <) is an orderedield that does not
satisfy the least upper bound property.

1.3.1 Densty Properties of the Reals

In this section we prove some useful density properties for the reals.
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Lemmal3.l If SC R hasL asaleast upper bound L, then
(Ve) (e e RAe > 0) = (dS)(se SAL—-—e <s<L)).

Proof. Suppose S is a nonempty subset of R such that L = sup (S) and let
¢ € R besuchthat ¢ > 0. By Proposition 1.2.9(#3) and (OF1), —¢ < 0 and
L — & < L. From the definition of least upper bound, each upper bound of Sis
greater than or equal to L. Hence, L — ¢ is not an upper bound for S from which
we concludethat — (Vs) (se S= s < L —¢) issdtisfied; i.e.,

(@) (se SAL—-¢<5).
Combining thiswith L = sup (S) yields that
(3s)(se SAL—eg <s<L).

Since ¢ was arbitrary, (Ve) (e e RAe > 0) = (ds)(se SAL—e <s< L)) as
clamed. m

Theorem 1.3.2 (The Archimedean Principle for Real Numbers) If « and f are
positive real numbers, then there is some positive integer n such that no > 4.

Proof. The proof will be by contradiction. Suppose that there exist positive
real numbers oo and S such that na < g for every natural number n. Since o > 0,
o <20 < 3a < -+ < nNa < --- IS anincreasing sequence of real numbers
that is bounded above by f. Since (R, <) satisfies the least upper bound property
{na : n e N} hasaleast upper boundinR, say L. Choosee = %a which is positive
because & > 0. Since L = sup{na : n € N}, from Lemma 1.3.1, there exists
se{na:neN}suchthat L —¢ <s < L. If s= Na, thenfor al natural numbers
m > N,weasohavethat L —¢ <ma < L. Hence,foom> N,0< L —ma < ¢.
In particular,

1
O<L—-—(N+DMDa <8=§OC
and
1
O<L—-(N+2)a <8=§0£.

Thus, L —2a < (N + Da and (N +2)a < L < L + 3a. But adding o to
both sides of the first inequality, yields L + %a < (N + 2)a which contradicts

(N+2a < L+ %a. Hence, contrary to our original assumption, there exists a
natural number n such that no. > 5. m
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Corollary 1.3.3 (Density of the Rational Numbers) If o and S are real numbers
witha < g, thenthereisarational number r suchthata <r < f.

Proof. Since 1 and  — a are positive real numbers, by the Archimedean Prin-
ciple, there exists a positive integarsuch that 1< m(f — «), or equivalently

mo + 1 < mp.
Let n be the largest integer such thlak ma. It follows that
nN+1<ma+1<mg.

Sincen is the largest integer such that < ma, we know thatma < n + 1.
Consequentlyna < n+ 1 < mg, which is equivalent to having

n+1

a <

< p.
Therefore, we have constructed a rational number that is betweaeds. =

Corollary 1.3.4 (Density of thelrrational Numbers) If a and g are real num-
bers witha < g, then there is an irrational number such thata < y < B.

Proof. Supposethat o and f are real numberswith a < f. By Corollary 1.3.3,

thereisarational r that is between % and % Since +/2 isirrational, we conclude

that y =r - v/2isanirrational that is between o and 5. m

1.3.2 Existence of nth Roots

The primary result in this connection that is offered by the author of our text isthe
following

Theorem 1.3.5 For Rt = {x € R : x > 0}, we have that

W) (Vn) (x eRTAnel=@ly) (yeRAY"=X)).
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Before we start the proof, we note the following fact that will be used in the
presentation.

Fact 1.3.6 (Vy) (V2) (Vn)[(Y,ze RANeJAO<y <2) = y" < 2"]
To seethis, for y, z € R satisfyingare0 < y < z, let

S={nel:y"<2"}.
Our set-up automatically places € S. Suppose that& S; i.e., ke Jand ¥ < Z.
Since0 < vy, by (OF2), y**1 = y. yk < y. ZX From0 < z and repeated use
of Proposition 1.2.9(#2), we can justify thait< zX. Then(O F2) with 0 < Z€ and
y < zyields that y X < z- ZX = Z“t1. As a consequence of the transitive law,

k—f—1:> yk+1 < Zk+1,'

Yl oy KAy . K<z
thatis, k+ 1 € S. Since k was arbitrary, we conclude that
Vky(ke S= (k+1) € 9S).
Fromle SA (Vk)(ke S= (k+ 1) € S), S is an inductive subset of the
natural numbers. By the Principle of Mathematical Induction (PMI}x 3. Since
y and z were arbitrary, this completes the jfisaition of the claim.

Fact 1.3.7 (vw) (Vn)[(w e RAnNeJ—{J A0 <w <1) = w" < w]

Sincen> 2, n—1 > 1and, by Fact 1.3.6p"! < 1"1 = 1. From (OF2),
0 <wAw"™?! < limpliesthatw" = w" 1 w < 1-w = w, i.e,w" < was
claimed.

Fact 1.3.8 (va) (Vb) (Vn)[(a,beRANeJ-{1} A0 <a <b)
= (b"—a") < (b —aynb™ ]

From Fact 1.3.6, n> 2A0 < a < b = a"™! < b"™*, while (OF2) yields
thata-bl <b-bl =bltlforj = 1,2 ...,n—2. It can be shown (by repeated
application of Exercise 6(a)) that

pn—1 + b"2a 4 ba"—2 + a1 - pn-1 + pn—1 4t p"—1 — I‘lbn_l;
this, with(O F2), implies that

b" —a" = (b — a) (b”‘1 +b"2a+ .- +ba" %+ a”‘l) < (b—-a)np™?
as claimed.

Proof. (of the theorem.) Let R* = {ue R:u> 0}. Whenn = 1, thereis
nothing to prove so we assume that n > 2. For fixed x e RT™ andn € J— {1}, set

E={teR":t" <x}.
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. X o
Excursion 1.3.9 Usew = T+ x to justify that E # 4.

Now let u = 1+ x and supposethatt > u > 0. Fact 1.3.6 yields that
1
t" > u". From Proposition 1.29(#7),u > 1 = 0 < g < 1. It follows from

. 1 1 e
Fact 1.3.7 and Proposition 1.2.9(#7) that 0 < o < " and u" > u. By transitivity,
t" > u" AUu" > uimpliesthat t" > u. Finally, sinceu > x transitivity leads to the
conclusionthat t" > x. Hence, t ¢ E. Sincet was arbitrary, (vt) (t > u=1t ¢ E)
which isequivalent to (vt) (t € E = t < u). Therefore, E C R is bounded above.
From the least upper bound property, lub (E) exists. Let

y =Iub(E).
Since E c R*, wehavethat y > 0.

By the Trichotomy Law, one and only one of y" = x, y" < x, or y" > x.
In what follows we will that neither of the possibilities y" < x, or y" > x can hold.

_ N
Casel: If y" < x,thenx—y" > 0. Sincey+1 > Oandn > 1, x—yl >
n(y+1""
0 and we can chooseh suchthat 0 < h < 1 and
_ N
S X=y
n(y+ 1"t

Takinga =y andb = y + hin Fact 1.3.8 yields that

(y+h"—y" <hn(y+h"?! <x—y"
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Excursion 1.3.10 Usethisto obtain contradict that y = sup (E).

Case2: If 0 < x < y", then0 < y" — x < ny". Hence,

y" —x
=y T

issuchthat 0 < k < y. Fort > (y — k), Fact 1.3.6 yieldsthat t" > (y — k)".
From Fact 1.3.8, withb = y and a = y — k, we have that

Yyl —t" <y — (y—k)" < kny" !t = y" —x.

Excursion 1.3.11 Use thisto obtain another contradiction.

From case 1 and case 2, we conclude that y" = x. this concludes the proof that
there exists a solution to the given equation.

The uniqueness of the solution follows from Fact 1.3.6. To see this, note
that, if y" = x and w issuchthat 0 < w # y, then w < y impliesthat w" < y" =
X, whiley < w impliesthat x = y" < w". In either case, w" # x. m
***For Excursion 1.3.9, you want to justify that the given w isin E. Because 0 <

X <1+X,0<w = T < 1. Inviewof fact 1.3.7, w" < wforn > 2orw" < w

<1An <X-1=x.

o 14X 1+X
From transitivity, w" < w Aw <X = w" < x;i.e, w € E.

To obtain the desired contradiction for completion of Excursion 1.3.10, hope-
fully you notices that the given inequality implied th@gt+ h)" < x which would

forn > 1. Butx > 0A 1+ x > limpliesthat
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placey + hin E; sincey + h >y, thiswould contradict that y = sup (E) from
which we conclude that y" < x is not true.

The work needed to complete Excursion 1.3.11 was a little more involved. In
this case, the given inequality led to —t" < —x or t" > x which justifies that
t ¢ E;hence,t > y— kimpliesthatt ¢ E whichislogically equivalenttot € E
impliesthatt < y — k. Thiswould make y — k an upper bound for E whichisa
contradiction. Obtaining the contradiction yieldsthat x < y" isalso not true.***

Remark 1.3.12 For x a positive real number and n a natural number, the number
y that satisfies the equation y" = x iswritten as J/x and isread as “the nth root of

X.

Repeated application of the associativity and commutativity of multiplication
can be used to justify that, for positive real numbersa and  and n anatural number,

a"p" = (af)".

From this identity and the theorem we have the following identity involving nth
roots of positive real numbers.

Corollary 1.3.13 If a and b are positive real numbers and n is a positive integer,
then

(ab)l/n — al/nbl/n_

Proof. For a = a/" and = b¥", we have that ab = a"g" = (af)". Hence
a8 is the unique solution to y" = ab from which we conclude that (ab)/" = af
asneeded. m

1.3.3 TheExtended Real Number System

The extended real number systemisR U {—o0o, +o0} where (R, +, -, 0, 1, <) isthe
ordered field that satisfies the least upper bound property as discussed above and
the symbols —oo and +o0o are defined to satisfy —oco < X < +oco for al x € R.
With this convention, any nonempty subset S of the extended real number systemis
bounded above by +o0o and below by —oo; if Shasno finite upper bound, we write
lub (S) = +00 and when S has no finite lower limit, we write glb (S) = —oo.

The +00 and —oo are useful symbols; they are not numbers. In spite of their
appearance, —oo is not an additive inverse for +o0o0. This means that there is no
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meaning attached to any of the expressions co — oo or —— or —; in fact, these

expressions should never appear in things that you write. §Oecausgothe symbols co
and —oo do not have additive (or multiplicative) inverses, R U {—oco, oo} is not a
field. On the other hand, we do have some conventions concerning “interaction” of
the special symbols with elements of tixeld R; namely,

X

X
o If X eR,thenx4+ 00 =400, X—00=—-—0and— = —— =0.
o0 — 00

e If X > 0, thenx - (+00) = 400 andx - (—o0) = —cc.
e If X <0, thenx - (+o0) = —o0 andx - (—o0) = +c.

Notice that nothing is said about the product of zero with either of the special sym-
bols.

1.4 TheComplex Field

ForC = R x R, ddine addition(+) and multiplication(-) by

(X1, Y1) + (X2, ¥2) = (X1 + X2, Y1 + Y2)

and

(X1, Y1) - (X2, Y2) = (X1X2 — Y1Y2, X1Y2 + Y1X2) ,

respectively. That addition and multiplication are binary operation§€ @a con-
sequence of the closure Bfunder addition and multiplication. It follows immedi-
ately that

(Xa Y) + (O, O) = (Xa Y) and (Xa y) ' (1a O) = (Xa y) '

Hence, (0, 0) and (1, 0) satisfy the additive identity property and the multiplica-
tive identityfield property, respectively. Since the binary operations afieeltas
combinations of sums and products involving reals, direct substitution and appro-
priate manipulation leads to the conclusion that addition and multiplication over
C are commutative and associative under addition and multiplication. (The actual
manipulations are shown in our text on pages 12-13.)

To see that the additive inverse property is $adth note tha¢x, y) € C implies
thatx € RAy € R. The additive inverse property in tfieldR yields that—x € R
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and —y € R. It followsthat (—x, —y) € C and (X, y) + (—x, —y) = (0,0) and
needed.
Suppose (X, y) € C issuch that (x,y) # (0,0). Thenx # 0v y # 0 from

which we conclude that x= + y< # 0 and (a, b) i 1y 32 s yz) iswell
defined. Now,

_ -y
(Xa y)'(aa b) - ( X2+y2,X2+y2)
-y -y
- g x2+y2 X2+y2’x'xz+y2+y x2+y2)

5

XX+ (=Y)-(=y) X-(=y)+VY- X)
X2+y2 X2+y2

X2 4+ y? xy+yx)

X2+y2 X2+y2
= (L0).

Hence, the multiplicative inverse property is satisfied for (C, +, -).
Checking that the distributive law is satisfied is a matter of manipulating the
appropriate combinations over thereals. Thisis shown in our text on page 13.
Combining our observations justifiesthat (C, +, -, (0, 0), (1, 0)) isafield. Itis
known as the complex field or the field of complex numbers.

Remark 1.4.1 Identifying each element of C in the form (x, 0) with x € R leadsto
the corresponding identification of the sums and products, x+a = (x, 0)+(a, 0) =
X+a,0andx-a=(x,0)-(a,0) = (x-a,0). Hence, thereal field isa subfield
of the complex field.

Thefollowing definition will get usto an alternative formulation for the complex
numbers that can make some of their properties easier to remember.

Definition 1.4.2 The complex number (0, 1) is defined to bei.
With this definition, it can be shown directly that
2=(-1,0)=—-1and

e if aand b arereal numbers, then (a, b) =a+ bi.
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With these observations we can write
C= {a+bi :a,beR/\izz—l}

with addition and multiplication being carried out using the distributive law, com-
mutativity, and associativity.

We have two useful forms for complex numhetise rectangular and trigono-
metric forms for the complex numbers are freely interchangeable and offer different
geometric advantages.

From Rectangular Coordinates

Complex numbers can be represented geometrically as points in the plane. We
plot them on a rectangular coordinate system that is called an Argand Graph. In
z = x + 1y, x is the real part ok, denoted by Re, andy is the imaginary part
of z, denoted by Inz. When we think of the complex numbgr+ iy as a vector
OP joining the originO = (0, 0) to the pointP = (X, y), we grasp the natural
geometric interpretation of additioa-§ in C.

Z, /

Definition 1.4.3 Themodulus of a complex number z isthe magnitude of the vector
representation and is denoted by |z|. If z= x + iy, then |z| = /X2 + y2.

Definition 1.4.4 The argument of a nonzero complex number z, denoted by argz,
isa measurement of the angle that the vector representation makes with the positive
real axis.

Definition 1.4.5 For z = x + iy, the conjugate of z, denoted by z, isx —iy.

Most of the properties that are listed in the following theorems can be shown
fairly directly from the rectangular form.
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Theorem 1.4.6 For z and w complex numbers,
1. |z] > Owith equality only if z= 0,
2. 12| = |z],
3. |zw| = || |wl,
4. |Rez| < |zland [ImZz]| < |z,
5. |2+ w|? = |2> + 2Rezw + |w|.
The proofs are left as exercises.
Theorem 1.4.7 (The Triangular Inequalities) For complex numbers z; and zo,
121+ 22| < |zal + 22|, and |21 — 25| > [|za] — |22]].
Proof. To seethe first one, note that

1z1+ 221> = |z2)> +2Rez1zp + |22/?
< |zaP+2lzallzl+ 127 = (z2) + 1220)?

The proof of the second triangular inequality isleft asan exercise. m
Theorem 1.4.8 If zand w are complex numbers, then

1l z4+w=7Z+w

N

2. Zw = Zw
Z+ 7 Z—27
3. Rez=—,IMmz= ——,
2 2i

4. 7z isa nonnegative real number.

From Polar Coordinates
Fornonzeroz = x +iy e C, letr = /x2+y2and 0 = arctan(
Then the trigonometric formis

y

;) = agz

z=r (cosf +ising).
In engineering, itis customary to use cisd for cosd +i sind in which case we write
zZ=rcisf.

NOTE: While (r, #) uniquely determines a complex number, the converse is not
true.
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Excursion 1.4.9 Use the polar form for complex numbers to develop a geometric
inter pretation of the product of two complex numbers.

The following identity can be useful when working with complex numbersin
polar form.

Proposition 1.4.10 (DeMoivre's Law) For 0 real and n € Z,
[cisO]" = cisnd.

Example 1.4.11Find all the complex numbers that when cubed give the value one.

We arelooking for all ¢ € C such that ¢ = 1. DeMoivre’s Law offers us a nice
tool for solving this equation. Let =r cisd. Therr® = 1 < r3cis3) = 1. Since
|r3 cis3¢9| = r3, we immediately conclude that we must have t. Hence, we need
only solve the equatioas39 = 1. Due to the periodicity of the sine and cosine,
we know that the last equation is equivalentfiading all & such thatcis30 =

2k
cis(2kr) for k € Z which yields thaBfd = 2kz for k € Z. But [TE ke Z] =

2 2 .
[—g, 0, %] Thus, we have three distinct complex numbers whose cubes are

, 2 : . (2
one namely,us(—%), cisO=1, andas(%). In rectangular form, the three

1 V3 3
complex numbers whose cubes are one a{g:— [ - 0, and—z + %

Theorem 1.4.12 (Schwar z's Inequality) If a4, ...,a, and by, ..., by are complex

numbers, then

n
> ajb;
=1
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Proof. First the statement is certainly trueif by = Ofor al k, 1 < k < n. Thus
we assume that not all the by are zero. Now, for any A € C, note that

n
> laj = bj| = 0.
i=1

Excursion 1.4.13 Make use of thisinequality and the choice of

(&)

to compl ete the proof.

Remark 1.4.14 A special case of SchwarZ's Lemma contains information relating
the modulus of two vectors with the absolute value of their dot product. For ex-
ample, ifof = (ag, ap) and 23 = (by, by) are vectors iR x R, then Schwarz’s
Lemma merely reasserts tHalf e 93 | = |a1by + asby| < |27 |23 .

1.41 Thinking Complex

Complex variables provide a very convenient way of describing shapes and curves.
It isimportant to gain afacility at representing setsin termsof expressionsinvolving
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complex numbers because we will use them for mappings and for applications to
various phenomena happening within “shapes.” Towards this end, let's do some
work on describing sets of complex numbers given by equations involving complex
variables.

One way to obtain a description is to translate the expressions to equations in-
volving two real variables by substitutirg= x + 1y.

Example 1.4.15 Find all complex numbers z that satisfy
2|1zl =2Imz - 1.
Letz=x+1iy. Then

21zl =2Imz—-1 o 2JX2+y2=2y—1
e (4(x*+Yy? =4y2—4y+1)/\(y2

= A2 = -4y + 1Ay >
= Xe=— (y - =
o 1 1 1. :
The last equation impliesthat y < 7 Sncey < 2 AY > > is never satisfied, we
conclude that the set of solutions for the given equation is empty.

Excursion 1.4.16 Findall ze C suchthat |z| —z=1+ 2i.

. 3 . :
***Your work should have given th<2= — 2i as the only solutiori**
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Another way, which can be quite a time saver, is to reason by TRANSLAT-
ING TO THE GEOMETRIC DESCRIPTION. In order to do this, there are some
geometric descriptions that are useful for us to recall:

{(z:|z—20| =71} is the locus of all pointg equidistant from théxed
point, zp, with the distance being > 0. (a circle)

(z:|z2—271| = |2— 22|} is the locus of all pointz equidistant from two
fixed points,z; andz,. (the perpendicular bisec-
tor of the line segment joining, andzy.)

(z:|z—21|+|z2—20| = is the locus of all points for which the sum of the
p} for a constanp > distances from 2ixed points,z; andz,, is a con-
|21 — 22| stant greater thajz; — z»|. (an ellipse)

Excursion 1.4.17 For each of thefollowing, without substituting x+iy for z, sketch
the set of points z that satisfy the given equations. Provide labels, names, and/or
important points for each object.

z—2i
z+ 342

2. |lz—4i|+|z+ 7| =12
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3. |4z+3—i| <3

***The equations described a straight line, an ellipse, and a disk, respectively. In
set notation, you should have obtained {x +iyeC:y= —§x — 9]

4 8
(+3)
2 Y+—)
X 2 =1%,and

+— =1

Remark 1.4.18 Ingeneral, if k isa positive real number and a, b € C, then

Z—a
[ZE(C.'ZTb

:Kk¢4

describes a circle.

Excursion 1.4.19 Use the space below to justify this remark.
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***Smplifying

ﬁ‘:kleadsto
z—b

(1 —~ k2) |z|? — 2Re(az) + 2k*Re (bz) + (Ial2 — K2 |b|2)

from which the remark follows.***

1.5 Problem Set A

1. ForF = {p,q, r}, letthebinary operations of addition, ¢, and multiplication,

®, be defined by the following tables.

®|rjq|p
ririjglp
Q| g|p|r
PIP|r Q9

®[ra]p
rfrf{r|r
g |rlalp
plriplg

(a) Istherean additiveidentity for the algebraic structure (F, &, ®)? Briefly

justify your position.

(b) Isthe multiplicative inverse property satisfied? If yes, specify a multi-
plicative inverse for each elementBfthat has one.
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(c) Assuming the notation from our field properties, find
rege(pdp?).

(d) Is{(p, p),(p,r),(@,9),(p,q), (r,r)} afield ordering on F? Briefly
justify your claim.

. For afidd (FF, +, -, e, f), prove each of the following parts of Proposition
1.1.6.

(8 Themultiplicative identity of afield is unique.
(b) The multiplicative inverse of any element inIF — {e} is unique.

. For afield (F, +, -, e, f), prove each of the following parts of Proposition
1.1.8.

(@ (va)(vb)(a,beF = —(a+b) = (—a) + (b))

(b) (va)(vb)(a,beF = a-(—b)=—(a-b))

(©) (Vva)(vb)y(a,beF= (-a)-b=—(a-h))

(d) (va)(vb)y(a,beF= (—a)-(=b)=a-b)

(e) (va) (vb) (a,b e F—{e} = (a-b)~* = (a7?) (b71))
. For afield (F, +, -, O, 1), prove Proposition 1.1.10(#1):
(Va)(vb)(a,beF= AX) (x e FAa+ x =Dh))

. Forafidd (F, +, -, 0, 1), show that, for a, b, c € T,
a—(b+c)=(@—-b)-c and a—(b-c)=(@—-b)+c
Give reasons for each step of your demonstration.

. For an ordered fidd (F, +, -, 0, 1, <), prove that

(@ (Va) (vb) (vc) (vd)[(a,b,c,deFAa<bAac<d) =
a+c<b+d]

(b) (va) (vb) (Vo) (vd)[(a,b,c,de FA0O<a<bAO<c<d)=
ac < bd]

. For an ordered field (FF, +, -, O, 1, <), prove each of the following
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() (va) (vb) (vc)[(a,b,ce FAC#0) =
(@chHh+(b-ct=@+b) c]

(b) (va) (vb) (vc) (vd)[(a,ce FAb,deF—{0})) = b-d #0A
(@a-b™)+(c-dY=@-d+b-c)-(b-d)7Y

8. Find the least upper bound and the greatest lower bound for each of the fol-
lowing.

9. Let(X, <) be an ordered set andl C X. Prove that, ifA has a least upper
bound inX, it is unique.

10. Suppose the® C Ris such that infS) = M . Prove that

Ve) (e e RAe >0)= (dg) (e SAM <g<M+5¢)).

1
find

2
11 FOI’f (X) == ; + ﬁ’

(@) supf~t((—o0,3))
(b) inf f~1((3, 00))
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13.
14.

15.

16.

17.

18.
19.

20.

21.
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Supposethat P ¢ Q c Rand P # @. If P and Q are bounded above, show
that sup (P) < sup(Q).

Lt A={xeR:(x+2)(x—3)"1 < —2}. Findthesup (A) andtheinf (A).

Use the Principle of Mathematical Induction to prove that, fora > Oand n a
natural number, (1+a)" > 1+ na.

Find all the values of

(b) A+2)[3(2+1)—2(3+6i)]. e A+ —@a-nn.
(€ A+i)3
Show that the following expressions are both equal to one.
3 3
-1+i+/3 —1—-i+/3
S

For any integers k and n, show that i" = i"+*. How many distinct values
can be assumed by i"?

Use the Principle of Mathematical Induction to prove DeMoivre's Law.

If z7 = 3 — 4i andz, = —2 + 3i, obtain graphically and analytically

(a) 2z1 + 42o. (d) |z1 + z2|.
(b) 371 — 2z. (e) |z1 — 2o|.
) zn-z-4 (f) 12z1+ 3z - 1.

Prove that there is no ordering on the comgleld that will make it an or-
deredfield.

Carefully justify the following parts of Theorem 1.4.6. Fandw complex
numbers,

(@) |z| > 0 with equality only ifz = 0,

(b) 1z = 1z,

(€) lzw| = |z] |wl,
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(d) |Rez| < |zl and [ImZ] < |z],
@ |z+ w|? =|zI> + 2Rezw + |w|?.

22. Prove the “other” triangular inequality: For complex numbers and zo,
|21 — 22| = [|z1] — |22]|.

23. Carefully justify the following parts of Theorem 1.4.8zHindw are complex
numbers, then

(b) Zw = zw

Z+Z Z—27
c) Rez=—,IMmz= ——,
©) 2 2i

(d) zzis a nonnegative real number.

24. Find the set of alt € C that satisfy:
@ 1<zl <3. @ |z—=1+1|z+1=2. (@ |z—2|+|z+ 2| =5.

(b) 2‘3'—1 (e) Imz? > 0. (h) 12| = 1+ Re(2).
z+2| 7
z+2)_,
(c) Rez? > 0. (M 2_1'_ '

25. When doeaz + bz + ¢ = O represent a line?

26. Prove that the vectaj is parallel to the vectar, if and only if Im (z1z2) = 0.
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Chapter 2

From Finiteto Uncountable Sets

A considerable amount of the material offered in this chapter is areview of termi-

nology and results that were covered in MAT108. Our brief visit allows us to go
beyond some of what we saw and to build a deeper understanding of some of the
material for which a revisit would be befial.

2.1 Some Review of Functions

We have just seen how the concept of function gives precise meaning for binary
operations that form part of the needed structure fioeld. The other “big” use of
function that was seen in MAT108 was withfaeng “set size” or cardinality. For
precise meaning of what constitutes set size, we need functions with two additional
properties.

Definition 2.1.1 Let A and B be nonempty setsand f : A — B. Then

1. f isone-to-one written f : Aﬂ B, if and only if
(VX)) (YY) (V) (X, ) € fF A(Y,2) e f = x=Y),
2. fisonto, written f : A — B, if and only if

(Vy)(ye B= @) (xe AA(x,y) € f)),

. . 1-1 . . .
3. f isaone-to-one correspondenceritten f : A — B, ifand onlyif f is
one-to-one and onto.

49
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Remark 2.1.2 Intermsof our other definitions, f : A — B isontoif and only if

rng(f)d:f {yeB:(@xX)(xe AA(X,y)e f)} =B
e
whichisequivalentto f [A] = B.

In the next example, the first part is shown for completeness and to remind the
reader about how that part of the argument that something is a function can be
proved. Asamatter of genera practice, aslong aswe are looking at basic functions
that result in simple algebraic combinations of variables, you can assume that was
Isgiven in that form in afunction on either itsimplied domain or on a domain that
IS specified.

X
1-— x|

Example2.1.3 For f = [(x ) eRxR:-1<x < 1t,provethat

1-1
f:(-1,1) > R.

(@) Bydefinition, f C R x R, i.e, f isarelation from (-1, 1) to R.

Now suppose that x € (—1, 1). Then |x| < 1 fromwhich it follows that
1—|x| # 0. Hence, (1—|x|)"t e R— {0} and y =X AL-|xpteR
e

because multiplication isa binary operation on R. Snce x was arbitrary, we
have shown that

") (xe (L= QAy)(yeRA(X,y) e T)),ie,

dom(f) =(-1,12).

Suppose that (x,y) € f A (X,0) € f. Thenu =x- (A —|x)" =0
because multiplication is single-valued onR x R. Since x u, andv were
arbitrary,

(VX)) (Yu) (Vo) (X,u) e f A(X,0) e f = Uu=0),

l.e., f is single-valued.

Because f is a single-valued relation frgml, 1) to R whose domain
is (=1, 1), we conclude that f (—-1,1) —» R.
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(b)

()

Supposethat f (x) = f (x2); 1.8, %1, %2 € (=1, 1) and ¢ I = XTX -
T 1%

Snce f (X1) = f (x2) we must have that f (x1) < O/\ f (x2) < 0 or
f (X)) > 0A f (X2) > Owhichimpliesthat —1 < X1 < 0A =1 < X2 <0
orl>x3 >0A1>x2>0. Nowxg, X € (—1,0) yields that f)gxl) =

X1 X2
= = f (X2), whilexq, X 0, 1) leadsto f (X1) = =
Tya 1t% (X2), 1, X2 €[0,1) (xp) = Tox

= f (x2). In either case, a smple calculation gives that x; = Xo.

1—x
Snce x1 and xp were arbitrary, (vVx1) (Vx2) (f (X1) = f (X2) = X1 = X2).
Therefore, f isone-to-one.

Finally, fill in what is missing tginish showing that f is onto. Let € R.
Then eitherv < 0orw > 0. Forw < 0, let x = 1L Then(1—w) > 0
— W

and, because-1 < 0, we have that-1+ w < w or — (1 — w) < w. Hence,

-1 < and we conclude the x . It follows that
@

— W
IX] = and
2

X
f (x)= =
(X) T x] 5

Forw > 0, let x = % Becausel > 0 and w > 0 implies that
w

> w > 0which is equivalent to having > x = v S
14w

4)
Hence x| = and

()
f(xX)=

(6)

Sincew € R was arbitrary, we conclude that f maps1, 1) ontoR.

*** A cceptable responses are: (1) (—1, 0), (2) l_—w
— W

@ (2
© (=

-1
w) (1+—1fw) =0 @140 O T

-1
1- _v = . ***
w 1+w
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Given arelation from aset Ato aset B, we saw two relations that could be used
to describe or characterize properties of functions.

Definition 2.1.4 Givensets A, B,andC,letRe P(Ax B)and Se P (B x C)
where P (X) denotes the power set of X.

1. theinverse of R, denoted by R™1,is{(y, X) : (X, y) € R},
2. the composition of Rand S, denoted by So R, is
{(X,20e AxC:3y)((x,y) € RA(Y,2) € 5}.

Example2.1.5 For R={(x,y) e Nx Z : x2 + y? < 4} and
S={x,y)eRxR:y=2x+1},R1={0,1),(-1,1),(1,1),(0,2},St=

[(x,y) eRxR:y:X—;l],and SoR={(1,1),(L3),( -1, (2 1)}

Note that the inverse of arelation from aset A to aset B is always a relation
from B to A; thisis because arelation is an arbitrary subset of a Cartesian product
that neither restricts nor requires any extent to which elements of A or B must be
used. On the other hand, while the inverse of afunction must be arelation, it need
not be a function; even if the inverse is a function, it need not be a function with
domain B. The following theorem, from MAT 108, gave us necessary and sufficient
conditions under which the inverse of afunction is afunction.

Theorem 2.1.6 Let f : A— B. Then f ~isafunctionif and onlyif f isone-to—
one. If f~1is a function, then f1is a function from B into A if and only if f isa
function from A onto B.

We also saw many results that related inverses, compositions and the identity
function. These should have included all or alarge subset of the following.

Theorem 2.1.7 Let f : A— Bandg: B — C. Then g f is a function from A
into C.

Theorem 2.1.8 Suppose that A, B, C, and D are sets, RP(Ax B), S €
P(BxC),and Te P (C x D). Then

To(SoR)=(ToSoR.
and

(SoR =R 1ost
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Theorem 2.1.9 Supposethat A and B aresetsand that R € P (A x B). Then
1. Ro Rl € P (B x B) and, whenever Rissingle-valued, Ro R~ C I

2. R1oRe P (Ax A) and, whenever R is one-to-one; R R C I
3. (RY =R
4, loR=Rand Ro la =R.

Theorem 2.1.10 For f : A—» Bandg: B— C,

1. If f and g are one—to—one, thercgf is one—to—one.
2. If f isonto B and g is onto C, thenggf is onto C.
3. Ifgo f is one—to—one, then f is one—to—one.

4. Ifgo f isonto C then g isonto C.
Theorem 2.1.11 Suppose that A, B, C, and D are sets in the univéfse

1. If h is a function havinglomh = A, g is a function such thatomg = B,
and AN B = @, then hu g is a function such thadom (h U g) = AU B.

2. fh: A—-»C,g:B—- Dand AnB =6,thenhug: AUB - CUD.
3. Ifh: AS'C,g: BS' D, AnB =4, and CN D = 6, then
hug: AUB S'CcuUD.

Remark 2.1.12 Theorem 2.1.11 can be used to give a slightly different proof of the
result that was shown in Example 2.1.3. Notice that the relation f that was given
in Example 2.1.3 can be realized agUf f, where

flz[(x, X )G]RXR:—1<X<O]
1+x

and

fg:[(x, X )eRxR:0§x<1];
1—x

for this set-up, we would show that f (-1, 0) 1—_»1 (—o0,0)and b : [0,1) 1—_»1

[0, 00) and claim f U fy : (—1,1) e R from Theorem 2.1.11, parig2) and
(#3).
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2.2 A Review of Cardinal Equivalence

Definition 2.2.1 Two sets A and B are said to be cardinally equivalent, denoted
by A~ B,ifandonlyif @f)( f: A B). If A~ B (read “A is equivalent to

B”), then A and B are said to have the same cardinality.

1 .
Example2.2.2 Let A= {0} and B= [ﬁ ‘ne N]. Make use of the relation

{(x, T (X)) :x€][0,1]}

where

1 .
> Jifx e A
foo = X ifxeB
1+ 2x
X ,ifxe[0,1] — (AU B)

to prove that the closed intervf), 1] is cardinally equivalent to the open interval
0, 1).

Proof. Let F = {(x, f (X)) : x € [0, 1]} where f is dgned above. Then =
{(X,01) : xe AUB}U{(X,02) : X € ([0, 1] — (AU B))} where

1 :
> Jifx e A
ax = X _ and @ = f [[0,1-(AuB)-
,ifxe B
14 2x
. . 1
Suppose that x AU B. Then either x= 0 or there exists re N such that x= =
1
1 1 n 1
It follows that g (X) = g1 (0) = Zorgu (X) = 1 (=) = —— = c
2 ") 140t NF2

(0, 1). Since x was arbitrary, we have that

(") (xe AUB= Ay)(ye O, ) Aqi(X)=Y)).
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Thus, dom (g1) = AU B. Furthermore, since (142 - x) £ 0for x € B

=x-(14+2-x)71
1+ 2x €+ )

Is defined and single-valued becauseand+ are the binary operations on th#eld
R. Hence,g: AUB — (0, 1).
Since

1
gl[AU B]Z[n—_'_anN] djf C,

we have that g : AU B — C. Now suppose thatjxxo € AU B are such
. 1
that ¢ (x1) = 01 (x2). Then either g(x1) = g1 (x2) = 5 0rG1(x1), 91 (x2) €
1
N2 :n e N;. In thefirst case, we have that x= xo = 0. In the second case,

we have that g(x1) = g1 (Xo) =

X1 _ X2
1+ 2x1 14 2Xo

S X1+ 2X1X2 = X2 + 2XoX1 & X1 = Xo.
Since X and % were arbitrary,
(VX1, X2) (X1, X2 € AUB A g1 (X1) = g1 (X2) = X1 = X2); i.e.,
01 is one-to-one. Therefore,
1-1
gr: AUB —» C.

Note that[0,1] — (AU B) = (0,1) — C. Thus, g, as the identity function on
(0,1) — C, is one-to-one and onto. That is,

% ((0,1)~C) > ((0,1)—C).
From Theorem 2.1.18#2) and #3), ¢ : AUB 5 C, @ : ((0,1)—=C) =
((0,1) — C), ([0, 1] — (AU B)) N (AU B) = # and((0, 1) — C) N C = & implies
that

g1UG: (AUB)U((0,1) —~C) = CU((0,1) - C). *)
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Substituting ((0, 1) — C) = [0, 1] — (AU B) in addition to noting that
(AUB)U ([0,1] — (AU B)) = [0, 1]
and
Cu(0,1)-C)=(,1),

we conclude from (*) that

1-1
F :glng:[oal] - (031)
Therefore, |[0, 1]| = (0, 1)|. m

For the purpose of describing and showing that sets are “finite”, we make use of
the following collection of “master sets.” For eakle J, let

Jk={jel:1<j<Kkl.

Fork € J, the setlk is ddined to have cardinality. The following ddinition offers
a clasdiication that distinguishes set sizes of interest.

Definition 2.2.3 Let Sbe a set in the universe (. Then
1. Sisfinitee (S=0) v 3k) (k e J A S~ Ji).
2. Sisinfinite < Sisnot finite.
3. Siscountably infinite or denumerable < S~ J.
4. Sisat most countable < ((Sisfinite) v (Sisdenumerable)).
5. Sisuncountable & Sis neither finite nor countably infinite.

Recall that ifS = @, then it is said to have cardinal number 0, writt&h= 0.
If S~ Jk, thenSis said to have cardinal numbleri.e., |S| = k.

Remark 2.2.4 Notice that the term countable has been omitted from the list given

in Definition 2.2.3; this was done to stress that the definition of countable given by

the author of our textbook is different from the definition that was used in all the
MAT108 sections. The term “at most countable” corresponds to what wasfiahed

as countable in MAT108. In these Companion Notes, we will avoid confusion by
not using the term countablevhen reading your text, keep in mind that Rudin uses
the term countable for denumerable or countabjynite.
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We know an infinite set is one that is not finite. Now it would be nice to have
some meaningful infinite sets. The first one we think of isN or J. Whilethisclaim
may seem obvious, it needs proving. Thisleadsto the following

Proposition 2.2.5 The set J isinfinite.

Spoace for comments.

Proof. Since {#} = 1 e J,Jisnotempty. Toprovethat— (3K) (k € J A Jx ~ 1)
e

is suffices to show that (vk) (V) ((k eJnf g 53 J) = [ # .,]I). Sup-

pose thak € Jandf is such thatf : Jy = J. Letn = f()+f(2Q)+---+ T (K)+1.
For eachj, 1 < | < k, we have thatf (j) > 0. Hencen is a natural number that
is greater than each(j). Thus,n # f(j) foranyj € Jk. Butthenn ¢ rng(f)
from which we conclude that is not onta]; i.e., f [Jk] # J. Sincek and f were

arbitrary, we have thatvk) (v f) ((k e Inf Ik = .,]]) = f[J] # J) which is
equivalent to the claim thatk) (k € J = Jx ~ J). Because

(T#£DHA=FK (keIJAT~I,
it follows thatJ is notfinite as claimedm

Remark 2.2.6 Fromthe Pigeonhole Principle (various forms of which were visited
in MAT108), we know that, for any set X,

X finite = (YY) (Y C XAY # X =Y x X).
The contrapositive tautology yields that
S(YY) (Y C XAY £ X =Y » X) = — (X isfinite)
which is equivalent to

AY)(Y C XAY # X AY ~ X) = Xisinfinite. (L)
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In fact, (A) could have been used as a alternative definition of infinite set. To see
how (A) can be used to prove that a set isinfinite, note that

Je={nel:2n}

issuch that Je € J and Je ~ J where that latter follows because f (x) = 2x :
1-1
J — Je consequently, J isinfinite.

Recall that the cardinal number assigned to J is Ng which is read as “aleph
naught.” Also shown in MAT108 was that the 2¢J) cannot be (cardinally) equiv-
alent toJ; this was a special case of

Theorem 2.2.7 (Cantor’s Theorem) For any set S, |S] < |P(9)I.

Remark 2.2.8 It can be shown, and in some sections of MAT108 it was shown,
that P(J) ~ R. Snce |J| < |R|, the cardinality of R represents a different “level
of infinite” The symbol given for the cardinality & is c, an abbreviation for
continuum.

Excursion 2.2.9 As a memory refresher concerning proofs of cardinal equivalence,
complete each of the following.

1. Prove(2, 4) ~ (-5, 20).

n
> , heJA2|n
2. Use the function {n) =

n-1

2 b

neJAa2{n
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to prove that Z is denumerable.

. _ 25 :
***For (1), one of the functions that would have worked is f (x) = 7x — 30; jus-

tifying that f : (2,4) B (=5, 20) involves only simple algebraic manipulations.
Showing that the function given in (2) in one-to-one and onto involves applying
elementary algebra to the several cases that need to be considered for members of
the domain and rangié.*

We close this section with a proposition that illustrates the general approach that
can be used for drawing conclusions concerning the cardinality of the union of two
sets having known cardinalities

Proposition 2.2.10 The union a denumerable set and a finite set is denumerable;
i.e,

(YA) (VB) (Adenumerable A B finite = (AU B) isdenumerable) .

Proof. Let A and B be sets such thak is denumerable an8 is finite. First
we will prove thatA U B is denumerable wheA N B = @. SinceB is finite, we
have that eitheB = @ or there exists a natural numbdeand a functionf such that

1-1
f:B—»{jeN:j<k}]
If B =0,thenAU B = Ais denumerable. 1B # §, then letf be such
1-1
thatf : B — Ny whereNg = {j e Nx:] <k}. SinceA is denumerable, there
e

exists a functiong such thatg : A 1—_»1 N. Now leth = {(n,n+k): n e N}.
Because addition is a binary operation NrandN is closed under addition, for
eachn € N, n + k is a uniquely determined natural number. Hence, we have that
h: N — N. Sincen € Nimplies thain > 1, from OF1n+k > 1+k; consequently,

{j eN:j>1+k} =N—Ngisacodomain foh. Thus,h: N - N — Ny.
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We will now show that h isone-to-one and ont® — Ny.

(i) Suppose thah (n1) = h(ny); i.e.,n1 + k = nz2 4+ k. SinceN is the set
of natural numbers for théeld of real numbers, there exists an additive inverse
(—k) € R such thak + (—k) = (—Kk) + k = 0. From associativity and substitution,
we have that

nt = m+(Kk+ (k) = M1+k + (=K
= (n24+k)+ (=k)
= N+ (k+ (=k))
= No.
Sincen; andn, were arbitrary(vny) (vn2) (h (n1) = h(n2) = n1 =ny);i.e.,his
one-to-one.

(i) Let w € N—Ng. Thenw € Nandw > 1+ k. By OF1, associativity of

addition, and the additive inverse property,

w~+(=K) > Q+k) + (k) =1+ (k+ (=k)) = 1.

Hence x =w + (=k) € N =dom(h). Furthermore,
e

h(X)=x+k=(w+ (=kK)) +k=w+ ((—k) + k) = w.
Sincew was arbitrary, we have shown that
(Vw) (w e N—=Ng = (IX) (X € NA (X, w) € h));
that is,h is onto.

1-1

From (i) and (ii), we conclude thdt : N — N — Nx. From Theorem 2.1.10, parts
1-1 1-1

(1) and (2)g: A - Nandh: N— N — Ny implies that

1-1
hog: A—» N — Ng.
Now we consider the new functiof = f U (hog) from B U Ainto N
which can also be written as

f (X) forx e B
FX) =
(hog)(x) forxe A

SinceANB =0, NN (N—Ng) =0, f : B > N¢andhog: AN — Ny, by

1-1
Theorems 2.1.11, part (1) and (B),: BU A - NU (N — Ni) = N. Therefore,
B U Aor AU Bis cardinally equivalent t®; i.e., AU B is denumerable.
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If AN B # @, then we consider the sets A — B and B. In this casg,
(A—B)NB=@gand (A—B)UB = AU B. Now the set B isfinite and the set
A — B isdenumerable. The latter follows from what we showed above because our
proof for the function h was for k arbitrary, which yields that

(vk) (k € N = |N — Ny| = Ro).

From the argument above, we again conclude that AU B = (A — B) U B isdenu-
merable.
Since A and B were arbitrary,

(VA) (VB) (A denumerablean B finite = (AU B) is denumerable

2.2.1 Denumerable Setsand Sequences

An important observation that we will use to prove some results concerning at most
countable sets and families of such sets is the fact that a denumerable set can be
“arranged in an (ifinite) sequence.” First we will clarify what is meant by arranging

a set as a sequence.

Definition 2.2.11 Let A be a nonempty set. A sequence of elements of A isa func-
tion f:J — A. Any f: Jx — Aforake Jis afinite sequence of elements of
A.

For f : J — A, letting a, = f (n) leads to the following common notations
for the sequence: {an}ns 1, {anlney, {an}, Or a1, @, ag, ..., an, .... Itisimportant to
notice the distinction between {an};2; and {a, : n € J}; the former is a sequence
where the listed terms need not be distinct, while the latter is a set. For example, if
f:J— {1, 2, 3}istheconstant function f (n) = 1, then

{an}ﬁ.;l = 1) 15 1)

while{a, : n e J} = {1}.
Now, if Aisadenumerable or countably infinite set then there exists a function

gsuchthatg:J 1—_»1 A. Inthis case, letting g (n) = X, leads to a sequence {Xn}neg

of elements of A that exhausts A; i.e., every element of A appears someplace in
the sequence. This phenomenon explains our meaning to saying that the “elements

of A can be arranged in anfinite sequence.” The proof of the following theorem
illustrates an application of this phenomenon.
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Theorem 2.2.12 Every infinite subset of a countably infinite set is countably infi-
nite.

Proof. Let A be adenumerable set and E be an infinite subset of A. Because A
is denumerable, it can be arranged in an infinite sequence, say {an} - ;. Let

S={mel:aneE}.

Because S is a nonempty set of natural numbers, by the Well-Ordering Principle,
S has a least element. Lef denote the least element §f and set

S={melJ:ane E}—-{ng}.

SinceE is infinite, S is a nonempty set of natural numbers. By the Well-Ordering
Principle,$ has a least element, say. In general, forS;, S, ..., S-1 and
Ny, N2, ..., Nk_1, we choose

Nk = Min & where S={melJ:ane E}—={ngyny, ..., Nk_1}

Use the space provided to convince yourself that this choice “arraaget an

infinite sequencéan, }_ "

2.3 Review of Indexed Families of Sets

Recall that ifF is an indexed family of subsets of a S#&ndA denotes the indexing
set, then
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the union of the setsin F = {A, : « € A}, denoted by U A, ,is

a€eA

{(peS: @B (BeAnpe M)k

and the inter section of the setsin F , denoted by ﬂ A, is

a€EA

{(peS: (VB (Be A= pe Ay}

Remark 2.3.1 If F isa countably infinite or denumerable family of sets (subsets of
aset §), thentheindexing setisJ or N, in this case, the union and inter section over

o0 (o)
F arecommonly written as U Aj and ﬂ Aj, respectively. If F isanonempty finite
j=1 j=1
family of sets, then Ji, for some k € J, can be used as an indexing set, in this case,
k k

the union and intersection over F are written as U Aj and ﬂ Aj, respectively.
j=1 j=1

It is important to keep in mind that, in an indexed family 7 = {A, : a € A},
different subscript assignments does not ensure that the sets represented are differ-
ent. An example that you saw in MAT108 was with equivalence classes. For the
relation=sthat was déned overZ by x =3 y & 3| (x —Y), for anya € Z, let
A, = [a]=;; thenA_4 = Ay = As, though the subscripts are different. The set
of equivalence classes from an equivalence relation do, however, form a pairwise
disjoint family.

An indexed familyF = {A, : a € A} is pairwisedigoint if and only if

(Va)(‘v’ﬂ)(a,ﬁeA/\AaﬂAﬁ;éﬂz AazA/f);

it is digoint if and only if ﬂ A, = 0. Note that being disjoint is a weaker condi-

aeA
tion that being pairwise disjoint.

Example 2.3.2 For each j € Z, where Z denotes the set of integers, let

A ={(X5, X)) e RxR:[xg— | < 1A x| <1},

Find _J Aj and () A;.
JEZ JEZ
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Each A consists of a “2 by 2 square” that is symmetric about the x-
axis. For each je Z, Aj and A1 overlap in the section where K x; <
j +1, while A; and A 43 have nothing in common. Consequen@ A =

jeZ
{(x1,%2) € R?: |xo| < 1} and ﬂA,— =40.
j€Z
1 5 —
Excurson 2.3.3 Forne N, let C, = [—3+ o’ %()) and
C={Cn:neN}. Find | JCjand[C;j.
jeN jeN

***For this one, hopefully you looked at C,, for a few n. For example, C; =

5 11 1 17 2 .
—5,4), C = _Z’SE)' and C3 = —3,4:—%). Upon noting that the left

endpoints of the intervals are decreasing to —3 while the right endpoints are oscil-
. L 1
lating above and below 5 and closing inon 5, we conclude@eﬁ:j = (—3, 5—)

jeN 2

5

and( |Cj = |—5,4).***

Ll [ 2’4)
jeN

Excursion 234 For j € J, let Aj = {x e R:x > /]}. Justify the claim that
A={Aj:j e J}isdigoint but not pairwise disjoint.
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***Hopefully, your discussion led to your noticing that Ax N Am = Amaxk,m}- On

the other hand, to justify that ﬂ Aj = @, you needed to note that given any fixed
jeN

positive real number w thereexists p € J suchthat w ¢ Ap; taking p = sz + 1J,

where | o] denotes the greatest integer function, works.***

2.4 Cardinality of Unions Over Families

We saw the following result, or aslight variation of it, in MAT108.

Lemma2.4.1 If Aand B aredigoint finite sets, then AU B isfiniteand
|AUB| = |Al + |B].

Excursion 2.4.2 Fill in what is missing to complete the following proof of the
Lemma.

Space for Scratch Work
Proof. Suppose that A and B are finite sets such that
ANB=¢g.If A=0gorB=¢,then AUB =

@
or AUB = , respectively. In either case AU B

)
is ,and |@] = Ovyields that
3
|Al + |B] = |AU BJ. If A# @ and B # @, then there
existsk,n e Nsuchthat |[Al = |{i e N:i < k}| and
IB] = |{i € N:i < n}|. Hencethere exist functions f

and g such that f : Al—_»l and

4)
g: . Now let

)
H={k+1Lk+2, ---,k+ n}. Thenthefunction
1-1
h(x) =k+ xissuchthath:{i e N:i <n} - H.
Since the composition of one-to—one onto functions is a
one—to—one correspondence,
F=hog:

(6)
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From Theorem 2.1.11, AN B = 4,

ieN:i<kKinH=0,f:A5S(ieN:i<k ad
1-1

F : B — H impliesthat

fUF: . Since
. . (N
{ieN:i <klUH = , we
_ 8)
concludethat AU B is and
9
|AU B| = = .u
(10 (11)

*** Acceptable responses: (1) B, (2) A, (3) finite, (4) {i e N:i < k} or Ay,

G)B > {ieN:i<n), (6) B 5 H, (7) AUB > {ieN:i<kjUH,
8) {i e N:i <k+n}or Acin, (9) finite, (10) k + n, and (11) | Al + | B|.***

Lemma 2.4.1 and the Principle of Mathematical Induction can be used to prove
Theorem 2.4.3 The union of a finite family of finite setsisfinite.

Proof. The proof isleft asan exercise. m

Now we want to extend the result of the theorem to acomparabl e result concern-
ing denumerable sets. The proof should be reminiscent of the prodfihat No.

Theorem 2.4.4 The union of a denumerable family of denumerable sets is denu-
merable.

Proof. For each n € J, let E,, be adenumerable set. Each E,, can be arranged
. . o0
as an infinite sequence, say {xnj };_;. Then

UEk={an nelJnjel}.
kel

Because E; is denumerable and E; C UEJ-, we know that UEJ- is an infinite
jel jel
set. We can use the sequential arrangement to establish an infinite array; let the
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sequence corresponding to E,, form the nth row.

X11
X21
X31
Xa1
X51

X12
X22
X32
X42
X52

X13
X23
X33
X43
X53

X14
X24
X34
X44
X4

X15
X25
X35
X45
X55

X16
X26
X36
X46
X56

.The terms in the infinite array can be rearranged in an expanding triangular array,

such as

X11
X21
X31
Xa1
Xs51
X61
X71

This leads usto the following infinite sequence:

X12
X22
X32
X42
X52
X62

X13
X23
X33
X43
X53

X14
X24
X34

X15
X25
X35

X16
X6  X17

X11, X21, X21, X31, X22, X13, -.-

Because we have not specified that each Ej, is distinct, the infinite sequence
may list elements from UEk more than once; in this case, UEk would corre-

keJ

kel

spond to an ifinite subsequence of the given arrangement. Consequ@lﬂk is

denumerable, as needenl.

kel
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Corollary 2.4.5 If Ais at most countable, and, for each « € A, B, is at most
countable, then
T=|JB

aeA
is at most countable.

Thelast theorem in this section determines the cardinality of setsof n — tuples
that are formed from a given countably infinite set.

Theorem 2.4.6 For Aadenumerablesetandne J,let Th=Ax Ax --- x A=

nof them

Alie,
Th={(as,a,...,an) : (V))(jeJAl<j<n=a; € A)}.
Then Ty, is denumerable.

Proof. Lete S={neJ:Th ~J}. Since Ty = Aand Aisdenumerable, 1 € S.
Supposethat k € S;i.e, k € J and Ty isdenumerable. Now Tx,1 = Tk x Awhere
it isunderstood that ((X1, X2, ..., Xk),a) = (X1, X2, ... , Xk, &). For each b € Ty,
{(b,a): a e A} ~ A. Hence,

(Vby(be Tk = {(b,a) :a e A} ~ J).
Because Tk is denumerable and

Ten= [ (b,a):ae Al
beTk

it follows from Theorem 2.4.4 that Ty isdenumerable; i.e., (K + 1) € S. Since k
was arbitrary, we conclude that (Vvk) (ke S= (k+ 1) € S).
By the Principle of Mathematical Induction,

1e SA(WK) (ke S= (k+1) e S)
impliesthat S=J. m
Corollary 2.4.7 The set of all rational numbersis denumerable.
Proof. Thisfollowsimmediately upon noting that

Q= ap: peZAgelaged(p,a) =1t~ {(p,q) €ZxJ:ged(p,q) =1}

and Z x J isan infinite subset of Z x Z which is denumerable by the theorem. =
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2.5 TheUncountable Reals

1-1
In Example 2.1.3, it was shown that f (X) = : (=1, 1) — R. Hence, the

1+ x|
interval (—1, 1) iscardinally equivalent to R. Themap g(x) = 3 (x+1) can be used
to show that (—1,1) ~ (0, 1). We noted earlier that |J| < |R|. For completeness,
we restate the theorem and quickly review the proof.

Theorem 2.5.1 The open interval (0, 1) is uncountable. Consequently, R is un-
countable.

Proof. Since{3,3,7,---} C (0, and (3,3, %, - -} ~ J, we know that (0, 1)
isnot finite.

Suppose that
f:75'0, ).
Then we can write
f(1) = O.ay1810813804 - -
f(2) = O.apiapapgdpg------ - -

f (3) et O_ a31a32a33a34 ..........

f(n) = 0.anian@nzang -+«

where aym € {0,1,2,3,4,5,6,7,8,9}. Because f is one-to-one, we know
that, if .20000.. is in the listing, then199999.. is not.
(), i a#( )
Finally, letm = 0.bybobsby - --, wherebj = (The
[ 1, i a;=()
substitutions foxe).and[e] are yours to choose.). Now justify that there isna J
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such that f (q) = m.

Hence, (Am) (Vk) (k € J = f (k) # m); i.e., f isnot onto.
Since f was arbitrary, we have shown that

Vf)(f:J— (0,1) A f oneto-one= f is notontg.

Because(P A Q) = —M] is logically equivalenttoP = — (Q A M)] and
—[P = Q] is equivalent to P A —Q)] for any propositions?, Q andM, we con-
clude that

[(v)(f :T— (0,1) = — (f one-to-onen f is onto)]
s (V)= (f:J— (0,1) A f one-to-onen f isonto ;
Le,—@fH)(f:J 1—_»1 (O, 1)). Hence, the open intervéd, 1) is an irfinite set that

is not denumerablem

Corollary 2.5.2 The set of sequences whose terms are the digits 0 and 1 is an
uncountable set.

2.6 Problem Set B

1. For each of the following relationfnd R~1.

(@ R=1{(1,3),(,5),(5,7),(10,12)}

(b) R={(x,y) eRxR:y=x?}

(c) R={(a,b)e Ax B:alb}whereA=JandB={j € Z:|j| < 6}
2. Prove that each of the following is one-to-one on its domain.

2X+5

@ f00=5—
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() f0)=x3
3. Provethat f (x) = x? — 6x + 5mapsR onto [—4, 00).
4. Prove each of the following parts of theorems that were stated in this chapter.

(8) Supposethat A, B,C,and D aresets, Re P (A x B), Se P (B x C),
andT eP(CxD).ThenTo(SoR)=(ToSoR

(b) Supposethat A, B,and C aresets, Re P (A x B)and Se P (B x C).
Then

(SoR =R 1051
(c) Supposethat Aand B aresetsandthat R € P (A x B). Then
Ro R™! e P (B x B) and, whenever Rissingle-valued,Ro R™! C Ig.
(d) Suppose tha# andB are sets and th& € P (A x B). Then
R1oReP(Ax A) and, wnenever Ris one-to-oneR™ 1o RC Ia.

(e) Suppose thah andB are sets and th& € P (A x B). Then
-1
(R—l) —R,IgoR=RandRolx=R.

5. Forf : A—» Bandg: B — C, prove each of the following.

(a) If f andg are one—to—one, thapo f is one—to—one.
(b) If f isontoB andg is ontoC, thengo f is ontoC.
(c) If go f is one—to—one, thef is one—to—one.

(d) If go f isontoC thengis ontoC.

6. ForA, B, C, andD sets in the universi, prove each of the following.

(@) If his a function having dorh = A, g is a function such that dog=

B, andAN B = #, thenh U g is a function such that doih U g) =
AU B.

(b) Ifh: A—-C,g: B— DandANB =@, thenhug: AUB - CUD.
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© 1fh: A5 C,g:BS D, ANB =¢,andC N D = g, then
1-1
hug: AuUB — CuUD.
7. Prove each of the following cardinal equivalences.

(d W=Ju{0} ~Z
8. Prove that the set of natural numbersthat are primesisinfinite.

9. Let A beanonempty finite set and B be adenumerable set. Provethat A x B
Is denumerable.

10. Find the union and intersection of each of the following families of sets.
(@ A=1{{1,35},{2,34,5,6},{0,3,7,9}}

(b) A={Ay:neJ}where Ay = [%2+%)
1
(¢) B={Bn:neJ}whereB, = (_ﬁ’n)

3 2
(d) C:{Cn:neJ}Wherean[XG]R:4—H <x<6+§

11. Provethat the finite union of finite setsis finite.
12. ForW=Ju {0}, let F : W x W — W be defined by

k(K + 1)
2

wherek =i + j. Provethat F isaone-to-one correspondence.

FA,D=]+

13. Prove thaf) x Q is denumerable.



Chapter 3

METRIC SPACES and SOME
BASIC TOPOLOGY

Thus far, our focus has been on studying, reviewing, and/or developing an under-
standing and ability to make use of propertiesRof= R. The next goal is to
generalize our work t®" and, eventually, to study functions &".

3.1 Euclidean n-space

The set R" is an extension of the concept of the Cartesian product of two sets that
was studied in MAT108. For completeness, we include the following

Definition 3.1.1 Let Sand T be sets. The Cartesian product of Sand T, denoted
by Sx T,is

{(p,@): peSAQqeT].

The Cartesian product of any finite number of sets S, S, ..., Sy, denoted by §; x
Sx---x S, IS

{(Ppr, P2y PN) S (V) ((j €T AL < j < N) = pj € §))}.
The object (p1, p2, ..., pn) Iscalled an N-tuple.

Our primary interest is going to be the case where each set is the set of real
numbers.

73
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Definition 3.1.2 Real n-space denoted R", is the set all ordered n-tuples of real
numbersi.e.,

R" = {(X1, X2, ..., Xn) : X1, X2, ..., Xn € R}.

Thus,R"=R x R x --- x R, the Cartesian product dk with itself n times.

n of them

Remark 3.1.3 From MAT108, recall the gmition of anordered pair:

(a, b) = {{a}, {a, b}}.

This dginition leads to the more familiar statement tlfat b) = (c, d) if and only

ifa = b and c= d. It also follows from the dmition that, for sets A, B and

C, (A x B) x C is, in general, not equal to A (B x C), i.e., the Cartesian
product is not associative. Hence, some conventions are introduced in order to
give meaning to the extension of the binary operation to more that two sets. If we
deine ordered triples in terms of ordered pairs by settiagb, c) = ((a, b), ¢);

this would allow us to claim thata, b,c) = (x,y,z) ifandonlyifa=x, b=y,

and c = z. With this in mind, we interpret the Cartesian product of sets that are
themselves Cartesian products as “big” Cartesian products with each entry in the
tuple inheriting restrictions from the original sets. The point is to have helpful
descriptions of objects that are described in terms of n-tuple.

Addition and scalar multiplication on n-tuple is déined by
(X1, X2, ..y Xn) + (Y1, Y2, ..y Yn) = (X1 + Y1, X2 + Y2, ..., Xn + Yn)
and
a (X1, X2, ..., Xn) = (aX1, aXo, ..., aXn), for a € R, respectively.

The geometric meaning of addition and scalar multiplication ®&andR3 as

well as other properties of these vector spaces was the subject of extensive study in
vector calculus courses (MAT21D on this campus). For eaah > 2, it can be
shown thafR" is a real vector space.

Definition 3.1.4 A real vector space V is a set of elements called vectors, with
given operations of vector addition 4+ : V x V — V and scalar multiplication
-1 R x V — V that satisfy each of the following:
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1. W)y(W) (V,weV=V4+W=wW+V) commutativity

2. (Vu) (W) (VW) (u,v,w e V=u+ (V+w) = (u+Vv)+Ww) associativity

3.(30)0eVA(MW)(VeV=0+Vv=v+0=V)) zerovector

4. W)(veV=3(=V)((-v) e VAV+ (-V) =(-Vv)+Vv=0)) negatives

5 V)Y(W) (W) (L eRAV,WeV = A-(V+W)=A1-v+ 1-w) distribu-
tivity

6. V) (Vy)("W)(4,y e RAwe V= A(y -w)=(4y)-w) associativity

7. (_V{I) My)y(Mw)y(4,y eRAweV= (A+4+y)-w=41-w+y-w) distribu-
tivity

8. (W)(veV=1l.v=v-1=vV) multiplicative identity

Given two vectors, X = (X1, X2, ..., Xp) andy = (y1, Y2, ..., ¥n) inR", theinner
product (also known as the scalar product) is

n
X'Y=ijyj;
j=1

and the Euclidean norm (or magnitude) of x = (X1, X2, ..., Xn) € R" isgiven by

IX| = /XX = i (Xj)z.

The vector space R" together with the inner product and Euclidean norm is called
Euclidean n-space. The following two theorems pull together the basic properties
that are sati$ed by the Euclidean norm.

Theorem 3.1.5 Supposethat x,y,z € R"anda € R. Then
(@ x| >0
(b) X =0=x=0;

(©) lox] = la||x|; and
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@ Ix-yl < x|yl

Excursion 3.1.6 Use Schwarz's Inequality to justify part (d). Fok = (X1, X2, ..., Xn)
andy = (y1, ¥2, ..., ¥n) in R",

- yI? =

Remark 3.1.7 It often helps to take our observations back to the setting that is
“once removed” fromR!. For the caseR?, the statement given in part (d) of the
theorem relates to the dot product of two vectors: &6t (X1, X2) andy = (y1, y{),

we have that

¢ =X1y1+ X2y

which, in vector calculus, was shown to be equivalen&tp;|cos) whered is the
angle between the vectafsand .

Theorem 3.1.8 (The Triangular Inequalities) Suppose that = (X1, X2, ..., Xn),
y = (Y1, Y2, ..., YN) @andz = (z1, 2o, ..., zn) are elements dRN. Then

@ Ix+yl <Xl +lyl ie.,

N 1/2 N 1/2 N 1/2
(Z(Xj +Yi )2) < (Z sz) + (Z y,-z)
i=1 i=1 i=1

where(- - -)¥/? denotes the positive square root and equality holds if and only
if either all the x are zero or there is a nonnegative real numiesuch that
yj = Axj foreach j,1 < j < N,;and

b) x—zl <|x=yl+|y—12zie.,

\ 12 N 12 N 1/2
(Z(xj — Zj)z) < (Z(Xj - yj)z) + (Z(Yj - ZJ‘)Z)
i=1 i=1 i=1
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where (- - -)/2 denotes the positive square root and equality holds if and only
if thereisareal number r, withO <r < 1, suchthat y; = rxj 4+ (1 —r)z;
foreachj,1<j < N.

Remark 3.1.9 Again, it is useful to view the triangular inequalities on “familiar
ground” Leté = (X1, X2) and 7 = (y1, ¥2). Then the inequalities given in The-
orem 3.1.8 correspond to the statements that were given for the complex numbers
l.e., statements concerning the lengths of the vectors that form the triangles that are
associated witltinding¢ + » and¢ — 7.

Observe that, for C = {(x,y) : X°+ y?> =1} and | = {x : a < x < b} where
a < b, the Cartesian product of the circle C with I, C x I, isthe right circular
cylinder,

U={(X,Y,2): x2+y2=1/\a§ zZ < b},
and the Cartesian product of | with C, | x C, istheright circular cylinder,
V={(XY,2):a<x<b y’+ 22 =1}.

If graphed on the same R3-coordinate systemt) andV are different objects due to
different orientationon the other hand) andV have the same height and radius
which yield the same volume, surface aretc. Consequently, distinguishirgdy

from V depends on perspective and reason for study. In the next section, we lay the
foundation for properties that plateandV in the same category.

3.2 Metric Spaces

In the study ofR! and functions oR* the length of intervals and intervals to de-
scribe set properties are useful tools. Our starting point for describing properties
for sets inR" is with a formulation of a generalization of distance. It should come
as no surprise that the generalization leads us to multiple interpretations.

Definition 3.2.1 Let Sbea set and supposethatd : Sx S— R Thend is said
to be a metric (distance function) on Sif and only if it satisfies the following three
properties:

(i) (x) (YY) [(X,¥) € Sx S=d(x,y) =0A (d(x,y) =0 x =VY)],
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(i) (vx) (vy) [(x,y) € Sx S= d(y, X) = d(x, y)]| (symmetry), and

(iii) (vx) (vy) (V2) [x, Y,z € S= d(X,2) < d(X, y) + d(y, 2)] (triangleinequal-
ity).

Definition 3.2.2 A metric space consists of a paifS, d)—a set, S, and a metric, d,
onS.

Remark 3.2.3 There are three commonly used (studied) metrics for thé&k8et
For x = (X1, X2, ..., Xn) andy = (Y1, Yo, ..., YN), We have:

e (RN, d)where dx,y) = \/Z;\Ll (Xj - Yj)z, the Euclidean metric,
o (RN, D)where Ox,y) = YIL; [x; — yjl, and

e (RN, dy) where do(x,y) = 12}2)(1\1 X = Yil-

Proving that d, D, and d., are metricsis|eft as an exercise.

Excursion 3.2.4 Graph each of the following on Cartesian coordinate systems

1. A={x e R?:d(0,x) < 1}

2. B={xeR?:D(0,x) < 1}
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3. C={xeR?:dy(0,x) <1}

***For (1), you should have gotten the closed circle with center at origin and radius
one; for (2), your work should have led you to a“diamond” having vertices gtl, 0),
(0,1), (-1,0), and (0, —1); the closed shape for (3) is the square with vertices
1, -1), (1, 1), (-1, 1), and(—1, —1).***

Though we haven’t dened continuous and integrable functions yet as a part of
this course, we offer the following observation to make the point that metric spaces
can be over different objects. Létbe the set of all functions that are continuous
real valued functions on the intervhl= (x : 0 < x < 1}. Then there are two
natural metrics to consider on the getnamely, forf andg in C we have

(1) (C,d) whered(f, g) = 0maxl| f (xX) — g(x)|, and

<X<

(2) (€, d) whered(f, g) = [; | f(x) — g(x)|dx.

Because metrics on the same set can be distinctly different, we would like to
distinguish those that are related to each other in terms of being able to “travel
between” information given by them. With this in mind, we introduce the notion of
equivalent metrics.

Definition 3.2.5 Given a set S and two metric spaces (S, d;1) and (S, d»), d1 and
d» are said to be equivalent metricsif and only if there are positive constants ¢ and
C such that cdi(x, y) < da(X, y) < Cdi(x, y) for all x,yinS.

Excursion 3.2.6 As the result of one of the Exercises in Problem Set C, you will
know that the metrics d and du, 0n R? satisfy dao (X, ) < d(X, Y) < V2 - dso (X, Y).

1. Let A = {x € R?: d(0,x) < 1}. Draw a figure showing the boundary of
A and then show the largest circumscribed sgquare that is symmetric about
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the origin and the square, symmetric about the origin, that circumscribes the
boundary of A.

2. Let C = {x € R?: d(0, X) < 1}. Draw a figure showing the boundary of C
and then show the largest circumscribed circle that is centered at the origin
and the circle, centered at the origin, that circumscribes the boundary of C.

***For (1), your outer square should have corresponded to
{x = (X1X2) € R? : dse (0, X) = ﬁ}; the outer circle that you showed for part of

(2) should have corresponded to {x = (x1X2) € R? : d(0, x) = ﬁ}.***

Excursion 3.2.7 Let E = {(cosd,sind) : 0 < 6§ < 2z} and define d*(py1, p2) =
|61 — 2] where p; = (cos#1, Sinfp) and p2 = (cosbz, sindy). Show that (E, d*) is
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a metric space.

Theauthor of our textbook refersto an openinterval (a,b) = {x e R:a < x < b}
as a segment which allows the term interval to be reserved for a closed interval
[a,b] = {x € R:a < x < b}; half-open intervals are then in the form @, [b) or
(a, b.

Definition 3.2.8 Givenreal numbersay, ap, ..., a, and by, by, ..., by suchthataj <
bjforj=1,2,..,n,

{(x1, %2, ... Xn) e R" 1 (V]) (1< j <n=a; < xj <bj)}
is called an n-cell.

Remark 3.2.9 With this terminology, a 1-cell is an interval and &-cell is a rect-
angle.

Definition 3.2.10 If x € R" and r is a positive real number, then thpen ball with
centerx and radius r is given by

Bx,r)={yeR": |x—y| <r};
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and the closed ball with center x and radiusr is given by

BX,r)={yeR":|x—y| <r}.

Definition 3.2.11 A subset E of R" is convex if and only if
(V) (Wy) (VA) [,y e EAO <A <1= Ax+(1—2)y € E]

Example 3.2.12 For x € R" andr a positive real number, supposethaty and z are
inB(x,r). If Areal issuchthat0 < 1 < 1, then

Ay+@A-z—X = [Ay=—xX)+A—-41)(Z-Xx)|
< Aly=xl+@A-2)z=x|
< AMr+A=-NDr=r

Hence, iy + (1 — A)z eB (x,r). Sncey and z were arbitrary,
(VY) (vV2) VA [y, 2e B(X,r) A0 <A <1=Ay+(1—2A)ze B(xr)],

that is, B (x, r) isa convex subset of R".

3.3 Point Set Topology on Metric Spaces

Once we have adistance function on a set, we can talk about the proximity of points.
Theideaof asegment (interval) in R is replaced by the concept of a neighborhood
(closed neighborhood). We have the following

Definition 3.3.1 Let po be an element of a metric space S whose metric is denoted
by d and r be any positive real number. The neighborhood of the point pg with
radiusr isdenoted by N(po, r) or Ny (po) andis given by

Nr(po) ={p e S:d(p, po) <r}.

The closed neighborhood with center pg and radiusr isdenoted by N, (po) and
is given by

Nr (po) = {p € S:d(p, po) <r}.
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Remark 3.3.2 The sets A, B and C defined in Excursion 3.2.4 are examples of
closed neighborhoods in R? that are centered at (0, 0) with unit radius.

What does the unit neighborhood look like for (R?, d) where

0, if x=y
dx,y) = is known as the discrete metric?
1, if x#y

We want to use the concept of neighborhood to describe the nature of points
that are included in or excluded from sets in relationship to other points that are in
the metric space.

Definition 3.3.3 Let A beasetinametric space (S, d).

1. Supposethat po isan element of A. We say the pg isan isolated point of A if
and only if

(AN (o)) [Nr (Po) N A = {po}]

2. Apoint poisalimit point of the set A if and only if

(YNr (po)) (3p) [P # Po A p € AN N (po)] -
(N.B. Alimit point need not be in the set for which it isa limit point.)
3. Theset Aissaidto beclosed if and only if A containsall of its limit points.

4. Apoint pisaninterior point of Aif and only if

(AN, (p)) [Nr,(p) C A
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5. Theset Aisopen ifand only if

(Vp) (p e A= (AN, (p)) [Ne,(P) C A]);

I.e., every point in Aisan interior point of A.

Example 3.3.4 For each of the following subsets of R? use the space that is pro-
vided to justify the claims that are made for the given set.

(@) {(x1,X2) € R?: x1, %2 € J A |X1 + Xo| < 5} is closed because is contains all
none of its limit points.

(b) {(x1, %) e R?: 4 < xf A X2 € J} is neither open not closed.
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(© {(x1,%2) € R?: %2 > |xq|} isopen.

Our next result relates neighborhoods to the “open” and “closed” adjectives.

Theorem 3.3.5 (a) Every neighborhood is an open set.
(b) Every closed neighborhood is a closed set.

Use this space to draw some helpful pictures related to proving the results.

Proof. (a) Let N;(po) be a neighborhood. Suppose tigae N (po) and set
ri = d(po,q). Letp = ' —r1. If X € N, (q), thend (x,q) < r-n and the
triangular inequality yields that

—r1_3r1+r

2 4 <Tr.

r
d(pOax) < d(pOaQ)‘i'd(CIaX) <ri+
Hencex € N; (po). Sincex was arbitrary, we conclude that

(VX) (X € N/) @ =xe Nr(pO)) ,

i.e.,, N, (@) C Nr(po).Thereforeq is an interior point ofN; (po). Becausey was
arbitrary, we have that each element\yf( po) is an interior point. Thud\, (po) is
open, as claimed.
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Excursion 3.3.6 Fill inwhat ismissing in order to complete the following proof of

(b)
Let N; (po) be a closed neighborhood and suppose that g isa limit point of

R 1 _
N (po). Then, for eachr, = = n € J, thereexists py # q such that p, € N (po)

1 N
andd(q, pn) < = Because pn € N (po), d (po, pn) < r for eachn € J. Hence,
by the triangular inequality

IA

d (qa pO) < d (qa pn) +

@ @

1
Snce g and po are fixed and - goes to 0 as n goes to infinity, it follows that

d(g, po) <r,thatis, q e . Finally, g and arbitrary limit point of
3
N (po) leadsto the conclusion that N, (po) contains

()
Therefore, N (po) is closed.

|
1 _ :
*** Acceptable responses are: (1) d (pn, Po), (2) - +r, (3) Nr(po), (4) dl of its
limit points.***
The definition of limit point leads us directly to the conclusion that only infinite
subsets of metric spaces will have limit points.

Theorem 3.3.7 Suppose that (X, d) isa metric spaceand A C X. If pisalimit
point of A, then every neighborhood of p contains infinitely many points of A.

Spoace for scratch work.

Proof. For a metric space (X, d) and A c X, suppose that p € X is such
that there exists a neighborhood of p, N (p), with the property that N (p) N A
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iIsafiniteset. If N(p)NnA=6@or, N(p)n A= {p}, then pisnot alimit

point. Otherwise, N (p) N A being finite implies that it can be realized as a finite

sequence, say Qi, d2, , 93, ..., Oy for some fixedn € J. Foreach j,1 < | < n,

letrj = d(x,qj). Setp = l@jignd (x,qj). If p € {g1,0,,03, ..., Gn}, then
qj#p

N, (p) N A = {p}; otherwise N, (p) N A = @. In either case, we conclude that p

isnot alimit point of A.

We have shown that if p € X hasaneighborhood, N (p), with the property
that N (p) N A is afinite set, then p is not a limit point of A ¢ X. From the
contrapositive tautology it follows immediately that if p isalimit point of A c X,
then every neighborhood of p containsinfinitely many pointsof A. m

Corollary 3.3.8 Any finite subset of a metric space has no limit point.

From the Corollary, we note that every finite subset of a metric space is closed
because it contains al none of its limit points.

3.31 Complementsand Families of Subsets of Metric Spaces

Given afamily of subsets of ametric space, it is natural to wonder about whether or
not the properties of being open or closed are passed on to the union or intersection.
We have already seen that these properties are not necessarily transmitted when we
look as families of subsets of R.

—-3n+2 2n?2—n
Example3.39 Let A = {A,: n e J} where A, = n+ — . Note
3 2 1
that A1 = [-1,1], Ap = [—2, E]’ and Az = [—3+ :—%,2— 5}. More careful
-3n+2

Inspection reveal sthat

2n% —n i .
o = 2 — — isstrictlyincreasingto 2asn — oo, and A; = [—1, 1] c A,

n
for eachn € J. Itfollowsthat |J An=(-3,2)and (| An = A1 =[-1,1].

neJ neJ

= _3+ﬁ isstrictly decreasingto —3andn — oo,

The exampletellsusthat we may need some special conditionsin order to claim
preservation of being open or closed when taking unions and/or intersections over
families of sets.
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The other set operation that iscommonly studied iscomplement or rel ative com-
plement. We know that the complement of a segmeiRiris closed. This moti-
vates us to consider complements of subsets of metric spaces in general. Recall the
following

Definition 3.3.10 Supposethat A and B are subsets of a set S. Then the set differ-
ence(or relative complementA — B, read “ A not B”, is given by

A—B={peS:peAAnp¢B},
thecomplement of A, denoted by Ais S— A.
Excursion 3.3.11 Let A= {(x1, X2) € R? : x? + x2 < 1} and
B={(x,%) eR?:xi—1 <1Alx—1 <1}.

On separate copies of Cartesian coordinate systems, show the set8 Aand
A°=R2— A,

The following identities, which were proved in MAT108, are helpful when we
are looking at complements of unions and intersections. Namely, we have

Theorem 3.3.12 (deMorgan’s Laws) Supposethat Sisany space and F isafam-
ily of subsets of S. Then

c
] -0-
AeF AeF
and

[ﬂ (A)}C = A~

AeF AceF
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The following theorem pulls together basic statement concerning how unions,
intersections and complements effect the properties of being open or closed. Be-
cause their proofs are straightforward applications of tHaiiens, most are left
as exercises.

Theorem 3.3.13 Let Sbe a metric space.

1. The union of any family F of open subsets of Sis open.

2. If Aq, Ag, ..., Am isafinite family of open subsets of S, then the intersection
NjL1 Aj isopen.

3. For any subset A of S, Aisclosed if and only if A®isopen.
4. The intersection of any family F of closed subsets of Sis closed.

5. If A1, Ao, ..., An is a finite family of closed subsets of S, then the union
UJL1 Aj isclosed.

6. The space Sis both open and closed.
7. Thenull set is both open and closed.

Proof. (of #2) Suppose thaf;, Ay, ..., An is afinite family of open subsets
of S, andx € N1, Aj. Fromx e L, Aj, it follows thatx e A; for each
j, 1 < j < m. Since eachA; is open, for eaclj, 1 < j < m, there exists

rj > 0 such thatN;; (x) C Aj. Letp = lmin ri. BecauseN, (x) C Aj for
<jsm

eachj, 1 < j < m, we conclude thaN, (x) C ﬂTZl Aj. Hencex is an interior
point of ﬂ?‘zl A;. Finally, sincex was arbitrary, we can claim that each element of
Nj=1 Aj is an interior point. Thereforg)_; A; is open.

(or #3) Suppose thad c Sis closed ank € A®. Thenx ¢ A and, because
A contains all of its limit pointsx is not a limit point of A. Hence,x ¢ A A
= (YN (X)) [AN (Nr (x) — {x}) # 0] is true. It follows thaix ¢ A and there exists
ap > 0suchthatAn (N, (x) — {x}) = @. Thus,AN N,(x) = # and we conclude
thatN,(x) c A i.e.,x is an interior point ofA°. Sincex was arbitrary, we have
that each element 04 is an interior point. ThereforeA® is open.
To prove the converse, suppose that- Sis such thatA°® is open. Ifp
is a limit point of A, then(VN; (p)) [Aﬁ (Nr(p) — {p}) # ﬂ]. But, for anyp > 0,
AN (N,(p) — {p}) # 0 implies that(N,(p) — {p}) is not contained irA°. Hence,
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p is not an interior point of A® and we concludethat p ¢ A®. Therefore, p € A.
Since p was arhitrary, we have that A contains all of its limit points which yields
that Aisclosed. m

Remark 3.3.14 Take the time to look back at the proof of (#2) to make sure that
you where that fact that the intersection was over a finite family of open subsets of
Swas critical to the proof.

Given asubset of ametric space that is neither open nor closed we'd like to have
a way of describing the process of “extracting an open subset” or “building up to a
closed subset.” The following terminology will allow us to classify elements of a
metric spaceSin terms of their relationship to a subskic S.

Definition 3.3.15 Let A be a subset of a metric space S. Then

1. Apoint p € Sisan exterior point of A if and only if

@ANr (p) [Nr (p) C A°],
where A® = S— A.

2. Theinterior of A, denoted by Int (A) or A | isthe set of all interior points
of A.

3. Theexterior of A, denoted by Ext(A), isthe set of all exterior points of A.
4. Thederived set of A, denoted by A', isthe set of all limit points of A.

5. The closure of A, denoted by A, is the union of A and its derived set; i.e.,
A=AUA.

6. The boundary of A, denoted by 9 A, is the difference between the closure of
A and theinterior of A; i.e, A= A— AO,
Remark 3.3.16 Note that, if A is a subset of a metric space S, then Ext(A) =
Int (A%) and
x € 0A S (YN (X)) [Nr (X)) N A% B AN (X) N A° £ 4]

The proof of these statements are |eft as exercises.
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Excursion 3.3.17 For AU B where
A = {(X1, X2) eR?: xf—l—xg <1}
and
B={(x,%) eR*: xa—1 < 1Alxp—1 <1}

1. Sketchagraphof AU B.

2. On separate representations for R?, show each of the following

Int (AU B), Ext(AUB), (AUB), and (AU B).

***Hopefully, your graph of A U B consisted of the union of the open disc that
Is centered at the origin and has radius one with the closed square having vertices



92 CHAPTER 3. METRIC SPACES AND SOME BAS C TOPOLOGY

(0,0), (1,0), (1,1) and (0, 1); the disc and square overlap in the first quadrant and
the set is not open and not closed. Your sketch of Int (A U B) should have shown
the disc and sguare without the boundaries (;i.e., with the outline boundaries as not
solid curves), while your sketch of Ext (A U B) should have shown everything that

IS outside the combined disc and square-also with the outlining boundary as not
solid curves. Finally, becaus®U B has no isolated point$ A U B) and(A U B)
are shown as the same sets—looking like(At B) with the outlining boundary
now shown as solid curves.***

The following theorem relates the properties of being open or closed to the
concepts described in Beition 3.3.15.

Theorem 3.3.18 Let A be any subset of a metric space S.

() Thederived set of A, A, isaclosed set.
(b) Theclosureof A, A, isa closed set.

(c) Then A= Aif andonlyif Aisclosed.
(d) The boundary of A, oA, isa closed set.
(e) Theinterior of A, Int (A), isan open set.
(f) If Ac Band B isclosed, then A c B.
(g) If Bc Aand Bisopen, B C Int(A).

(h) Any point (element) of Sisa closed set.

The proof of part(a) is problem #6 in WRp43, while (e) and (g) are parts of
problem #9 in WRp43.

Excursion 3.3.19 Fill in what is missing to complete the following proofs of parts
(b), (c), and (f).
Part (b): In view of Theorem 3.3.13(#3), it suffices to show that

@
Supposethat x € Sissuchthat x e (ﬂ)c Because A = AUA, it followsthat x ¢ A
and . From the latter, there exists a neighborhood of x, N (x), such
@
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that( )ﬂ A = ¢; while the former yieldsthat( )ﬂ
(©) 4)

A = @. Hence, N (x) ¢ A®. Supposethat y € N (x). Since , there

(5
exists a neighborhood N* (y) such that N* (y) ¢ N (x). From the transitivity of

Subset, from which we conclude that y is not a limit point of A; i.e.,
(6)
y € (A)°. Because y was arbitrary,

(vy) [y eN(X = } ;
)

e, . Combining our containmentsyieldsthat N (x) C
®
A° and . Hence,
®)

N(x)CACﬂ(A’)°:|: } .
©)

Snce x was arbitrary, we have shown that

(10)

Therefore, (K)C is open.

Part (c): Frompart (b), if A = A, then

(11)
Conversaly, if ,then A C A. Hence, AUA" =, thatis,
(12 (13

A=A

Part (f): Suppose that A c B, Bisclosed, and x € A. Thenx € Aor
. Ifx € A thenx e B; if x € A, then for every neighborhood

(14)
of X, N (x), there exists w € A such that w # x and . But then
(15)
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w € Band (N (X) —{x}) " B # #. Snce N (x) was arbitrary, we conclude that
. Because B is closed, . Combining the conclusions
(16) (17
and noting that x € A was arbitrary, we have that

(VX) |: :| .
(18)

*** A cceptable responses are (1) the complement of A closureisopen, (2) x ¢ A,
(3) N () — {x}, (4) N (x), (5) N (x) isopen, (6) N* (y) c A%, (7) y € (A)", (8)
N (x) C (A)% (9) AUA', and (10) (vx) (x e (A)°= AN () (Nr (x) C (K)C));
(11) Alisclosed, (12) Aisclosed, (13) A; (14) x isalimit point of A (or x € A');
(15 w € N (x); (16) x is alimit point of B (or x € B’); (17) x € B, (18)
Xe A= x e B***

Thus, A C B.

Definition 3.3.20 For ametric space (X, d) and E c X, theset E isdensein X if
and only if

(VX) (xe X=>xe EvxeFE).

Remark 3.3.21 Note that for a metric space (X, d), E ¢ X impliesthat E ¢ X
because the space X is closed. On the other hand, if E is densein X, then X C
E U E’ = E. Consequently, we see that E isdensein a metric space X if and only
if E = X.

Example 3.3.22 We have that the sets of rationals and irrationals are dense in Eu-
clideanl-space. This was shown in the two Corollaries the Archimedean Principle
for Real Numbers that were appropriately named “Density of the Rational Num-
bers” and “Density of the Irrational Numbers.”

Definition 3.3.23 For a metric spacg X, d) and E c X, the set E ivounded if
and only if

AM)(EHg)[M e R* Aq e X A (E C Num(@)].
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Excursion 3.3.24 Justify that each of the following sets is bounded in Euclidean
space.

1L A={(x1,X2) e R?: —1<x1 <2A|x2— 3| < 1}

2. B={(x1,%2,%3) e R3:x1 > 0A X2 > 0A X3 > 0 A 2X1 + X + 4%3 = 2}

Remark 3.3.25 Notethat, for (R?, d), where
X 0, if x=y
d(x,y) = )
1, if x#y

the space R? is bounded. This example stresses that classification of a set as
bounded istied to the metric involved and may allow for a set to be bounded

The definitions of least upper bound and greatest lower bound directly lead to
the observation that they are limit points for bounded sets of real numbers.

Theorem 3.3.26 Let E be a nonempty set of re_al numbers that is bounded, o =
sup (E),and g =inf (E). Thena € Eand S € E.

Spoace for illustration.

Proof. It sufficesto show the result for least upper bounds. Let E beanonempty
set of real numbersthat isbounded aboveand o = sup (E). If e € E,thena € E =
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EUE’. Fora ¢ E, supposethat h isapositivereal number. Becausea —h < a and
a = sup (E), thereexistsx € E suchthat « — h < x < a. Since h was arbitrary,

(Vvhy(h>0= AX)(« —h <x <a));
i.e., a isalimit point for E. Therefore, o € E asneeded. m

Remark 3.3.27 In view of the theorem we note that any closed nonempty set of
real numbers that is bounded above contains its least upper bound and any closed
nonempty set of real numbers that is bounded below contains its greatest |ower
bound.

3.3.2 Open Relativeto Subsets of Metric Spaces

Given a metric space (X, d), for any subset Y of X, d [y isametricon Y. For
example, given the Euclidean metric de on R? we have that de [rx (o) COrresponds
to the (absolute value) Euclidean metric, d = |x — y|, on thereals. It is natural to
ask about how properties studied in the (parent) metric space transfer to the subset.

Definition 3.3.28 Given a metric space (X,d) andY c X. Asubset E of Y is
open relativeto Y if and only if

(Vp)[pe E= @) (r>0A(Va)[geYAd(p,q) <r =qe E])]
which is equivalent to

(Vp)[peE= @) >0AYNN (p) C E)].
Example 3.3.29 For Euclidean 2-space,(R?, d), consider the subsets
Y = {(xl,xz) eR?: x5 > 3} and Z= {(xl,xz) eR?:x;=0A2< X <5}.

(@) Theset X={(x1,x2) e R?:3<x1 <5A1l <X <4}U{(3,1),((3,4}is
notopen relative to Y, while = {(x1, X2) e R :3<x1 <5A1 < Xp < 4}
Is open relativeto Y .

(b) The half open intervaf(xy, X2) € R?: x; = 0A 2 < X, < 3} is open rela-
tiveto Z.
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From the example we see that a subset of a metric space can be open relative to
another subset though it is not open in the whole metric space. On the other hand,
the following theorem gives us a characterization of open relative to subsets of a
metric space in terms of sets that are open in the metric space.

Theorem 3.3.30 Supposethat (X, d) isametric spaceand Y ¢ X. A subset E of
Y isopen relativeto Y if and only if there exists an open subset G of X such that
E=YNG.

Spoace for scratch work.

Proof. Supposethat (X, d) isametricspace, Y ¢ X,andE C Y.
If E isopen relativeto Y, then corresponding to each p € E thereexistsa
neighborhood of p, N;, (p), suchthat YNN;_ (p) C E. Let A= {N; (p): p € E}.

By Theorems 3.3.5(a) and 3.3.13(#1), G = UA is an open subset of X. Since
e

p e N, (p) foreach p € E, wehavethat E C G which, with E C Y, implies that
E C GNY. Onthe other hand, the neighborhoods N, (p) were chosen such that
YN N, (p) CE; hence,

U (YﬂNrp(p))zYﬂ(U Nrp(p))zYﬂGCE.

peE peE

Therefore, E = Y N G, as needed.

Now, suppose that G is an open subset of X suchthat E = Y NG and
p € E. Then p € G and G open in X yields the existence of a neighborhood of p,
N (p), suchthat N (p) c G. Itfollowsthat N (p)NY c GNY = E. Since p was
arbitrary, we have that

(Vp)[pe E= BN (p)[N(pNY C E]];

I.e, EisopenrelativetoY. m
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3.3.3 Compact Sets

In metric spaces, many of the properties that we study are described in terms of
neighborhoods. The next set characteristic will alow usto extract finite collections
of neighborhoods which can lead to bounds that are useful in proving other results
about subsets of metric spaces or functions on metric spaces.

Definition 3.3.31 Givenametric space (X, d)and A c X, thefamily {G, : a € A}
of subsets of X isan open cover for Aif and only if G, isopen for eacha € A and
Ac U G,.

aeA

Definition 3.3.32 A subset K of a metric space (X, d) iscompact if and only if ev-
ery open cover of K hasjanite subcoveri.e., given any open covg¢G, : a € A}
of K, there exists an & J such that{GO(k keJAal<k< n} is a cover for K.

We have just seen that a subset of a metric space can be open relative to another
subset without being open in the whole metric space. Our first result on compact
setsistells usthat the situation is different when we look at compactness relative to
subsets.

Theorem 3.3.33 For a metric spacd X, d), suppose that KZ Y ¢ X. Then K is
compact relative to X if and only if K is compact relative to Y .

Excursion 3.3.34 Fill in what is missing to complete the following proof of Theo-
rem 3.3.33.

Space for scratch work.
Proof. Let (X, d) be a metric space and K Y C X.
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Quppose that K is compact relativeto X and {U,, : o € A}
isafamily of sets such that, for each o, U,, isopen relativeto Y
such that

Kc U

a€A

By Theorem 3.3.30, corresponding to each o € A, there existsa
set G, such that G, isopenrelativeto X and

@

SnceK c Y and

Kc UU,=U =YN | Gy, if
aeA aeA 1) aeA

follows that

Kc ]G

aeA

Because K is compact relative to X, there exists a finite number
of elementsof A, a1, a, ..., an, such that

&)

n
Now K Cc YandK C |J G yieldsthat
ji=1

=1 ©) @

Snce {U, : a € A} wasarbitrary, we have shown that every
openrelativeto Y cover of K has a finite subcover. Therefore,

©)

Conversely, suppose that K is compact relativeto Y and
that {W, : a € A}isafamily of sets such that, for each o, W,
isopen relativeto X and

Kc W,

aeA

99
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Foreacha € A, letU, =Y NW,. NowK c Y and
Kc U W, impliesthat

a€A

(6)
Consequently, {U,, : a € A} isanopenreativeto Y
cover for K. Now K compact relativeto Y yields that
there exists a finite number of elements of A,
a1, a, ..., on, such that . Snce

0

n n n
Jus =J vow) =vo Jw,
=1 j=1 j=1

and K cC YV, it follows that

®
Snce {W, : a € A} wasarbitrary, we conclude that
every family of sets that form an open relativeto X
cover of K hasa finite subcover. Therefore,

©

*** Acceptable fill-ins: (1)U, = YN Gy, (2) K C Gy UGy, U--- UG, (or
n n n

Kc UGq) B U (YNGy), (4) U Uy, (5) K is compact relative t&, (6)
j=1 j=1 j=1

n n
KcYNnUW,=U YnW)= {J Ug, MK C U Uy, @)K C U Wy,
aeA aeA ael =1 =1
(9) K is compact inX.***

Our next set of results show relationships between the property of being com-
pact and the property of being closed.

Theorem 3.3.35 If Aisacompact subset of a metric space (S, d), then Aisclosed.

Excursion 3.3.36 Fill-in the steps of the proof as described
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Proof. Suppose that A isa compact subset of a metric space (S, d) and
. 1
p e Sissuchthat p ¢ A. Forq e A letrq = Zd (p,q). The
{Nr, (@) : g € A} isan open cover for A. Since A is compact,
there exists a finite number of q, say g1, gz, ..., On, Such that
A C Nrg, (Q1) U N, (@2) U+ - - U Ny (Gn) def W.

(a) Justify that the set V = Nrg, (P) M Nrg, (P) M-+ -1 Nrg (P)
isa neighborhood of p suchthat V NW = ¢.

(b) Justify that A® is open.

(c) Justify that the result claimed in the theoremistrue.

***For (a), hopefully you noted that taking r = 1min rq; yields that N, (p) N
<]<n

Nrg, (P) M-+ - N Ny, (p) = Nr (p). To complete (b), you needed to observe
that Ny (p) c A® made p an interior point of A®; since p was an arbitrary point
satisfying p ¢ A, it followed that A® is open. Finaly, part (c) followed from
Theorem 3.3.13(#3) which asserts that the complement of an open set is closed;
thus, (A®)¢ = Aisclosed.***

Theorem 3.3.37 Inany metric space, closed subsets of a compact sets are compact.
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Spoace for scratch work.

Excursion 3.3.38 Fill inthetwo blanksin order to complete the following proof of
the theorem.

Proof. For a metric space (X, d), supposethat F ¢ K ¢ X aresuchthat F is
closed (relativeto X) and K iscompact. Let G = {G,, : a € A} be an open cover
for F. Then the family Q = {V :V € G vV = F€} is an open cover for K. It
follows from K being compact that there exists a finite number of elements of Q,
say V1, Vo, ..., V, such that

Because F C K, we also have that

If forsome j € J,1 < j < n, F® = Vj, thefamily {Vk: 1<k <nAk#j}
would still be a finite open cover for F. Since G was an arbitrary open cover for
F, we conclude that every open cover of F has a finite subcover. Therefore, F is
compact. =

Corollary 3.3.39 If F and K are subsets of a metric space such that F is closed
and K is compact, then F N K is compact.

Proof. As a compact subset of a metric space, from Theorem 3.3.35, K is
closed. Then, it follows directly from Theorems 3.3.13(#5) and 3.3.37 that F N K
is compact as a closed subset of the compact set K. m

Remark 3.3.40 Notice that Theorem 3.3.35 and Theorem 3.3.37 are not converses
of each other. The set {(x1, X2) € R? : X3 > 2 A o = 0} is an example of a closed
set in Euclidean 2-space that is not compact.
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Definition 3.3.41 Let {S,}2; be a sequence of subsets of a metric space X. Then
{Si}e; isanested sequence of setsif and only if (vn) (N e J = S41 C ).

Definition 3.3.42 A family A ={A, : a € A} of sets in the universe &/ has the
finite intersection property if and only if the intersection over any finite subfamily
of A isnonempty; i.e.,

(VQ) [QC A AQfinite= (1) Ag ;éﬂ]

peQ

The following theorem gives a sufficient condition for a family of nonempty
compact setsto be digoint. The condition is not being offered as something for you
to apply to specific situations; it leads usto a useful observation concerning nested
sequences of nonempty compact sets.

Theorem 3.3.43 If {K, : a € A} isafamily of nonempty compact subsets of a met-
ric space X that satfes thefinite intersection property, theﬂ Ko # 0.

a€eA

Space for notes.

Proof. Suppose that ﬂ K, = @ and choose K5 € {K, :a € A}. Since

aeA

(VX)|:XEK(5=>X¢ ﬂKa}

aeA
Let
Gg={K,:aeAANK, #Ks}.

Because each K, is compact, by Theorems 3.3.35 and 3.3.13(#3), K, isclosed and
K is open. For any w € Kg, we have that w ¢ ﬂ K,. Hence, there exists a

aeA
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B € A suchthat w ¢ Ky from which we conclude that w e K% and Ky # K.
Since w was arbitrary, we have that

(Vu))[u)eK(5:>(E|ﬂ)(ﬁeA/\K/f;éK(s/\weK’g)].

Thus, Ks ¢ |J G which establishes G as an open cover for K;. Because K is
Geg
compact there exists afinite number of elementsof G, K¢S , KE , ..., K¢, such that

a1 a2’

n n c
Ks C U K(Sj :<ﬂ K“J)
j=1 j=1

from DeMorgan’s Laws from which it follows that

n
Km(ﬂ Kaj) = 0.
j=1

Therefore, there existsfmite subfamily of{K,} that is disjoint.

We have shown that iﬂ K, = @, then there exists fanite subfamily of

aeA
{K, : a € A} that has empty intersection. From the Contrapositive Tautology, if

{K, : a € A} is a family of nonempty compact subsets of a metric space such that
the intersection of anfinite subfamily is nonempty, theﬂ Ko #90. m

aeA

Corollary 3.3.44 If {Kn},2 4 is a nested sequence of nonempty compact sets, then
[Kn # 9.

neJ

Proof. For A anyfinite subset of], letm = max{j : | € A}. BecausgKpn} 2,
is a nested sequence on nonempty S€ts,C () Kj and () Kj # #. SinceA
jeA

jeA
was arbitrary, we conclude thg, : n € J} satidies thefinite intersection property.
Hence, by Theorem 3.3.48,)K, # 0. m

neJ

Corollary 3.3.45 If {§};2; is a nested sequence of nonempty closed subsets of a
compact setsin a metric space, then ﬂ S # 0.

nejJ
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Theorem 3.3.46 In a metric space, any infinite subset of a compact set has a limit
point in the compact set.

Soace for notes and/or scratch work.

Proof. Let K be a compact subset of a metric space and E is a nonempty
subset of K. Suppose that no element of K is alimit point for E. Then for each
x in K there exists a neighborhood of x, say N (x), such that (N (x) — {x}) N
E = 0. Hence, N (x) contains at most one point from E; namely x. The family
{N (x) : x € K} forms an open cover for K. Since K is compact, there exists a
finite number of elementsin {N (x) : x € K}, say N (x1), N (x2), ..., N (Xn) , such
that K € N (X)) UN(X2) U---U N (Xn). Because E C K, we also have that
E c N(X1) UN(X2) U---U N (x). From the way that the neighborhoods were
chosen, it followsthat E C {x1, X2, ..., Xn}. Hence, E isfinite.

We have shown that for any compact subset K of metric space, every subset
of K that has not limit pointsin K isfinite. Consequently, any infinite subset of K
must have at least one limit point that isin K. m

3.3.4 Compactnessin Euclidean n-space

Thus far our results related to compact subsets of metric spaces described implica-

tions of that property. It would be nice to have some characterizations for compact-
ness. In order to achieve that goal, we need to restrict our consideration thcspeci
metric spaces. In this section, we consider only reapace with the Euclidean
metric. Ourfirst goal is to show that every-cell is compact ifR". Leading up to

this we will show that every nested sequence of nonemyaglls is not disjoint.

Theorem 3.3.47 (Nested Intervals Theorem) If {In};2; is a nested sequence of

[o.]
intervalsin RY, then N I, # 4.
n=1

Proof. For the nested sequence of intervellgl> ;, let In = [an, bn] and A =
{an :n e J}. Becaus€ln}y2; is nested[an, by] C [a1, by] for eachn e J. It
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followsthat (Vn) (n € J = a, < by). Hence, A isanonempty set of real numbers
that is bounded above. By the Least Upper Bound Property, x = sup A exists and
e

isreal. From the definition of least upper bound, a, < x for each n € J. For any
positive integers k and m, we have that

A < ak+m < brym < by

from which it followsthat x < b, forall n € J. Sncea, < x < b, foreachn € J,
(0.0) 0.9]
weconcludethat x € () In. Hence, (1 In# 0. m
n=1 n=1
Remark 3.3.48 Note that, for B = {by : n € J} appropriate adjustments in the
proof that was given for the Nested Intervals Theorem would allow us to conclude
[0.9]

thatinf B € [ In. Hence, if lengths of the nested integrals go to O as n goes to oo,

n=1

o0
then sup A = inf B and we conclude that [ | consists of one real number.
n=1

The Nested Intervals Theorem generalizes to nested n-cells. The key is to have
the set-up that makes use of thantervals [Xj, yj], 1 < j < n, that can be
associated witlixs, X2, ..., Xn) and(yi, Y2, ..., yn) in R".

Theorem 3.3.49 (Nested n-Cells Theorem) Let n be a positive integer. If {1y}

o0
is a nested sequence of n-cells, then( Ik # 4.
k=1

Proof. For the nested sequence of intervals {1y} ;, let
Ik = {(Xl, X2, ..., Xn) € R": a,j < Xj <bgjforj=12,.., I‘l}.

Foreach j, 1 < j < n, let Iij = [aj, bk j]- Theneach {I\;} -, sdtisfiesthe

conditions of the Nested Intervals Theorem. Hence, for each j, 1 < j < n, there
[0.9] [0.9]

existswj € Rsuchthat wj € () I, j. Consequently, (w1, w2, ..., wn) € () lk &s
k=1

k=1
needed. m

Theorem 3.3.50 Every n-cell is compact.
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Proof. For real constants ay, ap, ..., an and by, by, ..., by such that a; < bj for
eachj=1,2,...,n,let

lo=1={(Xt, X2, ... X5n) e R": (Vj e ) (1 < j <n=aj <Xj <bj)}

and

5:\Ii(bj —aj)z.

=1

Then (¥X) (YY) [x, yelg= |x—-y| < (5]. Suppose that g is not compact. Then

there existsan open cover G = {G,, : a € A} of g for which no finite subcollection

covers lo. Now we will describe the construction of a nested sequence of n-cells

each member of which is not compact. Use the space provided to sketch appropriate
pictures fom = 1,n = 2, andn = 3 that illustrate the described construction.

aj + bj

Foreachj, 1< j <n,letcj = . The sets of intervals
{(aj,cj):1<j<n} and {(cj,bj):1<j<n}

can be used to determine or generdtengw n-cells, Ilfl) forl < k < 2". For
example, each of

{1, %, ., xn) eRY I (jeD) (1< | sn=a <X <),

{(xt, %2, ... Xn) e R": (Vj e]) (1< j <n=cj < xj <bj)},
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and

{(Xl,Xz,...,Xn) e]R”:aj <Xj <cjif2]jandcj < Xj <b; ifZJ(j}
is an element of {I(l) 11<k< 2”}. Foreachk € J,1 < k < 2", 1Y isa subset

(sub-n-cell) of 1o and U I(l) lo. Consequentlyy = {G, : & € A} is an open

k=
cover for each of the’qubﬂ cells. Becausdy is such that ndinite subcollection
from G coversly, it follows that at least one of the elements{ gﬁl) 1l<k< 2”}

must also satisfy that property. LBtdenote an element ﬂél) l<k< 2”} for
which nofinite subcollection fron§y coversli. For (X1, X2, ..., Xn) € 11 we have
that eithera; < xj < ¢j orcj < xj < bj for eachj, 1 < j < n. Since

cj—aj =bj—Cj =bj—aj

2 2 2

it follows that, forx = (x1, X2, ..., Xn), Y = (Y1, ¥2, ..., Yn) € |1

n " (b —a))’ S
dey) = | D (yj—x)° < Zﬁ4§ﬂ2=?

j=1 j=1

: : .0
i.e., the dianql1) is >

The process just applied 1@ to obtainl; can not be applied to obtain a
subn-cell of 11 that has the transferred properties. That is, if

_ {(xl,xz,...,Xn) eR": (Vj e ) (15 j < n:>aj(1§Xj < bgl))},
a® 1 b
2
() azizn] o (@) s

that will determine 2 new n-cells, I,fz) for 1 < k < 2", that are sum-cells
of 11. Now, sinceG is an open cover foi; such that nofinite subcollection

letting c(l) generates two set of intervals

from G coversl, and U I(z) I1, it follows that there is at least one element
k=1
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of {Iéz) 1<k< 2“} that cannot be covered with a finite subcollection from G;

choose one of those elements and denote it by I>. Now the choice of cgl) alows

. di | ) . ,
us to show that diam (l) = M = 2 Continuing this process generates

{Ik} o that satisfies each of the following properties:
o {lk}pe isanested sequence of n-cells,
e for eachk € J, nofinite subfamily ofG coversly, and

o (V) (V) [X,yelk= Ix—y| <27%].
o0 o
From the Nestea-cells Theorem,( Ix # @. Let¢ € () lk. Because
k=0 k=0

o0
G ={G, :a € A}is an open cover folp and [ Ik C lo, there exist$s € G such

that; € G. SinceG is open, we there is a pol(sit(i)ve real numbesuch thatN, (¢) C
G. Now diam(N; (¢)) = 2r and, forn € J large enough, diarfly) = 27"9 < 2r.
Now, ¢ € Ik for all k € J assures that € I for all k > n. Hence, for alk € J
such thak > n, Ix ¢ N; (¢) € G. In particular, each, k > n, can be covered by
one element off which contradicts the method of choice that is assuréglig not
compact. Therefordg is compact.m

The next result is a classical result in analysis. It gives us a characterization for
compactness in reakspace that is simpjanost of the “hard work” for the proof
was done in when we proved Theorem 3.3.50.

Theorem 3.3.51 (The Heine-Borel Theorem) Let A be a subset of Euclidean n-
space. Then A is compact if and only if A is closed and bounded.

Proof. Let A be asubset of Euclidean n-space(R", d)
Suppose thah is closed and bounded. Then there existaarll | such
that A ¢ |. For example, becausg is bounded, there existgl > 0 such that

A C Nm (ﬁ) for this case, tha-cell
| = [(xl, X2,...,Xn) € R": max [xj| < M +1
1<j<n

satidies the speéied condition. From Theorem 3.3.50js compact. Sincé C |
andA is closed, it follows from Theorem 3.3.37 thais compact.
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Suppose that A is a compact subset of Euclidean n-space. From Theorem
3.3.35, we know thaA is closed. Assume thak is not bounded and lgh; € A.
Corresponding to eacim € J, choose apy in A such thatpy, # pk for k =
1,2,..,(m—=1) andd (p1, pm) > m— 1. As an iffinite subset of the compact
set A, by Theorem 3.3.46{pn, : m € J} has a limit point inA. Letq € Abe a
limit point for { pm : m € J}. Then, for each € J, there existpm, € {pm: m € J}

1
such thad (pmt, q) < R From the triangular inequality, it follows that for any
Pm; € {Pm:m e J},

1
d (Pm P1) < d (Pm,0) +d (g, p1) < Top Hd@ Py <1+d@ py).

But 1+d (q, p1) is afixed real number, whilem, was chosen such that{ pm,, p1) >
my — 1 andm; — 1 goes to ifinity ast goes to ifinity. Thus, we have reached a
contradiction. ThereforeA is bounded.m

The next theorem gives us another characterization for compactness. It can be
shown to be valid over arbitrary metric spaces, but we will show it only over real
n-space.

Theorem 3.3.52 Let A be a subset of Euclidean n-space. Then A is compact if and
only if every irfinite subset of A has a limit pointin A.

Excursion 3.3.53 Fill in what is missing in order to complete the following proof
of Theorem 3.3.52.

Proof. If Aisacompact subset of Euclidean n-space, then every fimite subset
of A has a limit point inA by Theorem 3.3.46.

Suppose thaA is a subset of Euclideam-space for which every finite
subset ofA has a limit point inA. We will show that this assumption implies that
is closed and bounded. Suppose thas a limit point of A. Then, for eacm € J,
there exists an, such that

n

LetS = {X, : neJ}. ThenSis an of A. Conse-
(1)
qguently,S has in A. But Shas only one limit point
2
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namely . Thus, w € A. Since w was arbitrary, we conclude that A contains
©)
al of itslimit point; i.e.,

(4)
Suppose that A is not bounded. Then, for each n € J, there exists y, such
that [yn] > n. Let S= {y,: n e J}. Then Sisan of

®)

A that has no finite limit point in A. Therefore,
A not bounded = (35) (Sc A A Sisinfinite A SN A =0);

taking the contrapositive and noting that — (P A Q A M) islogically equivalent to
[(P A Q) = M] for any propositions P, Q and M, we conclude that

(vVS) [( ):> sn A’;éﬂ}
B)

("

|
*** A cceptable completions include: (1) infinite subset, (2) alimit point, (3) w, (4)
Aisclosed, (5) infinite subset, (6) S ¢ A A Sisinfinite, and (7) A isbounded.* **

As an immediate consequence of Theorems 3.3.50 and 3.3.46, we have the fol-
lowing result that is somewhat of a generalization of the Least Upper Bound Prop-
erty ton-space.

Theorem 3.3.54 (Welerstrass) Every bounded infinite subset of Euclidean n-space
has a limit point inR".

3.35 Connected Sets

With this section we take a brief look at one mathematical description for a subset

of a metric space to be “in one piece.” This is one of those situations where “we
recognize it when we see it,” at least with simply described seé&samdR2. The
concept is more complicated than it seems since it needs to apply to all metric spaces
and, of course, the mathematical description needs to be precise. Connectedness is
defined in terms of the absence of a related property.
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Definition 3.3.55 Two subsets A and B of a metric space X are separated if and
only if

ANB=0AANB=4.

Definition 3.3.56 A subset E of a metric space X is connected if and only if E is
not the union of two nonempty separated sets.

Example 3.3.57 Tojustifythat A={x e R:0 < x <2V 2< x < 3}isnot con-
nected, we just have to notethat B {x e R: 0 < X < 2} and
B, = {x e R: 2 < x < 3} are separated sets iR such that A= B; U B,.

Example 3.3.58 In Euclidean2-space, if C= D1 U D, where
D1 = {0, x2) € B2 d ((1,0), (xa, %) < D)}
and

D2 = {0, %) € B2 1 d((=1,0), (xa. x2) < 1)},

then C is a connected subsefR#.

Remark 3.3.59 The following is a symbolic description for a subset E of a metric
space X to be connected:

VA (VB)[(ACc XABC XAE=AUB)
= (ANB#0VANB#IVA=0VB=0).
The statement is suggestive of the approach that is frequently taken when trying
to prove sets having given properties are connectainely, the direct approach
would take an arbitrary set E and let E AU B. This would be followed by using
other information that is given to show that one of the sets must be empty.

The good newsisthat connected subsets of R can be characterized very nicely.
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Theorem 3.3.60 Let E be a subset of RY. Then E is connected in R* if and only if
(VX)(Vy)(VZ)[(x,ye EArnzeR'Ax<z< y) =ze E}.
Excursion 3.3.61 Fill in what is missing in order to complete the following proof

of the Theorem.

Proof. Suppose that E is a subset of R! with the property that there exist real
numbers x and y with X < y suchthat x, y € E and, for some z € R,

ze (X,y) andz ¢ E.

Let A, = EN(—o0,z)and B, = EN(z,00). Sincez ¢ E, E = A;U B;. Because
x € A;andy € B, both A; and B; are . Findly, A; ¢ (=0, 2)
@

and B; C (z, o) yieldsthat
sz BZ: AzﬂEZ:
@)
Hence, E can be written as the union of two sts;ie, Eis

()
. Therefore, if E isconnected, then X,y e EA z €

4
R A X <z < yimpliesthat

(5
To prove the converse, suppose that E is a subset of R? that is not con-
nected. Then there exist two nonempty separated subsifs éfand B, such that
E = AUB. Choosex € Aandy € B and assume that the set-up admits that y.
SinceAN [x, y] is a nonempty subset of real numbers, by the least upper bound

property,z = sup(Aﬂ [x, y]) exists and is real. From Theorem 3.3.26c A;
e

thenANB = @ yields thatz ¢ B. Now we have two possibilities to consicler¢ A
andze A. If z¢ A thenz¢ AUB=Eandx <z<y.Ilfze A thenANB =0
implies thatz ¢ B and we conclude that there existssuch thatz < w < y and

w ¢ B. Fromz < w, w ¢ A. Hencew ¢ AU B = E andx < w < y. In either
case, we have that (vx) (Vy) (V2) [(x,ye EAzeR'Ax <z <y) = z€ E].

By the contrapositivévx) (vy) (V2) [(x,y e EAze R'AXx <z <y) = z € E]
implies thatE is connectedm

*** Acceptable responses are: (1) nonempty@(ZB) separated, (4) not connected,
and (5)E is connected**

From the theorem, we know that, for a set of reals to be connected it must be
either empty, all oRR, an interval, a segment, or a half open interval.
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3.3.6 Perfect Sets

Definition 3.3.62 A subset E of a metric space X is perfect if and only if E is
closed and every point of E isa limit point of E.

Alternatively, asubset E of ametric space X isperfect if and only if E isclosed
and contains no isolated points.

From Theorem 3.3.7, we know that any neighborhood of alimit point of asubset
E of a metric space contains infinitely many points from E. Consequently, any
nonempty perfect subset of a metric space is necessarily infinite; with the next
theorem it is shown that, in Euclidean n-space, the nonempty perfect subsets are
uncountably ifinite.

Theorem 3.3.63 If P isa nonempty perfect subset of Euclidean n-space, then P is
uncountable.

Proof. Let P be anonempty perfect subset of R". Then P contains at least one
limit point and, by Theorem 3.3.6, P isinfinite. Suppose that P is denumerable. It
followsthat P can be arranged as an infinite sequence; let

X1, X2, X3, . . .

represent the elements of P. First, we will justify the existence (or construction) of
(0.0)
j

asequence of neighborhoods {V; }._ , that satisfies the following conditions:

(i) v (j eI=Vju1 V),
(i) (Vj)(] e J = X; ¢Vj+1),and
(iii) (Vj)(] el=V, ﬂP;éQf).

Start with an arbitrary neighborhood of x1; i.e., let V1 be any neighborhood of
x1. Suppose that {V; }?=1 has been constructed satisfying conditions (i)—(iii) for
1 < j < n. BecauseP is perfect, everx € VN P is a limit point of P. Thus there
are an ifinite number of points oP that are inV,, and we may choosg € V, " P
such thaty # x,. Let V41 be a neighborhood of such thatx, ¢ V.1 and
Vi1 C Vi. Show that you can do this.
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Note that Vo1 N P # @ sincey € Vyy1 N P. Thus we have a sequence {V; }Tii

satisfying (i)—(iii) for 1 < j < n+ 1. By the Principle of Complete Induction we
can construct the desired sequence.

Let {K;}[_, be the sequence fised byK; = Vj N P for eachj. SinceV; and
P are closedK is closed. Sinc&; is boundedK; is bounded. Thu&; is closed
and bounded and hence compact. Sixcé K1, no point of P lies in H?O:]_Kj.
SinceK;j C P, this impliesn$Z,Kj = #. But eachK; is nonempty by (iii) and
Kj 2 Kj41 by (i). This contradicts the Corollary 3.3.2&

Corollary 3.3.64 For any two real numbers a and b such that a < b, the segment
(a, b) isuncountable.

The Cantor Set

The Cantor set is a fascinating example of a perfect subset tifiat contains no
segments. In Chapter 11 the idea of the measure of a set is stiidjederalizes
the idea of length. If you take MAT127C, you will see the Cantor set offered as an
example of a set that has measure zero even though it is uncountable.

The Cantor set is daed to be the intersection of a sequence of closed subsets
of [0, 1]; the sequence of closed sets idided recursively. LeEy = [0, 1]. For
E1 partition the intervaEg into three subintervals of equal length and remove the
middle segment (the interior of the middle section). Then

-l

. . 1 2 . .
For E» partition each of the intervals0, 3 and{é, 1| into three subintervals of

equal length and remove the middle segment
then

rom each of the partitioned intervals

m
N
Il
| —
o



116 CHAPTER 3. METRIC SPACES AND SOME BAS C TOPOLOGY

Continuing the process E,, will be the union of 2" intervals. To obtain E 1, we
partition each of the 2" intervals into three subintervals of equal length and remove
the middle segment, then E,,,.1 is the union of the 2" intervals that remain.

Excursion 3.3.65 In the space provided sketch pictures of Eg, E1, E2, and E3 and
find the sum of the lengths of the intervals that form each set.

By construction {En};2 ; is anested sequence of compact subsets of R,

Excursion 3.3.66 Find a formula for the sum of the lengths of the intervals that
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form each set Ej,.

The Cantor set isdefined to be P = (") En.

n=1
Excursion 3.3.67 Justify each of the following claims.

(a) The Cantor set is compact.

(b) The {En}q2, satisfies thefinite intersection property

Remark 3.3.68 It follows from the second assertion that P is nonempty.
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Finally we want to justify the claims that were made about the Cantor set before
we described its construction.

e The Cantor set contains no segment from Eg.
To seethis, we observe that each segment in the form of

3k+1 3k+2
( 3 3m )fork,me.,]]
isdigoint from P. Given any segment (a, ) for a < g, if m € J is such that
— . : 3k+1 3k+2
3M< P 6a,then (a, B) containsaninterval oftheform( 3;'“_ , 3:: )

from which it follows that (a, ) isnot contained in P.

e The Cantor set is perfect. For x € P, let S be any segment that contains x.
[0.9]
Sincex € ﬂ En, X € E for eachn € J. Corresponding to each n € J, let

I, be the irrllte%val in E, such that x € 1,. Now, choose m € J large enough
toget I, ¢ Sand let Xy, be an endpoint of 1, such that X, # x. From the
way that P was constructed, X, € P. Since S was arbitrary, we have shown
that every segment containing x aso contains at least one element from P.
Hence, x isalimit point of P. That x was arbitrary yields that every element
of Pisalimit point of P.

3.4 Problem Set C

1. For X = (X1, X2, ..., XN) andy = (Y1, Yo, ..., Yn) INRN, let

N
dx,y) = J Z (xj — y,—)z.

=1

Provethat (RN, d) isametric space.
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2. For X = (X1, X2, ..., XN) andy = (y1, Yo, ..., yn) INRN, let
N
DY) =D Ixj = Yjl.
i=1

Provethat (RN, D) is ametric space.

3. Forx = (X1, X2, ..., Xn) and y = (y1, yo, ..., yn) inRN | let

doo(x,y) = max Xj = Y-

Provethat (RN, d.) is ametric space.

4. Show that the Euclidean metric d, given in problem #1, is equivalent to the
metric d., given in problem #3.

5. Suppose that (S, d) is a metric space. Prove that (S, d’) is a metric space
where

d(x,y)

dx,y) = ——F—"—.
%) 1+d(x,y)

[Hint: You might find it helpful to make use of propertiesof h (¢) = %&
for & > 0]

6. If a1, ap, ..., ap are positive real numbers, is
n
d (X, y) = D ak X — yl
k=1

wherex = (X1, X2, ..., Xn), Y = (Y1, Y2, ..., Yn) € R", ametric on R"? Does
your response changeif the hypothesisismodified to requirethat a;, ap, ..., an
are nonnegative real numbers?

7. Isthe metric D, given in problem #2, equivalent to the metric d.o, givenin
problem #37? Carefully justify your position.

8. Are the metric spaces (RN, d) and (RN, d’) where the metrics d and d’ are
given in problems #1 and #5, respectively, equivalent? Carefully justify the
position taken.
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9. For (x1, X2) and (x{, x5) inR?,

%ol + [X5] + [x1 — x| i Xx¢#x]
d3 ((Xla X2)3 (X:,I_’ Xé)) =
e = =

Show that (R?, d3) isametric space.

10. For x,y € RL let d (x,y) = |x —3y|. Is (R, d) a metric space? Briefly
justify your position.

11. For Rt with d (x, y) = |x —y|, give an example of a set which is neither
open nor closed.

12. Show that, in Euclidean n — space, a set that is open in R" has no isolated
points.

13. Show that every finite subset of RN is closed.
14. For R with the Euclidean metric, let A= {x € Q : 0 < x < 1}. Describe A.

15. Prove each of the following claims that are parts of Theorem 3.3.13. Let She
ametric space.

(8 Theunion of any family F of open subsets of Sis open.
(b) Theintersection of any family F of closed subsets of Sis closed.

(©) If Aq, Ag, ..., Ay isafinite family of closed subsets of S, then the union
Uj=1 Aj isclosed.

(d) The space Sis both open and closed.
() Thenull set is both open and closed.

16. For X = [=8, —4) U {=2,0} U (@ N (1, 2\/2}) as a subset of R, identify
(describe or show a picture of) each of the following.

(8 Theinterior of X, Int (X)
(b) Theexterior of X, Ext (X)
(c) Theclosureof X, X
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(d) Theboundary of X, X
(e) The set of isolated points of X
(f) The set of lower bounds for X and the least upper bound of X, sup (X)

17. Assubsets of Euclidean 2-space, let
2. 1
A= (X, %) € RT-max{xy +1f, Pel} < 5 r

B = {(X1, X2) € R? : max({|x1 + 1|, |x2|} < 1} and
Y = {(xl,xz) eR2: (x1,%) € B— AV ((x1—1)2+x§ < 1)}

(a) Give a nicely labelled sketch &fon a representation for the Cartesian
coordinate plane.

(b) Give a nicely labelled sketch of the exteriorof Ext(Y), on a repre-
sentation for the Cartesian coordinate plane.

(c) IsY open? Bridy justify your response.
(d) IsY closed? Brifly justify your response.
(e) IsY connected? Brity justify your response.

18. Justify each of the following claims that were made in the Remark following
Definition 3.3.15

(@) If Ais a subset of a metric spac8, d), then Ext(A) = Int (A®).
(b) If Ais a subset of a metric spacs, d), then

x € 0A S (YN (X)) (Nr () N A B AN (X) N AS # 9).
19. ForR? with the Euclidean metric, show that the set
S= {(x,y) eR?:0<x?+y? < 1}

is open. Describe each &, S, 6S, S, and°.

20. Prove thaf(x1, X2) e R?: 0 < x; < 1A 0 < xp < 1} is not compact.
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21.
22

23.
24,
25.

26.

27.
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Prove that Q, the set of rationalsin R2, is not a connected subset of R1.

Let F be any family of connected subsets of a metric space X such that any

two members of F have acommon point. Provethat ) F isconnected.
FeF

Prove that if Sisa connected subset of a metric space, then Sis connected.
Prove that any interval | ¢ R is aconnected subset of R,

Prove that if A isa connected set in ametric spaceand A c B c A, then B
IS connected.

Let {Fn}oo, be a nested sequence of compact sets, each of which is con-

o0
nected. Prove thaﬂ F, is connected.
n=1

Give an example to show that the compactness of thé&gegigen in problem
#26 is necessary.e., show that a nested sequence of closed connected sets
would not have been enough to ensure a connected intersection.



Chapter 4

Sequences and Series—First View

Recall that, for any set A, a sequence of elements of Alisafunction f : J — A
Rather than using the notation f (n) for the elements that have been selected from
A, sincethe domain isawaysthe natural numbers, we use the notational convention
a, = f (n) and denote sequencesin any of the following forms:

{an}ney {@n}ney » or ap, ag, ag, au, ...

This is the only time that we use the set bracket notation { } in a different con-

text. The distinction is made in the way that the indexing is communicated . For
an = a, the{ay};2 ; is the constant sequence that “lists the termfinitely often,”
a,a,0,a,..; while {a, : n € J} is the set consisting of one element(When you
read the last sentence, you should have come up with some version o&"“&ial *

n’ equal toa, the sequence ofa'subn’ for n going from one to ifinity is the
constant sequence that “lists the te#nmnfinitely often,” a, a, a, ...; while the set
consisting of a subn’ for n in the set of positive integers is the set consisting of
one elemen&”; i.e., the point is that you should not have skipped over#ag” |
andf{a, : n € J}.) Most of your previous experience with sequences has been with
sequences of real numbers, like

3 0.9]
1,1,2,3,5,8,13 21,34,55, ...,... { } ,
n=1

+(—1)”}Oo and {k)ﬂ+sin(n_n)]°°
netl n 8/ nat

In this chapter, most of our sequences will be of elements in Euclidegpace. In
MAT127B, our second view will focus on sequence of functions.

nZ+3n—-5]% nd—1
n+47 J,— [nP+1

123
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Aschildren, our first exposure to sequences was made in an effort to teach usto
look for patterns or to develop an appreciation for patterns that occur naturally.

Excursion 4.0.1 For each of the followingtnd a description for the general term
as a function of ne J thatfits the terms that are given.

248 16 32 64

3 7 11
2.1,-,9,-,81, —,729, ...
b 55 b 93 b 133 b

*** An equation that worksfor (1) is (2") (2n + 3)~! while (2) needs a different for-
mula for the odd terms and the even termse pair that works i€2n — 1) (2n + 1)1
for n even and 31 whenn is odd***

As part of the bigger picture, pattern recognition is important in areas of math-
ematics or the mathematical sciences that generate and study models of various
phenomena. Of course, the models are of value when they allow for analysis and/or
making projections. In this chapter, we seek to build a deeper mathematical under-
standing of sequences and serfasmary attention is on properties associated with
convergence. After preliminary work with sequences in arbitrary metric spaces, we
will restrict our attention to sequences of real and complex numbers.

4.1 Sequencesand Subsequencesin Metric Spaces

If you recall the dénition of convergence from your frosh calculus course, you
might notice that the daition of a limit of a sequence of points in a metric space
merely replaces the role formerly played by absolute value with its generalization,
distance.
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Definition 4.1.1 Let {pn}: ; denote a sequence of elements of a metric space (S, d)
and po be an element of S. Thelimit of {pn}o ; is po asn tends to (goesto or ap-
proaches) ifinity if and only if

(Ve)[(e e RAe > 0) = (AM = M(e)) (M € JA (Vn) (n > M = d(pn, Po) < ¢))]

We write either p — po or lim py = po.
n—oo

Remark 4.1.2 The description M= M (¢) indicates that “limit of sequence proofs”
require justfication or spegication of a means of prescribing howfind an M that
“will work” corresponding to eache > 0. A function that gives us a nice way to
specify M(¢)’s is dgined by

X]=inf{j eZ:x<j}

: : - . 1
and is sometimes referred to as tegling function. Note, for example, th t§ =

1, [—2.2] = -2, and[5] = 5. Compare this to the greatest integer function, which
is sometimes referred to as tfleor function.

21> o
Example 4.1.3 The sequenc - has the limi0in R. We can take M1) = 2,
n=1
1 3 700
Ml—) =2 Ml—) =|— | =234 Of h I
(100) 00, and (350) { 3 —‘ 34. Of course, three examples

does not a proof make. In general, for> 0, let M (¢) = P—‘ Then n> M (¢)
&

2 2
n>’r——‘2—>0
e e

1 2
which, by Proposition 1.2.9 (#7) and (#5), implies ti?]ak % andﬁ =

implies that

< é&.

Using the definition to prove that the limit of a sequence is some point in the
metric space is an example of where our scratch work towards finding a proof might
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be quite different from the proof that is presented. This is because we are alowed

to “work backwards” with our scratch work, but we can not present a proof that
starts with the bound that we want to prove. We illustrate this with the following
excursion.

Excursion 4.1.4 After reading the presented scratch work, fill in what is missing to

_ 1+in)™ .
complete the proof of the claim that [+—I1] convergestoi inC.
n=1
(a) Scratch work towards a proof. Becausei € C, it suffices to show that
i 1+in . U Disai T
n|—>moon-|—l =1i. Quppose ¢ > Oisgiven. Then
1+in | 1+in—i(n+1| [1-i| 2 <ﬁ<
n+1 | n+1 nti| n+i1 n °
2 [ V2
whenever £ < n. Sotaking M (¢) = i—‘ will work.
& &
(b) Aproof. Fore > O, let M (¢) = .Thenne Jandn > M (¢)
1)
o N
implies that n > — which is equivalent to < ¢. Because
&

@
4

2 .
n+1> nand+2 > 0, we also know that i < ? Consequently, if
5}

n> M (¢), then
1+in . 1+in—i(+1)] _ V2
— | = = < <é&
n+1 n+1 n+1 S n+1 5
Sncee¢ > 0wasarbitrary, we conclude that
1

(Ve) [(g - 0) = AM (@) (M e JA (Vn) (n M= ‘ +in_; <g))],-
: 1+in
i.e, . Finally,i = (0,1) e Cand I|m

—00 -|—:|_

©6)
o0

14
i yieldsthat [ﬂ] convergestoi inC.
n+1),-1
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*** Acceptable responses are (1) |7\/_—‘ (2 — ﬁ n+ 1, (4) V2, (5) Q , (6)

Definition 4.1.5 The sequence {pn}; >, of elementsin a metric space Sis said to
converge (or be convergent) in Sif thereisapoint pp € Ssuch that n|Lm Pn = Po.

itissaid to divergein Sif it does not convergein S.

Remark 4.1.6 Notice that a sequence in a metric space Swill be divergent in Sif

o0
itslimitisa point that isnot in S. In our previous example, we proved that { — }

n=1
o0
converges to 0 in R, consequently, {ﬁ} is convergent in Euclidean 1-space.
n=1
21 . . .
On the other hand, = is divergent in(RT = {x e R : x > 0},d) where d

=1
denotes the Euclidean metric Mdx,y) =[|x—yl.

Our first result concerning convergent sequences is metric spaces assures us of
the uniqueness of the limits when they exist.

Lemma4.1.7 Supposé pn}, 2, is a sequence of elements in a metric spégeal).
Then

(Vp)(vq)([p,quAnILrgopnz pAnILngopnzq]zq= p)-

Space for scratch work.

Excursion 4.1.8 Fill inwhat is missing in order to complete the proof of the lemma.

Proof. Let {pn};2; be a sequence of elements in a metric space (S, d) for
which there exists p and g in S such that nIi%m pn = p and nIi)m pn = q. Suppose
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1
thep#q. Thend(p,q) > Oandwelete = Ed (p, Q). Becausenli)m pn = p and
¢ > 0, there exists a positive integer M1 such that
n> Ml:d(pns p) <é&;

similarly, nIi%m pn = q Yields the existence of a positive integer M such that

@)

Now, let M = max {M1, My}. It follows from the symmetry property and the
triangular inequality for metricsthat n > M implies that

d(p,Q)Sd(p,pn)+ <5+5=2( )Zd(p,Q)
2 3

which contradicts the trichotomy law. Since we have reached a contradiction, we
conclude that as needed. Therefore, the limit of any convergent sequence

4
inametric spaceisunique. m

*** Acceptable fill-ins are: (1)n > M2 = d(pn,q) < &, (2) d(pn,q) (3)
1
Ed (P,Q), (4) p=q.***

Definition 4.1.9 The sequence {pn}; 2, of elements in a metric space (S, d) is
bounded if and only if

AM)@X) [M > 0Ax e SA(VN) (ne = d(x, pr) < M)].

Note that if the sequencin};2; of elements in a metric spacgis an not
bounded, then the sequence is divergen®.irOn the other hand, our next result
shows that convergence yields boundedness.

Lemma 4.1.10 If the sequence { pn}o2 ; of elementsin a metric space (S, d) iscon-
vergent in S, then it is bounded.
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Spoace for scratch work.

Proof. Suppose that {pn}>° ; isasequence of elementsin ametric space (S, d)
that is convergent to pp € S. Then, for ¢ = 1, there exists a positive integer
M = M (1) such that

n> M= d(pn, Po) <1

Because {d (pj, po) : j e JA1< j < M} isafinite set of nonnegative real num-
bers, it has a largest element. Let

K = max{1, max{d (pj, po) : j e JAl< j < M}}.
Sinced (pn, po) < K, for eachn € J, we conclude thagpn} ; is bounded.m

Remark 4.1.11 To seethat the converse of Lemma 4.1.10 isfalse, for n € J, let

1 :
3 , 1f2]n
Pn =
1-— , if2
n+3 T2{n

Then, for d the Euclidean metricon R, d (0, pn) = [0 — pn| < 1for all n € J, but
{pPn}p isnot convergent in R.

Excursion 4.1.12 For each n € J, let a, = pon and b, = pon—1 Where p, is
defined in Remark 4.1.11.

(a) Usethe definition to prove that nIi_)m a, =0.
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(b) Use the dénition to prove thatn Ii)m b, =1

1
***Note that an, = =1l-— 7 =1-
> (2n)? @n-1)+3 2(n+1)’
1
used . and1— et respectively, your choices for corresponding M (¢) will be

dightly off. Thefollowing are acceptabl e solutions, which of course are not unique;
compare what you did for general sense and content. Make especially certain that
you did not offer a proof that is “working backwards” from what you wanted to

1 N
show. (a) Fore > O, letM = M (¢) = ’77—‘ Thenn > M implies that
&
1 1 1 1

1
n> (2 or— < If follows that -0 = = .= <
(2ve ) on Ve (2n)2 (2n)2 ~ 2n 2n
f Je = ¢ whenevem > M. Sincees > 0 was arbitrary, we conclude that
1
= 0. (b) Fore > 0, letM = M (¢) = ’7—-‘ Thenn > M
&

; if you

n—oo 00(2 )

1
implies thatn > (¢)~! or = < &. Note that, fom € J, n > 1 > 0 implies that

n+2>0+2—2>0and21+2—n+(n+2)>0+n—n Thus, forn € J
andn > M, we have that

'(1_2n1+2)_1':

. 1
Sincee > 0 was arbitrary, we conclude that liby = lim (1— ) =
n— oo n— oo 2n+4 2

1 |_ 1 1
2n+2| 2n+2 n

l **k*

Remark 4.1.13 Hopefully, you spotted that there were some extra steps exhibited
in our solutions to Excursion 4.1.12. | chose to show some of the extra steps that
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illustrated where we make explicit use of the ordered field properties that were dis-
cussed in Chapter 1. In particular, it is unnecessary for you to have explicitly
demonstrated than + 2 > n from the inequalities that were given in Proposition

1 1 :
1.2.9 or the stepz— “on < /¢ - /e that was shown in part (a). For the former
you can just write things liken + 2 > n; for the latter, you could just have written

@2 < (\/5)223_

What we just proved about the sequence given in Remark 4.1.11 can be trans-
lated to a statement involving subsequences.

Definition 4.1.14 Given a sequence {pn}q- ; of elements in a metric space X and
a sequence {ng} 2, of positive integers such that of ny < ni44 for each k € J, the
sequence { pn, -, is called a subsequence of {p}2. If {pn, } -, convergesin
X thenitslimit is called a subsequential limit of { pn}2 ;.

Remark 4.1.15 In our function terminology, a subsequence of f : J — X isthe
restriction of f to any infinite subset of J with the understanding that ordering is
conveyed by the subscripts; i.e., nj < nj,1 for each j e J.

From Excursion 4.1.12, we know that the sequefiag >, given in Remark
4.1.11 has two subsequential limitamely, 0 and 1. The uniqueness of the limit
of a convergent sequence leads us to observe that every subsequence of a conver-
gent sequence must also be convergent to the same limit as the original sequence.
Consequently, the existence of two distinct subsequential limit§digh ; is an
alternative means of claiming thépn},2, is divergent. In fact, it follows from
the ddinition of the limit of a sequence thatfinitely many terms outside of any
neighborhood of a point in the metric space from which the sequence is chosen
will eliminate that point as a possible limit. A slight variation of this observation
is offered in the following characterization of convergence of a sequence in metric
space.

Lemma4.1.16 Let {pn}ac4 be a sequence of elements from a metric space (X, d).
Then {pn}ac, convergesto p € X if and only if every neighborhood of p contains
all but finitely many of the terms of { pn},2 ;.
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Space for scratch work.

Proof. Let { pn}2; be asequence of elements from a metric space (X, d).
Suppose that {pn}—, convergesto p € X and V is a neighborhood of
p. Then there exists a positive real number r such that V. = N, (p). From the
definition of a limit, there exists a positive integer M = M (r) such that n > M
impliesthat d (p, pn) < r;i.e,foraln> M, p, € V. Consequently, at most the
{pk :keJAl<k< M}isexcluded fromV. SinceV was arbitrary, we conclude
that every neighborhood of p containsall but finitely many of the terms of {pn};2 ;.
Suppose that every neighborhood of p contains al but finitely many of
the terms of {pn}c ;. For any ¢ > 0, N (p) contains all but finitely many of the
termsof {pn}2,. Let M = max{k e J: px ¢ N; (p)}. Thenn > M implies that
pn € N. (p) from which it followsthat d (pn, p) < ¢. Sincee > 0 was arbitrary,
we conclude that, for every ¢ > 0O there exists a positive integer M = M (&) such
that n > M impliesthat d (pn, p) < ¢; that is, {pn};=; convergesto p e X. m
It will come as no surprise that limit point of subsets of metric spaces can be
related to the concept of alimit of a sequence. The approach used in the proof of
the next theorem should look familiar.

Theorem 4.1.17 A point p is a limit point of a subset A of a metric spaCe, d)
if and only if there is a sequend@n},>; with p, € A and B # po for every n
suchthat p » ppasn— oo.

Proof. (<) Suppose that there is a sequence {pn},-; such that pn € A, pn #
po for every n, and p, — po. Forr > 0, consider the neighborhood N, (pg). Since
Pn — Po, there exists a positive integer M such that d(pn, po) < r foral n > M.
In particular, pm+1 € AN Ny (po) and pm+1 # Po. Sincer > 0 was arbitrary, we
conclude that pg isalimit point of the set A.

(=) Supposethat pg € X isalimit point of A. (Finish this part by first making
1 o0
judicious use of the real sequence {f ] to generate a useful sequence {pn}pe 4
j=1
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1
followed by using the fact that T — 0asj — oo toshow that {pn}oo, converges
to po.)

Remark 4.1.18 Snce Theorem4.1.17 isa characterization for limit points, it gives
us an alternative definition for such. When called upon to prove things related
to limit points, it can be advantageous to think about which description of limit
points would be most fruitful, i.e., you can use the definition or the characterization
interchangeably.

We close this section with two results that rel ate sequences with the metric space
properties of being closed or being compact.

Theorem 4.1.19 If {pn}az; is a sequence in X and X is a compact subset of a
metric space (S, d), then there exists a subsequence of {pn},2; that is convergent
in X.

Space for scratch work.

Proof. Suppose that {pn}; >, isasequencein X and X is acompact subset of
ametric space (S,d). Let P = {p,: n e J}. If Pisfinite, then thereis at least
one k such that px € P and, for infinitely many j € J, we have that p; = px.
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Consequently, we can choose a sequence {n; }Tozl suchthat nj < nj;1and py, =

pk for each j e J. It follows that { pp, }Til is a(constant) subsequence of {pn}oe
that is convergent to px € X. If P isinfinite, then P is an infinite subset of a
compact set. By Theorem 3.3.46, it follows that P has alimit point pg in X. From
Theorem 4.1.17, we conclude that there is a sequence {gk} -, with gx € P and
Ok 7 Po for every k suchthat qx — po ask — oo; that is, {gk} 2, isasubsequence

of {pn}pe4 that isconvergentto pp € X. m

Theorem 4.1.20 If {pn}o2, is a sequence in a metric spac§, d), then the set of
all subsequential limits ofpn};2 ; is a closed subset of S.

Space for scratch work.

Proof. Let E* denote the set of all subsequential limits of the sequence { pn}a 4
of elements in the metric space (S, d). If E* isfinite, then it is closed. Thus,
we can assume that E* isinfinite. Suppose that w is a limit point of E*. Then,
corresponding tor = 1, there exists X # w such that x € N1 (w) N E*. Since
x € E*, we can find a subsequence of {pn}o2, that converges to x. Hence, we
can choose n; € J such that py, # w and d (pny, w) < 1. Let 6 = d (pny,w).
Because o > 0, w isalimit point of E*, and E* is infinite, there exists y # w
that isin Ns/4 (w) N E*. Again, y € E* leads to the existence of a subsequence
of {pn}n—, that convergesto y. This allows us to choose n, e J such that n, >

ny and d (pn,, y) < % From the triangular inequality, d (w, pn,) < d(w,y) +

0
d(y, pn,) < > We can repeat this process. In general, if we have chosen the

increasing finite sequence ny, Ny, ..., Nj, then there exists a u such that u # w and
0 . : -

ue N, (w) N E* whererj = DEsE Sinceu € E*, uisthelimit of a subsequence

of {pn}p2;. Thus, we can find nj 1 such that d (pn;,;,u) < rj from which it

follows that

5
d (1, pny.1) < d (0, W) +d (U, Pryy) <2 = 5.

The method of selection of the subsequence {pn j }T‘;l ensures that it converges to
w. Therefore, w € E*. Because w was arbitrary, we conclude that E* contains all
of itslimit points; i.e.,, E* isclosed. m
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4.2 Cauchy Sequencesin Metric Spaces

Thefollowing view of “proximity” of terms in a sequence doesn't isolate a point to
serve as a limit.

Definition 4.2.1 Let {pn} 2, beaninfinite sequencein a metric space (S, d). Then
{pn}2, issaid to be a Cauchy sequenceif and only if

(Ve)[e > 0= @M = M (¢)) (M € JA (vm) (Vn) (n,m > M = d (pn, Pm) < €))].

Another useful property of subsets of a metric space is the diameter. In this sec-
tion, the term leads to a characterization of Cauchy sequences as well Asiarguf
condition to ensure that the intersection of a sequence of nested compact sets will
consist of exactly one element.

Definition 4.2.2 Let E be a subset of a metric space (X, d). Then the diameter of
E, denoted by diam(E) is

sup{d(p,q): pe EAq e E}.

Example4.2.3 Let A= {(x1, X2) € R? 1 xZ + x5 < 1} and
B= {(xl, x2) € R? : max{|x|, |xzl} < 1} :

Then, in Euclidean 2-spacediam (A) = 2 anddiam (B) = 2/2.
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Note that, for the sets A and B given in Example 4.2.3, diam(A) = 2 =

diam (A) and diam (B) = 2+/2 = diam (B). Theseillustrate the observation that is
made with the next result.

Lemma4.2.4 If E is any subset of a metric space X, tléam (E) = diam (E).

Excursion 4.2.5 Use the space provided tdl in a proof of the lemma. (If you get
stuck, a proof can be found on page 53 of our text.

The property of being a Cauchy sequence can be characterized nicely in terms
of the diameter of particular subsequence.

Lemma4.2.6 If {pn}o2, is an irfinite sequence in a metric space X angl i the
subsequencenp Pv+1, PM+2, ---, then{pn};2,; is a Cauchy sequence if and only
if Mlim diam(Ey) = 0.

—00

Proof. Corresponding to the infinite sequence {pn},2 ; in ametric space (X, d)

let E\ denote the subsequence pm, PM+1, PM+25 --- -
Suppose that {pn}ac; is a Cauchy sequence. For j € J, there exists a

e . 1
positive integer MJ?" = MJf" (¢) such that n,m > MJ?* impliesthat d (pn, pPm) < T
. 1

Let Mj; = MJTk + 1. Then, for any u,o € Ew;, it follows that d (u,v) < T

1 1
Hence, sup{d (u,v) :u e Ew; Av € En;} < T i.e, diam (Ev;) < T Now
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given any ¢ > 0, there exists M’ such that j > M’ implies that Tl < ¢. For
M =max{Mj, M’} and j > M diam(EMj) < €. Sincee > 0 was arbitrary, we
conclude that I|m dlam(EM)—

Suppose that I|m diam(Ey) = Oand let ¢ > 0. Then there exists a
positive integer K such that m > K impliesthat diam (En) < ¢;i.e,

sup{d (u,v):ue EnAv € En} <e.

In particular, for n, j > mwecanwriten = m+x and j = m+y for some positive
integers x and y and it follows that

d (pn, pj) < sup{d(u,v):ue EnAv e Ep} <e.

Thus, we have shown that, for any ¢ > 0, there exists a positive integer m such that
n, j > mimpliesthat d (pn, pj) < ¢. Therefore, {pn}c; isaCauchy sequence. m

With Corollary 3.3.44, we saw that any nested sequence of nonempty com-
pact sets has nonempty intersection. The following slight fication results from
adding the hypothesis that the diameters of the sets shrink to 0.

Theorem 4.2.7 If (K} ; isa nested sequence of nonempty compact subsets of a
metric space X such that

nILmoo diam(K) =0,

then ﬂ K}, consists of exactly one point.
neJ

Spoace for scratch work.

Proof. Suppose thatK}o2 ; is a nested sequence of nonempty compact sub-
sets of a metric spaceX, d) such thatrHllmdlam(Kn) 0. From Corollary

3.3.44,{Kp}2, being a nested sequence of nonempty compact subsets implies that

[Kn # 9.

neJ
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If ﬂ K}, consists of more that one point, then there exists points x and y
neJ

in X suchthat x e [|Kn, y € [|Kn and x # y. But thisyields that

nel nel

0<d(x,y) <sup{d(p,q): peKnAaqgeKp}
foralne J;i.e,diam(En) £ d (x,y) forany M € J. Hence, nILngo diam (Ey) #
0. Because nIi)rgodiam(Kn) = 0, it follows immediately that ﬂKn consists of

neJ
exactly one point. m

Remark 4.2.8 To see that a Cauchy sequence in an arbitrary metric space need
not converge to a point that is in the space, consider the metric g where
S is the set of rational numbers an@edb) = |a — b|.

On the other hand, a sequence that is convergent in a metric space is Cauchy
there.

Theorem 4.2.9 Let {py};2, be an irfinite sequence in a metric spacs, d). If
{Pn}peq converges in S, thefpn}ao 4 is Cauchy.

Proof. Let {pn};2, be an infinite sequence in a metric space (S, d) that con-
verges inSto pp. Suppose > 0 is given. Then, there exists & € J such that

n> M = d(pn, Po) < % From the triangular inequality, f > M andm > M,
then

d (P, Pm) < d (pn, Po) +d (po, pm)<%+%=3_

Sincee > 0 was arbitrary, we conclude thigh,} 2 ; is Cauchy.m

As noted by Remark 4.2.8, the converse of Theorem 4.2.9 is not true. However,
if we restrict ourselves to sequences of elements from compact subsets of a metric
space, we obtain the following partial converse. Before showing this, we will make
some us

Theorem 4.2.10 Let A be a compact subset of a metric space (S, d) and {pn}o2;
be a sequencein A. If {pn};2 ; is Cauchy, then there existsa point pg € A such that
Pn — Poasn — oo.
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Proof. Let A be a compact subset of a metric space (S, d) and suppose that
{pn}22, of elementsin A is Cauchy. Let Ey be the subsequence {pMH}}’io

Then {Ew},._, isanested sequence of closed subsetsof Aand {Ev N A}, isa
nested sequence of compact subsets of Sfor which I\/Ilim diam (E MmN A) = 0. By
— 0

Theorem 4.2.7, there exists aunique p suchthat p € Ey N Afor al M.
Now justify that p, » pasn — oo.

4.3 Segquencesin Euclidean k-space

When we restrict ourselves to Euclidean space we get several additional results
including the equivalence of sequence convergence with being a Cauchy sequence.
The first result is the general version of the one for Euclidean n-space that we
discussed in class.

Lemma4.3.1 On (RK, d), where d denotes the Euclidean metric, let
Pn = (X1n, X2n, X3n, -.-» Xkn)-

Then the sequence {pn},2, convergesto P = (p1, P2, P3, ..., k) if and only if
Xjn = pjforeach j,1<j < k as sequencesin R,

Proof. The result follows from the fact that, for eanoh) 1 < m < Kk,

k k
[Xmn — Pml| =/ (Xmn — pm)ZS\I Xjn— IOJ Z|Xjn—pj|-

i=1

Suppose that > 0 is given. If{p,}2; converges td® = (p1, P2, P3, ..., Pk), then
there exists a positive real numbdr= M (¢) such tham > M implies that

k
d(pn,P)=JZ (Xjn — pj) ‘<.

j=1
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Hence, foreachm,1 <m < k,andforal n > M,

[Xmn — Pml < d (pn, P) < &.

Since ¢ > 0 was arbitrary, we conclude that nIi}m Xmn = Pm. Conversely, suppose
o0

that xjn, — p; foreach j, 1 < j < k as sequences in R, Then, for each j,

1 < j <k, thereexists apositive integer Mj = Mj (¢) suchthat n > M;j implies

ZLletM = max Mj. It followsthat, forn > M,

that | Xy — <
[Xmn — Pml K ke

k
&
d(pn. P) < > [xin— pi| <k (3) ==
j=1
Because ¢ > 0 was arbitrary, we have that nIi%m ph=P. m
o0

Once we are restricted to the real field we can relate sequence behavior with
algebraic operationsinvolving termsof given sequences. Thefollowing resultisone
of the onesthat allows usto find limits of given sequences from limits of sequences
that we know or have already proved elsewhere.

Theorem 4.3.2 Suppose thafz,},> ; and {¢n}2, are sequences of complex num-

bers such thatlim z, = Sand lim ¢, = T. Then
n— oo n— oo

() n'L”QO (Zn+¢n) =S+ T,
(b) nIi)m (cz,) = ¢S, for any constant.c

(c) nILn;O (zntn) = ST,

(d) lim (ﬁ) = E provided thatvn) [ne J = ¢, #O0] AT #0.

n—o0 \ T

Excursion 4.3.3 For each of the followingfll in either the proof in the box on the
left of scratch work (notes) that support the proof that is given. If you get stuck,
proofs can be found on pp 49-50 of our text.

Proof. Suppose that {z}2; and {¢n}ne, are sequences of complex numbers
such that nIi)m Zn = Sand nIi)m mh=T.
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(@

Space for scratch work.
Need look at

[(zZn + ¢n) — (S+T)|
—Know we can make

|zn — G <%form> M1

& |tn — T <%forn> M»

—Go forM = max{M1, My}
and use Triangular Ineq.

(b)

Spoace for scratch work.
Need look at

|(Czn) — cS| =[c[|zn —
—Know we can make
|zm — S| < %form> M1

—forc # 0, mentionc =0
——as separate case.

(€)

Sincez, — S, there existdM; € J such thanh > My
implies that|z, — S| < 1. Hencelzy| — |S] < 1 or
|za| < 1+ |9 foralln > M. Suppose that > 0 is given.
If T =0, then;y — 0 asn — oo implies that there exists

&
M* e J such tha < wheneven > M*. For
1¢nl 1115

n > max{M1, M*}, it follows that

[(Zn¢n) — ST| = |zn¢nl < A1 +19) (
Thus, limz, = 0.
n— oo
If T #0,then;y > T asn — oo yields that there exists

&
M> e J such tha < ——— whenevemn > M.
2 1¢nl 20419 2
Fromz, — S, there existdMs € J such thah > M3 =
lzn —T| < ﬁ Finally, for anyn > max{M1, M2, M3},
|(zn¢n) — ST
= (zZnn) — Zn T + 23T = ST| < |zp||th = T+ |Enl [2n — S

& &
1+1S T =e.
<(+||)2(1+|S|)+| om =

e )
=c.
1+19

Space

for
scratch
work.
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Space for scratch work.

(2)-=()
(d) ¢n - (n .
—we can just apply

the result from (c).

The following result is a useful tool for proving the limits of given sequences in
RL

Lemma 4.3.4 (The Squeeze Principle) Suppose that {xn};2; and {yn} -, are se-
guences of real numbers such thlam N Xn = S and I|m N Yn = S. If{un}n 1isa

sequence of real numbers such that for some posmve integer K
Xn < Up < Yp, foralln > K,

then limu, = S.
n—oo

Excursion 4.3.5 Fill in a proof for The Squeeze Principle.

Theorem 4.3.6 (Bolzano-Weierstrass Theorem) In RX, every bounded sequence
contains a convergent subsequence.

Proof. Suppose that {pn}2; be a bounded sequence in RK. Then P =
e

{pn:nel}isbounded. Since P is a closed and bounded subset of R¥, by the
Heine-Borel TheoremP is compact. Becausie,}> ; is a sequence iR a com-

pact subset of a metric space, by Theorem 4.1.19, there exists a subsequence of
{pn}®2, that is convergent ifP. m
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Theorem 4.3.7 (R* Completeness Theorem) In RK, a sequence is convergent if
and only if itis a Cauchy sequence.

Excursion 4.3.8 Fill in what is missing in order to complete the following proof of
theRK Completeness Theorem.

Proof. Since we are in Euclidean k-space, by Theorem , we
@
know that any sequence that is convergenRInis a Cauchy sequence. Conse-
guently, we only need to prove the converse.
Let {pn}p—, be a Cauchy sequencelRf. Then corresponding to = 1,
there existdM = M (1) € J such thaim,n > M implies that
whered denotes the Euclidean metric. In particular,

@
d (pn, pm+1) < 1lforalln > M. Let

B = max{l, lg?’sﬂd (pj,d|\/|+1)] .

Then, for eachj € J, d(pj,dw+1) < B and we conclude thatp}e, is a
sequence ifRK. From the Theorem,
©) 4
{pn:n e J}is a compact subset @K. Because Pnloeq is a Cauchy sequence
in a compact metric space, by Theorem 4.2.10, there exigis @ {p, : n € J}
such thatp, — pg asn — oo. Since{pn}pc, was arbitrary, we concluded that
.

()
*** Acceptable responses are: (1) 4.2.9d2pn, pm) < 1, (3) bounded, (4) Heine-
Borel, and (5) every Cauchy sequencéfhis convergent**

From Theorem 4.3.7, we know that for sequencé®'inbeing Cauchy is equiv-
alent to being convergent. Since the equivalence can not be claimed over arbitrary
metric spaces, the presence of that property receives a special designation.

Definition 4.3.9 A metric space X is said to be complete if and only if for every
sequence in X, the sequence being Cauchy is equivalent to it being convergent in
X.

Remark 4.3.10 As noted earlier, R is complete. In view of Theorem 4.2.10, any
compact metric space is complete. Finally because every closed subset of a metric
space contains all of its limit points and the limit of a sequenceis a limit point, we
also have that every closed subset of a complete metric space is complete.
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It isalways nice to find other conditions that ensure convergence of a sequence
without actually having the find its limit. We know that compactness of the metric
space alows us to deduce convergence from being Cauchy. On the other hand, we
know that, in RK, compactness is equivalent to being closed and bounded. From
the Bolzano-Weierstrass Theorem, boundedness of a sequence gives us a conver-
gent subsequence. The sequefi€&’ ; of elements inC quickly illustrates that
boundedness of a sequence is not enough to give us convergence of the whole se-
quence. The good news is that,®}, boundedness coupled with being increasing
or decreasing will do the job.

Definition 4.3.11 A sequence of real numbers {xn}2; is

(&) monotonically increasing if and only if (vn) (n € J = Xy < Xn4+1) and
(b) monotonically decreasing if and only if (Yn) (n € J = Xn > Xn+1).

Definition 4.3.12 The class of monotonic sequences consists of all the sequences
in R! that are either monotonically increasing or monotonically decreasing.

1\" 1)!
Example 4.3.13 For eachn € J, nt- >1= M It follows that
n (n+1)n!
! !
nt (n+ 1)!

M=+ n+DH™

| o0
Consequently, [ % ] is monotonically decreasing.

n=1
Theorem 4.3.14 Suppose that {xn}n2 ; is monotonic. Then {xn} 2, converges if
and only if {xn}o2 ; isbounded.

Excursion 4.3.15 Fill in what is missing in order to complete the following proof
for the case when {xn}, ; is monotonically decreasing.
Proof. By Lemma4.1.10, if {xn}2; converges, then

@
Now suppose that {xn}a2 ; is monotonically decreasing and bounded. Let
P = {x,: n e J}. If P isfinite, then thereis at least one k such that xx € P and,
for infinitely many j € J, we have that X; = Xx. On the other hand we have that
Xk+m > Xk+m+1 for all m e J. It follows that {x,};2; is eventually a constant

sequence which is convergent to xx. If P isinfinite and bounded, then from the



4.3. SEQUENCESIN EUCLIDEAN K-SPACE 145

greatest lower bound property of the reals, we can let gof (P). Because g is the

greatest lower bound,
(¥vn) (n el = )
@

Suppose that > 0 is given. Then there exists a positive integer M such that
g < Xm < g+ ¢ otherwise,

(©)]
Becausexn}o 4 is , the transitivity of less than or equal to yields
()
that, foralln> M, g < X, < g+¢. Hence,n> M = |x, — g| < &. Sinces > 0
was arbitrary, we conclude that .

©)

*** Acceptable responses are: (1) it isbounded, (2) g < X, (3) g + ¢ would be a
lower bound that is greater than g, (4) decreasing, and (5) nIi%m Xp = g.***

4.3.1 Upper and Lower Bounds

Our next definition expands the limit notation to describe sequences that are tending
to infinity or negative infinity.

Definition 4.3.16 Let{xn},Z, be a sequence of real numbers. Then
(@) X, » ocoasn— o ifand only if
(VK) (K eRl= @M)(M € JA (M) (N > M = X, > K)))
and
(b) Xy > —oo as n— oo if and only if

(VK) (K eR'= @M)(M e JA(WN) (N > M = X, < K))).

In the first case, we writelim X, = oo and in the second case we write
n—oo

||m Xp = —OQ.
n—oo
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Definition 4.3.17 For {xy}2, be a sequence of real numbers, let E denote the set
of all subsequential limits in the extended real number system (this meansthat
and/or —oo are included if needed). Then thienit superior of {x,};2; is X* =

sup (E) and thelimit inferior of {x,}2 ; is X, = inf (E).

We will use limsupx, to denote the limit superior and liminfx, to denote the
n— o0 n—oo

limit inferior of {Xn}72 ;.

1 .
Example 4.3.18 Foreachne J, letg, = 1+ (-1)" + o Then thdimsupa, = 2
n—
andliminfa, = 0. =
n—oo

Excursion 4.3.19 Find the limit superior and the limit inferior for each of the fol-
lowing sequences.

L {Sn _n+ (—1):l (2n + 1) }OO

n=1
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dfm=—g+[al o)

***For (1), we have two convergent subsequences to consider; s;n — 3 while
Sn-1 — —1 and you should have concluded that limsups, = 3 and I|m|nfsn =

n— oo

—1. Inworking on (2), you should have gotten 5 subsequential limits: sqx — —1,

{sak+1} and {sak+3} givetwo subsequential limits, 1+ Q forkevenand 1— Q for

k odd; {ssk+2} aso gives two subsequential limits, —2 for k odd and O for k even.
Comparison of the 5 subsequential limits leads to the conclusion that lim sups, =

n—oo

2
1+ £ and Ilmlnfsn = —2. The sequence given in (3) leads to three subsequen-
tial limits, namely, 01,, and 2 which leads to the conclusion that Ilmsup: 2

and Ian infs, = 0. Finally, for (4), the subsequencésix}, {Sak+1} , {s4k+2}, and
. 1 3 . . 3

{sak+3} give limits of L, ——, =, and—-, respectively hence, limsug, = = and
4’2 4 n— o0 2

o 3
liminfs, = —=.***
n— 0o 4

Theorem 4.3.20 Let {s\};2; be a sequence of real numbers and E be the set of
(finite) subsequential limits of the sequence plus possibly +oo0 and —oco. Then

(@ limsups, € E, and

n— oo

(b) (¥vx) ((x > Iimsupsn) S>EM)h>M= s < x)).

n—oo

Moreover, lim sup s, isthe only real number that has these two properties.
n—oo

Excursion 4.3.21 Fill in what is missing in order to complete the following proof
of the theorem.
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Proof. For the sequence of real numbdis ). ;, let E denote the set of sub-
sequential limits of the sequence, adjoinigo and/or—oo if needed, and’s=

limsup s,.
n—oo

Proof of part (a): If s = oo, then E is unbounded. Thi{is} 2 ; is not bounded

above and we conclude that there is a subsequéagd,_, of {sa}72, such that

lim sy, = oc.
k%m . - . . . .
If s* = —oo, then{s,};2; has nofinite subsequential limits.e., —oo is

the only element of E. It follows thdtm s, = —o0.
n—oo

Suppose that'se R. Then E is bounded above and contains at least one
element. By CN Theorem 4.1.20, the set E is . It follows from CN
@
Theorem thats =sup(E) e E = E.
@

Proof of part (b): Suppose that there exist&XR such that x> s* and § > X
for infinitely many natural numbers n. Then there exists a subsequensg {3f;
that converges to some real number y such that . From the trian-

(©)
gular inequality, y> s*. Buty € E and y > s* contradicts the dénition of
. It follows that, for any x> s* there are at mosfnitely many ne J

4)
for which . Hence, for any x> s* there exists a positive integer M
()
such that n> M implies that § < Xx.

Proof of uniqueness. Suppose that p and q are distinct real numbers that satisfy
property (b). Then

"X)(X>p =M (h> M = 5, < X))
and
X)) (Xx>q)= EK)(n> K = 5 <X)).

Without loss of generality we can assume thakpg. Then there exist® € R
such that p< w < g. Sincew > p there exists Me J such that n> M implies
that §, < w. In particular, at mosfinitely many of thessatisfy

©)
Therefore, g cannot be the limit of any subsequends@f ; from which it follows
thatqg ¢ E; i.e., q does not satisfy property (ai
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*** Acceptable responses are: (1) closed, (2) 3.3.26, (3) y > X, (4) supE, (5)
S > X,and (6) q > s > w.***

Remark 4.3.22 Notethat, if {s,}o2 ; iSa convergent sequence of real numbers, say
lims, = s, then the set of subsequential limitsisjust {Sp} and it follows that

limsup s, = liminf s,.
n— oo n—o0

Theorem 4.3.23 If {s3};2; and {ty} 2, are sequences of real numbers and there
existsa positiveinteger M such that n > M impliesthat s, < tp, then

liminf s, < liminft, and limsups, < limsupty.
n—oo n—oo n— o0 n— o0

Excursion 4.3.24 Offer a well presented justification for Theorem 4.3.23.

4.4 Some Special Sequences

This section offers some limits for sequences with which you should become famil-
iar. Space is provided so that you ddhin the proofs. If you get stuck, proofs can
be found on page 58 of our text.

. .1
Lemma4.4.1 For any fixed positive real number, nI|m — =0.

—oonP
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1\ /P
Proof. Fore > 0,letM = M (¢) = (—) .
&

Lemma4.4.2 For anyfixed complex number x such that < 1, nIim x"=0.
—00

Proof. If x = 0, then X" = 0 for eachn € J and nIi)m x" = 0. Suppose that x is
afixed complex number suchthat O < |X| < 1. Fore > O, let

1 , fore>1

M=M= Pn(a)" fore <1 .

In|x|

|
The following theorem makes use of the Squeeze Principle and the Binomial
Theorem. The specia case of the latter that we will use is that, for n € J and
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CER {_1}!
N T\ n\ _ n!
3+ _Zk:o (k)é ’Where(k)_(n—k)!k!'

In particular, if ¢ > Owe havethat (14 )" > 1+ ng and (1+ )" > ()¢* for
eachk,1 <k <n.

Theorem4.43 (a) If p> 0, then nILngOQ/_p =1

(b) Wehavethat lim J/n = 1.
n— oo

a

n
If Oanda € R, then lim ——— =0.
(c) fp>0anda e anTO(1+p)n

Proof of (a). We need prove the statement only for the case of p > 1; theresult
1
for 0 < p < 1will follow by substituting _p in the proof of the other case. If p > 1,
then set x, = 3/p — 1. Then x, > 0 and from the Binomial Theorem,

1+an S (1+Xn)n= p

and

0<Xy<

(]
Proof of (b). Let x, = J/n— 1. Then x, > 0 and, from the Binomial Theorem,

nn— 1)X2

n=(l+Xn)n2 2 n-
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|
Proof of (c). Let k be apositive integer such that k > a. For n > 2k,
no (M _N—=H(—1---(n—k+1) , np
(d+p7> (k)p = K P™=
and
na
T

|

45 Seriesof Complex Numbers

For our discussion of series, we will make a dlight shift is subscripting; namely, it
will turn out to be more convenient for us to have our initial subscript be 0 instead
of 1. Given any sequence of complex numbers {ax} " ,, we can associate (or derive)
arelated sequence {&}72, where §, = > ko & called the sequence of nth partial
sums. The associated sequence allows us to give precise mathematical meaning to
theidea of “finding an ifinite sum.”

Definition 4.5.1 Given a sequence of complex numbers {ax}°, thesymbol >"}° ; ax
iscalled an infinite series or simply a series. The symbol is intended to suggest an
Infinite summation

Qptaytatagt---

and each a, iscalled aterminthe series. For eachn € JU {0}, let §, = Zﬂzoak =
ag+ a1 + - - -+ an. Then {§};2, is called the sequence of nth partial sums for

D ko &-
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On the surface, the idea of adding an infinite number of numbers has no real
meaning which is why the series has been defined just as a symbol. We use the
associated sequence of nth partial sums to create an interpretation for the symbol
that istied to a mathematical operation that iswell defined.

Definition 4.5.2 Aninfinite series >, ak is said to be convergent to the complex
number Sif and only if the sequence of nth partial sums {S,},2, is convergent to
S when this occurs, we write > 2 yax = S. If {S}72, does not converge, we say
that the seriesis divergent.

Remark 4.5.3 Theway that convergence of seriesis defined, makesit clear that we
really aren't being given a brand new concept. In fact, given any sequéBgg”
there exists a sequenéax},”, such that § = Zﬂzlak for every ke JU{0}: To
see this, simply choosg &= S and & = S — S-1 for k > 1. We will treat
sequences and series as separate ideas because it is convenient and useful to do so.

The remark leads usimmediately to the observation that for a seriesto converge
it is necessary that the terms go to zero.

Lemma4.5.4 (kth term test) If the seriesy .~ ,ax converges, thegim a = 0.
—00

Proof. Supposethat > gax = S. Then lim S = Sand lim Sc—; = S.
k— oo k— oo
Hence, by Theorem 4.3.2(a),

limay = lim (& — S&-1) = lim& - lim&-1=S-S=0.
k— o0 k— o0 k— 00 k— o0

Remark 4.5.5 To see that the converse is not true, note that the harmonic series
[o.]
k=1

Is divergent which is a consequence of the following excursion.

Xl
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Excursion 4.5.6 Use the Principle of Mathematical Induction to prove that, for

n
St S > 1+,

Excursion 4.5.7 Use the dgnition of convergence (divergence) to discuss the fol-
lowing series.

-7k
(@) 2 g SNy

(b) >R ke

***The first example can be claimed as divergent by inspection, because the nth
term does not go to zero. The key to proving that the second one converges is

noticing that = - i in fact, the given problem is an example of
g kk+1) k k+1 (e givenp P

what is known as a telescoping sum.***
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The following set of lemmas are just reformulations of results that we proved
for sequences.

Lemma 4.5.8 (Cauchy Criteriafor Series Convergence) The series (of complex
numbers) > ; a isconvergent if and only if for every ¢ > 0 there existsa positive
integer M = M (¢) such that (Ym) (Vn) (m,n > M = |Sy — S| < €).

Proof. The lemma holds because the complex sequence of nth partial sums
{SIhe isconvergent if and only if it is Cauchy. This equivalence follows from the
combination of Theorem 4.2.9 and Theorem 4.3.6(b). m

Remark 4.5.9 Wewill frequently make use of the following alter native formulation
for the sequence of nth partial sums being Cauchy. Namely, {$};2, is Cauchy if
and only if for every ¢ > 0, there exists a positive integer M such that n > M

impliesthat |Shp — S| = ‘Zﬂ;ﬁ’ﬂak) <eforp=1,2, ..

Lemma4.5.10 For the series (of complex numbers) >".2 ;a, let Re ax = x¢ and
Im ax = yk. Then D> 7 ax is convergent if and only if D" 2 o xx and > . yk are
convergent (real) sequences.

Proof. For the complex series > 22 ; a,

n n n n n
&= Zak = ZXk+i ZYk =(ZXk,Zyk)-
k=0 k=0 k=0 k=0 k=0

Consequently, the result is simply a statement of Lemma 4.3.1 for the case n = 2.
|

Lemma4.5.11 Suppose that > )2 jax is a series of nonnegative real numbers.
Then > 2 ax is convergent if and only if its sequence of nth partial sums is
bounded.

Proof. Suppose that > .-, ax is a series of nonnegative real numbers. Then
{Sh}52, is amonotonically increasing sequence. Consequently, the result follows
from Theorem 4.3.14. m

Lemma4.5.12 Suppose that > .~ o ux and > o, vk are convergent to U and V,
respectively., and c isa nonzero constant. Then
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1. Zﬁio(uk +ox) =U £V and
2. > gt =cU.

Most of our preliminary discussion of series will be with series for which the
terms are positive real numbers. When not all of the terms are positive reals, we
first check for absolute convergence.

Definition 4.5.13 The seriesz‘j’io a; is said to beabsolutely convergent if and
only if 3777 laj| converges. 172, a; converges and_ 7, |aj| diverges, then
the seriesy |, a; is said to beconditionally convergent.

After the discussion of some tests for absolute convergence, we will see that

oo (=1

absolute convergence implies convergence. Also, we will justify that > =1
n=1

is

conditionally convergent.

45.1 Some (Absolute) Convergence Tests

While the definition may be fun to use, we would like other means to determine
convergence or divergence of a given series. Thisleads usto alist of tests, only a
few of which are discussed in this section.

Theorem 4.5.14 (Comparison Test) Suppose tha} -, a is a series (of complex
numbers).

(a) If there exists a positive integer M such tifak) (k > M = |ax| < ¢) for
real constants @andzzo Ck converges, theEE‘;O ax converges absolutely.

(b) If there exists a positive integer M such tifgk) (k > M = |ax| > dx > 0)
for real constants dand >}, dk diverges, therp 2, |ax| diverges.

Proof of (a). Suppose that > - ax is a series (of complex numbers), there
exists apositive integer M such that (vk) (k > M = |ak| < cx), and D"} Ck con-
verges. Folfixede > 0, there exists a positive integ&r such thain > K and
p € J implies that

n+p n+p
Ck| = Z Ck <€
k=n+1 k=n+1




4.5. SERIESOF COMPLEX NUMBERS 157

Forn > M* = max {M, K} andany p € J, it followsfrom the triangular inequality
that

n+p n+p n+p
Dlals D lal< D a<e
k=n+1 k=n+1 k=n+1

Since¢ > 0 was arhitrary, we conclude that >".2 ; ax converges. m

Proof of (b). Suppose that > 2 a is a series (of real numbers), there ex-
ists a positive integeM such that(vk) (k > M = |ak| > dx > 0), and ZEO:O dk
diverges. From Lemma 4.5.1{LZE:0 dk}?:o Is an unbounded sequence. Since

n n
Z lag| > Z dk
K=M K=M

for eachn > M, it follows that{ZEzolakl}ﬁozo is an unbounded. Therefore,
> koo lak| diverges.m

In order for the Comparison Tests to be useful, we need some series about which
convergence or divergence behavior is known. The best known (or most famous)
series is the Geometric Series.

Definition 4.5.15 For a nonzero constant a, the series 32 jark is called a geo-
metric series The number r isthe common ratio

Theorem 4.5.16 (Convergence PropertiesoftheGeorgetric Series) For a # 0,
the geometric series Y2 ar® converges to the sum T_7 whenever 0 < |r| < 1

and diverges whenever |r| > 1.

Proof. The claim will follow upon showing that, for each n € JU {0},

n s]
Zark:—a(1 ™)
= 1-—r
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|
The proof of the next result makes use of the “regrouping” process that was
applied to our study of the harmonic series.

Theorem 4.5.17 If {a; }(J?O:0 isa monotonically decreasing sequence of nonnegative
real numbers, then the series 3°5%a; is convergent if and only if 3222 ay
converges.

Excursion 4.5.18 Fill in the two blanksin order to complete the following proof of
Theorem4.5.17.

[0.9]

Proof. Suppose tha{aj }J_0 is a monotonically decreasing sequence of non-
negative real numbers. For eatjk € JU {0}, let

n k
S = Zaj and Tq= szazj.
j=0 j=0
Note that, becauséaj }(J.X’:0 is a monotonically decreasing sequence, for any
Ju {0} andm € J,
(m+1Daj >aj+aj1+---+a4m = (M+1)ajm,

while {aj }Cj";o a sequence of nonnegative real numbers yields &aand{Ty} are
monotonically decreasing sequences. frer 2K,

S<atar+(@+a)+(@s+as+as+ay)+---+ (ax+ -+ ayyg)

21 terms 22 terms K terms
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from which it follows that

@)

Forn > 2%,

S>at+atat(@t+a)+ @ +a+ar+ag) -+ (g + oo+ axn)

21 terms 22 terms k-1 terms

from which it follows that

@

The result now follows because we have that {S,} and {Tx} are smultaneoudy
bounded or unbounded. =

***For (1), the grouping indicated leadsto S, < aj+ag+2ap+4a4+- - - +2Kax =
a; + Tk, while the second regrouping yieldsthat S, > ap + a1 + ap + 2a4 + 4ag +

1 1
o+ 2 lan = S8+ a1 + ST

As an immediate application of this theorem, we obtain a family of real series
for which convergence and divergence can be claimed by inspection.

. . . 1
Theorem 4.5.19 (Conver gence Properties of p-series) The series > 2 ; =5 con-
verges whenever p 1and diverges whenever p 1.

Proof. If p < O, the p—series diverges by the kth term test. If p > 0, then

nP

o
[an = —] is a monotonically decreasing sequence of nonnegative real num-
=1
bers. Note ?hat

izjazj ZZJ
j=0
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Now use your knowledge of the geometric series to finish the discussion.

|
A similar argument yields the following result with is offered without proof. It
is discussed on page 63 of our text.

. 1 .
Lemma4.5.20 The serlesz(j’i2 W converges whenever:p 1and diverges
whenever p< 1.

Excursion 4.5.21 Discuss the convergence (or divergence) of each of the follow-
ing.

>
(@) >
“—=n +1

® >
n=1

n—1
© Z2n—|—1

n=1
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i >
(d)
n:1n2 +3n—-1

***Notice that al of the series given in this excursion are over the positive reals;

thus, checking for absolute convergence is the same as checking for convergence.

At this point, we only the nt" term test, Comparison, recognition as a p-series, or
rearrangement in order to identify the given as a geometric series. For (a), noticing

n L

that, for eacm e J, > = allows us to claim divergence
. il ooni+n  n+l Y

by comparison with the “shifted” harmonic series. The series given in (b) is con-

. . h—1 1 . .
vergent as g-series forp = 3. Because Im§r1 =3 # 0 the series given

in (c) diverges by the" term test. Finally, sincerB— 1 > 0 for eachn € J,
3

—————— < — which allows us to claim convergence of the series given in
n+3n—1 ~ n2

e}
. . 3 .. . :
(d) by comparison WItI’EF which is convergent as a constant multiple times the
p-series withp = 2.*** -

When trying to make use of the Comparison Test, it is a frequent occurrence
that we know the nature of the series with which to make to comparison almost by
inspection though the exact form of a bénml comparison series requires some
creative algebraic manipulation. In the last excursion, part (a) was a mild exam-
ple of this phenomenon. A quick comparison of the degrees of the rational func-
tions that form the term suggest divergence by association with the harmonic se-

. n .
ries, but when we see th%{m P - we have tofind some way to manipulate

the expressior?]T1 more creatively. | chose to illustrate the “throwing more in
the denominator” argumends an alternative, note that for any natural numier

1
5 > — which would have jusfied divergence

n n

by comparison with a constant multiple of the harmonic series. We have a nice vari-
ation of the comparison test that can enable us to bypass the need for the algebraic
manipulations. We state here and leave its proof as exercise.

n>1=2n°>n’+1=

Theorem 4.5.22 (Limit Comparison Test) Supposethat {an}>, and {bn}o2, are
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such that @ > 0, b, > 0 for each ne Ju {0}, and I|m t;ﬁ = L > 0. Then either

n
o0

Zan and an both converge or both diverge.

n=1 n=1

We have two more important and well known tests to consider at this point.

Theorem 4.5.23 (Ratio Test) The seriesy - ax

(i) converges absolutely ifmsup
k— 00

(if) diverges if there exists a nonnegative integer M such thatl implies that
‘ak+1
—| =1

‘% “1

Proof. Suppose that the series >\ ax is such that Ilmsup <1 It
follows that we can find a positive real number 8 such that ﬂ < 1 and there exists

an M e J suchthat n > M implies that B+l

‘ Ak+1

< f. It can be shown by induction

that, for each p e Jandn > M, |anyp| < AP |aql. Inparticular, forn > M +1and

p e JU{O}, |antp| < BPlam1l. Now, theserieleaMHlﬂp is convergent as

b1
e}
a geometric series with ratio lessthan one. Hence, > aj = > awp is abso-
ji=M+1 p=1

lutely convergent by comparison from which it follows ti8f- , ax is absolutely
convergent.

Suppose that the seri€s,,ak is such that there exists a nonnegative

A+1

integerM for whichk > M implies that ——| > 1. Briefly justify that this yields

divergence as a consequence ofriHeterm test.
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Remark 4.5.24 Notethat I|m

Ak+1 . .
‘ 12| = 1leadsto no conclusiveinformation con-

cerning the convergence or dlvergenceEIio ax.

Example 4.5.25 Use the Ratio Test to discuss the convergence of each of the fol-
lowing:

1
1 nZi(n g

1 1
For a, = rll), % = m(n—l)!' == - 0as n— oo. Hence,
limsup |——= Bt _ lim Btl < 1 and we conclude that the series is (abso-
k— o0 k—>°° ak

lutely) convergent from the ratio test.

oon2
2. =
il
2 2 on 2
n a1 (n+1)“ 2 1 1 1
Leta, = —. Then —— =| = =(1+-) —> = as
h = iz T 2\tty 2
1
n — oo. Thusllmsup Sl lim Bt _ 2 < 1 and we conclude

k%oo ak 2

%
that the given series is (absolutely) convergent.

Theorem 4.5.26 (Root Test) For "2 a, leta = limsup¥/Tax],

k— oo
(i) if 0 < a <1, then 2 ak converges absolutely
(i) if & > 1, then> 2, a diverges and

(i) if @ = 1, then no information concerning the convergence or divergence of
> koo can be claimed.

Proof. For > 2y ak, let a = limsup/Tak]. If a < 1, there exists areal number

k— o0
p suchthat « < f < 1. Because a is a supremum of subsequential limits and

a < f < 1, by Theorem 4.3.20, there exists a positive integer M suchthatn > M
o0

impliesthat J/]an| < B;i.e., |an| < " foraln > M. Since Z Bl isconvergent
j=M+1
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m+1
as a geometric series (that sumsto n), we conclude that 3", |ak| converges;

that is, > o a converges absol utely.
Briefly justify that o > 1 leadsto divergence of >"~ ; ax as aconsequence
of the nth term test.

Finaly, since a = limsup¥Jak] = 1 for the p-series, we see that no

k— oo
conclusion can be drawn concerning the convergence of divergence of the given
series.
|

Example 4.5.27 Usethe Root Test, to establish the convergence of Zzn T

From Theorem 4.4.3(a) and (b), nIl_)m v/2n = 1. Hence,

1
limsu = Ilm 2 = lim ==-<1
k%o'“v k= 1' o\ 2k ks 00 2 2~

from which we claim (absolute) convergence of the given series.

Thus far our examples of applications of the Ratio and Root test have led us
to exam sequences for which lim s}.%il Bt or limsup¥jax| =

k— o0 k— oo
I(Iim Ylak|. This relates back to the form of the tests that you should have seen with
—00

your first exposure to series tests, probably in frosh (or AP) calculus. Of course, the
point of offering the more general statements of the tests is to allow us to study the
absolute convergence of series for which appeal to the limit superior is necessary.
The next two excursion are in the vethe parts that are described seek to help you

to develop more comfort with the objects that are examined in order to make use of
the Ratio and Root tests.

= |lim
k— 00
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Excursion 45.28 For n € JU {0}, letaj = |

aj+1

1. Find thefirst four termsof{ ~
j

}OO
j=0

(e.¢]

2. Find the first four terms of {\J/m }

j=1

. N a
3. Find E; the set of subsequential limits of [ a2

]OO
j=0

a;

4. Find E, the set of subsequential limits of {,J/|aj |}oo .
]:

5. Find each of the following:

}OO
j=0

aj+1

|

(@ limsup {

j—> o0
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}OO
j=0

(c) limsup {M}il

j—> oo

(b) liminf { 41

]—>0o0

a;

o e ({1,

[0.9]
6. Discuss the convergence Df a;
=0

2 1
***For(l),wearelookingat[— > 16 1% -']While(Z)is

5°4°125° 32°

2 V2 2 2 aj+1 . .
{5, S5 T = I then the possible subsequential
limits are given by looking at {cz; } and {c2j—1} and E1 = {0, co}; if in (4) welet

J
fzz}

ot for (3), if ¢j =

2

di = M then consideration of {dy;} and {dyj_1} leadsto E; = [7 5

V2

2
For (3) and (4), we conclude that the requested values are oo, 0, - and c re-

spectively. For the discussion of (6), note that The Ratio Test yields no information
because neither (a) nor (b) is sétst in the other hand, from (5c), we see that

. 00 V2
limsu {"/ ai } = — < 1, from which we conclude that the given series
j—)oop } J | j=1 2 g

is absolutely convergent. (As an aside, examinatiofSgf} and {S,—1} corre-
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[0.9]
sponding to Zaj even allows us to conclude that the sum of the given seriesis
j=0
4 + 10 134168
142 21 105

)***

f j+1
(g) it ]
=
(g) L if24]
[ee]
|

Excursion 45.29 For n € JU {0}, letaj = {

aj+1

1. Find thefirst four termsof[ 1
j

2. Find the first four terms of {\/m}OO

j=1

. . .. a;j
3. Find E; the set of subsequential limits of [ g+

]OO
j=0

a;

oo

4. Find E, the set of subsequential limits of {,J’/|aj|}. .
j=

5. Find each of the following:
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}—
j=0
]—

j=0

(c) limsup {M}il

j—> o0

aj+1

|

(@) limsup {

j—> oo

aj+1

(b) liminf [

j—00

J

o (],

[0.9]
6. Discuss the convergence Df a;
=

3 2°\3

2\¥2 2 [2 (2\?® & (2\Y* 4,2 ' 34
<2)[1’(§) :é\[é’(é) =i5(5) =3 §""}’(3)E1:[§’§]'

2 _ o (o
(4) E; = [51 where this comes from separate consideration of lim { I |ag; }}

]—>00

2\° 2\°
***Response thistime are: (1)[2, (—) § (_) ]

. 342 2
and lim { 2121/|a2j_1|}, (5) the values are >33 and 3 respectively. Finaly,

J]—>00

the Ratio Test failsto offer information concerning convergence, however, the Root
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[0.9]
Test yields that Zaj is absolutely convergent. (Again, if we choose to go back to
j=1
the definition, examination of the nth partial sums allows us to conclude that the
series convergesto 3.)***

Remark 4.5.30 Note that, if limsup
k— 00
test yields no information concerning the convergence of the series.

‘ A+1
a

> 1 for a series > -y ak, the ratio

4.5.2 Absolute Convergence and Cauchy Products

When the terms in the generating sequence for aseries are not all nonnegative reals,
we pursue the possibility of different forms of convergence.

The next result tells us that absolute convergence is a stronger condition than
convergence

Lemma4.5.31 If {a; }T‘;l is a sequence of complex numbers and >°72; |a;j| con-
verges, therp 72 5 aj converges ant> aj‘ < 220 lajls
Proof. (if weweretorestrict ourselvesto real series) The following argument

that isavery dlight variation of the one offered by the author of our text applies only
to series over thereals; it isfollowed by a general argument that appliesto series of

complex terms. Suppose {aj }T‘;l Isasequence of real numbers such that Zj-";l |aj|
converges and define

vj = lajl% andwj = lale_aJ
Thenovj —w; = aj whilevj + wj = |a;|. Furthermore,
a; > Oimpliesthat vj =a; =[ajland wj =0
while
aj < Oimpliesthat v; =0and wj = —aj = |aj|.

Consequently, 0 < vp < |an| and 0 < up < |ap| and, from the Comparison Test, it
followsthat 3752 5 vj and 3772, wj cornverge. By Lemma4.5.12, 375, (vj — wj)
converges. Finally, since

— (vj +wj) < (vj —wj) < (vj +wj),
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we see that

—i(v]‘—i—wj) Si(vj —U)j) Si(vj-i-wj);

=1 =1 =1

e, — 22 Jaj| < 2528 < 2552, |aj|. HenceO < ‘Z?O:]_aj) <> laj| =
The following proof of the lemmain general makes use of the Cauchy Criteria
for Convergence.
Proof. Suppose that {aj}}’ozl is a sequence of complex numbers such that
Zj-";l |aj| converges and ¢ > O is given. Then there exists a positive integer M =
M (&) such that (vm) (Yn) (m,n > M = |Sn — S| < €) where Sy = > [aj].

In particular, forany pe Jandn > M, 37°F | Jaj| = )ZT:EH E! |) < . From
the triangular inequality, it follows that ‘er‘:,ﬁ’ﬂ aj) < Y0P 1 1ajl < & for any

peJandn > M. Sincee > 0wasarbitrary, we conclude that Z?‘;l aj converges
by the Cauchy Criteriafor Convergence. m

Remark 4.5.32 A re-read of the comparison, root and ratio tests reveals that they
are actually tests for absolute convergence.

Absolute convergence offers the advantage of allowing usto treat the absolutely
convergence series much as we do finite sums. We have aready discussed the term
by term sums and multiplying by a constant. There are two kinds of product that
come to mind: The first is the one that generalizes what we do with the distributive
law (multiplying term-by-term and collecting terms), the second just multiplies the
terms with the matching subscripts.

Definition 4.5.33 (The Cauchy Product) For 3772, aj and > 2 bj, set
Kk
Ck = > _ajby_j for eachk € JU{0} .
j=0

Then >, Cx is called the Cauchy product of the given series.

Definition 4.5.34 (The Hadamard Product) For 3>'77,aj and > 2, bj, the se-
ries > 2y a;bj is called the Hadamard product of the given series.
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The convergence of two given series does not automatically lead to the conver-
gence of the Cauchy product. The example given in our text (pp 73-74) takes

(=)
aj =bj = — :
SRS
We will see in the next section thi‘j’io a; converges (conditionally). On the
1 .
other handCy = >¥_ajbi—j = (-D* X4 _, is such that

Vk=]+D(G+D

Gz Yl =kt
K> D) —= —
ikt 2 K+ 2

which does not go to zero &gyoes to itinity.
If one of the given series is absolutely convergent and the other is convergent
we have better news to report.

Theorem 4.5.35 (Mertens Theorem) For > 72, a; and 372, by, if (i) 27203,
converges absolutely, (i) >-720a; = A, and > {2ob; = B, then the Cauchy
product of > 725 a;j and 372, b is convergent to AB.

Proof. For Z?‘;O a; and Zj-";o bj, let {An} and {Bn} be the respective se-
guences ohth partial sums. Then

n k
Cn = Z(Z aj bn—j) = a-ObO + (aobl + albO) +---+ (aobn + albn—l e anbo)
k=0 \j=0
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which can be rearranged—using commutativity, associativity and the distributive
laws—to

ao(bo+ by +---+bn)+a1(o+br+---+bn1)+ -+ anbo.
Thus,
Ch=aoBn+aBn-1+ - +an-1B1+ anBo.
Sincez‘j’i0 bj = B, for fn = B — B, we have tha}]JiOrL]Bn = 0. Substitution in

def
the previous equation yields that

Ch=2a0(B+fn)+a1(B+ fn-1) +---+an—1(B+ p1) +an (B + fo)
which simplfies to

Ch=AB+ (agfn+a1fn—1+ -+ an—11+ anpo) .
Let

Yn=aofn+afn-1+---+an_1f1+ anfo
Because limA, = A, we will be done if we can show that lipy, = 0. In view
n—oo n—oo

of the absolute convergence Bf;; a;, we can sed 72, |laj| = a.

Suppose that > 0 is given. From the convergence {¢,}, there exists a
positive integeiM such thain > M implies that|$,| < ¢. Forn > M, it follows
that

I7nl = la0fn +@1fn-1+ -+ @8-m-1fM+1+ 8-mfm + - - + @151 + anfol
From the convergence ¢} andy {2, |a; |, we have that

lagfn + @1fn-1+ - + @8n-m-18m+1l < ea
while M being afixed number andy — 0 ask — oo yields that

lan—mpBm + - - + an—1f1 + anfol — 0 asn — oo.

Hence,|yn| =

|a0fn + a1fn-1+ - - + @8—m-18M+1 + @8-mpPM + - - - + @11 + @ fol implies
that limsupyn| < ca. Sincee > 0 was arbitrary, it follows tharLIimlynl =0as
(0.0)

n—oo
needed.m

The last theorem in this section asserts that if the Cauchy product of two given
convergent series is known to converge and its limit must be the product of the
limits of the given series.
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Theorem 4.5.36 If the series 372 g aj, 272 bj, and > 52 ¢j are known to con-
verge, >.7208) = A, 2j1obj = B, and >{7,¢; is the Cauchy product of
D i<0@j and> 2y bj, thend 724 cj = AB.

4.5.3 Hadamard Productsand Serieswith Positiveand Negative

Terms
Notice that 372, (—+3)3 can be realized as severa different Hadamard prod-
] ()
ucts lettinga; = —,bj = ——,¢c; = ————— andd; = —, gives us
T T Y TG+ = Gya2®

as the Hadamard product df;Z; a; and> 72, bj as well as the

ZjlJ(J 3)3

Hadamard product 6§ §Z, ¢ and> 72, d;. Note that only> 7, a; diverges.
The following theorem offers a useful tool for studying titd partial sums for
Hadamard products.

Theorem 4.5.37 (Summation-by-Parts) Correspondingto thesequenc&{a,}

j=0
let

n
An :Zaj forn e JU{0},and A_; = 0.
=0

Then for the sequence {bj }})O:o and nonnegative integers p and q such that 0 <
p=<q,

q
D ajbj = ZAJ i — bj+1) + Agbg — Ap-abp
i=p

Excursion 4.5.38 Fill in a proof for the claim.
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As an immediate application of this formula, we can show that the Hadamard
product of a series whose nth partial sums form a bounded sequence with a series
that is generated from a monotonically decreasing sequence of nonnegative terms
is convergent.

Theorem 4.5.39 Suppose that the serigg;”,a; and > 72, bj are such that

0 {270}

o
n=

o is a bounded sequence,

(i) {bj }(]?O:0 is a monotonically decreasing sequence of nonnegative reals, and

(i) limb; =0.
J]—>0o0
Then} 2, a;bj is convergent.

Proof. Foreachn € J, let Ay = Z?zo aj. Then there exists a positive integer
M such that |An| < M for all n. Supposethat ¢ > 0 is given. Because {bj}]—)ozo is
monotonically decreasing to zero, there exists a positive integer K for which bk <

£ Us ng summation-by-parts, for any integerg andq satisfyingK < q < p, it
follows that .
Z0_paby| = |25 A (b = bji1) + Agby — Ap-by|
-1
3575 A (b —bsa)| + | Aqba| + [Ap-1by|

< X975 IAj] (b —bj41) + | Aq bg + |Ap-1| bp
= M (Z?;% (bj —bj41) +bg + bp)

= M ((bp—bg) +bg+by) = 2Mby

< 2Mbk < ¢

(6.¢]
Sincee > 0 was arbitrary, we conclude th%@?zo a; bj} o is a Cauchy
n=
sequence of complex numbers. Therefore, it is convergent.

A nice application of this result, gives us an “easy to check” criteria for con-
vergence of series that are generated by sequences with alternating positive and
negative terms.

Theorem 4.5.40 (Alternating Series Test) Suppose that the sequence {u; }‘J?O=1 C
R satigfies the following conditions:
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(i) sgn (uj) = —sgn (uj41) for each j e JU {0}, where sgn denotes “the sign
of”;

(i) |uj41] < |uj| forevery | and
(i) I|m uJ =0.

Thenzj':]_Uj is convergent. Furthermore, if the sum is denoted by S, then
S < S< Sy foreach nwhergS,),2, is the sequence of nth partial sums.

The result is an immediate consequence of Theorem 4.5.39; it follows upon set-
tinga; = (—1)! andb; = |c,~ } As an illustration of how “a regrouping argument”
can get us to the conclusion, we offer the following proof for your reading pleasure.

Proof. Without loss in generality, we can taki > 0. Thenux.1 < 0 and
ux > 0fork =0,1,2,3,... Note that for eacn € JuU {0},

Sn = (Up+ U1) + (U2 + Uz) + - - - + (U2n—2 + U2n—1) + U2
which can be regrouped as
Sn =Uo+ (U1 4+ U2) + (U3 +Ug) + - - - + (Uzn—1 + U2n) .

Thefirst arrangement jusies that{ S}, is monotonically increasing while the
second yields tha®, < ug for eachn. By Theorem 4.3.14, the sequer(@n} 2,
IS convergent. For ImSZn S, we have tha&,, < Sfor eachn.

SlnceSQn 1= Sn — U2, Sn-1 > Sp for eachn € J. On the other hand,

Snt+1 = Sn—1+ (Uzn + U2nt+1) < Sn-1.

These inequalities combined wit®, > S = uj + Uy, yield that the sequence
{Sn-1};2, is a monotonically decreasing sequence that is bounded below. Again,
by Theorem 4.3.14Sn_1} .2 ; is convergent. From (iii), we deduce tHat,_1 —
Salso. We have tha®,_1 > SbecausdSn-1}7; is decreasing. Pulling this
together, leads to the conclusion th&t} converges t& whereS < & for k odd
andS > Sc whenk is even.m

Remark 4.5.41 Combining the Alternating Series Test with Remark 4.5.5 leads to
the quick observation that the alternating harmonic series >0 | (&1 1) iscondition-
ally convergent.
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4.5.4 Discussing Convergence

When asked to discuss the convergence of a given series, there is a system that we
should keep in mind. Given the series > 72 Un:

1. Check whether or not I|m N Un = 0. If not, claim divergence by the kth term
test; if yes, proceed to the next step.

2. Check for absolute convergence by testing > 12 [un|. Since > n2  lun| isa
series having nonnegative terms, we have several tests of convergence at our
disposal—-Comparison, Limit Comparison, Ratio, and Root-in addition to the
possibility of recognizing the given series as directly related to a geometric
or a p-series. Practice with the tests leads to a better ability to discern which
test to use. I 12, |un| converges, by any of the our tests, then we conclude
that > o2, un converges absolutely and we are done) JfZ, |un| diverges
by either the Ratio Test or the Root Test, then we conclude i, un
diverges and we are done.

3. If Y02, lun| diverges by either the Comparison Test or the Limit Comparison
Test , then tesp -~ ; un for conditional convergence—using the Alternating
Series Test if it applies. If the series involves nonreal complex terms, try
checking the corresponding series of real and imaginary parts.

Excursion 4.5.42 Discuss the Convergence of each of the following:

002n1

Z

[0.9]
(=D"ninn
2 3
n=
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[o.]
(=)™
3.
nzl n+2

1

T+ on o > —1

=1

>

o cos(Na:)
5 3
n=

***The ratio test leads to the divergence of the first one. The second one is abso-

lutely convergent by the root test. The third one diverges due to failure to pass the
kth term test. The behavior of the fourth one dependa oih diverges forla| < 1

and converges fojx| > 1 from the ratio test. Finally the last one converges by
comparisort.**

455 Rearrangementsof Series

o0 1-1 o0
Given any seriesE a; and a functionf : Ju{0} — Ju ({0}, the seriesE as(j)
j=0 j=o0

oo
Is arearrangement of the original series. Given a serigaj and a rearrange-
j=0

o0
mentZaf(j), the corresponding sequencenbh partial sums may be completely

=0
differént. There is no reason to expect that they would have the same limit. The
commutative law that works so well féinite sums tells us nothing about what may
happen with ifinite series. It turns out that if the original series is absolutely con-
vergent, then all rearrangements are convergent to the same limit. In the last section
of Chapter 3 in our text, it is shown that the situation is shockingly different for
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conditionally convergent real series. We will state the result that is proved on pages
76-77 or our text.

o0
Theorem 4.5.43 Let Zaj be a real series that converges conditionally. Then for
j=0
any elements in the extended real number system such that —oo < a < f < +o0,
o0

there exists a rearrangement of the given series Zaf (j) such that
j=0

n—oo

n n
liminf >'arjy=a and  limsup D at() = 4.

o
Theorem 4.5.44 Let > a; be a series of complex numbers that converges abso-
=0

[ee)

lutely. Then every rearrangementEaj converges and each rearrangement con-
j=0

verges to the same limit.

46 Problem Set D

1. Use the definition to prove each of the following claims. Your arguments
must be well written and make use of appropriate approaches to proof.

@ lim n%+in
n—oo N2 +1

o 3n%+4i
® Jim

i 3n+2 B
© Mman—1-

. 3N+ 1+ 2ni .
@ lim Aoy
n— 0o n4+3

Il
=

NI W o

. 1+43n .
(e lim +. = =3
n—ool41in




4.6. PROBLEM SET D 179

2. Find the limits, if they exist, of the following sequences in R?. Show enough
work to justify your conclusions.

(- 1)n cosn

@ {(5-50).
3n+1 2n°+3

() {( 1 n2+2)]n:1

(=D)"n?2+5 1+3n\]~
O |(Fm )

(sinm™ 1\~
@ (552,

© {(cosnnn’ sin(nz + (7r/2))) }Oo_l

n

3. Suppose that {xn},-; converges to x in Euclidean k-space. Show thaA =
{Xn : n e J}U{x}is closed.

nzsin(ﬂ—i) +3n
4. Forj,ne ], let fj (n) = 222 1 2inT 1

sequence iR>, showing enough work to carefully justify your conclusions:

{(f2(n), f2(n), fa(n), fa(n), f5 (M)},

5. Find the limit superior and the limit inferior for each of the following se-

. Find the limit of the following

guences.
(a) ncos— >

1+cos—
(b) =y n2

=1

(c) 1 + (— 1)“cos —I—smm h
2n 4 2 |,

(d) {2( " ( ) n 3(_1)n+1]oo
n=1
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6. If {an}p2 is abounded sequence of complex numbers and {bn} 2, is a se-
guence of complex numbers that converges to 0, provenlbaa,itm =0.

IA

7. If {an}p o Is @ sequence of real numbers with the property [dyat- an41]

1
on for eachn e JU {0}, prove that{a,} >, converges.

. . . . 1
8. If {an};2, is @ monotonically increasing sequence such#fai — a, < —
for eachn e JU {0}, must{an} 2, converge? Carefully justify your response.

9. Discuss the convergence of each of the following. If the given series is con-
vergence and it is possible fad the sum, do so.

1
(@) ;ﬁ

> 1
(b) nz=1n (n+2)

1
(c) ;ﬁ

>.2n+ 3
(d) 03

n=1
o0

n

© 2 &
n=1

10. Prove the.imit Comparison Test.
Suppose thafan )2, and{bn} 2, are such thaa, > 0, b, > 0 for each

. 1 . 00 o0
n e JU(0}, and liman () ™" = L > 0. Then eltherZ:an andZ:bn both

. n=1 n=1
converge or both diverge.
: : I 1 a 3
[Hint: For suficiently largen, justify thatEL <—< EL']
n

11. Suppose tha, > 0 for eachn € JU {0}.
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(@ If D aq converges and by = ) ax, prove that > (v/bn — v/bni1)
k=n n=1

n=1
Converges.
o0 n o0
(b) If D aq divergesand S, = D ax, prove that > (vVSi1 — vS) di-
n=1 k=1 n=1
verges.

12. For each of the followingse our testsfor convergence to check for absolute
convergence and, when needed, conditional convergence.

o0 2n '3n
(a) >~
n=1

5. 4n

~ nsm(—(2n _21)”)
(b)

nz=1 n2+1

© i («/2n2 F1-2n2— 1)
n=1

4

o0 N n
(d) n221(—1) i D
0 1 —n?
(e) Z (cos(zn)) (1 + ﬁ)
1+ I)n+3
(f) Z32n+1 4n

o 52 (25)9)

- 00 a1 135(2[‘]—1)
13. Justify thad> (-1 ( 2.4.6-.-(2n)

p> 2, cond:itionally convergent for & p < 2, and divergent fop < 0.

p
) is absolutely convergent for

o
14. Let(, be the collection of ifinite sequencefx,}, 2 ; of reals such thaExﬁ
n=1
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15.

16.
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convergesand defined (X, y) = [ > (Xa — yn)? foreach x = {Xn}p2;, y =
n—1

{Yn}neq € 2. Show that ({2, d) is ametric space.

A sequence {xn}n, of realsis bounded if and only if there is a number m
such that |xa| < mfor eachn € J. Let M denote the collection of all
bounded sequences, and defined d (X, y) = sup |Xn — Ynl. Show that (M, d)

. . HEJ
IS ametric space.

Let B bethe collection of all absolutely convergent seriesand defined (x, y) =

> % — ynl. Show that (B, d) is a metric space.
n—1



Chapter 5

Functions on Metric Spaces and
Continuity

When we studied real-valued functions of a real variable in calculus, the techniques
and theory built on properties of continuity, differentiability, and integrability. All

of these concepts are fileed using the precise idea of a limit. In this chapter,

we want to look at functions on metric spaces. In particular, we want to see how
mapping metric spaces to metric spaces relates to properties of subsets of the metric
spaces.

5.1 Limitsof Functions

Recall the dénitions of limit and continuity of real-valued functions of a real vari-
able.

Definition 5.1.1 Supposethat f isareal-valued function of a real variable, p R,
and there is aninterval | containing p which, except possibly for p is in the domain
of f. Thenthelimit of f asx approaches p is L if and only if

(Ve)(e > 0= (A =0() 0> 0A(VX) O < [x— p| <d= [T (X) = L] <¢))).

In this case, we Writéi_)mpf (X) = L which is read as “the limit of f of x as x
approaches pisequalto L’

Definition 5.1.2 Suppose that f is a real-valued function of a real variable and
p € dom(f). Then f iscontinuousat p if and only if)!i_)n})f xX) = f (p).

183
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These are more or less the way limit of afunction and continuity of afunction
at a point were defined at the time of your first encounter with them. With our new
terminology, we can relax some of what goes into the definition of limit. Instead of
going for an interval (with possibly a point missing), we can specify that the point
p be alimit point of the domain of f and then insert that we are only looking at the
real numbers that are both in the domain of the function and in the open interval.
This leads usto the following variation.

Definition 5.1.3 Suppose that f isareal-valued function of a real variable,
dom(f) = A, and pe A (i.e., p is a limit point of the domain of f). Thehe
limit of f asx approaches p is L if and only if
(Ve)(e >0= (o0 =0(¢) > 0)
[(") (xe AANO < |x—p|l <d=|f(x)—L| <e)]

Example 5.1.4 Use the dgnition to prove thatlim3 (2x2 + 4x + 1) = 3L
X—

Before we offer a proof, we’'ll illustrate some “expanded "scratch work that
leads to the information needed in order to offer a proof. We want to show that,
corresponding to each > Owe canfind aé > Osuchthat0 < [x—3| < =
|(2x2 4+ 4x + 1) — 31| < &. The easiest way to do this is to come up withthat
is a function of. Note that

)(2x2+4x+1)—31‘=)2x2—|—4x—30 —2|x—3|[x+5|.

The|x — 3| is good news because it is ours to make as small as we choose. But if
we restrict|x — 3| there is a corresponding restriction dr + 5|, to take care of

this part we will put a cap on which will lead to simpler expressions. Suppose that
we place al® restriction ond of requiring thatd < 1. If 6 < 1, then0 < |x — 3| <
0<1=[x+5=|(x=3)+8 < |x—3 +8<9 Now

‘(2x2+4x+1)—31)=2|x—3||x+5| <2.5.9<¢

whenevep < 18—8 To get both bounds to be in effect we will take max {1, %}
This concludes that “expanded "scratch work.
Proof. For ¢ > 0, letd = max {1, 18—8} Then

0<|Xx—3<d<1=|x+5=|Xx-3)+8 <|x—3+8<09
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and

&
18
Snce ¢ > 0 was arbitrary, we conclude that, for every ¢ > 0, thereexistsa d =
min {1, %} > 0,suchthat0 < [x —3] <d= [(2x*+4x+1) —31| < ¢ i.e,
lim(2x>+4x+1) =31 m

Xx—3

= ¢&.

)(2x2+4x+1)—31‘:2|x—3||x+5| <2.5.9<18.

Excursion 5.1.5 Use the definition to prove that Iim1 (x2 + 5X) = 6.
X—

Space for scratch work.

A Proof.

***Eor thisone, the 6 that you definewill depend on the nature of thefirst restriction
that you placed on ¢ in order to obtain a nice upper bound on |x + 6]; if you chose
0 < lasyour first restriction, then 6 = min {1, % } would have been what worked
in the proof that was offered.***

You want to be careful not to blindly take 6 < 1 as the first restriction. For

. . . . 1
example, if you are looking at the greatest integer function as x — > you would
1.
need to make sure that 6 never exceeded > in order to stay away from the nearest
“jumps”; if you have a rational function for Whicé is a zero of the denominator

: i 1 1
and you are looking at the limit as— 7 then you couldn’t leb be as great aﬁ
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. . 1 -
S0 you might try taking 6 < G as afirst restriction. Our next example takes such a
consideration into account.

x2
+3
Example5.1.6 Usethe definition to provethat lim =
P o P x—>—12X + 1
Spoace for scratch work.

1 2¢ 1
Proof. For ¢ > 0, Ieté_mln[ } FromO < |x + 1] <5<Zr we have

4’ 25
that
1 25
|x+7|=|(x+1)+6|<|x+1|+6<Z+6:Z
and
1 1 1 1 1
2X+1=2|Xx+==2|X+1)—=|>2||IX+1] —= 21-=-)=-=.
[2x + 1] +2' (-i-)2_|+|2>(4)2
Furthermore,
25
x*+3 (4)_x2+8x+7_|x+1||x+7| 4
2x +1 S 2x+1 | |2x+1] i
2
25. 25 2¢
< —.— =c¢.
2 — 2 25

2
Snce ¢ > 0 was arbitrary, for every ¢ > Othereexistsa o = mln[4 2;]

< ¢g; that is,

. x?+3
Osuchthat 0 < |x+1] < o implies that ‘(2x+ ) (—4)

x2+3

lim =—4 n
x——12X + 1
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In Euclidean R space, the metric is realized as the absolute value of the differ-
ence. Lettingd denote this metric allows us to restate thémigon of Xllnpf X) =

L as

Ve)(e > 0= (o =d(¢) > 0)
[(") (x e AAO <d(x,p) <d=d(f(x),L) <e)]).

Of course, at this point we haven’t gained mutths form doesn’t look particu-
larly better than the one with which we started. On the other hand, it gets us nearer
to where we want to go which is to the limit of a function that is from one metric
space to another—neither of whichR$. As afirst step, let’s look at the di@ition
when the function is from an arbitrary metric space iRfo Again we letd denote
the Euclidean £metric.

Definition 5.1.7 Suppose that A is a subset of a metric space (S, ds) and that f is
a function with domain A and range contained in R; i.e,, f : A —» R%. then“f
tends to L as x tends tothrough pointsof A” if and only if

(i) pisa limit point of A, and
(i) (Ve >0)(Fo=05()>0((VX)(xe AAO <ds(X,p) <0
= d(f (x),L) <e¢)).

In this case, we write x) > Lasx— pforx e A or f(x) - L as
X = p,or

)!mef(x): L.

XeA

Example5.1.8 Let f : C — R be given by f(z) = Re(z). Prove that

lim f(z) =3.
z—z>ef?’c+|

Space for scratch work.
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For this one, we will make use of the fact that for any complex number ¢,
IRe () < I

Proof. Fore > 0,letd =¢. Then0 < |z— (3+1)| < 0 = ¢ impliesthat
|f (2 —3=IRe(z) -3| =|Re(z— B+i))| < [z—B+i)| <e.

Sncee¢ > 0wasarbitrary, we conclude that Iign. f2g=3. m
Z— 3+
zeC

Remark 5.1.9 Notice that, in the definition of )!l_)mp f(xX) = L, thereis neither a

XeA

requirement that f be defined at p nor an expectation that p be an element of A.
Also, whileit isn't indicated, thes > 0 that is sought may be dependent on p.

Finally we want to make the transition to functions from one arbitrary metric
space to another.

Definition 5.1.10 Suppose that A is a subset of a metric spé8eals) and that f
Is a function with domain A and range contained in a metric sp@cedx); i.e.,
f: A— X. Then“f tends to L as x tends totprough pointsof A” if and only
if

() pisalimitpoint of A, and
(i) Ve>0)(Fo=0()>0)((WW)(xe AAO<ds(X,p) <o

= dx (f (X),L) <¢)).

In this case, we write x) > Lasx— pforx e A or f(x) - L as
X = p, or

)!l_)mpf(x): L.

XeA
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Example5.1.11 For p e RY, let f(p) = 2p+ 1, p?). Then f : R — R? Use
the definition of limit to from that Iimlf (p) = (3, 1) with respect to the Euclidean
P—

metrics on each space.
Spoace for scratch work.

&
Proof. For ¢ > 0,let6 = miny1,— . Then0 < dr (p,1) = [p—1] <
¢ [ m] R (P D) = Ip—1

0 < limpliesthat

P+l =l(pP-D+2/<|p-1+2<3

JA+(p+1)7? < Va+9=+13

Hence for 0 < dr (p,1) =|p—1| <9,

and

dpe (£ (p). (3,1)) = /(@p + 1) — 32 + (p2 — 1)?

=|p—1]y/4+ (p+1? <d-V13 <.

Sncee > 0wasarbitrary, we conclude that Iim1(2p +1,p)=@3B,1). =
| g

Remark 5.1.12 With few exceptions our limit theoremsfor functions of real-valued
functions of a real variable that involved basic combinations of functions have di-
rect, straightforward analogs to functions on an arbitrary metric spaces. Things
can get more difcult when we try for generalizations of results that involved com-
paring function values. For the next couple of excursions, you are just being asked
to practice translating results from one setting to our new one.

Excursion 5.1.13 Let A be a subset of a metric space S and suppose tha# +
R is given. If

f—>Lasp—> pinAand f— Masp— ppin A
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provethat L = M. After reading the following proof for the case of real-valued
functions of a real variable, use the space provided to write a proof for the new
setting.

Proof. We want to provethat, if f - Lasx - aand f - M asx — a, then
L=M.ForL # M,lete = % - |L — M|. By the definition of limit, there exists
positive numbers 1 and dp such that 0 < |[x — a| < 1 implies|[f(X) — L| < €
and 0 < |x —a|] < J2 implies |f(x) — M| < €. Choose Xxg € R such that
0 < |Xo —al < min{dy,d2}. Then|L — M| < |[L — f(X0)| + |M — f(X0)| < 2¢
which contradicts the trichotomy law. =

Excursion 5.1.14 Let f and g be real-valued functions with domain A, a subset of
ametric s : i = i =
pac€s, d). If pIL)ngo f(p) =L and pll)ngog(p) M, then
peA peA

lim (f = .
lim (f +g)(p) =L +M

peA

After reading the following proof for the case of real-valued functions of a real

variable, use the space provided to write a proof for the new setting.

Proof. We want to show that, if )li_r)r;lf(x) = L and )I(i_r)r;lg(x) = M, then
)li_rg(f +9)(X) = L+M. Let € > 0begiven. Then there exists positive numbers d;

and g2 suchthat O < |[x —a| < d1implies|f(X) —L| <e/2and0 < |[x —a| < d»
implies |g(X) — M| < €/2. For 6 = min{d1, d2}, 0 < |x — a| < J implies that
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I(F+9) —(L+M) < [f(X)—LI+[g(X) —M| <€. m

Theorem 4.1.17 gave us a characterization of limit points in terms of limits of
sequences. This leads nicely to a characterization of limits of functions in terms of
behavior on convergent sequences.

Theorem 5.1.15 (Sequences Char acterization for Limits of Functions) Suppose
that (X, dx) and (Y, dy) aremetric spaces, E ¢ X, f : E — Y and pisalimit
point of E. Then )!i_)n})f(x) =qifand only if

XeE

(v{pn})[({pn} CEAMN)(Pn# P) A IIM pp = p) = lim (pn) =q]-

Excursion 5.1.16 Fill in what is missing in order to complete the following proof
of the theorem.

Proof. Let X, Y, E, f, and p be as described in the introduction to Theorem
5.1.15. Suppose that )!i_)mpf (X) = g. Since p is alimit point of E, by Theorem
xeE
, there exists a sequence {pn} of elementsin E such that p, # p for all
@
neJ,and .Fore > 0, becausexli_)mpf(x) = q, there

(2) xeE
existso > Osuchthat 0 < dx (X, p) < 6 and x € E implies that

(©)
From nIi)m pn = p and p, % p, we aso know that there exists a positive integer M
(0.9]

such that n > M implies that . Thus, it follows that
()
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dy (f (pn),Qq) < e fordln > M. Sincee > 0 was arbitrary, we conclude that
nIi)m f (pn) = g. Finally, because {p,} C E was arbitrary, we have that

(V{pn}) [( ):>nli)ngof(pn):q]
()

We will give a proof by contrapositive of the converse. Suppose that )!l_)mp f(X) # Q.

xeE

Then there exists a positive real number ¢ such that corresponding to each posi-
tive real numbew there is a pointxs € E for which 0 < dx (x5, p) < ¢ and

dy (f (X5),Q) > €. In particular, for each € J, corresponding teﬁ there is a point

pn € E such that anddy (f (pn),Q) > &. Hence,n_ljmf(pn) #qQ.
o0
(6)
Thus, there exists a sequer{g®} c E such thatn_l>impn = pand ;
o0
(N

i.e.,
@{pa) [ ({pa} € EA (V1) (pn # P) A Jim pn=p) A lim £ (pn) # ]

which is equivalent to

~ (% {p}) | ({Pn} € EA () (pu # P) A Jim pn=p) = lim f(pn) =aq.

Therefore, we have shown th):';\_t) ICI)il‘r(x) # q implies that

xeE

~ (% {p}) | ({Pn} € EA () (pu # P) A Jim pn=p) = lim f(pn) =aq].

Since the Is logically equivalent to
(8

the converse, this concludes the promsf.

*** Acceptable responses are: (1) 4.1.17r,](_2>?>O b= p, ) dy (f X),Qq) < ¢,

(4) 0 < dx(pn, P) < d, (5) {Pn} € EA(YN)(pn# P) A lim pr = p, (6)

0 <dx(pn, p) < } (7) lim f(pn) # q, (8) contrapositive **
n n— oo

The following result is an immediate consequence of the theorem and Lemma
4.1.7.
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Corollary 5.1.17 Limits of functions on metric spaces are unique.

Remark 5.1.18 In view of Theorem 5.1.15, functions from metric spaces into sub-

sets of the complex numbers will satisfy the “limits of combinations” properties of
sequences of complex numbers that were given in Theorem 4.3.2. For completeness,
we state it as a separate theorem.

Theorem 5.1.19 Suppose thatX, dx) is a metric space, k- X, p is a limit point
of E,f:E— C,g: E— C, limf(x) = A,andlimg(x) = B. Then
X—=>p X—=p
xeE xeE
(@) Jim(f+9)(x)=A+B
xeE

(b) Jim (fg) () = AB

xeE

f A
c) lim—(x) = — whenever 0.
()X;Epg(x) g Whenever B#
While these statements are an immediate consequence of Theorem 4.3.2 and
Theorem 5.1.15 completing the following excursions can help you to learn the ap-

proaches to proof. Each proof offered is independent of Theorems 4.3.2 and Theo-
rem 5.1.15.

Excursion 5.1.20 Fill inwhat is missing to complete a proof of Theorem 5.1.19(a).

Proof. Suppose: > 0 is given. Becaus;:ﬁanh (X) = A, there exists a positive
xeE
real 91 such thatx € E and 0 < dx (X, p) < o1 implies that|f (x) — A|] < %
Since , there exists a positive real numb®rsuch thatx € E and
@)
0 < dx (X, p) < d2 implies that|g (x) — B| < % Leto = Lt

@
follows from the triangular inequality that, ¥ € E and O< dx (X, p) < J, then

|(f+g)(x)—(A+B)|:'(f(x)—A)+< )
@®)

< < .
4 ®)
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Since ¢ > 0 was arbitrary, we conclude that )!i_r)np (f +9) (x) = A+ B asclamed.

xeE

|
*** A cceptable responses are: (1) Xli_)mpg(x) = B, (2) min{o1, 42}, (3) (g (X) — B),

XeE

(@ 1T () — Al +19(x) — B, (5) &***

Excursion 5.1.21 Fill inwhat is missing to complete a proof of Theorem 5.1.19(b).

Proof. Because )!i_)mpf (X) = A, there exist a positive real number 61 such that
XeE
x € Eand0 < dx (x, p) < o1 impliesthat | f (x) — Al < Lji.e, |[f (X)|—]A] < 1
Hence, | f (X)| <1+ |A| foral x € E suchthat 0 < dx (X, p) < d1.
Suppose that ¢ > O isgiven. If B = 0, then )!meg(x) = 0 yields the
XeE
existence of a positive real number J, such that x € E and 0 < dx (X, p) < J2
implies that

&

1+ Al

g ()] <

Then for 0* = , we have that
@

1(F9) 001 =11 019 () < (1 +[Al) -

@

Hence, )!i_)mp(fg) (X) = AB = 0. Next we suppose that B # 0. Then there existsa

xeE

positive real numbers d3 and J4 for which | f (x) — A] < ﬁ and |[g(x) — B| <
m whenever 0 < dx (x, p) < dzand0 < dy (X, p) < d4, respectively, for
x € E. Now let 6 = min{d1, d3, d4}. It followsthat if x € E and 0 < dx (X, p) <
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J, then

1(fg) (X) — AB| = | f (X) g (X) — + — AB
€) 0
< |f)Ig(x)— Bl +

®)

<@ +1ADIg(x) = Bl +B|

) '

(1) 8)

Again, since ¢ > 0 was arbitrary, we conclude that )!i_)n})(fg) (X) = AB as

XeE

needed. m
*** A cceptable responses include: (1) min{dy, d2}, (2) ¢ (1 + |A)7L, (3) f (x) B,
& &

(4) £ OB, (BIBIT )= AL®) T ()= ALT) L+ A 20+ IAI)+|B| 21B]
(8) PR

Excursion 5.1.22 Fill inwhat is missing to complete a proof of Theorem5.1.19(c).

Proof. In view of Theorem 5.1.19(b), it will suffice to prove that, under the

. _ 1 1 .
given hypotheses, )!I_) r:pm =g First, wewill show that, for B # 0, the modulus

of g is bounded away from zero. Since |B| > 0 and Xli_)n})g(x) = B, there exists

xeE

a positive real number 6, > 0 such that x € E and implies that
B @
lg(x) — B| < |—2| It follows from the (other) that,

@
if x e Eand 0 < dy (X, p) < o1, then

g (X)| =1(g(x) — B) + B| > ||[g (x) — B]
L]
Bl
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2
|BI"¢

Suppose that ¢ > 0 is given. Then > 0 and )!i_)mpg(x) = B yidds the

xeE

|B|?

existence of a positive real number d» such that |g (X) — B| < ¢ whenever

x e EandO < dx (X, p) < d2. Let 6 = min{d,d2}. Then for x € E and
0 < dx (x, p) < 0 we havethat

1 1‘_I9(X)—BI

— ——| = <
9() Bl IBllg ()| 3 m

Since¢ > 0 was arbitrary, we conclude that

®

Finally, letting h (x) = i by Theorem ,

. f .
)!Im—(X)=)!Imf(X) =

- -

e ey @) ®)
|

*** Acceptable responses are: (1) 0 < dx (X, p) < d1, (2) triangular inequality (3)

¢|BJ? 11 1,,.
m, @) & (5) )!X'?Tpm = <. (6)5.119(0b), (M h (0, @) A- -
2

From Lemma4.3.1, it followsthat the limit of the sum and the limit of the prod-
uct parts of Theorem 5.1.19 carry over to the sum and inner product of functions
from metric spaces to Euclide&n— space.

Theorem 5.1.23 Supposethat X isa metric space, E c X, pisalimit point of E,
f:E— R g:E — RK lim f(x) =A, and lim g(x) = B. Then

X—p X—=p

xeE xeE

(@ Jim (f+9) (x)=A+Band

xeE

(b) Jim (feg)(x)=AeB

xeE

In the set-up of Theorem 5.1.23, note that :E — RXwhilefeg: E — R.
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5.2 Continuous Functionson Metric Spaces

Recall that in the case of real-valued functions of a real variable getting from the
general idea of a functions having limits to being continuous simply added the prop-
erty that the values approached are actually the values that are achieved. There is
nothing about that transition that was tied to the properties of the reals. Conse-
qguently, the dénition of continuous functions on arbitrary metric spaces should
come as no surprise. On the other hand, an extra adjustment is needed to allow
for the fact that we can consider functionsided at isolated points of subsets of
metric spaces.

Definition 5.2.1 Suppose that (X, dx) and (Y, dy) are metric spaces, E c X, f :
E — Y and p € E. Then f iscontinuousat p if and only if

(Ve > 0) @S =5 (e) > 0) [(vX) (x € E Adx (X, p) <) = dy (f (x), f () <¢].

Theorem 5.2.2 Suppose that (X, dx) and (Y, dy) are metric spaces, E c X, f :
E — Yand p € E and pisalimit point of E. Then f iscontinuous at p if and
onIyif)!i_r)npf(x) = f(p)

XeE

Definition 5.2.3 Suppose that (X, dx) and (Y, dy) are metric spaces, E ¢ X and
f: E —> Y. Then f iscontinuouson E if and only if f is continuous at each
pekE.

Remark 5.2.4 The property that was added in order to get the characterization
that is given in Theorem 5.2.2 was the need for the point to be a limit point. The
definition of continuity at a point is satisfied for isolated points of E because each
isolated point p has the property that there is a neighborhood of p, Ng- (p), for
which ENNs- (p) = {p}; since p € dom(f)anddx (p, p) =dv (f (p), f (p)) =
0, we automatically havethat (Vx) (x € EAdx (X, p) <d= dy (f (X), f (p)) <
¢ for any ¢ > 0 and any positive real number ¢ suchthat o < 6*.

Remark 5.2.5 It follows immediately from our limit theorems concerning the al-
gebraic manipulations of functions for which the limits exist, the all real-valued
polynomials in k real variables are continuousk.

Remark 5.2.6 Because {1) = (3,1) for the f(p) = ((2p+1, p?)) : R? —
R? that was given in Example 5.1.11, our work for the example allows us to claim
that f is continuous at p= 1.
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Theorem 5.1.15 isnot practical for use to show that a specific functionis contin-
uous it is a useful tool for proving some general results about continuous functions
on metric spaces and can be a nice way to show that a given function is not contin-
uous.

Exam;()le52 .7 Prove that the function f : R x R — R given by f ((x,y)) =

, for (x,y) # (0,0)

3 3
X Tty is not continuous at (0, 0).

0 , forx=y=0
11
Let pp = (ﬁ ﬁ) Then { pn}2, convergesto (0, 0), but

OO .
SOECI

Hence, by the Sequences Characterization for Limits of Functions, we conclude
that the given f isnot continuous at (0, 0).

I|m f (pn) = li

Example5.2.8 Use the definition to prove that f : R x R —> R given by

X2y
2 1 2 ’ for (Xa y) ?é (05 O)
f(x,y)=1 XTY is continuous at (0, 0).
0 , forx=y=0
Weneedtoshowthat lim  f ((x,y)) = 0. Because the function is defined
(x,y)—(0,0)

intwo parts, it is necessary to appeal to the definition. For ¢ > 0, let 6 = ¢. Then

0<dRXR((Xsy)a(an)):\/X2+y2<5:8

implies that
x2y
X2 + y2

X2+ y?) Iyl
s(X2+y2 =1yl =Vy2 < ety <

Because ¢ > 0 was arbitrary, we conclude that

lim f((X,y)) =0= f ((0,0)). Hence, f iscontinuousat (0, 0).
x,y)—(0,0)

£ ((x,y)) -0l =
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It follows from the definition and Theorem 5.1.19 that continuity is transmitted
to sums, products, and quotients when the ranges of our functions are subsets of
the complex field. For completeness, the general result is stated in the following
theorem.

Theorem 5.2.9 If f and g are complex valued functions that are continuou? on
a metric space X, then f + g and fg are continuous on X. Furthermore, 5 IS
continuouson X — {p € X : g(p) = 0}.

From Lemma 4.3.1, it follows immediately that functions from arbitrary metric
spaces to Euclidean k-space are continuous if and only if they are continuous by
coordinate. Furthermore, Theorem 5.1.23 tells us that continuity is transmitted to
sums and inner products.

Theorem 5.2.10 (a) Let fq, fo, ..., fx bereal valued functions on a metric space
X,and F : X — RK be defined by F (x) = (f1(X), f2(X), ..., fk (X)).
Then F is continuous if and only if fj iscontinuousfor each j,1 < j <k.

(b) If f and g are continuous functions from a metric space X into RK, then f+ g
and f e g are continuous on X.

The other combination of functions that we wish to examine on arbitrary metric
spaces is that of composition. X, Y, andZ are metric spaceg c X, f : E —
Y,andg : f (E) — Z, then the composition of andg, denoted byg o f, is
defined byg (f (x)) for eachx € E. The following theorem tells us that continuity
Is transmitted through composition.

Theorem 5.2.11 Supposethat X, Y, and Z are metric spaces, E c X, f : E —
Y,andg: f (E) — Z. If f iscontinuousat p € E and g iscontinuousat f (p),
then the composition g o f iscontinuousat p € E.

Space for scratch work.

Proof. Suppose thatX, dx), (Y, dy), and(Z, dz) are metric space§ c X,
f:E—Y,g0: f(E) — Z, f is continuous ap € E, andg is contin-
uous atf (p). Lete > 0 be given. Since is continuous atf (p), there exists
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a positive real number 91 such that dz (g (y),g(f (p))) < eforanyy € f (E)

such that dy (y, f (p)) < d1. From f being continuous a p € E and d1 be-

ing a positive real number, we deduce the existence of another positive real num-
ber ¢ such thatx € E anddx (x, p) < o implies thatdy (f (x), f (p)) < J1.
Substituting f (x) for y, we have thax € E anddx (x, p) < ¢ implies that

dy (f (x), f (p)) < o1 which further implies thatz (g (f (x)),g(f (p))) < ¢.
Thatis,dz ((go f)(X),(go f)(p)) < ¢ foranyx € E for whichdy (x, p) < 6.
Thereforeg o f is continuous ap. =

Remark 5.2.12 The “with respect to a set” distinction can be an important one to
1 , for x rational
note. For example, the function(X) = IS continuous
0 , for xirrational
with respect to the rationals and it is continuous with respect to the irrationals.
However, it is not continuous dR’.

5.2.1 A Characterization of Continuity

Because continuity is defined in terms of proximity, it can be helpful to rewrite the
definition in terms of neighborhoods. Recall that, for (X, dx), p € X, andd > 0,

Ns (p) = {x € X :dx (X, p) <d}.
For ametric space (Y,dy), f : X — Y ande > 0,
Ne (f (p)) ={yeY:dy(y, f(p) <e}.

Hence, for metric spaces (X, dx) and (Y,dy), EC X, f :E— Yand peE, f
iscontinuous at p if and only if

(Ve > 0) 35 =3 () > 0) [T (Ns(p) N E) C N, (f (p))].

Because neighborhoods are used to define open sets, the neighborhood formu-
lation for the dénition of continuity of a function points us in the direction of the
following theorem.
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Theorem 5.2.13 (Open Set Char acterization of Continuous Functions) Let f be
a mapping on a metric space (X, dx) into a metric space (Y, dy). Then f iscon-
tinuous on X if and only if for every open set V in Y, the set(¥) is open in
X.

Space for scratch work.

Excursion 5.2.14 Fill in what is missing in order to complete the following proof
of the theorem.

Proof. Let f be a mapping from a metric space (X, dx) into a metric space
(Y, dv).
Suppose that f is continuous on X, V isan open set in Y, and po €
f~1(V). Since V isopen and f (pg) € V, we can choose ¢ > O such that
N, (f(po)) C V from which it follows that

c f71(v).

@

Because f iscontinuous a pp € X, correspondingto ¢ > 0, thereexistsad > 0,
such that f (Ns(po)) € N. (f (po)) which implies that

Ns (Po) C

@

From the transitivity of subset, we concluded that Ns (pg) ¢ f~1(V). Hence,
Po is an interior point of f~1 (V). Since po was arbitrary, we conclude that each
p e f~1(V)isaninterior point. Therefore, f~1 (V) isopen.

To prove the converse, suppose that the inverse image of every open set
inY isopenin X. Let p bean element in X and ¢ > 0 be given. Now the
neighborhood N, (f (p)) isopenin Y. Consequently, isopenin X.

(©)
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Since p is an element of , there exists a positive real number ¢ such
that N (p) ¢ =1 (N, (f (p)))(;S)i.e., c N, (f (p)). Sincee > 0
was arbitrary, we conclude that )!ILT}) f (X) :(4)T. Finally, because p was an
arbitrary point in X, it followsthat f asneeded. m

(6)
*** A cceptable responses are: (1) f~1(N;(f (po)), (2) f~1(N; (f (po))),
(3) f~1(N, (f (p))), (4 f (Ns(p)), (5 f (p), (6) iscontinuous on X.***

Excursion 5.2.15 Suppose that f isa mapping on a metric space (X, dx) into a
metric space (Y, dy) and E c X. Provethat f~1[E°] = (f~1[E])".

The following corollary follows immediately from the Open Set Characteriza-
tion for Continuity, Excursion 5.2.15, and the fact that a set is closed if and only
if its complement is open. Use the space provided after the statement to convince
yourself of the truth of the given statement.

Corollary 5.2.16 A mapping f of a metric space X into a metric space Y is con-
tinuous if and only if 1 (C) is closed in X for every closed setC in Y.

Remark 5.2.17 We have stated results in terms of open sets in the full metric space.
We could also discuss functions restricted to subsets of metric spaces and then the
characterization would be in terms of relative openness. Recall that given two sets
X andY and f: X — Y, the corresponding set induced functions satisfy the
following propertiesforGc Xand Dy C Y, j=1,2
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o f71[D1N Dy = f~1[Dy] N f~1[Dy,
o f71[D1UDy] = f~1[Ds]U f~1[Dy],
e f[C1NCy C f[CiN f[Cy], and

o f[CLUC = f[Ci]U f[C7]

Because subsets being open to subsets of metric spacesin characterized by their
realization asintersectionswith open subsets of the parent metric spaces, our neigh-
borhoods characterization tells us that we loose nothing by looking at restrictions
of given functions to the subsets that we wish to consider rather that stating things
in terms of relative openness.

5.2.2 Continuity and Compactness

Theorem 5.2.18 If f is a continuous function from a compact metric space X to a
metric space Y, then (fX) is compact.

Excursion 5.2.19 Fill in what is missing to complete the following proof of Theo-
rem 5.2.18.

Space for scratch work.

Proof. Supposethat f isa continuous function from a compact metric space X
toametricspaceY and G = {G,, : a € A} isan open cover for f (X). Then
G, isopeninY foreacha € A and

1)
From the Open Set Characterization of

(2
Functions, f~1(G,) is foreacha € A.
(©)
Sncef: X — f(X)and f (X) c | G,, wehave

a€eA

that

X=f"1(f(X)c f—l(U Ga)z
aeA 4
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Hence, 7 = {71 (G,) 1 @ € A} isan
for X. Since X is

(5
, there is afinite subcollection of F,

(6
{f71(Gy) i =12, ..,n} that covers X; i.e,

It follows that
n n n
f (X)C f( f_l (Gaj)): U = Gaj.
j=1 =1 O j=1
Therefore, {G,; : j =1,2,...,,n} isafinite m

subcollection of G that covers f (X). Since G was
arbitrary, every
e,

®
f(X)is .

©

Remark 5.2.20 Just to stress the point, in view of our definition of relative com-
pactness the result just stated is also telling us that the continuous image of any
compact subset of a metric space is a compact subset in the image.

Definition 5.2.21 For a set E, a functiorf : E —> RK is said to bebounded if
and only if

@M) (M e RA (VX) (X € E = |f (X)] < M)).

When we add compactness to domain in the metric space, we get some nice
analogs.

Theorem 5.2.22 (Boundedness Theorem) Let A be a compact subset of a metric
space(S, d) and suppose thdt: A — RX is continuous. Then ¢A) is closed
and bounded. In particular, f is bounded.
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Excursion 5.2.23 Fill in the blanks to complete the following proof of the Bound-
edness Theorem.
Proof. By the , we know that compactnessitf
1
for any k € J is equivalent to(t;eing closed and bounded. Hence, from Theorem
5.2.18,if f: A—> RXwhere A is a compact metric space, thefi is compact.
But f (A) C and compact yields that A) is

@ (©)
In particular, f (A) is bounded as claimed in the Boundedness Theomem.

***Expected responses are: (1) Heine-Borel Theorem, (2R, and (3) closed and
bounded:**

Theorem 5.2.24 (Extreme Value Theorem) Supposethat f isa continuous func-
tion from a compact subset A of a metric space SRitp

M=supf (p) and m= inf f (p).
peA peA

Then there exist points u amdn A such that f(u) = M and f (v) = m.

Proof. From Theorem 5.2.18 and the Heine-Borel Theorem,f (A) ¢ R and f
continuous implies that (A) is closed and bounded. The Least Upper and Greatest
Lower Bound Properties for the reals yields the existendengé real number$/

andm such thatM = supf (p) andm = ianf (p). Sincef (A) is closed, by
peA pe
Theorem 3.3.26M € f (A) andm € f (A). Hence, there existsandov in A such

thatf (uy=Mandf (v) =m;i.e., f (u)=supf (p)andf (v) = im;f (p). m
peA pe

Theorem 5.2.25 Supposethat f isa continuous one-to-one mapping of a compact
metric space X onto a metric space Y. Then the inverse mappihigvhich is
defined by 1 (f (x)) = x for all x € X is a continuous mapping that is a one-to-
one correspondence from Y to X.

Proof. Suppose that f is a continuous one-to-one mapping of a compact metric
space X onto a metric space Y. Because f is one-to-one, the invetsis &
function fronrng (f) = Y in X. From the Open Set Characterization of Continuous
Functions, we know that T is continuous in Y if {U) is openin Y for every U
that is open in X. Suppose that d X is open. Then, by Theorem 3.3.3% i9
compact as a closed subset of the compact metric space X. In view of Theorem
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5.2.18, f (U°) iscompact. Snce every compact subset of a metric space is closed
(Theorem 3.3.35), we conclude that f (U°) is closed. Because f is one-to-one,

f (U = f (X)— f (U), then f onto yields that {U%) =Y — f (U) = f (U)C.
Therefore, f(U)C is closed which is equivalent to (D) being open. Since U was
arbitrary, for every U open in X, we have that(#) is open in Y. Hence, s
continuousin'Y m

5.2.3 Continuity and Connectedness

Theorem 5.2.26 Suppose that f is a continuous mapping for a metric space X
into a metric space Y and E X. If E is a connected subset of X, thertB) is
connected in Y.

Excursion 5.2.27 Fill in what is missing in order to complete the following proof
of Theorem 5.2.26.

Space for scratch work.
Proof. Suppose that f isa continuous mapping from a metric space X into a
metric spaceY and E c X issuchthat f (E) isnot connected. Then
wecanlet f (E) = AU B where A and B are nonempty
subsetsof Y;i.e, A# 0, B # ¢ and

(1)
ANB=ANB=4. Consideer:f EN f~1(A) and
e

H = E N f~1(B). Then neither G nor H isempty and
e

GUH = (EnftA)u

@

:En( _ )

= Enf1(AuB)=

4
Because A C A, f~1(A) c f~1(A). Since
G c f~1(A), thetrangtivity of containment yields that
. From the Corollary to the Open Set

)]
Characterization for Continuous Functions, f 1 (K) is

(6)
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It followsthat G ¢ f~1(A). FromG c f~1(A) and
H c f~1(B), we havethat

EﬂHcf‘l(ﬂ)ﬂf‘l(B):f‘l( ):f—l(_):_.
) €)) 9)

The same argument yieldsthat G N H = .
FromE=GUH,G #6,H # ¢ and ]
GNH=GNH =@, weconcludethat E is

. Hence, for f acontinuous mapping

10
from a(m%etric space X into ametric spaceY and E C X,
if f (E) isnot connected, then E is not connected.
According to the contrapositive, we conclude that, if
, then , @ needed.
(11) (12)

*** A coeptable responsesare: (1) separated (2) ENf~1(B), (3) f ~1 (A)Uf~1(B),
4 E, (5)G c f~1(A), (6) closed, (7) AN B, (8) 4, (9) 4, (10) not connected,
(11) E isconnected, and (12) f (E) isconnected.***

Theorem 5.2.28 Supposethat f isareal-valued function on a metric spa¢, d).
If f is continuous on S, a nonempty connected subset of X, then the rangeg,of f
denoted by Rf |s), is either an interval or a point.

Theorem 5.2.29 (The Intermediate Value Theorem) Let f be a continuous real-
valued function on an intervdgh, b]. If f (a) < f (b) andifce (f (a), f (b)),
then there exist a point ¥ (a, b) such that f(x) = c.

Proof. Let E = f([a, b]). Because [a, b] is an interval, from Theorem 3.3.60,
we know that [a, b] is connected. By Theorem 5.2.26, E is aso connected as the
continuous image of a connected set. Since f (a) and f (b) arein E, from Theorem
3.3.60, it followsthat if cisarea number satisfying f(a) < ¢ < f(b), thencisin
E. Hence, there exists x in [a, b] such that f(x) = c. Since f(a) isnot equal to ¢
and f (b) isnot equal to c, we conclude that x isin (a, b). Therefore, there exists x
in (a, b) suchthat f (x) =c,asclamed. m
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5.3 Uniform Continuity

Our definition of continuity works from continuity at a point. Consequently, point
dependency istied to our 6 — ¢ proofs of limits. For example, if we carried out a

2
0 — ¢ proof that f (x) = X

1. . .
+1 is continuous at X = 2, corresponding to ¢ > 0O,

1 2x+1
taking 0 = min[é, %} will work nicely to show that Iimx—+1 =5=1(2);

X—2 X —

. . . 3
however, it would not work for showing continuity at x = > On the other hand,

1
corresponding to ¢ > 0, taking 6 = min [Z’ 2%} will work nicely to show that

2x+1 3
Iim3 >z(+1 =8=f (E) The point dependence of the work isjust buried in the
X—35
2

focus on the local behavior. The next concept demands a “niceness” that is global.

Definition 5.3.1 Given metric spaces (X, dx) and (Y, dy), afunction f : X — Y
isuniformly continuouson X if and only if

(Ve > 0) (30 > 0) [(Vp) (VQ) (p,q € X Adx (p,q) <d=dy (f(p), (@) <e&)].

Example5.3.2 The function f (x) = x? : R — R is uniformly continuous on
[1, 3].

Fore > Oleto = % For x1, X2 € [1, 3], the triangular inequality yields
that

IX1 + X2| < [xa| + [x2] < 6.
Hence, x1, X2 € [1, 3] and |x1 — X2| < ¢ impliesthat
I (x0) — f (X2)| = ‘X%—X§) = X1 — Xo| X1 + X2 <J-6=¢.

Sncee > 0and X1, X2 € [1, 3] were arbitrary, we conclude that f is uniformly
continuous on [1, 3].

Example 5.3.3 Thefunction f (x) = x? : R — R isnot uniformly continuous on
R.
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We want to show that there exists a positive real number ¢ such that corre-
sponding to every positive real numhewe have (at least two points) x= x1 ()
and » = Xz (9) for which |x1 (0) — X2 (0)] < 0 and|f (X1) — f (X2)| > &. This
statement is an exact translation of the negation of thendien. For the given
function, we want to exploit the fact the as x increasémgrease at a rapid (not
really uniform) rate.

iy o 1
Takee = 1. For any positive real numbe¥, let x; = X1 (0) = > + 5 and

1
X2 = X2 (0) = 5 Then % and » are real numbers such that

e (013)- ()£

If (x1) — f (x2)| = )XE — XS‘ = X1 — X| |X1 + X2| =

S\ (6 2\ &
VM2 +8Y =L v151=0.
(2)(2+5) g tr=21=¢

Hence, f is not uniformly continuous @&

while

Example5.3.4 For p € R, let f(p) = 2p+ 1, p?). Then f: R! — R?is
uniformly continuous on the closed intenj@l 2].

&
Fore > 0,leto = ——. If p1 € [0,2] and p € [0, 2], then
€ > /5 p1 € [0, 2] R e[0,2]

44 (pL+ P2 =4+ |p1+ pal? < 44 (Ipal + 1p2)? < 4+ (24 2)? = 20

and

Az (F (p). T (p2)) = V(@P1+ 1) — @2+ 1) + (P2 — p2)?

=|p1—pz|\/4+(p1+ p2)2<5.@=25/§.@=g,

Sincee > 0 and p, p2 € [1, 2] were arbitrary, we conclude that f is uniformly
continuous o0, 2].

Theorem 5.3.5 (Uniform Continuity Theorem) If f is a continuous mapping from
a compact metric space X to a metric space Y, then f is uniformly continuous on
X.
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Excursion 5.3.6 Fill in what is missing in order to complete the proof of the Uni-
form Continuity Theorem.

Proof. Suppose f isacontinuous mapping from acompact metric space (X, dx)
to ametric space (Y, dy) and that ¢ > Oisgiven. Since f is continuous, for each
p € X, there exists a positive real number J, suchthat g € X A dx (d, p) < dp =

dy (f (p), f(Q)) < % LetG = lNl (p) : p € X ;. Since neighborhoods are
2
open sets, we conclude that G isan . Since X iscom-
)
pact there exists fanite number of elements of that coversX, sayp1, p2, ..., Pn-
Hence,

n
xcJN1 (p)-
j=1 Eépj

1 - ,
Letd = - min {dp}. Then,s > 0 and the minimum of dinite number of
def 21<j<nt ™

positive real numbers.
Suppose thap,q € X are such thatl (p,q) < 6. Becausep € X and
n

X c UNjp (pj), there exists a positive integér 1 < k < n, such that

j=1 Eépj

1

. Hence d (p, px) < Eépk. From the triangular in-

(@)
equality

dx (4, p) < dx (@, p) +dx (P, p) <+ __ < I,

©)

Another application of the triangular inequality and the choices that were made for
dp yield that

dy (f (p), f(q)) < < —¢
4 5

1
***Acceptablefill ins are: (1) open cover foK (2) p € N1 (px), (3) Eépk, 4)
_5k
2

dy (f (p), f (px)) +dv (f (p), T (@), % + % * ok
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5.4 Discontinuities and Monotonic Functions

Given two metric spaces (X, dx) and (Y, dy) and afunction f from a subset A of
XintoY. If pe Xand f isnot continuous at p, then we can conclude that f is
not defined a p (p ¢ A = dom(f)), XIi_)mpf (x) does not exist, and/or p € A and

xXeA
Xli_)mpf (X) existsbut f (p) # )!l_)n?D f (x); apoint for which any of the three condi-
xXeA xeA
tions occurs is called a point of discontinuity. In a general discussion of continuity
of given functions, there is no need to discuss behavior at points that are not in the
domain of the functionconsequently, our consideration of points of discontinuity
is restricted to behavior at points that are in a sfiedior implied domain. Fur-
thermore, our discussion will be restricted to points of discontinuity for real-valued
functions of a real-variable. This allows us to talk about one-sided limits, behavior
on both sides of discontinuities and growth behavior.

Definition 5.4.1 A function f is discontinuous at a point c € dom(f) or has a
discontinuity at c if and only if either )I(iLan (X) doesn't exist or)l(i_r)réf (X) exists
and is different from fc).

. X| .
Example5.4.2 The domain of {x) = % is R — {0}. Consequently, f has no
points of discontinuity on its domain.

m , forxeR - {0}

Example 5.4.3 For the function f(x) = X ,

1 , forx=0
dom(f) = R and x= 0is a point of discontinuity of f. To see thEitr(l)f (X)
X—>

does not exist, note that, for every positive real nunaber

0 0
()= e [1(-2)-10]-2

. 1 i .
Hence, ife = > then, for every positive real numbéythere exists xc dom(f)

such that0 < [x| < d and]|f (x) — f (0)] > . Therefore, f is not continuous at
x=0.
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xsin(%) , forxeR—{0}

Example5.4.4 1f g(x) = , then g has no dis-

0 , forx=0
continuities inR.

Excursion 5.4.5 Graph the following function f anfind
A = {x e dom(f) : fis continuous at

and B= {x e dom(f) : fis discontinuous at X

[ 4x+1 1

, X< ¢

1+ x 2

1
2 , §<X§1
FO=1 _ox4a |, 1<x<3
[X] +2 , 3<X<6
14(x — 10
% L (6<x<14)v (14 <x)
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***Hopefully, your graph revealed that A = R — {—-1,3,4,5,6,14} and B =
{3,4,5,6}.7**

Definition 5.4.6 Let f be a function that is defined on the segment (a, b). Then,
for any point x € [a, b), theright-hand limit is denoted by f (x+) and

f ) =q e (Vit)2,) [({tn} C (x,b) A lim ty = x) = lim  (tn) = q]

and, for any x € (a, b], the left-hand limit is denoted by f (x—) and

f(x=)=qge (Vo) [({tn} C(@x) A limty = x) = lim f (t) = q] _

Remark 5.4.7 From the treatment of one-sided limits in frosh calculus courses,
recall that lim f (t) = q if and only if

t—ox+
(Ve > 0)(F6=05() > 0 [(Vt) (t edom(f)Ax <t <x+5=|f (t)—q| <e)]

and lim f (t) = q if and only if
t—>x—

(Ve >0 (F5=06() >0 [(vt) (t edom(f)Ax—d <t <x=|f(t)—ql <¢)].

The Sequences Characterization for Limits of Functionsfjastthat these dimi-
tions are equivalent to the fimitions of f(x+) and f (x—), respectively.

Excursion 5.4.8 Find f (x+) and f(x—) for every xe B where B is déned in
Excursion 5.4.5.

***For this function, wehave f (3—) = -2, f (3+) =5 f (4—) =5, f (4+) =
6; f(5-)=6,fTB5+)=7and f (6—) =7, f (6+) = 7.***

Remark 5.4.9 For each point x where a function f is continuous, we must have
f(x+) =1 (x=)=f (X).
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Definition 5.4.10 Suppose the function f is defined on the segment (a, b) and dis-
continuous at xe (a,b). Then f has aiscontinuity of the first kind at x or a
simple discontinuity at x if and only if both f(x+) and f (x—) exist. Otherwise,
the discontinuity is said to bediscontinuity of the second kind.

Excursion 5.4.11 Classify the discontinuities of the function f in Excursion 5.4.5.

f(x) ,for xe R—{-1,14}
Remark 5.4.12 The function Rx) = where
0 ,for x==-1vx=14
f is given in Excursion 5.4.5 has discontinuities of the second kind=atx« and
x = 14.

Excursion 5.4.13 Discuss the continuity of each of the following.

[ x2—x—6
_ , X<-=2
1. f=4 Xt+2
| 2x -1 , X>-=2
[ 2, Xxrational
2. g(X) =
| 1 , xirrational
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***Your discussion of (1) combines considers some cases. For —oo < X < =2,
X2 —X—6. . . . . .
s Is continuous as the quotient of polynomials for which the denominator
is not going to zero, while continuity of 2x — 1 for x > —2 follows from the limit
of the sum theorem or because 2x — 1 isapolynomial; consequently, the only point
in the dcz)main of f that needs to be checked isx = —2. Since f ((-2)—) =
. X“=X-—6 . ,

M g m I, 09 = (D = i, G- =
and f (—2) = -5, itfollowsthat f isalso continuousat x = —2. That the function
given in (2) is not continuous anywhere follows from the density of the rationals
and the irrationals; each point of discontinuity is a “discontinuity of the second

Kind."***

Definition 5.4.14 Let f be a real-valued function on a segmef#, b). Then f is
said to bemonotonically increasing on (a, b) if and only if

(Vx1) (VX2) [X1, X2 € (@, D) Ax1 < X2 = f (x1) < f (x2)]
and f is said to benonotonically decreasing on (a, b) if and only if
(Vx1) (VX2) [X1, X2 € (@, D) AX1 > X2 = f (x1) < f (x2)]

Theclass of monotonic functionsis the set consisting of both the functions that are
increasing and the functions that are decreasing.

Excursion 5.4.15 Classify the monotonicity of the function f that wagmed in
Excursion 5.4.5

***Based on the graph, we have that f is monotonically increasing in each of
(—o00, —1), (=1, 1), and (3, 6); the function is monotonically decreasing in each of

1 1
(5’ 3), (6, 14), and (14, c0). The section (5, 1) is included in both statements
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because the function is constant there. As an alternative, we could have claimed
that f is both monotonically increasing and monotonically decreasing in each of

(%, 1) , (3,4), (4,5), and (5, 6) and distinguished the other segments according to

the property of being strictly monotonically increasing and strictly monotonically
decreasing.***

Now we will show that monotonic functions do not have discontinuities of the
second kind.

Theorem 5.4.16 Supposethat thereal-valued function f is monotonically increas-

ing on a segmenta, b). Then, for every x (a, b) both f(x—) and f (x+) exist,

sup Ft)y=F(x=)< f(x)< f(x+)=Xinbf )

a<t<x

and

M) Vy)(a<x<y<b= f(x4+)< f(y-)).

Excursion 5.4.17 Fill in what is missing in order to complete the following proof

of the theorem.
Space for scratch work.

Proof. Supposethat f ismonotonically increasing on the
segment (a, b) and x € (a, b). Then, for every
t e (a,b)suchthata <t < x, . Hence,

1)
B = {f (t):a <t < x}isbounded aboveby f (x).
e

By the ,theset B hasa
@
least upper bound; let u = sup (B). Now we want to
show that u = f (x—).
Lete > Obegiven. Thenu = sup(B) and
u—e¢ < uyieldsthe existence of aw € B such that
. From the definition of B,

©)]
w istheimage of apoint in .Leto >0

“
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besuchthat x — o € (a,x)and f (X —0) = w. If
t e (X =9, X), then

f(x—=09) < f (1) and

()
Sinceu — ¢ < w and f (X) < u, thetrangtivity of less
than or equal to yields that

< f(t) and f(t) <

(6) (7
Becauset was arbitrary, we conclude that

VM)xX—d<t<x=>u—e< f()<u).

Finally, it followsfrom ¢ > O being arbitrary that

(Ve > O)( ); i.e,
®)

f(x—) = tirllf (t) =u.

Forevery t € (a,b) suchthat x <t < b, weaso
havethat f (x) < f (t) fromwhich it follows that
C = {f(t):x <t <b}isbounded by
def ©
f (x). From the greatest lower bound property of the
reals, C has agreatest lower bound that we will denote

by v.

Use the space provided to prove that
o= f (X+).

(10)

217
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Next suppose that x, y € (a, b) aresuch that x < vy.
Because f (x+) = Iim+f O =inf{f (t):x <t < b},
t—X

(X,y) C (x,b)and f ismonotonically increasing, it
follows that

=inf{f (t):x <t <y}.

(11
From our earlier discussion, ]

f(y=)=limf(t) =
t—=y~
Now, (X, y) C (a, y) yields that

(12)

f(y=)=sup{f (t):x <t <y}.

Therefore, as claimed.
(13

***The expected responses are: (1) f (t) < f (x), (2) least upper bound prop-
erty, Qu—¢ < w < u, 4 @x), B ) < fx,BU—c¢ (7)u, (8)
F>0)[()(x—d <t <x=u—e < f(t) <u)], (9 below, (10) Let: > 0
be given. Them = inf C implies that there exist® € C suchthab < w < v +¢.
Sincew € C, w is the image of some point i{x, b). Leté > 0 be such that+¢ e
(X,b) and f (X + ) = w. Now suppose¢ € (x,X +9). Thenf (x) < f (t) and
f@t) < f(XxX+0) =w. Sincen < f (xX)andw < v + ¢, it follows thato < f (t)
andf (t) < v+e. Thus,35> 0)[(Vt) (x <t <x+d=v < f(t) <v+9)]

Because: > 0 was arbitrary, we conclude that= I|m f@t) = f(x+4)., (12)

f (x+), (12) supf (t) ;a <t <y}land (13)f (x+) < < f (y ). xxx

Corollary 5.4.18 Monotonic functions have no discontinuities of the second kind.

The nature of discontinuities of functions that are monotonic on segments al-
lows us to identify points of discontinuity with rationals in such a way to give us a
limit on the number of them.

Theorem 5.4.19 If f is monotonic on the segment (a, b), then
{x € (a,b) : f isdiscontinuous at x}

is at most countable.
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Excursion 5.4.20 Fill in what is missing in order to complete the following proof
of Theorem 5.4.19.

Proof. Without loss of generality, we assume that f is a function that is mono-
tonically increasing in the segme(d, b) = I. If fiscontinuousin I, then f has
e

no points of discontinuity there and we are done. Suppose that f is not continuous
onl andlet D= {w € | : f is not continuous ai}.

From our assumption D~ ¢ and we can suppose that € D. Then
¢ € dom (1),

(MX)(xel Ax<¢c= T (X)< ()

(VX)(XGl/\[<X=> )
@

From Theorem 5.4.16, @¢—) and f (¢+) exist furthermore,

and

f-)=sp{f():x<g}, f((H=

)

and f(¢—) < f (¢+). Since¢ is a discontinuity for f, fic—)  f (¢+).
3

From the Density of the Rationals, it follows that there exists a( r)atiopaéuch

that f(¢—) <r, < f(¢+). Leth, = (f (¢—), f(¢+)). If D —{¢} =6, then

ID| = 1and we are done. If B- {¢} # @ then we can choose anothére D

such that? # ¢. Without loss of generality suppose tida¢ D is such that < ¢.
Sincer was an arbitrary point in the discussion just completed, we know that there
exists a rational g, rs # r-, such that and we can

4
let I, = (f (=), f(£+)). Sincer < ¢, it follov&s) from Theorem 5.4.16 that
' < f(@E-).Thus,}, Nl =_
®) 6
Now, letG = {I;, :y e D} and H: D — G be d¢ined by H(w) =
lr,. Now we claim that H is a one-to-one correspondence. To see that H is
, suppose thain1, w2 € D and H(w1) = H (w2).
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Then

(N

To seethat H is onto, note that by definition H (D) c G and suppose that A € G.
Then

®

Finally, H : D 1—_»1 g yieldsthat D ~ G. Sncer, € Q for each I, € G, we have
that |G| < |Q| = Ng. Therefore, [D| < Np, i.e,Dis .

©
]

*** Acceptableresponsesare: (1) f (¢) < f (X), () inf{f (xX):¢ <x},(3) <, (4)
fl—) <re <+, 0O fF+H), 08 7 l,, = I, Fromthe Trichotomy
Law, we know that one and only one of w1 < w2, w1 = w2, Or w2 < w1 holds.
Since either w1 < w2 or wy < wy implies that Irw1 N Irw2 = @, we conclude that
w1 = w>2. Since w1 and w» were arbitrary,

(Vw1) Vw2) [H (w1) = H (w2) = w1 = wy]; i.e., H isone-to-one., (8) there ex-
istsr € Q such thatA = |, andr € (f (A—), f (A+4)) for somed € D. It follows
thatH (1) = Aor A € H (D). SinceA was an arbitrary element ¢f, we have that
(VA [AeG= Ae H(D)];i.e.,G c H(D). FromH (D) c G andG c H (D),
we conclude thaf = H (D). Hence,H is onto., and (9) at most countaljl&*

Remark 5.4.21 The level of detail given in Excursion 5.4.20 was more that was

needed in order to offer a well presented argument. Upon establishing the ability to
associate an interval Iy, with each ¢ € D that is labelled with a rational and jus-

tifying that the set of such intervals is pairwise disjoint, you can simply assert that
you have established a one-to-one correspondence with a subset of the rationals
and the set of discontinuities from which it follows that the set of discontinuities is
at most countable. | chose the higher level of detail-which is also acceptable—in
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order to make it clearer where material prerequisite for this courseis a part of the
foundation on which we are building. For a really concise presentation of a proof
of Theorem 5.4.19, see pages 96-97 of our text.

Remark 5.4.22 On page 97 of our text, it is noted by the author that the disconti-
nuities of a monotonic function need not be isolated. In fact, given any countable
subset E of a segme(d, b), he constructs a function f that is monotonic(@nb)

with E as set of all discontinuities of f @&, b). More consideration of the example

is requested in our exercises.

54.1 Limitsof Functionsin the Extended Real Number System

Recall the various forms of definitions for limits of real valued functions in rela-
tionship to irfinity:

Suppose that is a real valued function dR, c is a real number, and real number,
then

im f(x)=Le (Ve >0 3K >0) (x> K= |f(X)=L| <e)

o S Me>03K >0 (x> K= f(xX) e N, (L))
° Xﬂrgoof XN)=LeMVMe>03FK>0X<-K=|f(X)—L|<e¢)
& (We>0 (3K >0)(x < —K = f(x)eN, (L)
° )I(iLan X)=400c= (VWM eR)(F0>0O0<|x=Cc|<do= f(X) > M)
& (YMeR) (@3> 0)(xe Nf(©)= f (x) > M)
whereNg' (c) denotes the deleted neighborhoodpN; (c) — {c}.
o IMf(x)=-00e (YMeR)@5>0)0<x—cl<d= f(x) <M)

& (VM eR) 35> 0)(xe N ()= f (x) < M)
Based of the four that are given, complete each of the following.

e Ilim f(X)=+400¢&
X— 400
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e Iim f(X)=—-0c0&
X— 400

e Ilim f(X) =400 &
X— —00

e lim f(X)=—-c0&
X— —00

Hopefully, the neighborhood formulation and the pattern of the various state-
ments suggests that we could pull things together if we had comparable descriptions
for neighborhoods ofco and—oo.

Definition 5.4.23 For any positive real number K,
Nk (00) = {Xx € RU{+00, —00} : X > K}

and Nk (—o0) = {x € RU {400, —o0} : X < K} are neighborhoods of +occ and
—00, respectively.

With this notation we can consolidate the abovérigons.

Definition 5.4.24 Let f be areal valued function defined on R. Then for A and ¢
in the extended real number system, )I(iLan (x) = Aif and only if for every neigh-

borhood of A, N(A) there exists a deleted neighborhood of ¢:d)c), such that
x € N*d (c) implies that f(x) € N (A). When spefication is needed this will be
referred to a thdimit of a function in the extended real number system.

Hopefully, the motivation that led us to this definition is enough to justify the
claim that this definition agrees with the definition of )I([)ncf (X) = Awhencand A

are real. Because the definition is the natural generalization and our proofs for the
properties of limits of function built on information concerning neighborhoods, we
note that we can establish some of the results with only minor modification in the
proofs that have gone before. We will simply state anal ogs.



5.4. DISCONTINUITIESAND MONOTONIC FUNCTIONS 223

Theorem 5.4.25 Let f be a real-valued function that is ¢imed on a set EC R
and suppose thattt_)rrgf H=A andtli_)ngf (t) = C for c, A, and C in the extended

real number system. Then-=AC.

Theorem 5.4.26 Let f and g be real-valued functions that arefided on a set
E c R and suppose tha!i_)ngf t) =A andtli_)rrég (t) = Bforc, A, and B in the

extended real number system. Then
1. lim(f+9)(t)=A+B,
t—c

2. tIi_)rrg(fg) (t) = AB, and

. f A
3. lim (g) ©=g

whenever the right hand side of the equation igrol.

Remark 5.4.27 Theorem 5.4.26 is not applicable when the algebraic manipula-
A

tions lead to the need to consider any of the expressions oo, 0 - 0o, —, or o
9]
because none of these symbols aréndel.

The theorems in this section have no impact on the process that you use in
order to find limits of rea functions as x goes to infinity. At this point in the
coverage of material, given a specific function, we find thelimit as x goesto infinity
by using ssimple algebraic manipulations that allow us to apply our theorems for
algebraic combinations of functions having finite limits. We close this chapter with
two examples that are intended as memory refreshers.

2 3 i (y3 ;
Example5.4.28 Find lim (X — 3 +5) l (X +xsmx)
X—>00 4x3 -7

Since the given function is the quotient of two functions that goftoity as
X goes to ifinity, we factor in order to transform the given in to the quotient of
functions that will haveinite limits. In particular, we want to make use of the fact

.1
that, for any pe J, lim — = 0. From
x—o0o0 X P

’ (x2 = 3x3+45) +i (x3+ xsinx)
ergo 4x3 — 7 X— 00 ( 7) ’
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The limit of the quotient and limit of the sum theorem yields that

im (x*=3x3+5) +i (x*+xsnx)  (0—34+0)+i(1+0) —3+i
X—00 4x3 — 7 N 4-0 4

Example5.4.29 Find_lim (\/sz +X+2—/2X2 — X — 1).

——00

In its current form, it looks like the function is tending to co — oo which is
undefined. In this case, we will try “unrationalizing” the expression in order to get
a quotient at will allow some elementary algebraic manipulations. Note that

(x/2x2+x+2—«/2x2—x—1)
(\/2x2+x+2—\/2x2—x—1) (\/2x2+x+2+\/2x2—x—1)
(x/2x2+x+2+«/2x2—x—1)
(2x2 +x+2) — (2x2 —x — 1)

(\/2x2+x+2+\/2x2—x—1)
2x+ 3

(\/2x2+x+2+\/2x2—x—1)'

Furthermore, for x< 0, /x4 = |X| = —X. Hence,

lim (\/2x2+x+2—«/2x2—x—1)

X— —00
. 2X + 3

= lim
X_’_oo(x/2x2+x+2+«/2x2—x—1)
. 2X + 3

= lim

X0 1 2 1 1
P (s
X X X X

3
242
X

= lim (=1

X— =00 1 2 1 1
(==
X X X X
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55 Problem Set E

1. For each of the following real-valued functions of a real variable give a well-
written o — ¢ proof of the claim.

(@) lim (3x2—2x+1) =9

X—2

(b) lim 8x2=8
Xx—-1

@ Jing/R =

3
I __
@ fmi—="3
X+4
| _7.
©) m—%

2. For each of the following real-valued functions of a real varidbid the
implicit domain and range.

sinXx
f =
(a) (X) X2_1
(b) f(x)=v2x+1
X
© 100 =576
-3
, 0
3 X <
3. Letf(x)=1 IX=2 , 0<X<2AX>2
X—2
| 1 , X=2

(a) Sketch a graph fof.

(b) Determine where the functiohis continuous.
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x2—5x—6| ,for |x—2|>2
4. Let f(x) = and
/36 — 6x for |x— 4| <3

’;2;11 Jfor x# -1
g(x) = :

3 Jfor x=-1

(a) Discussthe continuity of f at x = 1.
(b) Discussthe continuity of (fg)(x) = f(x)g(x) a x = —1.

5. For f :C — Rgivenby f (z) = |z| givead —¢ proof that |lim f (2) =
z—(1+i)
V2.

6. When it exists, find

x2—4

€) Iim( ,\/3x2+2)
x=2\ X —2

() lim (X;l VX455, 'X_ll)

x>1\X2+3x —4’ x—1

7. Let f : R — R and suppose that )I(i_rgf(x) =L > 0. Provethat
lim/f(x) = VL.
X—a

8. Using only appropriate definitions and elementary bounding processes, prove
that if g is area-valued function orR such thatxﬂ)r;g(x) = M # 0, then

lim t _ 1
x>a[g(x)]? M2

9. Suppose thaA is a subset of a metric spa¢§,d), f : A — R!, and
g: A — R Prove each of the following.

(a) If cis areal number and (p) = cfor all p € A, then, for any limit
point pg of A, we have that limf (p) = c.
p—>£o
pe
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(b) If f (p)=9g(p)foral pe A— {po} were ppisalimit point of Aand
lim f (p) =L, then IDll)mpog(p) =L.

P— Po
peA peA
@ 1 f(p) < g(pforalpeA limf(p)=Law limg(p) =M,
peA peA
thenL < M.

10. For each of the following functions onR2, determine whether or not the given
function is continuous at (0, 0). Use § — & proofsto justify continuity or show
lack of continuity by justifying that the needed limit does not exist.

Xy?
T a2 Jfor (X, y) #(0,0)
@ f(xy)=] K+¥?)

e ,for x=y=0
—— ,for (X,y)#(0,0)

O f(yy=] @+y)°

| O ,for x=y=0

x2y*

—— ,for (X,y)#(0,0)
© f(xyy=] 02+’

| O ,for x=y=0

11. Discuss the uniform continuity of each of the following on the indicated set.

2

Xc+1. :
@ f(x)= 13 intheinterval [4, 9].

(b) f(x)=x3in[1, o0).

12. For a < b, let C ([a, b]) denote the set of all real valued functions that are
continuous on theinterval [a, b]. Provethat d (f, g) = maxblf xX)—gX)|
a<x<

isametriconC ([a, b]).

13. Correctly formulate the monotonically decreasing analog for Theorem 5.4.16
and proveit.
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14.

15.

16.

17.

18.

19.
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Suppose that f ismonotonically increasing on asegment | = (a, b) and that
AM)[M e RA (¥X) (x € | = f (x) < M)]. Prove that there exists a real
number C suchthat C < M and f (b—) = C.

A function f defined on an interval | = [a, b] is called strictly increasing
onl if and only if f (x1) > f (x2) whenever x; > x, for x1, X2 € |. Fur-
thermore, a functiorf is said to have the intermediate value properly iif
and only if for eaclc betweenf (a) and f (b) there is arnxg € | such that

f (Xo) = c. Prove that a functiorf that is strictly increasing and has the
intermediate value property on an intervak [a, b] is continuous or(a, b).

Give an example of a real-valued functibrihat is continuous and bounded
on [0, o) while not satisfying the Extreme Value Theorem.

Suppose that f is uniformly continuous on the intervalandl,. Prove that
f is uniformly continuous o5 = 11 U I.

Suppose that a real-valued functibms continuous on ° wherel = [a, b].
If f (a+)andf (b—) exist, show that the function

f@a+) ,for x=a
fo)y=1 f0OO for a<x<b
f(b—) ,for x=D

is uniformly continuous orh.

If a real valued functiorf is uniformly continuous on the half open interval
(0, 1], is it true thatf is bounded there. Carefully justify the position taken.



Chapter 6

Differentiation: Our First View

We are now ready to reflect on aparticular application of limitsof functions; namely,

the derivative of a function. This view will focus on the derivative of real-valued
functions on subsets &. Looking at derivatives of functions iRX requires a dif-

ferent enough perspective to necessitate separate treatmeig done with Chap-

ter 9 of our text. Except for the last section, our discussion is restricted to aspects
of differential calculus of one variable. You should have seen most of the results
in your first exposure to calculus—MAT21A on this campus. However, some of the
results proved in this chapter were only stated whenfyst saw them and some

of the results are more general than the earlier versions that you might have seen.
The good news is that the presentation here isn’t dependent on previous exposure
to the topic on the other hand, fiecting back on prior work that you did with the
derivative can enhance your understanding and foster a deeper level of appreciation.

6.1 TheDerivative

Definition 6.1.1 Areal-valued function f on a subs&tof R is differentiable at a
point ¢ € Qif and only if f is dgned in an open interval containingand

im L@ = 1©)

w—¢ w—7

(6.1)

exists. The value of the limit is denoted by). The function is said to be differ-
entiable onQ if and only if it is differentiable at each € Q.

229
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Remark 6.1.2 For afunction f and a fixed point ¢, the expression
fw) = 1)
w—=¢
is one form of what is often referred to as a “difference quotient”. Sometimes it is
written as

¢ (w) =

Af

Aw
where the Greek letteA is being offered as a reminder that difference starts with a
“d”. Itis the latter form that motivates use of the notatleén— for thefirst derivative

of f as afunction ofv. Other commonly used notations arg, And Dy, these only
become useful alternatives when we explore functions over several real variables.

Thereisan aternative form of (6.1) that is often more useful in terms of compu-
tation and formatting of proofs. Namely, if we let= ¢ + h, (6.1) can be written
as

fC+m=1©)

t!'Lno h (6-2)
Remark 61;1.3 With the form given in (6.2), the difference quotient can be abbrevi-
A
ated asT.

Definition 6.1.4 A real-valued function f on a subs@tof R is right-hand differ-
entiable at a pointy € Q if and only if f isdefined in a half open interval in the
form[¢, ¢ + o) for somed > 0 and the one-sided derivative from the right, denoted

by D* f (¢),

i FEAD — Q)
h—0+ h

exists the function f ideft-hand differentiable at a point € Q if and only if
f isdefined in a half open interval in the form (¢ — o, ¢] for some ¢ > 0 and the
one-sided derivative from the left, denoted by D (¢),

jim FEHD = F©
h—0~ h

exists.
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Definition 6.1.5 A real-valued function f idifferentiable on a closed interval
[a, b] if and only if f is differentiable in(a, b), right-hand differentiable at x= a
and left-hand differentiable at x b.

. X+2 . .
Example6.1.6 Use the dgnition to prove that {x) = ﬁ is differentiable at

X =2

Note that f is dgned in the open intervall, 3) which containsw = 2.
Furthermore,

(w + 2) 4

Iimf(w)_f(z)zlim w—1 1=|im—3(w—2)

w—2 w—2 w—2 w — w—2 W —

Hence, f is differentiable ab = 2 and ' (2) = —3.

= lim (-3) = -3.
w—2

Example 6.1.7 Use the dgnition to prove that gx) = |x — 2| is not differentiable
atx = 2.

Sincedom (g) = R, the function g is déned in any open interval that
contains x= 2. Hence, g is differentiable at 3 2 if and only if

im3G+tM=9@ _ I
h—0 h h—0 h
h
exists. Letp (h) = l—hl for h = 0. Note that
. |h| . h . |h| . —h
lim — = lim—-=1 d lim — = lim — = -1.
h—l>rg+ h h—l>rg+h an h—l>rg— h h—l>rg— h

Thus, ¢ (04+) # ¢ (0—) from which we conclude thakttirrg)qﬁ (h) does not exist.
%
Therefore, g is not differentiable at=¢ 2.

Remark 6.1.8 Because the function g given in Example 6.1.7 is left-hand differen-
tiable at x = 2 and right-hand differentiable at x= 2, we have that g is differen-
tiable in each o{—o0, 2] and[2, c0).

Example 6.1.9 Discuss the differentiability of each of the following a&=x0.

1
xsin— ,for x#0
1. G(x) = X
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1
x3sin= ,for x#0
2. F(X) = X

0 ,for x=0

First of all, notice that, though the directions did not specify appeal to the defi-
nition, making use of the daition is the only viable option because of the way the
function is d¢ned. Discussing the differentiability of functions that argred “in
pieces” requires consideration of the pieces. On segments where the functions are
realized as simple algebraic combinations of nice functions, the functions can be
declared as differentiable based on noting the appropriate nice properties. If the
function is d¢gned one way at a point and a different way to the left and/or right,
then appeal to the difference quotient is mandated.

For (1), we note that G is gimed for all reals, consequently, it is fieed
in every interval that contain8. Thus, G is differentiable & if and only if

1
_ hsn— -0
imEOCFMW=CO _ ;. 7" h " iy (sin
h—0 h h—0 h h—0 h
1
exists. For h# 0, let¢ (h) = s’nﬁ. For each ne J, let p, = ﬂT—l) Now,

{pPn}52, converges t@ as n approaches finity; but{¢ (pn)}52; = {(—1)”“‘1}:;1
diverges. From the Sequences Characterization for Limits of Functions (Theorem
5.1.15), we conclude thﬁ(mg)(ﬁ (h) does not exist. Therefore, G is not differentiable

_)

atx =0.

The function F given in (2) is also feed in every interval that contains
0. Hence, F is differentiable dtif and only if

1

h3sin= —0

FO+h) —F (O 1
imr OFW=FO _ 7" h " i (h2snt
h—0 h h—0 h h—0 h

. 1 . .
exists. Now we know that, for# O, smﬁ' <1 andt!m%h2 = 0, it follows from
_)

a simple modfication of what was proved in Exercise #6 of Problem Set D that
1
lim (hzsin ﬁ) = 0. Therefore, F is differentiable at x 0 and F (0) = 0.

h—0
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Excursion 6.1.10 Inthe space provided, sketch graphsof G and F on two different
representations of the Cartesian coordinate systemin intervals containing O.

***For the sketch of G usingthecurvesy = x and y = —x asguidesto stay within
should have helped give a nice sense for the appearance of the graph; the guiding
(or bounding) curvesfor F arey = x3and y = —x3.***

Remark 6.1.11 Thetwo problemsdonein the last exampleillustrate what is some-
times referred to as a smoothing effect. In our text, it is shown that

1
x2sin= ,for x#0
K (X) = X

0 ,for x=0

is also differentiable at = 0. The function

sinE ,for x#0
L (X) = X

IS not continuous at x= 0 with the discontinuity being of the second kind. The
“niceness” of the function is improving with the increase in exponent of the “smooth-
ing function” x".
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In the space provided, sketch graphsof K and L on two different representations
of the Cartesian coordinate systemin intervals containing O.

The function L is not continuous at x = 0 while G is continuous at x = 0
but not differentiable there. Now we know that K and F are both differentiable at
x = 0O, in fact, it can be shown that F can be defined to be differentiable at x = 0
while at most continuity at x = O can be gained for the derivative of K at x = 0.
Our first theorem in this section will justify the claim that being differentiable is a
stronger condition than being continuous; this offers one sense in which we claim
that F isa nicer function inintervals containing O than K isthere.

Excursion 6.1.12 Fill in what is missing in order to complete the following proof
that the function f (x) = /X isdifferentiablein R* = (0, 00).

Proof. Let f (x) = /X and suppose that a € R*. Then f is

@
: a : o . :
in the segment (—, Za) that contains x = a. Hence, f isdifferentiableat x = a if
and only if

[im = [im
h—0 h—0

@ ©)
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exists. Now
. .| Wa+h-ya) (vVa+h+.4a)
lim = lim
h—0 h—0 (4/a+ +\/_)
©)
©)]
®)
(6)
Consequently, f is differentiableat x = aand f’'(a) = . Sncea € RT

)
was arbitrary, we conclude that

(VX) [(xe]R“L/\f(x):ﬁ): f’(x):—].

*** Acceptable responses are: (1) defined, (2) [(f (a+h) — f (@) (h™1)], (3)

L T P e T St

© (2v3) " and (1) 5=+

The next result tells us that differentiability of afunction at apoint is a stronger
condition than continuity at the point.

Theorem 6.1.13 If afunctionisdifferentiableat ¢ € R, thenit is continuous there.

Excursion 6.1.14 Make use of the following observations and your under standing
of properties of limits of functions to prove Theorem 6.1.13
Some observations to ponder:

e Thefunction f being differentiable at ; assuresthe existence of ad > 0 such
that f isdefined in the segment (¢ — d, ¢ + 9);
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e Given afunction G defined in a segment (a, b), we know that G is continuous
at any point p € (a, b) if and only if XIi_)mpG (X) = G (p) which is equivalent

to having Xli_)mp [G(x)—G(p)]=0.

Spoace for scratch work.

Proof.

***Once you think of the possibility of writing [G (x) — G (p)] as
[(G(x) — G (p)) (x— p)~t] (x — p) for x # p the limit of the product theorem
does the rest of the work.***

Remark 6.1.15 We have already seen two examples of functions that are continu-
ous at a point without being differentiable at the poinamely, gx) = |[x — 2| at
X = 2and, for x= 0,

1
xsm; ,for x#0
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: : .1 :
To seethat G iscontinuousat X = 0, note that sm;‘ < 1for x # O0and Ilmox =0
X—

N : .1 :
implies that I|m0 (X) sm; = 0. Alternatively, for ¢ > 0, let 6 (¢) = ¢, then
X—

0 < |x—=0] < dimpliesthat

1
sm; <I|X| <d=¢.

1
xsm——O‘ = |X|
X

Hence, Img) xsm; = 0 = G (0). Either example is sufficient to justify that the
X—>

converse of Theorem 6.1.13 is not true.

Because the derivativeis defined asthe limit of the difference quotient, it should
come as no surprise that we have a set of properties involving the derivatives of
functions that follow directly and simply from the definition and application of our
limit theorems. The set of basic propertiesis all that is needed in order to make a
transition from finding derivatives using the definition to finding derivatives using
simple algebraic manipulations.

Theorem 6.1.16 (Properties of Derivatives) (@) If cisaconstant function, then
c(x) =0.

(b) If f isdifferentiable at ¢ and k is a constant, then h(x) = kf (x) is differen-
tiable at¢ and H(¢) = kf'(¢).

(c) If f and g are differentiable at, then Hx) = (f 4+ g)(x) is differentiable
atg and F(¢) = () + 9 ().
(d) If u ando are differentiable at, then Gx) = (uv)(x) is differentiable at’
and
G'(0) = u(@)0' () +vOU'(Q).

(e) If f is differentiable at and f () # 0, then H(x) = [ f (x)]~1 is differen-
R
[fO]*

(f) If p(x) = x" for n an integer, p is differentiable wherever it isfaeed and

tiable at¢ and H'(¢) =

p'(x) = nx"L,
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The proofs of (a) and (b) are about as easy as it gets while the straightforward
proofs of (c) and (f) are left as exercises. Completing the next two excursions will
provide proofsfor (d) and (e).

Excursion 6.1.17 Fill iswhat is missing in order to complete the following proof
that, if u and v are differentiable at ¢, then G(x) = (uo)(x) is differentiable at ¢
and

G'(¢) = u@)' () + v(OU'(Q).

Proof. Suppose u, v, and G are as described in the hypothesis. Because u
and » are differentiable at ¢, they are defined in a segment containing ¢. Hence,
G (X) = u(x) v (x) isdefined in a segment containing ¢. Hence, G is differentiable

at ¢ ifand onlyif lim exists. Note that
h—0
@
lim = lim
h—0 h—0

) )
i LEEDUE AN U@ U@+ —0 )]

h—0 h
. h) — h) —
- lim [U(Hh)(“(” r)l u(c))+u(c)(v(c+ r)l v(c))]

Snce v isdifferentiable at ¢ it is continuous there; thus, Ai ”}) v(C+h) =
_)
(©)
Now the differentiability of u and » with thelimit of the product and limit of the sum
theoremsyield that

lim =
h—0

@

@
Therefore, G isdifferentiableat 7. m

*** Acceptable responses are: (1) [(G (¢ +h) — G () h™2],
@[uE+hoE+h) —u@v@)h™], (v (), and @ v () U (O)+u () o ()***
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Excursion 6.1.18 Fill iswhat is missing in order to complete the following proof
that, if f is differentiable atf(/ and f () # 0, then H(x) = [f(x)]~1 is differen-
)
[f(O1% o ,

Proof. Suppose that the function f is differentiableaand f (¢) # 0. From

Theorem 6.1.13, f is ats. Hence.lim f (x) = . Sinces =
& e @

| (I

> 0, it follows that there exist$ > 0such that

tiable at¢ and H'(¢) =

®
. The (other) triangular inequality, yields

LE9]
2

implies that| f (x) — f ()| < |f;§)|

that, for AT O =1 X)) < from which

(©)
f
we conclude thakf (x)| > | ;C)l in the segment . Therefore, the
4)

function H(x) = [f(x)]~!is dgined in a segment that contaigsand it is dif-
def
e

HC+M-H©)
h

exists. Now simple algebraic

ferentiable at if and only ift!in?)
_)
manipulations yield that

CHEHN-HQ© . [+ =1 -1
jim h —#%[( h )(f@+h)uo)]

From the of f at¢, it follows thatlim f (¢ + h) =

B "0 ®
In view of the differentiability of f and the limit of the product theorem, we have
that

imHEHEM—H© _
h—0 h

(N

*** Acceptable responses are: (1) continuous, (2) f (), (3) Ix—=¢| < o, (4)
(¢ —8,¢ +9), (5) continuity, (6) f (¢), and (7) — (1/(0)) [F()]~2***

The next result offers a different way to think of the difference quotient.
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Theorem 6.1.19 (Fundamental Lemma of Differentiation) Supposethat f isdif-
ferentiable at . Then there exists a functiondefined on an open interval con-
taining O for which#(0) = 0 and

f(Xo+h) — f(x0) =[f'(x0) +n(h)] - h (6.3)
andy is continuous a®.

Beforelooking at the proof take afew momentsto reflect on what you can say about

f(xo+h) = f(x0)
h

f'(xo)

for |h| > O.

Proof. Supposethat 0 > Oissuchthat f isdefinedin [x — Xo| < ¢ and let

%[f(xo+h)— f(xo)] = f'(x0) ,ifO<|h <6
n(h) =
0 ifh=0

Because f isdifferentiable at xo, it follows from the limit of the sum theorem that
rI]irrgJ n(h) = 0. Since 5 (0) = 0, we conclude that # is continuous at 0. Finaly,
-

solving # = % [f(xo+h) — f(x0)] — ' (x0) for f(xo+ h) — f(xo) yields (6.3).
m

Remark 6.1.20 If f is differentiable at ¥, then
f(Xo+h) =~ f(x0) + f’(Xo)h

for h very small i.e., the function near tog«is approximated by a linear function
whose slope is "fxo).

Next, we will use the Fundamental Lemma of Differentiation to obtain the
derivative of the composition of differentiable functions.
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Theorem 6.1.21 (Chain Rule) Suppose that g and u are functions on R and that
f(X) = g(u(x)). If uisdifferentiable at xp and g is differentiable at u(xp), then f
isdifferentiable at xg and

f’(X0) = g'(u(x0)) - U'(X0)-

khkkhkkkkhkkkhkhkkkhkkhkhkkkhkkkikkkkk*%x

Before reviewing the offered proof, look at the following and think about what
prompted the indicated rearrangement; What should be put in the boxes to enable
usto relate to the given information?

We want to consider
lim f (Xo+ h) — f(xp)
h—0

h
i U00 + 1) — g (U(xp))
h—0 h

— iml 8 (U(xo +h)) — g (u(xo)
h—0 h

khkkhkkkkhkkhkkhkkhkhkkhkhkkhkhkkkikkkkk*%

Proof. Let Af = f(Xp+h)— f(Xg), Au = u(xp+h) —u(xg) and ug = u (xp).
Then

Af =g(u(xo +h)) — g(u(xo)) = g(uo + Au) — g(uo).

Because u is continuous at Xg, we know that l!in?) Au = 0. By the Fundamental
%

Lemma of Differentiation, there exists a function #, with #(0) = O, that is continu-
ous at 0 and is such thatf = [g'(ug) + #(Au)]Au. Hence,

H Af H / A / /
tim 21— im ([g (o) + n(Au)]T“) — g W)V (o)

from the limit of the sum and limit of the product theorenss.
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6.1.1 Formulasfor Differentiation

As a consequence of the results in this section, we can justify the differentiation
of all polynomials and rational functions. From Excursion 6.1.12, we know that
1
the formula given in the Properties of Derivatives Theorem (f) isvalid for n = >
In fact, it is valid for all nonzero real numbers. Prior to the Chain Rule, the only
8
way to find the derivative of f (x) = (x3 + (3x2 — 7) 12) , other than appeal to
the definition, was to expand the expression and apply the Properties of Derivatives
Theorem, parts (a), (b), (c) and (f); in view of the Chain Rule and the Properties of
Derivatives Theorem, we have

f'(x)=8 (x3 + (3x2 - 7) 12)7 |:3x2 + 72x (3x2 — 7) 11:| .

What we don’t have yet is the derivatives of functions that are not realized as al-
gebraic combinations of polynomialsost notably this includes the trigopnometric
functions, the inverse trig functiona) for any fixed positive real numbet, and
the logarithm functions.

For anyx € R, we know that

. Sin(X + h) — sinx . sin(h) cos(x) + cos(h) sinx — sinx
lim = lim
h—0 h h—0 h

o sin(h) . cos(h) —1
= rllano [(cosx) ( - ) + (sinx) (T)]

. CoS(X + h) — cosx . cos(h) cos(x) — sin(h) sinx — cosx
lim = lim
h—0 h h—0 h

o cos(h) — 1 PR sin(h)
= A@O [(cosx) (—h ) (sinx) (—h )} .

Consequently, in view of the limit of the sum and limit of the product theorems,
finding the derivatives of the sine and cosine functions depends on the existence of

lim Si”(h)) and lim (—COS(:‘]) -1

and

. Using elementary geometry and trigonom-
h—0 h h—0

etry, it can be shown that the values of these limits are 1 and 0, respectively. An
outline for the proofs of these two limits, which is a review of what is shown in an
elementary calculus course, is given as an exercise. The formulas for the derivatives
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of the other trigonometric functions follow as simple applications of the Properties
of Derivatives.
Recall that e = Iimo(1+ OYCandy = Inx < x = &Y. With these in addition
{—

to basic properties of logarithms, for x a positive real,

im0 =X Fln(1+ 2)}

h—0 h h—0| h

h 1/h
= lim {In(l—k—) } .
h—0 X

Keeping in mind that x isa constant, it follows that

. In(x+h)—Inx . |:[( h)x/h}l/x}

[im =lim|{In| {1+ -

h—0 h h—0 X
=—lim|In (1+—) H
Xh—=0 X

x/h
Because (1+ ;) —> eash — 0OandIn(e) = 1, the same argument that

was used for the proof of Theorem 5.2.11 allows usto conclude that

. In(x+hy—Inx 1
lim = —.
h—0 h X

Formulas for the derivatives of the inverse trigonometric functions and o*, for
any fixed positive real number «, will follow from the theorem on the derivative of
the inverses of afunction that is proved at the end of this chapter.

6.1.2 Revisiting A Geometric Interpretation for the Derivative

Completing the following figure should serve as a nice reminder of one of the com-
mon interpretations and applications of the derivative of a function at the point.

e On thex-axis, label thex-coordinate of the common point of intersection of
the curve,f (x), and the three indicated lines @as
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e Corresponding to eachline—(1, ¢2, andfs, on thex-axis label thex-coordinate
of the common point of intersection of the cunfe(x), with the line ax+h;y,
¢ + hy, andc + hz in ascending order. Note thhi, ho andhs are negative
in the set-up that is shown. Each of the lifes{,, and{3 are calledsecant
lines.

e Find the slopesn;, my, andmgs, respectively, of the three lines.

Excursion 6.1.22 Using terminology associated with the derivative, give a brief
description that applies to each of the slopesm; for j = 1,2, 3.

Excursion 6.1.23 Give a concise well-written description of the geometric inter-
pretation for the derivative of f at x= c, if it exists.

6.2 TheDerivative and Function Behavior

The difference quotient istheratio of the change in function valuesto the changein
arguments. Consequently, it should come as no surprise that the derivative provides
information related to monotonicity of functions.
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In the following, continuity on an interval | = [a, b] is equivalent to having
continuity on (a, b), right-hand continuity atxk = a and left-hand continuity at
X = b. For right-hand continuity ax = a; f (a+) = f (a), while left-hand
continuity atx = b requires thatf (b—) = f (b).

Definition 6.2.1 A real valued function f on a metric space (X, dx) has a local
maximum at apoint p € X if and only if

(3> 0)[(va) (e Ns(p) = (@) < T (p)]
the function has a local minimum at a point p € X if and only if

(35> 0)[(Va) (@ € Ns(p) = f (p) < f (@))].

Definition 6.2.2 Areal valued function f on ametric space (X, dx) hasa (global)
maximum at a point p € X if and only if
[(v) (xe X= f(x) < f(p)]:

the function has a (global) minimum at a point p € X if and only if

[(("™) (@eX= f(p) =< fX)].

Theorem 6.2.3 (Interior Extrema Theorem) Supposethat f isa function that is
defined onaninterval | = [a, b]. If f hasalocal maximum or local minimum at a
point Xg € (a, b) and f isdifferentiable at xg, then f’(xg) = 0.

Soace for scratch work or motivational picture.

Proof. Suppose that the functiohis ddined in the interval = [a, b], has a lo-
cal maximum akg € (a, b), and is differentiable aty. Becausef has a local max-
imum atxo, there exists a positive real numigesuch thaixo — d, Xo + 0) C (a, b)
and(vt) [t € (xo— J, X0+ ) = f (t) < f (x0)]. Thus, fort € (xo — J, Xo),

fH—fo0

— (6.4)
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whilet € (Xo, Xo + 0) implies that

(0-100 _,
t—Xp -

— f
Because f is differentia at Xo, Ilmu
t—Xo t — X

From (6.4) and (6.5), we know that f’ (xo) > Oand f’ (x0) < O, respectively. The
Trichotomy Law yieldsthat f’ (xg) =

The Generalized Mean-Value Theorem that follows the next two results contains
Rolle’s Theorem and the Mean-Value Theorem as special cases. We offer the results
in this order because it is easier to appreciate the generalized result Aéetimg
upon the geometric perspective that is offered by the two lemmas.

(6.5)

exists and is equa to f’ (Xo).

Lemma 6.2.4 (Rolle's Theorem) Suppose that f is a function that is continuous
ontheinterval I = [a, b] and differentiable on the ssgment 1° = (a, b). If f(a) =
f (b), then thereis a number xg € | ° such that f’(xg) =

Soace for scratch work or building intuition via a typical picture.

Proof. If f isconstant, we are done. Thus, we assume that f is not constant
inthe interval (a, b). Since f is continuous on |, by the Extreme Value Theorem,
there exists points ¢p and ¢ in | such that

f()<fTX < f(n) fordlxel.

Because f isnot constant, at least oneof {x e | : f(x) > f(a)} and

{xel: f(x) < f(@}isnonempty. If {x el : f(x)> f(a)} = (a,b), then
f (¢0) = f (a) = f (b) and, by the Interior Extrema Theorem, (1 € (a, b) issuch
that f'(¢1) =0. If {x el : f(x) < f(@)} = (a,b),then f (©1) = f (&) = f (b),
(o € (a, b), and the Interior Extrema Theorem impliesthat f’ (¢p) = 0. Finaly, if
{xel:f(xX)> f(@} #(@b)and{xel: f(x) < f(a)} # (a, b), thenboth (o
and g arein(a,b)yand f' (o) = f'(¢1) =0. m

Lemma 6.2.5 (Mean-Value Theorem)Supposethat f isa function that is contin-
uous on the interval k= [a, b] and differentiable on the segmerit+ (a, b). Then
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there exists a number & € | ° such that

f(b) — f(a)

'@ =——

Excursion 6.2.6 Use the space provided to complete the proof of the Mean-Value
Theorem.

Proof. Consider the function F gmed by

F(x) = f(x)—M

—— x-a)- @

as a candidate for application of Rolle’s Theorem.

Theorem 6.2.7 (Gener alized M ean-Value Theorem) Suppose that f and F are
functions that are continuous on the interval | = [a, b] and differentiable on the
segment 1°. If F/(x) # 0on |°, then

(@ F(b)—F()#0,and

(b) (3&) (gte [° A f(b) — f(a) _ f (5))

Fb)-F@ F(©)

Excursion 6.2.8 Fill in the indicated steps in order to complete the proof of the
Generalized Mean-Value Theorem.
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Proof. To complete a proof of (a), apply the Mean-Value Theorem td~.

For (b), forx e I, déeine the function by

f(b)— f(@
F(b) - F(&)

It follows directly thatp (a) = ¢(b) = 0.

p(x)=f(x) - f(@) - [FO) — F@].

Theorem 6.2.9 (Monotonicity Test) Suppose that a function f isdifferentiablein
the segment (a, b).

(@) If f"(x) > Ofor all x € (a, b), then f ismonatonically increasing in (a, b).
(b) If f”(x) =0for all x € (a, b), then f isconstant in (a, b).
(¢) If f/(x) < Oforall x € (a, b), then f ismonotonically decreasing in (a, b).

Excursion 6.2.10 Fill in what is missing in order to complete the following proof
of the Monotonicity Test.

Proof. Supposethat f isdifferentiablein the segment (a, b) and X1, x> € (a, b)
aresuchthat x; < X2. Then f iscontinuousin[x1, X2] and

@
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in (X1, X2). Fromthe , there exists & € (X1, X2) such
(2
that
f(x1) — f (x
£ (&) = (X1) (2)_
X1 — X2

If f"(x) > Ofor all x € (a,b), then f'(¢) > 0. Sncex; — X2 < O, it

follows that Jie, f(x) < f(x2). Sncexy and X2

()
were arbitrary, we have that

(VX1) (VYX2) {(xl, X2 € (@, b) A )=> f(x) < f (xz)} .
4

Hence, f is in (a, b).

®)
If £/ (x) = Ofor all x e (a, b), then

©)

Finally, if ' (x) < Ofor all x e (a, b),

("

*** A cceptable responses are: (1) differentiable, (2) Mean-Value Theorem,

(3) f (x1) — T (X2) <0, (4)x1 < X2, (5) monotonically increasing,

(6) f (x1) — f (x2) =0;i.e., f(x)) = f(x2). Sincex; andxy were arbitrary, we
have thatf is constant throughoug, b)., (7) thenf’(¢) < 0 andx; — x2 < O

implies thatf (x1) — f (x2) > 0O; i.e., f (x1) > f (x2). Becausex; andxo were

arbitrary we conclude that is monotonically decreasing i@, b).***

Example 6.2.11 Discuss the monotonicity of f (x) = 2x3 + 3x2 — 36x + 7.

For x € R, f/ (x) = 6x?+ 6x — 36 = 6(x + 3) (x — 2). Snce f’ispositivein
(—o0, —3) and (2, o0), f is monotonically increasing there, while f’ negative in
(—3,2) yieldsthat f is monotonically decreasing in that segment.
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Remark 6.2.12 Actually, in each of openintervals (—oo, —3), (2, >0), and (-3, 2)
that were found in Example 6.2.11, we have strict monotonicity; i.e., for X1, X2 €
(—o0, =3) or X1, X2 € (2,00), X1 < X2 impliesthat f (x1) < f (X2), whilexy, X2 €
(—3,2) and x1 < xpyieldsthat f (x1) > f (x2).

6.2.1 Continuity (or Discontinuity) of Derivatives

Given areal-valued functionf that is differentiable on a subs@tof R, the deriva-

tive F = f’is a function with domaif2. We have already seen thatneed not be
continuous. Itis natural to ask if there are any nice properties that can be associated
with the derivative. The next theorem tells us that the derivative of a real function
that is differentiable on an interval sdtiss the intermediate value property there.

Theorem 6.2.13 Suppose that f isa real valued function that is differentiable on
[a,b] and f’ (a) < f’(b). Thenfor any 1 € R suchthat f'(a) < 1 < f’(b), there
existsa point X € (a, b) suchthe f’ (x) = 4.

Proof. Suppose that f isa real valued function that is differentiable on [a, b]
and 1 € Rissuchthat f'(a) < 2 < f'(b). Let G(t) = f (t) — At. From
the Properties of Derivatives, G is differentiable on [a, b]. By Theorem 6.1.13, G
is continuous on [a, b] from which the Extreme Value Theorem yields that G has
a minimum at some x € [a,b]. SnceG'(a) = f'(t) — 1 < 0and G’ (b) =
f’(t) — 1 > 0, thereexistsat; € (a,b) andty € (a, b) suchthat G (t1) < G (a)
and G (t2) < G (b). It follows that neither (a, G (a)) nor (b, G (b)) isa minimum
of Gin[a, b]. Thus,a < x < b. Inview of the Interior Extrema Theorem, we have
that G’ (x) = Owhichisequivalentto f’(X) =1 m

Remark 6.2.14 With the obvious algebraic modifications, it can be shown that the
same result holds if the real valued function that is differentiable on [a, b] satisfies
f’(@) > f’(b).

Corollary 6.2.15 If f isareal valued function that is differentiable on [a, b], then
f’ cannot have any simple(first kind) discontinuities on [a, b].

Remark 6.2.16 The corollary tells us that any discontinuities of real valued func-
tions that are differentiable on an interval will have only discontinuities of the sec-
ond kind.
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6.3 TheDerivative and Finding Limits

The next result allows us to make use of derivatives to obtain some limits: It can
be used to find limits in the situations for which we have been using the Limit of
Almost Equal Functions and to find some limits that we have not had an easy means
of finding.

Theorem 6.3.1 (L'Hopital's Rule 1) Supposethat f and F are functions such that
f’and F' existonasegment | = (a,b)and F’ #0on .

/

(@ If f(a+) =F(a+) =0and (%) (a+) = L, then (%) (a+) = L.

f’ f
(b) If f(a+) = F(a+) = oc and (E) (a+) =L, then (E) (a+) = L.
Excursion 6.3.2 Fill in what ismissing in order to compete the following proof of
part (a).

Proof. Supposethat f and F aredifferentiableonasegment | = (a, b), F' # 0
onl,and f(a+) = F(a+) = 0. Setting f (a) = f(a+) and F (a) = F(a+)
extends f and F to functionsthat are in[a, b). Withthis, F (a) =0

@
and F’' (x) #0in | yieldsthat F (x) :
2

f
Quppose that ¢ > 0 isgiven. Snce (—) (a+) = L, thereexistsd > O

F/
suchthata < w < a+ J impliesthat

)

From the Generalized Mean-Value Theorem and the fact that(&) = f (a) =0, it
follows that

4
—_—

——
FX)—F@ -
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f (X) 1 <

FX)

arbitrary, we conclude that .
(6)

for some ¢ satisfyinga < & < a + J. Hence, e. Sncee > Owas

f’ (w)

*** A cceptable responses are: (1) continuous, (2) # 0, (3) 'F ") L' <&, (4
f () f (%)
F 5) f — f 6 and (7 I = L.x**
00:(8) 00 = T @, (6) g7y and (7) lim 2

Proof. Proof of (b). Suppose that f and F are functions such that f’ and F’
existonanopeninterval | ={x:a <x <b},F #0onl, f(a+) = F(a+) =

/

f
and = (@a+) = L. Then f and F are continuous on | and there existsh > 0
suchthat F/ 2 0inly, = {X:a < X < a+ h}. Fore > 0, there exists a¢ with
0 < 6 < h such that

/(&) € .
—L — for dl ls = {X: o).
) '<20r cinls={Xx:a<x<a+d}
Let x and c be such that X < c and x,c € l5. By the Generalized Mean-Value

FO)—f© _ ')

Theorem, there existséin |5 such thatF O—F0© _FQ) Hence,
' fo)—f©) €
F(x)— F(c) =2
In particular, fore < 1, we have that
f(x)—f()] f(x)—f(c)_ 1
FO—F@©| ~ |[Fo—F@ -TH=It+3

With a certain amount of playing around we claim that
fex) fx)—=—f@| |fe F) fx)—"1f()
FoO FO-F@©| [FeO  f0 FO—F(©

f(c) F(c) 1
F(x) 'N)OH+)

Forc fixed, ;()‘?) - Oandf—(()‘(’% — 0asx — at. Hence, there existg, 0 < §; < 4,

such that

1

f(0)
AL+ 1)

F(x)

F(©)
f(X)

€
Zand'
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Combining the inequalities leads to

f ()
F(x)

f(x) fXx)— f(c)
Fx) F(X) —F(

<

‘ f(x) — f(c) _L
F(x) — F(c)

whenever a < X < a+ d1. Sincee > 0 was arbitrary, we conclude that

f T (O
(7) @n=m £ =+

Remark 6.3.3 The two statements given in L'HOpital's Rule are illustrative of the

set of such results. For example, the=x a™ can be replaced with x> b~,

X = 400, X = 00, and X » —oo, with some appropriate magetations in the
statements. The following statement is the one that is given as Theorem 5.13 in our
text.

Theorem 6.3.4 (L’'Hépital’'s Rule Il) Suppose f and g arereal and differentiable

. , )

in(a, b), where—oco <a <b < oo0,d (x) # Oforall x e (a, b),anf)!Lrgg/ 0 -
. o o B (X))

A. If)ll_rgf(x)_OA)ll_rzgg(x)_Oor)ll_rgg(x)_—koo,then lim =A

x>ag (x)

Excursion 6.3.5 Use an appropriate form of L’'H6pital’'s Rule tofind

2 g _
1 Iimx 5X +6 — 7sin(x 3).
x—3 2X — 6
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1 w
2. lim (1+ —)
wW—> 00 w—1

***Hopefully, you got —3 and e, respectively.***

6.4 |nverse Functions

Recall that for arelation, S, on R, the inverse relation of S, denoted by S™1, is the

set of all ordered pairs (y, X) such that (x,y) € S. While afunction is arelation

that issingle-valued, its inverse need not be single-valued. Consequently, we cannot
automatically apply the tools of differential calculus to inverses of functions. What
follows if some criteria that enables us to talk about “inverse functions.” firee
result tells us that where a function is increasing, it has an inverse that is a function.

Remark 6.4.1 If uand o are monotonic functionswith the same monotonicity, then
their composition (if defined) isincreasing. If u and » are monotonic functionswith
the opposite monotonicity, then their composition (if defined) is decreasing.

Theorem 6.4.2 (Inver se Function Theorem) Supposethat f isa continuousfunc-
tion that is strictly monotone on an interval | with(lf) = J. Then

(&) Jisaninterval

(b) the inverse relation g of f is a function with domain J that is continuous and
strictly monotone on Jand

(c) we have ¢f (x)) =xforx e | and f(g(y)) =y forye J.

Proof. Because the continuous image of a connected set is connected and f
Is strictly monotone, J is an interval. Without loss of generality, we take f to be
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decreasing in the interval 1. Then f(x1) # f(x2) impliesthat x; # X and we
conclude that, for each wg in J, there exists one and only one (o € | such that
wo = f(¢o). Hence, theinverse of f isafunction and the formulas given in (c)
hold. It follows from the remark above and (c) that g is strictly decreasing.

To see that g is continuous on J, let wo be an interior point of J and
suppose that g(wo) = Xo; i.e., f(Xg) = wo. Choose points wy and w2 in J such
that w1 < wo < wy. Thenthereexist pointsx; and Xz in |, suchthat x; < Xg < X2,
f(x1) = w2 and f (x2) = w1. Hence, xp isaninterior point of 1. Now, without loss
of generality, takee > 0 small enough that theinterval (xo — €, Xo + €) is contained
in | and define wy = f(xo+¢€) and w; = f(xo —€) sOw] < w;. Since g is
decreasing,

Xo+ € = g(w]) > g(w) > g(ws) = X0 — e for wsuchthat w] < w < w5.
Hence,
g(wo) + € > g(w) > g(wo) — € for w suchthat wi < w < wj3.
Now taking J to be the minimum of w3 — wo and wo — w] leadsto
|9(w) — g(wo)| < € whenever [w — wo| < 6.
m

Remark 6.4.3 While we have stated the Inverse Function Theorem in terms of in
tervals, please note that the term intervals can be replaced by segtaebhjsvhere
a can be—oo and/or b can bex.

In view of the Inverse Function Theorem, when we have strictly monotone con-
tinuous functions, it is natural to think about differentiating their inverses. For a
proof of the general result concerning the derivatives of inverse functions, we will
make use with the following partial converse of the Chain Rule.

Lemma 6.4.4 Supposethereal valued functions F, G, and u aresuch that F (x) =
G (u(x)), u is continuous at xg € R, F’(xg) exists, and G’ (u (xg)) exists and
differs fromzero. Then u’ (Xp) isdefined and F’ (Xg) = G’ (U (Xg)) U’ (Xo).

Excursion 6.4.5 Fill in what is missing to complete the following proof of the
Lemma.
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Proof. Let AF = F(Xg+h)—F(Xg), Au = u(Xo+h)—u(xp) and up = u (Xp).
Then

AF = = G(ug + Au) — G(up).
()

Sinceu iscontinuous at Xg, we know that Ai ”}) Au = 0. By the Fundamental Lemma
_)

of Differentiation, there exists a function 7, with , that is continuous
@
atOandissuchthat AF = . Hence,
3
AF
Au _ h

h — [G/(ug) + n(Au)]’

From I!imoAu = 0, it follows that #(Au) — Oash — 0. Because G’ (up) exists
-

and is nonzero,

AF
: U(xo+h)—uxo) . h_ F’ (Xo0)
U (xo) = lim) h hO0[G(Uo) + 7(AW)] _ G (Uo)
Therefore, U’ (Xp) exists and . u

@

*** Acceptable responses are: (1) G(u(xp + h)) — G(u(xp)), (2) (0) = 0, (3)
[G'(uo) + 7(Au)]Au, and (4) F’ (x0) = G’ (Ug) U (Xg).***

Theorem 6.4.6 (I nver se Differentiation Theorem) Supposethat f satisfiesthe hy-
potheses of the Inverse Function Theoremglixa point of J such that "g(xo))
is dgined and is different from zero, thef(xp) exists and

1

—. 6.6
f7(g (x0)) (69

g (Xo) =

Proof. From the Inverse Function Theorem, f (g (X)) = x. Teakingu = g and
G = f inLemma 6.4.4 yields that g’ (Xo) existsand f’ (g (X)) g’ (x) = 1. Since

f/(g(Xo)) # 0, it follows that g’ (xo) = m asneeded. m
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Corollary 6.4.7 For a fixed nonnegative real number «, let g(x) = a*. Then
dom(g) =R and, for all x e R, g’ (X) = a*Ina.

Proof. We know that g (x) = a* istheinverse of f (x) = log, x where f is
a strictly increasing function with domain (0, oo) and range (—oo, o). Because
A=log, B < a” =B < Alna = InB, it follows that

InB
log, B = —.
a Ina

Hence

(%) = (log, X)/ _ (Inx)’ 1

Ina)  Xxlna'

1
From the Inverse Differentiation Theorem, we have that g’ (X) = T
g (X) Inoe =aoXlno. m

Remark 6.4.8 Taking a = einthe Corollary yields that (¢X)" = €*.

In practice, finding particular inversesis usually carried out by working directly
with the functions given rather than by making a sequence of substitutions.

Example 6.4.9 Derive aformula, in terms of x, for the derivative of y = arctanx,
“Zox<Z

We know that the inverse of u = tano isarelation that is not a function,; con-
sequently we need to restrict ourselves to a subset of the domain. Because u is
strictly increasing and continuous in the segment I(—E, E); the correspond-

ing segment i$—oo, co). We denote the inverse that corresponds to this segment by
y = f (x) = arctanx. From y= arctan x if and only if x= tanyy, it follows directly

that (sec? y) % =1lor % = %2y On the other handan® y 4+ 1 = sec? y with
1
x = tany implies thatsec?y = x? + 1. Thereforeg—;/ =f'x)= 2T

. X . . -
Excursion 6.4.10 Use f(x) = T—x to verify the Inverse Differentiation Theorem
on the segmen2, 4);, i.e., show that the theorem applig8)d the inverse g and
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its derivative by the usual algebraic manipulations, and then verify the derivative
satisfies equation (6.6)

***Hopefully, you thought to use the Monotonicity Test; that f isstrictly increasing
inl = (2,4) follows immediately upon noting that f' (x) = (1—x)"2 > 0in

. 4\ . : :
I. The corresponding segment J = | —2, —3 is the domain for the inverse g

that we seek. The usual algebraic manipulations for finding inverses leads us to
solving x = y (1 —y)~! for y. Then application of the quotient rule should have
ledto g’ () = (1+ x)~2. Finally, to verify agreement with what is claimed with
equation (6.6), substitute g into f’ (x) = (1 — x)~2 and simplify.***

6.5 Derivativesof Higher Order

If f isadifferentiable function on a set Q then corresponding to each x € Q, there
isauniquely determined f’ (x). Consequently, f’isasoafunction on Q. We have
already seen that f’ need not be continuous on Q. However, if f’ is differentiable
onaset A C Q, thenitsderivativeis afunction on A which can also be considered

for differentiability. When they exist, the subsequent derivatives are called higher

order derivatives. This process can be continued indefinitely; on the other hand, we

could arrive at a function that is not differentiable or, in the case of polynomials,

we'll eventually obtain a higher order derivative that is zero everywhere. Note that
we can speak of higher order derivatives only after we have isolated the set on which
the previous derivative exists.

Definition 6.5.1 If f isdifferentiable on a set Q and f’ is differentiable on a set
2

- : d-f .
Q1 C Q, thenthederivative of f” isdenoted by f” or o) and is called the second
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derivativeof f, ifthesecond derivativeof f isdifferentiableonaset Q, c Q1, then

. da3f . . I
the derivative of f”, denoted by f” or @ or 33 s called the third derivative

of f. Continuing in this manner, when it exists, (" denotes the n'" derivative of
f andisgiven by (f®-b)".

Remark 6.5.2 The statement “f ) exists at a point ¢ asserts that &= (t) is
defined in a segment containing Xor in a half-open interval having xas the
included endpoint in cases of one-sided differentiability) and differentiablg. dt x
k > 2, then the same two claims are true fof*f?. In general, “f® exists at a
point %" implies that each of 1), for j = 1,2, ...,k — 1, is dgined in a segment
containing x and is differentiable at x

3 5
Example6.5.3 Given f(x) = ——— inR — { —=1, find a general formula
! 0= =S| naas
for £,

From f (x) = 3(5 + 2x)2, itfollows that f (x) = 3-(—2) (5 + 2x)"3 (2),
f7(x) = 3:(=2) (=3) 5+ 2x)™*(22), 1@ (x) = 3:(—2) (=3) (—4) (5+ 2x) > (23),
and f® (x) = 3-(=2) (=3) (—=4) (=5) (5 + 2x)~° (2%). Basic pattern recognition
suggests that

fW(x)=(=1)"-3-2". (n+ 1)! 5+ 2x)~ "2, (6.7)

Remark 6.5.4 Equation (6.7) was not proved to be the case. While it can be proved
by Mathematical Induction, the set-up of the situation is direct enough that claiming
the formula from a sgitient number of carefully illustrated cases is/guént for

our purposes.

Theorem 6.5.5 (Taylor’s Approximating Polynomials) Suppose f isareal func-
tion on[a, b] such that there exists a J for which f("~1 is continuous orja, b]
and f(" exists for every & (a, b). Fory € [a, b], let

(=D £k (
4
Pio1(rit)= D T)(t - )<
k=0 '
Then, fora and g distinct points in[a, b], there exists a point x betweenand S
such that

f () (X)
n!

f(B) =Po1(o; B) + B—a). (6.8)
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Excursion 6.5.6 Fill inwhat is missing to complete the following proof of Taylor’s
Approximating Polynomials Theorem.
Proof. Since R_1 (a; B), (B — )™ and f (B) are fixed, we have that

f(8)=Pa-1(a; )+ M (B —a)"

for some Me R. Let
gt) = f(t)—Proz(a;t) =M (t —a)".
def

Then g is a real function oifa, b] for which is continuous and
€8]
g™ exists in(a, b) because . From
)
the Properties of Derivatives, for¢ (a, b), we have that

f (k)
g=" (t)—Z(k IO et

and

g’ (t) =

©)

In general, for j suchthat < j < (n—1)andte (a, b), it follows that

. _ =1 £k (4
Dwy= D) = : —_ ki — a1
g (1) (t) k§=j rEnC A J), M (t — o)
Finally,
g™ () = : (6.9)

4)
Direct substitution yields that @) = 0. Furthermore, for each j1 <

f & .
(@) t—a)< 1 = £® (a); conse-

j £ (n=1),t = a implies thatzk i k)t

quently,

g(@)=g" (@) =0foreach j,1<j < (n—1).
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In view of the choice of M, we have that g (#) = 0. Because g is differentiable in
(a, b), continuousin[a, b],andg (a) = g (8) = 0, by ,
)
there exists x; between a and g such that g’ (x3) = 0. Assuming that n > 1,
from Rolle’s Theorem, §differentiable in(a, b) and in [a, b] with
©)
g (a) = g (x1) = 0for a, X1 € (a,b) yields the existence obbetweern and
X1 such that . If n > 2, Rolle’s Theorem can be applied td ¢p
)
obtain x between such that ¢ (x3) = 0. We can repeat this pro-
®
cess through &, the last higher order derivative that we are assured exists. After
n steps, we have that there is ap betweern and %_1 such that §" (x,) = O.
Substituting ¥ into equation (6.9) yields that

0=g" (xn) =

9
Hence, there exists a real number(: x,) that is betweerr and f such that

(M
fM (x) = nIM; ie., f nI(X) = M. The dgénition of M yields equation (6.8).
- !

*** A coeptable responses are: (1) g™, (2) g isthe sum of functions having those

(k)
properties, (3) f” (t) — S h=3 ﬁ t—a)2—n(n=1M(t—a)"? ()

£ (t) — n!M, (5) Rolle’s Theorem or the Mean-Value Theorem, (6) continuous,
(7)g” (x2) = 0, (8)a andxy, and (9)f ™ (x,) — nIM ***

Remark 6.5.7 For n = 1, Taylor's Approximating Polynomials Theorem is the

Mean-Value Theorem. In the general case, the error from using &; p) instead
)

of f(p)is nI(X)

an approximati'on of this error whenever we have bound#sfd?? (x)}.

(B — a)" for some x betweem and ; consequently, we have

7
Example6.5.8 Let f (x) = (1—x)"tin [—Z é]' Then, foreachre J, ™ (x) =

. . . 37
n! (1 — x)~™+D is continuous u-{—z, é}' Consequently, the hypotheses for Tay-
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lor’'s Approximating Polynomial Theorem are met for each fi. For n = 2,

1 1
P—1(y;t) =Pi(y;t) = +
" 1=y @=-y)?

t—=7).

1 1 . . 11
If o = 2 andp = —5 the Theorem claims the existence oéx(—E, Z) such

that
)] 2
(D) o (L L) fO00 (11
2 4 2 2! 2 4

o (L y_ 1 1 11\ _,
A\ 2) 1 ( 1)2 2 4]~
4

Since

1—=
4

11 2 1 9
we wish tofind X ——, =) suchthat= = 0+ —— { — )], the only real
yind x € ( 2 4) 3 T A% (16) y
solution to the last equation isopx= 1 — m which is approximately equal to
. 1 1 . .
.055. Because (is betweern = 2 andp = —5 this verfies the Theorem for the
specfied choices.

6.6 Differentiation of Vector-Valued Functions

In the case of limits and continuity we have already justified that for functions

from R into R¥, properties are ascribed if and only if the property applies to each

coordinate. Consequently, it will come as no surprise that the same “by co-ordinate
property assignment” carries over to differentiability.

Definition 6.6.1 A vector-valued functionf froma subset Q of R into RK is differ-
entiable at a pointy € Q if and only if f is defined in a segment containing ¢ and
there exists an element of RX, denoted by f' (¢'), such that

lim |LO — (O

t—¢ t—¢

-] =0

where |-| denotes the Euclidean k-metric.
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Lemma 6.6.2 Suppose that;f fo, ..., fx are real functions on a subsg&tof R and
f(x) =(f1(xX), f2(x), ..., fk (X)) for x € Q. Thenf is differentiable at € Q with
derivativef’ (¢) if and only if each of the functiong,ffo, ..., fx is differentiable at

¢andf’ () = (f{ (), 1), - ().
Proof. For t and ¢ in R, we have that

fO-FQ o . (f®O)-1()
?—f(@—(—t_

fu® - k(@
i fk(C))-

Consequently, the result follows immediately from Lemma 4.3.1 and the Limit of
Sequences Characterization for the Limits of Functions. m

- 1),

Lemma6.6.3 If f is a vector-valued function fro®2 c R into RX that is differen-
tiable at a pointy € Q, thenf is continuous at .

Proof. Suppose that f is a vector-valued function fromQ c R into RX that is
differentiable at a poing € Q. Thenf is ddined in a segmerit containing; and,
fort e I, we have that

f — f f — f
f(t)—f(():( 1(2_(1(6) t=0). . k(ti):_[k(f) (t—C))

— (f1(0)-0, f2(0) - 0, ..., fx () - 0) ast —> ¢.
Hence, foreach € J, 1 < j <Kk, tIim fj (t) = fj (¢); i.e., eachf; is continuous
-¢
at¢. From Theorem 5.2.10(a), it follows thiais continuous at. m

We note that an alternative approach to proving Lemma 6.6.3 simply uses Lemma
6.6.2. In particular, from Lemma 6.6 2(x) = (f1 (X), f2 (X), ..., fk (X)) differen-
tiable at; implies thatf; is differentiable at for eachj, 1 < j < k. By Theorem
6.1.13, f; is continuous at for eachj, 1 < j <k, from which Theorem 5.2.10(a)
allows us to conclude th&ix) = (f1 (x), f2 (X), ..., fk (X)) is continuous at .

Lemma 6.6.4 If f and g are vector-valued functions fron® c R into RX that are
differentiable at a poing € Q, then the sum and inner product are also differen-
tiable at¢.

Proof. Supposethat f (x) = (1 (X), f2 (X), ..., fk (X)) and
gX) = (g1 (X), g2 (X), ..., gk (X)) are vector-valued functions from2 c R into
RK that are differentiable at a pointe Q. Then

(f+9) () = ((fr+91) (¥, (f24+92) (), ..., (fk + k) (X))
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and

(fe ) (X) = ((f101) (X), (f202) (X), ..., (fkOk) (X)) .

From the Properties of Derivatives (c) and (d), foreach j € J, 1 < j < Kk,
(fj +gj) and (f;g;) aredifferentiable at ¢ with (f; +g;) () = fi () + 9 ()
and (fjg;) () = /() 9j (O) + T} () g} (¢). From Lemma6.6.2, it follows that
(f + g) isdifferentiable at ¢ with

f+9 @ =F+d) )= ((f{+9) O, (+%) O, (T +9) )
and (f e g) isdifferentiable at ¢ with

feg) ()= (Feg) )+ (fed) ().

|

The three lemmas might prompt an unwarranted leap to the conclusion that all
of the properties that we have found for real-valued differentiable functions on sub-
sets ofR carry over to vector-valued functions on subset®ofA closer scrutiny
reveals that we have not discussed any results for which the hypotheses or conclu-
sions either made use of or relied on the linear orderinfR oince we loose the
existence of a linear ordering when we goR$, it shouldn’t be a shock that the
Mean-VaZIue Theorem does not extend to the vector-valued functions from subsets
of R to R“.

Example 6.6.5 For x € R, let f (X) = (cosx, sinx). Show that there exists an in-
terval[a, b] such thaf satigies the hypotheses of the Mean-Value Theorem without
yielding the conclusion.

From Lemma 6.6.2 and Lemma 6.6.3, we have thatdifferentiable in
(a, b) and continuous irja, b] for any a b € R such that a< b. Sincef (0) =
f(2r) = (1,0),f(2r)—f(0) = (0, 0). Becausd’ (x) = (—sinx, cosx), |[f' (x)| =
1 for each xe (0, 2r). In particular, (vx € (0, 2x)) (' (x) # (0, 0)) from which
we see thatvx € (0, 27)) (f (2z) — f (0) # (2 — 0)f' (x)); i.e.,

—~ @) [x € (0,27) A (f(2r) = (0) = 2z — O)f (¥))].

Remark 6.6.6 Example 5.18in our text jugies that L'HOpital’s Rule is also not
valid for functions fronR into C.
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When we justify that a result known for real-valued differentiable functions on
subsets ofR does not carry over to vector-valued functions on subsel®, af is
natural to seek mofications of the original results in terms of properties that might
carry over to the different situation. In the case of the Mean-Value Theorem, success
in achieved with an inequality that follows directly from the theorem. From the
Mean-Value Theorem, if is a function that is continuous on the intervak [a, b]
and differentiable on the segmelrit = (a, b), then there exists a numbére |°
such thatf (b) — f(a) = f'(¢) (b—a). Since¢ e 1°, |f'(&)| < sup|f (x)|.

xele°

This leads to the weaker statement thiatb) — f (a)| < |b —a| sup|f’ (x)|. On
xel©°

the other hand, this statement has a natural candidate for generalization because the
absolute value or Euclidean 1-metric can be replaced with the Euclidestric.

We end this section with a proof of a vector-valued adjustment of the Mean-Value
Theorem.

Theorem 6.6.7 Suppose that f is a continuous mapping of [a, b] into RX that is
differentiablein (a, b). Then there exists x € (a, b) such that

f (o) —f @I < (b—a)|f' () (6.10)

Proof. Suppose that= (f1, f») is a continuous mapping o&[b] into RK that
is differentiable in(a, b) and letz = f (b) — f (a). Equation 6.10 certainly holds
if z=(0, 0); consequently, we suppose tlzag (0, 0). By Theorem 5.2.10(b) and
Lemma 6.6.4, the real-valued function

¢ () =zef(t) fort € [a, b]

Is continuous ind, b] and differentiable ina, b). Applying the Mean-Value The-
orem tog, we have that there existse (a, b) such that

p0)—¢@=9¢"(x)(b—2a). (6.11)
Now,
p(0)—¢ @ =zef(b)—zef(a)
={FfM® —-f@)ef(b)—(f(b)—f(a)ef(a)
={Ffm —-f@)e(f(b)—Ff(a)

=z.z=|z|2.



266 CHAPTER 6. DIFFERENTIATION: OUR FIRST VIEW

For z; = (f1 (b) — f1(a)) and zo = (f2 (b) — 2 (a)),
lp ()| = |zef (X)| =|z2f{ (X) + 225 (X)|
< izl + [z2ly/| 1 00| + | (0] = 12 f (0|

by Schwarz's Inequality. Substituting into equation (6.11) yields

1> = (b—a) |zef (x)| < (b—a) |zl | (X

which implies|z| < (b — a) |f (x)| becausgz| # 0. m

6.7 Problem Set F

1. Use the dnition to determine whether or not the given function is differen-
tiable at the spefied point. When it is differentiable, give the value of the
derivative.

(@ f(x)=x3x=0

[ x3 ,for 0<x<1

(b) f(xX) =] ;x=1
| Jx for x>1

ﬁsini Jfor x#£0
(© f0= X ;x=0

[ O Jfor x=0

— X =
22+ 1’

2. Prove that, iff andg are differentiable at, thenF(x) = (f + g)(x) is
differentiable ag andF'(¢) = f/'(¢) + d'(©).

d fx)=

3. Use the dénition of the derivative to prove thdt (x) = x" is differentiable
onR for eachn € J.

x2 for xeQ
4. Letf (x) = .
0 ,for x¢Q

Is f differentiable atx = 0? Carefully justify your position.



6.7. PROBLEM SETF 267

5. If f isdifferentiableat ¢, prove that

o T ah = T —ph)
h—0 h

=@+p) 1.

6. Discussthe differentiability of the following functions on R.

@ f)=Ixl+Ix+1
(b) f(x)=x-Ix|

7. Suppose that f : R — R is differentiable at a point ¢ € R. Given any
two sequences {an}qo ; and {bn}p2; such that an # by for each n e J and
lima, = lim b, = ¢, isit true that
n—oo n— oo

lim @) — T (@)

n— oo bn — an

= ' (c)?

State your position and carefully justify it.
8. Use the Principle of Mathematical Induction to prove the Leibnitz Rule for
the nt" derivative of a product:

n

(19 60 = > (1) 1" 009 00

k=0

where (}) and @ (x) = f (x).

n!
— (n=Kk)! (k)
9. Usederivative formulasto find f’ (x) for each of the following. Do only the
obvious simplifications.
4x5 +3x —1

a f(x)=
@ 160 (x5 + 4x2 (5x3 — 7x4)7)

3
Ltax (4x9 — 3x + 10)2
(2+x2)°

15

(b) f(x)= (4x2 +

(2x2 + 3x5)3 +7

(@ f(x)= 7]
m+@+¢ﬁ?@
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10 12
@ 0= ((3x5 + X—15) + (wm - 5x2) 5)

(e f X :\/3+\/2+\/1+x

10. Complete the following steps to prove that

. snd . cosO—1
Iim— =1 and Im———— =

0.
0—0 0 0-0 0

(a) Draw a figure that will serve as an aid towards completion of a proof
sng

that lim—— = 1.
0—0 0
i. On acopy of a Cartesian coordinate system, draw a circle having
radius 1 that is centered at the origin. Then pick an arbitrary point
on the part of the circle that isin the first quadrant and label it P.
ii. Label the origin, the point (1, 0), and the point where the line x =
P would intersect the x-axis,

O, B, and A, respectively.

lii. Suppose that the argument of the politin radian measure, .
Indicate the coordinates of the poiRtand show the line segment
joining P to A in your diagram.

iv. If your completed diagram is correctly labelled, it should illustrate
that

sng  |PA

0 length of PB

Where|ﬁ} denotes the length of the line segment joining points

P andA and PB denotes the arc of the unit circle from the paht
to the pointP.

v. Finally, the circle having radiufOA| and centered at the origin
will pass through the poinf and a point and a point on the ray
OP. Label the point of intersection wit® P with the letterC and

show the ar€ A on your diagram.
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(b) Recall that, for acircle of radiusr, the area of a sector subtended by 0
2

. or
radiansis given by - Prove that

0cos’d cosfsingd 0
< < =
2 2 2
for 0 satisfying the set-up from part (a).
._sing
(c) Prove that lim—— = 1.
0—-0 0
. . cos) —1
(d) Recall that sifi0 + cof 0 = 1. Prove that |II81T =0.
_)

11. The result of Problem 10 in conjunction with the discussion that was offered
in the section on Formulas for Derivatives jtiss the claim that, for any

X € R, (sinx)’ = cosx and(cosx) = —sinx, wherex is interpreted as
radians. Use our Properties of Derivatives and trig identities to prove each of
the following.

(a) (tanx)’ = se@x

(b) (secx)’ = secx tanx

(c) (cscx)’ = — cscx cotx

(d) (In|secx + tanx|)’ = secx
(e) (In|cscx — cotx])’ = cscx

12. Use derivative formulas tiind f’ (x) for each of the following. Do only the
obvious simpliications.

@) f (x) = sir (3x4 + cod (Zx2 + \/x47+7))

tar® (4x + 3x?)
1+ cog (4x5)

(b) f ()=

2
) f(x)=(1+sed (3x))4 (x3 + - tanx)

2X2+1

(d) f (x) =cos (x4 — 4J1+ sed x)4
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13. Find each of the following. Use L'HOpital’'s Rule when it applies.

tanx
im ——
@ =
. tarPx —tar® x
(b) Jlno 1 — cosx

() lim —

4x3 + 2x2 — X
X—>005x3 + 3x2 4+ 2x
tanx — x
(e) Im—-—s—

x—0 x3
(f I|rr21+ X=2)In(x—-2)

(d) |

14. For f (x) = x3 andxp = 2 in the Fundamental Lemma of Differentiation,
show thaty (h) = 6h + h?.

1 . : :
15. Forf (x) = andxp = 1 in the Fundamental Lemma of Differentia-

X
tion, find the corresponding (h).

16. Suppose that, g, andh are three real-valued functions &andc is afixed
real number such that (c) = g(c) = h(c)andf’(c) = g (c) = h' (c). If
{A1, A2, Az} is a partition ofR, and

f(x) ,for xe A
LX)=1 g(x) ,for xe Ay ,
h(x) ,for xe As

prove thatlL is differentiable ak = c.

17. If the second derivative for a functidnexists atxg € R, show that

i fXo+h)—2f (X0)+ f (xo—h)
m
h—0 h2

— f”(X)

18. For each of the followindind formulas forf (™ in terms ofn e J.
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@ fx= Gx 122
(b) T (X) =9n(2x)
© f(X)=In(4x+23)
(d) f (X) — e(5x+7)

e X Jfor x>0

19. For f (x) = , show that f( (0) exists for each

0 ,for x<0O

n e J andisequa to 0.

20. Discuss the monotonicity of each of the following.

(@ f(x)=x*—4x+5

(b) f(x)=2x34+3x+5

© f ()= x+1
2x—1

(d) f (x)=x3eX

€ fx)=@0A+xe™
Inx

) fxO=—

X2

21. Supposethat f isareal-valued function orR for which both thefirst and sec-

22.

23.

ond derivatives exist. Determine conditions &hand f” that will suffice to
justify that the function is increasing at a decreasing rate, increasing at an in-
creasing rate, decreasing at an increasing rate, and decreasing at a decreasing

rate.

For a functionf from a metric spac& to a metric spac¥, let F; denote the
inverse relation fron¥ to X. Prove thatF is a function from rngf into X
if and only if f is one-to-one.

For each of the following,

e find the segment, k = 1,2, ..., where f is strictly increasing and
strictly decreasing,
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24.

25.
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e find the corresponding segments Jx = f (Ix) on which the correspond-
ing inversegy of f are déined,

e graph f on one Cartesian coordinate system, and each of the corre-
sponding inverses on a separate Cartesian coordinate system, and

e wWhenever possible, with a reasonable amount of algebraic manipula-
tions, find eachyy.

(@ f(X)=x>4+2x+2

2
®) f00="5

%2
(c) f(x)=?+3x—4

(d) f (x) =sinx for —37” <X<2r

3
(e) f(x):%+x2—4x+1

Suppose that andg are strictly increasing in an intervaland that

(f-9(x)>0

for eachx € |. Let F andG denote the inverses df andg, respectively,
and J; and Jo denote the respective domains for those inverses. Prove that

F (X) < G(x) for eachx € J; N Jy.

For each of the following, the Inverse Function Theorem applies on the indi-

cated subset @&. For each giverf find the corresponding inverge Use the

properties of derivatives tiind f’ andg’. Finally, the formulas forf’ andg’

to verify equation (6.6).

(@) f (x) = x3+ 3x for (—oo, 00)

4 1
) f(x) = x211 for (E,oo)

(c) f (x) =e™ for (—o0, 0)
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1
xsin— ,for 0<x<1
26. For f (x) = X , findthesegments Iy, k—1, 2, ...,

0 ,for x=0
where f is strictly increasing and strictly decreasing and the corresponding
segments Jx where the Inverse Function Theorem applies.

27. For each of the following, find the Taylor polynomials P (t) as described in
Taylor's Approximating Polynomials Theorem about the indicated ppint

@ f(x)= vy =1

5—2x
(b) f (x)=sinx;y =

NI

) f=e*1y=2
d fxX)=In@d—-x);y =1

28. For each of the following functions froRinto R3, find f'.

3.
@ f(x) = (% x tan(3x) , e cos(3x — 4))

(b) f(x) = (In (2x® + 3) , secx, sin® (2x) cos (2 + 3x?))

29. Forf (x) = (x2 +2X+2,3x + 2) in [0, 2], verify equation (6.10).
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Chapter 7

Riemann-Stieltjes Integration

Calculus provides us with tools to study nicely behaved phenomena using small
discrete increments for information collection. The general ideaisto (intelligently)
connect information obtained from examination of a phenomenon over alot of tiny
discrete increments of some related quantity to “close in on” or approximate some-
thing that behaves in a controlled (i.e., bounded, continuous, etc.) way. The “clos-
ing in on” approach is useful only if we can get back to information concerning the
phenomena that was originally under study. The kewé this approach is most
beautifully illustrated with the elementary theory of integral calculus ®dt en-
ables us to adapt some “limiting” formulas that relate quantities of physical interest
to study more realistic situations involving the quantities.

Consider three formulas that are encountered frequently in most standard phys-
ical science and physics classes at the pre-college level:

A=l -w d=r-t m=d-|I.

Use the space that is provided to indicate what you “know” about these formulas.

Our use of these formulas is limited to situations where the quantities on the
right are constant. The minute that we are given a shape that is not rectangular,
a velocity that varies as a function of time, or a density that is determined by our
position in (or on) an object, at first, we appear to be “out of luck.” However, when
the quantities given are well enough behaved, we can obtain bounds on what we

275
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wish to study, by making certain assumptions and applying the known formulas
incrementally.

Note that except for the units, the formulas are indistinguishable. Consequently,
illustrating the “closing in on" or approximating process with any one of them car-
ries over to the others, though the physical interpretation (of course) varies.

Let's get this more down to earth! Suppose that you build a rocket launcher as
part of a physics project. Your launchiéres rockets with an initial velocity of 25
ft/min, and, due to various forces, travels at a tafe) given by

v (t) = 25— t? ft/min

wheret is the time given in minutes. We want to know how far the rocket travels in
thefirst three minutes after launch. The only formula that we hadessr - t, but

to use it, we need a constant rate of spéslcan make use of the formula to obtain
bounds or estimates on the distance travelled. To do this, we can take increments in

the time from 0 minutes to 3 minutes and “pick a relevant rate” to compute a bound
on the distance travelled in each section of time. For example, over the entire three
minutes, the velocity of the rocket is never more thatf25min.

What does this tell us about the product
(25 ft/min) - 3 min

compared to the distance that we seek?

How does the product (16 ft/min) - (3 min) relate to the distance that we seek?

We can improve the estimates by taking smaller increments (subintervals of 0
minutes to 3 minutes) and choosing a different “estimating velocity” on each subin-
terval. For example, using increments 05 Iminutes and the maximum velocity
that is achieved in each subinterval as the estimate for a constant rate through each
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subinterval, yields an estimate of
(25 ft/min) - (1.5 min) + ((25 — %) ft/min) -(1.5min) = 5%3 ft.

Excursion 7.0.1 Find the estimate for the distance travelled taking increments of
one minute (which isnot small for the purposes of cal culus) and using the minimum
velocity achieved in each subinterval as the “estimating velocity.”

***Hopefully, you obtained 61 feet.***

Notice that none of the work done actually gave us the answer to the origina
problem. Using Calculus, we can devel op the appropriate tool s to solve the problem
as an appropriate limit. This motivates the development of the very important and
useful theory of integration. We start with some formal definitions that enable us to
carry the “closing in on process” to its logical conclusion.

7.1 Riemann Sumsand Integrability

Definition 7.1.1 Given a closed interval | = [a, b], a partition of | is any finite
strictly increasing sequence of points P = {Xo, X1, .. ., Xn—1, Xn} Such that a = xp
and b = x,. The mesh of the partition {xg, X1, ..., Xn—1, Xn} iSdefined by
meshpP = max (Xj — Xj-1) -

Each partition of I, {Xo, X1, ..., Xn—1, Xn}, decomposes | into n subintervals |j =
[Xj—1,%j], ] =1,2,..,n,suchthat I; NIy = xj ifand only if k = j + 1 and is
empty for k #£ j or k # (j + 1). Each such decomposition of | into subintervalsis
called a subdivision of I.

Notation 7.1.2 Given a partition P = {Xg, X1, ..., Xn—1, Xn} Of aninterval 1 =
[a, b], the two notations Ax; and ¢ (1) will be used for (x; — xj_1), thelength of
the jt" subinterval in the partition. The symbol A or A (1) will be used to denote
an arbitrary subdivision of an interval |.
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If f isafunction whose domain containsthe closedinterval | and f isbounded
ontheinterval |, weknow that f has both aleast upper bound and a greatest lower
bound on | aswell as on each interval of any subdivision of I.

Definition 7.1.3 Given a function f that is bounded andfaed on the interval
| and a partition? = {Xo, X1, ..., Xn—1, Xn} Of I, let Ij = [xj_1,xj], Mj =
supf (x)and m = inlf f (x)for j =1,2,...,n. Then thaipper Riemann sum of
Xelj Xelj

f with respect to the partition P, denoted by UP, f), is d¢ined by
n
U (P, f) = D MjAx
j=1
and thelower Riemann sum of f with respect to the partition P, denoted by
L (P, T), is d¢gined by
n
L(P, )= ij AX;j
j=1

whereAx; = (Xj — Xj-1).

Notation 7.1.4 With the subdivision notation the upper and lower Riemann sums
for f are denoted by UA, f) and L(A, f), respectively.

11
Example7.1.5 For f(x) = 2x+1inl = [0,1] andP = O’Z’E’%’ll’

1(3 5 9 1 3 5
U(P,f)=Z(§+2+§+3)=ZandL(P,f):Z(1+—+2+§)=

0 ,for xeQN[O,2]
Example7.1.6 Forg (x) =
1 ,for x¢QnNJO0,2]
U(A(l),g)=2andL(A (I),g) = 0for any subdivision of0, 2].

To build on the motivation that constructed some Riemann sums to estimate a
distance travelled, we want to introduce the idea of refining or adding points to
partitions in an attempt to obtain better estimates.
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Definition 7.1.7 For a partition Px = {Xo, X1, ..., Xk—1, Xk} Of an interval | =
[a, b], let Ak denote to corresponding subdivision of [a, b]. If P, and Py, are
partitions of [a, b] having n+ 1 and m+ 1 points, respectively, and P, C Pm, then
Pm isarefinement of P, or A, isarefinement of Ap. If the partitions P, and P
are independently chosen, then the partition P, U Py, is a common refinement of
Pn and P, and the resulting A (P U P) is called a common refinement of Ap
and A,

. 13 11153
E 718 L = -, =1 *=10,—-, =, =, =, — 1t.
XCursion 8 Let P [O, > 7 ]andP [O, 1’328 2 ]

(@ If A and A* are the subdivisions of | = [0, 1] that correspond P and P*,
. 1 13 3 . .
respectively, then A = [[O E} , [5’ Z} , [Z’ 1“ Find A*.

3
> = E,Z,andb: Z,l.Fork=1,2,3,IetA(k)be

the subdivision of I that consists of all the elements of A* that are contained
inly. Find A (k) fork = 1, 2, and 3.

(b) Set|1=|:0,}i|,|2 13

(c) For f (x) = x2 and the notation established in parts (a) and (b), find each of
the following.

(i) m=inf f ()
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(i) mj =X|£||f f(x)forj =123
J

(i) m =inf 3inf £ ()2 J e A(j)]

(iv) M =supf (x)

xel

(v) Mj =supf (x)forj=1,2,3

Xel |

(vi) MJ?k =sup{supf (X):J e A(j)

xeld

(d) Note how the values m,jmmj, M, M;, and M compare. What you ob-
served is a special case of the general situation. Let
P = {XO = aa Xla LREE) Xn—ls Xn = b}

be a partition of an interval I= [a, b], A be the corresponding subdivision
of [a, b] andP* denote a rénement of® with corresponding subdivision de-
noted byA*. Fork =1, 2, ..., n, let A (k) be the subdivision of;Iconsisting
of the elements oA* that are contained inyl. Justify each of the following
claims for any function that is g@ed and bounded on 1.

@ Ifm= )I(I;l: f(x)andm = X|£1|fl f (x),then, for j=1,2,...,n, m< m;

andm < inf f (x) for J € A ().
xelJ
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(i) M =supf (x) and Mj = sup f (x), then,for j =1,2,...,n, Mj <
xel Xel;
M and Mj > supf (x) for J € A (j).

xeld

Our next result relates the Riemann sums taken over various subdivisions of an
interval.

Lemma 7.1.9 Suppose that f is a bounded function with domain | = [a, b]. Let

A beasubdivisionof I, M =supf (x),andm = im:f (X). Then
xel Xe

mb-a)<L(A,f)<U(A,f)<xM((b-a) (7.2)
and
L(A, fy<L (A% f)<U (A% f)<U(A,f) (7.2)

for any refinement A* of A. Furthermore, if A, and A, are any two subdivisions
of |, then

L(A,, f)<U (A f) (7.3)
Excursion 7.1.10 Fill in what is missing to complete the following proofs.

Proof. Suppose that f is a bounded function with domain | = [a,b], M =
supf (x), and m = im:f (x). For A = {lx:k=1,2,...,n} an arbitrary subdi-
Xe

xel

vision of I, let Mj = supf (x) andm; = inlf f(x). Thenl; c I for each
X€|j Xe j

j =1,2,...,n, we have that

m<mj < ,foreachj =1,2,...,n.
@)

BecauseAx; = (xj — xj—1) > 0 for eachj = 1, 2,..., n, it follows immediately
that

n n
=m> (xj —xj_1) < > mMjAx; =L (A, f)
&) =1 j=1
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and

n n

D mjAx; < > MjAx; =U (A, ) < =M(b-a).

j=1 j=1 ©)
Therefore, m(b—a) < L (A, f) <U (A, f) < M (b - a) asclamed in equation
(7.2).

Let A* bearefinement of A and, foreachk = 1,2, ..., n, let A (k) bethe
subdivision of |y that consists of all the elements of A* that are contained in .
In view of the established conventions for the notation being used, we know that
W) JeA*= @K (ke{l,2,..,n}AJ e AK)); adso, foreach J € A (k),
JClk=>mg=inf f(xX) <inff (x)and Mg =supf (x) >supf (x). Thus,

Xelk xed xely xed

ml () <L (AK),f) and ML) = U (AK), )

from which it follows that
n n
L(A, f)y=>"me(l) <D LA, fy=L(a%f)
j=1 j=1

and

U (A, f)= >> U, H=
j=1

@ ®

From equation (7.1), L (A*, f) < U (A*, ). Finaly, combining the inequalities
yields that

L(A, fy<L(A* f)<U (A% f)<U(A,f)
which completes the proof of equation (7.2).

Supposethat A, and A; aretwo subdivisionsof |. Then A = A, UA; is
A, and A . Because A isarefinement of A, , by the

(6)
comparison of lower sums given in equation (7.2), L (A,, f) < L (A, f). Onthe
other hand, from A being arefinement of A, it followsthat

0]
Combining the inequalities with equation (7.1) leads to equation (7.3). m
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*** Acceptableresponsesare: (1) Mj < M, (2m(b—a), Q) M X1, (Xj — Xj-1),
4 er‘zl M;¢ (1), (5) U (A*, f), (6) the common refinement of, and
(MU (A, )y <U(f,A))***

If f isabounded function with domain | = [a,b] and p = @[a, b] isthe
set of al partitions of [a, b], then the Lemmaassuresusthat {L (A, f): A € p}is
bounded above by (b —a)supf (x) and {U (A, f): A € g} isbounded below by

xel
(b—a) in1|‘ f (x). Hence, byethe least upper bound and greatest lower bound prop-
Xe
erties of the reals both syp (A, f): A e p}andinf{U (A, f): A € p}existto
see that they need not be equal, note that—for the bounded fugdiwen in Exam-
ple 7.1-we have that syp (A, Q) : A € o} = 0whileinf{lU (A,Q9): A € p} =
2.

Definition 7.1.11 Supposethat f isafunction on R that isdefined and bounded on
theinterval | = [a,b] and o = @ [a, b] isthe set of all partitions of [a, b]. Then
the upper Riemann integral and the lower Riemann integral are defined by

b b
/ f (x)dx = inf U (P, f) and / f (xX)dx = supL (P, f),
a Pep a Pegp

respectively. Iff_;f xX)dx = f;f (X) dx, then f is Riemann integrable, or just

b
integrable, on |, and the common value of the integral is denoted by / f (x) dx.
a

5+3 ,for x¢Q
Excursion 7.1.12 Let f (x) = .
0 , for xe@Q
For each n € J, let A, denote the subdivision of the interval [1, 2] that con-
sists of n segments of equal length. Yag : n € J} to find an upper bound for
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nn+1)

JZf (x)dx. [Hint: Recall that> f_; k = 5

]

***Corresponding to each A, you needed to find auseful formfor U (Ay, ). Your
work should have led you to a sequence for which the limit existsasn — oo. For

. . . . 1 2 n
n € J, the partition that givesthedesired A, |s[1, 1+ = 1+ e 1+ ﬁ]' Then

g : 5i
An = {11, 12, .oy In} with 1} = [1+ JT’”H and M; = 8+ > leads to
21 5 — 21
U(An, )= > + o Therefore, you should proved that [ f (x) dx < 7.***
It is arather short jJump from Lemma 7.1.9 to upper and lower bounds on the
Riemann integrals. They are given by the next theorem.

Theorem 7.1.13 Suppose that f is g@ed on the interval 1= [a,b] and m <
f(x)<Mforallx € I. Then

b b
m(b—a)g/ f(x)dxg/ f(x)dx<M((b-a). (7.4)
J2 a
Furthermore, if f is Riemann integrable on I, then
b
m(b—a)g/ f(x)dx<M((b—-a). (7.5)
a

Proof. Since equation (7.5), is an immediate consequence of the definition of
the Riemann integral, we will prove only equation (7.4). Let D denote the set of all
subdivisions of theinterval [a, b]. By Lemma 7.1.9, we have that, for A*, A € D,

mb-a)<L(f,A*)<U(f,A)<M(b-a).
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Since A isarbitrary,

m(b—a) <L (f, A% §A|r€1fDU(f,A)

[ f, A M(b-a)i.e
andAIQfDU(, )< M((b-a)i.e,

mb—a) <L (f, A" g/bf(x)dxg M(b—a).

a

Because A* is also arbitrary, m(b—a) < sup L (f,A*) and sup L (f, A*) <
A*eD A*eD

f_;’f x)dx; i.e,

b _
m(b—a)g/ f(x)dxg/bf(x)dx.

Combining the inequalities leads to equation (7.4). m

Before getting into some of the general properties of upper and lower integrals,
we are going to make a dlight transfer to a more general set-up. A re-examination
of the proof of Lemma 7.1.9 reveals that it relied only upon independent application
of properties of ifimums and supremums in conjunction with the fact that, for any

n
partition{Xo, X1, ..., Xn—1, Xn}, Xj —=Xj—1 > 0@and>_ (Xj — Xj—1) = Xn—Xo. Now,
j=1

given any functiorx that is déined and strictly increasing on an interval p], for
any partition? = {a = Xg, X1, ..., Xn—1, Xn = b} of [a, b],

a (P) ={a (@) = a(X0),x (X)), ..., (Xn-1) , & (Xn) = a (D)} C & ([&, b]),

a (Xj) —a (xj—1) > 0 andi (a (Xj) — @ (Xj-1)) = a (b) — a (a). Consequently,
j=1
a (P) is a partition of !

[a@,a®]=({l:1 =[c.dAra(P)cC I},

which is the “smallest” interval that contaiag[a, b]). The casex (t) =t returns
us to the set-up for Riemann sunn the other handy ([a, b]) need not be an
interval because need not be continuous.
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Example7.1.14 Let | = [0,3] and a (t) = t?> + [t]. Thena(l) = [0,1) U
. 1.5_8
[2,5) U[6, 11) U {12}. For the partitionP = [O, -1 -,2, —,3] of I, a (P) =

2’7473
1 41 82 . . . :
0,-,2,—,6,—, 12 is a partition of[0, 12] which containsx (1).
4 16 9
Definition 7.1.15 Given a function f that is bounded andfted on the closed
interval | = [a, b], a functiona that is d¢gined and monotonically increasing on
I, and a partition? = {Xg, X1, ..., Xn—1, Xn} Of | with corresponding subdivision
A, let Mj = supf (x) and my = inf f (x), for I} = [Xj-1, X} ]. Then theupper
Xelj Xelj
Riemann-Stieltjes sum off over a with respect to the partitiorP, denoted by
U(@P, f,a)orU (A, f,a), isdefined by

n
U, f,a) :ZMjAaj
=1

and the lower Riemann-Stieltjes sum of overoa with respect to the partitiorP,
denoted by L (P, f,a) or L (A, f, a), isdefined by

n
LP, f,a)= ij Aaij
j=1
where Aaj = (a (Xj) — a (Xj-1)).
Replacing x; with a (x;j) in the proof of Lemma 7.1.9 and Theorem 7.1.13

yields the analogous results for Riemann-Stieltjes sums.

Lemma 7.1.16 Supposethat f isabounded functionwith domain | = [a, b] and «
isafunction that is defined and monotonically increasingon | . Let P be a partition
of I, M = supf (x),andm = in1|‘ f (X). Then

Xe

xel
m(OC (b) —a (a)) < L (Pa fa OC) < U (Pa fa OC) < M (a (b) —a (a)) (76)
and
L (P, f,a) < L(P*, f,a) <U (P* f,a) <U (P, f,a) (7.7)

for any refinement P* of P. Furthermore, if A, and A, are any two subdivisions
of |, then

L(A,, f,a) <U (A, f,a) (7.8)
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The bounds given by Lemma 7.1.16 with the greatest lower and least upper
bound properties of the reals the following definition.

Definition 7.1.17 Suppose that f is a function on R that is defined and bounded
ontheinterval | = [a,b], o = ¢ [a, b] isthe set of all partitions of [a, b], and
a is a function that is defined and monotonically increasing on |. Then the upper
Riemann-Stieltjes integraland the lower Riemann-Stieltjes integradre defined by

b b
/ f (X)da (x) = inf U (P, f,a) and / f (X)da (X) = supL (P, f,a),
a Pegp a Pegp

respectively. Iff_abf (X)da (X) = f:f (X) da (x), then f is Riemann-Stieltjes in-
tegrable or integrable with respect ta: in the Riemann senseon |, and the

b b
common value of the integral is denoted by / f (X)da (X) or / fda.
a a

Definition 7.1.18 Supposethat o isafunction that is defined and monotonically in-
creasing on the interval k= [a, b]. Then the set of all functions that are integrable
with respect tax in the Riemann sense is denotedbg).

Because the proof is essentialy the same as what was done for the Riemann
upper and lower integrals, we offer the following theorem without proof.

Theorem 7.1.19 Suppose that f is a bounded function with domaia Ja, b], a is
a function that is déned and monotonically increasing on I, andf (x) < M
forallx € I. Then

b b
m(a(b)—a(a))SA fdag/ fda < M (a (b) —a (@)). (7.9

Furthermore, if f is Riemann-Stieltjes integrable on |, then

b
m(a (b) —a () < / f (X)da (X) < M (a (b)—a(a)). (7.10)
a
In elementary Calculus, we restricted our study to Riemann integrals of con-
tinuous functions. Even there we either glossed over the stringent requirement of
needing to check all possible partitions or limited ourselves to functions where some
trick could be used. Depending on how rigorous your course was, some examples of
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finding the integral from the definition might have been based on taking partitions
of equal length and using some summation formulas (like was done in Excursion
7.1.12) or might have made use of a special bounding lemma that applied to x" for
eachn e J.

It is not worth our while to grind out some tedious processes in order to show
that special functions are integrable. Integrability will only be a useful concept if it
IS verifiable with a reasonable amount of effort. Towards this end, we want to seek
some properties of functions that would guarantee integrability.

Theorem 7.1.20 (Integrability Criterion) Suppose that f is a function thatis bounded
on an interval I = [a, b] anda is monotonically increasing on |. Thend % (a)
on | if and only if for every > 0 there exists a partitiorP of | such that

U, f,a)—L(P, f,a) <e. (7.11)

Excursion 7.1.21 Fill in what is missing to complete the following proof.

Proof. Let f be afunction that is bounded on an interval | = [a, b] and o be
monotonically increasing on | .
Suppose that for every € > 0 there exists a partition P of | such that

U@, f,a)—LP, f,a) <e. *)

From the definition of the Riemann-Stieltjes integral and Lemma 7.1.16, we have
that

IA

b
L (P. f.a) s/ f (%) da (x) <
J2 6] @)

It follows immediately from (*) that

b b
0§/ f(x)da(x)—/ f (X)da (X) < e.

Sincee was arbitrary and the upper and lower Riemann Stieltjes integrals are con-
stants, we conclude th#f f (x) da (x) = fabf (X) da (x);i.e.,

©)
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Conversely, suppose that f € R(a) and let ¢ > 0 be given. For p =

@ [a, b] the set of al partitions of [a, b], f;’ f (X)da (X) = 7i)nf U@, f,a) and
€p

f; f X)da (X) = supL (P, f,a). Thus, % > 0 implies that there existsaP; €
Pegp

@ [a,b] suchthat [° f (x)da (x) < U (P1, f,a) < [° f () da (x) + % and there
exists P; € g [a, b] such that [ f (x) da (x) —%

4
Therefore,

b b
f (%) da (%) <%and/ f (x)da (X) = L (Py, f,a) < %

**)

Let P be the common refinement of P, and P,. Lemma 7.1.16, equation (7.7)
applied to (**) yields that

U (P, f,a)—/

a

= —/abf(x)da(x)<%and/abf(x)da(x)— = <%.
Thus
U P, f,a) = L(P, f,a))
_ (u P, f.a) = [° (x)da (x)) +( _ ) <.

|
*** A cceptable responses are: (1) f_abf X)da (), QU (P, f,a), Q) f € R(a),
4 < LP2 f,a) < fab f (X)da (x), (5) U (P, f,a), (6) L (P, f,a), and (7)
2 (0 da (X) = L (P, f,a)***

Theorem 7.1.20 will be useful to us whenever we have away of closing the gap

between functional values on the same intervals. The corollaries give us two “big”
classes of integrable functions.

Corollary 7.1.22 If f isa function that is continuous on the interval | = [a, b],
then f is Riemann-Stieltjes integrable ofa, b].
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Proof. Let o be monotonically increasingon | and f be continuouson | . Sup-
pose that > 0is given. Then there exists gn> 0 such that¢ (b) — a (a)] # < ¢.
By the Uniform Continuity Theorem{ is uniformly continuous ind, b] from
which it follows that there exists@> 0 such that

(Vu) (Vo) [u,v el Alu—o| <= |f(u)— f ()] <e].

LetP = {xo = a, X1, ..., Xn—1, Xn = b} be a partition of §, b] for which meshP <

oand,foreach,j =1,2,...,n,setMj = su f (X)andm; = inf f (X).
h J ) xJ-_lsxpst- () : Xj—1<X<Xj ()

ThenMj —m; < nand

n

UP, f,a)—L(P, f,a) =D (Mj —mj) Aaj <7 D> Aaj =nla(b) —a(@)] <e.

=1 =1
Sincee > 0 was arbitrary, we have that
VMe)(e > 0= @P) (P epla,blAaU (P, f,a)—L (P, f,a) <¢)).

In view of the Integrability Criterion,f € %R (a). Becausex was arbitrary, we
conclude thatf is Riemann-Stieltjes Integrable (with respect to any monotonically
increasing function org, b]). =

Corollary 7.1.23 If f isafunction that ismonotonic ontheinterval | = [a, b] and
a is continuous and monotonically increasingon |, then f € R (a).

Proof. Suppose thaf is a function that is monotonic on the interdai= [a, b]
anda is continuous and monotonically increasinglori-ore > 0 given, letn € J,
be such that

(@ (b)—a@)|f (b) - @] <ne.

Becausex is continuous and monotonically increasing, we can choose a partition
P = {Xo = &, X1, ..., Xn—1, Xn = b} of [a, bl suchthatAaj = (a (Xj) — a (Xj-1)) =

M. If fis monotonically increasing ih, then, foreach € {1, 2, ..., n},
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Mj= sup f(x)=f(xj))andm;=_inf f(x)=f(xj-1)and

Xj -1 <X<X; Xj—1=X=Xj

n
UP, f,a)=L(P, f,a) =D (Mj—mj) Aqg;
i=1

MZ f(xj) = f(xj_1))

n

= O (1 ) - 1 @y <

while f monotonically decreasing yieldsthat M; = f (xj_1), m; = f (x;) and

U (P, f,a) — L (P, f,a)_wz (Xj—1) = f (x}))
_ab)—a(d
N n

(f(@—f(b)) <e.
Since¢ > 0 was arbitrary, we have that
VMe)(e > 0= @P) (P epla,blAaU (P, f,a) =L (P, f,a) <¢)).

In view of the Integrability Criterion, f € R (). m

Corollary 7.1.24 Suppose that f is bounded on [a, b], f has only finitely many
points of discontinuity in I = [a, b], and that the monotonically increasing function
a is continuous at each point of discontinuity of f. Then f € R (a).

Proof. Let ¢ > 0 be given. Suppose that f isbounded on [a, b] and continuous
on [a,b] — E where E = {¢1, (2, ..., ¢k} IS the nonempty finite set of points of
discontinuity of f in[a, b]. Suppose further that o is a monotonically increasing
function on [a, b] that is continuous at each element of E. Because E is finite and
a is continuous at each ¢j € E, we can find k pairwise disoint intervals [uj, vj],
] =1,2,...,k, such that

”'C*

k
],DJ C[a,b] and Z(a(vj)—a(uj))<g*
=1
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for any ¢* > O; furthermore, the intervals can be chosen in such a way that each
point ¢m € E N (a, b) is an element of the interior of the corresponding interval,
[Um, Um] . Let

k

K =[ab] - (uj,0;).

j=1

Then K iscompact and f continuous on K impliesthat f isuniformly continuous
there. Thus, corresponding to ¢* > 0, there existsad > 0 such that

(V) (V) (s,te K Als—t] <d= [f(s)— f (D) <¢&¥).

Now, let P = {xo = a, X1, ..., Xn—1, Xn = b} be a partition of [a, b] satis-
fying the following conditions:

e V) (je{L2, ...k} =>ujePAvjeP),
e (Vi) (j €{1,2, ...k} = (uj,vj) NP =4), and
e (VPp)(VD[(Pe{l2,...,n}Aje{l,2,..,K} AXp_1 # Uj) = AXp < ).

Note that under the conditions establisheg,, = uj implies thatxq = v;j. If

M =sup|f (X)|, Mp = sup f(x)andmp = _inf f (x), then for each
xel Xp-1<X<Xp Xp—1=<X<Xp

P, Mp — mp < 2M. FurthermoreM, — mp < ¢* as long axp_1 # uj. Using
commutativity to regroup the summation according to the available bounds yields
that

UP, f,a)—L(P, f,a) =D (Mj —mj) Aaj < [a(b) —a (@] " +2Me* <&
j=1

& . .
whenevers* < . Sincee > 0 was arbitrary, from the Inte-

oo 2M +[a(b?—a(a)]
grability Criterion we conclude that € R (). =

Remark 7.1.25 The three Corollaries correspond to Theorems 6.8, 6.9, and 6.10
inour text.

As a fairly immediate consequence of Lemma 7.1.16 and the Integrability Cri-
terion we have the following Theorem which is Theorem 6.7 in our text.
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Theorem 7.1.26 Suppose that f is bounded on [a, b] and « is monotonically in-
creasing ofa, b].

(a) If there exists am > 0 and a partitionP* of [a, b] such that equation (7.11)
Is satigied, then equation (7.11) is sgfiexd for every rénementP of P*.

(b) Ifequation (7.11) is sait&ed for the partitior’P = {xg = a, X1, ..., Xn—1, Xn = b}

and, for each j, j=1,2,...,n, s; and t are arbitrary points in[x;j_1, X; ],
then

fS—f Aaj < ¢.
Z|J tj)| A

(c) If f € R(a), equation (7.11) is sajfed for the partition
= {XO =a, X1, ..., Xn—1, Xn = b}

and, for each j, j= 1,2, ..., n, t; is an arbitrary point in[x;_1, X;], then

< €.

b
(tj) Aaj —/a f (X)da (X)

Remark 7.1.27 Recall the following dgnition of Riemann Integrals that you saw
in elementary calculus: Given a function f that isfided on an interval | =
{Xx:a<x<b},the“R”sumforA = {l1, I, ..., In} a subdivision of | is given by

I
S

i

f(&)e())

I\
[

i

where(; is any element ofjl The point; is referred to as a sampling point.
To get the “R” integral we want to take the limit over such sums as the mesh
of the partitions associated withh goes to0. In particular, if the function f

iIs dgined on | = {x:a < x < b} and g [a, b] denotes the set of all partitions
{Xo = a, X1, ..., Xn—1, Xn = b} of the interval I, then f is said to be “R” integrable
over | if and only if

=

j=
f (&) (6 = xj-)

m&ehP[a b]—0 =1
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exists for any choices d@f € [xj_1, xj]|. The limitis called the “R” integral and is

denoted byj: f (x)dx.

Takinga (t) =t in Theorem 7.1.26 jugies that the old concept of an “R”
integrability is equivalent to a Riemann integrability as introduced at the beginning
of this chapter.

The following theorem gives a sufficient condition for the composition of a
function with a Riemann-Stieltjes integrable function to be Riemann-Stieltjes inte-
grable.

Theorem 7.1.28 Suppose f € R(a)on[a,b], m < f < M on|[a,b], ¢ iscon-
tinuous on[m, M], and h(x) = ¢ (f (x)) for x € [a,b]. Then he R (a) on
[a, b].

Excursion 7.1.29 Fill in what is missing in order to complete the proof.

Proof. For f € R(a) on[a,b] suchthat m < f < M onJ[a,b] and ¢ a
continuous function on [m, M], let h (x) = ¢ (f (X)) for x € [a, b]. Suppose that
¢ > Qisgiven. By the , ¢ isuniformly continuous on

@
[m, M]. Hence, thereexistsad > 0 such that 6 < ¢ and

Vs) (V) (s,te[mM M]AIs—tl <= p(S)—@ ()] <e). (*)
Because , thereexisssaP = {xp=4a,X1,...,Xn = b} € p[a,b]
such that ©
U P, f,a)—L (P, f,a) < (5%)
Foreach j € {1,2,..,n}, let Mj = Xj_;sg)p()sxj f(x),mj = xj_fging f (x), le* =
xJ-_lslsJEst-h (x), and mj = Xl__1i Q)f(sxjh (X). From the Trichotomy Law, we know that
A={j:je{l,2.,nA(Mj—mj) <}
and

B={j:je{l2 . .,n}A(Mj—mj) =5}
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aredigoint.
If j € A thenu,v € [Xj—1,X;] = |f (u) = f ()| < 6. It follows from
(%) that ;ie, [h(u)—h(@)| <& Hence, M{ —mj < &. Since
©)
Bc{l2..,j}, () impliesthat

5ZAaj§Z(Mj—mj)Aaj§ < &2

jeB jeB 4

Because 0 < ¢ by choice, we conclude that > Aaj < &. Consequently, for
jeB
K= sup |¢ ()], wehavethat (MJ* — m’!‘) < 2K foreach j € {1,2,...,n} and

m<t<M J

3 (M}“ - m].*) Aa;j < 2K . Combining the bounds yields that
jeB

U (Pa haa) —L (735 ha a)
n

= > (My-m) g
i=1

o> (M;—mT) Aaj+ 3 (M; —m]?‘) Aaj
jeA jeB

< + 2Ke.

©)

Since ¢ > 0 was arhitrary, the Integrability Criterion alows us to conclude that
heX(a) =

*** Acceptable responses are: (1) Uniform Continuity Theorem, (2) f € R (a), (3)
lp (F () = (f @)l <&, (AU (P, f,a)-L (P, f,a),(5) e[a (b) — a (a)]***

7.1.1 Propertiesof Riemann-Stieltjes Integrals

This section offers a list of properties of the various Riemann-Stieltjes integrals.

The first lemma allows us to draw conclusions concerning the upper and lower
Riemann-Stieltjes sums of a constant times a bounded function in relationship to
the upper and lower Riemann-Stieltjes sums of the function.
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Lemma 7.1.30 Suppose that f is a function that is bounded andnéel on the
interval | = [a, b]. For k a nonzero real number and-g kf, we have

k-inff (0 ifk>0 k-supf (x) ,ifk>0
Xe

xel
infg (x) = _ supg (X) = :
k-supf (x) ,ifk <0  xel k-inff(x) ,ifk<0O
xel xel
Proof. We will prove two of the four equalities. For f afunction that is defined
and bounded on the interval | = [a, b] and k a nonzero real number, let g (X) =
Kf (X).
Supposethatk > Oandthat M = supf (x). Then f (x) < M foral x € |

xel
and

g(x) =kf (x) <kMforal xel.

Hence, kM isan upper bound for g (x) ontheinterval | . If kM isnot theleast upper
bound, then there existsan ¢ > O suchthat g (x) < kM — ¢ foral x € I. (Here, ¢
can be taken to be any positive real that islessthan or equal to the distance between
kM and supg (x).) By substitution, we have kf (x) < kM — ¢ forall x € . Since

xel
k is positive, the latter is equivalent to

&
f(x)gM—(E) foral x e |
which contradictsthat M isthe supremum of f over |. Therefore,

supg (X) = kM = ksupf (X).

xel xel

Next, supposethat k < Oandthat M = supf (x). Now, f (x) < M for all
xel

x € | impliesthat g (x) = kf (x) > kM. Hence, kM is alower bound for g (x)
on |. If kKM is not a greatest lower bound, then there exists an ¢ > 0, such that
g(X) > kM + ¢ fordl x € I. But, fromkf (x) > kM + ¢ andk < 0, we conclude
that f (X) < M + (¢/k) for dl x € I. Since ¢/k is negative, M + (¢/k) < M
which gives us a contradiction to M being the sup f (x). Therefore,

xel

infg (x) = kM = ksupf (X).
xel

Xel
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Theorem 7.1.31 (Properties of Upper and Lower Riemann-Stieltjes Integrals)
Suppose that the functions f, f1, and f, are bounded and defined on the closed in-
terval | = [a, b] anda is a function that is déned and monotonically increasing
inl.
K[2f (x)da(x) ,if k>0
(a) If g = kf fork e R— {0}, then [Pgda =
K[2f ) da(x) ,if k<O
B K[Pf (x)da (x) ,if k>0
and [Pgda = .
K[2f () da(x) ,if k<O

(b) Ifh = fy + fo, then
(i) foh (0 da(x) > [2f1(x) da (x) + [; f2 (x) o (x), and
(i) [Ph ) da (0 < [Py (0 da (x) + [P o () da (x).
(c) If f1(x) < fa(x)forall x €I, then
0} f_:fl (X) dat (X) < f_:fz (x) dat (x), and
(i) [2 100 doc (%) < f2 f2 (%) dot ().
(d) Ifa <b < cand f is bounded on*I= {x : a < X < ¢} anda is monotoni-
cally increasing on 1, then
M) Jef (0 da ()= f_ab f () da () + fi f (0 da (), and

(i) [Sf (0 da (x) = [PF (})da () + [T (x)dat (x).
Excursion 7.1.32 Fill in what is missing in order to complete the following proof
of part d(i).

Proof. Supposethat a < b < ¢ and that the function f is bounded in the
interval | * = [a, c]. For any finite real numbers y and 4, let D [y, 4] denote the
set of all subdivisions of theinterval [y, 2]. Supposethat € > Oisgiven. Since

b C
/ f(X)da (X)= sup L(A,f,a)and [ f(X)da(X)= sup L(A, f,a),
Ja_ AeDJ[a,b] Jb AeD[b,c]
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there exists partitions P, and Py, of [a, b] and [b, c], respectively, with correspond-
ing subdivisionsA, and Ay, such that

b c
L (An, f,a)z/ f(x)da(x)—gandL(Am, f,oc)z/ f(x)da(x)—g
Ja_ Jo

For P = P, U Py, let A denote the corresponding subdivision af §]. Then

[ f () dex (%)

>

1)
= L(An, f,a)+L(Am, f,a)
>

(@)
Sincee > 0 was arbitrary, it follows that
[ b c
/ f (X)da (x) 2/ f (X)da (x)+/ f (X)da (X).
Ja_ Ja Jb_

Now, we want to show that the inequality can be reversed. Suppose thdlis
given. Since

C
/ f(X)da (X) = sup L (A, f,a),
Ja_ AeDla,c]
There exists a\" € D [a, c] such that

L(A’, f,a) >/Cf (X)da (X) —¢.

For P’ the partition of p, c] that corresponds ta\’, let P’ = P’ U {b} and A”
denote the regnement ofA’ that corresponds tB”. From

3
L (A/, f,a) <L (A”, f,a).

BecauseA” is the union of a subdivision ofa] b] and a subdivision ofH, c], it
follows from the déinition of the lower Riemann-Stieltjes integrals that

b c
/ f (X)da (X) +/ f (X)da (X) > L (A”, f,oc).
Ja_ Jb_
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Therefore,

b c
/ f (X)da (X) —I—/ f(X)da (X) > L (A”, f,a) >L (A’, f,a) >
Ja_ b

“

Since¢ > 0 was arbitrary, we conclude that
b c c
/ f (X)da (x)+/ f (X)da (X) 2/ f (X)da (X).
Ja_ b Ja_

Inview of the Trichotomy Law, [ f (x) dat (x) > f_abf () da () + fy f () da ()

and [P (x)da 0O+ [£f () da () > [CF (x) da (x) yieldsthe desired result. m
*** A cceptable responsesinclude: (1) L (A, f, a),

2 f;’f (X) da (x)+fkff (X) da (X)—¢, (3) Lemma7.1.16, (4) same as completion
for (2).x** -

Given Riemann-Stieltjes integrable functions, the results of Theorem 7.1.31
translate directly to some of the algebraic properties that are listed in the follow-
ing Theorem.

Theorem 7.1.33 (Algebraic Properties of Riemann-Stieltjes Integrals) Suppose
that the functions f, f1, f, € R () ontheinterval | = [a, b].

(@ Ifg(x) =kf (x)foral x e I,theng € R («) and
b b
/ag(x)doc(x):k/a f (X)da (X).
(b) Ifh= f1 + fo,then f1 + f2 € R () and
b b b
/h(x)da(x):/ fl(x)da(x)+/ f2 (X)da (X) .
(© If f1(x) < fo(x)forall x € I, then

b b
/ f1 () dot (x) < / f2 (X) dot (%) .
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(d) If the function fe R (a) alsoon I = {x : b < x < ¢}, then f is Riemann-
Stieltjes integrable on U | * and

c b C
/f(x)da(x):/ f(x)da(x)+A f (X)da (X).
(e) If[f xX)| < M forx e I, then

b
/ f () da (0| < M [a (0) — & ()] .

(N If f eR(a*)onl,then fe R(a+a*)and
b b b
/fd(a—l—a*):/ f(x)da(x)+/ f (x)da* (X).

(g) If cis any positive real constant, thenef % (ca) and

b b
/ fd(Ca):c/ f (X)da (X).

Remark 7.1.34 Aslong as the integrals exist, the formula given in (d) of the Corol-

lary holds regardless of the location of be., b need not be between a and c.

Remark 7.1.35 Since a point has no dimension (that is, has ler@thve note that
a
/ f (X)da (x) = Ofor any function f.
a

Remark 7.1.36 If we think of the dgénition of the Riemann-Stieltjes integrals as
taking direction into account (for example, Wi]ﬁf (X)da (x) we had a< b and

took the sums over subdivisions as we were going from a to b), then it makes sense

to introduce the convention that

a b
/ f (X)da (X) = —/ f (X)da (X)
b a

for Riemann-Stieltjes integrable functions f.
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The following result follows directly from the observation that corresponding
to each partition of an interval we can derive a partition of any subinterval and vice
versa.

Theorem 7.1.37 (Restrictions of I ntegrable Functions) If the function f is(Rie-
mann) integrable on an interval I, then| - is integrable on F for any subinterval
[ *of I.

Choosing different continuous functions for ¢ in Theorem 7.1.28 in combina
tion with the basic properties of Riemann-Stieltjes integrals allows us to generate
a set of Riemann-Stieltjes integrable functions. For example, bedause= t?,
¢2 () = |t], andgs (t) = yt + 4 for any real constantg and 4, are continuous
onR, if f € % (a) on an interval &, b], then each of f)2, | f|, andy f + 1 will
be Riemann-Stieltjes integrable with respect:ton [a, b]. The proof of the next
theorem makes nice use of this observation.

Theorem 7.1.38 If f € R (a) and g € R (a) on [a, b], then fg € R (a).

Proof. Suppose that € % (o) andg € % (a) on [a, b]. From the Algebraic
Properties of the Riemann-Stieltjes Integral, it follows that+ g) € %R () on
[a,b] and (f — g) € % () on [a, b]. Taking¢ (t) = t2 in Theorem 7.1.28 yields
that(f + g)? and(f — g)? are also Riemann-Stieltjes integrable with respeet to
on [a, b]. Finally, the difference

4fg=(f +9)°>— (f —g)* € R(a) on [a,b]
as claimed.m

Theorem 7.1.39 If f € R (a) on[a, b], then|f| € R (a) and

b b
/ f (x)da (X) s/ If 00] dot ().

Proof. Supposef € %R (a) on[a,b]. Taking¢ (t) = |t| in Theorem 7.1.28
yields that|f| € %R (a) on [a,b]. Choosey = 1, if [ f (x)da (x) > 0 and
y =—=1,if [ f (X)da (x) < 0. Then

b b
/f(x)da(x):y/ f(X)da(x) and yf(x)<|f(x)| forx e [a,Db].
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It follows from Algebraic Properties of the Riemann-Stieltjes Integrals (a) and (c)
that

b b b b
/ f (%) da () =y/ f(x)da(x)=/ yf(x)da(x)s/ If (0] det (%)

|

One glaring absence from our discussion has beenfapegamples ofinding
the integral for integrable functions using thefidgion. Think for a moment or
so about what the dimition requires us tdind: First, we need to determine the
set of all upper Riemann-Stielties sums and the set of all lower Riemann-Stieltjes
sums this is where the subdivisions of the interval over which we are integrating
range over all possibilities. We have no uniformity, no simple interpretation for the
suprema and fima we need, and no systematic way of knowing when we “have
checked enough” subdivisions or sums. On the other hand, whenever we have
general conditions that insure integrability, the uniqueness of the least upper and
greatest lower bounds allows usfiod the value of the integral from considering
wisely selected special subsets of the set of all subdivisions of an interval.

The following result offers a stitient condition under which a Riemann-Stieltjes
integral is obtained as a point evaluation. It makes use of the characteristic function.
Recall that, for a seband A c S, thecharacteristic function ya : S— {0, 1} is
defined by

1 ,if xeA
XA (X) =
0O ,if xeS—A

In the following, x(0,o) denotes the characteristic function wih= R and A =
(0, o0); i.e.,

1 ,if x>0

X(0,00) (X) = :
0 ,if x<0O

Lemma 7.1.40 Supposethat f isbounded on [a, b] and continuous at s € (a, b).
If & (X) = x(0,00) (X —S), then

b
/ f (X)da (X) = f ().
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Proof. For each’P = {xo = a, X1, ..., Xn—1, Xn = b} be an arbitrary partition for
[a, b], thereexistsaj € {1,2,...,n} suchthat s € [Xj_]_, Xj). From the definition
of o, wehavethat o (xx) = Oforeachk € {1, 2, ..., ] — 1} and a (xx) = 1 for each
k e{j,...,n}. Hence,

1 ,if k=]
Aok = a (X)) — o (Xk—1) = ;
0 ,if ke{l,2,...,j—1uU{j+1,..,n}
from which we conclude that
U@P, f,a)= sup fX)adL (P, f,a)= inf f(x).
Xj_1<X<X; Xj—1=X<Xj

Since f iscontinuous at s and (xj — Xj—1) < meshP, sup f(x) > sand
Xj_1§X§Xj

inf  f (xX) > sasmeshP — 0. Therefore, f;’ f(X)da(x)=f(s). m

Xj_j_SXSXj

If the function f is continuous on an interval [a, b], then Lemma 7.1.40 can be
extended to a sequence of pointsin the interval.
Theorem 7.1.41 Suppose the sequence of nonnegative real numbers {cy} 2, is

(o)
such that > ¢, is convergent, {sn}o2; is a sequence of distinct points in (a, b),
n=1

o0
and f isa function that is continuous on [a, b]. If & (X) = 2> Cnx(0,00) (X — Sn),
n=1

then
b 00
/ f () da () =D cnf(sn).
a n=1

Proof. Foru,» € (a,b) suchthatu < o,let§, = {hejJ:a<s <u}and
T,={nel:a<s <v}. Then

OC(U)ZZCnSZCnZOC(U)

neg, neT,

from which we conclude that a is monotonically increasing. Furthermore, a () =
(o)

Oanda (b) = > cy.
n=1
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o0
Let ¢ > O begiven. Since > ¢, is convergent, there exists a positive
n=1
integer K such that

K
where M = sup [f (X)|. Let a1 (X) = 2 Cnx.00) (X — ) and az(X) =
=1

xe[a,b]

o0
Y. Cnx(0,00) (X — &n). It follows from Lemma 7.1.40 that
n=K+1

b K
|1 e0daroo =Y e )
a j=1
while ¢z (b) — a2 (a) < % yields that

< é&.

b
/ f (%) daz (x)

Because a = a1 + a2, we conclude that

< é&.

b K
/ f () da () — D cnf (sn)
a n=1

Sincee > O was arhitrary, fab f(x)da(x)=> 2 1¢nf(sh). =

Theorem 7.1.42 Suppose that is a monotonically increasing function such that
a’ € Ronla,b] and f is areal function that is bounded e b]. Then fe R («)
if and only if fa’ € R. Furthermore,

b

b
/ f (xX)da (x):/ f (xX)a’ (x)dx.

a

Excursion 7.1.43 Fill in what is missing in order to complete the following proof
of Theorem 7.1.42.
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Proof. Supposethat ¢ > Qisgiven. Sincea’ € R on[a, b], by the Integrability
Criterion, there exists apartition P = {Xo, X1, ..., Xn} Of [a, b] such that

U (P,d) - (7.12)

&
< —
M

@

where M = sup|f (x)|. Furthermore, from the Mean-Value Theorem, for each
j €{1,2,...,n} there exists & € [xj_1, Xj] such that

Aaj = :a/(tj) AXj. (7.13)
@)

By Theorem 7.1.26(b) and (7.12), for asiye [Xj—1, %], j € {1,2,...,n}
Z }oc SJ —ao } AXJ <eé. (7.14)

With this set-up, we have that

Z f (Sj) Aaj = Z
=1 =1 3
and
[Z0o0f () Ay — 200 f (s5) o (s5) Axg|
= =201 T (si) o (55) Ax
@
= 2016 [0 () - o' (5)] ax)
< MISIL[@ () -’ ()] Axj| <o
That s,

n

Z (sj) Aaj — Zf (s)) &’ (sj) AX]

< (7.15)
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for any choice of pointssj € [Xj—1,Xj], j =1,2,...,n. Then
n
f(sj) Aaj <U (P, fa') +¢
j=1
and
U, f,a) <U (P, fa') +e.
Equation (7.15) aso allows us to conclude that
U (P, fa) <U (P, fa)+e.
Hence,
U (P, f,a) —U (P, fa')| <. (7.16)

Since P was arbitrary, if followsthat (7.16) holdsfor al P € @ [a, b], the set of all
partitions of [a, b]. Therefore,

b
/fumﬂm—

<eg.

®)
Because ¢ > 0 was arbitrary, we conclude that, for any function f that is bounded
on[a, b],

b

b
/ f (x)da (x):/ f (xX)a’ (x)dx.

a

Equation (7.15) can be used to draw the same conclusion concerning the compara-
ble lower Riemann and Riemann-Stieltjes integrals in order to claim that

b b
/ f (X)da (x) :/ f (xX)a’ (x)dx.

The combined equalities leads to the desired conclusmon.
*** Acceptable responses are: (1JP, o), (2) a (xj)—a (xj—1) (3) f (sj) &’ (tj) AX;
_b * k%
4) Z?:l f (Sj) o’ (tj) Axj, (5) fa f (X)a’ (X)dx.
Recall that our original motivation for introducing the concept of the Riemann
integral was adapting formulas suchAs=1-w,d =r -tandm =d - | to more
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general situations; the Riemann integral allow us to replace one of the “constant
dimensions” with functions that are at least bounded where being considered. The
Riemann-Stieltjes integral allows us to replace both of the “constant dimensions”
with functions. Remark 6.18 on page 132 of our text describes afgpegample
that illustrates tdlexibility that has been obtained.

The last result of this section gives us conditions under which we can transfer
from one Riemann-Stieltjes integral set-up to another one.

Theorem 7.1.44 (Change of Variables) Supposethat ¢ isastrictly increasing con-
tinuous function that maps an intervd\, B] onto[a, b], a is monotonically in-
creasing orfa, b], and f € R (a) on[a, b]. Fory € [A, B], let  (y) = a (¢ (Y))

and g(y) = f (¢ (y)). Then ge R (f) and

B b
/g(y)dﬂ(y)=/ f (%) da ().
A a

Proof. Because ¢ is strictly increasing and continuous, each partition P =
{Xo0, X1, ..., Xn} € g[a,b] if and only if @ = {yo, V1, ..., Yn} € @[A, B] where
xj = ¢ (yj) foreach j € {0,1,...,n}. Since f ([xj—1, Xj]) = g ([yj-1,y;]) for
each j, it follows that

U(Q,0,p)=U(P,f,a) and L(Q,09,8) =L (P, f,a).
The result follows immediately from the Integrability Criterion. m

7.2 Riemann Integralsand Differentiation

When we restrict ourselves to Riemann integrals, we have some nice results that
allow us to make use of our knowledge of derivatives to compute integrals. The
first result is both of general interest and a useful tool for proving some to the
properties that we seek.

Theorem 7.2.1 (M ean-Value Theorem for Integrals) Suppose that f is continu-
ous on I=[a, b]. Then there exists a numb&in | such that

b
/ f(xX)dx= "1 () (b—-a).
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Proof. Thisresult follows directly from the bounds on integrals given by Theo-
rem 7.1.13 and the Intermediate Value Theorem. Sintecontinuous ond, b, it
is integrable there and, by Theorem 7.1.13,

b
m(b—a)g/ f(X)dx <M (b-—a)

wherem = im: f(x) = miln f (X) = f (xp) forsomexp € | andM = supf (x) =
Xe Xe

b xel
—fa(g (x;)dx is a real number
such thatm < A < M. By the Intermediate Value Theorerh(xp) < A < f (X1)
implies that there exists@e | such thatf () = A. =

The following two theorems are two of the most celebrated results from integral

calculus. They draw a clear and important connection between integral calculus
and differential calculus. Thiérst one makes use of the fact that integrability on an
interval allows us to déne a new function in terms of the integral. Namelyf ifs
Riemann integrable on the interval, [b], then, by the Theorem on Restrictions of
Integrable Functions, we know that it is integrable on every subinterval @] In
particular, for eackx € [a, b], we can consider

maltxf (X) = f(x1) for somex; € I. Now, A =
Xe

X
f:x——>/ f (t)dt.
a

This function is sometimes referred to as the accumulatiof-gdfrobably as
a natural consequence of relating the process of integratifindimg the area be-
tween the graph of a positive function and the real axis. The vartalesed as
the dummy variable becauses the argument of the function. The accumulation
function is precisely the object that will allow us to relate the process of integration
back to differentiation at a point.

Theorem 7.2.2 (The First Fundamental Theorem of Calculus) SQupposethat f e
R on | = [a, b]. Thenthefunction F given by

F(x):/xf(t)dt

is uniformly continuous on [a, b]. If f iscontinuouson I, then F is differentiable
in (a, b) and, for each x € (a, b), F' (x) = f (x).
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Proof. Suppose that u,» € [a, b]. Without loss of generality we can assume
that u < ». Then, from the Algebraic Properties of Riemann-Stieltjes Integrals (d)

and (e),
IF () = F ()] = / f (t)dt

< Mlu-—o]

whereM = sup| f (t)|. Thus,
tel

(Ve>0)(Vu)(Vu)(u,ve | A U= 0 <5=%=>|F(o)—F(u)| <g);i.e.,

F is uniformly continuous or.

For the second part, supposés continuous ond, b] andx € (a, b). Then
there exist®; such thaf{x + h : |h| < 61} c (a, b). Sincef is continuous it is in-
tegrable on every subinterval bf for |h| < J1, we have that each q§+h f (t)dt,

X £ (tydt, and [T  (t) dt exists and

X

/ax+hf(t)dt:/axf(t)dt+/xx+hf(t)dt.

Consequently, for anly, with |h| < 01, we have that

x+h
F(x+h)—F(x):/ f (t)dt.

By the Mean-Value Theorem for Integrals, there exigtsvith |x — &,| < d1 such
that

X+h
/ f(t)dt=f (&) -h.

Hence, forlh| < 1,

F(xX+h) —F(®)
h
where|x — &| < d1. Now, suppose that > 0 is given. Sincef is continuous

at x, there exists @, > 0 such tha{f (w) — f (X)| < € whenevelqw — x| < d.
Choos&) = min{d1, d2}. Then, forlh| < J, we have

F(x+h-FX
h

= f (n)

— 0 =1f ) — X <e
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Since e > 0 was arbitrary, we conclude that

lim F(xX+h)y—F(x)
h—0 h

=fX);ie,
F'(x) = f (x). Sincex € (a, b) wasarbitrary, we conclude that F is differentiable
on theopeninterva (a, b). m

Theorem 7.2.3 (The Second Fundamental Theorem of Calculus) If f € % on
| = [a, b] and there exists a function F that is differentiable[anb] with F' = f
, then

b
/ f(t)dt=F (b)— F ().

Excursion 7.2.4 Fill in what is missing in order to complete the following proof.

Proof. Supposethat ¢ > Oisgiven. For f € R, by the , We can

o)
choose a partition P = {xo, X1, ..., Xn} Of [a,b] suchthat U (P, f) — L (P, f) <
¢. By the Mean-Value Theorem, for each € {1, 2, ...,n} there is a point; e
[Xj-1, Xj] such that

F(xj) = F (xj-1) = F'(t;) Axj =

@)
Hence,

D () ax =

j=1 (©)

n b
On the other hand, from Theorem 7.1.26(}2 f(tj) Ax; — [ f () dx| < e.
i= a

j=1

Therefore,
b

—/ f (x)dx
()

a

< €.

Sincee > 0 was arbitraryJ:,j‘b f)dt=F((b)—F(@). =
*** Acceptable responses are: (1) Integrability Criterion,f(:@j) AXj, B)F (b)—
F (a).***
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Remark 7.2.5 The statement of the First Fundamental Theorem of Calculusdiffers
from the one that you had in elementary Calculus. If instead of taking f to be
integrablein | = [a, b], wetake f to beintegrable on an open interval containing
I, we can claimthat G (x) = f; f (t) dt is differentiable on [a, b] with G’ (x) =
f (x) on[a, b]. This enables us to offer a slightly different proof for the Second
Fundamental Theorem of Calculus. Namely, it followsthat if F isany antiderivative
for f then F — G = c for some constant ¢ and we have that

b
F(b)—F(a):[G(b)-l—c]—[G(a)-l—c]=[G(b)—G(a)]=/ f (t)dt.

a

Remark 7.2.6 The Fundamental Theorems of Calculus give us a circumstance un-

der whichfinding the integral of a function is equivalentfading a primitive or
antiderivative of a function. When f is a continuous function, we conclude that it
has a primitive and denote the set of all primitives/by (x) dx; tofind the d@nite

integral fab f (x) dx, wefind any primitive of f, F, and we conclude that
b
/ f(x)dx=Fx)[2=F () -F@).
a

7.2.1 Some Methodsof Integration

We illustrate with two methods, namely substitution and integration-by-parts. The
theoretical foundation for the method of substitution is given by Theorem 7.1.42
and the Change of Variables Theorem.

Theorem 7.2.7 Suppose that the function f iscontinuous on a segment |, the func-

: u . : : .
tions u and—x are continuous on a segment J, and the range of u is contained in
I.Ifa,be J, then

b u(b)
/ f(u(x))u’(x)dx:/ f (u)du.
a u(a)

Proof. By the First Fundamental Theorem of Calculus, for each ¢ € I, the
function

F(u):/uf(t)dt
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is differentiable with F’ (u) = f (u) for u € | with c < u. By the Chain
Rule, if G(x) = F (u(x)), then G’ (x) = F'(u(x))u (x). Hence, G’ (x) =
f (u(X)) U (x). Also, G’ is continuous from the continuity of f, u, and u’. It fol-
lows from the Second Fundamental Theorem of Calculus and thaitde of G
that

b b
/ f(u(x))u’(x)dx:/ G X)dx=G((b)—G(@ =F (u(b)—F u(@).

a

From the dénition of F, we conclude that

u(b) u(a) u(b)
F(u(b))—F(u(a)):/ f(t)dt—/ f(t)dt:/ f (t)dt.
c c u(a)

The theorem follows from the transitivity of equam.

Example 7.2.8 Use of the Substitution Method of Integration to find

/0”/4 cos (St + %) sin (St + %) dt

(@) Takeu = cos(3t + %)

(b) Takeu = cos’ (3t + %)

The other common method of integration with which we should all be familiar
is known as Integratioby Parts The IBP identity is given by

/udv=ua—/vdu
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for u and o differentiable and follows from observing that d (uo) = udo + »du,
which is the product rule in differential notation. This enables us to tackle in-
tegrands that “are products of functions not related by differentiation” and some
special integrands, such as the inverse trig functions.

Example 7.2.9 Examples of the use of the Integration-by-Parts method of integra-
tion.

1. Find [ x3- V1 — x2dx.

2. Find [ arctan (x) dx
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3. Find [ € sin(3x) dx

7.2.2 TheNatural Logarithm Function

The Fundamental Theorems enable us to find integrals by looking for antideriva-
tives. The formulgx™)’ = nx"~1 for n an integer leads us to conclude tﬁaxi(dx =

% + C for any constan€ as long ak+ 1 # 0. So we can’t use a simple formula

to determine
b1
/ —dx,
a X

though we know that it exists for arfinite closed interval that does not contain O
becausex~! is continuous in any such interval. This motivates us to introduce a
notation for a simple form of this integral.

Definition 7.2.10 The natural logarithm function, denoted by In , isdefined by the
formula

X
In X =/ %dt,for every x > 0.
1

As fairly immediate consequences of théid#ion, we have the following Prop-
erties of the Natural Logarithm Function. Lét(x) = Inx for x > 0 and suppose
thata andb are positive real numbers. Then, the following properties hold:

1. In(ab) =In(a) + In (b),
2. In(a/b) =In(@) — In (b),
3. In(1) =0,
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4. In@") =r -In(a) for every rationa numberr,
1
5 f'(x) ==,
)=

6. f isincreasing and continuouson | = {x : 0 < X < +oc},

~N

1
- <1In(2) < 1,

oo

.In X — +o0asx = 400,
9. In X — —oc0asx — 0F, and

10. therangeof f isall of R.

Remark 7.2.11 Once we have property (6), the Inverse Function Theorem guaran-
tees the existence of an inverse functionlfor. This leads us back to the function
e,

7.3 Integration of Vector-Valued Functions

Building on the way that limits, continuity, and differentiability from single-valued
functions translated to vector-valued functions, wérde Riemann-Stieltjes inte-
grability of vector-valued functions by assignment of that property to the coordi-
nates.

Definition 7.3.1 Given a vector-valued (n-valued) functiom = (fq, fo, ..., fp)
from [a, b] into R" where the real-valued functions, ff,, ..., f, are bounded on
the interval | = [a, b] and a functiorn that is dg¢ined and monotonically increas-
ing on 1,fis Riemann-Stieltjes integrable with respecton |, writtenf € R (a),
ifandonly if (vj) (j €{1,2,..,n} = fj € R (a)). Inthiscase,

b b b b
/f(x)d“(x)dff (/ fl(x)da(x),/ fz(x)da(x),...,/ fn(x)da(x)).

Because of the nature of the definition, any results for Riemann-Stieltjes inte-
grals that involved “simple algebraic evaluations” can be translated to the vector-
valued case.
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Theorem 7.3.2 Suppose that the vector-valued functidnand g are Riemann-
Stieltjes integrable with respect toon the interval 1= [a, b].

(a) If k is areal constant, thenflke % («) on | and
b b
/ kf(x)da(x):k/ f(X)da (X).
(b) Ifh =f+ g, thenh € R (a) and
b b b
/ h (x) da (X) :/ f (X) da (x)+/ g (x)da (X).

(c) If the function fe R (a) alsoon I* = {x : b < x < ¢}, then f is Riemann-
Stieltjes integrable with respect éoon | U | * and

c b c
/e‘f(x)da(x)z/ f(x)da(x)+[) f(x)da (X).

a

(d) Iff e X(a*)on 1, thenf € R(a + a*) and

b b b
/fd(a—l—a*):/ f(x)da(x)+/ f (x)da* (X).

a

(e) If cis any positive real constant, thée % (ca) and
b b
/ fd (ca) =C/ f(X)da (X).
a a

Theorem 7.3.3 Suppose that is a monotonically increasing function such that
a’ € R on[a,b] andf is a vector-valued function that is bounded [@nb]. Then
f € R (a) if and only iffa’ € R. Furthermore,

b b
/f(x)da(x):/ f(x)a’ (x)dx.

a

Theorem 7.3.4 Suppose thdt= (fq1, f, ..., fy) e Ron | =[a,b].
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(&) Then the vector-valued functiéngiven by

F(x) = (/X fl(t)dt,/x fz(t)dt,...,/x fn(t)dt) forx e |

is continuous offia, b]. Furthermore, iff is continuous on I, ther is differ-
entiable in(a, b) and, for each xe (a, b), F' (x) =f(x) =
(f1 (), f2(x), ..., fn (X)).

(b) If there exists a vector-valued functi@on | that is differentiable there with
G’ =f,then

b
/ ft)dt=G(b)—G (a).

On the other hand, any of the results for Riemann-Stieltjes integrals of real-
valued functions that involved inequalities require independent consideration for
formulations that might apply to the vector-valued situatiarile we will not
pursue the possibilities here, sometimes other geometric conditions can lead to
analogous results. The one place where we do have an almost immediate carry
over is with Theorem 7.1.39 because the inequality involved the absolute value
which generalizes naturally to an inequality in terms of the Euclidean metric. The
generalization—natural as it is—still requires proof.

Theorem 7.3.5 Supposethat f : [a,b] - R"andf € R («) on [a, b] for some «
that is defined and monotonically increasing on [a, b]. Then |f| € R (a) and

b b
/f(x)da (%) §/ If (X)]da (X) . (7.17)

Excursion 7.3.6 Fill inwhat ismissing in order to complete the following proof.

Proof. Suppose thadt= (f1, fo, ..., fn) € R(a) onl = [a, b]. Then

1001 =/ 1200 + 200 +... + T2(x) = Oforx e | (7.18)

and, becausé is on |, there existsM > 0 such thatf (I)|] =
€8]
{If()l:xel} c [0,M]. Since(Vj)(j €{1,2,...,n}= fj € %R (a)) and the
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function ¢ (t) = t2 is continuous on R, by ,

2
v])) (j e{l,2,.,n}= 1‘2 € St(oc)) From Algebraic Property (b) of the Riemann-
Stieltjes mtegral f2(x) + f2(x) + ..+ f2(x) € m(a) Taking¢* (t) = /1 for
t > 0in Theorem 7.1.28 yields th#f

()
Since (7.17) is certainly safised if f, we assume that# 0. For each

j €(L,2,...,n}, letw; = [2 f; (x)da (x) and setv = [P f (x) da (x). Then

n n b b n
|W|2:ij2:ij/ fj (t) do (t):/ (ij fi (t))da (t).
i=1 =1 e * \i=t
From Schwarz’s inequality,

Zw, fit)y<__ If) fort e[a,b]. (7.19)

@

Now Z?:le fj (t) and|w] |f (t)| are real-valued functions dm, b] that are in
R (o). From (7.19) and Algebraic Property (c) of Riemann-Stieltjes integrals, it
follows that

b/ n b b
wi? = | (ij f (t))da(t)s/ WiIf Ol da @) = ol [ 1FO1der 0.
a \|=1 a a

Becausew # O, (w2 < |w| [P [f ()| da (t) implies thatjw| < [ [f (t)| da (1)
which is equivalent to equation 7.17&

*** Acceptable responses are: (1) bounded, (2) Theorem 7.1.28, ), (4)
|W|.***

7.3.1 Rectifiable Curves

As an application of Riemann-Stieltjes integration on vector-valued functions we
can prove a result that you assumed when you took elementary vector calculus.
Recall the following dénition.

Definition 7.3.7 A continuous function y froman interval [a, b] into R" is called
acurveinR" or acurveon[a, b] inR"; if y isone-to-one, thery is called anarc,
andify (a) = (p), theny is aclosed curve.
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Remark 7.3.8 In the dé¢inition of curve, we want to think of the curve as the actual
mapping because the associated set of poinf&"iris not uniquely determined by
a particular mapping. As a simple exampjg,(t) = (t,t) andyz (t) = (t, t2) are
two different mappings that give the same associated subBe&t of

Givenacurve y on [a, b], for any partition of [a, b],

P = {XO = aa Xla L) Xm—ls Xm = b}

AP, y) =Zm)|y (xj) =7 (xj-1)]-

=1

Then A (P, y) isthe length of apolygonal path having vertices

y (X0),y (X1), ...,y (Xm) which, if conditions are right, gives an approximation
for the length of the curve y. For g [a, b] the set of al partitions of [a, b], it is
reasonabl e to define the length of acurve y as

Aly)= sup AP,y);
Pepla,b]

iIf A(y) < oo, theny issaidto berectifiable.

In various applications of mathematics integrating over curves becomes impor-
tant. For this reason, we would like to have conditions under which we can deter-
mine when a given curve is refiible. We close this chapter with a theorem that
tells us a condition under which Riemann integration can be used to determine the
length of a rectiable curve.

Theorem 7.3.9 Suppose that y isa curveon [a,b] inR". If y’ is continuous on
[a, b], then y isrectifiable and

b
A(y)=/ 1y’ )] dt.

Proof. Suppose that is a curve ond, b]in R" such that’ is continuous. From
the Fundamental Theorem of Calculus and Theorem 7.1.3pPx{oi, x;| C [a, b],

Xj Xj
/ y’ (t)dt g/ |7 ()] dt.
Xj—1 Xj—1

v (%)) =7 (xj-2)| =
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Hence, for any partition of [a, b], P = {Xxo0 = a, X1, ..., Xm=1, Xm = b},
b
NGRS s/ ' @] dt

a
from which it follows that

b

AG) = [l o] e (7.20)
a

Let ¢ > 0 be given. By the Uniform Continuity Theorem, y’ is uniformly
continuous on [a, b]. Hence, there existsa ¢ > 0 such that

Is—tl<o= [y (s—y V)| < (7.21)

&
2(b—a)’

Choose P = {Xo = a, X1, ..., Xm—1, Xm = b} € g [a, b] be such that mesh’? < ¢.
It follows from (7.21) and the (other) triangular inequality that

te[X—Lx]= |y O <y (x)|+ Z(bL—a)'
Thus,
o Oldt < [y (x)] Ax; +ﬁ“i
2+ () =y O] di| + 2(b8— 2
< X’jﬂly’(t)dt‘ + |y [y () = V’(t)]dt) + 2(b—a)AXj
= Iy () =7 (xj-1)] +2(2(b8— a)AXj)
= |y (%) =7 (xj-9) [+ (bia)AXj'
Summing the inequalitiesfor j = 1,2, .. myields that
/ab|y’(t)|dt <AP,y)+e. (7.22)

Sincee > 0 was arbitrary, we conclude that f;’ |y ] dt < AP, ).

Combining the inequalities (7.20) and (7.21) leads to the desired conclu-
sion. m
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7.4 Problem Sat G

1.

Let f (x) = X%, g(x) = [2x], and, for n e J, P, denote the partition of
[0, 2] that subdivides the interval into n subintervals of equal length. Find
each of the following.

@ U (P3, 1)

(b) U (Ps, 0)

(€) L (Ps, f)

(d) L (Ps, 0)

For f(x) = 2x24+ 1, a(t) = t + |3t] and A the subdivision of [0, 1]
consisting of 4 subintervalsof equal length, findU (A, f,a)and L (A, f, a).

For f (x) = 3xin [—%,1}, a®) =t,andP = [—} —},O,},ll, find

2" 472
U@, f,a)andL (P, f, a).

Suppose that the function f in bounded on theinterval [a, b] and g = kf for
afixed negative real number k. Prove that supg (X) = kim: f (x).
Xe

xel

Suppose that the function f inbounded ontheinterval | = [a, b] and g = kf
for afixed negative integer k. Show that

/abg (X)dx = kff (X) dx.

Suppose that the functions f, f;, and f, are bounded and defined on the
closed interval | = [a, b] and « is afunction that is defined and monotoni-
cally increasing in . Prove each of the following:

(8) Ith = fi+fz, then [Ph (x) da (x) > [2 f1 (x) da (X)+ J f2 (x) dot (X)

(b) Ifh = f1+4f, thenf_abh (X)da (X) < f_abfl (X) da (x)—l—f_ab f2 (X) da (X)
(c) If fr(x) < fa(x)forallx e I,thenf_;’fl (X)da (xX) < f_abfz (X) da (X)

(d) If f.(x) < f2(x)forallx e 1, then [P 1 (x) da () < [P 2 (x) dat ().
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(e)Ifa <b<cand fisboundedon I* = {x:a<x<c}ada is
monotonically increasing on | *, then

—c ) —c
/f(x)da(x):/ f(x)da(x)—l—A f (X)da (X).

7. Suppose that f is abounded functionon | = [a,b]. Let M = supf (x),

xel
m=inf f (x), M* =sup|f (X)|,and m* = inf | f (X)].
xel xel Xel

(@ Showthat M* —m* < M —m.
(b) If f and g are nonnegative bounded functionson I, N = supg (x), and
|
n= im:g(x), show that .
Xe

sup (fg) (x) — inf (fg) (x) < MN —mn

xel

8. Supposethat f isbounded and Riemann integrableon | = [a, b].

(@) Provethat | f|isRiemannintegrableon |.
(b) Show that fabf(x)dx‘ < [P1f (01dx.

9. Supposethat f and g are nonnegative, bounded and Riemann integrable on
| =[a,b]. Provethat fgisRiemannintegrableon |.

i : .
10. LetA:[%.n,je.,]]/\J <2”/\2J(j}and

o Jif xe A
f(xX)=

0 ,if xe[0,1]—A
Is f Riemannintegrableon [0, 1]. Carefully state and prove your conclusion.

11. Let f (x) = x? and « (t) = |3t] where |..] denotes the greatest integer
function.
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12

13.

14.

15.

16.

17.

o
(@) For the partition P = {Xj = ?J 1] =0,1,2, 3] with associated sub-

division A = {l4, I2, I3}, findU (P, f, a).
2 2] .

(b) IfP* = [uj - 13 j=o0, 1,2}U{uj+2= S+ 1=123456
and A* denotes the associated subdivision@f2], thenP* is a re-
finement ofP. For eachk € {1,2,3}, let A (k) be the subdivision
of Ik consisting of the elements &* that are contained ih,. Find

L(A(Q2)), f,a).

Fora < b, letC ([a, b]) denote the set of real-valued functions that are con-
tinuous on the interval = [a, b]. For f, g € C ([a, b]), set

b
d(t9) = [ 1100-g00lox

Prove thatC ([a, b]), d) is a metric space.

If f is monotonically increasing on an intervial= [a, b], prove thatf is
Riemann integrable. Hint: Appeal to the Integrability Criterion.

n
For nonzero real constards c, ..., Cn, let f (x) = ch X)X+ 0,
j=1
where|-| denotes the greatest integer function andenotes the character-
istic function onR. Is f Riemann integrable oRR? Carefully justify the

position takenif yes, find the value of the integral.

Prove that if a functiori is “R” integrable (see Remark 7.1.27) on the interval
| =[a,b], thenf is Riemann integrable oh

Suppose that andg are functions that are positive and continuous on an
interval | = [a, b]. Prove that there is a numbgre | such that

b b
/ f(x)g(x)dx=f(¢)/ g (x) dx.

Fora < b, letl = [a, b]. If the function f is continuous orl — {c}, for a
fixedc € (a, b), and bounded oh, prove thatf is Riemann integrable oh
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18

19.

20.

21.

22.

23.
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Supposethat f inintegrableon | = [a, b] and
@AM EAM)(M>0AM>0AWX)(Xel =>m< f(xX) <M)).

Prove eRonl.

1
f (X)
For f (x) = x2 4 2x, verify the Mean-Value Theorem for integrals in the
interval [, 4].
sinx

3
Fmdl/‘d§+”dt
1

eXZ

Forx > 0, letG (x) = / sin’ 3t dt. Make use of the First Fundamental
JX

Theorem of Calculus and the Chain Ruleftod G’ (x). Show your work

carefully.

Suppose that € % andg € % on| = [a, b]. Then each off2, g2, and fg
are Riemann integrable dn Prove the Cauchy-Schwarz inequality:

b 2 b b
(/ f(x)g(x)dx) g(/ fz(x)dx)(/ gz(x)dx).

[Note that, fora = fab f2(x)dx, g = fab f (x)g(x)dx,andy = f: g2 (x) dx,
a?x + 2px + y is nonnegative for all real numbexg

dt .
Forf (x) =Inx = flx e for x > 0 anda andb positive real numbers, prove
each of the following.

(@) In(ab) =In (@) + In (b),
(b) In(a/b) =In(a) —In(b),
() In@") =r -In(a) for every rational numbar,
1
(d () =<,
(e) f isincreasing and continuous on= {x : 0 < X < 400}, and

0 3<h@<1



Chapter 8

Sequences and Series of Functions

Given aset A, asequence of elements of Aisafunction F : J — A; rather than
using the notation F (n) for the elements that have been selected from A, since the
domain isaways the natural numbers, we use the notational convention a, = F (n)
and denote sequences in any of the following forms:

{an}tpe1 {8n}neg » or a1, ag, ag, &, -....

Given any sequence {ck} - ; of elements of aset A, we have an associated sequence
of nth partial sums

n

{sntpey wheres, = > o
k=1

the symbol >/, ck is called a series (or infinite series). Because the function

g (X) = x — lisaoneto-one correspondence frafninto JuU {0}, i.e.,g : J =

JUu {0}, a sequence could have beerfided as a function ofiu {0}. In our dis-
cussion of series, the symbolic descriptions of the sequenceth giartial sums
usually will be generated from a sequence for whichfirgt subscript is 0. The
notation always makes the indexing clear, when such fpiggiis needed.

Thus far, our discussion has focused on sequences and series of complex (and

real) numbersi.e., we have taked = C and A = R. In this chapter, we tak@ to
be the set of complex (and real) functions@randR).

325
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8.1 Pointwise and Uniform Convergence

The first important thing to note is that we will have different types of convergence

to consider because we have “more variables.” Thefrst relates back to numerical
sequences and series. We start with an example for which the work was done in
Chapter 4.

Example8.1.1 For eachn € J, let f, (z2) = z" where z € C. We can use results
obtained earlier to draw some conclusions about the convergence of { f,, (2)}72,. In
Lemma 4.4.2, we showed that, for any fixed complex number zg such that |zp] < 1,

nIi_)m z5 = 0. In particular, we showed that for g, 0 < [z9| < 1, if & > 0O, then
o0

taking

1 , fore>1

M =M (e, 20) = In (&)
LnleI

-‘ , fore <1

yields that |25 — 0| < & for all n > M. When zp = 0, we have the constant
sequence. In offering this version of the statement of what we showed, | made a
“not so subtle” change in formatnamely, | wrote the former Nk) and M (¢, zp).
The change was to stress that our discussion was tied tix&eé point. In terms
of our sequencd fn (2)}o2,, we can say that for eacfixed point g € Q =
{ze C:|z|] <1}, {fn(20)};2, is convergent td. This gets us to some new termi-
nology: For this example, if {z) = Ofor all z € C, then we say thatf, (z0)}2;

is pointwise convergent to f on Q.

It is very important to keep in mind that our argument for convergence at each
fixed point made clear and definite use of the fact that we had a point for which a
known moduluswas used in finding an M (g, zp). Itisnatural to ask if the pointwise
dependence was necessary. We will see that the answer depends on the nature of
the sequence. For the sequence given in Example 8.1.1, the best that we will be
able to claim over the set Q is pointwise convergence. The associated sequence of
nth partial sums for the functions in the previous example give us an example of a
sequence of functions for which the pointwise limit is not a constant.

Example8.1.2 For a # 0 and each ke JU{0}, let f (z) = aZ where ze C.
In Chapter 4, our proof of the Convergence Properties of the Geometric Series
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Theorem showed that the associated sequence of nth partial sums {s, (2)}2, was
given by

_ Zn+1)

s@=> k@= Zaz —
k=0

In view of Example 8.1.1, Wesea?that for eachfixedzgp € Q = {ze C:|z| < 1},
{Sn (Z0)} 1 is convergent to 1 . Thus, {sn (2)}2 is pointwise convergent on

Q. In terminology that is soon to be introduced, we more commonly say that “the
seriesy roaz is pointwise convergent ai.”

Our long term goal is to have an alternative way of looking at functions. In par-
ticular, we want a view that would give promise of transmission of nice properties,
like continuity and differentiability. The following examples show that pointwise
convergence proves to be infiafent.

Example8.1.3 For eachn € J, let f, (2) = 1% where z € C. For each fixed

Z we can use our properties of limits to find the pointwise limit of the sequences
of functions. If z = 0, then { f, (0)}2; converges to 0 as a constant sequence of
zeroes. If zisa fixed nonzero complex number, then

n%z . z z

||m—=||m = - =1.
n—ool 4+ n2z n—oo 1 Z

1 ,for zeC—-{0}
Therefore, f, — f where f (2) =
0 ,for z=0

Remark 8.1.4 From Theorem 4.4.3(c) or Theorem 3.20(d) of our text, we know

n 1
h R, impliesthat lim ——— = 0. Letti =
that p > Oand a € ,|mp|$tatn|_>moo(1+p)n 0. Letting ¢ 11 p

for

p > O leadsto the observation that

lim n*¢" = (8.1)

n—oo

whenever 0 < ¢ < l1andfor any a € R. Thisis the form of the statement that
Is used by the author of our text in Example 7.6 where a sequence of functions for
which the integral of the pointwise limit differs from the limit of the integrals of the
functions in the sequenceis given.
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Example 8.1.5 (7.6 in our text) Consider the sequence{ f} 2 ; of real-valued func-
tions on the interval I= [0, 1] that is given by £ (x) = nx (1 —x?)" forn € J.
For fixed x € | — {0}, takinga = land¢ = (1—x?) in (8.1) yields that
n(l—xz)n —> 0as n— oo. Hence, § _%} 0. Because {(0) = 0 for all

n e J, we see that foreach % |,
. . _ 2 n

In contrast to having the Riemann integral of the limit function over | b&nge
have that

. 1 . n 1
lim / fn(X) dx= lim =—.
n—oo /o n—oo2n + 2 2

Note that, sincex in Equation 88.1) can be any real number, the sequence of real
functions g (x) = nx (1 — x2) for n € J converges pointwise t@on | with

1 n2
X) dx = asn )
/Ogn() 2n+2%oo — 00

This motivates the search for a stronger sense of convergence; namely, uniform
convergence of a sequence (and, in turn, of a series) of functions. Remember that
our application of the term “uniform” to continuity required much nicer behavior
of the function than continuity at points. We will make the analogous shift in going
from pointwise convergence to uniform convergence.

Definition 8.1.6 A sequence of complex functions { fn};2; converges pointwise to
afunction f on asubset Q of C, written f, — f or f, —3 f,ifand only if the
pAS

sequence { fn (Z0)}pe; — T (20) for each zp € Q; i.e,, for each z5 € Q
(Ve > 0) @M = M (¢, 20) € J) (N > M (€, 20) = | (20) — T (20)] < &).

Definition 8.1.7 A sequence of complex functions { f} converges uniformly to f
on a subset Q of C, written f, = f,if and only if

Me>0 @AM =M(@E)MeJA@N)(V2)(n>MAzZze Q= | (2 — f (2] <¢)).
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Remark 8.1.8 Uniform convergence implies pointwise convergence. Given a se-
guence of functions, the only candidate for the uniform limit is the pointwise limit.

Example8.1.9 The sequence considered in Example 8.1.1 exhibits the stronger
sense of convergence if we restrict ourselves to compact subsets of
Q ={zeC:|zl <1}. Foreachne ], let f,(2) = z" where ze C. Then
{fn (2)}72 is uniformly convergent to the constant functiorizf = 0 on any com-
pact subset of).
Suppose Kc Q is compact. From the Heine-Borel Theorem, we know that
K is closed and bounded. Hence, there exists a positive real number r such that
r<land(vz)(ze K= |zl <r). LetQ ={ze C:|z] <r}. Fore > 0, let

1 , fore>1

"In(a)"‘ , for.s<1'

Inr

M=M @)=

In
Thenn> M = n > n(f)
r" < ¢ and it follows that

= ninr < In(¢) becaus® < r < 1. Consequently,

1fh(@—0=|2"=1z2"<r" <e.

Sincee > 0 was arbitrary, we conclude that,f= f. Because Kc Q;, f, = f
Qr K
as claimed.

Excursion 8.1.10 When we restrict ourselves to consideration of uniformly con-
vergent sequences of real-valued function®Roihe dgnition links up nicely to a

graphical representation. Namely, suppose that=ft f. Then corresponding to
[a,b]

anye > 0, there exists a positive integer M such thatrM = | f, (X) — f (X)| <

¢ for all x € [a, b]. Because we have real-valued functions on the interval, the in-

equality translates to
fX)—e< fu(X) < f(X)+eforallx e [a,b]. (8.2

Label the followingfigure to illustrate what is described in (8.2) and illustrate the
implication for any of the functions, vhen n> M.
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Remark 8.1.11 The negation of the definition offers us one way to prove that a
sequence of functions is not uniformly continuous. Given a sequence of functions
{ fn} that are defined on a subset Q of C, the convergence of { f,} to afunction f on
Q isnot uniformif and only if

e > 0)(YM)[M € J =
@n) (Jzm,) (N> M Azm, € QA | fn (zm,) = f (zmy)] = €)1

[©.9]

- 1 L
Example 8.1.12 Use the definition to show that the sequence e is point-

wise convergent, but not uniformly convergent, to the functigr) f= 0 on Q =
{ze C:0<|z| < 1}.
Suppose thatgzis afixed element o2. Fore > 0, let M = M (e, z9) =

1 1 1
{ —‘ Thenn> M = n > = < ¢ becausdzp| > 0. Hence,
|zol & |zole  nzol

1 1
——o‘_
nz

0.9]

. . 1 :
Sinces > 0was arbitrary, we conclude th%t—} is convergent t® for each

[0.9]

1 . o
Zp € Q. Therefore,[n—Z] IS pointwise convergent df.
n=1

1 1
On the other hand, let = > and for each ne J, setz = PR Then
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Zn € Q al'ld

1

1 1
Ol=|——— =14+ - >c¢.
Nzn 1 n
n
n+1
o

1 : :
Hence, [ — } is not uniformly convergent on Q.
n=1

e}
Example 8.1.13 Prove that the sequence [m] converges uniformly for
n=1

1
|z| > 2and doesnot convergeuniformlyinQ* ={ze C: |z] < 2}—{—5 ‘ne J].

1
Lt Q={zeC: |zl > 2} and, for eachn e ], let f, (2) = Tonz From
the limit properties of sequences, { f, ()}, ; is pointwise convergent on C to
0 ,for zeC—-{0}

f(2) = {
1 ,for z=0

Thus, the pointwise limit of { f, (2)},2; on Q isthe constant function 0. For ¢ > O,

1/1 ] 1/1
letM =M =|(=({-4+1)]|. Th M —-+1 e —
(¢) ’72(5—'_) enn > =>n>2(8+):>2n_1<
¢ becausen > 1. Furthermore, |z] > 2= nj|z| >2n=n|z]—-1>2n—-1> 0.
Hence, |z| >2AN> M =

1
1+ nz

1 1 1
< < < <
“Inlzl—-1] T njzl—-1" 2n-1

Because ¢ > O was arbitrary, we conclude that f, = 0.
Q

€.

|fn(2)—0|=‘

1
On the other hand, let ¢ = > and, corresponding to each n € J, set
1
In = ﬁ Then Zn € Q* and

1
| fn (Zn) = O = |———| =

(2)

NI
IV
™
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Hence, { fn (2)}52; isnot uniformly convergent in Q*.

Excursion 8.1.14 Use the definition to prove that the sequence {z"} is not uni-
formly convergent inz| < 1.

***Hopefully, you thought to make use of the choices ¢, = (1 — %) that could be
related back to e~ 1. ***

Using the definition to show that a sequence of functions is not uniformly con-

vergent, usually, involves exploitation of “bad points.” For Examples 8.1.12 and

8.1.13, the exploitable point was= 0 while, for Example 8.1.14, it was = 1.

Because a series of functions is realized as the sequemtk pértial sums of
a sequence of functions, thefawtions of pointwise and uniform convergence of
series simply make statements concerningnthepartial sums. On the other hand,
we add the notion of absolute convergence to our list.

Definition 8.1.15 Corresponding to the sequence {ck (2)}2, of complex-valued
functions on ase® c C, let

S@=D «@
k=0

denote the sequence of nth partial sums. Then

(a) the seriesy 2 ¢k (2) is pointwise convergent on Q to S if and only if, for
each g € Q, {§, (20)} 2 converges to ). and

(b) the seriey 2, ck (2) is uniformly convergent on Q to S if and only if § =
Q
S.
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Definition 8.1.16 Corresponding to the sequence {cx (2)}2, of complex-valued
functions on a se© c C, the seriesy -, ck (2) is absolutely convergent on Q
if and only if 32 Ick (2)| is convergent for each & Q.

Excursion 8.1.17 Fora # 0and ke JU {0}, let & (z) = aZ. In Example 8.1.2,
we saw that

o o
Z o (2) = Z az
k=0 k=0
is pointwise convergent foreachz Q = {ze C : |z| < 1} to a(1 — zp) L. Show

that

(i) D keoCk (2) is absolutely convergent for each  Q;

(i) > k= Ck (2) is uniformly convergent on every compact subset Kof

(iii) D pepCk (2) is not uniformly convergent of2.

***For part (i), hopefully you noticed that the formula derived for the proof of the
Convergence Properties of the Geometric Series applied to the real series that re-
jal (1 12"")

sults from replacingz® with |al |z|%. Since>R_, lal |zI¢ = e

we
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00 a
conclude that {>°¢_, lal |z|k}n:0 — 1|—||z| for each z € C such that |z| < 1;
e, ootk (2) = D pegaz is absolutely convergent for each z € Q. To show
part (ii) it is helpful to make use of the fact that if K is a compact subset of
Q then there exists a positive real number r suchthat r < 1and K ¢ Q; =

{ze C:|z| < r}. Theuniform convergence of > 2 ck (z) on € then yields uni-

n n k a (1 — Zn+1)
form convergence oK. For§,(z) = D> ok (2) = D y_paz" = —1—7
andS(z) = 1—2 you should have noted thi, (2) — S(2)| < for all

Zl

In(e(L—r)lal™h)
Inr

sibility for justifying the uniform convergence. Finally, with (iii), corresponding to

Z € Q; which leads toM (¢) = max{ 1,

— 1|t as one pos-

eachn € J, letz, = (1 — m) thenz, € Q for eachn and S, (z,) — S(zn) =

n+1
(n+1)]a| (1— m) can be used to justify that we do not have uniform

convergenceé**

8.1.1 Sequencesof Complex-Valued Functions on Metric Spaces

In much of our discussion thus far and in numerous results to follow, it should
become apparent that the properties claimed are dependent on the properties of the
codomain for the sequence of functions. Indeed our original statement of the defini-

tions of pointwise and uniform convergence require bounded the distance between
images of points from the domain while not requiring any “nice behavior relating
the points of the domain to each other.” To help you keep this in mind, we state the
definitions again for sequences of functions on an arbitrary metric space.

Definition 8.1.18 A sequence of complex functions { fn}o2; converges pointwise
to a function f on a subset Q of a metric space (X, d), written f, — f or

fn __é f, if and only if the sequence { f (wo)}ne; —> T (wo) for each wo € Q;
we

i.e., for each wg € Q

(Ve > 0)(AM = M (g, wp) € J) (N > M (¢, wo) = | (wo) — T (wo)| < ¢).



8.2. CONDITIONS FOR UNIFORM CONVERGENCE 335

Definition 8.1.19 A sequence of complex functions { f,} converges uniformly to f
on a subset Q of a metric space (X, d), written f, = f onQ or f, = f, if and
Q

only if

(Ve > 0)@AM =M () [M e JA (VN) Vw) (N> M Aw € Q
= |fn (w) — T ()] < &)].

8.2 Conditionsfor Uniform Convergence

We would like some other criteria that can alow us to make decisions concerning
the uniform convergence of given sequences and series of functions. In addition,
if can be helpful to have a condition for uniform convergence that does not require
knowledge of the limit function.

Definition 8.2.1 A sequence { fy}o2 , of complex-valued functions satf®@s the
Cauchy Criterion for ConvergenceonQ c C if and only if

Ve >0 @AM e)[(Vn) (VM) (V2) (N> M AM>MAZeEQ
= |fh (2 — Tm (2] < &)].

Remark 8.2.2 Alternatively, when a sequence sat@is the Cauchy Criterion for
Convergence on a subs@t c C it may be described as beinmiformly Cauchy
on Q or simply as being Cauchy.

In Chapter 4, we saw that in R" being convergent was equivalent to being
Cauchy convergent. The same relationship carries over to uniform convergence
of functions.

Theorem 8.2.3 Let { fy}2; denote a sequence of complex-valued functions on a
setQ c C. Then({fn};2; converges uniformly of if and only if{ f,} 22 ; satigies
the Cauchy Criterion for Convergence en
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Space for scratch work.

Proof. Suppose that { fn}2; is a sequence of complex-valued functions on a
setQ c C that converges uniformly o€ to the functionf and lete > 0 be given.

Then there exist$1 € J such thain > M implies that| f, (2) — f (2)| < % for

all z e Q. Taking any othem > M also yields that f, (2) — f (2)| < % for all
ze Q. Hence, fom> M An > M,

lfIm@) - T @I =1(fmn(@ - T (@) - (fh (@ - T (D)
< Ifm@-f@I+1fh@-f@) <e

for all z € Q. Therefore{ fn};2 ; is uniformly Cauchy orf.

Suppose the sequenth,}° ; of complex-valued functions on a setc
C satidies the Cauchy Criterion for Convergence@rmand lete > 0 be given. For
z e Q, {fn (2)}72, is a Cauchy sequence @@ becauseC is complete, it follows
that { fn (2)}72, is convergent to somg, € C. Sincez € Q was arbitrary, we
can ddine a functionf : Q — Chy (V2) (ze Q = f (2) = (7). Then,f is the
pointwise limit of { f}22 ;. Becausd fy}2 ; is uniformly Cauchy, there exists an
M e J such thain > M andn > M implies that

|h@—ﬂﬂﬂ<%hmheﬂ

Suppose thah > M is fixed andz € Q. Sincemim fm (&) = f (&) for each
o0

¢ € Q, there exists a positive integdf* > M such thatm > M* implies that

[fm(2) — T (2)] < % In particular, we have thatfy-11(2) — f (2)| < % There-

fore,

ITh@ =@ =1t (@ = fms1(@D+ fm41(2 — T (2]
<1t @ = M1 @I+ 1 T2 (@D = T (D] <e.

Butn > M andz € Q were both arbitrary. Consequently,
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Mn)VZ2)(n>MAzeQ=|fh(@ -T2 <¢).

Since¢ > Owas arbitrary, we concludethat f, = f. m
Q

Remark 8.2.4 Notethat in the proof just given, the positive integer M* was depen-
dentonthe point z and thei.e., M* = M* (&, z). However, thgnal inequality ob-
tained via the intermediate travel through information fromi,Mf, (z) — f (2)] <

¢, was independent of the point z. What was illustrated in the proof was a process
that could be used repeatedly for eack £2.

Remark 8.2.5 In the proof of both parts of Theorem 8.2.3, our conclusions relied
on properties of the codomain for the sequence of functions. Namely, we used the
metric onC and the fact thatC was complete. Consequently, we could all@w

to be any metric space and claim the same conclusion. The following corollary
formalizes that claim.

Corollary 8.2.6 Let { fn},2, denote a sequence of complex-valued functions de-
fined on a subseR of a metric spacéX, d). Then{ f,} 2, converges uniformly on
Q if and only if{ f,};2 ; satigies the Cauchy Criterion for ConvergenceQn

Theorem 8.2.7 Let { fy};2; denote a sequence of complex-valued functions on a
setQ c C that is pointwise convergent @ to the function f i.e.,

lim f,(2) = f (2);
n—oo
and, for each ne J, let M, = sup|f,(2) — f (2)|]. Then f = f if and only if
zeQ Q

n—oo

Use this space tgll in a proof for Theorem 8.2.7.
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Theorem 8.2.8 (Weierstrass M-Test) For each n € J, let u, (w) be a complex-
valued function that is ¢gimned on a subse&® of a metric spacéX, d). Suppose that
there exists a sequence of real constéiils } o~ ; such thatju, (w)| < Mp for all
w € Q and for each ne J. If the seriesy 2 ; M converges, the -~ ; un (w)
and> > ; |un (w)| converge uniformly 0.

Excursion 8.2.9 Fill in what is missing in order to complete the following proof of
the Weierstrass M-Test.

Proof. Suppose that {un (w)}2;, @, and {Mn}o2; are as described in the hy-
potheses. For eache J, let

S (w) =D uk (w) andTy (w) = D |uk ()|
k=1 k=1

and suppose that > 0 is given. Since> .~ ; M, converges andMn}>°, C R,
{Zrk‘:l Mk}ﬁil is a convergent sequence of real numbers. In view of the com-
pleteness of the reals, we have thaty_, Mk}:;l is . Hence, there

@

exists a positive integef such than > K implies that

n+p
> M <& foreachp e J.
k=n+1

Since|uk (w)| < M for all w € Q and for eaclkk € J, we have that

n+p n+p
Tarp (@) = Ta ()| =| D luk)l|= D luk(w)| forallw e Q.
k=n+1 k=n+1
Therefore{Tn}o2 4 is in Q. Itfollows from the
@ ©)
that
n+p n+p
- < D> lu)l s D Mi<e
4 (5) k=n+1 k=n+1

forall w € Q. Hence {$,};2; is uniformly Cauchy ir2. From Corollary 8.2.6, we
conclude that . m
(6)
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*** A cceptable responses include: (1) Cauchy, (2) uniformly Cauchy, (3) triangular
inequality, (4) [ Snep () — S ()], (8) [ TR, 1 Uk (), and (6) 22521 tn () and
> 021 lun (w)| converge uniformly on Q.***

Excursion 8.2.10 Construct an example to show that the converse of the Weier-
strass M-Test need not hold.

8.3 Property Transmission and Uniform Convergence

We have aready seen that pointwise convergence was not sufficient to transmit the
property of continuity of each function in a sequence to the limit function. In this
section, we will see that uniform convergence overcomes that drawback and allows
for the transmission of other properties.

Theorem 8.3.1 Let{ fn};2, denote a sequence of complex-valued functiofiseti

on a subsef of a metric spacé&€X, d) such that § = f. For w a limit point of Q
Q

and each re JJ, suppose that

t|Ln2) fn (t) = An.

teQ

. : o
Then{An} 2, converges an(til_)nzlf 1) = nan;oA”'

Excursion 8.3.2 Fill in what is missing in order to complete the following proof of
the Theorem.

Proof. Suppose that the sequer(dg}; ; of complex-valued functions figed
on a subsef) of a metric spacé€X, d) is such that £ = f, w is a limit point of

Q
Q and, for each ne J, tIi_)m fn(t) = A,. Lete > 0 be given. Sincepf= f,
w Q



340 CHAPTER 8. SEQUENCESAND SERIES OF FUNCTIONS

by Corollary 8.2.6, { fn},2 4 is on Q. Hence, there exists a positive

@
integer M such that implies that

)

10 (t) — fm ()] < %for all
@

Fixmandnsuchthatm > M andn > M. Sincetli_>m fk (t) = A for eachk € J,
it follows that thereexistsaé > Osuchthat O < d (t, w) < d impliesthat

&
|fm(t)— Anl| < :—))and
@

Fromthe triangular inequality,

[An — Al < [An— fn (D] + + [ fm (t) — Aml < &.

©)

Snce m and n were arbitrary, for each ¢ > 0 there exists a positive integer M
such that (Vm) (vn)(n > M Am> M = |A, — An| <¢); i.e, {An}lr2, € Cis
Cauchy. From the compl eteness of the complex numbers, if follows that {An} 2 ; is
convergent to some complex number; let I|m An = A

We want to show that A isalso equal to I|m f (t). Again we suppose that

teQ
¢ > Oisgiven. From f, = f there exists a positive integer M1 such that n > M1
Q

implies that

< %for all t € Q, while the convergence of {An}2 4
©)
yields a positive integer My such that |A, — A| < %whenever n > My. Fix n such
that n > max {M1, M»>}. Then, for all t € Q,

& &
fO=fa®l <5 and A - Al <z

SincetILm fn (t) = An, thereexistsa é > 0 such that

teQ

|0 (t) — An| < %for allt e (Ns () — {w}) N Q.
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Fromthe triangular inequality, for all t € Q suchthat 0 < d (t, w) < 4,

[f (1) —Al< <e.
W)

Therefore, .
8

*** Acceptable responsgx are: (1) uniformly Cauchy, 2)n> M Am> M, (3t e
Q,(4) fn (1) — Anl < :—3,(5) fr ()= fm (), (6) f O—Ffn (), (D) T ®) = fn (OI+
[ fn (1) = Anl + A0 — Al and (8) lim f (t) = Ax*»

teQ

Theorem 8.3.3 (The Uniform Limit of Continuous Functions) Let { f,}2° ; denote
a sequence of complex-valued functions that are continuous on a suligetf a met-
ric space(X, d). If f, = f, then f is continuous of2.

Q

Proof. Suppose that { fy}n2; is a sequence of complex-valued functions that
are continuous on a subs@t of a metric spacégX,d). Then for eacht € Q,
tIim fn (t) = fn (). Taking Ay, = fn (¢) iIn Theorem 8.3.1 yields the clainm
—¢

Remark 8.3.4 The contrapositive of Theorem 8.3.3 affords us a nice way of show-

ing that we do not have uniform convergence of a given sequence of functions.
Namely, if the limit of a sequence of complex-valued functions that are continuous
on a subsef2 of a metric space is a function that is not continuousthnve may
immediately conclude that the convergence in not uniform. Be careful about the
appropriate use of this: The limit function being continuous IS NOT ENOUGH to
conclude that the convergence is uniform.

o)

The converse of Theorem 8.3.3 is false. For example, we know that -
n=1
converges pointwise to the continuous function f (z) = 0in C — {0} and the con-
vergence is not uniform. The following result offers a list of criteria under which
continuity of the limit of a sequence of real-valued continuous functions ensures

that the convergence must be uniform.

Theorem 8.3.5 Suppose that Q is a compact subset of a metric space (X, d) and
{ fn}ne; Satisfies each of the following:
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(1) {fn}n2, isasequence of real-valued functions that are continuous on

(i) fn —Q—> f and f is continuous o, and
(i) vn)Vw)y(helArwe Q= f(w) > fhi1(w)).

Then f, = f.
Q

Excursion 8.3.6 Fill in what is missing in order to complete the following proof of
Theorem 8.3.5.

Proof. For { f,}2 ; satisfying the hypotheses, set g, = f, — f. Then, for each

n € J, gy is continuous on Q and, for each ¢ € Q, r]ILm On (0) = . Since
4 S
@

fn (w) > fny1 (w) impliesthat fp (w) — f (w) > fry1 () — T (w), we also have

that (Vn)(Vw)(n eJAhweQ=
@
To seethat g, = O, supposethat ¢ > Qisgiven. For eachn € J, let
Q

Kn={XxeQ:gh(X)>e}.

Because Q and R are metric spaces, g, is continuous, and {w e R: w > ¢} isa
closed subset of R, by Corollary 5.2.16 to the Open Set Characterization of Con-
tinuous Functions, . As a closed subset of a compact metric space,
()
from Theorem 3.3.37, we conclude tha} is . If x € Kpy1, then
4

Ont1 (X) > e andgn (X) > Ony1 (X); it follows from the transitivity of > that

. Hencex e K. Sincex was arbitrary(Vx) (x € Kpp1 = X € Kp);

®
le., . Therefore {Kn}o2 4 is a sequence of compact

(6) (1)
subsets of2. From Corollary 3.3.44 to Theorem 3.3.48yn € J) (K, # 0)) =
N Kk # 0.

kel
Suppose thab € Q. Thennim On (w) = 0 and{gn (x)} decreasing yields

the existence of a positive integkr such thah > M implies that 0< g, (w) < ¢.

In particular,w ¢ K1 from which it follows thatw ¢ (] K,. Becausan was
neJ
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arbitrary, Vw € Q) w ¢ () Kn );i.e, (| Kn = 8. We conclude that there exists
neJ neJ
apositive integer P such that Kp = ¢. Hence, K, = @ for all ; that is, for

®)
aln>P,{xeQ:gh(X)>¢e} =0. Therefore,

(MX)(MN)XxXeQAN>P=0<gy(X) <¢).

Sincee > Owas arbitrary, we have that g, = 0 which is equivalent to showing that
Q
fh= . m

Q
*** Acceptable responses are: (1) 0, (2) gn (w) > gny1 (w), (3) Ky isclosed, (4)
compact, (5) gn (X) > ¢, (6) Kny1 C Ky, (7) nested, and (8) n > P.***

Remark 8.3.7 Snce compactnesswasreferred to several timesin the proof of The-
orem 8.3.5, it is natural to want to check that the compactness was really needed.

. . .1 )~
The example offered by our author in order to illustrate the neeh»sm}
in the segment0, 1).

n=1

Our results concerning transmission of integrability and differentiability are for
sequences of functions of real-valued functions on subsets Rf

Theorem 8.3.8 (Integration of Uniformly Convergent Sequences) Let a beafunc-
tion that is (dgned and) monotonically increasing on the intervakl[a, b]. Sup-
pose thaf f,}2; is a sequence of real-valued functions such that

MnN)(nel= fheR(a) onl)

and f, = f.Then fe R (a)on | and
[a,b]
b b
/ f (X)da (x) = lim / fn (X) da (X)
a n— oo a

Excursion 8.3.9 Fill in what is missing in order to complete the following proof of
the Theorem.
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Proof. Foreachn € J, let e, = sup| fn (X) — f (X)]. Then
xel

fn(X)—en < (X)) < fora<x<b
(€]

and if follows that

b b b
/(fn<x)—en)da(x)s/ f(x)da(x)s/ f (%) dot (x) <

b
/ (fn (X) + &n) dat (X) . (8.3)

Properties of linear ordering yield that

b b
05/ f(x)da(x)—/ f (X)da (X) <

b
/ (fn (X) + &n) da (X) — . (8.4)
a )

Because the upper bound in equation (8.4) isequivalent to

3
we conclude that

(Vnel) (0 < f_;f (X) da (X) —f_:f (X)da (X) < ) By The-

4
orem8.2.7¢gn — 0asn — oo. Sincef;f (x) da (x)—fabf (X) da (x) is constant,

we conclude that . Hencef € % (a).
(©)
Now, from equation 8.3, for eaahe J,

b b b
/(fn(x>—en)da(x>s/ f(x)da(x)s/ (Fn (X) + £n) dat (%)

(6) Finish the proof in the space provided.
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*** Acceptable responses are:(1) fp (X) + eng) f;’ (fn (X) — &n) da (X),

(3) Ja eenda (X), (4) 2en[a (0) —a @), (B) [;' f () da (x) = [ (x) dat (), (6)
Hopefully, you thought to repeat the process just illustrated. From the modified
inequality it follows that

f: f (X)da (X) — fab fn (X) da (x)‘ < &n[a (b) — a (a)]; then because e, — 0 as
n — oo, givenany ¢ > Othereexistsapositiveinteger M suchthat n > M implies
that en [a (D) — a ()] < e.*¥**

o0
Corollary 8.3.10 If f, € R (a) on[a, b], for eachn € J, and Z fk (X) converges

k=1
uniformly on [a, b] to a function f, then f € R (a) on [a, b] and

b 0 b
/ f (x)da (X) = Z/ fi (X) dax (X) .
a k=12

Having only uniform convergence of a sequence of functions is insufficient to
make claims concerning the sequence of derivatives. There are various results that
offer some additional conditions under which differentiation is transmitted. If we
restrict ourselves to sequences of real-valued functions that are continuous on an
interval [a, b] and Riemann integration, then we can use the Fundamental Theorems
of Calculus to draw analogous conclusions. Namely, we have the following two
results.

Theorem 8.3.11 Suppose that { fn} 2 ; is a sequence of real-valued functions that

are continuous on the intervgh, b] and f, = f. Forc € [a, b] and each ne J,
[a,b]
let

Then f is continuous ofa, b] and , = F where
[a,b]

F(x):/X f (t)dt.

The proof isleft as an exercise.
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Theorem 8.3.12 Supposethat { fr};2; issuchthat f, m f and, for eachn € J,
a,

f, iscontinuousonaninterval [a, b]. If f;, = g for somefunction g that isdefined
[a,b]
on[a, b], then g iscontinuous on [a, b] and f’ (x) = g (x) for all x € [a, b].

Proof. Suppose that { f,};2; is such that f, m f , f. iscontinuous on an
a’

interval [a, b] for eschn € J, and f; — g for some function g that is defined on
[a,b]
[a, b]. From the Uniform Limit of Continuous Functions Theorem, g is continuous.

Because each f,, iscontinuousand f;, = g, by the second Fundamental Theorem
[a,b]
of Calculus and Theorem 8.3.11, for [c, X] C [a, b]

/Xg(t)dt:nll)ngo/x fr;(t)dt:nli)ngo[fn(x)— fn (©)] .

Now the pointwise convergence of { f,} yieldsthat nILrQo [fn () = fa(0)] = f (-
f (c). Hence, from the properties of derivative and the first Fundamental Theorem
of Calculus, g(x) = f/(x). m

We close with the variation of 8.3.12 that is in our text; it is more general in
that it does not require continuity of the derivatives and specifies convergence of
the original sequence only at a point.

Theorem 8.3.13 Suppose that { fn} 2 ; is a sequence of real-valued functions that
are differentiable on an intervdla, b] and that there exists a poinpyxe [a, b]
such thatnll}n;o fn (Xo) exists. If{ fg}g‘;l converges uniformly ofa, b] then{ fn}o2 4

converges uniformly ofa, b] to some function f and
(VX) (x ela,bl= f'(x) = nILngo fi (x)) .

Excursion 8.3.14 Fill in what is missing in order to complete the following proof
of Theorem 8.3.13.

Proof. Suppose e > 0 is given. Because { fn (Xo)},—; IS convergent sequence
of real numbers and R is complete, { fn (Xo)}ne; is . Hence, there
D
exists apositive integer My such that n > M1 and m > My implies that

| (X0) — fm (X0)| < g
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Because { f} , converges uniformly on [a, b], by Theorem , there exists
3]
apositive integer M2 such that n > M2 and m > My implies that

&

i
2b—a)

12 — T (O] <

(©)

For fixed mandn, let F = f, — f,,. Since each fy is differentiable on [a, b],
F is differentiable on (a, b) and continuous on [a, b]. From the

()
Theorem, for any [x, t] C (a, b), thereexistsaé € (x,t) suchthat F (x) — F (1) =
F’ (&) (x —t). Consequently, if m > My andn > My, forany [x, t] C (a, b), there
existsa¢ € (x,t), it follows that

[(fn () = fm (X)) = (fn @) = fm (D) = |1 (&) = O] Ix =t (85)

&

2(b—a)

<

X —1t| <
®)

Let M = max {M1, M2}. Thenm > M andn > M impliesthat

| fn (w) — fm (w)]
< (fn (W) = fm (w)) — (fn (X0) = fm Xo))| + | fn (X0) — fm (X0)| < &

forany w € [a, b]. Hence, { fy} 2 ; converges uniformly on [a, b] to some function.
Let f denote the limit function; i.e,, f (x) = nIl)m fn (X) for each x € [a, b] and

fn = f.
[a,b]

Now we want to show that, for each x € [a, b], f/ (x) = nILn;o fl(x);i.e,
for fixed x € [a, b],
n— oot— X t — X t—x t—X
where the appropriate one-sided limit is assumed whexn = a or x = b. To this
end, forfixedx € [a, b], let

fn () — fn (%) O -fX
t —X and ¢(t)d€f t—X

tn(t) =

fort € [a,b] — {x} andn € J. Then,x € (a, b) implies thattli)r){ayﬁn t) = f, (%),
while x = a andx = byield that lim¢n (t) = ) (a) and lim¢, (t) = f (),
t—at t—b~



348 CHAPTER 8. SEQUENCESAND SERIES OF FUNCTIONS

respectively. Suppose ¢ > O if given. If m > My, n > My, andt € [a, b] — {x},
then

&

|pn () — Ppm (V)| = < Z(b——a)

(6

from equation (8.5). Thus, {¢n}oc; is uniformly Cauchy and, by Theorem 8.2.3,
uniformly convergentont € [a, b] — {x}. Since f (t) = nIi%m fn (t) fort € [a, b],
we have that

im ¢n () =& ().

Consequently, ¢n = ¢ on [a, b] — {x}. Finaly, applying Theorem 8.3.1 to the
sequence {¢n}oeq, Where Ap = f) (X) yieldsthat

£ (x) = fime (t) =

(N

|

*** A cceptable responses are: (1) Cauchy, (2) 8.2.3, (3) dl ¢ € [a, b], (4) Mean-

Value, (5)%,

©) fn@® =)  fm® - fm)| _ [(fa () = fm (1) — (Fn (X) = fm (X))
t— X t — X - It — x| ’

1 _ 1 / * %%
(7) nirgoAn o n“—>moo fn ().

Rudin ends the section of our text that corresponds with these notes by con-
structing an example of a real-valued continuous function that is nowhere differen-
tiable.

Theorem 8.3.15 There exists a real-valued function that is continuous d and
nowhere differentiable oR.

Proof. First we defineafunction ¢ that is continuous on R, periodic with period
2, and not differentiable at each integer. To do this, we define the function in a
interval that is“2 wide” and extend the dmition by reference to the original part.
Forx € [—1, 1], suppose thap (x) = |X| and, for allx € R, let¢ (X + 2) = ¢ (X).
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In the space provided sketch a graph of ¢.

The author shows that the function

o0 3 n

_ - n

r00 =3 () ¢ @
n=0

satisfies the needed conditions. Use the space provided to fill in highlights of the

justification.

8.4 Familiesof Functions

Since any sequence of functionsis also a set of functions, it is natural to ask ques-

tions about sets of functions that are related by some commonly shared nice behav-
ior. The general idea is to seek additional properties that will shared by such sets
of functions. For example, i is the set of all real-valued functions from, [0

into [0, 1] that are continuous, we have seen that an additional shared property is
that(Vf)(f e F= 3t)(t € [0,1] A f (1) =1)). In the last section, we consid-
ered sets of functions from a metric space i@tor R and examined some of the
consequences of uniform convergence of sequences.
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Another view of sets of functions is considering the functions as points in a
metric space. Let C ([a, b]) denote the family of real-valued functions that are con-
tinuous on the interval = [a,b]. For f andg in C ([a, b]), we have seen that

pao (1,9) = max T () =g ()]

and

b
p(f,g>=/ If (x) — g ()] dx.

are metrics orC ([a, b]). As a homework problem (Problem Set H, #14), you
will show that (C ([a, b]), p) is not a complete metric space. On the other hand,
(C ([a,h]), pxo) is complete. In fact, the latter generalizes to the set of complex-
valued functions that are continuous and bounded on the same domain.

Definition 8.4.1 For a metric space (X, d), let C (X) denote the set of all complex-
valued functions that are continuous and bounded on the domain X and, corre-
sponding to each & C (X) thesupremum norm or sup norm s given by

Il =1flix =sup[f )|

xeX

It followsdirectly that || f ||y =0« f (x) =0foral x e X and

v (ve) (fLgeCX)=IIf +dalx < I flx+llgllx)-

The details of our proof for the corresponding set-up forC ([a, b]) allow us to claim
thatpoo (f,9) = || f — gllx Is a metric forC (X).

Lemma 8.4.2 The convergence of sequencesin C (X) with respect to po 1S equiv-
alent to uniform convergence of sequences of continuous functions in subsets of
X.
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Use the space below to justify the claim made in the lemma.

***Hopefully, you remembered that the metric replaces the occurrence of the ab-

solute value (or modulus) is the statement of convergence. The immediate trans-
lation is that for every > 0, there exists a positive integht such thath > M
implies thatp, (fn, ) < &. Of course, you don't want to stop therthe state-

ment po (fh, f) < & translates to supf, (x) — f (x)] < & which yields that
xeX

(VX)) (x e X = [fn (X) — f (X)| < ¢&). This justties that convergence ¢ff,}2 ;

with respect tg, implies that{ fn};2,; converges uniformly tdf. Since the con-

verse also follows immediately from the fitgtions, we can conclude that con-

vergence of sequences i€ (X) with respect to p iS equivalent to uniform

convergence**

Theorem 8.4.3 For a metric space X, (C (X), pxo) isa complete metric space.

Excursion 8.4.4 Fill in what is missing in order to compl ete the following proof of
Theorem 8.4.3.

Proof. Since (C (X), pxo) isametric space, from Theorem 4.2.9, we know that
any convergent sequence in C (X) is Cauchy.
Suppose that { fn}2 ; isaCauchy sequencein (C (X), pxo) andthat e > 0
is given. Then there exists a positive integer M suchthatn > M and m > M
implies that cie,forn> Mandm > M,
@

SUp| fn (5) - fm (5)| < €.
feX

Hence, (VX) (x EX= ) Sincee > 0 was arbitrary, we conclude
2

that { fa}o2, is . Asa
©) 3
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sequence of complex-valued functions on a metric spae by Theorem ,

@
{fn}h= is uniformly convergent. Lef : X — C denote the uniform limit. Be-

causef, = f, for anye > 0 there exists a positive integdt such than > M

- - X
implies that

[ fn (X) = f (X)] <%foral|xax.

In particular, =sup|fh (&) — ()] < ¢ <. Sinces > Owas ar-
(5) ‘:eX 2

bitrary, we conclude that, (fn, f) = Oasn — oo. Hence{ f,};2; is convergent

to f in (C(X), poo)-

Now we want to show that € C (X). As the uniform limit of continuous
functions from a metric spacé in C, we know thatf is . Because
(6)
fn = f, corresponding te = 1 there exists a positive integkt such than > M

X
implies that| f, (x) — f (X)] < 1 for all x € X. In particular, from the (other)
triangular inequality, we have that

(V¥) (x e X= [T ()] < [fm41 ()1 +1). (8.6)

Since fyy1 € C (X), fm41 is continuous and on X. From equation
(1)
(8.6), it follows thatf is on X. Becausef : X — C is contin-

()
uous and bounded oX, . The sequencef,} 2, was an arbitrary

®
Cauchy sequence if€ (X), pso). Consequently, we conclude that every Cauchy
sequence irfC (X), poo) is convergent inC (X), po). This concludes that proof
that convergence i(C (X), poo) IS equivalent to being Cauchy (@ (X), psc). ®

*** Acceptable responses are: (i) (fh, fm) < &, (2) | fn (X) — Tm (X)] < ¢, (3)
uniformly Cauchy, (4) 8.2.3, (5)« (fn, ), (6) continuous, (7) bounded, and (8)
f e C(X).***

Remark 8.4.5 At first, one might suspect that completenessisan intrinsic property
of a set. However, combining our prior discussion of the metric spaces (R, d) and
(Q, d) where d denotes the Euclidean metric with our discussion of the two metrics
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on C ([a, b]) leads us to the conclusion that completeness depends on two things:
the nature of the underlying set and the way in which distance is measured on the
Set.

We have made a significant transition from concentration on sets whose ele-
ments are points on a plane or number line (or Euclidean n-space) to sets where the
points are functions. Now that we have seen a setting that gives us the notion of
completeness in this new setting, it is natural to ask about generalization or transfer
of other general properties. What might characterizations of compactness look like?
Do we have an analog for the Bolzano-Weierstrass Theorem? In this discussion,
we will concentrate on conditions that allow us to draw conclusions concerning se-
guences of bounded functions and subsequences of convergent sequences. We will
note right away that care must be taken.

Definition 8.4.6 Let F denote a family of complex-valued functions ¢gged on a
metric spac€Q, d). Then

(a) Fis said to beuniformly bounded on Q if and only if
AM eR)(VI)(Vw)(f e FAw e Q= |f (w)] < M).

(b) Fis said to bdocally uniformly bounded on Q if and only if
(Vw) (w € Q = (IN,) (N, € Q A F is uniformly bounded on }N).

(c) any sequencgfn}y2, C F is said to bepointwise bounded on Q if and only
if
(Vw) (w € Q@ = {fy (w)};2, is boundedl: i.e., corresponding to each e
Q, there exists a positive real numberwl\élzf ¢ (w) such that
e

| fn (w)| < M,, foralln € J.

Example8.4.7 For x € Q = R— {0}, let F = { o (X) = rﬂL ‘nell. Then,

+ x2

2
for w € Q, taking¢ (w) = % implies that| fy (w)| < ¢ (w) foralln € J.
w

Thus,F is pointwise bounded of.

Remark 8.4.8 Uniform boundedness of a family implies that each member of the
family is bounded but not conversely.
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Excursion 8.4.9 Justify this point with a discussion of 7 = {f,(2) =nz: n e J}
onU={zeC:|zl <r}.

***Hopefully, you observed that each member of F isbounded in U, but no single
bound works for all of the elementsin F.***

Remark 8.4.10 Uniform boundedness of a family implies local uniform bounded-
ness but not conversely.

" :n e Jt is locally uniformly

1
Excursion 8.4.11 To see this, show th t1
bounded in U= {z: |z| < 1} but not uniformly bounded there.

***Neighborhoods that can justify local uniform boundedness vary; the key isto
capitalize on the fact that you can start with an arbitrary fixed z € U and make use
of its distance from the origin to define a neighborhood. For example, given zg € U

. 1—r
with [zg] =1 < 1,let N; = N (zo, T); now, Nz, ¢ U and ‘(1—2”)‘1) <

(1 — |z|)~* can be used to justify that, for each n € J, ‘(1 — z“)_l‘ <41-r)/3.
The latter allows us to conclude that the given family is uniformly bounded on
Nz,. Since zo was arbitrary, we can claim local uniform boundednessin U. One
way to justify the lack of uniform boundednessiis to investigate the behavior of the
functions in the family at the points «/1 — n=1***
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The following theorem gives us a characterization for local uniform bounded-
ness when the metric space is a subs& of C.

Theorem 8.4.12 A family of complex valued functions F on a subset Q of C is
locally uniformly bounded in Q if and only if F is uniformly bounded on every
compact subset of Q.

Proof. (<) This is an immediate consequence of the observation that the clo-
sure of a neighborhood i@ or R is compact.

(=) SupposeF is locally uniformly bounded on a domaihandK is a compact
subset of2. Then, for eaclz € K there exists a neighborhoodnfN (z; ¢;) and a
positive real numbeiy,, such that

[T ()] < Mg forallg € N(z¢€z).

Since{N (z; ¢;) : z € K} coversK, we know that there existsfaite subcover, say
{N(zj5¢z): ] =12,---,n}. Then, forM = max{Mz, : 1 < j < n}, |f (2)| <
M, for all z € K, and we conclude th&k is uniformly bounded oK. m

Remark 8.4.13 Note that Theorem 8.4.12 made specific use of the Heine-Borel
Theoremi.e., the fact that we were in a space where compactness is equivalent to
being closed and bounded.

Remark 8.4.14 Inour text, an example is given toillustrate that a uniformly bounded
sequence of real-valued continuous functions on a compact metric space need not
yield a subsequence that converges (even) pointwise on the metric space. Because
the verfication of the claim appeals to a theorem given in Chapter 11 of the text, at
this point we accept the example as a reminder to be cautious.

Remark 8.4.15 Again by way of example, the author of our text illustrates that it

is not the case that every convergent sequence of functions contains a uniformly
convergent subsequence. We offer it as our next excursion, providing space for you
to justify the claims.

Excursion 8.4.16 LetQ ={xeR:0<x <1} =0, 1] and
2
F=1fa(x)= I

‘ne
x2 4+ (1 — nx)?
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(8) Show that F isuniformly bounded in Q.

(b) Find the pointwise limit of { f,}2, for x € Q.

(c) Justify that no subsequence of { f,}2 ; can converge uniformly on Q.

***For (), observing that x2 + (1 — nx)? > x2 > Oforx € (0,1] and f, (0) = 0
for eachn € Jyieldsthat | f, (x)| < 1for x € Q. In (b), since the only occurrence
of n isin the denominator of each fy, for each fixed x € Q, the corresponding
sequence of real goesto 0 asn — oo. For (c), in view of the negation of the defi-
nition of uniform convergence of a sequence, the behavior of the seqUénfe;

oo

: 1 ,
at the pomts[—] allows us to conclude that no subsequencegff>; will
=1
converge uniforrr?ly orf.***

Now we know that we don’t have a “straight” analog for the Bolzano-Weierstrass
Theorem when we are in the realm of families of function§ {X). This poses the
challenge ofinding an additional property (or set of properties) that will yield such
an analog. Towards that end, we introducértea property that requires “local and
global” uniform behavior over a family.
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Definition 8.4.17 Afamily F of complex-valued functions ¢ggned on a metric space
(Q, d) is equicontinuous on Q if and only if

Ve >0)(F0>0) (Vi) Vu) (Vo) (f e FAUeEQAD e QAD(U,0) <0
= |fu)-—-1f@) <eé).

Remark 8.4.18 If F is equicontinuous of2, then each fe F is clearly uniformly
continuous ir2.

Excursion 8.4.19 On the other hand, for § = {z: |z| < R}, show that each func-

tionin F = {nz: n e J} is uniformly continuous on RJthoughF is not equicon-
tinuous on L.

Excursion 8.4.20 Use the Mean-Value Theorem to justify that
. X
{fn(x) :nsmﬁ 'n e.,]]}

Is equicontinuous 62 = [0, co)

The next result is particularly useful when we can designate a denumerable
subset of the domains on which our functions are defined. When the domain is
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an open connected subset of R or C, then the rationals or points with the real and
imaginary parts as rational work very nicely. In each case the denumerable subset
is dense in the set under consideration.

Lemma8.4.21 If { fy};2, isapointwise bounded sequence of complex-valued func-
tions on a denumerable set E, thefy},2; has a subsequenc{e‘nk}i‘;1 that con-
verges pointwise on E.

Excursion 8.4.22 Finish the following proof.

Proof. Let {f,} be sequence of complex-valued functions that is pointwise
bounded on a denumerable &tThen the seE can be realized as a sequefiog
of distinct points. This is a natural setting for application of the Cantor diago-
nalization process that we saw earlier in the proof of the denumerability of the
rationals. From the Bolzano—\Weierstrass Theorgimn(w1)} bounded implies that
there exists a convergent subsequehbf;l (u)l)}. The process can be applied to
{ fn,1 (w2)} to obtain a subsequenéé, > (w2)} that is convergent.

f1.1 f21 fa1
fi12 fao fa2

[0.9] .

In general{ fn,;} ~, is such thaf fn j (w;j)},, is convergent andlf,,; } ~  is a
subsequence of each pfn,k}il fork =1,2,..., j — 1. Now considef fn,n}ﬁo:1

n
00 .

n=m+1 'S @
from which it follows that{ fn n (x)} is convergent

*** Forx € E, there exists aM e J such thatx = wy. Then{fyn}

subsequence dffn v}
atx. ***

The next result tells us that if we restrict ourselves to domHKirteat are com-
pact metric spaces that any uniformly convergent sequendi(k) is also an
equicontinuous family.

o0
n=M+1
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Theorem 8.4.23 Suppose that (K, d) is a compact metric space and the sequence
of functions { fn},2; issuch that (vn) (n € J = f, € C (K)). If { f};2; converges
uniformly on K, then 7 = { f, : n € J} isequicontinuous on K.

Proof. Supposethat (K, d) isacompact metric space, the sequence of functions
{fn}pe1 C C(K) convergesuniformly on K and ¢ > Oisgiven. By Theorem 8.2.3,
{fn}peq is uniformly Cauchy on K. Thus, there exists a positive integer M such

thatn > M impliesthat || fn, — |l < % In particular,

nm—fmw<%ﬂxmn>m.

Because each f, is continuous on a compact set, from the Uniform Continuity
Theorem, for each n € J, f, is uniformly continuous on K. Hence, for each
j € {1,2,..., M}, there existsa d; > Osuchthat x,y € K and d(X,y) < Jj

. . & .
impliesthat | fj (x) — fj (y)| < 3 Letd= 1§nj1|SnM5j. Then

. (je{l,2,...,M}AX,ye KAd(X,y) <d) =
1) (7x) (W){ f00- 1] <% } ®7)

Forn> M andx,y e K suchthat d (x, y) < ¢, we also have that

[T 00 = fn (VI < [0 () — fm COI +
T ) = MWl +HITm () = (W <& (88)

From (8.7) and (8.8) and the fact that ¢ > O was arbitrary, we conclude that

(Ve > 0) (o > 0) (Vfn) (Vu) (Vo) (fre FAU, o e KAd(U,v) <0
= |fu)-—f@) <e¢);ie,

F isequicontinuouson K. m
We are now ready to offer conditions on a subfamily of C (K) that will give us
an analog to the Bolzano-Weierstrass Theorem.

Theorem 8.4.24 Suppose that (K, d) is a compact metric space and the sequence
of functions {fy};2, issuch that (vn)(ne J = f, e C(K)). If {fa:nel}is
pointwise bounded and equicontinuous on K, then

(@ {fn:neJ}isuniformly bounded on K and
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(b) {fn}n2, contains a subsequence that is uniformly convergent on K.

Excursion 8.4.25 Fill in what is missing in order to complete the following proof
of Theorem 8.4.24.

Proof. Suppose that (K, d) is a compact metric space, the sequence of func-
tions { fn};2; is such that(vn) (n e J = f, € C(K)), the family {f, :n e J} is
pointwise bounded and equicontinuouskon

Proof of part (a):

Lete > O be given. Sincéf, : n € J} is equicontinuous oK, there exists
ao > 0 such that

(V) (V) (YY) [(ne TAX,y e KAad(X,y) < &) = |[fn (X) — fa (V)] <&].
(8.9)

BecausgNs (u) : u € K} forms an for K andK is compact, there

@
exists afinite number of points, sapi, p2, ..., pk, such thatk c

@
On the other hand,f, : n € J} is pointwise boundedconsequently, for eachj,

j €{1,2,...,k}, there exists a positive real numiddy; such that
(vn)y (nel = |fn(pj)] < Mj).

ForM = , it follows that
3

VN (V) ((nedAje(l2 . ..kh=|fa(p))| <M). (8.10)

k
Suppose thak € K. SinceK c [J N;s(p;) there exists am e {1,2, ..., k}
j=1

such that . Henced (x, pm) < ¢ and, from (8.9), we conclude that

@)
for all n € J. But then|fn, (X)| — | fn (Pm)| < | fn (X) — fn (Pm)]

()
yields that| f, (X)| < | fn (pm)| + ¢ for . From (8.10), we conclude
6)
that| fp (X)| < M + ¢ for all n € J. Sincex was arbitrary, it follows that

VN (V) [(neJAaxeK)y= [fa(X)| <M +e];ie,
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{fao:nel}is

0

Almost a proof of part (b):
If K werefinite, wewould be done. For K infinite, let E be adenumerable
subset of K that isdensein K. (The reason for the “Almost” in the title of this part
of the proof is that we did not do the Exercise #25 on page 45 for homework. If
K c Ror K c C, then the density of the rationals leads immediately to &set
that satifies the desired propettin the general case of an arbitrary metric space,
Exercise #25 on page 45 indicates how we can use open coverings with rational
radii to obtain such a set.) Becaydsg : n € J} is onE, by Lemma
8)
8.4.21, there exists a subsequencé fafl o> ;, say{gj }Til that is convergent for
eachx € E.

Suppose that > 0 is given. Sincq f, : n € J} is equicontinuous oiK,
there exists @ > 0 such that

(V) (90 (W) [ (1€ TAx,y e K AD(Y) <0) = 100 = fa (Y] < 5]

BecauseE is dense inK, {Ns (u) : u € E} forms an open cover fok. Because
K is compact, we conclude that there existénite number of elements &, say
w1, W2, ..., Wg, SUch that

q
K c | Ns(w)). (8.11)
j=1

Since{ws, wy, ..., wq} C E and{g; (x)}(j’i1 is a convergent sequence of complex
numbers for eaclx € E, the completeness @i, yields Cauchy convergence of
{9 (ws)}(j’ilfor eachws, s € {1, 2, ..., q}. Hence, for eack € {1, 2, ..., q}, there
exists a positive intege¥ls such than > Mgandm > Mg implies that

|On (ws) — Om (ws)| < %

Suppose thak € K. From (8.11), there exists am € {1, 2,...,q} such that
. Thend (x, ws) < o implies that

©

[ fn (X) — fr (ws)] < %
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fordlne].Lee M =max{Ms:se (1,2 ..,q}}. Itfollowsthat, forn > M and
m> M,

|On (X) = gm ()] < [gn (X) — On (ws)| +

+ [gm (ws) — Gm (X)| < &.

‘ (10)

Since¢ > O0and x € K were arbitrary, we conclude that
(Ve>0) @AM el [n>MAam> M= (vx) (x € K = |gh (X) — gm (X)| < &)];

i.e, {9 }Tozl is . By Theorem 8.4.23, {g; }Tozl is uniformly conver-
(11)
gentonK as neededm

k
*** Acceptable responses are: (1) open cover,|(PNs (pj),

j=1
n € J, (7) uniformly bounded oK, (8) pointwise bounded oK, (9) X € Ns (ws),
(20) |gn (ws) — Om (ws)], (11) uniformly Cauchy oK .***

Since we now know that for families of functions it is not the case that every
convergent sequence of functions contains a uniformly convergent subsequence,
families that do have that property warrant a special label.

Definition 8.4.26 Afamily F of complex-valued functions ¢gned on a metric space
Q is said to benormal in Q if and only if every sequendd,} c F has a subse-
quence{ fnk} that converges uniformly on compact subset of

Remark 8.4.27 In view of Theorem 8.4.24, any family that is pointwise bounded
and equicontinuous on a compact metric space K is normal in K.

Our last definition takes care of the situation when the limits of the sequences
from afamily arein the family.

Definition 8.4.28 A normal family of complex-valued functiods is said to be
compact if and only if the uniform limits of all sequences converging/Anare
also members aof.
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8.5 The Stone-Weierstrass Theorem

In view of our information concerning the transmission of nice properties of func-

tions in sequences (and series), we would like to have results that enable us to
realize a given function as the uniform limit of a sequence of nice functions. The
last result that we will state in this chapter relates a given function to a sequence of
polynomials. Since polynomials are continuously differentiable functions the theo-
rem is particularly good news. We are offering the statement of the theorem without
discussing the proof. Space is provided for you to insert a synopsis or comments
concerning the proof that is offered by the author of our text on pages 159-160.

Theorem 85.1 If f € C ([a, b]) for a < b, then there exists a sequence of polyno-
mials{Pn}o2; C C ([a, b]) such thatnli)m P (X) = f (X) where the convergence is
uniform of[a, b]. If f is a real-valued function then the polynomials can be taken
as real.

Space for Comments.

8.6 Problem Set H

1. Use properties of limits to find the pointwise limits for the following se-
guences of complex-valued functions@n

nz 1%
(@) {1+ nzZLZ1
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nz2 1%
O e,

A
(C) [l"'zn]n—l

n?z 1%
O |zl ,

© 1+n22+ n |~
1-n?z 1+2n),_4

() {ze"}

2. Foreachn € J, let f,(x) = % Use the definition to prove that { fn}2 ;

IS pointwise convergent on [0, oo), uniformly convergent on [a, oo) for any
fixed positive real number a, and not uniformly convergent on (0, co).

3. For each of the following sequences of real-valued functions oR, use the
definition to show thaf f, (x)}52, converges pointwise to the spged f (x)
on the given sel; then determine whether or not the convergence is uniform.
Use the dénition or its negation to justify your conclusions concerning uni-
form convergence.

(@) (fn (012, = [ }; 00 =01 =[0,1]

b) (£, (x)ml:[ ]; f00=01=0,1]

N

- n3x
© (I = | 7 g ] 00 =01 = [0,
3
(d) {fan ¥zt = TH)ZXZ]; f(x) =0, 1 = [a,00) wherea is a

positivefixed real number

1—x" 1 11
(e){fn(x)}gil=[ _"X];f(x)zl ;.z[_i,é}

1 — X
() (fn 00}y = frxe™}: f 00 =01 =[0,1]
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4.

10.

For the sequence { fn},2; of rea-valued functions o given by f, (X) =
N+ (n+2)x"

x forne Jandf (x) = 0forx € I = [0, 1], show that
fn (X) — f (X) asn — oo for eachx € I. Isis true that

1 1
/ fn (X) dx — / f (x) dx asn - oc0?
0 0

Suppose that the sequences of functipfg - ; and{gn}-, converge uni-
formly to f andg, respectively, on a seA in a metric spac€s, d). Prove
that the sequendef, + gn} =, converges uniformly td + g.

X2
(1+nx?) /n
gentinl = {x € R: |X| < h}. (Hint: Justify that each, (x) =

Determine all the values afsuch thatz is uniformly conver-

2

(14 nx?)
Is increasing as a functionand make use that the obtain an upper bound on
the summand.)

o0 o0
. Prove that, if} |aa| is convergent, ther) a, cosnx converges uniformly

for all x e R.

[0.9] o0
Suppose thaZn |bn| is convergent and let (x) = an sinnx for x € R.

n=1 n=1
Show that

[o.]
f/(x) = ann cosnx

n=1

and that boch:bn sinnx andZ:nbn cosnx converge uniformly for alk e

R.

Prove that if a sequence of complex-valued function€aronverges uni-
formly on a setA and on a seB, then it converges uniformly oA U B.

Prove that if the sequen¢é,}> , of complex-valued functions o@ is uni-
formly convergent on a sé& to a function f that is bounded o8, then
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there exists a positive real number K and a positive integer M such that
VN (VX)(n> MAX e Q= |fy(X)| < K).

11. Suppose that { fn}a2 ; isasequence of real-valued functions each of which is
continuous on an intervdl = [a, b]. If {fn};2, is uniformly continuous on
I, prove that there exists a positive real numKesuch that

(Vn)(¥X)(ne I Aax el = |f,(X)] < K).

12. Without appeal to Theorem 8.3.Be., using basic properties of integrals,
prove Theorem 8.3.11: Suppose thdg} 2, is a sequence of real-valued

functions that are continuous on the intenalp] and f, = f. Forc €
[a,b]
[a, b] and eacln € J, let Fy (X) = fcx fn (t)dt.Then f is continuous on
e

[a,b]andFy, = F whereF (x) = [ f (t)dt.
[a.b]

13. Compare the values of the integrals of the nth partials sums over the interval
[0, 1] with the integral of their their limit in the case whepg, -, fk () is
such that

x+1 , =1<x<0

fl(X):{—x—kl, O<x<1 '’

and, foreacm =2, 3, 4, ...,

0 L —1<X<—
_1 l
n’x4+n , —<x<0
S (X) = ; n 1
—n®Xx+4n 0<X§ﬁ
1
0 , —<Xx<1
n

Does your comparison allow you to conclude anything concerning the uni-
form convergence of the given series n1{? Brigfy justify your response.
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0 Jf —1l<x < ——
14. Foreachn € J, let f (X) = { nx2+1  if —%<x<—
1
0 Jf —<x<1
n

Then {fy}2, C C([—1,1]) whereC ([—1, 1]) is the set of real-valued func-
tions that are continuous or-[L, 1]. Make use of f,};2; to justify that the
metric spacéC ([—1, 1]), p) is not complete, where

1
p(f,g>=/_l|f(x>—g(x>|dx.

15. For each of the following familieg of real-valued functions on the spéed
setsQ, determine whether of nof is pointwise bounded, locally uniformly
bounded, and/or uniformly bounded @n Justify your conclusions.

(a)]-':[l—é:nej]},ﬂ:(o,l]

sinnx B
(b)]—':[ N .neJ],Q_[O,l]
nx
(C)fz[m:nejl,QZR
2n
(d)fz[mneﬂ},Q:R

e F={nx"1-x):nel},Q=I[0,1)

16. Suppose thaf is a family of real-valued functions oR that are differen-
tiable on the intervald, b] and 7' = {f’ fe ]—'} is uniformly bounded on
[a, b]. Prove thatF is equicontinuous ofe, b).

17. IsF = Inxe ™ :neJAaxeR uniformly bounded on [00)? State
your position clearly and carefully justify it.

X : . .
18. IsG = ncos—n ‘neJAXe R} equicontinuous ofR? State your posi-
tion clearly and carefully justify it.
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ikzxsnkx
£ 1 K

=1
clearly and carefullyjusnfy it.

uniformly convergent on [0, co)? State your position



Chapter 9

Some Special Functions

Up to this point we have focused on the general properties that are associated with
uniform convergence of sequences and series of functions. In this chapter, most of

our attention will focus on series that are formed from sequences of functions that

are polynomials having one and only one zero of increasing order. In asense, these

are series of functions that are “about as good as it gets.” It would be even better
if we were doing this discussion in the “Complex Wordibwever, we will restrict
ourselves mostly to power series in the reals.

9.1 Power Series Over the Reals

In this section, we turn to series that are generated by sequences of functions
[0.9]
{oc(x = “)k}kZO'

Definition 9.1.1 A power seriesin R about the point « € R isa seriesin theform
[0.9]
Co+ D Cn (X —a)"
n=1

where o and c,, for n € J U {0}, arereal constants.

Remark 9.1.2 When we discuss power series, we are till interested in the differ-
ent types of convergence that were discussed in the last chagerely, point-
wise, uniform and absolute. In this context, for example, the power seyies c
> o1 tn(x —a)"is said to bepointwise convergent on a set SC R if and only if,
foreachx e S, the seriesg@t> o 1 Cn (Xo — @)" converges. If&+> 121 Cn (X0 — a)"

369
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is divergent, then the power seriesco+ > - ; Cn (X — )" is said to diverge at the
point Xo.

When a given power series co + > e q Cn (X — )" is known to be pointwise
convergenton aset S C R, wedefineafunction f : S— Rby f (X) = co+
> 2 1¢n (X — a)" whose range consists of the pointwise limits that are obtained
from substituting the elements of Sinto the given power series.

We've already seen an example of a power series about which we know the con-
vergence properties. The geometric serigs ¥ -~ ; x" is a power series about the
point O with coeficients{c,},2, satisfyingc, = 1 for all n. From the Convergence
Properties of the Geometric Series and our work in the last chapter, we know that

. . o 1 .
o the serie®"° ;X" is pointwise convergent t?_x inU ={xeR:|X] <1},

o the series> -, x" is uniformly convergent in any compact subsetlfand

e the seriesy 1~ ; x" is not uniformly convergent it .

We will see shortly that this list of properties is precisely the one that is associated
with any power series on its segment (usually known as interval) of convergence.
The next result, which follows directly from the Necessary Condition for Conver-
gence, leads us to a characterization of the nature of the sets that serve as domains
for convergence of power series.

Lemma9.1.3 If theseries > 2 o cn (X — a)" convergesfor x; # a, then the series
converges absolutely for each x such that |[X — a| < |X1 — a|. Furthermore, there
isa number M such that

X — al

n
) for [Xx—al <|x1—a| andforal n. (9.1)

len(x— )" < M (

X1 — o

Proof. Suppose> - ,cn (X — a)" converges ax; # a. We know that a nec-
essary condition for convergence is that the “nth terms” go to zermo geses to
infinity. Consequentlyr,HIim:n (x1 — )" = 0 and, corresponding to = 1, there

o0
exists a positive integef such that

n>K=|ch(x1—a)"—0| <1.
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Let M =max {1, max c (Xl—oc)j]. Then
0<j<K

lcn (X1 — a)"| < M foral neJuU{0}.

For any fixed x € R satisfying [X — a| < |x1 — a], it follows that

n
—a
[on (x = )" = lenl Ix = " = enl Pxa = " |- —
Xx—a |
<M foral n e JuU {0}
X1 —a

asclaimedin equation (9.1). Finaly, for fixed X € R satisfying |[X — a| < |X1 — «],
the Comparison Test yields the absolute convergence of > 2 gcn (X —a)". =

The next theorem justifies that we have uniform convergence on compact sub-
sets of a segment of convergence.

Theorem 9.1.4 Suppose that the series > "7 Cn (X — a)" converges for x1 # a.
Then the power series converges uniformlyon | = {xeR:a —h <x <a+ h}
for each nonnegative h suchthat h < [x; — «|. Furthermore, thereisa real number
M such that

n
) for [Xx—al < h < |x1 —a| andfor all n.

len(x—a)"| < M (

|X1 — al

n
Proof. The existence oM such that|c, (x —a)"| < M (l';‘l‘_‘;'l) was just

shown in our proof of Lemma 9.1.3. Fpr — a| < h < |x1 — a]|, we have that

X — af h
<

< < 1.
X1 —al = [X1—«af

The uni1;orm convergence now follows from the Weierstrass M-Test With=
h

(—|xl—a|) -

Theorem 9.1.5 For the power seriesco + > oo ; Cn (X — )", either

(i) the series convergesonly for X = a; or

(i) the series convergesfor all valuesof x € R; or
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(i) thereisapositivereal number R such that the series converges absolutely for
each x satisfying [X — a| < R, convergesuniformlyin{x e R : |x — a| < Ro}
for any positive Ry < R, and divergesfor x € R suchthat |[x — a| > R.

Proof. To see (i) and (ii), note that the power series >~ ; n" (x — a)" diverges

_ \N
for each x # a, while Zﬁio(xTa) is convergent for each x € R. Now, for

(iii), suppose that there is a real number x; # «a for which the series converges
and a real number xo for which it diverges. By Theorem 9.1.3, it follows that
X1 —al < |x2—al. Let

S= [p eR: Z}cn (x —a)"| convergesfor |x —a| < p]
n=0

and define
R=sup S

Suppose that x* is such that |x* —a| < R. Then there existsa p €
S such that |x* —a| < p < R. From the definition of S, we conclude that
> oo len (x* —a)"| converges. Since x* was arbitrary, the given series is abso-
lutely convergent for each in {x € R: |[x — a| < R}. The uniform convergence
in{x € R:|x—a| < Ry} for any positiveRy < R was justfied in Theorem 9.1.4.

Next, suppose that € R is such thafX —a| = p > R. From Lemma
9.1.3, convergence of -, |cn ()2 — a)n| would yield absolute convergence of the
given series for atk satisfying|x — a| < p and place in Swhich would contradict
the ddinition of R. We conclude that for atkk € R, |[x —a| > R implies that
> oiolen (x — )" as well asy 12 g cn (X — )" diverge. m
The nth Root Test provides us with a formula fording the radius of conver-
gence R, that is described in Theorem 9.1.5.

Lemma9.1.6 For the power seriesco + > oy Cn (X — )", let p = lim supY/Icnl

n—oo
and
+o0o Lif p=0
1
R=1{ — Jf O0<p <oo . (9.2)
p
0 Jif p =400
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Then co + > p2 4 cn (X — a)" converges absolutely for each x € (¢ — R, a + R),
converges uniformly in {x e R : |[x — a| < Rp} for any positive Ry < R, and di-
verges for xe R such thatj)x —a| > R. The number R is called the radius of
convergence for the given power series and the segtmentR, o + R) is called
the “interval of convergence.”

Proof. For any fixed Xo, we have that

limsup,)|cn (Xo — &)"| = limsup (lXo—al «"/ICnI) = |Xo — a] p.
n— oo n—oo

From the Root Test, the series o + > o4 Cn (Xo — )" converges absolutely when-
ever|xp — a| p < 1 and diverges whejxg — «| p > 1. We conclude that the radius
of convergence judied in Theorem 9.1.5 is given by equation (9.8).

: o (2" n , 22"
Example9.1.7 Consider > o o——=— (x —2)". Because limsup,/ —— =
3" n—00 3"

2 2
lim (;_?,) V2 = 3 from Lemma 9.1.6, it follows that the given power series has

n—oo

3
radius of convergence =. On the other hand, some basic algebraic manipulations
yield more information. Namely,

S o[22 " 1
Z;) 3 x=2 _—220[T (x—2)] =2 [(_2) ]
n= n= 1-|—x-2)
3
as long as (_—32) (x—2)| < 1, from the Geometric Series Expansion Theorem.

3
Therefore, for each x € R such that |x — 2| < > we have that

Another useful means dinding the radius of convergence of a power series
follows from the Ratio Test when the limit of the exists.

Lemma 9.1.8 Let a beareal constant and supposethat, for the sequence of nonzero
Cnt1

real constants {Cn} o, lim =LforO<L < o0.
- N>

Ch
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o0
(i) IfL =0, thenco+ > cn (X — )" is absolutely convergent for all x € R and
n=1
uniformly convergent on compact subsets of R,

e 1 1
(i) IfO < L < oo, thenco+ E Cn (X — a)" isabsolutely convergent (a — + E)’
n=1

: : 1 1 :
uniformly convergent in any compact subset of { o — 0 + ) and diver-

1
gent for any xe R such thatx — a| > T

[0.9]
(i) If L = o0, then ¢ + ch (x — a)" is convergent only for x= «.
n=1

The proof isleft as an exercise.

Remark 9.1.9 In view of Lemma 9.1.8, whenever the sequence of nonzero real
Cnt1
Cn

constantgcn},2 satis?esnlim = L for 0 < L < oo an alternative formula

— 00

o0
for the radius of convergence R qf ¢ ch (x —a)" is given by
n=1

400 ,if L=0

R= ,f O0<L <oo . (9.3

L
0 ,if L=+400
(=1)"2.4...(2n)
1-4-7---(3n=2)
(=1)"2.4...(2n)

Example 9.1.10 Consider) X+ 2)".
n—1

Letq1=1‘4‘7m(3n_2).Then
Cn1| (-D"2-4...2n)-2(n+1) 1-4-7---(Bn—2)| 2(n+1) 2
Cn _‘1-4-7---(3n—2)-(3(n+1)—2) (-)"2-4...2n)| 3n+1 3

as n —» oo. Consequently, from Lemma 9.1.8, the radius of convergence of the

. .3 { 8 4
given power series |§.Therefore, the “interval of convergence s—§,—§ .
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The simple manipulationsillustrated in Example 9.1.7 can also be used to derive
power series expansions for rational functions.

Example 9.1.11 Find a power series about the point o = 1 that sums pointwise to

8 -5
and find itsinterval of convergence.
(17 40 (3= 2x) d/inditsinterv g
Note that
8x —5 1 N -2
1+4x)(3=2x) 3—2x 1+4x’

1 _ 1 —i[Z(x 1)]“—izn(x 1)" for |x 1|<1
3-2x 1-2(x-1) X = 2
and
A -2 1

1+4x 5 1_ [(—?4) (x—l)]

2 -4 n 22n+1 5
-T3(F) e n] =3 G e <

n=0

1
W\e have pointwi se and absol ute convergence of both sumsfor |[x — 1| < min [ > 4].

It follows that
8x —5 00 n+1 2n+1 1
on )" for [x— 1] < =.
1+ 4x) 3= 20 Z[ G }(X ) for x =11 <3

The nth partial sums of a power series are polynomials and polynomials are
among the nicest functions that we know. The nature of the convergence of power
series allows for transmission of the nice properties of polynomials to the limit
functions.

Lemma9.1.12 Suppose that the series f (x) = > 12 gCn (X —a)" converges in
{xeR:|x—a] <R} with R > 0. Then f is continuous and differentiable in
(o — R,a + R), f’iscontinuousin (¢ — R, a + R) and

o0
)= ne(x—a)"tfora—R<x<a+R

n=1
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Spoace for comments and scratch work.

Proof. For any x; suchthat X1 — a| < R, thereexistsanh e RwithO < h < R
such that [xy —a| < h. Let | = {X:|x—a| < h}. Then, by Theorem 9.1.4,
> neoCn (x — a)" is uniformly convergent on |. From Theorem 8.3.3, f is con-
tinuous onl as the continuous limit of the ponnomiaE?:0 ¢cj (x —a)!. Conse-
quently, f is continuous ak;. Since thex; was arbitrary, we conclude thdtis
continuous inx — a| < R.

Note thatd 2 | ncn (x — @)1 is a power series whose limit, when it is
convergent, is the limit 0{5{1} wheres, (X) = Z?:O ¢j (X —a)’. Thus, the second
part of the theorem will follow from showing th3t - ; ncy (x — o)"~1 converges
atleastwherd isddinedi.e.,in|x —a| < R. Letxg e {x e R: 0 < |[Xx —a| < R}.
Then there exists axi* with |xg — a| < |X* — a| < R. Inthe proof of Lemm&?, it
was shown that there exists &h> 0 such thatc, (x* — a)"| < M for n e JU{0}.
Hence,

)nc (Xo a)n_l) = |Cnl [X* — " X —a|" M nrn—1
n - = '1tn - = :
|X* — a X* —a [X* — o
Xo—a . iXNao0 n—1
forr = v < 1. From the ratio test, the seri®s,” ; nr"~* converges. Thus,
—a
et -nr"1is convergent and we conclude tBaf° ; nc, (x — a)"Lis

Ix* —al
convergent akg. Sincexg was arbitrary we conclude th3t > ; nc, (x — )" Lis
convergent inx — a| < R. Applying the Theorems 9.1.4 and 8.3.3 as before leads
to the desired conclusion fdr'. m

Theorem 9.1.13 (Differentiation and I ntegration of Power Series) Suppose f is
givenby > o2 nch (x —a)" for X € (0 — R, a + Ry with R > 0.

(@) Thefunction f possesses derivatives of all orders. For each positive integer
m, the mth derivativeis given by
fM ) =3 m(h)en (x—a)"™™for [x —al < R
where (1) =n(n—=1)(n—2)--- (N —m+1).
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(b) For each x with [x — a| < R, define the function F by F (x) = [ f (t)dt.
Then F isalso given by > 2 n:’j 1 (x — a)™1 which is obtained by term:

by-term integration of the given series for f.

. f («)
(c) The constantsycare given by g = o

Excursion 9.1.14 Use the space that is provided to complete the following proof of
the Theorem.

Proof. Since (b) follows directly from Theorem 8.3.3 and (c) follows from
substituting x = o in the formula from (a), we need only indicate some of the
details for the proof of (a).

Let
/N
S:{meN: f(m)(x):rgn(m)cn(x—a)”‘m for |x —al < R}

where () =n(n—1)(n—2)--- (n—m+ 1). By Lemma 9.1.12, we know that
1 € S. Now suppose that k € Sfor somek; i.e,

f(k)(x)=in(n—1)(n—2)---(n—k+1)cn(x—a)“_k for [x —al < R
n=k

Remark 9.1.15 Though we have restricted ourselves to power serieR,imote
that none of what we have used relied on any properti@tbiat are not possessed
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by C. With that in mind, we state the following theorem and note that the proofs
are the same as the ones given above. However, the region of convergenceis a disk
rather than an interval.

Theorem 9.1.16 For the complex power seriesco+ > oo Cn (z — )" wherea and
Cn, for n € J U {0}, are complex constants, let p = limsup./|c,| and

n— oo
4+oo Lif p=0
1 .
R=1 — Jf O0<p <oo .
p
0

Jf p =400
Then the series
(i) convergesonlyfor z=a when R=0;
(if) convergesfor all valuesof z € C when R = 400, and

(iii) converges absolutely for each z € N («), converges uniformly in
XeR:|Xx—=a|] < Ro} = Ng,(a)

for any positive Rp < R, and divergesfor z € C such that |z—«a| > R
whenever 0 < R < oo. Inthiscase, Ris called theradius of convergence for
the seriesand Nr (o) = {z€ C : |z— a| < R} isthe corresponding disk of
convergence.

Both Lemma 9.1.12 and Theorem 9.1.13 hold for the complex series in their
disks of convergence.

Remark 9.1.17 Theorem 9.1.13 tells us that every function that is representable

as a power series in some segment (¢ — R, a + R) for R > 0 has continuous

o f ()
derivatives of all ordersthereand hastheform f (x) = >°°2 % (x—a)" It

isnatural to ask if the converse istrue? The answer to this question is no. Consider
the function

142
g(x) = SXp( 1/%°) iig.
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It follows from I'HOpital’s Rule that g is ifinitely differentiable at x= 0 with

g™ (0) = Ofor all n e JU{0}. Since the function is clearly not identically equal to
zero in any segment aboQtwe can’t write g in the “desired form.” This prompts

us to take a different approach. Namely, we restrict ourselves to a class of functions
that have the desired properties.

Definition 9.1.18 A function that has continuous derivatives of all orders in the
neighborhood of a point is said to befinitely differentiable at the point.

Definition 9.1.19 Let f be a real-valued function on a segment |. The function f

is said to beanalytic at the point o if it is infinitely differentiable atx € | and
f™ o

f(X) =20 I(a) (x —a)" is valid in a segmenfa — R, a + R) for some

R > 0. The function f is callednalytic on a set if and only if it is analytic at each

point of the set.

Remark 9.1.20 The example mentioned above tells us thanitely differentiable
at a point is not enough to give analyticity there.

9.2 Some General Convergence Properties

There is agood reason why our discussion has said nothing about what happens at
the points of closure of the segments of convergence. This is because there is no

one conclusion that can be drawn. For example, each of the power series >~ o X",
n

n
Do XF and > o, % has the same “interval of convergence{—1, 1); however,
thefirst is divergent at each of the endpoints, the second one is convergeft at
and divergent at 1, and the last is convergent at both endpointsfifenpoint to
keep in mind is that the series when discussed from this viewpoint has nothing to do
with the functions that the series represent if we stay-h, 1). On the other hand,
if a power series that represents a function in its segment is known to converge at
an endpoint, we can say something about the relationship of that limit in relation to
the given function. The precise set-up is given in the following result.

Theorem 9.2.1 If 312 jcn converges and f (x) = > o2 ycax" for x € (—1,1),

then lim f (x) = > p2ycCn.
X—1-
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Excursion 9.2.2 Fill inwhat is missing in order to complete the following proof of
Theorem 9.2.1.

Proof. Let s, = > 'p_oCk and s_1 = 0. It follows that

m m m-—1
Z X" = Z (h— s X" = ((1 —X) Z SnX“) + smx™.
n=0 n=0 n=0

Since |X| < 1and lim sy = > ﬁozocn, we have that lim s, x™ = 0 and we
m— oo m— o0
conclude that

f(x)= icnx” =(1-x) i sx". (9.4)
n=0 n=0

Lets = > o2yCn. Foreach x e (-1, 1), we know that (1—x) > o oXx" = 1.
Thus,

s=(1-Xx) i sx". (9.5)
n=0

Suppose that ¢ > 0 isgiven. Because nIi)m Sy = S there exists a positive integer M
o0

such that impliesthat |s, — S| < % Let
€N

1
K :max[E,OQEXM |s—sj}]

and
1
= if e > 2KM
4
o=
¢ if 2K M
_— <
okMm ¢
KM  2KM
Note tht, if 2K M < &, then — = = = 5%<%. Fori—o < x < 1, it
follows that

M

M
=0 s -sIx"<@-%x__ D x"<@-x_ M<2 (96
n=0 (2 n=0 ) 2
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Use equations (9.4) and (9.5), to show that, if 1 — 0 < x < 1, then
[f (X)—5s| <e.

)

|
*** Acceptable responses are: (1) n > M, (2) K, (3) Hopefully, you noted that
| f (X) — s| isbounded above by the sum of (1 — x) Zr'\]/l:o |sh — s| |x|" and

1-x) ZﬁiMH Ish — | |X|". The first summation is bounded above by % as
shown in equation (9.6) while the latter summation is bounded above by

> (L= X3y XI7): with x > O this yields that

(1= X2y X" = (1= Ty X" < (1= %) 2o IXI" = 14+

An application of Theorem 9.2.1 leadsto adifferent proof of the following result
concerning the Cauchy product of convergent numerical series.

Corollary 9.2.3 If 302 gan, > .neobn, and > ¢, are convergent to A, B, and
C, respectively, and > 2, Cn isthe Cauchy product of >" 7 s an and > "2 by, then
C = AB.

Proof. ForO < x < 1, let
f 0 => ax",g()=> bax",andh(x) = > cnx"
n=0 n=0 n=0

where ¢, = Z?:O ajbn_j. Because each series converges absolutely for x| < 1,
for each fixed x € [0, 1) we have that

f (X)g(x) = (Z anx“) (Z bnx”) => cx"=h(x).
n=0 n=0 n=0
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From Theorem 9.2.1,

lim f (x) = A, limg(x)=B,and lim h(x) =C.
X—1- X—1-

X—1-

The result follows from the properties of limits. =

One nice argument justifying that a power series is analytic at each point in
its interval of convergence involves rearrangement of the power series. We will
make use of the Binomial Theorem and the following result that justifies the needed
rearrangement.

Lemma9.2.4 Given the double sequence {aj; }; ; ., supposethat 357, [aij| = by
and >7°, by converges. Then

oo

>3 a =géan-

i=1j=1

Proof. Let E = {X, : n € JU{0}} be adenumerable set such that nIi)m Xn = Xo
and, for eachi, n € J let

o0 n
fi (Xo) = Zaij and fi (xn) ZZaij-
j=1 j=1
Furthermore, for each x € E, define the function g on E by

g0 = fi(x).
i=1

From the hypotheses, for eachi € J, nIi)m fi (Xn) = fi (Xo). Furthermore, the def-
inition of E ensures that for any sequenieex},-; C E such thatk limwk = Xo,

— 00
I(Iim fi (wk) = fi (xp). Consequently, from the Limits of Sequences Characteri-
—00

zation for Continuity Theorem, for eagdhe J, fj is continuous akg. Because
(WX) (Vi) (i eJAx e E=|fi(X)| < b)) and> 2, b converges 2, fi (x) is
uniformly convergent irE. From the Uniform Limit of Continuous Functions The-
orem (8.3.3)g is continuous axg. Therefore,

Z Zaii = Z fi (Xo0) = g (%0) = nIiﬁmoog (Xn) -

i=1j=1 i=1
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Now
oo 0 o0 o0 n
> 3ai=im 3w = lim >3 a)
i=1j=1 i=1 i=1j=1
n o0 o0 oo
=lim 2 > 8 =2, 2.4
j=li=1 ji=li=1
n

Theorem 9.2.5 Suppose that f (X) = > ogcnx" convergesin x| < R. For
a € (—R, R), f can be expanded in a power series about the point x = a which
f™ (@

@ x—a)".

convergesin{x e R: [x —al < R—[al}and f (x) = > nog o

In the following proof, extra space is provided in order to alow more room for
scratch work to check some of the claims.

Proof. For f (x) = > n2oCnX"in|x| < R/ leta € (=R, R). Then f (x) =
>l otnX" = > 7 hcn[(x — @) + a]"and, from the Binomial Theorem,

00 /0 . . oo n n\ . )
F)=D > (.)a‘ x—a)'! = chn(_)al (x —a)"i

n—0 j—o\l iz \J
We can think of thisform of summation as a “summing by rows.” In this context,
thefirst row would could be written a® (X — a)o, while the second row could be

written ascy [(é)ao x—a)t + (jal (x — a)o]. In general, thg? + 1) st row is
given by

C |:Z (f) Fx - a)f_j}
i=o\J
=C [(g)ao (X — a)" + (i)al (X — a)"_l 4o+ (i)af (x — a)o] .
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In the space provided write 4-5 of the rows aligned in such a way as to help you
envision what would happen if we decided to arrange the summation “by columns.

cr(pak(x —a)"* if k<n
If wnk = , then it follows that
I if k>n

fF=YaxX"=D alx—a)+a"=> > wn.
n=0 n=0

n=0 k=0

In view of Lemma 9.2.4% "7 5 (302 o wnk) = D ko (2o wnk) Whenever

e} n . . @]
> el (J) jal’ 1x —al™) =" leal (Ix — al + Ja)" < oo;
n=0

n=0 j=0

l.e., atleastwhefix — a] + |a]) < R. Viewing the rearrangement as “summing by
columns,” yields thafirst column agx — a)° [coa® + cial + - - - + (D) cna + - - |

and the second column @s— a)* [(cl))clao + (B)eat + -+ (" Jena - ]
In general, we have that th{& + 1) st column if given by

k+1 n
(x — &)X [Cka0+( 1_ )ck+1a1+---+ (n B k)cna”"‘+--- ]
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Use the space that is provided to convince yourself concerning the form of the
general term.

Hence, for any x € R such that |[x — a] < R — |a], we have that

o= (5, 0))
k=0 K n—k
v~ kst
_;Z(:)(X a) (;k!(n_k)!cna )
:i(X—a)kk_ll(in(n—1)(n_2)...(n_k+1)an—kcn)
k=0 * \n=k
k=0
asneeded. m

Theorem 9.2.6 (Identity Theorem) Suppose that the series > -, anx" and
> o2 o bnx" both convergein the ssgment S= (=R, R). If

E= [x eS: Zanx“ = anx“}
n=0 n=0
hasa limit pointin S, then (vn) (n e JU {0} = a, =b,)and E = S.

Excursion 9.2.7 Fill inwhat ismissing in order to complete the following proof of
the Identity Theorem.
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Proof. Suppose that the series > "2 yanx" and >, bnx" both convergein the
segment S = (—R, R) and that

Ez[xeS:Zanxnzzmx”}
n=0 n=0
has a limit point in S. For eachn € J U {0}, let ¢y = a3 — by. Then f (x) =
(S)
> otnx" =0foreachx € E. Let
A={xeS:xeE}andB=S—A={xeS:x¢A}

where E’ denotes the set of limit points of E. Note that Sis a connected set such
that S= AU B and AN B = #. First we will justify that B isopen. If B isempty,
then we are done. If B is not empty and not open, then there existsa w € B such
that = (ANs (w)) (Ns (w) C B).

(D

Next we will show that A is open. Suppose that xo € A. Because Xg € S, by
Theorem 9.2.5,

f ()= dn(x—xp)" for
n=0 @3]
Suppose that T = {j € JU {0} : dj # O} # @. By the , T hasa
©)
least element, say k. It follows that we can write f (x) = (X — X0)* g (X) where
g(X) = > m_odk+m (X — Xo)" for . Because g is continuous at Xo,

@
we know that XIi%mX gx) = = =# 0. Now we will make use of
0

4 ®)
> 0 to show that there exists 0 > 0 such that g (x) # O for

|9 (X0)|

the fact that
|X — Xo| < 0.

(6)
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Hence, g (x) # O0for [X — Xg| < o from which it follows that

f(x)=(x-x)*g(x)#0

in . But this contradicts the claim that xg isalimit point of zeroes of

(N
f. Therefore, and we conclude that
® 9)
Thus, f (X) = > n2odn (X — x0)" = O for @l x in aneighborhood N (xg) of xo.
Hence, N (Xp) C A. Since Xg was arbitrary, we conclude that

(Vw) (w e A= ); i.e,
(10)
(1)

Because S is a connected set for which A and B are open sets such that

S=AUB, A##,and AN B = @, we conclude that . m
(12)

*** A cceptable responses are: (1) Your argument should have generated a sequence
of elements of E that converges to w. This necessitated an intermediate step be-
cause at each step you could only claim to have a point that wW&'s For example,
if Ns (w) is not contained irB, then there exists a € S such that ¢ B which
placesv in E’. While this does not placein E, it does insure that any neighbor-
hood ofv contains an element d&. Letu; be an element o such thatu; # w
and|u; — w| < . The process can be continued to generate a sequence of elements
of E, {un}p2 4, that converges te. This would placeo in AN B which contradicts
the choice ofB. (2) [x — Xo| < R — [|Xol|, (3) Well-Ordering Principle, (49 (Xo),

(5) dk, (6) We've seen this one a few times before. Correspondimg@-toiIg (;O)l,

there exists @ > 0 such thafx — xp| < 0 = |g(X) — g(Xo)| < &. The (other)
19 (X0)|
2

triangular inequality, then yields théd (Xo)| — |g (X)| < which implies

that|g (x)| > 19 )| whenevelx — xg| < d. (7)0 < [Xx—=Xo| <0, (8) T =4,

9) (vn)(ne JU {0} = dy =0), (10)(3N (w)) (N (w) C A), (11) Ais open, (12)
B is empty***
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9.3 Designer Series

With this section, we focus attention on one specific power series expansion that
satisfies some specia function behavior. Thus far we have been using the defi-
nition of e that is developed in most elementary calculus courses, namely,
: 1\" : : :
lim {1+ - There are alternative approaches that lead @&s bo this section,

n—oo

we will obtaine as the value of power series at a point. In Chapter 3 of Ruin,
n

1 1 . 1
was déined asy - oy - and it was shown tha® oo — o= lim {1 +o . We

n—oo
get to this point from Work on a specially chosen power series. The series leads to

a ddinition for the functione* and Inx as well as a “from series perspective” view
of trigonometric functions.
For eac e J, if ¢ = ()72, then limsup(|ch41l Ica| ™) = 0. Hence, the
n—oo

Ratio Test yields tha} .- ,cnz" is absolutely convergent for eaghe C. Conse-
guently, we can let

S

E(2) = Z% forze C. 9.7)

n=0

Complete the following exercises in order to obtain some general properties of
E (). If you get stuck, note that the following is a working excursion version
of a subset of what is done on pages 178-180 of our text.

From the absolute convergence of the power series given in (9.7), fdixaoly
z, w € C, the Cauchy product, as fileed in Chapter 4, oE (z) andE (w) can be
written as

0 N SNy > N Zkwn—k
E@E W) :(gﬁ)(gﬁ) - n;)k:o KK(n—Kk)!’
o x4 " /n o
E(2) E (w) = nZOan, . (n_k), Zu k:,;ﬁ(é (k)zkw k)

(z+w)"
:nzzo nt
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Therefore,
E2EWw)=E(z+w). (9.8)

Suppose there existsa ¢ € C suchthat E (¢) = 0. Takingz = ¢ and w = —¢ in
(9.8) yields that

EQOEEH=EO=1 (9.9)

which would contradict our second Property of the Additive Identity of a Field
(Proposition 1.1.4) from which we haveto havethat E (¢) E (w) = Oforal w € C.
Consequently (vz) (z e C = E (2) # 0).

1. For x real, use basic bounding arguments and field properties to justify each
of the following.

@ (W)xeR= E(x)>0)

(b) lim E() =0

© (M) VY) [(X,ye RAO <X <Y)
= (E(X) <E(Y)AE(-Yy) < E(=X))]
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What you have just shown justifiesthat E (x) over therealsisastrictly increas-
ing function that is positive for eache R.

2. Use the dnition of the derivative to prove that

(V2) (ze C= E'(2) = E(2)).

Note that whernx is real,E’ (x) = E (x) and(Vx) (x € R = E (x) > 0) with
the Monotonicity Test yields an alternative jdistation thatE is increasing
in R.
A straight induction argument allows us to claim from (9.8) that
n n
(Vn) |:neJ:> E(sz)an(zj)] (9.10)
j=1 j=1

3. Complete the judiication that

. 1\"
E@Q) = n||—>moo (1+ ﬁ) .
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Foreachn € J, let

1 1\"
Sh = — and th=(1+ -
k! n

(@) Usethe Binomia Theorem to justify that,

amterg (15)+5 (-3) (-7) =
i (=3) (-5 (-5,

(b) Usepart (a) to justify that limsupt, < E (1).

n—oo

(c) Forn > m > 2, judtify that

1 1
th>14+14+—(1—-)+---
2! n
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(d) Use the inequality you obtain by keeping m fixed and letting n — oo
in the equation from part (c) to obtain alower bound on Ilnrn> inft, and an
o0

upper bound on sy, for each m.

(e) Finish the argument.

4. Use properties of E to justify each of the following claims.
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@ (vny(neJ= E() =¢€").

(b) YUy (ueQAuU>0= E(u)=¢Y)

Using field properties and the density of the rationals can get us to a justification
that E (x) = €* for x redl.

n+1
5. Show that, for x > 0, & > (nx+ 57 0 use the inequality o justfy thet
lim x"e X = 0foreachn e J. '

X—+00

9.3.1 Another Visit With the Logarithm Function

Because the function E [r is strictly increasing and differentiable from R into
Rt = {x e R: x > 0}, by the Inverse Function Theorem, E [r has an inverse
function L : Rt — R, defined by E (L (y)) = Y that is strictly increasing and
differentiable on R*. For x € R, we havethat L (E (X)) = X, for x real and the
Inverse Differentiation Theorem yields that

1
L' (y) = y fory>0 (9.11)
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wherey = E (X). Since E (0) = 1, L (1) = 0and (9.11) implies that
Y dx

L = —_—

W=/ 5

which gets us back to the natural logarithm as it was defined in Chapter 7 of these
notes. A discussion of some of the properties of the natural logarithm is offered on
pages 180-182 of our text.

9.3.2 A Series Development of Two Trigonometric Functions

The development of the real exponential and logarithm functions followed from re-
stricting consideration of the complex serle$z) toR. In this section, we consider

E (2) restricted the subset @f consisting of numbers that are purely imaginary. For
X € R,

E(ix):i(ix)n :i(')n_xn

= n! = n!
Since
1 Jf 4 n 1 Jif 4N
e Jf 4] (n=1) ) -1 i 4] (n=1)
=121 i 4 n—2 A EDT=y_1 i a1(n-2 -
—i ,if 4](n=23) i Jf 41 (n=23)

it follows that each of
C(x) = % [E(X)+ E(-ix)] and S(x)= 2—1| [E(ix)— E(-ix)] (9.12)
have real codicients and are, thus, real valued functions. We also note that
E(@ix)=C(X)+iS(x) (9.13)

from which we conclude that (x) and S(x) are the real and imaginary parts of
E (ix), for x € R.

Complete the following exercises in order to obtain some general properties of
C (x) andS(x) for x € R. If you get stuck, note that the following is a working
excursion version of a subset of what is done on pages 182-184 of our text. Once
completed, the list of properties justify that(x) andS(x) for x € R correspond to
the cosx and sinx, respectively, though appeal to triangles or the normal geometric
view is never made in the development.



9.3. DESSGNER SERIES 395

1. Show that |E (ix)| = 1.

2. By inspection, we see that C (0) = 1 and S(0) = 0. Justify that C’ (x) =
—S(x) and S (x) = C (x).

3. Provethat (3x) (x e RT AC (x) = 0).

4. Justify that there exists a smallest positive real number xg such that C (xg) =
0.

5. Define the symbol = by 7 = 2xg where Xg is the number from #4 and justify
each of the following claims.
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@ s(5)-
(b) E(n—zl) =i
(c) E(xi)=-1
(d E2ri)=1

It follows immediately from equation (9.8) that E is periodic with period 2zi; i.e.,
(V2)(ze C= E(z+ 27i) = E(2).

Then the formulas given in equation (9.12) immediately yield that both C and Sare
periodic with period 27 .

Also shown in Theorem 8.7 of our text isthat (Vt) (t € (0,27) = E (it) # 1)
and

V2)[(ze CAlzl=1) = @) (t € [0,27) A E(it) = 2)].

The following space is provided for you to enter some helpful notes towards justi-
fying each of these claims.
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9.4 Seriesfrom Taylor’'s Theorem

Thefollowing theorem supplies uswith asufficient condition for agiven function to

be representabl e as apower series. The statement and proof should be strongly rem-
iniscent of Taylor's Approximating Polynomials Theorem that we saw in Chapter
6.

Theorem 9.4.1 (Taylor’s Theorem with Remainder) For a < b, let | = [a, b].
Supposethat f and () areinC (1) for 1 < j < nandthat f™D js defined for
each x € Int(1). Then, for each x € |, thereexistsa ¢ witha < ¢ < x such that

D)
=31 12 x— )i+ Ry

j=0

f (0+D (f) (x — a)n—l-l
(n+ 1)!

where Ry (X) =
mainder .

is known as the Lagrange Form of the Re-

Excursion 9.4.2 Fill in what is missing to complete the following proof.

Proof. It suffices to prove the theorem for the casex =b. Since f and f () are
inC(l)forl<j<nRy="f(b)- ZJ 0 (a) (b —a)! iswell defined. In

order to find a different form of R,, we introduce afunctl ong.Forx el,let

f () (x (b —x)"*t
p00=10)-3 100 4 i R
= (b—a)
From the hypotheses and the properties of continuous and functions,
@
we know that ¢ is and differentiable for each x € |. Furthermore,

@

¢ @) = =
6) (4)
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and ¢ (b) = 0. By , there exists a ¢ € | such that
()

¢’ (&) = 0. Now

n _f(J)(X) ._1i|
/ = — - b— J —_
¢ (X) 1221[ =1 (b—x)

©®
N+ (b-x)"
(b_a)n+l
Because
(j+1) f(+D .
0 i p <x)+Z 700
j=0
“+1 (D) .
=100+ 3 (f))!< —x)i
it follows that
w’(x)—%?n—ﬁﬁ%
D 1 FU -
R EGRR I Pttt %’,( -1
- ™ |
£ (N+1) AN
f ¢/ (&) = O, then ——— (5) (b—&) = (”E?S;nj) Rn. Therefore,
.
®

*** A cceptable responses are: (1) differentiable, (2) continuous,

3 f (b)— Z] 0 fm(x) (b—a)! — Rn, (4) 0, (5) Rolle's or the Mean-Value The-
f(]+1) (X) f (n+1) ( )

orem, (6)X_7_ (b—x)!, (7) - (b—x)",

f (n+1) (é':) (b a)n+l
(n+ D! '

(8) Rn =
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Remark 9.4.3 Notice that the inequality a« b was only a convenience for framing

the argumenti.e., if we have the conditions holding in a neighborhood of a point

a we have the Taylor’s Series expansion to the left @ihd to the right ofx. In

this case, we refer to the expansion as a Taylor’'s Series with Lagrange Form of the
Remainder about.

Corollary 9.4.4 For « € R and R> 0, suppose that f and® are in

C((a —R,a+R) for 1 < j < n and that ™1 is dgined for each xe
(0 — R,a + R). Then, for each x (¢« — R, a + R), there exists a

¢ € (o — R, a + R) such that

D (a)

f(x):Z

=

(x—a) + Ry

f (0+D) (gr) (X — a)n—l-l

where R = N+ D)

941 SomeSeriesToKnow & Love

When all of the derivatives of a given function are continuous in a neighbor hood
of a point a, the Taylor series expansion about o sSimply takes the form f (x) =

£ () .
220 .I(a) (x — a)! with its radius of convergence being determined by the

behavior of the coefficients. Alternatively, we can justify the series expansion by
proving that the remainder goesto 0 asn — oo. There are several series expansions
that we should just know and/or be able to use.

Theorem 9.4.5

(a) For all rea o and x, we have

& = eaiﬂ. (9.14)

|
=0 n:

(b) For al rea a and x, we have

sinx :i%(x—o@“ (9.15)
n=0 ’
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and
. cos(a + &
COSX = ZO % (X —a)". (9.16)
n=

(c) For |x] < 1, we have

s (_1)n+1 XN

INn(1+x) =) (9.17)
n=1 n
and
00 n-1,2n-1
v EDTx
arctanx = »_ T (9.18)

n=1

(d) The Binomial Series Theorem. For each m € R! and for |x| < 1, we have

m(m—l)(m—2)-~(m—n+1)Xn

- (9.19)

o
A+0"=1+>"
n=1

We will offer proofs for (a), and the first parts of (b) and (c). A fairly complete
sketch of a proof for the Binomial Series Theorem is given after discussion of a
different form of Taylor's Theorem.

Proof. Let f (x) = €*. Then f is continuously differentiable on all & and
f (M (x) = e for eachn € J. Fora € R, from Taylor's Theorem with Remainder,
we have that

e (X — a)n+1

n 1 .
f(x)=ex=e“§)ﬂ(x—a)' + Ra(a, %) whereRy = — ==

wheref is betweern andx. Note that

T S N T )

|
=0 n!
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Furthermore, because x > a witha < ¢ < x impliesthat & < €, whilex < a
yieldsthat x < & < a and & < €%,

|X_a|n+1 I .
—_— y _a
ef IX — all’H—l (n + 1)'
Rl = ZX 2L
(n+1)! n+1
X —al it
([’]Tl)! , | X <a

kn
Since Iim N = O for any fixed k € R, we concludethat R, - Oasn — oo.

NN
From the Ratio Test, Z( D s convergent for all x € R. We conclude that

=0
the seriesgiven in (9. 14) convergesto f for each x and «.

The expansion claimed in (9.17) follows from the Integrability of Series
because
*odt

1 o0
In(1+ x) = — and — = —D"t" for |t| < 1
aen= [ =g

There are many forms of the remainder for “Taylor expansions” that appear in
the literature. Alternatives can offer different estimates for the error entailed when
a Taylor polynomial is used to replace a function in some mathematical problem.
The integral form is given with the following

Theorem 9.4.6 (Taylor’s Theorem with Integral Form of the Remainder)
Supposethat f and its derivatives of order up to n+ 1 are continuous on a segment

| containing o. Then, for each x € I, f (X) = er' OM + R (a, X)
where

R (a, X) = / =Y f<“+1)(t)dt

Proof. Since f’ is continuous on the interval |, we can integrate the derivative
to obtain

f(x)= f(a)+/x f/ (t) dt.

(29
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As an application of Integration-by-Parts, forfixed x, corresponding tar = f’ (t)
anddo = dt, du = f” (t) dt and we can choose= — (x —t). Then

f(X):f(OC)+/ f’(t)dt:f(a)—f’(t)(x—t)lié-i—/ x—=1t) f” (t)dt
:f(a)—i—f’(oc)(x—a)—i—/ (x—1t) f” (t)dt.

Next suppose that

() —
f(x)—zf](a)(x )] - £ (1 at

n=0

and f &+D s differentiable onl. Then Integration-by-Parts can be applied to

— 1)K
fax(x—;!tlk f &+D (t) dt; takingu = f&+D (t) anddo = (X o )" dt leads tou =
—t k+1
f&+2 (t)dt ando = _()((kT)l)l' Substitution and simgiication justfies the

claim.m

As an application of Taylor's Theorem with Integral Form of Remainder, com-
plete the following proof of th&he Binomial Series Theorem.

Proof. Forfixedm € R! andx e R such thaix| < 1, from Taylor’'s Theorem
with Integral Form of Remainder, we have

k — — PR
(1+X)m:1+zm(m 1) (m sl) (m—-—n+1) N
n=1 '

X"+ R¢ (0, X) .

where

R« (O, )—/ &=t f(k+1)(t)dt

We want to show that

(X —t)k

A+t)™*1dt — 0ask > o

Rk(O,x)z/o mm-—1).-..-(m—Kk)
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for al x such that |x] < 1. Having two expressions in the integrand that involve a
power k suggests a rearrangement of the integrand; i.e.,

X —1-.-(m=k —t\K
Rk(O,X)z/O m(m )k! (m )(L:) 1+ tH™Ldt.

We discuss the behavior of (1 + t)™ %, when't is between 0 and x, and

X Xt kdt aratel
O \1+t SEpAraLey:

On one hand, we have that
A+t)™ !l <1whenever M>1A—-1<t<0)v(M<1lal>t>0).

On the other hand, becauset isbetweenOand x, if m > 1Ax > 0orm < 1AX < 0,
then

>0 for m>1
gt) = (1 +t)™! impliesthat g’ (t) = (m— 1) (1 +t)™2
<0 for m<1

Consequently, if m > 1 Ax > 0,then0 < t < x and g increasing yields the
g(t) < g(x);whilem< 1Ax <0,0<t < xandg decreasing, implies that
g (X) > g (t). With thisin mind, define C, (x), for |x| < 1 by

Cm (X) = 1+x)™1  m>1,x>00Rm<1x<0
mit = 1 ., mM>1,X<0ORmM<1,x>0 "

We have shown that

A+t)"™ 1 =Cp(t) < Cm(X), fort between 0 and x. (9.20)

k

X—t . I
Next, we turnto [ (1—+t) dt. Since we want to bound the behavior in

terms of x or a constant, we want to get the x out of the limits of integration. The
standard way to do thisisto effect achange of variable. Lett = xs. Thendt = xds

and
X 1\ k 1 _ k
/ Xt dtz/ Kt (125 gs
o \1+t 0 1+ xs
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k
Since s(1+ x) > 0, we immediately conclude that (11+ XSS) < 1. Hence, it
follows that
X _ k
/ (X—t) dt| < [x[<HL. 9.21)
o \1+t
From (9.20) and (9.21), if follows that
0 < |R« (0, x)|
l — .« .. —
s/o m(m 1)k, M=K ke ) dt
mm-—121)---(m—K
_ | ( )kl ( )l |X|k+1 Cm (X) )
—1)---(mMm—=Kk
For uk (x) = Im (m )kl (m =Kk IX[*+1 Cm (x) consider 3°°°  up (x). Be-
cause '
Uni1 OO | M) 1x] asn — oo,
Un (X) n+1

> 021 Un (x) is convergent fox| < 1. From the nth term test, it follows that
ug (X) —» 0 ask — oo for all x such that|x|] < 1. Finally, from the Squeeze
Principle, we conclude thd (0, X) — 0 ask — oo for all x with |x| < 1. =

94.2 SeriesFrom Other Series

There are some simple substitutions into power series that can facilitate the deriva-
tion of series expansions from some functions for which series expansions are
“known.” The proof of the following two examples are left as an exercise.

Theorem 9.4.7 Suppose that f (U) = > noycn(U—Db)" for u—b| < R with
R > 0.
(@ If b = kc + d with k # 0O, then f (kx +d) = > 2,cnk” (x — )" for

X —cl R
- < —.
IKI|
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(b) For everyfixed positive integer k, fi(x — c) +b] = 372 cn (x — c)k" for

Ix — c| < RVk,

The proofs are |eft as an exercise.

We close this section with a set of examples.

: : . 1
Example9.4.8 Find the power series expansion for(X) = 12 about the

. 1 . .
pointa = Eand give the radius of convergence.

Note that

1 1 1 1
1= =3 ]

L+x)1-=x) (1—x)+(1+x)

(=)

. 1 > n 1 1
Since :ZZ” x—=) for[2(x==)| <1lor|x—=| <
1 4 2 2
1-2x—-= n=0
2
1 1 > 2\" 1\" 2 1
—and = (= x—=) for|l={x—-—=)| <1lor
2 2 1)) nz_(;)( ) 3 2 3 2

(1+3(x-3

3 . . Jo. 1
X — > < > Because both series expansions are vathpr >
that

1
—, it follows
< 2

« 1
2

f(x):Z(Z”—F%) (x—%) for

1
< —=.
n=0 2
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Example9.4.9 Find the power series expansion for g (x) = arcsin(x) about the
point a = 0.

X dt
We know that, for |X| < 1, arcsinx = / ———. From the Binomial
1 0 v/1—12
Series Theorem, for m = ——, we have that
1 1 1
( )(_5_1)'”(_5_”“)
1/2 _ n .
(1+u)” 1+Z = u" for |u| < 1. Since

lu| < 1ifand onlylf }u2| < 1, it follows that

() (o)
(1—t2)_1/2 —1+> 2J\ 2 2 (=)™t for |t| < 1.
n=1

n!
Note that
1 —3—1 —}—n+1 (-D)" = 1 }+1 E+(n—1)
2 2 2 - \2)\2 2
nterms
- (2n—=1)
= 2n
Consequently,
—1/2 0 -1
(1— ) Z 2n | )2 for 1] < 1

n=1

with the convergence being uniformin each |t| < h for anyh suchthat 0 < h < 1.
Applying the Integration of Power Series Theorem (Theorem 9.1.13), it follows that

: X - 1) 20+
= z , f 1
arcsinx /0 \/_ (2n+1)2“nl or [X| <
wherearcsin0 = 0.

Excursion 9.4.10 Find the power series expansion about ¢ = O for f (x) =
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—X
cosh (x) = e+e

and give the radius of convergence.

***Jpon noting that f (0) = 1, f/(0) =0, f@ (x) = f (x) and @D (x) =
0 X2n

/ . . * k%
f’ (x), it follows that we can write f asg(zm! foradl x € R.

Example 9.4.11 Suppose that we want the power series expansion or) =
In(cos(x)) about the pointa = 0. Find the Taylor Remainder Rin both the
Lagrange and Integral forms.

f@ (&
Y a1 )

Since the Lagrange form forsRs given b x4for0 < & < x, we

have that
— (4sec®Etan® & + 2sect &) x4
24

R3 = for0 < ¢ < Xx.
. . X(x —t)"

In general, the integral form is given by, R, X) =/ — f(™+D (t) dt. For

this problemga = 0 and n= 3, which gives “ '

Rs (a, X) :/ax_(xT_t)S (4sec2ttan2t +23ec4t) dt

Excursion 9.4.12 Fill in what is missing in the following application of the geo-
metric series expansion and the theorem on the differentiation of power series to
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o
X .
Because » x" = T for |x| < 1, it follows that
n=1 -
>.(3)
Al \4 @

From the theorem on differentiation of power series,

X0 X /
an”:x( ) —
= 1-—x

in|x| < 1. Hence,

@)

- N
8 n =
n=1
Combining the results yields that

S3n—-1 & n 1
2. =n§(3ﬁ‘ﬁ)=

n=1

©)

4

*** Eypected responses are: (1) :,1)) (2)x(1—=x)"2 (3 g ,and (4) 1x**

9.5 Fourier Series

Our power series expansions are only useful in terms of representing functions that
are nice enough to be continuoudly differentiable, infinitely often. We would like
to be able to have series expansions that represent functions that are not so nicely
behaved. In order to obtain series expansions of functions for which we may have
only a finite number of derivatives at some points and/or discontinuities at other
points, we have to abandon the power series form and seek other “generators.” The
set of generating functions that lead to what is known as Fourier serid$ is
{cosnx : n e J}U{sinnx : n e J}.

Definition 9.5.1 Atrigonometric seriesis defined to be a seriesthat can be written
in the form

1 o .
~ag+ D (an COSNX + by sinnx) (9.22)
2 =

where {an} 2, and {bn} 2 ; are sequences of constants.
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Definition 9.5.2 A trigonometric polynomial isa finite sumin the form

N
> we*, xeR (9.23)
k=—N

wherecy, k= —N,—N +1,..., N — 1, N, isafinite sequence of constants.

Remark 9.5.3 The trigonometric polynomial given in (9.23) isreal if and only if
C_h=¢Chforn=0,1, ..., N.

Remark 9.5.4 Itfollowsfromequation (9.12) that the Nth partial sumof thetrigono-

metric series given in (9.22) can be written in the form given in (9.23). Conse-
N

. 1 . : .
quently, asumin the forn2qa0+ E (ax coskx + bk sinkx) is also called a trigono-
k=0
metric polynomial. The form used is often a matter of convenience.

The following “orthogonality relations” are sometimes proved in elementary
calculus courses as applications of some methods of integration:

/ cosmx cosnxdx = / sinmx sinnxdx =
-7 - 0 ,if m#n

and

T
/ cosmx sinnxdx = 0 forallm, n € J.
—T

We will make use of these relations in ordeffitad useful expressions for the coef-
ficients of trigonometric series that are associated with §pdanctions.
Theorem 9.5.5 If f isacontinuousfunctionon| = [—x, z] and thetrigonometric

1 . .
series an + Zﬁil (an cosnx + by sinnx) converges uniformly to f on I, then

an = 1/ f (t) cosnt dt for n € J U {0} (9.24)
T

-7

and

bh = 1/ f (t) sinnt dt. (9.25)
T

-7
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1 .
Proof. For eachk € J, let s (X) = 580+ S K 1 (amcosmx + by sinmx) and
supposethat ¢ > Oisgiven. Becausesc = f thereexistsapositiveinteger M such

[
that kK > M impliesthat |[sc (X) — f (X)| < e foral x € |. It follows that, for each
fixedn € J,

|sk (X) cosnx — f (x)cosnx| = |s¢ (X) — f (X)]|cosnx| < |sx(X) — f (X)| <&
and

Isc (X)sinnx — f (x) sinnx| = [s¢ (X) = f ()] [Snnx| < [sc(¥) = f (X)] < e
foradl x € | and dl k > M. Therefore, s¢(x)cosnx = f (x)cosnx and
S (X) sSinnx ? f (x) sinnx for each fixed n. Then for fixed n le J,

1 s .
f (X) cosnx = 580 C0SNX + Z (am cosmx cosnx + by, Sinmx cosnx)
m=1

and
1 o
f (X)snhnx = ansinnx + Z (am cosmx sSinnx + by sSinmx sinnx) ;
m=1

the uniform convergence allowsfor term-by-term integration over the intervatjz, |
which, from the orthogonality relations yields that

/ f (x)cosnxdx = ra, and f (x)sinnxdx = zhbp.

Definition 9.5.6 If f isa continuousfunctionon | = [—z, #] and the trigonomet-

. 1 . .

ric series—ag + Zﬁ‘;l (an cosnx + by sSinnx) converges uniformly to f on I, then
the trigonometric series

1 [o.]
- cosnx 4+ by sinnx
230+nZ:1(an + b )

is called theFourier seriesfor the function f and the numberg and b, are called
theFourier coefficientsof f.
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Given any Riemann integrable function on an interval [—z, 7], we can use the
formulas given by (9.24) and (9.25) to calculate Fourier coefficients that could be
associated with the function. However, the Fourier series formed using those co-
efficients may not converge tb. Consequently, a major concern in the study of
Fourier series is isolating or describing families of functions for which the associ-
ated Fourier series can be idémd with the “generating functionsi'e., we would
like to find classes of functions for which each Fourier series generated by a func-
tion in the class converges to the generating function.

The discussion of Fourier series in our text highlights some of the convergence
properties of Fourier series and the estimating properties of trigonometric polyno-
mials. The following is a theorem that offers a condition under which we have
pointwise convergence of the associated Fourier polynomials to the function. The
proof can be found on pages 189-190 of our text.

Theorem 9.5.7 For f a periodic function with period 2z that is Riemann inte-
grable on[—7x, 7], let

N
sn(f;X) = Z cme ™ where ¢, = o f (t) €™dt.

m=—N -7

If, for some x, there are constanis> 0 and M < oo such that
[f(x+1)—fX)| <Mt

forallt € (-4, 9), thenNIim sn(F;x) = T (X).
—00

The following theorem that is offered on page 190 of our text can be thought of
as atrigonometric polynomial analog to Taylor's Theorem with Remainder.

Theorem 9.5.8 If f isa continuous function that is periodic with period 2z and
¢ > 0, thenthereexistsatrigonometric polynomial P suchthat |P (x) — f (X)| < ¢
for all x € R.

For the remainder of this section, we will focus Ifiyeon the process dinding
Fourier series for a speus type of functions.

Definition 9.5.9 Afunction f definedonaninterval | = [a, b] is piecewise contin-
uouson | if and only if there exists a partition of |, {a = Xg, X1, ..., Xn—1, Xn = b}
such that (i) f is continuous on each segment (xx—1, Xk) and (ii) f (a+), f (b—)
and, for eachk € {1, 2, ..., n — 1} both f (xx+) and f (xx—) exist.
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Definition 9.5.10 If f is piecewise continuous on an interval | and xx € | isa
point of discontinuity, then f (xk+) — f (xk—) iscalled thejump at xx. A piecewise
continuousfunctionon aninterval | issaid to be standardized if the values at points

1
of discontinuity are given by f (xx) = > [f Xc+) + f (xk—)].
Note that two piecewise continuous functions that differ only at afinite number

of points will generate the same associated Fourier coefficients. The following
figure illustrates a standardized piecewise continuous function.

yn o
o ® L ]
[ ]
/ i\/o P
o .o
L L | | | | [ X
| | | | ! |
0 =X, Xy X, X0z X,  X=Db
Definition 9.5.11 Afunction f ispiecewise smooth onaninterval | = [a, b] if and

only if (i) f is piecewise continuouson |, and (ii) f’ both exists and is piecewise
continuous on the segments corresponding to where f is continuous. The function
f issmooth on | if and only if f and f’ are continuouson 1.

Definition 9.5.12 Let f be a piecewise continuous functionon | = [—=x, z]. Then
the periodic extension f of f isdefined by

f (x) A —m <x<nm
f(x)= f(_”+)2+ fz-) f X=aVX=—1 >
f (x—2r) Jif xeR

f(x4+)+ f (x=)
2

where f iscontinuous and by f (x) = an each point of discon-

tinuity of f in(—=, ).

It can be shown that, if f is periodic with period 2z and piecewise smooth
on [—=, 7], then the Fourier series of f converges for every real number x to the
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f f (x—
limit x+) + F (x2) . In particular, the series converges to the value of the given

function f at every point of continuity and to the standardized value at each point
of discontinuity.

Example9.5.13 Let f (x) = xon | = [—=z,x]. Then, for each | € Z, the
periodic extension f satisfies f (jz) = 0 and the graph in each segment of the
form (jz, (j + 1) =) isidentical to the graphin (—z, 7). Use the space provided
to sketch a graph for f.

The associated Fourier coefficients for f are given by (9.24) and (9.25) from
Theorem 9.5.5. Becauset cosnt isan odd function,

1 T
anz—/ tcosntdt =0forne Ju{0}.

T J—x

According to the formula for integration-by parts, if ne J, then
. tcosnt 1
/tsmntdt:— - +ﬁ/cosntdt+C

for any constant C. Hencepsnz = (—1)" for n € J yields that

2
— if 24/n
n ! f

1/ . 2 [* .
bnz—/ tsmntdt:—/ tsnntdt=
0

T J)_, T

2

— Lif 2|n
n

Thus, the Fourier series for f is given by

e snnx
22 (_1)n+1 T

n=1
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The following figure shows thegraphsof f, s; (X) = 2sinx, and s3 (X) = 2sinXx —
: 2 . :
sm2x-|—§sm3xm(—3, 3).

sinn
while the following showsthe graphsof f ands; (x) = 2 Zzzl (—=pn+t Snnx

in (=3, 3).

Example 9.5.14 Find the Fourier seriesfor f (x) = |x] in —z < X < z. Note
that, because f isan even function, f (t) snnt isodd.
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***Hopefully, you noticed that b, = 0 for each n € J and a, = 0 for each even
natural number n. Furthermore, ag = = while, integration-by-parts yielded that
an = —4n—2(z)~L for n odd***

The following figure showsf (x) = |x| and the corresponding Fourier polyno-

. 4 1 :
mial s3 (X) = % - [cosx + 9 cos 3(} in (=3, 3).

2.5]
1.5]

0.5

We close with digure that showd (x) = |x| and the corresponding Fourier

. 4L 1 .
polynomials; (X) = r_- ————— cos(2n — 1) xin (=3, 3). Note how the
2 w4~ @2n-1)

difference is almost invisible to the naked eye.

2.5]
1.5]

0.5]
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9.6 Problem Set |

1. Apply the Geometric Series Expansion Theorem to find the power series ex-
pansion off (x) =

abouto = 2 and justify where the expansion is

valid. Then verify that the cogtients obtained satisfy the equation given in
part (c) of Theorem 9.1.13.

2. Let

[ exp(=1/x?) , x#0
g(X)— O , X:O

where expo = ev.

(a) Use the Principle of Mathematical Induction to prove that, for eaeh
Jandx e R — {0}, g™ (x) = x~3"Py (x) exp(—1/x?) whereP, (X) is
a polynomial.

(b) Use I'Hopital’'s Rule to justify that, for eaame JU {0}, g™ (0) =0

3. Use the Ratio Test, as stated in these Companion Notes, to prove Lemma
9.1.8.

4. For each of the following use either the Root Test or the Ratio Téstddhe
“interval of convergence.”

(@) Z(m

(b) an (x —1)"
n=0

© Z(X;;)

(nh)? (x —
@ Z (2n)'

(Inn)3"(x + )"
©Y S
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1

| 1)2" n" . _ 3
nin+H2'(x+1) is convergent in (_5’__)'

5. Show that Z
= n+1

2

6. For each of the following, derive the power series expansion about the point
a and indicate whereit is valid. Remember to briefly justify your work.

x-1
@9 =5 5=

b h(x)=Inx;a =2

7. For each of the following, find the power series expansion about o = 0.

-1/2

@ fx)=(1-x%
() f(x)=1-x72
© fy=1-x7°
(d) f (x)=arctan(x?)

8. Find the power series expansion for h (x) = In (x +4/1+ x2) about « =0
and itsinterval of convergence. (Hint: Consider h’.)

9. Provethatif f (u) = > 2 pCn(u—b)" for ju—b| < RwithR> Oandb =

ke-+d withk # 0, then f (kx +d) = 3" o cak™ (x — ©)" for [x — ¢| < I_EI'

10. Provethat if f (u) = > 72 ycn (Uu—b)" for [u—b| < Rwith R > 0, then
f[(x—0f+b] =3 e (x — o)k in|x —c| < RYk for any fixed posi-
tive integerk.

11. Find the power series expansions for each of the following about thdiepeci
pointa.

(@ f(X)=@Bx+5%a=1

(b) g(x) =sinxcosx; a = %

X
(C) h(X):ln ((]-_—X)Z),a =2
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o
12. Starting from the geometric series Zx“ = x(1—=x)"*for |x| < 1, derive

n=1
closed form expressions for each of the following.
@ > (n+Dx"
n=1
o
() D (n+1x>
n=1

(© i (n -+ 1) x"+2

n=1

(d) Zn + 1Xn+3

13. Find each of the following, justifying your work carefully.
2 n?+2n—1
@2 ——a—
n=1
n@3"-2"
o 2
n=

14. Verify the orthogonality relations that were stated in the last section.

T T . .
(@ JZ, cosmxcosnxdx = [* snmxsinnxdx = . .
0 ,if m#n

(b) [* cosmxsinnxdx =Oforalm,n e J.

15. For each of the following, verify that the given Fourier seriesis the one asso-
ciated with the functionf according to Theorem 9.5.5.

0 ,if —r<x<0

1 2. 2k 4+ 1
@ f 0= ;§+;ZSIn((2k:1)X)

1 ,if O0<x<n~« =0
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2

i — cos (kx)
(b) f (X) —x2forx e [—7[, 7[]; ? + 4; (—l)k 2

© 100 =sn’xforxe[-m,xl; % B COZZX
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| ndex

(a,b), 74 arc

R", 74 inRR", 318

A, 92 Archimedean principle

[a, b], 81 for real numbers, 28

Int (A), 92 argument, 36

A 2

oA, 92 binary operation, 2

C, 3 Bolzano-Weierstrass theorem, 142

C (X), 350 boundary

D (x,Y), 78 of a set, 90

C, 34 bounded

oo (X, Y), 78 asetis, 94

7,17 above, 19

(S,d), 78 below, 22

N, 16 sequence, 128

P (X), 52 set, 204

Q, 3 Boundedness Theorem, 204
+

§ ( %,23)’ 350 Cantor set, 115

Cantor’s theorem, 58

? gno }(OI’ 9)1’2%50 Cartesian product, 1, 73
> =L Cauchy criteria for series convergence,
2 k=0 &, 152
X (o), 287 155
Cauchy Criterion for Convergence, 335
absolutely convergent Cauchy product, 170
sequence of functions, 333 Cauchy sequence, 135
absolutely convergent series, 156 Chain Rule, 241
alternating seriestest, 174 Change of Variables, 307
analytic characteristic function, 302
at apoint, 379 class of monotonic functions, 215
on aset, 379 closed ball, 82

421
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closed curve
inR", 318
closed set, 83
closure
of aset, 90
common ratio, 157
compact, 98
compact
normal family of functions, 362
comparison test, 156
complete
metric space, 143
composition
of relations, 52
conditionally convergent series, 156
conjugate, 36
connected
set, 112
continuous
function, 197
function at a point, 183, 197
in aneighborhood of a point, 399
uniformly, 208
Convergence properties
of p-series, 159
convergence properties
of geometric series, 157
convex set, 82
countable
at most, 56
countably irfinite, 56
curve
inRR", 318

deMorgan’s Laws, 88
dense

asetis, 94
density

INDEX

of rational numbers, 29

of real numbers, 29
denumerable, 56
derived set, 90
diameter

of a set, 135
difference

of two sets, 88
differentiable

at a point, 262

left-hand, 230

on a closed interval, 231

right-hand, 230
differentiable at a point, 229
Differentiation and Integration of Power

Series, 376

discontinuity

at a point, 211

of thefirst kind, 214

of the second kind, 214

simple, 214
discontinuous

at a point, 211

equicontinuous family of functions, 357
equivalent

cardinally, 54

metrics, 79
Euclidean metric, 78
Euclideam-space, 75
Euclidean norm, 75
exterior

of a set, 90
exterior point, 90
Extreme Value Theorem, 205

family of functions
equicontinuous, 357



INDEX

locally uniformly bounded, 353
normal, 362
uniformly bounded, 353

field, 2
ordered, 12

finite intersection property, 103

finite sequence, 61

finite set, 56

Fourier coefficients, 410

Fourier series, 410

function, 2
differentiable at a point, 229
global maximum, 245
global minimum, 245
local maximum, 245
local minimum, 245
monotonically decreasing, 215
monotonically increasing, 215
natural logarithm, 314
periodic extension, 412
piecewise continuous, 411
piecewise smooth, 412
smooth, 412

Fundamental Lemma of Differentia-

tion, 240

Fundamental Theorem of Calculus
First, 308
Second, 310

Generalized Mean-Value Theorem, 247
geometric series, 157

greatest lower bound, 22

greatest lower bound property, 25

Hadamard product, 170
Heine-Borel theorem, 109

Identity Theorem, 385
inductive

423

orderedfield, 15
infimum, 22
infinite series, 152
infinite set, 56
infinitely differentiable

at a point, 379
inner product, 75
integers

of an orderedield, 15
Integrability Criterion, 288
integrable, 283
Integration of Uniformly Convergent

Sequences, 343

interior

of a set, 90
Interior Extrema Theorem, 245
interior point, 83
Intermediate Value Theorem, 207
intersection

of a family of sets, 63
inverse

of a relation, 52
Inverse Differentiation Theorem, 256
Inverse Function Theorem, 254
isolated point, 83

jump
of a piecewise continuous func-
tion, 412

kth term test, 153

L'Hopital’s Rule 1, 251

L'Hopital’'s Rule 11, 253

Lagrange Form of the Remainder, 397
least upper bound, 19

least upper bound property, 22
left-hand limit, 213

limit
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function
from metric spaceto metric space,
188
from metric space to R1, 187
In the extended reals, 222
inferior, 146
left-hand, 213
of a function at a point, 183, 184
of a sequence, 125

of sequence of real numbers, 145

right-hand, 213
subsequential, 131
superior, 146

Limit Comparison Test, 176, 180

limit comparison test, 162

limit point, 83

local maximum, 245

local minimum, 245

locally uniformly bounded, 353

locus of points, 41

lower bound, 22

lower Riemann sum, 278

Mean-Value Theorem, 247

Mean-Value Theorem for Integrals, 307

Mertens theorem, 171
metric, 77
discrete, 83
metric space, 78
modulus, 36
monotonic sequences
class of, 144
monotonically decreasing, 215
sequence of real numbers, 144
monotonically increasing, 215
sequence of real numbers, 144
Monotonicity Test, 248

n-cell, 81

INDEX

n-tuple, 73, 74
natural logarithm function, 314
natural numbers

of an orderedield, 15
neighborhood

of a point, 82
nested interval theorem, 105
nested sequence of sets, 103
norm

sup, 350

supremum, 350
normal family, 362

one-to-one, 49
one-to-one correspondence, 49
onto, 49
open
relative to, 96
open ball, 82
open cover, 98
open set, 84
Open Set Characterization
of Continuous Functions, 201
order, 11
orderedfield, 12
ordered pair, 74

pairwise disjoint, 63
partition, 277
common rénement of, 279
mesh of, 277
refinement of, 279
subdivision of, 277
PCI, 16
perfect
set, 114
periodic extension, 412
piecewise continuous, 411
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piecewise continuous function

jump at apoint, 412

standardized, 412
piecewise smooth function, 412
PMI, 16
pointwise convergence

sequence of functions, 328
pointwise convergent, 326

power series, 370

sequence of functions, 332, 334
power series

divergent, 370

inR, 369

pointwise convergent, 370
Principle of Complete Induction, 16
Principle of Mathematical Induction,

16

Ratio Test, 162
rational numbers
of an ordered field, 17
real n-space, 74
real vector space, 74
rectifiable, 319
Restrictions of Integrable Functions,
301
Riemann integrable, 283
Riemann integral, 283
upper, 283
Riemann-Stieltjes integrable, 287
vector-valued function, 315
Riemann-Stieltjes integral
lower, 287
upper, 287
Riemann-Stieltjes Integrals
Algebraic Properties of, 299
Properties of Upper and Lower,
297
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Riemann-Stieltjes sum
lower, 286
upper, 286
right-hand limit, 213
Rolle’s Theorem, 246
root test, 163

scalar multiplication, 74
Schwarz inequality, 38
secont derivative, 259
separated
two sets are, 112
sequence, 61
Cauchy, 135
of nth partial sums, 152
subsequence, 131
sequence of functions
converges point wise, 328
converges uniformly, 328
pointwise convergent, 326, 334
uniformly convergent, 335
Sequences Characterization for Lim-
its of Functions, 191
series
Fourier, 410
infinite, 152
power, 369
termin a, 152
set descriptions, 39
smooth function, 412
squeeze principle lemma, 142
standardized
piecewise continuous function, 412
subsequence, 131
subsequential limit, 131
summation-by-parts, 173
sup norm, 350
supremum, 19
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supremum norm, 350

Taylor's Approximating Polynomials,
259

Taylor's Theorem with Integral Form
of the Remainder, 401

Taylor's Theorem with Remainder, 397

third derivative, 259

Triangular inequalities, 76

triangular inequalities, 37

trigonometric polynomial, 409

trigonometric series, 408

uncountable, 56
uniform continuity theorem, 209
uniform convergence

sequence of functions, 328
uniform convergent

sequence of functions, 332
Uniform Limit of Continuous Func-

tions, 341

uniformly bounded

family of functions, 353
uniformly Cauchy, 335
uniformly continuous, 208
uniformly convergent

sequence of functions, 335
union

of a family of sets, 63
upper bound, 19
upper Riemann integral, 283
upper Riemann sum, 278

vector addition, 74

vector-valued function
differentiable at a point, 262
Riemann-Stieltjes integrable, 315

WeierstrasdM-Test, 338

Weierstrass theorem, 111
Well-Ordering Principle, 16
WOP, 16
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