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Preface

This book originated from the lecture notes of a course in statistical inference taught
on the MSc programs in Statistics at UFR} and IMPA (once). These notes have
been used since 1987, During this period, varicus modifications were introduced
until we arrived at this version, judged as minimaily presentable.

The motivation to prepare this book came from two different sources. The first
and more obvious one for us was the lack of texts in Portuguese, dealing with
statistical inference to the desired depth. This motivation led us to prepare the first
draft of this book in the Portuguese language in 1993. The second, and perhaps
the most attractive as a personal challenge, was the perspective adopted in this
text. Although there are various good books in the literature dealing with this
subject, in none of them could we find an integrated presentation of the two main
schools of statistical thought: the frequentist (or classical) and the Bayesiah.’_ This
second motivation led to the preparation of this English version. This version has
substantial changes with respect to the Portuguese version of 1993. The most
notable one was the inclusion of a whole new chapter dealing with approximation
and computationally intensive methods.

Generally, statistical books follow their author’s point of view, presenting at
most, and in separate sections, related results from the alternative approaches. In
this bock, our proposal was to show, wherever possible, the parallels existing be-
tween the results given by both methodologies. Comparative Statistical Inference
by V. D. Barnett {1973) is the book that is closest to this proposal, Tt does not
however present many of the basic inference results that should be included in a
text proposing a wide study of the subject. Also we wanted to be as comprehensive
as possible for our aim of writing a textbook in statistical inference.

This book is organized as follows. Chapter 1 is an introduction, describing
the way we find most appropriate to think statistics: discussing the concept of
information. Also, it briefly reviews basic results of probability and linear al-
gebra. Chapter 2 presents some basic concepts of statistics such as sufficiency,
exponential family, Fisher information, exchangeability and likelihood functions.
Another basic concept specific to Bayesian inference is prior distribution, which
is separately dealt with in Chapter 3.

Certain aspects of inference are individvally presented in Chapters 4, 6, and 7.
Chapter 4 deals with parameter estimation where, intentionally point and interval
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estimation are presented as responses to the summarization question, and not as
two unrelated procedures. The important results for the normal distribution are
presented and also serve an illustrative purpose. Chapter 6 is about hypotheses
testing problems under the frequentist approach and also under the varions possible
forms of the Bayesian paradigm.

In between them lies Chapter 5 where all approximation and computationatly
based results are gathered. The reader will find there at least a short description
of the main tools used to approximately solve the relevant statistical problem for
situations where an explicit analytic solution is not available. For this reason,
asymptotic theory is also included in this chapter. B

Chapter 7 covers prediction from both the frequentist and Bayesian points of
view, and includes the linear Bayes method. Finally in Chapter 8, an introduction
to normal Tinear models is made. Initially the frequentist approach is presented,
followed by the Bayesian one. Based upon the latter approach, seneralisations are
presented leading to the hierarchical and dynamic models.

We tried (o develop a critical analysis and to present the most important results
of both approaches commenting on the positive and negative aspects of both. As
has already been said, the level of this book is adequate for an MSc course in
statistics, although we do not rule out the possibility of its use in an advanced
undergraduate course aiming to compare the two approaches.

This book can also be useful for the more mathematically trained profession-
als from related areas of science such as economics, mathematics, engineering,
operations résearch and epideriiiology. The basic requirements are knowledge of
calculus and probability, although basic notions of linear algebra are also used.
As this book is intended as a basic text in statistical inference, various exercises
are included at the end of each chapter. We have also included sketched solutions
to some of the exercises and a list of distributions at the end of the book, for easy
reference.

‘There are many possible uses of this book as a textbook. The first and most
obvious one is to present all the material in the order it appears in the book and
without skipping sections. This may be a heavy workload for a one semester
course. In this case we suggest postponing Chapter § to a later course. A second

option for exclusion in a first course is Chapter 5, although we strongly recommend

it for anybody interested in the modern approach to statistics, geared towards
applications. The book can also be used as a text for a course that is more strongly
oriented towards one of the schools of thought, For a Bayesian route, follow
Chapters 1, 2, 3, Sections 4.1, 4.4.1 and 4.5, Chapter 5, Sections 6.3, 6.4, 6.5,
7.1, 73.1, 7.4, 8.1, 8.3, 84 and 8.5. Fora classical route, fotlow Chapter 1,
Sections 2.1,2.2, 2.5, 2.6, 4.2, 4.3, 4.4.2 and 4.5, Chapter 5, Sections 6.1,62,64,
6.5,7.2,7.3.2,74, 8.1 and 8.2. '

This book would not have been possible without the cooperation of various
people. An initial and very important impulse was the typing of the original lecture
notes in TgX by Ricardo Sandes Ehlers. Further help was provided by Ana Beatriz
Soares Monteiro, Carolina Gomes, Eliane Amiune Camargo, Monica Magnanini
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and Otdvio Santos Figueiredo. Besides these, many of our former students helped
with suggestions and criticism. Careful proofreading of this manuscript was made
by our past MSc students and present colleagues Alexandra Mello Schmidt, Hedi-
bert Freitas Lopes and Marco Antonio Rosa Ferreira. Many useful suggestions and
comments were provided at this later stage by Steve Brooks, Eduardo Gutierrez-
Pefia and Gabriel Huerta, We also had the stimulus of several colleagues; in
particular, we would like to mention Basilio de B. Pereira. We would also like to
thank Nicki Dennis for her support and encouragement throughout all the stages of
preparation of this book and for making us feel at home with Amold, and Mércio
N. Migon for the many commments on earlier versions of the book. The Brazilian
research supporting agencies CNPq and FAPERJ and the Ministry of Science and
Technology have helped by the continuing support of our résearch work. This
support enabled the use in this project of the computational and bibliographic
material they provided for cur own research. Our families also played the important
roles of support and understanding, especially in the weekends and late nights spent
trying to meet deadlines! To all of them, our gratitude.

Finally, the subject of the book is not new and we are not claiming any originality
here. We would like to think that we are presenting the subject in a way that is
not favoured in many textbooks and that will help readers to have an integrated
view of the subject. In our path to achieve this goal, we have been influenced by
many researchers and books. We tried to acknowledge this influence by referring
to these books whenever we felt it provided a description of a topic worth reading.
Therefore, we tried to relate every major subject presented in our book to books
that treated the subject in a more complete or more interesting way. In line with
its textbook character, we opted to favour books rather than research papers as
references. We would like to think of our book as a basis for discovery and will
feel our task is accomplished whenever readers understand the subject through the
book alone, its references or a combination of both.

HSM. &D.G,
Rio de Janeiro, December 1998
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Introduction

Before beginning the study of statistics, it is relevant to characteiize the scope
of the area and the main issues involved in this study. We avoid defining the
subject directly, which is a hard and polemical task. Some of the components
involved in this area of science will be presented in the hope that in the end the
reader will have a clear notion of the breadth of the subject under consideration.
The fundamental problem towards which the study of statistics is addressed is
that where randomness is present. The statistical methodology to deal with the
resulting uncertainty is based on the elaboration of probabilistic models in order
to summarize the relevant information available.

There are many concepts used in the last sentence that deserve a clarified expla-
nation of their meaning in order to ensure a unified understanding. A model is a
formal collection of coherent rules describing, in a simplified way, some real world
problem. The language used to describe precisely a model in which uncertainty is
present is probability. The meaning of sumrnarization, in this context, refers to the
ability to describe a problem in the most concise way (under the assumption that
there are many possible ways to describe a probtem). The art involved in model
building is the desire to balance the need to include as many aspects of reality as
possible while preventing it from being too complex. A related concept, which is
useful to have in mind, is that of parsimony. This means that the model must have
an optimal complexity. A very simple model can be misleading since it misses
relevant aspects of reality. On the other hand, if it is highly complex it will be
hard t¢ understand and extract meaningful information from. From the previous
discussion it is not difficult to guess that information is the main input for statistics.
However, this is a hard concept to define.

Among the objectives of our study, we can identify the two main ones as being:
to understand reality (estimation and hypothesis testing) and to make decisions
(predictions). A strong limitation of many presentations of statistical inference
is to be mainly concentrated in estimation and testing. In this context, it only
deals with quantities that can never be observed in the present or in the future.
Nevertheless, our view of statistics is that it must be concerned with observable
guantities. In this way, one is able to verify the model adequacy in an irrefutable
way. For the sake of completeness, however, we will present the main results
available from all topics above.
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1.1 Information

As we have already said, the notion of information is present in all the studies
developed in statistics. Since uncertainty is one of the main ingredients in our
models, we need to gather as much information as possible in order to reduce our
initial uncertainty. A fundamentat question which we are concerned with is about
the iype of information that is relevant and mwst be retained in the analysis. A
possible reply to this question is that all available information is useful and must
be taken into consideration. Another answer is to avoid arbitrariness and take into
consideration only objective observation coming from a sampling process. In this
way all the subjective information must be discarded. .

These two points of view roughly form the bases for two different forms of
statistical analysis: the Bayesian (or subjectivist} and the classical (or frequentist)
approach, respectively. As we will see in the next section the divergence between

these two approaches is much stronger, beginning with the interpretation of the” ™"+

concept of probability. This is always the starting point of a statistical model.
An example to illustrate and clarify these points is as follows.

Example. Consider the situation described By'Bergei' (1985, p. 2) concerning the
following experiments: _ .

1. A fine musician, specializing in classical works, tell us that he is able to
distinguish if Hayden or Mozart composed some classical song. Small
excerpts of the compositions of both authors are selected at random and the
experiment consists of playing them for identification by the musician. The
musician makes 10 correct guesses in exactly 10 trials.

2. A drunken man says that he can correctly guess in a coin toss what face of
the coin will fail down. Again, after 10 trials the man correctly goesses the
outcomes of the 10 throws.

3. An old English lady is well known for her ability to distinguish whether a
cup of tea is prepared by first pouring the milk or the tea. Ten cups filled
with tea and milk, well mixed and in a random order, are presented to her.
She correctly identifies all ten cups.

It is not difficult to see that the three experiments provide the same information
and therefore any test to verify the authenticity of the persons’ statements would
result positive for all of them, with the same confidence.

This does not make any sense! We have more reasons to believe in the authen-
ticity of the statement of the musician than of the old lady and, certainly, much
more than of the drunken man. There is no doubt that the experimental outcome
increases the veracity of the statements made. But we cannot reasonably say that
we have the same confidence in the three assertions. By commen sense, there is a
long way to go before one accepts this conclusion.
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1.2 The concept of probability

Although the definition of probability is well accepted by almost every statistician
(ignoring some technical details), its interpretation or the sense attributed to it
varies considerably. We mention here some of the more commeon interpretations:
physical (or classical}, frequentist and subjective.

(1) Physical or classical. The probability of any event is the ratio between the
number of favourable outcomes and the total number of possible experi-
mental results. It is implicitly assumed that all the elementary events have
the same chance. The concept of probability was first formulated based on
these classical ideas, which are closely related to games of chance (cards,
dice, coins, etc.), where the equal chance assumption is taken for granted.

The probability associated with more elaborate events is obtained just as
a consequence of the probability of the elementary events. Obviously, this
interpretation is too narrow to be used in general. Besides that, how can we
recognize equal chance events? Finally, the notion of chance involves some
probabilistic consideration and so the argument is in some way circular.

A similar interpretation is provided by the logical viewpoint that tries to
ascertain relations between events based on logical reasoning. The main
question is how fo translate common scientific knowledge into undisputed,
objective numbers representing probability of events.

(2) Frequentist. The probability of an event A, denoted by Pr(A) or P(4),is
given by

m
Pr{A)= lim —

. n—oo
where m 1s the number of times that A has occurred in » identical and
independent experimental rials. This interpretation intends to be objective
as far as it is based only on observable quantities. However, it is worth
noting that:

(i) The limit cannot be understood as a mathematical limit since given
€ > Dand N > 0 there could well exist an Ny > N such that
| Pr{A) — (m/Ng)| > €. This is improbable but not impossible.

(ii) The concepts of identical and independent trial are not easy to define
objectively and are in essence subjective.

(iii) » does not go to infinity and so there is no way to ensure the existence
of such a timit.

The scope of the two interpretations is limited to observable events and does not
correspond to the concept used by common people. The human being evaluates
(explicitly or implicitly) probabilities of observable and unobservable events.

Examples.

1. Consider the proposition A = ‘it will rain today’. A is typically non-
observable at the moment I leave home but Pr(A) is a legitimate and very
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useful quantity to consider. If its numerical value is low then 1 wili decide
not to take an umbrelia, | will prepare myself for a nice walk back home, etc.
2. Let A be ‘John has disease X’. Although A can be an observable quantity af-
. ter delicate and expensive surgery, John’s doctor can take a number of actions
(including the surgery itself) based on the value he ascertains for Pr{A}.
3. The proposition A is ‘John will get married to Mary’. Once again it makes
sense to think about Pr(A), especially if I have some sort of personal rela-
tionship with John and/or Mary.

In all the cases presented above the classical and frequentist interpretations do
not make sense. A is always non-observable, unique and cannot be repeated under
similar conditions.

(3) Subjective. The probability of an event A is a measure of someone’s degrge
of belief in the occurrence of A. To emphasize its subjective character, it
is better to denote this probability by Pr(4 | H) where H (for history}
represents the available information set of the individual. For example, let
A be the event ‘it is raining in Moscow’.

(a) The easiest probability to assoclate with A for someone in Rio d.e
Janeiro who does not know anything about the Moscow climate, is
Pr(A | Hy) = 0.5, which is based on his or her body of knowledge
Hy.

(b} On the other hand, someone in St. Petersburg could have stated

0.75, if itis raining in St. Petersburg
Pr(A1 Hy) = { 025, if itis not.

Note that, in contrast to someone in Rio, this person will typically bave
more information, contained in Hy.

(¢) But for someone in Moscow

1, ifitis raining

Pr(A | H) = l(), otherwise

because in this case, H3 contains A!

It is worth pointing out that the values for Pr (A | H) are not equal since tl-}cy
depend on the information H, which is different for each case. This interpretation
of probability illustrated by the above example is called subjective and obffys the
basic rules of probability. Note also that adopting the subjective interpretation we
can associate probability for the cases unsolved by the other schools of thoug_ht.
The remaining question is how to obtain its value for a given event or proposition
based on a specified information set.

Probabilities can be evaluvated directly or indirectly. One standard tool for direct
probability evaluation can be an urn with 100 (or 1060, say) balls with two dif-
ferent colours: blue and red. For example, et us suppose that you want to assess

i
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the probability that the Canoas road {a very pleasant road along the mountains
surrounding Rio) is closed because of a road accident. In the direct approach, you
must compare this probability with the chance of drawing a red ball from the urn,
If these probabilities were judged equal when the urn has 20 red balls, then the
probability that the road is closed is 0.2.

For the case of indirect measurements, let us assume that we have two lottery
systems: one involving the event you are interested in and the other is any direct
evaluation instrument. Imagine the following lotteries:

1. Bet A: If the road is not blocked you win 5 monetary units, otherwise you
do not win anything.

2. Bet B: If the ball drawn {rom the urn is red, you win 5 monetary units,
otherwise nothing.

Considering the two lotteries offered to you, on which one do you prefer 10
bet? If you prefer A, it might be because there is a bigger chance to win the
premium betting on A than on B. Now, let us make a small modification in the urmn
composition, to 10 red balls and 90 blue ones, so that the probability of a winning
bet B is 0.1. If you still prefer A, redefine again the composition of the um and
continue until you become indifferent between bets A and B,

There are also difficulties associated with these forms of probability evaluations.
In the first case, the difficulty is associated with the comparison of probabilities
coming from different propositions. In the second case, the difficulty is caused by
the introduction of monetary units and the evaluation of their respective utilities.

1.2.1  Assessing subjective probabilities

There are many alternative ways to deiermine subjective probabilities. De Finetti
(1974) provides a very useful scheme based on the notion of squared error foss
function. Let A be a proposition or an event identified with the value 1 when it
is true and 0 otherwise. The probability p that we associate to A is obtained by
minimizing the square error loss function.

2 .
A=l ifa=1
P=A 1 p% ifA=0.

The basic properties of probability follow easily from this definition as will be
shown below.

1. pel0,1]
Ifp = 1then p* > 1 and (p — 1)? > 0. Therefore the losses are always
bigger than 1 and 0, the losses obtained by making p = 1. A similar
argument is used to show that if p < 0 the losses will be bigger than those
evaluated with p = 0. Then, minimization of the square error losses imposes
p € [0, 1]. Figure 1.1 arrives at the same conclusion graphically.
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Fig. 1.1 The possible losses are given by BD® and CTD° which are minimized if
D is between B and C.

2. Pr{A) =1— Pr{A)
The possible losses associated with the specification of Pr(A) = p and
Pr(A) g are:

A=1:(p-17+¢g
A=0:p*+(g - D%

As-we huve already seen in (1), the possible values of (p, g) are in the
unit square. In Figure 1.2 line segments are drawn to describe the possible
losses. The squared distance between two consecutive vertices represents
the losses. It is clear from the figure that the losses are reduced by making

P+q::1.

—g —=2
Fig. 1.2 The possible losses are given by BDz when A =1and CD when A =10,
which are minimized if D is projected on E over the line p+q = 1.

3. PriANF)=Pr(A| F}Pr(F)
Define Pr{A | F) asthe probability of A if F = 1. Denoting this probability
by p, Pr (F) by g and Pr(ANF) by r, the total loss is given by (p — —A¥F+
(q — F)? + (r — AF)2. lts possible values are:

A=F=1:(p- 1 +(@~1D*+¢ -1
A=0F=1:p4+(@g—-1*+r?

g

An example 7
F=0: q2 +r,

Note that (p, g, r) assume values in the unit cube. The same arguments
used in (2) can be developed in the cube. Minimization of the three losses
is attained when p = r/q.

1.3 An example

In this section a simple example will be presented with the main intention of
anticipating many of the general questions to be discussed Iater on in the bock. The
problem to be described is extremely simple but is nseful to illustrate some relevant
ideas involved in statistical reasoning. Only very basic concepts on probability
are enough for the reader to follow the classical and Bayesian inferences we will
present. The interested reader is recommended to read the excellent paper by
Lindley and Phillips (1976) for further discussion.

On his way to university one morning, one of the authors of this book (say,
Helio} was stopped by a lady living in the neighbouring Maré slum. She was
pregnant and anxious to know the chance of her seventh baby being male.

Initially, his reaction was to answer that the chance is 1 /2 and to continue his way
to work. But the lady was so disappointed with the response that Helio decided to
proceed as a professional statistician would, He asked her some questions about
her private life and she told him that her big family was composed of five boys (M)
and one girl (F) and the sequence in which the babies were born was MMMMMF.
The lady was also emphatic in saying that all her pregnancies were consequence
of her long relationship with the same husband. In fact, her disappointment with
the naive answer was now understandable.

Our problem is to calculate the chance of the seventh baby being male, taking
mto consideration the specific experience of this young lady. How can we solve
this problem?

Assuming that the order of the Ms and Fs in the outcome is not relevant to
our analysis, it is enough or sufficient to take note that she had exactly five baby
boys (5 Ms) and one baby girt {1 F). The question about the order of the births is
brought up because people usually want to know if there is any sort of abnormality
in the sequence. However, it seems reasonable to assume the births to be equally
distributed in probabilistic terms.

Before proceeding with an analysis it is useful to define some quantities. Let
us denote by X; the indicator variable of a boy for the ith child,i = 1,...,7 and
let 8 denote the common unkrown probability of a boy, i.e., Pr(X; = 1|#) =8
with 0 < ¢ < 1. Note that ¢ is a fixed but unknown quantity that does not exist in
reality but becomes a useful summary of the situation under study.

A frequentist statistician would probably impose independence between the
X;'s. In doing that the only existing link between the X;’s is provided by the value
of #. It seems reasonable at this stage to provide to the lady the value that one
considers the most reasonable representation of 8. Given that he is only allowed to
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use the observed data in his analysis, this representative value of & must be derived
from the observations X;,{ = 1,...,6.

There are many possible ways to do that. Let us start by the probabilistic
description of the data. Given the assumptions above, it is not difficult to obtain

PriX;=1,X2=1,...,Xs =1, Xe = 0/8) = 0°(1 - ).

One can proceed on this choice of value for 8 by finding the single value 6 that
maximizes the above probability for the actual, observed data, It is a simple
exercise to verify that, in the above case, this value is given by 6 = 5/6 = 0.83.
We would then say that she has 83% chance of giving birth to a boy.

There are other ways o proceed still based only on the observed data but more
assumptions are now needed. One possible assumption is that the lady had pre-
viously decided that she only wanted to have six children, the last one being an
unwanted pregnancy. In this case, the observed data can be summarized into the
number ¥ of M’s among the six births. Itis clear that ¥ has a binomial distribu-
tion with size six and success probability 6, denoted by ¥ -~ bin(6, #), and that
E(Y/6]0) = 8. Using frequentist arguments, One can 1eason that when we are
able to observe many boys in a similar situation one would like to be correct on
average. Therefore, one would estimate the value of & as Y/6, the relative fre-
quency of boys in the data. Given that the observed value of Y is 5, a reasonable
estimate for 6 is 8 = 5/6, coinciding with #. There is no guarantee that the two
approaches coincide in general but 13 reassuring that they did in this case.

When asking the lady if the assumption to stop at the sixth child was true, she
said that her decision had to do with having had her first baby gitl. In this case,
the observed data should have been summarized by the number Z of M’s she had
until the first girl, and not by ¥. (Even though the observed values of Z and ¥
are the same, their probability distributions are not.) It is not difficult to see that
7 has a negative binomial distribution with size 1 and success probability 1 — 8,
denoted Z ~ N B(1, 8), and that E(Z|6) = ¢/(1 —8). Proceeding on Z with the
reasoning used for Y leads to the estimation of 6 by 5/6 as in the previous cases.

The main message from this part of the example for choosing a representative
value for @ is that there are many possible methods, two of which were applied
above and while the first one did not depend on the way the data was observed, the
second one did. These issues are readdressed at greater length in Chapters 2and 4.

Another route that can be taken is to decide whether it is reasonable or not to
discard 172 as a possible value for 6. This can be done by evaluating how extreme
(in discordance of the assumption 8 = 1/ 2) the observed value is. To see that, one
can evaluate the probabilities that ¥ > 5and Z > 5, depending on which stopping
rule was used by the lady. The values of these probabilities are respectively given
by 0.109 and 0.031. It is generally assumed that the cutoff point for measuring
extremeness in the data is to have probabilities smaller than 0.05. It is interesting
that in this case the stopping rule has a strong effect on the decision to discard the
equal probabilities assumption. This will be readdressed in a more general form
in Chapter 6. '

A R T T A T
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Intuition, however, leads to the belief that specification of the stopping rule is
not relevant to solving our problem. This point can be more formally expressed
in the following way: the unique relevant evidence is that in six births, the sex of
the babies was honestly annotated as 1 F and 5 Ms. Furthermore, these outcomes
occurred in the order specified before. This statement points to the conclusion that
only the resnlts that have effectively been observed are relevant for our analysis.

For a Bayesian statistician, the elements for the analysis are only the sequence of
the observed results and.a probability distribution describing the initial information
about the chance of a baby being male. The experimental conditions were carefully
described before and they guarantee that a result observed in any given birth is
equivalent to that obtained in any other birth. The same is true for pairs, tripféts, etc.
of birth. This idea is formalized by the concept of exchangeability. The sequence
of births is exchangeable if the order of the sex gutcomes in the births is irrelevant.
In the next chapter, we will define precisely the concept of exchangeability. For
our present example this means that the probability of any seqﬁéhcé of r Ms and
s Fs (subject to r 4+ 5 = n) is the same as that of any other sequence with the same
number of Ms and Fs. ) oo

Let us return to our original problem, that is, to calculate the chance of the seventh
baby born being male based on the information gathered, namely that provided by
the previous births. This probability is denoted by Pr[X7 = 1|(5, 1)} where the
pair (5, 1) denote the number of births from each sex previously observed. Using
basic notions of probability calculus we can obtain

. ’ 1 -
PriX7 = 1{5, 3] 2/ P{X7 = 1,6|(, D]d6
0
i .
- fo PLX7 = 116, (5, D]p(81(5, 1)) d

1
:f Bp (915, 1)) do
0
= E[6 | (5, 1)]

where the expected value is with respect to the distribution of & given the past
results. As we will see in the next chapter, this is the unique possible representation
for our problem if the assumption of exchangeability of the sequences of births is
acceptable. One of the elements involved in the above calculation is p(6{(5, 1))
which has not yet been defined. 1t has the interpretation, under the subjective
approach, of the probability distribution of the possible values for & after observing
the data (5, I).

Let us suppose that before observing the values of (5, 1), the subjective proba-
bility specification for & can be represented by the density

p@ =k 11—, 0=0<l,  (a,b>0)
which is a beta distribution with parameters ¢ and b (see the list of distributions

at the end of the book).
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Note that

p((5,1),6)
pe| (5. 1D)= (G D)
PGS, 1) | 8)p(8)
- (CHY))
x 031 —-0e* 1 -],
since p((5, 1)) does not depend on

o 95+G—1 (1 . 9)I+b—]

and the stopping rule or the sample space, in clgssical language, is irrelevant
because it gets incorporated into the proportionality constant. Furthermore, for
any experimental result the final distribution will be a beta. So we can complete
the calculations to obtain

a+5
at+b+6

We still have a problem to be solved. What are the values of @ and b7 Suppose,
in the case of births of babies, that our initial opinion about the chances associated
with M and F are symmetric and concentrated around 0.5. This means that
the distribution of @ is symmetrically distributed with mean 0.5 and with high
probability around the mean. We can choose in the family of beta distributions
that one with @ == b = 2, for instance. With this specification, E(6) = 0.5,
P{0.4 < 8 < 0.6) = 0.3 and the probability of the seventh birth being a boy is
7/10=0.70.

If we have been thinking of an experiment with honest coins instead of births
of babies, we could have chosen a beta(50,50) which is symmetrically distributed
but much more concentrated around 0.5 than the beta(2,2). This is a clear repre-
sentation of the fact that we know much more about coins than about the sex of
new birth, even before observing the data. Under this specification of the beta,
Pr(0.4 < 8 < 0.6) = 0.8 and the chance of the 7th outcome being a head would
be 55/106 = (.52. Evidently this result is closer to 0.5, which seems reasonable
since the sex of babies and coins are quite different things. In Chapter 3 we will
come back to the discussion of how to specify and determine this prior distribution
in any given statistical problem.

PriX; =11, D] = E[BIG5, D] =

1.4 Basic results in linear algebra and
probability

This is abook concemed with the study of statistics. Inordertodothat, afew simple
results from linear algebra and probability theory will be extensively used. We
thought it might be useful to have the main ones cited here to provide the reader with
the basic results he will be using throughout the book. We will start with the basic
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results conceming densities and probability functions of collections of random
variables and will then define the multivariate normal distribution to motivate
the importance of linear algebra results about matrices and their connection with
distributions.

1.4.1 Probability theory

LetX = (Xy,....X). Y=J.....Y))and Z = (Zy,..., Z,) be three ran-
dom vectors defined over sample spaces &', V and Z, respectively (p,q,r > 1).
Assurne for simplicity that they are all continuous with joint probability density
function p{x,y,z). The marginal and conditiona! densities will be denoted by
their relevant arguments. So, for example, p(x) denotes the marginal density of
X and p(zl|x, y) denotes the conditional density of Z|X, Y. Then, the following
equations hold: '

pm=fpmww‘
Y o

pixly) = Z&)
¥}
pmwzfpmwnw
_px,¥lz)
PXY-D =T

There are many possible combinations of these results but most can be derived
easily from one of the above results. In fact, all results below are valid under more
general settings with some components of the vectors being discrete and others
continuous. The only change in the notation is the replacement of integrals by
summations over the relevant parameter space.

These relations define a structure of dependence between random variables. An
interesting concept is conditional independencée. X and Y are said (o be condition-
ally independent given Z if p(x, yiz) = p(x|z) p(yjz). Conditional dependence
struciures can be graphically displayed with the use of influence diagrams. Fig-
ure 1.3 shows some possible representations involving three random variables.
These diagrams can be very useful in establishing probability structures for reat
problems that tend to have many more than just three variables.

Important elements to describe a distribution are its mean vector and variance—
covariance matrix. The mean vector g of a collection of random variables X =
(X1,..., Xp) has components u; = E(X;), f = 1,..., p. The variance—
covariance matrix X of X has elements o;; = Couv(X;, X;). It is clearly a
symmetric matrix since Cov(X;, X;) = Cov(X;, X;), for every possible pair
i, .

These moments are well-defined for any well defined distribution although they
may not exist for some distributions. Therefore, one can evaluate the condi-
tional mean of X3|X|, X7 and X5 by calculating the mean of X3 under the con-
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Fig. 1.3 Possible influence diagrams for three random variables: {a) X and Y
are conditionally independent given Z; (b) (X, Y) is independent of Z.

ditional distribution of X1|X7, Xz and Xs. Likewise, one can evaluate the joint
marginal variance-covariance matrix of X1, X7 and X5 by evalvating the variance-
covariance matrix of the joint marginal distribution of (X3, X2, Xs).

Another useful result concerns transformation of random vectors. et X =
X1,....Xp)and Y = (¥1,..., ¥p) be p-dimensional random vectors defined
‘over continuous spaces A’ and V, respectively. Assume further that X and Y are
uniquely related by the 1-to-1 transformation Y = g(X) with inverse function
X = h(Y) and these functions are at least differentiable. As a consequence,
Y= _g(?c‘) arid A = h(}). Then the densities px{y) and py (y) are related via

dh(y)

py(¥) = px(h(y)) Sy 'Y €,

where

oh(y)
dy
is the absolute value of the Jacobian of h, the determinant of the matrix of deriva-

- fives of h with respect to y. This matrix has element (i, j) given by 8k; (y}/9y;,
¥{i, j}. In the case of scalar X and Y, the relation becomes

dh(y)
dy
An important distribution where some of these results can be used is the mul-

tivariate normal distribution with mean vector g and variance—covariance matrix
Z, denoted by N (g, ) with density

pr{(¥) = px(h{(y))

, YeW

N _ 1
@)~z ‘/Zexpl—E(x—u)’z“l(x—u)]» X € RY,

w!xeret |A] denotes the determinant of A. The scalar version (p = 1) of this density
will simply be referred to as a normal distribution with density ’

_ 1
(23102) 1z exp{—g(x — u,)z}, x€R.

:
P
E
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When p = 0 and o2 = 1, the distribution is referred to as standard normal.

It can be shown that the quadratic form in the exponent of the density has a
2 distribution. Also, the normal distribution is preserved under linear transfor-
mations. The multivariate normal distribution is completely characterized by its
parameters p. and especially . 1f the components are uncorrelated with g;; = 0,
¥i # j, then they are also independent. In any case, the correct understanding of
the variance—covanance structure of a distribution is vital, for example, to obtain
some properties such as marginal and conditional distributions (see exercises). In
order to do that, a few basic results about matrices will be reviewed below.

There are many other distributions that will be considered in some detail in the
book. They will be introduced in the text as they becomeqneeded.

1.4.2 Linear algebra

Let A be a real matrix of order r x p, p, r = 1. Denote the matrix element in row
jand column jbyaj, i =1,...,rand j=1,...,p. fp=r, the matrix is
said to be square of order p. Such a matrix is said to be symmetric if a;; = aj;,
for every possible pair (7, j). In this case, the transpose of A, denoted by A’, is
A=A

LetY = (Y1, ..., ¥,) be arandom vector defined by the linear transformation
Y = ¢ + C X of another random vector X = (X1, ..., XI,)’ where ¢ and C are an
r-dimensional vector and an r x p matrix of constants. Then the expectation and
variance—covariance matrix of Y are respectively given by E(Y) = ¢+ CE(X)
and V(Y) = CEC'. As an example, let ¥ = ICDX = 3 ; X; where 1, is the
p-dimensional vector of 1’s. Then, ¥ will have mean I;QE(X) =3; E(X;) and
variance I’PV(X)lp =3; ; Cov(X;, Xj).

A mairix A is said to be positive (non-negative) definite if bADb > (=)0,
for every non-null vector b = (by, ..., bp)’. Similarly, negative (non-positive)
definite matrices can be defined by replacement of the = (>) sign by the < (<)
sign. A trivial example of a positive definite matrix is the p-dimensional identity
matrix, denoted by I, with diagonal elements equal to I and off-diagonal elements
equal to 0. It is very easy to check that bIpb = bf 4ot b,zu which must be
larger than zero because b is non-null.

Variance—covariance matrices are always non-negative definite and usuaily are
positive definite matrices. To see that, assume that I is the variance-covariance
matrix of X = (Xj, ..., Xp). Then, a non-null random variable Z = b'X can
be formed. This variable will have variance V{Z) = b Zb which is necessarily
non-negative. Varying b over all possible values of b in R” (excluding the origin}
proves the result.

Positive definiteness defines an ordering over matrices, Using the notation
A > (=) 0 for a positive (non-negative) matrix A allows one to denote by A >
(>) B the fact that the matrix A — B > (=) 0. This ordering makes sense in
the context of probability. Let A and B be the variance—covariance matrices of
independent p-dimensional random vectors X and Y. Then A > B implies that
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V¥X) - V(b'Y) = b’Ab~bBb =b(A—-B)b > 0, for every non-null vector
b. So, there is a sense in which matrices can be compared in magniterde and one
can say that A is larger than B.

Symmetric positive-definite matrices are said to be non-singular, because they
have a non-null determinant. This implies that they have full rank and all their rows
are linearly independent. Likewise, singular matrices have null determinant, which
means that they do not have full rank and some of their rows can be represented
as linear combinations of the other rows. Non-singular matrices also have a well-
defined inverse matrix.

A square matrix A of order p with p-dimensional rows a; = (a1, ..., aip)’, for
i=1,..., pissaid to be orthogonal if aja; == 1,if i = jand 0, if i % j. Note
that if A is orthogonal then A’A = A A’ = I,. Therefore, orthogonal matrices can
be shown to be full rank with inverse A~ and A’ = A7, There are many methods
available in linear algebra for iteratively constructing an orthogonal matrix from
given slarting rows.

In most statistical applications, matrices are non-negative definite and symumet-

ric. The square root matrix of A denoted by A!/2, can then be defined and satisfies.

A2Al2 = A. One of the most common methods of funding the square root
matrix is called the Choleski decomposition.

1.5 Notation .

Before effectively beginning the study of statistical inference it will be helpful to
make some general comments. Firstly, it is worth noting that here we will deal
with regular models only, that is, the random quantities involved in our models
are of the discrete or continuous type. A unifying notation will be used and the
distinction will be clear from the context. Then, if X is a random vector with
distribution function denoted by ¥ (x), its probability (or density) function will be
denoted by p(x) if X is discrete (or continuous) and we will assume that

]dF (x):fp(x)dx

independently of X being continuous or discrete, with the integral symbol Tepre-
senting a sum in the discrete case. In addition, as far as the probability (or density)
function is defined from the distribution of X, we will use the notation X ~ P
meaning that X has distribution p or, bemg more precise, a distribution whose

probability (or density) function is p. Similarly, X NN p will be used to denote
that X converges in distribution to a random variable with density p.
In general, the observables are denoted by the capital letters of the alphabet (X,
..}, as usual, and their observed values by lower case letters (x, v, . ..). Known
quannt:es are denoted by the first letters of the alphabet (A, B, ...), and the greek
letters (9, A, .. .) are used to describe unobservable quantities. Matrices, observed
or not, will be denoted by capitals. Additionally, vectors and matrices will be
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distinguished from scalars by denoting the first ones in bold face. Results will
generally be presented for the vector case and whenever the specialization to the
scalar case is not immediate, they will be presented again in a unjvariate version.

The distribution of X is denoted by P(X). The expected value of X{Y is denoted

" by E(X[Y), EX|Y(X) or even E'ij(X]Y) and the vartance of X|Y is denoted

by V(X[Y), VX\Y(X} or even VX;Y(X|Y)- The indicator function, denoted by
I.(A), assumes the values

11, ifxcA
I:(4) = 0, otherwise.

1.6 Outline of the book

The purpose of this hook is to present an integrated approach to staistical inference
at an intermediate level by discussion and comparison of the most important results
of the two main schools of statistical thought: frequentist and Bayesian. With that

. in mind, the results are presented for multiparameter models. Whenever needed,

the special case of a single parameter is presented and derivations are sometimes
made at this level to help understanding. Also, most of the examples are presented
at this level. It is hoped that they will provide motivation for the usefulness of the
results in the more general setting,

Presentation of results for the two main schools of thought are made in paraliel
as'much as possible, Estimation and prediction are introduced with the Bayesian
approach followed by the classical approach. The presentation of hypothesis
testing and linear models goes the other way round. All chapters, including this
introduction, contain a set of exercises at the end, These are included to help
the student practice his/her knowledge of the material covered in the book, The
exercises are divided according to the section of the chapter they refer to, even
though many exercises contain a few items which cover a few different sections.
Atthe end of the book, a selection of exercises from all chapters have their solution
presented. We tried to spread these exercises evenly across the material contained
in the chapter.

The material of the book will be briefly presented below. The book is composed
of eight chapters that can broadly be divided into three parts. The first part contains
the first three chapters introducing basic concepts needed for statistics. The second
part is composed at Chapters 4, 5 and 6 which discuss in an integrated way the
standard topics of estimation and hypothesis testing. The final two chapters deal
with other important topics of inference: prediction and linear models.

Chapter 1 consisted of an introduction with the aim of providing the flavour of
and intuition for the task ahead. In doing so, it anticipated at an elementary level
many of the points to be addressed later in the bgok.

Chapter 2 presents the main ingredients used in statistical inference. The
key concepts of likelihood, sufficiency, posterior distribution, exponential fam-
ily, Fisher information and exchangeability are introduced here. The issue of
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parameter elimination leading to marginal, conditional and profile likelihoods is
presented here too.

A key clement of statistical inference for the Bayesian approach is the use of
prior distributions. These are separately presented and discussed in Chapter 3.
Starting from an entirely subjective specification, we move on to functional form
specifications where conjugate priors play a very important role. Then, non-
informative priors are presented and illustrated. Finally, the structuring of a prior
distribution in stages with the so-called hierarchical form is presented.

Chapter 4 deals with parameter estimation where, intentionally, point and in-
terval estimation are presented as different responses to the same summarization
question, and not as two unrelated procedures. Different methods of estimation
(maximum likelihood, method of moments, least squares) are presented. The clas-
sical results in estimation are shown to numerically coincide with Bayesian results
obtained using vague prior distributions in many of the problems considered for
the normal observational model.

Chapter 5 deals with approximate and computationally intensive methods of
inference. These results are useful when an explicit analytic treatment is not
available. Maximization techniques including Newton-Raphson, Fisher scoring
and EM algorithms are presented. Asymptotic theory is presented and includes
the delta method and Laplace approximations. Quadrature integration rules are
also presented here. Finally, methods based on simulation are presented. They
include bootstrap and its Bayesian versions, Monte Carlo integratton and MCMC
methods.

Chapter 6 is about hypothesis testing problems under the frequentist approach
and atso under the various forms of the Bayesian paradigm. Various test procedures
are presented and illustrated for the models with normal observations. Tests based
on the asymptotic results of the previous chapter are also presented.

Chapter 7 deals with prediction of unknown quantities to be observed. The pre-
diction analysis is covered from the classical and Bayesian point of view. Linear
models are briefly introduced here and provide an interesting example of predic-
tion. This chapter alsoincludes linear Bayes methods by relating them to prediction
in linear models.

Chapter 8 deals with linear models. Initially, the frequentist inference for linear
models is presented, followed by the Bayesian one. Generalizations based on
the Bayesian approach are presented leading to hierarchical and dynamic models.
Also, a brief introduction to generalized linear models is presented.

Exercises

§1.2
1. Consider the equation P(A N F) = P(A | F)P(F) in the light of the
de Finetti loss function setup with the three losses associated with events
A=0,F=1A=1,F = land F = 0 and respective probabilities p, g
and r. Show that losses are all minimized when p = r/q.

§1.3

§1.4

0.

Exercises 17

. Consider the example of the pregnant lady.

{(a) Show that by proceeding on Z with the reasoning used for ¥ leads to
the estimation of & by 5/6.

(b) Evaluate the probabilities that ¥ > 5 and Z > 5 and show that the
values of these probabilities are respectively given by 0.109 and 0.031.

. Consider again the example of the pregnant Jady. Repeat the evaluation of

the P(X,r4s+1 = 1]{r, 5)) assuming now that

{a) the observed values of (r, ) are (15, 3) using beta priors with parame-
ters (@, b)Y = (1, 1) and (a, b) = (5, 3). Compare the results obtained.

(b) itis known that her Tth pregnancy will produce twins and the observed
value of (r, 5} is (5, 1).

. Let X|¥ ~ bin(Y, #) and let ¥ ~ Pois(&).

(a) Show that E(X) = E[E(X|Y)] = Az and that
V(X) = E[VXIV)] + V[E(X[Y)] = Ar.

(b) Show that X ~ Pois(Ax) and that ¥ — X}X ~ Pois{x(1 - m)].

. Let X{¥ ~ N(O, Y1 an.d‘ Y ~ G{a/2,b/2). Obtain the marginal distri-

bution of X and the conditional distribution of ¥'|X.

: Show that normality is preserved under linear transformations, i.e., if X ~

N{g,Zyand Y == ¢+ C X then Y ~ N(c+ Cp, CZC'). Apply the result
to obtain the marginal distribution of any subvector of X.

X ~ N x Ly EXxy

Y, py JO\ Ty Iy
then X|Y ~ N(styy, xv) where piyyy = px + ExrEy (¥ — py) and
Xxjy = Xx — Exyz;lz}(y.

. Show that if

. Show thatif Xy, ..., X are independent standard normal variables then
- 2 2
Z Xi ~ Xp
i=}
. Show that if X = (Xy,.:., Xp) ~ N(u, B)and ¥ = (X—pu) 2~ (X—p)

then ¥ ~ xg.

Hint: Define Z = A(X — p) where the matrix A satisfies A'A = ! and
use the result from the previous exercise.

Let A, and B be non-singular symmetric matrices of orders p and g and C
a p x ¢ matrix. Show that
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Elements of inference

In this chapter, the basic concepts needed for the study of Bayesian and classical
statistics will be described. In the first section, the most commonly used statistical
models are presented. They will provide the basis for the presentation of most
of the material of this book. Section 2.2 introduces the fundamental concept of
likelihood function. A theoretically sound and cperationally useful definition of
measures of information is also given in this Section. The Bayesian point of view
is introduced in Section 2.3, The Bayes’ theorem acts as the basic rule in this
inferential procedure. The next section deals with the concept of exchangeability.
This is a strong and useful concept as will be seen in the following chapter. Other
basic concepts, like sufficiency and the exponential family, are presented in Sec-
tion 2.5. Finally, in Section 2.6, the multiparametric case is presented and the main
concepts are revised and extended from both the Bayesian and the classical points
of view. Particular attention is given to the problem of parameter elimination in
order to make inference with respect to the remaining parameters,

2.1 Common statistical models

Although the nature of statistical applications is only limited by our ability to
formulate probabilistic models, there are a few models that are more frequently
used in statistics. There ts a number of reasons for it; first, because they are more
commonly found in applications; second, because they are the simplest models
that can be entertained in non-trivial applications; finally, because they provide a
useful starting point in the process of building up models.

The first class of models considered is a random sample from a given distribution.
They are followed by the location model, the scale model and the location-scale
model. Excellent complementary reading for this topic is the book of Bickel and
Doksum (1977).

The most basic situation of observations is the case of a homogeneous population
from a distribution Fy, depending on the unknown quantity 9. Knowledge of the
value of @ is vital for the understanding and description of this population and we
would need to extract information from it to accomplish this task. Typically in this
case, @ random sample X, ..., X, is drawn from this population and we hope to
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build strategies to ascertain the value of ¢ from the values of the sample.

In this case, the observations X, ..., X, are independent and identically dis-
tributed (iid, in short) with common distribution F. Assuming that Fp has density
or probability function f, they are probabilistically described through

g, xl0) =[] 7 Gil0).
i=1

Example. Consider a series of measurements made about an unknown quantity 6.
Unfortunately, measurements are made with imprecise devices which means that
there are errors that should be taken into account. These errors are a result of many
(small) contributions and are more effectively described in terms of a probability
distribution. This leads to the construction of a model in the form X;=0+4e,i=
1,...,n. The ¢;’s represent the measurement errors involved. If the experiment is
performed with care with measurements being coltected independently and using
the same procedures, the g;’s will form a random sample from the’ distribution of
errors F.. For the same reason, the X;’s will also be iid with joint density

pla, . xnl®) = [ | fonite) =[] et — )
i=1

i=I
where f, is the density of the error distribution.

Definition (Location modef). X has a focation model if a function f and a quan-
tity @ exist such that the distribution of X given @ satisfies p(x | 8) = f{x — #).
In this case, 8 is called a location parameter.

Examples.

1. Normal with known variance
In this case the density is p(x16) = (2no?)™%% exp{—0.50 2(x — )%},
which is a function of x — 8. .

2. Cauchy with known scale parameter
The Cauchy distribution is the Student ¢ distribution with 1 degree of free-
dom. In this case, the density is p(x}6) = {(mo[1 + (x — 0)a1}™!, which
is a function of x — 4, too.

3. Multivariate normal with known variance—covariance matrix
In this case the density is

px16) = 2m) P28 expl—(x — Y E7 (x — 0)/2),

which is a function of x — #. Note that an iid sample from the N (9, a?)
distribution is a special case with @ = f1land X = o’

Definition (Scale Imodel), X has a scale model if a function f and a quantity o
exist such that the distribution of X is given by

pslor= 15 (%)
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In this case, o is called a scale parameter.
Examples.

1. Exponential with parameter &
The density p(x[f) = 0 exp(—08x) isin the form o’“lf(x/cr) with@ = ¢!
and f{u) =e™™.

2. Normal with known mean 9
The density p(x|o2) = (27)"126 ' exp {~[(x — 6)/a]?/2]} isin the form
o~ flxjo).

Definition (Location and scale model). X has location and scale model if there
are a function f and quantities 6 and ¢ such that the distribution of X given (¢, o)

satisfies
] x—=8
p(x|e,a)=—f( )
o a

In this case, 8 is called the location—parameter and ¢ the scale parameter.

Some examples in the location—scale family are the normal and the Cauchy
distributions. Once again, the location part of the model can also be multivariate.

2.2 Likelihood-based functions

Most statistical work is based on functions that are constructed from the proba-
bilistic description of the observations. In this section, these functions are defined
and their relevance to statistical inference is briefly introduced. These functions
will be heavily used in later chapters, where their importance will be fully appre-
ciated. We start with the likelihood function and then present Fisher measures of
information and the score function.

.2.2.1 Likelihood function

The likelihood function of 8 is the function that associates the value p(x | #) to
each #. This function will be denoted by (8; x). Other common notations are
Ix(8), 1{# | x) and 1(#). It is defined as follows

I(;X):®— RT
8- 10, x)y=p(x|8).

The likelihood function associates to each value of 8, the probability of an observed
value x for X. Then, the larger the value of [ the greater are the chances associated
to the event under consideration, using a particular value of #. Therefore, by
fixing the value of x and varying @ we observe the plausibility (or likelihood)
of each value of 8. The concept of likelihood function was discussed by Fisher,
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Fig. 2.1 Likelihood function of the example fc')}"diﬁerém values of x.

Barnard and Kalbeifhesh among many others. The likelihood func:ﬁqn is also of
fundamental importance in many theories of statistical inference, Note that even
though [ p(x | #)dx =1, f51(#;x)df =k # 1, in general. '

Example. X ~ bin(2, 6)
) . .
plx|8)y=10{0:x) = (x)f)‘(l -6y x =0, .2, =01

but

I
fl(e;x)cw:(z)f 9*(]—9)2"‘d6=(Z)B(x+1,3——x)=17é1.
® x/ Jo X 3

Note that:

1.LIfx = 1then I(8;x = 1) == 28(1 — 8). The value of 8 with highest
likelihood or, in other words, the most likely {or probable) value of 8 is 1/2.

2. M x =2 then 1(6; x = 2) = 02, the most likely value of 8 is I,

3. If x = Othen /(#; x = 0) = (1 — 6)?, the most likely value is again 0.

These likelihood functions are plotted in Figure 2.1.

The notion of likelihood can also be introduced from a slightly more general
perspective. This broader view will be useful in more general observation contexts
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than those considered so far. These include cases where observation are only
obtained in an incomplete way.

Denoting by £ an observed event and assuming the probabilistic description of
E depends on an unknown quantity #, one can define the likelihood function of #
based on the observation E as I(#; E) o« Pr(E}#) where the symbol oc is to be
read as is proportional to. If E is of a discrete nature, there is no difference with
respect to the previous definition.

Example. Let X, ..., X, beacollection of iid random variables with a common
Bernoulli distribution with success probability 6. Let E be any observation of the
X1, ... X consisting of x successes. Then, I{(0; E) o Pr{E|9) = 0*(1~0)"*,

For continuous observations, assume that any observed value x is an approxima-
tion of the real value due to rounding errors. Therefore, the observation x in fact
corresponds to the observed event £ = {x : @ < x < a + A} for given values of g
and A > 0, which do not depend on 8. In this case, Pr{E|#) = F{a+ A)— Fla)
where F is the distribution function of the observation. For typical applications, the
value of A is very small and one can approximate F{a + A) — F(a) = p(x|A.
Therefore, {{#; E) o« p(x|#). This definition can be extended for a vector of
observations with minor, technical adaptations to the reasoning above 1o lead to
1@, E) o p(x18).

The likelihood function leads to the likelihood principle, which states that all
the information provided by the experiment X is summarized by the likelihood
function. This principle draws a clear line that separates inference schools. Cn
the same side lie the Bayesian and likelihood approaches, that do not violate this
principle, and on the other side the frequentist approach which is based on the
probabilities implied by the sampling distribution of X. In this way, it takes into
consideration all the possible values of X.

2.2.2 Fisher infor[nation

We have already mentioned that the understanding and measuring of information
is one of the key aspects of the statistical activity. In this section, the most com-
monly accepted measures of information are introduced. They have important
connections with the notion of sufficiency, to be defined later in this chapter, and
will prove to be very useful in the sequel. In fact, they consist of a series of related
measures generally known as Fisher information measures,

Definition. Let X be a random vector with probability (density) function p(x | 0).
The expected Fisher information measure of ¢ through X is defined by

_log pX | 9)]

1) = Exq [ 5
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If8 = (61,...,6p) is a parametric vector then the Fisher expected information
matrix of # through X can be defined by

8% log p(X | 8)

with elements 7;;(#) given by

PlogpX i) .
[ij(g):Exlg[_W , Lj=1,...,p.

The information measure defined this way is related to the mean value of the
curvature of the likelihood. The larger this curvature is, the larger is the information
content summarized in the likelihood function and so the larger will /(#) be. Since
the curvature is expected to be negative, the information value is taken as minus
the curvature.. The expectation is taken with respect to the sample distribution.
The observed Fisher information corresponds to minus the second derivative of
the log likelihood:

3 log p(x | )

ELEL
and is interpreted as a local measure of the information content while its expected
value, the expected Fisher information, is a global measure. Both Jx(#) and I (#)
will be used later on in connection with Bayesian and frequentist estimation. The
motivation for these definitions will be clear from the following example.

Jx(8) = —

Example. Let X ~ N (8, 0%), with o unknown, Itiseasy toget 1(9) = /() =
o2, the normal precision. Then, the observed and expected Fisher information
measures with respect to @ obtained from the observation X coincide with the
precision, which we had previously tried to identify with information.

There are many properties that can be derived from the Fisher information. One
of the most useful ones concerns the additivity of the information with respect to
independent observations, or more generally, sources of information.

Lemma. Let X = (X1, ..., X») be acollection of independent random variables
with distribution p;(x 1 0),i =1, ..., n. Let Jx and Jy; be the observed informa-
tion measures obtained through X and X;,i = 1, ..., n, respectively. Let [ and I;
be the expected information measures obtained through X and X;,i = 1,....#,
respectively. Then,

5@ =3 Jq0) and I(8) = L.
i=} =1

i

The lemmna states that the total information obtained from independent observa-
tions is the sum of the information of the individual observations. This provides
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further intuition about the appropriateness of the Fisher measures as actual sum-
maries of information.

Proof. p(X |1 8) =1, pi(X; | 8) and therefore log p(X | 8) = 3_/_, log p
(X; 1 8). Then,

Plogp(X|8) _ 8P log pi(Xi | 6)

030’ L 9000

which proves the result about observed information. Taking expectation with
respect to X | # on both sides, gives

¢ L 9% log pi (X | 9)

i=l1
a 52 (X} 8
:ZEI:_ logP(lzl )|9]
Z. 2008

= ZI,-(G).
i=1
m)

Another very important statistic involved in the study of the likelihood function
is the score function. Co

Definition. The score function of X, denoted as U (X; 8), is defined as
dlog p(X | 8)
30 ’

In the case of a parametric vector 8 = (6, .. ., BP)T, the score function 1s also a
vector U(X; @) with components U; (X; 8) = dlog p(X { 8)/86;,i=1,..., p.

UX;8)=

The score function is very relevant for statistical inference as will be shown in
the next chapters. The following lema shows an alternative way to obtain the
Fisher information based on the score function.

Lemma. Under certain regularity conditions,
1(0) = ExplU%(X; 0)].
In the case of a vector parameter 8, the result becomes
19) = Exp[UCK: )U'K; O)].

Although we shall not go into the technical details of the regularity conditions,
the main reasons for their presence is to ensure that differentiation of the likelihood
can be performed over the entire parameter space and integration and differentiation
can be interchanged.
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Proof. Using the equality [ p(X | )dX = 1 and differentiating both sides with
respect to 8, it follows, after interchanging the integration and differentiation
operators, that

apX | 8) [ 1 apX |0
= | ——idX = X|#dX
0 f YRR X0 oa PXID
_]‘ dlogp(X | 9)
B 80
Therefore the score function has expected value equal to a zero vector. Differenti-

ating again with respect to # and interchanging integration and differentiation we
have

’ 2
..Ozfalogp(xlﬂ) {BP(XI!))] dx+f3 10gp(X|0)p(X|9)dX

p(X | 6)dX.

29 30 3036’
al X 8 I X\ '
=f[ og;ar((} ] )MB Ogg; | )] pX|6)dX — 1(8).

The result follows straightforwardly.

2.3 Bayes’ theorem

We have seen that the statistical inference problem can be stated as having an
unknown, unobserved quantity of interest # assuming values in 2 set denoted by
@. & can be a scalar, a vector or a matrix. Until now, the only relevant source
of inference was provided by the probabilistic description of the observations. In
this section, we will formalize the use of other sources of information in statistical
inference. This will define the Bayesian approach to inference.

Let H (for history) denote the initial available information about some parameter
of interest. Assume further that this initial information is expressed in probabilistic
terms. It can then be summarized through p(¢ | H) and, if the information content
of H is encugh for our inferential purpose, this is all that is needed. In this case
the description of our uncertainty about 8 is complete.

Depending upon the relevance of the question we are involved with, H may not
be sufficient and, in this case, it must be augmented. The main tool used in this
case is experimentation. Assume a vector of random guantities X related to # can
be observed thus providing further information about @. (If X is not random then
a functional relationship relating it to @ should exist. We can then evaluate the
value of & and the problem is trivially solved.) Before observing X, we should
know the sampling distribution of X given by p(X | 8, H), where the dependence
on @, central to our argument, is clearly stated. After observing the value of X, the
amount of information we have about # has changed from H to H* = HnX = x}.
In fact, H* is 2 subset of H (a refinement on H was performed).
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Now the information about 8 is summarized by p(é | x, H) and the only remain-
ing question left is how to pass from p(@ | H) to p(# | x, H). From Section 1.4,
one can write

p@, x| H) pxié H)p@|H)

8x H)= =
PO Ix B == px| )

where )
p(x | H) =_f@p(x,9 | H)do.

The result presented above is known as Bayes’ theorern. This theorem was in-
troduced by the Rev. Thomas Bayes in two papers in 1763 and 1764, published
after his death, as mentioned in ﬁamett (1973). As we can see the function in the
denominator does not depend upon @ and so, as far as the quantity of interest 8 is
concerned, it is just a constant. Therefore, Bayes’ theorem can be rewritten in its
more usual form

P8 1x) x p(x | 8)p(#).

The dependence on H is dropped, for simplicity of notation, since it is a common
factor to all the terms. Nevertheless, it should not be forgotten. The above formula
is valid for discrete and continuous, scalar, vector and matrix quantities. The
theorem provides a rule for updating probabilities about , starting from p(#) and
leading to p(# | %). This is the reason why the above distributions are called prior
and posterior distributions, respectively, o

. To recover the removed constant in the former equation, it is enough to notice

that densities must integrate to | and to rewrite it as

D8 |%) = kp(x | 8) p(8)

where
1=f pid IX)dﬁ‘:kf pix | @)p(f)de
3] e

and hence

k! = p(x]H) = f@ p(x | 0)p(8)de
= Eglp(x | 9)].

This is the predictive (or marginal) distribution of X, As before, after removing
the dependence on H, it can be denoted by p(x). This is the expected distribution
of X (under the prior) and it behaves like a prediction, for a given H. So, before
observing X it is useful to verify the prior adequacy through the predictions it
provides for X, After observing X, it serves to test the model as a whole. An
observed value of X with a low predictive probability is an indication that the stated
model is not providing good forecasts. This is evidence that something unexpected
happened. Either the model must be revised or an aberrant observation occurred.
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2.3.1 Prediction

Another relevant aspect that follows from the calculations presented above is that
we obtain an automatic way to make predictions for future observations. If we
want to predict Y, whose probabilistic description is P(Y | #), we have

p(yix)=f9p(y,0|x>de
= f@ Py 18.%)p(8 | %) d8

= [ 103p@ 1908,
. o

where the last equality follows from the independence between X and Y, once 8
is given. This conditional independence assumption is typically present in many
statistical problems. Also, it follows from the last equation that

piyIx) = Epxlp(y | )1

1t is always useful to concentrate on prediction rather than on estimation because
the former is verifiable. The reason for the difference is that Y is observable and
¢ is not. This concept can be further explored by reading the books of Aitchison
and Dunsmore (1975) and Geisser (1993).

Example. John goes to the doctor claiming some discomfort. The doctor is led
to believe that he may have the disease A. He then takes some standard procedures
for this case: he examines John, carefully observes the symptoms and prescribes
routine laboratory examinations.

Let 6 be the unknown quantity of interest indicating whether John has disease
A or not. The doctor assuines that P(@ = 1|H) = 0.7. H in this case contains
the information John gave him and all other relevant knowledge he has obtained
from former patients, To improve the evidence about the illness, the doctor asks
John to undertake an examination. Examination X is related to ¢ and provides
an uncertain result, of the positive/negative type, with the following probability
distribution

P(X=116=10)=040, positive test without discase
P(X=1}8 =1)=10.95, positive test with disease.

Suppose that John goes through the examination and that its result is X = 1. So,
for the doctor, the probability that John has the disease is

PE=1lX=1Nxl@=LX=0DPE=1)
« {0.95)(0.7) = 0.663
and the probability that he does not have the disease is
PO=0|X=1ol®=0;X=1P{@=0
o (0.40)(0.30) = 0.120.
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The normalizing constant, such that the total probability adds to 1, is calculated
so that k(0.665) + k(0.120) = 1 and & = 1/0.785. Consequently

P@=1]|X=1)=0.605/0.785 = 0.847

and
PO =0]X=1)=0.120/0.785 = 0.153.

The information X = 1 increases, for the doctor, the probability that John has
the disease A from 0.7 to 0.847. This is not too much since the probability that
the test would give a positive result even if John were not ill was reasonably
high. So the doctor decides to ask John to undertake another test ¥, again of the
positive/negative type, where -

P(Y=1]8=0)=004 -
P(Y=118=1)=099.

Note that the probability of this new test yielding a positive result given that John
doesn’t have the illness is very small, Although this test might be more expensive,
its results are more efficient. o

The posterior distribution of & given X, P(6 | X), will be the prior distribution
for the ¥ test. Before observing the result of test ¥, it is useful to ask ourselves what
will the predictive distribution be, thatis, whatarethe valuesof PY =y | X = 1),
for y = 0, 1. As we have already seen, in the discrete case,

1

P =y X=x) =3 p¥=y|8=Dp@=jlX=x)
=0

and so
P(Y=1| X =‘1) = (0.04)(0.153) + (0.99)(0.847) = 0.845

and
PY=0|X=D)=1-P¥Y=11X=1=0153

Let us suppose now that John undertook test ¥ and the observed result was ¥ = 0.
This is 2 reasonably unexpected result as the doctor only gave it a 15.5% chance.
He should rethink the model based on this result. In particular, he might want to
ask himself

1. Did 0.7 adequately reflect his P(6 = 1{H)7?

2. Is test X really so unreliable? Is the sample distribution of X correct?
3. Is the test ¥ so powerful?

4. Have the tests been carried out properly?
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In any case, the doctor has to re-evaluate the chances of 8 = 1 considering that
as well as the knowledge that X = 1 he now also knows that ¥ = 0. By Bayes’
theorem

PO=1X=1LY=0xlf@=1;Y=0PE=1|X=1)
 {0.01)}(0.847) = 0.008

and

PO=0|X=LY=0xi@=0;Y=0P@=0|X=1)
' o (0.96)(0.155) = 0.147.

Note thatnow P (8 | X = 1) is working as the prior distributioh for the experiment
Y. The normalizing constant is 0.008 + 0.147 = 0.155 and

FE=1]Y=0,X=1 =0.008/0.155 = 0.052
and

PO=0]Y=0X=1)=0.147/0.155 = 0.948.
Sumumarizing the doctor’s findings chronologically,

0.7, before thetests X and Y
PG =1 =4 0847, after X and before Y
0.052, afterXandY.

The doctor can then decide his course of action as these updating operations took
place.
2.3.2 Sequential nature of Bayes' theorem

Bayes’ theorem is nothing more than a rule for updating probabilities. From an
experimental result Xy with probability distribution p1{x; | #) (and consequently,
likelihood 1,(#; x1)), it follows that

p@ | x1) < 11(8; x1) p(8).

After observing another experimental result X2 with probability p2(x2 | #) not
depending on X, we have

P8 | x2, %) o L(@; x2)p(@ | x1)
o< (85 x2)11(8; x1) p(#).

Repeating this procedure n times, after observing Xa, ..., X, related to § through
the observational distributions p; (x; | 8), fori =3,..., n, we get
PO Xa o X)) X (8 %) p (B Xy, ..., X1)
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or alternatively

P® | X, Xnps .o, X)) [nl 0;x; }p(ﬂ)

i=l

and it is not difficult to see that the order in which the observations are processed
by the theorem is irrelevant. In fact, the observations can be processed in one
batch, on an individual basis or through disjoint subgroups. The final result is
always the same as long as the observations are conditionally independent (on #).
The sequential nature of Bayesian inference is deeply explored by Lindley (1963).

Another basic result corresponds to the case of normal observations with un-
known mean, which is used in many practical situations. If the mean is described
by a normal prior distribution, the posterior distribution will also be a normal
distribution.

Theorem 2.1 (Normal prior and observation). Let 6 ~ N(u,t?) and X |
8 ~ N{®,02), with ¢? known. Therefore, the posterior dlStnbUthl’l of 8 is
@ X=x)~N{u, rl)where

r‘z,u, —]—0’_2)(
-L-—Z + 0-—2

M1 = and 1’1"2 =7 24072

Defining the precision as the reciprocal of the variance, it follows from the
theorem that the posterior precision is the sum of the prior and likélihood precisions
and does not depend on x. Interpreting the precision as a measure of information
and defining w = t72/(r"2 4+ ~2) € (0, 1), w measures the relative information
contained in the prior distribution with respect to the total mformauon {prior plus
likelihood). Then one can write

m1=wp + {1 —wx
which is the weighted mean of prior and likelihood means.
Proof. From Bayes’ theorem, it follows that
P x) o 1@ x)p(0)
& ex [ l(x )% 1(9 )2
P1722 22

82 o*  x8 Lo

202 2¢2 g2 ' g2
62 71 1 X u

exp{—T (;,_- + ?5) +9(;2- + ;5)]
where in the first step all constants involved were included in the proportionality
factor. Now let 77 = (172 + 6 7%)~! and p) = (o=%x + pr~2)z]. Substituting

o exp{—

i
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into the above expression gives

62 o
p@ | x) xexp ——5+—M2-1-
pas 7§

1 2
X eXp {~~2ﬂ;]5(9 - ) }

1 1 3
o —===exp |~ (0 — 1)}
J2mtd 27
It is easy to recognize that the last term in the above expression corresponds to
a norma! density. Therefore, the last proportionality constant is equal to 1 and
© 1 x)~ N, 1) ' _
e o

Example (Box and Tiao, 1992). Two physicists, A and B, want to determine the
value of a physical constant ¢. The physicist A with large experience in the area
specifies his prior as 8 ~ N (900, (20)2). On the other side, the physicist B, not
so experienced on the subject, stated a more uncertain prior & ~ N(800, (802,
It is easy to obtain that for the physicist A, Pr(8 ¢ (860, 940)) = 0.95 and for
the physicist B, Pr(8 ¢ (640,960)) == 0.95. Both physicists agree to make an
evaluation of 8, denoted by X, using a calibrated device with sampling distribu-
tion (X |8) ~ N(8, (40)%). After observing the valuie X = 850, the posterior
distributions of # can be obtained using Theorem 2.1 and the values stated above
as

I. physicist A: (0 | X = 850) ~ N{(890, (17.9)%)
2. physicist B: (6 | X = 850) ~ N (840, (35.774.

The inferential procedure of the two physicists can be summarized in Figure 2.2.
It is worth noting that due o the different initial uncertainties, the same experiment
provides very little additional information for A, although the uncestainty of B has
been substaniially reduced. Identifying precision (the inverse of the variance) with
information we have that the information about 8 for physicist A increases from
0.0025 to 0.00312 since the likelthood: precision was 0.000625 (an increase of
25%). For physicist B, it increases from 0.000156 1o 0.000781 (an increase of
400%).

2.4 [Exchangeability »

Exchangeability is a very important concept introduced by de Finetti (1937). Itis
weaker than independence but it is just as useful, as will be shown betow.
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Fig. 2.2 Prior and posterior densities and likelihood for 8 for the physicist's
example. '

Definition. Let K = [k}, ..., ka} be a permutation of 1, ..., n}. Random quan-
tities Xy, ..., X, are exchangeable if the n! permutations (Xy,, ..., X;,) have
the same n-dimensional probability distribution. An infinite sequence of random
quantities is exchangeable if any finite subsequence is exchangeable.

One immediate consequence of exchangeability is that all marginal distributions
must be the same. To see this, consider any two distinct permutations K and K’ of
an exchangeable sequence of random variables, that therefore must have the same
probability. Let kj and k] be the first index of the two permutations, respectively.
If both sides of this equality are integrated with respect to all the components but
the first, one gets that the marginal distribution of X, and X K| must be the same.
Since one is free to choose the values of ki and k], this means that all marginal
distributions are equal.

A sequence (finite or not} of iid random quantities is trivially exchangeable,
although the reciprocal is not true, in general.

Examples.

1. Consider an-ern with 2 balls, r with number { and m — r with number 0.
Balls are drawn from the urn, one at time, without replacement. Let X
denote the number associated with the kth ball selected. Then, X;, ..., Xu,
n < m is an exchangeable sequence, but the X;'s are not independent.
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2. Let X1, X2, ... be asequence of Bernoulli trials with unknown success prob-
ability 8. The classical assumption is that the X, ’s are iid. For a Bayesian,
if @ is unknown, the information content of the jth observation can modify
your belief about the distribution of X;. The example of the previous chapter
illustrated this point. If the experiments are judged similar in some sense, the
hypothesis of exchangeability is acceptable, while marginal independence
is not.

The relevance of the concept of exchangeability is due to the fact that, although it
is based on weak assumptions, it allows one to state a very powerful result, known

as the representation theorem of de Finetti. The theorem is stated here without -

proof, but it can be found in de Finetti (1937).

Theorem 2.2. To all infinite sequences of exchangeable random quantities {X,,,
n=1,2,...} assuming values {0, 1} there corresponds a distribution F in (0, )
suchthatforalln and k < n,

1
Pllk,n — k) ~_—f g% (1 — 8)" % dF ()
0

where (k, n — k) denotes the event thét k of the X;’s are 1 and the other n — k of the
X;’sare 0. Note that, due to the exchangeability assumption, any sequence with &
I's and n — k O’s also admits a representation according to the above theorem.

A very simple outline of the proof of this representation theorem, worth reading,
can be found in Heath and Sudderth (1976). The importance of the theorem is that
it provides further backing for the Bayesian approach. H one is willing to consider
a collection of -1 observations as exchangeable then one is prepared to rephrase
their model into a sampling Bernoulli model with success probability § that itself
is random with probability distribution F. The theorem however does not tell us
anything about the distribution F. For example, we could have:

1. a degenerate distribution: P (8 = 6p) = 1, for some &y, implying that
' Pi(k,n — k)] = 65(1 —60)" *

2. adiscrete distribution: P(8 = 6;) = p;,if§ =6, i =1,...,swith p; > 0
and Y p; = |, implying that

5

Pllk,n — )] = Y pibf(1 —g)"=*
L i=l

3. a continuons distribution: & ~ beta(a, &), implying that

1 Ba—i(l _g)f)—l
Plk,n—k)= | ofq-oy*— D g9
[k, n — k)] -[0 ( ) B b

1
- 9ﬂ+k"“l 1 — 9 b4+n—k—1 de
B(a,b)fo ¢ )

_Blat+k bt+n—k)
- B{a, b)

T

. K be any permutation of {1,2, ...,

Sutficiency and the exponential family 35

The exchangeability concept has already been extended to many other distribu-
tions with the inclusion of some additional hypotheses; see Bernardo and Smith
(1994) for a review of the main results. The definition is the same as presented
before with removal of the constraint imposed on the sample space. In particular,
if we introduce the hypothesis of symmetry of the distributions and invariance
under linear transformations, it is not difficult to show that the joint density of any
finite subsequence is given by

o0 oo "
pxt, ..., %) :f f [ [ pw(xis 6,07 dF 6,07
0 —® =1

where ¢ is a quantity varying in R, ¢ aquantity assuming values in R, py (3 a, b)
is the density of a N{a, b} distribution and F is a distribution function in R x
R*. Exchangeability, along with invariance now, leads to a representation where
a normal sampling distribution is obtained with parameters having some prior
distribution £. It is worth noting that ¥ once again is not specified.

Another useful extension, well explored in recent years, is the concept of partial
exchangeability. In this case the exchangeability holds only under certain condi-

- tions, For example, we can define some groups of variables where exchangeability

is 'valid only within each group. This concept can be extended to more general
cases than group classification and is formalized as follows.

Definition. Let {X;,i = 1,2, ..., n) be any sequence of random quantities and
n}. We say that X is partially exchangeable
if there are quantities {Z;,/ = 1,2, ..., n} such that the distribution of (X | Z)
is the same as that of (X | Zx), for any permutation K, where for any vector

C=(C|,...,C,',),c,(j=(Ckl-,...,ckn).

The main idea behind this definition is that when the indexes of the X;’s are per-
muted, the resulting vector will have the same conditional distribution, as far as the
same permutation is applied to the Z;’s indexes. This is clearly a weaker concept
than exchangeability. The case Z; = 1, Vi, corresponds to the exchangeability
definition. Another interesting and less trivial case is when there are s groups
and each Z; takes on a value in {1, ..., s} to identify the group the observation
X; belongs to. In this case, one has exchangeabtllty within each group but not
globally,

The extension of this concept to countable sequences is immediate. The notion
of partial exchangeability will be returned to in Chapter 3 when the related concept
of hierarchical prior is introduced and in Chapter 6 when inference for hierarchical
models is discussed.

2.5 Sufficiency and the exponential family

As we have said before, one of the main goals of statistics is to summarize infor-
mation. An important question is to know if, given a set of observations X sampled
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to get information about a parameter of interest @, there are statistics, i.e. functions
of the observations X, that summarize all the information contained in X.

Definition (classical). Let X be a random gquantity with probability {density)
function p(x | #). Then, the statistic T = T(X) is sufficient for the parameter 8 if

px|t,H=pxit).

The definition states that given T, X does not bring any additional information
about #. From the Bayesian point of view this means that X and # are independent
conditionally on T. The main point of the definition is that, after observing 'F, one
can forget the rest of the data if one is only interested in gathering information
about 8. The concept of sufficient statistics was introduced by Fisher and was
studied by Lehmann, Scheffe and Bahadur in the 1950s as pointed out by DeGroot
(1970).

The strength of the definition lies in the possibility of finding sufficient statistics
of a smaller dimension than data X thus implying savings in information storage.
In some cases, it is possible to find suffictent statistics wath fixed dimension inde-
pendent of the sample size. In these cases the dimension reduction and consequent
storage saving can be huge if large sample sizes are considered.

Theorem 2.3. If T = T(X) is a sufficient statistic for &, then
p(@ | x) = p(# | 1), for all priors p(6)
Proof. p(x|8) = p{(x,t|#), ift="T(x)and0, if t # T(x). So,

p(x|8)=px it 6)p(t]o)
= p(x | p(t] 9), Dby the definition of sufficiency.

But, by Bayes’ theorem,

p@ | x)  p(x | 0)p(d)
= px | t)p(t] 0)pd)
o p(t} @yp(@), since p(x |1} does not depend on 6

o p(@ | t). |
Then p(f | x) =k p(# | t), for some k > 0.
Additionally,
o 1=fp(9IX)d6=kfp(8|t)d9=k
o o

and so p@ix)=p@|t.
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This theorem leads to a possible Bayesian definition of sufficiency below.

Definition {(Bayesian). The statistic T(X) is sufficient for # if there is a function
f such that

pl# | x) o f(8, 1.

A useful insight into sufficiency is gained through the notion of partitions of the
sample space. Let T = T(X) be a p-dimensional statisticand A = {x : T(x) = t}.
The collection of sets {A¢ : t € RP} = {A] is a partition if Af N Ay = B,
vit, -t’ & R? and Ut Ay = S, the sample space. A partition induced by a sufficient
statistic is called a sufficient partition.

The equivalence between the classical and Bayesian definitions follows easily
from the theorem presented below for the classical definition of sufficiency.

Theorem 2.4 (Neyman's factorization criterion). The statistics T is sufficient
for @ if and only if

pix|8) = f{t,0)g(x)

where f and g are non-negative functions.

f’rpof. (=) We have already seen that p(x | ) = p(x | t)p(t | 8). Then
it is enough to define g{(x) = p(x | ) = p(x | T(x)) and f(t,.0) = p(t | &)
completing this part of the proof, -

{¢=) Conversely, we have that p(x | 8} = 'f(t,ﬂ)g(x). Defining A = {x :
T(x} = t}, the probability (density) function of T | ¢ is

p(tla):f p(x | 8)dx
A¢

=f{t.0 | gx)dx
At

= f(t,HGX), for some function G

and so, f(t,8) = p(t | 8)/G(x). On the other hand, from the hypothesis of the
theorem, f(t,8) = p(x | #) /g(x)_. Equating the two forms for f(t, #) leads to

px10) _ s
pt1®)  Gx)’

Since p(x | t,8) = p(x| 8)/p(t| 9), then

80 _

pix|t o) = oo =

pixit

since it does not depend on 8. Thus, T is sufficient for 8.
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Neyman’s factorization criterion is the tool usually used for identifying sufficient

statistics.
We can now show that the two concepts of sufficiency are equivalent, since

1. (classical = Bayesian) follows trivially from Theorem 2.4;

2. (Bayesian == classical)

p(x | 8)p(@)
px)

So, p(x | 8) = f(t,8)p(x) which, by the factorization criterion, is equiva-
lent to saying that T is a sufficient statistic. }

p@|x)= = f(t,8)p(@), by hypothesis.

Definition. Suppose that X has density p(X | 8) Then T(X) is an ancillary
statistic for # if p(t ] 8} = p(t).

In this case, T does not provide any information for @ although it is.a function
of X, which is related to #. Ancillarity can be understood as an antonym for
sufficiency.

Sufficiency is a basic concepl in classical statistic although it is not so relevant
for the Bayesian approach.’ On the other hand, from the applied point of view this
is also not a very useful concept since even small perturbations in the modef can
imply the loss of sufficiency. ,

Examples.

1. Let X = (X1,..., X,) be observations with values 0 or 1, where P(X; =
116)=

- n
pox|6) =07 (1 — 0", witht = x.

From the factorization criterion it follows that T(X) = 3 ;_; X; is a suffi-
cient statistic. In this case, it is also possible to conclude straightforwardly
from the definition of sufficiency and using some combinatorial arguments,
that T(X) is a sufficient statistic since p(x | T(x) = #) = [{7)]1~}, which
does not depend on 8.

2. Let Xy, Xa, ..., X, beiid conditional on # with common density p(x; | #).
Then:

n
prts. ., xa | 8) =[] pxi 16).
i
The order statistics are defined as Y1 = Xy = min; X;, 1o = Xy =
second smallest sample value , ..., ¥, = Xy = max; X;. Since the order

of the terms does not alter the product and to each x; there corresponds a
unigue y; (assuming continuity),

[1pGi18) [t 1 0.
i=l i=1
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Then, with g(x) = 1, t = (y1,..., y,) and f(t, ) = []_, p(yi | 0), the
factorization criterion holds and T = (¥1,..., Y} is a sufficient statistic
for §. Note that the dimension of T depends upon the sample size. In this
case no dimensionality reduction was achieved and the definition becomes
deprived of its sirength. It is also clear that the sample X itself is trivially a
sufficient statistic for 8.

The application of the sufficiency concept developed above is not necessarily
useful. It is only relevant when the dimension of the sufficient statistic is signif-
icantly smaller than the sample size. An interesting question is how to obtain a
sufficient statistic with maximal reduction of the sample data. Such a statistic is

known in the literature as a rinimal sufficient statistic. 0

Definition. Let X ~ p(x | #). The statistic T(X) is a minimal sufficient statistic
for @ if itis a sufficient statistic for # and a function of every other sufficient statistic
for @.

If S¢X) is a statistic obtained as a bijective function of a sufficient statistic T(X)
then 8§ is also a sufficient statistic. On the other hand, the minimal sufficient
statistic is unique, apart from bijective transformation of itself,

Definition. Twoelements x and y of the sample space are information equivalent if
and only if the ratio p(x|8)/ p(y|#) or equivalently {{#; %)/ 1{#; ¥) does not depend
on#.

{nformation equivalence defines an equivalence relation of the elements of the
sample space. Therefore, it defines a partition of the sample space. This partition
is called a minimal sufficient partition. It can be shown that a sufficient statistic
is minimal if and only if the partition it defines on the sample space is minimal
sufficient.

Example. et Xi,..., X, be iid Poisson variables with mean A and define
T(X)= 3.1 X;. Then,
""" LA AT
pEIA) = Hﬂmm 1‘[eA L= e—
i=| [1; !

Therefore, p(x|1)/p(¥|A) = ATOO-T(Y) [T: (D /x:1), which does not depend on
A if and only if T(x) = T'(y). Hence, T(X) is a minimal sufficient statistic for A.

Another interesting question is whether there are families of distributions ad-
mitting fixed dimension sufficient statistics for #. Fortunately, for a large class of
distributions, the dimension of the sufficient statistic T is equal to the number of
parameters. Maximum summarization is obtained when we have one sufficient
statistic for cach parameter. Subject to some weak regularity conditions, all dis-
tributions with the dimension of T equal to the number of the parameters belong
to the exponential family.
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Definition. The family of distributions with probability (density) function p(x |
@) belongs to the exponential family with r parameters if p(x | 8) can be written
as

plx|8)= a(x)cxp{
J

Uj(x)¢j(9)+b(9)] , xeXCR
=1

and & does not depend on @.

By the factorization criterion, U1(X), ..., Ur(X) are sufficient statistics for 8
(when a single X is observed). For a size n sample of X we have

f T ]
pxi8) = [nz(xi)] eXPlZ[ Uj(xi):l ¢j(9)+nb(9)}
=1 i

j=1Li=

which belongs to the exponential family too, witha(x) = [T, atxp)and U;(X) =
Y UX) jo= 1. 80, T=(N,....T) with T = UpX), j =
1,2, ..., r is a sufficient statistic for 8.

The exponential family is very rich and includes most of the distributions more
commonly used in statistics. Among the most important distributions not included
in this family we have the uniform distribution (which has sufficient statistics
with dimension not depending on the sample size) and the Student 7 distribution
(which have none). Darmois, Koopman and Pitman have independently shown
that among families satisfying some regularity conditions, a sufficient statistic of
fixed dimension will only exist for the exponential family.

Examples.
1. Bernoulli{@}
p(x |8) =651 =) T L({0, 1),
= exp {x log (-1-3—9) +log(l — 9)] L(10, 1.

For a sample x we have,

n

p(xi0)=[]6% (1 -0 7" L ({0, 1))

i=1
= exp {Ex,- tog (25 ) + 10801 - 9)] (10,17,
izl

Then, a Bemoulli belongs to the one parameter exponential family with
a(x) = ({0, 1}7), b(6) = nlog(l — 6), ¢(©) = log[e/(1 — #)] and
UX) = }:?=1 X;. So, U is a sufficient statistic for § as we have seen
before.
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2. Poisson (A) S
Ay

PG 1N =2 1o, 1,...,

xt
which in the exponential form is

I
plx|A) = 7 exp{l—A +xlog ML ({0, 1, ...1).
For a sample x we have,

i=t it

1 n
p(X|2) = = exp le,— log A — nl} x(0,1,....
i=1

So, the Poisson belongs to the one parameter exponential family with
a(x)=Ix({0, 1, .. .}/ TTiZy xils 60 = —ni, ¢(1) = logh and U(X})
=37 4 Xi. Then U is sufficient for A. ;

3. Nomal{u, a?)

2 (x —w)?
pxlp,o%)=. 2jwttxp_l— 557 ]
! exp{_’ix__l_xz_if_l
2aag ol 2a2 202
1. w1, w1,
= 7 exp[;ﬁx 262); 262~——2-10gor ]

For a sample x it follows,

1
(zj'r)n,'z

TR Il (-, 1 p
xexpl—&—-in,'—é—;—zZI:xi—E ;"i”HOgUZ .

il

plxip,0?) =

Then, the normal distribution is a member of the exponential family with a
bidimensional parameter 8 = (i, 2), a(x) = 27)™"2, b(0) = —(n/2)
[u2/o?) +loga?], ¢1(8) = u2/o?, ¢2(8) = —1/26%, Un(X)y = 30, Xi
and U(X) = 3", X2. So, U = (U}, Uy) is sufficient for (g, o%).

2.6 Parameter elimination

Sometimes models need to be developed with the inclusien of various parameters,
many of which are included regardless of our particular interest in them. These
parameters are often included to describe relevant aspects of the reality we are
modelling, even though they are notrelated toour main concerns about the problem.
To simplify the discussion, the parametric vector can be broadly split into two
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subvectors: # containing the parameters of interest and ¢, the components that
despite being present in the model are not of our immediate concern. The first
subvector is called the parameter of interest and the second one is known as the
nuisance parameter. Usually, it is our desire to eliminate ¢ from the analysis as
soon as possible, in order to concentrate efforts on @.

From the Bayesian point of view, this is done using probability rules.” Once
having observed X = x, we get p(8, ¢ | X), and we can easily calculate

1. Marginal posterior distributions:

pw|x>z[ppw,¢|x)d¢
and B
p(g1x) =f®p(_6,.¢}.x)d9

where © and & are the respective parameter spaces of 8 and .
-2. Conditicnal posterior distributions:

pld,d]x)

plo| ¢ x)= 0@ %) x p(d. ¢ |x)
and
. 31
P 10.x)= I’(p(_‘;f’li)’ﬂ o pld,¢]x)

where these conditional distributions are well defined if the corresponding
denominators are non-zero, thatis, for values of @ and ¢ with stricily positive
“marginal posterior density. The above calculations use the fact that the terms
in the denominator do not depend on the quantity of interest and can be
included in the proportionality constant.
3. Marginal Hkelihood functions:
The likelihood function is defined as I1(6, ¢; x) = p(x | ¢, ¢). In a similar
way, one can define the marginal likelihood functions as:

1B x) = p(x | 8) =LP(X,¢ | 6)dé

= j:p p |9, 8)pd|0)dd

and

i) = f p(x10,8)p(0 | $)do

Conceptually, there is no difficulty in defining and obtaining any of the above
quantities although sometimes there are difficulties in analytically so]vmg these
integrals. The same is not true for classical or frequentist inference. Some special
rules must be siated leading to ad hoc procedures to solve the stated probiem.
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Many efforts are geared in classical inference towards a proper definition of
marginal likelihood. This is a relevant problem Lo the frequentist gagstician and
has received much research attention, beginning with the work of Bartlett in the
1930s and further developed by Kalbfleisch and Sprott in the 1970 a5 discussed
in Cox and Hinkley (1974). Many proposals to express the maryjnal likelihood
1(#; x) are based in substituting ¢ in the (total} likelihood by some particular value.
Often, this is taken as the value that maximizes the likelihood. Denmmg this value
by $(8), because it can depend on 8, we get the relative or profile likelihood for #
as

[p(@ix) = (8, 9(0)x).

Some authors suggest corrections in this expression taking into Consideration mea-
sures of information associated with ¢.

There are other frequentist definitions for the marginal and conditional like-
lihood. Suppose that the vector X, or some one-to-one transformation of it, is
partitioned into (T, U), with joint density given by

pltu]8,¢) = p(t]8,$)pu|t,0,p).

The likelihood function of #, ¢ is given by the left-hand side of the equation above
and the right-hand side terms can also be written in likelthood terms ag

10, t,uy = {8, dp; 16, p;u | 1),

The first term on the right-hand side is called the marginal hikelihood and the
second, the conditional likelihood. These forms of likelihcod are useful when
some of the parametric components can be eliminated. For example, if T is such
that [(8, ¢. t) = [(#; t) only this term is used to make inferences about &, For
conditional likelihood, this form is related to sufficient statistics because if T is
sufficient for ¢, with # fixed, then(#, ¢; u | t) = [(#; u | t}. Again only this term
is used to make inferences about @. The question is how much information is lost
when ignoring the other part of the likelihood.

Example. LetX = (X, ..., X,) be arandom sample froma N (8, &%) and define
¢ = o ~%, The parameter vector (6, ¢) is unknown and we assume that the main
interest lies in the mean of the population. The precision ¢ is essentially a nuisance
parameter that we would like to eliminate from the analysis

Suppose that the prior distribution is such that noooqb ~ x,,o or equivalently
¢ ~ G{np/2, noag/z) and ¢ is independent of @ a pdori. In these conditions we
have

2
P& 18) = p@) o "/ Lexp [_"020_0 ¢l )

On the other hand,

p(x |8, ¢) x ¢™*exp —g— > i — 9)2]
i=[
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but
Y =0 =Y [ - F) + & — o))
=1 i=1
= i =D +nE -0
i=1
= n[s? + (T — 8)°]
where

st = i(x,- -7 /n.
Therefore, the marginal likelihood :);]9 is
100 = [ pix19.0)06 1029
o« fow 3 Lexp {—~%ngo§] &% exp {J%[ns? PnE— 9)2].} dep

X pin ¢ . R

=]0 g7 ! BXP{—“Z'['ISZ +n(f-—9)2+nocr§}}d¢

_ TG + rig)/2] :
{[(ns? + n(x — 8)% + ngodl/2}intno)/2

2

ns? nooy

__ Tltn+n0)/2) n - 6)?
 [(n5? + noog) 202

Letting ng — 0, which corresponds to vague prior information (as will be seen in
Chapter 3), gives

= m2 —-n/2
e, x) >k [l + 9—26;)]
5

F2x, 6)1 - D+1172 5 _
=k[1+ n(—l)] where T(X,G‘):X 9

Interpreting the likelihood as proportional to the probability density function of
T, it follows that T ~ 1,1 (0, 1) (see list of distributions).

The sampling distribution of X, the minimal sufficient statistic for 8, is used
in the frequenllst inference. This distribution depends on o2, Substituting it by
the estimator 52, the minimal sufficient statistic for ¢ leads to T(X, @) with a
t,—1(0, 1) sampling distribution as will be seen in Chapter 4. Therefore, if the
adopted prior distribution for § is proportional to a constant then the Bayesian and
classical results will agree numerically at least, although theoretically they were
obtained using different arguments.
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Exercises

§2.1
1. For each of the following distributions verify if the model is location, scale
or location-scale.

(a) ty(u, o 1), o known;

(b) Pareto (xg, @), with & fixed, with density p(x|xg) = axg/x'¥%, x >
xg, {a, xp > 0);

(c) uniform distribution on (¢ — 1,0 + 1);

(d) uniform distribution on (-8, &).

§2.2

2. Let X have sampling density p(x}§) with 8 € ® < R. Prove or give a
counterexample to the assertion that if the sampling distribution p(x|8) has

- ra‘unique maximum then the likelihood [(¢; x) also has a unigue maximum,
Generalize the result to the case of a vector of observations X and also for
a parameter vector 8.

3. A situation that usually occurs in lifetime or survival analysis is to have
observations that are censored because of time andfor cost restrictions on
the experiment. One common sitnation occurs when the experiment is run
only until time T > 0. If the observational unit is observed until time 7', itis
uncensored but if it is censored then all one can extract from the experiment
is that the lifetime of this unit is larger than 7. Assuming that a random
sample X (. ..., X, from a density f(x|@) is observed, show that

(a) the likelihood 1s

19) = l—[If(xale)}’ X[l ~ F(T}6)]%
=]

where F is the distribution function of the cbservations and x; is the
censoring indicator, § = 1,...,n, taking values 0, when failure is
observed, and I, when censoring takes place;

(b) in the case that f(x]8) = 6™ 1(8) = 6™ eV where m < n isthe
number of uncensored observations and U = (n—m)T 4 3_; (L— x1)xi
18 the total time on test.

4. Let X1, ..., X, be iid random quantities from the Weibull distribution, de-
noted by Wei{a, ) (o, 8 > 0), with

pixia, B) = paxlexp(—px%), a >0, >0

(a) Obtain the likelihood function, the score function and the observed and
expected Fisher information matrix for the pair of parameters (e, B.

{b) The Weibull distribution is sometimes parametrized in terms of o and
8 = 1/8%. Repeat item (2) for the pair of parameters (¢, ¢).
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§23

5. Return to the example about John’s illness and consider the same distribu-
tions.

(a} Which test result makes the doctor more certain about John's illness?
Why?

(b) The test X is applied and provides the result X = 1. Suppose the
doctor is not satisfied with the available evidence and decides to ask
for another replication of test X and again the result is X = 1. What
is now the probability that John has disease A7

{c) What is the minimurn number of repetitions of the test X which allows
the doctor to ensure that John has the disease with 99.9% probability.
What are the results of these replications that gnarantee this?

6. Supposethat X | & ~N(8, 1) (forexampte, X is a measurement of a physical
constant 6 made with an instrument with variance 1). The prior distribution
for € elicited by the scientist A corresponds to a N (3, 1) distribution and the
scientist B elicits a N (15, 1) distribution. The value X = 6 was observed.

(a) What prior fits the data better?
(b) What kind of comparison can be done between the two scientists?

7. Classify the following assertions as TRUE or FALSE, briefly justifying your
answer.

(a) The posterior distribution is aiways more precise than the prior because

(b) When X3 is observed after X, the prior distribution before observing
X7 has to be necessarily the posterior distribution after observing X .

(c) The predictive density is the prior expected value of the sampling
distribution,

(d) The smaller the prior information, the bigger the influence of the sam-
ple in the posterior distribution.

8. A test to verify if a driver is driving in a drunken state has 0.8 chance of
being correct, that is, to provide a positive result when in fact the driver has
a high level of alcohol in his/her blood or negative result when it is below
the acceptable limit. A second test is only applied to the suspected cases.
This never fails if the driver is not drunk, but has only a 10% chance of error
with drunk drivers. If 25% of all the drivers stopped by the police are above
the limit, calculate:

(a) the proportion of drivers stopped that have to be submitted to a second
test;

(b) the posterior probability that this driver really has the high level of
alcoho] in his blood informed by the two tests;

(c) the proportion of drivers that will be submitted only to the first test.

10.

1.

13.

§2.4
14,

i5.

. {(DeGroot, 1970, p. 152) The random variables X, ...,
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X, are such that
k — 1 of them have probability function k# and one has probability function
g. X; will have the probabtl:ty function g with probability or;, j = 1, ..., %,
where ¢; > 0, ¥j and Z; yo; = 1. What is the probability that X| has
probability fonction g given that:

(a) X| = x was observed?
(b) X; = x,i # 1 was observed?

Let X 16, ~ N@©,0%), o knownand 0 | u ~ N{g, v, 12 known and
@~ N(0, 1). Obtain the following distributions:

(a) (6 }x,u);
by (plx)
{cy (@ 1]x)

Let (X|8) ~ N(8, 1} be observed. Suppose that your prior is such that & is
N(u, 1}y or N{—u, 1) with equal probabilities. Write the prior dlStI‘ththn
and find the postenor after observing X = x. Show that .

x ol —exp{—jx)

..I..

w=E@ = 2 21 +exp{—px)

and draw a oraph of 1" as a function of x.

. The standard Cauchy density functien is p(x|6) = (1/m)}{1/[1 + (x — 9)2]}

and is similar to N{4, 1) and can be used in its place in many applications.
Find the modal equation (the first order condition to the maximum) of the
posterior supposing that the prior is p(6) = 1/7(1 + 6%).

(a) Solveitforx =0andx = 3.
(b) Compare with the results obtained assuming that (x|8) ~ N(8, 1} and
g~ N(O,1). ’

Assume that an observation vector X has multivariate normal distribution,
introduced in Chapter 1, with mean vector g and variance—covariance matrix
X. Assuming that T is known and the prior distribution is g ~ N (g, Bo)
obtain the posterior distribution for .

Eet X == (X),..., X)) be an exchangeable sample of 0-1 observations.
Show that

(@ E[X;1=E[X;LVi,j=1,....n
O VIXil=VIX;LV¥i.j=1,...,n
() Cov(X:, X;) = Cov(Xy, XD\ Vi, j,k,I=1,....n

Let X = (X1,..., X.) be an exchangeable sample of 0-1 observations and
T =¥7_, Xi. Show that

(@) P(T=1)=fy (()0'(1 -6)""pBYdo, r=1,...,n.
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16.

§ 2.5
17.

18.

19,

20.

21.

(by E(T) =nkE(f).
Hint: in (b), use the definition of E{T) and exchange the summation
and integration signs.

Let 8y, ..., 0 be the probability that patients [y, .. ., Iy have the disease B.
After summarizing all the available information the doctor concludes that

(a} The patients can be divided in two groups, the first containing the
patients Iy, ..., Ij, J < k and the second with patients iy, ..., Ir.

(b) The patients in the same group are similar, that is to say they are
indistinguishable with respect to B.

(¢) There is no relevant information relating these two groups.

Use the idea of partial exchangeability to construct a prior distribution for
6 = (8y,...,6). If instead of (¢}, there was information relating the two
groups, what modifications. would this imply in the prior for 8?7

Let X =(X), ..., X,) be arandom sample from U (¢, ¢2), that is,

1
plx|61,8)=—-——, B 2x=<06
L)

— 9]
Let T(X) = (X(1}, X(wy), Obtain its joint distribution and show that it is a
sufficient statistic for & = (61, 62).
Let X be a random sample from P(X | 8). Show thatif T = T(X)isa
sufficient statistic for # and S(X) is a 1-to-1 function of T then $(X) s also
a sufficient statistic for 6. )
Let Xy, ..., X, be a random sample from P(X { 6, 62). Show that if Ty
is sufficient for #; when &z is known and T; is sufficient for §; when 8 is
known, then T = (T, T2) is sufficient for & = (81, 62).
Verify whether the following distributions belong to the exponential family.
If so, determine the functions @, b, u and ¢.

(a) bin(n, 8), n known;
{b) exp(6);

©) G(a, B);

(d) beta (w, 8);

{e) N{u, X), Z known.

Which of the following distribution families are members of the exponential
family? Obtain the minimal sufficient statistic for those belonging to the
exponential family.

(2) p(x (8)=1/9,x € {0.1+6,...,0.9 +6);

(b) the family of N (6, 62) distributions; ’

{c) the family of N(8, &) distributions, with & > G;
(d) p(x16) =2(x +0)/(1+26),x € (0,1),6>0;

22.

23.

24,

25.

26.

27.
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(e) the distribution family of X | X # 0 where X ~ bin(n, 8);
M x| =6/0+) xeRY;

(2) flx|6)=8"logd/® —1),x (0,1}

0y flx16)=(1/2)exp(-~|x -8}, x € R.

Let Xi,..., X, be a random sample from N(g, o), with o? unknown.
Show, using the classical definition, that the sample mean X is a sufficient
statistic for ut. )
Hint; It is enough to show that (X | Xyand V(X | %) is not a function of
. Why? )
Let (X1, X2, X3) be a vector with probability function

1)

n! ' .
HP?', xz0, nt+xtn=n

Tl it il
where p1 = 82, py =26(1 —6), p3=(1 —6)? and 0 <6 < L.

(a) Verify whether this distribution belongs to the exponential family with
k parameters. If this is true, what is the value of k72
(b) Obtain the minimal sufficient statistic for 8.

Using the same notation adopted for the one parameter exponential family,

(a) show that

b 6) BO)"(©) — ¢O)"©)
d ViU(X)] = .
s 4 VWl TIGIE

EMUQO = -

Hint: From the relationship f p(x | 8) dx = 1, differentiate both sides
with respect to .

(b) Verify that the result in (a) is correct for the case where X ~ exp(6)
by direct evaluation of E[U{X)] and V[U(XD].

Show that information equivalence defines an equivalence relation of the
elements of the sample space.

Let X1, X», X3 be iid Bernoulli variables with success probability ¢ and
define T = T(X) = Z;‘ngg, Ty = X; and Tz = (T, T;). Note that the
sample space is § = {0, 1}°.

(a) Obtain the partitions induced by T, T and T2.

(b) Show that T is a sufficient statistic.

(c) Prove that T is a minimal sufficient statistic for 8 but Ty isn’t by
showing that T induces a minimal sufficient partition on & but T2
does not.

Consider a sample X = (X1, ..., X) from a common density p(x|#) and
jet T be the vector of order statistics from the sample.
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(a) Prove that the sample X is always sufficient for 8

(b} Obtain the factor g(x) in the factorization criterion for the sufficient
statistic T.

28. Consider a sample X = (X1, ..., X;;) from a uniform distribution on the
interval [8), 8;], 6; < 6y, sothat & = (8,0 ).

(a) Show that this distribution does not belong to the exponential family.

{b) Obtain a sufficient statistics of fixed size.

{c} Specialize the results above for the cases that 6 is known and & is
known.

29. Considerasample X = (X|,..., X)) fromat, (i, o2}, and @ = (v, u, 02).

(a) Show that this distribution does not belong to the exponential family.

(b) Show that itis not possible to obtam a sufficient statxst;cs for & of fixed
size. ;

(¢) Show that the results above are retained even for the cases when some
of the components of @ are known.

£2.6
30. Let X and ¥ be mdependcnt random variables Poisson distributed with
parameters & and ¢, respectively, and suppose that the prior distribution
is p(8,¢) = p(@)p(p) o k. Letp =8/ +¢)and& =0 +¢bea
parametric transformanon of {8, ¢))

(a) Obtain the prior for (i, £ )

(b) Showthatyr | x,y ~ beta(x+1 y+Dand§ | x,y ~ Glx+y+2,1)
are independent.

(¢) Show that the conditional distribution X given X + Y depends only
on ¥, that is p(x | x -+ y, ¥, &) = p{x | x + v, ¥) and that the
distribution of X 4+ ¥ depends only on &,

(d) Show that X + Y is a sufficient statistic for &, X is a sufficient statistic
for ¥, given X + Y, and that (X, X + Y) is a sufficient statistic for
(¥, ).

{e) Obtain the marginal likelihoods of ¥ and &,

{f) To make an inference about £ a statistician decides to use the fact
presented in item (d). Show that the posterior is identical to that
obtained in (b). Does it mean that X - ¥ does not contain information
about 1 ?

31. Suppose that X has density f(x | ) where 8 = (8}, 6, 63) and the prior
for @ is built up as p(#) = g(8y, O3 | 63)k(03) where g and k are densities.
Obtain the marginal likelihood f(x | 62, 83) as a function of f.gandh.

32, Let X = (X}, X3) where X| = (X115 --, Xim) and X = (Xo2q,...,
X2n) are samples from the exp(f;) and exp(8y) distributions respectively.
Suppose that independent G (g;, b;) priors are assumed, i = 1, 2 and define

¥ =61/6;.

Exercises 51

(a) Obtain the distobution of (81, 6;) given X = x.
(b) Repeat item (a), assuming now that g;, b; — 0,i =1, 2.
(c) Using the posterior obtained in item (b), show that

x:Lt,tr|X=x~F(2m,2n)
X2

where :
— X1 — X2
X1 = L and Xy = L
m n
Hint: complete the transformation with ¥r; = 8, p

33. Let (X1, X2, X3) be a random vector with trinomial distribution with pa-
rameter § = (61, 8, 63} where 83 = | - 8 — &, and assume that the prior
for @ is constant,

{(a) Define X = 61/(9) + 62) and = 61 + &, and obtain their priors.
(b} Obtain the marginal likelihood of ¥,
{c) Show that X1 4+ X7 is a sufficient statistic for .

34, Amachine emits particles following a Poisson process with mean intensity of
A particles per unit time. Each particle generates a N8, 1) signal. A signal
detector registers the particles. Unfortunately, the detector only registers the
positive signals (making it impossible to observe the number »n of emitted
paiticles).

(a) Obtain the distribution of k|n where k is the number of particles reg-
istered.

(b) Show that the likelihood {(¢, A) based on the observation of just one
registered signal (k = 1) assuming the value x| > 0 during a unit
interval is given by

¢ (x1 — O D(@) exp{—AD(0)}

where ¢ and & are the density and the cumulative distribution function
of the standard normal.
Hint: Obtain the joint distribution of (xy, k, n) and eliminate n by
integration. X

(c) Obtain the profile likelihood of 8, that is, 1(9, 1(9)) where A{f) max-
imizes the likelihood of A supposing 8 known,

(d) Supposing that the prior is p(8, A) « k, obtain the marginal likelthood
of 8.
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Prior distribution

In this chapter, different specification forms of the prior distribution will be dis-
cussed. Apart from the interpretation of probability, this is the only novelty intro-
duced by the Bayesian analysis, relative to the frequentist approach. It can be seen
as an element implied from exchangeability by de Finetti’s representation theorem.
It is determined in a subjective way, although it is not forbidden to use past experi-
mental data to set it. The only requirement is that this distribution should represent
the knowledge about & before observing the results of the new experiment. In this
chapter, alternative forms of assessing the prior distribution will be discussed. In-..
Section 3.1 entirely subjective methods for direct assessment of the prior will be
presented. An indirect approach, via functional forms, is discussed in Section 3.2.
The parameters of those functional forms, known as hyperparameters, must be
specified in correspo'ndgnce with the subjective information available. The conju-
gate distribution will be introduced in Section 3.3 and the most common families
will be presented in Section 3.4, The concept of reference prior and different forms
of building up non-informative priors will be presented in Section 3.3, Finally,
hierarchical prior specification will be discussed in Section 3.6.

3.1 Entirely subjective specification

Let 8 be an unknown quantity and consider its possible values. If it is discrete, a
prior probability for each possible value of & can be evaluated directly. Also one
may use some auxiliary tools, like lotteries or roulettes, as described in Chapter 1.
De Finetti (1974} characterizes subjective probability through the consideration of
betting and scoring rules.

The continvious case is slightly more complicated. Some suggestions are;

1. The histogram approach: first, the range of values of # is divided into inter-
vals, and prior probabilities for & belonging to each interval are specified,
as in the discrete case. Hence, a histogram for € is built up and a smooth
curve can be fitted to obtain the prior density of 8. Note that the number of
intervals involved is arbitrarily chosen. Although the probability in the tails
of the prior distribution are often very small, they can influence the subse-
quent inference. This is a relevant aspect in prior elicitation that deserves
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Fig. 3.1 Histogram representing (subjective) probabilities of the intervals Iy, I,
Iy, Iy, Is and Ig with a firted density.

some caution. Figore 3.1 shows one such elicitation exercise for a positive
quantity 6. .

2. The distribution function approach: First, let us define percentiles. z, is the
100w % percentile (o quantile) of X if P(X < zp) =, @ € {0, 1].

The median of X, denoted by m, is the 50% percentile, that is P(X <
m) = 0.5.

The collection of all percentiles of X describes the distribution function
of X. In this approach, some percentiles are subjectively assessed, as in the
discrete case and later a smooth curve is fitted to the distribution function
of 4 as in Figure 3.2, This approach is less used since it is easier to identify
a distribution through its density than through its distribution function.

3. Relative likelihood approach: The procedure is similar to the histogram
approach but, instead of intervals, it evaluates the relative chances of isolated
points. Even though Pr(8 = 6p).= 0, ¥8; ¢ ©, this can be done because

p(6o)
p(6p) + p(61)

where p(8) is the prior density of 8. Then a set of values proportional to
the prior density of & can be evaluated. For example, if § = 2 is three times
more probable than & = 1 and & = 3 is twice more likely than 8 = 1,
then we have p(2) = 3p(1) = L.5p(3). Again a smooth curve can be
fitted to these points. One problem still outstanding is the evaluation of the

Prid =6l =608 =8))=
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Fig. 3.2 Distribution function fitted to the quartiles zq s, zo.5 and Z0.75.

normalization constant. Note that every density must integrate to 1 and, by
construction, this curve does not necessarily satisfy this requirement.

These concepts are well decribed in the book by Bergef (1985).

3.2 Specification through functional forms

The prior knowledge about & can be used to specify a prior density with a pasticular
functional form. A parametric family of densities can, for instance, be defined.
Although very often this family can make the analysis easier, one must be careful
and make sure that the chosen density reaily represents the available information.
For example, we could make the following assumptions about 4:

e ¢ is symmetrically distributed with respect to the mode;
e its density decays fast (say, exponentially) when far away from the mode;
e intervals far from the mode have irrelevant probabilities.

These considerations can characterize, at least approximately, a normal distri-
bution with parameters, generically called hyperparameters, determined in cor-
respondence with the information expressed in H. These ideas may be putin a
more general framework and have led to a systematic approach of determination
of prior distributions. The most relevant case corresponds to a conjugate family
of distributions.
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We have seen in Theorem 2.1 that if the observational distribution is (X | 8) ~
N(#,a?) and the prior is § ~ N(u, 1%), then the posterior distribution is also
normal, with mean g and variance rlz. So, if we start with a normal prior we end
up with a normal posterior. The main advantage of this approach is the ease of the
resulting analysis. Among other things, this allows for the possibility of exploring
the sequential aspect of the Bayesian paradigm. Every new normal observation
that is obtained only leads to changes in the parameters of the (new) posterior
distribution. No new analytic calculations are required.

Definition. Let 7 = {p(x]9),0 € @} be a family of a sampling or observational
distributions. A class P of distributions is said to be a conjugate family with
respect to F if forall p € F and p(8) € P then p(9 | x) € P,

Thus, we can say that the class of normal distributions is a conjugate family with
respect to the class of normal (sampling) distributions. Some caution is necessary
when using the notion of conjugacy:

» The ¢lass P can be very broad .

For example, take P = { all distributions } and  to be any family of
sampling distributions. It is easy to see that P s conjugate with respect to
F since any posterior will be 2 member of P. In this context, the definition
of conjugacy does not have any practical appeal and is useless.

» The class P could be very narrow .

Suppose, for example, that

P=1{p: p@="0)=16 <A

for some non-null set A. This means that 7 consists only of distributions
concentrated on 4 single point. Whatever the information provided by the
sample the posterior distribution would be the same as the prior because
if we know, a priori, that 8 = 8y with certainty, nothing will remove this
certainty. That is

HA) x 1, ifgd =6

p@lx) x 1(8) p(d) = {1(9) x 0, iff #8,.

Then it follows that

Ex 1), if8 =g

pw"")“{o, if 6 £ 6.

As [ p(0 | x)d8 = 1, we must have that p{@ | x) = 1if and only if (iff, in
short) 8 == gy. Hence, P is conjugate for any distribution family and again
the definitions are not helpful.

The last consideration illustrates, in an extreme situation, another very important
aspect of prior specification. When a null probability is given to a particular subset
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of the possible values of 8, no observed information will change this specification,
even if it is proved to be obviously inadequate. In order to avoid this tncoherent
staternent, it is strongly recommended that the statistician always associates a non-
aull prior probability to every possible value of §, even if some of them are judged
very unlikely. Dennis Lindley refers to this recommendation as Cromwell’s rule.

Therefore the class P must be broad enough to ensure elicitation of the conve-
njent prior and, at the same time, restricted enough in order that the definition be
useful. A general procedure for obtaining conjugate prior families is illustrated in
the following example. :

Example (Bernoulli trials). Let (X;10) ~ Ber(@), i = 1,...,n. The joint
sampling density is

p(x18)=67(1-6)"" wherer="Y 1%, x=01,i=1...,n

i=1 :

. deﬁning a class of distribution parameterized by 6 € (0, 1}. From Bayes’ theorem,

we know that the posterior density of & given x is given by

p(ix) o px|6)p(d)
x 6'(1—8)""" p(o).

© Itis worth pointing out that p(f) and p(@ | x} are related through the likelihcod
function. The conjugate prior can then be obtained by mimicking the kernel of the
likelihood function. In this example the likelihood kernel is of the form 84{1 — 6)0.
This is also the kemnel of the beta family of distributions, introduced in Chapter 1.
Taking the prior distribution as a beta(w, g) and combining with the likelihood,
the posterior distribution is

p@ Xy x 6°(1 — )7 0% (1 — 9P
o 9u+t—l(1 - 9),3—}'”#1‘*]‘

Therefore (8 | X} ~ beta{a + £, B + n — ) which belongs to the same family
of distributions used for the prior. So, the beta family is conjugate with respect
to the Bernoulli sampling model. It is not difficult to show that the same is
true for binomial, geometric and negative binomial sampling distributions. The
proportionality constant for the posterior density is givenby 1/B(a+¢, +n—1).

We can now discuss the setting of the conjugate prior family from a practical point
of view for the general case of any given random sample. Let X = (X1, ..., Xz)
be a sample from p(x | 0), § & ©, and consider the density function c‘>f X,
p(x | 8). The family P is said to be closed under multiplication or sampling if for
all py, pr € P, thereis a k such thatkp p2 € P.
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Example. Let P be the class of gamma distributions. If p;, i = 1, 2, denote the
gamma densities with parameters (a;, b;),f = 1, 2, then

F(al)xm—le—b;x r(aZ) ay—1,—bx
b7 2

i 2

ar+az—1 e—(f}]-f-bg).r

PLXpr=
XX

whichis proportional to another gamma density with parametersa; a3 and b +bs.
It can be shown that the same result is true for the class of beta distributions.

Closure under multiplication is very important in the search for conjugate fami-
lies. If the kernel of the likelihood can be identified with the kernel (of a member)
of a given family of distributions and this family is closed under multiplication
then prior and posterior will necessarily belong to the same family and conjugacy
is obtained. The concept of conjugacy was formalized by Raiffa and Schlaifer
(1961). They also studied many of the families that are presented in the next
section.

With the definition of closure under sampling in hand it becomes easy to specify
a procedure to determine the conjugate class, It consists of

1. identifying the class P of distribution for & whose members are proportional
to i{8; x);
2. verifying if P is closed under sampling.

If, in addition, for any given likelihood /{(#; X) obtained from a family F, there

..eXists a constant k defining a density p as p(8) = k 1{6; x), then the family P
of all such densities p is said to be a natural conjugate family with respect to the
sampling model with Tikelihood function /.

Example (continued). Setting k=! = B(t +1,n — ¢ + 1) implies that

- _— ] 1 n—

MO = g i 9 |
which has the form of a beta(r + 1, » — ¢ + 1) density. Therefore, the class of beta
distributions with integer parameters is a natural conjugate family to the Bernoulli
sampling model. Nothing substantial is lost however if this class is enlarged to the
class of all beta distributions, including all positive values for the parameters. This
new class, strictly speaking, is no longer a natural conjugate family. Nevertheless
it keeps the essence of the definition and is used in practice.

Natural conjugate families are especially useful because an objective meaning
can be attributed to the hyperparameters involved. Revisiting the above example,
suppose thatng hypothetical (or not) trials were previously made, with #p successes.
Then, the likelihood {* of this hypothetical experiment would be I*(8) o 8% (1 —
gy, If our (subjective) prior information is equivalent to that provided by the
experiment described above, the prior for & will be a beta with hyperparameters
to+land ng — g+ 1.
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3.3 Conjugacy with the exponential family

The one-parameter exponential family includes many of the most common prob-
ability distributions. An essential characteristic of this family is that there exists
a sufficient statistic with fixed dimension. The conjugate class P to the one-
parameter exponential family is easy to characterize. Following the reasoning
behind natural conjugacy, it is not difficult to see that members of this class have

density _
p(6) x explad () + pb(0))

and so
p(0 1 x) ccexplle + ulx)]g(@) + [8 + l]b(Q)} .

Denoting the constant involved in the definition of p(6) by k(a, $), the constant
associated to p(f | x) will be k(o + u(x), 8 + 1). Using k as defined above it *
is easy to obtain p(x} without explicitly calculating f pix 7| 2y p(0)de. From the
equation p(x) p{@ | x) = p(x | ) p(8), it follows that

() = plx 1 8)p(9)
PR= Tl o

Substituting the densities previously obtained we get

_a(x) explu(x)p(0) + b@)}k(et, B) explad () -+ Bb(6))
= ko + w0, B+ Dexplla + a()1pO) + (6 + 16O))

p(x)

and after some simplification we arrive at

) = a(x)kl(a, 8)
P @ rut pr

A straightforward extension of the Bernoulli example is the binomial model. In
that case, it follows that

(2)6* (1 = 8"~ B~ (w, B8~ (1 — )"
B‘l(a + x, ﬁ +n _x)gar+x-—1(1 _9),8+n—x—l

_ (n)B(a +x,B+n—x)
- X B(Cf,ﬁ)

plx) =

,forx=0,1,....,n,0>1.

This is the beta—binomial distribution.
In general, from a sample of size # of the exponential family we obtain the joint
density

px|8) = [Ha(x;)] exp I [Z u(x.-)] $@) + nb(9)] .

Fe=1 i=l1
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The use of a conjugate prior p(9) = k(a, B)expleg (@) + Bb()} leads to the
posterior density

PO 1% =k (a +Eu(xf),ﬁ+n)
i=]

{af + Zu(x,-)] ¢@) +18+ n}b(@)}

i=1

X exp

and the marginal or predictive distribution ts

[TTaG] k(o B
o+ 3 u(x), B+n)

p(X)=k(

3.4 The main conjugate families

The main members of the exponential family will be presented in this section.
The resulis obtatned previcusly will be applied to these particular cases and the
. resulting conjugate families obtained. Some of these families were presented
before.

3.4.1. Binomial distribution

The fafﬁily of beta distributions is conjugate to the binomial {or Bernoulli) model
as we have shown above.

3.4;2 Normal distribution with known variance

Theorem 2.1 stated that the normal distribution family is conjugate to the normal
model, based on a single observation. For the case of a sample of size n, we have
seen in Section 2.6 that

(@ x) o exp [~_2.C%(f_ 9)2] .....

where the terms involving o2 were incorporated into the proportionality constant.
So, the likelihood has the same form as that based on a single observation x,
substituting x by X and o? by 0%/n. Another way to say this is to note that X is
a sufficient statistic for & and so the likelihood based on the observed value of X,
which is distributed as N (¢, o2/n), is proportional to the likelihood obtained with
the individual observations X. Therefore, the result presented in Theorem 2.1 is
stil true, with the substitutions mentioned above, i.e., the posterior distribution of

g given x is N{uq, tlz), with o
—2= -2
noe ‘x4t L -2 -2 -2
= — and T, “=no C4+T ",
H no—2 412 !
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3.4.3 Poisson distribution

Suppose that X = (X3, ..., X,;) is arandom sample from the Poisson distribution
with parameter 8, denoted Pois(8). Its joint probability function is

n na—Bpi

px10) =[] p0i19) =[] =

i=} i=1 £

and the likelihood function assumes the form

19| x) oce ™gEx

Its kernel has the form 8%e ™% characterizing a gamma family of distributions. We

have already seen in the previous section that the gamma family is closed vnder
sampling, Then the conjugate prior distribution of 6 will be 8 ~ G(w, 8). The
posterior density will be

p(0 ] x) o petExn—l exp{—{(B8 + n)6}

corresponding to the G (x + Xx;, B +n) density. The calculation of the predictive
distribution, using the method described before, is left as an exercise.

3.4.4 Exponential distribution

Suppose that X = (X1, ..., X,} is a random sample from the exponential distri-
bution with parameter &, denoted by Exp(#). Its joint density function is

p(x|6) = 6" exp {~9 in} )
i=l]

The form of the likelibood allows recognition of the kernel of the gamma family as
a conjugate distribution for 6. Assuming a G(w, 8) prior, the posterior will have
the form

h
p(@ | x) 8% exp l—@ Zx,- ] g*~! exp{—po)
' i=1
x 627" Lexp [—(,8 + Zx,—)&]
which is the density of 2 G(a +n, 8+ Y x;) distribution.

3.4.5 Multinomial distribution

Denote by X = (X),....Xp) and 8 == (By,...,08,), respectively, the number
of observed cases and the probabilities associated with each of p categories in a
sample of size n. Assume that the following constraints are true: Z:P:] Xi=n
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and ZLI d; = 1. X is said to have a multinomial distribution with parameters n
and (6. ...,8,). The joint probability function of the p counts X is

pix|8) = HM

z—l‘:]

It is not difficult to show that this distribution also belongs to the exponential
family. The likelihood function for 8 is I(8) o []6;". lis kernel is the same as
the kernel of the density of a Dirichlet distribution. The Dirichlet family with
integer parameters ay, . . ., dp i$ natural conjugate with respect to the multinomial
sampling distribution. Again, little is lost by extending natura} conjugacy over all
Dirichlet distributions.

The posterior distribution will then be

P x) x {:ng,:l {Hea,—l] - ﬁeix,-+a,~-1.
i=1 A

i=1

and, as anticipated, this posterior is also a Dirichlet distribution with parameters
ay+x1,...,ap+xp whichisdenotedby (8 | x) ~ D{a;+xy, .. > dp+xp). From
the above results about the Dirichlet, it is not difficult to obtain the proport:onahty

constant as
) f‘(a +n)

. [, Tlai +x) A
This conjugate analysis generalizes the analysis for binomial ‘samples with beta
priors.

3.4.6 Normal distribution with known mean and
unknown variance

LetX = (X}, ..., X,) be a random sample of size n from the N (6, 0%), 8 known,
and ¢ = o -2 In thls case the joint density function will be:

g:x)=p(x|0,¢) x qb"/zexp [—gnsg} where sg = %Z{x,- — )2

The conjugate prior may have the kernel of /(¢; x), which is in the gamma distri-
bution form. As the gamma family is closed under sampling, we can consider a
G(no/2, nooy /2) prior distribution or, equivalently, that nocrggb hasa )(2 distribu-
tion with ny degrees of freedom. The posterior distribution of ¢ is obtained using
Bayes’ theorem,

P %) x l{g; x)p()

o /2 exp{-ns§¢/2}¢(’“’/ -t expl—nocrgcj) /2}
= plino+tn)/2-1 exp{—(nood + nsHe/2).
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The above expression corresponds to the kemel of the gamma distribution as
expected. Therefore:

2 2
ny+n nooy + nsy
~ G ,
$ix ( ; 5

or equivalently R
(HOUU + HSD)d) l X~ Xno+n'

Then it follows that the gamma or the x 2 family of distributions is conjugate with
respect to the normal sampling model with 6 known and o2 unknown.

3.4.7 Normal distribution with unknown mean and variance

The conjugate prior distribution for (8, ¢) will be presented in two stages. First,
the following conditional distribution of # given ¢ will be considered:

(M@NMM#WWI

and the marginal prior for ¢ is as stated before, that is,

2
5 3 np nooy
noog ¢ ~ Yo OF p~G (

27 2

where (ng, 002) and (jig, cp) are obtained from the initial information /. This
distribution is usually called normal-gamma or normal-x 2 with parameters (p19, €9,
ng, of) and joint density given by:

p(0,¢) = plOld) p(d)

l0'd 95”2 exp {_E(;f?.(g - #0)2] ¢m]/‘2-l exp ( ’TOZMI’)

= glrotD2-l exp [—% [ﬂodo2 + co0 — uo)z]} :
The marginal prior distribution of & can be obtained by integration, using the

following result; ( )
I'a
a—1 —b¢ d
[Tometeap=T2
Application of the result gives

® )21 ¢ 2 2
@) ‘xfo ¢ eXp1 T3 [ﬂodo +co(6 — po) ] dep
- Tl(no + 1)/2]
{[n002 + col® — )21/ 2}me+D/2
o [rgog + colB — pg)} o2
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since the I'(-) term does not depend on 8. Rearranging terms gives

(6 _ },(,0)2 jl—(na-i-]/Z)

no(od/co)

p9) [1 +

whichis the kernel of the Student ¢ distribution with ng degrees of freedom, location
parameter 4o and scale parameter ¢ /co, denoted by tn, (119, 02 /co)-

The conditional distribution of ¢ | # can be obtained from the joint distribution
of (f, ¢)andisa G{(np+1)/2, [nocroz+ (0 — po)2]/2}, or equivalently, [noag +
col@ — po)?1p 16 ~ X3, 11y-

The joint distribution of a random sample X = (X, ..., X} is

)

pix16,¢)=]]¢"exp [—%(x,- ~ 9)2|
i=1

o cﬁ”/zexp{—% [n32 +n(x — 8)2”

where ,
2 =2
54 = - Z(x,- —X)
as we have seen in Section 2.4. The above expression has the same kernel as the
normal-gamma density for (6, ¢). Next, it is necessary to check i the normal-

gamma family is closed under sampling. It is not difficult to verify that it is. The
posterior distribution will then be

P, ¢ | x)x p(x|8,¢0)p@,¢)
0(¢[(ﬂ+n0+1}/2]*1

P
X exp —E[ﬂoﬁoz +ns? 4 co(® — po)® +n(@ — 9)2]] :
It is not difficult 1o show that

008 — o) + (8 — B2 = (co+ m® — p1)? + —
4]

(1o — %)*
n

where p; = {cgit + nx}/(co + n). Thus it follows that the posterior density for
{8, @) is proportional to

¢ [{n+ng+1)/2]-1
ol

X EXp I—g{ngaoz +ns*t + cc+n
0

(g — )% + (co + n)(B — m)zi} .

Therefore, the joint posterior for (6, ¢ | %) is normal-gamma with parameters
(1, c1,ny, o) given by

_ Copg +nX
co+n
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cy=cptn
ny=np-+n
con _
nlolz = noaoz +ns® + (Lo — x)z_
cg+n

Prior and posterior distributions are members of the same family. So, the normal-
gamma family is conjugate with respect to the normal sampling mode! when @
and 2 are both unknown. Table 3.1 summarizes the distributions involved in the
Bayesian analysis of the normal models with unknown mean and variance.

Table 3.1 Summary of the distributions

Prior Posterior
o1 Ny, (co$) ™) N{ur, @)™
¢ ngogqb ~ Xr%o HLU{7'¢’ ~ XS.
0 tng (305 02/ €0) tn, (1, 07 fe1)
$16 | Ineo? + col® — u)Dlp~x2 1 Imiof + i@ — ne~x2 4

3.5 Non-informative priors

Many statisticians show concern about the nature of the prior distribution. This
is mainly due to an influence from the frequentist point of view. They typicatly
maintain that the prior distribution is arbitrary and alters the conclusions about
the statistical problem at hand. Therefore, they argue that prior information is
not acceptable for use in a scientific context. In this section, the concept of non-
informative or reference prior will be presented in an effort to reconcile these
arguments with the Bayesian point of view. The idea behind these. priors comes
from the desire to make statistical inference based on a minimum of subjective
prior information. This minimum is clearly a relative concept and should take into
consideration, for example, the sample information content.

Another context where the concept of a reference prior may be useful was
outlined in the example of the two physicists in Chapter 2. Let us suppose that two
scientists have strong and divergent prior opinions about an unknown quantity and
that is not possible to reconcile these initial opinions. This is a situation where
it is necessary to produce a ‘neutral’ analysis, introducing a referential. Another
plausible justification to support a reference analysis is the usual expectation that
the evidence from the experiment is stronger than the prior.

Initially, uniform priors were proposed to represent situations where little or no
initial information is available or, even, if it is available and we do not wish to use
it. So, p(0) o k for @ varying in a given subset of the real line means that none
of the particular values of € is preferred (Bayes, 1763). This choice brings some
difficutties with it. The first one is that p(8) is not a proper distribution if the range
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of values of 8 is unbounded. This means that { p(9) d9 — co which goes against
the basic rules of probability. Alse, if ¢ = ¢(#) is a one-to-one transformation of
¢ and if 8 is unifermly distributed, then by the theorem of variable transformation,
the density of ¢ is

dé de
ap| * |ag
which is only constant if ¢ is defined by a linear transformation. However, the
same assurnptions leading to the specification of p(#) o k should also lead to
p(®) oc k, which contradicts the above deduction. Ideally, we would like to state
an invariant rule that would not violate results about variable transformation,

In practice, we are concerned with the posterior distribution, which is often
proper, even when the prior distribution is not. In this case, one doesn’t need to
give much relevance to the impropriety of the prior distribution. Careful exami-
nation must be carried out to make sure the posterior is actuall ¥ proper to proceed
confidently with the analysis. e

The class of non-informative prior proposed by Jeffreys (1961)is invariant but in
many cases leads to improper distributions. This class of priors is extensively used
by Box ‘and Tiao (1992). Intuitively, it tries to provide as little prior information

p(d) = p(0(#))

" as possible, relative to the sample information. It is not surprising therefore that it

should depend on Fisher information measures,

Definition. Consider an observation X with probability {density) function p(x |
0). The Jeffreys non-informative prior has density given by

p@® x [IENY2, s eco.
In the multivariate case, the density is given by
p(8) o« [1(6)]'/*.

Lemma. The Jeffreys prior p(8) o [1(8))'/? is invariant under one-to-one trans-
formations, that is, if ¢ = ¢(8) is a one-to-one transformation of 8, then the
Jeffreys prior for ¢ is p(¢) o [ (¢)]V2.

Proof. Let ¢ = ¢(6) be a one-to-one transformation of 6. Taking the derivative
of log p(X | ¢) with respect to ¢, it follows that

dlogp(X | ¢)  dlogp(X | $(6)) 36
ag - 20 g

whered = 8(¢) is the inverse transformation of ¢. To obtain the Fisherinformation
of a parameter, the log likelihood of this parameter needs to be differentiated twice.

- This gives .

Flogp(X |¢) _ dlog p(X | $(0)) %0 N 3%1og p(X | p(8)) [ 30 \>
a2 - 39 Bep? 30? (@) )
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Multiplying both sides by (—1) and calculating the expected value with respect to
p(x | 9)7 gives

2 2
alogp(XIB):IB_GH +[(9)(36)

Hg) =Ex19[ o %

36\>
=10(35)

since Exp[d log p(X | 8)/28] = O, as seen in Chapter 2. Therefore, 1'/2(¢) =
1'72(8)136/3¢|. By the rules of probability, if @ has density proportional to 71/2 ()
then ¢ has density

p(d) o I'2(B(e))186 /9] = 1'V2(g)

and the specification is invariant to one-to-one transformation.
3

Corollary. The same result is true for the multiparameter case, that is, the Jeffreys
prior is invariant under one-to-cne transformations.

There is only one transformation ¥ of 4 which satisfies the invariance rule and
has constant density. This transformation is easily obtained by making

POy o IV2(8)1060 /8| o k
or
a
180781 | o« I7V2(@) == 18y /08]  1Y/2(8) = ¢ ocf 12 () du.,

Example. Let X = (X1, ..., X,) be a sample of Pois(d) variables. The Jjoint
density of the observations is

e—n&gz‘x;
)= ——,
px|6) !

Taking logarithm, it fellows that

. n
log p(x | 8) = —nb -+ in logé — lognxgi.

7
i=1 i=}

The first and second order derivatives of the log likelihood are

L Xi 82 8 i
dlogpx10) _ LiciXi g Ologp(x|6) _ _E; _
39 ] 362 ]
Then, the Fisher information will be:
ZX,' _ 1 N né _n
1(9)=Ext9[ - _EZE(X,)_Q—Z_.B
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and the non-informative prior is p(8) o« 87172, So the posterior density will be

p(@ | %) & p(x | 6)p(6) x e MIgTiig=1/2
— e—n@e'ﬂjx,'—]/Z,

that is, 6 | x ~ G(Eix; + 1/2,n), or alternatively, 2n8 | x ~ x2p .. The
iransformation leading to the uniform prior is

]
P o j w2 du = 2u1/2|g x 872,
0

The non-informative prior is frequently obtained from the conjugate prior by let-
ting the scale parameters go to zero and keeping the other ones constant. In the
above example, it can be noted that the reference prior is the limit of the gamma dis-
tribution (the natural conjugate prior for the Poisson model) with ¢ ~ G(1 /2, €),
e — 0.

The Jeffreys prior specification was alternatively obtained in the univariate case
by Rernardo (1979). He called them reference priors and they are defined as
the distributions that maximize the amount of unknown information about 8 in
an infinite number of replications of the experiment. The amount of unknown
information about € in # replications of the experiment is defined as

o 1X)
I(Xn, 9) = E(Xnvg) [log W]

p(@ |Xn)“
=F E lopg — 2
X’*[ "‘X"[Og P&

where X, = (X1,....X,}. The amount of unknown information about 6 in an
infinite number of replications of the experiment is obtained as the limit of the
information based on n replications when n — co.

In the multivariate case, Bernardo proposed a modification to Jeffreys rule.
He suggested a two-stage procedure. The parametric vector is divided into two
components: # denoting the parameters of interest and ¢, the nuisance parameters.
First, a (conditional) reference prior distribution p(¢ | §) is obtained. This prior
is used to eliminate the parameters ¢ from the likelihood and gives a2 marginal
likelihood p(x | #) as we have seen in Section 2.4. Then, this likelihood is used to
obtain the (marginal) reference prior p(#). Finally, the complete reference prior
is obtained by the multiplication rule p(¢,0) = p(¢ | 8) p(#). This procedure
seems to provide better results than that proposed by Jeffreys, although it depends
on an arbitrary partition of the parametric vector. Therefore, reference priors are
not invariant to the choice of the parameter partition. Another similar procedure,
based on information maximization, was proposed by Zellner {(1971).

There are other difficulties associated with the reference prior distribution be-
sides its specification not being unique and often leading to an improper density.
1t can lead to incoherent inferences in the sense that if analysis conditional on the
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sample is replaced by analysis conditional on a sufficient statistic, which shoold
not affect inferences, it could lead to different posterior distributions for some pa-
rameter transformations. This is obviously an unpleasant situation that fortunately
does not occur very often. .

Another drawback of Jeffreys priors is that they do not satisfy the likelihood prin-
ciple. Since it is based on the experiment, 2 Jeffreys prior produces different results
for equal likelihoods. A famous example illustrating that the non-informative prior
depends on the sample models is provided by Bernoulli trials with success proba-
bility €. If the sample design is such that n fixed Bernoulli trials are made and the
number of success observed, then X ~ bin{n, &) and '

px 1) = (")9*(1 — gy
- X
which implies that
log plx | 6) = log (n) +xlogh + (n — x)log{l — 9}.‘
. . X

Therefore, the. first and second derivatives of the log likelihood are

dlogpx|9) x n-—x an leogp(xlé?)___x__ n—x
40 e 1-6 992 T (-
“Then the expected infol_"mation MEASUre is
EX|8) En—-Xi® n
I = =
5(6) 62 (1—8)2 g(1 — 8)

and the non-informative prior is pa () oc 87 %(1 — 8y~ 172, Note that this prior
is a beta(1/2,1/2) distribution and it is not improper.

Now, suppose that the sample scheme consists in observing the number of
replications until s successes are obtained. The observation now is ¥ with negative
binomial distribntion denoted by ¥ ~ N B(s, 0) and

n—1
P10 = ( Jora—er=
s-—1
which implies that the first and second derivatives with respect to ¢ are

dlogp(y|8) s y-—s Flogp(y|8) s y-—s

@ 9 1-8 207 82 (-0
The expected information is
s E(Y —s|8) o
I8 (0) = 53+ =2

> since E(Y | 8) = >
= -——, since ==
6(1—0) 6
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and the non-informative prior is pay (8) o 67! (1 —8)~!/2. This prior is the limit
of a beta (e, 1/2) when € — O and then it is an improper distribution.

Suppose now that in 10 experiments, three successes were observed. Therefore,
10 x =3) x 6°(1 — 6)7 and 1(9; y = 10) o 6*(1 — 8). The sample informa-
tion, namely the likelihood, about @ is the same for both models. Although the
information is the same, the prior and consequently the posterior distributions are
different, with

PO x =3 %01 -0)°% and p@E|y=10) x 0621 -5’

showing, then, that the non-informative prior violates the likelihood principle.
These criticisms only reinforce the point that non-informative priors must be
used with extreme care. Nevertheless, if proper care is taken, they provide a useful
benchmark in a number of problems and may be a useful input to the analysis.
Applications of non-informative priors in a few frequently used models described
in Chapter 2 are presented below, starting with the location model.
. If X has the location model, then '

dlogp(x |6) _3dlogflx—6)  f'x—-6)
a6 - a0 -9
Then by the last lemma,

_ _Lx -0y
’“”‘E"‘e[( f(er))]'

Making the transformation I/ = X — 8, then
£') )2

F)
which does not depend on 8. So, () = k and then p(#) o k. It is easy to see
that this result is also true for a parameter vector 8.

One way to justify this prior is through model invariance directly. Working with
an observation vector X and Jocation parameter 4 is equivalent to working with
observation vector Y = X + ¢ and location parameter = & + c for any given
constant ¢. We can then insist on the same non-informative prior specification
for # as for . It is not difficult to show that the only distribution satisfying this
requirement has density p(@) « k.

If X has the scale model, then

9log p(x | @) _ 3 loglo = f(x /o))
do do
= % [—logcr +logf (g)]
i) e

o

af
39’

where ' =

I(Q):EU(
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Therefore the information measure about ¢ will be

1 .X ! 2
(o) = 'O_.EEXW !:(] + —M) |G’]

o f(X]o)
1 POy
= e (1)

after the transformation I/ = X /¢, Since the distribution of U does not depend on
o then I (0) =k x 0% and p(o) & ¢~ is the non-informative prior distribution.

Once again, model invariance can be invoked directly by assuming equivalence
between a model with observation X and scale parameter ¢ and a model with
observation ¥ = c¢X and scale parameter n = co. Insisting on the same non-
informative prior for ¢ and # leads to p{o) « g1

if X has a location-scale model, a reference prior (4, o) can be obtained fol-
lowing the procedure proposed by Bernardo with ¢ being the parameter of interest
and o the nuisance parameter. This partition corresponds to the majority of cases
of interest. Now, if & is supposed known, we are restricted to a scale model and
its prior is p{o | #) o« o1, The distribution of X | @ is now obtained as

p(x16) = fp(x | 0,0)p(o | 8)do

where we can observe that the dependence on X and 6 will continue to be of the
form f(x — #). Therefore, in a location-scale model, the reference prior is

1
p6:0) = p@)plo | 6) o —.

This prior is also recommended by Jeffreys (1961) although is not the one implied
by direct application of his mle,

3.6 Hierarchical priors

A good strategy to specify the prior distribution or for a better description of an
experimental situation, is often to divide it into stages or into a hierarchy. The idea
of using a hierarchical structure with multistage was formalized by Liadley and
Smith (1972). This way, the prior specification is made in two phases:

1. structural, for the division into stages;
2. subjective, for quantitative specification at each stage.

Example. Supposethat ¥y, ..., Y, are such that ¥; ~ N(8;, 62), with o2 known.
Among many possibilities depending on the situation under study, many choices
are avaitable for specification of the prior for # = (0y,...,0,). The following
options can be used:
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o 0;’s are independent, that is, p(8) = I1; p(6;}.

e O;’s are a sample from a population with p{@ | A) where A contains the
parameters describing the population.

So, for the last option,

JIARSES BYICIRS

i=1

This specification corresponds to the first stage. To complete the prior setting, it is
necessary to specify the second stage: the distribution of X, p(X). Note that p(L}
corresponds to the second stage and does not depend on the first stage.

One can then obtain the marginal prior distribution of ¢ by

p0) = [ po.00 = [ s 10000~ [T] o0 1 0p0a.
9 i=1 )

Note that the 6;’s are supposed exchangeable as their subscripts are irrelevant in
terms of this prior. Since the distribution of A is independent of the first stage, it
can be stated as: .

. 1. Concentrated: p(A =Xo)=1. .

2. Discrete: p(k = A;) = p;, J =1,....k, with Lipj = 1. In this case
the distribution of 8 will be a finite mixture of the densities p(# | &;) with
weights pj, j = 1,..., k. n

3. Continuous: as before, the distribution of § will be a continuous mixture of
p(8 | &) with weights given by p(d).

If the first stage prior assumes that 6; ~ N{(u,72),i = 1,...,n, then A =
(, T2). Assuming that p(r? = 73) = 1 and u is normally distributed then 6 has a
multivariate normal distribution. On the other hand, assuming that p(u = ug) = 1
and 772 has a gamma prior distribution implies that @ has a multivariate Student
¢ distribution.

This subdivision into stages is a probabilistic strategy that atlows easy identi-
fication and specification of coherent priors. Nothing prevents these ideas from
going further into the hierarchy. For example, the distribution of A can depend on
¢. In this case,

p(®) = L fA @ 1 1)p(h | $)p($) dh dp.

The parameters A and ¢ are called hyperparameters and are introduced to ease the
prior specification. Theoretically one can state as many states as one thinks are
necessary to improve prior specification. In practice, it is very hard to interpret
the parameters of third or higher stages, so it is common practice to use a non-
informative prior for these levels.
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The concept of hierarchical modelling will be returned to in Chapter 8, at least
for the normal case. That chapter provides an introduction to more claborate
models where the full strength of prior specification will be better appreciated.

Exercises

§3.1 ‘
1. Let @ represent the maximum temperature at your house door in September.

(a) Determine, subjectively, the 0.25 and 0.5 quantiles of your prior dis-
tribution for 6.

(b) Obtain the normal density that best fits these quantiles.

(c) Find subjectively (without using the normal density obtained in (b))
the 0.1 quantile of your prior distribution for 6. Is it consistent with
the normal obtained in (b)? What can you conclude from this fact?

2. Let # be the probability that a footbal] team from Rio de Janeiro will be the
winner of the next Brazilian championship. Supposing that & does not vary
in time, build a prior distribution for @ based on past information.

§3.2

1. Show that the classes of beta and normal-gamma distributions are closed

under sampling.
§§3.3/34

4. Show that the beta family is conjugate with respect to the binomial, geometric
and negative binomial sampling distributions.

5. For four pairs of a rare specimen of bird that nested last season, the number of
eggs per nest n and the number of eggs hatched ¥ were observed, providing
the datan = 2, 3,3 and 4 and y = 1, 2, 3 and 3. For a fifth pair nesting this
season in similar conditions, ns = 3 eggs were observed and are about to
hatch. Let & be the probability that an egg is hatched.

(&) Obtain the likelihood function for 8, based on the observations y =
(1 - - -5 Ya)-

(b) Assess a conjugate prior that in your opinion is adequate and calculate
the posteriorof 8 | y..

(¢) State a probabilistic model for s, the number of eggs hatched in the
fifth nest and obtain its predictive distribution.

6. Suppose that a random sample X = (X},..., Xy) from the N{@, 0'2) is
observed with & known and that a x? prior for o2 is used. If the prior
coefficient of variation {CV) of o7 2is equal 1o 0.5, what must the value of
n be to ensure that the posterior CV reduces to 0.1?

Note: The coefficient of variation of X (CV) is defined by /||, where
(= E(X)and o = var(X) represent the mean and the standard deviation
of X, respectively.
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7. Let X1, ..., X, be a random sample of the N (8, ¢ 1) distribution and con-
sider the conjugate prior distribution for & and ¢.

(a) Determine the parameters (g, co, np, og) of the prior distribution,
knowing that £(8) = 0, Pr(|fl < 1412) = 0.5, E(¢) = 2 and
E(¢?) = 5.

(b} In a sample of size n = 10, X = 1 and 37_ (X; — X)? = 8 were
observed. Determine the posterior distribution of @ and sketch a graph
of the prior, posterior and likelihood functions with ¢ fixed.

{c) Obtain Pr(|Y} > I |x), where ¥ is a new observation taken from the
same population.

8. A random sample Xy, ..., X, is gelected from the N(6, %) distribution,
with o2 known. The prior distribution for 8 is a N (ug, 05). What must the
sample size be to reduce the variance

{a) of the posterior distribution of 8 to 002 Tk (k> 1)?
(b) of the predictive distribution of ¥, a future observation drawn from the
same population to crg/k (k> 1?7

9. Consider the sampling model X ~ N (8, crzlp), where the p-dimensional
mean vector # and the scalar o2 are known. Show that the distribution
family given by 8 | o ~ N (g, 62Cq) and nood/o? ~ 2, is conjugate to
the model presented above, generalizing the results obtained in Section 3.3
for univariate normal distributions.

10. Lgt X1...., X be a random sample from the Pois(#) distribution.

(a) Determine the conjugate prior parameters for 8 assuming that E(8) =
4 and CV (9) = 0.5 and determine r such that V(& | x) < 0.01.
{b) Show that the posterior mean is of the form

YnXn + {1 — vuduro,

where pg = E(#) and that y, — 1 when n — oo.

() Repeat the previous itern for a sample from a Bernoulli distribution
with success probability & and prior & ~ beta(a, b).

11. Let X = (X, ..., X;) be a random sample of the I/ (0, #) distribution.

(a) Show that the Pareto family of distributions, with parameters a and
b, and density p(8) = ab®/8'*%, 6 > b, (a,b > 0), is a conjugate

" family to the uniform.
(b) Obtain the mode, mean and median of the posterior distribution of 6.

12. Consider the conjugate model Poisson-gamma with n = 1. Obtain the
predictive distribution using

{a) the usual integration procedures;
(b) the approach described at the end of Section 3.3;
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(c) calculate also the mean and variance of this distribution.

13, Show that

— ton —
co(® — p0)* + 1@ —%)* = (co +m)(0 — )+ (1o — %)
co+n

where pt1 = (cope + nx)/(co + n).

£35 :
14. Consider the observation of a sample X = (X, ..., X,) with probability
(or density) function p(x | 8).
(a)} Show that :
Egix [log M] > 0 X
p@

with equality obtained only when p(8 | x) = p(0).
(b) Interpret the above result.

15. Let X; ~ p(x;18;) and p;{8;) the non-informative prior for ¢;, for i =
I,..., p. Assuming that the X;’s are independent, show that the non-
informative Jeffreys prior for @ = (9, ... ;62)_ }s given by Hf;‘l pi(6;).

16. Consider a random sample of size n from the Pareto distribution with pa-
rameters 8 and b, respectively. _ E

{a) Show that there is a sufficient statistic of fixed dimension for 4.
{b) Obtain the non-informative prior for 8. Is it impropes? -

17. Suppose that X | @ ~ Exp(#) and that the prior for @ is non-informative.

{(a) Obtain the predictive distribution of X and show that p(x)and p(x | )
are monotonically decreasing in x.

(b) Calculate the mode and the median of the sampling distribution and
of the predictive distribution-

18. Suppose that X = (X1, X2, X3) has a trinomial distribution with parameters
n and @ = (my, 3, m3), where m) + 7 + 3 = 1 and #n is known, with
density given by

nl
flxt,x2 |61, 6) =

9x|9x2 I—8 —& n—xy—Xx3

il —x L 2 B 6)
where x; = 0,1,...,10,f = 1,2,0 < x; + xp < n. Show that the non-
informative Jeffreys prior for  is p(w) o [rmz(l — 7y — m2)1~ 12,

19, Suppose that the lifetimes of n bulbs are exponentially distributed with mean
G.

(a) Obtain a non-informative prior for & and show that it is improper.
(b) Suppose that the times are observed up until r failures have occurred.
Obtain the likelihood expression,
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20.

21

22,

23.

24.

§3.6
25.

{c) Show that, if no bulbs fail before a pre-specified time limit ¢ > 0 when
observation stops, then the posterior distribution is also improper.

Suppose that 8 has non-informative prior p(¢) oc k. Show that ¢ = a6 + b,
a # 0, also has prior p(9) « k. Suppose now that § has non-informative
prior p(f) o g-! @ > 0. Show that ¢ = 89, a £ 0, also has prior p(¢) x
¢! and that ¢ = log # has prior p(y) o k.

Let X = (X1, X2, X3) be a random vector with trinomial distribution with
parameters n and (81, 62, 83). The statistician decides to reparametrize the
problem defining A = 61/(f; + 62} and v = 0 ++ 6. (This is a valid
procedure since the transformation from (61, 62) to (2, ¥) is 1-to-1.)

{a) Write the density of X as a function of A and .

(b) Show that T = X + X is a sufficient statistic for y. Interpret these
results in terms of the inference about .

(¢) Obtain the non-informative prior for 4 based on the result proved in
(b).

(d) Interpreting v as the success probability in an experiment and suppos-
ing that in n repetitions of the experiment ¢ successes were observed,
what is the probability of a future experiment being a success?

Show that the Jeffreys prior p(6) o< |1(8)}'/? is invariant under one-to-one
transformations, that is, if ¢ = ¢(#) is a one-to-one transformation of 8,
then the Jeffreys prior for ¢ is p(¢) o | det I (¢)|'/2.

Assuming that to work with an observation vector X and location parameter
8 is equivalent to working with an observation vector Y = X+-c and location
parameter 7 = @ + ¢ for any given constant ¢ and insisting on the same non-
informative prior specification for # as for », show that the only possible
distribution for & has density p(#) o k.

Repeat the above exercise under the conditions of the scale model to show
that the non-informative prior must have density in the form p(o} « ot
by

(a) assuming equivalence between the model with observation X and scale
parameter o and the model with observation ¥ = ¢X and scale pa-
rameter n = ¢a;

(b) transforming the problem into a location mode] with observation Z =
log X and location £ = logo.

Assume that the first stage prior specifies that 6; ~ N{u, ,i=1,...,n,
and define & = (i, T2). '

(a) Assuming that p(t? = roz) = 1 and p¢ is normally distributed, prove
that # has a moltivariate normal distribution.

(b) Assumingthat p(u = ug)} = land t 2hasa gamma prior distribution,
prove that # has a multivariate Student ¢ distribution.

26.

27.

28,
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(DeGroot, 1970, p. 154) Suppose that the prior distribution p(#) for 9 is
built up hierarchically as follows

(a) If & = i, then the prior density for @ is p;(8),{ = 1,.... k.
(b) The distribution of £ is p(§ =i} =¢;, i =1,....k.
Suppose also that X, with density p{x | 83, is observed and define \W; as the

class, containing p;, of conjugate distributions to the sampling distribution
of X,i=1,...,k and V¥ as the class of distributions given by

&
{p:pE)r=
) f=1

Bipi(6) and p; € Wi,

{a) What is the mathematical expression for the prior of p(6)?
{(b) Show that W is conjugate to the distribution of X, that is, there exist
constants b;, i = 1, ..., k, such that

k
p®1x) = bipi(d | x).

i=1

(c) Obtain the relationship between &; and the prior and posterior proba-
biliiesof & =i, i =1,...,k '

Hint; Define ; (x) = [ p(x | #)pi(9)dd and p; (9 1.x)y.= plx | 9)p;
/i) i=1... .k :

The 1Q’s of a sample of n senior undergraduate students of statistics at UFRJ
are represented respectively by 6, i = 1,....n, and the common unknown
mean for all the final year students at UFR] is denoted by yt. Suppose that
the §;s constitute a random sample of the population of IQ’s, with unknown
mean but with known variance b. A useful test to assess 1Q’s is applied,
providing the independent observations Y1, . . ., ¥a, where ¥; |6 ~ N{g;, a),
with @ known.

(a) Build a hierarchical prior for the parameters 81, . .., 0.

(b} Calculate p(u|y1. ..., yo) and obtain E{uly1, . ... ¥u).

(¢) Obtain p(@; |, Yi..--» yu) and E@ i, y1, ..., yu), fori=1,....n.
{d) Obtain E{6;{y1,.... ) fori=1,...,n

Suppose that the prior distribution for (6;,...,0,) is such that the &’s
constitute a random sample from a N{u, 72y distribution and 1 | £~
N (o, T2/¢). Obtain the prior distribution for (8y, . .., ) and, in particular,
calculate the covariance between &; and &;, 1 < i, j = n, with i £
supposing that

(@) T2 is known;
(b) 2 is unknown with prior distribution z =% ~ G(e, ).
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Estimation

One of the central problems of statistical inference is discussed in this chapter. The
general problem of decision making is briefly described to motivate estimation as a
special case. Estimation is then treated from both Bayesian and frequentist points

“'of view. :

In Section 4.1, the decision problem is defined and the concepts of loss function
and Bayes risk are discussed. Different loss functions are considered in the def-
inition of different decision problems. The Bayes estimators ensuing from these
losses are presented and their advantages and disadvantages discussed. The more
inportant classical methods of estimation, namely maximum likelihood, minimal
least squares and moments, are presented in Section 4.2, Properties of these meth-
ods are extensively discussed. In Section 4.3, methods of comparison of these
estimators are defined. The concepts of bias, (classical) risk and consistency of
an estimator are introduced. Following a discussion on point estimation, interval
estimation is presented in Section 4.4, Finally, the results are applied in Section 4.5
to the estimation of mean and variance in the normal model. Resulis concerning
approximate methods of estimation, including asymptotics, are deferred to the
next chapter.

4.1 Introduction to decision theory

Consider the posterior density exhibited in Figure 4.1. This density is not com-
pletely uncommon and illustrates the difficulties that may be associated in the
learning process involved in a statistical procedure. Nevertheless, this density
contains all that is available in terms of a probabilistic description of our infor-
mation about a quantity of interest. Any attempt to summarize the information
contained in this density must be made with caution. The graph of the posterior
density is the best description of the inferential process, Sometimes, however, it
is useful to summarize further the information into a few numerical figures for
communication purposes. The simplest possible case is point estimation where
one seeks to determine a single value of the unknown quantity of interest 6 that
summarizes the entire information of the distribution. Denote this vaiue by 6, the
point estimator of 8. As we will see below, it is easier to understand the choice of
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Fig. 4.1 Posterior density of @ with ihree distinct regions: the first containing
around 30% of the total probability, the second with 10% and the third with
around 60%. The mode of this density is 3.78, the mean is 4.54 and the median is
4.00. o

the value of 4 in the context of decision theory.
A decision problem is completely specified by the description of three spaces:

1. parameter (or states of the nature) space &;
2, space of possible results of an experiment £;
3. space of possible actions A,

A decision rule & is a function defined in © with values in A, thatis § : @ — A.
A loss function may be associated to each decision 8 (x) and each possible value of
# € ©. It can be interpreted as the punishment that one suffers for taking decision
& when the value of the parameter is 6. This function from ® x A with values in
R™ will be denoted by L (5, 9).

Definition. The risk of a decision rule, denoted by R{8), is the expected posterior
loss given by R(8) = Eprx[L(8, )]

The importance of the risk is the introduction of a measure that enables one to
rank different decision rules.

Definition. A decision rule 8* is optimal if it has minimum risk, namely R(5*) <
R(8), V8. This rule is called the Bayes rule and its risk is called the Bayes risk.
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Example. Suppose that a doctor must decide if a patient (for example, John
from previous chapters) with a given disease must undergo surgery or not. The
states of nature are: John is sick (¢ = 1) or not (§ = 0). Let us simplify the
problem by assuming that the doctor will only prescribe surgery (8 = 1) if he
thinks John is sick. This way, a decision rule § directly related to the value of §
gets established. Unfortunately, the value of the parameter 8 is unknown for the
decision maker, the doctor. Table 4.1 is a possible representation of the losses
(measured in a hypothetical monetary unit) associated with all combination of
values of the action and state of nature.

Table 4.1 Losses associated with the doctor problem

8 8

no surgery — 0 surgery — 1
healthy b 500
sick 1000 100

These losses represent the subjective evaluation of the decision maker with
respect to the combination of actions and states of nature. The smallest loss s
null which occurs when the patient is not sick and does not undergo surgery. The
largest loss occurs when the patient is sick but is not prescribed surgery. This
implies a loss in the doctor’s reputation and may even lead to legal problems. He
evaluates this 1oss at 1000 monetary units. Note that all losses are nen-negative as
defined and do not take into account the doctor’s fee whichi is constant or at least
should be immaterial to the problem considered.

Asmust be clear by now, the decision must be guided by taking into consideration
the uncertainty about the unknowns invelved in the problem. In this case, the
unknown is ¢ and let us assume that its uncertainty is described by its updated
distribution, Pr(# = 1) =mrand Pr(9 = Q) == 1 -, for0 < w < 1. Thiscanbe
a prior distribution or a posterior distribution, obtained after a few tests have been
carried out on the patient. Evaluation of the risk of an action 8 is straightforward
and

R(8 =0) = Ep[L(5 = 0,8)] = 0(1 — x) + 10007 = 10007
R(8 = 1y = Ep[L(5 = 1,6)] = 50001 — 7} + 1007 = 500 — 400r.

As can be seen from Figure 4.2, the two actions have equal risk if R(§ =0} =
R(8 == 1), which happens iff 1000z = 500 —400m, or 7 = 5/14. Formw < 5/14,
the risk associated with 8 = 0 is smaller than the risk associated with § = 1. In

" this case, 8 = 0 is the Bayes rule and the Bayes risk is 1000z, For 7w > 3/14, the

problem is reversed, the Bayes rule is § = 1 and the Bayes risk is 500 — 400z
In summary, the doctor’s strategy musi be to prescribe John surgery iff r > 5/14.
This example shows how sensitive the decision is to the choice of priors. It is
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Fig. 4.2 Risks associated with the two actions: surgery or not, a;v'afunctions of
the probability of disease 7.

important to study also the sensitivity of the decision to the choice of loss function.

Estimation s clearly dependent on the specified losses and variation to their values

may lead to different decisions.

Definition. An estimator is an optimal decision rule with respect to a given loss

function. Its observed value is called an estimate.

This definition is broad enough to be useful in a classwal perspective, where
other optimality criteria will be introduced.

In what follows, most of the presentation will be concentrated o1 symmetric
loss functions of the form L(8, 8) = h(5 — 9), for some function 4. These are the

most commonly used los§funct1ons In general, ©® C R and the loss functions are
continuous.

Lemma. Let L\(8,6) = (§ — 0)” be the loss associated with the estimation of
0 by §. (This loss is usually known as quadratic toss.) The estimator of 8 is
= E(#), the mean of the updated distribution of 8.

Froof. We have to calculate the risk and show that 81 minimizes it. So, R(8) =
E[(8 — 6)2] = E{[{d — 8} + (8 — 6)]2], where §; = E(8). Therefore,

R(8) = Egl(8 — 31)%1 + Epl (8 — 6)21+ 2E4[(8 — 81)(5y — 6))
== (5 — 8102 + Epl(81 — 021+ 2(8 — 8)) Ep[5) — 0]
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= (5 - 8% + Epl(81 — )%, since d, = E()
= (8~ 81)2 + V(8)

and the risk is minimized for § = . In this case, the Bayes risk is R(8;) = V(6)
and R(8)) < R(&), ¥8, with equality iff 5 = 3.
]

The quadratic loss is sometimes criticized for introducing a penalty that increases
strongly with the estimation error § —#. Inmany cases, it is desirable to have a loss
function that does not overly emphasize large estimation errors. The next lemma
presents the estimator associated with the absolute loss function, which considers
punishments increasing linearly with the estimation error.

Lemma. Let Ly(8,8) = |8 — 8] be the loss associated with the estimation of 8.
The estimator of 6 is §; = med(0), the median of the updated distribution of 8.

The proof of this lemma is more cumbersome and will be left as an exercise.

Another form to reduce the effect of large estimation errors is to consider loss
functions that remain constant whenever |6 — 8| > k for some & arbitrary. There
is some freedom for options of suitable values of k. The most common choice is
the limiting value as & — 0. This loss function associates a fixed loss when an
error is committed, irrespective of its magnitude. This loss is usually known as
the 0-1 loss.

Lermma. Let La(8,6) = limg_g flg—g/(fg, c0)}. The estimator of § is 83 =
mode(8), the mode of the updated distribution of 6.

Proof (for the 6 continuous case).

§—¢ 5+e

0
E[L3(8,8)] = lin}) [f 1-p(@)dg +f Q. p@ydo +f
£ —00 d—e

S+e
o plte
= lim [1 —f p(@)d@]
50 5—& 3

=I—lin})P(8—~s<9<3+e).
£~ .

1- p(@)d9:|

But limg.g Pr{d — e < 6 < § + £)d# = p(8). Note that E[L3] is minimized
when p(8) is maximized. Hence, §3 = mode (7).
0

When the updated distribution is the posterior, the estimator associated with the
(-1 loss is the posterior mode. This is also referred to as the generalized maximum
likelihood estimator (GMLE), In the next section, we will see the reason for the
name. The GMLE is the easiest estimator to be obtained among the estimators
presented so far. In the continuous case, it typically involves finding the solution
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Fig. 4.3 Loss functions: quadratic, — — — =/ absolute, <+« -+ ; 01, = ———.

of the equation dp (@ | x}/ d6 = 0. Figure 4.3 illustratcs the variation of the loss
functions considered here as a function of the estimation error.
Many of ihese resulls can be generalized to the multivariate case. Apart from

{he absolute valie that has no clear extension 1o the multivariate case, the quadratic ...

and O-1 loss can be respectively extended by
L1(8,0) = -8 -0

and
13(6,8) = Hm [5-g/{A)
 vol(A)-0

where A is a region containing the origin and vol(A) is the volume of the region
A. Ttis not difficult to show that the Bayes estimators of # under loss functions
L and L3 are respectively given by the joint mean and joint mode of the updaied
distribution of #. These concepts are treated in greater depth by Berger (1985},
DeGroot (1970) and Ferguson (1967).

Example. Let X = (X1,..-, X,) be a sample froma N {4, o2) distribution and
¢ = o2 We have previously seen that in 2 conjugate analysis, the posterior
distribution is 8 | ¢ ~ N (1, (19)") and nmadd ~ x2-

To ease the derivation of the mode of the joint distribution, it is usual to work
with the logarithm of p(8, ¢ | x) given by

&

1
log p(0, ¢ | X} =k — % [61(9 —u1)2+n1cr]2] + (m; - 1) log ¢
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and differentiate it with respect 10 6 and ¢ leading to

dlog p6. ¢ 1 %) _

- -2 e - )

and

dlogp@. 1%l — )2 A mioy N (m +1 1) 1
ag - 2 2 o

Making 8 log p(6. ¢ | x)/88 =0 gives @ = p) 883 critical point and 3 log p(t1,

J) | X3/0¢ = 0 gives ¢ = a,‘z{m - 1)/ny. The second order conditions are

satisfied as

0

82 log p(6, ¢ | X) o h<0
320 B=p1.p=0

3tlog pl@. ¢ 1 %) :#(n]+1—1)~}—<0
92¢ B=ity = 2 ¢*

3% log p(8, ¢ | X) o

3039 \9=m,¢=<§

Therefore, (11, 43) is the mode of the joint posterior distribution of (8. ).

The above calculations do not guarantee that (] is the maximum of the marginal
distribution of 8 and  is the maximurm of the marginal distribution of ¢. In this
example, it is easy 10 52 that 441 is also the marginal mode since the marginal
distribution of 8 is a Student-f centred at jiq. This antomatically implies that 41
is the mean and the median of the mgrginal posterior distribution of £.

However, the same is not true for ¢. 1t was shown in Section 3.4.7 that ¢ | X ~
Giny /2, nlcrlz/Z). This distribution has mode

Note also that the posterior mean of pisoy 2 and the median cannot be explicitly
evaluated.

Another important consequence from probability theory is that the mode and
the mean are not invariant under transformations. Let o2 = ¢~ ! and denote the
mode of o2 by &2 ¢~ is not the joint nor the marginal mode of 2. To evaluate
the mode of o2, the posterior distribution of &2 must be obtained. For the case of
the marginal distribution,

d de 1 1 2.2

plo? | %) = plpc?) 1 %) 37 where a;’\ =|-2F| T 5T (™)
2
24 (/D142 n10y
x (g~ Hm/P CXP(— 252
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2
and its logarithm is log p(c? | x) = k — (n_I + 1) logo? — m_
2 202
Differentiating with respect to ¢2:
1110'12

dlog p(o? | x) (nl 1
—_— =—|{=+1=+—-L—p
R 2t )&2 T age =0

do?

P4 2
. tan e A2 _ WG] ne g
The solution of the equation is 52 = TR n"_L. -5 =9

The second order condition guarantees the maximum as

d?log p(62 | x 1 nmo? 1 2)?
gp(2I )~——(ﬂ+l)_—4—2 1_6; :__(n1+2) <0
d(o 2y 2 G 2a 2 (nyo)?

4.2 Classical point estimation

In the Bayesian methodology, point estimation is always dealt with by minimiza-
tion of the expected loss. In the classical perspective, many methods have been
proposed in an effort to make them adequate to a variety of problems. In this
section, the three most important methods will be cited: the method of maximum
likelihood, the method of minimum least squares and the method of moments. We
will also briefly present nor-parametric estimation. Classical point estimation is
covered in a clear and concise way in the books by Cox and Hinkley (1974) and
Stlvey (1970). We recommend both books to the interested reader.

4.2.1  Maximum likelihood

This is currently the most used method of estimation in classical inference. Jts
use is justified in many instances and it is useful to note that it is entirely based on
the likelihood fanction. Therefore it does not violate the likelihood principle. In
addition, there is a good body of theory developed in a variety of situations. Its
intuitive appeal can be grasped in the very simple example below.

Example. Consider a situation where all that is known about an unknown quantity
of interest 8 is that its value is either 1/4 or 3/4. Assume now that a 0—1 random
variable X is observed and the success (X = 1) probability of X is either 1/6,
when @ = 1/4 or 4/5, when 6 = 3/4. This probabilistic setup is summarized in
Table 4.2. :

Observe that the sum of each column is 1 but the sum of each lineisnot. Given the
value of X, the likelihood function of # can be constructed as / @;x)=p(x|6).

¢ If X = 1 is observed, {/fdx =1) = 1/6 < 4/5 = 1(3/4;x = 1).
This means that the model with 8 = 3/4 attached a larger probability to
the observed event than the model with @ = 1/4 and therefore seems more
Plausible or likely. If we had to choose an estimate for 9 after observing
X =1, we would probably opt for the value 3/4.

Classical point estimation 87

Table 4.2 Table of probabilities

x g
2y

056 15
1|16 45

o IfX =0is observed, the same reasoning would lead to the choice of the
value 1/4 for ¢ since (1/4; x == 0)=5/6 1/5=1(3/4;x = 0).

S0, in the above example, we have opted to estimate 9 by the value that maxi-
mizes the likelihood function for every value of x. This simple and powerful idea
is the basis of the method.

Definition. Consider the observation of X with joint density p(x}8). The maxi-
mum likelihood estimator (MLE, jn short) of § is the value of @ € © that maximizes
{{#; X). The usual notation for the MLE of 8 is #. Its observed value is called the
maximum likelihood estimate.

In most cases, § varies continuously over an interval or, more generally, over
a region of R?, for some p. In these cases, irrespective of whether X contains
discrete variables or not, the MLE can typically be found by solving the equation
ai(0; X)/50 =0, 0r equivalently 8 log/(8; X)/98 = 0, where 8 is a vector of 0'’s.

We are now in position to compare the GMLE, presented in the previous section,
with the MLE. The GLME generalizes the MLE Just as the posterior density
generalizes the likelihood function, Recal] that P | X) o I(#: X)p(®. In the
special case p(8) « k it follows that P | X) o i(8;X). Therefore, the value
of @ that maximizes the posterior (the GMLE) also maximizes the likelihood. So,
the MLE is the GMLE in the case pa) o k.

Despite their similarity, it is important to stress the distinction between classical
and Bayesian estitnators. The first ones are statistics and therefore have a sam-
pling distribution based on which their properties will be established. Bayesian
estimators are based on the posterior distribution which is always conditional on
the value of the observed sample and therefore their properties are based on the
posterior distribution, an entirely different object. Nevertheless, they can be seen
as functions of the observed sample and in this way compared numerically with
classical estimators.

Example. Let X = (X),..., X,) be a sample from the N(8, ¢2) distribution,
The likelihood function is

I " 1y
19.0% X z(%——) -3 X; —8)?
@.0%X) = { = exp{ zazgt )
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with logarithm

2wy P 2 1 - 12 n 2
logl(®, o ,X)——Elog(bro' )H-Z—EEI:;(X;—-X) +r(X—-8)"].

Differentiating with respect to 8 and o2 gives

dlogl(@, 0% X) 1

a9 = gz X =)
and
dlog!(6, o X) " 1 ,
- _ ny2?
et = g T [ P (0]
where
Xy

Ohbserve that the denominator used in the expression of 52 (7 — 1), was modified
with respect to the value used in previous chapters (n)

Equating derivatives to O leads to 6 =X and 7 = (rn — 1)5%/n as critical
pOints.

Differentiating again gives

3 logl®, o4 X )
97logi9, 0% X} <0, Y{0,09)eRxR,

. ag? a?
8%1logl(B, 0% X) 0
30302 8=f.a2=52 -
and
?logl(f, 0% x) _on )
A(o2)? b ote? 2622 (a2)3 [(n = DS +n(X - 6]
n 1 0
= T35 <
2 (02)2

Therefore, (6, &%) is the MLE of (8, 52).
‘This result can also be established fromithe similarities between GMLE and MLE
and calculations in the previous section. Note that by taking cg — 0, crg — Oand

ng = 2, the prior becomes constant and the above result becomes a special case
of the derivations of the previous section,

There are many interesting properties of the MLE’s that can be easily shown:

1. The MLE is invariant to 1-to-1 transformations (unlike the GMLE). Ifd is
the MLE of @ and ¢ = ¢(@) is a 1-to-1 Tunction of & then the MLE of ¢ is
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given by qb ¢(0) To see that, remember that 6§ maximizes ! [(#) and that
the likelihood of ¢ is I*($) = I*($(8)) = I{0). Therefore, if & maximizes
I, it will also maximize I*(¢(8)) by uniqueness of the transformation and
d)(B) will maximize [*. Consequently, qﬁ maximizes I* and therefore ¢ is
the MLEof ¢b.

Example. In the case of a N{8, o2) distribution, the MLE of ol is 6%
Therefore the MLE of the standard deviation ¢ is & and the MLE of precision
ti?—O'ﬁZlS(,f)—O' -2,

. Asbriefly mentioned before, the MLE does not depend on the sampling plan.

if different experiments £1 and & lead to respective likelihood functions
11(8) and Iz(#) and [; = ki» for some k > O that does not depend on §, their
MLE will be the same. Therefore, the MLE does not violate the likelihood
principle. ’

. The MLE may not exist. Assume that Xp;..., Xy is a sample from the

U0, 8) distribution, 8 > 0. The hkehhood functlon is
10:X) = pX | 6) = H@M'M)-—MTm)

where T = max; X;. As the likelihood function is a strictly decreasing
function of #, its maximum is attained at the lower value of .its domain,
the interval (T, o0). As the interval is open, the function does hot have a
maximum and & does not have an MLE, This technical difficulty is easily
remedied by considering without loss of generality closed intervals. In this
case, the MLE of # is T = max; X;. Note, however, that Pr(T < 8) = |
and therefore the MLE will underestimate 8 with certainty.

. The MLE may not be unique. Assume that X1, ..., X, is a sample from

the U(8, 8 + 1) distribution, & € R. The likelihood function is

16;X) = [ [ fo(Xi = LX) = Ip(T2 — 1, T1)

i=l

where T; = min; X; and T2 = max; X;. Therefore, the MLE of ¢ will be
any value in the interval (T2 — 1, Ty, if it exists, because the likelihood
function is constant over that region.

. MLE and Bayes estimators depend on the sample only through minimal

sufficient statistics. By the factorization criterion, I(#; X) = gX)f(T, ),
where T is a sufficient statistic. Maximization of /¢(8; X) is therefore equiv-
alent to maximization of f(T,@). Since f only depends on the sample
through T, the MLE will have to be a function of T'. The same reason applies
for the Bayes estimators. As this is valid for every sufficient statistic, it must
be valid for the minimal one.
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To obtain the (GYMLE, one must obtain the maximum of the likelihood func-
tion (posterior density, respectively). This task can be seen as an optimization
problem.. Assuming further that # varies continuously over a region, simpli-
fies the task considerably. The problem can typically be solved by selving the
equation 3/(0; X)/30 = 0 (or dp(B|x)/90 = 0). In many cases, it is easier
to work with the logarithm. Concentrating on the likelihood from now on, let
L(8; X) =log!(#; X). The problem can then be rephrased in terms of finding the
solution of

aL#; xX)
UX;0) = ——= =0,
(X;9) 28
where U is the score function introduced in Chapter 2. Note that
dlog p(0iX) AL(B:X) dlogp(® dlogp(8) '
og pOIX) _ 3L( ) 4 gp():U(X;ﬁ,)Jr g p(8)

ag a0 o a0

and can thus be referred to as the generatized score function. In some cases,
the above equation can be analyticaily solved and the roots of the (generalized)
score function found explicitly. Tn other applications, typically involving a highly
dimensional #, no analytical solution can be found. Algorithms for solving this
problem will be presented in the next chapter.

4.2.2 Method of least squares

Assume now that Y = (Y3, ..., ¥,) for a random sample such that E(¥; | 8) =
fi(8) and V(Y; | #) = o2, One can rewrite each ¥; as

Yi=fi@) +e where E(e)) =0and V(e) =oli=1.... n.

One possible criterion for the estimation of @ is to minimize the observation errors
ei’s incurred. There are many ways to account globally for the errors. Given the
assumption of homoscedasticity (equal error variances), it seems fair to account for
all the errors in the same way and with the same weight. Also, it seems reasonable to
account for the errors symmetrically to avoid penalizing more positive or negative
errors, One possibility is to attempt minimization of the sum of the absolute errors.
In fact, this choice is as plausible as the choice of the absolute loss function in the
context of Bayesian estimation. However, for historical and mathematical reasons,
the criterion preferred in many cases is to account for the squared errors,
Therefore, the estimation criterion can be stated as the minimization of

5@) =7 e = f‘_,(n- — fi@).
F==] i=1

Note that by forming the vector f{#) = ( J1(8), ..., f(8Y, the quadratic form can
be rewritten as §(8) = (Y — £(6)) (Y — £(8)). The value of  that minimjzes S(&)
is called the least squares estimator (LSE, in short) of #. Once again, minimization
is achieved by solving the equation 35(8)/96 = 0.
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Example. Simple linear regression. Assume one knows that his/her variable of
interest ¥ is affected by the values of another known quantity X and that this
dependence is linear on the mean. One model for this setup is to take E(Y; | §) =
8o + 01 X; where 8 = (8, 01). The quadratic form is given by

"
S0, 01) = D (Y; — g — 1 X;)*.

i=1

Differentiation gives

95(6) p—l Z(Y, —fty — X)) = *n(? ~fp— 91}2)
125) =
B .
3s6) 23 XY, ~ 6 — 6 X)) = ~n(XT ~ 65X — ,X5)
891 i=zl

where g(X, ¥) generically denotes (1/n) ZL],g(X,-, Y;). his not difficult to
show that the least squares estimator of (8, 6;) is

S s (_ ~— XY — Y?)
(90,91) =Y _Q!X! e, gl I
X2-X

One important support for the method is the fact that it coincides with the MLE
if the error distribution is normal. This method can be extended to the case of ervor
variances that are unequal due to constants, namely V{e;) = wi'lcrz. It seems .
reasonable in this case to take into account the different variabilities and weigh
more heavily in the sum the more precise observations, those with larger values
of w;. This modification of the criterion leads to the weighted LSE obtained by

minimization of

S0y = wi¥; — f:(8).
=1

The sum can again be written in matrix notation as (Y — f(#)) W(Y — f(#)) where
W is the » x n diagonal matrix with elements w), ..., w,. Note that in its full
generality, the matrix of weights W does not even need to be diagonal by allowing
correlated observation errors.

The previous method (without weights) is also called ordinary least squares. It
can be obtained as a special case where W = crzl,,, the n x n identity matrix.

One useful application of this method is in the case of spurious observations.
We would not want our analysis to be influenced by observations that are known
to be discordant from the rest of the observations. Reduction of the effect of these
variables is achieved by setting smaller values of w; for them. In the limit, w; — 0
and the observation has no influence in the estimation. This line of reasoning forms
the basis of robustness studies.

In all the cases above, o2 is estimated by o7 given by

(Y —f(@Ls)Y W(Y — (8,50
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where @ ¢ is the weighted LSE of #. Sometimes, 1 is replaced by 5 —
p is the dimension of . ’ YT P where

4.2.3 Method of moments

Assume again a random sample X1, ..., X, from a distribution plx | 8) with
moments of erder k given by uy = E(XF | 8), k = 1,2,.... The method of
moments recommends estimation of uy by

12

T, — k

Mk*;i X:.
i=l

In words, the populational moments are estimated by the sample moments. Any
otber function of @ is estimated in the same way by taking into account its relation
\Avith the population moments. For example, p, = E(X | #) is estimated by
A1 = X, ua = E(X* | 0) is estimated by X2 and the populatitiriéif\'fériance
V(X | 8), once it is written 4s up — 3, is estimated by i3 — 43 = 62, Mean and
variance estimators coincide-with MLE in the normat case.

For any distribution with finite iz, the Taws of large numbers ensure that iy —
i, with prc‘)babiliiy Lasn = o0, So, estimators obtained by the method of
moments enjoy good asymptotic properties.

4.2.4 Empirical distribution function;

This i_s a non-parametric method which involves no knowledge of the distribution
function to be estimated. This estimator is useful at least as an initial estimator
thus providing some insight into the form of the distribution function. ’

Let X = (X),..., X,) be a random sample from an unknown distribution
function F. Recall from the definition that F(x) = P(X < x). The empirical
distribution function is denoted by Fandis given by

#X[s < x

n

Fix) =

Oi?serve that just like F, F is non-decreasing and contained in the interval [0, 1].
I.t is interesting to note that F(x) can be written as Z where Z; = IX.(—oo:x]
i = l’.' ... n. The populational quantity equivalent to Z is the pro'portion o;c
population elements that are < x. Thisis givenby P(X < x) = F {x). So, the
efnpirical distribution function is a form of method of moments estimator 0% the
distribution function. Other properties of £ will be described in the sequel.

4.3 Comparison of estimators

leen. that there is no L}nifying criterion for the choice of frequentist estimators in
any given problem, it is important that a set of criteria is established to compare
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them. The main criteria for comparison are: bias, (frequentist) risk or mean
squared error and consistency. Much effort was concentrated on this area during
the 1950s and 1960s. These studies lead to the characterization of uniformly
minimum variance unbiased (UMVU, for short) estimators.

4.3.1 Bias

Definition. Let X = (X1,..., X} be a random samptle from p(x | #) and § =
§(X) an estimator of h(#), for any given function h. § is an unbiased estimator of
h(e) it E{é 1 81 = h(@), V0. The estimator § is said to be biased otherwise. In
this case, the bias is denoted by b(#) and defined as b(#) = E[$ | 0] — h(®).

The frequentist interpretation of the definition is that after repeating sampling of
X from p(x | #) many times, averaging the corresponding vatues of § will produce
h(#) as a result. This is a desirable property because one formulates an estimator

~ § in an effort to obtain the value of h(#). The difficulty is that in most cases only a

single sample X is observed for time and/or financial restrictions. Note also thatun-
biased estimation is always related to a given parametric function; an eslimator can
be biased with respect to & given function but unbiased with respect to another one.

Example. None of the three parametric methods of estimation proposed in the
previous section can guarantee unbiased estimators. The empirical distribution
function however is an unbiased estimator of the distribution function.

4.3.2 Risk

Definition. LetX = (X1, .., Xn) be a random sample from pix | #) and denote
now by 8§ = 3(X) an estimator of h(9). The frequentist risk of the estimator &
is defined as Rs(8) = EXlB[L(ﬁ(X), #}]. In the case of a quadratic loss function
L, the risk is given by Rs(#) = Exw[(s — h(6))' (8§ — h{))] and is also called
the mean squared error (MSE, in short). In the scalar case, the MSE reduces o
Exo16 — h(O)T.

Comparing with the Bayes risk, once again we sec the presence of an expected
loss. The change with respect to the approach in the evaluation of the expectation
must be stressed. The Bayesian risk considers expectation with respect to the
posterior distribution of #|x whereas here expectations are taken with respect to
the sampling distribution of X|#. Although the dependence on X causes no harm
to the Bayesian estimators, the dependence on ¢ will cause additional problems,
to be described below.

In terms of risk, the estimation task resumes in finding the estimator of smallest
risk. Let 8; = 81(X) and 8, = §2(X) be estimators of h(#). Their respective
risks are R, (#) and R;,{#) and 31 is better than &3 if Ry, (8) < Rs,(#), for all
0 with strict inequality for at Jeast one value of . An estimator is admissible if
there is nio better estimator than it. When an estimator is unbiased and its variance
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is uniformly smaller for all possible values of 8 over all possible estimators, it is
referred to as a uniformly minimal unbiased estimator (UMV1J, in short).

If the estimator is unbiased, its quadratic risk is given by tr[V(5|6)), the trace
of its sampling covariance matrix. If it is biased, the quadratic risk is given by
te[V{8)] + [b(@)}D(#). In the case of a scalar &, the quadratic risk of an unbiased
estimator is given by its sampling variance V(8|8) and if § is biased, its quadratic
risk is given by V(318) + b2(8).

Example. Let X = (X1, ..., X)) be a random sample from the N (@, o2) dis-
tribution with o2 known and h(8) = &. Taking §,(X) = X and 8,(X) = X,
gives

EI5y(X) | 6]= EX|0) =~ Y E(X; |0) =2 ¢
n i1 n
El5(X) | 0] = E(X, 16) =6

and therefore 8; and 87 are unbiased estimators of 8. Therefore, their quadratic
risks will coincide with their sampling variances and will be respectively given by

_ 2
Ry 6) = V(X 16) = =

Rs,(0) = V(Xy) = o2,

Of course, R(81) <= R(82), if n > 1, for all values of 6 and therefore 8, is better
than J;. ’

Itis not always possible to find an estimator that completely dominates the other
ones in terms of risk. In the ideal situation one would eliminate ¢ by suitably
weighting the risks over their different values. This is performed naturally in the
Bayesian context. Here however # is fixed and no such natural weighting scheme
exists. An alternative is to consider the worst possible risk for each estimator and
choose the estimator with smallest worst possible risk. This is the definition of the
minimax estimator, ‘

Returning to the example, it is not entirely surprising that 3, is better than &.
After all, 8y seems to be using the sample information better than d2. Once again,
the key concept here is sufficiency and the resultis formalized in the Rao-Blackwell
theorem below,

Theocrem 4.1. Let X = (X|,..., X.) be a random sample from p(xj#), § =
8(X) an vnbiased estimator of h(#), for some functionhand T = T (X) a sufficient
statistic for 8, Then, 6" = §*(X) = E{§ | T) is an unbiased estimator of h{#}
with V(§* | @) < V(5 ] 8),1 V8. In the case of a scalar h{(0), the result states that
VE* | 8) < V(5| 8.

IRecall from Chapter | that if A and B are squared matrices of the same dimension, A < B means
that the matrix A — B is a non-positive definite matrix.
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Before proving the result there are a few important comments to make. The
first one is that the theorem states that whenever one finds an unbiased estimator,
it can always be improved in terms of risk by conditioning on a sufficient statistic.
Also, the conditional expectation used in the definition of §* does not introduce 8
because of the definition of a sufficient statistic.

Proof. Initially note that §* is unbiased because
E[§"(X) | 0] = E{E[S(X} | T(X)] | 8] = E[6(X) | #] = h(8).
Finally note that
V(5 1 8) = V(S | &) —E[V(S | T) | 8].

As V(6 | T) = 0, its expectation is also non-negative positive and therefore
V(| 8) = V(" |0). ‘
. 4

The important message of the theorem is that estimators have their risks reduced
if they are functions of sufficient statistics, Risks are indeed reduced by properties
of non-negative definite matrices (see Chapter 1). Yetagain, maximal improvement
in terms of risk is achieved if minimal sufficient statistics are used. A related
interesting question is to know if the reduction in risk is the smallest possible.
The search for maximal reducltio_n: is helped in a sense by the concept of complete
families of distributions. o

Definitionr. Let X = (X1, ..., X,) be arandom sample from p{x } 8), T = T(X)
any statistic and g any function of T. The family of distributions of T is complete
if for all 8,

E(g(T)|#) = 0= g(T) =0, with probability 1.

Verification of completeness of families directly from the definition is cumber-
some. Fortunately, for exponential families with k parameters, it can be shown
that the family of distributions of the k-dimensional statistic (U1 (X), ..., Up(X))
is complete if the variation space of (¢1(0), ..., ¢+(0)) is k-dimensional. The
definitions of the U;’s and ¢;’s were given in Section 2.3. The proof of this result
requires elements that are beyond the scope of the study of this book and will
therefore be omitted. The interested reader is referred to Lehmann (1986).

Example. Let X = (X, ..., X,) be a random sample from the N (8, %) dis-
tribution. Then, Uy = EX;, Uy = X2, ¢1 = 8/0? and ¢ = —1/202 and
{91, ¢2) vary over a bidimensional space. Therefore, the family of distributions
of (U, U2) is complete. If one assumes that 8 = o2, the space of variatien of
(91, ¢2) isteduced to a single dimension and the family of distributions of (U}, U3)
is no longer complete.
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The concept of completeness is useful to ensure uniqueness of the UMVU
estimator. It can be shown that the UMVU estimator is unique in the presence of
complete families because if §; and 87 are unbiased estimators and functions of
the minimal sufficient statistic T then E[(§] — &%) | 8] = 0. From completeness,
this means that 87 — 8% = 0, with probability 1. Therefore, 87 and &3 must be
equal.

Another interesting aspect of risk calculation is the existence of a lower bound
for the quadratic risk of unbiased estimators. This result is known as the Cramer-
Rao inequality. This inequality, central in the theory of unibased estimation, is
due to Fisher although it was independently stated in its present form by Cramer
and Raoin the 1940s, as cited in Cox and Hinkley (1974).

Theorem 4.2. Let X = (X1, ..., X,) be a random sample from p(x | ¢) and 3
an unbiased estimator of h(#), for some function h. Assume further that {x : p(x |
8) > 0} does not depend on 0, the differentials dp(x | #)/36 and 3h{#)/90 exist,

“E(8 | 6) is differentiable under the integral sign and that the Fisher information

K(#) is finite. Then

ah(@)

V(8|8) = 28

ooyt (M) X

a0

In the case of a scalar 8, the inequality reduces to

[dr(9)/d0)?
1(6)

Proof (of the scalar case). E|8 | 6] = [3(x)p(x | 0)dx = h(#) because & is

unbiased. Differentiating both sides with respect to ¢ gives

dn{th 9
e~ 98

Vs |8i=

fS(X)P(X j8)dx

dp(x |8
= f §(x) %l dx, where interchange of signs is valid by hypothesis

B 1 apx]9)
—jé(X)p(xlg)——m—ag —p(x|68)dx

K [(5(}*{)--—----«-—a log;;éx | 9)) | 9]
= EBX)UX; 9 | 6]

As previously seen in Section 2.4, E{U (X;8)] =90and

dh(e
) _ EsX) - O)UX: 0) | 8]

da
= Cov[(8(X), U(X;9)) | 6].

- & -
Since the absolute value of the correlation between two random variables is never
larger than I, the squared covariance will never be larger than the product of the

Comparison of estimators 97

two variances. Hence,
[dh(g)/d6Y < VI(X) | 91V U(X; 6) | 6]

But
VIU(X;0) 18] =E [UZ(X; 8| 9] = 1(8),

completing the proof.

The proof of the theorem in the multiparameter case is left as an exercise.

Observe that the unbiased estimator attains the lower bound when it has maximal
correfation witla the score function. In other words, when there are functions ¢ and
d of @ such that

§(X) = c(HUX; 8) + d(B),

with probability 1. Taking expectation of both sides with respect to X|# gives
that 8(X) is an unbiased estimator of d(#) and therefore d = h. In this case,
ey =171(8).

Also, when the MLE is unbiased, it attains the Cramer—Rao lower bound. This
can be seen by solving the above equation for 8. This leads to

dlog p(X | 0) _ 3(X)—d(8)
ae O
Equating to 0 implies that §(X) is the MLE of A(#). But we have already seen that

d = h and, by hypothesis, 8 is unbiased for h(#). Hence, it attains the Cramer—Rao
lower bound.

UX; #) =

Definition. ‘The estimator § of h(8) is said to be efficient if it i1s unbiased and
its variance attains the Cramer-Rao lower bound, for all @. The efficiency of an
unbiased scalar estimator is given by the ratio between the Cramer—Rao bound and
its variance.

Note that there is no guarantee that UMV U estimators will attain the Cramer-Rao
bound and they may have their efficiency smaller than 1. However, the converse
is true with efficient estimators being necessarily UMVU.

Example. LetX = (X1,..., Xn)bea random sample from the Pois(9) distribu-
tion. Then " "
log p(X | 0) = —n6 + Y Xilog — > log X;!
i=1 i=1

and therefore U(X; 8) = —n+ L X; /6. As estimators cannot possibly depend on
the parameter they are supposed to estimate, define c(0) = #/r and d(8) = 0.
This way, it is immed'g_ate that X is an efficient estimator of its mean 6. In fact,
any linear function of X is an efficient estimator of the respective linear function
of 0. More than that, these are the unique efficient estimators that can be found in
the presence of a random sample from the Pois(8) distribution.
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4.3.3 Consistency

It is to be expected that the information contained in the sample increases with an
increase in the sample size. This is certainly true at least for the Fisher measures
of information. One would then expect that reasonable estimators will tend to
get closer and closer 1o their estimands, This subsection discusses theoretical
properties of the estimators as the sample size gets larger and larger, The relevant
question is how close are the estimator and its estimand. Related questions of
interest are: Is the bias getting smaller when sample size increases? Is the variance
getting smaller as well? These questions will be deferred to the next chapter.

Definition. LetX, = (Xy,...,X,) bea random sample of size n from p(x}#)
and 3, (X) an estimator of h(#) based on a sample of size n. As the sample size n
varies, a sequence of estimators for h(#) is obtained. This sequénce is said to be
{weakly) consistent for h(#) if 8, (X) — h(6), in probability, when n — oo.

In practice, the definition is shortened by saying that the estimator is or is not
consistent instead of a sequence, The définition means that Ve > 0, P(}8,(X) —
h(B)] =€) — 0, when n — oc. This result is usually denoted by plim 8,(X)} =
h(8). As an example, F, (the empirical distribution function) is consistent for F.
The three important questions to ask about an estimator are: is it unbiased, how
large is its risk and is it consistent? . I

When Bayes estimators are considered as functions of the sample X, instead of
its observed value x,,, they can be studied for their sampling properties just like any
other estimator. In particular, it can be shown that Bayes estimators are invariably
biased. Also, it may be reasoned that as the sample size increases, the influence
of any non-degenerate prior becomes smaller and Bayes estimators will become
closer to the MLE. So, intuitively, one can expect them (o inherit all the properties
of the MLE, irrespective of the loss function used.

Example. Let X,, = (X1,...,X,) be a random sample from the Ber{@) distri-
bution, with 8 > 0. We know that the MLE of @ is §, == X, and that, by the laws
of large numbers, X, — @, in probability and almost surely. Therefore, X,isa
consistent estimator of 8.

In the case of a conjugate prior betaler, 8) and quadratic loss function, the Bayes
estimator is 87 (x,,) = {a+nx,)/{c+ B +n) which converges to X, when n — co.
Therefore, |85 (X,) — X,| —» Qin proba_bility and as X, — 0, almost surely, 87 is
also consistent.

It follows readily from Tchebychev's inequality that
{18, (X} — &) [8,(X) — h(8)] | 6}
2 ¥
€

but E{[§,(X} — h(#)]'[8,(X) — h(8)] | 9} = Ry, x)(@). So, if a sequence of
estimators has quadratic risk tending to 0, the estimator is consistent.

Pr(ld.(X) —h@)} > ¢) <

Ve = 0
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One can also define strong consistency of a sequence of estimators if the con-
vergence for the parameter is almost sure instead of in probability. The theory of
probability assures us that almost sure convergence implies convergence in proba-
bility and therefore strong consistency implies weak consistency. It can be shown
that the MLE is strongly consistent under the same regularity conditions of the
Cramer-Rao inequality. Nevertheless, the concept of weak consistency retains the
essence of what is needed and will be maintained in the sequet.

4.4 Interval estimation

4.4.1 Bayesian approach

Returning to the Bayesian point of view, the most adeguate form to express avail-
able information about unknown parameters is through the posterior distribution.
Despite its coherent specification through expected loss functions, point estimation
presents some inconvenient features. The main restriction is that it simplifies the
multitude of information from a distribution into a single figure. It is important at
least to have some information about how precise the specification of this figure
is. One possibility is to associate point estimators with a measure of the uncer-
tainty about them. So, for the mean, one can use the variance or the coefficient of
variation. For the mode, the observed information given by the curvature at the
mode is usually adequate. Finally, for the median, the interquartile distance could
be used.

In this section, another line of work is sought. The aim is to provide a com-
promise between the complete posterior distribution and a single figure extracted
from it. This compromise is reached by providing a range of values extracted from
the posterior distribution. Typically, one attaches a probability to this region and
when the probability is large one gets a good idea of the probable or likely values
of the unknown of interest. Ideaily, one would like to report a region of values
of # that is as small as possible but that contains as much probability as possible.
The size of the interval informs us about the dispersion of the values of ¢.

Definition. 1et @ be an unknown quantity defined in ©. A region C C @ isa
100(1 — e)% credibility or Bayesian confidence region for 8 if Pr(# € C|x) =
1 — . In this case, 1 — a is called the credibility or confidence level. In the scalar
case, the region C is usually given by an interval, [c, c2] say, hence the name.

It should be clear from the above definition that the intervals are defined by
simple probability evaluation over the posterior distribution of 8. Many Bayesian
authors reject the use of the word confidence for Bayesian intervals. As will be
seen shortly, confidence has a very precise meaning in the definition of frequentist
intervals that differs substantially from the meaning given here. These authors
consider it important to dissociate the concepts. In the sequel, we will refer to
confidence intervals whenever we refer to the method in general or in the classical
context and will use the word credibility in reference to Bayesian intervals.
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Note that C is never an interval in the multidimensional case. Even in the
uniparameter case, there is nothing in the definition enforcing the region C to be
an interval. Therefore, there is a slightly misleading use of the word interval.

The above probability is evaluated over the updated distribution of @ which will
be taken from now on as the posterior. In general, one would want both o and C
to be as small as possible. This in turn implies that the posterior distribution is as
concentrated as possible. The requirement of a larger posterior probability than
the confidence level is essentially technical. It is mainly due to the use in discrete
distributions where it is not always possible to find a region that exactly satisfies
the probability required by a given level. In many cases, the inequality can be
taken as an equality thus implying that the region C will be as small as possible.

Note also that credibility intervals are jnvariant under 1-to-1 transformations
of the parameter. Se, if C is a 100(] — «}% credibility interval for # and ¢ =
(8} is a 1-to-1 transformation of @ then ¢(C), the image of C under ¢, is a
100(1 — @)% credibility interval for ¢. This useful property is also shared by
frequentist confidence intervals.

Example. Let X = (X1,.... X) be a random sample from the N(0, o2) dis-
tribution with 62 known. The non-informative prior for @ is p(#) o k and the
likelihood is n

{(0; x) X exp ——2(9 — f)zl

providing the posterior p(8 | x) o 1(@; x) p(#) o 1(9; x) and therefore @ | x ~
N(x,o%/n) or equivalently /7 (8 —X)/o | x ~ N(@©,1). From there, many
100(1 — )% confidence intervals may be constructed for  with the use of the
standard normal distribution function ®. Defining ®(x) = P(X < x) if X ~
N0, 1) then z, is such that ®(z;) = 1 — ¢, 0 < ¢ < 1 and intervals can be
constructed from:

L 1o = Pr(y/n(@ —~X)/o = zo | X) which implies that § < zoa/ /7 + %
with posterior probability 1 — . Hence, the interval € = (—co, ¥ -+
ze0/ v/} is a 100(1 — &)% Bayesian confidence interval for . The length
of "y however is infinity which is not very useful for our summarization
purposes. As previously mentioned, one would like to have € as small as
possible. The problem with this interval is that it includes (infinitely) many
values that have very negligible probability around them.,

2. Let zp and z; be numbers such that

1—a=P(-z5 < V/n( —Djo <z, | x).
Using the symmetry of the normal distribution,
Pl-zp) =P(X < —zp) = P(X 2 2p) = 1— P(X < 25) = B

and the probability of the above interval is given by D(zy) — P{—2z5) =
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} — (y -+ ) and therefore y + B = «. With this assumption,

l—amPr(‘g<f( x)<zylx)

=Prl———zg+x <8<z +x|x).
( N N

The interval C = [cy, €2] where

g o
I e d =X A e
'] X+ -\/EZ'B an cz ﬁzy
is a 100(1 — «)% Bayesian confidence interval for 8. Note that it has length
(z, + zg)o/+/n. There still remains the poiat about mmlmlzatlon of the
length of the interval subjectioy + § = a.

Note that if ¢ = ¢ () is a monotonically increasing transformation of 8, then
i@ (c1), #{c3)] is alse a 100(1 — «)% Bayesian confidence interval for ¢. If
¢ = ¢{F) is a monotonically decreasing transformation of &, then [qb(cz) ¢(c1)]
is a 100(1 — )% Bayesian confidence interval for &. )

Consider without loss of generality that z,, < z4/2.< zg and definea = z,/2 —
72y = 0,6 = 25 — zas2 = 0 and A and B as the areas between zy2 and z,, and
between zg and z, 7 respectively. The length of the confidence interval becomes
2242 + b —aand A = B. lItis clear from Figure 4.4 that the density over the
first interval is strictly larger than under the second_ interval. Thercforé, b > g and

theta

Fig. 4.4 Density of the standard normal distribution.
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b —a > 0. The shortest possible interval is then obtained by taking b = a = z, /2-
Therefore, the symmetric interval is the shortest one and every value of 4 inside it
has larger density than any point lying outside the interval.

This simple example provides the key to finding intervals of shortest length.
It indicates that the length of the interval is inversely proportional to the density
height. Shortestintervals are then provided by inclusion of points of higher density.
This idea is mathematically expressed in the definition below and represented
graphically in Figure 4.5.

pltheta)

c1 c2

theta
Fig. 4.5 The HPD interval for the density above is given by C, U Ca,
Definition. A 100(1 — «)% Bayesian interval of highest posterior density (HPD,

for short) for & is the 100(1--x)% Bayesian interval C givenby C = {# € @ : p(# |
X} = k(a)} where k(o) is the largest constant such that P(# ¢ C | x) > 1 — @,
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Example (Berger, 1985). Let X = (X1, ..., X,;) be a random sample from the
Cauchy(#, 1) distribution and let & have non-informative prior p(8) o« k. The
posterior density of 8 is

1

p(Glx)ocn——1+(xi_9)2.

Fe=1

Assume now that the observed sample was x = (4.0,5.5,7.5,4.5,3.0), with
sampling average ¥ = 4.9. Then, the 95% HPD confidence interval for 8 can
be numerically obtained as [3.10, 6.06]. Had we assumed a N(8, 1) sampling
distribution, the 5% HPD interval would be {4.02, 5.86] which is more affected
by the suspect value 7.5, In both cases, the intervals are easily obtained with the
help of a computer. It will be seen in the sequel that the exercise is far from trivial
for the Cauchy case in the frequentist approach. The main reasons are the absence
of a univariate sufficient statistic for § and the absence of asymptotic results to
allow for approximations.

Note however that despite their appeal, HPD regions are not invariant under
1-to-1 transformations. The main reason is the existence of the Jacobian required
when obtaining the density of any parametric transformation. Because of the
invariance, transformation of HPD regions remain valid confidence intervals with
the same confidence level. All they lose is the HPD property.

Finaily, assume now that Pr(6; € C;) = 1 —wj,f = 1,...,r, and let
C =) x--- x (. If the 6;’s are independent a posteriori then

ProcC) =[] PrioieC=]t1-a)
i=1 i=1

and Cis a 100(1 — &)% confidence region for @ if ni(l —a;) > 1—ea. Ifthe ;s
are not independent then

Pri@eC)=1-y Prii ¢ Cp).

i=1

This result is also known as the Bonferroni inequality. As Pr(g; ¢ C;) < w;, if
one takes ) ; a; = o, taking for example «; = a/r, then C is a 100{I — &)}%
confidence region for 8.

4.4.2 Classical approach

In the case of classical confidence intervals, only sampling distributions can be
used since parameters are unknown but fixed. Therefore, they are not liable to the
probabilistic description they get under the Bayesian treatment. That is why the
concept of confidence instead of probability intervals becomes relevant. Before
describing the general formulation, it is useful to see it applied in an example,
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Example. Let X = (X1,..., X») be a random sample from the N (@, a2) dis-
tribution, with a2 known. To draw a classical inference one should ideally base
calculations on a minimal sufficient statistic for 8. In this case, we have seen that
X is such a statistic and

X~N (9 “2) I el N, 1)
~ ,— r = ——— ~ N{0, 1).
n o/ ,

Observe that {7 is a function of the sample and of the parameter 8, the parameter
of interest and its distribution does not depend on 8. It can be said that

Pl-zap SU Szap)=1—ua
and isolating @ yields

_— a — a
P(X—Zajz—jﬁ-SQSX-l-Za/z:/“n:):1—(1.

So, even though an interval for # was obtained, it cannot be understood as a
probability interval for @ as in Bayesian intervals. It can only be interpreted
in the sampling framework by saying that if the same experiment were o be
repeaied many times, in approximately 100(1 — @)% of them, its random limits

X — zap20//n and X + zq/20/+/n would include the value of 8. Also, this. .

assertion is useless from a practical perspective since it is based on an unobserved
sample. What can be done is to replace the cbserved value of X in the expression
and state that one can have 100(! — a)% confidence, instead of probablhty, that
the so-formed numerical interval contains 8.

The general procedure o obtain confidence intervals in the frequentist frame-
work is based on a generalization of the steps of the above exampIe to any statistical
problem. These are:

1. AstatisticU = G(X, ) € I withdistribution thatdoesnotdependonf € @
must be found. Ideally, this statistic must depend on X through minimal
sufficient statistics and have a known distribution. Both requiréments were
met in the example since U depended on the sample through X and had a
standard normal distribution.

2. With knowledge of the distribution of U, find a region A C I{ such that
Pr(U e A) = 1 — «. When 8 is scalar, then a scalar U can be found in
many cases with Pr{a; < U < a3) = 1 —« and, in this case, A = [a), a2].

3. The confidence interval C C © is obtained by isolating € in the above
expression and replacing sample values.

A useful complementary text on the subject is Silvey (1970).

Definition. Let 8 be an unknown quantity defined in ©, U be a function U =
G(X, #) with values in 2/ and A be aregion inZ{ such that Pr(Uc A) > 1 — a.
A region C C @ is a 100(1 — «)% frequentist confidence region for 8 if

= {#: G(x,08) € A}.
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In this case, 1 — o is called the confidence level. In the scalar case, the inversion
in terms of & vsvally leads to an interval, C = [¢1, ¢2] say, hence the name.

Once again, the use of the word interval for the general case is an abuse of lan-
guage. The inequality in the definition is taken as an equality, whenever possible.

The quantity U is usually calied a pivot or a pivotal quantity and finding one such
quantity is fundamental. The choice of U is crucial to the success of the method.
1t is not at all obvious that reasonable options are available in any given problem.
The effort towards the use of minimal sufficiency is in the direction of shortening
intervals as much as possible.

All randomness present here is due to the sample X leading to a probability
interval for U and not for §. The procedure involves an elaboration that is absent
from the Bayesian definition. It provides an interval to which is associated a nu-
merical value, the confidence of the interval. For that reason, it is often interpreted
misleadingly as a probability interval, as in the Bayesian framework. Care mustbe
exercised to ensure a correct interpretation of the intervals, The existent symme-
try in many canonical situations leads to intervals that coincide numerically when

. obtained by a frequentist or a non-informative Bayesian approach, This happened

in the above example but should not be used to unduly equate the two approaches.
In the case of a parameter vector, the use of Cartesian products of confidence
intervals can also be applied to the construction of classical intervals. In particular,

- approximations such as those from the Bonferroni inequality are used more often
- in classical inference where the search for the pivotal quantity U does not always
' lead to independent compenents. This problem typically does not occur in the

Bayesian approach where most problems lie in the computations.

4.5 Estimation in the normal model

This section deals with applications of point and interval estimation of means and
variances to problems of one and two normal populations. The Bayesian per-
spective with both non-informative and proper conjugate priors and frequentist
perspective are presented and compared. We will particularly emphasize the sim-
ilarity between the results with the frequentist and the non-informative Bayesian
points of view. The similarity is only numerical since we have seen that the
derivations are completely different.

45.1 One sample case

Assume initially asingle sample X = (X1, ..., X,) fromthe N(O, o2) distribution
with ¢ = o~ 2. If ¢ is known and the pﬂor dzstnbuuon is @ ~ N(uo, t3), we have
already obtained that 9]x ~ N(u;, 7 ) where

= -2 ¢
no”TX + Ty Tl
no~?+ 1y 2

9 1

Hy = and 1y = ————3
na~?+ 15?2
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So, posterior mean, median and mode coincide and the posterior precision and
curvature of the log posterior are given by ;” 2
Credibility intervals can be obtained by noticing that

8 —

[x~NOD
and therefore

l—a=Pl-zap < (0 —p1)/T1 <zapz | %)
= Py — 2271 < 8 < p1 + Zoy271 | X)

and",_due to the symmetry of the normal, (11| ~ 2a/271, p1 + Zay271) is the 100(1 —
)% HPD interval for 6.

A non- mformatwe prior can be obtained by letting IO — co. In this case,

. ‘1‘1_2 — no~%and i1 — X. Posterior mean, median and mode coincide with the

N moments estimator and MLE, X. It is easy to check that X is also an unbiased,

efficient and (strongly} consistent estimator for &, Also, the 100(] — «)% HPD
confidence interval for @ coincides with the classical confidence interval obtained
in the previous section.

Assuming now that & is known and the prior for a?is noog 2~ x,%o leads to the
posterior for (n.;)cr0 + nso)gb | x ~ xn . where

= Z(x; —6)%.

The following quantities can be obtained:

no+n
Elglx]=———
nooro +nso
_ nooo—l-nso no 2 n
E
{E[&| I} o+n no+nao+no+nso

which is a weighted averagc between the prior estimate 00 and the maximum
likelihood estimate 30 with welghts no/(ng + n) and n/{ng + n), respectively.
Also,

noog + nsg

n4ng-—2

which coincides with the inverse of the posterior mode (but not of the mean) of qﬁ
The main dispersion measures are

Elo?|x]=El¢7! |x] =

2 242
201 + no) and  J{mode) = (noog_+ nsp)

v - — - 2
@102 oot + s 2Antng—2)

Note that once agam the expression of J(mode) is very similar to the posterior
precision V(¢ | x).
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Confidence intervals can be obtained with the percentiles of the x2 that are
available in many tables and statistical softwares. Defining L?; , and 73,’,, as the

100a% and 100(1 — )% percentiles of the x2 distribution with v degrees of
freedom, respectively gives

1—a_P(x

LanlX

2 -2
X X
=P —c21/2.n: 5 < b < ozt/lm 2|K )
ngoy + nsy npoy + nsy
This gwes rise to a 100(1 — &) % credibility interval for qta Given the asymunetry
of the x? distribution, this is not an HPD interval. As o2 = 1/¢,

0
(nocr0 + ns3 ngco -+ nsg)

i < (ngcrg + nsé)gb < j{"ﬁfz'm |x) where 1y = ng +n

)

w2 2
Xu{/Z,m -.X_Q'/Z,n;

is a 100{1 — &)% credibility interval for o2,

The non-informative prior can be obtained by Ietting ng — 0. In this case,
the posterior is nsoqf) | X ~ x,, and {E [¢ | x]}‘ = 50' which coincides with
the maximum likelihood esnmate of 7! = o2, The MLE is S0 with sampling
distribution nSZ/cr t62 ~ xn Therefore, it is unblased and since

dlog p(X | o?) _
da? -

it is also efficient. Tts variance is 2¢*/n and tends to 0 as n — oo which means
that the estimator is also consistent. The 100(1 — «)% credibility interval for o2

becomes
( st nsl )
=2 L) .
Xn{/Z,n K_a/z,n

The pivotal quantity used for the construction of the interval is 753 /o2 with a x2
sampling distribution. The classical confidence interval can be easily obtained and
shown to commde with the above interval, obtained for the non-informative prior.

If @ and o2 are both unknown quantmes using the conjugate prior 8 | ¢ ~
N{ug, (cop)™ 1) and ngaoqb ~ xno, gwes the marginal postenor distributions
B X~ ty, (i o} fc1) andn;a b x ~ an where njo? = ngao +n—1)s% 4
conlpo —X)?/(co + n) and 52 = T(x; — X)?/(n — 1). Once again, the posterior
mean, mode and medtan of @ coincide and are given by 3. Also,

2

ny o ni+1c¢
Vg |x) = m—_—a-c—i and  J(u)) = 2
t

Denoting the 100(1 — a)% percentile of the 1, (0, 1) distribution by #4,,, gives by
symmetry of the Student-# that
1
< 10!/2.!!1)

8
l—¢=P (—Ia/z,n] < o1

(S
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ay 251
=P (;,Ll — ty/2m TET < 0 < p +tejrm 7(:—”]‘)

and the above is an HPD interval.

For 0’2, by analogy with the results for known 8, El¢|xl=0
2 i ”1‘712
Elo? |x1=E[¢” |x]=
n -2

]_2 and

which coincides with the inverse of the posterior mode (but not of the mean) of ¢.

The main dispersion measures are

.21’11

and J(mode) =
(mio)?

Vigixi=

(n1od)?
2(?’[] —2)-

Once again, the expression of J(mode) is very similar to the posterior precision

v=le 1 x). o

Confidence intervals can again be obtained with the x* percentiles leading to

J1—-a=PFP (X2/2‘m < ﬂ1012¢ < Yi/z,n. | x)

AN, §
, 2 -»2
X Xar
= P —aﬁ——‘/’?';' < ¢ < Zafhm ’;1 |x§-
Tk n10;

This gives a 100(1 ?—._a‘.)% confidence interval for ¢ (that is also not an HPD

interval). As o =1/¢.

( nla% H}G’l2 )
=2 > ,2
Xa/2.m Xapm

is a 100(1 — &)% confidence intervai for ol

The non-informative prior in this case is p(8, ¢) cj)". This can be seen as a

limiting case of the conjugate prior above when ¢g, ag — 0 and

xf_l. Again, the posterior mean, mode and median of & coincid
is the maximum likelihood estimate.
The dispersion measures for g are
—15% n?

n
v LA d J@) = ——
@10 n—3n, an x) (o - 1)s?

ng = —1. This

" gives marginal posterior distributions 8 3%~ th—1(%, s*/n)yand (n— Ds2p | x~

e with X, which

and since /A(@—X)/s | X ~ tn1(0, 1), the HPD 100(1 — )% confidence interval

for @ is analogously obtained as

_ s _ 5
(x ~ taf2,n-1 ﬁ’x + M/Z.n—lﬁ) -

The classical (moments and maximum likelibood) estimator X for{é is unbiased,

efficient and consistent. Classical confidence intervals for @ can

not be obtained
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with the same pivotal quantity used before because it depends on the unknown o
A new pivotal quantity depending only on X and & and with a distribution that is
known and does not depend on any of the unknown parameters must be found.
Fortunately, this is possible in the normal case with the following results.

Theorem 4.3. Let X = (X1,..., X,) be a random sample from the N(@, o)
distribution and let X and 52 be the sample mean and variance respectively. Then,
conditional on 6 and o2, X and $? are independent with respective sampling
distributions
b7 2
X=8 _N@, 1) and (l—?us— ~xi 1.

g 9
Proof. DefineZ = (Zi, ..., Zn) Where Zi = JaXi—-0) /o i=1,...,n Then,
the Z;'s are lid N(O, 1), Z = J/n(X —6) /o and, in matrix notation, Z ~ N0, L),
where I, is the n x n identity matrix. Let A be an orthogonal matrix with first
row given by (1/4/m1;, where 1, is an n-dimensional vector of 1's. There are
many methods in linear algebra available for completing orthogonally the other
1~ 1 rows of A. From the invariance of the multivariate normal distribution under
linear transformations (Exercise 1.6), it follows that

Jn

V — A Z ~ N{@,1,) since A0 = 0 and AA =T,
Therefore, the ¥;'s are iid ¥ (0, 1} variables,

L

n
: = 2.2
Y| = ﬁl’"Z = nZ and YY= ?zll YF~ -
Also, from the independence of the ¥i's, 377 Y? ~ x2_;. So.
82 S (xi =X
n— Do =y 2
(=15 =2 7

i=1

n
=5z -7y
i=l
- =2
=Y z}-nZ
i=1

n
=y z2-v}
i=1
=27 - Y}.
But,
n n
Y =YY= AZYAZ= ZAAL=Z7 =Y Zi
i=1

i=1
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Therefore (n — 1)$%/0® = 377, ¥2 ~ X2, and is independent of ¥2 ang,
consequently of ¥ and X, compieting the proof.

The proof of the Lemma is an adaptation of resulrs previously shown and is lefi
as an exercise.

Corollary. LetX = (xy, ..., Xx) be a random sample from the N, a2) dis-
tribution and let X and S_z__be the sample mean and variance respectively. Then,
conditional on @ and o2, X has sampling distribution

~ tﬂ—l(oi ])-

Proof. A straightforward application of the last lemma with T — V(X - 8) /o,

W=n-1$o2andv =n-.1. Then, T/ /W]y = V(X -6)/s, completing
the proof,

0

The above results indicate how to define pivotal quantities for construction of
confidence intervals for ¢ and a2, In the case of &, o is replaced by its estimator §
leading to the pew pivotal quantity V(X - g) /S, whose sampling distribution is
t,—1(0, 1). Note the similarity with the Bayesian standardization over the margina)
posterior of 9, It is easy to obtain that the classica] interval will coincide with the
non-informative Bayesian one. Even if § could estimate o without error, this

Fora?, we have that { E[¢ | X1 = 52 the mode of ¢ is (n—3) /[(n~1)§2] = é
and the dispersion measures are

— 12,4
and sy = Z= D%

eI = (n — st 2n—3)

The MLE of 02 is 62 = (3 - 1)S5%/n which is biased and is usually replaced by
the unbiased estimator §2 with sampling distribution (; — DSY/a? ~ 32 g
V(5% = 204/(n —~ 1). Since 52 i5 unbiased and V($?) > Oas n— oo,ug isa
consistent estimator of o2, The difference between $2 and 52 becomes negligible
as 7 increases which means that ¢2 j also consistent,

Non-informative Bayesian and classical intervals for o2

and are given by
((n — s (n— 1)32)
=2 T .
af2,n—1

Fi x2

/2 n—1

once again coincide
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‘When making an inference about one of the pa.ram.etf_ars, the 0[}.181" one %)ecomes a
nuisance parameter, Inthe Bayesian approach it is ehmmfited by u?tegratmn. I-n.the
frequentist approach it is eliminated by ap-)propnate CI.’!O.DICES‘ of pivotal q%am;nei:
In the normal case, we were able to find smt'fab'ic quantme_s given py-\/ﬁ { ; )Y t
and (n — 1)5%2/52. These are based on rmmma‘] sufficient stzfnsf:cs anczi o not
depend on the respective nuisance parameters. This fortunate comm.dcnce oes Il:o
necessarily occur in all statistical problems. In those cases, alterative approaches
based on some form of approximation must be used.

4.5.2 Two samples case

i i i two normal
From now on, uatil the end of the SBCII.OI‘I, we will concentrate 'OT] o 5?—)
samples where X| = (Xq1,..., X1n,) is a random sample from_ the I 5)

distribution and X2 = (X5, ..., Xaa,} 1s a random sample from'the N (8. ay)e

distribution. In addition, the two samples Will be assumed to be independent.
If 612 and 022 are known, the liketihood is

plx1, X2 | 61,62) = plxy | 9D p(x2 | 62)

] — .2 17 — 32
—— & - xpy — 55 —¥2)
ocexp{ 2612(91 X }_e p{ 2022‘ ]
which factors out into separate likelihoods for &y and G5. So, 1f91 and Q;; are pr?or
mdependent, they will remain posterior independent. One cldss of conjugate prior
is given by independent 8; ~ N{u;, r,.z) distributions fori = 1, 2. Another clas's is
given by bivariate normal distributions. It includes the previous clz}ss by allowing
also non-null prior correlation between #; and 63, The first class will be used here
for simplicity. . _

Combining the adopted prior with the likelthood leads to the independent pos-
teriors &; | x; ~ N{u}, r,.*z) wher_e "

1 .
and 'L"-*z Ty, 1= 1,2,
nigy © 4T nio; "+

The analysis is exactly like two separate conjugate analyses and all }he re§u]ts for
one sample follow. The same comments are true for non-informative priors and
for classical inference. The non-informative prior for 8 and 8; is p(6y, &) oc k

and 5

6 1% ~N (f %—) . i=1,2independent.
)
The equivalent sampling result is X; | 6; ~ N(&;, a‘?/n;), : = 1, 2 independent,
from where point and interval estimation can be processefj in the same way.
An interesting problem absent in the single sample case ns-compar}son_of means.
This can be done by estimation of g = 8y — 63. The posterlor*drstrlfutlfzn of ,fz:s
obtained from the properties of the normal distribution as N ey — 15, 54 179,
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This p0§terior reduces in the non-informative case to the N (8, (112 Jny 022 /n2)
y_here o= %) — Xz2. In the case of classical inference, estimation is based on
X, - X2 with sampling distribution N8, U,Z fr+ 022 /n3). Observe that all the
above distributions are symmetric which eases the calculation of estimators and
HPD intervals.

Assume now that 0'12 and 022 are unknown but egual with ¢ = o 2= gy 2
Then a conjugate prior can be constructed in the following way: 6\ ~
N, ()1 i = 1,2, are conditionally independent and nooa ~ Xnge The
prior density of (81,62, @) 18

p(o, 62, 9) = p(th. 621 )p(@)
= p(6y | )p(62 1 ¢)p(d)
o pt? exp{*%m(fﬁ ~ uptig!? EXP{“%CZ(Gz — 12’}
« ¢1hb["2‘j:1 exp{f%nodg}
x "o/ cxp{—%[noag F 10y — un? - ealdr — a1k

" In particular, the prior distribution of B | ¢ is N(py — K2, :p'l{cl‘] + cgl)).
Therefore, using the results from Section 3.4, one can obtain its marginal priog
B ~ tay(u1 — 203 (c7 " 4 ¢5 '), The likelihood is

e, X 61,02, ) = plxi 161, 9)p(x2 1 82,9)
2
rz;/2 _4_9 . 2 . Y 2
o<i|=|1¢ exp{ [ = s} v micer = ]}

where s
1 : _ .
5?: — E (x,-j-—x,-)z, i=12
L j::i

Combining the likelihood with the prior gives the posterior density of (61, 62, ¢):

& ermn/2

2
Cing —
X exXp {—% [”003 +vs? E L T N R Dl C i MT)z}}
=1

— o +

where ,(.L:-k = {cipi + mix)/ (i + ) i = L2, v =1 +np — 2 and 5% =
[(ny — I)S% + (n2 — I)S%}/v, that is a weighted average of the siz obtained within
each sample with weights given by n; — 1,i = 1,2. Note that the posterior
and prior densities have the same kernel. Hence, the following results can be
established, by analogy:
L)
gl x~ N( ¢ L independent and 6; | X ~ r %0 i
i s M"‘c:-‘qb P D S 71 ME’C—T), i=1,2,
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and néagz(ﬁ bx ~ XV?E where ¢f = ¢; + i, nj = ng +n1-+n2 and
2 ¢n
2 2 2 ini —
ngog” = nooy +vs~F Z oS - (g %)%
. =1t 1

In terms of B, one can obtain the conditional posterior distribution B | ¢.% ~
N} — u,z,(b—lz(c]*‘l] + c;'ll)) and marginal posterior distribution g | x ~
rna(u’{ — p3.03 ;™ + c3 ). Once again, the posterior is symmetric and
posterior mean, mode and median of § coincide. HFD intervals for § can be

‘obtained using percentiles of the Student t distribution. For ¢, we have that

{E(¢] X} = 05‘2 and credibility intervals can be constructed using percentiles
of the x? distribution. g

The non-informative prior distribution can be obtained by noting that this is a
location scale model with location parameters 1 and g, and scale parameter ¢.
Therefore, the non-informative prior is given by pOy, 62, ) X $~!. This can
be seen as a lmiting case of the conjugate prior above when ¢1, €2, og — 0 and
ng = —2. Replacing these values in the expression of the conjugate posterior
gives ¢f = i, wh =X ng =V and n*a{{l — vs2. Therefore, the posterior mean,

mode and median of g are jven by B and the 100(1 — o)% HPD interval for B
has limits § = taj2.05” nt 4 n,!. A possible estimate for o2 is given by s%.

The 100(} — )% credibility interval for o2 obtained as before is given by

( vs? vs? )
=2 2 ’
Xajtv la,/z.v

In the case of classical inference, f =X — X2 and 52 = v§*/(n) + na) are
the MLE of § and a2, respectively. Itis not difficult to show that ﬁ is an unbiased,
efficient and consistent estimator for p and &2 is a consistent but biased estimator
for o2, It is nsually replaced by 2 which is an unbiased, efficient and consistent
estimator for o2, The relevant sampling distributions are

. @
B-B _ ..0.1) and o~ X

/ 2
s n‘{i-}”ﬂgl [e2

Note that these variables provide pivotal quantities for the construction of con-
fidence intervals for g and o2 respectively. The resulting confidence intervals
coincide numerically with those provided by the non-informative prior.

Ifoj = (f)l—l and 65 = ¢ 1 are unknown and unequal, the likelihood factors
according 0

pix| 91192,0;2,022} = p(x1| 6, o) p(x2 | 62,03).

Adopting independent normal-gamma conjugate priors with parameters (1ei, Ci»

i, sgl.), i = 1,2, for each of the samples leads to the independent posterior
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distributions

2
53
Oi | X~ tyr (ﬂf %), i=12 and sl ) x ~ XE;*’ i=12

i

where the relevant quantities are obtained by the usual one sample operations
associated with the confugacy of the normal-gamma by the normal observational
model.

If interest lies in the comparison of the means, the posterior distribution of 3
must be obtained. First, let v and w be such that

B — D _ Sa/ved
T=—p——————t—  and tanw = =
1/55‘,2/5{—!-:5‘22/@ S02/+/ €3
it follows that
s/ Vet S5/ V€3

SiR @ = and  cosw =
2. 2 2, 2.
Vo /et + 53,7l Va1 /el + gt/

and therefore

R Sl W et 1

s/Ver 562/ S5
where the fractions-in the right-hand side of the equation have independent standard
Student-z distributions with respective v and v, degrees of freedom. A random
quantity under these conditions is said (o have a Behrens-Fisher distribution with
parameters vy, v and w. This distribution is similar to the Student ¢ distribution
and has been tabulated, enabling easy construction of confidence intervals,

Ini the case of a non-informative prior p(6y, 82, 012, 022) o q,".z.crzﬁz. This can be
seen as a limiting case of the conjugate prior above when <, &gi — Oandv; = —1,
i =1, 2, Replacing these values in the expression of the conjugate posterior gives
¢ = ni, 0} =%, v = — 1 and 5G; = i, where 5? is the usual unbiased
estimate of crf, { = 1,2. Estimators and confidence intervals can be obtained
accordingly. The problem is more difficult to treat under the classical perspective,
No easy pivotal quantity for B can be found with known distribution although
approximations based on the Behrens-Fisher distribution were proposed.

Another sitvation of interest is the comparison of variances. Since variances
measure the scale of a distribution and are always positive, it makes MI0re sense to
compare them through their ratio instead of their difference as we did for the means,
Therefore, we will focus on the posterior distribution of ¥ = o:j"/alz = ¢1/¢ha.
We have just obtained that ¢1 and ¢, are posterior independent with Jjoint density

2 — * ok 2
P, ¢z 1%) o [ 4772 ’exp[~”’—§°’—¢,~}.

i=]
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The easiest form to obtain the posterior distribution of Y is to complete the trans-
formation to ensure a bijection and use results available for densities of 1-to-1
transformations of random quantities. Let ¥z = ¢ complete the transformation.
The inverse relation ¢, = Yebz = i)y follows. The Jacobian of the transforma-

tion is B f 261, b2)
(Y, yr2)
and the posterior density of (v, ) is

[ Yo
PO 2 1 %) o Qr”?/z-‘wé”'**”;)ﬁ” exp { ~% [0, + v;*sa‘fw]} :
Finally, the marginal density of W is
pOp | X) é"-'fp(w, V2l X)dys
o 2! / gl o ’h% [vz*sé;f + 1);.FSE}.EIZW",I]] dyry
I (v} +v5)/2)
[(”35322 + ”75312‘/’)/2](')?“;)/2

o 2 —{vy+u)/2
o /2 (v;‘ + vy Yl z,//) .

* 2
S0z

e

It can then be shown that

% 2

a2
U | x ~ F(u}, v).
Soz

Even though the distribution function of the £ distribution cannot be obtained
analytically, it is tabulated in many books and computer software. Its percentiles
can be used in the construction of confidence intervals. The main properties of
the F distribution are given in the list of distributions. An interesting property
for probability evaluation with the F distribution can be derived from the fact
that if X ~ F(w, vy) then X! ~ F(vy, v2) by simple inversion in the ratio of
independent x2 distributions. Therefore, denoting the o and | — o quantiles of
the F(vj, v2) distribution respeciively by F,{vi, ) and Fa(vl, va) gives that
Eyvi,v) = F ' (2, ).
Point estimators are given by

% 2

s, vy sE2 uvr — 2)
E x]=202._ 2 | and mode =ﬂ——2~'—~—.
Win =t W ="H30s

¢
Both estimators converge to (58‘2 /531)2 when v — co.

In the case of a non-informative prior the 53, %'s are given by 57, the unbiased
estimates of the populational variances and the vi'sare givenbyn; —1,i = 1, 2.
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Therefore, for large samples the estimators will be given by the ratio of the variance
estimates.

In classical inference, we have already obtained the independent sampling dis-
tributions of (n; — I)S,?gb,- ~ x;"‘_ﬁl,i =1, 2. Therefore, from the properties of the
F distribution, ($7/53)¥ ~ F(n; — 1. 72— 1). Once again a pivotal quantity was
found for inference about ¥ and the resulting confidence interval will be nimeri-
cally equivalent to the non-informative Bayesian one, The unbiased estimator of
vl =oljolis

ny—3 S?'
ny — 1 S2 ’

Confidence intervals are obtamcd in either case using quantiles of the F distri-
bution. These are not HPD intervals due to the asymmetry of the F distribution.
Using the results listed about the F, a 100(1 — o)% credibility interval for yr is
obtained from

w2

_— S,
l—g=P (Fa/lz(uz*, i) < 2
Sy

Vo< Fap(f, vi)ixg, Xz)

5* 2 1 o* 2

01 7 [ A

= Pr *ZFQ/Z(U;,UT)<1,II < *ch,/z(vT,v;)Ix;,xz
S;m So2

and, therefore,

[S* 2/3322}?;/12(“» 0 (55 5o Fap2 0], "2)]

is a 100¢]1 — @)% credibility interval for Y. In the case of non-informative priors,
the modifications previousty mentioned apply and the resulting interval is

2

52
%Fa/Z(nl —-lLn-1].
Y

2

55— —t

“Faz (r2—Lna -1,
5 1

Finally, the confidence interval derived from classical inference coincides with the
above interval, obtained with a non-informative prior.

Exercises

§4.1 }

1. Prove that the estimator of 8 assocmted with the absolute loss is the posterior
median of the updated distribution of 6.

2. Showthatif L and L; are two proportional loss functions, thatis, L1 (8, 0)=
kLa(8, 9), then the Bayes estimators associated with these losses coincide.

3. Suppose that X with distribution N (6, o'2) with o known is observed and
itis known that @ € (a, b) (a < b).

(a) Obtain the non-informative prior for 8.
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(b)y Obtain the complete expression of the resulting posterior.
(¢) Obtain the posterior mean and mode.

. Let X1, ..., X, be a random sample from the Bernoulli distribution with

unknown parameter £ having unit uniform prior distribution. One wishes
to estimate § using the loss function L{d, 8) = (8 — d)?/[8(1 — 0)).

(a) Calculate the Bayes estimator and obtain its risk.

{b) Determine the predictive distribution for the (n + 1)th observation and
determine its mean and variance.

(¢) Generalize items (a) and (b) to k possible values for each X; with re-
spective probabilities 8, j = 1,. .., k, and obtain the Bayes estimator
ofd;, j=1,....k

. Suppose that the loss function used to estimate & through &

(i) 'equals the distance between 8 and @ if § is smaller than 8, and
(it) triples the distance between & and 0 if § is larger than 0.

{a) Obtain the mathematical expression of the loss function.

(b) Show that the estimator of @ is the first quartile of the updated distri-
bution of 8. ' h

(c) Generaiize the result in (b) for when the loss in (ii) is p times the
dlstance between & and 6.

. Suppose that X ~ bm(n ) and the conjugate prior 8 ~ beta(a, b) is used

‘(a) What is the value of X that minimizes the variance of the posterior
distribution of 67

(b) What is the value of X that maximizes it? Interpret the results.

(¢} Repeatitems (a)and (b) for the case of a negative binomial distribution
for X.

. Assumethat X ~ U[8—1, 8-+1}isobserved and assume a prior p(@) x 8!,

g = 0.

(a) Prove thatp(B!x) =c0t, 8 e(x—1,x+1), where = log[(x +
N/x— D} x> L
(b) Calculate the mean, mode and median of the posterior distribution.

. The income tax policy of a given country establishes that an individual pays

tax g iff its income is larger than k. Assume that the income distribution for
these individuals follows a Pa(k, 6) distribution.

(a) Show that log(X/k) ~ Exp(§).

(b} Assuming thatlittle is known a priori about &, a sample of these individ-
uals is observed and their incomes registered. Show that the posterior
distribution of 8 is G(n, n Iog(ﬁ/ k) where n is the sample size and
G is the geometric average of the observations.
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{c) Assume a change in policy is under study aiming at taxing the rich
more. The threshold would be raised to ! = k and tax raised to r > q.
Show that the expected revenue would only rise if

(H log(l/ k) )
red nlog(G/k) )

Hint: first calculate the expected revenue given 6.

§4.2

9. Consider a simple linear regression where E(Y; | ) = 6o + 6 X; with
8 = (6p.61),i = 1,..., n. Obtain the sum of squares S(#) and show that
its minimization leads to the least squares estimator

P - o XY -XF\O _ 1 &
(B0, 6)= Y — 61X, ~me"r here (X, Y) = - g(X;, 1).
: XZ_X nf:]

10. Show that the MLE of a parameter is a minimal sufficient statistic for this
.. parameter.
11. Suppose that the waiting time in a bank queue has Exp(6) distribution with
8> 0. A sample of n customers is observed over a period of T minutes,

(a) Suppose the individual waiting times were discarded and only the
number X of clients was recorded, Determine the MLE of @ based on
X,

(b) Determine the maximum likelihood and Bayes estimators for ¢, as-
suming that in a sample of n = 20 customers the average serving time
was 3.8 minutes and all 20 clients were served.

(c) Suppose that, in addition to the observations reported in (b), an ad-
ditional observation was made but all that is known is that it lasted
for more than 5 minutes. Obtain the maximum likelihood and Bayes
estirnators of # in this case. .

12. Suppose one wishes to test three types of bulbs: normal life, long life and
extra long life. The lifetimes of the bulbs have exponential distribution with
means &, 20 and 38, respectively. Assume the test consists of observing one
randomly selected bulb of each type. ‘

(a) Determine the MLE of 9,
{(b) Determine the method of moments estimator of §.

(c) Let ¥ = 1/ and assume the prior ¥ ~ G(a, 8). Determine the
posterior distribution of 8,

¢
(d) Determine the Bayes estimators of 9 using 0-1 and quadratic loss
functions.
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13. Let (X4, Y1), ..., (X,, Y,;)bebidimensional vectors forming a sample from

the bivariate normal with mean vector g, variances 01?-, i = 1,2, and corre-

lation coefficient p. Determine the MLE of all mode] parameters.
§4.3 )
14. Prove the Cramer-Rao inequality for the multiparameter case.
Hint: Consider the joint covariance matrix of 8 and the score function and
explore the non-negative definiteness of this matrix.
15, Considerarandom sample X = (X;,.... X, ) froman unknown distribution
function F and let £ denote the empirical distribution function. Show that

(a) Fis non-decreasing and contained in the interval {0, 1.

(b) F(x) can be written as Z where Z; = Ix, (oo, x],i =1,....n.
(c) Show that F is an unbiased estimator of F.

{(d) Show that £ is a consistent estimator of F.

Hint: obtain the sampling distribution of £ (x), Vx.
16. Let Xy, X3, ..., X, be a random sample from the Pois{#) distribution and
Y= 30 X
(a) Determine ¢ such that exp(—cY) is an unbiased estimator of exp(—6).
(b) Obtain a bound for the variance of the estimator obtained in (a).
(¢} Discuss the efficiency of the estimator obtained in (a).

17. Let X1,..., X, be a random sample from the uniform distribution over
interval {0, 6].

(a) Obtainb,, the MLE of 8, and show it is a biased but consistent estimator
of 8. :

(b) Obtain from (a), an unbiased estimator of 8.

(c) Calculate the quadratic risks of the estimators in (2} and (b).

(d) Find an estimator of & with smaller risk than those obtained in (a) and

(b).

18. It is common in genetics to obtain samples from the binomial distribution
with the impossibility of 0 cbservations.

{a) Show that the sampling distribution is given by
n\ 65(1 )"
= ——— =L...,n
fx16) (x) —a—e - n

(b) Obtain the MLE of 8, assuming that n=2,
{c) Verify whether the above estimator is unbiased.

19. Let Xy, ..., X, be a random sample from the uniform distribution on the
interval {¢a — b,a +b],ac Rand b > 0,

(a) Verify if a and b are location and/or scale parameters.
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(b) Obtain the MLE of @ and b.
(c) Assume now that » = 1 and define

Dot X

T]:Y: =
n

1
and T = — (max X; + min X;).
2 \1sizn I<izn
(d) Show that 71 and T; are consistent and unbiased estimators of a.
(e) Compare Ty and T3 specifying a choice between them and justifying
it.

20. Let X1,..., X, be iid with probability function f(x | ) == 6(1 — 8)*,
x=0,1,2,...,8 ¢ (0, 1) and define U; = Iy, ({0}).

{a) Show that U/ is an unbiased estimator of & and calculate its variance.
{b) Show that the expected Fisher information for & is n 871 — 0)) and
find the efficiency of UJ.

2], Let Xy and X7 be iid with Exp(#) distribution.

(a) Show that U = exp(—X1) is an unbiased estimatorof ¢ = 8/(8 + 1).
(b) Show that (1 —e‘T)/T 1saUMVU estimator of v, for T = X| + X».

§4.4

22, Show that Bayesian confidence intervals are invariant under 1-to-1 transfor-
mations of the parameter. So, if C is a 100{1 — )% cenfidence interval for 8
and ¢ = $(#) is a 1-to-1 ransformation of § then ¢(C), the image of C un-
der ¢, is a 100(1 - a)% confidence interval for ¢. Show that HPD intervals
are not invariant under I-to-1 transformations. Show also that frequentist
confidence intervals are invariant under 1-to-1 transformations.

23. Let@ = (81, ..., 6:). Show that if the ;s are not independent then

PrifcC)=1- Z PrG; ¢ C;).

i=1

Show thatif Pr(6; € C;) = «; = a/r, then C is a 100(1 — @)% confidence
region for §. Obtain the equivalent result from a classical perspective.
Hint: Define pivotal quantities {/; = G;{(X, %L i=1,...,r.

24. Let X ~ bin{x, 6} and assume the prior & ~ /[0, 1]. Suppose that the
observed value was X = n. \

{a) Show that the 100(1 — )% HPD interval for @ has form[a, 11,2 < 1.

(b) Letyr = &/(1 —@). Show from (a) that Pria/(l —a) < ¥|x]=1—«
and therefore [a/(1 - 2}, 00) is a 100(1 — &r)% credibility interval for
.

(c) Obtain the posterior distribution of ¥ and discuss the form of a 100(1—
)% HPD interval for .

{d) In particular, is the interval obtained in (b) of HPD?
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25. Let Xy, ..., X be a random sample from the uniform distribution over the
interval {0, #1.

(a) Obtain a pivot based on the sampling distribution of én, the MLE of 9.

(b) Obtain a 100(1 — )% classical confidence interval for & based on the
pivot used in (a).

(c) Which conditions must be satisfied for a minimum length interval?

{d) Assuming the non-informative prior p{f) o< 8~ ! findthe 100{1—a)%
HPD interval for &.

26, (Berger, 1985, p. 134) Let X be such that p(x | 8) = exp[—(x —0)],x = 0

and assume the prior p(8) o (1 + 92)‘1, 6 >0

(a) Prove that the posterior distribution of @ given x is monotonicaily
increasing and that the mode of @ is x.

(b) Show that the 100(1 ~ «}% HPD interval. for & must have the form
le(o), x], where c{@) issuch that Plc(a} <9 <x |[x]=1—¢.

{(c) Obtain the posterior density of n = exp(8) and prove itis a monoton-

" jcally increasing function of 7.

{d) Show that the 100(] — )% HPD interval for n must have the form
[1,d(c)), where d(@) issuch that Pl < p < d(e) | x) = | — .

(¢} Show that the confidence interval in (d) implies a 100(1 — 2)% lowest
posterior density interval for .

27. Let X = (X}, ..., Xy} be a random sample from a Pois(#) distribution.
The prior distribution for @ is judged to be based on information equivalent
1o that obtained after observing a lifetimes with Exp(8) distribution with
observed mean lifetime b, where a, & > Q.

(a) Show that the prior distribution of 8 is G(a + 1, ab).

(b) Obtain the distribution of & | x.

{c) Suppose that instead of observing the sample, only T = 3_7_; X; was
observed, Obtain the distribution of 8 | T = ¢.
Hint; if X consist of iid Pois(8) variables then T ~ Pois(n8).

(d) Compare the distributions obtained in (b) and (¢) when

37y xi = ¢, justifying the result obtained.
{e) Obtain a 100(1 — @)% confidence interval for & using the percentiles
of the x?2 distribution.

28. Let X; = 61 +&,i =1,....n, where ¢ are iid N(0, 02), 0% known and
the non-informative prior for & is assumed.

(a} Obtain the posterior distribution of 9.

(b} Obtain the 100(1 — @)% HPD region for 6.

(c) Show that the MLE of 8 .is the UMVU estimator of §. R

(d) Based on the sampling distribution of the MLE of 8, construct a
100(1 — «)% confidence interval for 8.
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(e) If O <1 < 1, Vi, what values of the ¢;’s must be chosen to obtain the

confidence intervals in (b) and (d} of shortest possible length?

§4.5
29. Show that if T ~ N(0, 1) and W ~ x2 are independent then T/ W7v
~ 1, (0, ).
30. Consider the situation with two normal samples where Xy = (Xy1,...,
X1} is a random sample from the N (9, of) distribution and X3 = (X7,
-..» X2,) is a random sample from the N{6;, d%) distribution. In addition,
the two samples will be assumed to be independent.

(a) If o and 3 are known, show that the class of bivariate normal distri-
butions for 8) and &; is conjugate with the above observation model.
Also, obtain the posterior correlation between 8 and 9 and compare

) it with the prior correlation.
() If o = o = g% is unknown, show that

- _ @
Pl 01 aa S~y

2
NI v

{c) Show that the resulting confidence intervals for 8 and o2 obrained with
the pivotal quantities of the previous item coincide numerically with
the credibility intervals obtained with a non-informative prior.

(d) If o and o are unequal and unknown, show that

sk 2

01

ﬁ'ﬁ[f | X ~ F(UT, v;).
S0z

31. Let X = (X1, ..., X;) be a random sample from the N (8, o) distribution
and assume that the normal-x 2 conjugate prior is used for (7, ¢) with ng =
5 where ¢ = o2, What should be the sample size to guarantee that
Pr{(@ — pu1)® < 4Viix) > 0.95 where g1y = E(@ | x) and V; = V(9 1 x)?

32. Let X and X3 be two observations from the N(8, o) distribution and
assume a non-informative prior for (8, ¢2). If ¥; is the smallest of the
observation and Y7 the largest one, show that a posteriori,

Priy1 28 <y) =05.

Hint: write the posterior distribution of & as a function of y; and y;.

33. LetX = (X;, ..., X,) be a random sample from the N (6, 2) distribution
andY = (Y3, ..., ¥,) be arandom sample from the N (8, ko 2) distribution,
k known. :

(a) Assuming a non-informative prior for (61, 62, o2), obtain the posterior
distribution of ; — 67 and o2,

Exercises 123

(b) Construct a 100(1 — )% HPD interval for 8; — &,
{c) Obtaina 100(1 —a)% confidence interval for &, — &, from a frequentist

perspective.
34. Let X1, ..., X, be independent observations from the N(#, oz/ki), i=
1, ..., n, respectively, where the &;’s are known positive constants.

(a) Obtain a family of natural conjugate distributions to the observational
model above.
Hint: define X = Y 7 ki Xi/ Soiy ki

(b) Construct a 100(} — )% HPD interval for &.

{c) Obtain a 100(1 — )% confidence interval for 8 from a frequentist

perspective.
9
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Approximate and computationally
intensive methods

As we have seen in Chapter 4, the classical approach 1o statistics requires the
sampling distribution of the estimators to be useful from both a practical and
theoretical point of view. In the Bayesian approach, all the information needed
is described by the posterior distribution. In both approaches, the evaluation of
probabilities or expected values and optimization of some criterion function are
often demanded. When the exact solution fails, evaluation of these quantities
must involve analytical or computationally iniensive approximation techniques.
Typically, the accuracy of the analytic procedures depends critically on the sample
size and the accuracy of simulation-based techniques depends on the number of
simulations.

In this chapter the central problem of inference is stated in Section 5.1 and effi-
cient numerical solutions are discussed. Many approximating techniques used in
statistics are described in this chapter. Some optimization methods are presented
in Section 5.2 and analytical techniques are discussed in Section 3.3. An intro-
duction to numerical integration is presented in Section 5.4, and methods based
on simulation are described in Section 5.5, including Monte Carlo, Monte Carlo
with importance sampling, classical and Bayesian bootstrap and some ideas on
Markov chain Monte Carlo techniques. A geod account of some of the techniques
presented in this chapter can be found in the books by Davison and Hinkley (1997),
Gamerman (1997), Tanner (1996} and Thisted (1976).

5.1 The general problem of inference

In the development of statistical inference, as we have seen, we are often involved
with the optimization of some criterion function or with the evaluation of integrals
or expected values, In some cases these problems are not tractable analytically.
The classical methods are often based on the maximization of an objective function,
such as the likelihood function or the squared error loss. Based on decision theory,
the minimization of the expected loss function provides Bayes estimators, where
expectation is calculated with respect to the posterior distribution.

s Generally speaking we are often faced with one of two basic problems:

1. maximization of a function g(#) that can be either a posterior density or a
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likelihood function;
2. evaluation of an integral

Elg(ﬂ)lx}ﬂfg{ﬂ)p(GEX) dd or E[gX)| 9]=fg(X)p(x}9)dx

where x represents the observed data, g(-) is an integrable function and # is
a p-dimensional vector.

The first problem is related to the definition of the (generalized) MLE and the
second includes many alternatives, which are exemplified below:

1. One of the basic problems in Bayesian inference is to find the value of the
normalizing constant k of the posterior density. It is obtalned as k—1 =
f18; x)p(8) do;

2. If one wishes to ascertain the bias of an estimator § = 2(X) of 8 then one
must evaluate the sampling expectation above,

3. Inorder to find the Bayes estimator with respect to the loss function L{8, 8),
one must evaluate { g(#)p(0 | x) df with g(-) = L{J, ).

4. Evaluationof the confidence of aregion C involves calculation of P(G(X, &)
€ €)= [gx)p(x | 8) dx where g(x) = Ix([x: G(x.8) ¢ Ch.

5. The predictive density of a future sample Y with density p(y | ), in-
dependent of X conditionally on @ is given by [g(#)p(# | x)d¢ where
g(6) = p(y 1 8). '

In the next section some useful-optimization methods will be presented. Their
importance is to yield classical and Bayesian point estimators and also confidence
and HPD intervals.

5.2 Optimization techniques

The optimization of some criterion function is present in many theoretical devel-
opments of statistical theory, as seen in Chapter 4, from both the classical and the
Bayesian perspectives. For example, if we wish 1o obtain least square estimators,
generalized maximum Hkelihood estimators or the minimum expected loss then
some sort of optimization will be required. As will be seen in Section 5.3, even to
calculate the approximate value of some integrals via Laplace methods, maximum
values of some functions are needed. Since in many relevant problems the op-
timum cannot be obtained analytically, some numerical optimization techniques
will be reviewed in this section. The main goal in this section is to present and
illustrate the use of Newton-Raphson technigues and the Fisher scoring methods
to locate the maximum of the likelihood function or of the posterior distribution.
Many statistical books include chapters on statistical computing with discussion
of optimization techniques, as for example Garthwaite, Jollife and Jones (1995).
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An algorithm to find the zeros of a twice differentiable function g : R? — R
{p = 1)is easily obtained from the Taylor expansion of g around an arbitrary point
xO ¢ gr:

(0}
g0 = g @) + (x - x@))faig‘;_) .

Neglecting higher-order terms in x — x*@ for suvitably close values of x and x©@
gives
3g(x

g0 = g o+ (x - xOy =—.

If x* is a zero of g then solving the above equation for x* gives x* =~ x(1 =

x® — [9g(x)/ax] g (x).

It follows that, starting with an initial value x@ and using the relation stated
before, the algorithm provides us with a new value x(1 closer to the root of the
above equation. This new point is the intersection of the tangent line, the linear
approximation of g at Xp, with the x axis. The procedure is then repeated with x(!
replacing x'9. This will lead to an even better approximation for x* denoted by
%2, Repeating the process successively gives the recursive relation

-1
) ] =1 )
xU) = x=h _ [—_ag();x ):| g(x¥ by,

The procedure is graphically illustrated in Figure 5.1. -

This is the well-known Newton—Raphson algorithm and it must be repeated until
some convergence criterion is achieved. Typical criteria are [xY) —xU-1 < 5
and |g(x"/")| < e where & and ¢ are preset precisions determined arbitrarily. Since
it is easier to evaluate proximity at the x level rather than at the g level, the former
is sometimes preferred. .

5.2.1 Solution of the likelihood equation

Let U(X; &) = alog p(X#)/88 be the score function. The MLE is the solution
of the equation

UX:8y=0.
Remember that J(#) = —3U(X; #)/38 is the observed information matrix. Then,
replacing relevant terms in the expression of the Newton—Raphson iteration gives

gl — gti-b + [J(g(j—l))}—lU(g(ffl))_

There is a sense, to be made clearer in the next section, in which the observed
information J approaches the expected information 7. This idea can be introduced
as a modification to the Newton—Raphson algorithm by replacement of the factor
involving J by another one involving 1. The jth step of the iteration becomes

o) — gl II(G(j_l))]_lU(ﬂ(j_l)).
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gix)

Fig. 5.1 Graphical representation of the iterative method for finding the roots of
an equation in the scalar case.

This revised algorithm is usually known.as Fisher scoring and enjoys many of
the nice properties of the Newton—Raphson algorithm. Under mild regularity
conditions found in many applications, it converges to the maximum likelihood
estimator. Its strength lies in the fact that considerable reduction in computation
is sometimes achieved by replacement of J by [ with consequent elimination of a
few terms.

Example. In this example an indirect use of the Fisher scoring algorithm is pre-
sented. First the profile likelihood defined in Chapter 2 is obtained, reducing the
dimension of the parameter space, and then the algorithm is implemented. Let
X1...., X, be iid Wei{w, 8) random variables (see list of distributions). The
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Jog-likelihood function is given by

L, B) =nlog B+ nloga + (@~ 1) Y logX; ~ ) X7

i=1

Substituting 8 by its MLE () = n/ ¥_7_; X¥, the profile log-likelihood function
can be written as

n n
L{e, B{a)) = nlogn — nlog Xfr+(a—1) log X; +nloga — n.
I
i=1

i=1

Differentiating with respect to o and making some algebraic simplifications gives
the score function and the observed information matrix as

no onay o XflogX: &
UXie) = — — — =Gl 4 ) g Xi
i=1 % P
i X Tiey X{(og Xi)* ~ (1, X{ log Xi)?

iy X7P?

n
J(@) === +n
o

Applying the Newton-Raphson with some initial value «(® gives at the jth step
of the iteration the equation ) :

QW = a4 7 UMy Uy,

As 500n as convergence in a is reached, £ can be estimated using the relationship
between « and its conditional MLE given by

5 iz

P =X

Using n = 25 observations artificially generated from a Weibull distribution with
o = 1.5 and # = 2.0, we obtained via Newton—Raphson the following MLE:
& == 1.59 and § = 1.97. Confidence intervals can be obtained from the asymp-
totic distribution of the MLE. As will be seen in the next section, this requires the
evaluaiion of the Fisher information. Fortunaltely, this can be obtained at no extra
cost since the Fisher information must be evaluated in the algorithm. Approxi-
mate 95% confidence intervals for 8 and « are respectively given in this case by
(1.80, 2.15) and (1.42, 1.76). Note that they include the true values used in the
generation, as expected.

5.2.2 Determining confidence intervals

Recall from Chapter 4 that the HPD interval in the uniparameter case is the col-
lection of all & € © such that p(8]x) > k, where k is related to y, the con-
fidence probability, through the equation P[6; < & < f,lx] = y. Note that
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we are assuming here that the confidence region is in fact an interval. Defin-
ing g(6) = log(p(Bx)) - logk, applying the Newton—Raphson algorithm or the
Fisher scoring algorithm twice but with different starting values & — e and 6 + e,
where 4 is the posterior mode and ¢ > 0, the convergence of the method is assured
as long as starting values are not far from the mode.

Many difficulties can occur with numerical optimization methods. The solu-
tion may not be stable when numerical derivatives are used; the choice of a bad
initial value can Jead the solution to a local (instead of global) optimum and so
forth. Nevertheless, many solutions to these problems have been proposed in the
literature. There are methods that avoid the numerical evaluation of the second
derivative, others that allow for different randomly selected initial values and so
forth. The interested reader is referred to Thisted (1976) for further discussion.

5.2.3 The EM algorithm

This is a general iterative method useful to obtain the (generalized) MLE when
we are faced with an incomplete data set or when it is simpler to maximize the
likelihood of a more general problem involving unobserved guantities. Dempster,
Laird and Rubin (1977) provided the first unified account of the algorithm. A
discussion in the context of data imputation is presented by Little and Rubin
(1988). The algorithm is iterative and at each iteration it alternates the operations
of expectation (E} and maximization (M.

Let X € R” be the n-dimensional vector of observed quantities and Z ¢ R™
an m-dimensional vector of unobserved quantities. The complete data is denoted
by ¥ = (X, Z)' ¢ R™™ and its density function is p(y18) = p(x. z/8),0 € ©.
On the other hand, let the conditional density of the unobserved data given the
observed one be p(z|x, #), which also depends on #. To obtain the MLE of 8 the
logarithm of the marginal likelihood,

L{#;x)=log (f px, z; 9)dz)

is usually directly maximized. To avoid the highly dimensional integral involved
in the marginalization of p(x, zi#), the following relationship can be used

plx.z|®)
plzlx, 8)
Since Z is unobserved, it is necessary to eliminate it before maximizing L(8; x).

One way to do thatis to take expected values with respect to the conditional density,
pizlx, 8) in the above equation. Noting that Ezix o[L{0; x)] = L{#; x), gives

L{#;x) = Q6; ™) - H(p; 8)

L(#; x) =log( ) = log p(x, 2|8) — log p(z|x, ®).

where

Q(e’ 0(0)) = EZIX,B(O}[IOg p(X': Zla)]
H(g; 0(0)) =3 EZ]X.B(D)UOg P{Z|X1 0)}
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and 87 is any given starting value for 8. The expectation involved in the definition
of ( is based on the likelihood of the complete data set Y. This is usually straight-
forward because the data augmentation is performed to simplify the problem, as
will be shown in the examples below.

1£ 6% denotes the value of @ in the Jthiteration then the EM algorithm is defined
through the following two steps:

1. E (expectation): evaluation of 08, 4V~ = Ez;x,a(f-”[](’glw; i

2. M (maximization): evaluation of 9(j), the value of # that maximizes
TGN A

The estimation procedure is iterative and alternates the E and M operations
at each iteration. Dempster, Laird and Rubin (1977) showed that the sequence
8%, j = 1, generated by the EM algorithm satisfies L(0W|x) < L(8Y*+V)x)
and 1s monotonically increasing in the likelihood 1(#|x). Therefore, the sequence
8 converges to 8, the MLE, if the likelilcod function has only a single maxi-
mum. Convergence can be established by criteria such as [#) —9U=D) < §or
Qe V=1 — @@V, 8U-Dy| < . The convergence can be slow in some
cases specially if the missing information of Z is substantial. The adaptation for
posterier mode evaluation involves replacement of the likelihood i{(#; Y) by the
posterior p(#}Y) in the E step.

Example (Rao, 1973). A classical application in the statistical literature refers

. to a genetic study stating that the four-dimensional vector of animal counts X =

(X1, X2, X3, X4) has multinomial distribution with parameters # and x, where
m=(1/2+8/4,(1 —0)/4, (1 - 6}/4,6/4). So the probability function of X is

(itxtasta!l (1 O\ (1 -9\t g\
- S () (50 ()

x1taotxstg! 2 4 4 4

Direct maximization of the above expression is awkward due to the presence of
the term 1/2 + 6 /4. To avoid it, the EM method described above will be applied.

To do that, let X) = Yo+ Yy and ¥; = X;, i > 2, where the augmented
vector ¥ = (¥p, Y1, Y2, Y3, ¥4) has multinomial distribution with parameters n
and* = (1/2,0/4, (1 -6)/4, (1 -0)/4,8/4). To complete the notation, define
Z =Yy, sothat Y = (X, Z). Therefore,

n! INTO £\ /1 g\ 2ty rgy\ 4
p(yl0) = T e (—) (-—) (—) (_
Yolyilyalysly!l \2 4 4 4

1
log p(»19) = ki (y} + yolog (5)

and

4 1 —
+{y1 + y¢) log (Z) + (2 + y3) log ('“4—9)
=kz2(¥) + {y1 + ya) log @ + (y2 + y3) log(1 — &)
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where ky(y) and k2(y) are functions of y but net of 8. Therefore

0(0,69)) = ETka(Y) + (Y1 + Ya) log§ + (Y2 + ¥3) log(l — o)X, 891
= k(X,8Y)) 4 E(¥; + Y4 X, 09 logd
+E(Y2 + V31X, 09 log(1 — 6)
— (X, 60U + [E(N11X, 09) + X4]log0
+(X2 + X3 log(l — 6)

since ¥; = X5, i =2,3,4 We only need to evaluate the expectation of ¥; since
k(X, (1)) does not depend on & and will therefore be irrelevant in the M step.
“From the construction of Y it follows that (Z{X,8) ~ (Z1X1,6) ~ bin{X, p)
where p = (1/2)/[{1/2) + (8/4)) = 2/(2 -+ 8). Therefore, E(YolX.6) = X1p
and

06,69V = Eflo (V)| X, 6] + (X pP + Xg)logd + (X + X3)log(l —6)

where pf) = 2/(2 + 6)). The M step involves finding the value of @ that
maximizes 00, 847). This is casily obtained by differentiation of Q and gives

Xp9 + Xy
X1pW 4+ Xo+ X3+ Xas
_ (X1 + Xa)0¥! +2X4
T Xy & Ko+ X34 X)W +2(Xy + Xa X3

g+ —

To illustrate the results, assume it was observed that the counts were x-= (125, 18,
20, 34)" and the EM algorithm. was started at 0 = 0.5, Then,

UHD 1596 -+ 68
T 197900 + 144°

The first five iterations of the algorithm give the values 0.608, 0.624, 0.626, 0.627,
0.627.

Example. Randomized response. The proportion & of individuals belonging to
certain stigmatized category must be estimated. To avoid the non-response (and
its consequent loss of informaiion), a new sampling scheme is proposed. An
allernative question, not related to the main one, with known proportion of YES
responses is introduced together with the guarantee that the selected question will
be known exclusively by the respondent. The ideais to increase his/her confidence
in providing the correct response without revealing its true status. The probability
of a YES response will be AM8) = 78 + {1 — 7)0a, where & is the probability
of the original question of interest, 84 is the known probability of a YES answer
to the alternative question and 7 is the probability of selection of the question of
interest. In a sample of 150 individuals, 60 YES responses were obtained, based
on a procedure with w = 0.7 and 64 = 0.6.
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Using the EM algorithm we get that the observed data is X, the number of YES
responses, and X|6 ~ bin(n, 1}. Also, the unobserved data is Z, the number of
individuals that will select the question of interest. Then, ZjX,8 ~ bin(X, p),
where p = m8/x. The joint density of the observed and unobserved data is given
by :

plx, z|9) = plzlx, 6)p{x|8)

O -y o

n! . ety
_m(?f@) (1 —m)84Y 711 — A

T log pix, z|0) = k{x, z) + zlogf + (n — x)ylog(l —A).
Then, the jth iteration of the EM algorithm will have:

1. E step: Q(0,8Y) = Ellog p(X, Ziix, 0] = xptlogh + (n —
Xylog(l — A) + k(X, 647,
2. M step: maximization of ¢ involves finding the solution of

30,8988 =0
bui A

30(8, 04 B Xpd o n-X
a9 oo 1— A

.

Solving for & gives

9.(j+1) _ XPU)U — (1 —m)fal
XpW) +(n—X)m
In the condition of the example with a sample of 150 individuals, initializing

the procedure with 9@ = 0.4, provides the sequence of estimates 0.338, 0.322,
0.317,0.315,0.314,0.314,....

5.3 Analytical approximations

Some analytical methods used in statistical inference will be presented in this
section. Firstly, results based on asymptotic theory will be presented, followed
by the Kullback-Liebler approximation and a technique for numerical integration
called the Laplace method.

5.3.1 Asymptotic theory

The behaviour of statistical inference will be studied in this section from the
standpoint of an infinite sample size. Clearly, as in practice n is never infinite, the
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results presented here can be applied only when n can be thought of as sufficiently
large to ensure that the results stated are approximately valid.

The results presented here provide a method to obtain approximate solutions to
problems for which the exact solution is not feasible, which is their main utility.
There are other ways to obtain approximate solutions but almost all of them are
variations on the methods described in this section. The main exception is the
class of methods based on the Kullback-Leibler divergence measure which will
be developed in the following subsection.

In general, when the sample size increases, its influence on the inference also
increases, minimizing the importance of the chosen prior distribution. However,
this will only be true if the prior distribution is non-degenerate, that is, p(g) =0,
¥ € ©, as we have séen in Section 3.2. As » increases, the posterior distribution
will be more and more concentrated around its mode. Then it follows that

Pl Ix) <@ x)p() : SR
x exp(L(8) +log p(@)}  where L(#) = logi(8; x).

Since L(#) = Zf—;] Idgl(f?; x;}, the number of terms in L(#) will increase with
n, but p(8) is fixed and, consequently, the influence of the prior p(#) becomes
less and less relevant. Then,

p(® | )& exp(L(9)}.

Therefore, the liketihood and the posterior will bg‘é approximately equal. Using the
Taylor expansion of L around 8, the MLE of @, it follows that

aL@ 1 ~ L ORLB)

L(9)=L(0)+(0—0)-é€—+2—!(0—9) 3090 (@ —8)+ R(8,9)

where R(#, #) contains terms of higher order, which can be eliminated when # is

supposed to be close enough to 8. As L(8)/36 = 0 it follows that

| [0}
2

2L
YTV

L) = i — (9 —0'—=2(0—-6) whereJ®#) = —

Therefore, p(8 | x) o exp {—(a — by ) - é)/z} and so

J2@)(8 ~-8) | x ~ N@®,1,).
Then, if X, = (X, ..., X,) is a random sample from p(x | #) and 6 is the MLE
of 8, under certain mild regularity conditions, it follows that
J2E)6 ~0) | %, 2> N(©0,1,) whenn — oo,
The result simp[iﬁés when & is a scalar. In this case,
6—-0

y2)
— | X N(0,1 h
2% | X, —> N(0,1} whenn - oo
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and J(9) is given by —82L(9)/862.
The regularity conditions required are basically the same as those involved in

- the statement of the Cramer—Rao inequality (see Section 4.3). The results can be

extended further if the sample is not made up of independent observations. Observe
that J(8) = 3°7_, 8% log f(x; | #)/36% and so J(8) will typically increase with n.

This result indicates that # | x, has an approximately normal distribution,
N (é, J‘l(é)), when n is large enough. This means that as long as the regu-
tarity conditions are satisfied, it is possible to draw approximate inferences about
the parameters. In particular, it is possible to construct approximate credibility
regions based on the above results,

Definition. Let ¢ be an unknown quantity defined in #. A region C C 8 is ¢
an asymptotic 100(1 — «)% credibility or Bayesian confidence region for 6 if
limp oo Pr(@ € Cix,) > 1 — a. In this case, 1 — & is called the asymptotic
credibility or confidence level. In the scalar case, the region C is usually given by
an interval, [c, c3] say.

More accurate approximations are obtained by retaining the third-order term in
the Taylor expansion. Then,

R i A " ~ [}
P01 = p(BIx,) exp [—5(9 — 8y 3b)6 - 9)] [1 + “3—,)]
where 5, a
_ FLO) o s B 5
1) “,-,%W(Q’ (60, ~ 6,)6x — 60).

These approximations were studied by Lindley (1980).

Example. The expressions stated above applied for the posterior mean of a scalar
8 simplify to

1 PLE)

6 3p3

wher€ py(-|a, b) denotes the density of the N (a, b) distribution. Then

. 13°L(@) sa  ~ o 18°L(6)

0+ ——"FEn@ —-0)" = =

E(01x,) + 35 305 bt ) 0+3 253

Example. Let Xy, ..., X, be a random sample from Pois(d) and suppose that
the prior for @ is a G{ag, bp) distribution. So the posterior of 8 will be Gas, b1),
withay =ap+tand by =bg+n,andt = Z?:l X;.

It is easy to verify that the posterior mode is § = (a; — 1)/by,

E@]x,) = 6 -+ f RSN pn (@18, J1(B))de

J2(6).

a2 log p(élxn) _a— 1
992 T8

Plog p@Ix,) . 23

— =P e -6P =
993 ¢ ) 63

J(@) =

2 — 1D -

tHo) = ®—8)°.
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Then the approximations of second and third order will be

- éz ~ é2 la —1 -
Blx,~N | 8, olx,~N |8, L+ —— —8)?
[Xn ( a]—l) or 8%, ( al“!)‘ +3 93 @ )}

where the last equation means that the distribution is propartional to the product
of a normal distribution and the correction term in brackets. Using the result from
the previous example, it follows that E(01x,) =~ 8 and E(B|x,) = 0 + 1/b;.

Note that for the validity of the results, p(6) must be strictly positive and con-
tinzous in ©. If p(@) is proportional to a constant, it follows that the posterior
coincides with the likelihood. Also, in order that £ (@) exist, the posterior must be
three times differentiable.

It has just been shown that the distribution of @ converges to the normal dis-
uribution when 7 increases. What can be stated about reparametrizations, that is,
transformations of 82 The answer is not easy because since @ is normal we know
that the only transformations that preserves normality are the linear transforma-
tions of §. Since all the above developments do not depend on any special property
associated with @, any transformation of # preserving the regularity conditions will
produce the same results. So, these results are valid for any transformation of 8.
The only difference will be on the speed of the convergence 10 the normal distri-
bution. ’

The Taylor series expansion applied directly to some transformation of the pa-

rameter is another approximation that leads to the same result. Suppose that’

CEX)=a, V(X)=A and gisa 1-to-1 transformation of X with derivatives well
defined in the point . Then

a
¥ = g(X) = @) + (X — a)'i—g‘{"— FoX—a)

where jo(a)i/le] — 0 when u — 0. If X is close to a then the last term in the
right-hand side can be omitted and Y will have an approximately linear relfationship
with X where '

E(Y)=g(a) and V(Y)i(ag(“)) 0N

axX [1).4

Also, if X is normally distributed, so will ¥ be. This result is commonly known
as the delta method.

An interesting question concerns the choice of the optimal reparametrization in
the sense of inducing fast convergence. This theme is still under investigation and
some preliminary empirical results seem to indicate that the strongest candidates
are the parameter transformations that appear in the definition of the exponential
family and the transformations Jeading to constant non-informative priors, It is
worth pointing out that the mean of normally di stributed data, with known variance,
which has a posterior normal distribution for any value of n, belongs to both groups
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of transformations. Note also that the first class of transformations encompasses
the class of parameters with constant Fisher information and therefore is, in some
sense, stable.

Example. Let X ~ bin(n, §) with unknown 8. It then follows that
L(9) = log p(x | 8) = log (Z) 4+ xlogd + (n —x)log(l — &)

and its derivatives are given by
' aL®) x
a8 6 1-48
a%L(@) X n—x

762 gz (1—0)2
and
J(é) na+_n—né
g2 (1—6)¢
n 3 n
=t —s= T
6 1-6 8(1-96)

So, for large enough n, 6 has a posterior distribution approximately N 6,91 —
&/ nl. : .

The non-informative prior for this model is given by p(8) o 0712 (1 @)~ 112 as
seen in Section 3.4, and the transformation producing a constant non-informative
prior is N

¢ x f w200 )" du sen” ! (+/BY.
o
Defining ¢ = sen™ " (+/6) it follows that
-6y 1

9——]/'2 1—8 -1/2 . 1
i?=w_( ) and J7HP) = = — = -,
a8 2 n 8- dn

So, the posterior distribution of ¢ for large enoughr is approximately ¥ (¢, 1/4n).
The parameter obtained in the definition of the exponential family is ¥ =
log[#/(1 — 8)). Then,

- § AR
""““’g(;—é) |5~ s

and so the posterior distribution of v is approximately N (1}, 1 /né(] — é)).

In classical inference, similar calculations can be performed with the asymptotic
distribution of the maximum likelihood estimator. Let X, = (Xy,-.-.Xa) bea
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random sample from p(x | 8) for a scalar # and é,, be the MLE of & obtained
from X,;. Suppose that the Cramer—Rao regularity conditions are true and also
that |320 (X,; 8)/80%| < k. Under these conditions, it follows that

n n
DU =Y UK 9)
i=l i=1

- UK ) (On — 002 & Q20X E)
+(9,,—9)Z ot Z{ a3

i=1

for £ between 6 and 6,. By the definition of 8, the term in the left-hand side is
null. Isolating the term (6, — &) it follows that

vn (6, —0)

B Vajn [ U 6)]
(1/n) {ZLi QUK 8)/36 + 0.5(8, — 0) Y, 32U (X 5)/392]

Since E[U(X;;6) 1 0] = O and VIU(X;:6) | 8] = 1(6) it follows from the
central limit theorem that the numerator converges in distribution to a N {0, I(8)}).
The first term of the denominator converges almost surely to E{aU(X;; 8)/80 |
8] = —I{#). The second term converges almost surely to zero by the (strong)
consistency of the maximum likelihood estimator and by bounds imposed on the
second derivatives of U/ (X; 8}, by hypothesis.

So, the denominator converges to —/ (§) with probability one and the fraction
converges 1o the quotient of the limits since if Z,, converges in distribution to 7 and

W, converges almost surely to a constant w then Z,, / W, converges in distribution
to Z/w. So,

A ~8) 2> N©, 17(0))  whenn — oo.

‘The result is equivalent to the Bayesian asymptotic result. It is usually said that for
large n the distribution of 4, is approximately N (8, I~1(9)/r). Itis worth pointing
out that the information measure considered is based on a single observation,
plx |6).

The above result is also true for multivariate parameters #. In this case, the
asymptotic result is

Vb, —0) 2 N0, T'(9)  whenn — oo.

The result is used to say that when 7 is large the distribution of 8,, is approximately
N@. IV /n). Approximate classical inference can be made on the basis of
those results. Once again, asymptotic confidence regions can be constructed.

4
Definition. Let @ be an unknown quantity defined in @, U be a function U =
G(X,, &) with values in f and A be a region in I such that lim,_, o Pr(l €
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A) = 1 —a. Aregion C C @ is an asymptotic 100(1 — )% frequentist confidence
region for @ if
C=1{0:G(x,.0) € A}.

In this case, | — o is called the asymptotic confidence level. In the scalar case, the
inversion in terms of @ usually leads to an interval, € = [e1, c2] say.

It is easy to obtain from the asymptotic results above that E[#,18] — 0, or
simply that the MLE is asymptotically unbiased. This means that although the
maximum likelihood estimator could be biased for a fixed r, its expected value
always tends to the parameter being estimated. Besides, it follows that

8 lim nVié, 18] — 171(8).
N—>00

So, the variance of the MLE asymptotically reaches the Cramer—Rao lower bound.
AsB,is asymptotically unbiased, the above limit could be thought of as a measure
of the asymptotic efficiency of 8,. Estimators satisfying this property are said to
be asymptotically efficient. :

Sometimes, I{(#) depends on # making the process of inference (point estimation
and confidence intervals) harder. It is common in these cases to substitute I(#)
by I(@,,) or, in cases where the expected value is hard to obtain, by J(8,). In the
former case the asymptotic distributions coincide and certainly lead to the same
numerical results. The consistency of the maximum likelihood estimator and the
strong taw of large numbers justify the substitutions made to obtain both of the
above results. :

The convergence in distribution of the score function can be used to make
approximate inference about @, This is particularly useful when there is no explicit
form for the maximum likelihood estimator. Then, for example, the asymptotic
160(1 — )% confidence region for a scalar @ can be constructed using the zg /2
percentile of the normal distribution and is given by

{6: <za/2}.

This result can also be extended to the case of parametric vectors.

The same considerations made in the Bayesian case with respect to the invariance
over {-to-1 parametric transformations are again true here since the results are
entirely based on the maximum likelihood estimator and on the Fisher information
measures, which satisfy the invariance conditions.

1 "
— ) U{x;;9)
NCHG) gf

Example (continued). I X ~ bin(n, 6), then
X n—X X-—no
8 1—6  60-0)

~ X
U(x;8) = and 6,,=;

It is also known that 7(8) = 1/6(1 — 6). Applying the results developed above
gives \/n{0, —0) distributed as a N (0, ¢(1—6)), fora large n. Then an asymptotic
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confidence region with coverage probability of 100(1 — )% for & will be given

by i
o |V -0)
- (———-———6(1_9) af2 ¢ -

A simple inequality must be solved to get an explicit solution for the confidence
region. In this case it could be more convenient to proceed with the suggested
modifications of & by its MLE. In this case, observed and expected information
coincide at the MLE and

R 1 ~
JOy) = ———— = 1(Gy).
&) R (n)

The above confidence region is now replaced by the interval

R 6a(1 = 6) - f,(1 — 6
Qngzaﬂ’_'l.(_n_ﬂ’gn_i_za/z n_(_’;_l

An alternative can be to use the asymptotic distribution of U-(X; @)/./n givenbya
N{0, 1/6(1 —67). Itis not hard to see that the 100(1 — )% asymptotic confidence
region for & is again given by '

g | Y=
BN

In this case, the confidence region coincides with the region obtained from the
asymptotic distribution of &,.

5.3.2 Approximation by Kullback-Liebler divergence

A measure of the divergence between the density p(8) ahd_ its approximation po(8)
is defined by the expected value (see Bemnardo and Smith, 1994)

] P(B)) [ (p(f?) )]
S[p(0); po(®)] = Nlog| £—=] d8 = E |1 ey )
[p{0); poid)] fp( ) og(po(g) og 200)

In the discrete case, all one needs to do is to substitute the integration with a
summation, Smaller values for § indicate better approximations, Two central
questions in the applications are concerned with the determination of the better
normal approximation and the most convenient reparametrization 1o accommodate
such approximation.

These two questions will be answered only for particular cases in the exponential
~ family. The first question posed has an easy and general response. The best
normal approximation to the distribution p(8) is that with mean and variance
given respectively by p = E(8) and a? = V{(#), the mean and variance of the
original distribution.
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The second question involves finding the best transformation { = ¢(0) toinduce
normality in the sense of minimizing the divergence measure between p{¢) and its
normal approximation. This is equivalent to finding ¢ that minimizes the expected

value
p(CJ)
1 =} dt,
[p(g) Og(m(t) ¢

where pg(Z) is the density function of the NIE(L), V(¢)] distribution and p(¢) =
p(@)1dg /d8|. Thisis a difficult problem for which the solution will be presented
only for iwo particular distributions: the beta and gamma.

1. If @ ~ beta(e, B) then &(8) = log[f/ (1 — )] is the best transformation o
induce normality and the approximating normal will have mean and variance
given by

U o o
CE@) =g (1—3) = log (E) where g = oy

and
1 @+ p?
pll —wye + 8+ 1 af(e+ A+ 1)

2. If @ ~ Gla, B) then £(9) = log# is the best transformation and the mean
and variance of the approximating normal distribution will be

Vo) =

I i o
E(t)~tlogu and V()= —=— wherep= .
= W« B
The delta method was used to get these results: It is worth pointing out that these
transformations are exactly the same as those that appear in the exponential family
for the Bernoulli and Poisson models, respectively. These are the observational
models to which the beta and gamma are conjugate respectively.

Example. Suppose someone wants to elicit the hyperparameters of the conjugate
prior for @ in a Poisson model. Assume that & ~ G(a, ) and now suppose
that its mode was assessed as 0.5 and also that P(¢ < 0.25) = 0.05. Then
(@ —1)/B=050r 8 =2(—1)and P(@ < 025) = P < log 0.25) =~
®[(log 0.25 — E(X)/~/ VD)) where E(4) = logla/{2a — 2)] and V() = l/e.

So B = 2« — 2 and 1.96 = {log 0.25 — log[a/(2et — 1)/ /T/a. Solving this
implicit function for o gives o = 3.35and § =4.7.

5.3.3 Laplace approximation

This class of approximation methods is very useful to evaluate integrals of the type
I == [ f(6)d0 by rewriting it as
L3

f 2(8) exp]—nh(6)1do
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where g : RP — Randh : R? — R are smooth functions which are at least three
times differentiable. Let # be the value of # which minimizes 4. The Laplace
method approximates 7 by

~ -1
. R . . R 2
I =g(@®@r/mP? 5|2 exp[—nh(#)] where & = [2;;:?} )

The Laplace approximation is based on the Taylor approximation for 4 and g
around @. Only the univariate case will be presented here for ease of exposition
and % will be denoted by 2. As in the last section, it will be supposed that & and
6 are ciose.

Using a Taylor expansion up to the third order it follows that

o n sy | nEE) L
nh(0) = nh(B) + 57506 —8)° + o ol )
where 83h(é)
HA) = 553 © — 0)°.

Exponentiating the [ast expression and applying alinear expansion to exp(—n#(8)),
it follows that
exp[—nh(9)] = exp[—nh(6))
£{0)

x Bxp[—%i—(B — ) [1 - n_a" + o(n—‘)] [+ oz 1.

The same expansion in Taylor series around & can be applied to

N og(8 .
§0) = g(@) = —%-(é-lce .

Recognizing that

1. fexpl—(n/26%)(6 — 6)21d0 = (27) 262/ )1/,
2. f(6 — 6)2+! expl—(n/262)(8 — )21d6 = 0, Vk integer, and
3. [ nr(9)(8 — 6) expl—(n/262)(6 — 6)21d6 = o(n™ )
and applying the expression for f leads to a scalar version of the following propo-
sition.
Proposition. When n — oo, i= If1 +o(n~hHl.
In Bayesian applications, generally —nh(8) = L(#) + log p(8) which is the

expression of the posterior density but for the proportionality constant. if g(6) is
non-negative, the integral can be redefined by
[

I = fexp[—nh*(e)]dﬁ where nh*(0) == nh(8) — log g(8).
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Denoting by 9* the value that minimizes h*(#) and writing G* = p2px (é)/aez,
there follows an altemative approximation for / given by

I = @m26* expl—nh*(69)].
In the case of a multivariate @, the ex.pression becomes
T = @m)?? 8" Y expl—nh*(87)]

where & is the value of @ that minimi'zqs; h* and £ is the inverse of the matrix
of second derivatives of £* evaluated at 6 .

Following the same steps as before it is easy to see that [ = I[1 + o(n™1)].
Tierney and Kadane (1986) proposed evaluating

Elg@)] = [/ g(ﬁ}exp[fnh(ﬂ)]d(?] / I:f exp[-—m’z(ﬂ)}dﬁ?]

by approximating separately the numerator and the denominator. They have shown
that by doing so the o(n~!) terms cancel out and an improved approximation of
order o{r %) is obtained. ‘

The final expression for their approximation can be obtained by combining the
above resulis to give

7 8™y s T
E(g(on = SO Z N explnit )]
[E{!/% expl—nh(6)]

Example. Let X;. ..., X, be a random sample from a Pois{¢) and suppose that
a conjugate prior # ~ G(ag, bp) is used. Taking g(d) = & it follows that

. a—1/2
E161x] = ‘;—: (al(i'_ 1) el oa >

where a) = ap + Y 1, xi and b = by + n.

The exact posterior mean in this example is a) /b1 and so we can easily evaluate
the relative errors (£ — E)/E involved in the approximation. For example, for
a1 = 6 the relative error is 0.0028 and for a; = 10 it will be only 0.00097.

Example (continued). Randomized response (Migon and Tachibana, 1997) A
variation of the randomized response model consists in asking as the alternative
question the negation of the original one. In this case, 94 = 1 — @ and the
probability of a YES response is

A=a0+ (1 —-2)(1=0)= 27 — N8+ (Il — 7).

The Laplace approximation for the evaluation of the posterior mean of ¢ can be
applied. The derivatives and points of maxima can all be obtained analytically or
numerically. With the same data of the example and with a unit vniform prior for
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9, the exact posterior mode is 0.25. The posterior distribution of 6 is a mixture
of n - 1 beta distributions and the calculations become tedious as the sample size
increases. The performance of the Laplace approximations can be assessed as a
function of the sample size by keeping the YES proportion fixed at 60/ 150 = 0.40
and letting the sample size n vary. For this example, the exact and approximated
posterior means were

n  Exact Laplace
50 028 0.27
150 0251 0255
450 0251 0231

" It is worth noting that even though the exact posterior mean itself depends on the
sample size, the Laplace approximatjon gets better as the value of n increases.

Example. Weibull data Using the same data of the example presented in Sec-
tion 5.2.1, we obtain the following estimates via Laplace methods with a non-
informative prior: & = 1.59, V(@/x) = 0064 and b = 2.05, V(6 = 0079,
which compare well with the maxirmum likelihood results, as expected.

5.4 Numerical integration methods

Numerical integration, also catled the quadrature technique, is a collection of
methods convenient to solve some useful problems in inference, mainly when the
dimension of the parameter space is moderate. They become useful as soon as the
analytical solution fails. .

Firstly we will take care of the general problem of obtaining the value of the
integral [ = f: f(x)dx, where f : R —» R is a smooth function. Let w @
R -» R be a well-defined weight function. Quadrature methods are essentially
approximations of I obtained by evaluating f at points x;, i = 1,.... 1 The
simplest solution is given by the weighted sum

n
f:Zw;f(x,-) where w; = w(x;),i =1,..., 1
1

The quadrature methods are fully characterized by choosing the points of eval-
uation or nodes xi, ..., %q in the intérval (a, b) and the corresponding weights
involved. An integration rule must have easily obtainable weights and nodes. The
nodes should lie in the region of integration and the weights should all be positive.

5.4.1 Newton—Cotes type methods

The interval of integration {a, &) with finite a, b is divigled into n equal parts, the
function f (x) is evaluated in the middle point of each interval and the weights are
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then applied. Then

n
fvc =hY fla+@i=Dh/D)
i=1
approximates 1, with ## = (b — a)/n. These methods are generically named
Newton—Cotes rules.

This is an approximation by the area of the rectangles with equal base (b — a)/n.
Often a good approximation is obtained with n of the order of 10%, which seems
reasonable for the unidimensional case.

A slight variation is the trapezoidal rule involving unit weights except in the
extremes of the interval, when they are setto 1/2. The rule gives the approximation

9
- fl@) < . f&)
fr=h { —+ ?:1: fla+(2i— DR/ + T:\ .

The Simpson rule is another variation described by weights alterating between
4/3 and 2/3, except in the extreme where they assume the value 1/3. In this case
the approximation is given by

nj2 n/2
g = %{f(a) P43 Flak G DA 2 flat G DD+ SO
i=l1 i=l

The p-dimensional case is slightly more demanding. A general solution follows
from an iterative application of the cartesian product rule. Letx = (x;,x2)bea
bidimensional vector. A quadrature in two dimensions is based on the cartesian
product rule .

ff(x)dx=f[f f(xquz)dm]dxl =ff1(m)dx1-

The last term in the right-hand side is obtained by integration with respect 10 X2
using the unidimensional quadrature rule

f Al = Y w;falx2.)),
Jj=1

where falx2) = [ (x1,x2). As the last integral is also unidimensional it can be
approximated again by quadrature f frixpdxy == Z;’:, w; fi{xy,i). Joining the
two weights it follows that

n H
f Jxdx = Z Z wiw; fxi X2,4)-
i=1 j=1

This is a bidimensional rule based ont n x m evaluation points (x1,;, ¥2, ;) and with
weights (wj, wj)i= oo, mj=1...,m.

In the sequel, a general integration method more adequate to statistical problems
will be introduced. From now on we will be concerned with an integral over the
whole real line.
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5.4.2 Gauss—Hermite rules

The method introduced in this section is specifically useful for integration over
the whole real iine. If the domain of the integral is z > 0, which sometimes
happens when we are dealing with a precision or a scale parameter, then the
reparametrization fog r is often convenient.

Assuming that the integrand £ (x) can be expressedin the form of g (x) exp(—x2),
a general unidimensional rule is

f Fx)dx =/ ge™dr = Y by £
-0 p —00 i=1

where the x;'s are the zeros of a Hermite polynomial of degree n, H, (x), and the
weights k; depend on n and on the Hermite polynomial H,._1(x), evaluated at Xi,
f=1,....,n Aslongas g(x)isa polynomial of maximum degree 2n - 1, the
formula is exact. There are other Gaussian integration rules that can be applied
when the domain of integration is finite. The values of the zeroes and heights
are tabulated in many mathematical tables and can be found in Abramowitz and
Stegun (19653), for example,

The accuracy of the approximation depends on f{x) being well approximated
by a polynomial of degree 2n — 1 or less times a normal weight function. For
the multivariate case some sort of parameter orthogonality must be guaranteed for
application of the cartesian rule. :

The integration rule introduced before can be extended to a more general ap-
proximating function f{x) = g(x)(270%)~12exp{—0.5[(x — w) /o 1%} leading

ff(x)dxﬁ-fg(l) exp ——( ) dx
af 23’(0’2 2 (43 )

Making the variable transformation z={x — u)/~207, it follows that

ff(x)dxrfg(v 2622+u)J_]_e‘32v202dz

2rol

=z 172 f 8202z 4 we d;

and the Gauss—Hermite approximation will be

ff(x)dx a2y hivanolet g(vV20 2y + )
i=1

= Zm:g(x:)
i=]

where m; = v202e3i2h; andx; = ~v26%; +pu, i=1,.,, n.
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In general, the mean g and variance o2 of the approximating normal are un-
known. The following strategy, proposed by Naylor and Smith (1982), can be
used:

I. Let uo and o7 be initial values for p and o2,

2. Apply the above expression with g(¢) = & and g(8) = 62, respectively,
This will provide approximating values for the mean and variance.

3. Repeat the last step until the mean and variance values obtained are stable.

In the multiparameter case, the cartesian product rule is applied after somé”
orthogenalization is operated over the parameters. This can be done through a
Cholesky decomposition of the (approximated) variance—covariance matrix ¥,
Let ¥ = H D H', where D is a diagonal matrix and H i$ a lower triangular matrix,
and define the transformation z = D~ /2! (x — u)/~/2. Therefore -+

ff(x)dx:fr_f"ﬁ/g(u+«/§H-Dl/2z}_.exp(bz’z)dz

np. my
=P Z Z ey -~ hi, £ + v2H DY)

ip=1 =1

where ni; is the number of nodes involved in the approximation at the / th coordinate
and z = (z;, ...,z Wi =h...,n5 j=1,. P

If the mean vector i and variance—covariance matrix ¥ of the approximating
normal density are unknown, an extension of the iterative method of Naylor and

Smith presented before can be applied. )

5.5 Simulation methods

In this section we will be discussing a collection of techniques useful to solve
many of the relevant statistical problems. From a classical point of view we are
interested in simulating a sampling distribution arising from a possibly complex
model and in the Bayesian case we are interested in obtaining some characteristics
of the posterior distribution. All the techniques described in this section share
a common characteristic: they involve the random generation of samples from a
distribution of interest. This is the empirical distribution in the classical approach
and the posterior distribution in the Bayesian case. The interested reader can
complement their study by reading the books by Efron ( 1982}, Gamerman (1997)
and Ripley (1987). '

5.5.1 Monte Carlo method

The basic idea of the Monte Carlo method consists in writing the desired integral
as an expected value with respect to some probability distribution. To motivate
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our discussion we will begin with a very simple problem. Assume we wish to
calculate the integral of a smooth function in a known interval (a, b), that is

b
I= f g(0)d8.

The above integral can be rewritten as

b 1
/= j (6 — @)8(@))5—— 0.
a —a

This problem can be thought of as the evaluation of the expectation of [(b—a)g(?)]
with respect to the pniform distribution over {a, b) and

I = Eyanl®d —a)g(®)] '

where U (a, b) represents the uniform distribution in {a, b).
A method of moments estimator of this guantity 1s

- 1<
[==3 -8l
i=1

where 81, .-..0a is 8 random sample selected from the uniform distribution on
(a,b).
An algorithm can be described by the following steps

. generate 01, ¢, ...,0; froma [/ (a, b) distribution;
. calculate g(01), g(&), s 8(On);

_ obtain the sample mean: g = (1 DR 1CR
4. finally, determine: I=(b—-ag.

[SV N

A generalization can be obtained straightforwardly. Let 1 = Eplg(®)] be the
expected value of g(#) with respect 10 2 distribution with density p{&). The
algorithm is similar to that described above with modification of the sampling in
step 1 from the Ula, by to p(*).

The multivariate extension is based on evaluation of

by b,
sz f 2(0) @
a) ap

and the Monte Carlo estimator 1s

i=

x|

Z gi)
i=1

where @, ....0p 152 random sample selected from the uniform distribution on
(ay, br) x -+ % (Gp. bp)-

Some questions need to be answered to implement these techniques. How large
must 1 be? How do Monte Carlo methods compare with quadrature rules? Or, to
pose it in another way: when is Monte Carlo preferred to numerical integration?
An elementary example will be useful to motivate further developrents.
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Example. The evaluation of I = fol efdx is desired. As we have just seen, the
simple Monte Carlo estimator of Tis T = (1/m) Lizyexp(Xj) Xj ~ U, 1),

j=1...n Since [ is a sample mean, its precision to estimate [ can be measured
by its variance. It is given by

_ 1 1 L. 0.242
v(]):;V(cX):;([O ez-dx—lz)-: )

n

5.5.2 Monte Carlo with importance sampling

The Monte Carlo method with importance sampling is a technique developed to
reduce the variance of the estimator. Consider now explicitly that the integral I of
interest is the expectation of a given function g with respect to 2 density p. Itcan
then be rewritten as

I = fg(x)p(x)dx zfg(x)%h(x)dx

where h(x) is a positive function for all x where px) =0 and fh(x)dx = 1.1t
is therefore a density. An alternative method of moments estimator for J can be
obtained as '

_ o1&
I=- Z}g(xnw(m

where
(X
wixy =228
h{X;)
and
X; ~hx)i= 1,....1.

where / is called the irnportance sampling density. The only difference withrespect
to simple Monte Carlo is the first step where sampling fromthe uniform distnibution
is replaced by sampling from At and the third step where the valuesof g x W instead
of values of g are averaged. Therefore, V{I) = (1/n) f(g_(x)w(x) - I)-zh(x)dx.
Choosing g{x)wix) approximately constant can make v(I) as small as we want.
Therefore, whenever possible the importance sampling density shouid be roughly
similar to g(x)p(x)- .

The multivariate extension is again trivial. Assume we wish to obtain the value
of the expectation of g with respect to p given by

]:fg(x)p(x)dx,

and use the mujtivariate density A as the importance density. Once again, h must
be positive whenever p is. The Monte Carlo estimator is given by

I
P=—% eXpwo,
i=1
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where
pX;

(X))

e

|

w(X;) -

—

and
Xi~hi(x)i=1 ... n

Example (continued). if we take as importance sampling density h(x) = %( 1+
xhx € (0, 1) then w(x) = plx)/ hix) = 3/[2¢1 + x} and g(x)wix) =
(3/2)e* /(1 + x) &k, for x € (O, 1). Then

I ' 3 2 ]3 et

Therefore, T = (/ny 3°7., 3% /[2(1 + X)) where Xi ~h(x),i=1,....n

b

and V(I) = (1/m{(3/2) [ €2 /(1 + x)%dx — I?) = 0.027/n. The variance °

reduction is quite substantial. It was reduced to approximately one tenth of the

value obtained with a simple Monte Carlo using the same number of replications.

The implementation of the algorithm in this case depends on sampling from the
density 4. The importance sampling distribution function is given by .-

0 o ifx <0
Hix)= { Hx+%) iO0<x <1
i ifx > 1.

Using the probability integral transform, one simply has to geherate a unit uniform
random variable I/ and solve for I/ — (230X + X2/2). The unique solution
satisfying the equation is X = [(4 + 120172 2]72.

Example. Letd = P[X > 2] where X has a standard Cauchy distribution with

density ,

R T — v 7 R.
PO iyt
In this example, g(x) = L{(2,00)land @ = ffzo g(x) p(x) dx.
Let Xy,..., X, be a random sample from the Cauchy distribution. It is easy to
obtain that R
~ 1 #HX; > 2)
9 = — I . 2, o0 = e—_——
- ; %,1(2, 00)] "

and né ~ bin(n, 8). Note that P(x) = Lo P = 0.5+ 7 Varctan x, so that

6 =1— P(2) = 0.1476. Then, V(8) = o(1 — 8)/n = 0.126/n.
Lethbea density defined by htx) = 2/x21x[(2, o)l It is easy to obtain that
the distribution function is H(x)=1-2/x,ifx > 2. For any U € UG, 1) it
follows that X = 2/(1 — U has density # and a sample X1, ..., X, from which
h can easily be obtained. The importance sampling estimator of @ is given by
6= 1Y wXo.  wherewge) = - %
= — w ) where w = — -
n = ! * 27 1+ x2
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It can be shown that the vatiance of this estimator is smaller than that of § (see
Exercise 5.16).

Therefore, the Monte Carlo algorithm can be used to solve any of the basic
inference problems cited in the introduction of this chapter that can be written as
an expectation. In the Bayesian case, when one wants to evaluate E[g(0)|x], the
algorithm can be summarized as follows:

1. Generate 8, ..., 8, from the posterior density p(#|x) (or the importance

density k(8)).
2. Calculate g; = g(8;) (or g; = D PpO:x)/ R0, i =1, .. .n

. 3. Obtain the estimator Efg(8)] = (1/n) " s

5.5.3 Resampling methods

Inthis section we will be concerned with some sampling and resampling techniques
froma classical and a Bayesian pointof view. Firstly, the classical bootstrap, which
essentiaily consists in resampling from the empirical distribution function, wili be
presented. A weighted version of the bootstrap will be useful to implement the
Bayesian argument. Intuitively the argument follows as: a sample is generated
fromthe prior distribution and a resample is taken using some well-defined weights. .
It is not difficult to show that the points in the resample constitute an approximate
sample {rom the posterior distribution. This approximation becomes better as
sample sizes increase. Another classical resample technique, named jackknife,
will be presented and exemplified. Tts Bayesian version will be developed for
the exponential family. A general account of these resampling methods from a
classical perspective is provided by Davison and Hinkley (1997) and Efron {1982).

The main objective of jackknife and bootstrap is to obtain a measure of the
accuracy of some complex statistics: -From a classical point of view the question
arises from the fact that the sampling distribution is hard to be determined in some
cases. As some examples we can mention the robust statistics, like trimmed means,
the correlation coefficient, concordance measures in probabilistic classification and
SO on. : ' '

On the Bayesian side the interest in techniques like jackknife and bootstrap is
slightly different. One important application of leave-one-out methods is to obtain
information about the influence of particular observations or, more generally, to
define diagnostic measures. One may also use the bootstrap as a resample tech-
nique useful to implement the Bayesian paradigm, as will be shown later in this
section, ¢

This class of procedures is characterized by its computational demand, al-
though they are often very easy to implement even in complex situations or high-
dimensional problems.
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Jackknife

The jackknife is a useful technique to build up confidence intervals and it works
as well as a bias reduction technique as will be shown in an example. This is a
generic tool and 5o in specific problems it could provide less accurate results. The
basic idea of splitting the sample was introduced by Quenouille (1949, 1936) to
¢liminate estimation bias.

Suppose that X1, .- .. X, is a random sample from p{x|8) and that Q(X) is an
estimator of 6. Denote by é; the estimator based on the original sample without
the ith observation. Let 6 = né —(n— 1)6; be a sequence of pseudo-values and
define the jackknife estimator of & as

P
ejzgzg,-.
13

The name pseudo-value derives from the fact that for the special case where 6(X) =
¥, the pseudo-value coincides with the ith observation, that is & = 3 1 X; —
Z'};e.' X; = Xi. ltisnot difficult to show that 8, is unbiased if & and &; are also

unbiased. Besides that, the jackknife estimator has the property of eliminating
terms of order 1/n on the bias of the estimator.

Example. Let X1, ..., X» be iid observations from the uniform distribution on
0,0). k is well known that T = max; X; is a sufficient statistic for & with
E(T) = (1 — 1/n)8, V6. A jackknife estimator is given by

~ 1 - ~ A
by ==Y 0, where=nT ~(n—Db
n i=1
and & = max(Xy, ..., Xi-t, Xis1,-..» Xn}. Then, £ = n(l — 1/m)8 —
n— D =1/m— D=6
Let@,i=1,...,n,represent random variables approximately independent and

identically distributed with mean 6. A jackknife estimate of the sample variance
will be given by

] n . .
N (@ -8,
n"lf-ﬁl(l J)

67 =
and therefore the statistic W
8y — 0
@;/m'?
has approximately a standard Student ¢ distribution with n — 1 degrees of freedom.
An approximate 100(1 — )% confidence interval for § is given by

~ 51 = Gy
(91 — ti-le/2 573 gs + fnfi,aﬂg/—z) .
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Example. Correlation coefficient. A very popular data set in statistics was given
by Fisher (1936) and contains measurements on three species of iris. We concen-
wate on the sepal length and sepal width of the species iris setosa. The correlation
coefficient of length and width is calculated in a sample of 50 observations. The
sample correlation coefficient is estimated as p = 0.742. Using the jackknife
methodology we obtain the point estimation 0.743 and the 95% confidence inter-
val based on the Student ¢ distribution was {0.63, 0.84).

From a Bayesian perspective the notion of jackknife corresponds to obtaining
the posterior or predictive distribution leaving one of the observations out and is
very useful for model checking. For example, the influence of an observation
can be assessed by this procedure. Using a divergence measure like Kullback—
Liebler, the posterior or predictive distributions based on the whole sample could
be compared with that leaving one observation out to evaluate its influence in the
anakysis.

For the exponential family with one parameter, defined in Chapter 2, the conju-
gate analysis leads to the posterior density

pO1X) o explend(®) + Fib©)}

whereay = @ + T(X), fi = B+ n and T(x) = Y 7_; u{x)y and pylx) =

alkicy, B}/ kien + u(y), fr +nt 1k So, leaving one observation out would
make the posterior density :

p(@x;) o expler (@) + B1b(0))

where o = & + T(x), By =B +n—1=p— 1L T8) = 2 4lX))-

Bootstrap

The concept of bootstrap was introduced by Efron (1979). The method of bootstrap
consists in generating a large number of samples based on the empirical distribution
obtained from the original sampled data. Confidence intervals with some pre-
specified coverage probability can be built up easily under mild assumptions.

Let Xi,.... Xy be the observed data from a random sample of a distribution
p(x|0), where § e © is the unknown parameter. Lgt é(x) be an estimator of
9. The empirical distribution function is defined by Fpi{x) = (1 /X < x)
¥x € R, as seen in Chapter 4.

A resample procedure consists of the selection of samples with replacement from
a finite population using equal probability. This corresponds to selecting a sample
from the empirical distribution F,(x). These sampled values will be denoted by
{X7...es *} and the bootstrap estimator of 0 by #*(x*). The inference will be
based on B replications of the above procedure and in the evaluation of the statistic
of interest, in this case the estimator 6* = #*{x*) for each of the B replications.
Denote the resulting valves by é;“ eres é;. The bootstrap distribution of 6* is given
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by the empirical distribution formed by the resampled values., Summarizing, the
bootstrap distribution of the 6* is used in the place of the sampling distribution of
8 in order to make the inferences about 6.

A central assumption in the method is that £, isa good approximation of F, that
is, the bootstrap distribution of 6* is similar to that of or, that the distribution of
6* — 6 is similar to that of § — 8, where 0 is the value of the parameier for £,.

The mean and variance of these B rephcauons will be denoted by 8 = (1/n)

7 9* and &2(9*) =[1/(B—-1] B 1(9* —6%)%. From the above suppositions
1tf01]0ws that V(@) = V(Q*) ~ 62(9*) and E[§ — 8] =8" — 8. Abias adjustcd

estimate of 8 will be 9 =8 [9 — a7

Confidence intervals for ¢ can be built from the percentiles of the bootstrap
d1s£nbutlon Let 6*(c) be the 100(e)% percenttle of the bootstrap distribution of
6*, that i is, P[B* < 6*(w)] = a. The interval (8* /2 6r_ .y 2) obtained as described
before is named the 100(1 ~ )% bootstrap confidence interval.

Example (continued). Retuming to the evaluation of the correlation between
tength and width of samples of iris setosa and applying the bootstrap with different
values of B gives the following results

B Lsg  Mean Ugsq
100 064 0736 081
400 071 0.741 0.82
1600 071 0742 0.82

It seems that n = 400 is a reasonable number of replications to accurately de-
scribe the bootstrap distribution, i is interesting 10 note that this is the number
of replication usually recommended in the kterature. The point estimates for the
bootstrap and jackknife are almost the same although the confidence intervals are
shorter for the bootstrap.

Weighted bootstrap

Sometimes we are not able to sample directly from the distribution of interest,
p(x). A useful strategy is to sample from an approximation of this distribution
and use the accept—reject scheme:

1. Generate x from an auxiliary density 4 (x).
2. Generate u independently from a uniform distribution on 0, D.

3. Ifu < p(x)/Ah{x), where A = max p(x) / h(x), accept x, otherwise return
to step 1.

The probability of accepting a value x generated from h(x) is

Paccept x) = f [ I, (0, p(x)/ AR (x)]h(x)dxdu = ;1{
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The expected number of accepted values in » independent runs of the algorithm
will be n/A. So, the algorithm is improved by decreasing the value of A as much
as possible.

If the determination of A is d;fﬁcu]t the following modification of the algorithm
can be applied:

1. Take a sample from x), ..., x, from A(x).

2. Evaluate the weights w(x;) = p(x;)/h(x;),i=1,...,n

3. Selectanew samplexf, x3, ..., x} fromtheset {x;, ..., x,} with respective
probabilities given by w;/ 37wy, ul =1, ..., n with replacement.

Note that
PU* <a)= Z Sy n(—00. ).

Taking the limit as n -— oo,

- L {—00, a)—>f plx)dx.
ZZJ v

Itis interesting to note that the algorithm allows approximate sampling from p(x)
even when p is known up to an arbitrary constant. This is particularly useful
for Bayesian inference where in many cases the proportionality constant of the
posterior distribution is not known.

The above algorithm is known in the literature as the weighted bootstrap. As
before, many questions deserve consideration in the applications. For example,
how big must n, the initial sample size, be? And m, the resampling size? Is
this approximation efficient? Note that if values of x were not generated in some
regions then these values will never be resampled even if the weights were large.

We shall concentrate here on a modification of the algorithm to solve Bayes’
theorem numerically. Remember that

pEIx)=kp@)(#:x), 6¢O

where p(8) is the prior distribution, }{#; x) is the likelihood function and x denotes
the available data.
Taking h(x} = p(#) in the algorithm gives w(x) = p(@ | x)p(8) = kI(8; x).

. Therefore, the algorithm simplifies to

1. Take a sample 8y, . . ., 8, from the prior distribution p(@).

2. Evaluate the weights w; == p(0 | X)/p(8) = kl{@:x),i = 1,...,n

3. Sample 67,65,...,0% with replacernent from the finite population
{81, ..., 8,} with respective weights L; /3", I;, where [; = I{f;:x), i =
bo...,¢.
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Fig. 5.2 Summary of inference for 8 in the example: (aj initial sample; (b) final
resample.

Itis worth noting that often it is necessary to make some adjustments to take care
of numerical difficulties. One must make sure to sample over the relevant region
of the parameter space. It may well be that the prior is concentrated over a region
of low posterior probability. In this case, the prior is not a suitable candidate for
initial sampling and other distributions must be used.

Example. Let ¥; ~ N(ui, o), where py = Bx;and 6?2 = 1,i = 1,...,5.
The observed datais y = (—2,0,0,0,2) and x = (-2,—1,0,1,2). Using
a reasonably vague prior N(0,4) for 8 and simulating » = 1000 samples and
m = 500 resamples we can easily obtain numerical surnmaries. The estimated
mean is 0.801 and the estimated variance is .087. The exact MLE in this example
is ,8 = 0.8, which is in complete agreement with the Bayesian bootstrap resample
depicted in Figure 5.2.

5.5.4 Markov chain Monte Carlo methods

The central idea behind the Markov chain.Monte Carlo(MCMC, inshort) method is
to build up a Markov chain that is easy to simulate and has equilibrium distribution
given by the distribution of interest. These techniques are often more powerful
than the quadrature rules and simple Monte Carlo because they can be successfully
applied to highly dimensional problems. A general discussion about this topic can
be found in Gamerman (1997).

Let Xy, ..., Xp have the joint density p(x) = p(x1,..., xp) defined in the
space X' C R, In fact, the derivations below are also valid for the more general
case where the X;’s are vector variables. Suppose that a homogeneous, irreducible
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and aperiodic Markov chain with state-space A’ and equilibrium distribution p(x)
can be constructed. Denote by g(x, ¥) the transition kernel of the chain, which
means that g (X, -) defines a conditional distribution goveming the transitions from
state X.

In other words, it is possible to build a chain with transition probabilities invariant
in time, where each state can be reached from any other state with a finite number
of iterations and also without absorbing states. Assume further that it is easy
10 generate values from these transition probabilities. This means that for any
given initial stage, a trajectory from the chain can be generated. For a sufficiently
large number of iterations, this trajectory will eventuaily produce draws from the
equilibrium distribution p(x). By constructinga suitable Markov chain, one is able
to perform a Monte Carlo simulation of values from p, hence the name MCMC.

There are many possible ways to construct such a chain. One scheme is pro-
vided by the Gibbs sampler algorithm, proposed by Geman and Geman (1984)
and popularized to'the statistical community by Gelfand and Smith (1990). Let
pi{xi|x_;) denote the conditional density function of X; given values of all the
other X ;’s (j ¢ ) and assume that it iz possible to generate from these distribu-
tions for each i = 1, ..., p. The algorithm starts by arbitrarily choosing initial

. vales X0 = (xd. 1L 0) If in the jth iteration we have the chain at state x'/),

then the position of the cham at iteration j + 1 will be denoted by xU 1 and will
be given after:

. generaung a random quantity xU Y from
y
prixlX oy =G

. . j+1
+ generafing a random quantity x;ﬁ_ ? from

hoG
p2(xzlXo = (x{” ! §“,.. m)),

o successively repeatmg the procedure for i = 3, ..., p where at the last step

1)
a random quantity x;, " from pp(xp|Xep = (xU'H), N 4 f;'"} 1.

This way, a vector x(“‘” = (x(“” (”1)) is formed. Under suitable
regularity conditions the limiting dlstrlbullon of xU) as j — o, is just p(x).

Another scheme is provided by the Metropolis—Hastings algorithm initially pro-
posed by Metropolis et al. (1953) and later extended by Hastings (1970). A clear
introductory explanation of the algorithm is presented by Chib and Greenberg
(1995). Tt is based on the same idea of using an auxiliary distribution, previcusly
used for importance sampling, accept-reject schemes and weighted bootstrap. Let
g*(x, -} denofe an arbitrary transition kernel and assume that at teration f the chain
is at state x44). Then, the position of the chain at iteration j + 1 will be denoted
by xU/+1} and will be given after s

e proposing a move to X* according to g* (x4, -);
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e accepting the proposed move with probability

a(xt), x*) =mi“{1 P /q* (7, x*) }

" pxUNy g*(x*, x(D)

thus setting x/ 1) = x* or rejecting the move with probability 1-—-c (x), x*)
thus setting x4+ = xU) otherwise.

It is not difficult to show that the Metropolis-Hastings chain has equilibium
distribution given by p(x). Note that the move is made in block for all model
parameters. In practice, with highly dimensional models it is very difficult to find
suitable kernels g* for such spaces that ensure large enough acceptance proba-
bilities. A commonly used variation of the algorithm incorporates the blocking
strategy used in the Gibbs sampler and performs moves componentwise by defin-
ing transition kernels ¢, fori = 1,..., p. A wransition is then completed after
cycling through all p components of x and the generations of the components are
made according to the Metropolis-Hastings scheme.

Whatever the scheme used to generate the chain, a stream of values x(1?, x(z), o
is formed. Although consecutive values xU? and xU*1 are correlated, a random
sample of size n from p(x) can be formed by retaining n successive values after
convergence has been ascertained. If approximately independent observations are
required one might hold only the n observations lagged by 7 units, for example
xlm xbmth | xmt0=DD where m is large enough to ensure convergence has
been achieved and ! is large enough to carry only residual correlation over the
chain. This will be a random sample of n approximately iid efements of the
Joint distribution p(x). This sample s valid for any positive value of m and I: in
" particnlar, I = 1 is a common choice since independence is not really required.

After generating a large random sample the inference about each x; can be done
as in any Monte Carlo method. For example, the mean of the ith component of
x is estimated by (1/n) Y4—0 X" This idea can be applied in the Bayesian
context to obtain a sample from the posterior distribution of a parametric vector
# or in the frequentist context to obtain a sample from the sampling distribution
of an estimator or of a test statistic T(X). Nevertheless, most of the work and
applications in the area are geared towards the Bayesian approach.

Estimates using the known conditional distribution can also be obtained, In the
case of the mean of X;, the Rao-Blackwellized estimator of E p{Xi)is

n 1 n—1
Ep(Xi) =~ 3 Ep(XiXH0).
k=0

This estimator of E »(Xi} is usually better than X;, which is based only on the
generated values. The improvement is justified by a more efficient use of the
(probabilisitic) information available. A very similar idea was used in the Rao—
Blackwell theorem (see Section 4.3.2) to prove that conditioning of sufficient
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statistics improves the estimator, hence the name. It is worth pointing out that
inferences about any quantity related to the X's are easily done. For example the
mean value of g(X), given by Ep{g(X)], is estimated as (1/n) E:;é g(xUmk)y
where the (2, Vj = 1, are the values generated from the chain.

There are many practical problems that are easily handled by the combination
of Bayesian methods and Gibbs sampling or some other MCMC methods, but are
difficult to handle by other means.

Example. Let X1, ..., X, bearandom sample from the N (8, o) distribution and
assume independent prior distributions & ~ N (o, roz) and e ~ G(ng/2, ngcrg- /).
Note that this distribution is different from the usual conjugate prior used so far
in this book but may be a suitable representation of the prior knowledge in some

sitwations. Then the joint posterior is '

p(8, p1x) o 1(8, o x) p(8) pld)
o gb"ﬂexp l~§ [nsz +n(x — 9)2”

2
1 2| nos2-1 _ ooy ¢
X exp [—2;3_7(9 — pto) ] o] exp .

oc ¢[(n+no)/2]fi
‘ | ) i
% exp {—E[qﬁ(noag + s @ -0 4+ 1528 - uo)%}_.

This distribution has no known form and it is not possible to perform the ana-
lytic integration to obtain the proportionality constant. The kernel of the marginal
distributions can be obtained but are of no known form which prevents the exact
evaluation of their mean, variance and so forth. Nevertheless, the posterior con-

* ditional distributions of 8|¢ and ¢|# are easy to obtain, They are given by the

posterior density once the terms that do not depend on the quantity-of interest are
incorporated into the proportionality constant. So, ;

p(O1d, X) x exp [—%[nw —DH + 1570 - uo)z]}
x exp i—% [e'z(rgz +ne) ~ 2605 o + mp:f)] ]
p(d)f, X) ¢[(n+n0)/2]—l exp {“%Enodg +n32 @ — f)2]]

from which it is clear that (8|¢, x) ~ N[p1{p), r12(¢)} and (410, x) ~ G(n1/2,
no#(0)/2) where

15 2o + np¥

3 , Al=no+tn
Ty +ng

p(@) = . THe) =

ru"z—l—nqb
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and » 10?(6) = noog + ns? + n(8 — X). Therefore, it is easy to generate from the
conditionals and the Gibbs sampler becomes easy to implement.

One difficult problem in the applications of MCMC schemes is to ensure the
convergence of the chain. Some theoretical results and many diagnostic statistics
are available. The practical recommendation is to monitor the trajectory of the
chain using output diagnostics. A common approach is to plot the averages of
selected quantities such as the components of the vector X and assess by visual
inspection whether the convergence has occurred. More formal diagnostic tools
have already been derived and should also be used in addition to visual inspection.
Convergence of the chain can be slow for many reasons. For example, if the
components of x are highly correfated, or if the joint density has multiple modes
with regions of low probability between some of them, then the chain may take a
large number of iterations to converge. The interested reader is refered to the books
by Gamerman (1997) and Gilks et al. (1996) for some theoretical and practical
aspects of MCMC methodology. ' AT

Exercises

§5.2 . L .

1. Consider the genetic'épplication of Section 5.2 where a four-dimensicnal
vector of counts X = (X1, X2, X4, X4) has multinomial distribution with
parameters x- and x, where 1 = (1/2 +8/4, (1 — 0)/4, (1 —8)/4,8/4).
Assume that the observed data was (125,18,20,34).

(a) Obtain the equations required for calculation of the MLE via the
Newton—Raphson algorithm and apply it to obtain the maximum like-
lihood estimate for the given data set.

{b} Obtain the equations required for calculation of the MLE via the Fisher
scoring algorithm and apply it to obtain the maximum likelihood esti-
mate for the given data set.

(¢) Use the expressions given for the successive iterates in the EM algo-
rithm to show that the likelthood is monotonically increasing through
the steps of the algorithm.

{(d) Compare the three different algorithms for finding the MLE in terms
of computational complexity and time.

{e) Assume now a prior & ~ beta(a, b). Repeat the exercise to obtain the
(generalized) MLE. Specify numerical values for a and b and obtain
the corresponding posterior modes.

2. Consider a random sample X1, ..., X, from the G(a, £) distribution with
both parameters unknown. Obtain the maximum likelihood equations and
describe the use of an iterative scheme to obtain the MLE of o and 8.

3. Consider the randomized response example. Show that the MLE of & can
be calculated directly using invariance properties of the MLE and evaluate
its value with the figures provided in the example.
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4. Consider the EM algorithm with a sequence of iterated values v, j > 1.
Show that the sequence satisfies L(G“ Jx) < L{pY “){x) and is therefore
monotonically increasing in the likelihood 1{#!x).

§5.3
5. LetX, = (X1, ..., Xu) be a random sample from the N (0, 67) distribution.

(a) Obtain the asymptolic posterior distribution of & as n — oo,

{b) Obtain the asymptotic posterior mean and variance of 2.
Hint: X ~ N(0, 1) = X2 ~ x{.

(¢} Obtain the asymptotic distribution of 62 based on the delta method and
compare it with the results obtained in (b}.

g
6. Let X ~ bin(20, #) and assume that X = 7 was observed. Obtain a 90%
confidence interval for # using a uniform prior and

(a) the fact that if z ~ beta(a, b) then

b

2L~ F(a,2b;

al—z
(b) an asymptetic approximation for ¥ = 8/1 — 8;
(c) an asymptotic approximation for ¢ = sin™'(~/8).
(dy Compare the results.

7. LetX,, = (X,...., X,) be avector of independent random variables where
X; ~ Pois(@r), i =1,...,n,and 1, ..., 1y are known times.

. {(2) Prove that the MLE of & is 8 = X/T where X = Z?:; X;i/n and
T=31, t/n.

{b) Obtain the asymptotic posterior distribution of 8 | x,, | and construct
an asymptotic 100(1 — a)% confidence interval for & assuming that n
is large.

(¢) Obtain the asymptotic posterior distribution of gY/2 | x, | and, based
on it, construct an asymptotic 100(1 — o)% confidence interval for &
assuming that # is large.

(d) Compare the confidence intervals obtained in (b) and (c), considering
especially their lengths.

8. Let X1, ..., X, be arandom sample from the distribution with density
fx 8y = 0x" ([0, 1D

(a) Verify which function(s) of & (up to linear transformations) can be es-
timated with highest efficiency and determine its (their) corresponding
estimator(s).

(b) Obtain the asymptotic 100(1 — )% confidence interval for & based
on approximations for the posterior distribution of .



162 Approximate and computationally intensive methods

(c) Repeatitem (b) basing calcuiations now on the asymptotic distribution
of the score function U (X; #).

{d) Repeat itemn (b) basing calculations now on the central limit theorem
applied to the sample X, = (X1,..., X,).

9. Let Xy, ..., X, bearandom sample from the Pois(6) distribution and define
A=02a £0.

{a) Obtain the likelihood function {(A; X).

{b) Obtain the Jeffreys non-informative prior for A,

(c) Obtain the Taylor expansion of L(X) == log/()) around the MLE of A
and determine the value(s) of @ for which the third-order term vanishes.

(d) Discuss the importance of the result obtaineg in the previous item in
terms of asymptotic theory.

10. Let Xy, ..., X, be a random sample from the uniform distribution over the
interval [0, ] and let 8, be the MLE of 4.

(a) Obtain a non-degenerate asymptotic distribution for 4,, or in other
words, find functions A(r), a(8} and b(¢} and a non-degenerate asymp-
totic distribution P such that

By~ a(0) D

h(n}w — P whenn — co.

Hint: use the density of én to obtain the form of £, # and b and use the
result (1 +s/n)" — e* whenn — cofors ¢ R.

(b} Comment on the convergence rate found.

{c) Obtain the asymptotic 100(1 — )% confidence interval for ¢ of small-
est length based on the results of item (a).

(d) Show that the parameter

By — a(8)

"G

converges in distribution to P where k, a, b and P are the same ones
obtained in item (a). Therefore, the asymptotic result obtained with the
Bayesian inference is similar to the result obtained with the classical
inference. ‘
(e) Obtain the asymptotic 100(1 -- &}% HPD confidence interval for 6.
{f) Compare the intervals obtained in items (¢} and () with the exact
interval.

11. Show that forany distribution p(#) in the exponential family, the best normal
approximation in the Kullback--Leibler sense has mean and variance given
respectively by g = E(8) and o2 = V(8), the mean and variance of the
original distribution.

Exercises 163

12. Consider again the variation of the randomized response model which con-
sists in asking as the alternative question the negation of the original one.

(a) Show that the posterior distribution of ¢ is a mixture of n + 1 beta
distributions. :

(b) Obtain the relevant derivatives and points of maxima required for the
evaluation of the posterior mean of & analytically or numerically.

(c) Apply the results of the previous items to reproduce the table of exact
and approximated posterior means for ¢ given.in the text.

§5.4
13. Apply the Gauss—Hermite integration rules to obtain approximations for the
posterior expectation of «« and & given the observed values already provided
in the Weibull example of Section 5.3, and compare the results with the
approximations from the Laplace method.

§35.5 .
14. Use the simple Monte Carlo method to evaluate | fow e~**/2dx and compare
it with the known answer ~/27. Also, evaluate the variance of the estimator.
Hint: make a transformation to take the line into the interval [0, 1] and then
proceed as before. ' e
15. Show that if an integral /| = fg(x)p(x)dx is estimated by importance
~ sampling then its estimator :

_ 1 n ‘
=3 stowlx),
1

where (x0)
_ P
wix;) = D
and _
xi~h{x),i=1,....,n, -

is unbiased and has vaﬁance given by V() = (t/n) f(g(x)w(x) — 1y
h{x)dx.
16. Letd = P(X > 2) where X has a standard Cauchy distribution with density

i

= ——s, R.
w{l + x%) * €

pix)
Let # be an importance sampling density defined by
h(x) = 21,[(2, o0)}/x?.

Show that use of this sampling density reduces the variance of the estimator
of 8 over the simple Monte Carlo estimator.
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17. Show that the Rao—Blackweliized estimator of E,(X;) given by
-1
- 1R v (kD)
Ep(Xi) = ~ > Ep(XilXI™)
k=0

provides an unbiased and consistent estimator of £,(X;). Generalize the
result to obtain the Rao-Blackwellized estimator of the marginal density of
X; and show that it is also an unbiased and consistent estimator.
18. Let X4, ..., X, be a random sample from a Poisson distribution with mean
that is either @ or ¢. The mean is & up to an unknown break point m from
- where it becomes ¢.

(a) Obtain the likelihood of the unknown parameters 6, ¢ and m.

(b) Suggest a reasonable family of conjugate prior distributions for 4, ¢
and m.
Hint: to simplify matters, assume independent priors for ¢, ¢ and m.

(¢} Obtain the full conditional distributions required for implementation
of the Gibbs sampler.

(d) Generate data (X1, ..., X,) for given values of 8, ¢ and m and apply
the Gibbs sampler to draw inference about them.

19. (Casella and George, 1992) Let & denote the following discrete distribution
over § = {0, 1}2

where rog + o1 + o + w11 = 1 and i > 0, fori, j = 1,2, Assume
that instead of drawing samples directly from 7, one decides to draw values
from 7 through the Gibbs sampler.

{a) Show that the transition probabilities for Xy are given by the condi-
tional distribution 7| of X1|X2 = J,
. Ay ; Ty j
) == and  mif) = =~
Tt T+
where mj = moj -1y, =0, 1.
(b) Show that the transition probabilities for X7 are given by the condi-
tional distribution w2 of X2|X1 =1,
@) = 22 and  m(lli) = 2L

4 i+ i+

where ;. = mio + i, i =0, L.
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(¢) Show that the 4 X 4 transition matrix P of the chain formed by the
Gibbs sampler has elements

PG, ), (kD) = Pr((Xy, X2)

= (k, DI(X1, X" D = (1, j))
Tkl Tkj

Tkt T f

for (i, j), (k. 1) € S.
(d) Show that x is the only stationary distribution of this chain.
(e) Extend the results for cases when X can take 717 values and X7 can
0take n3 values,

20. Show that the Metropolis-Hastings chain has equilibrium distribution given
by p(x).
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Hypothesis testing

6.1 Introduction

In this chapter we still consider statistical problems involving an unknown quantity
¢ belonging to a parametric space ©. In many instances, the inferential process
may be summarized in the verification of some assertions or conjectures about
#. Tor example, one may be interested in verifying whether a coin is fair, a
. collection of quantities is independent or if distinct populations are probabilistically
" equal. Each one of the assertions above constitutes an hypothesis and can be
associated with a model. This means here that it can be parametrized in some
form. Considering the simple case of two alternative hypotheses, two disjoint
subsets B and @, belonging to © are formed.

Denote by Hy the hypothesis that # € ©¢ and by H; the hypothesis that § ¢
©1. A new statistical problem is to decide whether Hy or H; is accepted, or
in other words, whether ¢ is in @9 or @;. If the subset of the parameter space
defining an hypothesis contains a single element, the hypothesis is said to be simple.
Otherwise, it is said to be composite. Under a simple hypothesis, the observational
distribution is completely specified whereas under a composite hypothesis itis only
specified that the observational distribution belongs to a family. From now on, the
hypotheses Hg and H; will be uniquely associated with disjoint subsets ®¢ and
© of the parameter space. Whenever they are simple, the notation @y = {#¢}
and ©; = (#,} will be used. Note that in some cases, only one of the hypotheses
is simple.

Typically, a test of hypotheses is a decision problem with a number of possible
actions. [f the researcher makes the wrong decision he incurs a penalty or suffers
a loss. Once again, his/her objective is to minimize his/her Joss in some form. For
example, under the Bayesian approach he/she would try to minimize the expected
loss. A rule to decide the hypothesis to be accepted is called a test procedure or
simply a test and will be denoted by . One may define for example that ¥ = {
if the hypothesis accepted is H;.

From the Bayesian perspective, one may have many alternative hypotheses
Hy, ..., Hy that can be compared throngh P(H; | x), i = 1,..., k. Under
the classical perspective, it is important to have only two hypotheses Hyo and Hj.
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The theory of this chapter is developed for this case in order to ease COMmparisons
between the two approaches.

Usually there is an hypothesis that is more important. This will be denoted by
Hy and called the null hypethesis. The other hypothesis is denoted by Hj and
called the alternative hypothesis. In general, Hp and H; are mutually exclusive
which means that at most one of the hypotheses is true. If, in addition, Ho and Hy
exhaust all possibilities then necessarily one of them must be true. In this case,
rejecting one of them necessarily implies accepting the other one.

In this chapter, we start the presentation of the classical procedures and later
present the Bayesian procedure. We then move on to establish a connection be-
tween hypothesis tests and confidence intervals. Finally, tests based on asymptotic
theory results are described from both classical and Bayesian perspectives. A sys-
ternatic introductory account of this topic is presented in Bicke! and Doksum
(1977) and DeGroot (1970). The classical theory is presented at a more formal
tevel in Lehmann {1986).

Assume that before deciding which hypothesis 10 accept the statistician is of-
fered the choice of observing 4 sample X1, .-+, X, froma distribution that depends
on the unknown parameter §. Ina problem of this kind, the statistician can specify
a test procedure by splitting the sample space Into two subsets. Under the frequen-
tist viewpoint, this is the only available option as the only source of information
comes from the data. One subset of the sample space will contain the values of

X that will lead to acceptance of Hp and the other one will lead to rejection of .
He. This latter setis called the critical region and a test procedure gets completely .

specified by the critical region. Of course, the complement of the critical region
contains sample results that lead to the accepiance of Hp.

6.2 Classical hypothesis testing

The general theory of classical hypothesis testing comes from the pioneering work
of Neyman and Pearson (1928). The probabilistic characteristics of a classical test
can be described by specification of 7 (8), the probability that the test leads to the
rejection of Ho, for each value of # € ©. The function 7 is called the power of
the test. If C is the critical region then 7 13 defined by

71'(3):P(X€(;|9), V8 € B.

Some textbooks define the power function only for 8 ¢ ©o. The size or signifi-
cance level o of a test procedure is defined as

a = sup w(f).
880

Just as in the case of confidence levels seen in Section 4.4, the inequality above is
a technical requirement. 1t is more useful in discrete sample spaces where not all
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values in {0, 1] are possible probabilities. As will shortly be seen, one wishes to
use as small a value for o as possibie. In practice, this means that an equality is
used.

For any given test procedure yr, tWo types of error can be committed. A typel
error is committed when the test indicates rejection of Hp when it is true. Note that
the largest possible value for the probability of this error is . Similarly, the type 11
error is committed when the test indicates acceptance of Ho when it is false. The
probability of atype Il error is usually denoted by 8. Note that 3(8) = 1 —m(9),
for @ € ©,. In the case of simple hypotheses, the probability of a type | error is
o = m{fg) and the probability of a type 11 error is g=1-n@).

6.2.1 Simple hypotheses

{35 useful to start the study of the theory with the case of two sirﬁple hypotheses

Hp: 0 =t and Hy : 8 = 8. 1deally, one wishes 10 find atest protedureforwhich. L

the two error probabilities are as small as possible. In practice, it is impossible
to find a test for which these probabilities are simultaneousty minimized. As an
alternative, one may seek 10 construct a test that minimizes linear combinations of
o and B. : ’

Theorem {optimal test). Assume that X = (X1, - Xn) is a random sample
from p(x16), Ho : 9 =0pand Hy : 8 = §1. Let y* be atest of Hy versus H
such that Hy is accepted if po/py > K and Ho is rejected if po/p1 < k, where
pi = px 1 8. 0= 0,1 and k > 0. (If po/p1 = %. nothing can be decided.)
Then, any other test ¥ will be such that

ae(y™) + BB = ac(y) +bBBG),

where ar(y) and B () respectively denote the probabilities of errors of type T and
Ii of test ¥, forany a, b € RT. -

Proof. LetC bethe critical regioh of émy arbitrary iest and define p; = px 18,
i =0, 1. Then, fora,b € RY,

aa(l!f)+bﬁ(\b):afcp(x%90)dx+bfﬁp(ﬂ91)dx

:dfcp(xlﬂo)dx+b[l ~fcp(xt81)dx]

=b+ [C(apo — bpy)dx.

So, minimization of aa(¥) + bB(Y) is equivaient to choosing the critical region
C in such a way that the value of the integral be mintmal. This will ococur if the
integration is performed over aset that includes every point x such thatapo—bp1 <

0 and does not include points X such that apo — bp1 > 0.
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Therefore, minimization of ac(¥) 4+ BB(Y) is achieved by having the critical
region C inclading only points x such that apo — bpy < 0. (If the sampling
distribution is continuoys and apg — bp1 = 0, this point has 0 contribution and
is irrelevant) This completes the demonstration because apg — bp) < 0 iff
Po/p1 < k = b/a, which corresponds to the description of the test W,

]

The ratio py/ p; is called the likelihood ratio (LR). The theorem establishes that
a test that minimizes aa(¥)+bB(y), rejects Hy when the LR js smali and accepts
Hy when the LR is large. Usualiy, the nuli hypothesis Hy and error of type I are
privileged. Therefore, one considers only tests ¥ such that () cannot be larger
than a pre-specified level ag and, among them search for the one that minimizes
B(¥). This is a variation of the problem solved with the theorem and the solution
is provided by the following lemma. T

Lemma (Neyman—Pearson). Assume that X — (X1,..., X,) is arandom sam-
ple from p(x|8), Hy : ¢ = Boand Hy : & = 9,. Let Y™ be a test of Hy versus
H) such that Hy is accepted i po/p1 > k and Hy is rejected if po/p; < &, where
pi = pXx|8;)i=01 (If po/p1 = K, nothing can be decided.) Then, for
any other test ¥ such that « () < ("), BOE) = (™). Also, a(yr) < a(y)
implies A(y) > B(y™). |

Proof. Following the definition of the optimal test Y™ in the theorem, it follows
that for any other test

(™) +kBY™) < @) + kB (),

fork > 0. Ho(y) < a(*) then necessarily S(i/) > BF*). Also, ifa(y) <
a(yr™), it follows that 8(y) > B(y™), completing the demonstratiog.
. O

Special attention must be given to the wording of the lemma, It only considers
acceptance or rejection of Hy with no reference to H. This is consistent with the
preferential status given to Hy and also to the fact that Hy and H do not exhaust
the parameter space. This point will be readdressed below,

In the lemma, ag plays the role of significance level, Recalling that 7(9;) =
I — B(¥), minimization of B implies maximization of 7. Hence, the Neyman—
Pearson lemma shows that of all tests with a given significance level, that based
on the LR has largest power or is more powerful.

Example. Inthe N (6, 5%) with known o2, consider the test of Hy: @ = 8 versus
Hy: 8 = 9 with Bo < 8. Then

Po _ p(xleg) (2maH™n/2 exp{-—ﬁ et (i '—90)2}

P p(x|e)) (2ro?2)y=—n2exp l—z—;—f oG — 91)2]
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1 * 2 % 2
= exp {-2? [~291 Ex,- +néy + 26, 2. xXi —nf
i= =

i

1 7 1
:exp['ﬁ [2(80—91) E x;:“exp{i?'—zn(ﬁlz—ﬂg)]
i=]

Ay — Ql)f}

O(exp{ 5

2

where the proportionality constant involves the constants g, 41 and o2,
The LR test accepts Hy when po/p1 > k. Then, o

g — G1)x n(dy — 0x
Eg>k<::>exp[~——n(0 U }> —ﬁ———(o !

P1

3 >0 = X < ¢}

52 o2
since @y < &, for constants €1, c2 and ¢3. As the best estimator of 8 is X, the
sample mean, when testing Hy against My, one expects the test to accept Hy for
small values of X. That is exactly the result of the optimal, LR test. The next
step is to determine the value of ¢1. To do this, note that the test has level ¢ and
therefore & = P ( rejection of Hy | € = 60)=P(X>c 0= 6). But

-)—(-—90

a/\n

2
Yiﬁ{)"’N(ﬂo,i—) or 7= ~ N{O. 1).
n

Sincew = P {Z > (¢ — o)1/},

¢y~ 6g) o
( lG_O_JE:Zﬂ’:>CI=90+Zaﬁ-

The test with significance level o accepts Hy if X < 6 + NS
Note that the test is completely specified and does not depend on the value of
6y but for the fact that §, > . This means that the test is the same for any value

.. of &y such that 8, > 8. Therefore the LR test is also more powerful to test Hy

versus Hy : &) > 8.

The fact that the test does not depend on the value of §; may also cause problems.
Consider the case when Hy is rejected but X is much closer to o than to 8y, that is,
X — 6 < 0 —X. In this case, common sense suggests that given the choices of
Ho and Hy one should choose Hy. This is another reason to avoid commitments
towards acceptance or rejection of H; since the test does not provide information
about it. Similar comments apply if the distances of ¥ to fo and &) are much
larger than the distance between 9 and 6y. The intnitive reasoning based on
the frequentist argument is that if sampling of X is repeated maily times, in only
100a% of them, Hy will be ermroneously rejected.

The power of the test m(0) = P( rejection of Hy | 6) is given by

—_ a
n(e):P[X>90+ﬁza|9>90].
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ButX | 8 > 8y ~ N(®, o2/n) and therefore /n(X — 8)/o ~ N(O, 1). Then,

n(@):P[«/ﬁ(X;G) > 80+(J;;{/EE)ZQ_9 [9>90:|

(X -6y (th~
-
[¢3

:P[JH «./5+za|9>90:I

=1—cb(zaf(6_90)\/ﬁ),
o

which is an increasing function of 8. So, the more distant is the parameter value
in the alternative, the@smailer are the chances of a type II error.

This test is not only the most powerful test of Hy versus Hy: 6 > fp, but also
to test Hy : 6 < 8p versus Hy: 0 > 61 because the level of the test with the new
hypothesis is

- fod
gl;lﬁ);n(ﬂ?) = g]sa:;); F [X > Gg + JEZ“] .
As just seen, 7 is an increasing function of & and the maximum in the region
16 1 @ < By} is given at the value §y and the value of 7 at this point is1—®{zy) = a.

Also, in the example we could evaluate the size at which we would reject Hp
after observing X = x, that is, we could evaluate v such that 8y — oy //n =X,
This gives a more precise account of the strength of the data evidence in favour of
or against the hypotheses. Smaller values of y indicate a lower probability or type
I error and therefore more evidence in favour of Hy. Likewise, larger values of y
indicate a higher probability or type I error and therefore more evidence against
Hay.

More generally, suppose we have a test where H is rejected when a test statistic
T belongs to a region of the form [T > c] and let ¢ be the observed value of T
Then, evaluation of Pr{T > t|Hp) gives an idea of how extreme the observed
value is under Hp. This probability is usually known as the p-value. In the
previous example, the p-value is given by 1 — P /nF — ) /o). The notion of a
p-value is useful for determining the size at which one would reject Hy based on
the information actually obtained for

Hp is rejected <= p-value < o,

where o is a pre-specified level of the test. It should be stressed that under the
frequentist treatment, no probabilities can be associated to the hypothesis as 8 is
not random. Therefore, no association between the p-value and the probability of
H; can be made because such a probability simply cannot be defined. The notion
of p-value can be placed in a general setting whenever it makes sense to specify
the border of the critical region in terms of observed values of the sample.
Returning now to the case of discrete populations, it is not always possible to
obtain tests of any pre-specified level exactly. By exact, we mean to have ¢ =

Classical hypothesis testing 173

where 71 = Supgcg, F{ rejection of Hpld € B¢). The notion of p-value becomes
even more important here.

There is an alternative approach that aflows one to obtain tests of an exact level
even for discrete distributions. This alternative is known as randomized tests where
any pre-specified level is obtained after realization of an additional independent
Bernoulli experiment with success probability conveniently chosen to complete
the difference between o and 7.

6.2.2 Composite hypotheses

Consider again the test ¥ of Hy: 8 € @ versus Hy: # ¢ ©,. Let o be the fixed
significance level and 7 {#) the power function of . Then, my (#) < « forevery
2 c Q.

versus Hi: 8 € ©) at the significance level « if

CaW e
2 Vi with () < o, 7T¢{9) < mwy+(8), v € @1

The test of the example above is UMP to test § = B versus & > g and also to
test & < fg versus & > 90

Theorem 6.1. Let X = (X1{,..., X;) be-a random sample from p(x]0) and
p(x16) belong to the one-parameter exponential family with density

p(x | 8) = a(x)exp{p(0)T(x) + b(6))

and let ¢ be a strictly increasing function of &. Then the UMP test of level o to
test Hy: 0 < 8p versus Hy: 6 = 8y is given by the critical region T(X) > ¢ where
¢ is such that & = P(T(X) > ¢ | f) (with equality in the continuous case). The
power of this test is an increasing function of 8. If the hypotheses are interchanged
or ¢ is a strictly decreasing function of 8, then the UMP test of Jevel « rejects Hp if
T(X) < ¢ where ¢ is such that o > P(T(X)} < ¢ | 6p) and the power of this test is
again an increasing function of €. If the two conditions above are simultaneously
true, the UMP test remains unaltered.

Proof. Consider the standard case where ¢ is strictly increasing and the hypotheses
are Hy : 0 = gg and Hy : 8 = & > 9. In this case, the Neyman-Pearson lemma
ensures that the most powerful test rejects Ho when

p(xif0) exp{ (o) T (X) + b(00)]
paie) ~ T exple@NT® F b6}
= expllp(60) — pENTX) < 2
= [$00) — $ENITEO < c1
3 T(xX)>c
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where ¢4, ..., c], ¢ are constants such that ¢ == P(T(X) > ¢|8). For the most
powerful test, it must be true that 7 (g} < 7(61) (see the exercises). So, the power
function is an increasing function of 8 and

m{fp) = sup =(B).
{0:6 <0y}

So, the test is UMP for Hq : & < 8p. As in the calculation above only the condition
& > By was used, so the results must be equally true for any such value of ;.
Therefore, the test is UMP for Hy : 8 > 6.

In the case of a sirictly decreasing ¢,

[P(6) —¢ONITK) <) = Tx) <c

and the critical region becomes {X : T(x) < c}.

In the case of interchanged hypotheses, all inequalities must be reversed because
one must work with the ratio p(x|6y)/p(xi€p) instead of p(x|fy)/p(x|81). This
leads to the critical region in the form {x ; T(x) < ¢}.

Finally, in the case of astrictly decreasing ¢ and interchanged hypotheses, double
reversal of the inequalities preserves it as it was and the critical region remains in
the form {x: T(x) < c].

0O

Example. Let X3, ..., X, be a random sample from the Ber(@) distribution.
From Section 2.5, we know that ¢ (#) = log[8/(1 — 8)] which is an increasing
function of 4 and that T (X) = ZF:! X;. Therefore, the UMP test for Hy : 8 < 8g
versus Hy : 0 > 8 has critical region of the form 3| X; > ¢.

The property that guarantees the existence of UMP tests in the exponential
family is in fact more general. It finds an appropriate setting under families with
monotone LR.

Definition. The family of distributions { p(x | #), & € ®} is said to have monotone
likelihood ratio if there is a statistic 7(X) such that v8;, 8, £ @ with 8; < 05 the
likelihood ratio

X | &)

pX {6
is a monotone function of T(X).

The uniform distribution over the interval [0, 8} does not belong to the expo-
nential family. Nevertheless, it has monotone LR because the ratio of sampling
densities is a monotonically decreasing function of 7 (X) = max; X;.

The results just proved for exponential families can be extended for families with
monotone likelihood ratio. So, if the LR is an increasing function of 7 (X), then
the UMP test of level e for Hy: 8 < ) versus Hy: 8 > g is given by the critical
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region of the form T(X} < ¢ where ¢ is such that o = P(T(X) < ¢ | 6y) and the
power of this test is an increasing function of 8. Likewise, if the hypotheses are
interchanged or the LR is a decreasing function of T(X), the UMP test of level o
rejects Hy if T(X) > ¢ where ¢ is such thate = P(T(X) > ¢ | 6y) and the power
of this test is again an increasing function of 6. If the two conditions above are
simultaneously true, the UMP test remains unaltered,

These results make intuitive sense. The larger the LR, the more plausible is
the value ¢y relative to @). If the LR is an increasing function of 7(X), the same
reasoning is true for 7'(X). Therefore, a reasonable rejection region for Hy would
be given by small values of T(X).

Example (continued). Let X, ..., X, be a random sample from the Ber(§)
distribution. Then, p(X 18) =687(1 — )" T with 7 = ¥ X;. If 6, < 6a, the

LR is -
6] (1 — 6T [92(1 791)} (1 —92)"_5T .
6T —ay-T (60 -en] \1-g) =%
tth
" 6,01 — 01) L -6,
E="0— and p= .
&} — 1) 1 -6

Since 1 — & > 1 8, & > 0, and the LR is increasing in T, confirming results
obtained earlier in the exampie.

So far, only one-sided tests have been considered. These are tests where the
parametric regions defining the hypotheses are given by a single strict inequality.
An example of interest of an hypothesis that is not one-sided is Hy: 8 = @ versus
Hi: 6 # tg. This test may be useful when comparing two competing treatments.

Assuming now the observation of a sample from the N(#, ¢ ?) distribution with
known a2, consider the three tests of Hp : 8 = 8 below based on X:

\. reject Hyif | X — Ay |> 1.6450//n:
2. reject Hy if X — 6p > 1.2820/-/n;
3. reject Hy if | X — 6y | < 0.1260//n.

Calculation of the rejection probability of Hy-shows that the three tests have
level 0.1. The next step is to proceed with evaluation of the power of each of the
tests. It can be easily seen from Figure 6.1 that none of the tests is UMP over the
other two. Nevertheless, the first test is the only one with ming, 7 (8) > 7{(8).
This means that the rejection probability is larger under the alternative than under
the null hypothesis. This way, one guarantees that the chances of rejecting Hp are
larger when Hy is false. This seems like a reasonable property to require from
tests.

Definition. A test for Ho : @ € ©gp against H; : @ € @) is said to be unbiased
if for every pair (6, 8') where 8 € ©¢ and 8’ € @, then 7y (8) < 7y (8"). The
power function is at least as large in € as it is in ©y. If the test does not satisfy
the condition above, it is said to be biased.
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power

8*

Fig. 6.1 Power functions Jor tesis 1, 2 and 3 as functions of 8% = /n(f — 8o)/o.

One can then try to construct UMP tests for Hp: 6 = 8o versus Hp: 8 # o
“within the class of unbiased fests. In the one-parameter exponential family,_it can
be shown that if ¢ is a strictly increasing function of 0, the UMP unbiased test of
level @ for Ho: ¢ = Op versus Hy: 8 # 6 accepls Hg when ¢y < T{X) < ¢2
with Pley < TX) < 2 | 0g) = 1 — and {cy,c2) is an interval of highest
sampling density of T (X). The sampling distributions of T (X} are not necessarily
symmetric {around 6p) as in the normal case above. For such fests, we are led to
two distinct p-values. In general, the smallest.one is used.

It may not be possible in general to find unbiased tests. A general procedure for
testing Ho: 8 € ©g versus Hi: 0 € Ois based on the maximum likelihood ratio
(MLR, in short) statistic given by

5“]?8(—:(»}0 p(x h 9)
supgeo, PIX | 0’

The most common case for use of this procedure is when g and @ are exclusive
and exhaustive and g is of smaller dimension than ©1. In these cases, the
denominator is replaced by the supremum Over the whole parametric space @,
which is easier to evaluate. Formally, the statistic A(X) is being replaced by
max{A{(X), 1}. In any case, A{X) is a random variable depending on the sample.
The maximum {or generalized) LR test for Hp of level o accepts Hoif A(X) = ¢
where c satisfies

MX) =

o> sup PAX) <c | 8).
#<cBg
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Once again, o is taken as equal to the supremum of the above probabilities
whenever possible. The power of the test is given by (8} = PAXy<cl@.
This test rejects the null hypothesis Ho if the maximized value of the likelihood
under Hp is distant from the global aximized value. This is an indication that
there is great improvement in likelihood by consideration of points outside Hp and
this hypothesis does not provide a good description of the data. In this case, it
makes sense to reject Ho.

It is important o distinguish between the above test and the test based on mono-
tone likelihood ratios. Although the maximum likelihood ratio test enjoys good
asymptotic properiies, it is not always unbiased or UMP. The main difficulties
associated with it are the calculation of the maximized likelihood in closed form
and determination of its sampling distribution. The first point was dealt with in
Chapter 5 and the second one will be addressed below when asymptotic tests are
ireated in Section 6.5.

.- Other desirable properties in test procedures are similarity and invariance. Con-

sider the problem of testing H : 8 = fp in the presence of a nuisance parameter
$. A testis sad to be similar if the level of the test is the same whatever the
value of the disturbance parameter. An example of a similar test is the t test, to
be scen later in this section. A test is said to be invariant (under a specific family
of transformations) if the distribution of any transformation of the observations
inside the family remains in the same family. This will allow the hypotheses to
remain unaltered with any of the transformations operated over the data. The tests
presented below in this section are all invariant under linear transformations of the
observations.

6.2.3 Hypothesis testing with the normal distribution

The most common tests for samples from a normal distribution are presented here.
Onge again, let Xy, ... Xnbe iid with X; ~ N, o) and suppose one wishes
10 test Hy: 8 = fp versus Hy: @ # fp. Assume initially that &2 is known. In this
case, we have shown that the UMP unbiased test of level « is given by the critical
region /(X — 80)/0 > Zas2. We will now obtain the MLR test.

Since @ = (Ao} then

sup plx | 6) = p(x | 6o)-
ge®p

For 8 € ©; = © — {fg}, the maximum of p(x | 0) is obtained at é, the MLE
of &, which in this case is the sample mean X. Note that for every value of &,
P(é = §) = 0 and therefore to consider maximization over © instead of over
@ in the expression of the MLR does not produce any change. Then the MLR
statistic is given by

1]
_ pX|6)

AX) = .
pX |8
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_ @ra®) 7P exp |- [ (X = X)? + n(X — 85)*] /257)
B @ra?y " 2exp |- Y(X; — X)2/202)
"o 2
= exp [—F(X — 60) ] .

Observe that under Hg, X ~ N (6, crz/n) and therefore Z = /n(X — fy) /o ~
N(0, 1). The MLR is given by A(X) = exp(~Z2/2). The MLR test rejects Hy if

AMX) < e ZP2 0 &= |Z] > c.

Given a significance level @, & = P(|Z} > ¢ | Hy} of ¢ = za7. The power of the
testis w(0) = P(|Z| > zap2 | H1).
Under Hy, X ~ N(8,a%/n). So,
2 ~o
Y*QONN(G—E)O, U—) = W= —?{X-Qo*(ﬁ—eo)}wN(O, 1.
n

Then, W = Z — \/r{0 — &)/ and therefore the power of the test is

n(B):]—P(—za/2<Z<zq/2|6‘) )
L @6 )\
=1—-P(#za/2ﬁxfig—( 00)<W<Zw/2‘ﬁ s ]9) '

8- 4 —4a
l+<1)(—za/2—\/r7( 0))—43(2”/2-—\/5( 0'0))>

o

I

The MLR testis unbiased as 7 () > a, V8 # 6. The rate of increase of the power
depends on o. The smaller is o (more precise distribution, more concentrated
population), the faster is the rate of growth of the power towards 1.

In the case where o2 is unknown, @9 = {(#,0%) : 6 = 6y, 0% > 0} and
©& = {(0,0% :8 € R, o2 > 0}. Since the dimension of ©q is smaller than the
dimension of @ and of @, we will work with the latter. As before, this change
can be proved to affect only a zero probability set. As seen in Section 4.5.1,

sip  p(X (6,0%) = p(X| 6,563

6.02)e0q
where
58 = T(X; — 6)*/n
and
sup  p(X 10,00 =p(X4,5%
(.00
where

§=Xand6%=%(X; - X)¥Yn.
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Therefore, the MLR statistic becomes

~2
AX) = p(X | 6y, 75)

p(X18,5%)
(2763~ 2 exp {_24? 3K — 90)2}
(2r&2)y /2 exp [-—2—;—5 (X - f)2]
(&z)n/Z eXp (— .zm‘rg)

B &62 exp (——l—znéz)

i
T
>
Oa):] qm
—
3
r3

One can also write

§ _ L - B2 4n® -6y

Iez
g > (X; - X)?
X — 6p)2
(n —1)§82 _
o X =
=1+ wher’eTz\/ﬁ(—-:ﬂ
: n—1i Ay

and the MLR can be rewritten as A(X) = (1 ++ 72/n — 1)""/2, Therefore, the
MLR test accepts Ho if T2. < ¢; or [T} < c. As T1Hg ~ t,_;(0, 1), the value
of ¢ of the level « test is 75)2,,—1. This test is usually known as the 1 test, and
is possibly the most used test in statistics. It can be shown that the power of the
test is a strictly increasing function of |§ — 6ol (see Exercise 6.5). An immediate
consequence is the unbiasedness of the test since the smallest value of the power
occurs when @ = &

This test is similar because none of the properties of the test is affected by the
value of the nuisance parameter o 2. This was achieved by replacement of &2 by its
estimator $2 and the existence of the pivotal guantity 7. This test is also invariant
under linear transformations. ‘

Another common test is the test of equality of two means. Consider two
random samples X; = (Xyy,..., Xin,) from the N(9|,02) distribution and
X2 = (X21...., X2a,) from the N{@, o2} distribution. It was assumed also
for simplicity that the variances are equal. Then, the hypothesis of interest is
defined by the parameter space @y = {(8, 62, 0% : 8) = 6=8¢R, o2 >0}
Observe that under Hg the problem contains only a single sample of size n + n»
from the N(6, 523 distribution. The parameter vector can be more usefully de-
scribed by 3 new parameters of interest 62 — 8y, any other transformation of #; and
8 parameters not multiple of 8, —0; and 2. The last two are nuisance parameters.
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Ongce again, the MLR is based on maximizations over @ and ©¢. These opera-
tions give

sup p(X1, X2 16,00

(81,62,.0)€B
1 mtnz 1 2
= exXpy——= Xii—6)?
5w) =l m[E i)

where
R 1 I3 nz
g = X+ X
n§+n2[§ 1 ,ZZ]: 21]
and
n
‘ Xy —6)7+ X2 — 8
HIMZ[Z( 1 —6)? Z( 2 )}
and
Cosup p(Xi, Xz [ 6y, 62,00
(8r.02,0%3c€
! r)t+n) 1 Hi
~(z50) oo || L B -
|'= =
where',

G =X;, i=1,2 and &> = m+n2 liZ(Xh“Qi)*FZ(Xm*QZ)}.

This gives A(X), Xp) = (62/62)™+2)/2. Note that

X;—6 = X -%Xy) ad X;-6= (X2 — X1
mny +n2 Hi +n
which implies that
zon
ZZ(X,, —62 =33 "(Xi; — X + i (Xi - 0)?
=1 j= i=] j=1I

2w

=33y - X+ ”( - X%

i=1 j=1

Therefore

1 . T2 chaz)/2

n, +n X1—-X

A(xl,xz):(u( L2 X0~ Xo)
fe= 12 (XU "—X )2

T2 —(nidnz)/2
= ] —————
( * n1+nz — 2)
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where
Xi— X3 . 2 ny+ny g
! with §“ = T o-.

So, the MLR test accepts Hg when A(Xy, X2) > ¢1 or when |[T] < ¢. As seen
in Section 4.5.2, T|Hy ~ tn,1n,—2(0, 1). For alevel @ iest, ¢ == t4/2 0 4ny—2.
Analogously, it can be shown that the power of this test is a strictly increasing
function of }6; — 62|. Therefore, this test is unbiased for the same reasons as
the previous ¢ test. It is also similar because none of its properties are affected
by the two nuisance parameters and invariant under linear transformations of the
observations.

T =

i

6.3 Bayesian hypothesis testing

1n the Bayesian context, the problem of deciding about which hypothesis to accept
is conceptually simpler. Typically, one would compare the hypotheses Hy, ..., H
through their respective posterior probabilities, obtained via Bayes’ theorem as

p(H;: | xy o p(x | H)p(H;).

Once again, this setup can be framed as a decision problem. In addition to the
(posterior) probabilities attached to the hypotheses (or states of nature), a loss
structure associated with the possible actions can be incorporated.

Returning to the special cases of two hypotheses, suppose one wishes 1o test
Ho: § €O versus Hy: # € ©. It suffices to examine the posterior probabilities
p{Hy | x) and p(H) | x). ¥ p(Hp | x) > p(Hy | x), then Hp should be accepted
as the most plausible hypothesis for #. In this case, it can be said that Hp is
preferable to Hy. Otherwise, H; is prefered to Hp. There is a clear-cut rule for
the choice between the hypotheses, which is not always true under the frequentist
framework.

As

p(Ho | x) o p(x | Ho) p(Ho)
p(H | %) x p(x | H)p(H))

and recalling that the proportionality constant is the same in both expressions,
p(Ho | x) _ p(Ho) p(x| Hyp)
p(Hi %) p(HD) px | Hy)
The ratio p(Hg)/ p(H)) is called the prior odds between Hp and H; and the ratio
p(Hy | X}/ p(H; 1 x) is called the posterior odds between Hg and H;. The ratio
plx | Hy)
p(x| Hy)
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is called the Bayes factor and is denoted by BF (Hyp; H;). This concept was
introduced by Jeffreys (1961). Note that it is in some way a ratio of likelihoods,
So, the posterior odds is given by product of the prior odds and the Bayes factor.
Once again, the likelihood ratio introduces the influence of the observations in
the setting of hypothesis testing. In general, the likelihoods here are marginal in
the sense that they are obtained after integrating out some of the parameters not
associated with the specification of the hypotheses.

Despite their notational simplicity, it is not easy in many cases to specify p(H;)
when H; is a simple hypothesis, j = @, | and # is continuous. If a prior density f
is specified for § € ©, one will have that p(H;) = p(H; | x) = 0. In these cases,
one solution is to attribute a lump prior probability o to the simple hypothesis,
say Hp, for m € (0, 1). So, if H is the complement of a simple hypothesis Hy,
ithen p(H4) = 1 L and this probability is distributed over the different values of
# under Hj, according to the prior distribution for # } H;. This distribution will
have density f over ©).

As Hyis asimple hypothesis, it follows that p(x | Hp) = p(x | 8¢), the marginal
density of X given Hp, This can also be referred to as the marginal likelihood of
Hp based on X. The marginal likelihood of H) based on X is

px | Hy) =/ p(x,8 | Hi)do
Q-{dg}
:f P16, H)p(@ | Hy) a6
O—(fo) .

:f pix | 6} (8)do
e

observing that the last integration is performed over the entire parameter space ©
because a single point does not alter its value. The Bayes factor is reduced to

px |8y
[pixto)fode

Note that it provides the relative odds between Hpy and H; without taking into
account the prior odds. It is a Bayesian measure of the goodness of fit of a given
model to the data set. A Bayes factor larger than 1 indicates that Hy fits the data
better than H| and thus has larger likelihood. Also, the marginal prior for 8 is
mixed and therefore the marginal distribution of X is

BF(Hy, Hy) =

px) = [ p(xI6) dF(#)
— 7p(x80) + (I — n)fp(xw)f(a) a0
e 7 p (00} + (1 — ) plx| ).

LetX = (Xy, ..., X,) be a random sample from the N (&, o2) distribution and
assume one wishes to test Hy: @ = 6y versus Hy: 8 % 6y. Consider initially, the
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case of known variance o 2. Then, with a prior probability m for Hy and assuming
9| Hy ~ N{u, t2) gives

x| Hl)zfp(xte)p(e)de
_(_ 1\ ! Z oy
= (27{02) O Ry 2. {xi —X)

IAPRT) B L PRI
xfexpl 202(9 x)]\/z?texp{ 2172(9 u)}déi.

After a few substitutions and algebraic transformations

1 nfz
H ==
p(x | Hy) (23102)

« ex ns? oin
P 202 T2 -%—crz[n

where 52 = i — f)z/n. The Bayes factor is

1/2

oxp | 1R
P 2124+ 0%/n

eonnf2 3 _
(zr) ow|-g5] oo |-sne-a?]
L\ nst | _e?n_\'? | Gw?
(271—(;2) exp [—Z{_f] (1'2+0'2/n) exp ‘_7 IXEr T l

172 = -
_ (Pt [ E-w? @)
- o2/n P12 o2 +net o? )
As expected, the Bayes factor onty depends on the sample through ¥. To obtain the
sample value that maximizes the Bayes factor, it suffices to solve the maximization

problem for X, Taking the logarithm of the previous expression and differentiating
with respect to ¥ gives

dlog BF _n [2&—“) 2(1_90)} ~0

BF(Hy: Hi) =

ox 2lo2+nr?r | o2
PlogBF n 2 2 n 2nv? 0
= - —— = =
5%+ 2|lo2+nt2 o2 2| o2(c?+ntdh

and solving the first equation provides the maximum. The solution is

02
Xmax = Bo + _3(60 — )
nt

and the maximized value of the Bayes factor is

1/2
(60 — ) nt?
CXP{-"—ZI_.Z— 1 +? > 1.
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‘The larger the sample value #, the larger the chances of Hy and the larger is 2, the
larger is the maximized value of the Bayes factor. The prior uncertainty plays a
crucial role in the Bayesian comparison of sharp null hypotheses. In the limit, when
12 —» oo, the Bayes factor B F(Hy; H)) also increases indefinitely. This lmit is
the result obtained when a non-informative prior for 6 | Hj is used. This was
first noted by Lindley (1957) and is known as Lindley’s paradox. It has been the
object of study of comparisons between the Bayesian and frequentist approaches
to hypothesis testing.

To ease comparisons between the approaches, take . = 8y and 12 = o?. The
first assumption centres the alternative prior distribution over the single value
of Hp and the second takes the prior variance in the alternative as equal to the

observational variance. Then, .

BF (Ho; H) = (%}%f)we {?2_ [g;io;z =® ;290)2“
=(n+l)”2exp{mg[%“
If p(Hp) = 7, then
T = T B )
»
&= plHy | %)= [1+[}—iEBF(H°; Hr)]q] )

Assuming prior indifference (p(Hp) = p(H)) = 1/2) gives

n o z¢ -n
P(Holx)=l1+|i(1+n)1/26xp=—n+1?” ]

The posterior probability of Hp can be calculated for different values of # and z
since both classical and Bayesian tests are based on z2. Working with the most
common values, associated with the p-values 0.05 and 0.0} gives Table 6.1.

The probabilities of Hy are smaller for the larger value of |z| which is reasonable.
What is less reasonable is the values that are obtained for these probabilities but
they reinforce the idea that p-values should not be taken as probabilities that can
be associated with Hy. Another interesting result is that for any given value of z,
posterior probabilities can vary substantially from a very low value that would lead
to rejection of Hy 10 a very large value that would lead to acceptance of Hy. One
possible way to reconcile these findings with the significance level is that levels
should also be changed with sample size. A large sample size should call for a
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Table 6.1 Values of P(Hypjx)

n |z} ( p-value)

1.96 (0.05) 2.576 (0.01)
1 0.35 0.21
10 0.37 0.14
100 0.60 0.27
1000 0.80 0.53

reduced level and vice versa. A more detailed discussion of the subject can be
found in Berger and Sellke (1987). '

Assume now the same sitnation but with an unknown observational variance o
and take ¢ = o 2. A prior for ¢ must also be specified. Since the hypotheses
do not involve ¢, it is reasonable io take the same marginal prior for ¢ under both
hypotheses. Adopting conjugate priors under both hypotheses gives

2

noog¢ ~ x2, under Ho and F and 6 | ¢, Hy ~ N{u, ().

The relevant quantities for the calculation of the Bayes factor are
p(x | Ho) = f p(x | 6o, $yp(¢ | Ho)do

p(x | H) =[[P(X 16,)p® | ¢, H)p(¢ | H1)dd dd
where all the above densities are known. Substituting their expressions gives

BF (Hy; Hy)

B (c + n)‘ﬂ nood + (n — s + len/ (c + m)(x — uy’
- npag + (n = 1)s? + n(X — 69)?

(no+n)/2
c ]

where now s = 3 (x; — %)% /(n — 1).

It is interesting to study the behaviour of the Bayes factor in extreme situations
such as with non-informative priors. Taking ng — 0 and assuming as before that
o = 0y, gives '

e+ n\"2 [ (n = 1)s? + [e/(c + minGE — 60)2 |
BF(Hy; Hy) — ( ) { (n — D)2 + n(x — 8p)2 }

— 1+ k)
= k1?2 no e where k = <
n—1+12 c+n

X — o
andr:ﬁx 0
s

The above expression is graphed in Figure 6.2. The Bayes factor is a symmetric
function of the sample values through the statistic 7. Tt varies from the highest value
of support of Hy when ¢ = 0 to a minimum value when [t| — o0, as expected.
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Bayes factor

1

Fig. 8.2 Bayes factor for Ho: 6 = Op versus Hy: 6 5 &y as afwrctioﬁ ()ft.

In the general case, the hypotheses can be incorporaﬁ:d into-the prior distribution
and the problem of hypothesis testing can be thought of as comparison of possible

"+ alternative distributions for #. For example, in the above test, the priofs corre-

" sponding to Hp and Hy would be P(8 = &plgp) == 1 and 8| ~ N(u, {cd)™ ).
The prior corresponding to Hp is degenerate. This will be the case whenever one
of the hypotheses corresponds to a parameter space with smaller dimension than
the complete paramelter space ©. '

It will be seen in Chapter 8 that it is common to test if a few of the components
of 8 are null. Writing # = (8, #2), where 8, is g-dimensional and 3 is p — g-
dimensional, one may wish to test whether &7.= 0. In this case, P(# | Hp) will
be concentrated on a g-dimensional subspace of RP passing through the point
8 =190

6.4 Hypothesis testmg and confidence
intervals

You may have noticed the strong connection between hypothesis testing and con-
fidence intervals. This connection is clearer with the frequentist framework but it
is also relevant under the Bayesian approach as will shortly be seen.

Starting with the classical approach, consider alevel & test for the hypothesis that
# = Bo. Assume that, based on a given sample size, the test yields an acceptance
region A = A(fy) where it is important to explicitly denote the dependence of the
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region on #g. So,
P(X € Alfg) | 6g) =1 —qa.

Varying the value of #¢ in © leads to a family of regions, all depending on  and
with probability 1 — «. This automatically implies that, after observing the value
x for X, the region

{#:xc A(B))

will have confidence 1 — o

Example. Let X = (Xl, ...+ X5) be a random sample from the N (8, ¢2) distri-
bution with known 2. The UMP unbiased test of level « to test Hy: 8 = 6y versus
HyT0 # ) has acceptance region (X : 8p — zap20//n < X < 6o + 2as20//n}.
This interval can be rewritten as {X : X — Zaj20//n <8 < X+ Zaj20/ /1)
Replacing now 8 by & gives the 1 — « confidence interval for @:

_ a _ a
{BCI""_ZQ/ZS.GS-X‘*}‘*'“ZD{/Z

n Vn

Of course, this is exactly the same interval as that obtained in Section 4.4.

This relation is more heavily explored in the nexi section when asymptotic tests
are introduced. In fact, this relation can also be used in the reverse direction
with hypothesis tests obtained from confidence regions. To see this, suppose that
{#:G(x,8) € C}isall(l —«)% confidence region for #. Then, for every
value g of 8, itis true that P(G(X, 0) € C18p) = | —e. A level & test for the
hypothesis & = 8 can be defined by the critical region {X : G(X, 8g) ¢ C}.

This brings us naturally to an alternative definition of Bayesian hypothgsis test-
ing. The method consists in constructing a credibility region for # with probability
I - & and accepting the hypothesis § = f; if the above region contains the value
9. As before, one should aim to construct HPD regions (intervals, in the scalar
case) or at least with smallest possible volume (length, in the scalar case). The
value of @ is typically low but there is no prescription about the value to be adopted
in any given problem. This method was proposed and extensively used by Lindley
(19653).

Example. Taking again a random sample X = (X1, ..., X,,) from the N (8, 6?)
distribution with known o2 and prior 8 ~ N{u,t ) gives the posterior 6 |
X~ N{up, rl) The 100(1 — @)% confidence interval for 6 is given by [, —
T1Zaj2, M1+ T1Zas2]. The hypothesis § = 8y can be accepted if 8y belongs to the
interval above. In the non-informative case, x| — ¥ and 7; — o/+/% and the
hypothesis is accepted if p belongs to the interval [x — 2020/, X+ 2a 20 //11,
coinciding with the classical test.

In the previous section, Bayesian tests of a simple hypothesis in the form 8 = 8¢
were defined by dttributing a lump prior probability & to this hypothesis and the
remaining | — m was distributed according to some probability distribution of
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#1Hy. This specification is criticized for giving a sometimes unjustified special,
different status to the value .

This discussion is in fact wider and goes beyond the boundaries of Bayesian
thinking. Tt has to do with the capacity of a single hypothesis to represent ad-
equately the situation under study. Some authors suggest that these hypotheses
are always at most & useful approximation of more realistic hypotheses where ]
actually belongs to a neighbourhood of fp. We will not pursue this discussion
here further than acknowledging that the spectrum of thoughts on this matter goes
from total rejection to total acceptance of this formulation. Good references for
this discussion are Berger and Delampady (1987) and Lindley (1993).

g

6.5 Asymptotic tests

Asymptotic tests are those based on asymptotic approximation for the distribution
of the test quantity, irrespective of whether it is under the Bayesian or frequentist
paradigm. This is a very broad definition including results based on the central
limit theorem. We shall concentrate here on tests based on the MLE, score function
and MLR. In most cases we are typically ledto a limiting %2 distribution. The use
of asymptotic theory 10 develop useful test statistics was carried out by Bartlett,
Wald and Wilks among others in the 1940s.

1n many cases, itisnot possible to analytically obtain the exact distribution of the
MLR 1(X) and asymptolic methods are frequently used. Alternative approximat-
ing methods were described in the previous chapter. Suppose that #c®CRP
and one wishes to test the hypothesis Ho: 8 = fp. In this case, a Taylor series
expansion of the function L{f#g; X) =log p(X | 60) around 8 gives

- ~ - 1 A ~ -
L0 %) = L X) + (UGK: D)7 @0 — 8 = 500 = 53D @0 = 0)
1% ~ 200 - Y IBDE - D)

since U(X; @) = 0. The higher-order terms are neglected since, under Ho, 8o and
# are close for n large. Therefore, '

pX | fo)
—2log MX) = —2log | —Z =T
% ° (p(xm)

= —2[L(80; X) —~ L(§; X))
~ (B — 8Y J@)(Bo — ).

Since the MLE is asymptotically normat and J 0] /n converges almost surely
to its expectation 1(90)/ n under Hp, the quadratic form on the right-hand side
of the equation has a X% asymptotic distribution. Therefore, the asymptotic dis-
tribution of —2)og A(X) is X% and the test with asymptotic level & accepts Ho
if —2logh(X) < x‘f_ P If the null hypothesis is of the form Hp: # € ©g with
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dim®q = p— g > (, then the asymp_totic distribution of ~2log AM(X} is x‘? and
the test with asymptotic level & accepts Hy if —2log AX) < xf‘q.

These results are also useful in the construction of confidence intervals. The
idea is once again to explore the selation between confidence intervals and tests.
Suppose that Ho: 8 = B, s 0p—gs Op—gt1.00 -+ Bp.0). In other words, the last
g components of # are fixed. Let the MLR now be denoted by MX|fp—g+1.0, - +»

6p.0). A 1001 — @)% confidence region for (Gp—g+1,---» p) is given by

{@pqrre ) ~2108 A | Opge, 0 < X

Similarly, from the Bayesian point of view, the asyraptotic posteribr distribution
of —2log A{(x|0p-g+1..-- ,8,) 18 x%- Tests and confidence regions can be con-
structed as described before, Note that we have chosen to test for known values of
the last ¢ components for simplicity. The same Bayesian and frequentist results
hold for a test on any g componentsof 8. .. ...

The asymptotic distributions of the score function and of the MLE lead to two
classes of classical tests. - Assume that # € ® C RP and one wishes to test Ho:

g = 8. Defining then

Wi (80) = (8 — By 1(00)(@ — 00)

and
Wy (80) = [U(X; 60)Y T (o) UX; 00)

we have that both statistics have a x% asymptotic distribution under Hq. So, the
tests of asymptotic level o reject Hp if We(o) > onc,p and Wy (fy) > xip,
respectively. Given the almost sure coftvergence of J (é) and J (§o) to I {fo), these
replacements can be made in the definitions of Wg and Wy and the same resulis
are obtained. Equivalent Bayesian results can be obtained that the asymptotic

posterior distributions of Wg(#) and Wy (#) are xf,. These results were partially

presented in Section 5.3. Hypothesis testing then can be made as described in the
* previous sectien.

The tests based on Wg and Wy can also be applied to situations where dim & =
p —q > 0. Inthis case, the value of 69 is replaced in their expressions by do, the
estimator of @ under Ho. Their asymptotic distribution becomes a xg, just like the
MLR test. )

Note that three general tests have been defined and they all have asymptotic %
distribution under Ho where the number of degrees of freedom depends on the dif-
ference between the dimensions of ©® and ©p. The test based on the MLR depends
on maximization on both hypotheses whereas the score fest requires maximization
under the null hypothesis and the test based on the MLE requires maximization
only under the alternative hypothesis. In most but not all cases, the null hypothesis
provides a simplification to the model. Tt is then simpler to estimafe parameters
under the null hypothesis which favours the score test. When estimation under the
nuil hypothesis is harder, it is simpler to perform the test based on the MLE. A
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good reference for comparison between and interpretation of these tests is Buse
(1982).

Example. Assume a specific model for observations ¥, ..., ¥, is of the form
Y; ~ N(£;(0),0%) where 8 = (6y,61,67) and f(8) = 6y + 6) exp(0az;), i =
1, ..., n. Let the null hypothesis be in the form Hy: 6 = &2 0. Under the null
hypothests the model becomes a simple linear regression with known regressor

variable x; == exp(62,0z;), i = 1,..., n. Itis then simpler to estimate the model
under the null hypothesis. If, however, the null hypothesis is of the form Hy:
af;/0z; = 1/3 then estimation under the null hypothesis becomes a non-linear

problem with restriction whereas estimation under the alternative is only a non-
linear problem. In those cases, it is easier to use the test based on the MLE.

Another interesting question concerns the appropriateness of the asymptotic

approximation. It can be shown that the approximation of A(X) to the xg is of order
n~!. Bartlett (1947) showed that P(M(X) < x) = P(Z < x) 4+ O(n~"), where
Z ~ xf; and obtained a corrected MLR statistic A*(X) = A(X)[1 + b(fp)/n]™!
such that E[A*(X)) = p + O(n'z) for many multivariate problems. Lawley
{1956) showed that alt moments of A* agree with those of a xf, distribution to
order n~2, Cordeiro (1987) proved that this approximation order is also valid for
the distribution function of A*. This result was extended further to any test statistic
wi'_th_ asymptotic xg distribution by Cordeiro and Ferrari (1991).
- A.particular case of special interest is when » items are observed and classified
independently into one of p possible groups. The parameter of interest is the
vector with the group probabilities # = (6}, ..., 8,_1) where the probability for
the pth group is obtained from the unit sum restriction. Suppose one wishes to
test Ho: 8 = g = (B0, ..., 6p—1,0). Then it can be shown (see Exercise 6.21)
that the test statistics Wr and Wy; are given by

P N; — nt; 2
Webo) =) L%ﬂ_

i=1

P 2
(Ni — nb;0)
and Wy (8g) =y L 100D
=l nfi.0

Both have an asymptotic xf,u] distribution under Hy. The only difference between
them is the replacement of N; by nt; 0. But, under Hy, N; /n — 6; o almost surely
when n —» 00, by the strong law of large numbers. This is an indication of an
asymptotic equivalence between the two statistics. The tests reject Hy when the
values of the statistics Wg and Wy, are Ia‘rger than the 1 — o guantile of the X;%—l
distribution. :

These tests try to measure how well a given hypothesis fits the data. For that
reasen, they are known as goodness-of-fit tests and are heavily used in statistics
whenever a situation can be represented in' p mutually exclusive categories. Of
course the assessment of the fit of a model is much more general and leads to a
variety of other tests. Analogously, the Bayesian asymptotic result is that when
the above quantities are written as functions of # (instead of #¢) they will have an
asymptotic x%_; posterior distribution.
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When Hy is no longer a simple hypothesis but has instead dimension p —g—1>
0, the goodness-of-fit statistics are given by

p £y (N; — nf g)? P P\ (N; — nbig)?
Weho =3 E0 ana oy =y 0"
N i i I i,[)

i=1 i=1

where 6,0 is the MLE of 8,1 = 1,..., p — 1 under Hy. Both test statistics have
asymptotic X(? distribution under Hp and reject Hy if and only if the valve of the
statistic is larger than the 1 — & quantile of the x distribution.

An important application of goodness-of-fit tests is the test of the fit of a given

distribution to a data set. In this case, aurandom sample X = (X, ..., X,) froman
unknown distribution is observed and one wishes to test whether this distribution
is of a given known form. Partitioning the line into intervals §; ,i = 1, ..., p. the

number of observations in each interval can be counted. These counts have Jointly
multinomial distribution with probabilities ;.9 = P(X € /;|Ho) and the test of
the fitis given as above. If the null hypothesis specifies a class of distributions with
g > Ounknown parameters then one should firstestimate the unknown parameters,
by maximum likelihood say, under Hp. Then the statistics Wg and Wy can be
evaluated with the estimates 0","0 = f’(X € I;|Hp). The test statistics will now
have an asymptotic xﬁ_ g1 distribution and the level « test rejects Hp if the value
of the test siatistic is larger than the I — « quantile of the xf,_q_] distribution. '
Another important application of these tests to contingency tables is left as an -
exercise.

All these tests have the property that their power function converges to 1 when
n — oo for any parameter value in the alternative. This result can be obtained
from the Taylor series expansion of the log-likelihood around the point in the
altemnative. This follows essentially from the consistency of MLE. Tests with this
property are said to be consistent.

Exercises

§6.2
I. Assume that Xy, ..., X, are iid with density p(x|8) = 0x%='I,([0, 1]),
and 8 > (is unknown. Determine the UMP test of level 0.05 for Hy: 68 <]
against H): 8 > 1. i
2. Let X ~ bin(n, #) and suppose one wishes to test Hy: 6 = 1/2 versus H):
& #1/2.
(a) Show that the MLR tesi statistic is [2X — n].
(b) Find the critical region for a test of level 0.05 when n = 25 using the -
normal approximation.

3. Suppose that k independent tests about the same hypothesis H: 8 = §,
have been performed using different data sets and were based on inde-
pendent statistics T, ..., Ty with continuous distributions under Hy. Ley
a(T1}), ..., a(T}) be their respective p-values.
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(a) Show that «(T}), ..., @(T) form a random sample from the uniform
distribution on (0, 1).

(b) Define F = --2 Ef-;] log a(7T;) as the test statistic for a combined test
of H. Which values of F should lead to the rejection of the hypothesis
H?

(c) Show that F ~ xé"k, under A and specify the critical region of a level
o test.

4. LetX = (X{,..., Xnyand Y = (¥1, ..., ¥») be independeni samples from
the exponential distributions with means 6; and 8, respectively and suppose
we wish to test the hypothesis Hy of equality of the distributions.

(a) Show that the MLR test rejects Hy if

X 1

(b) Show that the value of ¢ is given by

1 !
1+ Ez(2n.2n) 2

for the level o test and 8 is such that P{f_th (2n,2n) < F(2n,2n) <
Fg2n, )+ 2} =1-a
Hint: show that under Hy, X/Y ~ F(2n, 2n).

5. Show that the power of the ¢ test is a strictly increasing function of |6 — 8ol.
What is the expression of the p-value for this test?

6. Show that the uniform distribution over the interval [0, 8] has monotone LR
because the ratio of sampling densities is a monotonically non-increasing
function of T(X) = max; X;.

7. Consider a random sample Xy, ..., X, from the N (&, o %) distribution with "

both parameters unknown and define the hypotheses Hp : 8 = t and Hy :
6 # 6. Show that working with the full parameter space © instead of
parameter space ©; under Hy amounts 10 a zero probability change in the
MLR statistic.

8. lLet X|,..., X, be independent random variables with respective Pois{g;)
distributions, § = 1,..., p and we wish to test the hypothesis Hp of the
equality of the distributions.

{(a) Obtain the ML.R test for Hp.

(b} Showthat (Xi...., Xp}|X1+...+X, = s hasamultinomial distribu-
tion with parameters s and (61, . . . , 8p) where &; = py /{1 + - - +Lp),
i=1,...,p.

(¢) Justify the following test (commonly used in such situations): reject
Hyif 8 (X~ X)X = 3(},%,,‘,.
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(d) Arec the test in {a) and the test in (c} similar?

9. Prove that the tests in Section 6.2.3 are unbiased, similar and invariant under
linear transformations.

§6.3
10. Let X ~ Exp(6) and assume one wishes to test Hyp: 6 = 0y versus Hy:
8 = 8y, where 8 < 8q.

(a) Prove that the level o likelihood test accepts Hp if X < —6 Nog .

{b} Obtain the p-value associated with X = 3, when 6y = L.

{c) Assuming that 8, = 1/2, calculate the BF for X =3 and fp = 1.

(d) Supposing p{Hp) = p{H}), calculate the posterior probability of Hp.

(e) Compare the results of the classical test obtained in item (a) with those
from the Bayesian test.

11. Suppose that X ~ Caucliy(¢, 1) and that one wishes to test Ho. ¢ = 0
versus Hy: @ # 0. To do that, set a mass probability 7 > 0 to Hg and the
remaining probability over H distributed according to a density p{(6).

(a)- Prove that p(Hy | x) — 7 when {x] — oo.
(b) What conclusions can be drawn from this result?

12. The dataset in Table 6.2 represents the number of vehicles that travel through
a section of a highway during a 15 minute interval in the afterroons of six
consecutive days of two consccutive weeks.

Table 6.2 Number of vehicles

Week Day of the week

Mon Tue Wed Thu Fr Sat
Ist. 50 65 52 63 84 102
2nd. 36 49 60 45 112 90

Assume that the number of vehicles follows a Poisson distribution. So, the
average number of vehicles traveling from Monday to Thursday is A and p
for Friday and Saturday.

(a) Obtain 95% credibility intervals for A and u based on non-informative
priors and comment on the results.
{b) Test the hypothesis that 21 = 1.

13. Suppose that independent random variables X and X3 where P(X; = 0) =
¢ and P(X; = 1) = 1—-6;,i = 1, 2, are observed and one wishes to test Hy:
#) = 6 = @ versus Hy: 81 # 6. Assume alsp that all prior distributions
are pniform, that is, under Hy, @ is uniform over the unit interval, and under
Hy, (61, 82) is uniform over the unit square.
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(a) Show that the MLE of & under Hy is (Xy + X3)/2 and the MLE’s of
G; under Hy are X;,i =1,2.

{b) Obtain the posterior distributions under the two hypotheses, that is, the
distributions of 8 | x, Hy and (9, 05) | x, H).

(c) Obrain the GMLE’s under Hg and H; and compare them with the
MLE’s obtained in item (a).

(d) Obtain the predictive distributions of (X, X3) under Hy and under
Hy.

(e} Show that BF(Hp, Hy) = 4/3, if x| = xp, and 4/6 if x| % 1o
Interpret the result.

14. Suppose one wishes to verify if a quantity @ is smaller than a prespecified
value @. Therefore, assume 8 ~ N{u, v%) and observe X L N (8, a2}, o?
known.

(a) Obtain the prior probability of Hp: 6 < 8.

(b) Obtain the posterior probability of Hy.

(c) Prove that the probability of Hyp increases after observing X = x iff
x < Bg(1 -~ 1/\/5) in the case ¢2 = 72 and =20

§ 0.4
15. Construct a level o test for the hypothesis & = ¢y from confidence intervals
assuming that independent X; ~ Pois{##;),{ = 1, ..., n, are observed with
ti,i=1,...,n known. Can the hypothesis be accepted if 3 1| x; = 10,
Yo =5,0=land g = 0.05? And if @ = 0.01?
16. Let X1 ~ N{(8), 1) and X3 ~ N(62, 1) be independent and define p =
81/63.

(a) Show that the test that rejects the hypothesis p = pg when |X| —
poXzi > (1 -+ pd) /2242 has level a.

(b) Obtain a 100(1 — a)% confidence region for p from the test described
in (a). Draw a graph of the region and interpret the result.

§6.5
17. Let X = (Xy,..., X,;) be a random sample from the Exp(6) distribution
and suppose one wishes totest H: 6 < 1,

(a) Show that the likelihood ratio:test rejects 2 when > }_, X; < c.

(b} What is the value of ¢ for the test with level o7

{(c} Show that the power of this test is a strictly monotonic function of §.

(d) Draw a graph of the power for & = 0,05 and » = 15.

(e) Construct a test based on asymptotic results and compare it with the
test based on exact results.

18. Let X = (Xi,..., X1p) be a random sample from an unknown distri-
bution, After observing X = (1, 0.7,0.2, — 1.3, —0.5, 1.52, —0.85, 0.25,
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0.47, —0.67), test whether one can assume that the data comes from a stan-
dard normal distribution. Check also whether one can assume that the data
comes from a normal distribution. Obtain the p-values of the two tests and
compare them,

19. Show that the ¢ test of Hy: & = 6 versus H|: @ £ 8y based on a random
sample of size n from the N (8, ¢2), 6 and 0% unknown, is consistent.

20. Suppose that X, ..., X, are iid with N(8, o2) and one wishes to test Hy:
o = ogg versus Hi: o % oy.

(a) Show that the MLR test with asymptotic level a accepts Ho if 3°%_
(X;i—X)?/af € [c1. c2] where ¢} and ¢3 are such that F{c)— F{c)) =
1 — o and F is the distribution function of the )(3_1 distribution.

(b) What condition must be satisfied by ¢, and ¢ for an unbiased test?

(¢) Show that the normal approximation gives ¢; = n — «./fr?zn,/z and
c1=n+ \/Zz-zaﬂ where 247 is the 1 — «/2 quantile of the N (0, 1)
distribution. .

(d) Show that the equal tail test, where F{c2) = 1 —~o/2and F(c1) = a/2
is asymptotically unbiased, i.e. that the test is unbiased when i1 — oo.

21. Prove that in the case of multinomial observations, the statistics Wg. and
Wy are respectively given by '

) P 2 P 2
(N; — nt; ) (N; — n#;,
Wibo) =Y S Y and Wy(8o) = 3y — 0' 0
i I e

i=t i=i

22. A contingency .table is a table of multiple classification of observational
units info cells. In the simplest case of double entry, the cells are defined by
the intersection of two factors: A withlevels Ay, ..., A, and B with levels
By, ..., B,. Define the probabilities #;; = P(A = A;, B = Bj), Y(i, j),
and assume that n independent observations are made and each one of them
is classified into a single cell (i, j) and the counts N;; associated with the
cells registered. '

(a) Show that {N;;} has multinomial distribution with parameters » and
{6:;}. Define the parametric space © and obtain the MLE’s of &)
v{i, ). ‘

(b) The factors A and B are said to be independent if P(A = A;, B =
B;} = P{A = A;})P(B = B;). Define the parametric space ®¢ under
independence between A and B and calculate its dimension.

Hint: define 6,4 = Y, 8; and 6 = 7., 6.

{c) Calculate the MLE’s of {6;;} under @y.

(d) Obtain the goodness-of-fit and MLR tests of level ¢, specifying the
critical regions and the distributions involved.
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All that has been done up to now concerns estimation, that is, understanding
a phenomenon through probabilistic assertions that relate directly or indirectly
to unobserved quantities of interest. That means we can never be refuted. The
quantities we deal with do not exist from a practical point of view. Their usefulness
is only associated with the valuable, but insufficient on its own, help in describing
in the best possible way the random process under study. An improvement was
obtained when we criticized the adopted models by putting them under hypotheses
tests but we are still restricted to the observed data. A real test of a theory or model
is obtained when its assertions are applied to future experiences and observations.
In this chapter, we will only deal with this topic: prediction.

Statistical prediction has a well-defined meaning and is an integral part of the
inferential procedure as will be seen, It deals with making probabilistic statements
about quantities to be observed in the future. Note that at the moment inference
is made, the problem is similar to that already studied of parametric estimation.

. So, much of the material described in this chapter is a mere adaptation of the
material from previous chapters. The big and fundamental difference here is
that all statements will be confronted with reality and are subject to approval or
dismissal without dispute.

Even though notions of decision theory were introduced when we dealt with
Bayesian estimation, we think the appropriate moment for decision taking is when
we make predictions. We have a clear view of the consequences and respective
losses associated with our acts when we face our positions about quantities that
will become known.

7.1 Bayesian prediction

The typical situation of the prediction problem is that in which a quantity X related
to an unobserved quantity 8 through P;(x | 8} is observed and we are interested
in producing statements about another random quantity Y that is related to X and
# through P»(Y | 8, X). So, after observing X = x we have updated information
to make an inference about Y and this information is contained in the distribution
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of Y | X. Therefore, the distribution of Y | X = x is
P10 = [ pv.0 %00
= [ ptv 10,006 1000

=fp(y [ 8)p(8 | x)dé

with the last equality valid in the common case of conditional independence be-
tween X and Y given #. That happens, for instance, when we sample future and
past observations from the same population. In the trivial case in which it is pos-
sible to directly specify the distribution of Y | x, the above calculations involving
the removal of unobserved quantities are not needed.

In the case of a random sample X = (X,..., X} from p(- | #) and a single
future observation Y that also comes from the same population, that is, Y has
density p(- | @), then

n
ply %) =fp(y | #)p(0 | x)d8  where  p(f | x) p® [ ptsi16)
i=1
and p(y | &) and p(x; | #) have the same form. One can then write
ply %)= Lox[p(y | 6)].

In the case of prediction in samples from the one-parameter exponential family
with conjugate prior, we have, using the notation of Section 3.2 that

pix §0) = a(x) explu(x)p(0) + b(®))
p(®) = k@, B) explad(®) + Bb(O))
and so

p@ [ x)

=k (a + Z u(x;), B +n> exp { |:a+ u(x,-):I ¢ +18+ n]b(a)l
i=1 i=]

i=
and

T Tate kfe, B)
P(x) Eam)k(&+Z?___1u(x¢'),,8+n)'

The expression of p(y | x) is obtained similarly to p(x), using the posterior density
p(@ 1| x) instead of p(6). So :

klo+ 3 7_julx), p+n)
k(o + X0y ux) +u(y), B+n+1)

piy 1 x) = a(y)
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Example. Let Xy, ..., X, be a sample from the exponential distribution with
parameter ¢. The conjugate distribution is G(y, 3). The densities can be written
in the form

pix | 8) =exp{—x8 +logd}, x>0

¥
pl8) =

é
exp{—88 + (y — 1)1log8}, & =0.
I'(y)

Identifying with the above notation, we have

a=—§
B=y -1 -
ke, ) = (a)? T/ T+ 1)
a(x) =1
ufx)=—x_ ...

from which we get

(= = S0 ) T @ AR D)
(—a — 3 utx) — u) " TB A0 2
B+n+1
o = 3y ) — u(y)

u{y) )—(.3+?1+1)
X| 1+ —= s > 0.
( o+ Z?:g w(x;) Y

Sl X = y>0

Rewriting as a function of ¥ and & leads to

AT P i (+ Y
U i SN N T S

Note that this density is strictly decreasing with y.

—(y-t+n)
) , y=0.

With the predictive distribution, we can proceed to an inference as previously
seen in Chapter 4. In particular, we can make an inference by point prediction. To
do this, we put the problem into the framework of decision theory whose elements
are:

1. States of nature — here, represented by the possible values of the quantity Y
to be observed in the future and that we wish to predict.

2. Space of possible actions — containing possible actions to be taken. Here,
taking an action is to choose a value for Y, its point predictor 8.

3. Loss function — to each possible value of Y and to each psedictor § we have
aloss L(Y, &),
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Put in this form, the problem is mathematically identical to that from Section 4.1,
that is, we choose the predictor 8 so as to minimize the expected loss

f Ly, $)p(y | x)dy.

This decision theoretic approach to prediction is pursued by Attchison and Dun-
smore (1975) and Geisser (1993). The difference with respect to parameter es-
timation is not in the equation but in the interpretations of its elements. We can
objectively quantify the loss we will incur by predicting Y by & because Y is
observable. This quantification is less clear in the case of estimation and only

. makes sense when related to observed quantities associated with the parameters.
The example of John and his doctor in Section 4.1 illustrates this point. It was
only possible to construct the loss table after referring to observed quantities in
the future such as death and definition of the disease state of the patient.

That is due to the fact that we do not take decisions against values of theoretical
objects used to understand a phenomenon (parameters) but only after evaluating
the consequences these values will have upon observables. This point is the basis
of the predictivist approach to inference which itself is not free from arguments.
Its advantage however is that it allows judgments that are not ambiguous with a
clear and unquestionable meaning. A prediction can always be confronted against
reality while estimation never is.

So, a point predictor can be chosen according lo the loss function we incur.
Using results from Section 4.1, we have that:

1. The predictor associated with quadratic loss is the mean of the predicuve
distribution.

2. The predictor associated with absolute loss is the median of the predictive
distribution.

3. The predictor associated with the 0-1 loss is the mode of the predictive
distribution.

Example (continued). The predictors described above are given by:
(a)

EY | x) = Egx[E(Y | 8)]

= Egx[1/6]
A+
- y+n—-1"

(b} The solution med of the eguation

1 med
5 =f0 ply | x)dy

given by med == S+, ) .
(c) by 0, the mode of the predictive distribution of ¥ [ x.
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Observe that for large n, the predictive mean is approximately equal to ¥ and
for the non-informative prior (¥, § — 0) the predictive mean is

Z?:l X
n—1"

In analogy to the estimation problem, 100(1 — o)% predictive regions may be
obtained for Y. All that is needed is to find a region C such that P(¥ € C|x) >
1 —c. In the case of a scalar Y, the region C may be reduced to an interval {a;, a;]
satisfying P{a; < ¥ < a2 | x} = 1 — . The same comments are stil!l valid here
that for a given value of o one wishes to find the interval with smallest possible
length, leading naturally to the choice of regions where their predictive density is
higiver, This is formalized by the concept of regions of highest predictive density
(HPRD) C given by

E(le):

={y: p(y ix) = kio)}
where k(@) is the highest constant gearanteeing that P(Y e C [X) = 1 - .

Example (continued). As the predictive density is strictly decreasing, the HPRD
interval for ¥ must be in the form [0, a] where a is such that

/ plyixtdy=1-—ua.
0

Solving for a gives (8 + 31, x)((1 — a)-‘f}’“i - D

In the case of a large sample, the posterior dlstnbunon of § | x gets concentrated
around @, the MLE of 8. So,

py Ix) = [ p(y | )pd | x)d8 = p(y | )

This approximation neglects the variability of the parameter and Jeaves only the
sampling variability of the quantity to be predicted. In the general case, both forms
of variability are important and should be taken into account.

7.2 Classical prediction

There are no clear rules as to how to proceed to make prediction of future ob-
servations in classic inference. One of the most frequently used procedures is
to substitute the value of the parameter appearing in the sampling distribution of
future observations by some estimate based on past data.

Specifically, assuming that Y with sampling distribution p(y | #) must be pre-
dicted based on observations X from a sample of p(x | #), one uses the distribution
ply | 8) where & is an estimator of @. The most common choice is the MLE, which
takes us back to the discussion in the final paragraph of the last section. The draw-
back of this procedure is not to take into account the variability associated with
the estimation of 8.
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As an example, assume that E(Y | ) = b(#) and that V(Y |A9) = B(#). It
is common practice to take b(#) as a point predictor of Y and B(#) as a measure
of the variability associated with that prediction. This procedure underestimates
the variability of the prediction by not taking into account the variability of the
estimation of 8.

Example {continued). The maximum likelihood estimator of & is 1/X and the
mean of ¥ is 1/6. After doing the substitutions we get the point predictor Xfor?.
Note that the estimator of the variance of ¥, 1 /fz, does not consider the variability
of & with respect to 6.

One approach avoiding this problem consists in obtaining a pivotal guantity
G(Y, X) whose distribution does not depend on 8. This approach was used in
Section 4.4 in interval estimation. As before, the function G must depend on the
sample X in an optimal form (for instance, through minimal sufficient statistics
for #). Once the pivot is obtained, one can make probabilistic statements about it.
In particular, for a given value of @ (o € (0, 1)), one can obtain that P(G(Y, X) €

€} = 1 — o, Then, it becomes possible to construct a 100{1 — «)% predictive

region for Y given by
{y:G(y.x) e C}.

The problem with this approach is that it is not always possible to find such
a function G. The example we are dealing with in this chapter is one of the
exceptions. o

Example {continued). We now want to find a function G(¥, X) whose distribu-
tion does not depend on 6. Preferably, this function would depend on X through
X which is a minimal suficient statistic for 8. Fortunately, in this case, this is
possible since

2
X2n
206

2 n
X2
Y ~Exp(8) = G(1,68)y == d X~ Gin,0)=
xp@) = G(1,8) =22 an ; (n. )
and they are independent. So, Y/X ~ F(2,2n), which does not depend on 6.
Using the properties of the F* distribution, we have that E(Y/X} == 2n/(2n — 2)
from where we can take as a point predictor for ¥
Y 2” _w. Z?:I Xi

2n—2 n—1

which differs from the predictor obtained above but coincides with the Bayesian
predictor with non-informative prier. The 100(1 — @)% confidence interval for ¥
can be constru_cted \Eth the percentiles F, s2(2,2n) and Fo/2(2.2n) as P(F, 2
(2,2n) <= Y/X < Fgp2(2,2r)) = 1 — a. The prediction interval is given by
(XF,2(2,20), X Fop2(2,20)).
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7.3 Prediction in the normal model

7.3.1 Bayesian approach

The structure of normal models allows many easy calculations especially in the
case of linearity. The application of these rules to prediction reduces the calculation
considerably. Basically consider an observation ¥ | & ~ N(@, 02) where o2 ig
known. One can rewrite this model as ¥ = 8 + ¢ where € ~ N{0, 02) can
be regarded as an observation error. Observe that the distribution of ¢ does not
depend on & and therefore € and & are independent. Assume now that the updated
distribution of 8 (possibly after the observation of a sample) is N{u, 9. Y is
therefore the sum of independent normal quantities and has a N(u, o? -+ r%)
distribution. This is the predictive distribution of Y. Point and HPRD interval
predictions can be made as described in Section 7.1.

Example.. Assume the updated distribution of 9 is the posterior distribution
relative to a sample X from a N8, 02 distribution. This leads to ¥ | x ~
N(ur. o+ rlz) where 14, and r12 are given by Theorem 2.1. The point predictor
of ¥ in this case will be 1) and the 100(1 — )% HPRD interval for ¥ is of the

form (3 — za/2y/ 62+ T, 1+ Zagay/ 02 + D).

In the case of a non-informnative prior, 1) = X and r12 = oz/n, leading to the

predictive distribution
- 2 1
Y Ix~Nlx,o°[14+-1]]).
i

The point predictor of ¥ in this case will be ¥ and the 106(1 — o) % HPRD interval
for ¥ is of the form (X — zg/20 V1 + 1~ L, X + Zgppo0v/ 1+ 1),

The above example can be generalized in various forms. If Y is a vector with
sampling distribution N (8, L) and the updated distribution of @ is N (g, 1), we
have by the same reasoning that the predictive distribution of Y is N(it, £ + ).
Assume now that the sampling mean of Y is given by the linear relation X6 where X
is a matrix of known constants and that & remains with the same distribution, If the
matrix X is square, the dimension of 8 and the hyperparameters of its distribution
remain unaltered. This restriction is unnecessary and we can consider any matrix
X with the correspondent change in the dimension and distribution of 8. We shall
see in the next chapter that the cases of interest involve a lower dimension of #
than the dimension of Y implying a reduction in the dimensionality of the problem.
Schematically,

Y=Xf#+e

where # and € are independent. So, the predictive distribution of Y is given by
the sum of two independent normal quantities, the first relative to # given by a
N(Xu, XtX") distribution and so

L]

Y | X ~ NXp, XX + ).
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An example is the case of prediction of a series of future observations from a
population from which a sample had previously been observed.

Up to now, the sampling variance was assumed known. Generally it is not
and the usual approach in this case is to try 10 specify a conjugate distribution
for the variance. Although a conjugate analysis when the sampling covariance
matrix is totally unknown is possible, we will consider here only the case where
the covariance matrix is totally known but for an unknown muliplicative scalar
2. Without loss of generality we will assume that V(Y | @, o) = 021p where
p is the dimension of Y. For a conjugate analysis, it is necessary that the updated
covariance matrix of @ be proportional to o2 as seen in Chapter 3. So, # | o? ~
Nip,olr)and Y | 02 ~ N(Xn, o2(XtX" 4 1,)). Assuming as before that the
updated distribution of 0% is nOog® ~ Xa, With ¢ = o2,

ply) = f ply | §)p(¢) dop
o 6P/ expl—p Q¥ /2)9 70/ D" expl—dnoog /21 de
= f @0t~ expl—plnoog + Q())/2} d¢
 [noad + @y~ ot

where Q) = (v — Xs)T (XzX" + 1)1y — Xu).
It is easy to obtain then that

Y ~ (X, 0 (XX + 1)

Note that the only changes with respect to the known variance case are the substi-
tutions of the normal by the Student ¢ distribution with ng degrees of freedom and
of o2 by its updated estimator o

The main properties of the multivariate Student ¢ distribution that are relevant
here are, if U ~ ¢, (m, C) then

(i} the marginal distribution of any g-dimensional subvector from Ufg < ph
say Uy, is also Student 1 with v degrees of freedom and parameters m|
and C; obtained from the components of the vector m and of the matrix C
corresponding to the components of the vector Uy, In particular, the jth

component of U, U}, has (univariate) 1, (m ;, C;;) distribution.
(i) LU ~ t,(Lm, LCL"), for any r x p matrix L of full rank.

Example (continued). The same results are valid with the modifications cited
above. As seen in Section 3.3, the posterior distribution of (8, ¢) is given by

the normal-x 2 with parameters {(£1, €1, 771, o1). A future observation Y will have
predictive distribution

Y | X~ tn, (1, 02 (L 4 7).
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In the case of a non-informative priof, the predictive distribution is given by a
th-1(X, 52(1 + n‘l)) distribution where s2 is the unbiased estimator of a2. The
HPRD intervals coincide with those given for known ¢r2 but for the substitutions
of the percentiles of the N(0, 1) for those of the t,_1(0, 1) distribution and of o
by 5. i

7.3.2 Classical approach

For the frequentist inference, one should only work with the sampling distribu-
tions of ¥ and X in search of a pivot whose distribution does not depend on the
parameters. Again, we write Y —8 ~ N(O, &2) and all that is left is to find
suitable estimators for § and o. Assuming initially that o2 is known we have
the estimator 8 = X. As ¥ and X are both independent normal with same mean,
Y —X ~ N(O, 02(1+n~ 1)) is the pivot with distribution identical to that obtained
with a non-informative prior. Confidence intervals for ¥ will also coincide.. The-
difference in the approaches is theoretical: the Bayesian result is conditional on
X which in fact is the way it will be used in classical inference too.

In the case where o> is unknown, another pivot must be found because the
distribution of ¥ — X depends on o 2. In the pormal case, this is easy because S?
is independent from ¥ — X and (n — 1)8%/o? ~ ngl- So,

Y —-X
SJS1+1/n

is the required pivot. Again, we get the samg results previously obtained with a
non-informative prior.

The results of the example above were obtained only for the simplest case of
a single future observation following the observation of a sample from the same
population. They can be extended to more general situations. Some of these
extensions will be seen in the next chapter.

In the purely predictive case without unknown parameters, we have Y and X
with joint distribution

(%)-~[()-(a %)

X wy J°\ Txr ZIx

and the prediction of Y given the observation of X is based on the distribution of
Y | X = x given by

~ty (0, 1)

N (py + Tar Bx' 0~ ) Ey TxrEx Erx).
If ¥ and X are scalar quantities
azy

oxy
le:x~N(uy+——2 (x—ux),a%—%)
Ix 9k
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where 0% = V(X), 02 = V(¥) and oxy = Cov(X, ¥). We can see from the
results above that the knowledge of the value of X reduces the variance of ¥, The
larger the correlation between X and ¥ in absolute vatue the greater the reduction.
More important than that is the fact that the optimal predictor (under any reasonable
criteria) is a linear function of X. This result is explored in the next section.

7.4 Linear prediction

The problem of linear prediction takes place in the absence of complete distribu-
tional information. Assume the presence of two random vectors X and Y from
which it is only known that

(3)=(2)
X rx .
(x)=(3% )
X )7\ Zxy Ex J°
The complete distribution of X and Y may not be known for a number of reasons.
Our problem here is to establish a form of predicting ¥ based on X. A few
restrictions must be imposed to solve it. The most natural one is 1o restrict the
class of predictors to linear functions of X. This restriction is not only justified
by rendering the problem tractable. Linear solutions are obtained as first-order
approximations. The linear predictor thus serves as a preliminary predictor even
in the case where the joint distribution is completely specified.
To choose the predictor among all predictors of the form Y(X) = a+ B X

requires the definition of an optimality criterion. It is reasonable that this criterion
be based on the quadratic risk (or expecied loss) given by

R(Y,Y) = E[Y — Y(X)I[Y - Y(X)]'

and the optimality obtained by the minimization of the trace of the matrix R. The
search of the optimal predictor reduces to the search of optimal constants a and
B. The predictor so obtained is called a linear predictor and the associated risk,
the linear risk. Observe that the predictor that (globally) minimizes the risk is
the conditional expectation E(Y | X) and the associated risk is the conditional
variance. For that reason, the linear predictor is also called the linear expectation
and its risk, the linear variance. In the specific case of the normal distribution, the
conditional expectation is a linear function of X. So, the linear predictor minimizes
the quadratic expected loss among all possible predictors {linear or not).
In the special case where ¥ and X are scalar, the risk is given by

R(Y, V) = E[Y — F(X)P = E[Y — (a + bXOT2.

In this case, trace (R) = R, and to find the values of & and & that minimize R we
calculate

R
i ER(Y —a—bX)(—1)] = 2[a + bux — jy]
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and
% = E[2(Y —a —bX)(—X)] = 2laux + bE(X*) — E(XY)].
Equating the derivatives to zero gives the system of equations
b= py —buy

and

~  EXY)Y—apuy

b= ———5—-

E(X?)

Replacing the first in the second equation gives

§ o EXY) — (uy ~ buxipx

E(X?)
_E(XY) - pxpy +bpk
- E(X2)
_oxy +buk

E(X?Yy

which has solution b = crxy/o')z( where oyy = Cov(X, Y). So the optimal linear
predictor is oxy
Voo oy + (X — ux)
- ol

" and its risk is given by

~ UXY
RO )= EIY = oy =~ (X ~ 1x)*
X

2
= E(Y — uy)* + (%) E(X — jex)°

X
[s3
~zﬂE{(Y 1y ) (X — jex)]
x
2
oxy OxY
"'O'y+( 2) x —2—5oxy
O’X UX
2
_ 2 Sxy
—O"Y %—Zﬁ
ok

In the multivariate case, it can be shown that the linear predictor is
ry+ ZxrEyx - py)

and its risk is given by .
Zy —ExyEy Tyy
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generalizing the result obtained when Y and X are scalar. As mentioned above,
the linear predictor is given by the expression of the conditional expectation in the
normal case, This implies that the linear predictor is as close to the global optimum
(in terms of minimization of the quadratic risk) as the normal distribution is close
to the joint distribution of X and Y.

The method of linear prediction was developed in the 1970s by Hartigan and
Goldstein among others. It does not depend on the point of view adopted for
inference. However, it generally appears in the Bayesian literature where itreceives
the name of linear Bayes methodology.

Exercises
§7.1
1. Let X = (X1, ..., Xn) be arandom sample from a U [0, 8] distribution and
@ ~ Pa(w, B).

(2) Obtain the predictive distribution for a new observation from the same
population based on all the information.

(b) Assuming that maxx; > 8, what is the probablhty of ¥ > max xi’?

{c) Repeat () and (b) fore — Oand g — 0.

2. Show that the problem of choice of a point predictor for ¥ may be reformu- -

.. lated as that of finding the predictor & that minimizes -

f V{g,8)p@|x)dg

where
Vi{g,8) = Ey|9[L(Y, 81].

3. Consider the problem of choosing the point predictor of Y € R¥ based on
the guadratic loss

L(Y,8) = (Y — &y M(Y — 8)

where M is a known positive definite matrix. Show that the point predictor
is given by § = E(Y | x) and that the expected loss is given by the trace of
the matrix MV (Y | x).

§7.2 '

4, Assume that one wishes to make a prediction for ¥ ~ bin(m, &) based on

observation of X ~ bin(n, &). How can that be done from a frequentist
- point of view?

5. A geologist wishes to study the incidence of seismic movements in a given
region. He then selects m independent but geologically similar observation
points and counts the number of movements in a specific time interval.
The observational model is X; ~ Pois(), where X;,{ = 1,...,m, is the
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number of occurrences in the ith observation point and 8 is the average
rate of seismic movements. From his previous experience, the researcher
assumes that E[@] = 2 movements per time interval and that V[8] = 0.36
and uses these values to specify a conjugate prior.

(a) Assuming that x=(2,3,0,0,1,0,2,0,3,0, 1, 2) was observed, what
is the posterior distribution?

(b) He wishes to predict the expected number of seismic movements and
its precision in an (m -+ 1)th site based on the observation he had made.
Establish the necessary hypotheses and perform the calculations using
the data above.

§7.3
6. Consider the observation of independent samples Y = (¥1,..., Y) and
X = (Xiy,..., Xn) from a N(@, o) population. Indicate how to obtain
pomt and conﬁdence interval predictors for the components of Y using:

(a) aconjugate prior for @, o?);
(b} a non-informative prior for (6, o2y,
(c) frequentist inference.

§7.4
7. Prove that, in the multivariate case, the linear predictor is given by

iy + ZxyEy (= px)
and its risk is given by

Ty — Ex}rzgl}:y}(.
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Introduction to linear models

In this chapter one of the most important problems in statistics will be considered.
The scope is introductory because it deserves a whole book to be considered in
depth. A complete approach to the subject can be found in books such as Draper
and Smith (1966) and Broemeling (1985).

The class of normal linear models is characterized in the first section. In this
same section the class of generalized linear models will also be introduced, as an
extension of the normal linear models to the exponential family. In the following
sections, classical and Bayesian inferences are developed for these models. Two
other broad classes of models, natural extensions of the normal linear models,
are described in Sections 8.4 (hierarchical linear models) and 8.5 (dynamic linear
models).

8.1 - The linear model

In this section, the problem of observing a random variable ¥ with values affected
by other variables will be discussed. For example, the income of a firm is affected
by its capital and by the number of persons it employs, the production of a machine
is influenced by the maintenance scheme implemented and how well trained its
operator is, the arterial blood pressure depends upon the age of the patient, and so
on. :
In these cases, the variability of ¥ is explained by some other variables. As a
first approximation only a linear relationship will be used to describe how these
variables influence ¥. Let X1, ..., X, denote the set of p explanatory variables.
It follows that

E(Y) =B X1+ -+ BpXp.

If a model with an intercept is required, all we need to do is to specify X; = 1. The
model introduced above is called a linear model or linear regression model. The
case with p = 1, where only one explanatory variable is involved, is named simple
linear regression. Note that the expectation of ¥ is calculated conditionally on the
values of the variables X, ..., X,. Throughout this chapter it will be assumed
that the values of the explanatory variable are known.
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I, in addition, a common V(¥;)} = o? is assumed for all i, the errors, after
observing the sample ¥, ..., ¥, can be specified as

e =Y —(Bray+---+Bpxpi)i=1..n

and the parameters g = (B, .. ﬁp) can easily be estimated by least squares
In this case, the estimator is gwen by the value of 8 that minimizes ) |

Note that no hypothesis about the distribution of ¥ or the errors was needed If
the hypotheses of normality and independence of the distribution of the ¥:'s are
assumed, then it is easy to obtain the likelthood function as

- [Q
l(ﬁ'0'2: Y],...,YH)O(O' nEXpl—F E‘e%]
i=

Then, the value of B 1hat maximizes the likelthood is equivalent to the value
that minimizes ¥ 7_ 1e that is, the maximum likelihood and the least squarcs
estimators coincide.

It is useful, for further development, to adopt a matrix notation. Let us define

¥ X, Xr o Xpl

N\

n N Xln 0 Xpm

from whichit follows that ¥ | 8, a2 ~ N(XB8, ozlp) where & 1s the p X p identity
“matrix. The likelihood equation can be rewritten as o~ exp{ S (ﬁ)/ZJZ] where

n
Sy =" (Yi —xiB)
i=]
= (Y - XB)'(Y - XB).
The mode! presented before can be rewritten through the following equations

Y ~ N(,u,—,crz), i=1,...,n, independent
mi=h,i=1lL...,n
A,‘=Xi—ﬂ

where the (apparently unnecessary) second equation states the relationship be-
tween the mean of the observations and the explanatory structure in the model.
Stating the main objective in this form it is clear that there is no reason to be
restricted to the normal distribution and to the class of linear relationships. One
of the most relevant extensions in the model presented before constitutes the class
of generalized linear models, which allows us to model observations described by
any member of the exponential family and to relate the mean of the distribution
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1o the explanatory relationship through any differentiable function. Therefore the
Y;’s have density given by

p(vi 16) = al(y) explu(y)¢ @) +b(@)}, i =1,...,n, independent
g(i;) = A; where g is diffetentiable and (; = E(¥; | 8)
A = X:ﬁ

This class is broad enough to include many of the most frequently used models
in statistics. A complete description of these models, including many inferential
aspects, can be found in McCullagh and Nelder (1989).

8.2 Classical linear models

Classical estimators for 8 and o2 can be obtained from the likelihood function
exhibited before. Beginning with the estimation of § we see that the least square
and maximum likelihood estimators do coincide and are given by the value of
B that minimizes the quadratic form 5(8). Differentiating this expression with
respect to the elements of the parameter vector §, it follows that

8S(8)
ap
{see Exercise 8.1). Since the matrix of second derivatives 1s Qositive definite, the

solution of 35(8)/38 = 0 provides the point of minimum 8 of 5(8) and must
satisfy

=2(X'X8-X'Y)

X'XB =XY.
The above p equations are known as the normal equations. If the matrix X'X is of
full rank, or if the columns of X are linearly independent, then X’X has an inverse
and the maximum likelihood estimator of 8 is given by

B = XXXy,

1t will be assumed that the matrix X'X has full rank, from here on. This restriction
does not seem to be that serious since X not of full rank means that there are some
redundancies in its specification or in the model specification. These redundancies
can be useful for understanding the model but can be eliminated without any loss
from the following inferences. The quadratic form can be expressed as

SB) = (B — BYX'X(B—B) + S
where

Se=Y'Y — f'X'XB
= (Y - XBY (Y — X).
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The maximum likelihood estimator of o2 is obtained as the solution of the equation

dlogl(B,6%Y)  n
do2 To262 7 249

and will be denoted by &%. Since S(ﬂ) = S, by the above development, the
maximum likelihood estimator of o2 is given by S, /n. X

The sampling distribution of these estimators can easily be obtained. Since 8 is
a linear function of Y, its sampling distribution is a multivariate normal with mean
and variance given by

EB1B,0Y)=XX)"'XEXY]|B o
= (X'X)TIX'X B
=8

VB B.0D) = XXXV B o HXXX)™!
=o' X))

and so it is an unbiased estimator. Since the score function is linear in fi it also
has minimum variance. The quadratic form given by [5(8) — 8.]/0% has x
sampling distribution. On the other hand, it can be shown that Se 13 mdependent
of B and so of $(B8) — S.. Since S(B)/c? ~ )(n, Sefa? ~ xnup and, therefore,
5% = 8,/(n — p) is an unbiased estimator of 2. So, it follows that (,B -f)/s has
a multivariate Student + sampling distribution with n — p degrees of freedom and
location parameter 0 and scale parameter matrix (X'X) !,

The above statistic can be used as a pivot o obtain confidence intervals for g -

or its components. In particular, it is easy to obtain the sampling distribution of
(,6J I,)/s which is 1, 5 {0, ¢;;) where ¢;; is the (j, j)th element of the matrix
(XX~ j=1,..., p. The 100(1 — @)% confidence interval for B; is given by

p 12 2 1,2
[8; — fa/2,n-—p5ij ,ﬁj + fu/l,nwpscjj |2

Alernatively, from the independence between $(8) — S, and S,, it follows that
(S(B) — S.]/ps* ~ F(p,n — p) and confidence regions for 8 can be obtained.

Example 1. Simple linear regression. Consider the model ¥; == g + Bilx; —
X)+e, i =1,..., nwith only one explanatory variable and where ¥ is the mean
of the observed values x;’s. Then X = (x1, ..., x,), X = (1,,,x x1.),

i3 0 . ,B
XX= (0 Z";(xrﬁx)z) and ﬁ=(3(1})

s o= i (Y =Yy — %)
3 Y = i=1
Bo B ST = )2

with
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and

2 _ =2
5= s Z(Y Bo— Bi(xi — 3
where 1, is an n-dimensional vector of 1's and X’ = (xy,...,x,). Due 1o the
centring of the values of the x;’s, the covariance matrix of the sampling distribution
of B is diagonal. As this is a multivariate normal, this is equivalent to saying that
Bo and $) are independent.

Each of these estimators will provide separately information for each param-
eter. Confidence intervals can be built up based on the independent sampling
distributions

~ 2 " -1
Po—Fo th—2(0,1/n) and El—zﬁl“ ~ 210, [Z(Xi - f){l
5

i=1

Example 2. Analysis of variance with one factor of classification. Let ¥ji =
,BJ +ep, i =1,...,nj, J = 1,.2., k, be the model, that is, the n; observations
in group j have the same mean, J.= I, ..., k. This model is frequenily referred
to as One-way ANOVA. The total number Df observations 7 is given by Z =1
Other parametrizations are possible, with the most usual given by f; = u + a;
where s 1s the global mean and a; the deviation of the group mean with respect
to the global mean. This parametrization is not uséd here due to the redundancy
Z'j | @; = 0, which we are trying to avoid.

The model is completely characterized with parameter vector defined by 8 =
{81, .., Br)’, the observation vector :

Y \ 10 v 0

Yin, _ I 0 - . 0
Y = : and_the matrix X =

Yii 0 ... .. 0 1

Yen, \ o .. ... 0 1

As in the previous example, the matrix (X’_X)“1 has a diagonal form with (§, j)
element given by n;l and 8; = Y ; where Y; is the cbservation mean in group J.
Besides that,

and s% = S./(n — k) is the unbiased estimator of o2, Therefore, (,éj — Bj)/s ~
k@07, j =1, K,



216 Introduction to linear models

Hypothesis tests based on the likelihood ratio can be obtained. One of the
most useful is the model validation test, that is, the test of the hypothesis Ho:
Br=...=pp= 0in the model Y; = By +fhaxai+-- A+ Bpxpitei, L= 1,..., 0.
Under Hp, none of the explanatory variables have influence over the value of Y.
As we have seen in Section 472, the maximum likelihood estimator of (81, al)
under Ho is (7, 52) where 83 = E(¥i —¥)*/n. The maximized likelihood under
Hg is given by 0g n,~1/2 So, the maximum likelihocd ratio is given by

~2 nj2 ~2 nf2 —1 n/2
2% =11+ ng e = (1 + )———F)
Se S n—p

where F = (162 — Se)/1(p = Ds*].

The likelihood ratio test of significance level o rejects Ho if F > ¢ where ¢
is implicitly given by the equationa = Pr(F > ¢ | Hg). Using results about
guadratic forms of pormal random variables it is possible to show that n6§ — 5. i
independent of 5. As n&&/az ~ xf_l, then it follow that (m"rg —8.) /ot~ X;Zaﬂ
and so F ~ Fip—1Ln— p), under Ho. Therefore, ¢ = Fg{p — 1.,n — D)
Confidence regions for (f2. ... Bp) follows from the above test statistic.

Example 1 (continued). The model validation test in this case corresponds 10
" (he test of Hg: fi = 0. The expression n802 is given by

im _yR =S - = A -+ A - %)
i=1 i=1

" ] .
=3 - T - Bt — DN+ 3 Bl -7
Pl i=1

n

L3 =T - B Dk =T

i=1
n

=S+ b Y Y=V =D

i=1

=5+ Y i %0

i=1

So, F = B2 Yioytx — D) ~ F,n=2) ~ 12_, and the model validation
test rejects the null hypothesis Ho if F > Fy(l, n — 2) or equivalently if

LBy = fa/2,n~25/ Z(Xr‘ ~-%)*.
i=1

@ .
“This result can be extended to multiple regression in the following sense. Consider
the model ¥; = By + falxz — X3+~ -+ Bplxpi —Xp)teii= 1,...,n where
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all the explanatory variables were conveniently centred, The likelihood ratio test
for Hi: Bj=0,j=2,....p with level a rejects H; if

LB 1> fa/2,n—"p5/ Z(xﬁ ~%2.
i=1

Example 2 (continued). Now the model validation test is concerned with the
following hypothesis, Ho: 1 = ... = fr- The expression of né§ is

k

2

j=1i

i — kooAj _ . -
T =12 =Y 3 W -+ F; =D
=1 J=1i=1

where

k _
=8 -+ Z nj(?j — ¥)? because the third term vanishes.
=

We have already seen that squared deviations around she mean for a normally
distributed variable are independent of the sample mean. Then, S, is independent
of the means Y1, ..., ¥x and so, independent of the second term in the above
expression. This term is also in the form of squared deviations of k normal
observations with respect to its mean and so have the sampling distribution given
by o xf_l. Therefore,

S (@ =Dk =D

F = 3

~ Flk—1,n—k)

5
confirming the result described above for the general linear model. F is the
MLR test statistic for Ho and the test of significance level o rejects Hpif F >
Folk—1,n—k)

Finally, we will address the relevant question of how to make predictions using
the classical linear model. The problem here is how to make an inference about
an m-dimensional vector of future observations Y* with explanatory variables
gathered intoa m X p matrix x*. Once again, the trick is to find a convenient pivot,
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which in this case is glVCE] by (Y* — x*ﬁ)/s To verify this result, it suffices to
observe that Y*, 8 and 52 are independent and so Y* — x*,B is independent of 52
The numerator is distributed as normal with mean and variance given by

ElY* —x"BIB, 01 =x*8 —x*"F=0
VY —x*B|8, 0%l = o + x* o 2(X'X)~'x*
=o2C* where C* = I, — x*(X'X) 'x*'.

Since (n — p)s?jo? ~ x2. - the pivotal quantity is distributed as a £,_, (0, C*)
independently of the parameters in the model. So, confidence intervals for Y*
with confidence level 100(1 — )% can be built. These results are easily extended
to the prediction of a vector of future observations following the same steps as
before.

8.3 Bayesian linear models

In Bayesian inference, a prior distribution for the parameters must be spemﬁed
in addition to the likelihood function. Firstly, the resulis mvolvmg proper priors

(in fact natural conjugate, as will be shown) will be presented. The analysis with
non-informative prior will be presented in the sequel and some comparisons with -
classical inference will be made, The examples presented i in the previous section .

will be revisited.

The prior dzstnbuuon adopted for the parameters is a multivariate generalization
of the normal-x? presented in Section 3.3. Assume that the parametric vector £
has a ccmditlonaE prior distribution N (g, ¢~ lC0 ) where ¢ = o2 and that
n002¢ ~ an In this way, the prior distribution is fully specified with density
given by

p(B.#) = @)~ P g Col P exp {mi;_?(ﬁ — o) Co(B — uo)}

(nood j2)"o/? pr0/D=1 gy _”OU(:))' &
Fing/2) 2

ox 0PI exp {—%gnocr& + (B — o) Co(B — uen} :

Then, as in the univariate case, the conditional distribution of ¢ | 8 can be obtained
from the joint prior distribution of 8 and ¢ collecting only the terms involving ¢.
It is given by [nood + (B — o)’ Co(B — ng)ld | 8 ~ X2 p- The marginal
distribution of # can be obtained dividing p(8, ¢) by p(¢i8) or, as done before,
integrating the joint distribution with respect to ¢. Its density is given by

P(B) x [npog + (B — poY Co(B ~ poy] Wo+p/2

Bayesian linear models 219

which corresponds to the density of a f,,, (g, agcal), as seen in Chapter 4. The
normalizing constant is

I'l(ng + p)/2]

no/2 ey
r(n0/2)np/2 (noag)y™’? | Co |

On the other hand, the likelihood of 8 and ¢ is given by
nf2 ¢ ANt pit
@™ exp “EESe + (B - BYXX(B -/
and has the same form as the prior density. Therefore, the posterior is given by

P(B, ¢ly) x @tlrtnotp/n=1
- e?.‘p[_%binoﬁg + 5, + (B — gy Co(B - pg) + (B — B)’XIX(_B _ B)]} .

kt can be shown that

(B - 1g) ColB — po) + (B — BYX'X(B — B)
= (8 — 1) C1(B — y) + i Comg + B X'XB + /€y

where g = CT'(Copg + X'y) and C) = Cg -- X'X. Note that even if X does
ot have full rank, C; will have and can always be inverted. We still have to deal
with the terms

Se + #pCosg + B X'XB + 1\ Cipey
af - ~f ~
=¥y — BXXB+ uyCono+ B X'XB + 1] (Coprg + X'y)
=y —Xu)y-+ (1o — 1) Coptp.

Then, the posterior density of 8 and ¢ can be written as
pl2 i ‘ (m/2)-1 L
PB. ¢ 1Y) x " expi—o(B—n)Ci(f— )} ¢ exp } ~Z M0

whereny = n+ngandnio] = ngod+(y—Xp1)'y+(o—i, ) Costo. This density
has the same form of the prior and, so, is naturai conjugate to the normal lmear
models. In pacticular, 8 | ¥y ~ t,,,(ui,al Cl )andﬁ, fy~ 1‘,1,(,u|j,aE (C1 Vii)s
J =1, ..., p. The posterior mean and variance—covariance matrix of § are given,
respectively, by n

L

gy and ——¢ C

2.
n|——2 my >

The posterior distribution of ¢ is njo] 20 y ~ x"] with mean o, =2 The point

estimators of 8 and ¢ are given by u; and o ~2, respectively. Confidence inter-
vals for §; and ¢ are obtained from the percentiles of r,, and )(3' distributions,
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respectively. It is also possible to make inference about the joint distribution of
the B based on the fact that (8 — i)' C1(8 — w1 /ol |y ~ F(p,m — p).

The non-informative prior can be used to represent, in some sense, the absence of
initial information. Using the same approach as in Section 3.4, as § is essentially
a (multivariate) location parameter and ¢ is a scale parameter, it follows that the
joint non-informative prior distribution is given by p(8, ¢) ¢~} This prioris a
particular, degenerated case of the natural conjugate prior. Making the convenient
substitutions, the posterior density is

p(B ¢ | ¥y ox PP Lexp {—%[Se +(B-BYX'X(B —- 3)1]
o qbp/l exp {_g(ﬁ _ ‘é)fxrx(ﬂ _ ﬁ)} ¢{(R*F)/2}*l exp {_ﬂ_%(n _ p)sl} ]

Therefore, the posterior will remain in the same class with only changes to
the values of the hyperparameters of the relevant distributions. So, g |y ~
tnp(B, s2(X'X)™ ") and (n — p)s?¢ | ¥ ~ x;.., and the quadratic form in § will
be reduced to (8 — B)’X’X(ﬁ — 1@)/52 with posterior distribution F(p,n — p).
These distributions provide the paralle]l Bayesian results to those obtained in the
previous section using the classical approach.

Example 1 (continued). Suppose that in the prior distribution, 8y and £, are
conditionally independent given ¢ with distributions N (0, (co$)™") and N (w1,
(c1¢)™1), respectively and nooog ~ x2. (The case where By and §) are not
conditionally independent is left as an exercise.) Since X'X is a diagonal matrix,
the quadratic form (8 — £)'X'X(8 ~ B) is reduced to S(fp) + S(B1) where

"

S(Bo) = n(fo — ¥ and S(B1) = ¥ _(xi ~ (B — A1)

i=]

and the likelihood function is given by

¢
1Bo, B, ¢ y) o< ¢/ exp {—5{59 + S(fo) + S(ﬁm} :
Combining with the prior, the posterior distribution follows:

p(Bos B1, & | y) oc gttt D/l
exp [ ~Zln00] + Se-+ colfo = o) + 506y + cr(Br i+ B

from where it is easy to see that, conditional on ¢, By and 8; stay independent
with distributions N (,u,j, (c;ftﬁ)“'), j = 0,1, respectively where ¢ = co + n,
of =+ i =32

e O F T (i X2 h

cojig -y
e and Hy = o + Z?—l(xi — I)Z

co+n

=

Bayesian linear models 221

The posterior distribution of ¢ is n10¢ | y ~ x2 with | = n +ng and
n R n 5
mof = Zy? —nugbo — 1P Z(xr- — ) + colBy ~ po)? + 1 (B — i)’
i=1 i=1

The marginal posterior distributions of fp and f) are Student r with n; degrees of
freedlom and parameters ,u,jf and af Jehi= 0, 1, respectively.
In the case of a non-informative prior p{fo, B1, ¢) ¢v”l, the posterior is

p(fo, BLd 1Y) x ¢ ¢ exp {—%[(n - 2)5% + S(Bo) + swm}
o« ¢ exp {—%S(,ﬁo)] @'/ exp {—%scm}
xqbu’kz)/z)_] exp {—%(n — 2)szl .

Examining the above expression, it is easy 10 identify that 8y |- ¢,y ~ N
@, ()", B | ¢y ~ N(B1. (& Z?’:](Ii—f)z)_l) and (n—2)s2¢ | y ~ xg_y-

7

Then, fo | ¥ ~ tn_2(F.57/n) and B1 | ¥ ~ tua(B1. 52/ S0 (x; — )%y and so
the inference coincides numerically with the one obtained following the classical
approach.

Example 2 (continued). Assume that 8 { ¢ ~ Niu;, () =1,k

are conditionally independent and that noagqb ~ XEO. An alternative to the condi-
tional independence of the §;7s will be considered in the next section. Then, as in

Example 1, XX is a diagonal matrix and the guadratic form (8 — BYX'X(B - B

reduces to \
o 32
Do =¥

j=1

The likelihood is given by

j=l

3
’ ¢) = 2
IBiv- - B 3 ¥) cx ¢/ exp {—5 [(n —k)s?+ ) nilBi =) “ .
Combining with the prior distribution, the following posterior is obtained

p B Bro | y) ox im0t/ Dt
k k
xexp{—% [noag + (n —k)52+ ZCj(ﬁj —uj)z + an(ﬁj ~3r'j)2:H

Ju=1 i=1

Lo P g — wi? | §pma1 ox _%, 52]
X 1_[I¢ exp “ECJ' i MG P 5]
Jl:
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wherecj‘. =cj +nJ.-,,u:‘; = (¢l +nj37j)/c;‘f,j= 1,...,k,n; = n +ngand

nw,?' = n()ﬂg + (n— k)s + Z
j=

Py + g ¥ —n¥
It is easy to obtain that g; | ¢, y Nlus, i (c #)71], thus retaining the prior
independence and nioj <b |y ~ Xn . and, therefore the marginal posterior distri-
butions of 8; are 1, (,u,J 2/c”‘) J=1,.... k. The point estimators of §; and ¢
are given by ,u and ai L i=1,...,k respectiveiy Confidence intervals for g;
and ¢ (or g?) can be obtained using the percentiles of the 4, and Xn distributions,

respectively.
In the case of a non-informative prior, we will have the posterior

) .
piB1, .. B | 9) o P exp l—% [(n ~ks?+ D ni(B; —.y;)z}}

j=1
k ¢ .
o lﬂ p'exp [-F‘z-”j'(ﬁj —YJ)QH 1=/
Jj=1 . .
xexp{—ﬁ(n—'k)sz]. |

Making the same 1dent1f cations as Example 1, the margmal postenor distributions
Bily~ k(¥ 5 /nj) jo= 1,0k, and.(rz - k)52¢ ~ )(H._k are easily
obtained. These distributions are SJmllar to the ones obtained in classical inference.

Predictive distributions are needed to perform hypothesis testing and prediction
from a Bayesian point of view. As we have already seen, these distributions can
be obtained by integrating the sample distribution with respect to the distribution
of the parameters. Fortunately, in the normal case, this job is greatly simplified by
the linear structure of the distribution. Consider the model

Y=XB+e e~N@O ¢ 'L,) whereo=1/c2
and suppose that the conditional prior distribution of 8 is
Ble~NMp,¢~'C).
Combining these two results, we get

Y1¢~XN(u¢'CTHY + N, 67
~ NIXn, ¢~ (1 + XC7IX))
since the above normal distributions are independent. Supposing now that vag'qﬁ ~

%2 leads to
Y ~ n[Xp, og (I, + XCIX).
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The marginal distribution of ¥; is t,[x; g, 0F (1 +x,C7 x)L i = 1,...,n
To compare two hypotheses Hy and H), evaluation of the distributions of (Y |
H;), I =10,1is required. The model validation test is based on the Bayes factor

Py | Ho)
BF{Hy, H) = ———
(o Py T HD)
where the denominator is the density of the above distribution given by
2 -
[(n()+n)n//2]( O’O)nfz I I_n +XC01X1 1..]/2
Fng/2)ng

x[noo@ + (¥ — Xtg) (I + XCy XNy — Xpeg) =072,

If it is desirable to test the model validation hypothesis, we build up Hy :
B2 = ... = B, = 0. Under Hy, the model simplifies to ¥ = 1,5 + e and
Bi | ¢ ~ Nluoo, {copep) ™' Tand therefore Y | ¢ ~ N[1ni00, ¢~ (I +cop 1n 1)}
Then, the density p(y | Hp) is given by

I'[(ng +n)/2]

7 (nood)"? | Ty + e L, 17172

X[nodo +(yulnnm) (n + oo 1a1)) 7 Y — Tnpego)) =02,

The Bayes factor is, then, given by

[

| L, +xc0"x’|
{In + CQO lnll |

y l L ngad + (y — XpoY (5 4 XCTIXY Ny = Xpg) | | 2

| noag 4+ (¥ — Luproo) (e + ¢ 1n 1))~ Hy — 1ase00) |

In the case of the prediction of an m-dimensional vector of future observations
Y™ with explanatory variable matrix x*, the same result used above can be applied
as far as the prediction is based on the predictive distribution of Y* | y with density
given by -

PO Y)=ffp(y* [B.¢.Y)p(B, ¢ | y)dBde

- f { f Py 1 B.$)p(B | ¢,y)dﬁ} p($ | y)dé

and the calculus is similar to that involved in the evaluation of the Bayes factor. An
important difference is that the marginalizations are with respect to the posterior
distribution of the parameters while the Bayes factor is obtained using marginal-
izations w:th respect to the prior distribution. Then, using the adopted notation it
follows that’

Y1y~ ta, (g1, 07 (I +X°CT'x™))



224 Introduction to linear madels

and so point predictions and confidence intervals for Y* can be easily obtained.
The analysis using non-informative priors leads to y — 8, Cy — XX, n; — n
and 0’12 — 52 and the predictive distribution of Y* reduces to

Y* |y ~ tapX*B, s2 (L + X (XXX,

This distribution coincides with the predictive distribution of the classical approach
providing the same predictions.

8.4 Hierarchical linear models

In Section 3.5 we have seen how to combine structural information with strictly
subjective information to build up the prior distribution in stages. This strategy is
explored within the context of linear models in this section. The linear structure
of the model combines very weil with the hierarchical modelling in the context of
linear normal models and this structure can be explored in more detail. Specifi-
cally. the hierarchical structure described in Chapter 3 is used with the additional
assumption of linearity and normality. This setup preserves the model linearity as
a whole and the conjugacy at any stage of the model. This area was organized sys-
tematically and received great research development following a paper by Lindley
and Smith (1972). :
In order to specify the model and its prior, we can rewrite it as

Y18, ¢~ NXip, o L)
Bt By ¢~ NXaB3. 7' CT)
Bal¢~ N, ¢~ ChH)

oot ~ Xo

where the matrix with explanatory variables is renamed as X; due to the presence of
another matrix including the second stage explanatory variables, Xz. This matrix
includes the values which explain the variations in the # and the coefficient of this
explanation is given by B;. The model specified above is the simplest in the class
of hierarchical models containing only two stages. More stages can be included
in the model specification depending on the structure of the problern. The form
of the model is not modified. Only some extra equations are included, each in the
form :
BilBistsd~ NXj11B;10.07'C71).

Generally, for higher stages, it is more difficult to specify the equations as the level
of elaboration involved gets deeper and deeper. The dependence of the variances
on ¢ is not.by chance. It allows the vse of results about conjugacy developed in
Sections 3.3 and 8.3. All the derivations that follow are done only for the model
with two stages to keep the notation simple aithough there is no technical problem
to extend the results to models with K stages, X > 2.
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Firstly it is worth mentioning that the analysis conditional on B, is completely
similar to the developments made in the last section. If 8, is known, the prior does
not depend on its probabilistic specification. So, all that is needed is to apply the
results of the last section substituting pg by X28,. In particular, it is obtained that
By 1Y~ tm (g, 02C* ) andmyofp ~ x7, where gy = C' (€1 Xa8, + X1y),
C*=Cy+ X"]Xl, ny = n+nrgand nlo’lz = ngO'g +y—Xi XYy + (X285 —
#I)ICOXZ.BZ-

Considering again the case with f, unknown, it is worth noting that the dis-
tributions of B, | ¢ and B, can be obtained via marginalization as was done at
the end of the last section to obtain the predictive distribution of the observations.
Therefore, combining the distributions of #; | B2, ¢ and B4 | ¢ it follows that

Bild~XaN(, ¢ 'C7)+ N®,¢7'CT)
e NKap 7' CY where €771 = €)1+ X005 X

. . - . - ,f]
and, by integration, we obtain that B} ~ (X2, crgC’{ ).

Example 2 (continuéd). In the last section, it was assumed that the means 2.
“j = 1,..., k were independently distributed a priori. A reasonable alternative for

the case in which similarity among the k groups can be assumed is to suppose that
the means are & random sample from a population of means. This population is

) fictitious and, to fix ideas, taken as homogeneous. To keep the structure presented

above, itis assumed that this population is normal. So, itfollowsthatBy,..., By isa
sample from the N {u, (¢) #)~1) where ¢; measures the precision of the population
of means relatively to the precision of the likelihood. The model is completed with
the specification of the distributions of ¢ | ¢ and ¢. If follows that the prior is
completely specified by

Istlevel : B | . b ~ Nilgat, (1) Ll
2nd level : | ¢ ~ Nipo, (c2gp) ']
ROTED ~ X

and the distribution of the B | ¢ is Nilipo, ¢~ (c] Ik + ¢7 ' 1,1))] and the
components of § are no Jonger independent. In particular, the prior correlation
betweer any two distinct componenis is given by (1 + ¢2 /c;)‘l. This may be
helpful in the specification of the constants ¢, and cz. A larger value for the

constant c3/¢y leads to a smaller prior correlation and vice versa.

It is interesting to see that the distributions of §, and §, conditional on ¢ are
multivariate normal and therefore the theory developed in the last section is directly
applicable and the predictive and posterior distributions can easily be obtained.
So, the predictive distribution for Y | ¢ is given by »

X N(Xopt, 6~ C7 Y + N®, 71 ~ N(Xi Xap, ¢ (I + X1 €77 X))



226 Introduction to linear models

and the margina} for Y is obtained from the above expression substituting the
N by tp, and ! by JO The posterior dlStﬂbuthH of (B, ¢) is a multivariate
normal-x 2 with parameters u,, C*, n; and 51 given by

1y =CHCXone + X y)
C* = CT + XIIX]
Rl =8+ R

niof = noog + (v — X))y + Xagg —~ #1)'CI " Xopg. -

Example 2 {continued). Consider again the analysis of variance model with one
classification factor with a hierarchical prior. Applying the above results, it follows
that

Cl " Xopg + Xy = (6 + key Dole + 7y, -, iy
Z
. C] I3
St =d N - 1 1.
_.C iag (¢ +m 14 ry) [P i1

1t can still be shown in the case of a non-informative prior in the second level
-{cz — 0) and equal number of observations in each group that the posterior mean
of 8; is in the form

wiy;+ (0 —wp)y, with0O<w; <1, j=1,.. .k

where ¥ is the average of group averages. This type of estimator is known as a
- shrinkage estimator since it brings all the group estimates closer to the global mean,
" shrinking the distance among the means. Shrinkage estimators and their properties

were studied by many authors including Copas, James, Morris and Stein, as cited
in O’Hagan (1994). :

To obtain a posterior distribution of 85, it is first necessary to write the likelihood
function of B, and ¢, Using again the results involving combinations of the normal,
it follows that

Y[ 82,0 ~XiN(XaBr 07 CTY + N0, 6711,
~ N(X1 X282, 07'Cy 1)

where Cp L X1CI_’X’1. Therefore, likelihood and prior are normal as be-
fore with a slight difference since the observational variance is not proportional
to an identity matrix. The same results are still valid with the respective substitu-
tions, that is, the posterior distribution of 8, and ¢ is multivariate normal- ¥ with
parameters gy, C5, nz and o given by

#y = C37HC ™ g+ X[ Coy)
C; =Cy+ X1X2COX;X’2
ny=n-+np o

niof = nood + (y — X1X245)'Coy + (g — 22)'Cs ™ g
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8.5 Dynamic linear models

This is a broad class of models with time-varying parameters, useful to model
time series data and regression. It was introduced by Harrison and Stevens (1976)
and is very well documented in the book by West and Harrison (1997). In this
section some fundamental aspects of dynamic models will be introduced and some
examples in time series as well as in regression will be addressed.

8.5.1 Definition and examples

Dynamic linear models are parametric models where the parameter variation with
time and the available data mformatlon are described probabilistically. They are
characterized by a pair of equauons named observational equation and parameters
evolution or system equation. These are given by

Yy =X 8, + e 6 ~ N, of)
B8, = Grﬂ.'-l +wr, @~ N0, W)

where ¥, is a time sequence of observations, independent conditionally on the
sequence of parameters 8,, X, is a vector of explanatory variables as described in
Section 8.1, B, isa p x 1 vector of parameters, G; isa p x p matrix describing
the parameter evelution and, finally, O" and W, are the variances of the errors
associated with the unidimensional observation and with the p-dimensional- vector
of parameters, respectively.

Summanzmg, a dynamic linear model is completely specified by the quadruple
1%, Gy 0%, W,). Two special cases are, respectively, time series models charac-
terized by x; = x and G; = G, ¥ and dynamic regression models, described by
Gr = Ip

Example 3. The simplest model in time series is the first-order polynomial model,
which corresponds to a first-order Taylor series approximation of a smooth time
function, named the time series trend. This model is completely defined by the
quadruple (1, 1, 57, W;]. The above equations specialize to

Yn‘ :JBI' +€h € ™ N(Oa J;Z)
B =P+, @~ NOW)

where 8, is unidimensional.

Although this model is very simple, it can be applied in many short-term fore-
casting systems involving a large number of time series such as in stock control or
production planning. The observational and parameter variance can also evolve
in time, offering a broad scope for modelling.

A slightly more elaborated model, named the linear growth medel (LGM, in
short), is derived after including an extra parameter Sz, to describe the underlying
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growth of the process. Then, it follows that

Yr=PB1 e, €~ NO, 0,2)
Bl =Pri-1+ B 1T o1y
Bz = Bar—y Fwae, @ = (w11, wz.r)’ ~ N(0, W,).

The parameter 1, is interpreted as the current level of the process and it is easy
11

o 1) ¥t characterizing a time series

1o verify that x, = (1,0 and G; = (

model.

Example 1 (continued). Simple dynamic linear regression. Suppose, in this
example, that pairs of values (x;, Yr) are observed through time and that it is
wished to model the existing relationship between x; and Y,. Assuming that the
linear model is a good approximation for the relationship between these values,
a simple linear regression.medel can be set. Its parameters can be estimated via
classical methods or through the use of the Bayesian argument as described in
Section 8.3. Since the linear relationship is only-a local approximation for the
true functional dependence involving x and ¥, a model with varying parameters is
appropriate. Inmany applicasionis lime-varying parameters are more adequate. For
example, the omission of some variables can justify the parameter oscillation, the
non-linearity of the functional relationship connecting x and ¥ or some structural
changes occurring in the process under investigation can also be responsible for
the parameter instability. Then, these situations can be modelled as

Y.u inﬁl‘ + 6;
B, =81 Tt

where %, = (1, ;) and @ ~ N(0, W,). Note that, in this case, G = L.

As we can observe, the choice of X, and G; depends on the model and the nature of
{be data that is being analysed. To complete the model specification the variances
6,2 and W, must be set. The observational variance is usually supposed time
invariant, as in the previous sections and W, describes the speed of the parameter
evolution. In applications o7 is, often, larger than the elements of W,. In what
follows the parameter estimation methed, including the observational variance,
will be described. To make it easier for the conjugate analysis, W, is scaled by 6,2
and the conditional variances of the @; become G,ZW,. Therefore, the matrix W,
can be interpreted as a matrix of relative weights with respect to the observational
variance. The parameter evolution variance matrix must be assessed subjectively
by the user of the method and, in order to do that, the notion of discount factor will
be useful. Alternatively, it can be estimated by one of the approximating methods
described in Chapter 5.
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The equations presented before can be rewritten as

Y i B~ N(X’rﬁ,,orz)
Bt B N(Grﬁ,_l.U}W,).

Let Dy = {01, ys} with Do describing the initial available information, including
the values of x; and Gy, Vi, which are supposed to be known.

It is worth noting that it is assumed that for any time ¢, the current observation
¥, is independent of the past observations given the knowledge of B,. This means
that the temporal dynamics 15 summarnized in the state parameter evolution. This
linear structure for modelling data observed through time combines very well with
the principles of Bayesian inference by the possibility to describe subjectivel?;
the involved probabilities and by its sequential nature, Therefore, subjective in-
formation is coherently combined with past informatien to produce convenicnt
inferences.

8.5.2 Evolution and updating equations

The equations described before enable a joint description of (Y;, B,) given the past
observed data Dy via

plye, B iDi-1) = pylByp(B:AD—1)-

This leads to the predictive distribution after integrating out B

One of the majn characteristics of the dynamic linear model is that, at each instant
of time, all the information avaitable is used to describe the posterior distribution of
the state vector. The theorem that follows shows how to evolve from the posterior

distribution at time 7 — 1 o the posterior at £.

Theorem 8.1. Consider a normal dynamic linear model with of = o, ‘v;t. De-
note the posterior distribution at7 — 1 by (B,_11Di—1.0%) ~ N1, 0 Ci)
and the marginal posterior distribution of ¢ = ¢~ ~ 88

D1 ~ Gln-1/2, ny—15t-1/2).
Then,
1. Conditionally on o2, it follows that
(a) Evolution -~ the prior distribution at ¢ will be
B,lo?, Dy ~ Nar, o’Ry)

with a; = G,m; .1 and R, = GIC!—EG; + W,.
(b) The one-step-ahead predictive distribution will be

yiod Diy ~ N(fi,a? Q1)

with f; = xja, and O =xRx; + 1.
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(c) Updating — the posterior distribution at r will be
Bla?, Dy ~ N(my, aC))
withm, = a; + Ase; and C; = R, — A,A} Q,, where A, = R,xl/Q,
and e, = y, — f;.
2. The precision ¢ is updated by the relation
DDy ~ Glng /2, 8 42)
with ny =n—1+ 1 and NSy = Ny 51—y + E{Z/Qf.
3. Unconditionally on 2, we will have
(a) ﬁrlDl—l ~ Iy, (a;, s, R,);
(b} ¥:|Dy_y ~ tn,_y (St @F), with QF =510
(c) B,1D, ~ Iy, (my, 5, €C;).

Proof. (1) ltem (a) follows immediatety using the parameter evolution equation
and standard facts from the normal theory. With respect to (), using the prior
distribution in (a), it follows that

fi = ELE(YB)o”, Dioi] = EIx, 8,167, Di—1] = xa;

Qr = VIE(Y1B))lo®, D) + ELV (V1B )l0”, Dy
VIXBilo®, Dl + o2 = o (x| Ryx, + 1)

li

il

and the normality is a consequence of the fact that all the distributions involved
are normal.

"o prove part (c), suppose that the posterior distribution at r — 1 is as given in
the theorem. We wish to show that (c) follows from the application of Bayes’
theorem, that is,

P(Bila®, i) o p(B,10%, Dim1)p(yi1B,. o?).
This can be shown using Theorem 2.1 and the identity
C7l =R 4 xix0 2
If o2 is unknown and defining ¢ = o2 it will follow that

 Byhypothesis, ¢|D,_1 ~ G(n,—1/2, n,_y5,-1/2), a0d y |, Dy_y ~ N(f;,
Q. /¢). Then, by Bayes’ theorem,

2
p(#]Dy) oc pe-1+1D/2= 1 gxpy [—% (n,uls,_l + "S‘)J

f
and therefore, p|Dy ~ G(r; /2, n;5,/2).
¢ Finally, for part 3 of the theorem, the proofs of items {a)—(c) follow from
the results about conjugacy of the normal-x 2 to the normal model and from
the marginal distributions obtained in Sections 3.3 and 8.3,

0
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8.5.3 Special aspects

Among the special aspects involved in the dynamic Bayesian modelling, the fact
that it is possible to model the observational variance deserves special attention.
For example, it can be modelled as a power law, 7 = o2u?, where u, = x.8,
is the process mean level. The constant b can be chosen in parallel to the well-
known Box—Cox family of transformations. The scale factor o can be sequentially
estimated as stated in the theorem. The main advantage in this form of modelling
is to avoid data transformation, thus leaving original data and interpretation of
parameters unchanged. This can be useful for times where one wishes to perform
subjective intervention in the series. Also, when analysing similar time series, it
is possible to incorporate the hierarchical structure into the dynamic framework,
This idea is formalized with dynamic hierarchial models (Gamerman and Migon,
1993).

To avoid directly setting the state parameter evolution matrix, the use of discount
factors is proposed. These are fixed numbers between zero and one describing
subjectively the loss of information through time. Remember that R, = P, + W,
where P, = G,C,_1G;. Denoting the discount factor by 4, we can rewrite R, ==
P, /8, showing clearly that there is a relationship between W, and 8. This is given
by W, = (5! - DP,_|, showing that the loss of information is proportional to
the posterior variance of the state parameters. For example, if § = 0.9, only about
90% of the information passes through time. -

Other relevant aspects of dynamic linear models are to easily take care of missing -
observations and to automatically implement subjective interventions. In the first
case, it suffices not to use the updating equations at the time the observations are
missing. In this way, the uncertainties increase with the evaluation of ihe new
prior distribution and the recurrence equation continues to be valid without any
additional problem. From the intervention point of view, the simplest proposal is
1o use a small discount factor, close to zero, at the time of announced structural
changes in the data generation process. In this way the more recent observations
will be strongly considered in the updating of the prior distribution and the system
can be more adaptive to possible changes.

Finally, itis worth mentioning that parameter distribution at time t can be revised
with the arrival of the new observations. We can generically state the parameter
distributions p(B,|D:i1x), Yk integer. If & > 0, this is named the smoothed
distribution, if & == 0, it is just the posterior and if & < 0, it is the prior distribution.
In a dynamic model it is common to use the distributions pB D) YE=1,...,n,
where # is the size of the series, to retrospectively analyse the parameter behaviour.
For example, one may want to quantify the effect of a behaviour change induced by
some measure of economic policy. The future data would inform about the change
occurring in any particular parameter of the model describing the behaviour of the
economic agents involved.
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Exercises

§ 8.2
1.

Show that the derivative of S (B) with respect to B is given by 2(X'XB—-X'y).
Verify that 8 does in fact minimize S(8) by calculating the second derivative
of §(8) with respect 0 B.

 Prove that S(8) = (8 — BYX'X(B — ) + S. where

Se=Y¥~— BIX'XJ@ )
= (y - XB)(y — XB).

. Obtain a 100(} — )% confidence region for B based on [S(B) — 5.1/ ps?.

What is the form of the region?

. Counsider the model ¥i = By Paxai + - + Bpxpi + &is i=1...,n

with the ¢;’s iid N (0, ¢%). Construci a 100(1 — o)% confidence region for
(B3, . .., Bp) from the MLR tést of validity of the fiodel with level a.

_ Consider the model Y; = B1 + Balxz —x2) -+ A Bplxpi —Xp) e j

1. . nwiththe ey ’siid N(0, 0¥y and X; = (1/n) S Xjind =2 P
Show that the MLR test of the hypothesis Hi B =07 = 2,
level o rejects Hy if

, p, of

Z()CJ',‘ —,?j)z.
j==1

J

| Bj 1> tajan-ps/

. Obtain the expression of the 100(1 — )% confidence interval for the pre-

diction of a future observation ¥*:

(a) in the simple linear regression with explanatory variable x*,
(b) in the analysis of yariance model with a single classification factor, for
an observation for group j, j = 1.....k

§8.3

. Obtain the expressions of iy, Cy, ny and oy

. Show that

(B — o) Co(B — o) + (B — BYXX(B - )
=@ —upC1( —p)+ woCotto + B X'XB + i Ciy
where g, = €7 (Coro + X'V) and Cy = Cp + X'X.
2 for the particular case of a

simple linear regression, showing that they coincide with the expressions
obtained in Example 1.

. Obtain the joint posterior distribution of Bo and B in the simple linear

regression model. Are these parameters independent a posteriori? (Note
that they are conditionally independent given ¢.) Repeat the exercise for
the one-way analysis of variance model.

10.

11,

§ 8.4

15.
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Perform Bayesian inference for the simple linear regression model with the
same prior as before but with prior correlation p (0 <]pt<1) conditional
on ¢, instead of 0, as assumed before.

Prove that if

(a) Y=XB+e and e ~ N (0, qﬁ"l,,) where ¢ = ]/02,
o) B1¢~ N, ™' C)and
{cy voog ~ Xy

then Y ~ fu(Xa, og (L + KCX')), using only the formula pizy= [ pzl
w) p(w)dw.

_ Obtain the expression of the Bayes factor to test the hypothesis of validity

of the mode] for

(a) the simple linear regression model.
(b) the analysis of variance model with a single classification factor with
k levels.

. Consider the hierarchical model with K stages given by

Y8 ¢~NXiBr. ¢ ')
5k1ﬁk+1‘¢”N(Xk+lﬁk+11¢_iC;}),k= ... K—1
By ld~ N o' CkD
100G~ Xiny:
(a) Obtain the prior distribution of 8, 1 &. & =1,...,K—L

{b) Obtain the marginal priot distribution of B, k=1,..+, K -1
(¢) Obtain the marginal distribution of Y.

. Show that in the hierarchical analysis of variance model with a single clas-

sification factor with & levels, Cov(8;. By | ¢} = Cov(Bj, 81 = c;' and
Cor(g8;, B 1 ¢) = Cor(ﬁj,ﬁj') = {1+ cz/cl)‘l, Y{j, j"), where Cor
denotes the correlation.

Consider the hierarchical model with two stages. Show that the posterior
distribution of 8, and ¢ is muitivariate normal-y * with parameters fia, C3,
n4 and c% given by

o = C57HC o + X Co¥)
CG=0C+ XQXZCOX;XE
ny=n-+no
mat = noog + (v — X1 Xaia) Coy + o = 1) G o
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16.

§8.5
17.

19.

Introduction to linear models

Show that in the hierarchical analysis of variance model with a single clas-
sification factor, m observations in each group and non-informative prior at
the second level,

EBj|d.¥) =w;¥; +(1 —w))y

with0 < w; <1, j=1,...,kand ¥ is the average of group averages.
Obtain the expressions for wi, j=1,...,k

Consider the first-order polynomial dynamic model with o} = 0% and
W, = W, Vt. Derive the predictive distribution for a horizon & > 0 and
show that

Yeikl Dy ~ N(my, C + kW + o).

Obtain the distribution of (y,.1; + -+ V44 | D;) from the joint predictive
distribution of (yy1, ..., yrex | D;). For example, take ¥ = 2, and prove
that _ .

Yett + Yry2| Dy ~ N(2m,, 4C, + 202 + SW).

- Consider again the first-order polynomial dynamic model, Show that

Br—t1 Dy ~ N(m{_, Cf )

with
E(falD) =my—y + Croy/ Relmy — myq}

and
V{Bi-11Dy) = Ci1 — (Cro1/RYA(R, — C)).

Suppose the series was not observed at time ¢ so that Y, was missing and
therefore, D; = D;_). Obtain the distributions of Bi|D; and y;41|D, as-
suming knowledge of m,_) and C;_; for a first-order polynomial dynamic
model.

Sketched solutions to selected
exercises

Chapter 2

2.

5.

8.

The test X is such that P(X :"1’|’é=“=' 1) =095 P(X =1|§ = 0) = 0.40
and the disease prevalence is P(8 = 13 = 0.70.

(a)-From the example on page 26, P(8 = 1|X = 1) = 0.847. By Bayes’
theorem, PO = 11X =0« H{f = |; X = O)P(B = 1) =0.035 and
PO =0lX =0) (6 = 0; X = 0}P(O = 0) = 0.180, Therefore,
P = 11X = 0) = 0.035/(0.035 + 0.180) = 0.163. The result
X = 1 makes the doctor more certain about John’s illness because
PO =T1{X = 1) =0.847 > 0.163 = P(0 = ||X = 0).

{b} Using'iP(GiX = 1) as the prior.for the second experiment, it follows
from Bayes’ theorem that P(g = X = 1,X>, = 1) « 095 x
0.847 = 0.805 and P(8 = 0|X; = 1, X7 = 1) o 0.40 x 0.153 —
0.063. So, the probability that John'is il is P(§ = HX) =1, X2 =
1) = 0.805/(0.063 4- 0.805) = 0.927.

(c} The likelihood for n positive results is (0.95)". Therefore the solution
of P(0 = LiXy = L...,X, = 1) = (0.95)"0.70/({0.4)"0.3 +
(0.95y"0.7) = 0.99 is obtained by trial and error as n = &.

Let 6 represent the event the driver is drunk with P({9) = 0.75. The test X
will be positive (=1) if the level of alcohol in his/her blood is high and zero
otherwise. It is known that P(X; = 11@ == 1) = 0.8 and for a second test
P(X2=0/f =0)=1and P(X; = 0j¢ = 1) = 0.10.

(@) F(X; =1) = (0.8)(0.25) + (0.2)(0.75) = 0.35 can bhe interpreted as
the proportion of drivers stopped that have to be submitted to a second
test.

{b) By Bayes’ theorem, P(§ = 11X = 1) ot (0.8)(0.25)/0.35 = 0.571.
Alse, P(X7 = 1|1X| = 1) = 0(1 — 0.571) + (0.9Y(0.571) == 0.514.
Therefore, P(8 = 1|X; = I, X7 = 1) = (0.9)(0.571)/0.514 = 1.

(c) Obviously, P(X) =0y =1 — P(X; = 1) = 0.65.

@ p@lx, 1) & p(0, u, x) = p(x18, L) p@|w) p(u). But, p@x, u) x
exp{—(0.5){(x — )2 /62 4 (6 — w)2/7% + u?]). After some algebra
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we get (8)x, p) ~ N{ui, rf) with gy = rlz(x/crz—i—,u/tz) and rl'?‘ =
(¢~2 + %), This is in fact an application of Theorem 2.1.

(b) In order to apply Bayes’ theorem we need the likelihood I{u; x) =
pxlw) = [ p(xif, w) p(61p)dd o f exp{—(0.5)[(x -0y o — (-
w)?/t2)]}de. After some calculations we get

p(xip) o expl—(0.5)(x — 0*/(z% +a )]

Using Theorem 2.1 once again, it follows that p|x ~ N(iey, rlz) with
w=xfot+1r+ Dandtf = (o2 + 2 /(o? + 7+ .

(c) p(@) x f p(6l ) p(p)dpord ~ N, 14174, It follows immediately
by Bayes’ theorem that 8|x ~ N{6, '522) where 6y = r;?xo2 and
rzz = (12(1'2 4+ 1)/((72 +72 4D
In fact the above results can be easily obtained after rewriting the
exercise as X = 6 + ¢, € ~ N(O, o0 =putw o~ N(O,Iz)
and p ~ N{0, 1), where €, @ and w are independent. Using results

" about linear combinations of normal variates we get X = ji+w € Or

Xip ~ N(e. 12 +0?). Analogously, 6 = p+worf ~ N{0, 24 1),

15. From exchangeability of the X;’s and Theorem 2.2, any sequence of n

X;’s having k values of 1 and n — & values 0 has probability given by
JJer(1 — ey *aF @), vk < non > 0.

(a) Since T = ¥ X;, P(T = 1) = Lxea Jo 05(1 = 0)""*dF (@) where
A = {X| ¥ X; = 1}. The number of n-tuples in A is (7) and they
all have the same probability. Then, P(T = 1) = (Myjera -
0y"~'dF(©).

&) E{Tt= Y0 E(X) = Xl E(X) =nE(Xy) = nE{E(X110)] =
nE[8] since X |6 ~ Ber(f).

21. () The sample space depends on the unknown parameter, hence the dis-
wribution does not belong to the exponential family.

(c)

p(£19) = (271 /2 exp{—~0.5[x* — 20x +671/6}
= (2m)" V2 exp(x) expl—0.5[x /0 — 6 — log(®)]}.

Identifying a(x) = @m)~ 2 exp(x), u(x) = x%/2, p(6) = 6! and
(@) = —(6 + log@)/2, we conclude that it is a member of the
one-parameter exponential family and, by the Neyman factorization
criterion, X2 is a sufficient statistic.

(e) plxlx # 0,8) = px|®)/PIX # 018} = (Hera — ey /il —
(1 -8y, x=1...,no0r plxlx #0,0) = (7) expix logl8/(1 —
)] 4 nlog(l — 0) —loglt — (1 —~6)"1}. So, alx) = (%), u(xy = x,
$ () = log[8/(1 — )] and b(B) = nlog(l—@)—log[! — (1 — "l
It is clear that X is a sufficient statistic for 6.
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(g) p(x|8) =6* log{th /(0 — 1) = explx log & + logllog 8/(8 — 1. So,
a(x) =L, u(x) =x,¢{0) = log(6) and b(8) = logflog(8)/(6 — 1.
So it is a member of the expenential family and T(X) = X is a minimal
sufficient statistic.

24. Remember that p(x|6) = alxyexplu(x)e (0} + b{6)] and f pixl@ydx = 1.

(a) Differentiating both sides with respect to g it follows that
[[M(x)‘i"(ﬂ) + 0@ pxi0ydx = 0.

It is then easy to get Eju(X)] = —b'(0) /P (B).
(b) Differentiating again f[u(x)é’(@} + b () p(x|d)dx =0, we get

f (1) (@) plxl0) + u()d @) p (x18) + B @) p(xi6)
+b'()p' (x10))dx

where p'(x]0) = [u(x)¢'(8) 4.5 (8)] p(x|8). After some calculation
it follows that E[u2(X)] = [¢"(0)'(8) — ¢'(8)5"(8)] /[¢" (], The
variance follows from the above calculations.

32, o) luis easy to get p(¥, §) = pg,;p(v,l;, £)]4] o« &, because the Jacobian
of the transformation is just £, ~ "

(b) p(i. Elx. y) x 8% exp(—6)9” exp(—¢) where§ = YEandg = §(1-
¥). S0, pli, Elx, ») o E T exp(-£)T (0 — ¥)Y or proportional
to the product of a G(x+y-+2, 1)andabeta(x + 1, y - 1) distribution.

tc) First of all, it is easy to see that X + ¥ ~ Pois(&), where £ =0 + ¢,
since X and Y are independent Poisson distributed with parameters
¢ and ¢ respectively. Since p(xlx + ¥, ¥, £ = plx, E)plx +
sl 1, £/ p(x + 11, £) it follows that, p(xlx +y, ¥, £) = ()"
(1 - ) which is only a function of .

{d) Using the distributions obtained in (c) and the factorization criterion
it is simple to obtain the results.

(e} The margina} likelihoods of ¥ and ¢ are given by I(¥:x, y) =
pOx, yhr) = [ plx, yl¥, §) p(§1y)dE and I(E; x, y) = pix, yl§) =
[ ptx, i, £) p(w1£)dy. Since pEli) & and p(¥|§) o k, simple
integrations lead to {(y; x, ) oc Y* (1 — )Y and I(; x, y) o< EXFF
exp(—§).

35. (a) The inverse transformations are 8; = Ayr and 87 = ¥ (1 — A) and the
Jacobianis J = . The distributionof (A, ¥) followsas plh, ¥) o ¥,
since p(8) x k.

(b) p(x|h, ¥) = A% (1~ Ay 2T — )! ~¥1—%2_ Then the marginal
likelihood for ¢ is p(x|¥) = [ p(xlx, ¥)p(Aly)dA. Since p{Al¥)
k, p(xly[r) & w.x|+.\:2“ _ .(Jl)l—n-%-xl-
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(¢) By the Neyman factorization criterion with f(x; + xz, ) = yf1+=
(1 — ) =%+ and g(x) = k it follows that X; + X is sufficient for
/8

Chapter 3

1. (2) My experience of living in Rio gives me confidence to assess the first
quartile as 20°C and the median as 28 °C.

(b) A good approximation for the standard deviation is ¢ =~ 1.25|0 —
(2], where (J; is the ith quartile. So my.assessment is that the temper-
ature is normally distributed with mean 28 °C and standard deviation
equal to 10°C. -

(c) The 0.1 quantile determined from the normal distribution corresponds
to 2.7 °C conflicting with the subjectivé assessment of 8°G. The as-
sessment of normality must be revised.

5. @) 10y = [Ty ()% (1~ 0y o« 6%(1 —6)°.

(b) The class of the beta distributions can be used as prior, say witha = 1
and b = 1 represénting vague initial information, So, p(fly) «
6°(1 — )% or a By ~ beta(10, 4).

(c) Since conditions are similar, it is natural to assume that 518 ~ bin
{(ns, 8) withns = 3. The predictive distribution will be a beta-binomial
distribution with parameter (3, 10, 4) providing the following proba-
bilities

¥s 0 1 - 2 3
p(ysi8) 0036 0.178 0.393 0393

10. (a) Assuming that ¢ ~ Gia,b) then yu = E[8] = a/b = 4 and the
coefficient of variation CV(#) = o/[u| = 1/a"/? = 1/2. It follows
thata = 4 and & = 1. The posterior variance will be less than or equal
t00.01 ifand only if (¢t +a)/(n+b)? < 0.01, wherer = ¥ x;. Solving
the quadratic inequality in » it follows that» > 10(4 +)1/2 — 1,

{(b) The posterior mean can be written as p; = (@ +£)/(b+n) = VnXn +
(! — yn)itg where po = a/b and ¥, = n/(n + b). The limit of y,,
when n — co, will be 1. ;

{c) The posterior for 6 is beta(a + ¢, b+ n — 1)} where t = 3 x;. This
distribution has mean (a +1)/(a + & +n) = %y + (1 — ) o where
Mo = af(a+b) and y, = n/(a + b + »). The limit of y,, when
n— oo, willbe 1.

16. (a)} The Pareto distribution is a member of the one-parameter exponential
family with a(x) = 1/]]; x:, ¢(6) = =8, U(x) = ¥ log(x;) and
B5(8) = nlog® + nd logb. So the sufficient statistic for 8 is U (X).
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(b) The observed information is —d%log(p(x]8))/d9% = n /6% which co-
incides with the Fisher information for a sample of size n. The Jeffreys
prior will be p(8) oc 1(6)}/? o 1. It is obviously improper since
[ p(6)d8 = [ k987'd8 diverges.

(c) The posterior distribution is p(8|x) o< 8"~ /({17 x: 1", Let
z = {1, xi}"/" be the sample geometric mean. It is clear that
pOIx) o 8" lexp(—ndlog(z/b)) which corresponds to a G(u,n
log(z/b)).

20. The non-informative prior for 8 is p(0) o k. The density for ¢ = af + b,
a # 0, 1s p(¢) = pol(¢ — b}/al [d8/de| o k d($ — b)/al/de o k. If
p©) 671,60 > Othen p(¢) = pe(¢'/) 1d6/d¢| with ¢ = 6, a # O or,
p(@) o ¢t Iy = log @ then p(y¥)  exp(—y) exp(¥) = 1.

27. (a) Let;|pe ~ N{y, b}, b known and suppose that the §;’s are independent

given . Assuming that p(u) « k, p(@, u) oc [, p@ilu, &), or
Bl ~ N(ul,, bly).

(b) Since p(uly) o p(yiudp{u) where Yiip ~ Nig,(a+ b)), 7 =
I, ..., n, independent, it follows from Theorem 2.1 that |y « N[Y,
{a +b)/nl.

(c) Note that p(6;|u, y) & p(8;1u) p(¥[6;). Once again, it follows from
Theorem2.1 that#; |, y ~ N[p, %], where uf = (ap+-byi) /{a+b)
and b* = ab/(a + b). Hence, E(&;ju, Yy = pf,.i=1,...,n.

(d) El6|yl = ELE:ly. u)l = E(p]) = byi /{a + b).

Chapter 4

4. The posterior p{@ix) o< (1 —6)" " Lg(0, 1) wherer = ) ;_, x;, thatis, a
beta(r + 1,n — ¢t 4+ 1).

(@) E[L@, d)x] o< {0 ~ d2/[0(1 - 0))}0"(1 — 0)"~"do = [ (6 —
dy?6*~1(1 — 9)"~*~1d#. This integral is proportional to the expected
value of the square loss with respect to the beta (1, n — 1) distribution.
So, it is minimized when d = t/n = X. The risk of the Bayes
estimatoris R(X) = B@ + 1,n —1 - l)foI (0 — )26 (1 — gy*—1dg.
Multiplying and dividing by B(t, n —¢), weget R(x) = [B(t + 1,n—
-+ /B mIV(0ix). After some simplifications, it follows that
R(¥) = 1/n%.

- (b) The predictive distribution is obtained via

i
Plrni1x) = fo PCtet 110) p(O}) d.

Assuming that X,41 ~ Ber(9) independent of X, it follows that
plxpe1lx) = Bt + L,n — 1t + 1)f01 Grer1Hi (] — gyt —i+lgg
Solving the integral gives p(x,41ix) = Bt + 1,n — ¢ + 1)/B(t +
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Xpei+ 1, n=xpp —1+2) Finally, p(xp411%) = (¢ + D" (n -+
13} =%+t /(n 4-2). The mean and variance of the predictive distribution
are (¢ + 1)/ (1 + 2) and (£ + D{n — 1 + 1)/(n + 2)7, respectively.
(c) Let #1, .., be the counts associated with each of the k possible
values of X. Then, straightforward generalizations give for each &; the
Bayes estimator 1; /n, i = 1, ..., k, with associated risks 1/n2
The predictive probability function generalizes to plxps) = I[X) =
G+D/m+kni=1,... .k

7. (a) p(Blx) x 811,00, 1). The proportionality constant is obtained mak-
ing 1 = [ pOldd = [T ke~1do = klogoTy. So, k7' =
Joglix + Y/(x — D} x = L
{b) Posterior mean’ mode and median are easily obtained. E@x) =
f_fj'l' k66~ 1do = k[(x +1) — (x — 1)] = 2k = 2log[{x - 1)/ (x+ Dl
To evaluate the mode, it is enough to observe that p(flx) is a strictly
decreasing function of 8. S0 its aximum occurs at x — 1. The median,
in turn, is the solution of [, k6~'d6 = 1/2 or kloglm/(x — D} =
1/2. After some simplifications it follows thatm = [{x—D{x+ 12,
12. The density functions for each type of bulb are plx|y) = ¢ exp(—yx),
¥ = 8, 20 and 30, respectively.

{a) Observing one bulb of each type, it follows that 1 (6; X} o exp[—{(x1
x3/2 + x3/3)/9]/683. The MLE is the solution of the equation
dlogl(@;x)/d@ = =3/8 + (Xy + X2/2 + X3/3)/92 = (). That
is, 8 = (X1 + X2/2 + X3/3)/3.

(b) Assuming the prior ¢ ~ Gle, £), it follows that the posterior distri--

bution is p(¥[x) o ¥+ Lexpl—y (xy +x2/2+ x3/3+ Bl

{c) The Bayes estimator is the posterior mean, ElYrix} = (@ + 3)/(f +
x1 4+ x2/2 + x33), if a square loss function is assumed. For the 0-1
loss function the Bayes estimator is the posterior mode, (& +2)/ B+
xy +x2/2 + x3/3).

16. Itis worth remembering that the moment generating function for the Pois(9)
is @x (1) = Elexp(—tX)} = exp[—-0(1 — exp(—1)].

@) Since oy (1) = [T, ox; (1) = exp{—nd(l — exp(—1))], then
Elexp{—cY)] = g{c) = exp[—nb(l — exp{—acl-

The estimator exp(—cY) will be unbiased for exp(—8) iff n6(1 —
exp(—c)) = 8 or ¢ = log[n/{n — D]. Therefore, (1 1 /mY is an
unbiased estimator of ¢ .

{(b) By the Cramer-Rao inequality, the variance lower bound of an unbi-
ased estimator of k(@) is given by h (9)2 /1(8). In the present case
h(G) = exp(—8), so k' (#) = —exp(—F) and the expected informa-
tion is obtained as E[—d?logl(8; x)/d8?] = EIY.x:/6%] = njb.
Therefore V[exp{—c¥)] = O exp{—28)/n, for ¢ = login/(r — D)].
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(c) The variance of exp(-c¥) can be calculated as V[exp{—cY)] =
oy (20) — 93 (c) = exp[—nB(] —exp(—2¢)]—expl—2n6 (I —exp(—c)],
for ¢ = log[n/(n — 1], After some algebra, it follows that V{exp
{(—c¥ = exp[—6(2—-n)]—exp(—26). The ratio between the Cramer—
Rao lower bound and the variance of the estimator is less than 1, so
the estimator is not efficient for exp(—§).

24, (a) p@lx) x p(x|8) x gx(1 — @)%, Assuming that X =n it follows
that p{(@jx) o 8", which is a monotonic increasing function of 4. 30
the maximum posterior density interval will be in the form [a, 1], for
some a < 1 suchthat PI8 = alx]=1—a.

(by Let yr = 8/(1 —8). Then, Pla/(l —a) < ¥ix] = Pla/(1 —a) =
g/l —xl=Pla <8 <lix) = 1-a.

(c) Itiseasytoevaluate plyrix) = po(fr/(14)x) {d8 /v |or p(¥|x)

7 7(1 + y)**2, which is in the form of an F[2(n +1). 2] distribution.

(d) The interval obtained in (b) is not an HDP because the F density is
not monotonically decreasing in 6. .

27. (a) aexponentially distributed lifetimes with observed mean lifetime equal
to b lead to a likelihood 1(f) 9% exp(—0ab). The prior distribution
for 8 can then be obtained.as p(8) & &% exp(—0ab). This distribution
isinthe formof a G(a -+ 1, ab) distribution.

(b) Using results of the conjugite analysis, - it follows that p{@lx) is a
Gla+t+t,n+ab)wherer =3 xi.
(c) Since T ~ Pois(nd), p{dif) [(n8Y exp(—nd)8° exp(—abg)} or
ait ~ Gla+1+ 1,n +ab).
{(d) The posterior distributions obtained in (b) and (¢} are the same, which
is not surprising since T is a sufficient statistic for .
31, P8 — p)? < SWVilk) = P19 — ml/Vi < N5Ix) = Pty 0. 1) =
J5m /g — 2)). By trial and error, n| = }1 is the largest integer ensuring
that the above prebability is larger than 0.935. Therefore, n == ny —ng = 0.

Chapter 5

2. The log-likelihood function is given by L{a, §1 X} = nla log f — log T'{a)]
+{o— 1)1y — BTz, where Ty = YilogX;and T =3 ; Xi. The maximum
likelitood equations willbe 3 L (o, B:X)/9e = nllog 8— M)/ T@)j+Th
and 3L(a, B; X)/88 = na/B — To. The MLE of 8 as a function of o
will be B(a) = «/X, where X = T»/n. The profile log-Tikelihood of o is

Lia, f(o)) = nlelogla/X) —log(I'(@)]+ (@~ 11N —na. Differentiating
the profile log-likelihood with respect o o we get dL(x, ) X)/8a =
afloga — M@}/ Tl +Ti—n log X. A numerical optimization method,
such as Newton—Raphson, can then be used aftera numerical approximation
" for the digamma function, to obtain the MLE for @.. The MLE estimator for

B follows from the equation B = &/X and the invariance of MLE’s.
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9. We have 8 = A7 and p(X|6) x e 97 where T = > X

(a) The likelihood function is I(3; X) =k exp(—nk“)l“r_

(b) The Jeffreys prior is defined as p(A) &« J(AY/2 where F(A) = E[-L”
(x; X31, L is the tog-likelihood and derivatives are taken with re-
spect to A. Then, L{i; X) = —n)? + aT log . Its first and second
derivative are respectively given by L'(A; X) = —nai® ' +aT /) and
LX) = —na(a— Da®2—aT/32 and the MLE is A = (T/n)’/a.
Also, T()) = na®r8=2 and the Jeffreys prior is p(A) o A7~

(¢) The third derivative is L3 X) = ~nafa—1)(@a=2)r" 3+2a T/x3.
Evaluating it at & = X'/? gives L"”(X; X) = [—a(a — D){a — DT +
2aT1/(T/n)*%. It is easy to verify that LYO:X) =0iffa =3or
a = 0 {degenerate solution).

(d) The transformation that makes the third derivative null improves the
asymptotic approximation. So, with réspect to skewness, the para-
metrization A = 81/3 should be used to improve approximations.

16. We have already cbtained that‘V(é) = 0.126/n. Now, V(&) = Viw(X)1/n
where w(X) = (27) ™' X2/(1+X?)? and V[w(X)] = E[w?(X)]—0?, since
the 1mportance sampling estimator is unbiased. E [w? (X)) = fz 27y 2
[x?/(1 + x*)*(2/x%)dx = 0.021875. Therefore, V(9) = [0.021875 —
0.1476)21/n = 9 x 1075 /n, which is substantially smaller thap V (8).

20. First assume that y # x. The transition kernel of the chain is given by
gt (X%, ¥) = q(x, Ya(x, y) Then, suppose thata(x, y) < 1sothata(x,y) =
[p(y)a(y, 1/[p(x)g(x, y)1. Then, aly, %) = 1 and p(x)g™ (x, ¥) = p(x)g
&, YeX, y) = p(¥)g v, ey, x) = p(y)g*(y, x). This equality is also
trivially satisfied when y = x. Integrating both sides with respect to x
gives p(y) = f p(x)g™(x, y)dy, which means that p(y} is the stationary
distribution of the chain.

Chapter 6

3. (a) The p-value is the statistic «(T) = Fr(T) where Fr is the distri-
bution function of the test statistic 7. By the integral probability
transform (see, for example, DeGroot (1986, p. 154}, it follows that
a(T) = Fr(T) ~ U0, 1). Since ¢(T3),i = 1,...,k, are function of
independent statistics and all with the same distribution they constitute,
a random sample of the U/ (0, 1} distribution.

(b) The hypothesis is rejected if @(T) > o, the significance level. So,
small values of o{T} should lead to rejection and hence large values
of —2log (T} should lead to rejection. Therefore, large values of F
must lead to rejection of the hypothesis.

(c) Itis well known that if X ~ U(0, 1) then ¥ = —log X ~ Exp(l) =
G(1, 1) or 2Y ~ G(1,1/2). Since F is the sum of k iid gamma
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distributed random quantities then F ~ G{k, 1/2) or x3,.

10. (a) The maximum likelihood ratio is AM{X} = Gpexp[—X (6o — 9))1/6)
and the null hypothesis is accepted iff AMX) > cor X < (8 —
610~ loglfy/(c61)] = ¢, where ¢ is such that P(X > ty =
Then, exp(—6pt) = e ort = —6; ' loga.

(b} The p-value is P[X > 3|8y] = exp(—36p) = 0.0498.

(c) The Bayes factoris BF (Hy, Hy) = 2¢~3% = 0.45.

(d) The odds ratio 1s p(Ho|x)/p(H1|x) = p(Ho)/ p(H\)BF(Hy, H)) =
BF(Hy, Hy), since p(Hy) = p(H)). So,

p(Holx) = {[BF (Ho, HD1™' +1)7! =((0.45)"" 117! = 031

(e} Using the result in (b}, the null hypothesis is rejected at the & = 5%
level because the p-value is less than e, which is somewhat conflicting
with the posterior probability of 0.31 for the nuil hypothesis, because
the latter is smaller than 0.5 but is far from recommending rejection,

13.  (a} The hkelihood fum:uon under Hy is p{x), x218) = 0'(1 — gy,
T =X 4+ X7 and = t/2 is the MLE. Under Hq, p{xj, x2]8) =
6% (1 — 9)I=*16%2(1 — 8)!=*2 and MLE of (¢}, 67) is (X1, X2).

{b) Using a uniform prior, the posterior distribution follows, from Bayes’
theorem, as p{f|x, Ho) ox 8 (1—6)*"" and p(d,. &21x, H;) ox 871 (1
9)1—.1']9:2(1 _ 9)1—:{3-

(c} The GMLE is the mode of the posterior distribution, In this exercise,
‘the GMLE’s coincide with the MLE’s obtained in (b).

(d} The predlctwe distribution is given by p(x) = Ep[p(x|8)]. So pix;,
x2}Hp) = fo 6'(1 — 8)27'dg = I'(z + 1HT(3 — 1)/ T(4) and p(x;,
x2tH) = T+ DT 2—x))T(1+x2)T(2—x1)/ T (3)%. Numerically,
we get the table of probabilities below

(x1,x) (00) 0,1y Loy (.0
Ho 173 1/6 1/6 1/3
H /4 1/4  1/4 14

{e) The result follows immediately from the table above. The resuli states
that the data favours Hy (equality of distributions) twice more when
x} = xz than when x; # x3.
15. The MLE of 9 is § = 2_; Xi/ 3_; t; and the Fisher information is 7(8) =
t/6. From Section 5.3.1, the asymptotic distribution of the MLE is
9~ N[O, I"V®]. A 100(1 — )% asymptotlc confidence interval is § —
Z /21_]/2(9) <8< 6+zq/2[ 12(gy where Tisan estlmator of I given by
S L0 1 2.ixi=10and } ;i = Sthen 6 =2 and [(8) = 5/2. A 95%
asymptotic confidence interval for 8 is (0.76, 3.24). Since fg = 1 belongs
to the confidence interval described above we accept the null hypothesis at
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the 5% level. With a 1% level, the corresponding interval is (0.37, 3.63)
and Gp = 1 will again be accepted.

21. Let the cell frequencies be denoted by Ni,...,Np, with N; > 0 and
Y7 | N; = n and parameter 01..... 0p, 6 >0 with 7,6 = 1. The
log-likelihood function is L{#; N} = k + 5P | Njlog;, the MLE of # is
# = N/n and the score function is U(N; 8) = (N1/01,..., N,,_l/Bp_l}’ -
1N, /0p. The Fisher information is I (8) = ndiag(1/61,...,1/6,1) —
n11'/6, and its inverse is

ndiag(@1, .- > 8p—1) = O, Bp-1) @1, Op=)']-
Then, it follows that Wz = S, (N — ) /N and Wy = 37, (Vi =
né:0)%/nbi 0.
Chapter 7
1. The prior has density given by p(6) = wp® 8%+ 1g(B, 00} and the like-

lihood is given by 1{0:X) = To(T, 00) /67, for T = max; X;.- Then,
flx ~ Pa(Bi, o} where ¢y =a +nand 1 = max{t, B}

.. {a) From Bayes’ theorem it follows that p(x) = p(xl@)p(6)/ plolx) =
' aﬁ“/a;ﬁ‘]’”. Assuming that ¥ and X are conditionally independent- .
given 6, it follows that p(yix) = a1 87" fo B3t with ey = oy + land -

By = max{y, B}
(by fT > Bthen B =1, By = maxle, y} and

ply|x) = a1V Jlop (max (s, yD*2.

So, PCY > 1[x) = (apfa)t® [ y~®2dy.=a/lealer — D

(©) e > 0thenay — n, 0z = n+1, p(ylx) > nfi/ln + Dt
and P(Y > tix) — n/ln + V] = Ijn+ 1) e g— 0 then
pylxy = nt"/l{n -+ Dmax{z, D" or p(yix) = »/ln + 1)),
if y < t and nt"/[(n + Dy, if y > T. Also, P(Y > 1ix) —
1/(n + 1).

4. The easiest way to predicte ¥ in a classical way is to replace & by is

~

estimator 6. In this example, p(ylé) = (';)(x/n)y(l — x/n)""Y, where
§ = x/n. This distribution has mean mx /n and variance mx(n — x)/n.
(This can be contrasted with the Bayesian prediction under the improper
prior p(@) o 871(1 — 8)7! that leads to E(Y]x) = mx/n and V(Y|x) =
mx(n—x)(1 -i-c)/n2 where ¢ = (m — 1)/{n+ 1) = 0. This again is similar

. but overdispersed with respect to the classical result.)
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Chapter 8

2,

Define F(8) = [S{B) — S}/ ps® ~ F(p,n — p). Therefore, PLF(B) =
Folp,n—p))=1—a. Solving for B, it means that {8 : {8 — BYX'X(8 —
B) < ps¥F4(p.n — p)} defines a 100(1 - &) % confidence region for 8.
This region has the form of an p-dimensional ellipsoid centred around fB

. Developing the product and conveniently collecting the terms, Q = -

o) Colf — o) + (B — BYX'X(B ) = B'LCo + X'XB — 28'[Coto +

X'XB1+ o CorotB X'X 8. Using pt) and C as defined and completing the

squares, it follows that @ = Q1 + 0z where 01 = BCT'g-28CT iy +
1 =l ! St 5 f -

JTAL oH "y and Q2 = pgComp + B X'XB — 1, "y Now, Q) = (B —

1) Cy(B — pp), which proves the result.

. The group means ¥; ~ N(B;, (m¢)~ 1) are sufficient and independent
statisties for B, ..., Br. Therefore, E(B;l¢.¥) = EBil. T, V) =

CELEBj i, . ¥ )T - Fi). From Theorem 2.1, E(Bjlu.¢,¥F;) =

(m¥; -+ /{m+er). So, E(Bjld.y) =[m¥; +cr Euid, V5, - -- Y/
(m + c1). From Theorem 2.1 again, E(ul¢, ¥ir. o n Fe) = V. Therefore,
E(Bjlp, ¥) = (m¥F; + ¥}/ (m 1)

. The required distribution has density

pGrai) = fP(erwllghDr)P(QJ}Dr)dB:-

By Bayes’ theorem and using the fact that y, and g, are condition-
ally independent given 8, it follows that the first term in the integrand is-
6136, Dy) = 8116, Dy 1) ¢ (81D p(Gri6i—y. Dry). AP-
plication of Bayes’ theorem for the normal observation 8, and parameter
8,1 gives (B;—116, D) ~ Nim-) + €18 —an) /R Cim1 — C?_l/Rr]-
Therefore, (0;—1|D;) has mean

E[#-11D;] = E[E(€-11601D) = my—1 + Coy Oy = a)/ R

and

Vi0r_11D(] = E[V (611001 D] + VIE®-116)1D]
=Ci 1 — C?Al(Rr - CI,])/R{Z.

The normality follows from the linear relation of &, on the conditional mean
of 8, and the marginal normality of .



List of distributions

This list includes the distributions that are most often used in statistics and fre-
quently appeared in this book. They are listed in alphabetical order and are not
divided into groups such as continuous x discrete, univariate x multivariate. This
information will be clear from the context.

1. Bernoutli

X is said to have a Bernoulli distribution with success probability @, denoted
by X ~ Ber(#), if its probability function is given by

p{xle) = 9*(17_9)1-*‘ x=0,1,

for ¢ € [0, 1]. This distribution has mean 0 and variance 6 (} — 8).

. Beta )

X is said to have a beta distribution with parameters o and §, denoted by
X ~ beta(w, B), if its density function is given by

plxle, )y =kx*"t1 = )%, x 0, 1],
forw, § > 0. The constant k is given by

Fla)I'(b)
Fa+b)

The functions B(-, -) and I'(-) are respectively known as the beta and gamma
functions. This distribution has mean «/(a + 8) and variance a8/[(x +
B+ B+ DI

. Beta-binomial

X is said to have a beta-binomial distribution with parameters n, @ and 8,
denoted by X ~ BB(n, «, ), if its probability function is given by

_[(r\Bla+x,B+n—x) _
P(X!H,Ot,ﬁ)—(x) B f) x=0,1,...,n,

forn = 1, @, 8 > 0. This distribution has mean ne/ (e + B) and variance
nefll+{n— 1}/(e+ £ — Dl (a+ B)% The expression for the variance

0]
k7! = B(a,b) = and T'{c) = f 7 le7*dx, ¢=>0.
0
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can be rewritten in the form n8(1 — (1 +¢€), where 8 = o/ (x + ) and
€ = (n— Dfla+ B—1. Since e > 0, ¥n > 1, the variance of the beta-
binomial distribution is bigger than the variance of the binomial, when one
compares 8 with 8, for & + 5 > 1.

. Binomial

X is said to have a binomial distribution with parameter » and success
probability &, denoted by X ~ bin{n, 0}, if its probability function is given
by

n

plxin, 8) = ( )9‘”(1 —gy, x=01,....0

X

forn > 1,8 € [0, 1] This distribution has mean n6 and variance nf(1--6).
This family of distributions includes the Bernoulli as the special case n = 1.
. Dirichlet -

X ={X . ¢ I,)’ is said to have a Dirichlet distribution with parameter
g =6, ....0p). denoted by D{(®), if its joint density function is given by

re.)

: r
61 .
piy = = L xel0 ), i=hop E x =1,
_Hr’r(ef) 1 i=1 '

for@ e [0,1Li=1....P and 8y = »_; 0i. This distribution has mean
/0 and variance-covariance matnx given by (5‘;2(6’+ 4+ Do diag(f) —
90’1, where diag(c) denotes a diagonal matrix having the elements of the
vector ¢ in the main diagonal. This family of distributions includes the beta
as ihe special case p = 2.

. Exponential

X is said to have an exponential distribution with parameter &, denoted by
X ~ Exp(#), if its density function is given by

plxie) = ge ®, x>0,

for @ > 0. This distribution has mean 1 /6 and variange 1/67.

. Gamma {or )(2)

X is said to have a gamima distribution with parameters ¢ and B, denoted
by X ~ Gle, B), if its density function is given by

pixla. By = ke le B, x> 0,

for o, § > 0. The constant k is given by k = £/ T'(@). This distribution
has mean /8 and variance & / ﬁz. This family of distributions includes the
exponential as the special case o = 1.

The xf, distribution is equivalent to the G{p/2. 1/2) distribution. There-
fore, the Gla, B) distribution corresponds 10 a 2p Xzzo, distribution.
. Multinomial .
X =(X;,.-...X l,,)’ is said to have multinomial distribution with parame-
ter n2 and probabilities § = Oy, ....05), denoted by M(n,8), if its joint

10.

I
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probability function is given by

nt Eoo.
P(x|9)=-l__l—p——jn9i'. x=01...,71

i=1 4 =l
»
i:l,...,p,Zx,-:n,
i=1

forg €0, i=1....P 37 6 = 1. This distribution has mean né
and variance-covariance matrix given by nidiag(#) — 00']. This family of
distributions includes the binomial as the special case p = 2.

. Negative binomial 9

X is said to have a negative binomial distribution with parameters » and 8,
denoted by X ~ NB(r,6) if its probability function is given by

r+x—1
p(Ilr,9)=( . )9’(5—9)", x=01,....

forr > 1,8 €10, 1] This distribution has mean r (1 —8)/8 and variance
r(1—8)/6%.

Normal

X is said to have a normal distribution with mean g and variance o 2, denoted
by X ~ N(e, o) if its density function is given by

1
plxli, 0%y = @ro?)y P exp l_%g(x - u,)z} . x€ER,

forp € Rand g2 = 0. When p = 0and g% = 1, the distribution is referred
to as standard normal. A

X = (X1,..., Xp) issaidto have a multivariate normal distribution with
mean vector p and variance—covariance matrix ¥, denoted by N (g, ), if
its density function is given by

ey Pz  exp {—%(x T - u)] , X€ERP,

forp € RPand T >0, where |A! denotes the determinant of A.

Pareto

X is said to have a Pareto distribution with parameters ¢ and 6, denoted by
Pa(a, B), if its density function is given by

p(xl9, a) = a®jx'te, x>0,

for a,6 = 0. This distribution has mean affla — 1), when a > 1, and
variance 92 /[(a — 1Y2(a — )}, when a > 2.
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12. Poisson

i3.

14.

15.

X is said to have a Poisson distribution with parameter 8, denoted by X ~
Pois(@), if its probability function is given by

6)'
pxif) =e?—, x=0,1.2...,
X

for # > 0. This distribution has mean and variance given by A.

Snedecor F

X is said to have Snedecor F (or simply F) distribution with v; and 1
degrees of freedom, denoted F(v1, vz), if its density function is given by

T+ 0/2 e o o

v (v2 + vpx) =2,
T /2T (/) !

P(XIUI. UZ)
x>0

for vy, vz = 0. This distribution has mean v2/(v; — 2), when v; > 2 and
variance [2vZ(vy + vz — D1/ [vi(v2 — 4)(vz — 2)%), when 1y > 4.

If Xy ~ XU% and X ~ x2 are independent then (X{/v)/(X2/v2) ~
F{vy, v2). This family of distributions includes the square of the Student ¢
. D2

as the special case v} = 1. If vo — oo, then v1 F(vy, ») — Xy

Student ¢

X is said to have a Student ¢ {or simply 1) distribution with mean w, scale
parameter o2 and v degrees of freedom, denoted by X ~ t,{(u, & 2) if its
density function is given by

Ti(v + 1)/2] v¥/? [ (x — M)z}—wﬂ)/z
W o gz

forv >0, u € Rand o2 > 0, This distribution has mean M, whenv > I,
and variance v/(v — 2), when v > 2. This family includes the Cauchy
distribution as the special case v = 1, denoted by Cauchy (u, 0'2).

= (X1, .... Xp) is said to have a multivariate Student r distribution with
mean vector it and scale matrix X and v degrees of freedom, denoted by
fip, X), if its density function is given by

v+ p)/2] /2
T {v/Dmp/?
x[v+ x—p)YEx— @t 5 c e,

pxlv, p,o?) = , XER,

Fxlv, 1, E) = |zi~1/2

forv > 0, o € R¥ and ¥ > 0. This distribution has mean p, when v > 1,
and variance vE/{v — 2), when v > 2.

Uniform

X is said to have a uniform distribution with parameters 8, and 8,, denoted
by Ul8y, 2], if its density function is given by

p(x|6, 62) = s X €6, 6],

1
s —

16.
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for 0y < 6. When 0y = O and 6> = 1, the distribution is referred to as unit

uniform. This distribution has mean (8 -+ 8)/2 and variance (&2 —86, )2/ 12.

Weibuil '
X is said to have a Weibull distribution with parameters & and B, denoted

by Wei(, 8), if its density function is given by

plxta, B) = Bax®"! exp{—pgx*), x>0,

for a, B > 0. This distribution is sometimes parametrized in terms of «
and § = 1/5% and includes the exponential as the special case & = |, This
distribution has mean 8~V (] +a~ 1) and variance B8¥er( 20—
r2(1 +a N
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14041

Laplace approximation, 141-4
Least squares,
method of, 90-92
astimator (LSE), 90-91
weighted estimator, 91, 92
ordinary, 91
Likelihood
function, 21-3
maximum, 87, 89, 90
principle, 23
Likelihood ratio (LR)
classical hypothesis testing,
170,171, 174-5, 177
monotone, 174-5, 177
Lindley’s paradox, 184
Linear algebra, basic results in, 10-
i1, 13-14
Linear Bayes methodology, 208
Linear growth model (LGM), 227-8
Linear models, 211-13
Bayesian, 218-24
classical, 213-18
dynamic, 227-31
hierarchical, 224-6

‘Linear prediction, 206-8

Location
model, 20, 70
parameter, 20, 21
—scale model, 21

Loss functions, 8034
0-1,834
absolute, 84
quadratic, 84, 93

Marginal

density, 11

likelihood, 182

posterior distributions, 42
Markov chain Monte Carlo

{(MCMC), 156-60

Matrices

linear aigebra, 13

orthogonal, 14

positive definite, 13-4

singular, 14

square, 13

symmetric, 13

Maximum likelihood estimator

(MLE), 86-90

asymptotic tests, 188, 189, 190,
161

asymptotic theory, 137-8, 139,
140

consistency, 98

EM algorithm, 130, 131

generalized, see Generalized
maximum likelihcod
gstimator

optimization techniques, 127-9- 7.

Mean squared error (MSE), 93
Metropolis-Hastings algorithm,
- 157-8; 165

*. Minimax estimator, 94

Momeats, methed of, 92
Monte Cario methods, i147-9
" with importance sampling.
14951
Markav chain, 13660

Newton—Raphson algorithm, 127
confidence intervals, determin-
ing, 129
tikelihood equation, solution of,
127, 128, 129
Neyman's factorization criterion, 37,
38, 39,40
Non-informative priors, 65-71
Nuisance parameters, 42, 43
non-informative priors, 68, 71
Null hypothesis, 168
Numerical integration methods, 144
Gauss—Hermite rules, 1467
Newton—~Cotes type methods,
144-5

One-way ANOVA, 215
Optimality criterion, linear
prediction, 206

Subject index 261
Optimization techniques, 126--7

Parameter elimination, 41-4
Posterior distribution, 27, 31-3
asymptotic theory, 134, 1356,
137
decision theory, 79
Laplace approximation, 1434
Markov chain Monte Carlo
methods, 159
parameter elimination, 42

Posterior odds, 182

Prediction, 1, 197
Bayesian, 197-201
classical, 201-2
linear, 2068
tingar mode}, 217-18
Prior distribution, 27, 30-33, 33
Conjugacy, 59-65
distribution function approach
to specification, 54
hierarchical, 71-3
histogram approach, specifica-
tion of, 33-4
Jeffreys, 66-9, 76
linear modets, 218-19, 220,
2212
non-informative, see
Non-informative priors
subjective specification, 533
specification through
functional forms, 55-8
Prior odds, 182
Probability, 1
basic results in, 10-13
concept of, 3-5
function, 14
p-value, 172

Quadrature techmique, see Numer-
ical integration methods

Randomized igsts, 173
Rao-Blackwellized estimator, 158,
i64





