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INFORMATION AND
CHANNEL CAPACITY

41 INTRCDUCTION

In th;s_ chapter, we attempt to answer two basic (:fuestions that arise in th
analysis and design of -communication systems: (1) Given an inf In the
source, how do we evaluate the “rate" " riormation

infarmatian? £ Givan o

“““““ S (e LTED 8 IIGISY communicatio

the maximum ‘‘rate” at which “reliable” infont':)g?ir::aei’r:::niz'we craluate
olace over the channel? We develop answers to these questi on l;:.em take
probabilistic models for information sources and commun‘il ti 1ons based on
) Information sources. can be classified into two categori:: lz:a;:hannels.

3 tlnuogi-.:.f_g_l_'ued) and discrete. Analog information sources s:.uch og (or con-
phote-actuated by a voice signal, emit a continuous-ampiitude oo Bi‘mlcro-
time electrical vt.faveform. The output of a discrete information sc;uizz 1"1u;>l|.ts.
a teletype consists of sequences of letters or symbols. Analog inf such as
sources c¢an be t_ransformed into discrete information-sourcesg thro;mlf I:?]n
process of sampling and quantizing. In the first part of this cha te: I il‘:
deal with models for discrete information sources as a prelude t pler we w
digital communication systems. 2preide toour study of
A discrete Information source consists of a discrete set of letters or
alphabet of symbols. In general, any message emitted by the source consists
of a string or sequence of symbols. The symbols in the string or sequence are
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emitted at discrete moments, usually at a fixed time rate, and each symbol
emitted is chosen from the source alphabet. Every message coming out of the
source contains some information, but some messages convey more in-
formation than others. In order to quantify the information content of
messages and the average information content of symbols in messages, we
will define a measure of information in this chapter. Using the average
information content of symbols and the symbol rate, we will then define an
average information rate for the source.

If the units of information are taken to be binary digits or bits, then the
average information rate represents the minimum average number of bits per
second needed to represent the output of the source as a binary sequence. In
order to achieve this rate, we need a functional block in the system that will
replace strings of symbols by strings of binary digits. We will discuss a
procedure for designing this functional block, called the source encoder, in the
first part of this chapter.

In the second part of this chapter, we will develop statistical models
that éd{é"q‘ﬁgtely represent the basic properties of communication channels.
For modeling purposes, we will divide communication channels into two
categories: analog channels and discrete channels. An analog channel accepts
a continuous-amplitude continuous-time electrical waveform as its input and

=)

produces at its output a noisy [Smeared| version of the-input—waveform 4
discrete channel accepts a seq e of symbols as its input and produces an

s\ errors. We will first develop models for discrete communication channels and
derive the concept of “capacity” of a communication channel. The channel
capacity is one of the most important parameters of a data communication
system and it represents the maximum rate at which data can be transferred
over the channel with anéégﬁit_ra_ri_ﬁ}f;mall probability of error.

Whiie expressions for the capacity of discrete channels are casily derived,
such is not the case when we deal with the ¢ontinuous portion of the channel.
For this portion we will simply state the model of the channel and then the
expression for the capacity of the channel. For the case of a bandiimited
channel with bandwidth B, Shannon has shown that the capacity C is equal to
== B logy(l + SIN)! where S is the average signal power at the output of the
— charmiel is the average power of the bandlimited Gaussian noise that
' accompanies the signal. While we will not attempt to derive this expression
for channel capacity, we will consider in detail the implications of C =
B log:(1+ S/N) in the design of communication systems.

The material contained in this chapter is based on the pioneering work of
Shannon. In 1948, he published a %%tisc on the mathematical theory of

communpication in which he established basic theoretical b’g@nds for the
performances of communication systems. Shannon’s theery is based on

X c o
output sequence that is a reglif@f the input sequence, except for occasional_.:,""{}_;-\’., )



Ny

140 information and Channel Capacity

probabilistic models for information sources and communication channelg
We present here some of the important aspects of his work. '

4.2 MEASURE OF INFORMATION

4.21 Information Centent of a Message

The output of a discrete information source is a message that consists of a
Seqy_g_gg_QAo{SYmbo‘lS. The actual message that is emitted by the source during

t""a message interval is selected at random from a set of possible messages. The
communication-system is designed to reproduce at the receiver either exactly
or approximately the message emitted by the source.

As mentioned earlier, some messages produced by an information source
contain more information than other messages. The question we ask ourselves
now is, how can we measure the information content of 2 message quan-
titatively so that we can compare the information content of various messages
produced by the source? In order to answer this question, let us first review
our intuitive concept of the amount of information in the context of the
following example.

Suppose you are planning a trip to Miami, Florida from Minneapolis in the
winter time. To determine the weather in Miami, you telephone the Miami
weather bureau add receive one of the following forecasts:

mild and sunny day,
cold day,
. possible snow flurries.

Wi b3 —

£

The amount of information received is obviously different for these messages.

The first message contains very little information since the weather in Miami

is mild and sunny most of the time. The forecast of a cold day contains more .

information since it {5 not an event that occurs ofien. In comparison, the
forecast of snow flurries conveys even more information since the occurrence
of snow in Miami is a rare event. Thus on an@ basis the amount of

o o Gl .
to the probability or the like Hood of occurrence of the event. The message
associated with an event least likely to occur contains most information. Th

information received fi‘%)m rhﬁ knowledge of occurrence df an event is related
f

above ¢0hjecture applies to messages related to any uncertain event, such’gs,

the behavior of the stock market. The amount of information in a messag
depends only on the uncertainty of the underlying event rather than its actual
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content. We can now formalize this concept in terms of probabilities as
follows:

Suppose an information source emits one of q possible messages
mi, ms, . .., my with probabilities of occurrence pi, pa...sPqi Prtpatec -+
po=1. According to our intuition, the information content or the amount of
information in the kth message, denoted by I{m,), must be inversely related
to pi. Also, to satisfy our intuitive concept of information, I(m,) must
approach 0 as p, approaches 1, For example, if the forecast in the preceding
example said the sun will rise in the cast, this does not convey amny in-
formation since the sun will rise in the east with probability 1. Further-
more, the information content I(m,) must be nonnegative since each message
contains some information. At worst, I(m,) may be equal to zero. Summariz-
ing thése requirements, TGy ) must satisfy:

Im > I(my) if pe <py 4:1
Iim)—0 aspg-1 (4.2)/
WVR Im) =0 when0<p, <1 (4.3)

Before.we start searching for a measure of information that satisfies the
above Constraints, let us iinpose one more requirement. Namely, when two
independent messages are received the total information content is the sum of
the information conveyed by each of the two messages. For example, suppose
that you read uin the newspaper two items of news: (1) s iff»gig,ts have
discovered a Sure for the common cold and {2) a NASA spa eof:”robe has
found evidence of life on planet Mars. It is reasonable to assume that the two
events mentioned in the news items are independent, and that the total
information received from the two messages is the same as the sum of the
information contained in each of the two news items.

We can apply the same concept to independent messages coming from the
same source. For example, the information received in the message, “It will
be sunny today and cloudy tomorrow,” is the same as the sum of information
received in the two messages, [t will be sunny today™ and “It will be cloudy
tomorrow” (assuming that weather today does not affect weather tomorrow).
Mathematically, we can state this requirement by

J&La/“( I(m, and m)) = I(mym;) = }(mk) +I(m) (4.4)

where m; and m; are two independent messages.
A continuous function of p, that satisfies the constraints specified in
Equations (4.1)~(4.4) is the logarithmic function and we can define a measure

of information as
[r(my) = tog(1ipy) (4.5)
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142 Information and Channel Capacity

The base for the logarithm in {4.5) determines the umit assigned to the
information content. If the natural logarithm base is used, then the unit is ngy
and if the base is 10, then the unit is Hartley or decit. When the base is 2 theri
the unit of inforrnati_on is the familiar bit, an abbréviation for binary ,digit
Using the binary digit as the unit of information is based on the fact that if
two possible binary digits occur with equal probabilities (p, = p, = &), then the
correct identification of the binary digit conveys an amount of information
Itm)=I(m)= —1952(5)= I'bit. Unless otherwise specified, we will use the
base 2 in our definition of information content.

Example 4.1. A source puts -o.ut one of five possible messages during each
message interval. The probabilities of these messages are

=1 —
PV =7 Pz—'é; P3=:%. Pd=1_lé, Ps=':'%

Find the informatiog content of each of these messages. (Observe that the
actual meaning OF lntchretat1on of the message does not enter into our
computation of information content.)

Soluticnt
I(m)) = —log,(d) = 1 bit

I(my) = —log,(}) = 2 bits
I(ms) = —logyd) = 3 bits
I(mJ) = —logy(1) = 4 bits
I(mg) = ~log,{15) = 4 bits

4.2.2 Average Information Content (Entrepy) of Symbeols in Long
Independent Sequences

—

Messages produced by information sources consist of sequences of symbols.
While the receiver of a message may interpret the entire message as a single
unit, communication systems often have to deal with individual symbols. For
example, if we are sepqlng messages in the English language using a teletype,
the user at the receiving end is interested mainly in words, phrases, and
sentences, whereas the communication system has to deal with individual
letters of symbols. Hence, from the point of view of communication systems
that have to deal with symbols, we need to define the information content of
symbois.

When we attempt to define the information content of symbels, we need to
keep the following two factors in mind: First, the instarifaneous flow of

information in a system may ﬂucguata widely due to the randomness involved
,L:LA“('\, y
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in the symbol selection. Hence we need to talk about average information
content of symbols in a long message. Secondly, the statistical dependence of
symbols in a message sequence will alter the average information content of
symbols. For example, the presence of the letter IJ following Q in an English
word carries less information than the presence of the same letter U follow-
ing the letter T.- We will first define the average information content of
symbols assuming the source selects or emits symbols in a statistically
independent sequence, with the probabilities of occurrence of various sym-
bols being invariant with respect to time. Later in the chapter we will deal
with sources emitting symbols in statistically dependent sequences.

Suppose we have a source that emits one of M possible symbols
§1, 82, ..., 8y in a statistically independent sequence. That is, the probability
of occurrence of a particular symbol during a symbol time interval does not
depend on the symbols emitted by the source during the preceding symbol
intervals. Let py, P2, ....Pu be the probabilities of occurrence of the A
symbols, respectively. Now, in a long message containing N symbols, the
symbol 5, will occur on the average p,N times, the symbol s, will occur p.N
times, and in general the symbol 5 will occur p;N times. Treating individual
symbols as messages of length one, we can define the information content of
the ith symbol as log,(1/p;) bits. Hence the piN occurrences of s; contributes
an information content of p;N logx(1/p;) bits. The total information content of
the message is then the sum of the contribution due to each of the M symbols
of the source alphabet and is given by

Low = 3, Np; loga(1/py) bits
i=}

We obtain the average information per symbol by dividing the total in-
formation content of the message by the number of symbols in the message,
as

M
- %@a‘ = 3 pilogi(ilp) bits/symbol 4.6)

Observe that the definition of H given in Equation (4.6) is based on “time
averaging.” In order for this definition to be valid for ensemble averages, the
source has to be ergodic (see Section 3.5.2).

The expression given in Equation (4.6) was used by Shannon as the starting
point in his original presentation of the mathematical theory of com-
munication.

The average information content per symbol is also called the source
entropy since the expression in (4.6) is gimilar to the expression for entropy in
statistical mechanics. A simple inte’f:-ﬁfetation of the source entropy is the
following: On the average, we can expect to get H bits of information per
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mbol in long messages from the information source even though we cannot
:Zy in advance what symbol sequences will occur in these messages.

Example 4.2. Find the entropy of a source that emits one of three symbols A,
Bx:nd C in a statistically independent sequence with probabilities L4 and 1

respectiVCIY'

. i =A, 5= B, and sy=C, with p;=1{ and pr=py=1i
?‘;l: ti]r‘t)i:;rn‘:f;izfcil::er;::)f the sirmbo{s are ;ne bit for A, two bits for B, and
two bits for C. The average information content per symbol or the source
entropy is given by

H = 3l0g:(2) + i log(4) + } logy(4)
= L5 bits/symbol

(A typical message or symbol sequence from this source could be;
ABCCABAABCABABAACAAR)

To explore the dependence of H on the symbol probabilities, let us
onsider a source emitting two symbols with probabilities p and 1-p,
:espective]y (0 <p <1). The entropy for this source is given by

H=p logz(%) +(1—p) lng(l——LE) bits/symbol

It is casy to verify that the maximum value of H is reached when r= i
(dH{dp =0 requires log({1—p)/p)=0 and hence p =1, and H,. is
{ bit/symbol. In general, for a source with an alphab.e.t.of M symbols, tl_le
maximum entropy is attained when the symbol probabilities are equal, that is,
when p = p2=""*=py = l/M, and H,, is given by
Ho, = log: M bitsisymbol .7
It was mentioned earlier that symbols are emitted by the source at a fixed
time rate, say r. symbols/sec. We can bring this time element into the picture

nd define the average source information rate R in bits per second as the
;roduct of the average information content per symbol and the symbol rate r..

R = r.H bits/sec (4.8
F . :

The ;b%ci:é)\iiation BPS is often used to denote bits per second.
Example 4.3. A discrete source emits one of five symbols once every mil-

lisecond. The symbol probabilities are 4, 4, 4, &, and &, respectively. Fiad the
source entropy and information rate,
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Sclution

]
H=3p logz(i) bits/symbot
i 2

= 1logx(2) + {10g(4) + } logy(8)

+1%log,(16) + & log,(16)
=0.5+0.5+0.375+0.25 + 0.25
= 1.875 bits/symbol

Information rate R = tH bits/sec = (1000)( 1.875) = 1875 bits/sec.

4.2.3 Average Information Content of Symbols in Long Dependent
Sequences

The entropy or average information per symbol and the source information
rate defined in Equations (4.6) and (4.8) apply to sources that emit symbols in
statisticaily independent sequences. That is
symbol during a symbol interval does not alter the probability of occurrences
of symbols during any other symbol intervals, However, nearly all practical
sources emit sequences of symbols that are statistically dependent. In tele-
graphy, for example, the messages to be transmitted consist of a sequence of
letters, numerals, and special characters. These sequences, however, are not
completely random. In general, they form sentences and have a statisticat
stricture of, say, the English language. For example, the letter E occurs more
frequently than letter Q; occutrence of letter Q implies that the following
letter will most probably be the letter U; the occurrence of a consonant
implies that the following letter will most probably be a vowel, and so on.

4.2.4 Markolf Statistical Model for Information Scurces

For the purpose of analysis, we will assume that the discrete information
source emits a symbol once every T, seconds. The source puts out symbols
belonging to a finite alphabet according to certain probabilities depending, in
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general, on preceding symbols as well as the particular symbol in question, A
physical system or statistical model of a system that produces such a
sequence of symbols governed by a set of probabilities is known a5 a
stochastic or random process, We may consider a discrete source, therefore,
to be represented by 2 random process. Conversely, any random process that
produces a discrete sequence of symbols chosen from a finite set may be
considered a discrete source. This will include for example, natural written
languages such as English and German, and also continuous information
sources that have been rendered discrete by sampling and quantization,

We can statistically model the symbol sequences emitted by the discrete
source by a class of random processes known as discrete stationary Markoff
processes (see Section 3.5.4). The general case can be described as follows:

1. The source is in one of n possible states, 1,2,...,n at the beginning of
each symbol interval. The source changes state once during each symboi
interval from say { to j. The probablhty of this transition is p; which
depends only on the initial state { and the final state i, but does not depend
on the states during any of the precedmg symbol intervals. The transition
probabilities py (i, -1 —'I 2,....n; ELipy=1) remain constant as. the
process progresses in time. .

2. As the source changes state from / to j it emits a symbol. The particular
symbol emitted depends on the initial state i and the transition i — .

3. Let 5), 52, . . . , S be the symbols of the alphabet, and let X, X, ... WX ...
be a sequence of random variables where X, represents the kth symbol in
a sequence emitted by the source. Then, the probability that the kth
symbol emitted is s; will depend on the previous symbols Xy, X, ..., X,
emitted by the source, that is, s, is emitted by the source with the
conditional probability,

P(Xk = SQIXh XZ: ey X;‘-|)

4. The residual influence of X1, X3,..., Xi-; on X, is represented by the state
of the system at the beginning of the kth symbol interval. That is, the
probability of occurrence of a particular symbol during the kth symbol
interval depends only on the state of the system at the beginning of the
symbol interval or

P(Xk=SqIX|, Xz,. '-:Xk—l)=P(Xk = sqlSk) (4_9)
where S, is a discrete random variable representing the state of the system
at the beginning of the kth interval. (We use the “states”* to “‘remember”

*In general, a discrete stationary source with M letters in the alphabet emitting a symbel
sequence with a residual influence lasting g4 symbols can be represented by n states, where
H={MY,
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past history or residual influence in the same context as the use of state
variables in systems theory, and states in sequential logic networks.)

5. At the beginning of the first symbol interval, the system is in one of the n
possible states 1,2,..., n with probabilities Pi(1), P(1),. .., Pa(1), respec-
tively (Zi.; Pi(1) = 1).

6. If the probability that the system is in state j at the beginning of the kth

symbol interval is Pyk), then we can represent the transitions of the
sysiem as

Bk+1)=3: P(k)py (4.10)

If we let P(k) be an n X 1 column vector whose ith entry is Pi(k) and let ¢
te be an n X n matrix whose (i, ’th entry is p; then we can rewrite
Equation (4.10) in matrix form as

Pk+1)=¢"Pk)

The matrix ¢ is called the probability transition matrix of the Markoff
process. The process is called a stationary Markoff process if P (k)=
$TP(k) for k= 1.

Information sources whose outputs can be modeled by discrete stationary
Markoff processes are called discrete stationary Markoff sources.

. Discrete stationary Markoff sources are often represented in a graph form
where the states are represenied by nodes of the graph, and ihe transiiion
between states is represented by a directed line from the initial to the final
state. The transition probabilities and the symbols emitted corresponding to
various transitions are usually shown marked along the lines of the graph. An
example is shown in Figure 4.1. This example corresponds to a source
emitting one of three symbols, A, B, and C. The probability of occurrence of a
symbol depends on the particular symbol in question and the symbol im-
mediately preceding it, that is, the residual or past influence lasts only for a
duration of one symbol. Since the last symbol emitted by the source can be A
or B or C, the past history can be represented by three states, one for each of
the three symbols of the alphabet. If the system is in state one, then the last
symbol cmltted by the source was A, and the source now emits letter A w:th
probability 3 and returns to state one, or it emits letter B with probability § and
goes to state three, or it emits letter C' and goes to state two with probability £
The state transition and symbol generation can also be illustrated using a
“tree”’ diagram. A tree diagram is a planar graph where the nodes correspond
to states and branches correspond to transitions. Transition between states
occurs once every T. seconds, where 1/T; is the number of symbols per
second emitted by the source, Transition probabilities and symbols emitted
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Symbor
sequence
P =1/3 ” Symbot Symbols -
Py =13 probabilities  emitteqd
Pyl1) =113

ity 1428

Figura 4.1 Exampie of a Markoff source.

e 3
it .
| ;

eesaus

P,

long the branches. A tree diagram for the source shown in Figure
are shown a
. in Fi 4.2. - :

Alis Showndl'l:ipr;gn‘irecan be used to obtain the probabilities of generating

The (ree blolgsequences. For example, the symbol sequence AB 1ca113 be
e el by either one of the following transitions: l.—>_1—»3" or2—1-3or
gcneratfd ?yr ce the probability of the source emitting the two-symbol
3i=3 HOe we ;
sequence AB is given by 3
P(AB)=P(8=1, 5=1, §=3

R S et

e )

: Initial stage
i or §1=2,85=1,8,=3)
ii or §=3 8=1, $=3 (4.11) ‘_’_ so
Al |
b iti aths are disjoint, we get o '
i?nl Since the three transition p s f?rt:::;;;:fm:r:a'
f'!" P(AB)=P(§,=1, 85;=1, §;=13) .1
| +P(S|=2,Sz=l,$_'3=3) k

State at the
end of secand
symbol interval

ure 4.1,

+P(5,=3,5=1, 8=3) {4.12)
ing the chain rule of probability we can rewrite the first term on the
:i]jtl:tl-ghand side of Equation (4.12) as
i = = =3}
P{8,=1,5.=15 i
=P8, =DP(5=1]S,= hHP(S;=3|5,=1, 5, = 1) ,
=P(Si=DP(5;=1[S,= DP(S;=3|S,=1) (4.13)

Flgure 4.3 Tree diagram for the source shown In Fig

The last step is based on the fact that the transition Probability to &, depends
on S; but not on how the system got to S; (i.e., the Markoff property),

The right-hand side of the previous equation is the product of probabilities
shown along the branches representing the transition path and the probability
of being at state | at the starting_ point. Other terms on the right-hand side of
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Figure 4.3 Another examgple of a Markoff source.

Equation (4.12) can be similarly evaluated, and FP(AB) is given by
P(AB) = Q)H + GO + D

=L
=12

Similarly, the probabilities of occurrence of other symbo[.sc-:.quencesa ri?cnm:
computed. In general, the probability of t.he source emltt;ng 1 ;:) e
symbol sequence can be computed by summing the produc.t ol pro a.uence i
the tree diagram along all the paths that yield the particular seq
mt;;iﬂ;mﬂﬂl shown in Figure 4.1 corresponds to a source m which .the
I‘ES-i;i-l;al influence lasts over one symbol interval. Shown in FdigureL 4.;1 lso:
source where the probability of occurrence of a symbol depends nzdit:l ?t 0
the particular symbol in question, but also on the two symbpls_precf : ngl.ml
is easy to verify that if the system is in state two, at the begmm::fg oand io oo
interval, then the last two symbols emitted by the source wer; AB, 5 this.

It is left as an exercise for the rea.der to draw the_ tree la:)grlarn Lor this
source and to calculate the probabilities of some typical symbol seq
(Problem 4.11).

4.2.5 Entropy and Information Rate of Markeff Sources

. . F
In this section we will define the entropy and 1n;ormatéml1 éat:s ozf D;Ii:zlrc:tc
i he source can be modele
sources. We will assume that t ‘ ¢
finite-state Markoff process. Furthermore, we will assume the proc;e_ssd tc'>r Ee
ergodic (Chapter 3, Section 3.4) so that time averages can be app Iep-.(k)=
ergodic assumption implies that the process is stationary, and hence P,

it
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probability of being in state i at the beginning of the second symbol interval,
and 50 on, The probability of going from state i to j also does not depend on
time.

We define the entropy of the source as 5 weighted average of the entropy of
the symbols emitted from each state, where the entropy of state i, denoted by

H, is defined as the average information content of the symbols emitted from
the i-th state:

H; = ;1 Py logz(-P—l'_f) bits/symbol .14
The entropy of the source is then the average of the entropy of each state. That
is,
H=;RE
T n 1 N
= 5_; P;[Z: Py Ing(;;)] bits/symbol (4.15)
= i= i

where P is the probability that the source jg in state i The average in-
-formation rate R for the source is defined as

R = r.H bits/sec (4.16)

whete 1, is the number of state transitions per secopnd
the source.

The entropy H defined in Equation (4.15) carries
defined in Equation (4.6). In both cases, we can exp
convey H bits of information per symbol in long m
stated in the following theorem,

of the symboi rate of

Theorem 4.1

Let P(m,) be the probability of a sequence m; of N symboi;_'f-f&ﬁ' the -
source, Let

Gy =— —1\17 > P(m;)iog, P(m;) @17

where the sum is over al Sequences m; containing N symbols. Then Gy is

monoto?ic decreasing function of N and

Im Gy = H bits/symbo] (4.15

A detailed proof of this theorem can be found in Reference 1. We w
illustrate the concept stated in Theorem 4.1 by the following example,
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i i i deled by a discrete ergodic
.4. Consider an mformatmn'source model :
Exampfl; z:docm process whose graph is shown in Figure 4.4, Find the source
Marko }J and the average information content per symbol in messages
e::toali::ing one, two, and three symbols, that is, find G, Gy, and G,
C

above emits one of three symbols A, B, and C.
Sotution. 'l:‘he sou;;f tf;ogmput of the source is shown in Figure 4.5 and Table
The Pree d:agrarqous symbol sequences and their probabilities. To illustrate
1 lists the var; es and their probabilities are generated, let us consider the
how these(r:'ngés ’?‘here are two paths on the graph that terminate in CCC
e e di t.o the transition sequences 1+2-51-52 and 21 —>2- 1. fI‘.he
A mfg the path 1»2-1-2 is given by the product of the probability
probahilty @ is }Jn state one initially, and the probabilities of the transitions
that the syﬂemd 1-2. These probabilities are 4, 4, §, and 1, respectively, and
12 21, 3:[11 robability is 1/128. Similarly, the probability of the second
hence thﬁl;’ paéalclfllated as 1/128. Hence, the probability of the sequence CCC
Patt.’ :z;nbyethe sum of the two paths as 2/128,
® %?gm the definition of H; (Equation (4.14)) we get

Hi=}log:(4) + 1 logyh = 0.8113
H:=1logd49) +ilog,d) = 0.8113

and using Equation (4.15) we obtain the source entropy as
H = (D(O.8113)+(2)(0.8113) = 0.8113 bits/symbol
Let us now calculate the average information content per symbol in messages
e

i i tents
s mbols. Thers are seven messages. The information con
o hose. meseages are I(AA)=I(BB) o 1.83, I(BC)=I(AC) = I(CB) =
0

A (1] (2) B

1
Fl

Pl= P2=

[T
M=

Figure 4.4 Source mode! for Example 4.4,
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Flogure 4.5 Tros diagram for thg Saurce shown in Figure 4.4,

Table 4.1. Messages of length 1, 2, and 3 and -
their probabilities

Messages of Messages of Messages of

. length 1 length 2 length 3
A (3/8) AA (9132) AAA (27/128)
B (3/8) AC (3/32) AAC (9/128)
C (1/4) CB (333 ACC (3/128)

CC (2130 ACB (9/128)
BB (9/32) BBE (27/128)
BC (3132 BBC (9/128)
CA (3/31) BCC (31128
BCA (5/128)
CCA (3/128)
CCB (3/128)
CCC (2123)
CBC (3/128)
CAC (3/128)
CBEB (9/128)
CAA (9/128)

153
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=4,0bits. The average information content of
1(CA) = 3'4150'- anfi ef,(ff t)he :l?m of the products of the information content
these messages 2 glVd its respective probability. This can be computed as
of each message A0 an obtain the average information content per symbol in
25598 bits. Nov_v e iwo symbols by dividing the average information content
messages C{:,'lgt:sml;;gthe number of symbols in these messages, that is,
of the mess

G, = 2.5598/2 = 1.2799 bits/symbol
imilar fashion, we can obtain the values of G; and G,. The reader can
In a similar ,

casily verify that G, = 1.5612 bits/symbol

G; = 1.0970 bits/symbol

Thus, Gi=G=G,= H

as stated in Theorem 4.1.

; Hlustrates the basi¢ concept that the average

The pr eceding ixag:psl?m!go: from a source emitting symbols in.a depen-
information corten apses as the message length increases. Alternatively, the
dent sequence de(;mbits per symbal needed to represent a message decreases
average numberC: th increases. The decrease in entropy is due to the
as the message engsages_messages that are highly structured usually con-
sgructure_of the ?e: per symbol than messages containing the same number
vay less mfnrl:ni It(l)’le symbols are chosen indepcndeqtly. ) )
of symbols Whe? n we will discuss a source coding techmique that takes

In the next secm:atistical structure of the source to reduce the average
advantage of the s mbol needed to represent the output of an information
number of biis fp erc‘s\fre discuss source coding techniques, let us take a brief
source. But, bet; tistical model of a source is constructed. )
look at how the sta f a mode! for an information source consists of two
The devgllol:imsglto;ment of the model structure and (2) estimation of the
(1) the de

RACH A

parts:

° i Parameter values are
parameters hysical nature of the source.
t the phys
knowledge abou

istical estimation procedures. In some cases,
obtained through:h;ngsfhzfps:i;mctcrs of the source model can be derived
both the s;rlt.lctrl-l:ing estimation techniques. | ! can be
from test 82%2 d for estimating the parameters of a source model can :
The tes't e the simuitancous recordings of the outputs of a number o
derived cither fron? a short time or from the recording of the output of a
identical sources 0;ong time period. Estimates based on data from a large
single SOU; % i::e: are called ensemble estimates, while estimates based on
number of so

£ the model. The structure of the model is usually derived from -
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Example 4.5, We want to design a system to report the heading of a collection
of 400 cars. The heading is to be quantized into three levels:
(S), turning ieft (L), and turning right (R). This information is t

1. On the average, during a given reporting interval, 200 cars were heading

straight, 100 were turning left, and 100 cars were turning right.

2. Out of 200 cars that reported heading straight during a reporting periad,
100 of them (on the average) reported going straight during the pext
reporting period, 50 of them reported turning left during the ‘next period;”
and 50 of them reported turning right during the next period.

3. On the average, out of 100 cars that reported as turning during a signaling
period, 30 of them continued their turn during the next period and the
remaining headed straight during the next reperting period,

4. The dynamics of the cars did not allow them to change their heading from

left to right or right to left during subsequent reporting periods.

.Solation, The source model for this process can be developed as follows:

1. Since the past history or residual infiuence lasts one reporting interval, we
need only three states to “remember” the last symbol emitted by the
source. The state probabilities are given as (statement one)

Pi=4 P=} Py=4
2. The transition probabilities are

(Rending = S[peciions = 8) = Pisisy =03
P(SIS)=P(RIR) = P(L|L) =05
P(L|S) = P(R|S)=0.25
"P(SIL)= P(S|R) = 0.5
_ P(LIR)=P(R|L)=0
3. The state diagram is shown in Figure 4.6,
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‘5 task in a communication system is called the source encoder. The input to the
it source encoder is the symbol sequence emitted by the information source.
h The source encoder assigns variable length binary code words to blocks of
%JL symbols and produces a binary sequence as its output. If the encoder operates
1& on blocks of N symbols in an optimum way, it will produce an average bit
i rate of Gy bits/symbol, where Gw is defined in Theorem 4.1. In general, the
1 average bit rate of the encoder will be greater than Gy due to practical
‘ constraints. As the block length N is increased, the average output bit rate
Flgure 46 Source modet for Example 4.5, per symbol will decrease and in the limiting case as N <, the bit rate per
symbol will approach Gy and Gy will approach H. Thus, with a large block
discussed in the preceding example could have been obtajned by size the output of the information source can be encoded into a binary
The .dat_a lh heading of a single car over an extended period of time instead sequence with an average bit rate approaching R, the source information rate,
m°n't°l:lng-t 6400 cars. We can obtain good estimates of statistical parameters The performance of the encoder is usually measured in terms of the coding
of momto.rlnlg time history record if the process is ergodic. Here, we will efficiency that is defined as the ratio of the source information rate and the
it fro;n a sete obability of a car heading straight by the portion of time the average output bit rate of the encoder. There are many algorithms available
: estimate thed?; straight during 2 long monitoring period (as opposed to the for designing a source encoder. The following section deals with a simple, yet
ca:: w:; 4%%ac;r§ heading straight at a given time in the previous method). most powerful, source coding algorithm given by Shannon.
ratio

The information rate for this source can be computed as follows:-

H, = entropy of state one

= i the sum is over all . .
= 2py IOSz(I" o where the s ; 4.3.1 Shannon’s Encoding Algorithm
symbols emitted from state one

=1ilog22 +1log, 2 = 1 bit/symbol The design of the source encoder can be formuiated as follows:
Hy=4log: 2 +4log,4+Llog, 4

= 1.5 bits/symbol

The input to the source encoder consists of one of g possible messages,

hit each message containing N symbols. et P Pt ..., pq be the probabilities

é}; H;=1bit/symbel, and hence . of.these q messages. Wedwoulddlike tglcodeh(or ;e'placeg the itt_x message m;

= + P,H, + Po¥t using a unique binary code word ¢; o ength n; bits, where n; is an integer,

“ H f:HI 11 i z 1(1; ’ : Our objective is to find n, and ¢ for i=1,2,..., g such that the average
=i 1)+ z1.5)+ 5

A

LR

number of bits per symbol Hy used in the coding scheme is as close to Gy

= 1.25 bits/symbol, and as possible. In other words, we want

R = 1.25 bits{sec (per car)

_ H, _iqn"*'l—ip-!og(i)
values of probabilities obtained from data are estimated values and are N = Z{ P~ 3 2 pitoaa(
P;;e actual values. The sample size and the type of estimator used will
no

determine the bias (if any) and the variance of the estimator for each of the Several solutions have been proposed to the above problem, and the al-
e

gorithm given by Shannon (and Fano) is stated below.
parameters. )
Suppose the g MESSAZES my, My, ..., m, are arranged in order of decreasing

1 probability such that p, = P2==--=p, Let F =38, P, with F, =0, Let n;
43 ENCODING OF THE SOURCE OUTPUT : ' be an integer such that

S Ihc Output Of an miormation so 'ce 4
ource encodmg 15 the pIOCESS by Whlch I T f ur
15 COIlVelt & 1 uHCtlunal bloc}: that e[fOIIHS thls

Gl

togo1/pi) < m; < 1 + logy(1/p,) {4.19)
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Then, the code word for the message m; is the binary expansion* of the
fracti:orl F, up to m; bits, that is,

G = (E)binary 1y bits

This algorithm yields a source encoding procedure that has the following
s
propel’tiBS:

ases of high probability are represented by short code words and
1. Mess (g,f low probability are represented by long code words. This can be
thoisl; verified using the inequality stated in (4.19),
iy ode word for m; will differ from alj succeeding code words in one or
 The © laces and hence it is possible to decode messages uniquely from
Egirre c[::de words. We can prove this by rewriting inequality (4.19) as

1 1
7% <P <

ce the binary expansion of F; will differ from ajl succeeding ones in
I—Ienor more places. For example, F; and F,; will differ in the m;th bit since
on: 1/24. Hence the code word for m;,, will differ from m; in at least one
piZ !

bit position or more. . ‘
The average number of bits per symbol used by the encoder is bounded by

Gy <Hy <Gu+ 1IN 4.20)

This bound can be easi
From (4.19) we have

Iy ve

log(1/pi) < mi < 1+ logy(1/p;)

Multiplying throughout by p; and summing over i, we obtain

$: prlogi(llpd <3 mpi <1 +3 prlog(1lp)
=] L I=

or 1y 11 1
1 Nl 1.1 1
ﬁé:u Pi logz(p£)<N§Paﬂ.<N":N211082(pi)

ot Gy <Hy <IN + Gy

Hence as N >, Gy — H and Hy - H.

. i b b
*Binary fraction _b,b,b,__.bg=%5+f§+-2—}+---+-2‘?§

where b =0or |.
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The rate efficiency e of the encoder using blocks of N' symbols is defined as
e=H/H, 4.21)

The following example illustrates the concepts involved in the design of a
source encoder.

Example 4.6, Design a source encoder for the information source given in
Example 4.4. Compare the average output bit rate and efficiency of the coder
for N=1,2, and 3.

Solution. Let us first design the encoder with a block size N =3. From
Example 4.4 we know that the source emits 15 distinct three-symbol mes-
sages. These messages and their probabilities are shown in columns 1 and 2 of
Table 4.2; the messages are arranged in column i according to decreasing
order of probabilities. The number of bits a, assigned to message m is
bounded by . '

128 128
logz(-—z:,—) =<4 Iogz(?)
or

2.245 <1, <3.245

Table 4.2. Seurce encoder design for Example 4.6

Binary
Messapges expansion Code word
my o n; 5 of F, <
AdA 277128 3 0 (000000 000
BBE 27f128 3 2711238 0011011 001
CAA 9/128 4 54/128 0110110 0110
CBR 9f128 4 63/128 O1i11 o1
BCA 9/128 4 721128 1001060 1001
BBC 9/128 4 81/128 1010001 1010
AAC 9128 4 - 90/128 1011010 1911
ACR 9/128 4 99/128 1106011 1100
CBC 3/128 [ 108/128 1101100 110110
CAC 3/128 6 i/128 101111 110111
CCB 3/128 6 114/128 110010 111001
CCA 3/128 6 1i7/128 Attorer 111010
BCC 3/128 6 120/128 1000 11100
ACC 3/128 [ 123/128 CHito1t 111101
cce 21128 6 126/128 Ao 111111

Spm=389 f= 1‘38—9= 1.30 bits/symbol
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Since 1, has to be an integer; the above inequality yields 7, = 3 bits. The code

word ¢, is generated from F, 20. Hence, c; = 000. For my, it is easy to verify
that n, = 3 bits and Fr=%Lip or F,=27/128. The binary expansion of 271128
is 0011011, Truncating this expansion to 3 bits, we obtain the code word 001
for m,. The complete design of the encoder for N =3 is shown in Table 4.2.

It can be easily verified that the average number of bits per symbol used by
the encoder is 1.30 bits/symbaol, Table 4.3 summarizes the characteristics of
the encoder for N = 1 and 2,

The performance of the encoder is summarized in Table 4.4. The numbers

Hy<Gu+1/N for N = 1,2,3

To iHustrate how the encoder operates, let ug consider a symbol string
ACBBCAAACBBB at the encoder input. If the encoder uses a block size
N =3, then the output of the encoder can be obtained by replacing successive

Table 4.3. Enceder for N=1
and N =2

Message P: " G

N=1
A /8 2 00
B ‘378 2 o1
c 1/4 2 1

Hi=2 bits/symbol

N=2
Ad 932 2 00
BB 9/32 2 01
AC 3/32 4 1001
CB 3/32 4 1010
BC 332 4 1100
CA 3/32 4 1101
cc 2132 4 1111

Hy=1.44 bits)symbo
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Table 4.4. Performance of the encoder for Example 4.6

Average number of N=1 N=12 N=3
bits per symbol used
Hy 2 1.44 1.30
Gy 1.561 L.279 1.097
Gy + 1IN 2.561 1.779 1.430
Efficiency = Hi 40.56% 56.34% 62.40%
N
H = 8113

groups of three input symbols by the code words shown in Tabie 4.2 as

ACB BCA AAC BBB
1100 1001 1011 o001

The same symbol string will be encoded as 100101110100101001 if the encoder
operates on two symbols at a time with code words listed in Tab{e 4.3. The
decoding is accomplished by starting at the left-most bit and matching groups
of bits with the code words listed in the code table.

For the N’ =3 example, we take the first 3-bit group 110 (this is the shortest
code word) and check for a matching word in Tabie 4.2. Finding none, we try
the first 4-bit group 1100, find a match, and decode this group as ACB. Then
the procedure is repeated beginning with the fifth bit to decode the rest c_>f the
symbol groups. The reader cag verify thai the decoding can be dont.: eas;ly b'y
k}lowing the code word lengths a priori if no rrors occeur in the bit string in

the transmission process.

Bit errors in transmission lead to serious decoding problems. For example,
if the bit string 1100100110111001 (N = 3} was recejved at the decoder input
with one bit error as 1101100110111001, the message will be decoded as
CBCCAACCE instead of ACBBCAAACBCA. This type of error is a major
disadvantage of an encoder using variable length code words. Another dis_ad-
vantage lies in the fact that output data rates measured over short time
periods will fluctuate widely. To avoid this problem, buffers of farge length

will be needed at both the encoder and the decader to store the varjable rate

bit stream if a fixed output rate is to be maintained,

Some of the above difficulties can be resolved by using fixed fength code
words at the expense of a slight increase in data rate. For example, with
N =3 we can encode the output of the source discussed in the preceding
example using 4-bit code words 0000, 0001,...,1110. The output data rate
now is fixed at 1.333 bitsfsymbol compared {0 an average output data rate of
1.30 bits/symbol for the variable length scheme discussed before. The
encoder/decoder structure using fixed length code words will be very simple
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compared to the coml.’lc"ity of an cncod_erldecoder using variable length code
words. Also single bit errors lead to single block errors when fixed length
code words are used. These two advantages more than make up for the slight
increase in data rate from 1.30 bits/symbol to 1.3 bits/symbol. :

Another important parameter in the design of encoders is the delay in-
volved in decoding 2 symbol. With large block sizes, the first ?anb0! in the
block cannot be decoded until the bit string for the entire block is reC_ewed by
the decoder. The average delay will be NJ2 symbols for a block size of N
symbols. The time delay (N/2)T, seconds, where 1/T, is the number of
symbols emitted by 2 source, may be unacceptable in some real time ap-
plications. . . | ‘

It must be pointed out here that the encoding algorithm presented in the
preceding pages is only one of many encoding algorithms f?r representing a
source output. Other encoding procedures such as the one given by Huffman
yield the shortest average word length. These schemes are more difficult to
implement and the interestcd- reader is referred to Abramson’s book on
information theory [2] for details. - - |

It is also possible to represent the output ‘{f an information source using
code words selected from an alphabfet containing more than two letters. The
design of source encoder using nonbinary code words is rather involved. The
interested reader is referred to the books of Abramson, Wozencraft and
Jacobs, and Gallager [2~4]. . ‘

Having developed the concept of information rate for sources, we now turn
our attention to the problem of evaluating the maximum rate at whick reliable
information transmission can take place over a noisy channel.

4.4 COMMUNICATION CHANNELS

We can divide a practical communication system into a trans-mittcr, ph'ysical
channel, or transmission medium, and a receiver. The transmitter consists of
an encoder and a modulator, while the receiver consists f’f a dcmodul‘ator and
a decoder. The term “corpmunic,ation channel‘::carr:es dlﬂ:'erf:nt meanings and
characterizations depending on its termir}al points and functlopahty._Between
points ¢ and g in the system shown in Figure 4.7 we have a discrete channel,
often referred to as a coding channel, that accepts. a sequence of symbols -z}t
its input and produc:cs a sequence of syr_npo!s at its lqu'tput. _Thls cham.ael is
completely characterized by a set of transitton probabilities py, where py is the
probability that the channel output is the jth symbol of the 2alphabet when the
channel input is the ith symbol. These probal_atlmes. will depend on the
parameters of the modulator, transmission media, noise, and demodulater
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L Data communication channel
f {discrete) "i

L Cading channe!

1 [discrete} "l
Madulation channel
I {analeg) [
n Naise
Electsical +
b < d | communieation{ ¢ * / h
> pnnte [~ Moduistor | Lo Cranre
v Madulatar channel or Y
Binary transmission * decoder

" Binary
input medivm ourtput

]—<——-—Transmir:er'————)-}-l——--—.°hysical channel _‘—b;-<—~*——ﬂeceiver -——..._..}

Figure 4.7 Characterization of a binary communication channel,

However, this dependence is transparent to a system designer who is con-
cerned with the design of the digital encoder and decoder.

The communication channel between points ¢ and f in the system provides
the electrical connection between the transmitter and the receiver, The input
and output are analog electrical waveforms. This portion of the channel is
often called a continuous or modulation channel. Examples of analog elec-
trical communication channels are voiceband and wideband telephone sys-
tems, high frequency radio systems, and troposcatter systems. These channels
are subject to several varieties of impairments. Some are due to amplitude
and frequency response variations of the channel within its passband. Other
channel impairments are due to variations of channel characteristics with time
and nonlinearities in the channel. All of these result in the channel modifying
the input signal in a deterministic (altirough not necessarily a known) fashion.
In addition, the channel can also corrupt the signal statistically due to various
types of additive and multiplicative noise and fades (random attenuation

" changes within the transmission medium). All of these impairments introduce

errors in data transmission and limit the maximum rate at which data can be
transferred over the channel.

In the following sections we will develop simple mathematical models for
discrete communication changels and develop the concept of capacity of a
discrete communication channel. The channel capacity is one of the most
important parameters of a-data commaunication system since it represents the
maximum rate at which data can be transferred between two points in the
system, with an arbitrarily small probability of error. After we deal with
discrete channels, we will discuss the Shannon-Hartley theorem, which
defines the capacity of certain types of continuous channels,
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4.5 DISCRETE COMMUMICATION CHANMELS

The communication channel between points ¢ and g in Figure 4.7 is discrete
in nature. In the general case, the input to the channel is a symbol belonging
to an alphabet of M symbols. The output of the channel is a symbol belonging
to the same alphabet of M input symbols. Due to errors in the channel, the
output symbol may be different from the input symbol during some symbol
intervals. Errors are mainly due to the noise in the analog portion of the
commueication channel. The discrete channel is completely modeled by a set
of probabilities p! (i = 1,2,....,M) and p; (i,j=1,2,...,M). p! is the
probability that the input to the channel is the ith symbol of the alphabet and
pj is the probability that the ith symbol is received as the jth symbol of the
alphabet at the output of the channel. Channels designed to transmit and
receive one of M possible symbols are called discrete M-ary channels
(M >2). In the binary case we can statistically model the digital channef as
shown in Figure 4.8,

The input to the channel is a binary valued discrete random variable X, and
the two nodes on the left-hand side of the graph in Figure 4.8 represent the
vilues 0 and 1 of the random variable X, The output of the channel is also a
binary valned random variable Y and its values are shown marked at the
nodes on the right-hand side of the graph. Four paths connect the input nodes
to the output nodes. The path on the top portion of the graph represents an
input 0 and a correct output 0. The diagonal path from 0 to 1 represents an
input bit 0 appearing incorrectly as { at the output of the channel due to noise,
Errors occur in a random fashion and we can statistically model the occur-
rence of errors by assigning probabilities to the paths shown in Figure 4.8. To
simplify the analysis, we will assume that the occurrence of an error during a
bit interval does not affect the behavior of the system during other bit
intervals (i.e., we will assume the channel to be memoryless).

Letting P(X =0)=p§, P(X =D =p! P(Y = 0y=pi P{(Y=1=p} we

Poa Py=PIY=jlX=1
°x 0 Poo ¥ Por=1
Putpyg=1
Pio PIX =00 =p!
Transmitted Received PLX =1] =p
digit X digit ¥ =01 = n"
9 9 P(¥ =0) =pr
PY = 1) =pt
1 — ] ' .
Pu Flgure 4.8 Model of a discrete channel.
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have the following relationships:

Plerron =P, =P(X# Y)=P(X=0,Y = 1)+P(X =1, Y =0
=P(Y = l]X=0)P(X=0)+P(Y=O[X= DPX=1)

or :
P.=pipoa+pipe (4.22)

Also, pj and p{ can be expressed as

Pi=piPu+ il
Pi=pwpa+pipy “4.23)

The channel is called a binary symmaetric channel (BSC) if pou=p, =p. The
only parameter needed to characterize a BSC is p.

We can extend our model to the general case where the channel input X
can assume M values (M >2). There are commercial modems available today
where up to eight distinct levels or waveforms are transmitted over the
channel. Figure 4.9 shows a mode] for the general case. Analysis of this
channel is similar to the analysis of the binary channel discussed before. For
exampie,

M
pj= 2 Pip;
and i=t
M M
Perror}=P, = 21 pf[z pﬂ] (4.24)
= L=y 1

iwi

. zcé Plx =) =pl
2 Py =j) =g
' PlY=jlX=it=p;

Output ¥

Figure 4.9 Model of an M-ary discrete memaoryless channel.
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M
H(X)= —El pilogAp ) bits/symbol (4.25)

where p{ is the probability that the ith symbol of the alphabet is transmitted.
Similarly, we can also define the entropy of the output ¥ as

M
H{y)= —-El pilogi(p)) bits/symbol (4.26)

where pf denotes the probability that the output of the channel is the ith
symbol of the alphabet. H (Y) represents the average number of bits per
symbol needed to encode the output of the channel. We can also define a
conditional entropy H(X|Y), called equivocation, as

M M

HXIY)=-3% 2‘1 PX=LY=]logdP(X =i]Y =) (4.27)

I=] j=

and a joint entropy H(X, Y) as

M M
H(X, Y)= —-ZI 2 PX=0Y=)) log: P(X =i Y=}) (4.28)
=] j=|
The conditional entropy H(X|Y) represents how uncertain we are of X, on
the average, when we know Y. The reader can verify the following relfation-
ships between H(X), H(Y), H(X|V), H(Y|X), and H(X, ¥):

H(X, Y)=H(X|'Y)+H(Y)
=H(Y|X)+H(X) (4.29)
where

M M
H(Y|X)= "E. ;,: P(X =LY =1 logP(Y = j|X = i})

For a BSC, P(X =i|Y = D=0,D measures the uncertainty about the
transmitted bit based on the received bit. The uncertainty is minimem when
PX={Y=N=1fori= 0,1, that is, an errorless channel. The uncertainty is
maximum when P(X = iY=n=lfori= 0, 1. If we défine the uncertainty as
—logs[P(X = i|Y = )], then we have one bit of uncertainty when the output is
independent of the input. When we have one bit of uncertainty associated
with each received bit, the received value of the bit does not convey any
information!

The conditional entropy H(X]Y) is an average measure of uncertainty
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about X when we know Y. In one extreme we can have Y and X related in a
one-to-one manner such as ¥ = X. For this case, there is no uncertainty about
X when we know Y; P(X = Y =j)= 8, where §; is the delta function that
is 0 for i#f and 1 for i=j. We can easily verify that H(X|Y)=0 when
Y =X In the context of a communication channel ¥ = X represents an
errorless channel, and there is no uncertainty about the input when the output
is known, Alternatively, we can say that no information is lost in the channel
since the output is uniquely related to the input. As another example, let us
consider a communication channel that is so noisy that the output is statistic-
ally independent of the input. In this case we ean easily verify that HX )=
H(X)+ H(Y), and H(X|Y)=H(X), that is, ¥ does not contain any in-
formation about X (see Problem 4.19).

4.5.1 Rate of Information Transmission Over a Discrete Channel

In the case of an M-ary discrete memoryless channel accepting symbols at
the rate of r, symbolsfsec, the average amount of information per symbol
going into the channel is given by the entropy of the input random variable X
as

M
H(X)==3 ptlog,p! _ (4.30)
=]
In Equation (4.30) we have assumed that the symbols in the sequence at ihe
input to the channel occur in a statistically independent fashion. he average
rate at which information is going into the channel is given by
D, = H(X)r, bits/sec 4.31)

Due to errors, it is. not in general possible to reconstruct the inpyt symbol
sequence with certainty by operating on the received sequence. Hence we can
say that some information is lost due to errors. Before we attempt to define
the amount of information that is “lost”, let us consider the following
example. : .

Suppose there are two possible symbols 0 and 1 that are transmitted at a
rate of 1000 symbols or bits per second with pj=1 and p!=1 The solrce
information rate and D, at the input to the channel are 1000 bitsfsec, Let

transmission p equal to 0.95. Now, let us ask ourselves the question, what is
the rate of transmission of information? It is certainly less than 1000 bits/sec
since on the average 50 out of every 1000 bits are incorrect. Our first impulse
might be to say that the rate is 950 bits/sec by subtracting the number of
errors from the data rate at the channel input. However, this is not satis-
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mitted as discussed above, let us consider the extreme case where the channe]
Wwas transmitted. In such a case about § of the received symbols are'correct
due to chance alone and we wi] give the system credit for tranamitting 500
bits/sec, whereas no information jg actually being transmitted, Indeed we cap
completely dispense with the channel and decide on the transmitted bjt by

flipping a coin at the receiving point, and correctly determine one half of the

bits transmitted.

The inconsistency in defining information transmitted over g channel ag
the difference between input data rate and the error rate cap be removed by
making use of the information “lost™ in the channel due to errors. In the
preceding section we defined the conditional entropy of the input given the

input given the output and H(X|Y) is equal to zero, that is, no informatioq is
lost. Knowing that H(X|Y)=0 for the ideal cage wherein no information s
lost, we may attempt to use H{X|Y) o represent the amount of informatiog
lost in the channel, Accordingly we can define the amount of information
transmitted over g channel| by subtracting the information lost from the
amount of information going into the channel. That is, we may define the
average rate of information transmission D, as

This definition takes care of the case when the channel is so noisy that the
output js statistically independent of the input, When ¥ and X are in-
dependent, H{X|Y)= H(X), and hence all the information going into ife
channel is lost and no information js transmitted over the channel. Let ug
ilustrate these concepts by an example.

Selution

H(X)=}log,2+1 log22 = 1 bit/symbol
D = rkH(X) = 1000 bits/sec

To find D, we need the conditional probabiliiies PXIYL XY = 0, 1. These

092wl 650L (3l o8Es1S gl a.u.u.: .
bl a5 jlao 959) B3> L g maio 4S5 (9o 510 S 0095 %

Discrete Communication Channels 169

Flgure 4.10 Binary symmetric channel.

conditional probabilities may be calculated ag

p(X=o]Y=0)=PW:‘;;?';:(DOI;(X%)

and P(Y=O)=P(Y=OJX=0)P(X=D)+P(Y=OJX= DP(X =1)
=P(%)+(I-'P)i!=§

Hence,
PX=0Y=0=p

Similarly,
PX=1ly=0)=1-)

\ PX =1y =p=p

PX=0Y=0)=1-p

Hence,

H{X|Y)= -P(X =0, Y=O)logzP(X=0fY=0)
-P(X=0,7 = D iog, P(X =0y = 13
“PX =1Y =0)log, P(X = 1jy =0
~PX=1,¥Y= Dleg, P(X = 1Y = 1)
=~[ip logz p + 11— p) logy(1 ~p)
+1p 1082 p + X1~ p) logy(1 -p)l
=-~{plog:p+(1-p) log(1 - p))
and the rate of information transmission over the channel is given by

D ={H(X)- H(X|Y))r, bits/sec



4.11. Assume 7, = | symbol/sec.
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Table 4.5. Rate of information transmission versus
values of p

P Q.9 0.8 0.6.

D, 531 bits/sec 278 bits/sec 29 bitsfsec

The reader should be aware of the fact that the data rate and information
rate are two distinctly different quantities. With reference to Example 4.7, we
often refer to the bit transition rate #, at the channel input as the input data
rate, or simply the bit rate. This is different from the information rate D, at
the channel input. D, deperds on r, and the symbol (bit) probabilities.
Furthermore, the rate of information transmission over the channel (D)
depends not only on Dj, but also on the channel symbol transition prob-
abilities pi-

4.5.2 Capacity of a Discrete Memoryless Channel

The capacity of a noisy (discrete, memoryless) channel is defined as the
maximum possible rate of information transmission over the channel. The
maximum rate of transmission occurs when the source is “matched™ to the
channel. We define the channel capacity C as

’ ¢ % qpx (D)
=max [H(X)}- H(X|Y)]r, (4.33)

PLX)

where the maximum is with respect to all possible information sources; that
is, the maximum is taken with respect to all possible probability distributions
for the discrete random variable X,

Example 4.8. Calculate the capacity of the discrete channel shown in Figure

Solution. Let @ =—[p logp + qlog g) and let P(X =0)= P(X =3)=P a:nd
P{X =1)=P(X =2)=Q (these probabilities being equal from consideration
of symmetry}. Then, from the definition of channel capacity,

Cmn;%x[H(X)—H(XIY)] '

subject to the constraint 2P +2Q =1 (why?). From the definition of H(X)
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o —= 0
PIX=0)=p
Plx=1=0
Plx=2=¢
PIX=3=p

Figure 411 Channel model for Example 4.8.

and H(X|Y), we obtain
H(X) =—2p lng P - 20 Ing Q

H(X|Y)=~2Q(p log: p + q logy 4) = 2Qa
Hence,
Dy ==2P log; P ~2Q log, Q —2Qa

We want'to maximize D; with respect ta P and Q, subject to 2P +2Q =1 (or
Q=i-P).
Substituting Q = 1— P, we have
D, ==2P log: P - 201~ P) log{i~ P) - 2(i - P)a
To find the value of P that maximizes I, we set
daD,

ap =0
or - :
=—log: e —log, P + log; e + logy(} — P) +
=—logm P+log; Q+ )
Solving for P, we get
P=Q2
=QpB
where
g=2

Substituting P = QB in 2P +2Q =1, we can obtain the optimum vaiues of -
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P and Q as
___B
P'2(1+,3) .
1
T

The channel capacity is then,

=—2P log; P + Q log; Q + Qa)

- 2[—é-—-2(l ) 1082(5'“"5_"‘3—)) + ZT('I%ES logz(i(—ll_*_'ﬁj) + 2_(1‘_]@5 1082 ﬁ:l
= Iogz(z(BB+ I)) bits/sec '

A _cl;eck with extreme values of P=12and p =0 reveals the following: Wity
p=1 we have an errorless fz'hanne] and the maximum rate of inif'orr;zah'I
u;lansmxlss:on occurs Wht_:n Phe Input symbols occur with equal probability Tﬁn
¢ a:;:,ne; c?pa?lgy forbth]:’s ideal channe| is 2 bits/symbol or 2 bits/sec w-ith ac
symbol rate of I symbolfsec. For the noisy case with p = ! i
channel is C = log, 3, Here the first ol are soapacity of the
. and fourth symbol are used
r mo

:h.an the other two because of their freedom from noise. Also the sc’.c:)e c? ftcg
thm:, slyﬁbols could not be distinguished at all and act o on
symbol. Hence, the capacity log, 3 seems to be

: ! ¢ areasonable answer. F.
values of p,-the channel capacity will lie between log; 3 and log, 4 bits?'::ct her

The justification

A Jusiincal

r?p&atlng messages many n:mes and studying the different received versions
of (ne message. By increasing the redundancy of the sncoding we can make

the probability of error a 4 N
theorem. pproach zero. This result 15 stated below as a

Theorem 4.2

Let C bfe the_ capaci_ty of a d_jscrete memoryless channel, and let H be the
e;}_tlrlp(y? (;h a tﬁlscrete information source emitting r, symbols per second. If
i = C, then there exists a coding scheme such tha '

L ! t the output of the source
can be transmitted over the channfel with an arbitrarily small probability of

error. It is not possible to transmit jnf i
I ormation at a i i
a positive frequency of errors, . rate exceeding € without

Wh:l;‘aopro}?f of this th?orem is mathematically formidable, we will look at
encoding schemes that will accomplish the task mentioned in the theorem in a
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later chapter when we look at the design of chanmel encoders. For now, it
suffices to say that if the information rate of the source is less than the
capacity of the channel, then we can design a channel encoder/decoder that
will allow us to transmit the output of the source over the channel with an

arbitrarily small probability of error.

4.5.3 Discrete Channels with Memory

In the preceding sections we looked at channels that have no memory, that is,
channels in which the occurrence of error during a particular symbol interval
does not influence the occurrence of errors during succeeding symbol inter-
vals. However, in many channels, ‘errors do not occur as independent random
events, but tend to occur in bursts. Such channels are said to have memory.
Telephone channels that are affected by switching transients and dropouts,
and microwave radio links that are subjected to fading are examples of
channels with memory. In these channels, impulse noise occasionally
dominates the Gaussian noise and errors occur in infrequent loang bursts.
Because of the complex physical phenomena involved, detailed charac-
terization of channels with memory is very difficult.

A model that has been moderately successful in characterizing error bursts
in channels is the Gilbert model. Here the channel is modeled as a discrete
memoryless BSC, where the probability of error is a time varying parameter,

Figure 4.12. The error generating mechanism in the channel occupies one of

0.9999998 1073
0.998
State 2 3
Probability 2
of error 05110 108

Figure 4.12 A three-state Gilbert model for communication channels.
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three states, and transition from one state to another is modeled by a discrete,
stationary Markoff process. When the channe! is in state 2 for example, bit
error probability during a bit interval is 10~ apg the channef stays in this state
during the succeeding bit interval with a probability 0.998. However, the
channel may go to state 1 wherein the bit error probability is 0.5. Since the
system stays in this state with probability 0.99, errors tend to occur in bursts
(or groups). State 3 represents a low bit error rate, and errors in this state are
produced by Gaussian noise. Errors very rarely occur in bursts while the
channel is in this state. Other details of the model are shown in Figure 4.12.
The maximum rate at which data can be transmitied over the channel can be
computed for each state of the channel using the BSC model of the channel
corresponding to each of the three states, Other characteristic parameters of
the channel such as the mean time between error bursts, and mean duration of
the error bursts can be calculated frem the model.

4.6 CONTINUOUS CHANNELS

The communication channel between points d and f in Figure 4.7 is analog or
continuous in nature. In this portion of the channel, the input signals are
continuous functions of time, and the function of the channel is to produce at
its output the electrical waveform presented at its input. A real! channel
accomplizhes this only approximately. First, the channel modifies the wave-
form in a deterministic fashion, and this effect can ba adequately modeled by
treating the channel as a linear system. The channel also modifies the input
waveform in a random fashion due to additive and multiplicative noise.
Throughout this book we will deal with additive noise only since it oceurs
more often than multiplicative noise. Additive noise can be (Gaussian or
impulsive in nature. Gaussian noise inclides thermal and shot noise from
equipment and radiation picked up by the receiving antenna. According to the
central limit theorem the noise that results from the summed effects of many
sources tends to have a Gaussian distribution. Because of this omnipresence
Gaussian noise is most often used to characterize the analog portion of

communication channels. Modulation and demodulation techniques are

designed with the primary objective of reducing the effects of Gaussian noise.

A second type of noise, impulse noise, is also encountered in the channel.
Impulse noise is characterized by long quiet intervals followed by bursts of
high amplitude noise pulses. This type of noise is due to switching transients,
lightning discharges, and accidental hits during maintenance work, and so
forth. The characterization of impulse noise is much more difficult than
Gaussian noise. Also, analog modulation techniques are not as suitable as
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Bandlimited white
Gaussian noise
niz}

+
Ch {
X2} + To demodulator

{from the Zi =X deh +2(e)  Figure 4.13 Analog portion of the com-
maodulator), munication channel,

digital coding methods for dealing with impulse noise phenomena. For these
reasons the effects of impulse noise are often included in the model of the
discrete portion of the channel, and only Gaussian noise is included jn the
model of the analog portion of the channel.

The analog portion of the communication channel can be modeled as shown
in Figure 4.13 (see Section 3.7 and Figure 3.7). The input to the channel is a
random process X.(¢), which consists of the collection of all the waveforms
generated by the modulator. The bandwidth of X:(t) and the channel is
assumed to be B Hz (for convenience, let us assume X.(?) and the channel to
be lowpass). The additive noise at the channel output is zero mean, band-
limited Gaussian white noise n(t). The capacity of this portion of the channel is
found by maximizing the rate of information transmission with respect to the
distribution of X,(t). While the formulation of this problem is similar to the
one we used for discrete channels in terms of H (X:) and (H(XJZ), the
optimization is very involved. Howaver, the result has 3 ¥&ry simpie form; we
state the result as a theorem (for a direct proof see Shannon’s book®) and
discuss how the result can be used in the design of communication systems.

4.6.1 Shannon-Hartiey Thecrem and Its Implications

Theorem 4.3
The capacity of a channel with bandwidth B and additive Gaussian band-
limited white noise is

C = B logy(1 + §/N) bits/sec (4.34)

where § and N are the average signal power and noise power, respectively, at
the cutput of the chanmel. (N = 7B if the two-sided power spectral density of
the noise is /2 watts/Hz.)

*We give an indirect proof of Shannon's theorem in Section §.7.3. Also, see Problem 4.27 in
which the reader is asked to derive a relationship similar to the one given in Equation (4.34).

=)
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This theorem, referred +
; ’ 0 as the Shannon-H
importance and has twe | nnon-Hartiey theorem, is of
engincers. First, it giv:’soulmportant lmPhcations for communicati;g?ldamema]
roliablo data tansint s the upper limit that can be reached in thf:syStems
ror always tries to oo n ratc.a over Gaussian channels. Thus a syst e 'Of
in Equation (4.34) p rmz_e his system to have a data rate as cl o de:Slg~
The sooond : 1?5 possible with an acceptable error rat close to Cgiven
Implication of the Sh g
exchange of Signal-toues - “hannon-Hartley theorem has t i
e thecrem. sugp posfeotggise ratio for bandwidth. To illustrate tgl';I t;:’ uh the
over a chanel having a W; “fant to transmit data at a rate of 10,000 l:l:'iCt o
10,000 bite/seq, v m andwidth B =3000 Hz, To transmit data'at tsfsec
the channel capacity 1 IZ sch:a.nnel with a capacity of at least 10,000 bi::.!mte o
not possible. So. with & jltél;gotl;e data rate, then errorless transmisssi?)i .
, - 10, : ¢ is
ment of the channel as fislsec we can obtain the (SIN) require-
(S/N) = 2(0‘8) -1

=2 1.g

For the same i
thor we need gf‘ogfﬁﬂ:_aléow:f hlave a channel with a bandwidth of 10,000 4
€0 3000 Hz results in an increasé?:u? a t;andwidth reduction from 1{; 600 sz'
Another interesting as Signal power from 1 to 9 ,
t pect of the Sha :
bandwid . ; nnon-Hartley th :
qﬁ:st?gnﬁzs c;:;mgre.sbs[mn. To illustrate this aspect li.t l:) r:slt has to do with
extends l,.lp oo ff::;uz to quantize and transmit a signal whose Sopuer;f hies the
The answer is yes angc}\;gﬂ over a channel having 2 bandwidth less rf: ,r_al:gﬁ
. can justify the e et m !
sample the answer as fol
Nyq;:list rat:ﬂ?i?_geizgnai at a rate of 3f, samples/sec (i clotf'lSSuFt’Pose e
possible levels. Thegﬂiﬁ?)d:?; q?antifze the signal valu.e, into. o;?e;f H}Il;
bitsfsec. IF the bandwidth of tho o er the quantized signal i
of sianal power 3WSW;:1}1 of the changel is B, then by an fppro:friz{: i;gz_M
example, with M = 64 gnécliclueve a capacity C preater than 3f, log, M. ‘;cc
bandwidth, we would need aschanne'! bandwidth equal to half of tl'fe sli n‘:l.
the quantized signal witt : SI::':; I;atlo gf g,_bf)ut 109dB to be able to transgmit
compression b [ait provability of error. Th i
(09 é’B an imp):‘aitf::lt? lOf 2 is possible if we can maintainu; ;lﬁra?:rldﬂ;
that signal distortion d plue) at the output of the channel. We are min
The Shannon—Hart] ¢ to sampling and quantizing is neg'ligible e aestimine
infinite capacity. Horwge:—hcwogg? ;g{iica._te's that a noiseless cha.mzel has an
not approach infini ’ lolse {s present the chann i
incre:sI::s o, t;;ﬁggzdﬁ'éhlf bandwidth is increased because ‘:}ll: arlxlz)ai:::y ::/es
spper fimit with ncreqsins prroses: The channel capacity reach ] nite
e e T creasing bandwidth if the signal power is fi es a finite
1s limit as follows. With N =nB, where /2 is ]tshe xe:' e can
> noise power
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%

spectral density, we have
S
C=8B logz(l +;‘—B-)

R e
- (%) logz(l + ;,%) = (435

Recalling that lim .o {1+ %)% = ¢ and letting x = S/nB in (4.35), we have

. S
li}_rpwc=glogze

= 1,44(-757) (4.36)

A communication system capabie of transmitting information at a rate of
B log 1+ SIN} is called an ideal system, Shannon proposed the following
idea for such a system. Let us assume that the source puts out M equiprob-
able messages of length T seconds. The ideal communication system obser-
ves the source output for T seconds and the message is represented
(encoded) by a channel signal chosen from a collection of M sample functions
of white noise of duration T. At the output of the channel, the received signal
plus noise is compared with stored versions of the channe! signals. The
channel signal that “best matches” the signal plus neise is presumed to
have been transmitted and the corresponding message is decoded, The total
amount of time delay involved in observing the message signal, transmitting,
and decoding at the receiver is at best T seconds.
The ideal signalling scheme using noiselike signals can convey in-
formation at a rate approaching the channel capacity only when T ~<. Only
in the limiting case do we have all the conditions satisfied. Under this limiting

condition, the ideal system has the following characteristics:

1. The information rate— B log(1+ SIN).
2. The error rate—0.
3. The transmitted and received signals have t

limited Gaussian white noise.
4. As T -, the number of signals M —» and the coding delay also—o2,

he characteristics of band-

It must be obvious from the preceding discussion that an ideal system cannot

actice. Rather than trying to design a system using a large
analog signals in practical

The data rate and the

be realized in pr
number of analog signals, we use @ smail number of

systems. This leads to a nonzero probability of error P.
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error probability define a discrete channel
B log(1 + s O whose capacity C’ wi
apprizzg.(l:hi 1.15_;’ Ig' 2 w'[i‘:;:‘;ug::)':hgs‘ .dlglta! channel we txl')y toyafhi‘:\ig l:.e clless than
control encoding. Thul: ina lhty. of error approaching zero using di '? t1a rate
maximum theoretical rate ofp'mfCtlcaj systems we seldom try to acghl'a : the
e anmel, We keep thi in on‘natlon transmission over the analo, o 'the
Gigital portion of the l:.ys:: nl:’or‘;:gnt;:: tthe system reasonably simplge.p ?::t:?l:
fa?aclty of the discrete portion of the cha?:ni?l;lieve a rate approaching the
o implement. nce digital encoding is easier
In the followi T
digital informatlir(l)%lctll-;?g;erl: we will discuss signaling schemes for ir itti
of signaling scheme wegwi;ndam'ﬂog communication channel. Fora;anasTxlmng
terms of the band\:vidth erive expressions for the error prob ‘: iy
e tionships define the required, ousput S/N, and the datapr ta iy In
Chapter 9 we will look aptmmmrs of the discrete portion of the cha e
o transmit  formation o:'nethods ?f error control coding that wil annel. In
nsmit er the discrete channel will enable us
ca%a?ty with a small probability of error at a rate approaching its
c . - . .
e gg;:{;ﬁ?:ﬁiﬁz t(:ﬁr discussion of the Shannon-Hartley th ;
s bis timitation de result given in Equation (4.34) is for the ec?rem,. t
e lness of the Shannonffzs arl:ft in any way diminish the importanauss“m
ohysical hmnels are generall ey law for the following reasons: Fi ce and
P e been shown that thge rally at l.east approximaiely Gaussiar; S:mt’ most
b b oumd an the pe : result obtained for the Gaussian channei eco_nd, t
ound on the performance of a system operating over 2 nm?;-?:lde"? a
e WY RS & n-LrallssEan

channel. That is, if a particular
5 encoder/decoder vi
yields an i

22:5:35323811“ Ct;anne}- another encoder/decoder caneg:l;!pr?bablhty P
sions for th Ch nnel to yield a smaller probability of error. D _es‘lgned for a

& channe! capacity have been derived f . Detailed expres-
channels. or several non-Gaussian

We now present several exam ;

. J ples that ili
. e design of communication systems ustrate the use of channei capacity

Example 4.9. Calculate the capaci ‘
! pacity of a lowpa .

b:ﬁﬂqu]dth of 3000 Hz and S/N = 10° at the cil’] ::n Clhannel with a usable
shanne! noise to be Gaussian and white inel output. Assume the

golution. The capacity C is given by Equation (4.34) 2
- s

C=Blo ( s
ol 1+ N)
= (3000) log,(1 + 1000)

= 30,000 bits/sec

grade telephone line
~hannels is 9600 bits/sec. Rates higher

w9l oL (b oSuEI1S ugRdlS 2wy
bl e jlze 9Sg) (83> LigaptisusELSRANIRS), k,S'ﬁsSp

ues used in this example are typical of standard voice
5. The maximum data rate achievable now on these
than this require very complex modu-

The parameter val

.ation and demodulation schemes.

Example 4.10. An ideal lowpass channel of bandwidth B Hz with additive
Gaussian white noise is used for transmitting digital information. (a) Plot CIB
versus {(S/N) in dB for an ideal system using this channel. t) A practical
signaling scheme o1t this channel uses one of two waveforms of duration T
seconds to transmit binary information. The signaling schemé transmits data

at a rate of 2B bits/sec, and the probability of error is given by*
P (error|l sent) = P (error|0 sent) = P,
= Q(VSIN)
where
St ,
)= L exp(—x2)dx
Q(z) given in Appendix D, plot the rate of
(SIN) in dB for this scheme.

Using the tabulated values of
information transmission versus

Soluticn i
(2) For the ideal scheme, W& have

C_ S
Ie‘““’g*(” N)

When SIN= 1, ClB = loga(SIN).
(b) The binary signaling scheme corresponds 1o a discrete
channel with P = Qv S§IN). The information rate OVer this chan
giver by (see Example. 4.7)
D, =2B[1 - P.log /Py ~(1 =P tog:(1/1~ Po)]

. =23[1+P¢1081Pe+(1"P:HngU"Pc)]

For large SIN ratios,
the maximum rate at whic
signaling scheme. Values 0
shown in Table 4.6 and shown plotted in
that for high SIN ratios, the binary stgnaling schem
With nigh SIN tatios we can transmit an

h we can transmit information using

= zpressions for probabilities of error for various signalin

a6

binary symmetric
nel is

p, = 0and D, =2B.1t also represents the capacity of
the binary

§ CIB and D{B for various valies of SIN are
Figure 4.14. These results show
e is very inefficient.

d decode correctly a large

g schemes will be derived in Chapters 5
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Table 4.6. C/B and D/B for various values of S/N

(S/ N} 0 [ 10 20
(CIBYgen 1 232 346 ess
P, 0159 0028 00008 ~g
(DiBhiay 07236 16314 198 20

{C/B) for ideal
signalling scheme

Bits/sec
Hertz
S

D/8 for binary
signalling scheme

0 [ I i
s 10 15 20
{$/N) dB

Figure 4.14 Plots of /g8 and /B,

number of waveforms and hence an M
should be used (we will discuss M
and 8).

frary signaling scheme, M >2
-ary signaling schemes in Chapters 5

The .foIIowing example illustrates how we can use the concept of i
formation rate and channel capacity in the design of communication system:

Example 4.11, A CRT terminal is used to enter a
computer. The CRT is connected to the com
telephone line having a usable bandwidth of 3
10 dB. Assume that the terminal has 128 cha
from the terminal consist of independent seq
ters.

Iphanumeric data into a
puter through a2 voice grade
000 Hz and an output §/N of
facters and that the data sent
uences of equiprobable charac-
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(a) Find the capacity of the channel.
(b} Find the maximum (theoretical) rate at which data can be transmitted
from the terminal to the computer without errors.

Solution _
(a) The capacity is given by:
C = Blog(l+ S/N)
= (3000) log;(11) = 10,378 bits/sec

(b) Average information content/character:
H =log,(128) = 7 bits/character

and the average information rate of the source R = rH. For errorless
transmission, we need R = ,H < or

7r, < 10,378
r, < 1482

Hence the maximum rate at which data can be transmitted without errors
is 1482 characters/sec.

4.7 SUMMARY

A probabilistic model for discrete information sources was developed and the
entropy of the source and the average information rate of the source were
defined. The source entropy has the units of bits per symbol and it represents
the average number of bits per symbol needed to encede long sequences of
symbols emitted by the source. The average information rate represents the
average number of bits per second needed to encode the source output. The
functional block that maps the symbol sequence emitted by the source into a
binary data stream is the source encoder. A procedure for designing an
encoder using the algorithm given by Shannon was presented. The effect of
design parameters such as block length and code word lengths on the
complexity of the encoder, time delay in decoding and the efficiency of the
encoder were discussed. .

Mathematical models for discrete and continuous channels were discussed.
The capacity of a channe! represents the maximum rate at which data can be
transmitted over the channel with an arbitrarily small probability of error. It
was pointed out that the maximum rate of data transmission over a channel
can be accomplished only by using signals of large dimensionality.

Several examples were presented to illustrate the concepts involved in
modeling and analyzing discrete information sources and communication
channels.
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PROBLEMS

Section 4.2

W . .
4.1. A source emits one of four possible messages m,, Ats, m3, and m, with

. I 1 .
probabilities 3, §, §, and §, respectively, Calculate the information content
of each message and the average information content per message.

4.2,

v 4.4,

v 4.5,

4.6.

V4.7,

4.3.
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A card is drawn from a deck of playing cards. (a) You
the card you draw is a spade. How much information ¢
bits)? (b) How much information do you receive if you
card that you drew is an ace? (¢) How much informatic
if you are told that the card you drew is an ace ¢
information content of the message “ace of spades™
information contents of the messages *‘spade” and “au-

A source emits an independent sequence of symbols {-
consisting of five symbols A, B, C, D, and E with symb-
L4 & respectively, Find the entropy of the source.

TR

A binary source is emitting an independent sequence of .
probabilities p and 1 - p, respectively. Plot the entropy .
versus p (0<p < 1.

For a source emitting symbols in independent sequences, show th...

source entropy is maximum when the symbols occur with equal groo-

abilities.

The international Morse code uses a sequence of dots and dashes to

transmit letters of the English alphabet. The dash is represented by a

current pulse that has a duration of 3 units and the dot has a duration of

1 unit. The probability of occurrence of a dash is 1 of the probability of

occurrence of a dot.

(a) Calculate the information content of a dot and a dash.

(b) Calculate the average information in the dot-dash code.

(c) Assume that the dot lasts 1 msec, which is the same time interval as
the pause between symbols. Find the average rate of information

transmission.

The probability of occurrence of the various letters of the English
alphabet are given below:

A 0081 J 0001 S 0.066
B 0.0l6 K 0005 T 0.09
C 0.032 L 0.040 U 0.031
D 0.037 M 0022 V 0.009
E 0.124 N 0072 W 0.020
F 0023 O 0079 X 0.002
G 0016 P 0.023 Y 0.019
H 0051 Q 0002 Z 0.001
I 0.072 R 0.060

{2) What letter conveys the maximtm amount of information?
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4.10.
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(b) What letter conveys the minimum amount of information?

(c) What is the entropy of English text if you can assume ti1at lett
are chosen independently to form words and sentences (n :rs
realistic assumptionf). ot a

(d) 1f T am thinking of a word and tell you the first letter of the word
which will be a more helpful clue, T or X? Why? rd,

A black and white TV picture consists of 525 lines of pictu
information. Assume that each line consists of 525 picture elements a I‘;
that each element can have 236 brightness levels. Pictures are repe tnd
at the rate of 30/sec. Calculate the average rate of information conliea ed
byaTV settoa viewer. ve

The output of an information source consists of 128

which occur with a probability of 1/32 and the remainingsifln;b:clzhrli.?;
a probability of 1/224. The source emits 1000 symbols/sec Assum'1
that the symbols are chosen independently, find the average i.nformaﬁ'gs
rate of this source.

The state diagram of 2 statiorary Markoff source is shown in Figure

4.15.

(a) Find the entropy of each state H; (i =1,2,3).

(b) Find the entropy of the source H.

(c) Find Gy, Gy and Gs and verify that G, = G2 Gy = H.

F{State §) - ; i=1,2,3

Figure 4.15 Source diagram for Problem 4.10

Re-work the previous problem for the source shown in Figure 4.3

Froblems 185
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Section 4.3

4.12.

4.13.

4.14.

For the source described in Example 4.5:
{a) Design a source encoding scheme using a block size of two symbols
and variable length code words. Calculate the actual number of bits

per symbol H, used by the encoder and verify that
ﬁz s. Gz + %

(b) Design a source encoding scheme using fixed length code words and
a block size of four symbols. Compute the actual number of bits per
symbol used.

(c) If the source is emitting symbols at a rate of 1000 symbolsfsec,
compute the output bit rate of the encoders (a) and (b).

Another technique used in constructing a source encoder consists of
arranging the messages in decreasing order of probability and dividing
the message into two almost.equally probable groups. The messages in
the first group are given the bit 0 and the messages in the second group
are given the bit 1. The procedure is now applied again for each group
separately, and continued until no further division is possible. Using this
algorithm, find the code words for six messages occurring with prob-
abilities §, 4 & & %0 %.
Another way of generating binary code words for messages consists of
arranging the messages in decreasing order of probability and dividing
code words as follows: The code word for the first message is ‘0", The
code word for the fth message consists of (i~ 1) bits of “1's™ followed
by 2 “0.” The code word for the last message consists of all “1’s™; the
number of bits in the code word for the last message is equal to the total
number of messages that are to be encoded.
(a) Find the code words and the average number of bits per message
used if the source emits one of five messages with probabilities 3, 3,
i, % and 1. L
(b) Is this code uniquely decipherable? That is, for every possible
sequence of bits, is there only one way of interpreting the messages?

4.15. A source emits independent sequences of symbols from a source
alphabet containing five symbols with probabilities 0.4, 0.2, 0.2, 0.1 and
0.1.
(a) Compute the entropy of the source.
(b} Design a source encoder with a block size n =2,

Section 4.5

4.16. A nonsymmetric binary channel is shown in Figure 4.16.
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¥ r, = 1000/sec

1

Flgure 416 Binary channel model for Problem 4.17.

(2) Find H(X), HW}’M
P(X=D=} a=07 ,and 8 = 0?911. 'H(Y,X) when PE=0=3

(b) Find the capacity of the channel for ¢ =0
i . =0.75 and g = 0.
{c) Find the capacity of the binary symmetric chzu'mf:;B (a =S[;3.)

4.17. Show that H(X, ¥) = H(X)+ H(Y|X)= H(Y) + HX|Y)

4.18. Find the capacity of the discrete channel shown in Figure 4.17

0.8
b= 1
i
Q.
Y 2 0.8 !
2 Y  r=10,000/sec
0.2
.1
Q.8

Flgure 4.17 Channe! model for Problem 4.18.

v 4,19, Show that (a) H(X|Y)=H(X) w -
19, = hen X ., .
dependent, and (b) H(X|Y) = 0 Whenl;( * ;.nd Y are statistically in-

@ discrete channel accepts as its input a binary sequence with a bit rate
— of r, bits/sec. The channel signals are selected from a set of eight

possible waveforms, each having a duration 3/r, seconds. Thus. each
wa_vef.OI'm may convey up to three bits of information :l‘he ci;a el
noise is such thz'it when the received waveform is decodn::d each bfmk
of three input bits is received with no errors, or with exact,l oc "

in the first, second, or third bit position. Assuming that yther']sz efrgzi
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outcomes are equally likely to occur:
(a) Find the capacity of the discrete channel.
<. (b) Suppose that you want to transmit the output of an information
source having a rate R =rf3 over this channel. How would you
encode the data so that errorless transmission is possible?

421. The state model of a discrete channel with memory is shown in Figure
4.18. In state 1, the channel corresponds to a BSC with an error-
probability of 0.001. At state 2, the channel is again a BSC with an errcr
probability of 0.5. The state and transitional probabilities are shown in
the diagram. Assume that the bit rate at the input to the channel is
1000 bits/sec and the transition rate of the state of the channel is also
1000/sec.

(a) Find the capacity of the channel for state 1 and state 2.
(b} Find the average capacity of the channel.

0.01

0.99 0.9

0.4

10

=L
17 Plsate2) =3

PlState 1) =

el A £
H

Figure 4.18 Channei state modei for Probiem 3.32

Section 4.6

v'4.92. Calculate the capacity of a Gaussian channel with a bandwidth of
1 MHz and S/N ratio of 30dB.

473, How long will it take to transmit one million ASCII characters over
the channel in Problem 4.227 (In ASCII code, each character is coded as
an 8-bit binary word; ignore start and stop bits.)

l/4.24. A Gaussian channel has a bandwidth of 4kHz and a two-sided noise
power spectral density 92 of 107" watt/Hz. The signal power at the
receiver has to be maintained at a level less than or equal to 1/10 of 2
milliwatt. Calculate the capacity of this channel.

“/4.25. An analog signal has a 4 kHz bandwidth. The signal is sampled at 2.5

times the Nyquist rate and each sample is quantized into one of 256
equally likely levels. Assume that the successive samples are statistic-

ally independent.

=)
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(a} What is the information rate of this source?

(b) gan the output of this source
aussian ch I wi i
. annel with a bandwidth of 50kHz and S/ ratic of

(©) What will be the

transmitting the output o

is 10 dB?

independent sequence.

(2) Find E{X%7)).

be transmittad without errors over a

bandthc.:!th requirements of ap analog channel for
the source without errors if the S/N ratio

in Figure 4.19 is useqd for transmitting digital
= 1/2T. Assume that

(b} Find S/N (note: N = o and § = E{X% )

T 47 57 6r Ir & —!

¥ = rms valye
of roise

Figure 4.19 Signal waveform; sequences of

levels convey

messages.
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BASEBAND DATA
TRANSMISSION

5.1 INTRODUCTION

In the previous chapter, we discussed the theoretical limitations on the rate of
information transmission over noisy channels. We pointed out that the max-
imum errorless rate of data transmission over a noisy channel could be
achieved only by using signal sets of large dimensionality whose statistical
characteristics match the noise characteristics. In a practical system, the large
dimensionality of signals is realized by the digital.encoding of a small set of
basic waveferms generated by the modulator, The number of analog wave-
forms generated by commercial digital modulators range from 2 {binary) to a
maximum of 8 or 16. There are many types of modulators corresponding to
the many possible selections of modulator waveforms. In this chapter we take
a detailed look at the analysis and design of discrete pulse modulation
techniques that can be used for transmitting the output of a discrete source
over a baseband channel. In a later chapter we will discuss discrete carrier
modulation schemes that are used for transmitting digital information over
bandpass channels.

In discrete pulée modulation, the amplitude, duration or position of the
transmitted pulses is varied according to the digital information to be trans-
mitted. These pulse modulation schemes are referred to as pulse amplitude
(PAM), pulse duration (PDM), and pulse position modulation (PPM) schemes.

189
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Clock pulses

Pulse
gereratar [y

Clock
recovery
network

Transmitting
filter
Hplf)

fnput

Binary data
idy,*

*  Gaussian
roige
nir

Recejving
fitter
el

The input to the system is a binary data sequence with a bit rate of r and bit
duration of T,. The pulse generator output is a pulse waveform

X()= 3 ap(t~4Ty) (5.1a)

where p.(t) is the basic pulse whose amplitude gy depends on the kth input
bit. For convenience we will assume that P:(t} is normalized such that

p0) =1 (5.1b)

and .
a ={ a if kth input bit is |
F T l-a if kth input bit js 0

receiving filter He(f), and the output Y(¢) of the recetving filter is sampled by
the analog-to-digital (A/D) converter. The transmitted pit stream is
regenerated by the A/D converter based on the sampled values of Y1), The
sampling instant is determined by the clock or timing signal that is usualiy
generated from Y () itself. A set of typical waveforms that oceur at varipa-
points in the system is shown in Figure 5.7, :

The A/D converter input Y{(1) can be written as

Y(r)=.§’,Amr(r~rdka,,)+n{,u) SENE

A0
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i s 2,6
|
|
: ’ T,
i T t
i 0 }
i
: {nput 1 a
] b?ts 1 0 0 ! hid
i 2 - Pulse generatar
! output
57,
X{r) b
Ty 2";& ) :
e ’ 3T, . AT,
— —
la}
Teansmitting
filter output
Xpled
. i M
w
i i) '
Receiving filter
//\/v\'\ output {noisy)
3
ty Iy a !
Yin { i l I | : .
£, ’ l f5 \o/
|
le)
. Clock
T T pulses
) ) ¥ 0
: . 0 bl
i Quiput bits 1 Error due 1o
E ' noise and 151

1)

i i binary PAM system. (a) Puize
.2 Example of typical waveforms in a Y s
;Iegrg;l:r eutput. (b) Transmitting filter cutput. (¢) Receiving filter output {noiz ).

(d) Clock pulses.
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iwherc: A= K.a, 'amd K.p.(t — t;) is the res
ast f;(!). ln_Equatlon (5.1d), t; is an arbjtr
¢ recetver output. K, is a normalizi
. K, ali i
The A/D converter samples Y(¢) at f,,l,nf ;o;stant g opelds o

genel“atf:d by Co”!palﬂlg ) '-!m, Wlth a tl"eshoid IWII]C]] 18 0 fOI a Syluuletllc
- L.

bandwidth B or

optimize the

bolom & speci;:{;f\?;{::n?[‘;eoéifhe S}'sten:). keeping the bit error probability

, . error probabili fich i ,

a measure of performance for binary PAM“S;-yJ:t-";ﬁf; s commonly used as
« 1S

as the duobinary scheme, are discussed and the effects of precoding the input
bu st e ransmitted signal are illﬁs-

The design criteria are aimed -
om0 IST Higmnenie \ed at an overall pulse shaping that would yield
ovitabty oW du; " practical systems some amount of residual ISI will
chomnel cur due tmperfect ﬁlte:: realization, incomplete knowled f
eristics, and changes jn channel characteristics. Hencge ;n
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equalizing filter is often inserted between the receiving filter and the AlD
converter to compensate for changes in the parameters of the channel. We
will look at procedures for designing zero forcing equalizers that will reduce
the ISI.

In the PAM method of data transmission a clock signal must be recovered
at the receiving end to set the sampling rate and sampling times. The clock
information must somehow be carried in the transmitted signal. Methods of
carrying the clock information and recovering it vary with the pulse shapes
and coding methods used. We will discuss several methods of clock recovery
at the receiver.

1t must be pointed out that the important parameters involved in the design
of 2 PAM system are data rate, error rate, transmitted power, noise power
spectral density, and system complexity, These parameters are interrelated
and the design procedure will involve trade-offs between the parameters to
arrive at a system that meets the specified performance requirements and the

given constraints.

5.2 BASEBAND BINARY PAM SYSTEMS

In this section we deal with the design of optimum baseband binary data

transmission systems. Data rates in binary systems may range from a low rate

of 100 bits/sec (RPS) in applications involving electromechanical devices such

as a teletype to a high rate of up to tens of megabits per second in

applications involving data transfer between computers. The rate typically is

from 300 to 4800 bits/sec over voice grade telephone links to several hundred
megabits per second over wideband microwave radio links. The acceptable bit
error rate varies over a wide range depending on the appiication. Error
probabilities in the range of 107 to 107° are representative and suitable to
many applications. For design purposes we will assume that ‘the input data
rate and overall bit error probability are specified. Furthermore, we will
assume that the characteristics of the channel are given, and that the channel
noise can be represented by a zero mean Gaussian random process with a
known power spectral density G,(f). The source that generates the input kit
stream will be assumed to be ergodic and the source output will be assumed
to be independent sequences of equiprobable bits.

The design of a baseband binary PAM system consists of specifying the
pulse shapes p,(z) and p.(t) and the filters Hp(f) and Hr(f) to minimize the
combined effects of intersymbol interference and noise in order to achieve u
minimum probability of error for given data rate and power levels in the

system.
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5.21 Basebang Puise Shaping

The i interfere i
intersymbol interfarence given by the second term in Equation (5.2) can

be elimi ¥ prooer choi i
eliminated by prooer chcice of the received pulse shape p.{t). An in-

spection of Equatisn f5.2) reveals that for zero IS1, p,(¢) should satisfy

1 forn=0
A(nTy)=
penTy) {0 forn=0 (5'3)

The constraint stated in (5.3) does not uniguely specify p.(2) for all values of

: . . ; . .
OfTo(;r;e i the const_rsf:m given in Equation {5.3), the Fourier transform P )
pe{t) needs to satisty a simple condition stated below. ’

Theorem 5.1
If P.if) satisfies

= &
. 2.2 +5) =1 forl<ipr, (5.4)
iy {1 forn=0
P(r13) {0 for ns 0 (5.5)
Proof

2.1 1s refated 10 P.(f) by

il = f _PAp exp(j2uft) df

The range of integration in the i i ivi
preceding equation i
segments of length I/T, as &« Fan be divided nto

® Zx 2+ 1H2T,

PA(1) = j' P, ]

R - (F) exp(j2uft) df
and we can write pAnT,) as

2R+ 12T,

pAnT,) = Z PAf) exp(i2nmfnT,) df
Making a change of variable, f'= f - kiT,,

(2k-1/2T),

We can write the above equation as
T,

pinTy=3 [ o P14 —7’57) exp(i2nf'nT,) df

F’::rther. if we assume fhat the integration and summation can. be inter-
changed, then the preceding equation can be rewritten as
LT,

ptnT= [ (S2(r+£)) expiizmparsy af

-2,

US‘E"‘”IJ OISJLJ Ol oSl Ufgguj.a.'zlb a.a.u.u
bl 05 jlro 95g) B3> L g @aio 4S5 ygao (51 S 0095 %
Baseband Binary PAM Systems 195

Finally, if (5.4) is satisfied, then
127,
p.nT) = | - To exp(2ufnT.) df
~112T; ,

_ sin{nw)
n

which verifies that the p,(f) with a transform P,(f) satisfying (5.4) produces
zero ISL

The condition for the removal of ISI given in Equation (5.4) is called the

Nyquist {pulse shaping) criterion.

Theorem 5.1 gives the condition for the removal of ISI using a P.{f) with a
bandwidth larger than r,f2. Proceeding along similar lines, it can be shown
that ISI cannot be removed if the bandwidth of P.(f) is less than ry/2.

The conditjon stated in Equation (5.4) does not uniquely specify P,(f). The
particular choice of P,(f) for a given application is guided by two important
considerations: the rate of decay of p.(f) and the ease with which shaping
filters can be built. A pulse with a fast rate of decay and smaller values near
Ty, £27T,, . .. is desirable since these properties will yield a system in which
modest timing errors will not cause large intersymbol interference. The shape
of P{f) determines the ease with which shaping filters can be realized. A P.(f)
with a smooth roll-off characteristic is preferable over one with arbitrarily
sharp cut-off characteristics, since the latter choice might lead to filters that
will be hard to realize.

In practical systems where the bandwidth available for transmitting data at
a rate of 7, bits/sec is between r/2 to r, Hz, a class of P.(f) with a raised
cosine frequency characteristic is most commonly used. A raised cosine
frequency spectrum consists of a flat amplitude portion and a roll-off portion
that has a sinusoidal form. The pulse spectrum P.(f) is specified in terms of a
parameter 8 as

T, f=<ni2-8
PN =1Tcost (-2 +6). 2-p<li<2+8 (506
0, fl=nf2+ 3

where 0<g < /2. The pulse shape p,(t) corresponding to the P,(f) given
aboveis

_cos2mBt {sin wrt
pAt) = 1—(43:)2( wrl ) G7

Plots of P.(f) and p.(t) for three values of the parameter 8 are shown in
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A7)
Tﬁ

3. B8 =r/2 leads to a pulse shape with two convenient properties: the half
amplitude pulse width is equal to T,, and there are zero crossings at
t =T, =D 7% ... in addition to zero crossings at = T,, =27, . ... These
properties aid in generating a timing signal for synchronization from the
received signal.

4. P.(f) is real, nonnegative and fZ. P.(f) df = 1.

Summarizing the preceding discussion on the selection of a received pulse
ﬁ shape p.(1), we can say that a bandwidth of at least r,/2 is required to generate

2 p.(1) producing zero ISI at a data rate r, bits/sec. If additional bandwidth is
available, then a p,{t) with an appropriate raised cosine spectrum given by
(5.6) can be chosen. One must in general try to utilize all the available
bandwidth up to r,, and take advantage of faster decay of p,{t) with time. It
must be pointed out that, strictly speaking, none of the raised cosine pulse
spectra is physically realizable. A realizable frequency characteristic must
have a time response that is zero prier to a time f5(tg> 0), which is not the
case for the P,(f) given in Equation (5.6). However, a delayed version of p,(t),
say pt — ts), may be generated by causal filters if the delay ¢, is chosen such
that p(t — ts) = 0 for t < t,. A practical filter that generates such a waveform
is given in Problem 5.11.

5.2.2 OQOptimum Transmitting and Receiving Filters

The transmitting and receiving filters are chosen to provide proper pulse
shaping and noise immunity. One of the design constraints that we have for
selecting the filters is the relationship between the Fourier transforms of p,(¢)
and p,{1),

Py (NHr(NHANHR() = K P.(f) exp(—j2mfts) (5.8)

where t; is the time delay* in the system and K, is a normalizing constant. In
order to design optimum filters Hr(f) and Hi(f}, we will assume that P.(f),
H.(f), and P,(f) are known.

Figure 5.3 Fr

om Equatj
observations uations

(5.6 '
can be made ) and (5.7) ang from Figure 5.3 the fol
. s ollowin

l. The bandwidtp occuni § I we choose p.(2) to produce zero 1SI, then the constraint in (5.8) specifies
mum value of g ig l::;;ed by the pulse spectrum ; . that the filters shape p,(t) to yield a delayed version of p.(t). Now we need
2. Larger values of - and the maximum vajye ,‘ls B=ni +B. The mjni- only to be concerned with noise immunity, that is, we need to choose the
tate 1, Howev: ﬁ;:‘ imply that moye bandwide 1S 1. _ transmit and receive filters to minimize the effect of noise. For a given data
) T, farger valyes 1S required F, ; . rate, transmitter power, noise power spectral density, H.(f), and P we

means that synchmﬂlzaﬁoﬂ Wluogeﬂ lead t(.) fa?ter de - or a given bjt p P p Y, r(.f) (.

*If ¢; is sufficiently large, then the response of the system K.p{t —t;) may be assumed to be ¢
for t <t where I is the time at which the input p,(?) is applied to the system. Hence the filters
will be causal.

TMERRE LR T
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i)

Figure 5.4 Portion of a basaband PAM system

want to choose Hr(f) and Hy(f) such that
minimized (see Figure 5.4),

As a first step in deriving the optimum filters le
the probability of a bit error. At the mth Samp,]in
converter is

the bit error probability is

t us derive an expression for
g time, the input to the A/D

Y“m) = Am + nﬂ(tm)- tm = me + td

and the AfD converter output is [ or 0 de i '
: pending on whether Yt
<0, respectively.* If we denote the mth input bit by d.., then we ca;m\i';tg ':::

expression for the probability of incorrecti .
, y decodi ;
receiver as ng the mth bit at the

P.=P[Y(tu)>0d, = 0lP(d, =0)
+P[Y (1) <0)d, = P{d,=1)

By v\irtuci of o’ur‘assump;ion of equiprobable bits, and due to the fact that
Y{im}= A+ fiolim} When dp = 1, and Y(1,)=—-A + ¢
4 = K.a, we have no(tn} when d,, =0, where
Pe=2PInty) <= AL+ Pnot,) > Al}
= H{Plndt.)|> AL}

The noise is assumed to be zero mean Gaussia

. n at the j
hence the output noise ot} will also be zero m he input to Hy(f), and

¢an Gaussian with a variance

N, given by ‘
No= [ GupIBuF of (5.9)
*In general, for minimizing the probability of error, the receiver threshold should be set at
24 08 B

where P(d, =0} and P{d,=1) denote the probabilit
respectively, and Ny is the variance of the noise at the ;
5.5).

y that the mth input bit is 0 and 1,
nput o the A/D converter (see Problem

wgwl y oL (b oSuEI1S ugRdlS 2wy
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Using the above property, we can write P, as

exp(—x*{2Ny) dx

= 1
=i
: Ixl=A \/21TNQ

] 1 )
= ] —x*[2Np) d. - 5.10
L P exp(—x*2Ng) dx (5.10)
A change of variable z = x/V N, yields
I~ 1 2 A
= _— —z) dz = ] (5.1 1)
P. J’M\m'ﬂ' V2r exp(~272) Q('\/Nn)

where
- R
Q) =j ——-—vﬂ. exp(—2*{2) dz

From Equation (5.11) we see that P, decreases as A,f\/-lvo increases, and
hence in order to minimize P, we need to maximize the ratio ANV N, Thus,
for maximum noise immunity the filter transfer functions Hr(f) and Hi(f)
must be chosen to maximize the ratio AV N,. In order to do this maximizing,
we need to express ANV N, or A%N, in terms of Hr(f) and He(f).

We start with the signal at the input to the transmitting filter

X(ty= ,2;@ ap.(t = kTy) (5.12)

" whera p (£ iz a unit amplitude pilse having a duration less than or equal to

VIS Py 25 2 B0 AL LR LE Lin

T,. Since the input bits are assumed to be independent and equiprobable, X(¢)
is a random binary waveform with a psd (Chapter 3, Examples 3.8 and 3.9)

oxtn =B gy
= G_ZI&QE (5.13)

Ty

mng 4

Now, the psd of the transmitted signal is given by
Gz(f) = | Hr(OFGx ()

ard the average transmitted power Sy is
2 o1
Sr= ;’.—b f |P(OFH- O df (5.14)
Since A, = K.a, and A = K.a, we can write

A (=
St =g |_IPADRERDE of



200 Baseband Data Transrmission

or

A=K [ 1Pt o] (519

Now, the average output noise power or the variance of no(t) is given by

No= f GO H (AL df

and hence the quantity we need to maximize, AYN,, can be expressed as
A

=5 [ [ 1ratore, o ar L —a]" s

HAf)HR ()]
Or, we need to minimize

?’=j:lHR(f)FGn(f) dff:_lmwf

The minimization of the righf~hand side of {5.18) with respect to Hg(f) can be
carried out by using Schwarz’s ineq

uality, which is stated as follows: If V()
and W(f) are complex functions of £, then

[vore [wewras|[ vowsg af

The minimum value of the left-hand side of

the equality is reached when
V{f) = const times W{f). Applying (5.19) to (5.18) with

VDI = [He(HIG 4 f)

P
W= I

(5.16)

{5.18)

(5.19

we see that ¥* is minimized when

2 _ KlPr(f),
[Her ()] RG] (5.20)
where K is ap arbitrary positive constant. Substitutin

g Equation (5.20) in.(5.8),
we can obtain the optimum transmitting filter transfer function as

1 KAPANIG )
2= 521
Hr(DF = & EXGRERG) 2D
These filters should have linear phase response resulting in a total time delay
of t; (Equation (3.8)).

Finally, we obtain the maximum value of AN, as

(-Aﬁ;)ma, = (ST)(T) U:‘Pr_(f)m df]-z

EAG) ©-22)

US‘E"‘”IJ OISJLJ Al o8Bl Ufgguj.a.'zlb a.a.u.u

o T 1310 oS 0365
&b oo jlzo 3o b g maw 4S5 ygau Gula v p
b 00 jlzo gSg) &= Baseband Binary PAM Sysioins il

o i ual to
bstituting (5.20) in (5.17). The bit error probability P, is then eq .
stifuEtin . ! : .
by su P, = Q(V (A No)mas) (

A SpeCIal case o g a t acll a! mterest o urs e C anne!
f 81 nlﬁc n pr ctic re t cC W!le" h h
noise is whlte (Gn (f} = 1”2), GaUSSIall, and whe“ Ig(f) 15 Chosen Such tha‘ 1t
h UC'[’l aver the bandWldtll Of mterest. [lle li“er !]‘ansic[
dOES not ¢ ange 3}

functions now reduce to

P.(f)
[He( = K\ l

2 (5.24a)
(2D

d | - 24b
" (e = K ) e

. m Equations (5.24a) and (.5.24b)

where K, and K; are E-oicmlwg Z%T,s:::ﬁge FI?; iy aqpo_sifi"’e constant. 'Wltf[i][ttel.:'i

it follows that |HT("f)I v Jainadiﬁerence. the transmitting and rccelljvl:;]gﬁlters

exception of an arbitrary gharacteristics so that one desngn serves 9{ ¥ ami

have the same frequencynication system, having identical transmi ll:g e

In a l.arge dasa corlzln;uproduction and maintenance ecasy. I'f\ ;lmgwidﬁh of

receivmg“;iltt;;: y?:a?d: an approximately constant P,(f) over the ban

shape p,

interest is | tor < 2 r<T,
p(t) = {o elsewhere

t the input to the
That is, a rectangular pulse of width 1< T, can be used al P

at is,
transmit filter.

(5.25)

5.2.3 Design Procedure and Example

i ips derived in the preceding sections can
ARy :)l;:arr‘;lalt:::::;id PAM system given t:xre”l:lt ar:‘:ef:‘l;
be used 1o desien abability P, channe! transfer fum“qn'“m;cifi; -‘;’e
acceptable error pro spectral density G.{f). Unless othermsg Z;!Je e e
e ol P i ut bits are independent and equiproba , that e
will assume th'at the mgan Gaussian, and that the chz_:lnne.l is lowp S
channel noise is zero H; »,). If the channel bandwidth is _Iess than /2, e
bandwidth B (nf2<B <1 -aling scheme that will be discussed later. the
have 10 e A:"?rrnszzghngrcater than ry, then it woulq be ‘;’lse tod::nzothe
channel bandz;?;tic;i scheme to utilize the full bandwidth for re
nonlinear mo

effects of channel noise.
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The design of the system consists ifyi
of specifying the
spectra P,g’), Pf). the transmitting and receiving g]ters EIUI(S_;) S:;apes and
f;:: transmitter power requirements Sr to meet the specified e;ror, r;g;;-]".i:‘d
e steps involved in the design procedure are illustrated i hp 1y.
example, n the following

Example 5.1. Design a binary basebsnd PAM ‘

. . . system to t ; .
rate of 3600 t?ltsfsec with a bit etror probability less tha;a?gr‘]:“'f‘{ o ot a bit
response is given by . The channel

H.(f) = { 107 for [f] <2400
¢ elsewhere

The noise power spectral density is G.{f) = 107" watt/Hz.

Solution. We are given r, = 3600 bitsfsec, P. < ]0~* ;

2400 Ha. and G (1o 10 war s » P. =107 channe! bandwidth B =
If we choose a raised cosine pulse spect i =

channel bandwidth constraint is satisﬁecliJ. H:;:e VI B= /6 = 600, then the

500" Ifl <1200
Pr(n = | :_T
3606 °°% 7305 (f1 - 1200), 1200 =|f] < 2400
0, If] = 2400
Let us choose a p,(t) to satisfy (5.24) as
XOR <2
, 0, elsewhere: r=T,/10= (0.28)107%
Then,
p _ . (sin wfr .
()=~ (———vﬁ )

Py =+, Pe(2400) = 0.9731 = ¢

Hence, the variation of P(f) over 0 <[f] < 2400 i .
|Hr(7)] and [He(D) from Equation (5.20) and (5_2]];3‘;&”’ small and we obtain

[Hr (Nl = K\|P,(f)
[H(H) =B

We will choose K= (3600)(10°) so that the overal
1
to P,(f) produces P.(f), that is, rall response of Hr, H., and He

PANHHPIHADHR )] = Pcf)

wgwl y oL (b oSuEI1S ugRdlS 2wy
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1.0 =
™~ PAf
H
0.75 — REGA
| [Half)
Hglf)
050
— P
0.25 —
i ¢ I
4] 8a0 1600 2400 Hz

Figure 5.5 Normalized plots of Py, He, Hr, Ha, and P,. All func-
tions are shown normalized with respect to their values at f =0,

Plots of P,(f), H.(f), Hr(f), He(f), and P,(f) are shown in Figure 5.5.
Now, to maintain a P, < 107, we need (A} No)ums such that

QOV (A Noar} < 107
Using the tabulated values of Q given in Appendix D we get
V(AT Npax = 3.75

or .
(AY Nmax = 14.06

From Equation (5.22) we obtain the transmitted power Sr as

5= _TII ('It?l"u)m [ _:!—E%}L%TQ df]z

= (3600)(14.06) (110—0[;) [ f_: [P df T

For P} with raised cosine shape f 124f)| df =1 and hence
S = (14.06)(3600){107) = —23 dBm

which completes the design.
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5.3 DUOBINARY BASEBAND PAM SYSTEM

[n the preceding sccft:on we saw that a baseband binary PAM data trans-
mission system requires a bandwidth of at least /2 Hz in order to transmit
Jdata at a rate of 1 bltS/S‘CC, with zero ISL. If the bandwidth available is exactl
r,/2, then the only possible way in which binary PAM data transmission at Z
rate of 1 bitsfsec can be accomplished without ISI would be to use ideal
(rectangular) lowpass ﬁlter§ at the transmitter and receiver. Of course such
filters are physically unrealizable. Furthermore, any system that would ciosely
approximate these filters would be extremely sensitive to perturbations in
rate, timing, or channel characteristics.

In the past few years a class of signaling schemes known as duobinary
polybinary, or partial response signaling schemes has been developed to

a7,
LAYS
' !
b % 7 f
F] 3 ¢ - +
1.9]
i
. ] Pl
® I 75
i
|
|
| -50F
[
| .25
f
— | ] [ f
- -3, 1. — !
35T, ~LSL ST, 08T, 0 08T, 15h— 1, 357,

Figure 5.6 F.f) and p(t) for duobinary signaling scheme Observe
that the sampling Is done at t=(m = 0.5)T,. )
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overcome some of the difficulties mentioned in the preceding paragraph. The
duobinary scheme utilizes controlled amounts of ISI for transmitting data at a
rate of r, bits/sec over a channe!l with a bandwidth of /2 Hz. The shaping
filters for the duobinary system are easier to realize than the ideal rectanguiar
filters needed to accomplish the data transmission at the maximum rate with zero
1SI. The main disadvantage of the duobinary scheme is that it requires more
power than an ideal binary PAM data transmission scheme.

The duobinary signaling schemes use pulse spectra P,{f) that yield Y{¢,) =
A+ An-i, where A, and A, are amplitudes related to the input bits 4,, and
dn-1. One such P,(f) is

P = {ZT;, cos(wfTy), Fls12T,
d 0, If|>1/27, (5.26)
The pulse response p.(t) corresponding to the above P.(f) is
_ 4cos(nt/T,)
P (- 4tTh) (3.27)

Plots of P,(f) and p.(t) are shown in Figure 5.6. (See Problem 3.12 for other
examples of P.(f}.} .

5.3.1 Use of Controlied 151 in Duobinary Signaling Scheme

The output ¥'(¢) of the receive filter can be wrilien as

Y(t)= Z: At —t; — kTp) + nfe) (3.28)
where p,(t) is defined in (5.27). -
If the output is sampled at £, = mT, — T,f2 + {4, then it is obvious that in the
absence of noise

Y(tw)= Aa+ Any 529

Equation (5.29) shows that the duobinary signaling scheme using a P,(f) given
in Equation (5.26) introduces ISI. However, the intersymbol interference is
controlled in that the interference comes only from the preceding symbol.

The A.’s in Equation (5.29) can assume one of two values, = A, depending
on whether the mth input bit is 1 or 0. Since Y{(¢,) depends on A,, and A, 4,
Y(t.) can have one of the following three values (assuming no noise):

+2A if the mth and (m ~— 1st} bits are both 1's
Y(tn) ={0 if the mth and (m — 1st) bits are different
—2A if the mth and {m — 1st) bits are both zero
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That i ivi i
o :]; tbhlrte ;':oc;nt:;ng filter output is a three-fevel waveform. The decoding of
it 10 e e sampled value of Y(t,} is done by checking to see if the
e the converte{' at the sampling time is at the top, bottom, o
el , s
One i
Sion thipf::;r:itdi;a:bacdk of the system is that errors tend to propagate.
any coron in e (0 ;eco e.d _ba§ed on tl}e decoded value of the (m — 1st) bit
the mth it Ao~ stf) bit Bs'llkely to introduce an error in the decoding of,
In s scomnmeth : o avmdllng error Prgpagation was proposed by Lender,
stronn, Sohem ;ran r.tpropagatfon is f:hmmated by precoding the input bit
by b convsTldter. The ll’lput.blt stream (coming from the source) b,
RN nverted to another binary stream di, dy, dy, ... before t
cording to the rule e

dn =b, D d,., (5.30)

(The symbol @ stands for i
} ¢ module-2 addition.) T i i
trall;s;uttedhusmg two levels +a and — g for 1 ar)ld (lilerel:;[;:ééviiﬁuence o
e mth input bit b,, 15 0, then d, = d ordi -
v ! m s m = dm-; and according to Equati
(1) will be 24 or ~2A. On the other hand, if b, = 1, fhen dc,l,. ir;ﬁnb(jfl?g

complement of d,,., and Y(t,,) will i
Complen recordand mi,.e) 1l be zero. Hence the mth input bit b, can be

b =0 if Y(tn)==24
bp=1 if Y(t,)=0

Inth i it i

.ermi—ep;:’l:ecledlﬁg rul_e the mth bit is decoded from the value of Y(t,)only, and

o :]p;;gaflon] U.OCS no_t occur. Also, the implementation of the dec-c:ding
simple; Y(t) is rectified and a simple threshold binary decision

with a threshold at level 4 yields the output,

(53.31)

5.3. i i
2 Transmitting and Receiving Filters for Optimum Performance

The pro ivi i

- dpuogfndaure Lfsed for deriving optimum transmitting and receiving filters for

T aobin cl;yl signaling sc}leme is the same as the one used in Section 5.2.2

probabiliti:s | f.-lv::s‘;;\tl the input to the A/D converter are 2A,0,and —24 ‘:vi'tf;
€8 4 3, and g, tespectively. The probabili it e is gi

by (assuming that the threshold is set at = A) 1 of 2 bit efror P s given

P,=iP{no<—A}+§p{|‘nol>A}_,_‘{P{no}A}

. ] G - . . '
.
SIIICC Ny 18 a zero mean aussian Ia"dom Varlable wlth a4 variance No, we can

=3 N7
P.=3Q(AIVNY (5.33)
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-

The transmitting and receiving filters are chosen to maximize AN} (in order
to minimize P.) subjected to the constraint that the overall pulse response
p.(1) and its transform P.(f) satisfy Equations (5.26) and (5.27). It can be
easily shown that the expressions for Hr(f) and He(f) will be the same as

Equations (3.20) and (5.21).
The error probability P, for the duobinary scheme will be higher than the

error probability for the binary PAM system discussed in Section 5.1. For
comparison purposes, let us assume that both schemes operate at the same bit

rate r, over an ideal channel (H.(f) = 1) with additive Gaussian white noise.
For the direct binary PAM case it can be verified from Equation (5.22) that

(). 57 )

where nf2 = G,(f) is the noise power spectral density. Hence, the probability

(Podbinsry = Q (\/ ;s_;“"ﬁ) (5.34)

For the duobinary case from Equation (5.22), we have

(&) _=s.2[[ e ]’

[}

of error is

where P.(f} is given in Equation (5.20). The integral in the preceding equation
¢an be evaluated as
= LT,
[ipaniar=[ " Ty costefT af
—a ~12T,
=2

=3 cossd8=i
T f=-al2 m

(&), =2(CE)E)

and the probability of bit error for the duobinary scheme is given by

Equation (5.33) as
_ 3 E STT
(P.) =1Q (4 \/ZT ") (5.35)

dunbinary
PAM

Hence,

A comparison of Equations (5.34) and (5.35) reveals that the bit error
probability for the duobinary scheme is always higher than the bit error
probability for an ideal binary PAM scheme using pulses with raised cosine
frequency characteristics. However, the duobinary scheme uses less band-

width than binary PAM schemes.



208 Baseband Data Transmission

Example 5.2, .

it dgtoamftare a binary PAM system with the duobinary syst

with Gauses at a rate of 4000 bits/sec over an ideal ch Y system for
aussian wI_'ute noise. Assume G,(f) = n/2 = j0°® channel (H.(f)=1)

probability of 1073 K 107 watt/Hz and an error

Solution, For compari

; o parison let us consider bi i

ralls“ed c0sme-frequency characteristics and B"'!—arYIZPAM Hoine & pulse with
he bandwidth used is ry = 4000 Hz o

.= o(y25) < o
n
25T,
J“—-n > 3.1

ny 1
S > (3.1)2(5)ﬁ ~ —44.2 dBm

For the duobinary case, the bandwidth used is r/2 = 2000 Uz

P. =10 (% \/———2sz”) < 107
U

ar

or

35T, (4
\/-—n >(;)(3.25) or Sr=—417dBm

The duobin heam
The o ;t_).(.)artyzsc.mue uses 3 the bandwidth of the binary PAM i
ut 2.5 dB more power than the binary PAM ’ e

son
n
Ihe dlscus 10 1 the pr eCBdlng section and the above cxamplc lHUStIatC

at the duobinar

. ¥ scheme can be used it bi

e ; to transmit binary da

o oitslsee over a channel with a bandwidth of r/2 Hz '¥‘h o at'a e
quired by: the scheme are easier to rea ; e Shape 1w hacs

reduired b lize, and the pulse sh i

s ;:ll;llégb?;;orspdo not affect the performance olfJ the syzf:n'is 'sl"l;:Ch i

oty rable bi ry PAM system that can transmit r, bits/ "o channe
andwidth of rf2 Hz must use ’ Blters that o et

ohysicany edth of infinite cut-off ideal filters that are not

s / Even if an approximati i
reatized, 1t wo oy ven if pproximation to the ideal filters can be

y sensitive i in ti
Chonol charouid be ¢ to any perturbations in timing or

§4 M-ARY SIGNALING SCHEMES

’I] I ‘ l 1 - P A I [ . . . s
l . l ]
ms dlSCUSSCd m the pl’ecedlng s€ tlol'lS R14

Is, pulses with one of two possible amplitude levels. In

Ogwl y oL (b oSuEI1S LugRdilS 2wy
bl e jlzo 9Sg) 835 b g muio 4S5 (g 5152 yS 06395 % '
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M-ary baseband PAM systems, the output of the pulse generator is allowed to
take on one of M possible levels (M >2). Each level corresponds to a distinct
input symbol, and there are M distinct input symbols. If symbols in the input
sequence are equiprobable and statistically independent, then the information
rate coming out of the pulse generalor (Figure 5.7) is r: loga M bits/sec, where
r, is the symbol rate.* Each pulse contains logz M bits of information. In the
absence of noise and IS], the receiver decodes input symbols correctly by
observing the sampled values of the received pulse. As in the binary signaling
scheme, noise -and ISI introduce errors, and the major objectives of the design
are then to eliminate ISI and reduce the effects of noise.

Before we discuss the design and analysis of M-ary signaling schemes, let
us look at an example of such a scheme. Figure 5.7a shows the functional
block diagram of an M-ary signaling scheme and Figure 5.7b shows the
waveforms at various points in a quarternary (M = 4) system.

A comparison of Figures 5.7a and 5.7b with Figures 5.1 and 5.2 reveals that
the binary and M-ary schemes are very similar, with the exception of the
number of symbols in the input sequence and the corresponding number of
amplitude levels of the pulses. In the quarternary scheme shown in Figure 5.7b,
the source emits a sequence of symbols at a rate of r symbols/sec from a
source alphabet consisting of four symbols A, B, C, and D. During each
signaling interval of duration T, (= 1/r,), one of the four symbols is emitted by
the source and the amplitude of the pulse generator output takes on one of
four distinct levels. Thus, the sequence of symbols emitted by the source is
converted to a four-level PAM pulse train by the pulse generator. The pulse
train is shaped and transmitted over the channel, which corrupts the signal
waveform with noise and distortion. The signal plus noise passes through the
receiving filter and is sampled by the A/D converter at an appropriate rate and
phase. The sampled value is compared against preset threshold values (also
called slicing levels) and a decision is reached as to which symbot was
transmitted, based on the sampled value of the received signal. Intersymbol
interference, noise, and poor synchronization cause errors and the transmit-
ting and receiving filters are designed to minimize the errors.

Procedures used for the design and analysis of multi-level PAM systems
are similar to the ones we used for binary systems. We will assume that the
input to the system is a sequence of statistically independent, equiprobable
symbols produced by an ergodic source and that the channel noise is a
zero-mean Gaussian random process with a psd of G,(f). We will see that an
M-ary PAM scheme operating with the preceding constraints can transmit
data at a bit rate of r, loga M bits/sec and require a minimum bandwidth of
72 Hz. In comparison, a binary scheme transmitting data at the same rate,

*The signaling speed is often given in the units of bauds.
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N
g E [
& . r; logz M, will require a bandwidth of (R, log, M)/2 Hz. We will show that the
T . N price we pay for the bandwidth reduction that results from the use of M -ary
s o E _§ schemes is the requirement for more power and more complex equipment.
= - & 5] . :
<> §E g3 = _
HE Es g
2 z . .
e g = g 5.4.1 Analysis and Design of M-ary Signaling Schemes
~ g E
< ) We start with the output of the pulse generator X (), which is given by
[}
c @
Sy X(0)= 3 ap,(t - KT.)

where p,(t) is the basic pulse whose amplitude a, depends on the kth input
symbol. If the source alphabet contains M letters, then g, will take on one of
M levels. We will assume that the spacing of amplitude levels is to be uniform
and that a; can take positive and negative values. It is easy to verify that for
minimum power requirements, that is, for a minimum value of E{a, — E{a,}},
the M amplitude levels have to be centered at zero. For a separation of 2a

T =
&
— between adjacent levels, the levels are given by
-
5 _ [0, %2a,+4a,...,= (M — 1)a, M odd :
Ch _ = {i.a, *3a, %3a,..., =(M —1da, M even (5.36)
The signal power for the level spacings given in Equation (5.36) can be
o obtained from M
‘ ElaB =5 2k ~ M~ 1)aF
M=

ary signaling schema. (b) Signaling waveform

o

S = | £5% e )
g £fz EaF c When M is even, we have
. fEr b
% ; g Efalt =L {a’+ (ay+ (Sa)+ - -+ + (M~ Dal}
=] -
il 2 2 .
a 5 " = (M*~1Da
3 _,é — (5.37)
§ g " A similar expression can be derived for the case when M is odd.
@ - ~ Following the procedure used for the binary case (Section 5.2} we can write
jiE: =1 g;;‘ b the input to the A/D converter at the sampling time as (from Equations (5.1)
< é a g £ ® and (5.2))
Fr—] 2 Y ()= An+ 3 Aellm ~ T+ noltn) (5.38)
- %’ . k=m
£ | 58 where t, =mT; +t; and #; is the total time delay in the system. A, takes on
=3 one of M values given by

’ A = {0, *F2A, 24A, ..., (M - DA, M odd, A=K.a (5.39)
" A, x3A, £5A, ..., (M- 1A, M even :

210
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by'.[;l;eose?ond term in .Equation (3.38) Tepresents ISI, which can be eliminated
A osing a P,(t) with zero crossings at *=T, £27T,, .. .. We can use pulses
" dei:::scd (;osme fre:quency c.haractcristics with the choice governed b!;' rate
chares: ;i?:;cs t;lzr:i“:dtht reclq:t.n(;gmems. Pulses with raised cosine frequency
- pectra P(f) and w ) i

tion (5.6 Th reppech by ) avefqrm shapes pP:(t) given by (Equa-

1-;’ lflsr.riz'—ﬁ
P = 2 7T L 3
D=1 Lot Z (1121 g), TUB<I<D4p (s
a, [f[>r:/2+ﬁ
where 0 < g <rf2, and

= £08 27t /sin wrt
with PO =Ty ( —) (5.41)
f_ NP df =1 542

Si =
A}{:::yP;gr)‘aﬁggfosr }I;f[ > r,/_2+ B/,z the channel bandwidth requirements for an
_ 1 cheme is r/2+4 8. Witk Osg=<rp i
! . TP EFL, the maximum BW
Cigvl.-r;::et?r?ntt_ fo:: an M-ary schemw? using puises with rajsed cosine frequency
Fo s stics is p, Hz.' The data rate of such a scheme jg I logs M bits/sec
inary scheme with the same data rate, the bandwidth requ-iremcnt wili

The transmittin ivi
and TS are ¢
4 receving filtars are chosen 1o produce zero IST and

mitiimize the probability of error for a gf i
mize t : given transmitted power., The
condition is met jf P,(f) has the form given in Equation (!5).40) and wero 181

Pg(f)HTchCnHR(f) =K, exp(—jzﬂ-frd)})r(f) (5.43)

whe i i i i
outpLet (t;;f ;; the tota! time deiay, Py(f) is the transform of the basic pulse
€ pulse generator, and K, is 5 normalizing constant. To minimize

Y{t.), and let us use the ¢
;2 ase where M =4, in Fi
probability density function of Y is given by _shown " Fleure 38, he

)= Plan = 34010, )+ Pea. = = AN Vi nea(9)
+P(A,, = AN via, ma(y) + P4, = 3A)f¥lﬁm e (5.44)

where f Yja, =4 (y) is the conditio .
mo, nal pdf of Y giv
From Equation (5.38), with zero ISI, Elven that An = kA,

Ym=Am+no
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¥

"' —— Symbals

Figure 5.8 Probability density function of signal pulse noise for M = 4.

where nq is the noise term that has a zero mean Gaussian pdf

FulD) = = exp(~ 2Ny, o<z < (5.45)

L% 21T‘No

and

No= [~ Gl P o

Hence, for a given value of Am, 53y A, =34,
' Y=34A+ Hg
and

exp(~(y —3AY/INy), —w<y <

1
fYIA,,.-:A()I’) = m

The conditional probability density functions corresponding to the four input
symbols (hence, the four levels —3A, —A, A, 3A) are shown in Figure 5.8, By
virtue of our assumption that the symbols are equiprobable, the optimum
threshold Tevels are midway between the values of Ap, that is, the optimum

decoding algorithm at the receiver is given by
if Y{)>24 output symboi = D
0<Y(,) =24 output symbol=C
“2A<Y{t,) =0 output symbol = B
Y(i.)=-24 output symbol = 4
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The probability of efror can now be written as

P (error) = P(error|D was sent)P(D sent)
+ P (etror|C was sent)P(C sent)
+ P(error| B was sent)P(B sent)
+ P(error|A was sent)P(A sent)

P, = P(Y(ta) <2A|A, = 3AYP(D sent)
+P(Y(t,)>2A or <0[An = A)P(C sent)
+P(Y(t.})>0 or <~2A4]A, =—A)P(B sent)
+P(Y(tn) > ~2A4lA, = -3A)P(A sent) (5.46}
Let us look at the second term in Equation (5.46) in detail. We have
P(C sent) =}

or

and
P(Y(t)>2A or =0|A, = A)
=P(Y(tn)>2A]An=A)+ P(Y(,) <A, = A)

=J;>2Afﬂ.4,.. =a(y)dy+ J;‘ofm,,. ~a(y) dy

= __._I — — 2 1 .
J;au'\/z__—quo exP( {z A) IZNO) dz +.’;‘o - exp(_(z __A)ZIZND) dz

A change of variable u = (z — A)V'N, vields

P(Y(tx) >24 or <0}A, = A) = zf expl(— u*/2) du

ws AT Vi

=22 ()

Using a similar expression for the remaining terms in Equation (5.46), we
arnive at an expression for P, as

P, ={6)QANVNY)

In the preceding expression, the factor i represents the probabﬂitg} of occur-
rence of each of the four symbols: the factor 6 represents the six areas shown
marked in Figure 5.8, and Q(A/VNp) represents the. numerical value of each
one of the areas. Extending the derivation to the M -ary case and using simiiar
arguments, we can obtain an expression for the probability of error as

P.= m’i; Do ( \/%6) (547)

ol
W
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A comparison of Equation (5.47) with the probability of error for the
binary case (given in Equation (5.11)) reveals that the two expressions are
identical with the exception of the factor 2(M — 1)/M. The probability of error
in the M -ary case is minimized when A¥N, is maximized and the maximizing
is carried out using a procedure similar to the one for the binary case
(described in Section 5.2). Some of the intermediate results in the -derivation
are given below:

1. Transmitted power = St

Az 2_ 1 @
KT, (ﬁj“) L [Hr ()P, (1) df (5.48)
2.
Al _(3STN\[(" = PR -t
= G [[Lmoren o [~ B o] (5.49)

3. The optimum transmitting and receiving filters that maximize AYN, given

above are
- KPP -
HOF = G (5.50a)
_KiP.¢ )!G,i”(f )
B OF = Rip pre.o (5-50b)

. where K is a positive constant. The filter phase responses are arbitrary as
long as Equation (5.43) is satisfied,

q 7 B2 =AlISlL

4. .
()2 [ L] 65
and ‘
reali)e®) e

5. In the special case when
Ga(f)=mnf2
and p,(t) is chosen as

_[1, <2, (v <T)
Ps(t) = {0, elsewhere

the filter transfer functions reduce to

2 = Pr(.f) -
[H: () = K, J—ll B0 (5.53)
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2 !Pr(f)(
B () = K, 1B (5.58)

where K| and K are positive constants. Ag in the binary case, we have
identical frequency résponse characteristics for the transmitting and
receiving filters. Now if we also have

apl={p Ul<rizep

0, elsewhere
(i.e., an ideal lowpass chanpel) then,

|HR(f)] = [Hr(f)] = Kl P2
where Kj; is a positive constant. In this case we also have

(%:) — (A:;J_SZIET) (%) (5.55)

“CEDNGEEE) e

The design and analysis of M-ary systems are carried out using equations
(5.48)-(5.56),

and

Example 5.3, Design 3 Quarternary  signaling scheme for transmit-
ting the output of an ergodic sourgs smitting an independent sequenceé of
Symbols from 2 source alphabet comnsisting of four equiprobable symbols A,
B, C, and D. The symbol rate of the source is 5000 symbols per sec and the
overall error probability has to be [ess than 107% The channei available. for
transmitting the data has the following characteristics:
I °

1+ j(f15000)

G.(fy=10"" watt/Hz

H.(f)=

and

Selution. We are given M =4, p, = 5000, and T, = (2)(1079). Also we are given
[H. ()] = [1+ (775000

Since there are no strict channel bandwidth limitations, we can use a received

pulse having raised cosine frequency spectrum with 8 = r,/2:

. 2
P = {g": cosi(mfi2r), Ifl<r,

elsewhere

wgwl y oL (b oSuEI1S ugRdlS 2wy .
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In order to arrive at Hr(f) and Hy(f) with similar functional forms, we choose
P (t) as

f{L Jtl<2
pe(t) = {0, elsewhere r = TJ10 = (21075

Fy(f) for the above p,(t) can be computed ag
Pe(fy~=1 for Ifl<r
From Equations (5.50a) and (5.50b), we obtajn H}(f) and Hy(f) as

Fabl
(et = { g 1 1000  costnpiary, 1) < 50014,

elsewhere
= L1+ (150001 cos(arprar, ), If] < 5000 Hz
[Er ()] = {0, elsewhere

The constant K; and the phase shifts of the filters are chosen to yield
PeDErDHER) = Pt exp( 2,

Plots of Py(f), H.(f), Hr(f), Hz(f), and P,(f) are shown in Figure 5.9,
Now we need to find the transmitter PoWerrequirements to maintain P, < 10,
Froem Equation (5.52), we have

Pe =2 3Q( v (A INO)max) <107

Plf)
075
H,{f)
050 Hyptf)
Half}
025 FAD
i
o 1250 2500 3750 5000 Hz, f

Figure 5.9 Normalized plots of P, H,, Hr, Ha and B.(F). Al
functions are shown normalized with réspect to their valyeg
atf=nq,
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which requires

QWA N < G107
or .
‘ (AszO)max > (38)2 = 14.44
From Equation (3.51), we obtain

(347:),,.“ -2 (L 'P’?S[?fﬁf“) df | s 1444

The integral in the preceding equation can be evaluated either in closed form
(when possible) or by a numerical approximation:

[P 022 ) [ )"

[H. () 2r, 5000
1 2
= (2)(107% J; (cos?zzx) (1+x3H" gx

=(1.20)10" (by numerical integration)

Hence
(§Tsl) (1200107412 > 14.44

or St > (5)(5000)(1.20/(10"2)(14.44)

> (~32.5)dBm

5.4.2 Binary versus if-ary Signaling Schemes

=We are now ready to compare binary and M-ary signaling schemes and
. determine which scheme should be used ina particular situation. Let s assume

that:

1. The input to both systems comes from an ergodic information source that
emits an independent sequence of equally [ikely binary digits at a rate of
1, bits/sec (no loss in generality results from this assumption since the output
symbol sequence of any source may be coded into a binary sequence).

2. The channel is ideal lowpass, and the channel noise is zero mean Gaussian
with a psd of n/2.

3. Both signaling schemes use pulses having appropriate raised cosine
frequency characteristics with the maximum value of B.

4. Both signaling schemes are required to yield the same error probability P..

US‘E"‘”IJ OISJLJ Al o8Bl Ufgguj.a.'zlb a.a.u.u
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Table 5.1. Comparison of binary and M-ary signaling schemes

Binary scheme M-ary scheme
Bandwidth ry Hz ro=(n/k)Hz
(w242l )
Probability of 5 logy M \q M (M*~1Dr, \n
Error P, {Eqs. (5.22): (5.23)) (Eq. (5.56))
Transmitter
power for Less More
a given P,
Equipment Less More
complexity

Bit rate = r, bits/sec.
M-ary symbol rate = r, = Rfk symbols/sec.

The M-ary signaling scheme is assumed to operate on blocks of k binary
digits at a time (M = 2%), Each block of k binary digits is translated to one of
M levels at the transmitter, and each received level is decoded as a block of k
binary digits at the receiver. The bandwidth and power requirements of the
binary and M-ary schemes are shown in Table 5.1,

Comparison of binary and M-ary signaling schemes indicate that binary
transmission has lower power requirements, and that M -ary signaling schemes
require lesser bandwidth. For M » 2 and P, <1, the transmitter power must
increase by a factor of M?%log, M, whereas the bandwidth is reduced by
1/tlog, M. M-ary schemes are more complex since the receiver has to decide
on one of M-levels using M —1 comparators or level slicers. In the binary
case, the decoding requires only one comparator.

Example 5.4. Compare the power-bandwidth requirements of binary and
quarternary (M =4) signaling schemes for transmitting the output of an
ergodic source emitting an independent sequence of symbols from an al-
phabet consisting of four equiprobable letters A, B, C, and D. The symbol
rate is 5000/sec and the signaling schemes are required to maintain P, = 107%.
Assume an ideal lowpass channel with additive Gaussian noise with a psd
72 = 1072 watt/Hz.

Solution. The data rate for the problem is 5000 log, 4 = 10,000 bits/sec. To
design a binary signaling scheme, we need to convert the symbols into bit
strings. This can be done by assigning 2-bit binary words to each letter in the
source alphabet. For example, we can assign 00, 01, 10, and 11 to A, B, C, and
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D, respectively. A symbol sequence such as DBCAADCE will be translated
into a bit sfream [101100000111001 and transmitted as binary data. The
receiver will first decode the individual binary digits, and then decode the
letters by locking at two bit groups.

Hence, for the binary scheme we have

r, = 10,000 bits/sec
H.(fy=1, If| < 10,000 Hz
G.(fy=n2=10712

. If we use a received pulse having raised cosine frequency characteristics with
B = nf2, then the bandwidth required is r, Hz, that is,

(Bandwidth)yinay = 10,000 Hz
Power requirement may be computed using
P, = Q(V{A Nyl < 107
which, requires
(A* NoYoax = (3.75) = 14.06
From Equation (5.22) with G,{f) = 107", FL(f) = 1, and [, Py df =1, we get

AN ST, _ >
(Nﬂ)max - (7][2) =Sr(10 )

Hence

(ST)binB.ry = (14-06)(10—8) = =38.52dBm

For the quarternary (M = 4) scheme the bandwidth required is (using P.(f)
with 8 = »/2)

(Bandwidth) guaccermry = 5000 Hz
and

P. = 10(VATNYm) < 107

or
(AZINO)max =14.44
From Equation (5.51), we have

(.-

NU max 5 n

(ST)quarzemary = (14-44)(577/2T3)
=-3442dBm
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M-ary Signaiing Scheme:

der can, for comparison purposes, verify that a scheme with M = 16
;l;h: ;:ad:signeci for this problem. The requirements for M = 16 are

(Bandwidth)y e = 2500 Hz
(Stia~1s= —24.9dBm

Bandwidth Power

M (Hz) (dBm)
2 10,000 —38.52
4 5000 -3442
16 2500 -24.90

Th ults in the table show that as the bandwidth is reduced the power
e res |
requirement increases sharply.

ceding comparison of binary a.nd M-ary PAM systems, the

r probability was used as the basis for comparison. I the output

symbol erro ?cio n source is assumed to be binary digits, it is more meaningful

of the lnforr;i error probability for comparing M-ary and binary s.c!'lemes.

to use the B no unique relationships between the bit error probability and

zhlle t};;izbfle error probability, we can derive such relationships for two
-ary

In the pre

SP;CI?:I c;i:i.case we assume that whenever an M-ary symbol is in error, the
In the first CaSe b O et Ak 4 oo

. : liv iikely to be any one of ihe 2% _ 1 erronecus k-bit
oy Ougutvlsc?)‘xl:?cli:eyrig;eaﬁy arbitrary bit position in the M-fold set of
Seq“lemes' os ,Ml2 sequences contain a binary 1 in that positi_on and't}}e
k-b“.s?quence g;nces contain a binary 0. Then considering an arbltr_.':lrykt_):t in
remarning Seq1u ce, it is apparent that the same binary digit occurs in 2 -—_1
the tmput seT 2 2“,— 1 possible sequences and the other binary digit eccurs in
of the re‘n-faxm_ﬂgthe remaining 2¢7' sequences. Under these assumptions, the
tllitrfg?;:;zz;gility of bit error P., in M-ary transmission with a symbol error
a

probability P. is given by

2k—] 1
Peb':zk_lPeE:‘ZPr
Thus in comparing i)inary and M-ary schemes, we should use
P, for binary transmission

(5.57a)
P, = 2 -1 for M-ary transmission
: Py \ 5=} Tor M-ary Ir

where P, is the bit error probability of both schemes.
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In practlc_al M-ary PAM schemes, one often uses a binary-to-M-ary codi
:v,uch that bma_ry sequences corresponding to adjacent amplitude levg; diflt‘ng
in only one bit position (one such coding is the so-called Gray ccndf:)S N "
?vhen an M-:fu-y syr_nbol error occurs, it is more likely that only one o-f tho“;;
mpu‘t b1t§ wdl'be In error, especially when the signal-to-noise ratio at fh
receiver input is high. In such a case, we have e

P, = Pk
Thus, for a given bit error probability, we should nse

P, = { P,y for binary transmission

kP, for M-ary transmission (5.57b)

for comparison purposes.

5.5 SHAPING THE TRANSMITTED SIGNAL SPECTRUM

In many applications, the spectrum of the PAM signal should be carefull
sl?a];.)ed to match-the channel characteristics in order to arrive at hysic l[y
rea}l:g.zzb}e 1transmming and receiving filters. As an example considsr Z chiny—
nel 1hat has a poor amplitude response (high attenuat’ion) in the low-
frequency range. Using a signaling scheme that has high power content in the
low-frequency range will result in transmitting and receiving filters with
unreasonat')ly high gain in the low-frequency range (see Equations (5 20) and
(?.21))._ This problem could be avoided i the spectrum of the trax;sm'tted
signal is altered so that it has small power content at low frequencies l

. The. spectrum of the transmitted signal in a PAM system will depem.i on the
s:ggahr;g puls'e_waveform and on the statistical properties of seqﬁences of
transm:ttied digits. The pulse waveform in a PAM system is specfﬁcd by the
ISI requirements. While it might be possible to shape the transmitted signal
:c,pectrum by changing the transmitted pulse shape, such changes might leaflnto
increased IS.I. An easier way to shape the transmitted signal spectrum is to
alter the statlstl_cal properties of the transmitted bit or symbol sequence

In the follov‘vmg section we will look at methods of changing the s ec.:trum
of_ the transmitted signal by changing the statistical properties of It’he am-
plitude sequence of the pulse trajin. We will also look at digital methods of
generaling accurately shaped signaling waveforms.
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5.51 Eflect of Precoding on the Signal Spectrum

The output of the pulse generator in a PAM system is a pulse train X(),
which can be written as

]

X@)y= 2, apy(t=kT)
where T i¢ the symbol duration (T = T, for binary schemes and T = T, for
M :ary schemes). The output of the transmitting filter Z(¢t) is also a pulse train,

Z(t)= 2 aipt—KT)

=—c

where pi(t) is the response of the transmitting filter to p,(t). The power
spectral density Gz(f) of Z(t) is given by (Chapter 3, Examples 3.8 and 3.9)

2
Gz(f)= ]P‘—g)l- G(f) (5.58a)
where G{f) has the form
G(f) = RQO)—m?+2 § [R(k) — m3] cos 2akf T (5.58b)

In the preceding equations P,(f) is the Fourier transform of p.(t), R(k)
represents E{aa+«}, and m = E{a.). The factor G(f) represents the way in
which the spectrum is affected by the statistics of the amplitude level
sequence {a,}. We will consider three commonly used methods of precoding
which alter the statistical properties of the transmiited sequence and hence
the spectrum of the transmitted signal. We will illustrate the principles of
precoding using a binary PAM system with an input bit stream {b,} that is
assumed to be an equiprobable, independent sequence from an ergodic
source. The bit sequence {bc} is converted into an amplitude sequence {a:}
which amplitude modulates p;(t —kT) (see Figure 5.10). We will look at
methods of mapping {b:} into {a} and their effects on the shape of the
transmitted spectrum. We will concentrate our attention on G(f) in Equation

{5.58).

Input bit Putse Esgemmr Output pulse waveform

Sequence (b} Transmitting Filter ZU) = aupyle — kTl
k

.

Figure 5.10 Portion of a binary PAM system.
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Zir)

0 Ty 2Ty STb 4Ty STb ETb 7T

Figure 5.11 An example of bipolar ¢oding.

Bipolar coding. ~The most widely used method of coding for baseband
PAM data transmission is the bipolar coding. The bipolar coding uses three
amplitude levels: zero and equal magnitude positive and negative levels (for
convenience wé will take these levels to be +1, 0, and —1). Binary 0 in the
input is represented by 2, = 0, and binary 1 is represented by either +1 or ~1,
Each successive 1 that occurs is coded with opposite polarity as shown in
Figure 5.11. The autocovariance R(j) for this sequence can be calculated as
follows: -
R(0) = E{a}}
= (1)*Plac = )+ (- 1P (a;, = — 1) + (0)*P(a, = 0)

1t can be easily verified that P{a, = 1)=P{a,=-1)=! and P(a. =0)=1.

Hence
R(0) =13

. R(1) and R(2) can be calculated using the joint probabilities given in Table

52..
The reader can verify that

R(1) = E{aya,.+}
] 1 ,
-3 B et

1
3

and
R(2) = E{away..}

| 1
= > 3 Pl =i, @ =1J)

==1j==1

==i+i=0
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Table 5.2. Joint probabilities for axdx+;

dx dis diaz ax Auel ez Prob.
0 0 0 0 0 ¢ i
0 0 1 0 0 1 H
0 1 ) ] 1 0 }
0 1 1 0 1 -1 H
1 0 0 1 0 0 i
i 0 1 1 [V | i
1 1 ) 1 -1 0 i
1 1 1 1 -1 1 H
(Assume the last 1 was coded as -1)
oy | o 1 4y | oo 1
[+ A% a+2
-1 0| 0 i -1 0 i 4
o Lo 34 o fo | 4|
1 o i 0 1 0 i i
(Entries inside these tables are joint probabilities.)

Following a similar procedure it can be shown that
R(jy=0 forj>2
Hence the spectral component G(f) for the bipolar coding becomes
G(f) =31 - cos 2nfT}) (5.59)

A plot of G(f) shown in Figure 5.12 reveals that this scheme can be used for
baseband signaling without DC or near DC components (which makes it ideal
for channels which have poor low-frequency response). Also, the average
power is somewhat less since one half of the pulses have zero amplitude.
However, the missing pulses will make clock recovery difficult.

Twinned Binary Coding. Another commonly used method of coding fo
binary PAM data transmission is the twinned binary coding which is also
called split phase or Manchester coding. In this method, each bit is represen-
ted by two successive pulses of opposite polarity, the two binary values
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20
Twinned binary {or 1 out of 2}
Bit rate = 0.5/T
S
=
1.0l HDR3, Bitrate = 1/T

Bigalar, Bit rate = 17

L !
0.25
T

0.5
T

Figurs 512 Power spectral density of the transmitted signal.

having the representations + i
4 3 — and —+ (Figure 5.13). The bit rate i
;f unhrestn‘cted bu}ary pulses. Hence, this method uses twice th: llasaul;lc?lf':i}tl;t
or the twinned binary scheme, R(0) = 1, R(l)=-4, T=T,/2, and e

G{f) = 1 - cos nfT, (5.60)

A plot of G(f) for the twi i P .
bipol ‘ e W1f1ned bl_nary cod{ng 13 shown in Figure 5.12. Like the

Transmitted
signal —\

+
+
0 +

Ty 2r :
Zie) \/ _ b 37,

Figure 5.13 Twinned binary coding.
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The twinned binary coding is also called a one out of two coding scheme
since one out of every two pulses is positive and the other one is negative. An
extension of this method leads to 2 out of 4, 3 out of 6, and 4 out of § schemes
that produce spectra with sharper roll-offs. These methods are very useful for
taiforing the transmitted signal spectrum to a finite frequency band.

High Density Bipolar Coding. A serics of high density bipolar coding
schemes known as HDB1, HDB2, HDB3,... ar¢ used to eliminate long
strings of zero amplitude pulses that occur in regular bipolar coding schemes.
Absence of signaling pulses make clock recovery difficult. In the regular
bipolar coding scheme, successive pulses have opposite sign. In the HDB
coding schemes, “‘bipolar” rule violations are used to carry extra information
needed to replace strings of zeros. The HDBn scheme is designed to avoid
the occurrence of more than n pulses of zero amplitude. The most important
of the HDB codes is the HDB3,. .

The BDB3 code uses a bipolar coding scheme whenever possible. But if the
string 0000 occurs in the input binary stream, special sequences other than
0000 are transmitted. The special sequences contain bipolar violations and
hence can be easily distinguished. -The special sequences used in HDB3
coding are 000D and 100D. In the special sequence, “1” is represented by
amplitude level a; = +1 or —1 following the bipolar rule, and “0" by level 0.
The “D" is replaced by level +1 or —1 violating the bipolar rule. The choice
of the special sequence 000D or 100D is made in such a way that the pulses
violating the bipolar rule take on levels +1 and —1 alternately. 100D is used
when there has been an even number of ones since the last special sequence,
Special sequences can follow each other if the string of zeros continues. Two
special sequences are necessary to assure that the special sequences can be
distinguished from data sequences, and to guarantee that there will be zero
crossings when special sequences follow each other. An example is shown
below.

Input bit
stream 1 ¢ 11 6 6 0 0 ¢ U ¢ 0 0 0 0 0 O O
Coded bit

stream t o1 1[i e 0o po 1o 0o 0 Dt o oD

Amplitude
fevesae - 0 + - [r 0 0 :]o ~fo 0o 0o -J[+ 0 0 4

(Special sequences are shown enclosed. The choice of the first special sequence is arbitrary.)

The HDB3 wa:‘.?eform corresponding to the above example is shown in Figure
5.14. L

The calculation of the autocovariance and G(f) for HDB codes is rather
lengthy and hence is not included here. However, a plot of G(f) for the HDB3
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} k! ] é | | i
0 1 0 0 0 0 0 1 0 0
s Spacial sequence———)-}

Figure 5.14 Example of HDB3 waveform. Shaded puise represents a bipolar
viclation.

coding is shown in Figure 5.12 for comparison purposes. As may be expected,
G(f) for HDB3 lies close to the bipolar curve. The mean power for the HDB3
is 109 higher than the bipolar case since some of the 0 amplitude pulses in the
bipolar case are replaced by nonzero amplitudes in HDB3 coding schemes.

5,5.2 Pulse Shaping by Digital Methods

Digital signaling schemes require accurately shaped pulse waveforms. The
shape of 2 pulse can be specified either by its amplitude as a function of time
or by its Fourier transform. If a puise shape is specified by its transform in
the frequency domain, then, in principle at least, we can design filters to shape
the pulse. This design becomes difficult in a practical sense because of the
need for linear phase characteristics for the filters. An alternate method is to
generate the gulse wavefor:p directly. Such a method should be capable of
generating a signai composed of many overlapping pulses that are superposed.
One of the most commonly used methods of direct waveform generation
makes us¢ of a binary transversal filter shown in Figure 5.15. The pulse
waveform p.(t) which is to be amplitude modulated is sampled at intervals of
A and the amplitude values at sampling times are bog, bgy..., by, by,
bi,....bs. For purposes of simplicity we will assume that sample values
outside the time interval —8A to 8A are small enough to be ignored. The
transversal filter for this waveform consists of a 17-bit shift register with 17
outputs, each of which can be two possible levels 0 or 1. These outputs are
attenuated by b-g 10 s, respectively, and summed by an analog summing
network. ’
The actual waveforin we are trying to generate has the form

Zih = _}‘ dipi(t — kT;)

where d is the kth input bit having a value 0 or 1. In the example shown in
* Figure 5.14, we are approximating Z(t) by the stairease waveform

AOE ; dibe(t ~ kT,)
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Figure 5.18 Waveform generation using a binary transversal filter.

Analog

summing T
device

that is, p,{t) is approximated by

where

Bu(t) = 2 bipu(t=ja)

-3

. _ {1, —Al2=t<Af2
ps(1) = 0, elsewhere

Output
Feleh

The kth input bit dy stays in the shift register for a duration of 174 seconds, It
is shifted through the shift register at a rate equal to 17 times the bit rate.
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Successive bits dy are inserted into the shift resister

and the output due to successive input bits oveﬁlap ar.::c‘l1 ct;: :3131:11;;; ?eov:;gs
performs the superposition of individual pulses to form the composite wave:
form.

The digitally generated waveform has zero errors at sampling times 0, = T;
+2Ty,... The spectrum of the staircase waveform is centered aroun:inth:
sampling frequency (1/A) and its harmonics. By choosing a suitably la
sampling frequency .the “noise” due to sampling can be separated from :lgle
spectrum of the desired pulses. Then, a simple lowpass filter can be used te
smooth out the waveform. °

For signaling methods with more than one amplitude level, we need
additional shift registers attenuators, and summing devices. For e;xam le, if
the signaling scheme demands three levels 1, 0, and —1, then twop Sl’li;.'t
registers will be needed. ’

5.6 EQUALIZATION

In the design of baseband PAM systems we assumed that the frequenc

response H,(.j) of the channel is completely known. Based on the knowledge o)f,
H.(f) we designed PAM systems to yield zero intersymbol interference (ISI). In
almost all real systems some amount of residual ISI inevitably occurs due. to
imperfect filter design, incomplete knowledge of channel characteristics
changes in channel characteristics, and so forth. The only recourse to mitigatf;
the residual distortion is to include within the system an adjustable filter or filters
that can be “trlmrped" to compensate for the distortion. The process of
correcting chanr.lel induced distortion is called equalization. Equalizing filters
are most often inserted Pctween the receiving filter and the A/D converter
especially in systems using switched telephone lines where the specific linf.:

. characteristics are not known in advance.

5.6.1 Transversal Equalizer

It is obvious that an equalizing filter should have a frequency response H.,(f)
such that the actual channel response multiplied by H,(f) vields the assu;:md
channel response H.(f) that was used in the system design. However, since we
are interested in the output waveform at a few predefined sampling ti,mes only
the design of an equalizing filter is greatly simplified. The most commonly useci
form of easily adjustable equalizer has been the transversal filter shown in
Figure 5.16. )
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Total delay = ZNT,

Input Delay 7, Delay T, .. Defay T, Delay T,

pAe)

pAt—T | pele—27,) pole— 2NT,)

Figure 5.16 Transversal equalizer.

The transversal equalizer consists of a delay line tapped at T, second intervals.
Each tap is connected through a variable gain device to a summing amplifier. For
convenience we will assume that the filter has (2N + 1) taps with gains C_n,
Contty -3 Cos Cioe .., Cy The input to the equalizer is p,(f}, which is known,
and the output is p.,(t). Wecan write the output p.,(t) in terms of p,(t) and the tap

gains as

Palt) = §;N Caplt = (n + N)T.] (5.61)
If p,(f) has its peak at ¢ = § and ISI on both sides, the output should be sampled at
t =(k +N)T; and
Paalts) = iN Col(k—mT,} (5.62)
If we denote p,(nT;) by p{n) and % by k, we have
Peg(k) = "ﬁ_:N Cop(k —n) _ (5.63)

{deally, we would like to have
1 fork=0
Pealk) = {0 elsewhere

This condition cannot always be realized since we have only (2N + 1) variables
(namely, the 2N + 1 tap gains) at our disposal. However, we can specify the
value of p.(t) at 2N + 1 points as
1 fork=0
Pulk) = {o, k=1, %2....,+N

(5.64)
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Combining Equations (5.63) and (5.64), we have

~ 0 -Pr(O) pr(" ]) "t P,("ZN] Ir C_N' 7]
N0 P pA0) - pA-2N+D) || Conm
ZEros : ) .
0 = D : (5.65)
1 @ ey o foX
N 0 - . .
Zeros : . : Cya
| 0 Jawsy | PA2N) .- = pl0) 1L S

Equation {5.65) represents a set of (2N +1) si.multanec?us equati.ons that can be
solved for the C,'s. The equalizer described in Equz}tlon (.?.64) ls.called 2 zero.
forcing equalizer since p,,(k) has N zero values on etth"ar side. This equalizer is
optimum in that it minimizes the peak intersymbol Interfe}'e.rlce. The main
disadvantage of a zero forcing equalizer is that it i:}creases 'the noise power at the
input to the A/D converter (Problem 5.21). But this effect is normally more than
compensated for by the reduction in the ISL.

Example 5.5. Design a three t'ap equalizer to reduce the ISI due to the p.(t)

shown in Figure 5.17¢.
|
|
| Received pulsa

£ele)

0.1 e Pt
| —— r .
AT —or, — T, o W T, 3T,
T 1 ' {at |
\ ! | [ i |
I 1 | | ! 1
| | | | 1 1
1 ! ! [ ) ! !
| 1 1 i Egqualized pulse :
|
i t | | i
| ! J | ! I
t 1 I : } 002 |
100 I ' 0.0 'o.os%k ‘
—0.0095 0.0 |
| P |
—— 0 S—

{é

Figure 5.1;1 Three tap equalizer discussed in Example 5.5.
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Solution. With a three tap equalizer we can produce one zero crossing on either
side of t = 0 in the equalized pulse. The tap gains for this equalizer are given by

0 1.0 61 ¢ C_,
L]=1-02 1.0 01})[C,
0 0.1 -02 1.0/ \C

C, —0.09606
Co = 0.9606 )
o 0.2017

The values of the equalized pulse can be computed from Equation (5.63) as

or

Pu{—3}=10.0 p(~3)=0.0
pcq(_Z) = ={.00%6 pA—=2)=10.0
Pa(—1)=0.0 p~1)=0.1
Peg(0) = 1.0 p0)=1.0
Peafl)=0.0 pe(1)=—0.2
Peg(2) = 0.0557 p(D=0.1

Pea(3) =0.02016 p(3)=0.0

The equalized pulse is shown in Figure 5.17b. While the equalized pulse has one
zero crossing on either side of ¢ = 0, it has small ISI at points further out from
i ={ where the unequaiized puise had zero ISI.

5.6.2 Automatic Equalizers

The design and adjustment of the tap gains of the zero forcing equalizer
described in the preceding section involves the solution of a set of simul-

taneous equations. In the manual mode, the “trimming” of the equalizer
involves the following steps:

1. Send a test pulse through the system.

2. Measure the output of the receiving filter p,(t) at appropriate sampling
times.

3. Solve for the tap gains using Equation (5.65).
4. Set the gains on the taps.

*Highly accurate and simply instrumented antomatic systems for setting up the
gains have been developed in recent vears, These systems are usually divided
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into two groups: the preset type that uses a special sequence of pulses prior to
or during breaks in actual data transmission, and the adaptive type that
adjusts itself continuously during data transmission by operating on the data
signal itself. Automatic equalizers use iterative techniques to arrive at opti-
mum tap gains. Before we take a detailed look at the operation of automatic
equalizers, let us briefly review an iterative technique commonly used for
solving 2 set of simultaneous equations.
The equations we have to solve, given in (5.65), can be written as

I=XC {5.66)

where I is a (2N + 1) column vector whose components are all zero except
the zeroth, X is a (2N + 1) square matrix whose (i, j)th element is p,(i — j), and
C is a column vector whose jth ¢element C; represents the gain of the fth tap;
the indices i, run from —N to N. The iterative method assumes that at the
end of the kth iteration we have a solution vector C* that yields an error in
the solution

= XCk—1] {5.67)

The components of the error vector are denoted by ef (j=-N to N). The
new, adjusted value of the solution vector C**' is obtained by

C*'= C* - A sgn(e®) (5.63)
where

[+1, y=0
sgn(y) ={ 0, y=0
-1, y<0

and A represents a positive increment. The iterations are continued until C* and
¢ differ by less than some arbitrarily small value. .

Under some mild assumptions, it has been shown that the system distortion
per tap can be reduced to near the minimum possible value of A/2. In this
method (called the fixed increment method) A must be made as small as
possible. Two examples of automafic equalizers are presented next.

Preset Equalizer.. A simple preset equalizer is shown in Figure 5:18. In this
system, components of the error vector &' (k=1,2,...) are measured by
transmitting a sequence of widely separated pulses through the system and
observing the output of the equalizer (= XC*) at the sampling times. Fixed
increment iteration, with stepsize A, is used to adjust the tap gains. The

sampling of the filter output is done using a timing circuit triggered by a peak.

detector. The center sample is sliced at +1 (or compared with +1) and the
polarity of the error component € is obtained. The polarities of the other
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Figure 5.18 A three tap preset equalizer.

error components e€f (j=—N to N) are obtained from the value of the filter
outpit at { ==xjT,. (If we denote the values of the equalized pulse at the end of
the kth iteration by pi,(2), then ef=p%(jT.) for j#0, and ef=p%(0)-1.)

At the end of the kth test pulse, the gate is opened, and depending on the
polarity of the components of &*, the tap gains are moved up or down by A
according to (5.68). This iterative “training session™ is carried on until the
procedure converges. The training procedure might involve hundreds of
pulses.

A major problem in ‘“‘training” 2 preset equalizer is the presence of noise in
the observed values of p.(#). The effects of noise can be somewhat mini-
mized by averaging the measured values of p,.,(f) over a number of test pulses
before the tap gaing are changed. One of the difficulties with averaging is that
the rate of convergence is slowed down somewhat. Other methods for
reducing the effects of noise may be found in Reference 1 listed at the end of
this chapter. .

Adaptive Equalizer. In adaptive equalizers, the error vector €' is con-
tinually estimated during the normal course of data transmission. Such
schemes have the ability to adapt to changes during data transmission and
eliminate the need for long training sessions. Adaptive equalizers are quite
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Figure 5.19 A three tap adaptive equalizer.

re:guma?;(z):r:l practice and are more accurate, versatile, and cheaper than preset
_ A.Slrnple adaptive equalizer for a binary data transmission scheme is shown
in Flgure_ 5.19. The output of the equalizer Y(¢) at sampling times should be
'iA, +‘A if the actval input bit corresponding to the sampling time is 1 and —-A
if the input bit is 0. In an actual system, due to ISI, the values Y (jT,) will var

about t.f? c.lepending on the input sequence. For a random data sequencg
these variations will also be random. If the ISI is not very large, we can still
decode the data and generate a sequence of ideal or desired lev;ls A;, where
A; = A, From the ideal sequence A; and the actual measured valuesFY(ij)

we can generate an estimate of the error séquence needed for adjusting 'he,

tap gains. The estimate® most commouly used is given by [Lucky, page 160]

S
&= 2 (A )Y () — Al (5.69)

where m is the sequence length used for estimati i in i
' = ‘ stimation. The jth tap gain Is
adjusted according to C¥*¥ = C%—asgn{g}; j = — N to N, where k denotes the
number of the iteration cycle.

in order for the adaptive equalizer to work effectively the input bit
sequence and ‘the sequence of received samples Y (nT,) must be random.
Further, adaptive equalizers have a difficult time establishing initial equaliza-

' i . - .
f,h:shth::j maximum hk_ehhood estimator of e, the jth component of the error vector. The
right-hand side of Equation (5.69) represents the cross correlation operation.
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tion. Once correct equalization is acquired, the error estimates are accurate
and the equalization loop tracks changes in channe! characteristics easily. A
procedure used often to circumvent this difficulty is touse a hybrid system in
which data trapnsmission is delayed during a brief reset period in which a
quasi-random sequence is transmitted and regenerated at the receiver. When
the equalization is reasonably good, the equalizer is switched to an adaptive
mode and data transmission is started.
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5.7 MISCELLANEOUS TOPICS

5.7.1 Eye Diagram

The performance of baseband PAM systems depends on the amount of 181
and channel noise. The distribution of ISI and channel noise in the system can
be readily observed by displaying the received waveform Y'(f) on an oscillo-
scope using a sweep rate that is a fraction of the symbaol rate re. The resulting
display shape resembles a human eye and is widely known as the eye pattermn
of the system. To understand and interpret €ye patterns let us consider a
binary PAM system. The received waveform with no noise and no distortion
is shown in Figure $.20a. When segments of this waveform are superimposed
on each other, the “open” eye pattern results. A vertical line drawn through
the center of the eye pattern reveals that if the sampling time is correct, then
all sampled values are £A.

Figure 5.20b shows a distorted version of the waveform and the cor-
responding eye pattern. The eye pattern appears uclosed” and the sampled
values are now distributed about +A. Decoding of the received waveform is
somewhat difficult now. Finally, 5.20¢ shows a noisy distorted version of the
received waveform and the corresponding eye pattern. Plots shown in these
figures reveal that the eye pattern displays useful information about the
performance of the system. For comparison purposes typical eye patterns of
a duobinary signaling scheme are shown in Figure 5.21. “

Eye pafterns are often used for monitoring the performance or baseband
PAM systems. If the signal-to-noise ratio at the receiver is high, then the
following observations can be made from the eye pattern shown simplified in
Figure 5.22:

i. The best time to sample the received waveform is when the eye opening is
largest. )

2. The maximum distortion is indicated by the vertical width of the two
branches at sampling time.
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6. ﬁs:mtm‘egiei in the eye pattern indicate nonlinearities in the channel since
strictly linear system with truly random data all t i i
be identical. fie eve openings wil

5.7.2 Synchronization

In baseband PA.M systen‘ls t}}e output of the receiving filter Y(¢) must be
sampled at precise sampling instants f, = mT, + t+ To do this sampling we
?heectl a cloc.k sngnTal at the receiver that is synchronized with the clock signal at
¢ transmitter. Three general methods in which thi izati
Ohrarmsmitt 13 synchronization can be

1. derivation of clock ipformation from a primary or secondary standard; for
example, the transmitter and receiver can be slaved to a master clock:

2. transmitting a synchronizing clock signal;

3. derivation of the clock signal from the received waveform itself.

The‘ﬁrst met.hod is often employed in large data communication networks.
On pomt-_to-pomt data transmission at low rates this method is not necessary
fmd the high cost of this method does not justify its use. The second methoci
involves the transmission of a clock signal along with data which means that 2
small pz?rt of the channel's information capacity needs to be given over to the
cIocl_c signal. If the_ available capacity is large compared to the data rate
requirements, then this method is most reliable and least expensive.

The th.ll'.d methad, self-synchronization, is a very efficient method of
syn.chromzmg the receiver to the transmitter. An example of a system used to
derive a clock signal from the received waveform is shown in Figure 5.23.

The clock recovery network consists of a voliage controiled osciliator
(VC(_)) and a phase comparator consisting of the phase comparison logic and
transistor controlled current switches. The phase comparison logic circuit is
triggered by the one shot multivibrator that outputs a pulse of duration T\/2
when the input Y(#} is <0. The correction or error signal comes out of the
phase.con}parator in the form of I. The charging and discharging of the
capacntor.ls controlled by I. and the voltage across the capacitor controls the
VCO,‘wh:ch generates the clock signal.

To. 1ll'ustraFe the operation of the phase comparator network, let us look at
the timing diagram shown in Figure 5.23b. At time 1,, the clock signal is in
phase and betwe.en time ¢, and ¢, the clock signal drifts by a small amount. As
Y Boes negative at ¢, the one shot is triggered and it puts out a pulse of
duration 0.5T,. The phase comparison logic generates two equal width pulses
QC and QC, and the current I. has a waveform with equal width, equal
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Figure 5.23 Clock recovery network.

amplitude positive and negative portions. The net change in the charge across
the capacitor is zero, the YVCO control voltage remains constant, and no
adjustment is made¢ on the rate and phase of the clock signal

As the clock signal drifts out of phase, the phase comparison operation at
time ¢, results in a current pulse I, with a more positive component. Now, there
is a change q in the capacitor charge and hence a change in the VCO control
voltage. This change in the VCO control voltage results in a correction of the
clock phase. In the example shown in Figure 5.23b, the clock phase is shown
corrected before the next phase comparison operation is initiated at 1.
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usS;v‘era[ versions of the clock recovery network shown in Figure 5.23 are

ed m practice. Almost all self-synchronizing networks depend on level
;:}ll'nanges Or Zero crossings in the received waveform Y (). The performance of
fofslz :etu;o;:kcsi w1113 d.egrade c?nsiderably if the signal stays at a constant level
o %h;; [r;gks ?1 time and if tllue zero crossings in Y(#) are obliterated by
no! c:;din 2 thod evel chang«?s in the data.can be corrected by using one of
e codi cgroszi ods suggest_ec.l in the preced.mg section. The effect of noise on
i ng can be mml_mlzed by setting an error threshold in the phase

mparator outpu.t I?elow which no clock phase correction is attempted. An-
other way of r_mmmlzing the effect of noise is to use an averaged estima.te of
the zero crossing times in the phase comparison network.

8.7.3 Scrambler and Unscrambler

tll3r;naryhcommumc:at:on syst?ms are designed to convey a sequence of bits
m_ the source to the receiver. While the system is expected to convey all
52:1.5;25. s;quenccs, there may be some sequences that are not conveyed
o sg;ie Sor fe:lc?.:rfple, the clock recovery in the system might be affected if
riiein ermrsoA g_is sent and hex:lce _thc system might start losing data due to
tramag ..f A mnary communlcat{on system is said to have bjt sequence
e par y if it can convey any given sequence of bits. Several methods
encodsiig tgr c;’Jrf:(s:iervetb:t transparency and most of the methods Involve an
cedire to restri iodi
fequences containing long :Eiu':itgsﬂ;: ;nc::l lc-:r:rzlgfozf periodic sequences and
3?t;lan::i§r. I\:_any subsystems in data communication systems work best
random bit sequenccs_. Examples of such subsystems are adaptive
gqualu.rers? and seIf—synch_romzation networks. While strings of ones or zeros
) ;cie;?qdl::nséiqu;nces might appear in the output of an information source:
ystem faene ﬂ%scuzlztve‘to be rec?ded for transmission if the data transmission
pste he Ly in copveyfng t}}ese sequences. A device commeonly used
it r_icio Ing undesirable bit strings is called a scrambler. While it may not be
(1::>e rstsalin fytoai)t;::::xt ITfﬁ;oc;:u;‘lrence of all undesirable sequences with absolute
removed by the war o5 aos . :a; l;z:;:mon repetitions in the input data can be
an;‘l:zescmr:xtréﬁlifelr shown in Figure 5.2:1a consists of a “feedback” shift register
b ! Scmmgll.mscrdambler has a “feed forward” shift register structure. In
oo €T and unscrambler the outputs of several stages of shift
aggaii e;:; aredailded t?gethc'r, modulo-2, and then added to the data stream
peain I Ol;ut)h : :Yi!t :;:fhmetlc. The contents of the registers are shifted at the
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& Denotes
modulo 2
addition
<1
4
Feed
I Feedback foroerd
C@D‘F— shift & shift
registar .
3 register
2
1

Input
data data
(@) j
s~ T, T
Transmitted Received Clock
sequence sequence recovery
() (b)

Figure 5.24 (a) Scrambler. (b) Unscrambler.

In order to analyze the operation of the scrambler and unscrambler, let us
introduce an operator ‘D" te denote the effect of delaying a bit sequence by one
bit. Thus DS represents a sequence S delayed by one bit and D*S represents the
sequence S delayed by k bits, Using the delay operator, we can establish the

following relationships:

rtin the unscrambler, we have R=T.® DT D'T,=

(1 ® F)T;, where F stands for the operator D’ @ D’. In the scrambler, T is
operated on by F = D*@ D’ and added to S. That is, Tr=S @ FT, or

Starting with

by
T1 = ]@-)—F (570)
where F = D° @ D’ and division stands for inverse operator. In the absence
of errors, we have T, = T, and hence the unscrambled output

R=(1® AT,
=(I®F)T.='i%§3 (5.71)
=8

Thus the input sequence is exactly duplicated at the output of the un-
scrambler.

To illustrate the effect of the scrambier on periodic sequences and on long
strings of ones or zeros, let us consider an input sequence shown in Table 5.3
and assume that the initial content of the register is zeros. This table
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Table 5.3. Input and output bit streams
of the scrambler shown in
Figure 5.24

‘“g“‘ 1010101000001t
DT, 0001011100011 ¢
DT, 0000010111000 1

0

Output 4 4 1110001101

T, 0

illustrates that the scrambler can effectively remove periodic sequences and
long strings of zeros by scrambling the data input. The scrambler in general
produces a pseudo-random sequence given zeros as a data input, assuming it
starts from a nonzero state. With an appropriate choice of taps, an n-bit shift
register scrambler can be made to produce a sequence of 2" ~ 1 bits before it
repeats itself. The design of the feedback and feed forward registers used in
scramblers and unscramblers is rather involved. The interested reader can
find a good treatment on the analysis and synthesis of these devices in texts
dealing with algebraic. coding schemes (see, for example, Peterson’s book on
coding).

Introduction of scramblers affects the error performance of the com-
munication system in that a single channel error may cause multiple errors at
the output of the unscrambler. This is due to the propagation of the error bit
in ihe shift register at the unscrambier. Fortunately, the error propagation
effect lasts over only a finite, often small, number of bits. In the scram-
blerfunscrambler shown in Figure 5.24, each isolated error bit causes three
errors in the final output. It must also be pointed out that some random
bit patterns might be scrambled to all zeros or all ones.

5.8 SUMMARY

In this chapter we developed procedures for designing and analyzing base-

band PAM data transmission systems. The main objectives of the design werg ™=~

to eliminate intersymbol interference and minimize the effects of noise.
Several methods of data transmission using PAM techniques were con-
sidered. The performance of baseband PAM systems was compared in terms
of power-bandwidth requirements for a given data rate and error rate.
Methods of shaping the transmitted signal and its spectrum were discussed.
The problems of equalization and clock recovery were considered and
methods of automatic equalization and synchronization were presented.

§ e ——— e ————— .-

— e e

o

e ety

"y,

R —

e

US‘E"‘”IJ OISJLJ -y v oSl Ufgguj.a.'zlb a.a.u.u
bl 05 jlro 95g) B3> L g @aio 4S5 ygao (51 S 0095 %
Problems 245

REFERENCES

A detailed and thorough treatment of several aspects of baseband sys:tem
design may be found in the book by Lucky et al. (1968). This book _is written
for advanced graduate students and the average reader may find it hard to
read. Practical aspects of baseband data trapsmission are dealt with, rather
nicely, in the book by Davies and Barber (1973). Introductory level treatment
of baseband PAM systems may be found in many undergraduate texts
[Bennet and Davey (1965), Carlson (1975), and Ziemer and Tranter (1976-)].
Carison’s book contains an easily readable treatment of PAM systems with
several examples.

1. R. W. Lucky et al. Principles of Data Communication. McGraw-Hill, New York (1968),
Chapter 4.

2. D. W, Davies and D. L. A. Barber, Communication Networks for Computers. Wiley, New
York (1975), Chapter 5.

3. W. R. Bennet and J. R. Davey, Data Transmission. McGraw-Hill, New York (1965).
4. A. B. Carlson. Communication Systemns, McGraw-Hill, New Yerk (1975).

5. R. E. Ziemer and W. H. Tranter. Principles of Communications. Houghtor Mifflin, Boston
(1975).

6. W. W, Peterson, Error Correcting Codes. MIT Press, Cambridge, MA (1961).

FROBLEMS

Section 5.1

\/5;1. A baseband binary PAM system uses a signaling waveform

sin mwrt

Pg(t) = Tht

to transmit binary data at a bit rate of r, bitsfsec. The amplitude leYe!s
at the pulse generator output are +1 volt or —1 volt, +1 if the input bit is
1 and —1 if the input bit is 0. Sketch the waveform of the pulse
generator output when the input bit stringis¢ 0101 1 0.

5.2. Suppose that the received pulse in a baseband binary PAM system
‘is given by
SIn Tyt

pet)= purn

with amplitude levels 1 mvolt. The received waveform is sampled at
L= kT, {11 (k=0,%1,..., = M), that is, there is & timing error of
one tenth of a bit duration. Assuming that the input to the system is a
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sequence of 2M + { bits of alternating 0's and 1’s, find the value of the
ISI term at #,.

< 5.3. Suppose that the received pulse in a baseband binary system has the
shape shown in Figure 5.25. Consider the input to the A/D converter

Y()= 2::: Ap(t =ty —kT), Ay==1

Assuming t; = T,/2 and 7.= 2T, find the value of the ISI term when the
input bit sequence is a long string of alternating zeros and ones.

1—g-tT et Tef 2T 1)

]
!
I
I

!
0 7,02 T,

Figure 525 p.(t) for Problem 5.3.

Sections 5.2 and 5.3

V54, We want to sclect a F,(f) for transmitting binary data at a rate of
ry bits/sec. Which one of the three shown in Figure 5.26 wol.l!d you

choose? Give the reasons for your choice. \
T

P l-(—— {b)

X:] S NP
{a}
{£) —a® \/Na

| t f

T, b"2 ry 3/ 2rb 2?b

Figure 5.26 A,(f) for Problem 5.4.

5.5. Derive the result stated in the footnote on page 198,

\/ 5.6. In a binary PAM system, the sampled value of the received wavcfo!'m Y
has the following probability density functions depending on the input
bit:

1
sen(¥) = xp(~(y — 1)*2), —w<y<o
Frivsendy) Vs © p(~(y — 1)%2} y
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Friosen(y) = \/EH exp(~(y + DY2), —eo<y <o

P(lsenty=p, P(0sent) = 1-p

The receiver compares Y against a threshold value T and outputs a 1 if

Y>Tanda0if YsT,

(a) Derive an expression for the threshold T that minimizes the prob-
ability of incorrectly decoding a bit. Find T for p=02,04,0.5, 0.6,
and 0.8.

(b) Calculate the probability of error for each of the above values of p.

\/ 57. Calculate P, for the system of Problem 5.6 with T = 0 for p=0.2, 0.4,

0.5, 0.6, and 0.8 and compare with the results obtained in that problem.

“/ 58. The sampled values of the received waveform in a binary PAM system

suffer from IS such that

Am+n(t,)+Q when the input bit = 1

Y(tn)= {Am +n(t,)— Q@ when the input bit=0

where Q is the ISI term. The ISI term has one of three values with the
following probabilities:

P(Q=+q)=}
P(Q=0)=!
P(Q=-g)=}

(8) Assume that n(r,.) is 2 Gaussian random variable with a variance of
o’ and that A, =+A or —A depending on whether the transmitted
bit is 1 or 0. Derive an expression for the probability of error in
terms of A, o, and gq.

(b) Find P, for Ao =3.0, and 4/A=0.1 and 0.25. How much does the
IST affect the probability of error in each case?

\/5.9. Design a binary baseband PAM system to transmit data at g rate of
9600 bits/sec with a bit error probability P, < 1075, The channel available
is an ideal lowpass channel with a bandwidth of 9600 Hz. The noise can
be assumed to be white, Gaussian with a two-sided psd ¢/2=
107" watt/Hz. Sketch the shape of [Hr (O], |H ()], [P, ()], and find the
transmitter power requirements.

/5.10. Repeat Problem 5.9 with

-1 -
H.(H= ﬁm, fo= 4800 Hz
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L

I

- ST v,
+ ¥ Hpifl =Hf) = 7
4. ~ 4

. R=481Q, L=51pH

v 4'_5 /) #
+ G G Ve, R ' €, = 187.6pF
- ~ €= 306pF

Figure 5.27 Filter network far Problem 5.11.

Vs The filter shown in Figure 5.27 is used for both the transmitting and

receiving filter in a binary PAM system. The channel is ideal lowpass

with additive Gaussian noise.

(a) Assume that the bit rate at the input is (6.28)(10% bits/sec and p,(¢)
is a rectangular pulse with a width = T}. Find p,{t) and sketch it.

(b) Is there any ISI in the received waveform? Can you use this filter
for binary data transmission at all?

~/ 5.12. The following P,(f) are used in binary data transmission with controlied
ISI:
for [ff= T

2
(a) 4T} cos® mf Tb{o elsewhere

(b) 2T} sin ZWfT"{O elsewhere
L, for [f|= 5T
(€) 4T, sin'(2xf T"'){O elsewhere

For each of the above cases, find pJ(f), and the number of received
ievels.

5.13. A source emits one of three equiprobable symbols in an independent
sequence at a symbol rate of 1000/sec. Design a three-level PAM system
to transmit the output of this source over an ideal lowpass channel
with additive Gaussian noise having a psd of %/2=10"" watt/Hz. The
symbol error probability has to be maintained 2t or below 1075, Specify
the power, bandwidth requirements, and Hr(f), He(f), and p.(?).

5.14. The received waveform in a three-level system has the values —1 volt, 0
and +1 volt in the absence of noise. The probabilities of these levels are
»iand}, respectively. The additive noise in the system is Gaussian with
a standard deviation of volt.

(a) Find the optimum threshold settings for decoding the levels.
(b) Find the probability of error P, for the optimum decoding scheme.
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\/ 5.15. Design a PAM system to transmit the output of a source emitting an
equiprobable, independent bit stream at a rate of 10,000 bits/sec over an
ideal lowpass channel of width 5000 Hz and additive Gaussian noise with a
psd = 107" wattfHz. P, has to be maintained at or below 10~

5.16. Calculate the capacity of the discrete channel discussed in Problem 5.15
if the bit transition rate is limited to 10,000/sec.

Section 5.5

5.17. Verify the spectral component G(f) for the twinned binary coding
scheme given in Equation (5.60).

5.18. A baseband binary communication system uses a received pulse with a
spectrum P.(f) given by

PAf) = {Ta c%fz(’frffzrb): fl<n

elsewhere

The channel and noise characteristics dictate a Hp(f) = VIE.(F)). The
system uses a bipolar coding scheme for the pulse amplitudes with

_ [t for|t] < T20
Pe() = {0 elsewhere

Assuming an independent stream of equiprobable bits at the input to the
pulse generator, compute the power spectral density of the transmitting
filter output.

Section 3.6

\/5.19. The unequalized pulse in a PAM system has the following values at
sampling times:

02, k=1
pAkTy) = p.(k) = [0-8, k=0
02, k=-1

plk)y=0 for [k|>1

(a) Design a three-tap zero forcing equalizer so that the -equalizer
outputis lat k=0and 0 at k = =1,
{b) Calculate p,,(k) for k = +2, =3.

5.20. Would a five-tap equalizer for Problem 5.19 yield Palk)=1 for k=10
and p. (k) =0 for k=0?



250 Baseband Data Transmission

v 521, A baseband binary PAM system was designed with the assumption that
the channel behaved like an ideal lowpass filter with a bandwidth
B = r, Hz. The channel noise was assumed to be white and the pulse
spectrum was chosen to be

PAf) = {Tb cos¥(wfi2n), forlfl<r,

0, elsewhere

(a) Calculate the design value of (AYNolmas. (!é._os)f
(b) Suppose that the channel response turned 8ut to be

H.(f) = 1U(1+ fTy)

and an equalizing filter with H,(f)= l/H.(f) was used at the
receiver. Calculate the (A%Ny) assuming that the transmitting and
receiving filters are the same as before. (Note: The signal power in
both (a) and (b) will be the same but the equalizer will change the
value of the noise power.)

(c) By what factor should the transmitter power be increased to maintain
the same ervor probability?

3.22. A four-level PAM signaling scheme is used to transmit data over an
ideal lowpass channel having 2 bandwidth B. The additive channel noise
is zero mean, Gaussian with a power spectral density of %/2, and the
signal-to-noise ratio at the output of the channel is SN,

(a) Plot C/B versus S/N (in dB) for this channel (C is the channel

capacity), .

(b) Develop the discrete channel model for the four-level PAM scheme.
Find the rate of information transmission D, over the discrete
channel and sketch D/B. Compare your results with the plot shown
in Figure 4.14 (Chapter 4). (Assume that the input symbols are
equiprobable and occur in independent sequences.)

5.23. Repeat Problem 5.22(b) for M = 8, 16, and 32.
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ANALOG SIGNAL
TRANSMISSION

6.1 INTRODUCTION

In Chapter 5 we were primarily concerned with the transmission of messages
that consisted of sequences of symbols. Each symbol was chosen from a
source alphabet consisting of a finite number of symbols. Corresponding to
each symbol a particular electrical waveform was transmitted over the chan-
nel. Thus messages were represented by sequences of waveforms, each of
which was selected from a finite set of known waveforms. The receiver had
the simple task of detecting which onme of the finite number of known
waveforms was trarismitted during each symbol interval.

In contrast, we will now be concerned with the transmission of messages
that are continuous (or analog) signals. Each message waveform is chosen
from an uncountably infinite number of possible waveforms. For example, in
radio or television broadcasting we have an uncountably infinite number of
possible messages and the corresponding waveforms are not all known. Such
a collection of messages and waveforms can be conveniently modeled by
continuous random processes wherein each member function of the random
process corresponds to a message waveform. We will use the random signal
model in Chapter 7 when we discuss the effects of random noise in analog
communication systems. For purposes of analysis, let us define analog
signal transmission as the transmission of an arbitrary finite energy lowpass
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DIGITAL CARRIER
MODULATION SCHEMES

8.1 INTRODUCTION

In Chapter 5 we described several methods of transmitting digital information
over baseband channels using discrete baseband PAM techniques. Most
real communication channels have very poor response in the neighborhood
of zero frequency and hence are regarded as bandpass channels. In order
to transmit digital information over bandpass channels, we have to transfer
the information to a carrier wave of appropriate frequency. Digital in-
formation can be impressed upon a carrier wave In many different ways. In
this chapter, we will study some of the most commonly used digital modula-
tion techniques wherein the digital information modifies the amplitude, the
phase, or the frequency of the carrier in discrete steps.

Figure 8.1 shows four different modulation waveforms for transmitting
binary information over bandpass channels. The waveform shown in Figure
8.1a corresponds to discrete amplitude modulation or an amplitude-shift
keying (ASK) scheme where the amplitude of the carrier is switched between
two values {on and off). The resultant waveform consists of “on” (mark)
pulses representing binary 1 and “off (space) pulses representing binary 0.
The waveform shown in Figure 8.15 is generated by switching the frequency
of the cadrrier between two values corresponding to the binary information to
be transmitted. This method, where the frequency of the carrier is changed, is

380
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8.1 Modulated carrier waveforms used in binary . i
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y i i i hod of digital modulation
lled frequency-shift keying (FSK). In th? thlrfi met
::o:vn ianigure 8.1c, the carrier phase is shifted between two values and

" hence this method is called phase-shift keying (PSK). It should be noted here

that in PSK and FSK methods, the amplitude of the carrie:r remains conts:tant.
Further, in all cases the modulated waveforms are continuous at all 'meds
Finally, Figure 8.1d shows a modulatior] waveform generated tgy ampht?\;{
modulating the carrier with a baseband signal generated by the discrete P
ibed in the previous chapter. .
Sc}'}‘;[::er::js{ation échemI:: using baseband p.u!'se shaping _fql]qwed by an.alog
modulation (DSB or VSB) requires the minimum Lr§n5m1351on bandwidth.
However, the equipment required to generawe, transmit, and demodulat? Ehe
waveform shown in Figure 8.1 is quite corpplex. In contrast, the c‘l:g:tal
modulation schemes are extremely simple tovlm;?lf:mt?nt. The ?rlce pald- for
this simplicity is excessive bandwidth _and possible !ncrease_m er}nsmllt:cr
power requirements. When bandwidth is not the major conmdf:ratlo.n,_t en
digital modulation schemes provide very good Qerfom}apce wnh_mn‘umurr;
equipment complexity and with a goo_d degree of'lmmumty to 'certam channe
impairments. In the following sections we will study digital modulation
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schemes. Primary emphasis will be given to the study of system performance
in the presence of additive noise as measured. by the probability of error.,

We will begin our study of digital modulation schemes with the derivation
of an optimum receiver for demodulating ASK, PSK, and FSK signals with
minimum probability of error. We will show that such a receiver consists of a
matched filter (or a correlation receiver) if the additive noise is white, We will
derive expressions for the probability of error for varigus modulation
schemes in terms of the average Sigﬂa} power at the receiver input, power
spectral density of the noise at the receiver input, and the signaling rate.

In Section 8.3 we will study the amplitude shift-keying (ASK) method. We
will look at optimum and suboptimum methods of demodulating binary ASK
signals. In Sections 8.4 and 8.5, we will deal with optimum ang suboptimum
binary PSK and FSK schemes. Finally, in Section 8.6 we wil| compare the
performance of these binary schemes in terms of power-bandwidih require-
ments and probability of error. In Section 8.7 we will discuss M -ary PSK
DPSK, and FSK schemes. The problem of synchronizing the recejver to the’
transmitter will be considered in SecFion 8.8.

8.2 OPTIMUM RECEIVER FOR BIMARY DIGITAL MODULATION
SCHEMES :

The function of a receiver in a binary communication system is to distinguish
between two transmitted signals sy(f) and sx() in the presence of noise. The
performance of the receiver is usually measured in terms of the probability of
error and-the receiver is said to be Optlm‘Um if it yields the minimum
probability of error. In this section, we will derive the structure of an
optimum receiver that can be used for demodulating binary ASK, PSK, and
FSK signals.

We will show that the optimum receiver takes the form of a matched filter
when the noise at the recciver input is whi.tc. We will also show that the
matched filter can be implemented as an integrate and dump correlation
receiver. The integrate and dump correlation receiver is a cokerent or syn-
chronous receiver that requires a local carrier reference having the same phase
and frequency as the transmitted carrier. Elaborate circuitry is required at the
receiver to generate the coherent local carrier reference, .

The binary ASK, PSK, and FSK signals can also be demodulated using
suboptimal noncoherent demodufation schemes. Such schemes are simpler to
implement and are widely used in low speed data transmission applications.
We will deal with suboptimal (nonceherent) methods of demodulating binary
ASK, PSK, and FSK signals in Sections 8.3, 8.4, and 8.5.

-t
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8.2.1 Description of Binary ASK, PSK, and FSK Schemes

The block diagram of a bandpass binary data transmission scheme using
digital modulation is shown in Figure 8.2. The input to the system is a binary
bit sequence {b,} with a bit rate r, and bit duration T, The output of the
modulator during the kth bit interval depends on the kth input bit b,. The
modulator output Z(t) during the kth bit interval is a shifted version of one of
two basic waveforms s,(2) or s:{t), and Z(t) is a random process defined by

_fsilt= (k= DT i be=0
Z(‘)‘{s;[:-(k—l)T:] if by = | @1

for (k—1)T, =t = kT,. The waveforms s,(t) and s4(¢t) have a duration of T,
and have finite energy, that is, s,{¢) and sy(£) =0 if ¢+& [0, T}] and

Ty
E = jo L0 dt <eo
(8.2)

Ty
E:= f " Lsi1) dt < oo
1]

The shape of the waveforms depends on the type of modulation used, as
shown in Table 8.1. The output of the modulator passes through a bandpass
channel H.(f), which, for purposes of analysis, is assumed to be an ideal
channel with adequate bandwidth so that the signal passes through without
suffering any distortion other than propagation delay. The channel noise n(t)
iz assumed to be a zero mean, stationary, Gaussian random process with a

known power spectral density G,(f). The received signal plus noise then is
st — (k= 1T — ta] + n(t)

V({): [ or
S:[r -(k - 1)Tb —- td] “+ ﬂ(!)

'(k—])Tb'f'fdﬂfﬁka'Ffd

Transmit Local
carriar carrier
Noise
Clock pulses "(;] Clock pulses
Input +
Modul Channel Demadultator
-3 Modulatar Hf {receiver}
Binary 2l + Vie)
data l
b}
by Binary data
output

thy)

Figure 8.2 Bandpass binary data transmission system.
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Table 8.1. Choice o_f signaling waveforms for various types of digital
moduiation schemes, $,(t), s:(0) =0 for &[0, T,1; f. =,

w/27. The frequency of the carrier f. is assumed to be a
mulitiple of r..

5i(D; 0=t =T, A 0=t =T, Type of
Modulation
0 A €08 et Amplitude-shift
{or A sin w.t) keying (ASK)
-A cos et A cos wt Phase-shift
(or — A sin w.t) (A sin e t) keying (PSK)
A cof{(wc — walt} A cosflt, + wy)t} Frequency-
{or Asin{{w, —w)!h (A sinf(we + w2} shift keying
(FSK)
p— Yolth [ Threshold
—>1 i R e
utput
Vith = Z{) + ule) Sample every converter P

T, seconds

Figure 8.3 Receiver structure.

where ¢, is the propagation delay, which can be assumed to be zero without
loss of generality.

The receiver shown in Figure 8.3 has to determine which of the two known
waveforms s,(¢) or s:(t) was preseat at its input during each signaling interval.
The actual receiver consists of a filter, a sampler, and a threshold device. The
signal plus noise V(t) is filtered and sampled at the end of each bit interval.
The sampled value is compared against a predetermined threshold value T,
and the transmitted bit is decoded (with occasional errors) as 1 or 0 depending on
whether Vo(kT},) is greater or less than the threshold To.

The receiver makes errors in the decoding process due to the noise present
at its input. The error probability will depend on the signal power at the receiver
input, noise power spectral density at the input, signaling rate, and receiver
parameters such as the filter transfer function H(f) and threshold setting.

8.2.2 Probability of Error

T he measure olf‘performancc used for comparing digital modulation schemes
is the probability of error. The receiver parameters such as H{f) and
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threshold setting are chosen to minimize the probability of error. In this
section, we will derive expressions for the probability of error in terms of the
signal parameters, noise power spectral density, and the receiver parameters.
These expressions will be used in the following sections for the analysis and
design of digital modulation schemes.

We will make the following assumptions while deriving the expressions for
the probability of error:

. We will assume that {b} is an equiprobable, independent sequence of
bits. Hence, the occurrence of s,(t) or s3(¢) during a bit interval does not
influence the occurrence of s,(t) or st} during any other non-overlapping
bit interval; further, s,(¢) and si(t) are equiprobable.

2 The channel noise will be assumed to be a zero-mean Gaussian random
process with a power spectral density G.(f). .

3. We will assume that the intersymbol interference generated by the filter 1s
small*

The output of the filter at ¢ = kT, can be written as
VlkTy) = so(kTp) + nolkT,) (8.3)

where soft) and ry(f) denote the response of the filter due to signal and noise
components at its input. The signal component in the ouiput at ¢ = kT, is
given by

T,
kT = [ Z@RGT, - 1 dg (8.4
kT,
=f - Z(OR{ET, — ) df + IS terms (8.5)
R=10Ty

where k() is the impulse response of the filter. Since we have assumed the
181 terms to be zerg, we can rewrite Equation (8.5) as

kT,
solkTp) = Z(Oh(kT, - ) df
(k=0T

£l

" Substituting Z(t) from Equation (8.1} and making a change of variable, we can

write the signal component as

T, -
J; SUOR(T, = by dE = salkTy) when by =0
solkTp) = - (8.6)
L Sz(f)h(Tb - f) df = Suz(ka) when bk =1

*We will see later that the optimum filter for the white noise case generates 2ero [SI. For colored
noise case the optimum filter generates nenzero ISI, which can be minimized by making s,(t) and
5:1) 10 have a duration <€ T, so that the filter response settles down to a negligible value before
the end of each bit interval.
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The noise component no(kT,) is given by
kT,
n(kTp) = f_m n{&(kT, — ) dy (8.7)

The output noise m(¢) is & stati
; ; ionary zero me :
The variance of no(f) is an Gaussian random process.

No=Elnie} = [~ G.pimepr ar 8.8)
and the probability density function of ny(¢) is
o ViaN, exp(ZNo), @< <o 8.9

The receiver decodes the kth bit by compari

paring Vy(kT, i
Ty If we assume that 5,(f) and 5,(f) are chosen su coh thba)ti-ga(l;"s)t Lhe t!;l:esho]d
that the receiver decodes the kth bit as 0 if VKT, )N<Tb' sadz( b)s an_d
T{o(kT,,);- To, then the probability that the kth bit is imr:’o o and as 1 }f
given by P, where rrectly decoded is

P.=P{b=0and Vy(kT;)= Ty: or b
= ; = ] and v kT
=1iP{Vy(kT,) = Tolb; = 0} olkT,) < Ty}
+1P{VKT,) < To|by = 1}
(8.10)

If the kth transmitted bit is 0, the
» then Vo = 50 + 1o where s, i '
i i . o 18 a const i
ny is a zero mean Gaussian random variable with the variance g?\?t:nal}d
n

~ Ay XY

Equation (8.8). Hence, the conditional pdf of Vo given b, = 0 is given b
= n by

1
V2aN,

Similarly, when by is 1, the conditional pdf of Vo has the form

— (v~ sqs)”
exp( 2N0 N =06 < pp < oo (8_1]‘1)

fudpg=o{ v} =

— (Uo — 302)

1 2 N
Frgpar() = {
e T V2N, P 2N, ) —w<p<®  (3.11b)

Combining Equations (8.10) and (8.11), we obtain an expression for the

probability of error P, as
P = zl ) 1 (" (vp — s01)?
To VZiTNo xP 2N, ) oy

Ts )
+1 1 ~({vg — 302)2
* . VIaRN, e""( >N, ) dvo (8.12)

Because of equal probabilities of occur
> rences of 0’s and 1's in the in i
stream and the symmetrical shapes of fy,; ., and fvb,=1 shown in Figurep;.f ::

can be shown that the optimum choice {
which the conditional pdf's intersect (see Problem 8.5). This opti

the threshold TF% is

US.iUJJ'J OIS..JLJ RN ) OlS.u.u’ Juols .t Sl al "
).MJL":DJJIZDSSSJQMLIS&A.ADJS)US)JGJI)JJ&J.SNSSP %
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{ug)
frylb, =170

*a

So1

Figure 8.4 Conditional pdf of ¥, given by.

or the threshold is the value of v, at
mum value of

= S0 T S;p
T% =5
Substituting the value of T% for Ty in (8.12), we can rewrite the expression for
the probability of error as

“ 1 ( (Do — Sm)z)
ex ——l S d
g V2TNg T 2N, /%

- 1 ( zz)
= ——cxpl——]d 13
J‘ --sm){ZVNﬂ \/217 P 2 z (8 )

P, =

(sgy

The above expression for the probability of error is & monotonically decreas-
— so)f v N_o

ing function in its argument, that is, P. becomes smaller as (sy;

becomes larger. Equations (8.6), (8.7)and (8.8) indicate that $¢;, S¢ and V Ny
depend on the choice of the filter impulse response (or the transfer function).
The optimum filter then is the filter that maximizes the ratic

$02{ To) — S0l Ts)

=2 (8.14)
, V' Ne

or the square of the ratio +2. Observe thal maximizing ¥ eliminates the

requirement $o; < S
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8.2.3 Transfer Function of the Optimum Filter

The essential function of the receiver shown in Figure 8.3 is that it has to
determing which of the two known waveforms s.(t) or st) was present at its
input during each signaling interval. The optimum receiver distinguishes
between §,(#) and s«t) from the noisy versions of s,(t) and si{t) with
minimum probability of error. We have seen in the preceding section that the
probability of error is minimized by an appropriate choice of h(r) which
maximizes v, where

2 [Sof Th) — S0l T)T?
¥ ,.W_E’TGOL,.:.Q._ ) (8.15)

. o _
sdnrﬂmnhﬂlma—mmmn—aa
and . - .

No= [ GUNHGF of

If we let p{t) = s2(t} — 5,(¢), then the numerator of the quantity to be maxi-
mized is :

| : .
swl(T) = sod Ty = Pu(T) = [ p(OR(T, - D

po . .
=] _POKT - dg (8.16)

since p{t)=0for t<0and h(A)=0for A <0.

1f we let P(f) be the Fourier transform of p{(t). then we can obtzin the
Fouriar transform Pof) of py(!) from Equation (8.16} asg

2

Py(fy=P(NH(

or

oy = [ POH() expli2afTy) df
Hence v° can be writien as
. “: H{YP(f) exp(f2ufT,) df :
T [morcn

(8.17)
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We can maximize y? by applying Schwarz's inequality, which has the form
F

Lz [ |xupP af (3.18)

XUDXAD df
[ ixanraf

where X(f) and X:(f) are arbitrary complex functions of a common variable
f. The equal sign in (8.18) applies when X\(f)y= KX4(f), where K is an
arbitrary constant and X3%(f) is the complex conjugate of X(f). Applying
Schwarz's inequality to Equation (8.17) with

X(f) = HOVGAD

and

P(fyexp(j2nfTs,)

we see that H{(f), which maximizes v is given by

_  PHP) expl=j27fT;)
Hip=K 6.0

where K is an arbitrary constant. Substituting Equation (8.19) in (8.17), we
obtain the maximum value of ¥ as

¥max = in Lg%)ﬁ df (2.20)

and the minimum probability of error is given by

P,=[= L exp(—i‘—z)dz

-
o Ymaxl2 \/LGT N

= Q(I;—‘) (8.21)

, - X =

(8. ]'é)

Special Case I: Matched Filter Recelver. [f the channél noise is white,

that is, G.{f)=n/2. then the transfer function of the optimum receiver is

given by '
H(f)= P*(f) exp(~i27fTs) (8.22)

{from Equation (8.19) with the arbitrary constant K set equal to n/2). The
impulse response of the optimum filter is

w(ty= [ (PH) exp(=27ifT) exp(@mifty df (3.23)
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Recognizing the fact that the inverse Fourier transform of P*{f) is p(—t) and
that exp(—2wifT,) represents a delay of T, we obtain h(t) as

. h(t)=p(T, ~1) . :
Since p(t) = 5o{t}— 51(t), we have
) =s{Tp—t)=s{Tp— 1) (8.24)

The impulse respounse k() in Equation (8.24) is matched to the signal 5,(¢) and t 5,l¢} 7
so(t) and for this reason the filter is called a2 matched filter. An example is | o T
shown in Figure 8.5 to illustrate the significance of the result stated in H -
Equation {8.24). Al

Figures 8.5a and 8.5h show s.(¢) and s5,(¢) of duration T} The waveform i
p{#) = s2(t)— 5,(t) is shown in Figure 8.5¢ and p(—#), which is the waveform ‘
p(t) reflected around ¢ =0 is shown in 8.54. Finally, the impulse response f
of the filter R(t)=p(T,—1), which is p(—t) translated in the positive
direction by T, is shown in Figure 8.5¢. We note here that the filter is causal
(h() =0 for t <0) and the impulse response has a duration of T,. The last fact
ensures that the signal component of the output at the end of the kth-bit plet = s5led — s,
interval is due to signal component at the input during the kth-bit interval
only. Thus, there is no intersymbo! interference. The probability of errer for
the matched filter receiver can be obtained from Equations (8.20) and (3.21). :

In general, it is very hard to synthesize physically realizable filters that i ' | w——t
would closely approximate the transfer function specified in Equation (8.22). N\

In the following section we will derive an alternate form for the matched filter

s,le)

L]

2-—-———

e

o

Ty

oAy sEeinil I i die 10 = ;

that is easier to implement using very simple circuitry.

Special Case il: Correlation Receiver. We will now derive a form of the
optimum receiver, which is different from the matched filter implementation. } —Ty
We start with the output of the receiver at i = T},

. 2\
T, :
Va(Th) =J: VIOR(T, - ) d¢ ' Rt} = piT,— 1)
where V() is the noisy input to the receiver. Substituting (D)=

54Ty — ) — 5Ty — £} and noting that h{;}=9 for /& (0, T,), we can rewrite :
the preceding expression as ' :

Th
VLT, = f VIO sHE) - sd D) dL

Te K Flgure 8.5 !mpulse response of a matched filter. () s(t). (&) 5:(1).
=L V(D0 dg'fo ViDs(o aL @23 (€) PLt) = sett) — s1(8). (d) p(=1). (&) h(t) = p(T, — ).
Equation (8.25) suggests that the optimum receiver can be implemented as

shown in Figure 8.6. This form of the receiver is called a correlation receiver.
' 3
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5, ()

i\ [ntegrator
T

X f &
D-

g

C sl i
V(t:l = { or

5t + it i Threshold
— +@D—°?§’——> device >
] {A/D) | Output
Sample
every Ty
seconds

- T,
Q) [
T 0.
Integrator
sl
Figure 8.6 Correlation receiver.

It must be pointed out that Equation (8.25) and the receiver shown in I:Ti_gure
8.6 require that the integration operation be ideal with zero inifial conditions.
In actual practice, the receiver shown in Figure 8.6 is actually implemented
as shown in Figure 8.7. In this implementation, the integrator has to be reset
(i.e., the capacitor has to be discharged or dumped) at the end of eachﬁ
signaling interval in order to avoid intersymbol interference. If RC > T, the
circuit shown in Figure 8.7 very closely approximates an ideal _integrator aqd
operates with the same probability of error as the ideal receiver shown in
Figure 8.6. ‘ ) )

Needless to say, the sampling and discharging of the capacitor (dumping)
must be carefully synchronized. Furthermore, the focal reference signa{
so(1) — si(f) must be in “‘phase” with the signal component at the receiver

White _ Closed every I
Gaussian . T, seconds
neise Filter ’
c Tnreshold
X device
R [A/D}
- High gain
sl sl amglifier

Figure 8.7 integrate and dump correlation receiver, The bandwidth of the filter
preceding the integrator is assumed to be wide enough to pass Z{(t) without
distortion.
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input, that is, the correlation receiver performs coherent demodulation. The
correlation receiver, also known as an integrate and dump filter, represents
one of the few cases where matched filtering is closely approximated in
practice.

Example B.1. A bandpass data transmission scheme uses a PSK signaling

" scheme with

Sz(f)'_—ACOS wel, OstsTb, wc=10'm’T,,
sf)=—-Acosed, 0=t=T, T,=02msec
The carrier amplitude at the receiver input is 1 mvolt and the psd of the
additive white Gaussian noise at the input is 107" watt/Hz. Assume that an

ideal correlation receiver is used. Calcul?te the average bit error rate of the
receiver.

Solution
Data rate = 5000 bits/sec, G.(f) = n/2=10"" watt/Hz

Receiver impulse response = k()
= 5Ty — )= 5Ty — 1)
=2Acos wlTs — 1)
Thres’}}‘old setting is.0 and

wa P
¥ ax = J: u%% df—{from Equation (8.20))

=& [Liporas

) ; o _ )
= = (%) J ’ [sAt)— 5i(DH}F dt (by Parseval’'s theorem)
1]
. 1 f” 2 N
.-(ﬂ) " 44%cos wat’ dt
(22T = 4T _ )
(n)(ZA T)=="t=40
. = -zt
Probability of error = P, = f L exp (=54
ropability O error é.rml'\/z'n' exp( > ) 4
= Q(V10)

From the table of Gaussian probabilities, we get P, = 0.0008 and

Average error rate = () PJsec = 4 bits/sec
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8.2 EBINARY ASK SIGNALING SCHEMES

The binary ASK signaling scheme was one of the earliest forms of digital
mo#ulation used in wireless (radio) telegraphy at the beginning of this century.
While amplitude-shift keying is no longer widely used in digital communications
for reasons that will be discnssed later, it is the simplest form of digitai
modulation and serves as a useful model for introducing certain concepts. The
binary ASK waveform can be described as

silt—=(k—1T,} if b, =0
st —Ck—-DT,] ifby=1
where s:(f)=Acoswt 0<t=T,) and s1{t)=0. We will assume that the

carrier frequency o, = 2nw/T,, where n is an integer.
We can represent Z(t) as

Z(t)={ k-DT, =tskT,

Z(1) = D(t)A cos wt) (8.26)

whferc D(t) is a lowpass pulse waveform consisting of (often but not neces-
:sanly) rectangular pulses. For purposes of analysis we will assume that D(t)
is a rectangular random binary waveform with bit duration Ty. The model for
D(t) is (Chapter 3, Section 3.5)

dty= 3 belt—k~1DT], h=0orl
!’1 O0=t=T,
{0 eisewhere (8.27)

Dity=d(t-T)

where T represents a random delay with 2 uniform pdf in the interval [0, T,].
The form of the modulated waveform Z{¢) suggests that the ASK signal can
be generated by product modulation, that is, by multiplying the carrer with
the rectangular waveform (1) or using D(t) to turn the carrier oscillator on
and off. :

The bandwidth requirements for transmitting and processing the ASK
signal can be obtained from the power spectral density of Z(t), which can be
computed as follows: From Equation (8.26) we see that the power spectral
gc:sity Gz(f} of Z(t) is related to the power spectral density Go{f) of D(r)

Y

glt}=

1
Gaf) =5 (Golf — £)+ Gof + £ (3.28)

*Strictly speaking, we need to include a random fer i i .
c ; f phase for the carrier in Equat .
Z(#) is a stationary random process. quation (8.26) so that

e
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The waveform D{t) is a random binary waveform with levels 0 and 1. The
autecorrelation function and the power spectral density of D{¢) are (from
Example 3.9 and Equations (3.68) and (3.69})

1, h—-i .
Rm:({)=[4+ 5T, for IL1< Ty
Oforl¢[>T,

_ sin® 7f T,
Golfy = i(ﬁ " +“-1;2}“2-f~;") (8.29)

Substituting Equation (8.29) into (8.28), we obtain the psd of Z(1) as

2
Gef) =256~ f+ 84 + 1)

sin® T, {f — f.) , sin? =T, (f +fc)) (8.30)
T (f ~ f) T T(f +fc) ’

A sketch of Gz(f), shown in Figure 8.8, indicates that Z(#) is an infinite
bandwidth signal. However, for practical purposes, the bandwidth of Z(t} is
often defined as the bandwidth of an ideal bandpass filter centered at f. whose
output (with Z() as its input) contains, say, 95% of the total average power
content of Z(f). It can be shown that such a bandwidth would be ap-
proximately 3r, Hz for the ASK signal.

The bandwidth of the ASK signal can be reduced by using smoothed
versions of the pulse waveform D(t) instead of rectangular pulse waveforms.
For example, if we use a pulse waveform D{¢#) in which the individual pulses

£(t) have the shape,

0= {(a!Z)[l +cos@urt -7, 0<t<T,
g 0 elsewhere

| —impulse

Gzlf?

fe—3ry fe—in fe—v fe fetr St 2ry f +3n,
Figure 8.8 Power spectral density of the random binary ASK signal; £ > 7.

el
%C:'/L{b

f
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the effective bandwidth of the ASK signal will be of the order of 27, (The
magnitude of the Fourier transform of g(¢) drops off as 1/f%.} Of course, the
gain in bandwidth is somewhat offset by the complexity of the pulse shaping
networks needed 1o generate g(t) given above. Depending on the shape of the

pulse waveform, we need a channel with a bandwidth of approximately 27, to*

3r, Hz to-trapsmit an ASK signal.

The transmitted bit sequence {b} can be recovered from the noisy version
of Z(t) at the receiver in one of two ways. The first method of demodulation
we will study is the integrate and dump-type coherent demodulation; the
second method is the noncoherent envelope demodulation procedure. The
principal reason for using the ASK signaling method is its simplicity. Hence,
qg_thrgghtﬂ_dem_‘qg_tllation is seldom used in conjunction with ASK schemes
because of the complex circuits needed for maintaining phase coherence
between the transmitted signal and the local carrier. Nevertheless, we will

investigate the performance of coherent ASK schemes for comparison pur-
poses.

8.3.1 Coherent ASK

The receiver shown in Figure 8.7 can be used for coherent demodulation of an
ASK signal. As before, we will assume that the input to the receiver consists
of an ASK signal that is corrupted by additive, Gaussian white noise. The
receiver integrates the product of the signa! plus noise and a copy of the noise
free signal over one signaling interval. We will assume that the local signal
s:(t)—s1(t) = A cos w.t is carefully synchronized with the frequency and
phase of the received carrier. The output of the integrator is compared against
a set threshold and at the end of each signaling interval the receiver makes 2
decision about which of the two signals s(r) or 5.{¢) was present at its input
during the signaling interval. Of course, errors will occur in the demodulation
process because of the noise. We can derive an expression for the probability
of incorrectly decoding the input waveform using the resuits derived in
Section 8.2. )

We start with 5x(t) = A cos wt, 5,(t) =0, and s54(t)— 5,(t) = A ¢os w,t. The
signal components of the receiver output at the end of a signaling interval are

Ty
salkTy) = L S1(EMsa(8) = s ()] dt =0

and

Ty
solkTy) = fu sH0)s:(t) - s:(8)] dt

z—i-Tb
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In the preceding step, we made use of our assqmption thz.at cuc.Tf, =2nm, 1 a
positive integer. The optimum threshold setting in the receiver is

ﬁ:ﬁi@%_sw_@z:é;n

The receiver decodes the kth transmitted bit as 1 if the output at the kth
ing i i 0 otherwise.

jenaling interval is greater than T§, and as / .

SIg'II}:;nsrobabﬂity of error P. can be computed using Equations (8.20) and

(8.21) as .
: [ P(f)l'
Y max = J‘_z Gn(f) df

T}
=-2-I l.pz(r)dt
T Jo
T,
= EJ. * Al cos? wtdt
nJe ,

_ATD
n

. . .
The signal si(t) is present at the receiver input on-ly one.half the tirr;)e :([)_;1: ‘
avarase. and for the remaining half there is no signal since 5,{t) = 0. Henee
mymEmeTe mew . . . .

the average signal power at the receiver input is given by

and

S. =AY
We can express the probability of error in terms of the average signal power
as
- ——Sﬂ"T“) ®.32)
Pr - Q(J ]

. . . verape
The probability of error is sometimes expressed in terms of the averag

signal energy per bit, Eu = (5.0 T, as 3
Pc = Q(\/Em-f"]) (83 )

Example 8.2, Binary data has to be transmitted over a telephone link that izas
= r - . - -
axusable bandwidth of 3000 Hz and a maximum achievable signal-to-noise

power ratio of 6 dB at its output. (a) Determine the maximum signaling rate

and P, if a coherent ASK scheme is nsed for transmitting binary data through
¢

this channel. (b) If the data rate is maintained at 300 bits/sec, calculate the
error probability.
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Solution

(a) If we assume that an ASK signal requires a bandwidth of 3, Hz, then the
maximum signaling rate permissible is r, = 1000 bits/sec. The probability of
error can be computed as follows:
Average signal power = A%/4
Noise power = (2)(7/2)(3000)

Average signal power —d= Al A?
Noise power 12,0007 °° 7

Hence, A%dqr, = 12 and
P, = Q(V12) = Q(3.464) =0.0003
(b} If the bit rate is reduced to 300 bits/sec, then

= 48,000

and

P, = Q(VA0) = Q(6.326) = 107,

8.3.2 Neoncoherent ASK

a ey

in meal conerem QC[ECIIOH OI AdNM Slgl‘lals, we assume [l'la[ mere IS avauautc
at the receiver an exact replica of the arriving signal. That is, we have
assumed that a phase coherent local carrier can be generated at the receiver.
While this may be possible by the use of very stable oscillators in both the
transmitter and receiver, the cost may be excessive.

Noncoherent detection schemes do not require a phase-coherent local
oscillator signal. These schemes involve some form of rectification and
lowpass filtering at the receiver. The biock diagram of a noncoherent receiver
for the ASK signaling scheme is shown in Figure 8.9. The computation of the
error probability for this receiver is more difficult because of the nonlinear
operations that take place in the receiver. In the following analysis we will rely
heavily on the results derived in Chapter 3. The input to the receiver is

_[Acoswdt+n{t) whenb, =1
vt u{ *
(t) n(t) when b, =0

where m;(t) is the noise at the receiver input, which is assumed-to be zero
mean, Gaussian, and white. Now, if we assume the bandpass fiiter to have a
bandwidth of 2/T, centered at f,, then it passes the signal component without
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" Bandpass . . Lowpass .

x " Rectifier f'_:' " o—> device

it +\_J tileh filter ¥l filter I

{A/D)
L J

Envelope detector Output
i,

Flgure 8.9 Noncoherent ASK receaiver,

much distortion. At the filter output we have
Y(t)= A, cos wit +n(t)
= A, €0S @t + n(t) cos wt — n,(t) sin w,t (8.34)
where A, = A when the kth transmitted bit by = | and A; =0 when b, ={.
n(t) is the noise at the output of the bandpass filter and r.(r), n.(¢) are the

quadrature components of the narrowband noise n(r) (Chapter 3). We can
rewrite Equation (8.34) in envelope and phase form as

Y (t) = R(t) cos[w:t + 8(t)]

where

R() = VA + n(OF + [n, () (8.33)

Assuming ideal operation, the output of the envelope detector is R(f) and the
transmiiied bit sequence {&} is recovered from R{Th).

To calculate the probability of error, we need to determine the conditional
probability density functions fgp,=o(r) and fap,-(r), and the optimum value of
the threshold. Using the results derived in Chapter 3, we obtain these

conditional pdfs as

2 .
fR"lg‘U(r) exp( 2N0) » T >0 (8.363)
_r (Ar _ri+ Az)
Frppei(?) = NoI"( No) exp( ) r>0 (8.36b)

where Ny is the noise power at the output of the bandpass filter
Ny=1Br=2Ts

and I(x) is the modified Bessel function of the first kind and zero order
defined by

l 2
Lilx) = 5;'[) exp(x cos{u)) du

In order for the envelope detector to operate above the noise threshold
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fR:bk=a(”:'

friby = 17
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Figure 8.10 Pdf's of the envelope of the noise and the
envelope of the signal plus noise.

(Chapter 6, 1Section 6.3), the carrier amplitude at the receiver input should be
cuch that A?® Ny If we assume A2> N,, then we can approximate the Bessel

function by
T I‘—'r) = \-/2:/::’ exp (%)

Hence,

. _Ay?

which is essentially a Gaussian distribution with mean A and variance No
since #2mANy= 1/27wNg in the vicinity of r = A, where the pdf has the bulk of
its area. Sketches of the pdfs are given in Figure 8.10.

The receiver compares the output of the envelope detector R(t) with a
threshold value T and decodes the received signal as 5,(t) if R(kT,) =T, and
as s«{t) if R{kT,)> Ty. Clearly, the threshold T should be set between 0 and
A such that the probability of error is minimized. It can be shown that the
value of Ty, say T%, which minimizes the probability of error has to satisfy

Frip=o{TH = frp=1{TE) ' (8.37a)
The relationship ;
A 8N,
Ts=3 1+'7«5T° (8.376)
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is an excellent analytic approximation to the solution of Egquation (8.37a).
When the carrier amplitude at the receiver input {is such that A*> N, then
T = Al2.

The probability of error P, is given by

P. =34P(error|b, = 0)+1P (errorlb, = 1)

= %Pe0+ érpel
where
[ r? ) _ ( A’ )
Po= er N, exp( N dr = exp TN, (8.38a)
and
Al2 — 2
P.= 1 cxp(- (r=A) ) dr
— 211".N0 2No
<)
= | —— 8.38b
Q(ZVNo ¢ )
Using the approximation
exp(—x’/2)
X)y=—7—
Q) N2
for large x, we can reduce P, to the form
/ 4N, { -A-z \ 0 0y SN
P.i= \IW exp\—'s—b",;} {8.5%aj

Hence,

_ .‘/‘Wo] (...él
Po=3t¥yga1 P SNO)
AZ
=%exp(—§-ﬁ;) if A2» Ny (3.39b)

where Ny= nBr and Br-is the bandwidth of the bandpass filter.
Thef_p.mb;gbi_lityvqf error foy the’ noncoherent. AS_Ig_;gcgiyier will always be

higher _than the error probability of 3 coherent receiver operating with the
_same signal power, signaling speed; And ToTse psd. However, the noncoherent
receiver is much Simpler than the coherent receiver.

In order to obtain optimum performance, the threshold value at the receiver
should be adjusted according to Equation (8.37b) as the signal level changes.
Furthermore, the filters used in the receiver should be discharged, via auxili-
ary circuitry, at the end of each bit interval in order to reduce inter symbol

interference. While the resulting circuit is no longer a linear time-invariant
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ﬁl;c:r. 1lt does act like a‘liner.time-invarilant filter in between discharge
;n rvals. _Por SE.lCh a rapidly discharging filter, the filter bandwidth is no
onger critical with respect to intersymbol interference

. I‘n thf: noncollxerel.mt receiver shown in Figure 8.9, we have assumed that
t:mmug information is available at the receiver. This timing information is
usually extracted from .thc envelope of the received signal using a technique
s:rmI_ar to the one described in Chapter 5, Section 5.7,

fIE is worth noting h.ere that in the noncoherent ASK scheme, the probability
2 mé:_orre::tlx decoding “1” is different from the probability of incorrectly
ecoding 0.” Thus the noncoherent ASK scheme results in a nonsymmetric
binary channel (Chapter 4, Section 4.5).

Example 8.3. Binary data is transmitted over an RF bandpass channel with
u.sable_ banrdwidth of 10 MHz at a rate of (4.8) (10% bits/sec using an f]XSIg
sngnahpg method. The carrier amplitude at the receiver antenna isgl mv and
the noise power spectral density at the receiver input is 10~ watt/Hz. (a) F'nd
the error probability of a coherent receiver, and (b) find th . it
of a noncoherent receiver. ® error probabilly

Solution
(a) The bit error probability for the coherent demodulator is

_ o AT
Pe= Q(\/E,—b)? A=lmv, T,=10%48

72 = 107" wart/ iz
Hence, P, = Q(V26) = 2(107").

() Ehe noise power at the filter output is Ny = 2nr, = 1.92¢107®) and A?= 1075

ence, A*> N, and we can use the a imati i i o :
pproximatio i

paragmanhs for Pt B ns given in the preceding

3 T

A
Pa= Q( 4_N°) = (3.61} = 0.0002

AZ
Py= eXP(—S-—M) =~ 0.0015

Hence, P, = {P.s+ P,)) = 0.00085.

8.4 BINARY PSK SIGNALING SCHEMES

P;Iase-shift keyinfg, or disv..:r_ete phase modulation, is another technique avail-
able for communicating digital information over bandpass channels. In PSK

mm— e e m— e —

- r—— i e L L
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signaling schemes the waveforms s,(f) = — A cos w.! and $5(t) = A cos w.! are
used to convey binary digits 0 and 1, respectively. The binary PSK waveform

Z(t) can be described by
Z(t) = D(t)(A cos o)

where D(t) is a random binary waveform with period T, and levels — 1 and 1.
The only difference between the ASK and PSK waveform is that in the ASK.
scheme the carrier is switched on and off whereas in the PSK scheme the
carrier is switched between levels + A and — A. The power spectral density of

the PSK signal can be shown to be .

Getf) = 5(Golf = )+ Golf + fo

where

- Silf].2 TrfTb

GD(f)_ ‘i‘Tzszb (840)
Comparison of Equation (8.40) with Equation (8.30) reveals that the shapes of
the psd of the binary PSK signal and the ASK 'signal are similar. The only
difference is that the PSK spectrum does not have an impulse at the carrier
frequency. The bandwidth requirement of the PSK signal is the same as that
of the ASK signal. The similarity between the ASK and PSK is somewhat
misleading. The ASK is a linear modulation scheme whereas the PSK, in the

L .Y s mz fmom mmealimsmaw e H
general case, is a nonlinear modulation scheme.

The primary advantage of the PSK signaling scheme lies in its superior
performance over the ASK scheme operating under the same peak power
limitations and noise environment. In the following sections we will derive
expressions for the probability of error for coherent and noncoherent PSK

signaling schemes.

o

8.4.1 Coherent PSK

The transmitted bit sequence {b} can be recovered from the PSK signal
using the integrate and dump correlation receiver shown in Figure 8.7 with a
local reference signal s:(t)— s.{(f) =24 cos et that is synchronized in phase
and frequency with the incoming signal. The signal components of the
receiver cutput at t = kT, are

kT, .
sulkTy) = f( D s - sy dt == AT,
- 1]

T,
smlkT) = [

tk=1y

. sAB)s:(1) = 5] dt = AT,
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The optimum thresillold ‘setting is T¥ = 0, which is independent of the carrier
strength at the receiver input. The probability of error P, is given by

P, = Q(vmu/2)

where
2 [T ' 2
Yo == f (2A cos w,t) dt = 4 Te
nJdo 7
or
P, = Q(VA™T/n) _ (8.41)

The average signal power S, and the signal energy per bit E,. for the PSK
scheme are
S, = A2

“and
Ea = (AYD)T,

We can express the probability of error in terms of S, and E,, as

P, = (V25,.Tin) (8.42)
= Q(V2E.lv) (8.43)

Comparing the probability of error for the coherent PSK (Equation (8.42))
with the probability of error for the coherent ASK (Equation (8.32)), we see
that for equal probability of error the average signal power of the AS;K signal
should be twice the average power of the PSK signal. That is, the coherent
PSK scheme has a 3-dB power advantage over the coherent ASK scheme.

8.4.2 Differentially Coherent PSK

The differentially coherent PSK (DPSK) signaling scheme makes use of a
clever technique designed to get around the need for a coherent reference
signal at the receiver. In the DPSK scheme, the phase reference for demodula-
tion is derived from the phase of the carrier during the preceding signaling
interval, and the receiver decodes the digital information based on th;
differential phase. If the channel perturbations and other disturbances are
slowly varying compared to the bit rate, then the phase of the RF pulses s(t)
and s(t—-T,) are affected by the same manner, thus preserving the in-
formation contained in the phase difference. If the digital information had
been differentially encoded in the carrier phase at the transmitter, the deco-
ding at the receiver can be accomplished without a coherent local oscillator

US‘E"‘”IJ OISJLJ Al o8Bl Ufgguj.a.'zlb a.a.u.u
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Figure 8.11 {a) DPSK modulator. (b) DPSK demodu-
lator.

signal. The DPSK scheme may be thought of as the noncoherent version of the
PSK scheme discussed in the preceding section.

Block diagrams of a DPSK modulator and demodulator are shown in Figures
8.11a and 8.11b, respectively, The differential encoding operation performed

by the modulator is explained in Table 8.2. The encoding process starts with

an arbitrary first bit, say I, and thereafter the encoded bit stream d; is

generated by
dy = dy @i~ 1bx

Table 8.2. Differential encoding and decoding

Input sequence
it 0o 1 0 ¢ 0 1 |
(b}

Encoded sequence

1 1t 0 0 o t 1 1

(do) !

Transmitted phase 0 0 0 » = 0 = 0 O O

Phase comparison . 4 o= b = = = o+ ¥
putput

Qutput bit séquence 1 ¢+ 01 ¢ ¢ 0 1 1

* Arbitrary starting reference bit.
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The differential sequence d, then phase-shift keys a carrier with the phases
0 and r, as shown in Table 8.2,

The DPSK receiver correlates the received signal plus noise with a delay-
ed version (delay = 1-bit duration) of the signal plus noise. The output of the
correlator is compared with zero and a decision is made tn favor‘ of Tord
depending on whether the correlator cutput is + or —, r?spectlvely. The
reader can easily verify that the receiver recovers the bit sequence .{bk}
correctly, in the absence of noiss, by assuring himself that the receiver
essentially checks to see if the phase angles of the received carri.er during two
successive bit intervals are the safme or different. With an initial angle off 0
(for the reference bit), the receiver output is 1 at the end of the kth signaling
interval if the carrier phase is the same during the (k— I)st _and the kt_h
signaling intervals. If the phase angles are different, then the receiver output is
0. The last two rows in Table 8.2 illustrate that phase comparison detection at
the receiver works correctly.

The noise performance of the DPSK might appear to be inferior c.omParcd
to coherent PSK because the phase reference is contaminated by neise in t-he
DPSK scheme. However, the perturbations in phase reference due to noise
tend to cancel out and the degradation in performance is not too .gfeat. In the
following paragraphs we will derive an expression for the probability of error
for the DPSK scheme. .

For purposes of analysis, let us assume that the carrier phase during t}Te
(k — 1)st and the kth signaling intervals is 0, that is, ¢y = ¢ = 0. An.error in
decoding the kth bit occurs if the phase comparator output is negative, The
input to the lowpass filter in Figure 8.11b can be written as

q{t) = [A cos wct +n{)J[A cos wet' + ny(t)], k— DT st =<kT,
where ' = t — Ty, and ng(t) is the response of the front-end filter to n(t). Sub-
sfituting the quadrature representation
nt) = n.(t) cos w.t — n(1) sin et
in the preceding equation, we obtain
g(t) =[A+ n(1)] cos @ct[A+ rc(1] cos wt’

—[A +n(t)] cos wtn(t") sin w.t']

—n:(t) sin w.tLA + n (1) COs w ']

+ () (1) sin wet sin w.t’
The reader can verify that the lowpass filter output Vo(kT,) is given by
fremember that « Ty =ka{k=2), hence sin wd = sin wd' and cos wld =
cos wet']

VolkTy) = ¢[A + nc (A + n(t)] + n (O (47

wgwl y oL (b oSuEI1S ugRdlS 2wy
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where ¢ is a positive constant ¢ = £T,. and ¢' = (k — )T, The probability of
error P, is given by

P = P[Vo(kTy) <0) = P{L vykT,) <0
c

In order to simplify the expression for the probability of error, let us define

_ (D) = ()

= n () + n(t")
o -—A+———-—-—2 y B . >
- n,(f)'l'ﬂs(t') _ns(t)_n:(t")
ve 2 . 9= 2

We now have

% VolkTy) = (a+ 8% — (7 + 87

P(-:-; Vo(kT;,)<0) =Pla’+ B8 <vi+§Y)

=P(VaTt BI<ViT+ 8

If we denote Va?+ 8% by X and V/»¥+ 37 by X, then X, has a Rice pdf and
Xy has a Raleigh pdf, and the probability of error P, has the form

Pe =P (X < Xy) =f: P (X2 > x|, = x)fxx) i

whara
Lot

POG>xiXi=x) = [ o) dr,
4]

since X, and X; are statistically independent. The pdf’s involved in the
preceding expressions have the forms given in Equations (8.364) and (8.365)
and the probability of error can be shown to be equal to (see Problem 8.17)

P, ={exp(— AT./27) (8.44)

The example given below shows that the DPSK scheme requires 1dB more -
power than the coherent PSK scheme when the error probabilities of both
systems are of the order of 107 The slight increase in power requirements for
the DPSK signaling method is more than offset by the fact that DPSK does not
require a coherent reference signal at the receiver. Because of the fixed delay in
the DPSK receiver, the system is locked on a specific signaling speed, thus
precluding asynchronous data transmission. Another minor problem in DPSK
schemes is that errors tend to propagate, at least to adjacent bits, due to the

correlation between signaling waveforms and the noise over adjacent signaling
intervals.
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Example_8.4._Binary data is transmitted at a rate of 10°bits/sec over a
microwave link having a bandwidth of 3 MHz. Assume that the noise power
spectral density at the receiver input is #/2 = 107" watt/Hz. Find the average
carrier power required at the receiver input for coherent PSK and DPSK
signaling schemes to maintain P, < 107

Solutien
The probability of error for the PSK scheme is

(Pesk = Q(V2S, Tl <107,
This requires
v ZS(melfT] = 3175

or
(Saodesk = (3.75(107%)(10°) = 1.48 dBm
For the DPSK scheme we have
(P )oesk = § expl— (A Ty/29)] =< 107,
hence
SuTln=8517 or (Su)oesk=2.313dBm
This example illustrates that the DPSK signaling scheme requires about | dB

more power than the coherent PSK scheme when the error arphability is of the

order of 107%

8.5 BINARY FSK SIGNALING SCHEMES

" FSK signaling schemes find a wide range of applications in low-speed digitat
data transmission systems. Their appeal is mainly due to hardware advantages
that result principally from the use of a noncoherent demodulation process
and the relative ease of signal generation. As we will see later in this section,
FSK schemes are not as efficient as PSK schemes in terms of power and
bandwidth utilization. In the binary FSK signaling scheme, the waveforms
si{t) = A cos(wct — wgt) and sx(t) = A cos{wt + wqt) are used to convey binary
digits 0 and 1, respectively. The information in an FSK signal is essentially in
the frequency of the signal,

The binary FSK waveform is a continvous phase constant envelope FM
waveform. The binary FSK waveform can be mathematically represented as
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follows: .
Z() = A cos(mct + g f DY dr + 9) (8.45)

where D(t) is a random binary waveform with levels +1 when by=1and -1
when b, =0, and @ is the phase angle of the carrier at time ¢t =0. The
instantaneous frequency of the binary FSK signal is given by

fi= % [phase of Z(t)]
= w, + wD(t)

Since D{t) = = 1, the instantaneous frequency w; has two values: & = @, * wg.

The derivation of the power spectral density of the digital FM waveform is
rather involved and hence we will look only at the results of the derivation
shown in Figure 8.12 (see Lucky’s book, Chapter §, for a detailed derivation).

Gzin

wy
fa = P

w,
e

\-@—-—- ]-d = 0.7570
{a}
Pl et S f
fo— L5y f. +0.5n Ltn o 1.5r

G4l

(&)
1 - -- L
L—rn L~ U.Srb— A f. + 0.5r, fitn

Figure 8.12 (a) Power spectral density of FSK signals. {b) Power spectral density
of a binary FSK signal with 2f; = ..

!
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The power spectral density curves displayed in Figure 8.12a exhibit the
following characteristics: For low values of fu/r, the curve has a smooth roil
off with a peak at the carrier frequency, The FSK signal bandwidth in this case
is of the order of 2, Hz, which is the same as the order of bandwidth of the
PSK signal. As for increases, major peaks in the power spectral density
curve occur at the transmit frequencies f, + f; and fe—fs and the bandwidth
of the signal exceeds 2r,,.the bandwidth of the PSK signal. For large values of
falre, the FSK signal essentially consists of two interleaved ASK signals of
differing carrier frequencies, say f. + f; and f. — f,. Further, when 2fs =mr, m
an integer, the psd has impulses corresponding to discrete frequency sinusoi-
dal components as shown in Figure 8.12b. In_general, we can say. that the
__ bandwidth of the FSK si_gnal is greater than the bandwidth of the ASK and

the PSK signals. m T

As mentioned earlier, the binary FSK waveform given in Equation (8.45)is
a continuous phase waveform. In order to maintain phase continuity, the
phase at every transition is made to be dependent on the past data sequence.
To visualize how one could generate a continuous phase constant envelope
FSK signal, consider the following waveform construction procedure: The
sequence {b;} is used to generate a sequence of segmented cosine waveforms
Acosl{wet + it +6;), where w, = +w, if by =1 and @, = —wy if b, =0. The
FM waveform given in Equation (8.45) is then constructed by specifying the
sequence {6} as follows: Let 6, be arbitrarily set equal to some value €. Then
g=0+(+w)Te, O=0+(+w )l +(w+ew)T,..., and @, =
8+ (0t w)Ty+ +{(wa-1+ 0 )T,. By shifting the phase of the different
segments, one obtains a continuous phase constant envelope FM wave.

It is also possible to generate a digital FM wave ignoring the phase
continuity. This can be done by having two oscillators tuned to o, + oz and
@, — wy whose outputs are directly controlled by the digital baseband wave-
form D(t). This method gives rise to undesirable transients in addition to
complicating the transmitter. For these reasons, this method is rarely used in
practice.

The FSK signal Z(t) can be demodulated using a coherent correlation
receiver or using a suboptimal scheme consisting of bandpass filters and
envelope detectors. Correlation detection of FSK signals is very seldom used;
our study of coherent FSK is mainly for comparison purposes.

8.5.1 Coherent FSK

If the FSK signal is demodulated using the correlation receiver shown in
Figure 8.7, the local carrier signal required is

s2t) = 51t} = A cos(wct + wat) — A cos{w.t — wyt)
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The input to the A/D converter at sampling time t = kT, is 50/(kT}) or 562k T},),
where

Ty
salkT) = [ sa0lsatt) - s d

Ty
solkT) = [ su(®lsat) = (0}

If the signal energy E, and E; are the same, then 54(kT,) = —50)(kT}) and
hence the receiver threshold setting is at 0. The probability of error P, for the
correlation recetver is given by (from Equation (8.21))

P, = Q(‘Ymaxlrz)
where

Ty
Y = -ﬁ— fo [s:() — s\ ()] dt

Substituting s,(t) = A cos(w,t + wqt) and s,(t) = A cos(w,t — wyt) and perform-
ing the integration, we get
2A%T, (1 _sin2a,Tp | 1 sinf2{ew, + )75}
2w,T, 2 Aw.+o0)T,
_1sin[2{w, —wy)Tp]  sin chTb)
3 o~ oTs | 2w T, (8.46a)

I
Ymax =

If we make the following assumptions:

w:. Ty 2 1, we B g
which are usually encountered in practical systems, then the last three terms
in Equation (8.46a2) may be neglected. We now have

T 2A2Tb /1 _ sin deTa)
Y max n \ deTb

The quantity ¥4, in the preceding equation attains the largest value when the
frequency offset wy is selected so that 2wsTy, = 3/2. For this value of wy we
find

(8.46b)

Yo = (AZHA T/ )

and

P, = QUW0.61{(A'T:/n)) (8.47)
Once again, if we define S, = A%2 and E,, = A*T,/2, then we can express P,
as .
P, = Q(V1325.Tol )
= Q(V1.2E,/7) (8.48)
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Comparison of the probability of error for the coherent FSK scheme with
the error probability for coherent PSK scheme (Equation (8.42)) shows that
coherent FSK requires about 2.2 dB more power than the coherent PSK scheme.
The FSK signal also uses more bandwidth than the PSK signal. Thus coherent
FSK does not have any advantages over the coherent PSK scheme.

8.5.2 Noncoherent FSK

Since the FSK scheme can be thought of as the transmission of two interleaved
ASK signals (assuming that 2fs = mr,, m an integer), the first with a carrier
frequency f.—fa and the second with carrier frequency f. + fa, it should be
possible to detect the signal using two bandpass filters with center frequencies
fe+fs and fo—fa Such a detection scheme is shown in Figure §.13. The
probability of error for the noncoherent FSK receiver can be derived easily
using the results derived in Section 8.3.2 for the noncoherent ASK receiver.
As a matter of fact, the derivation is somewhat simpler since we do not have
to face the problem of calculating the optimum threshold setting. Because of
symmetries, the threshold is set at zero in noncoherent FSK receivers.
Assuming that 5,(f) = A cos{w. — ws)t has been transmitted during the kth
signaling interval, the pdf of the envelope R (kT,) of the bottom filter is
_ri+ Al

i Ary
(P === I ("..—‘ exp = n>0
EEAEERCEE No 0\”0/ A ‘-N'O j’ 1

where Np=1Br, and By is the filter bandwidth. The top filter responds to
noise alone and therefore Ry(kT,) has a Rayleigh pdf given by

2 P _nr /—ré\ _ n
Frisnlrd = ﬁ; exp{zx;): >0

An error 0ccur§ when R;> R,, and this error probability is obtained as
P [error|si(#)sent]
=P(R.> Ry

= J’: fR'I"(n)[.[-T Fryn(r2 drz‘} dr, (8.49)

since the random variables R,(kT,) and Ry(kT,) will be independent if
fa = mryfd, where m is an integer (Problem 8.24). By symmetry, we have
Plerror]s,(t) sent] = Perror]ss(t) sent] so that

Plerror)= P, = P[erroris,(r) sent]

Substituting the appropriate pdf’s in Equation (8.49) and carrying out the

U

K
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Figure 8.13 Noncoherent dermodulation of binary FSK signals.

integration (with the help of a table of definite integrals), we obtain
P. = }exp(— AY/4Ny) (8.50)

The filter bandwidth is usually of the order of 2/T, and hence N, in Equation
(8.50) is approximately equal to 2n/T,. o

The error probability for a noncoherent FSK receiver will be higher than
the error probability of a coherent FSK receiver. However, because of its
simplicity, the noncoherent FSK scheme is widely used in practice.

‘Ezc,amplg_s,ﬁ_._ﬁginary data is transmitted over a telephone line with usable
bandwidth of 2400 Hz using the FSK signaling scheme. The transmit frequen-
cies are 2025 and 2225Hz and the data rate is 300 bits/sec. The average
signal-to-noise power ratio at the output of the channel is 6 dB. Calculate P,
for the coherent and noncoherent demodulation schemes.

Solution. We are given r, =300, f.+f,=2225Hz, and f. —f¢ = 2025 Hz.

. Hence, fe =2125Hz and f; = 100 Hz. Before we use Equation (8.48) to obtain

P., we need to make sure that the assumptions o T2 1, we? wq and
2wy Ty = 372 are valid. The reader can verify that all these assumptions are
satisfied. Now, we are given that S/N = (A%2)/(2400n) =4 or AT, = 64.
Using Equation (8.48), we obtain

(P) = Q(VI(L.ATGA) =107
5

For the noncoherent scheme, P, is given by Equation (¥ ™™ as

-8
(P) = %exp(— ——) - 52— = 1.68(107%)

noncoh
FSK
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8.6 COMPARISON OF DIGITAL MODULATION SYSTEMS = £ - . .Eg ESw
- o = =83 2 at§
: . . 58 2gs3 igg=zeisit
We have developed formulas in the preceding sections that relate the per- € 2o X N f3825%835 5
. : @ = R 2 hr 5
formance of various modulation schemes, as measured by the probability of E| 33 32§ SEES FEELEERrE
error, to parameters of the system, such as signaling rate, noise power Sl 2% 35 g Ec Z 8% f, 58 2 g5 § E g o
; H : 53 e “Ec s 2
spectral density, and signal power. We also discussed the complexity of s i 3 E-E I Tazii gpudd 3 22 =
. . " . s T T @ w A o o = =3 Q9.8
equipment required to generate, transmit, and demoduiate the different types 8K £ P838 Z28g3f J3LsE=sEes
of modulated signals. In this section we will attempt to compare the per-
formance of various digital modulation schemes. | .
We begin our comparison by emphasizing that the choice of a modulation E % j_% £
. - . . - e e = H
method depends on the_ specific appllca'non. The choice may be based on g'g 3 kS g, g 3 £
relative immunity to noise and channel impairments (such as nonlinearities, g3l = = = = = =
phase jitter, fading, and frequency offset), simplicity of equipment, and-
compatibility with other equipment already in place in the system. While it is
not our intent to compare modulation systems under ali conditions cited ge_lw e - = - -
i : - “E5 = “
above, we will however attempt to provide the reader with some puidelines zngl= % < “ = o
that might be useful in comparing and selecting a modulation scheme for a “ e
particular application. We will compare systems operating at the same data
rate (), probability of error (P.), and noise environment. A —
[ _— e i | = — 5
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8.6.1 Bandwidth Requirements e —~ — 2 — i —
= = N— e
soe . . .. . -3 < 1 — i o by
If one is interested in high speed data transmission over a noisy bandpass £ ~len O e —~ic1
channel, then vestigial-sideband (VER) modulation with baseband signal 5
shaping is a better choice than ASK, PSK, or FSK schemes for efficient ' 3 3| = - - - &£ =
bandwidth utilization. Bandwidth requirements of VSB schemes with base- £ @ |9 a9 N 3 1 i
band signal shaping are of the order of r,. The bandwidth requirements of gn
ASK and PSK schemes are of the order of 2r,, whereas the bandwidth of the g -
FSK signal is somewhat larger than 2r,. Thus if bandwidth is of primary & g3 -
concern, the FSK scheme is generally not considered. § ~ 1 = '3 ‘; . 3 3 o F
= 3 - 8 > S
5 5 g % e 3K g3 25
< | a = ook Sk oo 2 @ =
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8.6.2 Power Requirements y X SlaARE S g 5= o gE.°=°
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The power requirements of various schemes can be compared using the i £ cE5sL §8 TEFA a8 w &3 #F 3
relationships derived in the preceding sections. These relationships are sum- j o
marized in Table 8.3 and plots of the probability of error P, versus AXT,/29 : o N
are shown in Figure 8.14. The horizontal axis in Figure 8.14 should be read as ! o E|E = g 5 E y
peak received {or transmitted) power and the peak power A?is the same for all _';; E ,;'é‘ 2 g ¥ 2w £ % £x @
schemes. The error probability in most practical systems is in the range of 107*to [ Q< Zz< U Z o §¢ a

1077 and hence we will do our comparison of power requirements assuming that !
107 <P, <107
’ 415

)

P,—Prob. of error; A—carrier amplitude at receiver input; n/2—two-sided noise psd; T,-—bit duration; »—bit rate; f; = w/2r =

carrier frequency: T§—threshold setting: SIN = Af29n5: Pu=FP (error]0 sent): P, = P {error|! sent).
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Figure 8.14 Probability of error for binary digital modulation schemes. (Note that the average
signal power for ASK schemes is A¥4, wheraas it is A%/2 for other schemes).

Plots in Figure 8.14 reveal that 2 coherent PSK signaling scheme requires
the least amount of power followed by DPSK, coherent FSK, coherent ASK,
noncoherent FSK, and noncoherent ASK signaling schemes. If the com-
parison is done in terms of average power requirements, then the ASK
schemes require about the same amount of power as the FSK schemes. Since
the cost of transmitting and receiving equipment depends more upon the peak
power requirements than average power requirements, the comparison is
usually made on the basis of peak power requirements. Thus, if the peak
power requirement is of primary concern, then ASK schemes are not used.

it must be pointed out here that three of the. most widely used digital
modulation schemes aré PSK, DPSK and noncoherent FSK. The power
requirement of DPSK is approximately 1 dB more than coherent PSK, and the
noncoherent FSK requires about 7 dB more power than coherent PSK. The
reader may at this point ask the significance of say a 1 to 2 dB increase in power
requirements. [ndustry sources claim that, in a large communication network,
every 1dB saving in power will result in savings of many millions of dollars

annually.
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£.6.3 Immunity to Channel Impairments

In selecting a signaling scheme, one should consider if the scheme is to some
degree immune to channel impairments such as amplitude nonlinearities and
fading (slow random variations in channel characteristics.) The FSK and PSK
schemes are constant amplitude signals, and the threshold setting in the
receiver does not depend on the received signal level. In the ASK scheme the
receiver threshold setting depends on the received signal level and has to be
changed as the received signal level changes. Thus ASK schemes are more
sensitive to variations in received signal level due to changes in channel
characteristics.

If the communication channel has fading, then noncoherent schemes have
to be used because of the near impossibility of establishing a coherent
reference at the receiver under fading channel conditions. However, if the
transmitter has serious power limitations (as in the case of remote data
transmission from space vehicles with limited energy storage and power
generation capabilities), then a coherent scheme may have to be considered
since coherent schemes use less power than noncoherent schemes for a given
data rate and probability of error.

8.6.4 Equipment Complexity

There is very littie difference in the complexity of transmitting equipment for
the PSK, FSK, and ASK signals. At the faceiver, the complexity depeads on
whether a coherent or noncoherent demodulation method is used. Hardware
implementations of coherent demodulation schemes are more complex.
Among the noncoherent schemes, DPEK is more complex than noncoherent
FSK, which is more complex than noncoherent ASK. Complexity of equip-
ment will increase the cost. -

.Summary. It must be obvious to the reader by now that there are a large

pumber of factors that must be taken into account in the selection of a
particular type of signaling scheme for a specific application. However, the
following broad guidelines could be used to simplify the selection procedure:

1. If bandwidth is a premium quantity, then the most desirable signaling
scheme is VSB with baseband signal shaping, and the least desirable
scheme is FSK.

2. If power requirements are most important, then coherent PSK or DPSK is
most desirable while ASK schemes are least desirable.
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3. If equipment complexity is a limiting factor, then noncoherent demodula-
tion schemes are preferrable to coherent schemes.

8.7 M -ARY SIGNALING SCHEMES

In Section 5.4 of Chapter 5, we saw that M-ary signaling schemes can be used
for reducing the bandwidth requirements of baseband PAM data transmission
systems. M-ary signaling schemes can be used in conjunction with digital
modulation techniques also. Here, one of M (M >2) signals
s, s2{t), . - -, Su(t) is transmitted during each signaling interval of duration
T.. These signals are generated by changing the amplitude, phase, or
frequency of a carrier in M discrete steps. Thus we can have M-ary A'SK
M-ary PSK, and M-ary FSK digital modulation schemes. M-ary digitai
modulation schemes are preferred over binary digital modulation schemes for
transmitting digital information over bandpass channels when one wishes to
conserve bandwidth (at the expense of increasing power requirements), or to
congerve power (at the expense of increasing bandwidth requirements).)

In practice, we seldom find a channel that has the exact bandwidth required
for transmitting the output of a source using binary signaling schemes. When
the bandwidth of the channel is less, M-ary digital modulation schemes are
used to transmit the information over the bandpass channel. If the channel
has a bandwidth much larger than the bandwidth required for transmitting the
source output using binary modulation techniaues, M-arv schemes may be
used to utilize the additional bandwidth to provide increased immunity to
channel noise. In this section, we will look at M-ary PSK schemes that are
used for conserving bandwidth, and wideband M-ary FSK schemes that can
be used for conserving power in digital modulation schemes.

In our discussion of M-ary schemes, we will zssume that the input to the
modulator is an independent sequence of equiprobable binary digits. We will
further assume that the modulator takes blocks of A binary digits and assigns
one of M possible waveforms to each block (M = 2%),

8.7.1 M-ary Coherent PSK

In M-ary PSK systems, the phase of the carrier is allowed to take on one of
M possible values ¢; = k2x/M (k=0,1,2,. — 1). Thus the M possible
signals that would be transmitted during each 51gnalmg interval of duration T,
are

Sk(f)=ACOS(wcf+k27T!M), k=0, ],__.’M_I,Osts]"‘ (8.5!)
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We will assume that e, the carrier frequency, is a muitiple of r.(r; = 1/7;). The
digital M-ary PSK waveform can be represented in the form

Zi=A 2‘, g(t = kT.) cos{ert + ¢r) (8.52)
where g(z) is a rectangular unit amplitude pulse with a duration T,. The
sequence of phase angles {¢,} carries the digital information. We can rewrite
Equation (8.52) as

Z(t)= A cos w.t i (cos ¢y )g(t — kT,)

— A sin ot 2 (sin ¢x)g(t — kT (8.53)
which shows that the waveform Z(¢) is the difference of two AM signals using
cos wt and sin w.t as carriers. The power spectral density of Z(t) is a shifted
version of the power spectral density of the M-ary rectangular waveforms
S cos duz(t — kT,) and Z sin ¢gng(t —kT,). The psd of these waveforms has a
(sin x/x)? form with zero crossings at +kr, Hz. Thus the bandwidth require-
ment of an M-level PSK signal will be of the order of 2r, to 3r, Hz.

If the information to be transmitted 15 an independent binary sequence with
a bit rate of 7, then the bandwidth required for transmitting this sequence
using binary PSK signaling scheme is of the order of 2r,. Now, if we take
blocks of A bits and use an M-ary PSK scheme with M = 2" and r, = /A, the
bandwidth requlred will be of ,the.pjde rof 2r,=2 2rih. Thus the M-ary PSK
signaiing scheme offers a reduciion in bandwidth by & factor of A over the
binary PSK signaling scheme.

The M-ary PSK signal can be demodulated using a coherent demodulation
scheme if a phase reference is available at the receiver. For purposes of
illustration we will discuss the demodulation of four-phase PSK (also known
as QPSK or quadrature PSK} in detail and then present the results for the
general M-ary PSK. -

In four-phase PSK, one of four possible waveforms is transmitted during
each signaling interval T,. These waveforms are:

A Urul v

sit)=Acoswt
5:(t) = —Asin ot
sty =—Acoswdt
34(t) = A sin ot

forO0=st=<T, (8.54)

These waveforms correspond to phase shifts of 0°, 90°, 180°, and 270° as
shown in the phasor diagram in Figure 8.15. The receiver for the system is
shown in Figure 8.16. The receiver requires two local reference waveforms
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sa{) Figure 8.15 Phasor diagram for QPSK.

A cos(e,t+45% and A cos(wt —45°) that are derived from a coherent local
carrier reference A €05 w.l.

For purposes.of analysis, let us consider the operation of the receiver
during the signaling interval (0, T;). Let us denote the signal component at the
output of the correlators by sq and so, respectively, and the noise component
by ng(t). If we assume that s(f) was the transmitted signal during the
signaling interval (0, T.), then we have

Ts
soi(T.) = J- {A cos o)A cos(wct + %) dt
0
Al ar
= — JULEP
2 T, cos 3= Lo
Acos (ar,t + 45°)
i Sample
I’ ~g at kT_,
Noise 0 V(T

alt) Correlatar 1
+

lnput +

Signal Z{z)

JT, _.oik Voo lkT,h

a
Carrelator 2
Acos la e —45%)

Figure B16 Receiver for QPSK schéme, Polarities of Vou(KT,)
and Vo{kT,) datermine the signal present at the recelver input
" during the kth signaling interval as shown in Tabie 8.4.
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T’
seT3) = J- (Acoswt) A cos(wct - %) dt
0
2

= %— T, cos % =Ly
Table 8.4 shows s and §q corresponding to each of the four possible signals
si{(t), 528}, s5(t), and s4(¢).

Output signal levels shown in Table 8.4 indicate that the transmitted signal
can be recognized from the polarities of the outputs of both correlators G.e.,
the threshold levels are zero). In the presence of noise, there will be some
probability that an error will be made by one or both correlators. An
expression for the probability of incorrectly decoding the transmitted signal
can be derived as follows.

The outputs of the correlators at time ¢ = T, are

Vol Te) = so(To) + nou(Ty)
Val(T:) = 50{T) + na(T3)

where no(T:) and ne(T;) are zero mean Gaussian random variables defined by

7
no(T;) = L n(DA cos{wt +45) dt

T,
ne(T) = I n{)A cos(wt —45°) dt,
0
and n{t) is a zero mean Gaussian random process with a power spectral
density of 5/2. With our assumption that e, = k2a7. (k an integer > 0), we can
show that n6(T;) and ne(T,) are independent Gaussian random variables with
equal variance Ny given by (see Problems 8.1, and 8.24)

A =%AZT, (8.55)

Let us now calculate the. probability of error assuming that s,(¢) was the

Table 8.4. Output signal levels at sampling
times.

Input

Output $4{t) 5t) 5a(2) s.(t)

s0:kT,) Lo —L, =Ly Ly
se2lkT,) Lo Ly ~Lq =Lq
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transmitted signal. If we denote the probability th :
t
makes an error by Py, then P ¥ that correlator 1 (Figure 8.16)

P, =P (no(T) < —Lg

= P{no(Ts) > Ly)
_ L AT,
-alz)- oA
vV Ny Q 29 ®.56)
By symmetry, the probability that the correlator 2 makes an error is
Pya =P = QVATL2%) (8.57)

The probability P. that the transmitted signal is received correctly is

P.o=(1=-P.}1- P,
=1-2P,,+PL,

Vi_/e .have :1.1ade use of the fact that the noise outputs of the correlators are
statlsnc‘:glly independent at sampling times, and that P, = P,2. Now, the
probability of error P. for the system is “ ,

P.=1-P,
=2P; - Py
== 2Pecl
since Pt will normally be < 1. Thus for the QPSK system we have
P, = 2Q(VATT 27) 8.58)

We can extend this result to the M-ary PSK signaling scheme when M >4
In_ t}}e general case of this scheme, the receiver consists of a phase dis:
E:nmm_ator——al device whose output is direcily proportional to the phase of the
incoming carrier plus noise measured over a signaling interval, The phase of the
51.gna_l ?omponent at the receiver input is determined as 0, if the phase
discriminator output 8(r) at ¢ = k7T, is within = /M of 6. Thus the recfeiver
makes an error whe_n the magnitude of the noise-induced phase perturbation
exc;eg; .rrrle(see Fl.gure 8.17). A detailed derivation of an expression for the
gir‘?e : o 1:{8 I?e i :]11"‘1;21; llna?-lrcli 15\;! -ary PSK scheme using ideal phase detection is

We will s.imply note here that the probability of error in an optimum M-ar
PSK signaling scheme can be approximated by (see Reference 8, Chapter 14};

———

A-]-:: . 211') .
7 SMyf) M=4 (8.59)

when the signal-to-noise power ratio at the receiver input is large. We are now

P,=2Q(
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Figure 8.17 Phasor diagrarn for M-ary PSK; M = 8.

ready to compare the power-bandwidth trade off when we use an M -ary PSK
to transmit the output of a source emitting an independent sequence of
equiprobable binary digits at a rate of #,. We have aiready seen that if M =2
(A an integer), the M-ary PSK scheme reduces the bandwidth by a factor
of A over the binary PSK scheme. It is left as an exercise for the reader to
show that the ratio of the average power requirements of an M -ary PSK scheme

(S..)4 and the average power requirement of a binary PSK scheme (S.)s are
given by ‘

(Snu)M - Z_%\ 1
Saks (z%/z\ sin®(m/M) (8.604a)

where z; and z; satisfy Q€z;) = PJ2 and Q(zy) = P,, respectively. If P, is very
small, then z;, will be approximately equal to z, and we can rewrite Equation
(8.60a}) as

(Sau)M — I
Surds X SICI) (8.600)
Typical values of power bandwidth requirements for binary and M-ary
schemes are shown in Table 8.5, assuming that the probability of error is
equal to 10™* and that the systems are operating in identical noise environ-
ments.
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Table 8.5. Comparison of power-bandwidth
requirements for AM-ary PSK
scheme. P, = 104,

Value {Bandwidth)a, [
of M  (Bandwidih), Sards -
4 0.5 0.34dB
$ 0.333 3.91dB
16 0.23 8.52dB
32 0.2 13.52dB

Values shown in the table indicate that the QPSK scheme offers the best
trade off between power and bandwidth requirements. For this reason QPSK
is very widely used in practice. For M >8, power requirements become
excessive and hence PSK schemes with M >8 are very seldom used in
practice. It must be pointed out here that M-ary PSK schemes require
considerably more complex equipment than binary PSK schemes for signal
generation and demodulation.

The results shown in Table 8.5 were derived under the assumption that the
binary PSK and the M-ary PSK schemes operate with the same symbol error
probability P.. If the comparison is to be done with the same bit error
probability P, for all schemes, then P, should be modified according to
Equation (5.57a) or (5.57b).

8.7.2 M-ary Differential PSK

M-ary PSX signals can be differentially encoded and demodulated using the

phase comparison detection scheme discussed in Section 8.5. As an example
of an M-ary differential PSK signaling scheme, let us consider the case where
M = 4. The PSK signal with M =4 given in Equation (8.53) can be thought of
as two binary PSK signals using sin w.t and cos w.t as carriers. The four-
phase PSK signal can be differentially encoded by encoding its two con-
stituent binary PSK signals differentially, as explained in Table 8.2. The
receiver for a four-phase differential PSX scheme consists of essentially two
biphase comparison detectors, as shown in block diagram form in Figure 8.18.

Comparison of Figures 8.18 and 8.19 reveals that the receiver for the
differential four-phase PSK signaling scheme uses a delayed version of the
received signal as its phase reference. This principle was discussed earlier
when we were discussing the binary DPSK signaling scheme in Section 8.4.2.

The performance of the four-phase differential PSK can be analyzed using
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Figure 8.18 Receiver for four-phase differential PSK.

a procedure that combines the results of Sections $.4.2 and 8.5. The df:rivation
of an expression for the probability of error for M-ary DPSK is rather
involved and we will simply state the following expression (Reference 1) for
the probability of error in an M-ary differential PSK scheme:

P.= ZQ(\/A—nE 2 sinz(ﬁf—)) 861

Comparison of P, for the M-ary DPSK scheme with P, for the M-ary PSK
scheme shows that differential detection increases power requirements by a
factor of

—1———-——221;2((:1:,2’;}) = 2 {or large values of M
With M =4, the increase in power requirement is about 2dB. This slight
increase is more than offset by the simplicity of the equipment needed to
handle the four-phase DPSK signal.

Figure 8.19 shows block diagrams of one of the earliest and most succcss_ful
modems (modulator and demodulator) that uses a four-phase DPSK signaling
scheme for transmitting data over {equalized) voice grade telephone lines. The
binary data to be transmitted is grouped into blocks of two bits called dibits,
and the resulting four possible combinations 00, 01, 10, and 11 differentially
phase modulate the carrier. The data rate is fixed at 2400 bits/sec and the
carrier frequency is 1800 Hz. The differential PSK waveform has the form

Zi=A Ek) gt — kT,) cos(wet + )
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Figure 8.19 (2) Transmitter for differential PSK. (b) Receiver for differential PSK.

where

2(t)= {1(1 +cosmrt) for—T,=t=T,
elsewhere, T, = 0.8333 msec

The pulse shape g(t) described above has neghgible power content for
[fl > r,, thus the bandwidth of the transmitted signal is of the order of 2r, or
2400 Hz. The non-rectangular shape for g(f) conveys useful timing information
to the receiver without introducing excessive ISL. Because of the differential
phase-shift scheme (Table 8.6), the modulated waveform undergoes a phase
change every 7, seconds. This feature along with the shape of g(t) produces
discrete frequency components at f. +600 and f. —600 that are used at the
receiver to generate the 1200 Hz timing signal.
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Table 8.6, Differéntial coding and decoding of quadrature
PSK signals.

Dibit du = P sin{dx — dner)  cOS(¢y — dre-t)

00 +45° + +
01 + 135° + -
10 - 135 - -
n - 45 - +

The receiver produces two outputs—the first output is proportional to
sin{d — Pi—1) and the second is proportional to cos(gdy — ¢i-;). The input bits
can be decoded uniquely from the sign of these two outputs as shown in
Table 8.6. Finally, the parallel to serial converter interleaves the dibits to yieid
z serial binary output. Tests have shown that this modem has an error
probability less than 10~% when the signal-to-noise power ratio at the output of
the channel is about 15 dB.

8.7.3 M-ary Wideband FSK Scheme

In this section we look at the possibility of using an M-ary FSK scheme to
conserve power at the expense of (increased) bandwidth. Let us consider an
FSK scheme where the M transmitted signals s;{(f) (i=1,2,..., M) have the
IOIIOWlﬂg properues

Acoswt, 0=t=T,
st = { elsewhere (3.62)
and
. T. A2 ifi=j
E [ swso={3"7 L2 8.63)

The signals are of duration T, have equal energy, and are orthogonal to each
other over the interval (0, T.). The minimum bandwidth of this signal set is "
approximately equal to Mr/2. In order to achieve this minimum bandwidth,
the closest frequency separation wg = |, — @n[, m# n must satisfy wy = 7r..
One such choice of frequencies is w,=knr, k an integer, and w, =
w+(m—Dar, (m=2,3,..., M)

The optimum receiver for this orthogonal signal set consists of a bank of M
integrate and dump (or matched) filters as shown in Figure 8.20. The optimum
receiver samples the filter output at ¢ = kT, and decides that s;(t} was present
at its input during the kth signaling interval if

max [YHkT)] = Yi(kT,) (8-64)
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Figure 8.20 Structure of the receiver for an orthogonal (wideband FSK)
signaling scheme.

To calculate the probability of error, let us consider the output of the filter at

t = T, under the assumption that 5,(f} was present at the receiver input during
the interval (0, 7}). The filter outputs are:

s e )
Y(T)=| sDn@+s(Did, j=1,2,....M (865
T, T,
=" stsio de+ [ soneny (8.66)
= 5a(T) + m(T,)

where s5q;(T,) is the signal component of the j-th filter output and n;{T,) is the
noise component. The reader can verify that (Problems 8.1 and 8.24)

2 P
sa(Ty={g T2 Hi=]

1] ifj=2 (8.67)
and n(T}) (j=1,2,..., M) are independent Gaussian random variables with
zero means and equal variances N, given by

No= AT (n/d) ’ (8.68)

The receiver correctly decodes that s,(t} was present during the signaling
interval (0, T;) if Y(T,) is larger than Y{T,) (j=2,3,..., M). We calculate
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this ﬁrobability of correct decoding as
P,_-] = P{Yz < Y|, Y; < Yl, [, YM < Y]l.'i] sent}

= [Py Y <O a0 v .69
In the preceding step we made use of the identity '
P <1 = [ PX<YIY =) fe0) dy

where X and Y are continuous, independent random variables. _

We can simplify Equation (8.69) by making use of the fact that when s, is
present during the signaling interval, Y2Y3, ..., Yu are mdepex}d_ent, Zero
mean Gaussian random variables with variance No, and hence the joint pdf of
Yy, Y3, ..., Yy is given by

Frnero Yl ¥y Y2e e o o0 YM) = f!fl’;()’i) (8.70)
where

1 ( y?)
)= —m=—exp|— =), —®<p<®
fY; (yl) ‘\/21'1‘N0 P ZNO

Substituting Equation (8.70) into (8.69), we have

P.= (" {r... [ IM[_fy.(__v;) dy;lfvlgs,(y1) dy
ole =27 L

-= =l

— et
M -1 integrals

- N M~
[ fenray]  Frantyo dy, @7

where

o I Y

fv(y)—mexp( 2Nn)’ Ly <o
1 (1= sar)’
f\’ll![(yl)= (——"'zTrNoexp(— IzNom )! —oCy <2

and

AZ
Nu = (-i' T:)%

872)
2

Sa =%'Ts
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Figure 821 Probability of error for M-ary orthogenal signaling schemes.

Now, the probability that the receiver incorrectly decodes the incoming signal
] S|(l) is
Pa=1-Pqy

and the probability that the receiver makes an error in decoding is
P. =P,

because of symmetry.

The integral in Equation (8.71) cannot be expressed in a closed form for
M >?2. Numerical integration techniques have been used to evaluate the
integral and the results for several values of M are given in Figure 8.21.

The horizontal axis in Figure 8.21 is S,/nn, where r, is the data rate in
bits/per second, S,, is the average signal power at the receiver input, and #/2 is
the noise power spectral density at the receiver input. Because of our
assumption that M = 2%, we have r, = r,log: M = Ar, (X a positive integer).
The plots in Figure 821 reveal several interesting points. First, for fixed
values of data rate r, noise psd /2, and probability of error P,, we see that
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increasing values of M lead to smaller power requirements. Of course the
price paid is the increase in bandwidth since the minimum bandwidth of
M-ary orthogonal FSK signal set is M/2T; and it increases as the value of M

" increases. Also, large values of M lead to more complex transmitting and

receiving equipment.
Figure 8.21 also reveals that in the limiting case as M > the probability of
error P, satisfies
P = {1 if Selnrs <0.7
e o if Sa,,!nr;, > 0.7

The above relationship indicates that the maximum errorless rate r, at which
data can be transmitted using an M-ary orthogonal FSK signaling scheme is

_ Sa 8w
= -—0_71] =~ logz e (8.73)

The bandwidth of the signal set —»o as M — o,

It is interesting to note that the capacity C of a Gaussian channel of infinite
bandwidth is (Sa/m) logz e (see Section 4.6). Equation (8.73) states that if the
bit rate r, is less than channel capacity, the probability of error can be made
arbitrarily small. Thus we have indeed constructed a signaling scheme capable
of signaling at a rate up to channel capacity with an arbitrarily small
probability of error.

Fy

Example 8.6. Binary data is to be transmitted over a microwave channel at a
5te of TIWIOP Dits/sec. Assuming the channel noise to be white Gaussian with

ralise 0L L2820 p Dia/ath

a psd 5/2=10"" watt/Hz, find the power and bandwidth requirements of
four-phase PSK and 16-tone FSK signaling schemes to maintain an error
probability of 107

Solution .
(2) For the QPSK scheme We have
(Po)orsk = 2Q(V A T,2n) R

where T, = 2T, = (0.6667)107¢ and /2 = 107" watt/Hz, P, = 10, and hence

o5

2
AT 2m = (3.9)

which requires

or
AY2=8,, =-33.41dBm
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The QPSK scheme requires a bandwidth of 2r, =3 MHz.
(b) For the 16-tone FSK (M = 16), we obtain from Figure 8.21

Sas’ﬂrb = 5
or
Se = (30)(10"% = -3523dBm

f:;,[ E; 1074 The bandwidth requirements of the 16-tone FSK scheme is
I:andW_:!,ﬂ:as.'l)ere-M = 16 and T, = (T,) log, 16 = 4T}, = (1.333}(10"%). Hence the
i required is =6 MHz. Thus the multitone FSK has lower power

lequn’emeﬂts tllall QI SK but requmres {s) naw d
) more ba
d ldth and a more Complex

8.8 SYNCHROMNIZATION METHODS

For op_tirm{m demodulation of ASK, FSK, and PSK waveforms, timing in
format_xon.ls needed. at the receiver. In particular, the integrate, and d?lm
operation in correlation receivers and the sampling operation in other types oit)‘
;g:gce;;fefrs mu:_t be caregully controlled and sychronized with the incoming
nal for optimum performance. Three
for optimum . general methods are us -
chronization in digital modulation schemes. These methods are: ed for sy

1. Use of a primary or secondary time standard.
2. Utilization of a separate synchronization signal.

3. Ezitractnon of c}?ck information from the modulated waveform itself
referred to as self-synchronization. |

Int the_ ﬁ}'st method, t}}e transmitter and receiver are slaved to a precise
ma‘ts er timing source. 'Ihlxs method is often used in large data communication
networks. In po:fxt-to-pomt data communication this method is vef eld
used because of its cost. y sexcon
. Sep.arate sy:}chronization signals in the form of pilot tones are widely used
in pomt-t_o—ppmt _data communication systems. In this method, a special
sy.nchromzatlors sxgnal_or a sinusoidal signal of known frequenc;y is trans
::nt.:lt'gcq altc_mg \_mthlfhe mlermation carrying modulation waveform. The syn

nization signal is sent along with the modulation w ing A
o afoods: aveform using one of the

1. l?y frequency di.vis_ion m.ultiplexing, wherein the frequency of the pilot tone
is chosen to coincide with a null in the psd of the signaling waveform;
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vCo
Frequency o
{6} Closed taop carrier doubier Recovered carrier
recovery scheme cos (w.!)

Figure 8.22 Extraction of local carrier for coherent demodulation of
pSK signals.

2. by time division multiplexing where the modulated waveform (data stream)
is interrupted for a short period of time during which the synchronizing
signal is transmitied; oF

3. by additional modulation such as the one shown in Figure 8.19.

In all of the above methods, the synchronization signal is isolated at the
receiver and the zero crossings of the synchronization signal control the
sampling operations at the receiver. All three methods discussed above add
overhead (or additional requirements) to the system in terms of an increase in
power and bandwidth requirements or a reduction in the data rate in addition to
increasing the equipment complexity.

Self-synchronization methods extract a local carrier reference as well as
timing information from the received waveforms. The block diagram of a
system that derives a coherent local carrier from a PSK waveform is shown
below in Figure 8.222. Similar systems can be used to extract such a reference
signal for other types of digital modulation schemes.

A feedback version of the squaring synchronizer is shown in Figure 8.22b.
This version makes use of a PLL for extracting the correct phase and the
frequency of the carrier waveform. The feedback version tracks the carrier
phase more accurately, but its response is slower compared to the open-loop

type synchronizing network.
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If . . .
b ;r-li?.r ggrgsrmfzﬁglilencly is a.mulnple of the bit rate, then timing information can
ocal carrier waveform. Or, one could izi
cchemos i thelocal ca A 'm. Or, could use self-synchronizing
s described in Section 5.7.2. F
son . ; d .7.2. For these schemes t
b Sl;ﬁlr:perl}!/: th? incoming signal should have frequent symbol or bit change:
o Some applications, the data stream might have to be scrambled at the:
itter to force frequent signal transitions (see Section 5.7.3)

8.9 SUMMARY

We dev i
schemeseflgfid pro;‘:efiures. _for .analyzmg and designing various signaling
st a;z:in;tgxttmg digita] information over bandpass channels. Binary
orobabiliy ,of o I% scheufes were described in detail, Expressions for the
e oy or for _vanoys schemes were derived in terms of average
M rﬁanc ;‘satfthe receiver lnpuf, psd of the noise and signaling rate. The
Binally, oo gf :;imous binary digital modulation schemes were compared
) anéi e of U ‘:nc?grtn:n;yduts)eddMﬂ-{ary signaling schemes were presen-
1deban: -ary orthogona
go;atd trade-off between power and bandwidth gonsl FSK scheme ofers
m i i ,
taneou!:s;r:el}:o;nted out that combined modulation schemes, such as simul-
aneous apll;'[ilcut'e and Tl?;-nase modulation, have also been used in data trans
ations. The treatment of ¢ i i :
mission applications. T ombined modulation sc i
m;m mvoived. The interested reader can find detailed treatme thell’n flf .
scTime§ In communication systems journals oo e
e S - - - - i
s are&ﬁgﬁl‘ézg w;aveforms discussed in this chapter have spectral components
el 5; marc;1 .ofri a}I values of :frequencies——that is, the bandwidths of these
;transmisgii " ;a I:szl:;g Ig przctflical systems, filters are introduced to limit the
. Such fltering introd

- . : uces ISI and hence the per-
sy;;:;rllscz i:f practl_cal systems will be inferior to the performance of ige:l;l
systems mi::?:ed in this c!-napter. The analysis of systems that have ISI and
e very -comphcated. Taterested readers may refer t.o recent issues
ransactions on Communications Technology which contain a large

number Of papers deahn
g
Wlt]l tlle COlllblIled effBCtS Of ISI and add1t1v6 noise in
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PROBLEMS

Section 8.2
8.1. n{t) is a zero mean Gaussian white noise with a psd of nf2. no(Ty) is
related to n(t) by

T
nlT) = L ! n(t)s(t) dt
where s(t)=0 for t outside the interval 0, T,] and

T
J’u s dt=E;
Show that E{ns(T,)} =0 and E{lnd T} = nE/l2.

sequence of equiﬁrobable binary digits is
| having infinite bandwidth using the rec-
Tigure 8.23. The Dbit rate is rs,

8.2. A statistically independent
—— transmitted over a channe
tangular signaling waveform. shown in
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8.3,

8.4.

8.5.

3.6.

Digital Carrier Modulation Schemes

F4AD)]
+u 7
1 i 1 1
i ]
]
0 0 0

l

—
+Tb_ﬁ

Figure B.23 Signal waveform at tha receiver input, Problem
8.2,

and the channel noise is white Gaussian with a psd of 5|2.

(2) Derive the structure of an optimum receiver for this signaling
scheme.

{0) Derive an expression for the probability of error.

In Problem 8.2, assume that the channel noise has a psd G,(f) given by
G, (f)= Gl + (FIf 71!

(2) Find the transfer function of the optimum receiver and calculate P,.
(b) If an integrate and dump receiver is used instead of the optimum
receiver, find P, and compare with the P, for the optimum receiver.

A received signal is =1mv for T, second intervals with equal prob-

ability. The signal is accompanied by white Gaussian noise with a psd

of 107Wwatt/Hz. The receiver integrates the siznal plus noise sym-

chronously for T, second duration and decodes the signal by comparing

the integrator output with 0.

(2) Find the maximum signaling rate {(minimum value of T,) such that
P, =10

(b) If actual signaling takes place at 3 i the rate found in (2), what is the
signal amplitude required to maintain P, = 1077

Verify that the threshold value T% shown in Figure 8.4 yields the
minimum probability of error when P(b, =0)=P(b, =1} =

Assume that the ideal integrator in an integrate and dump receiver for
Problem 8.2 is replaced by an RC lowpass filter with

H(f) = (1 + jfifo)

where f, is the half-power frequency.

(@) Assuming the capacitor is initially discharged, find so/(T3), $0:(T3),
and E{nd(t)}, where s and sz are output signal values at ¢t = T, and
no(t) is the noise at the filter output,

e o et —

8.7.

8.8.
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(b) Find the relationship between T, and f, that will maximize [so,(T) —
s T)PHE{n}(#)}, that is, find the value of f; that will minimize P..
(c) Find the maximum value of [sy — se2]¥ E{n¥(1)).

Referring to Equation (3.20), we have the signal-to-noise power ratio at
the output of a matched filter receiver as

T
Yher = % [ s -siom ar

Now suppose that we want 5,(t) and s,(¢) to have the same signal
energy. Show that the optimum choice of s:{t) is

sty = —5:(¢)
and that with s5,(t) = —5,(t}

. _ T
Y max (&"Q)J’ sie) dt
1)

An on-off binary system uses the following waveforms:

o) = {ZtITb, 0<t<T,/2
2 CILXT, —1), T2<st<T,
S1(t) =0
Assume thai Ty, = 20 psec and the noise psd is »/2 = i7" waii/Hz. Find
P, forthe optimum receiver assuming P (0 sent) =1 pPq ent) =3

Sections 8.3, 8.4, and 8.5

8.9

The input to a threshold device has the following conditional prob-
abilities:

2
Frp sent(r) = exp( 3 No)’ r>0
(r— A)z)
sen = - =0
Frit sendr) = Yo eXp( "~ A

P(0 sent) ={ and P(1 sent) = 3. Find the optimum value of the threshold
setting that W111 minimize the probability of error for A=1 and Ny=
0.01, 0.2, and 0.5. (Hint: Plot the pdf’s and find the point where they
intersect.) Compare the threshold values you get with the values
obtained using the approximation given in Equation (8.375).
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8.10. In a binary PSK scheme using correlation receiver, the local carrier

———waveform is A cos(w.t +¢) instead of A cos wt due to poor carrier
synchronization. Derive an expression for the probability of error and
compute the increase in error probability when ¢ = 15° and A’Tyim = 10.

8.11. In a coherent binary PSK system, the peak carrier amplitude at the
receiver A varies slowly due to fading. Assume that A has a pdf

fala) =25 ex (~"2) =0
A ‘-470 P m, a=

(2) Find the mean and standard deviation of A.
(b) Find the average probability of error P,. [Use the approximation for
Q(x) given in appendix D.]

8.12. In a coherent binary PSK system with f.=5n, the local carrier is in
------- -synchronism with the received signal, but the integrate and dump
operation in the receiver is not fully synchronized. The sampling takes
place at t = 0.2T;, 1.2T, 2.2T,, ...
(a) How much intersymbol interference is generated by the offset in
sampling times. (Se¢ Problem 5.8.)
(b) Calculate the probability of error and compare it with the prob-
ability of error that can be achieved with perfect timing.

8.13. In a coherent binary PSK system the symbol probabilities are
P(0 sent)=p and P(I sent)=i-p. The receiver is operating with a
signal-to-noise ratio (A’T,)/n = 4.

(a) Find the optimum threshold setting for p = 0.4,0.5, and 0.6 and find the
probability of error P, for p = 0.4, 0.5, and 0.6.

(b) Suppose that the receiver threshold setting was set at 0 forp=04,
0.5, and 0.6. Find P, and compare with P, obtained in part (a).

8.14. An ideal analog bandpass channel has a usable bandwidth of 3000 Hz.
The maximum average signal power allowed at the input to the channel
is 0.001 mW. The channel noise (at the output) can be assumed to be
zero mean white Gaussian with a psd of 7/2 = 107*° watt/Hz.

(2) Find the capacity of the analog channel.

() Find the maximum rate at which binary data can be transmitted~.
over this channel using binary PSK and FSK signaling schemes.

(c) Find P, for coherent PSK and noncoherent FSK, assuming maxi-
mum signaling rate.

(d) Using the results of (b} and (c), find the capacity of the discrete
channels corresponding to the coherent PSK and noncoherent FSK

w9l oL (b oSuEI1S ugRdnlS 2w
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signaling schemes.

8.15. Consider a bandpass channe] with the response shown in Figure 8.24.
(a) Binary data is transmitted over this channel at 2 rate of 300 bits/sec
using a noncoherent FSK signaling scheme with tone frequencies of
1070 and 1270 Hz. Calculate P, assuming A%fqn = 8000.
(b) How fast can a PSK signaling scheme operate over this channel?
Find P, for the PSK scheme assur‘ning coherent demodulation.

HAf)

—2800 --800 0 800 2800

Figure 8.24 Response of a bandpass channal, Problem
B.15.

8.16. Compare the average power requirements of binary noncoherent ASK,
coherent PSK, DPSK, and noncoherent FSK signaling schemes operat-
ing at a2 data rate of 1000 bits/sec over a bandpass channel having a
bandwidth of 3000 Hz, nf2 = 107 watt/Hz, and P. = 107,

8.17. Fill in the missing steps in the derivation of P, for the DPSK signaling
scheme.

8.18. A correlation receiver for a PSK system uses a carrier reference
A sin .t for detecting

51(t) = A cos(w.t +AG)
£:(1) = A sin{ew t + AB)

Assuming that 5,(£) and s,(t) are equiprobable and the noise is white
and Gaussian with a psd of 7/2, find the probability of incorrect
decoding.

8.19. The bit stream 11011100101 is to be transmitted using DPSK. Determine
the encoded sequence and the transmitted phase sequence. Show that
the phase comparison scheme described in Section 8.4.2 can be used
for demodulating the signal.
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8.20. A high frequency transmitter used in a binary communication system is
peak power limited to 1kW. The power loss in the channel is 60 dB and
the noise power at the receiver input (nr) is 10~ watts. Assuming
maximum signaling rate and equiprobable message bits, find P, for
noncoherent ASK and coherent PSK signaling schemes.

8.21. In some threshold devices a no-decision zone centeréd at the optimum -

threshold level is used such that if the input Y to the threshold device
falls in this region, no decision is made, that is, the output is 0 if say
Y < T, and 1 if Y > T;and no decision is made if T, < Y = T» Assuming
that

=1 _-
_f?{:sen:(Y)"zv;Bxp( ), —ecy<a

1 + 1y
fmaem()’)-"',zv;texp(-"(y4 )), —oLy <®

P(1 sent) = P(0 sent) =035
T,=—e, Ta=¢ e>0
Sketch P. and the probability of no decision versus e. (Use € =0.1,0.2,
0.3, 0.4, and 0.5.)

222 An ASK signaling scheme uses the noncoherent demodulation scheme
shown in Figure 8.25. The center frequency of the filter is f. and the

tdeal Envelope },‘(‘ Threshold | N

gPF detector 7Y deviee 1AM gugput

Signal +
noise

Figure 8,25 Noncoherent ASK receiver.

bandwidth B = 10, Hz. Assume that the bandwidth is such that the

ASK signal passes through the filter with minimum distortion, and that

the filter generates no ISL

(a) Calculate the P, for the receiver shown above assuming that
A?l(nr,) = 200.

(b) Compare with P, for a noncoherent ASK scheme if the filter is
matched to the mark pulses.

8.23. Repeat Problem 8.22 for the noncoherent FSK scheme.
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8.24. Let n(t) be a stationary zero mean Gaussian white noise and let

T,

no(Ts) =L : n(t) cos{o.t + wat) dt
T

ne(Ty) = J; n(t) cos(w.t — wqt) dt

Show that ng(T;) and ne(Ty) are independent if w. = 2wk{T, and
wg = mmf2T,, where k and m are (arbitrary) positive integers (k » m).

Section 8.6

8.25. An M-ary signaling scheme uses the following signals: s(t) =

e Ay cOS{wret + @), (0=t < T,), where

Ay, = A or 24, and
&, = 45°, 90°, 135°, or 270°,

(Observe that M = 8 and the signaling scheme is combined ASK/PSK.)
(2) Draw the block diagram of a coherent receiver for this system.
(b} Derive an approximate expression for the probability of error.

8.26. Consider the channel described in Problem 8.15.
(a) Compute the fastest rate at which data can be transmitted over this
channel using four-phase PSK signaling schemes.
(b) Compute P, for QPSK and differential QPSK.

8.27. A microwave channel has a usable bandwidth of 10 MHz. Data has to be
transmitted over this channel at a rate of (1.5)(10% bits/sec. The channel
noise is zero mean Gaussian with 2 psd of nf2= 1 ¥ watt/Hz.

(a) Design 2 wideband FSK signaling scheme operating at P, = 10 for
this problem, that is, find a suitable value of M and AY2.
(b) If a binary differential PSK signaling scheme is used for this

problem, find its power requirement.

8.28. If the value of M obtained in Problem 8.27 is doubled, how will it affect
the bandwidth and power requirements if P, is to be maintained at 10757

8.29. The design of a high-speed data communication system calls for a
combined ASK/PSK signaling scheme with M =16. Three alternate
designs corresponding to three different sets of signaling waveforms are to
be comparatively evaluated. The signaling waveforms in each set are
shown in Figure 8.26 in a phasor diagram. The important parameters of the

[Tyl

signal sets are the minimum distance between the phasors (parameter “a
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Figure §.26 Constellations of signals, M = 16. Dots denate the tips
of signal phasors.

in Figure 8.26 that is a measure of immunity against additive noise), the
minimum phase difference (which is a measure of immunity against phase
jitter/delay distortion), and the ratio of peak-to-average power (which is a
measure of immunity against nonlinear distortion in the channel). Assum-
ing that the average power is to be the same for all three signal sets,
compare their robustness against the following channel impairments.
{a) Nonlinear distortion.

(b) Additive noise.

{c) Phase jitter.

{d) Combination of noise, phase jitter, and nonlinear distortion.

. Derive the structure of a carrier recovery network (similar to the one

shown in Figure 8.22a) for a QP3K signaling scheme.
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ERROR CONTROL CODING

9.1 INTRODUCTION

In Chapters 5 and 8 we described signaling schemes for transmitting digital
information over noisy channels. We saw that the probability of error for a
particular signaling scheme is a function of the signal-to-noise ratio at the
receiver input and the data rate. In practical systems the maximum signal
power and the bandwidth of the channel are restricted to some fixed values
due to governmental regulations on public channels or regulations imposed by
private companies if the channel is leased. Furthermore, the noise power
spectral density m/2 is also fixed for a particular operating environment. In
addition, parameters of signaling schemes, such as the number and type of
signals used, are chosen to minimize the complexity and cost of the equip-
ment. With all of these constraints, if is often not possible to arrive at a
signaling scheme which will yield an acceptable probability of error for a
given application. Faced with this problem, the only practical alternative for
reducing the probability of error is the use of error control coding, also known
as channel coding, . _

In a nutsheli, error control coding is the calculated use of redundancy. The
functional blocks that accomplish error control coding are the channel
encoder and the channel decoder. The channel encoder systematically adds
digits to the transmitted message digits. These additional digits, while con-
veying no new information themselves, make it possible for the channel
decoder to detect and correct errors in the information bearing digits. Error
detection and/or correction lowers the overall probability of error.

443
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i ding scheme for this
i coding and a channel enco
et woult eneld argl average symbol (letter) error rate of 50
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DIGITAL TRANSMISSION
OF ANALOG SIGNALS

10.1 INTRODUCTION

Communication systems are designed to handle the output of a variety of
information sources. In the preceding chapters we considered analog com-
munication systems using CW modulation schemes (AM, DSB, SSB, PM, and
FM) for transmitting the output of analog infarmation scurces. We aiso
discussed digital communication systems that used digital modulation
schemes (discrete PAM, ASK, FSK, and PSK) for transmitting the output of
discrete information sources, Simplified block diagrams of analog and digital
communication systems are shown in Figure 10.1. In this chapter we will
consider the use of digital communication systems such as the one shown in
Figure 10.15 for transmitting the output of analog information sources,

Digital transmission of analog signals is possible by virtue of the sampling
theorem which tells us that an apalog signal can be reproduced from an
appropriate set of its samples and hence we need transmit only the sample
values as they occur rather than the analog signal itself. Samples of the analog
signal ean be transmitted using analog pulse modulation schemes wherein the
amplitude, width, or position of 2 pulse waveform is varied in proportion to
the values of the samples. The key distinction between analog pulse modula-
tion and CW modulation is as follows: In CW modulation, some parameter of
the modulated wave varies continuously with the message. In analog pulse
modulation, some parameter of each pulse is modulated by a particular
sample value of the message.
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Figure 10.2 Digital transmission of analog signals.
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and due to symbol errors that occur in the digital communication system. The
overall performance of this system is measured by the signal-to-noise power
ratio at the receiver output. A major portion of this chapter is devoted to the
analysis of sampling, quantizing, and encoding procedures that are used to
convert the analog output of an information source into a discrete symbol
sequence suitable for transmission over a digital communication system.

At the beginning of this chapter, we will review the sampling theorem and
discuss how analog signals are sampled and reconstructed in practical sys-
tems, We will then discuss methods of quantizing and encoding the sampled
values for transmission over a digital communication system. Finally, we will
derive expressions for the signal-to-noise power ratio at the receiver output
and use these expressions for comparing the performance of digital and
analog transmission schemes. We will also point out the advantages of using
digital 'schemes for transmitting analog information.

In pulse communication systems, both analog and digital pulse modulation
schemes are used. Analog pulse modulation, such as continuous pulse am-
plitude modulation and pulse position modulation, are similar to linear (AM)
or exponential CW (PM or FM) modulation schemes. Digital or coded pulse
modulation schemes such as pulse code modulation (PCM) and Delta modu-
lation (DM} have no CW equivalent. We will treat only the digital pulse
modulation schemes in this chapter. We begin our study with a review of
sampling techniques.

10.2 SAMPLING THEORY AND PRACTICE

In many applications (such as in sample data control systems, digital com-
puters, and in discrete pulse and CW modulaticn systems that we are
currently dealing with) it is necessary and usefu! to represent an analog signal
in terms of its sampled values taken at appropriately spaced intervals. In this
section, we will first consider the representation of a low pass (bandlimited)
deterministic signal x(#) by its sampled values x(kT.) (k=...,-2,-1,
0,1,2,...), where T, is the time between samples. We will then extend the
concept of sampling to include bandpass deterministic signals as well as to
random signals. Finally, we will point out how the sampling and reconstruction
of analog signals are carried out in practice,

10.2.1 Sampling Theory

'_The principle of sampling can be explained using the switching sampler shown
in Figure 10.3. The switch periodically shifts between two contacts at a rate of
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The Fourier transform of Equation (10.3) yields

S - 7 7 (2 : X,(f) = CoX (P + CLX( = £+ X(F+£)]
)ﬁ ' % i + Co X (f = 2f)+ X(F +2£)}++ « (10.4a)
o] T .
—2T, 'y / ‘ ©
,j;,, PRT - o ‘ : =CX (Nt X CX(f—nf) (10.45)
| ! %/ : ' o
h = o We can use Equation (10.44) to find the spectrum of x,(#).given the spectrum of
~ Flgure 10.3 Switching sampler. x(t). Figure 10.5 shows the spectrum of the sampler output when the input x(¢)is
bandlimited to f. Hz.
It follows from Equation (10.4a) and from Figure (10.5b) that if f, >2f,,
. . ded then the sampling operation leaves the message spectrum intact, merel
= the input contact for  seconds and on the groun piing op sage sp ; \ y
f = T, Hz staying on P i eriod, The output x,(t) of the repeating it periodically in the frequency domain with a period of f,. We also
contact for the remainder of each sampling p : ' g
sampler consists of segments of x(t), and x,{f) can be represented as note that the first term in Equation (10.4a) (corresponding to the first term in

0 = 2(D5) 10.1) Equation (10.3)) is the message term attenuated by the duty cycle C, of the
x{)=x{t)s )

sampling pulse. Since the sampling operation has not altered the message
where s(t) is the sampling or switching function shown in Figure 10.4.

Two questions that need to be answered with the sam_?hng sct:teme ';ho:]:
in Figure 10.3 are: (1) Are the sampled segments sufficient to estc1;l ';hese ‘@
original signal x(1)? ¢2) If so, how can we reconstruct x(t) fro‘m x,( ).f o
questions can be answered by looking at the spectra (Foquer trans (;r )

X () and X(f) of x(¢) and x,{t). Using the results derived in Chapter 2,
can express s{f) as a Fourier series of the form

> | la}
s(ty=Co+ 2‘,|2c:n cos net (10.2) )

XN
where

£ 7Y«
= 1 = 21Tfs
Co= 1T, C.=frsinclafrl, and o , /—\ /_ \ /’-\
Combining Equations (10.2) and (10.1), e can write x;(¢) as VA \ ! — > 4 | / 1 AN

—2f, f 2f;
xi(£) = Cox(t) +2C1x(£) cos w +2Cox(t) c0s 2apt + 17 sy

T w0 £ Ak
(&}

sie

: g Aliasing X \1ifs <
1 1 ! ’ \
’
Input Qurput ;' e ' tel e A ¥ s
xle) x,(0) = x{edsde} -1 3 1 3 4 r ” X by
:
L

| Pl S L N ALY AR S RN

. L R f
- -t -l -2, + & f 1t A& 7, ¥,

J P T,—)-a"""T:"" o —h—=£ 0 fi—fx
Sampling ‘
function s{z)

Flgure 10.5 Sampling operation shown in frequency domain. (2) Message. {b) Samptled
o i ' . . i ling putse r is
. e s of samphing ‘ output, £, >2f,. (¢) Sampled output, fy <2f,. (The width of the samp

Figurs 10.4 Sampling mter,?reted as mulliplicatian. This type P assumed to be much smaller than T.) :

is often called natural samphing.
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spectrum, it should be possible to reconstract x(t) from the sampled wave-
form x.(f). While the procedure for reconstruction is not obvious from time
domain relationships, it can be seen from Figure 10.5b that X(f} can be
separated from X,(f) by lowpass filtering. If we can filter X(f) from X,(f),
then we have recovered x(t). Of course, such recovery is possible only when
x(1) is bandlimited and f, >2f.. If the sampling rate f: <2f. then the side-
bands of the signal overlap (Figure 10.5¢) and x(t) cannot be recovered
without distortion from X,(f). This distortion is referred to as aliasing.
Thus the sampling frequency f, must satisfy

fo=2f, or T.<I1/2f, (10.5)

The minimum sampling frequency f._, = 2f; is called the Nyquist rate. When
Equation (10.5) is satisfied, x(t) can be recovered by passing x;(t) through an
idea! lowpass filter with a bandwidth B, where B satisfies

fx"s':.Bsf.r'—fx (10-6)

At this point, we restate our reason for studying sampling theory: namely, we
want to represent an analog signal by a sequence of sampled values. So far we
have seen how an analog signal can be represented by a sequence of
segments; now we proceed to show that indeed it is sufficient to have
instantaneous values of x(t) rather than segments of x(t) for adequate
representation of x(f).

18.2.2 Ideal Sampling and Reconstruction of Lowpass Signals

1deal sampling, by definition, is instantaneous sampling, and is accomplished
by using a train of impulses s5(1) as the sampling function. Thus we have, for
ideal sampling,

xs{ty = x(£)34(¢) (10.7
where

o

ss()= 2, 8(t—kT,) (10.8)
K=o

Using the properties of the uniformly spaced impulse train, the reader can verify
that

xs(t) = x(1) k_i 8(t - kT5)

= i x(kT,.)a(z—kT,) {10.9)

k=~

and
XYy = XY= Ss(f) {10.10)
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where

SN =f. k;@ 5(f - nf,) (10.11)
or

X(H=f i X{f-nf.) (10.12)

Comparing Equation (10.12) and (10.4b), we see that the only difference is
that the constants C, in Equation (10.4¥) are equal to f, in Equation (10.12),
Thus' for perfect reconstruction of x(t) from x;(t) we invoke the same
COﬂlelO.nS as we had for recovering x(#) from x.(¢), that is, x(¢) must be
band_hmi_ted to f; and f; =2f. Then, we can reconstruct x;(t} from x{#) by
passing x5(¢) through an ideal lowpass fiiter Hg(f) with a bandwidth B
satistying f; < B <f, - f; as shown in Figure 10.6. Next, if we let the filter
gain K = 1/f,, then, from Equation (10.12) and Figure 10.6, we have

X{f) = X:(NH(f)

Xif

/ 1\
\

0 fo fimfi f Lth
&) :
T e anﬂ
1{ fe<B<fi—fe
~B 3 B f

[e}

Figure 10.8 Spectra of ideally sampled signals. {2) Message. {b) Ideally sampled
Mmessage. (¢) Reconstruction filter. X;(f)Ha{f) = CX(F), where C = K¥,.
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In the time domain, we can represent the reconstruction process by

x(t) = F{XGNH(N
= [hg() * x5(1)] (10.13)

where hgp(¢) is the impulse responsg of the reconstruction filter. We know that
ha(t) is 2BT, sinef? Bt) and hence we have

x(r) = [2BT, sinc(2B0)] » [.2;., (kTS - kT,)]

=28T, i x(kT,) sinc 2B(t — kT:) {10.14)

k==

Equation (10.14) gives us the result we were seeking; namely, & bandlh::;it;d
signal x(¢) can be represented by a sequence of sampled values {x{kT,)} if the

sampling is done such that f, >2f. We state this result in the following

theorem:

iform Sempling Theorem for Lowpass Signals .
Tklff [ins{gnal x(t)p contains no frequency components .for Ul'[> fo tf:leil:l t|: ni:
completely described by instantaneous values x.(kT,) uniformiy Nspac_ct i tme
with period T:= 1/2f.. If the sampling rate f, is equal to the dytr.;u.us‘mi .o
greater (f; = 2f:), and if the sampled values are represen.te y : % =
impulses, then the signal can be exactly reconstructed from its samples by

i = - d = l T
ideai iowpass flter of handwidth B, where f;<B < fo—frand f, 1T

10.2.3 Ideal Sampling and Reconstruction of Bandpass Signals

Signals with bandpass spectra can also be representedl by.theirlza’;—u;’;[l‘;i
values. Consider a signal x{1) with the spef:t'rum shown in thure (rj b e
following sampling theorem gives the conditions for representing x v

sampled values.

Xif)

g B

|
~fru -kt 0 fet

o
S|
1Pl

Flgure 10.7 Spectrum of 2 bandpass signal.
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Figure 10.8 Minimum sampling frequency for a signal occupying a bandwidth B,.

The Uniform Sampling Theorem for Bandpass Signals

If a bandpass signal x(t) has a spectrum of bandwidth B, and upper
frequency limit fo, thea x{#) can be represented by instantaneous values
x(kT,) if the sampling rate f, is 2f./m, where m is the largest integer not
exceeding fu/B.. (Higher sampling rates are not always usable unless they
exceed 2f..) If the sample values are represented by impulses, then x(t} can
be exactly reproduced from its samples by an ideal bandpass filter H {f) with
the respounse

m={b & <A< fun

0 elsewhere

The sampling rate for a2 bandpass signal depends on the ratio fed Bie If
ful By 3 1, then the minimum sampling rate approaches 2B,. A sketch of f../B.
versus f/ B, is shown in Figure 10.8. The reader can easily verify that f, > 2f.
will result in exact reconstruction. Proof of exact recomstruction when
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fo = 2falm, where m is an integer satisfying (fu/Bo) — 1 <m < fod Bo is left as an
exercise for the reader (see Problems 10.3 and 10.4).

10.2.4 Sampling Theorem for Random Signals

Having looked at sampling methods for deterministic signals, we now turn our
attention to the sampling of random processes. The message \}lavcforrr} Xty
in communication systems is often modeled as 2 bandlimltfed stationary
random process at the baseband level. The power spectral density Gx(f) of a
bandlimited random process X(t) is zero for |f] > fe. Hence the autocor-
relation function Ryx(r) can be written as (see Equation (10.14))

Ruc(r)=2BT; S, Rux(kT,) sinc 2B(r = kT,) (10.15)

km—e=
where 1T, =f >2f, and f.<B<f,—f. It is convenient to state two
different versions of Equation (10.15). With a an arbitrary constant, the

transform of Ryx(r —a) is equal to Gx(f) exp(— ?.ﬂjjta). This function is also
bandlimited, and hence Equation (10.15) can be applied to Rxx(r—a) as

Ryx(t = a)=2BT, ¥, Rux(nT,—a)sinc2B(z —nT.) (10.16)
Changing (7 — a) to 7 in Equation (10.16), we have
Rex(r)=2BT, 3 Rex(nT,~a)sinc2B(z+a=nTy (01D

We will now state and prove the sampling theorem for pandlimited random
processes using Equations (10.15) and (10.16).

The Uniform Sampli.;:g Theorem for Bandlimited Random Signals .

I a random process X(t) is bandlimited to f: Hz, then X(t) can be

represented using the instantaneous values X(kT;) as

x@t) E%(t)=2BT, S X(nT,) sinc2B(t ~ nT,)] (10.13)

MS . . . '
(where = stands for equality in the mean squared sense®) if the sampling rate

f, is equal to or greater than the Nyquist rate 2f.. If the sampled values a‘rt
represented by weighted impulses, then X(2) can be reconstructlcd from 1
samples by an ideal lowpass filter of bandwidth B, where f; < B <f,—f. an
fi=UT.

wx() T2 it ELX0) - XOF =0.
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To prove Equation {10.18), we need to show that

E{X@®-X1=0 (10.19)
where
X(t)=2BT, 2 X(nT,) sinc[2B(t — nT,)]
Now,

E{[X(t) - X()1% = E{[X (1) - X (IX (1)}
- E{[X(t) - X(NX ()} (10.20)
The first term on the right-hand side of the previous equation may be written
as

E{[X(t)— X (OIX()}

= Ryx(0) —2BT, > Rux(nT, —t)sinc[2B(t —nT,)]
From Equation (10.17) with 1 =0 .and a =1, we have
2BT, > Rux{(nT,—1t)sincZB(t = nT,)} = Rxx(0)

a=-%

and hénce
E{IX(®)-X@O1X@0}=0 (10.21)
The second term in Equation (10.20) can be written as
E{X() - X(NX )}

= 3 EX(®)- X@O)X(nT12BT, sinc2B(t ~mT,)]

Now,

E{[X ()~ X(IX(mT)}

2

= Rxx{t—mT,)— _2, 2BT.Rxx(nT;— mT,) sinc[2B(¢t — nT,)]

and from Equation (10.16) with =t and a = mT,, we have

Ryx(t—mT;)=2BT, 2, Rx(nT,—mT,)sinc[2B({ —nT.)]

A= -

Hence,
E{[X()— XX} =0 (10.22)
Substitution of Equations (10.21) and (10.22) in (10.20) completes the proof of
Equation (10.19). ) .
The proof of the second part of the theorem dealing with the reconstruction
follows the steps outlined in Section 10.2.2. If the random process X(¢) is a
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bandpass process, then a theorem similar to the uniform sampling theorem for
deterministic bandpass signals can be developed.

The sampling theorems for random signals tell us that the output of analog
information sources can be adequately represented by the sampled values of
the signals. Thus, rather than transmitting an analog signal, we need to
transmit only the sampled values. At the receiver, the analog signal can be
reconstructed from the received sequence of sampled values by appropriate
filtering.

40.2.5 Practical Sampling
Fhere are a2 number of differences between the ideal sampling and recon-

struction techniques described in the preceding sections and the actu;_s.l signal
sampling as it occurs in practice. The major differences are:

1. The sampled wave in practical systems consists of finite amplitude and
finite duration pulses rather than impulses.

2. Reconstruction filters in practical systems are not ideal filters.

3. The waveforms that are sampled are often timelimited signals and hence
are not bandlimited.

1 et us look at the effects of these differemnces on the quality of the recon-

structed signals. ) ] ) 1
The sampled waveform produced by practical sampling devices, especially

the sample and hold variety, has the form

X0 = ki‘, (TPt — KT

- pen+| 5 rmasc -] ~

o

where p{?) is a flat topped pulse of duration T. (This: tyl_:e of sampling is called
flat topped sampling.) The spectrum X, of x.(1) is given by

Xy = POX = PO[5, 3 X0 =0)] (1023

where P(f) is the Fourier transform of p(t) and X:(F) is the Fourier transform -

of the ideal sampled wave. P(f) is a sinc function and hence-we _can say frzz}_
Equation (10.23) that the primary eﬂfect‘ of flat topped :samphng isan gtt:;ltm
tion of high-frequency components. This effect, sometl.mes called an ?5nction
effect, can be compensated by an equalizing filter with a transfer :

H. () = L P(f). However, if the pulsewidth is chosen to be small compared .
eq ¢ .
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to the time between samples (i.e., 7<% 1/f.) then P(f) is essentially constant
over the message band and no equalization may be needed. Thus, effects of
pulse shape are often unimportant and flat topped sampling is a good ap-
proximation to ideal impulse sampling.

The effect of nonideal reconstruction filters is shown in Figure 10.9. To
recover the sampled signal shown in the figurs, we need an ideal lowpass
filter. However, such filters can only be approximated in practice. The cutput
of the filter shown in Figure 10.9a will consist of x(¢) plus spurious frequency
components at [f|> fx that lie outside the message band. While these com-
ponents are considerably attenuated compared to x(t), their presence may be
annoying in some applications such as in andio systems. Good filter design
will minimize this effect. Alternatively, for a given fllter response, the high-
frequency spurious components can be suppressed or eliminated by increas-
ing the sampling frequency as shown in Figure 10.95. Increasing the sampling
frequency produces a guard band of width (f; —2f.) Hz.

In many practical applications, the waveform to be sampled might last for
only a finite amount of time. Such message waveforms are not strictly
bandlimited, and when such & message is sampled, there will be unavoidable
overlapping of spectral components at frequencies f > fJf2 (see Figure 10.10).
The effect of this overlapping (also called aliasing) is far more serions than
spurious high-frequency components passed by nonideal reconstruction
filters, for the latter fall outside the message band. Aliasing effects can be
minimized by bandlimiting the signal by filtering before sampling and samp-
ling at a rate moderately higher than the nominal Nygquist rate.

X300 . '
L Filter response Hglf}
- pon R f

f
————————— H
£> % . T
! \
b I ! \ | aan
!
15 1[ ; '\\ Il
t 4 ~ '
— | mp— f
s & e fe Guard f
band

Figure 10.9 Reconstruction of sampled signals.
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0 L—hHh f fs

Figure 10.10 Sampling of nonbandlimited signals.

10.3 QUANTIZING OF ANALOG SIGNALS

In the preceding sections we cstablishec_i the fact thalt an izjslgagg?:g;z
signal can be adequately represented by its sampled va uest.- e e
such as speech waveforms or video wavct‘o‘rms ha».'e a <:c::1.tm‘:le s amplinde
range and hence the samples are also contEnuous in ampli 1.1s -channe] o
D e soquante of transmided values. The offct
ceiver cannot discern the exact seq ¢

f:i the noisae in the system can be minimized by repre_sv.?ntmtghteht;eia:[r;pl::i:gy:
finite number of predetermined levells and transmitting t the separation
discrete signaling scheme such as discrete Pm. Nowt,) e e e a
between the levels is large compared to the noise perturoations,

gumanifa walue wag-

. CO T T o ovaiug
simple matter for the receiver to decide PFCClSély Wl'llbl.l ﬁpbgl?;ninated_
transmitted. Thus the effect of random noise can be_vmui‘ gf levels is called

Representing the analog sampled values by a finite set, al to a discrete
quantizing. While sampling converts a contmuous_tuéle salﬁln et a discrets
time signal, quantizing converts a continuous amplitude s t'(fns convert the
amplitude sample. Thus sampling and quantizing P& 9% "7 b oo
output of an analog information source into a sequence ok leve

: ipi urce. The
that is, the analog source is transformed to a discrete (digital) so .

i digital
sequence of levels can be transmitted using any one ojm thef:x ;;fpnl); ofgthe
signaling schemes discussed in the preceding chapters.
quantizing operation is shown in Figure 10.11.

ts the

The input to the quantizer is a random process X(t) t"l':;; gfef:rise}nf(t) o

output of an analog information source. The randon;{ T ate onvetted

sampled at an appropriate rate and the sampled val}les ,e e etormined.
to one of Q allowable levels, my, ma ... Mg, according to some p '

rule: XTIy =m i xo=XEkT)<x (10.24)

xa=—-OD,XQ=+m
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’"H} {X{kT,)) (X teT, )}
Figure 10.11 Quantizing operation; m,, M2,..., M7 are the seven output levels of the
quantizer,

The output of the quantizer is a sequence of levels, s

hown in Figure 10,11 as a
waveform X,(t), where -

X} =X (kT,), kT, <st<(k+1DT,

We see from Figure 10.11 that the

_ quantized signal is a good approximation to
the original signal. The quality of

the approximation may be improved by a
careful choice of x;’s and my’s such that some measure of performance is
optimized. The measure of performance that is most commonly used for
evaluating the performance of a quantizing scheme is the output signal to



go0  Digital Transmission of Analog signals \

quantizing noise power ratio defined as

Sq _ E{X, (RT3 (10.25)
= EfXGTN-X TN

Since the overall performance of dlgifa] transmissio SO ince b overdll

signats will be measured by signal-to-noise power ratlos; 0 atation % the

received signal quality will depend on thfa accuracy of T gefmed B quation

sample values, the signal to qua.ntizer. noise pox.ver ratio,

(10.25) is an appropriate measure of signal quahty.' he
We will poW consider several methods of quaqtmmg ¢ o be 2 ero

a random process X(1)- For convenience, W€ will assum

. bbreviated
mean stationary random process with a pdf fx(x)- W;q \‘(1111}1;58 ’311: Zroblem of
notation X to denote X(kT) and X, to denote y jable X by 3

D ; o
quantizing consists of approximating the continuous ral:ed i K X
discrete random variable X We will use the mean squa

as a measure of quantizing error.

a schemes for analog

sampled yatues of

40¢.3.1 Uniform Quantizing o bl X
In this method of quantizing, the range of the cor;iti;!;l:il :‘;ﬂofox fals in the
is divided into Q intervals of equal length, saY A O cen to be the

izing i i 'dvalueoinS 1 |
ith quantizing interval, hen the quantize 5 e inimum and

i i b are i !
midpoint of the interval {sc€ Figure 10.12). If a and @ e vl gt A i
maximum values of X, respectively. then the step §iZ€ 0

given by

-

(10.26a)

A=(p-a)Q

’I:he quantized output X, is generated according to
Xy = if x;_1<X =X

(10.26b)

& - 3
Xq []

Xp u, x, o E 3 ot
Figure 10.12 Example of uniform quantizing- Step 5128 = = .
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Flgure 10.13 A sixtesn level uniform quantizer. Step size = 1, and bybebibo glves the
binary codeword for the level Xy The clock rate is assumned to be much higher than
the sampling rate and a=1volt.

where

x=a+iA (10.26¢)

and

_ Xt FXp
’

mi = 2 l=112,...,Q

(10.26d)
A upiform quantizer {A/D converter) that generates binary codes for the
output levels is shown in Figure 10.13. It consists of a binary counter, 2
resistor matrix and summing device, and 2 comparator. The guantizer input X
is assumed to be in the range —0.5 volt to 15.5 volts €f the range of X is
outside this interval, then scaling and level shifting are necessary). When the
quantizing is started, the counter is at zero and X, =0. As the count is
increased (while the AND gate is open) the value of X, incrcases. As soon as
X, comes within § volt of X, the comparator outputs a zero and closes the
AND gate and blocks the clock pulses from incrementing the counter. The
output of the operational amplifier represents the quantized value X of X,
and the outputs of the flip-flops bsb2bibe provide a binary codeword for the

output level. In this example, the numerical value of the binary codeword is
equal to the value of Xy
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The quantizing noise power N, for the uniform quantizer is given by

N, = E{(X - X}
- j ! (x - x P (x) d

Q ry
= E ' (x — m;)fx(x) dx (10.27a)

il
where x; = a + {A'and m; = a +iA — Af2. The signal power S, at the output of
the quantizer can be obtained from

S, = E{(X)}
Q 5
= E ¥ | Fxlx) dx (10.276)
1=l 1

The ratio Sy/N, gives us a measure of fldelity of the uniform quantizer. This
ratio can be computed if the pdf of X is known.

Example 10.1. The input to a Q-step uniform q_uantizer has 4 yniforrr-n pdf :‘;::
the interval [~a, a]. Calculate the average signal to quantizer noise p
ratio at the output.

Solution. From-Equation (10.27a) we have

Q
vo=3 "¢ 2l 1Y L
N, =’2"1Jx.-;{x —miiz,) ax

2
= (2?:)1:2 = %, since QA = 2q.

Now, the output signal power 5, can be obtained using Equation (10.27b) as

& o]
5= 3, o (55)
- QZ_ 1 A 2
and hence the average signal to quantizer noise power ratio is

5 2
Si_0t-1
N~

~Q? when Q1 (10.28a)
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and
(S/N,)se=20log Q (10.28h)

Equation (10.28) indicates that the fidelity of the quantizer increases with Q,
the number of quantizer levels. If a large number of levels of small spacing are
employed, then the output X can be made as near as desired to X, the input.
The number of levels (Q) is determined by the desired transmission fidelity. It
has been established experimentally that 8 or 16 Ievels are just sufficient to
obtain good intelligibility of speech. But, the quantizer noise (whose power is
more or less uniformly distributed throughout the signal band) can be easily
heard in the background. For commercial use in standard voice telephony, a
minimum of 128 levels are used to obtain a signal-to-noise ratio of 42 dB. This
will require seven bits to represent each guantized sample and hence a larger
transmission bandwidth than the unquantized analog voice signal.

The uniform quantizer yields the highest (optimum) average signal to
quantizer noise power ratio at the output if the signal has a uniform pdf. The
rms value of the guantizer noise is fixed at AfV/12 regardless of the value of
the sample X being quantized. Hence if the signal X () is small for extended
periods of time, the apparent signal-to-noise ratio will be much lower than the
design value. This effect will be particularly noticeable if the signal waveform
has a large crest factor (the ratio of peak to rms value). For quantizing
such signals it is advantageous to taper the spacing between quantizer levels
with small spacings near zero and larger spacing at the extremes.

10.3.2 Nonuniform Quantizing

A nonuniform quantizer uses a variable step size. It has two important
advantages over the uniform guantizer described in the preceding section.
First, it yields a higher average signal to quantizing noise power ratio than the
uniform quantizer when the signal pdf is nonuniform—which is the case in
many practical situations. Secondly, the rms value of the quantizer noise
power of a nonuniform quantizer is substantiaily proportional to the (in-
stantaneous) sampled value X and hence the effect of quantizer noise is
masked.

An example of nonuniform quantizing is shown in Figure 10.14. The input
to the quantizer is a Gaussian random variable and the quantizer output is
determined according to

Xo=m; Hx,<X=x, i=1,2,...,Q
Xog=—%0, Xg=w (10.29)

The step size A; = x; — x;_ is variable. The quantizer end points x; and the output
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fgure 1041 A nonuniform quantizer for a Gaussian variable. Xg=—%, Xg =%, Q=8 an
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_\ig-"- Agit be (i=1.2 3. 4.

. . .. . wer
Jevels m; are chosen to maximize the average signal to quantizing noise po
't
ratllsl practice, a nonuniform quantizer is realized by sample. compres's:bcix;
’ -
followed by & uniform quantizer. Compression tran§fo_rms .the input varial
X to another variable Y using a nonlinear transformation

Y =g(X)

i Y is uniformly quantized and
that fy(y) has a uniform pdf. Then,‘
i:::smittedfzsie Figure 10.15): At the receiver, 2 complementary expander

h transfer characteristic g™! testores the gnantized values of X. The
with tran

i t

compresser and expander taken together constitute a c:omp;ndelr‘-).g'[;:mewr?lg:e
ithmic compression, I = .
only used compander uses a 1o'gan

f}c:c:n ll::lvels are crowded near the origin and spaced farther apart near the peak
walues Qf _X_ ) . o
m’ll:::':) commonly used logarithmic compression laws are the so-called p and
A compression laws defined by

log(l ; p ! X mazh)
Iyl =

log(1+ 1)
and '
_‘ﬂf’ﬁ“ﬁ‘l. 0 _<_'|x]xmx] <1/A
1+log(AY
Iyl= 1+log(A]xlxm,i) 1A <|x/Xaud 1
1+ log(A)

practical values of A and p tend to be in the v'if:inity of Igg tTEes;zfgt:;g
i i nantizing noise power tha
compression laws yietd an_average q
indef:endent of signal statistics (see P}*oblems i0.11 and 10.l1)2). ached as
The design of an optimum nonuniform quantizer can be app
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Figure 10.15 A compressor for converting a nonuniform quantizer to a uniferm
quantizer.

follows. We are given a continuous random variable X with a pdf fx(x). We
want to approximate X by a discrete random variable X, according to
Egnation (10.29). The quantizing intervals and the levels are to be chosen
such that S;/N, defined in Equation (10.24) is maximized. i the number of
levels Q is large, then S; = E{X?% and the ratio S$,/N, is maximized when N,
is minimized. This minimizing can be done as follows. We start with

n
o~ X

Nq=z (x—m,-)zfx(x) dx, xp=— and Xg =

1= 1<%y

Since we wish to minimize N; for a fixed Q, we get the necessary* conditions

by differentiating N, with respect to x;’s and m;'s and setting the derivatives
equal to zero: '

% = (% — Y xx) = 0 — i (x) =0, j=1,2,...,0—1 (10.30a)
't

%=‘2 ‘(x_mi)fx(x)dx=0, i=12,....0Q (10.306)
)

X1

*After finding 2Il the x's and m;’s that satisfy the necessary conditions, we may evaluate N, at
these points to find a set of x’s and m;'s that yield the absolute minimum value of N, In most
practical cases we will get a unique solution for Equations ([0.302) and {10.30b),
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From Equation (10.30a) we obtain

X = %(m,- + m,'+|,)
or
m;=2x,—-.—m,-_x, j=2,3,...,Q (1031(1)

Equation (10.30b) reduces to

Tk —m)fx( dx=0, j=1,2,...,Q (1031b)

Xial
which implies that ny is the centroid (or statistical mean) of the jth guantizer
interval. The above set of simultaneous equations cannot be so]vez-d in closed
form for an arbitrary fx(x). For a specific fx(x), a method of solving €10.3(§a)
and {10.30b) is to pick m, and calculate the succeeding x’s and py's using
Equations (10.31a) and (10.315). If m, is chosen correctly, then at tpe end of
the iteration, mg will be the mean of the interval [xQ_.,mI..If mg is .not the
centroid or the mean of the Qth interval, then a different choice of m; is made
and the procedure is repeated until 2 suitable set of x;'s and my's is reache:d.
The reader can write a computer program to iteratively solve for the quantiz-
ing intervals and the means.

The end points of the quantizer intervals and the output levels fora normnal
random variable have been computed by 1. Max [1]. Attempts have also been
made to determine the functional dependence of N, on the number of levels
Q. For a normal random variahte with a variance of 1, Max {1] has found that
N, is related to Q by

N,=22Q ", when Q> 1
If the variance is o'k, then the preceding expression becomes
N, = 22ckQ ™% (10.32)

, a 1
Now, if we assume X to have zero mean, then S, = E{X"}= o'k, and hence

Squq=(0.45)Ql-96 ) (10.33)__ |

Equation (10.33) can be used to determine the number of quantizel_- levels
needed to achieve a given average signal to quantizer noise power ratio.

10.3.3 Differential QGuantizing

In the preceding sections we saw that a continuous random process c(f;nht:f?t
adequately represented by a sequence of its sampled values {X (kT,)} an titze
the individual samples X(kT;) can be approximated by a set of quan

levels. In the quantizing techniques we had considered thus far, each sample

in the sequence {X(kT.)} was quantized independentiy of the value of the
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preceding sample. In many practical situations, due to the statistical nature of
the message signal X(¢) and due to oversampling, the sequence {X(kT,)} will
consist of samples that are correlated with each other. Differential quantizing
schemes take into account the sample to sample correlation in the quantizing
process. For a given number of levels per sample, differential quantizing
schemes yield a lower value of quantizing noise power than direct quantizing
schemes. Before we look at differential quantizing schemes, let us consider the
following example that illustrates the main advantage of differential quantiz-
ing schemes.

Example 10.2. The message signal X(¢) in a communication system is a zero
mean stationary Gaussian random process, and it is sampled at a rate of
10,000 samples per second (T, = 0.hmsec). The normalized autocorrelation
function Roe(1)/Rxx(0) has a value of 0.8 when 7= 0.1 msec. Two quantizing
schemes being considered are:

(a) 2 nonuniform quantizer with Q =32, operating on each sample in-
dependently,

(b) a differential quantizer with Q=32 which operates on successive
differences {X{kT,)— X{((k— 1)TH}.

Assuming that the mean squared error due to quantizing a normal random
variable with varance o® is 20*Q7% find the mean squared error of the
quantizing schemes given above.

Soluticn.

(a) For the quantizer operating independently on each sample, the mean
squared error is given by

Ny =20%Q7 = ((10%)s%
(0) In the differential quantizing scheme, the variable being quantized is
Y =XkT,)- X[k - 1)T;]
and the variance of Y is given by
o} = ok(kT,) + okltk — DT - 2E{X(*T)X[k - DT}

_ w2y Rax(T)
= 20%(1-25)
=0.40%

Hence the mean squared error of the differential quantizing is given by
N, =2(0.4)c%Q
= 0.80%(Q7H ~{08)107) ok
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i i irect
which is considerably less than the errofr associated with the di

quantizing scheme. . .
The preceding example illustrates t-h?t d}ﬂferenhal quantxz;ir:ig hyl1;: ¢ sr?elated.
an squared error than direct quantizing if the samples are g o le
'?I:is error reduction is always possible as lopg as the satinp (:heodiﬁereri-
correlation i3 nonzero. The largest error reduction ;;c;‘ll:s) ‘:n?{nme e
tial quantizer operates on the dzﬂerence between S( h‘a e ing a
mean squared error estimator X (ch,) oi. X (k']',):Jr ukc): edqon e tined
linear minimum mean squared estimator of X(kT;) bas

¥ ¥, (k) Transmitted
- q
tnput + Zﬁv=xm Xk @______;. m.[;?:}e}nce
Xkl ¢
K Pradictor -
r
{alk) — Kk} + KUk)
= Xt
T T J
- {a)
Reconstructed
Xﬂk]—'__.di}‘((kﬂ ’ ) —}-samplejequence
——C (R
X&)

-

L i

r
|

ential quantizing scheme. {a) Differential quantizer at the

e ( il struction scheme at the receiver.

transmitter, (b) Sample recon
oulis [2].

jmalti e Paj
*For a good discussion of minimum mean squared error estimation, s¢e Tap
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values of preceding samples is shown in Figure 10.16. The difference
Y(&T,)=X(&T,)— X(kT,) is quantized and transmitted. Both the transmitter
and the receiver use a predictor of the form

X(kTs) = al}?[(k - I)T:] + dz}z[(k —Z)T,] e anX“[(k _ H)T_,}
where
RKT) = XUT) +[XKT) - X(KT)],

In the preceding equation X denotes the reconstructed value of X and the
subscript g denotes guantized values. The coefficients a;, 4z, ...,4a, are
chosen such that E{[X (kT,) — X(kT.)}} is minimized. The differential quan-
tizer discussed in Example 10.2 uses a predictor of the form X(kT.)=
X[k —1DT,]. _

The mean squared error of a differential quantizing scheme will be propor-
tional to E{[X(tT,) — X (kT,)]%, whereas the mean squared error of a direct
quantizing scheme will be proportional to E{[X(kT.)%}. If the predictor is
good, which will be the case if the samples are highly correlated, then the
mean squared error of the differential quantizer will be quite small. However,
it must be pointed out here that the differential quantizer requires more
hardware.

104

After the output of an analog information source is sampled and quantized,
the sequence of output levels {X,(kT,)} can be transmitted directly using a
Q-ary PAM. Alternatively, we may represent each quantized level by a code
number and transmit the code number rather than the sample value itseif.
Source coding techniques discussed in Chapter 4 could be used to arrive at an
optimum way of representing levels by code words. This system of trans-
mission in which sampled and quantized values of an analog signal are
transmitted via a sequence of codewords is called Pulse Code Modulation
(PCM).

The important features of PCM are shown in Figure 10.17 and Table 10.1.
We assume that an analog signal x(#) with max|x(t)] <4 volts is sampled at
the rate of r, samples per second. The sampled values are quantized using a
uniform quantizing rule with 16 steps (Q = 16) of equal step size A = 0.5 volt.
The quantizer end points are —4, —3.5, —3,...,3.5, 4 volts and the output
levels are —3.75, —3.25, ..., 3.25, and 3.75 volts. Table 10.1 shows a sequence
of sample values and the corresponding quantized levels. The 16 output levels
are arbitrarily assigned level numbers 0, 1,2, ..., 15. These level numbers are
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Figure 10.17 PCM example. Coded representation is given in Table 10.1.

shown encoded in binary and quarternary form in Table 10.1. The binary code
is the binary representation of the level nwhibers. The quarternary code is
easily derived from the binary code by segmenting each 4-bit binary word into
two 2-bit binary words, and then converting each group of two binary digits to
real integers. Now, if we are transmitting the sampled analog signal directly
using analog PAM, we would transmit the sampled values 1.3, 2.3, 2.7,....
The symbol rate will be equal to the sampling rate 7. If we are transmitting
the quantized sample values using a 16-level discrete PAM, we would trans-
mit the quantized levels 1.25, 2.25, 2.75,...,atarate of r; levels per second.
In binary PCM, we would transmit the bit sequence 10101100110t ...,ata bit

Nearest quantizer
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Table 10.1. Quantizing and coding of an analog signal

Sampled values of

an analog signal 1.3 2.3 2.7 32 1.1 -12 —»1.6 Q.1 -12

125 2325 275 325 125 ~-125 -—175 025 128

level

Level number 10 12 13 14 19 5 4 8 5
Binary code 1010 1100 110% 1110 1010 0101 0100 1000 0101
Quartemnary code 22 30 3 32 22 11 ¢ 20 11

rate of 4r, bits/sec. Finally, if we use quarternary PCM, we will transmit the
digit sequénce 22303132..., at a rate of 2r digitsf{sec. Each digit in this
sequence can have one of four values.

Several versions of PCM schemes are currently being used; two most
commonly vsed versions are the differential pulse code modulation (DPCM)
schemes and the delta modulation (DM) schemes. DPCM systems use
differential quantizers and PCM encoders. DM schemes use a differential
quantizer with two output levels A or —A; these two levels are encoded using
a single binary digit before transmission. Thus, DM is a special case of
DPCM.

In the following sections, we will discuss PCM, DPCM, and DM schemes in
detail, and derive expressions for signal-to-noise ratios at the output of the
receivers. Finally, we will compare the performance of these coded trans-
mission schemes with the performance of analog modulation schemes such as
AM and FM.

10.4.1 The PCM System

A PCM communication system is shown in Figure 10.18. The analog signal
X(t) is sampled and then the samples are quantized and encoded. For the
purposes of analysis and discussion we will assume that the encoder output is
a binary sequence. In the example shown in Figure 10.17 the binary code has
a numerical significance that is the same as the order assigned to the
quantized levels. However, this feature is not essential. We could have used
arbitrary ordering and codeword assignment as long as the receiver knows the
quantized sample value associated with each code word.

The comibination of the quantizer and encoder is often called an analog to
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Figure 10.18 Block diagram of a PCM system. nq{t) is the noise

due to quantizing and ne(t) is the neise due to bit esrors caused
by channel noise.

digital (A to D or A[D) converter. The sampler in practical systems is t:lsually
:g: le and hold device. The combination of the sample and hold device and

?hia:;'l],) converter accepts analog signals and re:plac.es iE with a sequence of code

symbols. A more detailed diagram of this combination, sometimes called a
ioiti i in Figure 10.19.

dlg';ﬁzeg’iglist:l?; ‘z:clond:‘clig:ignal is transmitted over the commu‘nication _c:ha_nnel

to the receiver (shown in Figure 10.20): When the nois:y version of t:'hls s;gn}:ﬂ

s at the receiver, the first operation performed is the separation of the

f Qls2. HUc Cpa[atlon p l‘ltl atlon
120N by ¢ k] OSSIble because Qf the ql.la Z
8 g a (al17} the nois S h 1 1

i f hati es this task of separating signal and aocise
of the signal. A feature that eas
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Clock signal T [ I _ _ codeword
\
Parallei
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Figure 10.19 Elements of a PCM transmitter.
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Figure 10.20 Elements of 2 PCM receiver.

that during each bit interval the receiver (matched filter) has only to make the
simple decision of whether a 0 or a | has been received. The relative reliability
of this decision in binary PCM over the multivalued decision required for
direct Q-ary PAM is an important advantage for binary PCM.

After decoding a group of binary digits representing the codeword for the
quantized value of the sample, the receiver has to assign a signal level to the
codeword, The functional blsck that performs this task of accepling
sequences of binary digits and generating appropriate sequences of levels is
called a digital to analog (DfA) converter. The sequence of levels that appear
at the output of the D/A converter as a Q-level PAM waveform is then
filtered to reject any frequency components lying outside of the baseband.
The reconstructed signal X (t) is identical with the input X(¢) except for the
quantization noise n,(t) and another noise compenent ny(t) that results from
decoding errors due to the channel noise.

Figures 10.18-10.20 do not show signal companding components, and timing~
recovery networks.

10.4.2 Bandwidth Requirements of PCM

Since PCM requires the transmission of several digits for each message
sample, it is apparent that the PCM bandwidth will be much greater than the
message bandwidth. A lower bound on the bandwidth can be obtained as
follows. If the message bandwidth is f,, then the quantized samples occur at a
rate f.(=2f,) samples per second. If the PCM system uses M channel symbols
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(M-ary transmission) to represent the Q quantizer levels, then each codeword
would consist of ¥ digits, where

¥ =10gM(Q)1 M$ Q

since there are M different possible codewords and M™ = Q. for hlll;ll(;ll:
coding. Thus the channe!l symbol rate is r,= /s ?‘ny,. Recalling t abt ?n
discrete baseband PAM signalling we need a bandwidth = r/2 Hz, we obta
the bandwidth of the PCM signal as

Becu = vfx (10.34)

For binary PCM, the bandwidth required is greater than or equ_al to t{x lggz_?i
As an illustration of the bandwidth requirements. let us consider t_e igita

transmission of telephone-quality voice signal. While th.e average vouzf .sp;a;]:-
trum exceeds well beyond 10 kHz, most of the energy is con-centr‘at:eb Tm Ae
range 100 to 600 Hz and a bandwidth of 3 kHz is sufﬁc;nent for intelligibi lty.h :
a standard for telephone systems, the voice signal is first passed thgoug .
3kHz lowpass filter and then sampled at f; = 8000 samples per iecon .t :ﬁs-
sample is then quantized into one of 128 lc:vels. If t!lese samp esI are rﬁhan
mitted using binary PCM, then the bandw-ldth required will be ?;;ger3 han
(8000)(M(log; 128) = 28 kHz, which is considerably greater than the
bandwidth of the voice signal.

10.4.3 Noise in PCM Systems

It is shown in Figure 10.18 that the output X(t) in a PCM system can be
written as

K(t) = Xolt)+ ngt) + nolt) (10.35)

where X,(t) = kX (t) is the signal component in the outp.ut; n,(t) and n(,.(t)tz.n':e1
two noise components. The first noise waveform ng(t) is (‘le..lc to quan?za io
and the additional noise waveform no(t) is due to the a_dchuv? ch_anne C:I'Lo:se.
The overall signal-to-noise ratio at the baseband output, which is used as a
measure of signal quality, is defined as

S) _ E{[X:()]} (10.36)
(I_V- o E{ng () + E{lne(t)}

The average noise power at the output, E{{n ()]} and E{lno(®)I}, can be .

calculated as follows.

Quantization Noise in PCM Systems. If we assume that ideal .impulse
sampling is used in the PCM system, then the output of the sampler is
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X=X 3 s¢-k1)

The quantized signal X,,(t) can then be expressed as
Xy () =X, (1) ; 8(t—kT,)

= X(0) 2 8t = KT+ [X,() - X)) 2 8¢~ kT)
= ; [X(T)8(t — kT,) + &g (kT,)5(t — kT,)]

where €,(t) is the error introduced by the quantizing operation. Using the
results derived in Chapter 3, we can obtain the power spectral density of ¢, as

Gef) = 7 BT} (10.37)

assuming that Ele,(kT.)]=0 and E{e,(kT.)e[(k +/)T,]}=0. The mean
squared error due to quantizing, Efe(kT,)}, will depend on the signal statis-
tics and the method of quantizing. For comparison purposes, let us assume a

uniform quantizer operating on X () having 2 uniform pdf over the interval
[—a, a]. Then we have

E{el(kT,)} = AY12
where A is the step size, and
1 /A%
G =+{%)

If we ignore the effects of channel noise temporarily, then the noise com-
ponent n,(t) has a power spectral densit
G, () = G (NH ()

where Hp(f) is the transfer function of the lowpass filter used for reconstruc-

ting the signal. Assuming f, = 2f, and Hg(f) to be an ideal lowpass filter with a
bandwidth f,, we have '

q

Gnq(f) = {S‘q(f) lfl <f-‘

elsewhere
Hence,
2 f 1 (A?
iwi= [ o =(5)
The output signal component Xy(t) is the response of the lowpass filter to
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X(t) =, 5t — kT.). We can calculate E{[X() as
2 AZ
eaon=5(5E) (10.39)

where Q is the number of quantizer levels. Thus, the average signal to
guantizer noise power ratio at the output of the PCM system is given by

E{XyO} _ A2 (10.39)
Elinors -~ 2

This result is the same as the normalized mean square error due to quantizing
(Equation {10.28a)), that is,

E{{Xq(kT.r )]2} . QZ
E{[X(kT,) — X (kT,)'}

This coincidence is due to the assumption that ideal impulse sampling is used in
the system.

Channe! Noise in PCM Systems, Channel‘noise causes th.e matched filter
detector to make an occasional error in decoding whether a bmary 0 or 1 waé
transmitted. The probability of error depends on the .type' of signaling use
and the average signal-to-noise power ratio at t'he receiver :nput: 4
Typically, binary PCM systems operate with small word sizes ;p ov:
probabilities of error. Hence, the likelihood of ‘mo.r‘cdtnhaf"a f.l.fgfim:.t.,:;r:?u
within a codeword can be ignored. As an exampig, il ine oit SITor ,_..WW..‘.&
is P.= 10" and a word has eight biFs, w:i.'e may expect on the average one wor
Y 1250 words transmitted.
en:[?}rnef(;rr:b:l;iylity of more than one bit error per word in t.his example wquld
he of the order of ()P? or of the order of 1077, When a bl_t error occurs in a
PCM system, the decoder incorrectly identifies the tra_nsmltted level, ?.ng thc:_
quantized value of the signal is thus incorrectly dett?rmmed. The rpag.n1tu e ':.t
the error will be small if the bit error occurr‘ed in the least sngmﬁcant 1t
position, and the error will be large if tc}l\e bit error occurred in the mos
igni it position within the codeword. : )
Slgl‘:fr::grbto galculate the effects of bit errors -induced by P?hannel noise, let
us consider a PCM system using N-bit codewo_rds_(Q =2 ) !_.et us furthe;
assume that a codeword used to identify a.quantlzatl_on level is in the order 0t
numerical significance of the word, that Is, we assign 00...00 to the r{:?s
negative level, 00...01 the mext level, and .11'1 AU B | t:) the most %051 ws
level. An error that occurs in the least significant bit of the co cwl'oll;
corresponds to an error in the quantized \_falue of the sampled sngnad Vi
amount A. An error in the next significant bit cglt.lscs an error of 24, and an
error in the ith bit position causes an error of (2HA. Let us call the error Q..
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Then, assuming that an error may occur with equal likelihood in any one of
the N bits in the codeword, the variance of the error is

B0l = 1 (3 a2)

=2—_.2N_1A2==2—-11A2
3N 3N

for N =2, The bit errors due to channel noise lead to incorrect values of
X (KT,). Since we are treating X,(f) 2s an impulse sequence, these errors
appear as impulses of random amplitude and of random times of occurrence.
An error impuise occurs when a word is in error. The mean separation
between bit errors is I/P, bits. Since there are N bits per codeword, the mean
separation between words that are in error is I/(NP,) words, and the mean time
between word errors is

T = TJ(NP,)

Using the results derived in Chapter 3, we can obtain the power spectral
density of the thermal noise error impnise train as

Gl = E{QY)

-(F)Gw)r
T, J\3N
At the outpui of the ideai iowpass fiter, the thermal noise error impuise train
produces an average noise power N, given by

fe IN A2
No= L Galf) df = 23#;{1" (10.40)

o

Output S/N Ratio in PCM Systems. The performance of the PCM system,
when used for transmitting analog signals, is measured in terms of the average

signal-to-noise power ratio at the receiver output. Combining Equations
(10.36), (10.38), (10.39), and (10.40), we have

S 22N
(ﬁ)u “174p. 2™ (10.41)

In Equation (10.41), P, denotes the probability of a bit error which depends on
the method of transmission. For example, if PSK signaling scheme is used,

we have - -
7 - o( 5T~ o({E55E)



538 Digital Transmission of Analog Signals
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Input signal—to—noise ratie ($/N); (dB)

Figure 10.21 OQutput signal-to-noise ratio in PCM systems.

where S,, is the average signal power at the receiver input and T, is the bit
duration,

T, |
L=N=%N
Hence, 2
= Hav (10.42)
P Q(Jnf;N)

Similar expressions can be derived for other transmission sc.hcmc?s. N
Plots of average signal-to-noise power ratio at the receiver input (5; )i
{defined as S,/nf.) versus the signal-to-noise ratio at the output (§/N), for a
PCM-PSK system are shown in Figure 10.21. . .
Plots shown in Figure 10.21 clearly indicate that the PCM system exhibits a
threshold effect. For large values of {(S/N);, P, is small and hence

1+4p,2N =~ 1

and i
(SIN)=2N = (6N)dB (10.43a)
When (S/N); is small, then we have
N/y 4P.2 4P,

The threshold point is arbitrarily defined as the (S/N); at which (S/N), given
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in Equation (10.43b) falls 1 dB below the value given in Equation (10.43a).
The onset of threshold in PCM will result in a sudden increase in the output
noise power. As the input signal power is increased, the output signal-to-noise
power ratio (S/N), reaches a value (6N) dB that is independent of the signal
power. Thus, above threshold, increasing signal power yields no further

improvement in the (S/N),. The limiting value of (SIN), depends oniy on the
number of quantizer levels.

10.4.4 Differential PCM Systems

So far, we have discussed PCM systems using a fairly straightforward digital
code for the transmission of analog signals. Several variations of PCM
systems have been developed in recent years. We briefly describe two such
types of systems here. Both systems use a differential quantizing scheme.

These systems are particularly more efficient when the sampled message
signal has high sample to sample correlation. For example, in the transmission
of picture (video) information, appreciable portions of the signal describe
background information containing very little tonal variations. In such situa-
tions, if we use PCM, the codewords describe the value of the average
background level; if these tonal values do not change appreciably, then we are
essentially transmitting repeated sample values. One way to improve the
situation is to send only the digitally encoded differences between successive
samples. Thus a picture that has been quantized to 256 levels (eight bits) may
be iransmitted with comparable fidelity using 4-bit differential encoding. This
reduces the transmission bandwidth by a factor of 2. PCM systems using
differential quantizing schemes are known as differential PCM (DPCM)
systems.

A differential PCM system that is particularly simpie to implement results
when the difference signal is quantized into two levels. The output of the
quantizer is represented by a single binary digit, which indicates the sign of
the sample to sample difference. This PCM system is known as delta modula-
tion (DM). Delta modulation systems have an advantage over M-ary PCM
and M-ary DPCM systems in that the hardware required for modulation at
the transmitter and demodulation at the receiver are much simpler.

10.4.5 Delta Medulation Systems

The functional block diagram of a delta modulation system is shown in Figure
10.22, At the transmitter, the sampled value X(kT?) of X (1) is compared with

a predicted value X (kT and the difference X(kT?) ~ X(kT?) is quantized into
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Quantizer
" +4 [Xtk) — XUk} —
o | -
Xik) Y Yiz) —4 M Xik)
. +
Kik) L Doty
X(k) s
Delay
T Xik)
{a} Transmitter (b} Receiver

Figure 10.22 Discrete time model of a DM systern. (a) Transmitter. (b}
Receiver. Sampling rate = f;=1/T,.

one of two values +A or —A. The output of the quantizer is encoded using
one binary digit per sample and sent to the receiver. At the receiver, the
decoded value of the difference signal is added to the immediately preceding
value of the receiver output. The operation of the delta modulation scheme
shown in Figure 10.22 is described by the following equations:

XTH=X(k-DT) (10.44}
where X((k— DT is the receiver output at f = {(k—1)T}and

%

<Fom s

FRTH = RKTH+IXUKTH - X

AFHIX{KTS -

The delay element and the adder in Figures 10.22a and 10.22b can be replaced !
by an integrator whose input is an impulse sequence of period T;and strength -
+ A, This results in the system shown in Figure 10.23. .
The operation of the delta modulation scheme shown in Figure 10.23 may
be seen using the waveforms shown in Figure 10.24. The message signal X (£)
is compared with a stepwise approximation Xty and the difference _sign_:;l
vyin=X (1) — X (¢} is quantized into two levels -_'-A depending on the sign ©

Hard s (o) =7 81z —&Ty
k

Iumicer
Low f A Low
pass - Difference r ->é>'———3- —— !ntegrator pass
filter amplifier Aa X(el| filzer

Yie) Vi Ypld

Kot =3
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Figure 10.24 Delta modulation waveforms; X (t) = X (t).
the difference. The output of the quantizer is sampled to produce
Yo () = kz A sgnfX (kTD — X (kT )18(t — kT? (10.46)

The stepwise approximation 2t is generated by passing the impulse wave-
form given in Equation (10.46) through an integrator that respends to an
impulse with a step rise. Since there are only two possible impulse weights in
Y,.(t), this signal can be transmitted using a binary waveform. The demodu-
lator consists of an integrator and 2 lowpass filter.

In a practical delta modulation system, the lowpass filter in the receiver will,
by itself, provide an approximate measure of integration. Hence we can
eliminate the receiver integrator and depend on the filter for integration. At
the transmitter, the sampling waveform s;(t) need not be an impulse wave-
form but a pulse waveform with a pulse duration that is short in comparison
with the interval between pulses. Furthermore, the transmitter integrator need
not be an ideal integrator—a simple RC lowpass filter will be adequate. These
simplifications reduce the complexity of the hardware in DM systems con-
siderably.

Some of the problems that occur when we use delta modulation to transmit
an analog signal can be seen in the waveforms shown in Figure 10.24. Initially,
let us assume that X{f)< X(t) so that the first impulse has a weight of A.
When this impulse is fed back through the integrator, it produces a step
change in X(r) of height A. This process continues through the start up
interval until X(t) exceeds X(t). During the start up interval the receiver
output will differ considerably from the message signal X (f). After the start
up period, X(f) exhibits a hunting behavior when X(¢) remains constant.
Hunting leads to idling noise. The sampling rate in a delta modulation scheme
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:mI.I norrr}ally be much higher than the Nyquist rate and hence the rectangular
idling noise waveform can be filtered or smoothed out by the receiver filter.

Slope Over!oading.. A serious problem in delta modulation schemes arises
?ule to the r'flte of nse.overloading. When X(t) is changing, X(t) and X()
o lo»\.f X(f) in a stepwise fashion as long as successive samples of X(f) do
not differ by an amount greater than the step size A, When the difference is
greater tlTan A, X(t) .and X(#) can no longer follow X(t). This type of
:rt;r[oag is not determined by the amplitude of the message signal X() but
er by its slope as illustrated in Figure 10.23;
rather b gure 5; hence, the name slope
To derive a condition for preventing slope overload in DM systems, let us
assume that X(t)= A cos(2xf.t). Then, the maximum signal slope is

[£328] - azay,

The ma_ximum sample to sample change in the value of X(f) then is AZ=f, T}
To avoid slope overioad, this change has to be less than A, that is,

2af. TIA<A
or, the peak signal amplitude at which slope overload occurs is given by
AL
A= 2 1, {10.47)

where .fi: 1/T; is the sampling rate of the DM system. For a signal X' (¢) with
a contl_nuous spectrum Gx(f), we can still use Equation (10.47} to determine
the point of slope overload if f, is taken to be the frequency beyond which
Gx(f) falls off at a rate greater than 1/f*. It has been determined experiment-
ally that delta modulation will transmit speech signals without noticeable

slope overload provided that the signal amplitude does not exceed the.

maximum sinusoidal amplitude given in Equation (10.47) with f, = 800 Hz.

Xitn

1 X0

.4f1_ =

{a}

Flgurg 10.25 Slope overload in DM systems. Signals Xi(t) and Xa(t) have the same
amp:rtudde range. However, because of greater rate of rise, X;{t} causes a slope
overload.
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The problem of slope overloading in delta modulation systems can be
alleviated by filtering the signal to limit the maXimum rate of change ot by
increasing the step size andfor the sampling rate. Filtering the signal and
increasing the step size will result in poor signal resolution, and increasing
the sampling rate will lead to larger bandwidth requirements. A better way to
avoid slope overload is to detect the overload condition and make the step
size larger when overloading is detected. Systems using signal dependent step
sizes are called adaptive delta modulation systems (ADM).

Adaptive Delta Modulation.* Hunting occurs in DM systems when the
signal changes very slowly, and slope overloading occurs when the slope of
the signal is very high. Both of these problems can be alleviated by adjusting
the step size, in an adaptive fashion, in accordance with the signal being
encountered. Ideally, the step size should be kept small when signal changes
are small while increasing the step size in order to avoid slope overload when
signal changes are large.

A DM system that adjusts its step size according to signal characteristics is
shown in Figure 10.26. The step size is varied by controlling the gain of the
integrator, which is assumed to have a low gain when the control voltage is
zero and a larger gain with increasingly pesitive control voltage. The gain
control circuit consists of an RC integrator and a square law device. When the

Impulse
sequence
xtn F Y ()= E & RT) 8 (e — AT
: = E §
- Ditference QU:::jlzer &
Xl - ifi
{#) amplifier Y | sampler
Variable
Integrator gain amplifier

Stepsize & (kT l Square
. / law

device

Gain control
valtage

-HI—LM:

Figure 10.26 An adaptive delta modulator. The strength of the
impulse |A'tkT2)| depends on the slope of lhe signal; the sign of
A'(kT:) will be the same as the sign of Y{kT{).

» Adaptive delta modulation is also known by the name continuous variable-slope delta modula-
tion (CVSDMM
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input signal is constant or slowly varying, the DM will be hunting and the
modulator output will be a sequence of alternate polarity pulses. These pulses
when integrated by the RC filter yield an average output of almost zero. The
gain control input and hence the gain and the step size are small.

In case of a slope overload, the output of the quantizer will be a train of all
positive or all negative pulses (see Figure 10.24). The integrator now provides
a large control voltage and the gain of the amplifier is increased. Because of
the squaring circuit, the amplifier gain will be increased no matter what the
polarity of the pulses are. The net result is an increase in step size and a
reduction in slope averload. The demodulator in an adaptive DM system will
have an adaptive pain control circuit similar to the one used in the modulator.

10.4.6 MNoise in Delta Modulation Systems

The-output of the demodulator X (1) differs from the input to the modulator
X(1) because of quantizing noise n,(t) and the noise due to transmission
errors no(t), that is, )

X ()= Xo(t) + ng(t) + nolt) (10.48)
where X(t) is the output signal component (assumed to be equal to X(2)), and
no(t), () are the noise components at the output of the baseband filter. The
overall signal quality in DM systems, as in PCM systems, is measured in
terms of the signal-to-noise ratic at the output of the baseband filter. This
ratio is defined as

(_:9..) = E{[Xo(1)]}

N /o~ Elln (O + E{fno( )1}
The average power content of the noise components can be calculated as
“follows. _

Quantization Noise in DM Systems. To arrive at an estimate of the
quantization noise power we write X(f)= X(t)+ e (t) where le (8} =
X - X(t)| <4 in the absence of slope overloading (Figure 10.24). The
quantizing noise component n,(t) in Equation (10.48) is the response of the
baseband filter to &{f). If we assume a uniform pdf for €,(t}, then

Eflea(0F} = [z ¢ de

= A3

It has been experimentally verified that the normalized power of t}}é
waveform ¢(f) is uniformly distributed over the frequency interval (0,11
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where f! is the sampling rate. Thus, the power spectral density G (f) of eq(t)
is given by
A%6f,
Ga={5""
Since ng(t) is the respons¢ of the baseband filter to €,(t), the normalized
average power of the waveform ny(?) is given by

fx

E{(n(0Ft= [ Gt df

_ (A (fx

-(5)®) (10.49
in order to compute the signal to quantizing noise power ratio, we need to

calculate the signal power E{X¥}. To simplify the calculation of signal

power, let us take the worst case for delta modulation where alt of the signal

power is concentrated at the upper end of the baseband, that is, let us take

X()= A cos 2uft

il < £

elsewhere

Then,
Xo(t)= A cos 2ufd
and
E{X¥t)=A"2 (10.504)
and to avoid slope overload we have, from Equation (10.47),
-
A= Zar f, {10.50b)

Combining Equation (10.49) with (10.50), we obtain the output signal to
quantizer noise power ratio as

E{XHt)} ( 3 )(f')3

===} 10.51

Elni0) &\ (195D
We will see later on that the performance of DM systems as measured by
signal to quantizer noise power ratio falls below the perforinance of PCM
system using comparable bandwidth.

Channel Noise in' DM Systems. When channel noise is present, the
polarity of the transmitted waveform will be occasionally decoded incor-
rectly. Since the transmitted waveform is an impulse sequence of strength
+A, a sign error will result in an error impulse of strength 2A; the factor of 2
comes from the fact that an error reverses the polarity of the pulse. This
channel-error noise appears at the receiver integrator input as a sequence of
impulses with random times of occurrence and strength =2A, The mean time
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of separation between these impulses is TP, where P, is the bit error
proba‘tgility. The power spectral density of this impulse train can be shown to
_be white, with a magnitude of 4AP.f,. If we take the transfer function of the
integrator to be 1/jw, then the power spectral density of channel-error noise at
the input to the baseband filter is given by

2 '
Gu(f) = %%‘% 10.52)

It would appear now that to find the channel-error noise power at the output,
E{n¥1)}, all we need to do is to integrate Gu(f) over the passband of the
baseband filter. However, Gy (f)— = as f -0, and the integral of Gu(f)overa
range of frequencies including f = 0 is infinite. Fortunately, baseband filters
have a low-frequency cutoff f; > 0; further, f, is usually very small compared
to the high-frequency cutoff f.. Hence

Iz
E{nit)} =2 L Galf) df

2550

_ 2A%P.f
—;T—g?:— (10.53)

since f, < f. Equation (10.53) shows that the output noise power due to bit
errors depends on the low-frequency cutoft f, rather than the high-frequency
cutoff f.. Combining Equations (10.50), (10.51), and (10.53) we obuain the
overall output signal-to-noise power ratio in 2 DM system as

(_S_) - EXin}
N/o Efny (D} + E{n{(t)}
(3fI87 D . (10.54)

=T+ 6P )

10.4.7 Comparison of PCM and DM Systems

We-can now compare the performance of PCM and DM systems in terms of
ove_ral] signal quality and equipment complexity. To ensure that the com-
parison is done under identical conditions, fef us assume that both systems
use approximately the same bandwidth for transmitting a baseband analog
signal. If we use f, and f; to denote the sampling rates of an N-bit PCM
system and a DM system, then the bit rates for the systems are Nf, and [},
respectively. If the signal spectrum extends up to f; Hz, then fo=12f. and
identical bandwidth requirements imply that

fi=2Nf,

Ul y olS.:L: el o851 (gl o
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Signal-to-Noise Ratio. If the channe! signal-to-noise ratio is high, then the
performance of PCM and DM is limited by the quantization noise. The signal
to quantizing noise power ratio for the PCM system is obtained from
Equation (10.43),

{Se/ Nodpeu = Q= 2N N=22
where Q =2V is the number of quantizer levels. For the DM system, the
cotresponding ratio is given by Equation (10.51) :

()@
~0.3N?

The preceding equations sho'\;v that for a fixed bandwidth the performance
of DM is always poorer than PCM. By way of an example, if the channel
bandwidth is adequate for an 8-bit PCM code, then

(Sol Ngyrcm = 43 dB

and
{So/ NpJom =22 dB

The performance of DM can be considerably improved by using 2 variable
step size. Indeed, for speech transmission, it has been found that there is little
difference in the performances of adaptive DM and PCM systems operating at
a bit rate of about 64 kbits/sec.

The overall signal-to-noise ratio of 2 DM system is also lower than the
overall STN ratio of a PCM system using the same bandwidth. The extent of
the difference in the signal quality depends on the characteristic of the signal.

An example is given below:

Example 10.3. Comparc the overall output S/N ratio for 8-bit PCM and DM
systems used for transmitting a baseband signal whose spectrum is confined
from 300 to 3000 Hz. Assume that both systems operate at a bit rate of
64 kbits/sec and use 2 PSK signaling scheme with (S.inf-) =20 dB.

Solation.
(a) PCM system. We have, 1T, = 64,000, (Sa/nfs) =100, and

P.= Q(\Fi;f—”) = Q3 3T5)~ 107

Hence,

S —-——-—-—m-zm =24 dB
Ny 1+4P2°

(b) DM system. fi=300,  fe =300,  f;=64,000, and
' P.= Q(V33T5) =107
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From Equation (10.54) with f:= 64,000, f, =300, and f, = 3000, we have
Sn’Na == 20 dB

Bandwidth Requirements. Since PCM and DM are now considered pri-
marily for use in speech transmission, let us compare the BW requirements of
these systems for speech transmission. With the use of PCM, speech trans-
mission is found to be of good quality when f,=8000 and N =8. The
corresponding bit rate is 64 kbitsfsec. To obtain comparable quality using
delta modulation, the sampling rate has to be about 100 kbits/sec. However, it
has been recently shown that with continuous variable slope delta (CVSD)
modulation it is possible to achieve good signal quality at about 32 kbits/sec. Itis
reasonably accurate to conclude that PCM and (CVS)DM require ap-
proximately the same bandwidth for most analog signal transmission ap-
plications.

Equipment Complexity. The hardware required to implement DM is much
simpler than that required for implementing PCM. Single integrated circuit
chip (continuously-variable delta modulation) coder/decoders {called CODECS)
are rapidly becoming available. In comparison, PCM coder/decoders require
two chips for implementation: one chip for processing the analog signal and the
second one to encode the sampled analog signal. Thus the PCM hardware is
more expensive than the DM hardware.

10.4.8 Q-Level Differential PCM Systems

We conclude our treatment of digital transmission methods for analog signals
with a brief description of a technique that combines the differential aspect of
DM with the maultilevel quantization of PCM. This technigue, known as
differential PCM (DPCM) or delta-PCM, uses a Q-level quantizer to quantize
the difference signal Xer)— X () (Figure 10.23). Thus the output of the
sampler Y., {(t) is an impulse train in which the strength of the impulses can
have one of Q possible values, (If Q =2, then DPCM reduces to DM.) The
value of the quantized error sample is represented by an N bit codeword
(Q =2")and transmitted over the communication channel as 2 binary wave-
form.

The approximation X() of X(t)ina DPCM system has a variable step size
ranging from =A to =QA/f2, so X(t) follows X(t) more accurately. Thus,
there will be much lower hunting noise, faster start-up, and less chance of
slope overload, especially if a nonuniform quantizer is used.

The DPCM system combines the simplicity of DM and the multilevel
quantizing feature of PCM. It has been found that, in many applications, the
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DPCM system with Q =4 yields a higher signal to quantizer noise power ratio
than ordinary PCM or DM using the same bit rate. In recent years DPCM
systems have been used in the encoding and transmission of video signals (for
example, in the Picturephone® system developed by AT&T). For broadcast
quality black and white pictures, DPCM with Q =8 =12 gives acceptable
video-signal reproduction, whereas straight PCM must have Q=256=2
lavels. Thus DPCM reduces transmission bandwidth by a factor of i Com-
parable bandwidth reduction can be obtained for speech transmission aiso.

16.5 TIME-DIVISION MULTIPLEXING

Time-division multiplexing {TDM} is a technique used for transmitting several
analog message signals over a communication channel by dividing the time
frame into slots, one slot for each message signal. In comparison, frequency
division multiplexing (FDM) divides the available bandwidth into slots, one
slot for each message signal. The important features of TDM are illustrated in
Figure 10.27.

Four input signals, all bandlimited to f, by the input filters, are sequentially
sampled at the transmitter by a rotary switch or commutator, The switch
makes f, revolutions per second and extracts one sample from each input
during each revolution. The output of the switch is a PAM waveform
containing samples of the input signals periodically interlaced in time. The
samples from adjacent input message channels are separated by TJM, where

¥ picturephone is a registered service mark of AT & T.

> LPF [— LpE >
X, X,

Rotal Rot
—— LPF 7Y oy

_ switch switeh LPF _;ﬁ"
Xole Xie
N Transemission /E
\l v systern H,
~ ’
LPE * ’ L)— LPF ——3

X3l . Synchronized i X,

> LPF > LFF |—>
Nyle) Xalt)

Figure 10.27 Block diagram of a four channel TDM system.
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M is the number of input channels. A set of M pulses consisting of one
sample from each of the M-input channels is called 2 frame (See Figure
10.28.)

At the receiver, the samples from individual channels are separated and
distributed by another rotary switch called a distributor or decommutator.
The samples from each channel are filtered to reproduce the original message
signal. The rotary switches at the transmitter and receiver are usually elec-
tronic circuits that are carefully synchronized. Synchronizing is perhaps the
most critical aspect of TDM. There are two levels of synchronization in
TDM: frame synchronization and sample (or word) synchronization. Frame
synchronization is necessary to establish when each group of samples begin
and word synchronization is necessary to properly separate the samples
within each frame.

The interlaced sequence of samples may be transmitted by direct PAM or
the sample .values may be quantized and transmitted using PCM. Time-
division multiplexed PCM is used in a variety of applications, the most
important one is PCM telephone systems where voice and other signals are
multiplexed and transmitted over a variety of transmission media including
pairs of wires, wave guides, and optical fibers.

10.5.1 TDM-PCM Telephone System

The block diagram of a modular TDM-PCM telephone system designed by
the American Telephone and Telegraph company is shown in Figure 10.29a, A
24-channel TDM multiplexer is used as the basic system, known as the Tl
carrier system. Twenty-four voice signals are sampled at a rate of 8 kHz and
the resuliing samples are quantized and converted to 7-bit PCM codewords.
At the end of each 7-bit codeword, an additional binary bit is added for
synchronizing purposes. At the end of every group of twenty-four 8-bit
codewords, another additional bit is inserted to give frame synchronization.
The overall frame size in the T1-carrier is 193 bits, arid the overall bit rate is
1.544 Mbits/sec. (See Figure 10.295.)

The T1 system is designed primarily for short distance and heavy usage in
metropolitan areas. The maximum length of the T system is now limited to
50 to 100 miles with a repeater spacing of 1 mile. The overall T-carrier system
is made up of various combinations of lower order T-carrier subsystems
designed for accommodating voice channels, Picturephone® service, TV
signals, and (direct) digital data from data terminal equipment. A brief
summary of the T-carrier TDM/PCM telephony system is given below in

Table 10.2.
In addition to using metallic cable systems for transmission, optical fibers

a
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Table 10.2. T-Carrier Telephony System Specifications
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with repeaters have been used to transmit binary data at speeds of 1.5, 3.6, 45,
and 274 Mbits/sec cormresponding to the speeds of the digital transmission
hterarchy shown in Table 10.2 (see IEEE Spectrum, Feb., 1677).

10.5.2 Comparison of TDM and FOM

TDM and FDM techniques accomplish the same signal processing task. In
TDM, the analog signals are separated in time but jumbled together in the
frequency domain, In FDM the signals are separated in frequency domain but
mixed together in time domain. From a theoretical point of view, the two
systems may be viewed as dual techniques with neither one having any
significant advantage over the other. However, from a practical viewpoint,
TDM seems to be superior to FDM in at least two respects.

First, the TDM circuitry is much simpler than the FDM circuitry. FDM
equipment consists of analog circuits for modulators, carrier generators,
bandpass filters, and demodulators for ¢ach channel. In comparison, TDM
circuitry is digital, consisting of a commutator and distributor. The digital
circuitry is highly modular in nature and provides reliable and efficient
operation. -

A second advantage of TDM systems is the relatively small interchannel
cross talk arising from nonlinearities in the circuits that handle the signals in
the transmitter and the receiver. These nonlinearities produce intermodulation
and harmonic distortion that affect both high-frequency and low-frequency
¢hannels in FDM systems. Thus the phase and amplitude linearity require-
ments of FDM circuits become very stringent when the number of channels
being multiplexed is large. In contrast, there is no cross talk in TDM due to
circuit nonlinearities if the pulses are completely isolated and nonoverlapping
since signals from different channels: are not handled simultanecusly but are
allotted different time intervals. Hence the linearity requirements of the TDM
circuits are not qnite as stringent as the FDM circuits, However, TDM c¢ross
talk immunity is contingent upon a wideband response and the absence of
delay distortion. Disadvantages of TDM include the fact that pulse accuracy,
timing jitter, and synchronization become major problems at high bit rates.

Finally, to complete our comparison of FDM and TDM, let us consider
their bandwidth requirements. Let us assume that we have M input signals
bandlimited to f. Hz. With FDM using $$B modulation, the bandwidth of the
multiplexed signal will be Mf,. With TDM, if we assume a sampling rate of
s for each channel, then the multiplexed signal consists of a series of sample
points separated in' time by 1/Mf.sec (Figure 10.30a). By virtue of the
sampling theorem, these points can be completely described by a continuous
waveform X,(t) that is bandlimited to M{f/2 Hz. This waveform, even though
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device, which is essential for multiplexing asynchronous signals, stores a
) digital bit strearn in such a manner that the bit stream may be read out at a
1/Mf, rate different from the rate at which it was read in. One example of such a
device is a tape recorder. Data can be recorded onto the tape and read out at a
different rate by adjusting the tape speed during replay. Another example is a
large (digital) buffer into which data can be read in at one rate and read out at
. a different rate.

To illustrate the use of elastic store and pulse stuffing in asynchronous
TDM, consider the example of a satellite that records the results of a number
of experiments and transmits them to the earth. Let us suppose that three
experiments each lasting a duration of one second are performed simul-
tancously, and that their signals are sampled and stored in three separate digital
. storage devices. Let us assume that the three signals are sampled at rates 2000,

1’ 3000, and 5000 samples per second, respectively, and the samples are encoded

using 8-bit PCM codewords. At the end of each l-sec interval, the experiments
gampler and : are halted for one second during which time all of the data collected are

distributor .
= transmitted to earth.
M

During transmission, each storage device can be emptied {played back) at

PRT

s Xy ld)

Baseband

Xoir} | Commutator filter

X2

};T‘," the same rate (5000 samples per second), synchronously time-division

1 multiplexed and a single TDM signal can be transmitted to earth. There is one

Figure 10.30 Baseband filtering of 2 TDM waveform. n:tajor problem ass:.ociated vt_fith this procedure. Th? first 2000 Yvord.s of each

signal can be multiplexed without any trouble. During the multiplexing of the

. ioinal messages, passes through the correct next 2000 words there is no contrii_:ution from the first signal, and duri.ng the

it has no direct relation to fhe orlyg_lf:?\ 'mobtaine’d by lowpass filtering of the last* 1000 words there is no contribution from the first and second signals.
sample vaiues ai saqipling tmes. Xt !S'vrer X, (t) is sampled and the sample However, because of noise, the receiver will be reading words when no words
interleaved sample sequence. At the_recelh .ne;’s by the distributor. If the from channels 1 and 2 are being transmitted. To avoid this erroneous
values are distributed to appropriate ¢ a:t rate, that is, fo= 2fo then the interpretation of noise as signal, the time slots corresponding to signals that
sampling frequency is close o the Nyqq; Mf I-I,z which is the same as the - have already terminated are filled with dummy sequences of bits. These
bandwidth of the filtered TDM waveform is Mz B2, ) dummy sequences are carefully chosen and encoded so that the receiver
bandwidth of the FDM waveform. . recognizes them without difficulty. This technique is called pulse stuffing since

it requires that digits or pulses be stuffed into spaces provided for the missing
message bits. (See Figure 10.31)

nous TDM e
10.5.3 Asynchro assumed that the signals

\ . : tems we had :

discussion of TDM sys . ling rate Frame Frame Frame F Frame:
In .the prece dmgd have comparable bandwidths and he:}ce the samp Isgto be 1 F2000—"  [*~2001—] 01 ] +5’gaﬂoe_,J
being putP L Ry e. However, in many applications the mgnah t

ignal is the same. e : they have to 23] ... [ '
for cach sign ultinlexed have different bandwidths and hence Ye ot [ [2]3] [o]2T= ojela] .. |bo JE
time-division md__ﬁp nt sampling frequencies. In these situations, W ich ) 1 ,r ;r 1
o lsén;pledt!:sel s?;;als using the technique described previously, W P
iy common clock rate for all the channels. (ed time-division (switing)
cmploys 2 bining a group of asynchronously samplec tim. ,
One method of combining d pulse stuffing. An elastic storage Figure 10.31 Example of pulse stuffing.

multiplexed signals uses elastic store an
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10.6 COMPARISOH CF METHODS FOR ANALGG SIGHAL
TRANSMISSION

In this section we provide a comparison of analog and digital l:nethods for
transmitting analog signals. First we will compare analog modulation methods
with PCM methods in 2 qualitative manner. Later we will attempt to compare
these methods in a quantitative manner in terms of mgnal-.to-no:se-ratxo at Ehe
receiver output and power bandwidth requirements using an mformatl?n
theoretic approach. In order to do this, we will define aln ldleal (b';n‘t.‘ umeafhz-
icati i Shannon-Hartley law. The pertor-
communication system using the -Ha [
?:;:)ce of practical analog and digital modulation schemes will then be
compared with the bounds set by the ideal system.

10.6.1 PCM versus Analog Modulation

pCM systems have certain inherent advantages over analog moduIatltcl:]r;
schemes for transmitting analog signals. Some of these advantages aré

following:

(1 In long distance communications, PCM signals ‘can- be cl?rrtﬂ:tfl:i
enerated at each repeater station if the repeater spacing is suc o
o itude of the noise is iess than half the separation between levels (wi 2

n . - . l
hm;i probability). An example of signal regeneration ata re_peat;:; (ilsd":st::‘;:i?o nr:
i i i f occasional errors, & noise-
Figure 10.32. With the exception O e orse does
i i i ter. Further, the effect o
signal is transmitted at each repea
f-rfte nccg;umulate and in designing repeaters one needs to 'be co;xfi:r:ffrso?(l)s;
abou i tween repcater stalions. nepealdd
ut the effects of channel noise be n _ ; at
Z‘:;log modulation schemes consist of ampllﬁeljs that raise the s1gna;§l;::e;lso
each transmitting station. While raising the signai level, :_he amp 54
raises the level of accompanying noise- at each repeater stal ::::n'oise o of
(2) At low input signal-to-noise ratios, the o_utput signa ool tative
PCM systems is better than analog modulation schemes. . qes e
discussion of the effect of noise in various modulation schem
ented later on in this chapter. _ . ApeM
prg) PCM systems can be designed to hanc‘lleva variety of s:lg_Fal:d z;:ted o
system designed for analog message transmission can be readily
i i igital data. o
dle other signals, particularly d1g1tz~: : ) diaital
ha&) Modulation and demodulation circuitry in PCM systems :;‘teegllt:ir fuits'
thus affording high reliability and stability- Advances in integ !
have lowered the cost of these ¢ircuits conmde‘rably. rample, PCM da'ta_
(5) Tt is easy to store and time scale PCM signals. For ¢ ple, .
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4]
Figure 10.32. Signal regeneration by requantizing, (a) MNoisy signal at the input of the
repeater. {b) Signal at the repeater output; errors occur when the noise amplitude is large.

[ur)

gathered intermittently from an orbiting satellite over a period of hours may
be transmitted to the ground station in a matter of seconds when the satellite
appears in the field of view of the receiving antenna. While this may also be
accomplished using analog techniques, digital memories can perform the
required storage very efficiently. Further, PCM signals can be time-division
multiplexed easily.

(6) With PCM systems, source coding and channel coding techniques can
be used to reduce unnecessary repetition (redundancy) in messages and to
reduce the effects of noise and interference. Coding may also be used to make
the digital communication channel more secure.

(7) As we will see {in the next section) the exchange of bandwidth for
power is easy to accomplish in PCM systems. Since PCM systems can be
easily time scaled, time can also be exchanged for signal power. Thus the
communication systems designer has added flexibility in the design of a PCM
system to meet a given performance criteria. '

Some of the advantages of PCM systems are offset by the fact that the
complexity of a PCM system is greater than that required for other types of
modulation systems. However, the complexity of a PCM system varies little
as the number of message channels is increased. Hence, PCM systems can

compare quite favorably with other systems when the number of channels is
large.
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10.6.2 Comparison of Communication Systems: Power-Bandwidth . where (S/N), is the signal-to-noise ratio at the receiver input. At the receiver
Ex.cl:lange ’ , output, the information rate can be no greater than
In communication systems designed to handle analog message signals, t}l-:e | R = £. logi 1+ (/Y] (1056
signai-to-noise ratios at various points in the systems are used to measure the : .
signal quality at these points. Of particular interest are tl'1e sxgnal—to-n91se ! An optimum or ideal system is defined as one that is operating at its capacity,
ratio at the input to the receiver and the signal-to-noise ratio at the receiver I with maximum output rate. That is, for the ideal syston. we beve
output. The signal-to-noise ratio at the input depfands on the transmitted
power and the ambient noise appearing at the receiver antenna&'l;?e outpu; : Ro=C
i i i i ignal-to-noi tio and the type o .; or
signal-to-noise ratio depeuds on the input signal-to-noise ra 1
modulation/demodulation processes used in the system. The ratio of the J Br log(1 + (SIN),] = f. logs[1 + (S/N),]
i i i i ignal-to-noise ratio, called the : . -
signal-to-noise ratio at the output.and. the 1nPut 5¥gnal‘ 2 : We can solve for (S/N)s at the output of the ideal systom as
detection gain (a2 measure of noise immunity), is widely used as a figure o :
merit for communication systems. We will use this figure of merit to compare (SINYa = [1+ (SIN, | P — ¢

~

the performance of ssveral communication systems. We v:'ill first inv?stiggte
the performance of an ideal (but unrealizable) comn_-numcaflon systen:n implied :
by the Shannon-Hartley law. We will then examine various ‘pracncal com-
munication systems to see how they measure up against t_he lde‘al system—
particularly in the exchange of bandwidth for signal-to-noise ratio {(or trans-

= [1+(S{N) ] (10.57)

when the signal-to-noise ratios are large. In Equation (10.57) the input
signal-to-noise ratio (S/N), is given by

S S,
mitted power). (‘ﬁ)’ =B (10.58)
An ldeal Communication System. Suppose that we have a communicatio_n I The rat.io of transglission. bandwidth lfh- to message.band\a:id‘th fiis c:czllc_ed the
system (Figure 10.33) for transmitting an analog message signa.l X bandl‘t- bandwidth expansion ratio (or bandwidth compression ratio if the ratio is less
mited to f; Hz. Further, suppose that an idfal system 1s.avallable for lfhls' i than 1), If we let
purpose and thar the channel bandwidth is Br and the noise power specirai i B = Buf.
density is nf2. Also, let us assume that the average .s:gnal power at th'e i and
receiver is S, and that the desired value of the output signal-to-noise ratio is i s
SIN),. -
( ‘;\Io)\:f, the channel capacity of the system is given by the Shannon-Hartley 1fy .
law as then we can rewrite Equation (10.57) as ®
C = Brlog(1+(S/N) (10.55) s )
: (—) = [ 1 +i,] -1
Charnel N/q B
se 1]
ot +X o - ( 3-,)5 (10.59)
Xle) 8
A= Er when the signal-to-noise ratios are large.-
Equation (10.59) shows that, in an ideal system, the signal-to-noise ratio at
the output and the bandwidth are exponentially related. This means that
Received =S d_oubling thr-s transgnission bandwidt}! of an ideal system squares the output
Output [ etderection e | Demodulater te] Procetection o : signal-to-noise ratio. Alternately, since « =S/nf, is proportional to the
2 fliter < ftter Hfrf:::’:’ transmitted power Sr, the transmitted power can be reduced to the square
BW =7, root of its original value without reducing (5/N), by increasing the bandwidth
Figure 10.33 Block diagram of a communication system. by a factor of 2.
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Example 10.4. Consider an ideal system, designed for transmitting an analog
message signal, with the following parameters.

(SIN);=60dB

Inband noise power nf, = 1077 watt, and f.=15kHz. Compare. tl_le power
requirements (S,) of the ideat system for the following transmission band-
widths: (a) Br = 15 kHz. (b) By = 75 kHz. (c) Br = 5 kHz.

Solution .
{a) With Br =15 kHz, §'= 1: and with

(SIN) =60dB =10°
we have {from Equation (10.59)}

(/B =10° or a=10°
Since
@ = SJﬂfx
we have
S, = anf. = (109107 = 0.1 watt

=20dBm
(b} With Br =75 kHz, we have 8'=5 and

(ef5=10° or a=7924
Hence, .
S, = anf. = (79.24)(107)
= —21.02dBm

(c} With Br =5kHz (bandwidth compression), the reader ‘can verify that
B'=10.333 and

a = (3)(10)"®
or
S, = (H{10)" watts (a colossal amount of power!)

The preceding example illustrates that bandwidlth expansion leads to a con-
siderable reduction in power requirements. However, bandwidth compression
leads to extremely large power requirements. We may generalize this con-
clusion and say that ootimum bandwidth to power exchange is practical in one
direction only, namely, the direction of increasing bandwidth and decreasing
power.

Comparison of Communication Systems. We are now read){ to compare
the performance of existing communication systems with the ideal system
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discussed in the preceding section. When comparing existing systems with the
ideal system we should remember the following points. The ideal system
discussed in the preceding section was arrived at via an informatien-theoretic
approach; the primary goal of the system was reliable information transfer in
the sense of information theory. In systems designed for transmitting analog
message signals it is very difficult to assess the information rate. Furthermore,
the primary concern in such applications might be signal-to-noise ratios,
threshold power, (no threshold effect in ideal systems!), and bandwidth
requirements rather than channel capacity and its utilization.

A comparison of the performance of many practical systems with that of an
ideal system is shown summarized in Table 10.3 and Figure 10.34. The results
for SSB, AM, and DSB modulation are taken from Chapters 6 and 7. It is
assumed that signal-to-noise ratios are large, all systems are above threshold,
and that the message signal is normalized with E{X%)} = E{X()} =1 The
result for the PCM system is obtained from Equation (10.41), The performance
of the PCM system operating above threshold is limited by quantizing noise, and

(SIN) = Q?

where Q is the number of quantizer levels. Now if we use an M-ary PCM,
and if the sampling rate is f, = 2f,, then the transmission bandwidth Br is rJ/2,
where r, is the channel symbol rate given by

r, = (2f.) logng Q

Table 10.3. Performance of commu-
pication systems. g'=
Bffe: & = Sinf..

Bandwidth “

System expanston (SIN)e
Ideal [ (algY
Bassesbind F=1 &
DSB g'=2 - a
AM g=2 of3
WBFM F>1 jap?

PCM B =logu(Q) M*¥
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bandwidth dependence like the ideal system. While PCM does have an
exponential power-bandwidth relationship, increasing transmitted power
beyond threshold yields no further improvement in (S/N)4 since the limiting
value of (S/N), is determined by gquantization.

The SSB system offers as good a performance as an idea] system with
B'= 1. However, the bandwidth ratio for SSB is fixed at 8’ = 1 and there is no
possibility of trading bandwidth for noise reduction. AM and DSB systems
with 8'=2 do not perform as well as an ideal system with 8’ =2. Further-
more, like in SSB modulation, there are no possibilities of wideband noise
reduction in AM and DSB systems.

Wideband FM systems offer good possibilities for noise reduction. But the
performance of WBFM, like PCM and AM systems (using noncoherent
demodulation procedures), falls short of the performance of ideal systems
because of threshold effects, especially at low input signal-to-noise ratios.

Figure 10.35 shows the minimum values of input signal-to-noise ratios

ISIN); (dB)

Baseband

: 60
$53; DSB ‘_ ] sse | |
| AM
!
5 . /“,/ Dse
7] ; B~ —— ot ]
: i
WBFNM
AN ; \\ 7
‘ : 40— a
¢ 10 20 20 40 _ |
ai{ds) E
Flgure 10.34 Signai-ta-noise ratios in communication sys~- N e
tems. a = (S/N),; 8’ = By/fs. ol
¢ ideal [
' system
Hence ) o | | | | l
BT = fx IOgM Q ) !
. ) |
" Q= M) = M¥ | 20— ,
. ) |
Thus the output signal-to-noise ratio for the PCM above threshold is il
(SIN)s= Q= M (10.60) ) ! | |
The results shown in Table 10.3 and Figure 10.34 indicate that none of th_e . o : : ] —
practical systems can match the signal-to-noise ratio improvement that is | e
possible with an ideal system. This is due to the fact that practxca_l systems, Figure 1035 Bandwidth and power requird for (374, =
with the exception of PCM systéms, do not have an exponential power- 508, a - (S/N).
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i =50dB as a function of bandwidth ratio for
ii\?';lc;:zds;:te[:x:gfi ;‘Zin-fflig )gdiven in Table 10.3 were used in computing (S/ Nh),
for AM, DSB, §SB, FM, and the ideal system._ For PCij ;yste};r':ts,artil;
minimum (S!N), needed to produce (SIN)d =50 dB.ls calculated by a: :j;e v
defining the PCM threshold as the _pomt at w_f:lch symbc;\!d errorlmsebzmd
channel noise occur with a probability P, <107 For an M-ary

PCM system, P, is obtained from Equation (5.56) with Sy = 5, as

p=2(E (V)

where S, is the average signal power at the receiver input, e = 2f. [ogMéql): is
the charrmel symbol rate, and g is the number of quantizer levels.* For

P, <16¢™, we need

Ja M 107
o(Vor=tegre) T -
If z; satisfies Q(zg) = M{10™9/2(M — 1), then we have
«= (_———-————(M - 1)31'°g“(‘”)z5 (106D

Above threshold, (SIN); = g%, and for (S/N)a= 10° we need g =~ 316. Know-
ing the value of g, we can compuie B’ as
r, = (2f:) logu{q).
Br = rf2 = f; logu(a)
> BAf. = ' =logulq) (10.62)
Values of « and B8’ for M =2, 4, and 16 are shown plotted in Figure 10.35 for

M system. . .
th?rlf:f p]ot: in Figure 10.35 show that the power-bandwidth exchange in PCM

is considerably better than wideband FM. The PCM system requires about

& dB more power than the ideal system. In summary, we can say that FM and -

PCM offer wideband noise reduction and PCM is s?mewhat befttelrl t:ra;::tilzll
i i -to-noi tios. The performance of al
vstems at low input signal-to nmse. ra s. T. :
z;«'stems from a power-bandwidth viewpoint is an m:der of ma.gmtuci‘_eoseslcsag
i At low input signai-to-noise rati
e performance of the ideal system: :
L}:xd%SB are better than other practical modulation schemes thaf suffer from

threshold effects.

i , since (@ is used here to denote
#q is used {0 denote the pumber of quantizer levels rather than Q, s Q
the area under a normal pdf.
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10.7 SUMMARY

We discussed several schemes for transmitting analog message signals using
digital transmission techniques. Methods of sampling, quantizing, and enco-
ding analog message signals were discussed. Pulse code modulation and deha
modulation schemes were analyzed and the effects of quantizing noise and
thermal noise in these systems were discussed. Finally, the performance of
PCM, FM, SSB, DSB, and AM systems were compared with the
performance of an ideal system. The results derived in this chapter clearly
indicate that PCM can be used effectively for trading bandwidth for power.

Also, PCM can be used for time division multiplexing a number of analog
message signals,
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PROBLEMS
Section 10.2

10.1. A lowpass signal x(¢) has a spectrum X (f) given by
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10.2.

10.3.

10.4.

10.5.

Digital Transmission of Analog Signals

1—|f)l200, |f| <200
0, elsewhere

xin={

(a) Assume that x(¢) is ideally sampled at f, =300Hz. Sketch the
spectrum of xz(t) for |f| <200.
(b} Repeat part (a) with f, = 400 Hz.

is ideally sampled at f, =
i )=2cos 400wt + 6 cos 6407t s 1 /
SAOOSI?::-1 allfﬁlg sampled signal is passed through an ideal lowpass ﬁlt?i
with a-cutoff frequency of 400 Hz, what frequency components wil
appear in the outpui?

i i hown in Figure 10.36 is ideally
dpass signal with a spectrum s E g
sAanl:z;:ele gketfh the spectrum of the sampled signal whcz:i f, =20, 30,
and 40 Hz. Indicate if and how the signal can be recoverad.

X{f
K—_—— A
' f
20 -10 10 20
Figure 10.36 Signal spectrum for Problem
10.3.

A bandpass signal with a spectrum shown in Figure 10.37 is ideally

d. .. -
?a)mgifow that the signal can be reconstructed when f, = f —Zssg,
(:)) Show that the signal can be reconstructed wgen > 2fn =58,
(¢) Show that aliasing takes place when f, = 3.5B,.

]
| i
—28, —B, 0 B,

1 f

Figure 10.37 Signal spectrum for Problem 10.4.
Consi.der the signal x(#) = e *u(r), whichfishnot ban:im;tfed.slze];e::;?
i i the num| -
ini sampling rate (in terms o of
th%t?;ﬂ?l;gl)) sucg that the magnitude of the largest aham.lt:g fr:q:ietz?er
::mponent introduced by sampling is at least 10 dB below the mag
of the largest spectral component of x{t).
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10.6. -A rectangular pulse waveform is
reconstructed using an ideal LPF

Figure 10.38). Sketch the recons
T, =5 sec.

sampled once every T, seconds and

with a cutoff frequency of fif2 (see
tructed waveform for T, = { sec and

b 1

f

. xlz}
1

{

(o

Figure 10.38 Sam

pling of a rectangular
waveform,

10.7. The uniform sampling theorem says that a band
be completely specified by its sampled values in the time domain, Now,
consider a time limited signal x(f) that is zero for {t]=T. Show that the
spectrum X (f) of x(¢) can be completely specified by the sampled values
X(kfo), where fo<1/2T,

10.8. Show that Tnw X(kT,) = L2
fx and fi= 2f.

limited signal x(t) can

m=-n X (mf,), where x(#) is bandlimited to

" Section 10.3

10.9. The probability density functio
signal is shown in Figure 10.39,
and calculate the signal to quant

n of the sampled values of an analog
Design a four-level uniform quantizer
izing noise power ratio,

Txlx) 1

-1 4] 1 F

Figure 10.39 Signal pdf for Problems 10.9,
10.10, and 10.11.

10.10. (a) For the pdf shown in Figure 10.39, design a four
mean squared error nonuniform quantizer.

(b} Compute the signal to quantizing noise power ratio for the nonuni-
form quantizer.

(c) Design acompressor and ex
can be done using a compr

-level minimum

pander 50 that the nonuniform quantizing
essor and uniform quantizer.
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10.11. Redraw the compressot shown in Figure 10.15, using a piecewise linear
approximation. Let y = g(x) be the resulting transfer characteristic and
be the midpoints of the intervals on the x axis, and let

let my, Mz, . s Mg
., Ag be the step sizes.

the A|, Ag, ..
(a) Show that the piecewise linearity assumption implies
A= Alg(m)
where A is the output step size and
dg(x)
g{m) = =7
dx zem

proximately constant throughout the step, show that

(®) If fx(x) is ap
iven by

the quantizing noise power is g
1 &

N, =5 2, (A fx(m)
12&

show that if the number of quantization -

(c) Using the result of (b),
levels is large, then

N, = A 3 Afxmy) _ A7 [ fx(x) dx

T4 MmOl 121, 8GN

(d) The companding improvement factor ¢ is defined as the ratio of
the quantizing noise power with no companding to the quantization
error with companding. Obtain an expression {07 <p ‘

h signals has the

10.12. The logarithmic compression used in processing speec
characteristic

y= —x IOga(l - p'xn’xmax)
ma T qog 1+ p)
teristic with x =0, 5, 10, 100.

racteristics.
cuss the variation of step siZe

-xmaxs—xso

(a) Sketch the compression charact
(b) Plot the corresponding expander cha
(c) I there are 64 quantization levels, dis

versus the input voltage Xx. ,
(d) Assuming X to, be uniformly distributed between — Xma to Xrar

show that the companding improvement factor is

: 1
o= (sgtim) ()
f 7 og. (1 +p) T+p+p%3
robability quantizi

10.13. Signals are sometimes quantized using an equal p

Usju”l_j OISJLJ b oSl > \J"S?’:“-"Ib al o

Froblemns 569

(maximum entro i -
Py} algorithm wherein th i
occur with  eque m n he quantizer levels are mad
Lo probability, that fis, PX,=m)=1/Q for ejt:
(a) Design a four-le
" -level equal ili i
. Figuee 10.39. qual probability quantizer for the pdf shown in
Compare the si
re gnal to quantizing noise i
proba!allxty quantizer with that of the minii)l;):n?r o o ahe equal
quantizer (Problem 10). mean squared error

(c) Compare th i
¢ entropies of the o
abilit 4 th utput levels for the
¥ quantizer and the minimum mean squared erroiqc];ua . [;rob-
antizer.

10.14. Nonbandh]lllte 1 a. y I+ e be I Saﬂlp!ed (see
d Sgna[s re lJSllaH ﬁltered b fOI' 1 g

I 1gure ]0.400) Fllt
. (=) 3] d
ng IStOI’tS thc SlgnaI even Wlthout quailHlelg (See

(a) Show that the distortion due to filtering, Ny, is given by
Ne= E{[X (1} - X:(0)P}
=2 ff ,.. Gx(f) df
{b) Assume that X (1} has a Gaussian pdf and
| Gulf) = el
If X (1) is sampled at a rate f: =2f,, find the output signal-to-noise

ldeat
o loqvpass | Sampler and
? filter XAx) quantizer Kyqle}
{a)
psd of
X2} o
Xleh
0 f
~% o £ !
Figure 1040 (a) Q izf o
) Quantizing of nonbandlimitad signals. (b) Effect of

fiftering.
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ratio

(¥)." w5+

N/¢ Ni+ N,

where N, Is the average noise power due to qoantizing and §, is
the average signal power at the quantizer ocutput. [Hint: For
random signals, :

E{( X~ X, (0}
= Ryx(0) + Ry (0) —2R,(0)

= [ ey ar+ [ axnlE R of
2 [ GunHp df

where H(f) is the filter transfer function.)

10.15. Consider the differential quantizer shown in Figure 10.41. ’I:he signal to
be quantized is a zero mean Gaussian random process with an auto-

correlation function
Ryx(r) = ¢~

The signal is sampled at a rate of 12,000 Hz and difierentially quantized

using a minimum mean squared error quantizer. The error due to-

quantizing ¢an be approximated by
E{[Y(kT) - Y (AT} = 2200%Q =N,

and the performance of the differential quantizer is measured by the
signal to quantizing neise power ratio defined as

Sy a0k

N, N,

where Q is the number of quantizer levels.

(a) With X(kT)=X[(k-1T,], find the minimum nurnber of quantlzer .
levels needed to gbtain a signal to quantizing noise power ratio of .

40dR.
(b) Repeat (a) with

-
,"’E\ ,1 Quantizer i.———)-
X(T,) —T YT Y AT}

Xikr,)
Figure 10.41 Differential quantizer.
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Rxx(T))
Rxx(0)

(c) Repeat with X(kT,) =0 (i.e., direct quantizing).
10.16. Repeat 10.15 (a} and (b) with f, = 24,000 Hz.

XKkT)= X[(k - DT,}

Section 10.4

10.17. The threshold value of the input signal-to-noise ratio (S/N); in PCM
systems is defined as the value of (S/N); for which the value of (S/N),
is 1dB below its maximum.

(2) Show that the threshold occurs when

P, = 1/[{16)2*"]

(b) Plot P, versus N, for N=2, 4, 6, 8, and 10.
(c) Assuming that a PSK signaling scheme is used, sketch the
threshold values of (§/N); versus N for N =2, 4, 6, 8, and 10.

10.18. A signal X(¢) bandlimited to 15kHz is sampled at 50 kHz and the
samples are transmitted using PCM/PSK. An output S/N of at least
40dB is desired. (Assume that X(¢) has a uniform pdf).

(a) Find the bandwidth requirements of the system.

{b) Find (S/N); if the system is to operate above threshold.

(c) Find (S/N), if the system is operating with a (SIN); that ic 2 4R
below the threshold value.

10.19. A nonbandlimited signal X () has a power spectral density
Gx(f) = ™%

The signal is bandlimited to f; Hz by ideal lowpass filtering. :

(a) Find the value f, such that the filter passes at least 90% of the
signal power at its input. _

(b) If the filter output is converted to 6-bit PCM and transmitted over a
binary symmetric channel with P, = 107, find the overall signal-to-
noise power ratio defined as

( _é" ) So

NJo Ng+ N,+ N,

Ny Ny and N, are the distortion due to filtering and the average noise
power due to quantizing, and channel bit errors, respectively,

10.20. The output of an analog message source is modeled as a zero mean

random process X(f) with a uniform pdf and the power spectral
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j:Gx(ﬂdf'—' T mw

spectrum falls
faster than

0 100 800 3000

Figure 10.42 Psd of the output of an analog Information source,

density shown in Figure 10.42. This signal is to be transmitted using

I()ab)d.Find the sampling rate and the step size required to maintain a signal

. : . B.

tizing noise power ratio of 40d_ _

b) éooz:ﬁ:; l:hezzg bandwidth of the DM \t{:th a PCM system operat}l‘ng

( with the same signal to quantizing noise power ratio. Assume that
f. = 6000 Hz for the PCM system.

1 i v sy is defined as the value of P,
hold value of P, in DM systems is ¢ ;
1021 Eci’em:'?:i-:; the value of (S:'N ) is 1 dB below its maximum. Express the

value of P, in termsof f%, f. and fi -
10.22. Compare the threshold values of P, for the DM and PCM systems

. . . he
discussed in Problem 10.20. Assuming a ?SK s:_gnz}lmgls::herfu_a, f?il —“tﬂd
tlllieshold value of the signal-to-noise ratios at the input for ine Liv an

PCM receivers.

B, for equal transmission
N, and (SofNgdpcu versus Br B '
1023 E;%z\i%{hsq?r — 4f, to 32f., Assume f, = 3000 Hz and f,= 300 Hz

2

Section 10.5 ‘
4 Two lowpass signals of equal bandwidth are impulse sampled alr;iv tlzz
1024 WIC:_ [exP;:d “using PAM. The TDM signal is passed thrqugh af 0" 151{1
;ir;;! rlgnd then transmitted over a channel with a bandwidth 0 o thai
(a)eWhat is the maximum sampling rate for §ach?channel to ins

each signal can be recovered at the receiver? tle for each

(b) What is the maximum frequency contet.lt allow;ja ° for e

(c) Sketch a block diagram _jor the transmitter and re .

me multiplexed using PAM. The

signal?

ight inplt signals are sampled and ti before
10.25. 5;51: ;lli:ltipleied signal is passed through 2 lowpass filter

i Hz and
transmission. Six of the input signals have a bandwidth of 4K !
the other two are bandlimited to 12 kHz.
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(a) What is the minimum overall sampling rate if all channels are
sampled at the same rate?

(b) Design an asynchronous TDM for this application.

(c) Compare the transmission bandwidth requirements of (a) and (b).

10.26. Twenty-four analog signals, each having a bandwidth of 15 kHz, are to he
time-division multiplexed and transmitted via PAM/AM. A guard band of
5 kHzis required for signal reconstruction from the PAM samples of each
signal. ,
(a) Determine the sampling rate for each channel.
(b) Determine the transmission bandwidth,
(c) Draw functional block diagrams of the transmitter and receiver.

10.27. A number of 20 kHz channels are to be time-division multiplexed and
transmitted using PAM. The sampling pulses are 4 psec in width. The
TDM pulse train is passed through a lowpass filter with 2 time constant
RC =1 usec. (In previous examples we assumed that this baseband
filtering was done by an ideal lowpass filter.) This filtering introduces
crosstalk (or intersymbol interference) between channels, that is, a
certain amount of signal energy from one pulse “spills” over into the time
slot of the next pulse. Define the crosstalk factor as the ratio of signal
energy from a pulse that spills over into the next time slot and the signal
energy within the time slot allotted for the pulse. Using this criteria:
{a) Find the crosstalk factor for five channels.

(b) If the crosstalk factor is ta be less than 0.81, find the pulse widih fora
five-channel system.

Sectiorn 10.6

10.28. Is it possible to design a communication system to yield {S/Nj; = 60dE,
with (S/N), = 20dB, and g’ = 4?

10.29. What is the minimum bandwidth eXpansion ratio required to obtain
(8/N}; = 60 dB with (§{N), =20 dB? - R

10.30. A video signal having a bandwidth of 6 MHz is to be transmitted from the
moon using 8-bit PCM/PSK. The thermal noise power spectral density at
the receiving antenna is /2 = 10~ watt/Hz. Assuming a power loss of
40dB in the channel, calculate the threshold power requirements of the
transmitter on'the moon and compare it with the power requirements of
an ideal system using the same bandwidth as the PCM system.

10.31. Suppose that black and white still pictures from the moon were digitized
using (25)(10%) samples per picture (500 x 500 array) and transmitted to
the earth using 8-bit PCM/PSK. Assume that 10 minutes are allotted for



