
VECTOR MECHANICS FOR ENGINEERS:

DYNAMICS

Seventh Edition

Ferdinand P. Beer

E. Russell  Johnston, Jr.

Lecture Notes:

J. Walt Oler

Texas Tech University

CHAPTER

© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

13
Kinetics of Particles:  Energy 

and Momentum Methods



© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

S
e
v
e
n

th
E

d
itio

n

13 - 2

Contents
Introduction

Work of a Force

Principle of Work & Energy

Applications of the Principle of Work & 

Energy

Power and Efficiency

Sample Problem 13.1

Sample Problem 13.2

Sample Problem 13.3

Sample Problem 13.4

Sample Problem 13.5

Potential Energy

Conservative Forces

Conservation of Energy

Motion Under a Conservative Central 

Force

Sample Problem 13.6

Sample Problem 13.7

Sample Problem 13.9

Principle of Impulse and Momentum

Impulsive Motion

Sample Problem 13.10

Sample Problem 13.11

Sample Problem 13.12

Impact

Direct Central Impact

Oblique Central Impact

Problems Involving Energy and Momentum

Sample Problem 13.14

Sample Problem 13.15

Sample Problems 13.16

Sample Problem !3.17



© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

S
e
v
e
n

th
E

d
itio

n

13 - 3

Introduction

• Previously, problems dealing with the motion of particles were 

solved through the fundamental equation of motion,

Current chapter introduces two additional methods of analysis.

.amF
��

=

• Method of work and energy:  directly relates force, mass, velocity 

and displacement.

• Method of impulse and momentum:  directly relates force, 

mass, velocity, and time.
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Work of a Force

• Differential vector is the particle displacement.rd
�

• Work of the force is 

dzFdyFdxF

dsF

rdFdU

zyx ++=

=

•=

αcos

��

• Work is a scalar quantity, i.e., it has magnitude and 

sign but not direction.

force. length ×• Dimensions of  work are Units are

( ) ( )( ) J 1.356lb1ftm 1N 1 J 1 =⋅=joule
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Work of a Force

• Work of a force during a finite displacement,

( )

( )∫

∫∫

∫

++=

==

•=→

2

1

2

1

2

1

2

1

cos

21

A

A

zyx

s

s

t

s

s

A

A

dzFdyFdxF

dsFdsF

rdFU

α

��

• Work is represented by the area under the 

curve of Ft plotted against s.
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Work of a Force

• Work of a constant force in rectilinear motion,

( ) xFU ∆=→ αcos21

• Work of the force of gravity,

( ) yWyyW

dyWU

dyW

dzFdyFdxFdU

y

y

zyx

∆−=−−=

−=

−=

++=

∫→

12

21

2

1

• Work of the weight is equal to product of weight 

W and vertical displacement ∆y.

• Work of the weight is positive when ∆y < 0, 

i.e., when the weight moves down.
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Work of a Force
• Magnitude of the force exerted by a spring is 

proportional to deflection,

( )lb/in.or  N/mconstant  spring =

=

k

kxF

• Work of the force exerted by spring,

2
22

12
12

1
21

2

1

kxkxdxkxU

dxkxdxFdU

x

x

−=−=

−=−=

∫→

• Work of the force exerted by spring is positive when 

x2 < x1, i.e., when the spring is returning to its 

undeformed position.

• Work of the force exerted by the spring is equal to 

negative of area under curve of F plotted against x,

( ) xFFU ∆+−=→ 212
1

21
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Work of a Force

Work of a gravitational force (assume particle M occupies 

fixed position O while particle m follows path shown),

12
221

2

2

1
r

Mm
G

r

Mm
Gdr

r

Mm
GU

dr
r

Mm
GFdrdU

r

r

−=−=

−=−=

∫→
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Work of a Force

Forces which do not do work (ds = 0 or cos α = 0):

• weight of a body when its center of gravity moves 

horizontally.

• reaction at a roller moving along its track, and

• reaction at frictionless surface when body in contact 

moves along surface,

• reaction at frictionless pin supporting rotating body,
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Particle Kinetic Energy: Principle of Work & Energy

dvmvdsF

ds

dv
mv

dt

ds

ds

dv
m

dt

dv
mmaF

t

tt

=

==

==

• Consider a particle of mass m acted upon by force F
�

• Integrating from A1 to A2 ,

energykineticmvTTTU

mvmvdvvmdsF

v

v

s

s

t

==−=

−==

→

∫∫

2

2
1

1221

2
12

12
22

1
2

1

2

1

• The work of the force      is equal to the change in kinetic 

energy of the particle.

F
�

• Units of work and kinetic energy are the same:

JmNm
s

m
kg

s

m
kg

2

2
2

2
1 =⋅=






=






== mvT
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Applications of the Principle of Work and Energy

• Wish to determine velocity of pendulum bob at 

A2.  Consider work & kinetic energy.

• Force      acts normal to path and does no work.P
�

glv

mvml

TUT

2

2

1
0

2

2

2

2211

=

=+

=+ →

• Velocity found without determining 

expression for acceleration and integrating.

• All quantities are scalars and can be added 

directly.

• Forces which do no work are eliminated from 

the problem.
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Applications of the Principle of Work and Energy

• Principle of work and energy cannot be applied to 

directly determine the acceleration of the 

pendulum bob.

• Calculating the tension in the cord requires 

supplementing the method of work and energy 

with an application of Newton’s second law.

• As the bob passes through A2 ,

mg
l

gl
mmgP

l

v
mmamgP

amF

n

nn

3
2

2
2

=+=

==−

=∑

glv 22 =
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Power and Efficiency

• rate at which work is done.

vF

dt

rdF

dt

dU

Power

��

��

•=

•
==

=

• Dimensions of power are work/time or force*velocity.  Units 

for power are

s

m
N 1

s

J
1  (watt) W 1 ⋅==

•

inputpower 

outputpower 

input work

koutput wor

efficiency

=

=

=η
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Sample Problem 13.1

An automobile weighing 19.62 kN is 

driven down a 5o incline at a speed of 100 

km/h when the brakes are applied causing 

a constant total breaking force of 7 kN.

Determine the distance traveled by the 

automobile as it comes to a stop.

SOLUTION:

• Evaluate the change in kinetic energy.

• Determine the distance required for the 

work to equal the kinetic energy change.
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Sample Problem 13.1
SOLUTION:

• Evaluate the change in kinetic energy.

( )( ) kJ 73.771s/m 78.27kg 2000

sm78.27
s 3600

h1

km 1

m 1000

h

km
100

22

2
12

12
1

1

1

===

=



















=

mvT

v

( ) 0kN29.5kJ73.771

2211

=−

=+ →

x

TUT

m 9.145=x

• Determine the distance required for the work to 

equal the kinetic energy change.

( ) ( )( )
( )x

xxU

kN29.5

5sinkN62.19kN721

−=

°+−=→

00 22 == Tv
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Sample Problem 13.2

Two blocks are joined by an inextensible 

cable as shown.  If the system is released 

from rest, determine the velocity of block A

after it has moved 2 m.  Assume that the 

coefficient of friction between block A and 

the plane is µk = 0.25 and that the pulley is 

weightless and frictionless.

SOLUTION:

• Apply the principle of work and energy 

separately to blocks A and B.

• When the two relations are combined, the 

work of the cable forces cancel.  Solve 

for the velocity.
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Sample Problem 13.2
SOLUTION:

• Apply the principle of work and energy separately to 

blocks A and B.

( )( )
( )

( ) ( )

( ) ( )( ) ( ) 2
2
1

2

2
1

2211

2

kg200m2N490m2

m2m20

:

N490N196225.0

N1962sm81.9kg200

vF

vmFF

TUT

WNF

W

C

AAC

AkAkA

A

=−

=−+

=+

====

==

→

µµ

( )( )

( ) ( )

( ) ( )( ) ( ) 2
2
1

2
2
1

2211

2

kg300m2N2940m2

m2m20

:

N2940sm81.9kg300

vF

vmWF

TUT

W

c

BBc

B

=+−

=+−

=+

==

→
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Sample Problem 13.2

• When the two relations are combined, the work of the cable 

forces cancel.  Solve for the velocity.

( ) ( )( ) ( ) 2
2
1 kg200m2N490m2 vFC =−

( ) ( )( ) ( ) 2
2
1 kg300m2N2940m2 vFc =+−

( )( ) ( )( ) ( )

( ) 2
2
1

2

2
1

kg500J 4900

kg300kg200m2N490m2N2940

v

v

=

+=−

sm 43.4=v
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Sample Problem 13.3

A spring is used to stop a 60 kg package 

which is sliding on a horizontal surface.  

The spring has a constant k = 20 kN/m and 

is held by cables so that it is initially 

compressed 120 mm.  The package has a 

velocity of 2.5 m/s in the position shown 

and the maximum deflection of the spring is 

40 mm.

Determine (a) the coefficient of kinetic 

friction between the package and surface 

and (b) the velocity of the package as it 

passes again through the position shown.

SOLUTION:

• Apply the principle of work and energy 

between the initial position and the point 

at which the spring is fully compressed 

and the velocity is zero.  The only 

unknown in the relation is the friction 

coefficient.

• Apply the principle of work and energy 

for the rebound of the package.  The only 

unknown in the relation is the velocity at 

the final position.
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Sample Problem 13.3
SOLUTION:

• Apply principle of work and energy between initial position 

and the point at which spring is fully compressed.

( )( ) 0J5.187sm5.2kg60 2
2

2
12

12
1

1 ==== TmvT

( )

( )( )( ) ( ) kk

kf
xWU

µµ

µ

J377m640.0sm81.9kg60 2

21

−=−=

−=→

( )( )
( ) ( )( )

( ) ( )

( )( ) J0.112m040.0N3200N2400

N3200m160.0mkN20

N2400m120.0mkN20

2
1

maxmin2
1

21

0max

0min

−=+−=

∆+−=

==∆+=

===

→ xPPU

xxkP

kxP

e

( ) ( ) ( ) J112J377212121 −−=+= →→→ kef
UUU µ

( ) 0J112J 377-J5.187

:2211

=−

=+ →

k

TUT

µ 20.0=kµ
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Sample Problem 13.3
• Apply the principle of work and energy for the rebound of the 

package.  

( ) 2
32

12
32

1
32 kg600 vmvTT ===

( ) ( ) ( )

J36.5

J112J377323232

+=

+−=+= →→→ kef
UUU µ

( ) 2
32

1

3322

kg60J5.360

:

v

TUT

=+

=+ →

sm103.13 =v
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Sample Problem 13.4

A 1000 kg car starts from rest at point 1 

and moves without friction down the 

track shown.

Determine:

a) the force exerted by the track on 

the car at point 2, and 

b) the minimum safe value of the 

radius of curvature at point 3.

SOLUTION:

• Apply principle of work and energy to 

determine velocity at point 2.

• Apply Newton’s second law to find normal 

force by the track at point 2.

• Apply principle of work and energy to 

determine velocity at point 3.

• Apply Newton’s second law to find 

minimum radius of curvature at point 3 

such that a positive normal force is exerted 

by the track.
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Sample Problem 13.4
SOLUTION:

• Apply principle of work and energy to determine velocity 

at point 2.

( )

( )

( ) sm3.1581.92424

2

1
m120:

m12

2

1
0

2

2

2

2

22211

21

2

2

2

22
1

21

===

=+=+

+=

===

→

→

vgv

mvmgTUT

WU

v
g

W
mvTT

• Apply Newton’s second law to find normal force by the 

track at point 2.

:nn amF =↑+ ∑

( )

mg5

m6

gm122

2

2

2

=

===+−

N

m
v

mamNmg n ρ
kN1.49=N
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Sample Problem 13.4
• Apply principle of work and energy to determine velocity at 

point 3.

( )

( ) sm1.1281.91515

2

1
m 4.5m 120

3

2

3

2

33311

===

=−+=+ →

vgv

mvmgTUT

• Apply Newton’s second law to find minimum radius of 

curvature at point 3 such that a positive normal force is 

exerted by the track.

:nn amF =↓+ ∑

( )
33

2

3 m152

ρρ
g

m
v

m

ammg n

==

=

m153 =ρ
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Sample Problem 13.5

The dumbwaiter D and its load have a 

combined weight of 300  kg, while the 

counterweight C weighs 400 kg.

Determine the power delivered by the 

electric motor M when the dumbwaiter (a)

is moving up at a constant speed of 

8 ft/s and (b) has an instantaneous velocity 

of 2.5 m/s and an acceleration of 0.75 m/s2, 

both directed upwards.

SOLUTION:

Force exerted by the motor cable 

has same direction as the 

dumbwaiter velocity.  Power 

delivered by motor is equal to  

FvD, vD = 2.5 m/s.

• In the first case, bodies are in uniform 

motion.  Determine force exerted by 

motor cable from conditions for static 

equilibrium.

• In the second case, both bodies are 

accelerating.  Apply Newton’s second 

law to each body to determine the 

required motor cable force.
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Sample Problem 13.5

• In the first case, bodies are in uniform motion.  Determine 

force exerted by motor cable from conditions for static 

equilibrium.

sJ2453

s)/m (2.5N) 81.9(

=

== DFvPower

( ) hp 3.3
sJ746

hp 1
sJ2453 ==Power

Free-body C:

:0=↑+ ∑ yF N 62.190N)81.9()400(2 ==− TT

Free-body D:

:0=↑+ ∑ yF

N 9.81  N 62.19N )81.9()300(

N )81.9()300(

0N )81.9()300(

=−=

−=

=−+

TF

TF
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Sample Problem 13.5

• In the second case, both bodies are accelerating.  Apply 

Newton’s second law to each body to determine the required 

motor cable force.

↓=−=↑= 2

2
12 sm375.0sm75.0 DCD aaa

Free-body C:

:CCy amF =↓+ ∑ ( ) N87.18375.04002)81.9()400( ==− TT

Free-body D:

:DDy amF =↑+ ∑
N1281225)81.9()300(1887

)75.0(300)81.9()300(

==−+

=−+

FF

TF

s/J 3203s)/m (2.5N) 1281( === DFvPower

( ) hp 3.4
sJ746

hp 1
sJ3203 ==Power
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Potential Energy

2121 yWyWU −=→

• Work of the force of gravity    ,W
�

• Work is independent of path followed; depends only 

on the initial and final values of Wy.

 =

= WyVg

potential energy of the body with respect to 

force of gravity.

( ) ( )
2121 gg VVU −=→

• Units of work and potential energy are the same:

JmN =⋅== WyVg

• Choice of datum from which the elevation y is 

measured is arbitrary.
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Potential Energy

• Previous expression for potential energy of a body 

with respect to gravity is only valid when the weight of 

the body can be assumed constant.

• For a space vehicle, the variation of the force of 

gravity with distance from the center of the earth 

should be considered.

• Work of a gravitational force,

12
21

r

GMm

r

GMm
U −=→

• Potential energy Vg when the variation in the force 

of gravity can not be neglected,

r

WR

r

GMm
Vg

2

−=−=
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Potential Energy

• Work of the force exerted by a spring depends 

only on the initial and final deflections of the 

spring,

2
22

12
12

1
21 kxkxU −=→

• The potential energy of the body with respect to 

the elastic force,

( ) ( )
2121

2

2
1

ee

e

VVU

kxV

−=

=

→

• Note that the preceding expression for Ve is valid 

only if the deflection of the spring is measured 

from its undeformed position.
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Conservative Forces
• Concept of potential energy can be applied if the work 

of the force is independent of the path followed by its 

point of application. 

( ) ( )22211121 ,,,, zyxVzyxVU −=→

Such forces are described as conservative forces.

• For any conservative force applied on a closed path,

0=•∫ rdF
��

• Elementary work corresponding to displacement 

between two neighboring points,

( ) ( )
( )zyxdV

dzzdyydxxVzyxVdU

,,

,,,,

−=

+++−=

V
z

V

y

V

x

V
F

dz
z

V
dy

y

V
dx

x

V
dzFdyFdxF zyx

grad−=








∂
∂

+
∂
∂

+
∂
∂

−=










∂
∂

+
∂
∂

+
∂
∂

−=++

�
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Conservation of Energy
• Work of a conservative force,

2121 VVU −=→

• Concept of work and energy,

1221 TTU −=→

• Follows that

constant 

2211

=+=

+=+

VTE

VTVT

• When a particle moves under the action of 

conservative forces, the total mechanical energy 

is constant.
�

�

WVT

WVT

=+

==

11

11 0

( )

�

��

WVT

VWg
g

W
mvT

=+

====

22

2
2
22

1
2 02

2

1
• Friction forces are not conservative.  Total 

mechanical energy of a system involving friction 

decreases.

• Mechanical energy is dissipated by friction into 

thermal energy.  Total energy is constant.
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Motion Under a Conservative Central Force
• When a particle moves under a conservative central force, 

both the principle of conservation of angular momentum 

and the principle of conservation of energy 

may be applied.

φφ sinsin 000 rmvmvr =

r

GMm
mv

r

GMm
mv

VTVT

−=−

+=+

2
2
1

0

2
02

1

00

• Given r, the equations may be solved for v and ϕ.

• At minimum and maximum r, ϕ = 90o.  Given the launch 

conditions, the equations may be solved for rmin, rmax, 

vmin, and vmax.
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Sample Problem 13.6

A 9 kg collar slides without friction along 

a vertical rod as shown.  The spring 

attached to the collar has an undeflected 

length of 100 mm and a constant of 540 

N/m.

If the collar is released from rest at 

position 1, determine its velocity after it 

has moved 150 mm to position 2.

SOLUTION:

• Apply the principle of conservation of 

energy between positions 1 and 2.

• The elastic and gravitational potential 

energies at 1 and 2 are evaluated from the 

given information.  The initial kinetic 

energy is zero.

• Solve for the kinetic energy and velocity at 

2.



© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

S
e
v
e
n

th
E

d
itio

n

13 - 35

Sample Problem 13.6
SOLUTION:

• Apply the principle of conservation of energy between 

positions 1 and 2.

Position 1: ( )( )

0

J 7.2

J7.2m 1.0mN540

1

1

2

2
12

12
1

=

=+=

===

T

VVV

kxV

ge

e

Position 2: ( )( )
( )( )

2

2

2

2

2

22
1

2

2

2

2
12

22
1

 5.49
2

1

J 2.7)35.13(J) 1.6(

J 3.13m 15.0N 81.99

J1.6m 15.0mN540

vvmvT

VVV

WyV

kxV

ge

g

e

===

−=−=+=

−=−==

===

×

Conservation of Energy:

J 2.74.5J 7.20 2

2

2211

−=+

+=+

v

VTVT

↓= sm48.12v
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Sample Problem 13.7

The 200 g pellet is pushed against the 

spring and released from rest at A.  

Neglecting friction, determine the 

smallest deflection of the spring for 

which the pellet will travel around the 

loop and remain in contact with the loop 

at all times.

SOLUTION:

• Since the pellet must remain in contact with 

the loop, the force exerted on the pellet 

must be greater than or equal to zero.  

Setting the force exerted by the loop to 

zero, solve for the minimum velocity at D.

• Apply the principle of conservation of 

energy between points A and D. Solve for 

the spring deflection required to produce 

the required velocity and kinetic energy at 

D.
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Sample Problem 13.7
SOLUTION:

• Setting the force exerted by the loop to zero, solve for the 

minimum velocity at D.

:nn maF =↓+ ∑

( )( ) 2222

2

sm89.5sm9.81m .60 ===

==

rgv

rvmmgmaW

D

Dn

• Apply the principle of conservation of energy between points 

A and D.

( )
0

270mN 5400

1

22

2
12

2
1

1

=

==+=+=

T

xxkxVVV ge

J 589.0)89.5()2.0(
2

1

J 2.35m) N(1.2 )81.92.0(0

2

2
1

2

2

===

==+=+=

D

ge

mvT

WyVVV ×

J 2.35J 589.02700 2

2211

+=+

+=+

x

VTVT

mm 104m 104.0 ==x
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Sample Problem 13.9

A satellite is launched in a direction 

parallel to the surface of the earth with a 

velocity of 36900 km/h from an altitude 

of 500 km.  

Determine (a) the maximum altitude 

reached by the satellite, and (b) the 

maximum allowable error in the 

direction of launching if the satellite is 

to come no closer than 200 km to the 

surface of the earth

SOLUTION:

• For motion under a conservative central force, 

the principles of conservation of energy and 

conservation of angular momentum may be 

applied simultaneously.

• Apply the principles to the points of minimum 

and maximum altitude to determine the 

maximum altitude.

• Apply the principles to the orbit insertion 

point and the point of minimum altitude to 

determine maximum allowable orbit insertion 

angle error.
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Sample Problem 13.9
• Apply the principles of conservation of energy and conservation 

of angular momentum to the points of minimum and maximum 

altitude to determine the maximum altitude.

Conservation of energy:

1

2
12

1

0

2
02

1

r

GMm
mv

r

GMm
mvVTVT AAAA −=−+=+ ′′

Conservation of angular momentum:

1

0
011100

r

r
vvmvrmvr ==

Combining,

2
001

0

1

0

0
2

1

2
02

02
1 2

111
vr

GM

r

r

r

r

r

GM

r

r
v =+








−=













−

( )( ) 23122622

6
0

0

sm10398m1037.6sm81.9

sm1025.10hkm36900

km6870km500km6370

×=×==

×==

=+=

gRGM

v

r

km 60400m104.60
6

1 =×=r
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Sample Problem 13.9
• Apply the principles to the orbit insertion point and the point of 

minimum altitude to determine maximum allowable orbit insertion 

angle error.

Conservation of energy:

min

2
max2

1

0

2
02

1
00

r

GMm
mv

r

GMm
mvVTVT AA −=−+=+

Conservation of angular momentum:

min

0
00maxmaxmin000 sinsin

r

r
vvmvrmvr φφ ==

Combining and solving for sin ϕ0,

°±°=

=

5.1190

9801.0sin

0

0

ϕ

φ
°±= 5.11error allowable
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Principle of Impulse and Momentum

• From Newton’s second law,

( ) == vmvm
dt

d
F

���
linear momentum

2211

21  force  theof impulse 
2

1

vmvm

FdtF

t

t
��

��

=+

==

→

→∫

Imp

Imp

• The final momentum of the particle can be 

obtained by adding vectorially its initial 

momentum and the impulse of the force during 

the time interval.

( )

12

2

1

vmvmdtF

vmddtF

t

t

���

��

−=

=

∫

• Dimensions of the impulse of a 

force are  

force*time.

• Units for the impulse of a force 

are

( ) smkgssmkgsN 2 ⋅=⋅⋅=⋅
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Impulsive Motion

• Force acting on a particle during a very short 

time interval that is large enough to cause a 

significant change in momentum is called an 

impulsive force.

• When impulsive forces act on a particle,

21 vmtFvm
���

=∆+∑

• When a baseball is struck by a bat, contact 

occurs over a short time interval but force is 

large enough to change sense of ball motion.

• Nonimpulsive forces are forces for which

is small and therefore, may be neglected.tF ∆
�
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Sample Problem 13.10

An automobile weighing 1800 kg is 

driven down a 5o incline at a speed of 100 

km/h when the brakes are applied, causing 

a constant total braking force of 6.5 kN.  

Determine the time required for the 

automobile to come to a stop.

SOLUTION:

• Apply the principle of impulse and 

momentum.  The impulse is equal to the 

product of the constant forces and the time 

interval.
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Sample Problem 13.10

SOLUTION:

• Apply the principle of impulse and 

momentum.  

2211 vmvm
��

=+ ∑ →Imp 

Taking components parallel to the 

incline,

( )

06500)5(sin 

9.81)(1800s)/m 78.27()1800(

05sin1

=−°

+

=−°+

tt

FttWmv

×

s08.10=t
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Sample Problem 13.11

A 120 g baseball is pitched with a velocity 

of 24 m/s.  After the ball is hit by the bat, 

it has a velocity of 36 m/s in the direction 

shown.  If the bat and ball are in contact 

for 0.015 s, determine the average 

impulsive force exerted on the ball during 

the impact.

SOLUTION:

• Apply the principle of impulse and 

momentum in terms of horizontal and 

vertical component equations.
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Sample Problem 13.11
SOLUTION:

• Apply the principle of impulse and momentum in terms 

of horizontal and vertical component equations.

2211 vmvm
��

=+ →Imp

x

y

x component equation:

N6.412

40coss)/m (36kg) (0.12

s) 015.0(s)/m (24kg) 12.0(

40cos21

=

°=

+−

°=∆+−

x

x

x

F

F

mvtFmv

y component equation:

( )
N 1.185

40sin s)/m (36kg) 12.0(s 015.0

40sin0 2

+=

°=

°=∆+

y

y

y

F

F

mvtF

°= 2.24         N2.452F
�
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Sample Problem 13.12

A 10 kg package drops from a chute into a 

24 kg cart with a velocity of 3 m/s.  

Knowing that the cart is initially at rest 

and can roll freely, determine (a) the final 

velocity of the cart, (b) the impulse 

exerted by the cart on the package, and (c)

the fraction of the initial energy lost in the 

impact.

SOLUTION:

• Apply the principle of impulse and 

momentum to the package-cart system to 

determine the final velocity.

• Apply the same principle to the package 

alone to determine the impulse exerted on 

it from the change in its momentum.
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Sample Problem 13.12
SOLUTION:

• Apply the principle of impulse and momentum to the package-cart system to 

determine the final velocity.

( ) 2211 vmmvm cpp
��

+=+∑ →Imp

x

y

x components: ( )
( )( ) ( ) 2

21

kg 25kg 1030cosm/s 3kg 10

030cos

v

vmmvm cpp

+=°

+=+°

m/s 742.02 =v
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Sample Problem 13.12

• Apply the same principle to the package alone to determine the impulse exerted 

on it from the change in its momentum.

x

y

2211 vmvm pp
��

=+∑ →Imp

x components:

( )( ) ( ) 2

21

kg 1030cosm/s 3kg 10

30cos

vtF

vmtFvm

x

pxp

=∆+°

=∆+°

sN56.18 ⋅−=∆tFx

y components:

( )( ) 030sinm/s 3kg 10

030sin1

=∆+°−

=∆+°−

tF

tFvm

y

yp

sN15 ⋅=∆tFy

( ) ( ) sN 9.23sN 51sN 56.1821 ⋅=∆⋅+⋅−=∆=∑ → tFjitF
���

Imp
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Sample Problem 13.12

To determine the fraction of energy lost,

( )( )

( ) ( )( ) J 63.9sm742.0kg 25kg 10

J 45sm3kg 10

2

2
12

22
1

1

2

2
12

12
1

1

=+=+=

===

vmmT

vmT

cp

p

786.0
J 45

J 9.63J 45

1

21 =
−

=
−
T

TT
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Impact
• Impact:  Collision between two bodies which occurs 

during a small time interval and during which the 

bodies exert large forces on each other.

• Line of Impact:  Common normal to the surfaces in 

contact during impact.

• Central Impact:  Impact for which the mass centers 

of the two bodies lie on the line of impact;  

otherwise, it is an eccentric impact..

Direct Central Impact

• Direct Impact:  Impact for which the velocities of the 

two bodies are directed along the line of impact.

Oblique Central Impact

• Oblique Impact:  Impact for which one or both of the 

bodies move along a line other than the line of 

impact.
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Direct Central Impact

• Bodies moving in the same straight line, 

vA > vB .

• Upon impact the bodies undergo a

period of deformation, at the end of which, 

they are in contact and moving at a common 

velocity.

• A period of restitution follows during which 

the bodies either regain their original shape or 

remain permanently deformed.

• Wish to determine the final velocities of the 

two bodies.  The total momentum of the two 

body system is preserved,

BBBBBBAA vmvmvmvm ′+′=+

• A second relation between the final velocities 

is required.
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Direct Central Impact

• Period of deformation: umPdtvm AAA =− ∫

• Period of restitution: AAA vmRdtum ′=− ∫

10 ≤≤

−

′−
==

=

∫
∫

e

uv

vu

Pdt

Rdt

nrestitutio of tcoefficien e

A

A

• A similar analysis of particle B yields
B

B

vu

uv
 e

−
−′

=

• Combining the relations leads to the desired 

second relation between the final velocities.

( )BAAB vvevv −=′−′

• Perfectly plastic impact, e = 0:  vvv AB ′=′=′ ( )vmmvmvm BABBAA ′+=+

• Perfectly elastic impact, e = 1:

Total energy and total momentum conserved.
BAAB vvvv −=′−′
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Oblique Central Impact

• Final velocities are 

unknown in magnitude 

and direction.  Four 

equations are required.

• No tangential impulse component; 

tangential component of momentum 

for each particle is conserved.

( ) ( ) ( ) ( )tBtBtAtA vvvv ′=′=

• Normal component of total momentum 

of the two particles is conserved.

( ) ( ) ( ) ( )nBBnAAnBBnAA vmvmvmvm ′+′=+

• Normal components of relative 

velocities before and after impact are 

related by the coefficient of 

restitution.

])()[()()( nBnAnAnB vvevv −=′−′
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Oblique Central Impact

• Block constrained to move along horizontal 

surface.

• Impulses from internal forces

along the n axis and from external force

exerted by horizontal surface and directed along 

the vertical to the surface.

FF
��

−  and  

extF
�

• Final velocity of ball unknown in direction and 

magnitude and unknown final block velocity 

magnitude.  Three equations required.
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Oblique Central Impact

• Tangential momentum of ball is 

conserved.

( ) ( )tBtB vv ′=

• Total horizontal momentum of block 

and ball is conserved.

( ) ( ) ( ) ( )xBBAAxBBAA vmvmvmvm ′+′=+

• Normal component of relative velocities 

of block and ball are related by 

coefficient of restitution.

])()[()()( nBnAnAnB vvevv −=′−′

• Note:  Validity of last expression does not follow from previous relation for the 

coefficient of restitution.  A similar but separate derivation is required. 
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Problems Involving Energy and Momentum

• Three methods for the analysis of kinetics problems:

- Direct application of Newton’s second law

- Method of work and energy

- Method of impulse and momentum

• Select the method best suited for the problem or part of a problem under 

consideration.
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Sample Problem 13.14

A ball is thrown against a frictionless, 

vertical wall.  Immediately before the 

ball strikes the wall, its velocity has a 

magnitude v and forms angle of 30o with 

the horizontal.  Knowing that 

e = 0.90, determine the magnitude and 

direction of the velocity of the ball as it 

rebounds from the wall. 

SOLUTION:

• Resolve ball velocity into components 

normal and tangential to wall.

• Impulse exerted by the wall is normal to 

the wall.  Component of ball momentum 

tangential to wall is conserved.

• Assume that the wall has infinite mass so 

that wall velocity before and after impact 

is zero.  Apply coefficient of restitution 

relation to find change  in normal  relative 

velocity between wall and ball, i.e., the 

normal ball velocity.
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Sample Problem 13.14

• Component of ball momentum tangential to wall is conserved.

vvv tt 500.0==′

• Apply coefficient of restitution relation with zero wall velocity.

( )
( ) vvv

vev

n

nn

779.0866.09.0

00

−=−=′

−=′−

SOLUTION:

• Resolve ball velocity into components parallel and perpendicular

to wall.

vvvvvv tn 500.030sin866.030cos =°==°=

n

t

°=





=′

+−=′

− 7.32
500.0

779.0
tan926.0

500.0779.0

1
vv

vvv tn λλ
���
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Sample Problem 13.15

The magnitude and direction of the 

velocities of two identical frictionless 

balls before they strike each other are 

as shown.  Assuming e = 0.9, 

determine the magnitude and direction 

of the velocity of each ball after the 

impact.

SOLUTION:

• Resolve the ball velocities into components 

normal and tangential to the contact plane.

• Tangential component of momentum for 

each ball is conserved.

• Total normal component of the momentum of 

the two ball system is conserved.  

• The normal relative velocities of the 

balls are related by the coefficient of 

restitution.

• Solve the last two equations simultaneously 

for the normal velocities of the balls after the 

impact.
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Sample Problem 13.15
SOLUTION:

• Resolve the ball velocities into components normal and tangential 

to the contact plane.

( ) sm8.730cos =°= AnA vv ( ) sm5.430sin +=°= AtA vv

( ) sm0.660cos −=°−= BnB vv ( ) sm4.1060sin +=°= BtB vv

• Tangential component of momentum for each ball is 

conserved.

( ) ( ) sm5.4==′
tAtA vv ( ) ( ) sm4.10==′

tBtB vv

• Total normal component of the momentum of the two ball 

system is conserved.  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) 8.1

0.68.7

=′+′

′+′=−+

′+′=+

nBnA

nBnA

nBBnAAnBBnAA

vv

vmvmmm

vmvmvmvm
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Sample Problem 13.15

°=





=′

+=′

°=





=′

+−=′

−

−

6.55
1.7

4.10
tansm6.12

4.101.7

3.40
3.5

5.4
tansm95.6

5.43.5

1

1

B

ntB

A

ntA

v

v

v

v

λλ

λλ

���

���

• The normal relative velocities of the balls are related by the 

coefficient of restitution.

( ) ( ) ( ) ( )[ ]
( )[ ] 4.120.68.790.0 =−−=

−=′−′
nBnAnBnA vvevv

• Solve the last two equations simultaneously for the normal 

velocities of the balls after the impact.

( ) sm3.5−=′
nAv ( ) sm1.7=′

nBv
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Sample Problem 13.16

Ball B is hanging from an inextensible 

cord.  An identical ball A is released from 

rest when it is just touching the cord and 

acquires a velocity v0 before striking ball 

B.  Assuming perfectly elastic impact (e = 

1) and no friction, determine the velocity 

of each ball immediately after impact.

SOLUTION:

• Determine orientation of impact line of 

action.

• The momentum component of ball A

tangential to the contact plane is conserved.

• The total horizontal momentum of the two 

ball system is conserved.

• The relative velocities along the line of 

action before and after the impact are 

related by the coefficient of restitution.

• Solve the last two expressions for the 

velocity of ball A along the line of action 

and the velocity of ball B which is 

horizontal.
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Sample Problem 13.16
SOLUTION:

• Determine orientation of impact line of action.

°=

==

30

5.0
2

sin

θ

θ
r

r

• The momentum component of ball A

tangential to the contact plane is conserved.

( )
( ) 0

0

5.0

030sin

vv

vmmv

vmtFvm

tA

tA

AA

=′

′=+°

′=∆+
���

• The total horizontal (x component) 

momentum of the two ball system is 

conserved.

( ) ( )
( ) ( )

( ) 0

0

433.05.0

30sin30cos5.00

30sin30cos0

vvv

vvv

vmvmvm

vmvmtTvm

BnA

BnA

BnAtA

BAA

=′+′

′−°′−°=

′−°′−°′=

′+′=∆+
����



© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

S
e
v
e
n

th
E

d
itio

n

13 - 65

Sample Problem 13.16
• The relative velocities along the line of action before and 

after the impact are related by the coefficient of 

restitution.

( ) ( ) ( ) ( )[ ]
( )

( ) 0

0

866.05.0

030cos30sin

vvv

vvv

vvevv

nAB

nAB

nBnAnAnB

=′−′

−°=′−°′

−=′−′

• Solve the last two expressions for the velocity of ball A

along the line of action and the velocity of ball B which is 

horizontal.

( ) 00 693.0520.0 vvvv BnA =′−=′

←=′

°=°−°=

°=






==′

−=′

−

0

1
0

00

693.0

1.16301.46

1.46
5.0

52.0
tan721.0

520.05.0

vv

vv

vvv

B

A

ntA

α

β

λλ
���
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Sample Problem 13.17

A 30 kg block is dropped from a height of 

2 m onto the the 10 kg pan of a spring 

scale.  Assuming the impact to be 

perfectly plastic, determine the maximum 

deflection of the pan.  The constant of the 

spring is k = 20 kN/m.

SOLUTION:

• Apply the principle of conservation of 

energy to determine the velocity of the 

block at the instant of impact.

• Since the impact is perfectly plastic, the 

block and pan move together at the same 

velocity after impact.  Determine that 

velocity from the requirement that the total 

momentum of the block and pan is 

conserved.

• Apply the principle of conservation of 

energy to determine the maximum 

deflection of the spring.
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Sample Problem 13.17
SOLUTION:

• Apply principle of conservation of energy to determine 

velocity of the block at instant of impact.
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• Determine velocity after impact from requirement that 

total momentum of the block and pan is conserved.
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Sample Problem 13.17

Initial spring deflection due to pan 

weight:

( )( )
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×
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• Apply the principle of conservation of energy to 

determine the maximum deflection of the spring.
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