Electronic cash payment systems

Chapter 6

Contents

- 6.1 Ecash
- 6.2 Project CAFE
- 6.3 NetCash
- 6.4 Mondex
- 6.5 EMV cash cards and CEPS
- 6.6 SmartAxis
- 6.7 Remarks

Cash

- Acceptability
- Guaranteed payment
 - No risk that the payment will not be honored at a later stage
- No transaction charges
 - No authorization required
 - No communications traffic or charges
- Anonymity

Ecash

- David Chaum
 - "the father of digital cash"
- The bank cannot know the serial numbers of coins that clients withdraw.
- The coins can be spent anonymously with a merchant,
 - Collusion between both the bank and merchant will fail to identify the spender.

The Ecash model

- Stores coins
- Makes payments
- Accepts payments

Goods, Receipt

- Sells items
- Accepts payments
- Makes payments

Ecash coins

- Uniqueness
 - chosen randomly and large enough
- Coins' serial number is generated by the client's cyberwallet
- Blind signature protocol
 - The bank is unable to see the serial number on the coin it is signing

Coin keys

- Problem
 - Bank cannot see what it is signing
- Sloution
 - The bank signs the coin with the signature key representing worth.
- \$1 coin =

Serial#, keyversion, {Serial#}SK_{Bank.s \$1 Key}

Indication of which public key to use

Forgery using the inverse relation of RSA

Choose a large random number R

$$S = \{R\}PK_{Bank's \, \$1 \, Key}$$

$$\{S\}SK_{Bank's \, \$1 \, Key} = \{\{R\}PK_{Bank's \, \$1 \, Key}\}SK_{Bank's \, \$1 \, Key}$$

$$= R$$

- Forged_coin =
- {S, keyversion, $R = \{S\}SK_{Bank's \ $1 \ Key}$ }

Solution

- Applying a one-way function H to The serial number
- S, {H(S)}SK_{Bank's} \$1 Key

Coin = Serial#, keyversion, {f(Serial#)}SK_{Bank.s \$1 Key}

$$f(s) = s_t, s_{t-1}, ..., s_1, s_0$$
Redundancy-adding function $s_0 = s$

$$s_t = H(s_0, s_1, ..., s_{t-1})$$

Double-spending prevention

- A serial number is spent twice.
- The minting bank records every coin that is deposited back
 - Database of all spent serial numbers

A valid unspent coin

- Be signed, with any denominational signature, by the bank;
- Have an expiry date associated with it that is later than the present date;
 - Keeping database small
- Not appear in the database of spent coins.

RSA public-key

To create key pairs for different
denominations, different values of e and d are
generated for the same modulus m.

Withdrawing coins

- wallet software
 - r: Random
 - e2: Public key for the 2-cent denomination

- serial# \times r^{e2} (mod m)

Withdrawing coins

- The bank
 - d₂: 2-cent secret signature key
 - (serial# \times r^{e2) d2} = (serial#) d2 \times r (mod m)
- user
 - (serial#) $d^2 \times r / r = (serial#) d^2 \pmod{m}$

single withdrawal request

- The request must be
 - signed with the client's secret key,
 - encrypted using bank's public key

An Ecash purchase

- merchant 's payment request
 - payreq = {currency, amount, timestamp, merchantbankID, merchant_accID, description}

Making the payment

 Client → Merchant: payment {payment_info,{Coins}PK_{Bank}} Encrypted with the bank's public key

```
- payment_info :
{bankID, amount, currency, ncoins, timestamp,
    merchant_IDs,H(description), H(payer_code)}
```

Proving payment

- Client's H(Payer_code)
- Later prove to the bank that the client made the payment.
- {Coins, H(Payment_info)} PK_{Bank}

 The payers (clients) remain anonymous, unless they decide later to prove the payment.

Payment deposit

- The merchant forwards payment to the bank
- deposit = { {payment}Sig_{Merchant} }PK_{Bank}
- Bank → merchant
 - deposit_ack = {result, amount}Sig_Bank

Integration with the Web

Transferring Ecash

Lost coins

The network fails or the computer crashes during a payment

Ecash and crime

- To hide the identity of criminals
 - money laundering,
 - tax evasion,
 - bribes,
 - black markets
- The payee (merchant) is not anonymous

perfect crime

- Anonymous kidnapper prepares a large number of blinded coins.
- The signed blinded coins is published in a public place such as a newspaper
 - This will prevent the pickup being traced
- The coins are then unblinded and spent.

Remarks

- Advantages
 - secure, fully anonymous electronic cash
 - Web and e-mail
- Disadvantages
 - Computationally intensive cryptography,
 - Multiple messages,
 - Database lookups
 - Limited scalability

Project CAFE

Chapter 6
Part 2

Introduction

- CAFE: Conditional Access for Europe
- The project aim →
 - To develop a general system to administer rights to users
 - An advanced electronic payment system
- Ideas
 - Untraceable (anonymous) electronic cash
 - Checks with counters
 - the user sign checks up to a specified amount

Goals of CAFE

- Multiparty security
 - Guaranty of the security of each entity without the need to trust a third party
 - Each party must be able to trust the device that they are using
 - Open procedures and algorithms
 - Available for inspection by all

Goals of CAFE

- Off-line payments
 - no need for a merchant to contact a central database
- Detection of double spending
 - If the tamper resistance of a device is broken, then double spending can take place
 - Detection:
 - Maintaining a database of recently spent payment slips by the financial institutions (losing the balance)
- Untraceable payments

CAFE Architecture

- Payer
 - With smart card or an electronic wallet

- Payee
 - merchant

- Bank
 - Issuer
 - acquirer

CAFE Architecture

CAFE devices

Tamper resistant secure electronic devices for

- Storing electronic money
- Cryptographic operations
- Making payments to merchant

CAFE devices

- Smart card
 - An embedded microprocessor powered by an external source
 - Referred to as the α (alpha) system

CAFE devices

- Wallets
 - Observer
 - Protects the bank's interests
 - Purse
 - Protects the user's interests

The observer cannot divulge any secret information to the bank without the user's knowledge

Wallets

- Two-button wallet α^+
 - Verifing and monitoring of the payment
- Full wallet
 - Γ (gamma) system

NetCash

طرحی عملی برای پول الکترونیک در اینترنت

فهرست

- NetCash
- مدل/چارچوب
- سکه های NetCash
- جلوگیری از خرج مجدد
 - انتقال سکه ها
 - خرید
 - دریافت سکه
- پرداخت به فروشنده
- 🗖 اعتبارسنجي سکه ها
 - ایجاد گمنامی محدود
 - نقل و انتقال بانكى
 - گسترش سیستم
- □ جلوگیری از تقلب فروشنده
 - off-line عملیات
 - جمع بندی

NetCash

- سيستم پول الكترونيك on-line
- طراحی شده در دانشگاه Southern california
 - Macro payment
 - گمنامی محدود
- استفاده از هر دوی سیستم های رمزنگاری متقارن و نا متقارن
 - scalable •

مدل/چارچوب

• شامل خریدار، فروشنده و سرورهای توزیع شده ی پول

- هر سرور ۴ سرویس زیر را فراهم می کند:
 - بررسی سکه ها برای جلوگیری از خرج مجدد
 - ضرب سکه
 - ابازخرید سکه ها
 - مبادله ی سکه های معتبر با سکه های جدید

Figure 6.13 The NetCash system.

سکه های NetCash

Coin = $\{CS_name, CS_addr, Expiry, Serial#, Value\}SK_{CS}$

{Currency Server Network addr. Expiry date Serial # Value}SK_{CS}

Example:

{CS1, bank.com, 26-July-98,12345678, \$1} SK_{CS1}

- cs_name : نام سرور ضرب کننده ی پول
- cs_addr : آدرس شبکه ی سرور ضرب کننده ی پول
 - Expiry : تاریخ اعتبار سکه
 - # Serial : شماره ی شناسایی یکتای سکه
 - Value : ارزش پولی سکه

جلوگیری از خرج مجدد

انتقال سكه

- گواهی بیمه
- توزیع امن کلید عمومی سرور
- FIC(Federal Insurance Corporation)
 - یک گواهی بیمه فرم زیر را دارد:

Cert = {Cert_ID, CS_name, PK_{CS} , Issue_date, Expiry}Sig_{FIC}

Cert_ID: شماره شناسایی یکتای گواهی

CS_name: نام سرور ضرب کننده ی پول

PKcs : كليد عمومي سرور

Issue_date : تاریخ صدور گواهی

Expiry: تاریخ انقضای گواهی

خريد

دریافت سکه ها

- B CS1 : {E-check, KBuyer}PKcs1
 - ✓ {Instrument, Kx, transaction}PKcs

- CS1 B : {New coins}Kbuyer
 - ✓ {transaction}Kx

پرداخت به فروشنده

- {Coins, item_id, PKses, KBuy2}PKM, CS1's certificate
 - Coins: مبلغ خرید بر حسب سکه های NetCash
 - ltem_id: شماره شناسایی اشیا خریداری شده
 - Pkses: کلید نشست عمومی(می تواند کلید عمومی مشتری باشد)برای رمز کردن اقلام خریداری شده
 - Квиу2: کلید نشست متقارن تازه تولید شده برای رمز کردن پاسخ

> {PK_M}PK_{Buyer}

اعتبار سنجى سكه ها

- M SC2 : {Coins, K_M, transaction}PK_{CS2}
- SC2 M → {New coins/check}K_M

 \longrightarrow

• M B : {receipt}K_{Buy2}

Receipt = {amount, transaction_id, date}SigM

ایجاد گمنامی محدود

• گمنامی فروشنده

Figure 6.17 Exchanging coins anonymously with a currency server.

نقل و انتقال بانکی (تسویه)

گسترش سیستم

جلوگیری از تقلب فروشنده

عملیات off-line

جلوگیری از تقلب فروشنده

• Coin = {C_M, C_{Buy}, C_X}

- CM= {CS_ name, CS_ addr, Serial# , Value, Merchant_ inf o, time_ frame1}SKcs
- CBUY= {CS_ name, CS_ addr, Serial#, Value, Buyer_ info, time_ frame2}SKcs
- Cx = {CS_name,CS_addr,Serial#, Value, time_frame3}SKcs

✓ SKM (PKM (Secret)) = Secret

• {Merchant_id, PKM, amount, date}Sigcs

عملیات off-line

جمع بندی

- امنیت
- گمنامی
- قابلیت پذیرش
- عملیات off-line
 - قابلیت انتقال
 - Scalability •

منابع

- Electronic Payment Systems for E-Commerce, Second Edition, Donal
 O.Mahony, Michael Peirce and Hitesh Tewari
- Protocols for Secure Electronic Commerce, Mostafa Hashem Sherif, Ph.D.
- NetCash: A design for practical electronic currency on the Internet, Gennady Medvinsky and B.Clifford Neuman