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ABSTRACT
Motivated by an availability gap for visual media, where images
and videos are uploaded from mobile devices well after they are
generated, we explore theselective, timely retrievalof media con-
tent from a collection of mobile devices. We envision this capabili-
ty being driven bysimilarity-based queriesposed to a cloud search
front-end, which in turn dynamically retrieves media objects from
mobile devices that best match the respective queries within a giv-
en time limit. Building upon a crowd-sensing framework, we have
designed and implemented a system called MediaScope that pro-
vides this capability. MediaScope is an extensible framework that
supports nearest-neighbor and other geometric queries on the fea-
ture space (e.g., clusters, spanners), and contains novel retrieval
algorithms that attempt to maximize the retrieval of relevant infor-
mation. From experiments on a prototype, MediaScope is shown
to achieve near-optimal query completeness and low to moderate
overhead on mobile devices.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software; H.4.0 [Information Systems Applications]:
General; C.2.4 [Computer-Communication Networks]: Distribut-
ed Systems
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1. INTRODUCTION
Cameras on mobile devices have given rise to significantshar-

ing of media sensor data (photos and videos). Users upload visual
media to online social networks like Facebook [2], as well asto
dedicated sharing sites like Flickr [3] and Instagram [4]. However,
these uploads are often notimmediate. Camera sensors on mobile
devices have been increasing in both image and video resolution
far faster than cellular network capacity. More important,in re-
sponse to growing demand and consequent contention for wireless
spectrum, cellular data providers have imposed data usage limit-
s, which disincentivize immediate photo uploading and create an
availability gap(the time between when a photo or image is taken
and when it is uploaded). This availability gap can be on the order
of several days.

If media data was available immediately, it might enable scenar-
ios where there is a need for recent (or fresh) information. Consider
the following scenario: users at a mall or some other location take
pictures and video of some event (e.g., an accident or altercation).
An investigative team that wants visual evidence of the event could
have searched or browsed images on a photo sharing service such
as Flickr to retrieve evidence in a timely fashion.

To bridge this availability gap, and to enable this and othermissed
opportunities, we consider a novel capability for on-demand re-
trieval of images from mobile devices. Specifically, we develop a
system called MediaScope that permits concurrent geometric queries
in feature space on that may be distributed across several mobile
devices.

Wireless bandwidth is limited and can vary,concurrent queries
might compete for limited bandwidth, and query results can be
large (since images are large and many images can match a query).
These factors can result in unacceptably long query response times,
which can impede usability. In some cases, applications might need
lower query response times for correctness; in the scenarioabove,
time may be of the essence in taking action (e.g., apprehending
suspects).

MediaScope addresses this challenge using an approach thattrades



off query completeness1, while meeting timeliness requirements
(measured by the time between the issue of the query and when a
query result is returned). It incorporates a novel credit-assignment
scheme that is used to weight queries as well as differentiate query
results by their “importance”. A novel credit and timeliness-aware
scheduling algorithm that also adapts to wireless bandwidth vari-
ability ensures that query completeness is optimized. A second im-
portant challenge is to enable accurate yet computationally-feasible
feature extraction. MediaScope addresses this challenge by finding
sweet spots in the trade-off between accuracy and computational
cost, for extracting features from images and frames from videos.

An evaluation of MediaScope on a complete prototype (Sec-
tion 4), shows that MediaScope achieves upwards of 75% query
completeness even in adversarial settings. For the query mixes we
have experimented with, this completeness rate is near-optimal; an
omniscient scheduler that is aware of future query arrivalsdoes not
outperform MediaScope. Furthermore, MediaScope’s performance
is significantly different from other scheduling algorithms that lack
one of its features, namely timeliness-awareness, credit-awareness,
and adaptivity to varying bandwidth. Finally, we find that most
overheads associated with MediaScope components are moderate,
suggesting that timeliness bounds within 10s can be achievable.

2. MOTIVATION AND CHALLENGES
In this section, we first motivate the need for on-demand image

retrieval, then describe our approach and illustrate the challenges
facing on-demand image retrieval.
Motivation. With the increasing penetration of mobile devices
with high-resolution imaging sensors, point-and-shoot cameras and
camcorders are increasingly being replaced by mobile devices for
taking photos and videos. This trend is being accelerated byan in-
crease in the resolution of image sensors to the point where mobile
devices have image resolutions comparable to cameras.

The availability of high resolution image sensors has prompted
users to more pervasively share images and videos. In addition to
giving birth to services like Instagram, it has prompted many image
and video sharing sites to develop a business strategy develope-
d on mobile devices. Beyond sharing media (photos and videos)
with one’s social network, this development has also been societal-
ly beneficial, e.g., in crime-fighting [1].

On the flip side, wireless bandwidth is scarce and has not been
able to keep up with increases in mobile device usage. As a result,
cellular operators limit data usage on mobile devices; standard data
plans come with fairly restrictive data usage budgets per month (on
the order of 1-2 GB). Users are increasingly becoming aware of the
implications of these limits and how media transmission cancause
users to exceed their monthly data usage limits.

These conflicting trends will, we posit, lead to anavailability
gap for media. The availability gap for a media item (an image or
a video) is defined as the time between which the item is taken and
when it is shared (uploaded to a sharing site). We believe that user-
s will be increasingly reluctant to use cellular networks toshare
media, preferring instead to wait for available WiFi. Indeed, this
availability gap already exists. OnF lickr [3], we randomly se-
lected 40 popular Flickr users and extracted about 50 recentphotos
from each user’s gallery. We then plotted the CDF of the difference
between the day when each photo was taken, and when it was up-
loaded (the photo’s availability gap). As Figure 1 shows, more than
50% of the photos have an availability gap of greater than 10 days!

We conjecture that this availability gap will persist with mobile

1Completeness is intuitively defined as the proportion of desired
images uploaded before the timeliness bound, see Section 4.1

devices: existing data plan usage limits ensure that users treat these
devices as similar to traditional cameras or camcorders from the
perspective of video and photo upload (i.e., as a device withno net-
work connectivity)2 Furthermore, mobile device storage has been
increasing to the point where multiple photos and videos canbe s-
tored; a 64GB iPad can hold 10,000 photos which can take several
months to upload with a 2GB/month data plan.

This availability gap represents a missed opportunity for societal
or commercial uses. For example,

1. Consider a robbery in a mall in an area uncovered by security
cameras. The mall’s security staff would like to be able to
access and retrieve images from mobile devices of users who
happen to be in the mall on that day in order to be able to
establish the identity of the thief .

2. A sportswriter is writing a report on a sporting event and
would like to be able to include a perfect picture of a play
(e.g., a catch or a dunk). The newspaper’s staff photographer
happened to have been obscured when the play happened, so
the sportswriter would like to be able to retrieve images from
mobile devices of users who happened to be attending the
event.

The focus of this paper is the exploration of a capability forbridg-
ing the availability gap by enabling media retrieval in a manner
suggested by the above examples.
Approach. To bridge the availability gap, so that, in the scenar-
ios above, the security staff or the sportswriter can obtainrecen-
t information, we explore on-demand retrieval of images from a
collection of mobile devices. These devices belong to userswho
have chosen toparticipateand provide images on demand. In re-
turn, participating users may be incentivized by explicit micropay-
ments; we do not discuss incentives and privacy issues in this pa-
per, but note that our approach is an instance of crowd-sensing built
on Medusa [23], which has explored these issues in the context of
crowd-sensing. In what follows, we use the termparticipating de-
vice to mean a mobile device whose user has chosen to participate
in image retrieval.

Our approach is inspired byimage searchtechniques that sup-
port similarity searches on image feature space. There is a large
body of literature that seeks to supportcontent-based image re-
trieval by defining appropriate features that characterize images:
ImgSeek[17], CEDD [9] (Color and Edge Directivity Descriptor),
FCTH [10] (Fuzzy Color and Texture Histogram), Auto Color Cor-
relogram [16], and JCD [11] (Joint Composite Descriptor). Gen-
erally, these algorithms are based on 2 features: image color and
texture description. Taking CEDD as an example, for textures-
pace, CEDD sub-divides an image into blocks and for each image
block, sub-divides it into 4 sub-blocks, calculates the average gray
level of each sub-block, then computes the directional area(verti-
cal, horizontal, 45-degrees, 135-degrees and non-directional) with
the sub-block parameters for this image block; thus, an image is
divided to 6 regions by texture unit. For color space, it projects the
color space into HSV (Hue, Saturation, Value) channels, then di-
vides each channel into several preset areas using coordinate logic
filters (CLF), so that the color space is divided to 24 sub-regions.
A histogram is drawn on these parameters, so that 24×6 = 144 co-
efficients (ranging in value from 0 to 7) are output as the CEDD
feature vector. Finally, the image processing community has ex-
perimented with a wide variety of measures of similarity. Ofthese,
2This may not be the only reason an availability gap exists today or
is likely to persist — users may wait to process photos on a desktop
or laptop computer before uploading, for example.



we pick a popular measure [9, 10, 21], the Tanimoto distance [24],
which satisfies the properties for a metric space [20].

Since CEDD is popularly used and widely accepted, we have
developed our system (Section 3) using this algorithm. Fromour
perspective, this algorithm has one important property: for a s-
ingle image, CEDD’s feature vectors consist of 144 coefficients
which require 54 bytes, a negligible fraction of the size of acom-
pressed image, often 1-2MB. Moreover, CEDD is computationally
lightweight relative to other feature extraction mechanisms, but has
comparable accuracy. CEDD is defined for images; as we describe
later, we are also able to derive features for video. More generally,
our approach is agnostic to the specific choice of features and simi-
larity definition; other feature extraction algorithms canbe used, so
long as the features are compact relative to image sizes.

On top of this image similarity search primitive, we explorea
query interface that supports several queries:

Top-K Given an image, this query outputs theK most similar im-
ages among all images from all available participating de-
vices. A special case ofK = 1 is the typical content based
image retrieval query that has been explored in the image
processing literature [17, 31, 6]. Our sportswriter could use
this query by presenting an image of a specific play (e.g., a
dunk) taken, say, at a different game.

Spanners This query returns a collection of images whose features
span the feature space of all images from all participating
devices. The mall security staff in the example above can
use this query to understand the range of images available in
participating devices before deciding to drill down and issue
more specific queries (top-k) with retrieved images.

Clusters This query returns representatives from natural cluster-
s in the feature space and can effectively identify the most
common “topics” among images from participating mobile
devices. This query can also help in both scenarios to give
the querier an overview of the different classes of images in
participating devices, prior to drill down (as above).

Our approach can be extended to support other kinds of queries
(e.g., enclosinghulls), as described later. While Top-K queries have
been used with images, we are not aware of other work that has
proposed using Spanners and Cluster queries with images. Finally,
our use of these queries in conjunction with a database of images
spread over mobile devices is, to our knowledge, novel.

Our queries can bequalifiedby severalattributes. Attributes like
locationandtimeconstrain the set of objects that are considered in
computing the query result; the location attribute constrains me-
dia objects to those taken in the vicinity of a certain location and
the time attribute specifies when the corresponding photo orvideo
was taken. Users may also specify afreshnessattribute, which con-
strains the age of media objects selected to compute the query re-
sult.

The last, but perhaps the most interesting attribute, istimeliness.
Timeliness is a property of the query result, and specifies a time
bound within which to return the result(s) of a query: if a query
is issued at timeT and the timeliness constraint ist, the system
attempts to return query results beforeT + t. The timeliness at-
tribute is motivated by the surveillance example discussedabove;
the security team might want results within a bounded time totake
follow-up action. It may also be bounded by interactivity concern-
s: since wireless bandwidth is limited and can vary, images may be
large, and multiple concurrent queries may compete for bandwidth,
query response times can be large and may vary significantly.
Challenges. Our approach faces several challenges. The first of

these isfeature extraction: it turns out that feature extraction algo-
rithms for large images encounter memory limits even on high-end
modern smartphones. Equally challenging is feature extraction for
video, since the frame rate for video can overwhelm many feature
extraction algorithms.

The more central challenge in our work is the design of the
system thatsatisfies the timeliness constraints multiple concurren-
t queries. In general, this is a hard problem, primarily because of
the bandwidth limitations of wireless mobile devices; the aggregate
query result may need a throughput that may overwhelm the avail-
able bandwidth. There are two approaches to solve this problem.
The first is admission control, whereby we restrict the number of
concurrent queries such that the timeliness constraints can always
be met. We did not consider this solution because of the variability
and unpredictability of wireless bandwidth availability.The second
approach is todeliver maximal information within the given time-
liness bound, while adapting to variability in available bandwidth.
Our work chooses the second approach, in the context of which
there is an interesting challenge: what does it mean to deliver max-
imal information?

In the next section, we describe the design of a system called
MediaScopethat addresses these challenges.

3. MEDIASCOPE
MediaScope is a system that supports timely similarity-based

queries on media objects stored on mobile devices. We begin by
describing the MediaScope architecture and then discuss the design
and implementation of each component.

3.1 Architecture and Overview
Mediascope is conceptually partitioned across a cloud compo-

nent called MSCloud, and another component called MSMobile
that runs on mobile devices. This partitioned design leverages the
computation and storage in clouds to support geometric queries on
the feature space; mobile devices provide sensing and storage for
media objects.

These components interact as follows (Figure 2). Whenever par-
ticipants take photos or videos, theFeature Extractorcomponent
of MSMobile continuously extracts, in the background, image and
video features and uploads them to theMSCloudDB. Users (e.g.,
a security officer or a sportswriter) pose queries to MSCloudus-
ing a standard web interface, possibly on a mobile device. These
queries are processed by theMSCloudQquery processing engine,
which uses the features stored in the MSCloudDB to compute the
query results. The results of the queries identify the mediaobjects
that need to be retrieved from individual mobile devices. Insome
cases, a media object may already have been retrieved as a result
of an earlier query; query results are alsocachedin MSCloudDB
in order to optimize retrieval. MSCloudQ coordinates with an Ob-
ject Uploadercomponent on MSMobile in order to retrieve query
results. Once a query’s timeliness bound expires, MSCloudQter-
minates the corresponding Object Uploader and returns retrieved
results.

MediaScope uses a publicly available crowd sensing platform
called Medusa [23]. Medusa was originally designed to permit hu-
man users to pose crowd-sensing tasks. MediaScope’s retrieval of
features and media objects from mobile devices leverages Medusa’s
support for “sensing” stored information on these devices.To en-
able programmed interaction between MSCloud and Medusa, and
to support MediaScope’s timeliness requirements, we made several
modifications to the Medusa platform (discussed later).

MediaScope thus provides a high-level abstraction (queries on
media objects) that hides many of the details of object retrieval
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from users. In the following subsections, we describe the two most
challenging aspects of MediaScope design:support for concurrent
queries, a functionality distributed between the MSCloudQ and the
Object Uploader; andfeature extraction. We conclude with a brief
description of other design and implementation issues.

3.2 Design: Concurrent Queries
The most challenging component of MediaScope is support for

concurrent queries — MSCloudQ may receive one or more queries
while other queries are being processed. In MediaScope, theresult
of a query is a list of media objects to be retrieved from a subset
of the participating phones. Recall that each query has a timeliness
constraint. In the presence of concurrent queries, MediaScope may
need to upload all media objects before their timeliness bound ex-
pires. In general, this may be difficult to achieve because wireless
bandwidth can vary significantly over time, resulting in variable
upload times for images.

To illustrate this, consider the example of two concurrent queries
Q1 andQ2 that arrive at the same time for media objects distribut-
ed across two phonesP1 andP2 in Figure 3. Also, assume that
both queries have a timeliness bound of 5 seconds, each object can
upload 1 object per second, and all objects are of the same size.
If Q1 needs to retrieve 3 objects fromP1 and 2 objects fromP2,
while Q2 needs to retrieve 4 objects fromP1 and 3 fromP2. Un-
der these circumstances, it is not possible to satisfy the timeliness
requirements of one of the two queries. In practice, the problem
is much harder because there may be more than two concurrent
queries, many more participating devices, queries can arrive at dif-
ferent times, media objects may have different sizes, and wireless
available bandwidth can vary dynamically. Especially because of
the last reason, admission control cannot guarantee that all timeli-
ness constraints are met, or may severely underutilize the available
bandwidth.

MediaScope uses a different approach,trading off query com-
pleteness for timeliness. In MediaScope, not all query results may
be uploaded within the timeliness bound, but the challenge is to u-
pload the most relevant queries so as to maximize the amount of
informationretrieved. In doing this, there are two challenges: how
to differentiate between queries, and how to prioritize media items
for the retrieval in order to maximize the information retrieved.

MediaScope addresses these two challenges using acredit as-
signmentmechanism. Each query is assigned, by MediaScope, a
number of credits. The credits assigned to a query reflect theim-
portance of that query and result in proportionally more informa-
tion being uploaded for that query (and therefore the proportional
completeness of the query result). The specific credit assignment
mechanism for queries is beyond the scope of this paper, but Me-
diaScope may use monetary incentives (e.g., users who pay more

get more credits for their queries) or other approaches in order to
assign credits to queries.

If a query is assignedn credits, it divides up these credits among
its results (media objects) in a way that reflects the importance of
each object to the query. The key intuition here is that, for agiven
query, the importance of a result object to the query can be de-
termined by the feature space geometry. For example, consider a
queryQ which attempts to retrieve the two nearest photos in feature
space to a given photoc. If the resulting photosa andb are each
20 units and 80 units distant fromc in feature space, andQ has
been assigned 100 credits,a andb each receive 80 and 20 credits
respectively (in inverse proportion to their distances toc).

MediaScope uses this intuition to define credit assignment to re-
sult objects. Once objects have been assigned credits, object up-
loading is prioritized by credit in order to maximize the total credit
retrieved across all concurrent queries. In what follows, we first
describe the queries that MediaScope supports and how credits are
assigned for each query. We then describe MediaScope’s credit-
based object scheduling technique and discuss its optimality.

3.2.1 Queries and Credit Assignment
Our current instantiation of MediaScope supports three quali-

tatively different queries: nearest neighbor, clusters, and spanner-
s. Below, we discuss the design of the query engine MSCloudQ
and how credits are assigned to query results. Recall that for each
query, users can specify time, location and freshness attributes: be-
fore performing each of the queries described below, MSCloudQ
filters all the feature vectors stored in MSCloudDB to selectfea-
ture vectors that match these attributes. In our description of the
queries below, we assume that this filtering step has been applied.
k-Nearest Neighbors. For this query, the user supplies atarget
image and the server attempts to return thek nearest images (from
photos or videos) in feature space to the target. The implementation
of this query is straightforward: it is possible to build indexes to
optimize the search for theK nearest neighbors, but our current
implementation uses a brute force approach.

Credit assignment for this query attempts to capture the relative
importance of the query results. Thus, the assignment of credits to
each result is proportional to its similarity to the target image. For
thei-th result, letsi be the similarity measure to the target; we then
assign credits to thei-th result proportional topi = (1− si∑

si
).

K Clustering. The second class of queries supported by MSCloudQ
is based on clustering in feature space. This query takes as input
the numberk as well as well as atypeparameter which describes
the expected result and can have one of two values:

Cluster Representative With this parameter, the result containsk

images, one from each cluster. For each cluster, our algorith-



m selects that image as the representative whose distance is
least to the centroid of the cluster. Intuitively, this query type
identifies different “topics” among images taken by partici-
pating users.

Common Interest With this parameter, the result includes images
from that cluster which contains objects belonging to the
most number of users. Thus, if thei-th cluster contains im-
ages fromui users, the query returns images from that cluster
for which ui is the largest. Intuitively, this query identifies
the cluster that represents the maximal common interest be-
tween participating users. Within the selected cluster, the
query returns one image for each participating user, select-
ing that image of the user that is closest to the centroid of the
cluster.

These queries can be implemented by any standard algorithm for
k-means clustering.

For thecluster representativetype of query, we assign credits
proportional to the size of the cluster. Thus, if thej-th cluster’s
size iscj , the credit assigned to the image selected from clusterj

is proportional to
cj∑
cj

.
For thecommon interesttype of query, we assign a credit to each

selected image that is inversely proportional to the image’s distance
from the centroid of the cluster. The credit assignment is similar to
k nearest neighbors above.
Spanner. The third, and qualitatively different query that MediaS-
cope supports is based on spanning the feature space. The intuition
behind the query is to return a collection of images whichspanthe
feature space. In computing the spanner, we assume that eachusert
contributes exactlyst images, wherest is derived from the query’s
timeliness bound and a nominal estimate of the average upload rate
from the corresponding mobile device3 Our spanner maximizes the
minimum dissimilarity between all pairs.

We now express this problem mathematically. Assume thatKn,
the complete graph onn vertices (vertices represent images), has a
vertex setV partitioned intoC classesV1, . . . , VC (classes repre-
sent users). Letvit denote vertexi in classVt. Let eitjk represent
the edge connectingvit with vjk . Assume edgeeitjk has weight
witjk (where the weight represents the dissimilarity between ob-
jectsit andjk).

Assuming that exactlyst vertices must be selected fromVt, we
need to select a set of vertices so that the minimum edge weight of
the selected clique is maximized. This problem can be formulated
as a mixed-integer program:

max z

s.t.z ≤ witjkyitjk ∀it, jk s.t. it < jk (1)

yitjk ≤ xit ∀it, jk s.t. it < jk (2)

yitjk ≤ xjk ∀it, jk s.t. it < jk (3)

xit + xjk − yitjk ≤ 1 ∀it, jk s.t. it < jk (4)
∑

it∈Vt

xit = st ∀t = 1, . . . , C (5)

xit ∈ {0, 1} ∀it

yitjk ∈ {0, 1} ∀it, jk s.t. it < jk

In this mixed-integer program, variablexit is used as the indica-
tor variable for selecting vertexvit for the clique. Similarly, vari-
ableyitjk is used as the indicator variable for selecting edgeeitjk
for the clique. Variablez is used to achieve theminit<jk witjkyitjk .
3As we describe later, the average upload rate is estimated dynam-
ically by MSCloudQ.

Inequalities 2 and 3 ensure that edgeeitjk is not selected if either
vertexit or jk is not selected. Inequality 4 guarantees thatyitjk is
selected if both verticesit andjk are selected. Inequality 5 ensures
that the number of vertices selected from classt is st.

The above problem is NP-hard so we use aO(|V |2) heuristic
(Algorithm 1) for solution. The idea behind this heuristic is to se-
lect the set of vertices greedily i.e., add “qualified” vertices whose
minimum weighted edge to the set selected thus far is maximum.
“Qualified” vertices are vertices in the classes which have not yet
met their constraint, and hence these vertices can still be selected.
We deal with the issue of which vertex should be selected firstby
trying all possible vertices as being the first vertex in the set and
taking the maximal such set.

Algorithm 1 : MAX M IN HEURISTIC

1: Define a listl for storing best vertex set and a variablemax_min for
minimum weighted edge

2: l← [], max_min← 0
3: for all i ∈ {1, . . . , V } do
4: min =∞
5: Define a temporary listlt andlt ← i
6: while new item added tolt do
7: for j ∈ {1, . . . , V } andj 6∈ L do
8: d(j)← mino∈lt similarity_dist(o, j)
9: if ∃ qualified vertexv then

10: lt.add({v|max d(v)})
11: temp_min← d({v|max d(v)})
12: if temp_min < min then
13: min = temp_min
14: if min > max_min then
15: max_min = min
16: l = lt

OUTPUT: l andmax_min

For this query, intuitively, credit assignment should givemore
importance to dissimilar images. For thei-th query result, we com-
putedi, the average distance from thei-th image to all other im-
ages. The credit assigned to this image is proportional todi∑

di
.

Extensibility of MSCloudQ. These are, of course, not the only
kinds of geometric queries that can be supported. Developers wish-
ing to extend MSCloudQ by adding new queries can do so quite
easily by: (a) defining the query syntax and semantics, (b) im-
plementing the query algorithm, and (c) specifying a proportional
credit assignment based on the semantics of the query.

3.2.2 Credit-based Scheduling
In general, users can pose concurrent queries to MSCloudQ.

Queries may arrive at different times and may overlap to different
extents (we say one query overlaps with another when one arrives
while the other’s results are being retrieved). Furthermore, differ-
ent queries may have different timeliness constraints, mayretrieve
different numbers of objects (e.g., for different values ofk, or d-
ifferent sizes of spanners), and the retrieved media objects may be
of different sizes (images with different resolutions). Inthese cas-
es, MSCloudQ needs an algorithm that schedules the retrieval of
different objects subject to some desired goal.

In MediaScope, this goal is to maximize the total completeness
of queries, defined as the sum of the credits of all the uploaded
images. To achieve this, recall that MSCloudQ assigns a credit
budget to each query based on the importance of that query; then,
using the proportions defined above, it assigns credit values to each
query result.

To mathematically define the completeness goal, we first intro-
duce some notation. LetQi denote the set of media objects that



form the result of thei-th query, and let that query’s timeliness
constraint bed(Qi). Let g(o) be an indicator variable that denotes
whether a media objecto is retrieved befored(Qi). Then, for the
i-th query, the total credit for all uploaded media objects isgiven
by:

g(Qi) =
∑

o∈Qi

g(o) · c(o)

Thus, given a series of concurrent queriesQ, the total number of
credits retrieved is given by:

c(Q) =
∑

Q∈Q

∑

o∈Q

g(o) · c(o)

Maximizing this quantity is the objective of MediaScope’s retrieval
scheduling algorithm.

It turns out that it is possible to decompose this objective into a
per-devicecredit maximization schedulingalgorithm. To see why
this is so, letP denote the set of participating devices, and thek-
th device be denoted bypk. Then, the above credit sum can be
written, for concurrent queriesQ:

c(Q) =
∑

Q∈Q

∑

o∈Q

g(o) · c(o)

=
∑

Q∈Q

∑

P∈P

∑

o∈P∩Q

g(o) · c(o)

=
∑

P∈P

∑

o∈P

g(o) · c(o)

This equality shows that, in order to maximize the total credit-
s retrieved across a set of concurrent queriesc(Q), it suffices to
maximize the total credits uploaded by each participating device:∑

P∈P
c(P ). This is true under the following two assumptions:

(a) if two different queries retrieve the same object fromPk, then
the object will need to be uploaded at most once and (b) the credit
assigned to that object is the sum of the credits allocated byeach
query to that object.

This finding has a nice property from the systems perspective:
it suffices to run a local credit-maximizing scheduler on each par-
ticipating device in order to achieve the overall objective. In gen-
eral, local schedulers have the attractive property that they can lo-
cally adapt to bandwidth variations without coordinating with M-
SCloudQ, and need only minimal coordination with MSCloudQ in
order to deal with new query arrivals. In MediaScope, the Object
Uploader component of MSMobile implements the scheduling al-
gorithm.
An Optimal Scheduler. We first describe a scheduling algorithm
that isoptimal under the assumption of fixed file sizes and fixed
wireless bandwidth per participating device. Under these assump-
tions, for each objecto, it is possible to compute the exact upload
time t(o) which is the same for all objects. If each object’s time-
liness bound isd(o) (different objects can have different bounds),
our goal is to find an uploading sequence such that

∑
o
g(o) · c(o)

is maximized.
First, we may assume that an optimal schedule orders the objects

by earliest timeliness bound first. Assume an optimal schedule does
not order objects by earliest timeliness bound first. Then there exist
two objectsi and j for which d(oi) > d(oj) but i is scheduled
beforej. By switching the order of objectsi andj we can obtain
another optimal schedule.

However, merely scheduling by earliest timeliness bound isnot
likely to maximize credit. To do this, the algorithm preprocess-
es the schedule to obtain a set of scheduled objects in the following

way. It orders the objects by earliest timeliness bound first. Then, it
adds objects to the schedule one right after another as long as each
object’s finish time does not exceed the timeliness bound. Ifan ob-
ject’s end time exceeds its timeliness bound, the algorithmremoves
the object receiving the smallest credit of those objects scheduled
thus far (including current object) and shifts objects to the right of
this object to the left byt(o) to cover the gap. Intuitively, this step
maximizes the total credit uploaded: lower credit objects,regard-
less of the query they belong to, are replaced. The algorithmthen
selects the next object in order of timeliness.

Algorithm 2 : OPTIMAL UPLOADING SCHEDULE

1: Arrange the pending objects listO by earliest timeliness bound first,
schedulingS← []

2: l← 0
3: for o← O.first do
4: S← o
5: O.remove(o)
6: if l+ t(o) ≤ d(o) then
7: l← l + t(o)
8: else
9: Remove the smallest credited object inS

10: Shift all objects to the right of this object to left byt(o)

OUTPUT: schedulingS, uploading objectS[0]

The following example illustrates this algorithm. Supposethere
are 3 queries, each with one result object. Let their respective time-
liness bounds be 2, 3, and 5 and the credits they receive be 7, 8, and
6 respectively. Finally, supposet(o) is 2 time units. The algorith-
m would proceed in the following way. It would schedule the first
object initially. Since the second object would not be delivered in a
timely manner if scheduled after the first object, and since the sec-
ond object receives more credits than the first, the first is removed
and the second is scheduled from time 0-2. The third object isthen
scheduled from time 2-4 giving a maximal 14 total credits to the
system.

This algorithm is a special case of an optimal pseudo-polynomial
algorithm discussed below, so we omit a proof of its optimality.
Optimality under different object sizes. If object uploading times
are different, the scheduling problem is NP-hard; the simple case
of different object sizes with all objects having the same timeliness
bound is equivalent to the NP-Hard Knapsack problem [15]. We
can however give the following pseudo-polynomial time dynamic
programming algorithm for this problem. LetS[i, q] be the max-
imum credited schedule using only the firsti objects, i.e., objects
o1, . . . , oi, taking upq time units. Lets[i, q] be the corresponding
credit for such a schedule. Thens[i, q] is defined in the following
way:

s[i, q] =

{

max{s[i− 1, q − t(oi)] + c(oi), s[i− 1, q]} if q ≤ d(oi)

s[i− 1, q] if q > d(oi),

(6)
where the following initial conditions hold:s[0, q] = s[i, q <

t(o1)] = 0. If s[i−1, q−t(oi)]+c(oi) > s[i−1, q] andq ≤ d(oi),
thenS[i, q]← S[i−1, q−t(oi)]∪{oi}, elseS[i, q]← S[i−1, q].
The desired output isS(n, d(on)) for an input ofn objects.

The running time of this algorithm isO(nd(on)). The optimali-
ty of Algorithm 2 follows from the optimality of this dynamicpro-
gramming algorithm for the general case [7].
Practical Considerations. In a practical system, the Object U-
ploader estimatest(o) continuously, and re-computes the schedule
after each upload is completed, in order to determine the next object
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Figure 4—Image Resizing Overhead and Tradeoffs

to upload. There are two reasons for this. First,t(o) can change be-
cause available wireless bandwidth can vary. Second, new queries
may arrive at MSCloud; when a query arrives, MSCloud evalu-
ates the query, assigns credits to the query results, and notifies the
relevant devices (those which contain one or more result object-
s). Thus, at a given device, the set of objects to be uploaded can
vary dynamically, so the Object Uploader needs to re-evaluate the
schedule after every upload. Finally, for large objects, bandwidth
variability might cause their timeliness bounds to be violated (e.g.,
because the available bandwidth became lower than the valuethat
was used to compute the schedule); in this case, the Uploadercan
abort in-progress transmission to reduce the bandwidth consumed
and and thereby trade-off query completeness for timeliness. We
have left this optimization to future work.

3.2.3 Feature extraction on the phone
In MediaScope, feature extraction is performed on the mobile

device by the Feature Extractor component of MSMobile4. This
component extracts features for photos, as well as images extracted
from videos. Even for high-end smartphone platforms, theseare
nontrivial computation tasks and some computation vs. accuracy
trade-offs are required in order to achieve good performance. We
now discuss these trade-offs.
Image Feature Extraction. The Samsung Galaxy S III (a high-end
smartphone at the time of writing) can generate images with native
resolution of 3264x2448. At this resolution, our CEDD feature
extraction algorithm fails because of lack of memory on the device.
One way to overcome this limitation is to resize the image to a
smaller size and compute features on the smaller image.

As Figure 4(a) shows, the time to compute features (averaged
over 300 images taken on the Galaxy SIII) can reduce significant-
ly for different sizes, ranging from 4s for a resolution about 1/2
the native resolution to about 1s for 1/4 the native resolution. The
cost of the resizing operation itself is about 250ms, as shown in
Figure 4(b), roughly independent of the resized image size.

However, computing features on a smaller image trades off ac-
curacy for reduced computation time. To explore this trade-off,
we evaluated two queries to see how accuracy varies with resizing.
Figure 4(c) shows the results for K-means clustering, whoseerror
rate is obtained by dividing the total number mis-classifiedimages

4MSCloudQ also needs to implement the same feature extraction
algorithm for a Top-K query. Since mobile devices are more con-
strained, we focus on feature extraction on these devices.

by the total number of images. This error rate is less than 5% for
a 1280x768 resolution, but jumps to 20% for the 816x612 resolu-
tion. The error rate for K-nearest neighbor queries is defined as
the ratio of incorrect images (relative to the full size) selected by
feature vectors computed on a resized image andk, averaged over
different values ofk. In this case, the knee of the error curve occurs
somewhere in between the resolution of 1280x960 and 1024x768
(figure omitted for space). Given these results, we use a resizing
resolution of 1024x768 in our implementation as the best trade-off
between computation time and accuracy.
Video frame extraction. The second major component of MSMo-
bile’s Feature Extractor is video frame extraction. Ideally, for videos,
we would like to be able to extract every frame of the video and
compute features for it. This turns out also to be computationally
infeasible even on a high-end device, and one must perform a com-
putation accuracy trade-off here as well, by subsampling the video
to extract frames at a lower rate than full-motion video.

Figure 5 shows the total cost of frame extraction for videos of
different durations. Clearly, for long videos, even are relatively
modest sampling rate of 4 fps can incur a total processing time of
150 seconds! On the other hand, extracting a single frame takes on
average 240 ms, regardless of frame rate or duration.

On the flip side, subsampling a video can introduce errors; suc-
cessive frames, if they are far apart from each other, may miss im-
portant intervening content. Figure 6 shows the average distance
in feature space between successive frames for videos of differen-
t durations and sampling frequencies. For context, our clustering
algorithms have generally found that cluster diameters areat least
about 20 units. At 0.5fps, the interframe distance is more than this
number, but at 1 fps, it is less. More generally, 1 fps seems tobe a
good choice in the trade-off between computation time and accura-
cy, so our current prototype uses this value.

An alternative approach to feature extraction for videos would
have been tosegmenta video on the mobile device and then select
frames from within the segment. A segment roughly corresponds
to a scene, so one might expect that frames within a segment might
have similar feature vectors. We have left an exploration ofthis to
future work.

3.2.4 Leveraging a Crowd-Sensing Framework
MediaScope leverages an existing, publicly available, crowd sens-

ing programming framework called Medusa [23]. Medusa provides
high-level abstractions for specifying the steps requiredto complete
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a crowd-sensing task: in our case, uploading the feature vectors can
be modeled as a crowd-sensing task and so can the upload of select-
ed media objects. Medusa employs a distributed runtime system
that coordinates the execution of these tasks between mobile de-
vices and a cloud service. In MediaScope, MSCloud uses Medusa
to distribute tasks and collect the results; MSMobile consists of ex-
tensions to Medusa’s runtime to implement the Feature Extractor
and the Object Uploader.

However, in order to support MediaScope, we needed to ex-
tend the Medusa model, which was focused on tasks generated
by human users. We also needed to make several performance
modifications in Medusa. In the former category, we modified
Medusa’s programming language to selectively disable Medusa’s
recruitment feature and data privacy opt-in: these features require
human interaction, and MediaScope assumes that participants have
been recruited and have signed a privacy policy out-of-band. We
also added a data delivery notification system that would allow
Medusa’s cloud runtime to deliver notification of data upload to
external servers, such as MSCloudDB. In the second category, we
modified Medusa’s mobile device notification system, which o-
riginally used SMSs, to use Google’s C2DM notification service,
which greatly reduced the latency of task initiation on mobile de-
vices. We also optimized several polling loops in Medusa to be
interrupt-driven, so that we could hand-off data quickly tocompo-
nents within Medusa’s runtime as well as to external servers.

4. EVALUATION
In this section, we evaluate the performance of MediaScope.Al-

though MediaScope’s credit assignment algorithm is optimal in a
pseudo-polynomial sense, we are interested in its practical perfor-
mance under bandwidth variability. Furthermore, in practice, since
query arrival cannot be predicted ahead of time, the practical per-
formance of MediaScope may deviate from the optimal. Finally,
it is instructive to examine alternative scheduling mechanisms to
quantify the performance benefits of MediaScope’s algorithms. We
are also interested in the overhead imposed by MediaScope; since
timeliness is an essential attribute of many queries, system ineffi-
ciencies can impact query completeness.

All our experiments are conducted on a prototype of MediaS-
cope. MSCloud is written mainly in Python; PHP and Python
are used for MSCloudQ web interface. The implementation of M-
SCloud is about 4300 lines of PHP and Python code, and MSMo-
bile requires about 1150 lines of C and Java code (measured using
SLOCCount [28]).

Our experiments use commodity hardware, both for MSCloud
and the mobile device. We use up to 8 Android phones, which
are either the Galaxy Nexus or the Galaxy SIII. MSCloud runs on
a Dell XPS 7100 (six-core AMD Phenom II X6 1055T 2.8 GHz
processor and 6MB built-in cache).

Before describing our results, we give the reader some visual in-

tuition for the usefulness of MediaScope. Figures 7, 8, and 9show
the results of three different queries: a K nearest neighborquery, a
Cluster Representatives query and a Spanner on a set of six groups
of photos: a university campus, a garden, a view of the sky framed
by trees, an athletics track, a supermarket, and a laboratory. No-
tice that the cluster representatives query identifies representatives
from each of groups, while the Spanner extracts qualitatively differ-
ent pictures, while the K nearest neighbor query extracts matching
images as we might expect.

4.1 Query Completeness
In this section, we evaluate query completeness in the presence

of concurrent queries.
Metrics and Methodology. Our metric for query completeness
is the total credit associated with all the query results successful-
ly uploaded before their timeliness bounds. We evaluate several
query mixes(described below), with different concurrent queries
of query types that arrive at different times and have different time-
liness bounds. These queries are all posed on 320 images captured
on 8 mobile devices.

Our experiments are conducted as follows. For each query mix,
we first compute the results of each query and the credit assigned to
each result object. This computation yields atrace, on each mobile
device, of objects, their associated credits and the arrival time. We
use this trace to replay the credit-based scheduling algorithm during
repeated runs and report the average of 10 runs.

This trace-based methodology is also useful in comparing Me-
diaScope’s credit-based scheduling algorithm (henceforth, MSC)
with several alternatives. For each alternative, we replaythe trace
for that particular scheduling algorithm. We consider the follow-
ing alternatives: anOmniscientalgorithm that knows about future
query arrivals; aMax Credit First (MCF)that always selects the
object with a maximum credit to upload; aRound Robin (RR)that
allocates bandwidth fairly to each concurrent query so that, in each
round, the object with the highest credit from each query is up-
loaded; and anEarliest Deadline First (EDF)scheduler that al-
ways schedules that object with the earliest timeliness bound first,
breaking ties by credit. The Omniscient algorithm demonstrates
the benefits of lookahead, while each of the other algorithmshas at
most one of MSC’s features (timeliness-, credit-, and bandwidth-
awareness).

In our experiments, each mobile device contains a number of
images taken with its camera. These images are naturally of dif-
ferent sizes because they have different levels of compressibility.
Furthermore, we make no attempt to control network variability;
upload bandwidths in our experiments vary and MSC estimatesu-
pload bandwidth by measuring the average speed of the last upload
(MSC’s algorithm needs uses this estimate fort(o)).
Results. Our first experiment compares the performance of these
alternatives for three different query mixes with different types of
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liness Bound Figure 12—Sample Schedule Timeline

queries. The first mix contains 4 queries, namely, 1 Top-K, 1 S-
panner, 1 Cluster Representative and 1 Common Interest. Allthe
queries arrive at the same time but with different timeliness bound-
s; thus, in this experiment there are no future arrivals and we do not
evaluate the Omniscient algorithm. The second mix adds one more
Cluster Representative query to the first one, and the third is gen-
erated by adding one more Common Interest query. In each query
mix, each query is assigned the same total credit.

Figure 10 shows the performance of various schemes. MSC
achieves at least 75% completeness across all three query mixes,
and its performance improves by 5% as the number of queries in-
creases from 4 to 6. Although a 75% completeness rate seems pes-
simistic, we remind that reader than MSC is optimal,so no other
scheduling scheme could have done better than this; in other word-
s, for this query mix, this is the best result that could have been
achieved.

Furthermore, MSC outperforms other schemes significantly.The
superior performance of MSC comes from its timeliness-awareness,
credit-awareness, and adaptivity to available bandwidth.By con-
trast, approaches that lack one or more of the features have much
lower completeness rates. Thus, EDF does not take into accoun-
t an object’s credit, and thus might waste bandwidth on objects
with an early deadline but small credit; on average, EDF achieves
55% completeness. RR is unaware of timeliness constraints,but
uploads the result objects for each query in a round-robin fashion.
It is comparable in performance to EDF, achieving 52% complete-
ness on average. RR’s poor performance arises from two factors:
first, because it ignores timeliness constraints, it uses transmission
opportunities by sometimes transmitting objects which could have
been deferred without violating data timeliness bounds; second, RR
gives equal transmission opportunities to queries, even though, on
a given mobile device, one query may contain objects with farmore
credit than another query. MCF improves upon RR in the second

aspect, in that it always transmits the object with the highest credit
first; in so doing, it achieves an average completion rate of 59%
and is significantly better than EDF and RR. However, MCF is still
noticeably worse than MSC, primarily because MCF ignores time-
liness constraints and sometimes transmits objects that could have
been deferred without violating timeliness bounds.

In order to get more insight into the relative performance ofthese
schemes, we consider variants of the 6-query mix which have dif-
ferent combinations of arrival rates and deadlines. Figure11 plots
the results of these experiments.

In the first query mix, three of the six queries arrive first with the
timeliness bound of 20 seconds. The remaining three queriesarrive
within three seconds, but have a relatively tight timeliness bound of
6 seconds. In this sense, theyinterrupt the first set of queries. This
query mix is designed to demonstrate the benefits of timeliness-
awareness. In this somewhat adversarial setting, MSC stilloutper-
forms other schemes but has a much lower completeness rate of
about 60%. RR performs poorly, but EDF performs comparably to
MCF; this is not surprising because EDF is timeliness-aware. Even
so, EDF does not perform as well as MSC because it ignores credit
values and uploads objects with lower credits unnecessarily.

In the second query mix, 6 queries with the same timeliness re-
quirement arrive in a staggered fashion, with each query arriving
three seconds after the previous query. This illustrates a setting
where queries arrive frequently but the arrivals are not synchro-
nized. In this setting, MSC achieves a completeness rate of nearly
80%, and, not surprisingly, MCF comes quite close with a com-
pleteness rate of 71%. Since all queries have identical timeliness
bounds, it is not surprising that a credit-aware scheme likeMCF
performs well.

The third query mix represents a complex pattern where queries
arrive at different times and have different deadlines. Forthis mix,



Average Latency (ms)

MSCloud to Medusa 131
C2DM (send-to-receive) 150
Task Execution 67
Upload Scheduling 46
Medusa to MSCloud Image Transfer 67

Table 1—System Communication and App Running Overhead

the performance advantages of MSC are clear, since this mix re-
quires a scheduling scheme to be both credit and timeliness-aware.

Finally, for all these query mixes (Figure 11), MSC is compa-
rable to the Omniscient scheme, which knows the arrival times of
different queries. Intuitively, because MSC continuouslyadapts its
transmission schedules when new queries arrive, it can makea d-
ifferent decision from Omniscient only at the times when queries
arrive. To be more precise, say a new query arrives at timet: Om-
niscient might have scheduled an upload of an object for the new
query starting at timet, but MSC has to wait until the object being
uploaded att finishes, before it updates its schedule. This differ-
ence can be fixed by addingpreemptionto the scheduler, aborting
the current transmission if it does not have the highest priority; we
have left this to future work.

To get some more insight into the differences between the schedul-
ing algorithms, Figure 12 plots the timeline of decisions made by
these algorithms for the 6-query mix when all queries arriveat the
same time. The figure clearly shows that MSC is better able to use
the available time to carefully schedule uploads so that complete-
ness is maximized; MCF, having uploaded objects with high credits
is unable to utilize the available time because the timeliness bound
for the remaining objects has passed. EDF performs comparably to
MCF, but, because it is credit-unaware, misses out on some trans-
mission opportunities relative to MSC (e.g., MSC uploads Q3:91
first, but EDF does not).

In summary, our approach bridges the availability gap by ex-
tracting relevant photos and images dynamically from participating
devices. The approach hinges on the observation that feature space
similarity can be used to determine relevant media objects,and that
image features are an extremely compact representation of the con-
tents of an image. However, it is well-known that content based
information retrieval exhibits asemantic gap[27]: feature-based
similarity matching is oblivious to the semantic structures within
an image, so the matching may not be perfect. In these cases, we
rely on additional filtering by human intelligence (e.g., inour exam-
ples, the security officer, or the reporter). To put it another way, our
approach may not always give the right answer, because of these-
mantic gap. To properly evaluate our approach, we need to conduct
a user study. This is because, for example, determining whether the
results of a spanner query really span a given corpus can be highly
subjective. We have left this user study to future work.

4.2 System Overhead
Latency. Because MediaScope attempts to satisfy timeliness con-
straints, the efficiency of its implementation can impact query com-
pleteness; the less overhead incurred within the system, the greater
the query completeness can be. To understand the efficiency of
our system, we profiled the delays within the various components
of MediaScope (Table 1). In an earlier section, we have discussed
the cost of feature and frame extraction: these operations are not
performed in the object retrieval path, so do not affect query time-
liness.

As this table shows, the latency incurred for most components
is modest; C2DM notifications take less than 1/6 second, and the

Average Latency (ms)

Query Parsing 24
Feature Vector Download 138
Medusa Server Interpretation 68
Spanner 89
K Clusters 52
K Nearest Neighbor 11
Query Result Response 54

Table 2—System Function Components Overhead

communication between MSCloud and Medusa takes about 1/8
second. Other components are under 70 ms.

Finally, latency within the MSCloudQ query engine is also mod-
erate (Table 2). Even in our relatively un-optimized implementa-
tion, most components of query processing take less than 100ms,
with the only exception being the download of feature vectors from
MSCloudDB; we plan to optimize this component by caching fea-
ture vectors in memory.

These overhead numbers suggest that our current prototype may
be able to sustain timeliness bounds of 10s or lower. Indeed,some
of our experiments in the previous section have used 6s timeliness
bounds.
Energy. The other component of overhead is energy expenditure.
Frame extraction and feature extraction can take up to a second, or
more, of CPU time. The energy cost, on a Motorola Droid (mea-
sured using a power meter), of frame extraction is 57µAh, and
of feature extraction (including resizing) is 331µAh. We believe
these energy costs are still reasonable: for feature extraction to con-
sume even 10% of the Droid’s battery capacity, a user would have
to take more than 400 photos!

5. RELATED WORK
Perhaps the closest related piece of work to MediaScope is Crowd-

Search [29], which attempts to search for the closest match image
generated on a mobile device from among a set of images stored
on a photo sharing service. Its focus, however, is complementary
to MediaScope, and is on bridging the semantic gap inherent in
feature-based image searches; most feature extraction methods do
not understand the semantics of images, and CrowdSearch focuses
on using human intelligence in near real-time to complete search
tasks. MediaScope can use this capability to filter search results
to bridge the semantic gap, but its focus is on supporting a rich-
er query interface and enabling tighter timeliness constraints than
might be possible with humans in the loop.

Also closely related is PhotoNet [25], which proposes an oppor-
tunistic image sharing and transmission capability in a delay toler-
ant network. PhotoNet uses similar image features to perform pho-
to comparisons, but is otherwise very different from MediaScope in
that the latter explicitly supports a query interface with timeliness
constraints on queries.

MediaScope is informed and inspired by several pieces of work
on techniques for content-based image retrieval, and imagesearch
on mobile devices.

In the former category are systems like Faceted Image Search
[31], the Virage Image Search Engine [6] and ImgSeek [17], that
support searches on a centralized database of images. MediaS-
cope builds upon these search techniques, but unlike them, supports
timely geometric queries over a distributed database of images and
videos on mobile devices. Other work in content-based imagere-
trieval has proposed clustering [8, 12], but has not explored the
mobile device setting.

A second category of work has explored support for image search



on a mobile device. For example, [19] discusses energy efficien-
t feature extraction on a mobile device but supports on the local
searches on the device, as does [30]. Other pieces of work have ex-
plored a client/server architecture for image search, but where the
content is stored on the server [18, 14, 5]. By contrast, MediaScope
supports searches on a cloud server, but where the content isstored
on the mobile devices and is retrieved on demand.

Finally, tangentially related to MediaScope is work on automat-
ed or semi-automated annotation of images with context obtained
from sensors [13, 26, 22]. MediaScope can use such annotations
to support a broader range of queries, but we have left this tofuture
work.

6. CONCLUSIONS
In this paper, we have discussed the MediaScope, a system that

bridges the availability gap for visual media by supportingtime-
ly on-demand retrieval of images and video. MediaScope usesa
credit-based timeliness-aware scheduling algorithm thatoptimizes
query completeness, and its overheads are moderate. Much work
remains, including optimizing the internals of the system to im-
prove completeness, and supporting more geometric querieson vi-
sual media. Larger scale experiments using more mobile devices
can help understand how well the system scales, and how network
variability can impact query completeness. Finally, a userstudy
focused on understanding how well MediaScope’s query results
bridge the semantic gap can help establish MediaScope’s useful-
ness.
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