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Preface

The linear mixed model has become the main parametric tool for the analy-
sis of continuous longitudinal data. Verbeke and Molenberghs (2000) de-
voted an entire text to the model, a number of its extensions, and how to
deal with incompletely observed longitudinal profiles. The model can be
fitted in a wide variety of commercially available software packages, such
as the SAS procedure MIXED, the SPlus function lme, the MLwiN pack-
age, etc. Although the model can be interpreted as a natural hierarchical
extension of linear regression and analysis of variance, it is our experience
from courses, scientific collaboration, and statistical consultancy that the
model remains surrounded with non-trivial issues such as the difference
between a hierarchical and a marginal interpretation, complexities arising
with inference for variance components, assessing goodness-of-fit, the effect
of (mis-)specifying the random-effects distribution, etc.

Our courses, consultancy, and research in the area of longitudinal data
analysis have included the non-Gaussian setting as well, including binary,
ordinal repeated measures, as well as counts measured repeatedly over time.
Our experience has been that the issues in this field are a multiple of those
in the continuous case, predominantly due to the lack of an unambiguous
counterpart of the multivariate normal distribution. Almost all models ex-
hibit a certain amount of non-linearity. Even when attention is restricted to
the special non-linear models of the generalized linear type, important dif-
ferences between the classes of marginal, conditional, and subject-specific
models arise. Within each of these, subfamilies can be identified within
which, in turn, many different models can be placed. Different problems
may call for different solutions and hence different modeling strategies.
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In addition, due to computational complexity, many models require the
use of approximate numeric methods, each one with its advantages and
disadvantages. The issues are further compounded when planned measure-
ment sequences are incompletely observed and strategies to deal with such
incompleteness may depend in important ways on the inferential frame-
work within which a particular model is framed. Fortunately, a variety of
standard statistical software tools is now available to handle, possibly in-
complete, non-Gaussian repeated measures, including the SAS procedures
GENMOD, GLIMMIX, NLMIXED, MI, and MIANALYZE.

Verbeke and Molenberghs (2000) have not dealt with the non-Gaussian
case, and we aim to fill this gap with the current text. Regular and short
courses have helped shape our thinking regarding the selection of material
and the emphasis to put on various model families, models, and inferential
aspects. We mention in particular the regular courses on Correlated and
Multivariate Data in the Master of Science in Applied Statistics Programme
of the Limburgs Universitair Centrum, the Longitudinal Data Analysis and
Advanced Modeling Techniques courses of the Master of Science in Biosta-
tistics Programme of the Limburgs Universitair Centrum, and the Repeated
Measures course in the International Study Programme in Statistics of the
Katholieke Universiteit Leuven. We further learned a lot from teaching
short courses to audiences with various backgrounds at numerous locations
in Europe, North and South America, the Caribbean, Australia, and Asia.

Just as with Verbeke and Molenberghs (2000), we hope this book will be
of value to a wide audience, including applied statisticians and biomedical
researchers, particularly in the biopharmaceutical industry, medical and
public health research organizations, contract research organizations, and
academic departments. The majority of the chapters are explanatory rather
than research oriented, although some chapters contain advanced material.
A perspective is given in Chapter 1. Practice is emphasized rather than
mathematical rigor. In this respect, guidance and advice on practical is-
sues are important focuses of the text, and numerous extensively analyzed
examples are included, many running across several chapters.

Virtually all of the statistical analyses were performed using SAS pro-
cedures such as MIXED, GENMOD, GLIMMIX, NLMIXED, MI, and MI-
ANALYZE, as well as the SAS macro GLIMMIX. Almost all analyses were
done using the SAS Version 9.1. The GLIMMIX procedure used here is
experimental. Nevertheless, both the methodological development and the
analysis of the case studies are presented in a software-independent fashion.
Illustration of how to use SAS for the various model strategies is concen-
trated in a small number of chapters and sections, and the text can be read
without any problem if these software excursions are ignored. Selected pro-
grams, macros, output, and publicly available datasets can be found at
Springer-Verlag’s URL: www.springer-ny.com, as well as at the authors’
web site.

Geert Molenberghs (Diepenbeek) and Geert Verbeke (Leuven)
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Part I

Introductory Material





1
Introduction

In contemporary quantitative research, the collection of correlated data is
very common. In agreement with Verbeke and Molenberghs (2000), we use
this term in a generic sense and understand it to encompass such struc-
tures as multivariate observations, clustered data, repeated measurements,
longitudinal data, and spatially correlated data.

In a multivariate study (Seber 1984, Krzanowski 1988, Johnson and
Wichern 1992), a number of different characteristics are measured on the
same unit. This occurs, for example, when three test scores are recorded
on each child enrolled in a study (Section 2.6). If the same characteristic
is measures several times, perhaps under varying experimental condition,
then we are confronted with repeated measures. When the same charac-
teristic is measured repeatedly over time, and time itself is, at least in
part, a subject of scientific investigation, we refer to longitudinal data. A
related setting, obtained by replacing the time dimension by one or more
spatial dimensions, yields so-called spatial data (Cressie 1991). All of these
correlated designs are based on a hierarchy in the data. Other hierarchies
are found in classical agricultural designs, in sociological experiments (e.g.,
pupils within classes, within schools, within districts, . . . ).

Longitudinal or otherwise hierarchical data are made up, by definition,
of more than one source of variability. Continuous longitudinal data are of-
ten analyzed by means of the general linear mixed-effects model (Verbeke
and Molenberghs 2000), which encompasses three sources of variability:
(1) subject-specific effects, (2) serial correlation, resulting from additional
autoregressive effects in the data, and (3) measurement error. Autoregres-
sive models are commonly used in the time-series and spatial literatures
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(Ripley 1981, Diggle 1983, Cressie 1991), whereas subject or unit-specific
effects are commonly used in variance component models (Searle, Casella,
and McCulloch 1992). The fact that longitudinal data exhibit replication
‘in two directions,’ subjects on the one hand and repeated measurements
within subject collected over time on the other hand, with in addition the
specific structure imposed by the uni-directional time dimension, makes
them rich in structure.

A key characteristic of correlated data is the type of outcome. For a
univariate continuous outcome, linear or, more parametrically, Gaussian
models, are often appropriate. The structure of the covariates further dis-
tinguishes between such subfamilies as linear regression and analysis of
variance, but the choice of the broader family is defined by the outcome.
Univariate categorical outcomes are analyzed using loglinear models, logis-
tic regression, probit regression, etc., with Poisson regression reserved for
the analysis of univariate count data. Of course, all of these can be framed
within the generalized linear model family (McCullagh and Nelder 1989),
but the normal distribution, underlying parametric linear regression, is a
somewhat special member of this family, and linear regression is special
among the various forms of regression, primarily and simply due to the
normality and linearity of the model.

In longitudinal settings, each individual has a vector Y of responses with
a natural (time) ordering among the components. This leads to several, gen-
erally nonequivalent, extensions of univariate models. In a marginal model ,
marginal distributions are used to describe the outcome vector Y , given a
set X of predictor variables. The correlation among the components of Y
can then be captured either by adopting a fully parametric approach or by
modeling a limited number of lower-order moments only. Alternatively, in
a random-effects model , the predictor variables X are supplemented with
a vector b of subject-specific effects, conditional upon which the compo-
nents of Y are often assumed to be independent. This does not preclude
that more elaborate models are possible if residual dependence is detected.
Finally, a conditional model describes the distribution of the components
of Y , conditional on X but also conditional on (a subset of) the other
components of Y . In a longitudinal context, a particular relevant class of
conditional models describes a component of Y given the ones recorded
earlier in time, the so-called autoregressive or transition models.

This taxonomy allows us to indicate an important distinction between
Gaussian and non-Gaussian repeated measures. In the Gaussian case, the
linear mixed model is widely accepted as the unifying framework for a vari-
ety of correlated settings, including but not limited to repeated measures,
longitudinal data, correlated data, and hierarchical data. In addition, it
plays a prominent role in the area of spatial statistics. The model encom-
passes subject-specific and autoregressive effects at the same time. Fur-
thermore, this general hierarchical model marginalizes in a straightforward
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way to a multivariate normal model with directly interpretable mean and
covariance parameters.

These results are entirely based on powerful but unique properties of the
normal distribution, including that both the conditional and marginal dis-
tributions of a multivariate normal distribution are again normal. Virtually
nothing of this carries over to the non-Gaussian case, as there is no natural
analog to the multivariate normal distribution for, say, repeated binary or
ordinal data, or longitudinally measured counts. As a consequence, each of
the three model families (marginal, subject-specific, and conditional) stands
to a large extent on its own and no straightforward transfers are possible.
Although models for longitudinally measured non-Gaussian outcomes are
typically based on two important building blocks, being the linear mixed
model on the one hand and generalized linear models on the other hand,
there are additional choices to be made as to precisely how these two will
be combined and, importantly, within which of the three model families
the resulting model will be framed. Depending on the choices made, one
may end up with, for example, generalized estimating equations or with
the generalized linear mixed-effects model.

Specific challenges arise when the longitudinally measured profiles are
incomplete. Missing data already received a lot of attention in Verbeke
and Molenberghs (2000), and it is treated in detail here as well, as various
modeling approaches, often within a different inferential framework, require
specific measures to correctly deal with incompleteness.

The book is divided into six parts. The first part presents the key moti-
vating studies (Chapter 2) as well as brief reviews of the two major building
blocks mentioned earlier: generalized linear models in Chapter 3 and the
linear mixed-effects model in Chapter 4. The introductory part ends with
a chapter detailing the three model families within which models for non-
Gaussian repeated measures can be framed (Chapter 5). All of the material
in this part is easily accessible, also for the less technically interested reader.
Even though the title of the book contains the word ‘longitudinal,’ many
of the examples are of a more general nature, including clustered and mul-
tivariate data. Although longitudinal examples form the backbone of the
methodological developments and illustrations alike, we aim to show the
methodology is more broadly applicable.

The second, third, and fourth part zoom in on marginal, conditional,
and subject-specific models, respectively. Turning to marginal models first,
Chapter 6 provides a gentle introduction to the concept of marginal models,
confining attention for the better part to bivariate outcomes and contingency-
table settings. Chapter 7 gives a broad overview of likelihood-based mar-
ginal models, illustrating both use and computational complexity. This
naturally leads to the need for likelihood alternatives, such as generalized
estimating equations (Chapter 8) and pseudo-likelihood (Chapter 9). The
final Chapter 10 reviews the use of SAS for fitting marginal models.
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The third part, on conditional models, is rather brief, with a general
overview in Chapter 11 and the use of pseudo-likelihood in this context in
Chapter 12.

The fourth part on subject-specific models starts off with a perspective
on the various ways to deal with subject-specific effects (Chapter 13), and
then puts a lot of emphasis on the specific but versatile class constituted by
the generalized linear mixed model (GLMM) in Chapter 14. In analogy with
Chapter 10, Chapter 15 illustrates how SAS can be used to fit GLMMs.
Chapter 16 discusses the similarities, differences, and connections between
marginal and random-effects models.

The fifth part is devoted to a number of case studies and extensions. An
overview of the various model strategies, using a case study, is presented in
Chapter 18. Chapters 18 and 19 are devoted to the specific cases of ordi-
nal outcomes and counts, respectively. Extensions to non-linear models, for
both Gaussian and non-Gaussian outcomes, are presented in Chapter 20. A
pseudo-likelihood approach to hierarchical data is given in Chapter 21, and
the model presented here is extended further to encompass serial correla-
tion in Chapter 22. Whereas the GLMM assumes random effects to follow
a normal distribution, an approach with non-Gaussian random effects is
discussed in Chapter 23. Chapter 24 introduces models for multivariate
outcomes of a combined Gaussian and discrete nature and, in fact, for any
combination of outcome types. The specifically challenging case of high-
dimensional multivariate repeated measures is considered in Chapter 25.

The sixth and last part is devoted to incomplete data. General concepts
are introduced in Chapter 26. Simple methods and the so-called direct like-
lihood and weighted generalized estimating equations methods are studied
in Chapter 27. Chapter 28 studies two specific approaches, the expectation-
maximization algorithm and multiple imputation. Chapters 29 and 30 are
devoted to two important model families for incomplete longitudinal data,
selection models, and pattern-mixture models. When data are incomplete,
a number of model assumptions made cannot be verified using the observed
data only, and hence sensitivity analysis (Chapter 31) may be very appro-
priate. In the final chapter of this part, it is shown how progress can be
made with the analysis of incomplete longitudinal data, using SAS proce-
dures, supplemented with a number of macros.



2
Motivating Studies

2.1 Introduction

In this chapter, we present a number of studies that motivate this work
and/or are used repeatedly throughout the text. Upon going through the
book, the reader will find more examples. These are either used once or
at least confined to one or a few chapters. A single-arm clinical trial con-
ducted in patients with chronic pain, the analgesic trial, is introduced in
Section 2.2. Section 2.3 is devoted to a two-armed clinical trial in patients
treated for toenail infection. The fluvoxamine study, a post-marketing study
conducted in psychiatric patients, is introduced in Section 2.4. A controlled
clinical trial, conducted in patients suffering from epileptic seizures, is pre-
sented in Section 2.5. All studies introduced thus far are longitudinal in
nature. Section 2.6 discusses the Project on Preterm and Small for Gesta-
tional Age Infants study (POPS), an epidemiologic study in which interest
lies in a multivariate outcome. A key clustered data example from the
developmental toxicology area, conducted under the U.S. National Toxi-
cology Program (NTP), is presented in Section 2.7. Section 2.8 introduces
the sports injuries trial, studying two longitudinal post-operative outcomes.
Finally, Section 2.9 is devoted to the Age Related Macular Degeneration
Study (ARMD), an ophthalmologic clinical trial in which both a continuous
as well as a categorical longitudinally measured outcome is of interest.
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2.2 The Analgesic Trial

These data come from a single-arm clinical trial in 395 patients who are
given analgesic treatment for pain caused by chronic nonmalignant disease.
Treatment was to be administered for 12 months and assessed by means of
a ‘Global Satisfaction Assessment’ (GSA) scale, rated on a five-point scale:

GSA =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 : very good,
2 : good,
3 : indifferent,
4 : bad,
5 : very bad.

(2.1)

Many of our analyses will focus on a dichotomized version, defined in (17.1),
but Chapter 18 will consider the ordinal version of the outcome. Apart from
the outcome of interest, a number of covariates are available, such as age,
sex, weight, duration of pain in years prior to the start of the study, type
of pain, physical functioning, psychiatric condition, respiratory problems,
etc.

GSA was rated by each person four times during the trial, at months 3,
6, 9, and 12. An overview of the frequencies per follow up time is given
in Table 2.1. Inspecting Table 2.1 reveals that the total per column is
variable. This is due to missingness. At three months, 10 subjects lack a
measure, with these numbers being 93, 168, and 172 at subsequent times.
Not only monotone missingness or dropout occurs, there are also subjects
with intermittent values.

An overview of the extent of missingness is shown in Table 2.2. Note
that only around 40% of the subjects have complete data. The dropout se-
quences amount to roughly another 40%, with close to 20% of the patterns
showing intermittent missingness. This example underscores that a satis-
factory longitudinal analysis will oftentimes have to address the missing
data problem.

2.3 The Toenail Data

The data introduced in this section were obtained from a randomized,
double-blind, parallel group, multicenter study for the comparison of two
oral treatments (in what follows coded as A and B) for toenail dermato-
phyte onychomycosis (TDO), described in full detail by De Backer et al
(1996). TDO is a common toenail infection, difficult to treat, affecting
more than 2 out of 100 persons (Roberts 1992). Antifungal compounds,
classically used for treatment of TDO, need to be taken until the whole
nail has grown out healthy. The development of new compounds, however,
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TABLE 2.1. Analgesic Trial. Absolute and relative frequencies of the five GSA
categories for each of the four follow up times.

GSA Month 3 Month 6 Month 9 Month 12
1 55 14.3% 38 12.6% 40 17.6% 30 13.5%
2 112 29.1% 84 27.8% 67 29.5% 66 29.6%
3 151 39.2% 115 38.1% 76 33.5% 97 43.5%
4 52 13.5% 51 16.9% 33 14.5% 27 12.1%
5 15 3.9% 14 4.6% 11 4.9% 3 1.4%

Tot 385 302 227 223

TABLE 2.2. Analgesic Trial. Overview of missingness patterns and the frequen-
cies with which they occur. ‘O’ indicates observed and ‘M’ indicates missing.

Measurement occasion
Month 3 Month 6 Month 9 Month 12 Number %

Completers
O O O O 163 41.2

Dropouts
O O O M 51 12.91
O O M M 51 12.91
O M M M 63 15.95

Non-monotone missingness
O O M O 30 7.59
O M O O 7 1.77
O M O M 2 0.51
O M M O 18 4.56
M O O O 2 0.51
M O O M 1 0.25
M O M O 1 0.25
M O M M 3 0.76
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FIGURE 2.1. Toenail Data. Evolution of the percentage of severe toenail infec-
tions in the two treatment groups separately.

has reduced the treatment duration to 3 months. The aim of the present
study was to compare the efficacy and safety of 12 weeks of continuous
therapy with treatment A or with treatment B.

In total, 2 × 189 patients were randomized, distributed over 36 centers.
Subjects were followed during 12 weeks (3 months) of treatment and fol-
lowed further, up to a total of 48 weeks (12 months). Measurements were
taken at baseline, every month during treatment, and every 3 months af-
terwards, resulting in a maximum of 7 measurements per subject. At the
first occasion, the treating physician indicates one of the affected toenails
as the target nail, the nail which will be followed over time. We will restrict
our analyses to only those patients for which the target nail was one of the
two big toenails. This reduces our sample under consideration to 146 and
148 subjects, in group A and group B, respectively.

One of the responses of interest was the unaffected nail length, measured
from the nail bed to the infected part of the nail, which is always at the free
end of the nail, expressed in mm. This outcome has been studied extensively
in Verbeke and Molenberghs (2000). Another important outcome in this
study was the severity of the infection, coded as 0 (not severe) or 1 (severe).
The question of interest was whether the percentage of severe infections
decreased over time, and whether that evolution was different for the two
treatment groups. A summary of the number of patients in the study at
each time-point, and the number of patients with severe infections is given
in Table 2.3. A graphical representation is given in Figure 2.1.

Due to a variety of reasons, the outcome has been measured at all 7
scheduled time points, for only 224 (76%) out of the 298 participants. Ta-
ble 2.4 summarizes the number of available repeated measurements per
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TABLE 2.3. Toenail Data. Number and percentage of patients (N ) with severe
toenail infection, for each treatment arm separately.

Group A Group B
# Severe N % # Severe N %

Baseline 54 146 37.0% 55 148 37.2%
1 month 49 141 34.7% 48 147 32.6%
2 months 44 138 31.9% 40 145 27.6%
3 months 29 132 22.0% 29 140 20.7%
6 months 14 130 10.8% 8 133 6.0%
9 months 10 117 8.5% 8 127 6.3%
12 months 14 133 10.5% 6 131 4.6%

TABLE 2.4. Toenail Data. Number of available repeated measurements per sub-
ject, for each treatment arm separately.

Group A Group B
# Obs. N % N %

1 4 2.74% 1 0.68%
2 2 1.37% 1 0.68%
3 4 2.74% 3 2.03%
4 2 1.37% 4 2.70%
5 2 1.37% 8 5.41%
6 25 17.12% 14 9.46%
7 107 73.29% 117 79.05%

Total: 146 100% 148 100%
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subject, for both treatment groups separately. We see that the occurrence
of missingness is similar in both treatment groups.

2.4 The Fluvoxamine Trial

Accumulated experience with fluvoxamine, a serotonin reuptake inhibitor,
in controlled clinical trials has shown it to be as effective as conventional an-
tidepressant drugs and more effective than placebo in the treatment of de-
pression (Burton 1991). However, many patients who suffer from depression
have concomitant morbidity with conditions such as obsessive-compulsive
disorder, anxiety disorders and, to some extent, panic disorders. In most
trials, patients with comorbidity are excluded, and therefore, it is of inter-
est to gather evidence as to the importance of such factors, with a view
on improved diagnosis and treatment. The general aim of this study was
to determine the profile of fluvoxamine in ambulatory clinical psychiatric
practice.

A total of 315 patients were enrolled with one or more of the following
diagnoses: depression, obsessive, compulsive disorder, and panic disorder.
Several covariates were recorded, such as gender and initial severity on a
5-point ordinal scale, where severity increases with category. After recruit-
ment of the patient in the study, he or she was investigated at four visits
(weeks 2, 4, 8, and 12). On the basis of about twenty psychiatric symp-
toms, the therapeutic effect and the side-effects were scored at each visit
in an ordinal manner. Side effect is coded as (1) = no; (2) = not interfer-
ing with functionality of patient; (3) = interfering significantly with func-
tionality of patient; (4) = the side-effect surpasses the therapeutic effect.
Similarly, the effect of therapy is recorded on a four-point ordinal scale: (1)
no improvement over baseline or worsening; (2) minimal improvement (not
changing functionality); (3) moderate improvement (partial disappearance
of symptoms); and (4) important improvement (almost disappearance of
symptoms). Thus, a side effect occurs if new symptoms occur while there is
therapeutic effect if old symptoms disappear. These data were used, among
others, by Molenberghs and Lesaffre (1994), Molenberghs, Kenward, and
Lesaffre (1997), and Lapp, Molenberghs, and Lesaffre (1998), Van Steen et
al (2001), and Jansen et al (2003).

Table 2.5 gives the absolute and relative frequencies over the four cat-
egories of side effects and therapeutic effect for each of the four follow-up
times. Because there are 315 subjects enrolled in the trial, it is clear that
at the four times there are 16, 46, 72, and 89 subjects missing, respectively.
The missing data patterns, common to both outcomes, are represented in
Table 2.6. Note that a much larger fraction is fully observed than in, for ex-
ample, the analgesic trial (Section 2.2). Among the incomplete sequences,
dropout is much more common than intermittent missingness, the latter
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TABLE 2.5. Fluvoxamine Trial. Absolute and relative frequencies of the four side
effects and therapeutic effect categories for each of the four follow-up times.

Week 2 Week 4 Week 8 Week 12
Side effects

0 128 42.8% 144 52.5% 156 64.2% 148 65.5%
1 128 42.8% 103 38.3% 79 32.5% 71 31.4%
2 28 9.4% 17 6.3% 6 2.5% 7 3.1%
3 15 5.2% 5 1.9% 2 0.8% 0 0.0%

Therapeutic effects
0 19 6.4% 64 23.8% 110 45.3% 135 59.7%
1 95 31.8% 114 42.4% 93 38.3% 62 27.4%
2 102 34.1% 62 23.1% 30 12.4% 19 8.4%
3 83 27.8% 29 10.8% 10 4.1% 10 4.4%

Tot 299 269 243 226

TABLE 2.6. Fluvoxamine Trial. Overview of missingness patterns and the fre-
quencies with which they occur. ‘O’ indicates observed and ‘M’ indicates missing.

Measurement occasion
Month 3 Month 6 Month 9 Month 12 Number %

Completers
O O O O 224 71.11

Dropouts
O O O M 18 5.71
O O M M 26 8.25
O M M M 31 9.84
M M M M 14 4.44

Non-monotone missingness
M O O O 1 0.32
M M M O 1 0.32
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type confined to two sequences only. Observe that, unlike in Table 2.2,
there are subjects, 14 in total without any follow-up measurements. This
group of subjects is still an integral part of the trial, as they contain base-
line information, including covariate information and baseline assessment
of severity of the mental illness.

2.5 The Epilepsy Data

The data considered here are obtained from a randomized, double-blind,
parallel group multi-center study for the comparison of placebo with a new
anti-epileptic drug (AED), in combination with one or two other AED’s.
The study is described in full detail in Faught et al (1996). The random-
ization of epilepsy patients took place after a 12-week baseline period that
served as a stabilization period for the use of AED’s, and during which
the number of seizures were counted. After that period, 45 patients were
assigned to the placebo group, 44 to the active (new) treatment group.
Patients were then measured weekly. Patients were followed (double-blind)
during 16 weeks, after which they were entered into a long-term open-
extension study. Some patients were followed for up to 27 weeks. The out-
come of interest is the number of epileptic seizures experienced during the
last week, i.e., since the last time the outcome was measured. The key re-
search question is whether or not the additional new treatment reduces the
number of epileptic seizures. As a summary of the data, Figure 2.2 shows
a frequency plot, over all visits, over both treatment groups. We observe a
very skewed distribution, with largest observed value equal to 73 seizures
in one week time. Average and median evolutions are shown in Figure 2.3.
The unstable behavior can be explained by the presence of extreme values,
but is also the result of the fact that very little observations are available
at some of the time-points, especially past week 20. This is also reflected
in Table 2.7, which shows the number of measurements at a selection of
time-points. Note the serious drop in number of measurements past the
end of the actual double-blind period, i.e., past week 16.

2.6 The Project on Preterm and Small for
Gestational Age Infants (POPS) Study

The Project On Preterm and Small-for-gestational age infants (POPS) col-
lected information on 1338 infants born in The Netherlands in 1983 and
having gestational age less than 32 weeks and/or birthweight less than
1500 g (Verloove et al 1988). In total, 133 clinics were involved. The study
population represents 94% of the births in that year with similar gestational
age and birthweight characteristics. Prenatal, perinatal, and postnatal in-
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FIGURE 2.2. Epilepsy Data. Frequency plot, over all visits, over both treatment
groups.

FIGURE 2.3. Epilepsy Data. Average and median evolutions over time.
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TABLE 2.7. Epilepsy Data. Number of measurements available at a selection of
time-points, for both treatment groups separately.

# Observations
Week Placebo Treatment Total

1 45 44 89
5 42 42 84
10 41 40 81
15 40 38 78
16 40 37 77
17 18 17 35
20 2 8 10
27 0 3 3

formation as well as two year follow-up data were collected. Furthermore,
the data base contains information on the delivery and specific details of
the infant. After two years the child was reexamined. Lesaffre and Molen-
berghs (1991) and Molenberghs and Lesaffre (1994) studied the relationship
between three ability scores measured at the age of two and risk factors
measured at delivery. All ability scores were recorded in a dichotomous
manner. They were available for 799 children. The first score (ABIL1)
checks whether the child can pile three bricks, ABIL1 = 1 corresponds
to ‘no,’ whereas ABIL1 = 2 to ‘yes.’ The second score (ABIL2) measures
whether the physical movements of the child are natural, ABIL2 = 1(no)
and ABIL2 = 2(yes). Although ABIL2 is a purely physical ability score,
ABIL1 is a combination of physical and mental qualities. The third abil-
ity score, ABIL3, expresses whether or not the child is able to put a ball
in a box if he or she is asked to do so. The problem is to determine the
risk factors for low performance at the three tests. Further it is of interest
to compare the predicted probabilities taking into account the relation-
ship between the responses to those calculated under the assumption of
independent responses.

The defining variables of the POPS study, birth weight and gestational
age, are shown graphically in Figure 2.4. It is clear from the figure that at
least one of these needs to be low to be enrolled into the study.

The three ability scores are tabulated in Table 2.8. Of the 1338 subjects,
818 (61.1%) have all three ability scores observed, and 471 (35.2%) have
none of them. Only 49 (3.7%) have partial information. The latter is not
unexpected, since two years lapsed between enrollment and the assessment
of the ability scores.
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FIGURE 2.4. POPS Study. The open circles correspond to zero outcomes.

TABLE 2.8. POPS Study. Frequency table of the three binary ability scores. Miss-
ing values are represented by M .

ABIL3

ABIL1 ABIL2 0 1 M
0 0 685 20 19
0 1 30 5 2
0 M 1 0 1
0 0 25 11 1
0 1 10 32 0
0 M 0 0 0
0 0 5 0 15
0 1 0 2 2
0 M 1 0 471

2.7 National Toxicology Program Data

The developmental toxicity studies introduced in this section are conducted
at the Research Triangle Institute, which is under contract to the National
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Toxicology Program of the United States (NTP data). These studies in-
vestigate the effects in mice of five chemicals: ethylene glycol (Price et
al 1985), diethylene glycol dimethyl ether (Price et al 1987), and di(2--
ethylhexyl)phthalate (Tyl et al 1988).

2.7.1 Ethylene Glycol
Ethylene glycol (EG) is also called 1,2-ethanediol and can be represented
by the chemical formula HOCH2CH2OH. It is a high-volume industrial
chemical with many applications. EG is used as an antifreeze in cooling
and heating systems, as one of the components of hydraulic brake fluids,
as an ingredient of electrolytic condensers, and as a solvent in the paint
and plastics industries. Furthermore, EG is employed in the formulation of
several types of inks, as a softening agent for cellophane, and as a stabilizer
for soybean foam used to extinguish oil and gasoline fires. Also, one uses EG
in the synthesis of various chemical products, such as plasticizers, synthetic
fibers, and waxes (Windholz 1983).

EG may represent little hazard to human health in normal industrial
handling, except possibly when used as an aerosol or at elevated tempera-
tures. EG at ambient temperatures has a low vapor pressure and is not very
irritating to the eyes or skin. However, accidental or intentional ingestion
of antifreeze products, of which approximately 95% is EG, is toxic and may
result in death (Rowe 1963, Price et al 1985).

Price et al (1985) describe a study in which timed-pregnant CD-1 mice
were dosed by gavage with EG in distilled water. Dosing occurred dur-
ing the period of organogenesis and structural development of the foetuses
(gestational days 8 through 15). The doses selected for the study were 0,
750, 1500, or 3000 mg/kg/day. Table 2.9 shows, for each dose group and
for all five NTP toxic agents, the number of dams containing at least one
implant, the number of dams having at least one viable fetus, the number
of live foetuses, the mean litter size, and the percentage of malformation for
three different classes: external malformations, visceral malformations, and
skeletal malformations. While for EG, skeletal malformations are substan-
tial in the highest dose group, external and visceral malformations show
only slight dose effects. The distribution of the number of implants is given
in Table 2.10 for each of these five chemicals.

Figures 2.5 and 2.6 show for each of these studies and for each dose group
the observed and averaged malformation rates in mice.

2.7.2 Di(2-ethylhexyl)Phthalate
Di(2-ethylhexyl)phthalate (DEHP) is also called octoil, dioctyl phthalate,
or 1,2-benzenedicarboxylic acid bis(2-ethylhexyl) ester. It can be repre-
sented by C24H38O4. DEHP is used in vacuum pumps (Windholz 1983).
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FIGURE 2.5. NTP Data. EG Study in Mice. Observed and averaged malformation
rates.
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FIGURE 2.6. NTP Data. DEHP and DYME Studies. Observed and averaged
malformation rates.
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TABLE 2.9. NTP Data. Summary data by study in mice. The dose is in
mg/kg/day.

Litter
# Dams, ≥ 1 Size Malformations

Exposure Dose Impl. Viab. Live (mean) Ext. Visc. Skel.
EG 0 25 25 297 11.9 0.0 0.0 0.3

750 24 24 276 11.5 1.1 0.0 8.7
1500 23 22 229 10.4 1.7 0.9 36.7
3000 23 23 226 9.8 7.1 4.0 55.8

DEHP 0 30 30 330 13.2 0.0 1.5 1.2
44 26 26 288 11.1 1.0 0.4 0.4
91 26 26 277 10.7 5.4 7.2 4.3
191 24 17 137 8.1 17.5 15.3 18.3
292 25 9 50 5.6 54.0 50.0 48.0

DYME 0 21 21 282 13.4 0.0 0.0 0.0
62.5 20 20 225 11.3 0.0 0.0 0.0
125 24 24 290 12.1 1.0 0.0 1.0
250 23 23 261 11.3 2.7 0.1 20.0
500 22 22 141 6.1 66.0 19.9 79.4

Furthermore, this ester as well as other phthalic acid esters are used exten-
sively as plasticizers for numerous plastic devices made of polyvinyl chlo-
ride. DEHP provides the finished plastic products with desirable flexibility
and clarity (Shiota, Chou, and Nishimura 1980).

It has been well documented that small quantities of phthalic acid esters
may leak out of polyvinyl chloride plastic containers in the presence of food,
milk, blood, or various solvents. Due to their ubiquitous distribution and
presence in human and animal tissues, considerable concern has developed
as to the possible toxic effects of the phthalic acid esters (e.g., Autian 1973).

In particular, the developmental toxicity study described by Tyl et al
(1988) has attracted much interest in the toxicity of DEHP. The doses se-
lected for the study were 0, 0.025, 0.05, 0.1, and 0.15%, corresponding to a
DEHP consumption of 0, 44, 91, 191, and 292 mg/kg/day, respectively. Fe-
males were observed daily during treatment, but no maternal deaths or dis-
tinctive clinical signs were observed. The dams were sacrificed, slightly prior
to normal delivery, and the status of uterine implantation sites recorded.
A total of 1082 live foetuses were dissected from the uterus, anesthetized,
and examined for external, visceral, and skeletal malformations.
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TABLE 2.10. NTP Data. Frequency distribution of the number of implants.

Number of EG DEHP DYME
implants

1 0 1 0
2 0 1 0
3 1 0 1
4 0 2 1
5 1 0 0
6 0 2 0
7 2 0 2
8 1 4 2
9 8 5 2
10 4 7 7
11 8 18 10
12 19 21 15
13 16 26 27
14 11 21 19
15 16 10 9
16 6 8 10
17 1 2 5
18 0 2 0
19 1 1 0

95 131 110

Table 2.9 suggests clear dose-related trends in the malformation rates.
The average litter size (number of viable animals) decreases with increased
levels of exposure to DEHP, a finding that is attributable to the dose-related
increase in fetal deaths.

2.7.3 Diethylene Glycol Dimethyl Ether
Other names for diethylene glycol dimethyl ether (DYME) are diglyme and
bis(2-methoxyethyl) ether. DYME has as its chemical formula

CH3O(CH2)2O(CH2)2OCH3

(Windholz 1983). It is a component of industrial solvents. These are widely
used in the manufacture of protective coatings such as lacquers, metal coat-
ings, baking enamels, etc. (NIOSH 1983). Although to date, several at-
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TABLE 2.11. Sports Injuries Trial. Cross-classification of awakeness measure-
ments at 10 and 20 minutes, on a four-point ordinal scale.

Score at Score at 20 mins
10 mins 0 1 2 3

0 42 119 6 0
1 0 68 31 3
2 0 0 3 2
3 0 0 0 2

tempts have proven inadequate to evaluate the potential of glycol ethers to
produce human reproductive toxicity, structurally related compounds have
been identified as reproductive toxicants in several mammalian species,
producing (1) testicular toxicity and (2) embryotoxicity.

Price et al (1987) describe a study in which timed-pregnant mice were
dosed with DYME throughout major organogenesis (gestational days 8
through 15). The doses selected for the study were 0, 62.5, 125, 250 and
500 mg/kg/day. Table 2.9 summarizes the data.

2.8 The Sports Injuries Trial

These data come from a randomized, parallel group, double-blind trial
in men comparing the effect of an active treatment to placebo on post-
operative shivering and per-operative hemodynamics. The primary responses
of interest were severity of post-operative shivering measured from the end
of anesthesia every 5 minutes during 30 minutes as none (0), mild (1),
moderate (2), or severe (3), and effect of treatment on overall conscious-
ness assessed from the end of anesthesia at 10, 20, 30, 45, 60, 90, and 120
minutes as impossible to awake (0), difficult to awake (1), easy to awake
(2), and awake, eyes open (3). One hundred forty patients were assigned to
each treatment group.

Since this trial occurred in a very short time period, there is very little
missing data. There was one patient who had no response information
for either variable, so this patient is excluded from all analyses. There
were also 3 patients with some missing information on shivering or overall
consciousness, leaving 138 patients with complete information.

One interesting feature of these data is that there are structural zeros in
the awake variables. A patient could never become less awake over time,
thus the cross-tabulation of the score over time contains zeros in the lower
left corner. Data from 10 and 20 minutes are presented in Table 2.11. The
zero in the upper right hand corner (0 at 10 minutes and 3 at 20 minutes)
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TABLE 2.12. Sports Injuries Trial. Cross-classification of four dichotomized shiv-
ering measurements (at 5, 10, 15, and 20 minutes).

(5 mins, (15 mins, 20 mins)
10 mins) (0,0) (0,1) (1,0) (1,1)

Placebo arm
(0,0) 37 11 8 16
(0,1) 6 2 6 23
(1,0) 1 0 0 1
(1,1) 2 0 4 21

Treatment arm
(0,0) 59 10 4 9
(0,1) 10 1 11 22
(1,0) 0 0 0 0
(1,1) 1 0 2 10

is a sampling zero because it is possible for a patient to go from being
completely asleep to awake with eyes open, but rather unlikely. On the other
hand, the zeros in the lower left hand corner of the table are all structural
zeros because once a patient reached a certain level of consciousness, he
could never return to a lower level. The longitudinal nature of the data
is seen in Table 2.12, where the cross-classification of four dichotomized
shivering measures, at 5, 10, 15, and 20 minutes, is shown.

2.9 Age Related Macular Degeneration Trial

These data arise from a randomized multi-centric clinical trial comparing
an experimental treatment (interferon-α) to a corresponding placebo in the
treatment of patients with age-related macular degeneration. Throughout
the analyses done, we focus on the comparison between placebo and the
highest dose (6 million units daily) of interferon-α (Z), but the full results
of this trial have been reported elsewhere (Pharmacological Therapy for
Macular Degeneration Study Group 1997). Patients with macular degen-
eration progressively lose vision. In the trial, the patients’ visual acuity
was assessed at different time points (4 weeks, 12 weeks, 24 weeks, and 52
weeks) through their ability to read lines of letters on standardized vision
charts. These charts display lines of 5 letters of decreasing size, which the
patient must read from top (largest letters) to bottom (smallest letters).
Each line with at least 4 letters correctly read is called one ‘line of vision.’
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TABLE 2.13. Age Related Macular Degeneration Trial. Loss of at least 3 lines
of vision at 1 year according to loss of at least 2 lines of vision at 6 months and
according to randomized treatment group (placebo versus interferon-α).

12 months
Placebo Active

6 months 0 1 0 1
No event (0) 56 9 31 9
Event (1) 8 30 9 38

TABLE 2.14. Age Related Macular Degeneration Trial. Mean (standard error)
of visual acuity at baseline, at 6 months and at 1 year according to randomized
treatment group (placebo versus interferon-α).

Time point Placebo Active Total
Baseline 55.3 (1.4) 54.6 (1.3) 55.0 (1.0)
6 months 49.3 (1.8) 45.5 (1.8) 47.5 (1.3)
1 year 44.4 (1.8) 39.1 (1.9) 42.0 (1.3)

The patient’s visual acuity is the total number of letters correctly read.
The primary endpoint of the trial was the loss of at least 3 lines of vision
at 1 year, compared to their baseline performance (a binary endpoint). The
secondary endpoint of the trial was the visual acuity at 1 year (treated as
a continuous endpoint). Buyse and Molenberghs (1998) examined whether
the patient’s performance at 6 months could be used as a surrogate for
their performance at 1 year with respect to the effect of interferon-α. They
looked at whether the loss of 2 lines of vision at 6 months could be used as
a surrogate for the loss of at least 3 lines of vision at 1 year (Table 2.13).
They also looked at whether visual acuity at 6 months could be used as a
surrogate for visual acuity at 1 year.

Table 2.14 shows the visual acuity (mean and standard error) by treat-
ment group at baseline, at 6 months, and at 1 year. Visual acuity can be
measured in several ways. First, one can record the number of letters read.
Alternatively, dichotomized versions (at least 3 lines of vision lost, or at
least 3 lines of vision lost) can be used as well. Therefore, these data will be
useful to illustrate methods for the joint modeling of continuous and binary
outcomes, with or without taking the longitudinal nature into account. In
addition, though there are 190 subjects with both month 6 and month 12
measurements available, the total number of longitudinal profiles is 240,
but only for 188 of these have the four follow-up measurements been made.
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Generalized Linear Models

3.1 Introduction

Most models that have been proposed in the statistical literature for the
analysis of discrete repeated measurements can be considered extensions of
generalized linear models (McCullagh and Nelder 1989) to the context of
correlated observations. In this chapter, these models will be introduced,
inference will be briefly discussed, and several frequently used specific cases
will be given special attention.

3.2 The Exponential Family

A random variable Y follows a distribution that belongs to the exponential
family if the density is of the form

f(y) ≡ f(y|θ, φ) = exp
{
φ−1[yθ − ψ(θ)] + c(y, φ)

}
(3.1)

for a specific set of unknown parameters θ and φ, and for known functions
ψ(·) and c(·, ·). Often, θ and φ are termed ‘natural parameter’ (or ‘canonical
parameter’) and ‘scale parameter,’ respectively.

The first two moments can easily be derived as follows. Starting from the
property

∫
f(y|θ, φ)dy = 1 and taking the first- and second-order deriva-
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tives from both sides of the equation, we get that⎧⎪⎨⎪⎩
∫

[y − ψ′(θ)] f(y|θ, φ) dy = 0,∫
{φ−1[y − ψ′(θ)]2 − ψ′′(θ)} f(y|θ, φ) dy = 0,

from which it directly follows that the average µ = E(Y ) equals ψ′(θ)
and the variance σ2 = Var(Y ) is given by φψ′′(θ). An important im-
plication is that, in general, the mean and variance are related through
σ2 = φψ′′[ψ

′−1(µ)] = φv(µ) for an appropriate function v(µ), called the
variance function.

In some of the models that will be discussed in this book, a quasi-
likelihood perspective is taken. Although the above relation between the
mean and the variance immediately follows from the density (3.1), one
sometimes starts from specifying a mean and a variance function,

E(Y ) = µ,

Var(Y ) = φv(µ).

The variance function v(µ) can be chosen in accordance with a particu-
lar member of the exponential family. If not, then parameters cannot be
estimated using maximum likelihood principles. Instead, a set of estimat-
ing equations needs to be specified, the solution of which is referred to as
the quasi-likelihood estimates. Examples of this approach will be given in
Chapter 8.

3.3 The Generalized Linear Model (GLM)

In a regression context, where one wishes to explain variability between
outcome values based on measured covariate values, the model needs to
incorporate covariates. This leads to so-called generalized linear models. Let
Y1, . . . , YN be a set of independent outcomes, and let x1, . . . ,xN represent
the corresponding p-dimensional vectors of covariate values. It is assumed
that all Yi have densities f(yi|θi, φ) which belong to the exponential family,
but a different natural parameter θi is allowed per observation. Specification
of the generalized linear model is completed by modeling the means µi as
functions of the covariate values. More specifically, it is assumed that

µi = h(ηi) = h(xi
′β),

for a known function h(·), and with β a vector of p fixed unknown re-
gression coefficients. Usually, h−1(·) is called the link function. In most
applications, the so-called natural link function is used, i.e., h(·) = ψ′(·),
which is equivalent to assuming θi = xi

′β. Hence, it is assumed that the
natural parameter satisfies a linear regression model.
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3.4 Examples

3.4.1 The Linear Regression Model for Continuous Data
Let Y be normally distributed with mean µ and variance σ2. The density
can be written as

f(y) = exp
{

1
σ2

(
yµ − µ2

2

)
+
(

ln(2πσ2)
2

− y2

2σ2

)}
,

which implies that the normal distribution belongs to the exponential fam-
ily, with natural parameter θ equal to µ, scale parameter φ equal to σ2,
and variance function v(µ) = 1. Hence, the normal distribution is very
particular in the sense that there is no mean-variance relation, as will be
shown to be present for other exponential family distributions. The nat-
ural link function equals the identity function, leading to the classical linear
regression model Yi ∼ N(µi, σ

2) with µi = xi
′β.

3.4.2 Logistic and Probit Regression for Binary Data
Let Y be Bernoulli distributed with success probability P (Y = 1) = π. The
density can be written as

f(y) = exp
{

y ln
(

π

1 − π

)
+ ln(1 − π)

}
,

which implies that the Bernoulli distribution belongs to the exonential
family, with natural parameter θ equal to the logit, i.e., ln[π/(1 − π)],
of π, scale parameter φ = 1, with mean µ = π and with variance function
v(π) = π(1 − π). The natural link function is the logit link, leading to the
classical logistic regression model Yi ∼ Bernoulli(πi) with ln[πi/(1 − πi)] =
xi

′β or equivalently

πi =
exp(xi

′β)
[1 + exp(xi

′β)]
.

Sometimes, the logit link function is replaced by the probit link, which is
the inverse of the standard normal distribution function, Φ−1. It has been
repeatedly shown (Agresti 1990) that the logit and probit link functions
behave very similarly, in the sense that for probabilities other than extreme
ones (say, outside of the interval [0.2; 0.8]) logistic and probit regression
provide approximately the same parameter estimates, up to a scaling factor
equal to π/

√
3, the ratio of the standard deviations of a logistic and a

standard normal variable.

3.4.3 Poisson Regression for Counts
Let Y be Poisson distributed with mean λ. The density can be written as

f(y) = exp{y lnλ − λ − ln y!},
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from which it follows that the Poisson distribution belongs to the exponen-
tial family, with natural parameter θ equal to lnλ, scale parameter φ = 1,
and variance function v(λ) = λ. The logarithm is the natural link function,
leading to the classical Poisson regression model Yi ∼ Poisson(λi), with
lnλi = xi

′β.

3.5 Maximum Likelihood Estimation and Inference

Estimation of the regression parameters in β is usually done using maxi-
mum likelihood (ML) estimation. Assuming independence of the observa-
tions, the log-likelihood is given by

	(β, φ) =
1
φ

N∑
i=1

[yiθi − ψ(θi)] +
∑

i

c(yi, φ).

The score equations obtained from equating the first-order derivatives of
the log-likelihood to zero take the form

S(β) =
∑

i

∂θi

∂β
[yi − ψ′(θi)] = 0.

Because µi = ψ′(θi) and vi = v(µi) = ψ′′(θi), we have that

∂µi

∂β
= ψ′′(θi)

∂θi

∂β
= vi

∂θi

∂β

which implies the following score equations:

S(β) =
∑

i

∂µi

∂β
v−1

i (yi − µi) = 0.

In general, these score equations need to be solved iteratively, using nu-
merical algorithms such as iteratively (re-)weighted least squares, Newton-
Raphson, or Fisher scoring.

Once the ML estimates have been obtained, classical inference based on
asymptotic likelihood theory becomes available, including Wald-type tests,
likelihood ratio tests, and score tests, all asymptotically equivalent.

In some cases, such as in the logistic regression model, φ is a known
constant. In other examples, such as the linear normal model, estimation
of φ may be required to estimate the standard errors of the elements in β.
Because Var(Yi) = φvi, an obvious estimate for φ is given by

φ̂ =
1

N − p

∑
i

(yi − µ̂i)2/vi(µ̂i).
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TABLE 3.1. Toenail Data. Logistic regression, ignoring the association structure.
Parameter estimates, associated standard errors, and inferences for the parame-
ters in model (3.2).

Parameter Estimate s.e. p-value
β0 -0.5571 0.1090 <0.0001
β1 0.0240 0.1565 0.8780
β2 -0.1769 0.0246 <0.0001
β3 -0.0783 0.0394 0.0470

For example, under the normal model, this would yield

σ̂2 =
1

N − p

∑
i

(yi − xi
′β̂)2,

which is the mean squared error used in linear regression models to estimate
the residual variance.

We refer to McCullagh and Nelder (1989) and to Agresti (1990) for more
details on estimation and inference in the GLM’s.

3.6 Logistic Regression for the Toenail Data

As an example of logistic regression, we analyze the toenail data introduced
in Section 2.3, ignoring the correlation structure due to the repeated mea-
surements within subjects. This would be correct if measurements at differ-
ent time points would also be taken on different subjects. In Section 10.3,
the results obtained here will be used as starting values in the fitting of
more complicated models that do account for the association structure. Let
Yi be the binary outcome indicating severity of the toenail infection, for the
ith observation. A logistic model will be assumed, with linear time trends,
for both treatment groups separately. More specifically, the model is given
by

Yi ∼ Bernoulli(πi),
logit(πi) = β0 + β1Ti + β2ti + β3Titi, (3.2)

in which Ti is the treatment indicator for this observation, and ti is the
time-point at which the observation was taken. The results are shown in
Table 3.1. The maximized log-likelihood value equals −905.91 and could
be used in likelihood ratio tests for the validity of simpler models. Note the
significant interaction (p = 0.0470) suggesting different trends in the two
treatment groups.
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FIGURE 3.1. Epilepsy Study. Frequency plot of the post-randomization total num-
ber of epileptic seizures, over both treatment groups.

3.7 Poisson Regression for the Epilepsy Data

As an example of Poisson regression, we analyze the epilepsy data intro-
duced in Section 2.5. Our response of interest will be the total number of
seizures a patient has experienced during the study, after randomization
took place. We want to test for a treatment effect on number of seizures,
correcting for the average number of seizures during the 12-week baseline
phase, prior to the treatment. Let Yi be the total number of seizures for
subject i. A histogram of the observed values is given in Figure 3.1. Note
that this histogram does not correct for the fact that the subjects have not
been followed for an equal number of weeks. Let ni be the number of weeks
subject i has been followed; we will correct for the differences in follow-up
time by assuming that

Yi ∼ Poisson(λi),
ln(λi/ni) = β0 + β1Baselinei + β2Ti, (3.3)

in which Ti is the treatment indicator and where Baselinei is the baseline
seizure rate. Note that model (3.3) is equivalent to

ln(λi) = ln(ni) + β0 + β1Baselinei + β2Ti (3.4)

which is a traditional Poisson model with constant term ln(ni) added to
the linear predictor. This term is often called an ‘offset’.

The results are shown in Table 3.2. The maximized log-likelihood equals
14837.31. Note the highly significant positive effect of the baseline rate.
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TABLE 3.2. Epilepsy Study. Poisson regression for the total number of epileptic
seizures. Parameter estimates, associated standard errors, and inferences for the
parameters in model (3.4).

Parameter Estimate S.e. p-value
β0 0.8710 0.0218 <0.0001
β1 0.0172 0.0002 <0.0001
β2 -0.4987 0.0341 <0.0001

Further, correcting for baseline rate, the treatment significantly reduces
the average weekly number of epileptic seizures (p < 0.0001).





4
Linear Mixed Models for Gaussian
Longitudinal Data

4.1 Introduction

Although this book focuses on models for repeated categorical data, it
is helpful to first consider some key topics in the analysis of continuous
longitudinal data, where most parametric models are based on underly-
ing normality assumptions. Two general extensions of the univariate linear
regression models to repeated measures can be distinguished. First, a mul-
tivariate model can be formulated, in which each component is modeled
using a univariate linear regression model, and with the association struc-
ture directly modeled through a marginal covariance matrix. Second, a
random-effects approach can be followed. In the next sections, these two
model families will be discussed in turn. We will compare both approaches,
and we will summarize how estimation and inference proceeds.

Ideas will be illustrated in the simple context of a response Y measured
repeatedly on a homogeneous set of subjects i, i = 1, . . . , N , and where it is
believed that Y evolves linearly over time. This can immediately be gener-
alized to more complex settings with non-linear trends and/or to models in
which covariates are included to model the believe that trends may depend
on subject-specific covariates.
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4.2 Marginal Multivariate Model

Let Yij be the jth measurement available for the ith subject or cluster, i =
1, . . . , N , j = 1, . . . , ni. Further, Y i = (Yi1, . . . , Yini

)′ is the ni-dimensional
vector with all observations available for subject i. Assuming an average
linear trend for Y as a function of time, a multivariate regression model
can be obtained by assuming that the elements Yij in Y i satisfy Yij = β0 +
β1tij +εij , with the assumption that the error components εij are normally
distributed with mean zero. In vector notation, we get Y i = Xiβ + εi

for an appropriate design matrix Xi, with β′ = (β0, β1) and with ε′
i =

(εi1, εi2, . . . , εini). The model is completed by specifying an appropriate
covariance matrix Vi for εi, leading to the multivariate model

Y i ∼ N(Xiβ, Vi). (4.1)

Let Ini denote the identity matrix of dimension ni, then we have that
Vi = σ2Ini corresponds to the univariate linear regression model, assuming
all repeated measurements Yij to be independent, i.e., ignoring the fact
that repeated measures within subjects may be (highly) correlated. In the
case of balanced data, i.e., when a fixed number n of measurements is
taken for all subjects, and when measurements are taken at fixed time-
points t1, . . . , tn, a useful covariance model is Vi = V , where V is a general
(unstructured) n × n positive definite covariance matrix. This yields the
classical mulivariate regression model (Seber 1984, Chapter 8).

Depending on the context and the actual data at hand, other choices may
be appropriate. For example, a first-order autoregressive model assumes
that the covariance between two measurements Yij and Yik from the same
subject i is of the form σ2ρ|tij−tik| for unknown parameters σ2 and ρ.
Another example is compound symmetry, which assumes the covariance to
be of the form σ2 + γδjk for unknown parameters σ2 and γ > −σ2, and
where δjk equals one for j = k and zero otherwise. These are examples of
homogeneous covariance structures since they assume the variance of all
Yij to be equal. Heterogeneous versions can be formulated as well (Verbeke
and Molenberghs 2000).

4.3 The Linear Mixed Model

The random-effects approach toward extending the univariate linear re-
gression model to longitudinal settings is based on the assumption that, for
every subject, the response can be modeled by a linear regression model,
but with subject-specific regression coefficients. Continuing our simple ex-
ample, suppose that the individual trajectories of the response Y are of
the type as shown in Figure 4.1. Obviously, a linear regression model with
intercept and linear time effect seems plausible to describe the data of
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FIGURE 4.1. Hypothetical example of continuous longitudinal data that can be
well described by a linear mixed model with random intercepts and random slopes.
The thin lines represent the observed subject-specific evolutions. The bold line
represents the population-averaged evolution.

each person separately. However, different persons tend to have different
intercepts and different slopes. One can therefore assume that the out-
come Yij , measured at time tij satisfies Yij = β̃i0 + β̃i1tij + εij . As before,
εi = (εi1, εi2, . . . , εini

)′ is assumed to be normally distributed with mean
vector zero, and some covariance matrix which we now denote by Σi.

Because subjects are randomly sampled from a population of subjects,
it is natural to assume that the subject-specific regression coefficients β̃i =
(β̃i0, β̃i1)′ are randomly sampled from a population of regression coeffi-
cients. It is customary to assume the β̃i to be (multivariate) normal, but ex-
tensions can be formulated (Verbeke and Lesaffre 1996, Magder and Zeger
1996). Assuming β̃i to be bivariate normal with mean (β0, β1)′ and 2 × 2
covariance matrix D we can reformulate the model as

Yij = (β0 + bi0) + (β1 + bi1)tpi + εij , (4.2)

with β̃i0 = β0 + bi0 and β̃i1 = β1 + bi1, and the new random effects
bi = (bi0, bi1)′ are now normal with mean zero and covariance D. The
population-averaged profile is linear, with intercept β0 and slope β1, and is
represented by the bold line in Figure 4.1.

The above model is a special case of the general linear mixed model
which assumes that the vector Y i of repeated measurements for the ith
subject satisfies

Y i|bi ∼ N(Xiβ + Zibi, Σi) (4.3)
bi ∼ N(0, D), (4.4)

for ni ×p and ni × q known design matrices Xi and Zi, for a p-dimensional
vector β of unknown regression coefficients, for a q-dimensional vector bi
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of subject-specific regression coefficients assumed to be sampled from the
q-dimensional normal distribution with mean zero and covariance D, and
with Σi a covariance matrix parameterized through a set of unknown pa-
rameters. The components in β are called ‘fixed effects,’ the components
in bi are called ‘random effects.’ The fact that the model contains fixed as
well as random effects motivates the term ‘mixed models.’

Unless the model is fitted in a Bayesian framework (Gelman et al 1995),
estimation and inference are based on the marginal distribution for the
response vector Y i. Let fi(yi|bi) and f(bi) be the density functions corre-
sponding to (4.3) and (4.4), respectively, the marginal density function of
Y i is

fi(yi) =
∫

fi(yi|bi) f(bi) dbi,

which can easily be shown to be the density function of an ni-dimensional
normal distribution with mean vector Xiβ and with covariance matrix
Vi = ZiDZ ′

i + Σi. Note that the linear mixed model implies a marginal
model of the form (4.1), but with a very specific parametric form for the
marginal covariance matrix Vi, easily allowing highly unbalanced data. In
this respect, the linear mixed model can be interpreted as a procedure to
obtain flexible multivariate marginal models. As was already shown in our
earlier example, the fixed effects describe the population-averaged evolu-
tion.

Because the mixed model is defined through the distributions fi(yi|bi)
and f(bi), this will be called the hierarchical formulation of the linear
mixed model. The corresponding marginal normal distribution with mean
Xiβ and covariance Vi = ZiDZ ′

i + Σi is called the marginal formulation of
the model. Note that, although the marginal model naturally follows from
the hierarchical one, both these models are not equivalent. Indeed, different
random-effects models can produce the same marginal model. To see this,
consider the case where every subject is measured twice (ni = 2). First,
assume that the random-effects structure is confined to a random intercept
(bi is scalar), and the residual error structure Σi = Σ = diag(σ2

1 , σ2
2) (Model

I). The resulting marginal covariance matrix is

V =

(
1
1

)
(d) (1 1) +

(
σ2

1 0
0 σ2

2

)
=

(
d + σ2

1 d

d d + σ2
2

)
. (4.5)

Second, consider the random effects to consist of a random intercept and a
random slope (bi = (b0i, b1i)′), mutually uncorrelated, with residual error
structure Σi = Σ = σ2I2 (Model II). The resulting covariance matrix now
equals

V =

(
1 0
1 1

)(
d1 0
0 d2

)(
1 1
0 1

)
+

(
σ2 0
0 σ2

)
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=

(
d1 + σ2 d1

d1 d1 + d2 + σ2

)
. (4.6)

Obviously, the parametric models (4.5) and (4.6) for the marginal covari-
ance are equivalent: d1 = d, d2 = σ2

2 − σ2
1 , and σ2 = σ2

1 . Thus, (at least)
two different hierarchical models can produce the same marginal model,
illustrating that a good fit of the marginal model should not be seen as
equally strong evidence for any of the mixed models. Arguably, a satis-
factory treatment of the random-effects model is only possible within a
Bayesian context.

In addition, it is important to see that there are even marginal models
that are not implied by a mixed model. The simplest example is found
by considering the marginal model with compound symmetric covariance
structure (Section 4.2). If the within-subject correlation is positive (γ ≥
0), this model could have been implied by a mixed model with random
intercepts bi that are normally distributed with mean 0 and variance γ, and
with uncorrelated error components with common variance σ2. However,
if the within-cluster correlation is negative (γ < 0), the resulting marginal
model cannot be implied by an appropriate random-effects model. This
would be the case, for example, in a context of competition such as when
littermates compete for the same food resources.

4.4 Estimation and Inference for the Marginal
Model

As indicated earlier, the fitting of a linear mixed model is usually based on
the marginal model that, for subject i, is multivariate normal with mean
Xiβ and covariance Vi(α) = ZiDZ ′

i+Σi, hereby explicitly denoting that Vi

depends on an unknown vector α of parameters in the covariance matrices
D and Σi. The parameters in α are usually called ‘variance components.’
The classical approach to estimation and inference is based on maximum
likelihood (ML). Assuming independence across subjects, the likelihood
takes the form

LML(θ) =
N∏

i=1

{
(2π)−ni/2 |Vi(α)|− 1

2

× exp
[
−1

2
(Yi − Xiβ)′

V −1
i (α) (Yi − Xiβ)

]}
. (4.7)

Estimation of θ′ = (β′, α′) requires joint maximization of (4.7) with respect
to all elements in θ. In general, no analytic solutions are available, calling
for numerical optimization routines.
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Conditionally on α, the maximum likelihood estimator (MLE) of β is
given by (Laird and Ware 1982):

β̂(α) =

(
N∑

i=1

X ′
iWiXi

)−1
N∑

i=1

X ′
iWiYi, (4.8)

where Wi equals V −1
i . In practice, α is not known and can be replaced by

its MLE α̂. However, one often also uses the so-called restricted maximum
likelihood (REML) estimator for α (Harville 1974), which allows to esti-
mate α without having to estimate the fixed effects in β first. It is known
from simpler models, such as linear regression models, that, while classical
ML estimators are biased downwards, this is not the case for the REML
estimators (Verbeke and Molenberghs 2000, Section 5.3).

When it comes to inference, in practice, the fixed effects in β are often of
primary interest, as they describe the average evolution in the population.
Conditionally on α, the maximum likelihood (ML) estimate for β is given
by (4.8), which is normally distributed with mean

E
[
β̂(α)

]
=

(
N∑

i=1

X ′
iWiXi

)−1
N∑

i=1

X ′
iWiE [Yi] = β, (4.9)

and covariance

Var
[
β̂(α)

]
=

(
N∑

i=1

X ′
iWiXi

)−1

×
(

N∑
i=1

X ′
iWiVar [Yi] WiXi

)

×
(

N∑
i=1

X ′
iWiXi

)−1

(4.10)

=

(
N∑

i=1

X ′
iWiXi

)−1

, (4.11)

provided that the mean and covariance were correctly specified in our
model, i.e., provided that E(Y i) = Xiβ and Var(Y i) = Vi = ZiDZ ′

i + Σi.
Approximate Wald-type tests for components in β can now easily be ob-
tained.

Note however, that these Wald tests are based on standard errors ob-
tained from replacing α in (4.11) by its ML or REML estimate and there-
fore underestimate the true variability in β̂ because they do not take into
account the variability introduced by estimating α. Therefore, the classical
normal or chi-squared reference distributions are often replaced by t or F -
distributions, with the same numerator degrees of freedom as the original
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chi-squared distribution. The denominator degrees of freedom need to be
estimated from the data. This is often based on so-called Satterthwaite-
type approximations (Satterthwaite 1941), and is only fully developed for
the case of linear mixed models. We refer to Verbeke and Molenberghs
(2000, Section 6.2) for more information on this aspect. In most longitu-
dinal applications, different persons contribute independent information,
which results in numbers of denominator degrees of freedom which are typ-
ically large enough, whatever estimation method is used, to lead to very
similar p-values. Only for very small samples in terms of independent repli-
cates, or when mixed models would be used with crossed random effects
(random effects for persons as well as for items) different estimation meth-
ods for degrees of freedom may lead to severe differences in the resulting
p-values.

Note also that the standard errors based on (4.11) are valid, only if
the mean and covariance were correctly specified, while the only condition
for β̂ to be unbiased is that the mean is correctly specified. Because in
practice, it is often difficult to assess correct specification of the covariance
structure, one often prefers standard errors to be based on (4.10), rather
than (4.11), but with Var (Yi) estimated by (yi − Xiβ̂)(yi − Xiβ̂)′ rather
than V̂i. The so-called robust or empirical standard errors are consistent,
as long as the mean is correctly specified. This procedure is a special case
of the theory on generalized estimating equations (GEE), introduced by
Liang and Zeger (1986) which will be applied in Chapter 8 in the context
of discrete outcomes.

When interest is also in inference for some of the variance components
in α, classical asymptotic Wald, likelihood ratio, and score tests can be
used. However, due to restrictions on the parameter spaces, some hypothe-
ses of interest may be on the boundary of the parameter space, implying
that classical testing procedures are no longer valid. In some special but
important cases, analytic results are available on how to correctly test such
hypotheses. We herefore refer to Stram and Lee (1994, 1995) for results on
the likelihood ratio test, and to Verbeke and Molenberghs (2003) for results
on the score test. A detailed discussion on inference for the marginal linear
mixed model can be found in Verbeke and Molenberghs (2000, Chapter 6).

4.5 Inference for the Random Effects

Although in practice, one is usually primarily interested in estimating the
parameters in the marginal model, it is often useful to calculate estimates
for the random effects bi as well, as they reflect how much the subject-
specific profiles deviate from the overall average profile. Such estimates can
then be interpreted as residuals which may be helpful for detecting special
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profiles (i.e., outlying individuals) or groups of individuals evolving differ-
ently over time. Also, estimates for the random effects are needed whenever
interest is in prediction of subject-specific evolutions. Obviously, it is then
no longer sufficient to assume that the data can be described well by the
marginal model N(Xiβ, Vi). Instead, one has to explicitly assume that
the hierarchical model specification (4.3) and (4.4) is appropriate. Because
random effects represent a natural heterogeneity between the subjects, this
assumption will often be justified for data where the between-subjects vari-
ability is large in comparison to the within-subject variability.

Because the subject-specific parameters bi are assumed random, it is
most natural to estimate them using Bayesian techniques (Box and Tiao
1992, Gelman et al 1995). Conditional on bi, Y i follows a multivariate
normal distribution with mean vector Xiβ +Zibi and with covariance ma-
trix Σi. In combination with the distributional assumptions for bi, one can
easily derive (Smith 1973, Lindley and Smith 1972) that, conditionally on
Y i = yi, bi follows a multivariate normal posterior distribution with mean
b̂i(θ) = DZ ′

iV
−1
i (α)(yi − Xiβ), which is used in practice as an estimator

for bi. Its covariance estimator is equal to

var(b̂i(θ))

= DZ ′
i

⎧⎨⎩V −1
i − V −1

i Xi

(
N∑

i=1

X ′
iV

−1
i Xi

)−1

X ′
iV

−1
i

⎫⎬⎭ZiD. (4.12)

Note that (4.12) underestimates the variability in b̂i(θ)−bi since it ignores
the variation of bi. Therefore, inference for bi is usually based on

var[b̂i(θ) − bi] = D − var[b̂i(θ)] (4.13)

as an estimator for the variation in b̂i(θ) − bi (Laird and Ware 1982).
So far, all calculations were performed conditionally upon the vector θ

of parameters in the marginal model. In practice, the unknown parameters
β and α in b̂i(θ), (4.12), and (4.13) are replaced by their maximum or
restricted maximum likelihood estimates. The resulting estimates for the
random effects are called “Empirical Bayes” (EB) estimates, which we will
denote by b̂i. Note that (4.12) and (4.13) then underestimate the true
variability in the obtained estimate b̂i because they do not take into account
the variability introduced by replacing the unknown parameter θ by its
estimate. Similarly as for the fixed effects, inference is therefore often based
on approximate t-tests or F -tests, rather than on traditional Wald tests.

It immediately follows from (4.13) that for any linear combination λbi of
the random effects, var(λ′b̂i) ≤ var(λ′bi), indicating that the EB estimates
show less variability than actually present in the random-effects population.
This phenomenon is usually referred to as shrinkage (Carlin and Louis
1996, Strenio, Weisberg, and Bryk 1983). The shrinkage is also seen in the
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prediction ŷi ≡ Xiβ̂+Zib̂i of the ith profile, which can be rewritten as ŷi =
ΣiV

−1
i Xiβ̂+[Ini −ΣiV

−1
i ]yi. Note that ŷi can be interpreted as a weighted

average of the population-averaged profile Xiβ̂ and the observed data yi,
with weights ΣiV

−1
i and Ini − ΣiV

−1
i , respectively. The “numerator” of

ΣiV
−1
i is the residual covariance matrix Σi and the “denominator” is the

overall covariance matrix Vi. Hence, severe shrinkage is to be expected
when the residual variability is large in comparison to the between-subject
variability (modeled by the random effects), whereas little shrinkage will
occur if the opposite is true.

In practice, one often uses histograms and scatter plots of components
of b̂i for diagnostic purposes, such as the detection of outliers, which are
subjects who seem to evolve differently from the other subjects in the data
set. Examples and more details on the use of EB estimates can be found
in Verbeke and Molenberghs (2000, Chapter 7) or in DeGruttola, Lange,
and Dafni (1991) and Waternaux, Laird, and Ware (1989). It should be
emphasized that the EB estimates cannot be used to check the underly-
ing normality assumption about the random effects. Verbeke and Lesaffre
(1996) have shown that, in some cases with severe deviations from nor-
mality, the normality assumption forces the EB estimates to look like a
normal distribution. They propose to use more general random-effects dis-
tributions, such as mixtures of normals. In Chapter 23, we will use related
ideas in the context of models for non-continuous responses.





5
Model Families

5.1 Introduction

In Chapter 4, we reviewed how the linear mixed model can be a versatile
model for the analysis of continuous longitudinal data, based on Gaussian
assumptions. A full account is given in Verbeke and Molenberghs (2000).
The linear mixed model enjoys a lot of properties, to a large extent based
on linearity features and properties of the multivariate normal distribution.
Therefore, although some of its features can be extended and modified to
model longitudinal data of a non-Gaussian type, thereby using ideas from
generalized linear models (Chapter 3), one has to be aware of important
differences. For example, in Sections 4.3 and 4.5, the connection between a
fully hierarchical specification of the linear mixed model and the marginal
model derived thereof was reviewed. In fact, the connection is so natural and
easy that one often needs to be reminded of important differences between
the marginal and hierarchical model. One such difference is the different
view one should adopt on negative variance components, depending on
whether a marginal or a hierarchical point of view is taken.

Such straightforward connections do not exist in the non-Gaussian case.
It is therefore important to carefully distinguish between modeling fami-
lies when dealing with models for non-normally distributed outcomes. Sec-
tion 5.2 will review the key model families in the Gaussian case, and Sec-
tion 5.3 presents the equivalent but different concepts in the general situa-
tion. Parts II–IV will provide a detailed treatment for each of the families
in turn.
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5.2 The Gaussian Case

In Chapter 4, we have reviewed the linear mixed model for longitudinal
data. As stated before, in Sections 4.3 and 4.5 we referred to the differ-
ence between a marginal and a hierarchical (random-effects) interpretation
of such a model. From a general perspective, marginal and random-effects
models are two important sub-families of models for repeated measures.
Several authors, such as Diggle, Liang, and Zeger (1994), Diggle et al
(2002), and Aerts et al (2002), distinguish between three families. Let us
first formalize these for Gaussian outcomes or, more generally, for mod-
els with a linear mean structure. This will then provide a useful basis for
developing the equivalent families in general (Section 5.3).

A marginal model is characterized by a marginal mean function of the
form

E(Yij |xij) = x′
ijβ, (5.1)

where xij is a vector of covariates for subject i at occasion j and β is a
vector of regression parameters. It is clear that we refer to the model as
marginal, even though the mean is expressed conditional upon the vec-
tor of covariates. Here and throughout most of this book, dependence on
covariates is taken for granted, and sometimes suppressed from notation.

In a random-effects model we focus on the expectation, additionally con-
ditioning upon a random-effects vector bi:

E(Yij |bi, xij) = x′
ijβ + z′

ijbi. (5.2)

Finally, a third family of models conditions a particular outcome on the
other responses or a subset thereof. In particular, a simple first-order sta-
tionary transition model focuses on expectations of the form

E(Yij |Yi,j−1, . . . , Yi1, xij) = x′
ijβ + αYi,j−1. (5.3)

Alternatively, one might condition upon all outcomes except the one being
modeled:

E(Yij |Yik,k �=j , xij) = x′
ijβ + Y

′
ijα, (5.4)

where Yij represents Yi with the jth component omitted.
As shown by Verbeke and Molenberghs (2000) and reviewed in Chapter 4,

random-effects models imply a simple marginal model in the linear mixed
model case. This is due to the elegant properties of the multivariate normal
distribution. In particular, expectation (5.1) follows from (5.2) by either
(a) marginalizing over the random effects or (b) by conditioning on the
random-effects vector bi = 0. Hence, the fixed-effects parameters β have a
marginal and a hierarchical model interpretation at the same time. Finally,
certain auto-regressive models in which later-time residuals are expressed
in terms of earlier ones lead to particular instances of the general linear



5.3 Model Families in General 47

mixed effects model as well, and hence have a marginal function of the
form (5.1).

Although each of the three model families exist in general, there is no
close connection between them when outcomes are of a non-Gaussian type,
such as binary, categorical, or discrete. We will consider each of the model
families in turn and point to some relevant issues.

5.3 Model Families in General

Within the linear mixed model, both the random-effects structure and the
serial correlation process are devices to capture association within units
and accommodate within the model. In the general, non-Gaussian setting,
there are several ways to handle such association and, unlike in the linear
mixed model case, choices may be mutually exclusive. This is partly due
to the lack of a discrete analogue to the multivariate normal distribution.
Building upon the taxonomy of Section 5.2, and in line with Fahrmeir and
Tutz (1994, 2001) and Diggle et al (2002), we also distinguish between

• marginal models, in which responses are modeled marginalized over
all other responses; the association structure is then typically cap-
tured using a set of association parameters, such as correlations, odds
ratios, etc.;

• conditionally specified models, in which any response within the se-
quence of repeated measures is modeled conditional upon (subsets of)
the other outcomes (this could be the set of all past measurements
or a subset thereof, in transition models);

• subject-specific models, in which the responses are assumed indepen-
dent, given a collection of subject-specific parameters.

Broadly, one can treat the subject-specific effects as either fixed effects or
as random effects. A third alternative consists of conditioning upon the
subject-specific effects, a principle well-known in the context of matched
case-control studies, where conditional logistic regression is a frequently
used technique (Breslow and Day 1987, Agresti 2002). The fixed-effects
approach is subject to severe criticisms, as it leaves several sources of vari-
ability unaccounted for and, to worsen matters, the number of fixed-effects
parameters increases with sample size, jeopardizing consistency of such ap-
proaches.

The answer to the question as to which model family is to be preferred
depends principally upon the research question(s) to be answered. In con-
ditionally specified models the expectation of the response at a given oc-
casion is modeled in terms of the responses at the other occasions, as well
as on covariates. In marginal models, the covariates are directly related
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to the marginal expectations. Subject-specific models differ from the two
previous models by the inclusion of parameters that are specific to the sub-
ject or unit of independent replication. Which method is used to fit the
model should also depend on the assumptions the investigator is willing to
make. A pragmatic but unavoidable restriction comes from the availabil-
ity of computational algorithms. If one is willing to fully specify the joint
model, maximum likelihood methods can be adopted. Yet, if only a par-
tial description in terms of marginal or conditional probabilities is given,
one has to rely on non-likelihood methods such as generalized estimat-
ing equations (Chapter 8), alternating logistic regressions (Section 8.6), or
pseudo-likelihood methods (Chapter 9).

5.3.1 Marginal Models
In marginal or population-averaged models, the parameters characterize the
marginal expectation (e.g., the marginal probability of success at a given
point in time when the response is binary) of a subset of the outcomes,
without conditioning on other outcomes. Part II is devoted to marginal
models.

Bahadur (1961) proposed a marginal model, accounting for the associ-
ation via marginal correlations. This model has also been studied by Cox
(1972), Kupper and Haseman (1978), and Altham (1978). The general for-
mulation of the Bahadur model requires the specification of a number of
parameters, exponential in the number of repeated measures, indicating
that this type of model may be prohibitive if the number of repeated mea-
sures per subject is relatively large, unless considerable simplification is
done. Such simplification occurs, for example, when exchangeability can be
assumed, in the sense that the expectation at every occasion is the same
and all association parameters of a certain order are the same. Moreover,
one may want to set all association parameters from a certain order on-
wards equal to zero. However, whereas such assumptions could be plausible
for settings such as clustered data, they may be less plausible for repeated
measures over time. In addition, whether or not restrictions are applied,
the parameter space of the Bahadur model is typically of a peculiar shape,
with large regions of parameter combinations not leading to a valid model.
A general study of this phenomenon is given in Declerck, Aerts, and Molen-
berghs (1998).

Molenberghs and Lesaffre (1994) and Lang and Agresti (1994) have pro-
posed models that parameterize the association in terms of marginal odds
ratios. Dale (1986) defined the bivariate global odds ratio model, based on
a bivariate Plackett distribution (Plackett 1965). Molenberghs and Lesaffre
(1994, 1999) extended this model to multivariate ordinal outcomes. They
generalize the bivariate Plackett distribution to establish the multivariate
cell probabilities. Their 1994 method involves solving polynomials of high
degree and computing the derivatives thereof, whereas in 1999 generalized
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linear models theory is exploited, together with the use of an appropriately
adapted iterative proportional fitting algorithm. Lang and Agresti (1994)
exploit the equivalence between direct modeling and imposing restrictions
on the multinomial probabilities, using undetermined Lagrange multipliers.
Alternatively, the cell probabilities can be fitted using a Newton iteration
scheme, as suggested by Glonek and McCullagh (1995). Further marginal
models include the correlated binomial models of Altham (1978) and the
double binomial model of Efron (1986). A discussion of likelihood-based
marginal approaches is offered in Chapter 7.

However, even though a variety of flexible models exist, maximum like-
lihood can be unattractive due to excessive computational requirements,
especially when high dimensional vectors of correlated data arise, as al-
luded to in the context of the Bahadur model. As a consequence, alter-
native methods have been in demand. Liang and Zeger (1986) proposed
so-called generalized estimating equations (GEE), which only require the
correct specification of the univariate marginal distributions provided one
is willing to adopt “working” assumptions about the association structure
(Chapter 8). An alternative to this approach is given by so-called alternat-
ing logistic regressions (ALR, Carey, Zeger, and Diggle 1993) (Section 8.6).
le Cessie and van Houwelingen (1994) suggested to approximate the true
likelihood by means of a pseudo-likelihood (PL) function that is easier to
evaluate and to maximize (Chapters 9). Both GEE and PL yield consistent
and asymptotically normal estimators, with an empirically corrected vari-
ance estimator, often referred to as the sandwich estimator. However, GEE
is typically geared toward marginal models, whereas PL can be used with
both marginal (le Cessie and Van Houwelingen 1994, Geys, Molenberghs,
and Lipsitz 1998) and conditional models (Geys, Molenberghs, and Ryan
1997, 1999). Ample detail can be found in Aerts et al (2002).

5.3.2 Conditional Models
In a conditional model the parameters describe a feature (expectation,
probability, odds, logit, . . . ) of (a set of) responses, given values for the
other responses (Cox 1972). The best known example is undoubtedly the
log-linear model. Rosner (1984) described a conditional logistic model. Due
to the popularity of marginal models, especially generalized estimating
equations, and random-effects models for repeated measures, conditional
models have received relatively little attention within this context. Diggle
et al (2002, pp. 142–144) criticized the conditional approach because the
interpretation of a fixed effect parameter (e.g., time evolution or treatment
effect) of one response is conditional on other responses for the same sub-
ject, outcomes of other subjects, and the number of repeated measures.
Not only may such parameters make answering the substantive question
difficult, they are also ill founded when the number of measurements per
subject is not constant.
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In spite of these criticisms, conditional models have enjoyed some pop-
ularity in a number of areas, such as multivariate analysis, in particular
with applications in the social sciences. Perhaps the most important rea-
sons for this popularity is the mathematical convenience of, for example,
the log-linear model. Indeed, it belongs to the exponential family, with all
due advantages for model fitting, given that efficient algorithms exist, based
on matching observed and expected values of sufficient statistics (Agresti
2002). In addition, the parameter space is rectangular, implying that all
combinations of the parameter vector lead to a valid model formulation.
However, these advantages come at the cost of difficulty with parameter
interpretation.

For these reasons, conditional models are not the central focus of this
book. Nevertheless, they are discussed in some detail in Chapter 11. Special
attention is devoted to transition models, useful in a longitudinal context.
Even though a large class of conditional models are relatively easy to fit,
in a number of cases, especially with long sequences of measurements, the
evaluation of the normalizing constant can become prohibitive. In such a
case, pseudo-likelihood can come to the rescue. The use of pseudo-likelihood
in a conditional setting is discussed in Chapter 12.

5.3.3 Subject-specific Models
Subject-specific models are differentiated from marginal or population-
averaged models by the inclusion of parameters specific to the subject. Un-
like for correlated Gaussian responses, the parameters of a subject-specific
and of population-averaged models for non-Gaussian data describe differ-
ent types of effects of the covariates on the expectations (Neuhaus 1992).
For example, when responses are binary, the effect of covariates on the
response probabilities is conditional upon the level of the subject-specific
effect. This means that a unit change in the covariate translates to an ap-
propriate change in probability, keeping the level of the subject-specific
effect fixed. They are useful if one is interested in within-subject changes
(Neuhaus, Kalbfleisch, and Hauck 1991). In a marginal model, such a dif-
ference in covariate translates into a difference of the response probability,
marginal over the subject-specific effects. Not only are there interpreta-
tional differences between both families but when comparing parameter
estimates across families, one often observes substantial differences. The
key reason is that they estimate different “true” parameters. It is fair to
say this issue is surrounded with a lot of confusion. It is treated in detail
in Chapters 16.

Sometimes, the term ‘subject-specific approach’ is equated to ‘random-
effects approach.’ This is not entirely adequate as subject-specific parame-
ters can be dealt with in essentially three ways: (1) as fixed effects, (2) as
random-effects, and (3) by conditioning upon them. These three ways to
deal with subject-specific parameters are studied in detail in Chapter 13.
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The first approach is seemingly simplest but in many cases flawed be-
cause the number of parameters then increases with a rate proportional
to the sample size, thereby invalidating most standard inferential results.
The second approach is very popular. There are several routes to intro-
duce randomness into the model parameters. Stiratelli, Laird, and Ware
(1984) assume the parameter vector to be normally distributed. This idea
has been carried further in the work on so-called generalized linear mixed
models (Breslow and Clayton 1993), which is closely related to linear and
non-linear mixed models. It implies that the random effects operate lin-
early at the level of the linear predictor. For binary data, for example, this
would be at the logit scale. Alternatively, Skellam (1948) introduced the
beta-binomial model, in which the adverse event probability of any member
of a particular cluster comes from a beta distribution. Hence, this model can
also be viewed as a random effects model. The difference with the previous
one is that the random effects operate at the probability scale. The third
approach is well-known in epidemiology, more precisely in the context of
matched case-control studies. In particular, conditional logistic regression
is then often considered (Breslow and Day 1987). In general, with so-called
conditional likelihood methods, one conditions on the sufficient statistics for
the subject-specific effects (Ten Have, Landis, and Weaver 1995, Conaway
1989). The various approaches to introducing subject-specific effects are
considered in Chapter 13.

It is implicit in the treatment here that the models will be fitted to data
using maximum likelihood, or using related or derived estimation methods.
The presence of subject-specific parameters, in conjunction with the non-
linear aspects of the model (e.g., the link functions), poses computational
difficulties, and a variety of approximate likelihood maximization tech-
niques have been proposed. Thus, before discussing inferential tools in Sec-
tion 14.6, numerical approximation methods are reviewed in Sections 14.3,
14.4, and 14.5. Because different numerical approximations may lead to
sometimes substantially different parameters, careful attention needs to be
paid to the various software tools available and to the approximations on
which they are based (Chapters 15). Alternatively, a fully Bayesian treat-
ment could be envisaged (Carlin and Louis 1996). This is outside of the
scope of this book.

Specific models for specific contexts have been developed. For exam-
ple, Foulley and Gianola (1996) and Jaffrézic, Robert-Granié, and Foulley
(1999) developed mixed-effects threshold models for ordered categorical
data, allowing for heteroscedasticity, with emphasis on genetic applications.
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5.4 Inferential Paradigms

Throughout this chapter, we have made informal connections between the
three model families and inferential paradigms. Strictly speaking, selecting
an inferential tool differs from selecting the model family. However, some
inferential methods naturally go together with a model family. Because in
all three model families maximum likelihood is possible, at least in some
subset of cases, they all call for approximations and alternatives. Within
the marginal families such tools as generalized estimating equations and
alternating logistic regressions have been proposed. In all cases, pseudo-
likelihood can be envisaged. Using ideas from quasi-likelihood methodology
(McCullagh and Nelder 1989) or employing numerical quadrature strate-
gies, a number of variations to the likelihood theme have been devised for
the random-effects family. Also, conditional likelihood ideas have been in
use for a number of decades in the context of conditional logistic regression.



Part II

Marginal Models





6
The Strength of Marginal Models

6.1 Introduction

In the past century, a vast part of the literature devoted to multivariate
categorical data focused on describing the association structure between
two or more variables. Eminent early references are Yule and Kendall (1950)
and Goodman (1969, 1979, 1981a, 1981b, 1985).

Recently, the focus in multivariate categorical data has somewhat shifted
to regression models, intended mainly for the analysis of longitudinal data.
It is fair to say that the gap between classical contingency table and cat-
egorical data analysis on the one hand and categorical longitudinal data
on the other hand is less wide than the corresponding gap for Gaussian
data, where multivariate and longitudinal methods have their own focus
and flavor. As a consequence, not only classically used models such as log-
linear models (Cox 1972, Agresti 2002) ought to be considered, but also
marginal models can be of great use. Perhaps it is not sufficiently recog-
nized that these models provide a versatile basis, not only for regressing
multiple outcomes on predictor variables, as will be done in Chapter 7, but
also to study the association between two (or more) categorical variables.
In other words, they can be used for the analysis of association. To this
end, it is necessary to construct more complex association structures than
are often needed for longitudinal applications. For this purpose, one can
borrow flexible association structures as used in more conventional models,
such as the ones described in Goodman (1981a).
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In Section 6.2, we first sketch the so-called multivariate logistic models
(McCullagh and Nelder 1989, Glonek and McCullagh 1995). Then we re-
view the classical row-column (RC) association models (Goodman 1981a)
and the marginal association model (Dale 1986, Molenberghs and Lesaffre
1994). It is indicated that both families can be seen as specific multivariate
logistic models. This naturally leads to the observation that, within the
multivariate logistic models family, very general association models can be
constructed. Sections 6.3 and 6.4 present two simple but illustrative exam-
ples: the British occupational study and the Caithness data.

The fluvoxamine trial, introduced in Section 2.4, is analyzed in Sec-
tion 6.5. These data are rich in the sense that two important outcomes,
therapeutic effect and side effects, measured on 4-point ordinal scales, are
measured repeatedly over time, and both continuous and discrete covari-
ates are measured. Here, we first restrict attention to two-way contingency
tables, and then, in Section 6.6, two extensions are presented, the first one
to contingency tables in the presence of a categorical covariate, the second
one to three-way tables. Both of these extensions will be put within a gen-
eral framework in Chapter 7. In Section 6.7, we sketch how the association
models can be embedded in families of models, arising as discretizations of
continuous distributions.

6.2 Marginal Models in Contingency Tables

We first introduce the notation, needed for this chapter. A general nota-
tional framework is given in Section 7.1. The notation here is somewhat
different from the notation used in the purely longitudinal chapters but
allows us to efficiently deal with the contingency table nature of the data
in this chapter. Suppose a contingency table arises from cross-classifying N
subjects with respect to two categorical variables Y1 and Y2, having I and J
levels respectively. It is convenient to introduce both ordinary multinomial
cell counts

Z∗
ijr =

{
1 if Y1r = i and Y2r = j,

0 otherwise.

as well as their cumulative counterparts

Zijr =

{
1 if Y1r ≤ i and Y2r ≤ j,

0 otherwise,
(6.1)

with a subscript r denoting the rth subject. The corresponding probabilities
are defined by µ∗

ij = pr(Z∗
ijr = 1) and µij = pr(Zijr = 1). This notation

will be used to describe the association models. Should the probabilities
depend on the subject (for example, through the introduction of covariate
information), then a subscript r will be added (µ∗

ijr and µijr). We will
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first introduce a general framework, largely due to McCullagh and Nelder
(1989) and Glonek and McCullagh (1995). Then, the RC family of models
(Goodman 1981a) and the Dale (1986) model are shown to fit within this
framework, conditional on a slight generalization in the RC case. Finally,
it is indicated how the modeling framework can be used to combine useful
aspects of both subclasses to yield a very wide and versatile class, which,
in addition, allows extension to covariates as well as to higher order tables.

6.2.1 Multivariate Logistic Models
McCullagh and Nelder (1989) defined a useful class of generalized linear
models, by writing the vector link function in terms of the joint probabilities
in the following way:

η = C ′ ln(Lµ∗), (6.2)

where µ∗ is the vector of joint probabilities, formed by stacking the µ∗
ij .

The matrix L consists solely of zeros and ones, such that Lµ∗ contains the
probabilities necessary to construct the required link functions. Then, con-
trasts of log-probabilities are equated to a vector of linear predictors η using
the contrast matrix C. Contrasts of log-probabilities encompass many com-
monly used links for both marginal probabilities and associations. Within
this model formulation, the marginal means can be modeled via, e.g., base-
line category logits, adjacent category logits, continuation-ratio logits, or
cumulative logits. The association can be described in terms of, e.g., local or
global cross-ratios. This means that this formulation applies to binary, or-
dinal, and nominal data. When cumulative logits and/or global cross-ratios
are used, the model can be expressed directly in terms of the cumulative
probabilities µij , such that (6.2) becomes η = C ′ ln(Lµ). In this case, L
may contain other elements than merely zeros and ones. Alternatively, the
connection between µij and µ∗

ij (µ = Bµ∗, for some constant matrix B)
can be absorbed into the matrix L as well. As counterexamples, modeling
the marginal distribution via, e.g., the probit or the complementary log-log
link is excluded from (6.2). One usually requires that µ∗ and η are in 1-
to-1 relationship. Model (6.2) is called the multivariate logistic transform
by Glonek and McCullagh (1995). They illustrate its use for both marginal
and conditional regression models, as well as for mixed marginal-conditional
parameterizations. A general and flexible class of marginal logistic models
of the form (6.2) was studied by Lang and Agresti (1994), who allow a
many-to-one relationship between µ∗ and η because they do not require
that the (higher order) associations are modeled explicitly. Examples will
be given in the next two sections.

In the spirit of generalized linear modeling (Chapter 3), McCullagh and
Nelder (1989) completed (6.2) by

η = Xξ, (6.3)
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i.e., by adopting a vector of linear predictors. Here, X is a known design
and/or covariate matrix and ξ is a vector of parameters of direct interest.
Glonek and McCullagh (1995) call the resulting family multivariate logistic
regression models.

When not only regression aspects are of scientific interest, but focus is
placed on the association structure as well, it is useful to generalize the
vector of linear predictors (6.3) to the potentially non-linear class

η = C ′ ln(Lµ∗) = g(ξ), (6.4)

where g(ξ) is a known vector-valued function.

6.2.2 Goodman’s Local Association Models
Goodman (1981a) defines association models in terms of log local cross-
ratios for I × J tables. These log cross-ratios are given by

ln θ∗
ij = ln

(
pr(Y1 = i, Y2 = j)pr(Y1 = i + 1, Y2 = j + 1)
pr(Y1 = i, Y2 = j + 1)pr(Y1 = i + 1, Y2 = j)

)

= ln
µ∗

ijµ
∗
i+1,j+1

µ∗
i,j+1µ

∗
i+1,j

,

with i = 1, . . . , I − 1 and j = 1, . . . , J − 1. They naturally follow from the
following closed form model for the joint cell probabilities:

µ∗
ij = αiβje

φλiνj , (6.5)

(i = 1, . . . , I; j = 1, . . . , J). Here, αi and βj are main effect parameters
while λi, νj and φ describe the association structure. Indeed, the local
cross-ratios are ln θ∗

ij = φ(λi − λi+1)(νj − νj+1). Identifiability constraints
have to be imposed on the parameters in (6.5). This model is also called
the row-column model (RC model).

Note that this model is not fully marginal in nature since the marginal
probabilities or transformations thereof do not easily follow from the model
parameters. In fact, the model has a close connection to log-linear models,
which are conditional in nature. In this sense, it bridges the gap between
the models treated here and those in Part III.

Model (6.5) can be seen as a member of (6.4) by setting L and C equal
to the identity matrix: η = lnµ∗ = g(ξ), with g(ξ) defined by

gij(ξ) = lnαi + lnβj + φλiνj . (6.6)

Due to its third term, the predictor function (6.6) is non-linear. Note that
(6.6) is a mixture of main effect and association parameters. By setting C
equal to the identity matrix, the concept of contrasts of log-probabilities is
not maintained and thus (6.4) is slightly extended.
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An alternative association parameterization is additive in the log cross-
ratios: ln θ∗

ij = δ1i + δ2j . This model is induced by the following expression
for the cell probabilities:

µ∗
ij = αiβjγ

j
1iγ

i
2j . (6.7)

For this parameterization (6.6) changes to

gij(ξ) = lnαi + lnβj + j ln γ1i + i ln γ2j . (6.8)

Note that this predictor is of the linear type inlnαi, etc. Fitting algorithms
for (6.5) and (6.7) can be found in Goodman (1981a).

Goodman (1981a) generalizes model (6.5) to:

µ∗
ij = αiβj exp

(
4∑

k=1

φkλkiνkj

)
, (6.9)

where λ1i and λ3i are linear functions of the index i and ν1j and ν2j are
linear in j. The others are allowed to be non-linear. He shows that the log
cross-ratios can be written as

ln θ∗
ij = η + ηI

i + ηJ
j + ζI

i ζJ
j . (6.10)

This model allows the inclusion of additive effects on the association. Good-
man calls it the R+C+RC model.

Although the above models provide an elegant description of the as-
sociation in contingency tables, a disadvantage of the RC family is the
cumbersome form they induce for the marginal distributions. The model
presented next is built marginally.

6.2.3 Dale’s Marginal Models
Dale (1986) and Molenberghs and Lesaffre (1994, 1999) define a marginal
model for ordinal data in terms of marginal cumulative logits and global
cross-ratios. We will describe it here for the purpose of our contingency
table type data setting, and defer a fully general, longitudinal introduction
to Chapter 7. The cumulative logits

η1i = logit[pr(Y1 ≤ i)] = ln(µiJ) − ln(1 − µiJ), (6.11)
η2j = logit[pr(Y2 ≤ j)] = ln(µIj) − ln(1 − µIj), (6.12)

(i = 1, . . . , I − 1; j = 1, . . . , J − 1), and the global cross-ratios

lnψij = ln
(

pr(Y1 ≤ i, Y2 ≤ j)pr(Y1 > i, Y2 > j)
pr(Y1 ≤ i, Y2 > j)pr(Y1 > i, Y2 ≤ j)

)

= ln
µij(1 − µIj − µiJ + µij)
(µiJ − µij)(µIj − µij)

(6.13)



60 6. The Strength of Marginal Models

define the joint probabilities.
It is clear from (6.11), (6.12), and (6.13) that this model is a member of

(6.2). For the special case of binary data (I = J = 2), (6.2) becomes⎛⎜⎝ η1
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where the model is written in terms of the cell probabilities µ∗
jk. Because⎛⎜⎜⎜⎝
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an expression in terms of the cumulative probabilities µjk is immediate.
Should it be thought reasonable, then local cross-ratios:

lnψ∗
ij = ln

µ∗
ij(1 − µ∗

i+1,j − µ∗
i,j+1 + µ∗

ij)
(µ∗

i,j+1 − µ∗
ij)(µ

∗
i+1,j − µ∗

ij)
(6.14)

can be used instead. For the particular case of binary variables, both types
of cross-ratios coincide.

For the association (6.13), we will pay particular attention to

lnψij = φ + ρ1i + ρ2j + σ1iσ2j , (6.15)

including a constant association parameter, row and column effects, and
interactions between rows and columns, respectively. This model is identi-
fied, e.g., by imposing ρ1I = ρ2J = σ1I = σ2J = 0 and σ11 = 1. Due to
the fourth term of (6.15) this parameterization is a member of the non-
linear family (6.4). It is very similar in structure to the local cross-ratios of
the R+C+RC model (6.10). Of course, model (6.15) is only one of many
possibilities, since there is a whole spectrum of possible models between
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independence and constant association on the one hand and a saturated
association model on the other hand. When the number of categories in-
creases, it becomes more crucial to look for parsimonious association models
in order to reduce the number of parameters in the model. To this end, the
more flexible class (6.4) might be preferable over (6.3).

Model fitting proceeds, e.g., via Newton-Raphson or Fisher scoring tech-
niques. Details, for the general case, can be found in Section 7.7.6. To do
so, the cumulative cell probabilities need to be computed. First, note that
µIJ = 1. Then, µiJ and µIj follow from η1i and η2j , i.e., (6.11) and (6.12)
are solved for µiJ and µIj . The other counts follow from

µij =

⎧⎨⎩
1+[µiJ+µIj ](ψij−1)−Sij

2(ψij−1) if ψij �= 1,

µiJµIj otherwise,
(6.16)

where

Sij =
√

[1 + (ψij − 1)(µiJ + µIj)]
2 + 4ψij(1 − ψij)µiJµIj .

Molenberghs and Lesaffre (1994, 1999) show how to extend this class of
models to more than two variables. They also indicate how to adopt other
association measures, such as marginal correlations, which corresponds to
the Bahadur (1961) model. Molenberghs (1994) and Lesaffre, Verbeke, and
Molenberghs (1994) provide details on maximum likelihood estimation for
the two-way and higher order versions of the model. See also Section 7.7.

6.2.4 A General Class of Models
The models described in Sections 6.2.2 and 6.2.3 differ in two respects:

1. The association in the RC model is in terms of local cross-ratios, while
the Dale model is based on global cross-ratios. This difference is not
essential, as we argued that local cross-ratios can be incorporated
into the marginal model without problem.

2. The marginal probabilities of the RC model are complex functions of
the model parameters, whereas the Dale model is expressed directly
in terms of the marginal logits.

However, upon generalizing (6.4) slightly, both models are seen as sub-
classes of this flexible family. For both models, linear and non-linear pre-
dictors are possible. Indeed, for the RC family, (6.8) is linear whereas (6.6)
is non-linear. For the Dale model, (6.15) is non-linear, but if the fourth
term is dropped, it becomes a linear predictor.

The advantage of this result is that completely general models can be
constructed, combining and extending interesting aspects of both the RC
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TABLE 6.1. British Occupational Study. Cross-classification of male sample ac-
cording to each subject’s occupational status category and his father’s occupational
category, using seven status categories

Father’s Subject’s status
status 1 2 3 4 5 6 7

1 50 19 26 8 18 6 2
2 16 40 34 18 31 8 3
3 12 35 65 66 123 23 21
4 11 20 58 110 223 64 32
5 14 36 114 185 714 258 189
6 0 6 19 40 179 143 71
7 0 3 14 32 141 91 106

and the Dale model. For example, a genuine marginal model can be con-
structed, with an association function of the RC type. Depending on the
data problem, one can opt for local or for global cross-ratios. Arguably, local
cross-ratios are suitable for nominal variables, whereas global cross-ratios
are a natural choice for cross-classified ordinal variables.

6.3 British Occupational Status Study

We re-analyze the data presented in Goodman (1979). Subjects are cross-
classified, according to their occupational status and their father’s occu-
pational status, using seven ordered categories. The data are presented in
Table 6.1

Standard RC and Dale models, fitted to Table 6.1, are presented in Ta-
ble 6.2. The Dale model with row effects, column effects, and interactions,
provides a good fit, based on a deviance χ2 approach. This means that no
model of the form (6.3) fits the data and that the full non-linear version
(6.15) is necessary to achieve an acceptable fit. No RC model, not even the
R+C+RC model, fits the data well.

6.4 The Caithness Data

Goodman (1981a) studied association models for two-way contingency ta-
bles with ordered categories. The cross-classification of eye color and hair
color of 5387 children is reproduced in Table 6.3.

Goodman treated these responses as ordinal that, although sensible,
might be open to discussion. We combine marginal probabilities, one set
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TABLE 6.2. British Occupational Study. Deviance χ2 goodness-of-fit statistics
for Dale and RC models, fitted to the data in Table 6.1. The models with an
acceptable fit (p > 0.05) are indicated by an asterisk.

Dale RC
Description df χ2 df χ2

Independence 36 897.52 36 897.52
Constant association 35 207.23 35 98.19
Row effects only 30 105.23 30 87.14
Column effects only 30 100.69 30 80.74
Row and column effects 25 42.94 25 75.59
Row, column, interactions 16 ∗20.11 16 38.09
Saturated model 0 0.00 0 0.00

TABLE 6.3. Caithness Data. Eye color and hair color of 5387 children in Caith-
ness (Goodman 1981a).

Eye Hair color
color Fair Red Medium Dark Black
Blue 326 38 241 110 3
Light 688 116 584 188 4

Medium 343 84 909 412 26
Dark 98 48 403 681 85

for each variable, with local odds ratios to describe the association. We
consider two models. The first one (8 parameters) assumes a constant local
odds ratio. The simpler model which assumes independence between both
responses has been shown by Goodman to provide a poor fit and will not
be considered here. The second, saturated, model allows an unstructured
3 × 4 table of local odds ratios. The marginal probabilities for both models
are (0.13, 0.29, 0.33, 0.25) for eye color and (0.27, 0.05, 0.40, 0.26, 0.02) for
hair color. The common local odds ratio for the first model equals 1.50.
The deviance is 131.10 on 11 degrees of freedom, rejecting the constant
(or uniform) association model. Note that Goodman’s conditional model
for uniform association exhibited a much poorer deviance of 265.03 on 11
degrees of freedom. The 12 local odds ratios, organized as an association
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TABLE 6.4. Fluvoxamine Trial. Cross-classification of initial severity and side
effect at the second occasion. In parentheses, the fitted values for the independence
model are shown.

Side 2
Severity 1 2 3 4

1 1 0 1 0
(0.86) (0.86) (0.18) (0.10)

2 21 28 5 5
(25.29) (25.29) (5.42) (3.01)

3 62 62 15 7
(62.57) (62.57) (13.41) (7.45)

4 41 31 6 2
(34.29) (34.29) (7.35) (4.08)

5 1 5 0 1
(3.00) (3.00) (0.64) (0.36)

table, are:
1/2 2/3 3/4 4/5

1/2 1.45 0.79 0.71 0.78
2/3 1.45 2.15 1.41 2.97
3/4 2.00 0.78 3.73 1.98

.

Although there is some fluctuation in the association structure, it is very
hard to pinpoint a clear trend. This is typically much harder for multi-
variate data than for genuinely longitudinal data where, for example, ex-
changeable (constant) or exponentially decaying structures are commonly
encountered.

6.5 Analysis of the Fluvoxamine Trial

Let us consider the fluvoxamine trial, presented in Section 2.4. Further
analyses will be given in various sections of Chapter 7, as well as in the
missing data Chapters 29, 30, and 31.

Because the focus here is on marginal models for contingency tables com-
ing from repeated categorical data, we select four two-way classifications
from the fluvoxamine study. We will first consider a cross-classification
of side effects and initial severity (Table 6.4). Then, we cross-classify the
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TABLE 6.5. Fluvoxamine Trial. Cross-Classification of therapeutic effect at the
second and third Occasion. In parentheses, the fitted values: the first entry corre-
sponds to the constant association Dale model, while the second entry stands for
the row and column local association model.

Ther. 3
Ther. 2 1 2 3 4

1 13 2 0 0
(11.64) (2.87) (0.49) (0.15)
(13.06) (1.87) (0.06) (0.01)

2 37 40 8 4
(40.46) (39.77) (5.50) (1.39)
(34.98) (44.28) (7.55) (2.20)

3 13 58 18 4
(10.09) (53.94) (23.38) (4.77)
(15.65) (52.42) (18.49) (6.45)

4 1 13 36 21
(2.68) (16.71) (32.52) (21.64)
(0.32) (14.44) (35.91) (20.34)

measurements on therapeutic effect at visits 2 and 3 in Table 6.5. A sim-
ilar table is constructed for side effects (Table 6.6). Finally, we consider a
cross-classification of side effects and therapeutic effect, recorded at visit
2 (Table 6.7). Note that the total of Table 6.7 (299) is higher than the
total of Table 6.4 (294), as there are 5 subjects with information on ther-
apeutic and side effects, but without initial severity measurement. These
tables cover different settings: a cross-classification of an outcome and a
baseline variable, the same outcome at subsequent measurement times and
a “cross-sectional” picture, composed of two variables measured simulta-
neously. Table 6.8 shows the data from Table 6.7, split by sex category.

Let us now analyze these data. Table 6.9 summarizes the deviance χ2

goodness-of-fit statistics for the models fitted to Tables 6.4–6.8.
Table 6.4 shows a complete lack of association. As a consequence, the

independence model is accepted for both the Dale and the RC model. Of
course, the deviance for the independence model in both families is exactly
the same. Initial severity measures symptoms present at baseline, whereas
side effects measures symptoms induced by the therapy. Thus the inde-
pendence model implies that incidence and intensity of side effects do not
depend on the initial conditions. Note that for Tables 6.4–6.8 the R+C+RC
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TABLE 6.6. Fluvoxamine Trial. Cross-classification of side effects at the second
and third occasion. In parentheses, the fitted values: the first entry corresponds
to the row and column effects Dale model, while the second entry corresponds to
model (6.7).

Side 3
Side 2 1 2 3 4

1 105 14 0 0
(104.98) (13.84) (0.16) (0.00)
(105.01) (13.98) (0.01) (0.00)

2 34 80 7 1
(33.88) (80.46) (7.27) (0.27)
(33.63) (79.96) (8.20) (0.22)

3 2 7 10 2
(2.09) (7.02) (8.76) (2.91)
(2.71) (7.14) (7.58) (3.57)

4 3 1 0 2
(3.14) (1.01) (0.00) (2.21)
(2.65) (0.92) (1.21) (1.22)

model is overparameterized and thus coincides with the saturated model,
whence it is not included in Table 6.9.

For Table 6.5, we find a strong association main effect with the Dale
model. The constant global cross-ratio is very high: ψ̂ = ψ̂ij = exp(2.52) =
12.43. Note that this model corresponds to an underlying Plackett (1965)
distribution, as such a distribution is characterized by a constant global
cross-ratio. The fit improves by 7.68 on 2 degrees of freedom if we add a
row effect. This model deserves our preference. For the RC family, there is
certainly a strong constant association effect, but the fit is not acceptable
at that point. A fully satisfactory fit is provided by the row and column
association model.

There is also a clear global association main effect in Table 6.6. Including
this parameter improves the fit of the model dramatically, although adding
both row and column effects provides a better fit. Associations are shown in
Table 6.10. Some of the observed cross-ratios are infinite, due to zero cells in
the contingency table. All but one associations are high to extremely high.
High associations in the upper right corner are explained by the fact that
side effects over time are of course highly correlated, but also tend to go
down, and only rarely go up, showing that the drug has a beneficial effect.
It is remarkable that no RC model fits the data well, as can be learned
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TABLE 6.7. Fluvoxamine Trial. Cross-classification of side effects and therapeutic
effect at the second occasion. In parentheses, the fitted values are shown. The first
model is the global association column effects model. The second global cross-ratio
model includes row and column effects, as well as interactions. The third set of
fitted values corresponds to the RC model (row and column effects).

Therapeutic 2
Side 2 1 2 3 4

1 8 40 40 40
(7.46) (38.32) (44.19) (38.11)
(8.10) (39.58) (40.41) (39.50)
(8.91) (38.18) (41.85) (39.05)

2 7 45 51 25
(9.73) (45.60) (43.33) (29.09)
(6.61) (46.37) (49.46) (25.49)
(6.33) (46.92) (48.99) (25.75)

3 2 9 8 9
(1.37) (7.82) (10.39) (8.52)
(2.22) (7.49) (9.66) (8.64)
(2.02) (8.12) (8.95) (8.91)

4 2 1 3 9
(0.32) (2.15) (4.45) (8.15)
(2.24) (1.30) (2.52) (8.95)
(1.74) (1.77) (2.20) (9.29)

from Table 6.9. In conclusion, a marginal model such as the Dale model
fits the data better than a model from the RC family. Should one choose
to remain within the RC family, then a model of a more elaborate nature,
such as the ones discussed in Section 6.7, might be needed. Note, again, that
the R+C+RC model is no alternative, as it is overparameterized. Fitting
related model (6.7) to Table 6.7 yields an acceptable fit: χ2 = 6.33 on 4
degrees of freedom (p = 0.1760).

Both Tables 6.5 and 6.6 are cross-classifications of an ordinal variable,
recorded at two subsequent measurement times. In both cases, a parsimo-
nious global association model explains the data well. It seems to be much
harder to fit these data with local association models.

For Table 6.7, the row effects model is the most parsimonious one that
provides an acceptable fit. One might argue that it is careful to retain
the model adding column effects and interactions as well. Therefore, fit-
ted frequencies for both models are shown in Table 6.7. Table 6.11 shows
the global cross-ratios for the data of Table 6.7, together with the pre-
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TABLE 6.8. Fluvoxamine Trial. Cross-classification of side effects and therapeutic
effect at the second occasion, split by sex.

Therapeutic 2
Side 2 1 2 3 4

Male subjects
1 4 18 12 16
2 0 9 19 9
3 0 4 3 4
4 0 1 1 5

Female subjects
1 4 22 28 24
2 7 36 32 16
3 2 5 5 5
4 2 0 2 4

dicted values under both models. We observe two patterns in Table 6.11.
First, the association increases along the main diagonal. This means that
the association between the variables I(SIDE2 ≤ 1) and I(THER2 ≤ 1)
is smaller than the association between the variables I(SIDE2 ≤ 3) and
I(THER2 ≤ 3). Here, I(·) is an indicator function. Also, the association
becomes “negative” (i.e., smaller than 1 on the cross-ratio scale) for pairs
such as I(SIDE2 ≤ 3) and I(THER2 ≤ 1). The RC models, fitted to this
table, suggest the selection of the row and column effects model. The fitted
model is also presented in Table 6.7. All RC models are based on model
(6.5).

In conclusion, the Dale model yields a non-linear association model for
Tables 6.1 and 6.7, through the interaction terms in (6.15), which is a
very natural association model as it is a Dale model analogue of Good-
man’s R+C+RC model, of which the cross-ratios are given by (6.10). For
Tables 6.4–6.6, simpler association models, including at most row and/or
column effects, but no interactions, are found to be acceptable. The models
of RC type fitted to these data tend to be of a more complex nature, ar-
guably because they model the association through local cross-ratios even
though the data are ordered categorical.

6.6 Extensions

As mentioned earlier, the fluvoxamine study recorded more than two out-
comes and further there is covariate information available. We consider
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TABLE 6.9. Fluvoxamine Trial. Deviance χ2 goodness-of-fit statistics for Dale
and RC models, fitted to Tables 6.4–6.8 (models with an acceptable fit are indi-
cated by an asterisk).

Table 6.4 Table 6.5 Table 6.6 Table 6.7
Description df χ2 df χ2 df χ2 df χ2

Dale models
Independence 12 ∗14.20 9 141.95 9 158.15 9 17.12
Constant association 11 ∗11.71 8 ∗11.48 8 18.27 8 17.12
Row effects only 8 ∗8.34 6 ∗3.80 6 14.49 6 ∗9.78
Column effects only 9 ∗11.37 6 ∗10.26 6 ∗12.29 6 16.74
Row and column effects 6 ∗8.03 4 ∗1.29 4 ∗2.05 4 ∗9.31
Row, column, interactions 2 ∗0.22 1 ∗0.31 1 ∗0.35 1 ∗0.94
Saturated model 0 0.00 0 0.00 0 0.00 0 0.00

RC models
Independence 12 ∗14.20 9 141.95 9 158.15 9 17.12
Constant association 11 ∗12.04 8 19.46 8 48.66 8 16.71
Row effects only 8 ∗8.21 6 12.90 6 18.84 6 ∗11.69
Column effects only 9 ∗11.88 6 14.35 6 45.12 6 15.14
Row and column effects 6 ∗2.22 4 ∗5.16 4 10.48 4 ∗1.44
Saturated model 0 0.00 0 0.00 0 0.00 0 0.00

in turn two ways of extending the models described so far, while still re-
maining within the contingency table framework. First, in Section 6.6.1, we
discuss the inclusion of a dichotomous covariates in marginal association
models, followed by a generalization to three-way tables (Section 6.6.2).
These extensions are members of the class (6.4). Completely general co-
variates, as well as multi-way tables and fully longitudinal models are the
subject of Chapter 7.

6.6.1 Covariates
The marginal Dale model presented here is flexible in incorporating covari-
ate effects. Their influence on the marginal means and on the association
can be described in separate ways. For example, age could be found to influ-
ence the marginal response functions, while the association could be seen to
change with sex. We will exemplify the possibilities that are brought about
by this feature using two covariates. First, the data presented in Table 6.7
are split into two sex groups (Table 6.8). Second, we will add the effect
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TABLE 6.10. Fluvoxamine Trial. Global cross ratios for the classification of side
effects at time 2 versus time 3 (Data in Table 6.6).

Side 3
Side 2 1 2 3

Observed

1 21.15 +∞ +∞
2 6.00 31.37 41.74
3 1.17 6.05 43.17

Row and column effects

1 21.07 116.88 760.06
2 5.70 31.65 205.37
3 1.20 6.67 43.26

of the continuous covariate age on the responses and on the association
between responses.

Let us consider sex first. Selected models, fitted to these data, are pre-
sented in Table 6.12. Obviously the marginal regressions are independent
of sex, but we do find a sex effect in the association. If we add row effects
(but no column effects), the fit is satisfactory (p = 0.12). The association
structure of this model is:

lnψijr = 1.64 − 0.88sexr − 1.24I(i = 1) − 0.56I(i = 2),

where ψijr is the global cross-ratio, depending on subject r through their
sex, and I(.) is the indicator function. The association is stronger for males
than for females (p = 0.0402).

Even though Table 6.8 contains four sampling zeros, no convergence
problems are encountered and all parameters lie in the interior of their
space. The Dale likelihood attains its maximum in the interior of the pa-
rameter space under very mild conditions, a feature shared with univariate
ordinal logistic regression, which it generalizes. First, there must not be
a complete separation in the covariate space between response groups. A
similar condition was derived for the multigroup logistic model by Albert
and Lesaffre (1986). Second, even with zero cell counts, models can be con-
structed for which the MLE lies in the interior of the space. For example,
in a 3 × 3 table with cells (1, 1), (1, 3), (2, 2), (3, 1), and (3, 3) equal to
zero (with the other cells non-zero), a model with global cross-ratio de-
pendent on row and column classification, yields finite estimates. We can
easily include such continuous covariates as age. For 296 subjects out of
299 recorded in Table 6.7, age (in years) is recorded. Age ranges from 16



6.6 Extensions 71

TABLE 6.11. Fluvoxamine Trial. Global cross ratios for the classification of side
effects versus therapeutic effect (both at the second occasion).

Therapeutic 2
Side 2 1 2 3

Observed

1 0.97 0.95 0.74
2 0.61 1.33 2.12
3 0.41 2.57 4.26

Column effects only

1 0.86 0.86 0.86
2 1.77 1.77 1.77
3 3.24 3.24 3.24

Row, column, interaction

1 0.92 0.86 0.80
2 0.55 1.55 1.92
3 0.37 2.17 4.00

to 75 years, with a mean of 42.2 years (median is 40.5 years). There are
97 distinct age by sex combinations, which yields an average of about 3
subjects per distinct 4×4 table! Thus, we have a generalization of a purely
contingency table analysis to multivariate ordinal regression. Obviously, a
saturated model is not meaningful here, as the number of covariate levels
(and hence the number of cells) increases with the sample size. Deriva-
tion of formal goodness-of-fit tools, such as appropriate residuals, requires
further research. The most complex model we will consider, contains sex
and age effects in both the marginal mean and in the association and lets
the association further depend on row and column classification. Clearly,
this model could be extended (for example, by means of higher order ef-
fects of age and interactions between sex and age). Table 6.13 reports on
a backward selection performed to simplify the model. In the final model,
the marginal logits are simplified such that only SIDE2 depends on age.
The association is independent of the column classification. Although sex
and age could be omitted from the association when comparing Models 4
and 5 with 3 (numbers referring to Table 6.13), or 6 with 4 and 5, a direct
comparison of Model 6 (no covariate influence on association) with Model
3 (both age and sex influence the association) is significant at the 5% level.
Therefore, we prefer Model 3. The cumulative logits (6.11) and (6.12) for
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TABLE 6.12. Fluvoxamine Trial. Deviance χ2 goodness-of-fit statistics for Dale
models, fitted to Table 6.8 (distinguishing between sex groups). Models with an
acceptable fit (p > 0.05) are indicated by an asterisk.

Marginal model Association model df χ2

No sex effect Constant 23 39.32
No sex effect Sex, row 20 ∗27.76
No sex effect Sex, row, column 18 ∗27.30
Sex effect Constant 21 36.80
Sex effect Sex effect 20 31.74
Sex effect Sex, row, column 16 ∗25.53
Saturated Saturated 0 0.00

subject r are

η1ir = 0.54I(i = 1) + 2.63I(i = 2) + 3.75I(i = 3) − 0.019ager,

η2jr = −2.69I(j = 1) − 0.47I(j = 2) + 0.95I(j = 3),

and the association structure is

lnψijr = 2.94 − 0.80sexr − 0.028ager − 1.44I(i = 1) − 0.63I(i = 2).

The logit for side effects decreases with age, implying, e.g., that the prob-
ability of category 1 (no side effects) decreases and the probability of cat-
egory 4 (highest level of side effects) increases with age. The association
is stronger for males than for females (consistent with Table 6.12) and
decreases with age.

6.6.2 Three-way Contingency Tables
Molenberghs and Lesaffre (1994) extended the Dale model, originally con-
structed for two response variables, to arbitrary dimensions. This implies
that the model is suitable to analyze multi-way contingency tables. Compu-
tational details can be found in Molenberghs and Lesaffre (1994). We apply
the general method technique on the fluvoxamine data set, more specifically
to a cross-classification of therapeutic effect at visits 2, 3, and 4. The data
are presented as a 4 × 4 × 4 contingency table (Tables 6.14–6.17). There
are 242 patients with measurements on all three outcomes.

Let the variables Y1, Y2, and Y3 have I, J , and K levels, respectively, and
define cumulative three-way probabilities µijk (i = 1, . . . , I; j = 1, . . . , J ; k =
1, . . . , K), similar to the definition in Section 6.2.

The model extends as follows. Apart from three sets of marginal para-
meters, one for each measurement time:

η1i = logit[pr(Y1 ≤ i)] = ln(µiJK) − ln(1 − µiJK), (6.17)



6.6 Extensions 73

TABLE 6.13. Fluvoxamine Trial. Backward selection for Dale models, fitted to
Table 6.8 (including sex and age). The number of model parameters (Par), the
deviance (Dev) of the model are reported. For each model comparison, the ref-
erence model (Vs), and the corresponding χ2 statistic and p-value are reported.
(‘R’ stands for row effects and ‘C’ stands for column effects.)

Nr Side 2 Ther. 2 Association Par Dev Vs df χ2 p

1 Sex, age Sex, age Sex, age, R, C 17 1372.5
2 Age — Sex, age, R, C 14 1375.0 1 3 2.52 0.472
3 Age — Sex, age, R 12 1375.5 2 2 0.50 0.779
4 Age — Age, R 11 1379.0 3 1 3.47 0.063
5 Age — Sex, R 11 1379.0 3 1 3.49 0.062
6 Age — R 10 1382.7 4 1 3.66 0.056
6 Age — R 10 1382.7 3 2 7.13 0.028

η2j = logit[pr(Y2 ≤ j)] = ln(µIjK) − ln(1 − µIjK), (6.18)
η3k = logit[pr(Y3 ≤ k)] = ln(µIJk) − ln(1 − µIJk), (6.19)

(i = 1, . . . , I − 1; j = 1, . . . , J − 1; k = 1, . . . , K − 1), there are also three
sets of pairwise association parameters:

lnψ12,ij = ln
µijK(1 − µIjK − µiJK + µijK)
(µiJK − µijK)(µIjK − µijK)

, (6.20)

lnψ13,ik = ln
µiJk(1 − µIJk − µiJK + µiJk)
(µiJK − µiJk)(µIJk − µiJk)

, (6.21)

lnψ23,jk = ln
µIjk(1 − µIJk − µIjK + µIjk)
(µIJk − µIjk)(µIjK − µIjk)

, (6.22)

together with a set of three-way associations (generalized cross-ratios):

lnψ123,ijk =

ln
[
µijk(µiJK − µijK − µiJk + µijk)

(µijK − µijk)(µiJk − µijk)

× (µIjK − µijK − µIjk + µijk)
(µIjk − µijk)

× (µIJk − µiJk − µIjk + µijk)
(1 − µiJK − µIjK − µIJk + µijK + µiJk + µIjk − µijk)

]
.(6.23)

Clearly, the link functions (6.17)–(6.23) are all expressed in terms of con-
trasts of log-probabilities and hence fit in (6.2). Molenberghs and Lesaffre
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TABLE 6.14. Fluvoxamine Trial. Cross-classification of therapeutic effect at the
second, third, and fourth occasion. In parentheses, the fitted values. The first entry
corresponds to Model 1, the second entry corresponds to Model 2, the third entry
corresponds to the generalized RC model. Part I.

Side 4
Side 2 Side 3 1 2 3 4

1 1 11 1 0 0
(10.18) (1.19) (0.10) (0.02)
(13.75) (2.07) (0.18) (0.05)
(10.99) ( 0.48) ( 0.00) (0.00)

2 0 1 1 0
(0.60) (1.46) (0.30) (0.06)
(0.89) (1.88) (0.40) (0.10)

( 1.16) ( 0.97) ( 0.02) (0.00)

3 0 0 0 0
(0.05) (0.18) (0.15) (0.06)
(0.08) (0.21) (0.13) (0.05)

( 0.05) ( 0.15) ( 0.07) (0.01)

4 0 0 0 0
(0.01) (0.03) (0.04) (0.02)
(0.02) (0.05) (0.04) (0.02)

( 0.01) ( 0.02) ( 0.03) (0.03)

(1994, 1999) describe ways to determine the joint probabilities µijk from the
links and to compute maximum likelihood estimates. Indeed, the key issue
in a marginal model of this type is the construction of the joint probabili-
ties. The univariate marginal probabilities µiJK , µIjK , and µIJk are easily
determined from inverting (6.17)–(6.19), just as with (6.11) and (6.12).
The pairwise marginal probabilities µijK , µiJk, and µIjk, can be written
in analogy with (6.16), as links (6.20)–(6.22) have the same form as (6.13).
Determining the third order cumulative probabilities µijk is more difficult
and details are given in Chapter 7, in particular in Sections 7.3 and 7.7.

To illustrate the model, let us analyze the three therapeutic effect mea-
surements. Model 1 assumes the marginal logits (6.17)–(6.19) are inde-
pendent of covariate effects, yielding 9 marginal parameters. Each of the
association parameters ψ in (6.20)–(6.23) is assumed independent of co-
variate effects as well as of the category indicators i, j, and k, yielding
three pairwise and one three-way association parameters. This brings the
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TABLE 6.15. Fluvoxamine Trial. Cross-classification of therapeutic effect at the
second, third, and fourth occasion. In parentheses, the fitted values. The first entry
corresponds to Model 1, the second entry corresponds to Model 2, the third entry
corresponds to the generalized RC model. Part II.

Side 4
Side 2 Side 3 1 2 3 4

2 1 33 2 0 0
(36.27) (2.92) (0.33) (0.08)
(30.39) (3.18) (0.35) (0.09)
(32.34) ( 2.76) ( 0.00) (0.00)

2 13 23 2 0
(13.80) (18.28) (2.14) (0.39)
(13.03) (16.81) (2.19) (0.46)
(16.88) (17.72) ( 0.73) (0.00)

3 1 2 3 0
(0.47) (1.84) (1.87) (0.62)
(0.44) (1.31) (1.05) (0.40)

( 1.48) ( 4.48) ( 2.39) (0.24)

4 0 1 1 1
(0.10) (0.30) (0.34) (0.21)
(0.10) (0.29) (0.22) (0.11)

( 0.20) ( 0.83) ( 0.99) (0.95)

total number of parameters to 13. Marginal parameter estimates (standard
errors in parentheses) are

η̂11 = −2.76(0.27) η̂21 = −1.04(0.14) η̂31 = −0.21(0.13)
η̂12 = −0.45(0.13) η̂22 = 0.75(0.13) η̂32 = 1.58(0.17)
η̂13 = 1.00(0.15) η̂23 = 2.40(0.22) η̂33 = 3.12(0.32).

The constant global cross-ratios are ψ̂12 = ψ̂12,ij = exp(2.58) = 13.18(3.08)
for the first and the second outcome, ψ̂13 = ψ̂13,ik = exp(1.38) = 3.99(0.89)
for the first and the third outcome, and ψ̂23 = ψ̂23,jk = exp(3.08) =
21.76(5.74) for the second and the third outcome. The three-way interac-
tion, ψ̂123 = ψ̂123,ijk = exp(0.18) = 1.19(0.66), is not significantly different
from 1. Fitted frequencies are given in Tables 6.14–6.17.

The overall deviance goodness-of-fit statistic is 37.13 on 50 degrees of
freedom (p = 0.9115). Inspecting standardized residuals, 62 out of 64 are
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TABLE 6.16. Fluvoxamine Trial. Cross-classification of therapeutic effect at the
second, third, and fourth occasion. In parentheses, the fitted values. The first entry
corresponds to Model 1, the second entry corresponds to Model 2, the third entry
corresponds to the generalized RC model. Part III.

Side 4
Side 2 Side 3 1 2 3 4

3 1 12 1 0 0
(8.39) (1.04) (0.16) (0.04)
(7.41) (1.12) (0.17) (0.05)

(12.59) ( 1.70) ( 0.00) (0.00)

2 25 25 1 1
(22.86) (24.33) (1.45) (0.27)
(24.97) (28.79) (2.09) (0.38)
(19.74) (24.31) ( 1.48) (0.00)

3 1 8 5 1
(1.15) (10.76) (7.30) (1.56)
(1.33) (9.96) (6.61) (1.64)

( 2.75) ( 8.61) ( 4.98) (0.63)

4 0 3 0 0
(0.22) (0.83) (1.16) (0.97)
(0.30) (1.05) (1.02) (0.71)

( 0.43) ( 1.78) ( 2.07) (1.91)

less than 2 in absolute value, the remaining ones being 2.24 and 2.39. Thus,
model fit is acceptable, but one might want to simplify the model further.
We will in turn simplify the marginal and association structures. First, the
three sets of logits reveal an increase over time, suggesting an improving re-
sponse to therapy. A simpler model would assume: η1i = αi, η2j = αj +π2,
and η3k = αk + π3 (i, j, k = 1, 2, 3). We interpret α1, α2, and α3 as cut-off
points at the first occasion and π2 and π3 as “proportional” shift para-
meters at occasions 2 and 3 respectively. Second, one might argue that
the association between outcomes is mainly a function of the time lag be-
tween the outcomes, but not so much of the measurement times themselves.
This is supported by the fact that lnψ12 and lnψ23 are roughly the same
(given their standard errors of about 0.24), with lnψ13 approximately half
of the other association. Should one grant belief to this assumption, then
an association model of the form γ = lnψ12 = 2 lnψ13 = lnψ23 might be
considered. The multiplier 0.5 for lnψ13 is suggested by the data and has
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TABLE 6.17. Fluvoxamine Trial. Cross-classification of therapeutic effect at the
second, third, and fourth occasion. In parentheses, the fitted values. The first entry
corresponds to Model 1, the second entry corresponds to Model 2, the third entry
corresponds to the generalized RC model. Part IV.

Side 4
Side 2 Side 3 1 2 3 4

4 1 1 0 0 0
(1.96) (0.42) (0.07) (0.02)
(1.42) (0.36) (0.06) (0.02)

( 0.08) ( 0.05) ( 0.00) (0.00)

2 5 6 0 0
(8.87) (5.58) (0.46) (0.11)
(8.16) (5.55) (0.44) (0.11)

( 5.50) (11.75) ( 2.70) (0.03)

3 7 18 9 1
(3.07) (19.88) (7.74) (0.99)
(3.26) (19.69) (6.67) (0.97)

( 3.82) (13.39) (10.15) (2.78)

4 0 2 8 6
(0.51) (3.13) (7.48) (4.78)
(0.68) (4.42) (7.84) (4.45)

( 0.98) ( 3.98) ( 4.37) (3.41)

limited empirical or theoretical support. Alternatively, one could estimate
this parameter from the data. Third, the three-way interaction can be set
to zero. There are six parameters in total.

Parameter estimates (standard errors) for this model are estimated to
be α̂1 = −2.41(0.17), α̂2 = −0.52 (0.12), α̂3 = 1.02(0.14) for the cut-
off points, with time shifts π̂2 = 1.32(0.11) for the second period and π̂3 =
2.17(0.16) for the third period. The single association parameter is equal to
γ̂ = 2.81(0.17), resulting in ψ̂12 = ψ̂23 = 16.56(2.77) and ψ̂13 =

√
16.56 =

4.07(0.34). Fitted frequencies are given in Table 6.14–6.17. This model has
a deviance of 43.67 on 57 degrees of freedom (p = 0.9029), and again
only two standardized residuals are larger than 2 (being 2.07 and 2.70),
showing that there is some support in the data for the assumed model.
Finally, comparing Models 1 and 2, yields a deviance of 6.54 on 7 degrees
of freedom (p = 0.4782), indicating that the first and more complex model
is not necessary.
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A similar model is obtained from the analysis of side effects at times 2,
3, and 4. Analyzing initial severity, side effects at time 2, and therapeutic
effect at time 2, yields a satisfactory model with only constant association.
No details on these models are included. These results are promising be-
cause they support the thesis that for a range of ordinal data applications,
parsimonious marginal global cross-ratio models are sufficient to describe
the data.

In case nominal data are to be analyzed, then the model can be adapted
to cell probabilities µ∗

ijk. This would mean that (6.17)–(6.23) have to be
changed in the spirit of (6.14). In particular, the global cross-ratios might
have to be replaced by their local counterparts.

In addition to the extensions studied sofar, it is possible to extend the
RC model to more than two dimensions. One option is to generalize Model
(6.5) by defining

µ∗
ijk = αiβjγkeφλiνjωk (6.24)

with obvious notation. Of course, the marginal pairwise local odds ratio
for a pair (i, j) has a very complicated form and (6.5) is not a submodel
of (6.24) in the sense that the interpretation of the parameters will change
in passing from a bivariate to a trivariate model. The conditional pairwise
odds ratio on the other hand is ln θ∗

ij|k = φωk(λi − λi+1)(νj − νj+1), where
ωk can be considered an adjustment for the category conditioned upon.
The three-way odds ratio is similar in structure to the two-way odds ratio
of the bivariate model (6.5).

Fitting Model (6.24) to the trivariate therapeutic data of Tables 6.14–
6.17 yields a deviance of 67.96 on 47 degrees of freedom (p = 0.0243),
indicating that the fit is not satisfactory. Fitted frequencies are displayed
in Table 6.14–6.17. One could consider more elaborate alternatives, such
as trivariate versions of the R+C+RC model (6.9). However, as indicated
earlier, for this kind of data, the marginal model defined in terms of cumula-
tive probabilities seems to be more promising, as it yields very parsimonious
descriptions of the association structure.

An alternative fashion to extend (6.5) would start from three pairwise
marginal RC models:

µ∗
ij+ = α

(12)
i β

(12)
j eφ(12)λ

(12)
i ν

(12)
j , (6.25)

µ∗
i+k = α

(13)
i γ

(13)
k eφ(13)λ

(13)
i τ

(13)
k , (6.26)

µ∗
+jk = β

(23)
j γ

(23)
k eφ(23)ν

(23)
j τ

(23)
k , (6.27)

(i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K). For (6.25)–(6.27) to define a valid
probability mass function µ∗

ijk, complicated restrictions must be satisfied:
summing (6.25) over j and (6.26) over k yields I restrictions:

α
(12)
i

J∑
j=1

β
(12)
j eφ(12)λ

(12)
i ν

(12)
j = α

(13)
i

K∑
k=1

γ
(13)
k eφ(13)λ

(13)
i τ

(13)
k ,
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(i = 1, . . . , I), with similarly J and K restrictions for the other two mar-
ginals.

6.7 Relation to Latent Continuous Densities

Several publications are devoted to the comparison of local and global
association models. Important references are Goodman (1981b), Mardia
(1970), Dale (1984), and Becker (1989). An argument, often used to claim
superiority of local over global association models, is the close relationship
between Goodman’s UM model and discretizations of the bivariate normal
distribution (Goodman 1981b, Becker 1989). Also, their close connection
with log-linear modeling is brought forward.

Holland and Wang (1987) introduced the local dependence function (LDF)
of a bivariate continuous density function f as an analog to the local cross-
ratios for contingency tables (Yule and Kendall 1950). The probability of
a rectangular cell around (x, y) with edges dx and dy is approximated by
f(x, y)dxdy. For cells around (x, y), (x, v), (u, y) and (u, v), the log local
cross-ratio is given by

θ(x, y; u, v) = ln
[
f(x, y)f(u, v)
f(x, v)f(u, y)

]
.

The local dependence function (LDF) at (x, y) is defined as

γf (x, y) = lim
dx→0,dy→0

θ(x, y; x + dx, y + dy)
dx dy

=
∂2

∂x∂y
ln f(x, y). (6.28)

Holland and Wang (1987) show that a bivariate density is characterized
by its LDF and its two marginal densities. Further, a bivariate normal
is characterized by a constant LDF and two normal marginal densities.
Precise statements and proofs are found in Holland and Wang (1987).

The LDF of a normal density with correlation ρ is equal to φ = ρ/(1−ρ2).
Exactly this quantity, together with appropriately chosen scores αi, βj , λi

and νj , are used by Becker (1989) to approximate the discretized normal
by (6.5). Note that a special version of the RC model, i.e., the UM model,
implies a constant local cross-ratio. It can be observed from Wang (1987),
who provides an alternative way of computing normal probabilities, that
the local association model introduced by (6.5) and the bivariate normal
naturally go together. This explains why the local association models fit far
better the discretized normal than do global cross-ratio models. In general,
local association models correspond to bivariate densities via the LDF.

An analogous relationship holds between the Dale model and the Plack-
ett distribution (Plackett 1965, Mardia 1970). If the global cross-ratio is
constant (or in particular zero) throughout a contingency table, then it
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corresponds to a bivariate Plackett distribution (constant “Yulean associa-
tion”). This was the case for the global association models, selected in the
case of Tables 6.4 and 6.5.

However, we observed that model construction is restricted to neither a
constant local association, nor a constant global association. Within family
(6.4), one can even consider non-linear association models. In particular,
we considered various types of row and column effects, together with in-
teractions. This suggests that the normal distribution and the Plackett
distribution are not the only ones of interest as continuous distributions,
underlying a contingency table. Different forms for the local and global
cross-ratios correspond to different distributions.

The correspondence between contingency tables and distribution func-
tions in the Dale model case is very easy. The definition of the distribution
is found by the continuous version of (6.16), of which the explicit form is
straightforward. A continuous version of (6.15) would include linear (and
quadratic) terms in x and y, together with an interaction term.

Let us again turn attention to Goodman’s R+C+RC model (6.9). To
construct a continuous density having a similar association structure, we
first select a local dependence function of the form

γ(φ; x, y) = φ1 + φ2f2(x) + φ3g3(y) + φ4f4(x)g4(y), (6.29)

where fk and gk are integrable functions. Molenberghs and Lesaffre (1999)
show how the corresponding density can be approximated. The RC model
is found by setting all terms, except those with subscript 4, equal to zero.

The models, fitted to Table 6.1, can be seen as extensions of both an
underlying normal and an underlying Plackett distribution. The choice be-
tween different models should not be made on the ground of potential
classes of underlying densities, but on the shape (structure) of associations.
Figure 6.1 presents local and global cross-ratios found from the fitted values
of both the RC+R+C model and the global cross-ratio model with row and
column effects, as well as interactions. Obviously, there is little pattern in
the local cross-ratios, whereas the global cross-ratios show a clear tendency:
all associations are high, with an increase if the dichotomy is constructed
closer to the categories with low labels, being highest between the variables
I(Father’s status ≤ 1) and I(Child’s status ≤ 1). This implies that social
mobility increases with increasing category. There is also slight evidence
that the association surface is symmetric, which would then correspond to
a global cross-ratio distribution with symmetric global cross-ratio function,
such as a symmetric second-degree polynomial.

6.8 Conclusions and Perspective

In this chapter, we presented association models for cross-classified data
that belong to the unified multivariate logistic framework, described by
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FIGURE 6.1. Fluvoxamine Trial. Local and global cross-ratios, found from fitting
the RC+R+C model and the global cross-ratio model.

McCullagh and Nelder (1989) and Glonek and McCullagh (1995). This
family provides a versatile way of exploring the association structure of
cross-classified data. It encompasses both local and global measures of as-
sociation, with emphasis on cross-ratios (odds ratios), as log cross-ratios
can be written as contrasts of log-probabilities. Both fully marginal mod-
els, such as the Dale model and its multivariate extensions, as models with
a conditional flavor, such as Goodman’s (1981a) RC model, are members
of this family. Further, linear as well as non-linear link functions (e.g., in-
volving interactions between row and column effects) fit within this family.

We argue that, in spite of the close connection between an RC model
and an underlying normal density and the absence of this connection with
a fully marginal model, this last category of models provides a flexible
toolkit to explore the association structure of cross-classified data, whether
of nominal or of ordinal type. We infer from the examples that they often
yield parsimonious descriptions of the association structure. Further, mar-
ginal association models are easily extended to marginal regression models
to include covariate effects. Extensions to multi-way tables are possible,
both with the RC as well as with the marginal family.

Both Dale (1984) and Anscombe (1981) suggest the use of global cross-
ratios as soon as the outcomes are recorded as ordinal variables. We have
shown that this choice is supported by a very good fit for this kind of model
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to a range of applications. Further, we claim that the global cross-ratio can
lead to interesting interpretations of the association structure itself, which
we think is an often neglected aspect of data analysis.

An argument, in favor of RC models, is their computational simplicity.
However, with the current state of high quality statistical software, fitting
marginal global association models poses no problems.

The Dale model, being a marginal model, is a member of a wider class of
marginal models encompassing, for example, the probit model, and allow-
ing for the analysis of multivariate and longitudinal data, with or without
covariates, and with measurements sequences of length longer than two.
This is the topic of the next chapter.



7
Likelihood-based Marginal Models

In Section 5.3.1, a general overview of marginal models is presented. Specific
versions, largely focused on contingency tables, were presented in Chap-
ter 6. In this chapter, we contemplate the fully general situation. We focus
on fully specified probabilistic models, in contrast to specifying a few low-
order moments only, such as in generalized estimating equations (GEE).
Although undoubtedly complicating both the theory and the computations,
there are at least two situations in which this route is the preferred one.
First, the scientific question may require careful modeling of the associ-
ation structure, in addition to the univariate response function. Second,
one may be interested in the joint probability of a number of events (e.g.,
what is the probability of side effects occurring at two subsequent measure-
ment occasions). In such a case, the association structure is not of direct
interest, but is still indirectly needed to calculate such joint, or union, prob-
abilities. An additional reason is that, such models as the Bahadur model
(Section 7.2) or the global odds ratio model (the Dale model, Section 7.7)
are the underlying basis for non-likelihood methods discussed later. For ex-
ample, standard GEE, such as introduced by Liang and Zeger (1986) and
studied in Chapter 8, is based on Bahadur’s probabilistic model, while the
version proposed by Lipsitz, Laird, and Harrington (1991) can be seen as
rooted in the Dale model.

We begin by presenting the Bahadur model (Section 7.2). It has a rela-
tively simple genesis, but at the same time suffer from severe drawbacks.
Section 7.3 presents a general framework, encompassing a wide class of mar-
ginal models, while details on maximum likelihood estimation are given in
Section 7.4. The ideas developed in Sections 7.3 and 7.4 are exemplified, us-



84 7. Likelihood-based Marginal Models

ing an influenza study, in Section 7.5. Two specific families, the multivariate
probit model (Section 7.6) and the multivariate Dale model, or global odds
ratio model (Section 7.7) are presented next. Section 7.8 presents a hybrid
model, combining marginal and conditional model specifications. Three
case studies, a cross-over trial in primary dysmenorrhoea (Section 7.9), the
multivariate POPS study (Section 7.10, introduced in Section 2.6), and the
longitudinal fluvoxamine trial (Section 7.11) are presented.

7.1 Notation

In Chapter 4, we indicated, for each individual, subject, or experimen-
tal unit i = 1, . . . , N in a study, a series of measurements by Y i =
(Yi1, . . . , Yni

)′, along with covariate information, usually grouped into a
matrix Xi. We will refer to this convention as the regression notation.

When data are non-Gaussian in nature, this notation can sometimes be
used without too much modification, such as in the later chapters in this
part (e.g., on generalized estimating equations in Chapter 8), or in Part IV
on subject-specific models. On the other hand, note that in Chapter 6 we
merely needed indices to indicate cells in a contingency table. For example,
(i, j) in a two-way contingency table refers to row i and column j. In each
such cell, a number of subjects are grouped. When a two-way contingency
table is further split over levels of, say, a dichotomous covariate, such as in
Section 6.6.1, one often merely adds an additional index. This is similar to
the conventions in analysis of variance and in contrast to linear regression.

In the present chapter, we need a hybrid system. On the one hand, the
focus is on (longer) sequences of measurements, together with sets of co-
variates that can be continuous, categorical, or a mixture of these. In later
chapters, it will be sufficient to use the regression-type notation, sketched
at the start of this section. However, here we will need to describe not just
marginal, univariate regressions, also the association structure needs to be
modeled. This brings us close to a contingency table setting. When we have,
for example, one covariate with two levels and five repeated binary mea-
sures, we can view the data as consisting of two 25 contingency tables. But
the same view can be adopted when we have covariates with more levels,
and even when some or all of the covariates are continuous. For continuous
covariates, measured with high accuracy, there may be one or at most a
few study subjects corresponding to it. Rather than being a problem, it
is merely a way of conveniently framing both genuine contingency table
settings and categorical data regression settings into a single, contingency
table notational convention.

Thus, in this chapter, we will let r = 1, . . . , N indicate the covariate or
design levels, each containing Nr subjects. For example, when there is one
covariate with two levels, N = 2 and the total sample size is N1 + N2.
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When the covariate is continuous and such that there is only one subject
per covariate level, then each Nr = 1 and the total sample size is N . The
consequence of our choice is that, for the time being, we need an additional
index i for subjects within design lvels.

The outcome for subject i at the rth level (group) is a series of measure-
ments Yrij (j = 1, . . . , nr). In case there are subjects sharing covariates,
but with a different number of repeated measurements taken, then these
should be split over several design levels, implying that r defines unique
combinations of covariate levels and numbers of repeated measurements.
An additional notational element is that our outcome Yrij can be binary
(usually taking the values 0 and 1), but also categorical, ordered, or un-
ordered. We then need additional notation and assume that in such case
variable Yrij can take on cj distinct (possibly ordered) values. Without
loss of generality, denote them by 1, . . . , cj . In examples of a multivariate
nature, the measurement sequence usually is equally long for all subjects,
i.e., nr ≡ n but the number cj of categories per outcome can be variable. In
longitudinal settings, the number of measurements could also be different
from subject to subject, but when the same outcome is measured repeat-
edly over time, one typically sees that cj ≡ c. The more elaborate notation
will be referred to as the contingency table notation.

In the specific case of categorical data with more than two, possibly
ordered, categories, it is useful to make use of some additional notation. All
information about the responses on the units in the rth group is contained
in a cross-classification of the outcomes Yrij into a c1×. . .×cnr dimensional
contingency table with cell counts

Z∗
r (k) ≡ Z∗

r (k1, . . . , knr
), (7.1)

where cell k = (k1, . . . , knr
) corresponds to the subjects with Yrij = kj , for

j = 1, . . . , nr.
Along with the outcomes, a vector of explanatory variables xrj is recorded.

The covariate vector is allowed to change over time. It can include contin-
uous and discrete variables. Available covariate information, along with
other relevant design features, are incorporated in a design matrix Xr.

In harmony with the possibility to use cumulative measures for ordinal
data, we construct the table of cumulative counts:

Zr(k) =
∑
	≤k

Z∗
r (	). (7.2)

Thus, Zr(k), where k = (k1, . . . , knr
), is just the number of individuals in

group r whose observed response vector is k, and likewise for Zr(k)∗. The
corresponding probabilities are

µ∗
r(k) = P (Y ri = k|Xr, β) (7.3)
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and µr(k) = P (Y ri ≤ k|Xr, β). Let Zr be the vector of all cumulative
cell counts with µr the corresponding vector of probabilities. Note that
Zr(c1, . . . , cnr ) = nr and µr(c1, . . . , cnr ) = 1. Therefore, omitting these
two entries from Zr and µr, respectively, yields non-redundant sets. Z∗

r

and µ∗
r are defined similarly, and simple matrix equalities

µ∗
r = Brµr, Z∗

r = BrZr (7.4)

hold. As an example, consider a bivariate binary outcome vector, with
probabilities µ∗

r = (µ∗
11, µ

∗
12, µ

∗
21, µ

∗
22) and a similar ordering for µr. The

matrix Br is found by

B−1
r =

⎛⎜⎜⎜⎝
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎞⎟⎟⎟⎠ .

The marginal counts are given by all counts for which all but one index
are equal to their maximal value: Zrjk ≡ Zr(c1, . . . , cj−1, k, cj+1, . . . , cnr

).
Bivariate cell counts, i.e., cell counts of a cross-classification of a pair of
outcomes, follow from setting all but two indices ks equal to cs. Therefore,
this description very naturally combines univariate, bivariate, and multi-
variate information. The ordering needed to stack the multi-indexed counts
and probabilities into a vector will be assumed fixed. Several orderings of
both Zr and µr are possible. A natural choice is the lexicographic ordering,
but this has the disadvantage of dispersing the univariate marginal counts
and means over the entire vector. Therefore, we will typically group the
elements by dimensionality first.

7.2 The Bahadur Model

7.2.1 A General Bahadur Model Formulation
Bahadur (1961) introduced this model, with its elegant closed form, but
with a number of computational problems surrounding it, stemming from
the complicated and highly restrictive form of its parameter space. The
model is conceived for binary data and can be introduced using the simpler
regression notation, outlined in Section 7.1. Thus, let the binary response
Yij indicate whether or not measurement j on subject i exhibits the event
under investigation.

Assume the marginal distribution of Yij to be Bernoulli with

E(Yij) = P (Yij = 1) ≡ πij .
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This expectation can be taken conditional upon covariates Xi. For simplic-
ity, they are suppressed from notation. To start describing the association,
the pairwise probability

P (Yij1 = 1, Yij2 = 1) = E(Yij1Yij2) ≡ πij1j2

needs to be characterized. This “success probability” of two measurements
taken in the same subject can be modeled in terms of the two marginal
probabilities πij1 and πij2 , as well as an association parameter, this being
the marginal correlation coefficient in Bahadur’s model.

The marginal correlation coefficient assumes the form

Corr(Yij1 , Yij2) ≡ ρij1j2 =
πij1j2 − πij1πij2

[πij1(1 − πij2)πij2(1 − πij2)]1/2 . (7.5)

In terms of this association parameter, the joint probability πij1j2 can then
be written as

πij1j2 = πij1πij2 + ρij1j2 [πij1(1 − πij1)πij2(1 − πij2)]
1/2. (7.6)

Hence, given the marginal correlation coefficient ρij1j2 and the univariate
probabilities πij1 and πij2 , the pairwise probability πij1j2 can be calculated
with ease.

The first and second moments of the distribution have now been specified.
However, a likelihood-based approach requires the complete representation
of the joint probabilities of the vector of binary responses in each unit. The
full joint distribution f(y) of Y i = (Yi1, . . . , Yini)

′ is multinomial with a
2ni probability vector. Bahadur used, apart from the conventional two-way
correlation coefficient, third- and higher- order correlation coefficients to
completely specify the joint distribution. To this end, let

εij =
Yij − πij√
πij(1 − πij)

and eij =
yij − πij√
πij(1 − πij)

, (7.7)

where yij is an actual value of the binary response variable Yij . Further,
let

ρij1j2 = E(εij1εij2),
ρij1j2j3 = E(εij1εij2εij3),

..., (7.8)
ρi12...ni = E(εi1εi2 . . . εini).

Then, the general Bahadur model can be represented by the expression
f(yi) = f1(yi)c(yi), where

f1(yi) =
ni∏

j=1

π
yij

ij (1 − πij)1−yij
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and

c(yi) = 1 +
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3

+ . . . + ρi12...niei1ei2 . . . eini .

Thus, the probability mass function is the product of the independence
model f1(yi) and the correction factor c(yi). One view-point is to consider
the factor c(yi) as a model for overdispersion.

7.2.2 The Bahadur Model for Clustered Data
To enhance understanding, let us consider the Bahadur model for the case
of exchangeably clustered data. This version of the model was of use for
Aerts et al (2002) who studied models for clustered data arising in an
environmental context.

When the focus is on the special case of clustered data, this assumes
on the one hand that each measurement within a unit (individual, family,
litter, cluster,. . . ) has the same response probability, i.e., πij = πi. On the
other hand, it usually implies that within a litter, the associations of a
particular order are constant, i.e., ρij1j2 = ρi(2) for j1 < j2, ρij1j2j3 =
ρi(3) for j1 < j2 < j3,. . . , ρi12...ni

= ρi(ni), with i = 1, . . . , N . Given these
assumptions, we do not need to know the individual outcomes Yij , but it
suffices to know

Zi =
ni∑

j=1

Yij , (7.9)

the number of successes within a unit, with realized value zi. Under ex-
changeability (or equicorrelation), the Bahadur model reduces to

f1(yi) = πzi
i (1 − πi)ni−zi

and

c(yi) = 1 +
ni∑

r=2

ρi(r)

r∑
s=0

(
zi

s

)(
ni − zi

r − s

)
(−1)s+rλr−2s

i , (7.10)

with λi =
√

πi/(1 − πi). The probability mass function of Zi is given by

f(zi) =
(

ni

zi

)
f(yi).

In addition, setting all three- and higher-way correlations equal to zero,
the probability mass function of Zi simplifies further to:

f(zi) ≡ f(zi|πi, ρi(2), ni) =
(

ni

zi

)
πzi

i (1 − πi)ni−zi
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×
[
1 + ρi(2)

{(
ni − zi

2

)
πi

1 − πi
− zi(ni − zi)

+

(
zi

2

)
1 − πi

πi

}]
. (7.11)

This very tractable expression of the Bahadur probability mass function
is advantageous over other representations, such as the multivariate pro-
bit (Section 7.6) and Dale (Section 7.7) models, for which no closed form
solutions, free of integrals, exist. However, a drawback is the fact that the
correlation between two responses is highly constrained when the higher
order correlations are removed. Even when higher order parameters are
included, the parameter space of marginal parameters and correlations is
known to be peculiar. Bahadur (1961) discusses restrictions on the corre-
lation parameters. The second-order approximation in (7.11) is only useful
if it is a probability mass function. Bahadur indicates that the sum of the
probabilities of all possible outcomes is one. However, depending on the
values of πi and ρi(2), expression (7.11) may fail to be non-negative for
some outcomes. The latter results in restrictions on the parameter space,
which, in case of the second-order approximation, are described by Bahadur
(1961). From these, it can be deduced that the lower bound for ρi(2) ap-
proaches zero as the cluster size increases. However, it is important to note
that also the upper bound for this correlation parameter is constrained.
Indeed, even though it is one for clusters of size two, the upper bound
varies between 1/(ni − 1) and 2/(ni − 1) for larger clusters. Taking a clus-
ter size of, for example, 12, the upper bound is in the range (0.09; 0.18).
Kupper and Haseman (1978) present numerical values for the constraints
on ρi(2) for choices of πi and ni. Restrictions for a specific version where a
third-order association parameter is included as well are studied by Pren-
tice (1988), while a more general situation is studied by Declerck, Aerts,
and Molenberghs (1998). See also Aerts et al (2002).

The marginal parameters πi and ρi(2) can be modeled using a composite
link function. Because Yij is binary, the logistic link function for πi is a
natural choice. In principle, any link function, such as the probit link,
the log-log link or the complementary log-log link, could be chosen. A
convenient transformation of ρi(2) is Fisher’s z-transform. This leads to the
following generalized linear regression relations⎛⎝ ln

(
πi

1−πi

)
ln
(

1+ρi(2)

1−ρi(2)

) ⎞⎠ ≡ ηi = Xiβ, (7.12)

where Xi is a design matrix and β is a vector of unknown parameters. Note
that (7.12) is not encompassed by (6.2).
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Denote the log-likelihood contribution of the ith unit by

	i = ln f(zi|πi, ρi(2), ni).

The maximum likelihood estimator β̂ for β is defined as the solution to the
score equations U(β) = 0. The score function U(β) can be written as

U(β) =
N∑

i=1

X ′
i(T

′
i )

−1Li (7.13)

where

Ti =
∂ηi

∂Θi
=

(
∂ηi1
∂πi

∂ηi2
∂πi

∂ηi1
∂ρ(2)

∂ηi2
∂ρi(2)

)
=

(
1

πi(1−πi)
0

0 2
(1−ρi(2))(1+ρi(2))

)
,

Li =
∂	i

∂Θi
=

(
∂�i

∂πi
∂�i

∂ρi(2)

)
and Θi = (πi, ρi(2))′, the set of natural parameters. A Newton-Raphson
algorithm can be used to obtain the maximum likelihood estimates β̂ and
an estimate of the asymptotic covariance matrix of β̂ can be obtained from
the observed information matrix at maximum.

When including higher order correlations, implementing the score equa-
tions and the observed information matrices becomes increasingly cumber-
some. Although the functional form (7.13) does not change, the components
Ti and Li become fairly complicated. Fisher’s z transform can be applied
to all correlation parameters ρi(r). The design matrix Xi would then ex-
tend in a straightforward fashion as well. Unfortunately, fitting a higher
order Bahadur model, is not straightforward, due to increasingly complex
restrictions on the parameter space.

Observing that interest is often restricted to the marginal mean function
and the pairwise association parameter, one can replace a full likelihood
approach by estimating equations where only the first two moments are
modeled and working assumptions are adopted about third- and fourth-
order moments. This is treated as one of the extensions to standard gen-
eralized estimating equations in Section 8.5. See also Liang, Zeger, and
Qaqish (1992).

7.2.3 Analysis of the NTP Data
Table 7.1 presents parameter estimates and standard errors for the Bahadur
model, in the specific context of clustered outcomes as in Section 7.2.2,
fitted to several outcomes in three of the NTP datasets, described in Sec-
tion 2.7. Apart from the external, visceral, and skeletal malformation out-
comes, we also consider the so-called collapsed outcome, which is 1 if at
least one of the three malformations occur and 0 otherwise.
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TABLE 7.1. NTP Data. Parameter estimates (standard errors) for the Bahadur
model, fitted to various outcomes in three studies. β0 and βd are the marginal
intercept and dose effect, respectively; βa is the Fisher z transformed correlation;
ρ is the correlation.

Outcome Parameter DEHP EG DYME
External β0 -4.93(0.39) -5.25(0.66) -7.25(0.71)

βd 5.15(0.56) 2.63(0.76) 7.94(0.77)
βa 0.11(0.03) 0.12(0.03) 0.11(0.04)
ρ 0.05(0.01) 0.06(0.01) 0.05(0.02)

Visceral β0 -4.42(0.33) -7.38(1.30) -6.89(0.81)
βd 4.38(0.49) 4.25(1.39) 5.49(0.87)
βa 0.11(0.02) 0.05(0.08) 0.08(0.04)
ρ 0.05(0.01) 0.02(0.04) 0.04(0.02)

Skeletal β0 -4.67(0.39) -2.49(0.11) -4.27(0.61)
βd 4.68(0.56) 2.96(0.18) 5.79(0.80)
βa 0.13(0.03) 0.27(0.02) 0.22(0.05)
ρ 0.06(0.01) 0.13(0.01) 0.11(0.02)

Collapsed β0 -3.83(0.27) -2.51(0.09) -5.31(0.40)
βd 5.38(0.47) 3.05(0.17) 8.18(0.69)
βa 0.12(0.03) 0.28(0.02) 0.12(0.03)
ρ 0.06(0.01) 0.14(0.01) 0.06(0.01)

Specifically, a marginal logit model linear in dose and a constant associ-
ation ρi(2) = ρ(2) are chosen, implying that Xi in (7.12) takes the form:

Xi =

(
1 di 0
0 0 1

)
(7.14)

and

β =

⎛⎜⎝ β0

βd

βa

⎞⎟⎠ , (7.15)

where β0 is an intercept, βd the dose effect, and βa the Fisher z transformed
correlation.

We conclude that the background risk for malformation in all cases is
very small, but that it increases with dose. For the external malformation
outcome in the DEHP study, for example, the background risk is estimated
to be small:

e−4.93

1 + e−4.93 = 0.0071.
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When the dose level equals its highest value (d = 1.0), the risk becomes

e−4.93+5.15

1 + e−4.93+5.15 = 0.55,

implying that more than one out of two foetuses would be malformed.
The dose-response curve that follows from the marginal logistic regres-

sion:

P (Yij = 1|di) =
e−4.93+5.15di

1 + e−4.93+5.15di

is supplemented with information on the association. In addition, one ob-
tains a correlation of

ρ̂ =
eβ̂a − 1

eβ̂a + 1
= 0.05.

Although small, the within-cluster association is significant, as it is for most
but not all outcomes.

7.2.4 Analysis of the Fluvoxamine Trial
The fluvoxamine trial, introduced in Section 2.4, were analyzed in some
detail in Chapter 6. In Section 6.6, several two-way contingency tables,
either based on a single outcome at two measurement occasions, or side
effects and therapeutic effect at the same time, were analyzed. This initial
setting was extended to categorical covariates and three-way tables in Sec-
tions 6.6.1 and 6.6.2, respectively. Using the Bahadur model, we are able
to extend this further to sequences of arbitrary length, and a combination
of continuous and categorical covariates. This is true in principle, as the
Bahadur model is restrictive due to constraints on the parameter space,
as stated before. In Section 7.2.3, we were able to analyze the NTP data,
with dose treated as a continuous covariate, in spite of the fact that some
litters consist of around 15 littermates, but we could do so only by carefully
exploiting the exchangeable nature of the data, with only three regression
parameters as a result.

Here, we would like to study three side-effects measures simultaneously,
regressed on age and sex of the patient, prior duration of the mental illness,
and initial severity of the disease. We are confronted with two stumbling
blocks. First, because the Bahadur model is formulated for binary out-
comes, we need to collapse the original four-category side effects outcome
into a dichotomous variable. This is done by transforming the lower two
levels of the side effects variable into 0 and the upper two into 1. Second,
due to the parameter restrictions, it was not possible to consider all four
covariates simultaneously. Thus, we resrict attention to the sex and prior
duration variables. Parameter estimates are given in Table 7.2. The three-
way correlation coefficient is set to zero. The effect of the covariates is not
significant, but the correlation parameters are. For ease of interpretation,
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TABLE 7.2. Fluvoxamine Study. Longitudinal analysis using Bahadur’s model.
The side effects at three successive times are regressed on sex and duration. The
entries represent the parameter estimates (standard errors).

Side effects at time
Parameter 1 2 3
Intercept 0.81(0.47) 0.15(0.37) 0.57(0.44)
Sex -0.56(0.26) 0.02(0.20) 0.14(0.24)
Duration 0.008(0.009) 0.01(0.01) -0.01(0.01)

Association Parameters
12 13 23 123

Fisher z transformed correlations
1.42(0.16) 0.84(0.13) 1.37(0.15) —

Correlations
0.61(0.05) 0.39(0.05) 0.59(0.05) —

the Fisher z transformed correlation, as they figure in the model and fitting
program, are transformed again to their original scale, supplemented with
standard errors obtained by means of the delta method.

Thus, while the Bahadur model can be of some use in a restricted number
of situations, including exchangeably clustered outcomes, there are practi-
cal limitations when used in multivariate and longitudinal settings. There-
fore, in spite of the relatively simple model formulation, there is a need for
alternative models, when a full likelihood based analysis of a marginally
formulated model is envisaged. In the next section, we will sketch a general
framework to achieve this, then consider the probit (Section 7.6) and Dale
model (Section 7.7) cases, whereafter we analyze several sets of data. In
particular, we return to the fluvoxamine study in Section 7.11.

7.3 A General Framework for Fully Specified
Marginal Models

We will now use the contingency table notation laid out in Section 7.1. A
marginal model can be built in several ways. In a few cases it is possible to
write down the multivariate probability mass function immediately, such
as in the Bahadur model of Section 7.2. In most cases, one starts from the
univariate margins, on top of which an association structure is assumed,
of the second and higher orders, to complete model specification. We will
proceed here in this at first sight laborious way.
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By means of (7.3), the set of cell probabilities at design level r has been
defined. To proceed with modeling, we typically map these onto a set of
link functions ηr, which can then be expressed in terms of parameters of
scientific interest. In the Bahadur model for clustered data, this was done by
means of (7.12). In general, we map the Cr-vector µr (Cr = c1 ·c2 · . . . ·cnr )
to

ηr = ηr(µr), (7.16)

a C
′
r-vector. In many models, Cr = C

′
r, and ηr and µr have the same

ordering. A counterexample is provided by the probit model, where the
number of link functions is smaller than the number of mean components,
as soon as nr > 2, i.e., there are three of more repeated measures [see
(7.25)–(7.27)]. As already indicated in Section 6.2.1, an important class of
link functions is discussed by McCullagh and Nelder (1989):

ηr(µr) = C ln(Aµr), (7.17)

a definition in terms of contrasts of log probabilities, where the probabilities
involved are linear combinations Aµr. The same class was presented in (6.2)
for the specific case of marginal models for a contingency table.

7.3.1 Univariate Link Functions
We consider particular choices of link functions. To this end, let us abbre-
viate the univariate marginal probabilities by

µrjk = µr(c1, . . . , cj−1, k, cj+1, . . . , cnr
),

then the logit link becomes

ηrjk = ln(µrjk) − ln(1 − µrjk) = logit(µrjk). (7.18)

Some link functions that are occasionally of interest, such as the probit or
complementary log-log link are not supported by (7.17) but they can easily
be included in (7.16). The probit link is

ηrjk = Φ−1
1 (µrjk),

with Φ1 the univariate standard normal distribution.

7.3.2 Higher-order Link Functions
However, univariate links alone do not fully specify ηr and hence leave the
joint distribution partly undetermined. Full specification of the association
requires addressing the form of pairwise and higher-order probabilities.
First, we will consider the pairwise associations. Let us denote the bivariate
probabilities, pertaining to the j1th and j2th outcomes, by

µr,jh,k� = µr(c1, . . . , cj−1, k, cj+1, . . . , ch−1, 	, ch+1, . . . , cnr ).
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TABLE 7.3. Association structure of selected marginal models.

Name Association structure Equation
Success probability Logit of joint probability (7.19)
Bahadur model Marginal correlation coefficients (7.5)
Dale model Global marginal odds ratio (7.21)–(7.23)

Local marginal odds ratio (7.24)
Probit model Polychoric correlation (7.25)–(7.27)

Some association parameterizations are summarized in Table 7.3.
The success probability parameterization of Ekholm (1991) consists of

choosing a link function for the univariate marginal means (e.g., a logit link)
and then applying the same link function to the two- and higher order
success probabilities (i.e., the probabilities for observing a single success
when looking at one outcome at a time, a pair of successes when looking
at pairs of outcomes,. . . ). For categorical data, a logit link for two-way
probabilities is given by

ηr,jh,k� = ln(µr,jh,k�) − ln(1 − µr,jh,k�) = logit(µi,jh,k�), (7.19)

for k = 1, . . . , cj − 1 and 	 = 1, . . . , ch − 1. Ekholm, Smith, and McDon-
ald (1995) and Ekholm, McDonald, and Smith (2000) used these to define
dependence ratios, in the specific case of binary data. The marginal corre-
lation coefficient (Bahadur 1961) is defined as

ρr,jh,k� =
µr,jh,k� − µrjkµrh�√

µrjk(1 − µrjk)µrh�(1 − µrh�)
. (7.20)

This model has been developed, for binary data, including the higher order
correlations, in Section 7.2.

We will put strong emphasis on the marginal global odds ratio, defined
by

ψr,jh,k� =
(µr,jh,k�)(1 − µrjk − µrh� + µr,jh,k�)

(µrh� − µr,jh,k�)(µrjk − µr,jh,k�)
(7.21)

and usefully modeled on the log scale as

ηr,jh,k� = lnψr,jh,k�

= ln(µr,jh,k�) − ln(µrjk − µr,jh,k�)
− ln(µrh� − µr,jh,k�) + ln(1 − µrjk − µrh� + µr,jh,k�).

Higher order global odds ratios are easily introduced, for example, using
ratios of conditional odds (ratios). Let

µrj|h(zh) = P (Zrijkj = 1|Zrihkh
= zh, Xr, β) (7.22)
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be the conditional probability of observing a success at occasion j, given the
value zh is observed at occasion h, and write the corresponding conditional
odds as

ψrj|h(zh) =
µrj|h(zh)

1 − µrj|h(zh)
.

The pairwise marginal odds ratio, for occasions j and h, is defined as

ψrjh =

{
pr(Zrijkj

= 1, Zrihkh
= 1)

}{
pr(Zrijkj

= 0, Zrihkh
= 0)

}{
pr(Zrijkj = 0, Zrihkh

= 1)
}{

pr(Zrijkj = 1, Zrihkh
= 0)

}
=

ψrj|h(1)
ψrj|h(0)

,

in accordance with (7.21). This formulation can be exploited to define the
higher order marginal odds ratios in a recursive fashion:

ψrj1...jmjm+1 =
ψrj1...jm|jm+1(1)
ψrj1...jm|jm+1(0)

, (7.23)

where ψrj1...jm|jm+1(zm+1) is defined by conditioning all probabilities oc-
curring in the expression for ψrj1...jm

on Zrijm+1 = zjm+1 . The choice of
the variable to condition on is immaterial. Observe that multi-way marginal
global odds ratios are defined solely in terms of conditional probabilities.
We will return to these in Section 7.7.4, when more detail is given about
the multivariate Dale model.

Another type of marginal odds ratios is given by the marginal local odds
ratios. These were used in Section 6.2.2. This type of odds ratio changes
(7.21) to

ψ∗
r,jh,k� =

µ∗
r,jh,k�µ

∗
r,jh,k+1,�+1

µ∗
r,jh,k+1,�µ

∗
r,jh,k,�+1

, (7.24)

with the cell probabilities as in (7.3). Higher order marginal local odds
ratios are constructed in the same way as their global counterparts. The
global odds ratio model will be studied further in Section 7.7.

Observe that the multivariate probit model (Ashford and Sowden 1970,
Lesaffre and Molenberghs 1991) also fits within the class defined by (7.16).
To see this, let g = h−1. For three categorical outcome variables, the inverse
link is specified by

µrjk = Φ1(ηrjk), (7.25)
µr,jh,k� = Φ2(ηrjk, ηrh�, ηr,jh,k�), (7.26)

µr,123,k�m = Φ3(ηr1k, ηr2�, ηr3m, ηr,12,k�, ηr,13,km, ηr,23,�m), (7.27)

where the notation for the three-way probabilities is obvious. The associa-
tion links ηr,jh,k� represent any transform (e.g., Fisher’s z-transform such
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as in the Bahadur model of Section 7.2) of the correlation coefficient. It
is common practice to keep each correlation constant throughout a table,
rather than having it depend on the categories: ηr,jh,k� ≡ ηr,jh. Relaxing
this requirement may still give a valid set of probabilities, but the cor-
respondence between the categorical variables and a latent multivariate
normal variable is lost. Finally, observe that univariate links and bivari-
ate links (representing correlations) fully determine the joint distribution.
This implies that the mean vector and the link vector will have a different
length, except in the univariate and bivariate cases.

In summary, marginal models are characterized by jointly specifying mar-
ginal response functions and marginal association measures. Models can be
classified by the association measures, as exemplified in Table 7.3.

Finally, model formulation is completed by constructing appropriate de-
sign matrices. Let us give an example to indicate how model assumptions
are reflected by choosing particular types of design. We deliberately re-
strict ourselves to linear predictors, while, in principle, there is no obstacle
to include non-linear effects (Chapter 20). The design matrix Xr for the
rth design level includes all information which is needed to model both
the marginal mean functions and associations. Each row corresponds to an
element in the vector of link functions ηr. Its generality is best illustrated
using an example.

Consider the case of three outcomes, recorded on a three-point scale. Let
the measurement times be t1 ≡ 0, t2, and t3. Assume the recording of four
explanatory variables, x1, . . . , x4, with only x3 and x4 time-varying. We first
turn our attention to the marginal distributions. Let x1 have a constant
effect on each outcome, i.e., a single parameter describes the effect of x1
on the cumulative logits of the three outcome probabilities. On the other
hand, the effect of x2 is allowed to change over time. We also introduce a
single parameter to describe the effect of x3 and three separate parameters
to account for the influence of x4. These assumptions call for the following
parameter vector

β1 = (β01, β02, τ2, τ3, β1, β21, β22, β23, β3, β41, β42, β43)′,

with β0k intercepts, τj the effect of measurement time j, β1 and β3 the
parameters, needed to describe the effect of x1 and x3 respectively, and βtj

the parameter describing the effect of x
(j)
t at time t (t = 2, 4; j = 1, 2, 3).

Next, assume that the two-way associations depend on the pair of variables
they refer to, as well as on the cumulative category within that variable.
Finally, assume dependence on the covariate x1r. This introduces extra
parameters

α2 = (γ, γ11, γ12, γ21, γ22, γ31, γ32, φ1, φ2, φ3)′,

with γ the intercept, γjk the dependence on category k of outcome j (j =
1, 2; k = 1, 2), and φj the dependence on x1. Finally, assume a constant
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β01 β02 τ2 τ3 β1 β21 β22 β23 β3 β41 β42 β43

ηr(1, 3, 3) 1 0 0 0 x1r x2r 0 0 x
(1)
3r x

(1)
4r 0 0

ηr(2, 3, 3) 0 1 0 0 x1r x2r 0 0 x
(1)
3r x

(1)
4r 0 0

ηr(3, 1, 3) 1 0 1 0 x1r 0 x2r 0 x
(2)
3r 0 x

(2)
4r 0

ηr(3, 2, 3) 0 1 1 0 x1r 0 x2r 0 x
(2)
3r 0 x

(2)
4r 0

ηr(3, 3, 1) 1 0 0 1 x1r 0 0 x2r x
(3)
3r 0 0 x

(3)
4r

ηr(3, 3, 2) 0 1 0 1 x1r 0 0 x2r x
(3)
3r 0 0 x

(3)
4r

FIGURE 7.1. Design matrix for marginal means and pairwise associations. Mar-
ginal means.

value for the three-way associations, α3 say. The entire parameter vector
is denoted as

β = (β
′
, α

′
2, α3)′.

The design matrix for design level r, Xr, is block diagonal with blocks Xr1
(mean functions, shown in Figure 7.1), Xr2 (pairwise association, shown in
Figure 7.2), and Xr3 (three-way association).

Observe that, apart from the intercepts β0k, the design is identical for
each cumulative logit in Figures 7.1 and 7.2. This reflects the proportional
odds assumption when marginal logits are used. If this assumption is con-
sidered unrealistic, the design can be generalized without any difficulty.
Nominal covariates and interactions between covariates are also easily in-
cluded.

The second block of the design matrix, X2r, corresponds to the pairwise
associations and is given by Figure 7.2. Finally, the design for the three-way
associations in our example is a 8 × 1 column vector of ones, correspond-
ing to the 8 link functions ηr(k1, k2, k3) (kj = 1, 2; j = 1, 2, 3). Replacing
the elements of this vector by zeros has the effect of setting higher order
association components equal to one (zero on the log scale).

Generalizations include non-block diagonal designs, and structured as-
sociation such as exchangeable association, temporal association (as intro-
duced by Fitzmaurice and Lipsitz 1995), and banded association. In many
circumstances, the association structure of a given table, representing a
two- or multi-way classification of several variables is of direct interest,
rather than the dependence of the outcomes on covariates. Association
measures are extensively studied in Goodman (1981b). We will discuss
these further in Chapter 11. With the current approach, we are also able
to explore the association structure of contingency tables. A typical form
for the linear predictor, pertaining to a two-way association, is given by

ηr,jh,k� = γ + γjh + γjk + γh� + δjkδh�,
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γ γ11 γ12 γ21 γ22 γ31 γ32 φ1 φ2 φ3

ηr(1, 1, 3) 1 1 0 1 0 0 0 x1r 0 0
ηr(1, 2, 3) 1 1 0 0 1 0 0 x1r 0 0
ηr(2, 1, 3) 1 0 1 1 0 0 0 x1r 0 0
ηr(2, 2, 3) 1 0 1 0 1 0 0 x1r 0 0
ηr(1, 3, 1) 1 1 0 0 0 1 0 0 x1r 0
ηr(1, 3, 2) 1 1 0 0 0 0 1 0 x1r 0
ηr(2, 3, 1) 1 0 1 0 0 1 0 0 x1r 0
ηr(2, 3, 2) 1 0 1 0 0 0 1 0 x1r 0
ηr(3, 1, 1) 1 0 0 1 0 1 0 0 0 x1r

ηr(3, 1, 2) 1 0 0 1 0 0 1 0 0 x1r

ηr(3, 2, 1) 1 0 0 0 1 1 0 0 0 x1r

ηr(3, 2, 2) 1 0 0 0 1 0 1 0 0 x1r

.

FIGURE 7.2. Design matrix for marginal means and pairwise associations. Pair-
wise associations.

including an overall intercept, effects specific to times j and h: γts, ‘row’
and ‘column’ effects γjk and γh� and multiplicative interactions. Obviously,
this model is overparameterizing the association, calling for the usual re-
strictions.

7.4 Maximum Likelihood Estimation

In the previous section, a general framework for formulating marginal mod-
els has been sketched. We will zoom in on specific instances, the multivari-
ate probit and Dale models, in Sections 7.6 and 7.7, respectively. But before
doing so, we will discuss a general form for the likelihood equations and
discuss algorithms to obtain the maximum likelihood estimator, as well as
estimates of precision. When performing maximum likelihood estimation
for marginal models, a crucial element is the determination of the joint
probabilities. Details on these important but technical aspects are provided
in Appendix 7.12.

7.5 An Influenza Study

Consider the following clinical trial. A group of 498 medical students, be-
tween 17 and 29 years of age (median 21 years), are randomized to two
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treatment groups. Those in the HI group receive hepatitis B vaccination
(H), followed by influenza vaccination (I), whereas the reverse order is ap-
plied in the IH group. For each type of vaccination, vaccines from a company
A and a company B are used. In each treatment period, the vaccines are
evaluated with respect to the side effects they caused. We are interested in
the outcomes headache and respiratory problems. Because both outcomes
are measured in each of the two periods, we obtain a four-dimensional re-
sponse variable. It is of interest to assess the strength of the association
between both headache outcomes, between both respiratory outcomes, as
well as to determine whether both complaints are dependent. In addition,
a three-point ordinal variable, level of pain, is recorded for six days in row
during the first period, supplementing the cross-over study with a longitu-
dinal one. The first three days will be evaluated here. In order to analyze
these data, we need tools for longitudinal categorical data, as well as tools
for more complex designs, such as cross-over trials with several outcomes
in each period. Whereas the association between outcomes is often consid-
ered a nuisance characteristic in longitudinal studies, it is usually of direct
interest in multivariate settings, such as the bivariate cross-over study con-
sidered here.

We analyze the cross-over and longitudinal parts of the influenza study
in turn.

7.5.1 The Cross-over Study
Let us now analyze presence/absence of headache (H) and presence/absence
of respiratory problems (R), measured in both trial periods. Explicitly, the
probability of absence of symptoms will be modeled. We combine marginal
logits with marginal log odds ratios. The modeling is in stages. First, period
effect is included. Then, a contrast between the two companies, a contrast
between the two vaccinations, and an interaction term between companies
and treatments is added. Further, the baseline covariates ‘age’ (in years)
and ‘sex’ (0 =male, 1 =female) are included. There are three types of
two-way association: between the two headache outcomes, between the two
respiratory problems outcomes, and between a headache and a respiratory
outcome. The two-way associations are graphically depicted in Figure 7.3.
Three-way and four-way associations are assumed to be constant through-
out. The results are presented in Table 7.4.

Respiratory problems are on average very infrequent, as can be seen from
the high value of the intercept. For both outcomes, there is a significant
period effect: there are less headaches and respiratory problems in the sec-
ond period. Also, the influenza vaccination causes less headaches, but more
respiratory problems. Headaches are more frequently seen in younger peo-
ple, whereas the opposite holds for respiratory problems. Men suffer more
from headaches after vaccination than women. The odds ratio between two
respiratory problems is high (7.9), while a somewhat smaller association is
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TABLE 7.4. Influenza Study. Parameter estimates (standard errors) for the
cross-over trial.

Effect Estimate (s.e.)
Headache

intercept 0.055 (1.092)
period effect 0.434 (0.140)
company A effect -0.341 (0.221)
influenza effect 0.132 (0.212)
company A-influenza interaction -0.053 (0.281)
age 0.052 (0.054)
sex 0.875 (0.217)

Respiratory problems
intercept 5.217 (1.297)
period effect 0.167 (0.156)
company A effect -0.229 (0.267)
influenza effect -0.119 (0.226)
company-influenza interaction 0.257 (0.312)
age -0.159 (0.063)
sex 0.133 (0.243)

Associations (log odds ratios)
headache-headache (ψHH) 1.130 (0.251)
respiratory-respiratory (ψRR) 2.061 (0.309)
headache-respiratory (ψHR) 1.090 (0.191)
three-way interaction 0.219 (0.395)
four-way interaction 2.822 (1.462)

seen between the pair of headache measures (3.1) and between the mixed
pair (3.0). This is due to the fact that respiratory problems are more severe
and probably more strongly related with vaccination than headache, which
can have various causes. Extending the two-way association structure to
include a company effect was not significant. We found no higher-order
association, although the four-way association was close to significance.

7.5.2 The Longitudinal Study
Pain was measured on six consecutive days after vaccination. Changes in
response are mainly observed during the first three days. Significant pre-
dictors for the evolution of pain level are ‘sex,’ ‘age,’ the use of medication
(‘med’), and the actual vaccination. The effect of all covariates is allowed to
change over time. As there are four vaccinations, we decompose them into
two factors (company, influenza, and the interaction). At each measurement
time, there are two intercepts, corresponding to two cumulative logits [no
pain (0) versus pain (1 and 2); no or mild pain (0 and 1) versus moderate
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Company A Company B

YiAH ψHH
� � YiBH Headache

Respiratory

ψHR

�

�

ψHR
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ψHR

�

�

YiAR ψRR
� � YiBR

FIGURE 7.3. Influenza Study. Association structure for the cross-over study.

pain (2)]. All covariates are allowed to have a different effect at each mea-
surement, presented as ‘sex’ (overall), ‘sex’ (linear), and ‘sex’ (quadratic).
The results are presented in Table 7.5. We observe strong quadratic time
effects for company A and for the interaction between company A and in-
fluenza. Considering the hepatitis vaccine for company B as the baseline,
the differences (for each measurement time) on the logit scale between each
vaccine and the baseline are: for the influenza vaccine of company A: −5.33,
0.85, and −1.10; for the influenza vaccine of company B: −1.36, 1.95, and
0.43; for the hepatitis vaccine of company A: −4.18, −1.15, and −1.71. The
combination of a strong interaction between company and type of vaccine
and of the change of the effects over time, yields a complex picture. As
the outcomes are modeled via marginal logits, they are interpreted using
standard logistic regression methodology. Making comparisons for the three
measurement times, we are able to study the evolution of differences over
time.

7.6 The Multivariate Probit Model

Section 7.3 presented a general framework to formulate marginal models
for categorical data. One of the models mentioned in particular was the
multivariate probit model. In this section, we will study this model in more
detail. We will refer to the bivariate version as the BPM (bivariate probit
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TABLE 7.5. Influenza Study. Parameter estimates (standard errors) for the lon-
gitudinal data.

Estimate (s.e.)
Marginal parameters

Effect Average Linear Quadratic
intercept 1 -2.34(1.00) 1.24(0.93) -0.60(0.36)
intercept 2 0.34(1.00) 0.89(0.93) -0.80(0.37)
age 0.15(0.05) -0.01(0.05) 0.05(0.02)
sex 0.43(0.19) -0.31(0.17) -0.01(0.07)
medication -0.47(0.22) -0.26(0.19) 0.07(0.08)
company A effect 1.23(0.27) 0.37(0.27) -0.39(0.11)
influenza effect -0.74(0.21) 0.08(0.19) -0.11(0.07)
company-influenza interaction -1.06(0.34) -0.26(0.32) 0.34(0.12)

Associations (log odds ratios)
time 1–time 2 1.81(0.21)
time 1–time 3 0.98(0.26)
time 2–time 3 3.40(0.41)
three-way interaction 0.88(0.63)

model), TPM (trivariate probit model) for the trivariate version, and MPM
(multivariate probit model) for the general case.

7.6.1 Probit Models
The bivariate probit methodology will be introduced with the data from
the BIRNH study, where smoking and drinking behavior in a general pop-
ulation is studied (Kesteloot, Geboers, and Joossens 1989). Risk factors
for these two endpoints are determined but the main interest lies in the
association between smoking and drinking. The main question is whether
this association changes over demographic variables such as age, sex, and
social status. The same data will be analyzed with the bivariate Dale model
(BDM).

The BIRNH (Belgian Interuniversity Research on Nutrition and Health)
study was conducted in the period 1980–1984 (Kesteloot, Geboers, and
Joossens 1989). A stratified random sample from 42 counties of Belgium
was taken to study the effect of nutrition on health. We are interested
in modeling the relationship between alcohol drinking and smoking habits
on the one hand and certain demographic variables on the other hand.
Complete data were obtained from 5485 men and 4856 women.

Alcohol is divided into 4 classes according to daily intake: (0, 0–10, 10–
30, >30). Smoking is divided into 3 classes: (never smoked, ex-smoker,
smoker). Predictors variables are: ‘sex’ (coded as 1 for males and 2 for
females), ‘age,’ ‘weight,’ ‘height,’ body mass index (‘BMI’), ‘site’ within
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Belgium (1: Flanders, 2: elsewhere), and social status. Age, weight, and
height are categorized using the midpoints of their 10 unit classes, for BMI
we chose classes of 5 units. Two variables describe social status: ‘social
1’ [employment (1) versus unemployment or housework (0)] and ‘social 2’
[working at home (1) versus working outside (0)]. Four questions were of
interest:

1. Is there a relationship between drinking and smoking behavior?

2. Is alcohol consumption related to the demographic variables?

3. Is smoking behavior related to the demographic variables?

4. Is the association between smoking and drinking dependent on certain
demographic variables, i.e., does the relationship change in certain
subgroups?

It will be shown below that the BPM is adequate to answer all those ques-
tions.

7.6.2 Tetrachoric and Polychoric Correlation
Assume first that we have divided the study population into drinkers/non-
drinkers and smokers/non-smokers. With a homogeneous group, a fourfold
table will show whether there is an association between drinking and smok-
ing. For measures of association we can take the cross-product (odds) ratio
or the tetrachoric correlation ρ, i.e., the correlation of the underlying, dou-
bly dichotomized bivariate normal, which was introduced almost a century
ago (Pearson 1900). For the latter case, we assume that the dichotomous
variables smoking (1 =no, 2 =yes) and alcohol drinking (1 =no, 2 =yes) are
each discrete categorizations of continuous unobservable random variables.
These latent variables follow from a bivariate standard normal (Φ2) distri-
bution with correlation ρ, and for each variable there is a single threshold
that partitions the distribution. The two cutpoints φ1 and φ2 give rise to
four quadrants (Figure 7.4). The percentages in the four cells then corre-
spond to the probabilities of the four quadrants under Φ2, and an estimate
of the thresholds is obtained by equating the observed proportions to the
theoretical probabilities. The correlation coefficient, called the tetrachoric
correlation, is estimated from the thresholds and a series expansion.

If the original classification of drinking and smoking is used, then a 4×3-
contingency table arises. Similar to the above, we can assume a bivariate
normal distribution with correlation ρ. However, there are now three cut-
points in the ‘drinking’ latent variable and two cutpoints in the ‘smok-
ing’ variable (see Figure 7.5). The underlying correlation is now called the
polychoric correlation. For computational reasons considering a 10% ran-
dom sample, we obtained a polychoric correlation of 0.25, which is highly
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FIGURE 7.4. Two-dimensional latent space, thresholds θ1 and θ2. The bivari-
ate normal density with mean (β′

1x, β′
2x)′ and correlation ρ is indicated by the

elliptical contours.

significant (p < 0.0001); the p-value is obtained from a Wald test for no
correlation.

7.6.3 The Univariate Probit Model
To investigate the relationship between alcohol drinking (yes/no) and the
explanatory variables, we would normally use the logistic model. Alter-
natively, the univariate probit model can be employed. Specifically this
model states that the probability of alcohol drinking equals Φ(β

′
1x), where

x = (1, x1, . . . , xp−1)
′

is the vector of covariates and β1 the vector of un-
known regression parameters. Although not necessary, this model can be
justified by the existence of an unobservable latent variable that has a nor-
mal distribution with a mean dependent on the covariates. A similar model
can be proposed to model smoking behavior. Furthermore, the univariate
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FIGURE 7.5. Integration areas for a 4 × 3 BPM. The areas for the response
combinations (1, 1) and (4, 3) are shaded.

probit model (and the logistic model) can be extended to handle discrete,
ordinal response variables.

However, the weakness of this approach lies in the fact that the two
response variables are modeled separately, thereby neglecting their asso-
ciation. This will result in less efficient estimates of the parameters even
though they are consistent. More importantly, we would obtain severely dis-
torted estimates of the probabilities of combined responses, the so-called
joint or union probabilities. This will be illustrated further in Section 7.10.

For the BIRNH study, parameter estimates (standard errors) are pre-
sented in Table 7.7. We selected the important risk factors using forward
selection based on the score statistic (but the selected models based on
the log-likelihood ratio criterion were identical). In Table 7.6, we show the
two estimated univariate probit models, next to the bivariate probit model,
based on the 10% random sample. The intercepts are the threshold values
that determine the classes of the ordinal response variables. The interpre-
tation of these models poses no difficulties, for example, both univariate
analyses indicate that women drink and smoke less than men; from the
first model we infer that, on average, Flemish people consume less alcohol
than elsewhere in the country, and so on.

7.6.4 The Bivariate Probit Model
If there is heterogeneity in the study population, then a single two-by-two
or I × J contingency table, of the type described in Chapter 6, will give
a distorted picture of the real association between the two behaviors. The

�����
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TABLE 7.6. BIRNH Study. Univariate and bivariate probit analysis on a 10%
random sample of the original set of data.

Estimate (s.e.)
Effect Univariate Bivariate

Alcohol
intercept 1 -1.07 (0.14) -1.04 (0.14)
intercept 2 -0.69 (0.14) -0.66 (0.14)
intercept 3 0.07 (0.14) 0.09 (0.14)
sex 0.70 (0.08) 0.69 (0.08)
social 1 -0.29 (0.07) -0.31 (0.07)
site 0.21 (0.07) 0.21 (0.07)

Smoking
intercept 1 -3.77 (0.35) -3.75 (0.35)
intercept 2 -3.18 (0.34) -3.16 (0.34)
sex -1.15 (0.09) -1.15 (0.09)
BMI 2 0.05 (0.01) 0.05 (0.01)
age(×10) 0.12(0.03) 0.11 (0.03)
social 1 0.23 (0.10) 0.21 (0.10)
social 2 0.25 (0.09) 0.24 (0.09)

Correlation coefficient
intercept 0.41 (0.13)
sex -0.30 (0.09)
social 2 0.17 (0.10)
log-likelihood -2287.06 -2281.01

reason is that part of the association can be “explained” by the confounding
effect of the (un)measured variables causing the heterogeneity. The BPM
takes account of this effect while calculating the tetrachoric correlation.

In Section 7.3, the multivariate probit model was presented as one mem-
ber of a general class. Here, we will provide more insight into the genesis of
this particular model by first focusing on the bivariate case and then con-
sider the specific approach of an underlying (bivariate) continuous density.

Suppose that there is an underlying but unobservable latent variable
Ws(≡ W1) that expresses the resistance of an individual to smoking, and
further suppose that the individual will smoke if Ws is less than a thresh-
old θ1. Similarly, we assume that there is a Wa(≡ W2) that reflects an
individual’s attitude toward alcohol consumption and that the individual
will be a drinker if W2 is less than θ2. We assume that W = (W1, W2)

′

has a bivariate normal density with mean vector µ = (µ1, µ2)
′

and with
correlation ρ. Further, assume that each subject has a p-dimensional vector
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of explanatory variables, x = (x0, x1, . . . , xp−1)
′

with x0 ≡ 1, which has
the following effect on the mean vector:

µj = β
′
jx, (j = 1, 2).

Thus, by contrast to Section 7.6.2, we now assume that the distribution
depends on x and that each individual with covariate vector x is supposed
to have a latent bivariate normal attitude distribution with mean vector
(β

′
1x, β

′
2x)

′
and correlation ρ. In other words, the covariates move the

mean vector of the two-dimensional Normal density over the plane. This
results in the BPM first suggested by Ashford and Sowden (1970).

The cell probabilities for the fourfold table are again given by the proba-
bility of a quadrant under a suitable normal distribution. In Figure 7.4, we
show the quadrants corresponding to the four cells of the two-by-two con-
tingency table. The probability that a particular combination occurs is then
obtained from the volume under the density surface taken in by the corre-
sponding quadrant. For example, the probability of cell (2, 2) in the fourfold
table for an individual with covariate vector x is equal to the volume under
the normal density N(β

′
1x, β

′
2x; ρ) for the quadrant ] − ∞, θ1[×] − ∞, θ2[.

The quadrant probabilities are also the class of posterior probabilities for
each individual once the vector of covariates x, is known. Let Y be the
two-dimensional vector with first component Y1 = 1 or 2 corresponding to
‘non-drinker’ or ‘drinker,’ respectively. The second component Y2 is defined
similarly with respect to smoking. Let y denote the observed values. The
class Hy will then contain all cases with the combination of thetwo response
classes corresponding to y. We will use

µk1k2(β; ρ|x) = P (Y1 = k1, Y2 = k2|β, ρ, x)

to denote the posterior probability of Hy, conditional on x. Formally, the
BPM assumes

µ11(β; ρ|x) = Φ2(β
′
1x, β

′
2x; ρ),

µ12(β; ρ|x) = Φ(β
′
1x) − p11(β; ρ|x),

µ21(β; ρ|x) = Φ(β
′
2x) − p11(β; ρ|x),

µ22(β; ρ|x) = 1 − µ12(β; ρ|x) − µ21(β; ρ|x) − µ11(β; ρ|x),

(7.28)

with βj0 = θj −αj0(j = 1, 2), and βjs = −αjs(s = 1, . . . , p; j = 1, 2), where
Φ(a) is the standard normal distribution in a and Φ2(a1, a2) the standard
bivariate normal distribution with mean 0 and correlation ρ. Morimune
(1979) extended this model by letting ρ depend on x, so that ρ = ρ(α

′
x).

An immediate generalization of model (7.28) is obtained by allowing more
than one cutpoint for each latent variable Wj (j = 1, 2). This corresponds
to the analysis of r1 × r2 contingency tables. In Figure 7.5, the integration
areas are shown for a 4 × 3 table.
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For the binary response model (7.28) we get the marginal probabilities

µ1+(β1|x) = Φ(β
′
1x),

µ+1(β2|x) = Φ(β
′
2x),

(7.29)

where the first corresponds to the probability of alcohol drinking for a
specific combination of the covariates and the second to the probability of
smoking. Observe that these probabilities are identical to those under a
univariate probit model. However, with two univariate probit models, the
joint probabilities are obtained by simple multiplication of the marginal
probabilities, for example the probability of alcohol drinking and smoking
is calculated as

Φ(β
′
1x) · Φ(β

′
2x),

which corresponds to µ22(β; ρ|x) under the BPM only if ρ = 0. Thus, by
employing two univariate probit models for the analysis of correlated binary
response variables, we explicitly assume that ρ = 0 in a BPM. Clearly, the
same reasoning applies to discrete ordinal responses.

To conclude the model specification, we suppose that there are N in-
dependent subsamples, where the rth subsample is characterized by the
covariate vector xr. Within the rth subsample, we have Nr independent
observations. The corresponding counts are Zry, the number of occurrences
of response y in the rth subsample. If Sj = {1, 2} denotes the set of levels
of the jth characteristic in the binary case, then S = S1 × S2 contains all
possible combinations of characteristics. Given xr, the counts

(Zry, y ∈ S)

are multinomially distributed with Nr replicates and probability vector

(µry = py(β; ρ|xr), y ∈ S) . (7.30)

To estimate the unknown parameters β and ρ, the likelihood of the sample
under the model is needed and is given by

	(β, ρ) =
N∑

r=1

∑
y∈S

zry lnµry. (7.31)

A maximum likelihood estimate of (β
′
, ρ), denoted by (β̂

′
, ρ̂), is obtained

by maximizing (7.31) with respect to the unknown parameters. The neg-
ative inverse of the second derivative of the log-likelihood provides the
estimated covariance matrix of the parameters.

For the BIRNH study, a bivariate selection procedure, based on the score
statistic, selected the variables: ‘sex’ (p < 0.0001); ‘BMI’ (p < 0.0001); ‘age’
(p = 0.0003); ‘social 1’ (p = 0.0033); ‘site’ (p = 0.0071) and ‘social 2’ (p =
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0.0197). Taking these covariates into account, the polychoric correlation
coefficient dropped from 0.25 to 0.059 (p = 0.16). Thus, it seems that all
correlation between drinking and smoking was induced by the confounding
effect of the demographic variables.

The score statistic to test the hypothesis of a constant correlation coeffi-
cient (that is whether or not Morimune’s extension is needed) equals 13.56,
which referred to a chi-squared distribution with 4 degrees of freedom, in-
dicating dependence of the correlation on the predictors (p = 0.035). Based
on the significance of the regression coefficients, both ‘sex’ (p = 0.001) and
‘social 2’ (p = 0.048) seem to have an impact on the polychoric correlation.
Thus in the next step, besides the constant, ‘sex’ and ‘social 2’ were also in-
cluded in the model for ρ; the regression coefficients are 0.45 (p = 0.0004)
for the constant, −0.33 (p = 0.0004) for ‘sex’ and 0.18 (p = 0.068) for
‘social 2.’

Up to now, the same covariate vector has been employed for both re-
sponses. This is not necessary and in a further step we retained only the
significant (p < 0.05) covariates in modelling the marginal dependencies.
As can be seen from Table 7.6, the bivariate probit regression coefficients
are very close to those obtained from the univariate probit regressions. This
model, applied to the full dataset, gave similar regression coefficients that
are not reported here.

For 14 of the 16 combinations of ‘sex,’ ‘social 1,’ ‘social 2,’ and ‘site’ it was
possible to calculate the polychoric correlation locally with only ‘age’ and
‘BMI’ as predictors. There is reasonable agreement between global and lo-
cal estimates, except for the two outlying correlations in the (‘sex=female,’
‘social 2=1’) combination, but these were based on relatively small num-
bers, 168 and 229 cases, respectively.

Thus, the BPM indicates the same dependence of the responses on the
demographic variables as the two univariate probit models, but it has pro-
vided extra information about the relationship between alcohol drinking
and smoking. We conclude this analysis by observing that the BPM has
nicely discerned the predictors affecting the marginal risk of alcohol drink-
ing and smoking from those which affect the relationship between these
two habits.

7.6.5 Ordered Categorical Outcomes
As stated before, the probit models can be generalized from binary outcome
variables to ordered categorical outcomes. In this case, Y = (Y1, Y2)

′
is a

bivariate stochastic vector of discrete ordered variables. Without loss of
generality, assume that Yj ∈ Sj ≡ {1, . . . , cj}, (j = 1, 2).

Again, we assume that Y is a discretized version of an unobservable
latent stochastic vector W = (W1, W2)

′
with bivariate normal cumulative

distribution function having mean vector µ = (µ1, µ2)
′
standard deviations
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FIGURE 7.6. Graphical representation of assumed underlying latent space of
BPM. The areas for the response combinations (1,1) and (3,4) are shaded. The
contours correspond to the surfaces of equal density of the bivariate normal den-
sity.

σ1 = σ2 = 1 and correlation coefficient ρ. Then, cj − 1 finite thresholds

−∞ ≡ θj0 < θj1 < . . . < θj,cj−1 < θjcj ≡ +∞, (j = 1, 2), (7.32)

result in the vector Y by defining

Yj = k ⇐⇒ θj,k−1 ≤ Wj < θjk,

with k ∈ Sj . The W -space, the bivariate normal density and its associated
subdivision are graphically depicted in Figure 7.6, for c1 = 4 and c2 = 3.
The association between Y1 and Y2 is expressed as the correlation between
the latent variables W1 and W2; ρ is called the polychoric correlation (Pear-
son 1900).

Again, the model description is complete if we specify the link function
between x and Y . The probability that Y = (k1, k2)

′
, given x, is equal to

the probability pk1k2(x) that W lies in the rectangle

Rk1k2(x) = [θ1,k1−1(x), θ1k1(x)] × [θ2,k2−1(x), θ2k2(x)],

where θjk(x) = θjk −β
′
jx. Specifically, for a BPM where ρ does not depend

on the covariates:

µk1k2(x) = P (Y1 = k1, Y2 = k2|x) =
∫ ∫

Rk1k2 (x)
φ2(w, ρ)dw, (7.33)

where φ2(w, ρ) denotes the standard bivariate normal density with corre-
lation ρ. If ρ depends on the covariates, it is given by

ρ = ρ(α′x). (7.34)
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Often, ρ is replaced by Fisher’s z transform, as in the second component
of (7.12), which takes values in IR:

ϕ = ln
(

1 + ρ

1 − ρ

)
.

Using such a transformation avoids estimates to jump out of the interval
[−1, +1] and is especially useful when covariates are allowed, as in (7.34).

7.6.6 The Multivariate Probit Model
When the latent vector W has an n-dimensional normal distribution, that
is when there are n characteristics or repeated measures, and the proba-
bility of each diagnostic class conditional on a risk vector x is again an
integral over an orthant, the n-dimensional generalization of the quadrant,
as in (7.28), we apply a MPM. As for the BPM the n-dimensional response
vector can also consist of ordinal discrete responses with integration areas
as in Figures 7.5 and 7.6. Anderson and Pemberton (1985) employed a
trivariate probit model for the analysis of data on blackbirds. They fitted
the model using by fitting the univariate margins independently, supple-
mented with the correlation parameters assembled from fitting bivariate
probit models to all pairs of outcomes. Here, a fully general approach will
be presented, but the approximate solution can be a viable option when
computations become too cumbersome, e.g., when dimensionality is high.

Thus, a MPM of dimension n actually consists of n marginal proba-
bility distributions each corresponding to a particular characteristic and
n(n − 1)/2 polychoric correlations expressing the association between the
occurences of the n characteristics. If the correlations equal zero then the
marginal probability distributions are sufficient to generate the probabil-
ities of all combinations of characteristics, if not, then the multivariate
probability distributions are needed.

In analogy with the bivariate case, we suppose that there is a sample of N
independent subsamples available, where the rth subsample is characterized
by the covariate vector xr. The observed response vector is denoted by

y = (y1, . . . , yn)
′ ∈

n∏
j=1

Sj .

Within the rth subsample, we have Nr independent replications. The num-
ber of occurrences of response y in the rth subsample is denoted as zjy .
Given xr, the counts ⎛⎝zry , y ∈

∏
j

Sj

⎞⎠
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are multinomially distributed with Nr replications and probability vector⎛⎝µry(θ) = µy(θ|xr), y ∈
∏
j

Sj

⎞⎠ ,

where θ is the total parameter vector containing both regression and as-
sociation parameters. Finally, the log-likelihood of the sample under the
specified model is given by

	(θ) =
N∑

j=1

∑
y∈∏

j Sj

zry ln pry(θ). (7.35)

The maximum likelihood estimate of θ, denoted by θ̂, is obtained by max-
imizing (7.35) with respect to the unknown parameters.

7.7 The Dale Model

7.7.1 Two Binary Responses
Suppose that for each of N subjects in a study a vector Y i = (Yi1, Yi2)

′

of two binary responses is observed, together with a vector of covariates x.
The vector x can be different for each response as in longitudinal studies
with time-dependent covariates. Thus, the study subjects are described by
(yi1, yi2, xij), (i = 1, . . . , N ; j = 1, 2). Just as with the bivariate probit
model, we want to establish the dependence of each of the two responses
on the covariate vector(s), taking the dependence between the responses
into account.

Dale (1986) proposed a family of bivariate response models arising from
the decomposition of the joint probabilities µk1k2(x) = P (Y1 = k1, Y2 =
k2|x), (k1, k2 = 1, 2), into ‘main effects’ and ‘interactions.’ The marginal
probabilities describe the main effect and the log cross-ratio is the interac-
tion term. Formally, this decomposition is given by

h1 (µ1+(x)) = β
′
1x, (7.36)

h2 (µ+1(x)) = β
′
2x, (7.37)

h3

(
µ11(x)µ22(x)
µ12(x)µ21(x)

)
= β

′
3x, (7.38)

where h1, h2 and h3 are link functions in the generalized linear model ter-
minology and µ1+(x), µ+1(x) are the marginal probabilities for observing
Y1 = 1, and Y2 = 1, respectively. The most popular choice for h1 ≡ h2 is
the logit function, whereas for h3 the natural logarithmic function is com-
monly used. In that case, one has two marginal logistic regression models
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and the logarithm of the cross-ratio

lnψ(x) = ln
(

µ11(x)µ22(x)
µ12(x)µ21(x)

)
(7.39)

is linear in the covariates. Note that (7.39) is in line with (7.21), for the
specific situation of two binary outcomes.

The joint probabilities follow from the marginal probabilities in the fol-
lowing way, where we have omitted the dependence of the different terms
on x for the ease of notation (Plackett 1965):

µ11 =

⎧⎨⎩
1 + (µ1+ + µ+1)(ψ − 1) − S(µ1+, µ+1, ψ)

2(ψ − 1)
if ψ �= 1,

µ1+µ+1 if ψ = 1,
(7.40)

and µ12 = µ1+ −µ11, µ21 = µ+1 −µ11, and µ22 = 1−µ12 −µ21 −µ11, with
the function S defined by

S(q1, q2, ψ) =
√

[1 + (q1 + q2)(ψ − 1)]2 + 4ψ(1 − ψ)q1q2,

for 0 ≤ q1, q2 ≤ 1 and 0 ≤ ψ < +∞.
Just as in the probit case, above description can also be seen as aris-

ing from the discrete realization of a continuous bivariate distribution, the
Plackett distribution (Plackett 1965) in this case. Suppose the bivariate
random vector W = (W1, W2)

′
has joint distribution function F (w1, w2),

with marginal distributions F (wj) (j = 1, 2). Define the (global) cross-ratio
function, or global odds ratio function, ψ(w1, w2), by

ψ(w1, w2) =
µ11µ22

µ12µ21
=

F (1 − F1 − F2 + F )
(F1 − F )(F2 − F )

, (7.41)

with Fj ≡ Fj(wj), (j = 1, 2) and F ≡ F (w1, w2). It is clear that ψ(w1, w2)
satisfies 0 ≤ ψ ≤ ∞. The components µk1k2 in (7.41) are the quadrant
probabilities in IR2 with vertex at (w1, w2). For a Plackett distribution, the
global cross-ratio ψ(w1, w2) ≡ ψ is constant. Expression (7.41) can be seen
as a defining equation for F , once F1, F2, and ψ are known. The Plackett
distribution then gives rise to the above bivariate response model if its
mean vector µ = (µ1, µ2)

′
depends linearly on the covariate vector and if

it is assumed that Z is a discretized version of the continuous vector W
in the sense that Yj = 1 ⇐⇒ θj ≤ Wj , for j = 1, 2. Here, θ1, θ2 are two a
priori defined thresholds. In other words, Dale’s bivariate response model
is obtained if the bivariate response vector Y is a discretized version of W
using the threshold vector θ, and if the covariate vector shifts the mean
vector of the distribution of W over the plane, thereby possibly changing
also the association parameter ψ as a function of x.
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7.7.2 The Bivariate Dale Model
Dale (1986) generalized above approach to model pairs of ordered categor-
ical variables with c1 and c2 levels, respectively, in the presence of explana-
tory variables x. We will refer to this as the (bivariate) global odds ratio
model , global cross-ratio model , or simply bivariate Dale model (BDM).

Let Y = (Y1, Y2)
′

be a random vector taking on values (k1, k2), where
1 ≤ kj ≤ cj (j = 1, 2). The outcomes, corresponding to a given covariate
vector x, can be arranged as an c1 × c2 contingency table (Zk1k2) (kj =
1, . . . , cj ; j = 1, 2):

z11 . . . z1k2 z1,k2+1 . . . z1c2

...
. . .

...
...

. . .
...

zk11 . . . zk1k2 zk1,k2+1 . . . zk1c2

zk1+1,1 . . . zk1+1,k2 zk1+1,k2+1 . . . zk1+1,c2

...
. . .

...
...

. . .
...

zc11 . . . zc1k2 zc1,k2+1 . . . zc1c2

. (7.42)

Similarly, the probabilities can be represented as a c1 × c2 table:

µ11 . . . µ1k2 µ1,k2+1 . . . µ1c2

...
. . .

...
...

. . .
...

µk11 . . . µk1k2 µk1,k2+1 . . . µk1c2

µk1+1,1 . . . µk1+1,k2 µk1+1,k2+1 . . . µk1+1,c2

...
. . .

...
...

. . .
...

µc11 . . . µc1k2 µc1,k2+1 . . . µc1c2

. (7.43)

This map establishes a lilnk between the regression and table notations
(Section 7.1). Note that sparseness of these tables is not an issue, as the
essence of the approach is truly of a regression type. When the number of
subjects per covariate level x is small, the number of ‘tables’ increases with
sample size, exactly as in a regression setting. However, when the number
of covariate levels is small or even bounded (e.g., two sex levels), then the
tables fill up, as in ANOVA and genuine contingency tables settings.

Dichotomizing contingency table (7.42) at (k1, k2) (double lines) leads to
a 2 × 2 contingency table:

{Y1 ≤ k1, Y2 ≤ k2} {Y1 ≤ k1, Y2 > k2}
{Y1 > k1, Y2 ≤ k2} {Y1 > k1, Y2 > k2} , (7.44)

of which the probabilities are given by

P11(k1, k2, x) = P (Y1 ≤ k1, Y2 ≤ k2|x),



116 7. Likelihood-based Marginal Models

P12(k1, k2, x) = P (Y1 ≤ k1, Y2 > k2|x),

P21(k1, k2, x) = P (Y1 > k1, Y2 ≤ k2|x),

P22(k1, k2, x) = P (Y1 > k1, Y2 > k2|x).

Marginal probabilities are obtained by summing over subscripts: P1+(k1, x) =
P (Y1 ≤ k1|x) and P+1(k2, x) = P (Y2 ≤ k2|x).

In analogy with (7.36)–(7.38), the link functions are described by

h1[P1+(k1, x)] = β0,1k1 + β
′
1x, (k1 = 1, . . . , c1 − 1), (7.45)

h2[P+1(k2, x)] = β0,2k2 + β
′
2x, (k2 = 1, . . . , c2 − 1), (7.46)

h3[ψ(k1, k2, x)] = α
′
x, (kj = 1, . . . , cj − 1; j = 1, 2), (7.47)

where the global cross-ratio ψ(k1, k2, x) is given by

ψ(k1, k2, x) =
P11(k1, k2, x)P22(k1, k2, x)
P12(k1, k2, x)P21(k1, k2, x)

.

Note that for every contingency table (7.42) [or, equivalently, table of
probabilities (7.43)], a set of (c1−1)×(c2−1) global cross-ratios is obtained:

ψ11 . . . ψ1k2 ψ1,k2+1 . . . ψ1,c2−1
...

. . .
...

...
. . .

...
ψk11 . . . ψk1k2 ψk1,k2+1 . . . ψk1,c2−1

ψk1+1,1 . . . ψk1+1,k2 ψk1+1,k2+1 . . . ψk1+1,c2−1
...

. . .
...

...
. . .

...
ψc1−1,1 . . . ψc1−1,k2 ψc1−1,k2+1 . . . ψc1−1,c2−1

.

More complex choices for the linear predictors on the right hand side of
(7.45)–(7.47) are possible. For instance, h3 can incorporate terms depend-
ing on k1 and k2, representing row, column, and cell effects. In principle,
extensions to non-linear predictors are possible too, although this would
make the updating algorithms more cumbersome.

For every table (7.44), we assume that (7.41) holds with ψ replaced by
ψ(k1, k2, x), indicating that ψ is allowed to depend on the cutpoints and
on the covariates. Further, F (.|x) ≡ Fk1k2(.|x) = P11(k1, k2, x), and F (.|x)
can also be expressed in terms of the assumed underlying Plackett distrib-
ution: F (.|x) = P (W1 ≤ θ1k1 , W2 ≤ θ2k2 |x) . Observe that for each double
dichotomy of the c1 × c2 table, a different underlying Plackett distribu-
tion is assumed. When it can be assumed that ψ(k1, k2, x) ≡ ψ(x), for
kj = 1, . . . , ct − 1 (j = 1, 2), there is a single underlying Plackett distribu-
tion, exactly as for the binary response model.
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7.7.3 Some Properties of the Bivariate Dale Model
Dale’s model has appealing properties. First, there is the flexibility with
which the marginal structure is modeled, i.e., the cumulative marginal prob-
abilities can be fitted in the generalized linear models framework. Second,
the marginal parameters are orthogonal onto the association parameters in
the sense that the corresponding elements in the expected covariance ma-
trix are identically zero (Palmgren 1989). Further, the associations can be
modeled in a flexible way including covariate, row, column, and cell specific
terms (Dale 1986).

The BDM does not require marginal scores for the responses and is es-
sentially invariant under any monotonic transformation of the marginal
response variables. Further, if adjacent marginal categories are combined,
the model for the new table has fewer parameters, but they have the same
interpretation as they had in the model for the original, expanded table,
because the parameters pertain to cutpoints between categories. This is
in contrast with models based on local association (Goodman 1981a), as
discussed in Chapter 6.

7.7.4 The Multivariate Plackett Distribution
The computational basis of the BDM is the Plackett distribution. There-
fore, we first generalize the bivariate Plackett distribution to n dimensions.
In this section, we present a general description and some properties. The
multivariate Plackett distribution will be the basis for the multivariate
Dale model. The genesis of the distribution will automatically lead to an
algorithmic way to compute cell probabilities and their derivatives. This
is an alternative to the iterative proportional fitting algorithm presented
in Section 7.12.3. Other alternatives are given by Lang and Agresti (1994)
and Glonek and McCullagh (1995). This rather technical development is
deferred to Appendix 7.13.

7.7.5 The Multivariate Dale Model
Given the multivariate Plackett distribution, the multivariate Dale model
is a straightforward extension of the BDM. Let W ri = (Wri1, . . . , Wrin)

′

have a multivariate Plackett distribution with univariate marginals Fj ,
(r = 1, . . . , N ; i = 1, . . . , Nr; j = 1, . . . , n) and a particular set of gener-
alized global cross-ratios. Further, let Y ri = (Yri1, . . . , Yrin)

′
be a vector

of ordered categorical variables with Yrij assuming values kj = 1, . . . , cj ,
(j = 1, . . . , n). Thus, in analogy with the bivariate case, Y ri is a discrete
realization of W ri. The covariates at level r are indicated by xr. Both the
marginal distributions and the cross-ratios can depend on the covariates.
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For each multi-index k = (k1, . . . , kn) with 1 ≤ kj < cj , (j = 1, . . . , n),
define a 2n-dichotomization table (multiple dichotomy):

Tk = {Os(k)|s ∈ {−1, 1}n},

where

Os(k) = {Y ri|Yrij ≤ kj if sj = −1 and Yrij > kj if sj = 1}.

This means that, at every n-dimensional cutpoint, the data table is col-
lapsed into a 2 × 2 × . . . × 2 table. Observe the analogy with the bivariate
case, as well as with the probit case (Section 7.6). For n = 2, Tk contains
the four corners of the c1 × c2 contingency table, split up at k = (k1, k2).

Every table is assumed to arise as a discretization of a multivariate Plack-
ett distribution. The n marginal distributions are modeled, together with
all pairs of two-way cross-ratios. In addition, three-way up to n-way interac-
tions (generalized cross-ratios) are included to fully specify the joint distrib-
ution. Formally, we assume that for each Tk, (7.69) holds with a cross-ratio
possibly depending on k and xr, i.e., ψ1...n is replaced by ψ(k; xr). Further,

F ≡ Fk(.|xr) = P (Yri1 ≤ k1, . . . , Yrin ≤ kn|x)
= P (Wri1 ≤ θ1k1 , . . . , Wrin ≤ θnkn |xr).

The model description is complete by specifying link functions and linear
predictors for both the univariate marginals and the association parame-
ters. If we assume a marginal proportional odds model, then the marginal
links can be written as:

ηrijk(xr) = hj [P (Yrij ≤ k|xr)] = β0,jk + β
′
jxr, (7.48)

(1 ≤ j ≤ n, 1 ≤ k < cj).

Expression (7.48) can be represented in terms of the latent variables as
well:

hj [P (Wrij ≤ θjk|xr)] = β0,jk + β
′
jxr, (1 ≤ j ≤ n, 1 ≤ k < cj).

As in the bivariate case, common choices for the link functions hj are the
logit and the probit link.

The cross-ratios are usually log-linearly modeled. Covariate terms may
be included, together with row, column, and cell-specific terms. A possible
choice consists of complex models for the bivariate associations and simple
ones for the higher order associations. For a fixed pair of variables (j1, j2),
where 1 ≤ j1 < j2 ≤ n, one can model the log cross-ratio as

γk1k2
j1j2

(xr) = lnψj1j2(k1, k2, xr) = ν + ρk1 + κk2 + τk1k2 + x
′
rβj1j2 . (7.49)

Here, ν is an intercept parameter, ρk1 (k1 = 1, . . . , c1 − 1) are row-specific
parameters, κk2 (k2 = 1, . . . , c2−1) are column parameters, and τk1k2 (k1 =
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1, . . . , c1 − 1; k2 = 1, . . . , c2 − 1) are cell-specific parameters. Uniqueness
constraints need to be imposed on the row, column, and cell parameters. For
instance, ρ1 = 0, κ1 = 0, τk11 = 0, (k1 = 1, . . . , c1 − 1), and τ1k2 = 0, (k2 =
1, . . . , c2 − 1). The higher order associations usually are assumed to be
constant. Parameter estimates are obtained using the maximum likelihood
method.

As this model description yields the BDM for n = 2, it follows that the
attractiveness and the flexibility of the original two-dimensional version is
carried over on its n-dimensional version. However, not all properties of the
BDM are inherited by the MDM. As mentioned above, Palmgren (1989)
shows that the estimated marginal and association parameters are orthog-
onal. This result does not carry over onto the MDM, although Molenberghs
and Lesaffre (1994) have shown it holds approximately for lower order as-
sociations, while it fully holds for the n-way association.

Having specified the model, the links and the linear predictors, the model
parameters can be estimated by the ML estimation method. The use of
the multivariate Plackett distribution makes it easy to compute both the
joint probabilities and their derivatives. A Fisher scoring algorithm is a
good choice, as it also provides us with the asymptotic expected covariance
matrix for the model parameters.

The model formulated above still fits within the general log-contrasts of
probabilities framework given by (7.17), as it should be, given the presen-
tation here is merely a more elaborate introduction of the MDM, with an
alternative way to compute the cell probabilities.

7.7.6 Maximum Likelihood Estimation
Section 7.4 sketched a general framework for maximum likelihood estima-
tion, using the iterative proportional fitting algorithm. Here, we will spe-
cialize to the MDM, using the Plackett probability formulation. Essentially,
for every individual or every covariate level, the kernel of a multinomial log-
likelihood can be used, considering a highly structured n-way contingency
table merely as a collection of multinomial cells.

Despite the fact that the Plackett distribution is only known implicitly,
its values can be computed in an efficient way using numerical algorithms.
Further, the derivatives of the Plackett cumulative distribution function
can be evaluated in an analytical way, using implicit derivation. Based
on these results, the score functions and the expected Fisher information
matrix can be used to implement a convenient Fisher scoring algorithm.
Details are presented in Appendix 7.14.

7.7.7 The BIRNH Study
In this section, we reconsider the BIRNH study, analyzed before in Sec-
tion 7.6.1. We compare performance of the BPM, the bivariate Dale model
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TABLE 7.7. BIRNH Study. Parameter estimates (standard errors) for the bivari-
ate models [BPM: bivariate probit model; BDM: bivariate Dale model with normal
(N) or logistic (L) margins] with constant association parameter (the correlation
coefficient for the BPM and the global cross-ratio for the BDM).

Effect BPM BDM-N BDM-L
Alcohol

Intercept 1 -1.07(0.14) -1.07(0.14) -1.69(0.23)
Intercept 2 -0.68(0.14) -0.69(0.14) -1.07(0.23)
Intercept 3 0.07(0.14) 0.07(0.14) 0.20(0.23)
Sex 0.70(0.08) 0.70(0.07) 1.11(0.12)
Social 1 -0.29(0.07) -0.29(0.07) -0.49(0.12)
Site 0.21(0.07) 0.21(0.07) 0.35(0.12)

Smoking
Intercept 1 -3.76(0.35) -3.76(0.35) -6.24(0.60)
Intercept 2 -3.17(0.34) -3.18(0.34) -5.25(0.59)
Sex 1.15(0.09) 1.16(0.09) 1.92(0.15)
BMI 0.04(0.01) 0.04(0.01) 0.07(0.02)
Age(×10) 0.12(0.03) 0.12(0.03) 0.20(0.06)
Social 1 0.22(0.10) 0.22(0.10) 0.36(0.16)
Social 2 0.25(0.08) 0.24(0.09) 0.41(0.15)
Association 0.06(0.04) 0.18(0.12) 0.18(0.11)
Log-likelihood -2286.12 -2285.87 -2286.58

(BDM) with probit (N) and logistic (L) margins, in modeling the relation-
ship between alcohol drinking and smoking habits on the one hand and
certain demographic variables on the other hand.

Tables 7.7–7.9 present the estimates for several models. The BPM col-
umn in Table 7.8 coincides with the bivariate column in Table 7.6. The
three models in Table 7.7 have a very comparable fit. When comparing the
BPM in Table 7.7 with the univariate probit models in Table 7.6 using the
likelihood ratio test statistics, we find G2 = 0.94 (p = 0.1703). Thus, it
would seem there is no need to account for the association. However, this
was different when comparing both columns in Table 7.6. It illustrates the
point that sometimes careful modeling of the association is necessary, in
agreement with several analyses in Chapter 6. Table 7.8 presents the same
three models, with the association now depending on the covariates ‘sex’
and ‘social 2,’ in line with Table 7.6. Also here, the three models have a
comparable fit. Note that in Tables 7.7 and 7.8, the marginal regression
parameters for the BPM and the BDM-N are virtually identical, which is
to be expected as both models have probit margins. The parameters for the
BDM-L are related with the others through the well-known factor π/

√
3
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TABLE 7.8. BIRNH Study. Parameter estimates (standard errors) for the bi-
variate models [BPM: bivariate probit model; BDM: bivariate Dale model with
normal (N) or logistic (L) margins] with association depending on the covariates
(the correlation coefficient for the BPM and the global cross-ratio for the BDM).

Effect BPM BDM-N BDM-L
Alcohol

Intercept 1 -1.04(0.14) -1.05(0.14) -1.65(0.23)
Intercept 2 -0.66(0.14) -0.67(0.14) -1.03(0.23)
Intercept 3 0.09(0.14) 0.09(0.14) 0.23(0.23)
Sex 0.69(0.08) 0.70(0.08) 1.09(0.13)
Social 1 -0.31(0.07) -0.31(0.07) -0.53(0.12)
Site 0.21(0.07) 0.21(0.07) 0.35(0.12)

Smoking
Intercept 1 -3.75(0.35) -3.75(0.35) -6.21(0.59)
Intercept 2 -3.16(0.34) -3.16(0.34) -5.22(0.58)
Sex 1.15(0.09) 1.14(0.09) 1.91(0.15)
BMI 0.05(0.01) 0.05(0.01) 0.08(0.02)
Age(×10) 0.11(0.03) 0.11(0.03) 0.19(0.06)
Social 1 0.21(0.10) 0.21(0.10) 0.34(0.16)
Social 2 0.24(0.09) 0.25(0.09) 0.41(0.15)

Association parameters
Constant 0.41(0.13) 1.15(0.36) 1.15(0.35)
Sex -0.30(0.09) -0.82(0.27) -0.82(0.27)
Social 2 0.17(0.10) 0.46(0.28) 0.46(0.28)
Log-likelihood -2281.01 -2280.90 -2281.64

(see also Section 3.4), the standard deviation of the logistic distribution.
A similar phenomenon will be observed in Section 7.10. In the three mod-
els the association between alcohol and smoking is small but perhaps a
bit higher for the Dale models. The association parameters of the BDM-N
and BDM-L are similar, as both are framed in terms of odds ratios, in
contrast to the correlation-based association in the BPM. The coefficients
of the association measures for the variable dependence models are more
difficult to compare because of the different reparameterizations used. For
the BPM, the Fisher z transform of the correlation ρ depends linearly on
the covariates, while for BDM log ψ depends linearly on x. Nevertheless,
from the log-likelihoods it is apparent that again the three models explain
the data in virtually the same manner. Table 7.9 further includes row and
column effects in the association structure of the BDM models. However,
this does not significantly improve the fit of the model.
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TABLE 7.9. BIRNH Study. Parameter estimates (standard errors) for the bi-
variate Dale model (BDM) with normal (N) and logistic (L) margins, where the
association depends both on the covariates and on the cutpoints.

Effect BDM-N BDM-L
Alcohol

Intercept 1 -1.05(0.14) -1.66(0.24)
Intercept 2 -0.67(0.14) -1.03(0.23)
Intercept 3 0.09(0.14) 0.23(0.23)
Sex 0.70(0.08) 1.10(0.13)
Social 1 -0.31(0.07) -0.52(0.12)
Site 0.21(0.07) 0.35(0.12)

Smoking
Intercept 1 -3.70(0.35) -6.13(0.60)
Intercept 2 -3.12(0.34) -5.14(0.59)
Sex 1.13(0.09) 1.88(0.15)
BMI 0.05(0.01) 0.08(0.02)
Age(×10) 0.11(0.03) 0.18(0.06)
Social 1 0.20(0.10) 0.33(0.16)
Social 2 0.24(0.09) 0.41(0.15)

Association parameters
Intercept 1.15(0.36) 1.13(0.36)
Sex -0.72(0.28) -0.72(0.28)
Social 2 0.45(0.28) 0.45(0.28)
Row 1 -0.19(0.18) -0.19(0.18)
Row 2 -0.03(0.16) -0.02(0.16)
Column 1 -0.03(0.11) -0.03(0.12)
Log-likelihood -2279.47 -2280.19

7.8 Hybrid Marginal-conditional Specification

The fully specified models in most of this chapter are of a marginal nature.
The previous chapter presented marginal models alongside conditionally
specified ones, to make a number of points about the advantages of mar-
ginal models. Chapter 11 zooms in on conditionally specified models. In this
section, we will present a hybrid model family, in the sense that it com-
bines aspects of marginal and conditional models. Because the lower order
moments, usually of principal scientific interest, are marginally specified,
we have chosen to present it here, rather than in Part III.

Fitzmaurice and Laird (1993) model the marginal mean parameters, to-
gether with the canonical interaction parameters in the multivariate ex-
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ponential family distribution of Cox (1972). Their model is related to the
quadratic exponential model of Zhao and Prentice (1990). The distribu-
tion of Fitzmaurice and Laird (1993) differs from the previously described
distributions because it is specified in terms of a mixture of marginal and
conditional parameters.

Molenberghs and Ritter (1996) and Molenberghs and Danielson (1999)
proposed a model that combines important advantages of a full marginal
model and a mixed marginal-conditional model. The model is parameter-
ized using marginal means, pairwise marginal odds ratios, and higher order
conditional odds ratios. These conditional odds ratios are the canonical pa-
rameters of the exponential family described by Cox (1972) of which it is
known that their interpretation is difficult, especially when the number of
measurements per unit is variable. More details on the fully conditional
model can be found in Section 11. The mixed parameterization has impor-
tant advantages. First, it produces lower order parameter estimators that
are robust against misspecification of the higher order structure. Second,
the likelihood equations are less complex and easier to fit than the ones
for the fully marginally specified models of Chapter 7. As such, a hybrid
specification is an attractive alternative specification for a full likelihood
method. However, one can set higher order association parameters equal
to zero, whence they provide an appealing alternative to generalized es-
timating equations, in particular GEE2, as well (Section 8.7). This last
observation was also employed by Heagerty and Zeger (1996), who con-
sider a mixed marginal-conditional parameterization for clustered ordinal
data, with the first and the second moments specified through marginal
parameters, and who 8propose estimating the model parameters through
GEE2, GEE1, or alternating logistic regressions.

7.8.1 A Mixed Marginal-conditional Model
We will use the regression notation. For each individual, subject, or experi-
mental unit i in a study, a series of n categorical measurements Yij , grouped
into a vector Y i is recorded, together with covariate information xi. The
parameters of primary interest are the first- and second-order marginal
parameters. The covariate vector can include both time-dependent and
time-stationary covariates. Covariate information can be used to model
the marginal means, the associations, or both. In this section, we will re-
strict ourselves to binary outcomes. Section 7.8.2 considers the extension to
categorical outcomes. The use of this modeling framework to derive GEE
is discussed in Section 8.7 and exemplified in Sections 8.10 and 8.11.

Model building is based on the quadratic version of the joint distribu-
tion proposed by Cox (1972) and used by Zhao and Prentice (1990) and
Fitzmaurice and Laird (1993). In particular, we write

f(yi|Ψi,Ωi) = exp
{
Ψ′

ivi + Ω′
iwi − A(Ψi,Ωi)

}
, (7.50)
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with outcomes and pairwise cross-products thereof grouped into

vi = (y′
i; yi1yi2, . . . , yi,n−1yin)′,

and third and higher order cross-products collected in

wi = (yi1yi2yi3, . . . , yi1yi2 . . . yin)′,

and Ψi and Ωi the corresponding canonical parameter vectors. Further, let
µi = E(V i) and νi = E(W i). The distribution is fully parameterized by
modeling Ψi and Ωi. However, we choose to model µi and Ωi, enabling us
to describe the marginal means and the pairwise marginal odds ratios.

A model for µi is specified via a vector of link functions

ηi = ηi(µi), (7.51)

An important class of link functions, due to McCullagh and Nelder (1989),
is given by (6.2). In particular, the marginal logit link and marginal log odds
ratios can be used. The marginal part of the model formulation is complete
by specifying the dependence on the covariates. From the covariate vector
xi a design matrix Xi is derived, such that ηi = Xiβ, with β a vector of
parameters of interest.

Similarly, a model for the conditional higher order parameters needs to be
constructed. In agreement with Fitzmaurice and Laird (1993), and because
the components of Ωi can be interpreted as conditonal higher order log odds
ratios, we assume an identity link and specify the covariate dependence as
Ωi = X ′

iα, with X ′
i another design matrix and α a parameter vector. A

simple model is found by holding the components of Ωi constant.
In principle, β and α could be allowed to overlap, making the model

slightly more general, but there would typically be little practical relevance
to this.

Following derivations in Fitzmaurice and Laird (1993), Fitzmaurice, Laird,
and Rotnitzky (1993), and Molenberghs and Ritter (1996), the likelihood
equations can be written as:

∂	

∂(β, α)
=

N∑
i=1

( ∂µi

∂β
0

0 ∂Ωi

∂α

)′(
M−1

i 0
−N iM

−1
i I

)

×
(

vi − µi

wi − νi

)
, (7.52)

with M i = cov(V i) and N i = cov(V i, W i).
The form of the derivatives in the first matrix of (7.52) depends on the

choice of link functions and linear predictors. Under the assumed linear
model for Ωi, the derivative reduces to X ′

i. The computation of ∂µi/∂β is
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particularly straightforward for link functions of the form (6.2), in agree-
ment with (7.61): (

∂µi

∂β

)′
= X ′

i(D
′
i)

−1

with

Di =
(

∂ηi

∂µi

)
= Ci {diag(Aiµi)}−1

Ai.

As the model is a mixed parameterization of an exponential family model
(Barndorff-Nielsen 1978), the parameter vectors β and α are orthogonal in
the sense of Cox and Reid (1987). This implies that β and α are asymptot-
ically independent. Indeed, the inverse of the expected information matrix
equals: (

Γ−1
1 0
0 Γ−1

2

)
with

Γ1 =
N∑

i=1

X ′
i(D

′
i)

−1M−1
i D−1

i Xi,

Γ2 =
N∑

i=1

(X ′
i)

′(P i − N iM
−1
i N ′

i)X
′
i,

and P i = cov(W i).
Calculating the joint probabilities can be done in various ways. Fitzmau-

rice and Laird (1993) proposed the use of the iterative proportional fitting
(IPF) algorithm to avoid the computation of Ψi. We will proceed similarly.
First, the components of µi are computed. Let us focus on logit and log odds
ratio links. Inverting the logit links, like in (7.18) yields µij (j = 1, . . . , n).
Given µij1 , µij2 , and ψij1j2 = exp(ηij1j2), µi1j2 can be calculated using
Plackett’s expression (7.40). To obtain higher order probabilities, an initial
contingency table is constructed satisfying the third- and higher order con-
ditional odds ratio structure. Then, the set of n(n−1)/2 bivariate marginal
probabilities is fitted iteratively. This is similar to but different from the
IPF algorithm outlined in Section 7.12.3. Although in Section 7.12.3 the al-
gorithm had to be adapted to a marginally specified model for ordinal data,
we are faced here with a more conventional application, the higher-order
model being specified conditionally and the outcomes of a binary type. The
standard algorithm is described in Agresti (2002).

Parameter estimation can be performed using a standard Fisher scoring
iteration procedure. The inverse of the Fisher information, with the para-
meter estimates substituted, provides a variance estimator for (β̂, α̂). As
pointed out in Fitzmaurice, Laird, and Rotnitzky (1993), the consistency
of the estimator for β only depends on the correct specification of the mar-
ginal part of the model, and not on α. If the α part is misspecified, the
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model based variance will be inconsistent, so the empirically corrected or
‘robust’ variance should be used. Apart from inferential advantages (Fitz-
maurice, Laird, and Rotnitzky 1993), there are also computational advan-
tages in terms of stability (Cox and Reid 1987). These points are taken up
in Section 8.7.

As an alternative to the use of the robust variance estimator, a model
checking procedure can be performed to assess whether the model specifi-
cation is acceptable. If not, the model for the higher order associations can
be made more complex in order to improve the fit. When there are only
a few categorical covariate levels and the sample size within each level is
sufficiently large, a classical model checking procedure such as the Pearson
X2 or the deviance G2 test can be used (Agresti 1990).

7.8.2 Categorical Outcomes
Like the multivariate probit (Section 7.6) and Dale (Section 7.7) models,
the hybrid model can accommodate categorical outcomes just as easily as
dichotomous ones.

Let Yij again be a categorical outcome with cj (possibly ordered) cat-
egories and use the dummy variables formally defined by (7.1) and (7.2).
In particular, because we are not making use of the design level indicator
r, Z∗

ijk indicates outcomes and Zijk cumulative outcomes. These indicator
variables are again grouped into vectors Z∗

i and Zi. The corresponding
sets of univariate and pairwise probabilities are

µ∗
ijk = ¶(Yij = k|Xi, β) = P (Z∗

ijk = 1|Xi, β),

µ∗
i,jh,k� = P (Yij = k, Yih = 	|Xi, β) = P (Z∗

ijk = 1, Z∗
ih� = 1|Xi, β).

The cumulative probabilities are

µijk = P (Yij ≤ k|Xi, β),

µi,jh,k� = P (Yij ≤ k, Yih ≤ 	|Xi, β)

which are grouped in µ∗
i and µi, respectively. The higher order probabilities

ν∗
i and νi are defined similarly. Exponential models, similar to (7.50), are

f(yi|Ψ∗
i ,Ω

∗
i ) = exp {(Ψ∗

i )
′v∗

i + (Ω∗
i )

′w∗
i − A∗(Ψ∗

i ,Ω
∗
i )} , (7.53)

and
f(yi|Ψi,Ωi) = exp {Ψivi + Ωiwi − A(Ψi,Ωi)} , (7.54)

where V ∗
i contains the components of Z∗

i and the pairwise cross-products
thereof, and W ∗

i contains all higher order cross-products. The vectors V i

and W i are defined similarly. Observe that (7.53) and (7.54) are overpa-
rameterized, as sum constraints apply to (7.53) and the variable Zijcj = 1
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in (7.54), which necessitates the use of identifying restrictions. In the case
of a single nominal variable, (7.53) is called the multigroup logistic model
(Albert and Lesaffre 1986).

With nominal outcomes, the marginal mean functions µ∗
i will be mod-

eled, together with the higher order conditional association parameters Ω∗
i .

A vector of link functions η∗
i = η∗

i (µ
∗
i ) has to be chosen and form (6.2)

provides a convenient subclass. Baseline category logits seem very natural,
together with local odds ratios. If the outcomes are measured on an or-
dinal scale it is more convenient to model µi, rather than µ∗

i , i.e., link
functions ηi = ηi(µi) are chosen and model (7.54) can be used. Note that
this description is equally compatible with (7.53), as µ∗

i = Biµi for an
appropriate transformation matrix Bi, as in (7.4).

The likelihood equations are of the form (7.52). Even more than with
binary outcomes, the number of parameters proliferates rapidly with an
increasing number of measurements, calling for parsimonious modeling. A
simple, but often satisfactory model for the pairwise association is the con-
stant global odds ratio model for ordinal outcomes: the global odds ratio
for a pair of variables (Zijk, Zih�) is independent of the ‘row’ and ‘column’
indices k and 	. Further, one should exploit any additional structure in the
outcomes. For exchangeable outcomes, the odds ratios are usually assumed
constant for all pairs of variables, whereas for time-ordered measurements,
association structures taking into account the time dependence can be in-
vestigated. A similar reasoning could be made to simplify the higher order
conditional associations. In many instances this effort will be considered
of no real benefit, whence one can set Ωi = 0. In order to compute the
variance matrix M i, we only need to compute the third- and fourth-order
probabilities, which is particularly easy using the iterative proportional
fitting algorithm.

7.9 A Cross-over Trial: An Example in Primary
Dysmenorrhoea

The data are taken from a cross-over trial that appeared in the paper of
Kenward and Jones (1991). Eighty-six subjects were enrolled in a cross-
over study that compared placebo (A) with an analgesic at low and high
doses (B and C) for the relief of pain in primary dysmenorrhoea. The
three treatments were administered in one of six possible orders: ABC,
ACB, BAC, BCA, CAB, and CBA. The primary outcome score was the
amount of relief coded as none (1), moderate (2), and complete (3). There
are 27 possible outcome combinations: (1, 1, 1), (1, 1, 2), . . . , (3, 3, 3), where
(a1, a2, a3) denotes outcome aj in period j. The data, analyzed before by
Kenward and Jones (1991), can be found in Table 7.10. For the analysis
of the cross-over data, these authors suggested a subject-specific approach
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TABLE 7.10. Primary Dysmenorrhoea Data.

Response ABC ACB BAC BCA CAB CBA
(1,1,1) 0 2 0 0 3 1
(1,1,2) 1 0 0 1 0 0
(1,1,3) 1 0 1 0 0 0
(1,2,1) 2 0 0 0 0 0
(1,2,2) 3 0 1 0 0 0
(1,2,3) 4 3 1 0 2 0
(1,3,1) 0 0 1 1 0 0
(1,3,2) 0 2 0 0 0 0
(1,3,3) 2 4 1 0 0 1
(2,1,1) 0 1 1 0 0 3
(2,1,2) 0 0 2 0 1 1
(2,1,3) 0 0 1 0 0 0
(2,2,1) 1 0 0 6 1 1
(2,2,2) 0 2 1 0 0 0
(2,2,3) 1 0 0 0 0 0
(2,3,1) 0 0 0 1 0 2
(2,3,2) 0 0 0 0 0 0
(2,3,3) 0 2 0 0 1 0
(3,1,1) 0 0 0 1 0 2
(3,1,2) 0 0 2 0 2 1
(3,1,3) 0 0 3 0 4 1
(3,2,1) 0 0 0 1 0 0
(3,2,2) 0 0 0 1 0 0
(3,2,3) 0 0 0 0 0 0
(3,3,1) 0 0 0 0 0 1
(3,3,2) 0 0 0 0 0 0
(3,3,3) 0 0 0 0 0 0

based on the Rasch model. Here too, it was of interest to estimate the
treatment, period- and carry-over effects.

7.9.1 Analyzing Cross-over Data
Consider a cross-over trial where each patient subsequently receives each
of three treatments (A, B, C) in a random order. There are 6 treatment se-
quences: ABC, ACB, BAC, BCA, CAB, and CBA. Suppose the outcome
at time j (corresponding to treatment t) is an ordered categorical variable
Yjt with c levels. Then, to each sequence a c × c × c table is assigned,
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containing the joint outcomes for the patients, allocated to that particular
sequence. The multivariate Dale model can be used to fit such data. The
marginal parameters are used to describe the overall treatment effects, the
period- and the carry-over effects. The cross-ratios play a role, similar to
the subject specific parameters in the paper of Kenward and Jones (1991).

Given a particular sequence s, let Ls
jtk = logit [P(Yjt ≤ k)] be the cumu-

lative logit for cutpoint k (k = 1, . . . , c−1), and time j, which, for sequence
s, corresponds to treatment t. In full detail, we have

LABC
11k , LABC

22k , LABC
33k ;

LACB
11k , LACB

23k , LACB
32k ;

LBAC
12k , LBAC

21k , LBAC
33k ;

LBCA
12k , LBCA

23k , LBCA
31k ;

LCAB
13k , LCAB

21k , LCAB
32k ;

LCBA
13k , LCBA

22k , LCBA
31k .

The following model for the logits is adopted: Ls
jtk = µk + τt +ρj +λs(j−1),

where µk are intercept parameters, τt are treatment effects, ρj are period
effects. λs(j−1) stands for the carry-over effect, corresponding to the treat-
ment at time j − 1 in sequence s. Given, for instance, sequence CAB, we
get

L13k = µk + τ3 + ρ1,

L21k = µk + τ1 + ρ2 + λ3,

L32k = µk + τ2 + ρ3 + λ1.

To avoid overparameterization, the following uniqueness constraints are set:

τ1 = ρ1 = λ1 = 0.

Let γs
jt,j′t′ = lnψs

jt,j′t′ be the log cross-ratio, for the marginal c×c table,
formed by the responses at times j and j′ for sequence s (corresponding to
treatments t and t′ respectively). The simplest model for the cross-ratios
is given by

γs
jt,j′t′ = µ.

The most complex model assumes all 18 cross-ratios to be different, which
is one by Jones and Kenward (1989) and by Becker and Balagtas (1993).
In between these two models there is room for parsimonious modeling. One
can think of the following linear models in the log cross-ratios

γs
jt,j′t′ = µ + τtt′ , (7.55)

γs
jt,j′t′ = µ + ρjj′ , (7.56)

γs
jt,j′t′ = µ + τtt′ + ρjj′ , (7.57)
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where µ is an intercept parameter, τtt′ are parameters for the joint (t, t′)th
treatments effects, and ρjj′ describe effects for periods j and j′. In the first
model, the log cross-ratio only depends on the treatments, irrespective of
their order and the periods they were administered. In the second model,
only the periods are of importance. In the third model, the two effects are
linearly combined. For instance, for sequence CAB, we get

γ13,21 = µ + τ13 + ρ12,

γ13,32 = µ + τ23 + ρ13,

γ21,32 = µ + τ12 + ρ23.

Possible uniqueness constraints are τ12 = ρ12 = 0. The model with associa-
tion structure (7.56) corresponds to the model introduced in Section 7.7.5.
In a model with association structure (7.55) or (7.57), the two-way cross-
ratios change with the treatment combination, which is a time-dependent
covariate. Finally, the three-way association depends in all six cases on
the same periods and treatments, the only difference being the order in
which the treatments occur. So the most natural choice is γs

123 = µ + µs,
(µABC = 0), however in most cases it is reasonable to assume γs

123 = γ123
constant over sequences.

No carry-over effects are incorporated in the cross-ratios, as the marginal
carry-over parameters have no straightforward generalization. As usual, the
different nested models can be tested using the likelihood ratio test statistic,
denoted G2.

7.9.2 Analysis of the Primary Dysmenorrhoea Data
Table 7.11 gives the details concerning the selection of effects for the pri-
mary dysmenorrhoea data. As can be seen from this table, the marginal
logit modeling yields a highly significant treatment effect. The period and
carry-over effects are not significant. The model retained (model I in Ta-
ble 7.12), consists of two cutpoints µk and two treatment parameters τt;
the estimates are shown in Table 7.12. Up to now no two-way or three-way
association is assumed.

Let us turn to the association structure; the three-way association is as-
sumed constant in all cases. First the minimal model is fitted. This model
will serve as the basic model against which the other models will be com-
pared. The three different models mentioned in (7.55), (7.56), and (7.57)
were fitted to the data. There seems to be evidence that both the treatment
terms as well as the period terms are necessary. The maximal model, i.e.,
with 18 cross-ratios, has a G2 statistic of 16.27 (13 d.f., p = 0.2349) com-
pared to the last model. Model II in Table 7.12 shows the parameter esti-
mates when treatment parameters are included in the two-way cross-ratios.
Model III, contains as association parameters: the intercept µ, treatment
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TABLE 7.11. Primary Dysmenorrhoea Data. Selection of effects. The columns
describe the model number, the effects included, the log-likelihood of the model,
the number of the model to which this model is compared, the likelihood ratio G2

statistics with the number of degrees of freedom, and the corresponding p-value.

Effects log-lik Comp. G2 d.f. p-value
Marginal effects

1 µk -279.74
2 µk, τt -245.53 1 68.42 2 < 0.0001
3 µk, τt, ρj -243.78 2 3.50 2 0.1740
4 µk, τt, λs(j−1) -245.40 2 0.26 2 0.8790

Model 2 + association effects
5 µk, τt; µ, ψ123 -244.40
6 µk, τt; µ, τtt′ , ψ123 -239.54 5 9.66 2 0.0080
7 µk, τt; µ, ρjj′ , ψ123 -239.50 5 9.73 2 0.0077
8 µk, τt; µ, τtt′ , ρjj′ , ψ123 -236.44 5 15.87 4 0.0032

6 6.21 2 0.0448
7 6.14 2 0.0465

effects τtt′ , period parameters ρjj′ and the three-way interaction lnψ123.
This model will be chosen.

Parameter interpretation is as follows. The odds of observing Yjt ≤ k
(k = 1, 2) decreases with factor exp(−1.98) when the patient is treated
with the analgesic at low dose rather than with placebo. A further decrease
with factor exp(−2.37 + 1.98) is observed if the patient is treated with the
analgesic at high dose. Further, the association between responses is higher
if they are close to each other in time (ρ̂13 = −1.12). Also, responses from
the two analgesic treatments are more associated than responses from one
analgesic treatment and placebo (τ̂23 = 1.32).

Thus, our analysis confirms the results found by Kenward and Jones
(1991). However, the marginal approach here allows the estimation of treat-
ment effects that now are easily interpretable, in contrast with Kenward
and Jones (1991) and in contrast with the conditional approach in Jones
and Kenward (1989) as well. Confidence intervals for the effects can be
found from the estimated standard errors, shown in Table 7.12 for Model
III. Finally, the method allows flexible modeling of the association.

7.10 Multivariate Analysis of the POPS Data

The POPS data were introduced in Section 2.6. We will compare the
Bahadur model (BAH), introduced in Section 7.2 and applied earlier to
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TABLE 7.12. Primary Dysmenorrhoea Data. Fitted models. Each entry repre-
sents the parameter estimates (standard error). The absence of a standard errors
corresponds to a preset value.

Effect Par. Model I Model II Model III
Marginal effects

Intercept 1 µ1 1.07(0.25) 1.07(0.24) 1.08(0.24)
Intercept 2 µ2 2.71(0.29) 2.70(0.29) 2.72(0.29)
Treatment effect τ2 -2.03(0.33) -2.02(0.35) -1.98(0.34)
Treatment effect τ3 -2.41(0.33) -2.37(0.36) -2.37(0.35)

Two-way association effects
Intercept µ 0(-) -0.62(0.47) -0.46(0.56)
Treatment effect τ13 0(-) -0.16(0.65) -0.10(0.58)
Treatment effect τ23 0(-) 1.51(0.64) 1.32(0.61)
Period effect ρ13 0(-) 0(-) -1.12(0.55)
Period effect ρ23 0(-) 0(-) 0.51(0.66)

Three-way association
1(-) 1.59(0.75) 0.63(0.88)

Log-likelihood
-245.53 -239.54 -236.43

the clustered NTP data and the longitudinal fluvoxamine study, with the
trivariate probit model (TPM, Section 7.6) and the trivariate Dale model
(TDM, Section 7.7), both with probit (normally based, N) and logistic (L)
margins. Note that several comparisons are possible: (1) the Bahadur model
and the TPM capture the association by means of correlations, whereas the
TDM features odds ratios; (2) the Bahadur model and TDM-L have logistic
margins, while the TPM and the TDM-N have univariate marginal regres-
sions of a probit type. Finally, the log-likelihood at maximum, or the AIC
can be used to compare the models with each other.

From the 8 candidate predictor variables, neonatal seizures, congenital
malformations, and highest bilirubin value since birth were retained for
analysis. They were selected using a stepwise logistic analysis for each re-
sponse separately, at significance level 0.05. The first two regressors are
dichotomous, the third one is continuous.

Table 7.13 contains the estimated parameters under all four models. In
all models, transformed correlation parameters are used to reduce parame-
ter space violations. We present both the transformed parameter (Fisher
z transformed correlation and log odds ratio) as well as the parameter
expressed on the original scale.

It is seen that the presence of neonatal seizures and/or of congenital mal-
formation significantly decreases the probability of successfully performing
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TABLE 7.13. POPS Study. Parameter estimates (standard errors) for the trivari-
ate Bahadur (BAH), probit (TPM) and Dale models (with probit, TPM-N, or
logit, TPM-L, margins). For the associations, correlations [ρ and transformed
correlations, using (7.12)] (BAH, TPM) and cross-ratios (ψ) and log cross-ratios
for the TDM.

BAH TPM TDM-N TDM-L

First ability score
Intercept 3.67(0.49) 2.01(0.26) 2.03(0.27) 3.68(0.52)
Neonatal seiz. -1.94(0.42) -1.12(0.26) -1.16(0.26) -2.06(0.44)
Congenital malf. -1.21(0.31) -0.61(0.18) -0.62(0.18) -1.17(0.33)
100× Bilirubin -0.69(0.25) -0.32(0.14) -0.32(0.14) -0.64(0.27)

Second ability score
Intercept 4.03(0.51) 2.19(0.27) 2.21(0.27) 4.01(0.54)
Neonatal seiz. -2.26(0.43) -1.27(0.26) -1.29(0.26) -2.28(0.44)
Congenital malf. -1.08(0.32) -0.56(0.19) -0.59(0.19) -1.11(0.34)
100× Bilirubin -0.85(0.26) -0.42(0.14) -0.41(0.14) -0.80(0.27)

Third ability score
Intercept 3.32(0.50) 1.84(0.27) 1.91(0.27) 3.49(0.54)
Neonatal seiz. -1.55(0.44) -0.88(0.27) -0.93(0.27) -1.70(0.46)
Congenital malf. -0.96(0.32) -0.47(0.19) -0.49(0.19) -0.96(0.35)
100× Bilirubin -0.44(0.26) -0.21(0.14) -0.24(0.14) -0.49(0.28)

Association parameters
ρ ρ ψ ψ

(1,2): ρ or ψ 0.27(0.05) 0.73(0.05) 17.37(5.19) 17.35(5.19)
(1,2): z(ρ) or lnψ 0.55(0.11) 1.85(0.23) 2.85(0.30) 2.85(0.30)

(1,3): ρ or ψ 0.39(0.05) 0.81(0.04) 30.64(9.78) 30.61(9.78)
(1,3): z(ρ) or lnψ 0.83(0.12) 2.27(0.25) 3.42(0.32) 3.42(0.32)

(2,3): ρ or ψ 0.23(0.05) 0.72(0.05) 17.70(5.47) 17.65(5.47)
(2,3): z(ρ) or lnψ 0.47(0.10) 1.83(0.23) 2.87(0.31) 2.87(0.31)

(1,2,3): ρ or ψ — — 0.91(0.69) 0.92(0.69)
(1,2,3): z(ρ) or lnψ — — -0.09(0.76) -0.09(0.76)
Log-likelihood -598.44 -570.69 -567.11 -567.09

any of the three ability tests. A similar effect of bilirubin on the first and
second ability score is observed.

The marginal regression parameters agree in pairs: the logit-based Ba-
hadur and TDM-L models on the one hand and the TPM and TDM-N
models on the other hand. There is as light tendency for the Bahadur pa-
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rameter estimates and standard errors to be a bit smaller. This should not
be seen as resulting from a higher efficiency, but rather as downward bias
resulting from the model’s stringent parameter space restrictions (Declerck,
Aerts, and Molenberghs 1998). Upon multiplying the TPM and TDM-N
coefficients with the factor π/

√
3, the standard deviation of the logistic

distribution, all coefficient become very close to each other.
When comparing the association parameters, the (log) odds ratios are

clearly very similar between both TDM models. This is less the case when
the correlation estimates, obtained from the Bahadur, are compared with
their probit model counterparts. A strong downward bias is seen. This is
due, again, to the strong parameter space restrictions in the Bahadur case.
This effect is magnified by setting the three-way correlation in the Bahadur
model equal to zero. Recall that there is no such thing in the TPM, since
this model is based on discretizing a multivariate standard normal distri-
bution, which is completely described in terms of its two-way correlations,
without the need to separately specifying three-way correlations.

A slight preference for the TDM could be inferred if based either on
doubling the negative log-likelihood, or on the AIC. It is not possible to
express a preference for either of the TDM models, based on this exam-
ple. This confirms the well-known univariate result, that logistic and probit
regression are hard to distinguish from each other, except when datasets
become very large and response probabilities approach zero or one. While
the TPM’s performance is somewhat worse, the difference is around 5. Ba-
hadur’s model, on the other hand, lags behind by about 55 in deviance
or AIC. Considering the strength of the association, there is a strong as-
sociation between each pair of dichotomous responses, but no significant
three-way association, as seen from the TDM.

An important feature of the likelihood method is that calculation of
individual probabilities can be performed. For example, the method allows
to calculate the joint probability of failing at the three tests. This can be
quite different from the joint probability obtained by assuming independent
responses, as is shown in Figure 7.7, where the probability that the child
will fail on all three ability scores is calculated for different bilirubin values,
given that both CGM and NSZ are one.

7.11 Longitudinal Analysis of the Fluvoxamine
Study

The relationship between the severity of the side effects at the three visits
and some baseline characteristics of the patients was established. The re-
sponse is a trivariate ordered categorical vector with 4 classes, measured at
three visits. For the selection of predictors, age and sex were included by
default into the model. The other baseline characteristics were then consid-
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FIGURE 7.7. POPS Study. probability that a child fails on all three ability scores
for a range of bilirubin values, evaluated under five fitted models: the trivariate
Bahadur model, the Dale model (TDM) with logistic (L) and normal (N) margins,
the trivariate probit model (TPM), and a model assuming independent responses
(three logistic regressions).

ered for selection. Only the duration (months) of the disease and the initial
severity (measured on a 7-point scale) turned out to significantly influence
the severity of side effects.

At the second and third visit, a non-negligible portion of the patients
dropped out from the study (20%). An ordinary contingency table analysis,
as well as a logistic regression of the variable dropout on potential covariates
showed that the dropout mechanism is heavily depending on the severity
of the side-effect reported at the preceding visit. We refer to Part VI for
several analysis explicitly addressing the missingness issue.

From the parameter estimates shown in Table 7.14 (Model I), it is seen
that the effect of some covariates is almost constant over time. The G2

test statistic for the hypothesis that both the intercepts and parameters
for ‘age’ and ‘sex’ are time invariant is 5.37 (10 d.f., p = 0.8654). How-
ever, ‘duration’ and ‘initial severity’ depend on time. (G2 = 37.58, 4 d.f,
p< 0.0001). This leads to the more parsimonious Model II. The odds of ob-
serving high side-effects increases with ‘age’ and ‘duration’ and decreases
with ‘initial severity.’ The influence of ‘initial severity’ increases over time.
There is a strong association between side-effects measured at successive
visits. Although significant, the association is less strong between the first
and third visit.
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TABLE 7.14. Fluvoxamine Trial. Longitudinal analysis. The side effects at three
successive times are regressed on age, duration, initial severity, and sex, using the
multivariate Dale model. In Model I, the parameters are assumed to be different
over time. In Model II, only duration and initial severity have a time-dependent
effect. The entries represent the parameter estimates (standard errors).

Effect Side 1 Side 2 Side 3
Model I

Marginal parameters
Intercept 1 -0.41(0.90) -0.45(0.95) -0.79(1.06)
Intercept 2 1.78(0.90) 1.64(0.96) 1.64(1.07)
Intercept 3 2.94(0.92) 2.97(0.99) 2.85(1.13)
Age -0.19(0.09) -0.22(0.09) -0.25(0.10)
Duration -0.14(0.05) -0.20(0.05) -0.24(0.06)
In. Severity 0.29(0.14) 0.28(0.15) 0.42(0.17)
Sex -0.23(0.24) 0.09(0.24) 0.16(0.27)

Association parameters
12 13 23 123

3.20(0.27) 2.49(0.28) 3.71(0.33) -0.38(0.76)

Model II
Marginal parameters

Intercept 1 -0.52(0.82)
Intercept 2 1.67(0.82)
Intercept 3 2.89(0.84)
Age -0.21(0.07)
Duration -0.14(0.05) -0.21(0.05) -0.24(0.06)
In. Severity 0.27(0.13) 0.33(0.13) 0.42(0.13)
Sex -0.06(0.22)

Association parameters
12 13 23 123

3.13(0.26) 2.43(0.27) 3.74(0.33) -0.29(0.74)

7.12 Appendix: Maximum Likelihood Estimation

We present details on a general expression for the likelihood in marginal
models, the corresponding score equations, and how to solve them.

7.12.1 Score Equations and Maximization
Under a multinomial sampling scheme, the kernel of the log-likelihood, in
terms of the counts obtained at design level r, Z∗

r , and the corresponding
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cell probabilities µ∗
r is

	(β; Z∗) =
N∑

r=1

Z∗′
r ln[µ∗

r(β)].

When working with the cumulative counts Zr and the cumulative prob-
abilities µr, and knowing that relations (7.4) hold, we can rewrite the
log-likelihood as

	(β; Z) =
N∑

r=1

	r(β; Zr) =
N∑

r=1

(BrZr)
′
ln[Brµr(β)]. (7.58)

The derivative of the contribution of group r to (7.58) with respect to µr

is then given by

∂	

∂µr

=
∂	r

∂µr

=
{

B
′
r[diag(µ∗

r)]
−1Br

}
(Zr − Nrµr)

=
{

B
′
rcov(Z∗

r)
−1Br

}
(Zr − Nrµr)

= cov(Zr)−1(Zr − Nrµr). (7.59)

Given (7.59), the score function becomes

U(β) =
∂	

∂β
=

N∑
r=1

(
∂ηr

∂β

)′ [(
∂ηr

∂µr

)′]−1

V −1
r Sr, (7.60)

with Sr = Zr − Nrµr, and Vr = cov(Zr). A typical element of Vr is

cov (zr(k1 . . . knr
), zr(	1, . . . , 	nr

))
= µr(m1, . . . , mnr ) − µr(k1, . . . , kni) · µr(	1, . . . , 	nr ),

where mj = min(kj , 	j).
Computation of the matrix Qr = ∂ηr/∂µr is extremely simple if the link

is of the form (7.17), because then (Grizzle, Starmer, and Koch 1969)

Qr = C {diag(Aµr)}−1
A. (7.61)

This motivates the choice to compute Qr and invert it, rather than com-
puting Q−1

r directly, as was done by Molenberghs and Lesaffre (1994) and
detailed in Section 7.7.

When we use cumulative probabilities, the component µr(c1, . . . , cnr ) =
1, whence it can be omitted. This implies that the matrix Qr is square
and can easily be inverted. In case one chooses to use cell probabilities, all
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components of µr contain information whence the length of µ∗
r is one more

than the length of ηr, but the probabilities sum to one. This additional
equation needs to be added to the list of ηr, making Qr square again
(McCullagh and Nelder, 1989).

Replacing the univariate marginal link functions in (7.17), η
(1)
r say, by

any other inverse cumulative distribution function F−1 with probability
density function f , and retaining the specification of the association in
terms of a form satisfying (7.17), yields the expression

η = η(µ) =

(
F−1(µ(1))
C2 ln(Aµ)

)
,

with corresponding derivative

Qr =

(
diag

{
f(η(1))

}−1
0

C2 {diag(Aµ)}−1
A

)
. (7.62)

The matrix C2 is similar to the matrix C in (7.17) but now only applies to
the association part of the model. Choosing F = Φ and f = φ, the standard
normal distribution and density functions, we obtain a global odds ratio
model with univariate probit links.

As discussed in the previous section, the multivariate probit model also
fits within the proposed framework. In this case, it might be preferable to
compute the matrix Q−1

r , rather than its inverse, unlike with the global
odds ratio model, or most other models of the form (7.17). Although in the
probit case the matrix Q−1

r is easier to compute than Qr, the computa-
tions are still more complex than calculating (7.62). The components are
the derivatives of multivariate standard normal distribution functions. The
evaluation of multivariate normal integrals is required. Lesaffre and Molen-
berghs (1991) chose to use the algorithm proposed by Shervish (1984). In
the common case of linear predictors, the derivative of the link vector with
respect to β is the design matrix Xr. See also Section 7.6.

The maximum likelihood estimator satisfies U(β̂) = 0. Two popular
fitting algorithms are Fisher scoring and the Newton-Raphson algorithm.
In the case of Fisher scoring, one starts with a vector of initial estimates
β(0) and updates the current value of the parameter vector β(t) by

β(t+1) = β(t) + W (β(t))−1U(β(t)), (7.63)

with

W (β) =
N∑

i=1

Nr

(
∂ηr

∂β

)′ [(
∂ηr

∂µr

)′]−1

V −1
r

[(
∂ηr

∂µr

)]−1(
∂ηr

∂β

)
.

The expected information matrix assumes the form W (β), estimated by
W (β̂). A Newton-Raphson iteration scheme is found by substituting the
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matrix W (β) in (7.63) by H(β), the matrix of second-order derivatives of
the log-likelihood. An outline of this procedure for cumulative counts is
given next.

7.12.2 Newton-Raphson Algorithm with Cumulative Counts
Replacing the matrix W (β) in (7.63) by the matrix of second-order deriv-
atives H(β) of the log-likelihood (7.58) implements a Newton-Raphson
algorithm. We present an expression for H = H(β). It is useful to bor-
row some notation from McCullagh’s (1987) book on tensor methods in
statistics. From McCullagh (1987), it follows that the (p, q) element of H
is

Hpq =
N∑

r=1

∑
a,b,c,d

∂ηra

∂βp

∂µrb

∂ηra

∂2	

∂µrbµrc

∂µrc

∂ηrd

∂ηrd

∂βq

+
N∑

r=1

∑
a,d,b

[
∂ηra

∂βp

∂ηrd

∂βq

∂2µrb

∂ηra∂ηrd
+

∂2ηra

∂βp∂βq

∂µrb

∂ηra

]
∂	

∂µrb
.

Observing

∂	

∂µrb
=

∑
k

(V −1
r )bkSrk,

∂2	

∂µrbµrc
= −Nr ∗ (V −1

r )bc −
∑
e,f,k

(V −1
r )beJr,c,ef (V −1

r )fkSrk,

Jr,c,ef = δc,ι(e,f) − δceµrf − δcfµre,

where δ is the Kronecker delta function and ι(a, d) = c if min(aj , dj) = cj

for all components of the index vectors, we can separate the terms involving
Sr in the expression for H(β):

Hpq = −Wpq +
N∑

r=1

α′
rpqSr,

for some vector αrpq. Obviously, the second term has expectation zero.
The first and second derivatives of µr with respect to νr follow from the

identities

δbc =
∂µrb

∂ηra

∂ηra

∂µrc
,

∂2µrb

∂ηra∂ηrd
= −

∑
c,a,v

∂2ηrc

∂µra∂µrv

∂µrb

∂ηrc

∂µra

∂ηra

∂µrv

∂ηrd
.

Note that the first identity merely rephrases that QrQ
−1
r = I.
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Opting for linear predictors, we obtain:

∂ηi

∂β
= Xi

∂2ηit

∂βp∂βq
= 0.

We are now able to rewrite the Hessian in a concise matrix form

H(β) =
N∑

r=1

X
′
r

[
Fr + (Q

′
r)

−1Gr(Qr)−1
]
Xr

with

Fr =

(∑
b

∂2µrb

∂ηra∂ηrd

∂	

∂µrb

)
a,d

,

Gr =
∂2	

∂µr∂µ′
r

.

Finally, if we again choose a link function of the type (7.17) we can use
simple forms

Qr =
∂ηr

∂µr

= C {diag(Aµr)}−1
A = CBrA

and
∂2ηra

∂µrµ
′
r

= −A′B(2)
ra A,

where the matrix B
(2)
ra is obtained by multiplying all rows of B2

r with the
ath row of C.

7.12.3 Determining the Joint Probabilities
To compute the score equations and to implement the updating algorithm,
knowledge of the multivariate cumulative probabilities µr is required. The
choice of a fitting technique will strongly depend on the choice of link
functions. For multivariate odds ratio models (multivariate Dale models,
see also Section 7.7) several proposals have been made, such as the use of
multivariate Plackett probabilities (Plackett 1965, Molenberghs and Lesaf-
fre 1994), the use of Lagrange multipliers (Lang and Agresti 1994), and
a Newton iteration mechanism (Glonek and McCullagh 1995). With the
Plackett probability approach, we found that for four and higher dimen-
sional problems, the derivatives of high dimensional polynomials can be-
come numerically unstable. Here, the iterative proportional fitting (IPF)
algorithm is adapted to produce a quick and reliable tool to compute the
cumulative probabilities. A similar use of the IPF algorithm was proposed
by Kauermann (1993). Due to the use of score function (7.60), there is no
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need to compute the derivatives of the probabilities directly since Qr easily
follows from (7.61), leaving only the probabilities to be computed.

Given the marginal probabilities and the odds ratio parameters, our IPF
algorithm produces a multidimensional table of cell probabilities. The IPF
algorithm is known from its use in fitting log-linear models (Bishop, Fien-
berg, and Holland 1975), where the association is described using condi-
tional odds ratios. The algorithm was also applied by Fitzmaurice and
Laird (1993) for their mixed marginal-conditional models (Section 7.8). In
our fully marginal models, marginal odds ratios are used. We distinguish
between two types. Global odds ratios, given in (7.21)–(7.23), are relevant
for ordinal responses (Dale 1984), and local odds ratios as in (7.24) are
a natural choice for nominal outcomes. Of course, both sets coincide for
binary responses.

We will describe our algorithm for global odds ratios first, and then
discuss the local odds ratio version in the concluding paragraph of this
section. We need to determine the cumulative probabilities µr(k1, . . . , knr )
which correspond to cumulative cell count Zr(k1, . . . , knr

). Recall that this
notation encompasses not only nr-way classifications, but also one-way,
two-way,. . . classifications, by setting an appropriate set of indices kj = cj .
Omitting indices for which kj = cj , we assume without loss of generality
that we need to determine a K-way probability µr(k1, . . . , kK), with kj < cj

for all j.
We will proceed recursively. First, note that the cumulative probabilities

µr(	1, . . . , 	K), with 	j ∈ {kj , cj} for j = 1, . . . , K, completely describe a
2K contingency table. Second, as soon as at least one 	j = cj , we obtain a
lower order probability. Our recursion will be based on the assumption that
these lower order probabilities have been determined. The starting point
of the inductive construction is obtained by setting all but one 	j = cj ,
whence we obtain univariate probabilities µrjkj

which are of course easy to
determine from the marginal links ηrjkj . Drop the index r from notation.

From the cumulative probabilities, we easily determine the cell proba-
bilities µz1...zK

k1...kK
, with zj = 1, 2 and adopt the convention that the K-way

cumulative cell probabilities are incorporated as:

µ1...1
k1...kK

= µ(k1, . . . , kK). (7.64)

We will explicitly need the cell probabilities of dimension K − 1:

µ
z1...zj−1zj+1...zK

k1...kj−1kj+1...kK
=

2∑
zj=1

µz1...zK

k1...kK
.

The IPF algorithm is started by choosing a table of initial values, e.g.,

µz1...zK

k1...kK
(0) =

{
ψr(k1, . . . , kK) if (z1, . . . , zK) = (1, . . . , 1),

1 otherwise.
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with ψr(k1, . . . , kK) = exp[ηr(k1, . . . , kK)], the corresponding global odds
ratio. This table clearly has the correct association structure, but the mar-
ginals are incorrect and the sum of the cell counts is not equal to one.
Updating cycle (m + 1) requires K substeps, to match each of the K − 1
dimensional marginal tables:

µz1...zK

k1...kK

(
m +

j

K

)
= µz1...zK

k1...kK

(
m +

j − 1
K

)
.

µ
z1...zj−1zj+1...zK

k1...kj−1kj+1...kK

µ
z1...zj−1zj+1...zK

k1...kj−1kj+1...kK

(
m + j−1

K

) ,
(j = 1, . . . , K), the argument of µ indicating the iteration subcycle. Upon
convergence, (7.64) can be used to identify the required K-way probability.

Convergence of the IPF algorithm is established in Csiszar (1975). How-
ever, the parameter space of the marginal odds ratios is constrained, unless
in the special case of a constant odds ratio for a bivariate outcome (Liang,
Zeger, and Qaqish 1992). A violation of the constraints will be revealed by
a cumulative probability vector with negative entries. If this occurs in the
course of an updating algorithm, appropriate action (e.g., step halving) has
to be taken. We never encountered problems of this kind, suggesting that
the constraints are very mild. Practice suggests that these restrictions are
much milder than those for the Bahadur model with which a fully satisfac-
tory analysis of the fluvoxamine data (Section 7.2.4) was not possible.

For marginal local odds ratios a slightly adapted and simpler procedure
is proposed. Instead of considering subsets of binary variables, we now con-
sider the whole marginal multi-way table directly. With a similar recursive
argument, we assume that the full set of marginal tables up to dimension
K − 1 is determined. Then, we construct a K-dimensional initial table

µ∗
r(k1, . . . , kK)(0) =

∏
cj>�j≥kj

ψ∗
r (	1, . . . , 	K),

for all cells (k1, . . . , kK). This table clearly has got the required K-way
local association structure. The updating algorithm matches the entries to
the K sets of K − 1 dimensional marginal tables.

7.13 Appendix: The Multivariate Plackett
Distribution

Let us start from the bivariate case first. Given the marginal distributions
F1(w1), F2(w2) and the cross-ratio ψ, the Plackett distribution is the solu-
tion of the second degree polynomial equation

ψ(F − a1)(F − a2) − (F − b1)(F − b2) = 0, (7.65)

where a1 = F1, a2 = F2, b1 = 0, b2 = F1 + F2 − 1. The solution of this
equation is given by (7.40). To yield a genuine distribution function, the
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solution F of (7.65) should satisfy the Fréchet inequalities (Fréchet 1951):

max(b1, b2) ≤ F ≤ min(a1, a2).

Now, this approach can be generalized to n dimensions. To define the
multivariate Plackett distribution, consider the set of 2n − 1 generalized
cross-ratios with values in [0, +∞]:

ψj , (1 ≤ j ≤ n)
ψj1j2 , (1 ≤ j1 < j2 ≤ n)

...
ψj1...jk

, (1 ≤ j1 < . . . < jk ≤ n)
...

ψ1...n.

The one-dimensional ψj ’s are precisely the odds of the univariate prob-
abilities, i.e.,

ψj =
µj

1

µj
2

=
Fj

1 − Fj
, (7.66)

(1 ≤ j ≤ n). Note that we put the response level in the subscript to µ
and the occasions to which they pertain the superscript. Thus, µj

1 is the
probability to observe a ‘1’ at occasion j and µj

2 is the probability to observe
a ‘2’ at this occasion. Similar conventions will be used for the higher orders.
The bivariate associations ψj1j2 are defined as in (7.41):

ψj1j2 =
µj1j2

11 µj1j2
22

µj1j2
12 µj1j2

21

=
Fj1j2(1 − Fj1 − Fj2 + Fj1j2)
(Fj1 − Fj1j2)(Fj2 − Fj1j2)

, (7.67)

(1 ≤ j1 < j2 ≤ n). As soon as ψj1 , ψj2 , ψj1j2 are known, Fj1j2 can be
calculated. The cross-ratio ψj1j2 can also be viewed as the odds ratio of
ψj1(1), ψj2(2), computed as in (7.66), within the first and second level of
dimension j2, respectively.

The three-dimensional cross-ratios can be defined in a similar way as the
three factor interactions in loglinear models (Agresti 1990) and is analogous
to the above extension. They have been considered already in, for example,
(7.21), (7.22), and (7.23). Thus, the cross-ratio ψj1j2j3 is defined as the
ratio of two conditional cross-ratios ψj1j2(1) and ψj1j2(2). These are the
two-dimensional cross-ratios defined within the first and second level of
dimension j3 respectively. The numerator of ψj1j2j3 contains Fj1j2j3 with
a positive sign and the denominator contains Fj1j2j3 with a negative sign.
Again, the knowledge of the cross-ratios enables one to determine Fj1j2j3 .

However, care has to be taken when specifying the cross-ratios, since not
every combination leads to a valid solution. This is not surprising, and oc-
curred earlier with the Bahadur model (Section 7.2). Also the multivariate
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probit model of Section 7.6 is subject to such constraints, since the corre-
lation matrix has to be positive definite. In fact, such constraints will show
up for every marginal model, because specifying marginal models implies
specifying overlapping information, in contrast to conditional models, the
genesis of which can be viewed as specifying new model components, condi-
tional upon ones already in the model. Although this may seem a drawback,
it is largely compensated by ease of interpretation for the corresponding
model parameters, marginal regression functions, etc.

The n-dimensional probabilities can be computed if all lower dimensional
probabilities together with the global cross-ratio of dimension n are known.
Let µj1...jm

k1...km
be the (k1, . . . , km)-orthant probability of the m-dimensional

marginal table, formed by dimensions (j1, . . . , jm). We present the defining
equation for Fm1...mk

:

ψj1...jm
=

∏
(k1,...,km)∈A+

m

µj1...jm

k1...km∏
(k1,...,km)∈A−

m

µj1...jm

k1...km

, (7.68)

where

A+
m = {(k1, . . . , km) ∈ {1, 2}m|2 divides

m∑
�=1

k� − m}

and
A−

m = {1, 2}m\A+
m,

‘\’ indicating set difference. In particular, for F1...n:

ψ1...n =

∏
(j1,...,jn)∈A+

n

µj1...jn∏
(j1,...,jn)∈A−

n

µj1...jn

. (7.69)

For example, for n = 3:

A+
1 = {1},

A+
2 = {(1, 1), (2, 2)},

A+
3 = {(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}.

Based on these expressions, (7.68) yields (7.66), (7.67), and the three-
dimensional odds-ratio

ψ123 =
µ111µ122µ212µ221

µ112µ121µ211µ222
.

The orthant probabilities µk1...kn
are determined by the distribution F . A

general expression can be derived, which will be useful for the automated
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computation of the orthant probabilities. Some notation is needed. Let
λ(k) ≡ λ(k1, . . . , kn) be the set of places for which kj is equal to 1, (e.g.,
λ(1, 2, 1, 1) = {1, 3, 4}), then

µk1...kn =
∑

s⊃λ(k)

sgn(s)Fs, (7.70)

where

sgn(s) =

{
1 if #s − #β(k) is even,

−1 otherwise,

and Fs = Fs1...sm
, with s1 ≤ . . . ≤ sm. In the three-dimensional case, the

octant probabilities are

µ111 = F123,

µ112 = F12 − F123,

µ121 = F13 − F123,

µ211 = F23 − F123,

µ122 = F1 − F12 − F13 + F123,

µ212 = F2 − F12 − F23 + F123,

µ221 = F3 − F13 − F23 + F123,

µ222 = 1 − F1 − F2 − F3 + F12 + F13 + F23 − F123.

(7.71)

As an example, consider µ212. In this case, λ(2, 1, 2) = {2} and there are 4
possible vectors s: (2), (1,2), (2,3) and (1,2,3). Therefore, (7.70) yields the
expression for µ212 in (7.71).

The set of 2n −1 generalized cross-ratios fully specifies the n-dimensional
Plackett distribution. However, from the above reasoning it is not clear
whether such a distribution always exists. Further, if existence and unique-
ness is guaranteed it is not yet clear how to calculate the distribution since
it is only implicitly specified by (7.68). These matters are discussed next.

Let us turn to some computational details. Note that the probabilities
in the numerator (denominator) of (7.69) involve +F12...n (−F12...n) and
that both numerator and denominator contain an even number of factors.
Thus, (7.69) may be abbreviated as

ψ =
∏2n−1

i=1 (F − bi)∏2n−1

i=1 (F − ai)
, (7.72)

where ψ ≡ ψ1...n and F ≡ F1...n. The ai and bi are functions of the (n−1)-
and lower-dimensional probabilities (or, equivalently, cross-ratios). A valid
solution must satisfy

max
i

bi ≤ F ≤ min
i

ai. (7.73)
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However, this condition is not satisfied for all choices of ai and bi. To see
this, take the three-way Plackett distribution. Then, according to (7.73),
the one- and two-dimensional marginal distributions have to satisfy the
following inequalities:

Fj1j2 + Fj1j3 ≤ Fj1 + Fj2j3 , (j1 �= j2 �= j3 �= j1)
F1 + F2 + F3 ≤ 1 + F12 + F13 + F23.

Now, as a counterexample, if

F1 = F2 = F3 =
1
2
,

ψ12 = 0.05,

ψ13 = 1,

ψ23 = 20,

then F13 + F23 > F3 + F12 and (7.73) cannot be satisfied.
In spite of this, the constraints for this model never were burdensome,

neither in the analyses reported in this book, nor for others done by the
authors and reported elsewhere. The same holds for the multivariate probit
model. This is in contrast to the Bahadur model, where the analysis of the
fluvoxamine trial (Section 7.2.4) already posed insurmountable problems.

In case (7.73) is satisfied, existence and uniqueness of a solution is guar-
anteed by the next lemma. The verification of (7.73) is straightforward,
as the functions bi and ai are linear functions of the lower order marginal
probabilities.

Lemma 7.1 Let

P (C) = ψ
m∏

i=1

(C − ai) −
m∏

i=1

(C − bi),

where m is even, 0 < ψ < +∞, and

b1 = max
1≤i≤m

bi < min
1≤i≤m

ai = a1,

then the interval ]b1, a1[ contains exactly one real root of P (C).

Proof. The inequalities

P (a1) = −
m∏

i=1

(a1 − bi) < 0

and

P (b1) = ψ

m∏
i=1

(b1 − ai) > 0,
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together with the continuity of P (C), establish the existence.
Now,

∂P

∂C
= ψ

m∑
i=1

∏
j �=i

(C − aj) −
m∑

i=1

∏
j �=i

(C − bj) = ψ
∑

i

Ti −
∑

i

Si.

Ti is a product of (m − 1) negative factors, whence Ti is negative. Si is
positive, so P (C) is strictly decreasing in ]b1, a1[, establishing the result.

It follows from the proof that the regula falsi method with starting points
a1 and b1 always leads to the solution. Though in general a1 and b1 are
close to each other and convergence is quickly reached, it is desirable to
look for even faster methods. It is our experience that a Newton iteration
with starting point, for example, 1

2 (a1 +b1) converges to the root, generally
in 3 or 4 steps (with convergence criterion: |ck+1 − ck| < 10−8).

An algebraic solution to the two-dimensional problem is given by Mar-
dia (1970) and Dale (1986). The three-way Plackett distribution can also
be solved algebraically using Ferrari’s method for solving fourth-degree
polynomials. However, the solution cannot be written in a mathematically
elegant way. From the four-way Plackett distribution on, one has to rely on
numerical techniques. It is a fundamental result of algebra that a polyno-
mial of degree higher than 5 has no algebraic solution. This is not a major
disadvantage, since numerical methods for the multivariate Dale model are
usually much faster than for the multivariate probit model, which necessi-
tates the calculation of multivariate normal integrals.

7.14 Appendix: Maximum Likelihood Estimation
for the Dale Model

We present the basic tools for the computations. We distinguish between
the following parts: model description, likelihood function and cell proba-
bilities, and score functions and information matrix.

It is, again, convenient to adopt the contingency table notation, assuming
that subjects i = 1, . . . , Nr are grouped within covariate or design levels
r = 1, . . . , N (Section 7.1). Thus, observations, sharing covariate vector xr,
are combined into a single c1 × . . . × cn contingency table. The dimension
of this table will be abbreviated by c. In other words, we adopt the table
notation. Denote the entries of this table by z

rk. Here, k indicates a multi-
index: k = (k1, . . . , kn), (1 ≤ kj ≤ cj , l = 1, . . . , n). In vector notation:
1 ≤ k ≤ c. A particular table is indicated by (z

rk)k.
We assume that the tables are sampled from a multinomial distribution,

with cell probabilities (µ∗
rk)k, (r = 1, . . . , N), given by the MDM. They

are derived from the orthant probabilities, defined by (7.70). The model is
fully specified by link functions ηrjk = ηrj(xr) given by (7.48), γk1k2

j1j2
(xr)
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given by (7.49), together with the higher-order association parameters. If we
denote them by φ with an appropriate subscript, then we obtain in vector
notation lnψh = φh, with h a vector running through all higher order
associations. The parameters γ and φ determine the association structure.

Assume that all parameters form a column vector θ. The log-likelihood
takes the form:

	(θ) =
N∑

r=1

c∑
k=1

zrk lnµ∗
k(θ, xr), (7.74)

and is fully determined if we indicate in what way the cell probabilities
µ

rk(θ) = µk(θ, xr) arise from the link functions. Let µ
rk = µk(xr), de-

note the n-dimensional cumulative Plackett distribution function F , eval-
uated in the appropriate links:

µ
rk = F (ηr, γr, φ), (7.75)

where the arguments are appropriately vectorized forms of the links. Note
that µ

rk is the orthant probability of [−∞, ηr1k1 ] × . . . × [−∞, ηrnkn ]. To
compute the cell probabilities, write the cutpoints for dimension j as:

−∞ = ηrj0 < ηrj1 < . . . < ηrj,cj−1 < ηrjcj = +∞.

If one or more components kj of k are equal to zero, the corresponding
orthant probability µ

rk vanishes. If one or more components of k equal
cj , then µrk is an orthant probability of a lower dimensional marginal
distribution.

The cell probabilities µ∗
rk can be expressed in terms of µrk:

µ∗
rk =

∑
h

(−1)S(k,h)µrh.

Summation goes over all indices h satisfying 0 ≤ k − h ≤ 1, and the
function S is defined by S(k, h) =

∑n
j=1 kj −hj . The computation of µk in

(7.75) involves the evaluation of the cumulative Plackett distribution. The
derivatives are computed by implicit derivation of (7.72).

The derivative of the log-likelihood 	 with respect to a marginal parame-
ter θ can be written as:

∂	

∂θ
=

N∑
r=1

c∑
k=1

zrk
1

µ∗
rk

n∑
j=1

cj−1∑
m=1

∂µ∗
rm

∂ηjm(xr)
∂ηjm(xr)

∂θ
. (7.76)

A few conventions will simplify notation. First, assume there is only one
covariate vector x, thereby dropping the index r. Second, due to model
(7.48), a marginal parameter pertains to only one margin, j say. For such
a parameter, summation over all j = 1, . . . , n is replaced by a single j. In
principle, we need to distinguish between intercepts β0,jm, corresponding to
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only one cutpoint m, and covariate parameters β, common to all cutpoints
k = 1, . . . , cj − 1 of dimension j. However, we assume that every marginal
parameter pertains to only one cutpoint, mj say. The correct formula can
be obtained by summing over all cutpoints, if needed. In conclusion, j and
m = mj will be assumed to be fixed. Finally, note that in most formulas,
some indices kj of k will play a particular role and need being mentioned
explicitely. The remaining indices will be denoted by k′. Accordingly, the
upper bound is denoted by c′. In subscripts (e.g., µ∗

k), only the relevant
indices will be mentioned. Applying these conventions to (7.76) yields

∂	

∂θ
=

∂ηjm

∂θ

c′∑
k′=1

(
zm

µ∗
m

− zm+1

µ∗
m+1

) ∑
h,hj=m

(−1)S(k′
m,h) ∂µh

∂ηjm
.

For an intercept or covariate parameter in the two-way association model,
we deduce

∂	

∂θ
=

∂γj1j2

∂θ

∑
k

zk
1

µ∗
k

ψk1k2
j1j2

∑
h

(−1)S(k,h) ∂µh
∂ψj1j2

.

Note that a similar form is obtained for higher order associations. For a
parameter θ in (7.49) pertaining to a row category m, the score equation
is

∂	

∂θ
=

∂γj1j2

∂θ

c′∑
k′=1

(
zm

µ∗
m

− zm+1

µ∗
m+1

)
ψm k2

j1j2

∑
h,hj1=m

(−1)S(k′
m,h) ∂µh

∂ψj1j2

,

while for a cell-specific parameter we find

∂	

∂θ
=

∂γj1j2

∂θ

c′∑
k′=1

(
zm1m2

µ∗
m1m2

− zm1+1,m2

µ∗
m1+1,m2

− zm1,m2+1

µ∗
m1,m2+1

+
zm1+1,m2+1

µ∗
m1+1,m2+1

)

×ψm1m2
j1j2

∑
h,hj1=m1,hj2=m2

(−1)S(km1m2,h) ∂µh
∂ψj1j2

.

Straightforward but lengthy computations lead to expressions for the
elements of the expected information matrix. We do not present them here;
they are available as a technical report from the first author. They are used
to implement a Fisher scoring algorithm, to maximize (7.74).





8
Generalized Estimating Equations

8.1 Introduction

The main issue with full likelihood approaches for marginal models is the
computational complexity they entail. The net benefit can be efficiency
gain, but this comes at the cost of an increased risk for model misspec-
ification. Of course, full likelihood methods clearly allow the researcher
to calculate joint or union probabilities (such as in the POPS data, Sec-
tion 7.10) and to make, perhaps subtle, inferences about the association
structure. The latter was exemplified in Section 7.7.7. Chapter 7 also made
it clear that there is no unambiguous choice for a full distributional spec-
ification. For example, while the Bahadur model (Section 7.2) is easy to
generate, it suffers from severe restrictions on the parameter space. Other
models may become unwieldy in computational terms when the number of
repeated measures increases beyond a moderate number.

For all of these reasons, when we are mainly interested in first-order mar-
ginal mean parameters and pairwise interactions, a full likelihood procedure
can be replaced by quasi-likelihood based methods (McCullagh and Nelder
1989). In quasi-likelihood, the mean response is expressed as a parametric
function of covariates, and the variance is assumed to be a function of the
mean up to possibly unknown scale parameters. Wedderburn (1974) first
noted that likelihood and quasi-likelihood theories coincide for exponential
families and that the quasi-likelihood estimating equations provide con-
sistent estimates of the regression parameters β in any generalized linear
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model, even for choices of link and variance functions that do not corre-
spond to exponential families.

For clustered and repeated data, Liang and Zeger (1986) proposed so-
called generalized estimating equations (GEE or GEE1) which require only
the correct specification of the univariate marginal distributions provided
one is willing to adopt ‘working’ assumptions about the association struc-
ture. These models are a direct extension of basic quasi-likelihood the-
ory from cross-sectional to repeated or otherwise correlated measurements.
They estimate the parameters associated with the expected value of an
individual’s vector of binary responses and phrase the working assump-
tions about the association between pairs of outcomes in terms of marginal
correlations. The method combines estimating equations for the regression
parameters β with moment-based estimation for the correlation parameters
entering the working assumptions.

Although Liang and Zeger’s (1986) original proposal is undoubtedly the
best known one, not in the least due to its implementation in a number
of standard software packages, including the SAS procedure GENMOD, a
number of alternative proposals have been made as well. Prentice (1988)
extended their results to allow joint estimation of probabilities and pairwise
correlations. Lipsitz, Laird, and Harrington (1991) modified the estimating
equations of Prentice (1988) to allow modeling of the association through
marginal odds ratios rather than marginal correlations. When adopting
GEE1, one does not use information of the association structure to esti-
mate the main effect parameters. As a result, it can be shown that GEE1
yields consistent main effect estimators, even when the association structure
is misspecified. However, severe misspecification may affect the efficiency
of the GEE1 estimators. In addition, GEE1 is less adequate when some
scientific interest is placed on the association parameters.

Second-order extensions of these estimating equations (GEE2) that in-
clude the marginal pairwise association as well, have been studied by Zhao
and Prentice (1990), using correlations, and Liang, Zeger, and Qaqish
(1992), using odds ratios. They note that GEE2 is nearly fully efficient,
as compared to a full likelihood approach, though bias may occur in the
estimation of the main effect parameters when the association structure is
misspecified. A variation to this theme, using conditional probability ideas,
has been proposed by Carey, Zeger, and Diggle (1993). It is referred to
as alternating logistic regressions and is studied in Section 8.6, alongside
second-order GEE. In the same spirit, in Section 8.7, we will show how the
hybrid model, combining elements of a marginal and a conditional formu-
lation, introduced in Section 7.8, can be used as the basis for another GEE
approach, maintaining computational ease (Fitzmaurice and Laird 1993,
Fitzmaurice, Laird, and Rotnitzky 1993).

In Section 8.2, we present the basic GEE theory, while extensions and
variations to the theme are the topic of Section 8.3. Some of these are
then developed in sections to follow. Prentice’s method is reviewed in Sec-
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tion 8.4. Second-order generalized estimating equations are introduced in
Section 8.5. GEE based on odds ratios and alternating logistic regressions
are discussed in Section 8.6. GEE based on the hybrid marginal-conditional
formulation is given in Section 8.7, from which some of the other methods
follow as special cases. An alternative approach, based on linearization, is
given in Section 8.8. Next, three case studies are analyzed: the NTP data
(Section 8.9), the heatshock study, a developmental toxicity study (Sec-
tion 8.10), and the sports injuries trail (Section 8.11).

8.2 Standard GEE Theory

Let us adopt the regression notation, as outlined in Section 7.1.
In many longitudinal applications, inferences based on mean parameters

(e.g., dose effect) are of primary interest. Specifying the full joint distrib-
ution would then be unnecessarily cumbersome. When inferences for the
parameters in the mean model E(Y i) are based on classical maximum
likelihood theory, full specification of the joint distribution for the vector
Y i of repeated measurements within each unit i is necessary. For discrete
data, this implies specification of the first-order moments, as well as of all
higher-order moments. For Gaussian data, full-model specification reduces
to modeling the first- and second-order moments only, a situation much
simpler than in the non-Gaussian case. However, even then can the choice
of inappropriate covariance models seriously invalidate inferences for the
mean structure.

A technique enabling the researcher to restrict modeling to the first mo-
ment only is based on so-called generalized estimating equations (GEEs,
Liang and Zeger 1986, Zeger and Liang 1986, Diggle et al 2002). One way
to approach the methodology is by making two observations. First, the
score equations for a multivariate marginal normal model Y i ∼ N(Xiβ, Vi)
(Chapter 4; see also Verbeke and Molenberghs 2000, Chapter 5) are given
by

N∑
i=1

X ′
i(A

1/2
i RiA

1/2
i )−1(yi − Xiβ) = 0, (8.1)

in which the marginal covariance matrix Vi has been decomposed in the
form

Vi = A
1/2
i RiA

1/2
i , (8.2)

with Ai the matrix with the marginal variances on the main diagonal and
zeros elsewhere, and with Ri equal to the marginal correlation matrix. De-
composition (8.2) is a little unusual in this context, although it is easy to
see what it would look like for such structures as, for example, compound
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symmetry and AR(1). A common decomposition is in terms of a marginal-
ized hierarchical model: Vi = Σi + ZiDZ ′

i (see Chapter 4). The motivation
will become clear before too long.

As a second observation, the score equations to be solved when com-
puting maximum likelihood estimates under a marginal generalized linear
model, (Chapter 3) assuming independence of the responses within units
(either ignoring the correlation in the repeated measures structure or when
truly dealing with uncorrelated measures), takes the form

N∑
i=1

∂µi

∂β′ (A
1/2
i Ini

A
1/2
i )−1(yi − µi) = 0, (8.3)

where, again, Ai is again the diagonal matrix with the marginal variances
along the main diagonal. The mean µi follows from a vector of generalized
linear models, specified for each component of the outcome vector. For
example, a logistic regression can be specified for each of the components.

Note that expression (8.1) is of the form (8.3) but with the correlations
between repeated measures taken into account. A key distinction between
both is that Ai (and Vi as a whole) in (8.1) is usually parameterized by a
set of parameters, functionally independent of the marginal regression pa-
rameters β. On the other hand, Ai in (8.3) is fully specified by the marginal
regression parameters β, through the mean-variance link, common to most
commonly used generalized linear models, as outlined in Chapter 3. Thus,
when measurements are truly uncorrelated, one can restrict model speci-
fication to the marginal mean function, as the variance will automatically
follow, perhaps up to an overdispersion parameter. These observations are
crucial in what follows.

A seemingly straightforward extension of (8.3) that would account for
the correlation structure is

S(β) =
N∑

i=1

∂µi

∂β′ (A
1/2
i RiA

1/2
i )−1(yi − µi) = 0, (8.4)

obtained from replacing the identity matrix Ini by a correlation matrix Ri.
Now, even though (8.4) seems to follow from combining the most general
aspects of (8.1) with those of (8.3), matters are not this simple. Although
Ai = Ai(β) follows directly from the marginal mean model, β commonly
contains absolutely no information about Ri, whence Ri is to be parameter-
ized by an additional parameter vector: Ri = Ri(α). Thus, while the first
moment completely specified the second (and higher order) moments in the
univariate case, this is only partially so in the correlated data setting, the
variances are still specified by the marginal means, but the correlations are
not. This sets the repeated measures and other correlated data settings fun-
damentally apart from their univariate counterpart. Simply adding model
components (and hence score equations) for the correlation parameters
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does not solve the problem. To see this, recall that we wanted to restrict
model specification to the first moments only, but are faced with the sec-
ond moments. If we would model the second moments, we would have to
address the third and fourth moments as well. Eventually, a full specifica-
tion of the joint distribution would be obtained, precisely what we wanted
to avoid. These observations also underscore the difference between the
Gaussian and non-Gaussian settings, as (8.1) is sufficient for the Gaussian
case: given the first- and second-order moments, and assuming multivari-
ate normality , the joint distribution is fully specified. Thus, in summary,
it is too simple to state that the repeated non-Gaussian case is simply a
combination of elements from the Gaussian repeated measures case with
elements from univariate generalized linear models.

Liang and Zeger (1986) provide a nice way out of this apparent gridlock.
While still acknowledging the need for Ri(α) in Vi and (8.4), they allowed
the modeler to specify an incorrect structure or so-called working correla-
tion matrix. Using method of moments concepts, they showed that, when
the marginal mean µi has been correctly specified as h(µi) = Xiβ and
when mild regularity conditions hold, the estimator β̂ obtained from solv-
ing (8.4) is consistent and asymptotically normally distributed with mean
β and asymptotic variance-covariance matrix covariance matrix

Var(β̂) = I−1
0 I1I

−1
0 , (8.5)

where

I0 =
N∑

i=1

∂µi
′

∂β
V −1

i

∂µi

∂β′ , (8.6)

I1 =
N∑

i=1

∂µi
′

∂β
V −1

i Var(Y i)V −1
i

∂µi

∂β′ . (8.7)

Consistent estimates can be obtained by replacing all unknown quantities
in (8.5) by consistent estimates. Apart from a working correlation matrix,
it is possible to incorporate an overdispersion parameter as well, whence
A

1/2
i RiA

1/2
i in (8.4) would be replaced by

Vi = Vi(β, α, φ) = φAi(β)1/2Ri(α)Ai(β)1/2, (8.8)

φ being the additional overdispersion parameter.
Observe that, when Ri would be correctly specified, Var(Y i) = Vi in (8.7)

and then I1 = I0. As a result, (8.5) would reduce to I−1
0 , corresponding to

full likelihood, i.e., when the first and second moment assumptions would be
correct. Thus, (8.5) reduces to full likelihood when the working correlation
structure is correctly specified but generally differs from it. There is no price
to pay in terms of consistency of asymptotic normality, but there may be
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efficiency loss when the working correlation structure differs strongly from
the true underlying structure.

Thus, whether or not the working correlation structure is correct, point
estimates and standard errors based on (8.5) are asymptotically correct.
Such standard errors were called ‘robust’ by Liang and Zeger (1986), while
the variance estimator (8.5) is sometimes referred to as the ‘sandwich es-
timator,’ for obvious reasons. In the meantime, the terms ‘empirically cor-
rected’ variance and standard errors found their way to common use, to
avoid confusion with methods from robust statistics. In contrast, I−1

0 was
initially referred to as the ‘naive’ estimator, but currently the more neutral
‘(purely) model based’ estimator is more common. Note that estimates and
standard errors resulting from GEE are often reported in the format ‘esti-
mate (empirically corrected standard error; model-based standard error),’
in line with the convention used by Liang and Zeger (1986) in their original
article. Unless when used for didactical purposes, or when the model-based
standard error would be of some scientific interest, this is not necessary.
The empirically corrected standard error is the one to be used, the other
one generally incorrect. At best, it can be seen as an indication of the ‘dis-
tance’ between the working assumptions for the correlation and the true
structure. When both standard errors are far apart, this can be seen as an
indication for a poor choice of working assumptions. Once again, a poor
working assumption is not wrong, but may hamper efficiency and, when at
all possible, it may be of interest to then try alternative working assump-
tions. The term ‘empirical correction’ stems from the fact that the data Y i

are used in I1, not directly following from the likelihood function.
Two further specifications are needed before GEE is operational: Var(Y i)

on the one hand and Ri(α), with in particular estimation of α, on the other
hand. Full modeling will not be an option, since we would then be forced to
do what we want to avoid. First, modeling Var(Y i) would imply modeling
all components of (8.8) correctly, which we wanted to avoid. Second, fully
modeling Ri(α) would, once again, bring in the need to address third and
fourth order moments, which we wanted to avoid as well. Let us discuss
the pragmatic solutions found to both of these issues in turn.

Turning attention to the empirical covariance of the outcome vector,
Var(Y i) in (8.5) is typically replaced by

(yi − µi)(yi − µi)′. (8.9)

Although this may seem a natural choice at first sight, also because it
is an unbiased estimate at the sole condition that the mean is correctly
specified, it is perhaps less so when one realizes it has rank at most one!
However, while a poor estimator for Var(Y i), it is adequate to estimate
I1 and ultimately (8.5), given the summation over N units in I1. The
deficient rank poses no problems since no inversion takes place within I1
and, as an extra safety, I1 does not need to be inverted. It has been reported
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TABLE 8.1. Common choices for the working correlation assumptions in standard
generalized estimating equations and moment-based estimators thereof.

Structure Corr(Yij , Yik) Estimator
Independence 0 —

Exchangeable α α̂ = 1
N

∑N
i=1

1
ni(ni−1)

∑
j �=k eijeik

AR(1) α|j−k| α̂ = 1
N

∑N
i=1

1
ni−1

∑
j≤ni−1 eijei,j+1

Unstructured αjk α̂jk = 1
N

∑N
i=1 eijeik

that replacing (8.9) by (yi − µ̂i)(yi − µ̂i)′ may induce some bias into the
procedure (Crowder 1995).

Next, regarding the working correlation parameters α and the overdis-
persion parameter φ, Liang and Zeger (1986) proposed moment-based es-
timates. To this end, first define residuals

eij =
yij − µij√

v(µij)
(8.10)

in line with (7.7), introduced for the Bahadur model. Note that eij = eij(β)
through µij = µij(β) and therefore also through v(µij), the variance at time
j, and hence the jth diagonal element of Ai. We still assume the variance
is decomposed as (8.8). Common choices for the working assumptions are
presented in Table 8.1. Similarly, the dispersion parameter can be estimated
by

φ̂ =
1
N

N∑
i=1

1
ni

ni∑
j=1

e2
ij . (8.11)

Note that the independence structure brings about no additional parame-
ters α and hence, when there is no overdispersion, parameter estimates β̂
will not differ from those obtained from logistic regression. Even then, the
asymptotic variance covariance matrix, obtained from (8.5), and hence the
standard errors, will differ from the ones obtained with logistic regression,
the latter stemming from the model-based but incorrect I−1

1 . Independence
and exchangeable working assumptions can be used in virtually all applica-
tions, whether longitudinal, clustered, multivariate, or otherwise correlated.
Clearly, AR(1) and unstructured are less relevant for clustered data, lon-
gitudinal studies with unequally spaced measurements and/or sequences
with differing lengths, etc. However, even though it seems less advisable to
use such structures in cases where they are not supported by the study’s
design, it is strictly speaking not a mistake as, once again, working assump-
tions are allowed to be wrong! Note that the AR(1) parameter is estimated
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using adjacent pairs of measurements only, in contrast to the exchange-
able correlation, for which all pairs within a sequence are employed. This
is not wrong, but may be somewhat inefficient as, for example, pairs two
occasions apart contribute information to α2 and hence to α. Of course,
incorporating such information clutters the moment-based estimators and
most implementations still follow Table 8.1, as in Liang and Zeger (1986).

Now, (8.4), conceived to estimate β, are in need of α and φ, while the
moment-based estimates for α (Table 8.1) and expression (8.11) for φ de-
pend on β. This circularity is the final stumbling block in the way, but can
be circumvented by an iterative procedure. The standard iterative proce-
dure to fit GEE, based on Liang and Zeger (1986), is then as follows:

1. Compute initial estimates for β, β(0) say, using a univariate GLM,
i.e., assuming independence or, in other words, using conventional
logistic regression.

2. Compute the quantities needed in the estimating equation, i.e., Pear-
son residuals eij from (8.10), α from Table 8.1, and φ from (8.11).

3. Based on these, Ri(α) can be computed, as well as Vi from (8.8).

4. Then, given the current estimate of β after t iterations, β(t) say,
update the estimate for β:

β(t+1) = β(t) −
[

N∑
i=1

(
∂µi

∂β′

)
V −1

i

(
∂µi

∂β′

)′]−1

×
[

N∑
i=1

(
∂µi

∂β′

)
V −1

i (yi − µi)

]
. (8.12)

The second, third, and fourth steps need to be iterated until convergence.
In conclusion, we have a method at our disposition to obtain valid infer-

ences about a marginal regression model for repeated and otherwise clus-
tered data, without the need to fully specify the joint distribution of the
outcomes. This is most useful when the outcomes are of a non-Gaussian
nature, as the linear mixed-effects model provides a flexible framework in
the latter case (Chapter 4). However, it would still be possible to apply
robust inference in the Gaussian case as well (Verbeke and Molenberghs
2000, Section 6.2.4), in case interest is confined to the marginal regression
parameters β, and there is doubt about a correct specification of the co-
variance structure and/or the random-effects structure. Indeed, the usual
estimate for β is

β̂(α) =

(
N∑

i=1

X ′
iWiXi

)−1 N∑
i=1

X ′
iWiYi,
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with α replaced by its ML or REML estimate. Conditional on α, β̂ has
mean

E
[
β̂(α)

]
=

(
N∑

i=1

X ′
iWiXi

)−1 N∑
i=1

X ′
iWiE(Yi)

=

(
N∑

i=1

X ′
iWiXi

)−1 N∑
i=1

X ′
iWiXiβ

= β,

provided that E(Yi) = Xiβ. Hence, for β̂ to be unbiased, it is sufficient
that the mean of the response is correctly specified. Conditional on α, β̂
has covariance

Var(β̂) =

(
N∑

i=1

X ′
iWiXi

)−1

×
(

N∑
i=1

X ′
iWiVar(Y i)WiXi

)
(8.13)

×
(

N∑
i=1

X ′
iWiXi

)−1

=

(
N∑

i=1

X ′
iWiXi

)−1

. (8.14)

Note that (8.14) assumes that the covariance matrix Var(Y i) is correctly
modeled as Vi = ZiDZ ′

i +Σi, which then again plays the role of the purely
model-based estimate. The empirically corrected estimate for Var(β̂), which
does not assume the covariance matrix to be correctly specified is obtained
from replacing Var(Y i) in (8.13) by(

Y i − Xiβ̂
)(

Y i − Xiβ̂
)′

, (8.15)

rather than Vi. The sole condition for (8.15) to be unbiased for Var(Y i) is
that the mean is again correctly specified.

In spite of this potential use for Gaussian outcomes, GEE is most com-
monly used for non-Gaussian measurement sequences. The need is avoided
to specify third- and higher-order moments or, more precisely, third- and
higher-order correlations, and two-way correlations are allowed to be mis-
specified. Should they be correctly specified, and should a set of appropriate
third- and higher-order correlations be chosen, together with marginal logit
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links for binary outcomes, then the Bahadur model (Section 7.2) would
follow. Thus, standard GEE can be seen a moment-based version of the
Bahadur model. After choosing the marginal response functions, there is
always at least one, trivial, Bahadur model that corresponds to the estimat-
ing equations, found by setting all correlations to zero, i.e., independence.
In general, the working correlations, found upon convergence of GEE, may
not necessarily correspond to a valid joint probability mass function, given
the severe constraints on the Bahadur model (Section 7.2.2). This need
not be a drawback, as the working correlations are merely a device to pro-
vide consistent and asymptotically normal point estimates for the marginal
regression parameters and, if well chosen, also reasonably efficient. They
should not be made a part of formal inference.

The previous statement implies that, strictly speaking, the following two
questions should remain unanswered or at least approached cautiously:

• Are particular working correlation values large, moderate, or small?

• Among a set of working correlation matrices under correlation, which
one is best?

The first question is a natural one to ask. However, an answer does not
come easily, since ordinarily no standard errors are given alongside the
working correlations, and neither should they. Indeed, as stated above, they
are only devices to support estimation of the regression parameters, with
a status almost below the one of nuisance parameter. One can interpret
them, informally and with great caution, when the empirically corrected
and model-based standard errors are close, for then there usually is good
evidence that the working correlation structure has been chosen in line with
the true structure (Drum and McCullagh 1993, who present a critical view
on the methodology). This may be the case, in particular, when the working
correlation structure is fairly general, such as ‘unstructured’ in the cases
of balanced data (with corresponding measurements for different subjects
taken at the same time or approximately the same time). Of course, an
unstructured covariance matrix is no guarantee for a correct specification
since the covariance structure may further depend, for example, on certain
covariates.

Turning to the second question, it ought to be clear that there are no for-
mal model comparison tools for the correlation parameters. Because there
are no standard errors, Wald-type tests are not possible, and also likelihood-
ratio and score tests are not easy to use. Although some model compar-
ison and goodness-of-fit tools have been proposed (Rotnitzky and Jewell
1990), they are for the mean model and not for the association structure,
as they should be as, once again, the association is mere nuisance in the
GEE philosophy. The worst possible, in fact unscientific, approach that can
be taken is to base one’s choice for working assumptions on the outcome
(significance) for the regression parameters.
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Thus, in conclusion, the working correlation structure ought to be left
alone or at most used in a very informal way. It is best to specify a sin-
gle working correlation structure upfront when the need exists to specify
a primary analysis. Perhaps some others can be used by way of sensitivity
analysis for the regression parameters. It seems best to specify the work-
ing correlation structure in agreement with the design of the study (coun-
terexamples being exchangeability for multivariate outcomes or AR(1) for
unequally spaced longitudinal measurements), and as general as the data
support. The latter is usually a function of the number of subjects in a
study, as well as the number of measurements per subject.

When GEE is deemed unsatisfactory in the sense that there is some sci-
entific interest is the association structure, then one should turn to some
of the extensions of GEE, reviewed in Section 8.3, in particular to GEE2
(Section 8.5), GEE methods combining a marginal and conditional specifi-
cation (Section 8.7), or even to alternating logistic regressions (Section 8.6)
or pseudo-likelihood (Chapter 9).

Some theoretical considerations regarding problems that may occur with
GEE are presented in Crowder (1995), Sutradhar and Das (1999), and
Vonesh, Wang, and Majumdar (2001).

8.3 Alternative GEE Methods

In the previous section, standard GEE, as introduced by Liang and Zeger
(1986), was discussed. A number of alternatives have been proposed. Pren-
tice (1988) replaced the moment-based estimation for the working corre-
lation parameters by a second set of estimating equations. By making the
working assumption that both sets are independent, computational com-
plexity is avoided and, again, the correlation model need not be correctly
specified for the marginal regression parameters to be consistent and as-
ymptotically normal. Prentice’s method is discussed in Section 8.4. As soon
as the two sets of estimating equations are assumed to be correlated, one
obtains GEE2, in the sense that the first and second moments are then
fully modeled, with working assumptions made about the third and fourth
order moments. This method, which is one step up from Prentice’s method,
is discussed in Section 8.5.

Lipsitz, Laird, and Harrington (1991) adapted Prentice’s method to switch
from marginal correlation coefficients to marginal odds ratios. These are
but two of the association choices from Table 7.3. Thus, while standard
GEE and Prentice’s method can be seen as derived from the Bahadur
model (Section 7.2), the method by Lipsitz, Laird, and Harrington (1991)
derives from the multivariate Dale model (Sections 7.3 and 7.7, see also
Chapter 6). Of course, GEE2 can be formulated not only with correlations
but also based on odds ratios (Liang, Zeger, and Qaqish 1992). GEE with
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odds ratios (Lipsitz, Laird, and Harrington 1991, Liang, Zeger, and Qaqish
1992), and the link to alternating logistic regression (Carey, Zeger, and
Diggle 1993), is discussed in Section 8.6.

Another method, close in spirit to GEE as it also derives from quasi-
likelihood ideas, is based on linearizing the link function. It is presented in
Section 8.8. A nice feature is that it can be fitted using the SAS procedure
GLIMMIX. The method is in fact a special case of a more general approach,
that allows the inclusion of random effects into a generalized linear model
(Chapter 14).

8.4 Prentice’s GEE Method

Prentice (1988) amended the basic GEE or GEE1 of Liang and Zeger
(1986), described in Section 8.2. This method allows for estimation of both
parameters vectors, β and α, in the marginal response model and the pair-
wise correlations, respectively. The key difference with the original GEE is
that for both sets of parameters, estimating equations are proposed. Thus,
this GEE estimator for β and α may be defined as a solution to:

N∑
i=1

D′
iV

−1
i (Y i − µi) = 0, (8.16)

N∑
i=1

E′
iW

−1
i (Zi − δi) = 0, (8.17)

where Zi consists of components, doubly indexed by (j1, j2) and taking the
form:

Zij1j2 =
(Yij1 − µij1)(Yij2 − µij2)√
µij1(1 − µij1)µij2(1 − µij2)

.

The terms carry information about the correlation between measures Yij1

and Yij2 on the same subject. In summary,

Zi = (Zi12, Zi13, . . . , Zi,ni−1,ni
). (8.18)

Further, δij1j2 = E(Zij1j2),

Di =
∂µi

∂β
, Ei =

∂δi

∂α
,

Vi is the variance-covariance matrix of Y i, and Wi is the working variance-
covariance matrix of Zi. Strictly speaking, Vi is no working covariance
matrix, since the second moments are specified by (8.17). In contrast, Wi

does contain working assumptions, usually being that the third- and fourth-
order correlations, defined by (7.8), are equal to zero. We will return to
these in Section 8.7.
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The assumption is made that (8.16) and (8.17) are independent. This
would entail a price in terms of efficiency, but has the advantage that, just
as in Section 8.2, misspecifying the correlation structure does not hamper
consistency and asymptotic normality of the marginal regression parame-
ters. Each set of parameters comes with precision estimates, whence for-
mal inference is possible about the set of parameters for one is prepared to
believe the equations have been correctly specified. This could be (8.16),
(8.17), or both. The option to make formal inferences about the correlation
parameters is a net increase of capabilities over standard GEE1.

The joint asymptotic distribution of
√

N(β̂ − β) and
√

N(α̂ − α) is
Gaussian with mean zero and with variance-covariance matrix consistently
estimated by

N ·
(

A 0
B C

)(
Λ11 Λ12

Λ21 Λ22

)(
A B′

0 C

)
,

where

A =

(
N∑

i=1

D′
iV

−1
i Di

)−1

, (8.19)

B =

(
N∑

i=1

E′
iW

−1
i Ei

)−1( N∑
i=1

E′
iW

−1
i

∂Zi

∂β

)
(8.20)

×
(

N∑
i=1

D′
iV

−1
i Di

)−1

, (8.21)

C =

(
N∑

i=1

E′
iW

−1
i Ei

)−1

, (8.22)

Λ11 =
N∑

i=1

D′
iV

−1
i Cov(Y i)V −1

i Di, (8.23)

Λ12 =
N∑

i=1

D′
iV

−1
i Cov(Y i, Zi)W−1

i Ei, (8.24)

Λ21 = Λ12, (8.25)

Λ22 =
N∑

i=1

E′
iW

−1
i Cov(Zi)W−1

i Ei, (8.26)

and Var(Y i), Cov(Y i, Zi), and Var(Zi) are estimated by the quantities

(Y i − µi)(Y i − µi)
′, (Y i − µi)(Zi − δi)′, (Zi − δi)(Zi − δi)′,

respectively, in analogy with GEE1. One may wonder why there is no need
to go back and forth between solving the estimating equations and moment-
based estimation, as in Section 8.2. In this case, this would mean solving
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(8.16) and (8.17), and then switch to moment based estimation for higher
moments. However, as stated before, one typically assumes the third and
fourth moments are zero. One could call these ‘higher-order independence’
working assumption, obviating the need for additional parameters.

The above model has a close resemblance with the Bahadur model, as
it is based on its first to fourth moments. Williamson, Lipsitz, and Kim
(1997) wrote a SAS macro for Prentice’s method.

The updating method for Prentice’s GEE iterates between solving each
of the equations (8.16) and (8.17).

8.5 Second-order Generalized Estimating
Equations (GEE2)

Second-order GEE have been proposed by Zhao and Prentice (1990), us-
ing correlations, and by Liang, Zeger, and Qaqish (1992), using odds ra-
tios. They are a simple extension of Prentice’s (1988) method, described in
Section 8.4, by combining the outcome vector Y i and the pairwise cross-
products, Zi, as in (8.18), into a single outcome vector:

W i = (Y ′
i, Z

′
i)

′. (8.27)

The vector W i has ni +
(
ni

2

)
components. Further, let

Θi = (µ′
i, δ

′
i)

′,

the corresponding mean vector, obtained by assembling the means from
(8.16) and (8.17). Assuming δi depends on a vector of regression parameters
β, which now combines the β and α from Section 8.4, the vector β can be
estimated by solving the second-order generalized estimating equations:

U(β) =
N∑

i=1

U i(β) =
N∑

i=1

D′
iV

−1
i [W i − E(W i)] = 0, (8.28)

where

Di =
∂Θ′

i

∂β
.

As usual, Vi = Cov(W i). Calculation of all matrices involved is straightfor-
ward with the exception of the covariance matrix Vi, which contains third-
and fourth-order probabilities. Again, as in Section 8.4, the three-way and
higher order correlations are set equal to zero. As before, the parameter
estimates β̂ can then be calculated using, for example, a Fisher scoring
algorithm. Provided the first- and second-order models have been correctly
specified, β̂ is consistent for β and has an asymptotic multivariate normal
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distribution with mean vector β and variance-covariance matrix consis-
tently estimated by:

V̂ (β̂) =

(
N∑

i=1

D̂′
iV̂

−1
i D̂i

)−1( N∑
i=1

U i(β̂)U i(β̂)′
)

×
(

N∑
i=1

D̂′
iV̂

−1
i D̂i

)−1

,

the usual sandwich estimator.
In principle, there is no reason why one should stop at GEE2. Higher-

order GEE is perfectly conceivable. When, moments 1 up to K would
be modeled, working assumptions of order K + 1 up to 2K would be
needed. Obviously, this will become increasingly cumbersome, not only al-
gebraically, also regarding implementation and computation time. As the
order increases, the relative gain will also decrease, as less and less informa-
tion would be contained in higher moments. When K becomes equal to the
length of the response vector Y i, full likelihood is recovered and our spec-
ification, carried through to order ni, would produce the Bahadur model.
When higher orders are of interest, this is usually in situations where the
joint probabilities need to be calculated and then full likelihood effectively
is the only option. Thus, most commonly encountered are GEE1 and GEE2
on the one hand, and then full likelihood on the other hand.

8.6 GEE with Odds Ratios and Alternating
Logistic Regression

The GEE versions discussed in Sections 8.2, 8.4, and 8.5 all used correlation
as a measure to capture association, either as moment estimated working
assumptions, or as part of the estimating equations. Thus, as indicated
earlier, all can be seen as deriving from the Bahadur model. The advantage
of correlations is that the estimating equations, such as (8.4), include the
covariance matrix Vi as in (8.5), and (working) correlation parameters can
be used in a particularly straightforward fashion to compose the matrix
Ri(α). However, many authors have stated that the odds ratio is a par-
ticularly straightforward measure to capture association between binary or
categorical outcomes (Molenberghs and Lesaffre 1994, 1999, Fitzmaurice,
Laird, and Ware 2004, p. 298, see also Chapters 6 and 7). In the context
of GEE, the same observation has been made. Lipsitz, Laird, and Harring-
ton (1991) considered GEE1 for binary data with odds ratios, while Liang,
Zeger, and Qaqish (1992) did the same for GEE2. The Bahadur-based cor-
relation, expressed as (7.5) and leading to bivariate joint probabilities (7.6),
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needs to be replaced by the Dale-based odds ratio (7.39), leading to bivari-
ate joint probabilities (7.40). Still focusing on binary outcomes and based
on the bivariate probabilities, calculation of Vi in (8.5) is straightforward
and follows from observing that

Vi,jj = Var(Yij) = µij(1 − µij),
Vi,j1,j2 = Cov(Yij1 , Yij2) = µij1j2 − µij1µij2 .

Note that the expectation of a component of Zi, Zij1j2 say, equals µij1j2 ,
the probability of a success at occasions j1 and j2 at the same time. As-
suming a model for the pairwise odds ratios as in (7.39), and working
assumptions for the third- and fourth-order log odds ratios (usually by set-
ting them equal to zero), the model specification is complete. Lipsitz, Laird,
and Harrington (1991) assumed, for simplicity, Wi in (8.17) to be diagonal,
avoiding working assumptions about the third and fourth order; it even
avoids calculating the third- and fourth-order probabilities altogether. It is
then simple to solve (8.16) and (8.17) with the vector Y i still equal to the
response vector, and with Zi in (8.18) changed to

Zi = (Yi1Yi2, Yi1Yi3, . . . , Yi,ni−1Yini). (8.29)

The same principles as outlined above can be applied to second-order GEE
(8.28). This idea was followed by Liang, Zeger, and Qaqish (1992). While
they set the third- and fourth-order log odds ratios equal to zero, obvi-
ating the need to invoke additional (moment-based) estimation, they still
needed to compute third- and fourth-order probabilities for GEE2, follow-
ing one of the methods associated with the Dale model, e.g., using the IPF
algorithm or the Plackett polynomials (Sections 7.4 and 7.7). This can be
computationally less than straightforward, but luckily there is another al-
ternative, termed alternating logistic regressions (ALR) and proposed by
Carey, Zeger, and Diggle (1993). The method is different from all of the
GEE methods considered so far, but has communality with both GEE1
and GEE2 based on odds ratios. In particular, it is almost as efficient as
GEE2, and shares the computational ease of conventional GEE1.

Let us first introduce the method, and then provide some further per-
spective on its advantages. Let µij be as before, described by

logitP (Yij = 1) = x′
ijβ, (8.30)

and let αij1j2 = ln(ψij1j2) be the marginal log odds ratio. Then,

logitP (Yij1 = 1|Yij2 = yij2)

= ln
(

µij1 − µij1j2

1 − µij1 − µij2 + µij1j2

)
+ αij1j2yij2 . (8.31)

The marginal logistic regression (8.30) is in line with the Bahadur model,
the Dale model with logistic margins, and all of the GEEs discussed in
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this chapter. However, rather than further specifying the models by ad-
ditional marginal description of the pairwise association, a logistic model
for an outcome conditional upon another outcome is presented, which de-
rives trivially from the expression for the log odds ratio. Logistic regression
(8.31) is a little unconventional in the sense that instead of an intercept,
there is an offset, i.e., a constant term free of unknown parameters, given
the mean model. An example of an offset can be found in Section 3.7. The
principle of ALR is to iterate between solving (8.30) and (8.31). Iteration
is indeed required because solving (8.30) requires the covariance matrix Vi

of Y i − µi, which depends on both β and α, while also (8.31) depends on
both. The updating problem can be phrased in terms of simultaneously
solving two sets of estimating equations, the first one being exactly equal
in form to (8.16), the second one being

N∑
i=1

Ẽ
′
iW̃

−1
i Ri = 0, (8.32)

where

Ẽi =
∂ζi

∂α′
i

,

ζi is a vector with elements ζij1j2 = P (Yij1 = 1|Yij2 = yij2), W̃i is a diago-
nal matrix with elements ζij1j2(1 − ζij1j2), and Ri a vector with elements
Yij1j2 − ζij1j2 .

Note that ALR extends beyond classical GEE, in the sense that pre-
cision estimates follow for both the β and the α parameters. However,
unlike with GEE2, and even with Prentice’s (1988) and Prentice and Zhao
(1991) GEE, no working assumptions about the third- and fourth-order
odds ratios are required. Thanks to the clever combination of a marginal
and a conditional specification, addressing the third and fourth moments
is avoided all together, which is strictly different from setting them equal
to zero.

In (8.31), arbitrary structures for the log odds ratio parameters αij2j2

can be assumed. The odds ratio equivalent of exchangeability would set
them all equal to the same constant α. When measurements are taken at
fixed time points, an unstructured specification is possible. Further, when
measurements are equally spaced, banded structures or other equivalents
of autoregressive correlation structures can be entertained.

ALR has been implemented in the SAS procedure GENMOD. More de-
tail is given in Section 10.4.

As was seen here, a combination of marginal and conditional specifica-
tion can be advantageous. ALR is not the only instance to confirm this.
In the next section, a family of hybrid marginal and conditional model
specifications is considered.
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8.7 GEE2 Based on a Hybrid Marginal-conditional
Model

In the previous section, alternating logistic regression combined marginal
and conditional aspects of model specification. The hybrid model, combin-
ing marginal and conditional aspects, presented in Section 7.8 can be used
as a basis for GEE just as easily as the Bahadur and Dale models studied
before.

A set of GEE2, proposed also by Heagerty and Zeger (1996), can be
derived by specifying only the first and second moments that derive from
(7.50):

U(β) =
N∑

i=1

(
∂µi

∂β

)
M−1

i (vi − µi) = 0, (8.33)

with notation as in Section 7.8.1. Observe that these score equations assume
the same form for any fixed value of Ωi, with Ωi = 0 as a special but
important case. However, this leaves M i partly unspecified. A standard
procedure is to replace it by a working covariance matrix, depending on
a set of (nuisance) parameters α. Heagerty and Zeger (1996) advocated
setting the higher order conditional association parameters equal to zero
(or, more generally, to a fixed constant). This particular set of GEE2 does
not require estimation of extra parameters, a property shared with the
GEE2 methods described in Section 8.5 and 8.6. Expression (8.33) can also
be seen as the score equations for the likelihood specified by the following
member of the quadratic exponential family of Zhao and Prentice (1990):

f(yi|Ψi) = exp
{
Ψ′

ivi − A(Ψi)
}

. (8.34)

Another, slightly different set of GEE2, which also does not require esti-
mation of nuisance parameters, is found by setting all three and higher
order marginal log odds ratios equal to zero, in agreement with GEE2 in
Section 8.6 and Liang, Zeger, and Qaqish (1992).

Computing the covariance M i in (8.33) involves the third and fourth
order probabilities. With conditional constraints, they are easily computed
using the IPF algorithm, as outlined in Section 7.8.1. To proceed with mar-
ginal working assumptions, we first need to define the three- and four-way
marginal odds ratios. They can also be introduced using conditional lower
order odds ratios. If ψij1j2|j3(y) is the conditional odds ratio of outcomes
Yij1 and Yij2 , given Yij3 = y, then

ψij1j2j3 =
ψij1j2|j2(1)
ψij1j2|j3(0)

, ψij1j2j3j4 =
ψij1j2j3|j4(1)
ψij1j2j3|j4(0)

.

To compute the probabilities, again, the IPF algorithm as presented in
Section 7.12.3 or the polynomial method of Section 7.7.4 can be used.
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When the outcomes are categorical rather than binary, the likelihood
presented in Section 7.8.2 can be used and, given the above, GEE2 follows
in a straightforward fashion.

8.8 A Method Based on Linearization

All versions of GEE studied sofar can be seen as deriving from the score
equations of corresponding likelihood methods, such as the Bahadur model
(Section 7.2), the Dale model (Section 7.7), or the hybrid model (Sec-
tion 7.8). In a sense, GEE results from considering only a subvector of the
full vector of scores, corresponding to either the first moments only (the
outcomes themselves), or the first and second moments (outcomes and
cross-products thereof). On the other hand, they can be seen as an exten-
sion of the quasi-likelihood principles, where appropriate modifications are
made to the scores to be sufficiently flexible and “work” at the same time.
A classical modification is the inclusion of an overdispersion parameter,
while in GEE also (nuisance) correlation parameters are introduced.

An alternative approach consists of linearizing the outcome, in the sense
of Nelder and Wedderburn (1972), to construct a working variate, to which
then weighted least squares is applied. In other words, iteratively reweighted
least squares (IRLS) can be used (McCullagh and Nelder 1989). Within
each step, the approximation produces all elements typically encountered
in a multivariate normal model, and hence corresponding software tools
can be used. In case our models would contain random effects as well (Sec-
tion 14.4), the core of the IRLS could be approached using linear mixed
models tools. The SAS procedure GLIMMIX is such a tool and the gen-
eral case will be taken up in Chapter 14. Here, we restrict attention to the
marginal-model situation. Nevertheless, it is important to note that the
tools developed here can be approached using the SAS procedure GLIM-
MIX, as well as with the GLIMMIX macro.

Write the outcome vector in a classical (multivariate) generalized linear
models fashion:

Y i = µi + εi (8.35)

where, as usual, µi = E(Y i) is the systematic component and εi is the
random component, typically following from a multinomial distribution.
We assume that

Var(Y i) = Var(εi) = Σi. (8.36)

The model is further specified by assuming

ηi = g(µi),

ηi = Xiβ,
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where ηi is the usual set of linear predictors, g(.) is an inverse vector link
function, typically made up of logit components, Xi is a design matrix and
β are the regression parameters.

Estimation proceeds by iteratively solving

N∑
i=1

X ′
iWiXiβ =

N∑
i=1

WiY
∗
i , (8.37)

where a working variate y∗
i has been defined, following from a first-order

Taylor series expansion of ηi around µi:

Y ∗
i = η̂i + (Y i − µ̂i)F

−1
i ,

Fi =
∂µi

∂ηi

. (8.38)

The weights in (8.37) are specified as

Wi = F ′
iΣ

−1
i Fi. (8.39)

Note that in the specific case of an identity link, ηi = µi, Fi = Ini and
Y i = Y ∗

i , whence a standard multivariate regression follows.

8.9 Analysis of the NTP Data

The NTP data, introduced in Section 2.7, have been analyzed in Sec-
tion 7.2.3, by means of the Bahadur model specialized to clustered data
(Section 7.2.2). Table 7.1 presented estimates and standard errors for a sim-
ple model, with marginal logits linear in dose, and a common correlation
parameter, fitted the external, visceral, skeletal, and collapsed outcomes in
the DEHP, EG, and DYME studies.

Here, we will consider the same model, but then from the GEE angle.
We will apply standard GEE (Section 8.2), Prentice’s modification (Sec-
tion 8.4), and the linearization method (Section 8.8). The first approach
was fitted using the SAS procedure GENMOD, the second one with a
SAS macro developed by Stuart Lipsitz (Williamson, Lipsitz, and Kim
1997), and the third one using the SAS macro GLIMMIX or, equivalently,
with the SAS procedure GLIMMIX. More details on software are deferred
to Chapter 10. For all of these analyses, both independence (Table 8.2)
and exchangeable (Table 8.3) working assumptions were considered. Other
working assumptions, such as AR(1) and unstructured, are less sensible
here, given the clustered nature of the data. Several models include, in
addition to working assumptions, an overdispersion parameter φ.

In addition to these analysis, GEE2 estimates are provided in Table 8.4,
based on the same models as in the Bahadur analysis, described by (7.14)
and (7.15).
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TABLE 8.2. NTP Data. Parameter estimates (model-based standard errors; em-
pirically corrected standard errors) for GEE1 with independence working assump-
tions, fitted to various outcomes in the DEHP study. β0 and βd are the marginal
intercept and dose effect, respectively; φ is the overdispersion parameter.

Outcome Par. Standard Prentice Linearized
External β0 -5.06(0.30;0.38) -5.06(0.33;0.38) -5.06(0.28;0.38)

βd 5.31(0.44;0.57) 5.31(0.48;0.57) 5.31(0.42;0.57)
φ 0.90 0.74

Visceral β0 -4.47(0.28;0.36) -4.47(0.28;0.36) -4.47(0.28;0.36)
βd 4.40(0.43;0.58) 4.40(0.43;0.58) 4.40(0.43;0.58)
φ 1.00 1.00

Skeletal β0 -4.87(0.31;0.47) -4.87(0.31;0.47) -4.87(0.32;0.47)
βd 4.89(0.46;0.65) 4.90(0.47;0.65) 4.90(0.47;0.65)
φ 0.99 1.02

Collapsed β0 -3.98(0.22;0.30) -3.98(0.22;0.30) -3.98(0.22;0.30)
βd 5.56(0.40;0.61) 5.56(0.40;0.61) 5.56(0.41;0.61)
φ 0.99 1.04

For a given outcome in a given study, results from the Bahadur model,
the various GEE1 versions, and GEE2, are very similar. Even though for
some parameters the estimated values differ a bit between analyses, they
preserve the directionality and, roughly, the magnitude of the effect. This is
not surprising, given that all can be seen as deriving from Bahadur’s model.
However, just as in, for example, Section 7.10, we observe a mild shrinkage.
This is, again, due to the parameter constraints on the Bahadur model and,
to a lesser extent, on GEE2. For the parameters in the Bahadur model to be
allowable, all higher-order probabilities need to be valid, while for GEE2
this is necessary only up to the fourth order, the farthest the working
assumptions reach. For GEE1, it is sufficient for the pairwise probabilities
to be valid. Thus, it is possible for GEE to provide a valid parameter
combination that cannot be reconciled with a Bahadur model, having the
same lower order parameters. This does not mean there would be no fully
specified model corresponding to it. Given the orthogonality properties of
the hybrid marginal-conditional model, presented in Section 7.8, there is
always a model of this type encompassing the GEE-based parameters.

The constraints on the Bahadur model are very severe indeed. For in-
stance, the allowable range of βa for the external outcome in the DEHP
data is (−0.0164; 0.1610) when β0 and βd are fixed at their MLE. This
range translates to the very narrow (−0.0082; 0.0803) on the correlation
scale, excluding the GEE based values for the correlation ρ.
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TABLE 8.3. NTP Data. Parameter estimates (model-based standard errors; em-
pirically corrected standard errors) for GEE1 with exchangeable working assump-
tions, fitted various outcomes in the DEHP study. β0 and βd are the marginal
intercept and dose effect, respectively; ρ is the correlation; φ is the overdispersion
parameter.

Outcome Par. Standard Prentice Linearized
External β0 -4.98(0.40;0.37) -4.99(0.46;0.37) -5.00(0.36;0.37)

βd 5.33(0.57;0.55) 5.32(0.65;0.55) 5.32(0.51;0.55)
φ 0.88 0.65
ρ 0.11 0.11(0.04) 0.06

Visceral β0 -4.50(0.37;0.37) -4.51(0.40;0.37) -4.50(0.36;0.37)
βd 4.55(0.55;0.59) 4.59(0.58;0.59) 4.55(0.54;0.59)
φ 1.00 0.92
ρ 0.08 0.11(0.05) 0.08

Skeletal β0 -4.83(0.44;0.45) -4.82(0.47;0.44) -4.82(0.46;0.45)
βd 4.84(0.62;0.63) 4.84(0.67;0.63) 4.84(0.65;0.63)
φ 0.98 0.86
ρ 0.12 0.14(0.06) 0.13

Collapsed β0 -4.05(0.32;0.31) -4.06(0.35;0.31) -4.04(0.33;0.31)
βd 5.84(0.57;0.61) 5.89(0.62;0.61) 5.82(0.58;0.61)
φ 1.00 0.96
ρ 0.11 0.15(0.05) 0.11

Comparing model-based and empirically corrected standard errors, there
is a clear difference in the case of independence working assumptions, but
less so in the exchangeable case. Comparing both analyses is a case in
point that the choice of working assumptions, whether right or wrong,
is not important for the method’s consistency and asymptotic normality.
The impact on efficiency is minor. The statement about efficiency con-
tinues to hold when comparing all marginal analyses. In case where one
is merely interested in assessing the effect of dose, GEE1, being the sim-
plest of all methods, will do fine. When there is additional interest in the
association, care is needed with GEE1. Table 8.2 provides no association
parameter at all. The correlation in Table 8.3 should be approached cau-
tiously, as the exchangeable correlation is, at best, a nuisance parameter,
for which no formal inference is possible. Moreover, because we are allowed
to misspecify our association model, there is no a priori guarantee that the
parameter is trustworthy. However, in this particular case, exchangeabil-
ity seems reasonable, both on biological grounds and given the design of
the study. When more formal inferences about the correlation parameters
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TABLE 8.4. NTP Data. Parameter estimates (empirically corrected standard er-
rors) for GEE2 with exchangeable correlation, fitted to various outcomes in three
studies. β0 and βd are the marginal intercept and dose effect, respectively; βa is
the Fisher z transformed correlation; ρ is the correlation.

Outcome Parameter DEHP EG DYME
External β0 -4.98(0.37) -5.63(0.67) -7.45(0.73)

βd 5.29(0.55) 3.10(0.81) 8.15(0.83)
βa 0.15(0.05) 0.15(0.05) 0.13(0.05)
ρ 0.07(0.02) 0.07(0.02) 0.06(0.02)

Visceral β0 -4.49(0.36) -7.50(1.05) -6.89(0.75)
βd 4.52(0.59) 4.37(1.14) 5.51(0.89)
βa 0.15(0.06) 0.02(0.02) 0.11(0.07)
ρ 0.07(0.03) 0.01(0.01) 0.05(0.03)

Skeletal β0 -5.23(0.40) -4.05(0.33)
βd 5.35(0.60) 4.77(0.43)
βa 0.18(0.02) 0.30(0.03)
ρ 0.09(0.01) 0.15(0.01)

Collapsed β0 -5.23(0.40) -4.07(0.71) -5.75(0.48)
βd 5.35(0.60) 4.89(0.90) 8.82(0.91)
βa 0.18(0.02) 0.26(0.14) 0.18(0.12)
ρ 0.09(0.01) 0.13(0.07) 0.09(0.06)

are required, GEE2 is a viable alternative. This may be less so with the
Bahadur model, given the strong parameter space restrictions.

An alternative when the association is of interest is provided by alter-
nating logistic regressions (Section 8.6). Results of fitting ALR to the NTP
data are summarized in Table 8.5. The association is in terms of log odds
ratios α, as in (8.31). For convenience, we also present the odds ratios ψ. As
it is a sensible choice in our case, and for ease of comparison with Tables 8.3
and 8.4, an exchangeable odds ratio structure is chosen, in the sense that
all odds ratios are equal. Again, parameter estimates are similar to the ones
obtained in Tables 8.2–8.4, and this holds for the standard errors as well.
Of course, the association being in terms of (log) odds ratios, comparison
with the correlations of the earlier analyses is not straightforward, although
the relative magnitudes are roughly preserved. An advantage of the ALR
analyses, apart from its implementation in standard software (the SAS pro-
cedure GENMOD, see Chapter 10), is that standard errors are provided
for the association parameters. In fact, the asymptotic covariance matrix
for all estimates together can be obtained.
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TABLE 8.5. NTP Data. Parameter estimates (empirically corrected standard er-
rors) for alternating logistic regression with exchangeable odds ratio, fitted to var-
ious outcomes in three studies. β0 and βd are the marginal intercept and dose
effect, respectively; α is the log odds ratio; ψ is the log odds ratio.

Outcome Parameter DEHP EG DYME
External β0 -5.16(0.35) -5.72(0.64) -7.48(0.75)

βd 5.64(0.52) 3.28(0.72) 8.25(0.87)
α 0.96(0.30) 1.45(0.45) 0.79(0.31)
ψ 2.61(0.78) 4.26(1.92) 2.20(0.68)

Visceral β0 -4.54(0.36) -7.61(1.06) -7.24(0.88)
βd 4.72(0.57) 4.50(1.13) 6.05(1.04)
α 1.12(0.30) 0.49(0.42) 1.76(0.59)
ψ 3.06(0.92) 1.63(0.69) 5.81(3.43)

Skeletal β0 -4.87(0.49) -3.28(0.22) -4.92(0.34)
βd 4.90(0.70) 3.85(0.39) 6.73(0.65)
α 1.05(0.40) 1.43(0.22) 1.62(0.37)
ψ 2.86(1.14) 4.18(0.92) 5.05(1.87)

Collapsed β0 -4.04(0.31) -3.19(0.22) -5.08(0.37)
βd 5.93(0.63) 3.86(0.40) 7.98(0.75)
α 1.17(0.29) 1.40(0.22) 1.26(0.31)
ψ 3.22(0.93) 4.06(0.89) 3.53(1.09)

8.10 The Heatshock Study

A unique type of developmental toxicity study was originally developed by
Brown and Fabro (1981) to assess the impact of heat stress on embryonic
development, and adapted by Kimmel et al (1993) to investigate effects
of both temperature and duration of exposure. In these heatshock exper-
iments, the embryos are explanted from the uterus of the maternal dam
during the gestation period and cultured in vitro. Each individual embryo
is subjected to a short period of heat stress by placing the culture vial into
a water bath, involving an increase over body temperature of 3 to 5◦C for
a duration of 5 to 60 minutes. The embryos are examined 24 hours later
for signs of impaired or accelerated development.

This type of developmental toxicity test system has several advantages
over the standard Segment II design. First, the exposure is administered
directly to the embryo, so controversial issues regarding the unknown (and
often non-linear) relationship between the level of exposure to the maternal
dam and that received by the developing embryo need not be addressed.
While genetic factors are still expected to exert an influence on the vul-
nerability to injury of embryos from a common dam, direct exposure to
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TABLE 8.6. Heatshock Study. Hybrid marginal-conditional parameter estimates
(model-based standard errors; empirically corrected standard errors) for models
fitted to the outcomes MBN, FBN, OLF, and BRB. Covariate effects are allowed
to differ across outcomes, and a different association parameter is assumed for
each pair. Model 1 presents the estimates under conditional constraints for the
higher order association; Model 2 uses marginal constraints. Higher order asso-
ciations are included in Model 3. Models 1 and 2 are at the same time maximum
likelihood and GEE2. Model 3 is full likelihood. Part I: Marginal parameters.

Parameter Model 1 Model 2 Model 3
Marginal parameters

Midbrain (MBN)
Intercept -1.81(0.23;0.24) -1.81(0.23;0.24) -1.83(0.23;0.24)
‘posdur’ -0.12(0.04;0.04) -0.12(0.04;0.04) -0.10(0.04;0.04)
‘durtemp’ 0.04(0.01;0.01) 0.04(0.01;0.01) 0.04(0.01;0.01)

Forebrain (FBN)
Intercept -1.73(0.23;0.23) -1.73(0.23;0.23) -1.71(0.23;0.22)
‘posdur’ -0.09(0.04;0.04) -0.09(0.04;0.04) -0.09(0.04;0.04)
‘durtemp’ 0.04(0.01;0.01) 0.04(0.01;0.01) 0.04(0.01;0.01)

Olfactory system (OLF)
intercept -1.43(0.22;0.21) -1.44(0.22;0.21) -1.46(0.20;0.21)
‘posdur’ -0.21(0.04;0.05) -0.21(0.04;0.05) -0.21(0.04;0.05)
‘durtemp’ 0.07(0.01;0.01) 0.07(0.01;0.01) 0.07(0.01;0.01)

Branchial bars (BRB)
intercept -1.19(0.20;0.20) -1.18(0.20;0.20) -1.09(0.20;0.20)
‘posdur’ -0.13(0.04;0.04) -0.13(0.04;0.04) -0.13(0.04;0.04)
‘durtemp’ 0.04(0.01;0.01) 0.04(0.01;0.01) 0.04(0.01;0.01)

individual embryos reduces the need to account for such litter effects. Thus,
the clustering induced by litter effects are not considered in our analysis.
A detailed analysis of the clustering aspect can be found in Aerts et al
(2002). Second, the exposure pattern can be much more easily controlled
than in most developmental toxicity studies, as it is possible to achieve
target temperature levels in the water bath within one to two minutes.
Whereas the typical Segment II study requires waiting eight to twelve days
after exposure to assess its impact, information regarding the effects of ex-
posure are quickly obtained in heatshock studies. Finally, this animal test
system provides a convenient mechanism for examining the joint effects of
both duration of exposure and exposure levels, which until recently have
received little attention. The actual study design for the set of experiments
is shown in Kimmel et al (1994). Of the 327 embryos exposed, 50 did not
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TABLE 8.7. Heatshock Study. Hybrid marginal-conditional parameter estimates
(model-based standard errors; empirically corrected standard errors) for models
fitted to the outcomes MBN, FBN, OLF, and BRB. Covariate effects are allowed
to differ across outcomes, and a different association parameter is assumed for
each pair. Model 1 presents the estimates under conditional constraints for the
higher order association; Model 2 uses marginal constraints. Higher order asso-
ciations are included in Model 3. Models 1 and 2 are at the same time maximum
likelihood and GEE2. Model 3 is full likelihood. Part II: Association parameters.

Parameter Model 1 Model 2 Model 3
Pairwise association

MBN FBN 3.22(0.38;0.39) 3.22(0.38;0.40) 3.13(0.37;0.38)
MBN OLF 2.69(0.36;0.38) 2.69(0.36;0.37) 2.77(0.36;0.38)
MBN BRB 2.10(0.32;0.33) 2.10(0.32;0.33) 2.17(0.33;0.33)
FBN OLF 3.58(0.41;0.42) 3.59(0.41;0.42) 3.62(0.42;0.44)
FBN BRB 2.54(0.34;0.34) 2.55(0.34;0.34) 2.60(0.34;0.34)
OLF BRB 2.52(0.33;0.34) 2.53(0.33;0.34) 2.61(0.33;0.34)

Higher order association

MBN FBN OLF 1.30(1.34;1.42)
MBN FBN BRB 0.96(1.19;1.17)
MBN OLF BRB 0.22(1.30;1.38)
FBN OLF BRB 2.12(1.48;1.51)
MBN FBN OLF BRB 3.18(1.77;1.80)
Deviance 946.05 945.15 937.80

survive the heat stress exposure and were excluded from further analysis.
The remaining 277 animals have complete data.

Historically, the strategy for comparing responses among exposures of
different durations to a variety of environmental agents has relied on a
conjecture called Haber’s law, which states that adverse response levels
should be the same for any equivalent level of dose times duration (Haber
1924). Clearly, the appropriateness of applying Haber’s law depends on
the pharmacokinetics of the particular agent, the route of administration,
the target organ, and the dose/duration patterns under consideration. Al-
though much attention has been focused on documenting exceptions to this
rule, it is often used as a simplifying assumption in view of limited test-
ing resources and the multitude of exposure scenarios. However, given the
current desire to develop regulatory standards for a range of exposure dura-
tions, models flexible enough to describe the response patterns over varying
levels of both exposure concentration and duration are greatly needed.

Although a wide variety of statistical methods have been developed for
cancer risk assessment, the issue of multiple endpoints does not present
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TABLE 8.8. Heatshock Study. Empirically corrected (e.c.) and model-based (m.b.)
Wald test statistics based on Models 1–3. Apart from tests for common covari-
ate effects and common pairwise association, tests for common covariate effects
among MBN, FBN, and BRB [indicated by (**)] are presented, as well as a test
whether the association splits into two groups: pairs including versus excluding
BRB.∗ indicates p < 0.05.

Model 1 Model 2 Model 3
Hypothesis df e.c. m.b. e.c. m.b. e.c. m.b.

Common ‘posdur’ 3 ∗7.95 ∗9.28 ∗8.47 ∗9.85 ∗9.87 ∗11.31
Common ‘posdur’ (**) 2 0.16 0.19 0.17 0.19 0.10 0.07
Common ‘durtemp’ 3 5.73 7.68 6.13 ∗8.21 7.39 ∗9.92
Common ‘durtemp’ (**) 2 1.36 1.08 1.49 1.14 1.92 1.18
Common pairwise assoc. 5 ∗12.58 ∗13.63 ∗12.55 ∗13.55 10.16 ∗11.92
Two groups of pairwise assoc. 4 6.49 6.18 6.52 6.19 4.99 5.65

quite the degree of complexity in this area as it does for developmental
toxicity studies. The endpoint of interest in an animal cancer bioassay is
typically the occurrence of a particular type of tumor, whereas in develop-
mental toxicity studies there is no clear choice for a single type of adverse
outcome. In fact, an entire array of outcomes are needed to define certain
birth defect syndromes (Khoury et al 1987, Holmes 1988).

The data have been analyzed before by Williams, Molenberghs, and Lip-
sitz (1996). In line with Molenberghs and Ritter (1996), we will consider a
multivariate analysis on four binary morphological parameters: Midbrain
(MBN), Forebrain (FBN), Olfactory System (OLF), and Branchial Bars
(BRB). They are coded as affected versus normal. If Haber’s law is sat-
isfied, the main covariate is ‘durtemp,’ the product of duration and dose
(temperature increase). We found that the main effect ‘duration’ is also
important. However, we expect duration to have no effect at the control
dose, therefore it was recoded as ‘posdur,’ which is equal to ‘duration’ in
the exposed groups and zero in the control group. Including the main effect
‘temperature’ does not significantly improve the fit.

All of our analyses in this section will be conducted by means of the hy-
brid between a marginal and conditional model, for which the full likelihood
version was given in Section 7.8, with a GEE2 version introduced in Sec-
tion 8.7. Tables 8.6 and 8.7 show three models fitted to these data. Given
the orthogonality between lower-order and higher-order parameters, the
estimates can be considered both as stemming from maximum likelihood,
as well as from GEE2, depending on whether one views the higher-order
association is set equal to zero because this is believed to be the correct
structure, or rather merely as a working assumption. In a few models,
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TABLE 8.9. Heatshock Study. Hybrid marginal-conditional parameter estimates
(empirically corrected standard errors) for models fitted to the outcomes MBN,
FBN, OLF, and BRB. Covariate effects are allowed to differ across outcomes.
Common covariate effects are assumed for MBN, FBN, and BRB. Pairwise as-
sociations are grouped in: (1) Group 1, containing all pairs formed from MBN,
FBN, and OLF, and (2) Group 2, all pairs containing BRB. Models 4, 5, and 7
are at the same time maximum likelihood and GEE2. Model 6 is full likelihood.

Parameter Model 4 Model 5 Model 6 Model 7
Marginal parameters

Intercepts
MBN -1.75(0.20) -1.75(0.20) -1.70(0.20) -1.74(0.20)
FBN -1.49(0.19) -1.49(0.19) -1.47(0.19) -1.49(0.19)
OLF -1.40(0.21) -1.41(0.21) -1.39(0.21) -1.45(0.21)
BRB -1.41(0.19) -1.41(0.19) -1.40(0.19) -1.42(0.19)
Covariates (MBN, FBN, BRB)
‘posdur’ -0.12(0.03) -0.12(0.03) -0.12(0.03) -0.13(0.03)
‘durtemp’ 0.04(0.01) 0.04(0.01) 0.04(0.01) 0.04(0.01)
Covariates (OLF)
‘posdur’ -0.22(0.05) -0.22(0.05) -0.22(0.05) -0.22(0.04)
‘durtemp’ 0.07(0.01) 0.07(0.01) 0.07(0.01) 0.07(0.01)

Pairwise association

Intercepts
Group 1 3.10(0.29) 3.11(0.29) 3.11(0.29) 3.50(0.40)
Group 2 2.32(0.26) 2.33(0.26) 2.32(0.26) 2.73(0.38)
Covariates
‘posdur’ 0.16(0.07)
‘durtemp’ -0.05(0.02)

Higher order association
MBN FBN OLF 0.47(1.35)
MBN FBN BRB 0.96(1.06)
MBN OLF BRB 0.19(1.44)
FBN OLF BRB 1.87(1.50)
MBN FBN OLF BRB 2.23(1.76)
Deviance 959.31 959.73 954.24 951.79

higher-order association parameters are included as well (Models 3 and 6),
implying they are full likelihood.

Models 1 and 2 do not include higher order associations. Model 1 applies
conditional constraints, whereas Model 2 considers its marginal counter-



8.10 The Heatshock Study 179

TABLE 8.10. Heatshock Study. Estimated odds ratios for Model 7 in Table 8.9.
Entries marked with a ∗ correspond to a duration-temperature combination not
present in the data.

Duration
Temp. 5 30 60

0.0 33.1 33.1 33.1
3.0 36.1 55.6 93.5
3.5 32.0 26.9 21.8
4.0 28.3 13.0 ∗ 5.1
4.5 25.1 6.3 ∗ 1.2
5.0 22.2 3.0 ∗ 0.3

parts. Model 3 includes the higher-order associations as well. Parameter
estimates and standard errors are shown. Clearly, the marginal parameters
are virtually the same across models, with the same holding true for the
standard errors. Further, it is clear that some of the covariate effects are
very similar, and some of the pairwise association parameters are very close
to each other.

Table 8.8 presents test statistics based on the model based and robust
variance estimators, obtained for Models 1–3. A common ‘posdur’ effect
is clearly not tenable. A common ‘durtemp’ effect gives p-values that are
borderline, as χ2 = 7.68 corresponds to p = 0.053 and χ2 = 7.39 to 0.061.
From the model parameters we observe that the effects of ‘posdur’ and
‘durtemp’ are virtually the same for MBN, FBN, and BRB, whereas OLF
differs slightly. The test statistics presented in Table 8.8 support these
hypotheses. A common pairwise association parameter is not supported,
but if the association is divided into two groups (pairs with and without
BRB) a simplification which is consistent with the data is achieved.

Reduced models are presented in Table 8.9, where only robust standard
errors are shown. Observe that the similarities across Models 4–6 are even
greater. Comparing models from Tables 8.6 and 8.7 with their correspond-
ing ones in Table 8.9 using a likelihood ratio statistics yields: 13.26 (Model
4 versus Model 1), 14.58 (Model 5 versus Model 2), and 16.42 (Model 6
versus Model 3), all on 8 degrees of freedom. Only the last one is above the
5 % critical level.

We gathered some evidence for a dependence of pairwise association on
the level of exposure. Model 7 in Table 8.9 shows an extension of Model 4,
where a common linear effect of ‘posdur’ and ‘durtemp’ is included for the
pairwise odds ratios. Allowing for a quadratic effect shows no significant
improvement. The pairwise association for pairs excluding BRB is described
by a log odds ratio of 3.5 + 0.16 ∗ ‘posdur’ − 0.049 ∗ ‘durtemp’. The effect
of ‘temperature’ is not significant. The association increases (slightly) with
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FIGURE 8.1. Heatshock Study. Malformation probabilities, based on models in-
cluding three and four outcomes. Ranges of ‘durtemp’ at three levels of ‘duration’
are presented. Solid line: MBN, FBN, OLF, BRB; dotted line: FBN, OLF, BRB;
dots and dashes: MBN, FBN, OLF.

‘posdur,’ but a dramatic decrease is seen with ‘durtemp.’ A selection of the
estimated odds ratios are shown in Table 8.10.

The pairwise associations are important as a tool used to reduce the
length of the outcome vector. Indeed, observe that the association between
MBN and FBN is very high, and that ‘posdur’ and ‘durtemp’ have a sim-
ilar effect on both. This might imply that considering, e.g., FBN, OLF,
and BRB only might yield a similar predicted probability of any malfor-
mation. In Figure 8.1, we show the malformation probability for a range of
‘durtemp’ values, at duration levels 5, 30, and 60 minutes. The malforma-
tion probabilities are estimated based on three models: Model 1, including
all four outcomes, the three-way version with FBN, OLF, and BRB, and the
three-way version with MBN, FBN, and OLF. In the latter case, BRB has
been omitted. As the association between pairs including BRB is observed
to be smaller, it is not surprising that the latter model underestimates the
malformation probability as it ignores important independent information.
This is best seen at smaller doses, which is important if the models are
used for low dose extrapolation.
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FIGURE 8.2. Sports Injuries Trial. Observed and fitted proportions of shivering
in both arms. Fitted proportions are based on Model 2 in Table 8.11.

8.11 The Sports Injuries Trial

The sports injuries trial has been introduced in Section 2.8.
We will apply the hybrid marginal and conditional model, introduced in

Sections 7.8 and 8.7, in the context of both the longitudinal outcome as
well as with repeated measures on the two outcomes, shivering and awake-
ness. Note that, just as in Section 8.10, two perspectives on the parameter
estimates obtained from the hybrid model are possible, maximum likeli-
hood and GEE2. The first one applies when the higher-order association
is modeled explicitly or considered to be zero, in line with the working as-
sumptions. The second one applies when the higher-order parameters are
set equal to zero by way of working assumption only.

8.11.1 Longitudinal Analysis
The first analysis considers four binary measurements of shivering (at 5, 10,
15, and 20 minutes). Data are presented in Table 2.12. We are interested
in a treatment difference and its evolution over time. First, the profiles
show a quadratic time trend, as can be seen in Figure 8.2. Next, we need a
cubic polynomial to describe the difference between treatment and placebo
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TABLE 8.11. Sports Injuries Trial. Hybrid marginal-conditional model parameter
estimates (model based standard errors; empirically corrected standard errors) for
models fitted to four binary shivering responses (at 5, 10, 15, and 20 minutes).
Model 1 presents unrestricted and Model 2 presents restricted association para-
meters.

Parameter Model 1 Model 2
Marginal parameters

Intercept 0.15(0.16;0.16) 0.15(0.16;0.16)

Time effect:
Linear 0.48(0.08;0.08) 0.48(0.08;0.08)
Quadratic -0.33(0.06;0.06) -0.33(0.06;0.06)

Treatment effect:
Main effect -0.36(0.23;0.23) -0.36(0.22;0.23)
Linear interaction -0.52(0.19;0.18) -0.52(0.19;0.18)
Quadratic interaction -0.20(0.10;0.10) -0.20(0.10;0.10)
Cubic interaction 0.28(0.09;0.08) 0.28(0.09;0.08)

Association
(1, 2) 3.67(0.73;0.71) 3.71(0.72;0.70)
(1, 3) 2.54(0.55;0.57)
(1, 4) 1.45(0.38;0.39)
(2, 3) 2.69(0.31;0.31)
(2, 4) 1.48(0.26;0.26)
(3, 4) 2.61(0.30;0.30)
(1, 3) = (2, 3) = (3, 4) 2.64(0.21;0.21)
(1, 4) = (2, 4) 1.47(0.25;0.25)
Deviance 1104.09 1104.20

profiles. Not surprisingly, the difference is more marked at later times.
Observed an fitted profiles are plotted in Figure 8.2.

Next, we study the association structure. There are six pairwise asso-
ciation parameters, one for each pair of measurement times. There is an
extraordinary strong association between the first and second time, the
odds ratio equals 39.2. This is explained by the relatively small number
of changes in shivering state at the beginning of the trial. Then, associa-
tion decreases with distance between time points. For the five remaining
associations, we consider measurements 1 and 2 to occur virtually together
and group the parameters by the difference in time between both measure-
ments: (1,3), (2,3), and (3,4) on the one hand and (1,4) and (2,4) on the
other. This reduces the number of association parameters to three, while
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TABLE 8.12. Sports Injuries Trial. Hybrid marginal-conditional model parameter
estimates (standard errors) for models fitted to four ordinal shivering responses
(at 5, 10, 15, and 20 minutes).

Parameter Estimate
Marginal parameters

First cutpoint:

Intercept 0.25(0.15)
Linear time 0.47(0.16)
Quadratic time -0.40(0.06)
Cubic time 0.02(0.07)

Second cutpoint:

Intercept -1.42(0.18)
Linear time 0.86(0.22)
Quadratic time -0.47(0.12)
Cubic time 0.01(0.11)

Treatment effect:
Main effect -0.49(0.21)
Linear interaction -0.46(0.22)
Quadratic interaction -0.05(0.08)
Cubic interaction 0.22(0.10)

Association
(1, 2) 3.81(0.45)
(1, 3) 3.29(0.39)
(1, 4) 1.59(0.30)
(2, 3) 2.69(0.29)
(2, 4) 1.49(0.26)
(3, 4) 2.52(0.29)

virtually not changing the quality of the fit. Table 8.11 presents parameter
estimates (standard errors) for both unrestricted (Model 1) and restricted
(Model 2) associations.

Taking a likelihood perspective, the overall deviance goodness-of-fit sta-
tistic is 7.66 on 20 degrees of freedom, providing evidence that there is no
need for higher order association. This means that, while a GEE2 perspec-
tive is still possible, assuming the higher-order association is left unspecified
and replaced by working assumptions, it is fine too to adopt a likelihood
point of view, where the first-order and second-order moments have been
modeled correctly, and the higher-order associations vanish.
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TABLE 8.13. Sports Injuries Trial. Cross-classification of two pairs of di-
chotomized shivering and awakeness measurements (at 10 and 20 minutes).

Shivering Awakeness
(0,0) (0,1) (1,0) (1,1)

Placebo arm
(0,0) 14 12 0 20
(0,1) 3 17 0 8
(1,0) 0 12 0 6
(1,1) 3 15 0 28

Treatment arm
(0,0) 12 23 0 28
(0,1) 5 9 0 5
(1,0) 2 13 0 9
(1,1) 3 24 0 6

TABLE 8.14. Sports Injuries Trial. Hybrid marginal-conditional model parameter
estimates (model-based standard errors; empirically corrected standard errors) for
models fitted to two pairs of shivering/awakeness measurements, at 10 and 20
minutes. When the two sets of standard errors coincide, only one is shown. Part
I: Marginal parameters.

Parameter Model 1 Model 2 Model 3 Model 4
Marginal parameters

Shivering at 10 minutes:
Intercept -0.15(0.17;0.17) -0.15(0.17) -0.15(0.17) -0.16(0.17)
Treatment -0.21(0.24;0.24) -0.22(0.24) -0.22(0.24) -0.21(0.24)

Shivering at 20 Minutes:
Intercept 0.15(0.17;0.17) 0.15(0.17) 0.15(0.17) 0.14(0.17)
Treatment -0.67(0.24;0.25) -0.66(0.24) -0.66(0.24) -0.67(0.24)

Awakeness at 10 Minutes:
Intercept -0.20(0.17;0.17) -0.20(0.17) -0.20(0.17) -0.20(0.17)
Treatment -0.45(0.25;0.25) -0.44(0.25) -0.44(0.25) -0.43(0.25)

Awakeness at 20 Minutes:
Intercept 1.86(0.25;0.26) 1.78(0.24) 1.78(0.24) 1.85(0.24)
Treatment -0.26(0.33;0.33) -0.10(0.34) -0.10(0.34) -0.23(0.33)

Finally, we reconsidered this analysis, but now on ordinal endpoints.
Because category 3 is either empty or very sparse for the four shivering
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TABLE 8.15. Sports Injuries Trial. Hybrid marginal-conditional model parameter
estimates (model-based standard errors; empirically corrected standard errors) for
models fitted to two pairs of shivering/awakeness measurements, at 10 and 20
minutes. When the two sets of standard errors coincide, only one is shown. Part
II: Association parameters.

Parameter Model 1 Model 2 Model 3 Model 4
Pairwise association

Shivering 1/Shivering 2:
Intercept 1.48(0.26;0.26) 1.43(0.37) 1.44(0.37) 1.32(0.25)
Treatment 0.08(0.52) 0.08(0.52)

Shivering 1/Awakeness 1:
Intercept 0.03(0.25;0.25) 0.62(0.35) 0.62(0.35)
Treatment -1.26(0.51) -1.25(0.51)

Shivering 1/Awakeness 2:
Intercept 1.36(0.41;0.42) 1.80(0.65) 1.81(0.64) 1.16(0.36)
Treatment -0.80(0.85) -0.81(0.84)

Shivering 2/Awakeness 1:
Intercept -0.28(0.25;0.25) 0.33(0.34) 0.33(0.34)
Treatment -1.34(0.53) -1.34(0.53) -0.83(0.36)

Shivering 2/Awakeness 2:
Intercept 0.58(0.36;0.37) 1.15(0.52) 1.15(0.52)
Treatment -1.10(0.71) -1.10(0.71)

Awakeness 1/Awakeness 2:
Intercept +∞ +∞ +∞ +∞

Higher-order Association
Shivering 1/Shivering 2/Awakeness 1:
Intercept 2.58(0.82)
Treatment -2.81(1.20)

Shivering 1/Shivering 2/Awakeness 2:
Intercept −∞
Treatment 0.27(1.18)
Deviance 1260.03 1249.67 1234.72 1260.82

measures being studied, it is combined with category 2. Consequently, we
have two sets of profiles. Potentially, both time and treatment effects can
differ depending on the cutpoint. There is evidence for such a difference
in the time trend in the form of a Wald test of 10.26 on 3 degrees of
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freedom (p = 0.017). On the other hand, it is plausible to consider a single
treatment profile, common to both cutpoints (Wald test of 6.85 on 4 degrees
of freedom; p = 0.14). Estimates for the corresponding model are presented
in Table 8.12.

8.11.2 A Bivariate Longitudinal Analysis
The second analysis considers two pairs of shivering and awakeness out-
comes, at 10 and 20 minutes. Data are given in Table 8.13. The main
interest lies in the effect of treatment for each outcome, as well as in the
association between the outcomes. There is a complication with the asso-
ciation between the two awakeness measures, due to the structural zeros
described earlier. Indeed, the corresponding log odds ratio is equal to in-
finity. If this parameter is estimated along with the others, we obtain a
solution on the boundary of the parameter space, invalidating inference.
One way out is to set this parameter equal to zero or another arbitrary
(finite) value. However, this is unsatisfactory form a theoretical point of
view, as we assume independence, knowing that there is an infinitely large
association. Alternatively, we can incorporate a log odds ratio of +∞ as
a structural feature of the model. Some straightforward technical modi-
fications are required to the fitting program, such as replacing (6.16) by
µij1j2 = min(µij1 , µij2). The parameter estimates are given in Tables 8.14
and 8.15 (Model 1).

The effect of treatment is clearly seen at the second shivering measure-
ment and only marginally at the first awakeness measurement. Only two of
the estimated pairwise associations are strong: between both shivering mea-
surements, and between the first shivering and the second awakeness mea-
surement. Because shivering often occurs as the patient abruptly changes
levels of consciousness, this could explain the association.

When computing the goodness-of-fit, one has to take into account that
in each 2 × 2 × 2 × 2 table (one for each treatment group), there are 4
zero cells by design, reducing the data degrees of freedom to 22. Model
1 yields a deviance G2 statistic of 25.32 on 9 degrees of freedom, which
is clearly unacceptable. First, the two-way association can be extended by
allowing for differences in association for the two treatment groups. The G2

statistic reduces to 14.95 on 4 degrees of freedom, which still leaves room
for improvement. To extend the model, the higher order associations need
to be modeled as well. Recall that, due to the orthogonality of marginal and
conditional parameters, this model (Model 2 in Tables 8.14 and 8.15) can
be considered satisfactory as it is saturated in the marginal parameters,
and the model-based and empirically corrected standard errors coincide
(hence only one entry is shown).

As we allowed the pairwise interactions to depend on treatment, a more
detailed picture than the one from Model 1 emerges. Apart from a struc-
tural +∞ for the association parameter between both awakeness measures,
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we find a relatively strong odds ratio for the two shiverings (consistent with
other analyses), without evidence for a treatment dependence. These two
odds ratios describe the longitudinal part of the association, pertaining to
two measurements of the same variable at different occasions.

Alternatively, one can seek to estimate the higher order association pa-
rameters as well. Here too, we have to take into account the zero cells.
It suffices to leave out all higher order interactions containing awakeness
measures simultaneously. This leaves two three-way conditional odds ratios
to estimate: (shivering 1, shivering 2, awakeness 1) and (shivering 1, shiv-
ering 2, awakeness 2). Assuming these are constant yields a G2 statistic
of 9.13 on 2 degrees of freedom. This implies that also the higher order
interactions are treatment dependent. Due to a sampling zero, the second
one of these log odds ratios is zero. Setting it equal to zero, and estimating
the value only in the treatment group, then corresponds to the saturated
model (Model 3 in Tables 8.14 and 8.15). It is interesting to note that the
first of the three-way interactions (shivering 1, shivering 2, awakeness 1) is
significant, at least in the placebo group.

Problems with sampling zeros occur less frequently when the higher order
association is described via marginal odds ratios (Molenberghs and Lesaffre
1994). Comparing Models 2 and 3, it might be argued that setting the
higher association parameters equal to zero is a sensible choice, especially
when scientific interest is limited to the first two moments.

To interpret the two-way association, we observe that some of the asso-
ciations in Models 2 and 3 do not attain statistical significance. Hence it is
useful to consider a more parsimonious model. We simplify Model 2 such
that only the following pairwise associations are included: a common log
odds ratio for the (shivering 1, shivering 2) and (shivering 1, awakeness 2)
pairs and association between shivering 2 and awakeness 1 in the treatment
group only. Comparing this model to Model 2 with a likelihood ratio test,
of course taking the likelihood perspective on the model, we obtain a G2

test statistic value of 11.15 on 7 degrees of freedom (p = 0.13). Note that
the main effect parameters all change less than 0.01 except for awakeness
at 20 minutes.





9
Pseudo-Likelihood

9.1 Introduction

Full marginal maximum likelihood, as discussed in Chapters 6 and 7, can
become prohibitive in terms of computation when measurement sequences
are of moderate to large length. This is one of the reasons why generalized
estimating equations (GEE, Chapter 8) have become so popular. One way
to view the genesis of GEE is by modifying the score equations to simpler
estimating equations, thereby preserving consistency and asymptotic nor-
mality, upon using an appropriately corrected variance-covariance matrix.
Alternatively, the (log-)likelihood itself can be simplified to a more man-
ageable form. This is, broadly speaking, the idea behind pseudo-likelihood
(PL). For example, when a joint density is of the Bahadur (Section 7.2),
probit (Section 7.6), or Dale (Section 7.7) form, calculating the higher-
order probabilities needed to evaluate the score vector and Hessian matrix
can be prohibitive while, at the same time, interest can be confined to a
small number of lower-order moments. The idea is then to replace the sin-
gle joint density by, for example, all univariate densities, or all pairwise
densities over the set of all possible pairs within a sequence of repeated
measures. As a simple illustration, a three-way density

Li = fi(yi1, yi2, yi3|θi) (9.1)

would be replaced by the product

L∗
i = fi(yi1, yi2θ

∗
i ) · fi(yi1, yi3θ

∗
i ) · fi(yi2, yi3|θ∗

i ). (9.2)
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Such a change is computationally advantageous, asymptotics can be res-
cued, and modeling (9.2) is equally simple, if not simpler, than modeling
(9.1), as the parameter vector θ∗

i in (9.2) typically is a subvector of θi in
(9.1).

Section 9.2 introduces pseudo-likelihood in a formal way, and such that
it can be of use, not only here in marginal applications, but also for condi-
tional (Chapter 12) and subject-specific (Chapters 21 and 25) applications.
Appropriate test statistics are given in Section 9.3. The specific situation
of PL for marginal models is the topic of Section 9.4, and a comparison be-
tween marginal PL and GEE is presented in Section 9.5. The methodology
is illustrated using the NTP data (Section 9.6).

9.2 Pseudo-Likelihood: Definition and Asymptotic
Properties

To formally introduce pseudo-likelihood, we will use the convenient general
definition given by Arnold and Strauss (1991). See also Geys, Molenberghs,
and Ryan (1999) and Aerts et al (2002). Without loss of generality we can
assume that the vector Y i of binary outcomes for subject i (i = 1, . . . , N)
has constant dimension n. The extension to variable lengths ni for Y i is
straightforward.

9.2.1 Definition
Define S as the set of all 2n − 1 vectors of length n, consisting solely of
zeros and ones, with each vector having at least one non-zero entry. Denote
by y

(s)
i the subvector of yi corresponding to the components of s that are

non-zero. The associated joint density is fs(y
(s)
i |θi). To define a pseudo-

likelihood function, one chooses a set δ = {δs|s ∈ S} of real numbers, with
at least one non-zero component. The log of the pseudo-likelihood is then
defined as

p	 =
N∑

i=1

∑
s∈S

δs ln fs(y
(s)
i |θi). (9.3)

Adequate regularity conditions have to be assumed to ensure that (9.3)
can be maximized by solving the pseudo-likelihood (score) equations, the
latter obtained by differentiation of the logarithm of PL and setting the
derivative equal to zero.

The classical log-likelihood function is found by setting δs = 1 if s is the
vector consisting solely of ones, and 0 otherwise.
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9.2.2 Consistency and Asymptotic Normality
Before stating the main asymptotic properties of the PL estimators, we first
list the required regularity conditions on the density functions fs(y(s)|θ).

A0 The densities fs(y(s)|θ) are distinct for different values of the parame-
ter θ.

A1 The densities fs(y(s)|θ) have common support, which does not depend
on θ.

A2 The parameter space Ω contains an open region ω of which the true
parameter value θ0 is an interior point.

A3 ω is such that for all s, and almost all y(s) in the support of Y (s), the
densities admit all third derivatives

∂3fs(y(s)|θ)
∂θk1∂θk2∂θk3

.

A4 The first and second logarithmic derivatives of fs satisfy

Eθ

(
∂ ln fs(y(s)|θ)

∂θk

)
= 0, k = 1, . . . , p,

and

0 < Eθ

(−∂2 ln fs(y(s)|θ)
∂θk1∂θk2

)
< ∞, k1, k2 = 1, . . . , p.

A5 The matrix I0, to be defined in (9.5), is positive definite.

A6 There exist functions Mk1k2k3 such that

∑
s∈S

δsEθ

∣∣∣∣∂3 ln fs(y(s)|θ)
∂θk1∂θk2∂θk3

∣∣∣∣ < Mk1k2k3(y)

for all y in the support of f and for all θ ∈ ω and mk1k2k3 =
Eθ0

[Mk1k2k3(Y )] < ∞.

Theorem 9.1, proven by Arnold and Strauss (1991), guarantees the exis-
tence of at least one solution to the pseudo-likelihood equations, which is
consistent and asymptotically normal. Without loss of generality, we can
assume θ is constant. Replacing it by θi and modeling it as a function of
covariates is straightforward.

Theorem 9.1 (Consistency and Asymptotic Normality) Assume
that (Y 1, . . . ,Y N ) are i.i.d. with common density that depends on θ0. Then
under regularity conditions (A1)–(A6):
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1. The pseudo-likelihood estimator θ̃N , defined as the maximizer of (9.3),
converges in probability to θ0.

2.
√

N(θ̃N − θ0) converges in distribution to

Np[0, I0(θ0)−1I1(θ0)I0(θ0)−1], (9.4)

with I0(θ) defined by

I0,k1k2(θ) = −
∑
s∈S

δsEθ

(
∂2 ln fs(y(s)|θ)

∂θk1∂θk2

)
(9.5)

and I1(θ) by

I2,k1k2(θ) =
∑

s,t∈S

δsδtEθ

(
∂ ln fs(y(s)|θ)

∂θk1

∂ ln ft(y(t)|θ)
∂θk2

)
. (9.6)

Similar in spirit to generalized estimating equations (Chapter 8), the as-
ymptotic normality result provides an easy way to consistently estimate the
asymptotic covariance matrix. Indeed, the matrix I0 is found from evalu-
ating the second derivative of the log PL function at the PL estimate. The
expectation in I1 can be replaced by the cross-products of the observed
scores. We will refer to I−1

0 as the model based variance estimator (which
should not be used as it overestimates the precision), to I1 as the empirical
correction, and to I−1

0 I1I
−1
0 as the empirically corrected variance estima-

tor. In the context of generalized estimating equations, this is also known
as the sandwich estimator.

As discussed by Arnold and Strauss (1991), and exactly the same as
with GEE, the Cramèr-Rao inequality implies that I−1

0 I1I
−1
0 is greater

than the inverse of I (the Fisher information matrix for the maximum
likelihood case), in the sense that I−1

0 I1I
−1
0 − I−1 is positive semi-definite.

Strict inequality holds if the PL estimator fails to be a function of a minimal
sufficient statistic. Therefore, a PL estimator is always less efficient than the
corresponding ML estimator. Note that, for maximum likelihood, the full
density f would be used, rather than the pseudo-likelihood contributions.

9.3 Pseudo-Likelihood Inference

The close connection of PL to likelihood is an attractive feature. It en-
abled Geys, Molenberghs, and Ryan (1999) to construct pseudo-likelihood
ratio test statistics that have easy-to-compute expressions and intuitively
appealing limiting distributions. In contrast, likelihood ratio test statistics
for GEE (Rotnitzky and Jewell 1990) are slightly more complicated.
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In practice, one will often want to perform a flexible model selection.
Therefore, one needs extensions of the Wald, score, or likelihood ratio test
statistics to the pseudo-likelihood framework. Rotnitzky and Jewell (1990)
examined the asymptotic distributions of generalized Wald and score tests,
as well as likelihood ratio tests, for regression coefficients obtained by gener-
alized estimating equations for a class of marginal generalized linear models
for correlated data. Using similar ideas, we derive different test statistics, as
well as their asymptotic distributions for the pseudo-likelihood framework.
Liang and Self (1996) have considered a test statistic, for one specific type
of pseudo-likelihood function, which is similar in form to one of the tests
we will present below.

Suppose we are interested in testing the null hypothesis H0 : γ = γ0,
where γ is an r-dimensional subvector of the vector of regression parameters
θ and write θ as (γ′, δ′)′. Then, several test statistics can be used.

9.3.1 Wald Statistic
Because of the asymptotic normality of the PL estimator θ̃N ,

W ∗ = N(γ̃N − γ0)′Σ−1
γγ (γ̃N − γ0)

has an asymptotic χ2
r distribution under the null hypothesis, where Σγγ

denotes the r × r submatrix of Σ = I−1
0 I1I

−1
0 . In practice, the matrix Σ

can be replaced by a consistent estimator, obtained by substituting the PL
estimator θ̃N . Although the Wald test is in general simple to apply, it is
well-known to be sensitive to changes in parameterization. The Wald test
statistic is therefore particularly unattractive for conditionally specified
models, as marginal effects are likely to depend in a complex way on the
model parameters (Diggle, Heagerty, Liang, and Zeger 2002).

9.3.2 Pseudo-Score Statistics
As an alternative to the Wald statistic, one can propose the pseudo-score
statistic. A score test has the advantage that it can be obtained by fitting
the null model only. Furthermore, it is invariant to reparameterization. Let
us define

S∗(e.c.) =
1
N

Uγ [γ0, δ̃(γ0)]′I
γγ
0 Σ−1

γγ Iγγ
0 Uγ [γ0, δ̃(γ0)],

where ‘e.c.’ denotes empirically corrected and δ̃(γ0) denotes the maximum
pseudo-likelihood estimator in the subspace where γ = γ0, Iγγ

0 is the r × r
submatrix of the inverse of I0, and Iγγ

0 Σ−1
γγ Iγγ

0 is evaluated under H0. Geys,
Molenberghs, and Ryan (1999) showed that this pseudo-score statistic is
asymptotically χ2

r distributed under H0. As discussed by Rotnitzky and
Jewell (1990) in the context of generalized estimating equations, such a
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score statistic may suffer from computational stability problems. A model
based test that may be computationally simpler is:

S∗(m.b.) =
1
N

Uγ [γ0, δ̃(γ0)]′I
γγ
0 Uγ [γ0, δ̃(γ0)].

However, its asymptotic distribution under H0 is complicated and given by∑r
j=1 λjχ

2
1(j) where the χ2

1(j) are independently distributed as χ2
1 variables

and λ1 ≥ . . . ≥ λr are the eigenvalues of (Iγγ
0 )−1Σγγ , evaluated under

H0. The score statistic S∗(m.b.) can be adjusted such that it has an ap-
proximate χ2

r distribution, which is much easier to evaluate. Several types
of adjustments have been proposed in the literature (Rao and Scott 1987,
Roberts, Rao, and Kumar 1987). Similar to Rotnitzky and Jewell (1990),
Geys, Molenberghs, and Ryan (1999) proposed an adjusted pseudo-score
statistic

S∗
a(m.b.) = S∗(m.b.)/λ,

where λ is the arithmetic mean of the eigenvalues λj . Note that no distinc-
tion can be made between S∗(e.c.) and S∗

a(m.b.) for r = 1. Moreover, in
the likelihood-based case, all eigenvalues reduce to one and thus all three
statistics coincide with the model based likelihood score statistic.

9.3.3 Pseudo-Likelihood Ratio Statistics
Another alternative is provided by the pseudo-likelihood ratio test statistic,
which requires comparison of full and reduced model:

G∗2 = 2
[
p	(θ̃N) − p	(γ0, δ̃(γ0))

]
.

Geys, Molenberghs, and Ryan (1999) showed that the asymptotic distrib-
ution of G∗2 can also be written as a weighted sum

∑r
j=1 λjχ

2
1(j), where

the χ2
1(j) are independently distributed as χ2

1 variables and λ1 ≥ . . . ≥
λr are the eigenvalues of (Iγγ

0 )−1Σγγ . Alternatively, the adjusted pseudo-
likelihood ratio test statistic, defined by

G∗2
a = G∗2/λ,

is approximately χ2
r distributed. Their proof shows that G∗2 can be rewrit-

ten as an approximation to a Wald statistic. The covariance structure of
the Wald statistic can be calculated under the null hypothesis, but also
under the alternative hypothesis. Both versions of the Wald tests are as-
ymptotically equivalent under H0 (Rao 1973, p. 418). Therefore, it can be
argued that the adjustments in G∗2

a can also be evaluated under the null
as well as under the alternative hypothesis. These adjusted statistics will
then be denoted by G∗2

a (H0) and G∗2
a (H1), respectively. In analogy with

the Wald test statistic, we expect G∗2
a (H1) to have high power. A similar
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reasoning suggests that the score test S∗
a(m.b.) might closely correspond

to G∗2
a (H0), as both depend strongly on the fitted null model. Analogous

results were obtained by Rotnitzky and Jewell (1990). Aerts et al (2002)
reported on extensive simulations to compare the behavior of the various
test statistics.

The asymptotic distribution of the pseudo-likelihood based test statis-
tics are weighted sums of independent χ2

1 variables where the weights are
unknown eigenvalues. In Aerts and Claeskens (1999) it is shown theoreti-
cally that the parametric bootstrap leads to a consistent estimator for the
null distribution of the pseudo-likelihood ratio test statistic. The bootstrap
approach does not need any additional estimation of unknown eigenvalues
and automatically corrects for the incomplete specification of the joint dis-
tribution in the pseudo-likelihood. Similar results hold for the robust Wald
and robust score test. The simulation study of Aerts and Claeskens (1999)
indicates that the χ2 tests often suffer from inflated type I error probabili-
ties, which are nicely corrected by the bootstrap. This is especially the case
for the Wald statistic, whereas the asymptotic χ2 distribution of the ro-
bust score statistic test is performing quite well. The parametric bootstrap
is expected to break down if the likelihood of the data is grossly misspeci-
fied. Aerts et al (2002, Chapter 11) present a more robust semiparametric
bootstrap, based on resampling the score and differentiated score values.

9.4 Marginal Pseudo-Likelihood

A marginally specified odds ratio model (Molenberghs and Lesaffre 1994,
1999, Glonek and McCullagh 1995, Lang and Agresti 1994, see also Sec-
tion 7.7) becomes prohibitive in computational terms when the number
of replications within a unit gets moderate to large. In such a situation,
both GEE and PL are viable alternatives. The connection between GEE
based on odds ratios (Section 8.6) and the corresponding PL is strong and
will be developed in Section 9.5. Marginal PL methodology has been pro-
posed, among others, by le Cessie and van Houwelingen (1994) and Geys,
Molenberghs, and Lipsitz (1998).

9.4.1 Definition of Marginal Pseudo-Likelihood
Again, assume there are i = 1, . . . , N units with j = 1, . . . , ni measurements
per unit. We will start with a general form and then focus on clustered
binary data, where the outcomes Yij are replaced by a summary statistic
Zi =

∑ni

j=1 Yij , the total number of successes within the ith cluster.
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9.4.1.1 First Form

le Cessie and van Houwelingen (1994) replace the true contribution of a vec-
tor of correlated binary data to the full likelihood, written as f(yi1, . . . , yini),
by the product of all pairwise contributions f(yij1 , yij2) (1 ≤ j1 < j2 ≤ ni),
to obtain a pseudo-likelihood function. Grouping the outcomes for subject
i into a vector Y i, the contribution of the ith cluster to the log pseudo-
likelihood is

p	i =
∑

1≤j1<j2≤ni

ln f(yij1 , yij2), (9.7)

if it contains more than one observation. Otherwise p	i = f(yi1). In what
follows, we restrict our attention to clusters of size larger than 1. Units of
size 1 contribute to the marginal parameters only. This specific version of
pseudo-likelihood is often referred to as pairwise likelihood.

Using a bivariate Plackett distribution (Plackett 1965, Section 7.7.1), the
joint probabilities f(yij1 , yij2), denoted by µij1j2 , can be specified using
(7.40), with the pairwise odds ratio as in (7.39). The contributions of the
form f(yij1 , yij2) can then be combined into a pseudo-likelihood function
p	 (9.7), which can be maximized as if it where a genuine bivariate log-
likelihood. The asymptotic variance-covariance matrix of the parameter
estimates then follows from (9.4).

9.4.1.2 Under Exchangeability

For binary data and taking the exchangeability assumption into account,
the log pseudo-likelihood contribution p	i can be formulated as:

p	i =
(

zi

2

)
lnµ∗

i11 +
(

ni − zi

2

)
lnµ∗

i00 + zi(ni − zi) lnµ∗
i10. (9.8)

In this formulation, µ∗
i11 and µ∗

i00 denote the bivariate probabilities of ob-
serving two successes or two failures, respectively, and µ∗

i10 is the prob-
ability for the first component being 1 and the second being 0. Under
exchangeability, this is identical to the probability µ∗

i01 for the first being
0 and the second being 1. If we consider the following reparameterization:

µi11 = µ∗
i11,

µi10 = µ∗
i11 + µ∗

i10 = µ01,

µi00 = µ∗
i11 + µ∗

i10 + µ∗
i01 + µ∗

i00 = 1,

then this one-to-one reparameterization maps the three, common within-
cluster, two-way marginal probabilities (µ∗

i11, µ
∗
i10, µ

∗
i00) to two one-way

marginal probabilities (which under exchangeability are both equal to µi10)
and one two-way probability µi11 = µ∗

i11. Hence, equation (9.8) can be re-
formulated as:

p	i =
(

zi

2

)
lnµi11 +

(
ni − zi

2

)
ln(1 − 2µi10 + µi11)
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+zi(ni − zi) ln(µi10 − µi11), (9.9)

and the pairwise odds ratio ψijk reduces to:

ψi =
µi11(1 − 2µi10 + µi11)

(µi10 − µi11)2
.

To enable model specification, we assume a composite link function ηi =
(ηi1, ηi2)′ with a mean and an association component:

ηi1 = ln(µi10) − ln(1 − µi10),
ηi2 = ln(ψi) = ln(µi11) + ln(1 − 2µi10 + µi11) − 2 ln(µi10 − µi11).

From these links, the univariate and pairwise probabilities are easily derived
(Plackett 1965), leading to a specific version of (7.40):

µi10 =
exp(ηi1)

1 + exp(ηi1)

and

µi11 =

{
1+2µi10(ψi−1)−Si

2(ψi−1), if ψi �= 1
µ2

i10 if ψi = 1,

with

Si =
√

[1 + 2µi10(ψi − 1)]2 + 4ψi(1 − ψi)µ2
i10.

Finally, we can assume a linear model ηi = Xiθ, with Xi a known design
matrix and θ a vector of unknown regression parameters. The maximum
pseudo-likelihood estimator θ̂ of θ is then defined as the solution to the
pseudo-score equations U(θ) = 0. Using the chain rule, U(θ) can be writ-
ten as:

U(θ) =
N∑

i=1

X ′
i(T

−1
i )′ ∂p	i

∂µi

(9.10)

with µi = (µi10, µi11)′ and Ti = ∂ηi/∂µi. Newton-Raphson starts with a
vector of initial estimates θ(0) and updates the current value of the para-
meter vector θ(s) by

θ(s+1) = θ(s) + W (θ(s))−1U(θ(s)).

Here, W (θ) is the matrix of the second derivatives of the log pseudo-
likelihood with respect to the regression parameters θ:

W (θ) =
N∑

i=1

X ′
i

[
F i + (T−1

i )′ ∂2p	i

∂µi∂µ′
i

(T−1
i )
]

Xi,
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and F i is defined by (McCullagh 1987, p. 5; Molenberghs and Lesaffre 1999,
see also Section 7.12.2):

(Fi)pq =
∑

s

∑
a,b,c

∂2ηia

∂µib∂µic

∂µis

∂ηia

∂µib

∂ηip

∂µic

∂ηiq

∂p	i

∂µis
.

The Fisher scoring algorithm is obtained by replacing the matrix W (θ) by
its expected value:

E[W (θ)] =
N∑

i=1

X ′
i(T

−1
i )′Ai(T−1

i )Xi,

with Ai the expected value of the matrix of second derivatives of the log
pseudo-likelihood p	i with respect to µi.

The sandwich estimator (9.4) can now be written as:

W (θ̂)−1

[
N∑

i=1

U i(θ̂)U i(θ̂)′
]

W (θ̂)−1.

9.4.1.3 Second Form

A non-equivalent specification of the pseudo-likelihood contribution (9.7)
is:

p	∗
i = p	i/(ni − 1).

The factor 1/(ni − 1) corrects for the feature that each response Yij occurs
ni − 1 times in the ith contribution to the PL, and it ensures that the PL
reduces to full likelihood under independence, as then (9.9) simplifies to:

p	i = (ni − 1) [zi ln(µi10) + (ni − zi) ln(1 − µi10)] .

We can replace p	i by p	∗
i . However, if (ni − 1) is considered random it is

not obvious that the expected value of Ui(θ)/(ni−1) equals zero. To ensure
that the solution to the new pseudo-score equation is consistent, we have
to assume that ni is independent of the outcomes given the covariates for
the ith unit. When all ni are equal, the PL estimator θ and its variance-
covariance matrix remain the same, no matter whether we use p	i or p	∗

i

in the definition of the log pseudo-likelihood.

9.4.2 A Generalized Linear Model Representation
To obtain the pseudo-likelihood function described in Section 9.4.1, we
replaced the true contribution f(yi1, . . . , yini) of the ith unit to the full
likelihood by the product of all pairwise contributions f(yij1 , yij2) with
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1 ≤ j1 < j2 ≤ ni. This implies that a particular response yij occurs ni − 1
times in p	i. Therefore, it is useful to construct for each response yij , ni −1
replicated y

(j2)
ij1

with j2 �= j1. The dummy response y
(j2)
ij1

is to be interpreted

as the particular replicate of yij that is paired with the replicate y
(j1)
ij2

of
yij2 in the pseudo-likelihood function. Using this at first sight odd but
convenient device, we are able to rewrite the gradient of the log pseudo-
likelihood p	 in an appealing generalized linear model type representation.
With notation introduced in the previous section, the gradient can now be
written as

U(θ) =
N∑

i=1

X ′
i(T

−1
i )′V −1

i (Zi − µi),

or, using the second representation p	∗
i , as

U(θ) =
N∑

i=1

1
ni − 1

X ′
i(T

−1
i )′V −1

i (Zi − µi),

where we now define

Zi =
( ∑ni

j1=1
∑

j2 �=j1
Y

(j2)
ij1

1
2

∑ni

j1=1
∑

j2 �=j1
Y

(j2)
ij1

Y
(j1)
ij2

)
, µi =

(
ni(ni − 1)µi10(

ni

2

)
µi11

)
,

and Vi is the covariance matrix of Zi. Geys, Molenberghs, and Lipsitz
(1998) have shown that the elements of Vi take appealing expressions and
are easy to implement. One only needs to evaluate first- and second-order
probabilities. Under independence, the variances reduce to well-known quan-
tities. To obtain a suitable PL estimator for θ, we can use the Fisher-scoring
algorithm where the matrix Ai in the previous section is now replaced by
the inverse of Vi. The asymptotic covariance matrix of θ̂ is estimated in a
similar fashion as before.

9.5 Comparison with Generalized Estimating
Equations

In the previous sections, we described one alternative estimating procedure
for full maximum likelihood estimation in the framework of a marginally
specified odds ratio model, which is easier and much less time consuming.
Several questions arise such as to how the different methods compare in
terms of efficiency and in terms of computing time and what the mathe-
matical differences and similarities are. At first glance, there is a fundamen-
tal difference. A pseudo-likelihood function is constructed by modifying a
joint density. Parameters are estimated by setting the first derivatives of
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this function equal to zero. On the contrary, generalized estimating equa-
tions follow from specification of the first few moments and by adopting
assumptions about the higher order moments. We will explore similarities
and differences in some detail.

In Section 9.4.2, we have rewritten the PL score equations as contrasts of
observed and fitted frequencies, establishing some agreement between PL
and GEE2. Both procedures lead to similar estimating equations. The most
important difference is in the evaluation of the matrix Vi = Cov(Zi). This
only involves first- and second-order probabilities for the pseudo-likelihood
procedure. In this respect, PL resembles GEE1. In contrast, GEE2 also
requires evaluation of third- and fourth-order probabilities. This makes the
GEE2 score equations harder to evaluate and also more time consuming.

Both pseudo-likelihood and generalized estimating equations yield con-
sistent and asymptotically normally distributed estimators, provided an
empirically corrected variance estimator is used and provided the model is
correctly specified. This variance estimator is similar for both procedures,
the main difference being the evaluation of Vi.

If we define the log of the pseudo-likelihood contribution for clusters
with size larger than one as p	∗

i = p	i/(ni − 1), the first component of
the PL vector contribution Si = Zi − µi equals that of GEE2. On the
contrary, the association component differs by a factor of 1/(ni − 1). Yet,
if we would define the log pseudo-likelihood as p	 =

∑N
i=1 p	i, then the

second components would be equal, while the first components would differ
by a factor of ni − 1. Therefore, in studies where the main interest lies in
the marginal mean parameters, one would prefer p	∗ over p	. However, if
primary interest focuses on the estimation of the association parameters,
we advocate the use of p	 instead. GEE1 in that case should be avoided,
as its goal is limited to estimation of the mean model parameters, whereas
GEE2 is computationally more complex.

Aerts et al (2002) compared PL, GEE1, and GEE2 in terms of asymp-
totic and small sample relative efficiency. It was found that the behavior
of PL is generally highly acceptable. In particular, the behavior of PL was
very similar to GEE2, while in terms of computational complexity it is
closer to GEE1 than to GEE2. Liang, Zeger, and Qaqish (1992) suggested
GEE1, GEE2, and PL may be less efficient when the number of repeated
measures per unit are unequal.

9.6 Analysis of NTP Data

We apply the PL and first- and second-order GEE estimating procedures
to data from the DEHP and DYME studies, described in Section 2.7 and
analyzed, using the Bahadur model, in Section 7.2.3 and, using a num-
ber of GEE methods (GEE1, GEE2, and ALR), in Section 8.9. The model
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TABLE 9.1. NTP Data. Parameter estimates (empirically corrected standard er-
rors) for pseudo-likelihood (PL), GEE1, and GEE2 with exchangeable odds ratio,
fitted to the collapsed outcome in the DEHP and DYME studies. β0 and βd are
the marginal intercept and dose effect, respectively; α is the log odds ratio; ψ is
the odds ratio.

Study β0 βd α ψ

Newton-Raphson PL Estimates
DEHP -3.98(0.30) 5.57(0.61) 1.10(0.27) 3.00(0.81)
DYME -5.73(0.46) 8.71(0.94) 1.42(0.31) 4.14(1.28)

Fisher scoring PL Estimates
DEHP -3.98(0.30) 5.57(0.61) 1.11(0.27) 3.03(0.82)
DYME -5.73(0.47) 8.71(0.95) 1.42(0.35) 4.14(1.45)

GEE2 Estimates
DEHP -3.69(0.25) 5.06(0.51) 0.97(0.23) 2.64(0.61)
DYME -5.86(0.42) 8.96(0.87) 1.36(0.34) 3.90(1.32)

GEE1 Estimates
DEHP -4.02(0.31) 5.79(0.62) 0.41(0.34) 1.51(0.51)
DYME -5.89(0.42) 8.99(0.87) 1.46(0.75) 4.31(3.23)

used in the earlier analyses is retained, using intercept (β0) and dose (βd)
parameters. The log odds ratio ψi is modeled as ln ψi = α, in agreement
with, for example, Table 8.5. Table 9.1 shows that the parameter estimates,
obtained by either the pseudo-likelihood or the generalized estimating equa-
tions approach, are comparable. Note that the GEE1 and GEE2 parameter
estimates differ somewhat from the ones obtained in Tables 8.2–8.5, as here
the odds ratio is used to measure association, whereas we used the correla-
tion coefficient in Tables 8.2–8.4. Table 8.5 used the odds ratio as well, but
there ALR was used as estimation method. Because main interest is focused
on the dose effect, we used p	∗ rather than p	. Dose effects and association
parameters are, again, significant throughout, except for the GEE1 asso-
ciation estimates. For this procedure, βa is not significant for the DEHP
study and marginally significant for the DYME study. The GEE1 standard
errors for βa are much larger than for their PL and GEE2 counterparts.
The GEE2 standard errors are the smallest among the different estimating
approaches, which is in agreement with findings in previous sections. Fur-
thermore, it is observed that the standard errors of the Newton-Raphson
PL algorithm are generally slightly smaller than those obtained using Fisher
scoring, which is in line with other empirical findings. On the other hand,
the Newton-Raphson procedure is computationally slightly more complex
in this case. The time gain of Fisher scoring, however, is negligible. PL
based on the classical representation of Section 9.4.1 only needs 11% of the
computation time needed for GEE2. For the GLM, based representation
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of Section 9.4.2, this becomes 7%. The corresponding figure for GEE1 is
2.5%.



10
Fitting Marginal Models with SAS

10.1 Introduction

In this chapter, we present software tools to estimate parameters and make
inferences for marginal models, as introduced in Chapters 6–9. Although a
large number of methods have been introduced, we will focus on selected
approaches. The emphasis will be on methods that can be fitted using
the SAS system. A number of software tools for GEE is presented. Basic
GEE1, with moment-based estimation for the correlations, is discussed in
Section 10.3. Alternating logistic regression, of course based on odds ratios,
is presented in Section 10.4. The linearization-based method of Section 8.8
is discussed in Section 10.5. In Section 10.6, we present selected programs
and output for the NTP studies analyzed before in Section 8.9.

Some alternative approaches are briefly discussed in Section 10.7.

10.2 The Toenail Data

We will use the toenail data, introduced in Section 2.3, as a running ex-
ample. We are interested in the analysis of the severity of infection. SAS
Version 9.1 will be the basis for our analysis. The outcome of interest is
the binary indicator reflecting severity of the infection. Frequencies at each
visit for both treatments is presented in Figure 10.1. We will consider the
model:

Yij ∼ Bernoulli(πij), (10.1)
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FIGURE 10.1. Toenail Data. Frequencies of patients with severe and non-severe
toenail infections, at 7 occasions.

log
(

πij

1 − πij

)
= β0 + β1Ti + β2tij + β3Titij , (10.2)

where Ti is the treatment indicator for subject i (1 for the experimen-
tal arm, 0 for the standard arm), tij is the time point at which the jth
measurement is taken for the ith subject. Note that, strictly speaking, the
randomization would allow to set β1 equal to 0, but it will be kept in
the model for generality. If necessary, more complex mean models can be
considered as well, including polynomial time effects, additional covariate
effects, etc.

10.3 GEE1 with Correlations

Within SAS, GEE1 as in Section 8.2, with moment-based estimation for the
working correlation parameters, can be fitted by means of the GENMOD
procedure. We will fit Model (10.1)–(10.2) using three sets of working as-
sumptions: (1) independence, (2) exchangeable, and (3) unstructured. Note
that, while in principle also AR(1) could be considered, this set of working
assumptions is less in line with the design, as the measurement occasions
are not equally spaced.
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10.3.1 The SAS Program
The SAS procedure GENMOD has been conceived to fit generalized linear
models, including logistic regression, probit regression, Poisson regression,
classical linear regression, etc. The REPEATED statement can be invoked
when a GEE analysis is required. All other statements refer to the standard
generalized linear model application of the procedure.

A typical program to fit Model (10.1)–(10.2) is:

proc genmod data=test descending;
class idnum timeclss;
model onyresp = treatn time treatn*time

/ dist=binomial;
repeated subject=idnum / withinsubject=timeclss

type=ind covb corrw modelse;
run;

The option ‘descending’ in PROC GENMOD is to require modeling of
P (Yij = 1) rather than P (Yij = 0), to align ourselves with the more stan-
dard practice in logistic regression. The distribution is specified as bino-
mial, using the ‘dist=’ option in the MODEL statement. No link function is
specified, implying that we are happy with the default link for the binomial
distribution, i.e., the logit link.

The variable ‘timeclss’ is an exact copy of ‘time.’ The difference is that
we will consider ‘time’ to be a continuous variable, allowing to consider a
linear time effect and time by treatment interaction, while properly using
‘timeclss’ as an ordinal variable, specifying the within-subject ordering of
measurements.

Without the REPEATED statement, we would have specified standard
logistic regression. The REPEATED statement, together with the ‘type=’
option, specifies standard GEE1, with working correlations that are esti-
mated using moment-based methods (Section 8.2). In Section 10.4, it will
be shown how the same procedure, but with different option in the RE-
PEATED statement, can be used for alternating logistic regression (ALR)
as well.

The independent blocks, e.g., the subjects in a longitudinal study, are
indicated by means of the ‘subject=’ option. The order of measurements
within a subject are either assumed to be presented chronologically, by de-
fault, or specified by means of the ‘withinsubject=’ option. The working
assumptions are specified by the ‘type=’ option. This option has defining
status for this particular GEE1 method, as the other possible choice, the ‘lo-
gor=’ option, will be used for alternating logistic regressions (Section 10.4).
By default, only the empirically corrected standard errors accompany the
parameter estimates, but in case one is interested in exploring the model-
based ones as well, the ‘modelse’ option should be used. The ‘covb’ option
provides the entire variance-covariance matrix of the model parameters.
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Also here, a model-based and empirically corrected version is given. Note
that the ‘covb’ option restricts attention to the regression parameters β,
which is (β0, β1, β2, β3)′ in (10.2). In the ALR case (Section 10.4) the log
odds ratio parameters are included as well.

10.3.2 The SAS Output
We will discuss some of the output produced by the program presented in
Section 10.3.1 and present a selection of it.

First, a number of tables are presented, containing information about
the distribution, link function, response, and model specification. The pro-
cedure then specifies:

PROC GENMOD is modeling the probability that onyresp=’1’.

in line with the ‘descending’ option. Next, a map is presented between
generic names for parameters and actual effects:

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 treatn
Prm3 time
Prm4 treatn*time

One has to be very careful with the two panels that are presented next.
The first of these panels is:

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 1904 1811.8260 0.9516
Scaled Deviance 1904 1811.8260 0.9516
Pearson Chi-Square 1904 1995.2107 1.0479
Scaled Pearson X2 1904 1995.2107 1.0479
Log Likelihood -905.9130

It is tempting to interpret the goodness-of-fit table. However, this infor-
mation is correct only in the context of cross-sectional data. Now, we are
applying the method to analyze repeated measures, hence this informa-
tion has to be ignored. It cannot even be used for approximate purposes.
Next, the initial estimates, obtained with ordinary logistic regression as in
Section 3.6, are presented:

Analysis Of Initial Parameter Estimates
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Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square

Intercept 1 -0.5571 0.1090 -0.7708 -0.3433 26.10
treatn 1 0.0240 0.1565 -0.2827 0.3307 0.02
time 1 -0.1769 0.0246 -0.2251 -0.1288 51.91
treatn*time 1 -0.0783 0.0394 -0.1556 -0.0010 3.95
Scale 0 1.0000 0.0000 1.0000 1.0000

These estimates are obtained from fitting the model, ignoring the corre-
lation structure. In other words, a standard GLM, which in this case is a
logistic regression, is fitted. Note that these parameters correspond to inde-
pendence working assumptions, which is what we are considering here. We
will return to this in what follows. Of course, the standard errors are based
on assuming the measurements are uncorrelated. Here, and when other
working assumptions are used, these estimates are used as initial estimates
for GEE, as in the first step of the GEE algorithm outlined on page 158.
Hence, upon obtaining the initial table, GEE can be started. This initial
analysis is identical to the one in Section 3.6, presented as an example of
ordinary logistic regression.

Some of the model information, shown at the beginning of the output,
reads:

Model Information

Distribution Binomial
Link Function Logit
Dependent Variable onyresp
Number of Events 408
Number of Trials 1908

which is typical information for logistic regression. From the perspective of
the initial analysis, there would be a sample size of 1908, with 408 successes
on the outcome variable ‘onyresp.’ Now, this information is refined from a
GEE, i.e., correlated data, setting:

GEE Model Information

Correlation Structure Independent
Within-Subject Effect timeclss (7 levels)
Subject Effect idnum (294 levels)
Number of Clusters 294
Correlation Matrix Dimension 7
Maximum Cluster Size 7
Minimum Cluster Size 1
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It is now acknowledged that the overall sample size is N = 294 rather
than N = 1908 and that, in addition, the number of measurements per
patient varies between ni = 1 and ni = 7. Indeed, though 7 measurements
are planned for everyone enrolled into the trial, some do not complete the
study. Then, two sets of parameter estimates, standard errors, confidence
limits, Z-statistic values, and corresponding p-values are presented:

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5571 0.1713 -0.8929 -0.2212 -3.25 0.0011
treatn 0.0240 0.2506 -0.4672 0.5152 0.10 0.9236
time -0.1769 0.0302 -0.2361 -0.1178 -5.86 <.0001
treatn*time -0.0783 0.0546 -0.1854 0.0287 -1.43 0.1515

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5571 0.1090 -0.7708 -0.3433 -5.11 <.0001
treatn 0.0240 0.1565 -0.2827 0.3307 0.15 0.8780
time -0.1769 0.0246 -0.2251 -0.1288 -7.20 <.0001
treatn*time -0.0783 0.0394 -0.1556 -0.0010 -1.99 0.0470

Both sets of parameter estimates are identical. This is in line with the
GEE algorithm presented on page 158, only the asymptotic covariance ma-
trices differ. The empirically corrected standard errors are quite a bit larger
than the model-based ones. This implies that ignoring the correlation in
these data could lead to invalid conclusions. Based on our analyses, the
model-based standard errors would declare the treatment by time interac-
tion significant (p = 0.0470), but the empirically corrected ones contradict
this (p = 0.1515). Further, the model-based results coincide with the initial
analysis, which is entirely due to the use of independence working assump-
tions. This will not be the case in what follows.

Apart from the standard errors, the full asymptotic variance-covariance
matrices can be obtained. Again, there are two versions, a model-based and
an empirically corrected on.

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4
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Prm1 0.01189 -0.01189 -0.001809 0.001809
Prm2 -0.01189 0.02449 0.001809 -0.004097
Prm3 -0.001809 0.001809 0.0006031 -0.000603
Prm4 0.001809 -0.004097 -0.000603 0.001555

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02936 -0.02936 -0.002328 0.002328
Prm2 -0.02936 0.06281 0.002328 -0.006720
Prm3 -0.002328 0.002328 0.0009102 -0.000910
Prm4 0.002328 -0.006720 -0.000910 0.002982

Next, the estimated working correlation matrix is printed. In this case
this is the identity matrix, not shown here.

Next, we will consider exchangeable and unstructured working assump-
tions, which is done by replacing ‘type=ind’ in the program in Section 10.3.1
by ‘type=exch’ and ‘type=un,’ respectively. In these cases, the initial esti-
mates are, of course, the same as before.

The results for the exchangeable working correlation structure are as
follows:

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5840 0.1734 -0.9238 -0.2441 -3.37 0.0008
treatn 0.0120 0.2613 -0.5001 0.5241 0.05 0.9633
time -0.1770 0.0311 -0.2380 -0.1161 -5.69 <.0001
treatn*time -0.0886 0.0571 -0.2006 0.0233 -1.55 0.1208

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5840 0.1344 -0.8475 -0.3204 -4.34 <.0001
treatn 0.0120 0.1866 -0.3537 0.3777 0.06 0.9486
time -0.1770 0.0209 -0.2180 -0.1361 -8.47 <.0001
treatn*time -0.0886 0.0362 -0.1596 -0.0177 -2.45 0.0143

The parameter estimates are still equal across both tables, but different
from the initial ones, given that there is a parameterized working corre-
lation structure and hence iteration is required between steps 2, 3, and
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4 on page 158. The treatment by time interaction still is non-significant
(p = 0.1208). The asymptotic variance-covariance matrices of the parame-
ter estimates have changed to

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.01808 -0.01808 -0.000192 0.0001916
Prm2 -0.01808 0.03482 0.0001916 -0.000115
Prm3 -0.000192 0.0001916 0.0004365 -0.000436
Prm4 0.0001916 -0.000115 -0.000436 0.001309

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.03006 -0.03006 -0.002476 0.002476
Prm2 -0.03006 0.06826 0.002476 -0.007883
Prm3 -0.002476 0.002476 0.0009676 -0.000968
Prm4 0.002476 -0.007883 -0.000968 0.003264

Just as in the independence case, these matrices are relatively far apart.
This indicates that, although the methods are consistent and asymptot-
ically normal, efficiency may be questioned and, especially in a case like
this where the sample size N = 254 is considerable and the number of
measurements per subject ni = 7 is relatively small, it would be sensible to
consider unstructured working correlations instead of exchangeable ones.
The exchangeable working correlation is estimated as

Exchangeable Working
Correlation

Correlation 0.420259237

and the request to print the working correlation matrix merely produces
a 7 × 7 matrix with ones on the diagonal and 0.4203 in the off-diagonal
elements.

Turning attention to unstructured working assumptions, the parameter
estimates now become:

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.7204 0.1733 -1.0600 -0.3807 -4.16 <.0001
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treatn 0.0721 0.2461 -0.4102 0.5544 0.29 0.7695
time -0.1413 0.0291 -0.1982 -0.0843 -4.86 <.0001
treatn*time -0.1135 0.0515 -0.2145 -0.0126 -2.20 0.0275

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.7204 0.1655 -1.0448 -0.3959 -4.35 <.0001
treatn 0.0721 0.2352 -0.3889 0.5331 0.31 0.7592
time -0.1413 0.0277 -0.1956 -0.0870 -5.10 <.0001
treatn*time -0.1135 0.0470 -0.2057 -0.0214 -2.41 0.0158

We now find a significant difference in evolution between both treatment
groups (p = 0.0275), in contrast to what was obtained earlier. This confirms
the fact that GEE may suffer from efficiency problems when the working
correlation structure is not correct. The model-based and empirically cor-
rected standard errors are now much closer to each other and, in addition,
the empirically corrected standard errors are somewhat smaller than their
counterparts under the independence and exchangeable assumptions. Once
again, it is sensible to seek working assumptions that are sufficiently in
line with the correct structure, for reasons of efficiency. The asymptotic
covariance matrices confirm that our choice is reasonable:

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02740 -0.02740 -0.002170 0.002170
Prm2 -0.02740 0.05532 0.002170 -0.004603
Prm3 -0.002170 0.002170 0.0007671 -0.000767
Prm4 0.002170 -0.004603 -0.000767 0.002211

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.03003 -0.03003 -0.002486 0.002486
Prm2 -0.03003 0.06055 0.002486 -0.006017
Prm3 -0.002486 0.002486 0.0008447 -0.000845
Prm4 0.002486 -0.006017 -0.000845 0.002652

Table 10.1 presents an overview of the various GEE model fits to the
toenail data.
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The working correlation structure entertains 21 correlations, made up by

the
(

7
2

)
that can be formed from the 7 outcomes:

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5 Col6 Col7

Row1 1.0000 0.8772 0.7003 0.4901 0.2368 0.1802 0.1475
Row2 0.8772 1.0000 0.8131 0.5864 0.2782 0.2081 0.2148
Row3 0.7003 0.8131 1.0000 0.7507 0.2927 0.2158 0.2166
Row4 0.4901 0.5864 0.7507 1.0000 0.3680 0.2876 0.2683
Row5 0.2368 0.2782 0.2927 0.3680 1.0000 0.5274 0.4561
Row6 0.1802 0.2081 0.2158 0.2876 0.5274 1.0000 0.8242
Row7 0.1475 0.2148 0.2166 0.2683 0.4561 0.8242 1.0000

As stated in Section 8.2, no formal inference can be made about the
correlation structure, neither here nor in the exchangeable structure. At
best, one can make informal statements, such as that the exchangeable
correlation is moderate, and the unstructured matrix seems to exhibit,
more or less, a decrease of the correlation when pairs are further apart,
i.e., a banded or AR(1) structure. To make formal inferences about the
correlation, at least Prentice’s GEE (Section 8.4), or GEE2 (Section 8.5)
is needed.

When the association can be modeled in terms of odds ratios, alternating
logistic regressions come into view (Section 8.6). These can be fitted with
the SAS procedure GENMOD as well and are the topic of the next section.

10.4 Alternating Logistic Regressions

Alternating logistic regressions, presented in Section 8.6, are a convenient
tool to fit a marginal model based on odds ratios in such a way that in-
ferences can be made, not only about the marginal parameters, but about
the pairwise associations as well. The method has conveniently been im-
plemented in the SAS procedure GENMOD. Fitting Model (10.1)–(10.2)
to the toenail data, can be done by removing the ‘type=’ statement in the
REPEATED statement of the program presented in Section 10.3.1, and
replacing it by the ‘logor=’ option. A number of choices are available, in-
cluding exchangeability (‘logor=exch’) or unstructured (‘logor=fullclust,’
which stands for ‘full clustering’). Some other structures exist, including
the ability to create one’s own design, as will be presented in Section 17.5.

The GEE portion of the output is slightly modified to accommodate this
technique, different from but similar to standard GEE (Section 10.3). In
particular, the GEE model information, which should perhaps have been
labeled ‘ALR model information,’ now is:



10.4 Alternating Logistic Regressions 213

TABLE 10.1. Toenail Data. Parameter estimates (model-based standard errors;
empirically corrected standard errors) for GEE1 under independence (IND), ex-
changeable (EXCH), and unstructured (UN) working assumptions; for ALR under
EXCH; for the linearization-based approach for IND, EXCH, and UN.

Effect Par. IND EXCH UN
GEE1

Int. β0 -0.557(0.109;0.171) -0.584(0.134;0.173) -0.720(0.166;0.173)
Ti β1 0.024(0.157;0.251) 0.012(0.187;0.261) 0.072(0.235;0.246)
tij β2 -0.177(0.025;0.030) -0.177(0.021;0.031) -0.141(0.028;0.029)
Ti · tij β3 -0.078(0.039;0.055) -0.089(0.036;0.057) -0.114(0.047;0.052)

ALR
Int. β0 -0.524(0.157;0.169)
Ti β1 0.017(0.222;0.243)
tij β2 -0.178(0.023;0.030)
Ti · tij β3 -0.084(0.039;0.052)
Ass. α 3.222( ;0.291)

Linearization-based method
Int. β0 -0.557(0.112;0.171) -0.585(0.142;0.174) -0.630(0.171;0.172)
Ti β1 0.024(0.160;0.251) 0.011(0.196;0.262) 0.036(0.242;0.242)
tij β2 -0.177(0.025;0.030) -0.177(0.022;0.031) -0.204(0.038;0.034)
Ti · tij β3 -0.078(0.040:0.055) -0.089(0.038;0.057) -0.106(0.058;0.058)

GEE Model Information

Log Odds Ratio Structure Exchangeable
Within-Subject Effect timeclss (7 levels)
Subject Effect idnum (294 levels)
Number of Clusters 294
Correlation Matrix Dimension 7
Maximum Cluster Size 7
Minimum Cluster Size 1

The initial parameter estimates are exactly as in GEE1, and the para-
meter estimates and standard errors, produced upon convergence, are

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5244 0.1686 -0.8548 -0.1940 -3.11 0.0019
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treatn 0.0168 0.2432 -0.4599 0.4935 0.07 0.9448
time -0.1781 0.0296 -0.2361 -0.1200 -6.01 <.0001
treatn*time -0.0837 0.0520 -0.1856 0.0182 -1.61 0.1076
Alpha1 3.2218 0.2908 2.6519 3.7917 11.08 <.0001

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5244 0.1567 -0.8315 -0.2173 -3.35 0.0008
treatn 0.0168 0.2220 -0.4182 0.4519 0.08 0.9395
time -0.1781 0.0233 -0.2238 -0.1323 -7.63 <.0001
treatn*time -0.0837 0.0392 -0.1606 -0.0068 -2.13 0.0329

A key difference with GEE1 is that the association parameters, in this
exchangeable case a single log odds ratio α, is added to the empirical panel,
but not to the purely model-based one. We obtain a non-significant p-value
for the treatment by time interaction (p = 0.1076), close to but a bit smaller
than its counterpart from the exchangeable analysis in GEE1. This under-
scores the somewhat higher efficiency of a GEE2 method, to which family
ALR can be considered to belong. Similarly, the empirically corrected as-
ymptotic variance-covariance matrix encompasses the α parameter:

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.0245554 -0.024555 -0.000945 0.0009447
Prm2 -0.024555 0.0492659 0.0009447 -0.00229
Prm3 -0.000945 0.0009447 0.0005442 -0.000544
Prm4 0.0009447 -0.00229 -0.000544 0.0015399

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4 Alpha1

Prm1 0.0284159 -0.028416 -0.002133 0.0021329 0.0017753
Prm2 -0.028416 0.0591554 0.0021329 -0.005708 0.0033175
Prm3 -0.002133 0.0021329 0.0008764 -0.000876 0.0003229
Prm4 0.0021329 -0.005708 -0.000876 0.0027053 -0.002278
Alpha1 0.0017753 0.0033175 0.0003229 -0.002278 0.0845464

We are now in a position to assert that the association is strongly signif-
icant (p < 0.0001), provided it has been correctly specified, a statement we
could not make in the corresponding exchangeable GEE1 analysis, where
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the working correlation was estimated to be ρ̂ = 0.42. Of course, it is still
possible for the working correlation structure to be misspecified. For exam-
ple, as was hinted from the unstructured GEE1 analysis, the correlations
could be stronger when measurement occasions are closer to each other.
Unfortunately, the set of 21 log odds ratio parameters makes the ALR
method difficult to converge. The results of the exchangeable model can be
found in the second panel of Table 10.1.

10.5 A Method Based on Linearization

The linearization-based method, presented in Section 8.8, can be fitted
using the SAS macro GLIMMIX. As of SAS Version 9.1, there is an exper-
imental GLIMMIX procedure as well. Both will be explained here.

10.5.1 The SAS Program for the GLIMMIX Macro
Fitting Model (10.1)–(10.2) with, for example, exchangeable working as-
sumptions, can be effectuated using the following program:

%glimmix(data=test, procopt=%str(method=ml empirical),
stmts=%str(

class idnum timeclss;
model onyresp = treatn time treatn*time / solution;
repeated timeclss / subject=idnum type=cs rcorr;
),

error=binomial,
link=logit);

The macro is based on fitting the iterative procedure, outlined in Sec-
tion 8.8. The ‘generalized linear models’ shell linearizes the outcome and
computes the weights, as in (8.38) and (8.39). Specific statements that
govern this procedure are the ‘error=’ and ‘link=’ statement. We need to
choose the binomial error structure. The logit link is the default for this
option, but we have still chosen to explicitly specify it, for clarity. The inner
core of the procedure is based on the MIXED procedure, used to solve iter-
atively reweighted least squares equations (8.37). Virtually all statements,
available in the MIXED procedure, can be used. They are passed on, in
string form, to the macro via the ‘stmts=’ option. Note that ‘type=cs,’ re-
ferring to compound symmetry, has to be used here rather than ‘type=exch’
or ‘logor=exch,’ in Sections 10.3 and 10.4, respectively. For unstructured
working assumptions, we have to use ‘type=un,’ for AR(1) this would be
‘type=ar(1),’ and for independence assumptions, ‘type=simple’ needs to be
used. One set of assumptions, corresponding to the PROC MIXED state-
ment, are passed on via a separate statement, i.e., the ‘procopt=’ string.
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Note that we have inserted the ‘empirical’ option, to ensure the empirically
corrected standard errors are produced. Leaving this one out produces the
model-based standard errors. We have a choice between the updating meth-
ods that are available in the MIXED procedure. In the GLIMMIX proce-
dure, a set of updating methods is available that have been devised for the
evaluation of the integral that occurs in the likelihood of random-effects
models for non-Gaussian data (see Chapter 14).

In case one is interested in receiving the MIXED output at every step in
the iteration process, this can be obtained by adding the option ‘printall’ in
the ‘options=’ option. Arguably, the latter is primarily useful for debugging
purposes.

10.5.2 The SAS Output from the GLIMMIX Macro
The typical GLIMMIX output consists of tables copied from the MIXED
output, as well as some additional information. Typical output includes
book keeping information such as model information, dimensions, number
of observations. Because we included the ‘rcorr’ option in the REPEATED
statement, the fitted correlation matrix of the measurements is given, which
is to be interpreted as the working correlation matrix. In our case, this
is a 7 × 7 correlation matrix with off-diagonal elements equal to 0.4283,
the exchangeable working correlation. The panel ‘Covariance Parameter
Estimates’ has to be interpreted with caution. In our case, it reads:

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS idnum 0.4711
Residual 0.6289

The working correlation is obtained from the usual compound-symmetry
equation:

0.4711
0.4711 + 0.6289

= 0.4283.

In the ‘GLIMMIX Model Statistics’ panel, the residual value is copied as
the extra-dispersion parameter:

GLIMMIX Model Statistics

Description Value

Deviance 1812.6701
Scaled Deviance 2882.1849
Pearson Chi-Square 2091.2017
Scaled Pearson Chi-Square 3325.0561
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Extra-Dispersion Scale 0.6289

It is best not to use this panel, as it is not appropriately adapted to the
combination of generalized linear model and the repeated measures nature
of the data. In case we would have used independence working assumptions,
there would be a single covariance parameter only:

Covariance Parameter Estimates

Cov Parm Subject Estimate

timeclss idnum 1.0457

which is then considered the overdispersion parameter. Arguably, there is
little basis to do so, and it is unlikely to see almost no overdispersion with
independence and strong underdispersion with exchangeability. It might
make more sense to consider the total variance in the exchangeable case, i.e.,
0.4711 + 0.6289, the overdispersion parameter. Similarly, the fit statistics
panel, copied from the MIXED procedure, is best not used.

The most relevant panel is the ‘Solution for Fixed Effects’ table:

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.5849 0.1735 292 -3.37 0.0008
treatn 0.01142 0.2617 292 0.04 0.9652
time -0.1771 0.03114 1612 -5.69 <.0001
treatn*time -0.08885 0.05721 1612 -1.55 0.1206

with its associated F -tests. Because all effects are based on a single de-
grees of freedom, the F -tests reproduce the p-values of the above table and
hence we do not show it. These estimates, together with the ones for other
working assumptions, and with both model-based and empirically corrected
standard errors, are given in the third panel of Table 10.1. Clearly, the esti-
mates under independence are equal to the ones of GEE1, as in both cases
they are the ones that would be obtained from standard logistic regres-
sion. The ones under exchangeability are very similar, but the estimates
for unstructured working assumptions are a little different, although the
conclusions would not change.

In terms of inference for the treatment by time interaction effect, none
of the linearization-based analyses produce significant p-values. The val-
ues for exchangeability (p = 0.1206) and independence (p = 0.1517) are
extremely close to their GEE1 counterparts, but for unstructured working
assumptions (p = 0.0668) the difference is not only a bit larger than the
value for GEE1 (p = 0.0275), it also lands at the other side of the 0.05
border.
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10.5.3 The Program for the SAS Procedure GLIMMIX
Equivalently to the above, the SAS procedure GLIMMIX can be used. The
procedure can fit models of a marginal type, of a subject-specific type,
as well as models with subject-specific effects and residual association in
addition to that. A general treatment of the procedure will be given in
Section 15.2. The program, equivalent to the GLIMMIX macro program in
Section 10.5.1 equals:

proc glimmix data=test method=RSPL empirical;
class idnum;
model onyresp (event=’1’) = treatn time treatn*time

/ dist=binary solution;
random _residual_ / subject=idnum type=cs;
run;

Even though the program is rather different, at first sight, from the one in
Section 10.5.1, the correspondence is almost immediate.

The ‘method=RSPL’ is explained in more detail in Section 15.2. Suf-
fice it to say here that it corresponds to PQL, combined with REML. The
MODEL statement is self-explanatory given the earlier GLIMMIX macro
program. The REPEATED statement of the macro corresponds to the
‘RANDOM residual ’ statement here. SAS refers to this as the ‘R-side’
of the random statement. It is useful to think about it as the variance-
covariance matrix of the outcome vector Y i, of which the variances fol-
low from the mean-variance link, but the correlation structure needs to be
specified, as in GEE. In case random effects are present, then this structure
refers to the residual correlation, in addition to the correlation induced by
the random effects. Changing the ‘type=’ option in the RANDOM state-
ment to ‘simple,’ ‘cs,’ and ‘un,’ respectively, combined with either omission
or inclusion of the ‘empirical’ option in the GLIMMIX statement, produces
exactly the same results as with the GLIMMIX macro, i.e., as reported in
the third panel of Table 10.1.

10.5.4 Output from the GLIMMIX Procedure
The output from the procedure, although structured differently from the
macro output, is largely equivalent. The fact that the empirically corrected
standard errors are produced is properly acknowledged:

The GLIMMIX Procedure

Model Information

Fixed Effects SE Adjustment Sandwich - Classical
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The fact that we are using a marginal model, i.e., a model without ran-
dom effects, is acknowledged through reference to the so-called ‘R-side’
covariance parameters:

Dimensions

R-side Cov. Parameters 2

The procedure took 9 iterations to converge, and then produces covariance
parameters that are equivalent to the ones found above, up to numerical
accuracy:

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

CS idnum 0.4749 0.04800
Residual 0.6300 0.02219

The procedure then goes on to produce the fixed-effects parameters,
again equivalent, up to numerical accuracy, to their GLIMMIX macro coun-
terparts:

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.5851 0.1735 292 -3.37 0.0008
treatn 0.01130 0.2618 292 0.04 0.9656
time -0.1771 0.03115 1612 -5.69 <.0001
treatn*time -0.08889 0.05723 1612 -1.55 0.1206

together with associated F -tests. As long as the procedure is experimen-
tal, which it is at this point, it is cautious to consider the macro as an option
as well. Also, having the macro as a backup may increase one’s changes to
reach convergence.

10.6 Programs for the NTP Data

By way of summary, a few sample programs for the NTP data, as analyzed
in Section 8.9, are presented. We focus on the visceral outcome in the DEHP
study, under exchangeable working assumptions. Standard GEE1 can be
fitted using:

proc genmod data=m.dehp33 descending;
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class litter;
model visceral = dose / dist=binary;
repeated subject=litter / type=exch covb corrw modelse;
run;

Alternating logistic regression require the following program:

proc genmod data=m.dehp33 descending;
class litter;
model visceral = dose / dist=binary;
repeated subject=litter / logor=exch covb corrw modelse;
run;

For the linearization-based method, we can use, for example, the following
GLIMMIX macro code:

%include ’glimmix.sas’;

%glimmix(
data=m.dehp33,
procopt=method=reml empirical,
stmts=%str(

class litter;
model visceral=dose / solution;
repeated / subject=litter type=cs r;),

error=binomial,
link=logit,
options=mixprintlast
);

Alternatively, the SAS procedure GLIMMIX can be used:

proc glimmix data=m.dehp33 method=RSPL empirical;
class litter;
model visceral (event=’1’) = dose

/ dist=binary solution;
random _residual_ / subject=litter type=cs;
run;

For these data, we also fitted Prentice’s GEE, introduced in Section 8.4,
and reported in Tables 8.2 and 8.3. To this end, the gee1corr.mac macro,
written by Stuart Lipsitz (Williamson, Lipsitz, and Kim 1997), was used.
It produces the following output:

Correlation Structure: Exchangeable

PARAMETER ESTIMATES with naive variance

VARIABLE ESTIMATE SE_EST Z P
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INTERCEP -4.507824 0.3958657 -11.38726 0
DOSE 4.5890696 0.5845582 7.8504921 4.108E-15

PARAMETER ESTIMATES with robust variance

VARIABLE ESTIMATE SE_EST Z P
INTERCEP -4.507824 0.3685713 -12.23053 0
DOSE 4.5890696 0.5932811 7.735068 1.033E-14

CORR SECORR Z P
0.1100235 0.0455011 2.4180411 0.0156043

The output is in agreement with what is found in Table 8.3.

10.7 Alternative Software Tools

Many commonly used and commercially available software packages these
days have GEE modules. These include SPlus, R, SPSS, Stata, and SU-
DAAN. It is, of course, very important to understand the syntax require-
ments and conventions when applying GEE fitting code, just as with any
other software application. Arguably, it is equally important to understand
which of the many GEE versions has been implemented. It should have
been clear from Chapter 8 that there is no such thing as ‘the’ GEE ap-
proach. One can choose between correlations and odds ratios to model the
association, but in the literature other measures have been used as well,
such as the κ coefficient (Agresti 2002), etc. One can use GEE1 or GEE2,
or one of the many alternatives, such as the linearization-based method,
or a method based on a hybrid marginal-conditional specification, rather
than on the Bahadur model (correlations) or the Dale model (odds ratios),
etc.

Given the variety of GEE-based methods, it is not surprising that a color-
ful collection of user-defined macros and programs exist to supplement the
implementations in standard software. Trying to describe this ever chang-
ing collection is aiming at a moving target. It is recommended that the
interested user conduct a careful search of the available methodology, ei-
ther through dedicated statistical libraries, or via the Internet in general.

Obviously, this chapter has focused on the non-likelihood-based marginal
models. Although many of the likelihood-based marginal approaches have
existed longer than their non-likelihood counterparts, there is little or no
standard software available, in spite of a wide variety of user-defined tools.
We have chosen not to discuss this dynamic conglomerate of ad hoc tools
and rather refer to statistical and general search tools.
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11
Conditional Models

11.1 Introduction

Chapter 5 presented the three main modeling families: marginal models,
conditional models, and subject-specific models. In particular, it was indi-
cated that there are strong differences between the model families, unless
outcomes are of a Gaussian type. Part II was devoted to marginal model-
ing. It is clear that a wide variety of marginal models is available, whether
a likelihood-based view is taken (Chapters 6 and 7) on the one hand, or
the focus is on alternative methods on the other hand, such as generalized
estimating equations (Chapter 8) and pseudo-likelihood methods (Chap-
ter 9).

Section 5.3.2 introduced the concept of conditional models as one where
outcomes are modeled, conditional upon the value of other outcomes on
the same unit. The other outcomes could encompass the entire set of mea-
surements, like in a classical log-linear model (Agresti 2002), or a subset.
In a longitudinal study, such a subset can usefully be chosen as all mea-
surements prior to the measurement being modeled, or perhaps a subset of
the most recent measurements. We then refer to such models as transition
models.

As alluded to in Section 5.3.2, conditional models have been heavily crit-
icized, a point that we will expand in Section 11.3. To be able to do so, we
first will need a good concept of conditional models. Section 11.2 introduces
a general family of conditional models, which is studied in the specific sit-
uation of clustered outcomes in Section 11.2.2. Returning to Section 11.3,
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a comparison between marginal and conditional models is made, based on
the models introduced here, on general insights, and on the developments
in Chapter 6. The models introduced in Sections 11.2.2 and 11.2.3 are then
fitted to the NTP data, introduced in Section 2.7 and analyzed, using mar-
ginal models, in Sections 7.2.3, 8.9, and 9.6, and are now analyzed by means
of a conditional model in Section 11.4. Using pseudo-likelihood methods,
we will return to these data in Section 12.4. Although there are strong
similarities between all of the marginal models, it will be shown that there
are strong differences between the conditional and marginal models.

Finally, Section 11.5 briefly discusses the special, important, and some-
what different case of transition models.

11.2 Conditional Models
In a conditional model, the parameters describe a feature (probability, odds,
logit,. . . ) of (a set of) outcomes, given values for the other outcomes (Cox
1972). The best known example is undoubtedly the log-linear model. Rosner
(1984) described a conditional logistic model.

Conditional models have already been studied in Chapter 6. Section 6.2.2
introduced Goodman’s association model, a model with a strong condi-
tional flavor. In a number of case studies, such as the British Occupational
Study (Section 6.3), the Caithness data (Section 6.4), and the fluvoxam-
ine trial (Section 6.5), it was shown that the marginal Dale model (Sec-
tion 6.2.3) outperformed Goodman’s model. Moreover, the Dale model held
more perspective for the inclusion of covariates from a general nature and
more easily allowed for measurement sequences longer than two, as was
shown in Section 6.6. Both models could be linked to different underlying
latent densities: the normal density for Goodman’s model and the Plackett
(1965) density for the Dale model (Section 6.7).

Further, Section 7.8, in the heart of Chapter 7 on marginal models, in-
troduced a full model specification of a hybrid form, in the sense that
marginal and conditional aspects are combined. The starting point was the
exponential family formulation (7.50). The model is hybrid because for the
lower-order moments, the mean or dual parameters are modeled, while for
the higher-order moments, the natural or canonical parameters are mod-
eled. The former are marginal in nature, the latter conditional. Moreover,
the two sets are orthogonal onto each other. When the set of mean parame-
ters would be empty, a purely conditional model results and when the set of
canonical parameters is empty, a fully marginal model obtains. The orthog-
onality of the two sets of parameters makes the hybrid practically useful,
together with the fact that the conditional parameters are not subject to
parameter-space constraints.

Molenberghs and Ryan (1999) and Aerts et al (2002) discuss, in the
specific context of exchangeable binary data, some advantages of condi-
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tional models and show how, with appropriate care, the disadvantages can
be overcome for their setting. They constructed the joint distribution for
clustered multivariate binary outcomes, based on the multivariate expo-
nential family model. A slightly different approach, also based on the ex-
ponential family, is presented in Fitzmaurice, Laird, and Tosteson (1996).
An advantage of such a likelihood-based approach is that, under correct
model specification, efficiency can be gained over other procedures such
as generalized estimating equations (GEE). Molenberghs and Ryan (1999)
use the method primarily in view of quantitative risk assessment. Some of
the quantities used, such as the probability that an entire cluster is free
of malformations, are framed in terms of joint probabilities, making such
techniques as generalized estimating equations less suitable. When com-
putations become cumbersome, pseudo-likelihood for this particular model
can be used, as outlined in Chapter 12.

Attention will be restricted to binary data. We assume the regression no-
tation, outlined in Section 7.1, but need a slight extension, in the sense that
there are N units, the ith of which contains ni measurements on each of M
outcomes. Thus, M describes the multivariate nature of the problem, while
ni refers to the repeated, longitudinal, or clustered nature of the study.
Write Yikj = 1 when the jth individual in unit i exhibits the kth response
and 0 otherwise. Let Y i represent the vector of outcomes for the ith unit,
and xi an associated vector of unit level covariates. We can now consider
a general conditional exponential family model, for repeated multivariate
data. However, it is instructive to start with two special cases. In Sec-
tion 11.2.1, we assume ni = 1, in other words, there is no repeated aspect
to the study. In Section 11.2.2, M = 1, i.e., a single repeated outcome is
considered, removing the multivariate aspect of the problem. Section 11.2.3
presents the general case.

11.2.1 A Pure Multivariate Setting
Let us first suppose data are not repeated (ni = 1; k = 1, . . . , M). Because
j ≡ 1 in this setting, we drop this index temporarily from our notation. The
observable outcome is thus Y i = (Yi1, . . . , YiM )′. Consider the following
probability mass function proposed by Cox (1972):

fi(yi;Θi) = exp

{
M∑

k=1

θikyik +
∑
k<k′

ωikk′yikyik′ + . . .

+ ωi1...Myi1 . . . yiM − A(Θi)

}
. (11.1)

The θ parameters can be thought of as ‘main effects,’ whereas the ω pa-
rameters are association parameters or interactions. There is a strong con-
nection with (7.50) even though here we consider a multivariate problem
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and (7.50) is for repeated data. Equating M here with n in (7.50) estab-
lishes equivalence. Of course, we should note that the parameters here are
partitioned differently than in Section 7.8.1, the relationship being:

Ψi = (θi1, . . . , θin; ωi12, . . . , ωi,M−1,M )′, (11.2)
Ωi = (ωi123, . . . , ωi1...M )′. (11.3)

The reason is that here, we tend to focus on the split between marginal
(regression type) parameters versus association, whereas in expression 7.50
the seizure was between second and higher-order association parameters.

Note that the model has a marginal appearance, rather than a conditional
one. However, in line with Section 7.8, the parameters have a conditional
interpretation. For example, the main effects describe logits of a particular
outcome, conditional on the level of all others. Similar interpretations hold
for the association parameters and therefore it is sensible to classify the
model as a conditional one.

Models that do not include all interactions are derived, for example, by
omitting all ω terms from a certain order onwards. A useful special case is
found by setting all three and higher order parameters equal to zero, which
is a member of the quadratic exponential family discussed by Zhao and
Prentice (1990). Thélot (1985) studied the case where M = 2. If M = 1,
the model reduces to ordinary logistic regression.

We will briefly outline standard procedures for likelihood based parame-
ter estimation in this setting. Modeling in terms of a parsimonious parame-
ter vector of interest can be achieved, as usual, using a linear model of the
form Θi = Xiβ, where Θi is a vector of natural parameters, Xi is a q×p de-
sign matrix and β a p×1 vector of unknown regression coefficients. Let the
mean parameter be µi. Then the duality property of exponential families
(e.g., Brown 1986, p. 36) states that µi is related to the natural parameter
Θi by µi = ∂A(Θi)/∂Θi. Here, A(Θi) is the normalizing constant. Next,
the log-likelihood can be written as

	 =
N∑

i=1

ln f(yi;Θi) =
N∑

i=1

[
β′X ′

iwi − A(Xiβ)
]
,

and the score function is

U(β) =
N∑

i=1

X ′
i(wi − µi).

Here, wi is the vector made up of all outcomes yik, and their pairwise and
higher-order cross products. The maximum likelihood estimator for β is
defined as the solution to U(β) = 0. It is usually found by applying a
Newton-Raphson procedure which, of course, coincides with a Fisher scor-
ing algorithm for exponential family models with canonical link functions.
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11.2.2 A Single Repeated Outcome
Let us now consider a single repeated outcome. Because here the index k
always equals 1, we drop it temporarily from notation. We re-introduce
however the subscript j to indicate an observation within a cluster.

A model for a single repeated outcome can now be written as:

fi(yi;Θi) = exp

⎧⎨⎩
ni∑

j=1

θijyij +
∑
j<j′

δ∗
ijj′yijyij′ + . . .

+ ωi1...niyi1 . . . yini − A(Θ∗
i )

⎫⎬⎭ . (11.4)

Recall, in agreement with the comment made in Section 11.2.1, that the
model is classified as conditional, in spite of its marginal appearance, be-
cause the parameters have a conditional interpretation.

This model is equivalent to (7.50), through (11.2)–(11.3), where the δ∗

play the role of the ω’s. Similar in spirit to Zhao and Prentice (1990),
Thélot (1985), and Molenberghs and Ryan (1999) we can simplify (11.4)
to a quadratic version:

fi(yi;Θi
∗, ni) = exp

⎧⎨⎩
ni∑

j=1

θ∗
i yij +

∑
j<j′

δ∗
i yijyij′ − A(Θ∗

i )

⎫⎬⎭ , (11.5)

with δ∗
i now describing the association between pairs of measurements

within the ith unit only.
It is useful to code the outcomes as 1 and −1, rather than 1 and 0,

whenever the number of measurements per unit is variable. The 0/1 coding
does not preserve the model when the coding is reversed to 1/0, unless all ni

are equal (Cox and Wermuth 1994a). Arguably, this and related drawbacks
are stumbling blocks on the way to general use of conditional models of this
type.

Focusing on an exchangeable situation, define once more the number
of measurements from unit i with positive response to be zi, (11.5) then
becomes

fi(yi;Θ
∗
i , ni)

= exp

{
θ∗

i zi − θ∗
i (ni − zi)

+δ∗
i

[(
zi

2

)
+
(

ni − zi

2

)
− zi(ni − zi)

]
− A(Θ∗

i )
}

= exp
{

θ∗
i (2zi − ni) + δ∗

i

[(
ni

2

)
− 2zini + 2z2

i

]
− A(Θ∗

i )
}

. (11.6)
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Upon absorbing constant terms into the normalizing constant and using
the reparametrization θi = 2θ∗

i and δi = 2δ∗
i , this becomes

fi(yi;Θi, ni) = exp
{

θiz
(1)
i + δiz

(2)
i − A(Θi)

}
, (11.7)

with z
(1)
i = zi and z

(2)
i = −zi(ni − zi).

Note that this model contains the same building blocks as the Bahadur
model for clustered data (Section 7.2.2; see also Section 9.4.1).

For model (11.7), independence corresponds to δi = 0. A positive δi

corresponds to classical clustering or overdispersion, whereas a negative
parameter value occurs in the underdispersed case. It is worthwhile to note
that even for underdispersion, no restrictions exist on the parameter space.
Molenberghs and Ryan (1999) show that model (11.7) has several notewor-
thy properties. First, the model is clearly invariant to interchanging the
codes of successes and failures, whence both estimation and testing will
be invariant for this change as well. Second, the conditional probability of
observing a positive response in a unit of size ni, given that the remaining
littermates yield zi − 1 successes, is given by:

P (Yij = 1|zi − 1, ni) =
exp[θi − δi(ni − 2zi + 1)]

1 + exp[θi − δi(ni − 2zi + 1)]
, (11.8)

which decreases to zero when ni increases and zi is bounded, and ap-
proaches unity for increasing ni and bounded ni − zi, whenever there is
a positive association between outcomes. From (11.8) it is clear that the
conditional logit of an additional success, given zi − 1 successes, equals
θi − δi(ni − 2zi + 1). Thus, upon noting that the second term vanishes
if zi − 1 = (ni − 1)/2, θi is seen to be the conditional logit for an addi-
tional success when about half of the measurements are a success already.
Similarly, the log odds ratio for the responses between two measurements
is equal to 2δi, confirming the association parameter interpretation of the
δ-parameter. Finally, the marginal success probability in a unit of size ni

is clearly a (non-linear) function of ni:

E

(
Zi

ni

)
=
∑ni

z=0 z
(
ni

z

)
exp{θiz − δiz(ni − z)}∑ni

z=0 ni

(
ni

z

)
exp{θiz − δiz(ni − z)} . (11.9)

Because this model is conditional in nature, this marginal quantity does not
simplify in general. Nevertheless, (11.9) can easily be calculated and plotted
to explore the relationship between cluster size and response probability.

11.2.3 Repeated Multivariate Outcomes
Suppose again that Yikj = 1 when at the jth occasion in unit i response k is
observed and −1 otherwise. It is convenient to group the outcomes for the
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FIGURE 11.1. Association structure for outcomes k and k′ on measurement oc-
casions j and j′ in unit i.

ith unit into an Mni vector Y i = (Yi11, . . . , Yi1ni , . . . , YiMni). Molenberghs
and Ryan (1999) proposed the following model for the joint distribution of
clustered multivariate binary data:

fi(yi;Θ
∗
i ) = exp

⎧⎨⎩
M∑

k=1

ni∑
j=1

θ∗
ikyikj +

M∑
k=1

∑
j<j′

δ∗
ikyikjyikj′

+
∑
k<k′

ni∑
j=1

ω∗
ikk′yikjyik′j

+
∑
k<k′

∑
j �=j′

γ∗
ikk′yikjyik′j′ − A(Θ∗

i )

⎫⎬⎭ , (11.10)

where A(Θ∗
i ) is the normalizing constant, resulting from summing (11.10)

over all 2Mni possible outcome vectors. The building blocks of this model
are clearly the main effects (θ∗) and three types of association parameters,
reflecting three different types of association. For example, δ∗

ik refers to
the association between two different measurement occasions within the
same unit on the same outcome k, ω∗

ikk′ refers to the association between
outcomes k and k′ for a single measurement occasion within unit i and
γ∗

ikk′ gives the association between outcomes k and k′ for two different
measurement occasions within the same unit. The three different types of
associations captured in the model are depicted in Figure 11.1.

The absence of observation-specific subscripts reflects the implicit ex-
changeability assumption between any two measurement occasions within
the same unit. This is sensible whenever the same mean is assumed across
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occasions, for a given outcome, and the association does not depend on the
particular pair of measurement occasions. When measurement occasions
refer to littermates within a litter, for example, such an assumption is sen-
sible and can lead to further model simplification. Further, all third and
higher-order associations have been omitted. In principle, they can be in-
cluded as well, although even writing them down in the current multivariate
clustered setting would be a challenging endeavor.

The exchangeability assumption will now be used to simplify the model.
Defining zik as the number of measurement occasions in unit i, positive
on outcome k and zikk′ as the number of occasions within unit i, positive
on both outcomes k and k′, Molenberghs and Ryan (1999) derived (after
reparameterization):

fi(yi;Θi)

= exp

{
M∑

k=1

θikz
(1)
ik +

M∑
k=1

δikz
(2)
ik

+
∑
k<k′

ωikk′z
(3)
ikk′ +

∑
k<k′

γikk′z
(4)
ikk′ − A(Θi)

}
, (11.11)

where

z
(1)
ik = zik,

z
(2)
ik = −zik(ni − zik),

z
(3)
ikk′ = 2zikk′ − zik − zik′ ,

z
(4)
ikk′ = −zik(ni − zik′) − zik′(ni − zik) − z

(3)
ikk′ .

(11.12)

Advantages of this model are the flexibility with which both main effects
and associations can be modeled, and the absence of constraints on the
parameter space, which eases interpretability. Success probabilities at both
the measurement occasion level, as well as on the unit level as whole, have
simple expressions (Aerts et al 2002, Chapter 10). This aspect is important
when using the model in a dose-response setting.

The fact that the probability model depends explicitly [see (11.12)] and
implicitly on the cluster size is an advantage in some cases, and a disad-
vantage in others. For example, it can be advantageous when the number
of measurements made is informative in its own right for the effect of a
certain covariate, such as dose or exposure. Also note that Model (11.11) is
conditional in nature, as it describes a feature of (a set of) outcomes con-
ditional on the other outcomes. It implies conditional odds and conditional
odds ratios that are log-linear in the natural parameters. Molenberghs and
Ryan (1999) construct the conditional logit associated with the presence
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and absence of outcome k for an occasion j in unit i, given all other out-
comes in the same cluster, and they show that this function depends on
cluster size and on the observed pattern of the remaining outcomes. Let
κikj = 1 if at the jth measurement occasion a success is seen on the kth
outcome variable and 0 otherwise. Then

ln
pr(Yikj = 1|yik′j′ , k′ �= k or j′ �= j)

pr(Yikj = −1|yik′j′ , k′ �= k or j′ �= j)

= θik + δik(2zik − ni − 1)

+
∑
k′ �=k

ωikk′(2κik′j − 1)

+
∑
k′ �=k

γikk′(2zik′ − ni − 2κik′j + 1). (11.13)

Marginal quantities are fairly complicated functions of the parameters and
are best represented graphically.

11.3 Marginal versus Conditional Models

Having introduced marginal and conditional models, we are now in a po-
sition to discuss points of meaningfulness of one relative to the other. It
will be clear from the briefest comparison, that fitting a marginal model
is typically more involved than fitting the conditional model of the pre-
vious section. Most marginal models have constrained parameter spaces.
This is often cited as an interpretational disadvantage. However, the same
is true for the multivariate normal model, as the covariance matrix has
to be positive definite. Except for the bivariate case, the various correla-
tions constrain each other to ensure positive definiteness. Exactly the same
constraint applies to the multivariate probit model, and similar but less
tractable constraints apply to the Dale model. In contrast, the parame-
ters of (11.1), (11.4), and (11.10) can take on any value in the Euclidean
space whilst still producing valid probabilities. Also, marginal models differ
one from the other in terms of the severity of the restrictions. Although
in the Bahadur model the association parameter is restricted, even when
ni = n = 2, this is not the case in the Dale model where the odds ratio can
range over the entire parameter space [0, +∞]. Restrictions in the higher
dimensional case exist but are rather weak.

One of the main interpretational advantages of marginal models is their
so-called upward compatibility or reproducibility (Liang, Zeger, and Qaqish
1992). This means that when a marginal model (e.g., the Dale, probit, or
Bahadur model) is used to model a response vector, the appropriate sub-
model applies to any subvector of the response vector. Such a sub-vector
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still follows a model of the same structure, with as parameter vector the
corresponding sub-vector. In particular, the univariate margins of the mar-
ginal models discussed above are typically of the logistic type, the probit
model the obvious exception.

In this sense, model (11.4) is often not meaningful when the number of
measurement occasions ni are unequal. Indeed, when ni = 1 then θi1 =
logit[P (Yij = 1)], whereas, when ni = 2, θi1 = logit[P (Yij = 1|Yij = 0)].
Thus, the same parameter would change its interpretation depending on
the cluster size. When ni = n for all i, and the design is balanced (i.e.,
measurement occasions are common to all clusters), then the model is
mathematically principled. The question then is whether the investigator is
interested in a response to a conditional question rather than to, for exam-
ple, a marginal one. A marginal question might be whether the probability
of side effects in the fluvoxamine trial increases or decreases with time; a
conditional question might consider the probability of side effects at the
second occasion, given there were none at the first occasion.

Ideally, marginal models should be chosen whenever there are marginal
research questions, e.g., pertaining to one or a few occasions, or the evolu-
tion between them (e.g., the time evolution of the response in the toenail
data). They are also useful when not only the strength of association be-
tween occasions, but also a quantification of this association is of interest.
Of course, when the number of measurement occasions within a subject
grows, such models become intractable from a likelihood perspective. One
can then resort to alternative approaches, such as generalized estimating
equations (Chapter 8) or pseudo-likelihood (Chapters 9 and 12).

Chapter 6 provided a thorough comparison of the marginal Dale model
and the more conditionally natured Goodman association model. It is clear
from this chapter that a marginal approach, in particular when the global
odds ratio is featured as a measure of association, often leads to well fitting,
parsimonious, and convenient to interpret models.

11.4 Analysis of the NTP Data

To illustrate conditional models in practice, we apply the univariate and
multivariate clustered models of Sections 11.2.2 and 11.2.3, respectively, to
the NTP data. Reports on marginal analyses can be found in Sections 7.2.3,
8.9, and 9.6. The data were introduced in Section 2.7. We fitted Model
(11.7) to 4 outcomes in each of the 3 datasets, in line with earlier analyses.
Maximum likelihood estimates (model-based standard errors; empirically
corrected standard errors) are presented in Table 11.1. The natural para-
meters were modeled as:

θi = β0 + βddi,
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TABLE 11.1. NTP Data. Maximum likelihood estimates (model based standard
errors; empirically corrected standard errors) of the conditional model for uni-
variate clustered data, fitted to various outcomes in three studies. β0 and βd are
the marginal intercept and dose effect, respectively; βa is the conditional log odds
ratio association parameter.

Outcome Par. DEHP EG DYME
External β0 -2.81(0.58;0.52) -3.01(0.79;1.01) -5.78(1.13;1.23)

βd 3.07(0.65;0.62) 2.25(0.68;0.85) 6.25(1.25;1.41)
βa 0.18(0.04;0.04) 0.25(0.05;0.06) 0.09(0.06;0.06)

Visceral β0 -2.39(0.50;0.52) -5.09(1.55;1.51) -3.32(0.98;0.89)
βd 2.45(0.55;0.60) 3.76(1.34;1.20) 2.88(0.93;0.83)
βa 0.18(0.04;0.04) 0.23(0.09;0.09) 0.29(0.05;0.05)

Skeletal β0 -2.79(0.58;0.77) -0.84(0.17;0.18) -1.62(0.35;0.48)
βd 2.91(0.63;0.82) 0.98(0.20;0.20) 2.45(0.51;0.82)
βa 0.17(0.04;0.05) 0.20(0.02;0.02) 0.25(0.03;0.03)

Collapsed β0 -2.04(0.35;0.42) -0.81(0.16;0.16) -2.90(0.43;0.51)
βd 2.98(0.51;0.66) 0.97(0.20;0.20) 5.08(0.74;0.96)
βa 0.16(0.03;0.03) 0.20(0.02;0.02) 0.19(0.03;0.03)

where di is the dose level applied to the ith cluster, and where the associ-
ation model equals

δi = βa,

i.e., a constant association model is assumed.
Fitting the trivariate clustered model of Section 11.2.3 is not feasible

with maximum likelihood. This issue will be taken up in Section 12.4,
using pseudo-likelihood. There, we will also present the PL counterpart to
Table 11.1, and discuss similarities and differences.

Clearly, parameter estimates for β0 and βd, as well as their correspond-
ing standard errors, are uniformly smaller than their counterparts obtained
from the marginal model. This is not surprising. Although all marginal
models, whether likelihood based or rooted in GEE, model the marginal
logit of success, given dose, this model considers the conditional logit of a
success in littermate j, not only given dose, but also given values for the
other littermates. It is clear from (11.8) that, with the −1/ + 1 coding, θi

corresponds to the logit, given there are zi = (ni + 1)/2 successes. For all
other logits, a correction in terms of δi = βa enters the equation. In a sense,
specifying the values for other littermates “ties the hands” of the success
probability we focus on, hence a dilution of the parameters. Arguably, the
parameters are much more difficult to interpret than their marginal coun-
terparts, and models like this one may be more useful for hypothesis testing
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about the dose effect on the one hand, and formal risk assessment on the
other hand.

11.5 Transition Models

A very specific class of conditional models are so-called transition models.
In a transition model, a measurement Yij in a longitudinal sequence is de-
scribed as a function of previous outcomes, or history hij = (Yi1, . . . , Yi,j−1)
(Diggle et al 2002, p. 190). One can write a regression model for the out-
come Yij in terms of hij , or alternatively the error term εij can be written
in terms of previous error terms. In the case of linear models for Gaussian
outcomes, one formulation can be translated easily into another one and
specific choices give rise to well-known marginal covariance structures such
as, for example, AR(1). Specific classes of transition models are also called
Markov models (Feller 1968). The order of a transition model is the number
of previous measurements that is still considered to influence the current
one. A model is called stationary if the functional form of the dependence
is the same regardless of the actual time at which it occurs. An example of
a stationary first-order autoregressive model for continuous data is:

Yi1 = x′
i1β + εi1, (11.14)

Yij = x′
ijβ + αYi,j−1 + εij . (11.15)

Assuming εi1 ∼ N(0, σ2) and εij ∼ N(0, σ2(1−α2)) yields, after some sim-
ple algebra: var(Yij) = σ2 and cov(Yij , Yij′) = α|j′−j|σ2. In other words,
this model produces a marginal multivariate normal model with AR(1)
variance-covariance matrix. It makes most sense for equally spaced out-
comes, of course. Upon including random effects into (11.14)–(11.15), and
varying the assumptions about the autoregressive structure, it is clear that
the general linear mixed-effects model formulation with serial correlation
encompasses wide classes of transition models.

Serial processes can be built into random-effects models for categorical
data as well, as will be discussed in Chapter 22. There is a relatively large
literature on the direct formulation of Markov models for binary, categori-
cal, and Poisson data as well (Diggle et al 2002, pp. 190–207).

For outcomes of a general type, generalized linear model ideas (Chap-
ter 3) can be followed to formulate transition models. Decomposing an
outcome as Yij = µc

ij + εc
ij (‘c’ referring to conditional), the first and sec-

ond moment of a GLM can now be written in terms of the history hij :

µc
ij = E(Yij |hij), (11.16)

φvc(µc
ij) = var(Yij |hij), (11.17)

where, as in Section 3.2, vc(µc
ij) is a function allowing to the variance

in terms of the mean, and φ is an overdispersion parameter. The only
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difference is that, by including hij , an outcome is described in terms of its
predecessors. Exactly as in Section 3.3, a function of the mean components
is equated to a linear function of the predictors:

ηij(µc
ij) = x′

ijβ + κ(hij , β, α), (11.18)

where κ is a function, often linear, of the history. This model is quite simple
and the contributions for Yij , given the history hij , lead to independent
GLM contributions. This is due to the law of total probability:

f(yi1, . . . , yini
) = f(yi1) · f(yi2|yi1) · f(yi3|yi1, yi2) · f(yini

|yi1, . . . , yi,ni−1),

which can be re-written as:

f(yi1, . . . , yini) = f(yi1) ·
ni∏

j=2

f(yij |hij), (11.19)

= f(yi1, . . . , yiq) ·
ni∏

j=q+1

f(yij |hij), (11.20)

the latter decomposition being relevant when the history hij contains the q
immediately preceding measurements. It is now clear that the the product
in (11.20) yields ni −q independent univariate GLM contributions. Clearly,
a separate model may need to be considered for the first q measurements,
as these are left undescribed by the conditional GLM. Note that this was
different in the normal case where the formulation of (11.14) and (11.15)
produces the marginal distribution in an elegant way, by virtue of full
distributional assumptions and their multivariate normal nature.

A logistic-regression type example would be:

logit[P (Yij = 1|xij , Yi,j−1 = yi,j−1, β, α)] = x′
ijβ + αyi,j−1. (11.21)

This model is of the stationaly first-order autoregressive type. Evaluating
(11.21) to yi,j−1 = 0 and yi,j−1 = 1, respectively, produces the so-called
transition probabilities between occasions j − 1 and j. In this model, when
there would be no covariates, these would be constant across the popula-
tion. When there are time-independent covariates only, the transition prob-
abilities change in a relatively straightforward way with level of covariate.
For example, a different transition structure may apply to the standard
and experimental arms in a two-armed clinical study.

To ensure a fully separate model is fitted between both groups defined
by yi,j−1 in (11.21), the model can be extended to:

logit[P (Yij = 1|xij , Yi,j−1 = yi,j−1, β, α] = x′
ijβ + yi,j−1x

′
ijα. (11.22)

Model (11.21) is a special case of (11.22), found by setting the components
of β and α equal to each other, except for the intercept.
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When κ in (11.18) does not depend on the parameters β, standard GLM
software, such as the SAS procedures LOGISTIC and GENMOD, can be
used without any problem. When κ depends on both β and α, it might be
necessary in some, but not all, cases to write the regression function in a
user-defined fashion, for which then the SAS procedure NLMIXED can be
used.

Whereas the Gaussian transition model (11.14)–(11.15) produces a sim-
ple marginal model, this is not true in the general case. In the logistic case,
such as in (11.21), and from specification (11.16)–(11.17), it follows that
recursive formulas for the marginal means and variances are:

µij = µc
ij(0)[1 − µi,j−1] + µc

ij(1)µi,j−1, (11.23)

vij = [µc
ij(1) − µc

ij(0)]2vi,j−1

+vc
ij(0)[1 − µi,j−1] + vc

ij(1)µi,j−1. (11.24)

Here, µc
ij(y) is shorthand for the conditional mean when Yi,j−1 = y, with

the same convention for the variances. Expressions (11.23) and (11.24)
will generally not be constant across measurement occasions, not even for
constant levels of the covariates, except in very special and in limiting
cases (Feller 1968). As a result, explicit calculation of the marginal variance
function can be a challenge and one would have to resort to numerical
methods.

11.5.1 Analysis of the Toenail Data
We will illustrate the ideas developed here using the toenail data, analyzed
before in Chapter 10. We will adapt Model (10.1)–(10.2) to the transition
model context:

Yij ∼ Bernoulli(µij), (11.25)

logit
(

µij

1 − µij

)
= β0 + β1Ti + β2tij + β3Titij + α1yi,j−1. (11.26)

This model is found in the first column of Table 11.2 (Model I). It is clear
that there is a very strong dependence on the previous measurement and,
before looking into the model further, one may wonder whether there is a
dependence on the measurement two occasions prior to the current one as
well. This model is given by updating (11.26) as follows:

logit
(

µij

1 − µij

)
= β0+β1Ti+β2tij +β3Titij +α1yi,j−1+α2yi,j−2. (11.27)

The fit of this model is given in the third column of Table 11.3. Obviously,
there is no need for an extension in this direction. However, following the
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TABLE 11.2. Toenail Data. Parameter estimates (standard errors) for a first- and
second-order stationary autoregressive model. For the first-order case, a model
with a common (I) and two separate (II) autoregressive parameters is considered.

First order
Effect Par. I II Second order
Intercept β0 -3.14(0.27) -3.77(0.34) -3.28(0.34)
Ti β1 0.00(0.31) -0.08(0.32) 0.13(0.39)
tij β2 -0.09(0.04) 0.03(0.05) -0.05(0.04)
Ti · tij β3 -0.08(0.06) -0.06(0.06) -0.09(0.07)
Dep. on Yi,j−1 α1 4.48(0.22) 3.59(0.29) 4.01(0.39)
Dep. on Yi,j−1 α1a 1.56(0.35)
Dep. on Yi,j−2 α2 0.25(0.38)

ideas in (11.22), one can consider two separate models, depending on the
level of the previous outcome. This model is found by rewriting (11.26) as

logit
(

µij

1 − µij

)
= (β00 + β10Ti + β20tij + β30Titij)IYi,j−1=0

+(β01 + β11Ti + β21tij + β31Titij)IYi,j−1=1. (11.28)

The dependence on the previous outcome is not included as an explicit
parameter into (11.28), but rather as the difference between the two para-
meters corresponding to the same effect. For example, the main treatment
effect is β10 in the group with previous measurement equal to zero and to
β11 in the group with previous measurement equal to one. The fit of this
model is given in Table 11.3.

There is quite a bit of difference between the submodels for the two
levels of the previous outcome even though, apart from the dependence on
the previous outcome itself, there is very little evidence for significance of
the various effects, except for the time effect when the previous level of
the response is equal to one. Turning to the dependence on the previous
outcome, reparameterizing the model indicates that only the main effect of
the dependence is significant (results not shown).

A final issue to consider is the spacing of the outcomes. Recall that
measurements are taken one month apart in the first quarter (0, 1, 2, and
3 months) and quarterly thereafter (6, 9, and 12 months). Hence, it is
cautious to allow for a different transition effect in the first quarter versus
the others. Model II in Table 11.2 covers this case. The parameter α1
describes the transition effect for the later measurements, whereas α1a is
the ‘excess’ during the first quarter, implying that the autoregressive effect
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TABLE 11.3. Toenail Data. Parameter estimates (standard errors) for a
first-order stationary autoregressive model with all parameters dependent on the
level of the previous outcome.

Yi,j−1 = 0 Yi,j−1 = 1
Effect Par. Estimate (s.e.) Par. Estimate (s.e.)
Intercept β00 -3.92(0.56) β01 1.56(1.26)
Ti β10 0.45(0.70) β11 -0.01(0.37)
tij β20 -0.06(0.09) β21 -0.20(0.06)
Ti · tij β30 0.07(0.10) β31 0.04(0.07)

at months 1, 2, and 3 is given by α1 + α1a. Clearly, both parameters are
significant, showing there are autoregressive effects in both periods of the
study and moreover that they are different from each other. Hence, Model
II in Table 11.2 would be our preferred choice.

When comparing the estimates in Tables 11.2 and 11.3 on the one hand,
with those reported in Table 10.1 on the other hand, it is clear that no
direct comparison is possible. Unlike in the Gaussian case, marginal and
conditional model parameters cannot be compared directly. The same phe-
nomenon was observed in Section 11.4 for the NTP data. For similar rea-
sons, marginal and random-effects model parameters are typically different
in magnitude, as is studied in Chapter 16.

11.5.2 Fitting Transition Models in SAS
Fitting transition models as in Section 11.5.1 is easy, because subsequent
measurements, given their past history, are independent of each other, and
hence standard GLM software can be used, such as the SAS procedures
GENMOD and LOGISTIC. One only needs to ensure that the previous
measurement(s) can be used as a covariate. Preparing this covariate in a
longitudinally organized dataset (one record per measurement rather than
per subject) is straightforward, using the DROPOUT macro described in
Section 32.5. Because we used the two most recent measurements, the
macro needs to be called twice. The macro returns its input dataset, sup-
plemented with the variables ‘prev’ and ‘dropout.’ The second one is im-
material. To call the macro a second time, it is wise to rename ‘prev’ to, for
example, ‘prev1,’ since otherwise two columns with the same name would
result, implying confusing and error prone data manipulation. We then call
the result of the second run ‘prev2.’ Code to perform these actions is

%dropout(data=test,id=idnum,time=time,
response=onyresp,out=test2);
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data test2a;
set test2;
prev1=prev;
drop prev;
run;

%dropout(data=test2a,id=idnum,time=time,
response=prev1,out=test3);

data test3a;
set test3;
prev2=prev;
drop prev;
run;

The result for the first subject is

Obs idnum time treatn onyresp prev1 prev2

1 1 0 1 1 . .
2 1 1 1 1 1 .
3 1 2 1 1 1 1
4 1 3 1 0 1 1
5 1 6 1 0 0 1
6 1 9 1 0 0 0
7 1 12 1 0 0 0

Then, code to fit (11.25)–(11.26) is

proc genmod data=test3a descending;
model onyresp = treatn time treatn*time prev1

/ dist=binomial;
run;

which is ordinary logistic regression code. When both predecessors are used,
one merely adds ‘prev2’ to the MODEL statement. The MODEL statement
needed to produce Table 11.3 is

model onyresp = prev1 treatn*prev1 time*prev1
treatn*time*prev1
/ noint dist=binomial;

where now the variables ‘treatn’ and ‘prev1’ are treated as class variables.
To fit Model II from Table 11.2, an additional variable ‘prev1a’ needs to

be created:

data test3b;
set test3a;
prev1a=prev1;
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if time>3 then prev1a=0;
run;

which is then added to the logistic regression, next to ‘prev1.’



12
Pseudo-Likehood

12.1 Introduction

The conditional model introduced in Section 11.2, with clustered data ver-
sions in Sections 11.2.2 and 11.2.3, rests on the exponential family frame-
work. This implies the models are elegant from a mathematical point of
view, even though there may be serious interpretational concerns (Sec-
tion 11.3). Nevertheless, maximum likelihood estimation can be unattrac-
tive, due to excessive computational requirements. For example, with mul-
tivariate exponential family models, the normalizing constant can have a
cumbersome expression, rendering it hard to evaluate (Arnold and Strauss
1991). Several suggestions have been made to overcome this problem, such
as Monte Carlo integration (Tanner 1991). For example, Geyer and Thomp-
son (1992) use Markov Chain Monte Carlo simulations to construct a Monte
Carlo approximation to the analytically intractable likelihood. Arnold and
Strauss (1991) and Arnold, Castillo, and Sarabia (1992) propose the use of a
so-called pseudo-likelihood (PL). A general framework for pseudo-likelihood
estimation and inference has been introduced in Chapter 9. Applications
in a marginal modeling context were the topic of Sections 9.4–9.6.

In the context of a general exponential-family model like the one dis-
cussed in the previous chapter, a conditional form of pseudo-likelihood is
sensible and attractive in computational terms. Geys, Molenberghs, and
Ryan (1997, 1999) implemented a pseudo-likelihood method for the model
described in Section 11.2, replacing the joint distribution of the responses
by an appropriate product of conditional densities that do not necessar-
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ily multiply to the joint distribution. A bivariate distribution f(y1, y2), for
example, can be replaced by the product f(y1|y2) · f(y2|y1) of both condi-
tionals. The key advantage of this approach is that the general form of the
normalizing constant cancels, thus greatly simplifying computations, espe-
cially when there is a large number of repeated measures per unit, such as
in a clustered, multivariate setting. For three outcomes, each measured 20
times, the normalizing constant is made up of 260 terms. The PL approach
replaces the joint distribution by 60 univariate distributions of a logistic re-
gression type, of which the normal constant is trivial to evaluate. Although
the method achieves important computational economies by changing the
method of estimation, it does not affect model interpretation. Model pa-
rameters can be chosen in the same way as with full likelihood and retain
their meaning. This method converges quickly with only minor efficiency
losses, especially for a range of realistic parameter settings.

In Section 12.2, pseudo-likelihood is developed for a single repeated (clus-
tered) outcome, building upon the model in Section 11.2.2, and Section 12.3
presents a similar approach for the multivariate repeated setting of Sec-
tion 11.2.3. The NTP data are analyzed in Section 12.4, building upon the
analyses conducted in Section 11.4.

12.2 Pseudo-Likelihood for a Single Repeated
Binary Outcome

A convenient pseudo-likelihood function for exponential family models such
as (11.5) with a single clustered outcome is found by replacing the joint
density fi(yi;Θi) by the product of univariate “full” conditional densities
f(yij |{yij′}, j′ �= j;Θi) for j = 1, . . . , ni, obtained by conditioning each
observed response on all others. This idea can be put into the framework
(9.3) by choosing δ1ni

= ni and δsj
= −1 for j = 1, . . . , ni where 1ni

is a
vector of ones and sj consists of ones everywhere, except for the jth entry.
For all other vectors s, δs equals zero. We refer to this particular choice as
the full conditional pseudo-likelihood function. This pseudo-likelihood has
the effect of replacing a joint mass function with a complicated normalizing
constant by ni univariate functions.

If we can assume that outcomes within a unit are exchangeable, there
are only two types of contributions: (1) the conditional probability of an
additional success, given there are zi −1 successes and ni − zi failures (this
contribution occurs with multiplicity zi):

pis =
exp {θi − δi(ni − 2zi + 1)}

1 + exp {θi − δi(ni − 2zi + 1)} ,
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and (2) the conditional probability of an additional failure, given there are
zi successes and ni − zi − 1 failures (with multiplicity ni − zi):

pif =
exp {−θi + δi(ni − 2zi − 1)}

1 + exp {−θi + δi(ni − 2zi − 1)} .

The log PL contribution for unit i can then be expressed as

p	i = zi ln pis + (ni − zi) ln pif .

The contribution of unit i to the pseudo-likelihood score vector takes the
form(

zi(1 − pis) − (ni − zi)(1 − pif )
−zi(ni − 2zi + 1)(1 − pis) + (ni − zi)(ni − 2zi − 1)(1 − pif )

)
.

Note that, if δi ≡ 0, then pis ≡ 1 − pif and the first component of the
score vector is a sum of terms zi − nipis, i.e., standard logistic regression
follows. In the general case, we have to account for the association, but this
non-standard system of equations can be solved using logistic regression
software as follows. Represent the contribution for cluster i by two separate
records, with repetition counts zi for the success case and ni − zi for the
failure case, respectively. All interaction covariates need to be multiplied
by −(ni − 2zi + 1) in the success case and −(ni − 2zi − 1) in the failure
case.

12.3 Pseudo-Likelihood for a Multivariate
Repeated Binary Outcome

For repeated multivariate binary data, several formulations can be adopted.
One convenient PL function is found by replacing the joint density (11.11)
by the product of Mni univariate conditional densities describing outcome
k for the jth occasion within a unit, given all other outcomes in the unit:

PL(1) =
N∏

i=1

M∏
k=1

ni∏
j=1

f(yikj |yik′j′ , k′ �= k or j′ �= j;Θi). (12.1)

This fits into framework (9.3) by choosing δ1Mni
= Mni and δskj

= −1
for j = 1, . . . , ni and k = 1, . . . , M where 1Mni

is a vector of ones and skj

is a Mni × 1 vector, obtained by applying the vec operator to an M × ni

matrix, consisting of ones everywhere, except for entry (k, j), which is 0. If
the members of each unit are assumed to be exchangeable on every outcome
separately, there are only M2M different contributions. Subsequently, one
can model components of Θ as a function of covariates, and take derivatives
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of the log PL function with respect to the regression parameters β to derive
the score functions.

Equation (12.1) is one convenient definition of the PL function but cer-
tainly not the only one. For example, one might want to preserve the mul-
tivariate nature of the data on each measurement occasion by considering
the product of ni conditional densities of the M outcomes for occasion j,
given the outcomes for the other subjects:

PL(2) =
N∏

i=1

ni∏
j=1

f(yikj , k = 1, . . . , M |yikj′ , j �= j′, k = 1, . . . , M). (12.2)

This satisfies (9.3) by taking δ1Mni
= ni and δsj = −1 for j = 1, . . . , ni.

Here, 1Mni
denotes the Mni dimensional vector of ones, and sj is the

(Mni × 1) vector, obtained by applying the vec operator to an (ni × M)
matrix, consisting of ones everywhere, except for the jth row, which consists
of zeros.

Computational convenience may be the primary reason for choosing one
PL definition over another. Let us discuss the relative merits of definitions
(12.1) and (12.2). The former procedure is straightforward and natural
when interest is focused on the estimation of main effect parameters. Fur-
thermore, it is slightly easier to evaluate. If, however, interest lies in the
estimation of multivariate associations then approach (12.2) would be more
natural. Geys, Molenberghs, and Ryan (1999) have shown that both pro-
cedures are roughly equally efficient.

Further, it should be noted that, in general, it is not guaranteed that a p	
function corresponds to an existing and uniquely defined probability mass
function. However, because PL(1) and PL(2) are derived from (11.11), ex-
istence is guaranteed. In addition, both definitions (12.1) and (12.2) satisfy
the conditions of the theorem presented in Gelman and Speed (1993), and
hence uniqueness is guaranteed as well.

12.4 Analysis of the NTP Data

Section 11.4 presented maximum-likelihood based inference for the uni-
variate clustered data model presented in Section 11.2.2. Here, we will
present the corresponding estimates based on pseudo-likelihood. In addi-
tion, a trivariate analysis, based on the model of Section 11.2.3 will be
presented. Fitting this model with maximum likelihood is prohibitive. In
Section 12.4.1, parameter estimation is discussed. Inference and model se-
lection is illustrated in Section 12.4.2.
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TABLE 12.1. NTP Data. Pseudo-likelihood estimates (empirically corrected stan-
dard errors) of the conditional model for univariate clustered data, fitted to var-
ious outcomes in three studies. β0 and βd are the marginal intercept and dose
effect, respectively; βa is the conditional log odds ratio association parameter.

Outcome Parameter DEHP EG DYME
External β0 -2.85(0.53) -2.61(0.88) -5.04(0.94)

βd 3.24(0.60) 2.14(0.71) 5.52(1.01)
βa 0.18(0.04) 0.30(0.06) 0.13(0.05)

Visceral β0 -2.30(0.50) -5.10(1.55) -3.34(0.99)
βd 2.55(0.53) 3.79(1.18) 2.91(0.91)
βa 0.20(0.04) 0.23(0.10) 0.29(0.06)

Skeletal β0 -2.41(0.73) -1.18(0.14) -2.20(0.27)
βd 2.52(0.81) 1.43(0.19) 3.22(0.49)
βa 0.21(0.05) 0.21(0.01) 0.25(0.02)

Collapsed β0 -1.80(0.35) -1.11(0.14) -3.08(0.47)
βd 2.95(0.56) 1.41(0.19) 5.20(0.97)
βa 0.20(0.03) 0.21(0.01) 0.19(0.02)

12.4.1 Parameter Estimation
Table 12.1 considers exactly the same model, Model (11.7), as in Sec-
tion 11.4 (see Table 11.1). The methods can be compared based on the
parameter estimates, their standard errors (model-based likelihood, empir-
ically corrected likelihood, and pseudo-likelihood), or a combination of both
(e.g., the Z statistic, defined as the ratio of estimate and standard error).
Obviously, the development of methods to assess the fit of the proposed
methods is necessary. However, classical tools cannot be used within the
pseudo-likelihood framework without modification. We will return to this
in Section 12.4.2, using methods developed in Section 9.3.

Maximum likelihood and pseudo-likelihood dose parameter estimates
agree fairly closely, except for the skeletal and collapsed outcomes in the EG
study. No method systematically leads to larger parameter estimates (each
one yields the largest value in about half of the cases). Pairwise compar-
isons of the test statistics (estimates divided by standard errors; details not
shown) reveal again that no procedure systematically yields larger values.
Indeed, in all three comparisons, the magnitude of one statistic is larger
than the other in approximately 50% of the cases. These results are in line
with findings reported in Aerts et al (2002), showing that in realistic set-
tings both the asymptotic relative efficiency and the small sample relative
efficiency of the PL method, compared to maximum likelihood, is extremely
high.
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TABLE 12.2. NTP Data. Pseudo-likelihood estimates (empirically corrected stan-
dard errors) of the conditional model for trivariate clustered data (different main
dose effects.

Parameter DEHP EG DYME
θ parameters

β01 -2.13(0.64) -1.64(1.04) -5.67(1.16)
β02 -2.38(0.63) -5.04(1.75) -2.34(1.26)
β03 -2.76(0.72) -0.39(0.51) -2.97(0.90)

βd1 2.70(0.66) 1.12(0.86) 6.48(1.26)
βd2 2.63(0.66) 3.63(1.04) 1.66(1.36)
βd3 2.70(0.76) 1.42(0.19) 4.29(0.99)

Association parameters
δ1 0.14(0.07) 0.18(0.13) 0.15(0.04)
δ2 0.18(0.04) 0.12(0.17) 0.30(0.06)
δ3 0.29(0.06) 0.20(0.01) 0.25(0.02)

ω12 0.06(0.25) -0.05(0.57) -0.45(0.20)
ω13 0.60(0.20) 0.11(0.31) 0.25(0.31)
ω23 0.36(0.29) 0.86(0.34) 0.35(0.31)

γ12 0.11(0.06) 0.14(0.13) 0.07(0.04)
γ13 -0.06(0.05) 0.08(0.04) -0.11(0.05)
γ23 -0.14(0.06) -0.09(0.04) 0.01(0.05)

When considering all three outcomes jointly (external, visceral, and skele-
tal, respectively indexed by 1, 2, and 3 in the tables), ML becomes pro-
hibitively difficult to fit. Some analyses are very sensitive to initial values
and take hours to converge. Therefore, we abandoned ML and concentrated
solely on the PL method, which took a little time to converge.

For all three NTP studies, we considered (1) a model with a different dose
effect per outcome and (2) a common dose effect model, both of which are
tested for the null hypothesis of no dose effect. In both cases, all associa-
tion parameters are held constant. Results of these analyses are tabulated
in Tables 12.2 and 12.3 and indicate, based on Wald tests, that all dose
effect parameters are significant (except for the external outcome in the
EG study and visceral malformations in the DYME study). In addition,
Tables 12.2 and 12.3 show that by fitting a relatively simple model with
different dose effects for each outcome and constant association parame-
ters, the three different main dose effect parameters in the DEHP study
all seem to be relevant and of similar magnitude. This suggests that the
use of a common main dose parameter is desirable, hereby increasing the
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TABLE 12.3. NTP Data. Pseudo-likelihood estimates (empirically corrected stan-
dard errors) of the conditional model for trivariate clustered data (common main
dose effects.

Parameter DEHP EG DYME
θ parameters

β01 -2.10(0.51) -1.97(0.56) -3.89(0.83)
β02 -2.42(0.50) -2.96(0.87) -4.77(0.87)
β03 -2.74(0.49) -0.27(0.55) -3.21(0.81)

βd 2.67(0.48) 1.50(0.20) 4.31(0.85)
Association parameters

δ1 0.14(0.07) 0.18(0.13) 0.22(0.03)
δ2 0.18(0.04) 0.17(0.17) 0.25(0.06)
δ3 0.29(0.05) 0.20(0.01) 0.25(0.02)

ω12 0.06(0.24) -0.05(0.57) -0.46(0.19)
ω13 0.60(0.20) 0.11(0.30) 0.29(0.30)
ω23 0.36(0.28) 0.97(0.37) 0.28(0.31)

γ12 0.11(0.06) 0.13(0.13) 0.05(0.04)
γ13 -0.06(0.05) 0.06(0.04) -0.09(0.04)
γ23 -0.14(0.06) -0.07(0.03) -0.03(0.05)

efficiency (Lefkopoulou and Ryan 1993). The estimated clustering para-
meters δk (k = 1, 2, 3) are all significant, except for external and visceral
malformation outcomes in the EG study. In contrast, the other association
parameters often do not reach the 5% significance level.

12.4.2 Inference and Model Selection
In this section, we focus on the EG study. The goal is to construct an
appropriate dose-response model. This will be achieved by fitting Model
(11.11) and modeling the natural parameters Θ in this model as fractional
polynomial functions of dose (Royston and Altman 1994), as fractional
polynomials provide more flexibly shaped curves than conventional poly-
nomials. More details on this approach can be found in Aerts et al (2002,
Chapter 8) and Verbeke and Molenberghs (2000, Section 10.3 and 24.5).
See also page 373 in this text. Attempts to use conventional low-order poly-
nomials of the form β0+

∑m
�=1 β�d

� to express the model parameters Θ as a
function of dose (d) are not successful for the EG data. Royston and Altman
(1994) argue that conventional low-order polynomials offer only a limited
family of shapes and that high-order polynomials may fit poorly at the
extreme values of the covariates. Moreover, polynomials do not have finite



250 12. Pseudo-Likehood

TABLE 12.4. NTP Data. EG Study. Model selection. (All effects are constant
except the ones mentioned.)

Model Description # Pars.
1 �= √

d trends on θ1, θ2, θ3; d trend on θ3;
�= √

d trends on δ1, δ2, δ3 19
2 �= √

d trends on θ1, θ2, θ3; d trend on θ3 16
3 �= √

d trends on θ1, θ2, θ3 15
4 =

√
d trend on θ1, θ2, θ3; d trend on θ3 14

5 �= √
d trends on θ1, θ2, θ3; d trend on θ3;No ω, γ pars. 10

Comparison df λ(H0) λ(H1) S∗(e.c.) S∗
a(m.b.) G∗2

a (H0) G∗2
a (H1)

1–2 3 1.27 0.89 3.77 2.84 2.84 4.06
2–3 1 0.45 0.78 15.19 15.19 18.55 10.68
2–4 2 0.79 0.70 5.76 8.03 8.05 9.09
2–5 6 1.48 1.44 7.71 9.18 9.68 10.01

asymptotes and cannot fit the data where limiting behavior is expected.
This is a severe limitation when low dose extrapolation is envisaged. As
an alternative, Royston and Altman (1994) propose an extended family of
curves, which they call fractional polynomials.

Again, estimation is by pseudo-likelihood rather than maximum likeli-
hood, due to the latter’s excessive computational requirements. The follow-
ing strategy is adopted. First, we select a suitable set of dose transforma-
tions for each of the three developmental outcomes (skeletal, visceral, and
external) separately, using the method described by Royston and Altman
(1994). The resulting set of transformations is then used to construct more
elaborate (multivariate) models that can be scrutinized further by means
of the formal tests proposed in Section 9.3 (Geys, Molenberghs, and Ryan
1999).

Our most complex model (Model 1) allows different
√

d trends on the
external, visceral, and skeletal main effect parameters, an additional d trend
on the skeletal main effect parameter:

θ1 = β01 + β√
d1

√
d,

θ2 = β02 + β√
d2

√
d,

θ3 = β03 + β√
d3

√
d + βd3d,

and different
√

d trends to the clustering parameters (δ). All other associ-
ation parameters (ω and γ) are held constant.

From Table 12.4, it is clear that the clustering parameters do not depend
on

√
d (confirming our preliminary, univariate findings). Hence, Model 2 is

now selected. The d trend on the skeletal main effect parameter cannot be
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TABLE 12.5. NTP Data. EG Study. Pseudo-likelihood estimates (standard errors)
for the final model.

Effect Outcome Parameter Est. (s.e.)
Model 2 Model 5

θ Main Ext. β01 -2.27 (1.16) -3.58 (1.10)
β√

d1 1.71 (0.99) 3.07 (0.97)
Visc. β02 -6.98 (2.36) -7.17 (2.26)

β√
d2 5.54 (1.71) 5.83 (1.96)

Skel. β03 -2.81 (0.95) -3.61 (0.84)
β√

d3 7.73 (2.32) 7.59 (2.22)
βd3 -4.01 (1.50) -3.89 (1.43)

δ Clustering Ext. δ1 0.18 (0.13) 0.29 (0.06)
Visc. δ2 0.12 (0.17) 0.22 (0.09)
Skel. δ3 0.18 (0.01) 0.19 (0.01)

ω Assoc. Ext.-Visc. ω12 -0.06 (0.57)
Ext.-Skel. ω13 0.11 (0.29)
Skel.-Visc. ω23 0.81 (0.34)

γ Assoc. Ext.-Visc. γ12 0.14 (0.13)
Ext.-Skel. γ13 0.08 (0.04)
Skel.-Visc. γ23 -0.08 (0.04)

removed (comparing Models 2 and 3), nor can the different
√

d trends on
the external, visceral, and skeletal main effects be replaced by a common
trend (comparing Models 2 and 4). Therefore, we select Model 2 for the
time being. Table 12.5 shows parameter estimates for this model.

A key tool to gain insight in this model and to assess its fit in an in-
formal way is the qualitative study of the dose-response relationship. In
the area of developmental toxicity, there is generally little understanding
about the complex processes that relate maternal exposure to adverse fetal
impacts. For developmental toxicity studies where offspring are clustered
within litters, there are several ways to define an adverse effect. A foetus-
based approach considers the malformation probability of an individual
offspring while a litter-based approach is based on the probability that at
least one adverse effect has occurred within a litter. Here, we restrict at-
tention to the litter-based approach. To this end, moment-based methods
such as GEE cannot be used, while the Molenberghs and Ryan (1999) model
allows flexible modeling for both the main effects and the association struc-
ture. Given the number of viable foetuses ni, the probability of observing
at least one abnormal foetus in a cluster is 1 − exp[−Ani(Θi)]. Integrating
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FIGURE 12.1. NTP Data. EG Study. Dose-response curves. (a) Univariate
dose-response curve for external malformations based on a model with

√
d trend

on main effect parameter θ and constant clustering parameter δ. (b) Univariate
dose-response curve for visceral malformations based on a model with

√
d trend

on main effect parameter θ and constant clustering parameter δ. (c) Univari-
ate dose-response curve for skeletal malformations based on the quadratic (

√
d, d)

trend on main effect parameter θ and constant clustering parameter δ. (d) Trivari-
ate dose-response curves based on Models 2 and 5.

over all possible values of ni, we obtain the following risk function:

r(d) =
∞∑

ni=0

P (ni){1 − exp[−Ani
(Θi)]}, (12.3)
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where P (ni) is the probability of observing ni viable foetuses in a pregnant
dam. (We use the empirical distribution of P (ni).) One of the major chal-
lenges of a teratology study lies in characterizing the relationship between
dose and event probability (12.3) by means of a dose-response curve. Here,
Model 2 is used to construct dose-response curves representing the prob-
ability of observing an adverse event as a function of dose (d). The risk
function r(d) is calculated using PL parameter estimates.

Figures 12.1 (a) and (b) show the observed frequencies of malformed lit-
ters at the selected dose levels for external and visceral malformations and
the (univariate) dose-response curves for models with constant association
and

√
d trends on the main effects. The observed malformation rates are

supplemented with pointwise 95% confidence intervals. The dose-response
curve for skeletal malformation [Figure 12.1(c)] is based on the quadratic
(
√

d, d)-model for the main effect parameter and constant clustering. Fig-
ure 12.1 (d) shows the trivariate dose-response curve based on all three
outcomes simultaneously (Model 2). Both the univariate and the trivari-
ate fits are excellent. All curves gradually increase when dams are exposed
to larger quantities of the toxic substance, before finally reaching an as-
ymptotic. Note that there is a fundamental difference in the dose-response
curve for external and visceral outcomes on the one hand, and skeletal
malformation on the other, the latter showing a much more pronounced
dose-response relationship. This is in line with the different functional form
for these responses. Further, the joint dose-response curve is clearly driven
by skeletal malformation.

These observations suggest to explore additional model simplification.
Candidates for removal are the dose trends on the external and visceral
outcomes, as well as one or more association parameters. Table 12.4 shows
that the ω and γ association parameters are redundant (compare Model
2–Model 5). However, the clustering parameters could not be removed from
the model without a substantial decrease in fit. Furthermore, the dose
trends on the external and visceral main effects are also important. Because
the goal of selecting a good-fitting model is to perform risk assessment,
merely concentrating on formal model selection criteria is insufficient. Ar-
guably, the excellent fit of the dose-response curves that have been achieved
should not be compromised. However, Figure 12.1 shows that the simpli-
fied Model 5 produces essentially the same dose-response curve as Model
3. Therefore, Model 5 will be treated as our final model. The parameter
estimates are tabulated in Table 12.5. It is important to remember that the
model parameters have a conditional interpretation. For example it can be
derived from (11.13) that, in Model 5, the main effect parameter θij can
be interpreted as the conditional logit, associated with an additional mal-
formation of type j in the ith cluster, given the cluster contains already
zij = (ni + 1)/2 foetuses with malformations of that type. Similarly, δij

can be interpreted as the conditional log odds ratio for a pair of foetuses,
exhibiting malformation j, given all other outcomes. Thus, if interest is
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in marginal quantities, such as the dose-response curve, they have to be
obtained as non-linear functions of the parameters. Computationally, this
is a very feasible task. In contrast, conditional questions can be answered
in terms of linear functions of the parameters.



Part IV

Subject-specific Models





13
From Subject-specific to
Random-effects Models

13.1 Introduction

The aim of any longitudinal analysis is to study how subjects change over
time and what characteristics influence such changes. When interest is in
marginal population-averaged evolutions, marginal models as discussed in
Part II are the obvious choice. However, one may also be interested in de-
scribing the evolution of each subject separately or in predicting subject-
specific evolutions. This has already been illustrated in Chapter 4, in the
context of linear mixed models for continuous data, and will now be ex-
tended to models with subject-specific parameters, for discrete longitudinal
data. Section 13.2 introduces the general model with subject-specific pa-
rameters, and Section 13.3 discusses three general procedures to handle
subject-specific parameters. Finally, in Section 13.4, some frequently used
random-effects models are presented.

13.2 General Model Formulation

A general framework for subject-specific models can be expressed as follows.
As before, let Y i denote the ni-dimensional vector of repeated measure-
ments for cluster (subject) i, i = 1, . . . , N ; in other words, the regression
notation, introduced in Section 7.1. It will be assumed that Y i (possibly
appropriately transformed) satisfies

Y i|bi ∼ Fi(θ, bi), (13.1)
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i.e., conditional on bi, Y i follows a pre-specified distribution Fi, possi-
bly depending on covariates, and parameterized through a vector θ of
unknown parameters, common to all subjects, and a vector bi which is
cluster-specific. Let the corresponding density be denoted by fi(yi|bi, θ).

The distribution Fi can be any ni-dimensional distribution, such as any
of the models discussed in Chapter 7. In practice however, it is often as-
sumed that, conditionally on bi, the components Yij in Y i are independent
such that it suffices to specify the univariate distributions of all responses
Yij . The distribution function Fi in (13.1) then becomes a product over the
ni independent elements in Y i. In the case of a linear model for continuous
data, this would correspond to specifying Σi = σ2Ini in (4.3). Unless explic-
itly stated otherwise, this so-called assumption of conditional independence
will be made in the sequel of this book.

13.3 Three Ways to Handle Subject-specific
Parameters

13.3.1 Treated as Fixed Unknown Parameters
Once the model in (13.1) has been specified, an obvious approach toward
estimation is based on maximizing the likelihood

∏
i fi(yi|bi, θ) with re-

spect to θ and all bi. However, Neyman and Scott (1948) showed that
the so-obtained ML estimates may be inconsistent due to the fact that the
number of unknown parameters increases with the sample size, i.e., with
the number N of clusters. This is a well-known result in the context of
logistic regression for matched binary data, where, in the case of an in-
creasing number of strata, the ML estimator ψ̂ for the odds ratio converges
to ψ2 rather than to ψ. We refer to Breslow and Day (1989, Section 7.1)
for an extensive discussion in this context.

This shows that the subject-specific parameters bi should not be treated
as fixed, unknown parameters, and that procedures are required to elimi-
nate the bi from the estimation process. Two such procedures will now be
discussed in turn.

13.3.2 Conditional Inference
A first alternative to classical ML estimation, also applied in the above
discussed example of a logistic model for matched data, is conditional in-
ference. One then considers the subject-specific parameters bi as nuisance,
and estimation of θ is done by maximizing the likelihood of the data yi,
conditional on sufficient statistics for the bi.

The main advantage of conditional inference is that no additional as-
sumptions are needed with respect to the nuisance parameters bi. This
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is in contrast to the random-effects approach discussed in Section 13.3.3.
A disadvantage is clearly that sufficient statistics for the bi need to be
found, and that the likelihood of the data conditional on these statistics
needs to be calculated and maximized. Also, all information on the bi is
lost. As discussed in Section 4.5, these subject-specific parameters indicate
how evolutions differ among subjects, and can be used to highlight special
profiles or to look for (groups of) individuals evolving differently in time.
The main disadvantage however is the fact that information may also be
lost for the estimation of certain elements in θ. An easy example is found
in the context of the linear model for continuous outcomes. Elimination
of the subject-specific intercepts bi0 and slopes bi1 in model (4.2) would
also eliminate the population-averaged intercept β0 and slope β1. Verbeke,
Spiessens, and Lesaffre (2001) use the conditional approach to eliminate
subject-specific intercepts, while the subject-specific slopes are dealt with
using the random-effects approach to be discussed in Section 13.3.3. An
example of the conditional approach in the context of the logistic model
can be found in Diggle et al (2002, Section 9.3).

13.3.3 Random-effects Approach
If interest is also in drawing inferences with respect to the bi, including
making subject-specific predictions, a random-effects approach can be fol-
lowed. The key idea is that, simultaneously with randomly drawing sub-
jects from a general population of subjects, parameters bi are drawn from a
population of subject-specific parameters. Hence, the bi can be considered
random vectors, drawn independently from a distribution function Q(bi),
called the mixing distribution. Elimination of the parameters bi is then
obtained from integrating them out, over their assumed distribution. More
specifically, estimation and inference for θ is obtained from ML estimation,
based on the marginal density for Yi given by

fi(yi|θ, Q) =
∫

fi(yi|bi, θ)dQ(bi). (13.2)

Note that this random-effects approach can be interpreted as a flexible
way of deriving multivariate marginal likelihoods. In this respect, it can be
viewed as a competitor to, e.g., the probit model, the Bahadur model, and
the Dale model, discussed in Chapter 7.

It follows from the classical maximum likelihood theory that, if Q is as-
sumed to belong to some parametric family of distributions (i.e., a set of
distributions indexed by a finite number of parameters), all parameter esti-
mators are consistent and asymptotically normally distributed. However, it
is also possible not to make any assumptions about the mixing distribution,
and to estimate Q by the distribution that yields the highest likelihood of
all distributions. This is referred to as the nonparametric maximum likeli-
hood estimator (NPMLE) of the mixing distribution. Kiefer and Wolfowitz
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(1956) have shown that the corresponding estimator θ̂ is strongly consistent
and also that Q̂ converges with probability one to Q at every point of conti-
nuity of the latter. Later, Laird (1978) gave sufficient conditions such that
the NPMLE would be a step function, and Lindsay (1983a–c) showed that,
under general regularity conditions, the NPMLE exists, is discrete, and an
upper bound for the number of points of support can be given. In some con-
texts, such as the Rasch model, conditions can be derived under which the
nonparametric estimate for the population parameters coincide with the
estimate obtained from a conditional approach (if estimable). More details
on the relation between a NPML approach and the conditional inference
approach can be found in Lindsay (1983b) and Lindsay, Clogg, and Grego
(1991).

A disadvantage of the NPMLE is that it is computationally intensive, es-
pecially for multivariate random effects, but also that it results in a discrete
estimate of a possibly continuous mixing distribution. One therefore often
assumes a parametric model for the random-effects distribution Q(bi). In
many cases, the bi are assumed to be sampled from a (multivariate) normal
distribution, but alternatives are possible. We refer to Section 13.4.2 for an
example. With a normal mixing distribution, it is usually assumed that
the mean is incorporated in the population parameter θ such that it can
be assumed that the bi have mean zero. This is in analogy with the linear
mixed model discussed in Section 4.3.

13.4 Random-effects Models: Special Cases

13.4.1 The Linear Mixed Model
It is important to realize that the linear mixed model introduced and dis-
cussed in Section 4.3 is a special case of our general random-effects model.
Indeed, let Fi in (13.1) be the ni-dimensional normal model with mean
Xiβ + Zibi and covariance Σi. We then obtain a random-effects model
with θ equal to β together with all parameters in Σi, and with normally
distributed random effects bi ∼ N(0, D).

13.4.2 The Beta-binomial Model
Let Y i be a ni-dimensional vector of Bernoulli-distributed outcomes, with
success probability bi. Assuming the elements in Y i to be independent,
conditionally on bi, we have that the conditional density of Y i, given bi

is proportional to the density of Zi =
∑

j Yij which, conditionally on bi is
binomial with ni trials and success probability bi. The beta-binomial model
(Skellam 1948, Kleinman 1973) assumes the parameters bi to be sampled
from a beta distribution with parameters α and β (which can depend on
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covariates, but this dependence is temporarily dropped from notation), i.e.,
the density of bi equals

f(bi|α, β) =
bα−1
i (1 − bi)β−1

B(α, β)
,

where B(., .) denotes the beta function. The marginal density of Zi is then
given by

fi(zi|α, β) =
∫ (

ni

zi

)
bzi
i (1 − bi)ni−zif(bi|α, β)dbi

=
(

ni

zi

)
B(zi + α, ni − zi + β)

B(α, β)
, (13.3)

the so-called beta-binomial density. The average value equals

µi = E(Zi) = ni
α

α + β
, (13.4)

and it can be shown that the correlation between any two outcomes Yij

and Yik, j �= k, from the same cluster i equals

ρ = Corr(Yij , Yik) =
1

α + β + 1
. (13.5)

In terms of π = µi/ni and ρ, we have

α = π(ρ−1 − 1), β = (1 − π)(ρ−1 − 1)

such that

Var(Zi) = niπ(1 − π)[1 + (ni − 1)ρ],

and density (13.3) can be re-parameterized as

fi(zi|π, ρ) =
(

ni

zi

)
B[zi + π(ρ−1 − 1), ni − zi + (1 − π)(ρ−1 − 1)]

B[π(ρ−1 − 1), (1 − π)(ρ−1 − 1)]
,

in terms of the average proportion π of successes and the within-cluster
correlation ρ.

In case subpopulations need to be compared, or in case the effect of
cluster-specific covariates needs to be investigated, π and/or ρ will have to
be rewritten as πi and ρi, which can then be modeled through, e.g., a logit
and a Fisher’s z transformation, respectively. An example will be given
in Section 16.5. Kupper and Haseman (1978) compare the Bahadur model
(Section 7.2) with the beta-binomial model. They conclude that the models
perform similarly in three clustered data experiments, whereas they both
outperform the (naive) binomial model. The similar performance will also
be observed in the example in Section 16.5. Declerck et al (1998) however,
report better performance of the beta-binomial model in comparison to the
Bahadur model.
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13.4.3 The Probit-normal Model
As in the beta-binomial model, let Y i be a ni-dimensional vector of Ber-
noulli-distributed outcomes. Let πij be the success probability for outcome
Yij , which is assumed to be of the form πij = Φ(x′

ijβ + z′
ijbi), in which

Φ is the distibution function of the standard normal N(0, 1) distribution,
and where xij and zij are vectors of known covariate values. Further, it is
assumed that the elements in Y i are independent, conditionally on bi. The
model is finalized by assuming the subject-specific parameters bi to be sam-
pled from a multivariate normal distribution with mean 0 and covariance
D, the density of which is denoted by f(bi|D).

This model has a latent variable interpretation since it can be viewed as
being generated from the dichotomization at zero of underlying continous
outcomes Ỹij = x′

ijβ + z′
ijbi + ε̃ij , where all ε̃ij are independent N(0, 1)

variables. Indeed,

πij = P (Yij = 1|bi) = P (−ε̃ij < x′
ijβ + z′

ijbi)

= P (Ỹij > 0).

The conditional density fi(yi|bi) is equal to P (Ỹ i ∈ Ci|bi) where Ci equals
the appropriate quadrant in the ni-dimensional Euclidean space with vertex
at the origin, and where Ỹi = Xiβ + Zibi + ε̃i, where Xi and Zi are
the design matrices with rows x′

ij and z′
ij respectively, and where ε̃i ∼

N(0, Ini). The unconditional (marginal) density fi(yi) is given by

fi(yi|β, D) =
∫

P (Ỹi ∈ Ci|β, bi)f(bi|D)dbi

=
∫

dbi

∫
Ci

fi(ỹi|β, bi)f(bi|D)dỹi

=
∫

Ci

fi(ỹi|β, D)dỹi, (13.6)

where fi(ỹi|β, D) is the marginal density corresponding to the linear mixed
model Ỹi = Xiβ + Zibi + ε̃i, i.e., the density of the N(Xiβ, ZiDZ ′

i + Ini)
distribution.

Note that, in practice, calculation of ML estimates based on (13.6) re-
quires evaluation of (high dimensional) multivariate integrals of normal
densities over regions Ci. Further, the assumption of uncorrelated errors ε̃ij

can be relaxed, which is the topic of Chapter 22.

13.4.4 The Generalized Linear Mixed Model
The generalized linear mixed model is the most frequently used random-
effects model for discrete outcomes. Conditionally on random effects bi, it
assumes that the elements Yij of Y i are independent, following a general-
ized linear model as introduced in Section 3.3, but with the linear predictor
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extended with subject-specific regression parameters bi. More specifically,
it is assumed that all Yij have densities of the form

fi(yij) ≡ fi(yij |θij , φ) = exp
{
φ−1[yijθij − ψ(θij)] + c(yij , φ)

}
,

where the mean µij is modeled through a linear predictor containing fixed
regression parameters β as well as subject-specific parameters bi, i.e., η(µij) =
x′

ijβ + z′
ijbi for a known link function η(·), and for xij and zij two vec-

tors containing known covariate values. With the natural link function,
this becomes θij = x′

ijβ + z′
ijbi. The model is completed by assuming

that, conditionally on the subject-specific effects bi, the responses Yij are
independent and by assuming that the bi are N(0, D) distributed.

The examples discussed in Section 3.4 for univariate settings immediately
extend, leading to, for example, the linear mixed model for continuous data,
the logistic-normal model for binary data, and the Poisson-normal model
for counts. Note that, in the case of binary data, with probit link function,
the probit-normal model discussed in Section 13.4.3 is obtained as special
case.

13.4.5 The Hierarchical Generalized Linear Model
As will be discussed in Chapter 14, the normality assumption for the ran-
dom effects in generalized linear mixed models leads, in general, to in-
tractable likelihood functions, except in the case of the linear mixed model
for continuous data. This is because the normal random-effects distribution
is conjugate to the normal distribution for the outcome, conditional on the
random effects. Lee and Nelder (1996, 2001, 2003) have extended this idea,
and propose using conjugate random-effects distributions in contexts other
than the classical normal linear model.





14
The Generalized Linear Mixed Model
(GLMM)

14.1 Introduction

The generalized linear mixed model is the most frequently used random-
effects model in the context of discrete repeated measurements. Not only
is it a rather straightforward extension of the generalized linear model for
univariate data to the context of clustered measuerements, there is also
a wide range of software tools available for fitting these models. In this
chapter, we will therefore discuss estimation and inference for this class of
random-effects models in particular. In Section 14.2, the model is intro-
duced, and some general issues on estimation are presented. Afterwards,
the Sections 14.3, 14.4, and 14.5 discuss three different approach toward
maximum likelihood estimation in generalized linear mixed models. Infer-
ence will be handled in Section 14.6. Finally, the Sections 14.7 and 14.8
present two examples.

14.2 Model Formulation and Approaches to
Estimation

14.2.1 Model Formulation
As before, Yij , is the jth outcome measured for cluster (subject) i, i =
1, . . . , N , j = 1, . . . , ni and Y i is the ni-dimensional vector of all mea-
surements available for cluster i. As introduced in Section 13.4.4, it is as-
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sumed that, conditionally on q-dimensional random effects bi, assumed to
be drawn independently from the N(0, D), the outcomes Yij are indepen-
dent with densities of the form

fi(yij |bi, β, φ) = exp
{
φ−1[yijθij − ψ(θij)] + c(yij , φ)

}
,

with η(µij) = η[E(Yij |bi)] = x′
ijβ + z′

ijbi for a known link function η(·),
with xij and zij p-dimensional and q-dimensional vectors of known co-
variate values, with β a p-dimensional vector of unknown fixed regression
coefficients, and with φ a scale parameter. Finally, let f(bi|D) be the den-
sity of the N(0, D) distribution for the random effects bi.

14.2.2 Bayesian Approach to Model Fitting
The hierarchical model formulation where the outcome Y is modeled con-
ditionally on random effects, which are then modeled in an additional
step, makes Bayesian methodology very appealing for fitting generalized
linear mixed models. Prior distributions then need to be specified for β, φ,
and D, usually assuming prior independence. The corresponding densities
are denoted by f(β), f(φ), and f(D), respectively. For β, one commonly
chooses either normal distributions or flat, noninformative priors. Stan-
dard noninformative priors for D and φ are Jeffreys priors (Gelman et al
1995). Fahrmeir and Tutz (2001) report that such choices can lead to im-
proper posteriors (see also Hobert and Casella 1996). Besag et al (1995)
proposed the use of proper but highly dispersed inverted Wishart priors
for the random-effects covariance matrix D, i.e., D ∼ IW (ξ,Ψ), where the
hyperparameters ξ and Ψ have to be selected very carefully.

Once priors have been specified, the posterior distribution can be ex-
pressed as

f(β, D, φ, b1, . . . , bN |Y1, . . . ,YN )

∝
N∏

i=1

ni∏
j=1

fi(yij |β, φ, bi)
N∏

i=1

f(bi|D)f(D)f(β)f(φ).

Full conditionals for the fixed effects β, the random effects bi, and the
variance components in D and φ often take simple forms and standard
algorithms can be used for drawing samples from the posterior distribution
(Ripley 1987). Zeger and Karim (1991) used Gibbs sampling with rejection
sampling for the fixed and random effects. Gamerman (1997) proposed a
more efficient algorithm, exploiting the computational advantage of one-
step Fisher scoring.

14.2.3 Maximum Likelihood Estimation
As explained in Section 13.3.3, random-effects models can be fitted by
maximization of the marginal likelihood, obtained by integrating out the
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random effects. The likelihood contribution (13.2) of subject i then becomes

fi(yi|β, D, φ) =
∫ ni∏

j=1

fij(yij |bi, β, φ) f(bi|D) dbi, (14.1)

from which the likelihood for β, D, and φ is derived as

L(β, D, φ) =
N∏

i=1

fi(yi|β, D, φ)

=
N∏

i=1

∫ ni∏
j=1

fij(yij |bi, β, φ) f(bi|D) dbi. (14.2)

The key problem in maximizing (14.2) is the presence of N integrals over
the q-dimensional random effects bi. In some special cases, these integrals
can be worked out analytically. For example, it has been shown in Sec-
tion 4.3 on linear mixed models for continuous outcomes that (14.1) is the
density of a ni-dimensional multivariate normal distribution with mean
Xiβ and covariance Vi of the form Vi = ZiDZ ′

i + Σi. Another example
where the integrals can be solved analytically is the probit-normal model
discussed in Section 13.4.3, where (14.1) was shown to be given by (13.6).
In the latter case, however, calculation of the marginal likelihood still in-
volves integration of ni-dimensional normal densities over the quadrants
Ci.

In general, no analytic expressions are available for the integrals in (14.2)
and numerical approximations are needed. There is a large statistical lit-
erature on various methods to do so. Here, we will focuss on the most-
frequently used ones, also implemented in commercially available software
packages. In general, the numerical approximations can be subdivided in
those that are based on the approximation of the integrand, those based
on an approximation of the data, and those that are based on the approxi-
mation of the integral itself. These families of approaches will be discussed
in the Sections 14.3, 14.4, and 14.5, respectively. Emphasis will be on sum-
marizing the key ideas on which the various estimation methods are based,
rather than on technical details. Also, small differences can be found be-
tween implementations (software packages), if for example Hessian matri-
ces are replaced by their expectations (Fisher scoring rather than Newton-
Raphson). An extensive overview of the currently available approximations
can be found in Tuerlinckx et al (2004), Pinheiro and Bates (2000), and
Skrondal and Rabe-Hesketh (2004). Finally, in order to simplify notation,
it will be assumed that natural link functions are used, but straightforward
extensions can be applied.
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14.2.4 Empirical Bayes Estimation
Although in practice one is usually primarily interested in estimating the
parameters in the marginal distribution for Y i, i.e., in estimating β, D,
and φ, it is often useful to calculate estimates for the random effects bi as
well. They reflect between-subject variability, which makes them helpful for
detecting special profiles (i.e., outlying individuals) or groups of individu-
als evolving differently in time. Also, estimates for the random effects are
needed whenever interest is in prediction of subject-specific evolutions. As
for the linear mixed model (Section 4.5), estimation of the random effects
will be based on their posterior distribution with density given by

fi(bi|yi, β, D, φ) =
fi(yi|bi, β, φ) f(bi|D)∫
fi(yi|bi, β, φ) f(bi|D) dbi

. (14.3)

Unlike in the linear case, this posterior density is, in general, not a normal
one. Therefore, the posterior mode, rather than posterior mean, is used
as point estimator for bi. More specifically, the estimator b̂i is the value
for bi that maximizes fi(bi|yi, β, D, φ), in which the unknown parameters
have been replaced by their estimates obtained from maximum likelihood
estimation. The obtained estimates are again called empirical Bayes (EB)
estimates.

14.3 Estimation: Approximation of the Integrand

When integrands are approximated, the goal is to obtain a tractable integral
such that closed-form expressions can be obtained, making the numerical
maximization of the approximated likelihood feasible. Several methods have
been proposed, but basically all come down to Laplace-type approximations
of the function to be integrated. The Laplace method (Tierny and Kadane
1986) has been designed to approximate integrals of the form

I =
∫

eQ(b)db (14.4)

where Q(b) is a known, unimodal, and bounded function of a q-dimensional
variable b. Let b̂ be the value of b for which Q is maximized. We then have
that the second-order Taylor expansion of Q(b) is of the form

Q(b) ≈ Q(b̂) +
1
2
(b − b̂)′Q′′(b̂)(b − b̂), (14.5)

for Q′′(b̂) equal to the Hessian of Q, i.e., the matrix of second-order deriv-
ative of Q, evaluated at b̂. Replacing Q(b) in (14.4) by its approximation
in (14.5), we obtain

I ≈ (2π)q/2
∣∣∣−Q′′(b̂)

∣∣∣−1/2
eQ(b̂).
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Clearly, each integral in (14.2) is proportional to an integral of the form
(14.4), for functions Q(b) given by

Q(b) = φ−1
ni∑

j=1

[yij(x′
ijβ + z′

ijb) − ψ(x′
ijβ + z′

ijb)] − 1
2
b′D−1b

such that Laplace’s method can be applied here. Note that the mode b̂ of
Q depends on the unknown parameters β, φ, and D, such that in each
iteration of the numerical maximization of the likelihood, b̂ will be re-
calculated conditionally on the current values for the estimates for these
parameters.

The Laplace approximation will be exact when Q(b) is a quadratic func-
tion of b, i.e., if the integrands in (14.2) are exactly equal to normal kernels.
Interpreting these integrands as unnormalized posterior distributions of the
random effects bi, it is known from the Bayesian literature (Gelman et al
1995) that this will be the case only in very special examples such as linear
models, or provided that the number ni of repeated measurements for all
subjects are sufficiently large.

Raudenbush, Yang, and Yosef (2000) have extended the above Laplace
method by including higher-order terms in the Taylor expansion (14.5) for
Q, up to the order 6. In a simulation study, they show that this considerably
improves the approximation, and they find results comparable to those
obtained from methods based on the approximation of the integrals, to be
discussed in Section 14.5.

14.4 Estimation: Approximation of the Data

A second class of approaches is based on a decomposition of the data into
the mean and an appropriate error term, with a Taylor series expansion of
the mean that is a non-linear function of the linear predictor. All methods
in this class differ in the order of the Taylor approximation and/or the
point around which the approximation is expanded .

More specifically, one considers the decomposition

Yij = µij + εij = h(x′
ijβ + z′

ijbi) + εij (14.6)

in which h(·) equals the inverse link function, and where the error terms
have the appropriate distribution with variance equal to Var(Yij |bi) =
φv(µij) for v(·) the usual variance function in the exponential family (Sec-
tion 3.2). Note that, with the natural link function, v(µij) = h′(x′

ijβ +
z′

ijbi). As an illustration of this decomposition, consider binary outcomes
with the logistic natural link function. One then has

µij = P (Yij = 1) = πij =
exp(x′

ijβ + z′
ijbi)

1 + exp(x′
ijβ + z′

ijbi)
,
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and εij equals 1−πij with probability πij and equals −πij with probability
1 − πij .

14.4.1 Penalized Quasi-Likelihood (PQL)
Several approximations of the mean µij in (14.6) can be considered. We
first discuss a linear Taylor expansion of (14.6) around current estimates β̂

and b̂i of the fixed effects and random effects, respectively. This yields

Yij ≈ h(x′
ijβ̂ + z′

ij b̂i)

+ h′(x′
ijβ̂ + z′

ij b̂i)x′
ij(β − β̂)

+ h′(x′
ijβ̂ + z′

ij b̂i)z′
ij(bi − b̂i) + εij

= µ̂ij + v(µ̂ij)x′
ij(β − β̂) + v(µ̂ij)z′

ij(bi − b̂i) + εij

where µ̂ij equals the current predictor h(x′
ijβ̂ + z′

ij b̂i) for the conditional
mean E(Yij |bi). In vector notation, this becomes

Y i ≈ µ̂i + V̂iXi(β − β̂) + V̂iZi(bi − b̂i) + εi,

for appropriate design matrices Xi and Zi, and with V̂i equal to the diag-
onal matrix with diagonal entries equal to v(µ̂ij). Re-ordering the above
expression yields

Y ∗
i ≡ V̂ −1

i (Y i − µ̂i) + Xiβ̂ + Zib̂i ≈ Xiβ + Zibi + ε∗
i , (14.7)

for ε∗
i equal to V̂ −1

i εi, which still has mean zero. Note that (14.7) is of the
form (4.3), and hence can be viewed as a linear mixed model for the pseudo
data Y ∗

i , with fixed effects β, random effects bi, and error terms ε∗
i .

This immediately yields an algorithm for fitting the original generalized
linear mixed model. Given starting values for the parameters β, D, and φ
in the marginal likelihood, empirical Bayes estimates are calculated for bi,
and pseudo data Y ∗

i are computed. Then, the approximate linear mixed
model (14.7) is fitted, yielding updated estimates for β, D and φ. These
are then used to update the pseudo data and this whole scheme is iterated
untill convergence is reached.

The resulting estimates are called penalized quasi-likelihood estimates
(PQL) because they can be obtained from optimizing a quasi-likelihood
function which only involves first- and second-order conditional moments,
augmented with a penalty term on the random effects. We refer to Breslow
and Clayton (1993) and Wolfinger and O’Connell (1993) for more details.

14.4.2 Marginal Quasi-Likelihood (MQL)
An alternative approximation is very similar to the PQL method, but is
based on a linear Taylor expansion of the mean µij in (14.6) around the
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current estimates β̂ for the fixed effects and around bi = 0 for the random
effects. This yields very similar expressions as derived in Section 14.4.1, only
is the current predictor µ̂ij now of the form h(x′

ijβ̂) rather than h(x′
ijβ̂ +

z′
ij b̂i), as was the case before. The pseudo-data are now of the form Y ∗

i ≡
V̂ −1

i (Y i − µ̂i) + Xiβ̂ and satisfy the approximate linear mixed model

Y ∗
i ≈ Xiβ + Zibi + ε∗

i . (14.8)

Again, model fitting is done by iterating between the calculation of the
pseudo-data and the fitting of the approximate linear mixed model for
these pseudo-data.

The resulting estimates are called marginal quasi-likelihood estimates
(MQL). As with the PQL estimates, they can be obtained by optimiz-
ing a quasi-likelihood function which only involves first- and second-order
moments, but now evaluated in the marginal linear predictor x′

ijβ̂ rather
than the conditional linear predictor x′

ijβ̂ +z′
ij b̂i. We refer to Breslow and

Clayton (1993) and Goldstein (1991) for more details.

14.4.3 Discussion and Extensions
The essential difference between PQL and MQL is that the latter do not
incorporate the random effects bi in the linear predictor, but both meth-
ods are based on the same key idea and will, in general, have very similar
properties. Obviously the accuracy of both approximations depends on the
accuracy of the linear mixed model for the pseudo data Y ∗

i . In each step of
the iterative process,

∏
j fij(yij |bi, β, φ) in (14.2) is replaced by the multi-

variate normal density of Y ∗
i . Note that∏

j

fij(yij |bi, β, φ)

= exp

⎧⎨⎩∑
j

φ−1[yijθij − ψ(θij)] +
∑

j

c(yij , φ)

⎫⎬⎭
= exp

⎧⎨⎩φ−1

⎡⎣β′∑
j

xijyij + bi
′∑

j

zijyij − ψ(θij)

⎤⎦+
∑

j

c(yij , φ)

⎫⎬⎭ .

The sufficient statistics for β and bi are
∑

j xijyij and
∑

j zijyij , respec-
tively. Hence, the approximation will be accurate whenever these sufficient
statistics are approximately normally distributed, i.e., whenever the re-
sponses yij are ‘sufficiently continuous’ and/or if the number ni of mea-
surements per subject is sufficiently large. This explains why, as for the
Laplace method, PQL and MQL perform poorly in cases with binary re-
peated observations, with a relatively small number of repeated observa-
tions available for all persons (Wolfinger 1998). Rodŕıguez and Goldman
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(1995) demonstrate that PQL and MQL may be seriously biased when
applied to binary response data. Their simulations reveal that both fixed
effects and variance components may suffer from substantial, if not severe,
attenuation bias in certain situations.

Although similar in underlying key ideas, there are also some important
differences between MQL and PQL. Obviously, MQL completely ignores the
random-effects variability in the linearization of the mean. Therefore, it will
only provide a reasonable approximation when the variance of the random
effects is (very) small. Even with increasing numbers of measurements per
cluster, the bias in MQL remains. This is not the case for PQL which
can be shown to be consistent when both the number of subjects as well
as the number of measurements per subject approach infinity, even for
binary outcomes. The differences between MQL and PQL will be further
illustrated in our examples in the Sections 16.4 and 16.5. See also Breslow
and Lin (1995) and Vonesh et al (2002) for more details.

One way to improve the accuracy of the approximations is the inclu-
sion of a second-order term in the Taylor expansions. This leads to the
PQL2 and MQL2 methods, discussed in, e.g., Goldstein and Rasbash (1996)
and Rodŕıguez and Goldman (1995). It was shown that MQL2 performs
only slightly better than MQL, but that PQL2 leads to a substantial im-
provement when compared to PQL. Also, MQL uses a linear expansion
around the current fixed effects and zeros for all random effects. This ex-
plains why this method is considerably worse than PQL in situations with
much between-subject heterogeneity, i.e., with large random-effects vari-
ances (Browne and Draper 2003). This will be illustrated in Section 16.4
in the context of the toenail data. Finally, besides using higher orders in
the Taylor expansions, some authors have advised the introduction of bias-
correction terms (Breslow and Lin 1995, Lin and Breslow 1996) or the use
of iterative bootstrap (Kuk 1995).

Because the linearizations in the PQL and the MQL methods lead to
linear mixed models, the implementation of these procedures is often based
on feeding updated pseudo data into software for the fitting of linear mixed
models. However, it should be emphasized that outputs resulting from such
fittings, which are sometimes reported intermediately, should be interpreted
with great care. For example, reported (log-)likelihood values correspond to
the assumed normal model for the pseudo data and should not be confused
with (log-)likelihood for the generalized linear mixed model for the actual
data at hand.

Also, as discussed in Chapter 4, fitting of linear mixed models can be
based on maximum likelihood (ML) as well as restricted maximum likeli-
hood (REML) estimation. Hence, within the PQL and MQL frameworks,
both methods can be used for the fitting of the linear model to the pseudo
data, yielding (slightly) different results.

Finally, the quasi-likelihood methods discussed here are very similar to
the method of linearization discussed in Section 8.8 for fitting generalized
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estimating equations (GEE). The difference is that here, the correlation be-
tween repeated measurements is modeled through the inclusion of random
effects, conditionally on which repeated measures are assumed independent,
while, in the GEE approach, this association is modeled through a marginal
working correlation matrix. Some software packages, including SAS, even
allow to combine both ideas by allowing a working correlation matrix for
the residual components in (14.6). Examples can be found in Chapters 22
and 24.

14.5 Estimation: Approximation of the Integral

Especially in cases where the above approximation methods fail, approxi-
mations to the integral, i.e., numerical integration, proof to be very useful.
Of course, a wide toolkit of numerical integration tools, available from the
optimization literature, can be used. Several of those have been imple-
mented in various software tools for generalized linear mixed models. A
general class of quadrature rules selects a set of abscissas and constructs
a weighted sum of function evaluations over those. In the particular con-
text of random-effects models, so-called adaptive quadrature rules can be
used (Pinheiro and Bates 1995, 2000), were the numerical integration is
centered around the EB estimates of the random effects, and the number
of quadrature points is then selected in terms of the desired accuracy.

To illustrate the main ideas, we consider Gaussian and adaptive Gaussian
quadrature, designed for the approximation of integrals of the form∫

f(z)φ(z)dz, (14.9)

for an known function f(z) and for φ(z) the density of the (multivari-
ate) standard normal distribution. We will therefore first standardize the
random effects such that they get the identity covariance matrix. Let δi

be equal to δi = D−1/2bi. We then have that δi is normally distrib-
uted with mean 0 and covariance I, and the linear predictor becomes
θij = x′

ijβ + z′
ijD

1/2δi. Hence, the variance components in D have been
moved to the linear predictor. The likelihood contribution for subject i
equals

fi(yi|β, D, φ) =
∫ ni∏

j=1

fij(yij |bi, β, φ) f(bi|D) dbi

=
∫ ni∏

j=1

fij(yij |δi, β, D, φ) f(δi) dδi. (14.10)

Obviously, (14.10) is of the form (14.9) as required to apply (adaptive)
Gaussian quadrature.
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FIGURE 14.1. Graphical illustration of Gaussian (left window) and adaptive
Gaussian (right window) quadrature of order Q = 10. The black triangles indicate
the position of the quadrature points, and the rectangles indicate the contribution
of each point to the integral.

14.5.1 Gaussian Quadrature
In Gaussian quadrature,

∫
f(z)φ(z)dz is approximated by the weighted

sum ∫
f(z)φ(z)dz ≈

Q∑
q=1

wqf(zq).

Q is the order of the approximation. The higher Q, the more accurate the
approximation will be. Further, the so-called nodes (or quadrature points)
zq are solutions to the Qth order Hermite polynomial, while the wq are
appropriately chosen weights. The nodes zq and weights wq are reported
in tables. Alternatively, an algorithm is available for calculating all zq and
wq for any value Q (Press et al 1992).

In case of univariate integration, the approximation consists of subdi-
viding the integration region into intervals, and approximating the surface
under the integrand by the sum of surfaces of the so-obtained approximat-
ing rectangles. An example is given in the left hand window of Figure 14.1,
for the case of Q = 10 quadrature points. A similar interpretation is possi-
ble for the approximation of multivariate integrals.

Note that the figure immediately highlights one of the main disadvan-
tages of (non-adaptive) Gaussian quadrature, i.e., the fact that the quadra-
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ture points zq are chosen based on φ(z), independent of the function f(z)
in the integrand. Depending on the support of f(z), the zq will or will not
lie in the region of interest. Indeed, the quadrature points are selected to
perform well in case f(z)φ(z) approximately behaves like φ(z), i.e., like a
standard normal density function. This will be the case, for example, if f(z)
is a polynomial of a sufficiently low order. In our applications however, the
function f(z) will take the form of a density from the exponential family,
hence an exponential function. It may then be helpful to rescale and shift
the quadrature points such that more quadrature points lie in the region
of interest. This is shown in the right hand window of Figure 14.1, and is
called adaptive Gaussian quadrature.

14.5.2 Adaptive Gaussian Quadrature
With adaptive Gaussian quadrature, the quadrature points are centered
and scaled as if f(z)φ(z) were a normal distribution. The mean of this
normal distribution would be the mode ẑ of ln[f(z)φ(z)], and the variance
would equal [

− ∂2

∂z2 ln[f(z)φ(z)]
∣∣∣∣
z=ẑ

]−1

.

Hence, the new (adaptive) quadrature points are given by

z+
q = ẑ +

[
− ∂2

∂z2 ln[f(z)φ(z)]
∣∣∣∣
z=ẑ

]−1/2

zq

with corresponding weights

w+
q =

[
− ∂2

∂z2 ln[f(z)φ(z)]
∣∣∣∣
z=ẑ

]−1/2 φ(z+
q )

φ(zq)
wq.

As before, the integral is now approximated by∫
f(z)φ(z)dz ≈

Q∑
q=1

w+
q f(z+

q ).

Note that, when Gaussian or adaptive Gaussian quadrature is used in the
fitting of generalized linear mixed models, an approximation is applied to
the likelihood contribution of each of the N subjects (units) in the dataset.
In general, the higher the order Q, the better the approximation will be of
the N integrals in the likelihood. Typically, adaptive Gaussian quadrature
needs (much) less quadrature points than classical Gaussian quadrature.
On the other hand, adaptive Gaussian quadrature requires calculation of
ẑ for each unit in the dataset, hence the numerical maximization of N
functions of the form (14.9). This implies that adaptive Gaussian quadra-
ture is much more time consuming. Moreover, as these functions (14.9)
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depend on the unknown parameters β, D, and φ, the quadrature points,
as well as the weights used in adaptive Gaussian quadrature depend on
those parameters, and hence need to be updated in every step of the itera-
tive estimation procedure. The differences between Gaussian and adaptive
Gaussian quadrature, and the effects of different numbers of quadrature
points will be further discussed and illustrated in Section 14.8.

A special case occurs when adaptive Gaussian quadrature is applied of
the order 1, Q = 1. Denote ln[f(z)φ(z)] by Q(z). Because, for Q = 1, z1 = 0
and w1 = 1, we get z+

1 = ẑ, which is the maximum of Q(z). Further, the
adaptive weight equals

w+
1 = |Q′′(ẑ)|−1/2 φ(ẑ)

φ(0)
= (2π)q/2 |Q′′(ẑ)|−1/2 eQ(ẑ)

f(ẑ)
.

Hence, the approximation becomes∫
f(z)φ(z)dz =

∫
eQ(z)dz

≈ w+
1 f(z+

1 ) = (2π)q/2|Q′′(ẑ)|−1/2eQ(ẑ),

showing that adaptive Gaussian quadrature with one node is equivalent
to approximating the integrand using the Laplace approximation (Sec-
tion 14.3).

14.6 Inference in Generalized Linear Mixed Models

Because fitting of generalized linear mixed models is based on maximum
likelihood principles, inferences for the parameters are readily obtained
from classical maximum likelihood theory. Indeed, assuming the fitted model
is appropriate, the obtained estimators are asymptotically normally dis-
tributed with the correct values as means, and with the inverse Fisher
information matrix as covariance matrix. Hence, Wald-type tests, compar-
ing standardized estimates to the standard normal distribution can easily
be performed. Composite hypotheses can be tested using the more general
formulation of the Wald statistic which is a standardized quadratic form,
which is then compared to the chi-squared distribution. Alternatively, like-
lihood ratio and score tests can be used as well.

As discussed in Section 14.4, the parameters in generalized linear mixed
models are often estimated by fitting linear mixed models to pseudo-data.
Therefore, precision estimates for the fixed effects and for the random ef-
fects are often calculated using linear mixed model methodology as dis-
cussed in Sections 4.4 and 4.5, yielding for example Z-, t- and F -tests for
the fixed effects. We refer to Verbeke and Molenberghs (2000, Chapter 6)
for more details on inference in linear mixed models. Note that, although
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this yields valid precision estimates, correctness of the inferences also de-
pends on the assumed sampling distribution. In linear mixed models, the
normal t- or F - distributions immediately follow from the normality of the
response vectors Y i. For the fixed effects, aymptotic normality follows from
applying the central limit theorem on β̂ in (4.8). For the empirical Bayes
estimates, underlying normality may be more questionable, especially since
their posterior distribution may be skewed (Section 14.2.4). Further, as dis-
cussed before, one should be careful in using outputs from the linear mixed
model that was fitted to the pseudo data. For example, likelihood ratio tests
should be based on the likelihood (14.2) of the observed data, and not on
the likelihood corresponding to the linear mixed model for the pseudo data.

Finally, when interest is also in inference for some of the variance compo-
nents in D, classical asymptotic Wald, likelihood ratio, and score tests can
be used, as long as the hypotheses to be tested are not on the boundary of
the parameter space. For example, suppose one wishes to test whether the
variance τ2 of a single random effect in a generalized linear mixed model
equals zero, one has to test the null-hypothesis H0 : τ2 = 0 versus the
alternative HA : τ2 > 0. Obviously, the null-hypothesis is on the boundary
of the parameter space τ2 ≥ 0. None of the classical Wald, likelihood ratio,
or score tests are still valid. This can most easily be seen from consider-
ing the classical Wald test that would be based on the standard normal
approximation to the standardized maximum likelihood estimate τ̂2. Ob-
viously, this Z-statistic cannot be normally distributed with mean zero
because the estimation of τ2 is restricted to positive values only. Hence,
under H0, this Z-statistic follows the positive normal distribution in 50%
of the cases, and will equal zero in the other 50% of the cases. This leads
to the well-known mixture of chi-squared distributions as null distribution.
Similar properties can be derived for the one-sided likelihood ratio test and
the one-sided score test. This has been well-documented in the context of
the linear mixed model (Stram and Lee 1994, 1995, Verbeke and Molen-
berghs 2000 Chapter 6, and Verbeke and Molenberghs 2003). However, the
general theory on tests of hypotheses on the boundary of the parameter
space (Self and Liang 1987, Silvapulle and Silvapulle 1995, and Hall and
Præstgaard 2001) is much more general, and can be applied equally well
to the present context of generalized linear mixed models.

14.7 Analyzing the NTP Data

We have applied the various estimation methods to the outcome ‘external
malformation’ in the DEHP study, introduced in Section 2.7.2. As before,
let Yij be the binary outcome (absent/present) for littermate j in litter i.
It is assumed that

Yij |bi ∼ Bernoulli(πij),
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TABLE 14.1. NTP Data. External malformations in DEHP Study. Parame-
ter estimates and associated standard errors for the parameters in Model
(14.11), obtained using various estimation methods: Laplace approximation,
adaptive Gaussian quadrature (QUAD) with 50 quadrature points, penalized
quasi-likelihood (PQL) under REML as well as ML estimation, and marginal
quasi-likelihood (MQL) under REML as well as ML estimation.

Effect Parameter Laplace QUAD
Intercept β0 -6.02 (0.59) -5.97 (0.57)
Dose effect βd 6.50 (0.86) 6.45 (0.84)
Intercept var. τ2 1.42 (0.70) 1.27 (0.62)
Effect Parameter PQL (REML) PQL (ML)
Intercept β0 -5.32 (0.40) -5.30 (0.40)
Dose effect βd 5.73 (0.65) 5.71 (0.64)
Intercept var. τ2 0.95 (0.40) 0.89 (0.38)

Effect Parameter MQL (REML) MQL (ML)
Intercept β0 -5.18 (0.40) -5.17 (0.39)
Dose effect βd 5.70 (0.66) 5.67 (0.65)
Intercept var. τ2 1.20 (0.53) 1.10 (0.50)

logit(πij) = β0 + bi + βddi, (14.11)

in which di equals the dose applied to litter i, and bi is a litter-specific
intercept assumed to be sampled from a normal distribution with mean
0 and variance τ2. Table 14.1 summarizes the results obtained from the
Laplace method, PQL and MQL based on ML as well as REML fitting
of the linear mixed models for the pseudo data, as well as obtained with
adaptive Gaussian quadrature with 50 quadrature points.

All results are different with substantial differences for some of the para-
meters. For example, the estimates for the random intercepts variance τ2

range from 0.89 to 1.42. For both PQL as well as MQL, we observe smaller
estimates for τ2 obtained under ML than under REML. This is a direct
implication of the difference between ML and REML in the linear mixed
models for the pseudo data: The REML estimates correctly account for the
fact that the regression parameters β0 and βd are unknown and need to be
estimated as well. See Section 4.4 for more details.

14.8 Analyzing the Toenail Data

In Section 14.5, adaptive and non-adaptive Gaussian quadrature were dis-
cussed as approximation methods to the integral in the likelihood function.
As an illustration of the difference between both methods, and of the impact
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TABLE 14.2. Toenail Data. Summary of parameter estimates and associated stan-
dard errors obtained from fitting Model (14.12), for varying numbers Q of quadra-
ture points, and for adaptive as well as non-adaptive Gaussian quadrature. The
obtained maximized approximate log-likelihood is denoted by 	.

Gaussian quadrature
Q = 3 Q = 5 Q = 10 Q = 20 Q = 50

β0 -1.52 (0.31) -2.49 (0.39) -0.99 (0.32) -1.54 (0.69) -1.65 (0.43)
β1 -0.39 (0.38) 0.19 (0.36) 0.47 (0.36) -0.43 (0.80) -0.09 (0.57)
β2 -0.32 (0.03) -0.38 (0.04) -0.38 (0.05) -0.40 (0.05) -0.40 (0.05)
β3 -0.09 (0.05) -0.12 (0.07) -0.15 (0.07) -0.14 (0.07) -0.16 (0.07)
τ 2.26 (0.12) 3.09 (0.21) 4.53 (0.39) 3.86 (0.33) 4.04 (0.39)

−2	 1344.1 1259.6 1254.4 1249.6 1247.7

Adaptive Gaussian quadrature
Q = 3 Q = 5 Q = 10 Q = 20 Q = 50

β0 -2.05 (0.59) -1.47 (0.40) -1.65 (0.45) -1.63 (0.43) -1.63 (0.44)
β1 -0.16 (0.64) -0.09 (0.54) -0.12 (0.59) -0.11 (0.59) -0.11 (0.59)
β2 -0.42 (0.05) -0.40 (0.04) -0.41 (0.05) -0.40 (0.05) -0.40 (0.05)
β3 -0.17 (0.07) -0.16 (0.07) -0.16 (0.07) -0.16 (0.07) -0.16 (0.07)
τ 4.51 (0.62) 3.70 (0.34) 4.07 (0.43) 4.01 (0.38) 4.02 (0.38)

−2	 1259.1 1257.1 1248.2 1247.8 1247.8

of the number of quadrature points, we fitted a single model, for varying
numbers of quadrature points, and for adaptive as well as non-adaptive
Gaussian quadrature. As before, let Yij be the binary outcome indicating
severity of the toenail infection. A logistic model will be assumed, with
linear time trends, for both treatment groups separately. The association
between repeated measurements will be modeled through inclusion of ran-
dom intercepts. More specifically, the model is given by

Yij |bi ∼ Bernoulli(πij),
logit(πij) = β0 + bi + β1Ti + β2tij + β3Titij , (14.12)

in which Ti is the treatment indicator for subject i, tij is the time-point
at which the jth measurement is taken for the ith subject, and bi is the
random intercept assumed to be normally distributed with mean zero and
variance τ2.

The results of the various analyses are shown in Table 14.2. First, it
should be emphasized that each reported log-likelihood value equals the
maximum of the approximation to the model log-likelihood, which implies
that log-likelihoods corresponding to different estimation methods and/or
different numbers of quadrature points are not necessarily comparable. In-
deed, differences in log-likelihood values reflect differences in the quality
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of the numerical approximations, and thus higher log-likelihood values not
necessarily correspond to better approximations. Further, we find that dif-
ferent values for Q can lead to considerable differences in estimates as
well as standard errors. For example, using non-adaptive quadrature, with
Q = 3, and looking at β3, we found no difference in time effect between both
treatment groups (t = −0.09/0.05, p = 0.0833). Using adaptive quadrature,
with Q = 50, this interaction between the time effect and the treatment was
found to be statistically significant (t = −0.16/0.07, p = 0.0255). Finally,
assuming that Q = 50 is sufficient, the ‘final’ results are well approximated
with smaller Q under adaptive quadrature, but not under non-adaptive
quadrature.



15
Fitting Generalized Linear Mixed
Models with SAS

15.1 Introduction

Nowadays, many software packages allow for fitting of generalized linear
mixed models, using one or several of the estimation procedures discussed
in Chapter 14. Amongst the commercially available packages, SAS is the
most flexible package, with most of the discussed methods included. In this
chapter, we will show how the various methods can be implemented in the
SAS package. The examples will be worked out using SAS version 9.1. It
is by no means the intention to give a full detailed overview of all available
options. Instead, emphasis will be on general guidelines with respect to the
choice of the appropriate SAS procedures as well as with respect to how
models are specified in the various available procedures. We refer to the
online SAS manuals for a full description of the available procedures and
their possible options.

As a guiding example, we reconsider the toenail data, with the same
random-effects model as used in Section 14.8. More specifically, it will be
assumed that, conditionally on subject-specific, random, intercepts bi, Yij

is Bernoulli distributed with mean πij , modeled as

logit(πij) = β0 + bi + β1Ti + β2tij + β3Titij , (15.1)

in which Ti is the treatment indicator for subject i (1 for group B, 0 for
group A), tij is the time point at which the jth measurement is taken
for the ith subject, and bi is the random intercept assumed to be normally
distributed with mean zero and variance τ2. Note that the marginal version
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of this model was used in Chapter 10 to illustrate how marginal models
can be fitted within the SAS environment.

As in Chapter 10, it will be assumed that the data have been stored in the
SAS data file ‘test,’ which contains the variables ‘onyresp,’ ‘treatn,’ ‘time,’
and ‘idnum.’ The variable ‘response’ is the binary outcome variable defined
as 1 for a severe toenail infection, and equal to 0 otherwise. Further, ‘treat’
is a binary treatment indicator to be 1 for group B and 0 for group A.
The variable ‘time’ contains the time-point at which the outcome has been
measured, and ‘idnum’ is the variable containing the subject’s identification
label. Finally, it will be assumed that the data are organized such that each
record corresponds to the information available for one specific subject, at
one specific point in time, and it will be assumed that the data have been
ordered according to the variable ‘idnum.’ For example, our toenail data
set is set up in the following way:

Obs time treatn idnum onyresp

1 0 1 1 1
2 1 1 1 1
3 2 1 1 1
4 3 1 1 0
5 6 1 1 0
6 9 1 1 0
7 12 1 1 0

.... .. . ... .
1903 0 1 383 1
1904 1 1 383 1
1905 2 1 383 1
1906 3 1 383 1
1907 6 1 383 0
1908 9 1 383 0

Note that subject #383 left the study prematurely after 9 months of follow-
up, but before month 12.

15.2 The GLIMMIX Procedure for
Quasi-Likelihood

The marginal and penalized quasi-likelihood methods have been imple-
mented in the SAS procedure GLIMMIX, which is still experimental under
SAS version 9.1. As an example, we will fit Model (15.1) using the PQL
method. The procedure has many more statements and options than those
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TABLE 15.1. SAS Procedure GLIMMIX. Available options for specification of the
estimation method.

Quasi-likelihood type Inference pseudo-data
GLIMMIX option PQL/MQL ML/REML
‘method=RSPL’ PQL REML
‘method=MSPL’ PQL ML
‘method=RMPL’ MQL REML
‘method=MMPL’ MQL ML

presented here, but we restrict to the basic statements needed to fit a gen-
eralized linear mixed model.

15.2.1 The SAS Program
The following SAS code can be used to fit Model (15.1) using PQL based
on REML estimation for the linear mixed models for the pseudo data:

proc glimmix data=test method=RSPL ;
class idnum;
model onyresp (event=’1’) = treatn time treatn*time

/ dist=binary solution;
random intercept / subject=idnum;
run;

Users of the SAS procedure MIXED for linear mixed models will recog-
nize that the code here is very similar to that used in PROC MIXED. As
explained in Section 14.4, this is because the estimation methods imple-
mented in the GLIMMIX procedure iteratively fit linear mixed models to
newly updated pseudo data.

A very important option is ‘method=’ in the GLIMMIX statement. Here,
the type of quasi-likelihood is specified. In our example, the model is fitted
using PQL, based on REML for the linear mixed models. This corresponds
to the option ‘method=RSPL.’ An overview of the other available options
is given in Table 15.1.

The CLASS statement specifies which variables should be considered as
factors. Such classification variables can be either character or numeric.
Internally, each of these factors will correspond to a set of dummy vari-
ables in the manner described in the SAS manual on linear models (1991,
Section 5.5).

The MODEL statement names the response variable and all covariates
corresponding to the fixed effects. By default, an intercept is added. In
case no intercept is needed, the option ‘noint’ can be inserted. The option
‘(event=‘1’)’ has been added here in order to specify that the probability
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to be modeled is P (Yij = 1) (the probability of a severe infection), rather
than P (Yij = 0). The ‘solution’ option is used to request printing of the es-
timates of all the fixed effects in the model, together with standard errors,
t-statistics, corresponding p-values and confidence intervals. The ‘dist=’ is
used to specify the conditional distribution of the data, given the random
effects. Various distributions are available, including the normal, Bernoulli,
binomial, and Poisson distribution. In our example, the Bernoulli distrib-
ution is specified as ‘dist=binary.’ The link function is then by default the
natural link. In our example, this is the logit link. Others, such as probit,
log-log, log, or identity, can be requested by adding an appropriate ‘link=’
option.

The RANDOM statement defines the vectors zij corresponding to the
random effects in the model. Note that, when random intercepts are re-
quired (as in our example), this should be specified explicitly, which is in
contrast to the MODEL statement where an intercept is included by de-
fault. The ‘subject=’ option is used to identify the subjects in our dataset.
Here, ‘subject=idnum’ means that all records with the same value for ‘id-
num’ are assumed to be from the same subject, whereas records with dif-
ferent values for ‘idnum’ are assumed to contain independent data. The
variable ‘idnum’ is permitted to be continuous as well as categorical (speci-
fied in the CLASS statement). However, when ‘idnum’ is continuous, PROC
GLIMMIX considers a record to be from a new subject whenever the value
of ‘idnum’ is different from the previous record.

Suppose that random slopes for the time trend were to be included as
well. This could be obtained by replacing the RANDOM statement in the
above program by

random intercept time / subject=idnum type=un;

in which the option ‘type=un’ now specifies that the random-effects covari-
ance matrix D is a general unstructured 2 × 2 matrix. Special structures
are available, such as models that assume equal variance for the intercepts
and slopes, or models that assume independent intercepts and slopes.

15.2.2 The SAS Output
We now discuss some of the output produced by the original program
presented in Section 15.2.1.

First, a table is given with some information about the fitted model and
the estimation procedure. The ‘Residual PL’ estimation technique refers
to PQL with REML (restricted or residual maximum likelihood) for the
fitting of the linear models for the pseudo data:

Model Information

Data Set WORK.TEST



15.2 The GLIMMIX Procedure for Quasi-Likelihood 285

Response Variable onyresp
Response Distribution Binary
Link Function Logit
Variance Function Default
Variance Matrix Blocked By idnum
Estimation Technique Residual PL
Degrees of Freedom Method Containment

Number of Observations Read 1908
Number of Observations Used 1908

The table labeled ‘Response Profile’ summarizes the number of severe
and non-severe infections in the dataset, and reports that the probability
that will be modeled is P (Yij = 1), the probability of a severe infection.

Response Profile

Ordered Total
Value onyresp Frequency

1 0 1500
2 1 408

The GLIMMIX procedure is modeling the probability
that onyresp=’1’.

The ‘Iteration History’ table gives a summary of the different steps in the
iterative optimization procedure. Depending on the numerical optimization
algorithm chosen, this table will contain different entries. The most impor-
tant ones are:

Iteration History

Objective Max
Iteration Function Change Gradient

0 8517.0833042 0.97407150 0.000272
1 9474.2004261 1.19238147 0.000682
2 10389.283759 2.00000000 1.148E-6

.. ............ .......... ........

11 11147.900904 0.00001765 7.376E-8
12 11147.902006 0.00000000 3.708E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.
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At each intermediate step, minus the log-likelihood evaluated in the current
parameter values is reported, together with how much this value differs from
the value in the previous step. Further, the column labeled ‘Max Gradient’
reports the largest absolute value of the components in the gradient. At
the optimum, this value equals zero.

Fit Statistics

-2 Res Log Pseudo-Likelihood 11147.90
Pseudo-AIC (smaller is better) 11149.90
Pseudo-AICC (smaller is better) 11149.90
Pseudo-BIC (smaller is better) 11153.59
Pseudo-CAIC (smaller is better) 11154.59
Pseudo-HQIC (smaller is better) 11151.38
Pearson Chi-Square 1455.03
Pearson Chi-Square / DF 0.76

The table termed ‘Fit Statistics’ gives minus twice the residual log-
pseudo-likelihood value evaluated in the final solution, together with a
number of information criteria, including the Akaike information criterion
(AIC) and the Schwarz (BIC) information criterion. When REML estima-
tion is used for the fitting of the linear mixed models for the pseudo-data,
an objective function is maximized, which is called residual log-likelihood
function, while, strictly speaking, the function is not a log-likelihood, and
should not be used as a log-likelihood. We refer to Verbeke and Molenberghs
(2000, Chapters 5 and 6) for a more detailed discussion with examples. Fur-
ther, information criteria are statistics that are sometimes used to compare
non-nested models that cannot be compared based on a formal testing pro-
cedure. The main idea behind information criteria is to compared models
based on their maximimized (residual) log-likelihood value (or equivalently
minimized minus twice the log-likelihood value), but to penalize for the
use of too many parameters. They should by no means be interpreted as
formal statistical tests of significance. In specific examples, different infor-
mation criteria can even lead to different model selections. An example
of this is given in Section 6.4 of Verbeke and Molenberghs (2000) in the
context of linear mixed models. More details about the use of information
criteria can be found in Akaike (1974), Schwarz (1978), and Burnham and
Anderson (1998). Finally, the ‘Pearson Chi-Square’ value and derived ratio
over the degrees of freedom are based on the marginal distribution of the
pseudo-data as well. It should be emphasized that, as all statistics in the
above output table are based on the underlying model for the pseudo data,
rather than on the model for the actually observed outcomes, they should
be interpreted with extreme caution.

Covariance Parameter Estimates
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Standard
Cov Parm Subject Estimate Error

Intercept idnum 4.7116 0.6031

In the table called ‘Covariance Parameter Estimates,’ estimates and as-
sociated standard errors are given voor de variance components in the
model, i.e., for the elements in the random-effects covariance matrix D. In
our example, this is the random-intercepts variance τ2.

Finally, two tables are reported containing estimates and inferences for
the fixed effects in the model. As discussed in Section 14.6, the reported
inferences immediately result from the linear mixed model fitted to the
pseudo-data in the last step of the iterative estimation procedure.

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.7239 0.2370 292 -3.05 0.0025
treatn 0.000918 0.3363 1612 0.00 0.9978
time -0.2883 0.03349 1612 -8.61 <.0001
treatn*time -0.1106 0.05366 1612 -2.06 0.0395

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

treatn 1 1612 0.00 0.9978
time 1 1612 74.10 <.0001
treatn*time 1 1612 4.25 0.0395

15.3 The GLIMMIX Macro for Quasi-Likelihood

The GLIMMIX procedure can be viewed as a formal procedure, although
still experimental in SAS version 9.1, which has grown out of the SAS
macro GLIMMIX, applied earlier in Section 10.5 for fitting generalized es-
timating equations (GEE) based on linearization (Section 8.8). In GEE,
the association between repeated measures is modeled through a marginal
working correlation matrix. In our context, this correlation is modeled via
the inclusion of random effects, conditionally on which repeated measures
are assumed independent. This similarity implies that the same macro can
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be used for fitting generalized linear mixed models as well. Without go-
ing into much detail, we present here the SAS code needed to repeat the
analysis from Section 15.2 with the GLIMMIX macro. Afterwards, some
selected output is shown.

15.3.1 The SAS Program
Before the GLIMMIX macro can be called, one has to specify where the
code can be obtained from:

%inc ’path\glmm800.sas’ / nosource;
run;

The following SAS code can now be used to repeat the analysis from
Section 15.2 with the GLIMMIX macro:

%glimmix(
data=test,
stmts=%str(

class idnum;
model onyresp = treatn time treatn*time / solution;
random intercept / subject=idnum;
parms (4) (1) / hold=2;
),

error=binomial
)
run;

The statements that appear in the STMTS statement are directly fed
into the PROC MIXED calls needed for fitting the linear mixed models
to the pseudo-data. Note that the GLIMMIX macro by default includes a
residual overdispersion parameter. If the corresponding generalized linear
mixed model does not contain such a parameter, it should explicitly be
kept equal to one by the user. This is done using the ‘hold=’ option in the
PARMS statement.

Because the MIXED procedure uses REML estimation by default, the
above program requests PQL estimation, based on REML fitting for the
pseudo-data. If ML fitting is required, this can be specified by adding the
line

procopt=%str(method=ml),

into the above ‘%glimmix’ call. In case MQL is required, rather than the
default PQL, this can be specified by adding the line

options=MQL,
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15.3.2 Selected SAS Output
Without discussing the output from the GLIMMIX macro in much detail,
we here present some output tables, which are to be compared with the
output from the GLIMMIX procedure, discussed in Section 15.2.2.

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept idnum 4.7116
Residual 1.0000

Fit Statistics

-2 Res Log Likelihood 11147.9
AIC (smaller is better) 11149.9
AICC (smaller is better) 11149.9
BIC (smaller is better) 11153.6

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.7239 0.2370 292 -3.05 0.0025
treatn 0.000918 0.3363 1612 0.00 0.9978
time -0.2883 0.03349 1612 -8.61 <.0001
treatn*time -0.1106 0.05366 1612 -2.06 0.0395

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

treatn 1 1612 0.00 0.9978
time 1 1612 74.10 <.0001
treatn*time 1 1612 4.25 0.0395

Note that, indeed, the residual overdispersion parameter was kept equal
to one, and the results are the same as obtained earlier from the GLIMMIX
procedure.
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15.4 The NLMIXED Procedure for Numerical
Quadrature

Gaussian and adaptive Gaussian quadrature, as approximations to the in-
tegral in the marginal likelihood (Section 14.5) have been implemented in
the SAS procedure NLMIXED. As an example, we will reproduce the re-
sults reported in Table 14.2 for (non-adaptive) Gaussian quadrature with 3
quadrature points. The procedure has many more statements and options
than those presented here, but we restrict to the basic statements needed
to fit a generalized linear mixed model.

15.4.1 The SAS Program
The following SAS code can be used to fit Model (15.1) using Gaussian
quadrature with 3 quadrature points:

proc nlmixed data=test noad qpoints=3;
parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5 tau=3.9;
teta = beta0 + b + beta1*treatn + beta2*time

+ beta3*time*treatn;
expteta = exp(teta);
p = expteta/(1+expteta);
model onyresp ˜ binary(p);
random b ˜ normal(0,tau**2) subject=idnum;
run;

Before presenting the results of this analysis, we briefly discuss the state-
ments and options used in the above program. It is clear from the above
code that the NLMIXED procedure requires completely different model-
specifications than most other SAS procedures. The main advantage is
that the user is given a very high degree of flexibility in the way the model
is specified and parameterized. One of the consequences of this flexibility
is that the user not only needs to specify the model but also has to specify
names for all the parameters in the model. In this respect, it is important
to know that SAS considers all symbols in the model specification that are
not referring to variables in the input dataset as unknown parameters, to
be estimated from the data.

The option ‘noad’ in the NLMIXED statement is needed to request non-
adaptive quadrature as, by default, adaptive quadrature is used. The option
‘qpoints=’ specifies the number of quadrature points. If this option is omit-
ted, the number of quadrature points is selected adaptively by evaluating
the log-likelihood function at the starting values of the parameters until
two successive evaluations show sufficiently small relative change. Remem-
ber that model fitting based on the Laplace approximation for the integrals
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in the marginal likelihood (Section 14.3) can be specified by choosing adap-
tive Gaussian quadrature with one quadrature point.

The PARMS statement is used to specify starting values for all para-
meters in the model. Parameters not listed in the PARMS statement are
given an initial value of 1. Here we are confronted with one of the major
drawbacks of the current version of the NLMIXED procedure, i.e., the fact
that the procedure does not automatically generate starting values, except
for the default value of 1 for all the parameters that do not occur in the
PARMS statement. In complex models however, convergence of the numer-
ical optimization algorithms may highly depend on the specified starting
values.

The MODEL statement is used to specify the conditional distribution
of the data, given the random effects. Various distributions are available,
including the normal, Bernoulli, binomial, and Poisson distributions. In our
example, the Bernoulli distribution is specified as ‘binary(p)’ in which p is
the success probability that has been specified in the program lines prior to
the MODEL statement. The user has full flexibility over the way the model
is specified as well as the number of intermediate steps that are used to
define the success probability. For example, the above program corresponds
to the parameterization as given in (15.1). A different parameterization of
the same model would be

logit(πij) =

⎧⎨⎩
β0 + bi + β1tij , Treatment A

β2 + bi + β3tij , Treatment B

This can be specified using the statements

teta = beta0*(1-treatn) + beta2*treatn + b
+ beta1*(1-treatn)*time + beta3*treatn*time;

expteta = exp(teta);
p = expteta/(1+expteta);

or, equivalently,

if treatn=0 then teta=beta0 + b + beta1*time;
if treatn=1 then teta=beta2 + b + beta3*time;
expteta = exp(teta);
p = expteta/(1+expteta);

In case models are needed that do not fit within any of the classical distrib-
utions, user-defined likelihoods can be specified through the option ‘model
onyresp ∼ general(		)’ in which 		 is the user-defined log-likelihood.

The RANDOM statement defines the random effects in the model. In
our example, if the RANDOM statement had been omitted, the parameter
b would have been considered a fixed intercept, and this would have led to
an over-parameterized model. Now, b is specified to be normally distributed
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with mean 0 and standard deviation τ . Again, the user has full flexibility
here. For example, if one wishes to estimate the random-intercepts variance
rather than the standard deviation, this can be achieved by specifying

random b ˜ normal(0,tau2) subject=idnum;

Also, a mean model can be specified for the random effect b. For example,
our original model can also be specified as

proc nlmixed data=test noad qpoints=3;
parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5 tau=3.9;
teta = b + beta1*treatn + beta2*time + beta3*time*treatn;
expteta = exp(teta);
p = expteta/(1+expteta);
model onyresp ˜ binary(p);
random b ˜ normal(beta0,tau**2) subject=idnum;
run;

in which the overall intercept β0 is now incorporated as average of the
random effects. Inclusion of random slopes in Model (15.1) can be done
with the following code:

proc nlmixed data=test qpoints=10 noad;
parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5

d11=16 d12=0 d22=0.1;
teta = beta0 + b1 + beta1*treatn + beta2*time

+ b2*time + beta3*time*treatn;
expteta = exp(teta);
p = expteta/(1+expteta);
model onyresp ˜ binary(p);
random b1 b2 ˜ normal([0, 0], [d11,d12,d22]) subject=idnum;
run;

with obvious parameterization for the means of all components in the
random-effects vector, and with the random-effects covariance specified
through its lower triangle. If for example, one wishes to incorporate in-
dependence of random intercepts and slopes, this is done by replacing the
RANDOM statement in the above program by

random b1 b2 ˜ normal([0, 0], [d11,0,d22]) subject=idnum;

When one wishes to directly estimate the correlation between random
intercepts and slopes, rather than their covariance, the following PARMS
and RANDOM statements can be used:

parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5
d11=16 rho=0 d22=0.1;

random b1 b2 ˜ normal([0, 0],
[d11,rho*sqrt(d11)*sqrt(d22),d22])

subject=idnum;
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The ‘subject=’ option determines when new realizations of the random
effects occur. The procedure assumes the occurrence of a new realization
whenever the value of the variable specified in the ‘subject=’ option changes
from the previous observation. This is why the input dataset needs to be
sorted according to this variable (Section 15.1). Further, the RANDOM
statement allows inclusion of an output option of the form ‘out=dataset’
which requests an output dataset containing empirical Bayes estimates for
the random effects, together with their approximate standard errors.

The current version of the NLMIXED procedure allows one RANDOM
statement only, which poses some restrictions to flexibly specifying random-
effects models with random effects at different levels. In the examples con-
sidered so far, we had two levels in the design: A first level representing the
subjects, and a second level representing the measurements within the sub-
jects. An example where more than two levels would be required would be
the analysis of longitudinal profiles from children randomly sampled from
randomly sampled schools. In order to correctly account for the different
sources of sampling variability, random effects might be needed for schools
as well as for children within the schools. Such multi-level models can, to
some extent, be fitted within the NLMIXED procedure, but non-standard
coding is required.

15.4.2 The SAS Output
We now discuss some of the output produced by the original program pre-
sented in Section 15.4.1. The parameter estimates and associated standard
errors have already been reported in Table 14.2.

First, two tables are given, containing information about the specified
model, the observations in the dataset, and the numerical optimization
algorithms used in the model fitting process:

Specifications

Data Set WORK.TEST
Dependent Variable onyresp
Distribution for Dependent Variable Binary
Random Effects b
Distribution for Random Effects Normal
Subject Variable idnum
Optimization Technique Dual Quasi-Newton
Integration Method Gaussian Quadrature

Dimensions

Observations Used 1908
Observations Not Used 0
Total Observations 1908
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Subjects 294
Max Obs Per Subject 7
Parameters 5
Quadrature Points 3

The table labeled ‘Parameters’ lists the parameters in the model, their
starting values, and minus the log-likelihood evaluated in these initial pa-
rameter values:

Parameters

beta0 beta1 beta2 beta3 tau NegLogLike

-1.6 0 -0.4 -0.5 3.9 760.941002

The ‘Iteration History’ table gives a summary of the different steps in
the iterative optimization procedure. Depending on the chosen numerical
optimization algorithm, this table will contain different entries. The most
important ones are:

Iteration History

Iter NegLogLike Diff MaxGrad

1 747.757703 13.1833 129.7817
2 728.271809 19.48589 133.3329
3 686.505096 41.76671 116.594

.. .......... ........ ........

10 672.074434 0.000686 0.012941
11 672.074433 8.32E-7 0.000319

NOTE: GCONV convergence criterion satisfied.

At each intermediate step, minus the log-likelihood evaluated in the cur-
rent parameter values is reported, together with how much this value differs
from the value in the previous step. Further, the column labeled ‘MaxGrad’
reports the largest absolute value of the components in the gradient. At the
optimum, this value equals zero.

Fit Statistics

-2 Log Likelihood 1344.1
AIC (smaller is better) 1354.1
AICC (smaller is better) 1354.2
BIC (smaller is better) 1372.6
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The table termed ‘Fit Statistics’ gives minus twice the log-likelihood
value evaluated in the final solution, together with the information criteria
of Akaike (AIC) and Schwarz (BIC), as well as a finite-sample corrected
version of AIC (AICC). They have the same interpretation as discussed
earlier in Section 15.2.2. However, the information criteria are now defined
in terms of the maximized likelihood (obtained from numerical integration)
for the assumed model for the actually observed data, rather than on the
likelihood for the underlying pseudo-data, as was the case in Section 15.2.2.

The final part of the output is the table labeled ‘Parameter Estimates,’
which contains estimates and associated inferences for all the parameters
in the marginal likelihood:

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha

beta0 -1.5221 0.3063 293 -4.97 <.0001 0.05
beta1 -0.3932 0.3812 293 -1.03 0.3031 0.05
beta2 -0.3198 0.03481 293 -9.19 <.0001 0.05
beta3 -0.09098 0.05236 293 -1.74 0.0833 0.05
tau 2.2555 0.1217 293 18.54 <.0001 0.05

Parameter Lower Upper Gradient

beta0 -2.1250 -0.9192 -0.00007
beta1 -1.1433 0.3570 -0.00002
beta2 -0.3883 -0.2513 0.000058
beta3 -0.1940 0.01207 0.000319
tau 2.0161 2.4950 -0.00003

As discussed in Section 14.6, the reported standard errors are obtained
from the inverse Fisher information matrix. The ratio of the estimate over
its standard error produces a t-value that is compared to a t-distribution
in order to obtain a formal test of significance. One hereby uses an ad
hoc number of degrees freedom equal to the number of subjects in the
dataset, minus the number of random effects. In our example, this results
in t-tests based on 294 − 1 = 293 degrees of freedom. In case one wishes
classical Wald-type tests (Z-tests), these can be obtained by pre-specifying
a large number of degrees of freedom. This is done through the ‘df=’ op-
tion in the NLMIXED statement. Based on the chosen t-approximation
to the standardized parameter estimate, lower and upper confidence limits
are reported based on the (1 − Alpha)100% confidence level. The default
‘Alpha’-value can be changed using the ‘alpha=’ option in the NLMIXED
statement. Finally, the column labeled ‘Gradient’ contains the first-order
derivative of the objective function with respect to each of the parame-
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ters in the marginal likelihood. Note that the maximal gradient value of
0.000319 reported previously in the ‘Iteration History’ table is the gradi-
ent value for the parameter β3, i.e., for the interaction between the time
trend and the treatment indicator. Finally, it should be emphasized that,
in general, the reported p-values for variance components should be inter-
preted with great care, due to possible occurrence of boundary problems,
as explained in Section 14.6.

15.5 Alternative Software Tools

In this chapter, we have extensively illustrated the use of the SAS package
for fitting generalized linear mixed models. Many other statistical software
packages offer tools for fitting these models, including HLM (Raudenbush
et al 2001), EGRET (Cytel Software Corpration 2000), gllamm in Stata
(Rabe-Hesketh, Pickles, and Skrondal 2001), and MIXOR and MIXREG
(Hedeker and Gibbons 1994, 1996).

As discussed in Chapter 14, there is a variety of methods available for
fitting generalized linear mixed models. They differ in the type of approx-
imation or in the order of the approximation. When using software, it is
therefore very important to be aware of what precisely has been imple-
mented. A full description of software tools can be found in Tuerlinckx et
al (2004) and in Skrondal and Rabe-Hesketh (2004).



16
Marginal versus Random-effects
Models

16.1 Introduction

The most frequently used models for discrete repeated measurements are
of the marginal or random-effects type, and most of them can be viewed
as direct extensions of general linear models introduced in Chapter 3 for
independent observations to the context of correlated data. Despite the se-
vere similarities between marginal and random-effects model specifications,
both families often produce very different results, confusing many statis-
ticians less familiar with these types of models. The aim of the current
chapter is therefore to investigate why such strong differences occur in so
many applications. In Section 16.2, marginal and random-effects results are
compared for the toenail data. Section 16.3 provides some theoretical argu-
ments about the observed differences between both modeling approaches.
Finally, the Sections 16.4 and 16.5 will apply these ideas to the toenail and
the NTP data, respectively.

16.2 Example: The Toenail Data

Table 16.1 summarizes the parameter estimates and standard errors for
a marginal model and a random-effects model, fitted to the toenail data.
Both models include linear time-effects, with treatment-specific intercepts
and slopes. The marginal model parameter estimates are obtained using
generalized estimating equations (GEE1), where a marginal logit function
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TABLE 16.1. Toenail Data. Parameter estimates (standard errors) for a gener-
alized linear mixed model (GLMM) and a marginal model (GEE), as well as the
ratio between both sets of parameters.

GLMM GEE
Parameter Estimate (s.e.) Estimate (s.e.) Ratio
Intercept group A −1.63 (0.44) −0.72 (0.17) 2.26
Intercept group B −1.75 (0.45) −0.65 (0.17) 2.69
Slope group A −0.40 (0.05) −0.14 (0.03) 2.87
Slope group B −0.57 (0.06) −0.25 (0.04) 2.22

SD random intercept (τ) 4.02 (0.38)

is combined with unstructured working assumptions about the association
structure. The random-effects model is of the logistic-normal type, with no
other random effects than intercepts with variance τ2, fitted using adaptive
Gaussian quadrature with 50 quadrature points. The models are repara-
meterized versions for the models used earlier in the Chapters 10 and 15,
for the same data. Obviously, both analyses produce very different results
in the sense that the estimates from the generalized linear mixed model
analysis are much bigger in magnitude.

16.3 Parameter Interpretation

The severe differences in results obtained from marginal and random-effects
models follow from the fact that the parameters in both models have
completely different interpretations. To see the nature of the difference
between both model families, consider a binary outcome variable and as-
sume a random-intercepts logistic model with linear predictor logit[P (Yij =
1|bi)] = β0 + bi +β1t, where t is the time covariate. This model was used in
Section 16.2 for each treatment group separately. The conditional means
E(Yij |bi), as functions of t, are given by

E(Yij |bi) =
exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)
. (16.1)

The model assumes that the conditional means all satisfy a logistic model,
with the same slope β1 but with different intercepts β0 + bi for all subjects.
The marginal average evolution E(Yij) is obtained from averaging (16.1)
over the random effects, i.e.,

E(Yij) = E[E(Yij |bi)]

= E

[
exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)

]
(16.2)
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FIGURE 16.1. Graphical representation of a random-intercepts logistic curve,
across a range of levels of the random intercept, together with the corresponding
marginal curve.

�= exp(β0 + β1t)
1 + exp(β0 + β1t)

.

A graphical representation of both (16.1) and (16.2) is given in Figure 16.1.
Obviously, the marginal time trend is much less steep than each of the indi-
vidual time trends. Intuitively, it is to be expected that this effect strongly
depends on the amount of between-subject variability: In case the random-
intercepts variability is large, parameters from fitting marginal models and
random-effects models will be very different, while equal parameter values
hold if the variance of the random-effects equals zero.

Figure 16.1 clearly shows that the regression parameters in marginal and
random-effects models have a completely different inerpretation. Therefore,
it may be helpful to denote them differently, such as βRE for the parameter
vector in the random-effects model, and βM for the parameter vector in
the marginal model. The vector βRE models the evolution of each individ-
ual subject separately, whereas βM expresses how, on average, the success
probability evolves in the population.

This phenomenon holds more generally for any generalized linear mixed
model, and there is no straightforward relation between the parameter vec-
tor βRE in the random-effects model and the parameter vector βM in the
marginal model, except in a few special cases. For example, consider the
linear mixed model introduced in Section 4.3, where the random-effects
model Y i|bi ∼ N(Xiβ + Zibi, Σi) implies that, marginally, Y i has mean
E(Yij) = E[E(Yij |bi)] = Xiβ, showing that, in this case βRE = βM. An-
other example is the above discussed logistic model with random intercepts,
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Model Family
↙ ↘

marginal random-effects
model model

↓ ↓
inference inference
↙ ↘ ↙ ↘

likelihood GEE marginal hierarchical
↓ ↓ ↓ ↓

βM βM βRE (βRE, bi)
↓ ↓

‘βM’ ‘βM’

FIGURE 16.2. Representation of model families and corresponding inferences. A
superscript ‘M’ stands for marginal, ‘RE’ for random effects. A parameter between
quotes indicates that marginal functions but no direct marginal parameters are
obtained.

for which it can be derived that∣∣∣∣βRE

βM

∣∣∣∣ ≈√c2τ2 + 1 > 1 (16.3)

where τ2 is the variance of the random intercepts and with c = 16
√

3/(15π)
(Diggle et al 2002, Section 7.4). Note that (16.3) implies our heuristically
obtained result that βRE is not smaller than βM, with equality when the
random-intercepts variance τ2 is zero.

The fact that parameters from marginal and random-effects models need
to be interpreted completely differently shows that the choice between these
model families has important consequences and should be reflected upon
very carefully. A schematic display of the possible choices is given in Fig-
ure 16.2. Whenever a marginal model is fitted, one directly obtains esti-
mates and inferences for the components in βM, the regression vector that
models the average trend in the population. Within this class of approaches,
fitting and inference can be based on full maximum likelihood principles, or
on methods that only require correct specification of a number of moments
(GEE and related methods). In case a random-effects model is fitted, one
should realize that, even when estimation and inference is based on likeli-
hood principles for the marginal likelihood (14.2) where the random effects
have been integrated out, the parameters keep their original random-effects
interpretation, such that estimates as well as inferences are obtained for the
components in βRE rather than βM. Note that, under the random-effects
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model family, one can also obtain inferences for the random effects, under
the assumption that the hierarchical model formulation was correct, i.e.,
under the assumption that the correlation between repeated measurements
was indeed implied by an underlying random-effects structure. Alterna-
tively, one may consider the generalized linear mixed model as just one
approach to construct a marginal likelihood, without having any interests
in possible presence of underlying latent variables bi.

Note that, because the random-effects approach results in a marginal
likelihood, hereby completely specifying the distribution of Y i, it is possible
to derive the marginal average trends in the data. As is indicated in (16.2),
this requires averaging the conditional means in (16.1), over the random
effects bi. Again, numerical integration methods can be used, but it is often
much easier to use numerical averaging by sampling a large number M of
random-effects vectors bi from their fitted distribution N(0, D̂), and to
estimate E(Y ij) at a specific point t in time by

Ê(Yij) =
1
M

M∑
i

exp(β̂RE
0 + bi + β̂RE

1 t)

1 + exp(β̂RE
0 + bi + β̂RE

1 t)
.

This can be calculated for a fine grid of time-points t, such that a graphical
representation for the average trend can be obtained. An example, including
SAS code for averaging over the fitted random-effects distribution can be
found in Section 19.4. It should be emphasized that, in general, the average
trend E(Yij) is not of the same parametric form as the conditional means
E(Yij |bi). Hence, the averaging over the random effects will not yield formal
estimates for the elements in βM. They can only provide a plot of the
population-averaged trends. This explains why, in Figure 16.2, the marginal
trends obtained from the random-effects approach are indicated as ‘βM.’

16.4 Toenail Data: Marginal versus Mixed Models

We reconsider the toenail data, with the results from a GEE analysis and
a random-effects analysis summarized in Table 16.1. The generalized linear
mixed model is logistic with random intercepts only, hence, the approximate
relation (16.3) holds and yields as approximate ratio

√
[16

√
3/(15π)]2(4.02)2 + 1 = 2.56
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FIGURE 16.3. Toenail Data. Treatment-arm specific evolutions. (a) Marginal
evolutions as obtained from a marginal (GEE) model, (b) marginal evolutions
as obtained from integrating out a GLMM, and (c) evolutions for an “average”
subject from a GLMM, i.e., a subject with bi = 0.
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which is in line with the observed ratio reported in Table 16.1. The fitted
average evolutions, directly obtained from the GEE analysis, are given by

P (Yij = 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp(−0.72 − 0.14t)

1 + exp(−0.72 − 0.14t)
, Treatment A

exp(−0.65 − 0.25t)
1 + exp(−0.65 − 0.25t)

, Treatment B,

and are shown in the top graph in Figure 16.3. The middle panel of Fig-
ure 16.3 shows the marginal trends implied by the mixed model, i.e.,

P (Yij = 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E

[
exp(−1.63 + bi − 0.40t)

1 + exp(−1.63 + bi − 0.40t)

]
, Treatment A

E

[
exp(−1.75 + bi − 0.57t)

1 + exp(−1.75 + bi − 0.57t)

]
, Treatment B,

where the expectation is taken over the fitted random-effects distribution
N(0, 4.022). Note that very similar trends are obtained, except maybe early
in the study (first 2 months). This may be due to sampling variability, or
due to the fact that not all subjects have been followed until the end of the
experiment. Indeed, as discussed in Section 2.3, 72 (24%) out of the 298
participants left the study prematurely, due to a variety of, often unknown,
reasons. As will be discussed in Part VI, GEE and random-effects analy-
ses make different assumptions about the relation between missingness and
the longitudinal response of interest. This may result in (slightly) different
fitted average trends. Finally, the bottom plot in Figure 16.3 shows the
expected trends for ‘average’ patients, i.e., for patients with random inter-
cept bi = 0. This again illustrates that, unlike for linear mixed models, the
population-averaged trends cannot be obtained by setting random effects
in a generalized linear mixed model, equal to zero.

As a summary and conclusion, we now compare the results from various
models and estimation techniques applied to the toenail data. Table 16.2
summarizes the results from the marginal model and the random-effects
model, considered earlier in Section 16.2: Both models include linear time-
effects, with treatment-specific intercepts and slopes. The marginal model
parameter estimates are obtained using generalized estimating equations
(GEE1), where a marginal logit function is combined with unstructured
working assumptions about the association structure. The random-effects
model is of the logistic-normal type, with no other random effects than in-
tercepts with variance τ2. The mixed model has been fitted using MQL and
PQL (both with REML for fitting the linear mixed models to the pseudo-
data), as well as with adaptive Gaussian quadrature with 50 quadrature
points. A selection of the results was shown before in Table 16.1. We now
clearly observe that the estimates obtained from PQL and MQL are situ-
ated somewhat in between the estimates obtained from QUAD and GEE,
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TABLE 16.2. Toenail Data. Parameter estimates (standard errors) for a gener-
alized linear mixed model and a marginal model (GEE). The mixed model has
been fitted using MQL and PQL (both with REML for fitting the linear mixed
models to the pseudo-data), as well as with adaptive Gaussian quadrature with 50
quadrature points (QUAD).

Parameter QUAD PQL
Intercept group A −1.63 (0.44) −0.72 (0.24)
Intercept group B −1.75 (0.45) −0.72 (0.24)
Slope group A −0.40 (0.05) −0.29 (0.03)
Slope group B −0.57 (0.06) −0.40 (0.04)
Var. random intercepts (τ2) 15.99 (3.02) 4.71 (0.60)

Parameter MQL GEE
Intercept group A −0.56 (0.17) −0.72 (0.17)
Intercept group B −0.53 (0.17) −0.65 (0.17)
Slope group A −0.17 (0.02) −0.14 (0.03)
Slope group B −0.26 (0.03) −0.25 (0.04)
Var. random intercepts (τ2) 2.49 (0.29)

where MQL is closest to GEE. As has been discussed in Section 14.4, MQL
is based on a Taylor series expansion of the mean µij around current esti-
mates of the fixed effects and around random effects equal to zero. Therefore
it produces estimates relatively close to those from marginal models, which
do not contain any random effects at all (i.e., which have all bi ≡ 0). PQL,
on the other hand, explicitly accounts for the random effects in its Tay-
lor series expansion and therefore yields estimates closer to those obtained
under Gaussian quadrature.

16.5 Analysis of the NTP Data

As discussed in Chapter 13, the generalized linear mixed model (GLMM)
is not the only model in the class of random-effects models. An alternative
model is the beta-binomial model, introduced in Section 13.4.2. We will
now fit a beta-binomial model and compare it to the results obtained from
previous analyses. It will be assumed that the success probability πi and
the within-cluster correlation ρi satisfy

ln
(

πi

1 − πi

)
= β0 + βddi (16.4)

ln
(

1 + ρi

1 − ρi

)
= βa, (16.5)
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TABLE 16.3. NTP Data. Parameter estimates (standard errors) for the
beta-binomial model, fitted to various outcomes in three studies. β0 and βd are
the marginal intercept and dose effect, respectively; βa is the Fisher z transformed
correlation; ρ is the correlation.

Outcome Parameter DEHP EG DYME
External β0 -4.91(0.42) -5.32(0.71) -7.27(0.74)

βd 5.20(0.59) 2.78(0.81) 8.01(0.82)
βa 0.21(0.09) 0.28(0.14) 0.21(0.12)
ρ 0.10(0.04) 0.14(0.07) 0.10(0.06)

Visceral β0 -4.38(0.36) -7.45(1.17) -6.21(0.83)
βd 4.42(0.54) 4.33(1.26) 4.94(0.90)
βa 0.22(0.09) 0.04(0.09) 0.45(0.21)
ρ 0.11(0.04) 0.02(0.04) 0.22(0.10)

Skeletal β0 -4.88(0.44) -2.89(0.27) -5.15(0.47)
βd 4.92(0.63) 3.42(0.40) 6.99(0.71)
βa 0.27(0.11) 0.54(0.09) 0.61(0.14)
ρ 0.13(0.05) 0.26(0.04) 0.30(0.06)

Collapsed β0 -3.83(0.31) -2.51(0.09) -5.42(0.45)
βd 5.59(0.56) 3.05(0.17) 8.29(0.79)
βa 0.32(0.10) 0.28(0.02) 0.33(0.10)
ρ 0.16(0.05) 0.14(0.01) 0.16(0.05)

where di is the dose administered to the ith cluster. Note that this is
the same parameterization as was used before for the Bahadur model in
Section 7.2.3. Table 16.3 shows the results for the three NTP studies, and
for the four different outcomes.

For the sake of comparison, we will focus on the outcome ‘External mal-
formations’ in the DEHP study. Table 16.4 summarizes the results from
analyses based on marginal models (Chapters 7 and 8) conditional models
(Chapters 11 and 12), and random-effects models (Chapters 14 and 16).
As has been indicated in Section 11.4, estimates for the conditional models
are typically considerably smaller than their marginal counterparts, due
to the fundamental difference in interpretation. Indeed, conditional-model
parameters describe the conditional logit and log odds ratios of outcomes,
given other outcomes, whereas in marginal models no such conditioning
takes place. A similar argument explains the differences between marginal
and random-effects models (Section 16.3).

The results from conditional models are very similar, whatever estima-
tion method is used (maximum likelihood or pseudo-likelihood). The vari-
ous marginal modeling approaches (Bahadur, various forms of GEE, ALR)
provide very similar inferences as well, even though some subtle differ-
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TABLE 16.4. NTP Data. External malformations in the DEHP study. Parame-
ter estimates (standard errors) from analyses based on marginal models (Chap-
ters 7 and 8), conditional models (Chapters 11 and 12), and random-effects mod-
els (Chapters 14 and 16). β0 and βd are the intercept and dose effect, respectively;
the association parameter varies between models.

Model β0 βd Association

Conditional models

Quadr. loglin. (ML) -2.81(0.58) 3.07(0.65) LOG OR 0.18(0.04)
Quadr. loglin. (PL) -2.85(0.53) 3.24(0.60) LOG OR 0.18(0.04)

Marginal models

Lik. Bahadur -4.93(0.39) 5.15(0.56) βa 0.11(0.03)
St. GEE1 (exch) -4.98(0.37) 5.33(0.55) ρ 0.11
St. GEE1 (ind) -5.06(0.38) 5.31(0.57)
Prent. GEE1 (exch) -4.99(0.37) 5.32(0.55) ρ 0.11 (0.04)
Prent. GEE1 (ind) -5.06(0.38) 5.31(0.57)
Lin. based (exch) -5.00(0.37) 5.32(0.55) ρ 0.06
Lin. based (ind) -5.06(0.38) 5.31(0.57)
GEE2 -4.98(0.37) 5.29(0.55) βa 0.15(0.05)
ALR -.516(0.35) 5.64(0.52) βa 0.96(0.30)

Random-effects models

Beta-binomial -4.91(0.42) 5.20(0.59) βa 0.21(0.09)

GLLM (MQL) -5.18(0.40) 5.70(0.66) Int. var τ2 1.20(0.53)
GLMM (PQL) -5.32(0.40) 5.73(0.65) Int. var τ2 0.95(0.40)
GLMM (QUAD) -5.97(0.57) 6.45(0.84) Int. var τ2 1.27(0.62)

ences exist, as was explained throughout the various analyses conducted
in Chapter 8. More severe discrepancies are observed when the various
random-effects analyses are compared. The differences between MQL, PQL
and Gaussian quadrature have been observed and explained before in Sec-
tion 16.4. However, note how the results from the beta-binomial model are
closer to those from the marginal models than to those from the GLMM
model under Gaussian quadrature. This can be explained as follows. It
follows from (13.4) and (13.5) that the parameters πi and ρi modeled in
(16.4) and (16.5) have marginal interpretations. Hence, although the beta-
binomial model has a random-effects genesis, the regression coefficients
need to be interpreted marginally.
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17
The Analgesic Trial

17.1 Introduction

Marginal models, fitted to the analgesic trial, introduced in Section 2.2,
more specifically to the binary ‘general satisfaction assessment’ outcome
(‘GSABIN,’ denoted by Yij), will be studied in Section 17.2. Section 17.3
describes subject-specific models fitted to the GSABIN outcome. A compar-
ison between both methods is offered in Section 17.4. Some key programs
are presented in Section 17.5. We should keep in mind that the actual out-
come, GSA, is measured on a five-point ordinal scale. Ordinal outcomes
is the topic of Chapter 18, and there also, a number of analyses of the
analgesic trial will be offered.

Another issue deserves mention at this point. As is to be expected in
patients with severe chronic pain, a good number drops out before the end
of the study. Unless the very strong assumption of missingness completely
at random (MCAR) is made, GEE is strictly speaking not valid in this
case. MCAR is violated as soon as the reason for missingness is outcome
related, even when the dependence is on observed outcomes. The missing
data concepts are outlined in Chapter 26. Ways to extend GEE to over-
come this problem are presented in Chapter 27, where these data will be
considered again.
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17.2 Marginal Analyses of the Analgesic Trial

The analgesic trial has been introduced in Section 2.2. The primary out-
come in this one-armed trial is ordinally scored global satisfaction as-
sessment (GSA). For the purpose of our analysis, we will consider a di-
chotomized version of (2.1):

GSABIN =

{
1 if GSA ≤ 3 (‘Very Good’ to ‘Moderate’),

0 otherwise.
(17.1)

Preliminary analyses have indicated that, among a set of potential covari-
ates, the linear and square effects of time tij , as well as the effect of baseline
pain control assessment (‘PCA0,’ denoted Xi) are of importance. The mar-
ginal regression model so obtained is

logit[P (Yij = 1|tij , Xi)] = β0 + β1tij + β2t
2
ij + β3Xi. (17.2)

Because there are four equally-spaced follow-up measurements, not only
independence and exchangeable, but also autoregressive and unstructured
working assumptions are consistent with the design of the study. Table 17.1
displays parameter estimates and standard errors for standard GEE (Sec-
tion 8.2) , under a variety of working assumptions. Table 17.2 presents the
results for alternating logistic regression (Section 8.6). Table 17.3 summa-
rizes analyses from Tables 17.1 and 17.2 that are based on exchangeable
working assumptions, and supplements them with the corresponding fits
obtained from ordinary logistic regression, Prentice’s method (Section 8.4)
and the linearization method (Section 8.8). It is clear from Table 17.1 that
all analyses agree closely in terms of parameter estimates and standard
errors. Even between the empirically corrected and model-based standard
errors, there is little difference. This may be due to the fact that the corre-
lation is relatively small. However, given the size of the dataset, it is likely
that the correlation is significantly different from zero. Exploring the cor-
relation in a little more detail, we find for the three non-trivial correlation
matrices:

REXCH =

⎛⎜⎜⎝
1 0.22 0.22 0.22

1 0.22 0.22
1 0.22

1

⎞⎟⎟⎠ ,

RAR =

⎛⎜⎜⎝
1 0.25 0.06 0.02

1 0.25 0.06
1 0.25

1

⎞⎟⎟⎠ ,
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TABLE 17.1. Analgesic Trial. Parameter estimates (model-based standard er-
rors; empirically corrected standard errors) for standard GEE under a variety of
working assumptions: IND (independence), EXCH (exchangeable), AR (autore-
gressive), UN (unstructured).

Effect Parameter IND EXCH
Intercept β1 2.80(0.49;0.47) 2.92(0.49;0.46)
Time β2 -0.79(0.39;0.34) -0.83(0.34;0.33)
Time2 β3 0.18(0.08;0.07) 0.18(0.07;0.07)
Basel. PCA β4 -0.21(0.09;0.10) -0.23(0.10;0.10)
Correlation ρ — 0.22

Effect Parameter AR UN
Intercept β1 2.94(0.49;0.47) 2.87(0.48;0.46)
Time β2 -0.90(0.35;0.33) -0.78(0.33;0.32)
Time2 β3 0.20(0.07;0.07) 0.17(0.07;0.07)
Basel. PCA β4 -0.22(0.10;0.10) -0.23(0.10;0.10)
Correlation ρ 0.25 —
Correlation (1,2) ρ12 0.18
Correlation (1,3) ρ13 0.25
Correlation (1,4) ρ14 0.20
Correlation (2,3) ρ23 0.18
Correlation (2,4) ρ24 0.18
Correlation (3,4) ρ34 0.46

and

RUN =

⎛⎜⎜⎝
1 0.18 0.25 0.20

1 0.18 0.18
1 0.46

1

⎞⎟⎟⎠ ,

with obvious notation. Inspecting RUN, it is clear that AR may be a work-
ing assumption, different from the true structure. EXCH looks more promis-
ing as a simplification to UN, even though it looks like ρ34 is higher than
the others, while the others might well be equal to one another. Two re-
marks are in place. First, the above reasoning is irrelevant for the validity
of GEE since the working assumptions are allowed to be incorrect, the
only aspect that might be jeopardized being efficiency. This is clearly not
the case in this analysis. Second, if one were interested in the correlation
structure as such, there is no means within the standard GEE framework
to make formal inferences about the correlation structure.

To overcome this, let us study the results for ALR in Table 17.2. Apart
from exchangeability, an unstructured odds ratio model is assumed (termed
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TABLE 17.2. Analgesic Trial. Parameter estimates and empirically corrected
standard errors for ALR under a variety of log odds ratio structure: EXCH (ex-
changeable), FULLCLUST (unstructured), and ZREP (a user-defined design).

Effect Parameter EXCH FULLCLUST ZREP
Intercept β1 2.98(0.46) 2.92(0.46) 2.92(0.46)
Time β2 -0.87(0.32) -0.80(0.32) -0.80(0.32)
Time2 β3 0.18(0.07) 0.17(0.06) 0.17(0.07)
Basel. PCA β4 -0.23(0.22) -0.24(0.10) -0.24(0.10)
Log OR α 1.43(0.22)
Log OR(1,2) α12 1.13(0.33)
Log OR(1,3) α13 1.56(0.39)
Log OR(1,4) α14 1.60(0.42)
Log OR(2,3) α23 1.19(0.37)
Log OR(2,4) α24 0.93(0.42)
Log OR(3,4) α34 2.44(0.48)
Log OR par. α0 1.26(0.23)
Log OR par. α1 1.17(0.47)

‘fullclust’ in the SAS procedure GENMOD). As stated earlier, the odds
ratios now have a standard error associated to them. It is clear that some
of our conjectures, based on the correlations in Table 17.1 are confirmed
straightaway. For example, the exchangeable log odds ratio is significantly
different from zero, and so are all the odds ratios in the unstructured model.
There is also a hint that α34 is different from the others, with all others
being equal. To confirm this, a formal test is necessary. An easy approach
is to consider a Wald test for the null hypothesis

H0 : α12 = α13 = α14 = α23 = α24.

A Wald test statistic for this null hypothesis would assume the form

W = (Cα)′(CV C ′)−1(Cα)′, (17.3)

where α = (α12, α13, α14, α23, α24, α34)′, C is an appropriate contrast ma-
trix:

C =

⎛⎜⎜⎝
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0

⎞⎟⎟⎠ , (17.4)

and V is the asymptotic covariance matrix of the log odds ratio parameters.
An estimate for the matrix V is given in the SAS output by way of the
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‘covb’ option in the REPEATED statement and equals:

V̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.107 0.023 0.023 0.030 0.033 0.008
0.023 0.149 0.068 0.016 0.012 0.026
0.023 0.068 0.176 0.012 0.033 0.054
0.030 0.016 0.012 0.135 0.074 0.032
0.033 0.012 0.033 0.074 0.178 0.069
0.008 0.026 0.054 0.032 0.069 0.231

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (17.5)

Computing the Wald test statistic (17.3), using the estimated αj1j2 para-
meters, yields W = 2.04 (4 d.f., p = 0.7284). Hence, the first five log odds
ratio parameters can be considered equal. Given this, it is of interest to see
whether these common parameters differ from the remaining one, α34. A
convenient null hypothesis then is

H0 :
1
5

(α12 + α13 + α14 + α23 + α24) = α34.

A corresponding contrast matrix is

C = (1, 1, 1, 1, 1,−5). (17.6)

The corresponding Wald test statistic equals W = 6.35 (1 d.f., p = 0.0117)
and hence we can conclude that there is a pair of distinct odds ratios: a
common one for the first five, and then the sixth one. Should one test the
null hypothesis whether the exchangeable model is a tolerable simplifica-
tion of the unstructured one, then C in (17.4) would be augmented with
an additional row (0, 0, 0, 0, 1,−1) and the corresponding 6 d.f. Wald test
statistic equals 8.93 (p = 0.1119). This need not be considered a contra-
diction: the 6 d.f. dilutes the power associated with the single degree of
freedom contrast (17.6), by combining it with 5 non-significant contrasts,
given by (17.4).

The so-obtained final model is presented in the column labeled ‘ZREP’
in Table 17.2, where now:

α12 = α13 = α14 = α23 = α24 = α0,

α34 = α0 + α1.

At the odds ratio level:

ψ̂12 = ψ̂13 = ψ̂14 = ψ̂23 = ψ̂24 = ψ̂0 = 3.53,

ψ̂34 = ψ̂0 · ψ̂1 = 11.36.

Note that the Z-statistic associated with α0 is highly significant (p <
0.0001), even though the estimated value may seem moderate. The Z test
for α1 produces a p-value of p = 0.0119, in perfect agreement with the
corresponding Wald test, obtained above.
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Although not commonly done, we could present the “odds ratio matrices”
based on the models in Table 17.2:

ΨEXCH =

⎧⎪⎪⎨⎪⎪⎩
1 4.18 4.18 4.18

1 4.18 4.18
1 4.18

1

⎫⎪⎪⎬⎪⎪⎭ ,

ΨUN =

⎧⎪⎪⎨⎪⎪⎩
1 3.10 4.76 4.95

1 3.29 2.53
1 11.47

1

⎫⎪⎪⎬⎪⎪⎭ ,

and

ΨZREP =

⎧⎪⎪⎨⎪⎪⎩
1 3.53 3.53 3.53

1 3.53 3.53
1 11.36

1

⎫⎪⎪⎬⎪⎪⎭ .

Curly braces are used rather than parentheses, to avoid confusion with
a correlation or covariance matrix. In summary, the ‘ZREP’ structure is
adequate for the odds ratios, it is not necessary to spend 6 unstructured
parameters. Although exchangeability is off, the discrepancy is not very
large, and there certainly is no strong impact on the marginal model para-
meter estimates.

Clearly, the various GEE methods provide virtually the same fit. Not
only the empirically corrected standard errors, but also the model-based
ones (not shown here, except for logistic regression), virtually coincide.

17.3 Random-effects Analyses of the Analgesic
Trial

In this section, we will consider the random-effects counterparts of (17.2)
from Section 17.2:

Yij |bi ∼ Bernoulli(πij),
logit(πij) = β0 + bi + β1tij + β2t

2
ij + β3Xi, (17.7)

where notation is used as in Section 14.7, i.e.,

πij = logitP (Yij = 1|bi, tij , Xi).

Thus, a random intercept has been added to the linear predictor (17.2),
producing a random-intercept logistic regression model. Apart from the
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TABLE 17.3. Analgesic Trial. Parameter estimates (empirically corrected stan-
dard errors) for ordinary logistic regression, standard GEE, Prentice’s GEE, the
linearization-based method, and ALR under exchangeable working assumptions.
(The standard errors for logistic regression are the usual, uncorrected ones.)

Effect Parameter Log. regr. Standard Prentice
Intercept β1 2.80(0.49) 2.92(0.46) 2.94(0.46)
Time β2 -0.79(0.39) -0.83(0.33) -0.84(0.33)
Time2 β3 0.18(0.08) 0.18(0.07) 0.18(0.07)
Basel. PCA β4 -0.21(0.09) -0.23(0.10) -0.23(0.10)
Correlation ρ 0.21 0.26(0.05)

Effect Parameter Lineariz. ALR
Intercept β1 2.94(0.46) 2.98(0.46)
Time β2 -0.84(0.33) -0.87(0.32)
Time2 β3 0.18(0.07) 0.18(0.07)
Basel. PCA β4 -0.23(0.10) -0.23(0.10)
Corr. ρ 0.26(0.04)
Log OR α 1.43(0.22)

NTP data in Section 14.7, similar models were considered for the toenail
data in Section 14.8. For the random effect bi we assume that bi ∼ N(0, τ2).

Model (17.7) was fitted to the analgesic trial data using MQL and PQL,
combined with REML, by means of the SAS procedure GLIMMIX. Using
the SAS procedure NLMIXED, numerical integration was employed, using
both non-adaptive and adaptive quadrature, in both cases with 10 and 20
quadrature points. Results are summarized in Table 17.4. The parameter
τ , the standard deviation of the random intercept, was included directly
into the numerical integration based NLMIXED programs. Its square and
associated precision, the variance of the random intercept, was obtained
through the delta method. Of course, it is very easy to obtain it by an
additional run of the NLMIXED procedure, upon a slight change of the
program code. In addition to the SAS-based analyses, we fitted model (17.7)
using the MIXOR package and the MLwiN package. The MIXOR program
is in the public domain and can be downloaded from

http://www.uic.edu/ hedeker/mixreg.html.

It is developed for mixed-effects ordinal regression analysis, and hence in
particular in the binary case, and has been documented extensively in
Hedeker and Gibbons (1993, 1994, 1996). It performs numerical integra-
tion (Gaussian quadrature) and uses the Newton-Raphson algorithm to
maximize the marginal likelihood. Technically, MIXOR is most directly
comparable to NLMIXED. This is reflected in the parameter estimates but
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TABLE 17.4. Analgesic Trial. Parameter estimates (standard errors) for gen-
eralized linear mixed models, under MQL and PQL (combined with REML) in
SAS, PQL1 and PQL2 in MLwiN, as well as with numerical integration, in SAS
(I: non-adaptive with 10 quadrature points; II: non-adaptive with 20 quadrature
points and adaptive with both 10 and 20 quadrature points) and using MIXOR.

Integrand approximation
SAS GLIMMIX MLwiN

Effect Par. MQL PQL1 PQL1 PQL2
Intercept β1 2.91(0.53) 3.03(0.55) 3.02(0.55) 4.07(0.70)
Time β2 -0.83(0.39) -0.87(0.41) -0.87(0.41) -1.17(0.48)
Time2 β3 0.18(0.08) 0.19(0.08) 0.19(0.08) 0.25(0.10)
Basel. PCA β4 -0.22(0.11) -0.22(0.11) -0.22(0.11) -0.31(0.15)
Rand. int s.d. τ 1.06(0.25) 1.04(0.23) 1.01(0.12) 1.61(0.15)
Rand. int var. τ2 1.12(0.53) 1.08(0.48) 1.02(0.25) 2.59(0.47)

Numerical integration
SAS NLMIXED

Effect Par. I II MIXOR
Intercept β1 4.07(0.71) 4.05(0.71) 4.05(0.55)
Time β2 -1.16(0.47) -1.16(0.47) -1.16(0.45)
Time2 β3 0.25(0.09) 0.24(0.09) 0.24(0.10)
Basel. PCA β4 -0.30(0.14) -0.30(0.14) -0.30(0.15)
Rand. int s.d. τ 1.60(0.22) 1.59(0.21) 1.59(0.21)
Rand. int var. τ2 2.56(0.70) 2.53(0.68) 2.53(0.67)

not entirely in the standard errors, because MIXOR uses an approximation
to the (empirical) information matrix, whereas NLMIXED uses numerical
derivatives. MLwiN is the successor of an earlier DOS incarnation MLN,
and is the implementation of the multilevel modeling approach, proposed in
Bryk and Raudenbush (1992), Longford (1993), and Goldstein (1995). Kreft
and de Leeuw (1998) provide a more informal and introductory approach
to the subject. This modeling approach for hierarchical data (and hence
in particular longitudinal data) is primarily used and known in the social
sciences environment. While the language typically used to describe the
model is somewhat different from the linear and generalized linear mixed
model formalisms, it is very similar and a wide class of mixed models can
be considered within the multilevel paradigm as well.

The MLwiN and MIXOR results are shown in Table 17.4 as well. Note
that the MQL approximation is particularly bad in this case, and the pa-
rameter estimates are virtually the same as those obtained under GEE
(Table 17.3). These results are more extreme than the ones obtained for
the NTP data (Table 16.4). The main reason is that in the analgesic trial



17.4 Comparing Marginal and Random-effects Analyses 317

the number of binary measurements per subject is small, such that the
approximations on which MQL and PQL are based do not work particu-
larly well. For more details, see Section 14.4. The results for PQL are a
bit better. This phenomenon is generally observed, although the difference
between them is often larger. Recall that MQL linearizes the link function
around the expected linear predictor, thus effectively bringing the model
for the pseudo-data closer to a marginal one than PQL. Between the two
PQL1 based estimates, there hardly is a difference. An important differ-
ence is seen when switching from PQL1 to PQL2 (see Section 14.3 for
details), effectively bringing the results in line with the numerical integra-
tion based ones. It is fair to say that even in a case like this, where the
number of measurements per subjects is relatively small, PQL2 tends to
produce good approximations.

Among the numerical integration based ones, there is little or no differ-
ence. First, even though Table 17.4 presents only three columns for this
class of methods, six analyses were done. From the four analyses based on
the SAS procedure NLMIXED, three coincide within the reported preci-
sion, with only non-adaptive quadrature and 10 quadrature points giving a
slightly different result. The MIXOR based estimates are identical, within
the reported precision, to the ones form SAS, group II. The only difference
is seen in the standard errors: whereas SAS bases its estimates upon Fisher’s
information matrix, MIXOR uses an approximation. For more details, see
the MIXOR website.

17.4 Comparing Marginal and Random-effects
Analyses

In Section 17.2, we presented several marginal analyses and offered a com-
parison among them. The key message is that the results are very similar.
In Section 17.3, random effects analyses were offered, based on the cor-
responding model. The numerical integration based methods are virtually
identical, and so are the PQL2 based ones. MQL and PQL1 produce rela-
tively poor approximations in this case.

When comparing marginal with random effects analyses, the discussion
offered in Chapter 16 should be kept in mind. A key warning is that the
two model families are rather different, and that the parameters have to be
interpreted differently. This was exemplified in Sections 16.4 and 16.5. Nev-
ertheless, for a random-intercept logistic regression, like the one considered
here, (16.3) can be used to calculate an approximation to the ratio between
the two sets of parameters. Using standard GEE1 from Table 17.3 and the
integration based estimates from Table 17.4, the approximate factor from
(16.3) is 1.37, the ratios between the two sets of parameter estimates are



318 17. The Analgesic Trial

(1.39, 1.40, 1.33, 1.30), and the corresponding ratios between the standard
errors are (1.54, 1.42, 1.29, 1.40), providing good agreement between both.

17.5 Programs for the Analgesic Trial

In this section, we will present a few key programs for the analgesic trial.

17.5.1 Marginal Models with SAS
A standard GEE1 program, with unstructured working assumptions, linear
and quadratic effects of time as well as an effect of baseline pain control
assessment, is given by:

proc genmod data=m.gsa descending;
class patid timecls;
model gsabin = time|time pca0 / dist=b;
repeated subject=patid / withinsubject=timecls

type=un covb corrw modelse;
run;

The corresponding ALR program would change the repeated statement to

repeated subject=patid / withinsubject=timecls
logor=fullclust covb corrw modelse;

The empirically corrected estimates for the latter case are

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 2.9219 0.4583 2.0237 3.8201 6.38 <.0001
TIME -0.7980 0.3207 -1.4266 -0.1694 -2.49 0.0128
TIME*TIME 0.1683 0.0648 0.0412 0.2953 2.60 0.0094
pca0 -0.2359 0.0960 -0.4241 -0.0478 -2.46 0.0140
Alpha1 1.1280 0.3278 0.4856 1.7705 3.44 0.0006
Alpha2 1.5631 0.3865 0.8056 2.3206 4.04 <.0001
Alpha3 1.6035 0.4192 0.7819 2.4251 3.83 0.0001
Alpha4 1.1864 0.3680 0.4652 1.9077 3.22 0.0013
Alpha5 0.9265 0.4218 0.0997 1.7533 2.20 0.0281
Alpha6 2.4387 0.4805 1.4970 3.3805 5.08 <.0001

Note, again, that a single panel contains both the marginal regression β
parameters and the log odds ratio α parameters. The asymptotic covariance
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matrix panel (not shown) can be used directly to construct Wald tests. Note
that, while there is a CONTRAST statement in the GENMOD procedure,
it does not support the use of the α parameters, even though it does support
typical linear contrasts of β parameters, whether in the cross-sectional case,
GEE, or ALR.

In Table 17.2, a user-defined log odds ratio structure was considered,
where all of them where set equal to each other, except α34, which was
allowed to have an excess. The REPEATED statement for this case is

repeated subject=patid / withinsubject=timecls
logor=zrep(

(1 2) 1 0,
(1 3) 1 0,
(2 3) 1 0,
(2 4) 1 0,
(3 4) 1 1

)
covb modelse;

The ‘logor=zrep( )’ option allows a flexible linear structure on the α para-
meters, producing a large number of covariance structures and providing
flexibility to choose the most convenient one from among equivalent pa-
rameterizations. For example, changing the last line to (3 4) 0 1 would
specify α2 to be the log odds ratio for the last pair, rather than the dif-
ference between that one and the earlier ones. A serial structure can be
mimicked by means of this option. For example,

logor=zrep((1 2) 1,
(1 3) 0.5,
(1 4) 0.3333,
(2 3) 1,
(2 4) 0.5,
(3 4) 1)

would produce odds ratios of the form

ψj1j2 = e
1

j2−j1
α = ψ

1
j2−j1 ,

and these diminish as the time interval between measurements increases,
when ψ > 1.

Returning to the earlier program, the corresponding estimates are

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
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Intercept 2.9215 0.4607 2.0186 3.8244 6.34 <.0001
TIME -0.8021 0.3215 -1.4323 -0.1720 -2.49 0.0126
TIME*TIME 0.1701 0.0650 0.0427 0.2975 2.62 0.0089
pca0 -0.2351 0.0958 -0.4229 -0.0474 -2.46 0.0141
Alpha1 1.2640 0.2309 0.8115 1.7166 5.47 <.0001
Alpha2 1.1719 0.4660 0.2584 2.0853 2.51 0.0119

We see at a glance that both α parameters are significant.
For completeness, let us present a program for the linearization-based

method (Section 8.8), using the GLIMMIX macro,

%glimmix(data=gsa, procopt=%str(method=ml noclprint),
stmts=%str(

class patid timecls;
model gsabin = time|time pca0 / solution;
repeated timecls / sub=patid type=un rcorr=3;
),

error=binomial,
link=logit);

The option ‘rcorr=3’ is added to the REPEATED statement, and not
‘rcorr,’ since the first two subjects have incomplete follow-up, and hence
only a particular upper left block of the entire working correlation matrix
would be given. The GLIMMIX procedure counterpart is

proc glimmix data=gsa method=RSPL empirical;
class patid timecls;
model gsabin (event=’1’) = time|time pca0

/ dist=binary solution;
random _residual_ / subject=patid type=un;
run;

17.5.2 Random-effects Models with SAS
Shifting attention to the random-effects models, the MQL analysis is ob-
tained using the GLIMMIX procedure code:

proc glimmix data=m.gsa method=RMPL;
class patid timecls;
model gsabin (event=’1’) = time|time pca0

/ dist=binary solution;
random intercept / subject=patid type=un;
run;

Clearly, changing the method via ‘method=RSPL’ produces the PQL ver-
sion. The integration-based methods are obtained using code of the form:

proc nlmixed data=m.gsa qpoints=10 noad;
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FIGURE 17.1. Analgesic Trial. MLwIN Program for PQL2 without overdispersion
parameter.

parms beta0=4 beta1=-1 beta2=0.25 beta3=-0.25 tau=1.5;
theta = beta0 + b + beta1*time + beta2*time2 + beta3*pca0;
exptheta = exp(theta);
p = exptheta/(1+exptheta);
model gsabin ˜ binary(p);
random b ˜ normal(0,tau**2) subject=patid;
run;

Again, changing the ‘qpoints=’ option in the PROC NLMIXED statement,
combined with inclusion or omission of the ‘noad’ option in the same state-
ments, produces all of the analyses discussed in Section 17.3. When a probit
rather than a logit link is desired, one merely adds the option ‘link=probit’
to the GENMOD and GLIMMIX programs. Here, however, one should re-
move the ‘exptheta=’ programming statement and replace the definition
of p by ‘p = probnorm(theta).’

17.5.3 MIXOR
A small portion of the output, obtained when calling MIXOR, is:
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MIXOR - The program for mixed-effects ordinal regression analysis
(version 2)

Global Satisfaction Assessment
Response function: logistic
Random-effects distribution: normal

---------------------------------------------------------
* Final Results - Maximum Marginal Likelihood Estimates *
---------------------------------------------------------

Total Iterations = 10
Quad Pts per Dim = 20
Log Likelihood = -506.275
Deviance (-2logL) = 1012.549
Ridge = 0.000

Variable Estimate Stand. Error Z p-value
-------- ---------- ------------ ---------- ------------
intcpt 4.04741 0.71278 5.67835 0.00000 (2)
Time -1.16003 0.47453 -2.44457 0.01450 (2)
Time2 0.24449 0.09678 2.52624 0.01153 (2)
PCA0 -0.29971 0.15375 -1.94932 0.05126 (2)

Random effect variance term (standard deviation)
intcpt 1.59139 0.20578 7.73355 0.00000 (1)

note: (1) = 1-tailed p-value
(2) = 2-tailed p-value

At the end, an estimate of an approximate intracluster correlation is
presented, based on both the random-intercept variance and the variance
of the standard logistic density (π2/3).

Calculation of the intracluster correlation
-------------------------------------------
residual variance = pi*pi / 3 (assumed)
cluster variance = (1.591 * 1.591) = 2.533

intracluster correlation = 2.533 / ( 2.533 + (pi*pi/3)) = 0.435

However, the basis for this calculation is not very strong and caution is
needed with its use (Laenen et al 2004). These authors suggested it is bet-
ter to calculate an intraclass correlation coefficient based on the observed
outcomes, rather than in terms of the latent variable. However, in most
cases no constant would be obtained, not even when there is a random
intercept only.
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FIGURE 17.2. Analgesic Trial. MLwIN Program for PQL2 with overdispersion
parameter.

17.5.4 MLwiN
MLwiN is a windows-driven program. The model is constructed in alge-
braic format, whereafter the unknown parameters are estimated. A random-
intercepts logistic model would be called a two-level model within this set-
ting, where the levels refer to the subject level on the one hand and the
measurement within subject level on the other hand. There is a wide variety
of options available for such aspects as the estimation method, the presence
or absence of overdispersion, etc. Two example programs are provided in
Figures 17.1–17.2.





18
Ordinal Data

Ordinal data are a specific form of categorical data, where the order of the
response categories is of importance. Examples are levels of satisfaction,
such as in the ‘global satisfaction assessment’ (GSA) outcome of the anal-
gesic trial, introduced in Section 2.2 and analyzed in Chapter 17. However,
Chapter 17 restricted attention to the binary outcome GSABIN, obtained
by collapsing GSA as in (17.1). Another example of ordinal outcomes is
found in the fluvoxamine trial (Section 2.4) and analyzed, among other
places, in Chapter 6. In fact, Chapter 6 introduced conditional and marginal
models for repeated ordinal outcomes, as was the case in Chapter 7, with in
particular the multivariate probit model (Section 7.6) and the multivariate
Dale model (Section 7.7). These models were then studied in particular for
binary data.

In Chapter 8, generalized estimating equations were introduced and ap-
plied in particular to repeated binary outcomes. The same was true for
the generalized linear mixed models of Chapter 14. Most of the method-
ology introduced can be used in a variety of settings, in particular if the
corresponding univariate versions can be put within the generalized linear
model framework (Chapter 3).

Although, as stated earlier, ordinal outcomes can be seen as an extension
of binary outcomes, and although models do extend, there are a number of
issues specific to the ordinal data case. Some of these will be reviewed in
Section 18.1. Section 18.2 discusses marginal models, by referring back to
Chapters 6 and 7 where full likelihood methods for ordinal data have been
discussed already, and by then putting some emphasis on generalized esti-
mating equations. Random-effects models are the subject of Section 18.3.
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Both marginal and random-effects models, fitted to the original version of
the ‘global satisfaction assessment’ outcome of the analgesic trial (Chap-
ter 17), are presented in Section 18.4. A brief overview of the corresponding
SAS programs is provided in Section 18.5.

18.1 Regression Models for Ordinal Data

Regression models for binary data have been extended to nominal and
ordinal categorical outcomes (Agresti 2002). Let us concentrate on ordinal
outcomes. Later on, we will briefly consider nominal data too. Assume that
the binary variable Yi ∈ {0, 1} is replaced by an ordinal one taking values
Yi ∈ {1, 2, . . . , c}. Consider the case of a single covariate xi. A predictor,
linear in the covariate, would take the following form in the binary case:

logit[P (Yi = 1|xi)] = α + βxi. (18.1)

A commonly used extension of logistic regression to this case is so-called
proportional odds logistic regression:

logit[P (Yi ≤ k|xi)] = αk + βxi, k = 1, . . . , c − 1. (18.2)

In (18.2), the probability of observing a lower response versus a higher one
is modeled. The term proportional odds derives from the fact that the odds
for a unit increase in an element of xi are equal to exp(β), irrespective of
the cutoff, yielding nice interpretational properties and elegance provided
the model is correctly specified. The latter is important and fundamentally
different from logistic regression. To see this, consider a logistic regression as
in (18.1) with xi binary and taking values 0 or 1. For each of the two levels of
xi, there is then one parameter, the probability of success given xi. Because
(18.1) contains two free parameters, the model is saturated and, in this case,
logistic regression is merely a convenient way to model the two probabilities
and the difference between them, thereby assuring that for all values of α
and β valid (i.e., within the unit interval) probabilities are obtained. Of
course, when several covariates, of various types are considered, logistic
regression for binary data is based on assumptions too and there is a risk
to misspecify the model.

In case of (18.2), there are 2c − 2 free probabilities, implying that the c
free parameters impose model constraints. An obvious extension would be
to allow for category dependent effects βk (k = 1, . . . , c − 1). This model is
saturated and can be used as a starting point for model simplification, in
this simple contingency table setting.

With continuous covariates, the situation is different. Assuming xi is
continuous, and the fit of model (18.2) is inadequate (assessed, for example,
using a score test, as is routinely done in the SAS procedure GENMOD),
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one could, in principle, let the covariate effects be category dependent.
However, the consequence is that there always exist regions in the covariate
space, for any combination of the parameters, where non-valid probabilities
would be obtained. Indeed, it is easy to see that the conditions for valid
probabilities

αk + βkxi ≤ αk+1 + βk+1xi, k = 1, . . . , c − 1,

impose c−1 linear inequality constraints. Depending on the signs of βk+1−
βk, the resulting allowable space can be a finite or infinite interval. The only
way in which to remove the constraints is by setting the βk parameters
equal, i.e., proportional odds regression.

In case the resulting allowable interval for xi, for a given set of parame-
ters, corresponds to a scientifically plausible range, the model could still be
used. Thus, in general, it is important to realize that there ought to be a
careful discussion, when using ordinal data logistic regression, considering
the pros and cons in terms of plausibility, flexibility, and constraints.

Of course, (18.2) is not the only ordinal logistic regression type model.
Alternatively, one can consider the multigroup logistic model (Albert and
Lesaffre 1986), where each category is referred to the baseline category.
Such a model is mathematically more convenient because it avoids para-
meter space violations and fits within the exponential family framework,
but it does not exploit the ordinal nature of the data, having been conceived
for nominal data. It may lead to less parsimonious models and, more im-
portantly, to difficulties in extracting relevant conclusions from the data.

Another approach is to consider continuation-ratio models:

logit[P (Yi > k|Yi ≥ k, xi)] = αk + βkxi, k = 1, . . . , c − 1. (18.3)

This model has been given some attention in the literature (Agresti 2002).
Such a model might be convenient and useful for subjects that gradually go
through a number of states, where no return is possible (e.g., cancer stages).
Fitting the model is easy because (18.3) consists of c − 1 separate logistic
regressions; only a straightforward expansion of the data is necessary to
prepare them for standard calls to logistic regression software.

Nevertheless, while this model might be a convenient option for direction-
ally ordered categorical data, it is not so when the direction of the ordering
is immaterial. This is the case, for example, when a 5-point scale, ranging
from ‘very bad’ to ‘very good’ can just as well be reversed: ‘very good’ to
‘very bad.’ Reversing the coding in such a case merely changes the signs of
the parameters involved in the case of proportional odds logistic regression,
but it fundamentally changes the model in the continuation-ratio case. Not
only is there no simple transformation between the parameters, significance
may change as well and the likelihood at maximum can be different. This is
one of the most dramatic instances, in the case of univariate logistic regres-
sion for ordinal data, where consideration of a particular model is not just
open to criticism, but actually totally meaningless in a number of cases.
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TABLE 18.1. Fluvoxamine Trial. Proportional odds (PO) and continuation-ratio
logistic regression models fitted to side effects at the first follow-up visit, with
covariates duration and severity.

Effect Parameter PO Continuation-ratio
Side effects coded 1 −→ 4

Intercepts α1 -1.63(0.73) -1.36(0.62) -1.38(0.80)
α2 0.53(0.73) 0.12(0.62) -0.36(1.11)
α3 1.69(0.75) -0.29(0.66) 0.98(1.75)

Duration β 0.016(0.005) 0.013(0.004)
β1 0.016(0.006)
β2 -0.25(0.16)
β3 0.011(0.006)

Severity γ -0.29(0.14) -0.24(0.12)
γ1 -0.33(0.22)
γ2 0.0096(0.0109)
γ3 0.037(0.349)

Side effects coded 4 −→ 1
Intercepts α1 -1.69(0.75) -1.79(0.70) -1.56(1.65)

α2 -0.53(0.73) -1.07(0.69) -0.34(1.25)
α3 1.63(0.73) 1.24(0.69) 0.82(0.88)

Duration β -0.016(0.005) -0.014(0.004)
β1 -0.020(0.008)
β2 0.34(0.33)
β3 -0.013(0.007)

Severity γ 0.29(0.14) 0.27(0.13)
γ1 0.41(0.25)
γ2 -0.012(0.007)
γ3 0.18(0.17)

18.1.1 The Fluvoxamine Trial
We will illustrate the points made about logistic regression for ordinal data,
using the outcome side effects at the first follow-up visit from the fluvoxam-
ine trial. For the sake of illustration, we will consider two covariates: prior
duration of the disease and initial severity. Table 18.1 displays the results
from one proportional odds logistic regression model and two continuation-
ratio models. In the first model, the covariate effects are independent from
the cutpoints, in the second case they do depend upon it. For all three
models, the ordinal outcome severity is coded in two ways: from no side
effect to the most severe level and vice versa.
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The proportional odds logistic regression has been fitted using the SAS
procedure LOGISTIC, while, using the NLMIXED procedure in SAS, the
various continuation-ratio models have been coded upward. As stated ear-
lier, the proportional odds parameters are coding invariant up to the sign,
while the continuation-ratio models, irrespective of whether the covariate
effects are assumed either common to the cutpoint or rather cutpoint-
specific, produce parameters that depend in a non-trivial way on whether
the outcome is coded upward or downward. This would be a problem in
most situations. A noteworthy exception is when a subject or unit evolves
through the categories in only one of the two senses. For example, in on-
cology, there are situations where cancer type would evolve from milder to
more severe categories, but not the other way around. Thus, more than
ever, when this model is going to be used, careful reflection on its sense is
necessary.

18.2 Marginal Models for Repeated Ordinal Data

Likelihood-based marginal models have been introduced in Chapters 6 and
7. For several of these fully likelihood-based models, the general categori-
cal case has been considered, such as for the probit (Section 7.6) and Dale
models (Section 7.7), then producing the models for binary outcomes as
a general case. In fact, the same holds true for the Goodman model (Sec-
tion 6.2), which is a conditionally oriented model.

For the likelihood-based models for ordinal data, it is clear that the as-
sociation structure can, in principle, be modeled in a more versatile way
than with binary data. For example, the correlation structure, underlying
the multivariate probit model, as well as the global odds ratio structure
of the Dale model and the local odds ratio structure of Goodman’s model,
can be modeled in terms of covariates on the one hand, but also in terms of
row and column effects, when the association is between two outcomes, or
higher-order cell effects in case of higher-order association. In Section 7.6.1,
such elaborate association modeling for longitudinal ordinal data were ex-
emplified using the BIRNH study.

Chapter 8 was devoted to generalized estimating equations, an important
non fully likelihood based method for the analysis of repeated or otherwise
correlated measurements. In fact, the methodology was introduced, not
just for binary data, but in fact in its full generality. This means that
all generalized linear model settings are encompassed, including normal,
binary, categorical, and count data.

Because the theory has been introduced in the most general form, the
question might arise as to why it is necessary to study the ordinal case
in particular. The specificity comes from the fact that it is not adequate
to model directly an ordinal outcome Yij for subject i = 1, . . . , N at mea-
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surement occasion j = 1, . . . , ni, and taking values k = 1, . . . , c. Rather,
one has to pass to the binary or dummy variables (6.1), which we will
denote here Zijk, with i, j, and k as before. This allows us to model
P (Yij ≤ k|Xi) = E(Zijk|Xi). Since in a set of dummy variables there
is always a redundant one, in this cumulative case Zijc ≡ 1, we need only
c − 1 rather than c. Of course, in the binary case, c − 1 = 2 − 1 = 1,
and hence in this special case Yij can just as well be used directly, which is
what we did in Chapter 8. Thus, in the general case, the vector Y i contains
ni components, but the vector Zi made up of all non-redundant Zijk will
contain (c − 1) · ni components. Obviously, we assume that c is constant
across repeated outcomes. While in principle we can consider cj rather than
c categories, useful for multivariate outcomes, we will assume, without loss
of generality, that the number of categories is constant across measurement
occasions. This is natural in the case of longitudinal data, where typically
the same response variable is measured repeatedly over time.

Thus, in the light of the discussion in Section 18.1, the proportional odds
model (18.2) is a sensible choice for the repeated outcomes. In the spirit
of standard GEE (Section 8.2), a specification of the working correlation
structure is needed. Since GEE1 requires the specification of the pairwise
correlation structure only, this means between all pairs (Zijk, Zij′k′), with
j �= j′ and/or k �= k′. Unlike in the binary case, some correlations follow
directly from the marginal mean vectors: the correlation between different
indicators for the same measurement occasions is determined from the mean
structure. Let us start from the well-known fact that:

Cov(Z∗
ij) = diag(µ∗

ij) − µ∗
ij(µ

∗
ij)

′,

where Z∗
ij = (Z∗

ij1, . . . , Z
∗
ijc). Now, given the linear relationship between

Z∗
ij and Zij , in the sense that

Zij = J Z∗
ij

with

J =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Thus,
Cov(Zij) = J [diag(µ∗

ij) − µ∗
ij(µ

∗
ij)

′]J ′,

producing
Cov(Zij) = Mij − µijµ

′
ij ,
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with Mij,k� = µi,j,min(k,�), i.e., a bordered matrix with the kth border
equal to µijk:

Mij =

⎛⎜⎜⎜⎜⎜⎜⎝
µij1 µij1 µij1 . . . µij1

µij1 µij2 µij2 . . . µij2

µij1 µij2 µij3 . . . µij3
...

...
...

. . .
...

µij1 µij2 µij3 . . . µijc

⎞⎟⎟⎟⎟⎟⎟⎠ .

For the others, working assumptions have to be made. Clearly, such struc-
tures will be more involved than in the binary case. Kenward, Lesaffre, and
Molenberghs (1994) describe some particular structures. An easy choice is,
of course, working independence, and this is the only structure available in
the GENMOD procedure in SAS Version 9.1.

18.3 Random-effects Models for Repeated Ordinal
Data

In agreement with the marginal-model version of the previous section,
random-effects models can be formulated for the ordinal case too. For
example, a random-effects version of the proportional-odds model (18.2)
would take the form:

logit[P (Yij ≤ k|Xi, Zi)] = αk + x′
ijβ + z′

ijbi, k = 1, . . . , c − 1, (18.4)

where Xi and Zi are the usual design matrices for the fixed effects and
random effects, respectively, xij and zij are the rows corresponding to the
jth measurement occasion, and β and bi are the usual vectors of fixed and
random parameters. The only difference is that we have singled out the
fixed intercepts, which are category (i.e., cutpoint) dependent. This choice
implies that there are no intercept parameters in the vector β. It would
not be a problem to integrate them into the fixed-effects design matrix
Xi, ensuring there is no difference between a random-effects model for
ordinal data and a general one, such as described in Chapter 14. The most
convenient way to represent a model of this type would be by stacking all
cumulative indicators Zijk into a vector Zi and then write

logit[E(Zi|Xi, Zi, β, bi)] = Xiβ + Zibi. (18.5)

Of course, a proportional odds model follows as a special case of (18.5), by
ensuring all covariate effects are common for a given measurement occasion
j, independent of the cutpoint k.
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18.4 Ordinal Analysis of the Analgesic Trial

The original outcome in the analgesic trial, of which a binary version was
analyzed in Chapter 17, is on a five-point ordinal scale:

GSA =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 : Very Good
2 : Good
3 : Moderate
4 : Bad
5 : Very Bad

(18.6)

Cross-sectional, i.e., classical, ordinal logistic regression (Section 18.1), gen-
eralized estimating equations (Section 18.2), and generalized linear mixed
models (Section 18.3) can be fitted without any difficulty to the ordinal out-
come (18.6), for example using the SAS procedures GENMOD, GLIMMIX,
and NLMIXED. The ordinal marginal equivalent to (17.2) would be

logit[P (Yij ≤ k|tij , Xi)] = αk + β2tij + β3t
2
ij + β4Xi, (18.7)

(k = 1, . . . , 4), while a random-intercepts counterpart is given by:

logit[P (Yij ≤ k|tij , Xi, bi)] = αk + bi + β2tij + β3t
2
ij + β4Xi, (18.8)

(k = 1, . . . , 4).
Results of fitting ordinary logistic regression (i.e., as if data were cross-

sectional), standard GEE, and generalized linear mixed models are pre-
sented in Table 18.2. Whereas Tables 17.1–17.4 contain a single intercept
parameter β1, there now are four cutpoint-specific intercepts α1, . . . , α4.
The remaining regression parameters are still labeled β2, β3, and β4, to
stress the correspondence to their binary counterparts in Tables 17.1–17.4.
As in the binary case, the parameters from the random-intercepts model
are larger, in absolute value, than their marginal counterparts. Strictly
speaking, relationship (16.3) has been derived for the random-intercept bi-
nary logistic regression setting only. However, because a proportional odds
logistic regression collapses, at every cutpoint, to a binary logistic regres-
sion, the relationship can be applied here as well. Applying (16.3) to the
numerical integration based variance yields 1.59. The empirical ratios be-
tween the numerical integration based and standard GEE parameters are
(1.56, 1.98, 1.68, 1.53, 2.70, 2.20, 1.52). Although these values lie around
1.59, there is much more variability in the ratios than was the case for the
binary outcome. One of the reasons might be that the proportional odds
assumption is not properly verified. Indeed, comparing parameter estimates
in Tables 17.1–17.4 with their counterparts in Table 18.2, it is clear that
substantial differences are seen. In cases where the proportional odds as-
sumptions is verified, the binary models are submodels of the ordinal one,
implying that parameters corresponding to regression effects such as the
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TABLE 18.2. Analgesic Trial. Parameter estimates (standard errors) for mar-
ginal models [ordinary logistic regression (OLR), and standard GEE) and ran-
dom-effects models (using MQL, PQL, and numerical integration (N.Int.)]. For
GEE, model-based and empirically corrected standard errors are given.

Marginal models
Effect Parameter OLR GEE
Intercept 1 α1 -1.00(0.34) -1.00(0.34;0.35)
Intercept 2 α2 0.52(0.34) 0.52(0.34;0.36)
Intercept 3 α3 2.32(0.35) 2.32(0.34;0.37)
Intercept 4 α4 4.05(0.38) 4.05(0.37;0.39)
Time β2 -0.20(0.27) -0.20(0.27;0.20)
Time2 β3 0.05(0.05) 0.05(0.05;0.04)
Basel. PCA β4 -0.21(0.06) -0.21(0.06;0.09)

Random-effects models
Effect Parameter MQL PQL N.Int.
Intercept 1 α1 -0.93(0.40) -1.44(0.50) -1.56(0.55)
Intercept 2 α2 0.60(0.39) 0.51(0.50) 1.03(0.54)
Intercept 3 α3 2.39(0.40) 3.47(0.51) 3.89(0.56)
Intercept 4 α4 4.13(0.42) 5.63(0.54) 6.21(0.60)
Time β2 -0.30(0.28) -0.48(0.30) 0.54(0.31)
Time2 β3 0.06(0.06) 0.10(0.06) -0.11(0.06)
Basel. PCA β4 -0.21(0.09) -0.28(0.12) 0.32(0.14)
Rand. int s.d. τ 1.06(0.08) 1.88(0.11) 2.11(0.14)
Rand. int var. τ2 1.13(0.16) 3.53(0.42) 4.44(0.60)

linear and quadratic effects of time, and the effect of baseline pain control
assessment, would roughly be the same. Obviously, this is not the case here.
The random-effects variance τ2 is estimated to be quite a bit larger than in
the binary case, pointing in the direction of a non-valid proportional odds
assumption. Relaxing the proportional odds assumption is relatively easy
with, for example, the procedure NLMIXED.

Once again, note that the MQL parameters are very close to their mar-
ginal counterparts, underscoring the poor quality of the approximation.
PQL performs a lot better than MQL and results are close to the numer-
ical integration counterparts. Regarding numerical integration, adaptive
Gaussian quadrature was used with 20 quadrature points. Results were the
same, up to four decimal places, when only 10 quadrature points were used.
For as few as 3 quadrature points, only small differences were observed.
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18.5 Programs for the Analgesic Trial

In accordance with Section 17.5, we will now briefly review the correspond-
ing SAS programs. Standard logistic regression is easy enough to conduct
with the SAS procedure GENMOD:

proc genmod data=m.gsa;
class patid timecls;
model gsa = time|time pca0

/ dist=multinomial link=cumlogit;
run;

Indeed, we only need to change the distribution and the link function to
‘dist=multinomial’ and ‘link=cumlogit’ for a general multinomial model
with cumulative logit link. As before, GEE is obtained by adding the RE-
PEATED statement to the program:

proc genmod data=m.gsa;
class patid timecls;
model gsa = time|time pca0

/ dist=multinomial link=cumlogit;
repeated subject=patid

/ type=ind covb within=timecls modelse;
run;

A restriction is that only ‘type=ind’ is allowed with the multinomial distri-
bution, i.e., independence working assumption. Given that the parameter
estimates and empirically corrected standard errors are valid, regardless
of the working assumptions chosen, this is not a strong restriction. The
output and the interpretation thereof is similar to the output described in
Section 10.3. The linearization based method cannot be fitted with the SAS
procedure GLIMMIX. This would need so-called R-side effects, which are
not supported for the cumulative link functions. However, ordinal random-
effects models, using PQL and MQL, can be fitted with this procedure, as
exemplified in the following program:

proc glimmix data=m.gsa2 method=RSPL;
class patid timecls;
nloptions maxiter=50;
model gsa = time|time pca0

/ dist=multinomial link=cumlogit solution;
random intercept / subject=patid type=un;

run;

The multinomial distribution, which would typically be chosen for ordi-
nal data, can be combined with the cumulative logit link, but also with
the cumulative complementary log-log, log-log, and probit links, using the
‘link=cumcll,’ ‘link=cumloglog,’ and ‘link=cumprobit’ options, respectively.
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In case nominal data rather than ordinal ones are to be analyzed, the gen-
eralized logit link, using the ‘link=genlogit’ option, can be used instead.
Because in our case the program failed to converge within the default 20
iterations, we increased the number of iterations by the NLOPTIONS state-
ment.

A numerical integration based approach can be conducted using the SAS
procedure NLMIXED. Perhaps here lies the largest difference with the
binary counterpart. Indeed, the distributions supported by default are the
normal, binary, binomial, negative binomial, gamma, and Poisson ones,
excluding the multinomial. However, an extremely convenient and flexible
feature is that a so-called general likelihood can be specified, using the
‘general(·)’ model specification. The entire responsibility for specifying the
likelihood then lies with the user. An example program is given by:

proc nlmixed data=m.gsa2 qpoints=20;
parms int1=-1.5585 int2=1.0292 int3=3.8916 int4=6.2144

beta1=0.5410 beta2=-0.1123 beta3=0.3173 d=2.1082;
eta = beta1*time + beta2*time*time + beta3*pca0 + b1;
if gsa=1 then lik = 1/(1+exp(-(int1-eta)));
else if gsa=2 then
lik = 1/(1+exp(-(int2-eta))) - 1/(1+exp(-(int1-eta)));
else if gsa=3 then
lik = 1/(1+exp(-(int3-eta))) - 1/(1+exp(-(int2-eta)));
else if gsa=4 then
lik = 1/(1+exp(-(int4-eta))) - 1/(1+exp(-(int3-eta)));
else lik = 1 - 1/(1+exp(-(int4-eta)));
lik=log(lik);
model gsa ˜ general(lik);
random b1 ˜ normal(0,d*d) subject=patid;
estimate ’var(b1)’ d*d;
run;

In this program, the intercept-independent part of the linear predictor has
been specified by means of ‘eta.’ Then, the probability to belong to a specific
category can be written as the difference between two logistic-regression
type expressions, based on the same linear predictor but with a different
intercept. The only exceptions are the first one, where nothing needs to be
subtracted, and the last one, where the difference needs to be made with
one. The expression called ‘lik’ then represents the likelihood. After speci-
fying the likelihood, the NLMIXED procedure takes responsibility over the
optimization process, properly including the random-effects distribution.
The general likelihood provides a great amount of flexibility, but the re-
sponsibility for correctly specifying the function resides, of course, with the
user. When no random effects would be specified, a very flexible family of
cross-sectional models would be specified as well.





19
The Epilepsy Data

19.1 Introduction

In this chapter, a marginal and a random-effects approach toward modelling
repeated counts will be illustrated based on the Epilepsy data, introduced
in Section 2.5. We will fit a marginal GEE model (Section 19.2) as well as
a generalized linear mixed model (Section 19.3), and we will extensively
compare the results in Section 19.4.

Throughout this chapter, Yij represents the number of epileptic seizures
patient i experiences during week j of the follow-up period. Further, as
before, let tij be the time-point at which Yij has been measured, tij =
1, 2, . . . until at most 27.

19.2 A Marginal GEE Analysis

We will first perform a GEE1 analysis (Section 8.2), assuming a marginal
Poisson model, with logarithmic natural link function, and with linear,
treatment-specific, time-effects. More specifically, it will be assumed that

Yij ∼ Poisson(λij),

log(λij) =
{

β0 + β1tij if placebo
β0 + β2tij if treated.

(19.1)

We assume a common intercept for both treatment groups in order to
incorporate our prior belief that, due to the randomization, there is no sys-
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TABLE 19.1. Epilepsy Study. Parameter estimates and standard errors (empir-
ically corrected; model-based) for the regression coefficients in Model (19.1), ob-
tained from a GEE1 analysis with AR(1) working correlation matrix.

Effect Parameter Estimate (s.e.)
Common intercept β0 1.3140 (0.1435; 0.1601)
Slope placebo β1 −0.0142 (0.0234; 0.0185)
Slope treatment β2 −0.0192 (0.0178; 0.0174)

tematic difference between both groups at the start of the study. Given the
high number of repeated measurements (up to 27), an unstructured working
correlation would require estimation of many correlation parameters. Fur-
ther, the long observation period makes the assumption of an exchangeable
correlation structure quite unrealistic. We therefore use the AR(1) working
correlation structure, which is meaningful because we have equally spaced
time points at which measurements have been taken.

Prior to the fitting of the model in (19.1), an extended model was fitted
including quadratic time-evolutions, but these turned out not to be signif-
icantly different from zero (p = 0.5239). Therefore, from now on, we will
restrict to models with linear time-effects. The analysis has been performed
using the SAS procedure GENMOD. Without going into any more detail,
the SAS program used for the GEE analysis for Model (19.1) is given by

proc genmod data=test;
class id timeclss trt;
model nseizw = trt*time / dist=poisson;
repeated subject=id / withinsubject=timeclss

type=AR(1) corrw modelse;
estimate ’diff slopes’ trt*time 1 -1 ;
run;

and we refer to Section 10.3 for more details on fitting GEE models within
the SAS system.

The results of the analysis are shown in Table 19.1. The auto-correlation
coefficient has been estimated as 0.5963, i.e., two measurements from the
same subject one week apart have correlation equal to 0.5963. For measure-
ments two weeks apart, the correlation is estimated to be 0.59632 = 0.3556,
and so on. Note that the small differences between the model-based and
the empirically corrected standard errors do not lead to different conclu-
sions with respect to hypothesis testing. None of the average time effects
is significantly different from zero (empirically corrected p-values equal to
0.5429 and 0.2795 for the placebo and the treated group, respectively), nor
are they significantly different from each other (p = 0.8721, obtained by the



19.2 A Marginal GEE Analysis 339

FIGURE 19.1. Epilepsy Study. Treatment-arm specific evolutions. (a) Marginal
evolutions as obtained from a marginal (GEE) model, (b) marginal evolutions
as obtained from integrating out a GLMM, and (c) evolutions for an “average”
subject from a GLMM, i.e., with bi = 0.



340 19. The Epilepsy Data

ESTIMATE statement in the above program). Finally, the fitted average
evolutions are shown in panel (a) of Figure 19.1.

19.3 A Generalized Linear Mixed Model

An alternative analysis could be based on a random-effects approach to-
wards modeling the association structure. We then assume that, condi-
tionally on random effects, the Yij are independent Poisson distributed
random variables. As before, a logarithmic link function is used, with lin-
ear, treatment-specific, time trends. As random effects, we include random
intercepts as well as random time effects. More specific, the model is given
by

Yij |bi ∼ Poisson(λij),

log(λij) =
{

(β0 + bi1) + (β1 + bi2)tij if placebo
(β0 + bi1) + (β2 + bi2)tij if treated,

(19.2)

where the random effects bi = (bi1, bi2)′ are assumed to be normally dis-
tributed with mean vector 0 and 2 × 2 covariance matrix D. As in the
marginal model, we assume the same fixed intercept for the two groups.
This reflects our prior belief that, due to the randomization, the initial
values are equally distributed in both treatment groups.

The analysis has been performed using the SAS procedures GLIMMIX
and NLMIXED. First, PQL and MQL have been applied, with REML
estimation for the linear mixed models for the pseudo data (Section 15.2).
Afterwards, we used adaptive Gaussian quadrature with 1 and with 10
quadrature points. Note that the adaptive Gaussian quadrature with one
quadrature point is equivalent to applying the Laplace approximation to
the integrals in the marginal likelihood function (Section 14.5.2).

The SAS programs are given by

proc glimmix data=test method=RSPL;
class id trt;
model nseizw = trt*time / dist=poisson solution;
random intercept time / type=UNR subject=id;
estimate ’diff slopes’ trt*time 1 -1;
run;

proc nlmixed data=test qpoints=1;
parms beta0=1 beta1=-0.1 beta2=-0.1

d11=1 rho=0 d22=0.1;
if (trt = 0) then eta = beta0 + b1

+ beta1*time + b2*time;
else if (trt = 1) then eta = beta0 + b1
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TABLE 19.2. Epilepsy Study. Parameter estimates and standard errors for the
regression coefficients in Model (19.2), obtained from an MQL and PQL analysis,
from an analysis based on the Laplace approximation, and from an analysis based
on adaptive Gaussian quadrature with 10 quadrature points (QUAD).

MQL PQL
Effect Parameter Estimate (s.e.) Estimate (s.e.)
Common intercept β0 1.3525 (0.1492) 0.8079 (0.1261)
Slope placebo β1 −0.0180 (0.0144) −0.0242 (0.0094)
Slope treatment β2 −0.0151 (0.0144) −0.0191 (0.0094)
Variance of intercepts d11 1.9017 (0.2986) 1.2510 (0.2155)
Variance of slopes d22 0.0084 (0.0014) 0.0024 (0.0006)
Correlation rand.eff. ρ −0.3268 (0.1039) −0.3394 (0.1294)

Laplace QUAD
Effect Parameter Estimate (s.e.) Estimate (s.e.)
Common intercept β0 0.7740 (0.1291) 0.7739 (0.1293)
Slope placebo β1 −0.0244 (0.0096) −0.0245 (0.0096)
Slope treatment β2 −0.0193 (0.0096) −0.0193 (0.0097)
Variance of intercepts d11 1.2814 (0.2220) 1.2859 (0.2231)
Variance of slopes d22 0.0024 (0.0006) 0.0024 (0.0006)
Correlation rand.eff. ρ −0.3347 (0.1317) −0.3349 (0.1318)

+ beta2*time + b2*time;
lambda = exp(eta);
model nseizw ˜ poisson(lambda);
random b1 b2 ˜ normal([0, 0],

[d11, rho*sqrt(d11)*sqrt(d22), d22])
subject = id;

estimate ’diff slopes’ beta1-beta2;
run;

We refer to the Sections 15.2 and 15.4 for more details on the SAS pro-
cedures GLIMMIX and NLMIXED, respectively.

The results of our analyses are summarized in Table 19.2. We find sub-
stantial differences between the MQL and PQL methods. For example, the
difference in estimates for the intercepts equals 1.3525 − 0.8079 = 0.5785,
which is large when compared to the estimated standard errors. A similar
remark holds for the random-intercepts variance d11. Note also the sim-
ilarity of the fixed-effects estimates obtained from the MQL method and
those reported in Table 19.1, obtained from fitting a marginal GEE method.
This phenomenon was already observed earlier in the context of the toe-
nail dataset (Section 16.4). Further, we find very little differences between
the results from the Laplace approximation and the results from the adap-
tive Gaussian quadrature with 10 quadrature points. Hence, in contrast
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FIGURE 19.2. Epilepsy Study. Sampled predicted profiles for 20 subjects in the
placebo group (thin lines), and the resulting marginal evolution obtained from
averaging over the 20 subjects (bold line).

to earlier examples, the number of quadrature points used in the adaptive
Gaussian quadrature approximation has negligable effect on the results. As
was indicated in Section 14.3, this will typically be the case in datasets with
many repeated measurements per subject, as in the present example. As
was also observed earlier (Section 16.4), the results obtained from the PQL
approach are closer to those obtained from adaptive Gaussian quadrature
than those resulting from the MQL approach. Finally, in contrast to our
earlier results based on the marginal GEE model, we now obtain slopes
that are significantly different from zero (all p-values smaller than 0.05),
unless under the MQL approach, but none of the four analyses revealed a
significant difference between the slopes β1 and β2 (all p-values larger than
0.6).

19.4 Marginalizing the Mixed Model

As explained in Chapter 16, the regression coefficients in (19.2) need to be
interpreted conditionally on the random effects bi, i.e., the parameters have
a subject-specific interpretation. In case the population-averaged, marginal,
evolutions are of interest, additional computations are needed. For example,
the marginal expectation of the outcome Yij , measured at time-point tij ,
in the placebo group, is given by

E[Yij ] = E[E[Yij |bi]]
= E [exp[(β0 + bi1) + (β1 + bi2)tij ]] (19.3)
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�= exp[β0 + β1tij ]

with an expression similar to (19.3) for the expected evolution in the treated
group. Calculation of (19.3) requires integrating out the random effects over
their fitted distribution. As explained in Section 16.3, this can be done
based on numerical integration techniques or based on numerical averag-
ing. Here, we will follow the latter procedure, with 1000 draws for each
treatment group.

As an example, let us consider the placebo group, and let the model be
fitted using adaptive Gaussian quadrature with 10 quadrature points. We
start by randomly drawing 1000 realized values for the random effects bi,
taken from a bivariate normal distribution with mean vector zero, and with
covariance matrix equal to the fitted random-effects covariance matrix (see
Table 19.2)

D =
(

1.2859 −0.0185
−0.0185 0.0024

)
.

The Cholesky decomposition of D, defined as the upper triangular matrix
L such that L′L = D, and needed in the SAS code for drawing the 1000
random vectors bi is given by

L =
(

1.1340 −0.0163
0 0.0462

)
.

For each of the 1000 realized random vectors bi, and for a fine grid of time
points t, the conditional expectation exp[(β0+bi1)+(β1+bi2)t] is calculated,
with the fixed effects β0 and β1 replaced by their fitted values 0.7739 and
−0.0245, respectively (see Table 19.2). An estimate for the unconditional
mean at a given point t in time is then obtained from averaging the 1000
conditional means, i.e.,

Ê[Y (t)] =
1

1000

1000∑
i=1

exp[(0.7739 + bi1) + (−0.0245 + bi2)t].

A graphical representation of the average evolution for the placebo group
is then obtained by plotting this estimate for a sufficiently fine grid of t-
values. A graphical representation of this procedure is given in Figure 19.2,
for 20 placebo subjects randomly drawn from the fitted model (rather than
the 1000 actually used in the calculations).

The SAS code needed for the implemenation of the above procedure is
given by:

data h;
do treat=0 to 1 by 1;

do subject=1 to 1000 by 1;
b1=rannor(-1);b2=rannor(-1);
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ranint=1.1340*b1; ranslope=-0.0163*b1 + 0.0462*b2;
do t=0 to 27 by 0.1;

if treat=0 then y=exp(0.7739+ranint
+(-0.0245+ranslope)*t);

else y=exp(0.7739+ranint +(-0.0193+ranslope)*t);
output;

end;
end;

end;

proc sort data=h;
by t treat;
run;

proc means data=h;
var y;
by t treat;
output out=out;
run;

proc gplot data=out;
plot y*t=treat / haxis=axis1 vaxis=axis2 legend=legend1;
axis1 label=(h=2.5 ’Time (weeks)’) value=(h=1.5)

order=(0 to 25 by 5) minor=none;
axis2 label=(h=2.5 A=90 ’E(Y)’) value=(h=1.5)

order=(0 to 6 by 1) minor=none;
legend1 label=(h=2 ’Treatment: ’)

value=(h=2 ’Placebo’ ’Treated’);
title h=3 ’Marginal average evolutions (GLMM)’;
symbol1 c=black i=join w=5 l=1 mode=include;
symbol2 c=black i=join w=5 l=2 mode=include;
where _stat_=’MEAN’;
run;

The result is shown in panel (b) of Figure 19.1. Note the difference be-
tween the estimated average profiles obtained from this generalized linear
mixed model and those obtained earlier from a marginal GEE analysis
[shown in panel (a) of the same figure]. First, the GLMM results show
clear curvature in the fitted average profiles and even suggest a small in-
crease in average number of epileptic seizures toward the end of the study.
This is completely absent in the GEE profiles. A possible explanation is
that the GEE model (19.1) restricts the fitted averages to be monotone
functions over time. The GLMM model can accomodate non-monotonicity,
through the random effects, even though the linear predictor in (19.2) is
linear in time. Further, the GEE approach slightly favors the treatment
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group, while the GLMM results tend to favor the placebo group (although
none of the differences where found to be statistically significant). A pos-
sible explanation can be found in the fact that, as has been explained in
Section 2.5, many patients leave the study after week 16. When those pa-
tients are compared to those who are still in the study at week 17, one can
observe that, in the placebo group, the worst patients continue, while the
opposite is true for the treated group. Hence, the two treatment groups are
different with respect to the type of subjects that continue past week 16.
As will be explained in Section 27.5, the GEE approach does not correct for
this which may yield possibly over-optimistic conclusions about the treated
group.

Finally, panel (c) in Figure 19.1 also shows the fitted evolution in both
treatment groups, for ‘average’ patients, i.e., patients with random-effects
values equal to zero. This again illustrates that the non-linearity of the
link function implies that the average evolution cannot be obtained from
setting the random effects in the generalized linear mixed model equal to
zero, which is in contrast to the linear mixed model (Chapter 4).





20
Non-linear Models

20.1 Introduction

Chapter 3 introduced the generalized linear model as a flexible yet math-
ematically tractable and elegant framework for univariate outcomes of a
Gaussian but primarily non-Gaussian type. It thus extends the classical lin-
ear model, of which linear regression and ANOVA are the best known forms
of appearance. The linear model, producing the powerful linear mixed-
effects model when extended to longitudinal data (Chapter 4), is too re-
strictive when outcomes are binary, categorical, or counts, for example.
Thus, in turn, the generalized linear model has been extended to models
for longitudinal or otherwise correlated data, and a key message has been
that careful distinction needs to be made between the marginal, condi-
tional, and random-effects model families (Chapter 5), and each of these
received considerable attention in Parts II, III, and IV, respectively.

Yet, in spite of the tremendous amount of flexibility offered by, say, gen-
eralized estimating equations and the generalized linear mixed model, and
their strictly speaking not being linear, they are subject to constraints.
This stems from the fact that, in spite of the earlier statement, exhibit
a specific form of linearity, at the level of the link function. Focusing for
clarity on binary outcomes, a typical GLM specification writes the success
probability as a non-linear function of covariates, but in a very controlled
way: a non-linear link function transforms the probability onto, say, a logit
or a probit, which is then written as a linear function of covariates, i.e.,
set equal to a linear predictor. In other words, non-linearity is confined to
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a non-linear but 1-1 transformation between the original scale (e.g., prob-
ability or mean count) and a scale natural from a mathematical point of
view, such as the logit and probit scales for binary data and the log mean
count scale for counts.

The advantage of this approach is that a large number of results, known
for linear models, carry over. Especially in the univariate case, proper-
ties of the generalized linear model and the associated exponential family
are almost as well described as those for the linear model and the associ-
ated normal distribution, although the latter is the champion of theoretical
knowledge surrounding it, of course. Also their numerical properties are
well understood, rendering univariate GLM is easy to fit, even though for
most no closed-form solution exists. In particular, the existence of natural
parameters and natural links makes the exponential family and the GLM
framework extremely handy in practice.

Of course, some properties of the normal case are lost in passing to
GLM. This is emanated through the strict separation between conditional,
marginal, and random-effects families. For example, the entire Chapter 16
was devoted to the study of the relationship between marginal and random-
effects models.

But, while appropriate transformations of responses and/or covariates,
or the use of fractional polynomials (Royston and Altman 1994, see Sec-
tion 12.4.2), can produce sufficiently adequate models to be of great practi-
cal value in many situations, some problems are too intrinsically non-linear
to be tackled by models that are entirely or partly linear, such as the linear
mixed model, generalized estimating equations, or the generalized linear
mixed model. It is then time to switch to fully non-linear models. Such
situations include growth phenomena over sufficiently extended periods,
especially when the observational period includes both growth spurts and
asymptotic behavior of growth toward maturation. Dose-response model-
ing, pharmacokinetic, and pharmacodynamic applications often demand
non-linear models. as well.

In Section 20.2, the extension of generalized linear models to non-linear
models for univariate data is briefly sketched and applied to pharmacoki-
netic data from the indomethacin study (Section 20.3). These models are
extended to the longitudinal setting in Section 20.4, with emphasis on the
mixed-models family in Section 20.5. Non-linear mixed models are illus-
trated using the orange tree example (Section 20.6). The specific case of
pharmacokinetic and pharmacodynamic data is studied in Section 20.7,
where the indomethacin study is now given a fully hierarchical analy-
sis (Section 20.7.1). The classic theophylline data are analyzed in Sec-
tion 20.7.2 and some remarks on the pharmacodynamic case are offered
in Section 20.7.3. A worked case study on data from a songbird experiment
is presented in Section 20.8. Although all analyses in this chapter, up to
that point, are in continuous data, Section 20.9 emphasizes in particular
the non-Gaussian setting. Some remarks on inferential problems that can
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occur in the non-linear setting, unlike in the linear and generalized lin-
ear settings, are given in Section 20.10. Finally, some brief comments on
semi-parametric extensions are made in Section 20.11.

Unlike in other chapters, we put strong emphasis on the continuous case.
One of the reasons is that, from a methodological point of view (estimation,
inference, numerical optimization routines, etc.), even for continuous out-
comes, non-linear models are closer to generalized linear models for discrete
data, than they are to linear models for continuous data. This is the main
reason why the non-linear models were absent in Verbeke and Molenberghs
(2000). Moreover, the continuous non-linear case, together with the gen-
eralized linear model based approach of earlier chapters, provides a good
basis for the non-Gaussian situation. A key reference in the area of non-
linear models for repeated measures is the book by Davidian and Giltinan
(1995).

20.2 Univariate Non-linear Models

As stated in the introduction, not only linear models, also generalized linear
models enjoy a certain amount of linearity, even though there are impor-
tant differences between both. Whereas linear models are primarily used
for Gaussian or, more generally, continuous data, the generalized linear
model family encompasses a wide variety of outcomes. Also as said before,
there are situations, whether for Gaussian or non-Gaussian data, whether
for cross-sectional or for repeated measures data, where more intrinsically
non-linear models are needed, such as in growth curves modeling, pharma-
cokinetic and pharmacodynamic modeling, and dose-response modeling.

Starting from moment assumptions, a linear model for an outcome Yi,
conditional on a vector of covariates xi, takes the form:

E(Yi|xi, β) = x′
iβ, (20.1)

where β is the usual vector of regression parameters. In generalized lin-
ear models (Chapter 3), expression (20.1) is updated by means of a link
function g(·):

g [E(Yi|xi, β)] = x′
iβ, (20.2)

or, equivalently, using the inverse link function h(·) = g−1(·):
E(Yi|xi, β) = h(x′

iβ). (20.3)

Thus, the linear predictor ηi = x′
iβ is preserved at an appropriately trans-

formed scale. For logistic regression, not the success probability is a linear
function of the covariates, but the logit is. In a non-linear model, one aban-
dons the concept of linear predictors altogether, and replace (20.2) or (20.3)
with

E(Yi|xi, β) = h(xi, β), (20.4)
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where now h(·) is an arbitrary function of covariates and parameters. A
simple dose-response oriented example would be:

logit[E(Yi|di, β)] = β0 + β1d
γ
i , (20.5)

where β1 is the classical dose parameter that would be present in a standard
logistic model too and γ is a power parameter, modifying the shape of the
dose-response curve. Note that this model is non-linear due to the presence
of the logit link on the left hand side of (20.5) and the non-linear predictor
on the right hand side. The h function in (20.4) now equals:

h(di, β0, β1, γ) =
exp (β0 + β1d

γ
i )

1 + exp (β0 + β1d
γ
i )

,

with di the dose level applied to unit i. Thus, the non-linear link function
and the non-linear predictor can be integrated into a single function, or kept
separately, whichever is convenient for modeling, numerical optimization,
etc.

A version of (20.5) for continuous outcomes would be:

E(Yi|di, β) = β0 + β1d
γ
i . (20.6)

Thus, while the link function is linear, the predictor function is not, pre-
serving the non-linear nature of the model.

The above models can be cast into a fully parametric framework, fol-
lowing the nature of the outcomes. For example, (20.6) can be seen as
describing the mean of a normal outcome:

Yi ∼ N(β0 + β1d
γ
i , σ2), (20.7)

or, equivalently: Yi = µi + εi with εi ∼ N(0, σ2). If necessary, the variance
can be modeled in a non-constant fashion as well, as will be seen in Sec-
tion 20.3. Similarly to the normal case, (20.5) can be seen as defining the
probability structure of a parametric binomial model.

Fitting linear and generalized linear models is reasonably straightfor-
ward. For linear models, closed-form expressions exist and for generalized
linear models, exponential family theory ensures the log-likelihood function
has a unique maximum. When the natural link is used, Fisher scoring and
Newton-Raphson iteration are equivalent, as the observed and expected
information matrices coincide. The key reason is that the log-likelihood
function is linear in the sufficient statistics. This property no longer holds
with non-linear models. Newton-Raphson iteration replaces the value of
the parameter β after t iterations, β(t) say, by

β(t+1) = β(t) − H(β(t))−1S(β(t)), (20.8)

where S(β) is the score function, i.e., the first-order derivative of the log-
likelihood with respect to the parameters, and H(β) is the Hessian matrix
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or matrix of second-order derivatives. In Fisher scoring, H(β) is replaced
by its expectation, producing:

β(t+1) = β(t) − H(β(t))−1S(β(t)). (20.9)

A popular family of methods are so-called quasi-Newton methods, i.e., any
method for which H(β) is replaced by a certain alternative H̃(β). Some
of these include steepest descent, Gauss-Newton, and Marquardt optimiza-
tion. A thorough treatment on non-linear models and associated optimiza-
tion issues is offered in Seber and Wild (2003). See also Dennis and Schnabel
(1983), Lange (1999), and Nocedal and Wright (1999). Calculating the first,
and in particular the second-order derivatives in (20.8), (20.9), or any other
quasi-Newton method can be involved. Therefore, analytical derivation is
often replaced by numerical derivation, i.e., finite differences with a very
small step size.

The key message is that fitting non-linear models, i.e., optimizing non-
linear functions, is involved and very sensitive to starting values and choice
of optimization procedure. This is why most optimizers, whether generic or
for a specific family of models, allow for a variety of optimization methods,
each one having a good number of tuning parameters such as, for example,
step size determination. One such implementation is to be found in the SAS
procedure NLIN. Also, the SAS procedure NLMIXED, designed to handle
non-linear mixed-effects models, offers great flexibility. It handles general-
ized linear mixed models (Chapters 15 and 17, for example) and univariate
non-linear models as two special cases. For univariate non-linear models, in
the absence of random effects, no numerical integration is necessary. The
procedure then still offers a variety of Newton-Raphson, quasi-Newton, and
gradient methods, among others. It even allows for the use of the Nelder-
Mead (Nelder and Mead 1965) simplex algorithm, which can be slow but
is considered to be stable.

Next, we will illustrate these ideas using data from a pharmacokinetics
study.

20.3 The Indomethacin Study: Non-hierarchical
Analysis

The data come from a pharmacokinetics study of indomethacin (Kwan et
al 1976, Davidian and Giltinan 1995), following bolus intravenous injection
of the same dose in six human volunteers. For each subject, plasma con-
centrations of indomethacin were measured at 11 time points ranging from
15 minutes to 8 hours post-injection. The individual profiles are shown in
Figure 20.1 and displayed in Table 20.1. The measurement 2.72 of subject
3 at 0.25 hours is deemed outlying and deleted from analysis.
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FIGURE 20.1. Indomethacin Study. Individual profiles.

To understand absorption and elimination of the drug, in an individual
subject as well as in the population, is the goal of pharmacokinetics. Usu-
ally, the body is represented as a system of compartments, and it is then
assumed that the rate of transfer between compartments follows first-order
or linear kinetics. This leads to differential equations, the solution of which
generally leads to non-linear relationships between drug concentration and
time. For example, a two-compartment model to describe kinetics following
intravenous injection leads to the so-called bi-exponential model (Davidian
and Giltinan 1995):

Ci(tij) = Yij = β̃i1 exp(−β̃i2tij) + β̃i3 exp(−β̃i4tij) + εij , (20.10)

under the restriction that βi1, βi2, βi3, βi4 > 0. Ci(tij) is the drug plasma
concentration. Here, we will fit the model to each subject separately. In Sec-
tion 20.7.1, a fully hierarchical approach, using a non-linear mixed-effects
model, will be employed.

The bi-exponential model (20.10) is easier to handle using a reparame-
terization

Ci(tij) = Yij = eβi1 exp
(−eβi2tij

)
+ eβi3 exp

(−eβi4tij
)

+ εij . (20.11)

Here, eβ2 and eβ4 are the rate constants corresponding to the two apparent
exponential phases of drug disposition. The half-life of the terminal phase
of drug disposition is given by

a(β) =
ln 2
eβ4

,
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TABLE 20.1. Indomethacin Study. Measurements for six individuals over an eight
hour period.

Time Subject
(hours) 1 2 3 4 5 6

0.25 1.50 2.03 (2.72) 1.85 2.05 2.31
0.50 0.94 1.63 1.49 1.39 1.04 1.44
0.75 0.78 0.71 1.16 1.02 0.81 1.03
1.00 0.48 0.70 0.80 0.89 0.39 0.84
1.25 0.37 0.64 0.80 0.59 0.30 0.64
2.00 0.19 0.36 0.39 0.40 0.23 0.42
3.00 0.12 0.32 0.22 0.16 0.13 0.24
4.00 0.11 0.20 0.12 0.11 0.11 0.17
5.00 0.08 0.25 0.11 0.10 0.08 0.13
6.00 0.07 0.12 0.08 0.07 0.10 0.10
8.00 0.05 0.08 0.08 0.07 0.06 0.09

where it is understood that β4 < β2.
Because we defer a fully hierarchical model until later, now focusing

on each of the profiles separately, we could in principle drop the index i
for the time being. However, it will be retained for ease of reference to
Section 20.7.1. Parameter estimates and standard errors, obtained from
fitting model (20.11) to the indomethacin data, with constant variance, are
displayed in Table 20.2.

Our model is non-linear in its mean structure, but assumes a classical
homoscedastic error term, i.e., normally distributed with zero mean and
constant variance σ2. In many growth curve examples, and in particular
in a pharmacokinetic context, such an assumption is frequently deemed
unrealistic. It may be plausible to assume the error is constant in relative
terms, i.e., having constant coefficient of variation. This makes the error
proportional to the mean and hence the variance proportional to the mean-
squared:

εij ∼ N(0, σ2µ2
ij). (20.12)

Recall that we have chosen to retain both indices i and j, for clarity. Re-
sults from fitting the bi-exponential model (20.11) with variance structure
(20.12) are presented in Table 20.3. The extension from a homoscedastic
to a heteroscedastic structure is by no means the only one. Note that both
models, while different, have the same number of parameters and hence are
non-nested. A general formulation for the variance is provided by:

Var(yij) = σ2γ2(µij , θ), (20.13)
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TABLE 20.2. Indomethacin Study. Bi-exponential model fitted to each subject sep-
arately. Homoscedastic model. (‘Variance’ refers to the between-subject variability
in a particular parameter.)

β1 β2 β3 β4 σ2

Subject Parameter estimates
1 0.708 0.579 -1.653 -1.788 0.033
2 1.039 0.801 -0.695 -1.635 0.114
3 0.816 0.149 -1.481 -1.839 0.043
4 0.788 0.242 -1.368 -1.603 0.036
5 1.271 1.041 -1.233 -1.507 0.054
6 1.099 1.088 -0.032 -0.873 0.028

Mean 0.954 0.650 -1.077 -1.541
Variance 0.047 0.158 0.368 0.122

Standard errors
1 0.043 0.101 0.467 0.635 0.007
2 0.122 0.238 0.486 0.644 0.024
3 0.083 0.212 1.167 1.347 0.010
4 0.080 0.139 0.852 0.864 0.008
5 0.067 0.126 0.424 0.555 0.012
6 0.044 0.113 0.134 0.120 0.006

where γ(·) is a function of the mean, additional variance parameters, and
perhaps other covariates. For example, the power model reads

εij ∼ N(0, σ2µ2θ
ij ). (20.14)

The power model is similar to the constant variation-coefficient model, with
now an additional parameter θ, and the heteroscedastic model (20.12) is re-
trieved for θ = 1. Table 20.4 presents the results of fitting the bi-exponential
model to the indomethacin data, with power variance structure. Note that
we now have an additional parameter, compared to Table 20.3. Model com-
parison can be done by means of the likelihood ratio test statistic, for ex-
ample, comparing twice the sum of the six individual log-likelihoods from
Table 20.4 to those under Table 20.3. This is a standard exercise, asymptot-
ically valid when the number of measurements per subjects is sufficiently
large, and establishes that the power model is an improvement over the
heteroscedastic one.

Figure 20.2 shows the observed profile for the first subject, together with
the fit of the homoscedastic, heteroscedastic, and power models. For this
subject (and also for the others), the non-homoscedastic models are clearly
the best. The parameter estimates for the σ2 parameter are relatively close
to each other, with the same holding for the θ parameter. One might then
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TABLE 20.3. Indomethacin Study. Bi-exponential model fitted to each subject
separately. Heteroscedastic model. (‘Variance’ refers to the between-subject vari-
ability in a particular parameter.)

β1 β2 β3 β4 σ2

Subject Parameter estimates
1 0.731 0.604 -1.629 -1.764 0.055
2 1.145 1.050 -0.408 -1.355 0.170
3 0.771 -0.043 -2.409 -3.964 0.074
4 0.780 0.061 -2.316 -3.061 0.084
5 1.192 0.944 -1.440 -1.756 0.137
6 0.895 0.317 -1.202 -1.824 0.087

Mean 0.919 0.489 -1.567 -2.287
Variance 0.041 0.206 0.553 1.010

Standard errors
1 0.067 0.056 0.087 0.090 0.012
2 0.359 0.293 0.192 0.148 0.037
3 0.071 0.083 0.349 2.535 0.017
4 0.066 0.074 0.294 0.915 0.018
5 0.205 0.150 0.174 0.182 0.030
6 0.089 0.127 0.224 0.213 0.019

be inclined to set them equal to each other across subjects. This, how-
ever, suggests to analyze the profiles jointly, using hierarchical modeling
ideas. Such an approach would be desirable for an important other rea-
son as well. By analyzing the profiles individually, it was assumed that
the measurements on a subject were independent, which is not correct if
the subject-specific models are the purpose of inference. Of course, we es-
sentially combined the results of each of the six subjects into summaries
(mean and variance), thus yielding a two-stage analysis. The advantage of a
longitudinal analysis is that it allows for correctly taking the intra-subject
correlation into account. Therefore, Section 20.4 is devoted to non-linear
models for repeated measurements.

20.4 Non-linear Models for Longitudinal Data

In Section 20.2, generic linear, generalized linear, and non-linear models for
univariate outcomes were presented. Extensions to the longitudinal setting
are straightforward. The longitudinal counterpart to (20.1) is the linear
mixed model (4.3). We extended generalized linear model (20.2) in differ-
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TABLE 20.4. Indomethacin Study. Bi-exponential model fitted to each subject
separately. Power variance model. (‘Variance’ refers to the between-subject vari-
ability in a particular parameter.)

β1 β2 β3 β4 σ2 θ

Subject Parameter estimates
1 0.745 0.619 -1.615 -1.753 0.070 1.183
2 1.129 1.017 -0.431 -1.369 0.153 0.889
3 0.772 -0.043 -2.407 -3.948 0.073 0.990
4 0.789 0.070 -2.292 -2.983 0.068 0.826
5 1.226 0.964 -1.420 -1.728 0.105 0.817
6 0.681 -0.032 -1.800 -2.527 0.138 1.550

Mean 0.890 0.433 -1.661 -2.385
Variance 0.052 0.246 0.509 0.937

Standard errors
1 0.087 0.064 0.073 0.072 0.027 0.223
2 0.302 0.278 0.209 0.167 0.047 0.252
3 0.072 0.085 0.355 2.538 0.025 0.219
4 0.054 0.074 0.344 1.017 0.023 0.243
5 0.149 0.119 0.181 0.200 0.042 0.251
6 0.180 0.231 0.480 0.766 0.060 0.376

ent directions, to the marginal, conditional,and random-effects models of
Parts II, III, and IV, respectively.

Now, all three families can be extended to non-linear models as well,
by considering the marginal, conditional, and subject-specific counterparts
of (20.4) or, looked at it in a different way, non-linear extensions of (5.1),
(5.4), and (5.2), respectively. A marginal non-linear model would take the
form:

E(Yij |xij) = h(xij , β). (20.15)

As we know from Chapter 7, (20.15) does not specify the full joint distribu-
tion. The association structure needs to be specified as well and this can be
done in a linear or non-linear fashion as well. We can then, just as before,
consider full likelihood approaches or non-likelihood alternatives, such as
generalized estimating equations. Such models have been given relatively
little attention in the literature.

A conditional non-linear model would in addition allow Yij , the set of
all outcomes except the one modeled, as an argument of h:

E(Yij |Yik,k �=j , xij) = h(xij , β,Yij , α). (20.16)

However, whereas a log-linear model produces a conditional specification
as in (5.4), considering (20.16) in general is not guaranteed to produce a
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FIGURE 20.2. Indomethacin Study. Observed and fitted profiles for the first sub-
ject.

valid joint model. Just as (5.3), a non-linear version of a transition model
is easier to handle.

Finally, the random-effects version is

E(Yij |bi, xij , zij) = h(xij , β, zij , bi). (20.17)

In the next section, we will concentrate on non-linear mixed-effects models,
and then study both continuous as well as discrete versions of the model.

20.5 Non-linear Mixed Models

In the previous section, we allowed non-linear predictors in each of the three
model families. In this section, we will consider the non-linear mixed-effects
model in more detail, thereby extending both Chapter 14 and Section 20.5.

In a non-linear mixed-effects model, we assume that the conditional dis-
tribution of Yij , given bi belongs to the exponential family, encompassing
both normally distributed and non-normal outcomes. Precisely, the mean
structure is specified by (20.17). In agreement with generalized linear mixed
models, it is customary to assume normally distributed random effects with
mean 0 and covariance matrix D, even though other distributions are pos-
sible in principle as well.

In agreement with the developments in Chapter 14, we write the con-
ditional density of Yij given bi as fij(yij |bi, β, φ) and let f(bi|D) be the
density of the N(0, D) distribution. Then, expression (14.2) clearly ap-
plies here as well, provided it is again assumed that measurements Yij are
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TABLE 20.5. Orange Tree Data. Measurements in mm of trunk circumference.

Trunk circumference
Day Tree 1 Tree 2 Tree 3 Tree 4 Tree 5
118 30 33 30 32 30
484 58 69 51 62 49
664 87 111 75 112 81

1004 115 156 108 167 125
1231 120 172 115 179 142
1372 142 203 139 209 174
1582 145 203 140 214 177

independent conditionally on bi. This implies that the same approaches
can be used to parameter estimation, as were developed in Chapter 14 for
generalized linear mixed models.

There are important differences, primarily of an interpretational type.
We have stated that the marginal model, derived from a hierarchically for-
mulated linear mixed model is easy to derive. The same is explicitly not
true for the generalized linear mixed model. The differences in parameter
values, already at population level, and their interpretation, carries over
to the non-linear model, even when outcomes are continuous and the out-
come distribution is assumed to be normal, as soon as the random effects
enter the conditional expectation in a non-linear fashion. This means that
obtaining the marginal mean, variance, and correlation functions are not
straightforward.

20.6 The Orange Tree Data

We consider an experiment in which the trunk circumference (in mm) is
measured for 5 orange trees, on 7 different occasions, over roughly a four-
year period of growth. The data are presented in Table 20.5. Profiles are
plotted in Figure 20.3.

The following non-linear mixed model has been proposed in the statistical
literature (Pinheiro and Bates 2000):

Yij =
β1 + bi

1 + exp[−(tij − β2)/β3]
+ εij ,

bi ∼ N(0, σ2
b ),

εij ∼ N(0, σ2).
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FIGURE 20.3. Orange Tree Data. Growth curves of trunk circumference for each
of the five trees.

Note that this model is non-linear in the fixed-effect parameters, but linear
in the random effect bi, simplifying the calculation of the marginal mean
over the random-effects distribution. Thus, the conditional mean is

E(Yij |bi) =
β1 + bi

1 + exp[−(tij − β2)/β3]
(20.18)

while its marginal counterpart is

E(Yij) =
β1

1 + exp[−(tij − β2)/β3]
.

Such a simple situation will not occur in neither the analysis of the song-
bird data (Section 20.8) nor in the hierarchical analyses of the indomethacin
data (Section 20.7.1) and the theophylline data (Section 20.7.2). A graph-
ical representation of the model, with the meaning of the parameters as-
sociated to it, is given in Figure 20.4. Parameter estimates and standard
errors are given in Table 20.6.

Empirical Bayes predictions are graphed in Figure 20.5. The model fit
seems acceptable and a set of three population-level parameters, having a
clear interpretable meaning, result.
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FIGURE 20.4. Orange Tree Data. Interpretation of model parameters.

TABLE 20.6. Orange Tree Data. Parameter estimates and standard errors for
model (20.18).

Parameter Estimate (s.e.)
β1 192.05 (15.66)
β2 727.91 (35.25)
β3 348.07 (27.08)
σb 31.65 (10.26)
σ 7.84 (1.01)

20.7 Pharmacokinetic and Pharmacodynamic
Models

In Section 20.3, a univariate non-linear analysis of the indomethacin data
was presented, using the bi-exponential or two-compartment model. In the
meantime, non-linear mixed-effects models have been introduced, and fitted
to the orange tree data (Section 20.6) as well as to the songbird data
(Section 20.8). We now consider the hierarchical version of this model for
the indomethacin study. This will be done in Section 20.7.1. Section 20.7.2
will present a different pharmacokinetic model to a different set of data:
the theophylline study. In Section 20.7.3, some remarks will be offered on
pharmacodynamic models.
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FIGURE 20.5. Orange Tree Data. Observed profiles are presented with dashed
lines, predicted ones by means of solid lines.

20.7.1 Hierarchical Analysis of the Indomethacin Study
In Section 20.3, the bi-exponential or two-compartment model was fitted
to the individual profiles of the indomethacin study, giving every subject
its own set of parameters. Another extreme would be to assume that every
subject can be described by exactly the same β’s. From Section 20.5, illus-
trated using the orange data in Section 20.6, it is clear that a hierarchical
non-linear analysis is possible, using the non-linear mixed-effects model,
which can be seen as a theoretically well founded middle ground in between
both extreme fixed effects views (parameters entirely different between sub-
jects versus parameters identical). Hence, it is natural to introduce random
effects into the bi-exponential model (20.11):

Yij = Ci(tij) = e(β1+bi1) exp
(
−e(β2+bi2)tij

)
+e(β3+bi3) exp

(
−e(β4+bi4)tij

)
+ εij . (20.19)

In line with standard practice, we will assume the random effects

(bi1, bi2, bi3, bi4)′

to assume a four-variate normal distribution with zero mean vector and
variance-covariance matrix D. To obtain an initial idea about D, the em-
pirical variance-covariance matrix of the homoscedastic, heteroscedastic, or
power model parameters, obtained in Section 20.3, and presented in Ta-
bles 20.2, 20.3, and 20.4, respectively, can be computed. For the power
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model, we obtain:

D̂power =

⎛⎜⎜⎝
0.052 0.096 0.110 0.130
0.096 0.246 0.301 0.417
0.110 0.301 0.509 0.600
0.130 0.417 0.600 0.937

⎞⎟⎟⎠
with corresponding correlation matrix

D̂power, corr =

⎛⎜⎜⎝
1.000 0.852 0.677 0.588
0.852 1.000 0.848 0.868
0.677 0.848 1.000 0.869
0.588 0.868 0.869 1.000

⎞⎟⎟⎠ . (20.20)

From (20.20) it is clear that the random effects will be highly correlated.
Thus, with in addition only a limited amount of data available, fitting a
full 4 × 4 covariance matrix D with 4 + 6 = 10 free parameters may be
beyond reach. There are two alternatives. First, we might want to con-
duct a two-stage analysis based upon the results from Section 20.3, where
the individual-specific regressions, obtained at the first occasion, are an-
alyzed further at the second stage, providing averages (corresponding to
fixed-effects), and variances (corresponding to D). Such an approach was
reported in Tables 20.2–20.4. Second, a restricted hierarchical model could
be fitted, i.e., one where the matrix D is subject to simplifying restrictions.
For example, the four random effects could be assumed independent, even
though the evidence in (20.20) points to the contrary. Parameter estimates
and standard errors are presented in Table 20.7. Note that the fixed-effect
parameters differ quite a bit from the marginal means, given in Table 20.4,
due to the same phenomenon described in Chapter 16, governing the rela-
tionship between a generalized linear mixed model and the marginal model
derived thereof. The variance of bi1 moved to the boundary of the para-
meter space. This can have a number of reasons, not only that it is truly
equal to zero. For example, it can be an effect of misspecification (ignor-
ing the covariances), or the true variance component could be negative,
which is not allowed in the current NLMIXED procedure. We do notice
from the two-stage analysis in Table 20.4 that the variability in β1i is rel-
atively small, even though the magnitude of the parameter is rather large.
This suggests omitting the parameter may be sensible. Alternatively, both
d11 and d44 could be removed, the latter based on using a χ2

0:1 p-value.
SAS users should be warned that SAS output is incorrectly based on a
χ2

1 distribution. In summary, given the size of the dataset, it is better to
restrict attention to two-stage analyses. Studies like this one are often used
to get a first idea of the shape of the plasma concentration curve. More
precise statistical inference is then based on larger, purposefully designed
studies. The situation with the orange tree data was different, as only one
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TABLE 20.7. Indomethacin Study. Mixed bi-exponential model, with power vari-
ance model and independent random effects.

Parameter Estimate (s.e.)
Fixed effects:

β1 0.884 (0.061)
β2 0.181 (0.062)
β3 -1.752 (0.141)
β4 -1.423 (0.083)

Residual variance:

σ 0.125 (0.017)
θ 0.886 (0.087)
Random-effect (co-)variances:

d11 0.000 (0.000)
d22 0.086 (0.016)
d33 0.452 (0.103)
d44 0.136 (0.076)

random-effect was assumed, entering linearly in the otherwise non-linear
mean function.

20.7.2 Pharmacokinetic Modeling and the Theophylline Data
Theophylline is a well-known anti-asthmatic agent, administered orally
(Boeckmann, Sheiner, and Beal 1992, Davidian and Giltinan 1995). Twelve
subjects are given oral dose at time 0, whereafter blood samples are taken
at 10 time points over the following 25 hours. The blood samples are then
assayed for theophylline concentration. Individual profiles are presented in
Figure 20.6. A common model for the kinetics of theophylline after oral ad-
ministration is the so-called one-compartment open model with first-order
absorption and elimination, as stated by Davidian and Giltinan (1995):

Yij = Ci(tij) =
kaikeidi

C	i(kai − kei)

× [exp(−keitij) − exp(−kaitij)] + εij , (20.21)

where Ci(tij) is the observed concentration on subject i at occasion j (time
tij), di is dose, administered to subject i, kai is the fractional absorption
rate constant for subject i, kei is the fractional elimination rate constant
for subject i, and C	i is the clearance for subject i.
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FIGURE 20.6. Theophylline Data. Individual profiles.

There are noteworthy differences with the indomethacin data (Sections
20.3 and 20.7.1). Not only is a different model used, based on different
substantive theory, also the data exhibit a different structure in the sense
that a larger set of data is used, with further variable measurement times
across subjects.

Let us first model the individual profiles separately, in line with the
initial indomethacin analysis (Section 20.3). To facilitate model fitting, we
rewrite:

C	 = exp(β1), (20.22)
ka = exp(β2), (20.23)
ke = exp(β3). (20.24)

Results of the model fit are presented in Table 20.8. The variance-covariance
of the β parameters in Table 20.9 is equal to:

D̂ =

⎛⎝ 0.079 −0.023 0.047
−0.023 0.547 −0.012

0.047 −0.012 0.035

⎞⎠ (20.25)

with corresponding correlation matrix

D̂corr =

⎛⎝ 1.000 −0.109 0.904
−0.109 1.000 −0.089

0.904 −0.089 1.000

⎞⎠ . (20.26)

It is clear that there is substantial correlation between the clearance and
fractional elimination rate parameters. This suggests including correlated
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TABLE 20.8. Theophylline Data. One-compartment open model fitted to each
subject separately.

β1 β2 β3 σ2

Subject Parameter estimates
1 -3.916 0.575 -2.920 0.390
2 -3.106 0.664 -2.286 0.813
3 -3.230 0.898 -2.508 0.040
4 -3.286 0.158 -2.436 0.521
5 -3.133 0.386 -2.425 1.224
6 -2.973 0.152 -2.307 0.222
7 -2.964 -0.386 -2.280 0.091
8 -3.069 0.319 -2.386 0.335
9 -3.421 2.182 -2.446 0.226
10 -3.428 -0.363 -2.604 0.123
11 -2.860 1.348 -2.322 0.039
12 -3.170 -0.183 -2.248 0.255

Mean -3.213 0.479 -2.431
Variance 0.079 0.547 0.035

Standard errors
1 0.109 0.129 0.144 0.166
2 0.139 0.222 0.205 0.347
3 0.033 0.059 0.047 0.017
4 0.121 0.174 0.184 0.222
5 0.154 0.217 0.227 0.522
6 0.103 0.159 0.163 0.095
7 0.062 0.107 0.114 0.039
8 0.108 0.168 0.166 0.143
9 0.085 0.321 0.108 0.096
10 0.057 0.086 0.094 0.052
11 0.034 0.065 0.047 0.017
12 0.069 0.120 0.122 0.109

random effects into the model to achieve a hierarchical analysis. To this
end, (20.22)–(20.24) are rewritten as:

C	i = exp(β1 + bi1),
ka,i = exp(β2 + bi2),
ke,i = exp(β3 + bi3).
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TABLE 20.9. Theophylline Data. Mixed one-compartment open model with cor-
related random effects.

Parameter Estimate (s.e.)
Fixed effects:

β1 -3.277 (0.046)
β2 0.537 (0.063)
β3 -2.454 (0.064)
Residual variance:

σ2 0.623 (0.083)
Random-effect variances:

d11 0.057 (0.022)
d12 -0.012 (0.018)
d22 0.264 (0.054)
d13 0.030 (0.020)
d23 -0.025 (0.017)
d33 0.035 (0.017)

The two-stage analysis provides useful starting values for fitting the hier-
archical model. Because the model is forced to go through 0 when time
is equal to 0, the corresponding measurement is removed prior to con-
ducting the hierarchical analysis, as it may otherwise adversely affect the
variance component and induce fitting problems. Parameter estimates and
standard errors for fixed effects, residual variance, and variance-covariance
parameters of the random-effects structure are presented in Table 20.9. The
variance components can be assembled into

D̂ =

⎛⎝ 0.057 −0.012 0.030
−0.012 0.263 −0.025

0.030 −0.025 0.035

⎞⎠ (20.27)

Note the effect of shrinkage, when compared to (20.25), obtained from the
two-stage analysis. The correlation matrix, derived from (20.27) equals:

D̂corr =

⎛⎝ 1.000 −0.098 0.672
−0.098 1.000 −0.261

0.672 −0.261 1.000

⎞⎠ ,

with correlations somewhat less extreme than those in (20.26), obtained
from the two-stage analysis. A graphical comparison of fitted and observed
profiles, presented in Figure 20.7, shows the fit is acceptable.
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FIGURE 20.7. Theophylline Data. Comparison of observed profiles with those
obtained from fitting the one-compartment open model.

Although the fit here is acceptable, it is useful to point out an alternative
route. Because the correlation between clearance and fractional elimination
rate is very high in (20.26), one might want to assume they are described
by the same random effect, rather than two (highly) correlated ones. Then,
bi3 would not be a separate random effect anymore, but merely a copy of
bi1 or, more sensibly, a fixed multiple bi3 = λbi1, with λ a fixed variance
inflation parameter, to be estimated along with the other fixed effects.

20.7.3 Pharmacodynamic Data
Pharmacokinetic (PK) data provide full profiles of response to drug admin-
istration, usually based on measuring a few subjects over an extended pe-
riod of time. The exposure is the amount of drug administered, i.e., the dose
level. The so-obtained information may be imprecise due to inter-subject
variability. One reason for this is that for the same dose level administered,
different subjects can absorb different amounts, whence the amount of drug
available at the site of action is different.

Pharmacodynamic (PD) research aims to study the physiologic response
by relating the drug response to the concentration available at the site of
action. One issue is that the site of action in the body may not be accessi-
ble for examination, and then plasma or serum concentration can be used
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instead. Doing so reduces the effects of inter-kinetic variability, since the
drug (seemingly) acts differently in different subjects, because absorption
and elimination are different. Some have advocated that, ideally, this type
of investigation ought to be done for all medicinal products, but doing so
would make the logistics almost impossible. For a thorough discussion, see
Davidian and Giltinan (1995). Usually, a relatively large number of subjects
is measured repeatedly, both for drug concentration as well as for outcome.
Because concentration may not vary too widely within a patient, a good
range across patients should be ensured.

Unlike in PK modeling, one often does not have strong theory available,
from which differential equations and ultimately models can be derived.
Modeling therefore proceeds rather empirically, in line with practice in a
vast number of substantive fields. A commonly used (empirical) functional
form is:

Y = E0 +
Emax − E0

1 + EC50/Ce
, (20.28)

where E0 is the response at zero concentration, Emax is the maximal re-
sponse, EC50 is the concentration eliciting a response halfway between E0
and Emax, and Ce is concentration of the drug at the effect site. Fitting a
model like (20.28), using repeated measures data, is straightforward using
non-linear mixed-effects methodology, such as developed in this chapter.
The general model would then be written as:

Yij = E0i +
Emax,i − E0i

1 + EC50,i/Cij
+ εij ,

with Yij the jth repeated measurement for subject i.

20.8 The Songbird Data

20.8.1 Introduction
Van der Linden et al (2002) and Van Meir et al (2004) established a novel
in vivo magnetic resonance imaging (MRI) approach to discern the func-
tional characteristics of specific neuronal populations in a strongly con-
nected brain circuitry, the so-called song control system in the songbird
brain. The high vocal center (HVC), one of the major nuclei in this circuit,
contains interneurons and two distinct types of neurons projecting respec-
tively to the so-called nucleus robustus arcopallii (RA) or to area X. This
is graphically represented in Figure 20.8.

These authors analyzed the effect of testosterone on the dynamics of
Mn2+ accumulation in RA and area X of female starling in individual
birds injected with manganese in their HVC. The authors used relatively
straightforward curve fitting techniques, combined with analysis of vari-
ance ideas. Although simple in nature, such techniques ignore dependencies



20.8 The Songbird Data 369

FIGURE 20.8. Songbird Data. Schematic representation of song control nuclei in
the songbird brain.

in measurements in the same bird and may therefore be sub-optimal. To
improve upon this approach, non-linear mixed-effects models prove to be
useful. Using this more refined way of analysis Serroyen et al (2005) were
able to detect testosterone effects that previously had gone unnoticed.

The outcomes analyzed are SI of RA, area X, and HVC. For the for-
mer two responses reasonably well accepted non-linear functional forms
exist, but these have been used without taking the within-bird correlation
into account. The same is not true for HVC. From graphically inspecting
the data, it is clear that conventional linear models may be insufficient.
We explore two possible routes: fractional polynomials that extend the
collection of classical polynomial shapes (Royston and Altman 1994, Ver-
beke and Molenberghs 2000, Chapter 24, see also Section 12.4.2) and the
two-compartment model known from pharmacokinetics and described in
Section 20.3, to which the HVC problem is related.

Turning to the data, ten first-year female starlings were caught in the
wild during the winter before February and housed in two indoor cages on
a stable 10–14 hour light-dark light cycle, selected to maintain birds in a
durable state of photosensitivity. All birds were studied by MRI for the first
time between March 15 and April 30, 2001. One or two days after the first
MRI measurement, the five treated birds were implanted with a capsule
of crystalline testosterone subcutaneously in the neck region. The capsule
was left empty for the five control birds. Birds were studied by MRI again
five to six weeks after the treatment.
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Previously, Van der Linden et al (2002) have employed the following
parametric shape for a bird’s profile:

SIij(RA) =
(φ0i + φ1iGi)t

η0i+ηi1Gi

ij

(τ0i + τ1iGi)η0i+η1iGi + tη0i+η1iGi

ij

+γ0i +γ1G1i +εij . (20.29)

Here, SIij(RA) is the measurement at time j for bird i, Gi is an indicator
for group membership (1 for testosterone treated birds and 0 otherwise),
and tij is the measurement time. The maximal signal intensity, sometimes
termed SImax, is denoted by φ0i for an untreated bird and φ0i + φ1i for
a treated one. The time required to reach 50% of this maximum (T50)
is τ0i and τ0i + τ1i, respectively. The shape of the curve is governed by
the parameters η0i and η0i + η1i. Finally, εij is a measurement error term,
typically assumed to follow a normal distribution. The genesis of this model
is rooted in knowledge about Mn axonal transport and changes induced in
the bird’s brain caused by testosterone treatment. More details can be
found in Brenowitz et al (1997), Van der Linden et al (2002), and Van
Meir et al (2004).

Van der Linden et al (2002) fitted Model (20.29) to each of the birds
under study, and then applied ANOVA to the estimated parameters. Such
an approach rests on the assumption that the measurements within a bird
are uncorrelated, similarly to the assumption made in Section 20.3 for the
indomethacin data. To properly account for such correlation, we place this
model within a mixed-effects framework, where the parameters of the above
model are appropriately split into fixed and random effects.

20.8.2 A Non-linear Mixed-effects Model
Let us introduce random effects into model (20.29). In this model, all pa-
rameters (φ0i, φ1i,. . . ) were assumed to be different from songbird to song-
bird, since the non-linear model was fitted to each bird separately. We now
are able to analyze all data together, separating out averaged (fixed) effects
from bird-specific (random) effects, using the following replacements:

φ0i + φ1iGi → φ0 + φ1Gi + fi, (20.30)
η0i + η1iGi → η0 + η1Gi + hi, (20.31)
τ0i + τ1iGi → τ0 + τ1Gi + ti. (20.32)

Thus, the φ, η, and τ parameters are fixed effects, whereas the vector
(fi, hi, ti) is a bird-specific vector of random effects, assumed to follow
a trivariate normal distribution with mean 0 and covariance matrix D.
Combining model (20.29) with replacements (20.30)–(20.32), we obtain:

SIij(RA) =
(φ0 + φ1Gi + fi)t

η0+η1Gi+hi

ij

(τ0 + τ1Gi + ti)η0+η1Gi+hi + tη0+η1Gi+hi

ij
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TABLE 20.10. Songbird Data. Parameter estimates (standard errors) for the final
model, fitted to SIij(RA) at the first and second periods.

Estimate (s.e.)
Effect Parameter First Second

φ0 0.4749 (0.0451) 0.4526 (0.0478)
η0 2.5608 (0.1375) 2.1826 (0.0802)
η1 0.4285 (0.1060)
τ0 3.1737 (0.1658) 2.8480 (0.1761)

Var(fi) d11 0.0198 (0.0091) 0.0225 (0.0101)
Var(ti) d22 0.2438 (0.1179) 0.2881 (0.1338)
Var(hi) d33 0.1457 (0.0787)
Cov(fi, ti) d12 0.0587 (0.0306)
Var(εij) σ2 2.2E-04(2.0E-05) 1.9E-04(1.7E-05)

+γ0 + γ1Gi + εij . (20.33)

The parameters retain the meaning they had in (20.29).
Regarding the residual error terms εij , we assume them to be mutually

independent and independent from the random effects, and to be drawn
from a N(0, σ2) distribution.

20.8.3 Analysis of SI at RA
We will build a model for the second period, where treatment has been
applied. We will also devote some comments to the first period, where mea-
surements are taken prior to the application of treatment and consequently
no treatment effect would be expected.

Let us discuss the model for the second, and more interesting, period. We
will use Model (20.33) to analyze these data of which the general form has
8 fixed-effects parameters and 7 variance components (3 variances in D, 3
covariances in D, and σ2). The model is fitted using the SAS procedure
NLMIXED, using adaptive Gaussian quadrature. Backward selection led
to the model:

SIij(RA) =
(φ0 + fi)t

η0+η1Gi

ij

(τ0 + ti)η0+η1Gi + tη0+η1Gi

ij

+ εij . (20.34)

Fitted curves, for each bird separately, are displayed in Figure 20.9. A joint
representation of these as well as the group specific averages, are given
in Figure 20.10. These curves support our model selection procedure and
confirm the final model is a parsimonious and adequate description of the
data.
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FIGURE 20.9. Songbird Data. Fitted curves for SIij(RA) at the second period,
for each individual bird separately.

It is worth to note that, in contrast to previous analyses, we do find a
difference between both groups, in the sense that the shape parameter η is
different between them. Further, there is substantial between-bird variabil-
ity: there is a bird-specific component in the maximum change in relative
signal intensity as well as in the time required to reach 50% of the maxi-
mum.

A similar model building exercise led to a model for the first period as
well (Table 20.10). Here, in line with expectation, no effect of treatment
was detected, as the treatment was applied after the first treatment.

20.8.4 Model Strategies for HVC
As stated before, there is a clear view on the hierarchical model needed to
analyze RA and area X, rooted in the non-linear model used in the litera-
ture and previewed in the previous section. This is less the case for HVC.
Therefore, it seems prudent to consider at least two different modeling
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FIGURE 20.10. Songbird Data. Individual and marginal fitted curves for
SIij(RA) at the second period.

strategies: (1) fractional polynomials and (2) the bi-exponential pharma-
cokinetic model (20.19) already used in Section 20.7.1.

Let us briefly expand on fractional polynomials. As stated in, for exam-
ple, Section 12.4.2, fractional polynomials allow a wide variety of paramet-
ric shapes by considering not only integer powers of a key covariate (e.g.,
time), but also fractional powers. This is handy whenever no clear prior
view on the model is available. As soon as non-integer powers are allowed
for, the number of potential models is virtually endless, and therefore it is
wise to consider, a priori, a sensible model building strategy. This has been
provided by Royston and Altman (1994).

Formally, Royston and Altman (1994) define a fractional polynomial as
any function of the form

f(u) = φ0 +
m∑

k=1

φkx(pk),

where the degree m is a positive integer, where p1 > . . . > pm are real-
valued prespecified powers, and where φ0 and φ1, . . . , φm are real-valued
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unknown regression coefficients. Finally, x(pk) is defined as

x(pk) =
{

xpk if pk �= 0
ln(x) if pk = 0.

(20.35)

Thus, not only the conventional powers x, x2,. . . are allowable, also ln(x),√
x (for pk = 0.5), 1/x (for pk = −1), etc.
In the context of linear and logistic regression analyses, Royston and Alt-

man (1994) have shown that the family of fractional polynomials is very
flexible and that models with degree m larger than 2 are rarely required.
In practice, several values for the powers p1, . . . , pm can be tried, and the
model with the best fit is then selected. Using a fractional polynomial
within a linear or a non-linear mixed-effects model, is reasonably straight-
forward. One is merely required to construct the necessary covariate powers,
logarithms, and interactions thereof, as a set of covariates in the dataset
to be analyzed. In our case, fractional polynomials will be applied to the
time covariate. Of course, given the relative complexity of the non-linear
mixed effects model, we propose to keep the degree m of the polynomials
relatively small. One can then fit several models with a variety of powers
p1, . . . , pm.

Although the fractional polynomial approach is flexible, it is also empiri-
cal in nature, allowing on the one hand a wide variety of parametric shapes,
useful for a variety of applications, but not offering immediate biological
insight into the meaning of the parameters and their estimated values. Ar-
guably, their value lies in confirming or questioning other models, i.e., by
way of sensitivity analysis, and to test treatment or other effects. In the
next section, we will propose a different model that follows from pharma-
cokinetic principles.

20.8.5 Analysis of SI at HVC
Let us first consider the fractional polynomial approach. These were fitted
with a range of power combinations. The combination associated with the
highest likelihood value consists of ln(time) and

√
time. This leads to the

following initial model:

SIij(HVC) = (α0 + α1Gi + ai) + (λ0 + λ1Gi + li) ln(tij)

+(δ0 + δ1Gi + di)t0.5
ij + εij . (20.36)

Parameter estimates and standard errors for the final model, obtained
using backward selection, are presented in Table 20.11. Note that no sig-
nificant group differences were found. The final model equals:

SIij(HVC) = (α0 + ai) + (λ0 + li) ln(tij) + (δ0 + di)t0.5
ij + εij . (20.37)

A graphical inspection (not shown) revealed the fit to be acceptable.
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TABLE 20.11. Songbird Data. Parameter estimates (standard errors) for the final
fractional polynomial model, fitted to SIij(HVC) at the first and second period.

Estimate (s.e.)
Effect Parameter First Second

α0 3.4277 (0.2190) 2.9382 (0.3732)
α1 -1.3765 (0.3080)
λ0 1.3278 (0.2354) 0.4140 (0.1277)
λ1 -1.0455 (0.3286)
δ0 -1.7436 (0.1897) -0.8395 (0.1247)
δ1 1.1783 (0.2631)

Var(ai) d11 0.2091 (0.1052) 1.3857 (0.6227)
Var(li) d22 0.2502 (0.1205) 0.1597 (0.0748)
Var(di) d33 0.1432 (0.0633) 0.1493 (0.0532)
Cov(ai, di) d13 -0.0632 (0.0351) -0.2675 (0.1271)
Cov(li, di) d23 -0.1743 (0.0858) -0.1192 (0.0583)
Var(εij) σ2 0.0076 (0.0007) 0.0022 (0.0002)

Let us now turn to the pharmacokinetic two-compartment model (20.19).
The HVC problem is strongly connected to pharmacokinetic theory, which
studies the dispersion of a compound through a living organism. Because
the HVC region can be regarded as the central compartment from which
manganese is dispersed to area X and SA, a two-compartment model seems
a reasonable choice. Let us consider a ‘mixed-effects’ way of representing
(20.19):

Yij = exp(βi1) exp[−exp(−βi2 tij)]
−exp(βi3) exp(−exp[−βi4 tij)] + εij . (20.38)

Decomposing the β’s into fixed and random effects, thereby including a
group effect as well, we obtain:

Yij = e(β1+γ1Gi+b1i) exp[−e(−β2+γ2Gi+b2i) tij ]

−e(β3+γ3Gi+b3i) exp[−e(−β4+γ4Gi+b4i) tij ] + εij . (20.39)

Parameter estimates and standard errors, obtained after backward model
selection, are presented in Table 20.12. The final model equals:

Yij = e(β1+b1i) exp[−e(−β2+b2i) tij ]

−e(β3+b3i) exp[−e(−β4+b4i) tij ] + εij . (20.40)

It is important to note that, while the fractional polynomial and two-
compartment modeling strategies are rather different in nature, both coin-
cide in the conclusions that (1) there is no treatment effect at the second
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TABLE 20.12. Songbird Data. Parameter estimates (standard errors) for the final
two-compartment model, fitted to SIij(HVC) at the first and second periods.

Estimate (s.e.)
Effect Parameter First Second

β1 0.8306 (0.0921) 0.7964 (0.1330)
γ1 -0.3596 (0.1305)
β2 -2.7425 (0.1974) -2.7088 (0.0627)
γ2 0.2500 (0.2879)
β3 1.2516 (0.6802) -0.5711 (0.6436)
γ3 -2.5839 (1.0243)
β4 0.9094 (0.1846) 1.2311 (0.4906)
γ4 0.0051 (0.4076)

Var(b1i) d11 0.0416 (0.0191) 0.1744 (0.0792)
Var(b2i) d22 0.1810 (0.1045) 0.0241 (0.0157)
Var(b3i) d33 2.0659 (1.2933) 1.5106 (1.1534)
Var(b4i) d44 0.0690 (0.1086) 1.3865 (1.1047)
Var(εij) σ2 0.0050 (4.7E-04) 1.4E-03 (1.4E-04)

period and (2) there is a strong indication, by way of random effects, for
between-bird variability.

Models for the first period were built as well. The results are reported
in Tables 20.11 and 20.12. Again, both final models exhibit an excellent fit
(details not shown) and in both cases, treatment effects are found.

20.9 Discrete Outcomes

In Section 20.4, a general framework was developed for non-linear longi-
tudinal models, building on generalized linear models, linear mixed-effects
models, generalized linear mixed models, etc. In Section 20.5, we zoomed
in on a random-effects specification, producing so-called non-linear mixed
models. A very general mean specification, conditional upon random effects,
is then given by (20.17). This formulation is general enough to encompass
non-linear random-effects models for both Gaussian and non-Gaussian out-
comes. All examples analyzed so far have been of a Gaussian type. Of
course, differences between the two settings will show up when (20.17) is
made part of a full model specification. In the continuous examples, it could
be thought of as specifying the mean of a normal distribution, whereas for
a binary outcome it will lead to the probability in a Bernoulli model. In
the latter case, the right hand side of (20.17) has to be chosen such that a
valid probability is obtained. In generalized linear models, this is done via
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the choice of an appropriate link function. Now, the link function has been
integrated into the h(·) function, but it might be convenient to separate
them:

g−1 [E(Yij |bi, xij , zij)] = h̃(xij , β, z′
ijbi), (20.41)

where obviously h(·) ≡ g[h̃(·)]. Here again, g(·) is a link function and h̃(·) is
said to be the non-linear predictor function. Although this decomposition
is convenient for the modeler, to ensure a valid conditional mean model
structure be obtained, it is strictly speaking not necessary for estimation.
In other words, the theory developed in Section 20.5, which itself goes
back to the theory developed for the generalized linear mixed model in
Chapter 14, applies here without the need for modification.

20.9.1 Analysis of the NTP Data
The NTP data, introduced in Section 2.7, have been analyzed before in
Sections 7.2.3, 8.9, 9.6, 11.4, 12.4, 14.7, and 16.5. In Section 16.5, a gener-
alized linear mixed model was fitted to the external outcome of the DEHP
study. Often, a simple linear dose model, either directly describing the mean
in continuous outcomes or transformed by means of a suitably chosen link
function for non-Gaussian outcomes, fails to capture the true dose-response
relationship. A flexible yet simple extension is by means of including a
power parameter, such as in Faes et al (2004). This implies that general-
ized linear mixed model (14.11) would change to

Yij |bi ∼ Bernoulli(πij),
logit(πij) = β0 + bi + βd(di + 0.01)γ , (20.42)

with γ a power dose effect, next to the usual linear dose effect βd. We have
added 0.01 to the dose, to avoid problems at dose level zero, i.e., to stay
away from raising the value zero to a power. The so-obtained null model of
linear dose effect only is equivalent to the one obtained without the offset
0.01. The g function in (20.41) is the logit link and h̃ is the right hand side
of (20.42).

Of course, many other dose-response curves can be tried in the absence of
substantive knowledge such as, for example, in the pharmacokinetic data
analyzed in Sections 20.3, 20.7.1, and 20.7.2, and, to a lesser extent, in
the songbird data (Section 20.8). Model (20.42), although a simple and
straightforward extension of (14.11), carries an intrinsic complexity. Testing
the null hypothesis of no dose effects involves the parameters βd and γ
at the same time, in a non-trivial way. This point is briefly discussed in
Section 20.10. It is in contrast to testing the null hypothesis of a linear dose
trend, which comes down to testing for H0 : γ = 1, a standard problem.

Parameter estimates, obtained using adaptive Gaussian quadrature with
an algorithm-defined number of quadrature points, are presented in Ta-
ble 20.13. We used Newton-Raphson as an updating algorithm, for its
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TABLE 20.13. NTP Data. Parameter estimates (standard errors) for a non-linear
mixed-effects model with logit link. β0, βd, and γ are the marginal intercept, linear
and power dose effects, respectively; τ 2 is the variance of the random intercept.

Outcome Parameter DEHP EG DYME
External β0 -11.36(8.96) -7.71(1.75)

βd 11.37(8.78) 8.60(1.81)
γ 0.34(0.36) 1.26(0.50)
τ 1.09(0.27) 1.19(0.36)
τ2 1.18(0.59) 1.41(0.85)

Visceral β0 -5.19(0.62) -7.22(1.14)
βd 5.36(0.76) 5.50(1.17)
γ 1.15(0.31) 2.10(1.26)
τ 1.21(0.26) 1.52(0.45)
τ2 1.47(0.64) 2.30(1.37)

Skeletal β0 -6.07(0.82) -10.58(5.36) -6.74(0.98)
βd 6.06(0.95) 11.03(5.28) 9.20(1.15)
γ 1.07(0.29) 0.24(0.15) 0.97(0.21)
τ 1.43(0.30) 1.40(0.20) 1.64(0.28)
τ2 2.06(0.88) 1.95(0.56) 2.68(0.92)

Collapsed β0 -4.64(0.51) -11.25(6.21) -5.73(0.70)
βd 7.38(0.84) 11.82(6.13) 9.42(0.96)
γ 1.28(0.25) 0.22(0.15) 1.19(0.20)
τ 1.34(0.23) 1.39(0.20) 1.34(0.24)
τ2 1.80(0.62) 1.94(0.56) 1.80(0.65)

quadratic convergence properties near the maximum. For non-linear prob-
lems of this type, the convergence of quasi-Newton methods close to the
maximum can be painstakingly slow.

The power parameter is not significant for the external outcome in the
DEHP study and for the visceral outcome in the DYME study. For all other
DEHP and DYME study outcomes, it is significant. The case of the EG
data is a little problematic, in the sense that convergence to a plausible
value for the external and visceral outcomes is hard or impossible to reach.
This is not surprising, as the number of events is extremely small in these
cases: 23 out of 1028 (2.24%) and 11 out of 1028 (1.07%), respectively. In
contrast, for the skeletal outcome this number is 237 out of 1028 (23%).
The number of events for the DEHP study are 69, 72, and 66 out of 1082
(149 for the collapsed outcome), and 99, 31, and 177 out of 1191 (207 for
the collapsed outcome) for the DYME study. In other words, Model (20.42)
is overly complex for the external and visceral outcomes in the EG study,
and a linear-logistic specification, as in (14.11), would be sufficient.
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20.10 Hypothesis Testing and Non-linear Models

Power models such as the dose-response model (20.42) allow for flexible
modeling of the dose-response relationship, as illustrated in Section 20.9.1.
However, as studied by Faes et al (2004), the use of power models leads to
some critical statistical issues in the context of hypothesis testing. Indeed,
the case of no effect of dose di can be formulated as either βd = 0 or γ = 0.
This corresponds to the union of two planes in the parameter space of
(β0, βd, γ), i.e., the planes with equation βd = 0 and γ = 0, respectively.
Furthermore, the condition that βd = 0 or γ = 0 is equivalent to βdγ = 0.
The null model is then maximized, not in a single point, but in the union
of two axes. This model is non-standard and hence classical asymptotic
testing theory cannot be invoked.

Further, note that the regression parameters are not identifiable under
the null hypothesis of no dose effect. Thus, we are confronted with (nui-
sance) parameters vanishing under the null hypothesis. This problem has
received considerable attention lately (Conniffe 2001, Davies 2002, Severini
2004), is related to but different from the problem of null hypotheses on the
boundary of the parameter space (Hall and Præstgaard 2001, Verbeke and
Molenberghs 2003), and is one of the issues that can arise when non-linear
predictors are used (Davidian and Giltinan 1995, Seber and Wild 2003).

For convenience, let us rewrite the right hand side of (20.42) as

η = h̃(di, β0, βd, γ, bi) = β0 + bi + βddi
γ , (20.43)

where, if necessary, di can again be replaced by di +0.01. The parameter γ
is not identifiable if βd = 0, since η then reduces to β0. If γ = 0, the model
simplifies to β0 +βd. In this case, one cannot identify β0 and βd separately,
although their sum is identifiable. When conducting a test of no dose effect
from a frequentist point of view, there are severe complications due to this
non-identifiability issue. Consider, for example, the likelihood ratio test
statistic. Assume the maximum under the null is reached for some value
η∗. Then, all triplets (β0 = η∗, βd = 0, γ) reach the maximum, as well as all
triplets (β0, βd = η∗−β0, γ = 0). As a consequence, under the hypothesis of
no dose effect, the likelihood is maximized at any parameter combination
on two intersecting lines. Faes et al (2004) proposed a Bayesian route to
deal with this non-standard problem.

20.11 Flexible Functions

Analyses such as those of the orange tree, songbird, indomethacin, theo-
phylline, and NTP data underscore the tremendous flexibility and general-
ity of the non-linear mixed model (20.41). It encompasses both continuous
and non-Gaussian data, when a particular functional form is available as
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well as when a more empirical approach to model formulation is necessary.
For example, the models for both the indomethacin and the theophylline
data are based on pharmacokinetic theory, the parametric models deriving
from an appropriate set of differential equations. One of these models, the
bi-exponential model (20.11), could be used for the songbird data as well.
The model for the NTP data was a simple power model extension of the
linear model used before. For the orange tree growth data, the selected
model has a more pragmatic background.

In spite of this flexibility, we should not loose from sight that the model
is fully parametric, based on full distributional assumptions, with paramet-
rically specified mean, variance, and association structure. For continuous
outcomes (Chapter 4), the outcome is usually assumed to be normally dis-
tributed, whereas for non-Gaussian outcomes one assumes the distribution
to be Bernoulli, binomial, multinomial (Chapter 18), Poisson (Chapter 19),
etc. In the random-effects case, one usually complements these assumptions
with normally distributed random effects in order to specify the association
structure.

Sometimes, it may be desirable to increases one’s distance from fully
parametrically specified models. There are many ways in which a model can
be non-parametric or semi-parametric. First, one may prefer not to fully
specify the outcome distribution. When the specification is restricted to a
few moments only, generalized estimating equations (Chapter 8) or pseudo-
likelihood (Chapter 9) come into view. Considerable attention has gone to
non-parametric specification of the random-effects distribution, for which
so-called non-parametric maximum likelihood (NPML, Section 13.3.3, see
also Böhning 1999, McLachlan and Peel 2000) has been developed. The
random-effects distribution is then discrete with finite support. In other
words, a finite mixture distribution is obtained as marginal model for the
responses. Intermediate forms have been developed as well, such as assum-
ing the random-effects distribution is a finite mixture of normal distribu-
tions (Verbeke and Molenberghs 2000, Chapter 12, see also Chapter 23 in
this volume).

Although parametric in nature, the fractional polynomials described in
Section 20.8.4 are very flexible, and they can be considered as going a long
way toward non-parametric models. Another versatile approach is by means
of splines (Ruppert, Wand, and Carroll 2003). Various forms of splines have
been used in the literature, first in conventional regression problems and
then also in the context of longitudinal and correlated data. The essence of
a spline approach is the joining of smooth functions, usually polynomials,
in a finite number of knots, where the transition from one base function
to the other is made in a continuous way. Although splines can be used
in the fixed-effects regression function, several authors have employed this
idea at the random-effects level as well, providing a very flexible tool to
capture subject-specific structure, and thus association. A seminal paper
in this respect was written by Verbyla et al (1999), and a similar method
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is reported in Ruppert, Wand, and Carroll (2003). Although formulating
random-effects by means of splines is in itself a nice idea, the beauty lies in
the fact that such a model can be written in such a way that standard lin-
ear mixed-effects model theory applies, in other words, that the parameters
can be estimated essentially by solving an appropriate set of mixed-model
equations, where a particular spline-based model translates into a partic-
ular choice for the random-effects design matrix Zi. Of course, this result
holds by virtue of linearity and hence holds for the linear mixed-effects
model. However, thanks to the linearization-based methodology, employed
in Section 8.8 and in particular also in Section 14.4, the same concepts
can be applied to generalized linear mixed models and in fact to non-linear
mixed models as well. A version of this methodology has been implemented
in the SAS procedure GLIMMIX.

In Section 20.11.1, we will provide a brief introduction to smoothing
splines for random effects and then illustrate these ideas using the ordi-
nal analgesic trial outcomes in Section 20.11.2, building upon the analysis
presented in Section 18.4.

20.11.1 Random Smoothing Splines
As an alternative to consider the fully general, non-linear but paramet-
ric model (20.41), we might want to consider a version where the ran-
dom effects structure contains a spline part. Ruppert, Wand, and Carroll
(2003, Sections 13.4–13.5), in analogy with Verbyla et al (1999), consid-
ered approximate low rank thin plate splines, and employ the analogy with
mixed-model fitting to arrive at efficient updating algorithms. This method
is employed in the SAS procedure GLIMMIX as well (SAS Institute Inc.
2004, p. 107). The key result is the similarity between the penalized spline
fitting criterion and the minimization problem that yields the mixed-model
equations. There is a difference with classical spline fitting since in this ap-
proach the spline coefficients are random effects, whereas they are fixed
effects in a classical approach.

Consider a classical linear mixed model formulation for an outcome vec-
tor Y i or, using data approximations as in Section 14.4.1, for an approx-
imate outcome vector Y ∗

i . For convenience, stack all outcome vectors for
all subjects i = 1, . . . N on top of each other, with similar conventions for
random vectors, and design matrices ordered in a block-diagonal fashion:

Y = Xβ + Zb + ε. (20.44)

The above model is replaced by an appropriate expression for Y ∗ in the
generalized linear case, as in (14.7). Mixed-model equations are derived
from maximizing the joint density f(b, ε) with respect to β and b. Even
though b is not a vector of outcomes, and hence this approach looks at
odds with genuine likelihood inference, it is well-known to work (Henderson
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1984). Thus, if we assume that var(ε∗) = σ2I and var(b) = τ2I, then
maximization of this joint density is equivalent to minimization of

Q(β, b) =
1
σ2 (Y ∗ − Xβ − Zb)′(Y ∗ − Xβ − Zb) +

1
τ2 b′b. (20.45)

Next, consider a linear spline, as in Ruppert, Wand, and Carroll (2003,
p. 108). For example,

f(x) = β0 + β1x +
K∑

k=1

γk(x − tk)+. (20.46)

The coefficients γk in (20.46) are the spline coefficients and the tk are the
knots. Upon incorporating the intercept and covariate effect x into the
design matrix X and the truncated line functions (x− tk)+ into the design
matrix Z, spline fitting is equivalent to the minimization of:

Q∗(β, γ) = (Y ∗ − Xβ − Zγ)′(Y ∗ − Xβ − Zγ) + λ2γ′γ. (20.47)

Note that γ in (20.47) plays the role of the random effects b in (20.45). Since
minimization of (20.47) is equivalent to the minimization of Q∗(β, γ)/σ2,
it is clear that both problems (20.45) and (20.47) are equivalent and the
smoothing parameter is

λ =
σ

τ
.

Clearly, the smoothing parameter is selected automatically and derives from
a single additional variance component, similar to a random-intercept vari-
ance parameter.

In a generalized linear setting, i.e., with non-normal outcomes and link
function different from the identify, the variance of ε for the working variate
Y ∗ is typically structured as

var(ε) = σ2∆−1A∆−1, (20.48)

where A is made up of variance functions and ∆ is an appropriate model
derivative. This leads to a slight update of (20.47):

Q∗(β, γ) =
1
σ2 (Y ∗−Xβ−Zγ)′∆A−1∆(Y ∗−Xβ−Zγ)+

λ2

σ2 γ′γ. (20.49)

The SAS procedure GLIMMIX uses radial base functions and transforms
them to approximate a thin-plate spline.

We will illustrate this method using the ordinal global satisfaction as-
sessment outcome in the analgesic trial in Section 20.11.2, together with
the algorithm used to drive the knots, which is based on a so-called k-d tree
(Friedman, Bentley, and Finkel 1977, Cleveland and Grosse 1991). Exam-
ple SAS procedure GLIMMIX code is presented and discussed, along with
the output, in Section 20.12.6.
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20.11.2 Analysis of the Analgesic Trial
In Section 18.4, we fitted a marginal (GEE) model and a random-intercept
logistic regression model (18.8) to the five-point ordinal GSA outcome in
the analgesic trial. Results were presented in Table 18.2. We will now con-
sider the model:

logitP (Yij ≤ k|tij , Xi) = αk + spli(tij) + β2tij + β3t
2
ij + β4Xi, (20.50)

(k = 1, . . . , 4), where spli(tij) is a random smoothing spline in time, instead
of a random intercept bi. Clearly, association is induced by the inclusion of
such random splines, in analogy with the inclusion of conventional random
effects.

Results of fitting these models, using the SAS procedure GLIMMIX,
are presented in Table 20.14. Apart from the fully parametric random-
intercept model as in Table 18.2 (PQL column), a fully parametric model
with random intercept and random slope in time is considered as well:

logitP (Yij ≤ k|tij , Xi, bi) = αk + b1i +(β2 + b2i)tij +β3t
2
ij +β4Xi, (20.51)

(k = 1, . . . , 4). Clearly, there is very little evidence for the need of addi-
tional random effects. The fixed-effects parameters are virtually unaffected.
The main part of the table concerns the results of the random spline based
estimation. A key factor in the specification of the spline-based method is
the so-called bucket size, a tool to determine the knots. Larger bucket sizes
implies less knots, and vice versa. A discussion of the bucket size concept
is given in Section 20.12.6. We considered bucket sizes of 100, 200, 1000,
2000, and 5000. Because knots occur at data points only, and we have only
four time points (1, 2, 3, 4), it is not surprising to see the five different
bucket sizes give rise to three different fits only: 100 and 200 produce two
knots, 1000 leads to three knots, and all four possible knots are obtained
for bucket sizes 100 and 200. These results illustrate that the number of
knots decreases with bucket size. Between the different random smoothing
splines analyses, results are not very different and, while a difference in
parameter estimates with the fully parametric fits is noticeable, they are
not overwhelming. It is noteworthy that the standard errors in the smooth-
ing based models are smaller, illustrating that a more refined association
structure had led to increased precision. Of course, simply omitting associ-
ation might reduce standard errors as well, but such an assumption would
typically be incorrect. The variance of the random spline coefficients is rel-
atively small, but highly significant nevertheless, underscoring the point
that a considerable improvement of model fit is obtained in this way. Ex-
ample SAS code to fit this type of models is presented in Section 20.12.6.
Using selected output, it is illustrated how the k-d tree splitting process
operates in practice.
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TABLE 20.14. Analgesic Trial. Parameter estimates (standard errors) for gener-
alized linear mixed models (using PQL) with random smoothing splines in time.

Fully parametric models
Effect Par. R.I. R.I.+R.S.
Intercept 1 α1 -1.45(0.50) -1.44(0.50)
Intercept 2 α2 0.90(0.50) 0.51(0.50)
Intercept 3 α3 3.47(0.51) 3.47(0.51)
Intercept 4 α4 5.62(0.54) 5.63(0.54)
Time β2 -0.48(0.30) -0.48(0.30)
Time2 β3 0.10(0.06) 0.10(0.06)
Basel. PCA β4 -0.28(0.13) -0.28(0.12)
Var(b1i) d11 3.53(0.42) 3.28(0.74)
Cov(b1i, b2i) d12 0.05(0.21)
Var(b2i) d22 0.01(0.07)

Smoothing-based models
Bucket size

Effect Par. 5000/2000 1000 200/100
Intercept 1 α1 -1.15(0.41) -1.19(0.42) -1.17(0.41)
Intercept 2 α2 0.68(0.41) 0.70(0.42) 0.67(0.41)
Intercept 3 α3 2.78(0.41) 2.86(0.42) 2.79(0.42)
Intercept 4 α4 4.70(0.44) 4.82(0.45) 4.71(0.44)
Time β2 -0.27(0.30) -0.29(0.31) -0.27(0.31)
Time2 β3 0.06(0.06) 0.07(0.06) 0.06(0.06)
Basel. PCA β4 -0.26(0.08) 0.27(0.08) -0.26(0.08)
Var. R. Sp. τ2 0.093(0.0013) 0.108(0.015) 0.093(0.013)
Knots 1,4 1,2,4 1,2,3,4

20.12 Using SAS for Non-linear Mixed-effects
Models

In this section we will present typical SAS programs used for the analysis
of the various examples analyzed in this chapter. We will concentrate on
the programs and not on the output, which is in line with output obtained
for generalized linear mixed models, as in Chapter 15.

20.12.1 SAS Program for the Orange Tree Data Analysis
The model was fitted, using the SAS procedure NLMIXED. Code to this
effect is
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proc nlmixed data=tree;
parms beta1=190 beta2=700 beta3=350

sigmab=10 sigma=10;
num = b + beta1;
ex = exp(-(day-beta2)/beta3);
den = 1 + ex;
ratio = num/den;
model y ˜ normal(ratio,sigma**2);
random b ˜ normal(0,sigmab**2) subject=tree out=eb;
predict ratio out=ratio;

run;

Clearly, the ability to use program statements ensures very general model
formulations can be obtained. Because we are assuming a normal distribu-
tion, a residual variance σ2 needs to be included. The actual parameter is
σ, in an effort of defensive programming. Note that the ‘out=eb’ option in
the RANDOM statement produces empirical Bayes estimates of the ran-
dom effects. In addition, the PREDICT statement ensures that the quantity
‘ratio’ is predicted, needed for plotting the fitted conditional profiles, shown
in Figure 20.5.

20.12.2 SAS Programs for the Indomethacin Analyses
The models presented in Section 20.3 can be fitted most easily using the
SAS procedure NLMIXED. Code for the homoscedastic model is

proc nlmixed data=indo01 qpoints=3;
parms beta1=1.27 beta2=1.04 beta3=-1.23 beta4=-1.51

sigma=0.1;
aver = exp(beta1)*exp(-exp(beta2)*time)

+ exp(beta3)*exp(-exp(beta4)*time);
model plasma ˜ normal(aver, sigma**2);
by subject;

run;

Clearly, the procedure NLMIXED, used without the RANDOM statement,
becomes a module for standard non-linear regression. The use of the BY
statement ensures that every subject is modeled separately. Parameters
have the same meaning as in Section 20.3. Switching to the heteroscedastic
model is done by replacing the MODEL statement with:

model plasma ˜ normal(aver, (aver**2) * (sigma**2));

Finally, the power model is obtained by means of:

model plasma ˜ normal(aver,(aver**(2*theta)) * (sigma**2));

with appropriate modification to the PARMS statement as well, so as to
provide a starting value for the θ parameter.
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Switching to the hierarchical model, the BY statement is removed and
the RANDOM statement added. SAS code to fit this model is

proc nlmixed data=indo01 noad qpoints=3;
parms beta1=0.89 beta2=0.43 beta3=-1.66 beta4=-2.39 sigma=0.1

theta=1.043 d11=0.052 d22=0.246 d33=0.509 d44=0.937;
aver = exp(beta1+b1)*exp(-exp(beta2+b2)*time)

+ exp(beta3+b3)*exp(-exp(beta4+b4)*time);
model plasma ˜ normal(aver,(aver**(2*theta)) * (sigma**2));
random b1 b2 b3 b4 ˜

normal([0,0,0,0],[d11,0,d22,0,0,d33,0,0,0,d44])
subject=subject;

predict aver out=m.aver;
run;

For ease of convergence with a relatively extensive random-effects struc-
ture, non-adaptive Gaussian quadrature with 3 quadrature points was used.
Adaptive Gaussian quadrature and/or more quadrature points can be con-
sidered to check stability and numerical convergence of the fit.

20.12.3 SAS Programs for the Theophylline Analyses
In line with Section 20.12.2, we first consider a program for the analysis of
the profiles individually:

proc nlmixed data=theoph;
parms beta1=-3.22 beta2=0.47 beta3=-2.45 s2=0.5;
cl = exp(beta1);
ka = exp(beta2);
ke = exp(beta3);
pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc ˜ normal(pred,s2);
by subject;
ods output parameterestimates=theopar;

run;

When switching to the hierarchical analysis, it is important to remove the
structural zeros at baseline:

data help;
set theoph;
if time=0 then delete;
run;

The program then becomes:

proc nlmixed data=help noad qpoints=3;
parms beta1=-3.22 beta2=0.47 beta3=-2.45
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d11=0.03 d12=0 d22=0.4 d13=0 d23=0 d33=0.03
s2=0.5;

cl = exp(beta1 + b1);
ka = exp(beta2 + b2);
ke = exp(beta3 + b3);
pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc ˜ normal(pred,s2);
random b1 b2 b3 ˜ normal([0,0,0],[d11,d12,d22,d13,d23,d33])

subject=subject;
predict pred out=theopred;

run;

The predicted values can be used, among others, to easily graph the empir-
ical Bayes predictions of the individual profiles, as in Figure 20.7. Because
the random-effects structure is extensive, it is best not to use too many
quadrature points, and also adaptive quadrature may be prohibitive. At
the same time, choosing decent starting values is of the utmost importance.

20.12.4 SAS Program for the Songbird Data
An example program for the songbird data, for the outcome SI at area X,
which is not reported in Section 20.8, is given by:

proc nlmixed data=help2 qpoints=3;
parms phim=0.1124 phimdiff=0.1200

eta=2.4158 etadiff=-0.1582
tau=3.8297 taudiff=-0.05259
gamma=-0.00187 gdiff=0.002502
sigma2=0.000156
d11=0.002667 d22=0.2793 d33=0.08505 d12=0 d13=0 d23=0;

num = (phim + phimdiff * group + vm)
* (time ** (eta + etadiff * group + n));

den = ((tau + taudiff * group + t)
** (eta + etadiff * group + n))
+ (time ** (eta + etadiff * group +n ));

aver = num/den + gamma + gdiff * group;
model si_area_X ˜ normal(aver,sigma2);
random vm t n ˜

normal([0, 0, 0],[d11, d12, d22, d13, d23, d33])
subject=bird out=eb2;

run;

Also here, the random-effects structure is rather elaborate. A cautious
model fitting practice is to start with a fixed-effects model, i.e., one without
random effects, analyzing the birds either jointly or separately. Then, ran-
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dom effects can be added one by one, assuming independence between them
at first and then gradually including covariances as well. At each stage, the
parameters from the previous, slightly less elaborate model can be used as
starting values. This is merely a ‘step up’ procedure to attain convergence of
the initial, most elaborate model. Once such model has been fitted, one can
then undertake model simplification through, for example, backward selec-
tion, based on formal testing procedures. Alternatively one could consider
forward selection, which is computationally easier, but there are impor-
tant drawbacks associated to this, as one would determine a fixed-effects
structure without a general random-effects structure and hence based on
improper residuals. This can severely affect the quality of the model built.

20.12.5 SAS Program for the NTP Data
We now present a SAS program used to fit the non-linear dose-response
model (20.42) in Section 20.9.1:

proc nlmixed data=dehp33 technique=newrap;
parms beta0=-5.97 betad=4.45 gamma=1.0 tau=1.27;
eta = beta0 + b + betad*(dose+0.01)**gamma;
expeta = exp(eta);
p = expeta/(1+expeta);
model external ˜ binary(p);
random b ˜ normal(0,tau**2) subject=litter;
estimate ’RI variance tauˆ2’ (tau*tau);

run;

Due to the binary nature of the outcome and the non-linear predictor fuc-
tion, it is ever so important to use good starting values. We have chosen
them from the linear equivalent of the model, i.e., the model with the γ
parameter removed. Further, it may be safer to use Newton-Raphson, close
to the maximum, than a quasi-Newton technique. The latter may take a
long time to converge or even keep jumping around in the neighborhood of
the maximum, without ever converging.

The additional ESTIMATE statement conveniently provides us with an
estimate and standard error for the random-intercept variance τ2, even
though τ is the model parameter and not τ2 itself, for reasons of defensive
programming.

20.12.6 SAS Program for the Random Smoothing Spline
Model: The Analgesic Trial

In Section 20.11.2, a random smoothing spline based approach was fitted
to the analgesic trial, using the experimental SAS procedure GLIMMIX.
Examples of how to use this procedure with continuous outcomes are pre-
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sented in the manual for the procedure (SAS Institute Inc. 2004). Possible
code to fit model (20.50) is:

proc glimmix data=gsa2 method=RSPL;
class patid;
nloptions maxiter=250 technique=newrap;
model gsa = time|time pca0

/ dist=multinomial link=cumlogit
solution ddfm=satterth;

random time / subject=patid type=rsmooth
knotmethod=kdtree(bucket=1000
knotinfo treeinfo);

run;

The random smoothing splines are invoked by calling the RANDOM state-
ment, with ‘time’ as the random effect and then the ‘type=rsmooth’ option.
This option is defining for the random smoothing spline structure and with
it come a number of fine tuning options. The ‘knotmethod=kdtree’ option
specifies the use of the so-called ‘k-d tree’ method (Friedman, Bentley, and
Finkel 1977, Cleveland and Grosse 1991). The method can be usefully em-
ployed to find the nearest neighbors of a point. The process starts from a
hypercube, encompassing the values of the random effects. Then, recursive
splitting takes place as long as there are cells that contain more than a
pre-specified number of bucket points. The bucket size can be specified by
means of the ‘bucket=’ argument to the ‘knotmethod=kdtree’ option. Fur-
ther, info on the tree splitting process and on the resulting knots can be
obtained by adding the ‘treeinfo’ and ‘knotinfo’ arguments, respectively, to
the option.

Fitting models of this type, especially with non-continuous data, can be
involved, and some precautionary and fine tuning measures to the updat-
ing algorithm can be in place. For example, we increased the number of
iterations to 250 and chose Newton-Raphson as the updating algorithm. In
problems of this type, quasi-Newton methods, due to their super-linear but
sub-quadratic convergence, may fail to reach the maximum, but rather get
trapped in a small number of points close to the maximum, between which
the algorithm keeps jumping around.

The ‘ddfm=satterth’ option is added to the MODEL statement, to en-
sure that Satterthwaite degrees of freedom are computed. The containment
method is problematic, because the random spline structure is added to the
Z matrix, which might seemingly reduce and even eliminate the available
degrees of freedom for conducting hypothesis testing about fixed effects.

The algorithm works rather efficiently thanks to profiling the fixed-effects
out from the resulting likelihood, effectively reducing the iterative process
to the variance components.

Let us now discuss some elements of the output. A large number of output
panels is exactly equal to their counterparts in fully parametric applications
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of the procedure, as described in Sections 10.5.3 and 15.2. These include
the model information, solutions for fixed effects, and standard type III
tests of fixed effects panels. Due to profiling of fixed-effects, only one para-
meter remains in the optimization, i.e., the variance of the random spline
coefficients:

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Var[RSmooth(TIME)] PATID 0.1083 0.01459

In the dimensions panel (not shown), the number of columns for the Z
matrix is listed as three. This is because three knots are retained in this
case. The final knots are presented as follows:

Radial Smoother
Knots for
RSmooth(TIME)

Knot
Number TIME

1 1.0000
2 2.0000
3 4.0000

The tree splitting process is represented in the following panel:

kd-Tree for RSmooth(TIME)

Node Left Right Split Split
Number Child Child Direction Value

0 1 2 TIME 2.0000
1 TERMINAL
2 TERMINAL

Thus, a single split takes place, at tij = 2, whereafter only terminal nodes
are obtained. Assembling the first (1), the last (4), and the split values
produces the knots 1, 2, and 4, as listed in Table 20.14. Should we consider
a bucket of size 100, then a much more elaborate tree splitting process
ensues:

kd-Tree for RSmooth(TIME)

Node Left Right Split Split
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FIGURE 20.11. Analgesic Trial. Representation of the k-d tree for random
smoothing spline based model (20.50), with a bucket size of 100.

Number Child Child Direction Value

0 1 2 TIME 2.0000
1 3 4 TIME 1.0000
2 9 10 TIME 3.0000
3 TERMINAL
4 5 6 TIME 2.0000
5 7 8 TIME 1.0000
6 TERMINAL
7 TERMINAL
8 TERMINAL
9 11 12 TIME 3.0000

10 15 16 TIME 4.0000
11 13 14 TIME 2.0000
12 TERMINAL
13 TERMINAL
14 TERMINAL
15 17 18 TIME 4.0000
16 TERMINAL
17 TERMINAL
18 TERMINAL

The tree structure can nicely be reconstructed from this panel, and is de-
picted in Figure 20.11. Should we, on the other hand, switch to a large
bucket size of 2000, which is almost twice as large as the number 1137
of observations available for analysis, then the tree splitting process stops
instantaneously:

kd-Tree for RSmooth(TIME)
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Node Left Right Split Split
Number Child Child Direction Value

0 TERMINAL

and hence the trivial tree is obtained, with knots at the first (1) and last
(4) observation time.



21
Pseudo-Likelihood for a Hierarchical
Model

21.1 Introduction

Pseudo-likelihood methodology for marginal models has been introduced
in Chapter 9. Chapter 12 was devoted to pseudo-likelihood ideas applied to
the conditional modeling family. In this chapter, we will introduce how the
concept of pseudo-likelihood can be usefully used when the model under
consideration is of a subject-specific or multilevel (Goldstein 1995) nature.

It has been made clear in Chapter 14 that the marginal likelihood func-
tion of a generalized linear mixed model (GLMM), obtained after integrat-
ing over random effects, nearly always involves intractable integrals. The
chapter introduced two main approaches to parameter estimation. The first
one was based on numerical integration methods (Section 14.3, see also
Anderson and Aitkin 1985), a technique suffering from the curse of dimen-
sionality when several random effects are considered at the same time. A
second approach consisted of approximations to the data (Section 14.4),
with such techniques as penalized quasi-likelihood (PQL) and marginal
quasi-likelihood (MQL). Based on simulated data, Rodŕıguez and Gold-
man (1995) demonstrate that the latter procedures may be seriously biased
when applied to binary response data. Their simulations reveal that both
fixed effects and variance components may suffer from substantial, if not
severe, attenuation bias under certain circumstances. Goldstein and Ras-
bash (1996) show that including a second-order term in the PQL expansion
(PQL2) essentially eliminates biases described by Rodŕıguez and Goldman.
The analyses of our case studies (Section 14.7, Chapter 17) confirm these
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findings. Other authors have advised the introduction of bias-correction
terms (Lin and Breslow 1995). It should be emphasized, however, that the
PQL approximate estimation procedure exhibits many numerical problems
and it is not so uncommon that it fails to converge in practical applications.
This situation tends to worsen when second-order terms are added or when
the model becomes more complicated (Renard et al 2004). Alternative so-
lutions to find ML estimates can be based on Monte Carlo methods such
as the Monte Carlo EM algorithm (McCulloch 1994, 1997). Monte Carlo
methods are highly computer-intensive in general.

In this chapter, a pseudo-likelihood (PL, Chapter 9) approach will be ex-
plored to fit hierarchical models for binary responses with probit link spec-
ification. One could, for example, consider only pairwise likelihoods within
the same cluster instead of the full contribution of an independent unit
to the likelihood. Marginal model applications can be found in Chapter 9,
while PL applications to conditional models are the subject of Chapter 12.
Other applications can be found in le Cessie and Van Houwelingen (1994),
who present a marginal application, and in Heagerty and Lele (1998) who
applied a pairwise likelihood approach, which they termed composite likeli-
hood after Lindsay (1988), to model binary spatial data using a hierarchical
generalized linear model.

Section 21.2 presents the PL methodology for this context. In Section 21.3,
the specific case of two binary outcomes, as encountered in the evaluation of
surrogate endpoints in randomized clinical trials is presented. An illustra-
tion based on a meta-analysis in schizophrenia is presented in Section 21.4.
Simulations to assess the performance of the method are reported in Re-
nard, Molenberghs, and Geys (2004). See also Burzykowski, Molenberghs,
and Buyse (2005).

Similar ideas will be used in the next chapter and in Chapter 25.

21.2 Pseudo-Likelihood Estimation

A simple model that captures the essence of the problem is one where level
1 units, e.g., repeated measurements in a longitudinal study or members
of a household in a two-stage survey, are nested within level 2 units, that
is, subjects in the longitudinal context or households in a survey. The pro-
cedure described hereafter can be applied to higher-order hierarchies, as
will be illustrated in Sections 21.3 and 21.4. The methodology presented
here hinges on the use of the probit link because then both the marginal as
well as the hierarchical model are of a multivariate probit type. Although
the commonly used logit link has an advantage with respect to parameter
interpretation, both tend to provide similar model fit in practice, therefore
we do not see this as a strong limitation.



21.2 Pseudo-Likelihood Estimation 395

To make matters concrete, consider the following two-level probit model:

Φ−1(P [Yij = 1|bi]) = x′
ijβ + z′

ijbi, (21.1)

for the probability that a response is observed for the jth observation in the
ith subject (i = 1, . . . , N). See also Section 13.4.3. As usual, xij represents a
set of fixed covariates (in the following, dependence on xij is ignored in the
notation), and zij denotes the random-effects covariates. For the vector of
random effects, assume that bi ∼ N(0, D). In case where we assume there
is a random intercept only, i.e., zij = 1 for all i and j, then we write τ2 for
D.

For ease of development, we posit the existence of an unobservable la-
tent variable Ỹij that is continuously distributed and related to the actual
response Yij through the threshold concept. This assumption is commonly
made in ordinal regression models in which a series of thresholds are em-
ployed (Chapter 18). For binary data only one threshold is necessary and
its value, assuming that an intercept term is included in (21.1), can be cho-
sen to be 0 without loss of generality. We therefore suppose that a positive
response is recorded (Yij = 1) if Ỹij > 0 and a negative response (Yij = 0)
otherwise. If we further assume that Ỹij is normally distributed, then the
model for the latent variable corresponding to (21.1) can be written as:

Ỹij = x′
ijβ + z′

ijbi + ε̃ij , (21.2)

with the residual error term ε̃ij being N(0, σ2). Since the variable ε̃ij is
unobservable, making the parameter σ2 non-identifiable, its value can be
fixed arbitrarily. Without loss of generality we set σ2 ≡ 1.

Likelihood estimation proceeds by maximizing the marginal distribution
obtained by integrating over the random effects. More formally, the contri-
bution for the ith subject to the likelihood function for this model can be
written as:

	i(β, D) =
∫ +∞

−∞

ni∏
j=1

P [Yij = 1|bi]φ(bi; D)dbi,

where φ(bi, D) denotes the density function of the multivariate normal
distribution with mean 0 and covariance matrix D. In this case, numerical
integration using Gaussian quadrature is easily accomplished to evaluate
the above expression, but would become more and more laborious as the
number of random effects increases.

In general, when maximization of the likelihood is awkward, an alter-
native is to replace the joint likelihood by a function that is easier to
evaluate and hence to maximize. For this purpose, any suitable product
of conditional or marginal densities involving some of the variables could
be appropriate. We refer to Sections 9.2 and 9.3 for a general introduction
and to Section 9.4 for an application to marginal models, including the
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technique of pairwise likelihood, which will be used here as well in a for
random-effects models appropriate version.

The basic contribution of the ith individual to the log PL can be written:

p	i(β, D) =
ni∑

j=1

ni∑
k=j+1

1∑
�,m=0

δijk�m log P [Yij = 	, Yik = m], (21.3)

with

δijk�m =
{

1 if Yij = 	 and Yik = m,

0 otherwise.
(21.4)

Note how marginal pairwise probabilities emerge in (21.3). These can be
calculated in terms of univariate and bivariate probits. For example, the
probability that Yij = 0 and Yik = 0 can be written, using (21.2):

P [Yij = 0, Yik = 0]

= P [Ỹij < 0, Ỹik < 0]

=
∫ −x′

ijβ/varỸij

−∞

∫ −x′
ikβ/varỸik

−∞
φ2(y1, y2; ρijk)dy1dy2

= Φ2

(
−x′

ijβ

var[Ỹij ]
,

−x′
ikβ

var[Ỹik]
; ρijk

)
.

In this expression, var(Ỹij), var(Ỹik) and ρijk = corr(Yij , Yik) are obtained
by selecting the appropriate 2× 2 submatrix of the covariance matrix Vi =
ZiDZ ′

i + Ini . The function φ2(x, y; ρ) denotes the standardized bivariate
normal distribution function with correlation coefficient ρ.

The PL estimators (β̃, D̃) are obtained by maximizing the function

p	(β, D) =
N∑

i=1

p	i(β, D). (21.5)

General results on the consistency and asymptotic normality of PL es-
timators can be derived along the lines of classical proofs for maximum
likelihood estimators (Section 9.3). The asymptotic covariance matrix of
the PL estimators (β̃, D̃) can be approximated by the ‘sandwich estima-
tor’ (9.4). As can be anticipated, the PL estimator will generally be less
efficient than the maximum likelihood estimator because it relies on a lim-
ited amount of information. Therefore, with this approach a compromise
between computational ease and loss of efficiency is sought.

Note that in (21.3), each response Yij occurs (ni − 1) times in the ith
contribution to the log PL. Thus, information about an observation will
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tend to be over-used in larger clusters and this can be counter-balanced by
weighting each contribution from a cluster to the PL by a factor inversely
proportional to (ni − 1). This leads to the (non-equivalent) specification:

p	∗(β, D) =
N∑

i=1

p	i(β, D)
ni − 1

, (21.6)

in line with the marginal developments (Section 9.4), where it was shown
that p	∗ is much more efficient than p	 for estimating fixed effects. However,
if main interest lies in the estimation of association parameters, the advice
was to use of p	. If interest is combined, and one type of analysis should be
chosen, p	 might be preferable as well. Distinguishing between both versions
is particularly important when the number of measurements ni is itself
informative for some parameters. For example, in a clustered toxicological
experiment, higher doses may negatively influence the number of viable
foetuses.

21.3 Two Binary Endpoints

In a meta-analytic surrogate endpoint approach, a surrogate endpoint Sij

is measured along with the true endpoint Tij , for each subject j = 1, . . . , ni

in a number of trials i = 1, . . . , N . Let the binary treatment indicator be
denoted by Xij . Buyse et al (2000) presented a hierarchical formulation for
the case of normally distributed endpoints Sij and Tij :{

Sij = µS + mSi + (α + ai)Xij + εSij ,

Tij = µT + mT i + (β + bi)Xij + εT ij ,
(21.7)

where µSi and µT i are trial-specific intercepts, and αi and βi are trial-
specific effects of treatment X on the two endpoints in trial i = 1, . . . , N .
Finally, εSij and εT ij are correlated error terms, assumed to be mean-zero
normally distributed with covariance matrix

Σ =
(

σSS σST

σST σT T

)
. (21.8)

Regarding the random effects, we assume that they are zero-mean normally
distributed with covariance matrix

D =

⎛⎜⎜⎝
dSS dST dSa dSb

dST dT T dTa dTb

dSa dTa daa dab

dSb dTb dab dbb

⎞⎟⎟⎠ . (21.9)
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Buyse et al (2000) discussed estimation methods and showed how this
model can be used to quantify surrogacy both at the trial level and at the
individual level. See also Burzykowski, Molenberghs, and Buyse (2005).

To adapt this model to the case of two binary hierarchical endpoints,
we will now posit the existence of a pair of continuously distributed latent
variables (S̃ij , T̃ij) which produce the actual binary values (Sij , Tij). These
unobservable variables are assumed to have a joint normal distribution and
the realized value of Sij (resp. Tij) equals 1 if S̃ij > 0 (resp. T̃ij > 0), and
0 otherwise.

We are now in a position to adopt the modeling strategy outlined in Sec-
tion 9.4. Consider the following random-effects model on the latent variable
scale: {

S̃ij = µS + mSi
+ (α + ai)Xij + ε̃Sij

,

T̃ij = µT + mT i
+ (β + bi)Xij + ε̃T ij

.
(21.10)

The sole difference here is that variances at the individual level (σSS and
σT T ) are non-identifiable parameters and can be fixed, arbitrarily and with-
out loss of generality, to one, as in (21.2). The Σ matrix defined in (21.8)
can therefore be replaced by

Σ =
(

1 ρST

ρST 1

)
. (21.11)

This formulation is attractive because the coefficients of determination de-
fined in the previous section can readily be employed without any modifi-
cation, although formally, their interpretation is bound to the postulated
latent variables generating the observed binary responses. Model (21.10)
leads to the following models:

Φ−1(P [Sij = 1|Xij , mSi , ai, mT i , bi])

= µS + mSi + (α + ai)Xij , (21.12)

Φ−1(P [Tij = 1|Xij , mSi , ai, mT i , bi])

= µT + mT i + (β + bi)Xij . (21.13)

This model can be considered either a three-level model or a bivariate two-
level model for binary response data. The contribution of the ith trial to
the likelihood function for the parameters β = (µS, α, µT , β)′, D and ρST ,
conditionally on bi = (mSi , ai, mT i , bi)′, is

	i(β, D, ρST | bi) =
ni∏

j=1

1∏
k=0

1∏
�=0

P [Sij = k, Tij = 	 | bi]δijk� , (21.14)

where δijk� is as in (21.4).
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Maximum likelihood estimates for the unknown parameters can be ob-
tained by maximizing the integrated likelihood function, of which the ith
contribution is given by

	i(β, D, ρST ) =
∫

	i(β, D, ρST | bi)φ4(bi; D)dbi, (21.15)

where φ4(bi; D) denotes the joint density function of the normal distrib-
ution with mean 0 and covariance matrix D. We can now apply pseudo-
likelihood ideas, just as in Section 21.2. The contribution of the ith trial to
the log PL can be written

p	i =
2ni∑
j=1

j−1∑
k=1

	jk, (21.16)

where 	jk is the likelihood of the pair (Yij , Yik), with

Y i = (Si1, . . . , Sini , Ti1, . . . , Tini),

that is:

	jk = Y (11)

jk log p(11)

jk + Y (10)

jk log p(10)

jk + Y (01)

jk log p(01)

jk + Y (00)

jk log p(00)

jk ,

where
p(�m)

jk = P [Yij = 	, Yik = m|Zij , Zik]

and

Y (lm)
ij =

{
1 if Yij = l and Yik = m,

0 otherwise.

The different terms in (21.16) reflect four different types of association, as
illustrated in Figure 21.1:

(i) the association between the surrogate and true endpoints measured
on the same individual;

(ii) the association between the surrogate endpoints measured on two
distinct individuals;

(iii) the association between the true endpoints measured on two distinct
individuals;

(iv) the association between the surrogate and true endpoints measured
on two distinct individuals.

Each of these pairwise contributions can be written in terms of univariate
and bivariate probits. For example, the probability that both S and T be
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indiv. j indiv. k

Sij (ii)� � Sik Surrogate

True

(i)

�

�

(iv)
�������

������


(i)

�

�

Tij (iii)� � Tik

FIGURE 21.1. Association structure for the surrogate and true endpoints in two
distinct individuals j and k.

zero for subject j in trial i can be written as:

P [Sij = 0, Tij = 0|Zij ]

= P [S̃ij < 0, T̃ij < 0|Zij ]

= Φ2

⎛⎝− µS + αZij√
var(S̃ij)

,−µT + βZij√
var(T̃ij)

; ρij

⎞⎠ . (21.17)

In (21.17), var(S̃ij), var(T̃ij) and ρij are obtained by selecting the appro-
priate 2×2 submatrix of the covariance matrix Vi = ZiDZ ′

i +Σi, where Zi

is a suitable design matrix and Ri is a block-diagonal matrix with blocks
equal to D.

Estimates of β, D, and ρST can be obtained by maximizing the log PL
function

p	 =
N∑

i=1

p	∗
i =

N∑
i=1

p	i/(2ni − 1),

which is similar to (21.6). Precision estimation proceeds once more by using
the sandwich estimator.
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21.4 A Meta-analysis of Trials in Schizophrenic
Subjects

To illustrate the methodology, we use data from five clinical trials com-
paring the effects of risperidone to conventional antipsychotic agents (or
placebo) for the treatment of chronic schizophrenia. Only subjects who
received optimal doses of risperidone (4–6 mg/day) or an active control
(haloperidol, perphenazine, zuclopenthixol) were included in this analysis.
Depending on the trial, treatment was administered for a duration of 4 to
8 weeks and data at endpoint are analyzed here.

Even though this is not a standard situation for surrogate validation due
to the lack of a ‘gold standard’ scale, we consider as our primary measure
(true endpoint) the ‘Clinical Global Impression’ (CGI) overall change ver-
sus baseline. This scale ranges from 1 =‘very much improved’ to 7 =‘very
much worsened’ and is used by the treating physician to assess a subject’s
overall clinical improvement compared to baseline. We define a response in
CGI as an improvement since baseline (CGI grade of 1 to 3) and a non-
response otherwise (worsening). As a surrogate measure for global improve-
ment, we consider clinical response defined as a 20% or higher reduction in
the ‘Positive and Negative Symptoms Scale’ (PANSS) score from baseline
to endpoint. This corresponds to a commonly accepted criterion for defin-
ing a clinical response (Kay et al 1988). Therefore, we try to quantify the
extent to which a response in PANSS, a measure of psychiatric disorder,
can predict clinical improvement as observed by the physician.

Pooled data from the five trials are presented in Table 21.1. It can be
seen that the relationship between S and T is very strong (ORST = 31.5,
χ2 = 261.4, P < 0.0001), as can be expected. Note that patients were
rated by the same treating physicians on PANSS and CGI, thereby bringing
some possible contamination bias. Table 21.2 shows parameter estimates
and their standard errors for Model (21.12)–(21.13). This model was fitted
using the PQL2 procedure implemented in the MLwiN software package
(Goldstein et al 1998) as well as using the PL approach. Because the num-
ber of trials is too small in this example, centers were treated as grouping
units. Thus, 176 units were available for the analysis.

Based on the fitted variance components, Buyse et al (2000) consider
two measures to assess the quality of surrogacy. First, a measure to assess
the quality of a surrogate at the trial level is given by the coefficient of
determination:

R2
trial(f) =

(
dSb

dab

)′(
dSS dSa

dSa daa

)−1(
dSb

dab

)
dbb

. (21.18)

This coefficient measures how precisely the effect of treatment on the true
endpoint can be predicted when the treatment effect on the surrogate end-
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TABLE 21.1. Meta-analysis in Schizophrenia. Pooled data for the schizophre-
nia example: surrogate endpoint (S) = response in PANSS score (1=response),
true endpoint (T ) = improvement in CGI overall change versus baseline (1=im-
proved). X indicates treatment allocation.

T

X S 0 1

Active control 0 151 (72)† 58 (28)
1 15 (6) 220 (94)

Risperidone 0 91 (71) 37 (29)
1 20 (9) 213 (91)

† Frequency (row percentage)

point has been observed in a new trial (i = 0). It is unitless and ranges
in the unit interval if the corresponding variance-covariance matrix D is
positive-definite, two desirable features for its interpretation. Second, the
association between the surrogate and final endpoints is captured by the
coefficient of determination

R2
indiv =

σ2
ST

σSSσT T

, (21.19)

which simply is the squared correlation between S and T after accounting
for trial and treatment effects.

As can be seen in Table 21.2, the PL procedure leads to an estimated
D matrix that is positive-definite. With PQL2, on the other hand, some
elements of D were a priori constrained to be zero and as a result, the
value of the coefficient R2

trial(f) cannot even be calculated. This underscores
the potential advantage of PL in a case like this. This aside, fixed-effects
parameter estimates are quite similar and their anticipated loss in efficiency
is moderate (less than 15%). Also, the parameter ρST exhibits both a much
higher point estimate and a much larger standard error.

Interestingly, the estimated value of R2
trial(f) is really low (0.006), whereas

the estimated value of R2
indiv is rather high (0.924). The latter confirms

the strong association between S and T (at the individual level) which
was seen in Table 21.1 and suggests that they both capture overlapping
components of a subject’s psychotic status. The very low estimated value
for R2

trial(f), on the other hand, shows that S provides very bad predictions
for treatment effects on T (at the center level), thereby making of clinical
response a rather poor surrogate for clinical improvement according to our
criterion. We see here one advantage of this approach in that individual
and trial (center in this example) level components of association can be
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TABLE 21.2. Meta-analysis in Schizophrenia. Results for the schizophrenia exam-
ple: PQL2 and pseudo-likelihood (PL) estimation procedures. Parameter estimates
(standard errors) are presented.

PQL2 PL
µS 0.227 (0.056) 0.233 (0.062)
α† 0.166 (0.046) 0.161 (0.049)
µT 0.441 (0.054) 0.445 (0.062)
β† 0.100 (0.050) 0.109 (0.057)

dSS 0.126 (0.050) 0.121 (0.057)
dST 0.088 (0.042) 0.091 (0.055)
dT T 0.083 (0.045) 0.076 (0.063)
dSa — -0.005 (0.054)
dTa — -0.004 (0.040)
daa — 0.001 (0.005)
dSb -0.007 (0.024) 0.006 (0.046)
dTb 0.001 (0.022) 0.024 (0.041)
dab — -0.001 (0.002)
dbb 0.029 (0.023) 0.059 (0.045)
ρST 0.679 (0.018) 0.961 (0.027)

R2
trial(f) — 0.006 (0.082)

R2
indiv 0.461 (0.024) 0.924 (0.052)

† Treatment coding: −1 = active control
+1 = risperidone.

completely disentangled. In an example like this, this is important because
both are indeed very different. In the next chapter, an extension to allow
for autocorrelation in addition to random effects is offered. There, also a
connection to a generalized linear mixed model with autocorrelation will
be presented (Section 22.4). The programs to fit such models (Section 22.6)
also encompasses models without autocorrelation, i.e., the ones presented
here.

21.5 Concluding Remarks

In general, numerical integration based methods, combined with such meth-
ods as PQL, MQL, or their second-order versions, provide a versatile toolkit
to tackle estimation problems in many generalized linear mixed-effects
model. However, there are situations where numerical integration may be-
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come prohibitive and where methods based on the approximation of the
data may break down or provide an extremely poor approximation, es-
pecially for binary outcomes. It is in such settings that pseudo-likelihood
methodology, as presented and illustrated in this chapter, can be of prac-
tical use.

Simulations done by Renard et al (2002) confirm the numerical stabil-
ity of PL, a clear advantage of the method over ML and PQL2. It is not
so uncommon that the PQL algorithm fails to converge in practical ap-
plications, and the problem tends to worsen as more complicated models
are fitted. The PQL2 algorithm also turns out to be sensitive to extreme
response probabilities, that is, response probabilities that are either very
small (close to 0) or high (close to 1).

The other main advantage of PL compared to ML estimation stands
at the computation time level because it involves evaluation of univariate
and bivariate probits only. Therefore, its use will not be appealing when
the number of random effects is small because ML estimation could be
effectively employed instead. The computational cost to evaluate the mar-
ginal likelihood using quadrature increases exponentially with the number
of quadrature nodes. With PL, on the other hand, the complexity increases
roughly linearly with the number of parameters and as a quadratic function
of the number of measurements.

As discussed in Section 21.2, contributions from a unit to the PL func-
tion can be inversely weighted by the number of repeated measurements.
In marginal models, considerations about whether to use weighted or un-
weighted PL are driven primarily by whether interest lies in the fixed or in
the association parameters, respectively (Geys, Molenberghs, and Lipsitz
1998; see also Section 9.4). The unweighted PL estimator was also investi-
gated in the simulation study by Renard et al (2002), and their conclusions
were that it is slightly less efficient than the weighted estimator, regardless
of the type of parameter (fixed or random). It is not clear that this will
uniformly be the case, but weighted PL seems to be the preferred estimator
in multilevel models.

This chapter has dealt exclusively with models specified via a probit link.
Although a logit link specification would be straightforward by assuming a
standard logistic rather than normal distribution for ε̃ij in (21.2), this leads
to intractable integrals for pairwise likelihoods. Therefore, PL cannot be
applied to claim computational gains in models with logit link specification.
An way to circumvent this issue while maintaining a logit link is presented
in Chapter 25, with an example in Section 25.4.



22
Random-effects Models with Serial
Correlation

22.1 Introduction

In the previous chapter, we presented a random-effects based probit model
and applied pseudo-likelihood ideas for parameter estimation. The model
was generated from a multivariate normally distributed latent variable.
This means that the latent variable follows a linear mixed model. An ob-
vious extension is the inclusion of serial correlation, or autocorrelation, as
can be done for the standard linear mixed-effects model. The extension
proposed by Renard, Molenberghs, and Geys (2004) is the basis for this
chapter. The model presented in Section 21.3 exhibits residual correlation
between the surrogate and true endpoints on the same subject, in addition
to the correlation induced by the random effects. The approach formulated
in this chapter can be seen as a general version of this.

Barbosa and Goldstein (2000) propose to extend the standard multi-
level model for binary outcomes, and hence the standard generalized linear
mixed model, by allowing the residuals at the individual level to be corre-
lated. These authors wrote the covariance between residuals for individual
i at occasions j and k as√

πij(1 − πij)πik(1 − πik)f(|tij − tik|),

where the conditional mean, given random effects bi, πij = E(yij |bi) is
modeled as usual and f(u) is a function of u, the time lag between measure-
ment times tij and tik, i.e., |tij − tik|. For example, Barbosa and Goldstein
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(2000) proposed the form:

f(u) = α + exp[−κ(u)], (22.1)

for some function κ of the time lag, and they used the PQL algorithm to
estimate parameters. In what follows, we will propose different parametric
shapes for autocorrelation functions. A drawback of this approach, common
with other PQL applications, especially with binary data, is the severe bias
that can result. Also, the correction described above is ad hoc and falls
outside the likelihood framework.

We first propose a full probabilistic model, starting from a general probit
model, based on an underlying latent linear mixed model with serial cor-
relation. The model is proposed in Section 22.2. Full likelihood estimation
of this model is computationally demanding, however, and we therefore
propose to use pairwise likelihood for estimation purposes in Section 22.3,
building on the methodology presented in Chapter 21. In Section 22.4, a
generalized linear mixed models augmented with autocorrelation is pre-
sented. The psychiatric study, analyzed before in Section 21.4, will be ana-
lyzed again in Section 22.5, using both autocorrelation methods. Whereas
the analysis in Section 21.4 considered the specific context of surrogate
marker evaluation, here we focus on the CGI outcome only. In Section 22.6,
SAS code to fit the random-effects multivariate probit model, with or with-
out serial correlation, as well as the generalized linear mixed model with
serial correlation, is presented.

22.2 A Multilevel Probit Model with
Autocorrelation

The model we propose for repeated binary data extends model (21.2), i.e.,
it extends the standard hierarchical or multilevel probit model. It is related
to the model discussed in Heagerty and Lele (1998), which deals with binary
spatial data. We will focus on a two-level hierarchy, or two-level model with,
using multilevel terminology, subjects at the second level and measurements
within subjects at the first level.

As in Section 21.2, we will introduce the model from a latent variable
perspective. As usual, let Y i = (Yi1, . . . , Yini)

′ denote the vector of binary
measurements on subject i (i = 1, . . . N). We posit the existence of an
unobserved continuous variable Ỹij and assume that the observed binary
response is obtained by dichotomizing Ỹij based on a certain threshold or
cut-off value. This threshold can be chosen to be 0 without loss of generality,
provided an intercept term is included in the model. In other words, it is
assumed that a positive response, Yij = 1, is recorded if Ỹij > 0 and a
negative response (Yij = 0) otherwise. On the latent variable scale the
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model, generalizing (21.2), can be written as:

Ỹij = x′
ijβ + z′

ijbi + ε̃ij . (22.2)

The standard multilevel probit model is obtained by assuming that the
random effects bi and residual error terms ε̃ij are normally distributed. An
additional assumption is that of conditional independence among responses,
that is, conditionally on bi, the Ỹij ’s are independent. This implies that bi ∼
N(0, D) and, for reasons of identification, that Ỹij ∼ N(0, 1). Whereas this
assumption was made in Chapter 21, we relax it here by assuming instead
that the Ỹij ’s are realizations from a stationary unit-variance Gaussian
process ε̃(t) with autocorrelation function

corr[ε̃(t), ε̃(t′)] = ρ(|t′ − t|), (22.3)

which is similar in spirit to (22.1). Indeed, following Goldstein, Healy, and
Rasbash (1994), we assume that ρ(u) = exp[−κ(u)], where κ(u) is a positive
increasing function, not necessarily linear. Obvious choices include

κ(u) = αu,

the exponential decay model,

κ(u) = αu2,

the Gaussian decay model, or, more generally,

κ(u) =
K∑

k=1

αkuk

for any (fractional) polynomial constrained to take on positive values on
[0, +∞[. As pointed out by Goldstein, Healy, and Rasbash (1994), a dif-
ficulty when κ(u) is a polynomial is that successive powers tend to be
highly correlated and this may cause estimation difficulties. Another pos-
sible choice is then to add an inverse polynomial term such as in

κ(u) = α1u + α2u
−1,

which avoids the high correlations associated with ordinary polynomial
functions. One could even consider fractional polynomials within the κ
function. Verbeke and Molenberghs (2000, Section 10.3) provide examples
of serial correlation functions with fractional polynomials. Another useful
extension is to make the parameters αk explicitly dependent on explanatory
variables. As to the choice of the κ function, Goldstein, Healy, and Rasbash
(1994) state that it should “contain as few parameters as necessary to
be flexible enough to describe real data. (. . . ) There seems to be little
substantive guidance on choice, and it is likely that different functional
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forms will be appropriate for different kinds of data.” Especially when
covariates are allowed in the autocorrelation function, options for κ(u) and
hence for ρ(u) in (22.3) are virtually unlimited.

As a result, Ỹ i is a normally distributed vector with variance-covariance
matrix Σi = R(ti) = Ri, since the variances are kept equal to unity, and for
reasons of model identification. The matrix R(ti) has its (j, k)th element
equal to ρ(|tij − tik|), where tij is the time at which the jth measurement
on subject i is made.

22.3 Parameter Estimation for the Multilevel
Probit Model

The log-likelihood for the observed (binary) data can be written

	 =
N∑

i=1

1∑
ai1,...,aini

=0

δai1,...,aini

× ln
∫

P (Yi1 = ai1, . . . , Yini = aini |bi)φ(bi)dbi, (22.4)

with

δai1,...,aini
=

{
1 if Yi1 = ai1, . . . , Yini = aini ,

0 otherwise.

Exactly as in Chapter 21, this expression entails the evaluation of multi-
variate normal probabilities. For instance, we have

P (Yi1 = 1, . . . , Yini = 1|bi)

= P (Ỹi1 > 0, . . . , Ỹini > 0|bi)

=
∫ ξi1

−∞
. . .

∫ ξini

−∞
φ[x1, . . . , xni

; R(ti)]dx1 . . . dxni
, (22.5)

where we define
ξij = x′

ijβ + z′
ijbi,

φ(x; R) denotes the standardized multivariate normal density function, in
the sense of having unit variances, with correlation matrix R.

As in Section 21.2, we propose the use of maximum pairwise likeli-
hood (PL) to overcome the computational burden of full likelihood. In this
case, we assemble all possible pairwise probabilities P (Yij = 	, Yik = m)
(	, k = 0, 1) within the ith unit. For the present model, these marginal bi-
variate probabilities can all be expressed in terms of univariate and bivari-
ate probits that are computationally inexpensive to evaluate. For instance,
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we have
P (Yij = 1, Yik = 1) = Φ2 (ξij , ξik; ρijk) , (22.6)

with

ξij =
x′

ijβ√
var(Ỹij)

(22.7)

and overall correlations, induced in part by the random-effects structure
and in part by the autocorrelation,

ρ̃ijk =
z′

ijDzik + ρ(|tij − tik|)√
1 + z′

ijDzij

√
1 + z′

ikDzik

, (22.8)

where D denotes the variance-covariance matrix of bi, the function Φ2
denotes the standard bivariate Gaussian distribution function, and var(Ỹij),
var(Ỹi′j) and ρii′j are obtained by selecting the appropriate 2×2 submatrix
of the (marginal) covariance matrix of Ỹ i,

Vi = ZiDZ ′
i + R(ti).

Parameter estimation and inference follows from the methodology de-
scribed in Section 21.2, built upon estimation and inferential tools laid out
in Sections 9.2 and 9.3. In particular, the sandwich estimation ought to be
used for precision estimation, and hypothesis testing can proceed using the
test statistics laid out in Section 9.3.

A SAS macro was written to implement the methodology in the case
of a model with random intercept and autocorrelation function ρ(u) =
exp(−αuk). The algorithm was implemented in SAS IML (SAS Institute
Inc. 1995) and maximization of the log PL performed using the NLPDD
(Double-Dogleg) optimization routine (SAS Institute Inc. 1995). This op-
timization procedure requires only function and gradient calls that are less
expensive to evaluate than second-order derivatives. To avoid constrained
optimization, a Cholesky decomposition for D was used and the parameter
α was log transformed. To estimate the covariance matrix of the PL esti-
mator by way of the sandwich estimator, it should be observed that (9.6)
requires only gradient calls, whereas (9.5) can be computed using numerical
second-order derivatives (e.g., by forward difference approximation).

Renard, Molenberghs, and Geys (2004) assessed the proposed method-
ology by means of a simulation study. Their simulations indicate that the
mean and dependence parameters are strongly biased with a small number
of subjects (N = 100). Increasing the number of measurements somewhat
reduces the extent of bias. With a medium number of subjects (N = 500),
parameters are still largely biased when the number of measurement occa-
sions is small (ni = 5) but the bias falls within more acceptable limits with
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an increased number of measurement occasions per subject. The autocorre-
lation parameter is noticeably biased, though. With a large number of sub-
jects (N = 1000), the bias for the mean parameters and the random-effect
variance parameter becomes small but for the autocorrelation parameter
it is still sizeable with datasets containing as many as N = 20, 000 ob-
servations. Regarding precision estimation, the estimated standard errors
somewhat overestimate the sampling variability, especially for the random-
effect variance. These authors also reported on various convergence prob-
lems. This is not surprising for complicated models of this nature. Already
for the general linear random-effects model, involving fixed effects, random
effects, and serial correlation, convergence can be very involved. Here, the
model additionally has a non-linear link structure and further binary data
carry way less information than continuous outcomes. Model fitting for
models this complex should therefore proceed with caution.

22.4 A Generalized Linear Mixed Model with
Autocorrelation

In Section 8.8, marginal models based on linearization were considered,
based on the concept of data approximation which later was employed
in Section 14.4. In the first case, dependence among repeated measures
is introduced by means of a residual covariance matrix, Σi in (8.36). In
the second case, random effects are introduced. In both cases, the SAS
procedure GLIMMIX could be used for parameter estimation, using PQL
or MQL approximation.

The basis for this model development is the decomposition, in line with
(14.6):

Y i = µi + εi, (22.9)

where µi is specified by means of a GLMM and εi is the residual error
structure. In a standard GLMM, εi is assumed to be uncorrelated and
hence does not lead to additional parameters, as the variances follow from
the mean-variance link. In the linearization based method of Section 8.8, µi

does not contain random effects, but εi is assumed to be correlated. One can
choose an autocorrelation model to determine the variance of εi in (22.9),
i.e., the matrix Σi in (8.36). Obvious choices include spatial exponential or
spatial Gaussian models, an AR(1) structure if measurements are equally
spaced, or any autocorrelation structure described in Section 22.2.

Combining both ideas produces a generalized linear mixed model with
autocorrelation, just as the model in Section 22.2. The main difference is
that (22.2) specifies a linear mixed model with autocorrelation in terms
of the latent outcome underlying the multivariate probit model, whereas
here the random effects are introduced at the level of the linear predictor
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TABLE 22.1. Meta-analysis in Schizophrenia. Maximum pseudo-likelihood para-
meter estimates (standard errors) for the probit random-intercept model with and
without autocorrelation. The exponential and Gaussian models were taken for the
autocorrelation structure. Coding for ‘Treat’: 0 = standard, 1 = experimental.

Random intercept
Random + autocorrelation

Effect intercept Expon. Gaussian
Intercept -0.27 (0.16) -0.18 (0.12) -0.22 (0.14)
Week 1 -1.88 (0.18) -1.34 (0.20) -1.62 (0.17)
Week 2 -1.17 (0.17) -0.88 (0.16) -1.08 (0.15)
Week 4 -0.70 (0.16) -0.52 (0.13) -0.62 (0.15)
Week 6 -0.21 (0.14) -0.16 (0.11) -0.18 (0.13)
Treat×Week 1 0.29 (0.21) 0.19 (0.15) 0.23 (0.18)
Treat×Week 2 0.58 (0.21) 0.43 (0.16) 0.52 (0.18)
Treat×Week 4 0.54 (0.21) 0.39 (0.16) 0.47 (0.19)
Treat×Week 6 0.33 (0.22) 0.24 (0.16) 0.29 (0.19)
Treat×Week 8 0.20 (0.22) 0.14 (0.17) 0.17 (0.20)
R.I. s.d. τ 1.83 (0.11) 1.12 (0.23) 1.53 (0.12)
R.I. var. τ2 3.53 (0.40) 1.25 (0.52) 2.34 (0.37)
Autocorr. par. lnφ -1.34 (0.33) -1.21 (0.17)
Autocorr. ρ = ρ(u = 1) 0.27 (0.03) 0.26 (0.02)
log PL -1727.0 -1722.2 -1726.3

describing µi after application of the link function, whereas the autocorre-
lation structure is introduced at the level of εi. In other words, whereas the
random effects and autocorrelation structures sit ‘side by side’ in (22.2),
this is not the case here. To illustrate this, consider a logit-based model
with autocorrelation function:

Y i =
eXiβ+Zibi

1 + eXiβ+Zibi

+ εi (22.10)

where εi is assumed to exhibit residual correlation, entering the covariance
expression as in (20.48). Both structures enter the pseudo data as in (14.7)
and it may appear that then the random effects and the residual error are
side by side. However, the residual error of the pseudo data (14.7) is now
a transformed version of the original error εi.
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TABLE 22.2. Meta-analysis in Schizophrenia. PQL parameter estimates
(model-based standard errors) for a linearization-based marginal model with
autoregressive autocorrelation structure, random-intercept model, and ran-
dom-intercept model with autoregressive autocorrelation structure. Logit link. Es-
timates obtained using the SAS procedure GLIMMIX. Coding for ‘Treat’: 0 =
standard, 1 = experimental.

Auto- Random R.I. +
Effect correlation intercept Autocorr.
Intercept -0.22 (0.13) -0.15 (0.20) -0.13 (0.19)
Week 1 -1.58 (0.18) -2.33 (0.24) -2.89 (0.21)
Week 2 -0.95 (0.16) -1.42 (0.23) -1.80 (0.20)
Week 4 -0.54 (0.15) -0.86 (0.22) -1.12 (0.19)
Week 6 -0.15 (0.13) -0.28 (0.22) -0.37 (0.18)
Treat×Week 1 0.30 (0.20) 0.28 (0.27) 0.22 (0.27)
Treat×Week 2 0.51 (0.16) 0.63 (0.25) 0.76 (0.25)
Treat×Week 4 0.44 (0.16) 0.59 (0.25) 0.76 (0.25)
Treat×Week 6 0.26 (0.17) 0.37 (0.26) 0.48 (0.26)
Treat×Week 8 0.17 (0.18) 0.21 (0.28) 0.28 (0.28)
R.I. var. τ2 3.54 (0.30) 5.92 (0.49)
Autocorr. par. θ 3.00 (0.14) 0.77 (0.10)
Autocorr. ρ = ρ(u = 1) 0.72 (0.01) 0.27 (0.04)
Autocorr. var. σ2 1.02 (0.03) 0.55 (0.02)

22.5 A Meta-analysis of Trials in Schizophrenic
Subjects

We consider the same meta-analysis based on five trials as in Section 21.4,
and focus on the CGI (‘Clinician’s Global Impression’) outcome. This is
somewhat different from Section 21.4, where PANSS and CGI were ana-
lyzed jointly, in the context of surrogate marker evaluation. More specifi-
cally, the CGI overall change versus baseline is considered. Dichotomization
was obtained by defining a success (Yij = 1) as clinical improvement since
baseline (i.e., CGI grade equal to 1 or 2) and a failure otherwise.

We will first consider the multilevel probit models of Section 22.2 and
then turn to generalized linear mixed models with serial correlation in
Section 22.4.

The parameterization includes a saturated treatment by time model for
the mean structure and include a random intercept in the model. For the
autocorrelation structure, we assumed that κ(u) = αuγ and tried several
values of γ = −1, 0.5, 1, 2. The exponential model (γ = 1) provided the
best fit in terms of (pseudo-)likelihood value at maximum. Both γ = 1 and
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γ = 2 are reported in Table 22.1. We also fitted a model with

κ(u) = α1u + α2u
−1,

but a boundary solution was obtained.
The parameter α was rewritten as α = exp(φ). This implies that the

overall autocorrelation function, for γ = 1, is

ρ(u) = exp[−κ(u)] = exp[− exp(φ)u], (22.11)

and hence the correlation between, for example, two measurements one
time unit apart is

ρ = ρ(1) = exp[−κ(1)] = exp[− exp(φ)]. (22.12)

In Table 22.1, parameter estimates and standard errors are reported for
the random-intercept model with and without exponential autocorrelation
structure. Apart from the autocorrelation parameter φ, we also present
ρ as in (22.12), for ease of reference and interpretation. As can be seen,
parameter estimates for the model with exponential autocorrelation are all
reduced in magnitude by an amount of roughly 30%. This is essentially due
to the fact that the error terms in (22.2) are assumed to be autocorrelated;
hence the autocorrelation explains a certain amount of variability that is
otherwise captured in the residual variance. This residual variance itself
depends on the regression parameters, which is why they are affected by
such a change. The log PL value shows an improvement in the fit of the
model. Formal testing needs to be done based on the method laid out in
Section 9.3. As stated earlier, Gaussian autocorrelation fits the data less
well than exponential autocorrelation. This also explains why the regression
parameters in the Gaussian decay case change less.

Let us now switch to the generalized linear mixed models with autocor-
relation. The autocorrelation function can be modeled using model (22.11).
However, we will use a slightly reparameterized form, in agreement with
the parameterization used by SAS, for convenience:

ρ(u) = exp
(

−1
θ
uγ

)
and thus the correlation between two measurements one time unit apart is:

ρ = ρ(1) = exp
(

−1
θ

)
. (22.13)

Table 22.2 presents three models, with the same fixed-effects structure as
in Table 22.1. Apart from the autocorrelation parameter θ, we also present
the correlation ρ as in (22.13).

The first model exhibits an exponential autocorrelation structure only,
and no random effects. The second model is the random-intercepts model,
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and the third model combines both features. Observe that the correlation
parameter ρ for the latter model is very similar to the one obtained in
Table 22.1, which is not surprising. Fixed-effects parameter estimates are
different, due to two causes. First, we use the logit link in Table 22.2 versus
the probit link in Table 22.1. Second, PQL estimation in the GLMM case
is known to lead to parameter attenuation, as reported in several instances
(Tables 14.1 and 17.4).

To separate both issues, the same three models as in Table 22.2, but now
with probit link, are presented in Table 22.3. Now, compare the second
model in Table 22.3 to the first model in Table 22.1. Both are random-
intercepts models, without serial correlation and with probit link. The at-
tenuation in the PQL case is then clear, suggesting the use of integration
based methods (Section 14.3) for pure random-effects GLMM, or of the
pseudo-likelihood method when autocorrelation is additionally present. At
least, this comparison issues caution regarding the use of PQL for gener-
alized linear mixed models with autocorrelation, just as care is needed in
the absence of autocorrelation.

The fixed effects in the first columns of Tables 22.2 and 22.3 are somewhat
smaller than in the corresponding second and third columns. This is to
be expected since these models are marginal, whereas the other two are
random-effects based (Chapter 16). Recall the approximate relationship
between a random-intercepts model and the corresponding marginal model,
given by (16.3). In fact, the discrepancy is not as large as it could be, due
to the attenuation of the PQL based methods.

Another comparison is between the fixed-effects parameter estimates in
Table 22.3 and their counterparts in Table 22.2. This reveals, once more, the
relationship between probit based parameters and their logit counterparts,
the approximate conversion factor being π/

√
3, as explained in Section 3.4.

In both Tables 22.2 and 22.3, the autocorrelation in the first model is
considerably larger than in the third model. This is to be expected, as in
the third model a part of the autocorrelation is captured by the random
intercept, whereas all correlation is accounted for by the autocorrelation
process in the first model. In the first model in both tables, the autocorre-
lation variance σ2 plays the role of an overdispersion parameter, indicating
no evidence for overdispersion in this case. The same cannot be said for
the third models, as the variance is captured by both the random-intercept
variance and the serial variance, and the relationship between both is not
straightforward because non-linear, as is clear from the position of the ran-
dom effects versus the residual association in (22.10).
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TABLE 22.3. Meta-analysis in Schizophrenia. PQL parameter estimates
(model-based standard errors) for a linearization-based marginal model with
autoregressive autocorrelation structure, random-intercept model, and ran-
dom-intercept model with autoregressive autocorrelation structure. Probit link.
Estimates obtained using the SAS procedure GLIMMIX. Coding for ‘Treat’: 0
= standard, 1 = experimental.

Auto- Random R.I. +
Effect correlation intercept Autocorr.
Intercept -0.14 (0.08) -0.11 (0.11) -0.11 (0.11)
Week 1 -0.94 (0.11) -1.38 (0.14) -1.68 (0.12)
Week 2 -0.58 (0.10) -0.84 (0.13) -1.05 (0.11)
Week 4 -0.34 (0.09) -0.51 (0.13) -0.66 (0.10)
Week 6 -0.10 (0.08) -0.16 (0.13) -0.21 (0.10)
Treat×Week 1 0.17 (0.11) 0.17 (0.16) 0.15 (0.15)
Treat×Week 2 0.30 (0.10) 0.38 (0.14) 0.44 (0.14)
Treat×Week 4 0.27 (0.10) 0.37 (0.14) 0.45 (0.14)
Treat×Week 6 0.17 (0.10) 0.23 (0.15) 0.28 (0.15)
Treat×Week 8 0.11 (0.11) 0.13 (0.16) 0.17 (0.16)
R.I. var. τ2 1.25 (0.10) 2.08 (0.15)
Autocorr. par. θ 3.00 (0.14) 0.75 (0.10)
Autocorr. ρ = ρ(u = 1) 0.72 (0.01) 0.26 (0.05)
Autocorr. var. σ2 1.02 (0.03) 0.51 (0.02)

22.6 SAS Code for Random-effects Models with
Autocorrelation

The method presented in Section 22.2 has been implemented, for the case
of a random-intercept probit model with autocorrelation, by Didier Renard
(Renard, Molenberghs, and Geys 2004) in a SAS macro, available from the
authors upon request. A call to the macro to fit the random-intercept only
model in Table 22.1 is:

%plrint_corr(dataset=cgi, y=cgi_bin, x=weekcls treat*weekcls,
classvar=weekcls, id=id, varinit=, weight=1,
info=0, scorrtim=, scorrinit=, scorrpow=);

Most of the arguments to the macro are self-evident and in agreement with
standard SAS statements. These include ‘y’ and ‘x’ for the response and
independent variables, respectively, ‘classvar’ for the independent variables
that need to be treated as class variables, and ‘id’ to indicate the levels
of independent replication. Pseudo-likelihood is requested by ‘weight=1,’
whereas ‘weight=0’ refers to full maximum likelihood. Convergence in gra-
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dient terms is governed by ‘conv,’ with a default value of 10−4, and ‘maxiter’
controls the maximum number of iterations, with a default value of 100. The
user can control whether the information matrix is calculated using first-
order derivatives (‘info=0’) or rather numerically calculatead second-order
derivatives (‘info=1’). An initial value for the random-intercept variance
can be passed on by way of ‘varinit.’ The remaining options control the au-
tocorrelation process. The time variable used in the autocorrelation process
is passed on through ‘scorrtim.’ If this argument is left empty, then no auto-
correlation is included and hence a standard random-intercept probit model
is obtained. The power p of the exponential process exp[−α(tij − tik)k] is
specified via ‘scorrpow,’ with a (default) value of 1 for exponential decay
and k = 2 for Gaussian decay. The parameter α can be initialized using
‘scorrinit.’

The use of these options implies that for the model with random intercept
and exponential autocorrelation, the call changes to:

%plrint_corr(dataset=cgi, y=cgi_bin, x=weekcls treat*weekcls,
classvar=weekcls, id=id, varinit=%str(1.117),
weight=1, info=0, scorrtim=weekcls,
scorrinit=%str(0.5), scorrpow=1);

Turning attention to the generalized linear mixed model with autocorre-
lation, the following code can be used:

proc glimmix data=m.cgi method=RSPL;
class id weekcls;
nloptions maxiter=50 technique=newrap absftol=1e-4;
model cgi_bin (event=’1’) = weekcls treat*weekcls

/ dist=binary link=probit solution;
random intercept / subject=id type=un;
random _residual_ / subject=id type=sp(exp)(timecls);

run;

The RANDOM statement with ‘intercept’ argument produces the random
intercept model, whereas the serial process is invoked by means of the RAN-
DOM statement with ‘ residual ’ argument. The ‘type=sp(exp)’ requests
exponential decay. Removing the first RANDOM statement produces a
marginal model with autocorrelation process only. Removing the second
one yields the classical random-intercept model. Removing the ‘link=probit’
option from the MODEL statement yields the logit link equivalents to these
models. Since convergence can be challenging, it might be necessary to try
several NLOPTIONS arguments to control updating, convergence criteria,
etc. In our case, it has been necessary to switch the updating algorithm
to Newton-Rahpson with the ‘technique=newrap’ option because quasi-
Newton methods tend to get trapped in an infinite cycling between two
or more values. Moreover, the number of iterations needs to be increased
since for some analyses the default number of 20 was exceeded. Finally, the
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convergence criterion was relaxed, either in terms of the function itself, us-
ing the ‘absftol=’ option, or in terms of the gradient, using the ‘absgtol=’
option.

22.7 Concluding Remarks

We have presented two approaches to deal with hierarchical generalized
linear models, with both random effects and serial correlations. The first
one is based on a probit model, overlaying a linear mixed model. The second
one is based on the generalized linear mixed model framework, where the
residual error terms are allowed to be correlated.

Both approaches have advantages and disadvantages. The hierarchical
probit model is simple and appealing because the various effects enter the
latent variable in a way very similar to the linear mixed model. On the
other hand, the approach is restricted to a probit specification. Even though
extensions could start from other fully specified marginal models, the prop-
erties and simplicity of an underlying multivariate normal are important
factors rendering the probit specification unique. Although this seems to
imply a restriction to binary data at the same time, the multilevel probit
approach could in fact be applied to ordinal data, as in Section 7.6. Pseudo-
likelihood provides a convenient estimation method. Renard, Molenberghs,
and Geys (2004) reported good computational properties, but a loss in
efficiency. A large sample size might be necessary for the asymptotic prop-
erties of the PL estimator to hold and the autocorrelation parameter may
be subject to substantial bias in samples of small to moderate size. Nev-
ertheless, in the analysis of our example, the autocorrelation parameter
was estimated very similarly between the multilevel probit model and the
GLMM-based approach.

Although the PL estimation procedure can, in principle, be applied to
hierarchies with more than two levels, practical limitations on the number
of levels will arise. For instance, in a three-level model all possible pairs
within and between level 2 units pertaining to the same level 3 unit should
be considered. This will become computationally prohibitive as the number
of levels and the number of replicates per level increase.

The GLMM-based approach is very general and applies to all link func-
tions. Nevertheless, because the random effects and the autocorrelation
structure enter at different places into the model, irrespective of whether
one consider the direct outcomes or the pseudo data derived from them,
the model is somewhat less transparant and, for example, calculation of
the overall variance or the overall correlation is far from straightforward.
Although PQL is convenient, it suffers from potentially severe attenuation
bias in the fixed efects parameter estimates, the estimates of the variance
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components, as well as in all standard errors. This phenomenon has been
reported before and switching from PQL to MQL would make things worse.

Finally, convergence difficulties should be anticipated to occur quite fre-
quently in applications, regardless of which of the two routes were chosen.
Even in linear mixed models, convergence failures are relatively common
when modeling of the covariance structure involves joint specification of
random effects, serial correlation, and measurement error, simply because
these components of variability cannot easily be disentangled. An exam-
ple in the context of the linear mixed model can be found in Verbeke and
Molenberghs (2000, Section 9.4). Not surprisingly, this phenomenon ampli-
fies with binary data, which contain less information than their continuous
counterparts.



23
Non-Gaussian Random Effects

23.1 Introduction

The mixed models discussed so far all assume that the random effects are
normally distributed. This assumption has been carried over from the linear
mixed models, where it has proven to be mathematically very convenient
in the sense that the marginal likelihood can easily be calculated analyt-
ically (Chapter 4). In non-linear mixed models, as well as in generalized
linear mixed models, this normality assumption has been the cause of many
computational difficulties because the marginal likelihood can no longer be
computed analytically, which has resulted in many proposals in the statis-
tical literature about how to approximate the likelihood to be maximized
(see Chapter 14 for an overview).

For linear mixed models, it has been shown (Verbeke and Lesaffre 1996,
1997) that deviations from this normality assumption have very little im-
pact on the estimation of the parameters in the marginal model, but much
more on the empirical Bayes estimates for the random effects. For non-
linear and generalized linear mixed models, misspecification of the random-
effects distribution can lead to biased estimates for the parameters in the
marginal model, including the fixed effects that are usually of primary inter-
est. We refer to Neuhaus, Hauck, and Kalbfleisch (1992), Butler and Louis
(1992), Pfeiffer et al (2003), Heagerty and Zeger (2000), and Litiére et al
(2005) for more details on the effect of misspecifications of random-effects
distributions in generalized linear mixed models.
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FIGURE 23.1. Density functions of mixtures pN (µ1, σ
2
b )+(1−p)N (µ2, σ

2
b ) of two

normal distributions, for varying values for p and σ2
b . The dashed lines represents

the densities of the normal components; the solid line represents the density of
the mixture.

This calls for methods to check the normality of the random effects and
for models that relax the distributional assumptions. In the context of lin-
ear mixed models, it has been shown (Verbeke and Molenberghs 2000 Sec-
tion 7.8) that the empirical Bayes estimates for the random effects, obtained
under normality, cannot be used to check normality because the prior belief
of normality often forces the estimates to satisfy this assumption such that
non-normality of the random effects may not be reflected in their empirical
Bayes estimates. Therefore, Verbeke and Lesaffre (1996), Magder and Zeger
(1996), and Verbeke and Molenberghs (2000, Chapter 12) have extended
the linear mixed model with mixtures of normals as random-effects distri-
bution. This particular extension has several advantages. First, as shown
in Figure 23.1, the class of finite mixtures of normal distributions is a very
flexible class of distributions: unimodal as well as multimodal, symmetric
as well as very skewed. Second, mixtures can be used to model unobserved
heterogeneity in the random-effects distribution. Third, the fact that the
mixture components are still normally distributed allows the implemen-
tation to take advantage of algorithms and software already available for
fitting the models with normally distributed random effects. Finally, the
mixture models can be used for classification purposes, which makes them
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particularly useful in contexts of discriminant analysis or cluster analysis,
based on longitudinal profiles.

In this chapter, we will present and illustrate the mixture approach in the
context of generalized linear, or non-linear, mixed models. In Section 23.2,
the model will be introduced. In Section 23.3, estimation and inference
will be discussed. Section 23.4 briefly explains how random effects can
be estimated under the mixture assumption and shows how the mixture
models can be used for classification purposes. Finally, an example will be
worked out in Section 23.5. More details on the model, as well as on the
related estimation and inference can be found in Fieuws, Spiessens, and
Draney (2004) or in Muthén and Shedden (1999).

23.2 The Heterogeneity Model

As before, let Y i be the ni-dimensional vector of all measurements avail-
able for cluster i = 1, . . . , N , and let fi(yi|bi) be the corresponding density,
conditional on a q-dimensional vector bi of random effects. We hereby do
not explicitly denote possible dependence of fi(yi|bi) on unknown parame-
ters such as fixed effects. In the mixed models considered so far, the random
effects bi were always assumed to be sampled from a normal distribution
with mean vector zero and a covariance matrix D, i.e., bi ∼ N(0, D). This
assumption reflects the prior believe that the random effects are drawn
from one homogeneous population of random effects. From now on, the
so-obtained mixed model will be termed ‘homogeneity’ model.

The ‘heterogeneity’ model is obtained by replacing the normality as-
sumption for the random effects by a mixture of g q-dimensional normal
distributions with mean vectors µr and covariance matrices Dr, i.e.,

bi ∼
g∑

r=1

prN(µr, Dr), (23.1)

with
∑g

r=1 pr = 1. The population under study can then be interpreted as
a combination of g sub-populations, each representing a fraction pr of the
total population. In the rth sub-population, the random effects are nor-
mally distributed with mean µr, and covariance Dr. Clearly, model (23.1)
reflects prior belief of presence of unobserved heterogeneity. Therefore, the
resulting mixed model is called ‘heterogeneity’ model.

We now define zir = 1 if bi is sampled from the rth component in the
mixture, and 0 otherwise, r = 1, . . . , g. We then have that P (zir = 1) =
E(zir) = pr and that

E(bi) = E [E(bi | zi1, . . . , zig)] = E

(
g∑

r=1

µr zir

)
=

g∑
r=1

pr µr.
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Therefore, the additional constraint
∑g

r=1 prµr = 0 is needed to ensure
that the random effects still have mean zero. Further, we have that the
overall covariance matrix of the bi is given by

D∗ = var [E(bi | zi1, . . . , zig)] + E [var(bi | zi1, . . . , zig)]

= var

(
g∑

r=1

µr zir

)
+ E

(
g∑

r=1

Dr zir

)

=
g∑

r=1

prµrµ
′
r +

g∑
r=1

prDr. (23.2)

The first term represents variability between the mixture components, and
the second term is the average within-component variability. Hence, (23.2)
can be interpreted as a decomposition of variability in the random effects
in terms of variability between and variability within the sub-populations.
Finally, denoting the density within the rth mixture component by fr(bi),
we have that the density function corresponding to (23.1) is given by

f(bi) =
g∑

r=1

prfr(bi)

=
g∑

r=1

pr (2π)−q/2 |Dr|−1/2

× exp
{

−1
2

(bi − µr)
′
D−1

r (bi − µr)
}

. (23.3)

It should be emphasized that we consider the number of components
g in (23.1) to be known. In practice, several models can be fitted, with
increasing values for g, leading to a series of nested models, and testing
procedures such as the likelihood ratio test could be used for the com-
parison of these models. However, as discussed by Ghosh and Sen (1985),
testing for the number of components in a finite mixture is seriously com-
plicated by boundary problems similar to the ones discussed in Section 14.6
in the context of tests for variance components. In order to briefly high-
light the main problems, we consider testing H0 : g = 1 versus HA : g = 2.
The null hypothesis can then be expressed as H0 : µ1 = µ2. However, the
same hypothesis is obtained by setting H0 : p1 = 0 or H0 : p2 = 0, which
clearly illustrates that H0 is on the boundary of the parameter space, and
hence also that the usual regularity conditions for application of the clas-
sical maximum likelihood theory are violated. Therefore, simulations are
needed to derive the correct null distribution of the LR test statistic. We
refer to Verbeke (1995, Section 4.6) for an example in the context of lin-
ear mixed models, and to McLachlan and Basford (1988, Section 1.10) for
an extensive overview of the literature on the use of the LR test in finite
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mixture problems. In practice it is often sufficient to fit several heterogene-
ity models and to explore how increasing g affects the inference for the
parameters of interest.

In the context of linear mixed models, Magder and Zeger (1996) also
considered mixtures of normal distributions as random-effects distribution,
but they treated the number g of components as an unknown parameter, to
be estimated from the data. In order to avoid that non-smooth mixture dis-
tributions, with many components, would be obtained, they pre-specify a
lower boundary h for the within-component variability measured by the de-
terminants |Dr| of the within-component covariance matrices. In practice,
very little difference is expected from models that pre-specify the number
of mixture components. Indeed, when a very smooth mixing distribution is
required, a large value of h can be specified, which will yield a mixture of
a relatively small number of normal distributions.

23.3 Estimation and Inference

Estimation and inference for the heterogeneity model will be based on
maximum likelihood (ML) principles for the marginal likelihood of the data.
The marginal distribution of Y i, obtained from integrating out the random
effects, is given by

fi(yi) =
∫

fi(yi|bi) f(bi) dbi

=
g∑

r=1

pr

∫
fi(yi|bi) fr(bi) dbi

=
g∑

r=1

prfir(yi) (23.4)

in which fir(yi) is the marginal density corresponding to a mixed model
with random effects that are normally distributed with mean µr and covari-
ance Dr. Hence, the marginal density of Y i is again a g-component finite
mixture, with the same mixing proportions pr, and where the component-
specific densities are marginal mixed model densities within the specific
sub-population. This specific feature will simplify implementation consider-
ably because it will be possible to build on existing software for generalized
linear and/or non-linear mixed models.

Maximization of the marginal likelihood resulting from (23.4) will be
based on the so-called Expectation-Maximization (EM) algorithm, see Laird
(1978). See also Section 28.3 for a general introduction of the algorithm in
the context of missing data. The EM algorithm is particularly useful for
mixture problems because it often happens that a model is fitted with too
many components (g too large), leading to a likelihood that is maximal
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anywhere on a ridge. As shown by Dempster, Laird, and Rubin (1977), the
EM algorithm is capable of converging to some particular point on that
ridge. Titterington, Smith, and Makov (1985, pp. 88–89) compare the EM
algorithm with the Newton-Raphson (NR) algorithm. Their conclusions
can be summarized as follows:

• EM is usually simple to apply and satisfies the appealing monotonic
property in that it increases the objective function at each iteration
step. NR is more complicated, and there is no guarantee of monotonic-
ity.

• If NR converges, it is of second order (i.e., fast), whereas EM is often
painfully slow. However, if the separation between the components in
the mixture is poor, even the numerical performance of NR can be
disappointing. Simulations have shown that, in such cases, NR can
fail to converge in up to half the simulations, even when the algorithm
was started from the true parameter values.

• Convergence is not guaranteed with any of the techniques because
EM, even with the monotonicity property, can converge to a local
maximum of the likelihood surface.

Böhning and Lindsay (1988) have considered maximization of log-likeli-
hoods for which the quadratic approximation based on the Taylor series
is “flatter” than the objective function, thereby sending the solution too
far at the next step. They conclude that, in a mixture framework, flat log-
likelihoods often occur. It is known that this often leads to problems in
convergence and to instabilities for the Newton-Raphson algorithm.

Note also that because the random effects are assumed to follow a mix-
ture of distributions of the same parametric family, the vector of all para-
meters in the marginal model is, strictly speaking, not identifiable. Indeed,
the log-likelihood is invariant under the g! possible permutations of the
mean vectors µr, the covariances Dr, and the corresponding component
probabilities pr. Therefore, the likelihood will have at least g! local max-
ima with the same likelihood value. However, this lack of identifiability is
of no concern in practice, as it can easily be overcome by imposing some
constraint on the parameters. For example, Aitkin and Rubin (1985) use
the constraint that

p1 ≥ p2 ≥ . . . ≥ pg. (23.5)

The likelihood is then maximized without the restriction, and the compo-
nent labels are permuted afterwards to achieve (23.5).

The EM algorithm is frequently used for the calculation of maximum like-
lihood estimates for missing data problems (Section 28.3). Strictly speak-
ing, we do not necessarily have missingness in our context. However, it will
prove extremely convenient to treat the component membership indicators
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zir, i = 1, . . . , N , r = 1, . . . , g as missing. We now give a brief introduction
on the EM algorithm in the context of the heterogeneity model, and we
refer to McLachlan and Basford (1988, Section 1.6) for an application of
the EM algorithm in a simpler mixture context, where it is assumed that
the available data are all drawn from the same mixture distribution (no
different dimensions, no covariates).

Let π be the vector of component probabilities [i.e., π′ = (p1, . . . , pg)]
and let γ be the vector containing the remaining parameters, i.e., the para-
meters in the conditional densities fi(yi|bi) as well as in all µr and all Dr.
Further, θ′ = (π′, γ′) denotes the vector of all parameters in the marginal
heterogeneity model (23.4). Further, we now explicitly denote dependence
of the within-component marginal densities fir(yi) on γ by fir(yi|γ). The
marginal likelihood function is then given by

L(θ|y) =
N∏

i=1

[
g∑

r=1

pr fir(yi | γ)

]
, (23.6)

where y′ = (y1
′, . . . ,yN

′) is the vector containing all observed response
values.

Let zir be as defined before in Section 23.2. The prior probability for an
individual to belong to component r is then P (zir = 1) = pr, the mixture
proportion for that component. The log-likelihood function for the observed
measurements y and for the vector z of all unobserved zir is then

	(θ|y, z) =
N∑

i=1

g∑
r=1

zir [ln pr + ln fir(yi|γ)] ,

which is easier to maximize than the log-likelihood function correspond-
ing to the likelihood (23.6) of the observed data vector y only. On the
other hand, maximizing 	(θ|y, z) with respect to θ yields estimates which
depend on the unobserved (“missing”) indicators zir. A compromise is ob-
tained with the EM algorithm, where the expected value of 	(θ|y, z), rather
than 	(θ|y, z) itself, is maximized with respect to θ, where the expectation
is taken over all the unobserved zir. In the E step (expectation step), the
conditional expectation of 	(θ|y, z), given the observed data vector y, is
calculated. In the M step (maximization step), the so-obtained expected
log-likelihood function is maximized with respect to θ, providing an up-
dated estimate for θ. Finally, one keeps iterating between the E step and
the M step until convergence is attained.

More specifically, let θ(t) be the current estimate for θ, and θ(t+1) stands
for the updated estimate, obtained from one further iteration in the EM
algorithm. We then have the following E and M steps in the estimation
process for the heterogeneity model.

The E Step. The conditional expectation

Q(θ|θ(t)) = E
[
	(θ|y, z) | y, θ(t)

]
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is given by

Q(θ|θ(t)) =
N∑

i=1

g∑
r=1

pir(θ(t)) [ln pr + ln fir(yi|γ)] , (23.7)

where only the posterior probability for the ith individual to belong
to the rth component of the mixture, given by

pir(θ(t)) = E(zir | yi, θ
(t)) = P (zir = 1 | yi, θ

(t))

=
prfir(yi|γ)∑g

k=1 pkfik(yi|γ)

∣∣∣∣
π̂(t),γ̂(t)

has to be calculated for each i and r.

The M Step. To get the updated estimate θ(t+1), we have to maximize
expression (23.7) with respect to θ. We first maximize

N∑
i=1

g∑
r=1

pir(θ(t)) ln pr

=
N∑

i=1

g−1∑
r=1

pir(θ(t)) ln pr +
N∑

i=1

pig(θ(t)) ln

(
1 −

g−1∑
r=1

pr

)

with respect to p1, . . . , pg−1. Setting all first-order derivatives equal
to zero establishes that the updated estimates satisfy

p
(t+1)
r

p
(t+1)
g

=
∑N

i=1 pir(θ(t))∑N
i=1 pig(θ(t))

,

for all r = 1, . . . , g − 1. This also implies that

1 =
g∑

r=1

p(t+1)
r =

N p
(t+1)
g∑N

i=1 pig(θ(t))
,

from which it follows that all estimates p
(t+1)
r satisfy

p(t+1)
r =

1
N

N∑
i=1

pir(θ(t)).

Unfortunately, the second part of (23.7) cannot be maximized ana-
lytically, and a numerical maximization procedure such as Newton-
Raphson is needed to maximize

N∑
i=1

g∑
r=1

pir(θ(t)) ln fir(yi|γ) (23.8)
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with respect to γ. Luckily, (23.8) can be interpreted as a weighted log-
likelihood of a generalized linear or non-linear mixed model. There-
fore, maximization of (23.8), can often be based on software pro-
cedures available for fitting generalized linear and non-linear mixed
models, such as the SAS procedures GLIMMIX and NLMIXED (Chap-
ter 15). We refer to Fieuws, Spiessens, and Draney (2004) for an
implementation based on the NLMIXED procedure.

Often, numerical maximization algorithms are based on second-order
derivatives of the log-likelihood function. This allows easy calculation of the
observed Fisher information matrix and hence also of asymptotic standard
errors for all ML estimates. This is not the case for the EM algorithm, which
immediately highlights one of the main drawbacks of this algorithm. How-
ever, Louis (1982) has provided a procedure for approximating the observed
information matrix with few additional calculations. The so-obtained stan-
dard errors can then be used to construct classical asymptotic Wald-type
tests, based on the asymptotic normality of the ML estimators. Alternative
inferences can be based on likelihood ratio principles as well.

23.4 Empirical Bayes Estimation and Classification

When the random effects bi are of interest, empirical Bayes (EB) tech-
niques can be used for their estimation. As explained in Section 14.2.4,
it is customary to define the EB estimates as the posterior modes of the
random effects bi, i.e., as the value for bi that maximizes the posterior
density fi(bi|yi), in which all unknown parameters have been replaced by
their estimates obtained from maximizing the marginal likelihood function.
Under the heterogeneity model, the posterior density of bi is given by

fi(bi | yi, θ) =
g∑

r=1

pir(θ)fir(bi | yi, γ), (23.9)

where fir(bi|yi, γ) is the posterior density function of bi, conditional on
zir = 1, i.e., conditional on the knowledge that bi was sampled from the
rth component in the mixture. Hence, the posterior distribution of bi is a
mixture of the posterior distributions of bi within each component of the
mixture, with the posterior probabilities pir(θ) as subject-specific mixture
proportions. The possible multimodality of the posterior density of bi im-
plies that the posterior mode is not a good point estimate for bi, in many
applications. However, expression (23.9) suggests estimating the random
effect bi for cluster i by the weighted sum

b̂i =
g∑

r=1

pir(θ)b̂ir(γ)
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of the component-specific posterior modes b̂ir(γ), with weights equal to
the posterior probabilities for that subject to belong to the different mix-
ture components, and with the parameters θ and γ replaced by their ML
estimates obtained from the EM algorithm. The resulting estimates will
still be called empirical Bayes estimates.

Interest could also lie in the classification of the subjects into the different
mixture components. It is natural in mixture models for such a classification
to be based on the estimated posterior probabilities pir(θ̂) (McLachlan
and Basford 1988, Section 1.4). One then classifies the ith subject into the
component for which it has the highest estimated posterior probability to
belong to, that is, to the r(i)th component, where r(i) is the index for
which

pi,r(i)(θ̂) = max
1≤r≤g

pir(θ̂).

Note how this technique can be used for cluster analysis within the frame-
work of non-linear or generalized linear mixed models: If the individual
profiles are to be classified into g subgroups, fit a mixture model with g
components and use the above rule for classification in either one of the
g clusters. In the context of discriminant analysis, a mixed model can be
fitted to each group separately, and a mixture model can be used for the
classification of future clusters. Examples in the context of linear models
for continuous data can be found in Verbeke and Lesaffre (1996), Tomasko,
Helms, and Snapinn (1999), Verbeke and Molenberghs (2000, Chapter 12),
and Brant et al (2003). An example in the context of non-linear mixed
models can be found in Fieuws, Verbeke, and Brant (2005).

23.5 The Verbal Aggression Data

As an illustration of the mixture approach, we re-analyze the data of
Vansteelandt (2000), which were also used by De Boeck and Wilson (2004),
as key example throughout their whole book. The data are responses from
316 persons to questions (items) about verbal aggression. All items refer
to verbally aggressive reactions in a frustrating situation. For example, one
item is: ‘A bus fails to stop for me. I would curse.’ Possible responses are
‘Yes,’ or ‘No.’ Further, the experimental design has four factors, summa-
rized in Table 23.1. The first one is the type of behavior, with possible
values ‘Curse,’ ‘Scold,’ and ‘Shout.’ The second design factor is the be-
havior mode. A differentiation is made between actual doing (i.e., cursing,
scolding, or shouting) and wanting to do (i.e., wanting to curse, wanting to
scold, or wanting to shout). The third design factor is the situation type.
This factor has two levels: situations in which someone else is to blame,
and situations in which one is self to blame. Examples of other-to-blame
situations are ‘A bus fails to stop for me,’ and ‘I miss a train because a clerk
gave me faulty information.’ Examples of self-to-blame situations are ‘The
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TABLE 23.1. Verbal Aggression Data. Summary of the 24 items. Two versions
exist of each item. The version with ‘want to’ in the item formulation refers
to items with behavior mode ‘Want.’ The version without ‘want to’ in the item
formulation refers to items with behavior mode ‘Do.’

Items Situation type Behavior
1. A bus fails to stop for me. I would (want to)

curse.
Other to blame Curse

2. A bus fails to stop for me. I would (want to)
scold.

Scold

3. A bus fails to stop for me. I would (want to)
shout.

Shout

4. I miss a train because a clerk gave me faulty
information. I would (want to) curse.

Curse

5. I miss a train because a clerk gave me faulty
information. I would (want to) scold.

Scold

6. I miss a train because a clerk gave me faulty
information. I would (want to) shout.

Shout

7. The grocery store closes just as I am about to
enter. I would (want to) curse.

Self to blame Curse

8. The grocery store closes just as I am about to
enter. I would (want to) scold

Scold

9. The grocery store closes just as I am about to
enter. I would (want to) shout.

Shout

10. The operator disconnects me when I had used
up my last 10 cents for a call. I would (want
to) curse.

Curse

11. The operator disconnects me when I had used
up my last 10 cents for a call. I would (want
to) scold.

Scold

12. The operator disconnects me when I had used
up my last 10 cents for a call. I would (want
to) shout.

Shout

operator disconnects me when I had used up my last 10 cents for a call,’
and ‘The grocery store closes just as I am about to enter.’ The fourth fac-
tor, the specific situations that are asked about (2 of each-see Table 23.1),
is nested within the third. This factor will not be used in the analyses here.
In conclusion, the design is a 3 × 2 × 2 design with a fourth factor nested
within the third, with 24 items in total.

Let Yij be the outcome for the jth item, measured on respondent i,
i = 1, . . . , 316, j = 1, . . . , 24. Further, we define four dummy variables,
as defined in Table 23.2. The definition of X2 and X3 is such that they
characterize expression of frustration (X2) and expression of blame (X3).
In our analyses, we will focuss on the effect of the factor ‘Type of situation,’
and more specifically, to the heterogeneity in the population with respect
to the effect this factor has on the outcome. All our models will be of the
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TABLE 23.2. Verbal Aggression Data. Definition of the dummy variables for the
design factors.

Dummy Design factor Definition

X1: Type of situation:
{

X1 = 1 Other to blame
X1 = 0 Self to blame

X2, X3: Type of behavior:
{

X2 = 1 Cursing or shouting
X2 = 0 Scolding

{
X3 = 1 Cursing or scolding
X3 = 0 Shouting

X4: Mode of behavior:
{

X4 = 1 Do mode
X4 = 0 Want mode

form

Yij |bi ∼ Bernoulli(πir),
logit(πir) = (β0 + bi0) + (β1 + bi1)X1i

+β2X2i + β3X3i + β4X4i, (23.10)

in which bi = (bi0, bi1)′ represents the vector of random (subject-specific)
intercepts and random (subject-specific) effects of ‘Others to blame’ (X1).
It is assumed that the random effects bi satisfy

bi ∼
g∑

r=1

prN(µr, Dr),

where, as before
∑

r prµr = 0. Here, we will only consider models with the
same covariance matrix in all mixture components, i.e., with all Dr equal
to D,

bi ∼
g∑

r=1

prN

[(
µ0j

µ1j

)
,

(
d11 d12

d21 d22

)]
,

where µr = (µ0j , µ1j)′.
Depending on the actual form of the µr and of D, we get a variety

of models all known in the psychometric literature. We refer to Fieuws,
Spiessens, and Draney (2004) for a detailed discussion. A graphical rep-
resentation of several of those models is given in Figure 23.2, in case of
two mixture components, i.e., g = 2. For example, if the within-component
covariance D is the 2 × 2 zero matrix, then no within-component variabil-
ity is present, and Model (23.10) reduces to a so-called latent class model,
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(1.A) (1.B) (1.C)

(2.A) (2.B) (2.C)

(3.A) (3.B) (3.C)

FIGURE 23.2. Verbal Aggression Data. Graphical representation of different dis-
tributional assumptions for random effects.
Classification according to amount of variability within the mixture components:

Row 1: no variability
Row 2: only variability for intercepts
Row 3: variability for intercepts and effects of other to blame

Classification according to discrimination of the mixture components:
Column A: no discrimination at all
Column B: discrimination on intercepts only
Column C: discrimination on intercepts and effects of other to blame
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TABLE 23.3. Verbal Aggression Data. Maximum likelihood estimates (standard
errors) for a one-component and several two-component mixture models.

Heterogeneity models (g = 2)
Effect Homogeneity Model A Model B Model C
β0 -0.31 (0.096) -0.32 (0.06)

β0 + µ01 0.20 (0.10) -0.17 (0.12)
β0 + µ02 -0.83 (0.11) -0.41 (0.08)

β1 1.03 (0.06) 1.03 (0.05)
β1 + µ11 2.47 (0.15) 2.64 (0.16)
β1 + µ12 0.50 (0.10) 0.50 (0.09)

β2 0.70 (0.05) 0.70 (0.04) 0.72 (0.04) 0.72 (0.04)
β3 1.36 (0.05) 1.36 (0.03) 1.41 (0.03) 1.41 (0.03)
β4 -0.67 (0.06) -0.67 (0.04) -0.69 (0.04) -0.69 (0.04)
d11 1.86 (0.20) 1.53 (0.16) 1.30 (0.10) 1.35 (0.10)

p1 0.52 (0.07) 0.30 (0.05) 0.27 (0.04)
p2 0.48 (0.01) 0.70 (0.05) 0.73 (0.04)
Log-likelihood -4116.05 -4115.39 -4079.07 -4079.84

which assumes that at most two different values are possible for the in-
tercepts, as well as for the slopes (row 1 in Figure 23.2). Depending on
the actual location of the mean parameters µ1 and µ2, the model fur-
ther reduces to a one-component mixture (column A in Figure 23.2), or
to a two-component mixture with discrimination in only one dimension
or in both dimensions (columns B and C, respectively, in Figure 23.2).
A similar column-classification is also possible in case one dimension of
the random-effects distribution shows within-component variability (row 2
in Figure 23.2), or when within-component variability is present in both
dimensions (row 3 in Figure 23.2).

As an example, several of these models have been fitted to the verbal ag-
gression data, all assuming within-component variability for the intercepts
(i.e., d11 > 0), but a latent class structure for the effect of the behavior
mode (i.e., d12 = d22 = 0). Hence, all models are of the type as shown in
row 2 of Figure 23.2. The results have been summarized in Table 23.3. First,
the homogeneity model, i.e., a one-component model, was fitted (g = 1).
Clearly, people tend to be more verbally aggressive when others are to
blame and when the considered behavior is expressing blame or expressing
frustration. Moreover, they want to be more aggressive than they say they
would actually be.
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FIGURE 23.3. Verbal Aggression Data. Fitted random-effects distribution based
on the two-component mixture model, Model B.

Our first two-component mixture model (Model A) assumes a two-component
mixture for the intercepts, but still one common effect of the covariate X1.
More specifically, we assume that(

bi0

bi1

)
∼ p1 N

[(
µ01

0

)
,

(
d11 0
0 0

)]
+ p2 N

[(
µ02

0

)
,

(
d11 0
0 0

)]
,

which graphically corresponds to panel (2.B) in Figure 23.2. The two mix-
ture components get estimated weights (prior probabilities) equal to 0.52
and 0.48. Note that the results in Table 23.3 are the component means
µ01 and µ02, with the fixed effect β0 added, yielding the average intercept
within each mixture component separately. In case β0 would be of interest,
the estimate immediately follows from the fact that

β0 = p1(µ01 + β0) + p2(µ02 + β0),

because the random effects have been assumed to have prior mean equal
to zero. In our example, this yields

β̂0 = 0.52 × 0.20 − 0.48 × 0.83 = −0.29,
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relatively close to the overall intercept we obtained under the homogene-
ity model. Note also the reduction in within-component variability d11.
Finally, although classical likelihood ratio tests for the comparison of the
one-component model with Model A are not valid (see Section 23.2), com-
parison of the log-likelihood values does yield very little evidence in favor
of the two-component model.

Model A assumes the same effect of X1 in both mixture components. In
Model B, this is relaxed by assuming that

(
bi0

bi1

)
∼ p1 N

[(
µ01

µ11

)
,

(
d11 0
0 0

)]
+ p2 N

[(
µ02

µ12

)
,

(
d11 0
0 0

)]
,

graphically represented in panel (2.C) of Figure 23.2. Clearly, this model
yields an improved fit, when compared to Model A. Figure 23.3 shows
the fitted random-effects distribution. The smaller class represents approx-
imately 30% of the population, the larger class 70%. Figure 23.3 clearly
shows that a major distinction between the two mixture components is
given by the effect of the ‘other-to-blame’ factor. Our homogeneity model
showed that verbal aggression is higher when others are to blame, com-
pared to situations in which one should blame oneself. In the smaller class
this difference is much higher than in the larger class (2.474 versus 0.501).
This means that there are two types of people: Those who do not dif-
ferentiate very much between other-to-blame situations and self-to-blame
situations and those who are clearly more verbally aggressive when others
are to blame.

Figure 23.3 also suggests that there is very little differentiation between
the mixture components with respect to the random intercepts: The aver-
age intercepts in the two components are estimated as −0.167 in the first
component versus −0.414 in the second mixture component. Therefore, a
two-component model, with a common average random intercept for both
components has also been fitted (Model C). The random effects are then
assumed to satisfy

(
bi0

bi1

)
∼ p1 N

[(
0

µ11

)
,

(
d11 0
0 0

)]
+ p2 N

[(
0

µ12

)
,

(
d11 0
0 0

)]
.

The maximized log-likelihood value is now −4079.84, which is only slightly
smaller than what was obtained under Model B.
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23.6 Concluding Remarks

In linear mixed models, inferences for the fixed effects and variance compo-
nents are quite robust with respect to non-normality of the random effects.
This no longer holds for non-linear or generalized linear mixed models.
We have presented a flexible class of models with less strict distributional
assumptions for the random effects, which includes the traditional mixed
models based on Gaussian random effects, as special cases.

In the analysis of the verbal aggression data (Section 23.5), we have
illustrated the flexibility of the models, in the context of a mixed logistic
model for a binary outcome variable. However, the heterogeneity model can
equally well be applied to non-linear mixed models (Section 20.5).

Note also that many further extensions of the models presented in the
example in Section 23.5 would be possible. The number of mixture compo-
nents could be further increased, class-specific variances could be assumed,
within-component variability could be allowed for the effects of the type
of situation, or other random effects could be included as well. Our pur-
pose has been to illustrate the flexibility of the heterogeneity model, rather
than to give a complete overview of all possible models that fit within this
framework.





24
Joint Continuous and Discrete
Responses

24.1 Introduction

Statistical problems where various outcomes of a mixed nature are ob-
served have been around for about a half century and are rather common
at present. Perhaps the most common situation, whether in psychometry,
biometry, or other fields, is that of the joint occurrence of a continuous,
often normally distributed, and a binary or ordinal outcome. Emphasis
can be placed on the determination of the entire joint distribution of both
outcomes, or on specific aspects, such as the association in general or cor-
relation in particular between both outcomes.

For the problem sketched above, there broadly are three approaches.
The first one postulates a marginal model for the binary outcome and
then formulates a conditional model for the continuous outcome, given the
categorical one. For the former, one can use logistic regression, whereas
for the latter conditional normal models are a straightforward choice, i.e.,
a normal model with the categorical outcome used as a covariate (Tate
1954). The second family starts from the reverse factorization, combining
a marginal model for the continuous outcome with a conditional one for
the categorical outcome. Conditional models have been discussed by Cox
and Wermuth (1992, 1994b), Krzanowski (1988), and Little and Schluchter
(1985). Schafer (1997) presents a so-called general location model where a
number of continuous and binary outcomes can be modeled together.

The third model family directly formulates a joint model for the two
outcomes. In this context, one often starts from an bivariate continuous
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variable, one component of which is explicitly observed and the other
one observed in dichotomized, or generally discretized, version only (Tate
1955). Molenberghs, Geys, and Buyse (2001) presented a model based on
a Plackett-Dale approach, where a bivariate Plackett distribution is as-
sumed, of which one margin is directly observed and the other one only
after dichotomization. General multivariate exponential family based mod-
els have been proposed by Prentice and Zhao (1991), Zhao, Prentice, and
Self (1992), and Sammel, Ryan, and Legler (1997).

Of course, these developments have not been limited to bivariate joint
outcomes. One can obviously extend these ideas and families to a multi-
variate continuous outcome and/or a multivariate categorical outcome. For
the first and second families, one then starts from conditional and mar-
ginal multivariate normal and appropriately chosen multinomial models.
Such a model within the first family has been formulated by Olkin and
Tate (1961). Within the third family, models were formulated by Hannan
and Tate (1965) and Cox (1974) for a multivariate normal with a univariate
bivariate or discrete variable.

Apart from an extension from the bivariate to the multivariate case, one
can introduce other hierarchies as well. For example, each of the outcomes
may be measured repeatedly over time, and there could even be several
repeated outcomes in both the continuous and the categorical subgroup,
and then some of the approaches described in Chapter 25 can be used. A
very specific hierarchy stems from clustered data, where a continuous and a
categorical, or several of each, are observed for each member of a family, a
household, a cluster, etc. For the specific context of developmental toxicity
studies, often conducted in rats and mice, a number of developments have
been made. An overview of such methods, together with developments for
probit-normal and Plackett-Dale based models, was presented in Regan and
Catalano (2002). Catalano and Ryan (1992) and Fitzmaurice and Laird
(1995) propose models for a combined continuous and discrete outcome,
but differ in the choice of which outcome to condition on the other one.
Both use generalized estimating equations to allow for clustering. Catalano
(1997) extended the model by Catalano and Ryan (1992) to accommodate
ordinal variables.

Regan and Catalano (1999a) proposed a probit-type model to accom-
modate joint continuous and binary outcomes in a clustered data context,
thus extending the correlated probit model for binary outcomes (Ochi and
Prentice 1984) to incorporate continuous outcomes. Geys et al (2001) used
a Plackett latent variable to the same effect, extending the bivariate ver-
sion proposed by Molenberghs, Geys, and Buyse (2001). Estimation in such
hierarchical joint models can be challenging. Regan and Catalano (1999a)
proposed maximum likelihood, but considered GEE as an option too (Re-
gan and Catalano 1999b). Geys et al (2001) made use of pseudo-likelihood.
Ordinal extensions have been proposed in Regan and Catalano (2000).
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It is clear that the literature on joint modeling of outcomes of various
natures is diverse and growing. A broad ranging review of hierarchical
models for joint continuous and discrete models can be found in Regan
and Catalano (2002). In this chapter, we will focus on a few methods. We
will emphasize the case of a continuous and a binary outcome as a basic
paradigm (Section 24.2). In particular, a probit-normal formulation will be
developed (Section 24.2.1), a Plackett-Dale approach (Section 24.2.2), and
a bivariate generalized linear mixed model of a joint nature (Section 24.2.3).
Hierarchical versions will be discussed in Section 24.3. Using data from an
opthalmology study, used in the context of surrogate marker validation
and introduced in Section 2.9, a concept also discussed in Section 21.3, the
methods presented will be illustrated.

24.2 A Continuous and a Binary Endpoint

In this section, we start of with the bivariate, non-hierarchical, setting.
Extensions to the fully hierarchical case are the topic of Section 24.

Two modeling strategies can be considered to accommodate mixed binary–
continuous endpoints. Indeed, the joint distribution of a mixed continuous–
discrete outcome vector can always be expressed as the product of the mar-
ginal distribution of one of the responses and the conditional distribution
of the remaining response given the former response. One can choose either
the continuous or the discrete outcome for the marginal model. The main
problem with such approaches is that no easy expressions for the associ-
ation between both endpoints are obtained. Therefore, we opt for a more
symmetric treatment of the two outcome variables. We treat the case where
the surrogate is binary and the true endpoint is continuous. The reverse
case is entirely similar.

Let S̃i be a latent variable of which Si is the dichotomized version. In
Section 24.2.1 we will describe a bivariate normal model for S̃i and Ti,
resulting in a probit-linear model for Si and Ti. Section 24.2.2 presents an
alternative formulation based on the bivariate Plackett (1965) density and
resulting in a Plackett-Dale model.

24.2.1 A Probit-normal Formulation
In this formulation, we assume the following model:

Ti = µT + βXi + εTi, (24.1)

S̃i = µS + αXi + εSi, (24.2)

where µS and µT are fixed intercepts and α and β are the fixed effects of
the treatment X on the surrogate and true endpoints respectively. Further,
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εSi and εTi are correlated error terms, assumed to satisfy:(
εTi

εSi

)
∼ N

[(
0
0

)
,

(
σ2 ρσ√

1−ρ2

1
1−ρ2

)]
. (24.3)

Model (24.1)–(24.2) specifies a bivariate normal density. The variance of
S̃i is chosen for reasons that will be made clear in what follows. From
this model, it is easily seen that the density of Ti is univariate normal with
regression given in (24.1) and variance σ2, implying that the parameters µT ,
β, and σ2 can be estimated using linear regression software with response
Ti and single covariate Zi. Similarly, the conditional density of S̃i, given
Xi and Ti is

S̃i ∼ N

[(
µS − ρ

σ
√

1 − ρ2
µT

)
+

(
α − ρ

σ
√

1 − ρ2
β

)
Xi

+
ρ

σ
√

1 − ρ2
Ti; 1

]
, (24.4)

having unit variance and thus motivating our earlier choice for the covari-
ance matrix of Ti and S̃i. Note that in Chapters 21 and 22 the marginal
variances were set equal to one. In principle, these choices are equivalent,
as long as no additional variance parameter for the latent variables is in-
troduced. The corresponding probability

P (Si = 1|Ti, Xi) = Φ1(λ0 + λXXi + λT Ti), (24.5)

where

λ0 = µS − ρ

σ
√

1 − ρ2
µT , (24.6)

λX = α − ρ

σ
√

1 − ρ2
β, (24.7)

λT =
ρ

σ
√

1 − ρ2
, (24.8)

and Φ1 is the standard normal cumulative density function. Note that (24.5)
implicitly defines the cutoff value for the dichotomized version. The λ pa-
rameters can be found by fitting model (24.5) to Si with covariates Xi and
Ti. This can be done with standard logistic regression software if it allows
to specify the probit rather than the logit link, such as the LOGISTIC and
GENMOD procedures in SAS. Given the parameters from the linear re-
gression on Ti (µT , β, and σ2) and the probit regression on Si (λ0, λX , and
λT ), the parameters from the linear regression on S̃i can now be obtained
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from (24.6)–(24.8):

µS = λ0 + λT µT , (24.9)
α = λZ + λXβ, (24.10)

ρ2 =
λ2

T σ2

1 + λ2
T σ2 . (24.11)

The asymptotic covariance matrix of the parameters (µT , β) can be found
from standard linear regression output. The variance of σ̂2 equals 2σ4/N .
The asymptotic covariance of (λ̂0, λ̂X , λ̂T ) follows from logistic (probit)
regression output. These three statements yield the covariance matrix of
the six parameters upon noting that it is block-diagonal. To derive the
asymptotic covariance of (µS , α, ρ) it suffices to calculate the derivatives
of (24.9)–(24.11) with respect to the six original parameters and apply the
delta method. They are:

∂(µS , α, ρ)
∂(µT , β, σ2, λ0, λX , λT )

=

⎛⎝ λT 0 0 1 0 µT

0 λT 0 0 1 β

0 0 h1 0 0 h2

⎞⎠ ,

where

h1 =
1
2ρ

λ2
T

(1 + λ2
T σ2)2

,

h2 =
1
2ρ

2λT σ2

(1 + λ2
T σ2)2

.

Molenberghs, Geys, and Buyse (2001) developed a program in GAUSS
that performs the joint estimation directly by maximizing the likelihood
based on contributions (24.1) and (24.5).

24.2.2 A Plackett-Dale Formulation
Assume that the cumulative distributions of Si and Ti are given by FSi

and FTi . The joint cumulative distribution of both these quantities has
been studied by Plackett (1965) and is discussed for the bivariate binary
and ordinal cases in Section 7.7:

FTi,Si
=

⎧⎪⎨⎪⎩
1 + (FTi

+ FSi
)(ψi − 1) − C(FTi

, FSi
, ψi)

2(ψi − 1)
if ψi �= 1,

FTi
FSi

if ψi = 1,

where ψi, C(·), FTi
, and FSi

take the roles of ψ, S(·), µ1+, and µ+1 in
(7.40), respectively.
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We can now derive a bivariate Plackett “density” function Gi(t, s) for
mixed continuous- binary outcomes. Suppose the success probability for
Si is denoted by πi, then we can define Gi(t, s) by specifying Gi(t, 0) and
Gi(t, 1) such that they sum to fTi

(t). If we define

Gi(t, 0) =
∂FTi,Si

(t, 0)

∂t
,

then this leads to specifying Gi by:

Gi(t, 0) =

⎧⎪⎨⎪⎩
fTi

(t)
2

(
1 − 1+FTi

(t)(ψi−1)−FSi
(s)(ψi+1)

C(FTi
,1−πi,ψi)

)
if ψi �= 1,

fTi
(t)(1 − πi) if ψi = 1,

(24.12)

and
Gi(t, 1) = fTi

(t) − Gi(t, 0). (24.13)

In this formulation we assume Ti ∼ N(µi, σ
2), with µi = µT + βXi and

logit(πi) = µS + αXi with similar notation as in the probit case. The
global odds ratio is assumed to be constant, but this is obviously open to
extension. If we write

θi =

⎛⎜⎜⎝
µi

σ2

πi

ψ

⎞⎟⎟⎠ and ηi =

⎛⎜⎜⎝
µi

ln(σ2)
logit(πi)
ln(ψ)

⎞⎟⎟⎠ ,

estimates of the regression parameters ν = (µ, β, α, lnσ2, lnψ) are easily
obtained by solving the estimating equations U(ν) = 0, using a Newton-
Raphson iteration scheme, where U(ν) is given by:

n∑
i=1

(
∂ηi

∂ν

)′{(
∂ηi

∂θi

)′}−1(
∂

∂θi
lnGi(ti, si)

)
.

24.2.3 A Generalized Linear Mixed Model Formulation
The developments in Section 8.8, where a linearization based marginal
model has been presented, and in Chapter 14, where generalized linear
mixed models have been introduced, can now be adapted to the present
setting as well. In fact, it is useful to start from the formulation in Sec-
tion 22.4, where both random effects and serial correlation have been al-
lowed for. Expression (22.9) provides a general formulation, and (22.10)
is specific for a random-effects logistic regression for repeated measures
with serial, or residual, correlation. It is straightforward to consider this
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framework in situations where various outcomes of a different nature are
observed. In general, we merely have to write, as before,

Y i = µi + εi, (24.14)

where
µi = µi(ηi) = h(Xiβ + Zibi). (24.15)

As usual, we assume bi ∼ N(0, D). The key relaxing assumption is that
the components of the inverse link functions h are allowed to change with
the nature of the various outcomes in Y i. The variance of εi depends
on the mean-variance links of the various outcomes, and can contain, in
addition, a correlation matrix Ri(α) and overdispersion parameters φi.
When there are no random effects in (24.15) a marginal model is obtained,
as in Section 8.8. We will refer to this as a marginal generalized linear models
(MGLM) approach. Reversely, assuming there are no residual correlations
in Ri(α), a conditional independence model or purely random effects model
results, which is still denoted by GLMM.

Using straightforward derivations, a general first-order approximate ex-
pression for the variance-covariance matrix of Y i is:

Vi = Var(Y i) � ∆iZiDZ ′
i∆

′
i + Σi. (24.16)

Here,

∆i =
(

∂µi

∂ηi

)∣∣∣∣
bi=0

,

and
Σi � Ξ1/2

i A
1/2
i Ri(α)A1/2

i Ξ1/2
i ,

with Ai a diagonal matrix containing the variances following from the gen-
eralized linear model specification of Yij given the random effects bi = 0,
i.e., with diagonal elements v(µij |bi = 0). Likewise Ξi is a diagonal matrix
with the overdispersion parameters along the diagonal. When an outcome
component is normally distributed, the overdispersion parameter is σ2

i and
the variance function is 1. For a binary outcome with logit link, we obtain

µij(bi = 0)[1 − µij(bi = 0)].

The evaluation under bi = 0 derives from a Taylor series expansion of the
mean components around bi = 0.

When an exponential family specification is used for all components, with
canonical link, ∆i = Ai and we can write:

Vi = Var(Y i) � ∆iZiDZ ′
i∆

′
i + Ξ1/2

i ∆1/2
i Ri(α)∆1/2

i Ξ1/2
i . (24.17)

Under conditional independence Ri vanishes and

Vi = Var(Y i) = ∆iZiDZ ′
i∆

′
i + Ξ1/2

i ∆iΞ
1/2
i . (24.18)
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For the setting already considered in Sections 24.2.1 and 24.2.2, a suitable
version of (24.14) is:

(
Si

Ti

)
=

⎛⎜⎝ µS + λbi + αXi

exp[µT + bi + βXi]
1 + exp[µT + bi + βXi]

⎞⎟⎠+

(
εSi

εTi

)
. (24.19)

Note that we have included a scale parameter λ in the continuous com-
ponent of an otherwise random-intercept model, given the continuous and
binary outcome are measured on different scales. In this case,

Zi =
(

λ

1

)
, ∆i =

(
1 0
0 vi2

)
, Φ =

(
σ2 0
0 1

)
,

with vi2 = µi2(bi = 0)[1 − µi2(bi = 0)]. Further, let ρ be the correlation
between εSi and εTi. Note that Zi is not a design matrix in the strict
sense, since it contains an unknown parameter. Nevertheless, it is useful to
consider this decomposition.

This implies that (24.16) becomes

Vi =
(

λ2 vi2λ

vi2λ v2
i2

)
τ2 +

(
σ2 ρσ

√
vi2

ρσ
√

vi2 vi2

)

=
(

λ2τ2 + σ2 vi2λτ2 + ρσ
√

vi2

vi2λτ2 + ρσ
√

vi2 v2
i2τ

2 + vi2

)
. (24.20)

The approximate marginal correlation function derived thereof equals:

ρ(β) =
vi2λτ2 + ρσ

√
vi2√

λ2τ2 + σ2
√

v2
i2τ

2 + vi2
. (24.21)

Obviously, (24.21) depends on the fixed effects through vi2. In the special
case of no random effects, the model can be written as:

(
Si

Ti

)
=

⎛⎜⎝ µS + αXi

exp(µT + βXi)
1 + exp(µT + βXi)

⎞⎟⎠+
(

εSi

εTi

)
, (24.22)

and (24.21) simply reduces to ρ, by virtue of its fully marginal specification.
Under conditional independence, ρ in (24.20) satisfies ρ ≡ 0 and (24.21)
reduces to

ρ(β) =
vi2λτ2

√
λ2τ2 + σ2

√
v2

i2τ
2 + vi2

, (24.23)

somewhat simpler but still a function of the fixed effects.
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In case both endpoints are binary, the counterpart to (24.21) is

ρ(β) =
vi1vi2τ

2 + ρσ
√

vi1vi2√
v2

i1τ
2 + vi1

√
v2

i2τ
2 + vi2

, (24.24)

with again a constant correlation ρ when there are no random effects and,
when there is no residual correlation:

ρ(β) =
vi1vi2τ

2√
v2

i1τ
2 + vi1

√
v2

i2τ
2 + vi2

, (24.25)

Of course, the above calculations can be performed with ease for general
random effects design matrices Zi and for more than two components, of
arbitrary nature and not just continuous and binary. This is useful, for
example, for a fully hierarchical specification such as in Section 24.3.

In the general model, no full joint distribution needs to be specified, even
when we assume the first one to be normally distributed, and the second
one to be Bernoulli distributed. We still can leave the specification of the
joint moments to the second one, by way of the marginal correlation. A full
joint specification would need full bivariate model specification, conditional
upon the random effects.

Under conditional independence, the specification of the outcome distri-
butions conditional upon the random effects, together with the normality
assumptions made about the random effects, fully specifies the joint distri-
bution.

24.3 Hierarchical Joint Models

In the previous section, bivariate models have been discussed for the joint
analysis of a continuous and a binary outcome. The focus was placed on
a probit-normal and a Plackett-Dale formulation, next to the generalized
linear mixed model framework, which can be used to flexibly derive mar-
ginal as well as random-effects models. Of course, joint outcomes can be
measured repeatedly over time, or might be observed within a hierarchi-
cal context. In Section 24.3.1, a two-stage approach is presented, whereas
Section 24.3.2 discusses fully hierarchical models.

24.3.1 Two-stage Analysis
In this section, we retain the setting of a binary and a continuous endpoint,
measured within a hierarchical setting. Molenberghs, Geys, and Buyse
(2001) used this approach in the context of surrogate marker evaluation.
Let S̃ij be a latent variable of which Sij is a dichotomized version. One
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option is to consider a two-step analysis. Assume that subject j is mea-
sured within trial i. For repeated measures, j would refer to time and i to
subject.

At the first step, we can assume the following model:

S̃ij = µSi + αiXij + εSij ,

Tij = µTi + βiXij + εTij ,

where αi and βi are study-specific effects of treatment X on the endpoints
in trial i, µSi and µTi are trial-specific intercepts, and εSi and εTi are
correlated error terms, assumed to be mean-zero normally distributed with
covariance matrix

Σ =

⎛⎝ 1
(1−ρ2)

ρσ√
1−ρ2

ρσ√
1−ρ2

σ2

⎞⎠ .

In short, we use the probit formulation, described in Section 24.2.1. Due
to the replication at the study level, we can impose a distribution on the
study-specific parameters. At the second stage we assume⎛⎜⎜⎝

µSi

µTi

αi

βi

⎞⎟⎟⎠ =

⎛⎜⎜⎝
µS

µT

α

β

⎞⎟⎟⎠+

⎛⎜⎜⎝
mSi

mTi

ai

bi

⎞⎟⎟⎠ (24.26)

where the second term on the right hand side of (24.26) is assumed to follow
a zero-mean normal distribution with dispersion matrix D.

24.3.2 Fully Hierarchical Modeling
We first indicate how the probit-normal and Plackett-Dale models can be
generalized to the hierarchical setting. Ample detail can be found in Geys
et al (2001) and Regan and Catalano (2002). Next, the generalized linear
mixed model case will be considered.

24.3.2.1 A Probit-normal Formulation

The model of Section 24.2.1 can be seen as the basis for this model. Whereas
Model (24.1)–(24.2) applies to one continuous and one binary outcome, we
could equally well consider multiple copies of each and then assume that
the resulting stochastic vector, composed of directly observed and latent
outcomes, is normally distributed.

Although this approach is natural and appealing, the problem is the
handling of potentially high dimensional probits, and several authors have
considered this problem in detail. Regan and Catalano (1999a) introduced
a mixed-outcome probit model that extends a correlated probit model for
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binary outcomes (Ochi and Prentice 1984) to incorporate continuous out-
comes. These authors consider exchangeability among the continuous out-
comes, among the binary outcomes, and between the continuous and binary
outcomes.

Regan and Catalano (1999b) avoided fully specifying the joint distrib-
ution of the ni bivariate outcomes on related subjects within unit i by
specifying only the marginal distribution of the bivariate outcomes and ap-
plying generalized estimating equations to take correlation into account.
Precisely, they fully model the bivariate outcomes for a subject and then
apply GEE to accommodate for the correlations between subjects within
unit i.

24.3.2.2 A Plackett-Dale Approach

Likewise, the Plackett-Dale model of Section 24.2.2 can be embedded in a
hierarchical setting. Geys et al (2001) applied marginal pseudo-likelihood
ideas (Chapter 9)

In Section 24.2.2, a bivariate density-distribution was defined for a joint
continuous and binary outcome, by means of (24.12)–(24.13). In principle,
a 2ni-dimensional Plackett-Dale model needs to be specified. Alternatively,
progress can be made by solely specifying the bivariate outcomes, just as
before, and assembling them into a (log) pseudo-likelihood function:

p	 =
N∑

i=1

ni∑
j=1

lnGij(tij , sij), (24.27)

where Tij is the continuous outcomes for subject j within unit (study, trial,
center,. . . ) i and Sij is the binary one. Thus, with this particular choice of
pseudo-likelihood function, the longitudinal part of the correlation struc-
ture is left unspecified. Of course, alternative pseudo-likelihood functions
can be used as well, depending on which parameters are needed to formu-
late answers to scientific questions. Sometimes, the correlation structure
between outcomes on different subjects within the same unit can be of in-
terest, calling for other types of pseudo-likelihood function. Parameter and
precision estimation based on (24.27) is straightforward, given the devel-
opments in Chapter 9, in particular Section 9.4.

24.3.2.3 A Generalized Linear Mixed Model Formulation

The developments in Section 24.2.3 extend straightforwardly to the hier-
archical case, including repeated measures, meta-analyses, clustered data,
correlated data, etc. In fact, Model (24.14) is sufficiently general to gener-
ate marginal and random-effects models for such settings. The fixed and
random effects structures can be formulated sufficiently generally so as to
cover all of these settings. Of course, when parameters are shared between
models for outcomes of different types, care has to be taken to ensure the
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models are meaningful. For example, inflation factors might have to be used
to share random effects across binary and continuous outcomes, exactly as
the parameter λ in (24.19).

Correlations follow in a straightforward fashion when purely marginal
versions are used. When random effects are involved, correlation structures
can be derived from (24.16) or specific forms derived thereof.

24.4 Age Related Macular Degeneration Trial

In the Age Related Macular Degeneration Study, introduced in Section 2.9,
the mixed discrete-continuous case is encountered in data from a simple yet
real situation. Indeed, visual acuity is assessed in terms of number of letters
read, which can be treated as continuous. The dichotomization in terms of
at least 2 or 3 lines of vision lost at 6 and 12 months, respectively, is a
binary outcome.

In Section 24.4.1, a number of bivariate marginal analyses are presented,
with bivariate random-effects analyses discussed in Section 24.4.2. Hierar-
chical analyses, based on including center as a hierarchy defining variable on
the one hand, and repeated measures on each of the binary and continuous
outcomes on the other hand, are presented in Section 24.4.3.

24.4.1 Bivariate Marginal Analyses
First, we consider dichotomized visual acuity at 6 months as the surro-
gate and (continuous) visual acuity at 12 months as the true endpoint.
Dichotomization is achieved by setting a binary variable to 1 if visual acu-
ity at 6 months is larger than the value at baseline and to 0 otherwise. We
consider a probit-normal model as in Section 24.2.1, a Plackett-Dale model
as in Section 24.2.2, and a GLM-based marginal model as in Section 24.2.3.
Of course, the roles of Si and Ti are reversed in the corresponding equations,
as here the surrogate is assumed binary while the true outcome was binary
in the earlier sections. For the latter model, both a logit as well as a probit
link is considered for the MGLM. PQL is used as approximation method.
For the Plackett-Dale model, a logit link is employed for the true endpoint.
Parameter estimates (standard errors) are displayed in Table 24.1.

The correlation between both endpoints is estimated as ρ̂ = 0.74 under
the probit model. This parameter is of direct interest in surrogate marker
evaluation since it captures the so-called adjusted association (Buyse and
Molenberghs 1998) or individual-level association (Buyse et al 2000, Molen-
berghs, Geys, and Buyse 2001). It also justifies the use of a joint model for
both endpoints, rather than considering them separately. This parameter
is estimated very precisely and there is apparently a strong correlation be-
tween both endpoints. Now, the corresponding correlation under the GLM
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TABLE 24.1. Age Related Macular Degeneration Trial. Bivariate marginal analy-
ses with a binary surrogate and a continuous true endpoint.

probit- Plackett MGLM
Effect Par. normal -Dale logit probit

Binary surrogate endpoint
Intercept µS 0.64(0.20) 0.74(0.19) 1.25(0.24) 0.76(0.14)
Treatm. eff. α 0.39(0.28) 0.45(0.30) 0.40(0.38) 0.23(0.21)
Overdis. par. φ 1.01(0.10) 1.01(0.10)

Continuous true endpoint
Intercept µT 11.04(1.57) 10.89(1.56) 11.04(1.58) 11.04(1.58)
Treatm. eff. β 4.12(2.32) 4.02(2.32) 4.12(2.33) 4.12(2.33)
Standard dev. σT 15.95(0.82) 16.04(0.81)
Variance σ2

T 254.4(26.2) 257.3(26.0) 257.0(26.5) 257.0(26.5)
Association

Correlation ρ 0.74(0.05) 0.62(0.05) 0.62(0.05)
Log odds r. lnψ 2.85(0.37)
Odds r. ψ 17.29(6.40)

is quite a bit lower. Although, due to the use of PQL, there typically is
downward bias in the parameter estimates, a more important reason for the
difference is that the probit model features the correlation between a pair
of latent variables, whereas the GLM captures the correlation between the
observable outcomes. The Plackett-Dale model, of course, is based on the
use of the odds ratio rather than the correlation as association parameter.
For the binary endpoint, the treatment effect parameters differ somewhat,
with the differences in the intercepts a bit larger. The parameter estimates
for the continuous endpoint agree much closer.

Let us now switch to the situation of continuous visual acuity at 6 months
as a surrogate for the binary indicator for loss of at least 3 lines of vision
lost at one year. The same models as in Table 24.1 are considered here too,
with of course the roles of the continuous and binary endpoints reversed.
Parameter estimates (standard errors) are given in Table 24.2. Qualita-
tive conclusions agree very closely with their counterparts for the earlier
analyses, although there are some quantitative differences. With the probit
model, the correlation is ρ̂ = 0.81, but again, for the GLM-based models
they are quite a bit smaller, underscoring once more that the two correla-
tion parameters are not really directly comparable, as the probit (and also
Dale) versions are describing the correlation of the underlying bivariate la-
tent variable. With the Plackett-Dale model, the odds ratio is estimated to
be ψ̂ = 16.93. As in Table 24.1, parameter estimates across models agree
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TABLE 24.2. Age Related Macular Degeneration Trial. Bivariate marginal analy-
ses with a continuous surrogate and a binary true endpoint.

Probit- Plackett MGLM
Effect Par. normal -Dale logit probit

Continuous surrogate endpoint
Intercept µS 5.53(1.26) 5.89(1.24) 5.53(1.27) 5.53(1.27)
Treatm. eff. α 2.83(1.87) 2.72(1.84) 2.83(1.87) 2.83(1.87)
Standard dev. σS 12.80(0.66) 12.90(0.65)
Variance σ2

S 163.8(16.9) 166.4(16.8) 165.7(17.1) 165.7(17.1)
Binary true endpoint

Intercept µT -0.36(0.21) -0.36(0.19) -0.50(0.20) -0.31(0.13)
Treatm. eff. β 0.60(0.30) 0.58(0.28) 0.66(0.30) 0.41(0.19)
Overdis. par. φ 1.01(0.10) 1.01(0.10)

Association
Correlation ρ 0.81(0.04) 0.62(0.04) 0.62(0.04)
Log odds r. lnψ 2.83(0.29)
Odds r. ψ 16.93(4.91)

fairly closely, but the agreement is better for the continuous endpoint than
for the binary one.

Of course, one could also analyze both endpoints as binary, or both end-
points as continuous. Although not the theme of the chapter, it is useful
to do so for the sake of comparison. In the first case, a standard probit
or Dale model (Chapter 7) could be used. In the second case, a bivari-
ate normal is the obvious choice. Let us first focus on the situation of
two binary outcomes. Buyse and Molenberghs (1998) analyzed both binary
endpoints using the Dale model with logit links and obtained an odds ra-
tio of ψ̂ = 18.53. Table 24.3 presents five different analyses of the pair of
binary outcomes. First, the Dale model is fitted with both logit and probit
links. Second, a marginal linearization based model with correlated error
terms (Section 8.8 is considered, again with logit and probit links. Third,
a bivariate probit model is fitted. Table 24.3 organizes the models by link
functions, so that similarities and differences between parameter estimates
become more apparent.

Even more so than in the heterogenous outcome cases, there is close
agreement between the intercept and treatment effect parameter estimates
for the logit and probit models, respectively. At the same time, there is
agreement between the association measures as far as they are comparable,
but once again the probit based correlation is quite a bit higher than the
GLM-based correlation, for reasons explained above.
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TABLE 24.3. Age Related Macular Degeneration Trial. Bivariate marginal analy-
ses with binary endpoints, based on the Dale model (probit and logit links), the
bivariate probit model, and a marginal joint GLM (logit and probit links).

Logit links
Effect Parameter Dale MGLM

Surrogate endpoint
Intercept µS -0.54(0.20) -0.54(0.21)
Treatm. eff. α 0.70(0.30) 0.70(0.30)
Overdis. par. φ 1.01(0.10)

True endpoint
Intercept µT -0.50(0.20) -0.50(0.20)
Treatm. eff. β 0.66(0.30) 0.66(0.30)
Overdis. par. φ 1.01(0.10)

Association
Correlation ρ 0.62(0.05)
Log odds r. lnψ 2.92(0.38)
Odds r. ψ 18.54(7.05)

Probit links
Effect Parameter biv. probit Dale MGLM

Surrogate endpoint
Intercept µS -0.34(0.13) -0.33(0.13) -0.33(0.13)
Treatm. eff. α 0.44(0.18) 0.44(0.18) 0.44(0.19)
Overdis. par. φ 1.01(0.10)

True endpoint
Intercept µT -0.31(0.13) -0.31(0.13) -0.31(0.13)
Treatm. eff. β 0.41(0.18) 0.41(0.18) 0.41(0.19)
Overdis. par. φ 1.01(0.10)

Association
Correlation ρ 0.83(0.05) 0.62(0.05)
Log odds r. lnψ 2.92(0.38)
Odds r. ψ 18.54(7.05)

Finally, both outcomes can be considered continuous. Then, the counter-
parts of all models in Tables 24.1–24.3 collapse to a bivariate normal model,
and so does the output obtained from virtually all relevant software tools,
such as the SAS procedures MIXED, NLMIXED, and GLIMMIX. Results
are presented in Table 24.4. The correlation obtained here is 0.75. Note
that this is closer to the bivariate probit and probit-normal models than to
the GLM one. Indeed, we now have a bivariate continuous outcome, which
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TABLE 24.4. Age Related Macular Degeneration Trial. Bivariate marginal analy-
ses with continuous endpoints, using a bivariate normal model.

Effect Par. Estimate (s.e.)
Surrogate endpoint

Intercept µS 5.53(1.27)
Treatm. eff. α 2.83(1.87)
Standard dev. σS 12.87(0.66)
Variance σ2

S 165.7(17.1)
True endpoint

Intercept µT 11.04(1.58)
Treatm. eff. β 4.12(2.33)
Standard dev. σT 16.03(0.83)
Variance σ2

T 257.0(26.5)
Association

Correlation ρ 0.75(0.03)

is more informative than a pair of binary outcomes or the joint occurrence
of a binary and a continuous outcome. Nevertheless, in all situations do
the probit and probit-normal models attempt to describe the association
of the underlying pair of normal outcomes, whether or not they are directly
observed.

Generally note that, when continuous or binary outcome results are com-
pared across Tables 24.1–24.4, whether from a heterogeneous or homoge-
nous model, there is reasonably close agreement, especially within a model
family (probit-normal, Plackett-Dale, GLM based), and especially for treat-
ment effects and association parameters.

24.4.2 Bivariate Random-effects Analyses
Although all models above are of a marginal type, we can also consider
random-effects models. So far, we have considered marginal versions of
(24.14), denoted by MGLM, but we will now switch to conditional inde-
pendence model (24.19) with a scaled random intercept, for the case of
a binary and a continuous outcome, a classical random-intercepts logistic
regression model when both outcomes are binary, and a random-intercept
linear mixed-effects model for continuous outcomes. Results are presented
in Table 24.5.

Comparing the continuous-binary case with the results in Table 24.2, it
is clear that fixed effects in the Gaussian model roughly remain the same,
but the fixed effects for the binary outcome are larger, in agreement with
the results in Chapter 16. A similar inflation is seen in the binary-binary
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case, at least when numerical integration is used. For PQL, the bias is
severe and the parameter estimates are hardly larger than their marginal
counterparts in Table 24.3. Given the estimate of the random-intercept
variance (τ̂2 = 14.51) and (16.3), the correspondence between the random-
effects parameters and their marginal counterparts in Table 24.3 would
be 2.45. Comparing the corresponding estimates yields factors of roughly
2.62. In line with general results about the linear mixed model (Chapter 4),
the estimates in the last column are very close to those in Table 24.4, even
though the assumption of a constant variance, made here, may be somewhat
too simplistic, given the variances in Table 24.4 are quite a bit different.

As before, the correlation between both endpoints is of interest. With the
exception of the continuous-continuous case, it is somewhat less straightfor-
ward to derive. For the continuous-binary case, we can make use of (24.23)
and for the binary-binary case, (24.24) is the proper choice. Clearly, the
correlation is different between both treatment arms now, given the depen-
dence of the correlation function on the fixed effects. However, in this case,
the difference is negligible. However, the poverty of the PQL approximation
is shown, not only in the fixed effect and variance component estimates,
but in the correlation parameters as well. For the others, irrespective on
the nature of the outcomes, the results are very close to their marginal
counterparts in Tables 24.1–24.4, which is reassuring.

It is worthwhile to note that the parameters in the continuous-binary
case are identifiable, but due to the non-linearity of the model, induced by
the factor λ, care has to be taken in monitoring the convergence process.
Having said this, the effect is most clearly seen on the binary outcome fixed
effects, and not quite as much on the continuous outcome parameters.

24.4.3 Hierarchical Analyses
Let us now switch attention to the hierarchical case. First, let us observe
that the trial is of the multicenter type. It is natural to consider the center in
which the patients were treated as the unit of analysis. A total of 36 centers
were thus available for analysis, with a number of individual patients per
center ranging from 2 to 18. We analyze the situation where dichotomized
visual acuity at 6 months acts as surrogate for the continuous visual acuity
at 12 months. A two-stage approach is followed. Table 24.6 shows the pa-
rameter estimates for the hierarchical probit model (Section 24.3.1). Two
versions are considered, with trial-specific treatment effects on the one hand
(reduced model) and with trial-specific intercepts and treatment effects on
the other hand (full model). The correlation, obtained from the full model,
is similar to the ones obtained from the bivariate analyses. When the re-
duced model is employed, the correlation is quite a bit smaller.

Of course, also fully hierarchical models can be fitted. For example, the
hierarchical probit or Plackett-Dale models can be used. Applications of
these models can be found in Regan and Catalano (2002). Also the joint
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TABLE 24.5. Age Related Macular Degeneration Trial. Bivariate joint generalized
linear mixed model analyses. Some models lead to a treatment-arm dependent
correlation estimate, denoted by ‘stand’ for the standard arm and ‘exp’ for the
experimental arm.

Surrogate endpoint: cont. binary binary cont.
True endpoint: binary binary binary cont.
Estimation method: PQL Num. int. PQL ML
Effect Par.

Surrogate endpoint parameters
Intercept µS 5.53(1.26) 1.42(0.57) -0.62(0.26) 5.53(1.42)
Treatm. eff. α 2.83(1.86) -1.84(0.82) 0.81(0.39) 2.83(2.11)
Standard dev. σS 7.18(1.15)
Variance σ2

S 51.59(16.55)
Inflation λ -1.41(1.68)

True endpoint parameters
Intercept µT 1.63(1.94) 1.31(0.56) -0.57(0.26) 11.04(1.42)
Treatm. eff. β -2.72(3.15) -1.73(0.81) 0.76(0.39) 4.12(2.11)

Common parameters, including association
R.I. std.d. τ 7.50(8.50) 3.81(0.69) 1.95(0.47) 12.41(0.76)
R.I. var. τ2 56.2(127.4) 14.51(5.28) 3.76(1.82) 154.0(18.8)
Res. st.d. σ 7.43(0.38)
Res. var. σ2 55.1(15.7)
Correlation ρ 0.74
Corr. (stand.) ρ[1] 0.79 0.78 0.48
Corr. (exp.) ρ[2] 0.78 0.70 0.46

generalized linear mixed effects model of Section 24.2.3 can be used for
hierarchical analyses. Although we have focused so far on outcomes at 6
months and 1 year, we will now also consider the intermediate endpoints
at 4 and 12 weeks as well. Thus, we have two repeated sequences of four
components each, one binary, and one continuous. The binary outcomes
are dichotomizations of the number of letters lost as negative versus non-
negative. We consider on the one hand a marginal model, with fully un-
structured 8×8 variance-covariance matrix and a conditional independence
random-intercepts model on the other hand. Parameter estimates are pre-
sented in Table 24.7.

Once more, the relationship between the fixed effects is in line with expec-
tation. For the continuous outcome sequence, they are virtually equal. For
the binary outcome, the ratios vary between 1.55 and 1.98, with an average
of 1.80, whereas (16.3) predicts a ratio of 1.80. Model parameters here are
better identifiable than their counterparts from the bivariate models, even
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TABLE 24.6. Age Related Macular Degeneration Trial. Parameter estimates
(standard errors) for the full and reduced two-stage fixed effects probit model.

Effect Parameter Full Reduced
Surrogate endpoint

Intercept µS 1.46(0.68) 0.67(0.15)
Treatm. eff. α 1.10(0.98) 1.75(0.69)

True endpoint
Intercept µT 11.13(1.69) 11.82(1.00)
Treatm. eff. β 4.40(2.94) 3.72(2.38)
Standard dev. σT 11.43(0.60) 13.60(0.71)
Variance σ2

T 130.6(13.7) 185.0(19.3)
Association

Correlation ρ 0.75(0.05) 0.66(0.07)

though care is still needed when selecting starting values. Every possible
pair of outcomes in the marginal model has its own correlation coefficient
(not shown), whereas in the random-effects model, they follow from the
fixed effects and variance components, as was illustrated in Section 24.4.2,
based on such expressions as (24.21), (24.23), (24.24), and (24.25).

24.5 Joint Models in SAS

We will present a program and selected output for the joint analysis of a
continuous and a binary outcome, by means of the generalized linear mixed
model and using the SAS procedure GLIMMIX. To create the bivariate
outcome vectors, out of the continuous outcomes measured at 6 months
(24 weeks) and 12 months (52 weeks), ‘diff24’ and ‘diff52,’ and their binary
counterparts ‘bindif24’ and ‘bindif52,’ the following code can be used:

data armd77;
set armd7;
array x (2) diff24 diff52;
array y (2) bindif24 bindif52;
array z (2) bindh24 diff52;
array w (2) diff24 bindif52;
do j=1 to 2;

visual=x(j);
bindif=y(j);
bincont=z(j);
contbin=w(j);
time=j;
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TABLE 24.7. Age Related Macular Degeneration Trial. Hierarchical models for
joint longitudinal continuous and binary visual acuity sequences. For the marginal
model-based and empirically corrected standard errors are presented.

Effect Parameter Marginal Random Int.
Continuous sequence

Intercept 4 β11 -3.26(0.77;0.81) -3.27(1.30)
Intercept 12 β21 -4.62(1.14:1.07) -4.62(1.29)
Intercept 24 β31 -8.37(1.38;1.26) -8.37(1.29)
Intercept 52 β41 -15.16(1.72;1.64) -15.16(1.29)
Treatment eff. 4 β12 2.31(1.05;1.05) 2.38(1.76)
Treatment eff. 12 β22 2.34(1.54;1.52) 2.34(1.76)
Treatment eff. 24 β32 2.83(1.87;1.84) 2.83(1.76)
Treatment eff. 52 β42 4.12(2.33;2.31) 4.12(1.76)
Res. st. deviation σ 8.21(0.23)
Res. variance σ2 67.45(3.81)
Inflation λ -3.32(0.34)

Binary sequence
Intercept 4 β11 -1.02(0.24;0.24) -2.02(0.46)
Intercept 12 β21 -0.91(0.24;0.24) -1.81(0.45)
Intercept 24 β31 -1.15(0.25;0.25) -2.24(0.47)
Intercept 52 β41 -1.65(0.29;0.29) -3.11(0.52)
Treatment eff. 4 β12 0.40(0.32;0.32) 0.66(0.59)
Treatment eff. 12 β22 0.54(0.31:0.31) 0.93(0.58)
Treatment eff. 24 β32 0.52(0.33;0.32) 0.88(0.60)
Treatment eff. 52 β42 0.40(0.38;0.38) 0.62(0.64)

Common parameters
R.I. st. deviation τ 2.66(0.29)
R.I. variance τ2 7.07(1.64)

subject=_n_;
output;

end;
run;

There are four new outcomes created, consisting of the two continuous
outcomes (‘visual’), the two binary outcomes (‘bindif’), a binary surrogate
followed by a continuous true outcome (‘bincont’), and finally a continuous
surrogate followed by a binary true outcome (‘contbin’).

Because we cannot uniformly specify the outcome distribution nor the
link function, a special device has been created to this effect, i.e., the
‘byobs=(·)’ specification that can be used in both the ‘link=’ and the ‘dist=’
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options. Practically, a variable needs to be created to specify the outcome
distribution and link function for each observation in the set of data. For
example, analyzing the ARMD data with a continuous, normally distrib-
uted, surrogate and a binary true endpoint, can be done by means of the
‘dist=byobs(distcb)’ option where ‘distcb’ is a variable denoting a Gaussian
distribution for the first measurement of every subject and a Bernoulli one
for the second. The procedure recognizes both a numerical indicator, with
a proper map between distributions and numerical labels being provided
in the manual (SAS Institute Inc. 2004), as well as a four-character la-
bel, by means of the first four characters of each distributions. All but
the multinomial distribution can be used. The following code creates to
distributional indicators, one for a continuous surrogate and a binary true
endpoint (‘distcb’) and one for the reverse case (‘distbc’). In addition, four
link function indicators are created, referring to the identity link for the
continuous outcome and then either a logit or a probit link for the binary
outcome.

Code to create these indicators is

data armd77;
set armd77;
distcb=’BINA’;
if time=1 then distcb=’GAUS’;
distbc=’BINA’;
if time=2 then distbc=’GAUS’;
linkcb1=’LOGI’;
if time=1 then linkcb1=’IDEN’;
linkcb2=’PROB’;
if time=1 then linkcb2=’IDEN’;
linkbc1=’LOGI’;
if time=2 then linkbc1=’IDEN’;
linkbc2=’PROB’;
if time=2 then linkbc2=’IDEN’;
run;

The relevant variables for analysis, for the first 5 subjects, are

s b c l l l l
u v b i o d d i i i i
b t i i n n i i n n n n
j t r s n c t s s k k k k

O e i e u d o b t t c c b b
b c m a a i n i c b b b c c
s t e t l f t n b c 1 2 1 2

1 1 1 1 0 0 1 0 GAUS BINA IDEN IDEN LOGI PROB
2 1 2 1 -10 0 -10 0 BINA GAUS LOGI PROB IDEN IDEN
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3 2 1 2 -3 0 0 -3 GAUS BINA IDEN IDEN LOGI PROB
4 2 2 2 1 0 1 0 BINA GAUS LOGI PROB IDEN IDEN

5 3 1 1 -6 1 1 -6 GAUS BINA IDEN IDEN LOGI PROB
6 3 2 1 -17 1 -17 1 BINA GAUS LOGI PROB IDEN IDEN

7 4 1 2 8 0 0 8 GAUS BINA IDEN IDEN LOGI PROB
8 4 2 2 1 0 1 0 BINA GAUS LOGI PROB IDEN IDEN

9 5 1 2 -2 0 1 -2 GAUS BINA IDEN IDEN LOGI PROB
10 5 2 2 -2 0 -2 0 BINA GAUS LOGI PROB IDEN IDEN

...

The variable ‘contbin’ is clearly made up of the first component of ‘visual’
and the second one of ‘bindif.’ For ‘bincont,’ a somewhat different definition
is used for the surrogate, which is an indicator for whether letters are lost
or gained, rather than an indicator for at least two lines lost. This definition
was chosen in agreement with the choice made by Molenberghs, Geys, and
Buyse (2001).

We can now use the program:

proc glimmix data=armd77 method=rspl;
class treat distcb subject;
nloptions maxiter=50 technique=newrap;
model contbin = distcb treat*distcb

/ noint dist=byobs(distcb) solution;
random _residual_ / subject=subject type=un r;
run;

Note that there is no link function specification in this program, implying
that the default link is used. Equivalently, one could specify the option
‘link=byobs(linkcb1),’ which would produce exactly the same model. How-
ever, the advantage then is that the link functions chosen become very
explicit. Changing the link variable to ‘link=byobs(linkcb2),’ the probit
link would be chosen for the binary variable, while maintaining the iden-
tity link for the continuous variable. The variable ‘distcb’ is also used in the
fixed-effects structure, through the MODEL statements. This means that
a separate intercept (µS and µT , respectively) and a separate treatment ef-
fect (α and β, respectively) are included for each of the two outcomes. This
could be done equally well by using the variable ‘time’ as a class variable,
since both ‘time’ and ‘distcb,’ and in fact also the link function variables,
contain the same information when used as class variable. The choice for
‘distcb’ is motivated by clarity of the output, where it will be made clear
which parameters belong to the Gaussian outcome and which to the binary
one.

Given that the outcomes are of a different nature, this is a very natural
choice. By including ‘noint’ into the MODEL statement options, both in-
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tercepts are directly shown, rather than as a main effect and a difference
between both, which would be less meaningful. The NLOPTIONS state-
ment is included to control convergence. In examples like this, in agreement
with the comments made in Section 22.6, convergence can be an issue and
the user may need to change such aspects as the iterative technique, the
maximum number of iterations, and the convergence tolerance.

Because the response and link functions depend on the outcome, the
‘Model Information’ panel does not specify them individually but rather
gives a generic indication:

Model Information

Response Distribution Multivariate
Link Function Multiple
Variance Function Default

Let us now turn to the estimates of the covariance parameters.

Covariance Parameter Estimates

Cov Standard
Parm Subject Estimate Error

UN(1,1) subject 165.69 17.0897
UN(2,1) subject 8.0235 1.1105
UN(2,2) subject 1.0106 0.1042

The parameter ‘UN(1,1)’ is the variance of the Gaussian outcome, the
parameter ‘UN(2,2)’ is the variance of the binary outcome and as such
merely is an overdispersion parameter. Finally, ‘UN(2,1)’ is the covariance
between both. In our example, the correlation is of interest more than the
covariance. Because it can be calculated without problem from the three
parameters, and the standard error could be calculated from the asymptotic
covariance matrix of the variance parameters, it is actually easy to obtain it
directly, but changing the structure option for the covariance matrix in the
RANDOM statement to ‘type=unr’ rather than the ‘type=un’ structure
used above. Obviously, both parameterizations are equivalent. The above
panel then changes to:

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Corr(2,1) subject 165.69 17.0897
Corr(3,1) subject 1.0106 0.1042
Corr(3,2) subject 0.6200 0.04489
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Of course, the two variance parameters are the same as above, but the
correlation estimate ρ̂ = 0.62 is now presented directly. Two observations
are worth making. First, the order of the parameters in both panels is
different and, somewhat misleading, the double indices have changed from
the intuitive (1,1), (2,1), and (2,2) coding to (2,1), (3,1), and (3,2). These
would correspond to correlations in a 3×3 correlation matrix, but not to the
situation we encounter. So we advise to be careful with these labels and
cautiously map the ‘type=unr’ parameters to their counterparts coming
from the ‘type=un’ structure, to avoid confusion.

Finally, the fixed effects parameters, presenting the two intercepts µT

and µS , and treatment effects and β and α are presented.

Solutions for Fixed Effects

Standard
Effect distcb treat Estimate Error DF

distcb BINA 0.4953 0.2042 186
distcb GAUS -5.5340 1.2683 186
treat*distcb BINA 1 -0.6566 0.2974 186
treat*distcb GAUS 1 -2.8338 1.8743 186
treat*distcb BINA 2 0 . .
treat*distcb GAUS 2 0 . .

While in the bivariate vector of outcomes per subject the Gaussian out-
come measured at six months, preceded the binary outcomes measured at
one year, here the binary parameters preceed their Gaussian counterparts.
This is merely because the levels in the ‘distcb’ variable are ordered alpha-
betically. So again, some care is needed.

Let us now switch to the random-effects models. Focusing on fitting
model (24.19) to the ARMD data, the non-linear parameter λ prohibits
the use of the GLIMMIX procedure, whence the procedure NLMIXED
can be used. It is instructive to first focus on the case of two continuous
outcome. In this case, the following three programs produce exactly the
same model fit:

/*First program*/

proc mixed data=armd77 method=ml;
class treat time subject;
model visual = time treat*time

/ noint solution ddfm=satterthwaite;
random intercept

/ subject=subject type=un g v vcorr;
run;
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/* Second program */

proc nlmixed data=armd77 qpoints=20 maxiter=50;
if time=1 then eta = beta11 + b + beta12*(2-treat);
else if time=2 then eta = beta21 + b + beta22*(2-treat);
model visual ˜ normal(eta,sigma*sigma);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tauˆ2’ tau*tau;
estimate ’sigmaˆ2’ sigma*sigma;
run;

/* Third program */

proc nlmixed data=armd77 qpoints=20 maxiter=50;
if time=1 then do;

mean = beta11 + b + beta12*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(visual-mean)**2/(sigma**2);
ll = dens;

end;
else if time=2 then do;

mean = beta21 + b + beta22*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(visual-mean)**2/(sigma**2);
ll = dens;

end;
model visual ˜ general(ll);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tauˆ2’ tau*tau;
estimate ’sigmaˆ2’ sigma*sigma;
run;

Although the programs increase in terms of complexity and, for normally
distributed outcomes, the first one perfectly does the job, they also increase
the flexibility, but only the last one generalizes to joint outcomes. Indeed,
the second one still is based on the assumption of a common outcome
distribution, albeit with a differently defined mean structure. In the third
one, the general likelihood feature is used and hence a different one can be
used for each outcome separately.

Thus, a program of a continuous first outcome, combined with a binary
second one, is as follows:

proc nlmixed data=armd77 qpoints=20 maxiter=100
maxfunc=2000 technique=newrap;

parms beta11=-5.53 beta12=-2.83 beta21=-0.50
beta22=0.66 sigma=7 lambda=3 tau=3;
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if time=1 then do;
mean = beta11 + lambda*b + beta12*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(contbin-mean)**2/(sigma**2);
ll = dens;

end;
else if time=2 then do;

eta = beta21 + b + beta22*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = contbin*log(p) + (1-contbin)*log(1-p);

end;
model contbin ˜ general(ll);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tauˆ2’ tau*tau;
estimate ’sigmaˆ2’ sigma*sigma;
run;

Reaching convergence is not straightforward, given the non-linear nature
of the program, with the incorporation of λ, and a careful selection of
starting values, and fine tuning using the convergence and updating method
switches may be required.

Let us now turn attention to the MGLM and GLMM hierarchical models,
presented in Section 24.4.3. The data need to be organized in a ‘vertical’
way, implying that the 4 continuous and 4 binary outcomes are stacked
into a vector of length eight. An outprint for the first two patients:

Obs subject treat repeat time dist link outcome

1 1 2 1 1 GAUS IDEN 5
2 1 2 2 2 GAUS IDEN 0
3 1 2 3 3 GAUS IDEN 0
4 1 2 4 4 GAUS IDEN -10
5 1 2 5 1 BINA LOGI 0
6 1 2 6 2 BINA LOGI 1
7 1 2 7 3 BINA LOGI 1
8 1 2 8 4 BINA LOGI 1

9 2 1 1 1 GAUS IDEN -3
10 2 1 2 2 GAUS IDEN -3
11 2 1 3 3 GAUS IDEN -3
12 2 1 4 4 GAUS IDEN 1
13 2 1 5 1 BINA LOGI 1
14 2 1 6 2 BINA LOGI 1
15 2 1 7 3 BINA LOGI 1
16 2 1 8 4 BINA LOGI 0

A program for the marginal model, using the GLIMMIX procedure, is

proc glimmix data=armd99 method=rspl empirical;
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class time treat dist subject;
nloptions maxiter=50 technique=newrap;
model outcome = time*dist treat*time*dist

/ noint dist=byobs(dist) link=byobs(link) solution;
random _residual_ / subject=subject type=un r;
run;

which is a straightforward extension of the bivariate program.
Now, more work is needed to adapt the NLMIXED code for the condi-

tional independence model:

proc nlmixed data=armd99 qpoints=20 maxiter=100
maxfunc=2000 technique=newrap;

parms beta11=-1.55 beta12=1.00
beta21=-2.93 beta22=1.02

beta31=-6.68 beta32=1.52
beta41=-13.47 beta42=2.81
beta51=1.17 beta52=-0.22
beta61=0.99 beta62=-0.47
beta71=1.36 beta72=-0.41
beta81=2.17 beta82=-0.11
tau=1.77
sigma=8.58
lambda=-4.18
;

if repeat=1 then do;
mean = beta11 + lambda*b + beta12*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(outcome-mean)**2/(sigma**2);
ll = dens;

end;
else if repeat=2 then do;

mean = beta21 + lambda*b + beta22*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(outcome-mean)**2/(sigma**2);
ll = dens;

end;
else if repeat=3 then do;

mean = beta31 + lambda*b + beta32*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)

- 0.5*(outcome-mean)**2/(sigma**2);
ll = dens;

end;
else if repeat=4 then do;

mean = beta41 + lambda*b + beta42*(2-treat);
dens = -0.5*log(3.14159265358) - log(sigma)
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- 0.5*(outcome-mean)**2/(sigma**2);
ll = dens;

end;
else if repeat=5 then do;

eta = beta51 + b + beta52*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = outcome*log(p) + (1-outcome)*log(1-p);

end;
else if repeat=6 then do;

eta = beta61 + b + beta62*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = outcome*log(p) + (1-outcome)*log(1-p);

end;
else if repeat=7 then do;

eta = beta71 + b + beta72*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = outcome*log(p) + (1-outcome)*log(1-p);

end;
else if repeat=8 then do;

eta = beta81 + b + beta82*(2-treat);
p = exp(eta)/(1+exp(eta));
ll = outcome*log(p) + (1-outcome)*log(1-p);

end;
model outcome ˜ general(ll);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tauˆ2’ tau*tau;
estimate ’sigmaˆ2’ sigma*sigma;
run;

Clearly, the code can be made a little more efficient in terms of program-
ming code, but the advantage of the current program is clarity.

24.6 Concluding Remarks

We have discussed a number of methods to model correlated data when not
all outcomes are of the same type. It is not uncommon to observe binary or
otherwise categorical outcomes jointly with continuous outcomes, but also
other combinations are perfectly possible. One might view such outcomes as
multivariate. In addition, such a multivariate outcome of a heterogeneous
nature can then be observed repeatedly over time, for various subjects
within a trial, a cluster, or within other hierarchically organized units. Just
as in the general case, we have distinguished between marginal, conditional,
and random-effects models. A relatively large number of proposals have
been made in the literature, many developed for specific applications.
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We have focused on three modeling approaches in particular. The probit-
normal and Plackett-Dale models are of a marginal nature and within the
generalized linear mixed-effects modeling framework both marginal models,
random-effects models, and random-effects models with residual or serial
correlation can be considered. Each of these apply to a simple multivariate
setting as well as to a fully hierarchical setting. In the literature, the mar-
ginal models have been combined with GEE and pseudo-likelihood ideas
to enable parameter estimation when the outcome vectors are relatively
long. In the GLMM framework, PQL and MQL can be used, as well as
fully numerical integration. The examples have shown that these are fea-
sible routes, but PQL and MQL are not recommended for random-effects
models, due to the well-known bias issue. Therefore, numerical integration,
such as in the SAS procedure NLMIXED, is a viable route. The SAS pro-
cedure GLIMMIX is useful for the purely marginal versions that can be
seen as a version of GEE as well (Section 8.8).

In conclusion, thanks to recent software developments, the joint modeling
of repeated measures of various outcome types can be done with standard
statistical software and is not confined any more to user defined program-
ming tools.





25
High-dimensional Joint Models

25.1 Introduction

In Chapter 24, it has been discussed how multiple sequences of repeated
measurements can be jointly analyzed. The examples given there all con-
sidered joint modeling of two (longitudinal) outcomes only. Here, we will
extend this to (much) higher dimensions. The motivation for joint model-
ing will remain the same. In some cases, joint modeling is required because
the association structure between the outcomes is of interest. For example,
one may be interested in studying how the association between outcomes
evolves over time or how outcome-specific evolutions are related to each
other (Fieuws and Verbeke 2004). In other cases, joint modeling is needed
in order to be able to draw joint inferences about the different outcomes.
As examples, consider testing whether a set of outcomes shows the same
average evolution, or testing for the effect of covariates on all outcomes
simultaneously.

An example where joint modeling of many longitudinal outcomes has
proven useful can be found in Fieuws and Verbeke (2005a), where longitu-
dinally measured hearing thresholds were jointly analyzed, for the left ear
and for the right ear, and for 11 different frequencies. This yielded a total
of 22 longitudinal sequences per subject.

The possibly high dimension raises at least two additional problems, in
addition to the issues discussed in Chapter 24. First, some of the models
often used for the joint analysis of two longitudinal sequences are less ap-
plicable for higher dimensions. For example, when using conditional models
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(Section 24.1), only two possibilities for the conditioning are possible in the
case of two outcomes only: The first outcome can be modeled conditionally
on the second, or vice versa. With (much) higher dimensions, (many) more
possible conditioning strategies are possible, all yielding different models,
of which parameters have different interpretations. Moreover, several of the
research questions that require joint modeling are phrased in terms of the
parameters in each of the univariate longitudinal models (i.e., longitudinal
models for each repeated outcome separately), as was the case in the ex-
amples given earlier. Also, the models that are available for two outcomes
often exploit the specific nature of those two outcomes, making extensions
to higher dimensions far from straightforward. For example, the multi-
variate vector of responses may consist of outcomes of (many) different
types, all requiring different models such as linear mixed models (Chap-
ter 4), generalized linear mixed models (Chapter 14), as well as non-linear
mixed models (Chapter 20). Second, even if a plausible joint model can
be formulated, fitting of these high-dimensional models can become very
cumbersome, unless under unrealistically strong assumptions.

In this chapter, we will focus on the random-effects approach, which can
be viewed as an extension of the models discussed in Section 24.3. The
model will be introduced in Section 25.2. Many applications of this type
of joint models can be found in the statistical literature. For example, the
approach has been used in a non-longitudinal setting to validate surrogate
endpoints in meta-analyses (Buyse et al 2000, Burzykowski et al 2001) or to
model multivariate clustered data (Thum 1997). Gueorguieva (2001) used
the approach for the joint modeling of a continuous and a binary outcome
measure in a developmental toxicity study on mice. Also in a longitudinal
setting, Chakraborty et al (2003) obtained estimates of the correlation be-
tween blood and semen HIV-1 RNA by using a joint random-effects model.
Other examples with longitudinal studies can be found in MacCallum et
al (1997), Thiébaut et al (2002ab) and Shah et al (1997). All these exam-
ples refer to situations where the number of different outcomes is (very)
low. Although the model formulation can be done irrespective of the num-
ber of outcomes to be modeled jointly, standard fitting procedures, such
as maximum likelihood estimation, will only be feasible when the dimen-
sion in sufficiently low (typically dimension 2 or 3, at most). Therefore,
Section 25.3 presents a model-fitting procedure which is applicable, irre-
spective of the dimensionality of the problem, and explains how inferences
can be obtained for all parameters in the joint model. Finally, Section 25.4
applies the methodology for the joint analysis of 7 sets of questionnaires,
each consisting of a number of binary outcomes. Other examples, simula-
tion results, and more details on the models as well as on estimation and
inference, can be found in Fieuws and Verbeke (2005ab).

In the remainder of this chapter, models for a single longitudinal out-
come are called ‘univariate’ models, although they are, strictly speaking,
multivariate models since they model a vector of repeated measurements,
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but all of the same outcome. Similarly, we will use the terminology ‘bivari-
ate’ and ‘multivariate’ models to indicate joint longitudinal models for two
or more outcomes, respectively.

25.2 Joint Mixed Model

A flexible joint model that meets the requirements discussed in Section 25.1
can be obtained by modeling each outcome separately using a mixed model
(linear, generalized linear, or non-linear), by assuming that, conditionally
on these random effects, the different outcomes are independent, and by im-
posing a joint multivariate distribution on the vector of all random effects.
This approach has many advantages and is applicable in a wide variety
of situations. First, the data can be highly unbalanced. For example, it
is not necessary that all outcomes are measured at the same time points.
Moreover, the approach is applicable for combining linear mixed models,
non-linear mixed models, or generalized linear mixed models. The proce-
dure also allows the combination of different types of mixed models, such
as a generalized linear mixed model for a discrete outcome and a non-linear
mixed model for a continuous outcome.

Let m be the dimension of the problem, i.e., the number of outcomes that
need to be modeled jointly. Further, let Yrij denote the jth measurement
taken on the ith subject, for the rth outcome, i = 1, . . . , N , r = 1, . . . , m,
and j = 1, . . . , nri. Note that we do not assume that the same number of
measurements is available for all subjects, nor for all outcomes. Let Yri

be the vector of nri measurements taken on subject i, for outcome r. Our
model assumes that each Yri satisfies a mixed model. Following our earlier
notation of the Sections 13.2 and 20.5, let fri(yri|bri, θr) be the density
of Yri, conditional on a qr-dimensional vector bri of random effects for
the rth outcome on subject i. The vector θr contains all fixed effects and
possibly also a scale parameter needed in the model for the rth outcome.
Note that we do not assume the same type of model for all outcomes: A
combination of linear, generalized linear, and non-linear mixed models is
possible. It is also not assumed that the same number qr of random effects
is used for all m outcomes.

In most applications, it will be assumed that, conditionally on the ran-
dom effects b1i, b2i, . . . , bmi, the m outcomes Y1i, Y2i, . . . ,Ymi are inde-
pendent. Extensions of this assumption can be found in Section 24.3 in the
context of surrogate markers, or in Fieuws and Verbeke (2005a) in the
analysis of the 22 longitudinal sequences of hearing thresholds. Finally, the
model is completed by assuming that the vector bi of all random effects for
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subject i is multivariate normal with mean zero and covariance D, i.e.,

bi =

⎛⎜⎜⎜⎝
b1i

b2i

...
bmi

⎞⎟⎟⎟⎠ ∼ N

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

0
0
...
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
D11 D12 · · · D1m

D21 D22 · · · D2m

...
...

. . .
...

Dm1 Dm2 · · · Dmm

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

The matrices Drs represent the covariances between bri and bsi, r, s =
1, . . . , m. Finally, D is the matrix with blocks Drs as entries.

A special case of the above model is the so-called shared-parameter
model, which assumes the same set of random effects for all outcomes. An
example of this is (24.19), where, in the context of surrogate marker evalu-
ation, a random intercept bi was used simultaneously in the model for the
surrogate outcome as well as in the model for the true outcome. This clearly
can be obtained as a special case of the above model by assuming perfect
correlation between some of the random effects. The advantage of such
shared-parameter models is the relatively low dimension of the random-
effects distribution, when compared to the above model. The dimension of
the random effects in shared parameter models does not increase with the
number of outcomes to be modeled. In the above model, each new outcome
added to the model introduces new random effects, thereby increasing the
dimension of bi. Although the shared-parameter models can reasonably
easy be fitted using standard software (Section 24.5), this is no longer the
case for the model considered here. Estimation and inference under the
above model will require specific procedures, which will be discussed in
Section 25.3. A disadvantage of the shared-parameter model is that it is
based on much stronger assumptions about the association between the
outcomes, which may not be valid, especially in high-dimensional settings
as considered in this chapter.

Note also that, joining valid univariate mixed models does not neces-
sarily lead to a correct joint model. Fieuws and Verbeke (2004) illustrate
this in the context of linear mixed models for two continuous outcomes.
It is shown how the joint model may imply association structures between
the two sets of longitudinal profiles that may strongly depend on the ac-
tual parameterization of the individual models and that are not necessarily
valid.

As before, estimation and inference will be based on the marginal model
for the vector Y i of all measurements for subject i. Assuming independence
of the outcomes conditionally on the vector bi of random effects, the log-
likelihood contribution for subject i equals

	i(y1i, y2i, . . . ,ymi|Ψ∗)

= ln
∫ m∏

r=1

fri(yri|bri, θr)f(bi|D)dbi, (25.1)
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in which all parameters present in the joint model (fixed effects parameters
as well as covariance parameters) have been combined into the vector Ψ∗.

Clearly, expression (25.1) shows that the joint model can be interpreted
as one mixed-effects model, with conditional density

fi(yi|bi) =
m∏

r=1

fri(yri|bri, θr)

and with random effect bi. Hence, fitting of the model can, strictly speaking,
be based on standard methods and standard software, available for fitting
mixed models in general. However, computational problems will arise as
the dimension of the random-effects vector bi in the joint model increases.
For example, re-consider the hearing thresholds mentioned earlier. If each
of the 22 outcomes is modeled by way of a linear mixed model with random
intercepts and random slopes for the time-evolution, then the resulting joint
model contains 22 × 2 = 44 random effects, resulting in a 44-dimensional
matrix D which contains 990 unknown parameters. Even in this case of
linear models for continuous data, where the marginal likelihood can be
calculated analytically, standard maximization algorithms are no longer
sufficient to maximize this marginal likelihood with respect to this many
parameters. Moreover, when approximation methods are needed in the cal-
culation of the likelihood, as is the case for generalized or non-linear mixed
models (Chapters 14 and 20), maximizing the joint likelihood becomes com-
pletely impossible using optimization techniques currently implemented for
single outcomes. In Section 25.3, we will describe how estimates and infer-
ences for all parameters can be obtained from pairwise fitting of the model,
i.e., from separately fitting the implied joint model for each pair of out-
comes.

25.3 Model Fitting and Inference

The general idea behind the pairwise fitting approach is straightforward.
Instead of maximizing the likelihood of the full joint model presented in the
previous section, all pairwise bivariate models will be fitted separately in a
first step. Note the similarity between the pairwise approach used here and
the pairwise pseudo-likelihood approach used in the Sections 9.4.1 and 21.3.
In a second step, the parameters obtained by fitting the pairwise models
will be combined to obtain one single estimate for each parameter in the
full joint model.

25.3.1 Pairwise Fitting
The parameters in each univariate model can be estimated by fitting a
model for that specific response only. Hence, the only parameters that
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cannot be estimated by fitting the univariate models are the parameters
needed to model the association between the different outcomes. In the
model introduced in Section 25.2, these are the parameters in the matrices
Drs, r �= s. However, estimation of these parameters does not necessarily
require fitting of the complete joint model for all outcomes, it is sufficient
to fit all m(m − 1)/2 bivariate models, i.e., all joint models for all possible
pairs

(Y1, Y2), (Y1, Y3), . . . , (Y1, Ym), (Y2, Y3), . . . , (Y2, Ym), . . . , (Ym−1, Ym)

of the outcomes Y1, Y2, . . . ,Ym. Let the log-likelihood function correspond-
ing to the pair (r, s) be denoted by 	(yr, ys|Ψrs). The vector Ψrs contains
all parameters in the bivariate model for pair (r, s), i.e., the parameters in
each of the univariate models, as well as the parameters in Drs.

Let Ψ now be the stacked vector combining all m(m − 1)/2 pair-specific
parameter vectors Ψrs. Estimates for the elements in Ψ are obtained by
maximizing each of the m(m − 1)/2 log-likelihoods 	(yr, ys|Ψrs) sepa-
rately. It is important to realize that the parameter vectors Ψ and Ψ∗ are
not equivalent. Indeed, some parameters in Ψ∗ will have a single coun-
terpart in Ψ, e.g., the parameters in Drs, r �= s, representing covariances
between random effects from different outcomes. Other elements in Ψ∗ will
have multiple counterparts in Ψ, e.g., the parameters in Drr, representing
variances and covariances of random effects from the same outcome. In
the latter case, a single estimate for the corresponding parameter in Ψ∗ is
obtained by averaging all corresponding pair-specific estimates in Ψ̂. Stan-
dard errors of the so-obtained estimates clearly cannot be obtained from
averaging standard errors or variances. Indeed, the variability amongst the
pair-specific estimates needs to be taken into account. Furthermore, two
pair-specific estimates corresponding to two pairwise models with a com-
mon outcome are based on overlapping information and hence correlated.
This correlation should also be accounted for in the sampling variability of
the combined estimates in Ψ̂

∗
. In the remainder of this section, we will use

pseudo-likelihood ideas to obtain standard errors for the estimates, first in
Ψ̂, afterwards in Ψ̂

∗
.

25.3.2 Inference for Ψ

Fitting all bivariate models is equivalent to maximizing the function

p	(Ψ) ≡ p	(y1i, y2i, . . . ,ymi|Ψ)

=
∑
r<s

	(Yr, Ys|Ψrs), (25.2)

ignoring the fact that some of the vectors Ψrs have common elements, i.e.,
assuming that all vectors Ψrs are completely distinct. Obviously, (25.2), is
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of the form (9.3) and hence our pairwise fitting procedure fits within the
general framework of pseudo-likelihood (Chapters 9 and 21). Our applica-
tion of pseudo-likelihood methodology is different from most other appli-
cations in the sense that the same parameter vector is usually present in
the different parts of the pseudo-likelihood function. Here, the set of para-
meters in Ψrs is treated pair-specific, which allows separate maximization
of each term in the pseudo log-likelihood function (25.2). In Section 25.3.3,
we will account for the fact that Ψrs and Ψrs′ , s �= s′, are not completely
distinct, as they share the parameters referring to the rth outcome.

Because the pairwise approach fits within the pseudo-likelihood frame-
work, an asymptotic multivariate normal distribution for Ψ̂ can be derived,
using the general pseudo-likelihood theory presented in Section 9.2. More
specifically, we have that Ψ̂ asymptotically satisfies

√
N(Ψ̂ − Ψ) ≈ N(0, I−1

0 I1I
−1
0 )

in which I−1
0 I1I

−1
0 is a ‘sandwich-type’ robust variance estimator, and

where I0 and I1 can be constructed using first- and second-order deriv-
atives of the components in (25.2). Strictly speaking, I0 and I1 depend on
the unknown parameters in Ψ, but these are traditionally replaced by their
estimates in Ψ̂.

25.3.3 Combining Information: Inference for Ψ∗

In a final step, estimates for the parameters in Ψ∗ can be calculated, as
suggested before, by taking averages of all the available estimates for that
specific parameter. Obviously, this implies that Ψ̂∗ = A′Ψ̂ for an appropri-
ate weight matrix A. Hence, inference for the elements in Ψ̂∗ will be based
on

√
N(Ψ̂∗ − Ψ∗) =

√
N(A′Ψ̂ − A′Ψ)

≈ N(0, A′I−1
0 I1I

−1
0 A). (25.3)

As explained in Section 9.2, pseudo-likelihood methods often are less effi-
cient than full maximum likelihood. However, simulation results of Fieuws
and Verbeke (2005ab) suggest that, in the present context, this loss of
efficiency is negligible, if any.

25.4 A Study in Psycho-Cognitive Functioning

To illustrate the pairwise approach for fitting high-dimensional multivari-
ate repeated measurements, we analyze data from an experiment in which
105 Dutch-speaking elderly participants (54 females and 51 males) were
randomly assigned to one of two physical activity oriented exercise pro-
grams. The first is a classical fitness program consisting of 3 weekly visits
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TABLE 25.1. Psycho-Cognitive Functioning. Parameter estimates (standard er-
rors) for the fixed effects in model (25.4) obtained by fitting 7 separate univariate
models, as well as obtained by fitting the joint model with the pairwise fitting
approach.

7 Univariate models

β̂r0 (s.e.) β̂r1 (s.e.)
Physical well-being 1.63 (0.26) −0.13 (0.37)
Psychological well-being 1.56 (0.30) 1.22 (0.61)
Self-esteem 1.69 (0.30) 0.43 (0.42)
Physical self-perception −0.55(0.14) 0.58 (0.24)
Degree of opposition 1.48 (0.17) 0.06 (0.24)
Self-efficacy 1.71 (0.25) −0.24 (0.33)
Motivation 0.95 (0.11) −0.35 (0.16)

Joint model

β̂r0 (s.e.) β̂r1 (s.e.)
Physical well-being 1.62 (0.25) −0.12 (0.37)
Psychological well-being 1.71 (0.32) 1.00 (0.68)
Self-esteem 1.68 (0.32) 0.49 (0.39)
Physical self-perception −0.52 (0.14) 0.52 (0.25)
Degree of opposition 1.47 (0.17) 0.07 (0.24)
Self-efficacy 1.70 (0.23) −0.22 (0.33)
Motivation 0.94 (0.09) −0.34 (0.16)

to the gym. The second is a distance coaching program with an emphasis
on incorporating physical activities in daily life. One of the aims of the
study was to investigate whether the two programs have different impacts
on the psycho-cognitive functioning of the participants. Different aspects of
psycho-cognitive functioning referring to subjective well-being, self-esteem,
self-perception and motivation were considered. A set of questionnaires
has been used to measure these different aspects. More specifically, 7 sets
of questions (items) were used, originating from different questionnaires
and each set consisting of a different number of items: 10 items measur-
ing physical well-being, 14 items for psychological well-being, 10 items for
self-esteem, 30 items for physical self-perception, 21 items measuring the
degree of opposition to physical activities, 5 items for perceived self-efficacy
toward physical activity, and 16 items for motivation for the intervention
program. All item scores were dichotomized, with a score equal to one ex-
pressing positive psycho-cognitive functioning. All subjects filled in at least
one item for each of the seven sets. 64 subjects had no missing informa-
tion for the 106 items. 20 subjects had one item missing. The missing item
scores for the other subjects ranged from 2 to 22. The mean age equals
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66.6 years (range 60–76 years) and the mean body mass index (BMI) is
27.0 kg/m2 (range 20.7–38.0). Questionnaires considered in this analysis
were completed by the participants, 6 months after the start of the study.

The aim of our analyses is to assess differences in efficacy between both
exercise programs, as well as to study the strength of association between
the 7 sets of questionnaires. Although not of a longitudinal nature, this
data set clearly is an example of multivariate repeated measurements, of
dimension 7, where a number of binary repeated measurements of psycho-
cognitive functioning are available for each dimension. The random variable
Yrij now denotes the jth measurement (0 or 1), taken on the ith study
participant, for the rth questionnaire, i = 1, . . . , 105, r = 1, . . . , 7, and j =
1, . . . , nri. A score Yrij = 1 reflects positive psycho-cognitive functioning,
while Yrij = 0 is an indication of negative psycho-cognitive functioning.

We will assume that each of the 7 questionnaires satisfy a random-
intercepts logistic model, given by

logit[P (Yrij = 1)] = βr0 + βr1DCi + bri, (25.4)

in which DCi is an indicator variable equal to 1 for the participants in
the distance coaching program, and zero otherwise. Hence, exp(βr1) rep-
resents the multiplicative effect of this program on the odds for positive
psycho-cognitive functioning measured by the items in questionnaire r, with
r = 1, . . . , 7 (1=physical well-being, 2=psychological well-being, 3=self-
esteem, 4=physical self-perception, 5=degree of opposition, 6=self-efficacy,
and 7=motivation). Note that this model allows for questionnaire-specific
intercepts as well as intervention effects. More parsimonious models could
be obtained by assuming, for example, the same regression parameters for
all questionnaires, or by assuming some random effects to be common to
a subset of the questionnaires (i.e., some of the bri are equal). Correlation
between the items of the same set is modeled through the inclusion of the
random effects bri. Correlation between the items of the different ques-
tionnaires is implied by the joint distribution for the 7 random intercepts,
i.e., (

b1i, b2i, b3i, b4i, b5i, b6i, b7i

)′ ∼ N (0, D) ,

where D is now the 7 × 7 unstructured covariance matrix of the random
intercepts.

Table 25.1 shows the results from fitting the 7 univariate models sep-
arately, as well as from fitting the joint model using the pairwise fitting
approach. Very similar estimates as well as inferences are obtained. Using
approximate Wald-type tests (Z-tests), the separate analyses show signif-
icant differences between both groups on 3 of the 7 questionnaires. The
DC-group scores better on physical self-perception and on psychological
well-being, but worse on motivation.
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TABLE 25.2. Psycho-Cognitive Functioning. Estimated correlation matrix for the
random intercepts in Model (25.4).

Physical well-being 1.00
Psychological well-being 0.75 1.00
Self-esteem 0.55 0.76 1.00
Physical self-perception 0.66 0.46 0.53 1.00
Degree of opposition 0.19 0.12 0.23 0.38 1.00
Self-efficacy 0.29 0.24 0.25 0.36 0.23 1.00
Motivation 0.42 0.31 0.28 0.40 0.47 0.30 1.00

Using the results from the joint model, an overall test can be constructed
for the presence of any systematic difference between both exercise pro-
grams. Formally, this corresponds to testing the null-hypothesis

H0 : β11 = β21 = β31 = β41 = β51 = β61 = β71 = 0

versus the alternative that at least one of these parameters differs from
zero. Since this null hypothesis is of the general form H0 : L′Ψ∗ = 0 for the
appropriate matrix L, a Wald-type test (χ2-test) can easily be derived from
the asymptotic distribution (25.3) for Ψ̂∗. This yields a test statistic value
equal to 17.84, which is significant when compared to the χ2

7 distribution
(p = 0.013). Similarly, other hypotheses of interest can be tested as well.

An additional aim of our analyses was to study the strength of associ-
ation between the 7 sets of questionnaires. Table 25.2 presents the corre-
lations obtained from the fitted covariance matrix D̂. These correlations
express the association between the different constructs underlying each of
the seven scales. Performing a principal components analysis (PCA) on the
7×7 correlation matrix of the random effects reveals that the first principal
component explains only 49% of the variability. One approach sometimes
used to join multiple random-effects models in such a way that the joint
model can still easily be fitted using standard software, assumes common
random effects for all outcomes, leading to so-called shared-parameter mod-
els. An example in a slightly different context can be found in De Gruttola
and Tu (1994). More specifically, it is then assumed that all bri equal bi. In
our example, this would lead to univariate random intercepts common to
all questionnaires. The advantage would be that this model can very easily
be fitted because only one random effect is involved. However, the PCA
results suggest that this would be a very unrealistic model for the data
set at hand, which could result in biased inferences for the fixed effects of
interest (Adams et al 1997, Folk and Green 1989).

Figure 25.1 plots the component loadings of the random intercepts for
the seven questionnaires on the first two principal components, explaining
49% and 17.4% of the variation. In this reduced representation, we observe,
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FIGURE 25.1. Psycho-Cognitive Functioning. Component loadings for the seven
questionnaires on the first two principal components for the 7×7 correlation ma-
trix of the random intercepts in model (25.4).
1: physical well-being; 2: psychological well-being; 3: self-esteem; 4: physical
self-perception; 5: degree of opposition; 6: self-efficacy; 7: motivation.

not surprisingly, that the scales referring to well-being and self-esteem are
strongly correlated with each other, as opposed to their relation with mo-
tivational oriented scales.
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26
Missing Data Concepts

26.1 Introduction

It is not unusual for some measurement sequences in a longitudinal study
to terminate early for reasons outside the control of the investigator. Any
unit so affected is called a dropout. In addition, intermediate scheduled
measurements might be missed, which we term intermittent missing values.
It might be necessary to accommodate missingness in general and dropout
in particular into the modeling process.

Early work on missing values was largely concerned with algorithmic and
computational solutions to the induced lack of balance or deviations from
the intended study design (Afifi and Elashoff 1966, Hartley and Hocking
1971). Later, general algorithms such as expectation-maximization (EM)
(Dempster, Laird, and Rubin 1977), and data imputation and augmen-
tation procedures (Rubin 1987), combined with powerful computing have
largely provided a solution to this aspect of the problem. There remains
the tricky but important question of assessing the impact of missing data
on subsequent statistical inference.

Many methods are formulated as selection models (Little and Rubin
1987, 2002) as opposed to pattern-mixture modeling (Little 1993, 1994a).
A selection model factors the joint distribution of the measurement and
non-response mechanisms into the marginal measurement distribution and
the non-response distribution, conditional on the measurements. This is in-
tuitively appealing because the marginal measurement distribution would
be of interest also with complete data. Little and Rubin’s taxonomy is
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most easily developed in the selection setting. Parameterizing and making
inference about the effect of treatment and evolutions over time is straight-
forward in the selection model context.

Let us turn to the terminology of Rubin (1976) and Little and Rubin
(1987, Chapter 6). Key concepts are: (1) missing completely at random
(MCAR), if the missingness is independent of both unobserved and ob-
served data, (2) missing at random (MAR) if, conditional on the observed
data, the missingness is independent of the unobserved measurements, and
(3) missingness not at random (MNAR), when neither MCAR nor MAR
applies. In the context of likelihood or Bayesian inference, and when the pa-
rameters describing the measurement process are functionally independent
of the parameters describing the missingness process, MCAR and MAR
are ignorable, while a non-random process is non-ignorable. Ignorability
means that inferences about the measurement mechanism can be made
without explicitly addressing the missingness mechanism. With frequentist
inference, the stronger MCAR generally provides a sufficient condition for
ignorability.

This chapter sketches a general taxonomy within which incomplete data
methods can be placed. The emphasis lies on longitudinal data, in line with
the theme of the book. Subsequent chapters deal with simple methods and
direct likelihood (Chapter 27), the EM algorithm and multiple imputa-
tion (Chapter 28) and MNAR, with attention for both selection models
(Chapter 29) and pattern-mixture models (Chapter 30). In Chapter 31 se-
lected sensitivity analysis tools are discussed and Chapter 32 explains how
a number of key methods can be implemented using the SAS system.

26.2 A Formal Taxonomy

In this section, we build on the standard framework for missing data, which
is largely due to Rubin (1976) and Little and Rubin (1987).

In line with our conventions in earlier parts of the book, we assume
that for subject i in the study, a sequence of measurements Yij is designed
to be measured at occasions j = 1, . . . , ni. As before, the outcomes are
grouped into a vector Y i = (Yi1, . . . , Yini)

′. In most, but not all, designed
experiments where missingness is an issue, ni might be a constant. Coun-
terexamples are rotating panels or samples in which a subset of the subjects
is designed to be measured more intensively than the rest of the sample,
etc.

We now additionally define, for each occasion j, an indicator

Rij =
{

1 if Yij is observed,

0 otherwise.
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The missing data indicators Rij are grouped into a vector Ri which is, of
course, of the same length as Y i. We then partition Y i into two subvectors
such that Y o

i is the vector containing those Yij for which Rij = 1 and Y m
i

contains the remaining components. These subvectors are referred to as
the observed and missing components, respectively. Clearly, the partition
is allowed to differ with subject, and Y o

i can contain components which are
measured later than occasions at which components of Y m

i ought to have
been measured.

The following terminology is adopted. Complete data refers to the vector
Y i of scheduled measurements. This is the outcome vector that would have
been recorded if there were no missing data. The missing data indicators
are assembled into the vector Ri and the process generating Ri is referred
to as the missing data process. The full data (Y i, Ri) consist of the com-
plete data, together with the missing data indicators. Note that, unless all
components of Ri are equal to 1, the full data components are never all
observed. Then, obviously, the observed data refer to Y o

i and the missing
data to Y m

i . Note that one observes the measurements Y o
i together with

the dropout indicators Ri.
Some confusion might arise between the terms complete data introduced

here and complete case analysis. Whereas the former refers to the (hypo-
thetical) data set that would arise if there were no missing data, ‘complete
case analysis’ refers to analyses based on first deleting all subjects for which
at least one component is missing.

When missingness is restricted to dropout or attrition, we can replace
the vector Ri by a scalar variable Di, the dropout indicator. Indeed, in this
case, each vector Ri is of the form (1, . . . , 1, 0, . . . , 0) and we can define the
scalar dropout indicator

Di = 1 +
ni∑

j=1

Rij . (26.1)

For an incomplete sequence, Di denotes the occasion at which dropout
occurs. For a complete sequence, Di = ni+1. In both cases, Di indicates 1+
the length of the measurement sequence, whether complete or incomplete.

Dropout or attrition is a particular monotone pattern of missingness. In
order to have monotone missingness there has to exist a permutation of the
measurement occasions such that a measurement earlier in the permuted
sequence is observed for at least those subjects that are observed at later
measurements. Note that, for this definition to be meaningful, we need
to have a balanced design in the sense of a common set of measurement
occasions. Other patterns are called non-monotone.
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26.2.1 Missing Data Frameworks
We will first consider the so-called selection, pattern-mixture, and shared-
parameter modeling frameworks. Then, Rubin’s taxonomy encompassing
MCAR, MAR, and MNAR will be developed.

When data are incomplete due to a stochastic mechanism one should
start from the full data density

f(yi, ri|Xi, Zi, Wi, θ, ψ), (26.2)

where Xi, Zi, and Wi are design matrices for fixed effects, random effects
(if applicable), and missing data process and where θ and ψ are vectors
that parameterize the joint distribution. We will use θ = (β′, α′)′ and ψ to
describe the measurement and missingness processes, respectively, where β
is the fixed-effects parameter vector and α assembles variance components
and/or association parameters.

The selection model factorization equals

f(yi, ri|Xi, Zi, Wi, θ, ψ) = f(yi|Xi, Zi, θ)f(ri|yi, Wi, ψ), (26.3)

where the first factor is the marginal density of the measurement process
and the second one is the density of the missingness process, conditional on
the outcomes. Factor f(ri|yi, Wi, ψ) describes one’s self-selection mecha-
nism to either continue or leave the study.

The term selection model originates from the econometric literature
(Heckman 1976) and it can be thought of that a subject’s missing values
are “selected” through the probability model, given their measurements,
whether observed or not.

An alternative family can be built based on so-called pattern-mixture
models (Little 1993, 1995, Molenberghs, Kenward and Lesaffre 1997). These
are based on the factorization

f(yi, ri|Xi, Zi, Wi, θ, ψ) = f(yi|ri, Xi, Zi, θ)f(ri|Wi, ψ). (26.4)

The pattern mixture model allows for a different response model for each
pattern of missing values, the observed data being a mixture of these
weighted by the probability of each missing value or dropout pattern. At
first sight, such a model is less appealing in terms of probability mechanisms
for generating the data, but it has other important advantages.

The third family is referred to as shared-parameter models:

f(yi, ri|Xi, Zi, Wi, θ, ψ, bi)

= f(yi|ri, Xi, Zi, θ, bi)f(ri|Zi, Wi, ψ, bi), (26.5)

where we now explicitly include a vector of random effects bi of which one
or more components are shared between both factors. This model family
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has been studied by Wu and Carroll (1988) and Wu and Bailey (1988,
1989). A sensible assumption is that Y i and Ri are independent, given the
random effects bi. The random effects bi can be used to define a linear,
generalized linear, or non-linear mixed effects model. The same vector can
then be used to describe the missing data process. As such, the shared
parameter bi can be thought of as referring to a latent trait driving both
the measurement and missingness processes. At first sight, this principle
is related to the joint outcomes of Sections 24.2.3 and 24.3. The difference
is that there all outcomes are assumed to be observed, whereas here the
components Y m

i are missing.
The natural parameters of selection models, pattern-mixture models, and

shared-parameter models have a different meaning, and transforming one
probability model into one of the other framework is in general not straight-
forward, not for normal measurement models but even less so in the general
case.

26.2.2 Missing Data Mechanisms
Rubin’s taxonomy (Rubin 1976, Little and Rubin 1987) of missing value
processes is fundamental to modeling incomplete data. It is based on the
second factor of (26.3), within the selection modeling framework:

f(ri|yi, Wi, ψ) = f(ri|yo
i , y

m
i , Wi, ψ). (26.6)

Rubin’s classification essentially distinguishes settings in which important
simplifications of this process are possible.

Missing Completely at Random (MCAR). Under an MCAR mech-
anism, the probability of an observation being missing is independent of
the responses:

f(ri|yi, Wi, ψ) = f(ri|Wi, ψ) (26.7)

and hence (26.3) simplifies to

f(yi, ri|Xi, Zi, Wi, θ, ψ) = f(yi|Xi, Zi, θ)f(ri|Wi, ψ), (26.8)

implying that both components are independent. The implication is that
the joint distribution of yo

i and ri becomes

f(yo
i , ri|Xi, Zi, Wi, θ, ψ) = f(yo

i |Xi, Zi, θ)f(ri|Wi, ψ). (26.9)

Under MCAR the observed data can be analyzed as though the pattern
of missing values were predetermined. In whatever way the data are ana-
lyzed, whether using a frequentist, likelihood, or Bayesian procedure, the
process(es) generating the missing values can be ignored. For example, in
this situation simple averages of the observed data at different times pro-
vide unbiased estimates of the underlying marginal profiles.
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Note that this definition and the ones to follow are conditional on co-
variates. When covariates, assembled into Xi, Zi, and Wi are removed, it
is possible that the nature of a mechanism changes.

Missing at Random (MAR). Under an MAR mechanism, the prob-
ability of an observation being missing is conditionally independent of the
unobserved data, given the values of the observed data:

f(ri|yi, Wi, ψ) = f(ri|yo
i , Wi, ψ). (26.10)

and again the joint distribution of the observed data can be partitioned:

f(yi, ri|Xi, Zi, Wi, θ, ψ) = f(yi|Xi, Zi, θ)f(ri|yo
i , Wi, ψ), (26.11)

and hence at the observed data level:

f(yo
i , ri|Xi, Zi, Wi, θ, ψ) = f(yo

i |Xi, Zi, θ)f(ri|yo
i , Wi, ψ). (26.12)

Given the simplicity of (26.12), handling of MAR processes is much easier
than handling MNAR.

Although the MAR assumption is particularly convenient in that it leads
to considerable simplification in the issues surrounding the analysis of in-
complete longitudinal data, it is rare in practice for an investigator to be
able to justify its adoption, and so in many situations the final class of
missing value mechanisms cannot be ruled out.

Missing Not at Random (MNAR). In this case, neither MCAR nor
MAR hold. Under MNAR the probability of a measurement being missing
depends on unobserved data. No simplification of the joint distribution is
possible and the joint distribution of the observed measurements and the
missingness process has to be written as:

f(yo
i , ri|Xi, Zi, Wi, θ, ψ) =

∫
f(yi|Xi, Zi, θ)f(ri|yi, Wi, ψ)dym

i . (26.13)

Inferences can only be made by making further assumptions, about which
the observed data alone carry no information. Ideally, the choice of such
assumptions should be guided by external information, but the degree to
which this is possible in practice varies greatly. Such models can be for-
mulated within each of the three main families: selection, pattern-mixture,
and shared-parameter models. The differences between the families are es-
pecially important in the MNAR case, and lead to quite different, but
complementary, views of the missing value problem. Little (1995), Hogan
and Laird (1997), and Kenward and Molenberghs (1999) provide detailed
reviews. See also Verbeke and Molenberghs (2000).

It has been shown, for dropout, how the Rubin classification can be
applied in the pattern-mixture framework as well (Molenberghs, Michiels,
Kenward, and Diggle 1998, Kenward, Molenberghs, and Thijs 2003).

It is important to note that the MCAR–MAR–MNAR terminology is
independent of the statistical framework chosen to analyze the data. This
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is to be contrasted with the terms ignorable and non-ignorable missingness.
The latter terms depend crucially on the inferential framework (Rubin
1976) and will be considered next.

26.2.3 Ignorability
One can see the importance of the MAR assumption from an intuitive view-
point. Essentially it states that once appropriate account is taken of what
we have observed, there remains no dependence on unobserved data, at
least in terms of the probability model. We should as a consequence expect
much of the missing value problem to disappear under the MAR mecha-
nism and this is in fact the case. This can be shown more formally through
consideration of the likelihood. The full data likelihood contribution for
subject i assumes the form

L∗(θ, ψ|Xi, Zi, Wi, yi, ri) ∝ f(yi, ri|Xi, Zi, Wi, θ, ψ).

Because inference has to be based on what is observed, the full data likeli-
hood L∗ has to be replaced by the observed data likelihood L:

L(θ, ψ|Xi, Zi, Wi, yi, ri) ∝ f(yo
i , ri|Xi, Zi, Wi, θ, ψ)

with

f(yo
i , ri|θ, ψ) =

∫
f(yi, ri|Xi, Zi, Wi, θ, ψ)dym

i

=
∫

f(yo
i , y

m
i |Xi, Zi, θ)f(ri|yo

i , y
m
i , Wi, ψ)dym

i .

Under an MAR process, we obtain

f(yo
i , ri|θ, ψ) =

∫
f(yo

i , y
m
i |Xi, Zi, θ)f(ri|yo

i , Wi, ψ)dym
i

= f(yo
i |Xi, Zi, θ)f(ri|yo

i , Wi, ψ), (26.14)

i.e., the likelihood factors into two components of the same functional form
as the general factorization (26.3) of the complete data, in agreement with
(26.12). If further θ and ψ are disjoint in the sense that the parameter
space of the full vector (θ′, ψ′)′ is the product of the individual parameter
spaces, then inference can be based on the marginal observed data density
only. This technical requirement is referred to as the separability condition.

In conclusion, when the separability condition is satisfied, within the
likelihood framework , ignorability is equivalent to the union of MAR and
MCAR. A formal derivation is given in Rubin (1976), where it is also shown
that the same requirements hold for Bayesian inference, but that frequentist
inference is ignorable only under MCAR. Of course, it is possible that
at least part of the scientific interest is directed toward the missingness
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process. Although one would then not ignore the missing data process,
it is still advantageous to dispose of the convenient factorization (26.14),
allowing to consider the measurement and missingness processes in turn.

However, still some caution should be used when constructing precision
estimators. Indeed, although the correct maximum likelihood estimates and
likelihood ratio statistics will be generated by the use of (26.14), some care
needs to be taken with the choice of appropriate sampling distribution in
a frequentist analysis. For this aspect the missing value mechanism is not
ignorable, even under MAR (Kenward and Molenberghs 1998). In practice
though there is little reason for worry since this just means that estimates
of precision should be based on the observed rather than the expected
information matrix.

Classical examples of the more stringent MCAR condition needed for
frequentist methods are ordinary least squares and the generalized estimat-
ing equations approach (Chapter 8). These define an unbiased estimator
only under MCAR. More recently it has been shown how non-likelihood ap-
proaches can be developed for the MAR case (Robins, Rotnitzky, and Zhao
1995, Robins, Rotnitzky, and Scharfstein 1998, Fitzmaurice, Molenberghs,
and Lipsitz 1995). See also Chapter 27.



27
Simple Methods, Direct Likelihood,
and Weighted Generalized Estimating
Equations

27.1 Introduction

Commonly used methods to analyze incomplete longitudinal data include
complete case analysis (CC) and last observation carried forward (LOCF).
However, such methods rest on strong assumptions, including missing com-
pletely at random (MCAR). Such assumptions are too strong to generally
hold. Over the past decades, a number of full longitudinal data analysis
methods have become available, such as the linear, generalized linear, and
non-linear mixed modeling frameworks, and the likelihood-based models of
Chapters 6 and 7, that are valid under the much weaker missing at random
(MAR) assumption. Such methods are useful, even if the scientific ques-
tion is in terms of a single time point, e.g., the last planned measurement
occasion in a clinical trial. The validity of such a method rests on the use
of maximum likelihood, under which the missing data mechanism is ignor-
able as soon as MAR applies. Specific attention needs to be devoted to
generalized estimating equations, given their non-likelihood status.

In many clinical trial and other settings, the standard methodology used
to analyze incomplete longitudinal data is based on such methods as last
observation carried forward (LOCF), complete case analysis (CC), or sim-
ple forms of imputation. This is often done without questioning the possible
influence of these assumptions on the final results, even though several au-
thors have written about this topic. A relatively early account is given
in Heyting, Tolboom, and Essers (1992). Mallinckrodt et al (2003ab) and
Lavori, Dawson, and Shera (1995) propose direct-likelihood and multiple-
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imputation methods, respectively, to deal with incomplete longitudinal
data. Siddiqui and Ali (1998) compare direct-likelihood and LOCF meth-
ods.

It is unfortunate that such a strong emphasis is placed on methods like
LOCF and CC in clinical trial settings, as they are based on strong and
unrealistic assumptions. Even the strong MCAR assumption does not suf-
fice to guarantee that an LOCF analysis is valid. In contrast, under the less
restrictive assumption of MAR, valid inference can be obtained through a
likelihood-based analysis without modeling the dropout process. One can
then use linear or generalized linear mixed models (Verbeke and Molen-
berghs 2000, see also Chapter 4 in this volume), without additional com-
plication or effort. We will argue that such an analysis is more likely to be
valid, and even easier to implement than LOCF and CC analyses.

In Section 27.2, the status of longitudinal and non-longitudinal data
analysis is briefly discussed in the context of incomplete longitudinal se-
quences. Section 27.3 reviews simple methods, with emphasis on CC and
LOCF, and then goes on to advocate direct likelihood as an important
and viable alternative. The bias that occurs in CC and LOCF is studied
analytically, in the context of a specific and simple model, is studied in
Section 27.4. The specific situation of generalized estimating equations is
the topic of Section 27.5. The concepts developed in this chapter are then
exemplified using a depression clinical trial (Section 27.6), the Age Re-
lated Macular Degeneration study (Section 27.7), which was introduced in
Section 2.9 and analyzed before in Section 24.4, and finally the analgesic
trial (Section 27.8), which has been analyzed before in Chapter 17 and
Section 18.4.

27.2 Longitudinal Analysis or Not?

In principle, one should start by considering the density of the full data
(26.2), but by the very nature of the missing data problem, parts of the
outcome vector Y i may be left unobserved, and hence one has to focus
on the observed data only, i.e., Y o

i and Ri. Of course, when ignorability
applies (Section 26.2.3), one can further ignore the missing data itself. As
stated in the introduction, one often sees much simpler analyses, which
often overlook the important issues altogether.

Whatever the perspective taken, it usually belongs to one of two possi-
ble views for the measurement model on the one hand and a philosophy
adopted for the missingness model on the other hand. We will describe
these in turn.

Model for measurements. A choice has to be made regarding the mod-
eling approach to the measurements. Several views are possible.
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View 1. One can choose to analyze the entire longitudinal profile, irre-
spective of whether interest focuses on the entire profile (e.g.,
difference in slope between groups) or on a specific time point
(e.g., the last planned occasion). In the latter case, one would
make inferences about such an occasion using the posited model.

View 2. One states the scientific question in terms of the outcome at a
well-defined point in time. Several choices are possible:

View 2a. The scientific question is defined in terms of the last planned
occasion. In this case, one can either accept the dropout
as it is or use one or other strategy (e.g., imputation) to
incorporate the missing outcomes.

View 2b. One can choose to define the question and the corresponding
analysis in terms of the last observed measurement.

Although Views 1 and 2a necessitate reflection on the missing data
mechanism, View 2b avoids the missing data problem because the
question is couched completely in terms of observed measurements.
Thus, under View 2b, an LOCF analysis might be acceptable, pro-
vided it matched the scientific goals, but is then better described as
a last observation analysis because nothing is carried forward. Such
an analysis should properly be combined with an analysis of time to
dropout, perhaps in a survival analysis framework. Of course, an in-
vestigator should reflect very carefully on whether View 2b represents
a relevant and meaningful scientific question (Shih and Quan 1997).

Method for handling missingness. A choice has to be made regarding
the modeling approach for the missingness process. Under certain as-
sumptions this process can be ignored (e.g., a likelihood-based ignor-
able analysis). Some simple methods, such as a complete case analysis
and LOCF, do not explicitly address the missingness process either.

The measurement model will depend on whether or not a full longitudi-
nal analysis is done. When the focus is on the last observed measurement
or on the last measurement occasion only, one typically opts for classical
two- or multi-group comparisons (t-test, Wilcoxon, etc.). When a longitu-
dinal analysis is deemed necessary, the choice depends on the nature of the
outcome. Options include the linear and generalized linear mixed models,
generalized estimating equations, etc.

27.3 Simple Methods

We will briefly review a number of relatively simple methods that still are
commonly used. For the validity of many of these methods, MCAR is re-
quired. For others, such as LOCF, MCAR is necessary but not sufficient.
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The focus will be on the complete case method, for which data are re-
moved, and on imputation strategies, where data are filled in. Regarding
imputation, one distinguishes between single and multiple imputation. In
the first case, a single value is substituted for every ‘hole’ in the dataset
and the resulting dataset is analyzed as if it represented the true complete
data. Multiple imputation acknowledges the uncertainty stemming from
filling in missing values rather than observing them (Rubin 1987, Schafer
1997). LOCF will be discussed within the context of imputation strategies,
although LOCF can be placed in other frameworks as well.

A complete case analysis includes only those cases for which all mea-
surements were recorded. This method has obvious advantages. It is simple
to describe and almost any software can be used because there are no
missing data. Unfortunately, the method suffers from severe drawbacks.
First, there is nearly always a substantial loss of information. For example,
suppose there are 20 measurements, with 10% of missing data on each mea-
surement. Suppose, further, that missingness on the different measurements
is independent; then, the estimated percentage of incomplete observations
is as high as 87%. The impact on precision and power may be dramatic.
Even though the reduction of the number of complete cases will be less se-
vere in settings where the missingness indicators are correlated, this loss of
information will usually militate against a complete case analysis. Second,
severe bias can result when the missingness mechanism is MAR but not
MCAR. Indeed, should an estimator be consistent in the complete data
problem, then the derived complete case analysis is consistent only if the
missingness process is MCAR. A CC analysis can be conducted when Views
1 and 2 of Section 27.2 are adopted. It is obviously not a reasonable choice
with View 2b.

An alternative way to obtain a data set on which complete data methods
can be used is to fill in rather than delete (Little and Rubin 1987). Con-
cern has been raised regarding imputation strategies. Dempster and Rubin
(1983) write: “The idea of imputation is both seductive and dangerous. It is
seductive because it can lull the user into the pleasurable state of believing
that the data are complete after all, and it is dangerous because it lumps
together situations where the problem is sufficiently minor that it can be
legitimately handled in this way and situations where standard estimators
applied to the real and imputed data have substantial biases.” For exam-
ple, Little and Rubin (1987) show that the application of imputation could
be considered acceptable in a linear model with one fixed effect and one
error term, but that it is generally not acceptable for hierarchical models,
split-plot designs, repeated measures with a complicated error structure,
random-effects, and mixed-effects models.

Thus, the user of imputation strategies faces several dangers. First, the
imputation model could be wrong and, hence, the point estimates biased.
Second, even for a correct imputation model, the uncertainty resulting from
missingness is ignored. Indeed, even when one is reasonably sure about the
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mean value the unknown observation would have had , the actual stochas-
tic realization, depending on both the mean and error structures, is still
unknown. In addition, most methods require the MCAR assumption to
hold while some even require additional and often unrealistically strong
assumptions.

A method that has received considerable attention (Siddiqui and Ali
1998, Mallinckrodt et al 2003ab) is last observation carried forward
(LOCF). In the LOCF method, whenever a value is missing, the last ob-
served value is substituted. The technique can be applied to both monotone
and non-monotone missing data. It is typically applied in settings where
incompleteness is due to attrition.

LOCF can, but not necessarily has to, be regarded as an imputation
strategy, depending on which of the views of Section 27.2 is taken. The
choice of viewpoint has a number of consequences. First, when the prob-
lem is approached from a missing data standpoint, one has to think it
plausible that subjects’ measurements do not change from the moment of
dropout onwards (or during the period they are unobserved in the case of
intermittent missingness). In a clinical trial setting, one might believe that
the response profile changes as soon as a patient goes off treatment and
even that it would flatten. However, the constant profile assumption is even
stronger. Second, LOCF shares with other single imputation methods that
it artificially increases the amount of information in the data, by treating
imputed and actually observed values on an equal footing. This is espe-
cially true if a longitudinal view is taken. Verbeke and Molenberghs (1997,
Chapter 5) have shown that all features of a linear mixed model (group
difference, evolution over time, variance structure, correlation structure,
random effects structure, . . . ) can be affected.

Thus, scientific questions with which LOCF is compatible will be those
that are phrased in terms of the last obtained measurement (View 2b).
Whether or not such questions are sensible should be the subject of scien-
tific debate, which is quite different from a post hoc rationale behind the
use of LOCF. Likewise, it can be of interest to model the complete cases
separately and to make inferences about them. In such cases, a CC analysis
is of course the only reasonable way forward. This is fundamentally differ-
ent from treating a CC analysis as one that can answer questions about
the randomized population as a whole.

We will briefly describe two other imputation methods. The idea behind
unconditional mean imputation (Little and Rubin 1987) is to replace
a missing value with the average of the observed values on the same vari-
able over the other subjects. Thus, the term unconditional refers to the
fact that one does not use (i.e., condition on) information on the subject
for which an imputation is generated. It is clear that this method is devel-
oped primarily for continuous data and its application to binary outcomes
would be problematic. Because values are imputed that are unrelated to
a subject’s other measurements, all aspects of a model, such as a linear
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mixed model, are typically distorted (Verbeke and Molenberghs 1997). In
this sense, unconditional mean imputation can be as damaging as LOCF.

Buck’s method or conditional mean imputation (Buck 1960, Little
and Rubin 1987) is similar in complexity to mean imputation. Consider, for
example, a single multivariate normal sample. The first step is to estimate
the mean vector µ and the covariance matrix Σ from the complete cases,
assuming that Y ∼ N(µ,Σ). For a subject with missing components, the
regression of the missing components (Y m

i ) on the observed ones (yo
i ) is

Y m
i |yo

i ∼ N(µm + Σmo(Σoo)−1(yo
i − µo

i ),Σ
mm − Σmo(Σoo)−1Σom).

The second step calculates the conditional mean from the regression of the
missing components on the observed components, and substitutes the con-
ditional mean for the corresponding missing values. In this way, “vertical”
information (estimates for µ and Σ) is combined with “horizontal” infor-
mation (yo

i ). Buck (1960) showed that under mild conditions, the method
is valid under MCAR mechanisms. Little and Rubin (1987) added that
the method is also valid under certain MAR mechanisms. Even though the
distribution of the observed components is allowed to differ between com-
plete and incomplete observations, it is very important that the regression
of the missing components on the observed ones is constant across miss-
ingness patterns. Again, this method shares with other single imputation
strategies that, although point estimation may be consistent, the precision
will be overestimated. There is a connection between the concept of con-
ditional mean imputation and a likelihood-based ignorable analysis, in the
sense that the latter analysis produces expectations for the missing obser-
vations that are formally equal to those obtained under conditional mean
imputation. However, in likelihood-based ignorable analyses, no explicit
imputation takes place, hence the amount of information in the data is not
overestimated and important model elements, such as mean structure and
variance components, are not distorted.

Historically, an important motivation behind the simpler methods was
their simplicity. Currently, with the availability of commercial software
tools such as, for example, the SAS procedures MIXED, GLIMMIX, and
NLMIXED and the SPlus and R nlme libraries, this motivation no longer
applies. Arguably, an MAR analysis is the preferred choice. Of course, the
correctness of an MAR analysis is in its own right never completely verifi-
able. Purely resorting to MNAR analyses (Chapters 29 and 30) is not sat-
isfactory either since important sensitivity issues (Chapter 31) then arise.
See also Verbeke and Molenberghs (2000).
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27.4 Bias in LOCF, CC, and Ignorable Likelihood
Methods

It is often quoted that LOCF or CC, though problematic for parame-
ter estimation, produce randomization-valid hypothesis testing, but this
is questionable. First, in a CC analysis partially observed data are selected
out, with probabilities that may depend on post-randomization outcomes,
thereby undermining any randomization justification. Second, if the focus
is on one particular time point, e.g., the last one scheduled, then LOCF
plugs in data. Such imputations, apart from artificially inflating the in-
formation content, may deviate in complicated ways from the underlying
data. In contrast, a likelihood-based MAR analysis uses all available data,
with the need for neither deletion nor imputation, which suggests that
a likelihood-based MAR analysis would usually be the preferred one for
testing as well. Third, although the size of a randomization-based LOCF
test may reach its nominal size under the null hypothesis of no difference
in treatment profiles, there will be other regions of the alternative space
where the power of the LOCF test procedure is equal to its size, which is
completely unacceptable.

Using the simple but insightful setting of two repeated follow-up mea-
sures, the first of which is always observed while the second can be missing,
we establish some properties of the LOCF and CC estimation procedures
under different missing data mechanisms, against the background of an
MAR process operating. In this way, we bring LOCF and CC within a
general framework that makes clear their relationships with more formal
modeling approaches, enabling us to make a coherent comparison among
the different approaches. The use of a moderate amount of algebra leads
to some interesting conclusions.

It is most convenient to consider continuous outcomes, although similar
arguments hold for non-Gaussian outcomes as well. Let us assume each
subject i is to be measured on two occasions ti = 0, 1. Subjects are ran-
domized to one of two treatment arms: Ti = 0 for the standard arm and
Ti = 1 for the experimental arm. The probability of an observation being
observed on the second occasion (Di = 2) is p0 and p1 for treatment groups
0 and 1, respectively. We can write the means of the observations in the
two dropout groups as follows:

dropouts Di = 1 : β0 + β1Ti + β2ti + β3Titi, (27.1)
completers Di = 2 : γ0 + γ1Ti + γ2ti + γ3Titi. (27.2)

The true underlying population treatment difference at time ti = 1, as
determined from (27.1)–(27.2), is equal to:

∆true = p1(γ0 + γ1 + γ2 + γ3) + (1 − p1)(β0 + β1 + β2 + β3)
−[p0(γ0 + γ2) + (1 − p0)(β0 + β2)]. (27.3)
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If we use LOCF, the expectation of the corresponding estimator equals:

∆LOCF = p1(γ0 + γ1 + γ2 + γ3) + (1 − p1)(β0 + β1)
−[p0(γ0 + γ2) + (1 − p0)β0]. (27.4)

Alternatively, if we use CC, the above expression changes to:

∆CC = γ1 + γ3. (27.5)

Hence, in general, both procedures yield biased estimators.
We will now consider the special but important cases where the true miss-

ing data mechanisms are MCAR and MAR, respectively. Each of these will
impose particular constraints on the β and γ parameters in Model (27.1)–
(27.2). Under MCAR, the β parameters are equal to their γ counterparts
and (27.3) simplifies to

∆MCAR,true = β1 + β3 ≡ γ1 + γ3. (27.6)

Suppose we apply the LOCF procedure in this setting, the expectation
of the resulting estimator then simplifies to:

∆MCAR,LOCF = β1 + (p1 − p0)β2 + p1β3. (27.7)

The bias is given by the difference between (27.6) and (27.7):

BMCAR,LOCF = (p1 − p0)β2 − (1 − p1)β3. (27.8)

While of a simple form, we can learn several things from this expression
by focusing on each of the terms in turn. First, suppose β3 = 0 and β2 �=
0, implying that there is no differential treatment effect between the two
measurement occasions, but there is an overall time trend. Then, the bias
can go in either direction depending on the sign of p1 − p0 and the sign of
β2. Note that p1 = p0 only in the special case that the dropout rate is the
same in both treatment arms. Whether or not this is the case has no impact
on the status of the dropout mechanism (it is MCAR in either case, even
though in the second case dropout is treatment-arm dependent), but is
potentially very important for the bias implied by LOCF. Second, suppose
β3 �= 0 and β2 = 0. Again, the bias can go in either direction depending
on the sign of β3, i.e., depending on whether the treatment effect at the
second occasion is larger or smaller than the treatment effect at the first
occasion. In conclusion, even under the strong assumption of MCAR, we
see that the bias in the LOCF estimator typically does not vanish and,
even more importantly, the bias can be positive or negative and can even
induce an apparent treatment effect when one does not exist.

In contrast, as can be seen from (27.5) and (27.6), the CC analysis is
unbiased.
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Let us now turn to the MAR case. In this setting, the constraint implied
by the MAR structure of the dropout mechanism is that the conditional
distribution of the second observation given the first is the same in both
dropout groups (Molenberghs et al 1998). Based on this result, the expec-
tation of the second observation in the standard arm of the dropout group
is

E(Yi2|Di = 1, Ti = 0) = γ0 + γ2 + σ(β0 − γ0), (27.9)
where σ = σ21σ

−1
11 , σ11 is the variance of the first observation in the fully

observed group and σ12 is the corresponding covariance between the pair
of observations. Similarly, in the experimental group we obtain

E(Yi2|Di = 1, Ti = 1) = γ0 + γ1 + γ2 + γ3 + σ(β0 + β1 − γ0 − γ1). (27.10)

The true underlying population treatment difference (27.3) then becomes

∆MAR,true = γ1 + γ3 + σ[(1 − p1)(β0 + β1 − γ0 − γ1)

−(1 − p0)(β0 − γ0)]. (27.11)

In this case, the bias in the LOCF estimator can be written as:

BMAR,LOCF = p1(γ0 + γ1 + γ2 + γ3) + (1 − p1)(β0 + β1)

−p0(γ0 + γ2) − (1 − p0)β0 − γ1 − γ3

−σ[(1 − p1)(β0 + β1 − γ0 − γ1)

−(1 − p0)(β0 − γ0)]. (27.12)

Again, although involving more complicated relationships, it is clear that
the bias can go in either direction, thus contradicting the claim often put
forward that the bias in LOCF leads to conservative conclusions. Further,
it is far from clear what conditions need to be imposed in this setting for
the corresponding estimator to be either unbiased or conservative.

The bias in the CC estimator case takes the form:

BMAR,CC = −σ[(1 − p1)(β0 + β1 − γ0 − γ1) − (1 − p0)(β0 − γ0)]. (27.13)

Even though this expression is simpler than in the LOCF case, it is still
true that the bias can operate in either direction.

Thus, in all cases, LOCF typically produces bias of which the direction
and magnitude depend on the true but unknown treatment effects. Hence,
caution is needed when using this method. In contrast, an ignorable like-
lihood based analysis, as outlined in Section 27.3, provides a consistent
estimator of the true treatment difference at the second occasion under
both MCAR and MAR. Although this is an assumption, it is rather a mild
one in contrast to the stringent conditions required to justify the LOCF
method, even when the qualitative features of the bias are considered more
important than the quantitative ones. Note that the LOCF method is not
valid even under the strong MCAR condition, whereas the CC approach is
valid under MCAR.
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27.5 Weighted Generalized Estimating Equations

In the previous sections, in particular in the last one, it was shown that
direct likelihood is a method of choice, due to the ease with which it can
be implemented and the validity under MAR.

For categorical outcomes, as we have seen before, the GEE approach
could be adopted. However, as Liang and Zeger (1986) pointed out, infer-
ences with the GEE are valid only under the strong assumption that the
data are missing completely at random (MCAR). To allow the data to be
missing at random (MAR), Robins, Rotnitzky, and Zhao (1995) proposed a
class of weighted estimating equations. These can be viewed as an extension
of generalized estimating equations.

The idea of weighted generalized estimating equations (WGEE) is to
weight each subject’s measurements in the GEEs by the inverse probability
that a subject drops out at that particular measurement occasion. Such a
weight can be calculated as

νij ≡ P (Di = j) =
j−1∏
k=2

[1 − P (Rik = 0|Ri2 = . . . = Ri,k−1 = 1)] ×

P (Rij = 0|Ri2 = . . . = Ri,j−1 = 1)I{j≤ni} (27.14)

if dropout occurs by time j or we reach the end of the measurement se-
quence, and

νij ≡ P (Di = j) =
j∏

k=2

[1 − P (Rik = 0|Ri2 = . . . = Ri,k−1 = 1)] (27.15)

otherwise.
Recall that we partitioned Y i into the unobserved components Y m

i and
the observed components Y o

i . Similarly, we can make the exact same par-
tition of µi into µi

m and µi
o. In the weighted GEE approach, which is

proposed to reduce possible bias of β̂, the score equations to be solved are:

S(β) =
N∑

i=1

Wi
∂µi

∂β′ (A
1/2
i RiA

1/2
i )−1(yi − µi) = 0,

where Wi is a diagonal matrix with the elements of νi along the diagonal,
or

S(β) =
N∑

i=1

ni+1∑
d=2

I(Di = d)
νid

∂µi(d)
∂β′ (A1/2

i RiA
1/2
i )−1(d)(yi(d)−µi(d)) = 0,

where yi(d) and µi(d) are the first d−1 elements of yi and µi, respectively.
We define

∂µi

∂β′ (d)
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FIGURE 27.1. Depression Trial. Individual profiles.

and (A1/2
i RiA

1/2
i )−1(d) analogously, in line with the definition of Robins,

Rotnitzky and Zhao (1995).
Thus, not only likelihood methods but also appropriately adapted gener-

alized estimating equations can be used with ease, under MAR. Both can
be adapted to the MNAR setting as well (Chapters 29 and 30). Although
it is beneficial to have both of these tools in one’s toolkit, it is also impor-
tant to realize that both ‘schools’ have strong supporters. An important
discussion of these issues is given in Davidian, Tsiatis, and Leon (2005).
Lipsitz et al (2001) studied bias in weighted estimating equations.

27.6 The Depression Trial

We will illustrate various methods discussed in this chapter by means of
a clinical trial in depression, analyzed before by Molenberghs et al (2004),
Jansen et al (2005), Dmitrienko et al (2005, Chapter 5), and Molenberghs
et al (2005).

27.6.1 The Data
The depression trial data come from a clinical trial including 342 patients
with post-baseline data. The Hamilton Depression Rating Scale (HAMD17)
is used to measure the depression status of the patients. For each patient,
a baseline assessment is available.
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FIGURE 27.2. Depression Trial. Mean profiles per treatment arm.

For blinding purposes, therapies are coded as A1 for primary dose of
experimental drug, A2 for secondary dose of experimental drug, and B and
C for non-experimental drugs. Individual profiles and mean profiles of the
changes from baseline in HAMD17 scores per treatment arm are shown in
Figures 27.1 and 27.2 respectively.

The contrast of primary interest is between A1 and C. Emphasis is on the
difference between arms at the end of the study. A graphical representation
of the dropout, per arm, is given in Figure 27.3. Part of the depression data
set is given below. Therapies A1, A2, B, and C are denoted as treatment
1, 2, 3, and 4 respectively. Dots represent unobserved measurements.

We will focus on the analysis of the binary outcome, defined as 1 if the
HAMD17 score is larger than 7, and 0 otherwise. These analyses are in
line with Jansen et al (2004), Dmitrienko et al (2005, Chapter 5), and
Molenberghs et al (2005).

The primary null hypothesis will be tested using both GEE and WGEE,
as well as GLMM. We include the fixed categorical effects of treatment,
visit, and treatment-by-visit interaction, as well as the continuous, fixed
covariates of baseline score and baseline score-by-visit interaction. A ran-
dom intercept will be included when considering the random-effect models.

Analyses will be implemented using the SAS procedures GENMOD,
GLIMMIX, and NLMIXED.
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FIGURE 27.3. Depression Trial. Evolution of dropout per treatment arm.

27.6.2 Marginal Models
First, let us consider the GEE approach. Although we can consider both
empirically corrected and model-based standard errors (Chapter 8), it is
sensible to confine inferences to the empirically corrected ones. Several
contrasts are of interest as well. The first one to test for treatment effect at
the endpoint, the second one for the average treatment effect over the course
of the study. Depending on the primary and secondary scientific questions,
more of these can be considered. Both standard GEE (Section 8.2) as well
as linearization-based GEE (Section 8.8) are considered. It will allow us to
assess similarities and differences in this context, knowing how closely they
agree from, for example, Chapter 8.

Of course, given the incomplete nature of the data, it is careful to con-
sider weighted generalized estimating equations, unless one has strong belief
that the MCAR assumption holds. This implies that weights have to be
constructed, based on the probability to drop out at a given time, given the
patient is still in the study, given his or her past measurements, and given
covariates. We restrict attention to the previous outcome and treatment
indicator. The resulting model is of a standard logistic regression or probit
regression type, and can be easily fitted using standard logistic regression
software, such as the SAS procedures GENMOD and LOGISTIC. The code
is exemplified in Section 32.5. The result of fitting this logistic regression
did not reveal strong evidence for a dependence on the previous outcome
(estimate −0.097, s.e. 0.351), nor on the treatment allocation (estimate
0.065, s.e. 0.314).
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TABLE 27.1. Depression Trial. Results of marginal models: Parameter estimates
(model-based standard errors; empirically corrected standard errors) for standard
unweighted and weighted GEE (denoted GEE and WGEE, respectively) and the
linearization based method (interaction terms are not shown).

Effect GEE WGEE Linearization
Intercept -1.22 (0.77;0.79) -0.56 (0.63;0.91) -1.23 (0.75;0.79)
Treatment -0.71 (0.38;0.38) -0.91 (0.32;0.41) -0.67 (0.37;0.38)
Visit 4 0.43 (1.05;1.22) -0.15 (0.85;1.90) 0.45 (1.05;1.22)
Visit 5 -0.45 (0.91;1.23) -0.23 (0.68;1.54) -0.47 (0.92;1.23)
Visit 6 0.06 (0.86;1.03) 0.15 (0.69;1.13) 0.05 (0.86;1.03)
Visit 7 -0.25 (0.89;0.91) -0.27 (0.78;0.89) -0.25 (0.89;0.91)
Baseline 0.08 (0.04;0.04) 0.06 (0.03;0.05) 0.08 (0.04;0.04)

Results of fitting the standard GEE as well as weighted GEE, combined
with the results of the linearization-based method, are presented in Ta-
ble 27.1. Apart from treatment allocation, the effect of baseline value and
indicators for time at visits 4, 5, 6, and 7 were included into the model.
Further, the interactions between treatment and visit and between baseline
and visit were included in the model.

Although GEE and its linearization based version produce very simi-
lar results, in line with earlier observations, there are differences with the
weighted version, in parameter estimates as well as standard errors. The
difference in standard errors (often, but not always, larger under WGEE)
are explained by the fact that additional sources of uncertainty, due to
missingness, are taken into account. The resulting inferences can be dif-
ferent. For example, the treatment effect parameter is non-significant with
GEE (p = 0.0633 with standard GEE and p = 0.1184 with the linearized
version) while a significant difference is found under the correct WGEE
analysis (p = 0.0268). Also, the difference is marked for treatment effect
at endpoint: p = 0.0658 with standard GEE and p = 0.0631 with the lin-
earized version, while a significant difference is found under the correct
WGEE analysis (p = 0.0289).

Thus, one may fail to detect such important effects as treatment dif-
ferences when GEE is used rather than the, admittedly, somewhat more
laborious WGEE.

27.6.3 Random-effects Models
Because the generalized linear mixed model is typically fitted using max-
imum likelihood, based on numerical integration or data approximations
(Chapter 14), standard fitting algorithms can be used, without modifica-
tion, provided the MAR assumption and the mild regularity conditions
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TABLE 27.2. Depression Trial. Results of random-effects model fitting. Parame-
ter estimates (standard errors) for GLMM with adaptive Gaussian quadrature
(Num. int.) and penalized-quasi likelihood methods (PQL) (interaction terms are
not shown).

Effect PQL Num. int.
Intercept -1.70 (1.06) -2.31 (1.34)
Treatment -0.84 (0.55) -1.20 (0.72)
Visit 4 0.66 (1.48) 0.64 (1.75)
Visit 5 -0.44 (1.29) -0.78 (1.51)
Visit 6 0.17 (1.22) 0.19 (1.41)
Visit 7 -0.23 (1.25) -0.27 (1.43)
Baseline 0.10 (0.06) 0.15 (0.07)
R.I. var. 2.53 (0.53) 5.71 (1.53)

for ignorability are fulfilled, as presented in Section 26.2.3. Dmitrienko et
al (2005, Chapter 5) and Molenberghs et al (2005) have indicated that
also here the choice between adaptive and non-adaptive quadrature, the
number of quadrature points, and the choice between quasi-Newton and
Newton-Raphson, has a noticeable impact on the results, where adaptive
quadrature and Newton-Raphson iteration produce the most reliable re-
sults, with no difference in the parameter estimates and standard errors
observed, whether 10, 20, or 50 quadrature points are used. These results
are contrasted with PQL based estimates in Table 27.2.

Once again, there are considerable differences between both approaches,
and the PQL estimates are rather close to the GEE estimates. This indi-
cates that, though the method is in principle likelihood based, the poverty
of the approximation jeopardizes its validity under MAR even more than
when data are complete and, if at all possible, the numerical integration
method ought to be the preferred one. Turning to the treatment effect, the
treatment effect at endpoint is not significant in either of the analyses, but
the difference in p-value is noticeable: p = 0.0954 for numerical integration
and p = 0.1286 with PQL.

27.7 Age Related Macular Degeneration Trial

In Section 24.4 we considered a longitudinal analysis, jointly for the binary
and continuous outcomes at 4, 12, 24, and 52 weeks, for the ARMD study
introduced in Section 2.9. Results were reported in Table 24.7. All analyses
done in Section 24.4 were based on 190 subjects with complete information
at weeks 24 and 52. However, the total number of subjects equals 240,
meaning that a substantial portion of the data is subject to missingness.



504 27. Simple Methods, Direct Likelihood, and WGEE

TABLE 27.3. Age Related Macular Degeneration Trial. Overview of missingness
patterns and the frequencies with which they occur. ‘O’ indicates observed and
‘M’ indicates missing.

Measurement occasion
4 wks 12 wks 24 wks 52 wks Number %

Completers
O O O O 188 78.33

Dropouts
O O O M 24 10.00
O O M M 8 3.33
O M M M 6 2.50
M M M M 6 2.50

Non-monotone missingness
O O M O 4 1.67
O M M O 1 0.42
M O O O 2 0.83
M O M M 1 0.42

Both intermittent missingness as well as dropout occurs. An overview is
given in Table 27.3.

Thus, 78.33% of the profiles are complete, while 18.33% exhibit monotone
missingness. Out of the latter group, 2.5% or 6 subjects have no follow-up
measurements. The remaining 3.33%, representing 8 subjects, have inter-
mittent missing values. Although the group of dropouts is of considerable
magnitude, the ones with intermittent missingness is much smaller. Nev-
ertheless, it is cautious to include all into the analyses. This is certainly
possible for direct likelihood analyses and for standard GEE, but WGEE is
more complicated in this respect. One solution is to monotonize the miss-
ingness patterns by means of multiple imputation (Section 28.2) and then
conduct WGEE.

In the analysis of Section 24.4, 190 ‘completers’ were used, even though
Table 27.3 shows there are 188 completers only. However, the analyses in
Section 24.4 were done on subjects with measurements at weeks 24 and
52. The table shows that these can come from either profile ‘OOOO,’ the
completers, but also from ‘MOOO,’ thus amounting to 188 + 2 = 190
subjects.

Analogous to the analysis presented in Section 27.6, and inspired by the
model for the binary data reported in Table 24.4, we compare analyses
performed on the completers only (CC), on the LOCF imputed data, as
well as on the observed data. In all cases, standard GEE, and linearization-
based GEE will be considered. For the observed, partially incomplete data,
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GEE is supplemented with WGEE. Further, a random-intercepts GLMM
is considered, based on both PQL and numerical integration. The GEE
analyses are reported in Table 27.4 and the random-effects models in Ta-
ble 27.6. In all cases, we use the logit link. For GEE, a working exchangeable
correlation matrix is considered. The model has four intercepts and four
treatment effects. The advantage of having separate treatment effects at
each time is that particular attention can be given at the treatment effect
assessment at the last planned measurement occasion, i.e., after one year.
From Table 27.4 it is clear that there is very little difference between the
standard GEE and linearization-based GEE results. This is undoubtedly
the case for CC, LOCF, and unweighted GEE on the observed data. For
these three cases, also the model-based and empirically corrected standard
errors agree extremely well. This is due to the unstructured nature of the
full time by treatment mean structure. However, we do observe differences
in the WGEE analyses. Not only are the parameter estimates mildly differ-
ent between the two GEE versions, there is a dramatic difference between
the model-based and empirically corrected standard errors. This is entirely
due to the weighting scheme. The weights were not calibrated to add up
to the total sample size, which is reflected in the model-based standard
errors. In the linearization case, part of the effect is captured as overdis-
persion. This can be seen from adding the parameters σ2 and τ2. In all
other analyses, the sum is close to one, as it should be when there is no
residual overdispersion, but in the last column these add up to 3.14. Nev-
ertheless, the two sets of empirically corrected standard errors agree very
closely, which is reassuring.

When comparing parameter estimates across CC, LOCF, and observed
data analyses, it is clear that LOCF has the effect of artificially increas-
ing the correlation between measurements. The effect is mild in this case.
The parameter estimates of the observed-data GEE are close to the LOCF
results for earlier time points and close to CC for later time points. This
is to be expected, as at the start of the study the LOCF and observed
populations are virtually the same, with the same holding between CC
and observed populations near the end of the study. Note also that the
treatment effect under LOCF, especially at 12 weeks and after 1 year, is
biased downward in comparison to the GEE analyses. To properly use the
information in the missingness process, WGEE can be used. To this end,
a logistic regression for dropout, given covariates and previous outcomes,
needs to be fitted. Parameter estimates and standard errors are given in
Table 27.5. Intermittent missingness will be ignored. Covariates of impor-
tance are treatment assignment, the level of lesions at baseline (a four-
point categorical variable, for which three dummies are needed), and time
at which dropout occurs. For the latter covariates, there are three levels,
since dropout can occur at times 2, 3, or 4. Hence, two dummy variables
are included. Finally, the previous outcome does not have a significant im-
pact, but will be kept in the model nevertheless. In spite of there being
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TABLE 27.4. Age Related Macular Degeneration Trial. Parameter estimates
(model-based standard errors; empirically corrected standard errors) for the mar-
ginal models: standard and linearization-based GEE on the CC and LOCF popu-
lation, and on the observed data. In the latter case, also WGEE is used.

Effect Par. CC LOCF Observed data
Unweighted WGEE

Standard GEE
Int.4 β11 -1.01(0.24;0.24) -0.87(0.20;0.21) -0.87(0.21;0.21) -0.98(0.10;0.44)
Int.12 β21 -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.21;0.21) -1.78(0.15;0.38)
Int.24 β31 -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.22;0.22) -1.11(0.15;0.33)
Int.52 β41 -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29) -1.72(0.25;0.39)
Tr.4 β12 0.40(0.32;0.32) 0.22(0.28;0.28) 0.22(0.28;0.28) 0.80(0.15;0.67)
Tr.12 β22 0.49(0.31;0.31) 0.55(0.28;0.28) 0.61(0.29;0.29) 1.87(0.19;0.61)
Tr.24 β32 0.48(0.33;0.33) 0.42(0.29;0.29) 0.44(0.30;0.30) 0.73(0.20;0.52)
Tr.52 β42 0.40(0.38;0.38) 0.34(0.32;0.32) 0.44(0.37;0.37) 0.74(0.31;0.52)
Corr. ρ 0.39 0.44 0.39 0.33

Linearization-based GEE
Int.4 β11 -1.01(0.24;0.24) -0.87(0.21;0.21) -0.87(0.21;0.21) -0.98(0.18;0.44)
Int.12 β21 -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.22;0.21) -1.78(0.26;0.42)
Int.24 β31 -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.23;0.22) -1.19(0.25;0.38)
Int.52 β41 -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29) -1.81(0.39;0.48)
Tr.4 β12 0.40(0.32;0.32) 0.22(0.28;0.28) 0.22(0.29;0.29) 0.80(0.26;0.67)
Tr.12 β22 0.49(0.31;0.31) 0.55(0.28;0.28) 0.61(0.28;0.29) 1.85(0.32;0.64)
Tr.24 β32 0.48(0.33;0.33) 0.42(0.29;0.29) 0.44(0.30;0.30) 0.98(0.33;0.60)
Tr.52 β42 0.40(0.38;0.38) 0.34(0.32;0.32) 0.44(0.37;0.37) 0.97(0.49;0.65)

σ2 0.62 0.57 0.62 1.29
τ 2 0.39 0.44 0.39 1.85

Corr. ρ 0.39 0.44 0.39 0.59

no strong evidence for MAR, the results between GEE and WGEE differ
quite a bit. It is noteworthy that at 12 weeks, a treatment effect is observed
with WGEE which goes unnoticed with the other marginal analyses. This
finding is mildly confirmed by the random-intercept model, when the data
as observed are used.

The results for the random-intercept models are given in Table 27.6. We
observe the usual downward bias in the PQL versus numerical integration
analysis, as well as the usual relationship between the marginal parameters
of Table 27.4 and their random-effects counterparts. Note also that the
random-intercepts variance is largest under LOCF, underscoring again that
this method artificially increases the association between measurements on
the same subject. In this case, unlike for the marginal models, LOCF and
in fact also CC, slightly to considerably overestimates the treatment effect
at certain times, in particular at 4 and 24 weeks.
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TABLE 27.5. Age Related Macular Degeneration Trial. Parameter estimates
(standard errors) for a logistic regression model to describe dropout.

Effect Parameter Estimate (s.e.)
Intercept ψ0 0.14 (0.49)
Previous outcome ψ1 0.04 (0.38)
Treatment ψ2 -0.86 (0.37)
Lesion level 1 ψ31 -1.85 (0.49)
Lesion level 2 ψ32 -1.91 (0.52)
Lesion level 3 ψ33 -2.80 (0.72)
Time 2 ψ41 -1.75 (0.49)
Time 3 ψ42 -1.38 (0.44)

27.8 The Analgesic Trial

The binary satisfaction outcome in the analgesic trial (Section 2.2) was
given extensive treatment in Chapter 17 and its ordinal counterpart was
studied in Section 18.4. An important feature of the data is that a subgroup
of patients does not complete the study but rather leaves prior to the
scheduled end of the trial. Out of the 491 patients available for analysis,
223 are complete, and there are 55, 54, and 63 dropouts after the third,
second, and first visit, respectively. Further, 96 patients have no follow up
measurements. Among these, 63 have intermediate missing values as well.
To further illustrate the impact of missingness on generalized estimating
equations, we will conduct an analysis on the monotone sequences, with
both ordinary and weighted generalized estimating equations, using the
same marginal model (17.2) as fitted in Chapter 17.

A logistic regression is built for the dropout indicator, in terms of the
previous outcome (for which the ordinal version is used by means of 4 dum-
mies), pain control assessment at baseline, physical functioning at baseline,
and genetic disorder measured at baseline. All of these are significant and
parameter estimates are given in Table 27.7. This implies that there is
evidence against MCAR in favor of MAR. This is a stronger result than
observed in Section 27.6.2 for the depression trial.

In agreement with the procedure outlined in Section 27.5 and as illus-
trated on the depression trial, the predicted probabilities from this logistic
regression are then used to calculate the weights, to be used in weighted
GEE. Parameter estimates and standard errors for these are presented in
Table 27.8. Clearly, though the evidence against MCAR is strong, the ef-
fect of the method chosen is noticeable but not terribly strong. We also
note the impact on the standard errors. Weighted analyses are typically
less precise, but more correct, than unweighted ones. Correction for the
missingness mechanism has the effect of reducing the magnitude of the pa-
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TABLE 27.6. Age Related Macular Degeneration Trial. Parameter esti-
mates (standard errors) for the random-intercept models: PQL and numeri-
cal-integration based fits on the CC and LOCF population, and on the observed
data (direct-likelihood).

Effect Parameter CC LOCF Direct lik.
PQL

Int.4 β11 -1.19(0.31) -1.05(0.28) -1.00(0.26)
Int.12 β21 -1.05(0.31) -1.18(0.28) -1.19(0.28)
Int.24 β31 -1.35(0.32) -1.30(0.28) -1.26(0.29)
Int.52 β41 -1.97(0.36) -1.89(0.31) -2.02(0.35)
Trt.4 β12 0.45(0.42) 0.24(0.39) 0.22(0.37)
Trt.12 β22 0.58(0.41) 0.68(0.38) 0.71(0.37)
Trt.24 β32 0.55(0.42) 0.50(0.39) 0.49(0.39)
Trt.52 β42 0.44(0.47) 0.39(0.42) 0.46(0.46)
R.I. s.d. τ 1.42(0.14) 1.53(0.13) 1.40(0.13)
R.I. var. τ2 2.03(0.39) 2.34(0.39) 1.95(0.35)

Numerical integration
Int.4 β11 -1.73(0.42) -1.63(0.39) -1.50(0.36)
Int.12 β21 -1.53(0.41) -1.80(0.39) -1.73(0.37)
Int.24 β31 -1.93(0.43) -1.96(0.40) -1.83(0.39)
Int.52 β41 -2.74(0.48) -2.76(0.44) -2.85(0.47)
Trt.4 β12 0.64(0.54) 0.38(0.52) 0.34(0.48)
Trt.12 β22 0.81(0.53) 0.98(0.52) 1.00(0.49)
Trt.24 β32 0.77(0.55) 0.74(0.52) 0.69(0.50)
Trt.52 β42 0.60(0.59) 0.57(0.56) 0.64(0.58)
R.I. s.d. τ 2.19(0.27) 2.47(0.27) 2.20(0.25)
R.I. var. τ2 4.80(1.17) 6.08(1.32) 4.83(1.11)

rameter estimates. In both cases, unstructured working assumptions were
used. There is a noticeable effect on the working correlation matrix as well.
With GEE, we obtain

RUN, GEE =

⎛⎜⎜⎝
1 0.173 0.246 0.201

1 0.177 0.113
1 0.456

1

⎞⎟⎟⎠ ,
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TABLE 27.7. Analgesic Trial. Parameter estimates (standard errors) for a logistic
regression model to describe dropout.

Effect Parameter Estimate (s.e.)
Intercept ψ0 -1.80 (0.49)
Previous GSA= 1 ψ11 -1.02 (0.41)
Previous GSA= 2 ψ12 -1.04 (0.38)
Previous GSA= 3 ψ13 -1.34 (0.37)
Previous GSA= 4 ψ14 -0.26 (0.38)
Basel. PCA ψ2 0.25 (0.10)
Phys. func. ψ3 0.009 (0.004)
Genetic disfunc. ψ4 0.59 (0.24)

TABLE 27.8. Analgesic Trial. Parameter estimates (empirically corrected stan-
dard errors) for standard GEE and weighted GEE (WGEE) fitted to the monotone
sequences.

Effect Parameter GEE WGEE
Intercept β1 2.95 (0.47) 2.17 (0.69)
Time β2 -0.84 (0.33) -0.44 (0.44)
Time2 β3 0.18 (0.07) 0.12 (0.09)
Basel. PCA β4 -0.24 (0.10) -0.16 (0.13)

whereas the WGEE version is

RUN, WGEE =

⎛⎜⎜⎝
1 0.215 0.253 0.167

1 0.196 0.113
1 0.409

1

⎞⎟⎟⎠ .

Of course, in line with general warnings issued in Section 8.2, care should
be taken with interpreting the working correlation structure. In principle,
it is a set of nuisance parameters, merely included to obtain reasonably
efficient GEE estimates.





28
Multiple Imputation and the
Expectation-Maximization Algorithm

28.1 Introduction

In Section 27.4, we have suggested direct likelihood as a preferred mode
for analyzing incomplete (longitudinal) data, when the MAR assumption is
deemed plausible. Two alternative methods are multiple imputation (MI)
and the expectation-maximization (EM) algorithm. We will consider these
in turn (Sections 28.2 and 28.3) and indicate the relative use of these meth-
ods next to direct likelihood in Section 28.4. The methods will be exem-
plified in Section 28.5 using the Age Related Macular Degeneration study,
introduced in Section 2.9 and analyzed before in Sections 24.4 and 27.7.

28.2 Multiple Imputation

Multiple imputation (MI) was formally introduced by Rubin (1978). Rubin
(1987) provides a comprehensive treatment. Several other sources, such as
Rubin and Schenker (1986), Little and Rubin (1987), Tanner and Wong
(1987), and Schafer’s (1997) book give excellent and easy-to-read descrip-
tions of the technique.

The key idea of the multiple imputation procedure is to replace each
missing value with a set of M plausible values, i.e., values “drawn” from
the distribution of one’s data, that represent the uncertainty about the right
value to impute. The imputed datasets are then analyzed by using stan-
dard procedures for complete data and combining the results from these
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analyses. Multiple imputation, at least in its basic form, requires the miss-
ingness mechanism to be MAR. However, the technique has been applied
in MNAR settings as well (Thijs et al 2002). A number of variations to
the theme have been developed. For example, Aerts et al (2002) developed
a local multiple imputation method and Lipsitz, Zhao, and Molenberghs
(1998) proposed a semi-parametric multiple imputation approach.

Multiple imputation involves three distinct phases or, using Rubin’s
(1987) terminology, tasks:

1. The missing values are filled in M times to generate M complete data
sets.

2. The M complete data sets are analyzed by using standard procedures.

3. The results from the M analyses are combined into a single inference.

It is worth to note that the first and third tasks can be conducted by
the SAS procedures MI and MIANALYZE, respectively. The second task
is performed using one of the standard data analytic procedures.

28.2.1 Theoretical Justification
Suppose we have a sample of N , i.i.d. n × 1 random vectors Y i. Our in-
terest lies in estimating some parameter vector θ of the distribution of Y i.
Multiple imputation fills in the missing data Y m using the observed data
Y o, several times, and then the completed data are used to estimate θ.

If we knew the distribution of Y i = (Y o
i , Y

m
i ), with parameter vector θ,

then we would be able to impute Y m
i by drawing a value of Y m

i from the
conditional distribution

f(ym
i |yo

i , θ).

The objective of the imputation process is to sample from this true predic-
tive distribution. Because we do not know θ, we must estimate it from the
data, say θ̂, and use

f(ym
i |yo

i , θ̂)

to impute the missing data. Frequentists sometimes favor incorporating
uncertainty in θ in the multiple imputation scheme using bootstrap or other
methods. However, in Bayesian terms, θ is a random variable, in which the
distribution is a function of the data, so we must account for its uncertainty.
The Bayesian approach relies on integrating over θ̂, which provides a more
natural and unifying framework for accounting for the uncertainty in θ.
Thus, θ is a random variable with mean equal to the estimated θ̂ from the
data. Given this distribution, using multiple imputation, we first draw a
random θ∗ from the distribution of θ, and then put this θ∗ in to draw a
random Y m

i from
f(ym

i |yo
i , θ

∗).

The imputation algorithm is as follows:
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1. Draw θ∗ from the distribution of θ.

2. Draw Y m∗
i from f(ym

i |yo
i , θ

∗).

3. To estimate a parameter of interest, β say, we then calculate the
estimate of the parameter of interest, and its estimated variance,
using the completed data, (Y o, Y m∗):

β̂ = β̂(Y ) = β̂(Y o, Y m∗),

and the within imputation variance is U = v̂ar(β̂).

4. Repeat steps 1, 2, and 3 a number of M times, producing β̂
m

and
Um, for m = 1, ..., M.

Steps 1 and 2 are referred to as the Imputation Task. Step 3 is the Estima-
tion Task.

28.2.2 Pooling Information
Of course, one needs to combine the M inferences into a single one. In
this section, we will discuss parameter and precision estimation and defer
hypothesis testing to the next section.

When data would be complete, suppose that inference about the para-
meter β is made by

(β − β̂) ∼ N(0, U).

The M within-imputation estimates for β are pooled to give the multiple
imputation estimate

β̂
∗

=
∑M

m=1 β̂
m

M
.

Further, one can make normal-based inferences for β based upon

(β − β̂
∗
) ∼ N(0, V ),

where

V = W +
(

M + 1
M

)
B,

W =
∑M

m=1 Um

M

is the average within imputation variance, and

B =
∑M

m=1(β̂
m − β̂

∗
)(β̂

m − β̂
∗
)′

M − 1

is the between imputation variance (Rubin, 1987).
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28.2.3 Hypothesis Testing
In case of multiple imputation, the asymptotic results and hence the χ2

reference distributions do not only depend on the sample size N , but also
on the number of imputations M . Therefore, Li, Raghunathan, and Rubin
(1991) propose the use of an F reference distribution. To test the hypothesis
H0 : θ = θ0, they advocate the following method to calculate p-values:

p = P (Fk,w > F ),

where k is the length of the parameter vector θ, Fk,w is an F random
variable with k numerator and w denominator degrees of freedom, and

F =
(θ∗ − θ0)′W−1(θ∗ − θ0)

k(1 + r)
,

w = 4 + (τ − 4)
[
1 +

(1 − 2τ−1)
r

]2
,

r =
1
k

(
1 +

1
M

)
tr(BW−1),

τ = k(M − 1).

Here, r is the average relative increase in variance due to nonresponse across
the components of θ. The limiting behavior of this F variable is that if
M → ∞, then the reference distribution of F approaches an Fk,∞ = χ2/k
distribution.

Clearly, this procedure is not only applicable when the full vector θ, but
also when one component, a subvector, or a set of linear contrasts, is the
subject of hypothesis testing. In case of a subvector, or as a special case
one component, we use the corresponding submatrices of B and W in the
formulas. For a set of linear contrasts Lβ, one should use the appropriately
transformed covariance matrices: W̃ = LWL′, B̃ = LBL′, and Ṽ = LV L′.

28.2.4 Efficiency
Multiple imputation is attractive because it can be highly efficient even
for small values of M . In many applications, merely 3–5 imputations are
sufficient to obtain excellent results. Rubin (1987, p. 114) shows that the
efficiency of an estimate based on M imputations is approximately(

1 +
γ

M

)−1
,

where γ is the fraction of missing information for the quantity being esti-
mated. The fraction γ quantifies how much more precise the estimate might
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TABLE 28.1. Relative efficiency (percentage) of multiple imputation estimation
by number of imputations M and fraction of missing information γ.

γ

m 0.1 0.3 0.5 0.7 0.9
2 95 87 80 74 69
3 97 91 86 81 77
5 98 94 91 88 85
10 99 97 95 93 92
20 100 99 98 97 96

have been if no data had been missing. The efficiencies achieved for various
values of M and rates of missing information are shown in Table 28.1. This
table shows that gains rapidly diminish after the first few imputations. In
most situations there simply is little advantage to producing and analyzing
more than a few imputed datasets.

28.2.5 Imputation Mechanisms
The method of choice to create the imputed datasets depends on the miss-
ing data pattern.

For monotone missing data patterns, either a parametric regression method
that assumes multivariate normality or a nonparametric method that uses
propensity scores is possible. For an arbitrary missing data pattern, a
Markov chain Monte Carlo (MCMC) method (Schafer 1997) that assumes
multivariate normality can be used. All of these have been implemented in
the SAS procedure MI.

In the regression method , a regression model is fitted for each variable
with missing values, with the previous variables as covariates. Based on the
resulting model, a new regression model is then fitted and is used to impute
the missing values for each variable (Rubin 1987). Because the dataset has
a monotone missing data pattern, the process is repeated sequentially for
variables with missing values.

The propensity score is the conditional probability of assignment to a
particular treatment given a vector of observed covariates (Rosenbaum and
Rubin 1983). In the propensity score method , a propensity score is gener-
ated for each variable with missing values to indicate the probability of
observations being missing. The observations are then grouped based on
these propensity scores, and an approximate Bayesian bootstrap imputa-
tion (Rubin 1987) is applied to each group. The propensity score method
uses only the covariate information that is associated with whether the
imputed variable values are missing. It does not use correlations among
variables. It is effective for inferences about the distributions of individual
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imputed variables, but it is not appropriate for analyses involving relation-
ship among variables.

Broadly, in statistical applications, MCMC is used to generate pseudo-
random draws from multidimensional and otherwise intractable probability
distributions via Markov chains. A Markov chain is a sequence of random
variables in which the distribution of each element depends on the value
of the previous one(s). In the MCMC method , one constructs a Markov
chain long enough for the distribution of the elements to stabilize to a
common distribution. This stationary distribution is the one of interest.
By repeatedly simulating steps of the chain, draws from the distribution
of interest are generated. In more detail, the MCMC method works as fol-
lows. Assume that the data arise from a multivariate normal distribution.
In the first step, starting values need to be chosen. This can be done by
computing a vector of means and a covariance matrix from the complete
data. These are used to estimate the prior distribution, i.e., to estimate
the parameters of the prior distributions for means and variances of the
multivariate normal distribution with an informative prior. The next step
is then the imputation step: values for missing data items are simulated by
randomly selecting a value from the available distribution of values, i.e., the
predictive distribution of missing values given the observed values. In the
posterior step, the posterior distribution of the mean and covariance para-
meters is updated, by updating the parameters governing their distribution
(e.g., the inverted Wishart distribution for the variance-covariance matrix
and the normal distribution for the means). This is then followed by sam-
pling from the posterior distribution of mean and covariance parameters,
based on the updated parameters. The imputation and the posterior steps
are then iterated until the distribution is stationary. This implies that the
mean vector and covariance matrix are unchanged throughout the iterative
process. Finally, we use the imputations from the final iteration to yield a
data set that has no missing values.

28.3 The Expectation-Maximization Algorithm

This section deals with the expectation-maximization algorithm, popularly
known as the EM algorithm. A specific version, for the context of mixture
distributions, was presented in Section 23. It is an alternative to direct-
likelihood in settings where the observed-data likelihood is complicated
and/or difficult to access. Note that direct likelihood is within reach for
many settings, including Gaussian and non-Gaussian longitudinal data, as
proposed in Section 27.4. A perspective on when to use the various methods
is given in Section 28.4.

The EM algorithm is a general-purpose iterative algorithm to find maxi-
mum likelihood estimates in parametric models for incomplete data. Within



28.3 The Expectation-Maximization Algorithm 517

each iteration of the EM algorithm, there are two steps, called the expecta-
tion step, or E step, and the maximization step, or M step. The name EM
algorithm was given by Dempster, Laird, and Rubin (1977), who provided
a general and unified formulation of the EM algorithm, its basic proper-
ties, and many examples and applications of it. The books by Little and
Rubin (1987), Schafer (1997), and McLachlan and Krishnan (1997) provide
detailed descriptions and applications of the EM algorithm.

The fundamental idea behind the EM algorithm is to associate with the
given incomplete-data problem, a complete-data problem for which max-
imum likelihood estimation is computationally more tractable. Starting
from suitable initial parameter values, the E and M steps are repeated
until convergence. Given a set of parameter estimates, such as the mean
vector and covariance matrix for a multivariate normal setting, the E-step
calculates the conditional expectation of the complete-data log-likelihood
given the observed data and the parameter estimates. This step often re-
duces to calculating simple sufficient statistics. Given the complete-data
log-likelihood, the M-step then finds the parameter estimates to maximize
the complete-data log-likelihood from the E step.

An initial criticism was that the algorithm did not produce estimates of
the covariance matrix of the maximum likelihood estimators. However, a
number of developments have provided methods for such estimation (Louis
1982). Another issue is the slow convergence in certain cases. This has
resulted in the development of modified versions of the algorithm as well
as many simulation-based methods and other extensions of it (McLachlan
and Krishnan 1997). As a matter of fact, precision estimation and speed
of convergence are intimately linked, as both are based upon the matrix of
second derivatives of the observed data likelihood, i.e., the Hessian matrix
or, similarly, the information matrix.

The condition for the EM algorithm to be valid, in its basic form, is
ignorability and hence MAR. The use of EM in the MNAR context is
exemplified in Section 29.2.

28.3.1 The Algorithm
28.3.1.1 The Initial Step

Let θ(0) be an initial parameter vector, which can be found from, e.g., a
complete case analysis, an available case analysis, or a simple method of
imputation. Based on such a, possibly biased, estimate, the algorithm can
then start.

28.3.1.2 The E Step

Given current values θ(t) for the parameters, the E step computes the
objective function, which is in the case of the missing data problem equal
to the expected value of the observed data loglikelihood, given the observed
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data and the current parameters

Q(θ|θ(t)) =
∫

	(θ, Y )f(Y m|Y o, θ(t))dY m = E
[
	(θ|Y )|Y o, θ(t)

]
, (28.1)

i.e., substituting the expected value of Y m, given Y o and θ(t). In some
cases, this substitution can take place directly at the level of the data, but
often it is sufficient to substitute only the function of Y m appearing in the
complete data log-likelihood. For exponential families, the E step reduces
to the computation of complete data sufficient statistics.

28.3.1.3 The M Step

The M step determines θ(t+1), the parameter vector maximizing the log-
likelihood of the imputed data (or the imputed log-likelihood). Formally,
θ(t+1) satisfies

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)), for all θ.

One can show that the observed-data likelihood increases at every step.
Because the log-likelihood is bounded from above, convergence is forced to
apply.

The fact that the EM algorithm is guaranteed to converge to a, possibly
local, maximum is a great advantage. However, a disadvantage is that this
convergence is slow (linear or super-linear), and that precision estimates
are not automatically provided.

28.3.2 Missing Information
In view of convergence monitoring, acceleration, and precision estimation,
we will now turn attention to the principle of missing information. We use
obvious notation for the observed and expected information matrices for
the complete and observed data. Let

I(θ, Y o) =
∂2 ln 	(θ)

∂θ∂θ′

be the matrix of the negative of the second-order partial derivatives of the
(incomplete data) log-likelihood function with respect to the elements of
θ, i.e., the observed information matrix for the observed data model. The
expected information matrix for observed data model is termed I(θ, Y o).
In analogy with the complete data Y = (Y o, Y m), we let Ic(θ, Y ) and
Ic(θ, Y ), be the observed and expected information matrices for the com-
plete data model, respectively. Now, both likelihoods are connected via:

	(θ) = 	c(θ) − ln
fc(y0, ym|θ)

fc(y0|θ)
= 	c(θ) − ln f(ym|yo, θ).
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This equality carries over onto the information matrices:

I(θ, Y o) = Ic(θ, Y ) +
∂2 ln f(ym|yo, θ)

∂θ∂θ′ .

Taking expectation over Y |Y o = yo leads to

I(θ, yo) = Ic(θ, yo) − Im(θ, yo),

where Im(θ, yo) is the expected information matrix for θ based on Y m

when conditioned on Y o. This information can be viewed as the ‘missing
information,’ resulting from observing Y o only and not also Y m. This leads
to the missing information principle:

Ic(θ, y) = I(θ, y) + Im(θ, y),

which has the following interpretation: the (conditionally expected) com-
plete information equals the observed information plus the missing infor-
mation.

28.3.3 Rate of Convergence
The notion that the rate at which the EM algorithm converges depends
upon the amount of missing information in the incomplete data compared
to the hypothetical complete data, will be made explicit by deriving re-
sults regarding the rate of convergence in terms of information matrices
(McLachlan and Krishnan 1997).

Under regularity conditions, the EM algorithm will converge linearly. By
using a Taylor series expansion we can write

θ(t+1) − θ∗ � J(θ∗)[θ(t) − θ∗],

where θ∗ is the parameter vector value for which the likelihood attains its
maximum. Thus, in a neighborhood of θ∗, the EM algorithm is essentially
a linear iteration with rate matrix J(θ∗), as J(θ∗) is typically nonzero. For
this reason, J(θ∗) is often referred to as the matrix rate of convergence,
or simply, the rate of convergence. For vector θ∗, a measure of the actual
observed convergence rate is he global rate of convergence, which can be
assessed by

r = lim
t→∞

||θ(t+1) − θ∗||
||θ(t) − θ∗|| ,

where || · || is any norm on d-dimensional Euclidean space Rd, and d is the
number of missing values. In practice, during the process of convergence, r
is typically assessed as

r = lim
t→∞

||θ(t+1) − θ(t)||
||θ(t) − θ(t−1)|| .
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Under regularity conditions, it can be shown that r is the largest eigenvalue
of the d × d rate matrix J(θ∗).

Now, J(θ∗) can be expressed in terms of the observed and missing infor-
mation:

J(θ∗) = Id − Ic(θ∗, Y o)−1I(θ∗, Y o) = Ic(θ∗, Y o)−1Im(θ∗, Y o).

This means the rate of convergence of the EM algorithm is given by the
largest eigenvalue of the information ratio matrix Ic(θ, Y o)−1Im(θ, Y o),
which measures the proportion of information about θ that is missing by
not observing Y m in addition to Y o. The greater the proportion of missing
information, the slower the rate of convergence. The fraction of informa-
tion loss may vary across different components of θ, suggesting that certain
components of θ may approach θ∗ rapidly using the EM algorithm, while
other components may require a large number of iterations. Further, ex-
ceptions to the convergence of the EM algorithm to a local maximum of
the likelihood function occur if J(θ∗) has eigenvalues exceeding unity.

28.3.4 EM Acceleration
Using the concept of rate matrix

θ(t+1) − θ∗ � J(θ∗)[θ(t) − θ∗],

we can solve this for θ∗, to yield

θ̃∗ = (Id − J)−1(θ(t+1) − Jθ(t)).

The J matrix can be determined empirically, using a sequence of subsequent
iterates. It also follows from the observed and complete (or, equivalently)
missing information:

J = Id − Ic(θ∗, Y )−1I(θ∗, Y ).

Here, θ̃∗ can then be seen as an accelerated iterate.

28.3.5 Calculation of Precision Estimates
The observed information matrix is not directly accessible. Now, it has
been shown by Louis (1982) that

Im(θ, Y o) = E[Sc(θ, Y )Sc(θY )′|yo] − S(θ, Y o)S(θ, Y o)′.

This leads to an expression for the observed information matrix in terms
of quantities that are available (McLachlan and Krishnan 1997):

I(θ, Y o) = Im(θ, Y o) − E[Sc(θ, Y )Sc(θ, Y )′|yo] + S(θ, Y o)S(θ, Y o)′.
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Complete data: Y11 Y12 Y2 Y3 Y4

Complete data model: 1
2

1
4θ 1

4 (1 − θ) 1
4 (1 − θ) 1

4θ

Observed data: Y o
1 Y o

2 Y o
3 Y o

4

Observed data model: 1
2 + 1

4θ 1
4 (1 − θ) 1

4 (1 − θ) 1
4θ

Observed counts: 125 18 20 34

FIGURE 28.1. Multinomial Example. Complete and observed data and model.

From this equation, the observed information matrix can be estimated as

I(θ̂, Y o) = Im(θ̂, Y o) − E[Sc(θ̂, Y )Sc(θ̂, Y )′|yo],

where θ̂ is the maximum likelihood estimator.

28.3.6 A Simple Illustration
Let us exemplify the EM algorithm using a simple, artificial, yet illustrative
multinomial setting, considered by Dempster, Laird, and Rubin (1977) in
their original paper on the EM algorithm and also in Little and Rubin.

The data and the complete and incomplete data models are presented in
Figure 28.1. The key feature, which turns this problem into an incomplete
data problem, is the fact that the counts Y11 and Y12 are not separately
observed, but their total Y o

i is.
The data can be analyzed in at least three obvious ways: (1) by means of

direct likelihood, using a non-iterative solution; (2) also by direct likelihood,
but using an iterative solution; and (3) using the EM algorithm.

The log-likelihood for the (hypothetical) complete data is

	c(θ) =
5∑

j=1

ln[πj(θ)]

= Y11(125; θ) ln
(

1
2

)
+ Y12(125; θ) ln

(
1
4
θ

)
+ 18 ln

(
1
4
(1 − θ)

)

+20 ln
(

1
4
(1 − θ)

)
+ 34 ln

(
1
4
θ

)
, (28.2)
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and its counterpart for the observed data is

	(θ) =
4∑

j=1

ln[πo
j (θ)]

= 125 ln
(

1
2

+
1
4
θ

)
+ 18 ln

(
1
4
(1 − θ)

)

+20 ln
(

1
4
(1 − θ)

)
+ 34 ln

(
1
4
θ

)
. (28.3)

A non-iterative solution starts from the first-order derivative S(θ) of the
observed data log-likelihood (28.3):

4 · S(θ) =
y1

2 + θ
− y2

1 − θ
− y3

1 − θ
+

y4

θ
= 0. (28.4)

Rewriting (28.4) produces a quadratic equation:

−197 · θ2 + 15 · θ + 68 = 0,

with two solutions θ1 = 0.6268 and θ2 = −0.5507, of which the proper
solution obviously is: θ̂ = 0.626821497871. The unusually large number of
decimal places is given to monitor the convergence of the iterative proce-
dures in what follows.

Turning to an iterative solution of the observed data likelihood, let us
first define the matrix that connects the observed to the complete data:

C =

⎛⎜⎜⎝
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎠ . (28.5)

This matrix is called coarsening matrix by Molenberghs and Goetghebeur
(1997). Using (28.5), πo(θ) = Cπ(θ). Writing

π(θ) =

⎛⎜⎜⎜⎜⎜⎝
0.50
0
0.25
0.25
0

⎞⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
0
0.25

−0.25
−0.25

0.25

⎞⎟⎟⎟⎟⎟⎠ θ = X0 + X1θ,

the score function (28.4) can be written as

S(θ) = X ′
1C

′(Ccov(Y )C ′)−(Y o − nCπ),

and the second derivative is

H(θ) = nX ′
1C

′(Ccov(Y )C ′)−CX1,
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from which the updating algorithm follows:

θ(t+1) = θ(t) +
S(θ(t))
H(θ(t) .

As always, at maximum, W (θ) can be used to estimate standard errors.
Before applying the direct-likelihood iterative solution, we first turn to

the EM algorithm. Likelihood (28.2) for the complete data gives rise to the
objective function:

Q(θ|θ(t)) = Y11(125; θ(t)) ln
(

1
2

)
+ Y12(125; θ(t)) ln

(
1
4
θ

)

+18 ln
(

1
4
(1 − θ)

)
+ 20 ln

(
1
4
(1 − θ)

)

+34 ln
(

1
4
θ

)
. (28.6)

The E step requires the calculation of Y11(125; θ(t)) and Y12(125; θ(t)):

Y11(125; θ(t)) = 125 · 2
2 + θ(t) ,

Y12(125; θ(t)) = 125 · θ(t)

2 + θ(t) .

For the M step, observe first the complete-data objective function is

4 · Sc(θ) =
Y12

θ
− Y2

1 − θ
− Y3

1 − θ
+

Y4

θ
= 0,

which, upon rewriting, is seen to produce a linear equation:

Y
(t)
12 + Z4 = θ[Y (t)

12 + Y2 + Y3 + Y4],

leading to the solution

θ(t+1) =
Y

(t)
12 + Y4

Y
(t)
12 + Y2 + Y3 + Y4

=
Y

(t)
12 + 34

Y
(t)
12 + 18 + 20 + 34

.

The iteration history for both iterative methods is given in Table 28.2.
The iteration history of the sufficient statistics Y

(t)
11 and Y

(t)
12 is given in

Table 28.3.
Note that the convergence of the EM algorithm is quite a bit slower

than the Newton-Raphson based convergence. In addition, note that con-
vergence is faster if the convergence rate is smaller, as the rate described
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TABLE 28.2. Multinomial Example. Iteration history for direct-likelihood maxi-
mization using Newton-Raphson and for the EM algorithm.

Newton-Raphson EM
t θ(t) rate θ(t) rate
1 0.500000000000 0.0506 0.500000000000 0.1464
2 0.633248730964 0.0447 0.608247422680 0.1346
3 0.626534069270 0.0449 0.624321050369 0.1330
4 0.626834428416 0.0449 0.626488879080 0.1328
5 0.626820916320 0.0449 0.626777322347 0.1327
6 0.626821524027 0.0449 0.626815632110 0.1327
7 0.626821496695 0.0449 0.626820719019 0.1327
8 0.626821497924 0.0453 0.626821394456 0.1327

TABLE 28.3. Multinomial Example. Iteration history of the sufficient statistics
Y

(t)
11 and Y

(t)
12 with the EM algorithm.

t Y
(t)
11 Y

(t)
12

1 100.000 25.0000
2 95.8498 29.1502
3 95.2627 29.7373
4 95.1841 29.8159
5 95.1737 29.8263
6 95.1723 29.8277
7 95.1721 29.8279
8 95.1721 29.8279

the contraction of the difference between subsequent parameter values and
the maximum.

The observed data log-likelihood and its complete-data counterpart for
two subsequent iterations is given in Figure 28.2. When considering the
log-likelihood values at maximum of the complete-data log-likelihoods, they
seemingly decrease between subsequent cycles. However, they cannot be
compared directly, as the function itself changes at every cycle. The complete-
data log-likelihood is merely a device for optimization and cannot be used
directly for likelihood ratio tests or precision estimation. As stated in Sec-
tions 28.3.4 and 28.3.5, asymptotic covariance matrices and thus standard
errors do not follow immediately, but rather a bit of extra work is required.

Regarding precision estimation, it is easy enough to use direct likelihood
methods, i.e., to use the information matrix deriving from the observed
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FIGURE 28.2. Multinomial Example. Observed data log-likelihood (dashes) and
two subsequent complete-data log-likelihoods (1: solid line; 2: dots and dashes).

data likelihood:

I(θ) =
y1

(2 + θ)2
+

(y2 + y3)
(1 − θ)2

+
y4

θ2 ,

which evaluated in the maximum likelihood estimator θ̂ = 0.6268, yields
(θ̂) = 377.516. The asymptotic standard error is the inverse square root of
this quantity or 0.051.

Now, the complete data score is

Sc(θ, Y ) =
Y12 + y4

θ
− y2 + y3

1 − θ
,

and the complete data information is

Ic(θ, Y ) =
Y12 + y4

θ2 +
y2 + y3

(1 − θ)2
,

with expectation

Ic(θ, yo) =
E[Y12|y1] + y4

θ2 +
y2 + y3

(1 − θ)2
,

and

E(Y12|y1) = y1 ·
1
4θ

1
2 + 1

4θ
.
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The missing information is

Im(θ, yo) = var[Sc(θ, Y )|yo)]

= var
[(

Y12 + y4

θ
− y2 + y3

1 − θ

)∣∣∣∣ y]
=

1
θ2 var(Y12|y)

=
1
θ2 · y1 ·

1
4θ

1
2 + 1

4θ
·

1
2

1
2 + 1

4θ
=

1
θ2 · y1 ·

1
8θ

( 1
2 + 1

4θ)2
.

Substituting the observed data values and the MLE for θ yields Ic(θ̂, yo) =
435.318, Im(θ̂, yo) = 57.801 and hence I(θ̂, yo) = 435.318 − 57.801 =
377.516, in perfect agreement with the direct-likelihood derivation.

To conclude, note that the ratio

J(θ̂) =
Im(θ̂, y)

Ic(θ̂, y)
=

57.801
435.318

= 0.1328,

in agreement with the convergence rate observed earlier.

28.4 Which Method to Use?

An important question is when to use multiple imputation and the EM al-
gorithm. Indeed, given the availability of flexible software tools allowing to
conduct direct likelihood, such as the SAS procedures MIXED, NLMIXED,
and GLIMMIX, it may appear there is little room for the alternative meth-
ods.

Nevertheless, we see at least four broad settings where MI can be of
use. First, when there is a combination of missing covariates and missing
outcomes, multiple imputation can be useful to deal with the missing co-
variates. A direct likelihood approach could then follow the imputation of
covariates. Second and related, when incomplete outcomes are of a hetero-
geneous type, e.g., when a longitudinal process is measured jointly with a
time-to-event outcome, MI can be very useful as well.

Third, when several mechanisms for missingness are postulated, and one
would like to consider all of them, imputations could be drawn under all of
these schemes and inferences could later be combined into a single one. This
is a basic but important form of sensitivity analysis and was advocated in
Rubin (1987).

Fourth, MI can be used as a tool to change non-monotone missingness
into monotone missingness. Often, non-monotone missingness comes from
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a simpler mechanism on the one hand but tremendously complicates analy-
sis on the other hand. Upon imputation in as far as to create monotone
missingness, the monotonized datasets can then be analyzed with tech-
niques for MAR but also for MNAR missingness. It is interesting to note
that this particular application of MI is possible with the SAS procedure
MI. Of course, there are ample situations where one would prefer to im-
pute all missing values, and not just the intermittent ones. We merely want
to point to the additional flexibility stemming from the ability to impute
intermittent missing values.

Whereas MI is a method providing an alternative estimator to the one
produced by direct likelihood, the EM algorithm typically produces exactly
the same estimator. Thus, the difference between EM and direct likelihood
is much smaller than between these and MI. Broadly, the algorithm is of
use when the direct likelihood (observed data likelihood) is so complicated
that it becomes intractable. In addition, it is often used as an auxiliary
tool in a wider optimization task. For example, EM is used when generating
multiple imputations within the SAS procedure MI. Finally, the stability of
the algorithm is an attractive feature. Although it comes at the price of slow
convergence, it can be useful to at least start maximization of a complex
likelihood using EM and then switch to direct likelihood once the current
value of the parameter is sufficiently close to the maximum. The elegance
of EM lies in the ease with which it deals with unobserved variables, be it
missing data, random effects, latent variables, component membership in
mixture models, etc. (McLachlan and Krishnan 1997).

28.5 Age Related Macular Degeneration Study

In Section 27.7, the data were analyzed using GEE and generalized linear
mixed models, on the complete cases, the LOCF imputed data, and us-
ing the observed data. In the latter case, also WGEE was considered. For
the generalized estimating equations, both classical GEE and linearization-
based GEE were considered. For GLMM, the models were fitted with PQL
and based on numerical integration.

One complication with WGEE is that the calculation of the weights is
difficult with non-monotone missingness. Standard GEE on the incomplete
data is valid only when the missing data are MCAR. Precisely here, multiple
imputation is an appealing alternative.

The binary indicators were created by dichotomizing the continuous vi-
sual acuity outcomes, as negative versus non-negative. The continuous out-
comes were defined as the change from baseline in number of letters read.
Therefore, multiple imputation could start from the continuous outcomes.
Ten multiply-imputed datasets were created. The imputation model in-
cluded, apart from the four continuous outcomes variables, also the four-
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TABLE 28.4. Age Related Macular Degeneration Trial. Parameter estimates
(standard errors) for the standard GEE and numerical-integration based ran-
dom-intercept models, after generating 10 multiple imputations.

Effect Par. GEE GLMM
Int.4 β11 -0.84(0.20) -1.46(0.36)
Int.12 β21 -1.02(0.22) -1.75(0.38)
Int.24 β31 -1.07(0.23) -1.83(0.38)
Int.52 β41 -1.61(0.27) -2.69(0.45)
Trt.4 β12 0.21(0.28) 0.32(0.48)
Trt.12 β22 0.60(0.29) 0.99(0.49)
Trt.24 β32 0.43(0.30) 0.67(0.51)
Trt.52 β42 0.37(0.35) 0.52(0.56)
R.I. s.d. τ 2.20(0.26)
R.I. var. τ2 4.85(1.13)

point categorical variable ‘lesions.’ For simplicity, the latter was treated
as continuous. Separate imputations were conducted for each of the two
treatment groups. These choices imply that the imputed values depend
on lesions and treatment assignment, and hence analysis models that in-
clude one or both of these effects are proper in the sense of Rubin (1987).
This means, broadly speaking, that the model used for imputation should
include all relationships that later will be considered in the analysis and
inference tasks. The added advantage of including ‘lesions’ into the impu-
tation model, is that even individuals for which none of the four follow-up
measurements are available, are still imputed. The MCMC method was
used, with EM starting values, and a single chain for all imputations.

Upon imputation, the same marginal GEE and random-intercept models
as in Section 27.7 were fitted in the analysis task. Results from the inference
task are reported in Table 28.4. Details on the practical implementation of
the various tasks are described in Section 32.6. The parameter estimates
and standard errors are very similar to their counterparts in Table 27.4
and 27.6. Of course, in the GEE case, there is no direct counterpart, since
the WGEE method is different from GEE after multiple imputation, even
though both are valid under MAR. However, in particular the similarity
between the direct likelihood method (bottom right column of Table 27.6)
is clear, with only a minor deviation in estimate for the treatment effect
after 1 year.

Section 32.6 also contains a brief illustration of how to implement the
EM algorithm, based on the continuous visual acuity outcomes.
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28.6 Concluding Remarks

The direct-likelihood method (Chapter 27), the expectation-maximization
algorithm, and multiple imputation constitute a set of three powerful tools
to conduct likelihood inference when missing data are considered missing at
random. In addition, the weighted generalized estimating equations (Sec-
tion 27.5) methodology ensures also GEE can be applied under MAR. As
we have seen in Section 28.4, each fulfills its proper role and thus incom-
plete longitudinal data, whether Gaussian or not, can be analyzed flexibly,
without the need for deletion nor single imputation.

Of course, the MAR assumption, though flexible, can be questioned in
a number of applications and therefore MNAR should not be ruled out.
It is interesting to note that all methods, direct likelihood, EM, MI, and
WGEE, can be extended to MNAR settings where then the missing data
process itself will be modeled and its parameters estimated jointly with the
measurement model parameters. We will provide several illustrations of this
in Chapter 29 on selection models and in Chapter 30 dedicated to pattern-
mixture models. Such extended frameworks will be useful in particular
when conducting a sensitivity analysis, as discussed in Chapter 31.





29
Selection Models

29.1 Introduction

Chapters 27 and 28 have shown that, if MAR can be guaranteed to hold, a
standard analysis would follow. This is certainly true for likelihood meth-
ods, while others, in particular GEE, can be adjusted for the MAR case
(Section 27.5).

However, only rarely is such an assumption known to hold (Murray and
Findlay 1988). Nevertheless, ignorable analyses may provide reasonably
stable results, even when the assumption of MAR is violated, in the sense
that such analyses constrain the behavior of the unseen data to be similar
to that of the observed data (Mallinckrodt et al 2001ab). A discussion of
this phenomenon in the survey context has been given in Rubin, Stern, and
Vehovar (1995). These authors argue that, in rigidly controlled experiments
(some surveys and many clinical trials), the assumption of MAR is often
reasonable. Second, and very importantly for such studies as confirmatory
trials, an MAR analysis can be specified a priori without additional work
relative to a situation with complete data. Third, though MNAR models
are more general and explicitly incorporate the dropout mechanism, the
inferences they produce are typically highly dependent on untestable and
often implicit assumptions regarding the distribution of the unobserved
measurements given the observed measurements. The quality of the fit
to the observed data need not reflect at all the appropriateness of the
implied structure governing the unobserved data. This point is irrespective
of the MNAR route taken, whether a parametric model of the type of
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Diggle and Kenward (1994) or Molenberghs, Kenward, and Lesaffre (1997)
is chosen, or a semiparametric approach such as in Robins, Rotnitzky, and
Scharfstein (1998). Hence, in incomplete-data settings, a definitive MNAR
analysis does not exist. To explore the impact of deviations from the MAR
assumption on the conclusions, one should ideally conduct a sensitivity
analysis (Chapter 31), within which MNAR models of the selection type
as described in this chapter and pattern-mixture models (Chapter 30) can
play a major role. See also Verbeke and Molenberghs (2000, Chapter 17–
20), for a discussion in the context of continuous longitudinal data.

Diggle and Kenward (1994) describe a modeling procedure for continuous
longitudinal data, also discussed in Diggle et al (2002, Chapter 11) and Ver-
beke and Molenberghs (2000, Chapter 17). Based on the multivariate Dale
model (Section 7.7), Molenberghs, Kenward, and Lesaffre (1997) proposed
a model for repeated ordinal outcomes with MNAR dropout. This model
will be described in Section 29.2. The work on incomplete categorical data
is vast. Baker and Laird (1988) develop the original work of Fay (1986) and
give a thorough account of the modelling of contingency tables in which
there is one response dimension and an additional dimension indicating
whether the response is absent. Baker and Laird use loglinear models and
the EM algorithm for the analysis. They pay particular attention to the
circumstances in which no solution exists for the non-random dropout mod-
els. Such non-estimability is also a feature of the models we use below, but
the more complicated setting makes a systematic account more difficult.
Stasny (1986) and Conaway (1992, 1993) consider non-random missingness
models for categorical longitudinal data. Baker (1995) allows for intermit-
tent missingness in repeated categorical outcomes. Baker, Rosenberger, and
DerSimonian (1992) present a method for incomplete bivariate binary out-
comes with general patterns of missingness. The model was adapted for the
use of covariates by Jansen et al (2003) and is presented in Section 29.3.
In both cases, the method is illustrated using the fluvoxamine study, in-
troduced in Section 2.4 and analyzed before in Sections 6.5, 7.2.4, and
7.11. These methods will be employed in Chapter 32 to develop sensitivity
analysis tools.

29.2 An MNAR Dale Model

Molenberghs, Kenward, and Lesaffre (1997) proposed a model for longitudi-
nal ordinal data with non-random dropout, i.e., the missingness mechanism
was assumed to be MNAR, which combines the multivariate Dale model for
longitudinal ordinal data with a logistic regression model for dropout. The
resulting likelihood can be maximized relatively simply, using the fact that
all stochastic outcomes are of a categorical type, using the EM algorithm. It
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means that the integration over the missing data, needed to maximize the
likelihood of Diggle and Kenward (1994), is replaced by finite summation.

29.2.1 Likelihood Function
We will derive a general form for the likelihood for longitudinal categor-
ical data with non-random dropout and introduce particular functional
forms for the response, using the multivariate Dale model developed by
Molenberghs and Lesaffre (1994), see also Section 7.7, and for the dropout
process, using a simple logistic regression formulation.

We adopt the contingency table notation, outlined in Section 7.1. Assume
we have r = 1, . . . , N design levels in the study, characterized by covariate
information Xr. Let there be Nr subject at design level r. Let the outcome
for subject i at level r be a c level ordinal categorical outcome is designed
to be measured at occasions j = 1, . . . , n, denoted by Yrij . In principle,
we could allow the number of measurement occasions to be different across
subjects, but in an incomplete data setting, it is often sensible to assume
that the number of measurements at the design stage is constant. Extension
to the more general case is straightforward.

As in (7.1), the outcomes at level r are grouped into a contingency table
Zc∗

r (k1 . . . kn). The cumulative version is Zc
r(k1 . . . kn) as in (7.2). We have

added the superscript c to refer to the (possibly hypothetical) complete
data. Shorthand notation is Zc∗

r (k) and Zc
r(k), and the corresponding cell

probabilities are µc∗
r (k) and µc

r(k). The corresponding vectors are Zc∗, Zc,
µc∗, and µc, respectively.

Any model of the general family described in Section 7.3 can be used,
with in particular the multivariate Dale model. The essence is a set of link
functions:

ηc
r(µ

c
r) = Xc

rβ. (29.1)

Specific choices are discussed in Section 7.3, with in particular the multi-
variate probit model (Section 7.6) and the multivariate Dale model (Sec-
tion 7.7). Also the Bahadur model (Section 7.2) can be employed.

We now also need to model the missingness or, in this particular case, the
dropout process. Assume the random variable D can take values 2, . . . , n+
1, the time at which a subject drops out, where D = n + 1 indicates
no dropout. The value D = 1 is not included since we assume at least
one follow-up measurement is available. The hypothetical full data consist
of complete data and the dropout indicator. The full data, Zc∗

r , contain
components Zc∗

rdk1...kn
with joint probabilities:

νc∗
rdk1...kn

= µc∗
rk1...kn

(β) φrd|k1...kn
(ψ), (29.2)

where the ψ parameterizes the dropout probabilities φrd|k1...kn
. We typi-

cally assume both parameters are distinct but this is, strictly speaking, not
necessary.



534 29. Selection Models

Assume that the distribution of D may depend both on the past history
of the process, denoted by Hd = (k1, . . . , kd−1) for D = d, and the current
outcome category kd, but not on the process after that time. The advantage
in modeling terms is that the set of unobserved outcomes, relevant to the
modeling taks, is a singleton. Also, it is usually deemed plausible in time-
ordered longitudinal data, that there is no additional information on the
dropout process in the future measurements, given the history and the
current, possibly unobserved, measurement.

Factorization (29.2) was made in terms of cell probabilities, superscripted
with ∗. The factorization in terms of cumulative probabilities is identical
and obtained upon dropping the superscript ∗.

Consequently,

φc∗
rd|k1...kn

(ψ)

= φc∗
rd|k1...kd

(ψ)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d−1∏
t=2

[1 − prt(Ht, kt; ψ)] prd(Hd, kd; ψ) if D ≤ n,

T∏
t=2

[1 − prt(Ht, kt; ψ)] if D = n + 1.

(29.3)

where
prd(Hd, kd; ψ) = P (D = d|D ≥ d, Hd, kd; Wr; ψ).

Here, Wr is a set of covariates, used to model the dropout process. Expres-
sion (29.3) is similar to (27.14)–(27.15), used in the context of weighted
generalized estimating equations. The difference is that here dropout is
allowed to depend on the current, possibly unobserved, measurement.

Molenberghs, Kenward, and Lesaffre (1997) specified the model for the
dropout probabilities by logit links, and assuming a linear relationship be-
tween the log-odds and the original response. However, the latter is not
necessary. For example, non-linear relations and ones involving interactions
between the response variables and the covariates could be used. Here, we
expect that dropout does not depends on observations preceding kd−1, and
thus only depends on kd−1 and kd, but an extension would be straightfor-
ward:

logit[prd(Hd, kd; ψ)] = ψ0 + ψ1kd−1 + ψ2kd.

This model can also be extended by allowing dependence on covariates
Wr. The case ψ2 = 0 corresponds to a MAR dropout process and the case
ψ1 = ψ2 = 0 to a MCAR dropout process.

With dropout occurring, we will not observe Zc
r but only Zr, a partially

classified table, with corresponding probabilities νr. The components of νr

are simple linear functions of the components νc
r . This is true for both the

cell counts and the cumulative counts.
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The multinomial log-likelihood is

	(β, ψ; Z∗) = ln

(
1∏N

1 Z∗
r !

)
+

N∑
r=1

(Z∗
r)

′ ln(νr), (29.4)

with the components of νr summing to one. The kernel of the log-likelihood
is the sum of two contributions. For the complete sequences we have,

	1(β, ψ; Z∗) =
N∑

r=1

∑
(k1,...,kn)

Z∗
r,n+1,k1,...,kn

× log

{
µ∗

rk1...kn
(β)

n∏
t=2

[1 − prt(Ht, kd; ψ)]

}
,

and similarly for the incomplete sequences (say r = N1 + 1, . . . , N = N1 +
N2):

	2(β, ψ; Z∗)

=
N∑

r=1

n∑
d=2

∑
(k1,...,kd−1)

Z∗
rdk1,...,kd−1

× ln

{
d−1∏
t=2

[1 − prt(Ht, kt; ψ)]
c∑

kd=1

µ∗
rk1...kd

prd(Hd, kd; ψ)

}
.

We note that, when the probability of dropout does not depend on kd,
i.e., when the dropout process is MAR, the second part of the likelihood
partitions into two components, the first for the response process involving
β only and the second for the dropout process involving ψ only. When the
missingness mechanism is MNAR, the resulting likelihood is complex, but
the processes of maximization for β and for ψ can be separated through
the use of the EM algorithm (Dempster, Laird, and Rubin 1977), outlined
in Section 28.3. Details are provided in the next section.

29.2.2 Maximization Using the EM Algorithm
We will now show how the likelihood derived in Section 29.2.1 can be maxi-
mized using the EM algorithm (Dempster, Laird, and Rubin, 1977; see also
Section 28.3), where dropout and response components of the likelihood are
maximized separately within each iteration of the algorithm.

Let (β(0), ψ(0)) be initial parameters, which can be found from, e.g., a
complete case analysis, an available case analysis, or a simple method of
imputation. Given current values (β(t), ψ(t)) for the parameters, the E step
computes the objective function, which is in the case of the missing data
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problem equal to the expected value of the observed data log-likelihood,
given the observed data and the current parameters:

Q
[
(β, ψ)|(β(t), ψ(t))

]
= E

{
	
[
(β, ψ)|Zc∗

r,d,k1...kn

] |Z∗
rdk1...kd−1

, (β(t), ψ(t))
}

.

Due to the linearity of the complete data log-likelihood, it is natural
to consider the expectations in terms of counts of contingency table Zc∗

r .
Consider now the cell count for a particular joint outcome (k1, . . . , kn)
with dropout time d, i.e., Zc∗

rdk1...kn
. The corresponding observed count is

Z∗
rdk1...kd−1

. It can be shown that the conditional expectation for this cell
count given the history can be written as

E(Zc∗
rdk1...kd

|Z∗
rdk1...kd−1

, β, ψ)

= Z∗
rdk1...kd−1

µc∗
rk1...kd

(β)prd(Hd, kd, ψ)∑
kd

µc∗
rk1...kd−1kd

(β)prd(Hd, kd, ψ)
. (29.5)

Consequently, the maximization step of the EM cycle requires as input only
the expectations E(Zc∗

rdk1...kd
|Zrdk1...kd−1 , β, ψ) for kd = 1, . . . c. Given this

the likelihood can be partitioned into separate components for the response
variable and dropout measurements. Each can be maximized separately
using conventional likelihood methods.

To summarize, the two steps of the EM algorithm are as follows.

1. Expectation. Predict Zc∗
rdk1...kd

, kd = 1, . . . , c for d < n + 1, given

current estimates of β and ψ,
(
β(t), ψ(t)

)
:

E
(
Zc∗

rdk1...kd
|Z∗

rdk1...kd−1
, β(t), ψ(t)

)

= Z∗
rdk1...kd−1

.
µc∗

rk1...kd

(
β(t)
)

prd

(
Hd, kd, ψ

(t)
)

∑
kd

µc∗
rk1...kd−1kd

(
β(t)
)

prd

(
Hd, kd, ψ

(t)
) .

2. Maximization. Maximize separately the kernels of the two compo-
nents of the likelihood corresponding to the response variable and
dropout measurements with respect to β and ψ:

	c(β, Zc∗) =
N∑

i=1

n+1∑
d=2

∑
(k1,...,kd)

Zc∗
rdk1...kd

ln
(
µ∗

rk1...kd
(β)
)
,

	c(ψ, Zc∗) =
N∑

i=1

∑
(k1,...,kn)

Zc∗
r,n+1,k1...kn

ln

(
n∏

t=2

{1 − prt(Ht, kt; ψ)}
)

+
N∑

i=1

n∑
d=2

∑
(k1,...,kd)

Zc∗
rdk1...kd
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× ln

(
d−1∏
t=2

[1 − prt(Ht, kt; ψ)] prd(Hd, kd; ψ)

)
.

The log-likelihood for the measurement model can be maximized using a
Fisher scoring algorithm, as discussed in Sections 7.3 and 7.7.

For the dropout portion of the model, one proceeds as follows. By taking
each time of measurement and conditioning on the number of units still
present at that time, an overall likelihood can be assembled from inde-
pendent components and, given kd, this can be seen to be the likelihood
of a conventional logistic regression. The maximum likelihood estimate of
ψ can then be obtained simply using iteratively reweighted least squares
(McCullagh and Nelder 1989, Section 4.4), or any other tool to maximize
a logistic regression based likelihood.

Observe that not only the EM algorithm itself is iterative, but that each
M step consists of a pair of iterative maximizations. A way to speed up
the EM algorithm is to restrict the iterative schemes in the M step to only
a few iterations. This yields a so-called generalized EM algorithm (GEM,
Dempster, Laird, and Rubin 1977). Rather than fully maximizing the re-
sponse log-likelihood and the dropout log-likelihood, one can reduce the
number of iterations for either or both of the two maximizations, possibly
to one.

Two of the main drawbacks of the EM algorithm are its typically very
slow rate of convergence and its lack of direct provision of a measure of
precision for the maximum likelihood estimates. Several proposals for over-
coming these limitations have been made in the literature, and were dis-
cussed in some detail in Sections 28.3.3, 28.3.4, and 28.3.5. Molenberghs,
Kenward, and Lesaffre (1997) accelerated convergence using a diagonal ma-
trix analogous to the rate matrix introduced by Meng and Rubin (1991,
Eq. 2.2.1). Approximations to the observed Fisher information were found
through the technique termed EM-aided differentiation by Meilijson (1989).
This technique is easy to implement as it requires a negligible amount of
extra code. Standard errors and Wald statistics were computed directly
from the observed information and score tests are also relatively simple
to compute; calculation of the scores being straightforward. Alternatively,
inferences can be based on likelihood ratios; the observed data likelihood
is not difficult to evaluate in the current multinomial setting.

All computations were carried out in the statistical programming lan-
guage GAUSS. As a convergence criterion the L∞ norm of the relative
observed data score vector was required to be smaller than 10−3.

29.2.3 Analysis of the Fluvoxamine Data
The data were introduced in Section 2.4 and analyzed before in Sections 6.5,
7.2.4, and 7.11. Analyses of the data, assuming MAR, are described in
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TABLE 29.1. Fluvoxamine Trial. Summary of the ordinal therapeutic outcomes at
three follow-up times. (For example, category 241 corresponds to a classification
of 2 on the first visit, 4 on the second visit, and 1 on the third visit; a ∗ in one
of the positions indicates dropout.)

Cat # Cat # Cat # Cat #
Completers

111 10 211 32 311 12 411 1
112 212 1 312 1 412
113 213 313 413
114 214 1 314 414

121 1 221 13 321 35 421 5
122 222 16 322 14 422 5
123 1 223 1 323 1 423
124 224 3 324 1 424 1

131 231 1 331 6 431 13
132 232 2 332 5 432 13
133 233 2 333 3 433 5
134 234 334 1 434

141 241 1 341 1 441 4
142 242 342 2 442 2
143 243 1 343 443 4
144 244 344 444 3

Dropout after 2nd visit
11* 3 21* 3 31* 41*
12* 22* 7 32* 7 42* 2
13* 23* 3 33* 3 43* 5
14* 24* 2 34* 1 44* 8

Dropout after 1st visit
1** 4 2** 6 3** 9 4** 12

Molenberghs and Lesaffre (1994) and Kenward, Lesaffre, and Molenberghs
(1994).

From the initially recruited subjects, 14 were not observed at all after
the start, 31 and 44 patients, respectively, were observed on the first only
and first and second occasions and 224 had complete observations. We omit
from the current analyses two patients with non-monotone missing values,
leaving 299 in the current analyses. We summarize the therapeutic and side
effects results in two sets of contingency tables, Tables 29.1 and 29.2.



29.2 An MNAR Dale Model 539

TABLE 29.2. Fluvoxamine Trial. Summary of the ordinal side effects outcomes at
three follow-up times. (For example, category 241 corresponds to a classification
of 2 on the first visit, 4 on the second visit, and 1 on the third visit; a ∗ in one
of the positions indicates dropout.)

Cat # Cat # Cat # Cat #
Completers

111 86 211 25 311 1 411 2
112 5 212 6 312 412 1
113 1 213 313 413
114 214 314 414

121 3 221 28 321 1 421
122 222 39 322 5 422 1
123 7 223 4 323 423
124 224 324 424

131 231 331 431
132 232 4 332 3 432
133 233 333 2 433
134 234 334 434

141 241 341 441
142 242 342 442
143 243 343 443
144 244 344 444

Dropout after 2nd visit
11* 13 21* 3 31* 1 41*
12* 4 22* 9 32* 1 42*
13* 23* 3 33* 5 43*
14* 24* 1 34* 2 44* 2

Dropout after 1st visit
1** 9 2** 6 3** 7 4** 9

For the data on therapeutic effect as well as on side effects we present
four sets of parameter estimates. Each set is the result of fitting a marginal
proportional odds model to the response and, for non-ignorable models,
a logistic regression model to the dropout process. In the first set, the
response model alone is fitted to the data from those subjects with complete
records. Such an analysis will be consistent with an analysis of the full data
set if the dropout process is completely random. The remaining three sets
of estimates are obtained from fitting models with non-random, random,
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TABLE 29.3. Fluvoxamine Trial. Maximum likelihood estimates (standard errors)
for side effects.

Parameter Completers MCAR MAR MNAR
Measurement model

intercept 1 1.38(1.00) -0.60(0.82) -0.60(0.82) -0.78(0.79)
intercept 2 4.42(1.04) 1.59(0.83) 1.59(0.83) 1.31(0.80)
intercept 3 6.32(1.14) 2.90(0.85) 2.90(0.85) 2.51(0.82)

age -0.22(0.08) -0.20(0.07) -0.20(0.07) -0.19(0.07)

sex -0.35(0.25) -0.03(0.22) -0.03(0.22) 0.00(0.21)

duration (visit 1) -0.05(0.08) -0.13(0.05) -0.13(0.05) -0.12(0.05)
duration (visit 2) -0.10(0.08) -0.20(0.06) -0.20(0.06) -0.21(0.05)
duration(visit 3) -0.13(0.08) -0.19(0.07) -0.19(0.07) -0.23(0.06)

severity (visit 1) 0.00(0.16) 0.26(0.13) 0.26(0.13) 0.28(0.12)
severity (visit 2) 0.09(0.16) 0.33(0.13) 0.33(0.13) 0.34(0.13)
severity (visit 3) 0.17(0.16) 0.41(0.13) 0.41(0.13) 0.40(0.13)

Association
visits 1 and 2 2.89(0.33) 3.12(0.30) 3.12(0.30) 3.26(0.29)
visits 1 and 3 2.06(0.32) 2.33(0.35) 2.33(0.35) 2.30(0.32)
visits 2 and 3 2.86(0.34) 3.16(0.37) 3.16(0.37) 3.18(0.36)
visits 1, 2, and 3 0.45(0.76) 0.48(0.79) 0.48(0.79) 0.61(0.71)

Dropout model
ψ0 -1.90(0.13) -3.68(0.34) -4.26(0.48)
ψ1 1.08(0.54)
ψ2 0.94(0.15) 0.18(0.45)
−2 log-likelihood 1631.97 1591.98 1587.72

and completely random dropout, defined in terms of constraints on the ψ
parameters.

We consider first the analysis of the side-effects data, Table 29.3. Co-
variates have been included in the response component of the model. The
relationships with two covariates, sex and age, have been held constant
across visits, the relationships with the other two covariates, duration and
severity, have been allowed to differ among visits.

Conditional on acceptance of the validity of the overall model we can,
by examining the statistical significance of the parameters in the dropout
model, test for different types of dropout process. Three statistics, likelihood-
ratio, Wald, and score can be computed for each null hypothesis, and we
present each in Table 29.4 for comparisons of (1) MNAR versus MAR and
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TABLE 29.4. Fluvoxamine Trial. Side effects. Test statistics for dropout mecha-
nism.

MNAR vs MAR MAR vs MCAR
Wald 4.02 (p = 0.045) 38.91 (p < 0.001)
LR 4.26 (p = 0.039) 39.99 (p < 0.001)
score 4.24 (p = 0.040) 45.91 (p < 0.001)

of (2) MAR versus MCAR. In line with Diggle and Kenward (1994) and
Molenberghs, Kenward, and Lesaffre (1997), it is tempting to assume both
statistics follow a null asymptotic χ2

1 distribution. Jansen et al (2005) show
that great care has to be taken with the test for MNAR against MAR (see
Chapter 31).

All tests provide weak evidence for MNAR in the context of the assumed
model. They also strongly support MAR over MCAR. But again, one has to
be very cautious with such conclusions. Section 31.3 will study sensitivity
of the MNAR model to the model assumptions made. Further detail on the
precise nature of sensitivity can be found in Jansen et al (2005).

The estimated dropout model is, with simplified notation:

logit[P (dropout)] = −4.26 + 1.08Yc + 0.18Ypr

for Ypr and Yc the previous and current observations, respectively. It is
instructive to rewrite this in terms of the increment and sum of the succes-
sive measurements. Standard errors of the estimated parameters have been
added in square brackets.

logit[P (dropout)] = −4.26 + 0.63[0.08](Yc + Ypr) + 0.45[0.49](Yc − Ypr).

It can be seen that the estimated probability of dropout increases greatly
with large side effects. The corresponding standard error is comparatively
small. Although the coefficient of the increment does not appear negligible
in terms of its absolute size, in the light of its standard error it cannot
be said to be significantly different from zero. This reflects the lack of
information in these data on the coefficient of the increment in the dropout
model.

Although the evidence of dependence of the dropout process on previous
observation is overwhelming, that for MNAR is borderline.

It is worth noting that there are substantial differences between the
analyses of the completers only and full datasets with respect to the pa-
rameter estimates of the response model. In the presence of an MAR
and MNAR process, the former analysis produces inconsistent estimators.
Given the clear association of side-effect occurrence and the covariates age,
duration, and severity, we investigated the relationship between these and
dropout, but found only marginal evidence for a dependence on sex and
severity.
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TABLE 29.5. Fluvoxamine Trial. Maximum likelihood estimates (standard errors)
for therapeutic effect.

Parameter Completers MCAR MAR MNAR
Measurement model

intercept 1 -2.36(0.17) -2.32(0.15) -2.32(0.15) -2.33(0.14)
intercept 2 -0.53(0.13) -0.53(0.12) -0.53(0.11) -0.52(0.10)
intercept 3 1.03(0.14) 0.90(0.11) 0.90(0.12) 0.90(0.09)

visit 2 - visit 1 1.38(0.12) 1.22(0.10) 1.22(0.10) 1.32(0.11)
visit 3 - visit 1 2.70(0.19) 2.58(0.18) 2.58(0.18) 2.83(0.19)

association
visits 1 and 2 2.58(0.24) 2.57(0.22) 2.57(0.22) 2.46(0.20)
visits 1 and 3 0.85(0.23) 0.86(0.24) 0.86(0.24) 0.77(0.19)
visits 2 and 3 1.79(0.25) 1.79(0.25) 1.79(0.25) 1.59(0.20)
visits 1, 2 and 3 0.39(0.52) 0.27(0.52) 0.27(0.52) 0.22(0.23)

Dropout model
ψ0 -1.88 (0.13) -2.56(0.37) -2.00(0.48)
ψ1 -1.11(0.42)
ψ2 0.26(0.13) 0.77(0.19)
−2 log-likelihood 2156.91 2152.87 2145.93

In Table 29.5, the results from the analyses of the therapeutic effect
are presented. Here, apart from overall effects of time, no covariates are
included because all showed negligible association with the response. Inter-
estingly the comparison of the three dropout models (Table 29.6) produces
somewhat different conclusions about the dropout mechanism, when com-
pared to those of the side-effects analysis (Table 29.4).

Here, the three classes of tests again behave consistently. The evidence
for MNAR is strong, but the same warnings about the sensitivity of the
MNAR model to modeling assumptions apply here. The tests comparing
the MAR and MCAR processes show only moderate evidence of a dif-
ference. The latter tests are not strictly valid however in the presence of
MNAR missingness. It is interesting that a comparison of the MCAR and
MAR models, which is much easier to accomplish than the comparison of
MAR and MNAR, gives little suggestion that such a relationship might
exist between dropout and response. This is partly a consequence of the
nature of the dropout relationship in this example. With the side-effects
the association between dropout and response was dominated by the av-
erage response. With the therapeutic observations however dependence of
dropout probability is largely on the measurement increment, also a fea-
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TABLE 29.6. Fluvoxamine Trial. Therapeutic effect. Test statistics for dropout
mechanism.

MNAR vs MAR MAR vs MCAR
Wald 6.98 (P = 0.008) 3.98 (P = 0.046)
LR 6.94 (P = 0.008) 4.03 (P = 0.044)
score 9.31 (P = 0.002) 4.02 (P = 0.045)

ture of the analyses in Diggle and Kenward (1994). From the fitted MNAR
model we have:

logit{P (dropout)} = −2.00 − 1.11Yc + 0.77Ypr

= −2.00 − 0.17[0.17](Yc + Ypr) − 0.94[0.28](Yc − Ypr).

A plausible interpretation would be that dropout decreases when there is
a favorable change in therapeutic effect, and increases only comparatively
slightly when there is little therapeutic effect. Larger differences can also be
seen among the parameter estimates of the response component, between
the MCAR and MAR models on one hand and the non-random dropout
model on the other, than are apparent in the analysis of the side effects.
The estimated differences between visits are greater in the MNAR model;
in the MAR analysis no account is taken of the dependence of dropout on
increment, so the sizes of the changes between visits is biased downwards.
These differences are however of little practical importance given the sizes
of the associated standard errors. Similarly, the statistical dependence be-
tween repeated measurements as measured by the log odds-ratios is smaller
under the MNAR model, possibly because of the effect of selection under
the MAR model.

29.3 A Model for Non-monotone Missingness

In Section 29.2, we presented a model for ordinal data but confined miss-
ingness to the dropout type. Here, general missingness will be studied, in
the specific context of a bivariate binary outcome.

Baker, Rosenberger, and DerSimonian (1992) considered a log-linear type
of model for two binary outcomes subject to incompleteness. A main ad-
vantage of this method is that it can easily deal with non-monotone miss-
ingness.

As in Section 29.2, let r = 1, . . . , N index distinct covariate levels. In
this section, the index r will be suppressed from notation. Let j, k = 1, 2
correspond to the outcome categories of the first and second measurement,
respectively and let r1, r2 = 0, 1 correspond to the missingness indicators
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(1 for an observed and 0 for a missing measurement). Such a setup leads to
a four-way classification. The complete data and observed data cell proba-
bilities πr1r2,jk for this setting are presented in Figure 29.1.

To accommodate (possibly continuous) covariates, as proposed by Jansen
et al (2003), we will use a parameterization, different from and extending
the original one, which belongs to the selection model family (Little 1994):

πr1r2,jk = pjkqr1r2|jk, (29.6)

where pjk parameterizes the measurement process and qr1r2|jk describes the
missingness mechanism, conditional on the measurements. In particular, we
will assume

pjk =
exp(θjk)∑2

j,k=1 exp(θjk)
, (29.7)

qr1r2|jk =
exp[βjk(1 − r2) + αjk(1 − r1) + γ(1 − r1)(1 − r2)]

1 + exp(βjk) + exp(αjk) + exp(βjk + αjk + γ)
, (29.8)

for unknown parameters θjk, βjk, αjk, and γ. A priori, no ordering is im-
posed on the outcomes. The advantage is that genuine multivariate settings
(e.g., several questions in a survey) can be handled as well. When deemed
necessary, the implications of ordering can be imposed by considering spe-
cific models and leaving out others. For example, one may want to avoid
missingness on future observations. In the current bivariate case, the index
k would have to be removed from α in the above model. To identify the
model, we set θ22 = 0 and further θjk = Xjkη. This allows the inclusion
of covariate effects that, together with (29.7), is similar in spirit to the
multigroup logistic model (Albert and Lesaffre 1986). Even though the pa-
rameters η are conditional in nature and therefore somewhat difficult to
directly interpret in case planned sequences are of unequal length (but not
in the case considered here), (29.7) allows easy calculation of the joint prob-
abilities. Such computational advantages become increasingly important as
the length of the response vector grows. If necessary, specific functions of
interest, such as a marginal treatment effect, can be derived. They will
typically take the form of non-linear functions. Arguably, a model of the
type here can be most useful as a component of a sensitivity analysis, in
conjunction with the use of different (e.g., marginal) models.

In many examples, the design matrices Xjk will be equal to each other.
Stacking all parameters will lead to the following design:

θ = Xη. (29.9)

Likewise, a design can be constructed for the non-response model parame-
ters:

δ = Wψ, (29.10)
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FIGURE 29.1. Theoretical distribution over complete and observed cells of a bi-
variate binary outcome. Tables correspond to completely observed subjects and
subjects with the second, the first, and both measurements missing, respectively.

where the vector δ stacks the βjk, αjk and γ and W is an appropriate design
matrix. The vector ψ groups the parameters of interest. For example, if
MCAR would be considered, the α and β parameters do not depend on
neither j nor k and then ψ′ = (α, β, γ). Both designs (29.9) and (29.10)
can be combined into one, using ξ = (θ′, δ′)′,

T =
(

X 0
0 W

)
,

and
φ = (η′, ψ′)′. (29.11)

The corresponding log-likelihood function can be written as:

	 =
2∑

j,k=1

y11jklnπ11jk +
2∑

j=1

y10j+ln(π10j1 + π10j2)

+
2∑

k=1

y01+kln(π011k + π012k)

+y00++ln(π0011 + π0012 + π0021 + π0022)

=
2∑

j,k=1

y11jk∑
s=1

lnπ11jk +
2∑

j=1

y10j+∑
s=1

lnπ10j+

+
2∑

k=1

y01+k∑
s=1

lnπ01+k +
y00++∑
s=1

lnπ00++.

Computation of derivatives, needed for optimization and for the calculation
of influence measures, is straightforward. A technical report can be obtained
from the authors upon request.
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FIGURE 29.2. Graphical representation of the BRD model nesting structure.

To include covariates, the design level r = 1, . . . , N needs to be intro-
duced again. In particular, with subject-specific covariates, it may be sen-
sible to use i = 1, . . . , N to index individuals.

Baker, Rosenberger, and DerSimonian (1992, BRD) consider nine identi-
fiable models, based on setting αjk and βjk constant in one or more indices.
An overview, together with the nesting structure, is given in Figure 29.2.

Whereas these authors considered the nine models in terms of the original
parameterization, they do carry over to parameterization (29.8). Interpreta-
tion is straightforward. For example, BRD1 is MCAR, in BRD4 missingness
in the first variable is constant, while missingness in the second variable
depends on its value. Two of the main advantages of this family are ease
of computation in general, and the existence of a closed-form solution for
several of its members (BRD2 to BRD9).

29.3.1 Analysis of the Fluvoxamine Data
In the analysis, all patients with known duration level are considered, leav-
ing a total of 310 out of 315 subjects in the study. In the measurement
model, the effect of duration is held constant over both visits. Regarding
the missingness model, an effect of duration is assumed in both the α and
the β parameters. Each of the 9 models is represented by a specific choice
for the design. For example, for BRD1, and using the index i for individual,
we obtain:

φ = (η1, η2, η3, η4, α, αdur, β, βdur, γ)′,

Xi =

⎛⎝ 1 0 0 durationi

0 1 0 durationi

0 0 1 durationi

⎞⎠
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TABLE 29.7. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. No covariates. Part I.

Effect BRD1 BRD2 BRD3 BRD4 BRD5
Measurement model
Intercept11 0.22(0.15) 0.20(0.15) 0.28(0.15) 0.03(0.17) 0.32(0.15)
Intercept12 -1.72(0.30) -1.74(0.30) -1.72(0.30) -1.61(0.30) -1.62(0.30)
Intercept21 -0.12(0.18) -0.12(0.18) -0.05(0.18) -0.42(0.23) -0.13(0.18)
Dropout model
α -4.72(0.71) -4.72(0.71) -4.72(0.71)
α1. -3.87(0.71)
α2. -∞
α.1 -4.27(0.71)
α.2 -∞
β -1.09(0.13) -1.09(0.13) -1.09(0.13)
β1. -1.37(0.22)
β2. -0.91(0.17)
β.1 -1.57(0.38)
β.2 -0.55(0.29)
γ 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.04(0.77)
- loglik 565.96 564.55 565.07 564.55 565.34

and

Wi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 durationi 0 0 0
1 durationi 0 0 0
1 durationi 0 0 0
1 durationi 0 0 0
0 0 1 durationi 0
0 0 1 durationi 0
0 0 1 durationi 0
0 0 1 durationi 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix Xi includes a time dependent intercept and a time independent
effect of duration. The Wi matrix indicates which of the nine BRD models
is considered; changing the model also changes the vector ψ.

We will consider three sets of BRD models in some detail. Tables 29.7
and 29.8 presents models (parameter estimates, standard errors, negative
log-likelihoods) without duration. In Tables 29.9 and 29.10, duration is
added as a covariate to the measurement model but not yet to the miss-
ingness model, whereas in the final set (Tables 29.11 and 29.12) the effect
of duration is included in both measurement and missingness parts of the
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TABLE 29.8. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. No covariates. Part II.

Effect BRD6 BRD7 BRD8 BRD9
Measurement model
Intercept11 0.32(0.15) 0.14(0.16) 0.16(0.17) 0.27(0.15)
Intercept12 -1.62(0.30) -1.61(0.30) -1.44(0.32) -1.72(0.30)
Intercept21 -0.13(0.18) -0.31(0.21) -0.39(0.22) -0.04(0.17)
Dropout model
α

α1. -3.93(0.71) -3.93(0.71)
α2. -∞ -∞
α.1 -4.29(0.71) -4.29(0.71)
α.2 -∞ -∞
β

β1. -1.37(0.22) -1.37(0.22)
β2. -0.91(0.17) -0.91(0.17)
β.1 -1.57(0.38) -1.56(0.37)
β.2 -0.56(0.29) -0.56(0.29)
γ 3.31(0.79) 3.51(0.84) 3.31(0.79) 3.11(0.77)
- loglik 563.97 563.70 563.97 563.70

model. Sampling zeroes in some of the cells forces some parameters to lie
on the boundary of their corresponding parameter space which, due to the
parameterization, is equal to ∞. This should not be seen as a disadvantage
of our model, as boundary solutions are a well-known feature of MNAR
models (Rubin 1996). The advantage of our parameterization is that ei-
ther an interior or a boundary solution is obtained, and never an invalid
solution.

From Tables 29.7 and 29.8, we learn that likelihood ratio tests fail to re-
ject BRD1 in favor of a more complex model, implying the simplest mech-
anism, MCAR would be adequate. However, this conclusion changes when
duration is included in the measurement model (Tables 29.9 and 29.10). The
effect of duration is highly significant, whichever of the nine BRD models
is chosen to conduct a likelihood ratio test. In addition, within Tables 29.9
and 29.10, not BRD1 but rather BRD4 provides the most adequate de-
scription. The likelihood ratio test statistic for comparing BRD1–4 equals
7.10, while those for BRD4–7 and BRD4–8 are 2.10 and 1.52, respectively.
Thus, from this set of models, one observes that duration improves the
fit and, moreover, one would be inclined to believe duration, included in
the measurement model, has the effect of changing the nature of the miss-
ingness mechanism, by making it more complex, even though it is often
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TABLE 29.9. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. Duration as covariate in the
measurement model. Part I.

Effect BRD1 BRD2 BRD3 BRD4 BRD5
Measurement model
Intercept11 0.46(0.17) 0.45(0.17) 0.53(0.17) 0.23(0.20) 0.57(0.17)
Intercept12 -1.46(0.31) -1.48(0.31) -1.46(0.31) -1.26(0.32) -1.37(0.31)
Intercept21 0.10(0.20) 0.10(0.19) 0.17(0.20) -0.25(0.23) 0.09(0.21)
Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)
Dropout model
α -4.71(0.71) -4.71(0.71) -4.71(0.71)
α1. -3.85(0.71)
α2. -∞
α.1 -4.24(0.71)
α.2 -∞
β -1.11(0.13) -1.11(0.13) -1.11(0.13)
β1. -1.44(0.23)
β2. -0.90(0.17)
β.1 -1.86(0.45)
β.2 -0.43(0.25)
γ 2.98(0.77) 2.98(0.77) 2.98(0.77) 2.98(0.77) 2.98(0.77)
- loglik 550.15 548.31 549.12 546.60 549.39

believed that including explanatory variables (either in the model for the
outcomes or in the missingness model) may help to explain structure in the
missingness mechanism. BRD4 states that missingness at the second occa-
sion depends on the (possibly unobserved) value at that same occasion, a
so-called type I model, in the typology of Baker (2000), in contrast to type
II models, where missingness in a variable depends at least also on other,
possibly incomplete, assessments. Obviously, such models are particularly
vulnerable to assumptions made.

A key conclusion is that, up to this point, no covariate effects have been
considered on the missingness parameters. An analysis including duration
in the missingness part of the model should be entertained and examined
carefully. When switching to Tables 29.11 and 29.12, the conclusions do
change drastically. First, all evidence for non-MCAR missingness disap-
pears as, based on likelihood ratio tests, BRD1 comes out as the most
adequate description of all nine models. Second, comparing corresponding
BRD models between Tables 29.9 and 29.10 on the one hand and Ta-
bles 29.11 and 29.12 (p-values in bottom line of Tables 29.11 and 29.12),
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TABLE 29.10. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. Duration as covariate in the
measurement model. Part II.

Effect BRD6 BRD7 BRD8 BRD9
Measurement model
Intercept11 0.57(0.17) 0.35(0.18) 0.36(0.19) 0.52(0.18)
Intercept12 -1.37(0.31) -1.26(0.32) -1.06(0.33) -1.46(0.31)
Intercept21 0.09(0.20) -0.13(0.21) -0.21(0.22) 0.18(0.20)
Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)
Dropout model
α

α1. -3.92(0.71) -3.94(0.71)
α2. -∞ -∞
α.1 -4.28(0.71) -4.26(0.71)
α.2 -∞ -∞
β

β1. -1.44(0.23) -1.44(0.23)
β2. -0.90(0.17) -0.90(0.17)
β.1 -1.87(0.46) -1.86(0.45)
β.2 -0.43(0.25) -0.43(0.25)
γ 3.31(0.79) 3.74(0.89) 3.39(0.79) 3.07(0.77)
- loglik 547.57 545.55 545.84 547.30

it is clear that the effect of duration on the missingness model cannot be
neglected.

Important modeling and data analytic conclusions can be drawn from
this. First, it clearly does not suffice to consider covariate effects on the
measurement model, but one has to carefully contemplate such effects on
the missingness model as well. Therefore, the models in Tables 29.11 and
29.12, should be regarded as the ones of primary interest. Second, it is
found that a longer duration implies a less favorable side-effects outcome,
as well as an increased change of missing visits. Obviously, duration acts as a
confounding variable which, unless included in both parts of the model, may
suggest a relationship between the measurement and missingness models
and thus one may erroneously be led to believe that the missing data are
MNAR. Third, it should be noted that the parameter estimates of duration
are remarkably stable. This implies that, in case one is primarily interested
in the effect of duration on the occurrence of side effects all 18 models
containing this effect provide very similar evidence. Although this need not
be the case in general, it is a comforting aspect of this particular data
analysis.



29.3 A Model for Non-monotone Missingness 551

TABLE 29.11. The Fluvoxamine Trial. Maximum likelihood estimates and stan-
dard errors of BRD models. All observations included. Duration as covariate in
both measurement and missingness model. Part I.

Effect BRD1 BRD2 BRD3 BRD4 BRD5
Measurement model
Intercept11 0.46(0.18) 0.45(0.17) 0.53(0.18) 0.30(0.20) 0.57(0.17)
Intercept12 -1.46(0.31) -1.48(0.31) -1.46(0.31) -1.37(0.31) -1.37(0.31)
Intercept21 0.10(0.20) 0.10(0.20) 0.17(0.20) -0.15(0.24) 0.09(0.20)
Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)
Dropout model
α.. -4.57(0.72) -4.57(0.72) -4.57(0.72)
α1. -3.82(0.73)
α2. -∞
α.1 -4.20(0.72)
α.2 -∞
αdur -0.02(0.02) -0.02(0.02) -0.01(0.02) -0.02(0.02) -0.01(0.02)
β.. -1.40(0.16) -1.40(0.16) -1.40(0.16)
β1. -1.63(0.24)
β2. -1.22(0.20)
β.1 -1.79(0.36)
β.2 -0.87(0.33)
βdur 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01)
γ 3.10(0.78) 3.10(0.78) 3.10(0.77) 3.10(0.78) 3.09(0.78)
- loglik 543.78 542.74 542.86 542.63 543.14
p† 0.0017 0.0038 0.0019 0.0189 0.0019
† p-value for the comparison with the corresponding BRD model in
Table 29.9, to test the null hypothesis of no effect of duration in the
missingness model.

However, though we have reached plausible conclusions, one should still
exercise caution, as non-random missingness models heavily rely on untestable
assumptions (Verbeke and Molenberghs 2000). Therefore, it is important
to search for observations that may drive these conclusions. This naturally
leads to the concept of sensitivity analysis. In Sections 31.4 and 31.5, sen-
sitivity analysis tools applicable to the BRD model, or its extension to
covariates used here, will be introduced.
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TABLE 29.12. Fluvoxamine Trial. Maximum likelihood estimates and standard
errors of BRD models. All observations included. Duration as covariate in both
measurement and missingness model. Part II.

Effect BRD6 BRD7 BRD8 BRD9
Measurement model
Intercept11 0.57(0.17) 0.41(0.18) 0.43(0.19) 0.52(0.18)
Intercept12 -1.37(0.31) -1.37(0.31) -1.22(0.33) -1.46(0.31)
Intercept21 0.09(0.21) -0.04(0.22) -0.13(0.23) 0.18(0.20)
Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)
Dropout model
α..

α1. -3.87(0.73) -3.88(0.73)
α2. -∞ -∞
α.1 -4.23(0.73) -4.22(0.72)
α.2 -∞ -∞
αdur -0.01(0.02) -0.01(0.02) -0.00(0.02) -0.01(0.02)
β..

β1. -1.63(0.24) -1.63(0.24)
β2. -1.22(0.20) -1.22(0.20)
β.1 -1.79(0.36) -1.77(0.35)
β.2 -0.88(0.33) -0.88(0.33)
βdur 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01)
γ 3.33(0.79) 3.50(0.84) 3.32(0.79) 3.16(0.78)
- loglik 542.14 541.77 542.05 541.86
p† 0.0044 0.0228 0.0226 0.0043
† p-value for the comparison with the corresponding BRD
model in Table 29.10, to test the null hypothesis of no
effect of duration in the missingness model.

29.4 Concluding Remarks

In Section 29.2, a modeling approach for incomplete ordinal outcomes with
dropout was presented. The approach is very general and any measurement
model can be used. In fact, it is easy enough to adapt the method to any
type of outcome. Not only marginal models, also random-effects models
can be used by way of measurement model. In Section 29.3, a model specif-
ically for binary data, but then with general missingness patterns, has been
presented. The one limitation of the model in Section 29.2 is its suitabil-
ity to dropout only. Several extensions to general missingness have been
studied in the literature. Troxel, Harrington, and Lipsitz (1998) presented
methods for non-ignorable non-monotone missingness. Baker (1995) pre-
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sented a modification of Diggle and Kenward (1994) to accommodate non-
monotone missingness. Jansen and Molenberghs (2005) modify the model
of Section 29.2 to account for non-monotone missingness by replacing the
logistic regressions for dropout with a second multivariate Dale model to
describe the vector of missingness indicators, given the outcomes.

Thus, a wide variety of selection models is available for incomplete lon-
gitudinal data, under MNAR and possibly also with non-monotone miss-
ingness. Nevertheless, care has to be taken with such models. As with all
model fitting the conclusions drawn are conditional on the appropriateness
of the assumed model. Especially here, there are aspects of the model that
are in a fundamental sense not testable, namely the relationship between
dropout and the missing observations. It is assumed in the modeling ap-
proach taken here that the relationships among the measurements from a
subject are the same whether or not some of these measurements are unob-
served due to dropout. It is this assumption, combined with the adoption of
an explicit model linking outcome and dropout probability, that allows us
to infer something about the MNAR nature of the dropout process. Given
the dependence of the inferences on untestable assumptions, care is needed
in the interpretation of the analysis.

The absence of evidence for non-random dropout may simply mean that a
non-random dropout process is operating in a quite different manner, and in
practice it is likely that many such processes are operating simultaneously.

Thus, the sensitivity of the posited model to modeling assumption needs
to be addressed with great caution. Verbeke and Molenberghs (2000, Chap-
ter 19 and 20) discussed ways to assess such sensitivities with continuous
longitudinal data. We refer to Chapter 31 for a discussion of sensitivity
analysis in the non-Gaussian setting.





30
Pattern-mixture Models

30.1 Introduction

Pattern-mixture models (PMM) were introduced in Section 26.2.1 as one
of the three major frameworks within which missing data models can be
developed, next to selection models (Chapter 29) and shared-parameter
models.

Little (1993, 1994a, 1995) has been promoting the use of pattern-mixture
models as a viable alternative to selection models. His work is based on,
for example, Rubin (1977), where the idea was used in a sensitivity analy-
sis within a fully Bayesian framework. Further references include Glynn,
Laird, and Rubin (1993), Little and Rubin (1987), and Rubin (1987). In
1989, an entire issue of the Journal of Educational Statistics was devoted
to this theme. A key reference is Hogan and Laird (1997). Several authors
have contrasted selection models and pattern-mixture models. This is done
either (1) to answer the same scientific question, such as marginal treat-
ment effect or time evolution, based on these two rather different modeling
strategies, or (2) to gain additional insight by supplementing the selection
model results with those from a pattern-mixture approach. Examples in-
clude Verbeke, Lesaffre, and Spiessens (2001) or Michiels et al (2002) for
continuous outcomes, and Molenberghs, Michiels, and Lipsitz (1999), or
Michiels, Molenberghs, and Lipsitz (1999) for categorical outcomes. Fur-
ther references include Cohen and Cohen (1983), Muthén, Kaplan, and
Hollis (1987), Allison (1987), McArdle and Hamagani (1992), Little and
Wang (1996), Hedeker and Gibbons (1997), Ekholm and Skinner (1998),
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Molenberghs, Michiels, and Kenward (1998), Park and Lee (1999), and
Thijs et al (2002).

An important issue is that pattern-mixture models are by construction
under-identified, i.e., overspecified. Little (1993, 1994a) solves this problem
through the use of identifying restrictions: inestimable parameters of the
incomplete patterns are set equal to (functions of) the parameters describ-
ing the distribution of the completers. Identifying restrictions are not the
only way to overcome under-identification and we will discuss alternative
approaches in Section 30.2. Although some authors perceive this under-
identification as a drawback, we believe it is an asset because it forces one
to reflect on the assumptions made. This can serve as a starting point for
sensitivity analysis, as outlined in Verbeke and Molenberghs (2000, Chap-
ter 20).

A general framework for pattern-mixture modeling is sketched in Sec-
tion 30.2 and the strategy based on identifying restrictions is developed
in Section 30.3. A general modeling framework, within which both se-
lection models and pattern-mixture models can be placed, is sketched in
Sections 30.4 and 30.5. Finally, the fluvoxamine study, introduced in Sec-
tion 2.4 and analyzed before in Sections 6.5, 7.2.4, 7.11, 29.2.3, and 29.3.1,
is used to illustrate the proposed methods, in Section 30.6.

30.2 Pattern-mixture Modeling Approach

Fitting pattern-mixture models can be approached in several ways. It is
important to decide whether pattern-mixture and selection modeling are
to be contrasted with one another or rather the pattern-mixture modeling
is the central focus. In the latter case, it is natural to conduct an analysis,
and preferably a sensitivity analysis, within the pattern-mixture family. We
will explicitly consider two strategies to deal with under-identification.

Strategy 1. Little (1993, 1994a) advocated the use of identifying restric-
tions and presented a number of examples. One of those, ACMV (available
case missing values), is the natural counterpart of MAR in the PMM frame-
work, as was established by Molenberghs et al (1998). Specific counterparts
to MNAR selection models were studied by Kenward, Molenberghs, and
Thijs (2003). More detail about this strategy is provided in Section 30.3.

Strategy 2. As opposed to identifying restrictions, model simplification
can be done to identify the parameters. Thijs et al (2002) discussed several
sub-strategies in detail, in the context of continuous longitudinal outcomes.

Although the second strategy is computationally simple, it is important
to note that there is a price to pay. Indeed, simplified models, qualified as
assumption rich by Sheiner, Beale, and Dunne (1997), also make untestable
assumptions, just as in the selection model case. From a technical point of
view, Strategy 2 only requires to either consider ‘pattern’ as an extra co-
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variate in the model, or to conduct an analysis ‘by pattern,’ such that a
separate analysis is obtained for each of the dropout patterns. In the iden-
tifying restrictions setting on the other hand (Strategy 1), the assumptions
are clear from the start.

Pattern-mixture models do not always automatically provide estimates
and standard errors of marginal quantities of interest, such as overall treat-
ment effect or overall time trend. Hogan and Laird (1997) provided a way
to derive selection model quantities from the pattern-mixture model. An
example of such a marginalization is given by Thijs et al (2002). See also
Verbeke and Molenberghs (2000, Chapter 20).

30.3 Identifying Restriction Strategies

In this section, we provide an introduction to the identifying restriction
strategies, incorporating results of Molenberghs et al (1998) and Kenward,
Molenberghs, and Thijs (2003). Ample detail can be found in Verbeke and
Molenberghs (2000, Chapter 20). While these authors focus on continuous
longitudinal outcomes, the general principles are entirely the same.

In line with Molenberghs et al (1998), we restrict attention to monotone
patterns. In general, let us assume we have t = 1, . . . , n = T dropout
patterns where the dropout indicator, introduced earlier, is d = t + 1. The
indices j for measurements occasions and t for dropout patterns assume
the same values, but it is useful to dispose of both, to properly distinguish
between the measurement and dropout processes.

For pattern t, the complete data density is given by

ft(y1, . . . , yT ) = ft(y1, . . . , yt)ft(yt+1, . . . , yT |y1, . . . , yt). (30.1)

The first factor is clearly identified from the observed data, while the second
factor is not. It is assumed that the first factor is known or, more realisti-
cally, modeled using the observed data. Then, identifying restrictions are
applied in order to identify the second component.

Although, in principle, completely arbitrary restrictions can be used by
means of any valid density function over the appropriate support, strategies
which relate back to the observed data deserve privileged interest. One can
base identification on all patterns for which a given component, ys say, is
identified. A general expression for this is

ft(ys|y1, . . . ys−1) =
T∑

j=s

ωsjfj(ys|y1, . . . ys−1), s = t + 1, . . . , T. (30.2)

We will use ωs as shorthand for the set of ωsj ’s used, the components of
which are typically positive. Every ωs that sums to one provides a valid
identification scheme.
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Let us incorporate (30.2) into (30.1):

ft(y1, . . . , yT )

= ft(y1, . . . , yt)
T−t−1∏

s=0

⎡⎣ T∑
j=T−s

ωT−s,jfj(yT−s|y1, ..., yT−s−1)

⎤⎦ .(30.3)

Let us consider three special but important cases, associated with these
choices of ωs in (30.2). Little (1993) proposes CCMV (complete case miss-
ing values) which uses the following identification:

ft(ys|y1, . . . ys−1) = fT (ys|y1, . . . ys−1), s = t + 1, . . . , T, (30.4)

corresponding to ωsT = 1 and all others zero. In other words, information
which is unavailable is always borrowed from the completers. Alternatively,
the nearest identified pattern can be used:

ft(ys|y1, . . . ys−1) = fs(ys|y1, . . . ys−1), s = t + 1, . . . , T, (30.5)

corresponding to ωss = 1 and all others zero. We will refer to these restric-
tions as neighboring case missing values or NCMV.

The third special case of (30.2) will be ACMV. ACMV is reserved for the
counterpart of MAR in the PMM context. The corresponding ωs vectors
can be shown (Molenberghs et al 1998) to have components:

ωsj =
αjfj(y1, ..., ys−1)∑T
�=s α�f�(y1, ..., ys−1)

, (30.6)

(j = s, . . . , T ) where αj is the fraction of observations in pattern j (Molen-
berghs et al 1998).

This MAR–ACMV link connects the selection and pattern-mixture fam-
ilies. It is further of interest to consider specific sub-families of the MNAR
family. In the selection model context, one typically restricts attention to a
class of mechanisms where dropout may depend on the current, possibly un-
observed, measurement, but not on future measurements. The entire class
of such models will be termed missing non-future dependent (MNFD). Al-
though they are natural and easy to consider in a selection model context,
there exist important examples of mechanisms that do not satisfy MNFD,
such as shared-parameter models (Wu and Bailey 1989, Little 1995).

Kenward, Molenberghs, and Thijs (2003) have shown there is a counter-
part to MNFD in the pattern-mixture context. The conditional probability
of pattern t in the MNFD selection models obviously satisfies

f(r = t|y1, . . . , yT ) = f(r = t|y1, . . . , yt+1). (30.7)

Within the PMM framework, we define non-future dependent missing value
restrictions (NFMV) as follows:

∀t ≥ 2,∀j < t − 1 :
f(yt|y1, . . . , yt−1, r = j) = f(yt|y1, . . . , yt−1, r ≥ t − 1). (30.8)
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SEM : MCAR ⊂ MAR ⊂ MNFD ⊂ general MNAR
� � � �

PMM : MCAR ⊂ ACMV ⊂ NFMV ⊂ general MNAR
⊃ 6= ⊂

interior

FIGURE 30.1. Relationship between nested families within the selection model
(SEM) and pattern-mixture model (PMM) families. MCAR: missing completely
at random; MAR: missing at random; MNAR: missing not at random; MNFD:
missing non-future dependence; ACMV: available-case missing values; NFMV:
non-future missing values; interior: restrictions based on a combination of the
information available for other patterns. The ‘⊂’ symbol here indicates ‘is a spe-
cial case of.’ The ‘�’ symbol indicates correspondence between a class of SEM
models and a class of PMM models.

NFMV is not a single set of restrictions, but rather leaves one conditional
distribution per incomplete pattern unidentified:

f(yt+1|y1, . . . , yt, r = t). (30.9)

In other words, the distribution of the “current” unobserved measure-
ment, given the previous ones, is unconstrained. Note that (30.8) excludes
such mechanisms as CCMV and NCMV. Kenward, Molenberghs, and Thijs
(2003) have shown that, for longitudinal data with dropouts, MNFD and
NFMV are equivalent.

For pattern t, the complete data density is given by

ft(y1, . . . , yT ) = ft(y1, . . . , yt)ft(yt+1|y1, . . . , yt)

×ft(yt+2, . . . , yT |y1, . . . , yt+1). (30.10)

It is assumed that the first factor is known or, more realistically, modeled
using the observed data. Then, identifying restrictions are applied in order
to identify the second and third components. First, from the data, estimate
ft(y1, . . . , yt). Second, the user has full freedom to choose

ft(yt+1|y1, . . . , yt). (30.11)

Substantive considerations can be used to identify this density. Alterna-
tively, a family of densities can be considered by way of sensitivity analy-
sis. Third, using (30.8), the densities ft(yj |y1, . . . , yj−1), (j ≥ t + 2) are
identified. This identification involves not only the patterns for which yj is
observed, but also the pattern for which yj is the current, the first unob-
served measurement. An overview of the connection between selection and
pattern-mixture models is given in Figure 30.1.

Two obvious mechanisms, within the MNFD family but outside MAR,
are NFD1 (NFD standing for ‘non-future dependent’), i.e., choose (30.11)
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according to CCMV, and NFD2, i.e., choose (30.11) according to NCMV.
NFD1 and NFD2 are strictly different from CCMV and NCMV.

30.3.1 How to Use Restrictions?
We will briefly outline a general strategy. Several points which require fur-
ther specification will be discussed in what follows. (1) Fit a model to the
pattern-specific identifiable densities: ft(y1, . . . , yt). This results in a para-
meter estimate, γ̂t. (2) Select an identification method of choice. (3) Using
this identification method, determine the conditional distributions of the
unobserved outcomes, given the observed ones:

ft(yt+1, . . . , yT |y1, . . . , yt). (30.12)

(4) Using standard multiple imputation methodology (Rubin 1987, Schafer
1997, Verbeke and Molenberghs 2000, Minini and Chavence 2004ab, Sec-
tion 28.2 of this volume), draw multiple imputations for the unobserved
components, given the observed outcomes and the correct pattern-specific
density (30.12). (5) Analyze the multiply-imputed sets of data using the
method of choice. This can be another pattern-mixture model, but also a
selection model or any other desired model. (6) Inferences can be conducted
in the standard multiple imputation way (Section 28.2 of this volume, Ru-
bin 1987, Schafer 1997, Verbeke and Molenberghs 2000).

We have seen how general identifying restrictions (30.2), with CCMV,
NCMV, and ACMV as special cases, lead to the conditional densities for
the unobserved components, given the observed ones. This came down to
deriving expressions for ω, such as in (30.6) for ACMV. In addition, we
need to draw imputations from the conditional densities.

Let us proceed by studying the special case of three measurements. To
this end, we consider an identification scheme and we start off by avoid-
ing the specification of a parametric form for these densities. The following
steps are required: (1) Estimate the parameters of the identifiable densities:
from pattern 3, f3(y1, y2, y3); from pattern 2, f2(y1, y2); and from pattern
1, f1(y1). (2) To properly account for the uncertainty with which the para-
meters are estimated, we need to draw from them as is customarily done in
multiple imputation. It will be assumed that in all densities from which we
draw, this parameter vector is used. (3) For pattern 2. Given an observa-
tion in this pattern, with observed values (y1, y2), calculate the conditional
density f3(y3|y1, y2) and draw from it. (4) For pattern 1. We now have
to distinguish three sub steps.

1. There is now only one ω involved: for pattern 1, in order to determine
f1(y2|y1), as a combination of f2(y2|y1) and f3(y2|y1). Every ω in the
unit interval is valid. Specific cases are: for NCMV, ω = 1; for CCMV,
ω = 0; for ACMV, ω identifies a linear combination across patterns.
Note that, given y1, this is a constant, depending on α2 and α3. For
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NFD1 and NFD2, the first unidentified conditional density can be
chosen freely, thereafter a system of ω’s has to be chosen as well.

To pick one of the two components f2 or f3, we need to generate a
random uniform variate, U say, except in the boundary NCMV and
CCMV cases.

2. If U ≤ ω, calculate f2(y2|y1) and draw from it. Otherwise, do the
same based on f3(y2|y1).

3. Given the observed y1 and given y2 which has just been drawn, cal-
culate the conditional density f3(y3|y1, y2) and draw from it.

All steps but the first one have to be repeated M times, and further infer-
ential steps proceed as in Section 28.2.

In case the observed densities are assumed to be normal, the correspond-
ing conditional densities are particularly straightforward. However, in sev-
eral cases, the conditional density is a mixture of normal densities. Then
an additional and straightforward draw from the components of the mix-
ture is necessary. Similar developments are possible with categorical data,
ensuring that draws from the proper conditional multinomial distributions
are made.

30.4 A Unifying Framework for Selection and
Pattern-mixture Models

The developments in Section 30.3 can be followed whenever identifying re-
strictions are invoked, regardless of whether the outcomes are continuous
or non-continuous. In this section, we present a different unification, in the
sense that a versatile framework for modeling incomplete categorical data
is presented. From this, selection models and pattern-mixture models will
follow as a special case. These developments are based on work by Molen-
berghs and Goetghebeur (1997) and Michiels, Molenberghs, and Lipsitz
(1999).

We will adopt the same notational conventions as in Section 29.2, based
upon Section 7.1. In summary, there are r = 1, . . . , N design levels, group-
ing subjects i = 1, . . . , Nr, which are measured at occasions j = 1, . . . , n,
producing outcomes Yrij with corresponding design Xr. Restricting atten-
tion to dropout, Dri is the dropout indicator. It is convenient to state that
the categorical outcome Yrij can take values kj = 1, . . . , cj and to let Dri,
which is categorical as well, range over k0 = 1, . . . , c0. Typically c0 = n,
but it could be smaller if, for example, some dropout patterns do not occur
by design.

All information about the responses on the units at the rth design level
is contained in a cross-classification of the dropout indicator Dri and the
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outcomes Yrij into the c0 × . . .×cn dimensional contingency table with cell
counts Zc

rdk1...kn
, grouped into the vector Zc

r. The superscript c here and
in what follows refers to ‘complete’ or ‘full.’ This notational convention is
similar to Section 29.2. Since we will not distinguish between cell counts
and cumulative counts, we assume that the above notation refers to cell
counts, and we will not consider the version superscripted by a ∗.

The corresponding cell probability vector νc
r has entries

νc
rdk1...kn

. (30.13)

A selection model, such as the models described in Sections 29.2 and 29.3,
is obtained by factorizing (30.13) as

νc
rdk1...kn

(θS , ψS) = µSc
rk1...kn

(θS) φSc
rd|k1...kn

(ψS). (30.14)

A general pattern-mixture model is then based upon the factorization

νc
rdk1...kn

(θP , ψP ) = φPc
rd (ψP ) µPc

rk1...kn|d(θ
P ). (30.15)

A certain amount of symmetry between the two frameworks is seen by
assuming the data are collected following a multinomial sampling scheme
and further assuming composite generalized linear models to hold:

• for the parameters of the selection model:

ηS
r (µSc

r ) = XS
ηrθ

S , (30.16)

ξS
r (φSc

r ) = XS
ξrψ

S , (30.17)

• and for the parameters of the pattern-mixture model:

ηP
r (µPc

r|d) = XP
ηrθ

P
d , d = 1, . . . , n, (30.18)

ξP
r (φPc

r ) = XP
ξrψ

P . (30.19)

Denote θP = (θP
d )d=1,...,n, XS

r = (XS
ηr, X

S
ξr), XP

r = (XP
ηr, X

P
ξr).

General choices for the vector link functions ηS
r , ηP

r are possible, inspired
by the general framework laid out in Section 7.3.

The observed data are not Zc
r but merely Zr, a partially classified table,

arising by summing over the appropriate rows or columns in the correspond-
ing complete table. We then have a linear relationship between observed
and complete quantities: Zr = CrZ

c
r and νr = Crν

c
r. We call the matrix

Ci which consists of 0’s and 1’s the coarsening matrix in agreement with
Heitjan and Rubin (1991) and Molenberghs and Goetghebeur (1997). See
Section 28.3.6 for an example.
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Illustration. As an illustration, assume complete data consist of a design
matrix and a categorical outcome (with c levels) measured on two occasions
for each subject, and further that each subject is seen at the first occasion,
with only part of them measured at the second occasion. The observed
multinomial data consist of a set of complete c × c tables Zr2 with counts
Zr2jk (j, k = 1, . . . , c) and a supplemental margin Zr1 with counts Zr1j ,
where j = 1, . . . , c. The (hypothetical) full data amount to two c× c tables
Zc

rdjk with d = 1, 2 and j, k = 1, . . . , c. Obviously, the relation between
complete and observed counts is Zr2jk = Zc

r2jk and Zr1j =
∑c

k=1 Zc
r1jk.

Adopting the convention that the counts of all tables corresponding to
design level r are represented as vectors in lexicographic ordering, and that
Zr = (Z ′

r2, Z
′
r1)

′ with a similar expression for Zc
r, the coarsening matrix

Cr is given by

C = Cr =

(
Cr0 0
0 Cr1

)
=

(
Ic2 0c2,c2

0c,c2 Ic ⊗ 11,c

)
, (30.20)

with I. the identity matrix, 0. a matrix of zeros, 1. a matrix of ones and ⊗
the Kronecker product.

The kernel of the multinomial (observed) log-likelihood is

	(θ, ψ; Z) =
N∑

r=1

Z ′
r ln(νr),

subject to the constraints
∑

k νrk = 1, where the summation index k cycles
through all (multi-indexed) cells of νr.

We develop estimation of the parameters θ and ψ, which are either
the selection model or the pattern-mixture model parameters. Following
McCullagh and Nelder (1989), the score equations are given by

∂	

∂θ
=

N∑
r=1

(
∂νr

∂θ

)′
V −

r (Zr − nrνr),

with V r = diag(νr) − νrν
′
r. Further,(

∂νr

∂θ

)′
=
(

∂νc
r

∂θ

)′(
∂νr

∂νc
r

)′
=
(

∂νc
r

∂θ

)′
C ′

r. (30.21)

30.5 Selection Models versus Pattern-mixture
Models

A specific model choice is based on the form of (30.16) and (30.17), or
(30.18) and (30.19), reflected in the matrix ∂νc

r/∂θ in (30.21). We will
discuss selection models and pattern-mixture models in turn. The specific
setting of a bivariate outcome will be considered, extension to the general
case being straightforward.
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30.5.1 Selection Models
Model (30.14), restricted to two outcomes, becomes

νSc
rdjk(θS , ψS) = µSc

rjk(θS) φSc
rd|jk(ψS).

Drop the superscript S throughout Section 30.5.1. For each r, the con-
straints on these probabilities are:

2∑
d=1

c∑
j=1

c∑
k=1

νc
rdjk =

c∑
j=1

c∑
k=1

µc
rjk = 1 and

2∑
d=1

φc
rd|jk = 1 for all j, k.

In this section, we define φrjk = φc
r2|jk = 1 − φc

r1|jk, the probability that a
measurement is made at the second occasion, given that the complete data
are (Yri1 = j, Yri2 = k).

When the complete data Zc
r would be available, the information required

to estimate the measurement parameters θ could be obtained from the col-
lapsed table with entries Zc

r1jk + Zc
r2jk, while the parameters of ψ would

follow from the pairs (Zc
r1jk, Zc

r2jk) for all (j, k). For the partially observed
table however, we have to fit the observed data likelihood with cell proba-
bilities νr2jk and

νr1j+ =
c∑

k=1

νc
r1jk =

c∑
k=1

µc
rjk(1 − φrjk).

In general, the latter expression does not split into µ and φ parts.
To fully specify (30.16) and (30.17), we will choose link functions for the

left hand sides of the form:

ηr(µ
c
r) = Dµ ln(Aµµc

r), (30.22)

ξr(φ
c
r) = Dφ ln(Aφφc

r), (30.23)

where Aµ and Aφ are matrices containing zeros and ones, used to construct
sums of probabilities (e.g., probabilities of collapsed tables), and Dµ and
Dφ are contrast matrices (with entries equal to 0, 1 or −1). This choice is
in agreement with (7.17).

Observing that νc
r = νc

r(µ
c
r, φ

c
r) and

∂νc
r

∂(µc
r, φ

c
r)

=

(
Fr Mr

I − Fr −Mr

)
,

with Fr = diag(φc
r) and Mr = diag(µc

r), and introducing the notation

Tηr =
(

∂ηr

∂µc
r

)
= Dµ(diag[Aµµc

r)]
−1Aµ,

Tξr =
(

∂ξr

∂φc
r

)
= Dφ(diag[Aφφc

r)]
−1Aφ,
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the score equations become

∂	

∂(θ, ψ)
=

N∑
r=1

(
Xηr 0
0 Xξr

)′(
T−1

ηr 0
0 T−1

ξr

)′

×
(

Fr Mr

I − Fr −Mr

)′
C ′

rV
−
r Sr, (30.24)

with Sr = Zr−Nrνr. Solving these equations can be done using a Newton-
Raphson algorithm, as discussed in the previous section. The inverse of the
matrix of second derivatives, evaluated at the maximum of the likelihood
function, provides an estimator of the precision.

30.5.2 Pattern-mixture Models
For pattern-mixture models, we factorize the complete data probabilities as
products of marginal dropout parameters and measurement probabilities
conditional on the dropout pattern: νPc

rdjk(θP , ψP ) = φPc
rd (ψP ) µPc

rjk|d(θ
P ).

Because in this section it is clear that we work in the pattern-mixture
model setting, the superscript P will be omitted. The constraints on these
probabilities are, for each i:

c∑
j=1

c∑
k=1

µc
rjk|d = 1 for all d and

2∑
d=1

φc
rd = 1.

To derive the score equation, we need to adapt the notation slightly. The
measurement probabilities for pattern d = 1, 2 are collected into a vector
µc

r|d and the dropout parameters into φc
r. The design for the measurement

part has 2 components ηr|d = Xηr|dβ (d = 1, 2) and

Tηr|d =
(

∂ηr|d
∂µc

r

)
= Dµ|d(diag[Aµ|dµc

r|d)]
−1Aµ|d.

This yields

∂	

∂(θ, ψ)
=

N∑
r=1

⎛⎜⎝ Xηr|1 0
Xηr|2 0

0 Xξr

⎞⎟⎠
′⎛⎜⎝ T−1

ηr|1 0 0
0 T−1

ηr|2 0
0 0 T−1

ξr

⎞⎟⎠
′

×
(

Fr 0 µc
r|1

0 I − Fr −µc
r|2

)′
C ′

rV
−
r Sr. (30.25)

To maximize the pattern-mixture likelihood, we need to discuss identifying
restrictions, as discussed in Section 30.3.
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30.5.3 Identifying Restrictions
A feature of the pattern-mixture approach is that the model is chronically
overspecified. This is because the measurement probabilities are modeled
separately in both patterns, but the incomplete pattern (d = 1) is only
partially observed (Little 1993). In the case described above, the incom-
plete pattern would provide information about the first measurement, but
not about the second one, nor about the association between both. Thus,
only the probabilities µrj|1 are identified, leaving the µc

rk|1j inestimable.
We will describe a solution to this problem, by first considering a measure-
ment model and secondly combining it with a particular form of identifying
restrictions on the model parameters.

A possible modeling approach is to consider a bivariate model for the
completers, e.g., a Dale model, and a univariate model for the incomplete
observations, e.g., a logistic regression model. We will term this the minimal
approach.

We can then translate the identifying restrictions of Section 30.3. In the
case of the illustration in Section 30.4, µc

rk|1j are identified by equating
them to appropriate functions of µr2jk. For two patterns only, CCMV,
ACMV, and NCMV, all amount to: µc

rk|1j = µc
rk|2j = µrk|2j .

To apply CCMV to the Dale model directly, we have to proceed in a
different way. First, the minimal approach is followed. From the observed
data θ̂

P

0 and ψ̂
P

0 follow and hence the underlying probabilities µ̂rjk|2 and
µ̂rj|1 can be estimated. Then, CCMV implies that µ̂rk|1j ≡ µ̂rk|2j and
hence the partial count Zrj|1 can be used to impute Z̃rjk|1 = Zrj|1µ̂rk|2j .
From these completed counts and Zc

rjk|2, one can estimate the parameters

of interest, i.e., a Dale model for both patterns, yielding θ̂P and ψ̂P ≡
ψ̂P

0 . This approach implies that the odds ratio for both outcomes, after
correction for the covariate effects on the marginal probabilities, is carried
over from for the completers’ table to the incompleters’ table.

This two-step procedure is clearly not restricted to the Dale model. In
the case of monotone dropout, extension to more than two measurement
occasions is straightforward. Although parameter estimation is very elegant
and computationally simple with the two-step procedure, precision estima-
tion is less simple, since treating the filled-in table as if it represented real
data fails to reflect random variability in the unobserved counts. Strategies
to determine confidence intervals will be discussed in Section 30.5.4.

30.5.4 Precision Estimation with Pattern-mixture Models
We propose two methods to calculate 95% confidence intervals: profile like-
lihood (Clayton and Hills 1993, Welsh 1996) and multiple imputation (Sec-
tion 28.2).
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Let us discuss profile likelihood first. For each component θP
s of the

measurement parameter vector θP , the profile likelihood is constructed
by keeping θP

s fixed and maximizing the observed data log-likelihood

	(θP ) =
N∑

r=1

c∑
j=1

[
c∑

k=1

Zr2jk ln νr2jk(θP , ψP ) + Zr1j ln νr1j(θP , ψP )

]
,

with respect to the remaining parameters. In particular, lower and upper
bounds θP

sl and θP
su of a 95% confidence interval for θ̂P

s are found by solving

2[	(θ̂
P

) − 	(θ̂
P

(s))] = χ2
1(0.05), where θ̂P

(s) is the constrained maximization
over θP

s = θP
sl or θP

s = θP
su and χ2

1(0.05) is the 95% quantile of the χ2 distri-
bution with a single degree of freedom. The advantage of profile likelihood
is that it is able to reflect asymmetry in the log-likelihood function.

Alternatively, multiple imputation can be used to construct an asymp-

totic covariance matrix for θ̂P , from which asymptotic 95% confidence in-
tervals readily follows. Recall that, for each covariate level s, the observed
data are Zr and the complete data are Zc

r. If we knew the distribution of
Zc

r, with parameter vector θ, then we could impute Zc
r by drawing from the

conditional distribution f(Zc
r|Zr, θ). Because θ is unknown, we estimate

it from the data, yielding θ̂, and use the distribution f(Zc
r|Zr, θ̂). Because

θ̂ is a random variable, we obviously take its variability into account in
drawing imputations. In the analysis task, the Dale model is used to esti-
mate model parameters. The inference task is straightforward and in line
with Section 28.2. Hypothesis testing can proceed using the methodology
of Section 28.2.3, which can be applied when the number of imputations is
small. Alternatively, if the number of imputations is large, then asymptotic
approximations can be used.

These two methods do not need to give the same results for the variances.
Apart from sampling variation, introduced through multiple imputation,
and different reference distribution approximations, the main difference
is that multiple imputation based confidence intervals are symmetric by
construction, while profile likelihood confidence intervals are not.

30.6 Analysis of the Fluvoxamine Data

The fluvoxamine study was introduced in Section 2.4 and analyzed before
in Sections 6.5, 7.2.4, 7.11, 29.2.3, and 29.3.1. We will use this study to
illustrate the general selection and pattern-mixture modeling framework,
in agreement with Michiels, Molenberghs, and Lipsitz (1999).

A dichotomized version of the side effects, at the first and at the last visit,
will be considered, where category 1 (no side effect) is contrasted with the
others for both outcomes (category 0). So, we model the probability of
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TABLE 30.1. Fluvoxamine Trial. Selection model parameter estimates and 95%
confidence intervals (full model).

Parameter First measurement Last measurement
intercept 0.786 [-0.083;1.654] 1.432 [0.397;2.467]
age/30 -0.669 [-1.218;-0.119] -0.676 [-1.318;-0.034]
sex -0.318 [-0.811;0.175] 0.254 [-0.337;0.846]
antecedents 0.134 [-0.366;0.633] -0.057 [-0.649;0.536]

Association
log odds ratio 2.038 [1.335;2.740]

Dropout model
intercept 1.583 [0.571;2.595]
previous -0.556 [-1.119;0.007]
age/30 -0.261 [-0.874;0.352]
sex 0.608 [0.052;1.164]
antecedents -0.254 [-0.836;0.327]

no side effects. 299 patients have at least one measurement, including 242
completers.

30.6.1 Selection Modeling
Table 30.1 represents parameter estimates and asymptotic confidence inter-
vals for a selection model including age, sex , and psychiatric antecedents,
both into the marginal measurement model as well as in the logistic model
for dropout. Note that age is a continuous covariate, whereas the other two
are dichotomous. To allow for MAR, the first response is also entered in
the dropout model. The association is modeled in terms of a constant log
odds ratio.

In the marginal model, sex and antecedents seem to have little effect,
whereas age is borderline and its coefficients at both measurement occasions
are very similar. Likewise, age and antecedents add little to the dropout
model, and further sex and the outcome at the first occasion are borderline,
albeit at different sides of the critical level. The association between both
measurements, even with adjustment of the marginal regression for covari-
ate effects, remains very high, with an odds ratio of exp(2.038) = 7.675.

A backward selection procedure was performed on the measurement and
dropout processes separately, based on the likelihood ratio test. Parame-
ters were removed in the following order. For the measurement model:
both antecedents effects and both sex effects were removed. Subsequently,
the two age parameters were combined into a common age effect. For the
dropout model, age and antecedents were removed. The result is shown in
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TABLE 30.2. Fluvoxamine Trial. Selection model parameter estimates and 95%
confidence intervals after model reduction.

Parameter First measurement Last measurement
intercept 0.661 [-0.043;1.365] 1.560 [0.823;2.297]
common age (/30) -0.664 [-1.141;-0.188]

Association
log odds ratio 1.956 [1.270;2.642]

Dropout model
intercept 1.085 [0.547;1.624]
previous -0.584 [-1.140;-0.028]
sex 0.568 [0.025;1.110]

Table 30.2. From this model, it is seen that the probability of side effects is
higher at the first measurement occasion than at the last one, and increases
with age. In particular, for an increase of 1 year, the odds of side effects
increase with a factor exp(0.664/30) = 1.022, because age was divided by
30 for ease of display of the estimates. The probability of dropout is higher
if side effects are observed at the first occasion, and is lower for males than
for females. In particular, the dropout probabilities are 0.256 (0.161) for
males with (without) previous side effects, and 0.377 (0.253) for females
with (without) side effects. The association, as well as the other parame-
ters, except for the intercept, are similar to the ones found in Table 30.1.

30.6.2 Pattern-mixture Modeling
For the pattern-mixture approach, the parameter estimates and confidence
intervals for the variables age, sex, and antecedents can be found in Ta-
ble 30.3. The model is parameterized as follows: intercepts and covariate
effects are given for the complete observations, together with the differ-
ences between effects for incomplete and complete observations. The latter
ones would be zero if the distribution among completers would equal the
distribution among dropouts. This model is used for the first as well as for
the last observation. A constant log odds ratio is assumed for the associ-
ation between both measurements. The confidence intervals are calculated
using profile likelihood, as well as using multiple imputation. For the mul-
tiple imputation technique, the results are given for 100 imputations. As a
check, Michiels, Molenberghs, and Lipsitz (1999) have also calculated the
confidence intervals for 1000 and 4000 imputations, leading to negligible dif-
ferences. Both methods to calculate confidence intervals (results not shown
here) gave approximately the same results. The same variables are used to
fit the dropout model, and because the data needed to estimate this model
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TABLE 30.3. Fluvoxamine Trial. Pattern-mixture model. Profile likelihood (PL)
and multiple imputation (MI) (full model).

Parameter Meth. First measurement Last measurement
Complete observations

intercept PL 1.296 [0.289;2.339] 1.664 [0.616;2.767]
MI 1.296 [0.268;2.325] 1.663 [0.596;2.731]

age/30 PL -0.849 [-1.519;-0.203] -0.756 [-1.440;-0.091]
MI -0.849 [-1.500;-0.198] -0.756 [-1.414;-0.097]

sex PL -0.593 [-1.189;-0.007] 0.127 [-0.497;0.739]
MI -0.593 [-1.182;-0.004] 0.127 [-0.483;0.737]

antecedents PL 0.222 [-0.353;0.805] -0.016 [-0.634;0.594]
MI 0.222 [-0.357;0.800] -0.016 [-0.621;0.589]

Incomplete minus complete observations
intercept PL -2.151 [-4.300;-0.084] -0.913 [-4.376;3.204]

MI -2.156 [-4.224;-0.087] -1.018 [-4.393;2.357]
age/30 PL 0.869 [-0.396;2.142] 0.366 [-1.845;2.435]

MI 0.871 [-0.396;2.139] 0.395 [-1.503;2.292]
sex PL 0.879 [-0.268;2.050] 0.382 [-1.413;2.236]

MI 0.879 [-0.274;2.033] 0.347 [-1.477;2.171]
antecedents PL -0.234 [-1.428;0.986] -0.107 [-2.271;1.802]

MI -0.234 [-1.439;0.970] -0.012 [-1.858;1.834]

Association
log odds ratio PL 2.038 [1.354;2.789]

MI 2.065 [1.346;2.784]

Dropout model, CI based on asymptotic variance (AV)
intercept AV 1.390 [0.450;2.370]
age/30 AV -0.349 [-0.953;0.255]
sex AV 0.559 [0.010;1.108]
antecedents AV -0.232 [-0.809;0.345]

are complete, we have calculated confidence intervals based on the asymp-
totic variance. Although multiple imputation is only performed to estimate
the precision, we also display the corresponding parameter estimates as an
extra indication for convergence of the algorithm.

Antecedents and sex have nearly no effect on the measurement model,
but the sex parameter for the first measurement gives a borderline in-
fluence. Age has an effect on the measurement outcomes, but there is no
difference between this effect for the complete and incomplete observations.
The association between both measurements is very strong. The odds ratio
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TABLE 30.4. Fluvoxamine Trial. Pattern-mixture model. Profile likelihood (PL)
and multiple imputation (MI) after model reduction.

Parameter Meth. First measurement Last measurement
Complete observations

intercept PL 0.762 [0.036;1.478] 1.590 [0.846;2.333]
MI 0.747 [0.029;1.466] 1.576 [0.836;2.315

Incomplete minus complete observations
intercept PL -0.499 [-1.065;0.050] -0.268 [-1.123;0.704]

MI -0.499 [-1.055;0.056] -0.275 [-1.071;0.521]

Common age effect (/30)
PL -0.650 [-1.132;-0.162]
MI -0.639 [-1.121;-0.158]

Association
log odds ratio PL 1.977 [1.291;2.682]

MI 1.943 [1.263;2.623]

Dropout model, CI based on asymptotic variance (AV)
intercept AV 0.766 [0.353;1.179]
sex AV 0.517 [-0.021;1.056]

is exp(2.038) = 7.675. Age and antecedents have no effect on the dropout
model, but sex has.

We reduced our model using a backward selection procedure. For the
measurement model, we dropped antecedents, the additional age effect for
the incomplete observations, and all the sex effects. Finally, a joint age
effect for both time points is assumed. In the dropout model, antecedents
and age were removed. Sex was kept, although it is borderline. The final
model can be found in Table 30.4.

From this model one can see that the probability of dropout is higher
for males than for females: 0.253 and 0.168, respectively. The probability
of having side effects is higher at the first occasion than at the last, and
increases for those who did not show up at the last visit. This probability
also increases with age. For an increase of 1 year, the odds of having side
effects increases with 1.022. The association is similar to its value in the
full model, found in Table 30.3.

Note that the pattern-mixture model assumed a common odds ratio
among completers and dropouts. This implies that the conditional distribu-
tion of the missing second measure follows the same conditional distribution
given the first variable as do the complete variable. This ACMV restriction,
as discussed in Section 3.3, is equivalent to the MAR assumption in the
selection model.
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30.6.3 Comparison
Both reduced models include age as a predictor for side effects. For the
selection model, this effect is the same at both measurement occasions.
The same is true for the pattern-mixture model and although it could in
principle differ for completers and dropouts, it is the same for both sub-
groups. As a result, the estimates of the age effects in both frameworks
become comparable and their numerical values are indeed very close. By
construction, the association parameters are also comparable; they are cer-
tainly of the same magnitude. Of course, the dropout models differ, since
only in a selection model measurements can be included into the dropout
part as covariates. The sex effect is similar in both models, but its effect is
borderline.

It is important to note that the pattern-mixture model can yield valuable
insight in its own right. Specifically, the probability of side effects, after ad-
justing for age, is higher in the dropout group than in the completers group,
both at the first as well as at the last measurement occasion. For someone
aged 30 say, the probabilities of side effects at the first measurement occa-
sion for in the completers’ group and the dropouts’ groups are 0.4720 and
0.5956, respectively. At the last measurement occasion these probabilities
are 0.2809 and 0.3380, respectively. These values can be obtained in a selec-
tion framework as well, but less straightforwardly so. Another advantage of
the pattern-mixture model is that the model building can be done for the
different dropout groups separately. For example, if sex would be a prog-
nostic factor for side effects in the dropout group but not in the completers
group, this is easily incorporated in the pattern-mixture analysis.

30.7 Concluding Remarks

Pattern-mixture models are tied to restrictions, whereas selection models
apparently are not. This issue is easily discussed in the setting of the il-
lustration of page 563. It is useful to start our discussion with the MAR
case. For the selection model, such a mechanism entails φc

rd|jk = φc
rd|j . For

a pattern-mixture model, it implies µc
rk|1j = µc

rk|2j . In other words, MAR
naturally translates into assumptions about the dropout probabilities in
a selection model, but into a restriction in the pattern-mixture section.
Data to estimate φc

rd|jk (in particular φc
rd|j) are available, but the data to

estimate µc
rk|1j are not.

Both procedures rest on untestable assumptions. Although this is clearly
true for the pattern-mixture models, it is less obvious for the selection
models, since wide classes of models for φc

rd|jk are estimable. However, to
correctly test for MAR, one would need to observe both measurements in
both patterns, which is by definition impossible (Glynn, Laird, and Rubin
1986, and discussion).
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The same is true for non-random missingness mechanisms. For pattern-
mixture models, MNAR mechanisms are reflected by different restrictions
(e.g., protective restrictions: Brown 1990, Michiels and Molenberghs 1997).
For selection models, MNAR is encompassed by models for φc

rd|jk that
depend explicitly on k. In Molenberghs and Goetghebeur (1997), it is seen
how two non-random selection models can be supported by the observed
data almost equally, but yield radically different interpretations for the
unobserved data, in the sense that different models distribute an observed
count Zr1j in entirely different ways over the full data cells Zc

r1jk.
An advantage of pattern-mixture models in the context of non-random

dropout, quoted by Little (1995), is that no explicit model for the dropout
process is needed, as long as the restrictions imposed are acceptable. How-
ever, this claim is less fulfilling at second glance, as there is no symmetry
between the φ parameters in the two families. In a selection model, φc

rd|jk

contains all information about the dropout process, whereas the same in-
formation is spread out over φrd and µc

rjk|d in a pattern-mixture model.
This is seen through the fact that MAR is emanated by the φ’s in the first
case but by the µ’s in the latter. Furthermore, the interdependence between
dropout and measurement processes is modeled in φc

rd|jk in the first case
and in µc

rjk|d in the latter one. The pattern-mixture dropout probabilities
φrd can be seen as the covariate dependent part of the dropout mechanism.

Arguably, a framework has to be chosen based on the questions of scien-
tific interest. For instance, in case one is interested in the population as a
whole, a selection model might be the natural choice. However, investigators
who would like to explore differences among subgroups that are identified
by their response patterns, should consider fitting pattern-mixture models.
The latter situation could be of interest to differentiate therapies between
subgroups. For instance, if males would suffer more from dropout than fe-
males, one may want to establish sex dependent treatment protocols. In
addition, both models can be fitted in a sensitivity analysis.

It may even be possible, rather than to choose between selection models
and pattern-mixture models, to combine aspects of both. Such a route was
chosen by Molenberghs, Michiels, and Kenward (1998).





31
Sensitivity Analysis

31.1 Introduction

Even though the assumption of likelihood ignorability encompasses both
MAR and the more stringent and often implausible MCAR mechanisms, it
is difficult to exclude the option of a more general missingness mechanism.
One solution is to fit an MNAR model as proposed by Diggle and Kenward
(1994) or Molenberghs, Kenward, and Lesaffre (1997). However, as pointed
out by several authors (discussion to Diggle and Kenward 1994, Verbeke
and Molenberghs 2000, Chapter 18), one has to be extremely careful with
interpreting evidence for or against MNAR using only the data under study.
A detailed treatment of the issue is provided in Jansen et al (2005).

A sensible compromise between blindly shifting to MNAR models or
ignoring them altogether is to make them a component of a sensitivity
analysis. It is important to consider the effect on key parameters such as
treatment effect. In many instances, a sensitivity analysis can strengthen
one’s confidence in the MAR model (Molenberghs et al 2001, Verbeke et
al 2001).

Broadly speaking, we could define a sensitivity analysis as one in which
several statistical models are considered simultaneously and/or where a
statistical model is further scrutinized using specialized tools (such as di-
agnostic measures). This rather loose and very general definition encom-
passes a wide variety of useful approaches. The simplest procedure is to
fit a selected number of (MNAR) models that are all deemed plausible or
one in which a preferred (primary) analysis is supplemented with a num-
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ber of variations. The extent to which conclusions (inferences) are stable
across such ranges provides an indication about the belief one can put into
them. Variations to a basic model can be constructed in different ways. The
most obvious strategy is to consider various dependencies of the missing
data process on the outcomes and/or covariates. Alternatively, the distri-
butional assumptions of the model can be changed. Thus clearly, several
routes to sensitivity analysis are possible and in fact the area is fully in
expansion.

Sensitivity analysis can be conducted within the selection model family
itself. A perspective is given in Section 31.2. Another promising tool, pro-
posed by Verbeke et al (2001), and employed by Thijs, Molenberghs, and
Verbeke (2000) and Molenberghs et al (2001), is based on local influence
(Cook 1986). These authors considered the Diggle and Kenward (1994)
model, which is based on a selection model, integrating a linear mixed
model for continuous outcomes with logistic regression for dropout.

These ideas have been developed for categorical data as well. Van Steen
et al (2001) developed a local influence based sensitivity analysis for the
MNAR Dale model of Section 29.2. It is presented in Section 31.3. Sec-
tion 31.4 discusses related ideas for the general Baker, Rosenberger, and
DerSimonian (1992) model, introduced in Section 29.3. It is based upon
work by Jansen et al (2003). Hens et al (2005) developed kernel weighted
influence measures.

Although classical inferential procedures account for the imprecision re-
sulting from the stochastic component of the model and for finite sampling,
less attention is devoted to the uncertainty arising from (unplanned) incom-
pleteness in the data, even though the majority of studies in humans suffer
from incomplete follow-up. Molenberghs et al (2001) acknowledge both the
status of imprecision, due to (finite) random sampling, as well as ignorance,
due to incompleteness. Both can be combined into uncertainty (Kenward,
Goetghebeur, and Molenberghs 2001). An overview is given in Section 31.5.

Another option is to consider pattern-mixture models as a complement
to selection models (Thijs et al 2002, Michiels et al 2002). The analysis
conducted in Section 30.6, along the lines outlined in Sections 30.4 and
30.5, can be viewed as a sensitivity analysis of this type. A perspective is
given in Section 31.6.

31.2 Sensitivity Analysis for Selection Models

When data are incomplete, the analysis of the actually observed data is
subject to further untestable modeling assumptions. The methodologically
simplest case is discussed in Section 27.3, where it is assumed that the
missing data are MCAR. However, the MCAR assumption is a strong one
and made too often in practice.
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When more flexible assumptions, such as MAR or even MNAR, are con-
sidered, several choices have to be made. For example, one has to choose
between selection and pattern-mixture models, or an alternative framework
such as shared-parameter models (Section 26.2.1).

Particularly within the selection modeling framework, there has been an
increasing literature on MNAR. At the same time, concern has been grow-
ing precisely about the fact that models often rest on strong assumptions
and relatively little evidence from the data themselves.

In response to these concerns, there is growing awareness of the need
for methods that investigate the sensitivity of the results with respect to
the model assumptions. See, for example, Nordheim (1984), Little (1994b),
Rubin (1994), Laird (1994), Fitzmaurice, Molenberghs, and Lipsitz (1995),
Molenberghs et al (1999), Kenward (1998), and Kenward and Molenberghs
(1999). Many of these are to be considered useful but ad hoc approaches.
Whereas such informal sensitivity analyses are an indispensable step in the
analysis of incomplete longitudinal data, it is desirable to conduct more
formal sensitivity analyses.

At any rate, fitting an MNAR model should be subject to careful scrutiny.
The modeler needs to pay attention, not only to the assumed distributional
form of the model (Little 1994b, Kenward 1998), but also to the impact one
or a few influential subjects may have on the dropout and/or measurement
model parameters. Because fitting an MNAR model is feasible by virtue
of strong assumptions, such models are likely to pick up a wide variety of
influences in the parameters describing the nonrandom part of the dropout
mechanism. Hence, a good level of caution is in place. This issue has been
studied in detail by Jansen et al (2005). These authors not only study the
behavior of local influence methods in the presence of a variety of deviations
from the posited model, not only in terms of the dropout mechanism, they
also study the behavior of the likelihood ratio test statistic, used to test
MNAR versus MAR. Their conclusion is that such a test is surrounded
with both philosophical issues, as well as technical problems. There are
philosophical issues because two models, similar or even identical in terms
of their fit to the observed data, may produce widely varying predictions of
the unobserved data. When unrecognized, this is a problem, as such models
cannot be distinguished in terms of statistical arguments only. When the
scientific question is, at least in part, in terms of the fit to the unobserved
outcomes, it is very difficult to distinguish between such models solely in
statistical terms. The technical issues occur because the likelihood ratio test
statistic for MNAR versus MAR, of the type used in the Diggle and Ken-
ward (1994) and MNAR Dale (Section 29.2) models, exhibits non-standard
behavior. This should not come as a surprise, as most of the information
on the MNAR parameter(s) comes from distributional assumptions, and
not from genuine information in the data. Therefore, classical asymptot-
ics should not be taken for granted. This problem is studied by Jansen
et al (2005); see also Scharfstein, Rotnitzky, and Robins (1999). By using
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a semi-parametric framework, it becomes clear that, under MNAR, semi-
parametric assumptions, i.e., moment-based assumptions, are not sufficient
to identify model parameters.

31.3 A Local Influence Approach for Ordinal Data
with Dropout

Incomplete longitudinal ordinal data can be modeled using a simple logis-
tic regression formulation for the dropout process and using a multivariate
Dale model for the response (Molenberghs and Lesaffre 1994, 1999, Molen-
berghs, Kenward, and Lesaffre, 1997), as described in Section 29.2. To ex-
plore the sensitivity of this selection model for repeated ordinal outcomes,
Van Steen et al (2001), considered a local influence approach.

31.3.1 General Principles
Cook (1986) suggests that more confidence can be put in a model that is
relatively stable under small modifications. The best known perturbation
schemes are based on case-deletion (Cook and Weisberg 1982) in which the
effect is studied of completely removing cases from the analysis. A quite
different paradigm is the local influence approach where one investigates
how the results of an analysis are changed under small perturbations of the
model. In the framework of the linear mixed model Beckman, Nachtsheim,
and Cook (1987) used local influence to assess the effect of perturbing the
error variances, the random-effects variances and the response vector. In
the same context, Lesaffre and Verbeke (1998) have shown that the local
influence approach is also useful for the detection of influential subjects in
a longitudinal data analysis. Verbeke et al (2001) and Verbeke and Molen-
berghs (2000, Chapter 19) use the same idea to explore the sensitivity of a
selection model for repeated continuous outcomes. The principal idea is to
explore how small perturbations around MAR, in the direction of MNAR,
can have a large impact. These authors have shown that various types of
influential subjects can cause a model to apparently be of the MNAR type.
This implies that caution should be used before concluding that the model
really is MNAR, as many types of influential subjects, different from an
MNAR mechanism, can force such a conclusion. This view was confirmed
by Jansen et al (2005).

Consider the following perturbed dropout model:

logit[pid(Hd, kd; ψ)] = Hdψ + ωikd. (31.1)

which are the components of the φ’s in (29.3). We choose to use the
individual-level index i, rather than the design-level index r, as the pertur-
bations ωi are defined at the individual level.
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When ωi = 0 for all i, MAR is obtained. Due to ignorability, no influence
on the measurement model parameters is then possible. When small per-
turbations in a specific ωi lead to relatively large differences in the model
parameters, then this suggests that these subjects may have a large impact
on the final analysis. Note that the ωi are not to be seen as fixed or random
subject-specific parameters, but rather as (infinitesimal) perturbations, to
which differential geometry will be applied, rather than ordinary parameter
estimation.

We first give a general introduction of the local influence methodology
as introduced by Cook (1986). In Section 31.3.2, it will be applied to the
fluvoxamine study.

We denote the log-likelihood function corresponding to the model includ-
ing perturbed dropout model (31.1) by

	(γ|ω) =
N∑

i=1

	i(γ|ωi),

in which 	i(γ|ωi) is the contribution of the ith individual to the log-
likelihood, and where γ = (θ, ψ) is the s-dimensional vector, grouping
the parameters of the measurement model and the dropout model, not
including the N × 1 vector ω = (ω1, ω2, . . . , ωN)′ of weights defining the
perturbation of the MAR model. It is assumed that ω belongs to an open
subset Ω of IRN . For ω equal to ω0 = (0, 0, . . . , 0)′, 	(γ|ω0) is the log-
likelihood function that corresponds to a MAR dropout model.

Let γ̂ be the maximum likelihood estimator for γ, obtained by maxi-
mizing 	(γ|ω0), and let γ̂ω denote the maximum likelihood estimator for
γ under 	(γ|ω). The local influence approach now compares γ̂ω with γ̂.
Similar estimates indicate that the parameter estimates are robust with re-
spect to perturbations of the MAR model in the direction of MNAR. Very
different estimates suggest that the estimation procedure is highly sensitive
to such perturbations, which suggests that the choice between a random
and a non-random dropout model highly affects the results of the analysis.
Cook (1986) proposed to measure the distance between γ̂ω and γ̂ by the so-
called likelihood displacement, defined by LD(ω) = 2[	(γ̂|ω0)− 	(γ̂ω|ω0)].
This takes into account the variability of γ̂. Indeed, LD(ω) will be large
if 	(γ|ω0) is strongly curved at γ̂, which means that γ is estimated with
high precision, and small otherwise. Therefore, a graph of LD(ω) versus ω
contains essential information on the influence of perturbations. It is useful
to view this graph as the geometric surface formed by the values of the
N + 1 dimensional vector ξ(ω) = [ω′, LD(ω)]′ as ω varies throughout Ω.
Because this so-called influence graph can only be depicted when N = 2,
Cook (1986) proposed to consider local influence, i.e., at the normal cur-
vatures Ch of ξ(ω) in ω0, in the direction of some N dimensional vector
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h of unit length. Let ∆i be the s dimensional vector defined by

∆i =
∂2	i(γ|ωi)

∂ωi∂γ

∣∣∣∣
γ=γ̂,ωi=0

and define ∆ as the (s × N) matrix with ∆i as its ith column. Further,
let L̈ denote the (s × s) matrix of second-order derivatives of 	(γ|ω0) with
respect to γ, also evaluated at γ = γ̂. Cook (1986) has then shown that
Ch can be easily calculated by Ch = 2|h′∆′L̈−1∆h|.

Obviously, Ch can be calculated for any direction h. One evident choice
is the vector hi containing one in the ith position and zero elsewhere, cor-
responding to the perturbation of the ith weight only. This reflects the
influence of allowing the ith subject to drop out non-randomly, whereas
the others can only drop out at random. The corresponding local influence
measure, denoted by Ci, then becomes Ci = 2|∆′

iL̈
−1∆i|. Another impor-

tant direction is the direction hmax of maximal normal curvature Cmax. It
shows how to perturb the MAR model to obtain the largest local changes
in the likelihood displacement. It is readily seen that Cmax is the largest
eigenvalue of −2 ∆′ L̈−1 ∆, and that hmax is the corresponding eigenvector.

When a subset γ1 of γ = (γ′
1, γ

′
2)

′ is of special interest, a similar approach
can be used, replacing the log-likelihood by the profile log-likelihood for γ1,
and the methods discussed above for the full parameter vector directly carry
over. Details can be found in Lesaffre and Verbeke (1998), Verbeke et al
(2001), and Verbeke and Molenberghs (2000, Chapters 11 and 19).

It will be clear from the previous derivations that calculation of local
influence measures merely reduces to evaluation of ∆ and L̈. In the linear
mixed model case, Verbeke et al (2001) and Verbeke and Molenberghs
(2000) have proposed closed form expressions, with some emphasis on the
case of compound symmetry. For the multivariate Dale model, as will be the
case for many other non-normal models, this is algebraically very involved
and may not yield the same type of insightful expressions. However, when a
program is available to fit the full non-random model (3.11), a particularly
convenient computational scheme can be used. Indeed, in this case there
are usually tools available to obtain a Hessian matrix evaluated in a point
of interest (e.g., through EM-aided differentiation, see also page 537). Note
that in our situation, it suffices to compute the second derivatives of the
likelihood, for each observation separately, after which the subvector ∆i

pertaining to the (γ, ω)-block can be selected.
In practice, the parameter θ in the measurement model is often of pri-

mary interest. Because L̈ is block-diagonal with blocks L̈(θ) and L̈(ψ), we
have that for any unit vector h, Ch equals Ch(θ) + Ch(ψ), with

Ch(θ) = −2h′
[

∂2	iω

∂θ∂ωi

∣∣∣∣
ωi=0

]′
L̈−1(θ)

[
∂2	iω

∂θ∂ωi

∣∣∣∣
ωi=0

]
h
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Ch(ψ) = −2h′
[

∂2	iω

∂ψ∂ωi

∣∣∣∣
ωi=0

]′
L̈−1(ψ)

[
∂2	iω

∂ψ∂ωi

∣∣∣∣
ωi=0

]
h,

evaluated at γ = γ̂.

31.3.2 Analysis of the Fluvoxamine Data
Van Steen et al (2001) applied the local influence ideas of Section 31.3 to
the fluvoxamine study introduced in Section 2.4 and analyzed at various
instances.

To investigate the sensitivity of inferences reported in Section 29.2.3 with
respect to modeling assumptions for the dropout process, the overall Ci,
influences Ci(θ) and Ci(ψ) for the measurement parameters and dropout
parameters, as well as hmax of maximal curvature are displayed in Fig-
ure 31.1. Note that the largest Ci are observed for patients #34 and #252
(both having side effects surpassing the therapeutic effect at visit 1 and
visit 2), followed by patients #182, #64, #122, #28, #108, #287, #232,
#112, and #245, all of whom yield the worst score on side effects at visit 1
and drop out at visit 2. We pay special attention to patient #239, showing
side effects interfering significantly with functionality at visit 1, after which
dropout occurs.

In addition, Figure 31.1 shows some evidence of the fact that influence
on measurement model parameters can theoretically only arise from those
measurement occasions at which dropout occurs, a fact already observed
by Verbeke et al (2001). Nevertheless, it should be noted that influence on
the measurement model parameters can also arise from complete observa-
tions. Indeed, when small perturbations in a specific ωi lead to relatively
large differences in the model parameters, the subject’s impact on dropout
parameters indirectly influences all functions that include these dropout
parameters. An example of such a function is the conditional mean of an
unobserved measurement, given the observed measurements and given the
fact that the patient belongs to a certain dropout pattern. As a conse-
quence, the corresponding measurement model parameters will indirectly
be affected as well (Verbeke et al 2001).

Influential completers occur in the index plots of Ci, Ci(ψ), and of the
components of the direction hmax of maximal curvature, but are absent
in the index plot for Ci(θ). Focusing on Ci(θ), Figure 31.1 reveals the
highest peaks for patients #239 and #128. It appears that the influence
of allowing subject #239 to drop out non-randomly, is best visible on the
measurement model parameters. Patient #128 has an incomplete sequence,
with a relatively mild score for side effects (side effects not interfering with
functionality). Hence, the relatively large value for Ci(θ) is somewhat un-
usual, especially because other index plots do not show evidence of any
influential effect, not even globally. One could ask the question whether
other, unmeasured factors could have caused this phenomenon.
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FIGURE 31.1. Fluvoxamine Trial. Index plots of Ci, Ci(θ), Ci(ψ), and of the
components of the direction hmax of maximal curvature. The x-axis merely con-
tains sequential indicators. Relevant patient IDs have been added to the plot.
Completers (patients with observed responses at visit 1 and visit 2) are indicated
with a solid star. A solid circle, a solid square, a solid triangle, or a solid plus
is used for subjects whose score on side effects at visit 1 respectively ranges from
(1) to (4). Patients with a non-monotone dropout pattern are discarded.

Before addressing this question, we turn attention to Ci(ψ) and hmax.
To avoid confusion, observe that the scale is different from the one of Ci(θ).
The most influential patients appear to be the same as for the overall Ci

(#34, #252 and #182, #64, #122, #28, #108, #287, #232, #112, #245).
The same patients are also shown in the index plot for hmax.

Observe that in all plots, ‘layers’ of influential cases may be distinguished.
The higher the layers, the more they seem to be associated with particular
response levels. For instance, in Figure 31.1, patients #34 and #252 give
rise to components of hmax that are larger than 0.3. Patients #182, #64,
#122, #28, #108, #287, #232, #112 and #245 (corresponding to the
influential patients in the previous paragraph) refer to hmax components
that are all smaller than 0.3 but larger than 0.2. The layer formation is
not clear though, and recalling the particular behavior of patient #128,
one is led to believe that another distorting factor is involved, blurring the
picture. Therefore, we investigate the effect of covariates on the ability to
interpret influence plots.



31.3 A Local Influence Approach for Ordinal Data with Dropout 583

FIGURE 31.2. Fluvoxamine Trial. Index plots of Ci, Ci(θ), Ci(ψ), and of the
components of the direction hmax of maximal curvature, where ‘age’ is considered
as the sole covariate in the Dale model. The x-axis contains sequential indicators.
Completers are indicated with a solid star. A solid circle, a solid square, a solid
triangle, or a solid plus is used for subjects whose score at visit 1 on side effects
respectively ranges from (1) to (4).

To this end, we consider two additional models. The first one includes
‘sex’ as the only covariate in the measurement model, the second one uses
‘age’ as the only covariate. These models perform worse than the model
including both ‘age’ and ‘sex,’ augmented with ‘duration’ and ‘severity,’
but they are merely intended for illustrative purposes. The resulting influ-
ence plots are enlightening. Figure 31.2 shows the index plots when ‘age’
is included as only covariate, Figure 31.3 displays the corresponding pic-
tures in case ‘sex’ is the only source of covariate information. In both cases,
much smaller values are obtained for Ci(θ). The high peaks for patients
#239 and #128 have disappeared. Patients #122, #245, and #182 also
show up in Figure 31.2 with the highest peaks for Ci(θ), although hard to
distinguish from the peaks for patients #287, #232, #28, #108, #64, and
#112. The variability observed in Ci(θ) values also appears in Figure 31.3.
However, in this case, it seems to be caused by the fact that patients #108,
#182, #287, and #232 have Ci(θ) equal to about 0.0116 compared to ap-
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proximately 0.0097 for patients #28, #245, #64, #122, and #112. This
layer effect may be explained by the binary character of ‘sex’ as opposed to
‘age,’ the latter of which entered the model as a continuous variable. Also
note that patients #108, #182, #287, and #232 are all male, whereas pa-
tients #28, #245, #64, #122, and #112 are all female. All these patients
drop out at visit 2 and showed side effects surpassing therapeutic effect
at visit 1. In Figures 31.2 and 31.3, the same patient group (i.e., patients
#34, #252, #287, #108, #28, #112, #64, #232, #122, #182, and #245)
is distinguished as globally influential, with highest Ci values for #34 and
#252. The layering effect is again the most explicit when ‘sex’ is considered
as only covariate (Figure 31.3). Influential patients for Ci(ψ) and hmax ap-
pear to be the same as before, where ‘sex’ and ‘age’ were both considered
in the pool of covariates, with the exception of subject #239 whose cor-
responding component in hmax is now less than 0.1000. The distribution
over potential values becomes more discrete when ‘age’ is considered to be
the only covariate in the multivariate Dale model. Changing ‘age’ for ‘sex’
causes the distribution to be even more discrete and therefore the layer
effect more explicit.

In an attempt to improve insight into the driving forces present in the
set of data, which may explain possible deviations from a random dropout
process, we exclude patients #34 and #252 from the data set and apply the
same measurement model as in the beginning of Section 5 (thus including
the covariates ‘age,’ ‘sex,’ ‘duration,’ and ‘severity’). Provided MAR is the
correct alternative hypothesis and provided the parametric form for the
MAR process is correct (again, no covariates were included), there seems
to be even less evidence for MAR; the likelihood ratio test statistic com-
paring MCAR with MAR equals G2=0.94, based on 1 degree of freedom
(p = 0.333). Note that now borderline evidence for MNAR is observed,
since a comparison between the non-random and random dropout model
generates a likelihood ratio test statistic of G2= 3.74 with 1 degree of free-
dom (p = 0.053). Hence, the suggested local influence approach bridges the
gap between the random and the non-random model: some of the mecha-
nisms that cannot be explained by the random model and are captured by
the non-random model, the latter resting on untestable assumptions, can
be attributed to the observations for patients #34 and #252.

Repeating the previous analysis on a reduced data set, where patient
#239 is excluded instead of patients #34 and #252, we find no evidence
for MAR against MCAR (G2 = 0.01, p = 0.913). After investigating the
likelihood ratio test statistic for comparing the non-random with the ran-
dom dropout model (G2 = 2.13, p = 0.145), we may conclude that the
MCAR assumption is fairly plausible. It is not surprising that conclusions
remain similar. Indeed, although patient #239 appeared to be most influ-
ential patient with respect to the measurement model parameters, it should
be noted that (i) the value for Ci(θ) is “only” 0.079 (further investigation
is required to define some critical value above which Ci(θ) can be said to be
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FIGURE 31.3. Fluvoxamine Trial. Index plots of Ci, Ci(θ), Ci(ψ), and of the
components of the direction hmax of maximal curvature, where ‘sex’ is considered
as only covariate in the Dale model. The x-axis contains sequential indicators.
Completers are indicated with a solid star. A solid circle, a solid square, a solid
triangle, or a solid plus is used for non-completers whose score at visit 1 on side
effects respectively ranges from (1) to (4).

statistically significantly large) and that (ii) patient #239 did not appear
to be influential overall.

31.4 A Local Influence Approach for Incomplete
Binary Data

31.4.1 General Principles
For multivariate and longitudinal binary data, subject to non-monotone
missingness, one can focus on the model proposed by Baker, Rosenberger,
and DerSimonian (1992). They considered a log-linear type of model for two
possibly binary outcomes, subject to non-monotone missingness. Jansen et
al (2003) reformulated the model such that its membership of the selec-
tion model family is unambiguously clear. Next, they extended the original
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model to accommodate for, possibly continuous, covariates, turning the
model into a regression tool for several categorical outcomes. Further, a
parameterization was proposed that avoids the risk of invalid solutions. In
other words, all combinations of the natural parameters produce probabil-
ities between 0 and 1. The model is introduced in Section 29.3.

As a consequence of these extensions, the closed-form solutions of Baker,
Rosenberger, and DerSimonian (1992) no longer apply. Of course, given
the focus on continuous covariates, the derivation of closed-form solutions
should not be of primary concern. Finally, Jansen et al (2003) coupled a
local influence approach with the model strategy, to assess which observa-
tions have a strong impact on the comparison of two nested models within
the BRD family.

Jansen et al (2005) consider perturbations of a given BRD model in
the direction of a model with one more parameter in which the original
model is nested, implying that perturbations lie along the edges of Fig-
ure 29.2: for each of the nested pairs in Figure 29.2, the simpler of the two
models equates two parameters from the more complex one. For example,
BRD4 includes β.k, (k = 1, 2), whereas in BRD1 only β.. is included. For
the influence analysis, ωi is then included as a contrast between two such
parameters; for the perturbation of BRD1 in the direction of BRD4, one
considers β.. and β.. + ωi. Such an ωi is not a subject-specific parameter,
but rather an infinitesimal perturbation. The vector of all ωi’s defines the
direction in which such a perturbation is considered. Clearly, other pertur-
bation schemes are possible as well, or one could consider a different route
of sensitivity analysis altogether. Ideally, several could be considered within
an integrated sensitivity analysis. Note that our influence analysis focuses
on the missingness model, rather than on the measurement model para-
meters. This may be seen as slightly odd, because often, scientific interest
focuses on the measurement model parameters. However, it has been doc-
umented (discussion to Diggle and Kenward 1994, Kenward 1998, Verbeke
et al 2001) that the missingness model parameters are often the most sen-
sitive ones to take up all kinds of misspecification and influential features.
These may then, in turn, impact conclusions coming from the measurement
model parameters (e.g., time evolution) or combinations from both (e.g.,
covariate effects for certain groups of responders).

31.4.2 Analysis of the Fluvoxamine Data
We will now apply the local influence ideas, outlined in the previous section,
to the BRD models in order to contradict or strengthen the conclusions of
Section 29.3.1. Whereas all comparisons along the edges of Figure 29.2 are
possible, we propose to primarily focus on the comparison of BRD1 with
BRD4 (Figure 31.4), as the first one was the most adequate model when no
duration effect is included and when duration is included in both parts of
the model, whereas the second one was the model of choice when duration
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FIGURE 31.4. Fluvoxamine Trial. Index plots of Ci (left panels) and of the com-
ponents of the direction hmax of maximal curvature (right panels) for comparison
BRD1–4, without (top panels) or with (bottom panels) duration as a covariate in
the missingness models.

is included in the measurement model only. In addition, we will consider
the comparisons BRD4–7 (Figure 31.5) and BRD4–8 (plot not shown), the
supermodels of BRD4. The symbols used in these figures are the following:
+: both observations are available, (1,1) type; black triangle: only the first
observation is available, (1,0) type; black square: only the second observa-
tion is available, (0,1) type; •: both measurements are missing, (0,0) type.

The overall Ci are considered, as well as the components of the direc-
tion of maximal curvature hmax. The top right panel in Figure 31.4 shows
essentially no structure, whereas in the top left there are two important
observations. First, a clear layering effect is present, consistent with the
analysis in Section 31.3.2. Again, this is not surprising, as there are quite
a number of discrete features to the model: the responses and the miss-
ingness patterns. On the other hand, the continuous covariate duration is
included in the measurement model. In this case, mainly the missingness
patterns are noticeable, although the top layer shows a good deal of vari-
ability. These layers are reminiscent of a pattern-mixture structure (Little
1995) even though the model is of a selection nature.

Two views can be taken. Either, focus can be on two observations, #184
and #185, that stand out. These subjects have no measurements at all for
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TABLE 31.1. Fluvoxamine Trial. Negative log-likelihood values for three addi-
tional sets of analysis. I: #184 and #185 removed, no covariates; II: #184 and
#185 removed, duration as covariate in the measurement model; III: all obser-
vations in the (0,0) group removed, duration as covariate in the measurement
model.

Set BRD1 BRD2 BRD3 BRD4 BRD5
I 559.59 558.18 558.70 558.18 558.97
II 543.65 541.87 542.16 540.35 542.43
III 496.19 494.33 495.26 492.53 495.53

Set BRD6 BRD7 BRD8 BRD9
I 557.59 557.32 557.59 557.32
II 540.61 538.53 538.81 540.34
III 493.71 491.67 491.95 493.43

side effects. Alternatively, the entire pattern without follow up measure-
ments can be given further consideration. We will return to this issue later
in this section. This phenomenon is in contrast to the analyses made by
Verbeke et al (2001) and Molenberghs et al (2001) who found that the in-
fluential observations are invariably completers. In this case, the situation
is different since the “empty” observations are explicitly modeled in the
BRD models. Therefore, assumptions about the perturbations in the direc-
tion of such observations have an impact on the values such an individual
would have had had the measurements been made; hence a strong sensitiv-
ity. This is an illustration of the fact that studying influence by means of
perturbations in the missingness model may lead to important conclusions
regarding the measurement model parameters. Indeed, the measurement
model conclusions depend, not only on the observations actually made,
but also on the expectation of the missing measurements. In an MNAR
model, such expectations depend on the missingness model as well, since
they are made conditional on an observation being missing. A high level of
sensitivity means that the expectations of the missing outcomes and the re-
sulting measurement model parameters strongly depend on the missingness
model (Verbeke et al 2001). As stated earlier, the only continuous charac-
teristics of the observations are the levels for duration. These are 38 and
41, respectively, the largest values within the group without observations
and the 91st and 92nd percentile values within the entire sample. Thus,
the conclusions are driven by a very high value of duration.

Let us now turn to the bottom panels of Figure 31.4. The right hand
panel still shows little or no structure. On the left hand side, the layering
has been blurred due to the occurrence of duration as a continuous feature
into the missingness model. The fact that no sets of observations stand
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FIGURE 31.5. Fluvoxamine Trial. Index plots of Ci (left panels) and of the com-
ponents of the direction hmax of maximal curvature (right panels) for comparison
BRD4–7, without (top panels) or with (bottom panels) duration as a covariate in
the missingness models.

out as such, confirms the impression that a good fit has been obtained by
including duration in both parts of the model.

Let us now turn to Figure 31.5. A qualitative difference with Figure 31.4
(top left panels) is that now the entire group with no follow-up measure-
ments shows more influential than all other subjects. In this case, hmax
displays the same group of subjects with no follow-up. However, all of this
disappears when one turns to the bottom panels, again underscoring the
importance of duration in the missingness model.

The consequence of these findings is that, as soon as duration is included
in the missingness model, a reasonable amount of confidence can be put into
the conclusions so obtained. Nevertheless, based on the comparison BRD1–
4, it seems wise to further study the effect of subjects #184 and #185, as
well as from the group without follow up measurements. To this effect,
three additional analyses are considered (Table 31.1): two sets pertain to
removal of subjects #184 and #185: without (I) and with (II) duration
as a covariate in the measurement model. Note that we do not consider
removal in case duration is included in the missingness model because, in
this case, these two subjects did not show up as locally influential. Finally,
removing all subjects without follow-up measurements and using duration
as covariate in the measurement model is reported as family III.
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In analysis I, BRD1 is still the preferred model; in II, evidence still points
towards BRD4, although slightly less extreme than before: likelihood ratio
test statistics for BRD1–4, BRD4–7, and BRD4–8 are 6.60, 3.64, and 3.08,
respectively, compared to 7.10, 2.10, and 1.52 obtained initially. However,
while the two subjects deleted in I and II cannot explain the apparent non-
random missingness, the same conclusions are reached when all subject in
pattern (0,0) are deleted (analysis III), as then a few likelihood ratios are
above the significance threshold (7.17, attained for BRD3–7 and for BRD5–
8; and 7.32 for BRD1–4). Thus, removing these subjects does not change
the conclusions about the non-random nature of the data. This is useful
supplemental information. Indeed, it is confirmed that the largest impact
on the conclusion regarding the nature of the missingness mechanism, is
coming from the inclusion of the covariate duration, and neither from iso-
lated individuals, nor from a specific missingness pattern (those without
measurements). A nice side effect of this conclusion is that the selected
analysis encompasses all subjects and therefore avoids the need of subject
deletion, which, if at all possible, should be avoided in statistical analysis.

These analyses can be seen as a useful component of a sensitivity analysis.
Given the intrinsic problems with incomplete data models, one can never
be completely sure the nature of the missingness mechanism is as posited
in the model of choice and therefore several sensitivity assessments simul-
taneously and/or substantive knowledge have to be considered. When a
number of possible causes for the observed non-randomness are found, one
might ideally add substantive arguments as to their relative plausibility.

Subjects in an influence graph are displayed without a particular order.
Several alternatives are possible, each with pros and cons. For example,
one could order the subjects by covariate level, but this method cannot
be considered when there are several covariates. Alternatively, the subjects
could be ordered by Ci or hi level, but then different orderings would exist
on different plots.

31.5 Interval of Ignorance

Classical inferential procedures induce conclusions from a set of data to a
population of interest, accounting for the imprecision resulting from the
stochastic component of the model. This is usually done by means of pre-
cision or interval estimates. Less attention is devoted to the uncertainty
arising from (unplanned) incompleteness in the data. Through the choice
of an identifiable model for MNAR missingness, one narrows the possible
data generating mechanisms to the point where inference only suffers from
imprecision. Some proposals have been made for assessing the sensitivity of
these model assumptions; many are based on fitting several plausible but
competing models.
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Molenberghs, Kenward, and Goetghebeur (2001) and Kenward, Goet-
ghebeur, and Molenberghs (2001) showed an approach that identifies and
incorporates both sources of uncertainty in inference: imprecision due to
finite sampling, and ignorance due to incompleteness. A simple sensitivity
analysis considers a finite set of plausible models. This idea can be taken
one step further, by considering more degrees of freedom than the data
support. This produces sets of estimates, termed region of ignorance, and
sets of confidence region, combined into so-called regions of uncertainty.

We focus on the model proposed by Baker, Rosenberger, and DerSi-
monian (1992) and used before in Sections 29.3 and 31.4. Two of the main
advantages of this family are ease of computation in general, and the ex-
istence of a closed-form solution for several of its members, at least in the
initial formulation. Molenberghs, Kenward, and Goetghebeur (2001) used
this family of models in a reanalysis of the Slovenian plebiscite data of
Rubin, Stern, and Vehovar (1995).

31.5.1 General Principle
It is useful to distinguish between two types of statistical uncertainty. The
first, statistical imprecision, is due to finite sampling. The second source of
uncertainty, due to incompleteness, will be called statistical ignorance. Sta-
tistical imprecision is classically quantified by means of estimators (stan-
dard error and variance, confidence regions, etc.) and properties of esti-
mators (consistency, asymptotic distribution, efficiency, etc.). To quantify
statistical ignorance, it is useful to distinguish between complete and ob-
served data.

For the BRD model, the 16 complete-data degrees of freedom and the 9
observed-data degrees of freedom are represented in Table 29.1. A sample
from this table produces empirical proportions representing the π’s with
error. This imprecision disappears as the sample size tends to ∞. What re-
mains is ignorance regarding the redistribution of all except the first four πs
over the missing outcome value. This leaves ignorance regarding any prob-
ability in which at least one of the first or second indices is equal to 0 and
hence regarding any derived parameter of scientific interest. For such a pa-
rameter, θ say, a region of possible values that is consistent with Table 29.1
is called a region of ignorance. Analogously, an observed incomplete table
leaves ignorance regarding the would-be observed complete table, which
in turn leaves imprecision regarding the true complete probabilities. The
region of estimators for θ consistent with the observed data provides an
estimated region of ignorance. The 100(1 − α)% region of uncertainty is a
larger region in the spirit of a confidence region, designed to capture the
combined effects of imprecision and ignorance. Various ways of constructing
regions of ignorance and regions of uncertainty are conceivable.

In standard statistical practice, ignorance is hidden in the consideration
of a single identified model, such as models BRD1–BRD9. Among those,
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BRD6–BRD9 are said to saturate the degrees of freedom. To be precise,
they saturate the observed data degrees of freedom. A model that would
saturate the complete data degrees of freedom, would need 15 rather than
8 parameters. From a (classical) observed data perspective, such a model
would be overspecified, as would be any model with 9 or more parameters.
Note that it is possible to construct an overspecified model with degrees of
freedom less than those in an identifiable saturated model at the observed
level.

We construct three such overspecified models. Write the missingness part
of the model as (29.8). We will consider two models (Models 10 and 11) with
a single sensitivity parameter, while Model 12 will include two sensitivity
parameters. Model 10 is defined as (αk, βjk) with

βjk = β0 + βj + βk, (31.2)

an additive decomposition for missingness on the independence question.
Similarly, Model 11, (αjk, βj), uses

αjk = α0 + αj + αk, (31.3)

an additive decomposition of the missingness parameter on the attendance
question.

Finally, we define Model 12, (αjk, βjk), as a combination of both (31.2)
and (31.3).

We will now outline the general principle behind considering such over-
specified models and then focus on the sensitivity parameter approach.

We start from the classical approach of fitting a single identifiable model
M0 to incomplete data (e.g., a particular BRD model). Maximum likelihood
estimation produces a parameter estimate π̂ along with measures of im-
precision (estimated standard errors). From π̂ four predicted contingency
tables can be derived as in Table 29.1.

The fitted complete tables collapse back to fitted values for the incom-
plete Table 29.1. Contrasting the latter with the observed data shows the
goodness-of-fit of model M0. If there is substantial lack of fit, the original
model M0 needs to be reconsidered. Lack of fit has strong bearings on im-
precision and, as we want to focus on ignorance, we will assume the fit is
acceptable. In what follows, models with poor fit (or boundary solutions)
will be dropped.

One can now range through all possible complete tables, which collapse
back to the M0 predicted incomplete table. One could call such tables ‘M0
compatible’ and we denote the set by S(M0). The general principle is that
to each table in S(M0) an extended model M∗ will be fitted. This implies
that each table produces an estimated parameter vector and a confidence
region. The union of those are termed region of ignorance and region of
uncertainty , respectively. For scalar parameters the terms interval of igno-
rance (II) and interval of uncertainty (IU) will be used.
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Apart from explicitly constructing the (real-valued) set of complete ta-
bles, one can proceed in an alternative way. This is done by fitting the model
M∗ directly to the observed data. This implies that the general principle
translates to fitting an overspecified model to the observed data, which will
produce a range of parameters maximizing the observed data likelihood.
This range is then the region of ignorance. If this route is followed, there
are technically several ways to find the region. One method is described
next.

31.5.2 Sensitivity Parameter Approach
The overspecification can be removed by considering a minimal set of pa-
rameters η, conditional upon which the others, µ, are identified. We term
η the sensitivity parameter and µ the estimable parameter. Such a tech-
nique has been proposed for specific examples by Nordheim (1984) and
Vach and Blettner (1995). Foster and Smith (1998) expand on this idea
and by referring to Baker and Laird (1988) and to Rubin, Stern, and Ve-
hovar (1995), they suggest imposing a prior distribution on a range. Each
value of η will produce an estimate µ̂(η). The union of these yields the
region of ignorance. It is important to realize that in general there will not
be a unique choice for η and hence for µ. Changing the partitioning will
produce the same region for θ = (η′, µ′)′. Models 10 and 11 have a single
sensitivity parameter. We chose η = βk and η = αk from (31.2) and (31.3),
respectively. In Model 12, both these parameters η = (βk, αk)′ are treated
as sensitivity parameters. In practice, an easy computation scheme is to
consider a grid in the sensitivity parameter space, at each value of which
the estimable parameter is maximized.

A natural estimate of the region of uncertainty is the union of confidence
regions for each µ̂(η). Note that one has to ensure that η is within the
allowable range. Because the choice of sensitivity parameter is non-unique
and a proper choice can greatly simplify the treatment. Another issue is
whether the parameters of direct scientific interest can overlap with the
sensitivity set or not (White and Goetghebeur 1998). For example, if the
scientific question is a sensitivity analysis for treatment effect, then one
should consider the implications of including the treatment effect parame-
ters in the sensitivity set. There will be no direct estimate of imprecision
available for the sensitivity parameter. Clearly, the particular choice of sen-
sitivity parameter will not affect the estimate of the region of ignorance.
However, the region of uncertainty is built from confidence regions that are
conditional on a particular value of the sensitivity parameter and hence
will typically vary with the choice made.
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FIGURE 31.6. Monotone Patterns. Theoretical distribution over complete and
observed cells. (Monotone patterns).

31.5.3 Models for Monotone Patterns and a Bernoulli
Experiment

To further illustrate the II ideas, let us focus on the relatively simple set-
ting of two binary outcomes, of which the first one is always observed but
the second one is missing for some subjects. This setting is depicted in
Figure 31.6. Decompose the cell probabilities as

πr,ij = pijqr|ij , (31.4)

where pij parameterizes the measurement process and qr|ij describes the
non-response (or dropout) mechanism. In what follows, we will leave pij

unconstrained and consider various forms for qr|ij , as listed in Table 31.2.
In this setting, there are 7 complete-data degrees of freedom, d.f.(comp)= 7
and 5 observed-data degrees of freedom, d.f.(obs)= 5.

Model Msat (Model 5) has 3 measurement parameters and 4 dropout
parameters and saturates d.f.(comp). However, there are only 5 observed
degrees of freedom, rendering this model overspecified when fitted to the
observed data.

Three models are identified. Conventional restrictions result from as-
suming an MCAR or MAR model (Models 1 and 2, respectively). Another
identified model lets dropout depend on the potentially unobserved second
measurement, but not on the first one (Michiels and Molenberghs 1997).
Brown (1990) who proposed this estimator for normally distributed end-
points, used the term protective estimator because it can be fitted without
explicitly addressing the missingness model. We refer to it in Table 31.2
as MNAR 0. Models 2 and 3 both saturate d.f.(obs), and hence cannot
be distinguished from each other purely on statistical grounds, in terms of
the observed data. In Model 4, dropout is allowed to depend on both mea-
surements but not on their interaction. As a consequence, it overspecifies
d.f.(obs) and underspecifies d.f.(comp).

Before turning to setting (31.6), let us illustrate the ideas outlined in
Section 31.5.1 by means of the simple setting of a Bernoulli experiment
with N trials, where r denotes the number of observed successes, n − r
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TABLE 31.2. Monotone Patterns. Dropout models corresponding to the setting of
Figure 31.6.

Dropout models
Model qr|ij Par. Obs. d.f. Comp. d.f.
1. MCAR qr 4 Non-sat. Non-sat.
2. MAR qr|i 5 Sat. Non-sat.
3. MNAR 0 qr|j 5 Sat. Non-sat.
4. MNAR I logit(qr|ij) = α + βi + γj 6 Oversp. Non-sat.
5. Msat logit(qr|ij) = α + βi + γj + δij 7 Oversp. Sat.

the number of observed failures, and N − n the number of unclassified
subjects. Independent of the parameterization chosen, the observed data
log-likelihood can be represented in the form

	 = r lnα + (n − r) lnβ + (N − n) ln(1 − α − β), (31.5)

with α the probability of an observed success and β the probability of
an observed failure. It is sometimes useful to denote γ = 1 − α − β. We
consider two models, of which the parameterization is given in Table 31.3.
The first one is identified, the second one is overparameterized. Here, p
is the probability of a success (whether observed or not), q1 (q2) is the
probability of being observed given a success (failure), and λ is the odds
for being observed for failures versus successes. For Model I, the latter is
assumed to be unity. Denote the corresponding log-likelihoods by 	I and
	II respectively. In both cases,

α̂ =
r

N
, β̂ =

n − r

N
.

Maximum likelihood estimates for p and q follow immediately under Model
I, either by observing that the moments (α, β) map 1–1 onto the pair (p, q)
or by directly solving 	I . The solutions are given in Table 31.3. The as-
ymptotic variance-covariance matrix for p and q is block-diagonal with
well-known elements p(1 − p)/n and q(1 − q)/N . Observe that we now ob-
tain only one solution, a strong argument in favor of the current model.

A similar standard derivation is not possible for Model II, as the triplet
(p, q1, q2) or, equivalently, the triplet (p, q, λ), is redundant. This follows
directly from Catchpole and Morgan (1997) and Catchpole, Morgan, and
Freeman (1998) whose theory shows that Model II is rank-deficient and
Model I is of full rank. Because Model I is a submodel of Model II and
saturates the observed data, so must every solution to 	II , implying the
relationships:

pq1 =
r

N
, (1 − p)q2 =

n − r

N
. (31.6)
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TABLE 31.3. Bernoulli Experiment. Two transformations of the observed-data
likelihood.

Model I (MAR) Model II (MNAR,Msat)
Parameterization:

α = pq α = pq1

β = (1 − p)q β = (1 − p)q2

γ = 1 − q γ = 1 − pq1 − (1 − p)q2

q1 = q

q2 = qλ

Solution:

p̂ = α̂

α̂+β̂
= r

n pq1 = r
N

q̂ = α̂ + β̂ = n
N (1 − p)q2 = n−r

N

r

q1
+

n − r

q2
= N

p ∈
[

r

N
,
N − n + r

N

]

Constraints (31.6) imply

p̂ =
r

Nq1
= 1 − n − r

Nq2

and hence
r

q1
+

n − r

q2
= N. (31.7)

The requirement that q1, q2 ≤ 1 in (31.6) implies a range for p:

p ∈
[

r

N
,
N − n + r

N

]
. (31.8)

Such overspecification of the likelihood can be managed in a more general
way using the method outlined in Section 31.5.2. It is not always the case
that the range for η will be an entire line or real space and hence specific
measures may be needed to ensure that η is within its allowable range.
As the choice of sensitivity parameter is non-unique, a proper choice can
greatly simplify the treatment. It will be seen in what follows that the
choice of λ as in Table 31.3 is an efficient one from a computational point
of view. In contrast, the choice θ = q2 − q1 would lead to cumbersome
computations and will not be pursued. Of course, what is understood by a
proper choice will depend on the context.
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TABLE 31.4. Bernoulli Experiment. Limiting cases for the sensitivity parameter
analysis.

Estimator λ λ = n−r
N−r λ = 1 λ = N−(n−r)

r

pλ
λr

n−r(1−λ)
r
N

r
n

N−n+r
N

qλ
n−r(1−λ)

Nλ 1 n
N

r
N−(n−r)

qλλ n−r(1−λ)
N

n−r
N−r

n
N 1

pλ
1−pλ

λ r
n−r

r
N−r

r
n−r

N−(n−r)
n−r

For example, the sensitivity parameter can be chosen from the nuisance
parameters, rather than from the parameters of direct scientific interest.
Whether the latter parameters can overlap with the sensitivity set or not is
itself an issue (White and Goetghebeur 1998). For example, if the scientific
question is a sensitivity analysis for treatment effect, then one should con-
sider the implications of including the treatment effect parameters in the
sensitivity set. There will be no direct estimate of imprecision available for
the sensitivity parameter. Alternatively, if, given a certain choice of sensitiv-
ity parameter, the resulting profile likelihood has a simple form (analogous
to the Box-Cox transformation, where conditioning on the transformation
parameter produces essentially a normal likelihood), then such a parameter
is an obvious candidate.

Given our choice of sensitivity parameter λ, simple algebra yields esti-
mates for p and q (subscripted by λ to indicate dependence on the sensi-
tivity parameter):

pλ =
α̂λ

β̂ + α̂λ
=

λr

n − r(1 − λ)
, (31.9)

qλ =
β̂ + α̂λ

λ
=

n − r(1 − λ)
Nλ

. (31.10)

Using the delta method, an asymptotic variance-covariance matrix of pλ

and qλ is seen to be built from:

V̂ar(pλ) =
pλ(1 − pλ)

Nλqλ

×
{

1 +
1 − λ

λ
(1 − pλ)[1 − pλqλ(1 − λ)]

}
, (31.11)

Ĉov(pλ, qλ) = − 1
N

pλ(1 − pλ)
1 − λ

λ
qλ, (31.12)
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TABLE 31.5. Fluvoxamine Trial. The first subtable represents the complete ob-
servations. Subjects with only the first outcome, only the last outcome, or no
outcome at all reported are presented in subtables 2, 3, and 4, respectively.

Side effects:
time 2

time 1 yes no
yes 89 13
no 57 65

26
49

2 0 14

Therapeutic effect:
time 2

time 1 no yes
no 11 1
yes 124 88

7
68

0 2 14

V̂ar(qλ) =
qλ(1 − qλ)

N

{
1 +

1 − pλ

1 − qλ

1 − λ

λ

}
.

Note that the parameter estimates are asymptotically correlated, except
when λ = 1, i.e., under the MAR assumption, or under boundary values
(pλ = 0, 1; qλ = 0). This is in line with the ignorable nature of the MAR
model (Rubin 1976). We need to determine the set of allowable values for
λ by requiring 0 ≤ pλ, qλ, λqλ ≤ 1. These six inequalities reduce to

λ ∈
[

n − r

N − r
,
N − (n − r)

r

]
.

Table 31.4 presents estimates for limiting cases. The interval of ignorance
for the success probability is thus seen to be as in (31.8). It is interesting
to observe that the success odds estimator is linear in the sensitivity para-
meter; the resulting interval of ignorance equals

odds(p) ∈
[

r

N − r
,
N − n + r

n − r

]
.

For the success probability, the variance of pλ is given by (31.11). For
the success odds, we obtain:

V̂ar(odds(pλ)) =
1

Nλqλ

pλ

1 − pλ

{
1 +

1 − λ

λ
(1 − pλ)[1 − pλqλ(1 − λ)]

}
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TABLE 31.6. Fluvoxamine Trial. Identifiable models, fitted to monotone patterns.

(1,1) (1,0) -2 logl
Side effects 83.7 12.2 28.0 4.1 495.8
Model 1 (MCAR) 59.9 68.3 20.0 22.9
Side effects 89.0 13.0 22.7 3.3 494.4
Model 2 (MAR) 57.0 65.0 22.9 26.1
Side effects 89.0 13.0 18.6 7.4 494.4
Model 3 (MNAR 0) 57.0 65.0 11.9 37.1
Therapeutic effect 13.0 1.2 4.4 0.4 386.5
Model 1 (MCAR) 122.7 87.1 41.1 29.2
Therapeutic effect 11.0 1.0 6.4 0.6 385.8
Model 2 (MAR) 124.0 88.0 39.8 28.2
Therapeutic effect 11.0 1.0 7.1 -0.1 385.8
Model 3 (MNAR 0, Unconstr.) 124.0 88.0 80.5 -12.5
Therapeutic effect 11.6 1.0 6.4 0.0 385.8
Model 3 (MNAR 0, Constr.) 123.4 88.0 68.5 0.0

and for the success logit:

V̂ar(logit(pλ)) =
1

Nλqλ

1
pλ(1 − pλ)

{
1 +

1 − λ

λ
(1 − pλ)[1 − pλqλ(1 − λ)]

}
.

For each λ, a confidence interval Cλ can be constructed for every point
within the allowable range of λ. The union of the Cλ is the interval of
uncertainty , for either p, its odds, or its logit.

31.5.4 Analysis of the Fluvoxamine Data
We focus on the setting of Table 29.1. A version for the fluvoxamine study,
based on the first and last follow-up measurements, is given in Table 31.5.
There are two patients with a non-monotone pattern of follow-up, whereas
14 subjects have no follow-up data at all. This enables us to treat these
data both from the monotone non-response or dropout perspective, as well
as from the more complicated but more general non-monotone point of
view. We will first the identifiable models and then switch to sensitivity
analysis.

31.5.4.1 Identified Models

We first consider the monotone patterns and the corresponding models of
Table 31.2. Table 31.6 shows the predicted complete tables for Models 1, 2,
and 3. The effect of ignorance is clearly seen by comparing the MAR and



600 31. Sensitivity Analysis

TABLE 31.7. Fluvoxamine Trial. Marginal probabilities and (log) odds ratio for
monotone patterns of side-effects data. Models 1–3: point estimate and 95% con-
fidence interval; Models 4–5: interval of ignorance (II) and interval of uncertainty
(IU); these models are defined in Section 31.5.3.

Parameter Model 1/2 Model 3 Model 4 Model 5
First Marg. II 0.43 0.43 0.43 0.43

IU [0.37;0.48] [0.37;0.48] [0.37;0.48] [0.37;0.48]

Second Marg. II 0.64 0.59 [0.49;0.74] [0.49;0.74]
IU [0.58;0.70] [0.53;0.65] [0.43;0.79] [0.43;0.79]

Log O.R. II 2.06 2.06 [1.52;2.08] [0.41;2.84]
IU [1.37;2.74] [1.39;2.72] [1.03;2.76] [0.0013;2.84]

O.R. II 7.81 7.81 [4.57;7.98] [1.50;17.04]
IU [3.95;15.44] [4.00;15.24] [2.79;15.74] [1.0013;32.89]

protective models: they provide a substantially different prediction for the
partially observed table, while producing the same deviance. In addition,
the protective model produces a boundary solution, or even an invalid
solution if predicted proportions are not constrained to lie within the unit
interval, for therapeutic effect.

We now interpret these results in terms of possible quantities of inter-
est, for instance the first and second marginal probability of side effects
and the odds ratio, capturing the association between both measurements
(Table 31.7). Models 4 and 5 will be discussed in the sensitivity analy-
sis. Models 1 and 2 are both ignorable and hence all measurement model
quantities are independent of the choice between MAR and MCAR.

The quantities in Tables 31.6 and 31.7 differ in one important way. The
former quantities are calculated conditional on the dropout pattern; the lat-
ter follow directly from the marginal measurement probabilities pij , which
are common to all three models while the dropout probabilities qr|ij depend
on the model. As a consequence, while MAR and MCAR are equivalent for
the quantities in Table 31.7, this does not carry over to the predicted cell
counts in Table 31.6. Further, the stability of the estimates in Table 31.7
(at least for Models 1–3) is in marked contrast to the variation among the
predicted cell counts in Table 31.6. These considerations suggest that sta-
bility may be restricted to certain functions of parameters in certain sets
of data.

We now introduce the non-monotone patterns into the analysis and fit
the nine identifiable BRD models of Table 29.2. The fitted counts of the
models with an interior solution are given in Table 31.8 and the marginal
quantities of interest are displayed in Table 31.9. Note that a subgroup of
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TABLE 31.8. Fluvoxamine Trial. Complete data counts for models fitted to side
effects data.

(1,1) (1,0) (0,1) (0,0) (+,+)

BRD1 84.00 12.12 28.13 4.06 0.74 0.11 5.26 0.76 118.13 17.05
60.21 67.67 20.16 22.66 0.53 0.60 3.77 4.23 84.67 95.16

BRD2 89.42 12.89 22.73 3.27 0.80 0.12 4.24 0.61 117.19 16.89
57.27 64.42 23.06 25.94 0.51 0.58 4.30 4.82 85.14 95.76

BRD3 83.67 12.22 28.02 4.09 1.17 0.00 8.16 0.00 121.01 16.31
59.85 68.25 20.04 22.85 0.83 0.00 5.84 0.00 86.57 91.11

BRD4 89.42 12.89 18.58 7.42 0.80 0.12 3.47 1.39 112.27 21.82
57.27 64.42 11.90 37.10 0.51 0.58 2.22 6.93 71.90 109.03

BRD7 89.00 13.00 18.58 7.42 1.22 0.00 8.53 0.00 117.33 20.42
57.00 65.00 11.90 37.10 0.78 0.00 5.47 0.00 75.15 102.10

BRD9 89.00 13.00 22.69 3.31 1.22 0.00 6.97 0.00 119.87 16.31
57.00 65.00 22.89 26.11 0.78 0.00 7.03 0.00 87.71 91.11

models produces invalid solutions without appropriate constraints, such as
automatically imposed by form (29.8) for the dropout model.

In spite of the fact that we are now looking at a larger class of models,
the results are comparable with those obtained for the monotone patterns.
Table 31.9 reveals that Models BRD1–9 show little variation in the marginal
probabilities and in the measure of association. Considered as an informal
sensitivity analysis, this could be seen as evidence for the robustness of
these measures. We will revisit this conclusion following a more formal
sensitivity analysis and deduce that it is strongly misleading.

31.5.4.2 Intervals of Ignorance

Turning to the overspecified models, let us consider the monotone patterns
first. In addition to the three identifiable models from Table 31.2, we now fit
overspecified Models 4 and 5 to the same data. Results for these additional
models are also given in Table 31.7.

For Model 4, there is one sensitivity parameter, which we choose to be γ
(measuring the extent of non-randomness). When γ = 0 the MAR Model 2
is recovered. The value of γ which corresponds to qr|ij = qr|j in Table 31.2
yields the protective Model 3. Because there is only one sensitivity para-
meter, a graphical representation (Figure 31.7) is straightforward. Because
among the monotone cases the first measurement is always obtained, there
is no ignorance about the first marginal probability and hence the interval
of ignorance for this quantity is still a point. This is not true for the other
two quantities.
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FIGURE 31.7. Fluvoxamine Trial. Graphical representation of intervals of ig-
norance and intervals of uncertainty for monotone patterns of psychiatric study
(side effects). The bold curve graphs the point estimates conditional on the sen-
sitivity parameter. The bold horizontal lines project the interval of ignorance on
the vertical axes. The extremes of the thin lines correspond to the interval of un-
certainty. The MAR and protective point estimates have been added to the figure.

Commonly, fitting a pair of identifiable models (e.g., Models 2 and 3) is
regarded as a sensitivity analysis. This example shows how misleading this
can be. Both models differ by about 0.05 in the second marginal probability,
but the II of Model 4 shows the range is about 0.25! Similarly, Models 2
and 3 yield virtually the same result for the odds ratio, but the II of Model
4 shows that this proximity is fortuitous.

The impact of fitting an overspecified but, at the complete-data level,
non-saturated model is seen by contrasting Model 4 with the fully saturated
Model 5. The sensitivity parameter for Model 4 is γ1 in Table 31.2. For
Model 5, the two sensitivity parameters are γ1 and δ11 (all other γ and
δ parameters need to be set to zero for classical identifiability purposes).
As expected, both models coincide for the first marginal probability. It
turns out that their respective intervals of ignorance and uncertainty for
the second marginal probability exhibit considerable overlap. In contrast,
the length of the II for the log odds ratio is now about 5 times longer. The
Model 5 lower limit of the IU is very close to zero, whereas its Model 4
counterpart shows clear evidence for a strong positive association between
both outcomes.
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TABLE 31.9. Fluvoxamine Trial. Model fit for side effects (par: number of model
parameters; G2: likelihood ratio test statistic for model fit, corresponding p-value,
estimates and 95% confidence limits for marginal probabilities and marginal (log)
odds ratio.) For Model 10 (31.2), intervals of ignorance and uncertainty are pre-
sented instead.

Marg. prob.
Model par G2 p-value First Second
BRD1 6 4.5 0.104 0.43[0.37;0.49] 0.64[0.58;0.71]
BRD2 7 1.7 0.192 0.43[0.37;0.48] 0.64[0.58;0.70]
BRD3 7 2.8 0.097 0.44[0.38;0.49] 0.66[0.60;0.72]
BRD4 7 1.7 0.192 0.43[0.37;0.48] 0.58[0.49;0.68]
BRD7 8 0.0 - 0.44[0.38;0.49] 0.61[0.53;0.69]
BRD9 8 0.0 - 0.43[0.38;0.49] 0.66[0.60;0.72]
Model 10:II 9 0.0 - [0.425;0.429] [0.47;0.75]
Model 10:IU 9 0.0 - [0.37;0.49] [0.41;0.80]

Odds ratio
Orig. scale Log scale

BRD1 7.80[3.94;15.42] 2.06[1.37;2.74]
BRD2 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD3 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD4 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD7 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD9 7.63[3.86;15.10] 2.03[1.35;2.71]
Model 10:II [4.40;7.96] [1.48;2.07]
Model 10:IU [2.69;15.69] [0.99;2.75]

By construction, the data do not provide evidence for choosing between
Models 4 and 5. Both are overspecified at the observed data level and both
encompass Models 2 and 3. Model 5 is saturated at the observed data level
as well and therefore the limits derived from it are not model-based. The
reduced width of the intervals produced under Model 4 are entirely due to
the unverifiable model assumption that the dropout probability depends
on both outcomes through their main effects only and not on the inter-
action between both outcomes. If this assumption is deemed implausible,
it can easily be avoided by including an extra degree of freedom. How-
ever, in more complicated settings, such as when covariates are included
or with continuous responses, assumptions are unavoidable in the interest
of model parsimony. Now including the non-monotone patterns, any model
within the BRD family with more than 8 parameters is non-identifiable.
To simplify the sensitivity analysis, let us consider a slightly different but
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equivalent parameterization

πr1r1,ij = pij

exp[β∗
ij(1 − r2) + α∗

ij(1 − r1) + γ∗(1 − r1)(1 − r2)]
1 + exp(β∗

ij) + exp(α∗
ij) + exp(β∗

ij + α∗
ij + γ∗)

, (31.13)

which contains the marginal success probabilities pij and forces the miss-
ingness probabilities to obey their range restrictions.

Although Models BRD1–9 have shown stability in the estimates of the
marginal parameters of interest, it has been revealed in the monotone con-
text, that such a conclusion could be deceptive. To study this further, we
consider an overspecified model, analogous to Model 4 in Table 31.2. The
choice can be motivated by observing that both BRD7 and BRD9 yield
an interior solution and differ only in the β-model. Therefore, Model 10,
defined by (31.2), will be fitted. Because one parameter is redundant, we
propose using βj as the sensitivity parameter. Although the II, obtained in
this way, is acceptable, the IU shows aberrant behavior (plot not shown),
toward larger values of the sensitivity parameter, leading to very wide IUs.
This problem is entirely due to the zero count in pattern (0,1) (see Ta-
ble 31.5), as can be seen by adding 0.5 to this zero count. The results
are presented in Figure 31.8. The resulting II and IU are presented in Ta-
ble 31.9, and they are very similar to the results for Model 4, as displayed
in Table 31.7. Due to the non-monotone patterns, there is a (very small) ig-
norance in the first marginal probability as well. Once again, it is seen that
fitting identifiable models only may be misleading because, for example,
the log odds ratio shows much more variability than seen among Models
BRD1–9.

31.6 Sensitivity Analysis and Pattern-mixture
Models

Pattern-mixture models (Chapter 30) can be of use in the context of sensi-
tivity analysis. Given there are several, quite distinct, strategies to formu-
late such models (Section 30.2), one can consider one strategy as a sensitiv-
ity analysis for another one. For example, the sensitivity of simple, identified
models can be checked using identifying restrictions (Section 30.3). Also, a
set of identifying restrictions can be considered, rather than a single one,
by way of sensitivity analysis. Thijs et al (2002) and Molenberghs et al
(2004) discuss strategies for fitting pattern-mixture models.

Obviously, one can formulate selection models for one’s primary analysis,
and then fit pattern-mixture models to assess sensitivity. This was done in
Sections 30.4 and 30.5. Michiels et al (2002) followed this route.

Molenberghs, Michiels, and Kenward (1998) formulated models that com-
bine aspects of both selection models and pattern-mixture models, and used
pseudo-likelihood ideas to fit such models.
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FIGURE 31.8. Fluvoxamine Trial. Graphical representation of intervals of igno-
rance and intervals of uncertainty for monotone patterns (side effects). A value of
0.5 is added to the zero count in pattern (1,0). The bold curve graphs the point es-
timates conditional on the sensitivity parameter. The bold horizontal lines project
the interval of ignorance on the vertical axes. The extremes of the thin lines cor-
respond to the interval of uncertainty.

31.7 Concluding Remarks

When fitting models to incomplete (longitudinal) data, especially of the
MNAR type but also of the MAR and MCAR types, it is important to
assess the sensitivity of the conclusions to unverifiable model assumptions.
Generally, a sensitivity analysis can be conducted within different frame-
works, and there are times where the setting will determine which frame-
work is the more appropriate one (for example Bayesian or frequentist),
in conjunction with technical and computational considerations. Draper
(1995) has considered ways of dealing with model uncertainty in the very
natural Bayesian framework. We have focused on local influence methods,
the interval of ignorance, and the use of pattern-mixture models. Although
these methods are useful, it ought to be clear they are by no means the
only routes to sensitivity analysis. This field, in the context of incomplete
data, is still in full development and more work will undoubtedly emerge
in times to come.





32
Incomplete Data and SAS

32.1 Introduction

In this chapter, SAS implementations for several methods discussed in miss-
ing data Part VI will be discussed. In Section 32.2, complete case analysis
is presented. Section 32.3 discusses how to conduct last observation carried
forward (LOCF). The fact that these two simple methods, criticized in Sec-
tion 27.3, are included does not imply an endorsement of the methodology.
MAR-based methods are discussed in Section 32.4, devoted to likelihood
methods, and in Section 32.5, where weighted generalized estimating equa-
tions are discussed. Multiple imputation is considered in Section 32.6, and
the EM algorithm is the subject of Section 32.7. Finally, we conclude with
some brief comments on the more advanced methods. Several macros have
been developed and will be discussed in what follows. They are available
from the authors.

32.2 Complete Case Analysis

The only step required to perform a complete case analysis is deletion
of subjects for which not all designed measurements have been obtained.
When the data are organized ‘horizontally,’ i.e., one record per subject,
this is particularly easy. With ‘vertically’ organized data, slightly more
data manipulation is needed and the following SAS macro, prepared by
C. Beunckens, can be used:
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%macro cc(data=,id=,time=,response=,out=);
%if %bquote(&data)= %then %let data=&syslast;
proc freq data=&data noprint;
tables &id /out=freqsub;
tables &time / out=freqtime;
run;
proc iml;
use freqsub;
read all var {&id,count};
nsub = nrow(&id);
use freqtime;
read all var {&time,count};
ntime = nrow(&time);
use &data;
read all var {&id,&time,&response};
n = nrow(&response);
complete = j(n,1,1);
ind = 1;
do while (ind <= nsub);
j = 1;
do while (j <= ntime);
if (&response[(ind-1)*ntime+j]=.) then
complete[(ind-1)*ntime+1:(ind-1)*ntime+ntime]=0;

j = j+1;
end;
ind = ind+1;

end;
create help var {&id &time &response complete};
append;
quit;
data &out;
merge &data help;
if complete=0 then delete;
drop complete;
run;
%mend;

The CC macro requires four arguments. The ‘data=’ argument is the
dataset to be analyzed. If not specified, the most recent dataset is used.
The name of the variable in the dataset that contains the identification
variable is specified by ‘id=,’ and ‘time=’ specifies the variable indicating
the time ordering within a subject. The outcome variable is passed on by
means of the ‘response=’ argument and the name of the output dataset,
created with the macro, is defined through ‘out=.’
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For example, for the age related macular degeneration trial, running the
next statement produces the complete case CC dataset:

%cc(data=armd111,id=subject,time=time,
response=bindif,out=armdcc);

Upon performing this data pre-processing, a complete case analysis fol-
lows of any type requested by the user, including but not limited to longi-
tudinal analysis. Of course, a totally different question is whether such an
analysis is to be recommended, as discussed in Section 27.3.

The macro requires records, corresponding to missing values, to be present
in the dataset. Otherwise, it is assumed that a measurement occasion not
included is missing by design.

32.3 Last Observation Carried Forward

Similar steps as needed for a complete case analysis need to be performed
when LOCF is the goal. For a vertically organized dataset, the following
macro can be used to appropriately process the data:

%macro locf(data=,id=,time=,response=,out=);
%if %bquote(&data)= %then %let data=&syslast;
proc freq data=&data noprint;
tables &id /out=freqsub;
tables &time / out=freqtime;
run;
proc iml;
use freqsub;
read all var {&id,count};
nsub = nrow(&id);
use freqtime;
read all var {&time,count};
ntime = nrow(&time);
use &data;
read all var {&id,&time,&response};
n = nrow(&response);
locf = &response;
ind = 1;
print nsub;
print ntime;
do while (ind <= nsub);
j=2;
do while (j <= ntime);
if (locf[(ind-1)*ntime+j]=.)
then locf[(ind-1)*ntime+j]=locf[(ind-1)*ntime+j-1];
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j= j+1;
end;
ind = ind+1;

end;
create help var {&id &time &response locf};
append;
quit;
data &out;
merge &data help;
run;
%mend;

The arguments are exactly the same and have the same meaning as in the
CC macro of Section 32.2.

Running the next statement produces the dataset we need for the LOCF
analysis.

%locf(data=armd111,id=subject,time=time,
response=bindif,out=armdlocf);

It is instructive to consider a portion of the LOCF dataset:

Obs subject treat time bindif LOCF

1 1 2 1 1 1
2 1 2 2 1 1
3 1 2 3 . 1
4 1 2 4 . 1

5 2 2 1 0 0
6 2 2 2 1 1
7 2 2 3 1 1
8 2 2 4 1 1

17 5 2 1 . .
18 5 2 2 . .
19 5 2 3 . .
20 5 2 4 . .

121 31 2 1 0 0
122 31 2 2 . 0
123 31 2 3 . 0
124 31 2 4 . 0

197 50 1 1 1 1
198 50 1 2 1 1
199 50 1 3 . 1
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200 50 1 4 1 1

389 98 1 1 . .
390 98 1 2 0 0
391 98 1 3 0 0
392 98 1 4 1 1

Subjects with complete records are obviously left untouched. Both values
after dropout and intermittent values are substituted with the most recently
observed value, except at the beginning of the sequence, when no prior
information is available. This means, in particular, that someone without
any follow up will be left blank.

32.4 Direct Likelihood

In contrast to CC and LOCF, no extra data processing is necessary when a
direct likelihood analysis is envisaged, provided the software tool used for
analysis is able to handle measurement sequences of unequal length. This
is the case for virtually all longitudinal data analysis tools, including the
SAS procedures MIXED, NLMIXED, and GLIMMIX.

One precaution is in place. When residual correlation structures are used
for which the order of the measurements within a sequence is important,
such as unstructured and AR(1), but not simple nor compound symmetry,
and intermittent missingness occurs, care as to be taken to ensure the
design order within the sequence, and not the apparent order, is passed on.
In the SAS procedure MIXED, a statement such as

repeated / subject=subject type=un;

is fine when every subject has, say, four designed measurements. However,
when for a particular subject the second measurement is missing, there is a
risk that the remaining measurements are considered the first, second, and
third, rather than the first, third, and fourth. Thus, it is careful to replace
the above statement by:

repeated time / subject=subject type=un;

For the GENMOD procedure, the option ‘withinsubject=time’ to the RE-
PEATED statement can be used. Note that this produces GEE and not
direct likelihood. For the GLIMMIX procedure, there is no such feature.

In all cases, especially when GLIMMIX is used, the proper order is passed
on when a record is included, even for the missing measurements, of course
with a missing value instead of an actual measurement then.

When the NLMIXED procedure is used, only random effects can be
included, and in such a case all relevant information is contained in the
actual effects that define the random effects structure. For example, the
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order is immaterial for a random intercepts model, and for a random slope
in time, all information needed about time is passed on, for example, by
the RANDOM statement:

RANDOM intercept time / subject=subject type=un;

The following program could be used for fitting a generalized linear mixed-
effects model to the age related macular degeneration data, regardless of
whether data are complete or incomplete:

data help;
set m.armdwgee;
time1=0;
time2=0;
time3=0;
time4=0;
if time=1 then time1=1;
if time=2 then time2=1;
if time=3 then time3=1;
if time=4 then time4=1;
run;

proc nlmixed data=help qpoints=20 maxiter=100 technique=newrap;
eta = beta11*time1+beta12*time2+beta13*time3+beta14*time4 + b

+(beta21*time1+beta22*time2+beta23*time3+beta24*time4)
*(2-treat);

p = exp(eta)/(1+exp(eta));
model bindif ˜ binary(p);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tauˆ2’ tau*tau;
run;

Note that the dataset contains the suffix ‘wgee’ because it also contains
the weights for weighted generalized estimating equations, to be discussed
in Section 32.5.

Thus generally, with only a mild amount of precaution, a direct likelihood
analysis is not any more complex than the corresponding analysis on a set
of data free of missingness. The same holds for GEE by means of, for
example, the GENMOD procedure. Of course, as discussed in Section 27.5,
GEE is not valid unless the missing data mechanism is MCAR. Under
MAR, weighted GEE is advisable and this will be discussed in the next
section.
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32.5 Weighted Estimating Equations (WGEE)

Let us illustrate WGEE by means of the analysis of the age related macular
degeneration trial, discussed in Section 27.7.

A program for the standard GEE analysis would be:

proc genmod data=armdwgee;
class time treat subject;
model bindif = time treat*time

/ noint dist=binomial;
repeated subject=subject

/ withinsubject=time type=exch modelse;
run;

Alternatively, a linearization-based version can be fitted using:

proc glimmix data=armdwgee empirical;
nloptions maxiter=50 technique=newrap;
class time treat subject;
model bindif = time treat*time

/ noint solution dist=binary;
random _residual_ / subject=subject type=cs;
run;

Let us now discuss which steps have to be taken to conduct a weighted
GEE analysis.

To compute the weights, we first have to fit the dropout model, using for
example logistic regression. The outcome ‘dropout’ is binary and indicates
whether or not dropout occurs at a given time from the start of the mea-
surement sequence until the time of dropout or the end of the sequence.
Covariates in the model are the outcomes at previous occasions (‘prev’),
supplemented with genuine covariate information. The DROPOUT macro
is used to construct the variables ‘dropout’ and ‘prev.’

%macro dropout(data=,id=,time=,response=,out=);
%if %bquote(&data)= %then %let data=&syslast;
proc freq data=&data noprint;
tables &id /out=freqid;
tables &time / out=freqtime;
run;
proc iml;
reset noprint;
use freqid;
read all var {&id};
nsub = nrow(&id);
use freqtime;
read all var {&time};
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ntime = nrow(&time);
time = &time;
use &data;
read all var {&id &time &response};
n = nrow(&response);
dropout = j(n,1,0);
ind = 1;
do while (ind <= nsub);
j=1;
if (&response[(ind-1)*ntime+j]=.)
then print "First Measurement is Missing";

if (&response[(ind-1)*ntime+j]ˆ=.) then
do;
j = ntime;
do until (j=1);
if (&response[(ind-1)*ntime+j]=.) then
do;
dropout[(ind-1)*ntime+j]=1;

j = j-1;
end;

else j = 1;
end;

end;
ind = ind+1;

end;
prev = j(n,1,1);
prev[2:n] = &response[1:n-1];
i=1;
do while (i<=n);
if &time[i]=time[1] then prev[i]=.;
i = i+1;

end;
create help var {&id &time &response dropout prev};
append;
quit;
data &out;
merge &data help;
run;
%mend;

Likewise, once a logistic regression has been fitted, these need to be
translated into weights, preparing for the WGEE analysis. These weights
are defined at the individual measurement level. They are equal to the
product of the probabilities of not dropping out up to the measurement
occasion. The last factor is either the probability of dropping out at that
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time or continuing the study. This task can be performed with the following
macro. The arguments are the same as in the DROPOUT macro, except
that now also the predicted values from the logistic regression have to be
passed on through the ‘pred=’ argument, and dropout indicator is passed
on through the ‘dropout=’ argument.

%macro dropwgt(data=,id=,time=,pred=,dropout=,out=);
%if %bquote(&data)= %then %let data=&syslast;
proc freq data=&data noprint;
tables &id /out=freqid;
tables &time / out=freqtime;
run;
proc iml;
reset noprint;
use freqid;
read all var {&id};
nsub = nrow(&id);
use freqtime;
read all var {&time};
ntime = nrow(&time);
time = &time;
use &data;
read all var {&id &time &pred &dropout};
n = nrow(&pred);
wi = j(n,1,1);
ind = 1;
do while (ind <= nsub);

wihlp = 1;
stay = 1;

/* first measurement */
if (&dropout[(ind-1)*ntime+2]=1)
then do;

wihlp = pred[(ind-1)*ntime+2];
stay = 0;
end;

else if (&dropout[(ind-1)*ntime+2]=0)
then wihlp = 1-pred[(ind-1)*ntime+2];

/* second to penultimate measurement */
j=2;
do while ((j <= ntime-1) & stay);

if (&dropout[(ind-1)*ntime+j+1]=1)
then do;

wihlp = wihlp*pred[(ind-1)*ntime+j+1];
stay = 0;
end;
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else if (&dropout[(ind-1)*ntime+j+1]=0)
then wihlp = wihlp*(1-pred[(ind-1)*ntime+j+1]);
j = j+1;

end;
j = 1;
do while (j <= ntime);
wi[(ind-1)*ntime+j]=wihlp;
j = j+1;

end;
ind = ind+1;

end;
create help var {&id &time &pred &dropout wi};
append;
quit;
data &out;
merge &data help;
data &out;
set &out;
wi=1/wi;
run;
%mend;

Using both macros, the following code can be used to prepare for a
WGEE analysis:

%dropout(data=armd111,id=subject,time=time,
response=bindif,out=armdhlp);

proc genmod data=armdhlp descending;
class trt prev lesion time;
model dropout = prev trt lesion time

/ pred dist=binomial;
ods output obstats=pred;
run;

data pred;
set pred;
keep observation pred;
run;

data armdhlp;
merge pred armdhlp;
run;

%dropwgt(data=armdhlp,id=subject,time=time,
pred=pred,dropout=dropout,out=armdwgee);
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First, the dropout indicator and previous outcome variable are defined us-
ing the DROPOUT macro, whereafter an ordinary logistic regression is
performed. Predicted values are first saved and then merged with the orig-
inal data. Finally, the predicted values are translated into proper weights
using the DROPWGT macro.

Let us take a look at a portion of the final dataset:

subject time bindif DROPOUT PREV Pred WI

1 1 1 0 . . 58.4309
1 2 1 0 1 0.0120543 58.4309
1 3 . 1 1 0.017323 58.4309
1 4 . 1 . . 58.4309

2 1 0 0 . . 1.2741
2 2 1 0 0 0.031629 1.2741
2 3 1 0 1 0.0434131 1.2741
2 4 1 0 1 0.1526847 1.2741

5 1 . 0 . . .
5 2 . 0 . . .
5 3 . 0 . . .
5 4 . 0 . . .

31 1 0 0 . . 5.7965
31 2 . 1 0 0.1725191 5.7965
31 3 . 1 . . 5.7965
31 4 . 1 . . 5.7965

50 1 1 0 . . .
50 2 1 0 1 0.0130651 .
50 3 . 0 1 0.0187673 .
50 4 1 0 . . .

98 1 . 0 . . .
98 2 0 0 . . .
98 3 0 0 0 0.0194998 .
98 4 1 0 0 0.0731861 .

Note that some individuals have a very high weight. This is the case when
dropout occurs, in spite of a very low dropout probability. Further, non-
monotone sequences are not taken into account in this analysis. Also, al-
ternative weighting schemes that allow weights to differ by measurement,
rather than by subject, are possible as well.

After this preparatory endeavor, we merely need to include the weights
by means of the WEIGHT (or, equivalently, SCWGT) statement within the
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Imputation Task: PROC MI

↓

Analysis Task: PROC “MYFAVORITE”

↓

Inference Task: PROC MIANALYZE

FIGURE 32.1. The three multiple imputation tasks using SAS.

GENMOD procedure. This statement identifies a variable in the input data
set to be used as the exponential family dispersion parameter weight for
each observation. The exponential family dispersion parameter is divided
by the WEIGHT variable value for each observation. Whereas the inclusion
of the REPEATED statement turns a univariate exponential family model
into GEE, the addition of WEIGHT further switches to WGEE. In other
words, we merely need to add:

weight wi;

Note that the use of the WEIGHT statement is equally possible in the
GLIMMIX procedure, so that also a weighted version of the linearization
based GEE method is feasible.

32.6 Multiple Imputation

Multiple imputation has been introduced in Section 28.2 and exemplified
using the age related macular degeneration trial in Section 28.5.

The three tasks of multiple imputation, i.e., the imputation, analysis,
and inference tasks, can be conducted within SAS. Two key procedures are
the MI and MIANALYZE procedures. A schematic representation of the
three tasks is given in Figure 32.1. We will discuss each of the tasks in turn.
A specific use of the MI procedure is to change non-monotone missingness
into monotone missingness. We will devote some attention to this specific
job as well.

32.6.1 The MI Procedure for the Imputation Task
PROC MI is used to generate the imputations. It creates M imputed
datasets from an input dataset, physically stored in a single data set with
indicator variable IMPUTATION to separate the imputed copies.
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There is a variety of imputation mechanisms available (Section 28.2.5),
distinguishing between non-monotone and monotone sequences, and be-
tween continuous and categorical variables.

The following program can be used:

proc mi data=armd13 seed=486048 out=armd13a
simple nimpute=10 round=0.1;

var lesion diff4 diff12 diff24 diff52;
by treat;
run;

Let us describe some options available in the PROC MI statement. The
option ‘simple’ displays simple descriptive statistics and pairwise correla-
tions based on available cases in the input dataset. The number of im-
putations is specified by the option ‘nimpute=,’ with a default of five.
The option ‘round=’ controls the number of decimal places in the imputed
values, with no rounding by default. For example, ‘round=0.1’ requests a
single decimal place. If more than one number is specified, one should use a
VAR statement, and the specified numbers must correspond to the number
of variables in the VAR statement. The ‘seed=’ option is used to specify
a positive integer, which is used by PROC MI to start the pseudo-random
number generator. The default is a value generated from the time of day
from the computer’s clock. Thus, though not needed, it is useful when an
analysis needs to be checked afterwards or when a seed is specified by an
external source such as, for example, a regulatory authority.

The imputation task is carried out separately for each level of the vari-
ables specified in the BY statement. For example, when there are several
treatment arms, imputation can be done for each arm separately, thus not
imposing any relationship between the outcome variables and such an im-
portant covariate as treatment assignment.

In PROC MI, one can choose between one of the three imputation mech-
anisms we discussed in Section 28.2.5. When missingness is confined to
dropout, the MONOTONE statement can, but does not have to, be used.
The parametric regression method ‘method=reg’ as well as the nonpara-
metric propensity score method (‘method=propensity’) are available. For
general patterns of missingness, the MCMC statement can be used, which
is the default as well.

In all cases, especially with MCMC, a number of options is available
to flexibly control the imputation task. For example, ‘ngroups=’ speci-
fies the number of groups based on propensity scores when the propensity
scores method is used. For the MCMC method, one can give the initial
mean and covariance estimates to start the MCMC process by the ‘ini-
tial=’ option. The ‘pmm’ option in the MCMC statement uses the predic-
tive mean matching method to impute an observed value that is closest
to the predicted value in the MCMC method. The ‘regpmm’ option in the
MONOTONE statement uses the predictive mean matching method to im-
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pute an observed value that is closest to the predicted value for data sets
with monotone missingness. One can specify more than one method in the
MONOTONE statement, and for each imputed variable, the covariates can
be specified separately.

Whereas such methods as ‘propensity’ and ‘regression’ are used for in-
complete continuous outcomes, incomplete categorical outcomes can be im-
puted by including them into the CLASS statement, in addition to their
inclusion in the VAR statement. In such a case, the MONOTONE option
should be used, and one can make use of logistic regression and discrimi-
nant analysis imputation by means of the options ‘logistic’ and ‘discrim,’
respectively.

With the (default) ‘initial=EM’ option, the procedure uses the means
and standard deviations from available cases as the initial estimates for
the EM algorithm. The final estimates after applying the EM algorithm are
then used to start the MCMC process. One can also specify ‘initial=input
SAS-data-set ’ to use a SAS dataset with the initial estimates of the mean
and covariance matrix for each imputation. Further, the ‘niter=’ option
specifies the number of iterations between imputations in a single chain,
the default being 100.

Let us illustrate the MI procedure by means of the analysis conducted
on the age related macular degeneration trial in Section 28.5. At this point,
the dataset is in a ‘multivariate’ format, i.e., each subject has got a sin-
gle record, with different measurement occasions stored in different columns
(variables). We started from the continuous outcomes ‘diff4,’ ‘diff12,’ ‘diff24,’
and ‘diff52,’ i.e., the difference from baseline in number of letters read,
which was then dichotomized as negative versus non-negative. It is then
sensible to multiply impute the continuous outcome first, and then di-
chotomize. The four outcomes were supplemented with ‘lesion,’ a count,
which for the purpose of this analysis is treated as continuous. The im-
putation is conducted for each of the two treatment arms separately. This
implies the lesion and treatment outcomes are taken into account. A con-
sequence of this approach is that subjects for whom all four follow-up mea-
surements are missing are still imputed, by virtue of the lesion covariate
information. One has to ensure the data are sorted by treatment group,
since otherwise the BY statement in the MI procedure will cause problems.

Ten imputations are requested by the ‘nimpute=’ option and the im-
puted values are rounded to one decimal place by including ‘round=0.1.’
The ‘seed=’ option is needed only to reproduce the analysis. Without the
‘seed=’ option, the random generator is started based on the computer’s
clock.

No imputation method has been specified, implying the user is satisfied
with the defaults, as presented in the ‘Model Information’ panel:

Model Information
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Data Set ARMD13
Method MCMC
Multiple Imputation Chain Single Chain
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 10
Number of Burn-in Iterations 200
Number of Iterations 100
Seed for random number generator 486048

Multiple imputations are generated using Monte Carlo Markov Chain sam-
pling, with a ‘single chain’ for all of the 10 imputations, as opposed to
a different chain for each one of the iterations. Initial estimates for the
MCMC algorithm are obtained using the EM algorithm, applied to the
five-variate normal distribution assumed for the five outcomes (‘lesion’ and
the four follow-up measurements). Initial values for the EM algorithm are
generated using a complete case analysis.

Some of the descriptive statistics for treatment arm 1 are as follows. An
overview is given of the missing data patterns:

Missing Data Patterns

Group lesion diff4 diff12 diff24 diff52 Freq Percent

1 X X X X X 102 85.71
2 X X X X . 9 7.56
3 X X X . X 2 1.68
4 X X X . . 3 2.52
5 X X . . . 1 0.84
6 X . X X X 1 0.84
7 X . . . . 1 0.84

and the corresponding table for the second treatment arm is

Missing Data Patterns

Group lesion diff4 diff12 diff24 diff52 Freq Percent

1 X X X X X 86 71.07
2 X X X X . 15 12.40
3 X X X . X 2 1.65
4 X X X . . 5 4.13
5 X X . . X 1 0.83
6 X X . . . 5 4.13
7 X . X X X 1 0.83
8 X . X . . 1 0.83
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9 X . . . . 4 3.31
10 O O O O O 1 0.83

Next, group means per pattern are given (displayed for treatment arm 1):

Missing Data Patterns

-----------------------------Group Means--------------------
Group lesion diff4 diff12 diff24 diff52

1 1.901961 -0.921569 -2.313725 -5.598039 -10.960784
2 1.666667 -1.222222 2.111111 -7.666667 .
3 1.500000 -12.500000 -19.000000 . -18.500000
4 2.000000 -4.000000 -4.000000 . .
5 4.000000 -10.000000 . . .
6 1.000000 . 1.000000 1.000000 -19.000000
7 1.000000 . . . .

Then, unadjusted univariate statistics are given, based on the averages over
the available information for each of the outcomes:

Univariate Statistics

-Missing Values-
Variable N Mean Std Dev Min Max Count Percent

lesion 119 1.8823 0.9313 1.0 4.0 0 0.00
diff4 117 -1.2991 7.7183 -33.0 30.0 2 1.68
diff12 117 -2.2735 11.7345 -38.0 31.0 2 1.68
diff24 112 -5.7053 13.8281 -54.0 26.0 7 5.88
diff52 105 -11.1809 16.4292 -59.0 23.0 14 11.76

The posterior modes, obtained after applying the EM algorithm, together
with the corresponding covariance parameters, are presented. These are
used to draw imputations from:

EM (Posterior Mode) Estimates

_TYPE_ _NAME_ lesion diff4 diff12 diff24 diff52

MEAN 1.8823 -1.2696 -2.3352 -5.9795 -11.3339
COV lesion 0.8188 -0.9175 -1.1290 -0.8096 -0.7889
COV diff4 -0.9175 56.0723 49.0903 45.1982 44.6498
COV diff12 -1.1290 49.0903 130.0959 91.9756 100.8011
COV diff24 -0.8096 45.1982 91.9756 188.6427 174.7665
COV diff52 -0.7889 44.6498 100.8011 174.7665 264.5092

More detail on the specific use of the MI procedure to apply the EM algo-
rithm is given in Section 32.6.
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For each of the incomplete outcomes, which in our case excludes the
‘lesion’ variable, information on the between, within and total variances is
given, as well as on the fraction of missing information:

Multiple Imputation Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

diff4 0.004699 0.504802 0.509971 114.72
diff12 0.026864 1.161408 1.190959 112.3
diff24 0.159445 1.745878 1.921267 96.074
diff52 0.085476 2.405584 2.499607 109.76

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

diff4 0.010240 0.010159 0.998985
diff12 0.025444 0.024946 0.997512
diff24 0.100459 0.092967 0.990789
diff52 0.039085 0.037918 0.996223

Note that the amount of missing information is larger at 24 weeks than
at 52 weeks, in spite of the reverse holding for the number of missing
subjects at these occasions. The above information can then be used to
test standard hypotheses about the imputed outcomes. This is useful when
the scientific questions are stated in terms of the individual outcomes, as
then the other two tasks (analysis and inference) are no further needed.
However, one usually would be interested in fitting a (longitudinal) model
to the imputed datasets and hence both tasks would be needed.

At this point, the data are still in a horizontal or multivariate mode.
Thus, we first define the binary outcomes out of the multiply imputed
continuous ones, and then store the data in longitudinal or vertical mode,
as was done on page 455:

data armd13a;
set armd13a;
bindif4=0; if diff4 <= 0 then bindif4=1;
bindif12=0;if diff12 <= 0 then bindif12=1;
bindif24=0;if diff24 <= 0 then bindif24=1;
bindif52=0;if diff52 <= 0 then bindif52=1;
if diff4=. then bindif4=.;
if diff12=. then bindif12=.;
if diff24=. then bindif24=.;
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if diff52=. then bindif52=.;
run;

data armd13b;
set armd13a;
array x (4) bindif4 bindif12 bindif24 bindif52;
array y (4) diff4 diff12 diff24 diff52;
do j=1 to 4;

bindif=x(j);
diff=y(j);
time=j;
output;

end;
run;

Taking a look at the first subject, in horizontal format for conciseness,
we obtain (variable names have been shortened):

_Imp._ diff4 diff12 diff24 diff52 bin4 bin12 bin24 bin52

1 -4 -14 3.2 3.1 1 1 0 0
2 -4 -14 -31.6 -43.9 1 1 1 1
3 -4 -14 -11.4 -18.4 1 1 1 1
4 -4 -14 -30.4 -39.3 1 1 1 1
5 -4 -14 -5.5 -24.9 1 1 1 1
6 -4 -14 3.0 -15.9 1 1 0 1
7 -4 -14 -22.3 -45.2 1 1 1 1
8 -4 -14 -2.8 -33.6 1 1 1 1
9 -4 -14 -27.1 -48.1 1 1 1 1

10 -4 -14 -23.7 -46.9 1 1 1 1

Thus, the measurements at weeks 24 and 52 have been imputed 10 times.
Of course, due to the coarsening occuring when dichotomizing a continuous
outcome, the binary indicators show relatively little variability.

We are now ready to conduct the analysis task.

32.6.2 The Analysis Task
The imputed data sets are analyzed using a standard procedure, labeled
‘MYFAVORITE’ in Figure 32.1. It is important to ensure that the BY
statement is used to force an analysis for each of the imputed sets of data
separately, in the following way:

by _imputation_;

Parameter estimates and their estimated covariance matrices need to be
stored in appropriate output datasets, so they can be passed on to the MI-



32.6 Multiple Imputation 625

ANALYZE procedure in the inference task (Section 32.6.3). Although the
MIANALYZE procedure is conceived very generally, it still is a bit of chal-
lenge because the estimates and their estimated covariances are called dif-
ferently by different SAS procedures, and the output datasets correspond-
ing to them may be organized somewhat differently as well. The procedure
is able to handle CLASS effects as well, even though a number of columns
in the corresponding output datasets are then needed to multi-index the
effect.

In spite of this CLASS feature of the MIANALYZE procedure, we have
chosen to create appropriate dummies for categorical effects and interac-
tions, by way of defensive programming. It also facilitates direct mapping
between GEE and GLMM parameters, using the GENMOD and NLMIXED
procedures, respectively.

To prepare for the analysis, dummies are created and then the data are
sorted by imputation number.

data armd13c;
set armd13b;
time1=0;
time2=0;
time3=0;
time4=0;
trttime1=0;
trttime2=0;
trttime3=0;
trttime4=0;
if time=1 then time1=1;
if time=2 then time2=1;
if time=3 then time3=1;
if time=4 then time4=1;
if (time=1 & treat=1) then trttime1=1;
if (time=2 & treat=1) then trttime2=1;
if (time=3 & treat=1) then trttime3=1;
if (time=4 & treat=1) then trttime4=1;
run;

proc sort data=armd13c;
by _imputation_ subject time;
run;

The latter is needed because the MI procedure performed imputation by
treatment group, hence the imputations run from 1 through 10 within each
treatment group, and hence the overall ordering by imputation needs to be
restored first.

The GENMOD procedure can then be called for a GEE analysis, analo-
gous to the one presented at the start of Section 32.5:
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proc genmod data=armd13c;
class time subject;
by _imputation_;
model bindif = time1 time2 time3 time4

trttime1 trttime2 trttime3 trttime4
/ noint dist=binomial covb;

repeated subject=subject
/ withinsubject=time type=exch modelse;

ods output ParameterEstimates=gmparms
parminfo=gmpinfo CovB=gmcovb;

run;

Apart from an otherwise irrelevant change to user-defined dummy coding
of the covariates in the model, the BY statement has been added, as well
as the ODS statement, to store the parameter estimates and the covari-
ance parameters. For the latter, the ‘parminfo=’ option is used next to
the ‘covb=’ option, to ensure the proper names of the covariate effects are
mapped to abbreviations of type ‘Prm1,’ etc. Note that the ‘covb=’ output
option works only because the ‘covb’ option was included into the MODEL
statement. The parameter estimates are generated by default. The direct
output of the GENMOD procedure will be a GEE analysis for each of
the ten imputed datasets. As such, they are of no direct scientific interest.
Formal inference ought to be conducted only using the results from the
inference task (Section 32.6.3).

Because the ‘noint’ option was included into the effect ‘Prm1’ formally
exists but it is unavailable as a parameter estimate. It is therefore prudent
to delete it from the parameter information:

data gmpinfo;
set gmpinfo;
if parameter=’Prm1’ then delete;
run;

It is one of many small data handling operations that might have to take
place between the analysis and inference tasks. When problems occur, it is
wise to print the output datasets needed and make the necessary adjust-
ments.

A portion of the parameter-estimates set of data reads:

Obs _Imputation_ Parameter DF Estimate

1 1 Intercept 0 0.0000
2 1 time1 1 -0.8473
3 1 time2 1 -1.0546
4 1 time3 1 -1.0986
5 1 time4 1 -1.6094
6 1 trttime1 1 0.2042
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7 1 trttime2 1 0.6281
8 1 trttime3 1 0.4555
9 1 trttime4 1 0.2850

10 1 Scale 0 1.0000
...
12 2 time1 1 -0.8079
...
22 3 time1 1 -0.8079
...
32 4 time1 1 -0.8873
...
42 5 time1 1 -0.8473
...
52 6 time1 1 -0.8473
...
62 7 time1 1 -0.8079
...
72 8 time1 1 -0.8473
...
82 9 time1 1 -0.8873
...
92 10 time1 1 -0.8473

The full set of parameters for the first dataset is displayed, as well as the
effect at 4 weeks (‘time1’) for each of the remaining nine datasets.

It is instructive to consider a portion of the variance-covariance dataset:

I
m
p
u
t R
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i N P P P P

O o a r r r r
b n m m m m m
s _ e 2 3 4 5 ...

1 1 Prm2 0.0396825 0 0 0 ...
2 1 Prm3 0 0.043494 0 0 ...
3 1 Prm4 0 0 0.0444444 0 ...
4 1 Prm5 0 0 0 0.06 ...
...
9 2 Prm2 0.0390752 0 0 0 ...
10 2 Prm3 0 0.043494 0 0 ...
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11 2 Prm4 0 0 0.0444444 0 ...
12 2 Prm5 0 0 0 0.0625326 ...
...

Not only this portion, but every one of the 10 variance-covariance matrices,
is fully diagonal, in line with the fact that we have a full treatment by time
interaction model, on rectangular sets of data. However, this need not be
the case for the final variance-covariance matrix, as we will see from the
inference task.

The parameter mapping dataset looks as follows:

Obs _Imputation_ Parameter Effect

1 1 Prm2 time1
2 1 Prm3 time2
3 1 Prm4 time3
4 1 Prm5 time4
5 1 Prm6 trttime1
6 1 Prm7 trttime2
7 1 Prm8 trttime3
8 1 Prm9 trttime4

...

Of course, once the imputation task is finished, in principle any (longi-
tudinal) analysis can be done. For example, the GLMM from Section 32.4
can be conducted on the multiply imputed datasets:

proc nlmixed data=armd13c qpoints=20 maxiter=100
technique=newrap cov ecov;

by _imputation_;
eta = beta11*time1+beta12*time2+beta13*time3+beta14*time4

+b
+beta21*trttime1+beta22*trttime2
+beta23*trttime3+beta24*trttime4;

p = exp(eta)/(1+exp(eta));
model bindif ˜ binary(p);
random b ˜ normal(0,tau*tau) subject=subject;
estimate ’tau2’ tau*tau;
ods output ParameterEstimates=nlparms

CovMatParmEst=nlcovb
AdditionalEstimates=nlparmsa
CovMatAddEst=nlcovba;

run;

Apart from the BY statement, four output datasets are generated using the
ODS statement. For the standard model parameters, we only need the ‘pa-
rameterestimates=’ and ‘covmatparmest=’ options. If, in addition, multiple
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imputation inference is requested about the additional estimates, then they
can be saved as well using the ‘additionalestimates=’ and ‘covmataddest=’
options. However, it may be wiser to calculate the additional estimates
directly from the results of the inference task, i.e., to conduct multiple
imputation inference and then calculate additional estimates, rather than
the other way around. For both covariance matrices to be generated, the
options ‘cov’ and ‘ecov,’ respectively, need to be included into the PROC
NLMIXED statement.

For both models, we can now conduct multiple imputation inference, as
explained in Section 32.6.3.

32.6.3 The Inference Task
Finally, PROC MIANALYZE combines the M inferences into a single one,
by making use of the theory laid out in Section 28.2.2. Parameter and stan-
dard errors are passed on through a combination of the ‘data=,’ ‘parms=,’
‘covb=,’ and/or ‘xpxi=’ options to the PROC MIANALYZE statement.
Using ‘data=’ datasets of types COV, CORR, or EST can be passed on,
as well as a dataset containing parameter estimates and standard errors.
When one wants to pass on parameter estimates and variance-covariance
matrices instead, it is better to use ‘parms=’ and ‘covb=’ or ‘parms=’ and
‘xpxi=.’ When the ‘covb=’ matrices contain generic names (‘Prm1,’. . . ),
the mapping between generic and actual parameter names is passed on
using ‘parminfo=.’

A number of fine tuning options is available as well in the PROC MIANA-
LYZE statement. For example, the within-imputation, between-imputation
and total covariance matrices are printed upon including the ‘wcov’, ‘bcov’,
and ‘tcov’ options, respectively.

The parameters or effects for which multiple imputation inference is
needed are passed on by means of the MODELEFFECTS statement (previ-
ously VAR statement). Categorical effects are handled as well, upon includ-
ing them in the CLASS statement. As stated earlier, it could be cautious to
create appropriate dummies and avoid the use of the CLASS statement, as
sometimes the mapping between parameter estimates and the correspond-
ing precision parameters is not straightforward. In principle, the MIANA-
LYZE procedure works after applying any standard analysis, using a SAS
procedure, in the analysis task, from SAS Version 9.1 onwards.

The TEST statement allows testing for hypotheses about linear combi-
nations of the parameters. The statement is based on Rubin (1987), and
uses a t-distribution which is the univariate version of the work by Li,
Raghunathan, and Rubin (1991), described in Section 28.2.3.

Applying the procedure to the GEE analysis on the ARMD data, pre-
sented in Section 32.6.2, can be done using the following code:

proc mianalyze parms=gmparms covb=gmcovb
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parminfo=gmpinfo wcov bcov tcov;
modeleffects time1 time2 time3 time4

trttime1 trttime2 trttime3 trttime4;
run;

Compared to the MI procedure, the MIANALYZE procedure is rather sim-
ple, in line with the simplicity and elegance of the pooling method of Sec-
tion 28.2.2. For each of the parameters, their between, within, and total
variance is presented:

Multiple Imputation Variance Information

-------------Variance-----------
Parameter Between Within Total DF

time1 0.000856 0.039631 0.040573 16698
time2 0.003629 0.042843 0.046835 1238.9
time3 0.007760 0.043903 0.052440 339.63
time4 0.013950 0.060207 0.075551 218.18
trttime1 0.002235 0.076721 0.079179 9337.3
trttime2 0.003376 0.077934 0.081648 4350.7
trttime3 0.009839 0.081079 0.091902 648.95
trttime4 0.015836 0.108550 0.125969 470.66

based upon which the fraction of missing information can be calculated:

Multiple Imputation Variance Information

Relative Fraction
Increase Missing Relative

Parameter in Variance Information Efficiency

time1 0.023768 0.023333 0.997672
time2 0.093173 0.086705 0.991404
time3 0.194438 0.167673 0.983509
time4 0.254868 0.210309 0.979402
trttime1 0.032041 0.031254 0.996884
trttime2 0.047649 0.045921 0.995429
trttime3 0.133485 0.120471 0.988096
trttime4 0.160474 0.141922 0.986006

This is similar in spirit to some of the output of the MI procedure (Sec-
tion 32.6.1), but here the interest lies in parameters, whereas the MI proce-
dure focuses on the imputed outcome variables. The information is useful to
see how missingness decreases precision with which the various parameters
are estimated.
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The key portion of the output is the parameter estimates, their standard
errors, and related information:

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

time1 -0.843486 0.201427 -1.23831 -0.44867 16698
time2 -1.020910 0.216413 -1.44549 -0.59633 1238.9
time3 -1.069445 0.228997 -1.51988 -0.61901 339.63
time4 -1.607580 0.274866 -2.14931 -1.06585 218.18
trttime1 0.211407 0.281388 -0.34017 0.76299 9337.3
trttime2 0.604904 0.285740 0.04471 1.16510 4350.7
trttime3 0.429925 0.303153 -0.16535 1.02521 648.95
trttime4 0.366539 0.354921 -0.33089 1.06396 470.66

Some additional information is the range for the parameter estimates, as-
sembled from the 10 imputations, and results from testing the null hypoth-
esis of a zero true parameter value:

Multiple Imputation Parameter Estimates
t for H0:

Parameter Minimum Maximum Theta0 Par=Theta0 Pr > |t|

time1 -0.887303 -0.807923 0 -4.19 <.0001
time2 -1.143564 -0.927987 0 -4.72 <.0001
time3 -1.236763 -0.927987 0 -4.67 <.0001
time4 -1.871802 -1.439215 0 -5.85 <.0001
trttime1 0.127354 0.281167 0 0.75 0.4525
trttime2 0.501468 0.717045 0 2.12 0.0343
trttime3 0.284850 0.593626 0 1.42 0.1566
trttime4 0.213264 0.645850 0 1.03 0.3023

The values for ‘Theta0’ can be specified by the user in the PROC MI-
ANALYZE statement. In this case, for the final four parameters, the tests
corresponds to the null hypothesis of no treatment effect at each of the four
times.

It is instructive to pay attention to the within-imputation, between-
imputation, and total covariance matrices. Although the within-imputation
covariance matrix, being the average of the 10 matrices passed on through
the ‘covb=’ option, is diagonal, the between-imputation matrix is not, as
is seen from the following small fraction:

Between-Imputation Covariance Matrix

time1 time2 ...
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time1 0.0008563099 0.0004082521 ...
time2 0.0004082521 0.0036288964 ...
...

Conducting multiple imputation inference for the NLMIXED analysis,
presented in Section 32.6.2, is done by means of:

proc mianalyze parms=nlparms covb=nlcovb
wcov bcov tcov;

modeleffects beta11 beta12 beta13 beta14
beta21 beta22 beta23 beta24;

run;

with the following results for the model parameters:

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

beta11 1.455346 0.356901 0.75556 2.15513 3139.1
beta12 1.749244 0.376606 1.01021 2.48827 999.52
beta13 1.826672 0.383498 1.07377 2.57957 726.52
beta14 2.686402 0.445717 1.80943 3.56338 313.46
beta21 -0.315416 0.480927 -1.25816 0.62733 8002.1
beta22 -0.988679 0.488167 -1.94574 -0.03162 4324.6
beta23 -0.673317 0.507420 -1.66922 0.32258 876.41
beta24 -0.515931 0.563860 -1.62394 0.59208 468.56
tau 2.203316 0.256697 1.69895 2.70768 488.15

and

Multiple Imputation Parameter Estimates
t for H0:

Parameter Minimum Maximum Theta0 Par=Theta0 Pr > |t|

beta11 1.338106 1.582843 0 4.08 <.0001
beta12 1.529515 1.882212 0 4.64 <.0001
beta13 1.653527 2.028812 0 4.76 <.0001
beta14 2.481554 3.074676 0 6.03 <.0001
beta21 -0.445510 -0.192473 0 -0.66 0.5119
beta22 -1.126595 -0.769312 0 -2.03 0.0429
beta23 -0.907306 -0.449662 0 -1.33 0.1849
beta24 -0.954038 -0.276338 0 -0.91 0.3607
tau 2.081615 2.332432 0 8.58 <.0001
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32.6.4 The MI Procedure to Create Monotone
Missingness

When missingness is non-monotone, one might think of several mechanisms
operating simultaneously: e.g., a simple (MCAR or MAR) mechanism for
the intermediate missing values and a more complex (MNAR) mechanism
for the missing data past the moment of dropout. However, analyzing such
data is complicated because many model strategies, especially those un-
der the assumption of MNAR, but also WGEE, have been developed for
dropout only or at least work in a considerably simpler way under monotone
missingness. Therefore, a solution might be to generate multiple imputa-
tions that render the datasets monotone missing, by including into MI:

mcmc impute = monotone;

and then apply a method of choice to the so-completed multiple sets of data.
Note that this is different from the monotone method in the MI procedure.
The latter in fact does the opposite: it fully completes already monotone
sets of data.

The other value for the ‘impute=’ option is ‘impute=full,’ which is also
the default. This method implies that all missing values are imputed,
whether monotone or non-monotone.

32.7 The EM Algorithm

A version of the EM algorithm, for multivariate normal data, can be
conducted using the MI procedure in SAS. With the MCMC imputa-
tion method (for general non-monotone settings), the MCMC chain is
started using EM-based starting values. It is possible to suppress the actual
MCMC-based multiple imputation, thus restricting action of PROC MI to
the EM algorithm.

The ‘nimpute=’ option in the MI procedure should be set equal to zero to
skip multiple imputation. Then, only tables with model information, miss-
ing data patterns, descriptive statistics (in case the ‘simple’ option is given)
and the results from the EM algorithm (EM statement) are displayed.

We have to specify the EM statement, so that the EM algorithm is used to
compute the maximum likelihood estimate (MLE) of the data with missing
values, assuming a multivariate normal distribution for the data. Clearly,
this feature is as such not needed to estimate parameters of a multivariate
normal based on incomplete data, since direct likelihood is well within reach
using, for example, the MIXED procedure. However, it illustrates nicely the
features of the EM algorithm.

The following options are available with the EM statement. The option
‘converge=’ option specifies the convergence criterion, with a value between
0 and 1. The iterations are considered to have converged when the max-
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imum change in the parameter estimates between iteration steps is less
than the value specified. The change is a relative change if the parameter
is greater than 0.01 in absolute value; otherwise it is an absolute change.
By default, ‘converge’ is set to 10−4. The iteration history in the EM algo-
rithm is printed if the option ‘itprint’ is given. The maximum number of
iterations used in the EM algorithm is specified with the ‘maxiter=’ option.
The default is ‘maxiter=200.’

Initial values for the EM algorithm are computed using the method speci-
fied by means of the ‘initial=’ option. The default is the AC (available case)
method, but also CC (complete cases) are possible. The correlations are set
equal to zero when starting the procedure with AC.

The ‘out=’ option specifies an output dataset, equal to the input dataset
with all incomplete values among the variables analyzed replaced by their
final expectation under the EM algorithm. The option ‘outem=’ creates an
output SAS data set containing the MLE of the parameter vector (µ, Σ),
computed with the EM algorithm. Finally, ‘outiter=’ creates an output SAS
data set containing parameters for each iteration. The dataset includes a
variable named ‘ iteration ’ to identify the iteration number.

Applying the method to the four continuous outcomes in the ARMD
trial can be done using the following program:

proc mi data=armd14 seed=675938 simple nimpute=0;
em itprint;
var diff4 diff12 diff24 diff52;
by treat;
run;

When the complete data estimates have to be used as initial values, the
option ‘initial=cc’ has to be added to the EM statement.

The initial estimates, obtained from the available cases, and in agreement
with the ‘simple’ statistics on page 622, are

Initial Parameter Estimates for EM

_TYPE_ _NAME_ diff4 diff12 diff24 diff52

MEAN -1.299145 -2.273504 -5.705357 -11.180952
COV diff4 59.573534 0 0 0
COV diff12 0 137.700413 0 0
COV diff24 0 0 191.218710 0
COV diff52 0 0 0 269.918864

The first line is for µ, the following four lines are for Σ. The evolution
of the log-likelihood and each of the four parameters is displayed in the
following panel:

EM (MLE) Iteration History
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-2 Log L diff4 diff12 diff24 diff52

0 2677.623690 -1.299145 -2.273504 -5.705357 -11.180952
1 2499.142589 -1.299145 -2.273504 -5.705357 -11.180952
2 2490.124996 -1.288106 -2.337030 -5.920341 -11.287948
3 2489.821035 -1.284122 -2.338551 -5.968896 -11.326957
4 2489.809193 -1.282958 -2.338624 -5.981039 -11.336978
5 2489.808488 -1.282661 -2.338637 -5.984320 -11.339102
6 2489.808431 -1.282579 -2.338640 -5.985249 -11.339499
7 2489.808426 -1.282555 -2.338641 -5.985521 -11.339563
8 2489.808426 -1.282547 -2.338641 -5.985603 -11.339571
9 2489.808426 -1.282544 -2.338641 -5.985628 -11.339571

Then, a panel with the MLE estimates is given:

EM (MLE) Parameter Estimates

_TYPE_ _NAME_ diff4 diff12 diff24 diff52

MEAN -1.282544 -2.338641 -5.985628 -11.339571
COV diff4 58.922448 51.511233 47.562350 47.117941
COV diff12 51.511233 136.639243 96.740432 106.108044
COV diff24 47.562350 96.740432 198.718732 184.115237
COV diff52 47.117941 106.108044 184.115237 279.107171

as well as with the posterior modes. The latter was given already on
page 622.

When the ‘initial=cc’ option is included, the following starting values
are used:

Initial Parameter Estimates for EM

_TYPE_ _NAME_ diff4 diff12 diff24 diff52

MEAN -0.921569 -2.313725 -5.598039 -10.960784
COV diff4 47.756164 35.628810 38.542419 38.838478
COV diff12 35.628810 122.791691 84.968938 97.408464
COV diff24 38.542419 84.968938 188.361580 176.993982
COV diff52 38.838478 97.408464 176.993982 275.820229

In this case, the EM algorithm converges in about half the iterations
needed for the AC starting values. Although the AC values may be closer
to the true values for some, the use of the covariances here, unlike in the
AC case, has the effect of considerably fastening convergence.

32.8 MNAR Models and Sensitivity Analysis Tools

The earlier sections in this chapter have shown that the simple methods,
as well as methodology valid under MAR, are quite feasible using stan-
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dard software, such as the SAS system. Models for MNAR and sensitivity
analysis tools require more programming by the user, perhaps with the ex-
ception of simple pattern-mixture models (Section 30.2). Such tools have
been developed by C. Beunckens and colleagues for continuous outcomes,
as reported in Dmitrienko et al (2005, Chapter 5) and Molenberghs et al
(2005). These include software to fit the model of Diggle and Kenward
(1994), as well as implementation of the associated local influence method-
ology. We will gradually place such tools on our Web site as they become
available.
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Böhning, D. and Lindsay, B.G. (1988) Monotonicity of quadratic approx-
imation algorithms. The Annals of the Institute of Statistical Mathe-
matics, 40, 641–663.

Box, G.E.P. and Tiao, G.C. (1992) Bayesian Inference in Statistical
Analysis. Wiley Classics Library edition. New York: John Wiley &
Sons.

Brant, L.J., Sheng, S.L., Morrell, C.H., Verbeke, G.N., Carter, H.B., and
Lesaffre, E. (2003) Screening for prostate cancer using random-effects
models, Journal of the Royal Statistical Society, Series A, 166, 51–62.

Brenowitz, E.A., Margoliash, D., and Nordeen, K.W. (1997) An introduc-
tion to birdsong and the avian song system. Journal of Neurobiology,
33, 495–500.



640 References

Breslow, N.E. and Clayton, D.G. (1993) Approximate inference in gener-
alized linear mixed models. Journal of the American Statistical Asso-
ciation, 88, 9–25.

Breslow, N.E. and Day, N.E. (1989) Statistical methods in cancer research.
Volume 1 : The analysis of case-control studies, International Agency
for Research on Cancer, Scientific Publications 32.

Breslow, N.E. and Lin, X. (1995) Bias correction in generalized linear
mixed models with a single component of dispersion. Biometrika, 82,
81–91.

Brown, C.H. (1990) Protecting against nonrandomly missing data in lon-
gitudinal studies. Biometrics, 46, 143–155.

Brown, N.A. and Fabro, S. (1981) Quantitation of rat embryonic develop-
ment in vitro: a morphological scoring system. Teratology, 24, 65–78.

Brown, L.D. (1986) Fundamentals of Statistical Exponential Families.
California: Institute of Mathematical Statistics.

Browne, W.J. and Draper, D. (2003) A comparison of bayesian and
likelihood-based methods for fitting multilevel models, Submitted,
000, 000–000.

Bryk, A.S. and Raudenbush, S.W. (1992) Hierarchical Linear Models:
Applications and Data Analysis Methods. Newbury Park: Sage Publi-
cations.

Buck, S.F. (1960) A method of estimation of missing values in multivari-
ate data suitable for use with an electronic computer. Journal of the
Royal Statistical Society, Series B, 22, 302–306.

Burnham, K.P. and Anderson, D.R. (1998) Model Selection and Inference:
A Practical Information-Theoretic Approach, New York: Springer-
Verlag.

Burton, S.W. (1991) A review of fluvoxamine and its uses in depression.
International Clinical Psychopharmacology, 6 (Suppl. 3), 1–17.

Burzykowski, T., Molenberghs, G., and Buyse, M. (2005) The Evaluation
of Surrogate Endpoints. New York: Springer-Verlag.

Burzykowski, T., Molenberghs, G., Buyse, M., Geys, H., and Renard, D.
(2001) Validation of surrogate endpoints in multiple randomized clini-
cal trials with failure time end points, Applied Statistics, 50, 405–422.

Butler, S.M. and Louis, T.A. (1992) Random effects models with non-
parametric priors. Statistics in Medicine, 11, 1981–2000.



References 641

Buyse, M. and Molenberghs, G. (1998) The validation of surrogate end-
points in randomized experiments. Biometrics, 54, 1014–1029.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., and Geys, H.
(2000) The validation of surrogate endpoints in meta-analyses of ran-
domized experiments, Biostatistics, 1, 49–67.

Carey, V.C., Zeger, S.L., and Diggle, P.J. (1993) Modelling multivariate
binary data with alternating logistic regressions. Biometrika, 80, 517–
526.

Carlin, B.P. and Louis, T.A. (1996) Bayes and Empirical Bayes Methods
for Data Analysis. London: Chapman & Hall.

Catalano, P.J. (1997) Bivariate modelling of clustered continuous and
ordered categorical outcomes. Statistics in Medicine, 16, 883–900.

Catalano, P.J. and Ryan, L.M. (1992) Bivariate latent variable models for
clustered discrete and continuous outcomes. Journal of the American
Statistical Association, 87, 651–658.

Catchpole, E.A. and Morgan, B.J.T. (1997) Detecting parameter redun-
dancy. Biometrika, 84, 187–196.

Catchpole, E.A., Morgan, B.J.T., and Freeman, S.N. (1998) Estimation
in parameter-redundant models. Biometrika, 85, 462–468.

Chakraborty, H., Helms, R.W., Sen, P.K., and Cohen, M.S. (2003) Esti-
mating correlation by using a general linear mixed model: Evaluation
of the relationship between the concentration of HIV-1 RNA in blood
and semen, Statistics in Medicine, 22, 1457–1464.

Clayton, D. and Hills, M. (1993) Statistical Methods in Epidemiology.
Oxford: Oxford University Press.

Cleveland, W.S. and Grosse, E. (1991) Computational methods for local
regression. Statistics and Computing, 1, 47–62.

Cohen, J. and Cohen, P. (1983) Applied multiple regression/correlation
analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Conaway, M. (1989) Analysis of repeated categorical measurements with
conditional likelihood methods. Journal of the American Statistical
Association, 84, 53–62.

Conaway, M.R. (1992) The analysis of repeated categorical measurements
subject to nonignorable nonresponse. Journal of the American Statis-
tical Association, 87, 817–824.



642 References

Conaway, M.R. (1993) Non-ignorable non-response models for time-
ordered categorical variables. Applied Statistics, 42, 105–115.

Conniffe, D. (2001) Score tests when a nuisance parameter is uniden-
tified under the null hypothesis. Journal of Statistical Planning and
Inference, 97, 67–83.

Cook, R.D. (1986) Assessment of local influence. Journal of the Royal
Statistical Society, Series B, 48, 133–169.

Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regres-
sion. London: Chapman & Hall.

Cox, D.R. (1972) The analysis of multivariate binary data. Applied Sta-
tistics, 21, 113–120.

Cox, N.R. (1974) Estimation of the correlation between a continuous and
a discrete variable. Biometrics, 30, 171–178.

Cox, D.R. and Reid, N. (1987) On the stability of maximum-likelihood
estimators of orthogonal parameters. Canadian Journal of Statistics,
49, 1–39.

Cox, D.R. and Wermuth, N. (1992) Response models for mixed binary
and quantitative variables. Biometrika, 79, 441–461.

Cox, D. R. and Wermuth, N. (1994) A note on the quadratic exponential
binary distribution. Biometrika, 81, 403–408.

Cox, D.R. and Wermuth, N. (1994) Multivariate Dependencies: Models,
Analysis and Interpretation. London: Chapman & Hall.

Cressie, N.A.C. (1991) Statistics for Spatial Data. New York: John Wiley
& Sons.

Crowder, M. (1995) On the use of a working correlation matrix in using
generalized linear models for repeated measurements. Biometrika, 82,
407–410.

Csiszar, I. (1975) I-divergence geometry of probability distributions and
minimisation problems. Annals of Probability, 3, 146–158.

Cytel Software Corporation (2000) EGRET for Windows, User Manual.

Dale, J.R. (1984) Local versus global association for bivariate ordered
responses. Biometrika, 71, 507–514.

Dale, J.R. (1986) Global cross-ratio models for bivariate, discrete, ordered
responses. Biometrics, 42, 721–727.



References 643

Davidian, M. and Giltinan, D.M. (1995) Nonlinear Models for Repeated
Measurement Data. London: Chapman & Hall.

Davidian, M., Tsiatis, A.A., and Leon, S. (2005) Semiparametric estima-
tion of treatment effect in a pretest-posttest study with missing data.
Statistical Science, 00, 000–000.

Davies, R.B. (2002) Hypothesis testing when a nuisance parameter is
present only under the alternative: linear model case. Biometrika, 89,
484–489.

De Boeck, P. and Wilson, M. (editors) (2004) Explanatory item re-
sponse models: A generalized linear and nonlinear approach, New-
York: Springer, statistics for social science and public policy edition.

De Backer, M., De Keyser, P., De Vroey, C., and Lesaffre, E. (1996) A
12-week treatment for dermatophyte toe onychomycosis: terbinafine
250mg/day vs. itraconazole 200mg/day–a double-blind comparative
trial. British Journal of Dermatology, 134, 16–17.

Declerck, L., Aerts, M., and Molenberghs, G. (1998) Behaviour of the
likelihood ratio test statistic under a Bahadur model for exchangeable
binary data. Journal of Statistical Computations and Simulations, 61,
15–38.

DeGruttola, V., Lange, N., and Dafni, U. (1991) Modeling the progression
of HIV infection. Journal of the American Statistical Association, 86,
569–577.

DeGruttola, V. and Tu, X.M. (1994) Modelling progression of CD4 lym-
phocyte count and its relationship to survival time. Biometrics, 50,
1003–1014.

Dempster, A.P., Laird, N.M., and Rubin, D. B. (1977) Maximum likeli-
hood from incomplete data via the EM algorithm (with discussion).
Journal of the Royal Statistical Society, Series B, 39, 1–38.

Dempster, A.P. and Rubin, D.B. (1983) Overview. In: Incomplete Data
in Sample Surveys, Vol. II: Theory and Annotated Bibliography, W.G.
Madow, I. Olkin, and D.B. Rubin (Eds.). New York: Academic Press,
pp. 3–10.

Dennis, J.E. and Schnabel, R.B. (1983) Numerical methods for un-
constrained optimization and nonlinear equations. Englewood Cliffs:
Prentice-Hall.

Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. Mathe-
matics in Biology. London: Academic Press.



644 References

Diggle, P.J., Heagerty, P.J., Liang, K.-Y., and Zeger, S.L. (2002) Analysis
of Longitudinal Data (2nd ed.). Oxford Science Publications. Oxford:
Clarendon Press.

Diggle, P.J. and Kenward, M.G. (1994) Informative drop-out in longitu-
dinal data analysis (with discussion). Applied Statistics, 43, 49–93.

Diggle, P.J., Liang, K.-Y., and Zeger, S.L. (1994) Analysis of Longitudinal
Data. Oxford Science Publications. Oxford: Clarendon Press.

Dmitrienko, A., Offen, W.W., Faries, D., Christy Chuang-Stein, J.L., and
Molenberghs, G. (2005). Analysis of Clinical Trial Data Using the SAS
System. Cary, NC: Sas Publishing.

Draper, D. (1995) Assessment and propagation of model uncertainty
(with discussion). Journal of the Royal Statistical Society, Series B,
57, 45–97.

Drum M. and McCullagh P. (1993). Comment to Fitzmaurice, G. M.,
Laird, N. M., and Rotnitzky A. Regression models for discrete longi-
tudinal responses. Statistical Science, 8 300–301.

Ekholm, A., McDonald, J.W., and Smith, P.W.F. (2000) Association
models for a multivariate binary response. Biometrics, 56, 712–718.

Ekholm, A. and Skinner, C. (1998) The muscatine children’s obesity data
reanalysed using pattern mixture models. Applied Statistics, 47, 251–
263.

Ekholm, A., Smith, P.W.F., and McDonald, J.W. (1995) Marginal re-
gression analysis of a multivariate binary response. Biometrika, 82,
847–854.

Faes, C., Aerts, M., Geys, H., Molenberghs, G., Declerck, L. (2004)
Bayesian testing for trend in a power model for clustered binary data.
Environmental and Ecological Statistics, 11, 305–322.

Fahrmeir, L. and Tutz, G. (1994) Multivariate Statistical Modelling Based
on Generalized Linear Models. Heidelberg: Springer-Verlag.

Fahrmeir, L. and Tutz, G. (2001) Multivariate statistical modelling based
on Generalized Linear Models (2nd ed.). Springer Series in Statistics,
Springer-Verlag, New York.

Faught, E., Wilder, B.J., Ramsay, R.E., Reife, R.A., Kramer, L.D.,
Pledger, G.W., and Karim, R.M. (1996) Topiramate placebo-
controlled dose-ranging trial in refractory partial epilepsy using 200-,
400-, and 600-mg daily dosages, Neurology, 46, 1684–1690.



References 645

Fay, R.E. (1986) Causal models for patterns of nonresponse. Journal of
the American Statistical Association, 81, 354–365.

Feller, W. (1968) An Introduction to Probability Theory and Its Applica-
tions (3rd ed). New York: John Wiley.

Fieuws, S., Spiessens, B., and Draney, K. (2004) Mixture models, in P. De
Boeck and M. Wilson, editors, Explanatory item response models: A
generalized linear and nonlinear approach, Statistics for Social Science
and Public Policy, chapter 11, 317–340, Springer-Verlag, New York.

Fieuws, S. and Verbeke, G. (2004) Joint modelling of multivariate longi-
tudinal profiles: Pitfalls of the random-effects approach, Statistics in
Medicine, 23, 3093–3104.

Fieuws, S. and Verbeke, G. (2005a) Pairwise fitting of generalized lin-
ear mixed models for multidimensional repeated discrete responses,
Submitted for publication.

Fieuws, S. and Verbeke, G. (2005b) Pairwise fitting of mixed models for
the joint modelling of multivariate longitudinal profiles, Submitted for
publication.

Fieuws, S., Verbeke, G., and Brant, L.J. (2005) Classification of longi-
tudinal profiles using nonlinear mixed-effects models, Submitted for
publication.

Fitzmaurice, G.M. and Laird, N.M. (1993) A Likelihood-based method
for analysing longitudinal binary responses. Biometrika, 80, 141–151.

Fitzmaurice, G.M. and Laird, N.M. (1995) Regression models for a bi-
variate discrete and continuous outcome with clustering. Journal of
the American Statistical Association, 90, 845–852.

Fitzmaurice, G.M., Laird, N.M., and Rotnitzky, A. (1993) Regression
models for discrete longitudinal responses. Statistical Science, 8, 284–
309.

Fitzmaurice, G.M., Laird, N.M., and Tosteson, T.D. (1996) Polynomial
exponential models for clustered binary outcomes. Technical report.

Fitzmaurice, G.M., Laird, N.M., and Ware, J.H. (2004) Applied Longitu-
dinal Analysis. New York: John Wiley & Sons.

Fitzmaurice, G.M. and Lipsitz, S.R. (1995) A model for binary time series
data with serial oods ratio patterns. Applied Statistics, 44, 51–61.

Fitzmaurice, G.M., Molenberghs, G., and Lipsitz, S.R. (1995) Regression
models for longitudinal binary responses with informative dropouts.
Journal of the Royal Statistical Society, Series B, 57, 691–704.



646 References

Folk, V.G. and Green, B.F. (1989) Adaptive estimation when the unidi-
mensionality assumption of irt is violated, Applied Psychological Mea-
surement, 13, 373–389.

Foster, J.J. and Smith, P.W.F. (1998) Model-based inference for categor-
ical survey data subject to non-ignorable non-response. Journal of the
Royal Statistical Society, Series B, 60, 57–70.

Foulley, J.-L. and Gianola, D. (1996) Statistical analysis of ordered cate-
gorical data via a structural heteroskedastic threshold model. Genetics
Selection Evolution, 28, 249–273.
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age related macular degeneration
trial, see ARMD trial

Akaike information criterion, 134
ALR, see alternating logistic

regressions
alternating logistic regressions,

49, 152, 153, 165–167,
173, 310, 318, 319

SAS, 205–206, 212–215
analgesic trial, 8, 309–323,

332–333, 383, 388–392,
507–509

ARE, see asymptotic relative
efficiency

ARMD trial, 24–25, 448–455,
503–506

asymptotic normality, 189, 192,
396

asymptotic relative efficiency,
247

autocorrelation, see serial
correlation

autoregressive model, 236, 239

background risk, 91

Bahadur model, see marginal
model

balanced data, 483
balanced design, 483
baseline category, 327
Bayesian inference, 512, 555
beta-binomial model, 260–261
bi-exponential model, 352, 353,

361, 373
BIRNH study, 103–112, 119–121,

329
bootstrap, 195

Bayesian, 515
parametric, 195

boundary problem, 41, 379
boundary solution, 413, 548
British occupational study, 56,

62
bucket size, see smoothing

splines

Caithness data, 56, 62–64
case-control study

matching, 47, 51
cell probability, 141
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CGI, see clinical global imression
clinical global imression, 401,

412
clustered data, 88–92, 132, 244
coarsening, 522
coefficient of determination, 398,

401
compartment model, 352, 361,

369, 375
complete case analysis, see

missing data
complete data, see missing data
composite link function, 197
conditional independence, 258,

266, 443–445, 463
conditional logistic regression,

47, 51, 52
conditional model, 47, 49–50,

55–82, 225–254, 393,
437

exponential family model,
227–233

transition model, 47, 226,
236–242

consistency, 189, 192, 396
contingency table, 55–84, 92,

125, 135, 533
continuation-ratio model, 327,

329
convergence, 248, 453, 459, 462
Cramèr-Rao inequality, 192
cross ratio, 114, 129

conditional, 143
global, 59, 70, 75, 79, 114,
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infinite, 66
local, 58, 60–62

cross-over trial, 84, 100–101,
127–131

carry-over effect, 128–130
period effect, 128
treatment effect, 128, 129

cumulative count, 56, 85
cumulative probability, 126, 141

Dale model, see marginal model
data augmentation, 481
delta method, 93, 441, 597
dependence ratio, 95
depression trial, 499–503
design matrix, 85, 90, 97, 331,

444, 484, 544, 546
developmental toxicity study,

174, 251
Haber’s law, 176
low dose extrapolation, 180
segment II study, 174

direct likelihood method, see
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dose-response model, 92, 232,
249, 251, 253, 350, 377,
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dropout, see missing data

efficiency, 396, 514
EGRET software, 296
EM algorithm, 481, 516–527,
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acceleration, 518, 520, 537
convergence, 537
E step, 425, 517–518, 523,

536
heterogeneity model,

423–427
initial step, 517
M step, 426, 517–518, 523,

536, 537
missing information, 526
Monte Carlo EM, 394
precision estimation, 517,
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rate matrix, 520
rate of convergence, 519–520
SAS, 633–635

empirical Bayes estimation (EB),
see random effects

epilepsy data, 14, 337–345
generalized estimating

equations, 337–340
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generalized linear mixed
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Poisson regression, 32–33
equicorrelation, 88
exchangeability, 88, 98, 195–198,

226, 229, 231, 244, 505
expectation-maximization

algorithm, see EM
algorithm

exponential family, 27–28, 125,
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canonical parameter, 27,
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multivariate, 123
natural parameter, 27–30
quadratic, 123, 168
scale parameter, 27

Fisher information, 317
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Fisher’s z-transform, 89, 93, 97,
112, 121

fluvoxamine trial, 12–14, 56,
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Fréchet inequality, 143
fractional polynomial, 249–254,
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frequentist inference, 482, 485,
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full data, see missing data

GAUSS software, 441
Gaussian quadrature, 273–276,

315, 393, 395, 403, 453,
465

adaptive, 275–280, 315, 503
non-adaptive, 274–275,

277–280, 315, 503

order of approximation, 274,
278–280

GEE, see generalized estimating
equations

GEE2, see generalized
estimating equations

general location model, 437
generalized estimating equations,
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309–314, 316, 330, 332,
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empirically corrected
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linearization based method,
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model-based variance, 156,
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naive variance estimator,
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Prentice, 162–164, 310
robust variance, 156, 198,
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sandwich estimator, 156
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Poisson regression, 29–30,
32–33, 337–340
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465, 494, 500, 526

CLASS statement, 283
MODEL statement, 218,

283, 389
‘dist=’ option, 284, 456,

457
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