
 

 
 
 
Factor Analysis 
 
Principal components factor analysis 
 
Use of extracted factors in 
multivariate dependency models 
 
 
 



 

Notes on Factor Analysis: Charles M. Friel Ph.D., Criminal Justice Center, Sam Houston State University 

2 

KEY CONCEPTS 
***** 

Factor Analysis 
 
Interdependency technique 
Assumptions of factor analysis 
Latent variable (i.e. factor) 
Research questions answered by factor analysis 
Applications of factor analysis 
 Exploratory applications 
 Confirmatory applications 
 R factor analysis 
 Q factor analysis 
Factor loadings 
Steps in factor analysis 
Initial v final solution 
Factorability of an intercorrelation matrix 
 Bartlett's test of sphericity and its interpretation 
 Kaiser-Meyer-Olkin measure of sampling adequacy (KMO) and its interpretation 
Identity matrix and the determinant of an identity matrix 
Methods for extracting factors 
 Principal components 
 Maximum likelihood method 
 Principal axis method 
 Unwieghted least squares 
 Generalized least squares 
 Alpha method 
 Image factoring 
Criteria for determining the number of factors 
 Eigenvalue greater than 1.0 
 Cattell's scree plot 
Percent and cumulative percent of variance explained by the factors extracted 
Component matrix and factor loadings 
Communality of a variable 
Determining what a factor measures and naming a factor 
Factor rotation and its purpose 

Varimax 
 Quartimax 
 Equimax 
Orthogonal v oblique rotation 
Reproduced correlation matrix 
Computing factor scores 
Factor score coefficient matrix 
Using factor score in multivariate dependency models 
 



 

Notes on Factor Analysis: Charles M. Friel Ph.D., Criminal Justice Center, Sam Houston State University 

3 

Lecture Outline 
 
 

 Identifying patterns of intercorrelation 
 

 Factors v correlations 
 

 Steps in the factor analysis process 
 

 Testing for "factorability" 
 

 Initial v final factor solutions 
 

 Naming factors 
 

 Factor rotation 
 

 Computing factor scores 
 

 Using factors scores in multivariate dependency 
models 
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Factor Analysis 
 
 
Interdependency Technique 
 

Seeks to find the latent factors that account for 
the patterns of collinearity among multiple metric 
variables 
 
 

Assumptions 
 

Large enough sample to yield reliable estimates of the 
correlations among the variables 
 
Statistical inference is improved if the variables are 
multivariate normal 
 
Relationships among the pairs of variables are linear 
 
Absence of outliers among the cases 
 
Some degree of collinearity among the variables but 
not an extreme degree or singularity among the 
variables 
 
Large ratio of N / k 
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An intercorrelation Matrix 
 
 
Basic assumption Variables that significantly 
correlate with each other do so because they are 
measuring the same "thing".  
 
The problem What is the "thing" that correlated 
variables are measuring in common? 
 
Given nine metric variable … 
 
  

X1 
 
X2 

 
X3 

 
X4 

 
X5 

 
X6 

 
X7 

 
X8 

 
X9 

 
X1 

 
1.00 

 
0.80 

 
0.70 

 
0.95 

 
0.01 

 
0.20 

 
0.18 

 
0.16 

 
0.03 

X2  1.00 0.63 0.75 0.08 0.11 0.13 0.04 0.09 
X3   1.00 0.84 0.02 0.12 0.07 0.15 0.05 
X4    1.00 0.01 0.11 0.06 0.02 0.13 
X5     1.00 0.93 0.02 0.05 0.03 
X6      1.00 0.11 0.09 0.02 
X7       1.00 0.95 0.90 
X8        1.00 0.93 
X9         1.00 
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An intercorrelation Matrix (cont.) 

 
 
Notice the patterns of intercorrelation 
 

 Variables 1, 2, 3 & 4 correlate highly with 
each other, but not with the rest of the 
variables 

 
 Variables 5 & 6 correlate highly with each 
other, but not with the rest of the variables 

 
 Variables 7, 8, & 9 correlate highly with each 
other, but not with the rest of the variables 

 
 
Deduction The nine variables seem to be 
measuring 3 "things" or underlying factors. 
 
 Q What are these three factors? 
 

Q To what extent does each variable measure 
each of these three factors? 
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Research Questions That 
Lend Themselves to Factor Analysis 

 
 
A 20 item attitudinal survey of citizen attitudes 
about the problems of crime and the administration 
of justice.  
 

Q Does the survey measure 20 different 
independent attitudinal dimensions or do the 
survey items only measure a few underlying 
attitudes? 
 
 

A pre-sentence investigation 
 

Q Are the individual items in a pre-sentence 
investigation measuring as many independent 
background factors, or do they measure a few 
underlying background dimensions; e.g. social, 
educational, criminal, etc.? 
 

The purpose of factor analysis is to reduce multiple 
variables to a lesser number of underlying factors 
that are being measured by the variables. 



 

Notes on Factor Analysis: Charles M. Friel Ph.D., Criminal Justice Center, Sam Houston State University 

8 

Applications of Factor Analysis 
 
 
Exploratory factor analysis 
 
A non-theoretical application. Given a set of 
variables, what are the underlying dimensions 
(factors), if any, that account for the patterns of 
collinearity among the variables? 
 

Example  Given the multiple items of information 
gathered on applicants applying for admission to a 
police academy, how many independent factors are 
actually being measured by these items? 
 
 

Confirmatory factor analysis 
 
Given a theory with four concepts that purport to 
explain some behavior, do multiple measures of the 
behavior reduce to these four factors? 
 

Example  Given a theory that attributes 
delinquency to four independent factors, do multiple 
measures on delinquents reduce to measuring these 
four factors? 
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Applications of Factor Analysis (cont.) 

 
 
R and Q Factor Analysis 
 

R factor analysis involves extracting latent 
factors from among the variables 

 
Q factor analysis involves factoring the subjects 
vis-à-vis the variables. The result is a 
"clustering" of the subjects into independent 
groups based upon factors extracted from the 
data. 
 

This application is not used much today 
since a variety of clustering techniques have 
been developed that are designed 
specifically for the purpose of grouping 
multiple subjects into independent groups. 
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The Logic of Factor Analysis 
 
Given an N by k database … 
 

 
Subjects 

 
Variables 

 X1 X2 X3 … Xk 
1 2 12 0 … 113 
2 5 16 2 … 116 
3 7 8 1 … 214 
… … … … … … 
N 12 23 0 … 168 
 
Compute a k x k intercorrelation matrix … 
 

 X1 X2 X3 … Xk 
X1 1.00 0.26 0.84 … 0.72 
X2  1.00 0.54 … 0.63 
X3   1.00 … 0.47 
…    … … 
Xk     1.00 

 
Reduce the intercorrelation matrix to a k x F matrix 
of factor loadings … 
+ 

Variables Factor I Factor II Factor III 
X1 0.932 0.013 0.250 
X2 0.851 0.426 0.211 
X3 0.134 0.651 0.231 
… … … 0.293 
Xk 0.725 0.344 0.293 
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What is a Factor Loading? 
 
 
A factor loading is the correlation between a variable 
and a factor that has been extracted from the data. 
 
Example Note the factor loadings for variable X1.  
 

Variables Factor I Factor II Factor III 
X1 0.932 0.013 0.250 

 
Interpretation 
 

Variable X1 is highly correlated with Factor I, but 
negligibly correlated with Factors II and III 
 

Q How much of the variance in variable X1 is 
measured or accounted for by the three factors that 
were extracted? 
 

Simply square the factor loadings and add them 
together 
 
(0.9322 + 0.0132 + 0.2502) = 0.93129 
 
This is called the communality of the variable. 
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Steps in Factor Analysis 
 
 
Step 1 Compute a k by k intercorrelation matrix. 
Compute the factorability of the matrix. 
 
 
Step 2 Extract an initial solution 
 
 
Step 3 From the initial solution, determine the 
appropriate number of factors to be extracted in the 
final solution 
 
 
Step 4 If necessary, rotate the factors to clarify the 
factor pattern in order to better interpret the nature of 
the factors  
 
 
Step 5 Depending upon subsequent applications, 
compute a factor score for each subject on each 
factor. 
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An Eleven Variable Example  
 
 
The variables and their code names 
 
• Sentence (sentence) 

 
• Number of prior convictions(pr_conv) 

 
• Intelligence (iq) 

 
• Drug dependency (dr_score) 

 
• Chronological age (age) 

 
• Age at 1st arrest (age_firs) 

 
• Time to case disposition (tm_disp) 

 
• Pre-trial jail time (jail_tm) 

 
• Time served on sentence (tm_serv) 

 
• Educational equivalency (educ_eqv) 

 
• Level of work skill (skl_indx) 
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Intercorrelation Among the Variables 
 

Correlations

1.000 .400** -.024 .346** .826** -.417** -.084 .496** .969** -.006 -.030
. .001 .846 .003 .000 .000 .489 .000 .000 .959 .805

70 70 70 70 70 70 70 70 70 70 70
.400** 1.000 -.016 .056 .302* -.358** -.066 .321** .419** -.095 -.101
.001 . .895 .645 .011 .002 .589 .007 .000 .434 .404

70 70 70 70 70 70 70 70 70 70 70
-.024 -.016 1.000 .187 -.061 -.139 .031 -.066 .013 .680** .542**
.846 .895 . .122 .614 .250 .800 .587 .914 .000 .000

70 70 70 70 70 70 70 70 70 70 70
.346** .056 .187 1.000 .252* -.340** -.024 .084 .338** .102 .094
.003 .645 .122 . .036 .004 .841 .490 .004 .399 .439

70 70 70 70 70 70 70 70 70 70 70
.826** .302* -.061 .252* 1.000 -.312** .048 .499** .781** -.116 -.180
.000 .011 .614 .036 . .009 .692 .000 .000 .339 .136

70 70 70 70 70 70 70 70 70 70 70
-.417** -.358** -.139 -.340** -.312** 1.000 -.132 -.364** -.372** .021 .009
.000 .002 .250 .004 .009 . .277 .002 .002 .862 .944

70 70 70 70 70 70 70 70 70 70 70
-.084 -.066 .031 -.024 .048 -.132 1.000 .258* -.146 -.026 -.099
.489 .589 .800 .841 .692 .277 . .031 .228 .830 .416

70 70 70 70 70 70 70 70 70 70 70
.496** .321** -.066 .084 .499** -.364** .258* 1.000 .464** -.160 -.120
.000 .007 .587 .490 .000 .002 .031 . .000 .186 .320

70 70 70 70 70 70 70 70 70 70 70
.969** .419** .013 .338** .781** -.372** -.146 .464** 1.000 .047 .020
.000 .000 .914 .004 .000 .002 .228 .000 . .699 .871

70 70 70 70 70 70 70 70 70 70 70
-.006 -.095 .680** .102 -.116 .021 -.026 -.160 .047 1.000 .872**
.959 .434 .000 .399 .339 .862 .830 .186 .699 . .000

70 70 70 70 70 70 70 70 70 70 70
-.030 -.101 .542** .094 -.180 .009 -.099 -.120 .020 .872** 1.000
.805 .404 .000 .439 .136 .944 .416 .320 .871 .000 .

70 70 70 70 70 70 70 70 70 70 70

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

SENTENCE

PR_CONV

IQ

DR_SCORE

AGE

AGE_FIRS

TM_DISP

JAIL_TM

TM_SERV

EDUC_EQV

SKL_INDX

SENTENCE PR_CONV IQ DR_SCORE AGE AGE_FIRS TM_DISP JAIL_TM TM_SERV EDUC_EQV SKL_INDX

Correlation is significant at the 0.01 level (2-tailed).**. 

Correlation is significant at the 0.05 level (2-tailed).*.  
 
 
Q How much collinearity or common variance exits 
among the variables? 
 
 
Q Is the intercorrelation matrix "factorable"? 
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Ways to Determine the Factorability of an 
Intercorrelation Matrix 

 
Two Tests 
 
 Bartlett's Test of Sphericity 
 

Kaiser-Meyer-Olkin Measure of Sampling 
Adequacy (KMO) 

 
Consider the intercorrelation matrix below, which is 
called an identity matrix. 
 

 X1 X2 X3 X4 X5 
X1 1.00 0.00 0.00 0.00 0.00 
X2  1.00 0.00 0.00 0.00 
X3   1.00 0.00 0.00 
X4    1.00 0.00 
X5     1.00 

 
The variables are totally noncollinear. If this matrix 
was factor analyzed …  
 

It would extract as many factors as variables, 
since each variable would be its own factor. 
 
It is totally non-factorable 



 

Notes on Factor Analysis: Charles M. Friel Ph.D., Criminal Justice Center, Sam Houston State University 

16 

Bartlett's Test of Sphericity 
 
 
In matrix algebra, the determinate of an identity 
matrix is equal to 1.0. For example … 
 
 
   1.0  0.0 
 I =  
   0.0  1.0 
 
   1.0  0.0 
 I    =  
   0.0  1.0 
 
 
 I    = (1.0 x 1.0) - (0.0 x 0.0) = 1.0 
 
Example Given the intercorrelation matrix below, 
what is its determinate? 
 
   1.0  0.63 
 R   =  

0.63 1.00 
 

R   = (1.0 x 1.0) - (0.63 x 0.63) = 0.6031 
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Bartlett's Test of Sphericity (cont.) 
 

 
Bartlett's test of sphericity  
 

Calculates the determinate of the matrix of the 
sums of products and cross-products (S) from 
which the intercorrelation matrix is derived. 
 
The determinant of the matrix S is converted to 
a chi-square statistic and tested for significance. 
 
The null hypothesis is that the intercorrelation 
matrix comes from a population in which the 
variables are noncollinear (i.e. an identity matrix) 
 

And that the non-zero correlations in the 
sample matrix are due to sampling error. 

 
 
 
 
Chi-square 
 
χ2 = - [(n-1) - 1/6 (2p+1+2/p)] [ln S + pln(1/p) Σlj ] 
 
p = number of variables, k = number of components, lj = jth eigenvalue of S 
 
df = (p - 1) (p - 2) / 2 
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Results of Bartlett's Test of Sphericity 
 
 

KMO and Bartlett's Test

.698

496.536
55

.000

Kaiser-Meyer-Olkin Measure of Sampling
Adequacy.

Approx. Chi-Square
df
Sig.

Bartlett's Test of
Sphericity

 
 
 
Test Results 
 
 χ2 = 496.536 
 
 df = 55 
 
 p < 0.001 
 
 
Statistical Decision 
 

The sample intercorrelation matrix did not come 
from a population in which the intercorrelation 
matrix is an identity matrix. 
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Kaiser-Meyer-Olkin Measure of 
Sampling Adequacy (KMO) 

 
 

If two variables share a common factor with other 
variables, their partial correlation (aij) will be small, 
indicating the unique variance they share. 
 

aij = (rij •1, 2, 3, …k )  
 
 

KMO = (ΣΣ r2
ij ) / (ΣΣ r2

ij + (ΣΣ a2
ij )  

 
 

If aij ≅ 0.0  
 

The variables are measuring a  
common factor, and KMO ≅ 1.0 

 
 
If aij ≅ 1.0  
 

The variables are not measuring a  
common factor, and KMO ≅ 0.0 
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Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) (cont.) 

 
 
Interpretation of the KMO as characterized by 
Kaiser, Meyer, and Olkin … 
 
 

 
KMO Value 

 
Degree of Common 

Variance 
 

0.90 to 1.00 
 

Marvelous 
 

0.80 to 0.89 
 

Meritorious 
 

0.70 to 0.79 
 

Middling 
 

0.60 to 0.69 
 

Mediocre  
 

0.50 to 0.59 
 

Miserable 
 

0.00 to 0.49 
 

Don't Factor 
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Results of the KMO 
 
 

KMO and Bartlett's Test

.698

496.536
55

.000

Kaiser-Meyer-Olkin Measure of Sampling
Adequacy.

Approx. Chi-Square
df
Sig.

Bartlett's Test of
Sphericity

 
 
 
The KMO = 0.698 
 
 
Interpretation 
 

The degree of common variance among the 
eleven variables is "mediocre" bordering on 
"middling" 
 
If a factor analysis is conducted, the factors 
extracted will account for fare amount of 
variance but not a substantial amount. 
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Extracting an Initial Solution 
 
 
A variety of methods have been developed to extract 
factors from an intercorrelation matrix. SPSS offers 
the following methods …  
 

 Principle components method (probably the most 
commonly used method) 

 
 Maximum likelihood method (a commonly used 
method) 

 
 Principal axis method also know as common factor 
analysis 

 
 Unweighted least-squares method 

 
 Generalized least squares method 

 
 Alpha method 

 
 Image factoring 
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An Initial Solution Using the Principal 
Components Method 

 
 
In the initial solution, each variable is standardized 
to have a mean of 0.0 and a standard deviation of 
±1.0. Thus … 
 
 The variance of each variable = 1.0 
 
 And the total variance to be explained is 11, 
 i.e. 11 variables, each with a variance = 1.0 
 
Since a single variable can account for 1.0 unit of 
variance … 
 

A useful factor must account for more than 1.0 
unit of variance, or have an eigenvalue λ > 1.0 
 
Otherwise the factor extracted explains no more 
variance than a single variable. 

 
Remember the goal of factor analysis is to explain 
multiple variables by a lesser number of factors. 
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The Results of the Initial Solution 
 

Total Variance Explained

3.698 33.617 33.617 3.698 33.617 33.617
2.484 22.580 56.197 2.484 22.580 56.197
1.237 11.242 67.439 1.237 11.242 67.439

.952 8.653 76.092

.898 8.167 84.259

.511 4.649 88.908

.468 4.258 93.165

.442 4.022 97.187

.190 1.724 98.911
9.538E-02 .867 99.778
2.437E-02 .222 100.000

Component
1
2
3
4
5
6
7
8
9
10
11

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Component Analysis.  
 
11 factors (components) were extracted, the same 
as the number of variables factored.  
 
Factor I 
 
The 1st factor has an eigenvalue = 3.698. Since this 
is greater than 1.0, it explains more variance than a 
single variable, in fact 3.698 times as much. 
 

The percent a variance explained … 
 
 (3.698 / 11 units of variance) (100) = 33.617% 
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The Results of the Initial Solution (cont.) 

 
Factor II 
 
The 2nd factor has an eigenvalue = 2.484. It is also 
greater than 1.0, and therefore explains more 
variance than a single variable 
 

The percent a variance explained  
 
 (2.484 / 11 units of variance) (100) = 22.580% 
 
Factor III 
 
The 3rd factor has an eigenvalue = 1.237. Like 
Factors I & II it is greater than 1.0, and therefore 
explains more variance than a single variable. 
 

The percent a variance explained  
 
 (1.237 / 11 units of variance) (100) = 11.242% 
 
The remaining factors 
 

Factors 4 through 11 have eigenvalues less that 
1, and therefore explain less variance that a 
single variable. 
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The Results of the Initial Solution (cont.) 

 
 
Nota Bene 
 

 The sum of the eigenvalues associated with each 
factor (component) sums to 11. 

 
 (3.698 + 2.484 + 1.237 + 0.952 + … + 2.437 E-02) = 11 
 
 

 The cumulative % of variance explained by the 
first three factors is 67.439% 

 
In other words, 67.439% of the common 
variance shared by the 11 variables can be 
accounted for by the 3 factors. 

 
This is reflective of the KMO of 0.698, a 
"mediocre" to "middling % of variance 

 
 

 This initial solution suggests that the final solution 
should extract not more than 3 factors. 
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Cattell's Scree Plot 
 
Another way to determine the number of factors to 
extract in the final solution is Cattell's scree plot. This 
is a plot of the eigenvalues associated with each of 
the factors extracted, against each factor. 

 
 
 

At the point that the plot begins to level off, the additional factors 
explain less variance than a single variable. 

 
 
 
Raymond B. Cattell (1952) Factor Analysis New York: Harper & Bros. 

Factor Scree Plot

1110987654321

4

3

2

1

0

Factor Number
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Factor Loadings 
 
 
The component matrix indicates the correlation of 
each variable with each factor. 
 
 

Component Matrixa

.933 .104 -.190

.907 .155 -.253

.853 -4.61E-02 -6.86E-02

.659 -.116 .404
-.581 -.137 -.357
.548 -4.35E-02 -2.52E-02
.404 .299 -1.04E-02

-.132 .935 1.479E-02
-.151 .887 -3.50E-02

-4.80E-02 .808 .193
1.787E-02 -9.23E-02 .896

SENTENCE
TM_SERV
AGE
JAIL_TM
AGE_FIRS
PR_CONV
DR_SCORE
EDUC_EQV
SKL_INDX
IQ
TM_DISP

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

 
 
 

The variable sentence 
 
 Correlates 0.933 with Factor I 
 
 Correlates 0.104 with Factor II 
 
 Correlates -0.190 with Factor II 
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Factor Loadings (cont.) 

 
The total proportion of the variance in sentence 
explained by the three factors is simply the sum of 
its squared factor loadings.  
 
 (0.9332 + 0.1042 - 0.1902) = 0.917 
 

This is called the communality of the variable 
sentence 
 

The communalities of the 11 variables are as 
follows: (cf. column headed Extraction) 
 

Communalities

1.000 .917
1.000 .303
1.000 .693
1.000 .252
1.000 .811
1.000 .611
1.000 .910
1.000 .893
1.000 .811
1.000 .735
1.000 .483

SENTENCE
PR_CONV
IQ
DR_SCORE
TM_DISP
JAIL_TM
TM_SERV
EDUC_EQV
SKL_INDX
AGE
AGE_FIRS

Initial Extraction

Extraction Method: Principal Component Analysis.
 

 

 
As is evident from the table, the proportion of 
variance in each variable accounted for by the three 
factors is not the same.  
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What Do the Three Factors Measure? 
 
The key to determining what the factors measure is 
the factor loadings 
 
For example 
 

Which variables load (correlate) highest on 
Factor I and low on the other two factors? 
 

Component Matrixa

.933 .104 -.190

.907 .155 -.253

.853 -4.61E-02 -6.86E-02

.659 -.116 .404
-.581 -.137 -.357
.548 -4.35E-02 -2.52E-02
.404 .299 -1.04E-02

-.132 .935 1.479E-02
-.151 .887 -3.50E-02

-4.80E-02 .808 .193
1.787E-02 -9.23E-02 .896

SENTENCE
TM_SERV
AGE
JAIL_TM
AGE_FIRS
PR_CONV
DR_SCORE
EDUC_EQV
SKL_INDX
IQ
TM_DISP

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

 

 
Factor I 
 

 sentence (.933)   tm_serv (.907) 
 age (.853)    jail_tm (.659) 
 age_firs (-.581)   pr_conv (.548) 
 dr_score (.404) 
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What Do the Three Factors Measure? (cont.) 

 
Naming Factor I  What do these seven variables 
have in common, particularly the first few that have 
the highest loading on Factor I? 

 
Degree of criminality? Career criminal history? 
You name it … 

 
Factor II 
 

 educ_equ (.935)  skl_indx (.887) 
 iq (.808)     
 

Naming Factor II Educational level or job skill level? 
 
Factor III 
 

 Tm_disp (.896) 
 

Naming Factor III This factor is difficult to understand 
since only one variable loaded highest on it.  
 
Could this be a measure of criminal case processing 
dynamics? We would need more variables loading on 
this factor to know. 
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Summary of Results 
 

 The 11 variables were reduced to 3 factors 
 

 These three factors account for 67.44% of the 
covariance among the variables 

 
 Factors I appears to measure criminal history  

 
 Factor II appears to measure educational/skill 
level 

 
 Factor III is ambiguous at best 

 
 Three of the variables that load highest on Factor I 
do not load too high; i.e. age_firs, pr_conv, and 
dr_score. Compare their loadings and 
communalities. 

 
 

Loading on Factor I 
 

Communality  
 
age_firs        -.581 

 
.483 

pr_conv         .548 .303 
dr_score        .404 .252 

 
The communality is the proportion of the variance in a variable 
accounted for by the three factors. 
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What Can Be Done if the Factor Pattern  
Is Not Clear? 

 
 
Sometimes one or more variables may load about 
the same on more than one factor, making the 
interpretation of the factors ambiguous. 
 
Ideally, the analyst would like to find that each 
variable loads high (⇒ 1.0) on one factor and 
approximately zero on all the others (⇒ 0.0). 
 
 

An Ideal Component Matrix 
 

Variables Factors (f) 
 I II … f 

X1 1.0 0.0 … 0.0 
X2 1.0 0.0 … 0.0 
X3 0.0 0.0 … 1.0 
X4 0.0 1.0 … 0.0 
… … … … … 
Xk 0.0 0.0 … 1.0 

 
The values in the matrix are factor loadings, the 
correlations between each variable and each factor. 
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Factor Rotation 
 
 
Sometimes the factor pattern can be clarified by 
"rotating" the factors in F-dimensional space. 
Consider the following hypothetical two-factor 
solution involving eight variables. 
 
      F I 
 
     
 
   X8     
 
        X1      X4 
           
        
          X6   
           F II 
    
        X3   X5 
     
 
 
          X7 
        
       X2       
          
 
Variables 1 & 2 load on Factor I, while variables 3, 5, 
& 6 load on Factor II. Variables 4, 7, & 8 load about 
the same on both factors.  
 
What happens if the axes are rotated? 
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Factor Rotation (cont.) 

 
Orthogonal rotation   The axes remain 90° apart 
 
 
      F I 
 
     
 
   X8     
 
        X1      X4 
           
        
          X6   
           F II 
    
        X3   X5 
     
 
 
          X7 
         
       X2     
          
 
 
Variables 1, 2, 5, 7, & 8 load on Factor II, while 
variables 3, 4, & 6 load on Factor I. 
 
Notice that relative to variables 4, 7, & 8, the rotated 
factor pattern is clearer than the previously 
unrotated pattern. 
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What Criterion is Used in Factor Rotation? 
 
There are various methods that can be used in 
factor rotation … 
 
Varimax Rotation 
 

Attempts to achieve loadings of ones and zeros in the 
columns of the component matrix (1.0 & 0.0). 
 

Quartimax Rotation 
 

Attempts to achieve loadings of ones and zeros in the 
rows of the component matrix (1.0 & 0.0). 
 

Equimax Rotation 
 

Combines the objectives of both varimax and 
quartimax rotations 
 

Orthogonal Rotation 
 

Preserves the independence of the factors, 
geometrically they remain 90° apart. 
 

Oblique Rotation 
 

Will produce factors that are not independent, 
geometrically not 90° apart. 
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Rotation of the Eleven Variable Case Study 
 
Method  Varimax rotation. Below are the 
unrotated and rotated component matrices.  

 

Component Matrixa

.933 .104 -.190

.548 -4.35E-02 -2.52E-02
-4.80E-02 .808 .193

.404 .299 -1.04E-02
1.787E-02 -9.23E-02 .896

.659 -.116 .404

.907 .155 -.253
-.132 .935 1.479E-02
-.151 .887 -3.50E-02
.853 -4.61E-02 -6.86E-02

-.581 -.137 -.357

SENTENCE
PR_CONV
IQ
DR_SCORE
TM_DISP
JAIL_TM
TM_SERV
EDUC_EQV
SKL_INDX
AGE
AGE_FIRS

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

 
 

 
Rotated Component Matrixa

.956 -2.59E-03 -5.62E-02

.539 -9.79E-02 5.956E-02
1.225E-02 .823 .128

.431 .257 2.933E-02
-.118 -1.88E-02 .892
.579 -.145 .504
.945 4.563E-02 -.126

-3.15E-02 .942 -6.89E-02
-4.89E-02 .891 -.118

.844 -.133 6.221E-02
-.536 -.110 -.429

SENTENCE
PR_CONV
IQ
DR_SCORE
TM_DISP
JAIL_TM
TM_SERV
EDUC_EQV
SKL_INDX
AGE
AGE_FIRS

1 2 3
Component

Extraction Method: Principal Component Analysis.  
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 4 iterations.a. 
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Did the Rotation Improve the  
Factor Pattern? 

 
 

Variable 
 

Factor 
Effect on the 

Loading 
 
Sentence 

 
I: no change 

 
Increased  

(.933 to .956) 
Pr_conv I: no change Decreased 

(.548 to .539) 
IQ II: no change Increased 

(.808 to .823) 
Dr_score I: no change Increased 

(.404 to .431) 
Tm_disp III: no change Slight decrease 

(.896 to .892) 
Jail_tm I: no change Decreased 

(.659 to .579) 
Tm_serv I: no change Increased 

(.907 to .945) 
Educ_eqv II: no change Increased 

(.935 to .942) 
Skl_indx II: no change Increased 

(.887 to .891) 
Age I: no change Decrease 

(.853 to .844 
Age_firs I: no change Decreased 

(-.581 to -.536) 
 
Interpretation Not much change. The rotated pattern is not a 
substantial improvement over the  unrotated pattern. 
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How Good a Fit is The Three  
Factor Solution? 

 
 
Measures of goodness-of-fit 
 
 KMO (0.698)  mediocre to middling 
 

Percent of variance accounted for  67.44%, the 
same for both the unrotated and rotated 
solutions 
 
Communalities (the  proportion of the variability 
in each variable accounted for by the three 
factors)  

 

Ranges from a high of 0.917 for 
sentence to a low of 0.252 for dr_score 

 
Factor patter Fairly clear for Factors I and II, 
ambiguous for Factor III 
 
Reproduced correlation matrix One measure of 
the goodness-of-fit is whether the factor solution 
can reproduce the original intercorrelation matrix 
among the eleven variables. 
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Reproduced Intercorrelation Matrix 
 
 

Reproduced Correlations

.917b .512 2.393E-03 .410 -.163 .526 .910 -2.872E-02 -4.244E-02 .804 -.488

.512 .303b -6.63E-02 .209 -8.75E-03 .356 .497 -.113 -.121 .472 -.304
2.393E-03 -6.631E-02 .693b .220 9.706E-02 -4.77E-02 3.306E-02 .765 .717 -9.14E-02 -.152

.410 .209 .220 .252b -2.97E-02 .227 .415 .226 .204 .332 -.272
-.163 -8.745E-03 9.706E-02 -2.965E-02 .811b .384 -.225 -7.546E-02 -.116 -4.19E-02 -.317
.526 .356 -4.77E-02 .227 .384 .611b .477 -.189 -.217 .540 -.511
.910 .497 3.306E-02 .415 -.225 .477 .910b 2.183E-02 9.253E-03 .784 -.457

-2.872E-02 -.113 .765 .226 -7.55E-02 -.189 2.183E-02 .893b .849 -.157 -5.693E-02
-4.244E-02 -.121 .717 .204 -.116 -.217 9.253E-03 .849 .811b -.167 -2.120E-02

.804 .472 -9.14E-02 .332 -4.19E-02 .540 .784 -.157 -.167 .735b -.465
-.488 -.304 -.152 -.272 -.317 -.511 -.457 -5.693E-02 -2.120E-02 -.465 .483b

-.112 -2.61E-02 -6.383E-02 7.922E-02 -2.93E-02 5.931E-02 2.251E-02 1.246E-02 2.159E-02 7.064E-02
-.112 5.032E-02 -.153 -5.70E-02 -3.56E-02 -7.81E-02 1.828E-02 1.930E-02 -.170 -5.449E-02

-2.610E-02 5.032E-02 -3.344E-02 -6.62E-02 -1.83E-02 -1.99E-02 -8.496E-02 -.176 3.001E-02 1.229E-02
-6.383E-02 -.153 -3.34E-02 5.189E-03 -.143 -7.75E-02 -.124 -.110 -7.99E-02 -6.825E-02
7.922E-02 -5.698E-02 -6.62E-02 5.189E-03 -.126 7.886E-02 4.933E-02 1.726E-02 9.006E-02 .185

-2.932E-02 -3.556E-02 -1.83E-02 -.143 -.126 -1.32E-02 2.944E-02 9.629E-02 -4.09E-02 .146
5.931E-02 -7.807E-02 -1.99E-02 -7.753E-02 7.886E-02 -1.32E-02 2.526E-02 1.058E-02 -2.49E-03 8.511E-02
2.251E-02 1.828E-02 -8.50E-02 -.124 4.933E-02 2.944E-02 2.526E-02 2.277E-02 4.059E-02 7.814E-02
1.246E-02 1.930E-02 -.176 -.110 1.726E-02 9.629E-02 1.058E-02 2.277E-02 -1.23E-02 2.982E-02
2.159E-02 -.170 3.001E-02 -7.994E-02 9.006E-02 -4.09E-02 -2.49E-03 4.059E-02 -1.228E-02 .153
7.064E-02 -5.449E-02 1.229E-02 -6.825E-02 .185 .146 8.511E-02 7.814E-02 2.982E-02 .153

SENTENCE
PR_CONV
IQ
DR_SCORE
TM_DISP
JAIL_TM
TM_SERV
EDUC_EQV
SKL_INDX
AGE
AGE_FIRS
SENTENCE
PR_CONV
IQ
DR_SCORE
TM_DISP
JAIL_TM
TM_SERV
EDUC_EQV
SKL_INDX
AGE
AGE_FIRS

Reproduced Correlation

Residuala

SENTENCE PR_CONV IQ DR_SCORE TM_DISP JAIL_TM TM_SERV EDUC_EQV SKL_INDX AGE AGE_FIRS

Extraction Method: Principal Component Analysis.
Residuals are computed between observed and reproduced correlations. There are 29 (52.0%) nonredundant residuals with absolute values > 0.05.a. 

Reproduced communalitiesb.  
 

 
The upper half of the table presents the reproduce 
bivariate correlations. Compare these with the lower 
half of the table that presents the residuals. 
 
 Residual = (observed - reproduced correlation) 
 
The diagonal elements in the upper half of the table 
are the communalities associated with each 
variable. 
 
Over half of the residuals (52%) are greater  
than 0.05 
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Computing Factor Scores 
 
 
A useful byproduct of factor analysis is factor scores. 
Factor scores are composite measures that can be 
computed for each subject on each factor. 
 

They are standardized measures with a mean = 
0.0 and a standard deviation of 1.0, computed 
from the factor score coefficient matrix. 

 
Application 
 

Suppose the eleven variables in this case study 
were to be used in a multiple regression 
equation to predict the seriousness of the 
offense committed by parole violators.  
 
Clearly, the eleven predictor variables are 
collinear, a problem in the interpretation of the 
extent to which each variable effects outcome. 
 
Instead, for each subject, computed a factor 
score for each factor, and use the factors as the 
predictor variables in a multiple regression 
analysis. Recall that the factors are noncollinear. 
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Regression Analysis of Crime Seriousness 
With the Eleven Variables 

 
 

Model Summary

.744a .554 .548 1.3547

.805b .648 .637 1.2131

.834c .696 .682 1.1354

Model
1
2
3

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), SENTENCEa. 

Predictors: (Constant), SENTENCE, PR_CONVb. 

Predictors: (Constant), SENTENCE, PR_CONV,
JAIL_TM

c. 

 
 

ANOVAd

155.146 1 155.146 84.536 .000a

124.797 68 1.835
279.943 69
181.347 2 90.674 61.617 .000b

98.595 67 1.472
279.943 69
194.860 3 64.953 50.385 .000c

85.083 66 1.289
279.943 69

Regression
Residual
Total
Regression
Residual
Total
Regression
Residual
Total

Model
1

2

3

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), SENTENCEa. 

Predictors: (Constant), SENTENCE, PR_CONVb. 

Predictors: (Constant), SENTENCE, PR_CONV, JAIL_TMc. 

Dependent Variable: SER_INDXd. 
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Regression Analysis of Crime Seriousness With the Eleven Variables (cont.) 

 
 
 

Coefficientsa

2.025 .254 7.962 .000
.303 .033 .744 9.194 .000

1.601 .249 6.428 .000
.248 .032 .611 7.721 .000
.406 .096 .334 4.220 .000

1.466 .237 6.193 .000
.203 .033 .499 6.098 .000
.361 .091 .297 3.959 .000

1.141E-02 .004 .256 3.238 .002

(Constant)
SENTENCE
(Constant)
SENTENCE
PR_CONV
(Constant)
SENTENCE
PR_CONV
JAIL_TM

Model
1

2

3

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: SER_INDXa. 
 

 
 

Interpretation 
 
 R2 = 0.696 
 

Significant predictor variables: sentence on the 
previous offence, prior convictions, and previous 
jail time 
 
The other predictors were not entered into the 
equation, not because they are unrelated to 
crime seriousness, but because they are 
collinear with the variables in the equation. 
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Regression Analysis with Factor Scores 
 

Model Summaryc

.788a .621 .615 1.2497

.802b .643 .633 1.2209

Model
1
2

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), REGR factor score   1 for
analysis    1

a. 

Predictors: (Constant), REGR factor score   1 for
analysis    1 , REGR factor score   3 for analysis    1

b. 

Dependent Variable: SER_INDXc. 
 

 

ANOVAc

173.747 1 173.747 111.255 .000a

106.196 68 1.562
279.943 69
180.081 2 90.040 60.410 .000b

99.862 67 1.490
279.943 69

Regression
Residual
Total
Regression
Residual
Total

Model
1

2

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), REGR factor score   1 for analysis    1a. 

Predictors: (Constant), REGR factor score   1 for analysis    1 , REGR factor score  
3 for analysis    1

b. 

Dependent Variable: SER_INDXc. 
 

 

Coefficientsa

3.829 .149 25.632 .000

1.587 .150 .788 10.548 .000

3.829 .146 26.238 .000

1.587 .147 .788 10.797 .000

.303 .147 .150 2.061 .043

(Constant)
REGR factor score
1 for analysis    1
(Constant)
REGR factor score
1 for analysis    1
REGR factor score
3 for analysis    1

Model
1

2

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: SER_INDXa. 
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Interpretation of the Regression Analysis 
With Factor Scores 

 
 R2 = 0.643 (previous regression model = 0.696) 
 
 ser_indx = 3.829 + 1.587 (F I) + 0.303 (F III) 

 
 

F = Factor 
 
Factors I and III were found to be significant 
predictors. Factor II was not significant. 
 
Factor I is assumed to be a latent factor that 
measures criminal history, while Factor II 
appears to measure educational/skill level. 
 
Since only one variable (tm_disp) loaded on 
Factor III, it is difficult to theorize about the 
nature of the latent variable it measures other 
than it measures time to disposition. 
 
Comparison of the beta weights indicates that 
the criminal history factor (Factor I) has a 
greater effect in explaining the seriousness of 
the offense than does Factor III (tm_disp). 


